THE TESLA GLOW DISCHARGE IN ORGANIC COMPOUNDS PART I MOLECULAR EMISSION SPECTRA AND CHEMICAL REACTIONS PART I I APPLICATION TO GAS CHROMATOGRAPHY DETECTION By Richard E* F oulson A THESIS Subm itted t o t h e S ch o o l f o r Advanced Graduate S tu d ie s o f M ichigan S t a te U n iv e r s ity o f A g r ic u ltu r e and A pplied S c ie n c e i n ' p a r t i a l f u lf i llm e n t o f th e requirem ents f o r th e d egree of DOCTOR OF PHILOSOPHY Department o f Chemistry ProQuest Number: 10008638 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Pro uest ProQuest 10008638 Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 4 8 1 0 6 - 1346 ACKNOWLEDGMENTS I w ish t o exp ress my g r a titu d e fo r th e i n t e r e s t and generous guidance o f P r o fe s so r James C« S tern b erg throughout t h i s in v e s tig a tio n ., To A ly c e , my w if e , who p a t ie n t ly gave encouragement and s e l f s a c r i f i c e I o f f e r my deep and e v e r la s t in g a p p reci­ a t io n o The p rep aration o f th e drawings i s but a s in g le example o f her in v a lu a b le a s s is ta n c e „ The f i n a n c ia l aid re c e iv e d from a N a tio n a l I n s t it u t e s o f H ealth grant in th e f i n a l s ta g e s o f t h i s work was of much a s s is t a n c e <> THE TESLA. GLOW DISCHARGE IN ORGANIC COMPOUNDS PART I MOLECULAR EMISSION SPECTRA AND CHEMICAL REACTIONS PART I I APPLICATION TO GAS CHROMATOGRAPHY DETECTION By Richard Eo P oulson AN ABSTRACT Subm itted t o th e S ch ool f o r Advanced Graduate S tu d ie s o f M ichigan S ta te U n iv e r s ity o f A g ricu ltu r e and A pplied S c ien ce in p a r t ia l f u lf illm e n t o f th e requirem ents fo r th e d egree of DOCTOR OF PHILOSOPHY Department o f Chemistry Year 1959 ABSTRACT The T e sla c o il-e x c ite d * e le c tr o d e l e s s , glow d isch a rg e in gases a t reduced p re ssu r e has been stu d ied from an approach design ed t o determ ine how r e l a t i v e l y sim ple ex p erim en tal tech n iq u es can be used t o o b ta in in f o r ­ m ation con cern in g e le c tr o n -im p a c t-e x c ite d e le c t r o n ic s t a t e s o f atoms, m olecu les and io n s , and t h e ir p art in chem ical r e a c tio n s * R e su lts o f t h i s in v e s t ig a t io n were a p p lied to develop two e a s ily —co n stru cted , in e x p e n siv e , io n iz a tio n - ty p e d e te c to r s fo r gas chromatography* A b r i e f summary o f b a s ic energy tr a n s fe r p r o c e sse s in th e glow d is ­ charge i s p resen ted ., The f i e l d o f em issio n sp e c tr a e x c ite d in th e glow d isch a rg e i s rev iew ed * Employing a reco rd in g p h o t o e le c t r ic spectrophotom eter f o r rapid scan nin g o f v i s i b l e and u l t r a v i o l e t sp e c tr a , and an e x c it a t io n tech n iq u e s im ila r t o th a t developed by H» S ch u le r , but w ith a T esla c o i l e x c it e r and flo w in g c a r r ie r gas t o e x c it e organic vap ors, glowed i s charge em issio n s p e c tr a were s tu d ie d » In an argon d isc h a r g e , stron g red (a rc) spectrum l in e s of argon were observed to g e th e r w ith v e r y weak b lu e (spark) spectrum lin e s * A lip h a tic a lc o h o ls , a lk a n e s, ben zen e, and oxygen quenched th e red spectrum s e l e c t i v e l y , le a v in g th e spark spectrum and a v ery few arc s p e c tr a l l i n e s undim inished in in te n s ity * Water and n itr o g e n did not quench th e spectrum s e l e c t i v e l y . The phenomenon i s in te r p r e te d in terms o f b a s ic p r o c e sse s known t o occur in a gaseous d isch arge* Glow d isch a rg e decoup o s i t i o n p a tte r n s in terms o f r e l a t i v e i n t e n s i ­ t i e s o f em issio n by d iatom ic and atom ic fragm ents were recorded f o r many fla w in g organ ic vapors (w ith ou t th e use o f a c a r r ie r g a s ) . a lc o h o ls , a c e to n e , alk an es and a lk y l h a lid e s were su rveyed . A lip h a tic The r e l a t i v e i n t e n s i t i e s o f th e v a rio u s e m itte r s in th e d isch arge were observed t o change c o n sid er a b ly as th e p ressu re (and th e r e fo r e e le c tr o n energy range) was a lte r e d o P o s s ib le in te r p r e ta tio n s o f gross fe a tu r e s o f th e decompo­ s i t i o n p a tte r n s were su ggested in terms o f mechanisms which seem most p ro b a b le,b a sed on what i s known b a s ic a lly o f e le c tr o n impact e x c it a t io n and energy tr a n s f e r in a gaseous d isc h a r g e . U sing th e T esla c o i l as an e x c ite r , two s e n s it iv e ,in e x p e n s iv e io n iz a tio n - ty p e d e te c to r s fo r gas chromatography have been d evelop ed , A p h otom etric form and an e l e c t r i c a l form, each capable o f wide a p p lic a tio n in p r e p a r a tiv e chrom atographic work and fo r le c t u r e dem onstration purposes were s tu d ie d . The p hotom etric form o f th e d e te c to r employs a photo­ conducting c e l l t o measure th e l i g h t i n t e n s it y change in th e d isch a rg e w ith th e p assage o f th e chromatographic component. The e l e c t r i c a l form o f th e d e te c to r i s based on th e p a r t ia l r e c t i f i c a t i o n o f a h ig h frequency cu rrent which ta k es p la c e a t two se n sin g e le c tr o d e s (prob es) p laced a sy m m etrically in th e glow d isc h a r g e . The current flow through an e x te r n a l r e s is t a n c e con n ectin g th e e le c tr o d e s i s m onitored, and changes o f th e order o f microamperes occur when components p ass through th e d e t e c to r . Both d e te c to r s were estim ated to have a p resen t lim it o f d e t e c t a b i l i t y f o r methane ( s ig n a ls n o is e = 2 s i ) of approxim ately 10 v m oles. The d e te c to r s w i l l sen se l i g h t and in e r t gases as w e ll as organ ic vapors o The most s e n s i t i v e forms o f th e d e te c to r s d ev ised employed argon as a c a r r ie r g a s, but any c a r r ie r gas (in c lu d in g a ir ) may be used depending on th e a p p lic a t io n . With argon c a r r ie r gas i t was found d e s ir a b le to b le e d oxygen v e r y s lo w ly in to th e d e te c to r to r e a c t w ith C2 and s im ila r r a d ic a ls t o p rev en t polymer d e p o s itio n in th e d e te c to r and subsequent t a i l i n g o f component b an d s. An in te r p r e ta t io n o f th e resp onse o f th e s e d e te c to r s and oth er io n iz a tio n - ty p e d e te c to r s in terms o f b a s ic p ro c e sse s in th e d isch a rg e i s o u t lin e d . S u g g e stio n s and p relim in a ry ob serv a tio n s r e la t iv e t o q u a lit a t iv e a n a ly s is o f components o f gas chromatography by t h e ir s p e c tr o s c o p ic a lly observed crack in g p a tte r n s are p r e se n te d . TABLE OF CONTENTS Page INTRQDUCTX O N . o . o o o . . . o . o <>, o, • . 0 , 9 . o . o . o o o . , , . , . o, . . 0 0 , . 0 , . . o * A» B. C. Do 1 G eneral Course o f th e W o r k . o o o o , . . . , , . . . , . . . . . 1 ..................... 3 P r o p e r tie s o f th e Glow D isc h a r g e E le c tr o n Impact E x c ita tio n in th e Glow D i s c h a r g e ,,...................... U Summary o f P r o c e sse s Taking P la c e in th e Glow D i s c h a r g e . . . . . . 5 PART I MOLECULAR EMISSION SPECTRA AND CHEMICAL REACTIONS A. A Review o f Glow D isch arge Em ission S p ectra and R elated F i e l d s •« 12 1 . Em ission S p ectra o f P olyatom ic M olecules and I o n s a . Ear l y W Tork ooooo. eoooceoo, . 00 , . 000000000 . 0 . 0000000 . . o b o The Technique and Work of H. S c h u l e r . . . . . . . . . . . . . . . . ( 1) The Bas l c Technique. . . . . . . . . . . . . . . o . . . o . . . , , o . ( 2) Mechanism o f E x c ita tio n in th e Glow D ischarge (3 ) R efinem ents o f th e Technique Which Aid in ' I d e n t if y in g S p e c tr a l Emi t t e r s . . . . . . . . . . . . . . . . (U) New S p ectra Observed by th e S ch u ler Tech-* ni queaoao» 0 . o o . . a . . o o » . . o « 00 . o . « o . o . . « o . , o « . o ( 5) L im ita tio n s o f th e Techni que. . . . . . . . . . . . . . . . . c . R e su lts from oth er Techniques of Glow D ischarge E x c ita tio n o f M olecular E m ission S p e c t r a . ........... 2 . S tu d ie s o f R eaction Mechanisms in th e Glow D i s c h a r g e . . . . . . a o GenOra l e e o 0 OO,oa0 OB0 e » . . o o e o # . . . » 0 e ». ao 9 O. » e . . a e . . a » b . Chemical A n a ly sis o f Products . . . . . . . . . . . . . . . . . . . . . . . ............. c . S p e c tr o sc o p ic Em ission S tu d ie s 3 . Other Sources o f E lectro n Impact E x c i t a t i o n . . . . . . . . . . . . . . . a . I o n iz m g Rad i a t i o n o o . . . . . . . . . . . . . . . . . . . . . . . . . b . The Mass S p ectrograp h ............. 12 12 13 13 16 B . E m ission S p e ctra in a Flow System w ith a C arrier Gas. . . . . . . . . . . . 1 0 E xp erim en tal. . 0 . 0 . 0 . 00 , . . a o 0 o o . . o o . o » . o . . . e . a o . o . . » . . . . o o . a . G eneral D e s c r ip tio n o f Experim ental Approach. . . . . . . . b 0 ReagentS oo. aooooeo 0 . o . 0 . . o o « o o 0 e e o o o . o e o o . . . a . , o . , o . ( l ) ArgOn . 0 . 00000000 . o. . . . o o . . . . . . o o , o. oo. . «o. « a. ( 2) Hel i um. . . . . 0000 . 0000 . 00 . . 000 . 0 . 0 . 00 . 00000 . 0.0 ( 3) Organic S a m p l e s o . o o . o o o . o . o o . o . o . . . . . . . . . . . . . CO Apparatus 000 . 0 , 00 o . o . a 0 oO0 . o . o « o . o . o o o » . . . e o , » . . o « . o ( 1 ) D isch arge System . 0000 . ooao poo. ao. o o. oo. a. o. oo (2 ) O ptics and S p e c t r o p h o t o m e t e r . . . . . . o . . . . . . . . . . (3 ) The E x c ite r 0 O.O0 OOOO0 OO0 O00 O00 OO0 . OOO. . . . 0 O.O continued v ii 19 20 22 23 25 25 26 27 29 29 30 31 31 31 32 32 33 33 3^43^-4 37 38 TABLE OF CONTENTS » Continued Page d * Experim ental Pr o c e d u r e o ®. ®. . ®. . . . . . . . . . . . .................... . . 1*0 ( 1) W avelength Measurement ............................................UO ( 2 } O perating the. D isch arge Systenj. . . . . . . . . . ®. . . . UO 2 o R e su lts and D is c u ss io n oooo®. . . ®. . ®. . . ®®®. . . . . . . . . . . . . . " .......... k3 a 0 Quenching o f th e Argon S pectru m ................................ . . . . . b3 b . The B lu e Spectrum o f Argon ........................... U5 Co C o r r e la tio n o f th e Observed B lue Spectrum w ith th e B lu e Spectrum o f Argon ............. U6 d . Helium C arrier Gas .......... 1+6 eo P olyatom ic M olecular S p e c tr a ........... h9 f o I n te r p r e ta tio n o f S e le c t i v e Quenching o f th e Argon Red Spectrum ........... b9 3* S u g g e stio n s f o r Further Work w ith Argon C arrier G a s . . . . . . . 5U a. E f f e c t o f th e Nature o f E x c ita tio n on E le c t r o n ' E n ergies In th e D isch a rg e ............... 5U bo R e la tiv e E f f e c tiv e n e s s of Various Quenchers.................. 55 Co E m ission S p ectra in a Flow System w ith o u t a C arrier Gas.................. 57 1 o E xp erim en tal ............... 57 ao G e n e r a l o o o o o o . a a o o o o o e . e o o . . . . . . . . . . . . . . . . . . . . . . . . . . 57 b o M o d ifica tio n s of P reviou s Apparatus. • • • • • » * . . • • .......... 57 c . Procedure During a Run® ...................... 60. 2 o R e su lts and D is cuss ion* ........... 61 a . K e t o n e s . . . . . . . o o o o o . o o o o o . . . . . . 61 b . A lc o h o ls , Alkanes and A lk y l H a lid e s ............ 63 c . I n te r p r e ta tio n o f D ecom position P a t t e r n s 67 (1^ G e n e r a l o . o o . o e o o o o o » o . . * . . » . . . . . . . . . . . . . . . . . . 67 ( 2) A lc o h o ls f A lkanes, A ceton e .................. 6? ................................................ 72 (3 ) A lk y l H a l i d e s . . . . . 3 . Summary o f Work w ith ou t a C arrier Gas.......................... 7i+ U. S u g g e stio n s f o r Further Work w ith o u t a C arrier G a s . . . . . . . . 75 PART I I APPLICATION TO GAS CHROMATOGRAPHY DETECTION A. I n tr o d u c tio n , o o . . . . . . . . o o . . . . . . . . . . . . . 00 . * o . . . . . . . . . . . . . . . . . . . . . . 77 B . B r ie f Summary o f D e te c to r s f o r Gas Chromatography. . . . . . . . . . . . . . . 79 Co P r o p e r tie s o f th e T esla E x cited Glow D isch arge Amenable t o Measurement o o o o . o o . . . . . . . . . . . ® . ® . ® . ® . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31+ continued v iii TABLE OF CONTENTS - Continued Page D. E x p e r i m e n t a l . ........... . . . . . . . . . ............... . . . 86 1 o R eagents . . . . . . . . . . . . . . . . . . ................ * . • . . .......... 86 a. Compressed G ases.................. . . . . ................ . . . . . . . ............. . . 86 bo A ir o . o. . o. o * « . ............. 87 co N atu ral Gas...................... 87 .......... 87 d « Organic Liquid Samples 2 o A pparatus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 a. G eneral D e s i g n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 b o D e te c to r C o n s t r u c t i o n ................. 89 (1 ) M echanical D e t a il o f ^Sensing E lem en ts. . . . . . . . 89 ( 2 ) E x c ite r T u b e. ............. 92 (3 ) E l e c t r ic a l C i r c u i t s . . . . . . .................... 9k ( a) G en eral 9k ............... 9U (b ) E l e c t r i c a l D e t e c t o r ( c ) Photom etric D e t e c t o r . . . . . . . . . . . . . . . . . . 97 c . The Flow S y s t e m .............. ................................... *. 97 (1 ) G e n e r a l................. . . .......................... . . . . . ................... 97 ( 2) O peration w ith ou t a Chromatographic C olum n... 99 100 (3 ) Oxygen S caven ger. . . . . . ............. 3 . Experim ental P roced u re .......................... 100 a . G eneral D e t a i l s .................. 100 (1 ) Sampling T echniques 100 (2} P ressu re and Flow R a t e . 102 (3 ) Chromatograms ............. 103 b . Procedure Using th e Photom etric D e t e c t o r . . . . . .................103 c . Procedure Using th e E le c t r i c a l D e t e c t o r . ........... 103 E . R e s u lts and D is c u s s io n ............... 105 1 . P hotom etric O b s e r v a t io n s ... ............... 105 a . G en eral............................... 105 b . O v e r -a ll L igh t I n t e n s i t y . ............... 106 c . Quenching o f C arrier Gas S p e c t r u m . . . . . . . . . . . . . . . . . . . 108 d . S e l e c t i v e O bservation o f Em ission by th e S a m p l e ..... 108 e . Q u a lita tiv e A n a ly sis o f Chromatographic Components.-. 109 f . S t a b i l i t y o f th e D is c h a r g e .. ...............112 g . Summary. ................. 113 2 . The E l e c t r i c a l D e te c to r -R e s u lts and D i s c u s s i o n . . . . . . . . . . . . 113 a. S e le c t io n o f System s t o Study and D isch arge O perating C o n d itio n s ............... 113 (1 ) C a rrier G ases............................. 113 (2 ) Apparent E l e c t r i c a l C h a r a c te r is tic s o f th e D e te c to r D isc h a r g e ................. I ll; continued ix TABLE OF CONTENTS - Continued Page b„ c. d. e. f. (3 ) E f f e c t o f P ressu re on D etecto r P r o p e r t i e s . . . . 117 Response o f D ector U sing A ir C a r r i e r 123 (1 ) L igh t G ases................. 123 (2 ) R e p r o d u c i b i l i t y . . . . . ......................................................126 (3 ) Higher Hydrocarbons ........ ............................... 127 (h ) Water Vapor ................................... 127 Response o f D e te c to r U sing Argon Ca r r i e r . . . . . . . . . . . . 128 (1 ) Oxygen S caven ger ............... 128 (2 ) Methane ............. 128 (3 ) Higher Hydrocarbons ............... 130 133 (U) Organic. L iq u id s ................. (5 ) A i r . . ................ . ............... ....................................... 133 ........... 133 ( 6 ) Sample Chromatograms I n flu e n c e o f D e te c to r Geometry on 'S e n s it iv ity .' ; • . 138 .............................................. 139 S u m m a r y .... I n te r p r e ta tio n o f E l e c t r ic a l D e te c to r R e s p o n s e . .. .. . lhO F . Comparison o f th e Photom etric and E le c t r ic a l T esla D is c h a r g e ’ D etecto rs ............. 1. 2. 3. k° 5. S e n s itiv ity . .................... R ete n tio n Volume ........... L in e a r ity o f R esp on se................. C arrier G a s e s . . . . . .......................... S e le c tiv ity . ...................................... G. S u g g e stio n s f o r A p p lic a tio n s and F urther Work ±hh lhh U4J4 Ih5 Ih5 11*6 ............... 1. 2o 3. h. L ecture D em onstration and P r ep a ra tiv e W ork ............................... Humidity Measurement........................ Vapor P ressu re and M olecular Weight D e t e r m i n a t i o n . . . . . . . . . ................ Q u a lita t iv e A n a ly s is a . General . . . . . . . . . ............... b . Rapid Scanning S pectroph otom etry. ................................ c . T e sla D is charge Cracking ................................... 5 . High M olecular W eight Compounds............ ................... Ih 6 IJ4.6 l l *8 l i ;8 1 U9 Ih9 150 150 151 H. O v e r -a ll Summary o f E l e c t r i c a l D ete c to r s f o r Gas Chromatography. 151 LITERATURE CITED.. ............................. 156 APPENDIX (DATA FOR F I GURE S ) . . . . . . .............................................................. x 160 LIST OF TABLES TABLE I II III IV Page R e s u lts o f Quenching o f Argon Glow D isch arge Spectrum w ith V arious S u b sta n c e s• . . . . . . ........... UU C o r r e la tio n o f Observed Spectrum in Quenched Argon w ith B lu e Argon S p e c t r u m * . o . . . . . . . . . . . . . . . . . . . . ............... . . . . . . .......... U7 K etones Observed i n Glow Di s c h a r g e . . . . . . .................... 62 D ecom position P a tte r n s o f A lip h a tic A lc o h o ls, Alkanes and A cetone in th e Glow Di s c h a r g e . . . . . . . . . . . . . . . . . . . . . . . ................ 65 V D ecom position P a tte r n s o f A lk y l H alid es in th e Glow c h a r g e o . o o . o o . . . . . . . . . . . . . . 66 VI Response o f Photom etric D etecto r t o Various Sample G a s e s . # . . 110 VII V III E stim ated S ig n a l-t o -N o is e R atios f o r A ir , Argon and Helium C a r rie rs—Response to 0 .0 1 Ml. Methane I n j e c t i o n . . 115 E f f e c t o f S c a le M u ltip lie r R esista n c e on Current i n th e E l e c t r i c a l D e te c to r f o r Argon and Helium a t Various P ressu res ............... 118 IX Response in A ir C arrier t o 20 Ml. I n j e c t io n s o f 1 .1 Volume P e rcen t S o lu tio n s in A ir fo r Various Sample G ases..........................125 X R e la tiv e Response t o 50 Ml. I n je c tio n s o f 0 .6 Volume P e rcen t S o lu tio n s o f Hydrocarbons in Argons Ar (* 0 2) C arrier 132 XI X II X III Response t o 50 M l. I n j e c t io n s o f Organic Vapor S o lu tio n s in Argonj Ar (* 0 2) C a r r ie r ...................... D e te c to r Current v s . A pplied V oltages A ir C a r r ie r 13h ............160 D e te c to r Current v s . P r essu re fo r N2, A ir , Ar and He C arrier G ases .................. 161 XIV Response t o 20 Ml. I n j e c t io n s o f H2, CH4 , and He S o lu tio n s in A ir , A ir C a r r ie r , as a F unction o f P r e s s u r e . . . . . . . . . . . . . . 162 XV R esponse t o 20 Ml. I n j e c t io n s o f He, Ar, H2, GH4 and N2 S o lu tio n s in Airs Air C a r r ie r ...................................163 continued xi LIST OF TABLES ~ Continued TABLE Page XVI Response to $Q Mlo I n j e c t io n s of Methane S o ltu io n s i n ' Argons Ar (* 0 2) Ca r r i e r . . * * * * . * * . * . . * * * * . . * . . * .............* • • .............16U XVII Response t o Methane in Ar(+02) C arrier w ith 12:1 Stream S p l i t t i n g R a t io 0000**000 ooo*®************. *©. *. ****■#-*■•***.** 16^ XVIH Response t o $Q Ml* I n j e c t io n s of A ir S o lu tio n s in Argonj Ar (*>Q2) C a r r ie r .......... *............... 166 x ii LIST OF FIGURES FIGURE Page 1 * S c h u le r l s Apparatus f o r E x c ita tio n o f Organic M olecules in th e Glow D isch arge . . . . . . . ....................... . . . . . . . . ................................... 1U 2. Flow System f o r O bservation o f Glow D isch arge E m ission S p e c tr a U sing a C arrier Gas and High Frequency E x c i t a t i o n . .. 36 3* E m ission Spectrum o f Benzene E xcited w ith Argon C arrier Gas. 50 U. Flow System f o r O bservation o f Glow D isch arge E m ission S p e c tr a w ith o u t a C arrier Gas........... ................................... 58 5* T e sla D ischarge D e te c to r f o r Gas Chromatography............... . . . . . . 90 6 . E l e c t r i c a l C ir c u its Used w ith T esla D isch arge D e te c to r s fo r Gas Chromatography .................... 95 7 . Flow System Used w ith T esla E x cited Glow D ischarge D e t e c t o r s .................... 98 8 . D e te c to r Current v s . Applied V oltage; A ir C a r r ie r .................... 116 9» D e te c to r Current v s . P ressu re f o r N itrogen; A ir , Argon and Helium C arrier G a ses ................ ............................ *.......................119 1 0 . Methane and Helium S o lu tio n s i n A ir , A ir C arrier; Response v s • P r e s s u r e ........... 1 1 . Response t o l±9.3 Volume P ercen t Hydrogen S o lu tio n in A ir; A ir C a r r i e r . . . . . 1 2 . Response t o 20 Ml. I n j e c t io n s o f Various S o lu tio n s in A ir; .................. A ir C a r r ie r 121 * 122 12li. 1 3 . Response t o $0 M l. I n j e c t io n s o f Methane S o lu tio n s in Argon; Argon C arrier w ith Oxygen S c a v e n g e r . ............................129 1U» Response to Methane in Argon C arrier w ith Oxygen S caven ger; 1 2 s 1 Stream S p l i t t i n g R a tio ............. 131 15* Response t o 50 M l. I n j e c t io n s o f Air-Argon S o lu tio n s ; Argon C arrier w ith Oxygen S ca v en g er................. 135 1 6 . Chromatograms U sing th e T esla D isch arge D etecto r; Argon C arrier w ith Oxygen S caven ger ............................... 137 17 . A M e c h a n ic a l-E le c tr ic a l T ransducer.................. li^ l x iii INTRODUCTION Ao G eneral Course o f th e Work Much o f ch em istry i s concerned w ith th e c h a r a c te r iz a tio n and p r o p e r tie s o f su b sta n ces as th ey occur a t room tem perature or a t moderate tem peratureso Under such c o n d itio n s * m olecu lar s p e c ie s are alm ost e x c lu s iv e ly i n th e low er v ib r a t io n a l l e v e l s o f t h e ir ground e le c t r o n ic sta te so We know r e l a t i v e l y v ery l i t t l e about e x c ite d e le c t r o n ic s t a t e s o f m olecu les and m olecular fragm ents or about m olecu lar i o n s • It is n a tu r a l th a t our d e s c r ip tio n s o f chem ical r e a c tio n s are based la r g e ly upon con cep ts a s s o c ia te d w ith th e m uch-studied ground s t a t e s o f m o le c u le s. However* chem ical r e a c tio n s g e n e r a lly occur on ly among th e few m olecu les o f e x c e p t io n a lly h igh energy in th e r e a c t in g system* and we commonly employ d e s c r ip t io n s o f r e a c t io n mechanisms in v o lv in g s tr u c tu r e s probably more n e a r ly r e la t e d t o th e e x c ite d e le c t r o n ic s ta t e s * or io n iz e d s ta te s * th a n t o th e normal ground s t a t e s . Furthermore* th e r e i s in c r e a s in g i n t e r e s t in r e a c tio n s a t v ery h igh tem peratures or r e a c tio n s induced by io n iz in g ra d ia tio n s* which u n q u estion ab ly proceed in p art through e l e c t r o n i c a l l y e x c ite d or io n iz e d s tr u c t u r e s . I t th e r e fo r e seems most d e s ir a b le to ex p lo re p o s s ib le paths o f resea rch which can fu r n ish in fo r ­ m ation about th e lesser-k n o w n ch em istry o f e x c ite d m olecules* m olecular fragm ents* and m olecu lar io n s . The p resen t in v e s t ig a t io n r e p r e se n ts an e x p lo r a to r y to u r along one of th e s e paths s t r e s s in g th e a p p lic a tio n o f r e l a t i v e l y sim p le ex p erim en tal tech n iq u es and a v a ila b le equipment 1 2 t o o b ta in in fo rm a tio n o f a ty p e h e r e to fo r e a c c e s s ib le o n ly through u se o f more complex s p e c ia l apparatuso The p o s s ib le a rea s o f in v e s t ig a t io n which can fu r n is h more or l e s s d ir e c t in fo rm a tio n on e x c ite d m o lecu les and m olecu lar io n s a re ph oto­ ch em istry (in c lu d in g f la s h p h o t o ly s is ) , r a d ia tio n ch em istry, mass sp e c tr o sc o p y , shock and d e to n a tio n w aves, a b so rp tio n sp e c tr o sc o p y , m olecu lar e m issio n sp e c tro sco p y and e l e c t r i c a l d isch a rg e s t u d i e s . R e la t iv e ly l i t t l e a t t e n t io n h as been g iv en by chem ists to th e chem ical r e a c tio n s and s p e c tr a em itted by e l e c t r i c a l d is c h a r g e s • The r e c e n t in v e s t ig a t io n s o f S ch u ler and o th ers have in d ic a te d th e f r u it f u ln e s s o f em ploying some o f th e s e te c h n iq u e s, and th e p o s s i b i l i t y o f c o n t r o llin g th e maximum l e v e l o f energy reached in th e d isc h a r g e . The tech n iq u e employed in t h is I n v e s t ig a tio n i s a com bination o f a sim p ler, l e s s c o s t ly T e s l a - c o i l method o f o b ta in in g d isch a rg es a t c o n tr o lle d energy l e v e l w ith th e u se o f a p h o t o e le c t r ic reco rd in g spectrophotom eter f o r r a p id ly mapping out th e observed s p e c tr a . In th e background s e c t io n , th e g en era l p r o p e r tie s o f glow d is ­ charges w i l l f i r s t be d is c u s s e d , fo llo w e d by a summary o f p e r tin e n t fundam ental p r o c e s se s o ccu rrin g in g a s e s . A review o f p e r tin e n t ch em ical and s p e c tr o s c o p ic s tu d ie s em ploying glow d isc h a r g e s w i l l be g iv en in th e f i r s t s e c t io n o f P a rt I . The exp erim en tal arrangement used In t h i s i n v e s t ig a t io n , and th e r e s u lt s o b ta in ed , w i l l th en be d i s ­ cussed i n P a r t I . As an outgrowth o f th e o b se rv a tio n s on th e p r o p e r tie s o f T e sla -g lo w d isc h a r g e s d escrib ed in P a rt I , a new a p p lic a tio n o f th e T e sla -g lo w d isc h a r g e t o d e t e c tio n in gas chromatography was developed and w i l l be d escrib ed in P art I I . 3 Bo P r o p e r tie s o f th e Glow D isch arge The glow d isch a r g e c o n s is t s c h i e f ly o f two p o r tio n s , th e p o s it iv e column and th e n e g a tiv e glowo The p o s i t i v e column o f a glow d isch a rg e betw een e le c tr o d e s in a p a r t i a l l y evacuated d isch a rg e tube i s th e la r g e luminous p o r tio n o f th e d isch a rg ee I t i s c h a ra cterized by a r e l a t i v e l y sm a ll p o t e n t ia l g ra d ien t and c o n s is t s o f slow moving p o s it iv e ion s to g e th e r w ith f a s t e r moving e le c tr o n s so th a t th e r e i s a n et p o s it iv e charge in th e column. Almost th e e n t ir e p o t e n t ia l drop in th e d isch a rg e occurs In th e r e g io n near th e cathode c a lle d th e cathode or n e g a tiv e glowo E le c tr o n s are r e le a s e d from th e cathode by p o s i t iv e io n bombard­ ment o This i s th e p r o ce ss c a lle d secondary em ission,, Secondary e le c t r o n s are low in en ergy, but th e p o s it iv e io n f i e l d a c c e le r a te s them and th ey th en produce more ion s and e le c tr o n s in c o l l i s i o n s . E le c tr o n s a c c e le r a te d from th e cathode through th e p o s it iv e column a t t a i n e n e r g ie s which are p r o p o r tio n a l t o th e r a t io o f th e e l e c t r i c f i e l d in th e column t o th e p ressu re in th e d isch a rg e sp a c e. For a given su b sta n ce b ein g e x c ite d in th e glow discharge^ however, th e p o t e n t ia l drop a cro ss th e d isch a rg e i s p r a c t i c a lly co n sta n t f o r a wide range of cu rren t f le w . This i s known as th e wnormal glow® and i s th e typ e o f d isc h a r g e o f i n t e r e s t in t h i s work. For th e d ir e c t cu rrent glow d isc h a r gef in te r n a l e le c tr o d e s are n e c e ssa r y t o sup p ly e le c tr o n s to th e d isch a rg e to make i t m aintain i t s e l f o Low freq u en cy a lte r n a tin g current i s v ery s im ila r to d ir e c t cu rren t f o r e x c it in g a glow d is c h a r g e . I t i s p o s s ib le a ls o to o b ta in 1* a d isc h a r g e which has th e p r o p e r tie s o f a glow d isch a rg e w ith ou t th e u se o f in te r n a l e le c tr o d e s <> This i s accom plished by u sin g a h ig h freq u en cy e x c it e r o f some s o r t . R adiofrequency or microwave energy may be coupled t o th e d isc h a r g e through g la s s w ith o u t in t e r n a l c o n n e c tio n s. The e le c tr o n s f o r i n i t i a t i o n o f th e d isch a rg e are to rn from th e w a ll o f th e d isc h a r g e tu b e , but b ecau se o f th e rap id a lte r n a t io n o f th e f i e l d , s u f f i c i e n t e le c t r o n s and io n s fo r s u s ta in in g th e d isch a rg e are formed by th e o s c i l l a t i n g e le c t r o n s , whereas in a d ir e c t cu rren t d isch a rg e e le c t r o n s s t a r t in g from th e cathode must have s u f f i c i e n t energy t o make up f o r a l l l o s s e s in th e d isch a rg e and can o n ly t r a v e l in a d ir e c t io n away from th e cathode., e le c t r o n s o u r c e . This r e q u ir e s an in te r n a l e le c tr o d e as an B ecause o f th e convenience o f e le c t r o d e le s s o p e r a tio n , i t has been used w id e ly and much o f th e work d isc u sse d w i l l be o f th a t ty p e o Co E le c tr o n Impact E x c ita tio n in th e Glow D isch arge S p ectra in th e glow d isch a rg e are e x c ite d p r im a r ily by e le c tr o n im pactj th e tech n iq u e f o r o b ta in in g em issio n s p e c tr a of polyatom ic s p e c ie s a t c o n tr o lle d e x c it a t io n energy has been termed '*e le c tr o n impact e x c it a t io n in th e glow d isch a r g e •*. This term in ology and th e fo llo w in g b r i e f d e s c r ip t io n o f th e mechanism o f th e e x c it a t io n p ro cess are due t o S c h u le r , who has l a r g e l y developed th e f i e l d o f m olecular em issio n s p e c tr o sc o p y . S ch u ler and Reinebeck ( 1 ) have assumed th a t b ecau se th e spark l i n e s o f th e gas p r e se n t occur o n ly v e r y w eakly in th e p o s i t i v e column, th e 5 f i r s t io n iz a t io n p o t e n t ia l o f th e gas must r e p r e se n t an upper energy l i m i t fo r most of th e e le c t r o n s in th e d isch arge* Furtherm ore, i t can be presumed th a t a t th e f i r s t e x c it a t i o n p o t e n t ia l o f th e gas th e e le c t r o n energy d is t r ib u t io n drops o f f sharply, s in c e e le c t r o n impact w ith atoms now can be i n e l a s t i c , and an e le c t r o n w i l l be robbed o f i t s energy by a gas atom b e fo r e th e e le c t r o n energy can reach an extreme v a lu e o The n e t r e s u lt i s th a t in th e p o s i t iv e column o f th e glow d is ­ charge th e r e are p resen t e le c tr o n s in an energy d is t r ib u t io n f a l l i n g o f f sh a r p ly a t th e f i r s t e x c it a t io n p o t e n t ia l o f th e gas atoms p r e se n t, to g e th e r l a r g e ly w ith n e u tr a l, e x c ite d gas atoms and a few gaseous io n s , few o f which are e x c ite d above th e ground s t a t e o f th e io n . A ll o f t h e s e s p e c ie s may be a c t iv e i n e x c it a t io n o f f o r e ig n m olecules in tr o ­ duced in to th e system* A b r ie f review o f work done in th e f i e l d of glow d isc h a rg e e m issio n s p e c tr a and some r e la te d f i e l d s i s p resen ted in th e f i r s t s e c tio n o f P art I* D* Summary o f P r o c e sse s Taking P la c e in th e Glow D isch arge The im portant p r o c e sse s ta k in g p la c e in th e glow d isch a rg e w i l l be summarized b r ie f ly * l ) D ir e c t e x c i t a t i o n by e le c t r o n impact* e * M — "ft* iyf e (low er K*S*) At in te r m ed ia te f ie ld - t o - p r a s s u r e r a t io s (from perhaps 2 to 100 v o lts/c m o /iH o Hg) t h i s type o f p ro cess accounts f o r a major f r a c t io n o f th e energy lo s s e s su ffe r e d by e le c t r o n s . E lectro n impact e x c i t a t i o n obeys th e Franck-Condon p r in c ip le , and th e 6 e x c i t a t i o n may lea d e it h e r t o a s t a b le e x c ite d s t a t e or to d i s s o c i a t i o n in to fragm en ts, depending upon r e l a t i v e d is p la c e ­ ments o f p o t e n t ia l energy s u r f a c e s . U nlike o p t ic a l e x c it a t io n , e le c t r o n impact o f s i n g l e t m o lecu les can lea d e it h e r t o s in g l e t or t o t r i p l e t e x c ite d s t a t e s ° 2) I o n iz a tio n by e le c t r o n impact* e M ■>- M + 2e At h ig h er f ie ld - t o - p r e s s u r e r a t io s t h i s type o f p ro cess becomes in c r e a s in g ly im portant * I t i s , o f cou rse, str o n g ly dependent upon th e io n iz a t io n p o t e n t ia l o f th e m olecular s p e c ie s . In t h is ty p e o f p r o c e s s , a s in g le e le c t r o n c r e a te s a new io n p a ir ( io n p lu s electron ).? th e ea se o f form ation o f io n p a ir s by e le c t r o n impact i s exp ressed through th e f i r s t Townsend co­ e f f i c i e n t , a , which g iv e s th e number o f io n p a ir s produced by a s in g le e le c t r o n t r a v e r s in g one cm. in th e f i e l d d ir e c t io n a t a p p rop riate f ie ld - t o - p r e s s u r e r a t i o . 3 ) I o n iz a tio n p lu s e x c it a t io n by e le c tr o n im pact. e“ * M— * M** + 2e“ Higher energy e le c tr o n s may produce e x c ite d s t a t e s o f i o n s . U) R a d ia tiv e recom b in ation o f ion s and e le c t r o n s . a e “ * M* — [M*] — > M# hv This p ro cess o f d ir e c t com bination o f io n s and e le c tr o n s to -1 2 form e x c ite d m olecu les i s of v e r y low p r o b a b ility ( a . ~iQ GIQ3 io n -s e c becau se th e d u ra tio n o f th e io n -e le c tr o n encounter i s so 7 b r i e f in com parison to th e mean l i f e t i m e o f e x c it e d e le c t r o n ic sta te s o The e x c e ss energy can most l i k e l y n ot be l o s t b efo r e th e io n p a ir ag a in d i s s o c i a t e s * The p ro cess becomes in c r e a s in g ly improbable fo r more e n e r g e tic e le c t r o n s . The r a d ia tiv e recom bi­ n a tio n c o e f f ic ie n t * tte r * i s th e s p e c i f i c r a te co n sta n t f o r th e recom b in ation p r o c e s s . 5 ) D is s o c ia t iv e recom bination o f io n s and e le c t r o n s . * a ed * 8” * M -------> A * B The recom b in ation p ro cess i s g r e a tly f a c i l i t a t e d by p o s s ib le bond rupture* which would make p o s s ib le th e d is s ip a t io n o f some o f th e energy o f th e recom b in ation . S in ce d i s s o c i a t io n can occur w it h in a v ib r a t io n a l period ( ^ 1 0 s e c . ) w h ile e m issio n 8 o f e le c t r o n ic energy i s u s u a lly much slow er ( ^ 10 sec.)