EFFECT OF ROUGHAGE LEVEL IN THE RATION ON PRODUCTION OF SHORT CHAIN ACIDS AND SULFUR AMINO ACIDS IN RUMEN FERMENTATION Uy Roy S. Emery A THESIS Subm itted to th e School of G raduate S tu d ie s of M ichigan S ta te U n iv e rsity o f A g ric u ltu re and Applied S cience in p a r t i a l f u lf illm e n t o f th e req u irem en ts f o r th e degree of DOCTOR OF PHILOSOPHY Department of D airy 1955 ProQuest Number: 10008671 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10008671 Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ACKNOWLEDGEMENTS The au th o r e x p re sse s h is s in c e re a p p re c ia tio n to D r. C. P. Huffman, D airy D epartm ent, and D r. C. K. Sm ith, Department o f M icrobiology and P u b lic H ealth , f o r t h e i r guidance and a s s is ta n c e throughout t h i s work and f o r t h e i r c r i t i c a l read in g of t h i s m an u scrip t. G ra titu d e i s ex p ressed to D r. L. F. W o lterin k , Department o f Physiology and Pharmacology, whose s tim u la tin g le c t u r e s and su g g e stio n s g r e a tly c o n trib u te d to th e i n i t i a t i o n and p ro g re ss o f t h i s in v e s tig a tio n . Thanks are extended to Dr. R. L. S alsb u ry and D r. G. M. Ward f o r t h e i r h e lp fu l c r itic is m s and aid in v a rio u s phases o f th e in v e s tig a tio n . The w r ite r i s in d eb ted to Mr. C. W. F i f i e l d and Miss E sth er M. Smith f o r a id w ith th e m icro ra d io ­ au to g rap h s. The w r ite r w ishes e s p e c ia lly to acknowledge h is g r a titu d e and in d eb ted n ess to h is w ife , R uth, whose s a c r i f i c e s and en­ couragement made t h i s study p o s s ib le . ii EFFECT OF ROUGHAGE LEVEL IN THE RATION ON PRODUCTION OF SHORT CHAIN ACIDS AND SULFUR AMINO ACIDS IN RUMEN FERMENTATION by Roy S. Emery AN ABSTRACT Subm itted to th e School of Graduate S tudied of1 M ichigan S ta te U n iv e rsity o f A g ric u ltu re and Applied S cience in p a r t i a l f u lf illm e n t of th e req u irem en ts fo r th e degree of DOCTOR OF PHILOSOPHY Department of D airy Year Approved C.^h. 1955 f-3 « Roy S. Emery Rumen l iq u id from 5 bovines (re c e iv in g hay alone or 75% of th e t o t a l d ig e s tib le n u tr ie n ts as c o n c e n tra te ) was in cu b ated w ith s u b s tr a te and s3 5 -la b e le d in o rg a n ic s u l f a t e . Two t r i a l s used th e r a t i o n of th e donor as s u b s tr a te and two used a sub­ s t r a t e of mixed a l f a l f a meal and c o n c e n tra te f o r b o th hay in o c u la and g ra in in o c u la . In each t r i a l , a s e p a ra te ferm en­ t a t i o n f la s k was in cu b ated f o r each time o f 0 . 5, 1 , 1 . 5, 2 , 2 .5 , and 3 h o u rs. Each ferm ent was f r a c tio n a te d in to p ro te in s u l f u r , f r e e o rg an ic s u lf u r and in o rg a n ic s u l f a t e . The p ro ­ t e i n and f r e e o rg an ic s u lf u r f r a c tio n s were f u r th e r se p a ra te d by chrom atography. to ta l a c tiv ity . G lu tath io n e accounted fo r 2 to k% of th e The mean p a r t i t i o n of in c o rp o ra te d a c t i v i t y in a t o t a l o f bk f la s k s f o r a l l tim es on b o th tre a tm e n ts was 62 % e y s t( e ) in e and 385? m ethionine p lu s an u n id e n tif ie d f r a c ­ tio n . E x p o n en tial e q u a tio n s f i t t e d to th e t o t a l in c o rp o ra tio n s f o r each com bination of s u b s tra te and inoculum are p re se n te d . The c o n c e n tra tio n o f a c e tic , p ro p io n ic , and b u ty ric a c id s in 3 bovine rumens was determ ined a t v a rio u s tim es a f t e r fe e d ­ ing e i t h e r an a l l hay r a t i o n or one c o n s is tin g la r g e ly o f con­ c e n tr a t e s . Two t r i a l s were conducted on each r a t i o n . The c o n c e n tra tio n o f each a c id f i r s t in c re a se d and th e n d ecreased w ith tim e a f t e r fe e d in g . tu rn o v e r c u rv e s. The v alu es o b tain ed were f i t t e d to A cetic a c id disappeared from th e rumen a t th e r a t e of 3 . 3^ /h o u r and b u ty ric ac id a t th e r a t e of 2.7%/ hour. The sta n d a rd e r r o r was 0 .3 $ . The d isap p earan ce r a t e o f p ro p io n ic a c id on th e high c o n c e n tra te r a ti o n appeared to iv Roy S. Emery be ^ .6 # /h o u r v e rsu s 3 .2 # /h o u r on th e hay r a ti o n . The r a t e s f o r co n v ersio n o f fe e d to sh o rt ch ain a c id s ranged from 35 to 8H $/hour. P ooling d a ta from th e h t r i a l s , th e amounts o f a c id s per 100 gm. o f rumen liq u id which were produced from one pound of t o t a l d ig e s tib le n u tr i e n t s w ere, 0 .2 to 0 .67 a c e tic , 0 .02 to 0 .2 6 p ro p io n ic , and O.OU to 0.21 b u ty r ic . co n fid en ce le v e l ra n g e s. These a re th e 95# The average rumen in th e s e t r i a l s was e stim a te d to c o n ta in 70 Kilograms o f li q u id . Using th e se v a lu e s , i t was computed t h a t th e cow o b ta in s 3 to 13# of i t s energy from s h o rt ch ain a c id s . v TABLE OF CONTENTS Page INTRODUCTION 1 REVIEW OF LITERATURE . ................. . .............................................. 2 In flu e n c e o f C o n cen trate on Rumen D ig e stio n and Passage ......................................................................................... 2 In flu e n c e o f C o n cen trate on th e Rumen M icrobiota . . . 6 Rumen P ro d u ctio n o f S hort Chain Acids . . . . . . . . 9 A bsorption and U t i l iz a t i o n o f S hort Chain Acids . . . 19 Rumen S y n th e sis o f C arbohydrate ........................................... 27 Rumen S y n th e sis of P r o t e i n ...................................................... 30 PART I . INCORPORATION OF INORGANIC SULFATE BY RUMEN MICROBIOTA IN V IT R O .......................................... 38 P re lim in a ry Experim ent ........................................................ 38 F erm en tatio n Technique ............................................................ 38 Hydrogen S u lfid e P ro duction ............................................... Hi G lu tath io n e P r o d u c tio n ................................................................ k2 M icroradioautographs .......................... . . . . . . . . . W3 P r in c ip a l E x p e rim e n t.........................................................................W5 P r o c e d u r e ..........................................................................................*+5 R e s u l t s ............................. 50 PART I I . PRODUCTION AND ABSORPTION OF ACETIC, PROPIONIC, AND BUTYRIC ACIDS IN THE BOVINE RUMEN................................... 56 P r o c e d u r e ....................................................................... 56 R e s u lts ...............................................................................................59 DISCUSSION . . . ..................................................................................6»+ SUMMARY.......................................................................................................70 LITERATURE CITED...................................................................................... 73 APPENDIX....................................................................................................... 89 vi INTRODUCTION Ruminants have long been known f o r t h e i r a b i l i t y to u t i l i z e roughage. With th e advent of in te n s iv e anim al p ro ­ d u c tio n and in c re a se d c o n c e n tra te fe e d in g , anom alies have been noted in rumen fe rm e n ta tio n . These in c lu d e changes in th e p ro d u ctio n of sh o rt chain a c id s which are a major source of energy f o r th e cow a s w ell as an end product of th e f e r ­ m en tatio n . Thus, in fo rm atio n concerning amounts and ty p es of th e se a c id s i s im p erativ e to a b e t t e r u n d erstan d in g of feed u t i l i z a t i o n . Large amounts of p ro te in a re sy n th esized in th e rumen. S ince m ethionine appears to be a lim itin g f a c to r in t h i s s y n th e s is , a study of th e form ation of s u lf u r amino a c id s might w e ll lead to in c re a se d p ro d u c tio n by ru m in an ts. The purpose of t h i s study i s to determ ine th e q u a n tity of s h o rt ch ain a c id s and s u lfu r amino a c id s made a v a ila b le to th e rum inant as a f f e c te d by th e r a t i o of hay to c o n c e n tra te in th e r a t i o n . 1 REVIEW OF LITERATURE The re c e n t review s on rum inant n u t r i t i o n by Huffman (1953) and Owen (195*0 e s ta b lis h th e im portance of m ic ro b ia l d ig e s tio n f o r econom ical roughage u t i l i z a t i o n and f o r anim al p ro d u c tio n . D oetsch and Robinson (1953) review ed th e b a c te ­ rio lo g y o f th e rumen w h ile J a r r ig e (1953) gave p a r t i c u l a r a t t e n t i o n to th e d e g ra d a tio n of carb o h y d rates and th e r e s u ltin g p ro d u c ts. The l i t e r a t u r e d iscu ssed here p e r ta in s to th e dynam­ i c s of rumen fe rm e n ta tio n as in flu e n c e d by th e r a ti o n and p o rtra y e d by th e p ro d u c tio n of s h o rt ch ain ac id s and th e syn­ th e s i s o f p r o te in . In flu e n c e o f C o n cen trate on Rumen D ig e stio n and Passage The fundam ental problem of rum inant n u t r i t i o n i s to enhance th e n a tiv e a b i l i t y of c a t t l e to u t i l i z e co arse feed (Huffman, 1953)* According to P h illip s o n (1953)» carb o h y d rates can e i t h e r enhance o r d ep ress roughage u t i l i z a t i o n depending on t h e i r q u a n tity and q u a lity . J a r r ig e (1953) l i s t s re s e a rc h over f i f t y y e a rs d e a lin g w ith th e in flu e n c e of so lu b le carb o ­ h y d ra te on roughage u t i l i z a t i o n . S w ift e t a l . (19*+7) re p o rte d a 5 to 10$ d e p re ssio n of crude f i b e r d i g e s t i b i l i t y when corn s ta rc h or sugar formed some 8 to 15$ of a r a t i o n based on equal p a r ts of mixed hay and co rn . This could not be confirm ed by Dowe e t a l . (1955) 3 who fe d over 80$ corn in th e r a ti o n but no pure s ta rc h . However, Burroughs ejt a l . (19*+9) o b tain ed a 35$ d e p re ssio n of o rg an ic m atter d i g e s t i b i l i t y w ith a r a tio n of corncobs, skim m ilk and 30$ s ta rc h but only a s ta r c h le v e l was reduced to 18$. d e p re ssio n when th e S im ila r d ata were o b tain ed w ith a r a ti o n o f s ta r c h , a l f a l f a hay, and corncobs. According to Louw and Van d er Wath (19*+3), supplem entation of a hay r a ti o n w ith corn a t th e 8 to 33$ le v e l depressed c e llu lo s e d ig e s tib ility . A wood m eal, stu d ie d by K o istin en (19^8), which was 50$ d i g e s t i b le when fe d w ith hay or lim ite d c o n c e n tra te , became v i r t u a l l y in d ig e s tib le when fed w ith s ila g e . B alch and John­ son ( 1950) found th a t c o tto n th re a d suspended in th e rumen was a tta c k e d s e v e ra l tim es f a s t e r on an a l l hay r a ti o n th an on one c o n tain in g over 25$ c o n c e n tra te . Foreman and Herman (1953) in c re a se d c e llu lo s e d ig e s tio n somewhat by adding 1 to 2 pounds of m olasses to a b a s a l r a ti o n of about *+ p a r ts hay to 1 c o n c e n tra te but t h i s d i g e s t i b i l i t y was u s u a lly d ep ressed when th e m olasses le v e l was such th a t th e r a t i o n co n tain ed 30 to *+0$ t o t a l c o n c e n tra te . v a rie d w ith th e type o f hay fe d . The r e s u l t s I t should be noted th a t th e w ater so lu b le carb o h y d rate of roughages can range from *+ to 30$ of th e d ry m atter depending on s p e c ie s , method o f c u rin g , s ta g e of growth and o th e r f a c to r s as re p o rte d by W aite and Boyd (1953). k Hale et. a l . (19*+0, 19*+7)* u t i l i z i n g th e li g n in r a t i o tech n iq u e to compare rumen and f e c a l d ig e s tio n , showed th a t th e rumen accounts fo r th e g re a te r p a r t of d ig e s tio n in bovines fe d a l f a l f a hay. This has been confirm ed and extended to o th e r fe e d s as review ed by J a r r ig e (1953)* The abomasal f i s t u l a tech n iq u e f o r m easuring forestom ach d ig e s tio n was used by Heald (1953)? who found th a t about kO% of th e in g e ste d xylan was d ig e s te d in th e forestom ach, and by W eller and Gray (195*0* who found t h a t n e a rly a l l of th e s ta rc h in chopped p o ta to e s was d ig e s te d in th e forestom ach. B aleh et. ^ 1 . (1951) s t a t e th a t th e fe rm e n ta tio n and d ig e s tio n of fe ed in rum inants i s a fu n c tio n of i t s r a t e of passage through th e re tic u lo -ru m e n , i t s r a t e of d is s im ila tio n by th e m icro b io ta and f i n a l l y , th e r a t e o f a b so rp tio n or p as­ sage of th e fe rm e n ta tio n p ro d u cts. Some 2 to 5$ of th e s ta in e d hay p a r t i c l e s p re se n t in th e rumen a t a given tim e d isap p eared in th e next hour according to th e d a ta of Balch (1950). F in er p a r t i c l e s , such as c o tto n ­ seed h u lls o r ground hay passed somewhat f a s t e r (5 to 10$ / h o u r), but only i f long hay or o th e r roughage was a ls o p re s e n t. M oreover, by re c la im in g th e sta in e d p a r t i c l e s in th e fe c e s and ex p ressin g reco v ery as p ercentage of th e t o t a l , he found th a t about 20 hours were re q u ire d f o r passage from th e rumen to th e fe c e s. S tain ed p a r t i c l e recovery appeared to be e x p o n e n tia l approaching an asym ptote; th e r a t e of th e e x p o n e n tia l was ag ain some 2 to 5$/h o u r. E a r li e r , Moore and W inter (193*0 5 found t h a t f e r r i c oxide passed from rumen to fe c e s in 9 to 13 hours and sm all ru b b er rin g s in 10 to 20 h o u rs. A fte r th e i n i t i a l app earan ce, reco v ery was ag ain roughly e x p o n e n tia l approaching an asym ptote a t 2 to 5$/hour. The work o f B alch § t a l . ( 1950, 1952b , 1953) showed th a t such f a c to r s as th y ro x ­ in e a d m in is tr a tio n , r a t i o n s , r e s t r i c t e d w ater in ta k e and o th e rs had l i t t l e e f f e c t on t h i s r a t e . The r a tio n s stu d ie d in clu d ed a l l hay, eq u al p a r ts o f hay and c o n c e n tra te , hay p lu s mangolds, and f i n e l y ground hay. The d a ta of Agrawala et, a l . (1953) and of Chance et, a l . ( 1953a9 b) f o r d ry m atter passage from th e rumen measured between 6 and 2*+ hours a ls o in d ic a te s a r a t e of 2 to 5$ /h o u r. The d isap p earan ce was much f a s t e r between 0 and 6 hours a f t e r , fe ed in g due to d ig e s tio n as ex p lain ed by Hale e t a l . (19*+7), who showed th a t rumen d ig e s tio n i s v i r t u a l l y completed in 12 hours a f t e r feed in g and over h a lf com pleted in 6 h o u rs. Balch and Johnson (1950) found c o tto n th re a d d is s ip a tin g in th e v e n tr a l p o rtio n of th e rumen a t as much as 50$ /h o u r a f t e r a 20 hour la g p hase. According to B alch et, a l . (1951), passage through th e re tic u lo -o m a s a l o r i f i c e i s la rg e ly r e s t r i c t e d to f in e p a r t i c l e s in a 90 to 95$ aqueous suspension. The duodenal or abomasal f i s t u l a p re s e n ts an o th er way of m easuring passage from th e forestom achs. In t h i s way, P h i l l i p - son ( 19*+8 , 1952a) measured a passage of k67 to 186U m l./h o u r in sheep consuming 900 to 1700 gm. of dry m a tte r/d a y ; th e la r g e r volume was a s s o c ia te d w ith h e a v ie r fe e d in g . C onsidering 6 th e t o t a l washed fe ed re sid u e in 2k hour fe c e s c o lle c tio n s and in duodenal c o n te n ts from a sheep m aintained on hay, i t was c a lc u la te d t h a t 10.7 l i t e r s of m a te ria l passed through th e duodenum d a ily . Masson and P h illip s o n (1952) c a lc u la te d t h a t tw o -th ird s o f t h i s m a te ria l was g a s t r ic ju ic e and onet h i r d omasal c o n te n ts . T heir c a lc u la tio n s were based on th e c h lo rid e c o n ten t of th e g a s tr i c ju ic e , omasal c o n te n ts , and abomasal c o n te n ts . Passage of omasal c o n te n ts was stim u la te d somewhat by c o n c e n tra te but was la r g e ly Independent of fe e d in g . This su g g ests t h a t passage o f omasal c o n te n ts corresponds to about 2 to 5# /h o u r of th e mass of th e t o t a l rumen in g e s ta which i s in agreement w ith th e passage o f m arkers from th e rumen. The in c re a se d c o n c e n tra tio n of in o rg an ic io n s in omasal liq u id over rumen l iq u id found by G arton (1951) in d ic a te s a b so rp tio n of w ater from th e omasum. Gray e t a l . (195^) confirm ed t h i s and c a lc u la te d from th e lig n in r a t i o s in rumen and omasal c o n te n ts th a t 33 to 6k% of th e w ater and ko to 69$ of th e v o l a t i l e f a t t y ac id i n th e rumen d ig e s ta e n te rin g th e omasum i s absorbed th e r e . Using th e same te c h n iq u e , th ey were ab le to show th a t l i t t l e or no rumen d ig e s ta passed d i r e c t l y to th e abomasum v ia th e omasal o r i f i c e and t h a t w ater was not p r e f e r e n t i a l l y passed from th e omasum to th e abomasum. In flu e n c e of C o n centrate on th e Rumen M icrobiota S ince forestom ach d ig e s tio n seems to occur la r g e ly through a c tio n of th e rumen m ic ro b io ta , as p o in ted out by H astin g s 7 ( l ^ V ) , we might expect a q u a lita tiv e or q u a n tita tiv e change i n t h i s m icro h io ta w ith changes in d ig e s tio n . H astin g s (19*+^) n o te s changes in th e q u a n tity of v a rio u s ty p es of p rotozoa w ith marked changes in fe e d , but c o n sid e rs th e popular id ea th a t b io lo g y of th e d ig e s tiv e t r a c t v a r ie s w idely w ith th e normal changes in r a t i o n as unfounded. Baker (19^3) concluded from h is e x te n siv e m icroscopic o b se rv a tio n s th a t th e rumen m icro b io ta i s p e r s i s t a n t and s ta b le w ith broad q u a li ta t iv e f e a tu r e s which a re independent of th e n a tu re of th e d i e t . However, Louw and Van der Wath (19^3) in c re a se d th e rumen b a c t e r i a l count by p ro v iding 8 to 22% corn in a r a ti o n of low q u a lity hay and meat m eal. C e llu lo se d ig e s tio n was not aug­ mented by th e in c re a se d p o p u la tio n and g re a te r c o n c e n tra tio n s of corn d ep ressed b a c t e r i a l numbers. B o rtre e e t a l . (19^6) o b tain ed a 100$ in c re a s e in th e io d o p h ilic m ic ro b ia l p o p u latio n of th e bovine rumen when 3 pounds of glucose were ad m in istered in a d d itio n to th e u s u a l feed in g of hay. S ta rc h ad m in istered under s im ila r circu m stan ces produced a n e g lig ib le e f f e c t ; q u a lity of roughage or p a stu re in flu e n c e d counts somewhat. W alter (1952) found no a p p re c ia b le change in d i r e c t m icro­ sco p ic counts on rumen in g e s ta when b a rle y supplem ented th e b a s a l of a l f a l f a hay f o r sheep. Some q u a l i t a t i v e d iffe re n c e s among c e r ta in in d ic a to r organism s were observed by Pounden and Hibbs (19^8) when th ey examined th e rumen m icro b io ta of c a lv e s fe d v a rio u s p ro p o rtio n s o f hay and g ra in . The broad appearance of th e rumen m icro b io ta 8 and th e im portance of th e in d ic a to r organism s i n rumen f e r ­ m en tatio n were n ot re p o rte d . U tiliz in g both c u l t u r a l and m orphological te c h n iq u e s , G all (19*+9) found g re a te r numbers of f a s t growing organism s w ith in