RESPONSE OF CONCORD GRAPE VINE (VITIS LABRUSCA L . ) TO VARIOUS LEVELS OF ESSENTIAL NUTRIENT ELEMENTS By ERNEST L. BERGMAN AN ABSTRACT Subm itted to the School for A dvanced Graduate Studies of M ichigan State U n iv ersity of A g ricu ltu re and Applied S cien ce in p a rtia l fu lfillm en t of the req u irem en ts for the d eg ree of DOCTOR OF PHILOSOPHY D epartm ent of H orticulture 1958 A pproved A * '' //* ' / ’ A ' - L ERNEST L. BERGMAN ABSTRACT The r esp o n se of Concord grape v in e s to v a rio u s le v e ls of e s s e n tia l nutrient e le m e n ts w as studied in the green h ou se w ith th ree ex p erim en ts. In E xp erim en t I, o n e -y e a r -o ld rooted cuttings w e re u sed . The ch eck treatm en t w as supplied with standard Hoagland solution, and high (5x) or low (Ox) le v e ls of nitrogen, phosphorus, p o ta ssiu m , ca lciu m , m a g ­ nesium , iron, m an ganese, boron, copper, zin c, and m olybdenum w ere o b ­ tained by adjusting the standard solution to the s p e c ific le v e ls . High le v e ls of calcium and p otassiu m w ere te ste d in com bination w ith both sulfate and ch lorid e as anions. In E xperim en t II, r a tio s of I. 6 to 21. 2 of Ca+Mg K the solution w ere u sed to te s t the in flu en ce on grow th and e x p r e ssio n of p o ta ssiu m d eficien cy . In E xperim en t III, the e ffe ct of th ree le v e ls of m an ­ g a n ese (2x, 25x and 50x Hoagland solution m anganese) upon plant growth w as te sted . In E xp erim en ts II and III, tw o -y e a r -o ld p lan ts w ere u sed and the standard solution w as m odified by doubling m an ganese and in c r e a sin g copper by 50%. T otal lin ea r growth, dry w eight accu m ulation of ro o ts, ste m s, p e tio le s le a f blad es, and total dry w eight w ere taken. calcu lated . The sh o o t/r o o t r a tio s w ere P e tio le s and ste m s of each plant w ere an alyzed for nitrogen, phosphorus, p o ta ssiu m , calciu m , m agnesium , iron, m anganese, boron, copper, zin c, and p a r tia lly for ch lorid e. ERNEST L. BERGMAN ABSTRACT - 2 The ch eck treatm en t produced m o st total lin ea r growth, w h ile low le v e ls of m ajor e le m e n ts, w ith the ex cep tio n o f m agn esium , d e p r e sse d lin ea r grow th m ore than low le v e ls of m in or e le m e n ts. The high le v e l of m olybdenum produced m o st total dry w eight, w h ile low le v e ls of p otassiu m and nitrogen, and high le v e ls of p o ta ssiu m with ch lo rid e as anion w e re m o st d e p r e ss iv e on total dry w eight. T rea tm en ts d eficien t in n itrogen and p h o s­ ph oru s or high in m agn esium and m olybdenum ca u sed the lo w est sh o o t/r o o t ratio. High le v e ls of phosphorus and nitrogen, and low le v e ls of m agnesium c a u sed h ig h est sh o o t/r o o t r a tio s . A p o sitiv e relation sh ip betw een the s p e c ific nutrient e lem en t in the solu tion and in the p e tio le s w as o b serv ed for a ll e lem en ts ex cep t for iron and zin c. P e tio le s see m e d to provide a b etter indication of norm al or above norm al le v e ls of nutrition than the ste m s. indicate b etter low or d eficien t le v e ls . The ste m s, how ever, see m e d to The stem content w as alw ays equal to, or h igh er than, the p e tio le content under low or d eficien t nutrient co n d i­ tio n s. The Ca+Mg r a tio s in the nutrient solution w ere of no d ir e ct influence K on grow th o r on c o lo r of p otassiu m d eficien cy sym p tom s. Indirectly, how ­ e v er , p o ta ssiu m , calciu m , and m agn esiu m e x e r te d v a ried in flu en ces. C hronological appearance o f v is ib le d e fic ie n c y or to x ic ity sym ptom s ABSTRACT - 3 ERNEST L. BERGMAN w ere not c o r r e la te d w ith the d e p r e ssio n of grow th r e su ltin g from the sp e c ific elem en t. A ll low le v e l and four of the high le v e l trea tm en ts produced v is ib le lea f sym p tom s. M agnesium d eficien cy sym ptom s on le a v e s developed m o re rapidly w ith high p o ta ssiu m than when m agn esium w as om itted. V isib le d e ­ fic ie n c y sym ptom s on plan ts coincided w ith the follow ing v a lu e s in p e tio les: n itrogen . 51%, phosphorus .10%, p otassiu m .47%, calcium .26%, m agnesium . 14%, m an gan ese 18 ppm, boron 14 ppm, copper 28 ppm, and zin c 11 ppm. Many sign ifican t in tera ctio n s betw een nutrient e lem en ts w ere found. G en era lly m ajor e lem en ts w ere of m o re influence on the m in or elem en ts and v ic e v e r s a . High le v e ls of m ajor e lem en ts in the nutrient solution had m o re influence on nutrient absorption than high le v e ls of m inor e le m e n ts. Some of the m o re strik in g in teraction s betw een elem en ts were a s fo llo w s: (1) Low n itrogen in the solution ca u sed low phosphorus, low boron, and high calcium in the p e tio le s . (2) High nitrogen produced high phosphorus and high boron p e tio le content. (3) Low phosphorus in p e tio le s coin cid ed w ith high m angan­ e s e and high iron. (4) V ery low le v e ls of copper and zin c w ere found under d eficien t p o ta ssiu m conditions. (5) A sp e c ific amount of p o ta ssiu m appeared to be n e c e s s a r y for adequate absorption o f calcium and m an gan ese. (6) M ore p otassiu m w a s absorbed w ith sulfate than w ith ch lo rid e a s an anion. In the la tter c a se , m ore calciu m w as found in p e tio le s . (7) High nitrogen, p h o s­ phorus, p otassiu m , m anganese, and boron in p e tio le s appeared under calcium ERNEST L. BERGMAN d eficien t con d ition s. ABSTRACT - 4 (8) A sign ifican t p o sitiv e c o r r e la tio n betw een total iron and m an ganese in the p e tio le s w as e sta b lish e d . (9) Low phosphorus, p o ta s ­ sium , calciu m , and high m agnesium w ere a s so c ia te d w ith high m an ganese v a lu e s in p e tio le s . (10) M ore boron w as o b serv ed in p e tio le s of plan ts trea ted w ith high le v e ls of nitrogen, phosphorus, p o ta ssiu m , and low le v e ls of c a l­ cium than in th ose plan ts treated with high le v e ls of boron. With e x tr e m e ly high m anganese con cen tration s in the solution, m an­ g a n ese to x ic ity sym ptom s appeared on le a v e s . Growth w as not a ffected at th is le v e l, how ever, the b e r r ie s did not ripen ev en ly within c lu s te r s . RESPONSE OF CONCORD GRAPE VINE (VITIS LABRUSCA L .) TO VARIOUS LEVELS OF ESSENTIAL NUTRIENT ELEM ENTS By ERNEST L. BERGMAN A THESIS Subm itted to the School for Advanced Graduate Studies of M ichigan State U n iv ersity of A gricu ltu re and A pplied S cien ce in p artial fu lfillm en t of the req u irem en ts for the d eg ree of DOCTOR OF PHILOSOPHY D epartm ent of H orticulture 1958 ProQuest Number: 10008588 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10008588 Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 4 8 1 0 6 - 1346 ACKNOWLEDGEMENTS The author w ish e s to ex p ress his sin cere thanks and appreciation to Dr. A. L. Kenworthy for his a ssista n ce in outlining the problem , ca rry ­ ing out the experim ental work, and preparing the m anuscript; to Dr s. R. L. Carolus, G. P. Steinbauer, R. L. Cook, and K. Lawton for their guidance and editing of the m anuscript; to Dr. E. J. Benne and Mr. S. Bass and th eir staff for carrying out the chem ical analyses; to Dr. J. D. Downes for his help on certain a sp ects of sta tistica l an alyses, and to Dr s. H. K. Bell and R. P. L arsen for their technical a ssista n ce. Special recognition is given to Dr. E. J. Kraus (visitin g p rofessor, Department of H orticulture, Oregon State College, C orvallis, Oregon,) for encouraging the author to per sue further education. Special acknowledgement is a lso made to the author's wife, A lice, for her u n selfish sa c r ific e s, constant a ssista n ce and encouragem ent through­ out the years, and to the National Grape Cooperative A ssociation for p ro ­ viding the financial grant for carrying out the research . TABLE OF CONTENTS Page INTRODUCTION ............................................. . 1 REVIEW OF LITERATURE ...................................................... 2 EXPERIMENTAL PROCEDURE. . ....................................................... 21 EXPERIMENT I. EFFEC T OF VARIOUS LEVELS OF 11 NUTRIENT ELEMENTS ON GROWTH, PETIOLE AND STEM COMPOSI­ TION . . . ......................... . . . . . . . . . . . . . . 22 RESULTS: DEFICIENCY AND TOXICITY SYMPTOMS OF STEMS AND LEAVES . . . . . . . . . . . . . . . . . . . . . 25 VISUAL SYMPTOMS ON ROOTS ...................... 43 GROWTH. . . . . . . . . . . . . . . . . . . 46 NUTRIENT ELEMENT COMPOSITION OF PETIOLES AND STEMS. ...................... 54 DISCUSSION. . . . . . . . . . . . . . . . . . . . . . 72 EXPERIMENT II. EFFEC T OF Ca^Mg RATIOS ON GROWTH, PETIOLE AND STEM COMPOSITION . . . . . . . . . . 86 EXPERIMENTAL PROCEDURE. . . . . . . . . . . . . . 86 RESULTS: GENERAL OBSERVATIONS . . . . 88 . . . . . . VISUAL APPEARANCE OF ROOTS . . . . . . . GROWTH. . . . . . . . . . . . . . . . . . ELEMENTAL COMPOSITION OF PETIOLES AND STEMS. . . . . . . . . . . . . . . . . . 89 . 90 91 CONTENTS CONT'D Page DISCUSSION......................................................................................... EXPERIMENT III. E F F E C T OF THREE LEVELS OF MANGAN­ ESE ON GROWTH, PETIOLE AND STEM COMPOSITION. . 105 I ll EXPERIMENTAL PROCEDURE.................................................... I ll RESULTS: GENERAL OBSERVATIO NS.................................. 112 VISUAL SYMPTOMS......................................................... 112 GROWTH................................................................................ 114 ELEM ENTAL COMPOSITION OF PETIOLES AND STEMS........................................................................... 116 DISCUSSION......................................................................................... 118 SUMMARY............................................................................................................ 121 LITERATURE C IT E D .................................................................................... 126 APPENDIX 134 INTRODUCTION M ichigan ranks third in the United States in the production of the Concord grape (V itis labrusca). The incom e from grapes provides a large share of the farm incom e receiv ed by many fruit grow ers in the South­ w estern counties of M ichigan. The nutritional status of M ichigan grape vineyards im proved considerably after it was found that potassium was lim itin g grape production (Larsen, 1955). In extrem e c a se s, deficiency or toxicity sym ptom s may occur on le a v e s. If the shortage is not critical, the plant may show reduced growth an d /or production. A visu al diagnosis in this instance is very difficult. Petiole an alyses have opened new avenues for interpretation and c o r r e c t­ ion of nutritional d isord ers p rior to the appearance of visual sym ptom s. The purpose of the p resent investigation was to study the respon se of Concord grapes to various le v e ls of essen tia l nutrient elem ents, as shown by visu al lea f sym ptom s, growth, p etiole and stem com position. The data indicate the behavior of certain elem ents within the plant and their interactions with other elem en ts. They also suggest p o ssib le c o r ­ rection of visu al or hidden nutritional disord ers in Concord grapes. 2. REVIEW OF LITERATURE The influence of nitrogen (N), ph osphorus (P), p o ta ssiu m (K), c a l­ cium (Ca), m agn esium (Mg), iron (F e), m an gan ese (Mn), boron (B), copper (Cu), zin c (Zn), sulphur (S), ch lorin e (Cl), and m olybdenum (Mo) upon grow th and production of g ra p es has been the subject of num erous in v e s ti­ ga tion s. The id en tification of c er ta in d e ficien cy or to x ic ity sym ptom s w ith the e lem en ta l com p osition of a c er ta in plant part has been fu rthered in r ec e n t y e a r s . Lagatu (1927), after finding r e s p o n se s to N, P and K, applied in f e r tiliz e r by m ean s of le a f a n a ly sis, w rote "The d ia g n o sis b ased on the ch em ica l com p osition of the le a f is a s a ccu rate and in d ica tiv e for the in ten sity a s it is for the nature of nutritional supply". Since then, m any d ifferen t w ays of e x p r e s s in g the m o st su itab le e lem en ta l com p osition for a sa tisfa c to r y production and a healthy plant have been p r e se n ted . Lagatu and M aume (1940) fe lt that the ratio of FhP^O :K O in the le a v e s should be 41:8:51, w h erea s V ettori (1954) thought 45. 5:9:45. 5 w as the b est, and L iveran t(1955) su g g ested a ratio of 64. 1:11. 6 : 24. 3. Vidal (1955) added th ese th ree e lem en ts togeth er and rep o rted 3. 9% dry w eight a s a v era g e for good vin ey a rd s w ith an optimum of 4. 33%. G oodall and G regory (1947) r ev ie w e d the v a rio u s r ep o rts and concluded that no v in e s resp on d ed to fe r tiliz e r when the p er cen t dry w eight content 3 of th eir le a v e s in fa ll w as above 1 .5 N, . 19 P, and 1. 03 K. Beattie and F o r sh e y (1954) o b se rv e d in Ohio that a C oncord grape p e tio le co m p osition (per cen t dry w eight) of . 77 N, . 14 P, 2 K, . 7 Ca, and . 15 M g w as n e c e s s a r y to produce 3. 5 tons of g ra p es p er a c r e . T h e se v a lu es a r e s im ila r to L a r s e n ’s (1957) standard v a lu e s (per cent dry w eight) in p e tio le s for M ichigan, w hich a re . 8 N, . 24 P, 1. 91 K, 1. 60 Ca, and . 46 Mg. Other v a lu e s m entioned by L a rsen w ere 44 ppm Fe, 434 ppm Mn, 25 ppm B, 35 ppm Cu, and 23 ppm Zn. Coombe and A llan (1955) conducted a n u tri­ tional study of v in ifera type grap es grown in deep w hite sand in A u stra lia and found the follow in g v a lu e s (per cent dry w eight) for le a v e s of v ig o ro u s plants: 2. 55 N, . 52 P2 0 ;y !• 48 K^O, 3. 08 CaO, and . 76 MgO. M agoon et al. (1938), in a sp ectro g ra p h ic a n a ly sis, com pared Con­ cord with the Ontario v a r ie ty and found the follow in g r e s p e c tiv e v a lu e s in p e tio le s: . 61 and . 76% P, 1. 97 and 2. 20% K, . 57 and . 47% Ca, . 28 and . 22% Mg, 190 and 220 ppm F e, 180 and 220 ppm Mn, 17 and 16 ppm B, 41 and 47 ppm Cu, 450 and 410 ppm A l. V idal (1955) drew attention to the fact that in M aroccan v in ife ra vin ey a rd s the nitrogen and ph osphorus content in le a v e s w as h ig h est in 3- and 4 -y e a r -o ld plan tation s, and lo w e st in th o se of over 27 y e a r s old. He a r r iv e d at a com bined value of 4. 62% for young v in ey a rd s when N, P2O5 and K^O content w ere added, and 3. 69% for o ld er on es, c le a r ly ind icating that w ith in c r e a sin g age, nitrogen and phosphorus b ecam e d eficien t. 4 N itrogen: The a s so c ia tio n of a d efin ite amount of nitrogen in the plant w ith v isu a l sym p tom s and w ithout sym p tom s is not too c le a r b eca u se of ra n g es in co m p o sitio n and se a so n of sam plin g. Shaulis and K im ball in New Y ork (1956) su g g ested that a Concord grape p e tio le content o f below 1. 5% N in June a s approaching a d eficien cy , and found a range of 1. 7 to 2.4% N for v igorou s y a rd s. They a ls o rep o rted a sea so n a l d e c r e a s e of nitrogen w ithin the plant, w hich a g reed w ith Lagatu" s (1927) fin din gs. W agner (1924) rep orted 1. 0 to 2. 0% n itrogen in w hole le a v e s and thought that a m ature le a f should contain about 1. 55% N. M aume and Dulac (1948) rep o rted 2. 6% N in le a v e s at the beginning of the sea so n , and 1. 6% N at m atu rity a s norm al for v in ifera type g ra p es in F ran ce. M cG eorge and B reazeale (1955) found a d e c r e a s e from 2. 3% N in A pril to . 96% in le a v e s of T hom pson s e e d le s s in A rizona, in July. Bergm an and Kenworthy (1957) e sta b lish e d the sam e trend in Concord grape p e tio le content from 1. 34% N in June to . 68% N in Septem ber, without appearance of v isu a l N d e ficien cy sym p tom s. H e rsc h le r (1933), w ith pot ex p erim en ts, a s w e ll a s H agler and Scott (1949), w orking with sand cultu re, found le a v e s turning y e llo w ish g reen a fter a few w eek s of growth without n itrogen . Shaulis and K im ball (1956) a s so c ia te d short internode length and stoppage of lin ea r grow th by m id-July w ith nitrogen d e fic ie n c y . W hereas, Coombe and A llan (1955) found a higher 5. n itrogen content in le a v e s of stunted p lan ts (2. 87%) than in v ig o r o u sly g r o w ­ ing on es (2. 55%), K obayashi et a l (1955) found 2. 28 to 2. 75% N in le a v e s of n o n -b ea rin g and 2. 23 to 2. 61% N in b ea rin g p lan ts of the D elaw are v a r iety . P artridge and V eatch (1931), a s w ell a s C ooper and V aile (1939) o b s e r ­ ved m ore vig o ro u s grow th and h igh er y ie ld s w h ere n itrogen f e r t iliz e r s w ere applied. U lrich (1942a) rep orted an in c r e a s e in nitrogen content of p e tio le s by applying one pound of (N H ^ S O ^ p er vin e for th ree y e a r s . P e tio le s of untreated p lan ts show ed 1. 09% N in May and . 47% N in Septem ber, a s c o m ­ p ared to 1. 49 and . 62% N r e s p e c tiv e ly of trea ted p lan ts. L ea v es from the sam e un treated p lo ts had 3. 48 and 2. 21% N, w h e r ea s th o se from trea ted p lo ts had 3. 95 and 2. 49% N. V olk (1938) ca lcu la ted the ratio of root to above-ground p a r ts of p lan ts grow n for two y e a r s in w ater cu ltu re and e sta b lish e d the fo llo w in g r o o t/sh o o t ra tio s: for m inus N 1:1.81; for high N 1:4. 56, and for the check 1:3. 6. The m in us N plan ts had an e x c e lle n t r o o tsto ck w ith ligh t yellow to yellow brown c o lo r and m ore wood than le a v es; the high nitrogen p lan ts, how ever, p r o ­ duced m any m ore le a v e s . P h osp horus: V ery few o b serv a tio n s of phosphorus d e fic ie n c y under fie ld conditions have been rep orted . C ais (1954) found such a fie ld in Italy and o b se rv e d v e ry sh ort growth, sm a ll te r m in a ls, ch lo r o tic le a v e s w ith o c ca sio n a l m argin al d e ssic a tio n and flo w er drop. If, how ever, pollin ation 6. had taken p la ce, the b e r r ie s often d e s sic a te d but sta y ed on the vine, looking lik e "pepper g r a in s ” . T h is condition w as c le a r e d up by the ap p lication of p h osphorus f e r t iliz e r s alone, w h erea s other f e r t iliz e r s w ere o f no influence. A sim ila r field w as o b serv ed by S tellw aag (1955) near M eran, Italy. T his fie ld w as strik in g by the dark g reen appearance of the le a v e s and v e ry short te r m in a l growth. Lagatu and M aume (1927), and P artridge and V eatch (1931) o b serv ed so m e r esp o n se to ph osphorus fe r tiliz e r s , but fe lt the r esp o n se w as due to a b etter balance betw een N, P, and K rather than due to phosphorus alone. C ooper and V a ile (1939), a s w e ll a s Randolph (1944), rep o rted r e sp o n se of phosphorus on growth and y ield of C arm en g ra p es in T ex a s. H e r sc h le r (1933), on the other hand, w as not able to c o r r e c t s e v e r e phosphorus d e fi­ c ie n c y sum ptom s with ph osphorus. having . 22% P content. The sym ptom s o c cu rr e d on le a v e s W agner (1924) fe lt that . 09% P in the le a f w as su f­ fic ie n t inasm uch a s th ere o c cu rr e d a w ide range under fie ld conditions. M aume and D ulac (1948) rep o rted v a lu es in le a v e s v aryin g from . 1% P at the beginning of the se a so n to . 06% P at the end of the sea so n . A rch ibald (1956) rep orted a sea so n a l d e c r e a se from . 32 to .11% P, and Bergman and Kenworthy (1957) found a sea so n a l change from . 27 to . 21% P in p e tio le s . F o r sh e y (1955) o b serv ed that phosphorus is m o re constant in p e tio le s than in le a f blad es throughout the grow ing sea so n . 7. Volk (1938), w orking with w a ter cu ltu re, e sta b lish e d the follow in g r o o t/sh o o t ratios: 1:3. 03 for m inus P trea tm en ts; 1:4. 1 for high P tr e a t­ m ents; and 1 :3 .6 for the check. P o ta ssiu m : Babo and M ack (1910), in th eir book on grape g row in g, d e scr ib e d sym p tom s w hich a r e known today a s being p o ta ssiu m d e fic ie n c y under the nam e of "Blattbraeune", "B raunfleckigkeit”, and " B runissure”. W ilhelm (1950) d e sc r ib e d th ree d ifferen t p otassiu m d e fic ie n c y sta g es; stage 1 (e a s ie s t to c o r r e c t) show ed purpling on the upper su rfa ce (tow ards the light) o f the le a f at the beginning of May, follow ed by browning from the m argin s and in terv ein a l n e c r o s is by June. Stage 2 exhibited purple c o lo rin g v ery ea rly in the sea so n w ith w eakening o f v in e s and uneven r ip e n ­ ing of the b e r r ie s . By the end of July, the b asal le a v e s w e r e n ecro tic, but the tip le a v e s w ere not affected . In stage 3, the flo w e r s died and the v in e s show ed a v e r y poor y ie ld as w ell a s v e r y w eak growth. p ale green in stea d of dark green and b lu e -v io le t. In th is sta g e the le a v e s w ere G ollm ick (1955) fe lt that th ese p otassiu m d e fic ie n c y sym ptom s w e re brought about by the "idle ru n ­ ning" of the a s sim ila tio n apparatus which, due to ph oto-oxyd ative d estru ctio n of chlorophyll, produced n e c r o s is of c e ll s . sym ptom s on C oncord grape le a v e s in Ohio. Beattie (1955) found two d istin ct W hereas one type show ed p u r ­ p lish -b la c k a r e a s betw een the v e in s, w hich developed into a black leaf, the other type exh ib ited only m arginal sco r c h with la te r death of the tis s u e . L a rse n (1955) o b se rv e d the sa m e sym p tom s in M ichigan v in ey a rd s. H agler and Scott (1953) developed s im ila r sym p tom s on M uscadine plan ts in sand cu ltu re after four w eek s of growth. H arding (1957) tr ie d to rep rod uce the above d e scr ib e d d eficien cy sym ptom s in nutrient cultu re on C oncord grape v in e s, and w as able to get only so m e purpling of the le a v e s . U lrich (1942b) rep orted 2. 58% K in May, and . 31% K in Septem ber in p e tio le s from un treated plan ts, w h erea s plan ts trea ted for th ree y e a r s w ith p o ta ssiu m show ed 3. 59 and . 8% K r e s p e c tiv e ly . L eaf b lad es of the sa m e p lan ts show ed a d e c r e a s e from 1. 02 to . 44% K in untreated p lan ts, and from 1. 22 to . 57% K in trea ted plan ts. T his sea so n a l d e c r e a s e of p o t­ a ssiu m w as a ls o rep orted by M cG eorge and B reazeale (1955), Shaulis and K im ball (1956), A rchibald (1956), and Bergman and Kenworthy (1957). L a rsen (1955) a s so c ia te d 1. 0% K in p e tio le s in late July w ith a crop o f below four tons, and a p e tio le content of above 2. 0% K w ith a crop of o v er s ix ton s. A rchibald (1956) a s so c ia te d p e tio le content and crop a s follow s: . 88% K w ith four tons and over; . 47% K with th ree to th ree and o n e -h a lf tons; and . 24% K with below two ton s. Shaulis and Kim ball (1956) found in v ig o r ­ ous vin eyard s a wide range of p otassiu m (. 4 to 2. 0%) in p e tio le s , but su g ­ g e sted that the p lan ts becam e d eficien t if the p e tio le content w as below . 6% K in late A ugust. Bergm an and Kenworthy (1957) found black le a v e s in two v in e ­ yard s during la te A ugust, one had a p e tio le content of . 44% and the other . 97% 9. K obayashi et al. (1955) rep o rted that w ith in c r e a s in g p o ta ssiu m in le a v e s , the ratio of fru it to le a f is a lso in crea sed ; how ever, beyond a c er ta in le v e l of p o ta ssiu m , fru it yield and amount of fo lia g e d e c r e a se d again. T hey found an a v era g e of 2. 1% K in le a v e s of b earin g D elaw are v in es a s com pared to 1 .5 to 1. 73% K in le a v e s of n on -b ea rin g p la n ts. Stunted G renache g ra p es in A u stralia, a cco rd in g to Coom be and A llan (1955), had . 68% le a v e s and v ig o ro u s p lan ts 1. 48% K^O. in the They a lso o b se rv e d le a v e s w ith m a r ­ ginal sco r c h in g and fe lt that . 3% K^O w as a fa ir ly low le v e l. Boynton (1945) found s e v e r e p otassiu m d eficien cy sym ptom s in Septem ber on Portland and D elaw are le a v e s having .25% K content, but only slig h t sym ptom s on the on es having .61% K at the sam e tim e. C alcium : No r ep o rts of calcium d e ficien cy sym ptom s in v in ey a rd s have been found, and the sym ptom s d escrib ed w ere a ll produced in nutrient solu tion cu ltu re s. H agler and Scott (1953) produced calcium d eficien cy sy m p ­ to m s in M uscadine grape v in e s after eight w eek s of grow th by u sin g a calcium d eficien t solu tion . Young le a v e s exhibited in terv ein a l and m a rg in a l c h lo r o sis follow ed by pinhead sp o ts near the m argin of the leaf, d ie -b a ck of the tip and drop -off. S tellw aag and Knickmann (1955) d e scr ib e d sim ila r sym p tom s and m entioned a "beaklike" cu rlin g of the young le a v e s . S arosi (1956) an alyzed le a v e s and ro o ts of ch lo r o tic v in e s in Hungary, w hich r ea c te d favorably to calcium a ceta te trea tm en ts. He found in abnorm al 10 . le a v e s (s m a lle r and thinner than norm al) m o re iron, p o ta ssiu m , and sodium but le s s calciu m than in healthy le a v e s . In oth er w ord s, m onovalent ca tio n s in c r e a s e d at the e x p en se of divalent. On the other hand, c ien cy . high le v e ls of calcium m ay induce p o ta ssiu m d e fi­ H arding (1957) induced c h lo r o sis on C oncord grape le a v e s in sand cu ltu re by adding high le v e ls of calciu m when p o ta ssiu m w as d eleted and p reven ted c h lo r o sis when 4 m ili-e q u iv a le n ts of p o ta ssiu m w ere added. Boynton (1945) o b serv ed 2. 71% Ca in Portland, and 1. 99% Ca in D elaw are le a v e s when p otassiu m w as deficien t. In crea sin g le v e ls of calcium w ith the advance of the se a so n have been rep o rted by W ebster and C r o ss (1942). C oncord le a v e s in c r e a se d from . 45% Ca in m id-June to 1. 05%, and W orden le a v e s from . 48% to . 85%. Bergm an and Kenworthy (1957) found a sea so n a l in c r e a s e of calciu m in Con­ cord grape p e tio le s from 1. 0% in June to 1. 6% in Septem ber. M agn esiu m : Scott and Scott (1952) drew the attention to d iffe re n c e s betw een v a r ie tie s in the developm ent o f m agnesium d e fic ie n c y sym p tom s and in th eir r e sp o n se to spray or so il application trea tm en ts. T hey o b se rv e d that when no r e sp o n se to m agn esium application occu rred , no in c r e a s e in le a f m a g ­ nesium took p lace, and a s so c ia te d c h lo r o sis with le v e ls below . 