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JACK GRESHAM ELLIOTT ABSTRACT

It is well known that the symmetric difference in
a Boolean algebra 1is a groun operation, It is also an
abstract metric operation, in the sense that it satisfies
lattice relationships formally equivalent to the geometrical
relationships defining a metric distance function., It is
shown first that the symmetric difference in a Boolean
algebra is the only binary relation which is simultaneously
an abstract metric and a groun overation, This character-
ization is then extended by successive relaxing of some of
the group and metric postulates., Next the symmetrie
difference is characterized in several ways awmong the
Boolean operations, PFinally, the symmetric difference in a
Boolean algebra 1s characterized as the only binary operation
satlisfying certain other side conditions.,

Brouwsrian algebras having a least element O and a
grestest element I may be regarded as extensions of Boolean
algebras in which the relationshin (a')! = a is replaced
by the weaker relationship |(la) < a, where a' and Tla
denote respectively the Boolean and Brouwerian comnlements
of a., 'hile a Brouwerian algebra in which a:]a = 0 for
all a is necessarily a Boolean algebra, there exist
Brouwerian algebras which are not Boolean algebras and
in which 7 a<](la) = 0 identically. . H. Stone provosed
the problem of characterizing those Brouwerian algebras

(herein called Stone algebras) in which ']a-j(]a) = Q
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for every a, It is first observed that a Brouwerian
alpgebra B is a Stone algebra if, and only if, the subset
R of elements x satisfying 1(1x) = x is a Boolean sub-
algebra of B. Next it is shown that a Stone algebra B
is the direct sum of the Boolean sub-algebra R and a
Brouwerian sub-algebra T which is an ideal and which has
in common with R only the element 0, A set-theoretic
Interpretation of this structure theorem 1is presented
which furnished a technique for constructing Stone
algebras,

In the concluding section it is shown that a wide
class of Stone algebras, including all finite ones, are
direct products of special Stone algebras each of whose
greatest element I is join-irreducible, Finally, an
example is presented which shows that not every Stone

algebra may be characterized in this manner,
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Section 1. Introduction

Studies of Brouwerian algebras in which there 1is
defined a binary operation analogous to the distance
function of a metric space have been carried out by
Nordhaus and Lapidus [ 11.] and by Lapidus‘: 8 ] o Their
work generalized many of the earlier simlilar Iinvestigations
of Ellis [ 5.6] and Blumenthal[ L ] in the field of Boolean
algebras., Ellis, in particular, observed that in a Boolean
algebra the symmetric difference operation satisfied lattice
relationships formally equivalent to the postulates defining
a metric distance function, and showed that many purely
geometric concepts could be carried over into this new
setting.

The first goal of this thesis is to show that in a
Boolean algebra the symmetric difference is the only binary
operation which satisfies the requirements of an abstract
metric and is simultaneously a group operation.

One important difference between Boolean and
Brouwerian algebras is the fact that the Boolean complement
x! of an element x is disjoint from x, while the Brouwerian
complement 7)x of an element x is not necessarily disjoint
from x. However, in many (but not all) Brouwerian algebras

it is true that, given any element x, the elements Ix and TIx



are disjoint, whsre]]x denotes the Brouwerian comvlement of
Ix. M. He Stone has asked, "What is the most general
Brouwerian algebra in which, for every X, the elements
71x and TIx are disjoint?"l

The second goal of this thesis is to determine the
basic structure of these Brouwerian algebras.

In Section 2 the symmetric difference overation in a
Boolean algebra is characterized as the only binary operation
which is at once an abstract metric and a group operation.
By sueccessive weakening or removal of some of the group
and metric postulates generalizations of this result are
obtained, Other characterlizations of the symmetric differ-
ence among the class of Boolean operations are found, and
Section 2 is concluded with further characterizations of
the symmetric difference in a Boolean algebra as the only
binary operation satisfying certain other side conditions.

In Section 3 there is determined the basic structure
of those Brouwerian algebras in which, for every x, the
elements ]x and 11x are disjoint. An interesting charac-
terization of a wide sub-class of these special Brouwerian
algebras i1s presented in Section L.

In the remainder of this section are presented

fundamental definitions, concepts, and notation to be used

throughout.

. 1This guestion appears as Problem 70 of Birkhoff
[ 3 ], where it is phrased in the dual setting of pseudo-
complemented lattices.



Definition: A partially ordered set P is a set of elements

ay, by, ¢, +++ together with a binary relation s > b (read "a
is over b", "a contains b", or "b is under a") subject %o
the following postulates:

Pl: a > a

P2: Ifa>band b >a, then a =D

P3: If a>b and b > ¢, then a > ¢,

Definition: An upper bound of a subset X of P is an

element a such that a > x holds for every x in X. An

element b is the least upper bound of X if b is an upper

bound of X and if b < a holds for every upper bound a of X,

A lower bound of X and the greatest lower bound of X are

defined similarly.

Definition: A partially ordered set P is a lattice if for

each pair of elements a, b the greatest lower bound of a
and b and the least uvper bound of a and b exist., The
greatest lower bound of a and b is denoted by a*b, or ab,

and is referred to as the product, or lattice product, or

meet of a and b; the least upper bound of a and b is

written a + b and is called the sum, or lattice sum, or

Join of a and b, It is shown in Birkhoff [ 3 ] that the
meet and Jjoin operations satisfy the following laws:
Ll (Idempotent law): a + a = a and aa = a.
L2 (Commutative law): a + b =b + a and ab = ba.
I3 (Associative law): a + (b + ¢) = (a + b) + ¢
and a(bc) = (ab)e.

L. (Absorption law): a + ab = a and a(a + b) = a,



-

Definition: A distributive lattice is a lattice in which

for every triple of elements a, b, ¢ the following relation-
ships hold:

15
16: a +bec = (a + b)(a + e).

a(b + ¢) = ab + ac.

.9



Section 2, Characterizations of the

Symmetric Difference QOperation in a Boolean Algebra

Definition: A Boolean algebra is a distributive lattice

with 0 and I in which for each element a there exists an
element a'! satisfying a + a!'! = I and =sa' = 0, The element

a' is referred to as the complement (or Boolean complement)

of a,

It can be shown that the complement at! of a is
unique, and that comnlementation is ortho-complementation,
i.e. that (at)'! = a,

Definition: With each palr of elements a, b of an abstract

set 3 let there be associated an element f(a, b) of a
lattice L with an 0, The binary function f is a metric
function from S to L if the following three conditions

hold:

i

Ml: f£(a, b)
M2: f£(a, b) = £(b, a),

0 if, and only 1if, a = b,

M3: f(a, b) + £(b, c) > £(a, c);
and we say that 'S is lattice-metrized by f". A metric
function £ from a lattice L to itself is called s

metric operation, and in this case L is called an auto-

metrized lattice,
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The properties M1, M2 and 13 are lattice-analogues
of the familiar requirements of a distance function in a
metric space. We carry the analogy further by referring
to the lattice element f(a,b) as the "distance between a
and b", the elements f(a,b), f(b,c) and f(a,c) as "sides
of the triangle whose vertices are a, b and c¢", and in
general using geometric terminology wherever such usage
is convenient and suggestive., It is particularly convenient
to refer to M3 as the "triangle inequality'.

Definition: In a Boolean algebra the element ab!' + a'b

is the syrmetric difference of a and b.

Theorem 2.1 [ Ellis, 5} : The symmetric difference in a

Boolean algebra is a metric operation.

Proof: Let d{a,b) denote the symmetric difference of a and b.
First we observe that d(a,b) = aa' + ata =0 + 0 = 0. Next
we show that d(a,b) = 0 implies a = b. d(a,b) = ab! + atb =0
can hold only if abt' = a'b = 0. To each side of the
equation ab! = 0 we add ab, obtaining

(2.1) ab! + ab = 0 + ab = abe.