c re a sin g amounts of g ra in in th e r a t i o n b ut few q u a lita tiv e d iffe re n c e s were n o ted . Foreman and Herman (1953) conducted d ir e c t m icroscopic counts on th e rumen in g e s ta of 12 cows in 3 groups fe d d i f f e r ­ en t roughages. Four le v e ls of cane m olasses were fe d w ith in each group on a r o t a t i o n b a s is . The b a s a l r a ti o n co ntained about k p a r ts of hay and 1 p a rt c o n c e n tra te . The t o t a l co u n ts, which were grouped in to 10 m orphological c la s s e s , showed a p e r s i s t a n t in c re a s e from about 67 x 10^ to 106 x 10^ organism s per gm. o f m oist in g e s ta as m olasses supplem entation in c re a se d from 0 to pounds per day. The numbers of p rotozoa were con­ s i s t e n t l y 200 to 300 thousand per ml. of rumen f l u i d . The s in g le co cci c o n s titu te d about 70$ of th e p o p u la tio n . The sh o rt ro d s which c o n s titu te d about 20 to 25$ of th e p o p u la tio n tended to in c re a s e s l i g h t l y w ith 1 or 2 pounds of m olasses, but were d ep ressed by b pounds. d i s t i n c t l y dep ressed by m olasses. Long rods and d ip lo c o c c i were However, th e q u a l i ta t iv e and q u a n tita tiv e changes in th e p o p u latio n were as g re a t w ith changes in roughage as w ith th e m olasses supplem entation. W illiam s e t a l . (1953) found th a t 1 p a r t of s ta r c h added to 1 or 2 p a r ts of o a te n c h a ff c o n tain in g 5$ crude p r o te in d ecreased th e numbers of f r e e rumen b a c te r ia by 50$ or more, b u t i f th e p r o te in source was corn g lu te n m eal, t h i s d e p re ssio n 9 la r g e ly d isap p ea red . The high s ta r c h , low p ro te in r a t i o n produced a pleom orphic ro d in long ch a in s c lu s te re d on s ta rc h g ra n u le s . This ro d la r g e ly d isap p eared as p r o te in in c re a se d and was ab sen t on low s ta rc h r a ti o n s . An in c re a s e in th e p ro p o rtio n of g ra m -p o sitiv e organism s was a lso noted on th e h ig h s ta r c h , low p ro te in r a tio n . The rumen m ic ro flo ra from cows fe d a l f a l f a hay an d /o r c o n c e n tra te m ixture o r wheat straw was stu d ie d by Bryant and Burkey (1953a, 1953b) u sin g both m orphological and c u lt u r a l methods. Q u a lita tiv e ly , th e m ic ro flo ra were la r g e ly th e same w ith numbers in c re a s in g on th e c o n c e n tra te r a ti o n ; however, th e y estim ated t h a t only 10# of th e t o t a l p o p u la tio n a re c u ltu re d by th e p re se n t in v i t r o tech n iq u es and c a l l a tte n tio n to th e pleom orphic n a tu re of many of th e rum inal m icroorgan­ ism s. The f l o r a was more complex on th e a l f a l f a hay co n tain in g r a ti o n s th an on th e r a tio n s of c o n c e n tra te or wheat straw . C e llo b io se ferm enting organism s were depressed by th e concen­ t r a t e r a t i o n and s ta rc h ferm en ters were augmented; hydrogen s u lf id e producing organism s were augmented somewhat by th e straw r a t i o n . V a r i a b i li t y was a lso noted in th e f l o r a of d i f f e r e n t anim als on th e same r a ti o n . Rumen P ro d u ctio n of S hort Chain Acids The e a rly l i t e r a t u r e on t h i s s u b je c t, review ed by P h i ll i p son (1 9 ^7 ), d a te s back to lSQW when Tappeiner found la rg e quan­ t i t i e s of v o l a t i l e a c id formed in th e bovine rumen. However, 10 th e com position of t h e i r m ixture was not known u n t i l Elsden e t a l . ( I 9H6) developed a method f o r t h e i r s e p a ra tio n on s i l i c a g e l. These w orkers found an average of 329 g®. of v o l a t i l e ac id i n th e re tic u lo -ru m e n of 2 oxen and an average of gm. in t h a t of H sheep. These a c id s c o n siste d of about 67$ a c e t i c , 19$ p ro p io n ic and 1*+$ b u ty r ic . This i s a t v a ria n c e w ith th e d a ta of M arston (19^8) who found about equal p o rtio n s o f a c e tic and p ro p io n ic a c id s produced from fe rm e n ta tio n of c e llu lo s e by rumen m icro b io ta i n v i t r o . Rumen in g e s ta from s e v e ra l cows examined by Stone (19*+9) th ro u g h a 9 hour p e rio d follow ing e a tin g , co n tain ed 133 to 162 m illig ram e q u iv a le n ts f o r se v e ra l hours a f t e r e a tin g . The r e s id u a l feed in 100 ml. of in g e s ta removed 1 hour a f t e r feeding hay and g ra in and in cu b ated a t 39°C. was converted to v o l a t i l e ac id a t th e r a t e of about 60$/h o u r w ith a t o t a l p ro d u ctio n of 20 to 25 m illig ram e q u iv a le n ts of v o l a t i l e a c id . This amounts to some 12 to 15 g m ./ li t e r rumen in g e s ta . C a rr o ll and Hungate (195*+) p o in ted out th a t p ro d u c tio n of v o l a t i l e a c id can n ot be determ ined d i r e c tl y in the rumen because a b so rp tio n d e c re a se s th e a c id c o n c e n tra tio n sim u ltan e­ o u sly w ith i t s in c re a s e through fe rm e n ta tio n . Moreover, rumen m icro b io ta d is s o c ia te d from th e a b so rp tiv e and s e c re to ry a c t i v i t i e s o f th e h o st may soon develop abnormal c o n d itio n s . These w orkers a ls o noted a r i s e in th e v o l a t i l e a c id ity of rumen in g e s ta du rin g th e f i r s t s ix hours a f t e r fe e d in g . The average amount of a c id produced in 1 hour of in v i t r o in c u b a tio n 11 w ith rumen c o n te n ts from hay fed s te e r s was 1.37 m illig ram e q u iv a le n ts per 100 gm. The corresponding amounts w ith a g ra in d i e t and a p a s tu re d ie t were 2.01 and 0.91 r e s p e c tiv e ly . The average p ro p o rtio n s of a c e tic , p ro p io n ic and b u ty ric a c id s i n th e m ixture formed during 6 t r i a l s w ith hay fe d anim als were 61$, 20$, and 19$ r e s p e c tiv e ly . I t was estim ated th a t 66$ o f th e t o t a l d ig e s tib le energy in th e r a ti o n i s p resen ted to th e rum inant as v o l a t i l e a c id s . In hay fe d s t e e r s , a c e tic a c id c o n trib u te d U2$ o f t h i s energy; b u ty ric a c id , 32$ and p ro p io n ic a c id , 26$ . These e stim a te s o f C a rr o ll and Hungate (195*+) were based on th e ex p e rim e n ta lly determ ined r a t e s of a c id p ro d u c tio n and e s tim a te s o f t o t a l rumen mass. The fe ed was converted to v o l a t i l e a c id s a t th e r a t e of about *+0$/hour. They considered t h i s r a t e as a minimum and po in ted out th a t th e b e s t way of a s c e rta in in g r a t e of p ro d u c tio n of a product in th e rumen would be to c o n s tru c t tim e -c o n c e n tra tio n curves and c a lc u la te th e i n i t i a l r a t e . They p o in ted out t h a t a very la rg e volume of d a ta would be re q u ire d . Gray e t a l . (1951b) incubated wheaten and a l f a l f a hay w ith l i q u i d rumen c o n te n ts in v i t r o . The y ie ld of v o l a t i l e a c id s was about o n e -fo u rth of th e s u b s tr a te or 50$ of th e d i g e s t i b le m a tte r. ^6$ a c e t ic , The a c id s produced from wheaten hay were p ro p io n ic and 13$ b u ty ric w hile th o se from a l f a l f a were 59$, 27$, and 1 *4$ r e s p e c tiv e ly . 12 D ealing w ith sheep fe d wheaten hay, Gray and P ilg rim (1951) found v o l a t i l e a c id c o n c e n tra tio n s in th e rumen liq u id of 8 .7 m illig ram e q u iv a le n ts/1 0 0 ml. a t th e time of fe ed in g which in c re a s e d to 20.6 s ix hours a f t e r feeding and re v e rtin g to th e i n i t i a l c o n c e n tra tio n in about 2k h o u rs. In sheep fed a l f a l f a hay, th e corresponding i n i t i a l v alu e was 9*3 in c re a s in g to 2 5 .5 fo u r hours a f t e r fe e d in g . Moreover, th e p ro p io n ic a c id c o n c e n tra tio n in c re a se d f a s t e r th an th e a c e tic a c id c o n c e n tra ­ t io n and th u s , i t was concluded th a t p ro p io n ic a c id was p ro ­ duced i n g r e a te r q u a n titie s th an a c e tic a c id and was a ls o absorbed f a s t e r sin c e th e c o n c e n tra tio n re v e rte d to th e p re ­ feed in g l e v e l . This h y p o th esis was te s te d by Gray and P ilg rim (1952a) by in v i t r o in c u b a tio n of rumen m icrobiota w ith wheaten hay c h a ff . V o la tile a c id p ro d u ctio n was la r g e ly completed w ith in 7 i hours and alth ough th e p ro d u ctio n of p ro p io n ic acid exceeded t h a t of a c e tic a c id a t f i r s t , th e p ro p o rtio n of th e a c id s in th e f i n a l m ixture was about 50# a c e tic , k0% p ro p io n ic and 10# b u ty r ic . The v o l a t i l e a c id s of rumen f l u i d from hay fed sheep were more com pletely analyzed by Gray e t a l . (1951a) who found 2 to 3# v a le r ic a c id , 0 .3 to 0.6# is o b u ty ric a c id , and 0 .5 to 1.0# ca p ro ic a c id in a d d itio n to th e u su a l a c e tic , p ro p io n ic and b u ty ric a c id s . Using C ^ - la b e le d a c e tic and p ro p io n ic a c id s , th ey found th a t th e carboxyl carbon of a c e tic a c id occurred to an a p p re c ia b le e x te n t in b u ty ric and v a le r ic a c id s and a ls o to some e x te n t i n p ro p io n ic a c id . The carboxyl carbon 13 o f p ro p io n a te appeared in v a le r ic but not in b u ty ric a c id . The a b i l i t y of C lo strid iu m to r e v e r s ib ly in te re o n v e ft a c e tic , p ro p io n ic and b u ty r ic a c id s was more f u l l y ex p lain ed by Wood e t a l . (19*+5) and Stadtman and B arker (19**9). E l-S h azly (1952) sim ultaneously o b tain ed s im ila r r e s u l t s by u sin g a new and v ery s e n s itiv e gas p a r t i t i o n method of chrom atography. He found somewhat h ig h er p ro p o rtio n s of is o b u ty r ic a c id (1 .5 to 2 .8 molar$ of th e v o l a t i l e acid m ixture) and showed th a t most of th e v a l e r ic a c id i s branched ch a in . He a ls o showed t h a t th e se branched chain a c id s are formed la r g e ly by m ic ro b ia l decom position of p r o te in . This work was continued by Annison (195*0 vho i d e n ti f ie d 2-m ethylb u ty ric a c id among th e branched chain ac id s in th e rumen. Coon et, a l . (1952a, 1952b) showed th a t t h i s a c id could a r is e from is o le u c in e in th e r a t li v e r and could y ie ld a 2-carbon k eto g en ic compound and a 3-carbon glucogenic compound w ith p ro p io n ic a c id as an in te rm e d ia te . According to Annison (195*0* th e t o t a l v o l a t i l e a c id c o n c e n tra tio n in th e rumen d ec lin ed e x p o n e n tia lly a t th e r a t e of 3^/hour in f a s te d sheep, but th e branched ch ain a c id s rem ained alm ost c o n sta n t a t 1 .5 to 3 .5 m illigram e q u iv a le n ts / 100 ml. rumen in g e s ta . The branched chain a c id s in c re a se d as th e n itro g e n c o n ten t of th e r a tio n in c re a s e d . A r a ti o n of 2 .5 p a r ts ground corn and 1 p a rt hay was converted to v o l a t i l e a c id a t a r a t e between 30 and 80^ /h o u r. Ik P h illip s o n (1952b) stu d ie d p ro d u ctio n of v o l a t i l e a c id s on a s im ila r r a t i o n v i t h s im ila r r e s u l t s . The molar composi­ t i o n of th e v o l a t i l e a c id s was about 60# a c e t ic , 30# p ro p io n ic , 7# b u ty ric and k% h ig h er a c id s 8 hours a f t e r fe e d in g . The r e l a t i v e amount o f p ro p io n ic a c id in c re a se d a f t e r feed in g and hence, was e i t h e r produced f a s t e r or absorbed slow er th an a c e tic a c id . L a c tic a c id c o n c e n tra tio n s as high as 630 m i l l i ­ grams/100 ml. rumen l i q u id were found in lambs fe d a corn ra tio n . Waldo and S c h u ltz (1955) o b tain ed v a lu e s of 0 .3 to J+l m illigram # l a c t i c a c id in rumen liq u id from hay fe d s t e e r s . These v a lu e s in c re a se d to as much a s 58 m illigram # when 7-5 pounds o f g ra in was in clu d ed in th e r a t i o n . Maximum c o n c e n tra ­ t io n in th e rumen occu rred 1 hour a f t e r feeding hay or oneh a lf hour a f t e r feed in g g ra in . D isappearance was e q u a lly ra p id d e c lin in g to o n e -h a lf of peak c o n c e n tra tio n in le s s th an 2 h o u rs. However, when P h illip s o n (1952b) drenched 2 lambs w ith l a c t a t e , d isap p earan ce of l a c t a t e from th e rumen of one lamb was much slow er th a n in th e o th e r. Waldo and S c h u ltz (1955) found t h a t 1 pound of glucose in c re a se d th e l a c t i c a c id c o n c e n tra tio n i n th e rumen much more th a n 1 pound of s ta r c h , c e llu lo s e , o r pyruvic a c id . Both groups o f in v e s ­ t i g a t o r s propose t h a t l a c t i c a c id i s r a p id ly converted prim a­ r i l y to p ro p io n ic a c id in th e rumen. This would e x p la in th e v ery hig h ferm en tab le carbohydrate c o n c e n tra tio n which i s a p p a re n tly re q u ire d in th e rumen to produce a d e te c ta b le con­ c e n tr a tio n of l a c t i c a c id . Johns (1952) and G u tie rre z (1953) 15 i s o l a t e d b a c te r ia from th e rumen v h ic h d is s im ila te l a c t a t e w ith p ro d u c tio n of p ro p io n ic and a c e tic a c id s . Washed su sp en sio n s o f rumen b a c te r ia p repared by Robinson et. a l . (1955) produced l a c t i c a c id from m altose and c e llo b io s e and to a sm aller e x te n t from g lu co se, p y ru v a te , or m alate, but n o t from x y lo se o r a ra b in o se . When th e sm aller organism s were e lim in a te d by u sin g lower c e n tr if u g a l f o r c e , l a c t i c a c id was produced a t pH 5 .0 or 8 .0 but not a t pH 6 .9 . The molar com position of sh o rt ch ain a c id s was about 6% a c e t i c , 20% p ro p io n ic , and b u ty ric in a number of cows fed a c o n tro l r a t i o n of hay, s ila g e , and c o n c e n tra te (Tyznik, 1951). The molar r a t i o s of a c e ta te and p ro p io n ate were u s u a lly re v e rse d 2 to 3 weeks a f t e r r e s t r i c t i n g roughage and l i b e r a l l y feed in g c o n c e n tra te or f in e ly ground hay. I t was hypothesized t h a t th e p ro d u c tio n of a c e ta te was suppressed in fav o r of p ro p io n ate p ro d u c tio n . Card and S c h u ltz (1953) stu d ie d p ro d u c tio n of v o l a t i l e f a t t y a c id s in 28 cows on w idely d if f e r e n t r a tio n s and found a s ig n i f i c a n t d iffe re n c e in th e molar p ercen tag e of each ac id due to r a t i o n . The molar % com position of th e t o t a l v o l a t i l e f a t t y a c id s f o r a c e t i c , p ro p io n ic , and b u ty ric a c id s re s p e c ­ t i v e l y were as fo llo w s : mixed hay - 60 . 0 , 2 1 .0 , 1 9 .0 ; hay p lu s g ra in - 5 7 .7 , 1 8 .8 , 2 3 .5 ; p a stu re - 5 5 .6 , 1 7 .9 , 2 6 .5 ; p a s tu re p lu s g ra in - 5 3 .0 , 2 0 .3 , 26.7 and; g ra in alone - M-7.3, 2 3 .2 , 2 9 .5 . Roughage from a l a t e r d a te of c u ttin g tended to in c re a s e th e p ro p o rtio n of a c e tic and d ecrease th e p ro p o rtio n 16 of b u ty r ic a c id which could be ex p lain ed by decreased p ro te in (E l-S h a z ly , 1952). The t o t a l v o l a t i l e ac id c o n c e n tra tio n was h ig h e s t on th e a l l c o n c e n tra te r a tio n and low est on th e pas­ tu re . S c h u ltz (1951*) found th e t o t a l v o l a t i l e a c id c o n c e n tra ­ t i o n in 8 bovine rumens was depressed about 25# by a 16 hour f a s t and th e r e l a t i v e p ro p o rtio n of p ro p io n ic a c id was a lso d e p re sse d . This i s in agreement w ith th e d a ta of R obertson and Thin (1953). Johns (1953) found t h a t glucose in th e rumen of sheep q u a n tita tiv e ly y ie ld e d a m ixture of a c e t ic , p ro p io n ic and b u ty ric a c id s w ith in an hour. Both jln v i t r o and %n v iv o , a c e ta te p ro d u c tio n was much g re a te r th an p ro p io n ate o r b u ty ra te p ro d u c tio n . Under th e same c o n d itio n s , g ly c e ro l was a tta c k e d more slow ly y ie ld in g alm ost e n t i r e l y p ro p io n ic a c id . According to S i j p e s t e i j n and E lsden (1952), su c c in a te a lso q u a n tita tiv e ly y ie ld s p ro p io n ate in th e rumen. The p ro d u cts of i n v i t r o f erm en tatio n re p o rte d by Me Naught (1951) were d i f f e r e n t f o r rumen m icro b io ta from cows on p a s tu re th an f o r m icro b io ta from hay and g ra in fe d cows. The p ro d u c ts a ls o v a rie d w ith s u b s tr a te . P a stu re m icro b io ta a c tin g on m altose or arab in o se produced a c id s w ith a molar com position pf about *+6# a c e ta te , H6# p ro p io n a te , and 8# b u ty ra te w hile th e h a y -c o n c e n tra te m icro b io ta produced a corresp o n d in g com position of 53# > 32#, and 15#. Xylose y ie ld e d more t o t a l a c id th a n m alto se, but th e com position was th e same. A carbon balance study showed th a t 2U to 25# 17 of th e m alto se, a ra b in o s e , or xy lo se carbon was converted to v o l a t i l e a c id . L a c tic a c id accounted f o r 6 to 10$ of th e m altose carbon w h ile only a tr a c e or no l a c t i c a c id was p ro ­ duced from a rab in o se or x y lo se . This was confirm ed by Heald ( 1952) , except f o r la r g e r p ro p o rtio n s of a c e ta te from x y lo se , and extended to g lu cu ro n o lacto n e w ith s im ila r r e s u l t s . Heald ( 1953) e stim a te d t h a t pentosans form 20 to 25$ of th e dry m a tte r i n common rum inant r a ti o n s . S uspensions o f rumen b a c te r ia prep ared by D oetsch e t a l . (1953) ferm ented c e llo b io s e or pyruvate y ie ld in g a m ixture of a c id s w ith a molar com position of about 6k% a c e tic , 21$ p ro p i­ o nic and 15$ h ig h er a c id s ; glucose and m altose y ie ld in g 36$ a c e t ic , *+0$ p ro p io n ic and 2*+$ higher a c id s ; xylose y ie ld e d ko% a c e t i c , 30$ p ro p io n ic and 30$ h ig h er a c id s and su c c in a te y ie ld e d only p ro p io n ic a c id . L a c ta te and o x a la c e ta te were a tta c k e d slow ly w ith only a tr a c e of a c id p ro d u c tio n . P ro p i­ o nate y ie ld e d a tr a c e of a c e ta te ; a c e ta te was not a tta c k e d ; b u ty ra te was converted q u a n tita tiv e ly to a c e ta te . B eta-hydro- x y b u ty ra te y ie ld e d some a c e ta te w hile m alate was converted to a c e ta te and p ro p io n a te . by S iro tn a k Manyof th e se r e s u l t s were confirm ed et. a l . (195^) and were extended, using th e same te c h n iq u e , to a la n in e which was not a tta c k e d , fum arate which was d is s im ila te d w ith o u t a c id p ro d u c tio n , and to L -a s p a rta te which appeared to be deam inized to su c c in a te and th en d e c a rb o x y lated to p ro p io n a te . 