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ABSTRACT

A HYBRID SYSTEM APPROACH TO

IMPEDANCE AND ADMITTANCE CONTROL

By

Frank Mathis

Impedance Control and Admittance Control are two different implementation meth-

ods that are used to achieve the same control objective of producing a desired rela-

tionship between applied force and displacement of a robotic system interacting with

an environment. Due to the difference in implementation method, impedance control

and admittance control have complementary performance and stability characteristics.

Impedance control is stable for all contact environment stiffness and has good perfor-

mance for stiff environments, but results in poor performance during interaction with

soft environments. Admittance control results in good performance during interaction

with soft environments but results in either poor performance and or unstable behaviour

during interaction with stiff environments. We use a hybrid system framework to propose

a family of controllers that attempt to interpolate the stability and performance charac-

teristics of impedance control and admittance control. The advantages of this approach

are first demonstrated through analysis and simulations of a single degree-of-freedom

rigid linear model. The methodology is then extended to multi degree-of-freedom linear

and non-linear models and single degree-of-freedom system with flexibility. Experimen-

tal results with a lightweight robotic arm are presented to demonstrate the usefulness

of the approach.



ACKNOWLEDGMENTS

I would like to thank Dr. Christian Ott for his mentorship, patience, and support

during this project. I would also like to thank my advisor, Dr. Ranjan Mukherjee, for

his support, his patience, and his guidance throughout this work. Thanks to Wieland

Bertleff for his help in setting up the experiments.

Finally, I would like to thank the Deutsches Zentrum für Luft- und Raumfahrt, DLR,

for the funding that they provided for this work as well as the use of their equipment.

iii



TABLE OF CONTENTS

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Impedance Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Admittance Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Motivation for Hybrid Control . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Hybrid Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Stability of Nominal Plant . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Preliminary Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Comparison of Additive Control . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Stability of Nominal Plant . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Change of Switching Conditions . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.1 Matching Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.2 Minimizing Discrete Difference Between Desired and Actual Be-

haviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Linear Separation of External Force in Switching Condition . . . . . . . . 45

3.6.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 N-DOF Rigid Joint Models . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Linear N-DOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.2 Impedance Control . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.3 Admittance Control . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.4 Hybrid Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.5 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

iv



4.2 Non-linear N-DOF Model . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2 Impedance Controller . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.3 Admittance Controller . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.4 Hybrid Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.5 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Flexible Joint Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Linear 1-DOF Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.2 Passive Impedance Controller . . . . . . . . . . . . . . . . . . . . 75
5.1.3 Admittance Controller . . . . . . . . . . . . . . . . . . . . . . . . 78
5.1.4 Hybrid Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.1.5 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.1.6 Simulations and Performance . . . . . . . . . . . . . . . . . . . . 85

5.2 Change of Switching Conditions . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.1 Matching Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.2 Minimizing Discrete Difference Between Desired and Actual Be-

havior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.2.1 Choosing Desired Behavior based on Passive Impedance 98
5.2.2.2 Choosing Desired Behavior based on Rigid Impedance . 100
5.2.2.3 Choosing Desired Behavior based on Combination of Pas-

sive and Rigid Impedance . . . . . . . . . . . . . . . . . 102
5.3 Linear Separation of External Force in Switching Condition . . . . . . . . 103

5.3.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Results for Desired Response Equal to Passive Impedance . . . . . . . . . 119
6.3 Results for Desired Response Equal to Combination of Passive Impedance

and Rigid Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



LIST OF FIGURES

Figure 2.1 A single degree-of-freedom mass interacting with the environment 5

Figure 2.2 Qualitative illustaration of the performance of impedance control
and admittance control for different environment stiffness . . . . 9

Figure 2.3 Stability boundaries for hybrid impedance and admittance con-
trol for different values of δ . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.4 Stability boundaries for hybrid impedance and admittance con-
trol for δ values 10 ms, 20 ms, 30 ms, and 40 ms . . . . . . . . 17

Figure 2.5 Soft Contact position response for δ = 50 ms and n = 0.9 . . . . 18

Figure 2.6 Soft contact position response for δ = 50 ms and n = 0.1 . . . . 19

Figure 2.7 Soft contact position response for δ = 50 ms and n = 0.5 . . . . 20

Figure 2.8 Soft Contact position response for δ = 50 ms and a range of n
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 2.9 Stiff contact position response for δ = 50 ms and n = 0.9 . . . . 22

Figure 2.10 Stiff contact position response for δ = 50 ms and n = 0.1 . . . . 23

Figure 2.11 Stiff contact position response for δ = 50 ms and n = 0.5 . . . . 24

Figure 2.12 Stiff contact position response for δ = 50 ms and a range of n
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.1 Stability boundaries for convex combination of impedance and
admittance control . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vi



Figure 3.2 Stability boundaries for hybrid impedance and admittance con-
trol for δ = 10 ms and Kp = 10000 N/m . . . . . . . . . . . . . 34

Figure 3.3 Stability boundaries for hybrid impedance and admittance con-
trol for δ = 60 ms and Kp = 10000 N/m . . . . . . . . . . . . . 35

Figure 3.4 Soft contact position response for Kp = 10000 N/m, δ = 50 ms,
and n = 0.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.5 Soft contact position response for Kp = 10000 N/m, δ = 50 ms,
and n = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 5.1 Single degree-of-freedom flexible joint model . . . . . . . . . . . 74

Figure 5.2 Single degree-of-freedom passive impedance for flexible joint model 76

Figure 5.3 Soft contact position response for δ = 50 ms and n = 0.1 . . . . 86

Figure 5.4 Soft contact position response for δ = 50 ms and n = 0.5 . . . . 87

Figure 5.5 Soft contact position response for δ = 50 ms, and n = 0.9 . . . . 88

Figure 5.6 Stiff contact position response for δ = 50 ms and n = 0.1 . . . . 89

Figure 5.7 Stiff contact position response for δ = 50 ms and n = 0.5 . . . . 90

Figure 5.8 Stiff contact position response for δ = 50 ms and n = 0.9 . . . . 91

Figure 6.1 Photo of Experimental Setup . . . . . . . . . . . . . . . . . . . . 114

Figure 6.2 Reference Diagram of Experimental Set-up . . . . . . . . . . . . 115

Figure 6.3 Free Space Hybrid Response for Different n values with δ =
25 ms, and using the passive impedance as the desired behav-
ior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Figure 6.4 Free Space Hybrid Response for Different n values with δ =
25 ms, and using the passive impedance as the desired behav-
ior ignoring gravity . . . . . . . . . . . . . . . . . . . . . . . . . 121

vii



Figure 6.5 Soft contact position response for δ = 25 ms, n = 1, and varying
Kpa values while using passive impedance controller for desired
behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 6.6 Soft contact position response for δ = 25 ms, Kpa = 0.005, and
varying n while using passive impedance controller for desired
behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Figure 6.7 Hard contact position response for δ = 25ms, n = 1, and varying
Kpa while using passive impedance controller for desired behavior 125

Figure 6.8 Hard contact position response for δ = 25 ms, Kpa = 0.005 and
varying n while using passive impedance controller for desired
behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Figure 6.9 Hard contact position response for δ = 25 ms, Kpa = −0.005,
and varying n while using passive impedance controller for de-
sired behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Figure 6.10 Free Space Hybrid Response for Different n values with δ =
25 ms, and using a combination of passive impedance and rigid
impedance as the desired behavior . . . . . . . . . . . . . . . . . 129

Figure 6.11 Free Space Hybrid Response for Different n values with δ =
25 ms, and using a combination of passive impedance and rigid
impedance as the desired behavior while ignoring gravity . . . . 130

Figure 6.12 Soft contact position response for δ = 25 ms, n = 1, and varying
Kpa values while using a combination of passive impedance and
rigid impedance as the desired behavior . . . . . . . . . . . . . . 131

Figure 6.13 Soft contact position response for δ = 25 ms, Kpa = 0.005, and
varying n while using a combination of passive impedance and
rigid impedance as the desired behavior . . . . . . . . . . . . . . 132

Figure 6.14 Hard contact position response for δ = 25ms, n = 1, and varying
Kpa while using a combination of passive impedance and rigid
impedance as the desired behavior . . . . . . . . . . . . . . . . . 134

Figure 6.15 Hard contact position response for δ = 25 ms, Kpa = 0.005 and
varying n while using a combination of passive impedance and
rigid impedance as the desired behavior . . . . . . . . . . . . . . 135

viii



Figure 6.16 Hard contact position response for δ = 25 ms, Kpa = −0.005
and varying n while using a combination of passive impedance
and rigid impedance as the desired behavior . . . . . . . . . . . 136

ix



Chapter 1

Introduction

Most popular implementations for industrial robots are restricted to tasks which involve

little to no exchange of mechanical energy between the end-effector and the environment.

Instead they require precise position controls, such as in welding, painting, and pick and

place operations.

The first control method is called “Hybrid Position and Force Control” and was

developed by Raibert and Craig [23]. In hybrid position and force control the control

input is decomposed into two orthogonal subsets, one subset for position control and

one subset for force control. The force control subset is used to control the desired force

of interaction of the end effector with the environment in certain directions, and the

position control subset is used to control the position of the effector in the remaining

directions. However, because the subsets of the control method are orthogonal, and

dynamic coupling between the position of the effector and the force from the environment

is not considered, it is not possible to accurately control either the end effector force

or position. The compliance control method proposed by Mason is a variation of the
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hybrid position and force control method [14] and sufferes from the same drawbacks as

“Hybrid Position and Force Control”.

The second control method was proposed by Hogan and is known as “Impedance

Control” [8]. In impedance control, the mechanical impedance of the manipulator is

controlled to match that of a desired model. Therefore, impedance imposes a relation-

ship between the position of the effector and the force produced by the environment,

and provides a unifying methodology for all tasks ranging from motion in free-space to

dynamic interaction with an environment.

Strategies that combine impedance control and hybrid position and force control have

also been proposed. Anderson and Spong [3] proposed a method that uses feedback

linearization as an inner loop. For the outer loop, they used a hybrid position and

force type controller which uses impedance control instead of position control. Liu and

Goldenberg [12] proposed a robust method for hybrid position and force control, it uses

impedance control in the position control subspace, and an inertia normalization and

damping in the force control subspace. A PI controller is used to achieve robustness,

and the controller was implemented on a two degree of freedom direct drive robot.

The impedance control method may be implemented in one of two ways. Although

Hogan [8] refers to both methods as impedance control, we make the distinction between

the two. In the first method of implementation, which are referred to as “Impedance

Control”, the control force is derived from the desired mechanical impedance between the

end efector position and force exerted between the end effector and the environment.

The second implementation method is referred to as “Admittance Control” wherein

the control input is a position controller that drives the end effector to the resulting
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mechanical admittance derived from the desired relationship between the force produced

by the environment and the end-effector. Stability properties of impedance control and

admittance control are discussed in [10].

Robotic systems controlled with impedance control typically have more stable dy-

namics when interacting with stiff environments, but have poor accuracy in free space

when compared to admittance control. The accuracy problem of impedance control may

be mitigated through hardware modifications such as low-friction joints and direct-drive

actuators. Impedance control has been implemented ATR’s Humanoid built by Sarcos

[4] and in DLR’s light-weight robot using inner loop torque sensing and control [18] as

well in the Phantom haptic device using low-friction joints and low inertias.

Admittance control has complementary characteristics of impecance control and has

high accuracy in free-space, but can result in instability when implemented with high

contact stiffness. To improve stability characteristics, admittance control is implemented

together with series elastic actuation but such hardware modification reduces the per-

formance of the system in free-space. Also, admittance control usually requires high

transmission drives, as compared to the direct drives that are used with impedance con-

trol, to achieve accurate position control and higher torque values for the inner loop

position controller.

Impedance control and admittance control have complementary characteristics but

neither provides good performance over the full range of control tasks from accurate

position control in free-space to stability in contact with rigid environments. Although

hardware modifications can be made to improve either controller, such modifications

result in a predisposition to that controller as it degrades the performance of the other.