Then ab = ab! + ab = a(b!' + b) = al = a, using the fact

that a Boolean algebra is a distributive lattice., Butb

ab = a means that a < b. Similarly, from a'b = 0 we con-
clude that b < a. Therefore a = b, and lI1 holds, Since

the expression ab! + al'b is symmetric in a and b, 1t

follows that M2 holds. To »nrove I3, we will show that

[d(a,b) + d(b,cﬂ-d(a,c) = d(asc), which of course implies



d(a,b) + a(b,c) > d(a,c). To this end, we write
(2.2)  [a(a,b) + a(bse)] * d(a,e) = [(abt + atb)
+ (bet + b'ci]-(ac' + a'lce)
= abfac! + atbac! + betac! + blcac!
+ abta'e + atbatc + betale + blecalc

= able! + abe! + albe + a'b'e

= ac'(b! + b) + alc(b + b!') = ac! + ale = d(a,e)
and the proof is complete,

In the following theorem, we let axb denote a

metric group operation in a Boolean algebra, and show
that a%b = ab' + a'b necessarily.
Lemma 1: If X, y and z are the sides of a triangle in a
Boolean algebra, them X +y =X 4+ z2 =3F + 2z,
Proof: Since x +y > z by M3, we add X to each side to get
X+y >x+ 2, Similarly x + z >y by M3, and adding x to
each side yields X + z > X + y. This inmplies that x + 3y =
X + 2z, and the proof Tor the other two cases is similar,
Lemma 2: If a = b¥#%c, then a¥b = ¢ and aiec = b,
Proof: a = bic implies a%(bi#c) = 0 by 11, The associative
law then gives (a%b) ¢ = 0, whence atb = c¢ by 1, The
proof for the other case is similar,

Terma 3: O%a = a.

Proof: Let Oi#a = X, By Lemma 2, a¥x = 0, Fence a = X by 1.

Lemma g: awl = at,

Proof: Let awa' = b, and consider the triangle 0, a, at,

-—

the sides of which are QO#a = a, Owa' = at', a¥a' = b, TLerma

1 gives us a + b =a + a' =1I, and a! + b =a + a! = I,



Hence I = (a + b)(a!' + b) = b, We conclude that akal' = I,
and Lemma 2 gives us a%*I = a' and at+I = a,

Theorem 2.2: The only metric group operation in a Boolean

algebra is the symmetrie difference.
Proof: Let x%y = p. Consider the triangle I, x, y, the
sides of which are I#x = x!', I#y = y!, x%y = p by Lemma l.
From Lema 1 we conclude that x!' + y' = x' + p and x!' + y! =
y' + p. Multiplying the first of these by x gives xy! = Xxp,
and multiplying the second by y gives x'y = yp. Adding, we
obtain xy' + x'y = xp + yp = (x + y)ps. From the triangle
0, Xy, ¥y whose sides by Lemma 3 are O#x = x, O%y = y, and
X%y = p, wWe obtain x + y > p by the triangle inequality.
Hence (x + y)p = p, and xy'! + x'y = p = x+y, completing the
proof,

We now extend Theorem 2,2 by relaxing some of the
group requirements,

Definition: A semi-group is a system of elements together

with an associative binary operation.

Theorem 2.3: The only metric semi-group operation in a

Boolean algebrsa is the symmetric difference.
Proof: The only group property used in the proof of Theorem
2.2 was the associative law,

Definition: A binary overation < 1s weakly associative if

ax(awb) = (ara)xb,

Theorem 2.,l.: The only metric weakly associative operation

in a Boolean algebra is the symmetric difference,



Froof: 1In the proof of Theorem 2.2, the associative law

was used only to show that a = bi#c implies b = axc and ¢ = axb,
i,e. in the proof of Lemma 2, We will show that these
relations follow from the weak associative law and the fact
that the symmetric difference is a metric operation, Then

the proof of Theorem 2,1 suffices as a proof of this theorem,
The fact that O#a = a follows from M1 and the weak associa-
tive law, for a:(ax0) = (awa):0 = 00 = 0 implies a = a0,

Now let a = Dbi#c, x = a%b, and y = ac. Then

(2e3) X = bita = b (bxec) = (bwb)c = Ouc

1
(&)

(2.1) vy = c%a = c#(exb) = (ewe)swb = 0ub

1
o’
L]

Hence a = b*c implies b = aic and ¢ = ab.

Theorems 2.3 and 2.l were generalizations of
Theorem 2.2 obtained through relaxations of the group
postulates. In Theorem 2.5, which follows shortly, the
assoclativity is abandoned,

Definition: A guasi-group is a system consisting of a set

of elements, together with a binary operation which satisfies
the law of unique solution, i.e. if a = bic and two of

these are known, the third is uniquely determined. A loop
is a quasi-group with a two-sided identity element,

Definition: The Ptolemaic inequality holds for a quadri-

lateral if the three products (meets) of opposite sides

satisfy the triangle inequality (M3).

Theorem 2.5: The only metric loop operation in a Boolean

algebra is the symmetric difference.

Before proceeding with the proof, some lemmas will be
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established,

Lemma 1: The loop identity is 0,

Proof: Tet e denote the loop identity., Since ere = e by
definition and ese = 0 by Ml, we have e = O,

Lemma 2: a%I = a! and awa! = I,

Proof: By the law of unlque solution there exists y such
that axy = a's The sides of triangle 0, a, y are axy = al,

O%a = a, and 0%y = ye The triangle inequality impnlies

(2.5) a+y>a' and a' +y > a,

Thus

(2.6) aa! + a'y > a' and aa! + ay > a,
or

(2e7) aly > a' and ay > a.

But these imply that y > a! and y > a. Hence y = I, or

axl = at', Consider the triangle 0, a, at whose sides are
O%a = ay, Owa'! = a! and aka'!e, Again the triangle inequality
implies

(2.8) a + (axa') > a!' and a' + (ava!) > a,

Multinlying the first of these by at! and the second by a
gives

(249) al(axd) > ar' and afaxa') > a,

From these we conclude that axa' > a' and aia' > a; hence
azal! = T,

Terma 3: The Ptolemaic inequality holds in any quadrilateral
O, I, 2, De

Proof: 1In the quadrilateral 0, I, a, b, the side O%a is

Ib, the side 0w%b is opposite Iita, and the side 03I 1is
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opposite a¥b. We will show only that

(2.10) (Oa) (Ib) + (0xb) (Ixa) > (0%I) (axb)

or

(2.11) ab! + a'd > I « (a%b) = axb;

the proofs for the other two cases are similar, The
triangle I, a, b has sides I#a = at, I#b = b! and a¥b by
Lemma 2. The triangle inequality gives

(2.12) a' + b' > axb,

By Lemma 1, the sides of the triangle 0, a, b are O%a = a,
O%b = b and a¥b, The triangle inequality here yields
(2.,13) a + b > axb, .

Hence

(2.1)) (a + b)(a' + bt) > axb

or

(2.15) ab! + a'b > aib,

which is what we set out to show,

Proof of Theorem 2,5: Let a¥b = x. We know from Lemma 3

that ab' + a'b > x, We will complete the proof by showing
ab! + a'b < x. Applying the Ptolemaic inequallty to the
quadrilateral 0, I, a, b', we have

(2.16) (0%a) (I#b') + (0%b') (Ixa) > (0%I)(awxb!)

or

(2.17) ab + a'b! > I « (aib!) = anbt,

Since abt! + a'b > x, we obtain

(2.18) (ab!' + a!b)( ab + a'd!') > x - (awb'),

But (ab! + atb)(ab + a'b') = 0, hence

(2.19) x + (awbt) = 0,
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The triangle a, b, b! has sides a%b = x, a#b!, and bxb! = I
by Lemma 2. Using the triangle inequality, we get

(2.,20) x + (axbt) = I,

Thus x 1s the complement of axb!, i.e.

(2.21) X! = awb!,

A similar argument shows that

(2.22) X' = atwb,

Using the identity us%v < u + v, we have

(2.23) x! < a + b! and x' < a' + b,
Hence
(2.2l) x' < (a + b')(a!' + b) = ab + a'bt,

By Dellorgan's laws, we get

(2.25) x > ab!' + a'b.

This, together with the earlier result x < ab' + a'b, shows
that

(2.26) x = ab! + a'b

and completes the proof of Theorem 2.5,

It might be conjectured that a metric quasi-group
operation is a Boolean algebra 1s necessarily the symmetric
difference. The following example shows that this is not
the case. In the Boolean algebra of four elements 0, a,

a! and I define "distances! as shown in Table 1.