* d i s s o c i a t i v e recom bination p r o c e s se s tend t o be about a m illio n ® cm3 f o ld as p robable as r a d ia tiv e recom bination ( a , /“v-/ 10 ). ^ v ed io n - s e c . —» Lew en ergy (th erm a l) e le c tr o n s are again most r e a d ily captured by io n s . Because io n iz a t io n p o t e n t ia ls are a p p recia b ly higher* in general* than bond en erg ies* one o f th e d is s o c ia te d fragm ents w i l l u s u a lly carry e le c t r o n ic e x c ita tio n * which can lead t o subsequent e m iss io n . The d is s o c ia t i v e recom bination c o e f f ic ie n t * a e(j* i s th e s p e c i f i c r a te co n sta n t fo r t h is recom bination p rocess. 6) W all recom bination (am bipolar d if f u s io n ) . e ,,*0* w a ll ♦ M — ----- > M The w a ll can se r v e to d is s ip a t e th e e x c e ss energy o f recom bi­ nation* and hence a c ts as an io n - e le c t r o n s in k . D if fu s io n o f 8 th e charged s p e c ie s to th e w a lls o fte n p r im a r ily determ ines th e amount o f i n i t i a t i o n n e c e s s a iy t o s u s t a in th e glow d is c h a r g e . 7 ) Ion rearrangem ent. M* — > A* * Bo Ions i n i t i a l l y formed by e le c t r o n impact may undergo subsequent rearrangem ents w ith in a few v ib r a t io n a l p erio d s b e fo r e s u s t a in ­ in g c o l l i s i o n s w ith e le c tr o n s or oth er s p e c ie s - The rearrange­ ment may be an iso m e r iz a tio n or a fragm en tation t o produce a new io n and, u s u a lly , a f r e e r a d ic a l- ( I t should be remembered th a t th e primary io n s formed from s in g l e t or t r i p l e t m olecu les are n e c e s s a r ily io n - r a d ic a ls , s in c e th e y p o s s e s s an odd e le c t r o n as w e l l as a p o s i t i v e charge )„ The rearrangem ents which occur are g e n e r a lly th o se in v o lv in g r e l a t i v e l y l i t t l e en ergy, and are in c r e a s in g ly l i k e l y where some e x c e ss energy in form ation o f th e io n went in to v a r io u s v ib r a t io n a l modes. 8) Charge t r a n s f e r M * A* — > A * M* Ions o f h ig h e r io n iz a t io n p o t e n t ia l s p e c ie s may, upon c o l l i s i o n , remove e le c tr o n s from s p e c ie s o f lower io n iz a t io n p o t e n t ia l. ■Where a p p re cia b le d iff e r e n c e in io n iz a tio n p o t e n t ia l e x i s t s , some e le c t r o n ic e x c it a t io n may accompany th e charge t r a n s f e r . 9 ) I o n iz a t io n by e x c ite d atom s. AA + M A * M* ♦ e The energy o f e x c it a t io n of a s p e c ie s may produce io n iz a t io n o f a s p e c ie s having io n iz a t io n p o t e n t ia l low er than th e 9 e x c it a t io n energyo In gases a t f a i r l y low pressure* i t i s u n lik e ly th a t e l e c t r o n i c a l l y e x c ite d s p e c ie s w i l l undergo c o l l i s i o n p r io r t o ra d ia tio n * u n le s s th e e x c ite d s p e c ie s be m e ta sta b le (hence* l o n g - l i v e d ) . Am * M 5* A ♦ M* ♦ e" (th e Penning e f f e c t ) 1 0 ) E x c it a t io n by e x c ite d atom s. A" * M — > it ♦ A E le c tr o n ic energy may be tr a n sfe r r e d on c o l l i s i o n between e x c ite d and normal s p e c i e s . M etastable atoms are again most l i k e l y t o be im portant h e r e . 11} Complex io n fo rm a tio n . M* * B ----- > MB'* Ions may complex w ith n e u tr a l s p e c ie s t o form la r g e r io n s . This p ro cess i s f a c i l i t a t e d by th e p o la r iz in g e f f e c t o f th e ion* and may be enhanced by th e r a d ic a l nature o f ion s formed from s i n g l e t atoms or m olecules* p a r t ic u la r ly in in t e r a c t io n w ith d o u b let or t r i p l e t n e u tr a l s p e c ie s . T his process* fo llo w ed by d i s s o c i a t i v e recom bination* a ffo r d s a tw o -ste p mechanism f o r e le c t r o n ic e x c it a t io n o f n e u tr a l s p e c ie s* s t a r t in g w ith th e corresponding i o n s . 12) E lec tro n c a p tu re. M# e M The capture o f an e le c t r o n by a n e u tr a l s p e c ie s t o form a n e g a tiv e io n i s in g en era l a p ro cess of low p r o b a b ility * ex cep t f o r v e r y slow (th erm a l) e le c tr o n s combining w ith m olecu les of h igh e le c tr o n a ffin ity « 10 13) Quenching p r o c e s s e s „ Any p ro c ess in which a s p e c ie s o f d ir e c t in t e r e s t or importance i s d estro y ed may be con sid ered a quenching p r o c e s s . Thus, p r o c e s se s ( 8 ) , ( 9) and ( 1 0 ) , in p a r t ic u la r , may a c t t o quench th e co n c e n tr a tio n s o f m eta sta b le atoms or of io n s e s s e n t i a l t o th e phenomenon o f i n t e r e s t » 1U) E le c tr o d e p r o c e s s e s • Many p r o c e s se s which occur a t th e e le c tr o d e s or a t su r fa c e s of probes g r e a t ly a f f e c t th e e le c tr o n and io n com p osition o f th e vapor in a glow d isch a rg e <, These may in c lu d e th erm ionic e m issio n o f e le c t r o n s , f i e l d em issio n o f e le c tr o n s (where stron g p o t e n t i a l g ra d ie n ts e x i s t in th e v i c i n i t y o f m etal s u r f a c e s ) , secondary em issio n p r o c e sse s ( p a r t ic u la r ly in p o s i t iv e io n bombardment a t th e cath ode, d escrib ed through th e second Townsend c o e f f i c i e n t ) , and p r e f e r e n t ia l e le c t r o n capture (through th e g r ea te r v e l o c i t y of th e li g h t e r e le c tr o n s as com­ pared t o th e h e a v ie r p o s it iv e io n s at a p a r t ic u la r e f f e c t i v e tem perature) <= M etal e le c tr o d e s to which a p o t e n t ia l i s a p p lied tend t o b u ild up about them in th e gas phase a h ig h er concen­ t r a t io n o f charge c a r r ie r s o f o p p o site s ig n i t h is c r e a te s a r e g io n of '*space charge11 about th e e le c tr o d e * 15) P hotochem ical p r o c e s s e s « The l i g h t em itted in th e d isc h a r g e , p a r t ic u la r ly th e sh ort w avelen gth p o r t io n s , may be absorbed and cause e x c it a t io n , p h o to d is s o c ia t io n , or p h o to io n iz a tio n o f gaseous s p e c ie s , and p h o t o e le c t r ic e m issio n from m etal s u r f a c e s ■> 11 1 6) Chemical p r o c e s s e s . The i o n ic and f r e e r a d ic a l s p e c ie s produced in th e glow d i s ­ charge may engage in a v a r ie t y o f secondary chem ical r e a c tio n s which can s i g n i f i c a n t l y a f f e c t th e com p osition o f th e d is ­ charge medium. Of p a r t ic u la r im portance are r a d ic a l a b s tr a c tio n , a d d itio n , and recom bination r e a c t io n s , which can be in volved in ch ain sequences producing c o n sid era b le chem ical change from each r e a c t iv e s p e c ie s produced P o ly m eriza tio n r e a c tio n s commonly occu r, and r e s u lt in d e p o s itio n o f high m olecular w eigh t m a te r ia ls on th e in s id e s u r fa c e s o f th e d isch a rg e tu b e . Extended trea tm en ts o f p r o c e sse s occurring i n a gaseous d isch arg e may be found in a t r e a t i s e by Loeb ( l ) and work by Penning ( 2 ) . PART I MOLECULAR EMISSION SPECTRA AND CHEMICAL REACTIONS IN THE GLOW DISCHARGE TABLE OF CONTENTS Page Ao A Review o f Clow D isch arge E m ission S p ectra and R elated F ie ld s . 12 1 . E m ission S p ectra o f P olyatom ic M olecules and I o n s . . * a . E a rly Work bo The Technique"and Work o f H. S c h u le r . (1 ) The B a sic Technique O 0 0 O 0 0 O O O 0 O 0 0 O (2 ) Mechanism o f E x c ita tio n in th e Glow D isch arg e . . o . . o . o o o o . . . . . o. . . . o». •««• ( 3) R efinem ents o f th e Technique Which Aid in I d e n t if y in g S p e c tr a l E mi t t e r s . . . . . . . . . . . . (U) New S p ectra Observed by th e S ch u ler TechniCJU© (5 ) L im ita tio n s o f th e T echnique. . . . . . . . . . . . • Co R e su lts from Other Techniques o f Glow D ischarge E x c it a t io n o f M olecular E m ission S p ectra O © 0 0 0 O 0 0 0 0 2 . S tu d ie s o f R ea ctio n Mechanisms in th e Glow D ischarge o o o a o G eneral . . . b o Chemical A n a ly sis o f P r o d u cts. Co S p e c tr o sc o p ic E m ission S tu d ie s 3 . Other S ou rces o f E le c tr o n Impact E x c ita tio n ' 0 0 © 0 0 0 0 0 0 0 0 6 0 0 0 0 * 0 ao I o n iz in g R a d i a t i o n . . . . . . b . The Mass Spectrograph a o o o o 0 « 0 0 0 * O 0 0 0 0 0 0 0 O * * 0 0 12 12 13 13 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 d O C O O 0 0 0 4 O 0 0 0 o O O O O O O O O O O O O O O O o O O O O O O O OO O0 O0 0 Q O O O 0 O O Q O © © * . 0 o 0 . 0 0 0 0 6 0 0 0 0 0 0 0 0 c o o o QCOO 0 6 * 6 0 6 0 0 0 0 0 0 0 0 0 0 OQO0 0 0 0 O0 Bo E m ission S p ectra in a Flow System w ith a C arrier Gas 0 0 * 0 0 0 0 o o 0 * 0 0 0 0 0 0 * o 0 0 0 0 0 * 0 0 6 0 0 o 0 0 0 6 0 0 0 0 0 0 0 0 a o O O O O O O O O O O 0 0 O O 0 * © 6 0 0 0 0 0 * 0 0 6 0 0 0 0 * 0 0 0 6 0 6 0 0 0 0 0 0 0 *0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 6 0 0 0 0 6 0 0 0 O O O O 6 6 0 6 O 0 O O 6 O O O 0 0 O O O 0 0 0 O O 0 O O * 0 * 0 0 0 0 * 0 6 0 © 0 6 0 * 0 6 0 0 0 0 0 0 6 6 0 0 0 0 0 0 # 000 0 0 0 * 0 0 6 0 0 0 0 6 6 0 0 0 0 0 © 0 0 0 0 6 0 * 0 19 20 22 23 25 25 26 27 29 29 30 31 0 0 0 O 0 0 0 0 3.o E xperim ental a . G eneral D e s c r ip tio n o f E xperim ental Approach b . Reagents o o o 0 « O O 0 O o c o 0 0 0 0 0 0 0 * 0 0 0 O O • 6 * 0 0 0 0 6 (1 ) A r g o n . . . . ( 2) He l i u m. . . ( 3) Organic Samples c . Apparatus (1 ) D isch arge S y ste m .. . o . , 60 0 6 ( 2) O p tics and Sp ectrophotom eter. 6 6 (3 ) The E x c ite r d o E xperim ental Procedure O O O (1 ) W avelength Measurement (2 ) O perating th e D ischarge S y s t e m ... 2 . R e su lts and D i s c u s s i o n . . . . a . Quenching o f th e Argon S p ectru m .. . . 6 0 0 b . The Blue Spectrum o f A r g o n ... O O O O O C 0 Co C o r r e la tio n o f th e Observed Blue Spectrum w ith th e B lue Spectrum of A r g o n . . . . . . O O O O O O O O O O O * 16 0 0 0 6 0 0 0 0 0 0 * 0 0 0 0 OO continued 31 31 32 32 33 33 3k 3k 37 38 UO UO bO b3 k3 hS U6 TABLE OF CONTENTS - Continued Page d o Helium C arrier Gas . . . . . . . c * . . . . . . . . . . . . . . . ................... e « P olyatom ic M olecular S p ectra . . . . . . . . . . . . . . * . .............. f * I n te r p r e ta tio n o f S e le c t iv e Quenching o f th e Argon Red S p ectru m *................................................ 3o S u g g e stio n s f o r Further Work w ith Argon C arrier G a s , . * . * . a* E f f e c t o f th e Nature o f E x c it a t io n on E le c tr o n E n erg ies in th e D ischarge . . . . . . . . ...................... b . R e la tiv e E f f e c tiv e n e s s o f Various Quenchers................ U6 h9 9h 55 C. E m ission S p ectra in a Flow System w ith ou t a C arrier G a s . . . . . . . . 57 1 . E xperim ental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a o Gener a l o o . o o . . e o . .....ao..................... b *. M o d ifica tio n s o f P revious A pparatus .............. c . Procedure During a Run ............... . . . . . . . . . 2 . R e su lts and D is c u s s io n ............ a . K etones . . . . . . c . * . . . . o. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b * A lco h o ls y Alkanes and A lk y l H alid es ......... c . I n te r p r e ta tio n o f D ecom position P a t t e r n s . . ................. (1 } Ge n e r a d _ . . . o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 2) A lc o h o ls , Adkanes, A ceto n e...................... (3 ) A lk y l H a l i d e s . . . . . . . . . . . ......... .. 0. . . . . . . . . . . . . 3 * Summary o f Work w ith ou t a C arrier Gas ............ 1±. S u g g estio n s fo r Further Work W ithout a C arrier Gas.............. 57 57 57 60 61 61 63 67 67 67 72 7U 75 h9 5U Ao A Review o f Glow D ischarge E m ission S p ectra and R elated F ie ld s 1 ” E m ission S p ec tra o f P olyatom ic M olecules and Ions a o E a rly Work E a rly work in e l e c t r i c a l e x c it a t io n o f e le c t r o n ic sp e c tr a o f p o ly ­ atom ic m o lecu les was done by MeV ick er, Marsh and Stew art (U) and Marsh ( 5 ) b eg in n in g in 1923. Organic vapors were caused t o flo w through a p a r t i a l l y ev a cu a ted , g la s s e n c lo se d , space betw een c o n c e n tr ic c y lin d r ic a l e le c t r o d e s connected t o th e secondary w inding o f a T e sla tran sform er h avin g an output o f s e v e r a l thousand v o l t s . The spectrum o f th e glow d isc h a r g e ob tain ed was th en observed end-on down th e c y lin d r ic a l vapor sp a ce o Benzene vapor was observed t o em it bands in th e 3000 A r e g io n w hich were c o r r e c t ly i d e n t i f i e d as em issio n o f th e benzene m olecu le betw een th e same e le c t r o n ic s t a t e s as th e ab so rp tio n o f t h is m o le cu le . Other benzenoid m o lecu les were observed t o behave s im ila r ly . o f carbon and hydrocarbon polymers was always p r e s e n t . D e p o sitio n In th e ca se o f a ceto n e and a n i l i n e th e d ecom position was so sev ere as to p reclu d e o b se r v a tio n o f e m issio n by any polyatom ic s p e c ie s . In 1930, A u stin and Black (6 ) continued work along th e l in e s th a t McVicker, Marsh and S tew art had p u rsu ed . U sing e x te r n a l e le c tr o d e s and v e r y h igh v o lta g e s (ap p roxim ately 100,000 v o l t s ) as w e ll as high cu rren t d e n s itie s ^ th e y were tro u b led w ith stro n g d ecom p osition and crack in g o f th e g la s s d isc h a r g e t u b e s . These authors th en began u sin g in te r n a l e le c tr o d e s w ith th e same h igh p o t e n t i a l s . U sing h ig h er d is p e r s io n than th e p re v io u s a u th o r s, A u stin and Black q u ite c le a r l y e s ta b lis h e d th e 12 68 in th e s e m o le c u le s, alth ou gh C2 i s observed r e a d ily from d eco m p o sitio n o f hexane or many a lk y l h a lid e m o le c u le s . An in t e r p r e t a t io n o f th e p e r s is t e n c e o f t h e C-0 bond can b e made by e x te n sio n o f th e g en er a l mechanism f o r e le c t r o n im pact e x c i t a t i o n o f a lc o h o ls proposed by Cummings and B leak n ey (5 2 ) and d e s c r ib e d e a r l i e r in th e review m a te r ia l, S e c tio n I . In th e i n i t i a l e le c t r o n im p act, a non-bonding oxygen e le c t r o n i s removed from th e a lc o h o l, and th e r e s u lt in g m olecu le c o n ta in s an oxygen w ith a p o s i t i v e charge and an odd e le c t r o n . The oxygen see k s t o com pensate f o r i t s e le c t r o n d e f ic ie n c y b y form ing an a d d itio n a l v a le n c e bond w ith th e carbon atom t o which i t i s a lrea d y bound. The most w eak ly bonded s u b s t it u e n t i s n orm ally e j e c t e d t o do t h i s . In th e a l i p h a t i c a lc o h o ls , th e s u b s tit u e n t e j e c t e d w i l l , in g e n e r a l, be an a lk y l group. E ith er th e i n i t i a l io n or a rearranged fragm ent io n may undergo d i s s o c i a t i v e recom b in ation t o form e x c it e d and norm al fragm en ts. In a d d itio n , d ir e c t e x c i t a t i o n o f th e v a r io u s s p e c ie s may le a d t o r a d ia tiv e s t a t e s , or t o u n sta b le e x c it e d s t a t e s which d i s s o c i a t e , and numerous secondary r e a c tio n s in v o lv in g th e r e a c t iv e fragm en ts may o c c u r . Some o f th e im portant p r o c e s se s are shown in th e complex r e a c t io n scheme b elow . R R - C - OH * e' H H © R - C - 0 - H D is s o c ia t iv e Recomb. e D i s s o c ia t iv e Recom bination, Q_ CO Cl . APPARATUS LL) c o CO co o LU Cu FOR EXCITATION OF ORGANIC THE GLOW DISCHARGE MOLECULES o v UJ SCHULERS co IN o ' 1. O FIGURE iu CL? co 9CJ ,9LO UJ 15 The d isc h a r g e tu be con tain ed a gas n on -con d en sib le a t liq u id a ir tem perature—’f o r exam ple, a ra re gas* hydrogen, or n itr o g e n a t a p ressu re o f a f r a c t i o n o f a m illim e te r o f m ercury. th e c a r r ie r g a s . T his gas was r e ferred t o as Sample vapors were caused t o flo w in t o th e system from th e v o l a t i l e sample in a c o n ta in e r , C, through th e d isch a rg e space S ,S S in t o th e liq u id a ir tra p s T, T 9 <> The r a te of flow o f th e sample was c o n tr o lle d by c o n t r o llin g i t s vapor p ressu re through v a ry in g th e tem perature o f th e sample w ith a cold b a th . The vapor p ressu re in th e d isc h a r g e space could a ls o be c o n tr o lle d by e n c lo s in g i t i n an oven. With t h i s arrangement th e o rgan ic vapors do n o t come in co n ta ct w ith th e e le c t r o d e s , and d eco m p o sitio n , which i s always g r e a te s t in th e v i c i n i t y o f th e e le c t r o d e s , i s p r a c t i c a l ly e lim in a te d . The glow d isch a rg e i s conducted through th e cold t r a p s , th e energy b ein g tr a n sfe r r e d from the c a r r ie r gas t o th e sample vapor i n th e t r a p s . The spectrum o f th e glow d isc h a r g e i s observed end-on through th e windows W, W8 o f th e d isc h a r g e space S , S 8 . The d isch a rg e sp ace i s in e f f e c t th e p o s i t i v e column o f a glow d isc h a r g e , s in c e w ith th e symmetry o f th e system th e a lte r n a tin g cu rren t m erely changes d ir e c t io n of the cu rren t flo w p e r io d ic a lly . As an example o f how th e system o p erates in p r a c t ic e , l e t us con­ s id e r th e s it u a t io n where helium i s th e c a r r ie r gas and to lu e n e i s th e sam p le. I f th e sample i s a t f i r s t c lo se d o f f from the d isch a rg e space and th e e le c tr o d e s a c t iv a t e d , th e arc spectrum l i n e s o f helium are th e predominant components o f th e observed spectrum . I f th en th e sample stop cock i s opened, b u t th e sample co ld bath i s a t a low enough tem perature t o keep th e p a r t i a l p r e ssu r e o f to lu e n e so low th a t th e helium i s in 16 e x c e s s by th e r a t i o o f about 3 0 s1 , d iatom ic fragm ents such as C2 and CH and atom ic and m olecu lar s p e c tr a o f hydrogen are s e e n , in a d d itio n to th e helium l i n e s . This in d ic a t e s a s t a t e o f stro n g decom p osition o f th e o rg a n ic vapor and i s r e fe r r e d t o by S ch u ler as th e d e s tr u c tiv e s t a t e . I f th e b ath tem perature i s now Increased somewhat, th e l i n e s p e c tr a b e g in t o fa d e as do th e band s p e c tr a o f th e d ia to m ic m o le c u le s, and new band s p e c tr a and co n tin u a are observed in th e v i s i b l e and u lt r a v i o l e t r e g io n s . S e v e r a l new s p e c tr a , which are most c e r t a in ly due- t o polyatom ic fragm ents d eriv ed from m ild d ecom p osition o f to lu e n e , occur in t h is in term ed ia te s ta t e o These s p e c ie s are d escrib ed in l a t e r paragraphs t o th e e x te n t th a t th e e m itte r s o f th e s p e c tr a have been i d e n t i f i e d . I f th e sample vapor p r e ssu r e i s in crea sed s t i l l fu r th e r , but not t o th e e x te n t th a t th e d isch a r g e i s co m p letely quenched o u t, an em issio n spectrum in th e 3000 A r e g io n i s observed, corresponding to t r a n s it io n s between th e same e le c t r o n ic s t a t e s as in a b so rp tio n by th e benzene r in g . The r a t io o f c a r r ie r gas p a r t i a l p r e ssu r e t o sample p ressu re i s approxim ately l s l . This low energy r e g io n i s c a lle d th e end s t a t e . (2 ) Mechanism o f E x c ita tio n in th e Glow D isch a rg e. To in te r p r e t th e changes in th e s p e c tr a observed in th e experim ent j u s t d e sc r ib e d , one must co n sid er th e changes in e n e r g ie s o f th e v a rio u s s p e c ie s i n th e glow d is c h a r g e . S in c e both d ir e c t e le c tr o n impact e x c it a t io n of s p e c ie s and in d i r e c t e x c i t a t i o n p r o c e sse s in v o lv in g e le c tr o n exchange between atom s, m o lecu les and io n s presum ably o ccu r, i t i s n e c e ssa r y t o co n sid er how th e e n e r g ie s and numbers o f a l l o f th e s e s p e c ie s are a lte r e d when th e p a r t i a l p ressu re o f th e org a n ic sample i s in c r e a s e d . 17 In th e glow d isch a rg e in pure rare gas a t p r essu res i n th e range o f a m illim e te r o f mercury as in d ic a te d e a r l i e r , th e p r in c ip a l em issio n c o n s is te d o f th e arc spectrum o f th e ra re g a s, w ith spark l i n e s p resen t o n ly a t low I n t e n s it y * This in d ic a t e s th a t most o f th e rare gas io n s have e n e r g ie s no h ig h er than th e f i r s t io n iz a t io n p o t e n t ia l f o r th a t gas * Furtherm ore, s in c e c o l l i s i o n s o f an e le c t r o n w ith an u n excited r a r e gas atom must be e l a s t i c i f th e e le c tr o n has energy below th e f i r s t e x c it a t io n p o t e n t ia l o f th e rare g a s , in a h igh enough f i e l d grad ien t th e e le c tr o n w i n co n tin u e t o be a c c e le r a te d u n t i l i t has enough energy t o c o l l i d e i n e l a s t i c a l l y w ith a ra re gas atom. The r e s u lt in g in c r e a se i n p r o b a b ility o f i n e l a s t i c c o l l i s i o n when th e f i r s t e x c it a t io n p o t e n t ia l i s reached r e s u lt s in c u t tin g o f f th e h igh energy end o f th e e le c t r o n d is t r ib u t io n so t h a t , although th e r e are e le c t r o n s w ith e n e r g ie s even h ig h er th a n th e f i r s t io n iz a t io n p o t e n t i a l , th ey are much few er in number th a n th o se in th e range between th e f i r s t e x c it a t io n p o t e n t ia l and f i r s t io n iz a t io n p o t e n t i a l. and 2k .6 e .v ^ r e s p e c t iv e ly . For helium th e s e p o t e n t ia ls are 2 1 .0 e . v . These e n e r g ie s are s t i l l v e r y h igh compared t o bond e n e r g ie s , which are o n ly about b e «v. i n organ ic m o le c u le s . C on seq uently, th e in tr o d u c tio n o f sm a ll amounts o f sample vapor in to th e helium d isch a rg e r e s u lt s in stro n g d ecom p osition o f th e organ ic m o le c u le s, as noted by S c h u le r . I f th e p a r t i a l p r essu r e of sample vapor i n th e d isch a rg e i s in ­ crea sed somewhat, th e c a r r ie r gas atom ic l i n e s b eg in t o fa d e , and l e s s v i o l e n t d ecom p osition o f th e sample o c c u r s, r e s u lt in g in p olyatom ic s p e c ie s w ith c o n sid e r a b ly few er d iatom ic fragm ents b ein g ob served . 18 T his r e s u lt s from th e g r e a t ly in crea sed op p ortu n ity fo r e le c tr o n s to s u f f e r i n e l a s t i c c o l l i s i o n s w ith sample m olecu les ® Polyatom ic m olecu les i n g en era l have many e x c ite d s t a t e s which l i e w e ll below th e f i r s t e x c i t a t i o n p o t e n t ia l o f helium and th e oth er ra re g a s e s . The e le c tr o n s b e in g a c c e le r a te d i n th e e l e c t r i c f i e l d can be robbed o f t h e ir energy by th e s e p olyatom ic m o lecu les b efo re th e energy becomes la r g e enough to e x c i t e th e ra re g a s « This e f f e c t r e s u lt s in ra th er g rea t lim it a t io n o f th e upper range o f e le c tr o n e n e r g ie s p r e se n t i n th e glow d isch a rg e i n th e p resen ce o f sample v a p o r s . Continued in c r e a s e o f th e p a r t ia l p ressu re o f th e sample vapor r e s u lt s in th e end s t a t e , i n which c a r r ie r s p e c tr a l l i n e s have co m p letely d isappeared and s p e c tr a o f undecomposed sample m olecu les appear in many c a s e s D In t h is s it u a t io n , th e e le c t r o n e n e r g ie s are la r g e ly d e lim ite d by th e sample vapor i t s e l f , s in c e p olyatom ic mole­ c u le s w ith t h e i r many a v a ila b le e x c ite d l e v e l s a few e le c tr o n v o l t s above th e ground s t a t e are much more e f f e c t i v e i n undergoing i n e l a s t i c c o l l i s i o n s w ith e le c t r o n s than are th e ra re g a s e s , w ith t h e i r sim ple e x c ite d s t a t e s ly in g so h igh above th e ground s t a t e . With S c h u le r ?s tec h n iq u e , th en , one has some c o n tr o l over th e range o f e n e r g ie s o b ta in a b le in th e glow d isc h a r g e . S in ce th e f i r s t e x c it a t io n p o t e n t i a l and f i r s t io n iz a t io n p o t e n t ia l o f th e c a r r ie r gas determ ine t o a g r ea t e x te n t th e upper range o f e le c t r o n e n e r g ie s in th e d isc h a r g e , t h i s l i m i t can be v a r ie d by v a ry in g th e c a r r ie r g a s . The other para­ m eters a v a ila b le t o c o n tr o l e n e r g ie s have a lread y been m entioned— th a t i s , th e r a t i o o f p a r t ia l p re ssu r e s o f c a r r ie r to sample gases and the f i e l d t o p r e ssu re r a t i o in th e p o s it iv e column« S in ce under th e low 19 cu rren t c o n d itio n s which se r v e t o d e fin e th e ,!normal glow*'® where th e p o t e n t i a l drop a c ro ss th e tu be remains co n sta n t w ith changes in current* th e param eter o f e l e c t r i c f i e l d i s not v a r ia b le * and* f o r a given system* th e r a t i o o f p a r t ia l p ressu re of c a r r ie r t o sample gas and the t o t a l p re ssu re are th e param eters which may be c o n tr o lle d » U sing th e s e param eters as a b a s is o f energy con trol* Sch iller has endeavored to e s t a b lis h a g en era l f i e l d o f e le c t r o n ic e m issio n sp e ctro sco p y o f p olyatom ic m olecu les* to g e th e r w ith th e p olyatom ic fragment m olecu les and io n s d eriv ed from m ild d ecom position of sample vapors <> S chuler has developed s e v e r a l tech n iq u es f o r is o l a t i n g s p e c tr a and id e n t if y in g t h e ir e m itte r s <. (3 ) R efinem ents o f th e Technique Which Aid i n I d e n t if y in g S p e c tr a l E m itters o S ch u ler (1 ) has t r ie d a la r g e number o f c a r r ie r gases in c lu d ­ in g helium* neon* argon* krypton* hydrogen* n itrogen * sodium* mercury* cycloh exan e and benzene „ The organic c a r r ie r s were used in a system whereby th e org a n ic m olecu les were f i r s t e x c ite d by helium* and then th e s e e x c ite d m olecu les were used to carry th e d isch a rg e to th e sample vaporo A v er y w ide range o f f i r s t e x c it a t io n and f i r s t io n iz a t io n p o t e n t ia ls was th u s c o v e r e d --! <>e o* U«7 e°v<, and 9-2 e 0v 0* r e s p e c tiv e ly * f o r benzene and 21 e ov 0 and 2U<>6 eoVc* r e s p e c tiv e ly * f o r helium.. I t was found th a t helium i t s e l f could be used a d eq u ately f o r e x c it a t io n o f low energy s p e c tr a under c o n d itio n s o f th e end s t a t e 0 The u se o f v a r io u s c a r r ie r gases was* however* a v ery u s e f u l tech n iq u e in h e lp in g t o i d e n t i f y th e em itte r o f a p a r t ic u la r spectrum* s in c e s p e c ie s req u irin g e le c t r o n e n e r g ie s above th e io n iz a t io n p o t e n t ia l o f th e c a r r ie r gas 20 were n ot e x c ite d by th a t p a r t ic u la r c a r r ie r g a s, but would be by one w ith a h ig h er io n iz a t io n p o t e n t i a l . This h elp s s e t a low er l i m i t on th e energy req u ired t o e x c it e t h i s s p e c ie s , or t o form i t from th e sample m o le c u le « G lues t o th e i d e n t i t y o f s p e c t r a l e m itte r s were a ls o obtained from th e s t r u c t u r a l u n its in th e v a rio u s saiqple vapors which could g iv e r i s e t o th e spectrumo Of cou rse comparison o f th e em issio n s p e c tr a w ith em issio n s p e c tr a o b tain ed in c o n v en tio n a l flu o r e s c e n c e s tu d ie s and — a b so rp tio n s p e c tr a o f s a p o r s in many c a ses gave h in ts t o th e i d e n t it y o f th e em ittero In many c a s e s , f in e s tr u c tu r e could be r e so lv e d and deuterium s u b s t it u t io n em ployed«, (U) New S p e c tr a Observed Using th e S ch u ler Technique. U sing th e se tec h n iq u e s S ch u le r and co-w orkers have observed s p e c tr a d escrib ed below and deduced a number o f th e e m itters r e s p o n sib le f o r th e s p e c tr a . Benzene d e r iv a t iv e s em it a spectrum in th e near u l t r a v i o l e t r e g io n a r is in g from th e e x c it a t io n o f th e e le c tr o n s o f th e benzene r in g . C erta in s u b s tit u e n ts o f low io n iz a t io n p o t e n t ia l i n h i b it t h is e m issio n ( 8 ) . A d i f f u s e green spectrum from benzene d e r iv a t iv e s in th e r e g io n hb56 A t o 59^0 A has been a ttr ib u te d t o th e b e n z y l r a d ic a l. A spectrum c o n s is t ­ in g o f two d if f u s e groups in th e reg io n s U75>Q“U9GQ A and 500Q-5U00 A i s ob serv ed , a r is in g from b en zenoid hydrocarbons, but t h e e m itte r remains unknown * A continuum observed in th e r e g io n 3 liOO-UUGO A has been t e n t a t i v e l y a ssig n e d t o th e dehydrobenzene m olecule CqH4 . S tron ger d ecom p osition o f arom atic hydrocarbons, or p o ly m er iz a tio n o f o l e f i n i c or a c e t y le n ic hydrocarbons, r e s u lt s in th e d ia c e ty le n e p o s it iv e io n 21 w hich em its bands in th e r e g io n I+763 A t o 6500 A (1 0 ) * The d ia c e ty le n e p o s i t i v e io n spectrum was f i r s t observed by S ch u ler and a ssig n ed t o th e n e u t r a l m olecu le • L ater h igh d is p e r s io n work by Calloman (11) r e s u lte d in r e c o g n itio n o f th e d ia c e ty le n e p o s it iv e io n as th e e m itte r . B lu e , str u c tu r e d , continuous em issio n by benzaldehyde and sub­ s t i t u t e d benzaldehydes has been observed by S ch u ler ( 1 2 ) . The em issio n was v e r y in te n s e and d e t e c ta b le a t benzaldehyde co n cen tra tio n s o f one p a rt per m illio n . S c h u le r , Gollnow and W oeldike (13) observed th e con tin u ou s b lu e em issio n o f a ceton e and acetop hen one. S ch u ler and W oeldike (U4) rep ort t e n , v i o l e t degraded, em issio n bands in th e r e g io n 5315 A t o 6162 A o r ig in a tin g from th e quinone mole­ c u le . The r o t a t io n a l f in e s tr u c tu r e in th e s e bands was smeared out by adm ixture o f h y d r o x y l-c o n ta in in g s p e c ie s in th e d is c h a r g e . Hydrogen bonding between th e h y d r o x y lic hydrogen and th e q u in o id a l oxygen i s presumed r e s p o n s ib le f o r t h i s e f f e c t . New form aldehyde bands a t 351+5 A and 31+06 A degraded t o th e red were observed in th e glow d isch a rg e spectrum o f form aldehyde b y S ch u ler (15).* S ch u ler and Reinebeck (1 6 ) rep orted em issio n in th e 31QG A r e g io n a r is in g from m olecu lar n ap h th alen e. o f s p e c ie s d eriv ed from n a p h th a len e. They a ls o observed fou r new sp e c tr a One o f th e se s p e c ie s i s presumed t o be l , 2 , 3 ,U“tetra h y d ro n a p h th alen e, and i t s d if f u s e spectrum occurs in th e reg io n 1+70Q A t o 5100 A. The o th er sp e c tr a are presumed t o b elo n g t o sm a lle r fragm ents o f th e m o le c u le . These s p e c tr a are; 5180-6000 A ( d i f f u s e ) 5900 A ( d if f u s e bands occu rrin g a t h ig h er vapor p r e s s u r e s ), 39&Q A, 1+21*0 A, 1+1+80 A ( d if f u s e b a n d s). 22 S ch u ler and Reinebeck ( 9 ) rep ort th a t indene and hydrindene in th e glow d isch a rg e g iv e r i s e t o a spectrum in th e r e g io n Jl630~5050 A which i s s im ila r t o th e spectrum a ttr ib u te d t o l,2 ,3 ,li.-tetra h y d r o n a p h th a len e above. W ater su b jected t o th e glow d isch arge by S ch u ler (1 7 ) produces seven red degraded bands i n th e r e g io n 1j.2G0-5U80 A, shown t o b e em itted by th e n e g a t iv e ly charged h ydroxyl r a d ic a l. Bands between 5635 A and 5670 A have been observed by S ch u ler (1 8 ) in th e glow d isch a rg e o f ammonia v a p o r. The ammonia m olecule i s presumed t o be th e e m itte r . MLlazzo ( 1 9 ) / u sin g a Schuler tu b e , has observed e m issio n o f th e N -m ethyl p y r r o le m o le c u le . The spectrum c o n s is t s o f f if t y - t w o f a in t bands betw een 2878 A and 2 J4.OO A. ( 5 ) L im ita tio n s o f th e Technique. D e sp ite th e ap p aren tly la r g e number o f s p e c tr a rep o rted , th e method h a s, u n fo r tu n a te ly , not proven t o be as g en era l as was at f i r s t hoped. The sp e ctra o f n e u tr a l m olecu les observed w ith o u t fra g m en ta tio n , in a l l c a ses where i t could be a s c e r ta in e d , a ro se from t r a n s it io n s between th e f i r s t s in g l e t e le c t r o n ic e x c ite d s t a t e o f th e m olecu le and th e ground e le c t r o n ic s t a t e o f th e m o le cu le . T r a n s itio n s betw een h ig h er e x c ite d s t a t e s , and from th e second e x c ite d s t a t e t o th e ground s t a t e , were n ot observed even f o r a number o f mole­ c u le s h aving stro n g t r a n s i t io n p r o b a b ilit ie s f o r th e corresponding a b so r p tio n s. I n s te a d , fragm en tation would occur* Thus, ra th er than o b ta in in g e x te n s iv e t r a n s it io n s among a la r g e number o f e x c ite d s t a t e s o f n e u t r a l m o le c u le s, in many ca ses em issio n by p olyatom ic f r e e r a d ic a ls and io n s i s ob served . This in i t s e l f , however, has in t e r e s t in g 23 r a m ific a tio n s f o r th e c h em ist. The s im ila r it y o f e le c t r o n impact e x c i t a t i o n to r a d ia tio n ch em ical p r o c e sse s induced by oth er io n iz in g r a d ia tio n s w i l l be d isc u sse d in a la t e r s e c t io n . c . R e s u lts from Other Techniques o f Glow D ischarge E x c ita tio n o f M olecular E m ission S p ectra R adiofrequency 5 e le c t r o d e le s s e x c it a t io n o f flo w in g vapors seems to g iv e s p e c tr a v e r y s im ila r t o th o se r e s u lt in g from S c h u le r 's method e x c ep t th e r e appear t o be few er ways t o vary th e energy a t t a in e d . The e le c t r o d e le s s glow d isch a rg e has been w id e ly u sed , but few compounds have been stu d ie d beyond th o se reported by S ch tile r . Vacher and l o r t i e (2 0 ) rep o rt having separated th r e e energy ranges in a ra d io freq u en cy d isch a rg e o f flo w in g organ ic vapors by r e g u la tin g th e power in p u t and th e vapor p ressu re o f th e sam ple. In th e se energy ra n g e s, which correspond to S c h u le r 's d e s tr u c tiv e s t a t e , in term ed ia te s t a t e , and end s t a t e , were observed many o f th e sp e c tr a o f s p e c ie s d er iv ed from arom atic compounds«, In a d d itio n , th e s e authors rep o rt a band a t hk9$ A observed in a p ip e r id in e d isch a rg e and a new band in th e b e n z y l r a d ic a l spectrum a t 5963 A. Much o f th e l a t e r work has been concerned w ith h ig h er r e s o lu t io n o f em issio n sp e c tr a in th e glow d isch argeo benzene and to lu e n e em issio n e x te n siv e ly .. Leach (21) has stu d ied F au ris (22) has stu d ied th e aceton e continuum c l o s e l y , f in d in g th a t b e s id e s th e maximum near U500 A observed by S c h u le r , th e r e i s a ls o a sm all maximum a t 2900 A correspond­ in g t o th e a b so rp tio n peak in th a t r e g io n . Robinson ( 23) has made h igh r e s o lu t io n s tu d ie s o f th e benzaldehyde and acetophenone b lu e eontinua 2h p r e v io u s ly observed by S c h u le r . The con tin ua e x h ib ite d banded s tr u c tu r e . Robinson employed a rad iofreq u en cy e x c i t e r , and d is s o lv e d th e samples in to lu e n e or b en zen e, th en allow ed th e s o lu t io n t o v a p o rize and flo w r a p id ly through th e e le c t r o d e le s s e x c i t e r . The to lu e n e and benzene em it in th e u l t r a v i o l e t , b u t do n ot in t e r f e r e w ith th e v i s i b l e con tin u a o f th e m o lecu les s tu d ie d . The to lu en e or benzene a c ts som ething l i k e a c a r r ie r g a s, a llo w in g u se o f sm a ller samples than would be needed f o r th e pure m a t e r ia ls . Robinson ( 2U) a ls o rep o rts a stru ctu red continuum w ith a maximum about U2GG A f o r a ceta ld e h y d e . observed by R egnier ( 25) * T his spectrum has a ls o been Gaydon (2 6 ) has observed th e em issio n o f m olecu lar g ly o x a l which c o n s is te d o f th ir ty -o n e bands in th e reg io n UUOU A t o 5729 A. S t y le and Ward ( 27) e x c ite d th e spectrum o f HCOOe in form ic a cid u sin g a rad iofreq u en cy d isc h a r g e . Dyne ( 28) has observed f o r t y new bands e x c ite d in a c e ty le n e and b e lie v e d them t o be due t o th e a c e ty le n e m o le cu le . The bands l i e between 2399 A and 2920 A and are superimposed on a continuum . Suryanar ayana, Rao, and Rao (29) have analyzed th e u l t r a v io le t em issio n sp e c tr a o f o rth o , m eta, and para flu o r o to lu e n e s observed in an o so n iz e r typ e d isc h a r g e . The ortho compound em itted seven f a in t bands between 2661 A and 2835 A. The meta isom er em itted tw en ty -sev en d o u b let bands betw een 2?60 A and 2951 A. T h irty-tw o a lte r n a tin g d ou b let and s i n g l e t bands were observed between 2?03 A and 310U A fo r th e para compound. Some new s p e c tr a o f sm a ll m olecu les have r e c e n t ly been observed in th e glow d isc h a r g e . Venkateswarlu (3 0 ) has observed an e x te n s iv e system 25 o f bands In th e r e g io n betw een 2300 A and 1±8QQ A, The e m itte r i s CF2 . Andrew and Barrow (3 1 ) rep orted f i v e c lo s e sequences ly in g i n th e reg io n 1970 A t o 2210 A havin g red-degraded bands to be em ission fcy th e CF m oleculeo A second u l t r a v i o l e t system ch a ra cterized by a d o u b le, double­ headed band degraded t o th e v i o l e t a t 22l|0 A a ls o was observed f o r CF. Upon e x c it in g CBr4 v ap or, Durie and I r e d a le ( 32) have found d if f u s e bands a t 3530 A* 3336 A, 3120 A, 2909 A, 2755 A, and 2658 A which th e y p r o v is io n a lly a ssig n ed t o CBr* Callomon (3 3 ) and Laird and Barrow (3U) have stu d ied th e h ollow cathode glow d isch a rg e o f CS2 vap or, a ssig n in g th e observed spectrum to B e n o ist (3 5 ) has observed th ree new bands in th e e le c t r o d e le s s d i s ­ charge in w ater vapor* The band heads are 25U1* A, 2U65 A, and 237U A and a ssig n ed t o OH* E l K halafaw i and J o h a n n in -G illes (3 6 ) have stu d ied carbon t e t r a ­ c h lo r id e in th e vacuum u l t r a v i o l e t r e g io n and observed o n ly atom ic c h lo r in e and carbon lin e s * Ambrush ( 37) has p u b lish ed a b r i e f review o f em issio n sp e c tr a o f organ ic compounds in gaseous d isch a rg es through 1 9 5 3 * 2« S tu d ie s of R ea ctio n Mechanisms in 't h e Glow D ischarge a* G eneral I n tr y in g to u n ra v el mechanisms o f product form ation i n th e glow d is c h a r g e , a few system s have been su b jected to product a n a ly s is o f e it h e r o f two s o r t s —-chem ical a n a ly s is o f products formed by th e d i s ­ charge or s tu d ie s o f th e sp e c tr a em itted or absorbed w ith in th e d isc h a r g e . 