3



To overcome this obstacle and have complete flexibility over choosing the best controller

for a given task, a hybrid switching control based on a hybrid systems framework [11]

was proposed by Ott, Mukherjee, and Nakamura [19]. However, the proposed method

was investigated with a single degree of freedom linear time invariant model. In this

thesis, we extend this analysis to higher dimensions as well as the use of series elastic

actuation and verify the results through experimentation.

4



Chapter 2

Background

2.1 Problem Statement

m

x

F Fext

Figure 2.1: A single degree-of-freedom mass interacting with the environment

We begin with a review of the hybrid impedance admittance control problem as

originally proposed by Ott, Mukherjee, and Nakamura for a single degree-of-freedom
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linear system [19]. Consider a single degree of freedom mass, m, that interacts with its

environment as shown in figure 2.1. The displacement x with F and Fext denoting the

control force and force applied on the mass by the environment, respectively. Both F

and Fext are measured positive in the direction of positive displacement. The equation

of motion is written as

mẍ = F + Fext (2.1)

The control objective of both impedance and the admittance control is to design the

control force F that will result in the following dynamic relationship

Mθë+Dθė+Kθe = Fext (2.2)

between

e = x− x0 (2.3)

which is the error in the position of the mass relative to a desired equilibrium trajectory

x0 and Fext. Where Mθ, Dθ, and Kθ are positive constants that represent the desired

inertia, damping and stiffness, respectively. For the single degree of freedom system, the

differential map may be written as a transfer function between e and Fext denoted by

Gd(s) =
1

Mθs
2 +Dθs+Kθ

(2.4)
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2.2 Impedance Control

For impedance control, the control force is a mechanical impedance with the control

plant and desired plant being a mechanical admittance. From equations (2.1) and (2.2)

we have

ẍ = m−1(F + Fext) (2.5)

ẍ = ẍ0 +M−1
θ

(Fext −Kθe−Dθė) (2.6)

Comparing equations (2.6) and (2.5) and solving for F we set

F = Fi = mẍ0 + (mM−1
θ

− 1)Fext −mM−1
θ

(Dθe+Kθe) (2.7)

It can be verified that the substitution of equation (2.7) into (2.1) yields

Mθ(ẍ− ẍ0) +Dθ(ẋ− ẋ0) +Kθ(x− x0) = Fext (2.8)

2.3 Admittance Control

For admittance control, the control force is a position-controller designed to track the

trajectory, x = xd. Traditionally, tracking is implemented using a PD regulation con-

troller of the form

F = Fa = Kp(xd − x)−Kdẋ (2.9)
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with positive gains kp and kd. The desired trajectory, xd, is derived from the mechanical

admittance in (2.2). Then, xd may be written as the solution to the differential equation

Mθ(ẍd − ẍ0) +Dθ(ẋd − ẋ0) +Kθ(xd − x0) = Fext (2.10)

Substituting (2.9) into (2.1) we find the complete system dynamics to be given by

mẍ+Kdẋ+Kp(x− xd) = Fext (2.11)

Md(ẍd − ẍ0) +Dθ(ẋd − ẋ0) +Kθ(xd − x0) = Fext (2.12)

2.4 Motivation for Hybrid Control

The performance of impedance control in terms of position accuracy depends primarily

on the back drive-ability of the system as well as unmodeled friction. For large unmod-

eled friction, the position accuracy in free space tends to be poor as it depends on the

desired stiffness and damping which are generally chosen to be small to reduce input

noise [26]. However, impedance control is robustly stable for model uncertainties and

even when in contact with stiff environments, as analysed by [6], [2], and [15].

The performance of admittance control depends heavily on the position controller

[22], which effectively compensates for unmodeled friction [26], [13]. Therefore, admit-

tance control may be implemented in systems with poor back drive-ability and large

unmodeled friction. However, we find that the position controller results in instability

when the mass comes in contact with large stiffness environments even in the absence

8



of uncertainties [10]. To compensate for the instability issue of admittance control re-

searchers have proposed adaptive control methods for dealing with environments with

unknown stiffness [25], [24].

The complementary characteristics of the two controllers is well known [27] and is

illustrated with the help of fig. 2.2 bellow [19].

Ideal Control

Admittance Control

Impedance Control

P
er
fo
rm

an
ce

Environment Stiffness

Figure 2.2: Qualitative illustaration of the performance of impedance control and ad-
mittance control for different environment stiffness

To overcome the limitations of both the impedance controller and the admittance

controller we propose a hybrid controller in the next section that can potentially provide

good performance for the entire spectrum of tasks ranging from motion in free space to

dynamic interaction .
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2.5 Hybrid Framework

For the single degree-of-freedom system described by equation (2.1), we propose to switch

between the impedance controller and admittance controller as follows:

F =











Fi : t ∈ [t0 + kδ, t0 + (k + 1− n)δ)

Fa : t ∈ [t0 + (k + 1− n)δ, t0 + (k + 1)δ)

(2.13)

where t0 is the initial time, δ is the switching period, n ∈ [0, 1] is the duty cycle, and k

is a positive integer. Fi is given by equation (2.7), and Fa is given by equations (2.10)

and (2.9).

If the environment is modelled as a linear spring, namely

Fext = −ke(x− x0) (2.14)

and the equilibrium trajectory, x0 is assumed to be constant, i.e.,

ẋ0 = ẍ0 = 0 (2.15)

the hybrid system follows the descriptions

Ẋi = AiXi : t ∈ [t0 + kδ, t0 + (k + 1− n)δ)

Ẋa = AaXa : t ∈ [t0 + (k + 1− n)δ, t0 + (k + 1)δ) (2.16)

10



where

Xi = (e ė)T (2.17)

Ai =







0 1

−(Kθ + ke)/Mθ −Dθ/Mθ






(2.18)

Xa = (e ė ed ėd)
T (2.19)

ed = xd − x0 (2.20)

and

Aa =







0 1 0 0

−(Kp + ke)/m −Kd/m Kp/m 0






(2.21)

When switching from the impedance controller to the admittance controller, two

additional states are introduced. These states, ed and ėd, are chosen at the instant of

switching to maintain continuity of the control force F and its derivative. Equation (2.9)

gives the expression for the control force of the admittance controller

11



xd = x+
1

Kp
(Fi +Kdẋ)

⇒ ed = e+
1

Kp
(Fi +Kdė) (2.22)

ẋd = ẋ+
1

Kp

(

Ḟi +Kdẍ
)

⇒ ėd = ė+
1

Kp

[

Ḟi +Kd(F1 + Fext)
]

(2.23)

Replacing Fi in equations (2.22) and (2.23) with Fi from equation (2.7), it is possible

to obtain an expression of the form

Xa = SaiXi, Sai =







I

S






(2.24)

at the instant of switching, where I is the identity matrix, and sij , i = 1, 2, j = 1, 2 of

the S matrix have the expression

s11 = 1−
Ke

Kp
(
m

Mθ
− 1)−

Kθ

Kp

m

Mθ

s12 =
Kd

Kp
−

Dθ

Kp

m

Mθ

s12 = −
m

Mθ

(Kθ + ke)

Kp

(

Kd

m
−

Dθ

Mtheta

)

s22 = 1−
ke
Kp

(

m

Mθ
− 1

)

−
Dθ

Mθ

(

Kd

Kp
−

Dθ

Kp

m

Mθ

)

−
Kθ

Kp

m

Mθ
(2.25)

When the system switched from the admittance controller to the impedance con-

troller, the state mapping is given by
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Xi = SiaXa, Sia = [I 0] (2.26)

Where 0 is the 2× 2 matrix of zeros.

2.6 Stability

Knowing the states at time t = t0 + kδ, the states at t = t0 + (k + 1)δ, k ∈ Z+ is a

positive integer, can be obtained using equations (2.16), (2.24), and (2.26) as

Xi(t0 + (k + 1− n)δ) = eAi(1−n)δXi(t0 + kδ)

⇒ Xa(t0 + (k + 1− n)δ) = Saie
Ai(1−n)δXi(t0 + kδ)

⇒ Xa(t0 + (k + 1)δ) = eAanδXa(t0 + (k + 1− n)δ)

⇒ Xi(t0 + (k + 1)δ) = Siae
AanδXa(t0 + (k + 1− n)δ)

⇒ Xi(t0 + (k + 1)δ) = Siae
AanδSaie

Ai(1−n)δXi(t0 + kδ) (2.27)

We now define the matrix Adis to be

Adis , Siae
AanδSaie

Ai(1−n) (2.28)

such that

Xi(t0 + (k + 1)δ) = AdisXi(t0 + kδ) (2.29)
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We see that Adis defines a discrete map of states from time t = t0+kδ to t = t0+(k+1)δ,

independent of k. We now define a Discrete Equivalent System based on the definition

in Das and Mukherjee [5].

Definition 1. [Discrete Equivalent Subsystem (DES)] The time-invariant linear system

Ẋ = AeqX (2.30)

is a DES of a switched linear system if the state variables of the DES assume identical

values of a subset of the states of the switched system at regular intervals of time,

starting from the same initial conditions

Based on definition 1, the system given by equation (2.30) is a DES of the switched

system described by (2.16), (2.24), and (2.26) if

Aeq =
1

δ
ln[Adis] (2.31)

Where ln is defined as the principle matrix natural logarithm. Now, the following theo-

rem on stability is presented [19].

Theorem 1. The equilibrium Xi = 0 of the switched system described by equations

(2.16), (2.24), and (2.26) is exponentially if Aeq of the DES system in equation (2.30)

is Hurwitz.

Proof. see [19].

Remark 1. The necessary and sufficient condition for Aeq in equation (2.31) to exist is

that Adis is non-singular [7]. Furthermore, we find that if λdis is an eigenvalue of Adis,
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then the eigenvalue, λeq corresponding to Aeq is given by [7]

λeq =
1

δ
ln(|λdis|) + i

1

δ
arg(λdis) (2.32)

where arg is taken to be the principle argument.

Remark 2. The stability analysis is based on switching from impedance control to ad-

mittance control and back to impedance control. This sequence leads to a DES defined

by the principle matrix logarithm of the 2 × 2 matrix Siae
AanδSaie

Ai(1−n)δ as shown

in equation (2.27). However, if the hybrid system is switched from admittance control

to impedance control and back to admittance control, the DES would be defined by

the principle matrix logarithm of a 4× 4 matrix Saie
Ai(1−n)δSiae

Aanδ instead. This is

problematic, since for any two matrices A ∈ Rm×n and B ∈ Rn×n with m < n, the

eigenvalues of AB and BA are the same except for the (n −m) additional eigenvalues

of BA which are identically zero [9]. Therefore, the matrix Saie
Ai(1−n)δSiae

Aanδ is

singular. However, we note that the states corresponding to the zero eigenvalues are

virtual states.

2.7 Stability of Nominal Plant

Theorem 1 provides a sufficient condition for exponential stability of the linear single

degree of freedom switched system. However, the matrix Aeq is dependant on both

the external stiffness, ke, the switching period, δ, and the weight n. Therefore, before

simulating a sample system we will analyse the stability properties of the system in the

abscense of model uncertainties.
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Figure 2.3: Stability boundaries for hybrid impedance and admittance control for dif-
ferent values of δ

Let the parameters of a single degree-of-freedom system be given by

m = 1 kg Kp = 106 N
m Kd = 1.4

√

Kpm
Ns

m

Mθ = 1 kg Kθ = 100 N
m Dθ = 1.4

√

KθMθ
Ns

m
(2.33)

Figure 2.3 show stability boundaries of the system for different values of ke, n, and δ. The

solid lines in the figure represent the projection of the stability boundary for a constant

δ in the (n, ke) plane, with the lower left side of the solid lines denoting the stable region.

