N ORM A L V ALU ES AND C H R O M IU M -IN D U C E D CHANGES IN BLOOD PHYSIOLOGY O F RAINBOW T R O U T , SALMO GAIRDNERII By R O B E R T HARRY SC H IF F M A N A THESIS S u b m itte d to th e School f o r A d v a n c e d G r a d u a te S tu d ie s of M ic h ig a n S tate U n iv e r s it y of A g r i c u l t u r e a n d A p p lie d S c ie n c e in p a r t i a l f u lf illm e n t of th e r e q u i r e m e n t s f o r th e d e g r e e of DOCTOR O F PHILOSO PHY D e p a r t m e n t of P h y s io lo g y a n d P h a r m a c o l o g y 1957 P roQ uest Num ber: 10008615 All rights reserved IN FO R M ATIO N TO A LL USER S The quality o f this reproduction is dependent upon the quality o f the copy subm itted. In the unlikely event that the author did not send a com plete m anuscript and there are m issing pages, these will be noted. Also, if m aterial had to be rem oved, a note will indicate the deletion. uest ProQ uest 10008615 Published by ProQ uest LLC (2016). C opyright o f the D issertation is held by the Author. All rights reserved. T his w ork is protected against unauthorized copying under Title 17, United S tates Code M icroform Edition © P roQ uest LLC. ProQ uest LLC. 789 East E isenhow er Parkw ay P.O. Box 1346 Ann Arbor, Ml 4 8 1 0 6 - 1346 ABSTRACT T h is s tu d y p r e s e n t s a p h y s io lo g ic a l a p p r o a c h to th e to x ic ity p r o b l e m s e n c o u n t e r e d in s t r e a m p o llu tio n c o n t r o l . A lth o u g h th i s w o r k d e a l s w ith the e f f e c t s of p o t a s s i u m c h r o m a t e on r a in b o w t r o u t , th e i d e a s p r e s e n t e d m ig h t be p r o j e c t e d in to th e g e n e r a l stu d y of c h r o n ic to x i c it y of w a s te p r o d u c ts to fis h . T he n o r m a l h a t c h e r y - r a i s e d ra in b o w t r o u t w as e x a m in e d in o r d e r to e s t a b l i s h th e fo llo w in g c o n t r o l v a l u e s : 31.8 m l./lO O m l.; (b) r e d b lo o d c e l l c o u n t, (c) h e m o g lo b in , 6.51 g./lO O m l.; (e) p l a s m a v o lu m e (g) kid n e y w e ig h t, 1.11 m i l l i o n c e l l / c m m . ; (d) r e d blood c e l l le n g th , 2.13 m l./lO O g.; 14.69 p .; (f) blood v o lu m e , 3.25 m l./lO O g. 0.77 g./lO O g. of body w eight; 1.02 g./lOO g. of body w eight; (a) h e m a t o c r i t , (i) s p le e n w eigh t, (h) l i v e r w eig h t, 0.24 g./lO O g. of body w eig h t; a n d (j) t o t a l body w a t e r , 7 7.4 g./lOO g. In a d d itio n to th e a b o v e , th e k id n e y , l i v e r a n d s p le e n w eig h ts; t o t a l body w a te r ; a n d p l a s m a a n d b lo o d v o lu m e s w e r e found to c o r r e l a t e w ith body w eig h t. T h e r e g r e s s i o n e q u a tio n s a r e s ig n if i c a n tl y g iven. In o r d e r to o b ta in th e ab o ve r e s u l t s , m a m m a l i a n m e th o d s h a d to be a d a p t e d to s m a l l f i s h w hich r a n g e d b e tw e e n 10.0 c m . to 17.0 c m . in le n g th w ith a m e a n w eight of 19.0 g r a m s . A s a re su lt of th is, an ex ten siv e and d e ta ile d se c tio n title d ' 'M a t e r i a l s a n d M e t h o d s " i s in c lu d e d . In o r d e r to fix a w o rk in g l e v e l of p o t a s s i u m c h r o m a t e , a 2 4 - h o u r m e d i a n t o l e r a n c e l i m it of 100 m g. C r . / l . w as d e t e r m i n e d , a n d a l l e x p e r i m e n t s w e r e done a t a p o t a s s i u m c h r o m a t e c o n c e n t r a ­ tio n e q u iv a le n t to 2 0 m g. C r . / l . T racer e x p e r i m e n t s i m p l i c a t e d th e s p le e n a n d b ile a s c o n ­ c e n t r a t i n g c h r o m i u m a b o v e th e le v e l of th e n o n s p e c if ic t i s s u e c a u d a l p e d u n c le . d o th e lia l s y s t e m of th e A s a r e s u l t , it w as t h e o r i z e d th a t th e r e t i c u l o e n ­ of th e s p le e n a n d th e l i v e r w e r e i n s t r u m e n t a l in th e e l i m i n a t i o n of c h r o m i u m f r o m th e body by way of th e b il e . T h e r e w a s no e v id e n c e of a c h a n g e in w eig h t of th e k id n e y , liv e r, or s p le e n , o r a c h an g e in t o t a l body w a t e r due to e x p o s in g the f i s h to 2 0 m g . C r . / l . f o r 24 h o u r s . F u r t h e r i n v e s t i g a t i o n s sh o w ed th a t th e h e m a t o c r i t r o s e f r o m a c o n t r o l v a lu e of 31.8 to 43.8 in c h r o m i u m - e x p o s e d fis h in 2 4 h o u r s . W ith th e u s e of e r y t h r o c y t e c o u n ts a n d h e m a t o c r i t s , it w as c a l c u l a t e d t h a t a p p r o x i m a t e l y 5 9 p e r c e n t of th e r i s e in h e m a t o c r i t w a s due to i n c r e a s e in c e l l v o lu m e , and 41 p e r c e n t w as due to i n c r e a s e i n c e l l n u m b er. It w a s show n th a t the s p l e e n did not c o n t r i b u t e to t h i s i n c r e a s e in c e l l n u m b e r . s ig n if i c a n tl y W hen th e h e m a t o c r i t r i s e s , t h e r e m u s t be an i n c r e a s e d blo o d v o lu m e a n d / o r d e c r e a s e in p l a s m a v o lu m e . N e i t h e r of t h e s e e v e n ts c o u ld be sh o w n to ta k e p la c e u n d e r th e e x p e r i m e n t a l c o n d itio n s . Due to th e fa c t th a t p o t a s s i u m c h r o m a t e c o n t a in s a c o n s i d ­ e ra b le a m o u n t of p o t a s s i u m io n s , th e in f lu e n c e of t h i s io n w as i n ­ v e stig a te d . It w as a s s u m e d on th e b a s i s of th e e x p e r i m e n t a l d ata th a t th e p o t a s s i u m io n , in a d d itio n to th e c h r o m i u m , i s a p o te n tia l in f l u e n c e u p o n th e r e s u l t s o b ta in e d a t p o t a s s i u m c h r o m a t e c o n c e n t r a ­ t i o n s e q u iv a le n t to 2 0 m g . C r . / l . A s s u m i n g th e r i s e in h e m a t o c r i t w as an in d e x of c h r o n ic t o x i c it y , it w a s d e t e r m i n e d t h a t th e h e m a t o c r i t r o s e to i t s g r e a t e s t d e g r e e a t c o n c e n t r a t i o n s e q u iv a le n t to b e tw e e n 2 m g. to 4 m g. C r . / l . T h i s f a c t w as of i n t e r e s t b e c a u s e , alth o u g h th e 2 4 - h o u r T i m , a s t a n d a r d in d e x of t o x i c it y , w a s 100 m g. C r . / l . ; the ab o v e d a ta i n d i ­ c a t e d p h y s io lo g i c a l c h a n g e s ta k e p la c e a t a f a r l o w e r c o n c e n tr a ti o n . W ith th e u s e of s p l e n e c t o m i z e d f i s h , it w a s found th a t th e s p l e e n h a s a te n d e n c y to a c t , in a l i m i t e d c a p a c i t y , a s a b u f f e r m e c h a n is m a g a in st sudden h em o c o n c e n tra tio n . by a s ig n if i c a n t r i s e T h i s w as e v i d e n c e d in h e m a t o c r i t of s p l e n e c t o m i z e d f is h i n ta p w a t e r w hen e x p o s e d to t e n m i n u te s of o p e r a t i v e a n d a n e s t h e t i c stre ss. AC KNOWLE DG ME NT S T h e w r i t e r w i s h e s to e x p r e s s h i s g r a t i t u d e to D r . P a u l O. F r o m m , D e p a r t m e n t of P h y s io lo g y a n d P h a r m a c o l o g y , M ic h ig a n S ta te U n iv e rsity , for h is g en ero u s o f f e r in g of l a b o r a t o r y f a c i l i t i e s an d c o n t in u a l g u id a n c e th r o u g h o u t t h i s stu d y . T he w r i t e r w ould a l s o lik e to e x p r e s s h i s s i n c e r e a p p r e c i a t i o n to th e S ta te of M ic h ig a n D e p a r t m e n t of C o n s e r v a t i o n f o r i t s c o n s ta n t supply of f is h th r o u g h o u t a l l th e s e a s o n s of th e y e a r . v TABLE OF CONTENTS Page IN TRO D U C TIO N .................................................................................... . . . . M A T ER IA LS AND M E T H O D S .......................................................................... C h e m i c a l M eth o d s T o tal re sid u e A lk a l in it y 1 14 ..................................................................................... 16 ................................................................................. 16 . . . ................................................................................. 16 H a r d n e s s ............................................................................................................ 18 C h r o m i u m ................................................................................................... 19 R a d i o a c ti v e Is o to p e M eth o d s B io l o g ic a l M eth o d s ............................. ......................... 24 25 F i s h b i o a s s a y s .......................................................................... 25 D ra w in g of b lo o d 32 ........................................................................................ H e m a t o c r i t s ................................................................................................ 33 H e m o g lo b in s 34 ......................................................................................... R e d b lo o d c e l l co u n t ................................. R e d b lo o d c e l l le n g th 35 ............................................. 35 P l a s m a v o lu m e a n d b lo o d v o l u m e ................................. 35 S p le n e c to m i e s 40 Body w a t e r ............................................................................................... ............................................................................................. vi 41 Page O r g a n w e ig h ts .............................................................................. 41 R E S U L T S AND DISCUSSION O F PHYSIOLOGICAL V A L U ES O F T H E NORMAL H A T C H E R Y -R A IS E D RAINBOW T R O U T .................................................................................................... 42 O r g a n W e i g h t s ..................................................................................... 42 T o t a l Body W a t e r 49 H e m a to c rits H e m o g lo b in ...................................................................... ............................. 51 ............................................ R e d B lo o d C e l l C o u n ts 51 ................................. R e d B lo o d C e l l L e n g th s . . . . 52 .................................................................. 53 P l a s m a V o lu m e an d B lood V o l u m e .................................................... 53 R E S U L T S AND DISCUSSION O F POTASSIUM C H R O M A T E -IN D U C E D CHANGES IN THE PH Y SIO LO G IC A L VALUES O F H A T C H E R Y RAISED T R O U T ........................................................................................................... 56 M e d ian T o l e r a n c e L i m i t T r a c e r E x p erim en ts .......................................................................... 56 ..................................................................................... 58 O r g a n W e ig h ts and T o t a l Body W a te r E x p e r i m e n t s R e s u l t s of B lo od E x p e r i m e n t s N orm al ch ro m iu m ........................................................... .......................................................................... S p le n e c to m i z e d c o n t r o l ............................................ S p len e cto m ized c h ro m iu m H e m a to c rit . . . . ............................. ............................................................................................. v ii 60 61 62 62 64 64 Page H e m o g lo b in ..............................................’ ...................................................... R e d b lo o d c e l l c o u n t ............................................................................. R e d b lo o d c e l l le n g th 64 . 67 ....................................................................... 6 P l a s m a v o lu m e an d b lo o d v o l u m e ............................................. D i s c u s s i o n of th e I n c r e a s e i n H e m a t o c r i t 67 . 67 ..............................................................................................., 69 D i s c u s s i o n of th e C a u s e s of th e R e d C e l l Volume Change D i s c u s s i o n of th e R o le of th e S p le e n in th e I n c r e a s e in C e ll N u m b er u n d er P o ta s s iu m C h ro m a teS tr e s s . . . . 70 D i s c u s s i o n o f th e P a r t P l a y e d by th e P o t a s s i u m Io n in P o t a s s i u m C h r o m a t e T o x ic ity « ............. .... .......................... 71 T h e H e m a t o c r i t a s a n Index of T o x ic ity 74 . , . . , ......................................................................................................... 77 CONC L U S I O N S ........................................................................................................................ 80 B I B L I O G R A P H Y .................................................................................................................... 83 S p le e n F u n c ti o n A P P E N D IX L R E V IE W O F TO X IC ITY L IT E R A T U R E . . . . 88 A P P E N D IX I I ........................................................................................................................... P a r t A. D a ta f r o m N o r m a l T r o u t ................................. P a r t B. D a ta f r o m C h r o m i u m - E x p o s e d and S p le n e c to m i z e d T r o u t ............................................................................... v iii 95 96 107 L IS T O F T A B L E S TABLE Page 1. A B r i e f S u m m a r y of th e T o x ic ity L i t e r a t u r e 2. P h y s i o l o g i c a l R e a c t i o n s of th e F i s h to th e S a lt S o lu tio n ............................................................................................. 9 T h e R e l a tio n s h i p of th e T h r e e T y p e s of A lk a l in it y to th e T o t a l an d P h e n o lp h th a le in A lk a l i n i t y ............................................................................................ . 18 R e s u l t s of T e s t s to D e t e r m i n e th e A c c u r a c y of th e C h r o m i u m M e t h o d ............................................................... 23 M e a n s a n d S t a n d a r d D e v ia tio n s of T e s t s to D e t e r m i n e th e A c c u r a c y of th e C h r o m i u m M e th o d ............................................................................................................ 23 R e s u l t s of T e s t s to D e t e r m i n e W h e th e r F i l t r a t i o n o r A e r a t i o n H a d a n E f f e c t on th e C h r o m i u m C o n c e n t r a t i o n .................................................... 29 R e s u l t s of T e s t s to D e t e r m i n e W h e th e r F i l t r a t i o n o r A e r a t i o n H a d a n E f f e c t on A lk a l in it y .............................................................................................. 30 A v e r a g e P e r c e n t a g e of T o t a l W eight of S ta b le T i s s u e s C o n t r i b u t e d by E a c h T i s s u e D i s s e c t e d f r o m I n d iv id u a l of E ig h t S p e c i e s of F i s h f r o m W nite O ak L a k e ...................................................................................... 48 9. R e su lts of T r a c e r E x p e r i m e n t s .............................................. 59 10. R e su lts of B lood E x p e r i m e n t s .................................................. 63 11. R e su lts of P o ta s s iu m C h lo rid e E x p e rim e n ts 3. 4. 5. 6. 7. 8. ix . . . . . . . . 6 73 TABLE 12. 13. 14. Page T h e M e a n H e m a t o c r i t s of F i s h E x p o s e d to V a r i o u s C o n c e n t r a t i o n s of P o t a s s i u m C h ro m a te .................................................................................................... 76 R e s u l t s of E x p e r i m e n t s P e r f o r m e d to I n v e s ti g a te S p le e n F u n c tio n ................................. 78 P h y s i o l o g i c a l V a lu e s of th e N o r m a l H a t c h e r y - R a i s e d R ain bo w T r o u t ............................................ 80 x L IS T O F F IG U R E S FIG U R E 1. Page E x p e r i m e n t a l a q u a r i a in c o n s ta n t te m p e ra tu re room .............................................................................. 15 2. M ic ro -in je c tio n a p p a ra tu s 36 3. A rtific ia l re s p ira tio n ap p aratu s 4. N o r m a l k id n e y w e ig h ts 5. N o r m a l l i v e r w e ig h ts 6. N o r m a l s p l e e n w e ig h ts 7. Body w eigh t p lo tte d a g a i n s t body w a t e r ............................ 50 8. E s t i m a t i o n of 2 4 h o u r m e d ia n t o l e r a n c e l i m i t by s t r a i g h t - l i n e g r a p h i c a l i n t e r p o l a t i o n . . . . 57 ............................... 65 ................................... 66 9. ............................... .............................................. 38 ..................................................................... 44 * .................................................................... 45 .......................................... C o m p a r i s o n of p l a s m a v o l u m e s 10. C o m p a r i s o n of t o t a l b lo o d v o lu m e s 11. I n c r e a s e in h e m a t o c r i t in r e l a t i o n to p o ta ss iu m c h ro m a te c o n c e n tra tio n .................. xi 46 75 IN T R O D U C T IO N T h e p r o b l e m of s t r e a m one to u c h in g u p o n m a n y f a c e t s an d la k e p o llu tio n c o n t r o l i s a d i v e r s e of the b io l o g ic a l and p h y s ic a l s c i e n c e s . T h e p r e v a i l i n g d i s c i p l i n e i s a i m e d a t the d e t e c ti o n of p o llu tio n a l ­ r e a d y in th e w a t e r s w ith c o n t r o l c o m in g a f t e r l e g a l p r o c e e d i n g s . As w a t e r r e s o u r c e s b e c o m e u t i l i z e d to t h e i r f u l l e s t e x te n t by m u n i c i ­ p a l i t i e s a n d i n d u s t r i e s a s w e ll a s f o r t h e i r r e c r e a t i o n a l a n d e s t h e t i c v a l u e s , th e a t tit u d e i s c h a n g in g r a p i d l y to one of c o n t r o l b e f o r e p o llu tio n o c c u r s . q u e stio n s p a rtic u la r such a s , T h is a s p e c t of c o n t r o l b r i n g s f o r t h m a n y new ''H o w m u c h of a w a s te c a n b e d i s c h a r g e d in to a s t r e a m b e f o r e it w ill ad v ersely a f f e c t th e a q u a tic life ? '' T h i s i s a q u e s ti o n i n d u s t r y i s a s k in g the r e g u l a t o r y a g e n c y m o r e and m o re ; th e a n s w e r to w h ich , if s lig h tly w ro n g , c a n c a u s e e i t h e r l o s s in v a l u e of a s t r e a m o r a v e r y r e a l m o n e t a r y l o s s to th e in d u stry . C o n te m p la tio n upon t h i s q u e s ti o n w ill r e v e a l t h r e e i n t e r a c t i n g v a ria b le s. T h e w a s te , th e s t r e a m , a n d th e f o r m of a q u a tic lif e , e a c h of w h ich m u s t be g iv e n co n sid e ra tio n . F i r s t th e w a s te : I g n o r in g th e p u r e ly c h e m i c a l d i l e m m a w hich a r i s e s from an a tte m p t to d e t e r m i n e i t s io n ic a n d m o l e c u l a r c o n s t i t u e n t s a n d f o c u s in g 1 2 a t t e n t i o n on i t s b io l o g ic a l i m p l i c a t i o n s , we fin d th a t v a r i a t i o n in te rm s of c o n c e n t r a t i o n i s f u r t h e r c o m p l i c a t e d by th e a n t a g o n is tic a n d s y n e r g i s t i c a c t io n of v a r i o u s m e t a l l i c c atio n s. It h a s long b e e n know n th a t th e t o x i c it y of s o m e m e t a l c a t io n s to a q u a tic o rg a n ism s i s c o u n t e r a c t e d , o r a n t a g o n iz e d , by o t h e r m e t a l c a t io n s in m i x e d s a l t s o lu ti o n s R in g e r 's ( H e ilb ru n n , 1938). A n e x c e lle n t e x a m p le of t h i s i s s o lu tio n in w hich th e s o d iu m , c a l c i u m , and p o t a s s i u m io n s a r e b a l a n c e d in s u c h p r o p o r t i o n s th a t th e s p e c if ic to x ic ity of e a c h i s n e u tra liz e d . L o e b a n d W a s te n e y s stu d ie s to f is h . (1911, 1915) r e p o r t e d s o m e of th e e a r l y of a n t a g o n i s m of th e p r i n c i p l e c a t io n s of s e a w a t e r r e l a t i n g G arrey (1916) fo llo w ed i m m e d i a t e l y w ith h i s w o r k on th e a v e r a g e lo n g e v ity of m in n o w s of th e g en u s N o tr o p is in v a r i o u s m i x ­ tu re s of s o d iu m , p o t a s s i u m , c a l c i u m , a n d m a g n e s i u m c h l o r i d e s in d istille d w a te r. He found th a t m in n o w s in 9,000 m g. N a C l / l . w ould liv e tw o d a y s , but th e a d d itio n of th e c a lc iu m ch lo rid e days. or m ore, so d iu m c h l o r i d e to 0.001 M. p r o lo n g e d th e p e r i o d to eig h t to te n In t u r n , h e found th e c a l c i u m io n to b e a n t a g o n i s t i c to p o t a s ­ siu m and m a g n esiu m . A h ig h c o n c e n t r a t i o n of s o d iu m c h l o r i d e c o u n t e r a c t e d th e to x i c it y of c a l c i u m ch lo rid e and p o ta ssiu m c h lo rid e , a n d m a g n e s i u m c h l o r i d e w as a n t a g o n i s t i c to p o t a s s i u m ch lo rid e. 3 O th e r w o rk e rs 1924; R a m u l t , 1928a re la tio n sh ip s (P o w ers, 1921; K r u g e r , 1928; G u e y l a r d , 1923, 1928b; Y oung, 1938) i n v e s t i g a t e d the to x i c it y of t h e s e io n s upon s t i c k l e b a c k s , m in n o w s , a n d o th e r s p e c i e s in c lu d in g s a l m o n e g g s a n d found th e s a m e o v e r-a ll re su lts. In a d d itio n , E l l i s (1937) sh o w e d th a t s o d iu m n i t r a t e d e c r e a s e d th e to x i c it y of c u p r i c s u lf a te a n d th e c o m b in a tio n of s o d iu m n i t r a t e a n d c a l c i u m c h l o r i d e w a s e v e n m o r e a n t a g o n is tic . b e e n done on a n t a g o n is m Much w o rk h a s (E llis an d L a d n e r , 1935; J o n e s , 1938), but in r e a l i t y it i s not g r e a t l y c o n c e r n e d w ith the p r o b l e m at h a n d a n d t h u s , it i s c o n s i d e r e d only b r i e f l y h e r e . S y n e r g i s m b e tw e e n v a r i o u s c a t io n s lik e w is e h a s b e e n show n to e x i s t . B an dt (1946) d e m o n s t r a t e d th a t m i x t u r e s of th e s u l f a t e s of n ic k e l a n d z in c , c o p p e r a n d z in c , an d of c o p p e r a n d c a d m i u m w e r e up to fiv e t i m e s m o r e to x ic th a n th e y w ould h a v e b e e n if th e to x ic e f f e c t of th e m e t a l s w e r e s im p ly a d d itiv e , D o u d o ro ff (1952) s u b ­ s t a n t i a t e d the e v id e n c e on t h e s y n e r g i s t i c a c t io n b e tw e e n c o p p e r an d z in c . We c a n p r o j e c t th e i d e a s b r o u g h t out in th i s b r i e f d i s c u s s i o n of th e i n t e r a c t i o n s of th e c o m p o n e n t p a r t s th e stre a m le v e ls. of th e w a s te a n d s e e th a t w a t e r i t s e l f i s a v a r i a b l e in any c o n s i d e r a t i o n of to x i c it y C a l c i u m , f o r e x a m p le , i s an i m p o r t a n t ion in n a t u r a l l y o c c u rrin g w a te rs; its p re s e n c e in la rg e and s m a ll d e g re e s depends 4 u p o n th e g e o l o g ic a l f o r m a t i o n of th e w a t e r s h e d . l a r g e l y to th e h a r d n e s s It c o n t r i b u t e s of th e w a t e r , w h ich in t u r n i s d ire c tly r e ­ l a t e d to th e a l k a l i n i t y , e a c h b e in g i m p o r t a n t to th e p o te n c y of a w a ste . In a d d itio n , th e pH, o th e r io n s p e c i e s , s u s p e n d e d s o l i d s , d i s s o l v e d g a s e s , a n d , if th e stre a m i s e x t e n s i v e ly u t i l i z e d by i n ­ d u s t r y , w a s te p r o d u c t s d i s c h a r g e d u p s t r e a m c o n t r i b u t e to th e c o m ­ p le x ity of d i s p o s a l p r o b l e m s . Not th e l e a s t to be c o n s i d e r e d in to x ic ity p r o b l e m s i s the a m a z i n g l y c o m p le x b io d y n a m ic c y c l e o c c u r r i n g w ith in th e w a t e r itse lf. I ts i n t e r r e l a t i o n s h i p s c a u s e p o to m o lo g is ts to c o m p a r e a stre a m to a liv in g o r g a n i s m . W ater, a m ost im p o rta n t s u s t a i n i n g f a c t o r of l i f e , h o ld s c o n fin e d w ith in i t s n a t u r a l b a s i n s m a n y f l o r i s t i c a n d f a u n is t ic p hyla. f a c t o r in s t r e a m T he s p o r t s m a n , an in f lu e n tia l c o n t r o l , th in k s in t e r m s of f is h p r o d u c tio n , w hile th e a q u a tic b io l o g is t m u s t c o n s i d e r th e v a s t i n t e r digit a tin g food c h a i n w hich e c o l o g i s t s t e r m th e " fo o d w e b . " E v e n th ough f is h m a y liv e th r o u g h s o m e c a t a s t r o p h i c c h a n g e s in t h e i r e n v i r o n m e n t , th e d e l i c a t e l y b a l a n c e d r e l a t i o n s h i p s b e tw e e n tr o p h ic le v e l s m a y b e u p s e t s u f f ic ie n tly to m a k e th e h a b i t a t u n s u ita b le f o r th e m an d o th e r f o r m s lo n g a f t e r th e d i s a s t e r h a s v ie w e d f r o m from passed. Not only i s th e p ro b le m a n e g a tiv e a t tit u d e in w hich i m p o r t a n t s p e c i e s d i s a p p e a r one o r m o r e t r o p h i c l e v e l s , but it c a n be a p o s iti v e s itu a tio n . T h e d e g r a d a t i o n of th e s t r e a m p a rtic u la r m ay b ecom e a fav o rab le fa c to r fo r a s p e c i e s w h ich in t u r n i n c r e a s e s i t s n u m b e r s c o n s i d e r a b l y out of p r o p o r t i o n f o r m i n g a c a r i c a t u r e of th e o r i g i n a l b io d y n a m ic p ic tu re . H a v in g b r i e f l y d i s c u s s e d th e p r o b le m of s t r e a m p o llu tio n in g e n e r a l , we s h a l l c o n s i d e r th e p r e s e n t a p p r o a c h to th e q u e s tio n : 1'How m u c h of a w a s te c a n b e d i s c h a r g e d into a p a r t i c u l a r s t r e a m b e f o r e it w ill a d v e r s e l y a f f e c t the a q u a tic l i f e ? ' 1 T h is q u e s t i o n i s b e in g a n s w e r e d , f r o m a n i n d u s t r i a l w a s te a s p e c t , by th e to x ic ity b io a ssa y . D o u d o ro ff et a l . (1951), c o m m i s s i o n e d by the F e d e r a t i o n of Sew age an d I n d u s t r i a l W a s te s A s s o c i a t i o n s , h a v e a t t e m p t e d tjo s t a n d a r d i z e th e p e r f o r m a n c e of t h e s e t e s t s ; h o w e v e r , th e l i t e r a t u r e a t p r e s e n t i s f i l l e d w ith a s m a n y m e th o d s a s r e s u l t s . T h e m o s t o b v io u s f a u lt s in th e b i o a s s a y m e th o d s a r e are c arried (1) th e y out u n d e r c r i t i c a l c o n c e n t r a t i o n s of th e w a s t e s w ithout c o n s i d e r a t i o n of c h r o n ic le v e l s ; (2) th e m a j o r i t y of th e w o rk is done on f i s h , an d th e e f f e c t of th e w a s t e s on lo w e r f o r m s i s i g ­ n o r e d ; an d (3) th e y d is p la y a c o m p le te la c k of c o n c e r n f o r s i t e of e n t r y and th e m o de of a c t i o n of th e to x ic io n s w ith in th e fis h . Due to th e v a r i a b l e s d i s c u s s e d , th e l i t e r a t u r e v a r i a t i o n in th e t o l e r a n c e of f is h to c h r o m i u m . l i t e r a t u r e i s in T a b l e 1. sh o w s a wide A s u m m a r y of t h i s In o r d e r not to c o n fu s e t h i s d i s c u s s i o n 6 TABLE 1 A B R I E F SUMMARY O F THE TO X IC ITY L IT E R A T U R E A n im a l B lu e g ill S u n fish Com pound N a2 C r 0 4 N a2C r 2 ° 7 S tic k le ­ backs R a in b o w T rout Y oung E els M innow s T rout L argem o u th B ass C r 2 ( S 0 4 )3 K2C r ° 4 R e su lts Z 4 - h r .. T L m - - 93 0 m g. Na2C r 0 4/ l . R eferen ce A b e g g , 1950 2 4 - h r . T L m - - 7Z 8 mg. N a^ C r^ O ^ /l. L eth al c o n e . l i m i t - 1 .Z m g. C r . / l . Jones, T o x ic ity [100 x ( l / t i m e ) ] --0.050^+0*66 m in . Z000 mixi. t e s t , at 50 m g . C r / l . G rin d le y , 1946 K X rO , Z 4 T o x ic ity - - 0.05 1_+0.044 m i n , - ^; 1946 m in . te x t, a t 50 m g. C r / l . K C r 2 (S 0 4 )2 S u r v iv a l t i m e at 5.Z m g. C r / l . a v e r a g e d 18.7 h o u r s 1939 O s h im a , 1931 K2C r ° 4 S u r v iv a l t i m e a t 5Z0 m g. C r / l . a v e r a g e d 1Z.4 h o u r s K2C r 2 (' )7 S u r v iv a l t i m e a t 5Z0 m g. C r / l . a v e r a g e d 5.35 h o u r s T riv a le n t C r as s u lf a te 40 m g . C r / l . i s a m i n i ­ m u m fa ta l c o n c e n tra tio n in 6 h o u r s L e C le rc and D e v la m in c k , 1950 6 h o u r s ' e x p o s u r e to 100 m g . K ^ C r ^ C ^ / l . f a ta l w ith in 1Z h o u r s a f t e r rem oval R u s h to n , 48 h r . T L m ; 195 mg. C r/l. F r o m m and S c h iff m a n t 1958 KZC r Z<^>7 K2 C r ° 4 1921 7 TABLE A n im a l 1 (C o n tin u ed ) R e su lts Com pound D a p h n ia 5 0% i m m o b i l i z e d in 16 h o u r s ; < 0 .6 m g . / l . A nderson, 1944 N a^C rO ^ 50% i m m o b i l i z e d in 48 h o u r s ; < 0.32 m g . / l . A nderson, 1946 N a ^ C r^ O ? 5 0% i m m o b i l i z e d in 48 h o u r s ; < < 0 .3 1 m g . / l . T riv a le n t ch ro m iu m T o x ic a t 6 m g . / l . o r l e s s K2C l- ° 4 F lo ra R eferen ce R u d o lfs et. a l . , 1950 w ith a d e t a i l e d d e s c r i p t i o n of t h e s e w o r k s , th e r e a d e r w ill find th i s re v ie w of l i t e r a t u r e i n A p p en d ix I. A c o m p a r i s o n of th e d a ta found i n th e l i t e r a t u r e i s w hat h a z a r d o u s , s in c e th e y a r e r e p o r t e d som e­ in m an y w ay s f r o m m e d ia n t o l e r a n c e l i m i t s to to x i c it y p e r m in u te a n d done u n d e r a v a r i e t y c o n d i tio n s . of It i s o b v io u s th a t th e v a r i a n t s , th e a n i m a l s , th e r e ­ c e iv in g w a t e r , an d th e m o l e c u l a r f o r m of th e w a s te a l l c o n t r i b u t e to th e c o n f u s io n , w ith th e in e v ita b le r e s u l t th a t th e b i o a s s a y d a ta are th e n of p r a c t i c a l u s e only to th e o r i g i n a t o r of th e e x p e r i m e n t , and only i n a g iv e n s itu a tio n . In a n a t t e m p t to r e m e d y t h i s , it w as f e lt th a t one m u s t study t h e in d i v id u a l s w ith in th e p o p u la tio n u n d e r g o in g th e s t r e s s of a to x ic 8 e n v iro n m e n t. T h i s a p p r o a c h , of n e c e s s i t y , le d d i r e c t l y to th e f ie l d of p h y s io lo g y . T h e l i t e r a t u r e d e a lin g w ith c h a n g e s in th e p h y sio lo g y of f i s h u nder ch ro m iu m s t r e s s i s a l m o s t c o m p le te ly la c k in g . A b e g g (1950), u n d e r c o n d itio n s d e s c r i b e d in A p p en d ix I, s tu d ie d c h a n g e s in t i s s u e f lu i d s a n d b lo o d s p e c if ic g r a v i t y of b l u e g i l l s b r o u g h t on by e x p o s u r e to s o lu ti o n s of s o d iu m c h r o m a t e a n d s o d iu m d ic h r o rn ate . m o v in g a s t r i p By r e ­ of d o r s a l m u s c l e t i s s u e , w e ig h in g i t , d e s i c c a t i n g i t in a n oven a t a t e m p e r a t u r e of 110° C. f o r 24 h o u r s a n d r e w e ig h in g t h e d r y t i s s u e , he d e t e r m i n e d th e t i s s u e flu id v o lu m e . e x p re s s e d a s percen tag e T h is w as of w a t e r of th e w e t - t i s s u e w eig h t. B lo o d s p e c if i c g r a v i t y w a s d e t e r m i n e d by u s e of th e f a llin g drop d e n s io m e te r. sam p le siz e , T h is m e th o d c o m b in e s th e m e r i t s of s m a l l 0.01 c m m . , w ith s p e e d a n d a c c u r a c y . B lo o d f o r th e d e t e r m i n a t i o n w a s o b ta in e d f r o m a p ith e d f i s h ' s b u lb u s a r t e r i o s u s . By i n s e r t i n g a 3 / 4 - i n c h n e e d le tu b e b r o k e n f r o m a 2 3 -g a u g e h y p o d e r m i c n e e d le in th e b u l b u s , it w a s found th a t th e a c t i o n of th e h e a r t p u m p e d th e b lo o d out th e tu b e so th a t it c o u ld be c o l l e c t e d on a p a r a f f i n b lo c k . T h e d a ta a r e r e p o r t e d in T a b le 2. A b e g g f e lt th a t th e v a r i o u s p h y s io lo g ic a l r e a c t i o n s of th e f is h to th e s a l t s o lu tio n w as d iffic u lt to e x p la in u n le ss one assum ed 9 TABLE 2 PH Y SIO LO G IC A L R EA CTIO N S O F T H E FISH T O THE SA L T SOLUTION C h e m ic a l No. of F i s h H ours Ex­ posed X % T issu e F lu i d T issu e N a ?C r O N a2C r 2 ° 7 S ta n d a r d D e v ia tio n P V a lu e a P e t. Change^3 F lu i d s 10 C o n t r o l 10 T e s t 24 24 81.22 81.63 0.8267 0.6610 N.S. N.S 10 C o n t r o l 11 T e s t 13 13 80.30 82 .24 0,7457 1.4419 0.01 +2. B lood S p ecific G r a v ity N a ,C rO . c* 4 10 C o n t r o l 10 T e s t 24 24 1.0441 1.0452 0.001451 0,006406 N.S. N.S. N a C r~ O 10 C o n t r o l 9 T est 13 13 1 .0399 1.0372 0.011361 0.003501 0„05 -0 .3 7 5 a P r o b a b i l i t y b a s e d on F i s h e r ' s t - t e s t v a l u e s . no s ig n if i c a n t c h a n g e . ^ C a l c u l a t e d on th e b a s i s of th e c o n t r o l v a l u e s e q u a lin g 100 t h a t t h e io n s e n t e r t h e f i s h ' s b ody. p a th w a y s : N.S. d e n o te s T h i s i s p o s s i b l e th r o u g h s e v e r a l th e s k in , g i l l s a n d o r a l m e m b r a n e s , a n d by in g e s t io n . A b e g g (1949) m a d e a stu d y of th e e f fe c t of s a l t s o lu tio n s on th e m u c o u s c o v e r i n g of b l u e g i l l s . T he s a l t c o n c e n t r a t i o n s u s e d w e r e th e s a m e a s t h o s e r e p o r t e d in h is 195 0 p a p e r . P h e n o l r e d w as 10 a d d e d to th e t e s t s o lu ti o n s to a c o n c e n t r a t i o n of 1:1 0 ,0 0 0 . T h e f is h w e r e r e m o v e d a f t e r one h o u r ' s e x p o s u r e a n d r i n s e d off u n d e r r u n n in g t a p w a t e r f o r t h r e e m i n u t e s . T h e body s u r f a c e s of a l l e x ­ p e rim e n ta lly t r e a t e d fish w ere s t a i n e d w ith th e dye. c o n tro ls re m a in e d unchanged. He fe lt t h i s The u n tre a te d sh o w ed a n a l t e r a t i o n of th e m u c o u s c o v e r w hich m ig h t th e n h a v e p e r m i t t e d th e io n s to p e n e ­ t r a t e th e sk in . A b e g g found th a t b o th s o d iu m c a r b o n a t e a n d s o d iu m d i c h r o m a t e c a u s e d a n i n c r e a s e in t i s s u e flu id c o n te n t of th e m u s ­ c u l a t u r e , a n d in b o th c a s e s th e y c a u s e d th e p r e c i p i t a t i o n of th e m u c o u s c o v e r i n g of th e body* In th e s a m e p a p e r , u s i n g H. W. S m i t h 's phenol r e d t e c h n i q u e , A b e g g d e m o n s t r a t e d th a t th e f r e s h - w a t e r s te n o h a l in e t e l e o s t d r i n k s w a t e r u n d e r n o r m a l c o n d itio n s a s w e ll a s in s o lu tio n s of h i g h e r o sm o tic p r e s s u r e s . In a d d itio n to th e c o n c l u s i o n s th a t s o d iu m d i c h r o m a t e c a u s e d a n i n c r e a s e in t i s s u e f lu i d s , A b e g g s t a t e d th e s i z e of f is h u s e d in a to x i c it y s tu d y i s an i m p o r t a n t f a c t o r in th e i n t e r p r e t a t i o n of th e d a ta ; f o r h e found t h a t th e l a r g e r f is h (2 0 gm . to 35 g m .) w e r e m o r e t o l e r a n t th a n th e s m a l l f is h (4 g m . to 10 g m .) , F ro m m a n d S c h if f m a n (1938), i n t h e i r w o r k w ith la r g e m o u t h b a s s , c o n c lu d e d th a t e x p o s u r e to 94 m g. C r / l . c a u s e d in itia lly a s l i g h t , but n o t h ig h ly s ig n if i c a n t i n c r e a s e , in th e ox yg en c o n s u m p t io n 11 of the animal. This was followed by a gradual decline to 27 percent below normal after 68 hours' exposure. A lso , they found, by m icroscopic examination of the intestine, sev ere pathological changes im m ediately posterior to the pyloric caeca, which in all probability completely destroyed its digestive functions. I n a d d i t i o n , c o a g u l a te d s t r i n g s of m u c u s f r o m th e a n u s of a l l e x p e r i m e n t a l f i s h w e r e o b s e r v e d p r i o r to d e a th . th a t c h ro m iu m It w a s t h e o r i z e d e n t e r e d th e g i l l s a n d w a s e x c r e t e d , in p a r t , by th e liv e r v ia th e b ile . T h i s c h r o m i u m - l a d e n b ile c a u s e d th e i n t e s t i n a l dam age. It i s i n t e r e s t i n g to n o te th a t no d a m a g e to th e g il l t i s s u e w as r e p o r t e d , a lth o u g h th e c o m m o n c r i t e r i o n i s t h a t th e h e a v y m e t a l s k i l l b y p r e c i p i t a t i o n of th e m u c u s c o v e r i n g of th e g i l l s . T h ey did n o te a co u g h in g r e f l e x in th e f i s h b e f o r e d e a t h , but th e e x a c t s i g ­ n if i c a n c e of t h i s i s n o t known. B e a r i n g in m in d th e l i t e r a t u r e a s r e v i e w e d h e r e i n , th e i n d i ­ v i d u a l i n t e r e s t e d i n th e e f f e c t s of c h r o m i u m w a s t e s on f i s h , o r o t h e r a q u a t ic o r g a n i s m s , c a n o b ta in l i t t l e h e lp w ith th e p r o b l e m s a t hand, s i n c e th e w o r k done a p p lie d to a p a r t i c u l a r s e t of c o n d itio n s a n d n o t to g e n e r a l i t i e s . T o r e i t e r a t e , i t w a s f e l t th a t a p h y s io lo g i c a l- p h a r m a c o l o g i c a l a p p r o a c h to th e p r o b l e m s of s t r e a m p o llu tio n w ould 12 p r o d u c e a b e t t e r u n d e r s t a n d i n g of th e m a n y in f lu e n c in g f a c t o r s . For e x a m p l e , if we u n d e r s t o o d how c h r o m i u m e n t e r s th e f i s h , and if we knew th e d i s t r i b u t i o n a n d th e m o d e of a c t io n of th e to x ic io n on ce i t i s w ith in th e o r g a n i s m , we c o u ld b e t t e r u n d e r s t a n d th e l i m i t s of to x ic stre ss. T h i s p r o j e c t w a s a p p r o a c h e d w ith t h e s e i d e a s in mind* n o t a s a n a n s w e r to to x i c it y c o m p le x p u z z le . L ik e th e c o n v e n tio n a l b i o a s s a y , t h i s e x p e r i m e n t f i x e s th e v a r i a b l e s ; is used . p r o b l e m s a s a w h o le , but a s one p ie c e in a one w a t e r , one w a s t e , a n d one s p e c i e s of a n i m a l U nlike th e b i o a s s a y , it i s d e s ig n e d to p r o m o t e a n u n d e r ­ s ta n d i n g of th e s t r e s s th e in d iv id u a l f is h i s e x p e r i e n c i n g . A n o th e r d i f f e r e n c e - - p e r h a p s th e m o s t im p o r t a n t - - i s th e fa c t t h a t t h i s e x p e r i ­ m e n t d e a l s not w ith c r i t i c a l c o n c e n t r a t i o n s , b u t s u b le t h a l d o s e s of ch ro m iu m . T o o r i e n t t h i s w o r k w ith th e l i t e r a t u r e a n d to u s e a s a b a s e ­ lin e f o r th e p r o j e c t a s a w h o le, a 2 4 - h o u r m e d ia n t o l e r a n c e l i m i t w as d e te rm in e d . The subsequent e x p e rim e n ts w ere all p e rfo rm e d at o n e - f if t h of t h i s l i m i t . O nce th e w o r k in g c o n c e n t r a t i o n l e v e l w as d e t e r m i n e d , pilot e x p e r i m e n t s u s in g th e r a d i o i s o t o p e C r th e c i r c u l a t o r y w ith in th e t r o u t . sy stem It i s 51 im p lic a te d a n d th e l i v e r a s a path of th e c h r o m i u m s a f e to a s s u m e th a t th e b lo o d i s i n s t r u m e n t a l in th e t r a n s p o r t of th e to x ic a g e n t f r o m i t s e n t r a n c e in to th e a n i m a l u n ti l i t s f in a l e x it. T h e r e f o r e , it w ould be th e f i r s t t i s s u e th a t m ig h t e x h ib it c h a n g e s due to th e th is th e s is is stre ss. U nder th is a ss u m p tio n , p red o m in an tly d ir e c te d at c h ro m iu m -in d u c e d change i n b lo o d , a n d i n c l u d e s d e t e r m i n a t i o n s of h e m a t o c r i t s , h e m o g lo b in s c e l l c o u n t s , p l a s m a v o l u m e s , a n d b lo o d v o l u m e s , a m o n g o t h e r s . M A TERIA LS AND METHODS T h e r a in b o w t r o u t u s e d th r o u g h o u t t h i s w o r k w e r e o b ta in e d f r o m th e M ic h ig a n D e p a r t m e n t of C o n s e r v a t i o n th r o u g h th e c o o p e r a ­ t i o n of M e s s r s . E d w a r d B aco n a n d R alp h M a r k s . T h e f is h w e r e t r a n s p o r t e d in p l a s t i c b a g s in lo ts of one h u n d r e d f r o m th e Wolf L a k e H a t c h e r y to th e l a b o r a t o r y . F if ty t r o u t w e r e p la c e d i n a s m a l l a m o u n t of w a t e r i n e a c h b a g , a f t e r w hich th e b a g w a s i n f l a t e d w ith oxygen an d s e a le d . Ice w a s p la c e d a r o u n d th e o u ts id e of th e bags* w hen th e t e m p e r a t u r e s w a r r a n t e d i t , to k e e p th e f is h at 15° C . In th e l a b o r a t o r y t h e f i s h w e r e h e ld in f o u r 2 6 - g a llo n g l a s s a q u a r i a k ep t in a c o n s t a n t t e m p e r a t u r e r o o m ( F i g u r e 1). T h is r o o m w a s i l l u m i n a t e d c o n tin u a lly by f l u o r e s c e n t lig h ts o v e r h e a d a n d on e a c h h o ld in g ta n k . C o n s ta n t i l l u m i n a t i o n w a s u t i l i z e d b e c a u s e e a c h t i m e th e li g h ts w e r e t u r n e d on o v e r th e ho ld ing ta n k s th e f is h w ould b e c o m e e x c e s s i v e l y e x c i ta b l e , th u s i n t r o d u c in g a v a r i a b l e th a t m ig h t a f f e c t th e f in a l r e s u l t s . T h e w a t e r u s e d th r o u g h o u t th e e x p e r i m e n t s w a s h e l d at 14° C. to 15° C . in th e h o ld in g ta n k s and in th e e x p e r i m e n t a l t a n k s , a n d w a s ta p w a t e r w hich h a d a h a r d n e s s of 334 m g . of C a C O ^ / l . , a t o t a l a l k a l i n i t y of 204 m g . of C a C 0 3/ l . a n d a pH of 8.5 to 8.8. 14 Figure 1. Experimental aquaria in constant temperature room, 15 16 On each Monday, Wednesday, and Friday the fish were fed dried trout pellets developed by the Michigan Department of C onser­ vation for use in their hatcheries. Chem ical Methods Total residue (Standard Methods> 1955) Total resid u e, or total solid s, was done by evaporation. Fifty m illilite r s of sample were placed in a weighed dish and evaporated to dryness at tem peratures between 95° C. and 105" C. The dish was reweighed and the difference calculated. The total residue in m g ./l. was found by the following equation: mg. total r e sid u e /l. = (difference x 1000)/(m l. of sample) Alkalinity (Standard Methods, 1955) Alkalinity was done by titration. Fifty m illilite r s of sample w ere titrated to pH 8.3, using phelolphthalein indicator, with 0.02 N. hydrochloric acid, after which it was further titrated using F leish er Methyl Purple Indicator to a purple endpoint at a pH of 4.8. The phenolphthalein alkalinity was calculated as mg. of C aC 03/ l . by the following formula: mg. CaCO^/l. = (ml. standard acid x 1000)/(m lo of sample) 17 T h e t o t a l a l k a lin i ty w a s a l s o a n d w a s c a l c u l a t e d in th e of s t a n d a r d to b r i n g th e sam e e x p r e s s e d in m g. of C a C O ^ / l . m a n n e r u s in g th e to ta l m i l l i l i t e r s s o lu tio n to a pH of 4.8. T h e t o t a l a l k a lin i ty of a w a t e r i s m a d e up of t h r e e ty p e s; n a m e l y , th e h y d r o x id e , c a r b o n a t e , and b i c a r b o n a t e a l k a lin i ty found in th e a p p r o x i m a t e r e l a t i o n s h i p s a s i l l u s t r a t e d in T a b l e S t a n d a r d M eth o d s 3, ta k e n f r o m (1955). De M a r t i n i 's (1938) e q u a tio n s f o r th e d e t e r m i n a t i o n of the t h r e e t y p e s of a l k a l i n i t i e s a n d H^CO^ a r e a s follow s: [Aik. + (1) (HCO j (H+ ) - -2-SL] = (H} 3 1 + 2 KZ (H+ ) K (H+ ) --------~ ~ ] [Aik. + (2) (c o ^ « > 1 2 . 