26 The s p e c tr o s c o p ic method s u f f e r s th e lim it a t io n th a t th e r e w i l l a ls o be s p e c ie s formed which e it h e r do not em it in th e w avelength r e g io n a v a il­ a b le f o r stu d y , or are formed in t h e ir ground e le c t r o n ic s t a t e s and th e r e b y do n o t em it, u n le ss e x c ite d su b seq u en tly in a secondary p r o c e s s . With a b so rp tio n s p e c tr a , t h e s e d i f f i c u l t i e s would n o t a r is e , but a b so r p tio n s p e c tr a o f u n sta b le in ter m ed ia tes in th e vapor are g e n e r a lly much more d i f f i c u l t t o observe ex p erim en ta lly than em issio n s p e c tr a , and co n seq u e n tly t h i s method o f a n a ly s is has not y e t been w id e ly a p p lied t o th e problemo Inform ation from such s tu d ie s as t h e s e , o f co u rse, can have a p p lic a tio n in sy n th e se s o f many compounds o A su rvey o f th e se ty p e s of s tu d ie s f o llo w s * bo Chemical A n a ly sis o f Products S ch u ler and Degenhart ( 38) have found d ib e n z y l, benzene and a th ir d lo w - b o ilin g , non-arom atic su b stan ce t o be formed in th e glow d isch a rg e d ecom p osition o f to lu e n e . Benzene i s shown t o produce d ip h en y l. Ammonia i s found t o g iv e hydrazine a t th e r a te o f t h ir t e e n grams per k ilo w a tt hour (3 9 ) o This i s more e f f i c i e n t than any oth er e l e c t r i c a l p ro cess d ev ised f o r making hydrazine from ammonia. K roep elin (UO) has found th a t benzene in th e S ch u ler-ty p e d isch a rg e produces methane, e th y le n e , a c e ty le n e , p rop ylen e, propyne, d ia c e t y le n e , t o lu e n e , and b ip h e n y l. Toluene produces a l l o f th e above excep t b ip h e n y l, and moreover produces diphenylm ethane, b u ty le n e , e t h y l benzene, and phenanthrene• 2? Holzman and Morris (1+1) have used a glow d isch a rg e e x c it e d by microwave t o produce B 2G14 from BC130 The em issio n spectrum o f BG1 was observed in th e d is c h a r g e „ c . S p e c tr o sc o p ic E m ission S tu d ies R e la t iv e ly l i t t l e work in product chem ical a n a ly s is l i k e th e above has been done <> More numerous s tu d ie s o rien ted towards s p e c t r a l typ e i n v e s t ig a t io n have been made o A number of th e s e are summarized b elo w . M ilazzo (U2) has stu d ie d th e d ecom p osition p a tte r n s o f five-m embered h e t e r o c y c lic r in g compounds u sin g a Schuler-“type d isc h a r g e . furan* p y r r o le , N-m ethyl p yrrole* thiophene and selen op h en e. He stu d ied He measured r e l a t i v e abundances o f H2* C2* GH* CO* C4 H2* , OH* NH* ON* CS* GSe* 0 2* N2* S 2* S e 2 w ith helium and in some c a ses neon and argon c a r r ie r g a s e s . He has p o stu la te d some d ecom p osition mechanisms from h is f in d in g s . V asil" ev (1*3) has made a k in e t ic stu d y o f th e form ation o f NO from N2 and 0 2* and o f th e d ecom p osition o f methane in th e e l e c t r i c d isc h a r g e . He found th a t both are f i r s t order w ith r e s p e c t t o co n ta ct tim e w ith th e d isch arge* in c o n tr a st t o th e second order therm al p r o c e s s e s . Burton and Manion (UU) u sin g deuterium s u b s t it u t io n i n stu d yin g th e decom position o f methane in an e l e c t r i c a l d isch a rg e have concluded th a t e x c ite d s t a t e s o f methane p la y l i t t l e p a rt in th e d ecom p osition to y i e l d a cety len e* hydrogen and carbon 0 Methyl r a d ic a l i s presumed to be t h e p r in c ip a l s p e c ie s excited *an d th e CH2 formed therefrom i s th e s p e c ie s p resen t in im portant c o n c e n tr a tio n . K olyubin (1+5) has observed e m issio n from GH* H2* H* GO* QH* CII and Cl in an e le c t r o d e le s s d isch a rg e in n on -flow in g vapors o f methanol* ethanol* b u ta n o l and isoam yl a lc o h o l. 28 In th e s ta tio n a r y vapor* i n t e n s i t y r a t io s o.f l i n e s depend on th e p ressu re <> In a flo w in g system th e y s t a t e th a t th ey have shown th a t GH^ i s a product o f a primary r e a c tio n such ass e CH3 OH ———s* 0HW ♦ GH3 e~ ard t h a t GO* H* and 0 are p rod ucts of secondary r e a c tio n s * Kokado* Mori and Tanaka (U6 ) have stu d ie d th e spectrum o f to lu e n e in th e glow d isch a rg e as a fu n c tio n o f p re ssu re (an d ?of cours©; e le c tr o n energy) * They found t h a t a t p re ssu r e s g r e a te r than 10 mra* where th e e le c tr o n en e r g ie s are estim a ted as < h S ©°Vo* th e em ission i s due t o th e to lu e n e m olecule t r a n s it io n o In th e p ressu re range o f Go^-lO mm where e le c tr o n e n e r g ie s are hS~& e . v , th e t r a n s it io n o f th e benzene m olecule was observed o At p ressu re s between 0*1 and 0*5 mm,,the e le c tr o n e n e r g ie s were estim a ted t o be 6 -8 *5 ©^v^and th e spectrum o f b e n z y l r a d ic a l was observedo At p r e ssu r e s below G d mmUJ C2 and other products o f decompo­ s i t i o n o f th e r in g were o b served 0 The e le c tr o n e n e r g ie s were estim ated as b e in g above 8 <>5 a.Vo then 0 R ossik h in and Tsykora ( h i ) on th e b a s is o f t h e ir s p e c tr a l stu dy o f h ig h freq u en cy d isch a rg e in system s c o n ta in in g C02, CC14 * and t h e ir mix­ tu r e s w ith hydrogen and nitrogen* have proposed th a t th e form ation o f C2 r e q u ir e s f r e e carbon atoms as does th e form ation of GNo The GH bands are observed o n ly from m ixtures c o n ta in in g hydrogen* th e mechanism b ein g probably th e com bination o f f r e e carbon and hydrogen atom s» Jan in (I48) has stu d ied th e r e la t iv e band i n t e n s i t i e s in th e glow d isc h a r g e p o s i t i v e column in o n e-to -o n e molar r a t io m ixtures o f methane 29 and ammoniao The GH r a d ic a l i s presumed "to p la y an e s s e n t i a l r o le in th e form ation o f HCN^ s in c e th e r e la t iv e i n t e n s i t y o f th e CH e m issio n in c r e a s e s p a r a l l e l t o th e form ation o f GN and HCN as th e cu rren t i n th e d isc h a r g e i s in cr e a se d <> Norman (U9) has a p p lied th e tech n iq u e o f s p e c tr a l o b serv a tio n o f d ecom p osition p a tte r n s in th e glow d isch arge to chem ical a n a ly s is o f polymer f ib e r s <> The f ib e r sam ples were p laced upon e le c tr o d e s between which was stru ck a glow d isch a rg ee By ob servin g th e d ia to m ic and atom ic s p e c ie s which e m itte d , he succeeded in d if f e r e n t ia t in g a la r g e number o f polym er ty p e s on th e b a s is o f r e l a t i v e i n t e n s i t i e s o f th e many fragm ents a p p ea rin g » 3 o Other S ou rces o f E le c tr o n Impact E x c ita tio n a* I o n iz in g R a d ia tio n B e sid e s e x c it a t io n o f s p e c ie s in th e glow d isc h a r g e , e le c t r o n impact i s a ls o an im portant means o f e x c it a t io n in two oth er ty p e s o f stu d y . In r a d ia tio n ch em istry in v o lv in g high energy p a r t ic le s , e le c tr o n s e je c te d in prim ary p r o c e sse s in v o lv in g th e io n is in g p a r t ic le s or gamma rays are r e s p o n s ib le f o r a la r g e p a rt o f th e chem istry occu rrin g subsequent t o th e prim ary p r o c e ss * These secondary e le c tr o n s proceed through th e sample medium, and t h e ir im pact w ith sample m olecules may be expected t o produce chem ical r e s u lt s analogous to e le c tr o n impact e x c it a t io n in a glow d is c h a r g e 0 30 b= The Mass Spectrograph In th e mass sp ectro g ra p h , m olecu les are bombarded w ith e le c tr o n s ! th e r e s u lt in g p o s i t i v e io n s o f th e sample m olecule or fragm ents th erefrom are th en d e te c te d accord in g t o t h e ir m ass-to-ch arge r a t i o . From th e mass sp ectro g ra p h , voluminous in form ation regard in g breakdown p a tte r n s o f m olecu les i s becoming a v a ila b le . As an example o f t h is typ e o f in form ation , co n sid er th e mass spectrum o f is o p r o p y l a lc o h o l, l i s t e d in th e American Petroleum I n s t it u t e C atalog o f Mass S p e c tr a l Data (5G) <> The most abundant io n in th e iso p ro p y l a lc o h o l spectrum has mass US and corresponds to S S p ercen t o f a l l th e io n s form ed. I t s form ation may be presumed t o be as follow s^ (GH3 ) 2CH0H * e —■ CHgCKOK' + 0\i3 + 2 e“ Friedman and Turkevich (5 1 ) have shown from deuterium s u b s t it u t io n s t u d ie s th a t th e hydrogen on th e oxygen and th e secondary hydrogen atom are r a r e ly l o s t i n th e p ro cess o f form ation of th e io n o f mass US» T heir r e s u lt s are c o n s is te n t w ith th e gen eral mechanism fo r a lc o h o ls proposed by Cummings and Bleakney (52), in which an e le c tr o n i s removed from one o f th e non-bonding oxygen o r b i t a l s . The r e s u lt in g p o s it iv e oxygen atom se ek s t o compensate f o r i t s e le c tr o n d e f ic ie n c y by form ing an a d d itio n a l v a le n c e bond w ith th e carbon atom to which i t i s alrea d y bound. This can happen o n ly i f one of th e oth er s u b s titu e n ts o f t h is carbon atom i s removed. G en era lly , in a lc o h o ls th e most w eakly bonded s u b s tit u e n t w i l l be l o s t form ing th e most abundant io n . In th e ca se o f is o p r o p y l a lc o h o l, th e m ethyl s u b s titu e n t i s l o s t form ing th e io n o f mass U S • 31 F r o st and McDowell ( 53) have shown* u sin g io n iz a t io n by e le c tr o n s in th e mass spectrograph w ith p u lse techniques* th a t e x c ite d s t a t e s of io n s o f m ethyl io d id e and m ethyl bromide e x i s t th e r e * S in c e no c h a r a c t e r is t ic em issio n s p e c tr a have been reported in th e glow d isc h a r g e o f a lip h a t ic a lc o h o ls or a lk y l h a lid e s* and mass s p e c t r a l d a ta show t h a t la r g e fragm ents are formed in e le c tr o n impact and are s t a b le enough t o tr a v e r s e th e mass spectrograph and be d etected * i t was d ecid ed t o ap p ly a tech n iq u e which was developed in t h is lab oratory* and was s im ila r to S c h u le r : s method o f e x c ita tio n * to some o f th e sa tu ra ted o rgan ic compounds t o s e e whether such sp e c tr a e x is t., Bo Em ission S p ectra in a Flow System With a C arrier Gas I* E xperim ental a , G eneral D e s c r ip tio n of E xperim ental Approach E a rly e f f o r t s a t o b ta in in g m olecular em ission s p e c tr a had been plagued by e x c e s s iv e chem ical breakdown in th e d isch a rg e tube., S chu ler dem onstrated th e p o s s i b i l i t y of c o n tr o llin g energy and r e s t r i c t i n g breakdown by u se o f an in e r t c a r r ie r gas in a s p e c ia lly designed and e la b o r a te d isch a rg e tube., In t h i s in v e s tig a tio n * a sim p ler c a r r ie r gas tech n iq u e was employed* in which th e pure c a r r ie r was fed through an e le c t r o d e le s s d isch arge tube p a ssin g through th e e x c it e r c o il* and sample vapor was introduced in to th e c a r r ie r stream w e l l downstream from th e r e g io n o f e x c it a t io n . The ca r rie r-sa m p le stream th en passed through th e o b serv a tio n tube* a lon g c a p illa r y tu be w ith a waxed-on quartz window. In a la t e r 32 m o d ific a tio n * no c a r r ie r was used but th e e x c it e r c o i l was lo c a te d downstream from th e o b se rv a tio n tube* so th a t breakdown products were swept out o f th e r e g io n o f s p e c t r a l ob servation.. In both m o d ifica tio n s* o b se r v a tio n and rap id scan nin g o f th e spectrum were f a c i l i t a t e d by th e u se o f a reco rd in g p h o t o e le c t r ic spectrophotom eter.. I t was o r i g i n a l l y hoped th a t a stu d y could be made o f s p e c tr a em itted by some o f th e la r g e r fragm ents known from mass sp e c tr o s c o p ic d a ta t o be o b tain ed in e le c t r o n bombardment o f a lc o h o ls and p o s s ib ly even alkanes* e x c ite d u sin g argon as th e c a r r ie r gas* The ch o ice o f argon was based on i t s low er io n iz a t io n p o t e n t ia l ( 1 5 .8 v o l t s ) and m e ta sta b le s t a t e ( 11*5 v o l t s ) as compared t o helium ( 2h *6 and 2 1 v o lts * r e s p e c t iv e ly ) * I t was hoped th a t th e m ild er e x c it a t io n w ith argon would l i m i t breakdown and p rovid e a s it u a t io n fa v o r a b le f o r e x c it in g s t a t e s o f th e m olecu les or la r g e m olecu lar fragm en ts. Towards t h is end* th e spectrum o f argon i t s e l f was f i r s t observed w ith th e apparatus* and th en s p e c tr a were observed w ith th e variou s organic vapors introduced I n to th e argon stream* b* Reagents (l) Argon* Matheson Company commercial grade argon (99*998 p ercen t s p e c if ie d minimum p u r ity ) from a s iz e 2 c y lin d e r was p u r ifie d in th e fo llo w in g way. The argon was passed through a 0*5 mnui. d. by 10 cm. lon g f lo w -'r e s tr ic t in g c a p illa r y and th en through a t r a in c o n s is t in g of- f i f t e e n in ch es o f anhydrous magnesium p e r c h lo r a te in a tube o f one and o n o -h a lf in ch es diam eter* w ith two in ch es o f c lo s e ly packed Pyrax w ool r e ta in in g 33 th e d r y in g agent . The gas next passed through a sm a ll liq u id a ir tra p and th en through a 15 mm. i . d. Vycor tube c o n ta in in g tw e n ty -s ix in ch es (113 go} o f calcium m etal tu r n in g s , ground to 10-20 mesh. was k ep t in p la c e in th e tube by s t e e l w ool p lu g s . The calcium Both o f th e s e m etals were washed th o ro u g h ly in petroleum eth er and d ried in vacuo two days a t 50° Go The Vycor tube passed through a o n e -fo o t lo n g tube fu rn a ce, th e c e n te r o f which was h eld a t 650 ° G. d uring th e p u r if ic a t io n p r o c e s s . The gas was then b led out through a vacuum pump, or passed in to a tw e lv e l i t e r sto r a g e f l a s k . B efore each batch o f gas was p u r if ie d , th e Vycor tube was advanced fo u r in ch es in th e d ir e c t io n o f th e gas flow t o b rin g fr e s h m etal in to th e red h o t area in th e fu r n a c e . The system was evacu­ ated a t th e b eg in n in g o f th e p ro cess and flu sh e d w ith argon, then brought up t o tem p eratu re. hour was u se d . An argon flow r a te o f about s i x l i t e r s per The system was purged w ith argon u n t i l th e second p o s i t i v e bands o f N2 a t h0%9 A and 3998 A could n ot be observed w ith a v i s u a l sp e ctro sco p e in a glow d isch a rg e e x c ite d in th e e f f lu e n t argon by a T esla c o i l . The sto r a g e f la s k was th en rin se d w ith argon th r e e tim es by f i l l i n g to about 100 mm. p ressu re and ev a cu a tin g , and th e gas was c o l l e c t e d . The p u r ity o f th e gas was f i n a l l y checked more s e n s i t i v e l y in th e d isch a rg e system d escrib ed in the fo llo w in g s e c t io n on ex p erim en tal p ro ced u re. ( 2 ) H elium . Matheson Company commercial grade helium ( 99- 99 p ercen t s p e c if ie d minimum p u r ity ) was used w ith ou t p u r if ic a t io n . ( 3 ) Organic Sam ples. Organic sam p les, except in one in s ta n c e , were A. C. S. rea g en t grade chem icals p u r ifie d by sim p le vacuum d i s t i l l a t i o n , 3k r e t a in in g th e ce n te r f r a c t io n f o r u se in th e ex p erim en ts. The d ic y c lo - p ro p y l k eton e sample -was k in d ly fu rn ish ed by Mr, Romeo C ip r ia n i, Co Apparatus (1 ) D isch a rg e S ystem , As has b een mentioned e a r l i e r , many workers have used an e l e c t r o d e l e s s , h igh freq u en cy means o f e x c it a t io n o f th e glow d is c h a r g e . The r e s u lt in g s p e c tr a are s im ila r to th o se obtained by S c h u le r ^ low freq u en cy d isc h a r g e , but s u f f e r from th e d isad van tage t h a t th e en ergy range o f e x c it a t io n cannot be lim ite d by th e c a r r ie r gas io n iz a t io n p o t e n t ia l and th e r a t i o o f p a r t ia l p ressu res o f th e c a r r ie r gas and sample v a p o r. The e le c t r o d e le s s d isch a rg e i s v e r y con­ v e n ie n t e x p e r im e n ta lly , however, s in c e no m e ta l- to - g la s s s e a ls are n e c e s sa r y , and th e apparatus i s somewhat more f l e x i b l e b ecau se th e p o in t o f e x c it a t io n can be moved r e a d ily . In attem p tin g to observe em issio n s p e c tr a o f a lip h a t ic a lc o h o l m o le c u le s, or p olyatom ic fragm ents d erived from them in th e glow d is c h a r g e , i t was found th a t th e c a r r ie r gas te c h ­ nique seemed t o work w ith a high freq u en cy e x c it e r much th e same as in 'S ch u lers-exp erim en ts w ith low freq u en cy a lte r n a tin g cu rren t. The apparatus used i s d ep icte d s c h e m a tic a lly in F igure 2 . A flo w system was u sed, whereby c a r r ie r gas from th e 1 2 - l i t e r f la s k , A, con tin u ­ o u sly flow ed in to th e e x c it e r tu b e , F, and o b serv a tio n sp a ce, 0 , and was exhausted through th e vacuum pump. The e x c it e r was a sm a ll T esla c o i l , which i s com m ercially a v a ila b le as a la b o r a to r y lea k t e s t e r . The c o i l i s a sou rce o f 3~U M e . p . s . , UO-^Q k i l o v o l t current in 120 c . p . s . p u is e s . For continuous o p eration th e c o i l was cooled by a sm all fa n 35 o p era tin g c lo s e to th e case,. The T esla c o i l was coupled t o th e d i s ­ charge system by means o f a s t r i p o f aluminum f o i l one inch w id e, A l, wrapped around th e e x c it e r tu b e , F, 20-25 cm. from th e bend in F. The p o in ted probe was removed from th e lea k t e s t e r and th e ends of th e aluminum f o i l in s e r te d in th e end o f th e case t o make co n ta ct w ith th e h ig h v o lt a g e secondary o f th e c o i l . The con n ectin g tu b in g in th e system was 8 mm. o . d . P yrex. The e x c it e r tu b e , F, was 10 ram. o . d . , th e o b se rv a tio n space was & 30 cm. le n g th o f 3 mm. i . d . Pyrex c a p illa r y tu b in g . The f lo w - lim it in g c a p illa r y , G, was 13 cm. o f 0 .5 mm. i . d . c a p illa r y tu b in g . o b liq u e b o r e . A ll stop cock s were J4 mm., Those la b e le d S I and S2 had been notched s l i g h t l y on th e p lu g t o a llo w slow leak age i f d e s ir e d . used were s i z e 1 2 /3 0 standard ta p e r . C on ical grou n d -glass j o in t s B a ll and so c k e t j o in t s were in t e r ­ ch an geab le, 1 8 /7 , s p h e r ic a lly ground. J o in ts and stop cock s were lu b r i­ cated w ith Dow-Corning s i l i c o n e , high vacuum g r e a s e . The tr a p , T l, bathed in liq u id a i r , is o la t e d th e open-end p ressu re r e l i e f manometer, M, from th e sy stem , s in c e mercury, having a low energy m etastab le s t a t e , would have been an u n d e sir a b le im p u rity. The liq u id a ir cooled tr a p , T2, c o lle c t e d th e sample vapor which was b led in to th e o b serv a tio n space through S 2 from th e sample c o n ta in e r , H. S p e c tr a were observed endwise down th e o b serv a tio n sp a ce, 0 , through th e one m illim e te r th ic k -q u a r tz window, ¥ . A piezon The window was sea le d w ith wax t o an opening 6 mm. in diam eter and lo c a te d 18 mm. in f r o n t o f th e end o f th e c a p illa r y o b serv a tio n sp a ce. was as f o ll o w s . The c o n str u c tio n The c a p illa r y was sea le d in t o the 10 mm. e x c it e r tubes FOR GAS UJ C l. ° f— uj tZ C u -J CO CO A spectrophotom eter u sin g a p h o to m u tip lier was chosen f o r t h is work b ecau se r e l a t i v e i n t e n s i t i e s o f s p e c tr a l li n e s or bands could be determ ined v ery r a p id ly . S ch u ler used a photographic method whereby he changed c o n d itio n s in th e d isch a rg e s l i g h t l y and took an exposure and rep ea ted t h i s over and o v er. I t was f e l t th a t a spectrophotom eter would be v e r y h e lp f u l in r a p id ly a d ju s tin g c o n d itio n s o f th e d isc h a r g e . One could scan th e s p e c tr a l reg io n s r a p id ly m anually and g et th e r e la t i v e i n t e n s i t i e s o f v a rio u s e m itt e r s , so th a t one would be a b le , in e f f e c t , t o wtu n e i n 11 on v a r io u s s p e c tr a by v a ry in g th e flo w r a te s o f th e c a r r ie r and sample g a s e s . r e s p o n se . The p h o to m u ltip lie r tube was Type 1P28 w ith S£ The s e n s i t i v i t y maximum was near 3U00 A° w ith response f a l l i n g to l e s s than XQ% a t 2000 and 6000 A° (5U)® (3 ) The E x c it e r . In order t o u se th e T esla c o i l e x c it e r in th e v i c i n i t y o f th e spectrophotom eter w ith o u t in tro d u cin g e x c e s s iv e n o is e in to th e p h o to m u ltip lie r and a m p lifie r c i r c u i t s , i t was n ecessa ry to s h ie ld th e ca b le con n ectin g th e spectrophotom eter component case w ith th e d e te c to r h o u sin g . This cab le was wrapped w ith a few la y e r s o f aluminum f o i l which were connected to a nearby w ater p ip e . A l l c h a ssis u n its were connected to ground u sin g heavy braided copper c a b le . 39 With t h i s arrangem ent, th e e x c it e r connected t o th e d isch a rg e system in crea sed th e n o is e l e v e l approxim ately f i f t y p ercen t over th a t generated i n th e instrum ent i t s e l f . The n o is e l e v e l (measured' w ith th e tim e con­ s ta n t s e le c t o r in th e 0 .6 s e c . p o s it io n u sin g th e unattenuated p h otom u lti­ p l i e r , and 0 -1 0 # tr a n sm issio n range and maximum s e n s i t i v i t y s e t t in g ) was about 3# o f f u l l s c a le when th e e x c it e r was o p eratin g coupled to th e d isch a r g e tu b e . S h ie ld in g o f th e e x c it e r i t s e l f w ith a Faraday cage seemed t o o f f e r l i t t l e or no improvement in th e n o is e l e v e l . A pparently th e d isc h a r g e which ca rried down th e system away from th e v i c i n i t y o f th e e x c it e r was r e s p o n s ib le f o r most o f th e n o ise generated in th e s p e c tr o ­ photom eter by th e d isc h a r g e . The aluminum con n ecter from th e e x c it e r t o th e g la s s tu b in g was k ep t as sh o r t as p o s s ib le , s in c e corona d isch a rg e from t h is r e g io n was found t o be a source o f n o is e . The T esla c o i l i t s e l f was supported by a clamp and r in g s ta n d . The r in g stand was in su la te d from th e m etal ta b le top which supported th e w hole a p p a ra tu s. one en d . The t a b le top was sh e e t m etal and was grounded a t Any clamp h o ld er used on the ta b le top to support th e d isch a rg e system was a ls o in s u la te d from th e t a b le . These supports were in s u la te d becau se th e r e were e l e c t r i c a l cu rren ts induced in th e clamp h o ld ers which caused n o is y a r c in g from th e bottom o f th e clamp h o ld ers to th e su r fa c e o f th e t a b l e , s in c e th e su r fa c e s were ir r e g u la r and did n ot make good c o n ta c t because o f d ir t and p a in t r e s id u e s . I t was found to be e a s ie r t o in s u la t e th e s e supp orts by p la c in g a sh e e t o f p o ly sty r e n e or l u c i t e , or even a m agazine, under them than t o connect th e s e supports Uo t o ground o I t was a ls o more s a t i s f a c t o r y , s in c e i f th e supports f lo a t e d e l e c t r i c a l l y th e d isch a rg e c a rried p a st them more r e a d ily , and e lim in a ted any h o t sp o ts (n e g a tiv e glcw r e g io n s) in th e tu b in g due t o an e x i t p o in t f o r th e d isch a rg e c u r r e n t• d o E xperim ental Procedure (1 ) W avelength Measurement <> A c a lib r a tio n curve f o r th e s p e c tr o ­ photom eter d i a l over th e range 2537 A t o 5816 A was run u sin g a mercury arc sou rce (Hanovia quartz typ e S-100) . For rough w avelength measure­ ments in th e r e g io n above 3 200 A, t h is curve could be used t o g iv e an accu racy w ith in 10 A even though th e c a lib r a tio n d id s h i f t s y s t e m a t ic a lly w ith th e tem perature in th e room. This s h i f t could be co rrected f o r by m easuring th e d e v ia tio n a t th e p a r tic u la r tem perature a t th e tim e and s h i f t i n g th e c a lib r a t io n curve t o b rin g th e d i a l read in g fo r t h is wave­ le n g th t o c o in c id e w ith th e w avelen gth . was c o r r e c t , a t l e a s t t o The c a lib r a tio n below 3200 A 2537 A>t o w ith in 2 A, and was as a ccu rate as one could read from th e d i a l on th e prism . For more p r e c is e w avelength m easurem ents, a d is p e r s io n curve was made and w avelengths o f unknown l i n e s were in te r p o la te d from known li n e s in th e spectrum u sin g th e wave­ le n g th s c a le expanded t o o n e-fou rth s c r o l l p er f i f t e e n in ch es o f pen c a r r ia g e t r a v e l . Accuracy to w ith in 5 A could th en be obtained r e a d ily i f known l i n e s w ere w ith in about $0 A o f th e unknown one. (2 ) O perating th e D ischarge System . The sample liq u id was p laced in th e sample c o n ta in e r , H, to g e th e r w ith a sm a ll g la s s c a p illa r y tube se a le d a t one en d . The open end of th e tube was placed below th e su r fa ce hi o f th e liq u id t o induce bubble form ation during the o u tg a ssin g p r o c e s s . The sample c o n ta in er w ith th e stop cock SH was attach ed t o a vacuum l i n e and th e sample th o ro u g h ly outgassed by b o ilin g a f t e r an i n i t i a l p eriod o f f r e e z in g and pumping. The sample was th en placed on th e d isch a rg e system w ith stop cock SHc lo se d w h ile evacuated alon g w ith th e The second p o s i t i v e th e space between SH and S2 was r e s t o f th e system . band system o f th e n itr o g e n m olecu le was a s e n s i t i v e t e s t f o r p resen ce of a ir in th e system.; th e em issio n band o f t h i s system h aving i t s head a t 3371 A i s very stro n g (5 5 )° The o u tg a ssin g was co n sid ered adequate i f th e i n t e n s it y of t h i s band head* when sample vapor was b e in g adm itted to th e d isch a rg e sp a c e, was no g rea ter than th a t in th e c a r r ie r a lo n e . This i n t e n s i t y in th e spectrum o f p u r ifie d argon was ap p roxim ately two p ercen t o f th e in t e n s it y o f th e argon d ou b let a t U200 Ao The flo w o f c a r r ie r gas from f la s k A was lim ite d by c a p illa r y C and a ls o b y th e stop cock s e t t i n g a t S I . The flo w was ad ju sted a t th e sto p ­ cock so th a t w ith th e f u l l pumping r a te of th e Welch D uo-Seal pump, th e back p r essu re behind c a p illa r y C stood a t 10-20 mm. as r e g is te r e d by manometer M. At t h i s r a te o f flo w , 500 m illim e te r s p ressu re o f gas in A would l a s t s e v e r a l h o u r s. The i n t e n s i t i e s o f th e l i n e s in th e c a r r ie r spectrum were n ot v ery s e n s i t i v e to t h is back p ressu re s e t t in g so th a t th e p ressu re could vary in th e range in d ic a te d above and be m aintained by in fr e q u e n t adjustm ent o f th e s e t t in g o f S I w ith ou t cau sin g n o tic e a b le in te n s ity v a r ia tio n s . With th e c a r r ie r gas flo w in g through th e d isch a rg e system , th e e x c i t e r , E, was turned on* The spark gap in th e T esla c o i l prim aiy was ad ju sted so th a t th e d isch a rg e was in i t ia t e d in th e system and th e output s l i g h t l y in crea sed t o g iv e a s t a b le d isc h a r g e . This could be determ ined by v i s u a l o b se rv a tio n o f th e d isch a rg e in th e tu b e . The d isch a rg e ca rr ied down th e system to th e vacuum pump, which acted as an in te r n a l e le c tr o d e near ground p o te n tia l* The d isch a rg e did n ot carry back through th e flo w lim it in g c a p illa r y , u n le s s th e gas flo w was in ter ru p ted so th a t th e p r e ssu r e in th a t r e g io n became low er than u s u a l. The sample was allow ed t o v a p o r ise in t o th e d isch a rg e system through sto p co ck s SH and S2 w h ile th e c a r r ie r spectrum was observed w ith th e sp ectro p h o to m eter. The flo w r a te was c o n tr o lle d by S2 so th a t th e c a r r ie r spectrum was quenched to th e d esire d d e g ree. The boundary o f sample vapor and c a r r ie r gas formed was g e n e r a lly c lo s e to th e r ig h t an gle bend in e x c it e r tu b e , F, or j u s t a l i t t l e downstream from th e r e . Both th e sample and c a r r ie r vapors th en were ca rried through th e o b serv a tio n space and through th e tr a p , th e sample b ein g d ep o sited th e r e and th e c a r r ie r p a ss in g through th e pump. D ecom position i n th e tube was s l i g h t excep t when v ery low p a r t ia l p r e ssu r e s o f o rg a n ic vapors were u se d . The system was disassem bled and clean ed w ith h o t chromic a cid clea n in g s o lu t io n between runs t o remove tr a c e s o f p rev io u s samples adhering to th e w a lls of th e system . h3 2o R e s u lts and D is c u s s io n a* Quenching o f th e Argon Spectrum At low p a r t i a l p ressu re o f any a lc o h o ls t r ie d th e r e was observed e m issio n by CO* CH, H, H2, OH, OH* and th e arc spectrum lin e s o f argon. This s it u a t io n corresponded t o th e d e s tr u c t iv e s t a t e d escrib ed by S c h u le r . As th e p a r t i a l p r essu re o f th e a lc o h o l was in c r e a s e d , th e argon arc l in e s d ecreased in i n t e n s i t y , and upon in c r e a s in g th e s e n s i t i v i t y o f th e photo­ m u lt ip lie r a m p lifie r th e r e was f i n a l l y observed about one hundred-fold d im in u tio n o f th e argon arc spectrum to g e th e r w ith appearance o f another spectrum , th e s tr o n g e s t l i n e s o f which are contained la r g e ly in th e b lu e r e g io n , UOOG-5000 A. Further vapor p ressu re in c r e a s e gave quenching o f th e glow below th e l e v e l o f d e t e c t a b i l i t y w ith th e apparatus in u se . S in c e th e b lu e d isch a rg e s t a t e seemed t o correspond t o S ch u lers end s t a t e — i . e . , a t a sample p a r t ia l p ressu re j u s t b e fo re t o t a l quenching o f th e d isc h a r g e — i t seemed t h i s m ight have been a spectrum o f a p olyatom ic s p e c ie s o f io n iz a t io n p o t e n t ia l below th e 1 1 .5 e . v . m etastab le l e v e l of argono In tr y in g t o determ ine th e em itter o f th e spectrum by changing sample v a p o rs, i t was found th a t a great number o f su b stan ces would produce t h i s same spectrum in argon r e a d ily . The compounds t r ie d and th e r e s u lt s are summarized in Table I . Table l a . l i s t s th e su b sta n ces which were observed t o g iv e r i s e to th e b lu e spectrum in argon. Table l b . summarizes th e su b stan ces w ith w hich, f o r one rea so n or a n o th er, th e b lu e spectrum in argon was n ot d e f i n i t e l y ob s e r v a b le » uu © © © r—1 i—1 © © 33 O a© H© H © J5 S o o CM* r -\ _©■ © to a 3 P © •e o o o* H J33 Q. »\ -si* S <$ <3< •*=»S <*4 <*« 33** O. S3 £-1 g o o 8r^> 8r© o> © PQ a g *» a p a ; £ 3( a *ri p Pi O o © p o o © 43 © X) g■ a p p © o © © o © © I© © P © O system s. A bands. Is ■#> © 33 O o Ar-red, H, O H 3061* A, OH* 3565. r~| r~4 © H20 i—I i—! 55 P and 1st negative r-t i—I i—! i —I -S §f * © and 2nd positive 5s Ar-red, N2 1st Js N2 © ;s (2) Poor Quenchers i—I i—I £ GqH5GH3 25UGA-320Q 5s £r .