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ABSTRACT

The enzyme glucosamine syn th etase i, glut amine-17- 6-P transam idase) 

was p u rified  ca . 1 9 -fo ld  from ex tra cts  o f the aquatic Phycomycete 

B la s to c la d ie l la  em erson ii, by cen trifugation ,, protamine s u lfa t e ,  

fr a c t io n a t io n , and adsorption on tr.icalc.ium phosphate g e l .  The pH 

optimum, the tim e course, and r e la t io n  between enzyme concentration  and 

rea ctio n  rate  were esta b lish ed  fo r  the p a r t ia l ly  p u rified  sy n th eta se .

The rea c tio n  ca ta lysed  by the enzyme iso la te d  from B last o c la d ie l la  was 

found to  be the same as that of the enzyme o f Neurospora crassa j i . e . ,  

d -fruct os e - 6- phosphate 4- 1 -g lu ta m in e—*>► d-glue os amine-6 -phosphate + 

1-g.lutamic a c id .

In prelim inary stu d ies  concerning the biochem ical b asis o f d i f ­

fe r e n t ia t io n  in  B la s t .o c la d ie lla , th e  free  amino acid pools were 

extracted  and compared between the two a lte r n a tiv e  mature forms of the 

organism, the zoosp orangia l, and r e s is ta n t  sporangial plants . The la t t e r  

were found to contain  only 50% as much so lu b le  amino acid n itrogen  as 

the former, and there were, as w e ll ,  cer ta in  q u a lita t iv e  d ifferen ces  

between the two ty p es . En ad d ition  the a c t iv ity  of glucosamine synthe­

ta se  in  zoospores, mature zoosporangial p la n ts , and mature re s is ta n t  

sporangial p lants was e s ta b lish e d .

The unexplained d ifferen ces  among the various forms o f the organism  

made a more refined  experim ental approach to  the problem of d if fe r e n t ia ­

tio n  a n e c e s s ity .  Therefore, a procedure was developed fo r  growing 

w ell synchronized, large  sca le  cu ltu res of r e s is ta n t sporangial plants

v i



of B last o c la d ie l la  throughout the. complete generation  period in  a 

glucose-pepton e-yeast medium contain ing b icarbonate. The in creases in  

s ic e  and dry weight o f in d iv id u a l plants were determ ined, and a photo- 

micrographic record of th e ir  developmental morphology obtained, during 

th e  growth o f cu ltu res under such co n d itio n s.

In s tu d ies  of the gen esis of the r e s is ta n t sporangium, the a c t iv i t y  

of the syn th eta se , glucose-6-phosphate dehydrogenase, and phosphoglucose 

isom erase enzymes was determined during development in  synchronous 

c u ltu r e . U t i l iz in g  the same cu ltu rin g  tech n iq u es, the time sequence of 

ch it in ,  l ip id ,  m elanin, and nitrogen  syn th esis  was e s ta b lish e d . The 

fr e e  n itrogen  pools in  developing r e s is t  ant sp o ra n g ia l' p lants were 

shown to  undergo both q u a n tita tiv e  and q u a lita t iv e  changes during  

d if f e r e n t ia t io n .

Using the approach of comparative biochem istry the s ig n ifica n ce  

of the changes in  the c e l lu la r  components as they re la ted  to  the 

stru ctu re  and fu n ction  of the developing r e s is ta n t sporangia! plant 

was d iscu ssed . An attempt was made to  in teg ra te  the p h y sio lo g ica l and 

m orphological processes involved in  the in i t ia t io n  and d if fe r e n t ia t io n  

of the in d iv id u a l r es is ta n t sporangium of B la s t o c la d ie l la .

v i i
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INTRODUCTION

The problem of cause and e f fe c t  r e la tio n sh ip s  underlying the d i f ­

fe r e n t ia t io n  o f m orphologically complex stru ctu res has a ttra c ted  the 

a tte n tio n  o f man from the tim e of A r is t o t le .  U n til the proposal of 

the c e l l  th eo r ie s  o f  Sch leid en  and Schwann, and the work o f Pasteur  

in  the mid 1800;s ,  however, l i t t l e  rea l progress was made toward under­

standing development . In f a c t ,  i t  required the d isco v er ie s  o f th ese  

men and others to  f in a l ly  la y  to  rest the sp ecu la tion s o f the natur-  

philosophen concerning "preformation," "spontaneous generation," e t c . ,  

which had se r io u s ly  hindered any em pirical approach to the problem. 

Although tremendous s tr id e s  have been made in  embryology s in ce  th a t  

tim e, the inherently-com plex, m u lt ic e llu la r  systems u t i l iz e d  have 

impeded the development o f a com pletely sa t is fa c to r y  explanation  o f the 

processes involved in  growth.

L it t le  enough is  known concerning the regu la tion  o f development in  

a s in g le  c e l l .  When a l l  the com plexities and in ter r e la t io n sh ip s  among 

the u n its  in  a m u lt ic e llu la r  stru ctu re  are added to g e th er , the d is ­

t in c t io n  between the properties due to  the in d iv id u a l, and those due 

to  th e  population becomes most d i f f i c u l t  . It would appear axiom atic  

th at an understanding o f the p h y sio lo g ica l and m orphological c a p a b il i t i  

o f a s in g le  c e l l  should precede attempts to  e lu c id a te  the in tera c tio n s  

among c e l l s .  Such approaches have been, -and are being in crea s in g ly  

u t i l i z e d ,  p a r tic u la r ly  the study o f iso la te d  plant and animal c e l l s  or 

t is s u e s  in  pure c u ltu re . A second and somewhat sim pler experim ental
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approach has involved the study o f organisms which contain  one, or at 

most a few c e l l s  at m aturity. The algae and fungi have shown them­

se lv e s  to be most su ita b le  fo r  such s tu d ie s . A c a se - in  point i s  the  

elegant work o f Hammerling (1953) concerning nuclear-cytop lasm ic  

r e la t io n sh ip s  in  the m orphological development of th e  u n ic e llu la r ,  

u n in u cleate  a lg a , A cetab u laria . Many members of the lower fu n g i a lso  

appear to  provide e x c e lle n t  m ateria l fo r  experim ental morphology. They 

can be grown under co n tro lled  experim ental conditions and d isp la y  a 

d is t in c t  but r e la t iv e ly  sim ple morphology. G enerally speaking, however, 

w ith  a few important exceptions the p o t e n t ia l i t ie s  o f th ese  organisms 

have not been e x p lo ited . The greatest percentage of work in  the myco­

lo g ie s !  area has been confined to  in v e s tig a tio n s  of th e environmental 

con d ition s necessary fo r  growth and reproduction (Hawker, 1957) •

If a tte n tio n  i s  turned to  s tu d ies  of morphogenesis at the c e l lu la r  

and p h y sio lo g ica l l e v e l ,  very few examples can be found fo r  the fu n g i. 

Notable among th ese  is  the worx o f Nickerson and h is  co lleagu es (1956, 

and referen ces th ere in ) on the biochem ical mechanisms o f c e l l  d iv is io n  

in  y e a s t s . Another important con tribu tion  has come from the stu d ies  o f  

Wright and Anderson (1959) on biochem ical d if fe r e n t ia t io n  in  the slim e  

mold Dict.yostelium  d isco id iu m . Probably the most thorough approach, 

from the standpoint o f a broadly b io lo g ic a l study c lo se ly  coordinated  

with a biochem ical in v e s t ig a tio n  of d if fe r e n t ia t io n , has been th a t of 

Cantino and co-workers (1951-1959) w ith the aquatic Phycomycete,

B la s to c la d ie l la  em erson ii. In add ition  to  the in t r in s ic  knowledge 

gained fo r  the p a r ticu la r  organism, each of the s tu d ies  mentioned has
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helped to  provide inform ation necessary fo r  an understanding o f develop^- 

mental phenomena common to  the c e l l s  of many., or perhaps a l l ,  organism s.
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LITERATURE REVIEW

Morphogenetic S tu d ies of B la s to c la d ie f la  em ersonii

The sim ple aquatic fungus, B la s to c la d ie l la  em erson ii, was iso la te d  

in  pure cu ltu re  and i t s  l i f e  h is to r y  and development described by 

Cantino (1951)* and Cantino and Hyatt (1953b).  A fter  an i n i t i a l  period  

of m o t il ity  the sm all, u n if la g e l la te  spores of th is  fungus se t t le ' down, 

re tra c t th e ir  f la g e l la ,  and germinate in  a b ip o lar  fa sh io n . The lower 

portion  of the growing p lant develops in to  a s in g le -c e l le d ,  branching, 

rh izo id a l system . The upper p ortion , a lso  c o n s is t in g  of a s in g le  m u lti-  

n u cleate  c e l l ,  develops in to  e ith e r  a c o lo r le s s ,  p a p illa te , zoosporangium 

w ith .a  th in , ch itin ou s w all (referred  to  as an ordinary c o lo r le s s  or 

O.C. p la n t) , or , a brown, melanin-pigmented, th ick -w a lled , p itte d  

r e s is ta n t  sporangium (R.S. )  contain ing conspicuous l ip id  g lo b u les .

When the mature plants o f e ith er  type are placed under su ita b le  con­

d it io n s ,  th ey  discharge m otile  spores (swarmers) and thus complete the  

l i f e  cy cle  w ith  no conventional in terven in g  sexual s tage .

In contrast to the c lo s e ly  rela ted  genus, B la s to c la d ia , which re­

quired a carbon d iox ide atmosphere o f almost 100$ to  form R.S.  (Emerson 

and Cantino, 19)48) ,  B ia sto c la d ie .lla  spontaneously produced such 

stru ctu res under the crowded conditions in  second generation c o lo n ie s . 

When the con d ition s necessary fo r  R.S. formation were stu d ied , i t  was 

found that e ith e r  calcium carbonate or sodium bicarbonate induced the 

development o f R.S.  It was fu rth er  esta b lish ed  that on case in  

h yd rolysate medium, where bicarbonate alone would not s u f f ic e ,  both
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a -k eto g lu ta ra te  and c itr a te  increased the percentage o f R. S. formed,

and that a r se n ite  and sem i-carbazide (both in h ib ito r s  fo r  the decarboxy­

la t io n  of a -k etog .lu tarate) could rep lace the organic acid requirement 

(C antino, .1951) •

Having acquired the a b i l i t y  to  con tro l the pathway o f development, 

a  n ea r ly  id e a l system was a v a ila b le  for  studying the m etabolic in te r ­

action s involved in  the ontogeny of the organism.

The bicarbonate stim ulus w a s  required fo r  only th r e e - f i f t h s  of the  

generation tim e o f the R.S. p lan tsj conversely , i t  could not induce R.S,  

d if fe r e n t ia t io n  in  O.C. p lan ts a f te r  th r e e - f i f th s  of th e ir  generation  

tim e had elapsed (C antino, 1952). These r e s u lt s ,  togeth er w ith  those  

from perm eability  s tu d ie s , led  to  the in terp re ta tio n  th a t the e f f e c t  o f  

the bicarbonate was to  block decarboxylation reaction s in  the t r i ­

carb oxylic  acid c y c le , and th a t the r esu lt in g  p ile -u p  o f interm ediates  

caused a .s h i f t  in  the m etabolic patterns toward R.S.  development, i . e . ,  

th ick er  w a ll, increased pigment, l ip id  sy n th e s is , e t c .  Et was fu rth er  

suggested th at th ese changes led  to  a gradually in creasin g  im perm eability  

to  both in ter n a l and extern a l bicarbonate io n s . At approxim ately th ree-  

f i f t h s  of the generation tim e the system was assumed to  become auto- 

c a ta ly t ic  due to  the increased re ten tio n  of m etabo.lically  produced 

bicarbonatej removal o f the extern al stim ulus a fte r  th is  stage  could no

longer reverse  the process (Cantino, 1952).

A comparative survey o f c i t r i c  acid cycle  enzymes in  the w ild -typ e

O.C. p lants o f B la s t o c la d ie l la , and in  an orange mutant (B.E.M.) derived  

therefrom , provided a d d ition a l inform ation used to  support the theory
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that bicarbonate helped to  slow down and, w ith the a ss is ta n ce  o f other  

p u llin g  r e a c tio n s , reverse the Krebs cy cle  at the a -k eto g lu ta ra te  stage  

(C antino, 1953; Cantino and Hyatt 1953b, 1953c) .  Most of th e  enzymes 

norm ally a sso c ia ted  w ith  that o x id a tiv e  system were found to  be present
i

in  O.C. homogenates, including: a co n ita se , a TPN s p e c if ic  i s o c i t r i c

dehydrogenase, a DPN or TPN coupled a -k eto g lu ta ra te  oxidase system , 

su cc in o x id a se , fumarase, a DPN s p e c if ic  m alic dehydrogenase, and 

cytochrome o x id ase . The. B.E.M. mutant, however, which could'not form 

R.S.  p la n ts , even in  the presence o f b icarbonate, lacked both acon itase  

and a -k eto g lu ta ra te  oxidase a c t iv i t y .  The fa i lu r e  o f B.E.M. to  respond 

to  bicarbonate was th erefo re  in terp reted  as being due to  the absence o f  

those two enzymes in tim ate ly  a sso c ia ted  with the two su ccessiv e  decar­

boxylations presumed to  be the s i t e s  of a c tio n .

To strengthen  th e ir  theory, Cantino, jet aL. ,  sought to connect, in  

a cause and e f f e c t  manner, what had been d iscovered concerning the 

bicarbonate ’’tr ig g e r  mechanism” w ith cer ta in  of the m orphological mani­

fe s ta t io n s  o f the R.S. p la n t. Mien t h a l l i  were grown on bicarbonate  

medium contain ing th iourea (an in h ib ito r  of the copper-contain ing  

polyphenol o x id a se s) , R.S.  p lants were formed which were devoid of 

m elanin, but normal in  a l l  other resp ects  (Cantino, 1953)* This demon­

stra ted  th a t a process concomitant w ith development could be uncoupled 

from i t  without otherw ise d isru p tin g  i t s  normal p rogress. It was a lso  

esta b lish ed  in  v i t ro th a t a wall-bound polyphenol oxidase found in  R.S.

lRefer to  Appendix t fo r  the abbreviations used in  th is  t h e s i s .



7

and presumably involved in  m elanogenesis, could not be d etected  in  O.C. 

p la n ts , thus in d ic a tin g  i t s  appearance, de novo, as a r e su lt  o f the 

bicarbonate induction  (Cantino and H orenstein , 1955) • This th iou rea- 

s e n s i t iv e ,  c y a n id e -in se n s it iv e  system not only mediated e lec tro n  tran s­

port. between su b stra te  ( e . g . ,  ty ro sin e  and catech o l) and oxygen, but 

a lso  between su b stra te  and TPN, but not DPN. A lpha-ketoglutarate a lone, 

or th a t compound plus b icarbonate, always stim ulated the rea c tio n .

It was suggested that the e f fe c t  was due to coupling between the re-;, 

d u ctive  carb oxylation  o f c -k e to g lu ta r a te , y ie ld in g  oxid ized  TPN, and a 

"quinone oxidase" rea ctio n  in  the polyphenol oxidase system ( i . e . ,  

ca ta ly z in g  the ox id ation  o f o-quinone to  hydroxy-o-quinone) regenerating  

reduced TPN.

The report that R.S.  p lants contained an a c tiv e  i s o c i t r i c  dehydro­

genase, but a fe e b le  su cc in ic  dehydrogenase and no a -k eto g lu ta ra te  

oxidase or cytochrome oxidase a c t iv i t y ,  demonstrated that th ere had 

been, as proposed, important s h if t s  in  the c i t r i c  acid cy c le  enzymes 

o f the R.S.  (Cantino and H orenstein , 1955)- A bicarbonate-induced in ­

crease  in  the a -k eto g lu ta ra te  content o f O.C. p lan ts was a lso  c o n sisten t  

w ith  the proposed action  of th at io n , i . e . ,  in h ib it io n  of the k eto -acid  

decarboxylation  ('Cantino, 1956).

The presence o f r -ca ro ten e  in  the B.E.M. mutant (Cantino and H yatt, 

1953b) and in  the R.S.  of the w ild  type (Cantino and H orenstein , 1956) 

provided an in te r e s t in g  p o s it iv e  co rre la tio n  between the presence o f the  

pigment and le s io n s  in  the Krebs c y c le . Presumably, however, the synthe­

s i s  o f r -caro ten e  could not have resu lted  d ir e c t ly  from the rev ersa l
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of the a -k eto g lu ta ra te  decarboxylation  s in ce  th is  enzyme was absent from 

B.E.M.

The important d isco v ery -o f l ig h t  stim ulated  growth and l ig h t -  

stim ulated  carbon d iox id e  f ix a t io n  in  B ia s to c la d ie lla  helped to fu rth er  

c la r i f y  the r o le  o f bicarbonate in  R.S.  form ation (Cantino and Horen­

s t e in ,  19^6). Tracer stu d ies  w ith  uniform ly lab eled  g lu cose-C 14 and 

bicarbonate-C 14’were undertaken w ith preformed O.C. p lan ts incubated in  

th e l ig h t  and in  the dark. The most s ig n if ic a n t  r e su lts  were:

(a) glu cose-C 14 gave r is e  to  la b e led  glutamic and asp a rtic  acids long  

before any d e tec ta b le  r a d io a c t iv ity  appeared in  the c i t r ic ,  acid cy cle  

compoundsj  (b) Carbon-lit lab eled  bicarbonate was rap id ly  incorporated  

in  the Krebs cy c le  compounds and, in  p a r ticu la r , l ig h t  caused a marked 

in crease  in  lab eled  su ccin ate  and a decrease in  the la b e led  a -k eto -  

g lu ta ra te , as compared to  dark co n tro ls , and (c) a compound te n ta t iv e ly  

id e n t if ie d  as oxalate  acquired a s ig n if ic a n t  quantity  o f  C14. in  v itr o  

experiments with R.S.  homogenates exh ib ited  a s l ig h t  l ig h t  in h ib it io n  

of th e i s o c i t r i c  dehydrogenase a c t iv i ty  and, con versely , a s t im ita t io n  

by l ig h t  o f  i t s  rev ersa l in  the presence o f a -k e to g lu ta ra te , b icarbonate, 

and reduced TPN. When the la t t e r  was carried out using  bicarbonate-C 14, 

the f ix ed  Carbon-II4. was found in  a -k eto g lu ta ra te , o x a la te , i s o c i t r a t e ,  

and a s lig h t  amount in  su cc in a te . When the same ex tracts  were incu­

bated w ith su cc in a te , b icarbonate-C 14, and reduced TPN, f ix a t io n  of 

carbon-H4 a lso  occurred. I t was presumed, but not e sta b lish ed  un- 

eq u ivocab lly , that the su ccin ate  was carboxylated to  produce a -k eto ­

g lu ta r a te . [n the l i g h t ,  reduced DPN y ie ld ed  only o n e - f i f th  the
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f ix a t io n  obtained w ith reduced TPN in  th is  system , and in  the dark no 

f ix a t io n  occurred w ith the former n u c le o tid e .

Two important conclusions were drawn from the above o b serv a tio n s . 

F ir s t ,  the c i t r i c  acid  cy c le  seemed an u n lik e ly  path lead in g  to  the 

sy n th es is  o f glutamate and a sp a rta te . Second, l ig h t  in  some way stimu­

la te d  the red uctive carboxylation  o f a -k eto g lu ta ra te  and the subsequent 

cleavage o f the is o c i tr a t e  so formed to  y ie ld  su ccin ate  and a C2 com­

pound such as g ly o x a la te . The succin ate was a lso  presumed to  undergo 

a l ig h t  stim ulated  red uctive carboxylation , v ia  an undetermined TPN 

dependent system , to  produce a -k eto g lu ta ra te  and complete the c y c le .

This theory has recen tly  been strengthened by"the is o la t io n  from 

B la s to c la d ie l la  (R.S.  and O.C.) of the enzyme, i s o c i t r i t a s e ,  which 

c lea v es  is o c i t r a t e  to produce equimolar q u a n tit ie s  o f su ccin ate  and 

g ly o x a la te  (McCurdy, 1959) .  The dem onstration in  v ivo  th a t su ccin ate  

and g ly o xa la te  could su b stitu te  fo r  the e f f e c t  of l ig h t  and bicarbonate  

served to  fu rth er support the in terp re ta tio n  given above i,Cantino and 

H orenstein , 1999) • It was a lso  esta b lish ed  th at the g lyoxa la te  was 

rap id ly  converted to g lycin e  by transam ination w ith a la n in e , thereby  

providing a p u llin g  reaction  fo r  the whole 3 .K . I .  (.su ccin ate-k etog lu -  

t a r a t e - i s oc.itra te) cy cle  (McCurdy, 1999) • A p o ssib le  connection , v ia  

the use o f g ly c in e  fo r  thymine b io sy n th e s is , has recen tly  been proposed 

between the S . K . I .  cy c le  and l ig h t  stim u la tion  o f n u c le ic  acid sy n th esis  

and nucle-ar reproduction in  B la s to c la d ie lla  (Turian and Cantino, I9 6 0 ).

The s ig n if ic a n c e  of the preceding observations w ith  respect to  the  

form ation of R.S. was as fo llo w s: (1) i t  helped to  v e r ify  the scheme
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proposed fo r  B .S . induction  by providing a pathway which could operate 

in  the absence o f most of the c i t r i c  acid cy c le  enzymes; (2) i t  in d ica ted  

a d d itio n a l poin ts where interm ediates could accumulate due to  the b i­

carbonate tr ig g e r  e f f e c t  and, in  so doing, in flu en ce  other rea ctio n  

sequences; and (3) i t  s tron g ly  suggested that l ig h t  stim ulated  growth 

and carbon d iox ide f ix a t io n , and R.S.  in d u ction , were a c tu a lly  two 

d if fe r e n t expressions of the p o te n t ia l ity  o f a s in g le  enzyme system in  

response to  d if fe r e n t environmental conditions . The a b i l i t y  of l ig h t  

to  reduce the concentration  o f bicarbonate necessary to  induce the 

form ation o f R.S.  was taken as a confirm ation o f th is  in ter p r e ta tio n  

(C antino, .1957) •

The id e n t if ic a t io n  of c h it in  as the primary c e l l -w a ll  co n stitu en t  

in  B la s to c la d ie l la  was esta b lish ed  by glucosamine and a ceta te  analyses 

fo llo w in g  acid  h yd ro lysis of p u rified  w all m aterial (Cantino, L ovett, 

and H orenstein , .1957)* Homogenates o f R.S. and O.C. p lants contained  

comparable g lucosam ine-acety latin g  a c t iv ity  in  systems contain ing a c e ta te ,  

coenzyme-A, and ATP (or acetylm ethionine and ATP). In a l l  cases the  

wall-bound a c t iv ity -w ith  the non-phosphorylated glucosamine was low .

In con trast to a c e ty la t io n , the c h it in a se  a c t iv i t y  o f O.C.- supernatants 

w ith f in e ly  d iv id ed , p u r if ie d , B la s to c la d ie lla  c h it in  proved to  be 3 to  7 

tim es that o f the P . S .

In ad d ition  to  the change in  c h it in  n itrogen , analyses o f the t o t a l  

acid  so lu b le  and water so lu b le  n itrogen  fra c tio n s  of both R.S.  and O.C. 

plan ts had ind icated  a considerab le in tr a c e llu la r  r e d is tr ib u tio n  of the 

nitrogenous co n stitu en ts  between the two plant forms (Cantino, L °v ett,
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and H orenstein , 1957) .  With th e exception  o f th ese  a n a ly ses, and a 

prelim inary report concerning d ifferen ces  in  the e le c tr o p h o r e t ic a lly  

sep arab le , so lu b le  proteins in  the two plant ty p es , l i t t l e  work had 

been done on the n itrogen  metabolism of B la s t o c la d ie l la . However, i t  

appeared almost cer ta in  th a t the changes which occurred during d i f ­

fe r e n t ia t io n  involved  fundamental transform ations in  n itrogen  m etabolism . 

The research reported h erein  was in i t ia te d  to  determ ine, in  so fa r  as 

p o s s ib le , i f  th is  were so . I t seemed l ik e ly  th at an understanding of 

such changes would help  considerab ly  in  the u ltim ate  form ulation o f a 

coherent explanation  of growth and d if fe r e n t ia t io n  in  B la s t o c la d ie l la 

a t th e  c e l lu la r  and organismal l e v e l s .