Table 1

0 0 at a T
a a!t 0 I a
at a I 0 al
I I a a!l 0
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Since each element appears once and only once in
each row and column of Table 1, the law of unigque solution
holds. That M1l holds is shown by the fact that the elements
on the main diagonal, and only those elements, are O. The
symmetry about the main diagonal implies that M2 holds. It
is easily seen that the sides of any non-degenerate triangle
are a, a' and I, hence M3 holds. This shows that is indeed
a metric quasi-group operation, However, 0 @ a = a', while
O%a = 0a' + 0'a = a, Hence @ is not the symmetric difference.

Bernstein.[l,Z] characterized the possible group
operations in a Boolean algebra among the class of Boolean
operations, The author is indebted to Professor B. M.
Stewart for pertinent observations which led to the following
theorem. This theorem is similar to those in.[ 1 ].

Definition: An operation it 1s a Boolean operation in a

Boolean algebra if
(2.27) X%y = AXy + Bxy'! + Cx'y + Dx'y!,
where A, B, C and D are fixed elements of the Boolean algebra.

Theorem 2.6: Any Boolean group operation in a Boolean

algebra is an abelian group operation, and is of the form
(2.28) xxy = e(Xy + X'y') + et(xy' + x'y)

where e is the group identity.

Proof: The proof consists of evaluating the "constants"
A, B, C and D under the assumption that 3 is a group
operation., Repeatedly using (2,27), we write

(2.29) 0D = AOD + BODt + CID + DID' = (D,

(2430) 0::C! = AOC’ + BOC + CIC!' + DIC = DC.
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By the law of unique solution, this implies D = ¢', Now
(2.31) D#0 = ADO + BDI + CD'O + DD'I = BD,
(2.32) B'%0 = AB'O + BB'I + CBO + DBI = DB.
Again by the law of unique solution, D = B!, Next
(2.33) AxD = AAD + BAD' + CA'D # DA'D!

= AD + AB

"

AD + AD!
= A
implies that D = e by definition of the group identity.

Hence (2.27) can be written

(2.3h) Xy = AXy + e'Xy! + o'X'V + ex'yl.

Now
(2.35) e = eve = Aee + etee! + etele + eole! = Ae.
Since e = B!, this gives B' = AB'. Next we observe that

(2.36) A'%B = AA'B + e'A'B! + e'AB + eAB! = AB + AB! = 4,
(2437) B#B = ABB + e'BB! + e'B'B + eB!'B!

= AB + B!

= AB + AB!

= A.
By the law of unique solution, we get A' = B, Collecting
results, we can write
(2.38) e =D =B!' =(C!' = A and e' =D!' =B =(C = A',
Hence (2.27) becomes finally
(2.39) Xiey = exy + el!xy! + e'x'y + ex!'y!

= e(xy + x'y') + e'(xy' + x'y).
The fact that % 1s an abelian operation follows from the

symetry in x and y of the right side of (2,39).
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Corollary 1: 1In a Boolean algebra, the only Boolean group

operation with O as the group identity is the synmetric

difference,

Corollary 2: In a Boolean algebra, the only Boolean group

operation such that 0:#0 = 0 is the symmetric difference.
Proof: TUsing (2.28), we write
(2.1.0) 0 = 020 = e(0°0 + II) + e'(0I + I0) = o,
and Corollary 2 follows from Corollary 1,

fe notice that, in the proof of Theorem 2.6, no use
wag made of the associative law, Thus Theorem 2.5 may be
generalized to get

Theorem 2,7: Any Boolean loop operation in a Boolean algebra

is an abelian group operation, and is of the form

(2.4h1) xxy = e(xy + xty') + et(xy! + x'y),

where e is the loop identity.

Proof: Exactly as in the proof of Theorem 2.6, it can be
shown that % 1s an abelian operation of the form cited in
the theorem statement. We will now show that the
associative law holds, in particular that

(2.5.2) z(xwy) = Xyz + X'y'z + x'yz! + Xxy'z!

and

(2.143) (z#x)wy = xyz + xX'y'z + xX'yz'! + xytat,
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In what follows, Dellorgant's laws are used repeatedly.

(2Jl1)  ze(xsey)

i

e @(x%y) + z'(x&y)q + o! %(xﬁy)' + z'(x%yﬂ
= (ez + elz!) (x*y) + (ez! + e'z) (xuy)!
= (ez + elzg!) [e(x;z+ xtyt) + et(xy! + X'y)]
+ (ez!' + e'z)[}(;y + xty!) + et(xyt + X'Y)]'
= ez(xy + x'y') + e'z'(xy' + x'y)
+ (ez! + e'z) k(xy + x'y'ﬂ'[?'(xy' + K'Yﬂ'
= ez(xy + x'y') + e'z'(xy' + x'y)
+ (ez! + e'z) [e' + (xy + x'y')‘] [a:~+ (xy? +X'y)']
ez(xy + x'y') + elz'(xy' + xX'y)

it

-+ (ez’ + elz) [ei(x-yl + X_ly)l KR e(){'y' + X!yl)l
+ (x:y- + xlyl)“(xy' + Xiy)l]

]

ez(xy + x'y') + efz'(xy! + x'y)

+ etz(xy!' + x'y)! + ez'(xy + x'y!)!

+ (ez' + e'z)(xy)t(x'y") ' (xy") r(xty)?
= ez{xy + x'y') + e'z'(xy' + x'y)

+ etz(xyt)H(xry)r + est(xy)'{xty')!

+ (ez! + etz)(x' + F1)(x + I(x' + ¥)(x + 3")

|

ez(xy + x'y') + elz'(xy' + x'y)

+ elz(x! + v)(x + y1)+ ezt (x! + y1)(x + ¥)
+ (ez' + e'z)(x'y + xy")(x'y! + xy)

= ez(xy + x'y') + e'z!(xy' + x'y)

+ elz(xy + x'y!') + ezt(xy' + x'y)

il

exyz + ex'y'z + e'xy'z! + e'x'yz! + e'xyz
+ elx'ylz + exy'z! + ex'yz'.
Collecting terms, we obtain

(2,15) z#(xwy) = xXyz + X'y'z + x'yz' + xy'zt.
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To find (z%x)¥*y, we use the fact that % is abelian to vrite
(2.1,6) (z#x)ey = yx(zux).

Replacing z by y, x by 2z, and y by x in (2.118), we get
(2.1.7) (zx)wy = zxy + z'x'y + z'xy! + zx'y!,

Hence

(2.1:8) (z#x) %y = xyz + x'y'z + x'yz! + xy'z',

The right sides of (2.1.5) and (2.l48) are identical, which
proves that the associative law holds, Since an associlative

loop 1s a group, the theorem follows,

Corollary 1: The only Boolean loop operation with O as

the loop identity in a Boolean algebra is the symmetric
difference.

Corollary 2: The only Boolean loop operation such that

00 = 0 in a Boolean algebra is the symmetric difference,
Proof: Since
(2.&9) xey = e(xy + x'y!) + et(xy' + x'y)
we can write that
(2450) 0 = 0#0 = e(00 + II) + o'(0I + I0) = e,
Then Corollary 2 follows from Corollary 1.

It is interesting that the requirement that i be
a Boolean operation allowed us to remove the assoclative
law from the assumptions needed to characterize the
symmetric difference among the class of Boolean operations.
Tt will be shown next that a similar phenomenon occurs

with respect to the triangle lnequality.

Definition: A binary operation is called semi-metric if it

gatisfies M1 and li2.



Theorem 2,8: The only Boolean semi-metric operation in a

Boolean algebra is the symmetric difference.

Proof: According to Bernstein[ 1 ], a Boolean operation

has the form

(2451) Xy

1

(IxI)xy + (I%0) xy' + (0%I) x'y + (0:x0)=iyr,

Thus

(2.52) I+ = 0%0 = 0
by Mi, and

(2.53) 0T = 10

by M2. Let O#I = z., Then (2.51) yields
(2.50) Iz = zIz' + zI'z = 0 + 0 = Q,
and z = I by Ml. Thus

(2.55) Xy = xy! + x!y.