2 (H+ ) K [Aik. + (3) (h 2 c o 3 ) = (H+ ) "k ~ x 1 K (4) (OH~) = (H+ ) (H ) kI 1 + 2 _ j _ (H+ ) W (H+ ) " A i k . " a l k a lin i ty i s in e q u iv a le n t s of t i t r a t a b l e b a s e p e r l i t e r K j a n d Kz a r e th e f i r s t a n d s e c o n d io n i z a ti o n c o n s t a n t s of c a r b o n i c a c i d a n d Kw of w a t e r . 18 TABLE 3 TH E R E L A T IO N S H IP O F THE T H R E E T Y P E S O F A L K A L IN IT Y TO TH E T O T A L AND P H E N O L P H T H A L E IN A L K A L IN IT Y R e s u l t s of T itra tio n H y d r o x id e A ik . a s C aC O ^ C a r b o n a t e A ik. a s C aC O ^ B i c a r b o n a t e A ik. a s CaCCh P =■ 0 0 0 T P = 1/2 T 0 2P T -2P P = l/Z T 0 2P 0 P - T 2 (P -T ) 2 (T -P ) 0 T 0 0 u 1/2 T = t o t a l a l k a lin ity ; M oore 5 P = p h e n o lp h th a le in a lk a lin ity . (193 9) t r a n s f o r m e d t h e s e e q u a tio n s in to g r a p h ic f o r m . T h e s e w e r e u s e d i n t h i s w o rk . H ardness (S chw arzenbach T itra tio n ) H a r d n e s s d e t e r m i n a t i o n s w e r e m a d e by t i t r a t i o n u s in g r e ­ a g e n t s m a n u f a c t u r e d by th e H a ll L a b o r a t o r i e s , I n c ., and p u r c h a s e d f r o m C a l g o n , I n c ., C h ic a g o , I llin o is . T his is a v e rs e n a te titr a tio n b a s e d upon th e m e th o d s in v e n te d by D r . G. S c h w a rz e n b a c h and a s s o c i a t e s i n S w i tz e r l a n d . H ard n ess S a m p l e s of 5 0 m l . , w ith 1 m l. of B u f f e r S o lu tio n a d d e d , w e r e t i t r a t e d w ith H a g a n H a r d n e s s 19 T i t r a t i o n S o lu tio n (l m l, = ZO m g . C a C O ^ / l . ) u s in g th e h a r d n e s s i n ­ d i c a t o r w h ich c h a n g e s f r o m r e d to b lu e a t th e en d p o in t. H ardness w a s c a l c u l a t e d a s fo llo w s: T o t a l h a r d , a s m g . C a C O ^ / l . = ZO x b u r e t t e r e a d i n g in m l. C h ro m iu m ( S a ltz m a n , 195Z) S a m p l e s f r o m th e a q u a r i a w e r e d ilu te d , w hen n e c e s s a r y , so th a t th e a m o u n t a n a l y z e d , 1 to 10 m l . , w ould c o n ta in f r o m m icro g ram s of c h r o m i u m . 5 to 15 T h is w as a s h e d in a l Z 5 - m l . P h i l l i p s b e a k e r by a d d in g 0.5 m l, g l a s s d i s t i l l e d r e a g e n t g r a d e c o n c e n t r a t e d n itric a c i d , a n d 0.Z5 m l. of 40 p e r c e n t so d iu m b i s u l f a t e , th e n e v a p o r a t e d to d r y n e s s on a L i n d b e r g ty p e hot p la te . A t th i s point S a l t z m a n r e c o m m e n d s r e p e a t i n g th e a d d itio n of a c i d a n d a s h in g a g a i n , but it w a s found th a t t h i s w as u n n e c e s s a r y u n d e r the c o n d i­ tio n s e x i s t i n g d u r in g t h e s e t e s t s . T e n m i l l i l i t e r s of 0.5 N. s u lf u r ic a c i d , m a d e up w ith double d i s t i l l e d w a t e r , w e r e a d d e d and s w i r l e d to d i s s o l v e th e a s h . W hen th e a c i d w as a d d e d to th e hot a s h it went in to s o lu tio n w ith m u c h l e s s d iffic u lty t h a n did th e c o o le d a s h . Any w a t e r , in c lu d in g r e a g e n t s m a d e up w ith w a t e r , a d d e d to th e s a m p l e s a t t h i s tille d . point o r a f t e r w a r d s , m u s t b e double g l a s s d i s ­ T h i s p r e v e n t s r e d u c t i o n of the h e x a v a le n t c h r o m i u m w h ich is f o r m e d by th e a s h in g a n d s u b s e q u e n t s t e p s . Only th e h e x a v a le n t 20 ch ro m iu m w ill d e v e lo p th e co lo r of th e s-d ip h en y lcarb azid e re­ agent . To th e a c i d s o lu tio n of th e a s h i s a d d e d 0.5 m l. p o ta ssiu m of 0.1 N„ p e r m a n g a n a t e ; it i s th e n c o v e r e d a n d h e a t e d on th e hot p la te at a p p r o x i m a t e l y 100° C. f o r 2 0 m i n u te s . c a l l s f o r th e a d d i tio n of m o r e p e a r s , but o n ce a g a i n t h i s S a l t z m a n 's m e th o d p e r m a n g a n a t e i f th e pink c o l o r d i s a p ­ s te p w as found u n n e c e s s a r y . A t the end of t h i s t i m e th e p e r m a n g a n a t e i s d e c o l o r i z e d by th e a d d itio n of 5 p e r c e n t s o d iu m a z i d e a t th e r a t e of 1 d ro p e v e r y ing a f t e r e a c h d r o p . 10 s e c o n d s , s w i r l ­ T h r e e to 5 d r o p s w e r e u s u a ll y enough to d e s t r o y any b r o w n i s h t i n t , a n d any e x c e s s w as a v o id e d s in c e th i s w ou ld r e d u c e th e c h r o m i u m . With th e s a m p l e s once a g a in c o l o r l e s s , th e y w e r e r e m o v e d i m m e d i a t e l y f r o m th e h e a t an d p la c e d in a t r a y of c o ld w a t e r . T h e s a m p l e s now m a y b e f i l t e r e d , if n e c e s s a r y , o r t r a n s f e r r e d d i r e c t l y in to 2 5 m l. v o l u m e t r i c f l a s k s u s in g double d i s ­ t i l l e d w a t e r a s a w a s h liq u id . ric O nce th e s a m p l e s a r e in th e v o l u m e t ­ f l a s k s , c o l o r d e v e lo p m e n t c a n p r o c e e d . C o l o r w a s d e v e lo p e d by adding 1.0 m l. of s - d i p h e n y l c a r b a z i d e reag en t. T h i s r e a g e n t w a s m a d e up by d is s o lv i n g 10 g r a m s of p h ta lic a n h y d r id e in 175 m l. of r e d i s t i l l e d 95 p e r c e n t e th y l a lc o h o l, w a r m i n g to e f f e c t s o lu tio n . To th is i s ad d ed 0,625 g r a m s s- d y p h e n y l c a r b a z i d e d i s s o l v e d i n 5 0 m l . of r e d i s t i l l e d a lc o h o l, F in a lly , 21 t h i s c o m b in a ti o n i s i s q u ite m a d e up to 25 0 m l. w ith a lc o h o l. T h is r e a g e n t s t a b l e a n d w a s s t o r e d in a b r o w n b o ttle u n d e r r e f r i g e r a t i o n fo r 8 m o n th s. Only o c c a s i o n a l r e s t a n d a r d i z a t i o n w a s n e c e s s a r y . One m in u te a f t e r th e d e v e l o p e r w as a d d e d , 2.5 m l. of 4 M. s o d iu m d ih y d r o g e n p h o s p h a te w as a d d e d a s a b u f f e r a n d th e m a d e up to 25 m l. sam p le If i r o n w a s p r e s e n t , the b u f f e r c o u ld be a d d e d b e f o r e th e s - d i p h e n y l c a r b a z i d e an d a llo w e d to s ta n d 15 m i n u t e s b e ­ fo re read in g . T h i s w ould e l i m i n a t e i n t e r f e r e n c e due to s m a l l a m o u n ts of i r o n . T h e pink c o l o r w a s r e a d at a w a v e le n g th of 540 m g . w ith in 3 0 m i n u t e s on a B a u s c h a n d L o m b S p e c tr o n ic 2 0 c o l o r i m e t e r . A p o ta ssiu m c h ro m a te s o lu tio n w as u s e d to s t a n d a r d i z e the d e t e r m i n a t i o n a n d w as m a d e by d i s s o lv i n g 0.3734 g r a m s of p o t a s s i u m c h ro m a te in ch ro m iu m 1 l i t e r of r e d i s t i l l e d w a t e r . per m illilite r. ch ro m iu m v e rs u s S ta n d a r d c u r v e s T h is c o n ta in e d 100 jjg. of of m i c r o g r a m s h e x a v a le n t p e r c e n t t r a n s m i s s i o n w e r e m a d e up a p p r o x im a te l y e v e r y two w e e k s w hen m a n y a n a l y s e s w e r e b e in g m a d e , but if c h r o m i u m d e t e r m i n a t i o n s w e r e done p e r i o d i c a l l y , a c u r v e w a s m a d e w ith e a c h s e r i e s of d e t e r m i n a t i o n s . H e x a v a l e n t c h r o m i u m w a s d e t e r m i n e d by p r o c u r i n g a p r o p e r l y d il u te d s a m p l e in a 25 m l . v o l u m e t r i c f l a s k an d ad d in g th e d ip h e n y lc a rb a z id e re a g e n t and buffer a s above. s- The sam p les w ere 22 t h e n d il u te d to 2 5 m l. w ith do u b le d i s t i l l e d w a t e r a n d r e a d c o l o r i m e t ric a lly u s in g th e sa m e The a c c u ra c y s ta n d a rd s a s above. of th e t e s t w as d e t e r m i n e d by m a k in g up 2 ^ug. -JCr /m l, sta n d a rd s d ic h ro m a te . T hree u s in g b o th p o ta ss iu m c h ro m a te and p o ta ssiu m 10 jag. s a m p l e s f r o m e a c h s o lu tio n w e r e a n a l y z e d f o r t o t a l c h r o m i u m a n d h e x a v a le n t c h r o m i u m , e a c h s a m p l e b e in g r e a d in th e c o l o r i m e t e r t h r e e t i m e s . a p p e a r in T a b l e 4. te sts are T h e r e s u l t s of t h e s e a n a l y s e s T h e m e a n s an d s t a n d a r d d e v i a tio n s of t h e s e shown i n T a b le 5. Due to th e f a c t th a t th e s a m p l e s a g r e e w e ll w ith in t h e m s e l v e s , it w a s f e lt t h a t th e d e v ia tio n f r o m the s t a n d a r d of 10 jag. w a s due to th e d ilu tio n an d m e a s u r e m e n t m e th o d s a n d not th e a n a l y t i c a l p r o ­ ced u re. th e T a k in g s e rie s 10 yxg. a s th e m e a n of th e p o p u la tio n (p) and u s in g of s a m p l e s w ith th e g r e a t e s t v a r i a t i o n (s 2 — = 0.2 06, X = 10.9) it w a s found th a t th e s t a n d a r d e r r o r of th is g ro u p i s Jx +. 0.37. M a k in g th e a s s u m p t i o n , w h ich i s not s u b s t a n t i a t e d by e x ­ p e r i m e n t a l d a t a , th a t t h i s e r r o r w ould not ch an g e a p p r e c i a t e l y w ith g r e a t e r d il u tio n s , i t w a s f e lt th a t th i s a c c u r a c y w as s u f f ic ie n t f o r te stin g a ll w a te r sam p les. It w a s a l s o found by u s in g ja = 10 and th e r e s u l t s p o ta ssiu m c h ro m a te s a m p le s th a t a F is h e r " t" of th e t e s t sho w ed no e v i d e n c e of a d i f f e r e n c e b e tw e e n t o t a l a n d h e x a v a le n t c h r o m i u m 23 TABLE 4 R E S U L T S O F T E S T S TO D E T E R M IN E THE A CCUR ACY O F TH E CHROMIUM M ETHOD R e a d in g on C o lo rim e te r T o ta l C h r o m i u m H e x a v a le n t C h r o m i u m S a m p le N u m b e r 2 1 3 S a m p le N u m b e r 2 1 3 K2G r 2 1 2 3 11.6 11.5 11.5 10.8 10.8 10.8 °7 10.6 10,6 10.4 1 0o6 10.6 10.6 11.0 10.8 10.6 11.0 11.0 11.0 10.0 10.2 10.2 10.6 10.6 1 0 o8 10.2 10.2 10.0 K ^C rO ? 1 2 3 10.2 10.6 10.4 10.8 11.8 10.6 10.6 10.6 10,8 TABLE 5 MEANS AND STANDARD DEVIATIONS O F TESTS T O D E T E R M IN E TH E ACCURACY O F TH E CHROMIUM METHOD K2C r ° 7 K2C r 2 ° 7 C h ro m iu m X s X s T o t a l c h r o m i u m ................... .................. 10.9 0.454 10.6 0.235 ............... 10.8 0.200 10.3 0.285 H ex av alen t c h ro m iu m . . 24 m e th o d s. Upon t h i s b a s i s , it w a s a s s u m e d th a t th e c h r o m i u m a d d e d to th e a q u a r i a r e m a i n e d f o r th e m o s t p a r t in th e h e x a v a le n t f o r m , and la te r e x p e r i m e n t s u p h e ld t h i s t h e o r y . R a d i o a c ti v e Is o to p e M eth o d s T h e r a d i o i s o t o p e C h r o m i u m 51 w as u s e d in th e t r a c e r p e rim e n ts. ex­ T h i s e l e m e n t w a s s u p p lie d by the N a tio n a l L a b o r a t o r y , O ak R id g e , T e n n e s s e e , in th e f o r m of C r C l^ i n HC1 s o lu tio n w ith a c o n c e n t r a t i o n of 22,85 4, 10 p e r c e n t m g . / m l , a n d a s p e c if ic a c tiv it y of 1760 m c / g . T h i s , th e t r i v a l e n t f o r m , h a d to be o x id iz e d to th e h e x a v a le n t f o r m f o r u s e in t h i s p r o b le m . c a r r i e d out in th e fo llo w in g m a n n e r . 5 0 p g . of Cr 51 w as T h i s t r a n s f o r m a t i o n w as A s a m p l e of a p p r o x i m a t e l y m a d e b a s i c w ith 2 m l. of 6 N. S o d iu m h y d r o x ­ i d e a n d 1 m l. of 3 p e r c e n t h y d r o g e n p e r o x id e w a s a d d e d . T h i s w as h e a t e d at 110° C . f o r 5 m i n u t e s , a f t e r w h ich it w as b o ile d f o r one h o u r to d r i v e off th e e x c e s s p e r o x id e . At th e e n d of th e b o ilin g p e r i o d , w hile th e s o lu tio n w a s s t i l l w a r m , 0.2 m l . m o r e of th e NaOH w a s a d d e d an d s w i r l e d . If b u b b le s w e r e g iv e n off, th e s o lu tio n w as b o i l e d a g a i n u n t i l no b u b b lin g w as e v id e n t. When no b u b b lin g o c c u r r e d , th e s o lu tio n w as n e u t r a l i z e d w ith 2 m l. of 6 N. h y d r o ­ c h l o r i c a c i d , c o o l e d , and u s e d . 25 T he t e s t a n i m a l s w e r e a lw a y s e x p o s e d to the r a d i o a c t i v e i s o t o p e by m a k in g a d ilu tio n of t h e i r e n v i r o n m e n t a l w a t e r . W a te r s a m p l e s of 1 m l. w e r e a n a l y z e d f o r a c tiv it y by e v a p o r a t i n g t h e m in p o r c e l a i n p la n c h e ts w ith a d i a m e t e r of 3 5 m m . of t h e s e G a m m a r a y c o u n ts p r e p a r a t i o n s w e r e m a d e w ith a N u c l e a r I n s t r u m e n t a n d C h e m i c a l C o r p o r a t i o n M odel 183 S c a l e r e q u ip p e d with a T r a c e r l a b tu b e of th e s c i n t i l l a t i o n ty p e . O r g a n c o u n ts w e r e m a d e by w eig h in g th e f r e s h t i s s u e on a R o l l e r - S m i t h b a l a n c e a n d d r y a s h in g th e m in a m u ffle f u r n a c e at 5 00° C . on th e p o r c e l a i n p la n c h e ts When th e r e s i d u e t u r n e d w hite o r lig h t g r a y , th e p la n c h e ts w e r e r e m o v e d f r o m th e oven a n d c o o led . C o n c e n tra te d n itr ic a c i d w as a d d e d to d is s o lv e a n d / o r s u s p e n d th e a s h , th e r e s u l t a n t s o lu tio n b e in g e v a p o r a t e d slo w ly on a hot p la te . T his le ft a th in f i l m of th e a s h even ly d i s t r i b u t e d on th e p la n c h e t, w h ic h w a s c o u n te d a s a b o v e . B oth w a t e r and o r g a n c o u n ts w e r e m a d e e i t h e r a s c o u n ts p e r fiv e m i n u t e s , o r a s m i n u t e s p e r 400 c o u n t s , c o r r e c t e d f o r d e c a y and r e p o r t e d a s c o u n ts p e r m in u te . B io lo g ic a l M eth o d s F is h b io a ssa y s (D o u d o ro ff et a l ., 1951) T h i s m e th o d s e t up by th e C o m m i t t e e on R e s e a r c h , S u b c o m ­ m itte e of T o x i c ity , S e c tio n III of th e F e d e r a t i o n of Sew age a n d 26 I n d u s t r i a l W a s t e s A s s o c i a t i o n s , w a s fo llo w e d a s c l o s e l y a s cab le; p ra c ti­ d e v i a tio n s w e r e m a d e only w hen th e r e s e a r c h e r f e lt t h e m to b e of no e f f e c t on th e f in a l r e s u l t s . S in ce t h i s i s a s t a n d a r d p r o c e d u r e i n th e f ie ld ot to x ic w a s te c o n t r o l , b u t unknow n in p u r e p h y s io lo g ic a l w o r k , it i s f e lt th a t a b r i e f o u tlin e of th e m e th o d i s j u s t i f i a b l e F ish . in t h i s w o rk . F i s h b e in g u s e d in b i o a s s a y t e s t s sh o u ld b e n a tiv e to th e w a t e r s h e d r e c e i v i n g th e w a s t e s , and sh o u ld be n e i t h e r a t o l e r a n t n o r a h ig h ly i n t o l e r a n t s p e c i e s , b u t r a t h e r , one w ith a r e c o r d of m e d ia n t o l e r a n c e . T h e fo llo w in g f a m i l i e s a r e r e c o m m e n d e d : C e n tra rc h id a e ( s u n f is h e s , b a s s e s , c r a p p i e s ) S a lm o n id a e ( tr o u t, c h a r r s , s a lm o n s ) C y p rin id a e ( tr u e m in n o w s) e x c l u s i v e of c a r p a n d g o ld fish C a to sto m id a e T e st a n im a ls (su ck ers) sh o u ld be o b ta in e d f r o m any s in g le s o u r c e a n d b r o u g h t to t h e l a b o r a t o r y at ab o u t th e s a m e t i m e . l a r g e s t f is h sm a lle st. T he le n g th of th e s h o u ld not b e m o r e th a n 1.5 t i m e s th e le n g th of th e D o u d o ro ff r e c o m m e n d e d f is h a v e r a g i n g l e s s th a n t h r e e i n c h e s , but t h i s w a s not a d h e r e d to b e c a u s e of th e d iffic u lty th a t w o u ld be e n c o u n t e r e d i n p e r f o r m i n g o t h e r p h y s io lo g ic a l t e s t s . u s e d th r o u g h o u t the w o rk a v e r a g e d of f r o m 10.0 to F ish 13.6 c m . in le n g th w ith a r a n g e 17.0 c m . a n d a m e a n w eig h t of 19.0 g r a m s . 27 The t e s t a n im a ls s h o u ld be a c c l i m a t i z e d to l a b o r a t o r y c o n d i ­ t i o n s f o r a t l e a s t one w e e k , p r e f e r a b l y t e n d a y s o r lo n g e r . D u r in g t h i s t i m e th e y a r e to b e fe d a t r e g u l a r i n t e r v a l s a t l e a s t t h r e e ti m e s a w eek. F ish s h o u ld not be fe d two d a y s b e f o r e , n o r d u r in g th e t e s t . T h e p e r c e n t a g e of f is h dy in g o r s e r i o u s l y d i s e a s e d d u r in g th e a c c l i m a t i z a t i o n p e r i o d s h o u ld n o t e x c e e d 10 p e r c e n t . T h e e x p e r i m e n t a l w a t e r ( d ilu e n t) . r e c e i v i n g th e w a s te o r a r t i f i c i a l s t r e a m W a te r f r o m th e s t r e a m w a t e r of s i m i l a r q u a lity w ith r e s p e c t to th e c a l c i u m , m a g n e s i u m , s u l f a t e , t o t a l d i s s o l v e d s o l i d s , a n d t o t a l a l k a lin i ty i s r e c o m m e n d e d . p r o j e c t r e p o r t e d h e r e i n i s not a p r o b l e m S in ce th e r e s e a r c h s p e c if ic to a p a r t i c u l a r s t r e a m , ta p w a t e r w a s d e c id e d upon a s th e d ilu e n t. O th e r e x p e r i m e n t a l c o n d i t i o n s . T h e t e s t sh o u ld b e p e r f o r m e d at u n i f o r m t e m p e r a t u r e s b e tw e e n 68° F . a n d 77° f o r w a r m w a t e r f is h a n d 54° F . to 64° F . c o l d w a t e r f is h a r e u s e d . The ran g e F. (2 0° C .- 2 5 ° C .) (12° C . - 1 8 ° C .) when s h o u ld n o t e x c e e d 2° F . o r 1° C . ab o v e o r b elo w the c h o s e n t e m p e r a t u r e . The te s t c o n ta in e r o r a q u aria sh o u ld be of g l a s s a n d of s u c h a s i z e t h a t d e p th of w a t e r i s n e v e r l e s s th a n 6 in c h e s . The d is ­ s o lv e d o x ygen c o n te n t of th e w a t e r s h o u ld n e v e r b e l e s s th a n 4 ppm 28 f o r w a r m w a t e r f is h o r 5 p p m f o r c o ld w a t e r f is h . A e ra tio n , u n d er som e c o n d i tio n s , i s not r e c o m m e n d e d due to th e f a c t t h a t t h i s m a y d riv e out g a s e o u s o r v o l a t i l e c o m p o n e n ts of a w a s te . A t l e a s t t e n a n i m a l s s h o u ld be t e s t e d f o r e a c h d ilu tio n ; th e t o t a l w e ig h t of a l l f is h in a t e s t c o n t a i n e r s h o u ld not e x c e e d 2 g r a m s per lite r, and 1g r a m per lite r o r l e s s b e in g p r e f e r r e d . A e r a t i o n a n d f i l t r a t i o n w e r e b oth u s e d in t h e s e e x p e rim e n ts a f t e r due e x a m i n a t i o n of t h e i r e ffe c t on th e d i s s o l v e d c h r o m i u m . A e r a t i o n w a s a c c o m p l i s h e d by c o m p r e s s e d a i r i n t r o d u c e d in to th e t a n k s v i a a s to n e a i r b r e a k e r . A q u a riu m f il te r s of g l a s s wool and g r a v e l w e r e u s e d to c l e a r th e w a t e r of s u s p e n d e d s o l i d s . B efore u s i n g t h e s e a p p a r a t u s , w hich w e r e c o n t r a r y to r e c o m m e n d e d p r o ­ c e d u r e , t h r e e a q u a r i a w e r e s e t up a s fo llo w s: A q u a riu m 1 No f i l t e r , no a e r a t i o n A q u a riu m 2 No f i l t e r , a e r a t i o n A q u a riu m 3 F iltra tio n , a e ra tio n T h e w a t e r in e a c h of t h e s e t a n k s c o n ta in e d 10 m g. C r +6 / /l. The t o t a l a n d h e x a l e n t c h r o m i u m , a n d t o t a l a lk a lin ity m e a s u r e d at th e s t a r t of th e a f t e r th e a d d i tio n of c h r o m i u m . s h o w n in T a b l e s e x p e r i m e n t a n d 24 h o u r s , 48 0 a n d 7. h o u r s , and 5 d a y s T h e r e s u l t s of t h e s e t e s t s a r e 29 TABLE 6 R E S U L T S O F T E S T S TO D E T E R M IN E W H ETH ER F IL T R A T IO N OR A E R A T IO N HAD A N E F F E C T ON THE CHROM IUM CO N C E N T R A T IO N T o ta l C h r o m i u m Tank No. S a m p le A (m g ./l.) S a m p le B (m g ./l.) H e x a v a le n t C h r o m i u m S a m p le A (m g ./l.) X S a m p le B (m g ./l.) PH X S ta rt 1 Z 3 9.6 9,4 9.8 9,8 10.0 10.0 9.7 9.7 9.9 9.6 9.2 9.8 — — ----------------- 9.6 9.2 9.8 8.03 8.34 8.58 Z4 H o u r s 1 Z 3 10.6 10.6 10.4 10.z 10.7 1 0 .Z 10.4 10.6 10.3 10.4 10.7 10.7 10.6 10.7 10.6 10.5 10.7 10.6 8.34 8.83 8.80 10.6 10.4 10.2 10.6 10.6 10.1 10.6 10.5 10.2 8.33 8.83 8.85 ------ ------------- 48 H o u r s 1 Z 3 1 0 .Z 10.0 10.0 10.Z 10.0 10.0 1 0.Z 10.0 10.0 5 D ays 1 Z 3 10.6 10.4 10.1 10.6 1 0 .Z 10.6 10.6 10.3 10.3 --------- -------------— — — 8.38 8.91 8.90 30 TABLE 7 R E S U L T S O F T E S T S T O D E T E R M IN E W H ETH ER F IL T R A T IO N OR A E R A T IO N HAD AN E F F E C T ON A L K A L IN IT Y Tank N um ber T o t a l A lk a lin ity S a m p le A S a m p le B M ean 224 22 0 212 222 220 212 22 4 220 224 224 219 223 - —--------- 224 216 222 --------— — 224 224 224 S ta rt 1 2 3 220 220 212 24 H ours 1 2 3 224 218 222 48 H o u r s 1 2 3 224 216 222 5 D ay s 1 2 3 224 224 224 31 It c a n be c o n c l u d e d r e a d i l y f r o m t h e s e d a t a , ev en w ithout b e n e f i t of s t a t i s t i c a l a n a l y s i s , th a t n e i t h e r f i l t r a t i o n n o r a e r a t i o n a l t e r e d th e c h r o m i u m c o n te n t o r t o t a l a l k a lin i ty of th e w a t e r . As a r e s u l t it w as f e lt th a t te n f is h c o u ld be kept in e a c h 4 0 - l i t e r a q u a r i u m w ith o u t a l t e r i n g th e f in a l r e s u l t s of th e b i o a s s a y , ev en th o ug h th i s g r e a t l y e x c e e d e d th e r e c o m m e n d e d n u m b e r . T he d i s s o l v e d oxygen c o n te n t w a s a l w a y s ab o v e 5 ppm a n d a v e r a g e d 8 ppm . E x p erim en tal p ro c e d u re . C o n c e n t r a t i o n s to be t e s t e d w e r e m a d e up by a d d in g p o t a s s i u m c h r o m a t e c r y s t a l s (M a llin c k r o d t A n ­ a l y t i c a l R e a g e n t) d i r e c t l y to the f il le d a q u a r i a ; th e r e s u l t a n t s o lu tio n w a s th e n a n a l y z e d f o r h e x a v a le n t c h r o m i u m . ti o n s E x p erim en tal c o n c e n tra ­ s e l e c t e d w e r e b a s e d on p r o g r e s s i v e b is e c t io n of i n t e r v a l s on a lo g a rith m ic s c a le . P i l o t t e s t s w ith few f is h an d a wide r a n g e of c o n c e n t r a t i o n s w e r e done to e s t a b l i s h th e a p p r o x im a te t o l e r a n c e l i m i t s b e f o r e th e b i o a s s a y began* A c o n t r o l ta n k of te n f is h u n d e r th e e x p e r i m e n t a l c o n d itio n s w as t e s t e d s im u l ta n e o u s l y w ith the b i o ­ assay. If th e c o n t r o l ta n k h a d a m o r t a l i t y of h i g h e r th a n 10 p e r c e n t , th e t e s t r e s u l t s w e r e c o n s i d e r e d u n r e l i a b l e . T h e f is h w e r e h a n d le d w ith s m a l l d ip n e ts a n d m e a s u r e d an d w eigh ed p r e v i o u s to th e s t a r t of th e t e s t . T h e t e s t s w e r e r u n fo r bo th T h e d a ta a r e a n c e l i m i t (T L m ). 