Glucosamine Synthetase and the B iosyn th esis  of C hitin

Although the presence of c h it in  in  the c e l l  w a lls  of fu n g i, and 

the fa c t  th a t i t  contained n itro g en , was esta b lish ed  as ea r ly  as 1811 

by Braconnot, and by Lassaigne in  18H3 (Tracey, .1955) r e sp e c t iv e ly , i t s  

b io sy n th esis  received  l i t t l e  a tten tio n  u n t i l  recent years . Most o f the 

work reported during the in terven in g  period was concerned w ith its '  

id e n t if ic a t io n  and is o la t io n  from various sou rces. Two fa c to rs  are 

perhaps most resp on sib le  fo r  the contemporary in te r e s t  in  the sy n th etic  

reaction s of hexosamine compounds . The f i r s t  i s  the r e la t iv e ly  recent 

a v a i la b i l i ty  o f  the biochem ical techniques fo r  studying enzymatic re­

action s w ith m icroquan tities of biochem ical compounds. The second is  

th e  ubiquitous presence o f hexosamines in  the mucopolysaccharides which 

are being in te n s iv e ly  stud ied  in  connection w ith the biochem istry of 

blood, and a r th r it ic  d iso r d e r s .
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Whatever the subsequent fa te  o f the hexosam ines, most of the b io­

sy n th etic  sequences u t i l i z in g  th ese  compounds appear to require the- 

sy n th esis  o f glucosamine phosphates as a f i r s t  s t e p .  Harpur and Q uastel 

(19U9) demonstrated the phosphorylation of d-glucosam ine (GA) by brain  

ex tra cts  in  th e presence o f ATP. Although the products were not i s o ­

la te d , the M ichaelis con sta n ts , and the com petition observed between 

d-glucosam ine, d -g lu co se , and d -fru cto se  in  mixtures suggested th a t a l l  

three compounds were phosphorylated by the same enxyme. N -a cety l-  

glucosamine (AG) was un affected  by the enzyme and acted as a com petitive  

in h ib ito r  fo r  a l l  three compounds. A s im ilar  sy n th es is  was reported  

w ith B akers-yeast preparations by Grant and Long (1952) .  These authors 

a lso  found evidence fo r  com petition between GA and glucose fo r  the 

same enzyme. The a b i l i t y  o f hexokinase to phosphorylate GA was estab­

lish e d  by Brown (1951) u t i l i z in g  a c r y s ta ll in e  y ea st enzyme. Analyses 

o f  the rea ctio n  p rod u ct(iso la ted  by barium fr a c t io n a t io n ) , in d icated  

th at i t  was a monophosphate p ossessin g  reducing properties and a fr e e  

amino group. The p o s it io n  of the phosphate e s te r  at carbon-6 was 

ascerta in ed  by comparative sodium m etaperiodate ox idations w ith  GA and 

d -g lu c o se -6 -phosphate (G-6-P).  The stru ctu re was esta b lish ed  to be 

th a t o f d- glue os amine-6- phosphate (GA-6-P).

L e lo ir  and Cardini (1953) reported that p a r t ia l ly  p ir if ie d  prepara­

tio n s  from Neurospora crassa  catalyzed  the syn th esis o f GA-6-P from 

fr u c to s e -6 -phosphate (F -6 -P ), or G-6-P, and glutam ine. The enzyme, 

which had been p u rified  ca . 8 -fo ld  by aoetone fr a c tio n a t io n , had a 

s p e c if ic  a c t iv i ty  o f 0-3 pM GA/mg. p r o te in /h r ., and temperature and pH



optima o f 30° C. and 6 .I4 to  6 .8 , r e sp e c t iv e ly . Both the hexose phos­

phates and glutamine exh ib ited  a s t a b i l i z in g  e f f e c t  on the rather  

la b i l e  enzyme. No c o -fa c to r  requirement could be demonstrated fo r  the 

r e a c tio n , nor could any o f a number o f s tr u c tu r a lly  re la ted  compounds 

su b s t itu te  fo r  e ith e r  of th e h exoses, or rep lace glutamine as the amino 

donor. Blumenthal, e t  a l .  (19 5 5 ') , w ith more h ig h ly  p u rified  prepara­

tio n s  demonstrated th at F -6-P was the primary su b stra te  fo r  the  

Neurospora enzyme ( glutam ine-F-6- P transam idase, c . f .  Comb and Roseman, 

1958) • Crude ex tracts  from a P en icilliu m  sp ec ies  had the same req u ire­

ments .

P o g e ll and Gryder (1956, 1957a,b) p a r t ia l ly  p u rified  an enzyme 

(am inotransferase) from ra t l iv e r  wnich u t i l iz e d  G-6-P and glutamine 

fo r  GA-6-P  sy n th e s is . The approxim ately 2 to  3 -fo ld  p u r if ic a tio n  

a tta in ed  did not e lim in ate  enzyme a c t iv i t y  w ith F-6-P as su b stra te , but 

m erely reduced i t  as compared to  that w ith G-6-P . The two hexose 

phosphates were equally  a c tiv e  in  the crude homogenates. The system  

had a pH optimum o f  7 .I4 and, as w ith the Neurospora r ea c tio n , no co­

fa c to r  requirement could be found. This enzyme a lso  resembled the 

Neurospora one in  th a t th e very la b i le  enzyme could be s ta b iliz e d  by 

the ad d ition  of hexose phosphates. Poge.ll and Gryder considered the 

greater s t a b i l i t y  obtained with G-6-P , as compared with F-6-P , an 

in d ica tio n  o f i t s  r o le  as a more immediate precursor fo r  th e r ea c tio n . 

N either th e Neurospora, nor th e ra t l iv e r  enzyme was subjected  to  more 

than a p a r tia l p u r if ic a tio n  and, th ere fo re , no c r i t i c a l  s tu d ies  have 

been made to e lu c id a te  e ith er  the mechanism or the equilibrium  of the
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r e a c tio n . The p au city  o f d e f in it iv e  inform ation concerning th ese  GA-6-P

sy n th es iz in g  systems may w e ll be a r e f le c t io n  of the in s t a b i l i t y  o f the 

enzyme proteins and. the consequent d i f f i c u l t i e s  inherent in  th e ir  

p u r if ic a t io n . The same problem arose in  the p u r if ic a tio n  o f the 

B la s to c la d ie l la  enzyme.

The conversion of GA to  F-6-P and ammonia has been stud ied  exten­

s iv e ly  in  E scherich ia  c o l i  (Soodak, 1955; Faulkner and Q uastel, 1956; 

W olfe, _et _al . ,  ,1956a,b,c, 1957, 1959; Roseman, 1956; Comb and Roseman, 

1956, 1958) ,  in  Aerobactor cloacae (Imanaga, e t  a l . ,  1957a ,b ), and in  

brain ex tra c ts  (Faulkner and Q uastel, 1956). I t was esta b lish ed  th a t  

a common pathway in  th e three organisms occurred through th e phos­

phorylation  of GA with ATP to produce GA-6-P , and subsequent deamination  

o f th at compound to y ie ld  F-6-P and ammonia. The ubiquitous d is tr ib u tio n  

of hexokinase, and i t s  demonstrated a b i l i t y  to .phosphorylate GA make i t  

le g it im a te  to expect th e presence o f the aforementioned system in  many 

organism s.

L elo ir  and Cardini (1956) reported that preparations from hog 

kidney cata lyzed  GA-6-P form ation from F -6-P and ammonia. The r e v e r s ib le  

rea ctio n  required N -acetylglucosam ine-6-phosphate (AG-6-P) as a co -fa c to r  

and d isp layed  optim al a c t iv i t y  a t pH 8 .I4 . An equilibrium  constant of 

c a . 0 .12  to  0 .18 was given fo r  the rea ctio n  1 F-6-P + NH3 GA-6- P ) ,

i . e . ,  i t  had a strong tendency toward the production of F-6-P and 

ammonia. Comb and Roseman (1956) showed that the E. c o l i  deaminase 

was a lso  r ev e r s ib le  in  p a r t ia l ly  p u rified  p rep aration s, The same
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workers ( 1958) made a comparative study w ith  p u rified  deaminases from 

hog kidney and E. c o l i .

The r e s u lt s  in d icated  th at th e  reaction  mechanism was the same fo r  

both enzymes and that th e AG-6-P stim u la ted , but was not required fo r ,  

th e  r ea c tio n . The d ir e c t  p a r tic ip a tio n  of AG-6-P in  the conversion was 

ruled out by the use o f i s o to p ic a l ly  lab eled  compounds. Although F-6-P  

and ammonia form ation was g rea tly  favored, the r e v e r s ib i l i t y  was con­

firmed fo r  both deam inases. I t  was, however, demonstrated th a t a rapid  

sy n th esis  o f AG-6-P  from F-6-P'and ammonia could be obtained w ith both 

enzymes i f  the rea ctio n  was coupled with a p u rified  GA-6-P a cety la se  

(Davidson, Blumenthal, and Roseman, 1957) and acetyl-coenzym e-A .

In summary, GA-6-P has been shown to  be synth esized  by at l e a s t  

four d if fe r e n t enzyme systems: (1) from GA and ATP in  a k inase reaction ;

( 2) by the glutam ine-F-6- P transamidase system; ( 3 ) by the aminotrans­

fe r a se  reaction  w ith G-6-P and glutamine; and (Ij.) by a rev ersa l o f the 

deaminase systems . A second name, glucosamine syn th eta se , suggested by 

Roseman (personal communication) fo r  reaction  (2) w i l l  be used in  th is  

paper fo r  the sake o f convenience.

Although the known b io sy n th etic  pathways that ramify from GA-6-P 

are rap id ly  en larg in g , only those perta in ing to c h it in  sy n th es is  w i l l  

be summarized h e r e . The a c e ty la tio n  of GA-6-P w ith acetyl-coenzym e-A  

to  form AG-6-P has been demonstrated in  Bakers-yeast (Brown, 1955), 

Neurospora ( L elo ir  and C ardini, 1953; Davidson, Blumenthal, and Roseman, 

1956,195?), Pe .n ic illiu m , Streptococcus „ rabbit m uscle, and human l iv e r  

(Davidson, Blumenthal, and Roseman, 1957). The AG-6-P has been shown



16

to  undergo a phosphoacetylglucosam ine mutase reaction  (AG-6-P AG-l-P) 

in  Neurospora (L e lo ir  and Card'ini, 19935 R e is s ig , 1996), and in  hog 

kidney (L e lo ir  and C ardini, 1996). E ither g lu c o se -1 ,6-diphosphate  

(G-1,6-DP) or N -acety lg lu cosam in e-1 ,6-diphosphate could serve as the 

c o -fa c to r  fo r  the conversion . R e iss ig  p a r t ia l ly  separated the enzyme 

from th e phosphoglucomutase present in  Neurospora ex tra cts  and found a 

r a tio  o f 86% AG-6-P : ll4.% AG-l-P a t equilibrium . He a lso  observed the  

form ation o f AG-1,6- DP when the enzyme was incubated w ith AG-l-P and 

G-1,6-DP.

Maley and Lardy (1996) esta b lish ed  the a b i l i t y  o f ra t l iv e r  

preparations to  form uridinediphosphate-N -acetylglucosqm ine (GDPAG) 

from AG-l-P and (JTP. UDPAG was f i r s t  iso la te d  from Bakers-yeast by 

Cabib, L e lo ir , and C ardini, 1993) and has a lso  been found in  ra t l iv e r  

(Smith and M ills , 1993) and mung bean (Solms and H assid , 1997) • Of 

p a rticu la r  in te r e s t  was the dem onstration by Glaser and Brown (199?a,b) 

that> a  p a r tic u la te  fr a c tio n  from Neurospora could incorporate the AG 

m oiety of GDPAG in to  c h it in - l ik e  compounds. The rea ctio n  was acce lera ted  

by the presence o f high m olecular weight c h ito d e x tr in s .

Although th e reaction s described in  the preceding paragraphs have 

been stud ied  in  a v a r ie ty  o f organisms and t is su e s  a l l  but one have 

been found in  the m ycelia  o f  Neurospora. Perhaps i t  can be assumed, 

th ere fo re , that the whole b io sy n th e tic  sequence lead in g  to  c h it in ,  as 

o u tlin ed , occurs in  Neurospora and, by analogy, in  other fungi producing 

ch itin ou s p o lysacch arid es.

Some o f the hexosamine compounds and th e ir  in tera c tio n s  are in d i­

cated sch em atica lly  in  Figure 1 fo r  the convenience o f the reader.
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Figure 1

Sugar-Phosphate and Hexos amine-Phosphate Interconversions

F-6-P ATP +• Fructose0-6-PGlucose + ATP

N. crassa
Rat l iv e r Hog kidney  

E. c o l i+ glutamine •

GA + Pi N. crassa NH

Ac-Co A

Yeast 
Brain 
E. c o l i

Yeast 
N. crassa  
P en icilliu m  
Streptococcus 
Rabbit muscle 
Human l iv e r  

f

+ G-1,6-DP

GA-l-P

F-6-P + NHo + A cetateTT̂ — ^  AG-6-P

4
UTP

Hog 
kidney

Rat 
l iv e r

AG

Rat Liver 
n u c le i

N. crassa  

'f + G-1 ,6 , -DP

V
UDPGA

AG-l-P AG-1,6-DP

+
UTP

A N. crassa  

Rat l iv e r

r
(UDP-acetylmannosamine)

f

UEP + Acetylmannos amine

UDPAG ^ B . s u b t i l i s  

N. crassa

r
C hitin

UDP-acetylgalactosam ine

UDP 4 a c e ty lg a la c to s ­
amine



18

MATERIALS AND METHODS

Culturing and H arvesting Procedures

To obtain  reproducible experim ental r e su lts  i t  was n ecessary  to  

stan d ard ize , in  so fa r  as p o ss ib le , the cu ltu rin g  and h arvestin g  

techniques used in  th is  stu d y . For th is  reason the procedures u t i l iz e d  

have been described  in  considerab le d e t a i l .

Stock Cultures .— A ll cu ltu res o f B la s to c la d ie lla  were grown on a 

b a sic  medium ;PYG) contain ing: 1 .2 5  gm. D ifco yeast e x tr a c t , 1 .25  gm.

D ifco  peptone, and 3*0 gm. glucose per l i t e r  of water (Cantino and 

H orenstein , 1955)*. To th is  b asic  medium e ith e r  Brom -cresol purple (BCP), 

sodium bicarbonate plus BCP, or 2% D ifco  agar was added as described  

below.

Stock cu ltu res were maintained as co lo n ies  of R .S. p lants on P e tr i  

p la tes  o f  PYG agar. Swarmer inocula  were obtained by p lacin g  blocks of 

agar bearing R .S. in  a sm all volume o f s t e r i l e  water ^Barner and Cantino, 

1 9 5 2 ). A fter swarmer discharge '(5 To 15 hours depending upon the h is to r y  

of th e c u ltu r e ) , p la tes  or f la s k s  were inoculated  w ith the suspensions 

u sin g  standard b a c te r io lo g ic a l techniques .

Cultures fo r  Zoospore Harvests and Large S ca le  .In ocu la .— Ten or 15 

cm. diam eter P e tr i d ish es of PYG agar were inoculated  w ith heavy swarmer 

suspensions and incubated at 20 or 2l|.0C . fo r  20 or 16 hours, r e sp e c tiv e ly j  

th ese  con d ition s produced mature f i r s t  generation p lants ready to d is ­

charge. The p la tes  were then flooded  with approximately 10 ml. of
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s t e r i l e  water and allowed to  stand at room temperature fo r  15 to 60 

minutes fo r  ex ten siv e  spore discharge to occur- The r e su lt in g  suspen­

sion s were then used to in o cu la te  liq u id  cu ltu res >vsee  below) and stock  

p la te s , or they were harvested according to  the method o f McCurdy (,1959) 

fo r  a n a ly t ic a l s t u d ie s .

S tandard ization  o f Zoospore In ocu la .— A standard curve fo r  the . 

concen tration  o f swarmer suspensions was e sta b lish ed  by determ ining  

the absorption o f a d ilu t io n  s e r ie s  in  a Klett-Summerson p h o to e lec tr ic  

co lorim eter at 5.20 mp, corrected fo r  the absorption of the suspending 

medium, .and by t o t a l  v ia b le  counts on th ese  same suspensions u sin g  PYG
_5

agar. The slop e o f the curve obtained was 2 .15  x 10 , or the number
c

o f swarmers per m i l l i l i t e r  = corrected  a b so rp tio n /2 .15 x 10 . The

numbers o f v ia b le  swarmers used fo r  in o cu la tin g  f la sk s  were r o u tin e ly  

determined as d escr ib ed ■above.

Liquid C u ltu res .--F or  preparation and p u r if ic a tio n  of enzymes, 

cu ltu res  o f 0 .C. p lants were grown in  e ith e r  3~ or 5 - l i t e r  Erlenraeyer 

f la s k s  conta in ing  1 .5  or 3 *5 l i t e r s ,  r e sp e c t iv e ly , o f PYG medium and
5

10 % BCP. These f la sk s  were equipped with an aeration  tube, an inocu­

la t io n  tube, and a side-arm  te s t - tu b e  contain ing 1 N potassium hydroxide 

fo r  n e u tra liz in g  cu ltu res during growth (Cantino and H orenstein , 1955)- 

I n i t i a l l y  th e 0 .C . p lants were grown with aeration  fo r  3 to  5 days at, 

room tem perature, i . e . ,  fo r  severa l gen eration s. At the time of harvest  

5 m l. of the flo ccu len t suspension o f p lants in  each cu ltu re  was used 

to  in o cu la te  a new f la s k .  For the major portion of the enzyme
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p u r if ic a t io n  work, however, mature, h ea lth y , f i r s t  generation  p lants  

were obtained by in o c u la tin g  1 .5  l i t e r  f la sk s  w ith  dense swarmer sus­

pensions and aeratin g  the cu ltu res v ig o ro u sly  over l ig h t s  (c a . 300 F.C .) 

a t room temperature (2[|°C .) fo r  13 to  15 hours. By th is  method nearly  

synchronous, f i r s t  generation  cu ltu res were obtained (McCurdy, 1959) 

s in ce  th e  to t a l  population was placed in  the f la s k  as swarmers, i . e . ,  

a l l  at th e same s ta g e .o f  developm ent.

For producing R .S. p lan ts f la sk s  were s e t  up in  e s s e n t ia l ly  the 

same manner as fo r  0 .C. cu ltu res except th at th e a lk a l i  tube was re­

moved, and sodium bicarbonate o f d if fe r e n t  concentrations was added to  

th e PYG broth . However, la rg e  sca le  synchronized cu ltu res fo r  studying  

R.S* ontogeny were grown in  1 2 - l i t e r ,  fla t-b o ttom  f la sk s  con ta in in g  .10
3

l i t e r s  o f PYG broth , in d ic a to r , and 8 .9 x 10 M sodium bicarbonate  

before a n toclav in g . These f la sk s  were a lso  equipped w ith  a g la ss  siphon  

tube connected by Tygon tubing to  a 'su c tio n  apparatus fo r  a sep tic  a l ly  

removing samples o f the cu ltu re at various tim e in t e r v a ls .

A ll R .S. cu ltu res except those intended fo r  a 12. hour h a rv est, 

were inocu lated  w ith ca . 1*37 x 10 6 swarmers per l i t e r  of medium. This 

was the optim al population d en sity  fo r  normal growth and adequate y ie ld  

fo r  th e experim ental procedures employed. Twelve hour cu ltu res were 

inoculated  w ith  <ca . 3-836 x 107 swarmers per l i t e r  o f medium, to  ensure 

a y ie ld  o f s u f f ic ie n t  p lant m aterial during th is  short growth period .

R esista n t sporangial cu ltu res were ro u tin e ly  grown with only normal 

laboratory  illu m in a tio n . The cu ltu res fo r  the early  ontogeny exp eri­

ments w ith  in d iv id u a l 1 .5- l i t e r  f la sk s  were grown w ith aeration  at room
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tem perature. The subsequent 1 .5 - l i t e r  R.S. cu ltu res fo r  the growth 

s tu d ie s , and the la rg e  synchronized cu ltu res were grown with aera tion  

in  a water bath at 22 to  2l4°C .

H arvesting Procedures .—A ll liq u id  cu ltu res were harvested  by 

vacuum f i f t e r a t io n  in  a Buchner fu nnel using a porous f i l t e r  paper.

To ensure rapid f i l t r a t i o n  the contents of the f la sk  were c o lle c te d  

w ithout being sucked down com pletely;, the plant m aterial was then freed  

o f a l l  media w ith numerous sm all washes o f d i s t i l l e d  water ( t o ta l  

volume * I4. l i t e r s  per 1 .5  l i t e r s  o f medium h a r v e sted ). A fter  the f in a l  

wash, the plant m ateria l was sucked down t ig h t ly  and the su c tio n  main­

ta in ed  fo r  U minutes to  remove a l l  excess water from the mat.

Dry  Weight Determ inations .— The wet mat, which separated e a s i ly  

from the f i l t e r  d isk , was weighed imm ediately a fter  f i l t r a t io n  and a 

p ortion  of th is  m ateria l (0 .5  gm. or more i f  a v a ila b le )  dried to  con­

sta n t w eight at 95°C•

Zoospore dry w eights were obtained as fo llo w s: the. d en sity  of a

swarmer suspension (c o lle c te d  and washed as p rev iou sly  described) was 

determined by reading an a liq uot in  the Klett-Summerson co lorim eter .

The suspension conta in ing  a known number of spores was then tran s­

ferred  q u a n tita t iv e ly  to  a p rev iou sly  tared b o t t le  and dried  to  con­

sta n t weight at 95°C •

Homogenization Procedure.—Plant m aterial was reg u la rly  homogenized 

w ith a mixture of b u ffer , or w ater, and g la ss beads in  a Serva.ll Omni­

mixer operated at about 12- to 15,000 r.p .m . The temperature was
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maintained between 0 and l4°C. by the use of an ic e  bath . The th in -  

w alled 0 .C . p lan ts required about 3 minutes for complete hom ogenization  

( . i . e . ,  u n t i l  95$ or b e tte r  o f  the p lan ts were broken), w hile  R .S. p lants  

required from 3 to  7 minutes depending upon th e ir  stage of development.

The g la ss  beads <v200 in  diam eter) were washed before use by 

seq u en tia l treatm ent w ith 1 N sodium hydroxide, 1 N hydrochloric a c id , 

and 10 M EDTA, pH 8 .0 ,  fo llow ed  by thorough r in s in g  w ith g la ss  d is ­

t i l l e d  w ater.

A n a ly tica l Methods

General Chromatography.— Paper chromatography was carried  out by 

the descending technique fo r  both one- and two-dim ensional work using  

litiatman # 1 f i l t e r  paper. For two-dim ensional r eso lu tio n  of amino acid  

m ixtures, the ex tra ct was placed on a sm all sp o t, 7 cm. from each edge, 

in  the corner o f a-I4.6 x  57 cm. s h e e t . The compounds were then chromato­

graphed in  th e long d ir e c t io n  with phenol-water (,100:39 *5 by w t . ) .

The papers were dried  in  a hood overnight to  remove the phenol, and 

then chromatographed in  the second d ir e c tio n  w ith butanol-propionic  

acid-w ater ( J46 .9 ' 22:31 *2) . A fter th ey  were dry, the chromatograms were 

sprayed w ith  0 .1$ ninhydrin in  9 5 $ ethanol and heated fo r  5 minutes at 

95°C . to  develop the c h a r a c te r is t ic , purple co lors obtained w ith th is  

reagen t.- Mixtures contain ing hexose phosphates and inorganic phosphate 

were a lso  chromatographed and detected  by the method o f Hanes and 

Isherwood (19U9) as m odified by Bandurski and Axelrod ^1952).
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The local: ions of known amino acids fo llo w in g  two dim ensional 

chromatography were e sta b lish ed  w ith  authentic sam ples. In a l l  cases  

alan ine was used as a referen ce standard (see  Appendix II  fo r  the two- 

dim ensional amino acid map prepared by th is  procedure).

One dim ensional chromatography was done w ith both washed and un­

washed Whatman # 1 f i l t e r  paper, as w e ll as w ith acid-washed Whatman 

[pH paper. Propanol-ammonium hydroxide-water (6 :3 ; 1)* butanol-propion ic  

acid -w ater , or ethanol-ammonium a ceta te  (7*5 volumes 95$ e th a n o l:3 

volumes 1 M ammonium a c e ta te , pH 7-5>), were used as s o lv e n ts , the la t t e r  

fo r  the sep aration  o f phosphate e s ter s  in  p a r ticu la r  (L e lo ir  and P a l l id in i ,  

1952) . The one-dim ensional Rf values fo r  sev era l compounds w ith d i f ­

feren t so lv en ts  and papers are tabulated in  Appendix I I I .

Whatman # 1 paper was washed as fo llow s: Large sh e e ts , serrated

at the lower edge, were placed in  pairs in  a la rg e  chromatography 

ca b in e t. One hundred and f i f t y  m l. o f 2 N a c e t ic  ac id , contain ing

0 .0 2 $  sodium EDTA, was added to each trough and allowed to migrate 

u n t i l  a l l  o f i t  had run o ff  the s h e e t s . The paper was then washed 

tw ice  w ith g la s s - d is t i l l e d  water in  th e same manner, and f in a l ly  dried  

in  the hood.

Propanol, b u tanol, and propionic acid  were a l l  d i s t i l l e d  before  

u s e . The phenol used fo r  q u a n tita tiv e  chromatography was a lso  fr e sh ly  

d i s t i l l e d ,  w hile th at used fo r  q u a lita t iv e  chromatography was a Merck 

reagent grade o f c r y s ta ls ,  stored  in  th e cold u n t i l  used .

When i t  was n ecessary  to r e ta in  the proper co lor in t e n s i t ie s  of 

amino acid  spots on chromatograms fo r  la te r  observation  or photography.
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they were sprayed w ith  0 N n ic k e l s u lfa t e ,  which convert ed the purple 

to  a red co lo r  without lo s s  of' the co rr e c t, r e la t iv e  in t e n s i t ie s  o f  

shading (Khaba and El* k in , 195b) ■ the co lors thus obtained were s ta b le  

fo r  sev era l months, i f  protected from bright l ig h t .

