THE VIABILITY OF MICROORGANISMS ISOLATED FROM FRUITS AND VEGETABLES WHEN FROZEN IN DIFFERENT MENSTRUA

ΒY

ALEXANDER HUNTER JONES

A THESIS

Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Bacteriology and Public Health

1950

ProQuest Number: 10008698

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10008698

Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346

ACKNOWLEDGMENTS

The writer wishes to express appreciation to Dr. A. G. Lochhead, Dominion Agricultural Bacteriologist and Dr. C. K. Johns, Senior Bacteriologist, Division of Bacteriology and Dairy Research, Science Service, Department of Agriculture, Government of Canada for their interest and criticism at various times in the course of this study. The writer is also deeply grateful to Dr. F. W. Fabian, Professor of Bacteriology and Public Health for his many helpful suggestions in this study. Thanks are also due to the Division of Horticulture, Central Experimental Farm, for the use of their freezer facilities and for the technical advice by personnel of that Division during the course of this investigation. In the analytical portion of these studies thanks are also due to Mr. W. E. Ferguson, Technical Officer, Division of Bacteriology and Dairy Research, for his assistance.

244589

TABLE OF CONTENTS

	Page
INTRODUCTION	1
REVIEW OF THE LITERATURE	
Frozen Fruits and Vegetables	4
Pure Culture Studies	9
Discussion of the Literature Review	19
INVESTIGATIONAL	
FRUIT AND VEGETABLE PRODUCTS	
Procedure for analysis of fresh and frozen products	21
Results of analyses of products	23
Slow freezing vs. quick freezing on numbers of microorganisms in frozen fruits and vegetables	33
PURE CULTURE STUDIES	
Methods	37
Preparation of cultures for freezing	39
Effect of freezing on bacterial cells	45
Effect of freezing different s pecies of bacteria in water at 0°F. (-17.8°C.)	47
Effect of freezing three cultures of <u>Escherichia</u> <u>coli</u>	5 7
Effect of freezing bacteria in different substrates	59
Discussion of fluctuations in counts	82
Comparison of survival of spores and vegetative stages of bacteria subjected to freezing	85
Survival of bacteria frozen in different phases of growth at O ^O F	89

Table of Contents (continued)

Grand 1 - A star star for a state of the	
Survival of microorganisms frozen continuously and intermittently in water at different temperatures	93
The effect of antibiotics on bacteria in vegetable products	105
DISCUSSION	109
SUMMARY	115
LITERATURE CITED	119

Page

× ,

.

INTRODUCTION

The effect of low temperatures on microorganisms in fruits and vegetables has been a subject of study by many investigators. It is now well known that the microbial content of these products undergoes considerable change in the process of freezing and subsequent freezing storage, and it is generally agreed that freezing temperatures result in a reduction of the initial microbial load. The rate of reduction varies tremendously, both in similar and different products, and is dependent upon a variety of conditions associated with the freezing process. The present study is concerned with a number of phases of the problem, to determine the extent which the various factors contribute either to the protection or the destruction of microorganisms during freezing.

The initial microbial load on fruits and vegetables is comprised of many species of bacteria, yeasts and moulds. Primarily, these organisms are soil types and have little, if any, public health significance. However, if the products are held, either before or after freezing, under conditions favourable for the development of microorganisms, undesirable changes take place in the product and in a comparatively short

- 1 -

period of time the product has spoiled. The rate of spoilage is dependent to a large extent on the numbers and types of microorganisms present. Thus, any measures taken with the initial product to reduce the microbial load will control, to some extent, the rate of spoilage following defrosting of the product. Such practices as washing and blanching, particularly the latter, have a very great influence on the numbers and types of microorganisms present on the product going into the freezer. Properly conducted, the blanching process should reduce the microbial load in excess of 99 per cent. However, even although the blanching is adequate, faulty practices in many commercial plants are responsible for recontamination of products following the blanch process. Recontamination occurs largely from conveyances of the product, such as flumes or belts, or by the handling of the products by workers during inspection or packaging.

Pure culture studies of microorganisms which have been made by many workers have, unfortunately, been limited to comparatively few species of bacteria such as <u>Escherichia coli</u>, <u>Staphylococcus aureus</u>, <u>Salmonella</u> <u>typhosa</u> and a few other well known organisms. While such studies are of interest from an academic viewpoint the writer has found that results of these studies have little, if any, bearing on the effect of freezing

- 2 -

on the heterogeneous microbial flora found on fruits and vegetables.

The present investigation is a continuation of previous studies conducted by the writer on the microbiology of frozen fruits and vegetables with particular emphasis on pure culture studies of organisms found on fruits and vegetables

REVIEW OF THE LITERATURE

FROZEN FRUITS AND VEGETABLES

Previous to 1930 there were few investigations conducted on the microbiology of frozen fruits and vegetables. The earliest reference to studies on these products which provides any authentic information is a paper by Prescott, Bates and Highlands (24). Among other products they examined samples of commercially frozen strawberries, raspberries, orange juice and spinach. These authors found a distinct reduction in the initial microbial load when the products were subjected to freezing temperatures. They also made the observation that higher storage temperatures e.g. - 10°C. (14°F.) were more destructive to microorganisms than lower temperatures.

Smart (30) (31) (32) examined a number of fruits and vegetable products before and after freezing. She found considerable variation in the microbial content of different lots of the same product. Scalding, freezing and storage for periods of 5 to 7 months reduced the average microbial content 94.6 to 99.8 per cent. Even with these striking reductions some frozen products were found to contain up to 1,000,000 microorganisms per gram.

- 4 -

In a later publication (33) this same author reported that storage of blueberries for 9 months at $0^{\circ}F$. resulted in the reduction in microbial content of 59.7 per cent., while a higher storage temperature $6.67^{\circ}C$. ($20^{\circ}F$.) for the same period resulted in 99.9 per cent reduction. This agrees with the earlier findings of Prescott, Bates and Highlands (24).

McFarlane (20) studied the distribution and survival of microorganisms in frozen sugar-packed raspberries and frozen brine-packed peas. Among other results McFarlane noted greater decreases with raspberries at higher storage temperatures while the reverse was noted with peas. With raspberries he found the microbial content at -20° C. $(-4^{\circ}$ F.) greater in sections from the lower half of the container and this corresponded with a higher soluble solids content in this area. Similarly, the microbial content of frozen peas stored at -20° C. $(-4^{\circ}$ F.) appeared to be correlated with the soluble solids content with the highest count being obtained from the central, coneshaped area and in the surface.

Pederson, (23) in a study on plate counts on stored, quick frozen vegetables, in some instances, found increased counts as the period of freezing

- 5 -

progressed. Microscopic examination indicated that the increased counts were due to the breaking up of bacterial clumps during freezing, a point which has been suggested by other workers (19) (36). Pederson makes no mention of the method used for the preparation of products prior to analysis. Recent studies made by the writer (12) have indicated that if the Waring Blendor is used for comminution of products the grinding action of this machine may result in increased counts due possibly to the disintegration of bacterial clumps. Van Eseltine et al. (36) also noted increased counts resulting from the use of the Blendor for preparing products for analysis. These same authors found that freezing products in liquid air and in an air blast at -60° F. resulted in such quick freezing that the bacterial content of the foods was essentially unchanged. Luyet and Gehenio (17) also noted this fact and stated that during such rapid freezing the water in the cell is not changed to ice crystals but to a glass-like amorphous mass which they term the "vitreous state", and this results in less injury than freezing at slower rates. Van Eseltine et al., summarizing their results, state that freezing at slower rates allowed multiplication of bacteria before the freezing temperature was reached. This

statement is not substantiated by data presented in graphs nor by other material in the text since with peas they show a marked increase in count during the early hours of freezing storage followed by a levelling off and finally, after 30 hours, a decided decrease. However, with corn the trend was entirely different with a decided decrease during the early hours of freezing followed by a levelling off and finally a more gradual decrease. These findings are somewhat unusual since corn, which is relatively high in starch, might be expected to provide greater protection to microorganisms against freezing and also, in the event of multiplication of microorganisms before the product is actually frozen, corn might provide a greater amount of food material for microbial growth.

Previous studies by the writer (15) on frozen vegetables and fruits showed that the microbial load of freshly packed product may be subject to wide variations which tend to become obliterated during freezing storage at -17.8° C. $(0^{\circ}$ F.). With the vegetables studied there was a pronounced decrease in numbers of microorganisms during the first weeks of storage after which they declined slowly or remained stationary. With fruits the decrease appeared to be more gradual. Bacteria were the predominant organisms in frozen vegetables while yeasts and moulds were more numerous in the acid

- 7 -

fruits. Even after 9 months storage at -17.8° C. (0°F.) frozen vegetables and fruits contained an appreciable number of microorganisms.

Micrococci and species of <u>Flavobacterium</u> were found to be relatively more resistant to freezing than other types of bacteria encountered in frozen vegetables (16) (10).

More recently a study by Burton (3) of this Division showed that the coliform test was more efficient for detecting contamination in foods prior to freezing and storage while the fecal streptococci are the superior indicator in frozen foods, as the coliform organisms seem less able to survive the storage temperatures.

The fact that the microbial content of fresh fruits and vegetables harvested from the same area of particular fields showed wide variations from day to day led to a study (11) to determine reasons for these variations. It was found that the variations in the microbial content were largely due to weather factors, definite correlation being obtained with bacteria counts and the temperature and humidity prevailing and preceding the time of harvesting. Products harvested during a period of relatively high temperatures and high humidity generally showed a high microbial content. Material from low growing plants generally carried a heavier microbial load than that further removed from the soil.

Pure Culture Studies

The literature on the effect of subjecting cultures of microorganisms to freezing temperatures is very extensive. Since our main interest is concerned with the range of commercial freezing temperatures the review of the literature, with some exceptions, will cover studies conducted within the temperature range of -28.89° C. (-20° F.) and 0° C. (32° F.).

Wallace and Tanner (38, 39) have presented an excellent historical review dealing with early work on the freezing of pure cultures of microorganisms. Unfortunately, as these authors point out, there was considerable contradiction from one author's work to another and considerable confusion exists even at the present time. As a result of some of the earliest studies recorded it was generally believed that bacteria were quite resistant to freezing. About 1900 another group

- 9 -

of studies indicated that bacteria were easily destroyed by low temperatures. As these authors point out the trend of thought resulting from more recent studies has changed again and it is now generally accepted that bacteria are resistant to low temperatures.

Probably mention should be made of the work of Keith in 1913 (13) since it was concerned with the freezing of Escherichia coli, an organism studied extensively in the present investigation. Keith froze this test organism solidly in tap water at $-20^{\circ}C$. $(-4^{\circ}F$.) and found that only a fraction of one per cent of the original number remained alive at the end of 5 days. This finding confirmed that of Sedgewick and Winslow (27). However, when the same test organism was placed in tap water and cooled as "water ice or sherbet" (not solid) and held in this condition at $-20^{\circ}C$. $(-4^{\circ}F_{\bullet})$ a large percentage remained alive for many months. This latter test is far from clear. The writer is at loss to understand how it would be possible to hold this test material, "water ice or sherbet" at -20°C. (-4°F.) without it being frozen solidly. If it is assumed that the temperature is incorrectly stated or that some other factor was introduced to maintain

the test material in a semi-frozen condition then the results are at variance with an earlier study by Prudden (25) who obtained the opposite results.

The most authentic work published in the early years is that reported in a paper by Hilliard, Torossian and Stone (7). They found that suspensions of Escherichia coli frozen in tap water showed a reduction in total number of cells of 93 per cent within 3 hours. A spore-forming bacterium, Bacillus subtilis, in the vegetative stage, showed a variable resistance to freezing while the spores were decidedly more resistant to freezing. They also found that intermittent freezing was only slightly more injurious to bacterial cells than suspensions held continuously in the frozen state. In a later work Hilliard and Davis (8) modified earlier conclusions and stated that in the later studies they found intermittent freezing of bacterial cells much more injurious than continuous freezing. In this later paper they also found that the degree of cold was insignificant insofar as reduction in numbers of microorganisms was concerned. This finding was directly opposed to the earlier report by the same senior author. Like other workers Hilliard and Davis found that freezing bacteria in menstrua other than tap water, such as milk or cream, resulted

in appreciably less destruction to bacteria, indicating that the organisms were afforded protection by these foods.

Berry (2) studying the destruction and survival of microorganisms in frozen pack foods, presented data indicating that lactobacilli and to some extent coliform organisms in peas remained viable for at least 2 years at -10° C. $(14^{\circ}$ F.). Data are presented on the destructive effect of ice formation on cells of <u>Saccharomyces</u> <u>sp</u>. in wort. The number of viable cells in liquid wort was greater over a period of 6 days at -10° C. than in frozen wort at the same temperature. A table presented in this paper indicates that viable cells in the frozen wort had practically disappeared.

Wallace and Tanner (40,41,42) studied pure cultures of microorganisms isolated from frozen fruits and vegetables. In all instances they found a rapid drop in numbers during the first months of freezing. After the eighth month the numbers dropped slowly. They also noted that spore formers were the most resistant to freezing and that yeasts and moulds were generally more resistant than nonspore forming bacteria. In fruit juice and broth with a decidedly acid reaction, the organisms died

out quite rapidly. These authors, in contrast to work by other authors, present data showing that alternate freezing and thawing probably is no more destructive to microorganisms than continuous freezing, in fact, the data given in tables indicate that it is even less so. They suggest that in view of the fact that this finding conflicts with those of other workers, previous studies had been based on tests in which alternate freezing and thawing were done repeatedly at intervals of just a few hours; their studies consisted of thawing the menstrua at daily intervals and immediately refreezing. They also found that the degree of cold had very little effect on microorganisms although in some instances the lower temperature did not seem as lethal as did $-16^{\circ}C.$ ($-2^{\circ}F.$).

One of the most interesting studies in recent years was conducted by the late R. B. Haines (5) who studied the effect of freezing pure cultures of bacteria. Cultures of <u>Pseudomonas aeruginosa</u>, <u>Escherichia coli</u> and <u>Staphylococcus aureus</u> in aqueous suspensions were used in this study. Using temperatures ranging from -20°C. (-4°F.) to -1°C. (30.2°F.) Haines, like other workers, found the higher storage temperatures more destructive to bacterial cells. Of the 3 organisms studied <u>P. aeruginosa</u> was the most sensitive to freezing with <u>Staphylococcus aureus</u> the most resistant. <u>Escherichia coli</u> was intermediate between the two. Spores of <u>Bacillus mesentericus</u> were resistant to all temperatures used showing no reduction over a period of 150 days storage. Haines suggests that two factors are responsible for the death of bacterial cells on freezing; one unknown, but apparently not mechanical, and the other, some change leading to flocculation of the cellular proteins; or else there is in reality one process, leading to coagulation, but with a time lag, so that coagulation is not found on immediate freezing and thawing.

Smart and Brunstetter (29), in a study of the types of organisms found on fresh and frozen spinach and kale, state that the predominating types of bacteria on these two vegetables are <u>Achromobacter</u>, <u>Bacillus</u>, <u>Flavobacterium</u> and <u>Pseudomonas</u> species. According to data presented, the microbial flora members of the genus <u>Achromobacter</u> had disappeared during the process of freezing. However, in a later paper by Smart (39) <u>Achromobacter</u> types were prominent in frozen peas, beans and corn. No mention is made of the proportion of types in either the fresh or frozen products.

Hegarty and Weeks (6) conducted an interesting

study on the sensitivity of <u>Escherichia coli</u> to cold shock. They confirmed earlier findings of Sherman and Albus (28) that young cells of <u>E. coli</u> are susceptible to an initial cold shock of 0° C. (32°F.). This sensitivity to cold shock extends throughout the entire logarithmic phase of growth. Mature cells were not affected by either an initial cold shock or prolonged holding at 0° C.

McFarlane (21) studied the effect of freezing <u>Saccharomyces spp</u> of yeasts and <u>Escherichia coli</u> in distilled water and in concentrations of sucrose solutions varying from 1 to 50 per cent and adjusted to different pH values ranging from pH 3.6 to 6.5. He found that when the hydrogen-ion concentration was the only variable, a reaction of pH 6.5 was more favorable than one of pH 5 for hastening the destruction of yeast cells in some of the sucrose media. With <u>Escherichia coli</u> destruction was greatest in those samples which possessed the greater hydrogen-ion concentration. When temperature was the only variable greater kills tended to occur after several weeks storage, at -10° C. $(14^{\circ}$ F.) than at -20° C. $(-4^{\circ}$ F.).

McFarlane and Goresline (22) studying microbial destruction in water and sugar syrup stored at -17.8°C.

(O^OF.) over periods of from 1 to 60 weeks, found that greater destruction of microbial cells occurred in water than in any of the syrups used. <u>Escherichia</u> <u>coli, Saccharomyces cerevisae</u>, <u>Saccharomyces</u> <u>ellipsoideus Hansen</u>, <u>Schizosaccharomyces octosporus</u>, a strain of brewer's yeast and an unidentified yeast exhibited greater cold resistance in sucrose than in invert syrup. A <u>Torula sp.</u>, <u>Aspergillus nidulans</u>, <u>Zygosaccharomyces pastori</u> and <u>Zygosaccharomyces</u> <u>japonicus</u> exhibited greater cold resistance in invert than in sucrose syrup.

Kiser (14) studied the rate of destruction of an <u>Achromobacter sp</u>. by freezing at -28°C. (-18,4°F.). He found a slight increase in count up to a period of 10 hours following which there was a steady decrease up to a period of 300 hours. After this time there was a distinct decrease in the rate of death of bacteria.

Weiser and Osterud (44) in a recent publication on the death of bacteria at low temperatures, provide some useful information on the mortality of <u>Escherichia coli</u> exposed to freezing temperatures. They report that the mortality due to immediate death by freezing is marked but does not vary with the intensity of the freezing temperature. Data are presented which indicate that immediate death occurs at a brief stage in the freezing process during which extracellular ice formation is being completed. They report that the rate of storage death at the higher freezing temperatures is very rapid and is much greater at temperatures above -30° C. $(-22^{\circ}$ F.) than at lower temperatures. Repeated freezing was more lethal than a single freezing. They also found that freezing is much more lethal than supercooling and that repeated fluctuations of temperature of frozen suspensions do not exert a lethal action additional to that of the storage.

Gunderson and Rose (4) studying the survival of bacteria in pre-cooked fresh-frozen chow mein, found that pathogenic enteric bacilli are killed rapidly during the first 5 days at -25.5° C. (-14° F.). After that the rate of death drops off until a more or less resistant population remains. The normal saprophytic flora appears to be killed less rapidly. In either instance the numbers remaining after any given storage time depend primarily upon the initial contamination. When this is high even storage for as long as nine months does not assure a low count.

Studies on food poisoning bacteria, in particular <u>Clostridium botulinum</u>, indicate that spores of this organism survive freezing for long periods. Wallace and Park (37), Straka and James (34, 35), James (9) showed that spores and toxin of this organism survived freezing for as long as 14 months.

McCloskey and Christopher (18), in a study of some pathogenic bacteria in cold-pack strawberrries, found that in sliced, sweetened strawberries held at -18°C. (-4°F.) <u>Salmonella typhosa</u> could be recovered after 6 months; <u>Staphylococcus aureus</u> after 5 months; <u>Salmonells typhimurium</u> and <u>Salmonells schottmuelleri</u> after one month. <u>Salmonella paratyphi</u> could not be recovered at any time from the frozen berries.

DISCUSSION OF THE LITERATURE REVIEW

Many of the studies reported in the literature have added a great deal to our knowledge of the effect of freezing on microbial cells. There appears to be agreement that freezing generally effects a reduction in numbers either during the initial freezing process or during subsequent freezing storage. However, results of studies on the rate of reduction of microbial cells are extremely variable. If we compare the results with one test organism, Escherichia coli, an organism which has been used extensively by numerous workers, it will serve to illustrate this point. Wallace and Tanner (43) report freezing cells of E. coli in water at -16.11°C. (3°F.) for periods of 1, 5, 6, 9 and 12 weeks and showed reductions in numbers of 20, 50, 60, 80 and 94 per cent respectively. Weiser and Osterud (44), using this test organism in a 0.5 per cent peptone at -15°C. (5°F.), showed a 76 per cent reduction in a period of 3 to 10 minutes. Freezing for 2 minutes at ±10°C. (14°F.) effected a reduction of 54 per cent. McFarlane (21) froze the same test organism at -20° C. $(-4^{\circ}F.)$ and showed a reduction of 99 per cent after 1 week storage. Hilliard, Torrossian and Stone (7) froze this organism in water at -15° C. (5° F.) and effected a reduction of 99.9 per cent in 3 hours. Haines (5)

- 19 -

studied the effect of freezing <u>E. coli</u> in aqueous suspensions and found that after 150 days at -20° C. $(-4^{\circ}F.)$ a very slight reduction in numbers occurred and at -10° C. $(14^{\circ}F.)$, a temperature comparable to that used by Weiser and Osterud, a reduction slightly over 50 per cent in the same period of time. The time required to effect a reduction of approximately 99 per cent was between 50 and 140 days.

Contradictions on the effect of freezing microorganisms in fruits and vegetables are also numerous. Berry (1) states that after one year's storage the microorganisms in frozen foods were so changed that they could not cause spoilage. This statement has not been supported by any other worker. A year after the first paper the same author writes about spoilage of frozen pack peas (2).

These discrepancies do not reflect in any way on the studies conducted by the various workers but rather point to the extreme variability encountered with microorganisms subjected to the freezing process, and also to the fact that, in may instances, experiments were conducted by the various authors under entirely different sets of conditions. The variability of microorganisms will be discussed at greater length in a later portion of the present work.

INVESTIGATIONAL

FRUIT AND VEGETABLE PRODUCTS

The studies reported in this section were conducted over a period of years and are included to demonstrate the degree of variation in the microbial content in similar and different frozen vegetables which had been initially harvested from the same general area of the Central Experimental Farm, Ottawa. All products were packed by the Division of Horticulture and were given essentially the same treatment each year. Vegetable products were blanched, usually until a catalase negative reaction was obtained, and were packed in pint-size waxed cartons in either a 2 or 3 per cent brine, depending on the product.