18% Mg in le a v e s . B eyers (1955) d e scr ib e d d e fic ie n c y sym ptom s as a ch lo ro tic pattern, extendin g betw een m ain v ein s, w ell defined w ith broad z o n e s of p a le g reen 11. a lo n g the m argin of the le a f. The c h lo ro tic p ale g reen le a f tis s u e turned y ellow in Waltham C r o ss (white grape), and red in Berlinka (blue grape). O lder le a v e s , at the b ase of the p lan ts, w ere fir s t a ffected . On Jam es and Scuppernong (V itis rotun difolia), Lot (1948) o b se rv e d in A ugust that basal le a f tis s u e m ost rem ote from v e in s and m argin turned p a le g r e e n /y e llo w w ith the p rim a ry v e in s stayin g green . He a s so c ia te d s e v e r e sym ptom s on Jam es with . 09% M g and on Scuppernong w ith . 06% Mg. crib ed two d istin ct kinds of le a f sym p tom s. GMrtel (1957) d e s ­ One o ccu rred in sp rin g when the ligh t g reen in terv ein a l c h lo r o sis turned to red d ish brown on P ortu guese g ra p es (red grape), follow ed by dropping of the lea f. only in fa ll with yellow in tervein al c h lo r o sis. grow th interrupted. The other o ccu rred In n eith er c a se w as lin ea r G erb er and Bussm ann (1955) in Sw itzerland found that p rem a tu re fall c o lo rin g of le a v e s w as co n tro lled by se v e r a l ap p lication s o f 2. 0% MgO or MgSO^ sp rays w here no r esp o n se had been found to Hoagland tr a c e elem en t solution or MgSO^ so il app lication. sa tisfa c to r y in th is c a s e than MgSO 4 MgO sp ray w a s m ore due to its r e s is ta n c e to rain w ashing. L a rsen et aL (1957) rep orted no sig n ifica n t in c r e a se of m agn esium in p e tio le s of C oncord grap es tr e a ted for fiv e y e a r s by MgSO^ so il app lication. H agler and Scott (1949) produced d e ficien cy sym p tom s in sand cu ltu re on M uscadine g r a p e s. Intervein al c h lo r o sis appeared a fter four w eek s on o ld er le a v e s on the m id -s e c tio n of the vine. T h ese le a v e s dropped off la te r . 12. S tellw aag (1954) o b se r v e d that m agn esium d e fic ie n c y sym p tom s could be found on p lan ts w ith or without m agnesium p r e se n t. T h is phenom ena m ore or l e s s depended upon the com p ositio n of nutrient solution, e. g. e x c e s s iv e am ounts of N and K w ould ren d er a ssim ila tio n o f m agn esium d ifficu lt. K enworthy (1957) found m agnesium d e fic ie n c y sym p tom s on Concord le a v e s w h ere the p e tio le content w as . 09% Mg. P e tio le s of healthy le a v e s w ithin the sam e vin eyard had . 21% M g content. G&rtel (1955) ca lcu la ted a d efin ite ratio betw een and Mg in R ie slin g grape le a v e s . H ealthy le a v e s had a content of 3. 91% K^O and . 08% Mg, o r a tratio of 48. 87. w eak sym p tom s contained 4. 28% He su g g ested that the V in es with and . 004% Mg, or a ratio of 600. 57. ratio w ith p o ta ssiu m d e ficien cy w as below 1, w h e r ea s w ith m agn esium d e fic ie n c y the ratio w as 30 - 100. B eyers (1955) o b se rv e d in South A frica that v in es trea ted with (NH^^SO^ had an in c r e a se d m agn esiu m and red uced p otassiu m uptake, w h erea s in p o ta ssiu m trea ted p lo ts, d iso r d e r s due to p otassiu m induced m agn esium d e ficien cy appeared. L a rsen (1957), how ever, found no tr a c e s of m agn esium d e ficien cy sym ptom s on Concord v in e s w here 1, 000 pounds o f p er a c r e w ere applied 3 y e a r s in su c c e s sio n . Iron: Iron c h lo r o s is in New M exico w a s rep orted on g ra p es by C raw ford (1939). Wann (1941) noted that the high lim e content o f the Utah s o il w as in ter fe r in g w ith the norm al u tiliza tio n of iron. The c h lo r o s is v a ried 13. from y ea r to year, but the dam age w as m o st s e v e r e during m id -su m m e r p e r io d s of high ligh t in ten sity and high te m p er a tu r e s. S a m ish (1954) ob ­ s e r v e d in I sr a e l that lim e-in d u ce d c h lo r o s is ca u sed la te foliation , red uced shoot and length growth, poor germ in ation of p ollen , and th ereb y d eveloped "shot" b e r r ie s (m illeran d age) on M adeleine O berlin g r a p e s. In th is c a se , le a f ch lorop h yll content, d egree of p o llen germ ination , and total shoot grow th w e r e d ir e c tly rela ted to the amount of a ctiv e and total iron w ithin the plant. M anganese: M aum e and D ulac (1952) rep o rted m ore m an ganese in young than in old le a v e s . The g r e a te st variation , how ever, w as found to be due to location and s o il. The sam e v a r ie ty v a ried from 2 to 14 m g /1 0 0 g ra m s dry m atter of le a v e s in one location to 1. 5 to 200 m g in another. Through a n a ly sis, G hrtel (1956) esta b lish e d that le a v e s and p e tio le s w ere high est, b erry skin and se e d s low est, and wood in term ed ia te in m an gan ese content. He a lso found that the m an ganese content w as s p e c ific to s o il and not to v a r iety . Beattie and F o r sh e y (1954) o b se rv e d that m an gan ese d e fi­ c ie n c y can be exp ected to o ccu r when the p e tio le content of C oncord gra p es in July fa lls below 30 ppm . Bergm an and Kenworthy (1957) rep o rted a 5 -fo ld in c r e a s e of m an gan ese during the grow ing se a so n in fie ld s having both high (from 540 ppm to 2, 700 ppm) and low le v e ls (from 68 ppm to 320 ppm ). L bhm is (1951) in c r e a se d the m an gan ese content in grape le a v e s grown from cuttings from 620 ppm to 865 ppm when the m an gan ese content of the 14. solu tion w as changed from 12. 5 m g M n /lite r to 50 m g M n /lite r . B eyers (1955) o b se r v e d an accentuation of m an gan ese uptake through am m onium su lfate s o il app lication. Am m onium su lfa te applied at a rate of 800 pounds p er a c r e in c r e a se d nitrogen, m agn esium and m an gan ese in le a v e s from 1. 62% N, . 17% Mg, and 366 ppm Mn to 1. 81% N, .19% Mg, and 646 ppm Mn, w h ile p o ta ssiu m w as d e c r e a se d from . 92 to .83%. Beattie (1955) rep orted both m an ganese and p o ta ssiu m d e fic ie n c y sym p tom s on le a v e s w ithin the sam e Concord grape vineyard, but seldom found typ ical v isu a l sym p tom s of both. M anganese d eficien cy appeared fir s t during June-July on the b asal le a v e s of current se a so n shoot growth, and w as in d icated by the a b sen ce of g reen co lo rin g m a tter in a r e a s betw een v ein s w hich turned into light yellow green with dark g reen vein ation . Kenworthy (1957) found sim ila r sym ptom s in a M ichigan C oncord grape vin eyard . c a tio n s of KC1 and K^SO^ did not c o r r e c t p o ta ssiu m d eficien cy . A p p li­ W hile p e tio le s of untreated v in es show ed .41% K and 11 ppm Mn, v in e s trea ted w ith 300 pounds KC1 show ed . 47% K and 18 ppm Mn, and v in e s trea ted w ith 360 pounds had a content of . 34% K and 14 ppm Mn. d u P le s s is (1948) su g g ested that m ottlin g of grape le a v e s in South A frica m ight be due to e x c e s s m an gan ese. ses. H ow ever, he did not rep ort any a n a ly ­ 15. Boron: A ccord in g to Branas (1954), a s e a r ly a s 1894, L eC ocq d e scr ib e d a d is e a s e c a lle d "la m arom ba" on g ra p es in Portugal, which w as la te r id en tified a s boron d e fic ie n c y by D ias (1953). Ono et al. (1956) rep orted from Japan that 20 to 40 pounds of b o ric a cid p er a cre, or . 3 to . 5% sp ra y s im p roved growth, fru it set, bunch w eight and y ie ld on g ra p es having "E bi” d is e a s e . Scott (1941) found great d iffe r e n c e s in v a r ieta l r esp o n se to boron. Ontario, C arm en and D elaw are v a r ie tie s showed e a r ly sea so n dw arfing and ex trem e la te r a l bud grow th with no fruit production. Concord, Worden and N iagara w ere only m o d era tely affected and exhibited ch lo ro tic pattern on le a v e s, little stunting and low fruit production. and Portland show ed no apparent d eficien cy . G olden M uscat, F redonia Catawba le a v e s with d e fic ie n c y sym p tom s contained 6 ppm B, as com pared to 18 ppm B in healthy le a v e s . A s im ila r com p arison show ed 6 ppm and 23 ppm for le a v e s of D elaw are, and 24 ppm and 54 ppm for Ontario le a v e s. Scott (1944) rep orted that C oncord v in e s w e r e r e la tiv e ly low in boron, if only 7. 4 ppm B could be found, but that the d e fi­ c ie n c y range w as betw een 10 and 20 ppm a s com pared to the norm al content range of 15 to 30 ppm. D eficien t le a v e s exhibited y ello w in g betw een the v e in s and at the m argin s; no n e c r o s is or p rem a tu re d efoliation o ccu rred , but the le a f su rfa ce w as abnorm ally rough w ith r a ise d a r e a s betw een v e in s. in tern od es and tw isted flow er c lu s te r s w ith little fruit s e t w e re noted. Short 16. W ilhelm (1952), Branas and Bernon (1954, 1956) and GMrtel (1954) d e scr ib e d the sam e sym p tom s. D epending on the s e v e r ity of boron d e fic ie n c y and on the v a riety , the follow in g sym p tom s have been reported: tip d ie-b ack , root d ie-b ack , c u rlin g of le a v e s, m is s in g of in tern od es (double diaphragm ) and co m p le te ly w hite le a v e s with brow nish sp ots w hich can be seen if held a g a in st the light. G&rtel (1956) found that R ie slin g le a v e s w ere d eficien t at 14 ppm B and had n e c r o s is at 10 ppm B with the tra n sitio n zone being betw een 13 and 15 ppm . In sand cultu re, M eier (1937), Eaton (1944), Scott and Schrader (1947) and GMrtel (1956) produced e s s e n tia lly the sam e sym ptom s a s found in v in e ­ y a rd s. Eaton, by u sin g . 04 ppm B in solution, found 38 ppm B in M alaga le a v e s and 86 ppm in Sultanina le a v e s, w hich w ere fed with the sam e solution. Scott and Schrader o b serv ed w a te r-so a k ed a r e a s in the a p ica l te n d rils. They found 29 to 41 ppm B in ste m s, and 57 to 146 ppm B in le a v e s of the sam e p lan ts with boron in solution, but only 20 to 25 ppm B in le a v e s w here no boron w as added to the solution . G&rtel (1956) found 8 ppm B in R ie slin g le a v e s when grown without boron, as com pared to 38 ppm B when 1 m g boron p er lite r w as added. A skew (1944) rep orted a com bined c a se of p otassiu m and boron d e fi­ c ie n c y from New Z ealand. The fir s t sym ptom found on the le a v e s w as a lig h tly ch lo r o tic m ottlin g betw een the m ain v e in s w hich la te r changed to a red d ish - 17. brown c o lo r . At that tim e the m a rg in s of the le a f becam e sco r c h e d and cu rled upw ards and inw ards. The b erry settin g w as v e ry ir r e g u la r and brown t is s u e appeared in the fle s h o f the b e r r ie s . The boron content show ed a se a so n a l fluctuation in the le a v e s , as w ell a s in the b e r r ie s . v a lu e s w ere 10. 3 ppm B and .32% T he lo w e st in le a v e s , and 4. 4 ppm B and . 65% K^O in b e r r ie s . W ilhelm (1952) and G&rtel (1954) d e scr ib e d boron to x icity sym p tom s. The le a v e s in th e se c a s e s w e re cupped up or down with r o lle d -in m argin s, the dentation see m e d to be ligh ter brown than the le a f and the m a rg in s w ere torn due to the ten sion e x er te d by uneven growth. L ea v es w hich w ere n o r ­ m a lly fiv e -lo b e d developed only into th ree lo b es. L eaf a n a ly sis by G&rtel show ed the follow ing resu lts: healthy le a v e s 28. 2 ppm B, w eakly dam aged 310 to 640 ppm B, and stro n g ly dam aged 620 to 852 ppm B. Copper: Rough and unhealthy looking bark, short ca n es, s e v e r e ly r e s tr ic te d internodal growth, sm a ll, pale, slig h tly ch lo ro tic le a v e s, poor ro o ts, adventitious bud developm ent near the so il su rfa ce, w ere sym ptom s of copper d e fic ie n c y d e scr ib e d by T eakle et a l. (1943). Sultana le a v e s contained, Copper d eficien t in th is c a se , 2. 1 to 5. 4 ppm Cu, a s com pared to 7. 5 to 9. 9 ppm Cu in healthy le a v e s, taken in D ecem b er. Z inc: "L ittle L eaf'1, "R eisigkrankheit", "court-noue", or " A rrici- 18. am ento" are n am es in v a r io u s langu ages for zin c d e fic ie n c y (Dufrenoy, 1935). B ioletti and Bonnet (1917) d e sc r ib e d the follow in g zin c d eficien cy sym ptom s: the a ffected le a v e s show ed tendency to c u rl up and bands or p a tch es of lig h t-c o lo r e d parenchym a tis s u e could be found. F u rth erm o re, a gum m y se c r e tio n in the conducting tis s u e , fla tten ca n e s w ith a v era g e internode length 50% sh o r te r than norm al, dark sp ots on roots, and non­ se ttin g of fruit w ere o b serv ed . E ss e n tia lly the sam e d e scr ip tio n s w ere given by Chandler_£tjrL (1933, 1934), Coombe (1949), C lore (1951), andCook (1957). Coombe, C lore, and Cook m entioned dw arfing of le a v e s at shoot tip s, in terv ein a l y e llo w ish to g r e y is h -g r e e n co lo r of le a v e s, and short shoot grow th. C lore (1951) com pared the le a f appearance of a zin c d eficien t plant with one injured by 2, 4 -D . Cook a s so c ia te d v isu a l d eficien cy sym p tom s on v in ifera type g ra p es with 15 ppm Zn in the leaf. M olybdenum : Basal le a v e s show ing m arginal n e c r o s is developing c o n c en tr ica lly from the le a f m argin and term in a l le a v e s show ing c h lo r o sis w e r e rep orted a s m olybdenum d eficien cy by Bergman and Kenworthy (1956). P e tio le s of p lan ts grow n in nutrient culture, w hich show ed th ese sym ptom s contained . 2 ppm Mo, a s com p ared to 3. 4 ppm Mo in p lan ts trea ted with m olybdenum . The n e c r o s is on b asal le a v e s w a s d e scr ib e d to be the e x ­ p r e s s io n of nitrate to x ic ity inasm u ch a s m olybdenum is e s s e n tia l for the a s s im ila tio n of n itra tes. 19 . C hlorine: W hile th ere has been no d irect b en eficia l e ffe ct on ch lo rin e rep orted , T hom as (1934) rep o rted the fo llo w in g to x ic ity sym ptom s: p rem atu re opening of the buds, sm a ll le a v e s and fru its, d efoliation and in e x tr em e c a s e s faulty fruit set, w h ile m a rg in a l and in ter v e in a l n e c r o s is w e re sym ptom s for s e v e r e to x ic ity . R avikovitch and Bichner (1937) found brown sp ots a ll o v er the le a f blades and y ellow tip le a v e s in addition to the ab ove-m en tion ed sym p tom s. Under P a lestin e con d ition s d e scr ib e d by the a fo re-m en tio n ed , the NaCl c o n ­ tent v a ried from . 04 to 3. 35%. L ea v e s of d eterio ra ted C h a sse la s had the h ig h est NaCl content, w h ereas healthy M uscat Hamburg had . 15%, w h ile n e a r ly dead on es show ed 1. 5% NaCl. Woodham (1956) felt that p e tio le s w ere b etter for d eterm ination of the ch lo rid e status than le a f b la d es. In undrained loam s o ils of A u stra lia , when th ere w ere slig h t to s e v e r e le a f burns p r e se n t in D ecem b er, the ch lo rid e content w as betw een . 8 and 1. 9%, and in s e v e r e c a s e s v a lu es of 2. 5% Cl and m o re w ere found in January. On healthy s ite s , no sym p tom s could be found in the p r e se n c e of 1. 7 to 2. 0% Cl. T h ere w as a lw ays som e ch lo rid e p r e se n t w here v in e s w ere affected, but without any v is ib le sym p tom s. D ille y (1957a) rep o rted that in c r e a sin g le v e ls o f ch lo rid e and sulfate in nutrient cu ltu re d e p r e sse d grow th in proportion to the ch lo rid e le v e l. The ch lorid e le v e l w a s in each c a se d ir e c tly proportion al to the supply in the solu tion . In crea sin g le v e ls of ch lorid e in c r e a se d nitrogen, copper and zin c, but d e c r e a se d m agn esium in the p e tio le. 20. Sulfur: D ille y (1957b) and H arding (1957) found sulfu r d e ficien cy sy m p tom s on C oncord le a v e s in nutrient cu ltu re w ork by d eletin g the sulfate ion from the nutrient solution . At fir s t the term in a l le a v e s turned yellow and brow nish sp ots appeared on the su r fa c e. turned into pu rp lish c o lo r in both c a s e s . T h ese brow nish sp ots la te r D ille y (1957a) used 192 ppm SO^ in the solution and found . 27% S in the p e tio le, when the SO^ concen tration w as doubled, he found . 37% S and . 75% S when 624 ppm SO^ w ere added. C hloride v s. Sulfate: V inet (1935) concluded, a fter a lo n g -term study of KC1 v e r s u s K^SO^ fe r tiliz e r , that the la tter w as the better so u rce for p o ta ssiu m . High ch lorid e d e c r e a se d the e ffe c tiv e n e s s of p otassiu m u tilization , w hile su lfate did not. Shaulis (1954) a lso recom m end ed p otassiu m su lfate in favor of m u riate of potash. L a rsen et al_. (1957) rep orted on a fo u r -y e a r field exp erim en t with both f e r tiliz e r s that fie ld s w ith s e v e r e p o ta s ­ sium d eficien cy r e c o v e r e d fa s te r in the fir s t y ear w ith K SO but in the long 2 cr run no sign ifican t d ifferen ce in y ield (25 and 26 pounds o f g ra p es p er vine) and p e tio le com p osition (2. 14 and 2. 08% K) w ere found. EXPERIMENTAL PROCEDURE The investigations to study the resp onse of Concord grapes (V itis labrusca) to various le v e ls of esse n tia l nutrient elem en ts w ere conducted in the greenhouse in three separate experim ents from January to May, 1956 and 1957. Experim ent I w as a study of the effects of high and low le v e ls of eleven nutrient elem en ts on the p etiole com position and growth of grape p lan ts. Experim ent II w as a study of the influence of in creasin g le v e ls of calcium and m agnesium with constant le v e ls of potassium in the solutions upon p etio le com position and growth of grape plants. The m anganese - potassium interrelationship was studied in Experim ent III. Experim ents II and III w ere conducted sim ultaneously. 22. EXPERIMENT I E FF E C T S OF VARIOUS LEVELS OF 11 NUTRIENT ELEM ENTS ON GROWTH, PETIOLE AND STEM COMPOSITION In o rd er to find the e ffe ct of nitrogen, ph osphorus, p o ta ssiu m , c a l­ cium , m agn esiu m , iron, m an ganese, boron, copper, zinc, and m olybdenum on the grow th of Concord gra p es, a random ized block exp erim en t u sin g nutrient so lu tio n s w as e sta b lish e d . The exp erim en t contained 25 trea tm en ts w ith th ree r e p lic a tio n s of each treatm ent. The nutrient solu tion s for the 25 trea tm en ts w ere obtained by u sin g Hoagland and Arnon (1950) solution as check, and adjusting the solution to p rovid e low and high le v e ls of 11 nutrient e lem en ts. F or low le v e ls the s p e c ific e lem en t w as c o m p letely deleted from the solution for a ll nutrients e x cep t nitrogen. Sm all qu an tities of nitrogen w ere added after four w eek s in ord er to keep the p lan ts a liv e . F o r high le v e ls , the sp e c ific elem en t w as in c r e a s e d in am ounts equal to five tim e s th eir content in Hoagland solution. High le v e ls of p otassiu m and calciu m w ere studied with two s o lu tio n s -one u sin g sulfate, and the oth er u sin g ch lo rid e a s the anion. Stock solu tion s w e r e p rep ared by d isso lv in g C. P. grade c h e m ic a ls in d is tille d w ater, and nutrient solu tio n s w ere m ade up as needed by adding the n e c e s s a r y stock so lu tion s to ca rb o y s containing 18 lit e r s o f d istille d w ater (Appendix T a b les 1, 2, 3 and 4). 23. O n e -y e a r -o ld rooted C oncord grape cu ttin gs w ere dug from a n u rsery bed n ear Paw Paw, M ichigan, on N ovem ber 12, 1955 and p la ced in cold s t o r ­ age at 40° F until January 28, 1956, w hich provided su fficien t cold to break dorm ancy, a cco rd in g to M agoon and D ix (1943). On January 28, 75 p lan ts w ere s e le c te d for the ex p erim en t. p lan ts w ere u n iform ly pruned to two buds and w eighed. The Due to the v a r ia ­ b ility in w eight, it w as n e c e s s a r y to m ake th ree different w eight groups, having a v era g e w eigh ts of 28, 33 and 41 g r a m s. The 25 plants in each w eight group fe ll w ithin one standard deviation, each group com posed a rep lica tio n . A dditional p lan ts r e p r e se n ta tiv e of each group w ere s e le c te d and u sed to e sta b lish the o rig in a l dry w eight in order to ca lcu la te la ter the total dry w eight accu m ulation. The rooted cuttings w ere planted in 1 2 -inch c la y pots, w hich had been painted w ith asphaltum paint to prevent contact of ro o ts with the pot su rfa ce, and red uce evaporation through the s id e s of the p ots. Watch g la s s e s , 4 in ch es in d iam eter, w ere p laced in the bottom o f the pots to in su re proper drainage. C oarse grade quartz sand w as u sed a s growth m edium . One green h ou se bench w as u sed p er rep lica tio n . a ssig n e d at random w ithin each rep lica tio n . T rea tm en ts w ere The plants w ere h ea v ily w atered with d is tille d w ater during the fir s t w eek s and feeding began in the third w eek. Until the m iddle of M arch, the p lan ts w ere fed th ree tim e s each w eek, one quart of nutrient solution per pot. ev ery other day. T hereafter they w ere fed for one month From April 1 until term ination of the experim ent, w ater­ ing ev ery day was n ec essa r y . The plants w ere given nutrient solution two days in su c cessio n , and d istilled w ater the third day. When the experim ent w as term inated, the plants w ere harvested by rep lication s on May 18, 19 and 20. Total linear growth and dry weight a c ­ cum ulation for p etio les, lea f blades, stem s and roots w ere estab lish ed for each plant. Any plant part below the point of pruning at the beginning of the experim ent w as designated as roots, and the parts above this point, e x ­ cluding p e tio le s and leaf blades, as stem s. The fibrous root p a rticles were obtained by p a ssin g the roots through a fine siev e (U. S. 45, 350 m icrons opening) after drying. P etio les and stem s from each plant w ere analyzed in the laboratories of the Department of A gricultural C hem istry. Nitrogen was determ ined by the standard Kjeldahl method, and potassium by flam e photom eter. Phos­ p h o r u s/c a lc iu m , m agnesium , iron, m anganese, boron, copper, and zinc w ere determ ined spectrographically. fied method of Samson (1953). Chloride was determ ined by a m odi­ 25. RESULTS DEFICIENCY AND TOXICITY SYMPTOMS OF STEMS AND LEAVES Under norm al conditions a plant seld om show s v isu a l d e fic ie n c y or to x i­ c ity sym p tom s on le a v e s , excep t under ex trem e s t r e s s for one or m o re e le m e n ts. In th is exp erim en t, d e fic ie n c y sym ptom s on le a v e s w ere o b se rv e d for the low le v e l of each of the 11 e le m e n ts. On the oth er hand, only four of the 13 high le v e l trea tm en ts exh ib ited le a f sym p tom s. T h ese sym ptom s m ight have been due to to x ic ity of the individual elem en t, or w ere c h a r a c te r istic of d eficien cy sym p tom s of other e le m e n ts, induced by the high le v e l of the elem en t being app lied in e x c e s s . G eneral O b serv a tio n s: A few of the plants, h e a v ie st in in itia l w eight, produced flo w e r s sh o rtly after in itiation o f growth. T h e se flo w e r s w ere r e ­ m oved in ord er to p reven t any drain of nutrients a sso c ia te d w ith fruit fo r m a ­ tion. The plan ts of the lig h te st w eight group began to grow m o re rapidly than p lan ts of the oth er two groups. H ow ever, a fter fiv e w eek s a ll plan ts w ere r e la ­ tiv e ly ev en in growth, and at the term in ation of the ex p erim en t the plan ts of the h e a v ie st w eight group had m ade m o st lin ea r growth, if not too s e v e r e ly a ffected by the v a rio u s tr e a tm e n ts. V isu al d e fic ie n c y or to x ic ity sym p tom s on le a v e s appeared v ery slow ly, ex cep t for the low n itrogen p lan ts on w hich s e v e r e sym ptom s w e re p r e se n t 26. a fter 4 w eek s of grow th. The oth er trea tm en ts produced le a f sym p tom s in the fo llo w in g ch ron ological order: 5 N and 5 P a fter 6 w eek s; - K and 5 K (SO^) a fter 9 w eek s; 5 K (Cl) and - F e after 10 w eek s; follow ed by - Mg, - Mn, - B, and - Cu one w eek la te r . - P, - Ca and - Zn had v isu a l sym p tom s a fter 12 w eek s of growth, and - Mo a fter 14 w eek s. A ll oth er trea tm en ts did not show v isu a l le a f sym p tom s, but lin ear grow th and dry w eight accum ulation w ere in so m e c a s e s v e r y s e v e r e ly affected . N itrogen: The plan ts supplied w ith nutrient solution d eficien t in n itr o ­ gen show ed a v is ib le reduction in rate of lin ea r grow th after only 3 w eek s. L e a v e s produced during th is tim e showed a healthy g reen co lo r, but began to put on a ligh t g reen c a st w hich sh o rtly turned o liv e and fin ally y ello w ish g reen . At th is point, term in a l grow th stopped co m p letely . Dark brown p in ­ head lik e sp ots app eared on the upper su rfa ce o f the basal le a v e s (F igure 1, top). T h e se sp ots extended through the le a f and w ere v is ib le on the low er e p id e r m is. At fir s t it w as fe lt that th ese spots m ight be due to in se c t injury o r pathogens. Thorough exam ination by plant p ath ologist and en tom ologist, how ever, ruled out e ith e r of th ese p r o b a b ilitie s. m in us nitrogen p lan ts exh ib ited th is sym ptom . On the other hand, only the At th is tim e 42 ppm of nitrogen w as b ein g added to the nutrient solution in o rd er to prevent co m p lete sta r v a ­ tion. The brown sp ots d isap p eared w ithin a short tim e and the le a f co lo r r e ­ turned to a light g reen . T erm in al grow th began anew and new le a v e s, not F ig u r e 1. Top G rape le a f from the b a s e o f a n itr o g e n d e fic ie n t p lan t, a fte r th r e e w e e k s o f grow th . T he p in -h e a d lik e d ark brow n sp o ts w e r e o b s e r v e d on the a d a x ia l and a b a x ia l s u r fa c e s o f the le a v e s . Bottom G rape p la n t su p p lie d w ith h ig h le v e l s (1050 ppm ) o f n itr o g e n in th e n u trien t so lu tio n . T he plant g r ew p r o fu s e ly and p ro d u ced la r g e , v e r y d ark g r e e n le a v e s . T he te r m in a ls tu rn ed c h lo r o tic a fte r 10 w e e k s o f grow th. 27. 28. quite a s la r g e a s th ose of the ch eck plants, developed. le a v e s dropped off la te r . Som e of the basal M ost of the le a v e s on the lo w er o n e-th ird of the sh o o ts w e re lik e heavy paper, v e ry stiff in tex tu re. fo rm ed during the rem ain in g grow ing sea so n . No la te r a l shoots w ere Final ch em ica l a n a ly sis of p e tio le s show ed . 51% nitrogen, com pared to 1. 