We see from the figure that the region of stability increases as δ decreases. We notice

also that the stability boundary does not necessarily meet the stability boundary of the
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admittance controller when n = 1. This is due to the resetting condition when switching

from the impedance controller to the admittance controller, as found by the mapping

Sai as defined in (2.24).

n
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 (N

/m
)
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1

0.5

0
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δ = 10

δ = 20

δ = 30

δ = 40

Figure 2.4: Stability boundaries for hybrid impedance and admittance control for δ
values 10 ms, 20 ms, 30 ms, and 40 ms

We note that Figure 2.3 does not provide a complete picture of the change in the

stability boundary for changing delta. We see in Figure 2.4 that at certain ke values

the largest n value in the stable region does not necessarily correspond to the smallest

δ value.

17



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (sec)

P
os

iti
on

 x
 (

m
)

 

 

Desired
Admittance
Impedance
Hybrid

Figure 2.5: Soft Contact position response for δ = 50 ms and n = 0.9

2.8 Simulations

We will now simulate a sample single degree-of-freedom system in order to study the

performance when switching in the presence of uncertainties, like time delay on sensors,

uncertain mass value, noise, and unmodeled damping. We will let the parameters of the

system be given by

m = 1 kg, Kp = 106
N

m
, Kd = 1.4

√

Kpm
N s

m
,

Mθ = 0.8 kg, Kθ = 100
N

m
, Dθ = 1.4

√

KθMθ
N s

m
(2.34)

where the measured value of m is 80% the actual value. The simulations use a fixed

time Diamond-Prince method with time step of T = 0.001 s. We assume the measured
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value of x, ẋ, and Fext have a delay of Td = 0.002 s, and the external input is corrupted

by noise. We choose the function Fext to be given by

Fext = −kex (2.35)

and x0 is chosen to be a constant value of 1 m. We choose δ = 50 ms for all simulations.

We begin by considering the soft environment stiffness to be given by ke = 100 N/m.

We then wish to demonstrate how different values of n change the performance. There-

fore, let us begin with n = 0.9
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Figure 2.6: Soft contact position response for δ = 50 ms and n = 0.1

Figure 2.5 shows the response of the impedance controller, admittance controller, ideal

response in the abscence of uncertainties, and the hybrid controller when interacting
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with a soft environment and for n = 0.9. From the figure we see that the response of the

admittance, hybrid, and ideal response are very close to each other while the response

of the impedance controller lags behind the ideal response and results in a steady state

error. This implies that for δ = 0.5 the admittance controller has a very similar response

to the hybrid controller as n → 1. To further investigate, consider the same external

stiffness, ke = 100 N/m, but let n = 0.1.
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Figure 2.7: Soft contact position response for δ = 50 ms and n = 0.5

Figure 2.6 again shows the response of the impedance controller, admittance con-

troller, ideal response, and the hybrid controller when interacting with a soft environment

and for n = 0.1. We now have the hybrid controller closely approximating the same per-

formance as the impedance controller. This is expected since when n = 0 the hybrid

controlled system is the impedance controlled system. Now, consider the system subject
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to the same external stiffness, ke = 100 N/m, but let n = 0.5.
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Figure 2.8: Soft Contact position response for δ = 50 ms and a range of n values

Figure 2.7 again shows the response of the impedance controller, admittance con-

troller, ideal response, and the hybrid controller when interacting with a soft environment

and for n = 0.5. Now the hybrid controller approximates a mean performance between

the impedance controller and the admittance controller. This implies that the switched

system response resembles a weighted average between the impedance controller and the

admittance controller with the weights being based on the value of n. This is shown in

Figure 2.8 which plots the response of different n values in the hybrid controller for the
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same external stiffness, ke = 100 N/m.
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Figure 2.9: Stiff contact position response for δ = 50 ms and n = 0.9

Figures 2.5-2.8 demonstrate the variation in the response of the hybrid system as a

function of n, and how it interpolates between the response of the impedance controller

and the admittance controller. However, the figures plot the results for a soft contact, for

which the admittance controller has good performance. Therefore, we now investigate

the scenarios where the system comes in contact with a hard surface, ke = 1000 N/m.

We again begin with n = 0.9.

Figure 2.9 shows the response of the closed loops system under impedance control,

admittance control, the hybrid control, and the ideal response when interacting with

a stiff environment and n = 0.9. From the figure we see that the hybrid control and

the admittance control closely approximate each other. This is consistent with the soft
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Figure 2.10: Stiff contact position response for δ = 50 ms and n = 0.1

contact case. However, we see that the admittance controller does not approximate

the desired performance. We then let n = 0.5 with the same external stiffness, ke =

1000 N/m.

Figure 2.10 shows the responses of the closed loop system uner admittance control,

impedance control, hybrid control, and the ideal response when interacting with a stiff

environment and n = 0.1. From figure 2.10 we see that the hybrid controller response

closely approximates the impedance controller. Again, this is not surprising as when

n = 0 the hybrid controller is the impedance controller. Therefore, we consider the case

where n = 0.5 for the same external stiffness, ke = 1000 N/m.

From figure 2.11 we see that the hybrid response again approximates a mean be-

tween the admittance controller and the impedance controller when interacting with a
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Figure 2.11: Stiff contact position response for δ = 50 ms and n = 0.5

stiff environment. We again infer that changing the value of n from 1 to 0 changes the

response of the hybrid controller from the admittance controller to the impedance con-

troller in a similar manner to that of a weighted average based on the value of n. This is

further demonstrated in Figure 2.12 which shows the response of the hybrid controller

for different values of n for the same external stiffness, ke = 1000 N/m.

This simple example demonstrates the desired effect of switching between admittance

and impedance in order to improve the overall performance for a range of external

stiffness values.

24



-0.02

0

0.02

0.04

0.06

0.08

0.12

0.14

0.16

n=0.8

n=0
n=0.2

n=0.6
n=0.4

0 0.1

0.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
os
it
io
n
x
(m

)

Time (sec)

Figure 2.12: Stiff contact position response for δ = 50 ms and a range of n values

25



Chapter 3

Preliminary Work

The previous chapter introduces the idea of switching between the impedance control and

the admittance control in order to improve the the performance based on the stiffness

of the environment. However, the proof of stability using a DES is inadequate since

it is unable to handle analysis of switching for the sequence of admittance control to

impedance control, and back to admittance control due to the singularity of the resulting

matrix. Therefore, we begin this section by providing a new stability theorem that does

not have the same issue. We then briefly investigate why we choose to switch controllers

instead of producing a feedback control that is a weighted combination of the admittance

control and impedance control.

The gains of the position controller used in the admittance controller are large and

may be diificult to implement in experiments due to hardware restrictions. Therefore,

we revisit the nominal plant stability and simulations of the previous section using

smaller position gains. From this investigation we find that the position gains effect the

performance of the switched system. Therefore, we propose a new method of defining
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the additional states of the admittance controller at the instant of switching to help

compensate for the effect of smaller gains. Finally, we discuss a method for solving the

new switching method using only measured values of the external force instead of using

a known function for the external force.

3.1 Stability

Using the same notation used in chapter 2 for a single degree-of-freedom switched system

we express the states at t = t0 + (k + 1)δ in terms of the states at time t = t0 + kδ by,

namely

Xi(t0 + (k + 1− n)δ) = eAi(1−n)δXi(t0 + kδ)

Xa(t0 + (k + 1− n)δ) = Saie
Ai(1−n)δXi(t0 + kδ)

Xa(t0 + (k + 1)δ) = eAanδXa(t0 + (k + 1− n)δ)

Xi(t0 + (k + 1)δ) = Siae
AanδXa(t0 + (k + 1− n)δ)

Xi(t0 + (k + 1)δ) = Siae
AanδSaie

Ai(1−n)δXi(t0 + kδ) (3.1)

We now define the matrix Adis

Adis = Siae
AanδSaie

Ai(1−n) (3.2)

such that

27



Xi(t0 + (k + 1)δ) = AdisXi(t0 + kδ) (3.3)

the matrix Adis defines a discrete map of states from time t = t0+kδ to t = t0+(k+1)δ

independent of k. We now have the following theorem.

Theorem 2. The origin of the switched system described by (2.16), (2.24), and (2.26)

is asymptotically stable iff all eigenvalues of Adis lie within the open unit circle about

the origin.

Proof. For convenience we define the following variables:

A1(τ) = eAi(1−n)τ (3.4)

A2(τ) = Siae
AanτSaie

Ai(1−n)δ (3.5)

M = max
τ∈[0,δ]

{‖A1(τ)‖
2, ‖A2(τ)‖

2} (3.6)

Sufficiency: From discrete control theory, the system described by equation (3.3) is

asymptotically stable iff the eigenvalues of Adis lie within the open unit circle about at

the origin [16]. Then, from the discrete linear converse Lyapunov theorem there exists

a V (x) given by [16]

V (Xi(t0 + kδ)) = XT
i (t0 + kδ)PXi(t0 + kδ) (3.7)

for a positive definite P , such that
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V (Xi(t0 + (k + 1)δ))− V (Xi(t0 + kδ)) ≤ XT
i (t0 + kδ)QXi(t0 + kδ) (3.8)

where Q is negative definite. From equations (3.6), (3.7), and (3.1) we may find

V (Xi(t0 + ǫ)) ≤ M [XT
i (t0)PXi(t0)] ∀ǫ ∈ [0, δ] (3.9)

⇒ V (Xi(t0 + kδ + ǫ)) ≤ M [XT
i (t0 + kδ)PXi(t0 + kδ)] ∀ǫ ∈ [0, δ] (3.10)

From equation (3.7) and (3.10) that

V (Xi(t0 + kδ + ǫ)) ≤ MV (Xi(t0 + kδ)) ∀ǫ ∈ [0, δ] (3.11)

and since equation (3.8) the sequence of functions V (Xi(t0 + kδ)) is monotonically

decreasing, we may write equation (3.11) as

V (Xi(t0 + kδ + ǫ)) ≤ MV (Xi(t0)) ∀ǫ ∈ [0, δ] (3.12)

V (Xi(t)) ≤ MV (Xi(t0)) ∀t ≥ t0 (3.13)

For asymptotic stability we wish to show that Xi(t) → 0 as t → ∞. To do this

we consider that, V (Xi(t0 + δ)), V (Xi)(t0 + 2δ)), ... is decreasing and lower bounded,

therefore the limit of V(Xi) as k → ∞ and may be given by L ≥ 0 [21]. Then we have
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0 = L− L = lim
k→∞

V (Xi(t0 + (k + 1)δ))− lim
k→∞

V (Xi(t0 + kδ)) =

lim
k→∞

[V (Xi(t0 + (k + 1)δ))− V (Xi(t0 + kδ))] ≤

lim
k→∞

[

XT
i (t0 + kδ)QXi(t0 + kδ)

]

≤ 0 (3.14)

therefore, ‖Xi(t0+kδ)‖ → 0 as k → ∞ since Q is negative definite. Therefore, Xi(t) → 0

as t → ∞.

Necessity for the proof of necessity we use contradiction. Assume that the switched

system is asymptotically stable, but that Adis has at least one eigenvalue not in the

open unit circle. Then the discrete system is not asymptotically stable. Therefore, there

exists a choice Xi(t0) ∈ Bη, and an N > 0 such that

‖Xi(t0 + kδ)‖ ≥ N ∀k ≥ 0 (3.15)

However, from the fact that the switched system is asymptotically stable we have

lim
t→∞

‖Xi(t)‖ = 0 (3.16)

implying that

lim
k→∞

‖Xi(t0 + kδ)‖ = 0 (3.17)

Therefore, there exists a λ > 0 such that if k > λ then
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‖Xi(t0 + kδ)‖ < N (3.18)

which is a contradiction of equation (3.15).

Remark 3. The stability analysis is again based on switching from impedance control to

admittance control, and then back to impedance control. This sequence leads to a 2× 2

matrix Adis, as shown in equation (3.2). If we instead switched from the admittance

control to the impedance control, and back to the admittance control the matrix Adis

would be a 4× 4 matrix given by

Adis = Saie
Ai(1−n)Siae

Aanδ (3.19)

However, this does not change the stability analysis, since for any two matrices

A ∈ Rm×n and B ∈ Rn×m with m < n, the non-zero eigenvalues of AB and BA are

the same except for the (n−m) additional eigenvalues of BA which are identically zero

[9], which is in the open unit circle.

