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ABSTRACT

The problem studied in this thesis is the expansions of 
parabolic wave and harmonic functions. The wave equation 
separated in the coordinates of the paraboloid of revolution 
yields solutions referred to as parabolic wave functions. 
Series expansion for the parabolic wave functions in terms of 
the spherical wave functions has been obtained, with 
coefficients of the expansion explicitly determined. These 
coefficients have been given in terms of certain polynomials 
due to Pasternack for which the orthogonality relation is 
known. With this relation then the series expansion has been 
inverted to express the spherical wave functions, in integral 
form, in terms of the parabolic wave functions. Two methods 
have been developed to find the expansion for the parabolic 
potential functions. Further, the linear generating function 
for the Pasternack polynomials has been obtained in terms of 
a hypergeometrie function. In addition a new derivation of 
the bilinear generating function in the continuous case has 
been given for the parabolic wave functions. Finally a 
second method for the derivation of the series expansion of 
the parabolic wave functions has been found.



EXPANSIONS OF PARABOLIC WAVE AND HARMONIC FUNCTIONS

By
Yousef Alavi

A THESIS

Submitted to the School of Advanced Graduate Studies of 
Michigan State University of Agriculture and 

Applied Science in partial fulfillment of 
the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics 
1958



ProQuest Number: 10008569

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10008569

Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



ACKNOWLEDGMENTS

The author wishes to express his sincere 
appreciation to Professor J. Meixner and 
Professor C. P. Wells for their stimulating 
advice, frequent encouragement, and for their 
unfailing interest in this investigation, the 
results of which are herewith dedicated to them.

Thanks are also due Professor A. Leitner 
for his assistance and the interest he has 
taken in this thesis.



TABLE OF CONTENTS

SECTION PAGE

I. INTRODUCTION....................................... 1
II. PRELIMINARY NOTIONS AND NOTATIONS............ • • • • 3
III. EXPANSIONS FOR PARABOLIC WAVE FUNCTIONS................ 8
IV. INVERSION......... .. ...............................16
V. SPECIAL CASES.....................................•22

1. AN EXPANSION FOR THE FUNCTION £ , X )
2. DERIVATION OF THE SERIES EXPANSION 

OF HOCHSTADT
VI. THE EXPANSION FOR THE PARABOLIC....................... 28

POTENTIAL FUNCTIONS
VII. GENERATING FUNCTIONS.......... 36

1. LINEAR GENERATING FUNCTION FOR THE 
PASTERNACK POLYNOMIALS

2. BILINEAR CONTINUOUS GENERATING 
FUNCTION FOR PARABOLIC WAVE FUNCTIONS

APPENDIX............  ^8

BIBLIOGRAPHY.....................................   5̂



1
I. INTRODUCTION

The parabolic wave functions have received considerable 
attention in recent years. This has been due, for a large 
part, to the interest in the physical problem of diffraction 
of waves both acoustical and electromagnetic, by a paraboloid 
of revolution. The diffraction problem has been basic in the 
work of Fock in some recent advances in the general theory 
of diffraction. Of the many papers of Fock we refer only to 
reference [8] where other references can be found. The 
diffraction problem has also been studied by Hochstadt [10] 
to which we shall refer later.

It is found in the approach to the diffraction problem 
that the relation of the parabolic wave functions to spher
ical wave functions is of considerable importance. In this
thesis we study the problem of expanding parabolic wave
functions in infinite series of spherical wave functions.
This assumes as a heuristic principle, that a solution of 
the wave equation in some coordinate system can be expanded 
in terms of solutions of some other coordinate system.
However the number of cases where this has actually been 
done and the coefficients explicitly determined, is very 
small. We shall show that in the present case, the expansion
can be done and the coefficients determined.



2

It is of Interest to note that as a by product of the 
expansion, certain polynomials due to Pasternack [12] will 
play an important part. These polynomials are orthogonal and 
the orthogonolity relation is known. Hence the expansion can 
be inverted and as a result spherical wave functions are then 
expressed, in integral form, in terms of parabolic wave 
functions. Further, we are able to find the generating 
function for the Pasternack polynomials as a hypergeometric 
function and finally we are able to give a new derivation 
of the bilinear generating function in the continuous case 
for the parabolic wave functions themselves.



3

II. PRELIMINARY NOTIONS AND NOTATIONS

We define the spherical coordinates r, 0, 'f , and the 
coordinates of the paraboloid of revolution £ , , 'f ,

by
x = r sin 0 cos ^ cos
y = r sin 0 sin 'f - \ ^ sin 'f 
z = r cos 0 = § 2 - ^ 2).

The wave equation
AU + k2U = 0  

transformed to the coordinates f ^ , T  , is

x . 1 _ _ b _ ,  v, d u
? 2 + 'i2

_1_ " ( F ° U % + i_ ° ( rt a V  s

>2_ i  L _ a  + k2n = o£ 2 2 2 K u u
The method of separation of variables then admits solutions

of the form e im ̂  ,
where ( § > A )  satisfies the ordinary differential equation

+ + ( k 2 ? 2 - f 5 +  A ) ^ = 0 '

and ^  ( *? satisfies a similar equation with the sign
of A  reversed. We shall refer to the product of solutions

V' m( £ » ̂  ) y  rn( or ^ O . - ^ J a s
a parabolic wave function.



From (1), y^C £ , /S) can be given in terms of a confluent 
hypergeometric function

= el k ^ 2/2 -t-S-i-i ,m + l;-ik£2). (2)

For physical reasons we shall expect to have wave functions 
which are regular and single valued and thus assume ra to 
be integral.

Similarly, the wave equation transformed to the 
coordinates r, 6, X  * becomes

2 2

r2 sin 9 — :— ^ + 2r sin 0 + sin 0 ■— jjj
r sin 0 b

2 '
. ~ d-U . 1 ^ U+ cos 0 + k U = 0,

and it has solutions of the form jn(kr)P“m(cos 0)e-im f

Here jn(kr) is a spherical Bessel function and satisfies the 
differential equation

d j (kr) 2 d j (kr)— ..... . £i 11... 4.
dr2 r dr

k2 _ nfa+UK 2
r

jn(kr) = 0,

and P~ (cos 0) satisfies
2 d2 P*m(cos 0) d P“m(cos 9)

sin 0  2------ + sin 0 cos 0 —
d0 d0

(3)

n(n+l) sin20 - ra2 P"m(cos 0) = 0.
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The function P “(cos 0) is related to the associatedn

Legendre function p“(cos 0) by

Pn^cos •) - (-1)“ »
Here we choose Pnm(cos 0) so that we can absorb the factor
/ \ |
(n+m)i la^er our expansions.