© p © u © X) o a Geh6CH2 c kh$6 A-590Q A bandsi *3 ^© *8 •S *8 © © © © O •i CO Toluene © (D Pi -P benz aldehyde U000 A-5UQQ A bands. o Jh P t© p! o Benz aldehyde bo PJ U5 The samples in Table l b » which did not produce th e b lu e spectrum i n argon were o f two ty p es s (1) su b stan ces which s tr o n g ly quenched th e argon spectrum , such as a c e to n e , a ceta ld eh y d e, b enzaldehyde, and to lu e n e , and (2) su b sta n ces which appeared r e l a t i v e l y in e f f e c t i v e i n quenching argon, such as w ater and n itr o g e n . S in c e such v a ried su b stan ces as ben zen e, e t h y l a lc o h o l and oxygen g a s, w ith o u t r e la t e d s tr u c t u r a l u n it s , produced t h i s spectrum in argon, th e e m itte r must be connected w ith th e argon i t s e l f or an im pu rity con­ ta in e d in i t . The spectrum was produced e q u a lly w e ll in p u r ifie d and u n p u rified argon w ith no apparent change in i n t e n s i t y , in d ic a tin g th a t th e e m itte r was n ot l i k e l y an in p u r ity in th e argon. Moreover, i t was found th a t when argon i t s e l f was observed in th e d isch a rg e system under th e same c o n d itio n s o f h igh s e n s i t i v i t y as used in ob servin g th e new spectrum , th e Hnew1* spectrum l in e s could be seen w herever th e argon arc spectrum l i n e s did not in t e r f e r e g r e a t ly . I t appeared than th a t a s e l e c t i v e quenching o f l i n e s which were due to e x c ite d argon atoms was o c cu rr in g , w h ile th er e remained many oth er l i n e s which were not quenched.; p o s s ib ly even in some c a ses th e unquenched l i n e s were a c t u a lly enhanced. b . The B lu e Spectrum o f Argon The spectrum o f argon has been separated in to two groups of l i n e s c a lle d th e red spectrum and th e b lu e spectrum which occur under d if f e r e n t c o n d it io n s . The d i v i s i o n o f th e argon spectrum in t o th e red and th e b lu e s p e c tr a d a te s back to Kayser ( 5 6 ) . He found th a t th e b lu e (spark) spectrum i s favored by low p ressu re and a condensed d isc h a r g e , which U6 corresponds t o a h ig h er energy d isch arge than produces th e red (a r c ) spectrumo Co C o r r e la tio n o f th e Observed Blue Spectrum w ith th e B lu e Spectrum o f Argon The spectrum l i n e s of argon observed as unquenched by v a rio u s sam ples are l i s t e d i n Table I I , to g e th e r w ith l in e s of th e argon spectrum to which th e y correspond w ith in th e exp erim ental error o f $ A in th e v i s i b l e r e g io n and 2 A i n th e u l t r a v i o le t r e g io n - Of th e s e t h ir t y - e ig h t l i n e s , a l l ex cep t s i x correspond to l in e s of th e b lu e or spark spectrum o f a rgon The c l a s s i f i c a t i o n o f each l in e i s g iv e n in th e column la b e le d “O rig in 11 in Table I I , “r 11 d e s ig n a tin g red and **b» d e s ig n a tin g b lu e . In th e same column are In d ica ted a ls o th o se li n e s which have been a ssig n ed d e f i n i t e l y t o e it h e r th e spectrum o f th e argon atom or th a t o f th e argon ion j th e u su a l d e s ig n a tio n I or I I Is u se d . from th e MIT W avelength T ables (57)* The assignm ents were taken A la r g e number o f th e l i n e s remain u n c la s s if ie d w ith r e s p e c t to th e em itter and so have on ly red or b lu e c la s s ific a tio n d - Helium C a rrier Gas Helium as a c a r r ie r was a ls o used w ith benzene as th e sam ple, but th e r e appeared t o be no s e l e c t i v e quenching o f th e helium arc spectrum . The helium l i n e s were a l l quenched out and th e benzene r in g em issio n was observed s tr o n g ly in th e 2600 A-2900 A r eg io n - 1+7 TABLE I I CORRELATION OF OBSERVED SPECTRUM IN QUENCHED ARGON WITH BLUE ARGON SPECTRUM Observed W avelength, Angstroms I n t e n s it y Argon Line O rigin I n t e n s it y a„ Benzene, QoQl* mm0 s l i t width U nattenuated Phot o m u lt ip lie r , s e n s i t i v i t y 2 0 0 , p ercen t t r a n s . 0 - 1 0 , Run 3-1+1° I+072 ± 5 1*080 1+1Q5 1+133 1*230 1*238 1*280 U372 U379 UU0 1 U+28 1*1*83 H5U6 1*576 1*587 1*607 1*658 1*728 1*736 1*768 1*810 1*881* 1*958 5005 15 6 1* 17 5 1* 50 16 5 5 16 8 36 13 20 1*0 30 28 10 69 15 1*0 15 12 1*072 1*082 1*101* U132 1*228 1*238 1*278 1*371 1*380 1*1*0 0 , 1*1*01 1*1*31 1*1*82 1*31*5 1*579 1+590 1*610 1*658 1*728 1*736 1+765 1*806 1*880 1*958 5009 lib b b lib b lib lib b II*b b b b b b lib l ib b b b b b b Ir b 150 30 200 80 l+o 1*0 80 80 80 30,1+0 80 80 200 80 150 300 150 200 1*00 150 500 300 100 200 bo l* Iso o cta n e,** Ool m . s l i t width U nattenuated P h o to m u ltip lie r , s e n s i t i v i t y 200, p ercen t tr a n s - 0 -1 0 , Run 3“ 28 2893 ± 2 291+1* 2979 Ool* 3 1 2892 291*3 2979 lib lib lib 1*0 100 1*0 Continued 1*8 TABLE I I - C ontinued Observed W avelength, Angstroms 3090 ± 5 311*0 3170 32*0 3380 3390 31*96 I n t e n s it y Argon Line O rigin 0 .3 0 .3 0 .2 o.U 0 .5 0 .3 3 .0 3093 3139 3170 3250 337U 3393 31*92 Ub b b b r r b I n t e n s it y 50 25 50 25 300 100 50 c . B enzene, 0 .0 6 mm. s l i t w idth U nattenuated P h o to m u ltip lie r , s e n s i t i v i t y 200, p ercen t t r a n s . 0 -1 0 , Run 3-1*1* 3552 ± 5 3566 3930 1*055 7*0 8 .0 U*o 6 .0 3551* 3568 3929 1*055 * T . L . Be B ruin, Z . P h y slk , 61 307 (1930)* r r b r 300 300 125 80 h9 e . P oly a to m ic M olecular S p ectra B e sid e s th e argon phenomenon* m olecular s p e c tr a o f acetone* a c e ta ld eh y d e , benzaldehyde* to lu e n e and benzene were observed u sin g argon c a r r ie r as in d ic a te d in Table l b . A ll th e se m olecu les excep t benzene em it s tr o n g ly in th e range UQGO-^OOQ A* where th e b lu e spectrum i s most e a s i l y observed* and i t i s p o s s ib le th e stron g m olecular e m issio n i n t h is r e g io n obscured th e weak argon b lu e spectrum . These m olecu lar s p e c tr a are d escrib ed in d e t a i l in th e r e fe r e n c e s in th e review s e c t io n o f P a rt I* Benzene em itted stron gly* but on ly in th e u l t r a v i o l e t r e g io n , so th e b lu e spectrum o f argon was v i s i b l e . (The benzene em issio n spectrum observed i s reproduced in F igu re 3> as an example o f th e s p e c tr a o b ta in a b le w ith t h i s exp erim en tal arrangem ent.) f . I n te r p r e ta tio n o f S e le c t iv e Quenching o f th e Argon Red Spectrum The organ ic samples used to quench argon w ith p rod u ction o f th e b lu e spectrum a l l show tr a c e s o f h igh energy d eco n p o sitio n products such as CH* OH and CO. Furthermore* th e p rod u ction o f th e s p e c ie s 0 2 oxygen r eq u ir e s th e m oderately high energy o f about 1 1 .7 e . v . from These f a c ts * to g e th e r w ith th e appearance of th e spark spectrum o f argon* show th a t th e r e are h ig h ly e n e r g e tic p ro c e sse s s t i l l going on in a system where th e benzene m olecule* w ith an io n iz a t io n p o t e n t ia l of on ly 9 .2 e .v .* i s e m ittin g s t r o n g ly . Remembering th e f a c t th a t in th e unquenched d i s ­ charge th e b lu e spectrum was p r e se n t weakly, i t appears th at* a t l e a s t in th e system d escrib ed here* la r g e p a r t ia l p r essu res o f th e organ ic vapor do moderate th e energy th e s p e c ie s in th e glow d isch a rg e a tta in * but z :i8 2 o CXI o 6 '8 s F ::\ NO CXI Cu o o o °* o °- CXI o EMISSION xQ o LO O III CO LO Q sI UJ O ^ z •< UJ 2 — , < Z! 3 ^ CO O Or UJ $ <£ or *—1 CO £= O Z c q; u j CO ^ UJ Cu D_ o — C\l FIGURE 3. o (— o SPECTRUM g ’0 9 2 ---------- W AV ELENG TH -M IILIM IC R O N S OF BENZENE EXCITED WITH ARGON O on CARRIER oo GAS. Tjon 51 even though th e r e i s d e f i n i t e evid en ce o f la r g e amounts o f r e l a t i v e l y low energy e x c it a t io n p r o c e sse s occu rrin g , th e high energy end o f th e e le c t r o n d is t r ib u t io n s t i l l remains populated to about th e same e x te n t as i t was in th e pure c a r r ie r g a s . The prominence o f so many s p e c tr a l l i n e s o f io n iz e d argon in a d i s ­ charge system co n ta in in g organic vapor a t n e a r ly th e same p a r t ia l p ressu re as th e argon was su r p r isin g * The io n iz a tio n p o t e n t ia l o f argon i s 15*8 e . v . , and th e f i r s t e x c ite d s t a t e of th e u n ip o s it iv e argon io n i s another 13*5 e .v * above t h i s , making a t o t a l o f about 2 9 .3 e * v . requ ired t o e x c it e an argon atom in i t s ground s t a t e to an e x c ite d s t a t e o f th e argon io n . T his i s f a r from th e e n e r g ie s expected in th e end s t a t e o f th e d isc h a r g e , which should be about 10 e . v . , lim ite d b y th e io n iz a tio n p o t e n t ia l o f th e o rgan ic v a p or. An ex p la n a tio n o f th e occurrence o f th e high energy spark spectrum o f argon under su p p o sed ly low energy co n d itio n s req u ir e s a d e t a ile d c o n s id e r a tio n o f th e p h y sic s and chem istry o f system s co n ta in in g n e u tr a l and io n iz e d argon s p e c ie s . The o b serv a tio n s and fundam ental p ro c e sse s proposed by p h y s i c i s t s stu d y in g such system s over a p eriod o f many years have been e x t e n s iv e ly summarized in th e a u th o r ita tiv e review by Loeb (2 ) and summarized b r i e f l y in th e in tr o d u c tio n t o th e p resen t work. These f in d in g s w i l l now be d isc u sse d in r e la t io n s h ip to th e anomalous b eh avior found d u rin g t h i s stu d y . The in t e r p r e t a t io n o f o b serv a tio n s on io n m o b ilit ie s , Townsend co­ e f f i c i e n t s , and recom bination c o e f f ic ie n t s in in e r t gases has led t o some u n d erstan d in g o f th e fundam ental p ro c e sse s in v o lv e d . I t has been 52 shown th a t recom bination c o e f f i c i e n t s are v e r y sm all f o r sim p le monatom ic io n - e le c t r o n recom bination p ro cesses such as Ar + e “ — -fe- A rrt — e* Ar * hn> , b ecau se th e l i f e t i m e o f e x c ite d atoms ( ~ 1 0 ~8 sec<>) i s so much g r ea ter 14 than th e d u ra tio n o f an io n -e le c tr o n encounter ( ~ 10 s e c .) th a t - th e r e i s o n ly v e r y sm a ll p r o b a b ility th a t th e e x c ite d atom can d isp o s e o f i t s e x c e ss energy b e fo r e r e d is s o c ia t in g . The recom bination p r o c e sse s consuming th e p o s i t i v e io n s formed in the system more probably In v o lv e two s te p s o The f i r s t o f th e s e i s th e th ree-b od y form ation o f th e d ia to m ic io n ( 1 } Ar+ Ar +- M — ■?> A r 2^ •* M, where M may be another argon atom or a fo r e ig n gas m olecule which c a r r ie s away th e e x c e s s energy t o s t a b i l i z e th e Ar2 « Thesecond ste p i s th en th e d i s s o c i a t i v e recom bination (2 ) Ar2* * e“ — — & Ar ♦ Ar'" — ^ 2 Ar * hi> , which le a d s t o em issio n o f th e arc (red ) spectrum o f argon. T his step i s much more p rob ab le than sim ple raonatomie io n -e le c tr o n recom bination, b ecau se h ere th e e x c e ss energy i s consumed in bond ru p tu re, which req u ires 13 -1 4 o n ly 10 - 10 s e c . , and th u s has s ig n if ic a n t p r o b a b ility o f occu rrin g — w ith in th e d u ra tio n o f th e io n -e le c tr o n encounter. The e x is te n c e o f th e p o stu la te d Interm ed iate d iatom ic io n , Ar2 , at moderate p r e ssu r e s i s w e ll e s ta b lis h e d from io n m o b ility and mass s p e c tr a l 53 stu d ies^ th e s p e c ie s k r * tends t o predominate over Ar^in pure argon* and p e r s is t s u n t i l th e argon i s f a i r l y d il u t e in another gas* The red (or a r c) spectrum o f argon i s la r g e ly a s so c ia te d w ith s te p s (1 ) and (2)* and* a t low er e le c t r o n en erg ies* w ith d ir e c t e le c tr o n impact e x c it a t io n o f normal argon atoms <> Loeb (2 ) (pp.. 570 - 5 7 2 ) c i t e s the p a r t ic u la r ly in t e r e s t in g s tu d ie s o f O lsen and Huxford (5 8 )» They stu d ied current b u ild -u p w ith pulsed* heavy* o v erv o lted cu rren t d isch a rg es between plane e le c tr o d e s in argon or neon a t 3 0 -7 0 mm<> p r e s s u r e <> I t was found th a t f o r th e s e gases th e spark (o r b lu e ) spectrum a t t a in s i t s maximum i n t e n s i t y a t th e same tim e as th e cu rrent d o e s, in d ic a tin g io n iz a tio n to be a maximum—i . e . , the spark spectrum a r is e s from th e follcTrfing p rocesss . Ar * e —^ Ar ' —e* Ar Ar * hi) *>C“ _ — * 2e (spark spectrum) The arc spectrum i n t e n s it y lagged behind th e current maximum about f i v e m icroseconds* in d ic a tin g th a t th e e x c it a t io n o f arc lin e s depends on secondary p r o c e sse s which can be th e s te p s ( l ) and (2 ) p o stu la te d p re v io u sly .. A s im ila r o r ig in i s b e lie v e d r e s p o n sib le fo r li n e spectrum o f helium* based upon th e observed D oppler broadening of th e atom ic li n e s o f h eliu m . The anomalous argon spectrum r e s u lt s in the p resen t study can now be in te r p r e te d on th e b a s is th a t th e arc spectrum a r is e s la r g e ly from d i s s o c i a t i v e recom bination o f Ar2 io n s and th a t th e spark spectrum a r is e s from d ir e c t e le c t r o n impact io n iz a t io n p lu s e x c it a t io n o f argon atoms t o e x c ite d argon io n s * 5U Th© p resen ce o f organ ic m olecu les w ith many p o s s ib le io n iz a tio n and fra g m en ta tio n p r o c e sse s in th e energy range req u ired fo r argon atom e x c i t a t i o n w i l l tend t o consume low or in term ed ia te energy e le c tr o n s which m ight o th erw ise d i r e c t l y e x c it e argon to e x c ite d atom ic l e v e l s . In a d d itio n , th e o rgan ic m o lecu les may fa v o r a b ly a tta ch t o (o r complex) th e argon ion r a d ic a ls Ar* and lim i t form ation o f Ar2* , through such p r o c e sse s as Ar* * M— > (Ar M)* This ste p may be fo llo w e d e it h e r by n o n -r a d ia tiv e charge tr a n s fe r and d is s o c ia tio n (Ar M)* 1 -> Ar M* or by th e d i s s o c i a t i v e recom bination p ro cesses (Ar M)* * e~ — (Ar M)* * e ” Ar * M* ■> Arw M0 The p r o b a b ility o f form ing Ar'-' i s thus co n sid era b ly reduced <> Assuming th a t th e co n ce n tr a tio n o f high energy e le c tr o n s i s e s s e n t i a l l y u n altered by th e p resen ce o f th e organic sam ple, th e em ission o f th e b lu e spectrum by Ar**, which does not depend on secondary r e a c tio n s te p s , w i l l a ls o be u n altered o 3* S u g g estio n s f o r Further Work w ith Argon C arrier Gas a , E ff e c t o f th e Nature o f E x c ita tio n on E lectro n E n ergies in th e D isch arge In work w ith argon as a c a r r ie r g a s, S ch u ler and h is co-workers have n o t m entioned s e l e c t i v e quenching o f th e arc spectrum of argon by organic 55 vapors o I t i s p o s s ib le th a t th e low frequ en cy e x c it a t io n method used by S ch u ler was somehow fundam entally d if f e r e n t from th e method used in t h i s work and did n ot e x c it e argon spark l in e s s u f f i c i e n t l y f o r them to be observed c l e a r l y . S ch u le r , however, has mentioned spark l i n e s as b ein g p r e s e n t w eakly in th e glow d isch a rg e w ith o u t s p e c i f i c r e fe r e n c e t o th e argon d isch a rg e 0 S in ce th e T esla c o i l spark i s a form of condensed d isch a rg e h avin g h ere somewhat h igh er peak v o lta g e s than th o se used by S c h u le r , t h i s may have favored th e b lu e spectrum o f argon enough t o a llo w o b serv a b le v a r ia t io n s in i t s i n t e n s it y r e l a t iv e to th e r e d . Use o f a lew freq u en cy e x c it e r w ith in te r n a l e le c tr o d e s would a llo w t h is t o be determ in ed . I f th e s e l e c t i v e quenching of t h e b lu e spectrum i s s t i l l ob served , th e in te r n a l e le c tr o d e s and lew freq u en cy source would o f fe r some advantage f o r u se in a stu d y on r e la t iv e e f f e c t iv e n e s s o f quenchers d isc u sse d b elo w . With a lew freq u en cy source i t would be a sim ple m atter t o measure in p u t energy and th e p o t e n t ia l a p p lie d . Such measurements are not r e a d ily made w ith th e sim ple T esla c o i l , b ecause th e ra d io ­ freq u en cy , high v o lta g e s are n ot e a s i l y a n alyzed . Having known p o t e n t ia l g r a d ie n ts and known p r e s su r e s , the f i e l d t o p ressu re r a t io would be known and e le c t r o n e n e r g ie s could be e s tim a te d . bo R e la tiv e E f f e c tiv e n e s s of Various Quenchers There a re g rea t extrem es in th e quenching a b i l i t y o f th e compounds s tu d ie d . N itrogen and w ater were both q u ite i n e f f e c t iv e in quenching th e argon red spectrum , w h ile such su b stan ces as acetone and acetald eh yde r e a d ily quenched th e argon spectrum co m p letely , g iv in g t h e ir own c h a r a c t e r is t ic e m issio n . $6 The p r o c e s s e s o f in te r m o le c u la r tr a n s fe r o f e le c t r o n ic en ergy are by no means co m p le tely understood.. A study o f th e quenching o f th e spark spectrum o f argon by a p a r tic u la r sub stan ce as a fu n c tio n o f i t s p a r t ia l p r e ssu r e a t a f ix e d t o t a l p ressu re could g iv e r a te d ata f o r th e quenching p ro cess . Such d a ta would be v a lu a b le in working out th e mechanism o f tr a n s f e r o f e le c t r o n ic energy from argon s p e c ie s t o th e quenching m o le c u le s » S e v e r a l ex p erim en tal methods are a v a ila b le fo r making runs in th e fla w in g d isch a rg e system a t v a rio u s p a r t ia l p ressu res o f organic va p o rs. The s im p le st method would be t o prepare s o lu tio n s of th e vapor in argon p r io r t o a run. The vapor-argon m ixture could th en be fad in through th e sample arm o f th e tube in Figure 2 , w h ile th e pure argon c a r r ie r gas flo w s in through th e e x c it e r tube in th e reg u la r manner. The flo w r a te s o f c a r r ie r gas and ca rrier-sa m p le m ixture could be measured t o g iv e th e p a r t i a l p re ssu r e o f organ ic vapor in th e d isch arge tu b e . The r e l a t i v e i n t e n s i t i e s of th e red and b lu e sp e c tr a o f argon could be measured d i r e c t l y w ith th e spectrop hotom eter. To make a sy ste m a tic stu d y o f a number o f 11quenchers1* i t would be h ig h ly d e s ir a b le to be a b le t o measure th e p ressu re in th e d isch a rg e sp ace. A mercury manometer would n o t be s a t is f a c t o r y because o f th e u n d esira b le contam ination o f th e system w ith mercury vapor w ith i t s low e x c it a t io n p o t e n t ia l and m eta sta b le l e v e l . Manometers made u sin g high b o il in g org a n ic liq u id s would a ls o be u n d esira b le because o f th e a c tio n o f the d isc h a r g e which would cause d ecom position o f th e s e l i q u i d s . s i t i o n fragm ents would em it l i g h t in th e d isch arge sp a ce. The decompo­ Various typ es 57 o f p r e ssu re s e n s i t i v e d e v ic e s w ith ou t th e s e sou rces o f contam ination a r e , o f c o u r se , a v a ila b le .> A Bourdon gauge would be e s p e c ia lly s u it a b le , s in c e th e r e g io n o f b e s t a p p lic a b ilit y i s a few m illim e te r s o f mercury p ressu reo Some o f th e p o te n tio m e tr ic or quartz c r y s t a l p ressu re tra n s­ ducers r e c e n t ly a v a ila b le com m ercially m ight a ls o be a p p lied to advantage o Co E m ission Sp ectra in a Flow System w ith o u t a C arrier Gas lo E xperim ental a » General S in c e th e argon c a r r ie r w ith i t s com plicated em issio n spectrum was thought t o be ren d erin g th e ob serv a tio n o f m olecular sp e c tr a o f sa tu ra ted compounds d i f f i c u l t , some experim ents were performed u sin g a m odified apparatus in which no c a r r ie r gas was em ployed. The p ressu re in th e system was used t o c o n tr o l th e energy a tta in e d by th e e le c tr o n s in th e e l e c t r i c f i e l d produced by th e high frequency T esla c o i l e x c it e r . The method was s im ila r t o th a t o f Kodado, Mori and Tanaka (U6) in t h e ir study o f to lu e n e in th e glow d isc h a r g e . bo M o d ific a tio n o f P revious Apparatus The d isch a rg e system f o r op eration w ith ou t a c a r r ie r gas i s d ep icted in F ig u re The g la s s tu b in g , o b se rv a tio n space and quartz window were th e same s i z e as d escrib ed e a r l i e r . The sample was p laced in c o n ta in e r , H, which was in a co n sta n t tem perature bath or c o o lin g m ixtu re. When th e system was evacu ated , sto p co c k , SH, h aving a 6 mm. b o r e , was opened and UJ — Cl_ _ J CO CO o UJ o QD OvJ CO EMISSION § FOR OBSERVATION OF GLOW DISCHARGE WITHOUT A CARRIER GAS. Q_ O Cd O . SYSTEM p o FLOW SPECTRA UJ 4. UJ FIGURE 58 Q_ 59 th e sample allow ed to flo w through th e o b serv a tio n sp ace, 0 , through th e e x c it e r tu b e , F, and through th e f lo w - lim it in g c a p illa r y , C, which was 1 .5 mm. i.d o and 10 cm. lo n g . The sample was d ep o sited in th e tr a p , T, which was bathed in liq u id a i r . Stopcock, S2, had a U mm. b o r e . The e x c i t e r , E, was ag a in coupled to th e d isch a rg e tube by a wrapper o f aluminum f o i l , bu t now th e coupling was moved up so th a t th ere were o n ly th r e e in ch es between th e c e n te r o f th e aluminum f o i l and th e o b se rv a tio n window, W. The cou p lin g was p o sitio n e d so th a t th e d isch arge would be as b r ig h t as p o s s ib le , y e t th e d ista n c e was s u f f i c i e n t to p reclu d e o b se rv a tio n o f th e extrem ely h igh energy n e g a tiv e glow reg io n around th e aluminum f o i l . The e x c it e r c o i l was k ep t back away from the sp ectro p h o to m eter, s in c e th e r e was not room to p o s it io n i t c lo s e t o the aluminum f o i l w ith th e new arrangement. Perhaps more Important was th e f a c t th a t when th e c o i l was to o c lo s e to th e d e te c to r on the sp e c tr o ­ photom eter, e x c e s s iv e n o is y pickup from th e c o i l r e s u lt e d . The e x c it e r was coupled to th e aluminum f o i l through th e in n er conductor o f a th r e e f o o t p ie c e of c o a x ia l c a b le . e le c tr ic a lly . The ou ter conductor was allow ed to f lo a t The w hole d isch a rg e system was In su la ted from ground by 3 /8 i n . o f p o ly s ty r e n e . The d isc h a rg e, however, ca rried both down and upstream from th e e x c it e r f o i l . B ecause th e d ecom p osition occurring in th e e x c it e r f o i l was ap p reci­ a b le now w ith th e o rg a n ic vapors flo w in g d i r e c t l y through th e reg io n o f in te n s e e x c i t a t i o n , an 18/7 ground g la ss b a l l j o in t was put in th e l i n e between th e e x c it e r f o i l and th e window to f a c i l i t a t e c le a n in g th e sy stem . I t was a ls o because o f t h is stro n g decom position th a t th e 60 e x c it e r was p la ced downstream from th e o b se rv a tio n s p a c e . In t h is arrangement th e v o l a t i l e d ecom position products a r e , f o r th e most p a r t, sw ept away from th e o b serv a tio n s p a c e . The o p t ic a l system used was th e same as d escrib ed e a r l i e r . Co Procedure During a Run Sam ples f o r o b se rv a tio n were f i r s t ou tgassed through th e d isch a rg e system by f r e e z in g o f f i n th e tu b e , H, w ith liq u id a i r . The system was pumped down fo r some tim e and th en th e liq u id was warmed and b o ile d . This procedure was rep eated th ree or more tim es t o remove a i r . Freedom o f th e spectrum from th e 3371 A second p o s it iv e band o f n itr o g e n was a g a in used as th e c r it e r io n o f adequate out g a s sin g . The vapor p ressu re o f th e sample during a run was c o n tr o lle d by th e tem perature o f th e b a th , B . In some c a ses t h is was a c ir c u la t in g c o o lin g b a th , w h ile i n most o th ers i t was a e u t e c t ic or pure f r e e z in g m ixtu re. Temperatures were measured on a to lu en e thermometer which was c a lib r a te d a t th r e e p o in ts s th e f r e e z in g p o in ts of w ater and mercury, and th e su b lim a tio n tem perature o f s o lid carbon d io x id e * The baths w ere, however, allow ed t o vary as much as f i v e degrees from th e s ta te d tem p eratu res, due to p ick up o f m oistu re and subsequent change o f th e fr e e z in g p o in t s . S p e c tr a w ere, in general* observed w ith th e stop cock s wide open, so th a t most o f t h e p r e ssu r e drop in th e system occurred across th e c a p illa r y , C. In blank ru n s, u sin g a manometer to measure th e p ressu re drop a c r o ss th e c a p illa r y w ith acetone vapor flo w in g , i t was found th a t o n ly about f i f t y p ercen t o f th e eq u ilib riu m vapor p ressu re of th e 61 a ceton e ( a t 20 mm<> vapor p r e ssu re) was a c t u a lly dropped a cr o ss th e ca p x lla r y ! "th© r e s t o f th e p ressu re drop probably occurred a t th e su r fa c e o f th e liq u id i t s e l f , w ith v a p o r iz a tio n k i n e t ic s th e lim it in g f a c t o r . I t would have been d e s ir a b le t o have n ea rly al 1 o f th e p ressu re drop occur a c r o ss th e c a p illa r y , but t h is would req u ire such a sm a ll c a p illa r y th a t th e flo w r a te would be inadequate t o keep th e system swept f r e e o f d ecom p osition products <> The most s e r io u s contaminant seemed t o be carbon monoxide, which tended t o b u ild up r a p id ly in th e system u n le s s m oderately rap id pumping was usedo 2 . R e su lts and D is c u ss io n a . K etones U sing th e apparatus j u s t d escrib e d , th e em issio n s p e c tr a o f a number o f k eto n e s were observed in th e glow d isc h a r g e . in Table I I I . The r e s u lt s are summarized The continuous em ission o f aceton e could be observed f r e e from d ecom p osition p ro d u cts, in d ic a tin g th a t th e flo w in g system was removing d ecom p osition products ad eq u ately a t m oderately h igh sample vapor p r e s s u r e s . In order to observe th e aceton e em ission f r e e from b i a c e t y l e m issio n , i t was n ec essa ry to reduce th e aceton e flo w r a te a t • a sm a ll amount by p a r t i a l l y c lo s in g stopcock SH. Even then th e green b i a c e t y l em issio n could be observed downstream from th e e x c it e r , but not in th e o b se rv a tio n space „ I t was fu rth er noted th a t th e maximum o f th e a ceton e continuum was r e p e a te d ly observed to be a t UiOO A ± 20 A. seems t o be a d e f i n i t e l y lo n g er w avelength than reported by both S ch u ler (13 ) and F a u ris (22 ) . That th e b ia c e t y l p resen t might be This 62 TABLE I I I KETONES OBSERVED IN GLOW DISCHARGE Temp o (°G j A cetone Vapor P ress. (ram tr a c e s o f CO, CH D iiso p r o p y l k eto n e B ic y e lo p r o p y l k eton e . continuum, A max. h3!?0 A^ much CO, CH 25 h ea ted 2** continuum, Amax. U350 Ay tr a c e s o f CO, CH C yclopentanone 25 15** continuum, Amax. U350 Aj tr a c e s o f CO, CH Cycloh exanone 25 U *8 continuum, Amax. U35Q A? much CQ, CH heated "Flow lim ite d by sto p cock SH« **E stim ated from s im ila r compound. continuum in c r e a s e s in i n t e n s it y r e l a t i v e t o fragm ents 63 in t e r f e r in g and s h i f t i n g th e apparent maximum by adding in to th e a ceton e spectrum seems u n lik e ly * s in c e th e aceton e maximum appears t o be in d e­ pendent o f th e b i a c e t y l maximum.. A lso th e rep orted spectrum f o r b i a c e t y l h as i t s sh o r t w avelen gth cu t o f f a p p recia b ly above A l4.i4.OO ( 5 8 a ) » I t seems p o s s ib le th a t* in th e case o f e x c it a t io n in t h is sy stem , th e r e may be a new component in th e a ceton e spectrum j u s t above li3S>0 A r e s p o n sib le fo r s h i f t i n g th e spectrum maximum t o IUiOO A. Mien th e aceton e spectrum was observed u sin g argon c a r r ie r gas as mentioned in Table X* th e maximum was in accord w ith th a t rep o rted by S ch iiler and by F a u r is . S e v e r a l oth er k eto n es were observed t o em it a continuum having a maximum n ear U350 A*which i s in agreement w ith what has been rep orted f o r a ceto n e and c it e d above* The high er b o ili n g k eto n es were heated g e n tly i n th e sample c o n ta in er cau sin g in crea sed vapor p ressu re f o r a lon g enough tim e t o observe th e spectrum b e fo r e con den sation in th e d i s ­ charge tu b e quenched th e d isc h a r g e . Presumably th e em issio n i s due t o an e x c i t a t i o n o f one o f th e carbonyl group, non-bonding e le c tr o n s and i s not a p p r e c ia b ly perturbed by th e r e s t of th e m o lecu le. b . A le oh o ls * Alkanes * and A lk y l H alid e s S in c e i t was found th a t m olecu lar s p e c tr a o f la r g e m olecu les could be observed w ith th e flo w system apparatus d e sc r ib e d , th e a lip h a t ic a lc o h o ls were a g a in su b jected t o th e discharge* as were alkanes* and a lk y l h a l i d e s . C h a r a c te r is tic m olecu lar s p e c tr a o f t h e s e compounds were n ot o b serv ed , bu t i t was noted t h a t s t r ik in g changes in th e nature and r e l a t i v e i n t e n s i t i e s o f th e sm a ll d ecom p osition fragm ents formed could 6U be observed when th e vapor p ressu re o f th e sample was changed. S in ce i t was f e l t t h a t th e s e d ecom p osition p a tte r n s were p o t e n t i a l ly cap ab le o f y i e l d i n g much in fo rm a tio n p e r ta in in g to chem ical r e a c tio n s o ccu rrin g i n th e glow d is c h a r g e , t h i s phase o f th e work was fo llo w e d up in some d e t a ilo I n Table IV are summarized th e decom p osition p a tte r n s f o r some a l i p h a t i c a lc o h o ls , a c e to n e , and a lk a n es, w h ile Table V co n ta in s th e same ty p e in fo rm a tio n p e r ta in in g t o a lk y l h a l id e s . In Table IV, fo r th e a lc o h o ls and a c e to n e , th e i n t e n s i t i e s o f CH, H, Hs , and C2 are l i s t e d r e l a t i v e t o th e U511 A band o f th e Angstrom system o f CO. The in t e n s i t y o f th e OH e m issio n i s l i s t e d r e l a t i v e to th e 3306 A band o f th e th ir d p o s i t i v e system o f CO* The r a t io o f th e Angstrom GO band and th e th ir d p o s i t i v e band i s a ls o ta b u la ted in th e l a s t column. For th e hydro­ carbons in Table IV and halohydrocarbons in Table V, th e i n t e n s i t i e s are r e l a t i v e to th e U313 A band o f CH* Other i n t e n s i t i e s are l i s t e d as 11s H f o r s tr o n g , "m" f o r medium and ,8ww f o r weak, w ith th e m o d ifier “v 11 f o r very. The word ttnow i n a column in d ic a te s th a t th e s p e c ie s a t th e head o f th a t column was n o t d e te c te d in th e spectrum* W avelengths o f bands observed which are n o t in th e column headings are l i s t e d in th e body o f th e t a b le a f t e r th e i n t e n s i t y f o r th a t band. Vapor p ressu r e s in Tables I I I , IV and V w e r e t a k e n or e x t r a p o l a t e d from d a t a i n J o r d a n ( 5 9 ). In some ca ses th e f lo w - lim it in g c a p illa r y was bypassed by a p ie c e o f g la s s tu b in g . These c a se s are in d ic a te d in th e vapor p ressu re column by th e l e t t e r P . 6? ♦ ^ C?1 W Oi w Q O O O o o . r-T r - i f ^ *H -H « © © O •V hD © CJ - P +3 O „P • o o -P + Pt 0 rC| -P O o o o • £ o CO m m is !* > oj Jh -P O 0 Q* tn o o o o o * • IS > * B *< nO a O PA x1Ar | r A O o o O• H* o*- CM H H H ri CM * o <4 On CO O PA O CKO W O J c o *ri vO * * « • • « i—1 C\J i—1 CM i—I i—1 XA PA C — NO CM CO « • o pa pa o & o i— I n• c o« • ooo oo CO « PA PA CM xt o O o « NO o NO lA WnO O H XA d 3 a o Eh g CO h a a Eh « ^ o « I H , XA NO CM CM 4 fe CM NO O © n o CM o 0 O oCM PA CM 9 0 0 o o oo o o o PA -=r ft O H -p 5 xt o O o O ,-^■■-3' -= t H H O O O a « o » o o o oo o oo 3 3 CO J3t O O H oooo HI _©■ t>- r—j On O H CM C - • • • • • r —no CM • * • > H* Qt pa• O O H £ rA CM XA > ooo I—I H H Q i—I O <—I O H o ooo ooooo 5: * t o o o o o o o CO -^r a § • NO , ON o O H H I ooooo P— O C— H T H 3 ffl VO H H H NO CM O - CM VO i—1 O O CM CM • • • o * 8 Si 0i PA m vo • * * x} • « • * * • h • ooa o O oo CM PA 1A PA PA • * XA PA CM O a o CO c— i—i i—I CM CM CM o*o*o*o xt o • 4 • H H 0 • CM CM xt i— •I i— •I oo • O O o cn U m EH EH <4 fU 3 H M o ra CO o o XA S'S CL, > (— 1 r-i 8O ©o . CM XA I I * ' Eh'— 8 nO nO vO lA O• • « PA CM O £3 8 © i—I CO h r - Pu si © On ** & 4 XA Q 3 e* ! nko o r~ s i NO L -A w M a CM O —©■ CO t I xl o o I— I O d ■§ On 3 I si H ApH £■*— 9\ O •* © csj * sO § 3 3 fH c o i—I 3 f>* I r 3 c X s i s fc Xi c— o © O CQ ^1 NO CO fl} H Q H CM CO I I I XA CM O • • H O XA • 0* x *t I H " ? i>* c-— Qi O XA £ & A- CM PA O o NO NO 11 O O CO CO I I X} I—1 O ■8 O H © 1 P nQ pa CO 1 I xt H O 0 iH ■LA I a I—I a $ 0 1 o © co S' o 0 co 1 15© ■5 +3 l s i © £> i—I (—! co co s i s i {3 © X H P EH _dCM © 1 I O n ON h I PA^ X} I CM O n «\ CM © [2 {5 O o O xt vr\ fA ro w H Xa cvinO O <=*S m O El H rH On CO 0 ft ft no i—i i—I i—I H O —I I—I rH xi i I rH i—I f> > £ O • Eh t> „ o o |s P3 P3 rH CM vO • * (A 6 O O ■LA fA O I NO ft ft O ( A fA • ft rH i— I i— 1 t CM ft ft o i—I O ❖ I I i* &• E°h > > • CO O • S3 rH CM I NO fA 1o H ft fA ate ft CO. rH rH CO CQ. i— I H rH i—I rH rH f A rH rH f A rH f A rH rH o o o Q. o o o o o o o o o o o o i—I O U ftM Aft CM O ft ft ft & pH GJ E > Ph > _ d -_ 3 rH O O , ° NO rH O CO > co O rA $3 fA r< S3 CM « ft ft Eh to O I*» !