3.2 Comparison of Additive Control

The control method proposed thus far is for a switching based control strategy. However,

switching is only one possible method for hybrid control. Therefore, we will now briefly

investigate a hybrid method that uses a convex combination of control inputs. Namely,

let the input force be given by
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F = nFa + (1− n)Fi (3.20)

where Fa is given by equations (2.10) and (2.9), Fi is given by equation (2.7), and

n ∈ [0, 1]. We again assume that x0 is a constant point, and that Fext is given by equation

(2.14). Then by choosing n to be constant yields a time invariant linear differential

equation of the form

Ẋ = AX (3.21)

where X is given by

X = [e , ė , ed , ėd]
T (3.22)

and A is given by

A =























0 1 0 0

A1 A2 n
Kp
m 0

0 0 0 1

− ke
Mθ

0 −
Kθ
Mθ

−
Dθ
Mθ























(3.23)

where A1 and A2 are given by

A1 = −[n
Kp + ke

m
+ (1− n)

Kθ + ke
Mθ

] (3.24)

A2 = −[n
Kd

m
+ (1− n)

Dθ

Mθ
] (3.25)
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Then the system described by X is asymptotically stable if and only if A is Hurwitz.

5

4

3

2

1

0

0

4.5

3.5

2.5

1.5

0.5

0.2 0.4 0.6 0.8 1

x10
4

Switching rate (0=Impedance, 1=Admittance)

E
n
v
ir
on

m
en
t
st
iff
n
es
s
[N

/m
]

Figure 3.1: Stability boundaries for convex combination of impedance and admittance
control

Therefore, we are able to compare the stability region produced by the convex com-

bination of impedance and admittance control for different external stiffness compared

to the switching method. To do this we consider the parameters of a linear single de-

gree of freedom system given by (2.33). Figure 3.1 shows the stability properties of the

combination of controllers for different values of n and ke with the grey portion being

unstable, and the white portion being stable. We see from the figure that the set of

values (n, ke) for the convex combination control method is very restrictive compared

to the switching method. The resulting closed-loop system is unstable even for small

values of n, which approximates impedance control.

33



3.3 Stability of Nominal Plant

We revisit stability of the nominal system using theorem 2. Additionally, we explore the

effect of the gains used in the position controller. We note that the proportional value

Kp used previously is very large and therefore the position control torque might be larger

than the hardware permits. Therefore, let us again consider the single degree-of-freedom

linear system with parameters given by (2.33) with the exception that

Kp = 104
N

m
Kd = 1.4

√

Kp m
N s

m
(3.26)
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Figure 3.2: Stability boundaries for hybrid impedance and admittance control for δ =
10 ms and Kp = 10000 N/m

Figure 3.2 shows the region in which the controlled system is stable (in white), and the

region in which the controlled system is unstable (in grey) for δ = 10 ms and for varying
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ke and n values. We notice that the separation between stable an unstable regions are

smooth similar to the when Kp is large at the value δ = 10 ms in Figure (2.3).
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Figure 3.3: Stability boundaries for hybrid impedance and admittance control for δ =
60 ms and Kp = 10000 N/m

While figure 3.2 is informative, it does not provide a complete picture of the region

of stability to compare to the case with larger value Kp. A plot of the stability region

for δ = 50ms in Figure 3.3 shows similar features to figure 2.4. However, we notice that

when ke > 35000 N/m the regions where the system is unstable are not connected. This

indicates that reducing the value of Kp causes the the boundary between stable and

unstable pairs (n, ke) to deform irregularly as δ increases.
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Figure 3.4: Soft contact position response for Kp = 10000 N/m, δ = 50 ms, and n = 0.9

3.4 Simulations

We see from the previous section that the position gains can change the stability char-

acteristics of the hybrid system. We now wish to see how a similar change in gains effect

performance. Let us again consider the single degree of freedom system whose model is

given by equation (2.1). Let us also choose the parameters of the system to be given by

(2.34), except we now change Kp to be

Kp = 104
N

m
(3.27)

which also changes the value of Kd since it is based on the value of Kp. The external

stiffness is chosen to be ke = 100 N/m. We again begin with n = 0.9. Figure 3.4 shows
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Figure 3.5: Soft contact position response for Kp = 10000 N/m, δ = 50 ms, and n = 0.5

the response of the admittance controller, impedance controller, hybrid controller, and

the ideal response. We notice immediately that the response of the hybrid controller

is not a good approximation of the admittance controller as it was before, instead we

see that the hybrid controller results in a steady state error as well as the fact that

the admittance controller no longer closely approximates the ideal response. To fur-

ther investigate we consider Figure 3.5 which shows the response of the admittance,

impedance, and hybrid controllers as well as the desired response for n = 0.5. We notice

that contrary to the case where Kp is very large, for Kp smaller the hybrid controller no

longer approximates an average between the impedance control response and the hybrid

response when n = 1. Instead the hybrid controller produces a larger steady state error

when n = 0.5 than the impedance controller. The deviation in behaviour is because
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the position controller used in the admittance controller does not track a trajectory, but

instead assumes that xd is a sequence of fixed points with a disturbance Fext. Thus, the

gains of position controller greatly effect the performance of the admittance controller.

3.5 Change of Switching Conditions

A large factor in the performance of the switched system is the position control gain

used in the admittance algorithm. This is partly because the control force in (2.9) is

based on the assumption that xd is a constant. Therefore, choosing the states xd and ẋd

(when switching from the impedance controller to the admittance controller) such that

the force and force derivative are continuous, is not necessarily optimal. We change the

algorithm as follows for the single degree-of-freedom case.

We have the impedance control torque to be given by (2.7). We then change the

admittance torque to be given by a PD controller instead of just a position controller

giving

F = Fa = −Kp(x− xd)−Kd(ẋ− ẋd) (3.28)

with xd, ẋd to again be given by solutions to (3.28). We again let the external force,

Fext

Fext = −ke(x− x0) (3.29)

with x0 again being a constant.

We then consider the hybrid switching as proposed in (2.13) giving
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Ẋi = AiXi : t ∈ [t0 + kδ, t0 + (k + 1− n)δ)

Ẋa = AaXa : t ∈ [t0 + (k + 1− n)δ, t0 + (k + 1)δ) (3.30)

where

Xi = (e ė)T (3.31)

e = q − q0 (3.32)

Ai =







0 1

−M−1
θ

(Kθ + ke) −M−1
θ

Dθ






(3.33)

Xa = (e ė ed ėd)
T (3.34)

ed = qd − q0 (3.35)

and

39



Aa =























0 1 0 0

−M−1(Kp + ke) −M−1Kd M−1Kp M−1Kd

0 0 0 1

−M−1
θ

ke 0 −M−1
θ

Kθ M−1
θ

Dθ























(3.36)

When switching from the admittance to the impedance controller, we have

Xi = SiaXa, Sia = [I 0] (3.37)

at the instant of switching.

When switching form impedance controller to the admittance controller we have two

additional states, xd and ẋd, which must be defined. We wish to find xd such that the

control force is continuous. Using (3.28) as the expression for the control force of the

admittance control we have

xd((tk + (1− n)δ)+) = lim
t→(tk+(1−n)δ)−

[

x+K−1
p (Fi +Kd(ẋ− ẋd))

]

(3.38)

⇒ ed((tk + (1− n)δ)+) = lim
t→(tk+(1−n)δ)−

[

e+K−1
p (Fi +Kd(ė− ėd))

]

(3.39)

Instead of defining ẋd such that the derivative of the force is continuous at the instant

of switching, we consider it to be chosen later. We may then obtain the expression

Xa = SaiXi + Baiėd, Sai =







I

S






(3.40)
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at the instant of switching. Where S is given by

S =







S11 S12

0 0






(3.41)

S11 = 1−K−1
p ke(MM−1

d
− 1)−K−1

p KθMM−1
θ

(3.42)

S12 = K−1
p Kd −K−1

p DθMM−1
θ

(3.43)

and Bai is given by

Bai =























0

0

−K−1
p Kd

1























(3.44)

For brevity, let us define tk such that tk = t0 + kδ, k ∈ Z+. Then, knowing the states

at time t = tk, the states at t = tk + δ can be obtained using equations (3.30), (3.37),

and (3.40) as
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Xi(tk + (1− n)δ) = eAi(1−n)δXi(tk)

Xa(tk + (1− n)δ) = Saie
Ai(1−n)δXi(tk) + Baiėd

Xa(tk + δ) = eAanδXa(tk + (1− n)δ)

Xi(tk + δ) = Siae
AanδXa(tk + (1− n)δ)

Xi(tk + δ) = Siae
AanδSaie

Ai(1−n)δXi(tk)

+Siae
AanδBaiėd (3.45)

We define Adis as follows

Adis = Siae
AanδSaie

Ai(1−n)δ (3.46)

and Bdis as follows

Bdis = Siae
AanδBai (3.47)

This gives

Xi(tk + δ) = AdisXi(tk) + Bdisėd (3.48)

Let us now define the following as the desired behaviour of the closed loop system.

Ẋdes = AdesXdes (3.49)
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with Xdes, and Ades given by

Xdes = [e, ė]T (3.50)

Ades =







0 1

−M−1
θ

(Kθ + ke) −M−1
θ

Dθ






(3.51)

Solving (3.49) from time tk to time tk + δ gives

Xdes(tk + δ) = eAdesδXdes(tk) (3.52)

Let Ad be given by

Ad = eAdesδ (3.53)

such that

Xdes(tk + δ) = AdXdes(tk) (3.54)

In the next section, we define ėd at the instant when we switch from the impedance

controller to the admittance controller. We note that the matrix Adis and the vector

Bdis depend on the value of n, and that Bdis is zero when n = 0 since Bai is in the null

space of Sia. However, we also find that Adis = Ad when n = 0 making the case trivial.

3.5.1 Matching Eigenvalues

The first method of choosing ėd is have it be a feedback of the form
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ėd = Kei Xi(tk) (3.55)

where Kei is a matrix chosen such that the eigenvalues of Ad are the same as the eigen-

values of Adis+BdisKei. This method produces similar response times from the switched

system and the desired system. While the requirement that the pair (Adis, Bdis) match

all eigenvalues is not very restrictive, the resulting gains do not necessarily produce a

smooth space with respect to variations in (n, ke). Also, matching the eigenvalues does

not take the eigenvectors into consideration producing different responses as the order

of the system increases.

3.5.2 Minimizing Discrete Difference Between Desired and Ac-

tual Behaviour

The goal is then to minimize |Xdes(tk + δ)−Xi(tk + δ)|. To solve this we may write

[Ad − Adis]Xi(tk)−Bdisėd = 0 (3.56)

Using the Moore-Penrose inverse we find

ėd =
[

BT
disBdis

]−1
BT
dis[Ad − Adis]Xi(tk) (3.57)

We define Kh to be
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Kh =
[

BT
disBdis

]−1
BT
dis[Ad − Adis] (3.58)

such that

ėd = KhXi(tk) (3.59)

Then, we have the discrete mapping of the switched system to be given by

Xi(tk + δ) = (Adis +BdisKh)Xi(tk) (3.60)

3.6 Linear Separation of External Force in Switch-

ing Condition

The change of switching conditions mentioned in the previous section is based on prior

knowledge of the external force Fext . However, the form of the equation of the external

force is not generally known, but can be measured using a force sensor. Therefore, we

now rederive the method in the last section accounting for only measurements of the

external force and not the actual equation in (3.29).