Various notations have been employed to designate 
confluent hypergeometrie functions and the parabolic wave 
functions, notably those introduced by Whittaker and Bucholz.
The Whittaker function, v(x), is defined by [3* page 10]

*2.

v + 1
= e"3̂ 2 x 2 ^ ( - K  + ; v + lj x)

*2

and for v integral, is a regular function of x. It satisfies 
the differential equation

.2
i x  +. 2dx

y = 0.

Our functions £ , A )> %>( ^ A ) can be expressed

in terms of this Whittaker function, as follows;
m+1

, A) = (-ik> 2 -j- miA (-ik % 2),
Q W  9 °

m+1
2 1

yrB( l . - A )  -  c ik ) »  O k ’?*' )•
5k * 2



If in the above Whittaker function, v is not a negative 

integer, the f u n c t i o n „ ( x )  is defined by Buchholzi\|V2
[3, page 12] as ^ (x)

M r  „(x)
r < i + ▼>

In terms of these functions of Buchholz, our functions are

_ ra+1
,A) - mt (-lk) 2 4 - ^ iA m(-ik 5 2),

*  5k > 2
and

ra+1 2
y*-B< 7 . - M  « »t dk)" 2 s (lk ^ 5>

' 5k ' 2
f \

Still a further notation (x) , useful in applications,

has been introduced by Buchholz [3> page 533* It is a solution
2

ĵ x.F»(x) - (ĵ - \,+ --) F(x) = 0

and is given in terras of the above functions of Whittaker 

and Buchholz by

. 1 . 1  * W X)
= x = x r(i+v)

2

Hence our functions can be expressed as

of _ v
d_
dx
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-  ( )
£ , A ) = ml (-ik) 2 l n ^ _  (-ik £ 2)

W ~

V^m( >?,-A ) = ml (ikf (ik >|2).

Finally we summarize these notations by writing the 

parabolic wave functions *A ) ^m( ) as follows!

fm( f . A >  l ^ . - A )  = MlX m(-ik£2)
Q * W  *2

’ MiX rn(ik 7 2)> 
W  *2

°r /mi\2 -(m+1) ?
fmU , A )  M i x  m(-i k <S >

. iX_ m(ik *1 
^ ’2

0r 2 -m /i (m ) ?fm( ^ ’ A) 5̂ q( 7 >" A ) = (m!)2 k m ?niA C-ik £ 2)

(iX ^ 2).
IS"
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III. EXPANSIONS

We now attempt to expand the parabolic wave functions 
Y m( f > in terms o t spherical wave functions

3n(kr) Pnm(cos 0) and assume an expansion
oo

Y m( ? . A ) Y B( M , - A )  n J 2  •£ in(kr) pnm(cos 9)> (U)1 v n=m

with r = ^ ( ^ 2 + ^ 2) and cos 0 =
2 v, 2

2  *

The coefficients an , which depend on k,A, m, can be

determined from the condition that the expansion (*+) must be 
a solution of the differential equation (1) for all values 
of . Since the particular value of 7̂ does not matter, we 
choose arbitrarily small 7̂ , and examine P~m(cos 0) for ^

near zero. As 7̂ — > 0, cos 0 — > 1 and since
m

m p

C < »  —  * ' 1 “ 3 b

as x — > 1, we find that

- m , _______  .__1____5
m

P “(cos 0)n id:

The expansion (*+) thus becomes
oo

Y b< £ . »  • 4 r -  * A j an V to>-

It remains here to investigate for sma11



Then

Y m< ̂  A) = elk r^2 / 2 1 P 1 (.- 2 + ^  S m + l! -ijt \ 2 )

= y)B elk ̂  /2T
_ a . atl

2 2 21 + ---------- (-ik ~Yi )m + 1 (

+ 0( 7)k )

But the above approaches 1 for small , so that

we have

and the expansion (if) reduces to
oo

Y m( f . A )  = i s / - a “ g - J n( k W1 n=m c

with V = ^ / 2 .

We now determine the condition that

X I an f "  Jn<k f 2/2>n=m

satisfies the differential equation in (1). Let 
oo

r = Z « :  jn( k f 2/2).n=m 1

Substituting in the differential equation (1) leads to
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ooEn=m a k l jn(k p/2) + (1-m) J* (k p/2)

fk c2+ (f p  + iw) Jn (kp / 2 ) = 0 ,

If we put v = (k/2)^ the last equation becomes

oo

^  a” ^v * + + + iw)jn v̂)l = °> (5)
n=m

ii iin which we can eliminate the 3n(v) and j^Cv) by using the'n
differential equation for 3n(v) and the recursion 
formulas

t2n v 1} 3n(v) = Jn+1(v) + jn_l(v)' (6)

(2n + 1) j^(v) = n • Jn-1(v) - (n+1) 3n+1(v) (7)

The differential equation for «Jn(v) is

v*3^(v) + 2j^(v) + _ nCn+1),
v 0n(v) = 0,

or
v j n(v) = n(n±U _ v

V “  2V v)#

If we now introduce v*Jn(v) into (5)> it becomes, after

simplifying 
oo (Y*; jn(v) - (1+m) Jn(v) = 0 .

n-ra
Using the recursion formulas, (6), and (7), the last equation
reduces to
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CD

n~m an *] iw * J„<*> ♦

_ jm±ljL 2n + 1
or

M  [ w * >  ♦ V i ‘« ]

n ^ n - l ^  ~ (n+1) ^n+l(v)

oo

n=m
X  .m n(n-m) * , n . \  m . . , x
<4- n 2n + 1 W v) + 2 _  an lw ^n(v)n~m

oo
+ \  m (n+1) (n+ni+1) 1 /„> _ 0

Z _ an (2n + 1) •'n+l °*n=m

This can be rewritten as
CD21 j n

(v)
n=m

(n+1)(n-m+1) m . . n(n+m) m
(2n + 3) n+1 + lw an + an-l 0 ,

which can be reduced to a simpler form if we let

a“ = (2n+l) b“ ..m

This leads to 
oo

2 1 3„<v)
n=m

(n+1)(n-m+1) b®+^ + iw(2n+l) bm̂

+ n(n+m) bn-l] " 0- (8)
Hence for (8) to hold, the coefficient of jR(v) must vanish, 
and we therefore have

(n+1)(n-m+1) b"+1 + iw(2n+l) b“ + n(n+m) b“_x = 0, (9)

which is a three-term recursion formula for the coefficients 

am
^n s 2n +• 1 in our exPans^on •

.m
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The problem is now to determine the coefficients aj!| • 
This can be done by comparing the recursion formula (9) for

the b™ with a recursion formula for certain polynomials

studied by Pasternack [12]. In order to do this, in (5) let

This leads to

(n+1)(n+l+ra) B®+1 + iw(2n+l) B® +

n(n-m) b“-]L = 0, (10)

which is a recursion formula for the B® • How let B® = in C®.n n n
Then (10) reduces to

(n+1)(n+l+m) cjj+1 + w(2n+l) c“ - n(n-m) = 0

This is the recursion formula for the set of polynomials 

glven by Pasternaek [12]. They are defined as

Fjj(z) = ̂ F2(-n , n + 1 , 2 + 2 + 2 5 1 »m+1i1)

for all m, real or complex, except m a negative integer.