Q u an tita tive  Determinatio n  of Amino Acids by Chromatography.— In 

order to  obtain  q u a n tita tiv e  estim ations o f amino acids in  plant e x tr a c ts ,  

a liq u o ts  were chromatographed in  the two-dim ensional system d escr ib ed . 

Follow ing chromatography, the in d iv id u a l amino acid  spots were cut out 

and determined sp ectrop h otom etrica lly  by the ninhydrin method of Landua 

and Awapara 1.-19 U9. Awapara, .1959; see  Cantino, L ovett, and H orenstein ,

1957)* Curves prepared by tr e a tin g  known q u a n tit ie s  of pure amino 

acids in  th e  same manner were used as reference stand ard s.

For q u a n tita tiv e  determ ination of amino acids w ith  one-dim ensional 

paper chromatography of sim ple m ixtures, the method of Kay, e t  a l .  yl956) 

-was fo llow ed  w ith sligh t' m od ifica tio n . Propanol-ammonia was su b stitu ted  

fo r  th e so lven t used by the authors, and sodium hydroxide was d e leted  

from th e 0.5% ninhydrin spray fo r  co lor development . Propanol-ammonia 

y ie ld ed  e x ce lle n t separation  o f the amino acids in  enzyme rea ctio n  

mixtures w ith uniform ly low blank paper values . The sodium' hydroxide 

was recommended by Kay, e t  a l .  because i t  enhanced the co lor  form ation  

with ta u r in e , but because i t  was found to depress the co lo r  in te n s ity  

with glucosamine i t s  use was undesirable in  th ese experiments .

For chromatography of enzyme rea ctio n  m ixtures, tr ic h lo r o a c e t ic  

acid (TCA) was used as th e deprote in i  zing agent* at a f in a l  concentration
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e th y l ether in  a sm all a l.l-g la s s  continuous ex tr a c to r . E le c tr o ly t ic  

d esa lt ing w ith  a R.eco e le c t r ic  d e sa lte r  improved the q u a lity  o f  the 

chromatography but caused ser io u s decom position of glueamine.

Ex tr a c tio n  o f S olu b le  Amino A c id s .—Wet mats o f plant m ateria l were 

placed in  a vacuum d esicca to r  over calcium ch lorid e  immediately a f te r  

h a rv estin g , and stored  at 0 to  2°C. u n t i l  thoroughly dry. The dried  

m ateria l ^100 mg.) was ground to  a f in e  paste w ith  a mixture of powdered- 

g la s s , carborundum, and 80$ ethanol { 2 ^ 0  mg. grinding mixture 3 ml. 

ethanol per 100 mg. p la n ts ) . The m aterial was extracted  three tim es 

(T ot. V ol. l l |  m l.) and the pooled ex tra cts  taken to  dryness, e ith e r  by 

removing most of the so lv en t on a steam bath and then drying in  vacuo 

over calcium  c h lo r id e , or e n t ir e ly  in  vacuo w ithout h e a t . In both cases  

the f in a l  drying was carried  out at 0 to 1;°C. The extracted  amino 

acids were f in a l ly  re -d isso lv ed  in  2 .0  ml. of e ith e r  20$ ethanol or 

d i s t i l l e d  w ater, the ex tra cts  cen trifuged  i f  necessary to  remove in ­

so lu b le  res id u e , and a liq u o ts  chromatographed tw o-d im ensionally .

Protein  D eterm ination . —Proteins were estim ated by the turbidom etric  

method of Stadtman, e t  a l .  (1951)* w ith s lig h t  m o d ifica tio n . The pro­

t e in  sample was d ilu ted  to  3 ml. w ith 0 .5  M potassium ch lo r id e , 3-0 ml. 

o f 5$ TCA were added with m ixing, and the tu rb id ity  measured a fte r  one 

minute in  a K lett—Summerson colorim eter w ith a 580 mp f i l t e r .  A lin ea r  

p lo t was obtained in  the range 0 .1  to  1 .5  mg, p ro te in . C ry sta llin e  

serum bovine albumin (Sigma Chem. Co.) was used as a p rotein  standard.
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Determinat ion of Ammonium Ion and Total N itrogen .—Free ammonium 

ion  was determined by d ir e c t N e ss le r iz a tio n  w ith a commercial prepara­

t io n  o f the F o lin  and Wu (1919). N essler  reagent (Harleco T’Dry-Pack” ) .

The samples were N e ss le r iz e d , allowed to stand fo r  20 m inutes, and 

measured in  the K lett—Summerson colorim eter w ith  a U20 mp f i l t e r .  Total 

n itrogen  was estim ated by wet d ig e s t io n  o f organic m ateria ls w ith  

su lfu r ic  acid  and hydrogen peroxide over a micro-burner, u n t i l  a c lea r  

so lu tio n  was obtained (Umbreit, B u rr is , and S ta u ffe r , 1957)* The d i­

gested samples were then d ilu te d , the excess su lfu r ic  acid n eu tra lized  

w ith sodium hydroxide, and the samples N essler ized  and measured in  the 

same manner as fo r  fr e e  ammonium io n .

Inorganic and T otal Phosphorus .— Inorganic phosphorus was d eter­

mined by the method o f Fiske and Subbarow (,1925) • T otal phosphorus was 

estim ated by a m odified method using perch loric  acid (and n i t r ic  acid or 

hydrogen peroxide i f  necessary) to d ig est samples of organic m ateria l 

A lle n , 19U0) • Before co lor  development with the Fiske and Subbarow 

rea g en ts, th e  excess p erch loric  acid was n eu tra lized  w ith  sodium 

hydroxide. The completeness o f the d ig e s tio n  procedure was ro u tin e ly  

checked by the use of 3-phosphoglyceric acid as a standard.

E stim ation of Hexese-phosphates .— F ructose-6 -phosphate or mixtures 

of F-6-P and G-6-P were estim ated by the anthrone method o f Mokrasch

( 195U)•

The commercial preparation o f g lu co se -6 -phosphate denydrogenase 

'(Sigma Chem. Co.) used to  determine G-6-P in  the presence o f F-6-P
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i^Horecker and Wood, 1957), contained phosphohexoisomerase a c t iv i t y .  

However, the d if fe re n c e  in  the i n i t i a l  rates was used to  e s ta b lis h  the 

presence o f the isom erase in  homogenat.es contain ing F-6-P or G-6-P.

Glucosamine D eterm ination .— Glucosamine and GA-6-P were o r ig in a lly  

determined by the Immers and Vasseur (19£2) m od ifica tion  o f the E lson- 

Morgan r e a c tio n . However, th is  method did not produce eq u iva len t co lo r  

valu es fo r  GA-6-P as compared to  GA and was, in  a d d itio n , su sce p tib le  

to  in ter fe r en ce  by mixtures o f amino acids and sugars (Horowitz, tkawa, 

and F lin g , 1950}. The D ische and Borenfreund ^1950) method fo r  GA, 

in v o lv in g  deamination w ith n itrou s acid and color form ation w ith  an 

in d o le-h yd roch loric  acid m ixture, y ie ld ed  equivalent co lor  form ation  

w ith both hexosamines • The sugars and amino acids .in the rea ctio n  mix­

tu res analyzed, produced only a n e g lig ib le  amount o f co lor  even when 

present in  la rg e  ex cess , and th is  error was elim inated  by running non- 

deaminated co n tro ls  (hexosamines do not produce co lor  without prior  

deam ination), and by determ ining the o p t ica l d en sity  a t two d if fe r e n t  

wave le n g th s . For th is  reason i t  was p o ss ib le  to perform the D ische  

rea c tio n  d ir e c t ly  on rea ctio n  m ixtures, and i t  was used ro u tin e ly  fo r  

a l l  th e la te r  d eterm inations.

In order to  determine the amounts qf GA-6-P and GA in  mixtures 

conta in ing  both, a micro method was devised u t i l i z in g  paper chroma­

tography to  sep a ra te1 the two compounds and a co lorim etric  determ ination  

w ith the D ische r ea c tio n . Mixtures were chromatographed one-d im ensionally  

on washed Whatman # 1 paper w ith propanol-ammonium hydroxide-wat e r .

'J'he lo c a t io n  of the hexos amine .sp ots was e sta b lish ed  by spraying p a r a l le l .
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d u p lica te  s tr ip s  w ith ninhydrin . The same areas were removed from the 

experim ental s tr ip s  (in c lu d in g  paper b lan k s), cut in to  sm all p ie c e s , 

and then placed .in 12 m l. cen tr ifu g e  tu b es. The D ische rea ctio n  fusin g  

o n e-h a lf the normal quantity o f reagents) was then carried  out in  th ese  

tu b es, the paper packed in  the bottom of each tube, and f in a l ly  the  

so lu tio n s  poured in to  5 ml. cen tr ifu g e  tubes ( t ig h t ly  capped with  

parafilm  to  prevent evaporation) and cen trifu ged  fo r  3 minutes at 1600 x  

g . to remove the f i l t e r  paper f ib e r s .  The colored so lu tio n  obtained  

( c a . 2 .^  m l.) was then read in  the Beckman Model DH spectrophotom eter 

w ith appropriate stand ard s. Linear standard curves were obtained fo r  

both hexosamines in  the range from 0 .01 to  0 .0 5  jiM.

C hitin  A n alyses.— The c h it in  content o f m ateria l dried to  constant 

weight at 95° C. was analyzed by a m od ification  o f the methods of 

Hackman (19510 and Tracey (.1955) • Ike samples were powdered in  a mortar 

and approxim ately 20 mg. transferred  to a 10 x 120 mm. Pyrex tube.

One m l. of 1 N sodium hydroxide was added to each tube, a sm all g lass  

bulb-condenser placed in  the mouth to  prevent ex cessiv e  evaporation, 

and the contents d ig ested  in  a steam bath fo r  9 to 10 hours. A fter  

d ig e s t io n , the tubes were cen trifu ged  and the so lu b le  m ateria l d is ­

carded . The a lk a l i  in so lu b le  residue was washed tw ice w ith w ater, once 

w ith 95$ eth an o l, and once w ith e th er , in  that order. A fter the 

resid u a l ether had been removed in  vacuo, 2 m l. o f 6 N hydrochloric  

acid  were added to  each residu e and the necks of the tubes sea led  o f f .  

The samples were then d ig ested  fo r  another 30 hours in  the steam bath 

to hydrolyze the c h it in .  The tubes were coo led , opened, and placed in
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a vacuum d es icca to r  over potassium hydroxide p e l le t s  and calcium  

ch lor id e  to  remove as much of the hydrochloric acid  as p o s s ib le . The 

contents were f in a l ly  tran sferred  to  a volum etric f la s k , and a liq u o ts  

analysed by the D ische method fo r  th e ir  hexosamine content . The jug 

chi t in  were ca lcu la ted  by m u ltip ly in g  the juM GA by the m olecular weight 

o f N -acety lg lu eosam in e.

Melanin E stim a tio n .— The melanin content of p lants at various ages 

was estim ated by d ig e s t in g  10 mg. sam ples.o f dried p lant m ateria l w ith  

1 m l. o f  0 .9  N sodium hydroxide. The o p t ic a l d en sity  of the s l ig h t ly  

turb id  so lu tio n s  obtained (d ilu te d  .1:6) was measured a t 5 points  

between iiOO and 600 mju in  the spectrophotom eter, as recommended by 

S ch a effer  *(1993) • These data , when p lo tted  as the logarithm  o f the  

o p t ic a l d en s ity  aga inst the wave len g th , y ie ld ed  the stra ig h t l in e  

s lop es charact e r i s t i c  of the melanoid pigment s .

Total L ipids .--The t o t a l  l ip id  content of fresh  plant m ateria l was 

determined by the method of Folch, Lees, and S tan ley  (1 9 9 /) , fo r  animal 

t is s u e s  . To check on the e f f ic ie n c y  o f the chloroform-methanol extrac­

t io n  w ith fungal m aterial a- quantity o f fresh  B last 0c la d ie l la  p lant  

m ateria l (somewhat la rg er  than was used in  the experiments to  be 

described) was extracted  by the method o f Folch, _et a l .  The extracted  

resid u e was then refluxed  fo r  20 hours w ith a fresh  portion  o f the  

chloroform-methanol so lven t m ixture, and the quantity of l ip id  in  th is  

second extract determ ined. When th is  was done i t  was found that only  

3 .2 $  of the t o t a l  qxtractab le l ip id  remained a fter  th e i n i t i a l  e x tr a c tio n ,
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and the method was th erefo re  considered ap p licab le  io  the analyses o f  

B la s to c la d ie l la  m a te r ia l. No attempt was made to  correct fo r  the sm all 

quantity  o f y -caro ten e  which was extracted  along w ith the l i p i d s .

Preparative Procedures

Dowex-50 Resin Columns.—Dowex-50 r e s in  (x8 , 100 -  200 mesh; Bio 

Rad L aboratories; Reagent grade) was regu larly  regenerated before use  

w ith  two complete cy c le s  o f acid  and a lk a l i ,  w ith thorough d i s t i l l e d  

water washes between each treatm ent. To obtain  the r es in  in  the hydrogen 

form, th e  la s t  treatment was w ith  2 N hydrochloric acid; when the r e s in  

was required in the potassium form, the l a s t  treatment was w ith  2 N 

potassium hydroxide. Follow ing regeneration  the r e s in  was washed 

ex h a u stiv e ly  with g la ss  d i s t i l l e d  water before u s e .

F ru ctose-6- phosphate.—A f a ir ly  crude sample from Schwarz labora­

to r ie s  was p u rified  by two p r e c ip ita tio n s  as the a lcoh o l in so lu b le ,  

barium s a lt  at pH 8 .0 .  The remaining yellow  co lo r  was removed by 

tr e a tin g  w ith  N orite at 80°C .,‘ and the c o lo r le s s  m ateria l converted to  

th e sodium or potassium s a lt  by p r e c ip ita tin g  the barium w ith sodium 

s u l f a t e ,  or by running the so lu tio n  through a Dowex- 50 (K+ ) column, 

resp ec tiv e ly '.

A barium s a l t  from the Sigma Chemical Co. gave c le a r , c o lo r le s s  

s o lu t io n s , and was converted to  the potassium s a lt  by the column pro­

cedure. This m ateria l'assayed  as 80.6$ F -6-P by the ant hr one method.

Due to  the fa c t that a l l  samples of F-6-P on the market a lso  

contained C-6-P , a sample of pure F -6-P was prepared from commercially
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a v a ila b le  f r u c to s e -1 ,6-diphosphate (FDP) . The FDP (Schwarz la b o r a to r ie s , 

In c .)  was r e c r y s ta ll iz e d  I4 tim es as the cyclohexylammonium s a lt  by the 

method o f McOilvery 1,1953) • A fter r e c r y s ta l l iz a t io n , the s a lt  was 

converted to .th e  fr e e  acid  by passage through a Dowex-50 (H ') column.

A sample, chromatographed in  propanol-ammonium hydroxide-w ater, was 

found to  be fr e e  of hexose-unonophosphate e s te r s  and inorganic phosphate. 

The p u rified  FDP was then hydrolyzed w ith 1 N hydrobromic a c id , and 

the barium F-6-P s a l t  is o la te d  by the method of Neuberg, L u stig , and 

Rothenberg (19U3)* It contained 90 .1$  F-6-P and 0 .1 5 $  inorganic phos­

phate. The barium s a l t  was converted to the potassium d e r iv a tiv e  by 

the column method described above.

N -acety lg lucosam ine.— This compound was prepared from d-glucosam ine 

hydrochloride (C a lifo rn ia  Foundation for  Biochem ical Research) by the 

method o f Roseman and Ludowieg (195U )*

D -glueosam ine-6- phosphate.--A  few m illigram s of GA-6-P were synthe­

s ized  by the-chem ical method o f Anderson and P erciva l (1 9 5 6 ). In su f­

f ic ie n t  m ateria l was iso la te d  to  allow  chemical ch a ra cter iza tio n , but 

the product did have the same chromatographic properties as an authentic  

sample (prepared by the polyphosphoric acid method) which was very  

k in d ly  provided by Dr. Saul Roseman (D .istler , Merrick, and Roseman,

1958) * "With both th e  Hanes and Isherwood spray, and w ith  ninhydrin, 

the sy n th e tic  compound gave a s in g le  spot w ith the same Rj> as R.oseman*s 

compound *
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M iscellaneous P rep ara tion s■—Tricalcium -phosphate g e l was prepared 

according to the procedure o f K eilin  and Hartree ^1938). The product 

contained 17 mg. dry weight o f g e l per ml. of suspension .

S o lu tio n s  o f protamine s u lfa te  (E li L il ly )  were prepared contain ­

in g  20 mg. per m l., and the pH was adjusted to 3 .8  w ith 1 N A cetic  a c id .

3-Phosphoglyceric acid  (Schwarz Lab. In c .)  was r e c r y s ta ll iz e d  two 

tim es by the procedure o f Neuberg and L ustig  (191+2),. T h eoretica l 

recoveries fo r  t o t a l  organic phosphate were obtained with the product. 

l,2 ,]+ -am ino-naph,thol-su lfon ic acid (Eastman Kodak) fo r  the Fiske and 

Subbarow reaction  was r e c r y s ta lliz e d  by th e method of the authors (1925) • 

The ammonium sulfam ate (Eastman Kodak, p r a c tic a l)  fo r  the Dische 

rea ctio n  was r e c r y s ta ll iz e d  from ethanol-w ater m ixtures. Paradimethyl- 

aminobenzaldehyde was r e c r y s ta ll iz e d  by the procedure given by Tracey 

(1955) •

Sources of Chemicals and Biochem icals

AH of the inorganic chem icals used in  the work reported here were 

of reagent or comparable grade.

The in d o le , an throne, and acety laceton e used were products of 

Eastman Kodak. The barium- and d ip o ta ssiu m -sa lts  of G-6-P were obtained  

from the Sigma Chemical Co. Ninhydrin was procured from e ith e r  the 

Sigma Chemical Company or the N u tr itio n a l Biochem ical Corp. The 1- 

glutamine was a product o f the C a lifo rn ia  Foundation fo r  Biochem ical 

Research, and the 1 - glutam ic acid of the P fa n stieh l Chemical Corp.

ATI other amino acids were obtained from N u tr itio n a l Biochem icals 

Corp.
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The g la ss  beads used fo r  hom ogenization in  the Omni-mixer were 

obtained from th e Minnesota Mining and Manufacturing Co.
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EXPERIMENTAL

The Free Amino Acid Pools ■ in  B la s to c la d ie l la

As a prelim inary approach to  the problem of n itrogen  metabolism  

and i t s  r e la t io n sh ip  to d if fe r e n t ia t io n  in  B la s to c la d ie lla  i t  appeared 

th a t a study o f th e  so lu b le  amino acid  pools might w e ll provide some 

in d ic a tio n  of the most p r o fita b le  areas to  in v e s t ig a te . Any obvious 

d iffe re n c e s  in  th ese  compounds between the two m orphological forms, 

e ith e r  q u a lita t iv e  or q u a n tita tiv e , should r e su lt  from a lte r a tio n s  in  

c e r ta in -b io sy n th e tic  system s. I f  th is  were so , changes observed in  

s p e c if ic  pools would h elp  to  pin point those m etabolic pathways which 

d i f f e r  fundam entally between the a lte r n a tiv e  plant ty p e s .

To check the above, mature R.S. and O.C. p lants derived from 

cu ltu res grown, fo r  a period o f sev era l generations, were harvested , 

d ried , and th e ir  fr e e  amino A cids_e x tr a c te d . When th ese  ex tra cts  were 

chromatographed tw o-d im ensionally , s tr ik in g  d ifferen ces  were observed, 

both q u a n tita tiv e  and q u a lita t iv e  (F ig . 2 ) .  I t  was' obvious even from 

v isu a l in sp ec tio n  o f the' chromatograms that the q u a n tit ie s  o f almost a l l  

the fr e e  amino acid  pools in  the R .S. p lants were g rea tly  decreased in  

comparison w ith the O.C. p la n ts . 'T his was not tru e, however, fo r  

glutam ic and asp a rtic  a c id s , and to  a le s s e r  extent fo r  two or three o f  

the unknown compounds f a l l in g  in  the same general area o f the chroma­

tograms . These a l l  appeared to  remain at the same le v e l  in  both p lant 

ex tra cts  . In ad d ition  to the quantit a tiv e  changes, a new compound
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Figure 2

The Soluble Amino Acids o f  O.C. and R .S. P lan ts

An ex tra c t o f 10 mg. dry weight o f  p lan t m aterial chromatographed 
in  phenol-water (h o r izo n ta l) and butanol-propionic acid-w ater  

( v e r t ic a l ) .  The amino a c id s  were d etected  w ith ninhydrin.
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appeared in  P .S . ex tra cts  below g lyc in e  marked on the chromatogram as 

unidentified") which has been te n ta t iv e ly  id e n t if ie d  as asparagine.

The unknown compound in  the center o f the tr ia n g le  formed by se r in e , 

glutam ate, and aspartate  in  the O.C. chromatogram, on the other hand, 

could not be d etected  in  m aterial from R .S. p la n ts .

To serve as a check on the v isu a l e stim a tes , q u a n tita tiv e  d eter ­

m inations were undertaken. D uplicate s e ts  o f chromatograms fo r  each 

plant form were prepared and the glutam ic a c id , a sp a rtic  ac id , and a 

few other w e ll separated amino acids estim ated by the method of Landua 

and Awapara (I9lt9; Awapara, 19U 9)• The r e su lts  of th ese  analyses are 

given in  Table I .

TABLE I

ANALYSIS OF THE SOLUBLE AMINO ACID P00I£ IN 0 .0 .  AND R .S. PLANTS OF
BLASTOCLADIELLA .

pM Amino Acid per pg Amino Acid-N per
Amino Acid Gram Dry Weight Gram Dry Weight

O.C. R. S . O.C . R.S.

Glut am at e 29 .2 30.2 It08.8 U22.8
Aspartate 11.8 13 .2 165-2 lblt - 8
Alanine . 52 .H 5-1 733 -6 7 1 .6

Lysine 16 .h 8.8 U59-2 2I4.6 .It
Arginine - lit-It 7-6 806 .It U25.6

Threonine . 15.6 9 .6 2 l8 .lt 13 It .It
Tyrosine llt.lt ca.O 201.6 ca .0

Total 2993 .2 1U85-6
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These data corroborated the estim ates fo r  glutamic and asp artic  

acids . In f a c t , the concentrations of both compounds increased s l ig h t ly  

in  the P . S . m ater ia l. At the same time the to t a l  amino acid  n itrogen  

(as represented by the fr a c t io n  analyzed) decreased by 50$ in  the R .S. 

When the change was ca lcu la ted  fo r  a l l  amino acids other than glutam ic 

and a sp a r t ic , the drop amounted to 61$, a rather d r a s tic  change.

Alanine and ty ro sin e  showed the m ost-severe d ecrea ses , but i t  was - 

obvious from v is u a l in sp ec tio n  that other amino acids (which could not
i

be measured because of th e ir  overlapping p o s it io n s) underwent changes of  

a s im ila r  magnitude.

The re ten tio n  o f the glutam ic acid pool in  the R.S. p lants did  

suggest that i t  might indeed be worth in v e s t ig a tin g  fu r th er . This 

seemed p a r tic u la r ly  p ertin en t s in ce  glutamate might have served as the 

l in k  ( e . g . ,  by transam ination, or the glutamic dehydrogenase system) 

between the p u ta tive  locus of the bicarbonate e f f e c t ,  a -k e to g lu ta ra te , 

and the sy n th etic  pathway fo r  c h it in  sy n th e s is . The p o s it io n  o f glu­

tamate in  th e la t t e r  w i l l  be made evident in  the fo llo w in g  s e c t io n s .

Glucosamine Synthetase in  P lant Extracts

The s te p  in  the b io sy n th esis  o f c h it in  in  c lo se s t  proxim ity to . 

glutamic acid i s  that catalyzed by the enzyme glucosamine synthetase: 

Hexose-6-phosphate + 1 - glutamine — >  Glueosamine-6 -phosphate + 

1-Glutam ate. T herefore, th is  enzyme was assayed in  R.S. and O.C. p lants  

to  see  i f  th ere was any co rre la tio n  between i t s  a c t iv i ty  and the le v e l  

o f the fr e e  glutam ic acid p oo l. It was f i r s t  necessary to e s ta b lish  

th a t the rea ctio n  occurred with glutamine as a su b stra te , rather than



33

F-6-P and ammonia. For th is  purpose, a m a ltip le -g en era tio n  cu ltu re  of

0 .C . p lan ts was used s in ce  such m aterial was much sim pler to grow and

homogenize than R .S. p la n ts . Two grams wet weight o f a 7 day old cu l-
_  2

ture were ground in  a g la ss  homogenizer w ith 10 ml. 6-7 x 10 M. 

phosphate b u ffer , pH 6 .8 . F iv e-ten th s  ml. of the whole homogenate,

30 juM glutam ine, 30 jaM 0-6-P , and 3U>iM phosphate b u ffer , pH 6 . 8 , in  a 

to ta l  volume o f 3*0 m l., were incubated at 32°C. fo r  zero , o n e -h a lf, 

and 2 hours. The fo llo w in g  con tro ls were incubated fo r  the same tim e 

p eriods! complete system (a) w ith b o iled  homogenate, (b) minus homo­

genate, (c ) minus glutam ine, and (d) minus G-6- P . The rea ctio n  mixtures 

were in a c tiv a ted  and d eprotein ized  at the ind icated  tim es w ith 0 . 3  ml. 

of 35% TCA.