06% N in p e tio le s of the check p lan ts. Plants supplied w ith high le v e ls of nitrogen grew p r o fu se ly and p r o ­ duced la r g e, v e ry dark g reen le a v e s . A fter 10 w eek s, young term in al le a v e s app eared ch lo r o tic (F igu re 1, bottom ), w ith each new le a f from then on hav­ ing the sam e ap p earan ce. Shortly b efore term in ation of the exp erim en t, the youn gest le a v e s w e re v e r y wavy in addition to being ch lo ro tic. A sym ptom s im ila r to the one d e scr ib e d appeared at the sam e tim e on p otassiu m d eficient p lan ts. P etio le a n a ly sis show ed 5. 19% nitrogen, and 1. 57% p o ta ssiu m , w hich w as the lo w est p o ta ssiu m content of any treatm en t ex cep t for the low p o ta ssiu m treatm en t. H ow ever, the o c cu rr e n c e of p otassiu m d eficien cy sym p tom s on term in a l le a v e s see m e d q u estion able. The p o s s ib ility of zin c d e fic ie n c y e x iste d and w ill be d is c u s se d in connection with p o ta ssiu m . P h osp horus: Plants grown without phosphorus show ed no v isu a l s y m ­ ptom s on the le a v e s fo r e lev e n w eek s. The lin ea r growth, how ever, w as rath er slow and r e s tr ic te d , and c e a s e d co m p letely in the late stage of the ex p erim en t. The le a v e s, in g en era l, w ere dark green in co lo r and v ery 29. h eavy or le a th e r y in tex tu re. A ctually, the fir s t v isu a l sym ptom on the le a f w a s the red c o lo ra tio n of v e in s on he abaxial sid e of the b asal le a v e s (F ig u re 2 , bottom left), w hich w as follow ed by the d isap p earan ce of the g reen pigm ent from the le a f su rfa ce, beginning at the m argin and p r o g r e s s in g cen trip eta lly , a s shown in F ig u re 2 top and bottom right). sta y e d on the plant and did not drop off. The a ffected le a v e s, how ever, L ater p e tio le a n a ly sis show ed . 10% p h osp horus content in p e tio le s of th ese plan ts, as com pared to . 37% in p e tio le s of the c h eck s. The p lan ts supplied w ith high le v e ls of phosphorus developed norm ally in e v e r y r e sp e c t, and v e ry little d ifferen ce could be o b serv ed betw een th ese p lan ts and the check p lan ts. A fter 6 w eeks, how ever, term in a l le a v e s on la te r a l sh oots w ere slig h tly ch lo r o tic . T his sym ptom never developed into a s p e c ific pattern and a d ia g n o sis based on it would not have been r e lia b le . P etio le a n a ly sis did not r ev e a l, for certain , the ca u se of the c h lo r o sis. Sin ce 1. 41% ph osphorus and . 64% calciu m w ere found in the p e tio le, a sligh t c a se of calciu m d e fic ie n c y could be su sp ected . P otassiu m : A fter 9 w eek s of slow growth, the b asal le a v e s on one plant grown without p o ta ssiu m began to show slig h t yellow in terv ein a l c h lo r o sis that extended to the le a f m argin. n e c r o tic . T he m argin o f th ese le a v e s la ter turned The le a v e s on the oth er two p lan ts, how ever, did not show th is sym ptom but a fter 11 w eek s had so m e p u rp lish b lotch es (F igu re 3, bottom F ig u r e 2. Top B asal p o r tio n o f a g r a p e p la n t su p ­ p lie d w ith p h o sp h o r u s d e fic ie n t nutrient so lu tio n a s o b s e r v e d a ft e r 11 w e ek s of grow th. Bottom le ft A b a x ia l s id e o f a b a s a l le a f sh ow in g red c o lo r a tio n o f v e in s , in d ic a tiv e of p h o sp h o ru s d e fic ie n c y . Bottom righ t A d a x ia l s id e o f the s a m e b a s a l le a f. 31 . right) on the adaxial surface of the basal lea v es. Tip lea v es, in both c a se s, began to exhibit yellow brownish interveinal ch lo ro sis after 11 weeks, with v ery wavy m argins (Figure 3, top, and bottom left). nearly at a standstill. Stem elongation was All plants had very short internodes and the p etioles w ere strikingly short, as found in vineyards having sev ere potassium defi­ ciency. Petiole an a ly sis showed a very low . 12%, potassium content, which com bined with 25 ppm zinc, w as the low est content for either elem ent in any treatm ent. The ch lo ro sis of the term inal leaves could be suspected to be an ex p ressio n of zinc deficiency. Two treatm ents receiv ed high le v e ls of potassium , one contained potassium sulfate and the other contained potassium chloride in the solution. Both treatm ents produced the sam e visual leaf sym ptom s. After 9 weeks of growth, the potassium sulfate treatm ent began to show brown irregular blotches in the interveinal field s of the basal lea v es (Figure 4, bottom left). At fir st, because of very high sulfate content of the nutrient solution (1342 ppm SO^), sulfate toxicity was expected, but then one week later the sam e sym ptom s appeared on the potassium chloride treatm ents, except the basal lea v es w ere not fir st affected but rather those of the fourth and fifth in ternodes (Figure 4, top right). The blotches enlarged quite rapidly, began to join each other, and p ro g ressed centrifugally. The veins of th ese leaves w ere green at all tim es and a green m argin was always p resen t (Figure 4, F ig u r e 3. Top G rap e p lan t su p p lie d w ith p o ta s s iu m d e fic ie n t n u trien t so lu tio n , a s o b s e r v e d a fte r 9 w e e k s o f grow th: c h lo r o tic le a v e s at th e te r m in a ls and p u r p lis h b lo tch ed le a v e s at the b a s e . Bottom righ t A d a x ia l s u r fa c e o f a p o ta s s iu m d e fic ie n t b a sa l le a f w ith p u r p lis h b lo tc h e s . Bottom le ft L ea f fro m te r m in a l p o r tio n o f a p o ta ssiu m d e fic ie n t p la n t. P e tio le a n a ly s is su g g e ste d z in c d e fic ie n c y . F ig u r e 4. Top le ft G rap e plan t su p p lie d w ith h ig h l e v e l s (1171 ppm ) o f p o ta s s iu m s u lfa te , a fte r 9 w e e k s of grow th . Top rig h t G ra p e plan t su p p lie d w ith high l e v e l s (1171 ppm ) o f p o ta s s iu m c h lo r id e , a fte r 10 w e e k s o f grow th . N ote th e id e n tic a l sy m p to m s on both p la n ts. Bottom le ft F i r s t v is u a l sy m p to m s o f n u tr itio n a l d iso r d e r a s o b s e r v e d on p la n ts su p p lie d w ith h ig h le v e ls o f p o ta ss iu m w ith su lfa te o r c h lo r id e . T h is s a m e sy m p to m a ls o a p p e a r e d on le a v e s from th e m id - s e c t io n o f p la n ts su p p lie d w ith m a g ­ n e siu m d e fic ie n t n u tr ien t so lu tio n ( s e e F ig u r e 5, top). Bottom rig h t T he sa m e le a f a s on bottom le ft, a few days la te r . T he v e in s w e r e g r e e n at a ll t im e s and a g r e e n m a r g in w a s a lw a y s p r e s e n t . T he sy m p to m w a s id e n tifie d by p e t io le a n a ly s is a s m a g n esiu m d e fic ie n c y . 33 . 34 . bottom right). The brown tissu e slow ly dried out com pletely and the affected le a v e s fe ll off (Figure 4, top). On the potassium chloride treatm ent, this symptom spread both acrop etally and basipetally. At the sam e tim e, s im i­ lar sym ptom s appeared on m agnesium deficient plants, and therefore both sulfate and chloride toxicity w ere ruled out in favor of m agnesium deficiency. T his w as later v erified by the p etiole an alysis, inasm uch as both high level potassium treatm ents had a petiole content of . 14% m agnesium and a very high potassium content of 9. 86% for the potassium sulfate treatm ent and 8. 88% for the potassium chloride treatm ent. M agnesium : Plants grown without m agnesium developed norm ally like the check plants and no difference could be seen until the 11th week when the basal lea v es began to turn yellow in the interveinal spaces of the adaxial side (Figure 5, bottom). p ro g r ess to the lea f edge. The yellow pigment, however, did not Figure 5 (top) shows a m agnesium deficient plant with two different m agnesium deficiency sym ptom s, one being the yellow interveinal coloring on basal leaves and the other one being like the d e s ­ cription of the high potassium sym ptom s (Figure 4, bottom), which developed sim ultaneously. M agnesium deficient plants grown with m agnesium deficient solution had . 06% m agnesium in the p etiole. Under high le v e ls of m agnesium , no visu al leaf sym ptom s could be observed. The linear growth seem ed, however, very much depressed. F ig u r e 5. Top Bottom G rap e p lan t su p p lie d w ith m a g n e siu m d e fic ie n t n u tr ien t so lu tio n , a fte r 11 w e e k s o f grow th. T w o d is tin c t le a f sy m p to m s a p p e a r e d s im u l­ ta n e o u sly , o n e a t th e b a s e and the o th e r at the m id - s e c t io n o f th e p la n t. T h e sy m p to m on the m id - s e c t io n le a f w a s th e sa m e a s o b s e r v e d on p la n ts su p p lie d w ith h ig h l e v e l s o f p o ta ssiu m (s e e F ig u r e 4, b o tto m ). M a g n esiu m d e fic ie n t le a f w ith y e llo w in t e r ­ v e in a l c h lo r o s is fro m the b a s a l p a r t o f the p lan t. 35 . 36. C alcium : The appearance of calciu m d eficien cy sym ptom s on p lan ts grow n without calciu m w as actu a lly ex p ected to occu r m uch soon er. The plan ts se e m e d to do w e ll up to the 11th w eek, at w hich tim e the d istilla tio n apparatus broke down. D uring rep air, a heavy d ep osit of calcium w as r e ­ m oved from its inner w a lls. Within one w eek, a d ifferent appearance of the youn gest le a v e s at the term in a l could be o b serv ed . W hereas norm al grape le a v e s have an equally lobed base, the new le a v e s had a co rd a te-o b lo n g b ase. A lso , the n orm ally shallow toothed m a rg in s w ere in th is c a se prom in en tly toothed and the w hole le a f had a rather oblong form . Soon th ese young le a v e s turned yellow and blackening of v ein s on the abaxial sid e of the lea f could be ob served , a s shown in F igure 6 (bottom left). Sim ultaneously, la rg e w a te r -so a k e d a r e a s in the apical p ortion s of the te n d rils appeared w hich led to the dieback of the tend ril at fir s t, follow ed by dieback of the w hole term in a l p ortion of the shoot to the next internode (F igure 6, top right). Growth of the a x illa r y buds (F igu re 6, bottom right) at th ese im m ed iate in te r ­ nodes w as brought about by the dieback. By now, old er le a v e s exhibited in ter- vein a l c h lo r o sis com bined w ith cu rlin g under the lea f blade, givin g it a beak­ lik e appearance, and a ll te r m in a ls, r e g a r d le s s of th eir location, began to break down (F ig u r e 6, top right). U ltim ately, the o ld est portion of the ste m s b ecam e p itted in app earance, looking sim ila r to s e v e r e hail dam age cau sed by v e r y fine hail sto n es (F igu re 6, bottom right). p e tio le s w as . 26%. The calcium content of th ese F ig u r e 6 Top le ft G rape p la n t su p p lie d w ith c a lc iu m d e fic ie n t n u trien t s o lu tio n in th e b reak d ow n s ta g e . T he plan t w a s v e r y s e v e r e ly d am aged , w ith a ll te r m in a l p o r tio n s sh o w in g d ie -b a c k . Top rig h t T e r m in a l p o r tio n o f a c a lc iu m d e fic ie n t g r a p e . N ote the b e a k -lik e a p p e a r a n c e of th e le a f, th e w ith e r in g te n d r ils , and the d e v e lo p m e n t o f a x illa r y b u d s. Bottom le ft B lack en in g o f the v e in s on th e a b a x ia l sid e and y e llo w in g o f the le a f, an e a r ly in d ic a tio n o f c a lc iu m d e fic ie n c y . Bottom rig h t G row th o f an a x illa r y bud brough t about by d ie -b a c k o f te r m in a l p o r tio n s . N ote the p ittin g o f the ste m and d e v e lo p in g o f d o u b le bud. 37 . 38. High le v e ls of calciu m w ere te s te d w ith two different nutrient s o lu ­ tio n s, one having su lfate and the other having ch lo rid e a s the anion c a r r ie r of c a lciu m . On n eith er treatm en t w ere v isu a l le a f d e ficien cy or to x icity sym p tom s o b serv ed . A ctually, s e v e r e ch lorid e injury w as exp ected w here calciu m ch lorid e w as u sed b ecau se of the p r e se n c e of 1418 p p m /lite r of ch lo rid e, but only a s e v e r e d e p r e ssio n in lin ea r growth occu rred . The calciu m content of p e tio le s from plants treated with calcium sulfate w as . 96% Ca com p ared to 2. 55% ca in p e tio le s of plan ts trea ted with calcium ch lorid e. Iron: Plants grow n w ith low le v e ls of iron produced slig h tly ch lo ro tic le a v e s at the ap ical p ortion s of the m ain ste m s and young shoots a fter ten w eek s of grow th. The sym ptom w as, how ever, n ever pronounced enough to be c o n sid e re d of im p ortan ce. The sam e held true for plants trea ted with high le v e ls of iron, in w hich c a se only lin ea r growth w as d ep ressed . M anganese: A fter 11 w eek s of growth, plants grown without m anganese in the nutrient solution began to show light g reen co lo r in the in tervein al field s of young ap ical le a v e s of both m ain and la tera l sh oots. The v e in s th e m se lv e s, how ever, n ever lo st th eir norm al g reen co lo r (F igure 7, bottom left). P e tio les of m an gan ese d eficien t p lan ts had only an 18 ppm m an ganese content com pared to 63 ppm in the check . The high le v e l m an gan ese plan ts grew lik e norm al plan ts without any sig n s of varia tio n . The p e tio le a n a ly sis in th is c a se rev e a le d 363 ppm Mn, F ig u r e 7 Top le ft T e r m in a l p o r tio n o f a g ra p e p la n t su p p lied w ith b oron d e fic ie n t n u tr ien t so lu tio n , a fte r 11 w e e k s o f g ro w th . T he in te r n o d e s w e r e v e r y sh o rt and th e te r m in a l a p p e a r e d stunted. T he te n d r ils sh o w ed w a te r - s o a k e d s p o ts . Top rig h t T e n d r il o f the sa m e p la n t sh o w in g w a te r so a k ed sp o ts, th e b e g in n in g o f b reak d ow n and an e a r ly in d ic a tio n o f s e v e r e boron d e fic ie n c y . Bottom le ft Y oung te r m in a l o f a g r a p e p la n t su p p lie d w ith m a n g a n e se d e fic ie n t n u tr ien t so lu tio n , a fte r 11 w e e k s o f grow th . Bottom righ t O ld er le a f fro m b oron d e fic ie n t p lan t a s o b ­ s e r v e d fro m th e a b a x ia l s id e a g a in s t su n ­ lig h t. 40. w hich is n ea rly equal to a norm al fie ld sam ple content and it is, th erefore, e a s ily understandable why no sym ptom s occu rred . Boron: Plants grown without boron m ade a stunted appearance after 11 w eek s of grow th (F igu re 7, top left). and v e r y s tiff in tex tu re. The term in a l le a v e s w ere yellow W hile w ith calcium d eficien cy th ese le a v e s turned from green to yellow , boron d eficien t le a v e s d iffered by being yellow from the tim e they unfolded. No blackening of the v e in s o ccu rred at any tim e w ith boron d eficien cy , but a s it w as with the c a se of calcium d eficien cy, w a tersoaked sp ots appeared in the ten d rils, as shown in F igu re 7 (top right). The old er yellow le a v e s se e m e d to be rath er thin, and if held again st strong sun­ light, the v e in s appeared red d ish and the im p re ssio n a r o se that light could be see n through the le a f (F igure 7 , bottom right). L ater on, ir re g u la r y ello w -b ro w n ish a r e a s form ed on the su rface of th ese le a v e s. The p e tio le s of th ese le a v e s contained 14 ppm boron. No v isu a l sym p tom s from the high le v el of boron w ere o b serv ed on any of the plants r e c e iv in g that treatm ent. Copper: Young unfolding le a v e s of C oncord grap es have a p u rp lish - red d ish tinge, w hich d isa p p ea rs a s soon as the le a v e s produce chlorophyll. Plants grown without copper behaved the sa m e for about 11 w eek s, at which tim e the young le a v e s retain ed th is red dish tinge, rather than lo sin g it. T h ese le a v e s w ere v e ry fine in textu re and the la te r a l shoots that developed w ere 41. spindly (F ig u re 8, top left). A s the le a v e s becam e o ld er the red d ish tinge changed into a golden co lo r w ith the v e in s turning g reen co lo r, a s shown in F ig u re 8 (bottom left). No v isu a l e x p r e s s io n o f the high le v e l of copper w as o b serv ed on plan ts r e c e iv in g that treatm en t. Z inc: L eaf sym ptom s of zin c d eficien cy becam e v is ib le after 12 w eek s of grow th without a supply of zin c. At fir st, the young term in a l le a v e s showed a y e llo w -b r o w n ish in tervein al c h lo r o s is . The internodal growth slow ed down con sid erab ly, and the en tire e x p r e ssio n of the term in al le a v e s changed. m al C oncord le a v e s have an equally lobed b ase and pinnate v e in s. how ever, the b ase changed to acute and the v ein s w ere p alm ate. N or­ In th is ca se , A lso, the n o r ­ m al sh allow -tooth ed m argin s becam e prom in en tly toothed and v ery wavy. Both the term in a l and the la te r a l lobe apex grew acu m in ately in stead of acute and the la te r a l sinus, w hich is n orm ally o b scu re and so m e tim e s notched, becam e deeply notched, as shown in F ig u re 8 (top and bottom right). The high le v e l of zin c produced no v isu a l sym ptom s on the plants. Molybdenum: Plants grown without molybdenum developed norm ally and only a fter 14 w eek s som e slig h tly ch lorotic term in al le a v e s appeared. s is w as e x p r e s s e d by yello w -b ro w n ish a r ea s on the lea f su rfa ce. produced n e c ro tic m argin s on a few b asal le a v e s . The c h lo r o ­ Only one plant Both sym ptom s w ere not a s d is ­ tin ctly e x p r e s s e d a s d e scr ib e d by Bergman and Kenworthy (1956). The high le v e l of m olybdenum produced v ery healthy looking plants with la r g e le a v e s and no ill e ffe c ts w ere ob served . F ig u r e 8. Top le ft M id -s e c t io n o f a g r a p e p la n t su p p lie d w ith co p p er d e fic ie n t n u trien t so lu tio n , a fte r 11 w e e k s o f grow th. N ote the sp in d ly appearance o f sh o o ts . Top righ t T e r m in a l p o r tio n o f g ra p e su p p lie d w ith z in c d e fic ie n t n u trien t s o lu tio n . Bottom le ft G rap e le a f sh o w in g c o p p e r d e fic ie n c y s y m p ­ to m s. T he le a v e s w e r e g o ld e n c o lo r e d , but v e in s r e m a in e d g r e e n . Bottom righ t T e r m in a l p o r tio n o f a z in c d e fic ie n t g ra p e p la n t w ith w avy le a v e s sh o w in g y e llo w b ro w n ish in te r v e in a l c h lo r o s is , deep notched s in u s e s , and p r o m in en t a p e x lo b e s . 43. VISUAL SYMPTOMS ON ROOTS The g en era l appearance of root s y s te m s v a ried g rea tly betw een tr e a t­ m en ts. It w as fe lt that the ch eck treatm en t produced ro o ts and a root sy stem d e sir a b le for plan ts of th is age and, th erefo re, ser v e d a s a b a sis for co m p a r­ iso n . The effect of the individual trea tm en ts on the ro o ts is shown in Table 1. G en eral A ppearance of Root S y ste m : and g en eral appearance w as u sed a s index. Amount of ro o ts, co lo r, textu re It w as p o s s ib le that trea tm en ts having sm a ll r o o ts but looking healthy w ere given a "good". 14 w e re judged a s "good". Of 25 treatm en ts, Two trea tm en ts, - Ca and 5 F e, had v ery poor, and two trea tm en ts 5 P and 5 Mo, had "excellent" root s y ste m s . 5 N, - P and - F e produced rath er poor root s y ste m s and - N, 5 B and 5 Cu produced v ery good s y s te m s . Two trea tm en ts, - Ca and 5 Fe, had v e ry poor appearing root s y ste m s w ith b r ittle ro o ts interw oven with many dead o n es. Root Color: of the r o o ts. The gen era l appearance w as c lo s e ly rela ted with the co lo r W hile m o st roots w ere brown, it seem ed that with p r o g r e ssiv e higher ratin gs of the w hole root sy ste m , the co lo r of the roots becam e ligh ter. The two "excellent" root s y s te m s of 5 P and 5 Mo, as w ell a s - Mo and 5 B, which w ere judged good and v e ry good r e sp e c tiv e ly , w ere light brown. the other hand, - Ca and 5 F e trea tm en ts produced black ro o ts. of - P and 5 Ca (Cl) w ere of red d ish co lo r. On The roots 44. TABLE 1 VISUAL E F F E C T OF INDIVIDUAL TREATM ENTS ON ROOTS T reatm en t G en eral A p p ear­ ance of Root System C olor of R oots R em ark s Check Good Brown B asis for com p arison (Standard) - N 5 N V ery good Poor Brown Brown Many fib rou s ro o ts Few ro o ts, m any dead - P 5? Poor E x ce lle n t Sm all ro o ts R eddish Light brown - K 5 K (SO ) 5 K (Cl) Poor Good Good Brown Brown Brown V ery few ro o ts Springy ro o ts, som e dead Spring ro o ts, m any fibrous - Ca 5 C a(S04 ) V ery poor Good Black Brown 5 Ca (Cl) Good R eddish V ery b rittle ro o ts, so m e dead Compact sy stem with many fib rou s roots Not too m any roots but v e ry thin - Mg 5 Mg Good Good Brown Brown Sm all root sy ste m V ery la rg e sy stem of w iry roots - Fe 5 Fe Poor V ery poor Black Brown Som e ro o ts w ith w hite tip s V ery b r ittle and m any dead ro o ts - Mn 5 Mn Good Good Brown Brown ■- B 5 B Good V ery good Brown Light brown Sm all root sy stem - Cu 5 Cu Good V ery good Brown Brown - Zn 5 Zn Good Good Brown Brown - Mo 5 Mo Good E x ce lle n t Light brown Light brown V ery la r g e com pact sy stem Som e ro o ts w ith w hite tip s B rittle ro o ts Compact sy stem w ith m any fib rou s ro o ts 45. T extu re of R o o ts: On a few trea tm en ts so m e deviation in the te x ­ tu re of ro o ts from the norm al appearance w as o b serv ed . - Ca, 5 F e and - Zn ro o ts se e m e d to be b rittle, w hile roots of the two high p otassiu m tr e a tm e n ts w e re rath er springy, and the 5 Mg roots w ere w iry. 5K (S0 4) | 5K(CI)i -Co 5C o (SO4 ) 5Co(CI) 46 . GROWTH Data p erta in in g to total lin ea r length growth, as w ell a s total dry w eight accu m ulation of ro o ts, ste m s, p e tio le s , and lea f blades a re given in Appendix T able 5. Dry w eight accu m ulation of ro o ts, ste m s, p e tio le s, and le a f b lad es, co n v erted into p er cent o f total dry w eight accum ulation and sh o o t/r o o t r a tio s a r e record ed in Appendix T able 6. T otal L in ear Growth (s e e figu re opposite) The ch eck treatm en t produced the g r e a te st amount o f lin ea r growth (625 cm ) and a s m ay have been expected , the - N treatm ent produced le a st lin ea r grow th (109 cm ). When the ch eck w as com pared s ta tis tic a lly with the individual tr e a t­ m en ts, 5 N, 5 Ca(SO^), 5 Fe, - B and - Cu w ere sig n ifica n tly sm a lle r at the 5% le v e l and - N, - P, - K, 5 K (Cl), - Ca, 5 Ca (Cl) and 5 M g w ere sm a lle r at the 1% le v e l. T h ere w as a g en era l tendency for the high le v e l of the nutrients to r e su lt in le s s reduction of grow th than the low le v e l. found for m agn esium , iron, and m an gan ese. T h is tendency w as not H owever, th ere w ere but few in sta n ce s w h ere th ere w as a sig n ifica n t d ifferen ce betw een the low and high le v e l of a nutrient. grow th than 5 P. The - P treatm en t produced sig n ifica n tly le s s lin ea r The high le v e l of m agn esium produced sig n ifica n tly le s s Check 5K (S04) 5K(C I) 5Ca (S04) 5 C q (CI) —Mn -M o 60 80 100 TOTAL DRY WEIGHT ACCUMULATION — (GRAMS) LSD 5% I % — — ■ Sig. different _ * a t 5 % than check # # at I % 120 47. lin e a r grow th than - Mg. Both - K and 5 K (Cl) produced le s s growth than 5 K (S 0 4). T otal D ry W eight A ccum ulation (s e e figu re opposite) The 25 trea tm en ts produced a la rg e v a riation in total dry w eight a c cu m ­ ulation. The - K treatm en t resu lted in the le a st production of dry m atter (35. 45 g). The high le v e l of Mo produced the g r e a te st amount of dry m atter (117. 75 g), w hile the check treatm ent produced 90. 70 g of dry m atter. When the ch eck w as com pared s ta tis tic a lly with the individual tr e a t­ m en ts, only 5 Mo w as sig n ifica n tly higher at the 5% le v e l. The - P and - B trea tm en ts w ere low er than the check at the sam e le v e l of sig n ifica n ce. A 1% le v e l of sig n ifica n t d ifferen ce w as found for - N, 5 N, 5 P, - K, 5 K (Cl), - Ca, 5 Ca (Cl), and 5 Mg. The 5 K (S 0 4), - Mg, - Fe, 5 Fe, - Mn, 5 Mn, 5 B, - Cu, 5 Cu, - Zn, 5 Zn, and - Mo treatm en ts did not differ sig n ifica n tly from the check. H ow ever, a ll trea tm en ts excep t - Fe, - Cu, 5 Cu, and 5 Zn w ere s i g ­ n ifican tly below 5 Mo in the production of dry m atter. High and low le v e ls of m agn esium , iron, and molybdenum w ere s ig n i­ fican tly d ifferen t from ea ch oth er. T h ere w as a significan t d ifferen ce betw een the 5 K treatm en t u sin g su lfate and the 5 K treatm ent u sin g chloride, a lso betw een the 5 K treatm en t u sin g su lfa te and the - K treatm en t. No s ig n ifi­ cant d ifferen ce w as found betw een the - K treatm en t and the 5 K treatm ent u sin g ch lo rid e. ROOTS STEM 20 30 40 O 10 20 2.5 5 0 10 DRY WEIGHT ACCUMULATION — (GRAMS) PETIOLES LEAF BLADES Check 5K(S0«) 5K(CI)P -C 5Ca(S04 5Ca(CI) LSD 5% Sig. different than check *a t 5% # *a t I % 30 40 48. D ry W eight A ccu m ulation by R oots, Stem s, P e tio les and L eaf Blades (se e figu re op p osite) R o o ts: The 5 K (Cl) treatm ent produced the le a st root dry w eight (9. 85 g), with the check being in the m iddle (23. 65 g) and 5 Mo producing m o st root dry w eight (49. 35 g). When the ch eck w as com pared sta tis tic a lly w ith individual trea tm en ts, only - Cu and 5 Mo w ere sig n ifica n tly higher, the fo rm er at the 5% le v el and the la tter at the 1% le v e l. None of the trea tm en ts produced sig n ifica n tly le s s root grow th than the ch eck treatm ent. C om paring the low and high le v e ls of the sam e elem en t, only the low le v e l of m olybdenum w as sig n ifica n tly below its high le v e l in root growth. A com p arison of root dry w eight for the v a rio u s nutrient elem en t le v e ls showed that th ere w as a g en eral trend for the m ajor elem en ts to produce le s s root grow th at both the low and high le v e ls than the check treatm ent. An opposite trend w as o b serv ed for the m in or e le m e n ts--b o th low and high le v e ls resu lted in g r ea ter root grow th than the ch eck treatm en t. An exception to th is trend w as found for phosphorus w here th ere w as le s s root growth with each increm en t in the phosphorus supply. Stem s: The - K treatm en t produced le a st stem dry w eight (7 g), - Fe m o st (28. 75 g), and the ch eck 25. 