Therefore we have

am = (2n+l) bm = (2n+l) Bm°n n (n-m)l n

= <2n+l) S t  1 Cn 

where the C® are proportional to F^(w). Hence
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_& = (.2n+l) (n+m)I .n-m (11s
m (2m+l) (2m)5(n-m)5 1 pmr v 9 Ui;
m }

with iw = /^/2k. The can now be given if we evaluate

a® from the expansion (*+),
oo

Y » ( f  . A ) Y b (T9,-A) = Z  3n<kr) p;“ (cos 6),( n=m

by dividing by = rm sinm0, and taking the limit as

£ 9 ^  9 r — > 0. Now on the right-hand-side the dominant 
terra for small r is the first term of the series for

m •,______  2m ml , mwhich, after dividing by r , becomes '(gm+i)'« ^

Also, P“ra (cos 9) = ~ -n""  which, after dividing by sinm0, 
m 2 ml

becomes — -—  • So that we have now for the right-hand-side 0 m .2 ml
via i m vmm  2 k ml 1____ _ m k

m (2m+l)S ' 2 m  ml ' “ <2nrt-l}l *

But the left-hand-side

approaches 1 in the limit, and therefore we have for the am

m »m
m

flia _ (2m+l) I . 
m ” kra
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Therefore we have for the coefficients a®, substituting

ajj into (11),

_ (2n+l) . (n+m) I ..n-m
n " vm (n-m)I 1 -m, . *F^(w)m

We have finally for our expansion (b )
oo

lnta> p;m(ccs 8),
( v n-m

( » ,n-m F^(w) \
an = <2n+1) ( ^ ! -  “J T  . with IW - s  . (12)

m

The coefficients a^ can also be given in terras of F~m(w), if, 

for the moment, m is not an integer. This can be done if we

let b*? = in B™ . Then the recursion formula for the b^ n n n
becomes, with iw = /*/2k,

(n+1)(n-m+1) in+1 B™+1 + (2n+l)(iw) in b “

+ n(n+m) in”^ = 0,

or
(n+1)(n-m+1) B®+1 + (2n+l) w B® - n(n+m) b“_1 = 0; 

which is the same as the recursion formula 

(n+1)(n-m+1) F ^ z )  + (2n+l) z F‘m(z)

- n(n+m) F”nl(z) = 0.

So that now we have
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am = iin±H ( n-B . But is defined as mii i_Jii ro ̂ « _—jt> ✓ %k" F~m(w) f;“(w )
approaches an integer, and thus our expansion (12) can be given as

oo

Y B<f . * > Y m (1? ’- A) = ^ i2a^ J  i11'” ̂ n=m k

F~m(w)
* -?=--- * Jn(to) P‘ra (cos 6). (13)Fffl (w) n n

Now, in order to establish the convergence of our
series expansions for the parabolic wave functions, we
write (12) as

yr”” . n+m F?(w)
Y m(f , A ) Y b O | . - A ) = 5  (2n+1) —  • ^

p“ (cos 0).

To investigate the behavior of F^(w) for large n, we can use

the asymptotic expansion of a certain polynomial given by 
Rice [13]* He defines these polynomials as

Hn(^,p,v) = 3F2(-n,n+l, £  ; l,p;v),

and with » = - 2 an(* P s m+l and v = 1 these reduce

to Pasternack polynomials. Hn(?f ,p,l) however, behave as a

power of n for large n. Hence the coefficients ajj in the

expansion behave as a power of n. This is also the case for

the function P®(cos 9). But j_(kr) behaves as 0(^t) for large n 11 11 •
n, so that the series converges everywhere.



IV. INVERSION OF THE SERIES EXPANSION FOR PARABOLIC WAVE 
FUNCTIONS

It is now proposed to invert the series expansion for 
parabolic wave functions and express the spherical wave 
functions in terms of the parabolic wave functions. This 
can be done using the known orthogonality relation for 
Pasternack polynomials. The orthogonality relation is given 
by Bateman t13 as

oo
f“ (ix) p-m c-ix) r°. p ^ n E_ ,---  dx — a2*p(i+m)p(i-m ) \ cosh 7r x + cos m it dx

-oo V.2n+l, p = n.
(1)

Our series expansion for parabolic wave functions is
oo

Y m  >A ) T m  (Y ' A )  (2n+1) ' fV  i k )

which can be rewritten as

jn(kr) (cos 6),

00 • v
F“(-. \  .n-m F (- pr-

Y m ( f (2n+1)
^ n=m m' 2k ;
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For convenience, we let t = , and restrict this substi

tution for this section only. Now, multiplying (2) by

Fp(”it)
cosh v t + cos m tr

and integrating with respect to t from -oo to oo , and as it 
is permissible here, interchanging the summation and the 
integration, leads to

oo

rn m \ ff(it) F^(-it)
^  k \ cgS- 7 t " PcoS mir Y m (f .

-CD

00
OO , „ mm/..\ -,m

■ L

\ F„(it) F “(-it) ^  ,,,i M ^ r )  P®(cos 0) (2n+l) \ - £ ~ — — £--------  dt (3)n n \ cosh w t  + cos mirn-m
-oo

From Pasternack [12] we have, if m is not an integer,

_-mr > -m( » T (n+m+1) T (l-m) -m, .
Fn U J  ■ (l-m)n 'n12' " f (n-m+1) r<l+m5 V z' w

Under this condition, introducing (M-) into right-hand-side 
of (3) for F^(-it), and then applying the orthogonality
condition (1), leads to

.n . x -i/ tr, ^ m  ,_m T (n+m+1) _ 1i ln(kp) Pn(cos 6) - 2<-n k rfn-m+15 [
00

Fg(lt) Q - l t )
cosh TTt + cos mrr I m 7  I ml 7 * W

-oo
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The factor in the integrand involving Pasternack*s polynomials 
can be expressed in terms of hypergeometrie and Gamma func
tions, We have

Fn(“it) = 3*2(-n,n+1, \  + f - ^  . m+l,ljl).