16 Gray and P ilg rim (1952b) examined th e f a t t y a c id s p ro ­ duced i n v i t r o from th e c e llu lo s e and h e m i-c e llu lo se of w heaten hay and found approxim ately equal p a r ts of a c e tic and p ro p io n ic a c id s and a sm all amount of b u ty ric a c id produced from e i t h e r o r b o th su b stan ce s. B u ty ric a c id seemed to come only from p r o te in so u rces which a ls o y ie ld e d r a th e r la rg e amounts of a c e tic a c id . This p a tte r n i s found ag ain in th e work o f B elasco (195*0 where only a c e ta te and p ro p io n ate w ith a tr a c e of b u ty ra te were formed by th e a c tio n of rumen m icro­ b io ta in v i t r o on c e llu lo s e and s ta r c h . P ro te in n itro g e n was re p la c e d by n o n -p ro te in n itro g e n in t h i s work and as th e con­ c e n tr a tio n of th e l a t t e r in c re a s e d , more v a le r ic and b u ty ric a c id s were formed. Tyznik e t a l . (195*+) te s te d th e e f f e c t of v a rio u s sub­ sta n c e s on sh o rt ch ain a c id p ro d u c tio n when re p la c in g c e ll u ­ lo s e on an eq u al carbon b a s is . M altose or s ta rc h in c re a se d t o t a l v o l a t i l e a c id p ro d u c tio n w ith a 100$ in c re a s e in th e p ro p o rtio n of b u ty ric a c id . Glucose alone or w ith c e llu lo s e gave th e same p ro p o rtio n s of v o l a t i l e a c id s as c e llu lo s e alone b u t s i g n i f i c a n t l y in c re a se d th e t o t a l a c id p ro d u c tio n . L a c tic a c id in c re a se d th e p ro p o rtio n of p ro p io n ic a c id and in c re a se d t o t a l a c id p ro d u c tio n but depressed c e llu lo s e fe rm e n ta tio n above th e 25$ carbon replacem ent l e v e l . R eplacing 25$ of th e carbon w ith s ta r c h , l a c t i c a c id , m alto se, or sodium pyruvate y ie ld e d v ary in g amounts of v a le r ic a c id amounting to from 1 to 7.5$ of th e t o t a l v o l a t i l e a c id . A ddition of a c e t ic , 19 p ro p io n ic and b u ty ric a c id s to re p la c e 25$ of th e carbon had no e f f e c t on t o t a l v o l a t i l e a c id p ro d u c tio n . A bsorption and U t i l iz a t i o n of S hort Chain Acids The l i t e r a t u r e d e a lin g w ith a b so rp tio n of v o l a t i l e a c id s was review ed by P h illip s o n (191+7) who, c itin g e a r l i e r work done by h is group, concludes t h a t more th an 5 gm. of v o l a t i l e a c id p er hour a re absorbed from th e bovine rumen. Pfander and P h illip s o n (1953) p o in t out t h a t , although numerous ex­ p erim en ts have been conducted on a b so rp tio n r a te s of sh o rt c h a in a c id s , none of them s u f f i c ie n tl y sim u late normal con­ d i t io n s to allow d ed u ctio n s concerning q u a n titie s of th e se a c id s norm ally absorbed. McClymont (1951) re p o rte d a maximum a r t e r i a l v o l a t i l e a c id l e v e l of 1 .2 to 2 .3 m illigram e q u i v a l e n t s / l i t e r 2 to 5 hours a f t e r fe e d in g . This d e c lin e d to 0 .3 to 0 .9 m illig ram e q u iv a le n ts / l i t e r 16 hours a f t e r feeding w ith a molar com­ p o s itio n of over 90$ a c e tic a c id . S im ila r v a lu e s were found by Reid (1950) in sheep. The p e r ip h e r a l blood and venous blood d ra in in g th e rumen in lb sheep on p a s tu re was examined by K iddle ejt a l . (1951). P e rip h e r a l blood co n tain ed O.H to 1 .7 m illig ram e q u iv a le n ts v o l a t i l e a c id / l i t e r c o n s is tin g la r g e ly of a c e tic w hile venous blood d ra in in g th e rumen co n tain ed 1 .7 to 8 .6 m illig ram eq u iv ­ a le n ts v o l a t i l e a c i d / l i t e r w ith a molar com position of 57 to 95$ a c e t i c , 10 to 33$ p ro p io n ic and 3 to 16$ b u ty ric a c id . 20 C raine and Hansen (1952) o b tain ed s im ila r v a lu e s in venous blood d ra in in g th e rumens of a d u lt g o a ts. Even a f t e r c o rre c ­ t i o n f o r th e a c e tic a c id in p e rip h e ra l blood, th e p ro p o rtio n of a c e tic a c id in blood d ra in in g th e rumen was always h igher th an i n rumen in g e s ta . Lymph c o lle c te d from th e th o ra c ic d u ct i n H anim als co n tain ed the same c o n c e n tra tio n of v o l a t i l e a c id s as a r t e r i a l blood. However, when Masson and P h illip s o n (1951) co n tin u ed t h i s work by measuring th e d isappearance of in d iv id u a l a c id s from em ptied, washed rumens lig a te d a t th e oesophagus and om asal-abom asal o r i f i c e , they found t h a t a l l a c id s d isap p eared a t about th e same r a t e . The rumen tended to b u ffe r a t pH 7 .5 to 7 .8 by in flu x of c h lo rid e s and CO2 from b lo o d . A d m in istra tio n of b u ty ra te and p ro p io n ate to normal anim als had l i t t l e e f f e c t on th e a r t e r i a l v o l a t i l e a c id c o n c e n tra tio n w h ile a c e ta te caused a th r e e - f o ld in c re a s e . These anomalous r e s u l t s were p a r t i a l l y c l a r i f i e d when P ennington (1952, 195*+) found rumen e p ith e liu m m etabolizing b u ty ra te much more r e a d ily th an p ro p io n ate or a c e ta te . Ketones were produced from b u ty ra te and a c e ta te , but not p ro p io n a te . P ro p io n ate m etabolism was in c re a se d by in c re a sin g C02-te n s io n up to 20$. M alonate in h ib ite d u t i l i z a t i o n of each a c id and caused p ro d u c tio n of su c c in a te from p ro p io n a te . The ammonium io n d ep ressed m etabolism of p ro p io n a te , but not b u ty r a te , p o s s ib ly by b lo ck in g th e tr ic a r b o x y lic a c id c y c le . ' This d e p re s s io n occu rred a t ammonium le v e ls which o fte n occur in th e rumen a f t e r fe e d in g . R obertson and Thin (1953) confirm ed th e e x tra -ru m in a l n a tu re of ketone body p ro d u c tio n . 21 Scharabye (1951) conducted s im ila r s tu d ie s using r a tio n s o f chopped or unchopped hay, crushed o a ts , and lin s e e d meal. The p re feed in g v o l a t i l e acid c o n c e n tra tio n in p o r ta l blood was double t h a t of a r t e r i a l blood. A fte r fe e d in g , th e p o r ta l le v e l ro s e about 50# p a r a lle lin g th e in c re a se d c o n c e n tra tio n o f v o l a t i l e a c id s in th e rumen w hile th e a r t e r i a l le v e l ro se only s l i g h t l y . I n je c tio n of a c e tic a c id in to th e rumen in ­ creased th e c o n c e n tra tio n in p o r ta l blood but not in venous blood d ra in in g th e l i v e r . Thus, th e v o l a t i l e a c id s were la r g e ly removed from p o r ta l blood by th e l i v e r . The p o r ta l glycem ia showed l i t t l e change a f te r feed in g and th e p o r ta l a r t e r i a l d iffe re n c e s were n e a rly z e ro . O ral a d m in is tra tio n of 1 to 2 gm. of g lu co se/k ilo g ram body w eight r e s u lte d in a sm all and t r a n s i t o r y hyperglycem ia. The very la rg e molar r a t i o of absorbed v o l a t i l e ac id to absorbed glucose le a v e s l i t t l e doubt t h a t v o l a t i l e ac id s c o n s titu te th e g re a te r source of c a lo r ie s p assin g from th e d ig e s tiv e t r a c t to th e l i v e r . Moreover, glucose i s absorbed more ra p id ly from th e abomasum of sheep th an from th e abomasum of non-rum inants (R eid; 1950, 1952). W eller and Gray (195*0 observed only a 1 0 -fo ld in c re a s e in s ta r c h passage through th e abomasum when s ta rc h in g e s tio n was in c re a s e d 1 0 0 -fo ld . The s ta r c h was not a tta c k e d in th e abomasum. Johnson (1951) in fu se d n e u tra liz e d v o l a t i l e ac id m ixtures in to th e rumens o f f a s te d g oats to dem onstrate th e r a t e s of a b s o rp tio n w ith o u t exceeding p h y s io lo g ic a l c o n c e n tra tio n s . 22 He concluded t h a t when rumen v o l a t i l e a c id a n a ly s is shows 65 m olar # a c e tic a c id , 20# p ro p io n ic a c id and 15# b u ty ric a c id , th e amounts a c tu a lly absorbed a re probably about 60# , 20# and 20# r e s p e c tiv e ly . This was confirm ed and extended by Pfander and P h illip s o n (1953) showing th a t a c e tic a c id d isa p p e a rs from th e rumen i n th e g r e a te s t q u a n tity due to i t s high co n c en tra­ t i o n , b u t p ro p io n ic and p a r ti c u l a r ly b u ty ric a c id s d isap p ea r a t f a s t e r r a t e s and c o n trib u te equal or g re a te r amounts of energy to th e rum inant. This ag rees w ith th e co n clu sio n s of C a r r o ll and Hungate (195*0 , Gray e t a l . (1951b), Gray and P ilg rim (1951, 1952a, 1952b), and McNaught (1951). A rumen liq u id t o n i c i t y of 0.165 molar was re p o rte d by P a rth a s a ra th y and P h illip s o n (1953). A bsorption of c h lo rid e and a c e ta te b ut n o t sodium and potassium was in h ib ite d by 0.002 m olar m ercuric c h lo rid e . A cetate was absorbed f a s t e r a t a low er pH (confirm ing r e s u l t s of D a n ie lli et, a l . , 19*+5) b u t could n ot be absorbed a g a in s t a c o n c e n tra tio n g ra d ie n t. An a rte rio -v e n o u s d iffe re n c e in sheep head tis s u e of 2 to 3 m illig ram % f o r a c e ta te compared to le s s th a n 2 m illig ram % f o r g lucose was re p o rte d by Reid (1950) who concluded th a t a c e ta te might be u t i l i z e d in p re fe re n c e to glucose by rum inant tis s u e . J a r r e t t and P o tte r (1950) showed th a t 27 to b0% of th e a c e ta te in je c te d in tra v e n o u sly in to p h lo riz in iz e d sheep could g iv e r i s e to su g ar. This sugar was e x c re te d in th e u rin e sin c e p h lo r iz in blocked r e s o r p tio n . was a ls o e x te n siv e under th e se c o n d itio n s . Form ation of ketones J a rre tt et a l. 23 (1952), fo llo w in g th e tim e -c o n c e n tra tio n curves f o r blood v o l a t i l e a c id s in je c te d in tra v e n o u s ly , found p ro p io n ate d i s ­ ap p earing more r a p id ly th an a c e ta te or b u ty ra te . A cetate caused no s ig n if ic a n t glycem ia w hile p ro p io n ate was markedly g lu co g en ic. A cetate and b u ty ra te alone were markedly k e to - g e n ic , b u t sim ultaneous in je c tio n of p ro p io n ate prevented t h e i r k e to n ic e f f e c t . >r Pennington (1952, 195^) found th a t rum inant l i v e r and kidney in v i t r o could u t i l i z e a c e ta te and b u ty ra te and to a l e s s e r e x te n t, p ro p io n a te . Kidney was p a r ti c u l a r l y a c tiv e w h ile h e a rt muscle weakly u t i l i z e d a c e ta te and b u ty r a te , but not p ro p io n a te . Less th a n % of th e in je c te d a c e ta te (500 m illig ra m s/ kilogram body w eight) appeared in th e u rin e of 16 normal ewes s tu d ie d by Pugh and S c a ris b ric k (1952). The h a lf-tim e fo r d isap p ea ran ce of blood a c e ta te in normal sheep was 25 m inutes v e rsu s 60 m inutes in k e to n ic sheep. A llen et, a l . (1955) p o in t out t h a t both h e p a tic and e x tra -h e p a tic c e l l s , in c lu d in g even b r a in , can o x id iz e both sugars and f a t t y a c id s . They demon­ s tr a te d a b a s a l f a t t y a c id catab o lism o ccu rrin g g e n e ra lly in t i s s u e s which was not suppressed even by abundant p resen ce of c a rb o h y d ra te . B en tley e t a l . (195*+a) found 1 pound of l a c t i c , a c e t i c , o r p ro p io n ic a c id e q u iv a le n t e n e r g e tic a lly to 2 .7 5 , 1 .6 , or 1.*+ pounds o f corn when fed to sheep. I n d ir e c t evidence f o r th e e s s e n t i a l i t y of a c e ta te in fo rm a tio n of m ilk f a t s t a r te d accum ulating when Powell (19^1) 2k found th a t a r a t i o n of se v e re ly r e s t r i c t e d or v ery f i n e l y ground roughage d ep ressed th e f a t co n ten t of m ilk. F u rth e r stu d y of t h i s phenomenon by A llen and co-w orkers was review ed by Tyznik (1951). The d epressed f a t co n ten t caused by r e ­ s t r i c t e d roughage-high c o n c e n tra te r a ti o n s or by f i n e l y ground roughage could be re v e rse d by o r a l a d m in is tra tio n of sodium a c e ta te . Although Tyznik (1951) found a lowered rumen concen­ t r a t i o n of a c e tic a c id on th e se r a t i o n s , both th e rumen f e r ­ m en tatio n and th e b u t t e r f a t t e s t of most cows spontaneously r e v e r te d to normal w ith in a few weeks. B alch e t a l . (1952a, 195^a, 195^b) stu d ie d th e d e p re ssio n o f th e f a t c o n ten t of m ilk a s s o c ia te d w ith changing cows from dry feed to p a s tu re . They co n sid ered t h i s an e f f e c t of th e lack of co a rse m a te ria l in young p a s tu re . According to th e s e work­ e r s , th e s o lid s not f a t co n ten t i s not a ffe c te d by a r e s t r i c t e d roughage r a t i o n . High c o n c e n tra te r a tio n s depressed th e f a t c o n te n t re g a rd le s s of t h e i r p ro te in c o n te n t; however, th e e f f e c t became l e s s sev ere l a t e r in la c t a t i o n . Hay consumption had to be l e s s th a n 12 pounds per day per cow to produce th e e f f e c t , but d e p re ssio n was not fu rth e re d by d ec reasin g hay in g e s tio n below 8 pounds. M ilk f a t p ro d u c tio n was stim u la te d 3.2$ in cows fe d 350 gm. of a c e ta te d a ily by Z e lte r (1952). P yruvate fe ed in g a lso caused some s tim u la tio n over th e c o n tro ls w hile no s ig n if ic a n t in c re a s e in p ro d u ctio n could be a tt r i b u t e d to b u ty ra te . Van S o est e t a l . (195*+) confirm ed th e se r e s u l t s using cows whose 25 m ilk f a t p ro d u c tio n had been depressed by a r e s t r i c t e d rough­ ag e-h ig h c o n c e n tra te r a ti o n and found th a t th e in c re a se d p ro ­ d u c tio n accounted fo r a l l o f th e carbon ad m in istered as a c e ta te . However, M ille r and A llen (1955) could not fin d s ig n if ic a n t d if f e r e n c e s i n e i t h e r th e f a t t e s t or th e amount o f m ilk s e c re te d between c o n tro l cows fe d hay p lu s corn s ila g e and 16 pounds o f c o n c e n tra te d a ily and experim ental cows fed th e same r a t i o n p lu s one pound of sodium a c e ta te . The experim ent could d e te c t d iffe re n c e s of 0.1# in f a t t e s t or 0 .8 pounds of m ilk /d ay . This i n d i r e c t evidence f o r a c e ta te u t i l i z a t i o n in m ilk f a t s y n th e s is i s augmented by mammary gland s tu d ie s review ed by Popjak (1952). F o lle y and French (19^8) re p o rte d th a t rum inant l i v e r s l i c e s do not u t i l i z e a c e ta te b e tt e r th an r a t l i v e r s l i c e s , but rum inant kidney and mammary tis s u e s do have a g r e a te r a c e ta te u t i l i z i n g a b i l i t y th an e q u iv a le n t non-rum in an t t i s s u e s and even show a g re a te r u t i l i z a t i o n of a c e ta te th a n g lu c o se . Ruminant mammary tis s u e u t i l i z e s a c e ta te but n o t glucose w ith an R.Q. g re a te r th an 1. Non-ruminant mammary ti s s u e u se s only g lucose w ith an R.Q. g re a te r th an 1. When Popjak et, a l . (1951a, 1951b) in je c te d la c ta t in g g o ats w ith c a rb o x y -G ^ -a c e ta te , th e maximum s p e c if ic a c t i v i t y of th e plasma f a t a c id o ccurred in 2*+ hours whereas s p e c if ic a c t i v i t y of m ilk f a t was maximum in 3 to k hours and was s e v e ra l tim es g r e a te r th an th e plasma f a t maximum. During th e f i r s t 12 hours a f t e r i n j e c t i o n , a c t i v i t y of th e 8 to 12 carbon a c id s in m ilk 26 exceeded t h a t f o r th e 1*+ to 16 carbon a c id s . H alf-tim e f o r th e d isap p earan ce of blood a c e ta te was 50 m inutes v e rsu s H hours f o r th e v o l a t i l e a c id s of m ilk. Only th e odd-numbered carbons of a c e ta te , b u ty r a te , and ca p ro ate were a c tiv e and th e carb o x y l-carb o n of ca p ro ate was more a c tiv e than carbons 3 or 5. About bo# o f th e m ilk b u ty ra te came from a c e ta te v ia b e ta co n d en satio n and 60 # from some n o n -is o to p ic ^-carb o n compound. Higher a c id s were formed e x c lu siv e ly by a stepw ise co n d en satio n of a c e ta te w ith c a p ro a te . F if ty p ercen t of th e n o n -o x id iz e d , la b e le d a c e ta te was used f o r milk f a t s y n th e s is . Cowie et, a l . (1951b) c ir c u la te d a c e ta te through an i s o ­ la te d bovine udder and recovered bo% of i t in th e m ilk f a t along w ith tr a c e s in m ilk c h o le s te r o l and la c to s e . S ince b u ty ric a c id s p e c if ic a c t i v i t y corresponded w ith th a t of th e o th e r a c id s , th e U-carbon p re c u rso r of m ilk b u ty ra te noted above came from blood. Carbon dioxide in c o rp o ra tio n in to m ilk f a t and la c to s e was n e g lig ib le . Shaw and P e te rse n (19*+3) showed t h a t th e bovine mammary gland r e a d ily u t i l i z e s b e ta hy d ro x y b u ty ric a c id and Kumar and Lakshmanan (195*0 showed t h a t t h i s a c id i s probably th e H-carbon p re c u rso r of m ilk b u ty ra te h y p o th esized by Popjak (1952). Glucose was more e f f e c tiv e than a c e ta te as a p re c u rso r f o r m ilk f a t in th e r a b b it mammary te s te d by Popjak e t a l . (1953) b u t th e s y n th e s is was s t i l l v ia pyruvate and some 2carbon u n i t . G ly cero l was a lso formed much more slow ly from a c e ta te th an g lu co se. 27 McClymont (1951) found *+0 to 80$ of th e a c e ta te removed from blood c ir c u la tin g through th e i n t a c t , l a c t a ti n g bovine mammary. A r t e r i a l a c e ta te le v e ls were not a ffe c te d by th e high c o n c e n tr a te - r e s tr ic te d roughage r a ti o n although th e milk f a t t e s t was d ep ressed . H yperinsulinism or delayed m ilking a ls o f a i l e d to a f f e c t a c e ta te u t i l i z a t i o n . A high c o r r e la tio n was found between CC>2 p ro d u ctio n and a c e ta te u t i l i z a t i o n by th e mammary t i s s u e even when excess a c e ta te was ad m in iste red . I t was concluded t h a t th e v o l a t i l e a c id o f m ilk i s independent o f blood v o l a t i l e f a t t y a c id and th a t a c e ta te i s used in th e mammary gland f o r e ith e r s y n th e s is or u s e fu l o x id a tiv e meta­ b olism . B ryant and D oetsch (195l+> 1955) and B en tley e t a l . (195*+b) have found t h a t a m ixture of th e branched-chain v o l a t i l e ac id s and s tr a ig h t- c h a in 5 to 8 carbon a c id s norm ally p re se n t in th e rumen i s re q u ire d fo r growth of some rumen m icroorganism s and f o r optimum c e llu lo s e d ig e s tio n and n itro g e n u t i l i z a t i o n . Rumen S y n th e sis o f C arbohydrate S ev eral rumen m icroorganism s, examined by Baker (19*+2), s y n th e siz e d io d in e s ta in in g p o ly sa c c h a rid e . These organism s were not s u b je c t to p e p tic or t r y p t i c d ig e s tio n , but were d ig e s te d in la rg e q u a n titie s by th e c i l i a t e p ro to zo a . Baker and H a rris s (19*47) review ed th e su b je c t of s y n th e s is by rumen m ic ro b io ta . A rumen p rotozoan, c u ltu re d by Hungate (19*+3), produced a re s e rv e io d in e s ta in in g p o ly sacch arid e 2 to 7 hours 28 a f t e r exp osu re to c e l l u l o s e . The p o ly sa cc h a r id e d isap peared w ith in 12 hours a f t e r removing th e c e l l u l o s e . Van der Wath (19*+8) confirm ed th e a b i l i t y o f rumen m icro b io ta to s y n th e s iz e io d o p h ilic p o ly sa c c h a r id e from s ta r c h . Heald (1951) prepared r e l a t i v e l y pure b a tch es o f rumen m icroorganism s from hay fe d sheep and found th a t th e y co n ta in ed *+ to % g lu c o s e -y ie ld in g -c a r b o h y d r a te on th e dry b a s is . A maximum o f 5 gm. o f g lu c o se per day p assed from th e abomasum o f hay fe d sheep assuming th a t a l l abomasal p assage was rumen Masson and P h illip s o n (1952) showed th a t tw o -th ir d s in g e s t a . o f t h i s m a te r ia l was g a s t r ic j u ic e w hich would r e v is e th e e s tim a te t o about 2 gm. T his amounts to a n e g lig i b l e p o r tio n o f th e t o t a l fe e d en erg y . W eller and Gray (195*0 used th e lig n in r a t i o technique w ith rumen and abomasal f i s t u l a e to show th a t s ta rc h was la r g e ly d estro y ed in th e omasum along w ith th e p ro to zo a. S ta rc h p assin g through th e abomasum in c re a se d from 1 gm. per day when 3 gm. were fe d to only 8 gm. when 1^8 gm. were fe d . D e s tru c tio n o f s ta rc h in th e rumen and omasum was alm ost com­ p le te . Heald (1951) found th e ferm en tab le, g lu c o se -c o n ta in in g carb o h y d rate c o n ten t of th e rumen m icro b io ta in c re a se d from a p re feed in g le v e l of 2 to 7% to 7 to 21$ of th e dry m atter 2 hours a f t e r fe e d in g . This re tu rn e d to th e p re feed in g le v e l w ith in 6 to 8 h o u rs. C e n trifu g a tio n showed t h a t t h i s s y n th e s is was la r g e ly a fu n c tio n o f th e in te rm e d ia te and la rg e sized organism s. 29 H o lo tr ic h c i l i a t e s from th e rumen o f hay fe d sheep d e p o s it a p o ly sa c c h a r id e w hich Oxford (1951) and Masson and Oxford (1951) found to be s ta r c h . T his s t a r c h , which cou ld be p re­ pared w ith a 1$ y ie ld from the dry m atter o f s tr a in e d rumen l iq u id from sheep grazed on s t a r c h - f r e e sp rin g g r a s s , was s y n th e s iz e d in v i t r o from g lu c o s e , f r u c t o s e , s u c r o s e , in u lin and b a c t e r i a l le v a n w ith 15 to 21$ y i e l d s and from c e llo b io s e w ith a 6% y i e l d , but n ot from m a lto se . McNaught (1951) reco v ered 15 t o 39$ o f th e carbon o f m a lto s e , a r a b in o se , or x y lo s e as b a c t e r ia l p o ly sa cc h a r id e when th e y were ferm ented in v i t r o by rumen m icr o b io ta . Me Naught e t a l . (195M found p o ly sa cc h a r id e accou n tin g fo r 32$ o f th e rumen b a c t e r i a l dry m atter and 62$ o f th e p r o to z o a l dry m a tter . Sugden (1953) found th a t c e r t a in o l i g o t r i c h pro­ to z o a co u ld not form p o ly sa c c h a r id e s from sim ple su gars or c e l l u l o s e when t h e ir sy m b io tic b a c t e r ia were e lim in a te d by stre p to m y c in . R obinson e t a l . (1955) concluded from t h e ir work w ith washed su sp e n sio n s o f rumen m icro b io ta th a t p o ly sa c c h a r id e s y n t h e s is i s probably a mechanism w hich e n a b le s th e m icro b io ta to s t o r e a r e s e r v e en ergy su p p ly . They f a i l e d t o o b ta in t h i s s y n t h e s is w ith m a lto se s u b s tr a te w hich con firm s th e work o f Masson and Oxford (1951). 