3.6.1 Derivation

Let us consider the external force as an unknown input into the closed loop differen-

tial equation. Then the system dynamics when the impedance controller is applied in
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equation (2.7) may be written as

Ẋi = AiXi + BiFext (3.61)

where Xi is given by

Xi =







e

ė






(3.62)

Ai is given by

Ai =







0 1

−M−1
θ

Kθ −M−1
θ

Kθ






(3.63)

and Bi is given by

Bi =







0

M−1
θ






(3.64)

The system dynamics when the admittance control is applied according to equations

(3.30), (3.34), and (3.36) may be written as

Ẋa = AaXa + BaFext (3.65)

where Xa is given by
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Xa =























e

ė

ed

ėd























(3.66)

Aa in equation (3.65) is given by

Aa =























0 1 0 0

−M−1Kp −M−1Kd M−1Kp M−1Kd

0 0 0 1

0 0 −M−1
θ

Kθ M−1
θ

Dθ























(3.67)

And Ba is given by

Ba =























0

M−1

0

M−1
θ























(3.68)

Solving equations (3.61) and (3.65) give the general solutions

Xi(t) = eAi(t−t0)Xi(t0) +

∫ t

t0

eAit−τBaFext(τ)dτ (3.69)

and

Xa(t) = eAa(t−t0)Xa(t0) +

∫ t

t0

eAat−τBiFext(τ)dτ (3.70)
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respectively. Then, for switched system we have

Ẋi = AiXi +BiFext ∀t ∈ [tk, tk + (1− n)δ) (3.71)

Ẋa = AaXa + BaFext ∀t ∈ [tk + (1− n)δ, tk + δ) (3.72)

for a positive integer, k, and for 0 ≤ n ≤ 1.

At time tk the system is switched from the admittance controlled system to the

impedance controlled system. We then have the change of states given by the mapping

Xi = SiaXa Sia = [I 0] (3.73)

At the time tk + (1 − n)δ, the system is switched from the impedance controlled

system to the admittance controlled system. This results in additional states ed and ėd

where ed is chosen such that the control force is continuous and ėd is chosen later as in

the previous section. From (3.38) we have

ed((tk + (1− n)δ)+) = lim
t→(tk+(1−n)δ)−

[

e+K−1
p (F1 +Kd(ė− ėd))

]

(3.74)

Then, the change in states at time tk + (1− n)δ may be given by

Xa = SaiXi +KaiFext + Baiėd Sia =







I

S






(3.75)

where S is given by
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S =







S11 S12

0 0






(3.76)

S11 = 1−K−1
p KθMMθ (3.77)

S12 = K−1
p Kd −K−1

p DθMMθ (3.78)

Bai is given by

Bai =























0

0

−K−1
p Kd

1























(3.79)

and Kai is given by

Kai =























0

0

K−1
p (MM−1

θ
− 1)

0























(3.80)

Solving for the general solution of the switched system from time tk to time (tk + δ)

we find
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Xi(tk + δ) =Siae
AanδSaie

Ai(1−n)δXi(tk)

+ Siae
Aa(tk+δ)

∫ tk+δ

tk+(1−n)δ
e−AaτBaFext(τ)dτ

+ Siae
AanδSaie

Ai(tk+(1−n)δ)
∫ tk+(1−n)δ

tk

e−AiτBiFext(τ)dτ

+ Siae
AanδKaiFext(tk + (1− n)δ) + Siae

AanδBaiėd (3.81)

We now write the desired behaviour in equation (3.49) as

Xdes = AdesXdes + BdesFext (3.82)

Where Ades is given by

Ades =







0 1

−M−1
θ

Kθ −M−1
θ

Dθ






(3.83)

and Bdes given by

Bdes =







0

M−1
θ






(3.84)

Then, the general solution of Xdes from tk to (tk + δ) is given by

Xdes(t) = eAdes(t−t0)Xdes(tk) +

∫ tk+δ

tk

eAdes(t−τ)Bdes1Fext(τ)dτ (3.85)
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As in section 3.5.2 we have the goal is to choose ẋd at tk + (1− n)δ such that

‖Xdes(tk + δ)−Xi(tk + δ)‖ = 0 (3.86)

Substituting equations (3.81) and (3.85) into (3.86) we get

eAdesδXdes(tk) + eAdes(tk+δ)
∫ tk+δ

tk

e−AdesτBdesFext(τ)dτ−

[Siae
AanδSaie

Ai(1−n)δXi(tk) + Siae
Aa(tk+δ)

∫ tk+δ

tk+(1−n)δ
e−AaτBaFext(τ)dτ

+ Siae
AanδSaie

Ai(tk+(1−n)δ)
∫ tk+(1−n)δ

tk

e−AiτBiFext(τ)dτ

+ Siae
AanδKaiFext(tk + (1− n)δ + Siae

AanδBaiėd] = 0 (3.87)

To solve equation (3.87) we will consider ẋd to be of the form

ėd = uh + up (3.88)

where uh minimizes the homogeneous portion of (3.87), when Fext ≡ 0. And up min-

imizes the additional terms when Fext 6= 0. Then, to find uh we find equation (3.87)

may be written as

[eAdesδXdes(tk)− Siae
AanδSaie

Ai(1−n)δXi(tk)]− eAanδBaiuh = 0 (3.89)

Letting Xdes(tk) = X(tk), (3.89) simplifies to
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[eAdesδ − Siae
AanδSaie

Ai(1−n)δ]Xi(tk)− eAanδBaiuh = 0 (3.90)

using the Moore-Penrose inverse we find uh to be given by

uh =
[

(Siae
AanδBai)

TSiae
AanδBai

]−1
(Siae

AanδBai)
T

[eAdesδ − Siae
AanδSaie

Ai(1−n)δ]Xi(tk) (3.91)

We will then let Kh be given by

Kh =
[

(Siae
AanδBai)

TSiae
AanδBai

]−1
(Siae

AanδBai)
T

[eAdesδ − Siae
AanδSaie

Ai(1−n)δ] (3.92)

such that

uh = KhXi(tk) (3.93)

Since switching occurs at tk + (1− n)δ it is desirable to write uh in the form

uh = Kh(e
Ai(1−n)δ)−1Xi(tk + (1− n)δ) (3.94)

By substituting (3.94) and (3.88) into (3.87) we find

52



eAdesδXdes(tk) + eAdes(tk+δ)
∫ tk+δ

tk

e−AdesτBdesFext(τ)dτ−

[Siae
AanδSaie

Ai(1−n)δXi(tk) + Siae
Aa(tk+δ)

∫ tk+δ

tk+(1−n)δ
e−AaτBaFext(τ)dτ

+ Siae
AanδSaie

Ai(tk+(1−n)δ)
∫ tk+(1−n)δ

tk

e−AiτBiFext(τ)dτ

+ Siae
AanδBinKh(e

Ai(1−n)δ)−1Xi(tk + (1− n)δ)

+ Siae
AanδKaiFext(tk + (1− n)δ) + Siae

AanδBaiup] = 0 (3.95)

Using equation (3.69) we write (3.95) as

{eAdesδXdes(tk)− Siae
AanδSaie

Ai(1−n)δX(tk)− Siae
AanδBaiKhXi(tk)}+

eAdes(tk+δ)
∫ tk+δ

tk

e−AdesτBdesFext(τ)dτ−

[Siae
Aa(tk+δ)

∫ tk+δ

tk+(1−n)δ
e−AaτBaFext(τ)dτ

+ Siae
AanδSaie

Ai(tk+(1−n)δ)
∫ tk+(1−n)δ

tk

e−AiτBiFext(τ)dτ

+ Siae
AanδBaiKhe

Aitk

∫ tk+(1−n)δ

tk

e−AiτBiFext(τ)dτ

+ Siae
AanδKaiFext(tk + (1− n)δ) + Siae

AanδBaiup] = 0 (3.96)

From equations (3.89), (3.93), and from linearity we have the choice of up can only

be chosen to minimize portions of (3.96) containing the external force. Thus, (3.96)

simplifies to.
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eAdes(tk+δ)
∫ tk+δ

tk

e−AdesτBdesFext(τ)dτ−

[Siae
Aa(tk+δ)

∫ tk+δ

tk+(1−n)δ
e−AaτBaFext(τ)dτ

+ Siae
AanδSaie

Ai(tk+(1−n)δ)
∫ tk+(1−n)δ

tk

e−AiτBiFext(τ)dτ

+ Siae
AanδBaiKhe

Aitk

∫ tk+(1−n)δ

tk

e−AiτBiFext(τ)dτ

+ Siae
AanδKaiFext(tk + (1− n)δ) + Siae

AanδBaiup] = 0 (3.97)

Solving for up gives

up =
[

(Siae
AanδBai)

TSiae
AanδBai

]−1
(Siae

AanδBai)
T

{eAdes(tk+δ)
∫ tk+δ

tk

e−AdesτBdesFext(τ)dτ−

[Siae
Aa(tk+δ)

∫ tk+δ

tk+(1−n)δ
e−AaτBaFext(τ)dτ

+ Siae
AanδSaie

Ai(tk+(1−n)δ)
∫ tk+(1−n)δ

tk

e−AiτBiFext(τ)dτ

+ Siae
AanδBinKhe

Aitk

∫ tk+(1−n)δ

tk

e−AiτBiFext(τ)dτ ]

− Siae
AanδKaiFext(tk + (1− n)δ)} (3.98)

If we define the functions Fp and Hp as
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Fp =
[

(Siae
AanδBai)

TSiae
AanδBai

]−1
(Siae

AanδBai)
T

{eAdes(tk+δ)e−AdesτBdes − Siae
Aa(tk+δ)e−AaτBa} (3.99)

Hp = −
[

(Siae
AanδBai)

TSiae
AanδBai

]−1
(Siae

AanδBai)
TSiae

AanδKai (3.100)

Then up may be expressed in the compact form:

up =

∫ tk+δ

tk

Fp(t− τ)Fext(τ)dτ +HpFext(tk + (1− n)δ) (3.101)

We then find that the choice ėd = uh+up is the same as the choice of ėd in section 3.5.2

due to uniqueness of the convolution mapping. However, the value of up must be solved

numerically based on measured values of the external force on-line.
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Chapter 4

N-DOF Rigid Joint Models

The theory in the previous chapters are applicable to a single degree-of-freedom linear

model. In this chapter we now wish to extend the theory to multi-dimensional systems.

We proceed by considering a multi-degree-of-freedom linear rigid joint system and de-

riving switching conditions based on continuity of control force and its derivative. We

then generalize the control method and switching conditions for multi-degree-of-freedom

non-linear systems.

4.1 Linear N-DOF

4.1.1 Equations of Motion

Assuming rigid joints, the system dynamics of a general linear N-DOF is given by

Mq̈ + Cq̇ +Gq = τ + JTFext (4.1)

where M is the symmetric positive definite mass matrix, C is a symmetric matrix acting
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as a form of damping, and G acts as a stiffness matrix. Fext is the external force applied

to the system, J is the Jacobian matrix transforming rotational coordinates to Euclidean

coordinates, and τ is the input torque. The control objective is to the design τ such

that (q, q̇) satisfies the system of differential equations

Mθ(q̈ − q̈0) +Dθ(q̇ − q̇0) +Kθ(q − q0) = JTFext (4.2)

where Mθ, Dθ, and Kθ are positive definite matrices.

4.1.2 Impedance Control

In impedance control, we let the controller be a mechanical impedance. Therefore, by

comparing equations (4.1) and (4.2), and solving for τ we find the impedance torque to

be given by

τ = τi = Mq̈0 + Cq̇ +Gq +MM−1
D [−Kθ(q − q0)−Dθ q̇]

+(MM−1
d

− I)JTFext (4.3)

Indeed, substituting (4.3) into (4.1) results in

Mθ(q̈ − q̈0) +Dθ(q̇ − q̇0) +Kθ(q − q0) = JTFext (4.4)

57



4.1.3 Admittance Control

For the admittance control, the control torque is a position controller to a trajectory

qd which is generated by the mechanical admittance. Therefore we consider the control

torque to be given by

τ = τa = −Kp(q − qd)−Kd(q̇) + Cq̇ +Gq (4.5)

where Kp and Kd are positive definite matrices, and qd is given by the solution to the

desired behavior

Mθ(q̈d − q̈0) +Dθ(q̇d − q̇0) +Kθ(qd − q0) = JTFext (4.6)

Substituting (4.5) into (4.1) results in the dynamic equations

Mq̈ +Kdq̇ +Kp(q − qd) = JTFext (4.7)

Md(q̈d − q̈0) +Dθ(q̇d − q̇0) +Kθ(qd − x0) = JTFext (4.8)

If q converges to qd, by the virtue of gains chosen in (4.7), then (4.8) gives (4.2).