*% PS • O o !» o I -P T3 *rH £3 > O Is * lA o NO• PS o sCvj CM strong, medium, weak, e t c . o o o W , rH O are reported DECOMPOSITION PATTERNS OF ALKYL HALIDES IN THE GLOW DISCHARGE CO fA XA fA CM f < r<. _✓ • • ca w I l in ten sities o xi o I l signal, o o of the weak vO i—i • • Because xi xi r< * 67 Co I n t e r p r e t a tio n o f D ecom position P a ttern s ( 1 ) Generalo The v a ry in g d ecom position p a tte r n s p resen ted in T ables IV and V co n ta in much p o t e n t ia l in form ation about th e ch em istry o f m o lecu le s under e le c t r o n bombardment. I n te r p r e ta tio n o f such d ata i s d i f f i c u l t , how ever, b ecause th e observed s p e c tr a l e m issio n can r e s u l t from a v a r ie t y o f fa cto rs,; th e p r o c e sse s which can occur have been summarized in th e In tr o d u c tio n s e c t io n . A f i r s t approxim ation t o th e in t e r p r e t a t io n m ight be based on th e assum ption th a t a change in th e i n t e n s i t y o f e m issio n by a m olecu le or atom r e f l e c t s a s im ila r change in th e t o t a l c o n c e n tr a tio n o f th e m olecu le or atom in th e d isc h a r g e — th e b a s ic assum ption o f atom ic em issio n sp ectro g ra p h ic a n a ly s is . T his assu m ption , however, w i l l n ot ap ply i f th e r e a c tio n mechanism le a d s t o form ation o f th e product m olecule in an e x c ite d s t a t e which em its d ir e c t ly ; in e f f e c t i t assumes ra th er th a t e x c it a t io n i s a secon d ary p r o c e ss through e le c tr o n impact and c o l l i s i o n s o f e x c ite d s p e c ie s on m o lecu les a lrea d y formed in t h e ir ground e le c t r o n ic s t a t e s . Furtherm ore, in th e absence o f c lo s e p ressu re c o n tr o l and measurement, th e a v a ila b le e le c t r o n e n e r g ie s can not b e a c c u r a te ly e stim a te d . N o n e th e le ss, some p la u s ib le in te r p r e ta t io n o f th e o b se rv a tio n s can be made. ( 2 ) A lc o h o ls , A lk an es, A ceton e. M olecules c o n ta in in g a C-0 bond dem onstrate stro n g p e r s is t e n c e o f t h i s bond in th e d isch a rg e in two w a y s. F i r s t , th e r e i s stro n g e m issio n by th e GO m olecule which i s u lt im a t e ly formed by d ecom p osition o f an a lc o h o l or aceton e m o lecu le. S eco n d ly , e m issio n by C2 fragm ents i s n e a r ly ab sent from th e d isch a rg e 68 in t h e s e m o le c u le s, alth ou gh C2 i s observed r e a d ily from d eco m p o sitio n o f hexane or many a lk y l h a lid e m o le c u le s . An in t e r p r e t a t io n o f th e p e r s is t e n c e o f t h e C-0 bond can be made b y e x te n s io n o f th e g e n e r a l mechanism f o r e le c t r o n im pact e x c i t a t i o n o f a lc o h o ls proposed by Cummings and B leak n ey (5 2 ) and d e s c r ib e d e a r l i e r in th e rev iew m a te r ia l, S e c t io n I , In th e i n i t i a l e le c t r o n im p act, a non-bonding oxygen e le c t r o n i s removed from th e a lc o h o l, and th e r e s u lt in g m o lecu le c o n ta in s an oxygen w ith a p o s i t i v e charge and an odd e le c tr o n * The oxygen se e k s t o com pensate f o r i t s e le c t r o n d e f ic ie n c y b y form ing an a d d itio n a l v a le n c e bond w ith th e carbon atom t o w hich i t i s a lr e a d y bound. The most w eak ly bonded s u b s t it u e n t i s n o rm a lly e j e c t e d t o do t h i s . I n th e a l i p h a t i c a lc o h o ls , th e s u b s t it u e n t e j e c t e d w i l l , in g e n e r a l, be an a lk y l group. E ith e r th e i n i t i a l io n or a rearran ged fragm ent io n may undergo d i s s o c i a t i v e recom b in ation t o form e x c it e d and norm al fra g m en ts. In a d d itio n , d i r e c t e x c i t a t i o n o f th e v a r io u s s p e c ie s may le a d t o r a d ia tiv e s t a t e s , or t o u n sta b le e x c it e d s t a t e s w hich d i s s o c i a t e , and numerous secon d ary r e a c t io n s in v o lv in g th e r e a c t iv e fragm en ts may o c c u r . Some o f t h e im portant p r o c e s s e s are shown i n th e complex r e a c t io n scheme b elo w . R i R - G - .OH * e' R - C - O - H H H Rearrangement^ I H D i s s o c i a t iv e Recomb. e e“ D is s o c ia t iv e R ecom bination * 2e “ 69 E 1 R - C» , RH ♦ CO* + H + -* *0H or- or r-* RH ♦ CO * -H H © RH 4 H-C = D is s o c ia t iv e Recouib. or -* 2RH * CO 0 l e' H* ♦ CO or H** * CO R R I C I H 0 •• R eactant _ E x c it a t io n . R I R - 0~ H I H u n sta b le ♦ e‘ D is s o c ia t io n R T I R - C* ♦ •OH I H or R I R - C - 0* ♦ H* f H or R - C * 0 + RH . I H or Other products ">v One or more fragm ents may > carry e le c t r o n ic e x c it a t io n 70 R I R - C - O - H I H GO * H2 ♦ H* _ R I .. R- C - O - H + H2 * Product E■ x c-ita tio n>. — e e ♦ Hydrogen A b str a c tio n CO Product E x c it a t io n TT ■* -------— ----- ■*> H2 * e e The above r e a c t io n sequence i s by no means com p lete, b ut su g g e sts v a rio u s modes o f e x c it a t io n o f s p e c ie s le a d in g t o th e observed em ission s* A m olecu le such as CO w ith h igh io n iz a t io n p o t e n t i a l , w i l l tend t o undergo rep eated e x c it a t io n s w ith o u t s u f f e r in g permanent chem ical th a t such s p e c ie s w i l l c o n trib u te much t o th e em issio n change, so i f allow ed to b u ild up in th e system ; a h ig h pumping r a te w i l l tend to sweep out such s t a b le p r o d u c ts. At h ig h er vapor p ressu r e s o f r e a c ta n t, th e f i e l d - t o - p ressu re r a t i o w i l l be low er and th e e le c tr o n impact p r o c e s se s w i l l lea d p r e f e r e n t i a l l y t o r e a c ta n t e x c it a t io n and l e s s t o io n iz a t io n . At s u f f i c i e n t l y h igh p r e s s u r e s , o f co u rse, t h is w i l l quench th e d is c h a r g e , b ecau se o f la c k o f b u ild -u p o f charge c a r r ie r s , which are c o n tin u o u sly b ein g removed by recom b in ation and am bipolar d if f u s io n . The e x c ite d r e a c ta n t m olecu les v e r y l i k e l y d is s o c ia t e in p referen ce t o e m ittin g , although no d a ta were ob tain ed a t w avelengths corresponding t o th e t r a n s i t io n from f i r s t e x c ite d to ground s t a t e fo r the a lc o h o ls . E x c ita tio n o f a c e to n e , as co n tra sted t o th e a lc o h o ls , le a d s t o r e l a t i v e l y more GO and l e s s H e m issio n , and t o d e f in i t e em issio n by th e r e a c ta n t m o lecu le i t s e l f . Almost a l l p la u s ib le m ech a n istic p a tte r n s 71 le a d t o CO, and th e absence o f th e hyd roxyl hydrogen in aceton e a p p reci­ a b ly d im in ish es th e amount o f f r e e hydrogen formed. The a c c e s s ib le lo w -ly in g e x c ite d s t a t e o f aceton e i s a p p recia b ly populated by d ir e c t e le c t r o n impact e x c i t a t i o n , p a r t ic u la r ly a t h ig h er p a r t ia l p r e ssu r e s o f a c e to n e , and t h i s p ro cess le a d s t o th e m olecular em issio n spectrum . The d is s o c i a t i o n which r e s u lt s from a t l e a s t p art o f th e e x c it a t io n o f a c e to n e , as in p h o to ch em istry, lea d s t o form ation o f a c e t y l r a d ic a ls which cou p le t o g iv e b ia c e t y l; t h e b ia c e t y l i s probably su b seq u en tly e x c it e d by e le c t r o n im pact, although i t may form in an e x c ite d s t a t e w hich can e m it. The d ecom p osition em issio n p a tte r n of m ethanol i s unique among th e a lc o h o ls s tu d ie d . I t shows v e r y stro n g em issio n due t o io n ized carbon d io x id e and, a t l e s s e r i n t e n s i t y , n e u tr a l carbon d io x id e and io n ized carbon m onoxide. These bands are prominent o n ly a t v e r y low p r e s su r e , and t h e ir i n t e n s i t i e s d ecrea se as th e p ressu re in th e system in c r e a s e s . There are no apparent d iff e r e n c e s between m ethanol and th e h igh er a lc o h o ls which seem capable o f e x p la in in g t h is b e h a v io r . E lectro n e n e r g ie s , how ever, are somewhat h ig h er f o r m ethanol b ecau se o f th e h ig h er io n iz a t io n and e x c i t a t i o n p o t e n t i a l s , and th e c a r b in o l carbon atom in th e io n has no a lk y l groups to r e le a s e . Such p r o c e sse s as © GH3 OH * e~ ----- ^ [ CHS - 5 - H J ♦ 2e t ® 2H2 * CO and 72 o (F . ch3 oh GH3 - 0 - H ch4 + CO may p la y a r o l e . aP ♦ co2 The r e l a t i v e l y weaker OH e m issio n may be due t o OH s- CO® . H or CO2 * jP , and th e C02 can undergo subsequent' e x c it a t io n and io n iz a tio n to lea d t o em issio n o f th e s p e c tr a o f C02 and C02* . (3 ) A lk y l H a lid e s . The h a lo g e n -c o n ta in in g s p e c ie s which em it s tr o n g ly in an e l e c t r i c a l d isch a rg e d i f f e r among th e h a lo g e n s. With io d in e and brom ine, th e m olecular h alogen s can be observed r e a d ily by t h e ir e m iss io n . With c h lo r in e , how ever, th e main s p e c ie s ob servab le in t h e p resen ce o f a source o f carbon-and hydrogen atoms are CC1 and HC1+ . The d ecom p osition p a tte r n of e t h y l io d id e (T ab le V) was observed t o d i f f e r s t r i k i n g l y a t th e low and high p ressu re extrem es run. At th e low p r e ssu r e , a spectrum r e l a t i v e l y high i n hydrogen and devoid o f h alogen was observed} a t th e h ig h er p r e s s u r e , l e s s hydrogen was observed w h ile e m issio n due t o m olecu lar io d in e became s tr o n g ly e v id e n t in th e d isc h a r g e . In s o fa r as th e e m issio n s p e c tr a r e f l e c t r e l a t i v e c o n cen tra tio n s o f s p e c ie s in th e d isc h a r g e , th e f o llo w in g chem ical in te r p r e ta t io n can be g iv en fo r th e o b se r v a tio n s w ith e t h y l io d id e . I t i s presumed th a t th e h alogen atom i s th e s i t e o f e le c t r o n impact e x c i t a t i o n , s in c e th e non-bonding e le c tr o n s p r e se n t a good t a r g e t , as was th e ca se w ith th e oxygen o f th e a lc o h o ls . This e x c it a t io n r e s u lt s 73 prob ab ly i n rupture o f th e weak C-I bond, producing an io d in e atom which can, o f c o u r se , produce I 2 w ith another io d in e atom, and a hydro­ carbon r a d ic a l or io n . same r e s u l t . P h otoch em ical e x c it a t io n i s known t o produce th e The hydrocarbon fragm ent undergoes fu r th e r decom p osition under e le c t r o n impact form ing th e hydrogen o b served . The f a i l u r e t o ob serve m olecu lar io d in e e m issio n a t low p r essu res may fo llo w from th e in c r e a s e in hydrogen formed in th e h igh er energy d isch a r g e ( a t low p r e s s u r e ) . The hydrogen r e a c ts w ith io d in e t o form hydrogen io d id e which i s a n o n -e m itte r . At low p r essu re where th e r e i s much hydrogen, th e hydrogen, io d in e , hydrogen io d id e eq u ilib riu m i s fa r in th e d ir e c t io n o f hydrogen io d id e . I f th e p r essu re i s in c r e a s e d , e le c tr o n e n e r g ie s are reduced, and alth ou gh C -I bonds are s t i l l r e a d ily broken, th e hydrocarbon fragm ent i s n ot cracked so th o ro u g h ly as a t low p r e s s u r e s . The r e s u lt i s a much low er hydrogens io d in e r a t io and th e hydrogen io d id e eq u ilib riu m now i s s h if t e d t o a llo w th e p resen ce o f more io d in e i n th e d isc h a r g e . The r e s u l t w ith e t h y l bromide i s analogous t o th a t w ith e t h y l io d id e , w ith th e a d d itio n a l o b se rv a tio n o f atom ic bromine in th e d is ­ ch a rg e. The atom ic bromine em ission could have a r is e n d i r e c t l y in th e d ecom p osition o f e t h y l bromide (a g a in i n agreement w ith photochem ical o b s e r v a tio n s ), or s e c o n d a r ily from th e d is s o c ia t io n of m olecular brom ine. S in c e th e atom ic bromine em issio n occurred much more s tr o n g ly a t h igh er p r e ssu r e s where m olecu lar bromine a ls o was ob served , i t seems th a t most o f th e bromine atoms observed are probably from d is s o c ia t io n o f bromine Ik m o le c u le s <> A*b low er p r e ssu r e s th e r e l a t i v e l y h ig h er hydrogen a v a il ­ a b i l i t y te n d s t o d im in ish th e f r e e bromine and i t s atom ic and m olecu lar sp e c tr a . The d a ta from c h lo r in a te d hydrocarbons in th e d isch a rg e can a ls o be in te r p r e te d in th e same w ay. I n t h i s c a s e , how ever, th e s p e c ie s observed in th e d isc h a r g e i s HC1*. I t can be se e n th a t f o r a l l th e c h lo r in a te d hydrocarbons s tu d ie d , th e i n t e n s i t y o f th e HC1* em issio n in c r e a se d as th e p r e ssu r e d e c r e a s e d . fo r t h is . Two reason s could h e lp account F i r s t , th e h ig h e r e le c t r o n e n e r g ie s a t low p r e ssu r e would be more e f f e c t i v e in io n iz in g th e HC1 m o lecu les p r e s e n t. S eco n d ly , h ig h er hydrogen c o n c e n tr a tio n s a t low p r e ssu r e fa v o r form ation o f HC1 m olecu les in l i n e w ith th e d eco m p o sitio n p r o c e s se s p o s tu la te d f o r e t h y l io d id e and e t h y l brom ide in th e d is c h a r g e . The g r e a te r r e a c t i v i t y o f c h lo r in e atoms as compared t o bromine or io d in e atoms p rob ab ly accou n ts f o r th e la c k o f o ccu rren ce o f bands a s s o c ia te d w ith th e f r e e halogen i n th e s p e c tr a o f c h lo r in a te d h yd rocarb on s. 3 . Summary o f Work w ith o u t a C arrier Gas An ex p erim en ta l arrangement was d e v ise d f o r o b se r v a tio n o f th e e m issio n s p e c tr a o f vapors and t h e ir r e l a t i v e i n t e n s i t i e s u s in g a record ­ in g sp ectrop h otom eter h avin g a p h o to m u ltip lie r d e te c to r c i r c u i t . The s p e c t r a l o b se r v a tio n s are rap id and capable o f y ie ld in g much in form ation re g a rd in g ch em ica l r e a c tio n s o f e l e c t r o n i c a l l y e x c it e d s p e c ie s . The e m issio n s p e c tr a o f flo w in g organ ic vapors e x c it e d i n a high freq u en cy f i e l d have been observed in many c a se s t o change a p p r e c ia b ly w ith th e p r e ssu r e in th e d isch a rg e system . A lso i t was found th a t 75 s i g n i f i c a n t d if f e r e n c e s e x i s t in th e d ecom p osition p a tte r n s observed f o r a number o f sim p le , r e la t e d compounds which w ere su rv ey ed . The in t e r p r e t a t io n o f such d a ta i s h ig h ly s p e c u la t iv e , however, in most c a s e s a t th e p r e s e n t t im e . At th e e n e r g ie s a v a ila b le , an enormous co m p le x ity o f p o s s ib le r e a c t io n p ath s must be c o n s id e r e d . Perhaps th e mopt s u r p r is in g a s p e c t i s th e a p p recia b le e f f e c t r e l a t i v e l y s u b tle s t r u c t u r a l d if f e r e n c e s seem t o e x e r t on th e s p e c t r a l b e h a v io r . With th e a p p lic a tio n o f th e co n v en ien t reco rd in g sp ectrop h otom eter, w hich m easures r e l a t i v e i n t e n s i t i e s alm ost d i r e c t l y , th e f i e l d o f i n v e s t i ­ g a tio n should be cap ab le o f rapid grow th. U* S u g g e stio n s f o r F urther Work w ith o u t a C a rrier Gas A l l o f th e system s s tu d ie d in t h i s work show prom ise o f y ie ld in g in t e r e s t in g ch em ical in fo rm a tio n upon more d e t a ile d in v e s t ig a t i o n . E x te n sio n o f th e o b se r v a tio n s w ith comparable s e n s i t i v i t y in to th e vacuum u l t r a v i o l e t would y i e l d i n t e r e s t in g in fo rm a tio n regard in g th e e x te n t o f d ir e c t e x c i t a t i o n o f s a tu r a te d m o lecu les to s t a b le e x c ite d e le c tr o n ic l e v e l s . For fu r th e r stu d y o f fra gm en tation p a tte r n s in th e T e sla d isc h a r g e , p r e s su r e s should be known more a c c u r a t e ly . The measurement o f p ressu re in th e d isc h a r g e space as d isc u s se d in th e l a s t s e c t io n would be ap p lied h ere. With p r e ssu r e s a c c u r a te ly known in th e d isc h a r g e sp a c e, e le c t r o n e n e r g ie s can be more a c c u r a te ly estim a ted and compared from compound t o compound. V a r ia tio n o f th e fragm en tation p a tte r n o f a given compound co u ld be o b tain ed as o f fu n c tio n o f p r e ssu r e (o r f ie ld - t o - p r e s s u r e r a t i o ) , 76 and c le a r cu t c h a r a c t e r i s t i c s m ight be observed w hich would h e lp to fo rm u la te breakdown mechanisms in th e glow d is c h a r g e . These fr a g m e n ta tio n p a tte r n s could form th e b a s is o f a method o f q u a l i t a t i v e i d e n t i f i c a t i o n o f vapor phase components in gas chromatography. T his a s p e c t w iH be d isc u s se d more f u l l y i n P a rt I I o f t h i s work. In some c a se s i t may be b e t t e r t o u se a flo w in g c a r r ie r gas t o d i l u t e th e o rg a n ic vap ors so th a t t h e se v e r e quenching and i n s t a b i l i t y o f th e d isc h a r g e which occur w ith th e pure o r g a n ie s a t r e l a t i v e l y low vapor p r e ssu r e s are l e s s e n e d « Chem ical a n a ly s is o f p ro d u cts from glow d isch a rg e e x c it a t io n o f vapors i s a h ig h ly im portant l i n e o f fu r th e r work t o be a p p lied t o th e in v e s t ig a t io n o f r e a c t io n mechanisms in th e d is c h a r g e . PART I I APPLICATION OF THE TESLA GLOW DISCHARGE TO GAS CHROMATOGRAPHY DETECTION TABLE OF CONTENTS Page A. I n t r o d u c t io n . * . * * . * . * o „ * . . o * o . ............... 77 B. B r ie f Summary o f D e te c to r s f o r Gas Chromatography........................ 79 C. P r o p e r tie s o f th e T e s la E x cited Glow D isch arge Amenable to Measurement. . . . . . . . . . . . . ............... 8U D . E x p erim en ta l o 86 o o . . . . . . . 0 . . 0 . . 0 . 0 . . . . . . . . . . . . . . . . a . . . . . . . . . . . . . . . . . 1 o Its a g en t s . 000 . o . . o o . o . . o . * o o o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 86 a . Compressed Gases . . . . . . . . . . . . . . . . . ........................ .................. b o AIT 0 0 . 0 . 0 . 0 0 0 0 . . . . . . . 0 0 . * . . . . . . . . . a . o »«»«*«« 87 c . N a tu ra l Gas ........................... 87 d . Organic L iq u id Sam ples . . . . . . . . o o o . . . . ......................... 87 2 o Apparatus ............. 87 a o G eneral D e s ig n ............... 87 b . D e te c to r C o n s tr u c tio n . .................... 89 (1 ) M echanical D e t a i l of S en sin g E le m e n ts................. 89 ( 2 ) E x c ite r Tube ........... 92 ( 3 ) E l e c t r i c a l C ir c u it s ................ 9 J4 (a ) G e n e r a l . . . . . . . . . . . . . . . . . . . ...................... 9k (b) E l e c t r i c a l D e t e c t o r .................. 9k ( c ) P h otom etric D e t e c t o r 97 c . The Flow S ystem .......... 97 ( 1 ) G e n e r a l. .............. 97 (2 ) O p eration w ith o u t a Chromatographic C o lu m n .... 99 (3 ) Oxygen S ca v en g er ................................. 100 3 o E xperim ental P ro ced u re ............. 100 a . G eneral D e t a i l s ................ 100 (1 ) Sam pling Techniques ............100 (2 ) P r essu re and Flow R a t e . . . . . . . . . . . ............... 102 ^3 } Chromatograms. . . . . o . 103 b o Procedure U sing th e p h otom etric D e te c to r .................................. 103 c . Procedure U sing th e E l e c t r i c a l D e t e c t o r .* . . . . . . . . . . . . 103 Eo R e s u lts and D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 1 o P h otom etric O b s e r v a t i o n s • . . . . . . . . . . . • • . e . . . » • • • * . • » • . . • • • » • 105 a . Ge ne r al . . . . . . ...... 105 b o O v e r -a ll L ig h t I n t e n s i t y . ...................... 106 continued TABLE OF CONTENTS - C ontinued Page co Quenching o f C a rrier Gas Spect rum. . . . . . . . . . . . . . . . . . . 108 d . S e l e c t i v e O b servation o f E m ission by th e S a m p l e . . . . . 108 e . Q u a lit a t iv e A n a ly sis o f Chromatographic Com ponents.. 10 9 f o S t a b i l i t y o f th e Di s c h a r g e . . . . . . . . . . . . . . . . . . . . . . . . . . 112 g . Summary . . . . . . c . . . . . . . . . . . . . . . ........... 113 2. The E Q e c tr ic a l D e te c to r -R e s u lts and D i s c u s s i o n . . . . . . . . . . . . 113 a. S e le c t io n o f System s t o Study and D ischarge O perating Co n d i t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 {1^ C a rrier Ga s e s . . o . . o o o . . . . . . . . . . . . . . . . . . . . . . . . 113 (2) Apparent E l e c t r i c a l C h a r a c te r is tic s o f th e D e te c to r D i s c h a r g e . . . . o . . . . . . . . . . . . . . . . . . . 11)i (3 ) E f f e c t o f P r e ssu r e on D e te c to r P r o p e r t i e s . . . . 11? b o R esponse o f D e te c to r U sing A ir Ca r r i e r . . . . . . . . . . . . . . 123 ...............123 ( 1 ) L ig h t Gases (2 ) R e p r o d u c ib ilit y . ........... 126 (3 ) H igher Hydrocarbons ................... 127 127 (U) Water V a p o r . . . . . . . . . . . . . . . . . . . . . . . . . . . ........... c . Response o f D e te c to r U sing Argon Ca r r i e r . . . . . . . . . . . . 128 ( 1) Oxygen S ca v en g er ........................... 128 ............. 128 (2 } Methane (3 ) H igher Hydrocarbons ........................... 130 (10 Organic L iq u id s ............ 133 (5 ) A i r . o. o. . . . o. . . . . . . . . . . . o. . . . . . . . . . . . . . . . . . . . 133 ( 6) Sample C h ro m a to g ra m s...................... 133 d . I n flu e n c e o f D e te c to r Geometry on S e n s i t i v i t y . . . . . . . 138 ........... 139 e . Summary f . I n t e r p r e t a tio n o f E le c t r i c a l D e te c to r R e s p o n s e . . . . . . 11*0 F . Comparison o f th e P h otom etric and E l e c t r i c a l T esla D isch arge DetectO rS . ooo. o * o . o o o o o . . o o . o o c . o . o * . o o o o o » e . . . . o o o * . *1.)|J| 1. 2. 3° ko 5. S e n s i t i v i t y . . . . . . . . . . . . o. . . . . . . . . . . . . . . » . . . . . . . . . . « . . . . . . . R ete n tio n Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L in e a r it y o f Re s pons e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C a rrier Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selectivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. S u g g e stio n s f o r A p p lic a tio n s and F urther Work 1o 2. 3. 1*. ......................... "1)1)f lUU 11*5 11*5 11*6 11*6 L ectu re D em onstration and P r e p a r a tiv e Work ........... 11*6 H um idity Measurement ................. 11*8 Vapor P r essu r e and M olecular W eight D e t e r m i n a t i o n . . . . . . . . . 11*8 Q u a lit a t iv e A n a l y s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H*9 ............ 11*9 a . G en era l continued TABLE OF CONTENTS - Continued Page b o Rapid Scanning Spe ctrophotom etry • » • • • • • • 150 Co Te s l a B is charge Cr a c k mg o o o . o o a . o . o o o o o e e o o . 0 . * . . o # * 150 5o High M olecular W eight Compounds. . . . . . ............... 151 Ho O v e r -a ll Summary o f E l e c t r i c a l D e te c to r s f o r Gas Chromatography. 151 Ao I n tr o d u c tio n D uring th e cou rse o f th e in v e s t ig a t io n o f th e quenching o f th e argon spectrum b y v a r io u s org a n ic vapors d escrib ed in P art I , i t became ev id e n t th a t th e glow d isc h a r g e in a flo w in g c a r r ie r gas which was e x c ite d by a T esla c o i l had p r o p e r tie s which could be used to d e t e c t fo r e ig n components in th e c a r r ie r g a s » I t was a lr e a d y known from o b se rv a tio n o f s p e c tr a in th e glow d isc h a r g e e x c ite d in t h i s manner, th a t th e d isch a rg e was q u ite s ta b le 0 The i n t e n s i t i e s o f s p e c t r a l l i n e s o f th e c a r r ie r gas when d e te c te d b y th e p h o to m u ltip lie r c i r c u i t o f th e spectrop hotom eter were v e r y e a s i l y r ep r o d u c ib le t o w ith in about (t e n p e r c e n t. Furtherm ore, when organic sam ples were in tro d u ced in t o th e d isc h a r g e , d r a s t ic changes in th e spectrum occu rred , and th e s e were e a s i l y d e te c te d by th e p h o to m u ltip lie r c i r c u i t . The f a c t th a t d eco m p o sitio n p a tte r n s f o r v a r io u s compounds could be d i f ­ f e r e n t ia t e d by th e em issio n d e te c te d by th e spectrop hotom eter su g g ested a d d it io n a lly th a t i t might be p o s s ib le t o d is t in g u is h components in th e c a r r ie r gas which con tain ed d if f e r e n t e lem en ts, or p o s s ib ly m erely d i f f e r e n t f u n c tio n a l g ro u p s» With th e above id e a s in mind, an in v e s t ig a t io n was undertaken to su rvey th e p o s s i b i l i t i e s o f th e T e sla e x c ite d glow d isch a rg e ap p lied to d e t e c tio n o f components e f f lu e n t from a gas chrom atographic column. Toward t h is end, i t was n e c e s sa r y t o fin d out whether or not th e s e n s i­ t i v i t y o f such a d e te c to r would be in a range which could be u s e f u l in chrom atographic work <> 11 ?8 B ecause th e e x c i t e r i t s e l f was so in e x p e n siv e and sim p le t o c o n str u c t and o p e r a te , i t seemed d e s ir a b le t o determ ine w hether or n ot a se n sin g elem ent f o r a glow d isc h a r g e d e t e c to r could be d ev ise d which a ls o could be c o n str u c te d e a s i l y and in e x p e n s iv e ly . A d e te c to r u n it c o n s is t in g o f a sim p le la b o r a to r y le a k t e s t e r e x c it e r and an in ex p en siv e s e n sin g elem ent would be o f v a lu e in s it u a t io n s where e la b o r a te gas chrom atographic i n s t a l l a t i o n s were e it h e r in co n v en ien t or p r o h ib it iv e ly exp en sive,, The v i s u a l resp o n se is s u e d by th e d isch a rg e in th e p resen ce o f o rgan ic components co u ld , c l e a r l y , be u s e f u l in le c t u r e dem onstration o f gas chrom atographic p r in c ip le s or in undergraduate la b o r a to r y program s. In a d d itio n t o t h i s , a sim p le d e t e c to r which any la b o r a to r y could co n str u c t would be v a lu a b le to th e s y n t h e t ic chem ist b ecau se p r e p a r a tiv e gas chrom atographic columns a r e , in g e n e r a l, r e a d ily a v a ila b le or s e lf-p r e p a r e d w ith o u t much expense 0 Much p r e p a r a tiv e work needs o n ly a r e l a t i v e l y crude in d ic a t io n o f when th e main component le a v e s th e column. The d e te c to r s p r e s e n t ly a v a ila b le f o r a n a l y t ic a l work which are a ls o used f o r p rep a r a tiv e work a re g e n e r a lly more e la b o r a te th an i s n e c e ssa r y f o r much organ ic p r e p a r a tiv e work. I t seemed p o s s ib le th a t even th e v i s u a l in d ic a tio n of th e d isc h a r g e m ight be adequate f o r t h is ty p e o f work. A b r i e f rev iew o f v a r io u s d e te c to r s which are employed in gas chroma­ tography w ith s p e c ia l em phasis on th o se which seem more c l o s e l y r e la te d to th e p r e se n t i n v e s t i g a t i o n i s p resen ted b elo w . 79 Bo B r ie f Summary o f D e te c to r s f o r Gas Chromatography Gas chrom atographic d e t e c to r s in u se or developm ent tod ay b e lo n g f o r th e most p a r t t o e it h e r o f two t y p e s . P robab ly th e most commonly found d e t e c to r to d a y i s one which responds to changes in th e therm al c o n d u c tiv ity o f th e column e f f l u e n t 0 Such a d e te c to r i s c a lle d sim p ly a therm al c o n d u c t iv it y c e l l , or by th e more r e c e n t ly coin ed term , katharom eter. The second ty p e o f d e t e c to r c o n s is t s b a s i c a l l y o f two more or l e s s d i s t i n c t u n its? an e x c it e r which a c t iv a t e s or io n iz e s th e c a r r ie r gas and sample e f f lu e n t from th e column, and a se n sin g elem ent which responds t o a ch an ge. in a p r o p er ty o f th e e x c ite d g a s , when a sample i s p resen t* Examples of th e second ty p e o f d e t e c to r a re th e ’’io n iz a t io n gauge d e t e c to r ” o f Ryce and B ryce ( 6 0 ) , th e ”flam e i o n iz a t io n d e t e c to r ” o f McWilliara and Dewar ( 6 1 ) , th e ”b e t a -r a y io n iz a t io n d e t e c t o r ” o f L ovelock ( 6 2 ) , th e wglow d isc h a r g e d e t e c t o r ” o f H arley and P r e to r iu s ( 6 3 ) , and th e ”ra d io freq u en cy d isch a rg e d e t e c to r ” o f Karmen and Bowman (61;). The im portant f e a tu r e s o f th e s e d e t e c t o r s w i l l b e d isc u s se d b r i e f l y in th e fo llo w in g paragraphs. A k a th a ro m eter-ty p e d e te c to r may employ as th e s e n s in g elem ent a th e r m is to r , or a tu n g s te n w ir e , or some oth er h ea t s e n s i t i v e elem en t. The s e n sin g elem en t i s u s u a lly b alanced i n 1a 'Wheatstone b rid g e c i r c u i t , t o h e lp com pensate f o r f lu c t u a t io n s in tem p eratu re, flo w r a t e , e t c . Therm istor k atharom eters have a l i m i t o f d e t e c t a b i l i t y o f components in th e range of _s 10 grams, w h ile tu n g s te n w ire d e t e c to r s a re s l i g h t l y l e s s s e n s i t i v e a t room tem p eratu re * These d e te c to r s are e s s e n t i a l l y f r e e from n o is e , b u t g e n e r a lly e x h ib it lo n g term d r i f t . These d e t e c to r s have th e v e r y d e s ir a b le 80 p ro p e rty t h a t th e y are u n iv e r s a lly s e n s it iv e * alth ou gh th e magnitude o f resp o n se f o r a p a r t ic u la r component depends on i t s therm al c o n d u c tiv ity . K atharom eter d e t e c to r s have r a th er la r g e volumes f o r many p u r p o ses. The volume i s about o n e -h a lf m i l l i l i t e r . K atharom eters can t o l e r a t e a range o f c o n c e n tr a tio n s o f sample o f one th o u sa n d -fo ld w ith l in e a r resp on se and w i l l n ot s a tu r a te a t any sample c o n c e n tr a tio n . The s ig n a l from th e s e d e te c to r s i s th e order o f about 0 -1 0 m i l l i v o l t s , which n e c e s s i t a t e s a v e r y s e n s i t iv e in d ic a tin g d e v ic e . Summing up t h e s e p r o p e r tie s* th e katharom eter d e te c to r has many good f e a t u r e s , but i t s s e n s i t i v i t y i s n o t as h igh as i s d e s ir a b le and i t s dead volume i s r a th er h ig h f o r much work b e in g done to d a y , e s p e c i a ll y s in c e th e advent o f th e Gola y c a p illa r y - t y p e chrom atographic columns. D e te c to r s in v o lv in g e x c it a t io n o f th e c a r r ie r gas and sample m ix tu re, which th en se n se a p ro p erty o f th e e x c ite d su b sta n ces are more d i r e c t l y r e la t e d t o th e p r e se n t work and have r e c e iv e d a g r e a t d e a l o f a t t e n t io n v e r y r e c e n t ly in a search f o r d e te c to r s more s e n s i t iv e than th e katharom eter. This i s t o a la r g e e x te n t b ecause o f th e la c k o f adequate s e n s i t i v i t y o f th e katharom eter f o r c a p illa r y colum ns. Furtherm ore, th e dead volume o f t h e s e io n iz a t io n - t y p e d e t e c to r s can be made in th e m ic r o lit e r r e g io n req u ired by c a p i l l a i y columns t o p rev en t t a i l i n g o f peaks and l o s s o f r e s o lu tio n . The a i o n iz a t io n gauge d e t e c to r 11 o f Ryce and Bryce (6 0 ) in v o lv e s m o d ific a tio n o f a standard io n iz a t io n gauge so th a t th e gas flo w s d i r e c t l y betw een th e e le c t r o d e s • E le c tr o n s are em itted from a h o t fila m e n t and a c c e le r a te d toward a p o s i t i v e l y charged g r id . These p o s i t i v e io n s are 81 c o lle c t e d on a n e g a t iv e ly charged p l a t e . c u le s in th e gas streamo These e le c t r o n s io n iz e mole­ The gauge o p era tes a t a f r a c t io n o f a m illim e te r p ressu rec About o n e -h a lf p er cen t of th e gas stream i s b led in t o th e d e te c to r o The grid o f th e io n iz a t io n gauge i s h eld s l i g h t l y l e s s p o s it iv e than th e p o t e n t i a l req u ired t o io n iz e th e c a r r ie r g a s , th ereb y g iv in g a v e r y low—le v e l background c u r r e n t. To make th e d e te c to r u n iv e r s a l in i t s s e n s i t i v i t y , th e u se o f h eliu m c a r r ie r gas i s n ecessary, b ecau se th e d e t e c to r i s n o t s e n s i t i v e t o any sample w ith an io n iz a t io n p o t e n t ia l above t h a t o f th e c a r r ie r . The d e te c to r i s i n s e n s i t i v e t o flo w r a te and p r essu re changes in th e main gas stream and t o sm a ll changes o f tem perature and p r e ssu r e in th e d e te c to r „ The s e n s i t i v i t y i s two hundred tim es th a t o f th e th e r m isto r d e te c to r , and p o t e n t i a l l y a thousand tim es more s e n s i t iv e than th e th e r m isto r d e te c to r as dem onstrated by G u ild, L loyd, and Aul (65) • The ‘*flame io n iz a tio n d e t e c to r 11 o f McWilliam and Dewar ( 6 l) i s th e 13 most s e n s i t i v e d e t e c to r d ev ised f o r a l l excep t l i g h t gases ( ^ 1 0 g/cc.) • - I t a llo w s u se o f n itr o g e n as a c a r r ie r g a s . The column e f f lu e n t Is mixed w ith a v e r y sm a ll amount o f hydrogen and th en combusted in cle a n a i r . The flam e emanates from a sm a ll m etal j e t which s e r v e s as th e p o s it i v e e le c tr o d e o f an e l e c t r i c a l c o n d u c tiv ity c e l l ] th e n e g a tiv e e le c tr o d e i s a platinum gauze lo c a te d c lo s e t o th e j e t . The e l e c t r i c a l c o n d u c tiv ity o f th e gas flam e changes as sample vapors come through th e column. The d e te c to r i s ex trem ely s e n s i t i v e ex cep t f o r l i g h t ga sesj i t w i l l not d e t e c t n itr o g e n , hydrogen, oxygen, carbon d io x id e , ra re g a s e s, h a lo g en s or w a te r . The background cu rren t i s v e r y low and s t a b l e . in th e m ic r o lit e r r a n g e . The d e t e c to r volume i s The d e t e c to r i s q u ite i n s e n s i t i v e t o tem perature 82 changeso The d e t e c t o r s a tu r a te s a t low co n cen tr a tio n s compared t o a katharom eter . S ig n a ls are o f th e order o f 10 m ic r o v o lts . The ^beta^ray i o n iz a t io n detector** d ev ised b y L ovelock (6 2 ) i s an other form o f io n iz a t io n d e t e c t o r . A r a d io a c tiv e source i s used to e x c it e th e c a r r ie r g a s , which in tu rn e x c it e s sample m o lecu les and io n iz e s them. The c a r r ie r and sample p a ss through a m etal je t,w h ic h i s th e p o s i t iv e e le c tr o d e o f an e l e c t r i c a l c o n d u c tiv ity c e l l . The n e g a tiv e e le c tr o d e i s a h o llo w m eta l b lo ck which co n ta in s th e r a d io a c tiv e source and in to which th e gas flo w s through th e p o s i t i v e e le c t r o d e . The io n iz a t io n current betw een th e j e t and d e t e c to r b lo ck c o n s t it u t e s th e s ig n a l . i s operated a t atm ospheric p r e s su r e . The d e t e c to r The c a r r ie r g a s, in order t o be e f f e c t i v e , shou ld be a r a r e g a s, s in c e th e ra re g a ses p o s s e s s lo n g - liv e d ra eta sta b le s t a t e s w hich a t t a i n h igh co n ce n tr a tio n s upon con tin u ed ir r a d i­ a t io n . These m e ta sta b le atoms are th e agents which io n iz e th e sample m o le c u le s . d e te c to r . Com m ercially a v a ila b le argon i s o f adequate p u r ity f o r t h i s Helium a v a ila b le com m ercially i s n ot pure enough. S in c e i t s ra eta sta b le l e v e l i s so v e r y h igh (20 e . v . ) , im p u r itie s o f low io n iz a t io n p o t e n t i a l d ep o p u la te t h i s s t a t e r a p id ly . a t about 1 1 .5 e . v . The argon raetastab le l e v e l i s S in c e th e s e raetastab le atoms are th e predominant io n iz in g a g e n ts , m o le cu le s w ith io n iz a t io n p o t e n t ia ls above 1 1 .