Using the transformation (9)

3P2
<X oC ©<1, 2, 3 ; 1 f~ r  ̂ l +^2” °^1~ °^2~ ^

*3F2
Q _ Oi Q _ ot Ov .3Pi 2* 3*

Pl>Pl+p2" °^2

leads to

Fjj(-it)
r
| (m+1) | (| - | m+

. F2(-n+m,n+*+l, ^ ^ m + 77 ; m+l,m+l;l) (6)

Also, we have

which, with the relation [l*f, page 282]

?F1(a,bjc;l) = L  ^  if a >2 1 | (c-a) (c-b)

leads to p  (1 + I m- 11)
F^(it) = tzr-2 2—  -v ~ i ----- 77—  • (7)m P  (m+1) (| - - ^|)
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Hence, from (6) and (7) we get

[ f  (m+l)]2 p  ( l - l m + ^)| ( 1 . 1 m - i & )

If we now use the functional equation

| + z) r ( |  “ z) = cos’V z  »

we can write for

! " < * ♦ *
(1 - 1 m -

<1la. 11)2 2 17T r<£+ 2 m + ^
cos 7r(| + i (1 4, 1 m - it)^2 2 2

itxcos ^2 ” 2

2tt‘
(cosh 7T t + cos mir) 

(9)

Substitution of (9) into (8) leads to

F®(-it)F“(it) = — p— ------p-n m 2tt [ P (1+ra) ] i ( l + 1 m +  n i + 1 * -

i  ^ * fc-
• (cosh irt+ cos rair) jF2(_n+m,n+m+l,^ + ^ m- ; m+l,m+l}l)

(10)
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Equation (10) can now be introduced into (5)> and thus we get

i" in(*r) P£(cos 9) = fe <-*)■>

oo

-00

*3̂ *2(”n+ra,n+ra+1, ^ + | m - ~;m+l,m+l;l) ^  » A) Y n ^ » “ ^ dt

This result, which now holds for integral (11)
values of m , can be reduced to a representation due to 
Buchholz [2, page 202] if we use his parabolic functions.

( ID )Buchholz redefines the functions 7Ŷ  (z ) [2, page 198] as

??/(m)(z> = (fe)l / 2 M (z).
K *2

Using this definition and the expression relating our 
parabolic wave functions and the Whittaker functions, 
section II, we get

- I k' * ?? ? 2>

■ x

w

(m)
(ik 7̂  ). (12)
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Therefore, for integers m, with - ^7 = s, and the relation (12), 
equation (11) reduces to the result obtained by Buchholz, and 
we get

in 3n(kr) P“(cos 6) = | (-i)m - ± - r
" n w  (mtr (n-m)!

i 00
2

s)T (2 * 2
-i 00

• ^F2(-n+m,n+m+l, ^ ^ m+ s; m+l,m+l;l)

s s
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V. SPECIAL CASES

1. A SERIES EXPANSION FOR THE FUNCTION ^ By the

use of the expansion (12), section III, we can now derive a 
series expansion for the parabolic f u n c t i o n ^ ^  ̂  in

terras of the spherical Bessel function jn(kr). It is then

possible to give an expansion in terras of the function
pjn(kr) for the Whittaker function M_w m (-ikp ).

2 * 2

We have already shown, page 9 , that
oo

1 m; c n=ra
2with v=k E /2, and where

/ , \, .n-m F*?(w)_m ✓ ~ . v (n+ra)l . i _n _
n - (2n+1) W T  krn Fm(w) >

with iw = A / 2k. Now with

^  t- M (-ik£2)
^  ? 2  * 2

(1) becomes
(ra+l)/2 00

2 *  2  m * * n=m

0 r  « - w2 * 2  n=m ?

(n+ra)l Fn ^ _  * , \ (2)
• t s ^ t r Fm(w) <2)
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where we have substituted for the coefficients a™ , page 1*+.

The series expansion (2) can now be compared with an 
expansion for the Whittaker function given by Buchholz 
[6, page 128], In this case, however, essentially the same 
Whittaker function has been expanded in an infinite series 
whose terms are a finite product of a sum of two Bessel 
functions of the first kind whose orders are half an integer.
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2. THE DERIVATION OF THE SERIES EXPANSION OF HOCHSTADT

In [10] Hochstadt makes use of an expansion of parabolic 
wave functions in terms of spherical wave functions and we 
shall show that his result is a special case of ours,

Hochstadt gives, for s and m integral,

(P) , £ n ± p i ^ ( - )  (.2 i k p
1 s + “ 2~ 1

oo ,

• V m) 1+m (2i = H  (2n+l)1s +   n=m

(-1)r(m-n)p(m+n+1)r(r+m+i)(g-r  ̂
(m+l) (s-r)! r!

r=0 r

.jn(kr) P“(cos e)e'lra^  . (3)

Our expansion is

n-m m

• jn(kr) P’m (cos 0), (*+)

with iw s ̂ /2k,
Using the notation of Buchholz for our parabolic wave 
functions (if) becomes

(raS)2 C-ik^2) - ^ ”̂  (ik-y2) = (2n+l)

_ . n-m F®(w)
i = “  I m T T  3 n < t o )  P £ < c o s  0 ) >Fm(w)
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or
% < ■ >  (-ike2)- ? » M v  (lk» 2) . j r  laeii i

~ ? “ o 1 n=m (in!)
n+m

Fm(w)
pm(w ) 3n(kr) pn ^cos 9^#

Now let -w = 2s + 1 + ra, where s and m are integers, then 
(5) becomes

i+m 2> - V m| 1+n ( « ? 2> = f :  in+aS + "-p“ c s + —5—  1 n=m (m!)