6 g. 49. A co m p a riso n of the dry w eight accu m ulation of ste m s for the v a rio u s le v e ls of a nutrient elem en t show ed a g en era l trend for growth to be reduced by both low and high le v e ls of each e lem en t. An exception w as found for m olybdenum w here each in crem en t in supply resu lted in additional stem growth, w h erea s each in crem en t o f iron resu lted in additional d e c r e a se in stem growth. The follow in g trea tm en ts w ere sig n ifica n tly low er (5%) than the check: - N, - K, 5 K (Cl), 5 Ca (SO4), 5 Ca (Cl), and 5 Mg. W hereas, the 5 K (Cl) treatm en t produced sig n ifica n tly le s s stem growth than the check treatm ent, th ere w as no sign ifican t red uction w ith the 5 K (SO^) treatm en t. m ent, h ow ever, w as sig n ifica n tly la r g e r than the check. No tr e a t­ A lso none of the m in or elem en t trea tm en ts resu lted in sig n ifica n tly le s s stem growth than w as found for the ch eck treatm en t. The low le v e l of m agnesium resu lted in sig n ifica n tly m ore stem growth than the high le v e l of m agn esium . P etio les: The - K treatm en t produced le a st p etio le dry w eight (1. 1 g), - F e m o st (5. 11 g), and the check 4. 3 g. The sa m e gen eral trend a s o b serv ed for stem dry w eight w as a lso p r e se n t in p e tio le grow th. Nine of 11 e lem en ts produced le s s p e tio le growth at both the low and high le v e ls than the check treatm ent. With iron, th ere w as a d e c r e a s e in dry w eight of p e tio le s with in c r e a se in ea ch increm en t in supply, w h erea s with each in crem en t in the supply of copper th ere w as an in c r e a s e in p e tio le grow th. 50 . When the ch eck w as com pared s ta tis tic a lly w ith individual trea tm en ts, no treatm en t w as sig n ifica n tly high er and only the - N, - K, and 5 Mg tr e a t­ m en ts w e r e lo w er than the check . The 5 K (SO^) treatm en t resu lted in s ig n i­ fican tly m ore p e tio le grow th than the - K treatm en t. The 5 Mg treatm ent produced le s s p e tio le grow th than the - Mg treatm en t. L eaf Blades: The - N treatm en t produced the s m a lle s t amount of le a f grow th (1 3 .2 g), and - F e, 5 Mo, and the check, in d escen d in g ord er, had the la r g e s t amount of le a f grow th (37. 65, 37. 50 and 37. 15 g r e sp e c tiv e ly ). The sam e gen era l trend o b serv ed for the stem and p e tio le dry w eight accu m ulation w as found for le a f growth. Nine of 11 e lem en ts produced le s s le a f grow th at both the low and high le v e ls than found for the ch eck treatm en t. In crea sin g le v e ls of iron again d e c re a sed le a f dry w eight and in c r e a sin g le v e ls of m olybdenum in c r e a se d it. No s ta tis tic a l d iffe re n c e s could be found betw een any m inor elem en t treatm en t and the check. The - N, - K, 5 K (Cl), 5 Ca (SO^), and 5 Mg treatm en ts r e su lte d in sig n ifica n tly l e s s le a f growth than the check treatm ent. The 5 K (SO .) trea tm en t did not r e su lt in a sign ifican t reduction of le a f growth. The 5 M g treatm en t produced sig n ifica n tly le s s le a f growth than the - Mg treatm en t. ROOTS 1 I 1 I I— I i— I— r i— i— i— i LEAF BLADES PETIOLES STEMS t— T r J I 1 I 1 I | I | Check m ■ i* 5K(S04) 5K (Cl) -C a 5Ca(S04) P 5Ca(CI) I i* ■ I i i -M o j 10 LSD I I I i L 10 20 3 0 0 5 10 2 0 3 0 20 30 40 DRY WEIGHT ACCUMULATION - (percent o f to ta l dry w eig h t) 5% I% Slg. different _ * a t 5 % than check **a t I% 40 50 A ccu m ulation of Dry W eight E x p r e sse d in Per Cent of T otal D ry Weight by R oots, Stem s, P e tio le s, and L ea f Blades (s e e figu re opp osite) A co m p a riso n of dry w eight accu m ulation o f the individual plant p arts m ade it p o s s ib le to evalu ate the e ffe ct of the trea tm en ts upon ro o ts, stem s, p e tio le s and le a f b la d es. By con v ertin g th ese v a lu es into p er cent of the total dry w eight accu m u lated by a plant, the influence of the trea tm en ts on sp e c ific plant p arts in rela tio n to the en tire plant w as dem onstrated. Roots: The ro o ts w ere 26. 29% of the total dry w eight produced with " 1’ ’ 1 the ch eck treatm en t. No treatm en t had a sig n ifica n tly low er p ercen ta g e of roots than the check. The - N, - P, - Cu, 5 Mg, - Mo, and 5 Mo treatm en ts had a sig n ifica n tly la r g e r p ercen ta g e of roots than the check. By com paring high and low le v e ls of the individual e lem en ts, only nitrogen, phosphorus, and m agnesium treatm en ts w ere different sta tis tic a lly . The - N, - P, and 5 M g trea tm en ts w ere la rg er at the 1% le v e l than 5 N, 5 P and - M g r e s p e c tiv e ly . With in c r e a sin g nitrogen and phosphorus, or d e c r e a s ­ ing m agnesium in the solution, the p ercen ta g e of roots d e c re a sed . A g rea ter \ p ercen ta g e of r o o ts w as produced in both low and high le v e ls of a ll other e le m en ts than found for the ch eck treatm ent. Stem s: No treatm en t w as sig n ifica n tly la rg er in p ercen ta g e of stem grow th than the check. The - N, - P, - K, - Ca, 5 Ca(Cl), 5 Mg, and - Mo w ere s m a lle r in p ercen ta g e of stem growth than the check. By com paring 52. high and low le v e ls o f s p e c ific e le m e n ts, the - P treatm en t had sig n ifica n tly l e s s stem grow th than the 5 P treatm ent, w hile the - M g treatm en t had s ig ­ n ifica n tly l e s s than the 5 M g treatm en t. P e tio le s: T h ree trea tm en ts, - K, 5 Ca (Cl), and 5 M g w ere s ig n i­ fican tly s m a lle r in p e r ce n ta g e of p e tio le s than the check, but no treatm ent w as la r g e r than the check . The - K treatm ent had sig n ifica n tly le s s p e r ­ cen tage of p e tio le grow th than the 5 K (SO J and the 5 K (Cl) treatm ents* 4 A lso 5 M g had sig n ifica n tly le s s p ercen ta g e of p etio le growth than the - Mg treatm en t. L eaf Blades: The m o st pronounced e ffe c t of any treatm ent was e x p r e s s e d by 5 N, w hich produced 30% m ore le a f b lad es than - N. While 5 N w as the only treatm en t having sig n ifica n tly m ore le a f grow th on p e r ­ cen tage b a s is than the check , - Mn, - Cu, and 5 Mo had sig n ifica n tly le s s than the check . By com paring high and low le v e ls of sp e c ific e l e ­ m en ts, - P and 5 M g had l e s s le a f grow th on a p ercen ta g e b a s is than 5 P and - M g r e s p e c tiv e ly . Shoot/R oot R atio: By adding the dry w eight of the above-ground p a rts, and dividing them by the root dry w eight, the follow ing sh o o t/r o o t ra tio s w e r e esta b lish ed : T reatm en ts 5 P, - Mg 5 N 5 K (Cl) Check 5 K (SO .) - Fe - K, 5 C a(S04), 5 F e 5 B - B, - Ca 5 Ca (Cl), - Mn, 5 Mn, 5 Cu, - Zn 5 Zn - Mo - N, - P, - Cu, 5 Mo 5 Mg Ratio 3. 9 3. 7 3. 1 2. 8 2. 6 2. 2 2. 1 1. 9 1. 8 1 .7 1.6 1 .4 1. 3 1. 2 In creasin g le v e ls of nitrogen, phosphorus and p otassiu m and d e c re a sin g le v e ls of m agn esium in the solution a lso in c r ea se d the sh o o t/r o o t ratio. O therw ise, the high and low le v e ls of calcium and a ll m inor elem en ts p r o ­ duced low er s h o o t/r o o t r a tio s than the check. W E IG H T NITROGEN LEVEL IN SOLUTION G 2E3 4 2 PPM 2tO PPM (CHECK) 1050 PPM K S2 200 DRY £ PERCENT o J 150 CONTENT - 0. S 100 o NUTRIENT o ! S 1 Co m Mg PETIOLE m Cu Fe Zn COMPOSITION 5.2 5.0, 2.4 WEIGHT — — •w * NITROGEN CONTENT - PERCENT DRY 20 PETIOLES STEMS CHECK PETIOLES 8 STEMS NOT ANALYSED K K (S04 )(C I) Mg Co Ca (S04)(CI) SOLUTION CONTENT Mn Cu Zn Mo 54. NUTRIENT ELEM ENT COMPOSITION OF PETIOLES AND STEMS Data p erta in in g to the p e tio le and stem co m p o sitio n for plants trea ted w ith the v a r io u s nutrient so lu tion s are given in Appendix T a b les 7 and 8. T h ese ta b les and the follow in g graphic illu str a tio n s and d isc u ssio n show the effect on p e tio le co m p o sitio n when one s p e c ific elem en t w as v a ried and a il other elem en ts kept at a constant le v e l, a s r e p r e se n te d in the ch eck treatm ent and the influence of v a ry in g the supply of d ifferen t e lem en ts upon p e tio le com p osition of a s p e c i­ fic elem en t. N itrogen (s e e figu re opp osite) With in c r e a sin g le v e ls of nitrogen in the solution (42, 210 - check, and 1050 ppm) nitrogen, phosphorus, boron and copper concen tration of the p e tio le s in c r e a se d and calciu m content of the p e tio le s d ecrea sed . P otassium , m a g n es­ ium and zin c w e r e found to be h igh est w ith 210 ppm nitrogen, but d ecrea sed w ith e ith e r in c r e a se d or d e c r e a se d le v e ls of nitrogen in the solution. Iron and m an gan ese, on the oth er hand, show ed an in v e r se relation sh ip and in ­ c r e a s e d with e ith er in c r e a s e d or d e c re a sed nitrogen le v e ls , and w ere low est w ith 210 ppm n itrogen in the solution . A five fold in c r e a se of nitrogen in the solu tion in c r e a se d the p e tio le n itrogen fiv e tim e s that of the check tr e a t­ m ent, doubled phosphorus, trip led boron and r a ise d m an ganese from 63 ppm for the ch eck treatm en t to 159 ppm . At the sam e tim e, p otassiu m w as 55. d e c r e a se d 60% and ca lciu m 50% by in c r e a sin g nitrogen to 5 N. The low er graph show s that nitrogen in the solution had the la r g e s t e ffe ct on n itrogen in stem and p e tio le s . Although the nitrogen content w as low er in the p e tio le s than in the s te m s of the - N treatm ent, both stem and p e tio le n itrogen content w ere n early alik e w ith 210 ppm nitrogen in the solu tion . The 5 N treatm en t show ed 3% m o re actual nitrogen in the p e tio le s than in the s te m s. In the - P treatm ent, nitrogen in p e tio le s and s te m s w as a ls o v e r y low and in c r e a se d with in c r ea sin g phosphorus in the solution . T he only oth er treatm en t w hich see m e d to sig n ifica n tly a ffect n itrogen w as - Ca, w h ere both stem and p e tio le nitrogen w ere v e ry high. An in c r e a s e in the supply of p otassiu m and boron see m e d to reduce the amount of n itrogen in both stem and p e tio le s . An in c r e a se in the m agnesium and iro n supply appeared to in c r e a s e nitrogen in both stem and p e tio le s. W E IG H T PHOSPHORUS LEVEL IN SOLUTION E iiS 3 O PPM 31 PPM (CHECK) 155 PPM PERCENT DRY (5 iuu £ >tk ca 5 0. 150 C O N TE N T- § oo 100 I NUTRIENT ft 50 in 2 v M Co PETIOLE Mn Cu Zn COMPOSITION 1.0 PETIOLES STEMS CHECK PETIOLES CHECK STEMS PHOSPHORUS CONTENT- PERCENT DRY WEIGHT Fe Mg N 5 -P N 5 -K P 5 5 -C o 5 5 K K Ca Cq 1171 PPM K(CI) NOT ANALYZED 10 WEIGHT 250 PERCENT DRY 200 CONTENT - 150 NUTRIENT 8 100 £ £ 50 m Co Mg Fe Mn Cu PETIOLE COMPOSITION POTASSIUM CONTENT PERCENT DRY WEIGHT PETIOLES STEMS CHECK PETIOLES CHECK STEMS SOLUTION CONTENT Zn 58. P otassiu m (s e e figu re opp osite) In c re a sin g the le v e l of p o ta ssiu m in the nutrient solution (0, 234 - check, 1171 ppm) in c r e a s e d the p o tassiu m , boron, and zin c content of the p e tio le s, but d e c r e a se d m agn esium and m an gan ese. The high le v e l of p otassiu m w as tested w ith both su lfate and ch lorid e a s anions. With p otassiu m sulfate, 1% m ore actual p o ta ssiu m w as found in the p e tio le s than with potassium ch lorid e. Boron d e c r e a se d from 229 to 198 ppm and phosphorus w as a lso sig n ifica n tly low er when p o ta ssiu m ch lorid e in stead of potassiu m sulfate w as used. With 0 le v e l of p o ta ssiu m in the solution, the lo w est p etio le copper and zin c co n ­ tent of any treatm en t a s w ell a s the h igh est m agnesium content w ere p r o ­ duced. The iron content of p e tio le s w as a lso com p aratively high. When p otassiu m w as in c r e a se d from z e r o to 234 ppm in the solution, the m anganese content dropped from 268 to 63 ppm. The p otassiu m p etio le content of 5. 72% w as found when 234 ppm p otassiu m w ere used in the check solution. T his w as n ea rly th ree fold the amount found in a norm al field sam ple. In the low er graph, a com p arison of stem w ith p etio le potassium content for the - K treatm en t showed that the ste m s had a higher potassium content than the p e tio le s . When the p otassiu m content of the solution w as in c r ea se d , the p otassiu m content of the p e tio le s w as g rea ter than the stem content. With 234 ppm p otassiu m in the solution, the ste m s showed 2. 37% and the p e tio le s 5. 72% p o ta ssiu m . T his d ifferen ce becam e even la rg er with 1171 ppm in the solution w here with the u se of potassium sulfate the stem s accum ulated 2. 61% and the p etioles 9. 86% potassium , as compared to 2. 68 and 8. 88% potassium resp ectively, when potassium chloride was used. Furtherm ore, a s shown in the lower graph, the potassium content of the p etio les for the - N, 5 N, - P, 5 P, - K, 5 Ca, - Mg, 5 Mg, - Fe, 5 Fe, - B, - Cu, 5 Cu, - Mo and 5 Mo treatm ents was below that found for the check treatm ent. A potassium content higher than that found in the check trea t­ m ent was in p etio les from 5 K, - Ca, and 5 Zn treatm ents. * In a ll treatm ents, stem an alysis for potassium was below that of the check treatm ent, except in the 5 P and 5 K treatm ents. The difference b e­ tween p etio le and stem a n alysis for potassium was le s s for the 5 N than - N, 5 P than - P, 5 Ca than - Ca, 5 Mg than - Mg, and 5 B than - B treatm ents. Petiole a n alysis showed that the potassium petiole content in th ese 5x treat­ m ents w as low er than in their resp ectiv e minus treatm ents, but a rev erse relationship of potassium in the stem s, as indicated by stem analysis, was found. A lso the 5 Ca (SO.) treatm ent resulted in le s s reduction of potas- sium content in both p etio le and stem tissu e than the 5 Ca (Cl) treatm ent. WEIGHT CALCIUM LEVEL IN SOLUTION 0 PPM 200 PPM (CHECK) 1002 PPM Co(S04) 1002 PPM Co(CI) 150 CONTENT - PERCENT DRY u NUTRIENT 100- Mg Fe PETIOLE COMPOSITION 260 PETIOLES STEMS CHECK PETIOLES CHECK STEMS L80 1.40 CONTENT - PERCENT DRY WEIGHT 220 LOO .6 0 .2 0 (S04) (Cl) SOLUTION CONTENT Calcium (see figure opposite) With in crea sin g le v e ls of calcium in the solution (0, 200 - check, and 1002 ppm), calcium in crea sed in the p etioles, while potassium , m agnesium, and boron d ecreased . Nitrogen and phosphorus content of the p etioles w ere higher with - Ca than 5 Ca. Iron and m anganese w ere low est in the check treatm ent, and in crea sed with either in creased or d ecreased lev els. Minor variations in the copper and zinc content of p etioles w ere associated with a variable calcium supply. The high lev el of calcium was tested with both sulfate and chloride as anions. A highly significant in crease of calcium in the p etio les w as observed when calcium chloride instead of calcium su l­ fate w as used (2. 55 and . 96%). At the sam e tim e, there was a decrease in potassium (from 4. 51 to 2.82%), m anganese (from 131 to 76 ppm), and boron (from 67 to 37 ppm) when the calcium chloride was used instead of calcium sulfate. Comparing stem and p etiole an alysis for calcium , as shown in the lower graph, the calcium content for both plant parts was nearly the same at the 0 lev el. This w as found also w here calcium sulfate was used, but with calcium chloride, the petiole content was 1% higher than the stem content. Although there w as a m arked in crease in both stem s and p etioles, none of th ese treatm ents produced a higher calcium content of stem s than in p etio le s. However, in the 5 N, 5 P and 5 Mg treatm ents, the calcium 61. in ste m s and p e tio le s w as v e r y c lo s e . Sign ifican tly low er calcium p etio le content than in the ch e ck w as found in the follow ing trea tm en ts: 5 N, 5 P and 5 Mg, w h ile - N, - P, - Mg, - Fe, 5 Fe, 5 B , - Cu, - Mo and 5 Mo w ere sig n ifica n tly high er than the check. In the ste m s, only the - Mg treatm ent had a sig n ifica n tly higher calciu m content than the check. l e v e l IN s o l u t o n W E IG H T m a g n e siu m ^ ^ PERCENT CONTENT NUTRIENT 2b L i j i B Ca PETIOLE COMPOSITION IOOi MAGNESIUM CONTENT - PERCENT DRY WEIGHT PETIOLES STEMS fr™- CHECK PETIOLES CHECK STEMS K K (S04) (Cl) Fe Ca Co (S04)(CI) SOLUTION CONTENT Mn Cu Zn CHECK) 2 4 3 PPM NOT ANALYZED DRY * ™ Mo 62. M agnesium (se e figu re opp osite) When the le v e l of m agn esium in the solution w as in c r ea se d (0, 49 check, and 243 ppm), m agn esium and boron in c r ea se d in the p e tio le s, w h e r e ­ as calciu m , copper and z in c d e c r e a se d . Phosphorus, iron and m anganese w ere lo w est w ith 49 ppm m agn esium in the solution, and w ere in crea sed when the le v e l of m agn esium in the solution w as e ith er in c r ea se d or d e­ c r e a se d . P otassium on the other hand, w as high est with 49 ppm m agnesium in the solution, and d e c r e a se d w ith e ith er an in c r e a se or d e c r e a se in the m agnesium supply. N itrogen showed a d e c r e a se in the p etio le when m a g ­ nesium w as in c r e a se d from 0 to 49 ppm. (P etio les of the 5 M g treatm ent w ere not an alyzed for nitrogen b ecau se of sh ortage of p e tio le s). A fiv e fold in c r e a s e of m agnesium in the solution n ea rly doubled the p etio le m agn esium and phosphorus concentration. F u rtherm ore, m anganese w as in c r ea se d sig n ifica n tly from 63 to 174 ppm and boron from 56 to 152 ppm. In the co m p a riso n of stem w ith p e tio le com position , a s shown in the low er graph, th ere w as a gen era l tendency for the stem m agnesium to be low er than the p e tio le m agn esiu m . T his com p arison w as true for all treatm en ts excep t for the 5 K (SO4), 5 K (Cl) and - Mg trea tm en ts. With th ese trea tm en ts, the stem m agnesium w as higher than the p etio le m a g ­ n esiu m . In a ll th ree c a s e s , v isu a l d eficien cy sym ptom s on the le a v es w ere 63. o b serv ed . The m o st pronounced e ffe ct on m agn esium uptake w as not ex erted by the m agn esium w ithin the solution, but by the p o ta ssiu m . H ere, the - K treatm en t produced a m agn esiu m content in the p e tio le s of . 99%, which com pared to the 74% M g of the 5 Mg treatm ent. Significant in c r e a s e s o f p e tio le m agnesium w ere found in the - K and - Fe trea tm en ts, w hile - N, - P, 5 K (SO^), and 5 K (Cl) w ere sign ifican tly low er in p e tio le m agn esium than the check. NUTRIENT CONTENT - PERCENT DRY W EIG H T IRON LEVEL IN SOLUTION ESS23 O PPM IT T H 5 PPM (CHECK) 2 5 PPM m Cu PETIOLE Zn COMPOSITION 00 PETIOLES STEMS ? CHECK PETIOLES CHECK STEMS 60 IRON CONTENT - PPM DRY WEIGHT 80 40 "7 20 K K (S04 )(CI) Mn Ca Ca (S04) (Cl) SO L U T IO N CONTENT Cu Zn Mo 64. Iron (s e e fig u re opp osite) When the le v e l of iron w as in c r e a se d in the solution (0, 5 - check, and 25 ppm), v e ry little e ffe ct upon iron in the p e tio le s could be o b served . M ost of the e le m e n ts show ed no sign ifica n t in c r e a s e or d e c r e a se in the p e tio le s . When iron in the solu tion w as in c r e a se d from 5 to 25 ppm, calcium in crea sed sign ifican tly, w h erea s p o ta ssiu m d e c re a sed in the p e tio le s. An in c r e a se of iron from the 0 le v e l to 5 ppm in the solution brought about a sign ifican t d e­ c r e a s e of m agn esium in the p e tio le s from 65 ppm to 45 ppm. A general te n ­ dency p r e v a ile d for 5 ppm iron to r esu lt in e ith er the h igh est or the low est value in the p e tio le for other e lem en ts w hich in c r ea se d or d ecrea sed when iron w as e ith e r in c r e a se d or d e c re a sed in the solution. From the com p arison of the stem and p e tio le iron content, a s shown in the low er graph, it can be o b serv ed that the iron in the solution has v ery little effect upon iron in both ste m s and p e tio le s . In a ll th ree iron treatm en ts, the stem iron w as higher than the p e tio le iron, which actually w as the c a se in m ost other trea tm en ts. H ow ever, an in te r e stin g exception to this w as the 5 Mn treatm ent. H ere, the p e tio le iron content w as 90 ppm com pared to 50 ppm in the s te m s . A lso th ere w as a g r ea ter amount of iron in the p e tio le s than in the stem for the - M g and - Zn trea tm en ts. On the other hand, the - K tr e a t­ m ent had 100 ppm iron in the stem and 70 ppm in the p e tio le s . The - Ca treatm en t had a s im ila r relation sh ip with 80 ppm iron in the stem and 50 ppm in the p e tio le s . O th erw ise, the iron v a lu e s for both p e tio le s and ste m s w ere c lo s e ly grouped w ith the excep tion of the above m entioned treatm en ts, and no sig n ific a n c e w as found in the a n a ly sis of variance for iron in e ith er of the two plant p a rts. MANGANESE LEVEL IN SOLUTION E 2 S 3 0 PPM 17773 .5 PPM (CHECK) 2 5 PPM 300 6r oX G 5 £ v> 2 5 0 £ >. < fc Q >- § sU oCtj 4 fe! 200 3o. 0. 150 fc! I § 2 % UJ tfc oo 100 s £ vC- i Co Mg PETIOLE I J|» 50 Fe M Mn W EIGHT I Cu PETIOLES STEMS flaw? CHECK PETIOLES CHECK STEMS 250 CONTENT — PPM 200 150 100 MANGANESE Zn COMPOSITION 300 DRY 12 50 N 5 -P N 5 P -K 5 5 -C a 5 5 K K Co Ca 8 0 ** 40 5 -Cu K K (S04)(C I) Co Ca (S04 )(CI) SOLUTION CONTENT Mn ■Zn Cu -M o Zn Mo 67. Boron (s e e fig u re op p osite) In crea sin g the le v e l of boron in the solution (0, . 5 - check, and 2. 5 ppm) brought about a sig n ifica n t in c r e a se in the boron and calcium content of the p e tio le s and a sig n ifica n t d e c r e a se in phosphorus and copper co n ­ c en tra tio n s. A fiv e fold in c r e a s e o f boron in the solution resu lted in a three fold in c r e a s e in the p e tio le boron. P otassium w as high est with . 5 ppm of boron in the solu tion and d e c re a sed with e ith e r low er or higher le v e ls of boron. N itrogen, m agnesium , iron and m an ganese had a r e ­ v e r s e rela tio n sh ip and in c r e a se d with eith er low or high le v e ls of boron. By com paring the p e tio le and stem a n a ly sis for boron, as shown in the low er graph, the d ifferen ce betw een stem and p etio le, boron co n ­ cen tration in c r e a se d w ith in c r e a sin g boron in the solution. With high le v e ls of a ll n u trien ts the p e tio le content for boron w as alw ays higher than the stem content. In th ree treatm en ts (-M n , - Cu, -M o), the stem boron content w as h igh er than the p etio le content. The graph a lso show s that the boron content w as influenced m o re by the variation of other e l e ­ m ents in the solution than by boron its e lf. The -P treatm ent produced nearly the sam e low v a lu e s for boron in p e tio le s and ste m s as the - B treatm en t. The 5 P treatm en t produced the h igh est boron p etio le content for a ll trea tm en ts. T rea tm en ts other than 5 B that had a sig n ifica n tly higher p e tio le boron content than the check treatm ent w ere 5 N, 5 P, 5 K(S04), 5 K(C1), - Ca, 5 M g and 5 Zn. COPPER LEVEL IN SOLUTION 0 PPM 0 2 PPM (CHECK) 10 PPM 60 P50 K § ^ 5 § I LI g 3 i o £2 Uj E £ >§ S 40 0. i 1 IIp i IH g ^ 10 i |il ig *1 a Fe Mg PETIOLE „ !|i li 1 1 l | !g i ■ Co ! 20 i iis s & I 30 K oS o !z UJ £ h- i# ^!S Mn Cu Zn COMPOSITION 40 30 I >- 0: Q (— ■ 20 § PETIOLES STEMS CHECK PETIOLES CHECK STEMS P= £ 8 K K (S04)(CI) Co Ca (S04)(CI) Mg SOLUTION CONTENT Mn Cu Zn Mo 68. Copper (s e e fig u re op p osite) In crea sin g le v e ls of copper in the solution (0, . 02 - check, and , 1 ppm) had no sig n ifica n t e ffe ct on any elem en t excep t calciu m . In both 0 and . 1 ppm copper le v e ls , calcium w as sig n ifica n tly higher than in the check treatm en t. The other m ajor elem en ts w ere affected v ery little . While iron and m an gan ese w ere h igh est with 0 copper in the solution, boron w as h ig h est with the . 02 ppm le v e l of copper w h ereas copper and zin c w ere h igh est with . 1 ppm copper in the solution. The low er graph show s a com p arison betw een stem and p etio le copper concen tration. It w as obvious that a large number of treatm en ts resu lted in higher copper contents in the ste m s than in the p e tio les; how ever, the th ree trea tm en ts varyin g in copper content of the nutrient solu tion w ere higher in p etio le copper than in stem copper. Other trea tm en ts w hich follow ed th is m ore norm al trend w ere 5 K(SO^), 5 Ca(S04>, - Mg, - F e, - Mn, - B and 5 Zn. The lo w est copper content of p e tio le s w as found in the p e tio le s of the - K treatm ent, w hile the - Cu treatm en t produced a high copper content. Both stem and p etio le a n a ly sis for copper show ed no sig n ifica n ce betw een treatm en ts, w hich w as a lso o b ­ ser v e d in the a n a ly s is of varian ce for iron. The low p etio le copper values, how ever, in the - K and 5 Ca(Cl) trea tm en ts a s w ell a s the high stem copper content of the treatm en t 5 Mo m erit attention. ZtNC LEVEL IN SOLUTION E S 3 0 PPM .05 PPM (CHECK) .25 PPM 6W EIG H T yA DRY a: 100 - PERCENT a 80 - NUTRIENT CONTENT m m. 11 Hi m . Co Mg PETIOLE Fe COMPOSITION 60 50 >. 40 ■WH- / 30 20 => ------ PETIOLES $ STEMS # — - CHECK PETIOLES | •*— CHECK STEMS & W N 5 -P N 5 -K P 5 5 -C o 5 5 K K Co Co (S 04)(CI) (S04)(CI) 5 -F e 5 -Mn 5 - 8 Wig Fe Mn SOLUTION CONTENT 5 B m -m ■ if i Cu 5 ■Zn 5 -M Cu Zn Mo . Zinc (see figure opposite) An in c r e a s e in the le v e ls of zin c in the nutrient solu tion (0, . 05 check, and . 25 ppm) r e s u lte d in an in c r e a s e in p o ta ssiu m and boron in the p e tio le s , but d e c r e a se d m an gan ese and z in c. The only elem en t w hich w as sig n ific a n tly a ffected w as boron. A s shown in the low er graph, 23 of the 25 treatm en ts had a higher zin c content in the p e tio le s than in the ste m s. Only - K and 5 Mo had low er zin c con cen tration s in the p e tio le s than in the ste m s. The highest z in c p e tio le content w as found in the - Mo and 5 Ca(Cl) trea tm en ts, w hile the lo w e st content w a s o b se rv e d in the - K treatm en t. The lo w est zin c stem content w as found in the - N treatm en t and the h igh est in the - Mg treatm en t. Z in c stem v a lu e s show ed sig n ifica n t d ifferen ces but not the p e tio le v a lu e s. When m agn esium in the solution w as in c r ea se d from 0 to (' 243 ppm, the z in c content o f ste m s d e c r e a se d sig n ifica n tly . On the other hand, in c r e a s e d le v e ls of boron in the solu tion (from O to 2. 5 ppm) in ­ c r e a s e d sig n ifica n tly the z in c content of stem s. k- 2 .5 £ 2.0 K- PETIOLES 1.0 STEMS u .49 .55 4.42 7.37 O 2 8 4 532 849 192 1418 192 5 K (Cl) 5Ca(CI) Treatment Ck 5Mg 5Ca(S04 ) C l/S 0 4 RATIO IN SOLUTION Chlorine (see figure opposite) A s m en tion ed e a r lie r , high le v e ls of p o ta ssiu m and calcium w ere te ste d w ith s u lf a t e - -5 K (SC>4) and 5 Ca(SC>4) tr e a tm e n ts--a n d w ith c h lo r ­ i d e - -5 K(C1) and 5 C a(C l) tr e a tm e n ts --a s anion s. w as added to the high m agn esiu m (5 Mg) treatm en t. Som e ch lorid e a lso The graph opposite show s the c h lo rid e con cen tration of ste m s and p e tio le s in com p arison w ith the Cl_ ra tio in the so lu tio n s of the check, 5 Mg, 5 C a(S04), 5 K (Cl) so4 and 5 Ca(Cl) tr e a tm e n ts. p etio le ch lorid e con ten ts. % In crea sin g r a tio s brought in c r e a sin g stem and The ste m s, how ever, did not in c r e a se in chloride a s m uch a s the p e tio le s and the d ifferen ce betw een th ese two plant p a rts b ecam e la r g e r with in c r e a sin g c h lo r id e /su lfa te r a tio s in the solution. The ch lorid e content o f p e tio le s from the ch eck treatm en t w as . 