Procedure of analysis for fresh and frozen products:

The procedure for the analysis of fresh and frozen products follows exactly the same pattern. The frozen product is removed from the freezer, placed in an incubator at 37°C. (98.6°F.) and defrosted to a point where the ice could be separated from the product. One hundred grams of the vegetable are weighed into sterile pint-size sealers and 50 grams of ice or brine solution added. The product is then macerated, using either a flamed, 6-prong cutting knife or a flamed pestle or both, depending on the nature of the product. To this

- 21 -

ground-up mixture is added 100 grams sterile water. This provided the first dilution with a ratio of 1 part product to 2.5 parts water. The whole was then shaken for 5 minutes using a reciprocating type mechanical shaker. Further dilutions were prepared in the usual manner by pipetting 1 millilitre of the first dilution into a 99 millilitre sterile water blank.

A number of tests were made to determine different groups of bacteria but for the studies reported in this section only the method used for determining total numbers of mesophilic bacteria will be given. Duplicate plates were prepared from each dilution. The plating medium was tryptone glucose extract agar and plates were incubated at room temperature, 20 to 25°C., for a period of 4 days.

Isolation of colonies for the purpose of determining the proportion of types consisted of picking 50 colonies from plates of suitable dilution. Where there were more than 50 colonies on a plate the plate was divided into sections and 50 colonies picked from one section. Colonies picked were transferred to tryptone glucose extract agar slopes and incubated for a period of 4 days at 20 to 25°C. Classification into genera was made by macroscopical,

- 22 -

microscopical, and, when required, by biochemical tests.

RESULTS

Data are presented in Table 1 and in Figs. 1, 2, 3 on plate counts obtained with 4 individual samples of asparagus, 7 samples of peas and 5 samples of corn. All of these products were prepared and frozen during the same or in different years from 1935 to 1949. From these data it is evident that there are wide differences in the initial microbial content of the different products. Perhaps more striking are the wide variations in the rate of survival of microorganisms on these products at the different periods of analysis over a period of 30 weeks. In Fig. 1, showing the results of analyses of four samples of asparagus, one sample (No. 4) shows almost complete destruction of microorganisms at the six-week period of analysis while three other samples in the same period show survivals varying from 33 to 84 percent. One other point of interest from the data presented in this graph is the fluctuation in the microbial content with two of the samples (No's 2 and 3) following the initial freezing process. Since these fluctuations have been noted with some samples of all products it might be well to discuss them at this point.

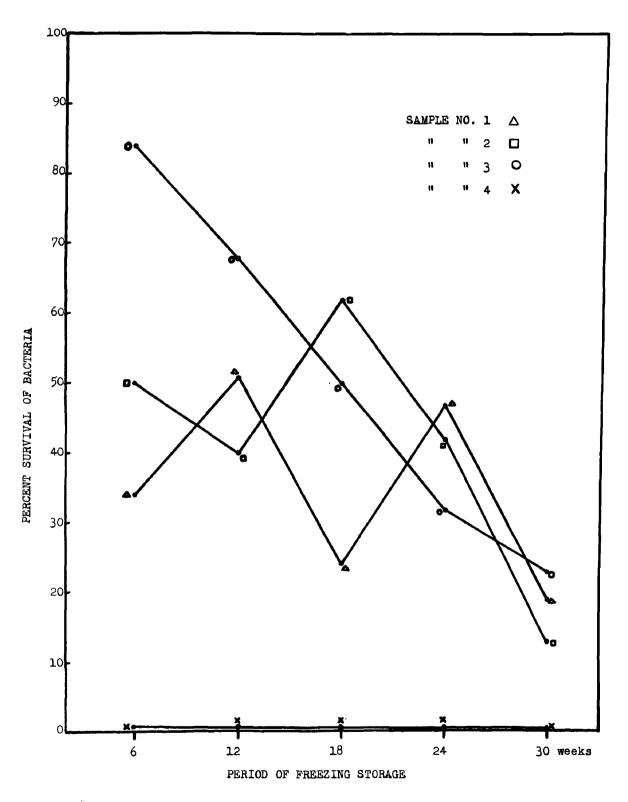


FIG. . SURVIVAL OF BACTERIA IN ASPARAGUS FROZEN AND STORED AT O° F.

- 25 -

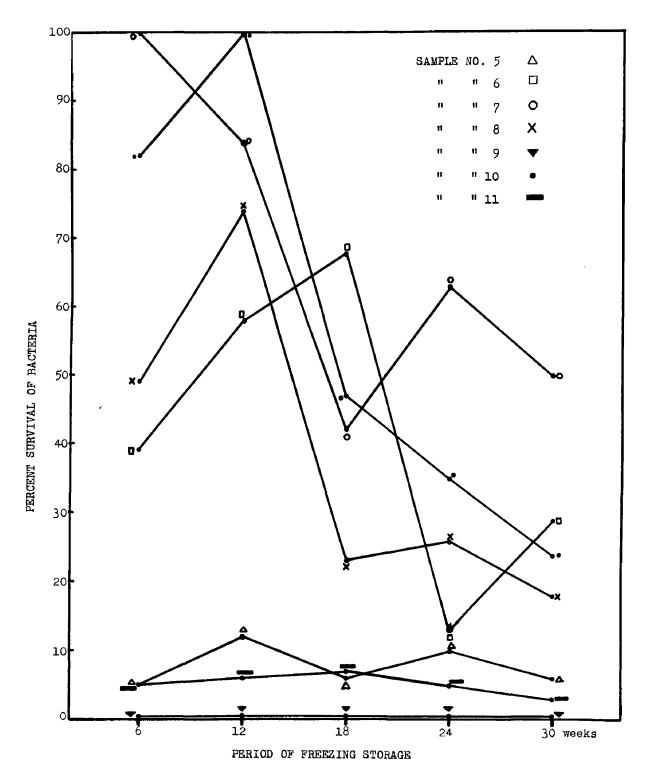


FIG. 2. SURVIVAL OF BACTERIA IN PEAS FROZEN AND STORED AT O° F.

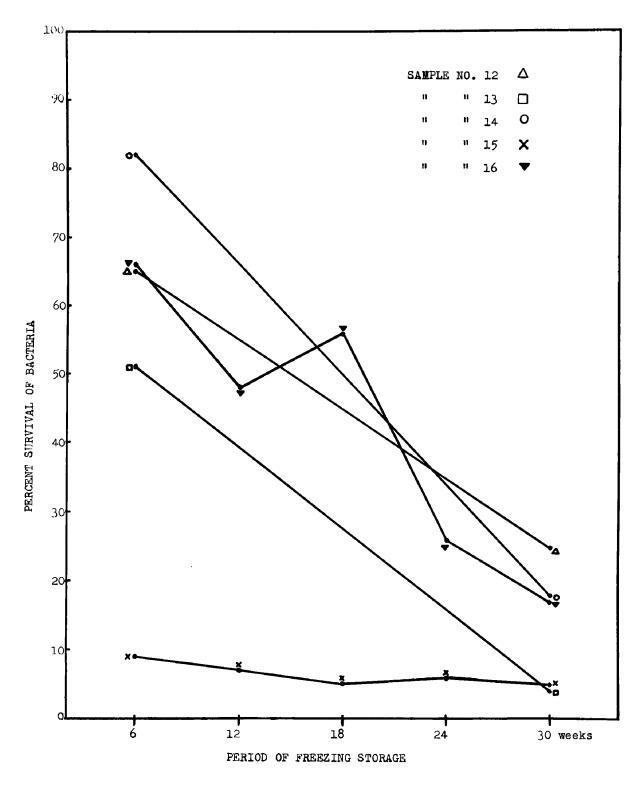


FIG.3. SURVIVAL OF BACTERIA IN CORN FROZEN AND STORED AT 0° F.

Table No.|

Survival of Bacteria in Frozen Vegetables

				Bacteria Count per Gram and Percentage Survival Period of Freezing									
Product				6 weeks		12 w	12 weeks		18 weeks		eeks	30 weeks	
	No.	Year	Fresh	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival
Asparagus	1	1935	4,500	1,535	34	2,300	51	1,100	24	2,100	47	860	19
"	2	1935	18,000	9,000	50	7,200	40	6,800	62	8,600	42	2,400	13
H	3	1936	38,000	32,000	84	26,000	68	19,000	50	12,000	32	8,600	23
**	4	1940	5,500	40	0.7	30	0.5	30	0.5	20	0.4	20	0.4
Peas	5	1935	15,000	750	5	1,750	12	900	6	1,550	10	950	6
14	6	1935	62,000	24,000	39	36,000	58	42,000	68	8,000	13	18,000	29
	7	1936	3,800	4,600	100	3,200	84	1,600	42	2,400	63	1,900	50
tt	8	1938	8,700	4,300	49	6,400	74	2,000	23	2,300	26	1,600	18
н	9	1940	12,000	20	0.2	20	0.2	20	0.2	20	0.2	10	0.1
n	10	1949	34,000	28,000	82	34,000	100	16,000	47	12,000	35	8,000	24
n	11	1949	80,000	4,000	5	4,800	6	5,200	7	3,600	5	2,400	3
Corn	12	1935	55,000	36,000	65	-		-		-		14,000	25
	13	1935	156,000	79,000	51	-		-		-		6,500	4
"	14	1935	78,000	64,000	82	-		-		-		14,000	18
	15	1949	172,000	16,000	9	12,000	7	8,000	5	9,600	6	8,200	5
H .	16	1949	96,000	63,000	66	46,000	48	54,000	56	25,000	26	16,000	17

Pederson (23) noted these increased counts following the initial freezing process and attributed them to the breaking up of bacterial clumps during freezing. He based his findings on microscopic examinations of the organisms in the products before and after freezing. However, in the opinion of the writer, while these findings might be partly true, they fail to explain how these fluctuations persist beyond the initial freezing process when the breaking up of bacterial clumps might be expected. Sample No. 2, Fig. 1, demonstrates this point. After 6 weeks' storage at O^OF. the microbial content of this product showed a survival of 50 per cent of the initial count. After 12 weeks there was a further reduction in count and the survival was approximately 40 per cent. At the 18-week period of analysis the count suddenly jumps and 62 per cent of the organisms are found to have survived the freezing process. From this period on there is a steady decrease in the microbial content through to the 30 week period. These fluctuations are more likely due to the uneven distribution of microorganisms on the product or to some properties peculiar to the particular types of organisms present. This latter statement will be discussed at greater length in connection with the pure culture studies which follow.

With the seven samples of peas the trend of counts

was similar to those of the asparagus (Fig. 2). Three samples showed a rapid reduction in counts during the first 6 weeks of freezing storage followed by a more or less stationary count which persisted throughout the entire storage period. Four other samples of peas showed survivals varying from 100 per cent to 39 per cent during the first 6 weeks of storage. These same four samples show considerable fluctuation in counts following the six-week analysis. After 30 weeks storage the seven samples of peas showed survivals of bacteria varying from 1 to 51 per cent.

While the results are not as complete as for asparagus and peas, five samples of corn, show the same degree of variation in the rate of survival of bacteria at the 6-week period of analysis (Fig. 3). After 30 weeks' storage survivals varied from 4 to 27 per cent.

Results of a study of the types of bacteria from 6 samples, both from the fresh products and from those frozen for 30 weeks, are given in Table 2. Sample No. 3, which showed a steady decline in numbers of bacteria from 84 per cent survival after 6 weeks' storage at $0^{\circ}F$. to 23 per cent after 30 weeks, showed a predominance of micrococci (60 per cent) with <u>Flavobacterium</u>, Table No.2

Survival of Types of Bacteria in Frozen Vegetables

Classification	 Percentage	of	Types

				Classification Percentage of Types									No	
Ident-		No. of Micro Bacteriaceae									Lacto-		Growth	
ification No.#	Product	n Product	Colonies Examined	coccus	Serratia	Flavo- bacterium	Chromo- bacterium	Achromo- bacter	Escher- ichia	Aero- bacter	Proteus	bacillus Bac	Bacillus	on Transfer
3	Asparagus (Fresh)	100	19	-	11	-	23	12	16	ı	14	4	-	
3	Asparagus (Frozen)##	100	60	-	15	-	10	3	2	-	9	1	-	
4	Asparagus (Fresh)	100	11	-	14	-	53	5	8	-	3	2	4	
4	Asparagus (Frozen)##	8	12	-	-	-	50	-	12	-	26	-	-	
· 7	Peas (Fresh)	50	17	1	16	2	8	25	16	-	12	2	1	
7	Peas (Frozen)##	50	44	-	22	-	3	1	-	-	30	-	-	
9	Peas (Fresh)	100	4	-	7	1	74	2	1	-	5	4	2	
9	Peas (Frozen)##	4	50	-	25	-	25	-	-	-	-	-	-	
15	Corn (Fresh)	100	6	1	4	-	46	15	18	-	2	4	4	
15	Corn (Frozen)##	100	58	-	24	-	8	-	-	-	4	-	6	
16	Corn (Fresh)	100	14	-	31		28	12	6	-	8	1	-	
16	Corn (Frozen)##	100	32	-	46	-	3	l	-	-	12	-	6	

Taken from Table 1.

30 weeks plus or minus 6 weeks.

<u>Achromobacter</u> and lactobacilli following with 15, 10 and 9 per cent respectively. <u>Escherichia</u>, <u>Aerobacter</u>, and <u>Bacillus</u> were present in small numbers.

Sample No. 7, which showed no reduction in numbers after 6 weeks' storage and 50 per cent after 30 weeks, showed a large proportion of micrococci (44 per cent) with lactobacilli and <u>Flavobacterium</u> following with 30 and 22 per cent respectively.

Sample No. 15, which showed a very rapid decline in numbers after 6 weeks of freezing storage, showed 58 per cent of the colonies isolated from the frozen product to be micrococci, 24 per cent were <u>Flavobacterium</u>, 8 per cent were <u>Achromobacter</u> and 4 per cent were lactobacilli.

Sample No. 16, which showed a survival of 66 per cent in numbers after 6 weeks and 17 per cent after 30 weeks, showed 46 per cent of the colonies in the frozen product to be <u>Flavobacterium</u> and 32 per cent micrococci. Twelve per cent wer lactobacilli with <u>Achromobacter</u> and <u>Escherichia</u> forming a small part of the microflora with 3 and 1 per cent respectively.

Too few colonies were examined from the frozen samples of Nos. 4 and 9 to permit making comparisons with other samples. While it is impossible to state definitely from the data presented that the types of bacteria influence the survival of numbers of bacteria in frozen products, there is some indication that the types present play an important role. Of particular interest is the fact that the number of types in the frozen product is considerably reduced when compared with those present in the fresh product. From the data presented in Table 2 it will also be noted that in the frozen product of all samples studied bacteria belonging to the genera <u>Micrococcus</u> and <u>Flavobacterium</u> formed a higher percentage of the total microflora than did the corresponding fresh sample. SLOW FREEZING VS. QUICK FREEZING ON NUMBERS OF MICROORGANISMS IN FROZEN PACK FRUITS AND VEGETABLES

Until a comparatively few years ago the usual method of freezing consisted of placing products to be frozen in a refrigerated room maintained at temperatures varying from -12.22°C. (10°F.) to -28.89°C (-20°F.). Although the air within such a room will circulate to some extent by convection, no provision was made for forced air circulation. The relatively still air is a poor conductor of heat and products are frozen at a comparatively slow rate, many hours or days being required before the products are completely solidified. This method is commonly known as the slow or "static" method of freezing. The term "quick freezing" refers to any method which incorporates some feature which speeds up the rate of freezing such as "contact" or "air blast" methods.

Few comparisons have been made of the effect of slow and quick freezing on microorganisms in frozen pack fruits and vegetables. Van Eseltine <u>et al</u>. (36), studying the effect of freezing on the bacterial content of frozen vegetables, subjected peas and corn to temperatures of liquid air, -51.1° C. (-60° F.), and -17.8° C. (0° F.). At the latter temperature products were frozen in "still air" both exposed freely to the atmosphere and in insulated boxes. These authors

- 33 -

state that freezing in liquid air and in an air blast at -60° F. resulted in such quick freezing that the bacterial content of the foods was essentially unchanged. However, this statement is not substantiated by the data presented since pronounced increases in counts are recorded in the -51.1°C. series. It is further stated that freezing at slower rates allowed multiplication of bacteria before the freezing temperature was reached. The Data presented show no greater increase after 1 and 2 hours' freezing at -17.8°C. than after 2 hours at -51.1°C. Substantial increases in counts are recorded in the series frozen in insulated boxes at -17.8° C. but this might be expected under such unusual circumstances since the rate of freezing is retarded considerably as these authors have demonstrated by the use of thermocouples.

Experimental

The present study was made with three products, asparagus, peas and strawberries. The products were packed dry in rectangular cartons. Some were frozen by the "static" method at both -28.89° C. (-20° F.) and -17.8° C. (0° F.), others by placing the cartons of the product between refrigerated coils at -20° F. Some products frozen by this contact method were also stored at 0° F. Initial analyses were made of the fresh products and again after one and six months' freezing storage. The results of these studies shown in Table 3 indicate a higher percentage survival of bacteria in vegetable products frozen contact at $-20^{\circ}F$. and stored at the same temperature when compared with the static frozen products stored at either $-20^{\circ}F$. or $0^{\circ}F$. The only exception to this was with the psychrophilic bacteria in peas which showed about the same percentage survival with both methods of freezing. Vegetable products frozen by contact $(-20^{\circ}F.)$ and stored at $9^{\circ}F.$ compared with those frozen and stored at $0^{\circ}F.$ showed variable results.

With strawberries the rate of freezing or temperature of freezing storage appeared to have little, if any, influence on the percentage survival of microorganisms.

A summary of the data presented in this table of both vegetable products shows an appreciably higher percentage survival with the contact method of freezing.

		Fresh		Contact - Frozen -20 ⁰ F.	Frozen		st -20 ⁰ F.	atic	- Frozen	0°F.
Product	Microorganisms	(Count per gram)	Stored 1 month	Perc -20 ⁰ F. 6 months	Percentage Stored hs 1 month	Survival 0 ⁰ F. 6 months	of Orig Stored 1 month	al 20 ⁰ F. months	Counts Stored I month	0 ⁰ F. 6 months
	Bacteria 20 ⁰ C.	5,525	64.9	50.5	24.7	20.8	36.2	26.4	28.2	20.8
Asparagus	Bacteria 4 ⁰ C.	1,245	50.6	57.8	58.2	57.8	20.9	11.2	15.7	17.7
	Bacteria 20 ⁰ C.	12,140	21.7	20.1	18.0	16.7	12•6	6.7	10.3	13.5
reas	Bacteria 4 ⁰ C.	13,260	3•8	3•5	6.7	у. У.	3•4	6 . 8	3•1	4.7
	Bacteria 20 ⁰ C.	478,000	48.4	5.2	60.8	2.1	52.5	6.7	64.2	10.2
SUTAWDERFLES	Bacteria 4°C.	315,400	63.5	12.4	86 . C	5.0	63.3	15.0	79.C	12.8
				S	Summary					
			LLA	All Contact Packs	cks		A	All Static Packs	acks	
Asparagus and Peas				30.1				15.1		
Strawberries				35.4				38.3		
All Products				31.8				22.8		

•

Effect of Slow vs. Quick Freezing on Numbers of Microorganisms in Frozen-Pack Vegetables and Fruits. Table 3. - 36 -

PURE CULTURE STUDIES

The types of bacteria found on fruits and vegetables are a heterogeneous assortment representing many different genera. Many are soil types since these products are usually in close contact with the soil, either during the actual period of growing or through contamination with soil organisms in the process of harvesting and subsequent handling.

Previous studies on the effect of freezing on pure cultures, as pointed out in the literature review, have been limited to pathogenic bacteria or to a few other well-known species. While these studies have added a great deal to our knowledge on the effect of freezing of bacteria, results of analyses of frozen fruits and vegetables have suggested that little, if any, relationship exists between some of these pure culture studies and the total microbial flora of fruits and vegetables. For this reason the present project was undertaken to make a detailed study of bacteria isolated from fruit and vegetable products.

Experimental

For the purpose of this study approximately 2500 colonies were isolated from a variety of fresh products including asparagus, peas, beans, raspberries and strawberries. The procedure of isolation consisted of plating portions of product, as previously outlined, on

tryptone glucose extract agar. Plates were incubated at three temperatures, 55°C. (131°F.) for thermophiles, 20 - 25°C. (68° to 77°F.) for mesophiles and 4° C. (39.2°F.) for psychrophiles. Following a period of incubation, (2 days for thermophiles, 4 days for mesophiles and 2 to 3 weeks for psychrophiles) 50 colonies or, if the number on the plate were less than 50, all colonies, were picked from the plates and transferred to tryptone glucose extract agar slopes. These were incubated at temperatures and periods corresponding to those of the initial plates. Following incubation the test tube cultures were separated on the basis of macroscopical and microscopical observations. Cultures which could not be classified generically by this separation were further inoculated into various test media for determination of biochemical characteristics which would facilitate classification to genera. The biochemical method of separation was used with organisms belonging to genera which were Gram negative rods and showed no chromogenesis such as Achromobacter, Escherichia, Aerobacter and Proteus. This method of isolation provided a number of representative cultures of the three groups, thermophiles, mesophiles and psychrophiles, which were used as test cultures to study the effect of freezing. All final cultures were purified by the usual plating and re-isolation technique, and before using for study were given at least 4 consecutive transfers in the case of thermophiles and mesophiles and 2 for psychrophiles.