We have

f“ (-2s-l-m)
- 5 - --------- 3_(kr) P®(cos 6). (6)F“ (-2s-l-m) n n

F“ (-2s-l-m) = jljl)

(1+s)m
m

(s+m)! _ r( s+m+1) m! s! “ m! si (7)
Also

Fn(-2s-l-m) = ^F2(-n,n+l,-sjm+1,1jl)

(2 + 2 m+s+ j m +
(2 “ 2 m+s+ 2 m P

^(-n+m.n+irrta.-sjm+l,m+l;l)
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_ r  (s+m+1)
s • ml * -r=0

(-n+m)r (n+m+1)r (-s) ̂ 
(m+l)_(m+l) *r!

s
= r (s+m+11 y  (m-n)r(n-fnn-l)r(-l)r s{ 

s" m* r=Q t™+l)r(in+l)r rS (s-r)S '

Here we have used the transformation [9* page U-99]

3F2
oC1 oC2, 3 ;1

Pl»P2

| ($1  ̂T  ̂ l +^2" °^l“ °^2"

3F2
Pi- c*3;1

Pi >Pi+P2“0<i”0^2

Hence we have with,some simplifying,

(-l)r(n-m) (n+m+1) (m+l+r), s
Fj(-2.-l-m) = ----- (m+iy;-pT T B 7 i  •

Introducing (7) and (8) into (6) leads to

+ l ± a  (' i k £ ) ‘ ^ s + l ± s  ( i k 7  }

(8)

00
.\  (2n-H) n̂+ra mi si
Z _  (mi)2 (s+ra+1)n=m
oo

n=m

(-l)r(n-m)It(n+m-H)r(m^H-r)(s_r)
(m+l)r r! (s-r)S

. jn(kr) Pjj (cos 0),
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f—  (in) (m)

ln~mf2n»T> V ~  (-l)I‘(n-m)r(r+nH-l)^s_].j
Z.  mJ i_  (ra+1) (s-r)J r2n=m r=0

. jn(kr) pJJ (cos 0),

which is the series expansion given by Hochstadt with the

parabolic coordinates X=2 ^ cos'/5, Y=2 sin f,
Z = f - 7{ .
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VI* THE EXPANSION FOR PARABOLIC POTENTIAL FUNCTIONS

The parabolic potential functions are the solutions 
of LaPlace*s equation

A U = 0
in parabolic coordinates. The expansion for these functions 
can be derived in two ways. Directly, by repeating the 
process for LaPlace*s equation which we did for the wave 
equation, and this will be shown later in this section. 
Secondly, the expansion for these functions can be derived 
by taking the limit of the expansion for the parabolic wave 
functions, (12), section III, as k — > 0. Then the parabolic 
wave functions become Bessel functions in the limit, as is 
the case if we separate the LaPlace*s equation in the 
parabolic coordinates and find its solution. To show this, 
the differential equation satisfied by Y"m(^ , A) is

,2 ^  d T m ( ^ A )  

d ^ 2 1

•'r m< f . *> =
which becomes, as k — > 0,

2 t2 + A

2 „2
I F  d ? - r a ♦ ( A 1/2p 2

• .*> = o-
This is Bessel's differential equation with a solution 

regular at £; * 0, Jffl( A 1/2 ̂  ). For the equation involving

(1)
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y ^ 9 the corresponding solution is Jm(i A 1^2^).

Now for the right-hand-side of the expansion III (12) 

we must find Fjj(w), Fjjj(w), and jn(kr), as k — >  0, while 

Pnm (cos 6) is independent of k.

We have
Fjj(w) = ^F2(-n,n+l,| + ^ m + ^ wjl,m+ljl)

— (-n)p(n+l)r(^ + \  m + | w ) ±■z (l)_ (m+1),. r!r=0 r r

1 1  1The last term in series (r~n) contains (2 + 2 m + 2 w n̂*

This factor is of degree n in w. All other terms of 
r < n are of degree less than n in w* Therefore, near 
k = 0, with r = n and w = -iA/2k, we have

m , iis ~  1_ in n, .(2n)'t , 1_ .___ m{__
n 2k nt ' nt nj (n+m) S

1 , , ,n 1n AfJ _ mi(2n)t in A n . 4 _J_
• 22n kn - (n+m),(nS)2 22n kn

Similarly, near k = 0, we have
zP( 1 * )  m! (2m) I im A m . 1
V  2k  (2m)!(mJ)2 22m k:

im A m i _
" m! 22m ’ k“

Then, near k = 0, for the coefficients a™ we have
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Qm ̂  j_2n+l)(n+m)5 jn-m mi(2n)linA n 1_ 
n km(n-m)5 (n+m)5(nl)2 22n kn

ml 22m km 
im A m

or
m (2n+l) (m2)2 / lxn-m vn-m 1
n ̂  (n-rnjT (n»}2 *f A  l? *

The dominant term in the expansion of Jn(kr) = \ / J
' n+

near k = 0 is the leading term and hence for small k
< n„ - w  2n(kr)” ni V KrJ~  (2n+l)l

Thus the right-hand-side of our expansion III (12) becomes, 
in the limit as k — > 0, 

oo p
7 " {rMnlTnT C  9).
n-m

It remains now to investigate the left-hand-side of our 
expansion as k — -> 0. We have

Y . C f  . * >  = ? ” *lk 1 ^  1F1 <' SiT +

Then m
k — >0 ' c

. .MA (m+1) 15

. ( 4 5 ' )
if

+ (m+1)(m+2) 22l
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= miam

(/\) m
(- r  (# r

. m! ‘ (m+1)! 1! + (m+1)! 2!

oo
_ m! 2m

575 /
V  c - D p m+2p

^ f" (m+p+1) p!

]

- ^ 7 5  Jm < ^ P

Similarly

A) = m ,-ik7? /2e a  <+ y 1 + ^ m+i* v

approaches

^ 7 5 -

Therefore the expansion III (12) now becomes

(m?)2 22m T , \1//2 r x T (i v l / / 2  ̂ \  (mj )2 rn
?n I'm Jm ( A  f >* Jm (i A  ^  > " 2 _  (n-i>! nS1 /' 1 ' n—m

. n-m «n x n 
•<-t> - T T Pn (“ •«).A



= V  ,» ^ P(2A)n rn
/  n! (n+m)ln-ra

• P® (cos 0). (2)

which is the expansion for the parabolic potential functions.

As mentioned above a different way to get this expan
sion for the potential functions would be to repeat the 
process for LaPlace*s equation that we did for the wave 
equation. We assume the expansion

1 /2 1 /? QQ
Jm( A  f } Jm( i A  7 ) = /  bS r" pn (cos 0)* (3>n=m

f 2 +  yi 2 $ 2 - y 2with r = ----3---- , cos © * — ~---- r . Again we attempt
I * f

to determine the coefficients b® by substituting (3) in

1/2
the differential equation for A  p  ) for all 7̂  •

Since the particular value of 7̂ does not matter, we 
choose arbitrarily small Y] , Then in the right-hand-side



33

of the expansion (3), for near zero, we have

Pn ( ^ 2  -n \ | 2 + >J / (n-m)S mS

and r

_ m

? 2n n ^  JE__2n

1/2For the function A  T|), near ^ = 0, we have

1/2 - , m/2 ̂  m
J J i A  V )~  ,nr / 7 m?