Frink [ T ] has characterized the symmetric differ-
ence as the only Boolean group operation over which the
meet distributes, In what follows, however, we will not
restrict ourselves to Boolean operations,

Theorem 2.,9: The only semi-metric group operation in a

Boolean algebra over which the meet distributes is the
symmetric difference.

Proof: The group identity 1s 0., Let a, b and ¢ be the
sides of the triangle 1, m,.n, TUsing the assoclative law,
Ml and M2, it is seen that

(2.55) aib (L) <+ (men)
lﬁe[ﬁue(nmami]
RS [(m—:em)-::-rﬂ
= 1::(0%n)

i

il

1

\

11

c
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Similarly it can be shown that
(2.56) a¥c = b
and
(2.57) bitc = a,
Now, using (2.55) - (2,57) and the distributivity assumption,
(2.58) Ba%b) + (b*cﬂ (ae) = (¢ + a)(awe)
= [(a + c)a]e:—[(a + c)c]
= aic,
Recall that the lattice relation (x + y)z = z impliles
X + Yy > 2z, Hence (2.58) yields
(2.59) (axb) + (bxe) > auc,
Similarly it can be shown that
(2.60) (axb) + (axe) > buc
(2.61) (bie) + (a%c) > axb,
Thus M3 holds, and * is a metrie group operation. Then 3¢
is the symmetriec difference by Theorem 2.2.

It might be conjectured that the meet necessarily
distributes over every semi-metric group overation in a
Boolean algebra. That this is not the case is shown by
the following example., In the Boolean algebra of eight

elements, define an operation & by the following table:

Table 2
@ O a b c a' b' ¢' I
0 0 a b c a' b' et I
a a 0 bt e¢' I b c at
b b bt O at ¢ a i ct
c c c! a' 0 b I a b!
all a' I c b 0 c! Dbt a
b bt D a T ct O at ¢
¢ty ¢t ¢ I a bt at O b
I I a' ¢! b' a c b 0
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Now O appears only on the main diagonal, and the table 1is
symmetric about the main diagonal, so M1l and M2 hold.
Clearly O is the group ldentity, and inverses are unique
(each element is self-inverse), It has been verified that
the associative law holds, Thus is a semi-metric group
operation, However

(2.62) al(e@n) = ate! = b,

while

(2.63) (ate) = (ata) =c®@ 0 = c,

which shows that the meet does not distribute over .

Theorem 2,10: The only semi-metric semi-group operation

in a Boolean algebra over which the meet distributes is

the symmetric difference,

Proof: Ml guarantees that a%a = 0, Thus if 0 is an identity
element, then each element of the Boolean algebra is its

own inverse, But the assoclative law and Il give us

(2.66) (0wa)wa = Ox(axa) = 00 = O

whence 0%a = a, again by Ml, and O is an identity element.

If e is any element such that e#a = a holds for all a, then
ete = e, But ee = 0 by Ml, so O is a unique identitye.

Thus # is a group operation and Theorem 2.10 now follows

from Theorem 2.9.

Theorem 2.11l: In a Boolean algebra, the only seml-metric

weakly assoclative operation over which the meet distributes
is the symmetric difference.
Proof: Using M1 and weak assoclativity,

(2.6l) (Oxa)wa = O%(aka) = 00 =0
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implies

(2.65) Ora = a.

By the distributivity assumption and N2

(2.66) ab!(axb) = (ab'a)«(ab'b) = (ab!')#0 = ab!
vields

(2.67) ab! < ab,

Similarly

(2.68) a'b < aib,

hence

(2.69) ab! + a'b < aib,

How

(2.70) ab(aih) = (aba):(abb) = (ab):(ab) = 0,
and therefore

{(2.71) Iéb(a*b)]' = I.

By DelMorgan's laws

(2.72) (ab)' + (aw%b)! = T,

Then

(2.73)  (ab) [(ab) ! + (awb)1] = (ab)

gives

(2.7l (ab) (axb}r = (ab)

which implies

(2.75) ab < (axb) ',

Next we observe that

(2.76) (a + b)(a%b) = I}a + b)a]*[}a + b)ﬁ] = aib,
or

(2077) a+ Db Z axbe.



Hence

(2,78) (a + D)t < (aub)!

or

(2.79) a'b! < (a%b)!,

Thus (2.75) and (2,79) yield

(2.80) ab + a'®! < (a%b)!

or

(2.81) (ab + a'dt) > aub,

Agaln applying DelMorgan's laws, we get

(2.82) ab! + a'b > aub,

But (2.69) and (2.82) together imply

(2.83) ab! + a'b = aub

and the theorem is proved,

Corollary: In a Boolean algebra, the only semi-metric
operation % such that O¥%a = a for every a and such that the
meet distributes over #* is the symmetric difference.

Proof: 1In the proof of Theorem 2.11 the weak associativity
property was used only to show that O%a = a for every a in

the Boolean algebra,

Definition: As usual, let % denote the symmetric difference.

A binary operation o is called guasi-analytical (llarczewski

[10 1) when
(2.8l) (aob)#(eod) < (axe) + (bud)
for all guadruples a, b, ¢, d of a Boolean algebra.

Theorem 2.12 (larczewski): The only quasi-analytical

group operation in a Boolean algebra with 0 as the group

identity is the symmetric difference.
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Proof: Marczewski showed in his proof that the operation
o 1s Boolean. It then follows from Corollary 1 to Theorem
2,6 or from Bernstein's results [ 1 ] that o is a metric
operation, whereupon the theorem follows from Theorem 2,2.

Following is an independent proof of lMarczewski's theorem.

FPirst we note that a = a‘l, for

(2,85) a = ax0 = (a00)#(aoca~1) < (awa) + (0a=1l) = a=1
and

(2.86) a-l = a~tuo = (a"loo)%(a‘loa) < (a‘lﬁa‘l) + (0O:xa)
give us respectively a < a~! ang a-1 < a,

Since a = a'l

» We have aoa = 0, Let aob = 0, But
aoa = 0, hence a = b by the law of unique solution and N1
holds. To prove ll2, we write

ao[bo(boaﬂ

ao [(bob) oa]

ao(0oa)

i

(2.87) (aob)o(boa)

i

]

= aoa

n

O.
Thus aob = boa by lil.
Let a, b and ¢ be sides of a triangle 1, my n, with

a = lom, b = mon and ¢ = lon. Then

(2.88) aob = (lom)o(mon) = lon =c¢
(2.89) aoc = (lom)o(lon) = (mol)o(lon) = momn =D
(2.90) boe = (mon)o{lon) = (ron)o(nol) = mol = a



How

(2.91)
(2.92)
(2.93)
proves M3,

2e20

c
b

a

aob
= goc¢
= boec

Henece

1l

1l

(000) ##(a0b)

IN

(0wa) + (0:b)
(000)w#(aoc) < (O%a) + (Oxc)

(000):(boc) < (0%b) + (Oxc)

1s the symmetric difference

=a + b
=a + C
=DhH + ¢

by Theorem
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Section 3. Structure of Stone Algebras

Definition: A Brouwerian algebra is a lattice I in which

for every pair of elements a, b there exists an element x

such that

(3.1) b+x>a

and

(3.2) b + y > a implies y > x.

In other words x is the "smallest" element such that

b + x> a, The element x is the difference of a and b,

and is denoted by a - b. It may be verified (see MeKinsey
and Tarski, [9‘] ) that
(3.3) a-b<ec if and only if a < b + c.

Examples of Brouwerian algebras are numerous;
among the Brouwerian algebras are all Boolean algebras,
all chains with 0, all finite distributive lattices, all
distributive lattices in which descending chains are
finite, and all complete and completely distributive
lattices,

Theorem 3.1: A Brouwerian algebra is a distributive

lattice.

Proof: We will show that

(3.Ll-) a+ yi17o = (a + '.‘71)(8- + Ya)o
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Let

(3.5) D =(a+yy)(a+y,.

Then

(3.6) a+yy2banda+y,>b
implies

(3.7) Yp2b-aand y,>b - a

by (343)e This gives

(3.8) ylyg _>_ b - =98

We can now write

(3.9) a+y,7,2a+ (b-a)>h,

where the last inequality follows from (3.1).