PREPARATION OF CULTURES FOR FREEZING STUDIES

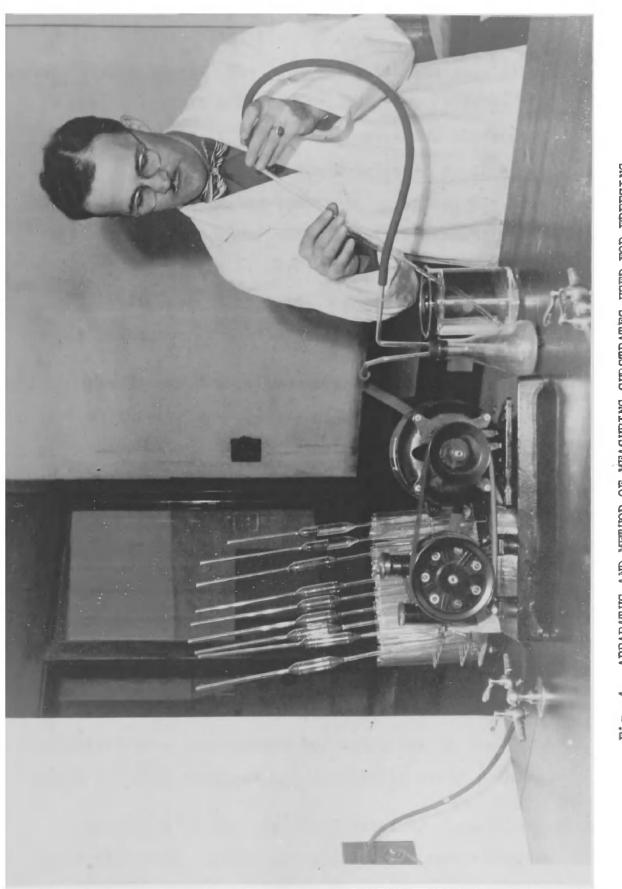
In the initial studies attempts were made to grow the cultures, prior to freezing, in nutrient broth. This would have greatly facilitated the problem of diluting the organisms and of obtaining a more even distribution of the test organism. However, for some unknown reason many organisms grown in a nutrient broth, particularly thermophiles, disappeared after the second or third transfer. Accordingly, all cultures used in this work were grown on tryptone glucose extract agar slopes and just before use suspensions were prepared by adding sterile water to the agar culture. The growth was scraped from the surface of the agar and the heavy suspension of organisms was transferred to a sterile tube and shaken for 15 minutes on a mechanical shaker. In the early experiments these mixed suspensions were put through a fine grade filter paper with the object of breaking up any clumps of bacteria. However, subsequent tests showed this filtering process to be of no value for this purpose and the practice was discontinued. Trials with finer filters resulted in a loss of organisms.

The standard method adopted following shaking was to dilute the cultures to a point where a satisfactory plate count was subsequently obtained. A number of methods were tried to facilitate the preparation of

- 39 -

suitable dilutions. Microscopical estimations of numbers were disappointing since not only was considerable time required to make counts of bacteria but the final results showed no correlation with the plate counts.

The most satisfactory method found was to dilute the test culture to a definite turbidity which would provide a final plate count, in one of the four dilutions used, between 30 and 300 colonies. It is impossible to describe the "desired turbidity" but with constant practice it is possible to obtain satisfactory plate counts with very few "misses". The one group of organisms which proved the most difficult with this turbidity method was the spore formers. Generally it was necessary to use a different turbidity factor with this group of bacteria due to the presence of flaky particles in these suspensions. When a satisfactory dilution was prepared it was shaken mechanically for 15 minutes and the turbidity again checked.


The final dilution was prepared by pipetting 1 ml. of the above-prepared dilution into carefully calibrated 25 ml. portions of sterile water or other substrate in large 1" x 8" test tubes. Since many hundreds of these carefully calibrated 25 ml. substrate were required it was necessary to devise a means of measuring the quantity accurately in minimum time. The procedure used which has proved satisfactory is shown in Fig. 4.

The inoculated substrate was shaken mechanically for 5 minutes and 1 ml. withdrawn for the initial analysis to determine the number of organisms in the suspension going into the freezer.

A separate tube of inoculated substrate was required for each period of analysis; usually 9 or 10 tubes were prepared for each series. To give some idea of the scope of this phase of study, for each organism tested in one substrate for 9 periods of freezing an outlay of 72 petri plates was required. The usual practice was to make a study of 8 test organisms at one time in one substrate. This involved a total outlay of 576 petri plates. While this number was not excessive for tests on thermophilic or mesophilic bacteria where the return of plates into service was only a matter of days, the time required for the return of plates from tests with psychrophilic bacteria was 3 In view of the time factor with this latter weeks. group it was necessary to curtail some of the studies with psychrophiles.

The time required from the inoculation of one

- 41 -

series of tubes until placing in the freezer never exceeded 2 hours. The tubes of substrate were placed in the freezer in a horizontal position (Fig. 5) for two purposes: 1, if frozen vertically the tubes will break due to expansion of the substrate; 2, in a horizontal position the substrate is spread out in a relatively thin layer which facilitates faster freezing. Freezing of pure cultures was at -17.8° C. $(0^{\circ}$ F.), with air blast using a large fan placed directly in front of the rack holding the tubes.

When removed from the freezer for analysis at various intervals the tubes of suspension were placed in a water bath at approximately 100°F. The tubes were continually agitated and just before the last trace of ice disappeared they were removed and shaken mechanically for 5 minutes. One dilution was made from the substrate by pipetting 1 ml. into a sterile 99 ml. water blank. Four quantities of the substrate were used to inoculate duplicate plates of tryptone glucose extract agar (1.0 and 0.1 of the dilution from the substrate and 1.0 and 0.1 ml. from the substrate itself). The plates were incubated at a temperature corresponding to that from which the test organism had originally been isolated.

The study of the effect of freezing of test organisms under different conditions is discussed under various headings.

- 43 -

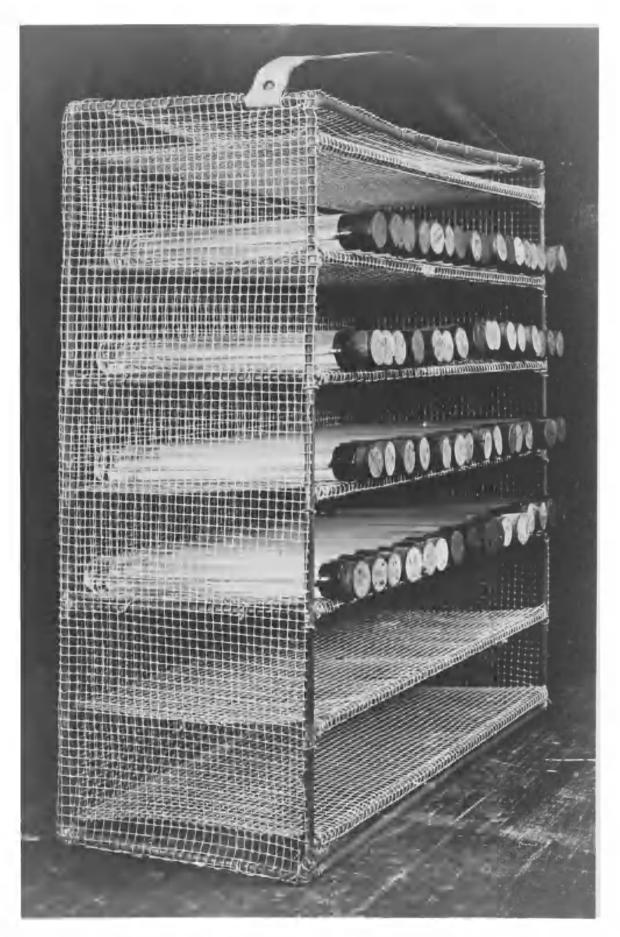


Fig. 5. SPECIAL RACK USED FOR HOLDING TUBES OF SUSPENSIONS IN FREEZING STORAGE

EFFECT OF FREEZING ON BACTERIAL CELLS

The late Dr. Haines assumed that freezing might result in an increased cell size or in actual bursting of cells due to expansion during the freezing process but reported that he was unable to observe any change in the size or shape of microbial cells due to freezing (5).

In the present study, as a matter of interest, microscopical measurements were made of 50 cells of each of 5 bacteria and one yeast culture before freezing, and again after freezing for one week at -17.8°C. (0°F.). The results substantiated the earlier work of Haines since there was no evidence of increased cell size nor were any broken or distorted cells observed. Plans were made to conduct electron microscope studies to determine if there were any differences in the unfrozen and frozen cells which could not be observed under the magnification of the usual microscope. However, the writer was advised that the treatment the cells would be subjected to in preparation for electron microscope studies would probably eliminate any differences which might exist between the fresh and frozen cells.

The rate of growth of six bacterial cultures and one culture of yeast was determined before freezing and after freezing for 72 hours at 0 F. The rate of growth was determined using a 0.5 per cent peptone solution inoculated with a suspension of the test organism. Plate counts were made every 2 hours up to 12 hours and a final count made after 24 hours. Similar tubes of 0.5 per cent peptone were inoculated and frozen for 72 hours at 0° F. and the mate of growth again determined by plating similar to the series described above. While the results showed some variation in counts the averages for the two series were similar.

The ability to ferment dextrose broth was also studied with the same seven cultures before and after freezing, using the peptone broth cultures of the above series. Following inoculation of the dextrose broth 2 ml. of sterile petrolatum was placed on the surface. This seal provided a reliable means of measuring the amount of gas produced during fermentation. The results indicated that there were no important differences in either the rate or amount of gas produced in cultures subjected to freezing.

The effect of freezing on the chromogenic properties of three species of bacteria was studied using cultures of <u>Serratia marcescens</u>, <u>Chromobacterium</u> <u>violaceum</u> and <u>Sarcina lutea</u>. Freezing in water at O^OF. for a period of one week resulted in a loss of colour

- 46 -

for almost 50 per cent of the colonies of <u>S. marcescens</u> and 72 per cent of the colonies of <u>C. violaceum</u>. However, when these colourless colonies were transferred for 4 consecutive days, 20 per cent of the <u>Serratia</u> and 3 per cent of the <u>Chromobacterium</u> colonies again produced chromogen. The yellow chromogen of <u>S. lutea</u> was not affected by freezing.

These data suggest that freezing has little, if any, effect on the metabolism of microbial cells which survive the freezing process. One possible exception to this statement might be the chromogenic properties of some microorganisms. However, this phase requires further study since it has been noted from other experiments in which freezing has not been involved that chromogenic bacteria frequently lose their power to produce pigment.

EFFECT OF FREEZING DIFFERENT SPECIES OF BACTERIA IN WATER AT -17.8°C.(0°F.)

Preliminary studies indicated that there was no difference between freezing cultures in tap or distilled water. However, since the pH of Ottawa tap water varies considerably from one period of the year to another distilled water was used as substrate throughout this study.

Eighty cultures of bacteria representing different

genera of bacteria as listed in Tables 4, 5 and 6 were subjected to freezing at $0^{\circ}F$. Twenty-eight of these cultures were thermophiles, 35 were mesophiles and 17 were psychrophiles. Some of the latter cultures were not obligate psychrophiles since many were found to grow as well at 20 - 25°C. as at $4^{\circ}C$. However, all 17 cultures grew well at the lower temperature. An initial analysis was made of prepared cultures before freezing and after 4, 8, 12, 24, 48, 72, 96, 120 hours and finally after 6 weeks storage at $0^{\circ}F$.

The results of these studies are shown in Tables 4, 5 and 6. Probably the most significant feature of these results is the enormous differences which exist between various species of bacteria subjected to freezing temperatures. The results of freezing cultures of thermophilic spore formers whown in Table 4 indicate that at the 4-hour period the rate of survival varied from 1 to 100 per cent. The survival after 8 hours ranged from 8 to 100 percent; after 12 hours from 3 to 100 per cent; after 24 hours from 1 to 100 per cent; after 48 hours from 1 to 98; after 72 hours from 1 to 52; after 96 hours from 1 to 38; after 120 hours from 1 to 30 and finally after 6 weeks from 1 to 22 per cent. With few exceptions the thermophiles followed a more definite pattern than the mesophiles or psychrophiles. In other words, most species of thermophiles showed a steady reduction in numbers throughout the freezing period. After 6 weeks' freezing storage 25 of the 28 cultures (89 per cent) showed less than 10 per cent survival.

Results of a study with mesophilic bacteria frozen in water at 0° F. are shown in Table 5. These results indicate that mesophiles are considerably more resistant to freezing than thermophiles since a greater percentage survival is noted at the various periods of analysis of freezing storage. After 4 hours the percentage survival varied from 15 to 100; after 8 hours 5 to 100; after 12 hours 4 to 100; after 24 hours 1 to 100; after 48 hours 1 to 88; 72 hours 1 to 94; 96 hours 1 to 87; 120 hours 1 to 92 and finally after 6 weeks 1 to 75. Only 20 of the 35 mesophilic cultures showed a survival of less than 10 per cent after 6 weeks freezing storage.

With the mesophilic bacteria studied, considerable fluctuation in counts from one period of analysis to another may be noted with many individual cultures. These fluctuations are considerably more pronounced with mesophilic than with the thermophilic bacteria.

The psychrophilic bacteria subjected to freezing followed a pattern similar to that of the mesophiles although during the first 72 hours there was a decidedly greater resistance to freezing snown by the

٦

Survival of Thermophilic Bacteria Frozen in Water at $0^{\circ}F_{\bullet}$

Count per ml. Substrate in Thousands and Percentage Survival.

Period	of	Freezing	at	0°F.	

		4 hor	urs g	8 hou	urs ≰	12 h	ours ≰	24 h	ours	48 h	ours	72 h	ours C	96 h	ours K	120	hours	6 we	eks ≪
Cult. No.	Initial Count	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival
72 776 802 846 88 99 99 99 101 100 99 100 100 1284 2278	2,000 1,600 1,600 1,800 2,000 1,200 1,200 12,000 12,000 12,000 12,000 132 132 132 132 132 132 132 132 132 132	560 160 112 14,000 2,00 1,000 2,400 2,500	280000 1000 1458 8500 222 665 400 855 400 858 18 1700 1700 1700	$\begin{array}{c} 320\\ 128\\ 129\\ 12,300\\ 220\\ 220\\ 1,800\\ 996\\ 1,900\\ 1,900\\ 132\\ 32\\ 32\\ 32\\ 1,51\\ 222\\ 1,350\\ 234\\ 128\\ 322\\ 220\\ 9,99\\ 85\\ 43\\ 43\end{array}$	168 1088 394 1145 384 10326 0229 00026 11857 778	$\begin{array}{c} 360\\ 96\\ 110\\ 11,800\\ 22\\ 160\\ 384\\ 132\\ 2,600\\ 134\\ 132\\ 2,200\\ 134\\ 12\\ 128\\ 13\\ 153\\ 16\\ 232\\ 153\\ 88\\ 220\\ 17\\ 5\\ 164\\ 232\\ 153\\ 31\\ 31\\ 31\\ 31\\ 31\\ 31\\ 31\\ 31\\ 31\\ 3$	$\begin{array}{c} 18 \\ 6 \\ 1004 \\ 264 \\ 8 \\ 342 \\ 2008 \\ 192 \\ 1002 \\ 289 \\ 192 \\ 1002 \\ 4 \\ 11 \\ 1002 \\ 4 \\ 11 \\ 132 \\ 1002 \\ 13 \\ 1002 \\ 4 \\ 11 \\ 14 \\ 320 \\ 13 \end{array}$	400 16.1 100 200 132 8800 1364 13.4 1.56 233 13.4 1.56 233 11 1,350 200 136 1,350 200 100 200 200 106 200 106 200 136 43 43	13 6 8 9 11 8 43 10	$500 \\ 168 \\ 800 \\ 24 \\ 7.4 \\ 7.4 \\ 385 \\ 1.000 \\ 239 \\ 7.7 \\ 120 \\ 7.4 \\ 320 \\ 1.29 \\ 7.4 \\ 320 \\ 129 \\ 7.4 \\ 320 \\ 17 \\ 11 \\ 93 \\ 180 \\ .72 \\ 3.4 \\ 4.9 \\ 3.6 \\ 26 \\ 100 \\ $	218001811226988044211589412031141	240 16 44 7,300 207 36 36 372 119 3.36 119 3.52 12.35 13 255 44 12.09 355 13 255 44 100 57 2 32 32 32 32 32 35 35 35 35 35 35 35 35 35 35	1144214296944017518186216194	$\begin{array}{c} 160\\ 16.5\\ 1\\ 3\\ 1\\ 500\\ 240\\ 24\\ 600\\ 120\\ 120\\ 13\\ 1.9\\ 20\\ 120\\ 13\\ 1.9\\ 16\\ 20\\ 17\\ 18\\ 120\\ 1\\ 17\\ 18\\ 220\\ 1\\ 7\\ 230\end{array}$	8 181 10 16 20 1 12 4 9 1 1888 11 1 149 13	$\begin{array}{c} 200\\ 15.4\\ 15\\ 1,304\\ 10\\ 14\\ 324\\ 334\\ 10\\ 14\\ 324\\ 36\\ 480\\ 11\\ 3.4\\ 15\\ 6\\ 480\\ 11\\ 24\\ 15\\ 6\\ 8\\ 22\\ 20\\ 65\\ 6\\ 8\\ 22\\ 30\\ \end{array}$	101492111136414486131130111449213	120 14 13 1,100 1.8 24 30 94 10 19 8.5 5 58 11 23 54 .20 .5 5 58 11 23 54 .20 .5 5 58 11 23 54 .20 .5 5 58 11 23 54 .20 .5 5 58 11 20 .5 5 58 11 20 .5 5 58 11 20 .5 5 58 11 20 .5 5 58 11 20 .5 5 58 11 20 .5 5 58 11 20 .5 5 58 11 20 .5 5 58 11 20 .5 5 58 11 20 .5 5 5 58 11 20 .5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6128121125112123517021111247
	Average		46		41		33		21		19		13		9	-	7		4

Survival of Mesophilic Bacteria Frozen in Water at $0^{\circ}F$.

Count per ml. Substrate in Thousands and Percentage Survival Period of Freezing

									Period	l of F	reesing									
	0		4 ho	175	8 PO	178	12 h		24 h	urs	48 h		72 h	ours	96 h	ours	120	hours	6 100	e ka
Cult.	Generio Class-	Initial		sur-		aur-		\$ sur-		sur-		\$		*				*		8
Xa.	ification		Count		Count		Count	vival	Count		Count	sur- vival	Count	Sur- Vival	Count	sur- vival	Count	SUF- vival	Count	sur- vival
42	Achrono-							_			·									
	bacter	5,500 3,900 6,000	1,600 1,700 4,500	29	1,500	28	1,200 160	22	830	15	260	5	230	4	114	2	139	3	72	1
48 35	Bacillus	3,900	1,700	44	2,100	54 50	160 3,000	4 50	710 1,200	15 18 20	2,300	59 2	760 360	19	1,200	31	139 3,600 80	92 1	72 240	16
37	Flavo-									20		-	-		150	-	00	1	12	1
50	bacterium	5,300	3,600 3,400	68 100	2,800	53 93 5	3,000	57 93	3,300 2,000	62	4,000	75 44	5,000 1,000	94 37	4,600	87 48	4,400	83	2,100	40
50 39	Bacillus	28,000	10,000	36	1,400	73	2,500	9 3 4	2,000	74	1,200	44	1,000	37	1,300	48	600 88	30 1	900	33
52	Aero- bacter		•		•							-		-		-		-		•
	aerogenes	16,000	18,000	100	7,200	45	1,600	10	240	2	200	1	89	1	40	1	28	1	9.8	1
53	Achrono-	•	4 100	100	• •								-			-				
56 67	bacter	4,000 280	4,100	100 43	1,800	45 64	3,600	90 86	4,000	100 29	870 116	22 41	120 41	3 15	430 68	11 24	560 12	14	12 2.8	1
67	Lacto-	18 000	10 000	-		0.0												•		-
64	bacillus Achromo-	18,000	18,000	100	16,000	89	12,000	67	7,000	39	4,200	23	1,800	10	190	1	190	1	140	1
	bacter	26,000	26,000	100	8,900	34	14,600	56	22,000	85	12,200	47	4,000	15	2,600	10	820	3	98	1
41	Flavo- bacterium	14.600	12,300	84	10,200	70	12,100	83	9,300	64	10,000	68	8,600	59	6,900	47	4,200	29	1,800	12
51	*	140	92	66	120	86	68	49	62	44	86	61	· 48	34	29	21	- 36	26	24	17
51 54 63	Micro-	5,800	2,900	50	3,600	62	1,300	22	920	16	900	16	1,200	21	1,100	19	410	7	189	3
	COCCUS	22,000	20,000 2,900	91	18,600	85	20,000	91 73	16,600	<u>75</u>	15,200	69	16,200	74	14,100	64	12,900	59	8,100	37 30
66 70		2,600	2,900	100 61	2,100	81 30	1,900	29	2,000	77 35	1,800	69 32	1,100	22 39	1,200	46 27	820 520	32 26	780	30 24
70 69	Achrono-					-		· · ·				-	•			-	•		-	
43	bacter Flavo-	12,400	1,800	15	6,500	52	4,400	35	820	7	2,400	19	1,900	15	600	5	260	2	76	1
-	bacterium	8,600	6,200	72	4,100	48	2,200	26 84	3,100 8,900	36	2,000	23 42	1,800	21	1,800	21	1,600	19	1,100	13
55 36 38	Bacillus	24,000	26,000 2,100	100 19	24,000 2,800	100 25	20,200	84	8,900 124	37 1	10,100	42 1	6,400 32	27 1	2,200	9	840 6.2	4	172	1
38	Bacillus	•	-		-	-		+		-	• •	-	-			-				
62	mycoides Micro-	4,100	4,000	98	1,200	29	320	8	300	7	182	4	94	2	36	1	24	1	8.2	1
	coccus	13,300	16,000	100	15,400		14,000	100	12,600	85	9,200	69 88	8,800	66	4,900	32	2,600	20	1,800	14
40 68	Serratia Sarcina	16,000	16,000	100	16,000	100	16,000	100	14,000	88	14,000	00	9,000	56	12,000	75	13,000	81	12,000	75
	lutea	1,200	1,000	83	1,200	100	860	72	920	77	940	78	820	68	870	73	790	66	800	67
65	Lacto- bacillus	1,800	1,300	72	1,100	61	920	51	148	8	120	7	120	7	88	5	76	4	38	2
44	Achromo-	•					-	•						-	82	-			68	
47	bacter Bacillus	4,300 33	5,200 26	100 79	4,300	100 73	1,400	33 39	2,600	60 27	94 10	2 30	186	4 24	8.5	2 26	100	2	3.2	
49								•••	•	-,		•							•	
-7	Clos- tridium	12,600	7,800	62	5,100	40	6,200	49	2,800	22	820	7	600	5	128	1	92	1	8.8	1
58	Flavo-	-		100	128	91	116	83	112	80	102	-	108		~	69	98	70	86	61
60	bacterium	140 1,600	140	100 69	1,300	81	1,000	63	840	53	920	73 58	640	46	96 680	43	420	26	388	24
59	Achromo-			100		67		76	0 000	71	1 200	86	5,400	39	980	7	1,200	9	640	
117	bacter Escher-	14,000	14,300	100	8,600	61	10,600	76	9,900	71	1,200		2,400	27	900	'	1,200	7		-
	1ch1a			~	16 000	~~	0 000	18	3 000	6	400	,	1,500		320	1	900	2	480	1
490	coli Staphylo-	49,000	25,000	51	16,000	33	9,000	10	3,000	0	490	1	1,00	3	520	-		2		•
.,.	coccus			100	10.000	94	15 000	68	15.000	68	12.000	55	11,000	50	3.000	14	12.000	55	2,600	12
57	aureus Flavo-	22,000	24,000	100	19,000	86	15,000	00	15,000	60			•	•	•,	_			•	
	bacterium	980	600	61	650	66	590	60	520	53	360	37	480	49	220	22	186	19	82	8
	Average			75		63		53		44		38		30		24		23		14