30 Rumen S y n th esis of p ro te in The l i t e r a t u r e concerning u re a as a p ro te in replacem ent f o r ru m inants has been review ed by Reid (1953)• According to t h i s rev iew , Zuntz recognized th e v alue of u re a as a p a r t i a l p r o te in replacem ent f o r rum inants in 1891. H art e t a l . (1939) confirm ed th e v alu e o f sim ple n itro g en o u s compounds as p ro te in s u b s t i tu t e s fo r rum inants and considered th e rumen m icrobiota re s p o n s ib le f o r t h e i r u t i l i z a t i o n . The l i t e r a t u r e reviewed h ere p e r ta in s to th e r o le of rumen m icrobiota in t h i s p ro te in s y n th e s is . Pearson and Smith (19*+3b) concluded th a t p ro te in sy n th e sis d u rin g rumen fe rm e n ta tio n , in vivo or in v i t r o , i s accompanied by p r o te in catab o lism and e ith e r process may predom inate. . The amount of s y n th e s is during th e f i r s t two hours of in cu b atio n o f c e n trifu g e d rumen liq u id w ith 0.3$ s ta rc h and u re a added was e q u iv a le n t to 8 m illigram s N/100 gm. rumen liq u id which would amount to some ^50 gm. of p ro te in in the in t a c t bovine rumen. S y n th e sis was stopped by l e s s than 0.1$ sodium f lu o r id e in d ic a tin g i t s m ic ro b ia l n a tu re . S tarch had a r e l a t i v e l y high s tim u la to ry e f f e c t on s y n th e s is compared to o th e r compounds s tu d ie d w h ile 1$ g e la tin markedly in h ib ite d s y n th e s is . a c id s had r e l a t i v e l y l i t t l e e f f e c t . Amino Burroughs e t a l . (1951) examined th e e f f e c t of v a rio u s p ro te in s on u re a u t i l i z a t i o n d u rin g rumen fe rm e n ta tio n in v i t r o and concluded th a t the n itro g e n req u irem en ts of rumen m icro b io ta are r e s t r i c t e d to ammonia. 31 About 5-0$ of th e t o t a l rumen n itro g e n i s m icro b ial accord­ ing to Gray et, a l . (1953). Moreover, th e r a t i o of t o t a l n i t r o ­ gen to l i g n i n i s n e a rly th e same in th e rumen as in th e fodder a t a l l tim es a f t e r feed in g so n e t lo s s of n itro g e n from th e rumen occurs only w ith lig n in passage to th e lower alim en tary tra c t. McDonald (195*0 pointed out th a t th e in s p lu b le p ro te in , z e in , does not a l t e r th e ammonia c o n c e n tra tio n in th e rumen w h ile th e so lu b le p r o te in s , c a se in and g e la tin , cause marked in c r e a s e s . When sheep were fed a p a r t i a l l y p u rifie d r a tio n to which z e in c o n trib u te d 9*+$ of the t o t a l n itro g e n , approxi­ m ately **0$ o f th e z e in was converted to m icro b ial p ro te in . Using s te e r s fe d n a tu r a l and p u rifie d r a ti o n s , Agrawala e t a l . (1953) and Duncan et. a i . (1953) stu d ie d p ro te in synthe­ s i s by th e rumen passage technique of Hale et. a l . (19*+0, 19*+7). Minimum v a lu e s f o r p ro te in sy n th e sis v a rie d from 33 to 109 gm. w h ile c o n sid e ra b le amino a c id s y n th e sis was dem onstrated on th e r a ti o n co n ta in in g only n o n -p ro te in n itro g e n . Smith (1953) confirm ed th e s y n th e s is of ly s in e u t i l i z i n g th e same technique w ith n a tu r a l r a ti o n s , b ut could not dem onstrate an accum ulation of m ethionine in th e rumen. McNaught (1951) found th a t cooked s ta rc h provided a b e tte r source of energy f o r p r o te in sy n th e sis than raw s ta rc h ; a r a b in o se, x y lo s e , f r u c to s e , and c e llo b io s e were p a r tic u la r ly good energy so u rces w ith m altose and glucose ranking as in te rm e d ia te ; g lu c u ro n ic , a c e t ic , p ro p io n ic , b u ty r ic , c i t r i c , m alic, t a r t a r i c , fu m aric , s u c c in ic , l a c t i c , and beta-h y d ro x y b u ty ric a c id s and 32 mannose or sorbose were e ith e r poor o r in e f f e c tiv e so u rces. B a c te r ia l p ro te in accounted fo r 7 to 18# of th e carbon of m alto se, a ra b in o se , or x ylose ferm ented in v i t r o by rumen m ic ro b io ta . A rias et, aji. (1951) noted th a t sm all amounts of so lu b le carb o h y d rates (0 .1 to 0 .2 gm./lOO ml. volume in th e fe rm e n ta tio n f la s k ) aided c e llu lo s e d ig e s tio n which in tu rn y ie ld e d energy f o r p ro te in s y n th e s is . S alsbury (1955) con­ firm ed t h i s s tim u la to ry e f f e c t of 0 .1 to 1% so lu b le carbohy­ d r a te s . A low r a t e o f sugar and c e llu lo s e fe rm en tatio n by rum inal c o n te n ts from sheep f a s te d ^8 hours was re p o rte d by Quin e t a l . (1951)* The fe rm e n ta tio n a b i l i t y re v e rte d to normal f a s t e r w ith a low p r o te in r a ti o n than w ith a high p ro te in r a tio n . B e ll jgt, a l . (1953) s tu d ie d r e te n tio n of u rea n itro g e n by s t e e r s fed d if f e r e n t carbohydrates concluding th a t u re a n i t r o ­ gen was u t i l i z e d w ith eq u al e f f ic ie n c y in r a tio n s of d if f e r e n t c e r e a l g ra in s b ut w ith l e s s e f fic ie n c y in m olasses co n tain in g r a ti o n s . W alter (1952) s tu d ie d th e e f f e c t of a number of carbohy­ d r a te s on th e magnitude of rumen fe rm en tatio n in v i t r o and found t h a t a c t i v i t y w ith sucrose s u b s tra te exceeded s l i g h t l y t h a t w ith glucose which was s e v e ra l tim es g re a te r th an a c ti v i t y w ith x y lo s e , h e m ic e llu lo se , and s ta rc h s u b s tr a te s . When b a rle y supplem ented th e a l f a l f a r a tio n of the ovine source of rumen m ic ro b io ta , fe rm e n ta tio n on a l l s u b s tra te s was in t e n s i f ie d . According to Reid (1953), e f f i c i e n t p ro te in sy n th e sis from 33 n o n -p ro te in n itro g e n depends upbn an optim al balance between ammonia l i b e r a t i o n and carbohydrate fe rm e n ta tio n . Reed e t a l . (19*+9) found th a t th e d i g e s t i b i l i t y and b io ­ lo g ic a l v alu e o f rumen b a c te r i a l p ro te in fo r r a t s a re 62 to 65$ and 79 to 80$ compared to 101$ and 80$ fo r c a s e in . Crude p r o te in c o n s titu te d ^8 to 51$ of th e dry m atter of th e b a c te ­ r i a l p re p a ra tio n . McNaught (195*0 confirmed th ese v alu es and found a d i g e s t i b i l i t y of 91$ fo r th e p ro te in of rumen protozoa. The amino ac id com position of rumen b a c te r i a l p ro te in , stu d ie d by Holmes e t a l . (1953), v a r ie s l i t t l e i f any w ith the change from dry feed to p a s tu re . The amino acid com position o f rumen b a c t e r i a l p r o te in i s s im ila r to recorded v alu es f o r a number of m icroorganism s excepting f o r a somewhat higher c o n te n t o f a rg in in e , h i s t i d i n e , tryptophane and glutam ic acid and lower co n ten t of is o le u c in e . The content of le u c in e , th re o n in e , p h en y lalan in e and p a r tic u l a r ly m ethionine and is o le u c in e was su b -o p tim al f o r maximum n u t r i t io n a l v alue as a ls o noted by Reed et. a l . (19*+9). Duncan e t a l . (1953) con­ firm ed th e low m ethionine content of rumen b a c te r ia l p ro te in but found somewhat h ig h er p ro p o rtio n s of is o le u c in e , le u c in e , p h en y lalan in e and th re o n in e w ith lower p ro p o rtio n s of a rg in in e , h i s t i d i n e and try p to p h an e. The m ethionine co n ten t of rumen dry m atter was very low as re p o rte d by Chance et. a l . (1953b) and Smith (1953). I n v e s tig a tio n s of th e s u lfu r amino acid requirem ents of ru m in an ts began when Huffman and Duncan (19*+0) f a ile d to s tim u la te m ilk p ro d u ctio n w ith c y stin e supplem entation to a legume hay r a t i o n . However, Smuts e t a l . (19*+1) found th a t sup p lem en tatio n of a l f a l f a w ith c y stin e in creased r e te n tio n of th e a l f a l f a n itro g e n in lambs. A lfa lf a c o n ta in s 0.3$ s u lf u r according to D avis g t a^. (195*+) and Lewis (195*0 c i t e s v a lu e s fo r s u l f a t e - s u lf u r in fo ra g es ranging from 0 .3 to 1.0$ of th e dry m a tte r. pared to o th e r fe e d s . A ll of th e se are high v alu es com­ L o o sli and H a rris (19*+5), Jones and Haag (19*+6), S ta rk s e t a l . (195*0 and Noble e t a l . (1955) have dem onstrated in c re a se d n itro g e n r e te n tio n and/or growth or p ro d u c tio n when s u lf u r supplemented b a sa l r a tio n s c o n ta in ­ ing e i t h e r l e s s th an 0.1$ or u n sp e c ifie d amounts of t o t a l s u lf u r . M ethionine s u lf u r i s s l i g h tl y more v alu ab le than in o rg a n ic s u lfu r according to L o o sli and H a rris (19*+5). U t il ­ i z a t i o n of f i e l d pea o r a l f a l f a p ro te in by sheep was stim u la te d by m ethionine supplem entation as re p o rte d by Klosterm an e t a l . (195*0 who noted th a t th e p ro te in s of th e se fe ed s a re d e f ic ie n t in m ethionine. Hunt e t a l . (195*0 re p o rte d a g re a te r in v i t r o a c t i v i t y of rumen m icro b io ta when m ethionine or sodium s u lf a te su p p lied t h e i r s u lf u r th an when c y s tin e or elem ental s u lfu r served t h i s fu n c tio n . Block and S tek o l (1950), Block e t a l . (1951), and Block ( 1953) dem onstrated conversion of in g ested ra d io a c tiv e , in o r­ ganic s u l f a t e to c y s tin e and m ethionine in th e rumen. The m ilk p r o te in , which a ls o contained ra d io a c tiv e c y stin e and m eth io n in e, a tta in e d a maximum a c t i v i t y in 2 to 3 days. The 35 r a t i o s o f c y s tin e n itro g en -m eth io n in e n itro g e n in rumen m icro­ b i o t a , serum album in, and m ilk p ro te in were about l s l , 6:1 and 1 :5 r e s p e c tiv e ly and, th e r a t i o s o f c y s tin e a c tiv ity :m e th io n in e a c t i v i t y follow ed th e same p a tte r n . M ethionine and c y stin e v e re a p p a re n tly formed in equal amounts in th e rumen. Since Lewis (195*0 found t h a t s u lf a te d isa p p e a rs from th e rumen w ith a h a lf-tim e o f l e s s th an 2 hours accompanied by a sim ultaneous in c re a s e i n rumen s u l f i d e , s u lf a te u t i l i z a t i o n must proceed la r g e ly v ia s u l f i d e . Rumen raicro b io ta degrades c y ste in e to ammonia, s u l f i d e , C02 , and a c e tic acid according to S iro tn ak e t a l . (1953) and Lewis (195*0. Rumen s u l f a t e and s u lfid e c o n c e n tra tio n s are norm ally about 0 .1 5 and 0 .0 8 m illig ram eq u iv alen ts/1 0 0 ml. as re p o rte d by P a te l (1952) and Lewis (195*+). Weir and Rendig (195*+) re p o r t serum in o rg a n ic s u lfu r v alu es o f 0.02 m illig ram $ in ­ c re a s in g to k m illig ram % as s u lf u r in g e s tio n was in c re a se d . About 70$ o f th e in o rg a n ic , ra d io a c tiv e s u lf a te fed w ith s ila g e to cows by Keener e t a l . (1953) was recovered in th e u rin e along w ith 1 to 2$ in th e milk and th e rem ainder in th e fe c e s . Kulwich e t a l . (195*0 o b tain ed a s im ila r s u lf a te p a r­ t i t i o n i n sheep fed soybean m eal, but when u re a provided the d ie ta r y n itro g e n , only h a lf of th e a c t i v i t y appeared in u rin e in d ic a tin g in c re a se d in c o rp o ra tio n by rumen m icro b io ta. The review s by B e rsin (1950) and Fromageot (1953) re v e a l th e c e n tr a l r o le of s u lf u r and s u lfu r amino ac id s in m etabolism . This i s p a r t i c u l a r l y tru e fo r c y s te in s u lf in ic ac id which appears 36 to be a key in te rm e d ia te among s e v e ra l m etabolic a c id s and amino a c id s . These amino a c id s in clu d e hypotaurine and ta u rin e which a re u rin a ry e x c re tio n products and are a lso sy n th esized by th e ch ick embryo (Chatagner e t a l . , 1955; Lowe and R o b erts, 1955; M acklin e t a l . , 1955). Their c h a r a c t e r is t ic s a re sim ila r to th e u n id e n tif ie d compounds sy n th esized by b a c te r ia noted by Cowie e t a l . (1950, 1951a). Block e t a l . (1952) d isc u ss the r o l e of g lu ta th io n e in tr a n s f e r of amino ac id s to p ro te in . Horowitz (19^7) is o la te d c y s ta th io n in e and showed th a t N eurospora s y n th e s iz e s m ethionine from in o rg an ic s u lf u r v ia c y ste in e , c y s ta th io n in e , and homocysteine c o n se c u tiv e ly . Cowie e t a l . (1950, 1951a, 1952), B olton e t a l . (1952), W ijesundra and Woods (1953)? and th e work of o th e rs reviewed by them showed th a t th e same g e n e ra l mechanism a p p lie s in o th er m icro­ organism s. Hess (1952), A rn stein (1953) and t h e i r l i t e r a t u r e review s show e s s e n t i a l l y th e same mechanism in r a t tis s u e only re v e rs e d ; th a t i s , m ethionine goes to homocysteine to c y s ta ­ th io n in e . To w hatever e x te n t E sc h e ric h ia c o ll metabolism p a r a l le ls th a t o f rumen m ic ro b io ta , th e follow ing f a c ts found by Cowie e t a l . (1950, 1951a, 1952, 19 5*0, and B olton e t a l . (1952) apply to t h i s problem : In o rg an ic s u lf a te of media and c e l l s i s in in sta n ta n e o u s e q u ilib riu m w hile the o rg a n ic , cell-b o u n d s u lf u r amounts to 3 .5 m illigram s S/ml. c e n trifu g e d c e l l s and i s s ta b le ; in o rg a n ic s u lf a te i s not bound by non-growing c e ll s and s u lf u r in c o rp o ra tio n by growing c e ll s i s d i r e c tl y c o r re la te d 37 w ith p r o te in s y n th e s is provided adequate s u lfu r i s p re se n t; g lu ta th io n e accounts f o r 25 to 2,0% of th e o rg a n ic , cell-hound s u lf u r and a c ts as re s e rv e s u lfu r fo r c e l l growth in th e absence o f an e x te r n a l supply; c y ste in e and s u l f i t e s u lfu r markedly su ppress w hile m ethionine and homocysteine s u lfu r only s l i g h t l y suppress in c o rp o ra tio n of s u lf a te s u lfu r in to c e l l s ; i t i s concluded th a t s u lf a te s u lfu r i s in co rp o rated as c y s te in e v ia s u l f i t e w hile m ethionine i s formed more slowly v ia c y s te in e . i PART I INCORPORATION OF INORGANIC SULFATE BY RUMEN MICROBIOTA IN VITRO P relim in a ry Experim ents F erm en tation T echnique. This experim ent was i n i t i a t e d in 1953 w ith th e o b je c t o f measuring c e l l growth and p r o l i f ­ e r a t io n during in v i t r o ferm en ta tio n s by rumen m icro b io ta . This i n i t i a l study u t i l i z e d th e fe rm en tatio n method d esc rib ed by S alsb u ry (1955* pp. 73-76) w ith th e m ineral complex m odified by s u b s titu tin g c h lo rid e s a l t s fo r the e q u iv a le n t s u lf a te s . About 0 .8 gm. of a i r dry a l f a l f a l e a f meal was placed in s id e th e d ia ly z in g sacs w ith 25 ml. of c h e e se -c lo th s tra in e d rumen liq u id from f i s t u l a s te e r C7*+l re c e iv in g an a l f a l f a hay r a tio n . C aution was used in t h i s and th e follow ing experim ents to avoid d e la y , tem p eratu re change, and a i r exposure in tr a n s f e r r in g in o c u la from th e rumen to th e fe rm en tatio n v e s s e l. These in - o cu la were always c o lle c te d about 2 hours a f te r fe ed in g . Follow ing in o c u la tio n , th e d ia ly z in g sac was suspended in 175 ml. o f m ineral complex co n tain in g about 2 .5 m icro cu ries of s 3 5 -ia b e le d in o rg a n ic s u lfa te /m l. The c a r r ie r s u lf a te c o n c e n tra tio n was l e s s th an U.5 x 10 9 m oles/m l. One complete assembly was incu b ated a t *+0°C. fo r each time of 1 , 2 , *+, and 6 hours and two com plete assem blies were r e f r ig e r a te d as c o n tr o ls . 38 39 A fte r in c u b a tio n , th e r e s id u a l in o rg an ic s u lf a te a c ti v i t y was exchanged out by d i a l y s i s a g a in st d i l u te ammonium s u lf a te a t 6°C. Thick smears o f th e d ialy zed fe rm en tatio n re sid u e were s h ie ld e d so a c o n sta n t area was exposed and counted under an end-window, G-M d e te c to r . These counts are p resen ted in Table 1, page *t0. The c o n tro l f l a s k s , d esig n ated as 0 and O ', were exposed to th e r a d io a c tiv e m ineral mix fo r 1 and 3 hours re s p e c tiv e ly b efo re exchange a g a in s t ammonium s u lf a t e . The a c ti v i t y in th e c o n tro ls was a p p a re n tly in o rg an ic s u lf a te as dem onstrated by th e chrom atographic r e s u l t s . This dem onstrated incom plete exchange w ith n o n -lab e le d s u lf a te in s p ite of th e f a c t th e ammonium s u lf a te s o lu tio n s were changed re p e a te d ly u n t i l p r a c t i c a l l y no exchange a c ti v i t y could be d e te c te d . For t h i s and o th e r te c h n ic a l re a so n s, th e d ia ly z in g sac was not used a fte r th is t r i a l . A supplem ental experim ent dem onstrated th a t in o rg a n ic s u lf a te e q u ilib r a te s acro ss th ese v isk in g tubing d ia ly z in g sacs a t a r a t e of 2\% per m inute. T herefore, the ap parent r a t e o f s u l f a t e in c o rp o ra tio n i s a fu n c tio n of both th e r a t e o f bin d in g by the c e l l s and th e r a t e of s u lf a te d i f ­ fu s io n in to th e fe rm e n ta tio n sac. The rem aining fe rm e n ta tio n re sid u e s were hydrolyzed w ith 6m HC1, th e excess ac id removed by ev ap o ratio n , and th e amino a c id s s e p a ra te d ch ro m atographically on f i l t e r paper as d e s­ c rib e d by P a tto n (1950) w ith th e ex cep tio n th a t la r g e r paper and c y lin d e rs were used . The developed chromatograms were cut TABLE 1 SULFUR ACTIVITY IN DIALYZED FERMENTATION RESIDUES In c u b a tio n Time (Hours) R a d io a c tiv ity in th e C e lls ^et 2R e la tiv e ^ R elativ e A c tiv itie s C vstine -------- Methionine -------- 0 11.13 -------- 0* 23.03 -------- 0 0 1 1U.88 ^1 .9 M-.7 0 2 23.66 66.7 8.2 5.8 U 3H.00 95.8 H8.7 9.0 6 35.