The complete rea c tio n  mixtures contained a compound w ith  low 

m ob ility  0 .1  in  butanol-propionic acid-w ater) which reacted with  

both th e  ninhydrin and Hanes.and Isherwood sp rays. This sp o t, presum­

ably GA-6-P , showed a proportional increase w ith the time o f incubation  

and was absent from a l l  the con tro l m ixtures. In ad d itio n , incubation  

of the whole homogenate plus su b str a te s , in  the absence of phosphate 

bu ffer led  to  the production of a considerable quantity  of fr e e  GA.

This appeared to be due to phosphatase a ction  upon the GA-6-P .

These r e su lts  in d icated  that the synthetase enzyme t a ) was present 

in  B ia s to c la d ie l la  and (b) u t i l iz e d  glutamine as the source of amino 

groups in  th e  sy n th esis  o f GA-6-P . To e s ta b lish  the lo c a tio n  o f the  

enzyme in  the extract., the a c t iv ity  in  whole homogenates was compared 

w ith  that reta ined  -.in supernatants a f te r  cen tr ifu g a tio n  at 300- and
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22,000 x g . at 0 t o [|° C . A ll th ese  fra c tio n s  appeared to have f u l ly  

comparable a c t iv i t y  as estim ated by the s iz e  o f the low m o b ility  

(Rf 0 .1 6 , propanol-ammonia) ninhydrin p o s it iv e  compound. This seemed 

to  e s ta b lis h  the '‘so lu b ility ''  o f the enzyme, and a l l  fu rth er  experiments 

were undertaken with the 22,000 x g . supernatants.

In the same experiment i t  was found that- F-6-P had an. a c t iv i t y  

equal to  that o f 0-6-P in  the synth etase r ea c tio n . F ru ctose-6 - phosphate 

was th erefo re  used in  subsequent experiments because i t  was rea d ily  

a v a ila b le , le s s  expensive, and according to Blumenthal, e t a l .  (1955)* 

the preferred su b stra te  fo r  the rea c tio n .

The Product o f Glucosamine Synthetase A c t iv i ty .— To e s ta b lis h  with  

reasonable c e r ta in ty  that the rea ctio n  product was in  fa c t GA-6-P, a 

p a r t ia l  p u r if ic a tio n  was undertaken (F ig . 3) • The barium p r ec ip ita tio n s  

were th ose  con ven tion a lly  used ((Jmbreit., B urris, and S tau fer , 1957) to  

sep arate mixtures o f phosphate e s t e r s .  F ru ctose-6 -phosphate and GA-6-P 

were th e only compounds expected in  the barium so lu b le  a lcoh ol in so lu b le  

fr a c tio n  ^BSAI'), but when th is  m aterial was red isso lved  and chromatographed 

both glutamine and glutamic acid  were s t i l l  present as contam inants.

The r esu lt  was somewhat .su rp risin g  s in ce  L elo ir  and Cardini (1953) had 

used the .procedure to  separate G-6-P and GA-6-P from id e n t ic a l mixtures 

and did not report the presence of amino a c id s , On recourse ,to the 

l i t e r a tu r e  i t  was found (Foreman, 191U) that- glutamic acid does pre­

c ip i t a t e  as an a lc o h o l- in so lu b le  barium or calcium sa lt  .

To obviate the p r e c ip ita t io n  problem with amino acids the m ater ia l, 

already tw ice p rec ip ita ted  as the BSAI s a l t s ,  was run in to  a Dowex-50
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Figure 3

GLUCOSAMINE-6-PHOSPHATE PURIFICATION PROCEDURE 

REACTION MLXTUBE CONTAINING TCA (20 .5 m l.)

I Centrifuged
> P rote in  discarded

SUPERNATANT -  I
Extracted w ith k  volumes e th y l ether to  remove TCA.
The pH adjusted to  8 .2  w ith KOH and ph en olph thalein .
l.H  m l. 25$ .barium a ceta te  added w ith m ixing.

I Centrifuged'
P r e c ip ita te  discarded

BARIUM SOLUBLE SUPERNATANT 

added, place 

Centrifuged
I4 volumes o f 95$ ethanol added, placed at - l 8°C. fo r  2 .5  h r .

Supernatant discarded

BARIUM-SOLUBLE-ALCOHOL-INSOLUBLE PRECIPITATE lBSAI-1) '
Washed 3 times w ith 3 ml. 95$ eth an ol.
R edissolved in  2 .5  ml. 1 0 -XN HC1, 2 X 10_2N H2S04 added 

to p r e c ip ita te  BaS04 .
Centrifuged

^BaS04 discarded
SUPERNATANT - II

Alcohol p r e c ip ita t io n  as the BSAI s a lt  rep ea ted .

■ BSAI. -  2
R.edissolved in  a minimal volume of d ilu te  HC1 and the  

barium removed w ith Na2S04 , and c en tr ifu g a tio n .
I ^

S o lu tio n  run in to  a.Dowex~50 (H ) column (0 .8  X 25 cm.) 
and a s e r ie s  of 10 ml fra c tio n s  eluted  w ith w ater.

iFraction  ^  Content

1 F-6-P , inorganic phosphate
2 Negative

3 - 8  GA-6-P
9 - 2 0  Negative

^ h ese  r e su lts  were obtained by chromatography and de­
te c t io n  w ith ninhydrin and Hanes and I sherwood sprays.
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1^1 .
(H ) column and a s e r ie s  o f fr a c tio n s  e lu ted  w ith water KW olf, M orita, 

and Nakada, 19^6). The r e s u lt s  are l i s t e d  at the bottom of F ig . 3 ,  

and show good sep aration  of the GA-6-P from the other compounds present 

in  the rea ctio n  m ixtures.

I t  was subsequently found that rea ctio n  m ixtures which had been 

d eprotein ized  with TCA, .cou.ld be d ir e c t ly  separated by the same column 

procedure without ether ex tra ctio n  to  remove the TCA, w ith eq u ally  

s a t is fa c to r y  sep a ra tio n s . The amino acids which remained on the column
_ i

were recovered when d e s ire d , by e lu tio n  with 2 x 10 N ammonium 

hyd roxide.

The GA-6-P fr a c tio n s  from the column were pooled and concentrated  

to  a sm all volume in  a f la s h  evaporator at 30 to  35>°C. When th is  

m ateria l was co-chromatographed w ith an authentic sample prepared by 

D r. Saul Roseman, the two compounds had id e n t ic a l m o b ilit ie s  (as 

determined by both ninhydrin and Hanes and Isherwood sprays) in  three  

d if fe r e n t  so lv en ts ; butanol-propionic acid -w ater, propanol-ammonium 

hydroxide-w ater, and ethanol-ammonium a ceta te  ( c . f .  Appendix I I I  fo r  

v a lu e s ) .

In an attempt to  i s o la t e  and fu rth er  p u rify  the en zym atically-

generated GA-6-P, the pooled sample was treated  w ith barium, the BSAI
- 1

s a l t  is o la te d , d isso lv ed  in  10 N hydrochloric a c id , and freed  o f barium 

by the ad d ition  of sodium s u l f a t e .  This m aterial was analyzed fo r  i t s  

organic n itrogen  and phosphorus con ten t, along w ith the sample provided 

by Dr. Roseman. It was found to contain  a phosphorus/nitrogen r a tio  

o f l / l . 2 ,  as compared to l /0 .9 * f o r  Roseman1s m a ter ia l. When the same



GA-6-P (th a t had been r e -p r ec ip ita te d  at pH 8 .2 )  was again chroma­

tographed, a second s-pot with an o f 0 .2 6  (propanol-ammonia) was 

found which had been absent from th e o r ig in a l column e lu a te s . This 

m ateria l reduced a lk a lin e  potassium permanganate and contained organic 

phosphorus, but d id  not react w ith ninhydrin . I t  was concluded that 

th is  was a decom position product from GA-6-P produced during the 

a lk a lin e  p r e c ip ita t io n  s in ce  i t  could be removed with Dowex-50 (H*) .

The im purity , which was not F-6-P , appeared in  the f i r s t  fr a c tio n  from 

the column. I t s  spectrum had a peak at 2/3 mp, which agreed w ith Brown1 s 

report ( 195 .1 ) o f an in crease  in  absorption at that wave len gth  when 

GA-6-P so lu tio n s  were stored at pH 8 .0 .  The decom position did not 

occur when.GA-6- P was stored  in  the re fr ig e r a to r  at low pH. I t  i s  pre­

sumed that th is  decom position was the cause o f the s l ig h t ly  high  

n itrogen  values obtained in  the an a ly ses, s in ce  the r a tio  should theo­

r e t i c a l ly  have been one.

The spectrum o f the colored product obtained in  the Dische reaction  

w ith B la s to c la d ie l la  GA-6-P was id e n t ic a l to th at o f GA. For both com­

pounds the absorption decreased p r e c ip ito u sly  on e ith e r  s id e  of a sharp 

maximum at U92 mp.

In con clu sion , i t  was decided that the product o f our enzyme 

reaction  was GA-6-P.

P u r ific a tio n  o f Glucosamine Synthetase

' The experiments described in  the preceding paragraphs e sta b lish ed  

th e presence o f glucosamine synth etase in  c e l l  fr e e  preparations of 

B la s to c la d ie l l a ,  and the su b stra te  and products of the r ea c tio n .
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However, before  beginning a study o f the ro le  of the enzyme during 

development i t  was e s s e n t ia l  to e s ta b lish  the optimal con d ition s fo r  

i t s  a c t iv i t y .  To do th is  a p a r tia l p u r if ic a tio n  of the enzyme was 

attempt e d .

P u r if ic a tio n  Procedures.— A v a r ie ty  of conventional methods fo r  

enzyme p u r if ic a t io n  were t r ie d .  However, the great m ajority of these  

resu lted  not only in  a lack  o f p u r if ic a tio n  but actual in a c tiv a tio n  of 

th e  apparently very la b i le  enzyme. Some of the more pertinent tr e a t ­

ments and th e ir  e f fe c t  upon synth etase a c t iv i t y  are l i s t e d  in  Appendix IV.

The enzyme lo s t  10 to  20$ of i t s  a c t iv i t y  on standing at 0° C. fo r  

sev era l hours, and from 56 to 80$ on 12 hours d ia ly s i s ; both e f fe c t s
-3

were a cce lera ted  by the presence of 10 M V ersene. The a d d itio n -o f

concentrated d ia ly s a te , or magnesium plus pyridoxal phosphate fa i le d  to
_4

resto re  the a c t iv i t y  lo s t  upon d ia ly s i s .  Both- g lu tath ion e ('10 M) and 
- - 4

F -6-P (9 x 10 M) had some s t a b i l iz in g  e f f e c t ,  but not enough to prevent

s ig n if ic a n t  lo s se s  in  a c t iv i ty  on standing, or upon d i a l y s i s . The

a c t iv i t y  was heat s e n s it iv e  and, to  a le s s e r  ex ten t, pH s e n s i t iv e .

A ll attem pts to  i s o la t e  the enzyme by ammonium s u lfa te  fr a c tio n a tio n

met w ith  f a i lu r e .  Although th e grea test a c t iv i t y  was always found in

the fr a c t io n  c o lle c te d  between 30 and h$% sa tu ration  with ammonium

s u lf a t e ,  the s p e c if ic  a c t iv i t y  and/or to ta l  y ie ld  were in  every case

reduced by the treatm ent. I f ,  in  ad d ition , the red isso lv ed  ammonium
-  L

s u lfa te 'f r a c t io n  was d ia liz e d  again st phosphate bu ffer  (10 M, pH 7.0'), 

a fu rth er  lo s s  o f (%% in  a c t iv i t y  occurred.



The most s a t is fa c to r y  and.reproducible p u r if ic a tio n  was obtained  

by tr e a t in g  high speed supernatants, con ta in in g  no phosphate b u ffer , 

w ith a protamine s u lfa te  so lu tio n  adjusted to  pH 5*8 (0 .17  mg. protamine 

su lfa te /m g .'p r o te in )  . Under th ese  con d ition s the glucosamine syn th etase  

a c t iv i t y  remained in  th e  supernatant, and p u r if ic a tio n s  ranging from 

3 .2 to  6.1*-fold w ith n early  100$ recovery were obtained ( c . f .  Appendix 

IV) . ’

The enzyme was e f f e c t iv e ly  adsorbed from the protamine supernatant 

on tr ica lc iu m  phosphate g e l at pH £ .6 . Attempts to e lu te  the enzyme 

w ith a s e r ie s  o f phosphate b u ffers o f  in crea sin g  m olarity , or in creas­

ing  pH, or both , fa i le d  to  give adequate recoveries in  any one fr a c t io n .
_ i

However, in  such s e r ie s  10 M phosphate buffer at pH 7-0 always gave 

the b est r e s u l t s ,  and s in g le  ex tra ctio n s of th is  sort did r e su lt  in  

some p u r if ic a t io n .

Heppel and Hilmoe (19^1) reported th a t the enzyme, inorganic  

pyrophosphatase, could be e f f i c i e n t ly  e lu ted  from g e l preparations by 

i t s  own su b stra te , inorganic pyrophosphate. Therefore, a s im ila r  

approach was tr ie d  w ith the synth etase enzyme from B la s to c la d ie l la
_ 3

u sing  5 X 10 M F-6-P as the e lu tin g  a g en t. The r e s u lt s  were encourag­

in g , and led  to the t r i a l  o f h igher concentrations of both the commercial 

and sy n th e tic  F -6-P , as w e ll as G-6-P'. The r e su lts  are shown in  

Table IT. '

I t  was q u ite  evident from th ese  data th at the commerical F-6-P 

was superior to  e ith e r  the sy n th etic  F-6-P or the G-6-P as an e lu tin g  

agent . The reduced e f f ic ie n c y  o f the sy n th etic  F-6-P e lu tio n  remains
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TABLE II

GEL ELUTION WITH HEXOSE-PHOSPHATES

E lu tin g
E ster

a
S p e c if ic  A c t iv ity  

With Protamine 
Supernatant

S p e c if ic  A ctiv­
i t y  With Gel 

Eluate

Percentage Increase  
in  S p e c if ic  
Act iv i t y

0- 6- P 8.59 16.9 97
F -6-P (sy n th .) 9 - h i 12 .6 3 k
F-6-P (Sigma) 9 -66 20.5 112

Conditions*. Equal q u a n tit ie s  o f the gel (prepared by adsorption from 
the protamine supernatant) were elu ted  w ith 3 ml- (10"2 M) 
of the in d icated  e s t e r .  The e lu a tes  were assayed w ith 10 

• juM o f the same hexose-phosphate, 20 pM glutam ine, and lj.0 
pM phosphate b u ffer , gH 6-5* in  a f in a l  volume o f 2 .1  m l., 
fo r  1 hour ; T = 3 0 .6 C . The rea ctio n  was stopped w ith '(% 
Na2W04 (0 .0 1  m l.) and 1 N HC1 (0 .06  m l.) ,  and the GA-6-P 
determined by the Dische method. S p e c if ic  A c tiv ity :  
pM GA-6-P/m g. p ro te in /h r .
^Refers to  the s p e c if ic  a c t iv ity  w ith the same e s te r  as 
used fo r  e lu t io n .

a p szz le  s in c e  i t  had been as e f f e c t iv e  as the commercial F -6-P (and 

su perior  to  0- 6- P) in  the glucosamine synthetase reaction  w ith the 

protamine supernatan t.

The pH Optimum o f Glucosamine S y n th eta se .—An e a r ly  determ ination  

o f the pH optimum w ith F-6-P as the su b strate  had in d icated  a broad 

range o f almost equal a c t iv i t y  from pH 3*5 to j . 0 , However, in  the 

l ig h t  of the a c t i v i t y  demonstrated by G-6-P , the pH response fo r  both  

compounds was examined at, c lo se r  in ter v a ls  (from pH 5.0  to  8 .5) using  

the h igh  speed supernatan ts. The pH optimum (F ig . 5) occurred at pH 

6 .5  to  6 .7 .  -An in ter p r e ta tio n  of the d ifferen ces  in  th e shape of the



cu rves, and th e ir  .inverse r e la t io n sh ip  at h igher pH1 s i s  found in  the  

d is c u s s io n . Due to the presence of F -6-P in  the enzyme preparation  

p ir i f ie d  w ith th is  e s t e r , the-pH response could only be determined 

u sin g  i t  as su b s tr a te . The r e s u lt s  were e s s e n t ia l ly  th e same as those  

shown in  Figure £ .

Because o f the extreme l a b i l i t y  o f the enzyme, fu rth er attempts 

at p u r if ic a t io n  were abandoned. The procedure which y ie ld ed  th e  maximal 

f in a l  p u r if ic a t io n  i s  shown in  Figure I4 and the data obtained in  

Table I I I .

Time Course o f the Glucosamine Synthetase R eaction .—U t il iz in g  the  

enzyme p u r ified  in  the above manner and both F-6-P and G-6-P as sub­

s t r a te s ,  the r e la t io n sh ip  between GA-6-P form ation and incubation  tim e 

was e sta b lish ed  (F ig . 6 ) .  The la g  obtained w ith G-6-P and i t s  absence 

w ith  F -6-P , was o f .importance in  e s ta b lish in g  which of the two served  

as the primary su b stra te  fo r  the reaction  (se e  la te r  d is c u s s io n ) . The 

l in e a r i t y  of the response curve w ith  F-6-P up to  30 minutes ind icated  

that any time during th is  in te r v a l would be s a t is fa c to r y  fo r  assaying  

the enzyme in  plant hom ogenates.

Glucosamine Production v s .  Enzyme Concent rat io n .—The qu antity  of 

GA-6-P produced from F-6-P  by the p u rified  enzyme was a lin e a r  fu n ction  

of the p rote in  concen tration  from 0 up to approxim ately 0 . 8  mg. of  

p rote in  per tube (F ig . 7 )•

Su bstrate S p e c i f i c i t y .—A s e r ie s  of con tro ls s e t 'u p  to  e s ta b lish  

(a.) th e s p e c i f i c i t y  o f  the p a r t ia l ly  p u rified  enzyme, and ^b) the absence 

of any non-enzym atic a c t iv i t y ,  are tabulated  in  Table EV.



Figure k> Glucoasamine Synthetase P u r if ic a t io n  Procedure.

Figure 5

Figure 6

Figure 7

The r e s u lt s  obtained by th is  procedure are given in  Table ITT. 
The temperature was maintained between 0 and i| C. throughout 
the p u r if ic a t io n . The g e l’ suspensions were s t ir r e d  in te r ­
m itte n tly  by hand because mechanical s t ir r in g  c o n s is te n t ly  
reduced th e  reco v er ies  obtained . A ll cen tr ifu g a tio n s  but 
•the f i r s t  were for  5 minutes at lU ,300 x g .

. The R ela tion  Between Glucosamine Synthetase A c tiv ity  and pH.

Two-tenths ml. o f a 22,000 x  g . supernatant (6 .3  mg. p rote in  
per m l.) were incubated w ith 20 pM F-6-P (or G-6-P), 20 pM 
glutam ine, and 100 pM phosphate b u ffer , in  a f in a l  volume of
2 .0  m l.,  fo r  20 min. a t 30 .6  C. The rea ctio n  was stopped  
by th e  ad d ition  of 0 .0 1  ml. 7% Na2W04 and 0 .08 ml. 1 N HC1. 
The GA-6-P was determined by the D ische method, and a l l  
va lu es corrected  fo r  th e ir  unincubated c o n tr o ls .

Time Course o f the Glucosamine Synthetase R eaction.

The enzyme (O.lj mg.) e lu ted  from tr ica lc iu m  phosphate gel 
w ith 10"1 M, pH 7 -0 , phosphate b u ffer  was incubated and 
assayed under the con d ition s given in  F ig . 3, except that 
the pH was 6 .3  and the time o f incubation  v a r ied .

The E ffe c t o f Glucosamine Synthetase Concentration on the 
R eaction Rate.

_ i
The enzyme e lu ted  from tr ica lc iu m  phosphate g e l w ith 10 M, 
pH 7 .0 , phosphate bu ffer was incubated w ith 20 pM F-6-P , 20 
pM glutam ine, 100 pM phosphate b u ffer , pH J . 0 , in  a f in a l  
v o l .  o f 2 .0  m l., fo r  20 min. at 30 .6° C. See F ig . 3 for  
other d e t a i l s .
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Figure Ij.

GLUCOSAMINE SYNTHETASE PURIFICATION PROCEDURE

0 .C'. p lant m ateria l homogenized 3 min. in  the Omni-mixer (1 gm. wet wt . 
to U gm. g la ss  beads and U ml. g la ss  d i s t i l l e d  w ater).

I Centrifugecj 30 min. at. 22000x g
I Sediment and beads discarded

SUPERNATANT
Protamine s u lfa te  (20 m g./m l. pH 5-8) added slow ly  w ith s t ir r in g  at the  
ra te  o f .O .iy  mg. per-mg. o f p ro te in , and the mixture allowed to  stand  
10 min .

PROTAMINE SUPERNATANT
Sodium A cetate bu ffer (1 M, pH 5*6) added slow ly  w ith s t ir r in g  to  a 
f in a l  con cen tration  o f .10"2 M.

Calcium phosphate g e l added to  the protamine supernatant (1 .2  mg. g e l /  
mg. p rotein ) s t ir r e d  fo r  15 min. i

Centrifuged
Sediment discarded

I
Centrifuged

Supernatant discarded

GEL
T

GEL
S tirr e d  fo r  15 m in. with  
5 m l. 10"2 M F -6-P /21 .6  mg. g e l .

S tirred  for 15 min. with  
5 m l. 10“ * M phosphate 
b u ffer , pH 7 -0 /2 1 .6  mg. g e l .

Centrifuge'd.
Centrifuged

FIRST
F-6-P
ELUATE

FIRST
PHOSPHATE
ELUATE

GEL
S tirred  fo r  15 min. w ith  
5 m l. 10"2 M F -6 -P /2 1 .6  mg. g e l .

GEL
S tirred  fo r  15 min. with  
5 ml. 10"* M phosphate b u ffer  
pH 7*0/21.6 mg. g e l .

SECOND
F-6-P
ELUATE

SECOND
PHOSPHATE
ELUATE
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TABLE rri 

GLUCOSAMINE SYNTHETASE PURIFICATION

F raction
P rotein  
Cone.,  
mg ./m l.

Total
Protein

Total 
Units o f  
A c tiv ity

S p e c if ic
A c tiv ity

P u r if i­
ca tio n

Supernatant 5.15 56 .8 215 . 3-79
Protamine Supernatant 1 . 6 18.5 236 12 .8 3 -U fo ld
Adjusted to  pH 5.9 1 . 6 18 .5 209 1,1.3
F ir s t  F -6-P e lu a te 0 .2 5 ' 1 . 2 k 67 53 .6 lU . l  fo ld

Second F-6-P  e lu a te 0 .07 0 .3 5 25 72.5 19 .1  fo ld
F ir s t  Phosphate e lu a te 0 .7 2  ■ 3-6 52 17 .1 U-5 fo ld
Second Phosphate e lu a te 0 .08 0 .38 k 11.3

C onditions: Each enzyme fr a c t io n  was incubated fo r  1 hour w ith 30 pM
glutam ine, 30 pM F-6-P, 60 pM phosphate b u ffer , pH 7^0, 
and water to  g ive  a f in a l  volume of 3*0 mlj T’ = 30*3 C.
The rea ctio n  was stopped w ith Tungstate-HCl, and the GA-6-P 
det ermined by the Dische method.

TABLE IV

CONTROL REACTION MIXTURES INACTIVE WITH THE PARTIALLY PURIFIED ENZYME

Enzyme Substrates Phosphate Buffer
pH 6 .5

Volume

0 . 2 5  m l. 20 pM glutamine 100 pM 2 .0  ml.

0 . 2 5  m l. 20 pM F-6-P 100 pM 2.0  ml.

0 .25  m l. 20 pM 0,-6-P 100 pM 2.0  m l.

0 .25 m l. 20 pM glutam ate, 20 pM F-6-P 100 pM - 2 .0  ml.

0 .2 5  m l. 20 pM asp arag in e,20 pM F-6-P 100 pM 2 .0  ml.

0 .2 5  m l. 10 pM NH4C1, 10 pM F-6-P , 70 pM 1 .1  ml.
10 pM ATP

0 .25 ml .(b o ile d ) 20 pM F-6-P , 20 pM glutamine 100 pM 2 .0 m l.

C onditions; The enzyme was a phosphate e lu a te  (0 .3b  or 0 .5 l  mg. p ro te in /  
m l.) .  Each rea c tio n  mixture was incubated fo r  20 min. at 
30 .6°C . ,  and included an unincubated c o n tr o l. The enzyme 
was in a c tiv a ted  and the proteins.denatured  w ith 10% Na2W04 
(0 .0 1  m l.) and 1 N HC1 (0.01+ m l.) ,  or by heatin g  a t 100°C. 
fo r  5 min. CA-6-P was determined by the D ische method.



From th e n egative  r e su lts  obtained w ith th ese  mixtures i t  was con­

cluded th a t th e  enzyme could on ly  u t i l i z e  glutamine as the amino- 

n itrogen  donor, and F-6-P or G-6-P as the n itrogen  acceptors in  the  

r e a c t io n .