Survival of Psychrophilic Bacteria Frozen in Water at O^oF. Count per ml. Substrate in Thousands and Percentage Survival

									Period (ezing									
			4 hou	IFS	8 ho	urs	12 h	ours	24 h	ours	48 h	JURS	72 h	ours	96 h	ours	120	hours	6 we	eks
Cult. No.	Generic Class- ification	Initial Count	Count	% sur- vival	Count	% sur- vival	Count	\$ sur- vival	Count	\$ sur- vival	Count	sur- vival	Count	sur- vival	Count	\$ sur- vival	Count	sur- vival	Count	sur- vival
2	Flavo- bacterium	170	90	53	67	39	56	33	47	28	39	23	31	18	22	13	18	11	9	5
3	Lacto- bacillus Micro-	1,300	936	72	885	68	675	52	625	48	720	15	130	10	26	2	7.5	1	4.6	1
2	coccus Achromo-	6,200	5,950	96	6,400	100	5,700	92	5,000	82	4,300	70	3,780	61	2,200	36	1,490	24	1,100	18
8	bacter Flavo-	400	450	100	136	34	420		250	62	375	94	325	-	90 (01	22	56	14	3.2	1
9 14	bacterium " Achromo-	1,600 120	1,800 125	100 100	1,600 118	100 98	1,900 110	100 92	1,700 89	100 74	1,180 36	74 30	990 50		624 36	39 30	655 25	41 21	255 13	16 11
18	bacter Flavo-	3,000	2,300	76	3,100		2,800		3,000		1,900	64	1,400		630	21	360	12	27	1
19 20	bacterium "	205 1,200 800	125 1,400 670	61 100 84	77 1,300 655	38 100 82	46 1,100 610	94	53 910 480	26 76 60	64 890 495	31 74 62	43 420 345	35	38 550 305	19 46 38	32 230 280	16 19 35	17 120 175	8 10 22
21 22	Chromo- bacterium Lacto-	12,000	10,700	89	9,400	78	5,000	42	4,300	36	2,000	17	960	8	16	1	4.2	1	•3	1
24	bacillus Flavo-	4,300	5,200	100	5,000	100	3,700		2,240	52	1,000		775		775	18	345	8	130	З
26 27	Achromo-	270 158	300 89	100 56	300 98	100 62	265 93	98 59	203 43	75 27	105 62	39 39	127 49		32 72	12 46	70 56	26 36	24 34	9 22
27 29	bacter Lacto-	14,000	14,000	100	13,700	98	5,600	40	3,600	26	15,000	100	10,000	• -	3,900	28	5,000	36	128	1
31	bacillus Flavo-	2,100	1,930	92	2,000	96	2,000	97 5(2,200	100	1,155	55	965		609	29	735	35 8	590	28
	bacterium Average	22,000	26,000	100 87	24,000	100 82	16,700	76 74	13,600	62 61	3,960	18 49	5,700	26 39	3,000	14 24	1,760	8 20	960	12 10
	Average			87		82		74		61		49		39		24		20		

.

psychrophilic bacteria. However, following the 72 hour period the results were similar to those of the mesophiles. With the psychrophiles, 9 of the 17 cultures (53 per cent) showed a survival of less than 10 per cent after 6 weeks' freezing storage.

A graph showing the effect of freezing on the three groups of organisms is presented in Fig. 6. The figures for this graph are the average percentage survivals for each period of freezing for all organisms studied in each of the three groups. These results indicate that the thermophiles are the least resistant to freezing, showing the least survival of the three groups at the 4 hour period. This marked reduction during the initial freezing process was followed by a still further sharp reduction up to the 24-hour period, following which the reduction was more gradual.

Mesophiles and psychrophiles, as indicated in this graph, are considerably more resistant to freezing than the thermophiles. The mesophiles and psychrophiles follow a similar pattern throughout the freezing storage although the psychrophiles show a faster rate of destruction after 24 hours. However, towards the end of the storage period there is practically no difference in the rate of survival between these two groups.

- 53 -

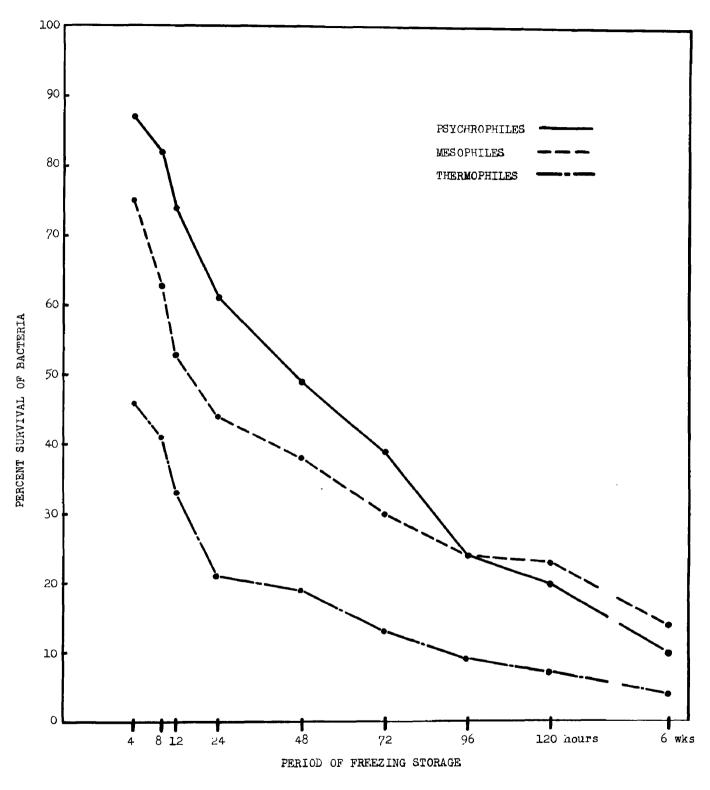


FIG. 6. SURVIVAL OF PSYCHROPHILIC, MESOPHILIC, AND THERMOPHILIC BACTERIA FROZEN IN WATER AT O° F.

Survival of Different Types of Bacteria Frozen in Water at O^oF.#

					Pe	rcentage Su	rvival			
Cult. No.		4 hours	8 hours	12 hours	Pe: 24 hours	riod of Fre 48 hours	ezing 72 hours	96 hours	120 hours	6 weeks
42 44 53 56 59 69	Achromobacter " " " " " " " " " " " " "	29 100 44 100 43 100 100 15 66	28 100 54 45 64 61 34 52 55	22 33 4 90 86 76 56 35 50	15 60 18 100 29 71 85 7 48	5 22 59 22 41 86 47 19 35	4 19 15 15 15 15	2 31 11 24 7 10 5 12	3 2 92 14 4 9 3 2 16	1 1 6 1 1 4 1 2
35 36 39 47	Bacillus " " " Average	75 19 98 36 79 61	50 25 29 73 36	50 8 8 4 39 22	20 1 7 1 27 11	7 1 4 2 30 9	6 1 2 1 24 7	2 1 1 26 6	1 1 1 4 2	1 1 1 10 3
37 41 551 557 560	Flavobacterium " " " " " " " " " " " "	68 84 72 100 66 50 100 61 100 69 77	53 70 48 93 86 62 100 66 91 81 75	57 26 93 492 84 60 83 63 62	62 664 364 466 373 803 552	758 23 44 16 42 738 550	94 59 21 37 21 27 49 77 40 46	87 47 21 48 29 29 69 39	83 29 19 26 7 4 19 70 26 31	40 12 13 33 17 3 1 8 61 24 21
62 63 66 70 490	Micrococcus " " " N Average	100 91 100 61 100 90	100 85 81 30 86 76	100 91 73 29 68 72	95 75 75 88 70	69 69 32 55 59	66 74 42 39 50 52	37 64 27 14 38	20 59 32 26 55 38	14 37 30 24 12 23
65 67	Lactobacillus " Average	72 100 86	61 89 75	51 67 59	8 39 24	7 23 15	10 9	5 1 3	4 1 3	2 1 2
40	Serratia	100	100	100	88	88	56	75	81	75
5 2	Aerobacter aerogenes	100	45	10	2	1	1	1	1	1
49	Clostridium	62	40	49	22	7	5	1	1	1
117 68	Escherichia coli Sarcina lutea	51 83	33 100	18 72	6 77	1 78	3 68	1 73	2 66	1 67

- Data taken from Tables 5

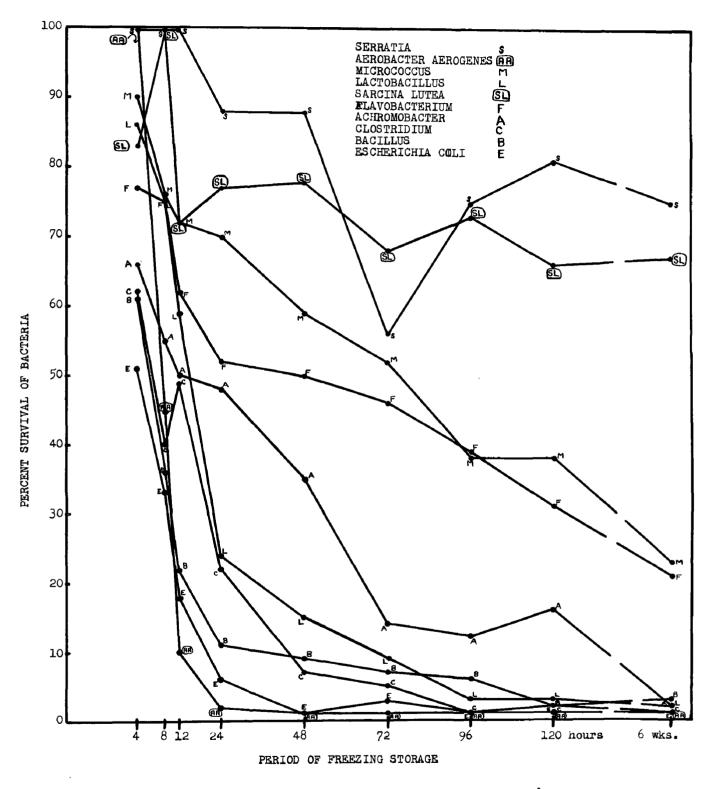


FIG.7. SURVIVAL OF DIFFERENT TYPES OF BACTERIA FROZEN IN WATER AT 0° F.

A further analysis of the data on mesophilic bacteria taken from Table 5 on the survival of different types is shown in Table 7 and Fig. 7. These data show that the cultures of Serratia and of Sarcina lutea, followed by members of the genera Micrococcus and Flavobacterium, were more resistant to freezing than any of the other groups studied. Although enormous differences in the rate of survival are evident in the early hours of freezing, members of the genera Aerobacter, Escherichia, Lactobacillus, Bacillus, Clostridium and Achromobacter all showed approximately the same survival after 6 weeks' freezing storage. Even after 24 hours' freezing storage the difference in survival rates with these groups had narrowed considerably so that by 72 hours there was very little difference.

EFFECT OF FREEZING ON THREE CULTURES OF

ESCHERICHIA COLI.

The fact that there was considerable variation in the rate of survival of different species of bacteria when subjected to freezing led to a study with three cultures of Escherichia coli to determine whether or not similar variations existed within the species. The cultures used in this study were isolated from widely different sources. Culture No. 1 was obtained from sewage, No. 2 from water and No. 3 from fresh beans. All three cultures produced biochemical

- 57 -

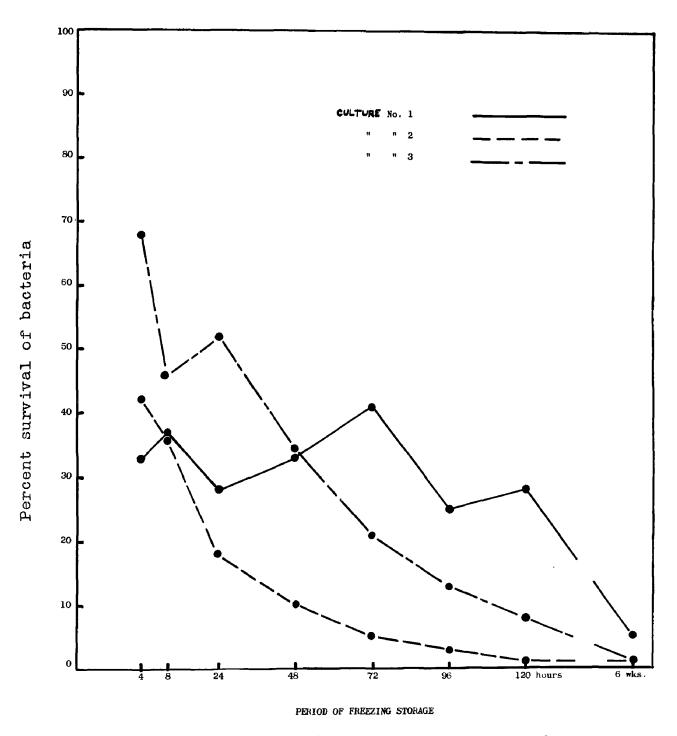


FIG.8 SURVIVAL OF THREE CULTURES OF ESCHERICHIA COLI FROZEN IN WATER AT O° F.

reactions in various test media typical for <u>Escherichia</u> coli.

Aqueous suspensions of the three cultures were prepared as previously described and following an initial analysis were frozen at $0^{\circ}F$. Further analyses were made after intervals of freezing storage from 4 hours to 6 weeks.

From the results presented in Fig. 8 it will be observed that even cultures of the same species exhibit considerable variability when subjected to freezing. The culture isolated from sewage, (No. 1) which showed the greatest destruction in numbers during the first 4 hours of freezing, also showed the greatest fluctuation throughout the freezing storage. Between cultures Nos. 2 and 3 there was considerable difference in the rate of survival during freezing storage up to the 120-hour period. However, after 6 weeks' storage both showed the same percentage survival.

EFFECT OF FREEZING BACTERIA IN DIFFERENT SUBSTRATES

It has been known for many years that the rate of microbial destruction due to freezing is greatly influenced by the character of the medium in which the organism is suspended. Keith (13) found that when <u>E. coli</u> was frozen in milk diluted to various degrees with water the death rate of this organism increased with the dilution, the largest number surviving in the undiluted milk and the fewest in that containing the most water. No figures are given in Keith's paper of the survival of <u>E. coli</u> with the various concentrations of milk.

Hilliard and Davis (8), comparing the effect of freezing <u>E. coli</u> in glucose and in tap water solutions, found considerable variation in the percentage of organisms killed in these two substrates. With glucose solutions frozen solidly at -10° C. (14° F.) for 3 hours the percentage killed varied from 77.5 to 99 while in tap water solution the percentage killed ranged from 98.1 to 99.8.

Wallace and Tanner (43) mention that they froze a number of cultures of bacteria, yeasts and moulds in concentrations of 1 to 6 per cent sodium chloride and in concentrations of sucrose varying from 10 to 50 per cent. However, no results are given for any of these experiments in the published paper.

McFarland (21) froze cultures of a <u>Saccharomyces</u> <u>sp.</u> and of <u>Escherichia coli</u> in distilled water and in concentrations of sucrose varying from 1 to 50 per cent. He found considerable variation in results. At -10° C. $(14^{\circ}$ F.) in all concentrations of sucrose and in distilled water the destruction was greater than at -20° C. $(-4^{\circ}$ F.). The yeast at -10° C. showed a 99.5 per cent kill on the 28th week in distilled water while in the 50 per cent sucrose in the same period of time it showed only a 15.4 per cent kill. However, the 20 per cent sucrose showed a kill about the same as in distilled water in the same period. Even more peculiar results were evidenced after the first week of freezing when the results with the 5 and 10 per cent sucrose showed no kill and yet the heavier concentrations which might be expected to provide more protection showed kills varying from 4 to 25 per cent.

With Escherichia coli frozen in distilled water and various concentrations of sucrose at -10° C., all showed a high percentage kill after 32 weeks, indicating that even the highest concentration of sucrose used (50 per cent) afforded little protection to this organism. At the lower temperature (-20° C.) the percentage kill varied considerably after 32 weeks of freezing storage. Suspended in 30 per cent sucrose this organism showed a kill of 74.8 per cent while with 50 per cent sucrose a kill of 85.7 per cent was observed.

The present investigation was concerned with studying the effect of freezing on cultures of bacteria isolated from vegetable products. In all, seven cultures were used, three of which were thermophilic spore formers (<u>Bacillus spp.</u>) the remaining four were mesophiles, one belonging to the genus <u>Achromobacter</u>, two <u>Micrococcus spp</u>. and one <u>Escherichia</u> <u>sp</u>: Eight different substrates were used, including distilled water, 3 per cent salt, a vegetable extract prepared by boiling green beans and using the filtered extract (ph of the vegetable extract 5.60; specific gravity 1.014), and 5, 10, 20, 30 and 40 per cent sucrose solutions. These substrates were chosen for their similarity to the liquid portion of frozen fruit and vegetable products. The substrates were prepared and accurately measured using a volumetric pipette as previously outlined. The periods of analysis ranged from 4 to 120 hours, while a final examination was made after 6 weeks at $0^{\circ}F$.

Results of these studies are shown in Tables 8 to 15 and in Figs. 9 to 16. These data indicate the extreme variability which may be encountered with certain species of microorganisms when subjected to freezing. Of particular interest are the results presented in Tables 8 and 9 and Figs. 9 and 10 on the effect of freezing in different substrates a species of <u>Achromobacter</u> (culture No. 59) and a species of <u>Micrococcus</u> (culture No. 70). With the <u>Micrococcus</u> species considerable fluctuations in the rate of survival were evident with all substrates with the possible exception of the water series. In the water

Survival of Bacteria Frozen in Different Substrates at 0°F.

Org. No. 70 -- Mesophile -- Micrococcus sp. Count per ml. Substrate in Thousands and Percentage Survival Period of Freezing

									eriod	OI LLGG	sing						
		4 ho	urs	8 ho	urs	24 h	ours	48 h	ours	72 h	ours	96 h	ours	120	hours	6 we	eks
trate	Initial Count	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival
	3,700	1,400	38	1,300	35	1,200	32	820	22	1,100	32	1,100	30	760	21	640	17
21	1,200	1,100	92	870	73	870	73	820	68	1,200	100	930	78	6 6 0	55	156	13
Ext.	12,000	8,000	69	7,000	58	3,000	25	5,400	45	6,500	54	8,000	67	6,700	56	5,900	49
lcrose	1,800	700	39	1,600	89	810	45	1,000	56	1,500	83	1,200	67	570	32	2 7 0	15
10	1,700	800	47	1,400	82	610	36	820	48	1,300	76	1,600	94	820	48	680	40
H	1,900	800	42	800	42	690	36	930	49	1,200	63	1,100	58	1,200	63	940	49
	1,700	600	35	900	53	460	27	900	53	1,000	59	860	51	820	42	790	46
11	1,870	650	33	1,000	51	440	22	700	36	880	45	900	46	710	36	630	32
	Ext. Icrose	Count 3,700 1,200 Ext. 12,000 acrose 1,800 1,700 1,700 1,700	Initial Count Count Count 3,700 1,400 1,200 1,100 Ext. 12,000 8,000 ucrose 1,800 700 " 1,700 800 " 1,900 600	Count vival 3,700 1,400 38 1,200 1,100 92 Ext. 12,000 8,000 69 hcrose 1,800 700 39 1,700 800 47 1,900 800 42 1,700 600 35	Initial Count Count Count vival Count vival 3,700 1,400 38 1,300 1,200 1,100 92 870 Ext. 12,000 8,000 69 7,000 acrose 1,800 700 39 1,600 " 1,700 800 47 1,400 " 1,900 800 35 900	Initial Count Sr vival Count Sur- vival 3,700 1,400 38 1,300 35 1,200 1,100 92 870 73 Ext. 12,000 8,000 69 7,000 58 acrose 1,800 700 39 1,600 89 " 1,700 800 47 1,400 82 " 1,900 800 42 800 42	Initial Count Sur- vival Count Sur- vival Count Sur- vival Count 3,700 1,400 38 1,300 35 1,200 1,200 1,100 92 870 73 870 Ext. 12,000 8,000 69 7,000 58 3,000 ucrose 1,800 700 39 1,600 89 810 1,700 800 47 1,400 82 610 1,900 800 42 800 42 690 1,700 600 35 900 53 460	Initial Count Image: Sure vival Count Sure vival Count	4 hours Count 8 hours vival 24 hours count 48 h count 3,700 1,400 38 1,300 35 1,200 32 820 1,200 1,100 92 870 73 870 73 820 Ext. 12,000 8,000 69 7,000 58 3,000 25 5,400 ucrose 1,800 700 39 1,600 89 810 45 1,000 1,700 800 42 800 42 690 36 930 " 1,700 600 35 900 53 460 27 900	4 hours Count 8 hours sur- vival 24 hours Count 48 hours sur- vival 48 hours Count 48 hours sur- vival 3,700 1,400 38 1,300 35 1,200 32 820 22 1,200 1,100 92 870 73 870 73 820 68 Ext. 12,000 8,000 69 7,000 58 3,000 25 5,400 45 1,700 800 47 1,400 82 610 36 820 48 " 1,900 800 42 800 42 690 36 930 49 " 1,700 600 35 900 53 460 27 900 53	4 hours Count 8 hours vival 24 hours count 48 hours vival 72 h Count 3,700 1,400 38 1,300 35 1,200 32 820 22 1,100 1,200 1,100 92 870 73 870 73 820 68 1,200 Ext. 12,000 8,000 69 7,000 58 3,000 25 5,400 45 6,500 acrose 1,800 700 39 1,600 89 810 45 1,000 56 1,500 " 1,700 800 47 1,400 82 610 36 820 48 1,300 " 1,900 800 42 800 42 690 36 930 49 1,200 " 1,700 600 35 900 53 460 27 900 53 1,000	Initial Count Surversion Count Sur	4 hours 8 hours 24 hours 48 hours 72 hours 96 h trate Initial Count sur- vival Count Sur- Sur- Sur-	4 hours 8 hours 24 hours 48 hours 72 hours 96 hours initial Count sur-vival Count<	4 hours 8 hours 24 hours 48 hours 72 hours 96 hours 120 trate Initial Count sur-vival Count	4 hours 8 hours 24 hours 48 hours 72 hours 96 hours 120 hours trate Initial Count sur-vival Count<	4 hours 8 hours 24 hours 48 hours 72 hours 96 hours 120 hours 6 we trate Initial Count Count sur- vival Count <th< td=""></th<>

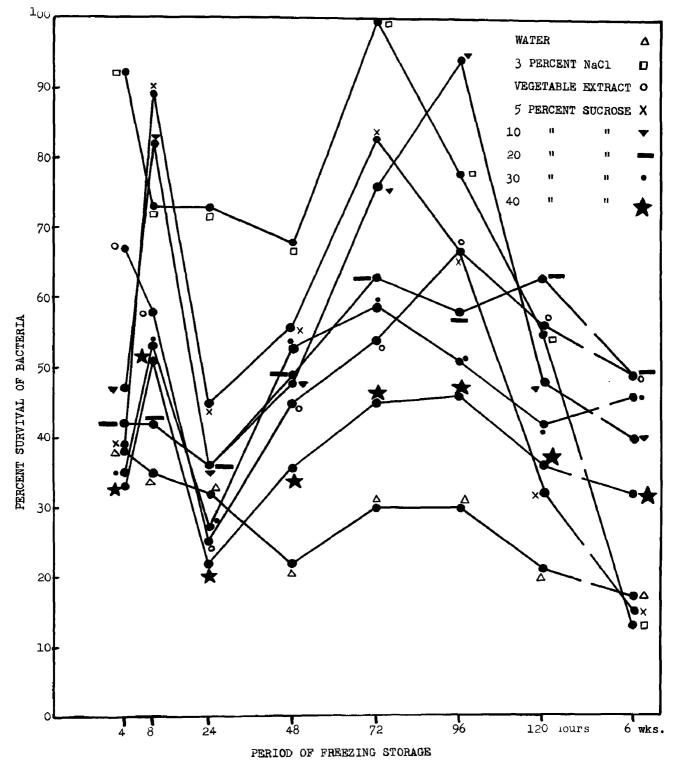


Fig. 9. SURVIVAL OF MESOPHILIC BACTERIA (ORG. NO. 70 - MICROCOCCUS SP.) FROZEN IN DIFFERENT SUBSTRATES AT 0° F.