^9 100.0 26.5 11.9 1. Counts per second c o rre c te d f o r n a tu r a l background a c t i v i t y . 2. Each count as i t s p ercen tag e of the s ix hour count. 3. Area under curves o b tain ed by graphing a c ti v i t y v ersu s Rf v a lu e . kl in to s t r i p s and the s t r i p s counted as d escrib ed by W interin gf ham e t a l . (1952). M ethionine y ie ld e d an Rf of 0.85 under th e se c o n d itio n s . While a l l of the s t r i p s from incubated f la s k s co n tain ed a p p reciab le a c t i v i t y near Rf 0 .8 and Rf 0 .2 , over 95# o f th e a c t i v i t y in the c o n tro ls was below Rf 0 .2 . Although t h i s c o n c lu siv e ly dem onstrated m ethionine s y n th e s is , c y s tin e was o b lite r a te d by in o rg an ic s u lf a te . The chromato­ graphing^ p ro cess was re p e a te d using a so lv en t m ixture of 80# m ethanol, 18# w a te r, and 2# g la c ia l a c e tic acid which gave an Rf o f 0 .7 f o r m ethionine and an Rf t a i l i n g from 0 .5 f o r c y s tin e . In o rg a n ic s u lf a te d id not move above Rf 0 .2 . The r e l a t i v e a c t i v i t i e s corresponding to m ethionine and c y stin e are p re ­ sen ted in Table 1, page *+0. Hvdroeen S u lfid e P ro d u ctio n . This experim ent was con­ ducted to measure any lo s s of ra d io a c tiv e s u lfu r as fre e hydrogen s u lf id e . A 25 ml. p o rtio n of c h e e se -c lo th s tra in e d rumen l i q u id from hay fed rumen f i s t u l a cow A55 was added to each of two Uo ml. c e n trifu g e tubes co n tain in g 1 gm. o f a l f a l f a l e a f meal and 750 m icro cu rie s of o rg an ic s u l f a t e . as 1 x 1 0 moles of i n ­ The tu b es were closed w ith sto p p e rs c o n ta in ­ ing c a p il l a r y tu b es jo in ed to a m anifold. A ir was drawn through th e m anifold a t a s l i g h tl y reduced p re ssu re and washed through c u p ric a c e ta te . A fte r 3 hours in cu b atio n a t *+0°C., th e fe rm e n ta tio n was stopped by cooling and the s u lfid e o x i­ d ized to s u lf a te w ith hydrogen peroxide. The cu p ric oxide- c u p ric s u l f a t e re sid u e was th en d isso lv e d in h y d ro ch lo ric h2 a c id . T h is s o lu tio n contained le s s than O.W m icrocuries of s35. G lu tath io n e P ro d u c tio n . This experim ent was concerned w ith th e form i n which th e ra d io a c tiv e c y s tin e and c y ste in e o ccu rred in th e c e l l s . Tw enty-five ml. p o rtio n s of cheese­ c lo th s tr a in e d rumen liq u id from rumen f i s t u l a s te e r C707 (re c e iv in g a r e s t r i c t e d roughage-high co n c en trate r a tio n ) were added to 50 ml. Erlenmeyer f la s k s co n tain in g 0.73 gm. of c o n c e n tra te m ix tu re. S u f f ic ie n t s3 5 -ia b e le d s u lf a te was added to g iv e an a c t i v i t y o f 7.** m icro cu ries/m l. One f la s k was th en incu b ated a t Uo°G. fo r each of th e follow ing tim es; 0 9 0 .5 , 1, 1 .5 , 2 , 3, k and 6 hours. The fe rm e n ta tio n s u f f i c i e n t e th a n o l e th a n o l. was stopped by pouring the ferm ent in to to y ie ld a f i n a l c o n c e n tra tio n of 80$ A fter a d d itio n o f 0.002 moles of s u lf u r ic ac id and k to 6 m illig ram s of c y s te in e hy d ro ch lo rid e as c a r r i e r , th e p ro te in was removed by f i l t r a t i o n . S u lfh y d ra l compounds were p r e c ip ita te d from th e f i l t r a t e as t h e i r cadmium s a l t s (Waelch and R itte n b e rg , 19*+1) and the s u lfh y d ra l compounds re d iss o lv e d by p r e c ip ita tin g cadmium as i t s s u lf id e . tio n was assayed fo r r a d io a c t iv it y . The r e s u ltin g so lu ­ The p ro te in was hydrolyzed and assayed fo r r a d io a c tiv ity along w ith the combined f i l t r a t e s . The n o n -p ro te in s u lfh y d ra l compounds, recovered in t h i s manner, accounted fo r 2 .6 to 3 .7% of th e t o t a l a c t i v i t y re g a rd le s s of in c u b a tio n tim e. The a c t i v i t y of th e p ro te in h y d ro ly sa te s a f t e r rem oval o f in o rg a n ic s u lf a te ranged from 2,b% of the t o t a l a c t i v i t y a f t e r 0 .5 hour in c u b a tio n to 1 9 . a f t e r ** hours in c u b a tio n . The s u lfh y d ra l compounds were sep arated chromat©graph­ i c a l l y on paper by th e method of M ille r and Rockland (1952). S trong n in h y d rin re a c tio n s were o b tain ed a t th e p o s itio n s occupied by c y s tin e and g lu ta th io n e w ith a f a in t e r re a c tio n a t th e c y s te in e lo c a tio n . S ^ ^ - a c tiv ity was la r g e ly concen­ t r a t e d a t th e g lu ta th io n e lo c a tio n , but a c ti v i t y as in o rg an ic s u l f a t e co in c id in g w ith th e c y ste in e lo c a tio n made a q u a n tita ­ t i v e i n t e r p r e t a t i o n im p o ssib le. M icro rad io au to g rap h s. This experim ent was undertaken to v is u a lly dem onstrate in c o rp o ra tio n o f s u lf a te in to th e c e l l s o f rumen m icro b io ta and to d is tin g u is h th e m orphological types re s p o n s ib le fo r t h i s in c o rp o ra tio n . A 25 ml. p o rtio n o f c h e e se -c lo th s tra in e d rumen liq u id from rumen f i s t u l a s te e r C707 (re c e iv in g a r e s t r i c t e d rough­ ag e-h ig h c o n c e n tra te r a tio n ) was added to a Uo ml. c e n trifu g e tube c o n ta in in g 0.73 gm* th e c o n c e n tra te mix and 2 x 10"? moles of s 3 5 -la b e le d in o rg a n ic s u lf a te co n tain in g 0 .6 m i ll i c u r ie s of r a d io a c t iv i t y . This tube was then incubated fo r 3 .5 hours a t *+0°C. and th e fe rm e n ta tio n stopped by adding 10 m l. o f WlO (NHif) 2S0if in 0.5M aqueous NaF. The tube was cooled in ic e w a te r, c e n trifu g e d f o r 30 m inutes a t 1,2^0 x G .; the re s id u e was resuspended in 30 ml. of th e s u lf a te - f lu o r id e s o lu tio n , and c e n trifu g e d fo r 30 m inutes a t l,2U o x G. A sm all amount of th e w h ite , c e ll-c o n ta in in g la y e r on to p of M+ th e re s id u e was removed w ith a tr a n s f e r loop and spread on a m icroscope s l i d e . A c o n tro l tube co n tain in g s35 was processed in e x a c tly th e same way except th a t th e f lu o r id e - s u lf a te so lu ­ t i o n was added im m ediately a f te r in o c u la tio n and th en t h i s tube was r e f r i g e r a te d w hile th e experim ental tube was in cu b ated . The smears o f in cu b ated and c o n tro l c e ll s were flame fix e d and th e n th e s lid e s were suspended in M/100 I^SO]^ in 80J& e th ­ anol f o r 15 m inutes follow ed by r in s in g w ith d i s t i l l e d w ater. B efore th e washing pro cedure, both smears y ie ld e d over 10,000 counts per minute w ith a d efin ed counting procedure, w hile a f t e r w ashing no a c t i v i t y could be d e te c te d in th e c o n tro l smear and th e smear o f incubated c e ll s s t i l l y ie ld e d over 10,000 co u n ts per m inute. These smears were th en s ta in e d by the method of Gram and c ro ss-h a tc h e d by c u ttin g s t r i p s about 1 m illim e te r wide out of th e smear a t 2 m illim e te r in t e r v a l s . This l e f t a s e r ie s o f sm all r e c ta n g le s w ith *+ to 20 o i l immersion f i e l d s per re c ta n g le which made i t p o s sib le to a c c u ra te ly lo c a te a given fie ld . These smears were th en clip p ed in a p p o sitio n to n u clear tra c k p la te s (NTB)*, exposed fo r 1 week and th e NTB-plates developed as d escrib ed by F itz g e ra ld e t a l . (1953). He s ta te s th a t t h i s f in e g rain ed photographic em ulsion produces a la t e n t image p o rtra y in g th e r a d ia tio n source on the smear w ith re a so n ­ ab le f i d e l i t y on th e c y to lo g ic a l le v e l. However, in t h i s work *NTB-5 m icrons; Emulsion No. *+97, 9*+3“ 52; Eastman Kodak Company; R o ch ester, New York. *♦5 th e edges of th e image are b lu rre d sin ce a 5 micron th ic k n e ss cannot be sh arp ly focused under th e o i l immersion o b je c tiv e . F ig u re 1, page U6, p o rtra y s a f i e l d from th e m icro b ial sm ear, th e image t h i s f i e l d produced on an NTB-plate and a r e p r e s e n ta tiv e f i e l d from th e NTB-plate which was exposed to th e c o n tro l smear. I t can be concluded th a t many o f th e rumen m icroorganism s in c o rp o ra te d ra d io a c tiv e s35 as a r e s u l t of th e in v i t r o fe rm e n ta tio n and th a t th e la r g e r b a c te r ia and protozoa e i t h e r d id not in c o rp o ra te th e s35 or th e in c o rp o ra tio n was lo c a liz e d y ie ld in g an image appearing much lik e sm all b a c te r ia . R e so lu tio n was not adequate to d is tin g u is h b a c te r ia l morphology and many of th e sm aller rumen m icroorganism s do not s ta in or photograph w e ll. On th e b a s is of th e se p re lim in a ry fin d in g s , an in v e s tig a ­ t i o n o f th e e f f e c t of roughage le v e l in th e r a ti o n on incorpo­ r a ti o n o f in o rg an ic s u lf a te by rumen m icrobiota was undertaken. P r in c ip a l Experiment P ro ced u re. In o c u la fo r use in th ese s tu d ie s were obtained from 3 m ature s te e r s (C707, C7*+l, and CS126) and 2 mature tw in cows (T1 and T2) which were f i t t e d w ith th e p l a s t i c f i s t u l a plug d e sc rib e d by H entschl e t a l . (195^)• C707> CS126, and T1 re c e iv e d a r e s t r i c t e d roughage-high c o n c en trate r a t i o n w herein 3 to 6 pounds of a l f a l f a hay re p re se n te d th e roughage and the c o n c e n tra te was re p re s e n te d by 10 to 22 pounds of a m ixture c o n ta in in g 77$ ground co rn , 20$ soybean o i l meal, 1$ Ca2HP0i+, a b c F igure 1. M icroradioautographs a. A f i e l d from the smear of incubated m icroorganism s, Gram s ta i n . (x*+70) b. L atent image produced by th e f i e l d in a on an NTBp la te . (x*+70) c . L aten t image produced by a r e p re s e n ta tiv e f i e l d on th e smear of c o n tro l m icroorganism s. (x**70) *+7 J.% NaCl, 1% CaCO^ p lu s v ita m in A and ir r a d ia te d y e a s t . C7^1 and T2 r e c e iv e d an a l l hay r a tio n c o n s is tin g o f 30 to 3U pounds o f a l f a l f a . In o cu la were o b tain ed by s tr a in in g co n ten ts from th e v e n t r a l p o r tio n o f th e rumen through c h e e s e - c lo th in to f l a s k s p r e v io u s ly flu s h e d w ith C02 , warmed to *+0 to U3°C, w it h in an in s u la te d ca rry in g c a s e . In the f i r s t 2 t r i a l s , 25 ml. p o rtio n s of ino cula from the a l l hay or high co n c en trate fed donors were t r a n s f e r r e d w ith a graduated c y lin d e r to a s e r i e s of 50 ml. Erlenmeyer f l a s k s c o n tain in g 1 gm. of a l f a l f a l e a f meal as s u b s tr a te f o r th e a l l hay in o c u la , or 0.73 gnu of the co n cen trate mixture fo r th e high c o n c e n tra te in o c u la . These ferm entation f la s k s had p re v io u s ly been flu sh e d w ith CO^, warmed to ho°C. and about 0 .1 ml. of S-^^-labeled inorgan ic s u lf a te in about 0.05M HC1 added, giving an a c t i v i t y of about 10 m icro curies/m l. The c a r r i e r s u l f a t e amounted to l e s s than I x 10“ ^ moles per f l a s k . Following in o c u la tio n , the f l a s k s were stoppered, ro ta te d to mix, and placed i n a ho°C. w ater b ath . At 15 minute i n t e r ­ v a l s , th e c o n te n ts of the f l a s k s were r o t a t e d to mix and p re ssu re r e li e v e d by b r i e f l y loosening the sto p p e rs. Approx­ im ately 3 minutes were re q u ire d to in o c u la te the e n t i r e s e r i e s of f l a s k s . The order of in o c u la tio n and the a p p ro p ria te zero time fo r in c u b a tio n was noted. One f l a s k f o r the hay s e r ie s and one f o r th e high c o n c en trate s e r i e s was removed a t each of th e follow ing tim e s; 1, 1.5? 2, 2 .5 , and 3 hours. A fter in c u b a tio n , the c o n te n ts from th ese f l a s k s were immediately H8 poured in to 80 ml. of alco h o l and th en processed as d escrib ed in Table 2, page *+9. In th e second 2 t r i a l s , 25 ml. p o rtio n s of in o cu la from th e a l l hay (T l) , or high c o n c en trate (T2) fed donors were handled in th e same manner except th a t a l l fla s k s contained 0 .8 7 gm. o f a m ixture of the co n c en trate and a l f a l f a le a f meal i n p ro p o rtio n s o f 0 .7 3 /1 . A lso, 0 .% of tympanol* was added to th e in o c u la to f a c i l i t a t e han d lin g . The r a d io a c tiv ity as s 3 5 -la b e le d in o rg a n ic s u lf a te in th e se t r i a l s was about 27 to Ho m icro cu rie s p er ml. An 0.5 hour in cu b atio n time was a ls o in clu d ed in th e second 2 t r i a l s . Assays f o r th e in o rg a n ic , w a te r-s o lu b le s u lf a te co n ten t of the in o cu la and s u b s tra te s by th e method o f Lewis (195H) showed th a t the rumen liq u id from Tl co n tain ed 5*H x 10"S m o les/m l., th a t from T2 contained 11.0 x 10”® m o les/m l., th e a l f a l f a le a f meal contained 2 .9 x 10“ 5 m oles/gm ., and th e c o n c e n tra te m ixture contained 7.9 x 10“? moles/gm. The chem ical procedures are d escrib ed in Table 2, page H9. S e le c tio n o f 80% e th a n o l as th e p ro te in p r e c ip ita n t was based on th e fin d in g s o f Pearson and Smith (19H3a). Assays fo r r a d io a c t iv it y were conducted by p lacin g 3 ml. of th e s o lu tio n of known volume in a 5 ml. beaker under a G-M d e te c to r w ith a window th ic k n e ss of le s s than 2 m illigram s per square c e n tim e te r. The same geometry and tube was used ♦ S ilic o n e a n ti-fo a m p rep a ra tio n ; J en -S a l L a b o ra to ries; Kansas C it y , M isso u ri. TABLE 2 FLOW DIAGRAM FOR PARTITION OF s35-ACTIVITY 25 ml. o f Incubated Ferment 1. Pour Lnto oO ml. of 9& to 99% eth an o l c o n ta in in g 0.05M H2S 0 i ./li t e r . 2 . R inse fe rm e n ta tio n f la s k s w ith 25 ml. o f 80# e th a n o l and add to 1. R e frig e ra te f o r 1 to *+ hours a t 5°C. F i l t e r in to 250 ml. graduated f la s k and wash w ith 80 to 100 ml. o f 80# e th a n o l. 5. 6. _________ L r F i l t r a t e and 7. 8. £. Make to v o lu m e w itn M/1 HC1. Remove 3 ml. f o r assay of r a d io a c t iv i t y (n o n -p ro te in s u lfu r). Add 5 ml. o f 20# BaCl2 and allow to s e t t l e . F i l t e r through d ry paper i---- '— 1 R esidual F iltra te In o rg an ic Remove 3 ml. f o r 9. S u lfa te assay o f ra d io ­ a c t i v i t y (o rg an ic s u lfu r). 10 . Add 20# HpSOj* to p r e c i p it a t e excess BaClp. 11. F i l t e r and chromatograph filtra te . 12. 13. lb. 15. 16 . 1 P ro te in Residue T ransfer w ith paper to a 250 ml. Erlenm eyer. Add *+0 ml. of 6M HC1 and cover w ith beaker. Hydrolyze b hours a t 120°C. in au to clav e . C oncentrate to about 10 ml. in 2 to 3 hours on hot p la te . F i l t e r in to a 100 ml. v o lu m etric f la s k and wash to volume. i---------------------- Humln P r o te in H vd rolvsate 17. Remove 3 ml. f o r assay of r a d io a c tiv ity and fo r chrom atographic assay (amino acid and in o rg a n ic s u l f u r ) . 18. Add 2 ml. o f 20# BaCl2 . 19. F i l t e r through dry paper. 1 S u lfa te -F re e P ro te in H ydrolysate 20. Remove 3 ml. fo r assay of r a d io ­ a c tiv ity . ----------- 1 R esidual Ino rg an ic S u lfa te ______ 50 throughout each t r i a l . C o rre ctio n s fo r background a c ti v i t y were determ ined a t 1 to 2 hour in te r v a ls and su b tra c te d from th e raw counts to o b ta in th e n et co unts. The n et counts per second (C .P .S .) o b tain ed in t h i s manner were p ro p o rtio n a l to th e c o n c e n tra tio n of s35 in m icrocurie s/m l. No d iffe re n c e s in s e lf - a b s o r p tio n could be d e te c te d between th e s o lu tio n s used in th e s e ex p erim en ts. Net C .P.S. tim es the ml. of so lu ­ t i o n in a given f r a c tio n was th en recorded as the r e la ti v e a c t i v i t y in t h a t f r a c tio n a f te r a p p lic a tio n of ap p ro p iate d i l u ti o n f a c t o r s . The combined a c t i v i t y from ste p s 6 and 17 of Table 2 , page *+9, c o n s titu te s th e t o t a l recovered a c tiv i ty of which th e o th er f r a c tio n s were expressed as a p ercen tag e. Chrom atographic s e p a ra tio n of th e amino ac id s in ste p s 11 and 17 of Table 2 was c a rrie d out on f i l t e r paper by the method of P a tto n (1950). The a c t i v i t y on th e chromatograms was assayed as d esc rib ed by W interingham (1952) and the a c tiv ­ i t y of th e liq u id f r a c tio n s p a r titio n e d according to th e d i s ­ t r i b u t i o n of a c t i v i t y on the chromatograms. R e s u lt s . The t o t a l in c o r p o r a tio n o f la b e le d - s u lf a t e in t o th e o rg a n ic s u lfu r f r a c t io n s i s p resen ted in Table 3, page 51. The e x p o n e n tia l eq u a tio n s f i t t e d to th e se v a lu e s g r a p h ic a lly and th e s t a t i s t i c s a p p lie d t o th e s e eq u a tio n s as d esc rib ed by S te v e n s (1951) are p resen ted in Table *+, page 52. page 53, v i s u a l l y p r e s e n ts the same e q u a tio n s. F igu re 2, Table 5, page 5^+, shows th e p a r t it i o n o f in co rp o ra ted a c t i v i t y o f th e chroma­ to g r a p h ic f r a c t i o n s . These f r a c t io n s were not ch rom atograp h ically 51 TABLE 3 TOTAL INCORPORATION OF LABELED-INORGANIC SULFATE In c u b a tio n Time ( t h o u rs) ^•Organic A c tiv ity T o tal Recovered A c tiv ity Hay inoculum (100) s At G rain inoculum Means o f f i r s t 2 t r i a l s w ith in d iv id u a l s u b s tr a te s : 1*0 2.6 1 .5 3 .0 *+.3 12.6 2 .0 8.1 12.2 2 .5 7 .8 11.V 3 .0 6.2 15 .H Means of second 2 t r i a l s w ith mixed s u b s tr a te s : 1. 0 .5 6.39 3.78 1 .0 1 6 . Ik 5.80 1 .5 13.29 5.18 2 .0 18.68 7.35 2 .5 2*+. 79 7.63 3 .0 27.03 9.88 The combined a c t i v i t i e s from ste p s 9 and 20 o f Table 2. TABLE b ASYMPTOTIC REGRESSION EQUATIONS FOR INCORPORATION OF SULFATE E q u ation Form: At = A.