S to ich iom etry  o f the Glucosamine Synthetase R eaction .—The recover­

ie s  obtained fo r  both reactan ts and products, ex c lu siv e  o f the hexose- 

phosphates (se e  below ), are shown in  Table V. The r e s u lt s  show a 

s a t is fa c to r y , though not id e a l ,  r e la t io n sh ip  between the disappearance 

o f glutam ine and th e  appearance o f GA-6-P, GA, and glutamic a c id . In 

th e d isc u ss io n  o f the ea r ly  experiments ( c . f . p . 38 ) i t  was noted th a t  

fr e e  ( i . e . ,  non-phosphorylated) GA appeared in  rea ctio n  mixtures con­

ta in in g  no inorgan ic  phosphate. Upon incubating the ammonium s u l f a t e ,  

f r a c t io n  (Exp. 31> Table V) w ith sodium c itr a te  bu ffer  in stead  of 

phosphate b u ffer , 2)4 .5% o f th e  to t a l  product appeared as fr e e  GA. 

However, in  no case d id  GA appear when inorganic phosphate was present 

in  th e  rea ctio n  m ix tu res. I t  i s  obvious from the la rg e  increase in  in ­

organic phosphate th a t a considerab le qu antity  of the F-6-P was a lso  

lo s t  by phosphatase a c tio n . Whether the dephosphorylation of both 

GA-6-P and F-6-P was the r e s u lt  o f a s in g le  n o n -sp ec if ic  phosphatase or 

two s p e c if ic  enzymes i s  a moot p o in t. Of in te r e s t  in  th is  resp ect i s  

the fa c t  th a t Blumenthal, Hemerline, and Roseman (.1956) is o la te d  a 

phosphatase from Neuro'spora crass a which was 25 tim es more a c tiv e  toward 

GA-6-P than i t  was toward other hexose-phosphates. The optimal pH 

range o f 6 .0  to  / .5  fo r  the p u rified  glucosamine phosphatase of 

Blum enthal, e t  a l . ,  overlaps that o f the glucosamine synth etase and
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TABLE V

STOICHIOMETRY OF THE GLUCOSAMINE SYNTHETASE REACTION

a  jiM During Incubation

GA-6-P GA Glutamate Glutamine Inorganic
Phosphate

Exp. 30 + U .6 + 5 . 0 -  k  .8
Exp. 31 + 6 .8  + 2 .2 + 9-9 -  7 .1
Exp. 65

Crude supernatant + .1 .8 + 2 .3 -  1 .6
Protamine s te p + 1 ,6 + 2 .2 -  2 .2
Ge.l e lu a te + 5 .0 + 5-0 -  5-6

(,0.1 M phosphate)

C onditions; Exp. 3 0 » A' supernatant d ia lyzed  12 h r . at 0-2°C . v s .  10“ 2
M phosphate b u ffer , pH 6-9 * 0 .^  ml. enzyme, 30 juM F-6-P,
30 juM glutam ine, 50 juM phosphate b u ffer , pH 6 .9 , incubated
fo r  2 h r . in  a f in a l  volume o f 3*0 m l.; T = 31 C.

Exp. 3 1 ■ The enzyme was a 30-50$ ammonium s u lfa te  fr a c tio n  
prepared from a supernatant d ia lyzed  v s . 10" 2M phosphate 
b u ffer , pH 6 .9 ,  fo r  12 h r . a t 0-2 C ., and red isso lv ed  in  
10"J-M sodium c it r a te  b u ffer , pH 6 .8 .  The incubation  con­
d it io n s  were the same as those, in  Exp. 30, except that 
sodium c it r a te  was su b stitu ted  fo r  the phosphate b u ffer .

Exp. 6 5 . These'were enzyme fr a c tio n s  obtained by the pro­
cedure given  in  F ig . 5* Each fr a c t io n  was incubated w ith  
20 juM glutam ine, 20 juM F-6-P, and 100 jiM phosphate b u ffer , 
pH 6 -5 , fo r  20 min. in  a f in a l  volume of 2 .0  m l.; T = 30 .6°C .

Reactants and products were analyzed by the D ische method fo r  g lu cos- - 
amines, and the method o f Kay, e t  a l .  fo r  the- amino a c id s . A ll va lues  
were corrected  fo r  th e ir  unincubated c o n tr o ls ,
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such an enzyme could conceivab ly  be present and a c tiv e  in  B la s to c la d ie l la  

homogenates .

Attempts to  e s ta b lis h  a 1 :1  r a t io  between th e disappearance o f  

F-6-P ' ôr G-6-P) and the appearance o f  GA-6-P were only m oderately  

s u c c e s s fu l, even w ith  the p a r t ia l ly  p u rified  enzyme. Table VI l i s t s  

the r e s u lt s  o f  analyses fo r  changes in  the sugar phosphates during a 

30 minute in cu b ation  o f the enzyme w ith  F-6-P and G-6-P as th e  sub­

s tr a te s  . The data stro n g ly  suggested the presence of considerab le  

phosphoglucose isom erase a c t iv i t y  in  the p a r t ia l ly  p u rified  enzyme.

To v e r if y  t h i s ,  th e  co n tro l tubes contain ing only F-6-P were analyzed 

fo r  the presence o f G-6-P before and a fte r  incubation by measuring the  

ra tes  of TPN reduction  w ith g lu co se -6 -phosphate dehydrogenase (S ig m a ).- 

The r e s u lt s  are given in  Table V II .

TABLE VT

HEXOSE-PHOSPHAIE CONVERSION'DURING INCUBATION WITH THE 
PARTIALLY PURIFIED GLUCOSAMINE. SYNTHETASE

' Substrate
A juM During Incubation

GA-6-P F-6-P G-6-P

F-6-P + 1 .1 -  U.0 + 2 .5

G-6-P + 0 .5 + 2*9’ -  U-5

C onditions; The p a r t ia l ly  p u rified  enzyme and reaction  mixtures were 
as in d icated  fo-r F ig . 6 . The time o f incubation  was 30 
min,.



TABLE vrr
GLUCOSE-6-PHOSPHATE DEHYDROGENASE ■ ASSAY FOR ISOMERASE 

ACTIVITY IN THE PARTIALLY PURIFIED ENZYME

Time in  
Minutes C ontrol

O ptical D ensity

Experimental

2 ' ' 0.015 O.OU2

U 0 .02U 0 .063
6 0.032 0 .0 7 1
8 O.O37 . 0.087

10 o.oi+5 0 .09I1
15 0 .061 0 .112

-25 0 .095 0.11*6

C onditions: To d e te c t  phosphoglucose isom erase a c t iv i t y  in  the phos­
phate g e l-e lu a te , 0 . 2 5  ml* of the enzyme (O.I4 mg. protein ) 
were incubated w ith  20 juM F-6-P and 100 pM phosphate b u ffer , 
pH 6*5jr in  a volume o f 2 .0 .m l. fo r  20 m in ., and then heat 
in a c tiv a te d . An unincubated co n tro l was prepared in  the  
same fa sh io n  w ith enzyme b o iled  before a d d itio n . For the  
G-6-P assay , 1 .2  ml. 10-1 M phosphate, pH 7*5 , 0 .3  ml. 10“ 1 
M MgCl2, 0 .1  m l. 2 .5  x  10"3M TPN, 0 .1  ml. of G-6-P-dehydro- 
genase (Sigmaj 2 mg . /m l .) ,  and water to  give a f in a l  volume 
of 2 .97 m l. were added to  each cu v e tte . The rea ctio n  was 
s ta r ted  by the ad d ition  of 0 .03  ml. of the so lu tio n  to  be 
assayed and the reduction  o f TPN fo llow ed in  the spectro­
photometer at 3U0 mp. The values in  the ta b le  are corrected  
fo r  th e  i n i t i a l  absorption of the complete system minus 
su b str a te .

S in ce th is  enzyme d isp la y s  ab so lu te  s p e c i f ic i t y  fo r  G-6-P, the con­

v ers io n  o f F-6-P to  G-6-P by isom erase ac tio n  was d e f in it e ly  e sta b lish ed  

by th e  h igher i n i t i a l  ra te  w ith  the a liq uot from the tube incubated fo r  

20 m inutes. U nfortunately , the presence o f isomerase a c t iv i t y  in  the  

commercial preparation of glucose-6-phosphate dehydrogenase i t s e l f  made 

an accurate estim ate o f the magnitude o f the conversion im p ra ctica l.
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I t  should be noted , however,* th a t the ra tes o f reduction  were equal 

a f te r  10 m inutes. Therefore, a rough estim ate was obtained by assuming 

th a t th e  d if fe r e n c e  in  o p t ic a l d en s ity  between the two a fte r  10 m inutes, 

when p lo tte d  as 0 .D . v s .  tim e, r e f le c te d  the TPN reduction  due to  th e  

increased  G-6-P in  the tube incubated w,ith glucosamine syn th eta se .

This c a lc u la t io n  was made in  th e fo llo w in g  manner (Horecker and Wood,

1957)'.

0 .051  x 3 ml* x 66.7  - , / !
' ? 7 22 m ltiaM ---------

where 0 . 0 5 1  i s  the o p t ic a l d e n s ity  d iffe re n c e  between the curves, 6.22  

ml./pM i s  the micromolar e x tin c tio n  c o e f f ic ie n t  o f TPN-at.310 .mji, 3 ml. 

i s  th e volume in  the cu v e tte , and 66.? the d ilu t io n  fa c to r . The ca lcu ­

la te d  va lu e (1 .6 1  juM) fo r  the G-6-P which appeared was of the same order 

o f magnitude as the decrease in  F-6-P (2 .15  pM) found by the anthrone 

method.

The presence of the isomerase in  the p u rified  glucosamine synthe­

ta se  could th erefo re  exp la in  the cap acity  o f 0 -6 -P  to  serve as a sub­

s tr a te  in  the r ea c tio n . This in te r p r e ta tio n  was strengthened by the  

d e f in it e  la g  phase and reduced ra te  obtained w ith  G-6-P as compared to  

F-6-P in  the tim e course study ( c . f .  F ig . 6 ) .  Reference to  Table VIII 

provides a d d itio n a l support fo r  the fu n ction  of F-6-P as the primary 

su b stra te  fo r  the B la s to c la d ie l la  sy n th e ta se .

The 50$ red uction  in  the G-6-P/F-6-P a c t iv i t y  r a tio  during p u r if i­

c a tio n , th er e fo re , e sta b lish ed  w ith reasonable c er ta in ty  th at F-6-P was 

the a ctu a l su b stra te  fo r  the B la s to c la d ie l la  glucosamine syn th etase , 

and th a t the react ion cata lyzed  by the enzyme-was:
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TABLE 71II

COMPARISON.OF THE EFFICIENCY OF GLUCOSE-6-PHOSPHATE AND 
FRUCTOSE-6-PHOSPHATE AS SUBSTRATES FOR/THE 

GLUCOSAMINE- SYNTHETASE .REACTION DURING 
„ PURIFICATION

P u r if ic a t io n  Stage S p e c if ic  A c t iv ity  w ith G-6-P „ 
S p e c if ic  A c t iv ity  w ith F-6-P

Supernatant 93%
Protamine supernatant . 81$
Gel e lu ate '(p h osp h ate) h7%

C onditions: The enzyme fr a c t io n  was incubated w ith 20 pM F-6-P, or
G-6-P, 20 pM glutam ine, 100 pM phosphate b u ffer , pH 6 .5 ;

• T = 3 0 .6 C. F inal volume 2 .0  ml - The rea ctio n  was 
stopped w ith  0 .05  '^1* I N  HC1 and 0 .0 1  ml. 7% Na2W04 , and 
the GA-6-P analyzed by the. method o f D isch e. .

d -fru ctose-6 -p h osp h ate  +  1 -g lu ta m in e  >-

d-glucosam ine-6-phosphate +  1 -gl.utamate

The pH optima and su b strate  requirements were the same as those reported  

fo r  th e  enzyme from Neurospora (L e lo ir  and Cardini, 1953; Blumenthal., 

e t . a l . ,  1955)* The data a lso  esta b lish ed  th a t the B ia s to c la d ie l la  

enzyme was not the same as th a t reported fo r  rat l iv e r  by P o g e ll and 

Gryder (1957) j s in ce  the la t t e r  enzyme had a pH optimum between 7 -b  and 

8 .0 and demonstrated an in crea sin g  s p e c i f ic i t y  toward G-6-P on p a r tia l  

p u r if ic a t io n .

It should be noted in  c lo s in g  th a t the 1 9 -fo ld  p u r if ic a tio n  

a tta in ed  resu lted  in  an enzyme preparation w ith a s p e c if ic  a c t iv i t y  

(pM GA/mg. p rotein /20  m in.) more than 2l;2 tim es th a t reported by L e lo ir  

and Cardini ( in  pM GA/mg. p r o te in /h r .) ,  and c a . If) t in e s  th a t reported



by Blum enthal, e t  a l . ,  the on ly  other p u r if ic a tio n s  published to  d a te .

S tu d ies o f R .S . Ontogeny. .

The p u r if ic a t io n  o f the enzyme outlin ed  in  th e preceding s e c t io n ,  

was undertaken w ith the express purpose of determ ining optim al condi­

t io n s  fo r  i t s  assay  in  p lan t hom ogenates. With th a t inform ation in  

hand, i t  became p o ss ib le  to  proceed w ith  a study o f the enzyme at 

d if fe r e n t  stages in  the l i f e  cy c le  o f the fu ngus.

Glucosamine Synthetase A c t iv ity  in  Zoospores, O.C. P la n ts , and

R »S. P lants .— As a f i r s t  approach i t  was decided to  compare the a c t iv i t y

already determined fo r  the mature th in -w alled  p lan ts w ith th a t in  the

mature R .S . p lan ts and in  swarmers. To obtain a s u f f ic ie n t  number of

swarmers fo r  an enzymatic assay , e igh teen  15 cm. P e tr i p la tes  of PYG

agar were h e a v ily  in ocu lated  w ith B la s to c la d ie l la  swarmers „ A fter  12

hours -a dense suspension of spores was c o lle c te d  from each p la te  by a

s e r ie s  o f c e n tr ifu g a tio n s , usin g  the procedure described by McCurdy

(1959) • The swarmers were kept in  an ice-b a th  at a l l  tim es from th is

stage on. The c e l l s  were f in a l ly  washed tw ice w ith  5 to  10 m l. of  
_  2

cold  5 x 10 M phosphate b u ffer , pH 6 .5 ,  by cen tr ifu g a tio n  a t  

1600 x  g . fo r  15 seconds. The packed c e l l s  were resuspended in  the  

same b u ffer  (1 v o l .  c e l l s :  9 v o l .  b u ffe r ) , tran sferred  to a sm all g la ss  

homogenizer, and ground u n t i l  b e tter  than 95$ o f the c e l l s  were broken. 

The homogenate was cen tr ifu ged  fo r  30 minutes at 22,000 x g . in  a 

S e r v a ll Model SS-1 cen tr ifu g e  a t 2° C. The c le a r  supernatant was then  

assayed f o r . i t s  glucosamine syn th etase a c t iv i t y .  The r e su lts  o f two 

such experim ents are shown in  Table IX.
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TABLE TX

GLUCOSAMINE SYNTHETASE ACTIVITY IN ZOOSPORES

Volume of 
C ells

P rotein
Concentration

S p e c if ic  A c t iv ity  
With F-6-P With G-6-P

Exp. 67 0.13  m l. 3 .82' mg . /m l. 2 .2 1 . 6

Exp. 68 0 .2 6  m l. 3 -55 m g./m l. U-3 3-2

C ond itions: The supernatant (0 .2  m l.) was incubated w ith 20 pM glu­
tam ine, 20 pM F-6-P , or G-6-P , and 100 jaM phosphate b u ffer , 
pH 6 .5 , in  a f in a l  volume o f 2 .0  m l., fo r  20 min'.j T = 30 
C. • The rea c tio n  was stopped w ith 0 .0 6  ml. 1 N HC1 and 
0 .0 1  m l. 7% Na2WQ4 ,- and th e GA-6-P determined by the Dische 
method. A ll values were corrected fo r  unincubated c o n tr o ls . 1 
S p e c if ic  A c tiv ity :  uM GA-6-P/mg. p r o te in /2 0 ■min.

To assay th e syn th etase  a c t iv i t y  in  mature R .S. p la n ts , two 1 .5 -
2

l i t e r  cu ltu res con ta in in g  2 .38 x  10~ M sodium bicarbonate were inocu lated  

w ith swarmers and grown fo r  1 days at room tem perature. The mats of 

mature r e s is ta n t  sporangia derived  therefrom were homogenized in
O

5 x  10~~M phosphate b u ffer , pH 6 .5  in  the Omni-mixer. Following c e n tr i­

fu g a tio n  ( 22,000  x g . ,  30 m in .) , the supernatants were analyzed fo r  

th e ir  syn th etase a c t iv i t y  w ith  the standard, assay procedure (Table X ). 

D ia ly s is  of the supernatant decreased the a c t iv ity  co n sid erab ly . In ad­

d it io n ,  the sediment c o n s is t in g  o f the fragments o f the r e s is ta n t  

sporangia and other c e l lu la r  debris was resuspended in  bu ffer and mixed 

in  equal proportions w ith th e  supernatant. This reco n stitu ted  m ixture, 

con ta in in g  the same qu antity  of supernatant as the u n recon stitu ted  

m ixture, was a lso  assayed .

^ i t h  exception  o f the qu antity  o f enzyme, th is  assay procedure 
was used fo r  a l l  subsequent determ inations o f glucosamine synth etase  
a c t iv i t y  and w i l l  be referred  to  as the '■ standard assay
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TABLE X

GLUCOSAMINE SYNTHETASE ACTIVITY OF MATURE R .S .

P rotein  S p e c if ic  A c tiv ity
Concentration With F-6-P With G-6-P

Exp. 69 Supernatant , 2 .0  mg ./m l. 0 .68 O.lU
Exp. 70 Supernatant 2 .3  mg ./m l. 0 .62 0 .18
Exp. 70 R econ stitu ted  0 .60

Exp. JO D ialyzed Supernatant3" 2 .0  mg ./m l. 0.1;5

cl —2 .0  m l. supernatant d ia lyzed  aga in st 200 m l. 5 x  10 M phosphate 
b u ffe r , pH 6-5* fo r  7*5 hours at 2°C.

The fa i lu r e  -of th e reco n stitu ted  homogenate to  demonstrate in ­

creased a c t iv i t y  oyer th e  supernatant a lon e, esta b lish ed  the ex c lu siv e  

presence o f th e  enzyme in  the so lu b le  proteins of the supernatant.

This agreed w ith  the r e s u lt  obtained e a r lie r  fo r  'the O.C. p la n ts .

The average s p e c if ic  a c t iv i t i e s  fo r  glucosamine synth etase in  the  

three p lant forms are l i s t e d  in  Table 1 1 .

TABLE XI

A COMPARISON OF GLUCOSAMINE SYNTHETASE ACTIVITY IN ZOOSPORES,
O.C. PLANTS, AND R .S . PLANTS

Plant Tvt>e - _________ ^ e q m ^ c t i v i t ^ _______Plant Jype W i t h  F_ 6 _ p With G-6-P

Zoospores 3 *3 2 ,h
Thin-w alled O.C. P lants 1*9 1*8
T hick-w alled R .S . P lants 0 .7  0 .2
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The d if fe r e n c e s  in  a c t iv i t y  o f the enzyme among the plant forms 

im m ediately ra ised  the question  o f i t s  r e la t io n sh ip  to  the d ifferen ces  

in  th e  form and development o f th e organism. T h is, then, posed the 

problem;, did the decrease in  the enzyme a c t iv i t y  in  mature p lants  

r e f le c t  i t s  importance in  the processes lead in g  to  the gen esis o f a 

p a r ticu la r  form o r , ra th er , ju s t  the resid u a l a c t iv i t y  a fte r  growth 

and sy n th es is  had ceased? To decide which o f th ese  in terp re ta tio n s  

was c o r r e c t , i t  was n ecessary  to  determine where the decrease occurred 

during development and,, i f  p o s s ib le , to  co rre la te  that knowledge w ith . 

the changes in  other processes a sso c ia ted  w ith growth. Because o f a 

basic, in te r e s t  in  the gen esis  o f the r e s is ta n t 'sporangium, and the  

increased  c h it in  sy n th es is  involved in  i t s  development (Cantino, L ovett, 

and H orenstein , 1957), the s tu d ies  which fo llo w  are concerned w ith th is  

form o n ly .

C ultural Conditions fo r  Synchronized Growth.— In order to  study  

th e r e la t iv e  a c t iv i t y  o f th e .synthetase enzyme at d if fe r e n t stages  

during th e development o f R .S. p la n ts , two experim ental cond itions had 

to  be s a t is f ie d :  (1) The growth o f the plants had to  be w e ll enough

synchronized so  th a t most, i f  not a l l ,  o f the p lants were at the same 

sta g e  o f growth at any given tim e; (2) Cultures had to be grown in  a 

manner which perm itted removal of a rep resen ta tive  sample at desired  

in t e r v a ls .

The u se o f swarmer suspensions p a r t ia l ly  s a t is f ie d  the f i r s t  re­

quirement . It has r ecen tly  been shown that such suspensions when 

placed in  liq u id  media germinate in  e s s e n t ia l ly  synchronous fash ion
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( Turian and C antino, 1950). In an attempt to  s a t is f y  th e second con-
-  2d it io n  a s e r ie s  o f id e n t ic a l 3 ~ H te r  f la sk s  (con ta in in g  2 .3& x  10 M

NaHC03 before au toclav in g) were inoculated  w ith a uniform number o f

m o tile  swarmers. Each f la sk  was harvested at a d if fe r e n t  tim e. However,

a fte r  sev era l runs were made, u sin g  the conditions described above,

r e s u lt s  in d ica ted  th a t n e ith er  o f the two c r i t e r ia  was in  fa c t  being

s a t i s f a c t o r i ly  m et. The f i r s t  and more ser iou s problem involved the
- 2

con d itio n  o f the p lan ts grown in  2.38 x 10 " M sodium bicarbonate.

The con cen tration  used was o r ig in a lly  chosen because i t  ensured 100$

R .S . form ation on agar c u ltu r e s . But in  liq u id  c u ltu re s , although  

some p lan ts developed in  an apparently normal fa sh io n , others appeared 

normal a t f i r s t  but showed in creasin g  abnormality and degeneration  

after , approxim ately L|h hours o f growth. M orphologically, the most 

obvious changes were a pronounced abnormal th ick en ing  o f th e ch itin ou s  

sporangia l w a ll (F ig . 8 ) , depressed pigm entation, and u lt im a te ly , a 

clumping of the sp orangia l c o n te n ts . Therefore, a s e r ie s  o f f la sk s  were 

s e t  up to  e s ta b lish  th e  optimal conditions fo r  a proper balance between 

R .S, form ation and h ea lth y  growth in  liq u id  media. As a consequence,
_3

i t  was found th a t 8 .9  x  10 M sodium bicarbonate autoclaved in  the PYG 

medium y ie ld ed  the b est r e s u lt s ;  cu ltu res grown under th ese  cond itions  

co n sisted  o f b e tter  than 98$ R .S. p lants and th ese appeared e n t ir e ly  

normal throughout th e ir  development.

The second problem encountered w ith  the s e r ia l  f la sk  technique was 

u n sa t is fa c to r y  r ep ro d u c ib ility  in ,grow th rates among r e p lic a te  f la s k s ,  

although a l l  th e  con d ition s were made as nearly  id en tica l, as p o ss ib le ,
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Figure 8

A Thick-Walled R.S. P lant Produced in  Super-Optimal 

Bicarbonate Concentrations
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in c lu d in g  th e s iz e  of inoculum, tem perature, and th e .r a te  o f a era tio n . 

The degree o f clumping of p lants had a n o ticea b le  e f fe c t  on growth. 

S evera l entangled p lan ts always matured more rap id ly  than s in g le  ones, 

and th is  e f f e c t  could be d etected  fo r  even a s in g le  pair o f p la n ts .

The- v a r ia b i l i t y  in  degree o f clumping could not be elim inated  w ithout 

reducing the s iz e  o f ihe inoculum to  an im p ractica l l e v e l .  To obviate  

t h is  d i f f i c u l t y  f la sk s  were used o f s u f f ic ie n t  s iz e  (12 l i t e r s )  to  

accommodate enough medium (10 l i t e r s )  fo r  sampling throughout the e n tir e  

growth p er io d . The r e s u lt s  obtained by th is  technique were e x c e lle n t .

In such c u ltu r e s , the great m ajority o f p lants grew s in g ly  or at most 

in  tw o's and th r e e 's  'throughout, the generation, t im e .

Growth S tu d ies w ith  Synchronized C u ltu res-.—To e s ta b lish  th a t th ese  

cu ltu res  were as w e ll synchronized as they appeared to  be by v is u a l ex­

am ination, samples were removed fo r  s iz e  measurement approxim ately  

every 6 hours up to  60 hours, and at l e s s  frequent in te r v a ls  th e r e a fte r .  

The appearance o f p lants a t th ese  d if fe r e n t  stages o f development is  

shown in  Figure 9 • Twenty p lants from each sample were measured at 

random... At th e e a r lie r  sta g es  when th ey  were sp h er ica l or e l l ip s o id a l  

in  shape, only th e  length  and width was recorded. For the o ld er  develop­

mental stages a f te r  the in i t ia t io n  o f the sporangium, the o v e ra ll len gth  

and the diam eter o f both sporangium and s ta lk  were recorded (Table X II ).