Survival of Bacteria Frozen in Different Substrates at O^OF.

Org. No. 59 -- Mesophile -- Achromobacter sp. Count per ml. Substrate in Thousands and Percentage Survival

									P	eriod	of Free	zing						
			4 hc	urs	8 ho	urs 1	24 b	ours S	48 h	ours	72 h	ours	96 h	ours ¢	120	hours	6 we	eks ≰
Subst	trate	Initial Count	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival
Water	•	5,200	3,740	72	3,640	70	3,100	56	4,200	80	4,100	78	2,960	57	2,300	45	570	11
3% Na	Cl	5,200	3,540	68	2,800	53	3,200	62	3,950	76	4,900	94	4,580	88	4,370	84	830	16
Veg.	Ext.	1,800	1,550	86	1,760	98	1,620	90	1,420	79	1,400	74	1,200	68	845	47	612	34
5% Su	crose	6,000	1,700	28	4,300	72	2,000	34	4,100	69	2,900	48	1,100	19	2,200	36	1,100	18
10%	n	6,000	5,800	96	2,200	37	5,200	87	5,500	92	1,400	24	4,000	67	1,100	19	3,700	62
20 %	н	5,200	1,980	38	3,500	68	3,600	70	4,470	86	4,900	94	2,400	46	2,700	52	2,400	46
30%	m	4,000	3,400	86	1,700	42	3,600	90	3,700	92	3,200	81	1,520	38	1,500	37	1,000	26
40%	n	1,000	980	98	1,300	100	12,00	100	670	67	430	43	620	62	390	39	160	16

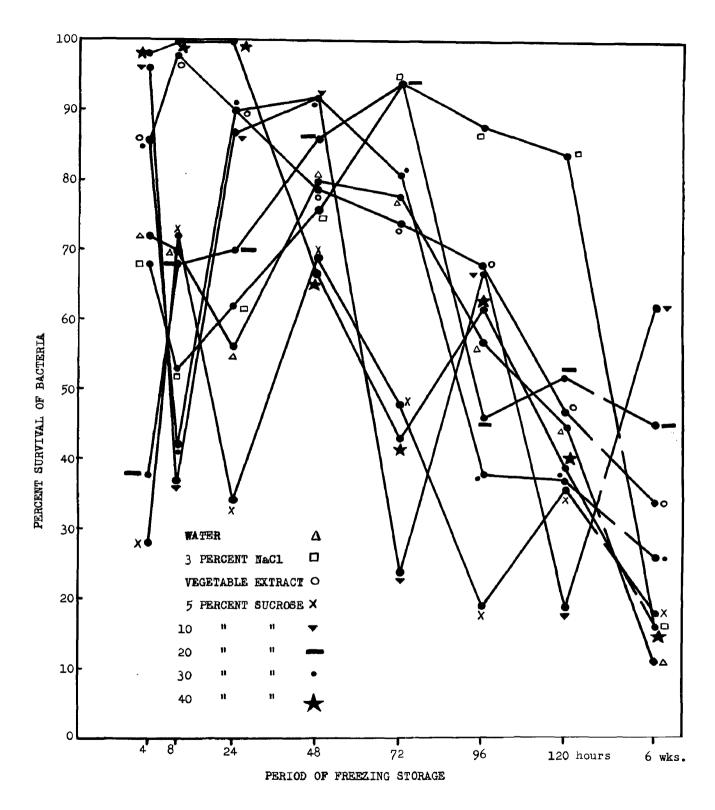


FIG./O. SURVIVAL OF MESOPHILIC BACTERIA (ORG. NO. 59 - ACHROMOBACTER SP.) FROZEN IN DIFFERENT SUBSTRATES AT 0° F.

Survival of Bacteria Frozen in Different Substrates at 0°F.

Org. No. 490 -- Mesophile -- <u>Staphylococcus aureus</u> Count per ml. Substrate in Thousands and Percentage Survival Period of Freezing

			4 hot	urs ∢	8 ho	urs «	24 h	ourg	48 h	ours	72 h	ours	96 h	ours	120 1	hours	6 wee	eks
Subst	rate	Initial Count	Count	Sur- vival														
Vater	•	21,000	1,680	8	1,890	9	1,260	6	840	4	840	4	630	3	420	2	190	1
3 % Nø	Cl	12,000	14,000	100	10,560	88	8,280	69	6,840	57	6,240	52	1,920	16	800	5	300	2
leg.	Ext.	26,000	21,000	80	22,400	86	21,800	84	17,000	65	18,700	72	20,300	78	17,200	66	12,500	48
5% Su	crose	24,000	8,200	34	6,700	28	7,700	32	3,800	16	2,900	12	1,200	5	720	3	216	1
10%	N	18,000	14,800	82	14,000	78	11,500	64	8,800	49	11,000	61	5,000	28	6,500	36	5,200	2 9
20%	11	22,000	24,000	100	23,000	100	19,000	86	17,200	78	14,100	64	12,300	56	5,100	23	7,900	36
30\$	11	16,000	19,000	100	16,000	100	11,500	72	11,200	70	7,400	46	7,000	44	5,800	36	4,500	28
40%	н	10,000	13,000	100	12,000	100	8,400	84	7,600	76	8,800	88	7,900	79	6,400	64	4,200	42

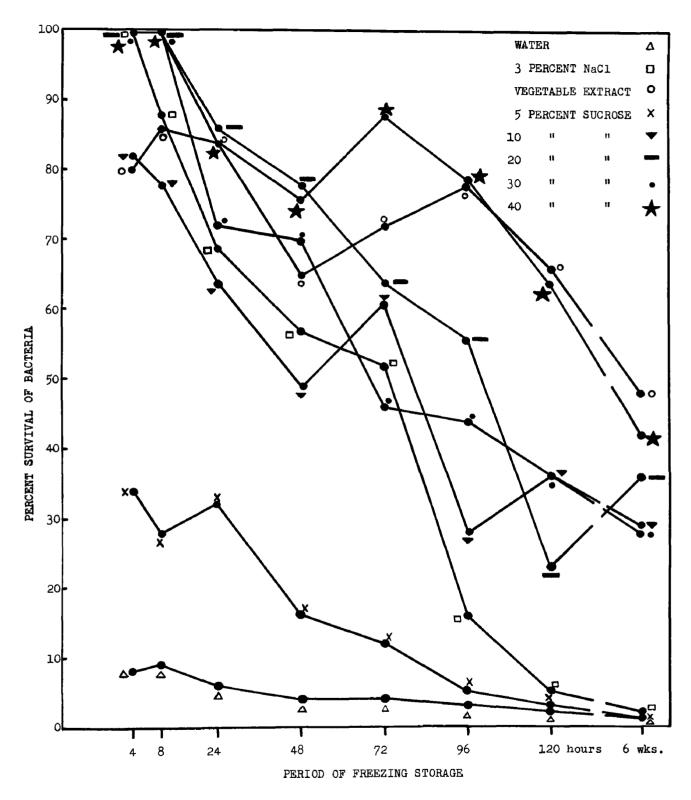


Fig.//. SURVIVAL OF MESOPHILIC BACTERIA (ORG. NO. 490 - STAPHYLOCOCCUS AUREUS) FROZEN IN DIFFERENT SUBSTRATES AT 0° F.

Table No.//

.

•

Survival of Bacteria Frozen in Different Substrates at $0^{\circ}F_{\bullet}$

Org. No.	117	M	iesc	ophile -		Escherichi	a coli
Count per	ml.	Substrate	in	Thousands	and	Percentage	Survival
				Period (. f F1	ee zing	

		Period of Freezing																
			4 ho	urs	8 ho	urs	24 h	ours	48 h	ours	72 h	ours	96 h	ours	120	hours	6 we	eks
Subst	rate	Initial Count	Count	% sur- vival	Count	% sur- vival	Count	\$ sur- vival	Count	\$ sur- vival	Count	\$ sur- vival	Count	% sur- vival	Count	% sur- vival	Count	\$ sur- vival
Water		26,000	8,600	33	9,600	37	7,300	28	8,600	33	10,700	41	6,500	25	7,300	28	1,300	5
3% Na	Cl	24,000	12,000	50	7,700	32	1,400	6	480	2	960	4	475	2	480	2	220	1
Veg.	Ext.	26,000	23,900	92	19,500	75	20,300	78	16,100	62	15,600	60	13,500	52	12,500	48	9,400	36
5% Su	crose	14,000	5,500	39	3,200	23	2,200	16	2,000	14	2,000	14	1,100	8	980	7	280	2
10%	11	12,000	5,000	42	5,400	45	3,400	28	2,400	20	1,900	16	1,400	12	1,200	10	360	3
2 0%	11	8,000	6,900	86	5,100	64	3,800	48	2,300	29	1,900	24	2,000	25	900	11	480	6
30%	n	10,000	12,000	100	12,000	100	9,600	96	6,200	62	5,600	56	4,800	48	2,800	28	1,800	18
40%	и	9,000	10,000	100	8,300	92	7,000	74	6,100	68	5,600	62	4,500	50	2,900	32	1,900	21

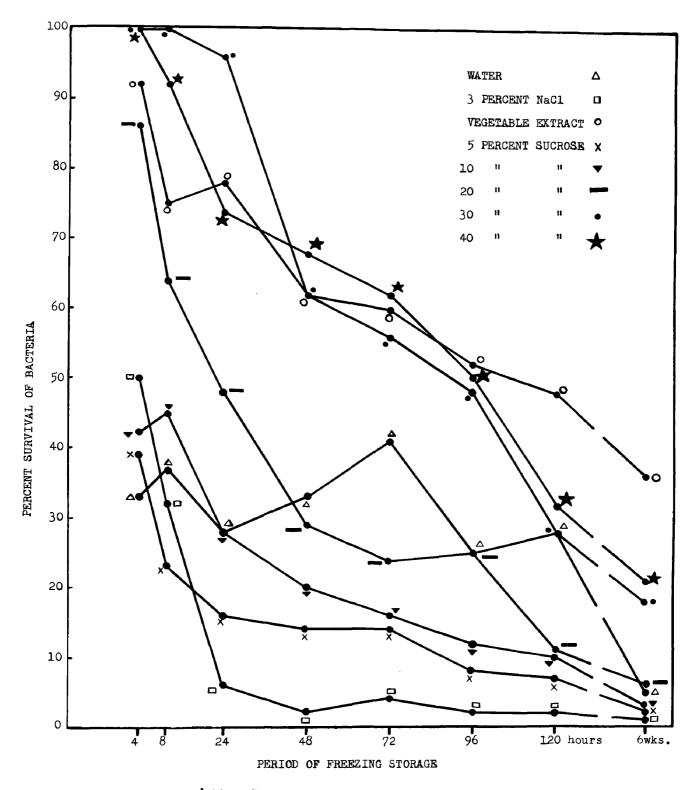


FIG.12. SURVIVAL OF MESOPHILIC BACTERIA (ORG. NO. 117 - ESCHERICHIA COLI) FROZEN IN DIFFERENT SUBSTRATES AT 0° F.

Survival of Bacteria Frozen in Different Substrates at O°F.

Org. No. 97 -- Thermophile -- Bacillus sp.

Count per ml. Substrate in Thousands and Percentage Survival

	Count vival vival <th< th=""></th<>																
Substrate	Initial	-	\$		×		*		\$		*	-	*		٩.		e,
	Count		vival		vival		vival		vival		vival		vival		vival		vival
Water	2,300	1,660	72	550	24	300	13	161	7	160	7	70	3	16	1	7.2	1
3% NaCl	2,800	2,460	88	736	62	530	19	336	12	224	8	168	6	21	1	6.4	1
Veg. Ext.	1,800	1,920	100	1,690	94	1,100	61	775	43	396	22	198	11	54	3	14.2	1
5% Sucrose	8,200	7,540	92	6,230	76	2,540	31	2,300	28	492	6	68	1	14	1	10	1
10% "	1,200	1,130	94	864	72	575	48	230	19	145	12	48	4	13	1	6.1	1
20% "	530	580	100	371	70	59 2	100	360	6 8	2 23	42	180	34	95	18	29	1
30% "	860	1,200	100	241	28	611	71	533	62	310	36	120	i 4	60	7	28	3
40% "	1,600	1,600	100	1,375	86	1,375	86	1,470	92	688	43	704	44	496	31	128	8

.

,

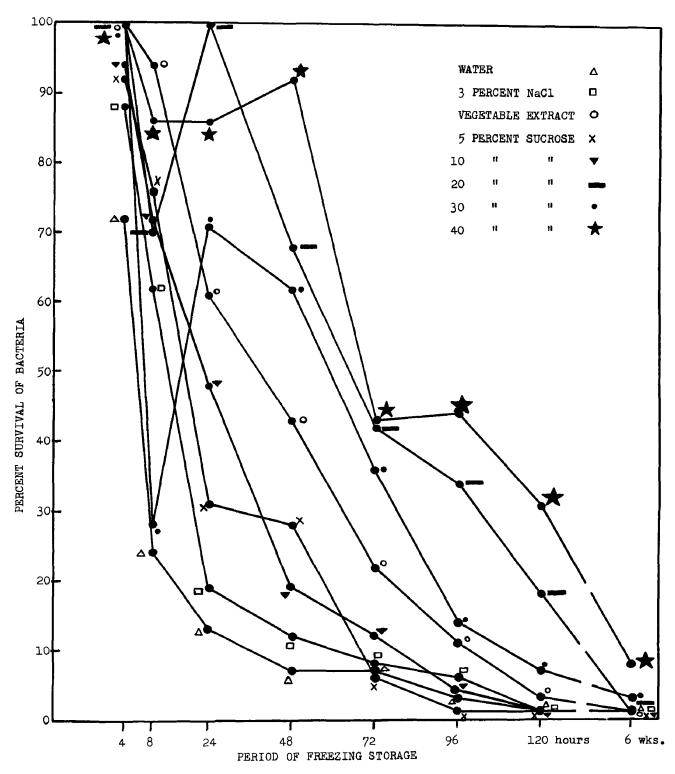


FIG./3. SURVIVAL OF THERMOPHILIC BACTERIA (ORG. NO. 97 - BACILLUS SP.) FROZEN IN DIFFERENT SUBSTRATES AT O°F.

TADLE NO. 13

Survival of Bacteria Frozen in Different Substrates at 0°F.

Org. No. 100 -- Thermophile -- Bacillus sp. Count per ml. Substrate in Thousands and Percentage Survival

								Per	riod o	f Freez	ing						
		4 hou	urs «	8 ho	urs «	24 h	ours	48 h	ours \$	72 h	ours	96 ha	ours K	120	hours	6 w e	eks≰
Substrate	Initial Count	Count	Sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival
Water	12,000	6,600	55	4,100	34	3,400	28	1,300	11	240	2	67	1	48	1	16	1
3% NaCl	9,400	2,000	21	3,570	38	2,915	31	1,500	16	280	3	76	1	72	1	21	1
Veg. Ext.	8,600	7,200	84	6,190	72	7,200	84	4,470	52	3,100	36	2,410	28	1,200	14	340	4
5% Sucrose	19,300	10,000	52	14,280	74	5,980	31	2,315	12	965	5	165	1	132	1	96	1
10% "	10,000	8,200	82	8,100	81	6,000	60	2,100	21	700	7	300	3	82	1	67	1
20 % "	34,000	23,000	68	36,000	100	21,760	64	14,600	43	9,860	29	12,200	36	4,760	14	560	2
30%/ "	9,800	8,700	89	10,000	100	5,490	56	4,510	46	3,100	32	1,760	18	1,175	12	490	5
40% "	10,000	8,400	84	7,400	74	5,900	59	4,600	46	2,600	26	2,900	29	1,400	14	900	9

,

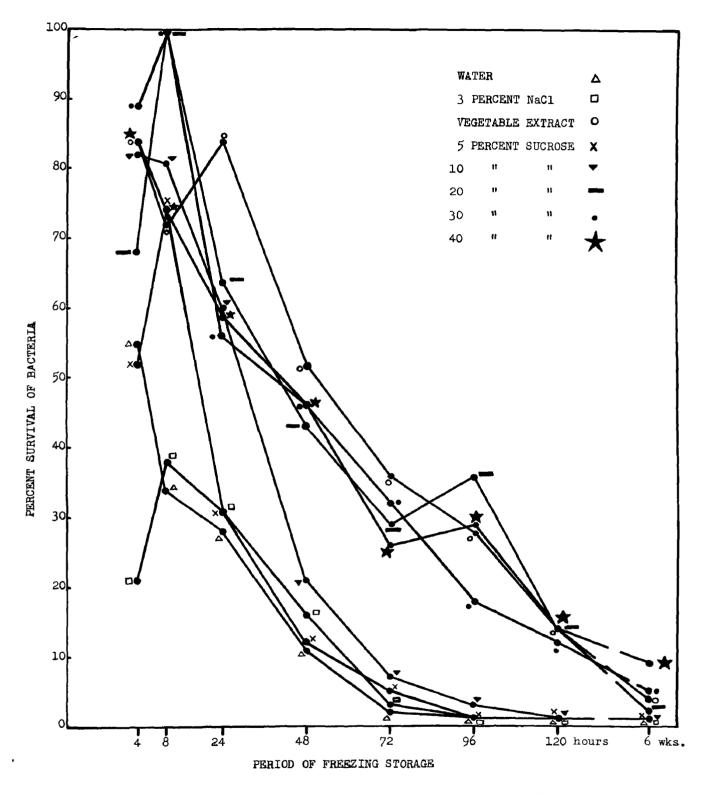
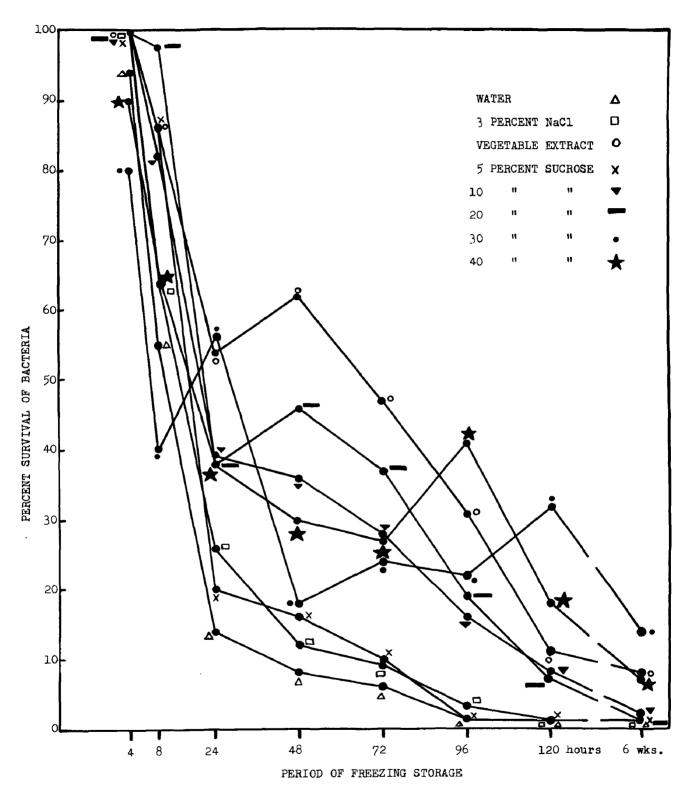


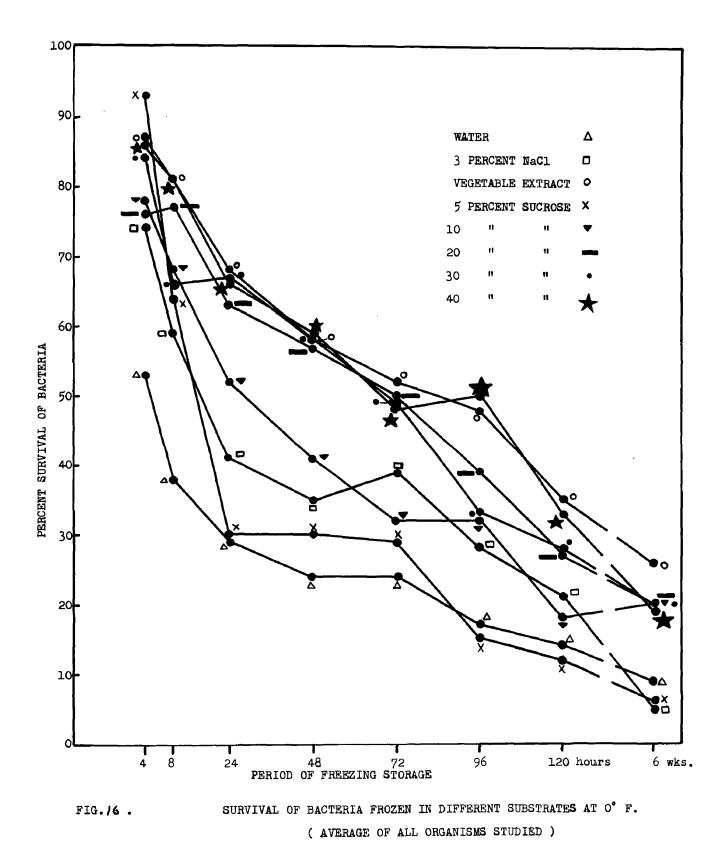
FIG.14. SURVIVAL OF THERMOPHILIC BACTERIA (ORG. NO. 100 - BACILLUS SP.) FROZEN IN DIFFERENT SUBSTRATES AT 0° F.