24 a n d 48 h o u r s . re p o r te d a s a 2 4 -h o u r or 4 8 -hour m e d ian t o l e r ­ T h i s i s e s t i m a t e d by s t r a i g h t - l i n e g ra p h ic a l i n t e r p o l a t i o n u s i n g p e r c e n t s u r v i v a l on th e o r d in a t e an d log., d o s e ( e x p r e s s e d in m g . C r /l.) on th e a b s c i s s a . In o r d e r to do t h i s , it i s n e c e s s a r y to h a v e tw o t e s t c o n c e n t r a t i o n s , one in w hich th e s u r v i v i n g f r a c t i o n i s ab o v e 0.5 0 but b elo w 0.90, an d th e o th e r with as u r v i v i n g f r a c t i o n s e e n th a t th e b elo w 0.5 0 but ab o v e 0.10. It c a n r e a d i l y be c l o s e r t h e s e f r a c t i o n s a r e to 0.50 th e m o r e a c c u r a t e th e e s t i m a t e w ill b e . By e x te n d in g a s t r a i g h t lin e b e tw e e n t h e s e two p o in t s , th e T L m i s r e a d in m g. C r cro sses su rv iv a l ax is. th e 50 p e r c e n t + 6 / l . at th e point th e lin e F o r th e b i o l o g is t i n t e r e s t e d in s t a t i n g a p r e s u m a b l y h a r m l e s s co n c e n tra tio n (C) of a w a s t e , H a r t , D o u d o ro ff, a n d G r e e n b a c k (1945) s u g g e s t e d th e fo llo w in g e q u a tio n with r e s e r v a t i o n s : C = (48 h r . T L m x 0 .3 ) /( S 2 ) S = (24 h r . T L m ) /( 4 8 h r . T L m ) D r a w i n g of b lo o d It w a s fou n d e a r l y in th i s w o rk th a t th e p r o c u r i n g of a v a lid sam p le ced u re. of b lo o d f r o m s m a l l f is h w ould p ro v e to be a d iffic u lt p r o ­ T h e c u ttin g off of th e t a i l a t th e c a u d a l p e d u n c le a n d c o l ­ l e c t i n g th e b lo o d a s it flo w ed f r o m th e c a u d a l v e i n i s a p o p u la r m e th o d in f is h r e s e a r c h . m e n ts. T h e h ig h v a r i a n c e It w as t r i e d in the e a r l i e r p ilo t e x p e r i ­ of th e s a m p l e s o b ta in e d by th is m e th o d 33 i n d i c a t e d th e b lo o d w a s b e in g c o n t a m i n a t e d , p r o b a b ly by s p i n a l and i n t e r s t i t i a l f lu i d s . A f t e r p r a c t i c e , b lo o d w a s o b ta in e d by h e a r t p u n c t u r e f r o m f i s h a n e s t h e s i z e d w ith 3 00 m g. M S - 2 2 2 / l. m e th a n e s u lf o n a te ) . It w as (T ric a in e v i r t u a l l y i m p o s s i b l e to m a k e a s u c c e s s f u l h e a r t p u n c t u r e th r o u g h th e s k in in t h e s e s m a l l fish ; t h u s , a v e n t r a l i n c i s i o n w a s m a d e to e x p o s e th e h e a r t , an d th e p e r i c a r d i u m w as s t r i p p e d off to f r e e th e v e n t r i c l e . Next a 0.25 m i l l i l i t e r sy rin g e , r i n s e d in 1000 U S P / m l . h e p a r i n s o lu tio n , an d f it te d w ith a 27 gauge n e e d l e , w as i n s e r t e d s t r a i g h t down in to th e v e n t r i c l e a t i t s b a s e n e a r th e ju n c tio n of th e t r u n c u s a r t e r i o s u s . ti v e p r e s s u r e in to i t . w ith in the By k e e p in g a s lig h tly n e g a ­ s y r i n g e e a c h h e a r t b e a t would pum p blood No b lo o d s a m p l e of l e s s th a n 0.1 m l. w as u s e d in t h e s e d e t e r m i n a t i o n s , s in c e it w a s f e lt th a t th e r e s i d u e of h e p a r i n , a lth o u g h a s m u c h a s p o s s i b l e h a d b e e n e x p e lle d b e f o r e ta k in g th e w o u ld c a u s e a s e r i o u s d ilu tio n e r r o r . sam p le, The a v e r a g e s a m p l e w as b e ­ tw e e n 0*1 a n d 0.2 m i l l i l i t e r . H e m a to c rits T h e b lo o d d r a w n by h e a r t p u n c tu r e w as e x p r e s s e d out of th e s y r i n g e onto a w ax s u r f a c e ta k in g c a r e to av o id a i r b u b b le s w hich m ig h t g e t in to th e b lo o d p i p e tte s . f i l l e d up to th e A v a n A lle n h e m a t o c r i t tu b e w as 100 m a r k f r o m the pool of b lo o d , a f t e r w hich it w as 34 d il u te d w ith a 0.6 p e r c e n t s o d iu m c h l o r i d e u n til th e bulb of th e h e m a t o c r i t tu b e w as t h r e e - f o u r t h s fu ll. T he tu b e w a s s e a l e d with a s p r i n g c lip a n d c e n t r i f u g e d a t 25 00 R P M f o r tw e n ty m i n u t e s . accu racy to c rits T he of t h i s t e s t w as d e t e r m i n e d by ta k in g fo u r d i f f e r e n t h e m a ­ from a sta n d a rd e r r o r s in g le w as b lo o d sam p le f r o m one f is h . T he r e s u l t a n t 0.72 m l./lO O m l. H e m o g lo b in s H e m o g lo b in c o n te n t of th e b lo o d w a s d e t e r m i n e d a s a c id h e m a tin as o u tlin e d in th e B a u s c h a n d L o m b S p e c t r o n 2 0 C l i n i c a l T e c h n iq u e M a n u a l. lite rs T w en ty cu b ic m i l l i m e t e r s w e r e a d d e d to 5 m i l l i ­ of 1 p e r c e n t HC1 an d a llo w e d to s ta n d one h o u r . S ince fish b lo o d i s n u c l e a t e d , th e r e s u l t a n t s o lu tio n w as s lig h tly t u r b i c , w hich i n t e r f e r e d w ith th e c o l o r i m e t r i c m e th o d . T h e n u c le i w e r e r e m o v e d by c e n t r i f u g i n g a t 2500 R P M f o r 10 m i n u t e s , and th e s u p e r n a ta n t w a s r e a d on the c o l o r i m e t e r at 52 5 rnp w av e le n g th . T he s t a n d a r d s f o r h u m a n b lo o d p r o v id e d w ith th e m a c h in e w e r e u s e d , a n d th e r e ­ s u l t s w e r e r e p o r t e d in g r a m s of h e m o g lo b in p e r L ik e m e th o d w as th e h e m a to c rit e s ta b lish e d s in g le b lo o d s a m p l e . by d e te rm in a tio n , ta k in g s ix th e 100 g r a m s of blood. acc u ra cy h e m o g lo b in of th i s sam p les from a T h e s t a n d a r d e r r o r w as 0.32 g r a m s h e m o - g l o b i n /1 0 0 g r a m s b lood. 35 R e d b lo o d c e l l co u n t A s t a n d a r d r e d b lo o d p ip e tte w as f il le d f r o m th e pud d led b lo o d , a n d a 1:200 d ilu tio n w a s m a d e u s in g 0.6 p e r c e n t s o d iu m c h l o r i d e a s th e d ilu ta n t. A r e d b lo o d c e l l count w as m a d e in th e a c c e p t e d c l i n i c a l m a n n e r u s in g a L evy h e m o c y t o m e t e r . R e d b lo o d c e l l le n g th C e l l le n g th s w e r e d e t e r m i n e d f r o m a i r - d r i e d b lo o d s m e a r s w h ich w e r e s t a i n e d five m i n u te s w ith W r i g h t 's b lo o d s ta in . Random m i c r o s c o p i c f i e l d s w e r e b r o u g h t in to fo c u s an d a l l c e l l s th a t would a l in e p r o p e r l y , a s th e m i c r o m e t e r w as r e v o lv e d th r o u g h a 180° a r c , w ere m e a su re d . T h i s w a s a slow p r o c e s s a s often no c e l l s would be i n lin e in a g iv e n f ie ld , but s in c e r a n d o m n e s s w a s a d e s i r a b l e f a c t o r , th i s m e th o d w as fa ith fu lly p u r s u e d . C e l l le n g th s a r e re­ p o r t e d in m i c r o n s . P l a s m a v o lu m e a n d b lo o d v o lu m e P l a s m a v o lu m e w a s done by th e dye d ilu tio n m e th o d u s in g E a s tm a n 's T - 1 8 2 4 (E v a n s B lu e ). th e e x p o s e d v e n t r i c l e tu b e rc u la r T h e dye w as in j e c t e d d i r e c t l y in to of a n a n e s t h e s i z e d f is h by m e a n s of a 1 m l. s y r i n g e m a n ip u la t e d by a m i c r o b u r e t m a n u f a c t u r e d by th e M i c r o - m e t r i c I n s t r u m e n t C o m p a n y ( F i g u r e 2). A num ber 30 Figure 2. Mcro-injection apparatus. 36 37 g a u g e i n j e c t i o n n e e d l e w a s n e e d e d to in t r o d u c e th e dye with no le a k a g e of b lo o d d u r in g o r a f t e r th e i n j e c ti o n . U sin g a 6,0 m g . / m l . s o l u t i o n of d y e , 0.074 m g . w e r e i n j e c t e d in to th e f is h in a t o t a l v o lu m e of 0.012 m l. If b le e d in g due to th e i n c i s i o n , o r d u r in g o r a f t e r th e in j e c t i o n w a s u n u s u a lly p r e v a l e n t , th e f is h w a s d is c a rd e d * Of c o u r s e , t h e r e w a s a lw a y s a s m a l l a m o u n t of s e e p a g e of b loo d , b u t due to th e f a s t c o a g u l a ti o n t i m e of f is h b l o o d - - a m a t t e r of a few s e c o n d s - - t h i s w a s a t a m i n im u m . th is e r r o r be It w as f e lt th a t to c o u n t e r a c t due to b le e d in g , th e v o lu m e of d y e, 0.012 m l . , w ould not s u b t r a c t e d f r o m th e fin al r e s u l t s . T h e n e e d le w a s not w ith ­ d r a w n f r o m th e v e n t r i c l e u n til a l l v i s i b l e c o n c e n t r a t i o n of dye w as r e m o v e d f r o m th e h e a r t . T h i s p r e v e n t e d le a k a g e of th e d y e , and a l s o h e l p e d s e a l th e p u n c t u r e q u ic k ly due to th e a c t io n of u n d ilu te d b lo o d . It w a s found b e s t to r e m o v e th e n e e d le a t th e p e a k of s y s t o l e o r b e g in n in g of d i a s t o l e , so th e blood would not be s q u e e z e d out of th e f r e s h hole* T he i n j e c t e d f i s h w e r e p la c e d on t h e i r b a c k s in a V - s h a p e d t r o u g h lin e d w ith w et g a u z e , a n d a r t i f i c i a l r e s p i r a t i o n w a s in d u c e d by m e a n s of w a t e r flo w in g o v e r t h e i r g il ls . ( F ig u r e 3). W a te r f r o m a n a q u a r i u m r e s e r v o i r w a s le d to th e f i s h by m e a n s of r u b b e r tu b in g a n d a g l a s s tu b e w h ich w as p la c e d in th e f i s h ' s m o u th . W a t e r flo w e d a t th e r a t e of 15 0 d r o p s p e r minute* T h e f is h , u n l e s s Figure 3. Artificial respiration apparatus. 38 39 f it w a s d e e p ly a n e s t h e s i z e d , w ould p u m p the w a t e r o v e r th e g il ls w ith r e l a t i v e l y n o r m a l o p e r c u l a r m o v e m e n ts . If o p e r c u l a r m o v e ­ m e n t s w e r e a b s e n t , s lig h t s t i m u l a t i o n on th e v e n t r a d of th e m o u th w o u ld c a u s e a s p a s m o d i c re sp ira to ry m o v e m e n t and h a s t e n th e r e t u r n of th e re fle x e s. T h e f is h w ould r e m a i n in t h i s p o s itio n f o r t e n m i n u t e s , a lth o u g h th e y w ould u s u a ll y h av e to b e r e m o v e d to be r e a n e s t h e s i z e d a t l e a s t once d u r in g th e p e r i o d . T e n m i n u t e s w as c o n s i d e r e d s u ffi- c i e n t t i m e to c o m p le te th e e n t i r e m ix in g of dye ev e n th o u g h the c i r c u l a t i o n t i m e of th e f is h w as unknown. tim e of O p s a n u s ta u w a s two m i n u te s The c a l c u l a t e d c i r c u l a t i o n (B ro w n , 1957), w h ich , if the t r o u t w e r e a p p r o x i m a t e l y e q u a l, w ould i n d i c a te five c o m p le te c i r c u l a ­ ti o n s of th e dye w ith in th e p e r i o d allo w ed . A t th e e n d of th e te n m i n u te s b lo o d w as d ra w n f r o m th e fis h as d e s c r ib e d above. fuge tu b e T h e b lo o d w as th e n e x p r e s s e d in to a 1 m l, c e n t r i ­ f r o m w h ich a h e m a t o c r i t s a m p l e w a s r e m o v e d . The r e ­ m a in in g b lo o d w a s c e n t r i f u g e d a t 25 00 R P M fo r te n m i n u te s . T he p l a s m a w a s d il u te d by a d d in g 40 c m m s of it to 0.5 m l. of d i s t i l l e d w a t e r in a c u v e t t e . T h i s d ilu tio n w as r e a d in th e S p e c tro n ic 2 0 a t a w a v e le n g th of 65 0 m q . The c o n c e n t r a t i o n of th e dye in the u n ­ d il u te d p l a s m a w a s t h e n d e t e r m i n e d f r o m a s t a n d a r d c u r v e m a d e p r e v io u s ly by r e a d i n g know n d ilu tio n s in the c o l o r i m e t e r . 40 T h e a c c u r a c y of t h i s t e s t is unknow n s in c e two o r m o r e d e ­ t e r m i n a t i o n s c o u ld n o t b e m a d e on th e s a m e f i s h , a n d t h e r e a r e no know n d a t a of t h i s ty p e f o r th i s s p e c i e s w hich c o u ld be c o m p a r e d . S p le n e c to m ie s F i s h to b e s p e l e n e c t o m i z e d w e r e a n e s t h e s i z e d a s p r e v io u s l y d e s c r i b e d , p la c e d in th e V - s h a p e d tr o u g h a n d a d m i n i s t e r e d a r t i f i c i a l re sp ira tio n . A s m a l l i n c i s i o n , about 1.5 c m . lo n g , w a s m a d e by m e a n s of a p o in te d s c a l p e l in th e v e n t r a l a b d o m e n s lig h tly p o s t e r i o r to a m id p o in t b e tw e e n th e p e c t o r a l a n d pelvic g i r d l e s . w ould u s u a ll y lie b e n e a th t h i s lo c a tio n . T he s p le e n By m e a n s of a p o in te d f o r c e p s , th e s p l e e n w a s w ith d r a w n th r o u g h th e i n c i s i o n and cu t off. It w a s found th a t th e v e s s e l s s e r v i n g th e s p l e e n w e r e s m a l l , an d t h e r e w a s no n e e d of ty in g th e m off. With th e s p l e e n r e m o v e d , th e i n c i s i o n w a s c l o s e d w ith one s u t u r e , an d th e a r e a d r i e d w ith a s p o n g e a n d c o v e r e d w ith c o llo d io n . By t h i s t i m e th e f is h w ould be out of th e a n e s t h e t i c en ou g h to r e t u r n i t to an a q u a r i u m . a t i o n d id n o t a p p e a r to u n duly h a r m th e fis h . T his o p e r ­ F i f t e e n m i n u te s a f t e r b e in g r e t u r n e d to th e ta n k th e y sh o w ed no s ig n s of a b n o r m a l b e ­ h a v i o r a n d w ould f e e d on t r o u t p e l l e t s . 41 B ody w a t e r T o t a l body w a t e r , i n g r a m s p e r 100 g r a i n s of body w eig h t, w a s d e t e r m i n e d on f is h w h o se l i v e r , g a ll b l a d d e r , s p l e e n , k id n e y , and im m a tu re gonads w ere rem o v ed . T h e f is h w e r e w e ig h e d to th e n e a r e s t te n th of a g r a m an d d r i e d in a n ov en 95° C . to 105° C. f o r 48 h o u rs* T h e y w e r e c o o le d i n a d e s i c c a t o r a n d a g a in w eig h ed , the l o s s in w eig h t b e in g c o n s i d e r e d a s t o t a l body w a t e r . T h e m a i n o b je c tio n to th e m e th o d w ould be th e fa c t th a t th e o r g a n s w e r e r e m o v e d p r e v i o u s to the d e t e r m i n a t i o n . e r r o r i n t r o d u c e d by t h i s The g re a te s t p r o c e d u r e w ould s t i l l be s m a l l . m e a n w eig h t of th e f is h w ith o ut o r g a n s a s a v e r a g e body w a t e r w eig h t a s U sin g th e 15.6 g r a m s a n d th e 12.2 g r a m s , it c a n b e d e t e r m i n e d th a t th e w a t e r w o u ld c o n s t i t u t e 7 8 p e r c e n t of th e body w eigh t. By a d d in g th e w e ig h t of th e e x c i s e d o r g a n s , th e m e a n w eig h t of th e wet f is h becom es 16.0 g r a m s ; an d a s s u m i n g th e o r g a n s to b e 90 to 100 p e r ­ c e n t w a t e r - - a n e x t r e m e e s t i m a t e - - t h e t o t a l body w a t e r w ould b e c o m e 79 p e r c e n t of th e body w e ig h t. r e m o v a l of t h e s e T h is m e a n s th e e r r o r o r g a n s w ould be in t r o d u c e d by 1.4 p e r c e n t a t th e v e r y m o s t. O r g a n w e ig h ts F re sh ly r e m o v e d o r g a n s w e r e w e ig h e d on a R o l l e r - S m i t h b a l a n c e a n d th e r e s u l t s r e p o r t e d in m i l l i g r a m s . R E S U L T S AND DISCUSSION O F PHY SIO LOG ICA L V ALUES O F T H E NORM A L H A T C H E R Y -R A IS E D RAINBOW TR O U T T h e p a u c ity of p h y s io lo g i c a l d a ta p e r t a i n i n g to f is h i n g e n e r a l , a n d r a in b o w t r o u t in p a r t i c u l a r , m a d e it i m p e r a t i v e to e s t a b l i s h n o rm al groups. p h y s io lo g i c a l v alu es T o o b ta in t h i s th r o u g h th e use of l a r g e p h y s io lo g ic a l d a ta f r o m co n tro l s m a l l f is h , it w as n e c e s s a r y to d r a s t i c a l l y a d a p t m e th o d s e m p lo y e d in m a m m a l i a n p h y s io lo g y to th e p r o b l e m s e n c o u n t e r e d . T h e s e m o d i f ic a t io n s a r e p r e s e n t e d in th e e x t e n s i v e a n d d e t a i l e d s e c ti o n e n t itl e d ' 'M a te ria ls a n d M e th o d s . T h e d a ta a n d t h e i r s ta tistic a l e v a lu a tio n p e r t a i n i n g to th i s s e c t i o n c a n b e fou n d i n A p p en d ix II, P a r t A. O r g a n W e ig h ts T h e a n a l y s i s of t h e s e d a ta on th e k id n e y , l i v e r , a n d s p le e n w a s a p p r o a c h e d in th e follow ing w ay s: (1) a s a l i n e a r r e g r e s s i o n of o r g a n w eig h t on body w e ig h t, an d (2) o r g a n w e ig h ts e x p r e s s e d a s p e r c e n t of body w eig h t. A ll r e g r e s s i o n a n d c o r r e l a t i o n c o e f f ic ie n ts w e r e t e s t e d , an d th e y p r o v e d to be h igh ly s ig n if ic a n t. 42 sta tistic a lly The s tr a ig h t lin e s , 43 f i t t e d by th e l e a s t squares m e th o d , v e r i f y i n g t h i s c o r r e l a t i o n of o r ­ g a n w e ig h t on body w eig h t a r e i l l u s t r a t e d in F i g u r e 4, f o r the kidney; F i g u r e 5, f o r th e l i v e r ; and F i g u r e 6, f o r the s p le e n . T h u s , h a v in g p r o v e d the p r e m i s e th a t o r g a n w e ig h ts a r e d i r e c t l y r e l a t e d to body w e ig h t, th e p r e d i c t i o n e q u a t io n s , in c lu d in g th e s t a n d a r d e r r o r of th e e s t i m a t e , can be s t a t e d a s fo llo w s: K idney: Y T, 20,43 m g. = -1 0 .5 0 4- 8.75 x g r a m s L iv er: Y +, 40.46 m g, = -38.93 + 12.89 x g r a m s S p leen: Y +, 11.53 m g. = -7 .93 + 2.97 x g r a m s Y i s th e p r e d i c t e d w eig h t of th e o r g a n a n d x i s th e g iven body w eig h t. T h e r e i s no e v id e n c e th a t e x t r a p o l a t i o n of th e d ata bey o n d th e r a n g e d e t e r m i n e d e x p e r i m e n t a l l y w ould be v a lid ; t h e r e f o r e , the u s e of t h e s e e q u a tio n s b e y o n d th e r a n g e of th e g r a p h s sh o u ld be q u e s ti o n e d . W h en e x p r e s s e d in t e r m s of o r g a n w eight a s a p e r c e n t a g e of body w e ig h t, th e m e a n s of t h e s e d a ta c o l l e c t e d on te n f is h a r e fo llo w s: as 44 LO rv] OO CO a OJ tuo I X! tuo •»—I cj m -o PQ 240 CO o o 00 Csj o vO o Tt< o ro O O rv] K id n e y W eight ( m illig r a m s ) 00 o OO o Figure 4, Normal kidney weights, (Dotted lines indicate standard error of the estim ate.) oo 45 s cd bJO X! •OJD H — I 00 (g ra m s) o 00 01 u bJO scd •I— t <1) lD TD O m Figure 7, Body weight plotted against body water. (Dotted lines indicate standard error of the estimate,) 50 51 Brown (1957), in her recent compilation of published work, states that the r esu lts of water determinations are difficult to com ­ pare due to the widely differing techniques used by various authors. After a com plete review of the literature* she came to the con­ clusion that 1'fish in general contain about 80 to 85% water, extreme values ranging from 53 to 89.3%l" These data on the trout, although below 80 percent, still fall w ell within the range. He mat oc r it s H em atocrits were found to be 31,8 i, a standard error of 1,39 ml. of red blood c e lls per 100 ml. of blood, Spector (1956), in his Handbook of B iological Data, a complete review of all litera­ ture, reported an average hematocrit for rainbow trout of 27.2 ml, R.B.C./lOO m l. of blood with a range in data between 22 ml. to 36 ml./lOO m l. Hemoglobin The mean of the hemoglobin determinations on ten fish were found to have a value of 6.51 ± the standard error of 1.27 g./lOO ml. of blood. '“Spector (1956) reports for trout a hemoglobin value of 8,5 g ,/l0 0 m l. with a range of 6.2 g. to 11.5 g./lOO ml. P ro sser 52 etjal. (1950) gives a range from 8.7 g. to 17.6 g./lOO ml. for fish in general. The data reported in this work fall in the lower part of the range reported by Spector (1956). This may be due in part to the general adoption of mammalian techniques without the adaptations n ecessary for nucleated blood. The usual methods call for a colorim etric analysis of hemolyzed blood at some point during the procedure. If the interfering nuclei are not removed prior to this manipulation, the resu lts w ill be high. The author made a few determinations of hemoglobin on nucleated sam ples and found these values agreed quite w ell with the upper range published by Spector. They also agreed very w ell with Black's (1955) values of 11.0 g ./ 100 m l. Red Blood C ell Counts The red blood c e ll counts on ten fish averaged 1.11 «±, 0.098 m illion c e lls/c m m . This agrees very w ell with Spector's (1956) value for trout of 1.01 m illion c e lls/c m m . with a range of 0,74 to 1.5 m illion c e lls/c m m . P r o sser et a l. (1950) reports a range for fish in general of 0.585 to 2.685 m illion/cm m . 