07%. C hloride v a lu e s of 1. 70% for the 5 K(C1) treatm en t and 1. 89% for the 5 Ca(Cl) treatm en t w e re in the approxim ate range o f to x icity . H ow ever, no ch lorid e to x ic ity sum ptom s on le a v e s w ere o b serv ed . 72. DISCUSSION T he c o m p o sitio n of the nutrient so lu tio n s u sed in th is exp erim en t seem ed to be the m ain fa cto r in flu en cin g grow th and developm oit of the plant. Bonner and G a lsto n e (1952) d e scr ib e d grow th a s quantitative m atter w hich can be m e a su r e d (length and w eight) w hile developm ent is a qualita­ tive e x p r e s s io n and can only be o b se rv e d . The r e s u lts , th erefo re, should be broken down into dry w eigh t accu m ulation and length of shoots a s growth, w hile v isu a l d e fic ie n c y or to x ic ity sym p tom s a s w e ll a s va ria tio n s of lea f c h a r a c te r is tic s should be tr e a ted a s developm ent. H ow ever, both grow th and developm ent e x p r e s s th e m se lv e s a s an entity and w ill be trea ted a s such. Shear, Crane and M e y e r s 1 (1946) concep t of nutrient balance and in ten sity can be taken a s a b a sis fo r evaluation of the so lu tio n s in r e sp e c t to dry w eight accu m u lation and lin ea r grow th. T h ese authors fe lt that a m ore id eal balance b etw een the e s s e n tia l nutrient e lem en ts has to e x is t before h igh er y ie ld s can be obtained by in ten sify in g nutrition. P r e lim in a ry ex p e rim en ts show ed that the lx le v e l of the No. 1 solution p ro p o sed by Hoagland and Arnon (1950) m ight be suitab le a s a standard solu tion and a ll other trea tm en ts w e re adjusted accordin gly. A com p arison of the p e tio le co m p ositio n of th is ch eck treatm en t w ith the standard p e tio le co m p o sitio n for M ichigan Concord grap es, a s esta b lish e d by L a r se n (1957) o v e r a num ber o f y e a r s , r ev e a le d som e m arked d iffe r ­ en ces. T ab le 2 show s th is co m p a riso n . TABLE 2 COMPARISON BETWEEN STANDARD PETIOLE VALUES OF FIELD SAMPLES (LARSEN, 1957) AND VALUES OF THE CHECK TREATM ENT E lem en t N itrogen Phosphorus P otassium Calcium M agnesium Iron M anganese Boron Copper Z inc % % % 7o 7c ppm ppm ppm ppm ppm F ie ld Standard V alu es N utrition Solution Check T reatm ent V alues .8 0 .2 4 1. 91 1.60 . 46 44 434 25 35 23 1 .0 6 . 37 5. 72 .99 .4 5 35 63 56 24 46 ' Inspection of th e se v a lu e s show s that p otassiu m in p e tio le s o f the check treatm en t w as th ree tim e s high er than the standard fie ld a v era g e. C alcium , on the o th er hand, w a s 50% low er, w hile boron and z in c showed double the amount found under fie ld con d ition s. The la r g e st variation, how ever, w as for m an gan ese w here the fie ld sa m p le w as sev en tim e s higher than that for the nutrient solution sa m p le. The resp o n sib ility for such a m arked v a ria tio n could lie in the follow in g p o s s ib ilitie s : 1. T he solu tion is e ith e r too high or too low in the sp e c ific elem en t. 2. In teraction o f oth er e lem en ts m ight p rev en t o r enhance uptake of the s p e c ific elem en t. 3. L uxury consum p tion m ight o ccu r w here ex tr em e high le v e ls a r e p r e se n t. 4. The e lem en t m ight be tied up in the solution and not a v a il­ ab le to the plant. Before th e s e p o s s ib ilit ie s can be d efin itely identified, oth er fa c to r s, such a s p e tio le co m p o sitio n of oth er trea tm en ts, a s w e ll as dry w eight a ccu m ­ ulation and lin e a r growth, have to be c o n sid ered . The f ir s t v isu a l d e fic ie n c y sym p tom s o c cu rr e d on the - N treatm en t and w e r e so s e v e r e that 42 ppm o f nitrogen had to be added in o rd er to keep the plant a liv e . U ltim ate a n a ly sis o f p e tio le s show ed . 51% and that o f stem rev e a le d . 63% nitrogen, in oth er w ords, m ore nitrogen w as in the stem s than in the p e tio le s . T h e se v a lu e s m u st d efin itely be deficien t, inasm uch a s lite r a tu r e g e n e ra lly a g r e e s that . 80 to 1. 5% N a re e s s e n tia l for norm al plant grow th and produ ction. The low v a lu es e x p r e s s e d th e m se lv e s in s e v e r e d e p r e ssio n o f lin ea r grow th and dry w eight accum ulation a s w e ll a s in low ph osphorus and p o ta ssiu m , but rath er high calcium v a lu es in the p e tio le s . T he in ter a c tio n w ith p o ta ssiu m and calcium becam e m o re p ro - 75. nounced under high n itrogen con d ition s. H ere, the r e v e r s e w as prom inent. It s e e m s , th e r e fo r e , that d e p r e ssio n o f grow th under high nitrogen le v e ls m ay be due to antagonism on oth er e le m e n ts and an in d irect e ffe ct of nitrogen rather than a d ir e c t one, a s is the c a se under nitrogen d eficien t conditions. V a rio u s sym p tom s of p ota ssiu m d eficien cy , a s d e scr ib e d by W ilhelm (1950) w e re exp ected , h ow ever, after fiv e w eek s of growth, only the purple sym p tom s appeared. T h e se v a rio u s p o ta ssiu m d eficien cy sym ptom s w ill be d is c u s se d in con n ection w ith E xp erim en t II. P etio le a n a ly sis and stem analy; s is from p lan ts tr e a ted w ith p otassiu m d eficien t solution show ed . 12% and . 30% K r e s p e c tiv e ly , v a lu e s w hich a r e far below th o se rep orted for norm al field con d ition s. It is g e n e r a lly accep ted that p o ta ssiu m has a regu latin g effect on plant m eta b o lism , and is involved in m o st b io lo g ica l rea ctio n s, how ever, its s p e c ific ity has not been e sta b lish e d . T h erefore, it is not s u r ­ p r isin g that a s e v e r e p o ta ssiu m d eficien cy w ill d e p r e ss dry w eight accu m u­ lation and lin ea r growth. The high le v e l of p o ta ssiu m had the sa m e effect on growth as the low le v e ls . L eaf sym p tom s, w hich w e r e id en tified by p etio le a n a ly sis a s m a g ­ nesium d eficien cy , app eared a fter nine w eek s o f growth. sium trea tm en ts, how ever, did not r ea c t a lik e. The two high p o ta s­ W hile the le a f sym ptom s w ere the sa m e, KC1 d e p r e sse d grow th far m ore than K2SO4. Both tr e a t­ m ents had the sa m e m agn esiu m p e tio le content, how ever, the Cl/SO^ ratio m ight have been of in flu en ce in asm u ch a s w ith ch lo rid e in the solution, 1. 71% chloride w as found in the p e tio le s. T his would be expected to give an addi­ tional d ep ressiv e effect on potassium , which would agree with the findings of D illey (1957a). The reduced absorption of both m agnesium and potassium in the solution containing KC1 may account for growth being le s s for this treatm ent than for the solution containing ^ S O ^ . Furtherm ore, the boron p etiole content in both treatm ents was r e la ­ tively very high. G hrtel (1954) observed weak boron toxicity damage in vinifera type grapes with high phosphorus and potassium lev els, which could have occu rred in this case, even though no visual sym ptom s w ere found. It could, therefore, be concluded that the depression of growth by high le v e ls of potassium is due to a combination of factors, such as induced m agnesium deficiency, as w ell a s extrem e boron, sulfate and chloride le v els. One w eek after m agnesium deficiency sym ptom s occurred on the high potassium treatm ents, sim ila r sym ptom s w ere observed on the basal leaves of m agnesium deficient plants. The p etio les and stem s of these plants showed . 06 and . 07% m agnesium , resp ectively, which is low and below the critical point of about . 2% (Kenworthy, 1956). Magnesium plays an important role as a constituent of chlorophyll, which, in turn, is involved in photosynthesis. Inasmuch as m agnesium is v ery m obile and e a sily translocated from the basal lea v es to the term in als, it is understandable that there was very little d ep ression in lin ear growth. Furtherm ore, nitrogen and phosphorus w ere sligh tly higher and calcium was tw o-thirds higher than in the p etioles of the check; potassium w as somewhat low er while the m inor elem ents seem ed to be little affected. The somewhat stronger depression of total dry weight accum ulation m ight a lso be explained on this b asis. T here w as a large difference, however, in the shoot/root ratio between - Mg and 5 Mg. The latter had the la rg est ratio and was a lso m ore depressing in the total lin ear growth and total dry weight accumulation. If dry weight a c ­ cum ulations of the vaious plant parts are compared on the b asis of per cent of the total, the la rg est difference is found in the roots where 5 Mg had 46% and - Mg had 20%, w hile the check produced 26%. Petiole an alysis showed that 5 Mg resu lted in a d ep ression of calcium and potassium , but in creased phosphorus and boron. Experim ent II w ill deal with these interactions. Calcium d eficiency sym ptom s w ere found to coincide with . 26% c a l­ cium p etiole content, and agreed with the reports of Hagler and Scott (1953) and Steilw aag and Knickmann (1955). Since calcium is part of the c ell com ­ position and very im m obile, the breakdown occurred in the term inal regions. Very low calcium content in the p etio les was combined with high nitrogen, phosphorus, potassium and boron, as w ell as in creased magnesium and m anganese le v e ls. Since nitrogen, phosphorus and potassium are present in large quantities and m agnesium is above normal, the m etabolic p ro cess of the plant can go on except for the fact that the main c e ll wall constituent is m issin g without which no elongation or accum ulation can occur. Also, the development of the shoots from a xillary buds can thus be explained. Further d iscu ssio n of calcium in relation to growth w ill be found in E x­ perim ent II. A fter tw elve w eeks of growth, phosphorus deficiency symptoms appeared on -P plants. Petiole and stem an alysis showed . 10 and . 11% phosphorus, resp ectiv ely . No phosphorus deficiency has as yet been ob­ served in Concord grape growing regions, and a petiole content of . 2% is accepted as norm al. Phosphorus is the source of energy in the m eta­ bolic p r o c e ss and any d eficiency should autom atically slow down the growth p ro c ess. It se e m s that deficient le v e ls of phosphorus are coupled with v ery low nitrogen va lu es. A d epression in potassium but rather high lev els of calcium occurred at the sam e tim e. High le v e ls of phosphorus in the solution produced nearly as much linear growth as the check, but total dry weight accumulation was depressed. High le v e ls of nitrogen and boron as w ell as low le v e ls of calcium w ere present under this condition. The difference between total linear growth and dry weight accum ulation might be explained by the presen ce of high nitrogen and high boron. High nitrogen furthers linear growth (Kraus and Kraybill, 1913) and boron, according to the review of Gauch and Dugger (1954) 79. g iv es the c e ll e la stic ity in addition to having other functions. Inasmuch as elongation is enhanced under this condition, the c e lls may be stretched with le s s than norm al calcium in the w alls, which, in turn, would produce le s s dry weight. The experim ent showed under direct or indirect major elem ent defi­ ciency conditions that, in every instance, the stem com position was at lea st equal to, if not higher than, the p etiole com position, as shown in Table 3. The amount of nitrogen in stem s and p etioles of the check treatm ent was very clo se , 1. 05 and 1. 06% resp ectively. Based on the com parison with the deficient treatm ents, it must be concluded tliat the check treatm ent was below norm al for nitrogen and probably m ore growth could have been achieved with m ore nitrogen present in the plant. Minor elem en ts w ere of le s s influence on linear growth and dry weight accum ulation than the m ajor elem ents. This general effect may have been due to a m ore sufficient r e se r v e supply of the m inor elem ents within the plants. This r e se r v e supply had to be diluted before growth was affected. M anganese, boron, and copper deficiency sym ptom s appeared at the sam e tim e. Plants with m anganese deficiency symptoms had 18 ppm Mn in p etio les and 23 ppm in stem s. Beattie and F orshey (1954) reported that m an­ ganese d eficiency can occur when the July p etiole content drops below 30 ppm. Maume and Dulac (1952) found very large variations of m anganese content in 80. TABLE 3 COMPARISON BETWEEN STEM AND PETIOLE CONTENT OF ELEMENTS DEFICIENT OR APPROACHING DEFICIENCY IN THE PLANTS Specific E le ­ Treatm ent ment D eficient Content Per Cent - Dry Weight P etioles Stems V isible D e fic i­ ency Symptoms -N N . 51 . 63 Nitrogen -P N . 62 . 62 Phosphorus -P P . 10 . 11 Phosphorus -K K . 12 .27 Potassium 5N K 1. 57 1. 87 Unidentified 5 K(S04) Mg . 14 . 18 Magnesium 5 K(C1) Mg . 14 . 19 Magnesium -M g Mg .0 6 .0 7 Magnesium - Mn Mn . 0018 . 0023 Manganese -K Zn . 0025 . 0033 Potassium base zinc term inals plants within the sam e grape variety and cam e to the conclusion that location and so il are the main ca u ses of variation. The 323 ppm of m anganese of the 5 Mn treatm ent was below the values found in normal field sam ples. Inasmuch as Experim ent III deals with m anganese m ore sp ecifically, the resp ective d is ­ cussion w ill be given later. The standard solution, however, was definitely too low in m anganese content. 81. P etio les of boron deficient plants had a content of 14 ppm, and stem s of the sam e plants had 11 ppm boron. According to Scott (1954) the range of deficiency under field conditions lie s between 10 and 20 ppm, while G^rtel (1956) felt the transition zone should be between 13 and 15 ppm. Since boron deficiency im pairs photosynthesis and translocation of sugars from leaves due to disarrangem ent of the phloem (Reed, 1947), a growth depression and breakdown of term inal portions m ust be expected. Even though copper deficiency sym ptom s w ere present, the petiole an alysis did not show it. Both - Cu and 5 Cu produced m ore total dry weight than the check; however, in total linear growth both w ere below the check. Comparison of p etiole and stem an alysis showed that in m ost treatm ents the stem copper content was higher than the p etiole content. Based on the com ­ parison between p etio les and stem s for m ajor elem ents, this would indicate that copper was deficient in m ost treatm ents. This w ill be d iscussed further in Experim ent II. D eficient plants had m ore zinc in their p etioles than plants fed with 5Zn solution, but deficiency sym ptom s w ere definitely present. The only treatm ent resu ltin g in le s s zinc in the p etioles than in the stem s was potassium . Zinc has an e sse n tia l function in the production of growth regulating substance which takes place in the m eristem atic regions of the plant. The p ossib ility ex ists that sym ptom s ob served on the term inal portions of the - K treatm ent 82. plants w ere due to zinc shortage because petiole an alysis showed 25 ppm zinc in the p etio les, which w as the low est concentration found in any trea t­ ment. Furtherm ore, the zinc content of stem s from the - K treatm ent was 33 ppm. Sim ilar sym ptom s observed on the term inals of the 5N treatm ent w ere a lso b elieved to be zinc deficiency, since high le v e ls of nitrogen brought a se v ere d ep ression of potassium , which, in turn, seem ed to be related to the zinc content of the p etio les. cate a deficient zinc lev el. The p etiole analysis, however, did not indi­ On the other hand, since the p etioles of the whole plant w ere analyzed together, and, therefore, the values would be an indication of their average zinc content, they would not show the deficient level of the term inal portion. Both - Mo and 5 Mo had som e dep ressin g effect on total linear growth but 5 Mo produced m ost dry weight, while - Mo produced slightly le s s than the check. Petiole an a ly sis showed that both w ere very high in calcium; - Mo was low in boron, while 5 Mo was slightly above the check. A combination of high calcium , a better utilization of nitrate nitrogen for which molybdenum is essen tia l (Bergman and Kenworthy, 1956) and sufficien nitrogen, phos­ phorus, potassium , m agnesium , and boron w ere probably responsible for the high dry w eight accum ulation. The - Mo plants w ere low in molybdenum and boron in com bination with high calcium and low er potassium concen­ trations. 83. Total dry weight accum ulation was little affected by iron deficient nutrient solution, but total lin ear growth was depressed. d ep ressed both m easu rem en ts. High le v e ls of iron In m ost treatm ents iron was higher in the stem s than in the p e tio les, which would suggest that iron was low or deficient in the check solution. of influence. However, iron source a.nd poor translocation might be Both low and high iron treatm ents w ere about equal in per cent distribution of the plant parts and in the shoot/root ratios. There was, how­ ever, a v ery distinct difference in the appearance of the root system with high iron plants having v ery poor, very brittle and many dead roots, while - Fe had a poor root system with black roots, but brittlen ess and dead ones w ere m issin g . Both treatm ents produced high calcium lev els in the p etioles and the potassium value with 5 Fe was 1% lower than the check. This p otas­ sium d ep ression se e m s to match the high iron value under potassium d efi­ cient conditions. The total dry weight accum ulation and total linear growth are p resen t­ ed in form of cu rves in Figure 9. T h ese cu rves are based on the law of dim ­ inishing return with the treatm ents giving highest resu lts in each case at the apex and the other treatm ents arranged in depressing order towards the base on each side. As shown in Figure 9, the relative effect of a specific elem ent upon dry weight accum ulation or linear growth depends on the sp ecificity of the elem ent in the m etabolic p r o c e ss and its interaction with other elem en ts. F ig u r e 9 Top T otal dry w eight accu m u lation of each of the 25 trea tm en ts arran ged on a cu rve with the treatm en t producing the la r g e s t amount of dry weight (5 Mo treatm en t) in the cen ter on the h ighest point. Low le v e l trea tm en ts w ere a r ­ ranged on the left sid e in d e c r e a sin g order of d ep ressio n from the b ase lin e tow ards the high­ e st point on the cu rve, and the high lev el treat­ m en ts from th is point tow ards the right in in­ c r e a s in g o rd er of d ep re ssio n . The vertica l d istan ce from the b ase lin e to any treatm ent is d irectly p rop ortional to its total dry weight accum ulation. Bottom Total lin ear growth for each of the 25 trea t­ m en ts arranged on a cu rve with the treatm ent producing m o st total lin ea r growth (check treatm ent) in the cen ter on the h ighest point. Low le v e l trea tm en ts w e r e arranged on the left sid e in d e c r e a sin g o rd er of d ep ression from the base lin e tow ards the high est point on the cu rve, and high le v e l trea tm en ts from th is point tow ards the right in in crea sin g o r ­ der of d e p r e ssio n . The v e r tic a l distance from the b ase line to any trea tm en t is d irectly pro­ p ortional to its total lin ea r growth. TOTAL DRY WEIGHT ACCUM ULATION -(G R A M S ) LOW LEVELS 5 Mo HIGH LEVELS -Fe -Cu CHECK ^ _5K (S 0J -Co 5P ..5 0 -N -K - Leaf symptoms present TOTAL LENGTH GROWTH-(CM) LOW LEVELS CHECK HIGH LEVELS ■5P 5B >^5C u 5K (S 04), 5Mn 5Mo 5Fe *\-5N 5 Co (S04) f5K(CI) \5Ca(CI) 5 Mg ♦Leaf symptoms present 85. The plants used in this experim ent were rooted under normal field condi­ tions and then subjected to sev er e nutritional conditions. The curves dem on­ strate the value of balanced nutrition (Shear, Crane and M yers, 1946); how­ ever, they do not show the relative effect of an elem ent, should the deficiency continue to ex ist. In ev ery ca se this would probably drop the values to zero with the tim e required depending on the elem ent in question. Increasing le v e ls of nitrogen, phosphorus, potassium , calcium , m ag­ nesium, m anganese, and boron in the nitrient solution brought an in crease of each sp ecific elem ent in the p etioles and in stem s. Iron, copper and zinc did not follow this tendency. Scharrerand Jung (1956) found a sim ilar situa­ tion in an experim ent with m inor elem en ts on corn and field beans. With corn, only iron was irregular, while copper and zinc increased with in crea s­ ing le v els in the nutrient solution. behaved irregu larly. In field beans, however, all three elem ents EXPERIMENT II E FF E C T S OF K RATIOS ON GROWTH, PETIOLE AND STEM COMPOSITION In E xperim ent I potassium deficiency appeared on lea v es in the form of a purple colorin g. V arious visu al sym ptom s have been reported for pot- assum d eficiency under field conditions (Wilhelm, 1950). It has been sug­ gested that th ese various patterns of potassium deficiency may be related A to the p resen ce of various le v e ls of calcium and m agnesium . Experim ent II was set up to test this p o ssib ility . EXPERIMENTAL PROCEDURE The in ter-relation sh ip of calcium , m agnesium and potassium and its effect upon Concord grape vines was tested with four replications of 18 trea t­ m ents, a s d escribed in Appendix Table 9. T reatm ents 3 to 18 w ere a fa c­ torial study of four le v e ls of calcium and m agnesium in the nutrient solution with all other elem en ts being constant. T reatm ents 1 and 2 contained 117 ppm potassium , while a ll other treatm ents had only 23 ppm. Treatm ents 1 and 3 and treatm ents 2 and 13 had the sam e calcium -m agnesium combination, which made a com parison of the potassium effect p ossib le. O ne-half strength of the check solution for Experim ent I (Appendix Table 1) w as used as the b a sis for the experim ent. The solution was modified, 87. according to the resu lt of Experim ent I, by doubling the m anganese and in ­ crea sin g the copper content by 50%. the iron source by Sequestrine. Also, ferrou s lactate was replaced as Appendix Table 10 shows the com position of the 18 solutions and th eir in creasin g Ca+Mg ratios. K com position equal to on e-h alf of the check solution. Treatment 1 had a T w o-year-old plants w ere stored, pruned, and planted on January 17, 1957, as d escribed in Experim ent I. After planting they w ere arranged into four weight groups, and each group was considered as a replication. average weight per group was 43, 62, 78 and 93 gram s. The The plants were fed for the fir st tim e on February 2. All but 13 of the plants produced flower clu sters, which were left on the pLants in order to further the drain of potassium and to see if b erries have any effect on deficiency sym ptom s. The flower clu sters were ’’flicked’' every day to enhance pollination. When harvested on May 28, 29 and 30, total linear growth and dry weight accum ulation of roots, stem s, b erries, p etioles and leaf blades were determ ined. Experim ent I. The stem and p etiole tissu e s w ere analyzed as described in The data w ere sta tistica lly analyzed as a randomized block experim ent (treatm ents 1 to 18) and as a factorial design (treatm ents 3 to 18). F ig u r e 10. Concord grap e le a f injured by A ra m ite sp ray ap plication as o b serv ed in the green h ou se. 88. RESULTS GENERAL OBSERVATIONS Breaking of buds occu rred very evenly, with the plants of replication 1 (lightest in weight) being a little ahead of the other three replications. This gain w as equalized la ter and no difference in rate of growth could be observed. A spray application of A ram ite (2 -(p-tert-Butylphenoxy) isopropyl-2chloroethyl sulfite) w as used to control a sev ere m ite infestation that developed % after four w eeks of growth. Leaf sym ptom s of injury, as shown in Figure 10, appeared on m ost le a v es 24 hours later. A combination of the general con­ ditions of the plants, tem perature and m oisture was suspected as the cause, because the standard concentration (1 oz. /3 g a l.) that was applied does not norm ally injure greenhouse plants. The injured leaves did not drop off dur­ ing the experim ent, although som e of the leaves w ere perm anently injured. The spray injury made it difficult to fully recognize potassium defi­ ciency sym ptom s on th ese damaged lea v es. New leaves, unfolding after the spray damage had occurred, w ere com pletely normal without any effect. Some lea v es developed the purple castin g as described in Experim ent I. No so -c a lle d "black leaf" or brown leaves, as have been observed under field conditions, appeared. Stem and p etiole an alysis identified the purpling again as potassium d eficiency. Some lea v e s on plants receiv in g treatm ents 4 and 6 were very chlorotic and iron c h lo r o sis w as suspected. VISUAL APPEARANCE OF ROOTS T here w as v ery little variation in the general appearance of the root sy stem s of plants in this experim ent. with the standard of Experim ent I. All w ere judged as good in com parison The only difference between the treatm ents w as the color, which v aried from dark brown to very light brown. No brittle roots w ere found, however, root dry weight accum ulation varied considerably. Roots of treatm ents 1 and 2 w ere darkest, while those of treatm ent 5 w ere nearly c o lo r le s s . The roots of treatm ents included in the factorial treat­ m ents appeared as shown in Table 4 (numbers in parentheses are treatm ent numbers). TABLE 4 VISUAL APPEARANCE OF ROOTS Calcium Concentration - ppm 100 200 301 401 M agnesium Concentration (Ppm) 24 (3) Dark brown (7) Dark brown (11) Dark brown (15) Dark brQwn 49 (4) Brown (8) Brown (12) Brown (16) Dark brown 73 (5) Very light (9) Light brown (13) Light brown (] 7) Dark brown 97 (6) Brown (10) Brown (14) Brown (18) Light brown 90. GROWTH Data pertaining to dry weight of roots, stem s, b erries, p etioles, leaf blades and total for the plants, together with linear growth, are recorded in detail in Appendix Table 11. Dry weight determ inations of the various plant parts w ere converted to per cent of the total dry weight accumulation for each treatm ent and sh oot/root ratios w ere calculated. T hese values are r e ­ corded in Appendix Table 12. S tatistical a n alysis of the factorial portion of the experim ent showed no significant d ifferen ces for any of the above mentioned plant parts. Statis­ tical an a ly sis for the en tire experim ent as a randomized block design of 18 treatm ents showed that the treatm ents having a higher potassium content in the solution (treatm ents 1 and 2) w ere significantly different from treatm ents having a low er potassium content in the solution. Although the ratio was increased from 5. 