Having

(3.10) a + ylyzz (a + Yl)(a + s )

it remains to show that the reverse inequality also holds,
But in any lattice

(3.11) a<a+yy, and y9y, < a +y implies

(3.12) a+ yi¥p < 8+ Yi.

Similarly a + MERD) < a+ Toe Hence

(3.13) a -+ ¥yi1¥, < (a + Yl)(a + yZ).

This shows that (3.l) holds. Also valid is the dual of
(3el1), ie.0e the expression

(3.10) a(y, + yp) = ayy + ayp

obtained from (3.).) by interchanging "+" and ".".

Definition: If the Brouwerian algebra has a greatest

element I, the element I - a is the Brouwerian complement

of a, and is denoted by Tla. Similarly I -Tla =7Ta,

I -']ja =‘r]]a, and sSo On,
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In what follows, we restrict ourselves to Brouwerian
algebras having an 0 and an T,
It is shown in (9] and [13] that

() a < Db implies Ja >7b

(b) 1la < a
(3415) (e) 11a =1a

(@) T(ab) =7a + b

(e) T(a +®) =TT(Talw).

M. He Stone has asked the question: "hat is the
most general Brouwerian algebra B in which Talla =0
holds for every element a in B?", This problem apnears
in its dual form as "Problem 70" of Birkhoff [3]. A
simple example of a Brouwerian algebra in which this
property does not hold is the lattice whose five elements
are O, ab, a, b, 2 + b = I, for in this lattice |a = b,
Tb =7 77a = a, but Jalla = ba # 0. On the other hand, this
property holds in every Boolean algebra, and in every
chain with an 0 and an I,

Definition: A Stone algebra 1s a Brouwerlan algebra in

which ]a]la = 0 identically.
Tet B denote a Brouwerian algebra with O and I, and let X
denote the set of elements of B satisfying |x|]x = 0., If
x and y are in X, then
(3.16) M=+ 9Tz + 3 = 110=Ty) A= +77y)

< Ixly(Tix +17y)

=15y 1= + 1=y Ty

=0+ 0

=0
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and

(3.17) =) 1 W xy)

il

(Tx + 731 H=xy)
(U= + 19770 y)
< U= + 19 1xNy

===y + 1y T=Tly
=0+ 0 =0

]

show that X is a sub-lattice of By, since X is partially
ordered by the partially ordering of B, Further, using
the relationship |(a - b) =Ta +](bl, we see that
(3.18)  Vx - 1= = 3 = (Ix + 79 [TI=y)]

< (= +71790x]y
==y + VyN=ly
=0+ 0=0

1l

That is, if x and y are in X, then so are x + y, Xy and
X = Yo This proves the

Theorem 3.2: In a Brouwerilan algebra B with 0 and I,

the collection of elements x satisfying |x|lx = 0 is a
Stone sub-algebra,

Birkhoff [}j]has shown that in any Brouwerian
algebra B the subset R of elements satisfying llr =7r is
a Boolean algebra under the operations a + b and a® b = WW(ab).
In a Stone algebra, however, the subset R is a Boolean
sub-algebra of B, i.e. R is a Boolean algebra under the
operations a + b and ab which hold in B, This 1is, in fact,

a characterization of Stone algebras, as is shown by the

following theoren,

lﬂﬁsr%mﬂtisshmnin[Bl



Theorem 3.,3: A Brouwerian algebra B is a Stone algebra

if and only if R is a Boolean sub-algebra of B,

Before proceeding with the proof of this theorem,
some lemmas will be established which not only facilitate
the proof but also add some insight into the structure of
Stone algebras. TLet Q denote the set of all elements of
B satisfying dla = 0.

Lemma 1l: Q is a subset of R.

Proof: If a is in Q, then ala = 0 implies

(3.19) 17a =1la + ala = (Ma + a)(1la +1a) =a I = a,
and a is in R,

Lemma 2: Q is a sub-lattice of B.

Proof: TLet a and b be in Q, Then

(3.20) (a + b)7(a + b) < (a + b)(Nalb)

1

alalb + bialb

=0 + 0
=0

and

(3.21) (ab)1(ab) = ab(la + 1b) = abla + ablb = 0+ 0 = 0

show that a + b and ab are in Q.

Lemma 3: B is a Stone algebra if and only if Q = R,

Proof: Let Q = R. Recalling that Ta =714, it follows
that 7la is an element of R, for every a in B. Since

Q = R, we have that Talla = 0, and B is a Stone algebra.
Conversely, let T1x11Xx = 0 hold for every x in Bes If x is
in R, then 11x = x implies 0 = Xxlx. Hence R 1s a subset

of Q. Using Lemma 1 we conclude that R = Q.
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Proof of Theorem 3,3: TLet B be a Stone algebra., Then

R = Q by Lemma 3, hence if x is in R then X1x = Q.

Since x +7x = I identically, it is seen that Ix is a
Boolean complement of x, and is unique since B is a
distributive lattlice, By Lemma 2, R = Q is a sub-lattice
of B. Hence R is itself a comvlemented distributive
lattice under the operations of B, i.ee R is a Boolean
sub-algebra of B, Conversely, assume that R is a Boolean
sub-algebra of B, Then 1f x is in R, there exists an
element x' in R satisfying x + x' = I and xx' = 0, Since
X+ |x=1I, we have (x + Ix)(x + x') =x +x'|x =1,

xt 1x

il

This, together with =x(x!']x) = 0, implies that x!
since B is a distributive lattice, Thus x! <'|x, But
x! satisfies x + x' = I, hence |x < x! by definition of
the operation |, This shows that =x! = 1x, and hence
xx! = X|x = 0, From this it follows that R is contained
in Qe Applying Lemma 1, we have that R = Q. Then B is a
Stone algebra by Lemma 3, and the proof is complete,

This theorem suggests that Stone algebras may,
in a sense, be built up from Boolean algebras, This is
indeed the case, and in the remainder of this section we
present a characterization theorem which gives some insight.
into the general structure of Stone algebras.

Definition: An ideal J in a lattice K is a subset of K

having the properties
(3.22) x and 7 in J implies x + y is in J,
(3633) xIn J and y < x implies y is in J,
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Let L be a distributive lattice with 0 and I,
R be a Boolean sub-algebra of I containing 0 and I, and
T be an ideal in L having the properties
(3.21) (a) The only element in L cormmon to both R and T
is G,
(b) T is a Brouwerian sub-algebra of L.

Remark: tl + t2 = T holds for no pair of elements tl, t2

of T,

Proof: If tl + by I for some pair of elements t1s Bp

of Ty then the fact that T is an ideal would imply that

I is in T¢ This is impossible by (3.2ha).

Remark: The relationship t > r # 0 holds for no elements

t in T and » in R,

Proof: Assume t > r. Since T is an ideal, it follows that
r is in T. Then, by (3.2h), © = O.

Let B denote the direct sum R@ T of R and Ty i,e, the set

of elements of L of the form v + t, where r is in R and

t is in T,

Theorem 3.l: B is a lattice.

Proof's Let ry + tl and r, + t, be elements of B, Then

(3425) (rq + t9) + (rp + tp) = (ry + vp) + (B + ©p)
=1"3 + 'u3’

where r3 =1 + T, is in R since R is a Boolean sub-algebra

of I and t3 = tl + t2 38 in T since T is an ideal of L.
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Since L is a distributive lattice, we observe that

(3026) (I'l + tl) (1’2 + ta) = PyTo b (l"lt2 + roty + t1tp)
=r3 + 'b3,

where r3 =My is in R since R 1s a Boolean sub-algebra

of L and t3 = r1t2 + ratl + tyts is In T since T 1is an

ideal of L.

Lemma 1: » - (rq + %7) = rry!'.

Proof: TUsing the fact that L is a distributive lattice, we

write

(3.27) (r; + tl) +rrgt o= ey +orrt 4 by

1

(rqy + 2)(ry + py1) + tq

(ry + 1) I+ 3

=Ty b+ oty

>r.
Thus rrq' satisfies the first part (3,1) of the definition
of the difference of r and (rl + t1). We show next that if
(rqy + t7) + x> r then X > ryry'e Let x be any element

of B, say x = r, + t2’ and assume

(3.28) (ry + £) + (v, + 85) > r.
Then
(3.29) (ry + rp) + () + t2) 2 7.