Survival of Bacteria Frozen in Different Substrates at O^OF.

Org. No. 86 -- Thermophile -- Bacillus sp. Count per ml. Substrate in Thousands and Percentage Survival

												-						
									Pe	riod o	f Freez	ing						
Subs	trate	Initial Count	4 hou Count	urs % sur- vival	8 ho Count	ours % sur- vival	24 h Count	ours \$ sur- vival	48 h Count	ours g sur- vival	Count	sur- vival	96 h Count	ours \$ sur- vival	120 Count	hours \$ sur- vival	6 we Count	eks \$ sur- vival
Wate:	r	4,700	4,200	94	2,600	55	658	14	376	8	282	6	43	1	18	1	6.2	1
3% N	aCl	5,000	5,000	100	3,200	64	1,300	26	600	12	450	9	150	3	38	1	12	1
Veg.	Ext.	10,000	10,000	100	8 ,600	86	5,400	54	6,000	62	4,700	47	3,000	31	1,000	11	790	8
5% S1	ucrose	500	620	100	430	86	100	20	80	16	50	10	3.8	1	2.4	1	.8	1
10%	H	10,000	16,000	100	8,200	82	3,900	39	3,600	36	2,800	28	1,600	16	800	8	200	2
20\$	8	6,300	7,800	100	6,200	98	2,390	38	2,900	46	2,330	37	1,200	19	440	7	56	1
30%		5,300	4,200	80	2,100	40	2,970	56	954	18	1,270	24	1,100	22	1,700	32	740	14
40%	11	200	180	90	130	65	76	38	60	30	54	27	82	41	36	18	14	7




FIG.15. SURVIVAL OF THERMOPHILIC BACTERIA (ORG. NO. 86 - BACILLUS SP.) FROZEN IN DIFFERENT SUBSTRATES AT 0° F.

Survival of Bacteria Frozen in Different Substrates at 0°F. (Average of All Organisms Studied -- 7 Organisms)

Substra	te		0		d of Freez	•			
		4 hours	8 hours	24 hours	48 hours	72 hours	96 hours	120 hours	6 weeks
Water		53	38	29	24	24	17	14	9
3% NaCl	L	74	59	41	35	39	28	21	5
Veg. Ex	t.	87	81	68	58	52	48	3 5	26
5% Suci	ose	93	64	30	30	29	15	12	6
10% "	I	78	68	52	41	32	32	18	20
20 % "	I	76	77	63	57	50	39	2 7	20
30 % "	r	84	66	67	58	49	33	28	20
40% "	,	86	81	66	59	48	50	33	19

Percentage Survival

- 77 -

there was a marked reduction during the first 4 hours of freezing followed by a gradual reduction with some variations throughout the 6 weeks of freezing storage. In all substrates there was a decided increase in counts at the 72 and 96 hour periods of freezing storage. The reason for the increased counts in this period is not known. Following the 96 hour period there was a decided decrease in numbers through to the end of freezing storage in the 3 per cent salt, vegetable extract, and 5 and 10 per cent sucrose. With water, and 20, 30 and 40 per cent sucrose substrates only slight decreases were noted following the 96 hour period. With the exception of the 5 per cent sucrose all of the higher sugar concentrations showed either similar or increased counts after 6 weeks' freezing storage compared with those obtained at the 4 hour period. After 6 weeks freezing storage the water, the 3 per cent salt and the 5 per cent sucrose appeared to give the least protection against freezing to this organism while 20 per cent sucrose and vegetable extract provided the greatest protection.

The species of <u>Achromobacter</u> exhibited even greater variability than the <u>Micrococcus</u>. No definite pattern was observed at any stage of the freezing process in any of the substrates used. Even after 6 weeks' freezing storage the results were considerably different from those observed with other test organisms with the possible exception that in the water, salt and 5 per cent sucrose series this organism showed destructions greater than 80 per cent of the initial number. With this organism the 40 per cent sucrose solution appeared to provide less protection against freezing than any of the lower concentrations.

The results with <u>Staphylococcus</u> aureus (culture No. 490) in the various substrates are shown in Table 10 and Fig. 11. Although some fluctuations in counts from one period of analysis to another were noted these were not nearly as pronounced as with the two previous organisms. These data indicate that in the initial freezing process the water and 5 per cent sucrose provide the least protection to this organism against freezing. The low rate of survival with these two substrates continued throughout the freezing storage. The 3 per cent salt series showed no reduction in the first 4 hours of freezing but starting at the 8 hour period there is a steady decrease which continued through to the completion of freezing storage. The water, salt and 5 per cent sucrose substrates show about the same survival after 6 weeks' freezing storage. Of the remaining five substrates the vegetable extract and the 40 per cent sucrose provide the greatest protection throughout the freezing storage with the 10, 20 and

30 per cent sucrose being intermediate between these and the water, salt and 5 per cent sucrose substrates.

With Escherichia coli (culture No. 117) the vegetable extract and 40 per cent sucrose again provided the greatest protection throughout the freezing storage. In the initial freezing process the water, salt, 5 and 10 per cent sucrose showed the least survival. The water series with this organism showed considerable fluctuation with pronounced increases in counts at the 48 and 72-hour periods of analysis. The salt substrate showed the least protection with this organism. The 5 and 10 per cent sucrose followed a similar pattern throughout the storage period, ending with a low percentage survival, approximately the same as the salt suspension. The 20 per cent sucrose showed very little reduction in the first 4 hours of freezing but showed a marked reduction from then to the 48-hour period. This was followed by a levelling off up to the 96-hour period after which there was a steady decrease to the end of freezing storage.

With the three cultures of thermophilic spore formers (culture No's. 97, 100 and 86) one fact in particular is evident from the results presented in Tables 12 to 14 and Figs. 13 to 15. While there is

- 81 -

considerable difference in the rate of survival during the early period of freezing these organisms show a low percentage survival in all substrates after 6 weeks. In general, the three organisms in the different substrates follow a regular pattern throughout the freezing storage, showing a continual reduction in numbers from the initial count.

A summary of the survival of bacteria subjected to freezing in different substrates is shown in Table 15 and Fig. 16. These data indicate that after 4 hours' freezing the water substrate provides the least protection. The percentage survival with other substrates varies from 73 with the 3 per cent salt to 93 with 5 per cent sucrose. At the end of the freezing storage the vegetable extract shows the greatest survival with 26 per cent. Water, 3 per cent salt and 5 per cent sucrose show the least per cent survival indicating that the least protection from freezing was provided by these substrates. There was no difference in the rate of survival between the 10, 20 and 30 per cent sucrose substrates.

Discussion of Fluctuations

Since fluctuations in counts from one period of analysis to another were so prominent further studies were made to determine, if possible, the reason for

these variations. As previously noted in the review of the literature Pederson (23) noted these fluctuations in counts and attributed them to the breaking up of bacterial clumps during freezing. While this might be true during the initial freezing process it does not explain the fluctations which occur long after the initial freezing. Van Eseltine et al. (36) also noted increased counts in products during freezing storage and attributed them to growth of organisms before the product actually reached the freezing temperature. However, since these authors found increased counts after both 8 and 12 hours' freezing storage it would appear extremely unlikely that any growth would occur during this period since the temperature would be well below the range of growth for bacteria.

McFarlane (19) also records some fluctations in counts but makes no comment on the probable reason for the increases.

In the present investigation two organisms were studied, the <u>Achromobacter</u> species (No. 59) which had shown the greatest variability and the culture of <u>Staphylococcus aureus</u> (No. 490). This latter culture was chosen since microscopical examinations of this organism showed evidence of aggregations or clumps of cells.

Repeated tests with <u>Staphylococcus</u> aureus failed to indicate that the initial freezing process had any great influence on the number of colonies formed on agar plates. Taking the results of one of six suspensions frozen at 0 F. it was found that the counts per ml. were as follows: Initial, 10,500,000; 1 hour, 11,400,000; 2 hours, 10,400,000; 3 hours, 8,900,000; 8 hours, 9,800,000; 24 hours, 7,300,000; 48 hours, 9,400,000; 72 hours, 6,600,000; 96 hours, 3,500,000; 120 hours, 1,800,000; 168 hours, 1,200,000. From these data it is evident that no substantial increase in numbers occurred. Any variation in this particular series might easily be attributed to errors inherent in the plate count method since the difference in the colony count after the first two hours of freezing, during which period slightly increased counts were observed, varied from 104 to 124, and, as a point of interest, the 114 colony count was an average of duplicate plates.

Of considerably greater significance were the results of a series of studies made with the <u>Achromobacter</u> species. A suspension of this culture showed no evidence of clumping when examined under the microscope. However, when plate counts were made of different portions of the initial suspension which had been thoroughly shaken for a period of 15 minutes, variations in counts were noted from 3,600,000 to 12,400,000 per ml. Similar variations were observed in suspensions frozen at 0°F. for periods of 8 and 24 hours. At 8 hours the counts from different portions of a single suspension varied from 2,900,000 to 11,600,000; after 24 hours 3,500,000 to 14,000,000.

Similar tests with <u>Staphylococcus</u> <u>aureus</u> showed an initial variation in counts from 8,900,000 to 10,000,000; after 8 hrs. at 0°F., 9,800,000 to 10,800,000; after 24 hours 7,300,000 to 8,400,000.

These results suggest that fluctuations in counts from one period of freezing storage to another are associated with the uneven distribution of microorganisms. It is also suggested that some microorganisms show greater variability than others in suspensions. Prolonged shaking in a mechanical shaker failed to effect any important change in the degree of variation.

COMPARISON OF SURVIVAL OF SPORE AND VEGETATIVE STAGES OF BACTERIA SUBJECTED TO FREEZING.

There are few references in the literature relating to the freezing of spores. The only authentic work found was that reported by Haines (5) who froze aqueous suspensions of spores of <u>Bacillus</u> <u>mesentericus</u> at a series of temperatures from $-1^{\circ}C$. $(30.2^{\circ}F.)$ to $-20^{\circ}C$. $(-4^{\circ}F.)$ for a period of 133 days. His results show that the spores of <u>B</u>. <u>mesentericus</u> suffered no change at any of the temperatures used.

In the present study five species of sporeforming bacteria isolated from either fresh beans or peas were used. Three cultures were thermophiles (Nos. 1, 4 and 5); the other two were mesophiles (Nos. 2 and 3). The vegetative stage of the organisms was obtained by frequent transfers and the culture for the test was used as soon as sufficient growth had appeared on the agar. The spore stage of the organisms resulted from leaving the cultures at their respective incubation temperatures for periods varying from 1 week for thermophiles to 2 weeks for mesophiles. To determine when the organisms were in the desired stage microscopical examinations were made. It was comparatively simple to obtain cultures in the vegetative stage, with the exception of organism No. 5 which apparently formed spores very rapidly. The spore stage of the organisms presented greater difficulty since vegetative forms were invariably present in small numbers.

The conventional method of heating the cultures to destroy vegetative cells was not used in these

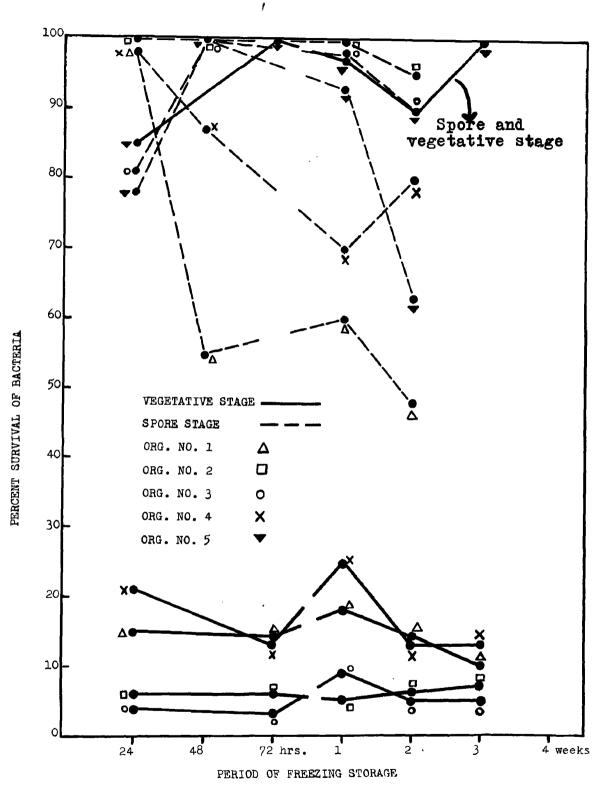


FIG./7. COMPARISON OF SURVIVAL OF SPORE AND VEGETATIVE FORMS OF FIVE SPECIES OF SPORE - FORMING BACTERIA.

studies since initial trials indicated that the susceptibility of the spores of the different cultures to heat varied considerably. To avoid delay together with the possibility that heating might affect the resistance of the spores to freezing the cultures were allowed to form spores under natural conditions. Since the spores were present greatly in excess of the vegetative forms it was felt that any differences as a result of freezing could be attributed to the spore stage.

The results presented in Fig. 17 demonstrate clearly that the vegetative stage is considerably less resistant to freezing than the spore stage. The data indicate that spores of thermophilic organisms are somewhat less resistant than those of mesophiles. The one culture out of line (organism No. 5) as indicated in this graph formed spores within the period of time in which growth appeared on the agar slant.

- 88 -

SURVIVAL OF BACTERIA FROZEN IN DIFFERENT PHASES OF GROWTH AT O^OF.

The interesting observation of Hegarty and Weeks (6) that cells of <u>Escherichia coli</u> in the logarithmic phase of growth were more susceptible to cold shock than mature cells led to a study of one series of cultures (Series A) and another of 8 cultures (Series B) of mesophilic bacteria both in the logarithmic stage of growth and in older cultures. The Series A were cultures which had been repeatedly transferred in the laboratory; Series B were cultures isolated from a fresh vegetable product.

The logarithmic stage was determined by growing the organisms in a vegetable extract and plating from this extract at various intervals. Since all cultures used in this study appeared to be growing actively after 24 hours incubation with no evidence of decrease in numbers it was considered that the cultures were in the logarithmic stage of growth at this period. The old cultures were tubes of inoculated vegetable extract which had been left at room temperature for approximately one week.

Results of this series of studies shown in Table 16 and 17 and Fig. 18 were disappointing. While

Table	No.	1	6
-------	-----	---	---

Survival of Bacteria Frozen in Different Phases of Growth at 0°F. Series "A".

Count par ml. Substrate in Thousands and Percentage Survival

			4 ho		8 ho				Freezin	-	0.0.5		6 ()						
Cult. No.	Generic Class- ification			\$ sur-		\$ 8417-	24 h	sur-	48 h	Sur-		sur- vival	96 h	\$ \$UT-	168 1 Count	SUF-	1 moi Count	\$ sur-	ATOPA
									oung Cu										
41 58	Flavo- bacterium	2,000	1,200 3,900	60 67	925 5,800	46 100	1,000 5,000	50	1,100 4,400	55 76	800 3,800	40 66	720 3,700	36 64	950 6,600	48 100	820 6,100	41 100	47 82
62 63	Micro- coccus	2,570	100 2,500	83	116 2,300	-00 76	210 2,200		190 1,900	7 63	270	11 63	78 1,400		116 1,100	100 5 37	32 1,100	100 1 36	60 60
44 69	Achromo- bacter	4,000	1,500	38 50	2,000	50 62	1,600	40 56	400	10 62	800	20 56	720 7,400		480	12 62	37 6,100	•	24 54
72 73 74 87	Chromo- bacterium Serratia Sarcina Bacillus	33 10,000 180 2,200	22 11,000 100 176	67 100 56 8	33 16,000 165 176	100 100 92 8	13 14,000 120 154	40 100 67 7	13.5 14,000 175 175	42 100 97	9.4 9,000 180	28 90 100 2	10 12,000 130 44	30	1.4 13,000 150 18.6	4 100 83 1	12,000 155	11	40 99 82 5
•,	Average	-,	2,0	53		64	_,	57	-17	52		48		42		45	•	42	50
									<u>014 Cul</u>	tures									
41 58 62	Flavo- bacterium	190 110	70 70	37 64	110 35	58 32	90 33	47 30	130 80	68 73	27 71	14 65	28 33	15 30	87 30	46 27	18 62	10 56	37 47
63 44	Micro- coccus # Achromo-	7,000 260	4,000 120	57 46	4,400 140	63 54	3,800 160	54 62	3,700 140	53 54	3,000 170	43 65	3,500 130	50 50	3,400 160	49 62	3,000 130	43 50	52 88
69 72	bacter "Chromo-	1,200 870	1,100 770	88 11	984 960	82 100	900 870	75 100	1,100 800	88 92	960 600	80 69	1,100 400	92 46	768 750	64 86	516 670		77 73
72 73 74	bacterium Serratia Sarcina Bacillus	70 1,120 120	25 750 70 680	36 67 58 68	6 830 110 720	9 74 91 72	4.8 860 100 530	7 77 83 53	.035 770 93 460	1 69 77 46	.01 910 130 680	1 81 100 68	.01 840 88 850	1 75 73 85	.01 660 79 380	1 59 66 38	.01 770 57 160	1 69 52 16	771556
07	Average	1,000	600	53	720	72 64	530	55 59	400	62	300	59	0,0	52	300	50	100	42	55

,

Survival of Bacteria Frozen in Different Phases of Growth at O^OF. Series "B".

Count	per	ml.	Substrate	in	Thousands	and	Percentage	Şurvival	

a.14	Generic		4 ho	*	8 ho	х	Per 24 h	ours %	Freezin 48 ho	ours \$	72 h	*	96 h	\$	192 1	iours \$	l mo	nth \$	
Cult. No.	Class- lfication	Initial Count	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Average
								Y	oung_Cul	Ltures									
125	Achromo- bacter	10,400	5,500	53	6,500	63	11,300	100	5,000	48	8,000	77	6,200	60	6,100	59	5,400	52	64
126 127	Flavo- bacterium	6,300	6,800	100 100	6,100	97 100	3,000	48 81	5,600	89 97	5,700	90 83	4,900	78 93	5,000	79	5,500	87 65	84 87
128 129	Achromo- bacter Micro-	14,600	4,700	32	5,100	35	7,900	54	7,300	50	4,400	30	6,500	45	4,200	29	5,600	38	39
130	Coccus Achromo- Dacter	39,000 11.000	36,900	90 44	31,000 4,800	78 44	10,000	26 56	33,500	86 45	38,000 4,200	95 38	35,000	90 55	38,000	97 42	32,000	81 36	80 45
131 132	Micro-	3,700	2,300	62	2,100	57 100	1,900	51 100	2,100	57 100	2,300	62 100	2,400	65	2,200	59 100	2,100	57 100	59 100
	Average	1,000	4,000	73	3,700	72	2,500	65	2,700	72	4,300	72	0,000	73	4,200	68	3,200	65	70
								:	014_Cul	tures									
125	Achromo- bacter	1,720	1,340	78	1,640	95	1,930	100	1,900	100	1,910	100	1,550	90	1,760	100	1,420	83	93
127	Flavo- bacterium	2,360 640	2,230 480	94 75	2,380 410	100 64	2,200 600	94 94	2,370 650	100 100	2,100 560	88 87	2,400 650	100 100	2,150 610	91 95	2,200 570	92 89	94 88
128	Achromo- bacter	170	50	29	54	32	40	24	50	29	75	44	95	56	54	32	25	15	33
129	Micro- coccus	760	520	68	400	53	460	61	650	86	810	100	780	100	690	91	580	76	7 9
130 131	Achromo- bacter	2 46 670	203 660	86 99	158 600	64 94	175 690	71 100	19 4 710	79 100	171 840	70 100	225 700	91 100	191 720	78 100	201 650	82 97	78 99
132	Micro- coccus	3,900	3,800	97	2,400	63	2,500	64	2,400	62	1,850	47	2,930	75	2,930	75	2,670	68	69
	Average			78		71		76		82		80		89		83		75	79

.

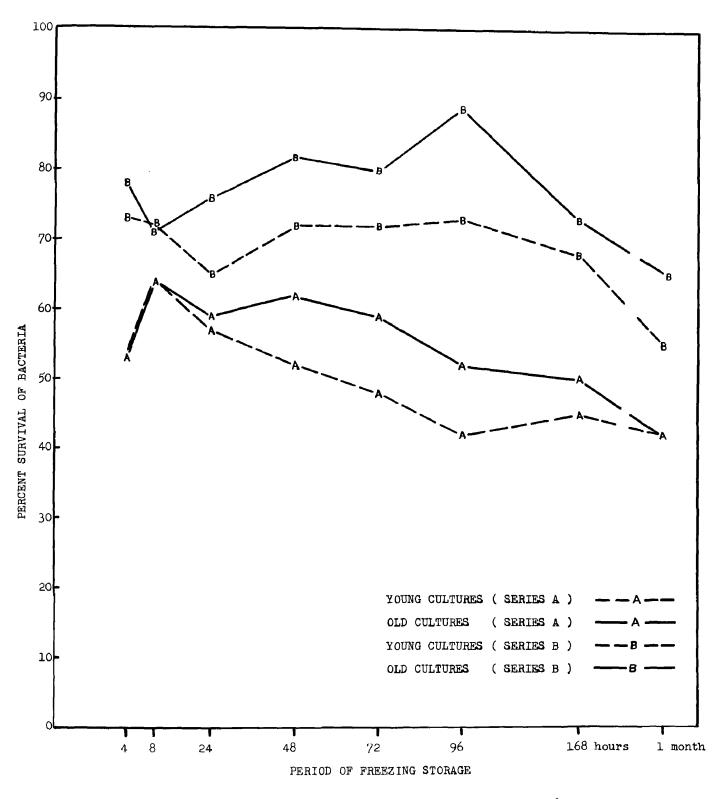


FIG.18. SURVIVAL OF BACTERIA FROZEN IN DIFFERENT PHASES OF GROWTH AT O'F. SERIES A AND B.

some individual cultures did show less resistance to freezing in the logarithmic stage there were just as many that showed less or equal resistance to freezing in the old cultures. Of some interest are the results with members of the genus <u>Achromobacter</u>. Of the six cultures studied in the two series, five showed less resistance to freezing in the logarithmic phase of growth. None of the other genera represented showed any definite trend, some showing greater resistance to freezing in the logarithmic phase, others the opposite.