4.1.4 Hybrid Framework

For the linear N-DOF system described by equation (4.1), we propose the following

switching torque
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τ =











τi : t ∈ [t0 + kδ, t0 + (k + 1− n)δ)

τa : t ∈ [t0 + (k + 1− n)δ, t0 + (k + 1)δ)

(4.9)

where t0 is the initial time, δ is the switching period, n ∈ [0, 1] is the duty cycle, k is

a positive integer. τi is given by equation (4.3), and τa is given by equations (4.5) and

(4.6).

If the environment is modeled as a linear spring

JTFext = −ke(q − q0) (4.10)

for a positive definite definite matrix ke, and the virtual trajectory q0 is assumed to be

constant, i.e.

q̇0 = q̈0 = 0 (4.11)

the hybrid system follows the descriptions

Ẋ = γ(t)AiX + (1− γ(t))AaX ∀t = tj (4.12)

∆X = ΦjX ∀t = tj (4.13)

where tj defines the instants of switching between the impedance and admittance control

torques and may be written as
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tj ∈ {t|t = t0 + kδ, k ∈ Z+} ∪ {t|t = t0 + (k + 1− n)δ, k ∈ Z+, n ∈ [0, 1]} (4.14)

and γ(t) indicates which controller, impedance or admittance, is being applied at any

given time, and may be written as

γ(t) =











1 : t ∈ (t0 + kδ, t0 + (k + 1− n)δ)

0 : t ∈ (t0 + (k + 1− n)δ, t0 + (k + 1)δ)

(4.15)

The state X and the matrices Ai and Aa are given by the relations:

X = (e ė ed ėd)
T (4.16)

e = q − q0 (4.17)

ed = qd − q0 (4.18)

Ai =























0 I 0 0

−M−1
θ

(Kθ + ke) −M−1
θ

Dθ 0 0

0 0 0 I

−M−1
θ

ke 0 −M−1
θ

Kθ M−1
θ

Dθ























(4.19)

and
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Aa =























0 I 0 0

−M−1(Kp + ke) −M−1Kd M−1Kp 0

0 0 0 I

−M−1
θ

ke 0 −M−1
θ

Kθ −M−1
θ

Dθ























(4.20)

When switching from the impedance controller to the admittance controller, additional

states are introduced into the control torque. The states, ed and ėd, are chosen at the

instant of switching to maintain continuity of the control torque τ and its derivative.

By setting equations (4.3) and (4.5) equal to each other we find

ed((tk + (1− n)δ)+) = lim
t→(tk+(1−n)δ)−

[

e+K−1
p (τi − Cq̇ −Gq +Kdė)

]

(4.21)

By differentiating (4.21) we have

ėd((tk + (1− n)δ)+) = lim
t→(tk+(1−n)δ)−

[

ė+K−1
p (τ̇i − Cq̈ −Gq̇ +Kdë)

]

(4.22)

Substituting equation (4.3) for τi in equations (4.21) and (4.22), it is possible to obtain

an expression of the form

X+(t0 + (k + 1− n)δ) = SaiX
−(t0 + (k + 1− n)δ), Sai =







I 0

S 0






(4.23)
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at the instant of switching. Where X+(t) denotes the right limit, X−(t) denotes the

left limit, I is the identity matrix, and S is of the form

S =







S11 S12

S21 S22






(4.24)

where

S11 = I −K−1
p (MM−1

θ
− 1)ke −K−1

p MM−1
θ

Kθ (4.25)

S12 = K−1
p Kd −K−1

p DθMM−1
θ

(4.26)

S21 = −K−1
p KdM

−1
θ

(Kθ + ke)−K−1
p MM−1

θ
DθM

−1
θ

Kθ (4.27)

S22 = I −K−1
p (MM−1

θ
− I)ke −K−1

p MM−1
θ

Kθ

−K−1
p KdM

−1
θ

Dθ +K−1
p MM−1

θ
DθM

−1
θ

Dθ (4.28)

Then, we find that Φj to be given by

Φj(t0 + (k + 1− n)δ) = Sai − I =







0 0

Sai − I






(4.29)

When the system is switched from the admittance controller to the impedance controller,

the state mapping is given by

X+(t0 + kδ) = SiaX
−(t0 + kδ), Sia =







I 0

0 I






(4.30)

Where 0 is the n× n matrix of zeros. We then find Φj at this instant to be given by
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Φj(t0 + kδ) = Sia − I = ∅ (4.31)

4.1.5 Stability

Knowing the states at time t = t0 + kδ, the states at t = t0 + (k + 1)δ, k ∈ Z+ is a

positive integer, can be obtained using equations (4.12), (4.23), and (4.30) as

X−(t0 + (k + 1− n)δ) = eAi(1−n)δX+(t0 + kδ)

X+(t0 + (k + 1− n)δ) = Saie
Ai(1−n)δX+(t0 + kδ)

X−(t0 + (k + 1)δ) = eAanδX+(t0 + (k + 1− n)δ)

X+(t0 + (k + 1)δ) = Siae
AanδX+(t0 + (k + 1− n)δ)

X+(t0 + (k + 1)δ) = Siae
AanδSaie

Ai(1−n)δX+(t0 + kδ) (4.32)

We now define a matrix Adis to be

Adis = Siae
AanδSaie

Ai(1−n) (4.33)

such that

X+(t0 + (k + 1)δ) = AdisX
+(t0 + kδ) (4.34)

With Adis being a n × n matrix now instead of a 2 × 2 matrix. However, theorem 2

holds independently of the size of Adis, and therefore holds here.
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4.2 Non-linear N-DOF Model

For the linear case we found that the single degree-of-freedom system can be generalized

to n dimensions. We now wish to generalize the concept to a non-linear system. However,

we note that the position controller used in the single degree-of-freedom and the linear

multiple degree-of-freedom cases rely on Fext = 0 when x = x0 and that ẋ0 = 0.

Therefore, we additionally consider a position control that is better suited for tracking

a trajectory, and is independent of when the external force is zero.

4.2.1 Equations of Motion

Consider a general non-linear dynamic system given by

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + JTFext (4.35)

where M(q) is the mass inertia matrix, C(q, q̇) is the matrix representing the Coriolis

effects, and G(q) is the gravitational matrix. Our goal is to design τ such that (q, q̇)

form the solution to the differential equation

Mθ(q̈ − q̈0) +Dθ(q̇ − q̇0) +Kθ(q − q0) = JTFext (4.36)

Where the virtual trajectory, q0 is then assumed to be a smooth bounded function in

time.
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4.2.2 Impedance Controller

For the impedance controller we consider a force feedback controller that attempts to

cancel the non-linear dynamics and then feedback the desired control objective. This is

achieved by a control torque of the form:

τ = τi = C(q, q̇)q̇ +G(q) +M(q)q̈0

−M(q)M−1
θ

[Kθ(q − q0) +Dθ(q̇ − q̇0)] + (M(q)M−1
θ

− I)JTFext(q, q̇) (4.37)

By substituting (4.37) into (4.35) gives

Mθ(q̈ − q̈0) +Dθ(q̇ − q̇0) +Kθ(q − q0) = JTFext(q, q̇) (4.38)

4.2.3 Admittance Controller

For the tracking controller we cancel the non-linear dynamics and produces a controller

that allows q to track a desired trajectory qd. Thus, we consider a control torque given

by

τ = τa = C(q, q̇)q̇ +G(q) +M(q)q̈d − JTFext+

M(q)M−1
d

[−Kp(q − qd)−Kd(q̇ − q̇d)] (4.39)

Substituting equation (4.39) into (4.35) we have
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Md(q̈ − q̈d) +Kd(q̇ − q̇d) +Kp(q − qd) = 0 (4.40)

For positive definite values Md, Kd, and Kp, q converges to qd for any initial value q(t0).

The desired trajectory qd is obtained by solving the differential equation

Mθ(q̈d − q̈0) +Dθ(q̇d − q̇0) +Kθ(qd − q0) = JTFext (4.41)

The admittance controlled system is represented by the dynamics

Md(q̈ − q̈d) +Kd(q̇ − q̇d) +Kp(q − qd) = 0 (4.42)

Mθ(q̈d − q̈0) +Dθ(q̇d − q̇0) +Kθ(qd − q0) = JTFext (4.43)

4.2.4 Hybrid Framework

We define a switching controller based on the hybrid system framework. Let us begin by

defining the force caused by interaction with the environment to be modeled as a linear

spring

JTFext(q) = −ke(q − qext) (4.44)

for a positive definite definite matrix ke, and qext is a constant offset.

Now, let us define a function r which forms a solution to (4.36) generated by an

arbitrary set of initial conditions, namely
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Mθ(r̈ − q̈0) +Dθ(ṙ − q̇0) +Kθ(r − q0) = −ke(r − qext) (4.45)

Where (r(t0), ṙ(t0)) ∈ R2n. We then have that the control objective is achieved if there

exists a pair (r(t0), ṙ(t0)), and a tj such that

|q − r| = 0 ∀ t ≥ tj (4.46)

We then define the variable e = q−r and ed = qd−r. Then, the system under impedance

control may be given by

Ẋi = AiXi (4.47)

where

Xi = (e , ė , ed , ėd)
T (4.48)

Ai =























0 I 0 0

−M−1
θ

(Kθ + ke) −M−1
θ

Dθ 0 0

0 0 0 I

−M−1
θ

ke 0 −M−1
θ

Kθ −M−1
θ

Dθ























(4.49)

Likewise, the system under the admittance control may be given by

Ẋa = AaXa (4.50)
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where

Xa = (e , ė , ed , ėd)
T (4.51)

Aa =























0 I 0 0

Aa1 Aa2 Aa3 Aa4

0 0 0 I

−M−1
θ

ke 0 −M−1
θ

Kθ −M−1
θ

Dθ























(4.52)

and

Aa1 = −(M−1
θ

ke +M−1
d

Kp) (4.53)

Aa2 = −M−1
d

Kd (4.54)

Aa3 = M−1
d

Kp −M−1
θ

Kθ (4.55)

Aa4 = M−1
d

Kd −M−1
θ

Dθ (4.56)

Both Xi and Xa have the same number of states, and both are invariant when Xi =

Xa = 0 which corresponds to ‖q − r‖ = 0.

Now, we define the set of times σ to be

σ = {t|t = t0 + kδ, k ∈ Z+} ∪ {t|t = t0 + (k + 1− n)δ, k ∈ Z+, n ∈ [0, 1]} (4.57)

Then we may write the general hybrid control law as
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Ẋ = γ(t)AiX + (1− γ(t))AaX ∀t = tj (4.58)

∆X = ΦjX ∀t = tj (4.59)

where tj ∈ σ, and γ(t) ∈ [0, 1] for all t. Since we are only concerned with switching we

have

γ(t) =











1 : t ∈ (t0 + kδ, t0 + (k + 1− n)δ)

0 : t ∈ (t0 + (k + 1− n)δ, t0 + (k + 1)δ)

(4.60)

namely, we either apply all impedance control or all admittance control, but not both

at the same time. We must then define Φj which causes an impulse in the system at

times t = tj . Since the times tj ∈ σ and σ is the union of two sets, we will investigate

each individually.

First, we will investigate is {t|t = t0 + (k + 1 − n)δ, k ∈ Z+, n ∈ (0, 1)}. In this

case we see that we switch from the impedance controller to the admittance controller.

When we switch we wish to ensure that the control torque is smooth at that instant.