£ e*v. w i l l n ot b e d e te c te d in t h i s system , and such im p u r itie s as n itr o g e n , oxygen, w a te r , neon, h eliu m , or hydrogen w i l l n ot i n t e r f e r e . B e sid e s b ein g i n s e n s i t i v e t o th e same su b sta n ces as th e flam e io n iz a t io n d e t e c t o r , th e ^ b e ta -r a y io n iz a t io n d e t e c to r 11 w i l l not respond to Cx and C2 hydro­ carbons b eca u se o f t h e ir h igh io n iz a t io n p o t e n t i a l s . The s e n s i t i v i t y i s 83 s l i g h t l y l e s s th an th a t o f th e flam e io n iz a t io n d e te c to r (2 x 10 m oles d e t e c t a b l e ) , b u t much g r e a te r th an a therm al c o n d u c tiv ity d e t e c t o r . The d e t e c to r s a tu r a t e s a t a l o w - le v e l sample c o n c e n tr a tio n in th e c a r r ie r compared t o a k ath arom eter. The s ig n a l r e q u ir e s h ig h a m p lific a tio n * The glow d isc h a r g e d e t e c t o r of H arley and F r e to r iu s (6 3 ) sim p ly m easures th e change in v o lta g e drop between two e le c t r o d e s e x c it in g a d i r e c t cu rren t glow d isch a r g e in th e column e f f l u e n t g a s e s . u t i l i z e s an a p p lied v o lta g e o f 900 V. The d isc h a r g e When sample vapors come through th e d e t e c t o r , th e v o lta g e drop changes by s e v e r a l v o l t s * Such a d e te c to r i s u n iv e r s a l in i t s r e sp o n se , b u t th e d e te c to r i s somewhat u n s ta b le , accord­ in g t o Karmen and Bowman (6Ub) * Karmen and Bowman (61;) have r e c e n t ly d e v ise d a glow d isch a rg e d e te c to r which u s e s a ra d io fr eq u e n c y e x c i t e r . I t was found th a t helium a t atmos­ p h e r ic p r e ssu r e can be io n iz e d t o form a glow d isch a rg e by th e u se o f a ra d io fr eq u e n c y v o lta g e in trod u ced in to th e c a r r ie r stream by an in t e r n a l e l e c t r o d e « T his e le c tr o d e was surrounded by a c o n c e n tr ic e le c tr o d e , which was th e ca se o f th e d e t e c t o r . There i s a p a r t ia l r e c t i f i c a t i o n o f th e ra d io fr eq u e n c y v o lta g e due t o th e asymmetry o f th e e le c tr o d e system . The d ir e c t cu rren t component can be sep arated from th e ra d io freq u en cy v o lta g e by proper f i l t e r c i r c u i t s . i s t i c o f th e c a r r ie r g a s . There i s a s te a d y cu rren t ch a ra cter­ With h eliu m c a r r ie r gas t h is cu rren t i s d ecrea sed when o rg a n ic vapors p ass through th e d e t e c to r . This quenching cu rren t may be o f th e order o f microamperes and can be r e g is te r e d by a r e l a t i v e l y sim p le m eter. The o p era tio n o f t h i s d e te c to r w i l l be d isc u s se d more f u l l y in a l a t e r s e c t io n , becau se i t has much i n common w ith a d e t e c to r 8U d e v ise d in d e p en d en tly in th e p r e se n t i n v e s t ig a t io n . The ra d io freq u en cy d e t e c to r i s more s e n s i t i v e than a k atharom eter, b u t has n ot b een shown t o be as s e n s i t i v e as t h e flam e io n iz a t io n d e t e c t o r . Karmen and Bowman (6Ub) r e p o r t th e minimum d e t e c ta b le l im i t f o r C12 compounds t o be 10 12 m oles o The f r a c t i o n a l d e c re a se in th e d ir e c t cu rren t i s d i r e c t l y pro­ p o r t io n a l t o th e c o n c e n tr a tio n o f th e organic vapor in th e helium c a r r ie r . Neon c a r r ie r behaves p r a c t ic a l l y l i k e helium , ex cep t t h a t a s l i g h t l y h ig h e r v o lta g e i s n e c e ssa r y to maintain, th e d isc h a r g e . h ig h e r v o lt a g e t o s t a r t th e d is c h a r g e . Argon r e q u ir e s a y e t With argon , low c o n c e n tr a tio n s o f o rg a n ic vapor in c r e a s e th e c u r r e n t, w h ile h ig h e r co n cen tr a tio n s d e c rea se th e c u r r e n t. There have been numerous o th er d e te c to r s d e v ise d f o r gas chroma­ to g ra p h y , bu t none seem t o o f f e r more in s e n s i t i v i t y or s im p l i c i t y than th o s e j u s t d e s c r ib e d . For t h i s reason i t was f e l t t h a t developm ent o f a sim p le d e t e c to r f o r u se in many a p p lic a tio n s would be w o r th -w h ile . C. P r o p e r tie s o f th e T e sla E x cited Glow D ischarge Amenable to Measurement The T e sla c o i l s e t s up a h igh v o lta g e (ab ou t 50 Kv . ) , h igh freq u en cy (about 3 m egacycles p er second) e l e c t r i c a l f i e l d , which i n i t i a t e s and m a in ta in s a v i s i b l e glow d isc h a r g e in most g a se s a t reduced p r e s s u r e . P r elim in a ry experim ents showed th a t in argon and helium c a r r ie r g a ses th e v i s i b l e d isc h a r g e can be m aintained a t p re ssu r e s above one atm osphere, w h ile f o r a ir and n itr o g e n , th e d isch a rg e was s c a r c e ly v i s i b l e a t 350 mm. p ressu re. The d isc h a r g e i s v i s i b l y a lte r e d by sm a ll q u a n t it ie s o f f o r e ig n 85 g a s e s , b o t h b y new e m i s s i o n f r o m t h e f o r e i g n g a s a n d , u s u a l l y , b y q u e n c h ­ in g o f t h e c a r r i e r g as s p e c tru m * T hese p r o p e r t ie s o f th e d is c h a rg e s u g g e s te d t h a t a d e t e c t o r c o u ld b e c o n s tr u c te d u s in g a p h o to c o n d u c tin g c e ll as th e to is o la te s e n s in g e le m e n t, w ith a p o rtio n s a m p le c o n c e n t r a t i o n a p p ro p ria te lig h t f i l t e r s , i f n e c e ssa ry , o f t h e s p e c t r u m w h ic h c h a n g e d s t r o n g l y w i t h t h e in th e c a r r i e r gas* T he b l u e - g r e e n e m i s s i o n b a n d s o f t h e C2 m o le c u le seem ed e s p e c i a l l y s t r o n g w hen o r g a n ic s a m p le s p a s s e d th e d e te c to r * is o la te d By m eans o f a g r e e n f i l t e r , fro m t h e s tr o n g s p e c t r a l l i n e s th e y can be f a i r l y w e ll o f a n y o f t h e common c a r r i e r g ases used* The e l e c t r i c a l p r o p e r t i e s p o s s ib ilitie s o f th e f o r d e te c tio n o f th e g lo w d i s c h a r g e a l s o o f s a m p le s * s u g g e s te d M e asu re m e n t o f t h e c o n d u c t i v i t y g lo w d i s c h a r g e w a s a t t e m p t e d u s i n g a b r a s s t u b e a s o n e e l e c t r o d e and a n i n n e r w ir e a s t h e o th e r e le c tr o d e . C u rre n t w as s u p p lie d b y a b a t t e r y , and c h a n g e i n c u r r e n t flo w fro m t h e b a t t e r y th r o u g h t h e e l e c t r o d e s i n t h e d i s c h a r g e w as m o n ito r e d w ith a ra ic ro a m m e te r* I t w as f o u n d t h a t t h e c u r r e n t d id in d e e d ch an g e s t r o n g l y w hen a f o r e i g n e le c tro d e re g io n . I t w as a l s o fo u n d t h a t t h e b a t t e r y w as s u p e r f l u o u s . The T e s la e x c i t e d g lo w d i s c h a r g e b e c a m e p a r t i a l l y a s y m m e tric a lly p la c e d e le c tr o d e s * q u ite d iff e re n t* re c tifie d (6U) in t h e i r ra d io fre q u e n c y d is ­ a l t h o u g h t h e i r m e th o d o f e x c i t a t i o n T h e re a r e o th e r re p o r ts fro m a r a d i o f r e q u e n c y d i s c h a r g e The s i g n a l d e p e n d s u pon th e by th e A s i m i l a r e f f e c t , a s m e n tio n e d e a r l i e r , h a s b e e n r e p o r t e d b y K a rm e n a n d Bowman c h a rg e d e te c to r , g as p a s s e d th ro u g h th e ( 6 6 ,6 ? ) * in th e o f th e d is c h a rg e i s lite ra tu re of re c tific a tio n and a T e s la s p a r k d is c h a r g e a s y m m e tric a l l o c a t i o n o f th e e le c tro d e s , (68). and 86 must be a t tr ib u t e d t o p r e f e r e n t ia l capture o f e le c t r o n s a t th e more a c c e s s ­ i b l e c e n te r e le c t r o d e , w ith th e p o s i t iv e ion s becom ing d isch arged a t th e o u ter j a c k e t . The in n e r e le c tr o d e i s thus n e g a tiv e and th e ja c k e t i s p o s i t i v e w ith r e s p e c t t o th e e x te r n a l c i r c u i t . S in c e b oth th e p h otom etric means o f d e t e c t io n and th e e l e c t r i c a l or T esla r e c t i f i c a t i o n means showed s im p lic it y o f d e sig n coupled w ith m inim al ex p en se, i t was d ecid ed to pursue fu r th e r each o f th e s e forms o f s e n s in g e le m e n ts . D . E xperim ental 1 . R eagents a . Compressed Gases Gases used w ere th o se com m ercially a v a ila b le In s t e e l c y lin d e r s or le c t u r e b o t t l e s , used w ith o u t p u r if i c a t io n . The g ases and t h e i r minimum p u r ity s p e c if i c a t i o n s are ta b u la te d belows Gas Argon Helium N itro g en Oxygen Hydrogen Methane Ethane E th y len e E th y len e oxide A cety len e Propane Cyclopropane 1-But ene P u r it y (p e r c e n t) 99 -9 9 8 99-99 99-1 99- 6 99. 8 9 9 .0 9 5 -0 9 9 .5 9 9 .7 Tech 99- 0 99 -5 9 9 .0 87 A l l g a ses w ere o b tain ed from The Matheson Co. , I n c . , E ast R utherford , New J e r s e y , e x ce p t oxygen and a c e ty le n e ,w h ic h were su p p lied by th e N a tio n a l C y lin d er Gas Company, C hicago, I l l i n o i s . bo A ir A ir was from th e la b o r a to r y atm osphere, d ried by p a ssin g through two fiv e -h u n d red m i l l i l i t e r d ryin g tow ers o f anhydrous calcium s u l f a t e ( D r ie r it e ) « The a i r was f i l t e r e d a f t e r le a v in g th e d ry in g tower b y p a ssin g through a one-hundred m i l l i l i t e r wad o f c l o s e ly packed Pyrex w o o l. c . N a tu ra l Gas N a tu ra l gas f o r th e sample chromatogram o f F igu re 16a was tak en from th e c i t y m ain. The a n a ly s is was fu rn ish ed by th e Consumers Power Company o f L a n sin g , M ichigan. d . O rganic L iquid Samples Organic liq u id sam ples were A. C. S. rea g en t grade chemical s, used w ith o u t p u r i f i c a t i o n . 2 o Apparatus a . G eneral D esig n The d isc h a r g e tu be p o r tio n o f t h e d e te c to r was sim p ly a g la s s c a p illa r y tu b e ( 0 .5 mm» d iam eter) a tta ch ed d i r e c t l y to th e column e x i t . A la b o r a to r y T e s la c o i l le a k t e s t e r provided th e sou rce o f e x c it a t io n o f th e d isc h a r g e , which was tr a n sm itted through a p ie c e o f aluminum f o i l connected t o th e higjh v o lt a g e probe te r m in a l (th e probe i t s e l f was removed and th e aluminum f o i l in s e r te d in th e end o f th e le a k t e s t e r in p la c e o f 88 th e probe) and wrapped around th e c a p illa r y tu bin g* A sm a ll d iam eter w ire lod ged in th e c a p illa r y and ex ten d in g downstream from th e r e g io n e n c ir c le d by th e aluminum f o i l served as a low work fu n c tio n source o f e le c t r o n s and s t a b i l i z e d th e d isc h a r g e , which oth erw ise would have needed t o depend f o r i n i t i a t i o n upon more d i f f i c u l t rem oval o f e le c tr o n s from th e g la s s w a lls * The d isc h a r g e occurred downstream from th e end o f th e in s e r te d w ire t o a r e g io n n ea rer ground p o t e n tia l* A s im ila r ^ e le c tr o d e le s s e le c t r o d e 11 can se r v e as th e ground, by in s e r t in g another f r e e p ie c e o f w ir e in th e c a p i l l a r y and surrounding th e reg io n o f th e c a p illa r y c o n ta in in g th e w ire b y a grounded p ie c e o f aluminum f o i l * A b e t t e r ground can be prepared by a tta c h in g th e c a p illa r y t o a grounded m etal tu b in g co n n ecto r, u sin g itqh.„r in g s e a ls * For th e d i r e c t cu rren t measurement, a b ra ss t e e -t u b e con n ector can c o n v e n ie n tly be u sed . connected The d isch a rg e c a p illa r y tu b e was t o one arm of th e te e -tu b e ; an in n er e le c tr o d e was mounted in g la s s and connected t o th e o p p o site arm o f th e t e e - t u b e , w ith th e in n er e le c t r o d e ex ten d in g w ith in th e te e -tu b e v e r y n e a r ly t o th e end o f d isc h a r g e c a p illa r y tu bej th e th ir d arm th e o f th e t e e -t u b e con tain ed th e e x i t tu b e , which could be ven ted t o th e atmosphere or could lea d t o a manometer, flo w c o n tr o l v a lv e , b a l l a s t f l a s k , and vacuum pump or w ater a s p ir a to r * The in n er e le c t r o d e was connected to ground, and th e body o f th e t e e - t u b e served as th e oth er e le c tr o d e fo r th e d ir e c t cu rren t measurement * The experim ents u sin g th e T e sla e x c ite d glow d isch a rg e as th e b a s is f o r a gas chrom atographic d e te c to r in volved two b a s i c a l l y d if f e r e n t k in d s 89 o f s e n s in g elem en ts“--"photometric and e l e c t r i c a l . I t proved more con­ v e n ie n t <, e x p e r im e n ta lly , t o c o n str u c t one d isc h a r g e e x c i t e r tube and in c o r p o r a te b oth s e n s in g elem en ts in to th e d e s ig n . The s e n sin g elem en ts, ■which cou ld be m onitored s in g ly or sim u lta n e o u sly , need be in no way in te r d e p e n d e n t, e x c ep t as a m atter o f co n v en ien ce. For t h i s r ea so n , th e c o n s tr u c tio n o f th e s e d e te c to r s w i l l be d escrib e d more or l e s s co n cu rren tly in th e same manner as th e y were developed in th e la b o r a to r y . bo D e te c to r C o n stru ctio n (l) M echanical D e t a il o f S en sin g E lem ents. d e t e c to r used i s sk etch ed t o f u l l s c a le in Figure 5• The f i n a l form o f The e l e c t r i c a l s e n sin g elem ent c o n s is te d o f a standard q u a rte r -in c h f la r e - t y p e b r a ss tu b in g t e e which had been reamed out to £.95> mm. (15/6H i n . ) . This t e e served as th e p o s i t i v e e le c tr o d e in th e e l e c t r i c a l s e n sin g elem ent and was connected t o an e l e c t r i c a l c i r c u i t by a s h ie ld e d conductor a tta ch ed t o th e t e e w ith an a l l i g a t o r c l i p . The f la r e - s e a t in g sh ou ld ers in th e t e e w ere m ille d o f f and th e f l a r e on the hexagon al nut on th e low er arm o f th e t e e was m ille d away t o th e minimal th ic k n e s s which did not en large th e in n e r diam eter o f th e n u t. The oth er elem ents o f th e d e te c to r flo w system were connected t o th e t e e u sin g Pyrex tu b in g and l/l^ - in . i . d . , 3 /8 -in o o.do, s i l i c o n e rubber wQtt r in g s which se a te d a g a in st th e f l a t ends o f t h e t e e . An in n er e le c tr o d e was made from a l / 8 - i n . d iam eter bronze b ra zin g ro d , 15 cm. lo n g , which was ground o f f f l a t on th e end which en tered th e s y ste m . The rod was s e a le d w ith a sm a ll amount of A piezon W 1 wax in t o a 90 75 mm. A p ie c e o f w ir e c o n s is t in g o f two stra n d s o f Mo. 3h p latin u m w ir e tw is te d t o g e th e r , h avin g an 8 cm. f i n a l le n g th ,w a s in s e r te d e n t i r e l y in t o th e c a p illa r y tu b e . The end o f th e w ire n e a r e s t t h e d e t e c t o r was 2 .9 cm. from t h e end pf t h e tu b in g . The w ir e was s u f f i c i e n t l y kinked so t h a t i t could not be moved e a s i l y i n t h e tu b e . 93 The o u ts id e o f th e c a p illa r y tube was wrapped w ith aluminum f o i l b e g in n in g £ mm. upstream from th e upper end o f th e platinu m w ir e and e x ten d in g 8 cm o i n t h a t d ir e c t io n * The aluminum f o i l was a d ou ble th ic k ­ n e s s fo ld e d t o 8 cm. s q u a r e . The aluminum f o i l on th e tu be was wrapped w ith s e v e r a l la y e r s o f S co tch e l e c t r i c a l ta p e , ex cep t f o r a sm a ll a rea in th e c e n te r th rough which an aluminum s t r i p which e n c ir c le d th e aluminum w rapping p assed f o r c o n n ectio n t o th e secondary o f th e T e sla c o i l . The d isc h a r g e from t h e T e sla c o i l was coupled from th e aluminum f o i l t o th e in t e r n a l p latin u m w ir e c a p a c i t iv e ly . The gas in th e c a p illa r y tube formed a glow from around th e end o f th e w ire t o th e in n er grounded e le c t r o d e o f th e b r a s s t e e j o i n t . The in t e r n a l w ire g r e a t ly in c r e a se d th e s t a b i l i t y o f th e d is c h a r g e . The e x c i t e r tu b e was in s e r te d as s h a llo w ly as p o s s ib le in t o t h e t e e and y e t s e a l s e c u r e ly w ith th e tt0u r in g . This req u ired 3 mm. in s e r t io n i n t o th e t e e , measured from th e bottom o f th e h exagonal n u t. The in n er e le c t r o d e and c a p illa r y end were th en ap proxim ately 1 mm. a p a rt. For p h otom etric m easurem ents, a C la ir e x cadmium s u lf id e or cadmium s e le n id e (CL-2 or GL~3) p h otocondu ctin g c e l l was in s e r te d in to a p ie c e o f rubber tu b in g which was a snug f i t and th e tu b in g taped t o th e e x c it e r tu b e j u s t below th e t e e . The p h o to c e ll was l e f t l / k i n . from co n ta c t w ith th e g la s s tu b in g to in s u la t e i t e l e c t r i c a l l y from th e d isch a r g e tu b e . A W ratten g e l a t i n f i l t e r was in some c a se s attach ed t o th e p h o t o c e ll. T his was done by c u ttin g a small, p ie c e o f th e f i l t e r th e same diam eter as t h e p h o t o c e ll and cem enting th e f i l t e r w ith G ly p ta l l i g h t l y around th e edge t o ' th e end o f th e p h o t o c e ll. The c e l l and f i l t e r were th e n in s e r te d 9h i n rubber tu b in g as d esc r ib e d above„ A W ratten No. 7b green f i l t e r was used t o i s o l a t e th e C2 spectrum em itted by organ ic m olecu les in th e d isch a r g e e (3 ) E l e c t r i c a l C i r c u i t s . (a ) G eneral. The e l e c t r i c a l c i r c u i t s employed w ith th e T e s la d isc h a r g e gas chromatography d e te c to r a re d e p ic te d s c h e m a tic a lly i n F ig u re 6 . R e s ista n c e and ca p a c ita n c e v a lu e s have a manu­ f a c t u r e r ' s t o le r a n c e o f tw en ty p e r c e n t. The v a r ia b le b a t t e r i e s were fo u r B urgess No. 5 1 5 6 , 22 1 / 2 -V . b a t t e r ie s connected in s e r i e s . These b a t t e r ie s had many ta p s on them, so t h a t a grea t v a r ie t y o f v o lta g e s betw een 0 and ± 90 V. could be o b ta in e d . The lo w e st v o lta g e p o s s ib le was 1 1 /2 V. The c i r c u i t s a re shown w ith th e s w itc h e s in th e p o s it io n s most fr e q u e n tly u se d . O c c a s io n a lly i t was d e s ir e d to s h i f t th e m eter b a s e li n e . cu rren t b ia s in g c i r c u i t was th e n sw itched in by s w itc h , SB. A low T his c i r c u i t , c o n s is t e d o f a s tu d e n t p o ten tio m eter c i r c u i t , P , i s o l a t e d from th e m eter by a 0 .2 megohm r e s i s t o r . T his c i r c u i t was capable o f fu r n is h in g b ia s in g c u r re n ts in th e range o f 0 -1 5 microamperes to th e m eter. The cu rren t p a s s in g through th e t e e j o i n t d e t e c to r c e l l from t h is sou rce was m in is c u le b ecau se o f th e h ig h impedance o f th a t branch o f th e c i r c u i t , (b ) E l e c t r i c a l D e t e c t o r . The e l e c t r i c a l d e t e c to r in F igu re 6A c o n s is t s b a s i c a l l y o f two s e n s in g e le c t r o d e s which are in co n ta ct w ith t h e T e sla d is c h a r g e . There i s a n e t r e c t i f i c a t i o n o f th e T esla d isc h a r g e cu rrent caused by th e asym m etrical lo c a t io n o f th e two e le c tr o d e s in th e d is c h a r g e . The in n er e le c t r o d e , which i s more a c c e s s ib le t o th e io n stream em erging from th e c a p i l l a r y tu b e , c o l l e c t s e le c t r o n s p r e f e r e n t i a l l y , and so i s 95 i Met; ST f B rfc !00K 0-90V + <> 2aF ..... BRASS "T" CIRCUIT FOR sc\ mr — 0-90V A \- 0-140 41 eoov - i( ^ > 15041 * f P ^ :3 v SS sm? 6 0 0 v' A. r SB ^STftOHFC ELECTRICAL 200 K -w w — ^ DETECTOR. a aa / v— -W W W L V 2eoK inf 600 V c CdU -n r Ijuf Q 9 nV CdSI 600V or B, AND FbURE 6, D H CTOM ETRIC C. D E T E C T O R CIRCUi ELECTRICAL CIRCUITS USED W I T H TESLA D I S o H A K S c DETECTOR FOR GAS C H R O M A T O G R A P H Y , 96 th e so u rce of* a d i r e c t cu rren t which flo w s from t h i s e le c tr o d e through th e cu rren t loop c o n ta in in g th e f o llo w in g components.. Two o n e -m illih e n r y ra d io fr eq u e n c y chokes w ere used t o b lo ck ra d io freq u en cy v o lt a g e s from th e m eterin g d ev ic e* A. The meter was a reco rd in g microammeter used in th e ranges co v e rin g 0 -5 5 0 microamps. The reco rd er was a F is h e r R e c o r d a ll, h avin g th e ran ges 0-5*5* 0 - 1 1 .0 microamps* and decade m u lt ip lie r s o f th e s e scales*. An a d d it io n a l s c a le o f 0-22 microamps, was added by a p p ro p ria te sh u n tin g o f th e 0 -1 1 m icro amp 0 in p u t. The v o lta g e drop a c r o s s th e microammeter a t f u l l s c a le d e f le c t io n was 5*5 m i l l i v o l t s . The one — megohm and 0.1-megohm r e s i s t o r s in t h is s e r i e s loop were cu rren t lim it e r s or s e n s i t i v i t y s e l e c t o r s . The one-megohm r e s i s t o r was norm ally in th e c i r c u i t , and th e sm a lle r r e s i s t o r could be sw itch ed a cr o ss th e h ig h er r e s i s t o r u s in g sw itch S S . The sm a ller r e s is t a n c e in crea sed th e cu rren t by a f a c t o r o f ap p roxim ately 10 b u t v a r ie d w ith th e c o n d u c tiv ity o f th e d isc h a r g e ( c f . T able V T H ). The b a ttery * B, was not n orm ally in th e c ir c u it * bu t could be used as a source o f b ia s f o r red u cin g th e background cu rren t in th e d e t e c t o r . The c a p a c ito r s a cr o ss th e m eter c i r c u i t served t o b yp ass ra d io freq u e n c y v o lt a g e s from th e m eter and t o smooth out n o is e . N orm ally th e 2-m icrofarad condenser was used w ith th e one-megohm r e s isto r * g iv in g a tim e c o n sta n t o f ap p roxim ately two se c o n d s. When th e more s e n s i t i v e s c a le was used* i t was u s u a lly when th e n o is e l e v e l was v e r y low* and th en th e 2-m icrofarad condenser was a ls o used* g iv in g a tim e co n sta n t o f a p p roxim ately 0 .2 seco n d s. In some cases* however* th e 8 - m icrofarad condenser was sw itch ed in a lso * g iv in g a 2 - s e c . tim e co n sta n t on th e h ig h s e n s i t i v i t y ra n g e. 91 The resp o n se o f t h i s d e t e c to r has a ls o been m onitored on a p o t e n t i­ om eter ( 0 - 501 rov o f u l l s c a le ) by r e p la c in g th e microammeter w ith a r e s i s t o r o f a few thousand ohms and p la c in g th e p o ten tio m eter a cro ss i t . The output h as been m onitored on sim p le n on -record in g microammeters and v o lt m e t e r s * Such m eters could serv e e a s i l y f o r d em on stration p u rp oses or m on itorin g p r e p a r a tiv e chrom atographic columns* (c) P h o to m etric D etecto r* The p hotom etric d e te c to r c i r c u i t s in F ig u re 6B and 6C, c o n s is t v e r y sim p ly o f a G la ir e x p h otocond u ctin g c e l l , a sou rce o f p o t e n tia l,a n d a meter* F igu re 633 was th e c i r c u i t used in r ec o r d in g th e r e sp o n se , where th e metei> A, was a g a in th e F ish e r R e c o r d a ll. F ig u re 6C i l l u s t r a t e s th e u se o f a sim ple v o ltm e te r to m onitor th e resp o n se o f th e d e te c to r * The f i l t e r condensers in b oth c ir c u it s norm ally were n ot n e c e s s a r y , s in c e th e p h o t o c e lls generated or picked up v ery l i t t l e o b serv a b le n o is e . Norm ally a p o t e n t ia l o f 90 v o l t s or l e s s was a p p lie d , alth ou gh t h e m anufacturer s p e c i f i e s th a t 300 V* may be used w ith G la irex C3>2 and GL-3 p h o to c e lls * The cadmium s u lf id e , GL-2, p h o t o c e ll, which i s s e n s i t i v e t o v i s i b l e l i g h t , i s s p e c if ie d t o produce a 100-raicroamp. s ig n a l w ith a 100 V* a p p lied when i t r e c e iv e s an illu m in a tio n o f 2 f o o t candle s . The cadmium s e le n id e , CL-3, p h o t o c e ll, which i s red s e n s i t i v e , i s s p e c if ie d t o produce a 600-microamp * s ig n a l w ith 100 V* a p p lied when i t r e c e iv e s a s im ila r illu m in a tio n * c* The Flow System (1 ) General* F ig u re 7 shows s c h e m a tic a lly th e flo w system used w ith th e d e t e c t o r s d esc rib e d above* C arrier gas from a c y lin d e r w ith a SYSTEM ZD Q_ cc 0-m l. s a m p l e s , t o c a r r i e r b a c k u p s tre a m in je c tio n p a tte rn s , s e c tio n a t a p re ssu re of about P .S . l o g o In al 1 c a se s b u t one, th e t h e h y p o d e rm ic s y r i n g e s . th e t i p , in T h e 2 0 - m l . s y r i n g e u s e d h a d a d e a d v o lu m e i n in c lu d in g th e n e e d le , s y r in g e w as 0 .7 m l. g a s e o u s s o l u t i o n s w e r e m ade u p d i r e c t l y o f 0 .3 m l., w h ile t h a t f o r th e £ 0 -m l. The c o n c e n t r a t io n s c o r r e c t i n g f o r t h e s e d e a d v o lu m e s . of th e s o lu t i o n s w ere c a lc u la te d M ix in g w a s a s s u r e d b y s e a l i n g t h e 102 n e e d le t>ip o f th e sy r in g e in a rubber sto p p er and ‘•pumping11 on th e s y r in g e s e v e r a l t im e s * For th e stu d y o f d e te c to r resp onse to methane in argon, a sto ck s o lu t io n o f 1*83 volume p ercen t methane was prepared and d ilu t io n s made from t h a t s t o c k * The s o lu t io n was sto red a t a p ressu re above atm ospheric t o p r ev en t p o s s ib le a i r contam ination* Sam ples o f argon sa tu r a te d w ith organic vapors were obtained by b u b b lin g argon through a gas w ashing b o t t l e h avin g a s in te r e d g la s s b u b b ler immersed in th e liq u id o f in t e r e s t * The vapor p ressu re was regu­ la te d by imm ersing th e w ashing b o t t l e in a c o o lin g bath* Benzene and cycloh exan e w ere used t o s a tu r a te argon gas a t t h e i r f r e e z in g p o in ts* A cetone was u sed a t 0°C * The c o n cen tra tio n o f th e vapors in th e argon were estim a ted u sin g th e vapor p r essu res o f th e s e su b stan ces a t th e s e tem p era tu res, u sin g v a lu e s l i s t e d b y Jordan (59)* (2 } P r essu re and Flew Rate* To stu d y th e d e te c to r resp on se w ith o u t th e chrom atographic column, th e column was rep laced a t p o in t C in F igu re 7 b y a f lo w - lim it in g c a p illa r y as d escrib ed in th e apparatus se c tio n * The p r e ssu r e drop a c r o ss th e c a p illa r y was ad ju sted by th e len g th o f w ire in s e r te d in th e c a p i l l a r y so t h a t i t was comparable to t h a t o f th e s i x f o o t packed column employed* In th e runs made w ith th e d e te c to r u sin g th e l / l 6 “ in * in n er e le c t r o d e , w ith a c a r r ie r gas a t atm ospheric p r e s su r e , t h i s p r e ssu r e drop was such t h a t th e p ressu re in th e d e te c to r sy stem , when th e flo w c o n tr o l v a lv e , H, was wide open,was in th e range 3~U ram. Subsequent runs u sin g th e l / 8 - i n * in n er e le c tr o d e t e e were a t a p ressu re o f 2-3 mm* This d if f e r e n c e was b ecause o f a le a k in th e system in th e U03 v i c i n i t y o f th e vacuum pumpo When a compressed c a r r ie r gas was used a t a p r e ssu r e o f 5 poSoiogo behind th e flow l i m i t e r , th e p ressu re in th e system in c re a se d ap p roxim ately 0 o$ mm» The approximate flo w r a te as estim a ted from th e le n g th o f tim e req uired f o r a 20 ml*, sample t o flo w through th e d e t e c to r was 22 m l. per minute f o r a ir c a r r ie r a t atm ospheric p re ssu r e and i;2 m lc per minute f o r argon c a r r ie r a t 5 p .S o i.g * The r a te o f flo w o f d isca rd ed gas in s t r e a m - s p lit t in g experim ents was measured by d eterm in in g th e r a t e a t which i t f i l l e d a 50“ml*- sy r in g e having a f r e e l y moving piston*. Measurements made as a .fu n ction of p ressu re were accomp- lis h e d by r e g u la t io n o f th e pumping r a te w ith diaphragm v a lv e , H*. (3 ) Chromatograms * I n ta c t as in F igu re 7° For chrom atographic work, th e system was used An argon p ressu re o f 10 p 0s . i » g . was used w ith a slow oxygen flo w b led in a t a t e e below th e e x c i t e r » b <> Procedure in U sing th e Photom etric D etecto r The p h otom etric o b se rv a tio n s were made w ith a p h o t o c e ll in p o s it io n on th e e x c i t e r tu b e below th e b r a ss t e e as d e p icte d in F ig u re % w ith a f lo w - lim it in g c a p illa r y s u b s titu te d f o r th e chrom atographic column*. The d isc h a r g e was a d ju sted as d escrib e d below under th e procedure in u sin g e l e c t r i c a l d e t e c to r *. Co Procedure in U sing th e E l e c t r i c a l D etecto r * A fte r th e system was purged w ith th e c a r r ie r gas to be u sed , th e T e s la c o i l e x c it e r was turned on. The spark gap in th e T esla c o i l primary was a d ju sted t o g iv e a l e v e l o f ou tpu t v o lta g e so th a t th e d isch a rg e e x c ite d in th e evacuated tu b e was s t a b l e , but n o t so high as t o cause str o n g corona form ation io u about th e e x c i t e r tu b e . The e l e c t r i c a l d e te c to r c i r c u i t o f F igu re 6A was connected up w ith th e one—megohm s e r i e s r e s i s t o r and th e 2-m icrofarad f i l t e r condensero No e x te r n a l "voltage was ap plied., The cu rrent l e v e l as measured on th e microammeter record er could be ad ju sted by moving th e in n er e le c tr o d e (which was a t ground p o t e n t ia l) up and down in i t s s e a t in th e t e e tu b e . There was v e r y l i t t l e l a t e r a l p la y , b u t th e e le c tr o d e could be moved r e a d ily i n th e v e r t i c a l d ir e c t io n , s lip p in g through th e 110W r in g s e a lo In p r a c t ic e , r o t a tio n o f th e e le c tr o d e a ls o had a profound e f f e c t on th e cu rren t in th e d e t e c t o r . This was presumed t o be because th e e le c t r o d e s were n ot m ic r o s c o p ic a lly sym m etrical, nor was th e in n er e le c t r o d e e x a c t ly square on th e end in r e la t io n t o th e ca rrier-sa m p le stream em erging from th e end o f th e c a p illa r y e x c it e r tu b e . T h erefore, th e r e were u n d ou b ted ly p re fe r r e d p o r tio n s o f th e e le c tr o d e which ca rried th e cu rren t from th e glow d isc h a r g e . By a d ju s tin g th e in n er e le c t r o d e , a minimum cu rren t was o b ta in e d , w h ile k eep in g th e end o f th e e le c tr o d e in a r e g io n w ith in about one m illim e te r from th e end o f th e c a p illa r y e x c it e r tu b e . With t h i s minimum in th e cu rren t, th e r e a ls o occurred a minimal n o is e l e v e l w ith o u t a p p re cia b le lo s s o f resp on se o f th e d e te c to r t o sample vapors o Table 7 shows th e approxim ate v a lu e s ob tain ed fo r t h i s minim al cu rren t and n o is e l e v e l in v a r io u s c a r r ie r gases used w ith th e 1 / 16~and 1 /8 - i n . e le c t r o d e , to g e th e r w ith th e resp on se o f th e d e te c to r t o a 0 .0 1 m l. i n j e c t i o n o f m ethane. When argon c a r r ie r gas was used w ith an oxygen scaven ger b le e d , a s l i g h t l y a lte r e d procedure was used to s e t up th e sy stem . The system was a d ju sted as d e sc r ib e d in th e p reced in g paragraph w ith th e oxygen 105 n eed le v a lv e c lo se d v e r y firm ly,, The v a lv e was th en cracked a v ery s l i g h t amount, and th e resp o n se current o f th e d e te c to r n o ted . cu rren t in c r e a se d w ith th e added oxygen. The d e te c to r The cu rrent was allow ed t o in c r e a s e ap p roxim ately te n microamperes on th e 0.1-megohra s c a l e . This r e s u lte d in a str o n g in c r e a s e in th e n o is e l e v e l on th e background c u r r e n t. The in n e r e le c tr o d e was r e a d ju sted by r o t a t io n or r a is in g , or b o th , t o reduce th e cu rren t t o a p p roxim ately th e s t a r t in g l e v e l . The e f f e c t iv e n e s s o f th e oxygen i n k eep in g th e e x c it e r w ire and th e se n sin g e le c tr o d e s from p ic k in g up carbonaceous m atter, which r e s u lt s in t a i l i n g of sample bands, was checked by in j e c t in g in c r e a s in g ly la r g e r sam ples o f methane in to th e system . The d e t e c to r was a b le t o handle a 0 .2 m l. in j e c t io n and retu rn sm oothly t o th e b a s e li n e . In th e absence o f th e oxygen, th ere was a tendency towards fo rm a tio n o f a pronounced shou ld er on th e sample band at in j e c t io n s o f o n ly 0 .0 2 m l. m ethane. More oxygen flo w in g allow ed la r g e r samples to be in j e c t e d w ith o u t undue t a i l i n g , but the s e n s i t i v i t y o f th e d e te c to r a ls o began t o f a l l o f f . S m all v a r ia t io n s in d e te c to r cu rren t and resp on se am plitude could be made by o p era tin g th e T e sla c o i l primary from a v a r ia b le au totran sform er. E . R e su lts and D isc u ssio n 1 . P h otom etric O b servation s a . G eneral From v i s u a l o b se r v a tio n , w ith a sm a ll spectroscope^ of th e glow d i s ­ charge in th e e x c it e r tu b e in th e reg io n o f th e tube observed by th e p h o t o c e ll in F ig u re $ 9 i t was b e lie v e d th a t th e r e were s e v e r a l workable 106 p o s s i b i l i t i e s .for o p era tin g a photom etric d e te c to r • In a d d itio n t o changes in o v er”a l l i n t e n s i t y o f th e d isch a rg e when samples p assed through th e e x c it e r tube,, c e r t a in r e g io n s o f th e spectrum were e s p e c i a ll y su b je c t t o changeo F ir s t ,, th e str o n g s p e c t r a l l i n e s o f th e c a r r ie r gas were quenched, as had b een observed in th e work in P art I o f t h is i n v e s t ig a t io n . S e c o n d ly , v a r io u s r e g io n s o f th e spectrum became e s p e c i a ll y in te n s e when th e sample p a ssed through th e d isc h a r g e . Various com binations o f p h o to c e ll resp o n se and l i g h t f i l t e r s were t r ie d f o r v a rio u s c a r r ie r g a ses in attem pt­ in g t o f in d com binations o f components f o r s e l e c t i v e o b se r v a tio n o f s p e c ie s in t h e d is c h a r g e . The r e s u lt s ob tain ed w ith th e photom etric d e te c to r were la r g e ly q u a l i t a t i v e in n a tu r e , b ecau se th e most prom ising a v a ila b le p h o t o c e ll, th e GdS c e l l , (G L -2), developed a n o isy leak age cu rren t b e fo r e much q u a n ti­ t a t i v e work was done . S in ce th e c e l l was always m aintained w e l l out o f co n ta c t w ith th e d isc h a r g e tu b e , i t i s b e lie v e d th a t th e f a il u r e o f th e c e l l was n o t induced by th e d is c h a r g e » ho O v e r -a ll L igh t I n t e n s i t y ■> As has been m entioned in th e in tr o d u c tio n to P art I I of t h i s work, th e o v e r - a l l l i g h t i n t e n s i t y changes occu rrin g when organ ic vapors p ass through a T e sla e x c ite d glow d isch a rg e w ith argon c a r r ie r g a s , are d is ­ t i n c t l y v i s i b l e due t o th e stro n g b lu e -g r e e n em issio n bands o f th e "Swan system o f th e Cs m olecu le * In a d d itio n , i t has b een found th a t w ith argon c a r r ie r gas flo w in g through th e d e t e c to r , sam ples o f organ ic vapors are c l e a r l y v i s i b l e a t i n j e c t i o n volumes o f th e order o f 0 .0 1 m l. 10? W ith a ir c a r r ie r gas* t h i s i n j e c t io n volume i s l e s s s t r i k i n g l y v isib le ® The s e n s i t i v i t y o f v i s u a l in d ic a tio n w ith e it h e r a i r or argon c a r r ie r s , b u t e s p e c i a l l y w ith argon, seems adequate t o a llo w u se o f such a sim p le d e te c to r t o m onitor th e e f f lu e n t stream from a p r e p a r a tiv e chrom atographic column u sin g a s u it a b le s t r e a m - s p lit t in g arrangement t o b le e d o f f a sm a ll p o r tio n o f t h e e f f l u e n t t o send through th e discharge® Moreover, s in c e a v i s u a l r esp o n se i s ob tain ed u sin g a ir c a r r ie r and sample s i z e s which are sm a ll enough t o be handled by a sm a ll chrom atographic column, i t appears t h a t t h i s sim p le d em on stration can be conducted u sin g a ir a t atm ospheric p r e ssu r e as a c a r r ie r g a s » I t has a ls o been determ ined th a t th e demon­ s t r a t i o n can be made w ith a ir a t p r e ssu r e s in th e d e te c to r which are a t ta in a b le w ith a w ater a s p ir a to r in p la c e o f a vacuum pump® With argon and h eliu m , as w i l l be d is c u s s e d in more d e t a i l b elow , th e d isch a rg e and resp o n se t o s m a ll sam ples i s su sta in e d v i s i b l y to p ressu res above atmos­ p h e r ic , so th a t th e vacuum pump may be d isp en sed w it h . The o v e r - a l l l i g h t i n t e n s it y did not appear t o o f f e r good p o s s i b i l i t i e s f o r o th e r th an g ro ss q u a n tit a tiv e work, b ecau se th e v a r io u s p o r tio n s o f th e spectrum w ent through maxima in in t e n s i t y a t d if f e r e n t s ta g e s o f th e p ro g ress o f th e sample through th e d e t e c to r , r e s u lt in g in com plicated resp o n se p a tte r n s of th e p h o to c e ll f o r a s in g l e band o f vapor® This o b se r v a tio n , to g e th e r w ith o b se rv a tio n s in P art I o f t h i s work, su ggested two i n t e r e s t i n g a s p e c ts o f th e d isch a rg e t o in v e s t ig a t e s (1 ) making th e d e te c to r s p e c i f i c f o r c