Attention should be drawn to the fact that the temperature of freezing used by Hegarty and Weeks in their studies was considerably higher than that used in this study. They were using a temperature of 0° C. (32° F.) compared with -17.8°C. (0° F.) in the present study. Also their results were based on findings with only one organism, <u>Escherichia coli</u>.

From the present studies it may be concluded that there are no important differences in the rate of survival between cultures of bacteria in the logarithmic phase of growth and of old cultures frozen at -17.8° C. $(0^{\circ}F.).$

SURVIVAL OF MICROORGANISMS FROZEN CONTINUOUSLY AND INTERMITTENTLY IN WATER AT DIFFERENT TEMPERATURES

Previous studies by other workers have shown, as

indicated in the review of the literature, that intermittent freezing is more destructive to bacteria than continuous freezing. A study on this phase was conducted in the present investigation on four species of bacteria and three species of moulds isolated from fresh vegetable products. The three species of moulds used formed definite colonies on agar plates. Any spreading type was rejected since it would be difficult with the usual bacteriological technique to determine whether or not they were affected by freezing.

All cultures were frozen in water at 4 different temperatures, -28.89°C. (-20°F.), -17.8°C. (0°F.) -9.44°C. (15°F.) and 0°C. (32°F.). For each organism studied one suspension was used throughout for the intermittent freezing. This tube was removed at each period of analysis and after holding for 2 hours at room temperature following defrosting was returned to the freezer. For the continuous freezing the procedure was the same as for previous studies and separate suspensions were prepared simultaneously and frozen. One tube of suspension was removed from the freezer at each period of analysis and when the plating was complete was discarded. Analyses were made of each test organism initially and after 1, 2, 4, 7, 8, 9 and 10 days for bacteria and at intervals of 5 and 24 hours, 1, 2, 4, 5 and 6 weeks for moulds.

The results for bacteria shown in Table 18 and Figs. 19 to 22 give some interesting findings. With all four cultures studied the continuously frozen series showed considerable fluctuation from one period of analysis to another at all four temperatures. The series frozen intermittently showed no fluctuation and indicated pronounced reductions as compared to the continuously frozen series. It is of interest to note the results with two of the organisms held at 32°F. (culture No. 122 - Lactobacillus sp. and culture No. 123 - Micrococcus sp.). From the data presented it would appear that at 32°F. these two organisms showed a greater resistance to freezing than at any of the other temperatures used. However, it should be pointed out that at 32°F. the suspensions were not frozen and subsequent tests with these two organisms showed that growth occurred, particularly during the early hours of storage. There is little doubt from the results that, as a rule, intermittent freezing is more injurious to bacterial cells than continuous freezing at any of the four temperatures used.

Studies with the three cultures of moulds showed some interesting facts. (Table 19 and Figs. 23 to 25). The most noticeable feature is the pronounced resistance of moulds to both intermittent and continuous freezing as compared with the bacteria. - 96 -

Table No./8

Survival of Bacteria Frozen Continuously and Intermittently in Water at Different Temperatures

					1 4	×y ≰	يە 2	.y∎ ≰	4 d.	×y∎ ≰	7 du	lys ≰	8 d a	⊾y∎ ≰	9 (lays S	10 đa	178 K
Org. No.	Generic Classification	Freezing Treatment	Freezing Temp.	Initial Count	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival
121	Flavobacterium	Continuous Intermittent	-200F 00F 320F -200P 00F 150F 320F	6,800	5,600 5,400 4,000 4,900	82 80 59 72	5,600 4,900 6,100 6,700 4,000 1,400 156 3,400	82 72 90 99 59 21 20	4,500 3,800 4,300 5,700 1,800 210 2.5 274	63 84 26 3	6,000 4,400 3,400 3,300 3,300 22 .13 3,1	88550 496 <111	111 7.3 .11	2 {1 {1 {1	31 2.8 .1 .1		5,200 4,700 4,600 3,100 8.5 1.6 .07 .015	7698411111
122	Lactobacillus	Continuous Intermittent	-200 P 150 P 320 P 150 P 150 P 150 P	21,500	6,200 12,800 7,600 19,700	29 60 35 92	11,200 14,700 12,800 22,400 560 4,200 520 18,700	52 68 60 100 3 20 2 87	16,900 11,700 11,600 18,600 54 490 24 18,000	$\langle 1 \\ 2 \\ \langle 1 \rangle$	10,400 14,800 5,500 19,300 11 94 4.2 12,200	48 69 26 90	4.9 20 13,400	(1 (1 (1) (1) (1) (1) (1) (1) (1) (1) (1	2.4 8.3 9,800	(1 (1 (1	12,200 12,800 8,600 15,500 1.2 4.8 6,600	2892111
123	Micrococcus	Continuous Intermittent	-20°F 15°F 32°F -20°F 15°F 15°F	7,600	5,400 5,900 3,800 6,900	71 78 50 91	6,000 6,400 4,600 8,300 4,100 3,000 3,000 6,900	78 84 61 100 54 39 4 91	5,300 4,700 3,900 6,600 920 580 17 7,000	51 87 12 8	5,700 6,600 4,400 7,900 93 52 .9 7,200	75 87 58 100 1 <1 <1 99	17 4 .13 6,000	<1 <1 <1 79	2.3 .5 .01 5,990	<1 <1 78	5,400 5,400 5,400 7,100 -23 -02 5,000	****
124	Flavobacterium	Continuous Intermittent	-20°F 15°F 32°F -20°F 15°F 15°F	3 6, 200	27,300 28,000 24,400 24,300	75 77 67 67	27,100 24,700 19,200 31,100 17,200 14,900 5,900 20,900	75 68 536 48 41 16 58	24,500 22,400 17,700 25,100 7,000 3,500 68 2,000	49 69 19 10 <1	23,300 24,800 21,000 930 2,700 420 .8 76	58	33 3 .01 .12	(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 .1 .01 .01		26,000 20,000 22,300 14,400 .005 .005 .025 .01	62 40 <1

Count per ml. Substrate in Thousands and Percentage Survival

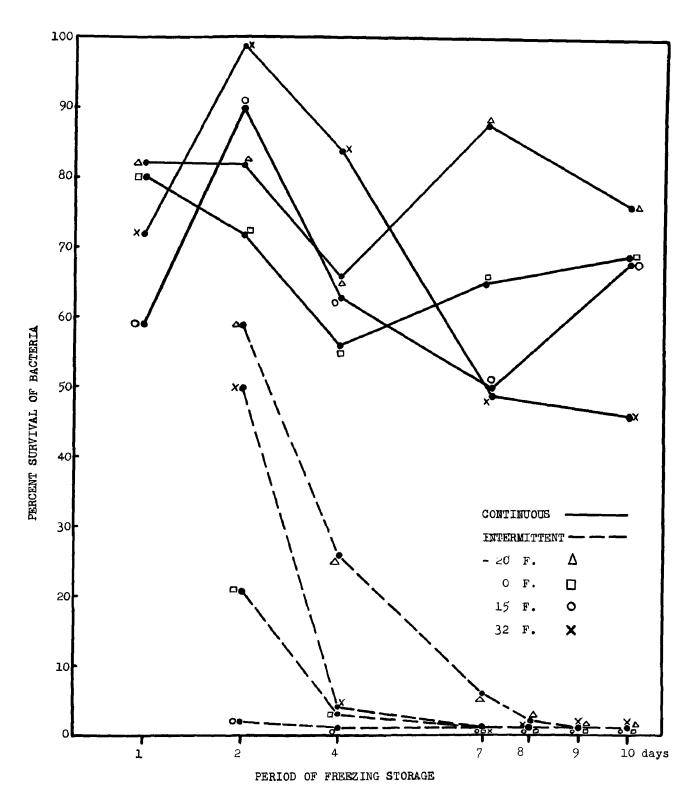


FIG.19. SURVIVAL OF MESOPHILIC BACTERIA (CULTURE NO. 121 - FLAVOBACTERIUM SP.) FROZEN CONTINUOUSLY AND INTERMITTENTLY IN WATER AT DIFFERENT TEMPERATURES.

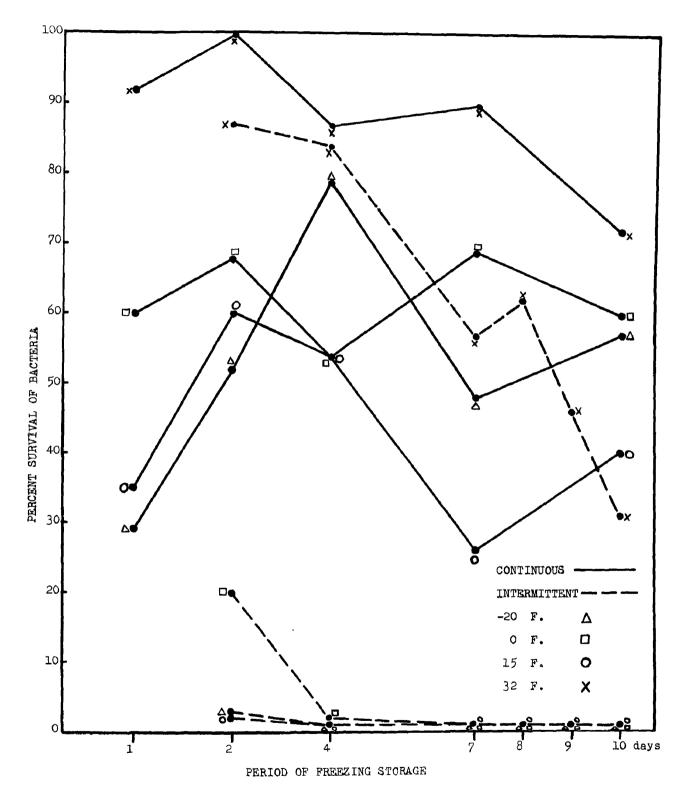


FIG.20. SURVIVAL OF MESOPHILIC BACTERIA (CULTURE NO. 122 - LACTOBACILLUS SP.) FROZEN CONTINUOUSLY AND INTERMITTENTLY IN WATER AT DIFFERENT TEMPERATURES.

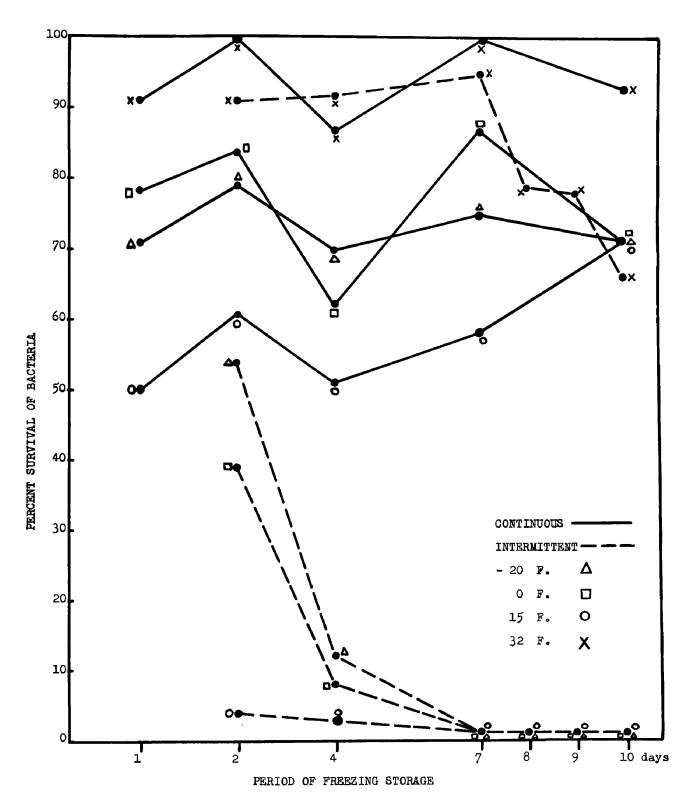


FIG.21. SURVIVAL OF MESOPHILIC BACTERIA (CULTURE NO. 123 - MICROCOCCUS SP.) FROZEN CONTINUOUSLY AND INTERMITTENTLY IN WATER AT DIFFERENT TEMPERATURES.

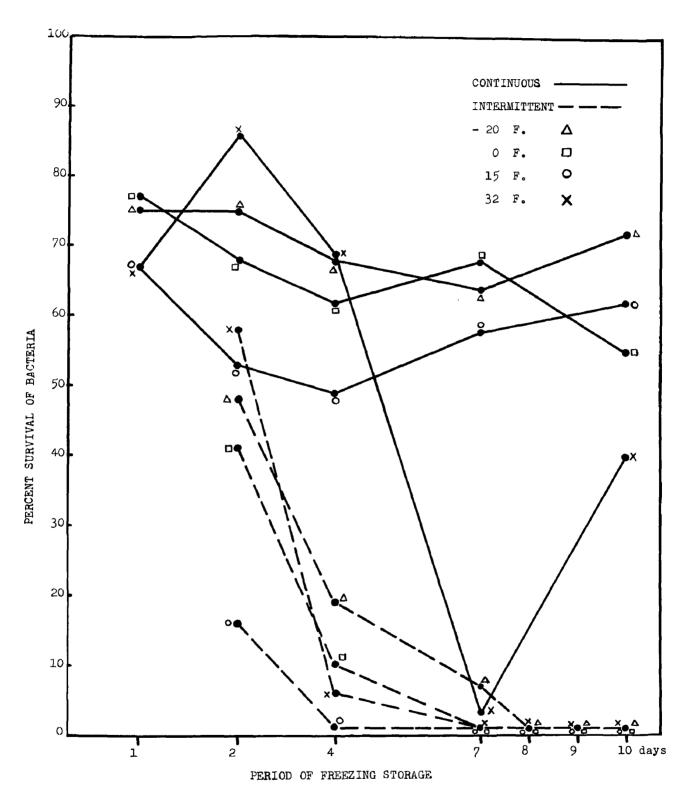


FIG.22. SURVIVAL OF MESOPHILIC BACTERIA (CULTURE NO. 124 - FLAVOBACTERIUM SP.) FROZEN CONTINUOUSLY AND INTERMITTENTLY IN WATER AT DIFFERENT TEMPERATURES

Survival of Moulds Frozen Continuously and Intermittently in Water at Different Temperatures

Count per ml. Substrate in Thousands and Percentage Survival

											-							
									Peri	od of	Freezi	ng l						
					5 h	ours S	24 1	hours	1 w	eek K	2 10	eeks K	4 w	eeks K	5 w	eeks K	6 🕊	eeks C
Org. No.	Generic Classification	Freezing Treatment	Freezing Temp.	Initial Count	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	sur- vival	Count	Sur- Vival	Count	sur- vival	Count	sur- viva
1	Penicillium	Continuous	-20°F 0°F 15°F 32°F	63	76 64 69 54	100 100 100 86	65 64 65 80	100 100 100 100	56 60 53 74	89 95 84 100	62 55 50 69	98 86 79 100	69 58 48 98	100 92 76 100	59 52 41 66	94 83 65 100	59 48 43 50	94 76 69 79
		Intermittent	-20 ⁰ F. 0°F. 15°F. 32°F.				70 51 44 78	100 81 70 100	58 50 45 91	92 79 71 100	50 39 27 72	79 62 43 100	40 28 25 52	64 44 40 83	37 32 17 54	59 51 27 86	15 21 9.2 24	24 33 15 37
3	Aspergillus	Continuous	-20 ⁰ F. 0°F. 15°F. 32°F.	39	59 49 58 46	100 100 100 100	36 38 37 26	92 97 95 67	62 46 40 54	100 100 100 100	41 28 40 51	100 72 100 100	55 66 29 43	100 100 74 100	45 40 39 42	100 100 100 100	40 34 18 43	100 87 46
		Intermittent	-20°F 0°F 15°F 32°F				33 39 26 35	85 100 67 90	39 32 28 62	100 82 72 100	27 15 25 53	69 38 64 100	22 32 18 20	56 82 46 51	14 13 11 20	36 33 29 51	9.8 7.8 7.6 25	25 20 19 64
4	Penicillium	Continuous	-20°F. 0°F. 15°F. 32°F.	15	13 12 15 16	86 84 100 100	11 12 8.4 15	73 80 57 100	13 11 11 15	88 73 73 100	10 10 8.1 15	69 69 55 100	9.7 8.5 7.3 13	66 58 50 90	8 9.5 7.7 13	54 65 52 90	8.9 8.6 7.4 9.1	61 59 50 62
		Intermittent	-20°F 0°F 15°F 32°F				9.4 8.3 9.3 15	64 56 63 100	7.8 5 6.9 12	53 34 47 80	4.9 4.6 3.6 8.1	33 31 24 55	2.3 4.6 1.5 4.3	16 31 10 29	3.5 3.9 1.2 1.7	24 27 8 12	1.9 1.9 .5	13 13 3

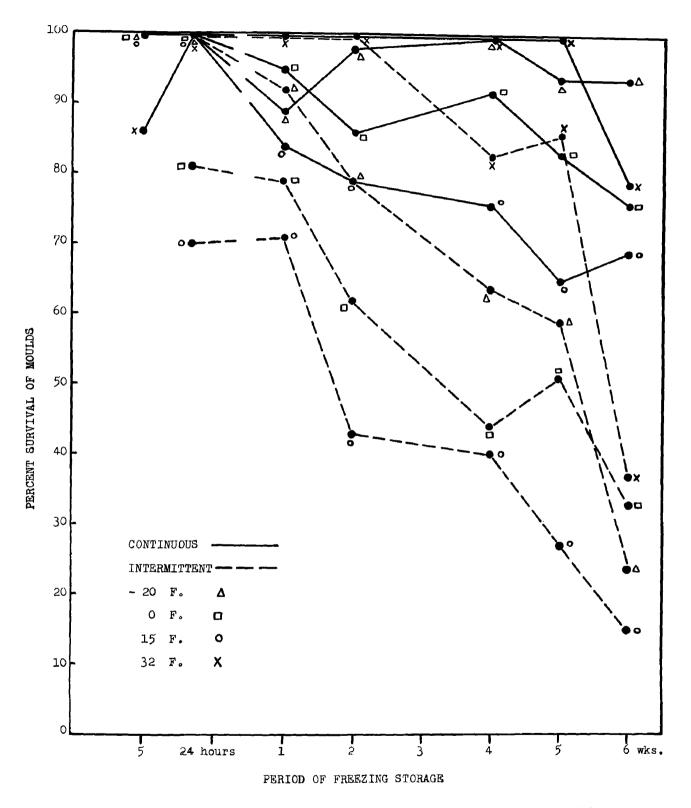


FIG.23. SURVIVAL OF MOULDS (PENECILLIUM SP. - ORG. NO. 1) FROZEN CONTINUOUSLY AND INTERMITTENTLY IN WATER AT DIFFERENT TEMPERATURES.

- 103 -

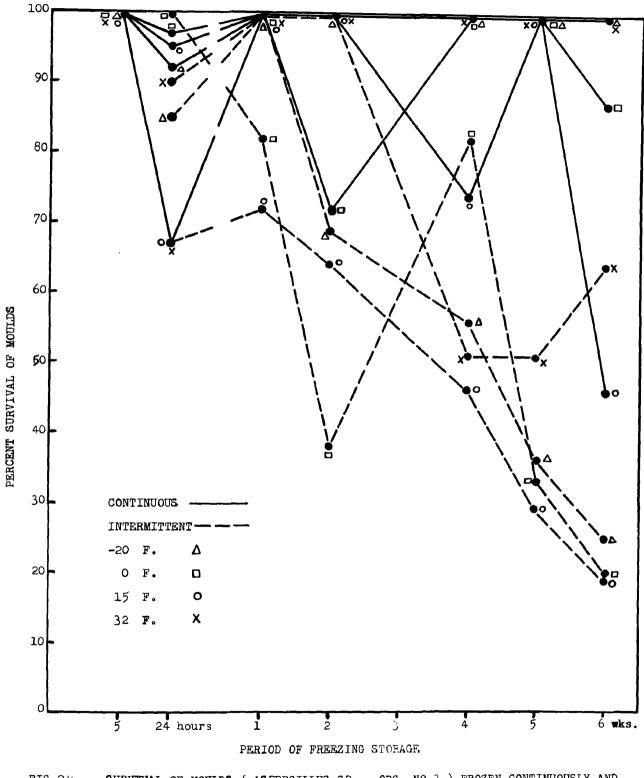


FIG.24. SURVIVAL OF MOULDS (ASPERGILLUS SP. - ORG. NO.3) FROZEN CONTINUOUSLY AND INTERMITTENTLY IN WATER AT DIFFERENT TEMPERATURES

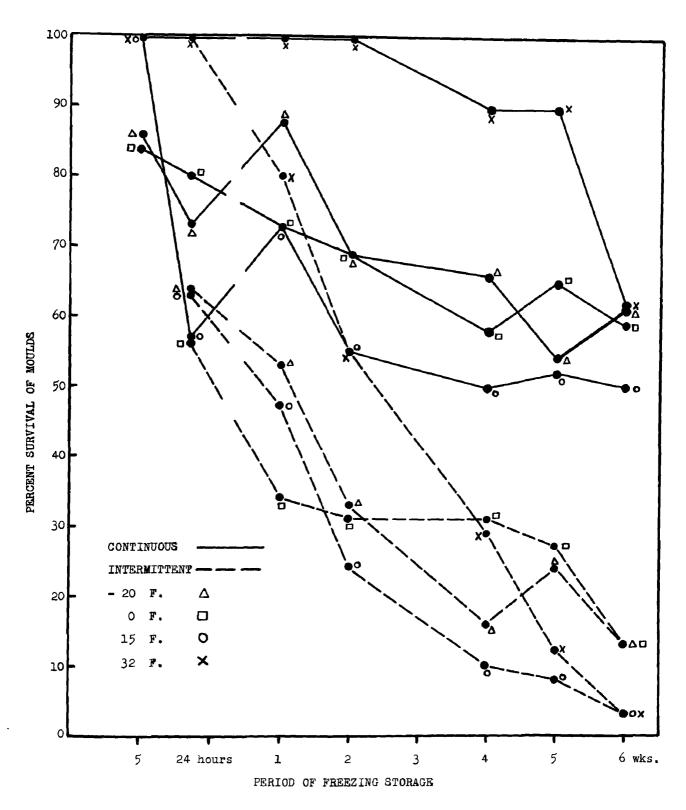


FIG.25. SURVIVAL OF MOULDS (PENECILLIUM SP. - ORG. NO. 4) FROZEN CONTINUOUSLY AND INTERMITTENTLY IN WATER AT DIFFERENT TEMPERATURES

This was particularly evident with the continuously frozen series during the early period of freezing storage and to some extent throughout the entire period of storage. With the intermittent series there was little doubt that moulds frozen intermittently were considerably more resistant than bacteria similarly treated.