Thus the expansion (3) for ^ -- > 0 reduces to

1/2 J°° -m/2T / \ ' V X  vm .-m > T (n+m)! A  £
m( ? } bn 1 (-1} ?

n=m

We now determine the condition that 
oo -m/2 «

2 _  < i_m < ^ m «  ?
n=m

satisfies the differential equation (1). This leads to

Z  bn ^
n=m

°° i \ j-2n-m+2b n (f A  % = 0,n (n-m); 9n  c 
n=m

which can be simplified to
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oo2n=m+l
2n-m

• f = 0 (If)
2n-m

Hence for (h-) to hold the coefficient of |f must
vanish, and thus we have the two-term recursion formula

bm = - l2±»trUi .1 v . {n-m)!n (n-m-l)S 0n-l / (n+ra)i
0n , m2 V i
^•nCn-m)

or
, m _ (2 , m / c\
n *+n(n+m) n-1 * ^

The solution of (5) gives, for in terms of b™ ,

bm _ (-l)n~m (2 A)n~m mi (2m)£ bm 
n *+n~m n! (m+n)! m

Now the coefficients b® can be given if we evaluate b“

from expansion (3). This can be done by dividing (3) by
^ in  ̂m m _
| ^ = r sin 0, and taking the limit when ^ , 1) — > 0,

This gives for the right-hand-side

<-l)m (2m)i bm 
2m m!

The left-hand-side is 1/2 _ v 1/2
m -̂ ra
I T
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and this becomes
i

22m (mi)2

3S f  * ^   ̂ an<̂  therefore we have for the b

bm = (-l)m im A m
m 2m mi (2m)!

Finally, we have for the coefficients bmn
.m / 1 n n \ m

. m _ 1 ( ~ t \  ( 2 A )
n “ n! (m+n)i

The expansion for the parabolic potential functions is 
therefore

1/2 1/2 im(- h  (2A)“ rn
Jm(/^  £ ) J ra( l A  7 } = /  nt (n+m)l

n=m

• P® (cos 0).

This is exactly the same expansion as in (2), and it can 
be rewritten as

1/2 v 1/2 ^  lm(- r)”Jm(A P  J,(iA \ } /_ nt-reSTT"n-m

It follows immediately that the series is convergent for all 
^ and 7̂  .
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VII, GENERATING FUNCTIONS

1, Linear Generating Function for Pasternack Polynomials,

In order to find this generating function we first 
consider the representation

B(p, *  - p) 2F1 (c*,ps /;x) =

u^"1 (1-u)*"^1 (1-xu)” du, (1)

which is an integral representation for the hypergeometric 
function [11, page 12 ]. Let ©C = m + 1/2, p = (m+l+w)/2,

= m+1, andx- -*ft /(1-t)2, then (1) becomes

b  ■> - 7 ^ 7 -  >

1 m-l+w
2u (1-u)

m-l-w
2 1 + *ftu

d-t)
du, (2)

and

1 m-l+w2u (1-u)
m-l-w2

- m -  I2l+t2-2t(l-2u) I du. (3)
0 ]

Now the generating function for the Gegenbauer polynomial

,v+l/2. -v-l/2
, and we have [5» page 1751
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- y  - 2 oo v  +  2
(l-2hz+h2) = ^> Cn (z)hn =

n=m
00 v2

- H a  <i~ !> ‘ c .  <*>»"• < «n-m 1
5 1/2which is convergent for | h | < z ±  (z -1)

Substitution of (V) into (3) leads to, with v=m, h=t, 
and z=l-2u,

1 rt/m-KL+w m-H-vK f i m+l+w _ *+t x
-+^2nH"l 2 9 2 )2Fl^m 2 ' 2 ' m+1»“ d - t )2(1-t)

oo m
= (-1)m ml \  *n-m 0m-l f /, 2* 2 Dm/ v

(2i7T/ 1 2 \ (1"z } nn-m

• t 1
-z
2

m+w-1 m-w-1
2 “l+z'

2
2

dz. (5)

where we have applied the relation Pnm(x) = (-l)m [n+m]i

• pJU). started the summation from n=m, and, as it is 

permissible here, changed its order with the integration.

Now from Buchholz [2, page 202] we have
tr

r <««.-f* r<1+m-w)
0
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P /1+m+w( 2 ^^C-n+nijn+m+l> ^ 2 ^  » — 1>— ljl)* (6)

If we put ^anS^  = yi^§ » z = cos "f in (6), we get

l-z
1+z

-1
P?(«>
11 */t 2"v 1-z

dz
m-HW"l m-w-1

(l-z> 2 (1+z) 2

-1 (1-z) (1+z)

•p”(z)clz

,m-l (1-z2)
m2 m+w-1

t o 2
2

-1

l±zl2 J
m-w-12

P®(z)dz, (7)

which except for a constant factor is the integral in (5)« 
Introducing (7) into (5) leads to* from (6),

(1-t)
i _  B(- t o  , - t o } 2Pi(m+l , - t o  ;m+1;. b t

(l-t)

= (-1)m mi(2m) !
oo

nsm
.n-m (-l)m (n+m)I r~/m+l-wx 

(mi)2 I ( 2 J

|“ (— t o ) ^f2(-n+m,n+m+1 * ;  m+l,ra+lj 1),

or
.m P.(m+i , ■*$** , m+i ;  !tL) =1 * ^ /i_+^(l-t)2m+l 2 (l-t)
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2 m F ^ Z  3F2(“n+m»n+m+1» IS±i±S£ ; m+1,m+1; 1)* tnn=m J eL

Using ~w for w, we get

— $01  p (m .1 m+l-w _ . _ _ 4t . i
d-t)2m+1 2 1  2* 2 * " d-t)2 " 2m{

oo
  (n-mli 3F2^_n+m»n+m+1; m+1, m+1; l)*tn (8)

n=m

But we have
m+l-w ^  A mi 1 (~ - g m+ ~)•jF ~ (-n+m, n+m+1, -— ; m+1,m+1; 1) = —  ;■ ■ 1 f

3 I (| + | m + f )

• f“(-w ), (9)
and

f(i + | m + f)
O w) - :,-'r  A  g i - 2 w; • <10>

ml | (j ' J  " + 2'