e r t a in su b stan ces by i s o l a t i n g s p e c t r a l r e g io n s , which f a l l on th e p h o t o c e ll, u sin g e it h e r f i l t e r s or a monochromator, and ( 2 ) q u a l i t a t i v e a n a ly s is o f components e f f lu e n t from th e chrom atographic 108 column by s p e c tr o s c o p ic o b se r v a tio n o f th e changes o c cu rrin g i n th e d i s ­ charge as components p a ss a p o in t in th e d e t e c t o r * Co Quenching o f C a rrier Gas Experim ents w ith a r e d - s e n s it i v e p h o to c e ll (cadmium s e le n id e ) t o d e te c t th e quenching o f c a r r ie r gas em issio n by sample vapors were performed* Helium and argon c a r r ie r s were stu d ie d at atm ospheric p ressu re by h aving th e pump c lo s e d o f f and v e n tin g th e c a r r ie r gas t o th e atmosphere through stop cock SA in F ig u re 7 • Helium has a v e r y stro n g y e llo w l i n e which i s quenched by o rg a n ic vapors , w h ile argon has s e v e r a l red l in e s which are quenchedj t h i s quenching i s d e te c ta b le f o r sm a ll sam ples w ith th e cadmium s e le n id e p h o to c e ll* The arrangement was n ot v ery good f o r hydrocarbons, how ever, b e c a u se , alth ou gh stro n g quenching o f th e c a r r ie r l i n e s occu rred , hydrogen formed in th e d isch a rg e em itted s tr o n g ly in th e red* With h elium , a y e l l o w - s e n s it i v e d e te c to r would have been v e r y s e n s i t i v e , ju dgin g from th e spectrum* N itro g en and oxygen were s tr o n g ly d if f e r e n t ia t e d in th e d e t e c t o r , however* The oxygen s tr o n g ly quenched th e c a r r ie r gas, w h ile th e n itr o g e n was r a th e r in e f f e c t iv e * T his was observed a ls o in F a rt I , where i t was found th a t th e a rc l i n e s of argon were quenched by oxygen and n o t by n itro g e n * Such a s it u a t io n could form th e b a s is f o r th e a n a ly s is o f oxygen i n n itr o g e n or a ir m ix tu res 3 u sin g th e d e te c to r w ith ­ out a s e p a r a tin g column* d* S e l e c t i v e O b servation o f E m ission by th e Sample The predom inant change v i s i b l e in th e d e te c to r d isc h a r g e when organ ic vapors p a ssed through was th e green em issio n band of th e C2 Swan system 109 a t 517 roju. o For b o th a ir and argon d isc h a r g e s , t h is p o r tio n o f th e spectrum was o f low l i g h t i n t e n s i t y , as can be seen from th e low back­ ground cu rren t ( I 0 ) measured f o r a cadmium s u lf id e p h o t o c e ll w ith a green f i l t e r , recorded in Table V I. Argon em issio n can be seen t o be low er in t h i s r e g io n than i s a i r 0 The resp o n se o f th e p h o to c e ll t o v a r io u s s m a ll sample i n j e c t i o n s i s a ls o l i s t e d in th a t t a b le . At a p r e ssu r e o f 3 mm., th e argon c a r r ie r produced a response of 135 microamp . t o 0 .0 1 m l. o f m eth an e,w h ile th e a ir c a r r ie r produced a much lower resp on se f o r 0*05 m l. m ethane. Moreover^ th e argon c a r r ie r produced o n ly 0 .3~fliicroamp. resp on se t o a 0 *05~mlo sample o f a i r „ These f a c t s in d ic a te s ( l ) th a t argon c a r r ie r w ith a green—s e n s i t i v e p h o to c e ll forms a s e n s i t i v e d e t e c to r f o r c a r b o n -co n ta in in g compounds, and (2 ) th a t i t may be p o s s ib le t o an alyze o rg a n ic sample vapors mixed w ith a i r , even w ith o u t a chrom atographic column, u sin g argon c a r r ie r g a s , because o f th e low s e n s i t i v i t y o f t h is d e t e c to r t o a i r . U sing argon c a r r ie r , th e s e n s i t i v i t y o f t h i s d e t e c to r , as measured by th e s ig n a l t o n o is e r a t io a t which a 0 .0 1 - m l. sample o f methane gas can be d e t e c te d , i s about eq u al t o th e most s e n s i t iv e form o f th e e l e c t r i c a l d e t e c to r em ploying argon c a r r ie r , which w i l l be d escrib ed la te r . These s e n s i t i v i t i e s are l i s t e d in Table VII t o be d isc u s se d l a t e r . e . Q u a lita t iv e A n a ly sis o f Chromatographic Components A ttem pts w ere made w ith th e sm a ll v i s u a l sp e ctro sco p e t o d is t in g u is h betw een v a r io u s com p ounds p a ss in g through th e d e te c to r d is c h a r g e . I t was hoped th a t one might be a b le t o d is t in g u is h v i s u a l l y betw een hydrocarbons and carb on yl compounds in th e d isc h a r g e , s in c e in F a rt I o f t h i s work i t 110 TABLE VI RESPONSE OF PHOTOMETRIC DETECTOR TO VARIOUS SAMPLES, CADMIUM SULFIDE PHOTOCELL, WRATTEN No. ?U GREEN FILTER, 90 VOLTS C a rrier Gas Ar A ir Sample OoOl m l. CH4 IQ (jia) Ool AI {pa) N oise (P-*) 135 0.01 0o05 mlo a ir 0 .3 0 .2 5 mlo a ir Q*h QoQ£ m l. CH4 0 025 ®lL0 ch4 l'S 0 .2 2 .3 0 .0 5 I ll was observed w ith th e sp ectrop h otom eter th a t carbon monoxide was a pre­ dom inant e m itte r in th e d eco m p osition o f o x y g en -co n ta in in g organ ic compounds . The e m issio n spectrum o f C2 and CO in an argon or a i r d i s ­ charge appear so s im ila r in th e v i s u a l sp e ctro sco p e th a t d i s t i n c t i o n o f th e two k in d s o f compounds proved im p o ssib le v i s u a l l y . They c o u ld , o f c o u r se , be d is t in g u is h e d w ith a h ig h er d is p e r s io n s p e c tr o s c o p e , or spectrophotom eter^ as was used in P art I . C e r ta in s p e c ie s were amenable t o v is u a l d i f f e r e n t i a t i o n in th e d i s ­ ch arge, b u t in many in s ta n c e s th e s e d i s t i n c t io n s would b e t r i v i a l . For exam ple, e m iss io n b y th e fo llo w in g sim p le components could be seen in an argon d isc h a r g e s h eliu m , hydrogen, n itr o g e n , oxygen, and a ir« Carbon t e t r a c h lo r id e could be d is tin g u is h e d from ch loroform by v ir t u e o f th e absence o f e m issio n from th e fragm ent CH w ith th e carbon t e t r a c h lo r id e . T his method o f q u a l i t a t i v e a n a ly s is u sin g a h ig h er d is p e r s io n sp e c tr o sc o p e or sp ectrop h otom eter seems capable o f alm ost u n lim ited e x te n s io n in s c o p e , e s p e c i a l l y i f rap id scan ning tech n iq u es were a p p lie d . With con tin u ou s m on itorin g o f th e d isch a rg e w ith a s p e c t r a l scan nin g p h o to m u ltip lie r whose ou tpu t was d isp la y e d as a fu n c tio n o f w avelength on an o s c illo s c o p e s c r e e n , th e observed breakdown p a tte r n o f th e sample p a s s in g through th e d isc h a r g e could undoubtedly be used t o d is t in g u is h betw een pure hydrocarbon and oxygenated organic compounds. Other h e te r o ­ atoms should be o b serv a b le from fragm ents th e y form in th e d isch a rg e, such as NH, SH, &2» F u rther r a m ific a tio n s o f t h i s method w i l l be summarized i n a l a t e r s e c t i o n . 112 f . S t a b i l i t y o f th e D ischarge Perhaps th e most s t r ik in g o b se r v a tio n t o come out o f th e o b se r v a tio n o f th e v i s i b l e d isc h a r g e in v a r io u s c a r r ie r g a ses i s th e s t a b i l i t y o f th e argon and h eliu m d isc h a r g e s compared t o a ir or n itr o g e n under comparable c o n d itio n s o W ith th e T e s la c o i l a v i s i b l e d isch a rg e could b e m aintained e a s i l y in th e ra r e g a ses above atm ospheric p r e s s u r e , w h ile a i r and n itr o g e n d isc h a r g e s became v e r y u n sta b le a t moderate p r e ssu r e s and were no lo n g er v i s i b l e above about 3$Q mm* p r e s s u r e » T his i s a v e r y u s e f u l p ro p erty o f th e r a r e g a se s which can a llo w u se o f a T esla d isc h a r g e d e t e c to r a t atm osp h eric p r e ssu r e in m onitoring flo w system s w ith o u t a vacuum system . The e x p la n a tio n f o r th e s t a b i l i t y o f th e ra re gas d isc h a r g e s i s p r e - _ sumed t o l i e in th e e x is t e n c e o f m eta sta b le rare gas atoms which have r e l a t i v e l y lon g l i f e t i m e s in th e d isch a rg e sy stem . These m e ta sta b le atoms have s u f f i c i e n t en ergy t o ( 1 ) become io n iz e d b y e le c t r o n impact w ith r e la ­ t i v e l y low energy e le c t r o n s , and (2 ) t o io n iz e oth er m eta sta b le ra re gas atoms i n a s u i t a b l e c o l l i s i o n p r o c e s s . S in c e th e T e sla c o i l output i s a ra d io fr e q u e n c y v o l t a g e , p u ls a t in g a t 120 c y c le s p er seco n d , i t has t o i n i t i a t e th e d isc h a r g e many tim e s a secon d . I f a good su p p ly o f m eta sta b le atoms i s p r e se n t when th e T e s la output c u ts o f f , th e s e atoms may se r v e t o keep io n iz a t io n p r o c e s s e s g o in g i n th e system because o f item (2 ) above, and a l s o become io n iz e d more r e a d ily when th e T esla output comes on a g a in b eca u se o f item ( 1 ) . We s h a l l s e e from th e s tu d ie s o f the e l e c t r i c a l d e t e c to r b elo w , th a t o f th e r a r e g a ses argon and h eliu m , argon seems to produce by f a r th e more s t a b le d is c h a r g e , perhaps due t o th e low er iq eta sta b le l e v e l and io n iz a t io n p o t e n t ia ls o f argon. 113 go Summary I n summary i t may be s a id th a t a p h otom etric d e t e c to r u sin g a T e sla e x c it e d glow d isc h a r g e shows c o n sid era b le prom ise as a s e n s i t i v e d e t e c to r f o r gas chromatography* The s e n s i t i v i t y o f th e green—s e n s i t iv e photo­ m e tr ic d e t e c to r f o r hydrocarbons u sin g argon c a r r ie r gas appears t o be as g r ea t as th a t o f th e e l e c t r i c a l d e te c to r t o be d escrib e d below* The low er l i m i t o f hydrocarbon d e t e c t a b i l i t y as estim a ted in a l a t e r s e c t io n , appears t o b e s l i g h t l y g r e a te r than t h a t o f a k atharom eter, b u t n o t so g r e a t as th e io n iz a t io n d e te c to r s d escrib e d in th e in tr o d u c to r y p o r tio n s o f P a r t II* Use o f a narrower bandpass f i l t e r (perhaps an in te r fe r e n c e f i l t e r ) or a monochromator would reduce th e background l i g h t i n t e n s i t y and th e accompanying n o is e l e v e l o f th e ph otom etric d e t e c t 01^ w h ile a t th e same tim e making th e d e t e c to r s p e c i f i c f o r a p a r t ic u la r s p e c ie s in th e d isch a rg e; t h i s cou ld r e s u l t in an a p p r e c ia b le in c r e a s e in s e n s i t i v i t y o f t h i s d e te c to r * The a p p l i c a b i l i t y o f t h i s d e te c to r w i l l be d isc u sse d fu r th e r a f t e r th e o b se r v a tio n s u s in g th e e l c t r i c a l d e te c to r have been reported* A com parison o f th e two d e t e c to r s w i l l be p resen ted a lso * 2 * The E l e c t r i c a l D e te c to r —R e s u lts and D is c u s s io n a* S e l e c t i o n o f System s f o r Study and D isch arge O p eratin g C o n d itio n s (1 ) C a rrier Gases* The resp o n se o f th e e l e c t r i c a l d e te c to r was s tu d ie d m ain ly w ith a i r and w ith argon c a r r ie r g a s e s , or argon w ith oxygen sca v en g er fe d in t o th e d e te c to r * A r(^02) c a r r ie r * The l a t t e r case i s r e fe r r e d t o as A ir was co n sid ered t o be o f p a r t ic u la r I n t e r e s t , b ecau se lilt i t s u se would make a c o m p le tely in ex p en siv e d e t e c to r f o r le c t u r e demon­ s t r a t i o n p u rp o ses, b e s id e s th e p o s s ib le a p p lic a tio n t o d e t e c t io n o f atm osp h eric p o llu t a n t s and t o d e t e c t io n o f su b sta n ces sampled in th e vap or s t a t e d i r e c t l y in a i r * For p r e p a r a tiv e w ork, o f c o u rse, an in e r t gas i s o f te n d e s ir a b le . Argon seemed e s p e c i a l l y a t t r a c t i v e as a c a r r ie r gas, b ecau se e a r ly e x p e r i­ ments showed th e argon d isc h a r g e t o be e s p e c ia lly s t a b le ( f r e e from n o i s e ) . T his i s i l l u s t r a t e d by th e n o is e l e v e l s observed w ith v a r io u s c a r r ie r g a se s l i s t e d i n T ab le V II o Argon performed much b e t t e r than helium and i s th e cheaper o f t h e s e tw o, so i t was s e le c t e d f o r a more d e t a ile d stu d y . The s e n s i t i v i t y o f th e d e t e c to r u sin g n itr o g e n as a c a r r ie r gas seemed comparable t o th a t w ith a i r , but th e d e te c to r had a ten d en cy to produce str o n g t a i l i n g , much as happened a t f i r s t w ith argon b e fo r e th e oxygen sca v en g er was in tr o d u c e d » N itrogen probably could be used f o r p r e p a r a tiv e w ork, i f d e s ir e d , b y in tr o d u c in g th e oxygen scaven ger a f t e r th e chrom atographic column and b e fo r e th e e x c i t e r , as was done w ith argon. (2 ) Apparent E l e c t r i c a l C h a r a c te r is tic s o f th e D e te c to r D isch a rg e. The d i r e c t cu rren t e le c t r o n flo w from th e in n er e le c tr o d e o f th e t e e tu b e , through th e m eter, s e r i e s r e s i s t o r , b a t te r y and back to th e o u ter p o r tio n o f th e t e e tu b e (F ig u re 6 A \ i s p r o p o r tio n a l t o th e v o lta g e a p p lied by th e b a t t e r y a t m oderate cu rren t f lo w . in F igu re 8 . This i s i l l u s t r a t e d f o r a ir c a r r ie r I f one assumes th e t e e t o c o n s is t o f a so u rce o f p o t e n t ia l , E, and an in t e r n a l s e r i e s r e s is t a n c e , R, th en from th e slo p e and in t e r ­ cep t o f t h i s l i n e one can c a lc u la t e th a t w ith th e e x te r n a l s e r i e s r e s is t a n c e o f one megohm in th e c i r c u i t , th e v a lu e o f E i s about 5 v o l t s H5 TABLE 711 ESTIMATED SIGNAL TO NOISE RATIOS FOR AIR, ARGON AND HELIUM CARRIERS— RESPONSE TO O .O l ML. METHANE INJECTION C a rrier Gas E le c tr o d e P(nun) Approx. Time C onstant _ ( s e c .) N oise ()ia) lo (p O £1 (p O S ig n a l N oise E l e c t r i c a l D e te c to r A ir l / l 6 in . k 2 0 .5 5 -1 0 N2 1 /1 6 k 2 0 .5 5 - io Ar” 1 /1 6 h 0 .2 0 .2 12 A ir 1 /8 3 2 0 .1 7 Ar* 1 /8 3 0 .2 Ar(*Oa) * l / 8 3 He U .0 8 7h ho 1U.7 U.0 0 .1 0 CLU U2 0 .2 0 .1 0 m 130 1300 3 20 2 3 5 1 2 5 2 7 6 2 0 .2 5 19 15 1 /8 7h 160 3 60 2 0 .1 1 /8 Uoo 2 0 .2 1U ~ 0 1 /8 1 /8 1 /8 2h U20 7a 71 1.9 9 P h o to m etric D e te c to r Cadmium S u lf id e P h o t o c e ll, 90 V o lts , Green F i l t e r Ar 1 /8 3 0 .2 ~ 0 .0 1 135 0 .1 ~ 1350 A ir** 1 /8 3 0 .2 —- 0 .0 5 0 .2 1 .5 U ^ 0 .1 - Megohm r e s i s t a n c e , i . e . , most s e n s i t i v e s c a le . **0o 05 m l. methane in j e c t e d . 116 0 10 20 30 40 APPLIED FIGURE 8. P = 3 .6 M M , DETECTOR ONE CURRENT MEGOHM 50 60 70 80 90 VOLTAGE VS, APPLIED RESISTOR, VOLTAGE; £ IN. AIR ELECTRODE. CARRIER, 117 and R i s ap p ro x im a tely 0*5 megohmo I f th e one-megohm e x te r n a l r e s is t a n c e i s shunted b y a 0 *X-raegohm r e s i s t o r however* th e cu rren t in c r e a s e s by ap p ro x im a tely a f a c t o r o f 7 w ith a i r c a r r ie r , as though th e in t e r n a l r e s is t a n c e o f th e t e e w ere alm ost n e g l i g i b l e , compared t o 0 , 1 megohm* The e f f e c t o f t h i s s c a le - m u lt ip ly in g r e s is t a n c e i s shown i n T able V III f o r argon and helium * For argon th e 0 * 1 -megohm r e s i s t o r m u lt ip lie s th e cu rren t b y ap p roxim ately 1 0 , b u t t h i s f a l l s o f f a t h ig h er p r e s s u r e , where th e c o n d u c t iv it y o f th e gas could be presumed t o be lower* The v o lta g e — cu rren t r e la t io n s h ip w ith th e s e c a r r ie r g a ses i s a ls o lin e a r a t low v a lu e s o f cu r re n t flow * The s e n s i t i v i t y o f th e d e t e c to r t o hydrocarbons f a l l s o f f s lo w ly as th e a p p lied v o lta g e in c r e a s e s f o r a l l th r e e c a r r ie r g a s e s , so g e n e r a lly no ex­ t e r n a l v o lta g e was a p p lie d . The e f f e c t on s e n s i t i v i t y was n ot n o tic e a b le f o r v o lt a g e s l e s s th an about th r e e v o l t s , however, so s l i g h t “zero a d ju s tin g 11 v o lt a g e s could be a p p lied w ith o u t changing th e s e n s i t i v i t y o f th e d e te c to r a p p recia b ly * ( 3 ) E f f e c t o f P r e ssu r e on D e te c to r P r o p e r tie s* The d e t e c to r cu rren t measured f o r v a r io u s c a r r ie r g a s e s as a fu n c tio n o f p ressu re i s i l l u s ­ t r a te d i n F ig u re 9 * The cu rren t w ith th e g a ses n itr o g e n and a ir shows a s im ila r p r e s su r e dependence, th e cu rren t p a ssin g through a maximum a t a p r e ssu r e n ear tw en ty m illim e te r s o f mercury* The cu rren t w ith argon c a r r ie r i s v e r y lo w , b u t a ls o shows a p ressu re dependence w ith a maximum n ear t h i r t y m illim e te r s p ressu re* The maximum cu rren t in th e s e th r e e c a se s i s a p p roxim ately f i f t y p e rcen t h igh er th an th e cu rren t observed a t th e lo w e s t p r e s su r e s s tu d ie d (2-1* ram)* This low p ressu re r e g io n r e p r e s e n ts 118 TABLE V III EFFECT OF SCALE MULTIPLIER RESISTANCE ON CURRENT IN THE ELECTRICAL DETECTOR FOR ARGON AND HELIUM AT VARIOUS PRESSURES, 1 /1 6 IN* ELECTRODE, RUN 33* Argon p j Helium (mm.) ) 1 meg. t (pa ) 0 . 1 meg. 0 .1 meg. I , go p U.U 1 .2 0 13.0 10.8 h-3 3.6 31-5 7 *3 3U 1.88 18.8 10.0 9 U.o 3 3.5 8.U U2 lo ? 2 17 *3 10.2 1U U .8 Ul.G 8.5 5U l.iiO lUoO 10.0 17 5.5 U3.5 8.7 6U 1-15 10.5 9-1 75 .0.90 6.5 7-2 91 0 .2 5 0.65 2.6 (mm.) j Qia) 1 meg. j (/*a ) -^q t me~ 0 .1 meg. p - 1------1 me,g. 119 20.0 -AIR 5.0 — Ar 00 200 100 j 300 400 P ( M M . HG) FIGURE 9. AND HE DETECTOR CARRIER CURRENT GASES; ONE VS PRESSURE MEGOHM FOR N2, AIR, RESISTOR, ^ IN. AR, ELECTRODE. 120 th e normal o p e r a tin g r e g io n used in t h is work* Helium was found t o have a cu rren t maximum a t about n in e ty m illim e te r s p res sure , t h is maximum be­ in g s e v e r a l tim es th e cu rren t c h a r a c t e r is t ic o f th e low p ressu re end o f th e curve 0 The resp o n se o f th e d e te c to r to sample g a s e s , w i l l be d efin ed h ere as th e c u r r e n t, A I , which i s th e d iff e r e n c e betw een th e output cu rren t o f th e d e t e c t o r when i t i s resp on din g t o a sample vapor and th e b a s e lin e cu rren t I Q w hich i s a c h a r a c t e r is t ic of th e c a r r ie r gas • The resp on se o f th e d e t e c t o r t o v a r io u s a ir s o lu t io n s o f sample gases as a fu n c tio n o f p r e ssu r e in a ir c a r r ie r i s i l l u s t r a t e d in F igu res 10 and 1 1 . I t was found t h a t f o r a U»2 volume p ercen t s o lu t io n o f methane in a ir (F igu re 10) and fo r a volume p e rc en t s o lu t io n o f hydrogen in a ir (F igu re 11) th e resp o n se o f th e d e t e c to r t o th e s e g a ses showed maxima in th e v i c i n i t y o f tw en ty m illim e te r s o f p ressu re, or v e r y c lo s e to th e p r e ssu re g iv in g th e maximum in d e t e c to r cu rren t f o r a i r i t s e l f . For a k9 *3 volum e p ercen t s o lu t io n o f h elium i n a i r , however, th e maximum resp on se was observed near f i f t y m illim e te r s p r e s s u r e . The r e la t io n s h ip o f resp on se cu rren t f o r a h e liu m -a ir s o lu t io n seems to be an a d d itiv e one, th e maximum in resp o n se f a l l i n g betw een th a t f o r a ir i t s e l f and th a t f o r helium i t s e l f . I t has b een a s c e r ta in e d q u a l i t a t i v e l y th a t th e respon se o f th e d e t e c to r t o i n j e c t i o n o f 0 .0 1 m l. methane u sin g argon c a r r ie r gas a ls o goes through a maximum near t h ir t y m illim e te r s of p r e s s u r e . With helium c a r r i e r , a maximum resp o n se was observed f o r methane t o occur in th e v i c i n i t y o f one hundred m illim e te r s p ressu re (T able V I I ) . 121 O I , AIR O ' A I , 4.2 VOLUME PERCENT METHANE cp A I , 49.3 VOLUME PERCENT HELIUM One Megohm R e s is t o r , l / l 6 in * E lec tr o d e AI fyia) Helium* - 0 .0 6 Argon - 0 .0 1 Hydrogen ♦ 2 .8 A cety len e 3 *6 Methane U-7 E th ylen e 5*5 Ethane 7*3 9 .2 Cyclopropane P rop ylen e 11. u Propane 11 *6 1-B utene 13*0 ^ E stim ated b y e x tr a p o la tio n o f curve in F ig u re 12 t o th e o r ig in . 126 f o r methane up t o one volume p e r c e n t, f o r hydrogen up t o about two volume p e r c e n t, and f o r h eliu m up t o about f o r t y volume p ercen t in a i r . The s e n s i t i v i t y o f th e d e t e c to r t o th e s e su b sta n ces i s adequate t o a llo w q u a n t it a t iv e d e te r m in a tio n o f th e s e sample g a ses in t h e ir ran ges w ith in a few p ercen t* The resp o n se o f th e d e te c to r t o n itr o g e n u sin g a ir c a r r ie r i s to o low t o be o f much v a lu e in m easuring n itr o g e n enrichm ent in a i r . The r e sp o n se curve o b ta in ed f o r argon s o lu t io n s i n a i r i s d i f f e r e n t in form from t h e r e s t o f th e curves in F igu re 1 2 . The resp on se to argon appears l i n e a r w ith r e s p e c t t o c o n cen tra tio n o f argon f o r com p osition s n ea r pure a rg o n , w h ile th e resp on se curve seems t o approach th e concen­ t r a t i o n a x is a s y m p to tic a lly f o r s o lu t io n s approaching pure a i r . (2 } R e p r o d u c ib ility . R e p r o d u c ib ility t o w it h in te n p e r c e n t in r e s p o n se - v e r s u s -c o n c e n tr a tio n cu rves l i k e th o se in F ig u r e s 11 and 12 could be a ch iev ed q u it e r e a d ily even a f t e r d ism a n tlin g and rea ssem b lin g th e d e t e c t o r . Although th e d e t e c to r was s u b je c t to v a r ia t io n s in s e n s i t i v i t y over lo n g p e r io d s o f o p e r a tio n , s h o r t term o p era tio n (8 h ou rs) e x h ib ite d s t a b i l i t y which would a llo w a n a ly s is to w ith in f i v e p ercen t in m eth an e-air s o lu t i o n s , f o r exam ple. F lu c tu a tio n s in s e n s i t i v i t y were probably due in some p a rt t o v a r ia t io n s in output from th e T e sla c o i l , alth ou gh t h i s was never d e f i n i t e l y e s t a b lis h e d . Probably th e g r e a t e s t source o f i n s t a b i l i t y was d e p o s it io n o f p olym eric hydrocarbon m a te r ia l on th e e le c t r o d e s . This was n o t so apparent in a i r as i t was in th e ca se o f argon c a r r ie r , because th e oxygen i s q u ite e f f e c t i v e in p rev en tin g such d e p o s it io n . These r e s p o n se -v s .-c o n c e n tr a tio n s tu d ie s were made u sin g la r g e (20 m l.) in j e c t i o n s o f th e s o lu t io n s o f s ta te d co m p o sitio n . T his method was used 12? so t h a t th e a c t u a l c o n c e n tr a tio n o f th e sample in th e d e te c to r would be known« For a n a l y t i c a l work, however, sm a lle r sam ples could be used in m ost in s t a n c e s . T his would g r e a t ly d im in ish any change in p r o p e r tie s o f th e e le c t r o d e due t o hydrocarbon d e p o s it io n . (3 ) H igher H ydrocarbons. Table IX shows th e resp on se o f th e d e t e c t o r w ith a i r c a r r ie r t o hydrocarbons o f in c r e a s in g carbon c o n te n t. f o r hydrogen, argon and helium are shown f o r com parison. Responses I t can be seen th a t th e resp o n se to a hydrocarbon in c r e a s e s as th e number o f atoms in th e m o lecu le in c r e a s e s . The uflam e io n iz a t io n d e t e c t or11 o f McWilliam and Dewar (6 1 ), th e !lb e ta -r a y io n iz a t io n d e te c to r 11 o f Lovelock ( 6 2 ) , and th e r a d io fr e q u e n c y glow d isc h a r g e d e te c to r o f Karmen and Bowman (6U) are rep o rted a ls o t o have s e n s i t i v i t i e s p r o p o r tio n a l t o th e number o f carbon atoms or th e mass o f th e hydrocarbon. In th e p r e se n t ca se, excep t f o r a c e ty le n e , which produces l e s s resp on se than m ethane, th e order i s a ls o th a t o f carbon number. I n j e c t io n s o f 0 .0 1 - m l. sam ples o f th e hydrocarbon g ases in Table IX gave r esp o n ses which were in th e same r e l a t i v e o rd er, as did th e in j e c t io n s o f 20 m l. o f 1 .1 volume p e r c e n t s o lu t io n s in d ic a te d in th e t a b l e . R esponses to 0 .0 1 - m l. i n j e c t i o n s o f a c e to n e , b en zen e, cy clo h ex a n e, n -hexan e, and petroleum e th e r were comparable t o th a t o f b u te n e . (k) Water Vapor. m o istu re in a i r . The d e te c to r was found t o respond m easurably t o I n j e c t io n o f 20 m l. o f la b o r a to r y a ir from a room w ith th e r e l a t i v e h u m id ity a p p roxim ately n in e ty p ercen t produced a resp on se o f microamperes u sin g th e l / l 6 - i n . e le c tr o d e and one—megohm cu rren t lim ite r . D ilu t io n o f a s im ila r sample w ith an e q u a l volume o f dry a ir 128 produced a. r esp o n se o f 2*It microamperes* The d e t e c to r can p rob ab ly be used t o measure m oistu re co n ten t o f a ir q u a n t it a t iv e ly , and appears t o have an a p p roxim ately l i n e a r resp on se curve over an a p p r e c ia b le range o f w a ter-v a p o r c o n c e n tr a tio n in a i r . Co R esponse o f th e D e te c to r U sing Argon C a rrier (1 ) Oxygen S caven ger. As has a lrea d y been m entioned, th e r e was a stro n g ten d en cy f o r d e p o s it io n o f hydrocarbon polymer on th e e x c it e r w ire and e le c t r o d e s when o rg a n ic samples were passed through th e T e sla d isc h a r g e d e t e c to r u sin g argon c a r r ie r g a s . In order t o u se wmacroM sam pling te c h n iq u e s w hich were r e a d ily a v a ila b le , oxygen was used as a scavenger f o r th e f r e e r a d ic a ls formed in th e argon-hydrocarbon d isch a rg e t o m inim ize th e d e p o s it io n o f p olym eric s p e c ie s on the e le c t r o d e s . The e f f e c t o f oxygen was v i s i b l y a p p a ren t, as th e oxygen v i s i b l y quenched th e green e m issio n in th e d isch a rg e due t o th e r a d ic a l C2, which i s p robably th e main in te r m e d ia te in th e polymer d e p o s it io n . Depending on th e amount o f oxygen fe d in t o th e e x c i t e r and d e t e c t o r , a r b it r a r ily la r g e samples could b e used w ith o u t undue t a i l i n g o f th e b a n d s. For th e resp on se curves i l l u s t r a t e d or ta b u la te d in t h i s s e c t io n , th e oxygen flo w was s u f f i c i e n t t o a llo w p a ssa g e o f a 0 . 2 - m l. methane sample w ith o u t a t a i l i n g sh ou ld er a f t e r th e p ea k . This s t i l l req u ired o n ly a v e r y sm a ll amount o f oxygen, which i s a h ig h ly e f f e c t i v e scavenger o f f r e e r a d ic a ls . (2 ) M ethane. F ig u re 13 d e p ic ts the resp on se o f th e d e te c to r to la r g e in j e c t io n s o f raethane-argon s o lu t io n s . The curve i s sig m o id a l in sh a p e, f l a t t e n i n g out in th e r e g io n o f two volume p ercen t methane. 12? 150 140 130 20 100 ! 90: <9 8 0 < 60 50 40 3 0- 0.2 0.6 0 .4 VOL FI CURE 13. SOLUTIONS RESPONSE IN TO 0.8 PERCENT 1.2 1.0 1.4 METHANE 5 0 M L. INJECTIONS OF M ETHANE ARGON. A R (K )J CARRIER, P = 3 .0 M M , 0.1 M E G O H M RESISTOR. 130 There i s a li n e a r p o r tio n e v id e n t in th e resp on se curve betw een onete n th and fo u r -t e n th s volume p ercen t m ethane. F igu re llj. shows th e r e ­ sp on se curve f o r in j e c t io n s o f methane g a s, u sin g a stream s p l i t ahead of th e d e te c to r . The s p l i t t i n g r a t io was ap proxim ately 12 t o 1 . This curve was tak en w ith th e one-megohm s e r i e s r e s i s t o r lim it in g th e cu r r e n t, so th e cu rren t v a lu e s should be m u ltip lie d by about 10 t o be compared t o th o se in th e p re v io u s f ig u r e . in shape and s i z e . I f t h is i s done, th e cu rves are v e r y s im ila r This curve su g g e sts t h a t th e resp on se i s lin e a r in th e r e g io n below about 0 .2 m l. methane in j e c t e d . This corresponds t o methane c o n c e n tr a tio n o f about 0 .1 volume p ercen t or about J4.OO ppm. The n o n - lin e a r it y o f t h i s resp on se curve i s an u n d e sir a b le p ro p e r ty , bu t i t appears th a t d e t e c t io n o f hydrocarbons up t o 1 .5 volume p ercen t in th e vapor can be accom plished w ith o u t s a tu r a tio n o f th e d e t e c t o r . An im portant f e a tu r e o f th e d e t e c to r i s , how ever, th a t i t does respond to m olecu les w ith i o n iz a t io n p o t e n t ia ls above th e m eta sta b le l e v e l o f th e c a r r ie r g a s. In t h i s r e s p e c t th e d e te c to r i s alm ost unique among io n iz a t io n d e t e c t o r s . (3 ) H igher H ydrocarbons. Table X shows th e resp on se o f th e d e te c to r t o 0 .6 volume p er ce n t s o lu t io n s o f hydrocarbons o f in c r e a s in g m olecular w e ig h t . The order o f resp o n se i s a g a in one o f in c r e a s in g m olecu lar w eig h t o f th e compound, e x cep t th a t butene g iv e s a somewhat smal.Il.er respon se than does propane. I t may be th a t th e resp on se curve f o r a g iv en hydrocarbon f l a t t e n s out a t a c o n c e n tr a tio n which produces about 150 microamperes resp o n se w ith th e Q.l-megohm r e s i s t o r , and th en comes back down s l i g h t l y a t h ig h e r c o n c e n t r a tio n s . This could be due to so much hydrocarbon vapor in th e argon d isc h a r g e th a t, a f t e r p a ssin g through th e e x c it e r tube, th e r e AI ( m a) 131 5 — ML. METHANE FIGURE 14. RESPONSE TO M ETH AN E 1 2 :1 STREAM SPLITTING RATIO. ONE P=2 M M . IN AR(-t-02) CARRIER; MEGOHM RESISTOR, 132 TABLE X RELATIVE RESPONSE TO 50 ML* INJECTIONS OF 0 .6 VOLUME PERCENT SOLUTIONS OF HYDROCARBONS IN ARGQNj . Ar(*G2) . CARRIER Qol Megohm R e s is t o r , I 0 ■ 13 »5 P « 3' mm., Ran 39‘b, S o lu t io n A I (jia) Methane 78 E th y len e 89 E th y len e oxid e 90 Ethane 125 1-B utene 131 Propane 1L5 133 i s s t i l l much hydrocarbon which has n ot b een decomposed or io n iz e d . This u n io n iz e d hydrocarbon th en i s a m oderately e f f e c t i v e quenching agen t f o r ft th e d isc h a r g e and r e s u l t s in low er c o n d u c tiv ity o f th e d isch a rg e than was c h a r a c t e r i s t i c o f s l i g h t l y low er c o n cen tra tio n s o f hydrocarbon. r e s u l t , th e b u tene produces a low er resp on se than th e propane. As a This h y p o th e s is could be checked r e a d ily by running t h is s e r i e s o f vapors a t low er c o n c e n t r a tio n s . (U) O rganic L iq u id s. Responses o f th e d e te c to r t o argon -organ ic vapor s o lu t io n s o f v a r io u s liq u id s are l i s t e d in Table X I. The d a ta f o r d il u t i o n s o f b e n z e n e-sa tu ra ted argon show an ap proxim ately lin e a r r e la tio n ^ s h ip over th e r e g io n 0 - 0 .2 6 volume p ercen t b en zen e. The curve appears sig m o id a l a g a in , goes through a maximum and ap p a ren tly f l a t t e n s out a t h ig h e r c o n c e n tr a tio n s . ( 5 ) A ir . The resp o n se o f th e d e te c to r t o a ir -a r g o n s o lu t io n s i s shown in F ig u re 1 5 . This resp on se appears t o be a sim p ler one than th e hydrocarbon c u r v e s . The curve r i s e s s t e e p ly from th e o r ig in , and th en g r a d u a lly d e c r e a s e s in s lo p e as th e a i r co n c e n tr a tio n in c r e a s e s . I t shows th e same q u a l i t a t i v e c h a r a c t e r is t ic s as th a t obtained e a r l i e r (F ig u re 12) f o r th e in v e r se sy ste m . The r a te o f change o f resp on se w ith r e s p e c t t o c o n c e n tr a tio n i s th e g r e a t e s t f o r co n cen tra tio n s n ear pure argon. The l a t e r curve was run a t ap p roxim ately te n tim es th e range o f resp o n se o f th e e a r l i e r curve (u sin g th e 0.1-megohm s e r ie s r e s i s t o r a t th e l a t e r t im e ) . (6 ) Sample Chromatograms. Sample chromatograms were made u sin g th e e l e c t r i c a l d e te c to r w ith argon c a r r ie r and oxygen scaven ger and a q u a r te r — in ch d iam eter, s i x - f o o t packed column. F igure 16A i s th e t r a c e ob tain ed 13 U TABLE XI RESPONSE TO 50 ML o INJECTIONS OF ORGANIC VAPOR SOLUTIONS IN ARGON5 Ar(+Q2) CARRIER 0 . 1 Megohm R e sisto r * I 0 * 13 .5 ^ia* P « 2 .5 mm., Run UOa. Organic S u b stan ce Benzene Liquid Temperature f .p . D ilu te d w ith Ar t o „ V o l. P ercen t Volume P ercen t Hydrocarbon A I (jia) 1 .3 0 .0 6 0 11 Benzene 2 ob 0 .1 1 20 Benzene 5 .7 0 .2 6 61 Benzene 1 1 .2 0 .5 2 67 C yclohexane f .p . 