53 Red Blood C ell Lengths By taking an average length of ten c e lls /fis h and using ten fish, a value of 14.69 p the standard error of 0.24 was determined. P ro sser et a l. (195 0) gives a value of 16.7 ju for trout. It is inter* esting to note at this point that Brown (1957) published data on the e e l, 14.6 p. in length and 1.10 m illion c e lls/c m m . in number, which agree clo sely with the trout data reported here. This i s , of course, no more than an interesting observation. Plasm a Volume and Blood Volume The regression and correlation coefficients relating plasma and blood volume to total body weight were found to be highly sig ­ nificant. The following prediction equations, including the standard error of the estim ate, were calculated*. Plasm a volume: Y ±. 0,07 ml. = 0.094 + 0.0154 x grams Blood volume: Y °. 15 0.08 ml. = frTOS O + 0.023 x grams When expressed in m illiliters per 100 grams of body weight, the mean of ten determinations is . P l a s m a v o lu m e : 2.13 m l./lO O g. i , th e s t a n d a r d e r r o r of 0.14 m l./lO O B lo o d v o lu m e : 3.25 m l . / 100 g. ± th e sta n d a rd e r r o r of 0.16 m l./lO O A lth o u g h no p l a s m a o r b lo o d v o lu m e d a ta s p e c if i c a ll y r e l a t e d to t r o u t c o u ld b e found in th e l i t e r a t u r e , P r o s s e r et a h (1950) r e ­ p o r t e d a b lo o d v o lu m e f o r t e l e o s t f i s h e s in g e n e r a l of 1.5 to 3 p e r ­ c e n t of body w e ig h t. B r o w n (1957), in h e r c o m p ila t io n of d a ta on A c t i n o p t e r y g i i , r e p o r t e d a r a n g e of 1.4 to 2.8 p e r c e n t of th e body w e ig h t s . V a r i o u s w o r k e r s h a v e a l l r e p o r t e d blo o d v o lu m e v a l u e s l o w e r t h a n t h o s e o b s e r v e d by t h i s a u t h o r . The m o s t p la u s ib le ex­ p la n a tio n of t h i s d i s c r e p a n c y i s th a t, u n til th i s r e p o r t , b lo o d v o lu m e e x p e r i m e n t s h a d b e e n p e r f o r m e d on l a r g e f is h , a l l o v e r A ls o , sp e c ific a v e ra g e s w e re ca lc u la te d fro m f i s h , u s u a l l y o n e , tw o , o r t h r e e . f i s h , s u c h a s u s e d in t h i s 100 g r a m s . s m a l l n u m b e r s of T h e r e i s no e v id e n c e th a t young s tu d y , h av e a l a r g e r b lo o d v o lu m e th a n a d u lt f i s h , a lth o u g h t h i s p o s s i b i l i t y m u s t b e c o n s i d e r e d in v ie w in g th e se d a ta . In a d d i t i o n , th e m e th o d s u s e d to o b ta in th e p u b lis h e d r e s u l t s v a r y f r o m d i r e c t w a s h in g to d ilu tio n t e c h n iq u e s e m p lo y in g a v a rie ty of v i t a l d y e s . F u r t h e r , s in c e s p e c i e s d i f f e r e n c e s h a v e b e e n i n d i c a t e d i n o t h e r p h y s io lo g i c a l d a ta , t h e r e i s r e a s o n to b e l ie v e th i s 55 m ay be p u b li s h e d a cause d a ta . of th e d isc re p a n c y b e tw e e n th i s w o rk and the RESULTS AND DISCUSSION OF POTASSIUM CHHOMATEINDUCED CHANGES IN THE PHYSIOLOGICAL VALUES OF HATCHERY-RAISED TROUT Median Tolerance Limit T o e s t a b l i s h a w o r k in g c o n c e n t r a t i o n of p o t a s s i u m c h r o m a t e , e x p r e s s e d in t e r m s of th e h e x a v a le n t c h r o m i u m io n , a tw e n ty - f o u r h o u r m e d i a n t o l e r a n c e l i m i t (T L m ) w a s d e t e r m i n e d . F ig u re 8 i l ­ l u s t r a t e s th e l i n e a r i n t e r p o l a t i o n of th e b i o a s s a y d a ta w ith a r e s u l t ­ ing t w e n t y - f o u r h o u r T L m of 100 m g . C r / l . G r in d le y (1946) r e p o r t s a to x i c i t y to r a in b o w t r o u t u s in g p o t a s s i u m c h r o m a t e , but h i s r e ­ su lts a r e s u c h th a t th e y a r e i m p o s s i b l e to i n t e r p r e t i n lig h t of t h i s e x p e rim e n t. F rom m a n d S c h iffm a n (1958) found a T L m f o r l a r g e - m o u th b a s s of 195 m g . C r / l . u s in g p o t a s s i u m c h r o m a t e . O s h im a (1931) found th a t y o u n g e e l s would s u r v i v e in c o n c e n t r a t i o n s of p o ta ssiu m ho urs. c h ro m a te e q u a l to 52 0 m g . C r / l . fo r an a v e r a g e of 12,4 We c a n c o n c lu d e f r o m th e above th a t t r o u t , an i n t o l e r a n t s p e c ie s, a re m ore s u s c e p t i b l e to th e to x ic e f f e c ts of p o t a s s i u m c h r o m i u m t h a n e e l o r l a r g e m o u th b a s s . The b io a ssa y p r o d u c e d a l e v e l a t w hich 5 0 p e r c e n t of th e t r o u t d ie w ith in tw e n t y - f o u r h o u r s ; b u t s in c e th i s w o rk i s p r i m a r i l y 56 o GO graphical interpolation. o o r- o o O') O o o o rvi o o o o .° vO o o Figure 8. 0O Q Estimation o o of 24 hour median tolerance limit by straight-line CO O o CT' o OO o o o o rO m [— vD P e t . S u r v i v a l of F i s h o o 58 a i m e d a t l e v e l s of c h r o n i c t o x i c i t y , a c o n c e n t r a t i o n of 2 0 p e r c e n t of th e T L m , o r 2 0 m g . C r / l . w a s a r b i t r a r i l y c h o s e n . Tracer Experiments O n c e t h e w o r k in g l e v e l w a s e s t a b l i s h e d , t r a c e r e x p e r i m e n t s w e r e done t o f in d th e t a r g e t t i s s u e s . b o th th e s ta b le c h ro m iu m A q u a r i a w e r e s e t up u s in g and th e r a d i o a c t i v e C r 51 , so th a t e a c h m i l l i l i t e r o f w a t e r c o n t a in e d 18.6 jig of c h r o m i u m w ith an a c t iv it y of tw e lv e c o u n t s p e r m i n u te . T h r e e f is h w e r e e x p o s e d to t h i s c o n ­ c e n t r a t i o n f o r t w e n t y - f o u r h o u r s , a f t e r w hich th e y w e r e s a c r i f i c e d , a n d t h e s p l e e n , l i v e r , g a l l b l a d d e r , an d a s e c ti o n of th e c a u d a l p e d u n c le w e r e a n a l y z e d . T h e c a u d a l p ed u n cle w as u s e d a s a c o n t r o l , s in c e i t i s p r e d o m i n a n t l y m u s c l e t i s s u e ; t h u s , t h e r e w as no r e a s o n to s u s p e c t it to c o n c e n t r a t e th e c h r o m i u m . E x p r e s s e d in t e r m s of m i c r o g r a m s of c h r o m i u m / 1 0 0 m g , of t i s s u e a n d a s a m e a n co u nt p e r m i n u te / 1 0 0 g r a m s of t i s s u e , th e r e ­ su lts a r e sh o w n in T a b l e 9. A n a l y s i s of v a r i a n c e m e th o d s sh o w e d th a t th e s p le e n a n d g a ll b la d d e r w ere s ig n if i c a n tl y m o r e a c tiv e th a n th e c a u d a l p e d u n c le , w h e r e a s th e k id n e y a n d l i v e r did not d if f e r f r o m th e c o n t r o l . B a s e d u p o n th e ab o v e i n f o r m a t i o n , th e path of th e c h r o m i u m io n t h r o u g h th e f i s h w a s p o s tu la te d . T he c h r o m i u m io n , having 59 TABLE 9 RESULTS OF TRACER EXPERIMENTS Organs Mean cpm./lOO mg. of T issue Spleen ............................ 34.92 60 33.24 57 13.88 23 8.28 14 4.83 8 Gall bladder . . . . Kidney ............... „ . Liver ........................ ... Caudal peduncle . ,» . . • • C r /l 00 mg. Tissue gained entrance to the blood by an unknown m eans, is distributed throughout the animal and tends to be concentrated in the spleen. The red blood c e ll of mammals is known to have an intense affinity for hexavalent chromium and Cr in blood volume determinations. 51 labeled c e lls have been used This means of transport by the blood of fish seem ed to be highly probable in light of this experi­ ment. Although the function of the spleen of fish is unknown, based upon knowledge of mammalian spleens, it can be reasoned that the reticulo-endothelial system of the spleen could possibly cause a 60 b r e a k d o w n of th e c h r o m i u m - l a d e n c e l l s w ith a r e l e a s e of c h r o m i u m p r o d u c t s in to th e e f f e r e n t s p le n ic v e s s e l which l e a d s d i r e c t l y to th e liv e r. T h e l i v e r c o u ld th e n e l i m i n a t e t h i s c h r o m i u m p r o d u c t by way of th e b i l e . A lth o u g h t h e r e w a s no e v id e n c e th a t th e l i v e r c o n c e n ­ tr a te d c h ro m iu m ab o v e th e l e v e l found in the n o n s p e c if ic m u s c l e t i s s u e , th e g a l l b l a d d e r , in c lu d in g th e b i l e , i m p l i c a t e d th i s a p a th of e l i m i n a t i o n of c h r o m i u m , organ as F r o m m an d S ch iffm an (1958) t h e o r i z e d th a t i t w a s t h i s c h r o m i u m - l a d e n b ile w hich c a u s e d th e e x t e n s i v e i n t e s t i n a l d a m a g e th a t w a s o b s e r v e d in th e l a r g e m o u th b a s s . A lth o u g h th e k id n e y w a s not a s s o c i a t e d with c h r o m i u m r e ­ m o v a l by e v id e n c e g a t h e r e d in t h i s e x p e r i m e n t , n e i t h e r did th e e v i ­ d e n c e o m it it a s a p ath w ay . P o s s i b l y , lik e th e l i v e r , it i s an a c t iv e r o u t e , but d o e s not c o n c e n t r a t e th e c h r o m i u m w ith in i t s t i s ­ sues. A n a l y s i s of u r i n e c o u ld b e done to e n lig h te n t h i s h y p o th e s is . Or g a n W eig h ts an d T o t a l Body W a te r E x p e r i m e n t s T h u s , h a v in g d e f in ite ly i m p l i c a t e d th e s p le e n an d l i v e r an d p o s s i b ly th e k id n e y , s t u d i e s on t h e s e o r g a n s a n d th e t o t a l body w a te r w e r e done to d e m o n s t r a t e c h a n g e s in th e w eight of t h e s e o rgans and c h a n g e s in w a t e r c o m p o s i t i o n due to e x p o s u r e to a p p r o x im a te l y 2 0 mg, C r / l . exposed w ith It w a s found in c o m p a r i n g t h e d ata f r o m five f is h so th e re g re ssio n lin e s of th e no rm al r a in b o w tro u t, 61 that no differences could be detected under the experimental con­ ditions . R esults of Blood Experiments H e m a t o c r i t s w e r e d e t e r m i n e d on fo u r of th e ab ove five f i s h , a n d th e r e s u l t s a v e r a g e d 54 m l./lO O m l. a s c o m p a r e d to th e 31.8 m lo/lOO m l . o f t h e n o r m a l t r o u t . In lig h t of th e f o r e g o in g , it w as d e c i d e d to s tu d y th e b lo o d in g e n e r a l a n d th e c a u s e s f o r th e r i s e h e m a t o c r i t in p a r t i c u l a r . in S in ce th e m a m a l i a n s p le e n a c t s a s a r e s e r v o i r f o r r e d b lo o d c e l l s , r e l e a s i n g th o s e c e l l s in t i m e of s t r e s s , a s tu d y of th e order. tio n s s p le n ic r e l a t i o n s h i p s to th e h e m a t o c r i t w as in T h e fo llo w in g e x p e r i m e n t w as d e s ig n e d to a n s w e r th e q u e s ­ posed above. I n ta c t a n d s p l e n e c t o m i z e d f is h w e r e kept in ta p w a t e r f o r tw e n ty -fo u r h o u rs. c u p erate. w ere T h i s w as done to a llo w o p e r a t e d f is h to r e ­ A f t e r t h i s t w e n t y - f o u r h o u r p e r i o d (1) t e n n o r m a l f is h e x p o s e d to a p p r o x i m a t e l y 2 0 m g , C r / l . g ro u p ); (norm al ch ro m iu m (2) te n s p l e n e c t o m i z e d f is h w e r e kept in ta p w a t e r ( s p l e n e c ­ t o m i z e d c o n t r o l g ro u p ); a n d (3) t e n s p le n e c to m i z e d c o n t r o l s w e r e e x p o s e d to a p p r o x i m a t e l y 2 0 m g . C r / l B ( s p e le n e c to m i z e d c h r o m i u m group). S a m p l e s w e r e o b ta in e d f o r a l l t h r e e g r o u p s a f t e r tw en ty - f o u r h o u r s f o r th e fo llo w in g d e t e r m i n a t i o n s : (1) le n g th , (2) w e ig h t, 62 (3) hem atocrit, (4) red blood c e ll count, (5) hemoglobin, (6) plasma volum e, and (7) blood volum e. Red blood c e ll length determinations were not done on splenectom ized fish. The resu lts of the experi­ ments are shown in Table 10. Plasm a and blood volum es were expressed as a linear r e ­ gression of volume on body weight. Once again, all regression and correlation coefficients proved to be highly significant. The equa­ tions for the r e g ressio n lin e s, including the standard error of the estim ate, are as follows: Normal chromium Plasm a volume: Y ±, 0.116 ml. = 0.16 x grams Blood volume: Y i, 0.116 ml. = 0.04 + 0.02 8 x grams S p len e cto m ized c o n tro l Plasm a volume: Y i 0.084 ml. = 0.164 -1* 0.017 x grams B lo o d v o lu m e : Y i. 0.88 m l. = 0.14 + 0.032 x grams 63 TABLE 10 RESULTS OF BLOOD EXPERIMENTS D e te rm in a tio n M ean S tan d a rd E r r o r N o r m a l F i s h E x p o s e d to 2 0 m g , C r / l , H e m a to c rit . . . . . . 43.8 m l . / 100 m l. H e m o g lo b in ................... 6.6 g./lOO m l. 0.25 g. 1.25 m i lli o n c e l l / c m m . 0.032 m illio n R .B .C . c o u n t C e l l le n g th ............... ................... P l a s m a v o lu m e B lo o d v o lu m e 14,93 yx 1.56 m l. 0.15 )i . , . 1.61 m l./lO O g. 0,12 m l. . , . , . 3.01 m l . / 100 g. 0.18 m l. S p le n e c to m i z e d F i s h in T a p W a te r H e m a to c rit . . . . . . 2.85 m l./lO O m l. 1.42 m l. H e m o g lo b in . . . . . . 5.61 g . / 100 m l. 1.13 g. 1.04 m i l l i o n c e l l / c m m . 0.18 m i llio n 2 .4 4 m l./lO O g. 0.12 m l. 3.85 m l./lO O g. 0.16 m l, R .B .C . co u n t . . . . . P l a s m a v o lu m e . . B lo o d v o l u m e ............... S p le n e c to m i z e d F i s h E x p o s e d to 2 0 m g . C r / l . 2,92 m l. H e m a to c rit . . . . . . 40,6 ml./TOO m l. H e m o g lo b in ............... ... 7.42 g./lOO m l. 0.51 g. 1.38 m i lli o n c e l l / c m m . 0.11 m illio n . , . 1.74 m l./lO O g. 0.10 m l. B lo o d v o l u m e ............... 3.16 m l./lO O g. 0.14 m l. R . B . C . co u n t ............... P l a s m a v o lu m e 64 Splenectom ized chromium P l a s m a v o lu m e : Y i , 0.069 m l . = 0.05 + 0.015 x g r a m s B lo o d v o lu m e : Y ±, 0o077 = 0.18 + 0.022 x g r a m s T h e r e g r e s s i o n li n e s f o r th e p l a s m a v o lu m e d ata a r e in F i g u r e p lo tte d 9* a n d f o r th e b lo o d v o lu m e d a ta in F i g u r e 10. T h e r e s u l t s of t h e s e e x p e r i m e n t s w e r e c o m p a r e d a m o n g t h e m ­ s e l v e s a n d w ith th e n o r m a l t r o u t d a t a . A n a l y s i s of v a r i a n c e , c o - v a r i a n c e , a n d t - t e s t s w e r e u s e d w ith th e follow ing r e s u l t s . H em a to c rit T h e s p l e n e c t o m i z e d an d in t a c t a n i m a l s e x p o s e d to c h r o m i u m had h e m a to c rits s ig n if i c a n tl y h i g h e r t h a n th o s e f i s h , both s p l e n e c t o ­ m i z e d a n d i n t a c t , not e x p o s e d to c h r o m i u m . H e m o g lo b in The s p l e n e c t o m i z e d a n i m a l s e x p o s e d to c h r o m i u m h ad a s i g ­ n if i c a n tl y h i g h e r h e m o g lo b in c o n te n t th a n d id th o s e s p le n e c to m i z e d figti t h a t w e r e not e x p o s e d . b etw een oth er g ro u p s. T h e r e w a s no e v id e n c e of d i f f e r e n c e s 65 o 00 on sO on Ed anj S h tuo tuo •rH CD ^ Figure 00 t3 PQ Comparison r-H 9. o on of plasma volumes. jrH o 00 o 00 o vO lD ^ on o o o o P la s m a V o lu m e (m illilite r s) o Figure 10. Comparison of total blood volumes. 66 I ti -O O OO O T o ta l B lo o d V o lu m e ,- H -H vT> o O (m illilite r s) fM O 67 K e d b lo o d c e l l co u n t A c c o r d i n g to th e a n a l y s i s of v a r i a n c e , th e s p le n e c t o m i z e d a n i m a l s e x p o s e d to c h r o m i u m h a d s ig n if ic a n tly h i g h e r b lo o d c e l l c o u n t s t h a n th e i n t a c t a n d s p l e n e c t o m i z e d c o n t r o l s . By " t" te st, th e n o r m a l a n i m a l e x p o s e d t o c h r o m i u m a l s o h a d a h i g h e r blo o d c o u n t t h a n t h e n o r m a l co un t. R e d b lo o d c e l l le n g th By " t" t e s t , th e n o r m a l a n i m a l e x p o s e d to c h r o m i u m h a d s ig n if i c a n tl y l a r g e r b lo o d c e l l s th a n th e n o r m a l t r o u t i n ta p w a t e r . No m e a s u r e m e n t s w e r e m a d e on s p l e n e c t o m i z e d f is h . P l a s m a v o lu m e a n d b lo o d v o lu m e By c o v a r i a n c e , th e s p l e n e c t o m i z e d f is h in ta p w a te r h a d a s i g n if i c a n tl y h i g h e r p l a s m a a n d b lo o d v o lu m e th a n th e s p l e n e c t o m i z e d f i s h e x p o s e d to c h r o m i u m . T he e x p e r i m e n t a l e v id e n c e d id n o t show a d i f f e r e n c e in th e o t h e r g r o u p s . D i s c u s s i o n of th e I n c r e a s e in H e m a t o c r i t T h e h ig h ly s i g n if i c a n t i n c r e a s e in h e m a t o c r i t s of n o r m a l t r o u t e x p o s e d t o c h r o m i u m c o u ld b e b r o u g h t ab o u t in t h r e e g e n e r a l w ays: 68 (1) by a n i n c r e a s e i n c e l l s i z e , (2) by an i n c r e a s e i n c e l l n u m b e r , a n d (3) by a d e c r e a s e in p l a s m a v o lu m e . Since t h e r e w as a hig h ly s i g n if i c a n t i n c r e a s e in c e l l s i z e , t h i s m a t t e r w ill b e d i s c u s s e d f i r s t . If n o r m a l t r o u t h a v e a r e d blood c e l l co un t of 1.11 x 10 c e l l / c m m . an d a h e m a t o c r i t of 3 1 .8 , th e n (1) t h e r e a r e c e lls/1 0 0 /L 1.11 x 1011 m l . of b lo o d an d (2) e a c h m i l l i l i t e r of th e p a c k e d r e d b lo o d c e l l s c o n t a i n s 3.5 0 x 10 9 ce lls. In th e n o r m a l t r o u t e x p o s e d t o c h r o m i u m , u s i n g th e s a m e m a t h e m a t i c s , it w as found th a t (1) t h e r e are 1.25 x 10 * 1 c e l l / 1 0 0 m l . , an d (2) t h a t e a c h m i l l i l i t e r of th e p a c k e d r e d b lo o d c e l l s c o n t a in s 2.85 x 10 9 c e lls. A s s u m i n g th a t th e c h a n g e in n u m b e r s of p a c k e d c e l l s w as due to c h a n g e in v o lu m e only, th e 1.11 x 1011 c e l l s i n th e n o r m a l t r o u t , if c h a n g e d in v o lu m e lik e t h o s e i n th e c h r o m i u m - e x p o s e d f i s h , w ould c a u s e a r i s e in h e m a t o c r i t from 31.8 to 3 8.9. T h e r e f o r e , th e i n c r e a s e in c e l l v o lu m e a c c o u n ts f o r 5 9 p e r c e n t of the t o t a l r i s e i n h e m a t o c r i t . If th e c e l l n u m b e r i n c r e a s e d by 1.40 x 10*° c e l l / 1 0 0 m l. of b lo o d a n d , a s c a l c u l a t e d a b o v e , t h e r e a r e 2.85 x 10 9 c e l l p e r m i l l i l i t e r of p a c k e d c e l l s , th e n th e i n c r e a s e i n n u m b e r w ould a c c o u n t f o r 4.9 m i l l i l i t e r s c e l l s , o r 41 p e r c e n t of th e i n c r e a s e i n h e m a t o c r i t . of p a c k e d S ince t h e s e p e r ­ c e n t a g e s w e r e c a l c u l a t e d f r o m m e a n s , th e s t a n d a r d e r r o r of t h e s e m e a n s m u s t b e k ep t in m in e w hen c o n te m p la tin g t h e s e r e s u l t s . 