3 to 21. 2, there was no significant difference in the growth of any part of the plant, or the entire plant. The variations in the ratio w ere established by vary­ ing the calcium and m agnesium content of the solution while potassium was maintained at the sam e lev el (23 ppm). An in crease in the potassium content of the solution (ratios 1. 6 and 3. 2) resulted in significantly greater root growth and greater production of dry m atter for the entire plant. ELEM ENTA L COMPOSITION OF PETIOLES AND STEMS D etailed data pertaining to p etiole and stem com position can be found in Appendix T ables 13 and 14. Significance of F values, as established in the sta tistica l a n alysis of the factorial design are reported in Appendix Table 15. The ratio in the nutrient solution was of no direct influence upon nutrient com position of p etio les and stem s for any one element; how­ ever, varied le v e ls of calcium and m agnesium in the solution had a significant influence upon certain nutrients. A lso potassium was of influence as shown by the com parison of treatm ents 1 with 3 and 2 with 13, Nitrogen: Large variations in nitrogen content of p etioles and stem s occurred, even though nitrogen was constant in all solutions. No statistical analysis w as made for p etiole nitrogen because of poor petiole growth in som e treatm ents. A com parison of treatm ents 1 and 2 (117 ppm K) with treatm ents 3 and 13 (23 ppm K) showed that when calcium and magnesium were at the low level of supply, and in crea se in the potassium supply resulted in a d ecrease of nitrogen in stem s and p e tio les. S tatistical analysis of the factorial design showed a significant F value for the effect of calcium on nitrogen content of stem s. Increasing le v e ls of calcium in the solution produced decreasing le v els of nitrogen in the stem s, as shown in Table 5. This influence of TABLE 5 INFLUENCE OF VARIABLE CALCIUM AND MAGNESIUM LEVELS ON NITRO­ GEN CONTENT (%-DRY WEIGHT) OF STEMS (MEANS OF 4 REPLICATIONS). Calcium Cone. (Ppm) 24 M agnesium Concentration (Ppm) 49 73 97 Means for Ca L evels 100 1 .4 5 1.89 1. 45 1.64 1.68 200 1. 30 1.49 1.4 9 1. 37 1.41 301 1.41 1.32 1.41 1.32 1.37 401 1 .3 3 1.26 1.33 1.27 1. 30 1.41 1.49 1. 46 1.40 M eans for Mg le v e ls % LSD Calcium le v e ls .1 2 . 17 5% 1% NS Magnesium le v e ls TABLE 6 INFLUENCE OF VARIABLE CALCIUM AND MAGNESIUM LEVELS ON POTAS­ SIUM CONTENT (%-DRY WEIGHT) OF PETIOLES (MEANS OF 4 REPLICATIONS). Calcium Cone. (Ppm) 24 M agnesium Concentration (Ppm) 73 97 49 Means of Ca L evels 100 .7 6 .8 0 . 66 .7 6 .7 4 200 .6 8 .7 2 .6 4 .4 5 .6 2 301 .5 1 . 46 .5 2 .5 4 .51 401 .7 9 .9 8 . 64 .6 0 .7 5 .6 8 . 74 . 61 .5 9 Means for Mg le v e ls LSD Calcium le v e ls 5% Magnesium le v e ls NS . 19 93. in creasin g le v e ls of calcium was not observed in the petiole analysis, e x ­ cept where 97 ppm (3x) m agnesium was used. Here, the nitrogen concentra­ tion of the p e tio le s w as reduced from 3 .1 5 to 2. 43% dry weight as the calcium supply in the solution was increased. Potassium : P etioles of treatm ent 3 (23 ppm K) contained . 76% p otas­ sium com pared to 5. 86% in the p etio les of treatm ent 1 (117 ppm K), or treat­ ment 1 had five tim es m ore potassium in the solution and 7. 7 tim es m ore in the p etio les than treatm ent 3. The difference in stem potassium was much sm aller (. 48% for treatm ent 3 and . 74% for treatm ent 1). Treatment 2, with the sam e amount of potassium in the solution as treatm ent 1, but three tim es m ore calcium and m agnesium , had 3. 21% potassium in the p etioles and . 80% in the stem s. T reatm ent 13, on the other hand, which was equal to 2 except for the low er potassium level, had only . 52% potassium in stem s and p etioles. S tatistical an a ly sis of the factorial design showed that the calcium lev els in solution had a significant influence on petiole potassium . Potassium d ecreased as the calcium lev el in the solution was increased up to 301 ppm (3x), but an in crea se to 401 ppm calcium resulted in an in crease of the p otas­ sium content in the p etio les, as shown in Table 6. The potassium content of stem s was equal to, or higher than, the potassium content of p etio les for treatm ents that received 301 ppm calcium (3x) in the solution. 94. Phosphorus: T reatm ents 1 and 2, which had 117 ppm potassium in the solution, had a low er phosphorus content of both p etioles and stem s than treatm ents 3 and 13, resp ectiv ely (23 ppm potassium ). Treatment 2 with three tim es a s much calcium and m agnesium in the solution as treatm ent 1 was significantly higher than treatm ent 1 in phosphorus for both stem s and p etio les. The effect of calcium and m agnesium in the solution upon p etioles (Table 7) and stem s (Table 8) was exp ressed by highly significant F values. An in crea se in calcium supply resulted in a d ecrease in petiole phosphorus, * w hile an in crea se in m agnesium supply caused an in crease in petiole phos­ phorus. The phosphorus content of the stem s was increased with higher le v e ls of m agnesium . A depression in stem phosphorus occurred when the solution calcium lev el w as raised from 100 to 200 ppm, but further additions of calcium brought slight in crea ses of phosphorus. Calcium: The p etio les of treatm ent 1 had the highest calcium content (2.40%) of any treatm ent. Plants of treatm ent 3, which had le s s potassium in the solution than treatm ent 1, had le s s calcium in the p etioles (. 64%) even though the calcium supply was equal. Furtherm ore, treatm ent 2, with the sam e potassium lev el as treatm ent 1 but three tim es m ore calcium and m ag­ nesium , was low er in petiole calcium (1. 64%) than treatment 1. Treatment 13 resulted in le s s petiole calcium than treatm ent 2 with equal calcium supply and le s s potassium supply. TABLE 7 INFLUENCE OF VARIABLE CALCIUM AND MAGNESIUM LEVELS ON PHOS­ PHORUS CONTENT (%-DRY WEIGH"0 OF PETIOLES (MEANS OF 4 REPLICATIONS). Calcium Cone. (Ppm) 24 M agnesium Concentration (Ppm) 49 73 97 Means for Ca L evels 100 .7 3 . 74 .7 5 .7 7 .7 5 200 .5 0 .6 2 .6 6 .71 .6 2 301 . 57 .5 8 .5 8 .5 8 .58 401 . 52 . 56 .5 3 .5 9 . 55 . 58 . 63 .6 3 .6 6 5% 1.56 .0 5 .0 6 M eans for Mg le v e ls LSD Calcium le v e ls and ) Magnesium le v e ls ) TABLE 8 INFLUENCE OF VARIABLE CALCIUM AND MAGNESIUM LEVELS ON PHOS­ PHOROUS CONTENT (%-DRY WEIGHT) OF STEMS (MEANS OF 4 REPLICATIONS) Calcium Cone. (Ppm) M agnesium Concentration (Ppm) 73 97 24 49 Means for Ca L evels 100 .2 6 35 .3 0 .3 5 . 31 200 .2 9 27 .2 9 .2 7 .27 301 .2 7 26 .2 9 .2 9 .28 401 .2 9 29 .2 8 .2 9 .2 9 .2 7 30 .2 9 .3 0 Means for Mg le v e ls LSD Calcium and M agnesium ■556 le v e ls 1% .0 2 .0 3 96. The calcium lev e l of the solution had a highly significant effect on stem and p etiole calcium . The m agnesium level of the solution had a sig n i­ ficant influence on the calcium content of stem s but not on p etioles. In­ crea sin g calcium le v e ls in the nutrient solution resulted in an increase in calcium of p etio les (Table 9) and stem s (Table 10). An in crease in magnesium in the solution resu lted in a d ecrease of the calcium content in stem s. M agnesium : The highest m agnesium content for p etioles was found in treatm ent 10 (200 ppm Ca, 97 ppm Mg, and 23 ppm K), and the lowest in treatm ent 1 (100 ppm Ca, 24 ppm Mg, and 117 ppm K). Treatm ent 2, equal in potassium content, but with three tim es m ore calcium and magnesium in the solution than treatm ent 1, had nearly twice as much magnesium in the p etioles than treatm ent 1. Treatm ent 13, equal to 2 except for lower potas­ sium, had sligh tly m ore m agnesium in the p etioles than 2. The stem analysis followed the sam e trend. In the factorial experim ent, the m agnesium and calcium lev els had a highly significant effect on the m agnesium concentration in the p etioles, but not in the stem s (Table 11). Increasing lev els of magnesium in the solution, resulted in an in crea se in petiole m agnesium . An in crease in the calcium content of the solution from 100 to 200 ppm resulted in an in crease of the magnesium content of p etio les. Increasing the calcium content of the solution to 301 and 401 ppm resu lted in values for petiole magnesium below that found for the ones with 200 ppm of calcium in the solution. TABLE 9 INFLUENCE OF VARIABLE CALCIUM AND MAGNESIUM LEVELS ON CALCIUM CONTENT (%-DRY WEIGHT) OF PETIOLES (MEANS OF 4 REPLICATIONS). Calcium Cone. (Ppm) M agnesium Concentration (Ppm) 24 49 73 97 Means for Ca L evels 100 .6 4 .4 5 .4 4 .4 4 .4 9 200 .9 5 .8 5 .8 8 .8 3 .8 7 301 1.0 5 .8 5 .6 2 .71 .8 0 401 1. 05 1.05 .8 4 .7 8 . 93 .9 2 .8 0 .6 9 .68 Means for Mg le v e ls LSD Calcium and m agnesium le v e ls 5% 1% . 12 .1 6 TABLE 10 INFLUENCE OF VARIABLE CALCIUM AND MAGNESIUM LEVELS ON CALCIUM CONTENT (%-DRY WEIGHT) OF STEMS (MEANS OF 4 REPLICATIONS). Calcium Cone. (Ppm) 24 M agnesium Concentration (Ppm) 97 73 49 .4 2 Means for Ca L evels .41 .4 3 200 . 57 .4 9 . 44 301 .5 5 .5 5 .48 .5 2 . 53 401 .6 4 .6 8 . 59 . 64 .6 0 .5 3 . 54 .4 9 .5 0 Means for Mg le v e ls LSD Calcium and m agnesium le v e ls 5% 1% .0 5 .0 7 4s. 00 . 42 • . 39 4^ to 100 TABLE 11 INFLUENCE OF VARIABLE CALCIUM AND MAGNESIUM LEVELS ON MAGNE­ SIUM CONTENT (%-DRY WEIGHT) OF PETIOLES (MEANS OF 4 REPLICATIONS). Calcium Cone. (Ppm) M agnesium Concentration (Ppm) 24 49 73 97 Means for Ca Levels 100 .7 4 .8 8 .88 1.2 9 .9 5 200 .7 8 1.10 1.24 1. 71 1.20 301 .8 8 1.29 1. 13 1.25 1. 14 401 .6 9 .8 4 1.08 1. 15 .9 4 . 77 1.03 1.08 1.35 Means for Mg le v e ls LSD Calcium and m agnesium le v e ls 5% 1% ' .18 .2 4 TABLE 12 INFLUENCE OF VARIABLE CALCIUM AND MAGNESIUM LEVELS ON MANGA­ NESE CONTENT (PPM-DRY WEIGHT) OF STEMS (MEANS OF 4 REPLICATIONS). Calcium Cone. (Ppm) M agnesium Concentration (Ppm) 97 73 49 24 Means for Ca L evels 100 . 128 210 169 236 186 200 111 208 165 186 167 301 172 152 139 189 163 401 142 132 111 132 129 138 175 186 146 Means for Mg le v e ls LSD Calcium and m agnesium le v e ls 5% 1% 27 36 99. M anganese: Although the m anganese content of the p etioles varied between 371 and 890 ppm, the an alysis of variance showed no significant dif­ feren ces between the treatm ents when analyzed as a randomized block design. However, the a n alysis of the factorial treatm ents showed that calcium and m agnesium had a significant influence on the m anganese content of stem s (Table 12). Increasing le v e ls of calcium in the solution significantly depressed the m anganese content of stem s. The fir st three lev els of magnesium in the solution enhanced the m anganese content in the stem s, but the fourth level de­ p r essed the m anganese content below that found for the 73 and 97 ppm (2x and 3x) le v els. Iron: Petiole and stem content of iron was low est in treatm ents 1 and 2, which contained 117 ppm of potassium . The highest level of potassium in the solution resu lted in significantly le s s iron in the stem s, regard less of the lev els of calcium and m agnesium , but had no effect when the calcium and magnesium was in creased . The influence of calcium on iron in the stem s was also significant, with 100 ppm (lx) calcium having the highest iron content and 200 ppm (2x) calcium having the low est iron content. The iron content of stem s increased, however, above that found for 200 ppm, when 300 ppm (3x) and 400 ppm (4x) calcium w ere added (Table 14). The calcium -m agnesium interaction was highly significant for iron TABLE 13 INFLUENCE OF VARIABLE CALCIUM AND MAGNESIUM LEVELS ON IRON CONTENT (PPM-DRY WEIGHT) OF PETIOLES (MEANS OF 4 REPLICATIONS). Calcium Cone. (Ppm) 24 Magnesium Concentration (Ppm) 49 73 97 Means for Ca L evels 100 101 107 94 83 96 200 75 108 106 103 98 301 124 107 72 85 97 401 86 90 95 98 92 96 103 92 92 NS 5% 1% 30 40 M eans for Mg le v e ls LSD Calcium and m agnesium le v e ls Calcium -■magnesium interaction TABLE 14 INFLUENCE OF VARIABLE CALCIUM AND MAGNESIUM LEVELS ON IRON CONTENT (PPM-DRY WEIGHT) OF STEMS (MEANS OF 4 REPLICATIONS). Calcium Cone. (Ppm) Magnesium Concentration (Ppm) 97 49 73 24 Means for Ca L evels 100 105 131 104 131 118 200 85 89 97 85 89 301 86 93 91 104 93 401 99 98 94 101 98 94 103 97 105 M eans for Mg le v e ls LSD Calcium le v e ls M agnesium le v e ls 5S6 1% NS 20 26 101. in p e tio le s (T able 13). With 100 ppm (lx ) calcium in the solution there w as no sig n ifica n t in flu en ce of the m agnesium le v e ls upon the iron content of the p e tio le s . H ow ever, the lo w e st iron content w as found in com bination with 73 ppm (3x) m agn esiu m . With 200 ppm (2x) calcium in the solution the u se of 24 ppm (lx ) m agn esiu m r esu lted in iron being sig n ifica n tly below that found for e ith e r 49 or 73 ppm (2x and 3x) m agn esiu m . With 301 ppm (3x) calcium in the solu tion and 73 ppm (3K) m agn esium , the lo w est iron content of p e tio le s resu lted , w h ile w ith 24 ppm (lx ) m agnesium the h igh est content o ccu rred . The va rio u s m agn esium le v e ls w ere of no influence upon the iron p etio le content when com bined with 401 ppm (4x) calciu m . Boron: A d e c r e a s e in p ota ssiu m from 117 ppm (treatm ent 1) to 23 ppm (treatm en t 3) r e s u lte d in an in c r r a se in the boron content o f the p e tio le s . However, w ith higher le v e ls of calcium and m agnesium reduced potassium le v e ls did not a ffect the am ount of boron in the p e tio le s. S ta tistic a l a n a ly sis of the fa cto ria l d esign showed that the le v e ls of calcium and the ca lciu m -m a g n esiu m interaction had a sign ifican t influence upon the boron content of the p e tio le s (T able 15) and stem s (Table 16). The le v el of m agnesium on the oth er hand, sig n ifica n tly affected boron only in the ste m s. The in teraction of m agnesium with calcium showed that the influence of calcium upon the boron content of the p e tio le s w as reduced w ith higher 102. TABLE 15 INFLUENCE OF VARIABLE CALCIUM AND MAGNESIUM LEVELS ON BORON CONTENT (PPM-DRY WEIGHT) OF PETIOLES (MEANS OF 4 REPLICATIONS). Calcium Cone. (Ppm) 24 Magnesium Concentration (Ppm) 49 73 97 Means for Ca L evels 100 92 49 58 49 62 200 29 32 30 31 31 301 12 24 32 34 25 401 31 42 27 32 33 41 37 37 37 M eans for Mg le v e ls LSD Calcium le v e ls 5% 6 8 i% M agnesium le v e ls NS C alcium -m agnesium interaction * 12 16 5% 1% TABLE 16 INFLUENCE OF VARIABLE CALCIUM AND MAGNESIUM LEVELS ON BORON CONTENT (PPM-DRY WEIGHT) OF STEMS (MEANS OF 4 REPLICATIONS). Calcium Cone. (Ppm) 24 M agnesium Concentration (Ppm) 97 73 49 Means for Ca L evels 100 11 25 25 36 24 200 13 11 21 17 16 301 10 14 19 20 16 401 16 20 12 13 15 12 17 19 22 Means for Mg le v e ls LSD Calcium and m agnesium 5% le v e ls 1% C alcium -m agnesium interaction 5% 1% 3 4 6 9 le v e ls of m agnesium . The low le v e l of calcium resulted in a greater amount of boron in the p etio les than found for the other lev els of calcium regard less of m angesium supply. C onversely the influence of magnesium upon boron content of the stem s was reduced with higher lev els of calcium . An in crease in the m agnesium supply resu lted in an in crease in stem boron only when in combination with 100 ppm (lx ) of calcium . Copper: The use of 117 ppm of potassium resulted in a significantly higher value for copper in the p etioles than found with 23 ppm of potassium when the le v el of calcium and m agnesium in the solution was low (lx). Increasing the le v el of calcium or m agnesium in the nutrient solution had a significant d ep ressin g effect on copper in the p etioles (Table 17). The influence of calcium w as a sso cia ted m ainly with the low level (lx). Furtherm ore, the F value for the interaction calcium -m agnesium of the factorial design indicated that a significant influence was exerted on the copper content of both p etio les and stem s. The use of 24 and 49 ppm (lx and 2x) m agnesium d ep ressed copper in p etioles significantly more when combined with 200, 301 and 401 ppm (2x, 3x and 4x) of calcium than when combined with 100 ppm (lx ) calcium in solution. The combination of 73 ppm (3x) m agnesium with 200 and 401 ppm (2x and 4x) of calcium in the solution d ep ressed copper m ore than when combined with 100 or 301 ppm (lx and 3x) in the solution. A ll four calcium le v e ls in combination with TABLE 17 INFLUENCE OF VARIABLE CALCIUM AND MAGNESIUM LEVELS ON COPPER CONTENT (PPM-DRY WEIGHT) OF PETIOLES (MEANS OF 4 REPLICATIONS). Calcium Cone. (Ppm) 24 M agnesium Concentration (Ppm) 73 97 49 Means for Ca L evels 100 37 29 27 25 29 200 23 23 20 23 22 301 23 24 27 23 24 401 25 26 21 24 24 27 25 23 23 Means for Mg lev e ls LSD Calcium and m agnesium 5% le v e ls 1% C alcium -m agnesium interaction 5% 1% 2 3 4 6 TABLE 18 INFLUENCE OF VARIABLE CALCIUM AND MAGNESIUM LEVELS ON COPPER CONTENT (PPM-DRY WEIGHT) OF STEMS (MEANS OF 4 REPLICATIONS). Calcium Cone. (Ppm) M agnesium Concentration (Ppm) 97 73 24 49 Means for Ca L evels 100 20 21 23 20 21 200 21 20 21 17 19 301 16 19 23 23 20 401 19 22 18 20 20 18 20 21 20 Means for Mg le v e ls LSD Calcium and m agnesium lev els C alcium -m agnesium interaction NS 5% 1% 3 4 97 ppm (4x) m agnesium resu lted in alm ost the sam e copper values for p etio les. In stem a n a ly sis it w as found that the lx lev el of magnesium when com bined with the lx lev el of calcium in the solution depressed copper sign i­ ficantly m ore than when combined with the other three calcium lev els (Table 18). With 49 and 73 ppm (2x and 3x) magnesium there was a significant dif­ ference between the 3x and 4x le v e ls of calcium . 97 ppm (4x) magnesium combined with 200 ppm (2x) calcium in the solution d epressed copper uptake m ore than when com bined with the other three calcium lev els. Zinc: The treatm ents (1 and 2) that contained 117 ppm potassium resulted in significantly m ore zinc in the p etio les than the corresponding treatm ents (3 and 13) that contained only 23 ppm potassium in the solution. An in crea se in the supply of calcium and m agnesium significantly reduced the amount of p etiole zin c a sso ciated with the use of 117 ppm of potassium . No significant influence of calcium or magnesium supply upon zinc content of either p etio les or stem s was found in the factorial experim ent. 106. DISCUSSION A v a ria tio n in the app earance of p otassiu m sym ptom s o ccu rs not only on la b ru sca type grape p lan ts, but a lso on v in ifera v a r ie tie s . H arding (1957) o b se rv e d only purple sym ptom s in an experim en t on C oncord g ra p es w ith nutrient culture. Stellw aag (1955), in nutrient culture ex p erim en ts with R ieslin g , Sylvaner, and Burgunder v in es, was able to produce brown sym p tom s by u sin g Van der Crone, H e llrieg el, and M erk en sch la g er so lu tio n s. He w as, how ever, unable to obtain them with Hoagland solution b ecau se iron c h lo r o sis appeared and m asked the sym ptom s of p otassiu m d e ficien cy . The statem ent of G&rtel (1955) that with potassium d eficien cy sym ptom s the ratio of K^OiMg in le a v e s is below 1, held true for p e tio le s in th is ex p erim en t. Knotte and R itsch l (1931) gave a d escrip tio n of nutrient culture r e ­ su lts obtained under p otassiu m d eficien t conditions. They m entioned that " g rea sy looking spots" appeared fir s t on the le a f ep id erm is between the v ein s. off. T h ese sp ots la te r turned yellow and then brown, with the tissu e dying P relim in a ry ex p e rim en ts by the author (Bergman and Kenworthy, 1956) showed s im ila r sym p tom s under com bined molybdenum and potassium d e fi­ cien t conditions. Inasm uch a s in 1931 not m uch w as known of the e ss e n tia lity of m olybdenum for plant growth, it m ight w ell be worth w hile to further in ­ v e stig a te th ese p o s s ib le con n ection s. 107. The com position of the nutrient solutions in this experim ent was designed to study various Ca.+Mg ratios in r e iation to the various potassium K deficiency sym ptom s d escribed in literature. Since in Experim ent I the potassium content of the p etio les was far above the usual field potassium content, it w as felt that l / 2 x m odified Hoagland solution would be a ju sti­ fied b a sis. However, it becam e evident from the stem and p etiole analysis at the end of the experim ent that 23 ppm potassium in the solutions for trea t­ m ents 3 to 18 was too low in com parison with the calcium and magnesium le v els and that potassium m ay have been the lim iting factor in all treatm ents. On the other hand, if higher le v e ls of potassium would have been used, the calcium and m agnesium should have been increased to provide the desired ratios and potassium may still have been the lim iting factor. The higher Ca+Mg ratios obtained by in creasin g the calcium and IC m agnesium supply had no direct influence on the stem or petiole com position for any sp ecific elem ent. Increasing ratios of treatm ents 1, 2 and 3 (ratios 1. 6 to 5. 3) resu lted in a d ecrea se in potassium , calcium and zinc and an in crease in nitrogen, phosphorus, boron and copper content of the p etioles. Furtherm ore, there w as an in crease in total dry weight and an in crease in total linear growth and in the shoot/root ratios. Since treatm ents 1 and 2 had the sam e potassium content in the solution, with 2 having higher calcium and m agnesium le v e ls, and treatm ent 3 having lower potassium content than 1, 10 8 . the e ffe c t se e m e d to be due to p o ta ssiu m rath er than the r a tio s. O therw ise, trea tm en ts 3 to 18 should have shown s im ila r resp o n se . S ta tistic a l a n a ly s is of the fa cto ria l d esign (treatm en ts 3 to 18), in w hich only the calciu m and m agnesium le v e l of the solution w as varied , gave som e in d ication s of how the v ariou s e lem en ts in p e tio le s and ste m s w ere affected by th e se two e le m e n ts or th eir in teraction (Appendix T able 15). In­ c r e a sin g le v e ls of calciu m in the solution resu lted in a sign ifican t in c r ea se in calcium and a d e c r e a s e in phosphorus, p otassiu m , boron and copper in p e tio le s. In crea sin g le v e ls of m agnesium brought a sign ifican t in c r e a se of phosphorus and m agn esiu m , but a d e c r e a se in calcium and copper. ste m s follow ed the sam e trend. The The e ffe ct of calcium and m agnesium in the solution upon th ese e lem en ts in p e tio le s or ste m s, ag reed w ith the r e ­ su lts of E xp erim en t I. It is in te r e stin g to note that when the potassiu m le v el in the solution w as red uced from 117 ppm to 23 ppm, th ere w as a slight in c r e a se in the m a g ­ nesium content of the p e tio le s and the calcium content of the p e tio le s de­ c r e a se d from 2. 40 to . 64% (treatm en ts 1 and 3) w hile with a higher le v e l of calcium in the solution a fu rther d e c r e a se from 1. 64 to 1. 13% (treatm ents 2 and 13) w as o b serv ed . T h is could be in terp reted that a certa in le v el of p otassium in the su b stra te m ay be n e c e s s a r y for an adequate absorption of calciu m . 109. In the chapter on d e fic ie n c y and to x icity sym ptom s of le a v es, it w as stated that tr e a tm e n ts 4 and 6 w ere ch lo ro tic and iron c h lo r o sis w as expected to be the c a u se. Both trea tm en ts, how ever, had the h igh est iron content (131 ppm) of the s te m s. Gouny and M azoyer (1953) felt that there are two d iffe r ­ ent kinds of iron c h lo r o sis: one, w here the iron is tied up in the so il due to high pH, and the oth er due to m eta b o lic action s w ithin the plant. In the latter c a se , v e r y low le v e ls or v e r y high le v e ls of potassiu m m ight be resp o n sib le. Lindner and H arley (1944) found v ery high p otassiu m concen trations in le a v es of Bartlett p e a r tr e e s show ing iron c h lo r o sis. The data of E xperim ent II show that the above m entioned fir s t rea so n could not be resp o n sib le for the o b se rv e d c h lo r o s is b eca u se the pH of the solution w as 5. 0 and, furtherm ore, actu ally m ore iron w as found in the ste m s of the ch lo ro tic plants than in the other ste m s. H ow ever, one strik in g factor is the high le v e l of iron found in the ste m s, a s com pared to the low er le v e ls found in p e tio le s. T his phenomena could not be a s so c ia te d with any sp e c ific ratio of ca lciu m /p o ta ssiu m , m agcalcium + m agnesium n esiu m /p o ta ssiu m , ca lciu m /m a g n e siu m or ----------;------------- . '^ potassium ^ E xp eri- m ent I produced the h igh est iron s te m value under p otassiu m d eficient condi­ tion s (100 ppm v e r s u s 80 ppm in p e tio le s), w h ile the high calcium treatm ent had slig h tly m ore iron in the p e tio le s than in the stem s (50 ppm v e r su s 45 ppm). F u rth erm ore, in th is exp erim en t, the h igh est phosphorus p etio le and stem contents co in cid ed w ith the h igh est iron stem contents. 110. Based on th ese data, it is suggested that under low or potassium defi­ cient conditions the m etabolic p ro c e ss in the plant is slowed down. Since this slow er p r o c e ss needs le s s energy, derived from the organic phosphate which, in turn, is p resen t within the plant in higher concentration, any e x c e s s would com bine with the iron and form an insoluble iron-phosphate com plex which would prevent any further iron translocation to the p etioles. To the author's knowledge nobody has been able to explain the various potassium d eficiency sym ptom s on grape vin es from a nutritional viewpoint. The r e su lts of this experim ent suggest that this problem may not be solved on the b a sis of m ineral nutrition. The occurrence of necrotic tissu e s in the event of potassium deficiency may be considered as the normal symptom. An investigation of the various lea f colors associated with potassium defi­ ciency may b est be approached on a biochem ical b asis to estab lish what pigm ents are involved and to study the quantities present, as w ell as to investigate the origin of the pigm ents. An approach sim ilar to that employed by Burghardt (1956) could be used as b asis for tests in this respect. 