1 .3 0 .0 6 5 25 A cetone 0°C. 1 .3 H H 0 19 Methane 1 .3 Methane 0 .1 0 130 7 TO ^ O LO CXI o O °cd ^ Q_ o o 0.1 MEGOHM SOLUTIONS. RESISTOR.. OF AIR-ARGON LU INJECTONS 9= 9 < \C> • P=2.7 M M ,; 50M L. o CARRIER. RESPONSE l\ 15. O 00 FIGURE A R (+ 0 2) 1 35 o 136 f o r 0*25 m l- o f n a tu r a l g a s . d u rin g th e major component. The d e te c to r resp o n se was in t o s a tu r a tio n The minor components show q u a l it a t i v e correspondence betw een peak h e ig h t and th e a n a ly s is , b u t f o r accu rate a n a l y t i c a l work c a lib r a t io n would be n e c essa ry f o r each component. A h e a v ie r , broad component shows up , a t h ig h er s e n s i t i v i t y , about t e n m inutes a f t e r t h e i n j e c t i o n p o in t . rep o rted p r e s e n t a t This i s p rob ab ly iso p en ta n e which i s in th e g a s . The u se o f th e chrom atographic column b e fo r e th e d e te c to r r e s u lte d i n some l o s s in th e peak s ig n a l - t o - n o is e r a t io compared to th e v a lu e s in T ab le VII* T hese v a lu e s were th o se observed f o r d i r e c t i n j e c t io n o f a methane sample w ith a f lo w - lim it in g c a p illa r y in p la c e o f th e column. There was a s l i g h t amount o f spread in g o f th e bands on th e column, b u t t h i s was n o t th e major sou rce o f s ig n a l- t o - n o is e l o s s . I t was observed th a t th e background cu rren t and n o is e r e g is te r e d by th e d e te c to r depended on t h e c o n d itio n o f th e chrom atographic column u se d . With a column which had b een used v e r y l i t t l e , and w ith th e column a t room tem p eratu re, th e i n j e c t i o n o f Q.Q1 m l. o f methane produced a resp on se w ith a s i g n a l - t o n o is e r a t io comparable t o t h a t obtained w ith ou t th e column. As th e column was h e a te d , how ever, th e background cu rren t and n o is e in crea sed in th e d e t e c t o r . T h is e f f e c t was v e r y much worse w ith a column which had b een used f o r a lo n g tim e w ith th e e f f lu e n t a t atm ospheric p r e s s u r e . I t i s b e lie v e d t h a t u sin g th e column w ith reduced p r e ssu re r e s u lt e d in f r e e in g h ig h b o i l i n g r e s id u e s in th e column. The r e s id u e s were from p re v io u s sam ples run through th e column a t h igh er p r e ssu r e s, and perhaps a l s o breakdown p roducts from th e column i t s e l f . The a d d itio n o f a 137 ,o °5 ^r \ c3° 20 O it o in L±J Ckz o o c UJ CL X "the e x t e r n a l ele ctr o d es® A d 0c® component o f p o t e n t ia l i s p resen t betw een th e probes e x ce p t when th e y are sy m m etrica lly p la ced in th e e l e c t r i c fie ld ® The probe e le c t r o d e which was n earer an e le c tr o d e o f th e in p u t so u r ce was in v a r ia b ly n e g a tiv e w ith r e s p e c t t o th e oth er more remote probe electro d e® The p o l a r i t i e s o f th e output v o lta g e E0 i n Figure 17 i l l u s t r a t e t h i s fact® The c h a r a c t e r i s t i c s o f th e T e sla -d isc h a r g e e l e c t r i c a l d e te c to r observed so f a r appear., q u a lit a t iv e ly * v e r y s im ila r t o th e p r o p e r tie s observed b y L ion f o r th e m e c h a n ic a l- e le c t r ic a l transducer® The s e n s i t i v i t y o f th e tran sd u cer (d®c® v o l t s output per m il t r a n s la t io n o f e le c t r o d e ) was found to depend on th e p r e ssu re o f th e gas i n th e s e a le d tu b e as w e l l as th e nature o f th e gas® The maximum s e n s i t i v i t y u s in g argon gas occurred a t about 25 mm® p ressu re, w h ile t h a t f o r h eliu m occurred a t about 90 mm® pressure® th e same magnitude® These maxima were o f about The s e n s i t i v i t y maximum f o r a neon tran sd u cer was f i f t y p e r c e n t g r e a te r th an f o r argon and helium and occurred a t about 10 mm® p ressu re* b u t th e maximum f o r neon was broader than f o r argon or heliu m ® In th e T e s la d isc h a r g e d etecto r* th e d e te c to r cu rren ts f o r argon and h eliu m c a r r ie r have b een found to have maxima a t p ressu res c lo s e t o th o s e found b y L io n t o produce maximum resp on se o f th e transducer® The in c r e a s e in s e n s i t i v i t y o f th e e l e c t r i c a l d e te c to r t o hydro­ carbons* which was observed when oxygen was allow ed t o b le e d s lo w ly in to th e sy stem below th e e x c it e r tube^was unexpected and has not been e x p la in e d . ih h The s t a b i l i t y o f th e argon d isch a rg e has b een a ttr ib u te d t o th e abundance o f m e ta sfa b le argon atoms i n th e discharge^ which keep io n iz a t io n p r o c e s se s g oin g "when th e h ig h freq u en cy e x c it a t io n goes through th e low v o lta g e p o r tio n o f i t s c y c l e « The h ig h s e n s i t i v i t y * based on th e s ig n a l- t o - n o is e r a tio * found f o r th e T e s la d isc h a r g e d e t e c to r s w ith argon carrier^ were due l a r g e l y t o t h i s s t a b i l i t y o f th e d isch a rg e* which r e s u lt e d in a low n o is e l e v e l compared t o a i r or n it r o g e n * F* Comparison o f th e Photom etric and E l e c t r ic a l T e s la D isch arge D e te c to r s lo S e n s it iv it y Both th e g r e e n - s e n s it iv e p hotom etric and th e e l e c t r i c a l form o f th e T e s la d isc h a r g e d e t e c to r f o r gas chromatography have been shown t o respond w ith a p p roxim ately eq u a l s e n s i t i v i t y t o sm a ll hydrocarbon sam ples (T able V II) i n t h e i r p r e s e n t forms * Both can be improved in t h e ir s e n s it iv it y * as h as a lr e a d y b een su g g ested * 2 * R e te n tio n Volume B ecause th e d e t e c to r s are operated a t reduced p ressu re* th e apparent r e t e n t io n or dead volume o f e it h e r d e t e c to r i s estim a ted t o be r e l a t i v e l y low* determ ined m ain ly b y th e diam eter o f c a p illa r y chosen f o r th e e x c i t e r tube* The s e n s in g elem en ts c o n tr ib u te n e g lig ib le volume* The c o n d u c tiv ity o f t h e t e e -t u b e d e t e c to r depends m ainly on th e r e g io n betw een th e end o f th e in n e r e le c t r o d e and th e c a p illa r y tube* This volume i s n e g lig ib l e compared w ith th e volume o f th e c a p illa r y i t s e l f « The l a t t e r i s about 11*5 50 m ic r o lite r s^ which, a t a reduced p ressu re o f a few m illim e te r s o f m ercury r e s u l t s i n an apparent volume o f about 0*1 m ic r o lit e r s * Thi s i s adequate f o r c a p i l l a r y column work* 3* L in e a r it y o f Response E xperim ents have a lre a d y in d ic a te d t h a t th e resp on se curve f o r th e e l e c t r i c a l d e t e c to r w ith argon c a r r ie r i s lin e a r f o r methane in j e c t io n s below 0*01 ml* Such in fo r m a tio n has not y e t been determ ined f o r th e p h otom etric d e te c to r * With a i r c a r r ie r th e resp on se o f th e e l e c t r i c a l d e t e c to r i s l i n e a r up t o about o n e-p ercen t hydrocarbon c o n c e n tr a tio n s , and much h ig h e r f o r hydrogen and helium* k* C a r r ie r Gases Both d e t e c t o r s re q u ir e argon c a r r ie r gas f o r t h e ir most s e n s i t iv e o p e r a tio n y e t observed and w i l l r e q u ir e an oxygen scavenger f o r work w ith “macro® sam ples* A y e llo w - s e n s it iv e photom etric d e te c to r u sin g th e quenching o f t h e s tr o n g y e llo w arc l i n e i n th e spectrum o f h elium c a r r ie r gas may be h ig h ly s e n s i t i v e , but a ls o would probably req u ire a scavenger* A ir or n itr o g e n may be used w ith e it h e r d e te c to r f o r p r e p a r a tiv e or d em on stration work w ith la r g e r samples* Die g r e e n - s e n s it iv e p h otom etric d e t e c to r showed l i t t l e s e n s i t i v i t y t o a i r and cou ld th e r e fo r e be used t o d e t e c t hydrocarbons sampled i n a i r , w h ile t h e e l e c t r i c a l d e t e c to r co u ld not b e so used* The e l e c t r i c a l d e t e c to r u s in g a i r c a r r ie r i s , how ever, s e n s i t iv e enough t o cover some s im ila r a p p lic a tio n s * 1hS $* S e l e c t i v i t y Both d e t e c t o r s a re u n iv ersa l, in t h e ir response* but th e p hotom etric d e t e c t o r has added p o s s i b i l i t i e s f o r c o n tr o lle d s e l e c t i v i t y by c o n tr o l o f w a v elen g th s observed# This could prove advantageous i n c e r t a in a p p l i - - c a tio n s where th e d e t e c t io n o f s p e c i f i c sample su b sta n ces in th e c a r r ie r i s d e sir e d # G-. S u g g e stio n s f o r A p p lic a tio n s and Further Work 1# L ectu re D em on stration and P r ep a ra tiv e Work A number o f i n t e r e s t i n g a rea s f o r fu r th e r work u sin g th e T e sla d isc h a r g e d e t e c to r have been su g g ested b y th e r e s u lt s o f th e p r e se n t in v e s t ig a t io n * Some o f th e s e areas have b een mentioned b r i e f l y i n p re v io u s s e c t io n s and w i l l b e review ed or extended h ere alon g w ith oth er E ith e r th e p h otom etric or e l e c t r i c a l form o f th e d e te c to r has b een shown s e n s i t i v e enough and o f s u f f i c i e n t ea se o f c o n s tr u c tio n from in ­ ex p en siv e components t o b e g e n e r a lly a p p lic a b le t o le c t u r e d em onstration o f gas chromatography and t o p rep a r a tiv e chrom atographic work* With argon or h eliu m c a r r ie r * th e p h otom etric d e te c to r may be used a t atmos­ p h e r ic p r essu re* The p h otom etric d e te c to r in i t s s im p le st form appears t o b e a sm a ll d iam eter c a p illa r y tu b e i n which are lodged two w ire e le c tr o d e s * w ith aluminum f o i l wrapped around th e o u tsid e o f th e tu be in th e v i c i n i t y o f each in t e r n a l e le c tr o d e * The T e sla c o i l output goes t o one p ie c e o f aluminum f o i l and i s th en ce coupled t o th e w ire* th e o th er w ir e jd owns t r earn>c o u p les th e d isch a rg e t o th e oth er f o i l * and th en ce XU? t o ground <> A p h o t o c e ll may be attach ed t o the d isc h a r g e tu b e , as in t h i s w ork, t o r e c e iv e l i g h t from th e d isch a rg e betw een th e in n e r e le c t r o d e s , or th e v i s u a l in d ic a t io n may be used# I f th e d e t e c to r i s operated a t reduced p r e s s u r e , a i r or n itr o g e n c a r r ie r gas may be used* At atm ospheric p r e ssu r e t h e s e g a ses g iv e spark ra th er than glow d is c h a r g e s , b u t even t h e s e can b e used® For v i s u a l dem onstrations i t may be d e s ir a b le t o u se a l a r g e r - s i z e d c a p illa r y tu b e , so t h a t changes in th e em issio n spectrum may be observed a t lo n g e r d ista n c e s* For m o n ito rin g a p r e p a r a tiv e column, any o f th e v a r ia t io n s o f th e d e t e c t o r d e sc r ib e d may be ch osen , depending on c a r r ie r gas and s e n s i t i v i t y requirem ents® To s im p lif y th e s t r e a m - s p lit t in g apparatus and c o l l e c t i o n o f p r o d u c ts, i t seems p r e fe r a b le t o op erate w ith th e chrom atographic column e f f l u e n t s l i g h t l y above atm ospheric pressure® This i s r e a d ily accom plished i f th e p h otom etric d e te c to r w ith argon or helium c a r r ie r i s u se d , b eca u se t h e d e t e c to r can oparate e f f e c t i v e l y above atm ospheric pressure® I f th e e le c t r ic a l, d e t e c to r i s t o b e u sed , i t must be a t reduced pressure® The d e t e c to r can be operated a t reduced p r e ssu r e w ith i t s in ta k e s l i g h t l y above atm ospheric p ressu re w h ile em ploying a chrom atographic column by in tr o d u c in g a f lo w - lim it in g c a p illa r y a f t e r th e column and b e fo r e th e e x c i t e r tube® The p r e ssu re a t th e in p u t t o th e column can th e n be s e t f a r enough above atm ospheric t h a t s e v e r a l pounds p er square in ch p r e s su r e i s dropped a cro ss th e column, and i t s output t o th e flo w li m i t e r (b e fo r e th e d e t e c t o r ) i s s l i g h t l y above atmospheric® The stream may then be s p l i t e a s i l y betw een th e column e x i t and th e f lo w - lim it in g c a p illa r y b y u se o f a t e e tu b e , w ith th e major p o r tio n o f th e stream e x i t in g t o a m8 tra p f o r p r e p a r a tiv e work <> The s p l i t t i n g r a t io may be a d ju sted b y a n e e d le v a lv e in an arm o f th e t e e carryin g th e major p o r tio n o f th e column e f f l u e n t o 2o H um idity Measurements H um idity measurements have been shown f e a s i b l e w ith th e e l e c t r i c a l d e t e c to r u s in g a ir as a c a r r ie r g a s . I t i s a ls o p o s s ib le t h a t th e photo­ m e tr ic d e t e c t o r u sin g a i r or an in e r t gas as a c a r r ie r could be employed t o d e t e c t w a ter v a p o r. The red atom ic l i n e o f hydrogen (H ) appears CL v e r y s tr o n g ly in th e d isc h a r g e a t 6 5 6 .3 m illim ic r o n s . A r e d - s e n s it iv e p h o t o c e ll could be used t o m onitor t h i s p o r tio n o f th e spectrum . With a s u i t a b l y narrow-bandpass f i l t e r b e fo r e th e p h o t o c e ll, i t may be p o s s ib le t o u se an i n e r t gas c a r r ie r and a ch iev e g rea ter s e n s i t i v i t y and a ls o be a b le t o o p er a te th e d e t e c to r a t atm ospheric p r e s s u r e . The f i r s t - p o s i t i v e e m issio n band system o f n itr o g e n appears in th e red p o r tio n o f th e spectrum (band heads a t 65U°U and 662 .U m illim icrons}, but th e s e bands do not obscure th e hydrogen l i n e . 3® Vapor P r e ssu r e and M olecular W eight D eterm ination The T e sla d isc h a r g e d e te c to r a ls o may prove a p p lic a b le t o organic vapor p r e ssu r e and m o lecu la r w eig h t d e term in a tio n . The sam pling tech n iq u e employed could be s im ila r t o t h a t used in t h is work to sample organ ic l i q u i d s - - ! . e . , s a tu r a tin g a stream o f th e c a r r ie r gas w ith th e liq u id a t a p a r t ic u la r tem p era tu re, and th en in j e c t in g t h is m ixture, or d ilu t io n s o f i t , i n t o th e d e t e c t o r . V a r ia tio n s in vapor p ressu re o f a v o l a t i l e s o lv e n t in th e p resen ce o f a n o n - v o la t ile s o lu t e would b e r e f le c t e d by 1U9 changes in "the c o n c e n tr a tio n o f ■the s o lv e n t in th e c a r r ie r gas and be measured by th e resp o n se o f th e d e t e c to r . k » Q u a lit a t iv e A n a ly sis a« G eneral Q u a lit a t iv e a n a ly s is o f components d e te c te d in a gas chromatogram has n o t k ep t pace w ith th e developm ent in se p a r a tin g power o f th e columns. A c o n v e n ie n t g e n e r a l method f o r id e n t i f i c a t i o n o f components i s d e s ir a b le . The T e sla d isc h a r g e d e t e c t o r , as has a lrea d y been m entioned, o f f e r s some prom ise a lo n g t h i s l i n e . Sim ple v i s u a l o b se r v a tio n o f th e d isch a r g e w ith a sm a ll s p e c tr o sc o p e i s cap able o f on ly lim ite d d i f f e r e n t i a t i o n o f com­ p o n e n ts, as dem onstrated in an e a r l i e r s e c t io n , but i t i s known from o b se r v a tio n s in P a rt I o f t h i s work, th a t f in e r d is t in c t io n s betw een compounds in th e d isch a rg e can be made r e a d ily w ith a spectrop h otom eter. D e t e c t io n o f h etero -a to m s by th e appearance o f d iatom ic fragm ents c o n ta in in g th o s e atoms in th e d isch a rg e appears q u ite f e a s i b l e and has a lr e a d y b een d is c u s s e d e a r l i e r . D e te c tio n o f more s u b tle s t r u c t u r a l d if f e r e n c e s r e q u ir e s more e x p lo r a tio n than has been done. From th e o b se r v a tio n s in P art I , i t was found th a t a lc o h o ls could be d if f e r e n t ia t e d from a ce to n e in th e glow d is char ge^ because th e r a t io o f th e i n t e n s i t y o f th e OH e m issio n spectrum t o th a t o f GO was a p p recia b ly h ig h er f o r th e a lc o h o ls . In order t o o b ta in s u it a b le i n t e n s i t y f o r d e t a ile d a n a ly s is o f th e d is c h a r g e , i t may be n e c e s sa r y to view a p o r tio n o f th e d isch a rg e tube en d -o n . This can be accom plished r e a d ily in a number o f w ays. A tee — 150 shaped capi l l a r y tu b e in trod u ced in to th e d e te c to r system betw een th e e x c i t e r tu b e and th e grounded e le c tr o d e o f th e d e te c to r could be used • The arm o f th e t e e in l i n e w ith th e e x c i t e r w ire can be ground o f f t o m inim ize any dead volum e introduced* and a t h in window (p r e fe r a b ly q u a rtz) can be waxed on th e r e f o r s p e c tr a l ob servation * The c e n te r arm o f th e t e e th en would be s e a le d w ith an w0 11 r in g in t o th e b ra ss tee* as had b een done w ith th e e x c it e r tube w ith ou t th e c a p illa r y o b se rv a tio n t e e . b * Rapid Scanning Spectrophotom eter Rapid d is p la y o f th e T e s la -d is c h a r g e -e x c ite d e m issio n spectrum o f chrom atographic components w ith r e la t iv e i n t e n s i t i e s o f th e s p e c t r a l peaks would be ex trem ely u s e f u l in o b ta in in g s t r u c t u r a l in form ation about th e com ponents. T his d is p la y could be s e t up by fe e d in g th e output from a r a p id ly scan nin g spectrop h otom eter t o th e v e r t i c a l d e f le c t i o n p la t e s o f an o s c i l l o s c o p e . The h o r iz o n ta l tr a c e would be synchronized w ith th e sp ectrop h otom eter scan o f th e s p e c t r a l r e g io n o f i n t e r e s t . c . T e s la D isch a rg e Cracking An i n t e r e s t i n g arrangement which m ight e f f e c t q u a lit a t iv e i d e n t i f i ­ c a t io n o f gas chrom atographic components i s based on u sin g th e T esla d isc h a r g e d e t e c to r in a way s im ila r in nature t o th e u se o f th e mass sp ectro m eter t o a n a ly ze th e sep arated f r a c t io n s from a gas chrom atographic’ s e p a r a tio n . The output from a f i r s t chrom atographic column can be fed in t o th e T e s la d isch a r g e d e te c to r In th e normal manner, le a d in g t o th e u su a l d e t e c t io n and cra ck in g o f each component. As components come through th e d e t e c t o r , th e d e t e c to r e f f lu e n t f o r each component could be routed 151 in t o a s e p a r a te a d d it io n a l column. fe e d in t o i t s own d e t e c t o r . Each o f th e s e secondary columns would The l a t e r columns would s e r v e t o sep a r a te th e v a r io u s su b sta n c e s formed by de compos i t io n in th e cou rse o f p assage o f th e o r i g i n a l s i n g l e component through th e T esla d isch a rg e * The crack­ in g p a tte r n o b tain ed f o r a component by a secondary column and d e t e c to r would be somewhat anaiagous t o a mass s p e c tr a l crack in g p a tte m ^ in b e in g a b le t o p ro v id e in fo rm a tio n on th e s tr u c tu r e o f th e o r ig in a l m o le cu le . The p a tte r n ob tain ed w ith d ecom position by th e T esla d isch a rg e would be com p licated by secon d ary r e a c tio n s o f th e fragm ents form ed, but could w e l l be c h a r a c t e r is t ic f o r v a r io u s s tr u c t u r a l ty p e s o f m o le c u le s . 5° High M olecular W eight Compounds H ig h -m o lecu la r-w eig h t compounds such as p l a s t i c s , h igh b o ilin g o i l s , etc m ight a l s o b e c h a r a c te r iz e d w ith a chrom atographic column a t low tem p eratu res by u sin g th e T esla d isch a rg e to fragm ent th e s e h ig h -b o ilin g su b sta n c e s and th en running th e vapors produced through a gas chroma­ to g r a p h ic system o f a s u it a b le t y p e . I n te r p r e ta tio n of t h e s e fragm en tation p a tte r n s would fu r n is h s tr u c t u r a l in form ation about th e p aren t m o le c u le s. I t would p rob ab ly be d e s ir a b le t o u se a c a r r ie r gas in th e d isch a rg e t o h e lp fragm ent th e h ig h -m o lec u la r-w eig h t compounds by th e bombardment o f th e compound w ith e x c it e d c a r r ie r gas atoms and i o n s . Ho O v e r -a ll Summary o f E le c t r ic a l D e te c to r s f o r Gas Chromatography In view o f th e tremendous r e c e n t s u c c e ss o f gas chrom atographic d e t e c to r s based on th e e l e c t r i c a l p r o p e r tie s o f g a s e s , i t now appears 15>2 d e s ir a b le t o c l a s s i f y th e e x i s t i n g d e te c to r s in term s o f th e fundam ental p r o p e r t ie s th e y m easure3 and t o ex p lo re p o s s ib le fu r th e r a d a p ta tio n s o f th e f in d in g s o f e le c t r o n p h y s ic is t s t o chrom atographic d e t e c t io n . The f i r s t rep o rted io n iz a t io n d e te c to r was th a t o f H arley and P r e to r iu s (6 3 )* who measured th e c o n d u c tiv ity o f a d .c . glow d isc h a r g e , u s in g a "Wheatstone b r id g e c i r c u i t w ith c a r e f u lly reg u la ted in p u t v o lt a g e . The d e t e c t io n o f components i s based upon changes in number o f charge c a r r ie r s due t o gas com p osition -in d u ced changes in f i r s t and second Townsend c o e f f i c i e n t s and quenching or e le c t r o n capture p r o c e s s e s . The io n iz a t io n gauge d e te c to r o f Ryce and Bryce ( 6 0 ) , extended by l a t e r w orkers ( 6 5 ) , in v o lv e s measurement o f th e io n cu rren t a t low p r e ssu r e u s in g a th erm io n ic e m itte r and a v o lta g e j u s t inad equ ate t o i o n i z e th e c a r r ie r g a s . Here a stream o f e le c tr o n s i s a c c e le r a te d up t o a predeterm ined energy and bombards th e c a r rier-sa m p le g a s. The cu rren t i s dependent on io n iz a t io n p o t e n t ia ls and cr o ss s e c t io n s o f th e sample m o le c u le s, and m easures th e number o f charge c a r r ie r s produced. The argon io n iz a t io n d e te c to r o f Lovelock (6 2 ) employs a r a d io a c tiv e e m itte r and a h ig h d . c . p o t e n t ia l t o p rovid e a source o f io n s and a means o f m easuring io n c u r r e n t, even a t atm ospheric p r e s s u r e . U sing argon c a r r ie r gas n ear atm ospheric p r e s su r e , th e e le c t r o n energy i s la r g e ly d is s ip a t e d in e l e c t r o n i c e x c i t a t io n , p a r t ic u la r ly to g iv e m eta sta b le atom s. The m e ta sta b le s th em selves can combine to g iv e some io n iz a t io n , but o n ly a sm a ll cu rren t i s ob tain ed in th e absence o f f o r e ig n g ases o f low enough io n iz a t io n p o t e n t ia l t o be io n iz e d by th e m eta sta b le atom s. When such g a ses are p r e s e n t, th e r e s u lt a n t io n iz a t io n in c r e a s e s th e 153 p o p u la tio n o f charge c a r r ie r s , which become a c c e le r a te d t o cause fu r th e r e x c i t a t i o n and io n iz a tio n * s o th a t an a p p recia b le in c r e a s e in current i s observed f o r a sma l l amount o f sample * The d ir e c t e x c it a t io n o f th e argon t o th e m e ta sta b le l e v e l by e le c t r o n impact and th e io n iz a t io n b y ra eta sta b les (Penning e f f e c t ) , are th e b a s ic p r in c ip le s employed in th e L ovelock d e te c to r * The flam e io n iz a t io n d e te c to r o f McWilliam and Dewar (61) employs somewhat d i f f e r e n t p r in c ip le s * o f hydrogen in oxygen. The source o f e x c it a t io n i s th e com bustion The e le c tr o n and io n c o n cen tra tio n in th e flam e becomes abnorm ally h ig h w ith th e p resen ce o f ca rb o n -co n ta in in g compounds, a p p a re n tly through th e advantageous f r e e energy c o n tr ib u tio n o f carbon d io x id e fo r m a tio n t o in c r e a s e th e eq u ilib riu m e le c t r o n c o n c e n tr a tio n ( 7 0 ) * The p r e se n t T e sla -d isc h a r g e e l e c t r i c a l d e te c to r and th e ra d io freq u en cy d e t e c to r o f Karmen and Bowman (6U) each u t i l i z e th e cu rren t or v o lta g e produced b y th e glow d isch a rg e a cro ss probes asym m etrically lo c a te d in th e d is c h a r g e . As in th e d e te c to r o f H arley and P r e to r iu s , th e s e d e t e c to r s g iv e resp o n se dependent upon a v a r ie t y of f a c t o r s . Changes in co m p o sitio n a l t e r th e number and nature o f th e charge c a r r ie r s , which may be ex p ressed through changes in th e f i r s t Townsend c o e f f i c i e n t . The a c t u a l s ig n a l ob tain ed depends upon th e p r e f e r e n t ia l pickup o f e le c tr o n s r a th e r th a n p o s i t i v e io n s a t th e p rob e, and upon th e asym m etrical lo c a t io n o f th e two e l e c t r o d e s . The T e sla d isch a r g e p h otom etric d e t e c to r , w h ile n ot d i r e c t l y measur­ in g e l e c t r i c a l p r o p e r tie s o f g a s e s , u t i l i z e s v ery s im ila r p r in c ip le s in i t s o p e r a tio n . The e le c t r o n impact and r e la te d p r o c e s se s which g iv e 151; r i s e t o th e e l e c t r i c a l s ig n a l a ls o determ ine th e l i g h t emission*. The p h o to m etric d e t e c t o r , how ever, has one u n iq u ely im portant p r o p e r ty * -its u se f u r n is h e s more than one p ie c e o f in form ation f o r a given gas compo­ s i t i o n , b eca u se th e i n t e n s i t y o f em issio n can be determ ined a t d if f e r e n t s e le c t e d w a v elen g th s c h a r a c t e r is t ic o f in d iv id u a l components or c la s s e s o f components *> I t i s p a r t ic u la r ly easy to d if f e r e n t ia t e , betw een p r o p e r tie s o f c a r r ie r and sample gases*. The d e te c to r output i s su b je c t to c o n sid er­ a b le a m p lif ic a tio n e x te r n a l t o th e d isch a rg e system through th e u se o f p h o to m u ltip lie r s , so th a t i t i s , in p r in c ip le , capable o f d e t e c tin g a s i n g l e m o lecu le a t th e u ltim a te s e n s i t i v i t y , though t h is i s , o f co u rse, f a r from a r e a l i s t i c goal*. In i t s u ltim a te form i t can in v o lv e a scanning sp ectrop h otom eter capable o f fu r n is h in g in form ation from perhaps th e n ea rin fr a r e d t o th e vacuum u l t r a v i o l e t , and can g iv e evid en ce on e m ittin g s p e c ie s , capable even o f d i f f e r e n t ia t in g between e x c ite d s t a t e s o f th e e m it t e r • C o n sid era b le fu r th e r work on th e c h a r a c te r iz a tio n o f components through d isc h a r g e -e m iss io n s p e c tr a under p a r tic u la r c o n d itio n s seems h ig h ly d e s ir a b le . Only a b r i e f b egin n in g towards t h is typ e o f stu d y has b een a ch ieved in P a r t I . Advances in sp ectrop h otom etric tech n iq u es and s e n s i t i v i t i e s f o r t h i s ty p e o f a p p lic a tio n a ls o are d e s ir a b le . The most f r u i t f u l paths f o r fu r th e r e x p lo r a tio n alon g r e la te d l i n e s would seem to be th e f o llo w in g . F i r s t , some o f th e su g g ested d evelop ­ ments o f th e p h otom etric d e te c to r w ith p h o to m u ltip lie r and scanning or b e t t e r m onochrom atization seem e s s e n t ia l.. Second, b a s ic d ata must be ob tain ed on th e e l e c t r i c a l p r o p e r tie s o f organ ic vap ors— most data on io n m o b i l i t i e s , e le c t r o n attach m ent, recom bination c o e f f i c i e n t s , Townsend 155 c o e f f i c i e n t s , and breakdown v o lta g e s are r e s t r ic t e d t o in e r t gases and a few v e r y sim p le m o le cu le s * Third, th e a p p lic a tio n o f some o f th e m easuring te c h n iq u e s o f e le c t r o n p h y sic s should be explored f o r chem ical a n a ly s is , in c lu d in g such th in g s as breakdown v o lt a g e s and th e p rod u ction o f e le c t r o n s f o r gaseou s c o n d u c tiv ity s tu d ie s b y means o f p h o t o e le c t r ic em issio n from metals® litb p x tu re c ite d 1 . He S c h u l e r ana L . Reinebeck* Z 2 c , Haturforsch . * I t . a. £ * 6 5 7 ( 1 9 5 0 ) . L . B . L oeb* '‘B a s i c P r o c e s s e s of Gaseous E l e c t r o n i c s *" Univ. C a l i f . P r e s s * B e r k e l e y and Los Angeles* 19 5 5 of * 3* F . Me Penning* P h y s i c a l 286 (1 9 3 8 ). U. Wo McVicker* J . Marsh* and A. Stewart* J . Chem. Soc.* 123, 61*2» 817* 820* 211*7, 3315 (1923) > i b i d . . 125 L7l*3 (1921*); i b i d . , 126.999 (1 9 2 5 ). 5 . J . Marsh* P h i l . Mag. 1^9*971 (1 9 2 5 ). 6 0 J . B . A u s t i n and I . A . B la c k * P h y s . R e v . 3 5 ? U52 ( 1 9 3 0 ) * Soc c* £ 2 1*755 ( 1 9 3 0 ) . 7 . Wo D . H a r k i n s and Do M. Gans* J . Am. Chem. J . Am. Chem. S o c . * £2* 2 5 7 8 ( 1 9 3 0 ) . 8 e H« Schuler* S p ectroch im . Acta* ]±*85 (1 9 5 0 ). 9* H* S ch u ler and L. Reinebeck* i b i d . , 6*288 (195U ). 10 . H. S ch u ler and E. Lutz* ib id .* 10. 61 (19 5 7 )11. J . H. Galloman* Can. J . Phys.* 3hP101*6 (1 9 5 6 ). 12 c Ho S chu le r* Z. N a t u r f or sc h P t . a . £*1*1*8 (1 9 5 °). 1 3 . H . S c h u l e r * H. G o lln o w and A . W o e ld ik e * P h y s i k Z . J * i 3 8 1 (1 9 1 * 0 ). ll* . H . S c h u l e r and A . W o e ld ik e * ib id ., 5 2 0 (1 9 1 * 2 ). 15 . H. Schuler* Z . N aturf o r s c h ,} P t . a . £* 60i* (1 9 5 0 ). 16 . H. S ch u ler and L . Reinebeck* i b i d . , 6*270 (1951) 1 7 . H. S ch u ler* ib id .* £ , 279 (195U ). 1 8 . H. S c h u le r , ib id o* 1 0 ,1 (1 9 5 5 ). 1 9 . Go M ilazzo* J . Chem. Phys .* 21* 163 (1953) 2G. M. Vacher and Y. L o rtie* Compt. rend .* 236 , 1759 (1953)* 156 157 2.1. S * Leach j J . chiin. p h y s ., j£5, k39 (1 9 5 8 ). 2 2 o Mo F a u r is , Gompt. r e n d ., 21+1, 190 (1 9 5 5 ). 2 3 . G. W. R obinson, J . Chem. P h y s ., 22, 1381+ (1951+)* 21*. Go W. R obinson, i b i d .« 2 2 , 111+7 (1951+). 2 5 - S . R eg n ier, J . p h y s. radium, 1 5 . 830 (195U ). 2 6 . Ao Go Gaydon, T rans. F ar. S o c ., j+^3, 3 6 ( I 9 I+7 ) . 2 7 . D . S t y le and J . Ward, J . Chem. S o c ., 1952, 2125 (1 9 5 2 ). 2 8 . P . J . Dyne, Can. J . P h y s ., 29., 79 (1 9 5 2 ). 2 9 . V. Suryanarayana, I . A. Rao and V. R. Rao, J . S c i . In d . Research ( I n d i a ) , 15B, 662 (1956); Chem. A b s tr a c ts, £ l , 71U3 (1957)* 3 0 . P . V enkatesw arlu, Phys* R ev ., 7 7 > 676 (1950)* 31* E. B . Andrew and R. F . Barrow, N ature, 165* 89 O (1 9 5 0 ). 3 2 . R. A. D u rie and T. I r e d a le , T rans. F a r . S o c ., LL* 806 ( I 9 I+8 ) . 33* J* H. Callom an, P r o c. Roy. S o c . (London), 21+1+, 220 (1 9 5 8 ). 3U* R* K* L aird and R. F . Barrow, P r o c . P h ys. S o c ., (London), 63 A, 1+12 ( 1 9 5 0 ). 35* B e n o is t, Ann* p h y s ., 1 0 , 363 (1955)* 3 6 . To E l K halafaw i and A. J o h a n n in -G ille s, Compt. r e n d ., 21+2, 1716 (1 9 5 6 ). 37* I* Ambrush, Uspekhi Khim., 2 6 , 3U5-61 (1957); Chem. A b stra cts 5 l « 12629 (1957)* 3 8 . H. S c h u le r and V. D egenhart, Z . N aturf o r s c h ., P t . a . 3 9 . H. S ch u le r and V. D egenhart, i b i d . , 753 (1 9 5 2 ). 8 , 251 (1 9 5 3 )• 1+0 . H. K r o e p e lin , i b i d . , 1 2 , 752 (1957)* 1+1* R. T. Holzraan and W. F . M orris, J* Chem. P h y s ., 2 £ , 677 (1 9 5 8 ). 1+2. G. M ila z zo , Gazz *chim . i t a l . , _82, 362 (1 9 5 2 ). 1+3* S . S . V a s i l 1e v , V e s tn ik . Moskov. U n iv. 6 , No. 8 , S e r . F iz .-M a t. i E s t e s t v e n . Nauk No. 5 , 79 (1 9 5 l) ; Chem. A b stra cts i^6 , 3 8 7 6 (1 9 5 2 ). 158 UU* M. Burton and J . Manion, J . Chem. P h y s ., 2 2 , 2095 (195U )* U5* A* A* K olyubiri, I n v e s t . Akad. Nauk. S .S .S .R . S e r . F iz . 2 2 , 7 53 (1958)3 Chem. A b s tr a c ts , ^3 , 5831 (1 9 5 9 ). U6. Ho K o k a d o , I . M o ri a n d I . T a n a k a , N ip p o n K a g a k a Z a s s h i , (1957)3 Chem. A b s t r a c t s , dg l , 16112 (1957) • 1053 U7* V. S . R o sslk h in and I . L. Tsykora, Zhur. F i z . Khim. ^ 0 , U53 (19£6)$ Chem. A b s tr a c ts , j>0, 3885 (1 9 5 6 ). U8 . J . Jan i n , Compt. r e n d ., 2.1+5 9 837 (1957)* b$ 0 Do P . Norman, Am. Dyes t u f f R e p r tr ., 20L, No# ^ 5, P ro c. Am. A sso c. T e x t ile Chem. C o lo r is t s , 838 ( I 9 I4.8 ) . 5 0 . “G atalog o f Mass S p e c tr a l Data ,®1 American Petroleum I n s t i t u t e , R esearch P r o je c t J4J4, N a tio n a l Bureau o f Standards No. 7 6 . 5 1 . L . F r i e d m a n a n d J . T u r k e v i c h , J . Am. C hem . S o c . , 7U« 1666 (1 9 5 2 ). 5 2 . G. S . C um m ings and W. B l e a k n e y , P h y s. R ev ., j?8 , 787 (19UO). 53* D . F r o st and G. McDowell, P ro c. Roy S o c . (London), A2Ul, 19 U (1957)* 5U* “RCA Tube Handbook HB3, 11 Radio C orporation o f America, H arrison , New J e r s e y . 5 5 . R. P e a rse and A. Gaydon, “The I d e n t if ic a t io n o f M olecular S p e c tr a ,1* 2nd e d . , J . W iley and S on s, New York, 1950. 5 6 . Ho K ayser, A stro p h y s. J . , j 6 , 551 ( I 8 9 6 ) . 57* G. H a rriso n , “M assach u setts I n s t i t u t e o f Technology W avelength T a b les , 11 J . W iley and S on s, I n c ., New York, 1939. 5 8 . H. O lsen and W. Huxford, P h ys. R ev ., 8 7 * 922 (1 9 5 2 ). 5 8 a . G. M. Almy, H. Q. F u lle r and G. D . K inzer, J . Ghem. P h y s ., 8 , 37 (19UQ) 3 M. S . M a th e s o n and J . W. Z a b o r , i b i d . . J.* (1939)* 5 9 . T. E . Jordan, “Vapor P ressu re o f Organic Compounds, 11 I n t e r s c ie n c e , New York, 19514-. 6 0 . S . A. R y c e and W. A. B r y c e , Gan. J . C h e m ., 3 £ , 1293 (1 9 5 7 )6 1 . I . G. M c W iilia m a n d R. A* D e w a r , N a t u r e , l 8l , 76 O (1 9 5 8 ). 6 2 . J . E. L o v elo ck , J . Ghromatog. 1 , 35 (1 9 5 8 ). 159 6 3 . Jo H arley and Vo P r e to r iu s , N ature, 178 , 1214; (1 9 5 6 ). 6U«> ( a ) Ao Karmen and Ro L. Bowman, Ann., N. Y . Acad. S c i . , J 2j 71U (1 9 5 9 )j (b ) Ao Karmert and R. L . Bowman, Instrum ent S o c ie t y o f America, P r o c e e d in g s, 2nd B iannual I n te r n a tio n a l Gas Chromatography Symposium, K e llo g g C en ter, M ichigan S t a te U n iv e r s ity , E ast L an sin g, .2,33 (1959) 6 5 o L» Vo G u ild , Mo Io Lloyd and F . A ul, Instrum ent S o c ie t y o f Am erica, P r o c e e d in g s, 2nd B iannual I n te r n a tio n a l Gas Chromatography Symposium, K e llo g g C en ter, M ichigan S t a t e U n iv e r s it y , E ast L ansing, 2 ,5 2 (1959)* 660 Mo C henot, J . p h y s. radium, 1^ 5U, 101 (1955)> i b i d . , ]& % k2 (1 9 5 6 ). 6 ?« K. So L io n , R ev. S c i . I n s t . , 2J, 222 (1 9 5 6 ). 680 Bo A. S i n c l a i r and R. N. W hittem, Sp ectrochim . A cta 1£, 168 (1958)* 6 9 . Ko G. Emeleus ^Conduction o f E l e c t r i c i t y Through G ases , 11 pp. Jo W ile y , No Y . (1951)* 7 0 o Ho E y rin g , P r iv a t e Communication. U0-U8, 160 TABLE XII DETECTOR CURRENT v s 0 APPLIED VOLTAGEj AIR CARRIER (One Megohm R e s is t o r , P » 3 06 mm., l / l 6 in* E le c tr o d e , Run 29b) Data f o r Figure 8 „ _______________________ V o lta g e A pplied I fyia) 0 3*6 3 5*U 6 7 .8 1 0 .5 10*9 16 *5 15 o2 22 19*3 U5 35 *U 67 51*7 90 7 0 .8 161 TABLE X III DETECTOR CURRENT v s . PRESSURE FOR N2> AIR* Ar AND He CARRIER GASES (One Megohm R e sisto r* l / l 6 in* E lectrod e* Run 33) Data fo r F igu re 9 . N itro g en 1.3. p « S o io g 0 P(mm.) 1(^3.) 3 06 80 O 9 <>6 A ir Argon 2 .5 p . s . i . g . P(mm.) I (/ia ) P(ram,) I Qua.) P(mm.) iQxa.) 3*7 7 <>8 I4. .u 1 .2 0 k -3 3 .6 U-5 6 8 .2 7 9 U.o 9 .8 17 1*55 1.72 H; U-8 17 22 5 .5 12 .0 23 12 o l 26 1106 10 1 1 .6 27 1 .8 2 32 12 1 2 .0 3k 1 .8 8 3k 9 -1 7 08 m 12 .6 U2 1 .7 2 39 U 08 17 1 2 .6 5U 1.U0 h2 3 -1 0.U0 23 11.7 6U 29 10 oU 0 „2Q 33 8.U 37 5*8 39 6 .9 8 .8 53 1 5 .8 75 1 .1 5 0 .9 0 79 19*8 91 0 .2 5 97 122 2 0 .1 152 1 5 .0 U6 U-7 2 .6 160 m .o h9 1 .8 225 6 .6 51 60 0 .8 l.U 0.U5 309 370 65 0 .3 0 bk9 77 0 1 2 .1 CM 0 27 U8 0 9 18 5U 70 Helium 2 .5 P . s . i . g . 1 8 .6 0 .5 5 0 .2 162 TABLE XIV RESPONSE TO 20 ML o INJECTIONS OF Hs , CH4 , AND He SOLUTIONS IN AIR, AIR CARRIER, AS A JUNCTION OF PRESSURE (One Megohm R e s is t o r , l / l 6 i n . E le c tr o d e ) Data f o r F igu res 10 and 11 3*3 U»6 k*7 & k*2% CH^, Run 26b P(mm) A lQ ia.) H O k 9 o3 Ho, Run 26a A I(p u ) F(mm) 3 .6 li*8 1 1 .0 5*7 1 8 .7 2 0 .0 k*6 5 .2 11 8 .2 23 .5 8 Ik 9*7 25 *6 17 1 1 .0 2k k9 *3% He, Run 25 P (mm.) ]C0(^a.) A I (pa.] 5 -1 - 2 .9 1 1 .8 U.5 6 .0 5*9 - 3 .2 7 .0 12 .8 9 7 .2 -3 *k 12 9 *k H i. 8 13 9-3 - 2 .9 2 7 .0 21 25*5 15*1 16 10 .2 -2 .U 1 1 .1; 2 6 .3 35 8 .6 20 1 1 .1 32 8 .8 2 1 .5 k3 26 10 .3 - 1 .3 ♦ 0 .8 36 7 *k 2 0 .2 6k 3*3 0 .3 6 .7 1 .0 0 .1 32 8 .6 ♦ 3 -2 k2 li t . 6 37 6 .3 ♦ 6 .2 50 3*7 0 .8 7 -9 5>B 0 .1 l.U U3 U6 3 .1 1 .8 ♦ 8 .3 ♦10 .u 50 0 .9 5U 0 .3 ♦ 1 0 .5 ♦ 9 .8 77 116 0 .2 0 .1 ♦ 1 .7 ♦ 0 .1 163 TABLE XV RESPONSE TO 20 M l. INJECTIONS OF H e , A r , H2 , CH4 AND N2 SOLUTIONS IN A IR ; AIR CARRIER (O n e Megohm R e s i s t o r , I 0 « u a , P .= L a ta f o r F ig u re 1 2 . Response ( A I , Microamperes) C on een t r a t io n (Volume P e r c e n t) 3 . 6 m m ., R un 2 9 a ) He Ar 100 .0 -3 * 5 -U .6 8 8 .7 -3 -U -U .o 7 8 .8 ~3 -3 -3 .U -3 .0 69 oQ "3-3 - 2 .7 59 « l ~ 3 .0 - 2 .0 U9 .3 - 2 .8 “1 .5 73 >2 H2 ch4 - 1 .2 18 .8 - 0 .9 - 1 .1 -2.1; - 0 .9 - 0 .7 29 <>6 « H * 00 h h '3 - 0 .5 21; *6 " 1.5 -Q.U 19 *7 - 1 .2 Hi .8 - 1 .0 9 -9 0 .7 1 2 .1 1 6 .6 U.9 2 0^ 0 .3 8 .2 13 .h 3 9 .1; 3H .5 1 7 .1 9-U 1 .3 1 .0 3 .1 O08O 2 .3 5 .2 2 .7 2 .9 0 .6 5 0 .5 6 1 .2 O.32 0 .7 0 .1 7 N2 1.-3 0 .5 161; TABLE XVI RESPONSE TO 50 MLo INJECTIONS OF METHANE SOLUTIONS IN ARGONj Ar(+02) CARRIER (O cl Megohm R e sisto r* I 0 a lit Jia* P = 3«0 mm.* Run 33) Data fo r Figure 13 C o n cen tra tio n CH4 (Volume P e r c e n t) Response A l( /ia ) 1*83 15U lo 2 6 137 0 .7 5 108 0 .2 1 29 0 .1 0 7.U 165 TABLE XVII RESPONSE TO METHANE IN Ar(*Q2) CARRIER WITH 1 2 :1 STREAM SPLITTING RATIO (One Megohm R e s is t o r , I 0 « 1 .5 jua, P ■ 2 ram., Run i|la ) B ata f o r Figure lit Sample Volume (Ml) A I(/ia ) O.Q1 0.3 3 0*02 0 .8 Q.Qlt 2 .0 0 0 .0 5 lt.Q Q «06 5*5 0 .0 8 8 .8 0 .1 0 11.2 0 .1 2 12 .8 0 . 1U lit.G 0 .1 5 lit .5 0.2Q 16.7 0 .2 5 17 *9 166 TABLE XVTII RESPONSE TO 50 ML • INJECTIONS OF AIR SOLUTIONS IN ARGON; Ar(+02) CARRIER (One Megohm R e s is t o r , I 0 * 1 .1 jia , and 0 .1 Megohm Re< s i s t o r , I 0 a* 1 3 oQ jia , P « 2 .7 ram., Ran 39 d) Bata f o r Figure 1$ Volume P e r ce n t A ir A l(^aa) 1 Megohm 1 .2 6 0.U2 2<>37 0 .5 7 5 .3 2 A I ( /ia ) 0 .1 Megohm U.5 7 .0 A J0 .1 Meg. ^ ^1 Meg. 10.7 12.2 1 0 .5 1 1 .2 1 .9 1 8 .5 9 .8 2 1 .1 29 9 .5 U0.9 3 .1 £ .2 8 .7 8 0 .2 7 .U U5-5 55*0 1 0 0 .0 9*5 59 oG 7*U 6 .2