^ - Aje"p t Aj. = % o f t o t a l a c t i v i t y which i s in co rp o rated a t tim e t A^ = % o f th e t o t a l a c ti v i t y which would be in co rp o rated in an i n f i n i t e tim e (th e asym ptote) e z base of th e n a tu r a l system of logarithm s (2.71828) r 9 th e r a t e o f in c o rp o ra tio n o f in o rg an ic s u lf a te in to t s hours o f in c u b a tio n (1 0 0 )r o rg an ic s u lfu r 9 # /h o u r co n v ersion of in o rg an ic s u lf a te rem aining to be converted to organic s u lfu r a t th a t tim e. R atio n o f Inoculum Donor S u b s tra te A ll Hay A lfa lf a Meal A ll Hay Standard E rro r of r E stim ate Ai r D.F. 10.5 O.b 3 1.79 l.b 0 .7 A lf a lf a 37.5 Meal and C o n cen trate Q.b b 2.88 2 .0 1.1 0 .6 3 2.7*+ 2.2 1.1 A lf a lf a 11.6 High C o n cen trate Meal and C o n cen trate 0.52 b 1.09 0.8 O.b Mean o f A ll Treatm ents 0M lb Concen­ High C o n cen trate t r a t e 16.5 0.b5 53 Figure 2. Asymptotic Curves For Incorporation of S u lfate Individual Substrates Grain Inoculum A^=l6 .5-16 .'5e“®*^ P o p©•H > CJ cfl P O O cfl 03 <* P IH C0 o ©-P p« f-ciH O O 0) H o ,o G «0«H Mi-3 O Inoculum / a (t ) Hours Incubation Mixed Substrates 3r » 2c o p •H /5 cs C D o P •H ■H(# -P P Cp O «J i~) /«•H O 03 P« I C f l 9 f-i 'CJ P O 5$, 10% and 20$ n -b u ta n o l in chloroform s o lu tio n s . A d d itio n al 20$ n -b u ta n o l in chloroform was used to give a t o t a l e lu a te 59 volume o f 500 ml. Blank d e te rm in a tio n s were made w ith each b atch o f re a g e n ts and ap p ro p iate c o rre c tio n s made. R e su lts The chrom atographic procedure was te s te d w ith pure acids a lo n e , and added to rumen liq u id . Recovery in *+ t r i a l s w ith 0 .5 to 3 .8 m illim o les of added a c e tic acid was 93$ w ith a stan d ard d e v ia tio n o f 8$. Recovery of 0 .2 to 0 .5 m illim oles of b u ty ric ac id was s im ila r ly 96+ 6$ . Threshold volumes fo r b u ty r ic , p ro p io n ic , and a c e tic ac id s were about 70, 200, and 280 m l., b ut v a rie d somewhat w ith changes in re a g e n ts and the amount of sh o rt ch ain acid ap p lied to th e column. The v alues re p o rte d as b u ty ric ac id could include tra c e s of higher a c id s. F ig u re 3> page 60, p o rtra y s th e re g re s s io n of rumen con­ c e n tr a tio n s on tim e a f t e r feeding fo r a c e tic , propionic,, and b u ty ric a c id s . Table 6, page 61, l i s t s the estim ated amounts per 100 ml. of rumen liq u id of a c e tic , p ro p io n ic, and b u ty ric a c id s produced from each pound of t o t a l d ig e s tib le n u tr ie n ts in g e ste d as th e a l l hay r a ti o n or the high co n cen trate r a tio n on th e day of th e experim ent. I t was assumed th a t th e hay co n tain ed 50$ t o t a l d ig e s tib le n u tr ie n ts and the c o n c en trate 75$. Table 7, page 61, g iv es th e r a t e s a t which th e acid s d isap p ea red from th e rumen. The re g re s s io n eq uations are summarized in Table 8 (Appendix) and Table 9 (Appendix) gives th e c o n c e n tra tio n s o f a c e tic , p ro p io n ic , and b u ty ric acid s fo r each cow, r a t i o n , and sample tim e. 60 F ig u re 3. C o n cen tra tio n o f Short Chain Acids in th e Rumen A fte r F eeding. Millimoles of Acid/100 grams of Rumen L iquid A cetic A cid-A ll Hay R atio n ; At s9 * 5 9 e"°* ^ ^ ^ -1 .9 0 e *^*^2^ -A cetic Acid-High C oncentrate R ation; At=7 . l6 e - ° • °3 1 1 t- 2 . 1 6 e '° • 838* £.5- -B utyric Acid-High C oncentrate R ation; At = 2 .3 5 e-°-028^ -0 .7 3 e -° * 7 3 3 t -^ B u ty ric A cid-A ll Hay; A^=1.63e“^«®2l+8t.Q#22e“^ * 3 ^ 't C ^P ro p io n ic A cid-A ll Hay R ation; _____________ At :2 .2 8 e -0 -0322t -0 .3 6 e -0 -lt50t "Propionic A cidHigh C o n cen trate R atio n ; A t:2 .3 6 e-0 -^ ?t.0.itle -0.276t * Hours A fte r Feeding 61 TABLE 6 THE AMOUNT OF ACETIC, PROPIONIC, AND BUTYRIC ACIDS PRODUCED FROM ONE POUND OF TOTAL DIGESTIBLE NUTRIENTS Acid A ll Hay R ation ^mM/100g. % R e s tric te d Roughage Pooled -High C oncentrate Data R ation From Both R ations 1mM/100g. 2mM/100g. % A cetic 0.52 68.4 0.30 65.2 .2 4 -.6 7 P ro p io n ic 0.15 19.7 0.06 13.0 .0 2 -.2 6 B u ty ric 0.09 11.8 0.10 21.7 .0 4 -.2 1 T o tal 0.76 -------- 0.46 -------- 1. 2. _— » M illim o les of acid /1 00 grams of rumen liq u id . Range a t 95$ confidence le v e l. TABLE 7 THE DISAPPEARANCE RATES FOR ACETIC, PROPIONIC, AND BUTYRIC ACIDS FROM THE RUMEN A ll Hay R ation Acid R e s tr ic te d Roughage R ation $ /H r . 1S.E . %/ET, l-S.E. A c e tic 3 .5 0 .4 3.1 HA . ' o P ro p io n ic 3.2 0 .5 4 .6 B u ty r ic 2 .5 0 .5 2 .8 1. S tan d ard E rro r Pooled Data From Both R ation s %/Hr. 1S.E. 3 .3 0 .3 0 .9 ------ ------ 0.5 2.7 0 .3 62 The type e q u a tio n used to d e sc rib e the d ata is s At = w here, - V -k2* A. = th e c o n c e n tra tio n o f th e acid in m illim oles per 100 gm. o f rumen liq u id ; A0 = th e d isap p earance re g re s s io n e x tra p o la te d to 0 tim e; t h i s could re p re s e n t th e amount of acid which would he p re se n t i f th e fe rm en tatio n were completed w ithout any disappearance of the ac id ; Ap = (A0-A+.) when t i s 0; t h i s should re p re se n t the amount of acid produced from the c u rre n t feeding in m illim o les/1 0 0 gm. of rumen liq u id ; e = base of th e n a tu ra l system of logarithm s (2.71828); = r a te o f disappearance of the acid from the rumen; lOOki = $ /h o u r disappearance of the acid p resen t a t any given tim e; k2 = r a te of acid production approaching AD which would re p re s e n t the r a te of conversion of f e r ­ m entable feed in to i t s acid product; t z tim e a f t e r feeding in hours. A g rap h ic p o rtra y a l of t h i s equ atio n i s given in Figure *+, page 63. The n a tu r a l lo g arith m s of th e a c e tic acid c o n c e n tra tio n s from 3 hours a f t e r fe e d in g , and of th e propionic and b u ty ric acid c o n c e n tra tio n s from 3.5 hours a f te r fe ed in g , through the f a s tin g p erio d were f i t t e d to a re g re s s io n on time by the method of l e a s t squares as d escrib ed by Snedecor ( l ^ h ) . The 0 hour e x tra p o la tio n o f t h i s re g re s s io n i s th e n a tu ra l logarithm of A0 and th e slope i s k1 . The c o n c e n tra tio n s of a c e tic , pro ­ p io n ic , and b u ty ric a c id s determ ined between 0 and 3 or 3*5 hours a f t e r feed in g were su b tra c te d from the AQ value ad ju sted f o r tim e a f t e r feed in g according to th e disappearance re g re s s io n . F ig u re H. A G raphic P o rtra y a l of th e Type Equations At « A0e*kl t -Ape -k2t C o n cen tra tio n -kit 0 .5 t Time 6W The n a tu r a l lo g arith m s of th e se d iffe re n c e s were f i t t e d to a re g re s s io n a g a in s t tim e as b e fo re . The slope of t h i s second r e g re s s io n e q u a tio n i s k2 and th e 0 hour e x tra p o la te i s the n a tu r a l lo g arith m o f Ap . The t e s t s f o r s ig n ific a n c e were c a r r ie d out on th e lo g a rith m s. There were no s ig n if ic a n t d iffe re n c e s a t th e 5% le v e l between any o f th e d isappearance r a te s although the pooled r a t e f o r a c e tic acid approached s ig n ific a n c e over th a t fo r b u ty r a te . The disap p earance r a t e fo r propionic acid w ith th e r e s t r i c t e d roughage r a ti o n approached s ig n ific a n c e over th a t w ith th e a l l hay r a ti o n . The r a te s of production of the a c id s were not s ig n i f i c a n t ly d if f e r e n t in any case and ranged from 27 to 83^ /h o u r. The amounts of each acid produced from a pound of T.D.N. were not s ig n if ic a n t between th e r a tio n s . However, a c e tic acid p roduction from hay approached s i g n i f i ­ cance over th a t from th e high c o n c en trate r a tio n . DISCUSSION The energy su p p lied to the cow by th e sh o rt chain acid s can be computed from th e d a ta in Table 6, page 6 l. The aver­ age anim al i n t h i s experim ent weighed 1270 pounds. C a rro ll and Hungate (195*0 concluded th a t rumen co n ten ts c o n s titu te 1*$ of th e bovine body w eight. The average weight of th e rumen c o n te n ts in t h i s experim ent would then be 178 pounds which would c o n ta in about 70 kilogram s of rumen liq u id (dry m atter f r e e ) . Computing from th e 95$ confidence le v e l ranges given in Table 6, a pound of t o t a l d ig e s tib le n u tr ie n ts y ie ld s 168 to U69 m illim o les of a c e tic a c id , l*f to 182 m illim oles p ro p io n ic a c id , and 28 to l*+7 m illim o les b u ty ric a c id . Con­ v e r tin g th e v a lu e s to kilogram c a lo r ie s , a t o t a l energy of 55.0 to 2 3 2 .3 K c a l./lb . of t o t a l d ig e s tib le n u tr ie n ts i s o b ta in e d , 35*2 to 98.3 are re p re se n te d by a c e tic a c id , 5.1 to 66.9 by p ro p io n ic a c id , and 1^.7 to 77.1 by b u ty ric a c id . If one pound of t o t a l d ig e s tib le n u tr ie n t i s e q u iv a le n t to 181*+ c a lo r ie s (Brody, 19*+5) 9 th e cow o b ta in s 3 to 13$ of i t s energy from s h o rt ch ain a c id s . A c o n sta n t rumen volume was assumed in computing th e se r e g r e s s io n e q u a tio n s . Ir r e g u la r f lu c t u a t io n s in volume would in c r e a s e th e standard erro r and h en ce, be co r re cted fo r by the range in 3 to 13$ e s tim a t e . However, i f rumen volume in c r e a s e s a p p r e c ia b ly and r e g u la r ly a f te r e a tin g due to s a liv a t io n , 65 66 d rin k in g , o r in f lu x of w ater from th e t i s s u e s , th ese estim ates would be to o low. S im ila rly , i f rumen volume decreases appre­ c ia b ly w ith f a s t i n g , as suggested by th e d a ta of W eller and Gray (195*+), b o th th e d isappearance r a te s and the energy e s tim a te s are b ia se d downwards. The carbon balan ce s tu d ie s of McNaught (1951) and of Heald (1952) in d ic a te a 25 to 50$ conversion of feed energy to sh o rt ch ain a c id energy. C a rro ll and Hungate (195*+) e s t i ­ mate t h a t sh o rt ch ain a c id s account fo r 66$ of the a v a ila b le feed energy w hile pfander and P h illip s o n (1953) imply a s im ila r v a lu e . These e stim a te s were based on d a ta obtained under extrem ely abnormal c o n d itio n s. The 3 to 13$ estim ate in t h i s experim ent i s co n sid erab ley lower than the v alu es c ite d above and i s probably b iased downwards. However, t h i s method u t i l i z e d normal f i s t u l a t e d c a t t l e under p h y sio lo g ic a l c o n d itio n s . I f a method fo r d eterm in atio n o f rumen volume a t freq u en t i n t e r v a l s were a v a ila b le , th e accuracy of th ese estim a te s would be g r e a tly enhanced. Perhaps t h i s could be accomplished w ith dye d i l u t i o n tech n iq u es s im ila r to those used fo r blood volume d e te rm in a tio n s . Accuracy would be fu rth e r enhanced by in c re a s in g feed in g e s tio n during the lim ite d feeding period and low ering th e 0 hour c o n c e n tra tio n of rumen a c id s . Both o f th e se o b je c tiv e s could be accomplished by once d a ily feed in g . E rro r o c c a s io n a lly e n te re d th e chrom atographic d eterm in atio n s th ro u g h p ip e ttin g s o lid s from the bottom of th e f la s k along 67 w ith rumen l i q u i d . This could have been avoided by a p relim ­ in a ry s e p a ra tio n . A cetate p ro d u c tio n from hay approached a s ig n if ic a n tly g r e a te r v alu e th an th a t from g ra in . The disappearance of a c e ta te approached a s ig n if ic a n tly f a s t e r r a te than th a t fo r b u ty ra te which i s in agreement w ith Pfander and P h illip s o n (1953)- Although r a t i o n had no s ig n if ic a n t in flu en ce on the r a t e s , p ro p io n ic acid disappearance was f a s te r w ith th e high c o n c e n tra te th an w ith the hay r a ti o n . The molar r a t i o of a c e tic to p ro p io n ic ac id was reduced by the high co n cen trate r a t i o n b u t, th e re d u c tio n was not as marked as th a t re p o rte d by Tyznik (1951). M icroscopic exam ination of rumen co n ten ts from anim als on th e a l l hay and th e r e s t r i c t e d roughage-high co n cen trate r a tio n s f a i l e d to re v e a l any ap p reciab le or c o n s is te n t d i f f e r ­ en ces. This does not p reclude th e p o s s i b i li t y of le s s obvious m orphological d if f e r e n c e s . Smears of th e in o cu la and ferm ents from th e i n v i t r o experim ents showed no r e a d ily d e te c ta b le or c o n s is te n t d iffe re n c e s w ith in cu b atio n tim es under 3 hours. Longer in c u b a tio n tim es o fte n re s u lte d in a d is s o lu tio n of p ro to zo a and an in c re a s e in gram -p o sitiv e ro d s. C a rro ll and Hungate (1951*), using a s im ila r ferm en tatio n tech n iq u e, found th a t c e r t a i n p h y s io lo g ic a l c h a r a c te r is tic s which changed a f te r 2 to b hours in c u b a tio n were q u ite co n stan t before t h i s tim e. They a ls o found b u ffe r s o lu tio n s were unnecessary fo r sh o rt tim e in v i t r o fe rm e n ta tio n s. The v alu es obtained between 2 68 and 3 hours i n Experiment I . were more e r r a t i c than values w ith s h o rte r in c u b a tio n tim es. More accu rate estim a te s could probably have been o b tain ed by using s h o rte r in cu b atio n p erio d s. Robinson et. a l . (1955) found th a t 1,952 x G. f o r 10 min­ u te s sedim ented most rumen m icrobiota although more were s e d imented by 5,782 x G. The l,2*+0 x G. used in th e p re p a ra tio n o f m icro rad io au to g rap h s f o r Experiment I was probably somewhat low but th e 30 minute c e n tr if u g a tio n time used should p a r t i a l l y o f f s e t th e lower fo rc e . The d eco m p o sitio n o f c y s t ( e ) in e and m ethionine noted by O lc o tt and F raenk el-C onrat (19**7) and Van H alteren (1951) co m p lica ted th e amino a c id p a r t it io n d a ta . C y s t(e )in e and i t s d eco m p o sitio n p rod ucts moved as much as h a lf-w a y to the s o lv e n t fr o n t w ith th r e e areas o f peak c o n c e n tr a tio n . Meth­ io n in e formed 2 or more peaks nearer th e so lv e n t fr o n t than c y s t(e )in e . Another d i s t i n c t r a d io a c tiv e area appeared very near th e s o lv e n t fr o n t and was e ith e r in to o low a con cen tra­ t io n to v i s i b l y r e a c t w ith ninh yd rin or was not an am ino-su lfur compound. The a c t i v i t y cou ld be d iv id ed in to a c y s t ( e ) in e f r a c t io n c o n ta in in g la r g e ly c y s t ( e ) in e a c t i v i t y and a sim ila r m ethion in e f r a c t io n . Both f r a c t io n s were probably contam inated w ith sm a lle r amounts o f u n id e n t ifie d compounds. More e x te n s iv e se p a r a tio n was n e ith e r w arranted nor p r a c t ic a l fo r t h i s stu d y. Lewis (195*0 found th a t rumen microorganisms ra p id ly reduce s u lf a te to s u l f i d e . Only a tr a c e of hydrogen s u lfid e was found in t h i s experim ent b u t sm all amounts of d isso lv ed 69 s u lf id e of h ig h s p e c if ic a c t i v i t y might have contam inated the c y s t( e ) in e an d /o r m ethionine f r a c tio n s . The p o s s i b i lit y of s u lf a te in c o rp o ra tio n v ia s u lfid e needs fu rth e r in v e s tig a tio n . The s y n th e s is of m ethionine and c y s t(e )in e found in th i s experim ent ag rees w ith th e r e s u l t s of Block and S tekol (1950), Block e t a l . (1951, 1953), and Duncan e t &1. (1953). Cys- t ( e ) i n e appeared to be formed a t a f a s te r r a te th an m ethionine, b u t th e s e d a ta were e n t ir e l y in c o n c lu siv e . Of th e la b e le d -s u l- f a t e in c o rp o ra te d during the f i r s t 3 hours of in cu b atio n , about tw o -th ird s was found in th e c y s t(e )in e and o n e -th ird in th e m ethionine f r a c t i o n . Reed e t a l . (19^9) and Block et. a l . (1951) found equal amounts o f c y s t( e ) in e and m ethionine s u lfu r in the rumen m ic ro b io ta . The d a ta in t h i s experim ent do not c o n f lic t w ith th e e a r l i e r work sin ce m ethionine could w ell be forming a t a slow er r a t e th an th e c y s t(e )in e and s t i l l e v e n tu a lly a t t a i n an eq u al s ta t u s provided c y s t(e )in e form ation ceases b efo re t h a t of m ethionine. A lso, as much as 30$ of m icrobial s u lf u r may occur as g lu ta th io n e (Cowie et, a l . , 195*+) which may have been l o s t in th e f r a c tio n a tio n procedures of Reed e t a l . (19^9) and Block e t a l . (1951). The d a ta presen ted here su pport th e h y p o th esis th a t in o rg an ic s u lfa te i s f i r s t in c o rp o ra te d in to c y s t( e ) in e which i s then converted to m ethionine (Cowie ejt a l . , 195^; Block, 1953). The o v e r - a l l r a t e o f s u lf a te in c o rp o ra tio n was about *+8$ /h o u r. The r a t e fo r th e c o n c e n tra te m icrobiota was s l ig h tly 70 but n o t s i g n i f i c a n t l y f a s t e r th an th a t fo r the hay m icrobiota. The c o n c e n tra te m icro b io ta a c tin g on a co n c en trate s u b s tra te in c o rp o ra te d more a c t i v i t y than the hay m icrobiota actin g on a hay s u b s tr a te . This can be a t l e a s t p a r t i a l l y explained by a g r e a te r d i l u t i o n o f th e la b e le d - s u lf a te by the s u lf a te a lre a d y p re se n t in th e hay s u b s tr a te . When the s u b s tra te s wer e a m ixture o f hay p lu s c o n c e n tra te , the hay m icrobiota in c o rp o ra te d more a c t i v i t y th an th e c o n c en trate m icrobiota. Since Cowie et, a l . (195*0 found th a t s u lf a te in c o rp o ra tio n by E s c h e ric h ia c o li i s d i r e c t l y p ro p o rtio n a l to c e l l p r o li f e r a ­ tio n , and sin ce th e s u lf a te content of the mixed s u b s tra te s was e q u a l, th e h ig h er in c o rp o ra tio n of a c ti v it y by in o cu la from a hay fed cow would seem to re p re s e n t g re a te r c e l l pro­ life ra tio n . However, t h i s could re p re s e n t e ith e r a g re a te r number of c e l l s used as in o cu la or a s h o rte r g en e ratio n tim e. Where s u lf a te c o n c e n tra tio n of s u b s tra te s i s not eq u al, in c o rp o ra tio n o f a c t i v i t y i s a fu n c tio n of both c e ll p r o l i f ­ e r a tio n and th e s p e c if ic a c t i v i t i e s of th e in o rg an ic s u lf a te in th e fe rm e n ts. C o n tro l o f in o cu la siz e by use of c e n trifu g e d c e l l su sp en sio n s and c o n tro l of s p e c ific a c tiv i ty by use of s u lf a te f r e e s u b s tr a te s would provide more accu rate d a ta . A lthough, rumen m icro b io ta from cows fed a l l hay may d i f f e r somewhat from th e rumen m icro b io ta of high co n c en trate fed cows in t h e i r a b i l i t y to u t i l i z e s u l f a te , the r a t e and the p a tte r n o f s u lf a te u t i l i z a t i o n i s predom inatly s im ila r in b o th c a s e s . SUMMARY Rumen liq u id from 5 bovine s (re c e iv in g e ith e r hay alone or 1% of th e t o t a l d ig e s tib le n u tr ie n ts as co n cen trate) vas in cu b ated w ith s u b s tr a te and s 3 5 - iab eled in o rg an ic s u lf a te . Two t r i a l s used th e r a t i o n of the donor as s u b s tra te and two used a s u b s tr a te of mixed a l f a l f a meal and co n cen trate fo r b o th hay in o c u la and g ra in in o c u la . In each t r i a l , a sep arate fe rm e n ta tio n f la s k was incubated fo r each time of 0 . 5 , 1 , 1. 5, 2, 2 .5 , and 3 h o u rs. Each ferm ent was fra c tio n a te d in to pro­ t e i n s u l f u r , f r e e o rg an ic s u lfu r and in o rg an ic s u lf a te . The p ro te in and f r e e o rg an ic s u lfu r f r a c tio n s were fu rth e r sepa­ ra te d by chrom atography. of th e t o t a l a c t i v i t y . G lutathione accounted fo r 2 to The mean p a r ti t i o n of in co rp o rated a c t i v i t y i n a t o t a l of U1* f la s k s fo r a l l tim es on both t r e a t ­ ments was 62% c y s t( e ) in e and 38$ m ethionine plus an u n id e n ti­ fie d f r a c t i o n . E x p o n en tial eq u atio n s f i t t e d to th e t o t a l in c o rp o ra tio n s fo r each com bination of s u b s tra te and inoculum are p re se n te d . The c o n c e n tra tio n of a c e tic , p ro p io n ic , and b u ty ric acid s i n 3 bovine rumens.was determ ined a t v a rio u s tim es a f te r feed ­ ing e i t h e r an a l l hay r a ti o n or one c o n s istin g la r g e ly of c o n c e n tra te s . Two t r i a l s were conducted on each r a tio n . The c o n c e n tra tio n o f each acid f i r s t in creased and then decreased w ith tim e a f te r fe e d in g . The v alu es obtained were f i t t e d to 72 tu rn o v er c u rv e s. A cetic acid disappeared from the rumen a t the r a t e of 3 . 