Introducing (9) and (10) into (8) leads to 

(l-t)2m+1 2Fl(l" + 2 ’ ^ 2 ”^* “+li " (l-t)2* 11 TSnTT

. y  {a±4 f . tn . (id
l _  (n-m)! _m, «F (w) n=m nr

But from Pasternack [12, page 212] we have 
F™(-z) = (-l)n f£(z), 

so that (11) becomes



(-1)“ (p-nq); . V .w? tn (n-m)l -m. * z '
n=m nr '

or, multiplying by (ik)m,

lifflll . t _ , 1 m+l-w. m+1 . b t .
(ik)m d-t)2m + 1 2 1  2’ 2 ’ (i-t)2

00 - P?(ir)= y  .(-;)n laa o t  fnili tn (12)
I—  (ik)m T^iTT Fm( . •n=ra K ; mv }

The coefficients of tn in the expansion (11) are 
proportional to the coefficients of the expansion in 
section III. In fact if we rewrite (12) as

LjmLl . _________ p ( + 1 mtlrw . m+1. _ \
dic)m (i-t)2 m + 1 2 1( 2 ’ 2 ’ ’ d - t )2 5

in"m (n+m)! Fn ^  .n .n
- Z _  km (n-m)! ^

it is seen at once that the coefficients of intn here are
exactly the b™ section III, page 12 and I1*-. That the

coefficients in (12) are proportional to the coefficients

b^ can also be seen by considering the differential equation
? . H(t -l)f + (m+3)t+2w+ ^  f* + (m+1 + |)f = 0, (13)
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satisfied by the function on the left-hand-side of (12). 
However, as t=0 is a regular singlular point of (13), if we
assume a solution of the form 

oo
f = £  ^

n=m

upon introducing this series into the differential equation, 
we get

oo _ qp
n(n+ra+2)+(n+l) 1 cn intn + w(2n+l)cn intn"1 

n=m n=m

oo
+ ̂ __ n(m-n)cn intn'2 = 0,
n=m

which after simplifying becomes 
oo

'y in"^sn'"̂ (n+l).(n-nn*l)cn+^ + iw(2n+l)cn+n(n+m)cn_1
n=m

= 0 .

YS 1Hence for (1*0 to hold, the coefficient of t must vanish, 
and thus we are lead to the following three-term recursion 
formula for the cn

(n+l)(n-m+l)cn+1 + iw(2n+l)cn + n(n+m)cn-1 » 0. {lb)

With iw = A/2k, this is exactly the same recursion formula, 
equation (9)> page 11, satisfied by the coefficients b® .
Thus the cn must be proportional to the coefficients b“, 
and hence the function on the left-hand-side of the equation 
(12) is a generating function for the coefficients bjJJ .
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2. Bilinear Continuous Generating Function for Parabolic 
Wave Functions and Whittaker Confluent Hypergeometric 
Functions*

The bilinear continuous generating function for the 
Whittaker functions has been given by Erdelyi O ,  page 66] 
as

1/2 ( - 2 + X . 1 d k )  
(try) 2 1+t ;
1+t e 2(txv)

1/2
1+t

1
27ri

.K
r (i - K + |0 f(i * K + |0

[ I (2|1 + 1)]'
“k , , (x)

(y) a . (1)
where L is a path from -i oo to + i oo, separating the 
poles of I (i + K + ji) from those of (i - K + y).

The purpose of this section is to derive the bilinear 
continuous generating function for our parabolic wave 
functions using our series expansion for these functions 
and some properties of Pasternack polynomials* Then with the 
relation between our parabolic wave functions and Whittaker 
functions already established, the above formula, a proof 
of which has been given by Erdelyi [*+], can at once be given.

We start with (Appendix, equation *f)



Jm(z sin oC sin p)eiz c o s  c o s  P  = J ~  i n “ ra (2n+l)
n=m

' (n-m̂ l V 2) C  (cos =*> Pn”(cos p).

? 2+7?2 f 2 -'*?2Now let z = kr =  a  k, and cos p = — a , then
? + V.

we have
f 2- ? 2ik ---5  cos o£

Jm(k f 1? s i n  o l ) e  2 i""1" (2n+l)
n-m

(n+m)! . .. . _ m
(n^mTT V kr> Pfi (cos e) Pn <cos*>-

? 2 + C  f 2 ->?2with r = ---- 5--- , and cos 0 = — 5---- - .
f + fv 1/21—t 2tIf we now substitute cos oC = , sin ©<. = —

in (2), we get

t1/2 f V . lk ? 2^" • l?t , ̂  1
V 2k V W f ' 5 ^  2 1+1 ‘ ^  Jn'mn=m

<2n+1> W f  Jn<kr> C (cos e> C O  • (3>

Now we make use of a certain integral involving the 
Pasternack polynomial F^(x). Pasternack gives [12, page 216]
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|"~(m+1) e “  sech x P~m(tanh x) = ^ ^ eixz F^(iz-m)

- oo

• sech(^j 7r z) dz .

1/2l-t 2tIf we substitute tanh x = » so that sech x = —  *
- 1/2

and x = In t , and replace iz for z, (+) becomes
1/2 p* 03 m+z

r(m+i) f i _  P-- (1 ^ )  = i V t 2 Fm (.8.B)
A go

• sech(^ 7T i z) dz , 

or 1/2 ~ 00 m+z
r(m + D  \ * 2 FS <-*-»>

-i oo

• sec (| 7T z) dz .

Let w = = “(m+z), then (5) becomes
ra+i oo

1/2 f w
r c ^ i )  f r r  C  O  = - 4  J  * 2 Fn(w)

m-i oo 

• sec ^ 7r(-m-w) dw,

which can be written as



ra-ioo

m+ioo
w „nii

i+t 11 W  ^  W ) 2 \ * ^in

i '2 ? 2' 2 p iu o/ -j
' T " (i : I m _ W) • 7 7 1  + 1 m . w , sec 2 *<-“-*> dw- <6)I ^2 2 2' I 2̂ 2 2'

But we have

(| “ 2 m ” f) * T (| + 2 m+ 2> = n sec 2 7r(in+w) *

so that (6) becomes
m+ioo w

1/2 -m , 1 ^  _ _ 1 \ 2
t n vl+t +7ri

m-100

Trl x ^  Trl + I m  f“ (w )I (2 + 2 m  +  2‘ 1 (2 2 - -2____ dw. (7)
[ f  (m+l)]