Since R 1s a Boolean sub-algebra of L, there exists an
element (rl + rz)' in R such that (r1 + r":_,)(r:L + r2)' = 0,
Hence
(3.30) (ry + o) (2q + wp)t + (B + £p)(py + 1)t 2 2lry + rp)!
or
]
(3.31) (b5 + to)(ry + 1)1 2 r(ry + 1)t
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The left side of (3,25) is in T, since T is an ideal of
L, and the right side is in R since R is a sub-algebra
of B But in an earlier remark we showed that t > r # 0
is impossible, Hence

(3.32) r(rl + I'2)' = Qe

Since R 1s a Boolean algebra, Dellorgan's laws hold., Hence
(3033) r! + rl + I’2 = T,

Multiplying both sides by rry!, we get (rrl')r2 = (rrlf)
which in turn iImplies that

(3+34) r, > rr t,

Hence

(3435) Py + by = o> rrg!

and the proof of Lerma 1 is complete,

Lemma 2: t = (ry + ty) =t - [t(rl + ty) -

Proof: The right side exists since T 1s itself a Brouwerian
algebra, TLet y =t - [t(rl + tl)]' Then

(3.36)  (py + tq) + 7 = (p) + &) + [6 = £y + )]

tlry + tq) + [t - t(ry + tlﬂ

>t

v

by definition of the difference operation, If x In B satisfies
(3.37) (ry + 6y) +x 2%

then

(3.38) t(r1 + tl) + tx > t.

Appealing to the second part (3.2) of the definition of

the difference operation, we see that

(3439) tx 27,

ie€e ¥ =t = t(rq * tq) is by definition the least element
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satisfying t(rl + tl) + ¥ > t. Hence
(3.110) x> tx >y,
which completes the proof of Lemma 2.

Theorem 3.5: B is a Brouwerian algebra.

Proof: Let (r + %) and (rl + tl) be any two elements of

B. We will show that (r + t) = (rl + tl) exists in B,

in particular that

(3.41) (r + %) - (p) + ty) = [r - (py + tlﬂ +[t - (ry + tlﬂ
Let

(3.11.2) x=7=(ry+t) and y=1t - (r; + 7).

The existence of x and y is guaranteed by Lemmas 1 and 2.

Further,

(3.43) x+ (rp + %) = [r R N C N S
and

(3elt) Ty vty = [t - fry + 5] +(py +Ey) 28,

by the definitions of X and y. Combining (3.43) and {3..}),
we get

(3.45) X+ 3+ (ry +ty) 2r+t,

We will complete the proof by showing that if an element

z of B satisfies z + (rq + t;) > v + t then z > x + 7.

Now

(3.16) z+ (rp +t) Zr+t>r2>r-(r) +1t) =x
gives z > x by definition of the difference operation,

and similarly

(3.47) z+(ryp +8) >+t 2t2t~(rp+t) =7

yields z > y. Hence z > x + y and the proof is complete,
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Theorem 3,0: B is a Stone algebra.

Proof: ULet ry 4 tl denote an arbitrary element of B,
We will use the relationship

(3.1{.8) r - (1’1 + tl) = I‘I'l'

of Lemma 1 to obtain 1(r1 + %) and'WT(rl + tl). By
definition of the operation | , we have that

(3.49)  Ury + 5)) =1 - (py + t3) =Iry? =1

and

Since R is 1itself a Boolean algebra, we have

(3.51) 1(r1~+‘tl)]1(rl + tl) =7 'r, = 0.

Thus B is a Stone algebra.

Structure Theorem: If B is the direct sum of R and T, where

R is a Boolean sub-algebra (with least element 0 and greatest
element I) of a distributive lattice L with 0 and I and
T is an ideal of L such that

(a) the only element of L common to both R and

T is O

(b) T is a Brouwerian sub-algebra of L,
then B is a Stone algebra, Further, every Stone algebra
may be so described,

The first part of the Structure Theorem has already

been proved. The remainder of this section, except for
some remarks at the end, will be used to prove the last

part of the theoremn,
Definition: ILet T denote the set of elements of B satisfying

1x = I and, as before, let R denote the collection of



-36-

elements of B satisfying 1lx = x,

Theorem 3.7: R 1s a Boolean sub=-algebra of B,

Proof: This has already been proved in Theorem 3.2.

Theorem 3,8: T is an ideal of B.

Proof: TLet a and b be elements of T, Then la = 1b = I,
and

(3.52)  Ia + ) = Ti(TaTe) = 711 = 1,

by (3.15e). Bence a'+ b is in T. If a is in T, and ¢ < a,
then 7c¢c >1la =1I by (3.15a)., Thus le = I, ¢ is in T, and
T is an ideal of B.

Theorem 3.9: The only element of B common to both R and T

is 0.
Proof: Assume that an element a is in both R and T, Then
1a = I, and 0 = aja = gl = a,

Theorem 3.,10: T is a Brouwerian sub-algebra of B.

Proof: In the proof of Theorem 3.8 we showed that a + b is
in T whenever a and b are in T. Ilow

(3.53) 1(ab) =7la+1b=I+I=1

by (3.15d). Hence ab is in T, and T is a sub-lattice of

B, Tt remains to prove that a -« b is in T if a and b are
in T But a - b < a by (3.3). Hence a - b is in T since

T is an 1deal of B.

Theorem 3.1l: Every element b of B can be written in the

form b =1 + t, where r» is in R and ¢t 1is in T.

Proof: Since B is a distributive lattice, we may write

(3e51) 17e + b1b = (170 + D) (11b + 1b).



But

(3.55)  1lb+v =01
by (3.15b), and
(3.56) 1Mo +Tb =1
by definition of the difference operation, Hence
(3.57) 1Mo + b1 = (T1b + B)(Tb +1b) =DbI =b
holds for every element b in B. Now 11b is in R, since
(3.58)  TU(TIB) = 1M ) =J(Ap) =11
by (3.,15¢)e Further, blb is in T, for
(3.59) Twlb) =To +7Ib =1
by (3415d), Thus we may set |lb =7 and blb = t, and
the desired representation is obtained,

Theorems 3.7 through 3,11 comnlete the proof of
the Structure Theoren,

More insight into the malke-up of Stone algebras
nay be obtained by interpreting the preceding work in
terms of set theory,

Definition: A ©ring of sets is a collection C of sets

Ay By Cye++ such that if A and B belong to C so does the

set sum AUB and the set product A(B. A Boolean ring of
sets 1s a ring of sets which contains with any member A
the set complement A' of A,

Definition: Given two merhers A and B of a ring of sets

C?, A E? B denotes the smallest set of all sets X in C?

v
satisfying BUX DA whenever this smallest set exists, &

is a Brouwerian ring of sets if, for every pair of members

A, By A 7 B exists in C.
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An example of a Brouwerian ring of sets which is
not a Boolean ring of sets is the collection ‘X of all
closed subsets of the plane, In ‘X s A 5 B is the inter-
section of A and the closure of the complement of B, The
collection & of all open subsets of the plane is a ring of
sets which is not a Brouwerian ring of sets., For, let A
and B be onen sets, neither containing the other, such
that ANB is not empty, The smallest set satisfying
BUXDA is ANB', which is not in O ., 1t is easily seen
that there is no smallest open set containing ANB!, hence
A -G B does not in general exist in O .

Let C be a ring of sets containing the null set ¢
and a greatest set I, and let R be a Boolean sub-ring of C
which also contains ¢ and I. Let 4 be a Brouwerian
sub-ring of (® which is an ideal and which has in common
with £ only the null set @ . Finally, let B= A&7
denote the collection of all sets of the form RUT, where
R is in R and T is in 7 .

Set-Theoretic Structure Theorem: Every ring of sets

B=R6 ﬁ/, where ﬂ and 7 satisfy the conditions laid

down in the preéeding paragraph, is a Stone algebra, and
every Stone algebra can be so described.