3$ /h o u r and b u ty ric acid a t the r a te of 2.7%/ hour. The stan d ard e r r o r was 0.3%. The disappearance r a te of p ro p io n ic a c id on th e high co n c en trate r a tio n appeared to be *f.6$ /h o u r v e rsu s 3 .2 $/hour on the hay r a tio n . The r a te s fo r co n v ersio n of feed to sh o rt chain acid s ranged from 35 to 8H $/hour. P o o lin g d a ta from th e U t r i a l s , the amounts of ac id s per 100 gm. of rumen l iq u id which were produced from one pound of t o t a l d i g e s t i b le n u tr ie n ts w ere, 0 . 2*+ to 0.67 a c e tic , 0.02 to 0 .2 6 p ro p io n ic , and 0.0*+ to 0.21 b u ty ric . confid en ce le v e l ra n g e s. These are the 95% The average rumen in th ese t r i a l s was e stim a te d to c o n ta in 70 kilogram s of liq u id . Using these v a lu e s , i t was computed th a t th e cow o b ta in s 3 to 13$ of i t s energy from sh o rt ch ain a c id s . LITERATURE CITED Agrawala, I . P ., C. W. Duncan and C. F. Huffman. A q u a n tita ­ 1953 t i v e study of rumen s y n th e s is in th e bovine on n a tu r a l and p u r if ie d r a ti o n s . I . P ro te in , dry m atter and n o n -p ro te in n itro g e n . J . N u tr.. U9 : 29-39. A llen , A. , B. Friedmann and S. Weinhouse. Tissue preference 1955 f o r f a t t y a c id and glucose o x id a tio n . J . B io l. Chem., 212s 921-933. Armison, E. F. Some o b se rv a tio n s on v o l a t i le f a t t y ac id s in 195^ th e sheep*s rumen. Biochem. J . , 400-^05. A ria s, C. , W. B urroughs, P. Gerlaugh and R. M. Bethke. The in flu e n c e o f d if f e r e n t amounts and sources of 1951 energy upon In V itro u re a u t i l i z a t i o n by rumen m icroorganism s. J . Animal S c i., 10: 683- 692. A rn s te in , H. R. V. and J.. C. C raw hall.,. The metabolism of D L -(b e ta C1^ ) - and DL-(s3?) -c y s tin e by th e r a t . 1953 Biochem. J . , 280-285. B aker, F. 19k2 B aker, F. 19**3 M icro b ial s y n th e sis and a u to ly s is in th e d ig e s tiv e t r a c t o f h e rb iv o ra . N ature, 1^9: 582. D ire c t m icro sco p ical o b serv a tio n s upon th e rumen p a p u la tio n of th e Ox. I . Q u a lita tiv e c h a ra c te r­ i s t i c s o f th e rumen p o p u latio n . Ann. of Applied B io l., 230-239. B aker, F . and S. T. H a r ris s . M icrobial d ig e s tio n in th e rumen (and caecum), w ith s p e c ia l re fe re n c e to 19^7 th e decom position o f s tr u c tu r a l c e llu lo s e . N utr. Abs. and R e v s., 1Z: 3-12. B alch, C. C. F a c to rs a f f e c tin g th e u t i l i z a t i o n of food by d a iry cows. I . The r a t e o f passage of food 1950 through th e d ig e s tiv e t r a c t . B r i t . J . N u tr., k t 361 - 388 . B alch, C. C ., D. A. B alch, S. B a r t l e t t , C. P. Cox and S. J . Rowland. S tu d ie s on th e s e c re tio n of milk of 1952a low f a t co n ten t by cows on d i e t s low in hay and high in c o n c e n tra te s . 1. The e f f e c t of v a r ia tio n s in th e amount of hay. J . D airy R e s., !£ : 39-50. 73 7k B alch, C. C ., D. A. B alch, S. B a r t l e t t , V. W. Johnson and 1952b S. J . Rowland. F a c to rs a ffe c tin g th e u t i l i z a t i o n o f food by d a iry cows. 5. The d i g e s t i b i l i t y and r a t e o f passage of foods during L -thyroxine a d m in is tra tio n . B r i t . J . N u tr., 6: 356- 365. B alch, C. C ., D. A. B alch, S. B a r t l e t t , C. P. Cox, s . J. 1951** Rowland and J . Turner. S tu d ie s of th e se c re tio n o f m ilk o f low f a t co n ten t by cows on d ie ts low in hay and high in c o n c e n tra te s. I I . The e f f e c t of th e p ro te in co n ten t o f th e c o n c e n tra te s. J . D airy R e s., 21: 165-171. B alch, C. C ., D. A. B alch, S. B a r t l e t t , Z. D. Hosking, V. W. 195*+b Johnson, S. J . Rowland and J . Turner. S tu d ies of th e s e c re tio n of milk of low f a t content by cows on d i e t s low in hay and high in c o n c e n tra te s. I I I . The e f f e c t of v a r ia tio n in the amount and p h y s ic a l s t a t e of th e hay and a comparison of the S horthorn and F rie s ia n b re ed s. J . D airy R e s., 21: 172-177. B alch, C. C ., D. A. B alch. V. W. Johnson and J . Turner. F a c to rs a f f e c tin g th e u t i l i z a t i o n of food by 1953 d a iry cows. 7. The e f f e c t of lim ite d w ater in ta k e on th e d i g e s t i b i l i t y and r a te of passage o f hay. B r i t . J . N u tr., £: 212-22^. B alch, C. C. and V. W. Johnson. F a c to rs a ffe c tin g th e u t i l ­ i z a t i o n o f food by d a iry cows. 2. F a c to rs in f lu ­ 1950 encing th e r a t e of breakdown of c e llu lo s e (c o tto n th re a d ) in th e rumen of th e cow. B r i t . J . N u tr., k i 389- 39^. B alch, C. C ., A. K elly and G. Heim. F a c to rs a ffe c tin g the u t i l i z a t i o n o f food by d a iry cows. h . The a c tio n 1951 o f th e re tic u lo -o m a s a l o r i f i c e . B r i t . J . N u tr., 207- 216. B elasco , 195^ J , Comparison of u rea and p ro te in meals as n itro g e n so urces f o r rumen m icroorganism s: The p ro d u ctio n of v o l a t i le f a t t y a c id s . J . Animal S c i . , n * 7W8-757. B e ll, N. 1953 W. D. G allup and C. K. W h iteh air. Value of u rea n itro g e n in r a tio n s co n tain in g d if f e r e n t carbo­ h y d rate fe e d s . J . Animal S c i ., 12: 787-797. B e n tle y , 195*+a >. G ., T. U. H ershberger, L. B. Kunkle and D. S. B e ll. The n u t r i t i v e v alue of a c e ta te , p ro p io n ate, and l a c t a t e f o r lambs. J . Animal S c i ., 13,: 976977. 75 B e n tle y , 0. G .. Lehmkuhl, R. R. Johnson, T. V. Hershberger 195kb and A. L. Moxon. The " C e llu lo ly tic F actor" a c t i v i t y o f c e r t a i n sh o rt chained f a t t y a c id s. J . Amer. Chem. S o c ., 5000. B e rs in , 1 . 1950 Die Phytochemie des Schw efels. Enzymology, 10: 223-311. Advances in B lock, R. J . In o rg an ic s u lfu r in th e sy n th e sis of p ro te in 1953 in th e rumen from n o n -p ro te in sources w ith a note on th e s y n th e s is of c y s tin e and m ethionine in B l a t e l l a Germanica. pp. 213-22U, in C. L. Comar and S. L. Hood, ed. The Role of Atomic Energy in A g ric u ltu ra l R esearch. U. S. Atomic Energy Com­ m issio n , TID 51-1-5• O ffice of T echnical S e rv ic e s, D ept, o f Commerce, W ashington, D. C ., k83 pp. B lock, K. , J . E. Snoke and S. Y anari. "Enzymatic sy n th esis o f g lu ta th io n e ." pp. 82-9^ in W. D. McElroy and 1952 B. Glass Ed. A Symposium on Phosphorus Metabolism. V ol. I I . John Hopkins P re s s , B altim ore. B lock, R. J . and J . A. S te k o l. S y n th esis of s u lfu r amino a c id s from in o rg an ic s u lf a te by rum inants, proc. 1950 Soc. E x p tl. B io l. Med., 21* 391-39^, B lock, R. J . , J . A. S tek o l and J . K. L o o sli. S y n th esis of s u lf u r amino ac id s from in o rg an ic s u lf a te by 1951 ru m in an ts. I I . S n y th esis of c y stin e and meth­ io n in e from sodium s u lf a te by th e goat and by m icroorganism s o f th e rumen of th e ewe. Arch. Biochem ., 3 2 • 353-363* B o lto n , E . T ., D. B. Cowie and M. K. Sands. S u lfu r metabolism in E s c h e ric h ia c o l i . I I I . The m etabolic f a te of 1952 s u l f a t e s u lf u r . J . B a c t., 6 3 : 309-318. B o rtre e , A. L ., K. M. Dunn, R. E. E ly and C. F. Huffman. A p re lim in a ry re p o rt on the study of f a c to r s i n f l u ­ 19^6 encing rumen m ic ro flo ra . J . D airy S c i ., 2^,: 5^25^3. Brody, S. 19W5 B io e n e rg e tic s and Growth. Reinhold P ublishing C o rp o ratio n ^ New York, ”1023 pp. B ry an t, M. P. and L. A. Burkey. C u ltu ra l methods and some c h a r a c t e r i s t i c s of some of th e more numerous 1953a groups o f b a c te r ia in th e bovine rumen. J . D airy S c i . , 3^.* 205-217. 76 B ry an t, M. P. and L. A. Burkey. Numbers and some predominant 1953b groups o f b a c te r ia in th e rumen o f cows fed d i f f e r ­ e n t r a t i o n s . J . D airy S c i ., 3 6 s 218-22**. B ry a n t, M. P. and R. N. D oetsch. F a c to rs necessary fo r the 1951* growth o f R actero id e s succinogenes in th e v o la tile a c id f r a c t i o n o f rumen f l u i d . S cience, 120: 9*+*tB ry an t, M. P. and R, N. D oetsch. F a c to rs necessary fo r the 1955 growth o f R actero id e s succinogenes in th e v o la ti le a c id f r a c t i o n of rumen f l u i d . J . D airy S c i ., 38: 3**0-350. ’ B urroughs, W., C. A ria s , P. DePaul, P. Gerlaugh and R. M. 1951 B ethke. V itro o b serv a tio n s upon the n atu re o f p ro te in in flu e n c e s upon u re a u t i l i z a t i o n by rumen m icroorganism s. J . Animal S c i ., 10: 672682. B urroughs, W., P. G erlaugh, B. H. Edington and R. M. Bethke. The in flu e n c e of corn s ta rc h upon roughage d ig e s­ 19^9 t io n in c a t t l e . J . Animal S c i ., 8: 271-278. C ard, C. S , and L. H. S c h u ltz . E ffe c t o f th e r a tio n on v o la ­ t i l e f a t t y acid production in th e rumen. J . D airy 1953 S c i . , 3 6 : 599. C a r r o ll, E J . and R. E. Hungate. The magnitude of th e micro­ b i a l fe rm e n ta tio n in th e bovine rumen. Applied 195^ M icrobiology, 2: 205-21**. Chance, C. M., C. F. Huffman and C. W. Duncan. A n tib io tic s i n rumen d ig e s tio n and s y n th e s is . I . The e f f e c t 1953a o f aureomycin on rumen d ig e s tio n and th e passage o f n u t r i e n t s from the rumen during s p e c ific i n t e r ­ v a ls a f t e r fe e d in g . J . D airy S c i ., 3 6 : 253-259. Chance, C. M., C. W. Duncan, C. F. Huffman and R. W. Luecke. A n tib io tic s in rumen d ig e s tio n and s y n th e s is . I I . 1953*> The e f f e c t of aureomycin on th e c o n c e n tra tio n of some amino a c id s and b -v itam in s in th e rumen. J . D airy S c i . , 36: *+95-503. C hatagner, F . , H. Tabechian and B. B e rg e re t. R epercussion d*une carence en vitam ine b£ sur le metabolisme 1955 de l* a c id e L -c y s te in e s u lfin iq u e , In V itro e t Jn V i v o , chez l e r a t . Biochim. e t Biophys. Acta, H r 313-318. 77 Coon, M. J . and N. S. B. Abrahamsen. The re la tio n s h ip of 1952a alp h a-m e th y lb u ty ra te to is o le u c in e metabolism. I . A c e to a c e ta te fo rm atio n . J . B io l. Chem., 195; 805- 812. ’ Coon, M. J #, N. S. B. Abrahamsen and G. S. Greene. The r e l a 1952b t i o n o f alp h a-m eth y lb u ty rate to iso le u c in e meta­ b o lism . I I . P ropionate form ation. J . B io l. Chem., 199: 75-8*+. Cowie, D. B .. E. T. B olton and M. K. Sands. S u lfu r metabolism 1950 in E sc h e ric h ia c o ll. I . S u lfa te metabolism of normal and mutant c e l l s . J . B a c t., 60: 233-248. Cowie, D. B ., E. T. B olton and M. K. Sands. S u lfu r metabolism 1951a in E sc h e ric h ia c o l i . I I . Com petitive u t i l i z a t i o n o f la b e le d and non -lab eled s u lfu r compounds. J . B a c t., 62: 63-74. Cowie, D. B. and E. T. B olton. S u lfu r metabolism in E sch eri1952 ch i a c o l i . IV. In flu e n ce of non-m ethionine su lfu r compounds upon th e m ethionine re q u irin g mutant. J . B a c t., 64: 87- 96. Cowie, A. T ., W. G. Buncombe, S. J . F o lle y , T. H. French, R. 1951b F . G lascock, L. M assart, G. J . P e e te rs and G. popjak.. S n y th esis of milk f a t from a c e tic acid (CH-a l^COOH) by th e perfused is o la te d bovine u d der. Biochem. J . , 4£: 610-615. Cowie, D. B ., R. B. R oberts and E. T. B olton. U tiliz a tio n of 1954 i n t e r n a l s u lf u r r e s v o ir s by E sch e rich ia c o l i . S cien ce, 119: 579. C ra in e , E. M. and R. G. Hansen. The sh o rt-c h a in f a t t y acid s 1952 o f th e p e r ip h e ra l blood of g o a ts. J . D airy S c i., 31: 631-636. D a n i e ll i , T. F . , M. W. S. H itchcock. R. A. M arshall and A. T. I 9I+5 P h illip s o n . The mechanism o f ab so rp tio n from the rumen as ex em p lified by th e behavior of a c e tic , p ro p io n ic , and b u ty ric a c id s . J . Exp. B io l., 22: 75-§4. D av is. R. F . , C. W illiam s and J . K. L o o sli. S tu d ie s on s u lfu r 1954 to n itro g e n r a t i o s in feeds fo r d a iry cows. J . D airy S c i . , 3Z: 813- 818. D o etsch , R. N. and R. Q. Robinson. The b a c te rio lo g y of the 1953 bovine rumen: A review . J . D airy S c i ., n?" 142. 78 D o etsch , R. N ., R. Q. Robinson, R. E. Brown and J . C. Shaw. 1953 C a ta b o lic re a c tio n s of mixed suspensions of bovine rumen b a c te r ia . J . D airy S c i ., 3 6 s 825- 831. Dowe, T. W., J . Matsushima and V. Arthaud. The e f f e c ts of 1955 th e c o r n - a lf a lf a hay r a t i o on th e d i g e s t i b i l i t y of th e d i f f e r e n t n u tr ie n ts by c a t t l e . J . Animal S c i., 3U0- 3U9 . Duncan, C. W., I . P. Agrawala, C. F. Huffman and R. W. Luecke. 1953 A q u a n tita tiv e study of rumen sy n th e sis in the bovine on n a tu r a l and p u rifie d r a tio n s . I I . Amino a c id co n ten t of mixed rumen p ro te in s . J. N u tr., hi* *+l-**9. E lsd en , S. R ., M. W. S. H itchcock, R. A. M arshall and A. T. 19*+6 P n illip s o n . V o la tile acid in the d ig e s ta of rum inants and o th er anim als. J . Exp. B io l., 22: 191 - 2 0 2 . E l-S h a z ly , K. D egradation of p ro te in in the rumen of the 1952 sheep. Biochem. J . , %1: 6^0-653. F itz g e r a ld , P. J . , E. Simmel, J . W einstein and C. M artin. 1953 R adioautography: th e o ry , te c h n ic , and a p p lic a ­ t i o n s . L aboratory In v e s tig a tio n , £ 1 181-222. F o lle y , S. J . and T. H. French. U tiliz a tio n of a c e ta te by 19^8 t i s s u e s of th e rum inant. Biochem. J . , V3.: lv . Foreman, C. F. and H. A. Herman. E ff e c ts of carbohydrate 1953 feed in g le v e ls on roughage d ig e s tio n in c a t t l e . M issouri Agr. Expt. S ta . R esearch B u ll. 535. Columbia, Mo., 55 PPFrom ageot, C. The metabolism of s u lfu r and i t s r e la tio n s to 1953 g e n e ra l m etabolism , pp. 1-36, in J* D. Hardy, ed. The Harvey L e c tu re s. Vol. *+9 . Academic P re s s , N. Y. C i ty ., 299 PPG a ll, L. S. E ff e c t of r a tio n upon rumen f lo r a of c a t t l e and I 9I+9 sheep. J . Animal S c i ., 8: 619. G arton, A. G. O bservations on th e d i s tr ib u tio n of in o rg an ic 1951 phosphorus, so lu b le calcium and so lu b le magnesium in th e stomach of th e sheep. J . Exp. B i o l., 28: 358-368. Gray, F. V. and A. F. P ilg rim . F erm entation in th e rumen of 1951 th e sheep. I I . The p ro d u ctio n and ab so rp tio n of v o l a t i l e f a t t y a c id s during th e fe rm en tatio n of wheaten hay and lu cern e hay in th e rumen. J . Exp. B i o l ., 28: 83-90. 79 1952a V* and F * P U grim . F erm entation in the rumen of th e sheep. I I I . In term e d ia te stag es in the f e r ­ m en tatio n o f wheaten hay In_ V itro by microorgan­ isms from th e rumen. J . Exp. B io l., 2£: 5h-56. Gray, F . V. and A. F. P ilg rim . O rig in s of the v o la ti le f a t t y 1952b a c id s in th e rumen. N ature, 170: 375. Gray, F . V ., A. F. P ilg rim , H. J . Rodda and R. A. W eller. 1951a V o la tile a c id s in th e rumen of th e sheep. N ature, l6Zs 95^. Gray, F . 195113 V ., A. F . P ilg rim and R. A. th e rumen of th e sheep. I . v o l a t i l e a c id s and methane of w heaten hay and lu cern e organism s from th e rumen. 82. W eller. F erm entation in The production of during th e ferm en tatio n hay £n V itro by micro­ J . Exp. B i o l., 28: 71*’ Gray, F . V ., A. F. P ilg rim and R. A. W eller. Conversion of 1953 p la n t n itro g e n to m icro b ial n itro g e n in the rumen of th e sheep. N ature, 172: 3W7 . Gray, F . 195^ V ., A. F. P ilg rim and R. A. W eller. F unctions of th e omasum in th e stomach of the sheep. J . Exp. B i o l ., 3 1 : U9-55. G u tie rr e z , J . Numbers and c h a r a c te r is tic s o f l a c t a te u t i l 1953 iz in g organism s in the rumen of c a t t l e . J . B a c t., 66: 123- 128. H ale, E. B ., C. W. Duncan and C. F. Huffman. Rumen d ig e s tio n I 9U0 In th e bovine w ith some o b serv a tio n s on the d ig e s t­ i b i l i t y of a l f a l f a hay. J . D airy S c i ., 2,3s 953967. H ale, E. B ., C. W. Duncan and C. F. Huffman. Rumen d ig e s tio n 19^7 s tu d ie s . I I . S tu d ie s in the chem istry of rumen d ig e s tio n . J . N u tr., 3its 7^7-758. H arper, W. J . D ire c t chrom atographic d eterm in atio n of a c e tic , 1953 p ro p io n ic and b u ty ric ac id s in cheese. J . D airy S c i., 808-816. H a rt, E. B ., G. B o h sted t, H. J . Deabald and M. I . Wegner. 1939 The u t i l i z a t i o n of sim ple n itro g en o u s compounds such as u re a and ammonium b icarb o n ate by growing c a lv e s . J . D airy S c i ., 22: 785-798. H a stin g s, E. G. The s ig n ific a n c e of th e b a c te r ia and the 19VU pro to zo a o f th e rumeno f th e bovine. B act. R evs., 8: 235-25^. 80 H eald, p. J . The assessm ent of g lu co se-co n tain in g substances , 1951 in rumen m icro-organism s during a d ig e s tio n cycle in sheep. B r i t . J . N u tr., j : 8I+-93. H eald, P. J . The fe rm e n ta tio n of pentosans and uronic acids 1952 by b a c te r ia from the rumen co n ten ts of sheep. Biochem. J . , %Q: 503*508. H eald, P. J . The fe rm e n ta tio n of xylans in th e rumen of the sheep. B r i t . J . N u tr., 2* 21^-130. 1953 . H en tsc h l, A. F . , R. N. B erry and C. F. Huffman. A p la s tic 195^ plug f o r use i n th e bovine rumen f i s t u l a . M. S. C. V e te rin a ria n , lj+j 77-81. H ess, W. C. C y stath io n in e in th e l i v e r follow ing feeding of 1952 m ethionine and s e rin e . Arch. Biochem., *+0: 127129. Holmes, P. , R. J . Moit and E. J . Underwood. Rurainal f lo r a s tu d ie s i n th e sheep. V. The amino acid composi­ 1953 t i o n o f rumen b a c te r ia l p ro te in . A u stra lia n J . B io l. S c i . , 6± 637-6M+. H orow itz, N. H. M ethionine sy n th e sis in N eurosnora: the i s o l a t i o n o f c y s ta th io n in e . J . B io l. Chem., 171: 19*+7 255-26*f. Huffman, C . F. Ruminant n u t r i t i o n . 399-^22. 1953 Ann. Rev. Biochem., 22: Huffman, C . F. and C. W. Duncan. C ystine as a p o ssib le d e f i ­ ciency in a r a ti o n of a l f a l f a hay fo r milk produc­ 19^0 ti o n . J . D airy S c i ., 23.: 559. Hunjgate, R. E. F u rth e r experim ents on c e llu lo s e d ig e s tio n by th e p ro to zo a in th e rumen of c a t t l e . B io l. B u ll., 19?3 8b: 157-163. Hunt, C. H. , 0. G. B en tley , T. V. Hershberger and J . H. C lin e. The e f f e c t of carbohydrates and s u lfu r on b - v ita 195^ min s y n th e s is , c e llu lo s e d ig e s tio n , and u rea u t i l i z a t i o n by rumen microorganisms i |i V itr o . J . Animal S c i . , 13j 570-580. J a r r e t t , I . G. and B. J . P o tte r . The metabolism of a c e ta te in sheep a f t e r in je c tio n of p h lo riz in . A u stralian 1950 J . Exp. B i o l ., 28: 595-602. J a r r e t t , I . G ., B. J . P o tte r and 0. H. F i l s e l l . Lower f a t t y a c id s in th e in term ed iary metabolism of sheep. 1952 A u s tra lia n J . o f Exp. B i o l ., 3Q.: 197-206. 81 J a r r i g e , R. L 'u t i l i s a t i o n des g lu c id e s a lira e n ta ire s par le s 1953 ru m in an ts. Ann. N u tr it. A lim ent.. 7: 2^5-302, 339-*+06. ’ ’ Jo h n s, A. T. Mechanism o f pro p io n ic acid form ation by 1952 C lo strid iu m propionicum . J . Gen. M icro b io l., 6: 123- 127. ’ ” Jo h n s, A. T. F erm en tatio n of g ly c e ro l in the rumen of sheep. 