Setting equations (4.37) and (4.39) equal we find
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M(q)q̈d − JTFext +M(q)M−1
d

[−Kp(q − qd)−Kd(q̇ − q̇d)]

= M(q)q̈0 −M(q)M−1
θ

[Kθ(q − q0) +Dθ(q̇ − q̇0)]

+(M(q)M−1
θ

− I)JTFext (4.61)

⇒ q̈d +M−1
d

[−Kp(q − qd)−Kd(q̇ − q̇d)] =

q̈0 −M−1
θ

[Kθ(q − q0) +Dθ(q̇ − q̇0)] +M−1
θ

JTFext (4.62)

⇒ MθM
−1
d

[−Kp(q − qd)−Kd(q̇ − q̇d)] =

Mθ(q̈0 − q̈d)−Kθ(q − q0) +Dθ(q̇ − q̇0) + JTFext (4.63)

We see from (4.63) that the choice q = qd and q̇ = q̇d satisfies the equation and all its

derivatives. Therefore, we have

X+(t0 + (k + 1− n)δ) = SaiX
+(t0 + (k + 1− n)δ), Sai =







I 0

I 0






(4.64)

at the instant of switching from impedance control to admittance control. We then have

that Φj to be given by

Φj = Sai − I =







0 0

I − I






(4.65)

For the set {t|t = t0 + kδ, k ∈ Z+} the system is switched from the admittance

controller to the impedance controller. During this switching instant we choose to keep
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the states continuously differentiable. Thus the state mapping is given by

X+(t0 + kδ) = SiaX
−(t0 + kδ), Sia =







I 0

0 I






(4.66)

and does not result in an impulse, meaning Φj is given by

Φj = Sia − I = ∅ (4.67)

4.2.5 Stability

Knowing the states at time t = t0 + kδ, the states at t = t0 + (k + 1)δ, k ∈ Z+ is a

positive integer, can be obtained using equations (4.58), (4.59), (4.64), and (4.66) as

X−(t0 + (k + 1− n)δ) = eAi(1−n)δXi(t0 + kδ)

X+(t0 + (k + 1− n)δ) = Saie
Ai(1−n)δXi(t0 + kδ)

X−(t0 + (k + 1)δ) = eAanδXa(t0 + (k + 1− n)δ)

X+(t0 + (k + 1)δ) = Siae
AanδXa(t0 + (k + 1− n)δ)

X+(t0 + (k + 1)δ) = Siae
AanδSaie

Ai(1−n)δXi(t0 + kδ) (4.68)

We now define a matrix Adis to be

Adis = Siae
AanδSaie

Ai(1−n) (4.69)

such that
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X+(t0 + (k + 1)δ) = AdisX
+(t0 + kδ) (4.70)

With Adis being a n × n matrix now instead of a 2 × 2 matrix. We again note that

theorem 2 holds independently of the size of Adis, and therefore holds here.
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Chapter 5

Flexible Joint Model

All development thus far is for a rigid joint model which is characteristic of a directly

driven system. However, in order to achieve large torque values gearing of the actuator is

required. This leads to some flexibility between the actuator and the joint. Furthermore,

many modern robotic control drives use series elastic actuation which improves the

stability of position control methods and enforces smoothness of torques on the link.

For this chapter we rederive the impedance control, admittance control, and hybrid

methods for a single degree-of-freedom flexible joint system using continuity of control

force and control force derivative. We then rederive the alternate switching conditions

for the system with joint flexibility. Finally we examine a simple nonlinear system with

flexibility, and examine the changes the impedance, admittance, and hybrid controller,

as well as the proof of stability of the hybrid controller.
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5.1 Linear 1-DOF Model

We begin with the simplest case as in chapter 2, a single degree-of-freedom linear system.

However, to add flexibility to the system we consider the actuator to be coupled to the

system through a spring.

5.1.1 Equations of Motion

M B
FmKm

x y

Figure 5.1: Single degree-of-freedom flexible joint model

For the single degree of freedom linear flexible joint model as shown in figure 5.1.1

the system dynamics are given by

Mẍ = F + Fext (5.1)

Bÿ + F = Fm (5.2)

F = Km(y − x) (5.3)

Where x represents link side dynamics and y represents actuator side dynamics, M is a
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positive constant corresponding to the mass of the system, Km is the stiffness between

the actuator and the joint, Fext is the external force applied to the system, and Fm is

the input force.

We choose the desired dynamics to be given by

Mθ(ẍ− ẍ0) +Dθ(ẋ− ẋ0) +Kθ(x− x0) = Fext (5.4)

We note that the values that we can measure are y, ẏ, F , and Ḟ . We cannot explicitly

measure x or ẋ.

5.1.2 Passive Impedance Controller

For the passive impedance controller, we assume a controller of the form [17]:

Fm = Fi = BB−1
d

{MM−1
θ

[−Kc(y − y0)−Dc(ẏ − ẏ0)]

+(MM−1
θ

− 1)Fext +Mẍ0}+ (I − BB−1
d

)τ (5.5)

Where Bd is a normalization of the acutator mass B. By substituting equation (5.5)

into equation (5.2) we find the dynamics to be given by

Mẍ = F + Fext (5.6)

Bdÿ +MM−1
θ

[Dc(ẏ − ẏ0) +Kc(y− y0)]

−(MM−1
θ

− 1)Fext +Mẍ0 = −F (5.7)

75



By combining equations (5.6) and (5.7) we get

Mθ(ẍ− ẍ0) +Dc(ẏ − ẏ0) +Kc(y − y0) = Fext −MθM
−1Bdÿ (5.8)

M

x y

Km

Kc

Dc

Figure 5.2: Single degree-of-freedom passive impedance for flexible joint model

We choose Bd to be as small as possible such that the effect of ÿ is negligible. The

resulting model is shown in figure 5.1.2. We then wish to find the values of Dc, Kc, and

y0 such that (5.8) produces the same result as (5.4).

To find y0 we consider the static solutions of (5.6), (5.7), and (5.4) when Fext = 0.

This yields the equations

xss = yxx (5.9)

xss = x0 (5.10)

yss = y0 (5.11)

where xss represents the static value of x, and yss represents the static value of y.

Solving (5.9)-(5.11) we have the equation
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y0 = x0 (5.12)

To solve forKc we consider the static solutions of (5.6), (5.7), and (5.4) when Fext 6= 0

this yields

Km(xss − yss) = Fext (5.13)

Kθ(xss − x0) = Fext (5.14)

Kc(yss − y0) = Fext (5.15)

Solving equations (5.13)-(5.15) we find

Kc =
[

K−1
θ

−K−1
m

]−1
(5.16)

Finally, to find Dc we consider that all internal forces in figure 5.1.2 must be equal.

This gives the equation

Dc(ẏ − ẏ0) +Kc(y − y0) = Dθ(ẋ− ẋ0) +Kθ(x− x0) (5.17)

From equations (5.13)-(5.15) we assume

Kc(y − y0) = Kθ(x− x0) (5.18)

Giving
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Dc(ẏ − ẏ0) = Dθ(ẋ− ẋ0) (5.19)

Then we have

Dc = Dθ
ẋ− ẋ0
ẏ − ẏ0

(5.20)

Since, we always will initialize the system from rest we then assume ẋ− ẋ0 ≈ ẏ− ẏ0 for

Km large. This gives

Dc = Dθ (5.21)

Therefore, We, for small Bd, have (5.8) is approximated by

Mθ(ẍ− ẍ0) +Dθ(ẏ − ẏ0) +Kc(y − y0) = Fext (5.22)

which is equivalent to

Mθ(ẍ− ẍ0) +Dθ(ẋ− ẋ0) +Kθ(x− x0) = Fext (5.23)

5.1.3 Admittance Controller

For the admittance controller, let the position controller be given by [1]
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Fm = Fa = BB−1
d

[−Kp(y − yd)−Kdẏ −KTK
−1
m (F − Fd)

−KSK
−1
m Ḟ ] + (I −BB−1

d
)F (5.24)

This produces the dynamic equations

Mẍ = τ + Fext (5.25)

Bdÿ +Kdẏ +Kp(y − yd) +

KSK
−1
m Ḟ +KTK

−1
m (F − Fd) = −F (5.26)

Combining equations (5.25) and (5.26) we find

Mẍ+Kdẏ +Kp(y − yd)

+KSK
−1
m Ḟ +KTK

−1
m (F − Fd) = Fext − Bdÿ (5.27)

We again choose Bd small such that the effects of ÿ is negligible. We then choose xd,

ẋd to be given by the mechanical admittance in equation (5.4). Namely, let xd, and ẋd

be the solution to

M(ẍd − ẍ0) +Dθ(ẋd − ẋ0) +Kθ(xd − x0) = Fext (5.28)

We then assume that the stiffness Km is large enough such that y ≈ x and ẏ ≈ ẋ. Thus,
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we choose yd = xd and ẏd = ẋd making Fd = 0. We then find that the full dynamics of

the system to be given by

Mẍ = F + Fext (5.29)

Bdÿ +Kdẏ +Kp(y − yd) +

KSK
−1
m Ḟ +KTK

−1
m F = −F (5.30)

M(ÿd − ẍ0) +Dθ(ẏd − ẋ0) +Kθ(yd − x0) = Fext (5.31)

5.1.4 Hybrid Framework

For the single degree-of-freedom system described by equations (5.1)-(5.3), we propose

to switch the controller between impedance and admittance as follows

Fm =











F1 : t ∈ [t0 + kδ, t0 + (k + 1− n)δ)

F2 : t ∈ [t0 + (k + 1− n)δ, t0 + (k + 1)δ)

(5.32)

where t0 is the initial time, δ is the switching period, n ∈ [0, 1] is the duty cycle, k is a

positive integer. F1 is given by eq. (5.5), and F2 is given by equations (5.24) and (5.28).

Let the environment is modeled as a linear spring

Fext = −ke(x− x0) (5.33)

and the virtual trajectory, x0 is assumed to be constant,

ẋ0 = ẍ0 = 0 (5.34)
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The hybrid system then follows the descriptions

Ẋi = AiXi : t ∈ [t0 + kδ, t0 + (k + 1− n)δ)

Ẋa = AaXa : t ∈ [t0 + (k + 1− n)δ, t0 + (k + 1)δ) (5.35)

where

Xi = (e , ė , eθ , ėθ)
T (5.36)

e = x− x0 (5.37)

eθ = y − y0 (5.38)

Ai =























0 1 0 0

−M−1(Km + ke) 0 M−1Km 0

0 0 0 1

Ai1 0 −B−1
d

MM−1
θ

(Kc +Km) − B−1
d

MM−1
θ

Kd























(5.39)

Ai1 = B−1
d

(MM−1
θ

Km + (MM−1
θ

− 1)ke) (5.40)

Xa = (e , ė eθ , ėθ , ed , ėd)
T (5.41)
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ed = yd − x0 (5.42)

and

Aa =







































0 1 0 0 0 0

−M−1(Km − ke) 0 M−1Km 0 0 0

0 0 0 1 0 0

Aa1 Aa2 Aa3 Aa4 Aa5 0

0 0 0 0 0 1

−M−1
θ

ke 0 0 0 −M−1
θ

Kθ −M−1
θ

Dθ







































(5.43)

Aa1 = B−1
d

(Km +KTK
−1
m ) (5.44)

Aa2 = B−1
d

KSK
−1
m (5.45)

Aa3 = −B−1
d

(Km +Kp +KTK
−1
m ) (5.46)

Aa4 = −B−1
d

(KSK
−1
m +Kd) (5.47)

Aa5 = B−1
d

Kp (5.48)

When switching from the impedance controller to the admittance controller, two
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additional states are introduced. These states, ed and ėd, are chosen at the instant of

switching to maintain continuity of the control force F and its derivative. Equation

(5.24) gives the expression for the control force of the admittance controller and may be

written as

yd = y +
1

Kp

(

Bd

B
Fi +Kdẏ +

KTF

Km
+

KS

Km
Ḟ −+(1−

Bd

B
)F

)

⇒ ed = eθ +
1

Kp

(

Bd

B
Fi +Kdėθ +

KTF

Km
+

KS

Km
Ḟ −+(1−

Bd

B
)F

)

(5.49)

and differentiating equation (5.49) gives

ẏd = ẏ +
1

Kp

(

Bd

B
Ḟi +Kdÿ +

KT Ḟ

Km
+

KS

Km
F̈ −+(1−

Bd

B
)Ḟ

)

⇒ ėd = ėθ +
1

Kp

(

Bd

B
Ḟi +Kdëθ +

KT Ḟ

Km
+

KS

Km
F̈ −+(1−

Bd

B
)Ḟ

)

(5.50)

Substituting equation (5.5) for F1 in equations (5.49) and (5.50), it is possible to obtain

an expression of the form

Xa = SaiXi, Sai =







I

S






(5.51)

at the instant of switching. Where I is the identity matrix, and S is given by

S =







s11 s12 s13 s14

s21 s22 s23 s24






(5.52)
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Where

s11 = −K−1
p KT

s12 = −K−1
p KS

s13 = K−1
P [KP +KT −MM−1

θ
Kc − (MM−1

θ
− 1)ke]

s14 = K−1
p (Kd +KS −MM−1

θ
Dθ)

s21 = −K−1
p KT

s22 = K−1
p [KS

(Km + ke)

M
+ (Kd +KS −

M

Mθ
Dθ)

Km

Bd
]

s23 = −K−1
p [

KSKm

M
+ (Kd +KS −

MDθ

Mθ
)
(Km +MM−1

θ
Kc)

Bd
]

s24 = K−1
p {[Kp +KT −

MKc

Mθ
− (

M

Mθ
− 1)ke]−

(Kd +KS −
MDθ

Mθ
)
MDθ

BdMθ
} (5.53)

When the system switched from the admittance controller to the impedance con-

troller, the state mapping is given by

Xi = SiaXa, Sia = [I 0] (5.54)

Where 0 is the 2× 2 matrix of zeros.