Proof: The first part of the theorem follows from Theorem
3.5 and 3.6, Let B denote an arbitrary Stone algebra.
Then B = R® T where R is the set of elements of B
satisfying 11r = r and T is the set of elements of B

satisfying 7t = I. Since any distributive lattice is



isomorphic with a ring of sets [éf. Birkhoff, p. 1@Q]

we know that B is isomorphic with a ring dg)of sets. The
Boolean sub-ring ﬂ? and the Brouwerian sub~ring,§7/are the
respective images, under the isomorphism, of R and T,

A direct application of Theorems 3,7 through 3.1l can now
be made to complete the proof of this theorem.

This set-theoretic representation furnishes a
method of constructing Stone algebras, Let L denote an
algebra of sets, 1y/én arbitrary collection of elements of
2['together with their complements, and ﬁ?the collection
of elements of Z/Atogether with their pairwise sums and
products, If Rl and R2 are in /6), it is clear that
RiLJR2 and er\Rz are also in /. . Further, if R is in
£, then Rt is in (2 . For, if R is in 7 then R' is in
ZV(Which is contained in /f). If R is not in i?/; then
either R = VUV, or R = vlf\vz, where V, and V, are
elements of 7/ o In the first case R' = V31 Vo' and in
the second case R!' = Vi'LJV". Since V' and V,' are
elements of ?Vf, it follows that in either case R! is in
/f. Hence /f is a Boolean ring of sets,

From among the members of Zz’not already in Jﬁ?
choose a sub-collectionkz7’in such a way that:

(a) If T is in J?J, the set compnlement T?

is not in A .
d\/
(b)) If Ty and T, are in A s sSo is T1LJT2.
(¢) If T is in 57/, so are all sets of U

contained in T,
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f‘l
(d) The collections .7 and /A have in cormon
only the null set,
Pl
It is seen from (b) and (e¢) that ./ is a ring of sets, and
(2) implies that /0/ 1s not a Boolean ring of sets, If Ty
a_/
and To, are in A o the set Ty 37 T, exists in A since
U is an algebra of sets, But it is clear that
Ty oz T2C Ty, so that Ty > T, =Ty 5= T, exists In
7 and //‘r/is a Brouwerian ring of sets, Intuitively, the
Brouwerian ringj/of sets serves to "fill out" the

Boolean "skeleton" /f. The desired Stone algebra 47 is
0-\/
now obtained by forming the direct sum B =Re 7.
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Section li, Characterization of

Certain Stone Algebras

In this section we characterize a wide sub=-class of
Stone algebras. These Stone algebras are shown to be
factorable into a direct product of Brouwerian algebras of

a rather special kind called T-algebras.

Definition: An element a of a lattice L is join-irreducible

if x+y=a implies X =aor vy = a,

Definition: A Brouwerlan algebra with I is a T-algebra if
I is join-irreducible.

T-algebras may be constructed in the following
manner, To any Brouwerian algebra I. adjoin a new element
J in such a way that J is properly over every element of
L. Let T denote the resulting lattice. It is seen that
the adjoining of J to L leaves unchanged all the original
differences a - b of elements of L., If X is an element of
L, then J = x = J since for no y # J can the relationship
X + 3y = J hold, (Recall that J is oroperly over every
element of L, and that x + ¥y is an element of L). This
shows that there exists in T the difference of any two
elements, i.e. that T is a Brouwerian algebra.

One of the results proved in this section is that
the direct product of T-algebras is a Stone algebra. Thus

a large collection of Stone algebras can be constructed by



taking an arbitrary collection of arbitrary Brouwerian
algebras, converting each Brouwerian algebra into a
T-algebra by adjoining an element J, and forming the direct
product of the resulting T-algebras.

Important concepts used throughout the rest of this
section are presented in the following definitions,

Definition: Let the set C be the indexing set for a

collection of joln-irreducible elements a,,UéC. The

collection aﬂ-is a representation of I if

U—l—ol) I= \/a"-

§eC

The representatlion is irredundant if §#¥' implies Ayay = o.

Definition: A lattice L 1s complete if every subset of L

has a greatest lower bound and a least upner bound.

Definition: A lattice I is completely distributive if

arbitrary sums distribute over arbitrary products, and

dually.

Remark: TLet D be the indexing set for an arbitrary subset
of L, and let ay', feD, denote the Boolean complenent of
age For our purposes the full power of the complete

distributive law is not needed; instead, it suffices that
- (1)

e2)  /\lag + ag") —\/{ a

be d (1) LseD 5

where 4}:15(1) denotes a product formed by choosing, for

- NAANE)

each §€eD, either ag or as', and(i){;GDaS | denotes the
union of all such products, The following example illustrates
the notation; the complete distributive law we require is

the generalization of the following law:



(L.3) (a +a!)(b + Db')(c + ¢') = abe + abe! + able
+ ab'c! + atbe + atbe!
+ atb!c + atbter,

Definition: Let A and B denote two algebraic systems

having the same operations, The direct product A X B

of A and B is the set whose elements are pairs (a,b), aeA
and b€B, and whose operations are performed component-wise:
Uy £[lagsby),(a,bp)] = [£lag,85), £(by,b,)].

The direct product of an arbitrary number of algebraic
systems, all having the same operations, is defined
similarly.

Lemmg 1l: The direet product of an arbitrary collection of
Stone algebras is itself a Stone algebra.

Proof: Let A be the indexing set for a collection of Stone

algebras S _, X€A. Let
(4e5) s = J]Su

denote the direct product of the Stone algebras S % ®

An
elemnent x of S has components x , where X E€S3_. Then the
element 7x = I - x of S has components |x,= I - X and
717x€S has components 1 1x, = Ix=- 1%, since the difference
operation is performed componentwise, Since the product
operation is also performed componentwise, the elenent
7x711x€S has components 1xgllxy e But each S, 1s a Stone
algebra, hence }x, 11Xy = Oxe Thus the components of TxMx

are all 0, and S is a Stone algebra.

Lenma 2: Every T-algep.a i1s a Stone algebra.
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Proof: Let x # I. Then X + x = I implies that 1x = I,
since I is join-irreducible, Hence 711x = 0, and
71xmx = I0 = 0 holds for every x # I, The proof is
completed by noting that 71ITII = 0I = o,

The principal result of this section is presented
in the next two theorems,

Theorem li,1: If B is a complete Stone algebra, and if T

has a representation as an irredundant join of join-irreduc-
ible elements, then B is isomorphic with a direct product
of T-algebras,

Theorem 1,2: If B is a complete and completely distributive

Stone algebra, then I can be represented as an irredundant
join of join-irreducible elements,

Proof of Theorem li.l: TLet C be the indexing set for the

set of join-irreducible elements aF;TeC, nalzing up the
representation of I, so that
(1..6) I= ;géaa.
Let Ay denote the set of elements =x€B satlisfying x < ays
and let D denote the direct product of the sets Aye The
proof consists of three parts. In the first part it is
shown that Ay 1s a T-algebra. A one-to-one correspondence
is established between B and D in the second part of the
proof, and in the third part this correspondence 1s shown
to be an isomorphism,.

Ay is clearly a sub-lattice of B, If u and v
are in Ay, then the fact that u - v < umneans that u - v

is also in Ays 8O that Ay is itself a Brouwerian algebra,
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The element ay (which plays the role of I in Ay) is

join-irreducible, hence Ay is a T-algebra, by definition,
Let d be an element of D having components dys

where dy€Ay. The correspondent x in B of d in D 1is

defined as

) x= Mag

Te
The sum exists since each dJ is in B, and B is complete,
Let d denote another element of D, having components

dy, and assume that

(Lt 8) Nag = Mg,

¥eC
i.c. assume that d and 4 map into the same element X of B,
If %64660, is one of the elements making up the representation
if I, then from (l.,8) we may write that

(1e9) a}gﬂ\eédv = a,;}e/ca'ﬁ.

Using the infinite distributive law, which holds iIn B since

B is complete, the above expression becories

(L.20) M(gﬁd,) = 1f\eé(a/g_,,az,).