Returning to equation (3) above, if we multiply it by 
1/2

V"t—  and introduce (7) there, we get 1+t

1/2 .1/2 * v  lk 5 T2L  . 1=1
h r  « ■  1 r ^ i > •  2  ^  Z

n - m

V kr) Pn“ <cos S)' 5T T
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m+ico
t- 1  r<i ♦ £ ■ _ + ! >  r (*■♦*—  g) o « )  (8)

f| (m+X)]2 P^(w) W"
~m-ioo

We can interchange the summation and integration here, and 

then use our expansion 111(12) for the parabolic wave 

functions, thus (8) becomes

? 2- * 21/2 1/2 Ik . £ §
i + r  J m  < 2 k ? ¥  hr e

m+ioo

k m  \ 2
K iri

m-ioo

/I . 1 * Wv r r- + I m .  H x (2 + g m * 2) I (2 g_____ gj_ y ^ ( e ̂  ̂
[ r(m+l)]2

,\j/" ( 7̂ ,- A) dw. (9)

This is the bilinear generating function for our parabolic 

wave functions* We have already shown that

Y m ( £ , > )  = ^ k'(m+1) M_ | ^ - ik ? 2)

« w m  <i k V 2)> 
- 2*2 1



with w = - 2k

*+7
i A

so that for the Whittaker confluent hypergeometric functions 
(9) becomes, after multiplying by £ ^ ,

f 2 » 2l/2 1/2 lk ? ~ ( . Izt
t > _1K 2 1+tm  V 2k £ ̂  l+t-) e

m+ioo _  i i i n
1 f - j  1 ? m + 2> r < 3 - 2 m -

Im FT \ * [ r<m+l)]2
m-ico

2 . 2which is essentially formula (1) with x = -ik ^ , y = ik ̂  ,

K s ■- 2 s i A/Vk , and 2ji - m.

ro
K



APPENDIX

It is possible to derive the series expansion for the 
parabolic wave functions in terms of the spherical wave 
functions with a different method. This can be done by using 
an equation due to Buchholz that expresses the product of the 
parabolic functions as denoted by him, in terms of an 
integral of a Bessel function of the first kind. Buchholz 
gives [3» page 85] 1/2

( a ^ ) t

0
f  2x o 

• (cot dl . (1)

Also from Erdelyi [ 6 , Page 102]
1/2 - V(sin<* sin p) J ^ (z sin sin p)e

2
i z cos cos {3



*+9

here (z) is the Bessel function of the first kind and
V /Cn(x) ^ e  Gegenbauer polynomial. Equation (2), with

V = m + ^ > becomes

(sin ex' sin p)~ra Jm(z sin oC sin p) eiz cos cos P = 2 ^

. 2 - i X  in ni(m+n + i)
[ r  (■ + 2)] (™) • z _  r(2m+n+1) J 1 (2)

m +i m + 4
* C (cos oC ) C (cos p). (3)n n

Substituting for Gegenbauer functions in terms of Legendre 
functions [5> page 1751

m +2 , x 2m F  (m+l) P(n+2m+l) /- 2n 2 m „-m /_\ 
n (x) = r(2n*l) r  <n*l) (1‘X } Prn-m(x)*

in (3) leads to

(sin c* sin p) m Jm(z sine* sin p) e^z cos cos  ̂= 2 ^
2m+ i

1 00 „ 1 
-  1 2 ” 0 1 n*.(m+n+^) 2m

.{1 <-♦*>] (-2) - 2 -  r(2m^ i r -  Jm+n+i 2̂‘
_ ■ m+n . 0n-0 2

P (m+1) # 1 (n+2m+l)
[~(2m+l) r(n+l)

- 2
(sin c*. sin p)” P~ (cos ) r n+ra

P”™ (cos p). n+m v r
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This simplifies with

Rm+i) = . I2aii
^ 2^ m m*

to ,  00
J (z sinoi sin P) e1 z cos *  cos P = \ f ^ -  Z I  in

V 2z n=0

*  ̂2m»2n+l)(n+2m)1 T , . p-m ,
"5 m*.*l ( ’ n+m <c o s o i Jm+n + ?>

oo
• p;:m(coS p> - z :  in-m L2& y '  ^n=ra

* P~m(cos©0 P“m(cos p). (*+)

Now, comparing (1) and (*+), we can substitute (*f) into (1) 

if we put p = *f , iz cos oi. = - -K3! + a2^> and 

z sin oC = t v'r~â ~~â  . Thus

2 “ ^ al " a2̂
a-, 3q 

cos ----------
al “ a2

Hence (1) becomes, with p = m, and we can change the order 
of integration and summation here,

1/2 
(a,a0) tM (e-it)* (aofc) = • -i. --“ ® rr---

x,§ 1 x,f 2 ♦ *) r < H “ - *)
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00
y  in-m I2n»l)(n+m)! r it , „
/ (n-m)J *■ 2 ' l a2'Jn=m

• c (i£f) • f
‘'o

7T
~m(cos ̂ K t a n  h £-)

1/2 oo
I t

♦ x) r ^ -  *>
(ala2) * \  .n-m -i \Di: r̂ l+m * Z. 1

n-m

7r

• 3n [i|-(a1-a2)] F-“ ( P“(ccs f  )

•(tan 1  )-2x d f . 

Using equation (6) section VII. 1, (5) "becomes
CP

1 in~m
(a a )l/2 t -A^ m (alt)' m (a2tJ = ^ 2lala2; r x,2 *2 n=m k ;

• ,P2 (-n+m,n+ra+l,-x + i m+l.m+l;1)

O f

(5)

(2n+l)

(6)
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Now, as before, we have
^ 2  C-n,n+m+l,-x + ^5^; m+l,m+l;l)

rai R | -  2 m +

|“(| + § ® + x)

F” (~2x )

F™ (-2x)m

so that (6) becomes

f £ (-2x )

00
. n-m

l/2 . -M- m^al ^  * M .  ffl(a2t) = /  i (2n+l)(a^g) ' t x,2 x,2 n=m

al+a2 
al“a2 (7)

r\
Now in (7) we put X = - 'if , a^t = -ik ^ , a2t = ik 7̂ 

and c 2 »2a,-a2 f +  Vi t = k ? 2.—  = kr

al+a2 = 
al-a2

f 2 - yl 2— 2-----2 = cos G»

and get
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2
/ | \

km+i t Yj w ra ^-lk £ M ,  w m (ik y 2)
> ( 2 ' 2 “ 2 * 2

.n-m . ?? (w)-in m (2rH°l)(n»m) i _n
■.m/L_ kin (n-m5T ,n=m F„. W

• jn (kr) P~m (cos 9) . (8)

We have for our parabolic wave functions
2

• x  *  « < i k  r >  • h  H  s  ( i k  7 2 > . 

” 2 * 2  " 2 * 2

Introducing this into (8) gives at once our expansion (12) 
for the parabolic wave functions in terms of the spherical 
wave functions in section ill*
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