69 W hen th e h e m a t o c r i t of a n a n i m a l i n c r e a s e s s ig n if ic a n tly , th e blood, v o lu m e m u s t i n c r e a s e a n d / o r th e p l a s m a v o lu m e m u s t d e ­ crease, U n f o r t u n a te ly , n e i t h e r of t h e s e e v e n ts co u ld be show n to o c c u r by s t a t i s t i c a l e x a m in a t io n of th e b lo o d a n d p la s m a v o lu m e r e ­ su lts. T h e r e f o r e , a lth o u g h c h a n g e s m u s t o c c u r , th e y a r e to o s m a l l to b e m e a s u r e d by th e m e th o d u s e d h e r e i n . In lig h t of th e ab o v e e v id e n c e , it c a n be c o n c lu d e d th a t a p ­ p r o x i m a t e l y 59 p e r c e n t of th e i n c r e a s e in h e m a t o c r i t due to e x p o s u r e to p o t a s s i u m c h r o m a t e i s due to a n i n c r e a s e in c e l l v o lu m e an d a p ­ p ro x im a te ly ber 41 p e r c e n t of th e i n c r e a s e i s due to i n c r e a s e in n u m ­ of c e l l s . No e v id e n c e of a ch an g e in p la s m a o r b lo o d v o lu m e c o u ld b e d e t e c t e d . D i s c u s s i o n of th e C a u s e s of th e R e d C e l l V o lu m e C h an g e T h e r e a s o n s f o r th e r e d c e l l v o lu m e ch an g e w e r e not c o n ­ s i d e r e d e x p e r i m e n t a l l y in t h i s stu d y . T h e o re tic a lly , th is in c re a s e in v o lu m e c o u ld be c a u s e d by a s t r e s s r e a c t i o n s u c h a s p o s tu la te d by I r v i n g , B la c k , a n d S a ffo rd (1941). T h e y found, u s in g tw e n ty - f iv e r a in b o w t r o u t , e r y t h r o c y t e s would s w e ll 1 to 21 p e r c e n t , w ith an average s w e lli n g of 10 p e r c e n t , when s u b je c te d to te n s i o n s d io x id e a b o v e 10 m m B Hg. of c a r b o n T he s w e llin g of th e r e d b lo o d c e l l s w as 70 found to b e m o r e i n t e n s e th a n w ould be e x p e c te d if the CO^ te n s i o n w a s th e only v a r i a b l e w h ic h d e t e r m i n e d v o lu m e c h a n g e . In th e c h r o m i u m not a f a c t o r . e x p e r i m e n t s h e r e i n , c a r b o n d io x id e w as U sin g M o o r e 's (193 9) g r a p h s in c o n n e c tio n with the a l k a l i n i t y a n d pH of th e s o l u t i o n s , c a r b o n dio x id e w as n e v e r d e ­ t e c t e d in m e a s u r a b l e a m o u n t s . A n o t h e r c a u s e of i n c r e a s e in v o lu m e co u ld be due to the a f f in ity of th e e r y t h r o c y t e s fo r c h r o m i u m . If th e c h r o m i u m e n t e r s t h e r e d c e l l , th e o s m o ti c c o n c e n t r a t i o n m ig h t be a l t e r e d s u f f ic ie n tly to c a u s e w a t e r to b e d r a w n in to th e c e l l . m o le c u la r fo rm Since th e of th e c h r o m i u m c o m p le x in th e b lo o d a n d in the r e d b lo o d c e l l i s unknow n, c a l c u l a t i o n of th e a m o u n t of c h r o m i u m n e c e s s a r y to c h a n g e th e o s m o ti c p r e s s u r e in s u c h a way a s to c a u s e t h i s i n c r e a s e in v o lu m e w as n o t u n d e r ta k e n . D i s c u s s i o n of th e R o le of th e S p le e n in th e I n c r e a s e in C e l l N u m b e r u n d e r P o t a s s i u m C h r o m a t e S t r e s s T h e m a m m a l i a n s p l e e n i s known to s t o r e e r y t h r o c y t e s f o r r e l e a s e in to th e c i r c u l a t i n g b lo o d d u r in g t i m e s of s t r e s s . The s p l e n e c t o m i z e d f i s h e x p e r i m e n t s w e r e d e s ig n e d to d e m o n s t r a t e w h e t h e r th e f is h s p le e n a d d e d e r y t h r o c y t e s to the c i r c u l a t i n g blood u n d e r p o ta ssiu m ch ro m a te stre ss. T h e s p le n e c to m i z e d f is h u n d e r 71 c o n t r o l c o n d i tio n s d id not show a d if f e r e n c e in h e m a t o c r i t , h e m o ­ g lo b in , o r c e l l co u n t w hen c o m p a r e d to n o r m a l c o n t r o l f is h . s p l e n e c t o m i z e d f is h u n d e r p o t a s s i u m c h r o m a t e stre ss The (20 m g. C r / l . ) d id sh o w a s ig n if i c a n t i n c r e a s e in h e m a t o c r i t s a n d r e d c e l l count a b o v e th e creased sp le n e c to m iz e d and in ta c t c o n tro ls . T he h e m o g lo b in in ­ s i g n i f i c a n t l y a b o v e th e l e v e l of th e s p l e n e c t o m i z e d c o n t r o l f i s h , b u t not of th a t of th e i n t a c t c o n t r o l s . None of th e v a l u e s d e ­ t e r m i n e d on c h r o m i u m - e x p o s e d s p le n e c to m i z e d f is h d e v ia te d s t a t i s ­ t i c a l l y f r o m t h o s e of th e c h r o m i u m - e x p o s e d n o r m a l fis h . It c a n be c o n c lu d e d f r o m th e f o r e g o in g e v id e n c e th a t the p resen ce of th e s p le e n i s not n e c e s s a r y to i n c r e a s e th e h e m a t o c r i t under c h ro m iu m stre ss, s in c e t h e r e w as no d if f e r e n c e in e f f e c ts w h e th e r th e e x p e r i m e n t s w e r e p e r f o r m e d on s p l e n e c t o m i z e d o r i n ­ t a c t f is h . D i s c u s s i o n of t h e P a r t P l a y e d by th e P o t a s s i u m Ion in P o t a s s i u m C h r o m a t e T o x ic ity The r e s u lts g r a m s of c h r o m i u m s o f a r h a v e b e e n e x p r e s s e d in t e r m s of m i l l i ­ io n p e r l i t e r of w a t e r ev en th ough th e co m p o u n d u s e d th r o u g h o u t t h i s w o rk w as p o t a s s i u m c h r o m a t e , S in ce p o t a s s i u m c h r o m a t e d o e s c o n t a in c o n s i d e r a b l e a m o u n ts of p o t a s s i u m ion, a f u r t h e r s tu d y w a s u n d e r t a k e n to c o n s i d e r i t s effect on th e f o r e g o in g re su lts. 72 T h e g r o u p of f is h u s e d in th is e x p e r i m e n t w a s k ep t in c o n ­ c r e t e t a n k s a n d f e d t r o u t p e l l e t s p r i o r to th e t i m e of i t s a r r i v a l a t th e l a b o r a t o r y , w h e r e a s a l l o t h e r f is h u s e d th r o u g h o u t t h i s stu dy w e r e t a k e n f r o m h o ld in g ponds; thus* th e y w e r e d e p e n d e n t on n a t ­ u r a l food. T h i s f a c t c a l l e d f o r the d e t e r m i n a t i o n of new c o n t r o l and c h r o m i u m ^ e x p o s e d v a l u e s of th e h e m a t o c r i t . w e r e e x p o s e d to a p o t a s s i u m c h l o r i d e e q u a l to 2 9 .8 m g . K / l , th e p o t a s s i u m c h l o r i d e p o ta ssiu m c h ro m a te In a d d itio n , te n f is h so lu tio n of a c o n c e n t r a t i o n T h e c o n c e n t r a t i o n of th e p o t a s s i u m ion in s o lu tio n w as e q u a l to i t s c o n c e n t r a t i o n in the s o lu tio n . The r e s u lts a re show n in T a b le 11. f,T fr t e s t s f a i l e d to show an y e v id e n c e of a d if f e r e n c e b e ­ tw e e n th e p o t a s s i u m c h l o r i d e - e x p o s e d f is h and th e c o n t r o l a n d c h r o m i u m - e x p o s e d f is h . The v a r i a n c e (85.55) of th e p o t a s s i u m c h l o r i d e - e x p o s e d s a m p l e s w e r e s ig n if ic a n tly h ig h e r th a n th e n o r m a l s a m p l e s * a n d it w a s a s s u m e d th a t t h i s w as a n in d ic a tio n of a s t a t e of c h a n g e . It i s i n t e r e s t i n g to no te th a t a s a m p le of fis h e x p o s e d to 6.6 m g . C r / l . , th e lo w e s t c o n c e n t r a t i o n of c h r o m i u m m e a s u r e d th a t w ould i n c r e a s e th e h e m a t o c r i t to 43.8 m l./lO O m l . , a l s o h a d a h ig h ly s ig n if i c a n t v a r i a n c e (258.75). P e r h a p s th i s i n c r e a s e in v a r i ­ a n c e of s a m p l e s c a n be e x p e c te d at c o n c e n t r a t i o n s w hich a r e j u s t s t r o n g en o u g h to c a u s e an i n c r e a s e in h e m a t o c r i t in only p a r t of th e fish . If t h i s a s s u m p t i o n is t r u e , th e n th e p o t a s s i u m io n , in a d d itio n 73 TABLE 11 R E S U L T S O F POTASSIUM CH LO RIDE E X P E R IM E N T S S o lu tio n KC1 (29.8 m g . K / l . ) Tap w a te r KCrO. N um ber of F is h H em ato crit ( m l . / 100 m l . ) 10 38.8 85.55 10 34.0 13.77 10 40.3 24,44 , ...................... ................................................. (20 m g . C r / l . ) ................... T1 r-BTi i— ■»1■ 1 ■ !— . 1 1i ■ — ■■ to th e c h r o m i u m , i s a p o te n tia l in flu e n c e upon th e r e s u l t s at p o ta ssiu m V a ri­ ance o b ta in e d c h r o m a t e c o n c e n t r a t i o n s e q u a l to 2 0 m g , C r / l , W h e th e r th i s o r a s y n e rg istic p o te n tia l in f lu e n c e would be an a d d itiv e e ffect e f f e c t i s unknow n, but it d o e s add s o m e u n d e r ­ s ta n d in g to th e r e a s o n why p o t a s s i u m c h r o m a t e is c o n s i d e r e d to be m o r e to x ic th a n s o d iu m c h r o m a t e . of th in k in g in t e r m s such com pounds a s T h i s a l s o q u e s ti o n s th e p r a c t i c e of c h r o m i u m ion c o n c e n t r a t i o n s w hen t e s t i n g p o t a s s i u m c h r o m a t e , e s p e c i a l l y at the hig h c o n ­ c e n t r a t i o n s in v o lv e d in a c u te stu d ie s. 74 T h e H e m a t o c r i t a s a n Index of T o x ic ity O nce h a v in g d e m o n s t r a t e d th a t th e h e m a t o c r i t i n c r e a s e d in f is h e x p o s e d to p o t a s s i u m c h r o m a t e , it w as th e n u n d e r t a k e n to d e ­ t e r m i n e th e lo w e s t c o n c e n t r a t i o n of c h r o m i u m a t w h ich t h i s ch an g e to o k p la c e . T he i n f o r m a t i o n in T a b le 12, in c lu d in g the r e s u l t s of th e n o r m a l c o n t r o l g r o u p a n d th e n o r m a l c h r o m i u m g r o u p , a r e in F ig u r e p lo tte d 11. T h e le n g th of th e l i n e s e x te n d in g above a n d b elo w th e p o in ts p lo tte d in F i g u r e th e m e a n . 11 a r e e q u a l to two t i m e s th e s t a n d a r d e r r o r of By c o m p a r i n g t h e s e l i n e s , a ro u g h e s t i m a t e of s t a t i s t i c a l d iffe re n c e s c an be m ade. F ro m th is g r a p h we c a n c o n c lu d e th a t th e h e m a t o c r i t v a lu e i s i n c r e a s e d a t 1.4 m g . C r / l . a n d r e a c h e s i t s m a x im u m r i s e in v a lu e a t a point b e tw e e n 2 a n d 4 m g . C r / l . T h i s i n f o r m a t i o n i s i n t e r e s t i n g to th e s t r e a m g is t b e c a u s e , a lth o u g h th e 2 4 - h o u r T L m i s p o llu tio n b i o l o ­ 100 m g , C r / l . , in r e a l i t y , c o n c e n t r a t i o n s b e tw e e n 2 an d 4 m g. C r / l . c a u s e a c t u a l p h y s i c a l c h a n g e to o c c u r w ith in th e t r o u t . S in ce th e d e t e r m i n a t i o n of th e h e m a t o c r i t i s a s i m p l e p r o ­ c e d u r e r e q u i r i n g a m i n im u m of e q u i p m e n t, it would be w e ll w o rth th e i n v e s t i g a t i o n to d e t e r m i n e w h e th e r t h i s r i s e in h e m a t o c r i t c o u ld Figure 11. Increase in hematocrit in relation to potassium chromate concentration. 75 M e a n H e m a t o c r i t (m l./lO O m l. 76 TABLE THE 12 M EAN H E M A T O C R IT S O F FISH E X P O S E D T O VARIOUS C O N C E N T R A T IO N S O F POTASSIU M CHROM ATE N um ber of F i s h C h ro m iu m (m g ./l.) M ean H e m a to c rit (m l./lO O m l.) S ta n d a r d E r r o r 10 18.0 43,8 1.56 9 6 *6 43.8 5.08 10 1.4 39.3 1.47 8 0,5 26.7 2.67 10 0.0 31.8 1.39 be u s e d a s a n in d e x of c h r o n ic to x ic ity in m u c h th e s a m e way a s th e T L m i s u s e d a s an in d e x of a c u te to x ic ity . T h is would r e q u i r e e x p e r i m e n t s w h ich w ould d e t e r m i n e w h e th e r an i n c r e a s e d h e m a t o c r i t w as a g e n e r a l r e s p o n s e to n o n s p e c if ic to p o t a s s i u m As s t r e s s , o r a s p e c if ic r e s p o n s e c h ro m a te . s t a t e d e a r l i e r i n t h i s p a p e r , t h i s p r o j e c t d o e s not a t te m p t to a n s w e r a l l of th e p r o b l e m s e n c o u n t e r e d in s t r e a m p o llu tio n co n - t r o l , b u t r a t h e r , p o in ts th e way to a b e t t e r u n d e r s ta n d i n g of th e m . 77 S p le e n F u n c tio n D u r in g th e c o u r s e of th e e x p e r i m e n t s c o n c e r n e d w ith blood s t u d i e s , tw o s e r i e s (see T a b le of h e m a t o c r i t s w e r e ta k e n on e a c h g ro u p of fis h 13), one s e r i e s in c o n n e c tio n with th e b lo o d v o lu m e d e ­ t e r m i n a t i o n s a n d one s e r i e s with th e o th e r b lo o d t e s t s . e n c e s in th e m e th o d s of r u n n in g t h e s e two s e r i e s w e re : The d i f f e r ­ (1) th e b lo od f o r th e h e m a t o c r i t s a n d o t h e r b lo o d t e s t s w as d r a w n i m m e d i a t e l y a f t e r th e f i s h w a s a n e s t h e s i z e d , a n d (2) th e blood f o r th e h e m a t o c r i t s a n d b lo o d v o lu m e t e s t s a n e s th e s iz e d and a f te r w a s d r a w n te n m i n u te s a f t e r th e f is h w as 0.012 m l. of 6.0 m g. T -1 8 2 4 / m l . w as in je c te d . D e s ig n a ti n g t h o s e h e m a t o c r i t s t a k e n im m e d i a te l y a s h e m a t o c r i t s at tim e q> an d t h o s e t a k e n a f t e r t e n m i n u te s a s h e m a t o c r i t s at t i m e th e a v e r a g e r e s u l t s a r e t a b u l a t e d in T a b le 13. W hen th e hig h ly s ig n if ic a n t d if f e r e n c e b e tw e e n th e two s p l e n e c ­ t o m i z e d c o n t r o l h e m a t o c r i t s w a s n o tic e d , i t w as d e c id e d to e lim i n a te th e p o s s i b i l i t y of th e T -1 8 2 4 a n d the o p e r a t iv e p r o c e d u r e a s a p o s ­ s ib le c a u s e of t h i s i n c r e a s e d u r in g th e te n m in u te p e r io d . Those s p l e n e c t o m i z e d f is h in w hich no T - 1 8 2 4 w a s in j e c te d d u rin g the te n m in u te p e r i o d s t i l l sh o w e d a s ig n if ic a n t i n c r e a s e in h e m a t o c r i t , w h ile t h o s e t h a t in c re a se . w ere sham o p erated show ed no e v id e n c e of an 78 TABLE 13 R E S U L T S O F E X P E R IM E N T S P E R F O R M E D TO IN V ESTIG A TE S P L E E N FUNCTION H e m a to c rits ( tim e Q) H e m a to c rits (tim e ) D if f e r e n c e S p len e cto m ized c o n t r o l . 28.5 36.6 8.1 S p len e cto m ized c h r o ­ . ...................................... m iu m 40.6 44.9 4.3 S p len e cto m ized c o n tro l no. T - 1 8 2 4 .................... . 28.5 34,9 6.4 31.8 35.0 3.2 43.8 46.3 2.5 33.6 35.8 2.2 G ro u p N o rm al co n tro l ............... N o rm al c h ro m iu m . . . S h am o p e r a t e d c o n t r o l .......................... ... T h e a b o v e e v id e n c e i n d i c a t e s th a t th e s p le e n of t r o u t a c t s a s a b u f f e r to s u d d e n h e m o c o n c e n t r a t i o n . T h is fu n c tio n i s l i m i t e d , a s e v id e n c e d by th e te n d e n c y of th e h e m a t o c r i t to i n c r e a s e in e v e r y in sta n c e m e th o d s. th e e v e n th o u g h t h i s i n c r e a s e c an n o t b e v e r i f i e d by s t a t i s t i c a l O th e r e v id e n c e of th e l i m i t e d n a t u r e of th i s fu n c tio n i s s ig n if i c a n t i n c r e a s e in h e m a t o c r i t in both in t a c t a n d s p l e n e c t o ­ m i z e d f i s h e x p o s e d to c h r o m i u m , w hich would in d ic a te th e c o m p le te 79 o v e r w h e l m i n g of th e b u f f e r c a p a c ity p o ta ssiu m c h ro m a te of th e s p le e n due to p r o lo n g e d stre ss. M o re ev id en ce, g a th e re d fro m e x p e rim e n ts s p e c if i c a ll y d e ­ s ig n e d to i n v e s t i g a t e th e te n d e n c y of th e s p le e n to a c t a s a b u f f e r , i s n e e d e d b e f o r e d e f in ite c o n c l u s i o n s c a n be m a d e . S ince th i s w o r k w a s p r i m a r i l y a i m e d a t a n s w e r s to to x ic ity i n v e s t i g a t i o n s , a nd s in c e t h i s l i m i t e d b u f f e r a c t io n of th e s p le e n did not in flu e n c e th e r e s u lts under c h ro m iu m s t r e s s , f u r t h e r i n v e s t ig a ti o n into s p le n ic f u n c tio n w a s not u n d e r ta k e n . CONCLUSIONS I, T h e fo llo w in g p h y s io lo g i c a l v a l u e s h av e b e e n e s t a b l i s h e d f o r th e n o r m a l h a t c h e r y - r a i s e d r a in b o w t r o u t (T ab le TABLE 14): 14 PH Y S IO L O G IC A L VALUES O F THE NORMAL H A T C H E R Y -R A IS E D RAINBOW TROUT D e t e r m i n a t i on M ean V alu e H em a to c rit 31,8 m l./lO O m l. S ta n d a r d E r r o r 1.39 m l. E r y t h r o c y t e co u n t . . . . 1.11 m i lli o n c e l l / c m m . 0.098 m illio n H e m o g lo b in 6.51 g ./lO O g. 1.27 g. .......................... E r y t h r o c y t e le n g th . . 0.24 14.69 )i . . . » 2.13 m l./lO O g. O014 m l. B lood v o lu m e ................... 3.25 m l . / 100 g. 0 al6 m l. K idney w eight . . . . . . 0.77 g./lO O g. 0 o039 g. L i v e r w eig h t ................... 1.02 g./lO O g. 0.077 g„ S p le e n w eig h t ................... 0.24 g ./lO O g. 0.02 3 g. P l a s m a v o lu m e T o t a l body w a t e r . . . . 7 7 .4 g./lO O g. 80 1.02 g. 81 2. K id n e y , l i v e r , a n d s p le e n w eight; a n d t o t a l body w a t e r and p l a s m a a n d b lo o d v o l u m e s w e r e found to c o r r e l a t e highly s ig n if ic a n tly w ith body w e ig h t, 3. T h e 2 4 h o u r m e d ia n t o l e r a n c e li m it of t r o u t to p o ta s s iu m c h r o m a t e i n a c o n c e n t r a t i o n e x p r e s s e d in m g, C r / l . i s 4. T racer 100 m g, C r / l . e x p e r i m e n t s in d i c a t e d th a t th e s p le e n and th e g a ll b l a d d e r , in c lu d in g th e b i l e , a c c u m u l a t e d c h r o m i u m above th e le v e l of a s e c t i o n of th e c a u d a l p e d u n c le , w h e r e a s t h e r e w as no ev id e n c e th a t kidney o r l i v e r did. 5. liv e r, T h e r e w a s no e v id e n c e th a t th e w eig h ts of th e k id n e y , s p l e e n , an d t o t a l body w a t e r of f is h e x p o s e d to p o ta s s iu m c h r o m a t e w e r e d i f f e r e n t f r o m t h o s e of f i s h in ta p w a t e r . 6. w ere T h e h e m a t o c r i t s of b o th s p l e n e c t o m i z e d an d in t a c t fish s ig n if i c a n tl y h i g h e r th a n c o n t r o l f is h in ta p w a t e r . T h is r i s e in h e m a t o c r i t w a s found to b e due to an i n c r e a s e in c e l l n u m b e r and c e l l v o lu m e . 7. T h e r e w a s no e v id e n c e th a t th e p la s m a o r b lo o d v o lu m e i n c r e a s e d o r d e c r e a s e d in f i s h e x p o s e d to p o t a s s i u m c h r o m a t e , 8. The p re se n c e of th e th e h e m a t o c r i t u n d e r c h r o m i u m s p le e n i s not n e c e s s a r y to i n c r e a s e s t r e s s , s in c e t h e r e w a s no d if f e r e n c e in e f f e c t s w h e th e r th e e x p e r i m e n t s w e r e p e r f o r m e d on s p l e n e c ­ t o m i z e d o r in t a c t f is h . 82 9. It w a s a s s u m e d , on th e b a s i s th e p o ta ss iu m io n , in a d d itio n to e n c e u po n th e re su lts of e x p e r i m e n t a l d a t a , th at th e c h r o m i u m , i s a p o te n tia l in f lu ­ o b ta in e d a t p o t a s s i u m c h r o m a t e c o n c e n t r a t i o n s e q u a l to 2 0 m g . C r / l . 10. It w a s fou n d th a t th e r i s e in v a l u e a t a point b e tw e e n h e m a t o c r i t r e a c h e s i t s m a x im u m 2 a n d 4 m g. C r / l . It i s h o p ed th a t f u t u r e e x p e r i m e n t a t i o n m ig h t p r o v e th a t th e i n c r e a s e in h e m a t o c r i t i s an in d e x of c h r o n i c to x ic ity . 11. D a ta i n d i c a t e d th a t th e s p le e n m a y a c t a s a li m it e d b u f f e r m e c h a n i s m to s u d d e n h e m o c o n e e n tr a t io n . BIBLIO G R A PH Y A b e g g , R . , 1949, S o m e I m p l i c a t i o n s f r o m th e C h a n g e s of th e M ucous C o v e r i n g of K is h S u b je c te d to S alt S o lu tio n s. P r o c , L o u is ia n a A c a d . S c i . , 1 2 :7 -1 0 . A b e g g , R . , 195 0, S om e E f f e c t s of I n o r g a n ic S a lt s on th e B lood S p e ­ c ific G r a v i t y a n d T i s s u e F lu i d s of th e B lu e g ill, L e p o m is m a c r o c h i r u s R a f . P h y s i o l . Z o o l ., 2 3 :1 2 4 -1 3 4 . ' ’ A n d e r s o n , B. G ., 1944, T h e T o x ic ity T h r e s h o l d s of V a r io u s S u b s ta n c e s F o u n d in I n d u s t r i a l W a s te s a s D e t e r m i n e d by th e U se of D a p h n ia m a g n a . S ew age W o rk s J o u r n a l , 16 (6): 1156- 1163, A n d e r s o n , B. G.» 1946, T he T o x ic ity T h r e s h o l d of V a r i o u s S odium S a l t s D e t e r m i n e d by th e U se of D aphnia m a g n a . Sew age W o r k s J o u r n . 1 8 ( l) :8 2 - 9 0 . ^ B a n d t , H. J . , 1946, U e b e r r e r s t a r k e S c h a d w ir Kungen au f F i s c h e , i n s e b e s o n d e r e lib e r e r h o h te G iftw irk u n g d u r c h K o m b in a tio n von A b w a sse rg ifte n . B e itra g e W a s s e r - , A b w a s s e r-u . F i s c h e r e i c h e m i e , 1 :1 5 -2 3 , B la c k , E . C . , 1955, B lood L e v e l s of H e m o g lo b in a n d L a c tic A c id in Som e F r e s h w a t e r F i s h e s F o llo w in g E x e r c i s e . J . F ish . R es. Bd. C a n a d a , 12(6):9 1 7 -9 29 . B r o w n , M. E . , 1957, T h e P h y s io lo g y of F i s h . VoL 1, M e ta b o l is m , A c a d e m i c P r e s s , I n c ., P u b l i s h e r s , New Y o r k . De M a r t i n i , F . E . , 1938, C o r r o s i o n a n d th e L a n g e l i e r C a l c i u m C a r ­ b o n a te S a t u r a t i o n In d e x , J o u r n . A .W .W .A . 3 0 :8 5 -9 2 . D o u d o ro ff, P . , 1952, S o m e R e c e n t D e v e lo p m e n ts in th e Study of T o x ic In d u s tr ia l W a ste s, P r o c . F o u r t h P a c if ic N o r th w e s t I n d u s t r i a l W a s te C o n f ., S tate C o ll. of W a sh in g to n , P u l l m a n , W a s h ., 2 1 25. 83 84 D o u d o r o ff , P . , A n d e r s o n , B, G ., B u r d i c k , G. E . , G a lt s o f f , P . S ., H a r t , We B 0, P a t r i c k , f t . , S tr o n g , E . R . , S u r b e r , E . W ., and V a n H o r n , W. M ., 1951, B i o - A s s a y M eth o d s f o r th e E v a l u a ­ t i o n of A c u te T o x ic ity of I n d u s t r i a l W a s te s to F i s h . Sew age a n d I n d u s t r i a l W a s t e s , 2 3 (l 1): 1 3 8 0 -1 3 9 7 . D o u d o ro ff, P . , a n d K a tz , M , , 1953, C r i t i c a l R e v ie w of L i t e r a t u r e on th e T o x ic ity of I n d u s t r i a l W a s t e s a n d T h e i r C o m p o n e n ts to F ish . II, T h e M e ta l s A s S a l t s . Sew age and I n d u s t r i a l W a s t e s , 25(7):802 - 839. E llis, M. M ., 1937, D e te c tio n an d M e a s u r e m e n t of S t r e a m P o ll u tio n . B u ll. No. 2 2 , U.S. B u r . of F i s h e r i e s ; B u ll. B u r , F i s h e r i e s , 4 8 :3 6 5 - 4 3 7 . E l l i s , M. M . , a n d L a d n e r , G. C . , 1935, A tta c k in g th e N a ti o n 's W a te r P o ll u tio n M e n a c e . T r a n s . T w e n t y - f i r s t A m e r . G a m e . C o n f 0, 1 3 5 -1 4 8 , F r o m m , P . O . , a n d S c h if f m a n , R . H ., 1958, T o x ic A c tio n of H e x a v a l e n t C h r o m i u m on L a r g e m o u t h B a s s . J o u r n . W ildlife M a n ­ a g e m e n t. Jan, (In P r e s s ) G a r r e y , W. E . , 1916, T h e R e s i s t a n c e of F r e s h W a t e r F i s h to C h a n g e s of O s m o tic a n d C h e m i c a l C o n d itio n s . A m er. Jo u r. P h y s i o l . , 3 9 :3 1 3 -3 2 9 . G r i n d l e y , J , , 1945, T r e a t m e n t a n d D i s p o s a l of W a ste W a t e r s C o n t a i n ­ ing C h r o m a t e . J o u r . Soc. C h e m . Inc. (London) 64:33 9 -3 4 4 . G r in d le y , J . , 1946, T o x ic ity to R ain b o w T r o u t and M innow s of Some S u b s ta n c e s Known To B e P r e s e n t in W a s te W a te r D is c h a r g e d to R iv e r s . A nn. A pp l. B i o l . , 33:10 3 -1 1 2 . G u e y l a r d , F . , 1923, R e s i s t a n c e d e s E p in o c h e s aux V a r i a t i o n s de sa lin ite . C o m p t, R e n d . Soc. B io l . , 8 9 :7 8 -8 0 . G u e y l a r d , F . , 192 4, De l 'a d a p t a t i o n aux c h a n g e m e n ts de s a li n ite . R e c h e r c h e s b io lo g iq u e s et p h y s i c o - c h i m i q u e s s u r l'E p i n o c h e . A r c h . P h y s . B io lo g iq u e , 3 :7 9 -1 9 7 . 