From these results it may be concluded that intermittent freezing is more destructive than continuous freezing, both to bacteria and moulds. The data indicate that intermittent freezing is more destructive to bacteria than it is to moulds. Temperature generally is not an important factor in the range of -20°F. to 15°F. At 32°F. some of the test organisms showed growth.

THE EFFECT OF ANTIBIOTICS ON BACTERIA IN VEGETABLE PRODUCTS

Since the problem of natural antibiotics in vegetable products is so extensive in its scope no attempt was made in the present study to make a thorough investigation of the proportion of organisms producing substances which control the growth of other organisms. The only purpose in including the work here reported is to point out just one more complexity associated with studies on the microbiology of frozen fruits and vegetables. The appearance of an antibiotic in the present study was accidental and came about when pure cultures of <u>Serratia marcescens</u>, <u>Sarcina lutea</u>, <u>Staphylococcus</u> <u>aureus</u> and <u>Chromobacterium violaceum</u> were inoculated into fresh and blanched peas. The purpose of the study was to determine the rate of growth of these test organisms in fresh and blanched peas both before and after freezing. The peas used for this study were not sterile, the rate of growth of the test organisms being determined by plate counts of only those colonies of organisms corresponding to the original test organism.

The results presented in Table 20 are for the fresh, unfrozen series. The results for the frozen series were quite similar to those of the fresh product with the exception of results with one test organism, <u>Chromobacterium violaceum</u>. Apparently this organism is very sensitive to freezing since in all tests it completely disappeared after 24 hours at 0°F. With <u>Serratia marcescens</u> in the fresh product it is of interest to note the more rapid rate of growth in the blanched product as compared with the counts in the unblanched product. This is likely due to the release of soluble solids in the blanch process which provides additional nutrients for the growth of this organism. Of particular interest were the results

with Sarcina lutea and Staphylococcus aureus in both blanched and unblanched peas. Held 24 hours at room temperature both of these test organisms had disappeared. Since the pH of the peas had dropped from a normal of 6.2 to 5.0 it was first thought that the increased acidity was responsible for the disappearance of the test organisms. However, the fact that Serratia marcescens showed only a slight decrease in numbers in the unblanched product and a normal rate of growth in the blanched product suggested that in addition to the acid an antibiotic might be the factor responsible for the peculiar results. Further studies in which the pH was held at 6.2 using a titrimeter indicated definitely the presence of an antibiotic which as subsequent plate tests showed was produced by a spore former and was active against Sarcina lutea and Staphylococcus aureus but not against Serratia marcescens or the Chromobacterium violaceum. The increased acidity was probably responsible for the disappearance of Chromobacterium violaceum in the unblanched product. Why it also disappeared in the blanched product in the Series A is not known unless an acid-producing type organism survived the blanch process and produced sufficient acid to inhibit this organism but not the others. Chromobacterium violaceum has been noted in other studies to be very sensitive to various agents.

Table No. 20

Rate of Growth of Pure Cultures of Bacteria in Unblanched and Blanched Peas

Series A - pH Unaltered - Dropped from Normal pH 6.2 to 5.0

Count per Gram Product

Serratia Marcescens Sarcina Lutea Staphylococcus Aureus Chromobacterium Violaceum

		Unblan	ched	
Initial 2 hours 4 hours 8 hours 12 hours 24 hours	12,950,000 14,700,000 10,500,000 5,600,000 9,450,000 3,500,000	875,000 700,000 700,000 0 0 0	1,200,000 900,000 600,000 3,500 0	6,300,000 9,450,000 7,700,000 3,500 0 0
		Blanc	hed	
Initial 2 hours 4 hours 8 hours 12 hours 24 hours	$\begin{array}{r} 12,300,000\\ 22,000,000\\ 65,000,000\\ 149,000,000\\ 350,000,000\\ 2,100,000,000\end{array}$	263,000 455,000 1,400,000 1,400,000 350,000 <3,500	3,600,000 1,800,000 760,000 35,000 0 0	6,300,000 14,350,000 1,800,000 350,000 0 0

Series B _ pH Adjusted - Held at Constant pH 6.2

Count per Gram Product

Serratia Marcescens Sarcina Lutea Staphylococcus Aureus Chromobacterium Violaceum

Unblanched						
Initial	$\begin{array}{c} 22,000,000\\ 36,000,000\\ 82,000,000\\ 96,000,000\\ 1,900,000,000\\ 3,600,000,000\end{array}$	6,000,000	14,000,000	600,000		
2 hours		7,200,000	12,600,000	840,000		
4 hours		4,800,000	9,400,000	1,200,000		
8 hours		960,000	6,200,000	3,100,000		
12 hours		350,000	3,500,000	4,800,000		
24 hours		<3,500	<3,500	12,000,000		

DISCUSSION

A study of microorganisms associated with frozen fruits and vegetables presents many difficulties, as may be gathered from the work here reported. There are many variables to be considered which may have a definite influence on the rate of survival of microorganisms during freezing and subsequent freezing storage. Probably the most important factor involved is the type of organism present on the products. Results of the present study with almost 100 different species, isolated from fruit and vegetable products. clearly indicates that some species of bacteria show enormous reductions in numbers when stored at 0° F. for a period of 6 weeks while others show considerable resistance to freezing with a lesser reduction in numbers during the same period of freezing storage and under identical conditions. There are also tremendous differences in the rate of destruction of different species since many showed no reduction during the freezing process and early freezing storage; others showed a marked susceptibility to freezing with almost complete destruction during the first 4 hours of freezing. Differences were also noted within the species when cultures of Escherichia coli were studied. An important point is that all organisms studied in

this work did show reductions in numbers after 6 weeks freezing storage.

The substrate in which the organism is suspended for freezing has been considered an important factor by many workers. However, the results presented in this study, while indicating a definite protection to some organisms against freezing in substrates such as a vegetable extract and 40 per cent sucrose, show that other organisms are not appreciably protected by these substrates. The results suggest that the character of the substrate may not be nearly as important as was previously thought, since the results presented in a graph (Fig. 16) of the average of all organisms studied in the different substrates indicate that the difference between the percentage survival in vegetable extract and in water was 17 per cent. It is doubtful if this figure is significant since. if different cultures had been used, such as spore formers, then the difference in the rate of survival after 6 weeks freezing storage would be negligible.

The temperature of freezing has been thought by many to influence the effect on microorganisms. However, in this study, within the range of commercial freezing temperatures, $-20^{\circ}F$. to $15^{\circ}F$., temperature did not appear to be an important factor, although some individual cultures do show some difference in rate of survival at the different temperatures used. In these instances -20°F. appears to offer greater protection. Again the importance of this factor varies with the species of bacteria.

Definite evidence is presented in this and other studies on the effect of intermittent freezing as compared with continuous freezing. There is little doubt that intermittent freezing is more destructive to microorganisms than continuous freezing. From the point of view of evaluating the quality of frozen fruits and vegetables on the basis of the microbial content this is an unfortunate finding since a product, although showing a marked deterioration in quality due to defrosting and refreezing, will also show a relatively low microbial content. This means that in any analysis of frozen fruits and vegetables, particularly when the counts are low, the complete freezing history of the product must be available to the analyst. The results also suggest that the microbiological findings alone cannot be used in assessing the quality of frozen fruits and vegetables.

From the results presented it is obvious that it would be impossible to predict the effect of freezing on the microbial load of a fresh fruit or vegetable going into the freezer. However, attention should be

directed to newer methods in the commercial processing of frozen vegetables. Pre-processing procedures, in many plants, now employ a longer blanch to a peroxidase trace or negative reaction rather than the older procedure of using tests for the enzyme catalase which is inactivated at lower temperatures than peroxidase. The longer blanch results in a marked diminution in the initial microbial load and, perhaps of greater significance, a reduction in the number of types of microorganisms. This longer blanch should eliminate most bacteria other than spore formers and these, as indicated in the present study, show less resistance to freezing in the vegetative stage than many other types of bacteria. Thus, by reducing the opportunity for recontamination following the blanch process, and with continuous line operation, it is possible to produce frozen vegetables with a relatively low microbial content.

With fruits which are not subjected to blanching, the picture is entirely different. Up to the present no method has been devised to control the numbers of microorganisms on products going into the freezer. However, natural protection due to the lower pH of fruits will limit the types and growth of some of the microorganisms present on the product.

While no reference has been made in this paper

to the various theories which have been advanced concerning the death of microbial cells by freezing it might be well at this point to discuss some of these theories and present the views of the writer. Luyet and Gehenio (17) have dealt fully with these theories in their writings so no useful purpose would be served by going into detail in the present work. They list the theories which a number of workers have attributed the mechanism of death by freezing to as follows:

- 1. A withdrawal of energy
- 2. The attainment of a minimal temperature
- 3. Mechanical injury
- 4. Too rapid thawing
- 5. Dehydration
- 6. Various physiological, physical and chemical changes

Each one of these theories has some point in its favour but unfortunately many of the theories are based on observations with higher plants and animals and attempts have been made to apply these observations to microbial cells.

Many workers have subscribed to the theory of death of cells by mechanical injury. It was suggested that the production of ice crystals during the freezing process resulted in disintegration of microbial cells. However, Haines (5) was unable to find any change in the microbial cells due to freezing. This finding was substantiated in the present study. Cells which survived freezing showed no apparent change in the metabolic processes of the organisms studied.

Rahn (26) states that "freezing involves several causes of death, and the most common cause, injury by ice crystals, is quantitatively unpredictable. Thus, no order of death can be expected and no order has been observed". Rahn does not present any data to substantiate his statements.

Based on observations in the present investigation it is the opinion of the writer that none of the first five theories listed are applicable to microbial cells since none account for the fact that some cells in an actively growing culture of bacteria are killed during the process of freezing while others apparently suffer no change. The writer suggests that "weak cells" in a bacterial suspension are the ones that are killed while the stronger cells survive. The reason for some cells being weaker than others in the same suspension is not known but it could be associated with some of the factors mentioned by Luyet and Gehenio (physiological, physical and chemical changes).

- 114 -

SUMMARY

Data are presented on the effect of freezing vegetables harvested from the same general area at various times showing wide differences in the rate of survival of bacteria. These data also indicate that freezing of vegetables effects a reduction in the number of types of bacteria present on the initial product. In the products studied, members of the genera <u>Micrococcus</u> and <u>Flavobacterium</u> were prominent in the frozen products.

Studies on the effect of rate of freezing on microorganisms in fruits and vegetables generally showed a higher percentage survival in vegetable products frozen by the contact method at -20° F. and stored at -20° F. as compared with products frozen by a static method and stored at either -20° F. or 0° F. With fruits, neither the temperature nor the rate of freezing had any important influence on the survival of microorganisms.

A study of pure cultures of five bacteria and one yeast substantiated earlier findings of Haines that microbial cells show no apparent change in appearance due to freezing. Further studies showed that the metabolic processes of cells which survived freezing were not affected since the rate of growth and the ability to ferment a sugar broth in a given time were similar with both "fresh" and frozen cells.

The effect of freezing aqueous suspensions of 80 pure cultures of psychrophilic, mesophilic and thermophilic bacteria indicated that the latter group of bacteria were more susceptible to freezing with the psychrophiles and mesophiles showing greater resistance, both in the initial freezing process and througout the period of freezing storage. Considerable fluctuations in counts in individual cultures were noted from one period of storage to another and these have been attributed to uneven distribution of the cells of organisms in the suspensions. These fluctuations were more prominent with some species of bacteria than with others.

Considerable differences in the rate of survival were also noted with different species of bacteria and, with one organism studied, within the species. Bacteria belonging to the genera <u>Serratia</u>, <u>Sarcina</u>, <u>Micrococcus</u> and <u>Flavobacterium</u> were more resistant to freezing than any of the other types studied.

Freezing seven pure cultures of bacteria in suspensions of water, 3 per cent salt, a vegetable

extract, and concentrations of sucrose varying from 5 to 40 per cent showed that the vegetable extract and 40 per cent sucrose generally provided the greatest protection to the organisms against freezing, while water, 3 per cent salt and 5 per cent sucrose showed the least protection.

Spores and vegetative forms of members of the genus <u>Bacillus</u>, subjected to freezing in aqueous suspensions, indicated that the spore stage of organisms is more resitant to freezing than the vegetative stage. Thermophilic spores showed less resistance to freezing than mesophilic spores.

Bacteria frozen at O^OF. in aqueous suspensions, in both the logarithmic phase of growth and in older cultures, showed that, although members of the genus <u>Achromobacter</u> were less resistant to freezing in the logarithmic phase, the over-all picture suggested that there was no important difference in the rate of survival between cultures in the logarithmic phase of growth and in older cultures.

Cultures of both bacteria and moulds frozen continuously and intermittently in aqueous suspensions at -20° F., 0° F., 15° F. and 32° F. showed that intermittent freezing was much more destructive to both bacteria and moulds. Moulds were generally more resistant to freezing than bacteria both in the continuously and intermittently frozen suspensions. Temperature did not appear to be an important factor although there was a slight indication that -20°F. was less destructive to microorganisms in the continuously frozen series. However, with intermittent freezing temperature was definitely unimportant.

In a study in which pure cultures of chromogenic bacteria were inoculated into fresh and blanched peas it was found that with those organisms not inhibited by a natural antibiotic which was presnt, the rate of growth was greater in the blanched product, due possibly to the release of soluble solids in the blanch process. The growth of two organisms, <u>Sarcina</u> <u>lutea</u> and <u>Staphylococcus sp.</u>, was inhibited by the antibiotic.

- 119 -

LITERATURE CITED

- Berry, J.A. Microbiology of the frozen pack. The Canning Age, 13, 251. Western Canner and Packer, 25, Feb. 1932.
- Berry, J.A. Destruction and survival of microorganisms in frozen pack foods. J. Bact., 26 (5), 459-470. 1933.
- 3. Burton, M.O. Comparisons of coliform and enterococcus organisms as indices of pollution in frozen foods. Food Res., 14 (5), 434-438. 1949.
- Gunderson, M.F., and Rose, K.D. Survival of bacteria in a precooked, fresh-frozen food. Food Res., 13 (3), 254-263. 1948.
- Haines, R.B. The effect of freezing on bacteria. Proc. Royal Soc. of London. B, 124, 451-463. 1938.
- Hegarty, C.P., and Weeks, O.B. Sensitivity of <u>Escherichia coli</u> to cold-shock during the logarithmic growth phase. J. Bact., 39 (5), 475-483. 1940.
- 7. Hilliard, C.M., Torrossian, C., and Stone, R. Notes on the factors involved in the germicidal effect of freezing and low temperatures. Science, 42, Nov. 26. 1915.
- 8. Hilliard, C.M., and Davis, Mildred A. The germicidal action of freezing temperatures upon bacteria. J. Bact., 3, 423-431. 1918.
- 9. James, L.H. The microbiology of frozen foods. The Fruit Products Journal, 12 (4), 110-113. 1932.
- 10. Jones, A.H., and Lochhead, A.G. A study of micrococci surviving in frozen pack vegetables and their enterotoxic properties. Food Res., 4 (2), 203-216. 1939.
- 11. Jones, A.H. Factors affecting the microbial load of vegetables and fruits for frozen pack. Food in Canada, 2 (2), 13-17. 1942.

- 12. Jones, A.H., and Ferguson, W.E. A study of methods of preparing food products for microbiological analyses. Food Technology. In press.
- 13. Keith, S.C. Jr. Factors influencing the survival of bacteria at temperatures in the vicinity of the freezing point of water. Science 37, 877-879. 1913.
- 14. Kiser, J.S. A quantitative study of rate of destruction of an <u>Achromobacter Sp</u>. by freezing. Food Res., 8 (4), 323-326. 1943.
- 15. Lochhead, A.G., and Jones, A.H. Studies of numbers and types of microorganisms in frozen vegetables and fruits. Food Res., 1 (1), 29-39. 1936.
- 16. Lochhead, A.G., and Jones, A.H. Types of bacteria surviving in frozen-pack vegetables. Food Res., 3 (3), 299-306. 1938.
- 17. Luyet, B.I., and Gehenio, P.M. Life and death at low temperatures. Biodynamica, Normandy, Missouri. 1940.
- 18. McCloskey, C.S., and Christopher, W.N. Some factors influencing the survival of pathogenic bacteria in cold-pack strawberries. Food Res., 6 (8), 327-333. 1941.
- McFarlane, V.H. Behaviour of microorganisms at sub-freezing temperatures. I. Freezing redistribution studies. Food Res., 5 (1), 43-57. 1940.
- 20. McFarlane, V.H. Behaviour of microorganisms at sub-freezing temperatures. II. Distribution and survival of microorganisms in frozen cider, frozen syrup-packed raspberries and frozen brine-packed peas. Food Res., 5 (1), 59-68. 1940.
- 21. McFarlane, V.H. Behaviour of microorganisms at sub-freezing temperatures. III. Influence of sucrose and hydrogen-ion concentrations. Food Res., 6 (5), 481-492. 1941.
- 22. McFarlane, V.H., and Goresline, H.E. Microbial destruction in buffered water and in buffered sugar syrups stored at -17.8°C (0°F.). Food Res., 8 (1), 67-77. 1943.

- 23. Pederson, C.S. Significance of bacteria in frozen vegetables. Food Res., 12 (6), 429-438. 1947
- 24. Prescott, S.C., Bates P.K., and Highlands, M.E. Numbers of bacteria in frozen food stored at several temperatures. Am. J. Pub. Health, 22, 257-262. 1932.
- 25. Prudden, T.M. On bacteria in ice and their relations to the ice supply of New York City. Med. Rec., 31, 341, 31, 369. 1887.
- 26. Rahn, Otto. Physical methods of sterilization of microorganisms. IV. Death by low temperatures. Bacteriological Reviews, 9 (1), 21-33. 1945.
- 27. Sedgwick, W.T., and Winslow, C.E.A. Experimentelle und statistische studien uker den einfluss der kalte auf den typhusbacillus und seine verteilung. Cent. Bakt., 27, 684. 1900.
- 28. Sherman, J.M., and Albus, W.R. Physiological youth in bacteria. J. Bact., 8, 127-139. 1923.
- 29. Smart, Helen F., and Brunsteller, B.C. Spinach and kale in frozen pack. I. Scalding tests II. Microbiological Studies. Food Res., 2 (2), 151-163. 1937.
- 30. Smart, Helen F. Microbiological studies on cultivated blueberries in frozen pack. Food Res., 2 (5), 429-434. 1937.
- 31. Smart, Helen F. Types and survival of some microorganisms in frozen-pack peas, beans, and sweet corn grown in the east. Food Res., 2 (6), 515-528. 1937.
- 32. Smart, Helen F. Microbiological studies on commercial packs of frozen fruits and vegetables. Food Res., 4 (3), 293-298. 1939.
- 33. Smart, Helen F. Further studies on behaviour of microorganisms in frozen cultivated blueberries. Food res., 4 (3), 287-292. 1939.
- 34. Straka, R.P., and James, L.H. A health aspect of frozen vegetables. Am. J. Pub. Health, 22 (5), 473-492. 1932.

- 35. Straka, R.P., and James, L.H. Frozen vegetables. Am. J. Pub. Health, 23 (7), 700-703. 1933.
- 36. Van Eseltine, Wm. P., Nellis, Lois F., Lee, F.A., and Hucker, G.J. Effect of rate of freezing on bacterial content of frozen vegetables. Food Res., 13 (4), 271-280. 1948.
- 37. Wallace, G.I., and Park, S.E. Microbiology of frozen foods. V. The behaviour of <u>Clostriduim</u> <u>botulinum</u> in frozen fruits and in vegetables. Jour. Inf. Dis., 52, 150-156. 1933.
- 38. Wallace, G.I., and Tanner, F.W. Microbiology of frozen foods. I. Historical review and summary of results. The Fruit Products Journal, 13 (2), 52-54:56. 1933.
- 39. Wallace, G.I., and Tanner, F.W. Microbiology of frozen foods. I Historical review and summary of results. The Fruit Products Journal, 13 (4), 109-113. 1933.
- 40. Wallace, G.I., and Tanner, F.W. Microbiology of frozen foods II. Studies on frozen fruits and vegetables. The Fruit Products Journal, 13 (9), 274-277. 1934.
- 41. Wallace, G.I., and Tanner, F.W. Microbiology of frozen foods. II. Studies on frozen fruits and vegetables. The Fruit Products Journal, 13 (12), 366-369:377. 1934.
- Wallace, G.I., and Tanner, F.W. Microbiology of frozen foods. II. Studies on frozen fruits and vegetables. The Fruit Products Journal, 14 (5), 145-147:151. 1935.
- 43. Wallace, G.I., and Tanner, F.W. Microbiology of frozen foods. III. Longevity of pure cultures of microorganisms frozen in various menstra. The Fruit Products Journal, 14 (8), 235-237. 1935.
- Weiser, R.S., and Osterud, Clarice M. Studies on the death of bacteria at low temperatures.
 I. The influence of the intensity of the freezing temperature, repeated fluctuations of temperature, and the period of exposure to freezing temperatures on the mortality of <u>Escherichia coli</u>. J. Bact., 50 (4), 413-439. 1945.