1953 New Zealand J . of Science and Technology, Sec. A ., 2£s 262- 269. Johnson, R. B. The r e l a t i v e r a te s of ab so rp tio n of the 1951 v o l a t i l e a c id s from the rumen and t h e i r r e la ti o n ­ sh ip to k e to s is . C o rn ell V e t., ]£L: 115-121. Jo n es, I . R. and J . R. Haag. U tiliz a tio n of n o n -p ro tein 19^6 n itro g e n by d a iry h e if e r s . J . D airy S c i ., 29s 535-536. K eener, H. A ., A. E. T e e ri, R. H arrington and R. R. Baldwin 1953 M etabolic f a te of s35 in the la c ta tin g cow when fed s350p„ preserved s ila g e . J . D airy S c i ., 36: 1205 - 1 2 1 1 . K id d le, P ., R. A. M arshall and A. T. P h illip s o n . A comparison 1951 o f th e m ixtures of a c e tic , propionic and b u ty ric a c id s in th e rumen and in th e blood leav in g the rumen. J . P h y s io l., 113: 207-217. K losterm an, B. W., D. W. B o lin . E. L. Lasley and W. E. Dinusson. 195*+ The e f f e c t of m ethionine supplem entation upon the u t i l i z a t i o n o f pea and a l f a l f a p ro te in s by sheep. J . Animal S c i ., 1£: *+39-^6. K o istin e n , 0. A. Ueber d ie Garung der n a tiv e n Kohlenhydrate 1 9 des Holzes durch Einwirkung von mesophilen B a k te rie n aus dem Verdauungskanal des Schafes. Soum alaisen Tiedekatam lan Torm ituhsia Annales Academie S clentiarum F ennicae. A, I I , Chemica, 31. H e ls in k i, 73 pp. Kulwich, R ., L. S tr u g lia , H. C. Bourne and P. B. Pearson. 195^ Uptake o f ra d io s u lfu r by sheep given rep eated doses of la b e le d sodium s u lf a te . J . Animal S c i., 12: 990-991. Kumar, S. and S. Lakshmanan. B eta-h yd roxyb u tyric a cid metab195^ o lis m o f th e mammary g la n d . J . D airy S c i . , 32s 669. 82 195^ re d u c tio n of s u lf a te in the rumen of the sheep. Biochem. J . , £6: 391- 399. v L o o s li, J . K. and L. E. H a rris . M ethionine in c re a se s the 19H5 v alue o f u rea fo r lambs. J . Animal S c i., U: *+35-U37. Louw, J . G. and J . G. Van der Wath. The in flu en ce o f varying 19U3 maize supplem ents on th e d i g e s t i b i l i t y of the c e llu lo s e o f a poor v eld hay in r e la ti o n to the b a c te r i a l p o p u latio n of th e rumen of sheep w ith a n o te on n itro g e n m etabolism. O nderstepoort J . V et. S c i. Animal I n d ., 18s 177-190. Lowe, I . P. and E. R o b erts. In c o rp o ra tio n of ra d io a c tiv e 1955 su lfate« * su lfu r in to ta u rin e and o th er substances in th e chick embryo. J . B io l. Chem,, 212s U77>*83. — M acklin, L. J . , P. B. Pearson and C. A. Denton. The u t i l i z a 1955 tio n of s u lf a te s u lfu r fo r th e sy n th e sis of ta u rin e in th e developing chick embryo. J . B io l. Chem., 212s U69-U75. M arston, H. R. The fe rm en tatio n of c e llu lo s e Jn V itr o by I 9U8 organism s from th e rumen of sheep. Biochem. J . , U2s 56U-57U. Masson, F. M. and A. E. Oxford. The a c tio n of the c i l i a t e s 1951 o f th e sheep*s rumen upon v ario u s w ater soluble carb o h y d rates including p o ly sacch arid es. J . Gen. M ic ro b io l., 66U-672. Masson, M. J . and A. T. P h illip s o n . The ab so rp tio n of a c e ta te , 1951 p ro p io n ate and b u ty ra te from the rumen of sheep. J . P h y s io l., l l ^ s 189-206. Masson, M. J . and A. T. P h illip s o n . The com position of the 1951 d ig e s ta leav in g the abomasum of sheep. J . P h y s io l., 116: 98-111. McClymont, G. L. V o la tile f a t t y acid metabolism of rum inants, 1951 w ith p a r ti c u la r re fe re n c e to th e la c ta tin g bovine mammary gland and th e com position of milk f a t . A u s tra lia n J . Agr. R e s., 2: 158-180. McDonald, I . W. The e x te n t of conversion of food p ro te in to 195U m ic ro b ia l p ro te in in the rumen of th e sheep. Biochem. J . , 56: 120-125. 83 McNaught, M. L. The u t i l i z a t i o n of n o n -p ro te in n itro g en in 1951 th e bovine rumen. 7. A q u a lita tiv e and q u a n tita ­ t i v e study of th e breakdown o f carbohydrate which accompanies p ro te in form ation in bovine rumen c o n te n ts during In V itro in cu b atio n . Biochem. J . . It2: 325-332. * McNaught, M. L ., E . C. Owen, K, M. Henry and S. K. Kon. The 195^ u t i l i z a t i o n o f n o n -p ro te in n itro g e n in the bovine rumen. 8. The n u t r i t iv e value of th e p ro te in s of p re p a ra tio n s of d rie d rumen b a c te r ia , rumen pro­ tozoa and brew ers y e a st fo r r a t s . Biochem. J . , 5 6 » 151 - 156 . M ille r, W. J . and N. N. A llen. The e f f e c t of sodium a c e ta te 1955 feed in g on milk and f a t y ie ld , blood sugar, and blood keto n es of d a iry cows. J . D airy S c i ., 38s 310- 312. M ille r, J . M. and L. B. Rockland. D eterm ination of cy stein e 1952 and g lu ta th io n e in c i t r u s ju ic e s by f i l t e r paper chrom atography. Arch. Biochem., *+0: *+l6-*+23. Moore, L. A. and 0 . B. W inter. Rate of passage of in e r t 193*+ m a te ria ls through th e d ig e s tiv e t r a c t of the b o vine. J . D airy S c i ., 12: 297-305. N oble, R. L ., L. S. Pope and W. D. G allup. Urea and methio1955 n ine in f a tte n in g r a tio n s fo r lambs. J . Animal S c i . , 1U: 132-136. O lc o tt, H. S. and H. F raen k el-C o n rat. Formation and lo s s of 19*47 c y s te in e during acid h y d ro ly sis of p ro te in s —ro le of try p to p h an e. J . B io l. Chem., 171: 583-59*+. Owen, E. C. Reviews of th e progress of d a iry scien ce. 195*+ S ectio n A. Physiology of d a iry c a t t l e . P art I I . P hysiology and b iochem istry of rum ination. J. D airy R e s ., 21: Uo8-*453. Oxford, A. B. The conversion of c e r ta in so lu b le sugars to a 1951 glucosan by h o lo tric h c i l i a t e s in th e rumen of sheep. J . Gen. M ic ro b io l., 2s 83- 90. P a rth a s a ra th y , D. and A. T. P h illip s o n . The movement of 1953 potassium , sodium, c h lo rid e and w ater across the rumen e p ith e liu m of sheep. J . P h y s io l., 121: H52-U69. P a t e l , B. R. The com position, p h y sic a l p ro p e rtie s and n u t r i1952 t i o n a l v alu e of rumen c o n te n ts of d a iry cows. T h e sis. Univ. W is., Madison. Qb P a tto n , A. R. In tro d u c in g paper chromatography to biochem­ 1950 i s t r y s tu d e n ts . J . Chem. E d ., 22; 60- 61. P earso n , R. M. and J . A. B. Sm ith. The u t i l i z a t i o n of urea 19^ 3 a in th e bovine rumen. 1. Methods of a n a ly sis of th e rumen in g e s ta and p relim in ary experim ents in v iv o . Biochem. J . , 37s l^ - l U S . P earso n , R. M. and J . A. B. Smith. The u t i l i z a t i o n of urea 19l+3b in th e bovine rumen. 3 . The sy n th e sis and break­ down o f p ro te in in rumen in g e s ta . Biochem. J . , 3Z: 153-161*. Pennington, R. J . The metabolism of sh o rt-c h a in f a t t y acids 1952 in th e sheep. 1. F a tty acid u t i l i z a t i o n and ketone body production by rumen epithelium and o th e r t i s s u e s . Biochem. J . , *jlt 251-258. P en n in g to n , R. J . 195^ The Metabolism of sh o rt-c h a in f a t t y acids in th e sheep. 2. F u rth er s tu d ie s w ith rumen e p ith e liu m . Biochem. J . , £6 : l+10-ltl6 . P fan d er, W. H. and A. T. P h illip s o n . The r a te s of abso rp tio n of a c e t ic , propionic and n -b u ty ric a c id s. J . 1953 P h y s io l., 122; 102-110. P h i llip s o n , A. T. 19**7 The r o le of the m icro flo ra of th e alim en­ ta r y t r a c t of h erb iv o ra w ith sp e c ia l re fe re n c e to ru m in an ts. 3. Ferm entation In the alim entary t r a c t and metabolism of th e derived f a t t y a c id s. N u tr. Abs. and R ev s., 12: 12-18, P h illip s o n , A. T. A method of measuring th e flow of d ig e s ta from th e stomach of th e sheep. J . P h y s io l., 107: 19V8 21- 2 2. P h illip s o n , A. T. 1952a The passage of d ig e s ta from th e abomasum of sheep. J . P h y s io l., 116: 8*+-97. P h illip s o n , A. T. 1952b The f a t t y a c id s p re se n t in the rumen of lambs fed on a fla k e d maize r a tio n . B r i t . J. N u tr ., 6 : 190-198. P h illip s o n , A. T. D ig e stio n of c e llu lo s e by the rum inant. Biochem. Soc. Symposia, 11: 63- 70. 1953 P opjak, G. The m etabolism of f a t in th e mammary gland and f o e t a l t i s s u e s w ith s p e c ia l re fe re n c e to the 1952 a p p lic a tio n of is o to p ic t r a c e r s . N utr. Abs. and R ev., 21: 535*553. 85 P opjak, G. , T. H. French and S. J . F o lle y . U tiliz a tio n of 1951a a c e ta te f o r m ilk f a t sy n th e sis in the la c ta tin g g o a t. Biochem. J . , M5: U ll-ltl6 . Popjak, G. , T. H. F rench, G. D. Hunter and A. J . D. M artin. 1951b Mode o f fo rm ation o f milk f a t t y acid s from a c e ta te in th e g o a t. Biochem. J . , U8: 612-618. Popjak, G. , G. D. Hunter and T. H. French. B io sy n th esis of 1953 m ilk -fa t in th e r a b b it from a c e ta te and glucose. The mode o f conversion of carbohydrate to f a t . Biochem. J . , 2+s 238-21+7. Pounden, W. D. and J . W. Hibbs. The in flu en ce of th e r a t i o 19*+8 o f g ra in to hay in the r a tio n of d a iry calv es on c e r ta in rumen m icroorganism s. J . D airy S c i ., 31: 1051- 105*+. Pow ell, E. B. R e la tio n of the r a tio n to the com position of m ilk. J . D airy S c i ., 2*+; 50*+-505. 19*+1 Pugh, P. S . and R. S c a ris b ric k . A cetate metabolism in ovine k e to s is . N ature, 170: 978-979. 1952 Quin, J . I . , W. Oyaert and R. C lark . S tu d ies on th e alimen­ ta r y t r a c t o f th e merino sheep in South A fric a . 1951 X V III. The e f f e c t of fa s tin g on the a c tiv i t y of th e rum inal f l o r a of sheep and c a t t l e . O nderstepoort J . V et. R e s., 2£: 51-58. Reed, F . M, , R. J . Moir and E. J . Underwood. Ruminal f lo r a s tu d ie s in sheep. I . The n u tr i tiv e value of 19“t9 rumen b a c t e r i a l p ro te in . A u stra lia n J . S c i. R es., B2s 30*+-317. H eld, J . r , Urea as a p ro te in replacem ent fo r rum inants: A rev iew . J . D airy S c i ., 3§.! 955-998. 1953 R eid, R. t , S tu d ie s on th e carbohydrate metabolism of sheep. I I . The uptake by th e tis s u e s of glucose and 1950 a c e tic a c id from the p e rip h e ra l c ir c u la tio n . A u s tra lia n J . Agr. R es., 1: 338-35^. R eid , R■ L , S tu d ie s on th e carbohydrate metabolism of sheep. V. The e f f e c t of hyperglycem ia and of in s u lin on 1952 th e r a t e of e x tra -h e p a tic glucose a s s im ila tio n . A u s tra lia n J . Agr. R e s., 160-167. R obertson, A. and C. Thin. A study of s ta rv a tio n k e to s is in th e ru m in an t. B r i t . J . N u tr ., 181-195. 1953 86 Robinson, R . Q., R. N. D oetsch, F. M. S iro tn ak and J . C. 1955 Shaw. P ro d u ctio n of l a c t i c acid and an iodine s ta in in g substance by bovine rumen b a c te r ia . J . D airy S c i . , 3 8 : 13- 19. S a lsb u ry , R ►L. S tu d ie s on th e i n V itro d ig e s tio n of c e llu ­ 1955 lo s e by rumen m icroorganism s. T hesis, Mich. S ta te C o l l ., E ast L ansing, lU l pp. Schambye, P . V o la tile a c id s and glucose in p o rta l blood of 1951 sheep. Nord. V et.-M ed., 3: 555-57^, 7^ 8- 762, 1003- 101U. S c h u ltz , L. H. V o la tile f a t t y ac id s in th e rumen of cows w ith k e to s is . J . D airy S c i ., 32 s 66*+. 195*4 S i j p e s t e i j n , A. K. and S. R. E lsden. The metabolism of su c c in ic acid in th e rumen of th e sheep. Biochem. 1952 J . , £2s k l - k j . S iro tn a k , F , M., R. N. D oetsch. R. E. Brown and J . C. Shaw. Amino ac id metabolism o f bovine rumen b a c te r ia . 1953 J . D airy S c i ., 36s 1117-1123. S iro tn a k , F . M., R. N. D oetsch. R. Q. Robinson and J . C. Shaw. A sp artate d is s im ila tio n re a c tio n s of 195*4 rumen b a c te r ia . J . D airy S c i ., 3Z! 531“537Shaw, J . C. and W. E. P e rte rs e n . The u t i l i z a t i o n o f b e ta hydroxybutyric acid by th e perfused la c ta tin g 19*4$ mammary gland. J . B io l. Chem., !*+?: 639- 6H3. Sm ith, C. K . A study of th e a c t i v i t i e s of rumen b a c te r ia . T h esis, Mich. S ta te C o ll., E ast Lansing, 53 PP1953 Smuts, D. B . B. A. Du T oit and J . G. Van der Wath. A study on th e p o s s i b i l i t y of c y stin e sy n th e sis in th e 19^1 rumen o f sheep to g e th e r w ith the e f f e c t of c y stin e su p plem entation on th e n itro g e n u t i l i z a t i o n of lu c e rn e in young sto ck . O nderstepoort J . V et. S c i . , 16: 181-190. Snedecor, G. W. S t a t i s t i c a l methods, *+th e d itio n . S ta te C o llege P re ss , Ames. *+85 pp. 19^6 Iowa Stadtm an, E . R. and H. A. B arker. F a tty acid sy n th esis by enzyme p re p a ra tio n o f C lo s tr idium k lu y v e ri. 19^9 J . B io l. Chem., l§Os 10B5-112l4, 1169-HHb. 87 S ta rk s , P. B ., 19?H M. of J. W. H. H ale, U. S. G arrig u s, R. M. Forbes and F. James. Response of lambs fed v arie d le v e ls elem en tal S, s u l f a te - s u lf u r and m ethionine. Animal S c i . , 12: 2U9-257. S tev en s, W. L. Asym ptotic re g re s s io n . 1951 267. B iom etrics, 6: 2*+7- S to n e, E. C. F erm entation a b i l i t y of in g e sta from normal and 19^9 and a to n ic bovine rumens. Amer. J . Vet. R e s.. 1£>: 26-29. Sugden, B. The c u ltiv a tio n and metabolism o f o l i g i t r i c h 1953 p ro to zo a from th e sh e e p 's rumen. J . Gen. Micro­ b i o l . , 2 i HU-53. S w ift, R. W., E. J . Thacker, A. B lack, J . W. B ra tz le r and W. 19U7 H. James. D ig e s t i b i li t y of ra tio n s fo r rum inants as a ffe c te d by p ro p o rtio n o f n u tr ie n ts . J . Animal S c i ., 6 : U32 -UUU. Tyznik, W. J . The e f f e c t of th e amount and p h y sical s ta t e 1951 of th e roughage upon th e rumen f a t t y acid and m ilk f a t o f d a iry cows. T hesis, Univ. of W is., Madison, 53 pp. Tyznik, W. J . , 0. G. B en tley , E. H. W eiser, T. S. S u tto n , A. 195U L. Moxon and A s s is ta n ts . The e f f e c t of v ario u s carbon substance on In V itro a c tiv i ty of sheep rumen m icroorganism s. J . Animal S c i ., 12: 1002. Van d er Wath, J . G. S tu d ie s on the alim entary t r a c t of Merino I 9U8 sheep in South A fric a . XI. D ig estio n and sy n th e sis o f s ta r c h by rum inal b a c te r ia . O nderstepoort J. V et. S c i . , 22: 367-38H. Van H a lte re n , M. B. A rte fa c ts in the chromatography of mix1951 tu r e s of amino ac id s containing c y s te in e . N ature, 168: 1090-1091. Van S o e s t, P. J . , N. N. A llen and L. R. Maki. The e f f e c t of I 95U r e s t r i c t e d roughage, high co n c en trate d ie t upon m ilk f a t . blood glucose and blood keto n es. J. D airy S c i . , 2Z! 660. W aelch, H. and D. R itte n b e rg . G lutathiorie: I . The metabolism I 9U1 o f g lu ta th io n e stu d ie d w ith is o to p ic g ly c in e . J. B io l. Chem., 122* 761-77U. W aite, R. and J . Boyd. The w ater so lu b le carbohydrates of 1953 g ra s s e s . J . S c i. Food and A gr., U: 197-20U, 257-261. 88 Waldo, D. R. and L. H. S c h u ltz . L ac tic acid production in 1955 th e rumen. J . D airy S c i ., 38 s 605. W a lte r, W. G. A study of m icro b ial a c t i v i t i e s in the ovine 1952 rumen. T h esis, Mich. S ta te C o ll., E ast Lansing, 127 pp. W eir, W. C. and V. V. Rendig. Serum in o rg an ic s u lfu r as a 195*+ measure of th e s u lfu r in ta k e of sheep. J . N u tr., 2 ls 8 7 . W e lle r, R. A. and F. V. Gray. The passage of s ta rc h through 1951* th e stomach of th e sheep. J . Exp. B io l., 31: ^0 -^8 . W ijesundera, S. and D. D. Woods. C ystath io n in e in r e la tio n 1953 to m ethionine sy n th e sis by Bacterium c o l i . J . Gen. M ic ro b io l., iii-iv . W illia m s, V. J . . M. C. N o ttle , R. J . Moir and E. J . Underwood. 1953 Ruminal f l o r a s tu d ie s in sheep. IV. The in flu en ce o f v arying d ie ta ry le v e ls of p ro te in and s ta rc h upon d i g e s t i b i l i t y , n itro g e n r e te n tio n , and the f re e m icroorganism s of th e rumen. A u stra lia n J . B io l. S c i ., 6: 1^2-151. W interingham , F. P. W., A. H arrison and R. G. B ridges. 1952 R ad io activ e t r a c e r techniques in paper chromato­ graphy. N ucleonics, 10; 52-57. Wood, H. G ., R. W. Brown and C. H. Werkman. Mechanism of the 19^5 b u ty l alco h o l fe rm en tatio n w ith heavy carbon a c e tic and b u ty ric ac id s and acetone. Arch. Biochem., 6s 2k%-260, Z e l t e r , Z. 1952 P a r tic ip a tio n o f a c e tic and b u ty ric acid in the lip o g e n e s is o f th e m ilk cow. Comp, r e n d ., 23i+s 567-569. APPENDIX 89 90 TABLE 8 SUMMARY OF REGRESSIONS OF ACETIC, PROPIONIC, AND BUTYRIC ACID CONCENTRATIONS IN THE RUMEN ON TIME AFTER FEEDING A ll Hay R atio n A cetic Acid P ro p io n ic Acid B u ty ric Acid L°ge AQ 2.2602 0.8256 0.^915 L°ge Ap 0 . 6¥+l -1.0103 -1 .1 5 1+5 kl k2 0.0353 0.0322 0 . 021+8 0.5226 O.M+99 0.3511 S tandard E rro r of E stim ate R eg ressio n of Log^e Xo on t 0.1230 0 . 13^2 O.1308 kl 0.00^1 0 . 00^8 0 . 00^6 Lo&e Ao D egrees of Freedom 0.0*+97 0.0607 0.0592 16 Ik lU R eg ressio n of Log^e Ap on t 0.9739 0.5712 0 A 966 k2 0.293S 0.2372 O.IU98 L°ge Ap 0.3872 O.kOOk 0.3355 Degrees of Freedom 6 3 6 91 TABLE 8 (Continued) SUMMARY OF REGRESSIONS OF ACETIC, PROPIONIC, AND BUTYRIC ACID CONCENTRATIONS IN THE RUMEN ON TIME AFTER FEEDING R e s tr ic te d Roughage-High C oncentrate R ation A cetic Acid P ropionic Acid B u ty ric Acid 1.9683 0.8593 0.8562 0.7710 -0.8915 - 0.3201 0.0311 0 . 0*t65 0 . 028 k 0.8379 0.2763 0.7335 S tandard E rro r of E stim ate 0 . 13^8 0.2197 0.1279 0.0050 0.0089 0.0052 0 .0 6 1 3 0 . 1161+ 0 .0 6 8 0 12 10 10 0.6509 1.U099 0.9568 0 . 266*+ 0.6753 0.3520 0 .2 5 5 1 0 .9 3 3 8 0 .6 3 9 3 6 5 8 92 TABLE 9 THE CONCENTRATION OF ACETIC, PROPIONIC, AND BUTYRIC ACIDS IN RUMEN LIQUID (M illim o les Acid /1 0 0 gm. Rumen Liquid-*-) Hours A fter Feeding A ll Hay R atio n A cetic Acid P ro n io n ic Acid B u ty ric Acid C707 T2 C707 T2 0707 T2 0 .0 5.87 8.32 1.66 2.07 l.Cfc 1 .k7 2 .0 8.76 7.69 2.0U 1.90 1.32 l.*tl. 2 .5 8.50 7.35 2.22 1.73 1.W7 1 .38 2.22 ------------- 1M ------------- 7.78 ------------- 1 .7 7 3 .0 3.25 1A 0 3 .5 8.71 8.35 2.36 1.76 i .5 o 1.6 6 *♦.0 8.19 7.97 2.13 1.79 1.38 1M 5.0 8.06 8.33 2.03 2.01 1.7k l.k l 6 .0 8.08 8.27 1 .80 1 .95 1.52 l.kQ 6.57 ------------- 1 .59 -------- 1.2k 1.71 -------- 1.15 10.25 10.5 6.90 12.5 ------------- 6.18 ------------- I .k 2 ------------- i*+.5 5.*+l ------------- 1.37 ------------- 1 .00 18.0 ------------- 6.38 ------------- 1.56 19.5 k.2 1 ------------- 1.09 23.5 -------- 5.36 — ——- 2H.0 3.07 1. 0.82 1.2k ■ — ——— 1.03 0.96 1.37 -------- 1.19 0 .68 Sample weighed on to column co n tain ed 91.3# rumen l i q u i d on a dry m a tte r f r e e b a s is ; th e v a lu e s re p o rte d h ere a re c o rre c te d to 100# rumen l i q u i d . 93 TABLE 9 (Continued) THE CONCENTRATION OF ACETIC, PROPIONIC, AND BUTYRIC ACIDS IN RUMEN LIQUID (M illim o les Acid /ICO gm. Rumen Liquid^-) Hours A fte r Feeding R e s tr ic te d Roughage-High C oncentrate R ation A cetic Acid C707 P ronionic Acid T1 C707 T1 2.25 0 .0 H.9 5.*+o 1.31 1 .0 6 .2 ------------ l.S* 6 .H 5.^2 I.W3 2 .0 6.**7 5.62 2 .5 6.75 3 .0 B utyric Acid C707 T1 1 .8 2.15 1.73 ------------ 2.15 1.80 1.69 1.^9 2.07 1.77 2.17 6.20 1.71 2 . 3U 1.87 2.12 6.77 6.26 1.58 2.25 1.89 2.3^ 3.75 ------------ 5.93 ------------ 2.18 ------------ 2.18 U.O 6 .5 5-69 1.63 2.13 1.70 2.15 5.0 ------------ 7.17 2.29 ------------ 2.52 6 .0 6.57 -------- 1.58 -------- 2.13 ----------- 8 .0 5.97 ------------ 1.5^ 1.72 ------------ 10.75 ------------ it. 88 ----------- 1.65 ------------ 1.83 12.0 5.6*+ ------------ 1.21 ------------ i.7 1 ---« = ■ 13.0 ------------ 3.36 18.25 ------------ 3.96 ——- — 1.23 -------- 1 J +5 2*t.O 3.38 3.81 0.53 1.09 1.07 1.36 1 1.38 1.05 Samnle "Welshed on to column co n tain ed 91*3$ rumen liq u id on a d ry m atter fre e b a s is ; th e v alu es re p o rte d here are c o rre c te d to 100$ rumen liq u id .