85 * B ., D o u d o ro ff, P . , an d G r e e n b a n k , J . r 1945, T he E v a lu a tio n o f th e T o x ic ity of I n d u s t r i a l W a s t e s , C h e m i c a l s , and O th e r S u b s t a n c e s t o F r e s h W a te r F i s h e s . T h e A tla n tic R efin in g C o ., P h ila d e lp h ia , P a . H e i l b r u n n , L . V ., 1938, A n O u tlin e of G e n e r a l P h y s io lo g y . S a u n d e rs C o ., P h ila d e lp h ia , P a. W. B. I r v in g , L . , B la c k , E . C . , a n d S a f f o r d , V.» 1941, T e m p e r a t u r e a nd O^ A ffin ity of F i s h B lood. B io l. B u ll. 8 0 :1 -1 7 . J o n e s , J . R , E 0, 1938, T h e R e l a tiv e T o x ic ity of S a lts of L e a d , Z i n c , a n d C o p p e r to th e S t i c k le b a c k , G a s t e r o s t e u s a c u l e a t u s L ., an d t h e E f f e c t of C a l c i u m on th e T o x ic ity of L e a d a n d Z in c S a lts . J o u r n . E x p . B i o l . , 1 5 :3 9 4 -4 0 7 . J o n e s , J . R . E . , 1939, T h e R e l a t i o n b e tw e e n th e E l e c t r o l y t i c S olu­ ti o n P r e s s u r e s of th e M e ta ls a n d T h e i r T o x ic ity to th e S t i c k le b a c k , G a s t e r o s t e u s a c u l e a t u s L. J o u r n . E x p . B io l., 1 6 :4 2 5 -4 3 7 . K l a s s e n , C . W ., H a s f u r t h e r , W. A ., a n d Y oung, M. K . , 1949, T he T o x i c ity of H e x a v a le n t C h r o m i u m to Sunfish a n d B lu e g ill s . P r o c . F o u r t h I n d u s t r i a l W aste C o n f., P u r d u e Univ. E ng. B u l l . , E x t . S e r i e s . , 6 8 :2 2 9 -2 3 7 . K r u g e r , F . , 1928, U n te r s u c h u n g e n iib e r die U r s a c h e n d e s T o d e s d e s S t i c h lin g s , G a s t e r o s t e u s a c u l e a t u s L . , in r e i n e n C h l o r n a t r i u m Losungen, Z e i t s . v e r g l . P h y s i o l . , 7 :6 9 6 -7 3 5 . K r u m h o lz , L o u i s A . , 1956, O b s e r v a t i o n s on th e F i s h P o p u la tio n of a L a k e C o n ta m in a t e d by R a d io a c tiv e W a s t e s , B u ll. A m . M u s e u m W at. H i s t . , 110 (4):2 7 7 -3 68 . * L e C l e r c , E . , a n d D e v la m in c k , F . , 1950, C o n s i d e r a t i o n s p r e l i m i n a i r e s a la d e t e r m i n a t i o n de la d o se m i n i m a m o r t e l l e , p o u r le p o i s s o n , de q u e lq u e s s u b s t a n c e s a c a r a c t e r e n o cif. B ull. C e n t r e B e ig e E tu d e et D o c u m e n t. E q u x , 8 :4 8 3 -4 8 5 . L o e b , J . , a n d W a s t e n e y s , H . , 1911, D ie E n tg iftu n g von N a t r i u m c h l o r i d d u rc h K a liu m c h lo rid . B io c h e m . Z e i t s . , 3 3 :4 8 0 -4 8 8 . 86 L o e b , J , , a n d W a s t e n e y s , H ., 1915, On th e In flu e n c e of B a la n c e d an d N o n - B a l a n c e d S alt S o lu tio n s upon th e O s m o tic P r e s s u r e of th e B ody L iq u id s of F u n d u lu s , J o u r n , B io l. C h e m , , 2 1 :2 2 3 -2 3 8 , M o o r e , E . W . , 1939, G r a p h ic d e t e r m i n a t i o n of C a r b o n D io x id e and t h e T h r e e F o r m s of A lk a lin ity . J o u r n , A m . W a te r W o rk s A s s o c , 31(1 ):51 -6 5 . * O s h i m a , S.* 1931, On th e T o x ic A c tio n of D is s o l v e d S a lts a n d T h e i r I o n s up o n Y oung E e l s , A n g u illa ja p o n ic a . Jo u rn , Im p erial F i s h e r i e s E x p , S ta. ( J a p a n e s e ) 2 :1 3 9 -1 9 3 . P o w e r s , E , B . , 1921, A n ta g o n i s m and i t s P o s s i b l e U tility in P o llu te d W aters, T r a n s , A m e r , F i s h e r i e s Soc. 5 0 :2 9 3 -2 9 6 , P r o s s e r , C . L . , B ishop* D. W„, B r o w n , F. A ., J r . , J a h n , T , L . , an d W ulff, Y . J . , 1950, C o m p a r a t i v e A n im a l P h y s io lo g y , W, B, S au n d er C o ., P h ila d e lp h ia , P a, * R a m u lt, R , , 192 8 a, In flu e n c e of C e r t a i n S a lts upon th e H a tc h in g a n d D e v e lo p m e n t of S a lm o n F r y , S a lm o t r u t t a 0 B u ll, I n t e r n a t . A c a d , P o l o n a i s e S c L , C l a s s e S ci. M ath. N a t., S e r i e B, Sci. N a t . , 1927, 4 5 - 6 2 . * R a m u lt, R . , 192 8b, T he In flu e n c e of C e r t a i n S a lts upon th e D e v e lo p ­ m e n t of Y oung S t i c k l e b a c k s , G a s t e r o s t e u s a c u l e a t u s . B ull, I n t e r n a t . A c a d , P o l o n a i s e S c i., C l a s s e S ci. M ath. N a t., S e r ie B. S ci. N a t . , 1927, 6 3 -6 6 , R u d o lf s , W ., B a r n e s , G. E„, E d w a r d , G. P H e u k e l e k i a n , H», H u r w i t z , E . , R e n n , C . E .* S te i n b e r g , S ., a n d V au g h an , W. E . r 1950, R e v ie w of L i t e r a t u r e on T o x ic M a t e r i a l A ffe c tin g Sew age T r e a t m e n t P r o c e s s e s , S t r e a m s , a n d B .O .D . D e t e r m i n a ­ tio n s. S ew ag e a n d In d u s t. W a s t e s , 2 2 (9 ) :1 1 5 7 - 1 191. * R u s h to n , W ., 1921, B io l o g ic a l N o te s . 2 5 :1 0 1 - 1 1 7 . S a lm o n a n d T r o u t M a g ., S a l t z m a n , B. E . , 1952, M i c r o d e t e r m i n a t i o n of C h r o m i u m with D i p h e n y l c a r b a z i e d by P e r m a n g a n a t e O x id ation , A n a l. C h e m . 2 4 :1 0 1 6 - 1 0 2 4 . % 87 S p e c t o r , W. S ., 1956, H an d b o o k of B io l o g ic a l D ata. C o ., P h ila d e lp h ia , P a. W. B, S a u n d e r s S t a n d a r d M e th o d s of W a t e r a n d Sew age A n a l y s i s , 1955, U.S. P u b lic H e a lt h S e r v i c e . Y o u n g , R . T . , 1938, T h e E f f e c t of B a l a n c e d V e r s u s U n b a la n c e d S o lu ­ t i o n s of H y d r o g e n Ion C o n c e n t r a t i o n s and D i s t i l l e d W a t e r on F ish . E c o lo g y , 1 9 :1 3 6 -1 4 0 . * T h is a r t i c l e w a s not s e e n in i t s o r i g i n a l f o r m . A P P E N D IX I R E V IE W O F TO X IC ITY L IT E R A T U R E A b e g g (1950)* u s in g b l u e g i l l s u n f is h , L e p o m is m a c r o c h i r u s * w eig h in g 2 0 to 35 g r a m s , t e s t e d b o th N a2CrC>4 an d Na2C r 2 0 ? . co n d itio n s a s U nder s e t f o r t h by H a r t , D o u d o ro ff, an d G r e e n b a n k (1945), A b e g g u s e d w a t e r w ith a t o t a l a lk a lin i ty a s C a C 0 3 of 60 to 12 0 m g , / l . , t o t a l h a r d n e s s a s C aCO ^ of 75 to 150 m g . / l . , s u lp h a t e s a s S 0 4 o f 2 0 to 5 0 m g . / l . a n d m a x im u m d i s s o l v e d s o lid s of l e s s th a n 500 m g . / l . H e r e p o r t e d t h i s w a t e r not wholly s a t i s f a c t o r y a s a d ilu tio n w a t e r f o r s t u d i e s p e r t a i n i n g to th e e f f e c ts of c h e m i c a l com * p o u n d s on t h e p h y s io lo g y of f i s h e s . T h e f i s h w e r e t e s t e d i n 5 g a llo n ro u n d g l a s s b a t t e r y ja r s * E a c h j a r c o n t a i n e d 12 l i t e r s of so lu tio n an d w as kept a t 2 2 ° + C . b y a c o n s t a n t t e m p e r a t u r e b a th . f i s h in e a c h c o n t a i n e r . to le ra n c e lim its 0.2 U sin g a e r a t i o n A begg t e s t e d six H e r e p o r t e d h i s d a ta in 24 h o u r m e d ia n (T L m ); t h a t is * c o n c e n t r a t i o n s l e t h a l to 5 0 p e r c e n t of t e s t a n i m a l s in 24 h o u r s , a n d found t h e m to be 93 0 m g . N a ^ C r C ^ / 1. a n d 728 m g . N a2C r 2 C>7/ l . T h e s e t e s t s o lu tio n s h a d th e follow ing c h a r a c t e r i s t i c s: 88 89 S p ecific R e sista n c e (ohm s a t 22 .2 ° C .) PH C h e m ic a l M o ls ./l. C a l . O s m o tic P r e s s u r e in L i t e r A tm o s . N a^C rO ^ 0.0073 0.19 520 8.1 0 o0044 0 e12 105 5.9 N a2C r 2 ° 7 Jones (1939) did w o r k on a s e r i e s w e re added to v e r y so ft ta p w a t e r of m e t a l l i c io n s w hich " o f a hig h d e g r e e of p u rity T h e c a l c i u m io n c o n c e n t r a t i o n w a s ab o ut 1 m g . / l . T he f is h w e r e s t i c k l e b a c k s , G a s t e r o s t e n s a c u l e a t u s , u s u a lly 3 0 to 5 0 m m . in le n g th . F o u r t o fiv e f i s h w e r e e x p o s e d in 2 l i t e r s th e s o l u t i o n s r e n e w e d a t d aily i n t e r v a l s . d iffe re n t c o n c e n tra tio n s of e a c h t e s t s o lu tio n , and A s e r i e s of te n to tw en ty of e a c h s a l t w a s t e s t e d a t 14 C . to 15 C. J o n e s r e p o r t e d h i s d a ta i n s u r v i v a l t i m e s of 1 day (14-30 h o u r s ) , 2 d a y s (3 8 -6 0 h o u r s ) , 4 d a y s (76-120 h o u r s ) , a n d 1 w eek (140-2 00 h o u r s ) a n d in l e t h a l c o n c e n t r a t i o n l i m i t s , o r th e c o n c e n t r a ­ tio n of th e m e t a l s a t w h ich th e a v e r a g e th a t of th e c o n t r o l s , about s u r v i v a l t i m e n e a r l y e q u a le d 10 d a y s . F o r t r i v a l e n t c h r o m i u m in th e f o r m of C r z (SC>4 )3 J o n e s found th e fo llo w in g c o n c e n t r a t i o n s in r e l a t i o n to s u r v iv a l t i m e s : 5.0 m g . / l . i 2 d a y s , 2 .0 m g . / l . ; 1 d ay , 4 d a y s , 1.4 m g . / l . ; a n d 1 w eek , 1.3 90 m g ./l* w ith a f in a l l e t h a l c o n c e n t r a t i o n l i m i t of 1.2 m g . / l . o r 2.30 x 10 g ram a to m s/lite r* G rin d le y (1945), i n h i s p a p e r on d i s p o s a l of c h r o m a t e w a s t e s , r e p o r t e d of t e s t s m a d e on c h r o m i u m u s in g a e r a t e d , d i s t i l l e d w a te r a s a diluent* H e found r a in b o w t r o u t , S a lm o g a i r d n e r i v a r . sh a sta , w o u ld t o l e r a t e a p o t a s s i u m c h r o m a t e a n d d i c h r o m a t e s o lu tio n a t c o n c e n t r a t i o n e q u iv a le n t to 2 0 m g . C r / l . , f o r f r o m 2 to 8 d a y s . He c o n c lu d e d th a t th e li m i t i n g c o n c e n t r a t i o n b elow which s u b s t a n ti a ll y n e u t r a l s o lu ti o n s of c h r o m a t e a r e nontoxic to r a in b o w t r o u t d u rin g p e r i o d s of 8 d a y s , u n d e r e x p e r i m e n t a l c o n d itio n s , a p p e a r e d to be s lig h tly l e s s t h a n 2 0 m g . C r / l . In G r i n d l e y 's (1946) p a p e r on to x ic ity to f is h he a g a in r e ­ p o r t s on c h r o m a t e to x ic ity to r a in b o w t r o u t . W h e th e r t h e s e two p a p e r s c o v e r t h e s a m e e x p e r i m e n t c o u ld not b e d e t e r m i n e d , s in c e n o r e f e r e n c e w a s m a d e in e i t h e r w o rk to th e o th e r p r o j e c t . A ssum ­ in g tw o t e s t s w e r e p e r f o r m e d , h e a g a in u s e d w e l l - a e r a t e d d i s t i l l e d w a t e r to m a k e up th e p o t a s s i u m c h r o m a t e an d d i c h r o m a t e s o lu tio n s w h ich w e r e m a i n t a i n e d a t 18° C , d u r in g e x p o s u r e to th e f i s h . T h e to x i c i t y of a s o lu tio n to in d iv id u a l f i s h w a s e x p r e s s e d a s 100 t i m e s th e r e c i p r o c a l of th e t i m e p e r io d , in m i n u t e s , d u r in g w h ich eac h fish w as im m e r s e d . The a v e r a g e of t h e s e in d iv id u a l t o x i c i t i e s w as r e p o r t e d a s t h e m e a n to x ic ity p lu s o r m in u s th e s t a n d a r d d e v ia tio n . 91 R a t h e r th a n r e p o r t i n g h i s c o m p le te d a ta h e r e , w hich c o v e r e d tw e n t y - t w o d il u tio n s of b o th K2 C r 0 4 and K ^ C ^ C y w h ich a r e c l o s e s t to th e 24 h o u r s only th e r e s u l t s (1440 m in u te s ) a n d 48 h o u r s (2 880 m i n u t e s ) l e t h a l c o n c e n t r a t i o n s a r e d i s c u s s e d . With K C r O 2 4 G r i n d l e y fo u n d 10 t r o u t w ould e n d u r e 2 00 m g . C r / l . (747 m g . K ^ C r O ^ / l . ) a t an i n i t i a l pH of 7.3 f o r an a v e r a g e of 374 m i n u te s b e f o r e o v e r t u r n i n g , w ith a c a l c u l a t e d m e a n to x ic ity of 0.2 7 ± 0.11 m in . 1; 50 m g . C r / l . (187 K2 C r 0 4 m g . / l . ) a t pH 6.6 c o u ld be e n ­ d u r e d 3580 m i n u t e s w ith a m e a n to x ic ity of 0.02 8 0.010 m in . With t h e d i c h r o m a t e h i s r e s u l t s w e r e a s fo llow s: C r/l. (566 m g . K ^ C r ^ O ^ / l . ) a t pH 5 .4 f o r 188 m i n u te s w ith a m e a n to x o c ity of 0.53 £ at pH 5 .0 f o r m in . 2 00 m g . 0.60 m in , \ 50 m g . C r / l . (142 m g . K ^ C r ^ O ^ /l .) 1946 m i n u t e s w ith a m e a n to x ic ity of 0.051 +, 0.044 * and 2 0 m g. C r / l (57 m g . K ^ C r ^ O ^ / l . ) at pH 5,5 f o r 4348 m i n u t e s w ith a m e a n to x i c it y of 0.02 3 0.008 m in . It i s i n t e r e s t i n g to n o te th a t th e c h r o m a t e a n d d i c h r o m a te , w h e n e x p r e s s e d a s m g , C r / l . , y i e l d a p p r o x im a te l y th e s a m e t o x i c i t i e s . W nen th e f is h h a d t u r n e d o v e r , th e y w e r e t r a n s f e r r e d to f r e s h w a t e r , a n d f is h w h ich h a d b e e n i m m e r s e d in s o lu tio n s c o n t a i n ­ in g th e h i g h e s t c o n c e n t r a t i o n o f c h r o m a t e d ie d soo n a f t e r t r a n s f e r . S o m e of t h e f i s h r w h ich h a d b e e n i m m e r s e d in lo w e r c o n c e n t r a t i o n s , d ie d i n a b o u t 3 d a y s a f t e r t r a n s f e r , a n d a few did r e c o v e r . V ery 92 few f is h w h ich h a d b e e n i m m e r s e d i n s o lu tio n s of th e d i c h r o m a t e s u r v i v e d w h e n t r a n s f e r r e d to f r e s h w a t e r . T h o s e th a t did s u r v iv e w e r e u s u a l l y t h e f is h w h ich h a d b e e n th e f i r s t to o v e rtu rn * s u g g e s t ­ in g th a t t h e s e f is h w e r e a f f e c t e d by th e a c id ity of th e s o lu tio n r a t h e r t h a n by a n y s p e c if i c to x ic e ffe c t of th e d ic h ro m a te ,, F ro m m e tja l, a n d S c h iffm a n (1958), u s in g th e m e th o d s of D ou d o ro ff (1951), fo u n d th e 48 h o u r m e a n t o l e r a n c e l i m i t s of la r g e m o u th b a s s , le n g th 10,6 0,64 c m . , w eigh t 11.3 ± , 2 . 7 c h r o m i u m , K ^ C r O ^ , w a s 195 m g . C r / l . g r a m s , fo r h e x a v a le n t T he d ilu en t h a d a to t a l h a r d n e s s of 3 34 m g . C a C O ^ / l . , t o t a l a lk a lin ity of 2 06 m g. C a C O ^ /l - , a pH o f 8.5 to 8„5, a n d w a s h e ld a t 20° C . to 21° C. In a d d itio n to th e a b o v e , D o u d o ro ff an d Katz re v ie w of l i t e r a t u r e (1953), in t h e i r p e r t a i n i n g to th e to x ic ity of w a s t e s to f is h , c ite o t h e r r e f e r e n c e s , w h ich , due to t h e i r u n a v a i la b i lit y , th e a u th o r w as n o t a b le to c o n s u l t . th a t th e T h e y a r e a s fo llow s: O s h im a (1931) r e p o r t e d s u r v i v a l t i m e of yo ung e e l s in a s o lu tio n of K C r z (SC>4 )2 at a c o n c e n t r a t i o n of 5.2 m g . C r / l . found th a t a v e r a g e d 18.7 h o u r s . He a l s o 0.01 M. K ^ C r C ^ a n d 0.005 M. K2C r 2 0 ? s o lu tio n s (520 m g . C r / l . ) w e r e l e t h a l to y o u n g e e l s in an a v e r a g e of 12.4 an d 5.35 hou rs re sp e c tiv e ly , w hereas K Cr O Z 2« s o lu ti o n s *7 i n 50 h o u r s . 0.002 5 M. K2C r 0 4 an d 0.0005 Mo (13 0 m g . C r / l . a n d 52 m g. C r / l . ) k i l l e d no e e l s 93 Le C le rc a n d D e v la m in c k (195 0) found th a t t r i v a l e n t c h r o m i u m , a s a s u l f a t e , a t a c o n c e n t r a t i o n of 40 m g , C r / l . w a s a m in im u m fa ta l c o n c e n t r a t i o n f o r m in n o w s in 6 h o u r s . R u s h to n (1921) found th a t a 6 h o u r e x p o s u r e to 100 m g . K ^ C r ^ O ^ / l . p ro v e d f a t a l to t r o u t w ithin 12 h o u r s a f t e r r e t u r n to f r e s h w a t e r . K l a s s e n et a l . (1949) d id w o rk on w a s t e s f r o m a c h r o m i u m p la tin g i n d u s t r y i n W o o d s to c k , I ll i n o i s . Since th e a u t h o r i s p e r s o n a ll y f a m i l i a r w ith t h i s w o r k , h e f e e l s t h a t th e r e s u l t s w e r e so e r r a t i c th a t th e y do n o t c o n s t i t u t e a v a l i d t e s t . t h i s w o r k , c i t e d th a t in one t e s t C r/l. fo r D o u d o ro ff, i n h i s r e p o r t on 10 b lu e g ill s u n fis h t o l e r a t e d 83 m g. 10 d a y s o r m o r e , w h e r e a s 6 b lu e g ill s u n fis h d ie d w ith in 4 d ay s in a d il u te d w a s te c o n ta in in g 75 m g . C r / l . It i s th e a u t h o r 's o pinion th a t t h e s e c o n f lic tin g d a ta w e r e due to th e fa c t th a t the w a s te u s e d in th e b i o a s s a y s w a s c o l l e c t e d a t v a r i o u s t i m e p e r i o d s a n d i t s c o m p o s i tio n w a s in a s t a t e of c o n s ta n t flux. Knowing th e s i t u a t i o n , c y a n id e w ould b e s u s p e c t e d a s b e in g a c o n t r i b u tin g f a c t o r to th e v a r i a t i o n o b s e r v e d . T h e d a ta r e l a t i n g to th e to x i c it y of c h r o m i u m to i n v e r t e b r a t e s is even m o re s c a r c e t h a n th a t of th e f is h . A n d e r s o n h a s m a d e e x c e lle n t p r o g r e s s in th e f ie ld with h is w o rk w ith D ap h n ia m a g n a in an a t t e m p t to stu d y th e e ffe c t of v a r i o u s p o l l u t a n t s on th e food c h a i n of f is h . In h i s w o rk (1944. 1946) he 94 u s e d t h r e s h o l d c o n c e n t r a t i o n s ; th a t i s , c o n c e n t r a t i o n s w hich would i m m o b i l i z e 5 0 p e r c e n t of th e t e s t a n i m a l s i n a giv e n p e r i o d of t i m e . In h i s e a r l i e r w o r k , he e m p lo y e d a t i m e i n t e r v a l of 16 h o u r s , but found t h i s u n s a t i s f a c t o r y . T h e n h e c h a n g e d to a 48 h o u r p e r i o d in 1946 w ith a r e s u l t a n t l o w e r in g of t h r e s h o l d s . In b o th t h e s e p r o j e c t s , h e u s e d L a k e E r i e w a t e r a s th e d ilu e n t w hich h a d th e fo llo w in g p e r ­ t i n e n t c h e m i c a l c o m p o s itio n : m g ./l.; c a l c i u m , 31 m g . / l . ; m a g n e s i u m , 7.6 c a r b o n a t e r a d i c a l , 3.1 m g . / l . ; b i c a r b o n a t e r a d i c a l , 114 m g . / 1.; s u lf a t e r a d i c a l , 13 m g . / l . ; d is s o lv e d so lid , c h lo rin e (C l), 8.7 m g . / l , ; and to ta l 133 m g . / l . In 1944 A n d e r s o n found K ^ C rO ^ to i m m o b il iz e d D aphnia m a g n a in 16 h o u r s a t a c o n c e n t r a t i o n of l e s s th a n 0.6 m g . / l . In h i s 1946 w o r k w ith s o d iu m s a l t s , he found li t t l e d if f e r e n c e b e tw e e n th e c h r o m a t e a n d d i c h r o m a t e t h r e s h o l d s w h en c o m p a r e d on th e b a s i s of th e c h r o m i u m c o n te n t of th e m o l e c u l e , th e c h r o m a t e b e in g to x ic at < 0 .3 2 m g . / l . a n d th e d i c h r o m a t e at < < 0 .3 1 m g . / l . R u d o lfs e t a l . (1950) r e p o r t e d a to x ic e ffe c t to f l o r a a n d fa u n a due to t r i v a l e n t c h r o m i u m c o n c e n tr a ti o n s of 6 m g . / l . o r l e s s . H i s a r t i c l e , a c o m p r e h e n s i v e r e v i e w of to x ic ity l i t e r a t u r e p e r ta in in g to a l l b r a n c h e s of w a s te d i s p o s a l , w as le n g th y , and r e f e r e n c e to th e p a r t i c u l a r w o r k in w hich t h i s d a tu m w a s found co u ld not be lo c a te d . A P P E N D IX T h is II s e c t i o n c o n t a in s a l l d a ta and t h e i r s t a t i s t i c a l evaluation* A ll s t a t i s t i c a l m e t h o d s , e x c e p t th e a n a l y s i s of v a r i a n c e te c h n iq u e u s e d on t h e r e g r e s s i o n c o e f f i c i e n t s , a r e a c c o r d i n g to S n e d e c o r (1956). H is c o n v e n ie n t a b b r e v i a t i o n s , m e a n in g s ig n if ic a n t (c< = .05) and ** m e a n in g h ig h ly s ig n if i c a n t (c< = .01) a r e u s e d . T h e a n a l y s i s of v a r i a n c e t e c h n iq u e s u s e d on th e r e g r e s s i o n c o e f f i c ie n t s a r e th o s e of D r . W. D. B a te n , S t a t i s t i c i a n , M ich ig an S tate U n i v e r s i t y A g r i c u l t u r e E x p e r i m e n t S tatio n . 95 96 P a rt A. N orm al T rout D a ta U s e d to O b ta in th e R e g r e s s i o n C u r v e s of K id n ey , L i v e r , an d S p le e n W e ig h ts on B ody Weight T o tal Wt. of F i s h M in u s O rgans K id n ey W eight (m g .) K idney Index (pet. body w t.) 14.6 13.1 131.8 0.90 11.0 11.3 79.8 8.7 11.6 14.8 L iv er Index (pet. body w t.) S p leen W eight (m g.) S p leen Index (pet. body w t.) 66.6 0.46 32.6 0.22 0.72 130.0 t— > i— < 00 T o tal L e n g th of F ish ( c m .) 36.2 0.33 64.6 0.74 74.4 0,86 13.4 0.15 12.9 81.6 0.55 162.0 1.09 46.2 0.31 17.7 13.2 176.0 0.99 181.0 1.02 54.0 0,30 13.7 12.7 120.4 0.88 170.4 1.24 2 7 .4 0.20 24.2 14.6 199.6 0.82 231.8 0.96 79.2 0.33 14.0 12.5 93.6 0.67 153.4 1.10 27.4 0.20 11.1 12.5 82.8 0.74 103.8 0.94 15.6 0.14 26.0 15.6 20 0 .0 0.77 345.4 1.33 51.4 0.20 L iv er W eight (mg.) (*.) 