C alcu lation  of the average volume per p lan t at each stage  during  

growth was based upon the assumption th a t the shape o f the plants was 

s u f f i c ie n t ly  near to  th a t o f a sphere so th a t a s im p lif ie d  c a lc u la tio n  

would not cause ser io u s e rr o r . The volume o f p lants at d if fe r e n t  ages



Figure 9

Photomicrographs o f  S .S . P lants During Development 

in  Synchronous Culture ( X 350 )
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TABLE XII

SIZE MEASUREMENTS OF DEVELOPING R..S.

Age in  Hours Length (p) Diameter o f  
Sporangium (jj)

Diameter of 
S ta lk  (ji)

0 (Zoospores) 9 7
8 ■ 16.5 16.1+

1 2 .5 29 .5 29 .2

18 • ' 5 i  .1+ 51.1 ■

21+ 9 2 . 5  ' 9 2 .0

3 0 .5 193.7 11+2.6
36 210 .2 151 *1 111+.8 •

k2 212 .1+ , 152.7 111+.8

1+8 210.7 11+6-6 102 .5

51+ 207 .6 11+5 *li 101.8

60 ' 2 09 .5  • 1I+6 .3  . 103 .1

72 209 .5 139.6 100.6

107 202.7 . 11+2.5 97.2

Each va lu e rep resen ts th e  average fo r  20 p lan ts measured a t random. 
The va lu es •within- any one sample were s u f f ic ie n t ly  c o n s is ten t to make 
a s t a t i s t i c a l  a n a ly sis  unnecessary.

i s  p lo tte d  in  Figure 10A-B. The observations th a t the p lo t o f the 

r e la t io n sh ip  between volume and age was sigm oid, and th a t th e  logarithm ic  

p lo t y ie ld ed  a s tr a ig h t l in e  were taken as ad d ition a l confirm ation of 

synchronized growth. It i s  important to  note th a t the in crease  in  s iz e  

f a l l s  o f f  rap id ly  a fte r  30 hours and a decrease in  s iz e  even seems to  

occur; the la t t e r  must be due to a cer ta in  amount o f shrinkage during 

th e  m aturation p rocess, but i t s  cause remains unknown.

To obtain  one fu rth er  parameter concerning synchronization  o f these  

c u ltu r e s , th e  dry weight p e r th a llu s  was determined as a fu n ction  of
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p lan t age. It was im possib le to  use .1 2 -lite r  f la s k s  fo r  th ese  determin­

a tio n s  because a considerab le quantity  o f plant m ateria l adhered to  

th e  upper portion s o f the f la s k  and made q u a n tita tiv e  reco v er ies  by the  

siphon procedure u n r e lia b le . For th is  reason a s e r ie s  o f 3 ~ l i t e r  f la sk s  

were in ocu lated  w ith a known quantity  ( i . e . ,  few enough to  prevent over­

crowding) o f  swarmers and grown under id e n t ic a l c o n d itio n s . The r e su lts  

are given in  Table X III.

The dry w eights of p lants a t d if fe r e n t  ages were obtained from 

th e  data  in  Table X III (F ig . 11A-B) . The sigmoid and s tr a ig h t l in e  

r e la t io n sh ip s  between dry w eigh t/p lan t and tim e, and lo g  dry w eig h t/ 

plant and tim e, r e sp e c t iv e ly , were co n s is ten t w ith a sa t is fa c to r y  

synchron ization  during the growth'and development of th e  R .S. p la n ts .

For purposes o f comparison which w i l l  become evident in  the d is ­

cu ssio n , an arrow has been placed on subsequent graphs in d ica tin g  the  

age (36  h r .)  where the in crease  in  s iz e  of plants ceased .

Glucosamine Synthetase A c tiv ity  During R .S. Development.—With con­

d it io n s  e sta b lish ed  fo r  growing synchronized, reproducib le, mass cu ltu res  

of R .S. p la n ts , the study o f glucosamine synthetase a c t iv i t y  during 

development was continued . The data from a ty p ic a l experiment using  

such cu ltu res are d e lin ea ted  in  Figures 12, 13, and lljA-B. The cu ltu re  

f la s k ,  incubated at 2 k °  C ., was sampled by removing approxim ately one 

and o n e-h a lf l i t e r s  of thoroughly suspended plant m aterial at f iv e  

in te r v a ls  between 2 1 .5 .and 83 hours. In order to obtain  enough plant 

m ater ia l fo r  the 12 hour data , i t  was necessary to  use a [ [ - l i t e r  f la sk
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TABLE XIII

DRY WEIGHTS OF PLANTS AT DIFFERENT AGES DURING R .S. DEVELOPMENT

Age in  ..Hours T otal Number 
of Plants

T otal Dry Weight 
( grams)

0 (Zoospores) 532,972,510 0.0602
12 251+, 107 ,81+0 1.0297
21+ 3,1+93,983 0 .31+2.2
36 1,233,170 O.773O

’ 1+8 1,233,170 1.061+9
60 1,233,170 1.0311+
81+ ■■ ■ 1,1538,699 1.170-7

C onditions: The swarmers were harvested as p rev iously  described fo r
enzyme preparations, washed w ith d i s t i l l e d  w ater, and 
dried  to  constant w e ig h t.
The 12 h r . p lants were grown in  a l+ ~ lite r 'f la sk  w ith PYG 
plus 8 .9  x 10“ 3 M NaHC03 , the regain ing cu ltu res were grown 
in  3 ~ l i t e r  f la sk s  of the same medium] a l l  a t 23 ± 1° C.

w ith  a much h eav ier  inoculum than could be used fo r 'th e  large  f la s k s .

From each, a liq u o t of harvested plants a sample was taken fo r  a dry

weight' determ ination . The remainder was homogenized in  the Omni-mixer 
— 2

w ith  5 -x  10 M phosphate b u ffer , pH 6 .5 , and the homogenate cen trifuged  

fo r  30 minutes a t 22,000 x  g . The supernatant was separated from the  

sediment and an upper la y e r  of l ip id ic  m aterial w ith  a p ip e t t e . Each 

supernatant was then assayed fo r  i t s  glucosamine synth etase a c t iv i t y  

w ith  the standard assay procedure, u sin g  approximately 0 .6  mg. o f  

supernatant p ro te in  per tu b e .

The averaged data from sev era l s e r ie s  o f cu ltu res grown in  s in g le  

3- l i t e r  f la s k s  contain ing the higher concentrations of bicarbonate
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Figure 10A-B. The Volume-of an R .S. Plant During Development.

. P lants were assumed to  be spheres, and '’average" diam eters 
were derived  from th e data in  Table X II, F ig . 10A; Volume 
per P la n t. F ig . 10B; Log^-Volume per P la n t.

Figure 11A-B. The Dry Weight o f an R.S. Plant During Development.

Data were ca lcu la ted  as the t o t a l  dry weight per c u ltu r e /  
the number of p lan ts per c u ltu re . F ig . 11AJ .Dry Weight per 
P la n t. F ig . l lB j  Log-Dry Weight per P lan t.

Figure 12 . The S p e c if ic  A c t iv ity  o f Glucosamine Synthetase in  B..S. 
Plants During Development.

S p e c if ic  A c tiv ity : pM GA-6-P/mg. protein /20  min. (See
context fo r  d e t a i l s ) .

Figure 13 . T otal Glucosamine Synthetase per Unit Weight o f Organism 
During R .S . Development.

One u n it o f  synth etase: th e  quantity of enzyme m ediating
th e production o f •1 pM GA-6-P/20 minutes in  the standard 
assay (s e e  c o n te x t) . T otal u n its  synthetase per gm. dry 
w eight: t o t a l  gm ..so lub le  protein  x u n its  per gmi p ro te in /
gm . dry weight'.

Figure II4A.-B . Glucosamine Synthetase A c tiv ity  per Plant During R.S. 
Development.

F ig . liiAj Synthetase U nits per Plant ( t o ta l  u n its  per gm. 
dry weight (F ig . 13) x gm. dry weight per plant (F ig . 11A). 
F ig . lUBj Log-Synthetase Units per P lan t.
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*38 x  10 M) in  the medium, but harvested and analyzed in  an id e n t ic a l  

manner to  the la rg e  c u ltu r e s , have been p lotted  in  Figure 15> fo r  com­

p arison . The pattern  o f the curves i s  e s s e n t ia l ly  the same in  both 

cases; however, i t  i s  important to  n o tice  that the peaks in  the curves 

are delayed almost e x a c tly  21; hours by the 2 .7- fo ld  in crease  in  the 

bicarbonate con cen tration . By m icroscopic observation  i t  was estab­

lish e d  th a t the m orphological changes assoc ia ted  with R .S. development 

were a lso  sh if te d  by th e same amount.

The s ig n if ic a n c e  o f th e  peaks in  t o t a l  and s p e c if ic  a c t iv i t y  and 

th e ir  .d if fe r e n t ia l  appearance w ith resp ect to  the age o f the p lants  

w i l l  be d iscu ssed  .la ter . However, i t  i s  important to  point out now 

th a t th e stead y  decrease in  a c t iv i t y  found with G-6-P as the su b strate  

fo r  th e  syn th etase  enzyme, 'as compared to  F-6-P , was qu ite s tr ik in g .

From th e  r e la t iv e  a c t iv i t i e s  o f the two su b strates during the p u r if i­

c a tio n  procedure, and from th e ra te  s tu d ie s , i t  had been concluded th at 

th e G-6-P  was converted to  F-6-P by phosphoglucose isomerase a c tio n , 

rath er  than i t s e l f  d ir e c t ly  involved in  the r ea c tio n . I f ,  indeed, th is  

w ere-th e  case the steady decrease in  a c t iv ity  could be in terp reted  as 

r e f le c t in g  a decrease in  th e a c t iv i t y  of the isomerase during d if fe r e n ­

t ia t io n ,  thus gradually  b locking the in tercon version  between the two 

hexose-phosphates . To t e s t  th is  hypothesis i t  was necessary to  estab­

l i s h  whether the phosphoglucose isomerase did decrease in  a c t iv i ty  

during growth. The sim p lest method fo r  doing th is  was to  measure th e  

red uction  o f TPN by g lu co se -6- phosphate dehydrogenase in  B la s to c la d ie lla  

e x tr a c ts , u sin g  each hexose-phosphate as su b stra te . The r e la t iv e



a c t iv i t y  o f the two in  such a system would in d ica te  the a c t iv ity  o f  

th e isom erase s in ce  i t s  presence would be required fo r  the conversion  

of F-6-P to G -6-P. The glucose-6-phosphate dehydrogenase in  turn had 

an ab so lu te  s p e c i f i c i t y  fo r  G-6-P and TPN. The method would only be 

v a lid  i f  the dehydrogenase were p resent, and G-6-P thus served not only  

as a reference, fo r  the ra tes  of reduction w ith F-6-P, but a lso  as a 

co n tro l fo r  the presence o f the dehydrogenase i t s e l f .

G lucose-6 -phosphate Dehydrogenase and. Isomerase A c tiv ity  During 

R .S . Development ■— This experiment was done with swarmers, a 12 hour 

R .S . c u ltu re , and a la rg e  synchronized R .S. cu ltu re , a l l  grown and 

harvested  as p rev iou sly  d escr ib ed . With the r e s is ta n t  sporangia! plants  

a sample o f the mat was used fo r  a dry weight determ ination and the  

remainder homogenized in  5 x 10 M phosphate b u ffer , pH 7*0* The 

swarmers were harvested and homogenized as usual in  the same b u ffe r .

One p ortion  o f the whole homogenate was centrifuged  fo r  30 minutes at 

22,000 x  g . and used fo r  p rote in  and n itrogen  determ inations (se e  la te r )  

A second 3 ml. portion  was d ia lyzed  against 2 l i t e r s  of the same bu ffer  

fo r  10 hours at 2° C. A fter d ia ly s is  the m aterial was q u a n tita tiv e ly  

recovered and d ilu te d  to  a volume of 10 ml. with b u ffer . The d ilu ted  

homogenate was cen trifu ged  at 500 x g . fo r  10 minutes and the p rote in  

concentration  o f the supernatant determ ined. The ra te  of the g lucose- 

6 -phosphate dehydrogenase rea c tio n  was measured by fo llo w in g  the  

red uction  of TPN at 3bO mp (Table XIV) . The quantity o f p rotein  added 

to  each cu vette  {.ca. O.Oii. to  0 .1  mg.) was adjusted to  y ie ld  ra tes  of 

red uction  that could be determined a ccu ra te ly , and which remained lin e a r



fo r  at le a s t  10 to 15 minutes . The changes in  the o p t ic a l d en sity  

\_0.D.) per 10 minutes ranged from 0.21+ to  0.81+ in  th e assay system  

u sed . No TPN red uction  was observed in  con tro ls without added sub­

s t r a t e ,  in d ic a tin g  that the d ia ly s is  had removed endogenous su b strates .

- TABLE XIV -

GLUCOSE -6-PHOSPHATE DEHYDROGENASE ACTIVITY DURING 
DEVELOPMENT OF R.S'. PLANT'S

Age in  
Hours

' Mg. Protein  Used 
in  Assay

Rate o f TPN Reduction as 
A 0 .D ./m in .a 

With 0-6-P With F-6-P

0 (Zoospores) 0.01+5 0 .051+ 0.028

12 0.102 0.020 0.013

21+ ■ 0.055 0.029 0.021+

'36 0 .056 0 .0I+5 0.031

1+8 0.01+8 0.01+1+ 0.031+

60 0.051 0.01+9 . 0.036

83 0.037 0 .0 7 0 0.01+6

C onditions: Each cu vette  contained 0 .6  m l. 10“ -̂M phosphate b u ffer , pH
7 .5 , 0 .1  m l. 10“ XM MgCl2, 0 .2  ml. 2 -5x 10“3M TPN, 0 .3  ml.
10“ -̂M F-6-P, or G-6-P, 0 .05  to  0..Q8 ml. enzyme, and water 
to  a f in a l  volume o f 3 .0  ml. The reaction  was sta rted  by 
the ad d ition  of the enzyme, and the O.D. read each minute, 
beginning at 2 m in., in  a Beckman Model DU spectrophotom eter 
at 3I4O mp. The blank cu vette  lacked substrate, and TPN.

®The ra te  was ca lcu la ted  fo r  the 3-6  min. in te r v a l (from 
p lo ts  o f O.D. v s .  tim e) because the rates o f reduction  w ith  
F-6-P, which d isp layed an i n i t i a l  la g , became lin e a r  and 
maximal a fte r  2 min.

The s p e c i f i c 'a c t iv i t i e s  obtained fo r  the p lants at each age are 

p lo tte d  in  Figure 16, and an expression  of the t o t a l  u n its  of dehydro­

genase a c t iv i ty  per plant as a fu nction  of age in  Figure lyA -B .
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From an exam ination o f the curves i t  appeared that F-6-P did gradually  

lo s e  some o f i t s  capacity  to  fu n ction  in  the coupled system . To th is  

e x te n t, i t  seemed to  confirm th e suggested lo s s  in  isom erase a c t iv i t y  

during development . However, i t  was evident from th e comparative data  

in  Table XIV th a t th e decrease in  isom erase a c t iv ity  could not adequately  

exp la in  a l l  th e change in  the capacity  o f G-6-P to  serve as a su b strate  

in  th e  syn th etase  r ea c tio n .

TABLE XV

THE. RELATIVE ACTIVITIES OF FRUCTOSE-6 -PHOSPHATE AND GLUC0SE-6-PH0SPHATE 
IN THE GLUCOSAMINE SYNTHETASE AND GLUC0SE-6-PH0SPHATE DEHYDROGENASE 

ENZYME SYSTEMS DURING R .S . DEVELOPMENT

Age o f (1) Ratio 'P~L" ~p A c tiv ity  
in  Synthetase

(2) Ratio y  £  -p A c tiv ity
. in  Dehydrogenase ^.2)-^l)P lants

(h ours) Reaction Reaction

0 (Zoospores) 0-73 0.52 -0 .21

12 0.37 . 0 .66 0.09

2h 0.7U 0 .81+ 0 .10

36 0.63 0.82 0 .19

U8 0.33 0.77 0.21+

60 0.33 0.7U 0.1+1

83 0.17 0.67 0 .30

The r a tio s  were the same fo r  both s p e c if ic  and t o t a l  a c t iv i t y .

I f  the isom erase were th e only lim itin g  fa c to r  in  the p a r tic ip a tio n  

o f g -6-P  in  the syn th etase  rea ctio n  the r a tio s  in  columas (1) and { 2 )  

should have been, o f the same order of magnitude. However, i t  was 

im m ediately obvious th at th is  was not the ca se . A p o ssib le  in terp re­

ta t io n  o f the anomalous behavior o f G-6-P w i l l  be d iscussed  la t e r .
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F igure

Figure

Figure

Figure

Figure

Figure

Figure

15* Total Glucosamine Synthetase per Unit Weight of Organism 
During F.. D. Development in  Super-optim al Bicarbonate 
Concent rat io n s .

_ 2
Bicarbonate concentration: 2.38 x 10 M. See Figure 13
fo r  c a lc u la t io n s .

1 6 . The S p e c if ic  A c tiv ity  o f G lucose-6 -phosphate Dehydrogenase 
in  R .S . P lants During Development.

S p e c if ic  A ctivity.; ra te  of TPN reduction/m g. protein  
(see  assay  procedure Table XIV).

17A-B. G lucose-6 -phosphate Dehydrogenase A c tiv ity  per P lant 
During R .S . Development.

One u n it o f dehydrogenase a c t iv ity :  the quantity  of enzyme
m ediating a A O.D. of O .l/m inute (see  assay procedure 
Table XIV ). The u n its  per plant were ca lcu la ted  by the  
procedure-described in  Figures 13 and lU* Figure 1JA', 
Dehydrogenase U n its,p er  P lan t. Figure 17Bj Log-Dehydro- 
genase Units per P la n t .

1 8 . The C h itin  Content per Unit Weight o f Organism During R .S. 
Development.

(See M aterials and Methods fo r  d e ta i l s )

1 9 . The C h itin  Content per Plant During R.S. Development.

jxg c h it in  -per mg. dry weight (F ig . 18) x mg. dry weight 
per plant (F ig . 11A ).

20 . The Melanin Content per Unit Weight of Organism During R .S. 
Development.

One u n it of melanin:- the quantity o f melanin y ie ld in g  an 
O.D. o f 0 .001  a t I4.5O mp (see co n te x t) .

21. The Melanin Content per Plant During R.S. Development.

Units melanin per gm. dry weight (F ig . 20) x gm. dry weight 
per plant (F ig . U A ) .
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C hitin  Formatio n  In Developing R .S .— Among other th in g s , the 

study o f glucosamine syn th etase  had been undertaken to  d etect any 

c o rr e la tio n s  between i t s  a c t iv i t y  and the free  glutamic acid  pools, 

and in d ir e c t ly  th ereby, the s i t e  of bicarbonate f ix a t io n  in  the c i t r i c  

acid  c y c le . With the synth etase inform ation a v a ila b le  i t  became 

d e s ira b le  to  examine th e other end o f th is  b io sy n th etic  pathway, namely 

the f in a l  product of the sequence, c h it in .  This could have accomplished 

two th in g s: ( 1 ) i t  might have brought out any co rre la tio n  between

th e ra te  o f  sy n th es is  of c h it in  and the a c t iv ity  o f the glucosamine 

sy n th eta se , and (2) i t  might have esta b lish ed  the pattern o f c h it in  

sy n th es is  during d if fe r e n t ia t io n .

The c h it in  analyses at sev era l stages during the growth period  

are shown in  Figure 18 . I t  i s  worth emphasizing th a t the b im odality of 

the curve (F ig . 18) com pletely disappeared when th e  data were converted  

to  a per-plant b a s is  (F ig . 1 9 ) t Previous mention was made of the fa c t  

th a t p lants grown in  e x c e ss iv e ly  high bicarbonate concentrations  

developed abnormally th ick  sporangial w a lls  ( c . f .  p . 6 1 ). To v e r ify  

th ese  observations q u a n tita t iv e ly , m aterial from such cu ltu res was 

analyzed fo r  c h it in  l ia b le  XVI). The r e su lts  revealed that the higher  

bicarbonate concen tration  caused a 73 to  87$ in crease  over the normal 

c h it in  content o f th e  p la n ts .

The c h a r a c te r is t ic  production of the th ick ,, ch itin ous w all in  R .S. 

plants was always accompanied by the d ep osition  of melanin in  th is  

str u c tu r e , and by increased fa t syn th esis  . Because o f th ese r e la t io n - 

sh ip s , a study of melanin and l ip id  production during R .S. form ation  

was undertaken.
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TABLE XVI

THE CHITIN CONTENT OF R .S. PLANTS GROWN IN MEDIA WITH 
DIFFERENT SODIUM BICARBONATE CONCENTRATIONS

Age o f  
Plants

NaHC03
Concentration

pg C hitin  per 
mg. Dry Weight

Appearance of 
Plants

5 days 8.93 x 10“ 3 M. 92.5 Normal

7 days 2 .38 x  10" 2 M. 160.3' Normal, and th ick -  
w alled

5 days 2 .38 x 10"' M. 172.9 Abnormal" arid very  
th ick -w alled

M elanogenesis During R .S. Ontogeny.— It had already been estab­

lish e d  (Cantino and H orenstein , 19£5c) th at the colored m aterial in  

th e  c e l l  w a lls  o f B la s to c la d ie lla  R.S. exh ib ited  the properties character­

i s t i c  o f  melanoid pigm ents. Therefore, the course o f melanogenesis 

during th e  growth o f the R .S. p lants was estab lish ed  (F ig s . 20 and 2 1 ). 

E ig h ty -s ix  percent of the melanin synthesized  was produced a fte r  growth 

in  s i z e  ceased ( i . e . ,  a f te r  36 h r .)  but the f in a l  y ie ld  o f melanin was 

reached a t the same age (60 h r .)  as was that fo r  c h it in .

L ibid Syn th esis During R .S. Development .— The in crease  in  the 

qu antity  o f l ip id  during growth was very obvious in  the l iv in g  t h a l l i  

m icro sco p ica lly , and in  thp homogenates of th ese plants as a surface  

la y er  a f te r  c en tr ifu g a tio n . In mature R .S. the l ip id s  appeared to  

co a lesce  in to  large  globu les ( c . f .  F ig . 9 , 83 h r . ) .  The analyses fo r  

t o t a l  l ip id s  -vF ig s . 22 and 2 3 ) do not include data fo r  the spore stage
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because i t  was im p ractica l to  c o l le c t  enough m aterial fo r  an accurate  

d eterm in ation . As w ith c h it in  and m elanin, a considerable proportion  

o f th e t o t a l  l ip id  was synth esized  a fte r  the cessa tio n  of growth in  

s i z e .

N itrogen Transformation in  Developing R .S. P lants .—S ig n if ic a n t

d iffe r e n c e s  had been found between the so lu b le  amino acid pools o f O.C.

and R .S . p lan ts ( c . f .  p . 3U) • A previous report (Oantino, L ovett, and

H oren stein , 1957) had a lso  ind icated  a considerable d ifferen ce  in  other

n itro g en -co n ta in in g  fr a c tio n s  between the two types o f p la n t . For th is

reason th e d is tr ib u t io n  o f n itrogen  pools was re-evaluated  at. d if fe r e n t
1

sta g es  during the development of R .S. plants (F ig s . 25, 26, and 2 7 ).

I t  was obvious that s ig n if ic a n t  changes were occurring in  the d is ­

tr ib u tio n  o f n itro g en  during growth, and th is  was nowhere more apparent 

than in  the so lu b le  non-protein  n itrogen . At 36 hours th is  fr a c tio n  

a c tu a lly  appeared to  exceed the so lu b le  p rotein  n itrogen , although i t  . 

ra p id ly  decreased aga in . The fa c t  th at th is  non-protein  fr a c tio n  

should have co n sisted  prim arily  of amino acids made a chromatographic 

survey o f the fr e e  pools of these'compounds im perative. The r e s u lt s  

(F ig . 28) revealed a s tr ik in g  co rre la tio n  between the le v e ls  o f so lu b le , 

non -protein  n itrogen  and the q u a n tit ie s  of ex tractab le  amino acids at 

d if fe r e n t  ages in  ontogeny. I t  should be noted th at in  add ition  to the

^By analyzing supernatants before and a fte r  TCA p r e c ip ita t io n  i t  
was a lso  p o ss ib le  to  check the accuracy of the TCA-turbidometric method 
used to  estim ate p r o te in s . The a n a ly sis  of d ia lyzed  and undialyzed ■ 
supernatants served to v e r ify  the data obtained by the TCA method and 
thus v e r if y  the so lu b le  p rotein  e s t im a tio n s . The correspondence of the 
curves fo r  p rotein  n itrogen  by a n a ly s is  and by c a lcu la tio n  from the TCA 
p rotein  determ inations i.Fi-g* 2 6 ) , showed the la t t e r  to be a s a t is fa c to r y  
method w ith B ia s to c la d ie l la  m a ter ia l.
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F igu re  22.

Figure 23 .

Figure 21*.

Figure 25-

Figure 26 .