111. EXPERIMENT III EFFEC T OF THREE LEVELS OF MANGANESE ON GROWTH, PETIOLE AND STEM COMPOSITION The p etiole m anganese content of the check treatm ent in Experiment I w as very low, com pared to the average of field sam ples collected in late July. It w as also found that the m anganese content of p etioles from plants grown under field conditions in creased throughout the season (Bergman and Kenworthy, 1957), and reached a value as high as 2700 ppm in late fall with­ out any sp ecific leaf sym ptom s. T herefore, Experiment III was designed to find out how high the m anganese content in the solution had to be in order to reproduce the values for m anganese found in average field sam ples and to observe the effects of very high le v e ls of m anganese in the solution upon the plants and absorption of nutrients. EXPERIMENTAL PROCEDURE This experim ent w as conducted sim ultaneously with Experiment II. The experim ental m ethods w ere the sam e as for Experiment II. Further­ m ore, the check of Experim ent II ( l/2 x m odified Hoagland solution with 1. 0 ppm (2x) m anganese) serv ed a lso as a check for this experim ent (Appendix Table 9). The other treatm ents had 12. 5 and 25 ppm (25x and 50x Hoagland) m anganese in the l / 2 x Hoagland solution. 112. RESULTS GENERAL OBSERVATIONS S in ce the ex p erim en t w as c a rr ie d out at the sam e tim e and with plants lik e th ose of E x p erim en t II, the gen era l behavior o f the plants, including spray injury, w as the sa m e. H ere too, the flow er c lu s te r s w ere left on the plants and the b e r r ie s w e re allow ed to develop. On warm , sunny days, the plants supplied w ith 12. 5 and 25 ppm m an ganese seem ed to need m ore sulution b e­ cau se w iltin g o c cu rr e d m ore quickly. T his may have been a s so c ia te d with the rath er fin e textu re of the young le a v e s. Plants r e c e iv in g the high le v e ls of m an gan ese grew v ery w ell, but the b e r r ie s did not seem to ripen evenly on each c lu ste r , w hile they ripened w ell on the plants of the ch eck treatm en ts. VISUAL SYMPTOMS D uring 15 w eek s, the high m anganese plants grew norm ally like the check p lan ts. At th is tim e the youngest le a v e s of the high (25 ppm) m anganese treatm en t began to show in tervein a l c h lo r o sis with the v ein s staying green (F igu re 11). A fter a w eek, the green veination disappeared too, and the e n tire le a f took on a g reen ish -b ro w n co lo r w ith darker brown ed g es not w ider than the depth of the dentation. c o lo r and did not turn brow nish. The old er le a v e s kept th eir norm al green L eaf enlargem en t w as sligh tly ham pered. No sim ila r sym ptom w as o b serv ed throughout th ese in v estig a tio n s. The roots w ere judged a s good, and actu a lly nothing sp e c ific w as ob serv ed on either stem or r o o ts. 113. F igu re 11. Symptom on grape le a v e s o b serv ed when plants w ere supplied w ith the high lev el (25 ppm) of m anganese in the nutrient solution, after 15 w eek s of growth. MANGANESE LEVEL IN SOLUTION g M | PPM (CHECK) 17 / f * 12.5 PPM 2 5 PPM GROWTH— CM 600 150 500 400 TOTAL LENGTH 300 200 I OC l 3 « or I h- 100 CO § § DRY WEIGHT-SRAM I I 12.5 25 SOLUTION CONTENT F ig u r e 12. 5C* I . I 125 25 SOLUTION CONTENT I 12.5 25 SOLUTION CONTENT PETIOLES 1 CO LEAF BLADES El] 20 SOLUTION CONTENT E ffe ct of th ree le v e ls of m an gan ese in the solu tion on total lin ea r growth, total dry w eight, p e tio le and le a f blade dry w eight accu m u lation . 114 . GROWTH Data p erta in in g to total lin ea r growth and total dry weight accu m u la­ tion of ro o ts, ste m s, b e r r ie s , p e tio le s and lea f blad es can be found in Appendix T able 16. D ry w eight accu m ulation of roots, ste m s and b e r r ie s, p e tio le s and le a f b lad es con verted into p er cent of total dry w eight accum ulation are r e ­ cord ed in Appendix T able 17. T otal L inear Growth (F igu re 12) T here w as a sign ifican t in c r e a se in total lin ea r growth from 192 cm to 658 cm when the m an gan ese content in the solution w as in crea sed from 1. 0 ppm to 12. 5 ppm. H ow ever, further in c r e a s e s in m anganese brought a sligh t d e p r e ssio n to 610 cm which, how ever, w as still sign ifican tly larger than the check . T otal D ry W eight A ccum ulation (F igure 12) The total dry w eight accum ulation in c r ea se d with in crea sin g m angan­ e s e content in the solution . The treatm en t containing 25 ppm m anganese in the solution produced sig n ifica n tly m ore total dry w eight than the check ( 1. 0 ppm Mn) treatm en t. dry m atter. T he 12. 5 ppm treatm ent resu lted in 150. 36 gram s of T his w as 31 g ra m s m ore than found for the check, and 37 gram s le s s than for the treatm ent containing 25 ppm m anganese. D ry W eight A ccu m ulation of R oots, S tem s, B erries, P e tio les and L eaf Blades S ta tistic a l a n a ly s is for dry w eights of the above m entioned plant p arts show ed no sig n ifica n t d ifferen ce betw een the trea tm en ts for roots, stem s and b e r r ie s . The dry w eight of ste m s, how ever, in c r e a se d with in crea sin g le v e ls of m an gan ese in the solution . The 12. 5 ppm treatm ent produced tw ice as m uch stem dry w eight and the 25 ppm treatm ent three tim es a s much as the check. T his sa m e trend held true for the p e tio le s. H ere both the 12. 5 and 25 ppm trea tm en ts w ere sig n ifica n tly higher in p etio le dry w eight than the check (F igu re 12). Although the 25 ppm m anganese le v el produced m ore p e tio le dry w eight than the 12. 5 ppm m anganese le v el, the differen ce was not sign ifican t. D ry w eight accu m ulation of lea f blades in c r ea se d with in crea sin g le v e ls of m an gan ese in the solution. The use of 12. 5 ppm of m anganese r esu lted in sig n ifica n tly g r e a te r production of lea f blades than 1. 0 ppm of m an gan ese (check). A lso, the u se of 25 ppm of m anganese in the solution r esu lted in sig n ifica n tly g r e a te r dry w eight of le a f blades than 12. 5 ppm (F igu re 12). A ccum ulation of D ry W eight E x p r essed in Per Cent of T otal Dry Weight by R oots, Stem s and B er r ies, P e tio le s, and L eaf Blades C onverting the dry w eight m ea su rem en ts into p er cent of total dry w eight show ed that ste m s and b e r r ie s , p e tio le s, and lea f blades in crea sed 1500 IOOO MANGANESE CONTENT-PPM DRY WEIGHT PETIOLES MANGANESE F ig u r e 13. IN NUTRIENT S O L U T I O N - P P M E ffe c t o f th r e e l e v e l s o f m a n g a n e se in th e s o lu tio n o f m a n g a n e se and ir o n in th e p e t io l e s . 116. w ith in c r e a s in g le v e ls of m an gan ese in the solution, w hile the roots d ecrea sed . Since shoot grow th in c r ea se d , and root growth d ecrea sed , there w as an in ­ c r e a s e in the s h o o t/r o o t r a tio s a s the m an ganese le v e l w as in crea sed . The d iffe re n c e s in the p er cent of total dry w eight for the different plant p arts w as alw ays g r e a te r for the in c r e a se from the 1. 0 to 12. 5 ppm m anganese le v e l than for the in c r e a s e from the 12. 5 to 25 ppm m anganese. ELEM ENTAL COMPOSITION OF PETIOLES AND STEMS D ata p erta in in g to p e tio le and stem com position a re given in Appendix T ab les 18 and 19, r e s p e c tiv e ly . S ta tistic a l a n a ly sis showed a significan t effect of the trea tm en ts on uptake of iron and m an ganese in p e tio le s without any s ig ­ nificant in flu en ce on the oth er e lem en ts. The elem en ta l com position of the ste m s w as not sig n ifica n tly affected . Although the d iffe r e n c e s w ere not sign ifican t the in c r ea se in m anganese supply see m e d to d e c r e a s e the p etio le concentration of nitrogen, phosphorus, p otassiu m , calciu m and m agn esiu m . Stem a n a ly sis for nitrogen showed a d e c r e a se , w h ile phosphorus, p otassiu m and calcium showed an in c r ea se with in c r e a sin g le v e ls of m an gan ese in the solution. Iron (F ig u re 13) in the p e tio le s w as sign ifican tly in c r ea se d as the m an ganese content of the solution w as in crea sed . The in c r e a se in iron of ste m s a s s o c ia te d w ith in c r e a sin g le v e ls of m anganese in the solution was h ow ever not sig n ifica n t. Iron in the p e tio le s of the 25 ppm m anganese tr e a t­ m en t w a s sig n ifica n tly high er than in the 12. 5 ppm treatm ent and in the check (1. 0 ppm Mn). In a ll th ree treatm en ts the stem iron content w as low er than the p e tio le iron content. M anganese (F igu re 13) in p e tio le s w as in c r ea se d fiv e fold when m an­ g a n ese in the solu tion w as in c r e a se d from 1. 0 to 12. 5 ppm. T h ere w as about eight tim e s a s m uch m an gan ese in the p e tio le s from the 25 ppm treatm ent than in the p e tio le s from the ch eck treatm ent (1. 0 ppm Mn). The ste m s had th ree tim e s m ore m an gan ese when the solution m anganese le v el w as r a ise d from 1. 0 to 12. 5 ppm, and sev en tim e s m ore when in c r ea se d to 25 ppm. A lso, the p e tio le s contained four tim e s m o re m anganese than the stem s for the ch eck treatm en t, the d ifferen ce in c r e a se d to sev en fold when m an­ gan ese w as in c r e a s e d to 12. 5 ppm, and to 4. 7 fold w ith 25 ppm m anganese in the solution . The valu e of 3067 ppm of m anganese in the p e tio le s from the 25 ppm m an gan ese treatm en t w as com parable to the high v a lu es found under fie ld conditions in la te su m m er. H ow ever, the u se of 12. 5 ppm of m anganese in the solu tion s r e s u lte d in v a lu es fo r p etio le m anganese in e x c e s s of the v a lu es found for a v e ra g e fie ld sa m p les in m id su m m er. 118 . DISCUSSION M anganese in the solution strongly influenced the m anganese co n cen ­ tration in the plant, and see m e d to be taken up in solution to its amount p r e se n t in the su b str a te . M aume and DuLac (1952) reported, after in v e s ­ tigatin g v a r io u s grape v a r ie tie s grown in different location s, that the s p e c i­ fic ity of a v a r ie ty or s p e c ie s w as not r esp o n sib le for the m anganese content of the v a rio u s plant p a r ts, but p r im a r ily the location. L arge d ifferen ces of m an gan ese in grape p e tio le s w ere found by Bergman and Kenworthy (1957) under M ichigan conditions w hich coin cid ed w ith highly variable m anganese le v e ls in M ichigan s o ils (Lawton, 1957). T h erefo re, the reaction of grapes to m an ganese in nutrient cultu re is understandable. Furtherm ore, the pH of the nutrient solution u sed in this experim en t w as about equal to the pH of the so il in w hich grap es a re grown in M ichigan. It is in te r e stin g to note that apples, containing over 500 ppm m an­ ga n ese in the le a v e s, n orm ally show internal bark n e c r o sis (m ea sle s) on the ste m s (Kenworthy, 1957) w hile under fie ld conditions the grape vine with 2800 ppm in the p e tio le s produced no o b serv ed sym ptom s. The leaf sym ptom s p r e se n t in E xperim en t III with 3067 ppm m anganese in the p e tio les m ay have been the beginning of a d eficien cy induced by the high le v e ls of m an gan ese or an e x p r e s s io n of m an ganese e x c e s s . In s te m s of the 25 ppm m an ganese treatm ent plants, the phosphorus 119. w a s h igh er than in the p e tio le s w hich would indicate, if interpreted on the b a sis of fin din gs in E xp erim en t I, that the plants w ere low or deficient in phosp horus. E x tr em ely high m anganese le a f v a lu es w ere found under field conditions by G&rtel (1956) and w ere a sso c ia te d with phosphorus d eficien cy sym p tom s. H ow ever, the sym ptom s o b serv ed on the plants of the 25 ppm treatm en t w ere not s im ila r to sym ptom s of phosphorus d eficien cy found in E xp erim en t I. The p o ta ssiu m content of p e tio le s and ste m s d ecrea sed with in crea sin g m an ganese le v e ls in the solution. The data from E xperim ent I suggest that with high le v e ls of p o ta ssiu m in the solution the m anganese w as d ep ressed m ore than the p otassiu m w as with high m an ganese le v e ls . T h ere a r e m any rep o rts in liter a tu r e indicating high le v e ls of heavy m eta ls in the solu tion w hich induce iron c h lo r o sis (Goodall and G regory, 1947; DeKock, 1956). W einstein and Robbins (1955) noted that under high m anganese and low iron le v e ls true iron d eficien cy is induced. On the other hand, Burghardt (1956) w as unable to find any ind ications of iro n /m a n g a n ese antagon­ ism in spinach p lan ts. He based h is statem ent on r e su lts obtained on the rate of CO2 a ssim ila tio n and resp ir a tio n as w ell as the amount of chlorophyll and xanthophyll p r e se n t under low and high iron or m anganese le v e ls. In E x p eri­ m ent III the iron in p e tio le s in c r e a se d with in crea sin g m anganese in the so lu ­ tion s. F u rth erm ore, the d ifferen ce betw een stem and p etio le iron in crea sed with h igh er m an gan ese le v e ls . In trea tm en ts 4 and 6 of E xperim ent II, the 120. p e tio le iron content w as far below that in ste m s and the v is ib le sym ptom s (iron c h lo r o s is ) did not m atch the sym ptom s obtained under high m anganese le v e ls or sym p tom s found in E xperim en t I. T he c o r r e la tio n co effic ien t betw een iron and m anganese in p e tio les w as c a lcu la te d sep a ra tely for trea tm en ts v a ried in iron and m anganese (E x ­ p e r im e n ts I and III), calciu m and m agnesium (E xperim ent II), and for all the tr e a tm e n ts of E xp erim en t I w here e v er y elem en t w as varied and the follow ing r e s u lts w e re obtained: only iron and m an ganese varied + . 826 a ll elem en ts v a ried + .7 1 8 calciu m and m agn esium v a ried + .4 6 1 The fir s t two c o rr e la tio n c o e ffic ie n ts w e re sign ifican t at the 1% le v e l and the third at the 5% le v e l. T his s u g g e sts that iron and m anganese are a ctin g ind e­ pendently; oth erw ise, a n egative c o rrela tio n should have been found. Since the c o rr e la tio n betw een iron and m an ganese in the calcium and m agn esiu m trea tm en ts is com p a ra tiv ely low, a p o ssib le d irect or indirect rela tio n could e x is t w ith th ese e le m e n ts. It, th erefo re, appears that the v isu a l sym p tom s o b se rv e d with the 25 ppm treatm ent are m anganese to x icity sym ptom s, b ased on sp ectro g ra p h ic a n a ly sis for total iron in p e tio le s and ste m s . Since the le a v e s w ere not analyzed and no com p arison w as made b e ­ tw een "active" and total iron p r e se n t (Sam ish, 1954) it is felt that the sym p ­ to m s o b se rv e d w ere not connected with low le v e ls of total iron. 121 . SUMMARY The r e sp o n se of Concord grape v in e s to high and low le v e l s of e le v e n nutrient e le m e n ts w as studied in the greenh ouse in th ree ex p erim en ts. In each c a se , the p lan ts w e re grown for 16 w eek s with nutrient solution s and u sin g quartz sand a s grow ing m edia. In E xp erim en t I o n e -y e a r -o ld rooted cuttings w ere u sed and the check trea tm en t w as supplied with standard Hoagland solution No. 1 (Hoagland and Arnon, 1950). The high and low le v e ls of elev e n nutrient elem en ts w ere ob- tain ed by ad ju stin g the com p osition of the standard solution to the sp e cific le v e ls . High calciu m and p otassiu m w ere te ste d in com bination with sulfate and ch lo rid e a s anion s. T h is provided 25 trea tm en ts which w ere arranged in a random ized block w ith th ree r e p lic a te s per treatm ent. In E x p erim en ts II and III tw o -y e a r -o ld rooted cuttings w ere used. The ch eck solution w as m od ified by doubling the m anganese and in crea sin g the cop p er content by 50%. R atios from 1 .6 to 21. 2 of K in the nutrient solution, b ased on l / 2 x m od ified Hoagland solution, w ere used to te s t the in flu en ce on grow th and the v is ib le e x p r e ssio n of potassium d eficien cy a r ­ ranged in a ran d om ized block, 18 trea tm en ts with four r e p lic a te s per tr e a t­ m ent, w e re the b a s is for E xp erim en t II. Sixteen of th ese 18 treatm en ts w ere se t up a s a 4 x 4 fa c to r ia l d esign containing four le v e ls each of calcium and m agn esiu m , w ith a ll oth er e le m e n ts constant. w e re v a r ie d in the p o ta ssiu m content. The other two treatm ents 122. In E xp erim en t III the effect of th ree le v e ls of m anganese in the nutrient solu tion w as te s te d w ith th ree trea tm en ts having four r e p lic a te s each. P e tio les and s te m s of each plant w ere analyzed for nitrogen, phosphorus, potassium , ca lciu m , m agn esiu m , iron, m anganese, boron, copper, zinc, and p a rtia lly for ch lo r id e . T otal lin ea r growth, total dry w eight accum ulation, a s w ell as dry w eight accu m u lation by roots, ste m s, b e r r ie s , p e tio le s, and lea f blades w ere taken. Low le v e ls of nu trien ts d e p r e sse d dry w eight accum ulation in the follow in g d e c r e a s in g order: p o ta ssiu m ,> n itro g e n ,> ca lc iu m > p h o sp h o r u s, >boron, > m a g n esiu m ,> zinc,> m an ganese> m olybdenu m . High le v e ls of nutrients w ere of d e p r e ss in g e ffe c t in the follow ing d e c re a sin g order: potassium with c h lo r id e ,> m a g n e siu m ,> c a lc iu m with su lfate,> calcium w ith ch lorid e,> n itrogen , > p h o sp h o ru s,> p o ta ssiu m w ith su lfa te,> iro n ,> b o ro n ,> m a n g a n ese. The high m olybdenum treatm en t r e su lte d in the g r ea test dry w eight accum ulation. L inear grow th w as d e p r e sse d by d eficien t le v e ls of nutrients in the follow in g d e c r e a sin g order: n itro g e n ,> p o ta ssiu m /> p h o sp h o ru s> ca lciu m , >boron,>.copper, > zin c,> m olybdenum ,>iron2> m an gan ese,> m agn esiu m . High le v e ls of n u trien ts d e p r e sse d in the follow ing d ecrea sin g order: m agnesium , > calciu m and p o ta ssiu m with c h lo r id e ,> calcium with su lfa te,> n itro g en ,> iro n , > m a n gan ese,> m olyb d en u m ,> z in c ,> p otassiu m with sulfate,> copper,> boron. The ch eck treatm en t r e su lte d in the g r e a te st lin ea r growth w ith the high ph osphorus treatm en t c lo s e second. T re a tm en ts d eficien t in n itrogen and phosphorus or high in m agnesium and m olybdenum produced the lo w e st sh o o t/r o o t r a tio s. High le v e ls of p h o s­ ph oru s, n itrogen and low le v e ls of m agnesium resu lted in h igh est sh o o t/ro o t r a tio s . Based on dry w eigh t accum ulation, low p otassiu m , high calcium with ch lo rid e, and high m agn esium produced le a s t p e tio le s p e r c e n ta g e -w ise . M ost le a f b lad es (per cen t of total dry w eight) w ere cau sed by high nitrogen le v e ls . A p o s itiv e rela tio n sh ip betw een the sp e c ific nutrient elem en t in the solu tion and the p e tio le content w a s o b serv ed for a ll e lem en ts with the e x ­ cep tion of iron and z in c . P e tio le s see m e d to be the b etter in d icators of norm al and above norm al le v e ls of nutrition than the ste m s. The ste m s, on the oth er hand, w e re b etter in d ica to rs of low and d eficien t le v e ls . The stem content w as alw ays equal to, o r higher than, the p etio le content under low o r d e fic ie n t nutrient con d ition s. The K. r a tio s in the nutrient solution w ere of no d irect influence on total lin ea r growth, total dry w eight accum ulation, or the appearance of the p o ta ssiu m d e fic ie n c y sym p tom s. Indirectly, how ever, potassium , c a l­ cium or m agn esiu m e x e r te d v a r ied in flu en ces. C h ronological app earance of v is ib le d eficien cy or to x icity sym ptom s did not c o r r e la te w ith the d e p r e ss iv e elem en ta l e ffe c ts on total lin ea r growth and dry w eigh t accu m u lation . T h e se sym ptom s appeared on plants of the m en tion ed trea tm en ts in the follow in g order: - N a fter 4 w eeks, 5 N and 5 P a fter 6 w e ek s, - K and 5 K a fter 9 w eek s, 5 K(C1) and - F e after 10 w e ek s, -M g , - Mn, - B and - Cu a fter 1 1 w eek s, - P, - Ca, - Zn after 12 w eek s, and - Mo a fter 14 w e ek s. It w as im p o ssib le to grow p lan ts without any nitrogen for longer than th ree w e ek s. M agnesium d eficien cy sym ptom s appeared m ore quickly on plan ts w ith high p o ta ssiu m treatm en ts than on th ose treated with m agnesium d eficien t solu tion . V is ib le d e fic ie n c y sym ptom s on plants, as d escrib ed , w ere a sso c ia te d w ith the follow in g nutrient le v e ls in the p e tio les: nitrogen . 51%, phosphorus . 10%, p o ta ssiu m .47%, calcium .26%, m agnesium . 14%, m anganese 18 ppm, boron 14 ppm, copper 28 ppm, and zin c 11 ppm. M any sig n ifica n t in tera ctio n s betw een nutrient e lem en ts w ere found. In g en era l, m ajor e le m e n ts influenced the concentration of m inor elem en ts in p e tio le s and ste m s m o re than m inor elem en ts influenced m ajor elem en ts. High le v e ls of m ajor e le m e n ts in solution induced d eficien cy sym ptom s of other e le m e n ts. Som e o f the m o re str ik in g in tera ctio n s betw een elem en ts w ere as follow s: (1) Low n itrogen in the solution resu lted in low phosphorus, low boron, and high calciu m in p e tio le s . (2) High nitrogen produced high p h o s­ phorus and high boron p e tio le con ten ts. cid ed with high m an gan ese and high iron. (3) Low phosphorus in p e tio le s c o in ­ (4) V ery low le v e ls of copper and 125. z in c w e r e found under d eficien t p o ta ssiu m conditions. (5) A s p e c ific amount of p o ta ssiu m w as needed to get adequate calcium and m anganese uptake. (6) M ore p o ta ssiu m w as taken up when a s so c ia te d w ith the sulfate anion than in com bin ation w ith ch lo rid e. found in p e tio le s . In the la tter c a se , m o re calcium w as (7) High nitrogen, phosphorus, p otassiu m , m anganese and boron in p e tio le s app eared under calcium d eficien t conditions. (8) A sig n ifica n t p o s itiv e c o r r e la tio n betw een total iron and m anganese in the p e tio le s w as e sta b lish e d . (9) Low phosphorus, p otassiu m , calcium , and high m agn esiu m w e re a s so c ia te d w ith high m an ganese v a lu es in p e tio le s. (10) M ore boron w as o b se rv e d in p e tio le s of plan ts trea ted w ith high le v e ls of nitrogen, phosphorus, p o ta ssiu m , and low le v e ls of calcium than in those plan ts tr e a te d w ith high le v e ls of boron in the solution. With e x tr em e high m an ganese con cen tration s, m anganese toxicity sym p tom s app eared on le a v e s . The tra n sitio n point from non -toxic le v e ls to to x ic le v e ls se e m e d to be w ith 2900 ppm m anganese p re se n t in the petioles^. 126 . LITERATURE CITED A rch ibald, J. A. 1956. Grape nutrition stu d ies in Ontario. Paper p resen ted at 36th annual m eetin g of A gr. Inst, of Canada, T oronto. A skew , H. O. 1944. A c a s e of com bined p otassiu m and boron d e fic ie n c ie s in g r a p e s. N. Z . Jour. S ci. T e c h ., Sec. A, 26: 146-152. Babo A. von, and Ei M ach. 1910. Handbuch des W einbaues und der K ellerw ir tsch a ft. 1. Band, Weinbau. Paul P arey V erlag, Berlin. Beattie, Jam es M. 1955. D e fic ie n c ie s of p otassiu m and m anganese red uce grape y ie ld s . Ohio F arm and Home R es. N ov-D ee. _________________ , and C. G. F o rsh ey . 1954. A su rv ey of the nutrition e lem en t statu s of Concord g ra p es in Ohio. Proc. A m er. Soc. Hort. S ci. 64: 2 1 -2 8 . Bergman, E. L . , and A. L. K enworthy. 1956. Molybdenum d eficien cy and n itra te to x ic ity on C oncord g ra p es. M ich. A gr. Expt. Sta. Quart. Bui. 38 (4): 52 4 -5 2 7 . . 1957. Seasonal variation of Concord grape (V itis la b r u sc a ) p e tio le com p osition . Paper No. 308, p resen ted at 54th annual m e e tin g of A m er. Soc. Hort. S c i . , Stanford, C alif. B eyers, E. 19.55. E ffect of f e r t iliz e r s on com p osition of grape le a v es with sp e c ia l r e fe r e n c e to m agnesium d eficien cy . Union of S. A . , Dept. A gr. S ci. Bui. 353. B ioletti, F . T. , and L. Bonnet. R e s. 8: 3 8 1 -3 9 7 . 1917. L ittle -le a f of the vine. Jour. Agr. Bonner, J . , .and A. W. G alston. 1952. P rin cip les of Plant Physiology. W. H. F r e em a n and Company, San F r a n c isc o . 499 pp. Boynton, D. 1945. P otassiu m d e fic ie n c y in a New Y ork grape vineyard. P roc. A m er. Soc. H ort. S ci. 46: 246 -2 4 8 . Branas, J . , and G. Bernon. 1954. et V it. 142: 2 3 9 -2 4 3 . Sur la ca ra n ce de bore. Progr. Agr. 127. Branas, J. , and G. Bernon. 1956. La caran ce de bore dans le s vignob les fr a n c a is. P rogr. A gr. et V it. 43: 259 -2 7 0 . Burghardt, H. 1956. B eitrage zum E isen-M an gan-A n tagonism u s der Pflanze. F lo ra 143:(1) 1 -30. s' C ais, D. 1954. Note p r e lim in a ri su una m alattia della v ite risco n tra ta nel V eron ese. R iv. V itic. E nol. VII/5: 164-167. C handler, W. H. , D. R. Hoagland, and P. L. Hibbard. 1933. L ittle -le a f or r o se tte of fruit tr e e s . Proc. A m er. Soc. Hort. S ci. 30: 70-88. _____ _ ______________________________________________ . 1934. L ittle -le a f or r o s e tte of fruit t r e e s . Proc. A m er. Soc. Hort. Sci. 3 2 :1 1 -1 9 . Chapman, I. M. 1931. The rela tio n of iron and m anganese to c h lo r o sis in p la n ts. New P h ytologist 30: 266-283. C lore, W. J. 1951. L ittle -le a f or zin c d eficien cy on Concord grap es. Wash. A gr. Expt. Sta. C ir. 136. Coom bs, B. G. 1949. Z in c treatm ent of sultana v in e s. S. A ust. 53: 5 9 -61. Jour. Dept. Agr. , and H. R. M. A llan. 1955. V ineyard nutrition on deep w hite sands. Jour. Dept. A gr. S. A ust. 58: 45 5 -4 6 0 . Cook, Jam es A . , and T. K ishaba. 1957. R esu lts of foliar sp rays of chelated z in c m a te r ia ls on v in ifera g ra p es in C alifornia. Paper No. 311, p r e ­ sen ted at the 54th annual m eetin g of A m er. Soc. Hort. S c i . , Stanford, C alif. Cooper, J. R. , and J. E. V a ile. 1939. R esp on se of A m erican grapes to v a rio u s tr e a tm e n ts and vin eyard p r a c tic e s . Ark. A gr. Expt. Sta. Bui. 378. Crawford, R. F. 1935. T h e cau se and control of c h lo r o sis in New M exico. N. M ex. A gr. Expt. Sta. Bui. 264. DeKock, P. C. 1956. H e a v y m N. S. X X /7 7 . January. e ta l to x icity and iron c h lo r o sis. Ann. B o t., 128. D ille y , D avid R. 1957a. Growth and le a f com p osition in relation to the supply of c h lo rid e and su lfate anions to ch erry, apple, peach and grape plants. T h e s is for d eg ree of M .S ., M ichigan State U n iversity. _______________ _• 1957b. Unpublished data. D ufrenoy, J. 1935. E ffets du zin c sur la c r o issa n c e des V itis. Soc. Biol. 118: 156-158. Compt. Rend. Eaton, F . M. 1944. D eficien cy , to x icity and accum ulation of boron in plants. Jour. A gr. R e s. 69: 237-2 7 7 . F o rsh ey , C. G. 1955. A study of the fa cto rs a ffectin g the yield and fruit quality of C oncord grap es (V itis la b ru sca ). D is s . A bstr. 15: 926-927. G&rtel, W. 1954. U ntersuchungen liber Borsch&den an Reben. und K eller, 1: 329-335. __________ . 