The fact that the representation is irredundant implles

that the elements a5 are pailrwise disjoint. Since dngeaa
implies azdy < 858, =0 for /4 #T, expression (l..10)
reduces to

(L.11) aydy = asdg. )

¢

arbitrary member of the indexing set C, this shows that

d =14d, i.e., that the correspondence defined in (le7) is a



one-to-one mapping of D into B, We will complete the
second part of the proof of Theorem l,1 by showing that
every element in B is the image of an element of D. ILet

¥y be an elenent of B, Then yay is in Ay, and the element
dy’ whose components are yays is in D, The image of

dy is

(12)  Mlyap =3 May =31 =7,

again using the infinlte distributive law.

That this one-~%o-one correspondence is operation-
preserving follows from the fact that if d and d are
elements of D satisfying d < d, then the components
dy of & and dy of d indivually satisfy dy < 6[6.
Hence

(Le13) f\eédv < }E/CEJ,

and the corresvondence is order-preserving, But all the
operations in B are defined in terms of the order relationj;
hence the corresnondence is an isomorphism and the proof

of Theorem li.1 is complete.

Proof of Theorem l,2: If B is a P-algebra the theorem

is trivial, If not, the set R of elements of 3
satisfying \lr = r contains elements other than O and
I, For, if B is not a T-algebra, then there exists
elements x and ¥, both different from I, such that

x +y =T, This implies that |(x +y) =0 and

TNHx +y) =1I. If 1x =1, then

(lo2lp) I=1x+y) = ’][Tl(']x'ly)] =’\[T\(137)] =1y =y

IA



implies y = I which is a contradiction. Hence 7|x # I.
Finally, x # I yields 1x # 0. Thus the element 7 x,
which is in R since ||(Ix) =7 x, is different from O
and I,

Let A be the indexing set for R, If Ts€A, 1s
an element of R, so is its Boolean complement =r,!', since
R 1is a Boolean sub-algebra of B by Theorem 3.2. Ve form

the product

(l(--15) I= O(/\EA(R’( + I'.g(')-

The product 1s I, as shown, since each term of the product
is TI. Using the complete distributive law (L.2), (t.15)

becomes

.16 I =\/ /\r (1) .
RO, @m
Let x = rﬁ(i). We will show that x dis in R, i.eo,

N
that every term of (L.16) is in R. From x < rd(l) it

follows that x _>_']rd\(i) = ro((i)t.
Hence
(i)t
(Ir.27) 1xz>¥&x .
Let y = \/r (i)'- Since 7y + I’q‘(i) = I holds for every

A in A, we have

(18 T=/\r ) =y Q@ -y

By definition of x, this means y >7x, i.e.
ha19) =< M

From (li.17) and (l..19), we have

(ho20) Tx =y

. 1y _ -
It is clear that, for every A In A, xrd(l) = O, Hence
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(ho2r) 0= M"I’o«(i)' = XMIR(:U' = x]x.

This shows that x is in Q and hence in R by Lerma 1
to Theorem 3.3, page 29.

Not every term of (l.16) is 0, since the sum of
the terms is I. After discarding from (L.16) those terms
which are 0, the remaining terms may be relabelled so
that (l1.16) becomes
(e 22) I= s

It will be shown next that D 1is the indexing set for
the atoms of R, i.e, those elements ag of R such that
0 § T é a holds for no element r in R. After that we
will show that the representation (lL.22) is irredundant,
and the proof will be completed by showing each element ac
is join-irreducible,

Suppose that an element » of R satisfied
(h.23) 0<r<a, 0 #r, aJ#r
for some § in D. By the manner in which a, was obtained,
we observe that the expression for as contains the letter
I, with or without a prime. If r avppears as one of the
nembers of the expression for ags then r > ags which
violates (/l.23). On the other hand, if r!' appears as one
of the members of the expression for ag, then rac = 0,
which also contradicts (lL.23). e conclude that no element
» of R can satisfy (L.23), i.e. that ag is an atom of

B, Ve remark parenthetically that ag may not be an

atom of Be.



Again using the fact that each element rx of R,
with or without a prime, appears as a member of the
expression for ag, we see that 51 # Sé implies ag

1
and 352 are different, i.e, at least one of the elements
is primed in one term and not in the other, It follows

that
2y agag =0 for §y £ 4y

which shows that the representation (L.22) is irredundant.
Assume that there exists elements x, y of B, each

different from © and from ags Wnich satisfy

(h.25) O<x<ag 0<ysga, x+y-=ag

for some § in D. Recalling that 77x < x, that Tlx is

in R, and that a¢ is an atom of R, we have 11x = o.

Hence 7|x = I, and, similarly, |y = I. Hence

(ho26)  Jag =Nz +y) =THKy) =110 =71 = 1.

But if ‘]ass I, then 0 =7Ta, = ag since a¢ 1s In R,

This is a contradiction, for in the construction of (lL.22)

only the terms of (L,16) different from 0 were retained,

Thus (ly.25) is impossible, and ag is join-irreducible.

This completes the proof of Theorem l,2.

Corollary 1: IZvery complete and completely distributive

Stone algebra 1s isomorvhic with a direct product of

T-algebras,
Proof: fThis is a direct consequence of Theorems .1 and
k.2,

Corollary 2: Any finite Stone algebra is isouorphic with
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a direct product of T-algebras.,
Proof: Any finite Stone algebra is complete and completely
distributive,

Noticing that the essence of the proof of Theorem
.2 was the discovery of the atoms of R, we are led to

Theorem ll.3: A Stone algebra B is isomorphic with a

direct product of T-algebras if every descending chain in
R 1is finite,
Proof: OSince R 1is a Boolean algebra in which descending
chains are finite, we know that R itself is finite (cf.
Birkhoff [ 3 ], P. 159). Hence the atoms of R ecan be
determined; it can be shown as in Theorem l|,2 that I is
an irredundant join of the atoms of R and that the atoms
of° R are jolin-irreducible elements of B. The proof is
comnleted by applying Theoren l.2,

One further extension of Theorem l.2 is obtained
by notlcing that the use of the infinite distributive law
in the pnroof was confined to elements of R.

Theorem Llli: If B 1s a Stone algebra in which the

Boolean sub-algebra R is complete and completely distributive,
then B 1is isomornhic with a direct »roduct of T-algebras,
Proof: Txactly as in Theorems L.l and L2,

An example of a Stone algebra which is f], D 18@).16
is the "measure algebra" II (see Birkhoff [ 3 -], p. 18L).
This algebra may be constructed as follows. Let I denote
the set of Lebesgue measurable subsets of the unit interval,

Divide 1 into equivalence classes by placing in the sane
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class any two subsets whose symmetric difference is a set
of measure zero., The equivalence classes are ordered by
set inclusion, It 1s knowm that the resulting algebra T
is a complete Boolean algebra without atoms. Since T

is a Boolean algebra, it follows that M is a Stone algebra.
However, i cannot be factored into a direct product of
T-algebras since it has no join-irreducible elements,

It might be conjectured that all Stone algebras
are direct products, the factors being either T-algebras
or Boolean algebras without atoms., That this is not the
case is shown by the following example, due to L. I, Kellye
First consider a non-atomic Boolean algebra, and consider
its representation as a Boolean ring 6€)of setse. /?nmy
be regarded as embedded in an algebra of sets which of
course contains points, Let T be one of these points,
and let the setb ,Zr’consist of T together with the null
set, It 1s easily verified that the conditions of the
Set-Theoretic Structure Theorem (pe. 38) are satisfied,
hence ﬁ = /‘?@/&7/ is a Stone algebra. Since 13 contains
only one join-irreducible element, namely T, the only
possible factorization of %9 of the conjectured type is
ﬂg= ﬁxj/. In the direct product /?X ?/, the four
elements (R,T)s, (R,D), (RYT) and (R'0) are distinct, where
R dencotes some member of tﬁ? different from O and Te
But the point T 1lies in either R or R', hence in the
direct sum /EC) Sr/the four elerients R + Ty R + 0y R' + T

and RY + 0 are not distinect. Thus no one-to-one
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correspondence can be set up between /l)@;/ and f?xff s
i.e, the Stone algebra @A camnot be factored in the

conjectured manner,
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