Figure 2 7•

The Lipid Content per Unit Weight o f Organism During R .S. 
Developm ent.

The Lipid Content per Plant During R.S. Development.

Micrograms lip id/m g', dry weight (F ig . 22) x mg. dry w eigh t/ 
plant (F ig . 11A).

R e la tiv e  Enzymatic A c t iv it ie s  per Unit P rotein  Nitrogen  
During P. .S . Development.

R e la tiv e  a c t iv ity :  t o t a l  u n its  o f a c t iv i t y /p i  ant *7 t o t a l
pg so lu b le  p rotein  n itr o g e n /p la n t.

Log P lo ts  fo r  D is tr ib u tio n  of N itrogen per Plant During 
R. .S . Development.

See F ig . 27 .

The D is tr ib u tio n  of N itrogen per Unit Weight o f Organism 
During R .S. Development.

The t o t a l  so lu b le  n itrogen  (TSN) was determined on super­
natants. (see  c o n te x t) . Two methods were used to  estim ate  
the so lu b le  p rote in  n itrogen  (SPN) and so lu b le  non-protein  
n itro g en  (SNPN): (1) the supernatants were treated  w ith
2 .%% TCA, the TCA-soluble n itrogen  determined (SNPN), and 
the SPN obtained by d ifferen ce  (TSN-SNPN)j (2) the super­
natants were d ia lyzed  ex h a u stiv e ly , and non-d ialyzab le  
p rote in  n itrogen  determined (SPN), and the SNPN obtained  
by d iffe re n c e  (TSN-SPN). The p g  n itrogen  per mg. dry weight 
was obtained by d iv id in g  the t o t a l  quantity  in  each fr a c tio n  
by the mg. dry weight used fo r  hom ogenization. The data  
obtained by the two'methods (two separate experim ents) were 
averaged fo r  the curves in  the f ig u r e . The ca lcu la ted  
p rote in  n itrogen  was obtained by assuming a n itrogen content 
of 16$ fo r  th e proteins estim ated by the TCA-turbidometric 
method.

The D is tr ib u tio n  o f N itrogen per Plant During R.. S.' 
Development .•

The pg TN, SPN, or SNPN per plant were obtained from: pg
TN, SPN, or SNPN/mg. dry weight ;F ig . 26) x mg. dry w eight/ 
plant (F ig . 11A ).
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Figure 28 . The S o lu b le  Amino Acids of R.S.  P lants During Development.

The zoospore chromatogram was prepared with an extract of 
c a . 3 ,U2 mg. dry w eight of spores; the 12 to  83 hour plant 
chromatograms, an extract o f 3 mg. dry weight . Chroma­
tography was carried  out in  the long d ir e c t io n  with phenol- 
■ w ater, in  the short d ir e c t io n  w ith butanol-propionic acid - 
w ater, and the amino acids d etected  w ith ninhydrin.
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general changes in  th e to t a l  amino acid l e v e l s ,  cer ta in  in d iv id u a l 

compounds increased  or decreased d i f f e r e n t ia l ly .  In p a r ticu la r , the 

fo llo w in g  should be mentioned: (1) the r e la t iv e ly  high pools of both

alan ine and glutamate throughoutj (2) the appearance of asparagine at 

83 hours; and (3 ) the sharp r is e  in  the glutamate pool at 83 hours.

In sh o r t , a considerab le  reorgan ization  of the pathways lead in g  to  and 

from th e so lu b le  n itrogen  pools must have occurred during the d i f ­

fe r e n t ia t io n  process .
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DISCUSSION

r̂ -e Glucosamine-6 -phosphate Syn thesiz in g  Enzyme in  B la s to c la d ie lla' 111 "* 1 ' * — ■ ■ ' —" ■ ■   ■ -   - - r l r~ ~ T̂ ~. - r~~

As a r e s u lt  o f p u r if ic a tio n  stu d ies  i t  was esta b lish ed  th a t the 

GA.-6-P sy n th es iz in g  enzyme in  B la s to c la d ie lla  was very s im ila r  to  the  

glutam ine-F-6-P transamidase of Neurospora. However, the somewhat 

anomalous r e s u lt s  obtained in  i t s  pH curve merit fu rth er  comment 

( c . f .  F i g .  5 ) .  At f i r s t  glance i t  might be presumed th a t the r e la t iv e  

in crea se  in  a c t iv i t y  w ith G-6-.P a t high pH, i t s  decrease at low pH, 

was due to  th e presence o f th e phosphoglucose isom erase. The la t t e r ,  

whose pH optimum is  around 9 .0 , lo se s  b e tter  than 90$ of i t s  a c t iv i t y  

at pH 5»0 i^Slein, 1955)* The weak a c t iv ity  of the isomerase would 

indeed by expected to  decrease the o v e r a ll rate o f low pH, and by the 

same token , i t  would exp la in  the s l ig h t  increase in  a c t iv i t y  w ith F-6-P  

a t the same pH, i . e . ,  l i t t l e  would be removed by isom erization  to  G-6-P. 

At pH 8.5> however, the G-6-P a c t iv i ty  exceeds that w ith  F-6-P 'as the 

su b stra te  and th is  could hardly be due to  isomerase a lone. In reaction  

m ixtures in  which only F-6-P was present at the s ta r t ,  the concentration  

of th e  fru c to se  isomer would always be higher than in  those where i t  

was being produced from 0-6-P  v ia  the isom erase.

S in ce -th e  u n fractionated  supernatant was used in  th ese  experim ents, 

i t  appears p o ss ib le  th at a second enzyme system in  the crude homogenate 

u t i l i z e d  G-6-P in  the same manner as the l iv e r  enzyme described by 

P o g e ll and Gryder.(1 9 ^ J) • The capacity  of G-6-P to  e lu te  enzymatic 

a c t iv i t y  from the g e l preparations ( in  th is  respect even superior to
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the sy n th e tic  F-6-P contain ing no G-6-P) provides some support fo r  the  

id ea  o f a second enzyme. The fa c t  that the capacity  o f G-6-P to promote 

the r ea c tio n  decreases during R.S.  development, and. th a t th is  cannot 

be explained  by decreased isom erase action  a lso  suggests a second 

pathway to  GA-6-P v ia  th is  sugar. Only sep aration  of the two ( i f  there  

are two) -types o f a c t iv i t y  from each oth er, and from th e isom erase, w i l l  

remove the problem from the area of sp ecu la tion  where i t  now r ests  

s e c u r e ly .

Growth vs . D if fe r e n t ia t io n  in  B la sto c1a d ie l1a

The Point o f No Return.— The.photographic record and the l in e a r ity  

o f the logarith m ic  growth curves during the f i r s t  30 hours su ggest, 

f i r s t ,  th at the p lants are reasonably w e ll synchronized and, second, 

th a t the ra te  o f growth i s  constant during th is  period . Up to  the age 

o f 30 hours the plants appear id e n t ic a l w ith 0 .C . t h a l l i  at a comparable 

sta g e  in  th e ir  generation tim e . The f i r s t  m orphological in d ica tio n  of 

development toward R.S.  p lants can be seen ( c . f .  F ig . 9 , 30 h r . )  as 

an accumulation of cytoplasm ic m aterial in  the term inal portion  of the 

t h a l lu s , i . e . ,  th e  region  destined  to become the r e s is ta n t sporangium.

Although the logarithm ic curves fo r  the parameters investigated"  

during th is  study are not a l l  p r e c ise ly  lin e a r  for  the period from 0 

to  30 hours, th e  average ra tes ( i . e . ,  s lo p es) are a c tu a lly  qu ite  s im ila r  

to  th ose  fo r  the dry weight and volume in c r ea se s . Thus, in  s p ite  o f  

some s l ig h t  d iffe re n c e s  in  the rates fo r  in d iv id u a l parameters at d i f ­

ferent' periods, th is  made i t  d i f f i c u l t  to d etect any e f fe c t s  a ssoc ia ted
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w ith d if f e r e n t ia t io n  rather than growth per s e . For example, the maximal 

ra te  fo r  c h it in  d ep o sitio n  per plant occurs from 0 to  12 hours, th at fo r  

glucosamine syn th etase  and glucose-6-phosphate dehydrogenase a c t iv i t y  

as w e l l  as sy n th es is  of non-protein  so lu b le  n itrogen  ^SNPN) and so lu b le  

p rotein  n itrogen  (SPN), between 12. and 2 k  hours, and that fo r  melanin 

d ep o s itio n  from 2 k  to  36 hours . But, ir r e sp e c t iv e  of th ese s l ig h t  

changes, th e  q u a n tit ie s  and a c t iv i t i e s  per plant of each of the above, 

as w e ll  as t o t a l  n itrogen  (TN), l ip id ,  e t c . ,  increases s te a d ily  during 

the period o f lin e a r  growth.

The. ca p a c ity  of such p lants to revert to an O.C. type when they are 

removed from th e b icarbonate, provided they are not more than _ca. 36 

hours o ld , proves that no ir r e v e r s ib le  changes e s s e n t ia l  to  the stru ctu re  

and fu n ction  o f an R.S.  plant have occurred up to  th at s ta g e . By the  

same token , i t  can be assumed that' any changes occurring th erea fter  are 

d e f in i t e ly  a sso c ia ted  w ith  R.S.  d if fe r e n t ia t io n . Whatever th e s p e c if ic  

processes may be which cause form ation o f the septum and cessa tio n  of 

growth, th ey  have a profound e f fe c t  upon the whole c e l l  which appears 

to reach i t s  climax at 36 hours-.

On to g en etic  Changes on a Per Plant B asis .--The value of expressing  

data  in  terms o f the in d iv id u a l plant cannot be overemphasized when 

con sid erin g  th e  problem of growth v s .  d if fe r e n t ia t io n , This approach 

has been found u se fu l in  studying the development o f such d iverse  

organisms as amoebae (P resco tt , 1955), and higher p lants ^Brown and 

Robinson, 1955)- In B la s to c la d ie l la , the a c t iv ity  o f glucosamine
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syn th etase  per gram dry weight reaches a maximum at approximately 2l± 

hou rs, y e t  the a c t iv i t y  per u n it protein  f a i l s  to  reach i t s  peak u n t i l  

about I48 h ou rs. However, i t  can be. seen that the to ta l  a c t iv ity  per 

plant a tta in s  i t s  apex at 36 hours, then d ec lin es  ( c . f .  F ig s . 1 2 - lU ) .

Two important conclusions can be drawn from th ese fa c ts :  1) the 2.U hour

peak,J per u n it  dry w e ig h t, r e su lts  from a more rapid syn th esis  o f the  

enzyme than o f other p rotein  co n stitu en ts  ( c . f .  lo g  p lot in  F ig . 1 )|B 

fo r  increased  slope),* 2) the increased s p e c if ic  a c t iv i t y  r e f le c t s  a 

decrease in  other so lu b le  (enzymatic ?) proteins a fte r  36 hours, rather  

than a n et sy n th es is  of glucosamine syn th eta se . This observation  i s  

important because i t  leads to  the conclusion, th at the reten tio n  o f th is  

enzyme is  required fo r  the continued syn th esis  of c h it  in  in  the R.S.  

a fte r  36 hours. The synthetase reaches i t s  maximum quantity  per c e l l  

at th e sta g e  when approximately S0% o f the t o t a l  c h it in  is  s t i l l  to  be 

formed.

The behavior of the synthetase when G-6-P i s  used as substrate  is  

more d i f f i c u l t  to  in te r p r e t . The peak in  s p e c if ic  a c t iv i t y  a t '2.1 to 22 

hours may mirror the h ig h est l e v e l  o f isomerase a c t iv ity  reached at 

th is  age ( c . f  . F ig . 2U) • On both per weight and per plant b ases, 

maximum sy n th esis  o f GA-6-P from G-6-P occurs at the same age as does 

th a t from F-6-P . The p o s s ib i l i t y  th at the decrease in  G-6-P u t i l iz a t io n  

r e la t iv e  to  F-6-P a f te r  36 hours was due to  the d ec lin in g  a c t iv i ty  of  

a second 0-6-P  s p e c if ic  enzyme has already been mentioned. There i s ,  

p resen t, in s u f f ic ie n t  inform ation to  warrant a d e f in it iv e  explanation  

o f th is  phenomenon.
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I t  .is in te r e s t in g  to  note that w hile both c h it  in  content ( c . f .

Table XVI) and maximal s p e c if ic  a c t iv i t y  (1.29 jaM/mg. p rotein /20  min.) * 

o f the syn th etase  in creases when plants are grown in  the h igher  

bicarbonate concentration* the amount of enzyme per gram dry weight 

does n o t . Although p er-p i ant data were not obtained fo r  th is  p a rticu la r  

phase o f the work, i t  can be in ferred  th a t the changes are the r e su lt  

o f  increased  u t i l i z a t io n  by p r e fe re n tia l d iv ersio n  of su b stra tes through 

th a t  sy n th e tic  pathway.

The le v e l in g  o f f  o f the TPN -specific g lu co se-6 -phosphate dehydro­

genase a c t iv i t y  at 3.6 hours, follow ed by a f a ir ly  large  in crease  again  

a fte r  60 hours, im p lies that during R.S.  d if fe r e n t ia t io n  th is  system  

takes on added s ig n if ic a n c e  in  c e llu la r  energy metabolism or the pro­

du ction  o f e s s e n t ia l  m etab olites . Both TPN-specific glucose-6-phosphate  

dehydrogenase and 6 -phosphogluconic dehydrogenase a c t iv i t y  are present 

in  mature 0 .C . p lan ts (Cantino and H orenstein , 1939) which have an 

endogenous Qq  ̂ o f a6out 10 to  30 (McCurdy, 1959) • On th e other hand, 

th e  s h i f t  toward a ty p ic a l ly  o x id a tive  pathway during d if fe r e n t ia t io n  

o f R.S.  p la n ts , suggested by the increase in  glucose-6-phosphaie  

dehydrogenase, i s  somewhat d i f f i c u l t  to reco n c ile  with the g rea tly  

reduced Qo_ ( 0 . 1 )  -of the mature R.S.  plant (Cantino, L ovett, and 

H oren stein , 1957)* The lack o f cytochrome oxidase in  mature R.S.  p lants  

(Cantino and H orenstein , 1955) precludes the use of reduced TPN v ia  a 

term inal ox id ase . Presumably i t  would a lso  not be involved in  the 

polyphenol oxidase system (which can be coupled to  TPN s p e c if ic  

red u ction sj Cantino and H orenstein , 1955) sin ce no net syn th esis  of
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m elanin occurs a lt e r  60 hou rs. However, one obvious p o s s ib i l i t y  would 

be i t s  coupling w ith the red u ctive  carboxylation  of a -k e to g lu ta r a te .

The a c tu a l amount o f reduced TPN produced in  the maturing R.S.  p lants 

and the extent of i t s  u t i l i z a t io n  in  sy n th etic  reaction s during ontogeny 

are at present unknown, but i t  would be an in te r e s t in g  area fo r  fu ture  

inves t  i  gat i  on .

The bimodal aspect of the r e la tio n sh ip  between age o f t h a l l i  and 

t h e ir  c h it in  content ( c . f .  Fi g.  18) apparently r e su lts  from a higher  

ra te  o f c h it in  sy n th e s is , as compared to  other c e l l  c o n stitu en ts , during 

th e  f i r s t  12 hours ( c . f .  ra tes in  F ig . 19)* E xactly the opposite  

r e la t io n sh ip  occurs' during the period from 12 to  36 hours. Yet, i t  

became a sim ple matter to  in terp ret th is  apparently anomalous- behavior 

when it- was found th a t most o f the other parameters of growth increase  

most s tr ik in g ly  ( c . f .  lo g  p lo ts )  from 12 to 30 hours w hile the rate of 

c h it in  sy n th es is  a c tu a lly  d e c re a ses .

C hitin  d ep o sitio n  l i e s  at the opposite end of the b io sy n th etic  

sequence which begins w ith the glucosamine synthetase reaction j at 

f i r s t  g lan ce, c h it in  syn th esis  might be expected to  mimic the changes 

in  a c t iv i t y  o f the sy n th eta se . However, Changes in  any o f the in te r ­

m ediate step s cou ld , and probably do, a lte r  th is  r e la t io n sh ip .

Furthermore, i t  i s  obvious th a t the rate o f c h it in  sy n th esis  would a lso  

be dependent upon the a v a i la b i l i ty  of hexose-phosphates and com petition  

by other systems requ iring  the same su b str a te s . Such an in terp re ta tio n  

may be invoked to  exp la in  the discrepancy between the maximal ra tes  

fo r  c h it in  accumulation from 0 to  12 hours, and fo r  glucosamine synth etase
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from 12 to  21; hours . These r e su lts  make i t  m an ifestly  c lea r  that the 

s p e c i f ic  a c t iv i t y  o f an enzyme per se only in d ic a te s  i t s  p o ten tia l and 

cannot y ie ld  more than a p a r t ia l  understanding o f the actual rate of 

the r ea c tio n  in  v iv o . In fa c t  the d if fe r e n t methods o f d efin in g  

s p e c i f ic  a c t iv i t y ,  e . g . ,  on th e bases o f dry w eight, n itrogen , p rote in , 

e t c . ,  o ften  serve to  confuse rather than c la r i fy  the s itu a t io n .

But, notw ithstanding the d i f f i c u l t i e s  in  in terp re tin g  i t s  enzymo- 

lo g ic a l  b a s is , i t  should be noted in  conclusion  th a t w hile  c h it in  

accum ulation accounts fo r  approxim ately. 21$ o f the increase in  dry 

weight a f te r  36 hours, i t  contribu tes only about 11$ to the f in a l  dry 

weight o f  the in d iv id u a l mature plant .

The sy n th es is  o f  l ip id  e x a c tly  p a r a lle ls  the increase in  dry weight 

"(logarithm ic p lo ts )  and reaches i t s  maximum quantity  at I48 hours ( c . f .  

F ig . 23) .  It i s  again in te r e s t in g  to  observe th a t l ip id  syn th esis  

alone accounts f o r .21;$ o f the increase  in  dry weight from 36  to  I 4 . 8  

h o u rs , and con trib u tes almost 20$ of th e weight at th is  age. The sub­

sequent decrease in  fa t  from Ij.8 to  83 hours accounts fo r  50$ of the 

decrease in dry weight which occurs during th is  in te r v a l. The s i g n i f i ­

cance o f  the change is  unknown, but i t  i s  p ossib le  th at i t  i s  re­

u t i l i z e d  fo r  sy n th etic  p rocesses, or perhaps converted to  forms not 

r e a d ily  e x tr a c ta b le . The decrease is  correlated  w ith the appearance, 

by 83 hours, o f the f a i r ly  la r g e , d is t in c t  " lip id ic  globules'* character­

i s t i c  o f  the cytnplasm of mature R.S.  (F ig . ? , 83 h r . ) .  In any event, 

c h it in  and l ip id  togeth er make up almost one-third o f the to t a l  dry 

m ateria l in  mature p la n ts . The magnitude of the fa t  accumulation leads
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■to the su p p osition  th a t th is  i s  fo r  the ’’purpose’’ o f e f f ic ie n t  energy 

storage s in c e  R .S . can remain v ia b le  for  sev era l years (Cantino, unpub­

l i s h e d )  .

The d isru p tio n  o f the c i t r i c  acid cycle  by bicarbonate (Cantino 

and H yatt, 1953c) provides a p o ssib le  explanation  fo r  the induction  of 

increased  fa t  sy n th esis  in  the developing R .S. p la n t. I f  a c e ty l-  

coenzyme-A was unable to  enter the c y c le  by way o f the condensing 

enzyme system , i t s  accumulation could lead to  the increased sy n th esis  

o f f a t t y  acids v ia  the conventional pathway. The synthesis' o f over 90% 

o f the f a t t y  acid  carbon from aceta te  has been shown by O ttke, e t  a l .

(195 l)  1 fo r  Neurospora, and fo r  yeast by "White and Werkman (19U7) • Of 

even greater in te r e s t  are the reports of bicarbonate- and reduced TPN- 

dependent systems fo r  the syn th esis  o f ' long chain fa t t y  acids from 

acetyl-coenzym e-A  in  pigeon l iv e r  (Gibson, T itchener, and W akil, 1958) 

and avocado (S q u ires, Stumpf, and Schmidt, 1958). The in tr ig u in g  

p o s s ib i l i t i e s  o f such a sy n th esis  in  r e la t io n  to the bicarbonate e f fe c t  

in  B la s to c la d ie l la  are obvious, p a r tic u la r ly  in  view of th e  bu ild -up  

o f an a c tiv e  zwischenferment  which could provide the necessary pool of 

reduced TPN in  the developing R .S. -

The sy n th esis  o f y -ca ro ten e  i s  c h a r a c ter is t ic  of the R.S. s in ce  

i t s  presence cannot be d etected  in  the normal mature 0 .C. plants 

(Cantino and H orenstein , 1956). The fu nction  of th is  pigment i s  un­

known although i t  i s  produced by a very few ( le s s  than 2%) th in -w alled  

plan ts o f B la s t o c la d ie l la , and occurs in  the male gametes of the c lo s e ly  

r e la ted  genus A llom yces♦ Although the time course fo r  ^ -carotene
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in sp e c tio n  to  roughly p a r a lle l the increase in  l ip id  during growth of 

P. .S . p la n ts . The form ation o f carotene in  Mucor heim alis in vo lves  

th e  u t i l i z a t io n  o f aceta te  carbon (Grob and B u tler , 19£6 ) .  This pre­

sumably • occurs v ia  the form ation o f mevalonic or d im ethylacrylic  acid  

from acetyl-coenzym e-A , follow ed by polym erization in to  larger is o -  

pre.no id  u n its  . Such a sy n th etic  sequence in  B la s  toe lad i e l l a  could be 

favored by the backing up of a c e ta te , or acetyl-coenzym e-A, in  the same 

fa sh io n  as was suggested fo r  induced fa t  production. Evidence th at th is  

may be so stems from the observations (Cantino and H yatt, ■ 1953b) th at  

a mutant o f B la s to c la d ie l la  w ith a le s io n  in  the Krebs cy cle  accumulates 

la rg e  q u a n tit ie s  o f V -c a ro ten e .

A fu n c tio n a l polyphenol oxidase system in  mature R .S . plants and 

i t s  coupling  (e s ta b lish ed  in  v i t r o ) w ith the reductive carboxylation  of 

a -k e to g lu ta ra te  h a s 'been described by Cantino and H orenstein (1955)*

Tn th e present study i t  was determined that the in  vivo d ep o sitio n  of  

melanin occurs most rap id ly  during the period from 2k  to  36 hours, but 

the age at which th e polyphenol oxidase f i r s t  appears is  s t i l l  unknown.

Nitrogen Metabolism and D if fe r e n t ia t io n .—The increase in  t o t a l  

n itro g en  per plant (as a logarithm ic fu n ction ) c lo s e ly  p a r a lle ls  th a t  

fo r  i t s  dry w eight ( c . f .  F ig s . 25 and 1.1). On the other hand, a 

decrease in  so lu b le  n itrogen  and an in crease  in  to t a l  n itrogen  per u n it  

dry weight occurs during the f i r s t  12 hours of growth. The d ifferen ce  

between the so lu b le  and t o t a l  q u a n tit ie s  in  swarmers (c a . 25 Jig./mg- 

dry w eight) i s  o f  the same order of magnitude as the n u cle ic  acid
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n itro g en  at th is  stage  [ Turian and Cantino, i 960 ) .  Before the swarmers 

germ inate, th ese  n u c le ic , acids are assoc ia ted  almost e n t ir e ly  with two 

d is t in c t  s tru c tu ra l u n its ,  the nucleus (DNA), and the nuclear cap vE-NA) 

which would be expected to  sediment w ith  the c e l lu la r  debris upon 

c e n tr ifu g a t io n .

During the f i r s t  12 hours o f growth, the increase in  to t a l  n itrogen  

i s  la r g e ly  due to c h it in  sy n th e s is . On the other hand, the apparent 

decrease in  so lu b le  prote in  per m illigram  dry weight during th is  period  

may be an a r t ifa c t  due to the incorporation o f protein  in to  the rap id ly  

expanding w all and rh izo id a l system of the young p la n ts . P lants homogen­

ized  at 12 hours do not fragment but merely crack open to  r e lea se  th e ir  

p r o to p la sts . The shapes o f the sporangia and rh izoids remain remark­

ably .in ta c t  and i t  i s  p ossib le  th a t the proteins in  the rh izo id s and 

some o f th ose  :in or on the sporangial w all were not recovered.

A decrease in  the fr e e  amino acid  pools a lso  occurs in  th e f i r s t  

few hours and i t  i s  assumed th a t th is  r e su lts  from both u i t l iz a t io n  

and d ilu t io n  due to rapid growth. A most S trik in g  phenomenon i s  the 

rapid in crease  in  the so lu b le  non-protein  n itrogen  (SNPN) between 2 k  

and 36 hours ( c . f .  F ig s . 26 and 2 7 ) . The corresponding in crease  in  

th e  fr e e  amino acids demonstrates th a t the r ise  is  la r g e ly  due to  

changes in  th ese  p o o ls . On a dry weight b a s is , the SNPN doubles during 

th is  in te r v a l w hile the so lu b le  p rote in  n itrogen  (SPN ) d ecreases.

lThe swarmers contained ca . 203 to  287 pg- to t a l  n u cle ic  acid/m g. 
dry w eight.. I f a n itrogen  content o f  16$' is- assumed fo r  B la s to c la d ie lla  
n u c le ic  acid   ̂based on yeast d a ta ), the above quantity of. n u c le ic  acid  
would con tr ib u te  ca . 32 to  U6 pg nitrogen/m g. dry weight .
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Once again , however, the changes are more e a s i ly  understood when con­

sid ered  on a per p lant b a sis  . This approaoh revea ls  that a d if f e r e n t ia l  

in crease  in  amino acid s v s .  protein  occurs, the process reaching i t s  

clim ax a t 36 hou rs. At th is  stage  the SNPN exceeds the SPN by about 

3 b  to  35$* and the two togeth er comprise a l l  but a small fr a c tio n  ( 6%) 

o f the .to t a l  non-ch itin ous n itrogen  o f the p la n t.