1954. Starke Borm angelschUden an M osel und Nahe. Weinbau, 19: Oct. 5. W einberg D eutscher . 1955. U ntersuchungen liber den Kalium und M agnesiu m -gehalt von RebblMttern. W einberg und K eller, 2: 368-375. . 1956. U ntersuchung liber die Bedeutung des Bors flir die Rebe unter b e so n d e r er B erlicksichtigung der Befruchtung. W einberg und K e lle r, 3: 132-139. . 1956. U ntersuchungen liber M angangehalt von R ebteilen und M ost. W einberg und K eller, 3: 554-560. . 1957. M agnesium , ein w ich tig er N&hrstoff flir die Rebe. D eu tsch er Weinbau K alender, 8: 2 6 -3 0 . Gauch, H. G. , and W. M. D ugger, Jr. 1954. The p h y sio lo g ica l action of boron in h igh er p lan ts: A rev iew and interpretation. Md. Agr. Exp. Sta. T ech. Bui. A -8 0 . G erb er, H. , and A. B ussm ann. verfhrbungen bei R eben. 1955. U eber die v o rzeitig en H erbstSchw eiz. Z . O bst- u. Weinb. 64: 340-343. G ollm ick, F. 1955. U ntersuchungen liber Blattbrdune (M elanose) der Reben. Phytopath. Z . 23: 24 9 -3 2 2 . 129. G oodall, D. W ., and F. G. G regory. 1947. C hem ical com position of plants a s an index of th eir nutritional status. Imp. Bur. Hort. and Plantation C rops, T ech . Com m . No. 17. Gouny, P. , and IT M azoyer. 1953. R elations entre la nutrition m in era le et le s sym p tom es pathologiq ues dans la ch lo r o se c a lc a ir e . Ann. Agron. S er. A. 4: 561 -5 9 8 . H agler, T. B. , and L. E. Scott. 1949. Nutrient elem en t d eficien cy sym ptom s of M uscadine g ra p es in sand cultu re. Proc. A m er. Soc. Hort. Sci. 53: 2 4 7 -2 5 2 . Harding, P. H. 1957. The e ffe ct of so il variation on the nutritional status of the C oncord grape. T h e sis for degree of M. S . , C ornell U niversity, Ithaca, N. Y. H e rsc h le r, A. 1933. A n alysen von R ebblSttern zur F e stste llu n g des N&hrstoffb e d lir fn isse s des Bodens und zu r Erkennung von Ern&hrungsstdrungen. A rb. Biol. R eich sa n sta lt 20: 633 -6 6 6 . Hoagland, D. R . , and D. I. Arnon. grow ing p lan ts without s o il. Kenworthy, A. L. 1957. 1950. The w ater culture m ethod for C alif. A gr. Expt. Sta. C irc. 347. Unpublished data. Kobayashi, A ., T. H osoi, and R. Isoda. 1955. Growth and yield of grapes a s r ela ted to the con cen tration s of nitrogen, phosphoric acid and p otassiu m in sand cu ltu re. Jour. Hort. A s s ’n. Japan 23: 214-220. Kotte, W ., and A. R itsc h l. 1931. U eber die Bedeutung der N H hrstoffversorgung flir die Jugendentwicklung der R ebe. Weinbau und K ellerw irtsch aft Bd. 10: 19-21. K raus, E. J. , and H. R. K raybill. 1918. V egetation and reproduction with sp e c ia l r e fe r e n c e to the tom ato. O re. A gr. Exp. Sta. Bui. 149. Lagatu, H. 1927. Sur le con trole chim ique du mode d'alim entation de la vign e. P rogr. A gr. et Vit. 27: 10-15. , and L. M aum e. 1927. Sur l ’absorption de l'a cid e phosphoric de par la vign e et su r son rOle ph ysiologiq u e. Compt. Rend. Acad. Sci. 13 (14): 4 4 3 -4 4 8 . 130. Lagatu, H. , and L. M aum e. 1940. Sur l ’optimum d'equilibre nutritif en c o r r e la tio n avec la m ode d'exploitation d'une plante cu ltivee et sur Topportunitef de la b ioch im ie a g r ic o le . Progr. A gr. et Vit. 113: 3 4 3 -3 4 5 . L arsen , R. P. 1955. N utritional conditions of Concord vin eyard s in M ichitan. T h e s is for d eg ree of Ph D. , M ichigan State U n iversity. ______________ . 1957. U npublished data. ______________ > A. L. Kenworthy, H. K. Bell, S. T. Bass, and E. J. Benne. 1956. N utritional conditions of Concord grape vineyards in M ichigan. I. N utrient elem en t content of p e tio le s in relation to production. M ich. A gr. Exp. Sta. Quart. Bui. 39 (1): 6 3 -7 0 . ______________ , H. K. Bell, and A. L. Kenworthy. 1957. Studies on the n u tri­ tion al req u irem en ts of M ichigan Concord grape vin ey a rd s. Paper No. 309 p r e se n te d at 54th annual m eetin g of A m er. Soc. Hort. Sci. , Stan­ ford, C alif. Lawton, K. 1957. P erson al com m unication. Lindner, R. C. , and C. P. H arley. 1944. N utritional in terrela tio n s in lim e induced c h lo r o s is . Plant P h ysiol. 19: 4 2 0 -4 3 9 . L iveran t, J. 1955. R elation entre le s r e su lta ts culturaux et la diagnostic fo lia ir e d'une vign e. Ann. A gr. 6: 882-885. Ldhnis, M. P. 1951. M anganese to x icity in field andm arket garden crop s. Plant and Soil 3: 193-222. Lot, W. L. 1948. M agnesium injection in M uscadine grape v in es. A m er. Soc. Hort. Sci. 52: 283 -2 8 8 . Proc. Magoon, C. A ., A. T. M y ers, I. W. Dix, and B. C. Brunstetter. 1938. A sp ectro g ra p h ic study of Concord and Ontario grape v a r ie tie s . Proc. A m er. Soc. Hort. Sci. 36: 485 -4 9 5 . and I. W. D ix. 1943. O bservation on the resp o n se of grape v in e s to w in ter tem p eratu re as rela ted to th eir dorm ancy req uirem en ts. P roc. A m er. Soc. Hort. Sci. 42: 4 0 7 -4 1 2 . 131. M a ier, W. 1937. B orm angeIerscheinungen an RebsM mlingen in W asserkultu rv ersu ch en . G artenbau w iss. 11: 1-16. M aum e, L. , and J. D ulac. 1948. N o u v elles o b serv a tio n s sur la nutrition de la vign e c o n tro lee par T an alyse chim ique de la fe u ille. Compt. Rend. A cad. A gr. F ran ce 34: 861 -8 6 4 . _______ . 1952. R em arquable plasticite" de la feu ille ch ez la vigne v i s - h.-v is du m anganese. Compt. Rend. 234: 12011203. M cG eorge, W. T . , and E. L. B reazeale. 1955. T issu e a n a ly sis as an index of the nu tritional statu s of A rizona vin eyard s. A riz. Agr. Expt. Sta. Rept. 118. Ono, T. et a l. 1956. E ffects of boron on the "Ebi" d ise a se of grapevines II. Jour. Hort. A ss 'n Japan 24: 227 -2 3 2 . (Abst. only seen, HQrt. Ab. 20 (2) No. 2560, 1956). P artridge, N. L, , and J. V. V eatch. 1931. F e r tiliz e r s and s o ils in relation to C oncord gapes in sou th estern M ichigan. M ich. A gr. Exp. Sta. T ech . Bui. 114. du P le s s is , S. J. 1948. W in gerd siek tes in Su id-A frica. S tellen b osch , 222 pp. P r o -E c c le s ia Drukkery, Randolph, U. A. 1944. E ffect of phosphate fe r tiliz e r upon the growth and y ie ld of C arm an grape in North T ex a s. Proc. A m er. Soc. Hort. Sci. 44: 303-308. R avikovitch, S . , and N. Bichner. 1937. The d eterioration of grape v in es in sa lin e s o ils . Emp. Jour. Axp. A gric. 5: 197-203. Sam ish, R. M. 1954. A contribution to the knowledge of lim e induced c h lo r o s is on grape v in e s . Plant A n a ly sis and F e r tiliz e r Problem s. VUIe C ongres Intern. Bot. , P a ris, F ran ce. 1954, 156-165. Sam son, S. 1953. A new m ethod for the quantitative determ ination of c h lo rid e in plant m a ter ia l. Nature 172: 1042. S arosi, D. 1956. L eaf and root a n a ly sis of ch lorotic v in es. A grokem . Buda. 5: 2 2 1 -2 3 2 . A bst. only seen . Hort. A bs. 27(1), 247, 1957. 132. S c h a r r er , K . , and J. Jung. 1955. U eber den E in flu ss von Mangan, Kupfer, Zink, E isen , Bor, M olybdaen und Kobalt auf die M ineralstoffaufnahm e bei M ais und A ckerbohnen. Z. Pfl. E rnaehr. Dueng. Bodenk. 75. (120) Bd. 1: 4 7 -6 6 . Scott, L. E. 1941. An in stan ce of boron d eficien cy in the grape under field con d ition s. Proc.* A m er. Soc. Hort. Sci. 38: 375-378. ____________. 1944. Boron nutrition o'f g ra p es. Soil Sci. 57: 5 5 -6 5 . ____________» and A. L. Schrader. 1947. E ffect of alternatin g conditions of boron nutrition upon grow th and boron content of grape v in es in sand cu ltu re. Plant P h ysiol. 22: 526-537. , and D. H. Scott. 1952. F u rther o b serv a tio n s on the resp on se o f grape v in e s to s o il and spray app lications of m agnesium sulfate. P roc. A m er. Soc. Hort. S ci. 60: 117-122. Shaulis, N. , and K. K im ball. 1956. The a sso c ia tio n of nutrient c o m p o si­ tion of Concord grape p e tio le s w ith d eficien cy sym ptom s, growth and y ield . Proc. A m er. Soc. Hort. Sci. 68: 141-156. Shear, G. B. , H. L. Crane, and A. T. M y ers. 1946. Nutrient elem ent balance: A fundam ental concept in plant nutrition. Proc. A m er. Soc. Hort. S ci. 47: 239 -2 4 8 . Stellw aag, F. 1954. Sym ptom e des M agnesium m angels der Rebe. Mitt. K lostern eu b erg. S er. A. Rebe und Wein 4A: 37-44. (Chem. A bstr. 48; 5291). ______________ , and E. Knickmann. 1955. Die E rnaehrungsstoerungen der RebeT V e r la g Eugen U lm er, Ludw igsburg, G erm any. 77 pp. T eak le, L. J. H ., H. K. Johns, and A. G. Turton. 1943. Copper deficiency o f C urrants at G ingin and its c o r r e c tio n . Jour. Dept. Agr. W. A ust. 20: 171-184. T hom as, J. E. 1934. The d iagn ostic value of chlorine content of the vine crop . Jour. Coun. S ci. and Indust. R es. Aust. 7(1): 2 9 -3 8 . U lrich , A. 1942a. N itra te content of grape lea f p e tio le s a s an indicator of the n itrogen statu s of the plant. Proc. A m er. Soc. Hort. Sci. 41: 213218. 133. U lrich , A. 1942b. P otassiu m content of grape lea f p e tio le s and blades c o n tra sted w ith s o il a n a ly sis as an ind icator of potassium status of the plant. Proc. A m er. Soc. Hort. Sci. 41: 204-212. V ettori, M ario. 1954. Nota su lla con cim azion e della v ite guidata della "d iagn ostica fo g lia r e ”. R iv. V itic. Enol. 7(1): 3-1 1 . V inet, E. 1935. Contribution a l ’^tude de l ‘alim entation mine'rale de la vig n e. Compt. Rend. Acad. A gric. F ran ce. 21: 30-41. Vidal, J. P. 1955. Contribution a l ’etude du diagnostic fo lia ir e du M aroc en 1954. P rogr. Agr. et V it. 144; 97-104. Volk, A. 1938. E in flu ss von Ern&hrung und W a sserv erso rg u n g auf H olzreife und W urzelbildung der Rebe. Ern&hrung der Pflanze 34: 338-346. W agner, P. P. 1924. M eine Erfahrungen auf dem G ebiet der Reb^nduengung. M itt. D eutsch. Ldw. G es. 39: 131-132. Wann, F. B. 1941. Control of c h lo r o sis in A m erican gra p es. Exp. Sta. Bui. 299. Utah Agr. W ebster, J. E. , and F. B. C r o ss. 1942. Uneven ripening of Concord grapes; C h em ical and p h y sio lo g ica l stu d ies. Okla. A gr. Expt. Sta. Tech. Bui. T - 13. W einstein, L. H. , and W. H. R obbins. 1955. The effect of different iron and m an gan ese nutrient le v e ls on the c a ta la se and cytochrom e oxidase a c ti­ v itie s of g r ee n and albine sunflow er lea f tis s u e . Plant Physiol. 30: 2132. W ilhelm , A. F. 1950. Z u r Kenntnis von K alim angelerscheinungen bei der W einrebe, V itis v in ife ra L. Phytopath. Z . 17 (3): 241-265. . 1952. Borm angel bei der W einrebe, V itis vin ifera. Phytopath. Z . 19:" 129-259. Woodham, R. C. 1956. The ch lorid e status of the irrig a ted vine and its r e la ­ tion to vin e health. A ust. Jour. A gr. R es. 7: 414-427. A P P E N D I X APPENDIX TABLE 1 NUTRIENT SOLUTION COMPOSITION, MAJOR ELEMENTS, USED IN EXPERI­ MENT I T reatm ent Ppm per 1 Liter* N P K Ca Mg so4 co3 Check 210 31 235 200 49 192 - -N 5N >5*>!» 1050 31 31 235 235 200 200 49 49 480 192 360 - P P 210 210 155 235 235 200 200 49 49 192 192 60 60 - K 5 K (S 04) 5 K(Cl) 210 210 210 31 31 31 200 200 200 49 49 49 192 1342 192 - Ca 5 Ca (S 0 4) 5 Ca (Cl) 210 210 210 31 31 31 235 235 235 1002 1002 49 49 49 192 960 192 - Mg 5 Mg 210 210 31 31 235 235 200 200 5 - _ 1171 1171 - - 243 - Cl - - - - - - - 849 - - 300 532 1418 192 576 - 60 - 284 *M inor elem en ts as recom m ended by Hoagland and Arnon (1950). * * O riginally no nitrogen, but 42 ppm added after 4 weeks in order to save the plants. 135. APPENDIX TABLE 2 NUTRIENT SOLUTION COMPOSITION, MINOR ELEMENTS, USED IN EXPERIMENT I Ppm p er 1 Liter* T reatm en t - Fe 5 Fe Fe - 25 Mn .5 .5 B Cu Zn Mo .5 .5 .0 2 .0 2 .0 5 .0 5 . 01 .0 1 - Mn 5 Mn 5 5 2. 5 .5 .5 .0 2 . 02 .0 5 .0 5 .0 1 .0 1 - B 5 B 5 5 .5 .5 2. 5 . 02 .0 2 . 05 .0 5 . 01 .0 1 - Cu 5 Cu 5 5 .5 .5 .5 .5 . 10 . 05 . 05 . 01 . 01 - Zn 5 Zn 5 5 .5 .5 .5 .5 .0 2 . 02 .2 5 . 01 . 01 - Mo 5 Mo 5 5 .5 .5 .5 .5 .0 2 . 02 .0 5 . 05 - - *M ajor e le m e n ts u sed in the sam e amount a s for check; s e e Appendix T able 1. - . 05 co 136. o c CM CM CM CM CMCM O *5 feCOio E ’ 2 w S w H w CM CM CM CM CM CM co UO CM CM CO co Is X o O CO E ^ m uo cm 2 CM CM u S Dh o bo ^ § cT' [x , % H oc/3 m uo m m m m m in in UO uo uo uo CM 22 H £ W fe, HH o o CM p CM cd c tf O H D £ °*3 $ 3 u • Ix O W W H 2 eS X w Ok 5j CM H 2 03 § fe O W w & <4 W G ~ cd 2 ; u ^ Is in cm o co CM "co uo uo m m UO uo cd i". uo uo '"f uo . in CM r- uo uo U 2 0 H P co 8X 2 L° W X X D O 2 fe HH a w 01 c/3 2: oI—I H D J O C/3 X u oH C/3 ofe C/3 fe CM CM cm . C/3 LO CM . X 22 ^C M E X E O X CM uo UO uo uo uo uo uo uo uo uo uo * uo CM u 2 co § 2 uo in uo UO uo uo uo UO 03 H CO o d u d H H CD E ■(-> cd CD X E-h M O a) JS U 3O ^CT? C/3 U r* E r-“* 4 H3 BO4 CUSO4 - 5H20 . 900 1.430 .0 4 0 .108 .02 .0 4 0 .0 4 0 .108 .108 .02 4. 500 1 .430 1.430 *- B 5 B .9 0 0 . 900 7.150 .0 4 0 .0 4 0 .108 .108 - Cu 5 Cu .9 0 0 .9 0 0 1.430 1.430 .200 .108 . 108 - Zn 5 Zn .9 0 0 .9 0 0 1.430 1.430 .040 .0 4 0 .5 4 0 .02 - Mo 5 Mo .9 0 0 . 900 1.430 1.430 .0 4 0 .0 4 0 .108 .108 .10 All m a jo rs) - Fe ) 5 Fe ) - Mn 5 Mn . * F errou s lactate, Fe(C 3 H5 0 3)2- 3H2 0 , as a separate stock solution. 12 H2 MoC>4 * 2 H2 O .02 .02 .02 .02 ‘.02 .0 2 -- . 956 grains per liter made up 138. APPENDIX TABLE 5 INFLUENCE OF TREATM ENTS OF EXPERIMENT I ON DRY WEIGHT ACCUM­ ULATION AND TOTAL LENGTH GROWTH T reatm en t R oots D ry W eight (G ra m s) Stem s P e tio le s L eaf Blades Total L inear Growth (Cm) C heck 2 3 .6 5 25. 60 4. 30 37. 15 9 0 .7 0 625 - N 5 N 16. 45 11. 85 7. 15 13. 95 1. 50 2 .6 5 13. 20 2 7 .4 0 38. 30 55. 85 109 336 - P 5 P 26. 55 1 2 .4 5 12. 90 18. 90 2 .6 0 3 .2 0 23. 00 2 7 .7 5 65. 05 61. 40 212 623 - K 5 K (S 0 4) 5 K (Cl) 1 1 .4 5 19. 55 9 .8 5 7 .0 0 19. 20 8 .8 5 1. 10 3 .7 0 2. 00 15. 90 31. 05 1 8 .5 0 35. 45 73. 50 3 9 .2 0 186 490 229 - Ca 5 Ca (SO ^ 5 Ca (Cl) 2 1 .6 5 15. 80 19. 40 1 2 .4 0 1 0 .4 5 1 1 .2 0 2 .2 5 1 .7 5 1 .7 5 25. 20 18. 50 2 1 .0 0 61. 50 46. 50 53. 35 223 315 229 - Mg 5 Mg 1 5 .8 0 21. 35 22. 15 7. 15 3. 30 1 .2 5 36. 50 16. 40 7 7 .7 5 46. 15 518 178 - Fe 5 Fe 35. 05 24. 45 28. 75 17. 70 5. 11 3 .4 0 3 7 .6 5 29. 55 106. 55 75. 10 458 354 - Mn 5 Mn 27. 65 32. 35 19. 50 20. 80 3 .8 0 3. 60 29. 15 ai.25 80. 10 8 8 .0 0 464 468 - B 5 B 24. 70 2 8 .2 5 17. 75 2 4 .1 0 3. 15 4. 15 23. 00 3 0 .4 5 6 8 .6 0 86. 95 362 516 - Cu . 5 Cu 3 9 .6 0 34. 90 20. 05 24. 30 3. 05 4. 90 2 9 .2 5 36. 95 91. 95 101 .0 5 372 506 - Zn 5 Zn 2 9 .2 5 36. 05 18. 10 24. 85 2 .8 0 3. 70 2 8 .4 5 35. 05 78. 60 99. 65 390 482 - Mo 5 Mo 3 3 .2 0 49. 35 18. 85 26. 65 3. 35 4. 25 2 9 .4 5 37. 50 84. 85 1 1 7 .7 5 420 472 LSD 5% LSD 1% 14. 11 19. 17 14. 07 19. 12 2 .5 7 3. 48 1 7 .2 4 2 3 .4 1 2 1 .0 7 2 8 .6 4 252 343 139. APPENDIX TABLE 6 INFLUENCE OF TREATM ENTS OF EXPERIMENT I ON DRY WEIGHT ACCUM' ULATION CONVERTED INTO PER CENT OF TOTAL DRY WEIGHT Per Cent of Total Dry Weight T reatm en t Shoot/R oot Ratio R oots Stem s C heck 2 6 .2 9 28. 05 4 .7 1 40. 95 2 .8 - N 5 N 4 3 .8 6 21. 32 1 8 .2 9 24. 96 3 .8 0 4. 74 34. 05 49. 98 1. 3 3. 7 - P 5P 43. 77 20. 38 1 7 .9 8 29. 33 3 .8 4 5. 20 3 4 .4 1 4 5 .0 9 1. 3 3 .9 - K 5 K (S 0 4) 5 K (Cl) 3 2 .2 5 28. 10 24. 38 1 9 .7 5 25. 00 23. 07 3. 11 4. 68 5. 16 44. 89 42. 22 47. 39 2. 1 2. 6 3. 1 - Ca 5 Ca (S 0 4) 5 Ca (Cl) 3 5 .2 9 32. 54 36. 78 19. 97 23. 03 20. 31 3 .5 7 4. 10 3. 13 41. 17 4 0 .3 3 39. 78 1 .8 2. 1 1. 7 - Mg 5 Mg 20. 35 46. 35 2 8 .4 5 1 5 .4 3 4. 24 2. 70 46. 96 35. 52 3 .9 1 .2 - Fe 5 Fe 3 1 .5 9 3 2 .7 6 2 7 .4 3 2 3 .4 8 4. 96 4. 56 36. 02 3 9 .2 0 2 .2 2. 1 - Mn 5 Mn 33. 91 36. 62 2 2 .0 3 2 3 .6 4 4. 30 4. 09 3 0 .2 6 3 5 .6 5 1 .7 1. 7 - B 5 B 3 5 .4 7 34. 60 2 5 .8 4 26. 10 4. 60 4. 54 3 4 .0 9 3 4 .7 6 1.8 1. 9 - Cu 5 Cu 43. 08 36. 42 2 1 .8 2 23. 32 3 .3 1 4. 54 3 1 .7 9 35. 72 1. 3 1. 7 - Zn 5 Zn 3 7 .2 0 3 7 .8 6 2 2 .8 9 23. 94 3 .5 9 3. 57 36. 32 3 4 .6 3 1 .7 1 .6 - Mo 5 Mo 41. 04 4 4 .8 0 21. 04 21. 96 3. 75 3. 28 34. 17 30. 96 1 .4 1. 3 LSD 5% LSD 1% 1 1 .8 0 16. 03 6 .8 0 9 .2 4 1. 53 2. 08 8. 55 1 1 .6 2 P e tio les L eaf Blades ' 140. APPENDIX TABLE 7 INFLUENCE OF TREATM ENTS OF EXPERIMENT I ON PETIOLE COMPOSITION T reatm en t N P er Cent of Dry W eight p K Ca Mg Fe Ppm of Dry Weight Mn Cu B Zn Check 1 .0 6 . 37 5 .7 2 . 99 .4 5 35 63 56 24 46 - N 5N . 51 5. 19 . 21 .6 6 2 .2 4 1. 57 1.4 1 .4 6 .3 1 . 37 40 55 116 159 47 195 18 26 37 44 - P 5P . 62 1. 41 . 10 1. 02 4. 65 4. 18 1. 48 . 46 .3 0 . 37 45 35 247 83 16 242 18 28 46 49 - K 5 K (S 0 4) 5 K (Cl) 1. 14 1. 18 . 75 . 68 . 52 . 12 9 .8 6 8. 88 .8 6 .6 4 .7 6 .9 9 . 14 . 14 70 35 45 268 44 52 45 229 198 11 23 20 25 42 56 2. 37 - Ca 5 Ca (S 0 4) 1 .0 9 5 Ca (Cl) 1. 18 1. 04 . 37 .4 2 6. 80 4. 51 2. 82 .2 6 . 96 2 .5 5 .5 2 .4 2 . 37 50 45 55 201 76 1^1 196 67 37 22 21 15 36 42 62 - Mg 5 Mg 1. 31 _* .4 2 . 70 4. 92 4. 62 1 .6 7 . 58 .0 6 . 74 60 40 85 174 48 152 30 22 56 32 - Fe 5 Fe . 95 1. 01 .2 9 .2 9 5. 13 4. 71 1. 48 1. 62 .6 5 .4 9 35 40 75 89 42 55 29 23 59 49 - Mn 5 Mn 1. 12 1 .0 4 . 32 . 37 5. 77 5. 59 1. 24 1. 21 . 50 .5 0 35 90 18 323 26 59 23 23 46 53 - B 5 B 1 .2 5 1. 08 . 42 . 35 5. 50 5. 32 .8 5 1 .5 4 . 46 .4 6 45 50 102 77 14 174 26 23 46 57 - Cu 5 Cu 1 .0 3 1. 12 . 33 .2 9 5. 35 5. 33 1. 43 1. 53 .4 8 . 54 50 35 63 42 24 38 29 30 42 49 - Zn 5 Zn 1.01 1. 05 .4 3 .4 5 5. 24 6. 33 1. 10 . 96 .5 5 . 46 45 50 82 46 33 118 24 28 48 42 - Mo 5 Mo 1 .0 6 1.01 . 28 .3 3 4. 85 5. 15 1 .7 9 1. 78 .5 3 . 54 35 50 84 94 21 58 22 22 64 47 * >:< . 14 . 19 .4 2 .5 7 . 13 . 18 N. S. N. S. 83 113 48 65 N. S. N. S. N. S. N. S. LSD v5% LSD 1% * N itrogen a n a ly s is o m itted due to shortage of plant m a teria l. ** A n a ly sis of v a ria n ce om itted due to m any m is s in g v a lu es. 141. APPENDIX TABLE 8 INFLUENCE OF TREATM ENTS OF EXPERIMENT I ON STEM COMPOSITION T reatm en t N Per Cent of Dry W eight P Ca K Mg Check 1. 05 . 26 2. 37 - N 5 N .6 3 2. 10 . 16 .3 0 1. 00 1 .8 7 - P 5P .6 2 . 99 . 11 .4 0 - K 5 K —I CO o CN NO CN CO ON oo CO CN CO CN OO NO o in o CO m o o -rf On in o3 CN r- ON CO O n CN o i—l O n co CO CN CO oo OO o m r - CO r^CN CN CN CN 00 CO £ 2 CO CO f " OO ON co rf in CO CO CN CO NO h- CO LO co CO CN oo CN O n o ON NO CN O in OO r- h - ♦ cd 5-( cu X3 Oh bo •H CU £ >* U Q CO 0 OO NO OO O r- co ON CO n o i—i CO r-* NO NN On CO t--’ ON CO CN CN CO CO co CN CO CO i—i co in O CO CO O o o in in o OO I—1 O CO O CN CN CN CN CN CN CN CN CN o rCN OO r~- in CO a O O r- a CN o o ON r" O O o O N1 CN in NO co m in in 'o o m in OO ON CN CN CN i—H CN »—1 co 1—I CN CN CO NO f- oo co ON o ON NO CN in • . . a • . 5-1 U 0 CQ W CN r—f in nO CN CN CO NO CN oo »—i 1—1 in in ra in On 1—I in ON OO o o in r- o ON CO « a ♦ CO CN CO H i—i *— *— 1 CN NO OO oo o o O rh N' CN LO 1—I o NO ^H cu o oo in On On NO NO CO cd r - NO CO NO CN o oo CO CN c o i—l i—i o nO a CN ’—i OO NO in r- ON NO O n CN h- in in oo CO in O n ON r-‘ o3 in ON CN CN CN CN a a i—H Os lO CN 00 GO 2 2 CO CO 2 2 n I—l oa a ON f'- 5i CO B 0 4-J cn O O oe; r- in p- in oo On a a CN i—H CO 1— I i—i CO CN o oo oo a o NO a a m i—i a NO OO a o I—( CO O CO CN a CO oo CO a OO a a 1—I a OO i—I OO NO NN CN CN in oo CO oo 1—f CO On a CO CN o I-H oo CO co CO o in OO a in CN in CO a a i—1 CO T—I I—l o NO a a a NO NO r 1— I I—I CN o o in NO CO OO a * CO OO o in CN CN CN H i—H i—H 1— CN i—i o CO o in o o in CN NO a 00 i-H a a NO o CO ON a a 1—I CN i-H a CO i—H « i—H CO LO 0 CO o ON OO i—l a i—i CO CO i—H i—i o in CO CO o a CN a OO i-H o • i“H CN co co 2 2 CO ON * co ■—i rin a oO i-H bo NO CN i— H CO 16 u CO CO * uo NO p-* oo NO NO r- rON o i-H CN H i-H i— H i— oo ON ON o in ri-H i-H i-H CO I--1 CN CN CN i oo On o r— r-H r-H CN CN lO —i O Q cd 0 5h i—l CN CO N1 in NO r- oo ON o ■—I i— H CN CO H i—I i—1 t-H i— in NO r - OO i— H i— H —I CO CO of variance omitted due to many missing values. 5h 0 O "lJ h S U JZ ^ O ^ Q Analysis x H £ O Oh o DC E- 145. APPENDIX TABLE 12 INFLUENCE OF TREATMENTS OF EXPERIMENT II ON DRY WEIGHT ACCU­ MULATION CONVERTED INTO PER CENT OF TOTAL DRY WEIGHT T reatm en t R oots Per Cent of T otal D ry Weight Stem s and P e tio le s L eaf B erries Blades Shoot/R oot Ratio 1 2 50. 45 41. 15 21. 17 25. 44 2. 14 2. 44 26. 24 30. 97 .9 8 • 1 .4 3 4 5 6 25. 72 26. 53 3 1 .9 7 34. 24 26. 97 3 1 .7 9 23. 56 2 5 .8 5 3. 00 2 .8 5 2. 99 2 .5 0 44.31 3 8 .8 3 4 1 .4 8 3 7.41 2 .9 2 .8 2 .1 1 .9 7 8 9 10 2 7 .6 5 24. 12 2 2 .6 7 3 0 .5 5 27. 26 34. 12 3 3 .6 7 29. 50 3. 39 2 .7 7 2 .8 8 2 .7 7 4 2 .7 0 3 8 .9 9 4 0 .7 8 3 7 .1 8 2 .7 3 .2 3 .4 2 .3 11 12 13 14 21. 97 25. 34 2 2 .8 1 29. 18 33. 07 33. 22 3 1 .0 2 29. 64 3. 12 2 .9 2 3. 28 3. 03 4 1 .8 4 3 8 .5 2 4 2 .8 9 38. 15 3. 6 3 .0 3 .4 2 .4 15 16 17 18 2 7 .1 0 2 7 .0 0 26. 42 2 8 .7 4 29. 90 31. 34 3 3 .2 0 2 8 .1 1 2 .9 8 2. 87 2. 93 2 .9 5 40. 02 3 8 .7 9 3 7 .4 5 40. 20 2 .7 2 .7 2 .8 2 .5 LSD 5% N .S . N. S. N. S. N. S. 146. d [v- OO vO oo ON lO VO CN CN CN CN in no h- i-h CO CN i-H CN N1 nO CN On CN CN CN — t ON CN CN CN Is - O n IsCO CN c n lO CN CO CO o co CN CN CN CN co co I"- CO CN CN CN CN LO NO -H -^JI CN CN CN CN NO oo CN ° 0 CN 3 u CM VO OO >» CO 2 Li Q 0Q § U H c& ’—I r- cn CO co O M H W C D Pk 2 CN ID i-H vO ID LO O NO O h r- n * co oo O ON OO ^ OO O n m no m Is- m oo no co O On no r- o n- o cn no no no N1 vo r- o o o N 1 oo oo r-- OO ON c o lib OO CN "H CN ON -N1 OO ^ NO OO O 1-H N ' NO CO hJi in m oo to oo OO in m o oo cn no >-H r- in m Nf oo o o oo r- cn OO CN Nji m it n m m cn i* On oO i* O VO L cn o CN iO hji r- oo Eco I— I 2 W W 04 ca g & CL, ■& •r*4 co E-* & a >> o w 5! bO nO 00 r- oo oo cn o i-h cn i- h Is* w 2 pa < pa a) U H Nf Ifi ^ ^ vO M-1 hji On 00 in co co CN P 3 C D V© OO i-H CN lO co nO r- O nO no r- LO h r- r- oo no r~- nO t"'~ NO N1 h r - on no no ^ vO a Lt •-H CN CO hF co 2 OO i-H § CN CN o CD 0k Ck O CN NO i— I C'- cn NO co ON n CO 0O OO m in in in n m cn r- m cn ON H CN CO [n c n h it cn CN CN N CN CO CN CN lO n D no n CN VO CN m t*—no nO -— I CN H OO CN '— I O NO no o CO CN CO c o CN CO CN CN r- On o o w -I Pk 2 OO CO bO .2 2 +-J 4 3s; o* o nO h ^ h CN CO CO no no r— r-- GO O ' On O co i/5 vd r-’ oo ON O -4 co CN co |^- OO On O < CN < • ■-H CN CN CN • m r- O O On CD i-h i-H i-H CN CN I— I CN CO Tf in NO N CO nh d C D s 4-) cti C D £ ^ in no in i-h p cn acn *Analysis of variance omitted due to many missing values. O 147. d N •b £o *rH § CO O O O a> £ ?h Q HH uo ON 23 12 32 2 CN LO CO O n vo vO vO iO vO vO lO ad m CO 2 2 CO N< ON ON ,~H i2 *—I o B & CO i-H t" - ON i-H 32 CN CN CO OO O c ^ 1 - tr^ H On vO CN —h vO «—I CN H M o ^ vo o H H •—< I-H CN OO LO VO VO CO CN i-H i—t CN CN ON ON LO CO OO •-H i-H lO ON lO oo oo ON oo vo co Hf o CO CN i-H vo o n H co H H vO OO ON r- on CO 2 O a> I/O H N"* Ph O co o CO 0 0 ON ON o f> OO H C"- o c o i/o O n Ov Ov O fe pa pa £ pa ca (S fpta a oPh pa I CO fe pa *6 v 5h Q p-( p OO LO i— H CN • LO vO CO CN i-H CN CN c o • « CN v o Ov T— I CN CN CN CO * • O n LO CN CN CN CO • • • • lO LO p - ON CN CN CN CN • f - ON o o • ■ ed ["- LO lO vO . * Ov CN CO CN CO * * * r- o LO LO • 4 LO LO 00 CN LO LO LO • • • * OO ON vO vO IO VO . * 4 o I-H p— H « oo CN VO LO LO i o i o 00 lO VO lO r~ o CN CN •fH < pa PS bo U ON Tt* i— H CN . ♦ LO vO lO o CN CO c o CO » * • • ON vO CN CN CN CN * • • • ON Is - oo o CN CN CO CN • * 0 * CN CN c o # Tf O ON o vO OO vO VO • 4 . T—( 1—H i-H O Ov Ov p CO CO . • 4 • *-H i—H i-H CO CO vO vO p - r « 4 On o CN i-H i—H i-H • 0) O s-i (U Ph pa u 2 pa D i-H -a fe p- io CO o LO i o • * • 4 o 00 I-H OO lO • CO OO LO . • * Is- a CN lo * ‘ bO | .2 -M •+* ed cd vO CN • * i-H c o lO 4 v© r - OO pa v r-H LO * 0 ‘ ' * Ov O OO O n CN CO CN CN * * 4 • io o o 4 • CN i-H CN CO CO • • • • CO vO CO r c o CN CO CN • • * 4 CM CN c o • 4 oo ON Ov o « CO LO T-H i-H ^ H i-H i-H CN CN CN * • • OO Ov O i-H i-H i-H CN CN i—H I-H *-H ^H i—H I-H t-H LO d r-H cu s cd cu *-r H i-H CN CO lO vO r- oo ON o i-H i-H CN CO r-H tH •-H ■-H UO vO r - OO i-H i-H i-H i-H Q Q CO CO n -a 148. APPENDIX TABLE 15 SIGNIFICANCE OF F VALUES IN 4x4 FACTORIAL PORTION OF EXPERIMENT II F - V alu es for E lem en t Plant P arts N itrogen P e tio le s S tem s Phosphorus P otassium C alcium P e tio le s S tem s Calcium __ M agnesium Interaction Calcium /M agne sium _ _ NS NS NS NS >’fi * P e tio le s S tem s NS P e tio le s Stem s sjs>;< ❖ NS NS NS NS ## NS NS NS * >]« NS NS P e tio le s Stem s NS NS P e tio le s Stem s NS ** NS NS ## M anganese P e tio le s Stem s NS NS NS NS Boron P e tio le s Stem s * NS # Copper P e tio le s S tem s NS NS P e tio le s Stem s NS NS NS NS M agnesium Iron Z inc -- Not d eterm in ed * S ign ificant 5% le v e l ** S ign ificant 1% le v e l NS NS NS 149. APPENDIX TABLE 16 INFLUENCE OF MANGANESE LEVELS OF EXPERIMENT III ON DRY WEIGHT AC­ CUMULATION AND TOTAL LENGTH GROWTH D ry W eight (Gram s) T reatm en t R oots Stem s B erries P e tio les L eaf Blades Total L inear Growth (Cm) Check (1. 0 ppm Mn) 6 0 .2 3 1 2 .8 5 1 2 .4 3 2. 55 3 1 .3 3 119. 39 192 12. 5 ppm Mn 5 6 .2 5 29. 90 8 .4 6 5. 65 50. 10 150. 36 658 25 ppm Mn 63. 10 3 8 .8 0 12. 86 7 .2 5 65. 60 187.61 610 NS NS NS 2. 90 15. 35 40. 36 LSD 5% 1 8 2.83 150. APPENDIX TABLE 17 INFLUENCE OF THE MANGANESE LEVELS OF EXPERIMENT III ON DRY WEIGHT ACCUMULATION CONVERTED INTO PER CENT OF TOTAL DRY WEIGHT T reatm en t R oots Per Cent of T otal Dry Weight S tem s and B erries L eaf Blades P etio les Shoot/R oot Ratio Check (1. 0 ppm Mn) 5 0 .4 5 21. 17 2 .1 4 26. 24 12. 5 ppm Mn 37 .4 1 25. 51 3. 76 33. 32 1 .7 25 ppm Mn 3 3 .6 3 2 7 .5 4 3 .8 6 34. 97 2 .0 NS NS NS NS LSD 5% .9 8 APPENDIX TABLE 18 INFLUENCE OF MANGANESE LEVELS OF EXPERIMENT III ON PETIOLE COMPOSITION T reatm en t N Per Cent of D ry Weight P Ca K Mg Ppm of Dry Weight Fe Mn Cu B Zn Check (1. 0 ppm Mn) 2. 18 .3 1 5 .8 6 2 .4 0 .6 5 52 371 22 22 50 12. 5 ppm Mn 1. 33 .2 9 3 .4 1 1. 72 .41 65 1840* 22 21 36 25 ppm Mn 1 .4 5 .2 6 3 .1 4 1 .7 2 .4 3 97 3067* 13 21 34 NS NS NS NS NS 28 965 NS NS NS LSD 5% *A ccu ra cy of sp ectro g ra p h ica l a n a ly sis for m anganese at th ese le v e ls m ay be q u estion ab le. 152. APPENDIX TABLE 19 INFLUENCE OF MANGANESE LEVELS OF EXPERIMENT III ON STEM COMPOSITION m llC dllllC U L Per Cent of D ry W eight _ N P K Mg Ca Ppm of Dry Weight Fe Mn Cu B Zn Check (1. 0 ppm Mn) 1 .2 4 .1 9 .7 4 .5 7 . 18 34 91 9 21 15 12. 5 ppm Mn 1 .1 7 .2 5 1. 45 .8 4 . 17 46 265 15 17 17 25 ppm Mn 1 .1 3 .2 7 1 .2 8 .9 8 .2 0 62 658 12 17 21 LSD 5% NS NS NS NS NS NS NS NS NS NS