97 D a ta P e r t a i n i n g to O r g a n W e ig h t, G a ll B l a d d e r , an d G onads T o tal W eight of F i s h M inus O rgans T o tal L e n g th of F i s h (c m .) G a ll B la d d e r W eight (m g.) G all B la d d er Index (pet. body wt.) 14,6 13,1 49.0 0.34 8.6 0,06 11.0 11.3 20.0 0.18 34.2 0.31 8.7 11.6 25.0 0.29 25,6 0,2 9 14.8 12.9 36.4 0.25 44.6 0.30 17.7 13.2 18.0 0.10 379.0 2 .1 4 13.7 12 .7 2 4 .0 0.18 6.4 0,05 24.2 14.6 31.8 0.13 272.0 1.12 14.0 12.5 27.0 0.19 34.8 0,24 11.1 12.5 24.6 0.22 11.6 0.10 2 6,0 15.6 38.6 0.15 28.0 0.11 (g.) Gonad W eight (m g.) Gonad Index (pet. body w t.) 98 D a ta U s e d to O b ta in R e g r e s s i o n C u r v e s W a t e r W eight on B ody Weight T o tal W eight of F i s h M inus O rgans T o tal L e n g th of F i s h ( c m .) D is h W eight (g-) D is h Wt. P lu s D ry F i s h Wt. (g-) of T o ta l W a te r Weight (go) (g.) W a te r Weight (pet. body w t.) 14.6 13.1 59„3 62.6 11.3 77 11.0 11.3 59.8 62.5 8.3 75 8,7 11.6 60.5 62.5 6.2 71 14.8 12.9 58.2 61,5 11.5 78 17,7 13.2 65.4 69.6 13.5 76 13.7 12.7 57.3 60,2 10.8 79 24,2 14.6 64,4 69.9 18.7 77 14.0 12.5 65.1 68.3 10.8 77 11.1 12.5 58.8 60.8 9.1 82 2 6 .0 15.6 54.8 59.5 21.3 82 99 D a ta P e r t a i n i n g to H e m a t o c r i t , R e d Blood C e l l C o u n t, H e m o g l o b i n s , a n d R e d B lo o d C e l l L e n g th T o tal L e n g th of F i s h (c m .) H em a­ to c rit (pet. RBC) Red B lood C ell C ount (m illio n s/ c m m ,) 15.5 13.5 35 16.1 12.6 2 1 .4 T o tal W eight of F ish H em o­ globin (g* pet.) C e ll L en g th X (p.) 1 „08 5.3 14.6 35 1.12 8.3 14.7 14.0 30 1.15 7 .4 15,2 12.2 11.7 39 1.04 8.1 14.6 23.0 14.0 26 0.99 6.3 14.4 2 0.8 15.2 27 1.19 5.3 14.7 11.8 11.3 28 1.2 6 7.2 14.6 11.7 11.4 36 1.08 6.3 15,0 18,7 13.3 29 1.22 6.5 14.7 2 1 „7 14.1 33 0,96 4 .4 14.4 (g.) 100 Data Used to Obtain the R egression Curves of Plasma and Blood Volumes on Body Weight T o tal W eig h t of F ish (g.) T - 182 4 H em a­ T - 1824 ReP la sm a to c rit In je c te d c o v e re d V o lu m e (pet. (m g .) (m g ./ (m l.) RBC) m l.) P la sm a P e t . of T o ta l W eight B lood V o lu m e (m l.) Blood P e t . of T o ta l Weight 14.5 0.147 0.377 29 0.39 2.7 0.54 3.8 29.1 0.147 0.273 34 0.54 1.9 0.82 2.8 22.2 0.074 0.198 38 0.37 1.7 0.60 2.7 14.4 0 .074 0.393 47 0.19 1.3 0.36 2.5 22.2 0.074 0.155 37 0.48 2.2 0.76 3.4 14.6 0.074 0.178 27 0.42 2.8 0.57 3.9 10.5 0.074 0.315 34 0.23 2.2 0.36 3.4 2 0.7 0.074 0.178 28 0.42 2.0 0.58 2.8 12.2 0.074 0.2 99 40 0.25 2.0 0.41 3.4 13.5 0.074 0.222 36 0.33 2.5 0.52 3.8 S t a t i s t i c a l V a lu e s of th e D ata on N o r m a l C o n tr o l s V alue M ean ( X ) .................. V a r ia n c e Z (s ) . . . S tan d a rd D ev iation (s) S ta n d a rd E r r o r (s—) X „. . . . . . Kidney Weight L iv er Weight Spleen Weight T o ta l Body W a te r 0.77 pet. 1.0Z pet, 0,24 p et. 77.4 pet. 0.016 0.059 0.005 10.49 0.013 0.24 0.08 3.24 0.039 0.077 0.023 1.02 10Z S t a t i s t i c a l V a l u e s of th e D a ta on N o r m a l C o n tr o l s (Continued) H em a­ to c rit H em o­ g lo b in RBC Count RBC L en g th P la sm a V olum e Blood V olum e Z.13 p c t 0 3.2 5 pet. 31.8 p e t. 6.51 g , / 100 m l . 1.11 x 106 per cm m . 19.33 1.61 0.0096 0.84 0.188 0.26 4.39 1.Z7 0.098 0.9Z 0,42 0.51 1.39 0.40 0.03 0.09Z 0.14 0.16 14,67 p . 103 S t a t i s t i c a l V a lu e s R e l a t e d t o th e R e g r e s s i o n of th e A bove on Body W eight T o tal Body W a te r P la sm a V o lu m e B lood V o l­ um e 8.57 0.82 0.015 0,023 -3 8 .9 5 - 1 0 .5 0 -0.62 0.094 0.05 0 a84 0.88 0.93 0.996 0.80 0.89 11.53 40.46 20.43 0.47 0.073 0.077 K idney W eight L iv er W eight S p le e n W eight 2.97 12.89 In te rse c t (a) -7 .9 3 C o rre l. C o e f. (r) S ta n d a r d E r r o r of E stim a te V a lu e Reg. C o ef. (b) 104 R e g r e ssio n a n a ly sis K id n e y w e i g h t . A n a l y s i s of V a r i a n c e of R e g r e s s i o n C o e f f ic ie n t S ource D e g r e e s of F reedom Sum of S quares T o t a l ............................................................................... 9 24,160.92 R e g r e s s i o n ............................................................... 1 2 0 ,8 2 2 .8 7 E r r o r ........................................................................... 8 3,338.05 M ean S quare 2 0 ,8 2 2 .8 7 * * 417.26 A n a l y s i s of t h e c o r r e l a t i o n c o e f f ic ie n t: t = r / ( m - 2 ) / 1 - r ^ , d.f. = n - 2 . t = 1 9.3 9 * * L i v e r w e ig h t. A n a l y s i s of V a r i a n c e ^ of R e g r e s s i o n C o e f f ic ie n t D e g r e e s of F reed o m T o t a l .............................................................................. 9 R e g r e s s i o n ...................................................... E r r o r ........................................................................... Sum of S quares M ean S quare 6 0 ,199.14 1 47,103.41 8 A n a l y s i s of t h e c o r r e l a t i o n c o e ffic ie n t: t = 11.00** 13,0 9 5 .7 3 47,103.4.1** 1 ,6 3 6.96 105 Spleen weight. Analysis of Variance of Regression Coefficient Source D e g r e e s of Freedom Sum of Squares T o t a l ............................................................................... 9 3563.12 R e g r e s s i o n ............................................................... 1 2501.07 E r r o r ........................................................................... 8 1062.05 Mean Square 2501.07** 132.76 A n a l y s i s of t h e c o r r e l a t i o n c o e ff i c ie n t : t = 8.05** T o t a l b od y w a t e r . A n a l y s i s of V a r i a n c e of R e g r e s s i o n C o e f f i c i e n t S O IU T C G D e g r e e s of Freedom T o t a l .............................................................................. R e g r e s s i o n .................................................... . E r r o r .......................................................................... 9 1 Sum of Squares 192.77 190.99 8 A n a l y s i s of th e c o r r e l a t i o n c o e f f i c i e n t : t = 140.2 9** Mean Square 1.78 190.99** 0.22 10 6 Plasm a volume. Analysis of Variance of Regression Coefficient D e g r e e s of Freedom Sum of Squares Mean Square T o t a l .............................................................................. 9 0.1138 R e g r e s s i o n ............................................................... 1 0.0715 0.0715** E r r o r ........................................................................... 8 0.0423 0.0053 A n a l y s i s of t h e c o r r e l a t i o n c o e f fi c ie n t : t = 6.27 ** B lo od v o l u m e . A n a l y s i s of V a r i a n c e of R e g r e s s i o n C o e f f i c i e n t ource D e g r e e s of Freedom T o t a l .......................................................................... R e g r e s s i o n ............................................................... E rror .............................................. Sum of Squares 9 M ean Square 0.2136 1 8 A n a l y s i s of t h e c o r r e l a t i o n c o e f f i c ie n t : t = 12.07** 0.165 7 0.165 7** 0.0479 0.0060 107 Part B. C h ro m iu m -in d u c e d Changes D a t a U s e d f o r t h e S t r a i g h t - L i n e I n t e r p o l a t i o n of th e 24- H o u r M e dia n T o l e r a n c e L i m i t 24-Hour Survival (pet.) C hrom ium (m g./l.) Number of F i s h 71.0 10 100 97.0 10 70 127.0 10 0 135.0 10 10 144.0 10 0 154.0 10 0 D a t a U s e d t o C a l c u l a t e t h e A c t iv i t y of t h e A quaria W a te r in T r a c e r E x p e rim e n ts Background (count/ 5 min.) Background (cpm) W ater (count/ 5 m i n .) W ater (cpm) C orrected W ater (cp m /m l.) 190 38 263 53 15 195 39 252 50 11 1 84 37 217 46 9 Mean 12 1 08 D a ta U s e d t o D e t e r m i n e A m o u n t of C h r o m i u m in A q u a r i a W a t e r in T r a c e r E x p e r i m e n t Sample No. P et. T rans. Chrom ium (H-g*/sample) Chromium (m g./l.) 1 44.0 9.3 18.6 2 43.5 9.3 18.6 3 43.5 9.3 18.6 Weight s of t h e O r g a n s of F i s h U s e d in T r a c e r E x p e r i m e n t (g.) Spleen Wt. (mg.) Liver Wt. (mg*) Gall B ladder Wt. (mg.) K i dney Wt, (mg.) Caudal Peduncle Wt. (mg.) 8.1 1 7.0 131 .8 16.2 78.0 235.4 14.7 21 .6 158.0 24.8 94.4 1 70.4 15.8 63.0 1 74.2 41 .0 1 28.2 218.0 Fish Wt. 109 Activity of Organ of F ish Exposed to Radioactive Chromium Spleen Count (5 m i n . ) Liver Count (5 m i n . ) G a ll Bladder Count (5 m i n . ) K id ne y Count (5 m i n .) Caudal Peduncle Count (5 m i n .) 182 190 1 84 204 206 193 2 34 186 220 179 186 204 183 213 203 O r g a n C o u n t s C o r r e c t e d t o C o u n t s p e r Minute p e r 100 m g . of O r g a n S p le e n Count C orrected (cpm / 100 m g .) Liver Count C orrected (cpm / 100 m g .) G a ll Bladder Count C orrected (cpm / 100 m g.) K idn ey Count C orrected (cpm / 100 m g.) Caudle Peduncle Count C orrected (cpm / 100 m g .) 43.53 6.83 48.14 15.30 5.18 44,44 11.26 33.06 15.89 3.99 13.10 6.77 18.54 10.61 5.32 110 A nalysis of V a r i a n c e of T r a c e r Source S u m s of Squares f T o t a l ......................................... Mean Square 3386.13 B e t w e e n ........................................................ E rror Data . .................................................... . . . . 4 2273,83 568.46** 10 1112.30 111 .23 s — = 6.09 2 Q T e s t {Studentized Range) Q Qs— X S plee n G all b l a d d e r K i d n ey L iver Caudal peduncle 2 3 4 3.01 3.67 4.08 22,35 24.84 26.61 34.92 33.24 13.88 8.28 4.83 26.61 = 8.31 24.84 = 8.40 Ill O r g a n W e i g ht, T o t a l Body W a t e r , and H e m a t o c r i t Data Which Was C o m p a r e d with N o r m a l C o n t r o l Data F ish Wt. W ater Wt. S plee n Wt. (mg.) Liver Wt. (mg.) Kidney Wt. (mg.) H em atocrits (m l./ 100 m l .) 7.2 5.6 10.0 94.0 62.8 10.2 8.4. 17.2 153.2 68.4 15.6 11.7 44 .0 1 78.0 92.4 53 13.8 10.1 18.8 186.0 129.4 53 12.3 9*6 17.4 166.0 99.6 51 56 11 z Data from Normal Fish Exposed to IB mg. C r/l. (normal chromium group) Hematocrit (m l./ 1 0 0 ml.) Red Blood Hemoglobin Cells (mil(g*/ 1ions/cm m .) 1 0 0 ml.) Cell Length (p) Fish Length (cm.) Fish Weight (g.) 36 1 .21 5.5 14.2 14.6 23.2 45 1.19 6.1 15.6 10.0 7.8 43 1 .30 7.6 15.2 1 2.9 12.9 43 1.33 6.9 14.7 14.0 1 4.6 46 1.12 6.7 14.7 10.9 9.4 42 1 .37 6.1 14.1 12.6 15.3 38 1.05 5.6 16.5 16.9 33.9 44 1.26 6.5 12.1 12.0 54 1 .28 7.2 15.0 1 0.7 8.5 47 1 .39 7.8 14.4 13.2 1 7.4 113 P lasm a P las­ ma Vol. (m l./ 100 Wt. (g-> and B loo d V o l u m e D a ta f r o m N o r m a l F i s h E x p o s e d t o 18 m g . C r / l . ( n o r m a l c h r o m i u m g roup) T - 1 824 Length Injected (cm .) (mg-) T - 1824 Recov­ ered (m g./ m l. ) Hema­ tocrit (m l-/ 100 ml.) P las­ ma Vol. (m l.) Blood Vol. (ml.) g*> Blood Vol. (m l./ 100 g. body wt.) 1 .3 26.2 14.9 0,074 0.221 58 .33 .80 3.0 2.3 12.7 12.4 0.074 0.257 45 .29 .52 4.1 2.2 38.6 17.0 0.074 0.086 35 .86 1 .32 3,4 1 .1 33.0 15.9 0.074 0.198 60 .37 .94 2.8 1 .8 14.7 13.0 0.074 0.280 51 .26 .54 3.7 1 .5 20.9 14,9 0.074 0.236 48 .31 .60 2.9 1 .4 31 .4 16.3 0.074 0.164 49 .45 .88 2.8 1 .5 34.0 16.4 0.074 0,147 40 .50 .84 2.5 1 .5 14.0 13.0 0.074 0.343 34 .22 .33 2.3 1 .5 21.2 14.6 0.074 0,239 43 .31 .55 2.6 1 14 Data fro m S p l e n e c t o m i z e d F i s h E x p o s e d to T a p W a t e r (splenecto m ized control) R ed Blood C el l Count (m illions/ cm m .) H e m o g l o b in (g./lOO m l.) Length (cm .) Weight (g-> H em atocrit ( ml./lO O m l . ) 11 -8 12.9 28 1 .08 6.3 12.3 11.9 23 .99 5.6 1 0.6 7.5 27 1 .04 4.7 1 3.9 15.3 24 .68 4.0 1 3.7 16.7 26 1 .18 5 .4 14.4 16.5 30 .85 5.1 13.1 17.8 34 1 .22 7.2, 13.3 1 7.3 25 .92 4.4 14.1 18.3 37 1 .34 7.8 13.4 19.0 31 1.10 5.6 1 15 Plasm a and Blood Volume Data from Splenectomized Fish Exposed to Tap Water (splenectomized control group) T - 1824 T - 1824 Recov­ length Weight Injected ered (cm.) (g.) (mg.) (m g ./ ml.) P la s­ ma Vol. (ml.) P la s­ ma Vol. (m l./ 100 g.) Hema­ tocrit Blood (m l./ Vol. 100 (ml.) ml.) Bloo Vol (ml., 100 g-) 15.8 34.6 0.074 0.093 .80 2.3 47 1.50 4.3 16.0 31.6 0.074 0.103 .72 2.3 33 1 .07 3.4 15.2 22,4 0.074 0.105 .70 3.1 32 1.04 4.6 16.0 34.0 0.074 0.110 .67 2.0 40 1.12 3.3 15.2 26.5 0.074 0.147 .50 1 .9 44 .90 3.4 14.0 19.5 0.074 0.134 .55 2.8 27 .76 3.9 12.4 14.6 0.074 0.215 .34 2.4 36 .54 3.7 12.7 13.5 0.074 0.192 .38 2.8 37 .61 4.5 14.2 21.4 0.074 0.147 .50 2.4 44 .90 4.2 15.9 26.3 0.074 0.118 .63 2.4 26 .85 3.2 1 16 D a ta f r o m S p l e n e c t o m i z e d F i s h E x p o s e d to 24.8 mg. ( s p l e n e c t o m i z e d c h r o m i u m g ro up ) C r/l. (g-> H em atocrit ( ml./lO O m l . ) R e d Blood Cell Count (m illions/ c m m .) Hemoglobin (g./lOO m l . ) 13.7 20.6 53 1 .57 9.4 13.8 15.6 40 1 .31 8.1 12.9 11.9 52 1 .97 8.1 1 3.8 16.2 42 1 .50 8.1 13.2 15.2 25 0.98 4.9 15.1 21.3 32 0.92 5 .4 16.7 35.1 47 1 .74 8.3 14.8 18.6 41 1 .35 8.3 15.3 21.3 30 0.99 5.1 13.0 13.9 44 1 .43 8.5 Length (cm .) Weight 117 P l a s m a a n d Blood V o l u m e D a ta f r o m S p l e n e c t o m i z e d F i s h E x p o s e d t o 24.8 mg. C r / l . T - 1824 ^ength Weight Injected (cm .) (g.) (mg.) T - 1824 Recov­ ered (m g ./ m l.) P las­ ma Vol. (m l.) P las­ ma Vol. (m l./ 100 Hema­ tocrit (m l./ 100 ml .) Blood Vol. (m l.) Bloo Vol (ml., 100 g-> g>) 15.8 33.3 0.074 0.116 .64 1 .9 36 1 .00 3.0 13.9 17.4 0.074 0.247 .30 1 .7 53 .64 3.6 1 5.6 29.5 0.074 0.196 .38 1 .3 48 .73 2.5 13.9 18.2 0.074 0.230 .32 1 .8 50 .64 3.5 12.9 15.3 0.074 0.350 .21 1 .4 52 .44 2.9 14.0 18.8 0.074 0.264 .28 1 .5 46 .52 2,8 13.8 15.7 0.074 0.221 .33 2.1 35 .51 3.3 1 3.9 14.8 0.074 0.204 .36 2.4 39 .59 4.0 14.6 21.4 0.074 0.210 .35 1 .6 47 .67 3.1 14.7 19.8 0.074 0.221 .33 1 .7 43 .58 2.9 118 R e g r e s s i o n of p l a s m a v o l u m e on body weight R e g r e s s i o n of P l a s m a V o l u m e on Body Weight Norm al Chromium Splenectom ized Control Splenectom ized Chromium 0.016 0.01 7 0.015 ( a ) ................... 0.00 0.016 0.05 C orrelation coef­ f i c i e n t (r) ....................... 0.81 0.86 0.81 0.116 0.084 0.069 6.64** 9.31** 6.67** R eg ressio n coef­ f i c i e n t (b) ....................... Intersect S t a n d a r d e r r o r of e s t . (S—) ........................... e 1' t M v a l u e of c o r ­ rela tio n coefficient . 119 A n a ly s is of v a ria n c e ta b le s — te stin g r e g r e s s io n c o e ffic ie n ts . Normal Chromium f Sums of Squares T o t a l .............. 9 0.3092 R egression 1 0.2016 0 . 2 0 1 6 ** Error 8 0.1076 0,0135 Source .... Mean Square Splenectomiz ed Control f I Sums of Squares T o t a l .............. 9 0.2042 Regression , 1 0.1483 0.1483** Error 8 0.0559 0.0070 Source .... Mean Square Splenectomized Chromium Mean Square f Sums of Squares T o t a l .............. 9. 0.1138 R egression . 1 0.0763 0.0763** 8 0.0375 0.0047 Source 120 R e g r e s s i o n of blood v o lu m e on body weight R e g r e s s i o n of Blood V o l u m e on Body Weight Norm al Chromium Splenectomized Control Splenectomized C hrom ium R e g re ssio n coef­ f i c i e n t (b) ....................... 0.028 0.032 0.022 I n t e r s e c t (a) ................... 0.04 0.14 0.18 C o r r e la tio n Coef­ f i c i e n t (r) ....................... 0.92 0.88 0.88 0.116 0.14 0.077 S t a n d a r d e r r o r of e s t . (S—) .......................... e Mt M v a l u e of c o r ­ rela tio n coefficient . 16.89** 11.00** 11 .00** 121 Analysis of variance tab le--testin g regression coefficients. Normal Chromium Source f Sums of Squares Mean Square T o t a l ........................................................................ 9 0.2136 R e g r e s s io n 1 0.1657 0.1657** E rror 8 0.0479 0.0060 Splenectomized Control Source Sums of Squares f Mean Square T o t a l .............................................................................. 9 0.2042 . . .. ....................... 1 0.1483 0.1483** E r r o r ........................................... '.............................. 8 0.0559 0.0070 R e g r e s s io n Splenectomized Chromium Mean Square Source f Sums of Squares T o t a l ............................................. ........................ 9 0.2154 R e g r e s s io n .................................. ........................................................ 1 0.1679 0 . 1 679** ................. 8 0.0475 0.0059 . 122 S ta tis tic a l v a lu e s fo r h e m a to c r its S ta tistic a l V a lu es fo r H em a to crits Normal Chromium Splenectomized Control Splenectomiz ed Chromium Mean (X) ........................ 43.8 28.5 44.9 Variance (s2) .............. 24.44 20.33 41.44 Standard deviation (s) ..................................., 4.94 4.50 6.44 Standard error ( s r - ) . 1.56 1.42 1.36 Statistical values for red blood cell counts Statistical Values for Red Blood Cell Counts Normal Chromium Splenectomized Control Splenectomiz ed Chromium Mean (X) ........................ 1.25 1.04 1.38 Variance ( s ^ ) .............. 0.01 0.33 0.12 Standard deviation (s) ...................................... 0.10 0.57 0.34 Standard error (s—) . 0.032 0.18 0.11 123 S ta tis tic a l v a lu e s for' h em oglobin S ta tistic a l V alu es fo r H em oglobin Normal Chromium Splenectomized Control Splenectomized Chromium Mean (X) ........................ 6.60 5.16 7.42 Variance (s 2) .............. 0.62 12.99 2.65 Standard deviation (s) ...................................... 0.79 3.60 1.62 0.25 1.14 0.51 Standard error { s ~ ) • X Statistical values for plasma volume as percent of total body weight Statistical Values for Plasma Volume as Percent of Total Body Weight Normal Chromium Splenectomized Control Splenectomized Chromium Mean ( X ) ........................ 1.61 2.44 1.74 Variance (s ) .............. 0.15 0.14 0.108 Standard deviation (s) ...................................... 0.38 0.37 0.33 Standard error (s^.) • 0.12 0.12 0.10 124 S t a t i s t i c a l v a l u e s f o r bloo d v olum e a s p e r c e n t of t o t a l body weight S t a t i s t i c a l V a l u e s f o r Blood V o l u m e as P e r c e n t of T o t a l Body Weight M e a n (X) V ariance 2 (S ) ............... Normal Chromium Splenectomized Control 3.01 3.85 3.1 6 0.32 0.27 0.20 0.56 0.52 0.44 0.18 0,16 0.14 Splenectomized Chromium Standard deviation ( s) . . • • S t a n d a r d e r r o r ( s —) . 125 C o v a r i a n c e a n a l y s i s o f p la s m a v o lu m e d a ta Covariance Analysis of Plasma Volume Data Mean Square Source f 2 d2 Normal c o n t r o l............................................................. .8 0.040 0.005 ......................................... 8 0.054 0.007 Normal c h r o m iu m ....................................................... 8 0.106 0.013 .................................. 8 0.039 0.005 W it h in ............................................................................... . 32 0.238 0.007 R egression c o e f f i c i e n t ............................................ 3 0.003 0.001 Common ( e r r o r ) ...................................................... ... 35 0.241 0.007 3 0.218 0.073** 38 0.459 Splenectomized control Splenectomized chromium Adjusted means .......................................................... T o t a l ............................................................. ... S— = 0.026 yA ''Q''-Test . 2 3 4 Q 2 .8 7 3 .4 6 3.81 QSyA 0.075 0.090 0.099 Splenecto m ized chrom ium N orm al chrom ium N o rm a l control Splenectom ized control .579 ~ .099 = .480 .390 - . 0 9 0 = .300 . 3 6 2 - .075 = .287 .350 126 C o v a r i a n c e a n a l y s i s o f b lo o d v o lu m e d a ta C o v a ria n ce A n a ly sis of B lood V olum e Data Source f 2 2d Mean Square Normal c o n t r o l............................ 8 0.046 0.006 Splenectomized control 8 0.136 0.017 Normal c h r o m iu m .................... 8 0.107 0.013 Splenectomized chromium 8 0.140 0.018 W it h in ................................................ 32 0.429 0.013 Regression coefficient . . . , 3 0.35 0.012 Common ( e r r o r ) ........................ 35 0.464 0.013 ........................ 3 0.115 0.038* Total . ................................................ 38 0.579 Adjusted means . . . S— = 0.079 yA 1'QM-T est Q QSyA 2 3 4 2.87 3.46 3.81 .227 Sple nectom ized control N orm al chrom ium Splenecto m ized chrom ium N o rm a l control .273 .301 .924 - .301 = .628 .732 - .273 = .459 .632 - .227 = .405 .552 127 A n a l a y s i s of v a r i a n c e of h e m a t o c r i t data A n a l y s i s of V a r i a n c e of H e m a t o c r i t Data Source f S u m s of Squares Mean Square T o t a l ............... ...................... 39 2902 Between . . . ...................... 3 1557 519** E rror ...................... 6 1345 37.3 . , . . sx = 1.93 MQM-Test Q ^ X N orm S p len N orm S p len a e a e 2 3 4 2.87 3.46 3.82 5.64 6.68 7.37 l ch rom ium ctom ized ch rom ium l control cto m ized control 43.8 - 7.37 = 36.4 40.6 - 6.68 = 33.9 31.8 - 5.64 = 26.2 28.5 128 A naly sis of v a r i a n c e of h e m o g l o b i n d at a A n a l y s i s of V a r i a n c e of H e m o g lo b in D ata S u m s of Squares Mean Square Source f T o t a l .................................................................................. 39 73.35 3 16.43 5.4 8* 36 56,92 1.55 Between E rror .................................................... . . . ................................................................... sx = 0.39 1’Q11- T e s t 2 3 4 Q 2.87 3.46 3.82 OS- 1.12 1.35 1.49 S p len N orm N orm S p len e a a e ctom ized ch rom ium l chrom ium l control ctom ized control 7,42 6.60 6.51 5.61 - 1.49 1.35 1.12 = 5.93 = 5.25 = 5.39 129 A nalysis of v a r i a n c e of r e d blo o d c e l l count data A nalysis of V a r i a n c e of Red Blood Cell Count Data Source f T o t a l ............... ...................... 39 Between . . . E rror . .. s5 . = ...................... 36 S u m s of Squares Mean Square 2.26 0.67 0.22** 1 .59 0.044 0.066 " Q11- T e s t Z 3 4 Q 2,87 3.46 3.82 OS- 0.19 0.Z1 0.25 Splenectom ized chrom ium N orm al chromium N o rm al control S p l e n e c t o m i z e d cont rol 1 .38 - 0.25 = 1.13 1.25 - 0.21 = 1.04 1.11 - 0.19 = 0.92 1 .04 130 111 1T- T e s t s B e t w e e n n o r m a l c h r o m i u m an d n o r m a l control: Red blood c e l l counts t = 3.18** Red blood c e ll l e n g t h s t = 4.7 7** D a ta u s e d in p o t a s s i u m c h l o r i d e experim ents- - hem atocrits Data U s e d in P o t a s s i u m C h l o r i d e Expe r i m e nt s - - H e m a t o c r i t s Tap W ater S a m p l e s ,.............................. 29.8 mg. K / l 20 mg, C r / l . 39 38 47 32 44 44 33 37 33 30 38 44 34 45 40 36 34 35 28 35 43 32 39 34 37 35 38 39 43 44 Mean . . . ............... 34.0 38.8 40.2 Ya r i a n c e ............... 13.77 85.55 24.44 Standard deviation . . 3.71 9.25 4.9 Standard e r r o r 1.17 2.92 1.56 . . . . 131 Mt T' - T e s t s . B e t w e e n h e m a t o c r i t s f r o m KC1 s o l u t i o n and t a p w a te r: t = 1.53 B e t w e e n h e m a t o c r i t s f r o m KCl an d C r so lu ti on s: t = 0.42 D a ta u s e d in d e t e r m i n a t i o n of s p l e e n function R e s u l t s of H e m a t o c r i t s D e t e r m i n e d on Sham O p e r a t e d and S p l e n e c t o m i z e d F i s h Splenecto m ized Control No T - 1824 Sham O perated Sham O perated Timeio Time0 Time10 26 36 29 30 32 29 38 35 38 32 33 40 36 50 32 36 44 26 36 38