The large  change in  the free  amino acid pools could, o f course, 

r e su lt  from uptake o f n itrogen  from the medium, the breakdown and 

reorgan iza tion  o f p ro te in s , or both. That the two processes may be 

involved  i s  s tro n g ly  suggested by the r e su lts  o f e lec tro p h o retic  stu d ies  

(C antino, L ovett, and H orenstein , 1937); three out o f four so lu b le  

p ro te in  fr a c tio n s  in  O.C. plants were absent in  R .S. p la n ts , w h ile  the  

l a t t e r  contained a so lu b le  protein  not found in  O.C. p la n ts . The re­

v e r s i b i l i t y  o f the system up to  approximately 36 hours would suggest 

th a t th ese  changes must occur e ith er  during (or a fte r )  th is  tim e, or 

they must be e a s i ly  and rap id ly  r e v e r s ib le .

fa i lu r e  to d etec t an increase in  the so lu b le  proteins from 36  to

H8 h ou rs, concomitant w ith the $0% decrease in  SNPN, c le a r ly  im plies

conversion o f the la t t e r  to  c h it in , in so lu b le  p rotein , and/or purines
*

and pyrim idines and n u c le ic  a c id s . Although in s u f f ic ie n t  data are 

a v a ila b le , cer ta in  general conclusions can be drawn concerning the fa te  

of th is  fra ctio n *  At the very most, the increase in  c h it in  during th is  

period could only account fo r  26% of the decrease in  SNPN. Also during 

the same tim e in te r v a l,  the increase in to ta l n itrogen i s  1 .U tim es the 

decrease in  SNPN, in d ica tin g  that n itrogen  uptake i s  s t i l l  occurring.



100

This ob v ia tes any necessary co rre la tio n  between the increase in  c h it in  

and th e  decrease in the SNPN p o o ls . It does, however, mean that these  

so lu b le  pools are being u t i l iz e d  more rapid ly-than  they are being  

rep len ished  .

F in a lly , con sid eration  of the u ltim ate fu n ction  of a mature R.S. 

perm its an educated guess concerning the form of the in so lu b le , non- 

ch itin o u s n itrogen  compounds produced during the 36 to I48 hour period. 

The R .S. plant even tu a lly  uses e s s e n t ia l ly  a l l  o f i t s  protoplasm ic 

contents to produce m otile  swarmers. I f  the in so lu b le , non-chitinous 

n itrogen  i s  ca lcu la ted  as the equivalent amount o f n u cle ic  acid per 

m illigram  dry weight of protoplasm (see  footnote on p. 98 ) ,  a value o f  

about 200 pg i s  ob ta in ed . This i s  ex a ctly  the order of magnitude actu­

a l ly  obtained by a n a ly sis  of swarmers, a remarkable co rre la tio n  indeed I 

Thus, the dat a suggest th a t a considerable proportion of the. SNPN i s  

used fo r  the sy n th esis  o f n u cle ic  a c id s .

The subject matter ju st  d iscussed  provides some explanation of the  

changes in  the o v e ra ll le v e l  o f the fr e e  amino acid pool during the 

growth and d if fe r e n t ia t io n  o f an R.S. p la n t. It is  more d i f f ic u l t  to  

a scr ib e  a ro le  to  the changes which p a rticu lar  amino acids undergo.

The almost complete disappearance of tyrosin e  v.an estab lish ed  substrate  

fo r  the polyphenol oxidase in  B la s to c la d ie l la ) aft er 36 . hours, may w ell 

be due to i t s  rapid oxidation  fo r  melanin sy n th es is . The r e la t iv e ly  

la rg e  a la n in e , and sm all glutam ate, pools at U8 hours correspond to  the  

peaks in  both i s o c i t r i t a s e  and g lyoxa la te-a lan in e  transaminase, a c t iv i -  

t i e s  which occur at the same tim e (McCurdy, 1959). and which are known
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to  provide a p o ten tia l pool of g lycin e  fo r  b io sy n th esis  in  B la s t o c la d ie l la . 

th is  i s  c o n sisten t w ith the -notion proposed above that n u c le ic  acid 

sy n th e s is , and th erefore  purine and pyrimidine sy n th e s is , occur a fter  

36 hours. Glutamate could play a tw o-fold  -role in  the system: f i r s t ,

as the source o f th e alan ine amino group by transam ination with pyruvate 

(McCurdy, 1999).; and second, by amidation, as the source o f th e glutamine 

required fo r  purine sy n th e s is . A spartic ac id , which a lso  decreases 

sharply a f te r  36  hours, is  involved in  the syn th esis  of both purines 

and pyrim idines in other organisms and might play a s im ila r  ro le  in  

B la s t o c la d ie l la .

The disproport ionate increase in  the glutamate pool at 83 hours is  

in te r e s t in g  bu t, for the time being, in e x p lic a b le . I t  i s  of course 

p o ss ib le  that, the increase is  an in d ica tio n  of i t s  act iv i t y  in  various 

transam inations, i . e . ,  that i t  serves as a nitrogen b o tt le  neck or 

funnel fo r  n itrogen  transform ations, and that i t  increases in  concen­

tr a t io n  when no longer a c t iv e ly  u t i l i z e d .  A rather unique ro le  fo r  

glutamate in  B la s to c la d ie lla  was e a r lie r  suggested by the fact th at i t  

was the only amino acid able to serve as the primary source of n itrogen  

in  a sy n th etic  medium (Barner and Cantino, 1992). The in  vivo syn th esis  

o f  glutamate from glucose-U -C 14 without apparent m ediation of the c i t r i c  

acid c y c le , and i t s  slow e q u ilib ra tio n  with a -k etog lu tara te  (Cantino 

and H orenstein , 1996) a lso  suggest th at th is  amino acid  d isp lays unusual 

behavior in  B la s t o c la d ie l la .

General Conclusions .— The process o f  R. 3 . development can be 

summarized as fo llo w s: T h e-first observable e ffe c t  o f the bicarbonate
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inducing agent i s  a reduced growth r a te , presumably by a d isru p tion  of  

the. o x id a tiv e  metabolism o f the c i t r ic  acid cycle  and i t s  associated  

cytochrome system . With th is  exception no other changes are detected  

u n t i l  2lj. to  36 hours a fter  spore germ ination. At about 30 hours the 

m orphologically  d istin g u ish a b le  migration of' cytoplasm toward the s i t e  

of the fu tu re sporangium occu rs. This i s  follow ed by changes in  enzyme 

sy n th es is  and other c e llu la r  processes in d ica tin g  a fundamental re­

organ isa tion  w ith in  the c e l l .  The culm ination of th ese  processes by 

c a . 36 hours i s  accompanied by the ir r e v e r s ib le  commission of th e plant 

toward R .S. form ation. Follow ing th is  s ta g e , a period best described  

as the maturation phase ensues, during which further changes in  enzymes 

and storage products occur. The resu lt is . the round, melanin-pigmented, 

th ick -w a lle d , l ip id -  and Y -carotin e-con ta in in g  R .S ., lack ing cytochrome 

oxidase as w ell as most o f the c i t r ic  acid cycle  enzymes, and d isp la y ­

ing a very low resp ira tory  a c t iv i t y .  This structure surmounts an 

e s s e n t ia l ly  empty-and l i f e l e s s  lower s ta lk .

As might perhaps be expected, each new b it  of inform ation gained 

in  a study of th is  kind ra ise s  more new questions than i t  answers o ld . 

However, 'at each stage  o f our accumulating knowledge we are in  a p o s itio n  

to  frame th ese  questions w ith in creasin g  so p h is tic a tio n  and p r e c is io n .

Probably th e  most fundamental question posed by our present knowl­

edge i s  th e  foIT owing: s in ce  .it is  known that the process lead in g  to

R .S. form ation becomes in crea s in g ly  ir r e v e r s ib le  from- about 2h to  36 

hours, what system or systems are resp o n sib le , how are they formed, and 

at what stage  do they begin to  evolve toward th is  condition? Xt w i l l
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o b v iou sly  be im possib le to  com pletely answer th is  question for some 

tim e, but i t  i s  in s tr u c tiv e  to consider the p o ssib le  mechanisms by 

which such a s itu a t io n  may come to e x ist  .

Weiss (19U9) has suggested that a c e l l  could be considered s t a t i s ­

t i c a l l y  in  terms of the '"ecology o f an organized m olecular p op u la tion ,” 

w ith a l l  the in tera c tio n s  and interdependencies which the term ecology  

im p lies  . I f  such a concept is  accepted, growth could be defined in  

W eiss5 s terms ”as the in crease in  the s iz e  of a given population without 

e s s e n t ia l  change in character ' ' ; and, '" d ifferen tia tion , as a progressive  

change in  the com position of the m olecular population includ ing the 

appearance o f new, and th e disappearance of o ld , sp ecies  Such a 

d e f in it io n  n e c e s sa r ily  im plies that any morphological changes must be 

preceded by d if fe r e n t ia t io n  at the molecular l e v e l .

In the in stan ce  o f B la s to c la d ie lla  the f i r s t  m orphologically  

d e te c ta b le  d if fe r e n t ia t io n  i s  the cytoplasm ic m igration at 30 hours.

I t  must be assumed that some m olecular changes had already occurred 

previous to  th at time . The only obviously  new parameter so fa r  de­

monstrable before 30 hours i s  a s l ig h t  amount of melanin syn th esis  

beginning at about 21; hours. However, it  i s  known th at th is  process 

can be uncoupled from P..S. d if fe r e n t ia t io n  without otherwise e s s e n t ia l ly  

a lte r in g  i t s  progress (Cantino, 1953)- T en ta tive ly , th ere fo re , i t  can 

be presumed that i t  i s  n o t, o f  i t s e l f ,  important in  causing the plant 

to  d i f f e r e n t ia t e .  The fact, th at melano genes is  i s ,  n ev erth e less , a 

ch a ra cter is t ic  o f the P, .3 * developmental sequence, leads to  the conclu—

2 ion that i t s  in i t ia t io n  must resu lt from even e a r lie r  submicroscopic
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events . thus i t  can be s ta ted  with reasonable cer ta in ty  that some 

change, dr changes, involved in  P .S . d if fe r e n t ia t io n  must occur before  

2U hours o f age, although no time lim it  can be placed as to the e a r l ie s t  

a lt  erat io n .

Having at le a s t  narrowed down the l im it s ,  our a tten tio n  can be 

addressed to the f i r s t  part o f the question concerning the systems in ­

volved and how they came to  e x i s t .  With the lim ited  knowledge at our 

d isp o sa l th is  can, at b e s t , only be done in  very general term s.

At le a s t  one primary e f fe c t  of bicarbonate has already been d escribed , 

i . e . ,  the operation o f the SKI cy cle  and'disruption of the normal c i t r i c  

acid  c y c le . How, then , can th is  lead  to the d if fe r e n t ia t io n  o f an R.S. 

plant? " E ssen tia lly  two p o s s ib i l i t i e s  e x is t ,  both based on the assump­

t io n  that the bicarbonate mechanism r esu lts  in  the p il in g  up o f in te r -  

m ediatesj i t  has already been demonstrated for  a -k etog lu tara te  th at  

such p i l in g  up does in  fa c t  occur.' The f i r s t  is  that there is  an in ­

creased u t i l i z a t io n  o f s p e c if ic  p r e -e x is t in g , or c o n s t itu t iv e , enzymatic 

pathways lead in g  to an o v era ll q u a n tita tiv e  s h i f t  in  the in tr a c e llu la r  

b a lan ce . The second is  that in  add ition  to  the c o n s titu tiv e  system s, 

new and unique enzymatic sequences may be induced, and cer ta in  old ones 

e lim in a ted , ' by the presence of increased le v e ls  o f endogenously produced 

in term ediates •

The evidence to  date stron g ly  suggests that the second a lte r n a tiv e  

more adequately d escribes the s itu a t io n  in  B la s to c la d ie l la . At le a s t  

one enzyme system , the polyphenol ox idase, i s  formed de novo during 

r «S. development, and the formation of a second, for "jr—carotene
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s y n th e s is , i s  probable. Other pathways which are known to  be a lte r e d y 

or could p o ss ib ly  be a lte r ed , by in tr a c e llu la r  interm ediates have 

already been mentioned. The r e v e r s ib i l i ty  o f the B la s to c la d ie lla  system  

up to  a c r i t i c a l  point appears to d is tin g u ish  i t  from that in  b acter ia  

where an enzyme once induced i s  not broken down again but merely d ilu ted  

out o f ex isten ce  by subsequent growth and reproduction (Hogness, Cohn, 

and Monod, 1955). The in tr a c e llu la r  changes in  th is  organism appear 

to  be much more akin to the s ta te  o f ’ "dynamic equalibrium" found for  

mammalian c e l l s  (Heimberg and V elick , 195h; V elick 1956). This suppo­

s i t io n  i s  supported by the complete lo s s  of severa l c o n s titu tiv e  enzymes, 

and the changes in  the glucosamine syn th etase , g lu co se-6 -phosphate 

dehydrogenase and isomerase enzymes ( c . f .  F ig . ;2U0 - It should be noted 

w ith  respect to  Figure 21+ th at a fter  36 hours there is  no in crease  in  

the so lu b le  p ro te in , nor does growth occur a fter  1+8 hours . D espite  

t h i s ,  th e le v e l s  o f the few examples studied do change q u a n tita tiv e ly ;

both in crea ses  and decreases occur, i . e . ,  the proteins are presumably
1

being syn th esized  a t cer ta in  periods and degraded at o th ers.

A portion  of the o r ig in a l question  posed has been answered; part 

remains unanswered. However, though i t  i s  evident that there are large  

gaps in  our knowledge o f the c e l lu la r  processes in  B la s to c la d ie l la,; the 

concept o f a dynamic equilibrium , influenced and rechanneled by the 

^ e f f e c t s  o f b icarbonate, has proved u se fu l as a working h yp oth esis.

-’■The argument that th ese  changes could equally w ell occur as the 
r e su lt  o f  the in h ib it io n , or v ic e  v ersa , o f ex ist ing^ and p o te n tia lly  
c a ta ly t ic  proteins cannot be ignored . This p o s s ib i l i t y  could only be 
elim inated  by la b e lin g  experiments w ith iso to p ic  tracers during d i f ­
fe r e n t  sta g es  o f developm ent.
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I t  i s  on ly  a lo g ic a l  extension  of. th is  idea to  suggest th a t these  

e f f e c t s  lead  to  an in crea s in g ly  a ltered  metabolism, the process eventu­

a l ly  becoming a u to ca ta ly tic  and ir r e v e r s ib le . The la t t e r  presumably 

occurs when a key in term ediate, or sy n th etic  pathway, reaches a c r i t i c a l  

th resh o ld  and, by so doing, s h i f t s  the whole equilibrium  in  a new 

d ir e c t io n . U n til such a threshold  i s  reached, the system could remain 

r e v e r s ib le  by removal of th e stim u lus, i . e . ,  b icarbonate.

The technique described herein  for growing reasonably synchronized  

la rg e  s c a le  cu ltu res o f B la s to c la d ie lla  em ersonii has made fe a s ib le  a 

d ir e c t  approach to  the problem during the ea r ly  c r i t i c a l  periods of 

growth.' The r e su lts  obtained by th is  technique have provided a frame 

o f referen ce  to  serve  as a guide in  developing the experim ental ap­

proaches most l ik e ly  to y ie ld  answers to  some of the manifold questions  

a sso c ia ted  w ith morphogenesis in  B la s to c la d ie l la .
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SUMMARY

1 . The enzyme glucosamine synthetase (glutam ine-F-6-P transamidase) 

was p u r ified  _ca 19- f o ld  from ex tracts  of B la s to c la d ie lla  emersonii  

and some o f i t s  properties stu d ied .

2 . A method was developed which made p o ss ib le , for the f i r s t  time among 

the Phycomycetes, the study o f p h y sio lo g ica l and morphological 

p rocesses during the w e ll synchronized growth of B ia s to c la d ie lla  

from zoospores to  mature r e s is ta n t sporangial p la n ts .

3 .  The enzymes glucosamine syn th etase , g lu co se-6- phosphate dehydrogenase, 

and phosphoglucose isom erase, as w e ll as severa l other nitrogenous 

and non-nitrogenous c e l lu la r  components were stud ied  during the 

course o f  r e s is ta n t  sporangial development.

U• The s ig n if ic a n c e  of the changes in  the c e l lu la r  components as they  

r e la te d  to  the stru ctu re  and fu n ction  o f th e developing organism was 

d isc u sse d . An attempt was. made to  in teg ra te  the p h y sio lo g ica l and 

morphological processes involved in  the d if fe r e n t ia t io n  o f the 

r e s is ta n t  sporangium.
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APPENDIY I

L ist  of Abbreviations

AG-l-P ............. .. N -acetylglucosam ine-l-phosphate
AG-6-P . . . . . . . . . .  N-acetylg.lucosaroine-6-phosphate

AG-1 ,6-DP .............  N -acetylglucosam ine-1,6-d iphosphate
ATP ........................... Adenosinetriphosphate
BCP ......... .................  Bromcresol purple
DNA   ...................... Desoxyribose n u cle ic  acid

DPN ........................... Diphosphopyridine n u cleotid e
EDTA . . ....................E thylenediam inetetraacetic acid
F-6-P ......................  Fructose-6-phosphate

FDP . . . . . ............. .. Fructose-1,6-diphosphate
G-1 ,6 -DP ................ G lucose-1,6-diphosphate
G—6—P .................. .. G lucose-6 -phosphate

' GA . . .........................Glucosamine
GA-6-P .................... Glucosamine-6-phosphate
GA-l-P ....................  Glucosamine-1-phosphate

Pi ............................. Inorganic phosphate
RNA ............. .. Ribose n u cle ic  acid
SPN ......... .................Soluble protein  nitrogen

- SNPN ........................  Soluble non-protein n itrogen
TCA ........................... T rich loroacetic  acid

TN  .................. T o ta l’n itrogen
TSN ...................... .. Total so lu b le  n itrogen
TPN   ......... ............ Triphosphopyridine nu cleotide
UDPAG ......................  Uridinediphosphate N-acetylglucosam ine
UDPGA ......................  Uridinediphosphate glucosamine
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• APPENDIX II

Two-dimensional Chromatographic Map of Amino Acids

Key 

1 . L -alanine  

2 . L -arginine  

3 . L -asp artic  a c id ■

U. D-glucosamine

5- D -g lu cose-6 -phosphate

6 . L-glutam ic acid

7 • L-glutamine

8 . L -glycine

9 . L -h is tid in e

1 0 . L-hydroxyproline

1 1 . Inorganic :phosphate 

12 . L -iso leu c in e

1 3 • L -leucine  

1U- L -lysin e  

15 • DL-methionine

16. N-acetylglucosam ine

17. L-phenylalanine

18. L -proline  

19 • DL-serine

2 0 DL-threonine

21. L-tryptophan

22. L -tyrosine  

23 • DL-valine
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APPENDIX IV

Summary o f Attempts to  Purify Glucosamine Synthetase

R esult as Percentage 
of Previous S p e c if ic  

Treatment A ctivity"

Fresh p lant mat frozen  at -18°C • overn igh t   100
Fresh p lan t mat frozen  at -18°C . 9 d ays........................................... 23
Supernatant stored 8 h r . a t 0°C ., 2 x 10“ 2M phosphate

b u ffe r , pH 6 . 8 ........................................................  90
Supernatant stored  13 h r . ,  0°C ., 2 x 10” 2M phosphate b u ffer ,

PH 6 . 8 .................... ............... ............................................................. .. 83
Supernatant stored  13 h r . ,  0 C ., 2 x 1 0 -2M phosphate buffer

and 10~3 M Versene  ......................................... '.............    £2
Supernatant (2 x l O “ 2M phosphate, pH 6 .8 , 10“ 3M Versene)

heated a t 50 C . < fo r  5 min...................... .........................................  16
As above, but pH adjusted to  5*9 with 1 N a c e t ic  a c id , then

heated a t 50 C. fo r  5 min...............................................................  63
As above,- but pH adjusted to  6 .0  w ith 1 N a c e t ic  ac id , then

heated at $0°C  . fo r  5 min ......... ...................................................  68
As above, but pH adjusted to  5*0 with 1 N a c e t ic  ac id , then

heated at $0°C  . fo r  5 min...................... .. .....................................  0
Supernatant d ia lyzed  v s . 2 x 10“ 2M phosphate b u ffer , pH 6 .8 ,

overnight a t 2°C......................   19-55
Supernatant d ia lyzed  vs . 2 x  10-2 M phosphate b u ffer , pH 6 .8 ,

10“3M Versene, .overnight at 2°C  .......................... .. 0-52
Treated as above, then added back concentrated d ia ly s a te . . . .  39
Treated as above, then added back magnesium and pyridoxal

phosphate  ...................................................................... ............... 56
Supernatant (2 x  1 0 -2M phosphate, pH 6 . 8 ) incubated w ith

9 x 10- 4 M glu ta th ion e for, 8 h r . a t 0 ° .....................................  75
Supernatant (2 x 10“ 2M phosphate, pH 6 . 8 ) .incubated w ith

9 x l 0 " 4M F -6-P fo r  8 h r . at 0 ° .............................................. . .  96
Supernatant d ia lyzed  v s .  5 x  10"3M F -6-P and 2 x 10~

pho s phat e , pH 6 .8 , fo r  12 h r » at 0 C • » » » . . . . . . . . . . . . . . .  63
Supernatant d ia lyzed  vs. 10”4M g lu ta th io n e , 10-3 M Versene,

2 x 10“ 2M phosphate, pH 6 .8 , fo r  12 h r . at 0 C................  85
Supernatant (2 x  10” 2M phosphate, pH 6 .8 ) treated  w ith

protamine s u lfa te ,'  cen trifuged  and supernatant assayed. 190-299
As above, but w ith  a mature f i r s t  generation c u ltu r e ................ I4DI4.
Supernatant ( 1 s t .  generation  p la n ts , homogenized in  d i s t .

w ater) treated  w ith  protamine su lfa te  (pH 5*8) 0.17 mg.
- /m g. p ro te in , cen trifu ged  and the supernatant a ssa y ed .. 318-653

A protamine supernatant cut at 80$ (NH4 )2S04 , the p rec ip i-
' ta te  red isso lv ed  in  10“ ^  phosphate, pH 6 .8 , a s sa y e d ... 60

'"Refers to  the s p e c if ic  a c t iv i t y  of the immediately preceding s te p .
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Appendix IV -  continued

Treatment Percentage

As above, but trea ted  w ith 100$ sa tu ra tion  o f . NH4) 2S04 . . . . . .  5U
A protamine supernatant fraction ated  with 80$ sa tu ration  of 

ammonium s u lfa t e ,  the p r e c ip ita te  red isso lved  in  10~ lM 
phosphate, pH 6 .8 ,  and d ialyzed  against the same buffer
fo r  2 h r . at 0°C ............................................................................... . .  25

Protamine supernatant cut w ith 80$ sa tu ration  ammonium su l­
f a t e ,  the p r e c ip ita te  red isso lved  In 10_1M phosphate, 
pH 6 . 8 ,  and recut w ith 3!?$ sa tu ra tion  ammonium s u lfa te ,  
the p r e c ip ita te  d isso lv ed  in  the same b u ffe r , then
a ssa y ed .......................................    135

Protamine supernatant d ia lyzed . v s . 90$ saturated ammonium 
su lfa te (a d ju ste d  to  pH 6 . 8 ) ,  p recip ita ted  proteins r e ­
d isso lv ed  in  10“ XM. phosphate,- pH 6 .8 ,  and a s s a y e d . . . . . .  59

Protamine supernatant trea ted  with tr ica lciu m  phosphate gel 
(3*7 mg./mg. p r o te in ) , e lu ted  with 5 x 10“ LM phosphate
b u ffe r , pH 7 - 5 ........................................................................................  7k

Protamine supernatant adjusted to  5*6 w ith M sodium a c e ta te , - 
trea ted  w ith -tr ica lc iu m  phosphate gel v0.85 mg ./mg.
p r o te in ) , g e l e lu ted  w ith 10“ 1M phosphate, pH 7*0............ 128

Protamine supernatant, as above, trea ted  w ith trica lcium  
phosphate gel (1 .2  mg./mg. p ro te in ), g e l elu ted  w ith
5 x 10“ 3 F -6 -P .............................................  6 . 1U9

Supernatant ' .d i s t i l le d  w ater), stored overnight a t 0 C .........  2k
Protamine supernatant, stored  overnight at 0°C............................. 9
F-6-P g e l e lu a te , stored overnight at 0 0 ........................................ U8