5.1.5 Stability

Knowing the states at time t = t0 + kδ, the states at t = t0 + (k + 1)δ, k ∈ Z+ is a

positive integer, can be obtained using equations (5.35), (5.51), and (5.54) as
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Xi(t0 + (k + 1− n)δ) = eAi(1−n)δXi(t0 + kδ)

Xa(t0 + (k + 1− n)δ) = Saie
Ai(1−n)δXi(t0 + kδ)

Xa(t0 + (k + 1)δ) = eAanδXa(t0 + (k + 1− n)δ)

Xi(t0 + (k + 1)δ) = Siae
AanδXa(t0 + (k + 1− n)δ)

Xi(t0 + (k + 1)δ) = Siae
AanδSaie

Ai(1−n)δXi(t0 + kδ) (5.55)

We now define a matrix Adis to be

Adis = Siae
AanδSaie

Ai(1−n) (5.56)

such that

Xi(t0 + (k + 1)δ) = AdisXi(t0 + kδ) (5.57)

With Adis being a n × n matrix now instead of a 2 × 2 matrix. However, theorem 2

holds independently of the size of Adis, and therefore holds here.

5.1.6 Simulations and Performance

Let us now consider a linear single degree-of-freedom system described by equations

(5.1)-(5.3) and with parameters given by
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m = 3.6 kg B = 1.5308 kg Km = 22000
N

m

Kp = 113580
N

m
Kd = 361.2

N s

m
KT = 119470

N

m

KS = 3076.4
N s

m
Mθ = 3.6344 kg Bθ = 0.34017 kg

Kθ = 100
N

m
Dθ = 23.872

N s

m
(5.58)

We then choose the external force to be given by

Fext = −kex (5.59)
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Figure 5.3: Soft contact position response for δ = 50 ms and n = 0.1

86



and x0 is chosen as a constant input of 1 m with a system initial condition given as

x(t0) = y(t0) = 0. The switching time, δ, is chosen to be 50 ms. We then add a mass

error to the system of 80% as well as a feedback time delay, input noise, and unmodeled

friction. To simulate a soft stiffness, ke is initially chosen to have a value of 100 N/m.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (sec)

P
os

iti
on

 x
 (

m
)

 

 

Desired
Impedance
Admittance
Hybrid

Figure 5.4: Soft contact position response for δ = 50 ms and n = 0.5

Figures 5.3, 5.4, and 5.5 show the response of the passive impedance controlled system,

the admittance controlled system, the hybrid controlled system, and the desired response

for n = 0.1, n = 0.5, and n = 0.9 respectively. We see from figure 5.3 that the

hybrid controlled system response is almost identical to the passive impedance controlled

system. This is expected since the hybrid controlled system is the same as the passive

impedance controlled system when n = 0. Then from figure 5.4 we see that increasing n

from 0.1 to 0.5 improves the performance of the hybrid system and causes the resulting
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response to approach that of the admittance controlled system.
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Figure 5.5: Soft contact position response for δ = 50 ms, and n = 0.9

We again see from figure 5.5 that again increasing n from 0.5 to 0.9 improves the per-

formance of the hybrid system and causes the response to approach the response curve

of of the admittance controlled system. However, we notice that as n goes to 1, while

the hybrid system does approach the admittance controlled system it does not converge

to it. This is due to the flexibility in the position controller used as the inner loop of

the admittance controller.

We have shown that the hybrid control method can improve the performance of

the impedance control for a soft environment, but tuning of the position controller is

required to reach the performance of the admittance controller. Now we wish to see the

performance of the hybrid control method when the system is in contact with a stiff
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Figure 5.6: Stiff contact position response for δ = 50 ms and n = 0.1

environment. Therefore, to simulate a stiff environment we choose ke = 1000 N/m.

Then, Figures 5.6, 5.7, and 5.8 show the response of the passive impedance controlled

system, the admittance controlled system, the hybrid controlled system, and the desired

response for n = 0.1, n = 0.5, and n = 0.9 respectively for the stiff environment. We

see from figure 5.6 that when n = 0.1 the response of the hybrid system is again almost

identical to the passive impedance controlled system. This is again is not surprising

since when n = 0 the hybrid controlled system is identical to the passive impedance

controlled system.

From figure 5.7 we see that increasing n from 0.1 to 0.5 shifts the response of the hybrid

system toward that of the admittance controlled system and away from the passive

impedance controlled system. Then, from figure 5.7 we again see that increasing n from
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Figure 5.7: Stiff contact position response for δ = 50 ms and n = 0.5

0.5 to 0.9 shifts the response of the hybrid system closer to the response of the admittance

controlled system. However, the deviation between the response of the hybrid controlled

system and the admittance controlled system remains as n goes to 1. This again is due

in part to tuning of the inner loop position controller used in the admittance control

algorithm.

Therefore, we find that through the switching method it is possible to vary the

response of the hybrid method between the the admittance controller response and

the passive impedance controller response possibly producing better performance than

either. However, the variation in response of the hybrid controlled system is highly

dependant on the tuning of the inner loop position controller used in the admittance

algorithm.
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Figure 5.8: Stiff contact position response for δ = 50 ms and n = 0.9

5.2 Change of Switching Conditions

A large factor in the performance of the switches system is the position control used as

the control force in the admittance algorithm. This is partly because the control force

in (5.24) is based on the assumption that xd is a constant. Then, choosing the states

xd and ẋd when switching from the impedance to admittance controller such that the

control force and its derivative are continuous is not necessarily optimal. Therefore, we

change the algorithm as follows.

We have the impedance control torque to be given by (5.5). We then change the

admittance torque to be given by a PD controller instead of just a position controller

giving
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Fm = Fa = BB−1
D [−Kp(y − yd)−Kd(ẏ − ẏd)−KTK

−1
m (F − Fd)

−KSK
−1
m (Ḟ − Ḟd)] + (I − BB−1

d
)F (5.60)

with xd, ẋd to again be given by (5.28). We again let the external force, Fext

Fext = −ke(x− x0) (5.61)

with x0 again being a constant.

We then consider the hybrid switching as proposed in (5.32). Then the switched

system may be written as

Ẋi = AiXi : t ∈ [t0 + kδ, t0 + (k + 1− n)δ)

Ẋa = AaXa : t ∈ [t0 + (k + 1− n)δ, t0 + (k + 1)δ) (5.62)

where

Xi = (e , ė , eθ , ėθ)
T (5.63)

e = x− x0

eθ = y − y0 (5.64)
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Ai =























0 1 0 0

−M−1(Km + ke) 0 M−1Km 0

0 0 0 1

Ai1 0 −B−1
d

MM−1
θ

(Kc +Km) − B−1
d

MM−1
θ

Kd























(5.65)

Ai1 = B−1
d

(MM−1
θ

Km + (MM−1
θ

− 1)ke) (5.66)

Xa = (e , ė , eθ , ėθ , ed , ėd)
T (5.67)

ed = xd − x0 (5.68)

and

Aa =







































0 1 0 0 0 0

−M−1(Km − ke) 0 M−1Km 0 0 0

0 0 0 1 0 0

Aa1 Aa2 Aa3 Aa4 Aa5 Aa6

0 0 0 0 0 1

−M−1
θ

ke 0 0 0 −M−1
θ

Kθ −M−1
θ

Dθ







































(5.69)

Aa1 = B−1
d

(Km +KTK
−1
m ) (5.70)

Aa2 = B−1
d

KSK
−1
m (5.71)
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Aa3 = −B−1
d

(Km +Kp +KTK
−1
m ) (5.72)

Aa4 = −B−1
d

(KSK
−1
m +Kd) (5.73)

Aa5 = B−1
d

Kp (5.74)

Aa6 = B−1
d

Kd (5.75)

We remember that when switching from the admittance to the impedance controller,

we have

Xi = SiaXa, Sia = [I 0] (5.76)

at the instant of switching.

When switching form impedance controller to the admittance controller we again

have two additional sets of states xd and ẋd which must be defined. We again wish to

find xd such that the control force is continuous. Using (5.60) as the expression for the

control force of the admittance control we have

yd = y +
1

Kp

(

Bθ

B
Fi +Kdẏ +

KTF

Km
+

KS

Km
Ḟ −+(1−

Bθ

B
)F

)

⇒ ed = eθ +
1

Kp

(

Bθ

B
Fi +Kdėθ +

KTF

Km
+

KS

Km
Ḟ −+(1−

Bθ

B
)F

)

(5.77)
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Instead of defining ẏd such that the derivative of the force is continuous at the instant

of switching, we consider it to be chosen later. We may then obtain the expression

Xa = SaiXi + Baiėd, Sai =







I

S






(5.78)

at the instant of switching. Where S is given by

S =







S11 S12 S13 S14

0 0 0 0






(5.79)

s11 = −K−1
p KT

s12 = −K−1
p KS

s13 = K−1
P [KP +KT −MM−1

θ
Kc − (MM−1

θ
− 1)ke]

s14 = K−1
p (Kd +KS −MM−1

θ
Dθ) (5.80)

and Bai is given by

Bai =







































0

0

0

0

−K−1
p Kd

1







































(5.81)
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For brevity, let us define tk such that tk = t0 + kδ, k ∈ Z+. Then, knowing the

states at time t = tk, the states at t = tk + δ can be obtained using equations (5.62),

(5.76), and (5.78) as

Xi(tk + (1− n)δ) = eAi(1−n)δXi(tk)

Xa(tk + (1− n)δ) = Saie
Ai(1−n)δXi(tk) + Baiėd

Xa(tk + δ) = eAanδXa(tk + (1− n)δ)

Xi(tk + δ) = Siae
AanδXa(tk + (1− n)δ)

Xi(tk + δ) = Siae
AanδSaie

Ai(1−n)δXi(tk)

+Siae
AanδBiaėd (5.82)

We then let Adis be given by

Adis = Siae
AanδSaie

Ai(1−n)δ (5.83)

and Bdis be given by

Bdis = Siae
AanδBia (5.84)

giving

Xi(tk + δ) = AdisXi(tk) + Bdisėd (5.85)

We now wish to define the desired closed loop behavior by
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Ẋdes = AdesẊdes (5.86)

with

Xdes = [e , ė , eθ , ėθ]
T (5.87)

However, since the the desired system given by equation (5.4) does not contain eθ or

ėθ we cannot define Ades the same way we did for the rigid joint model. We will instead

leave the discussion of the choice of Ades for later.

5.2.1 Matching Eigenvalues

The first method of choosing ėd is have it be a feedback of the form

ėd = KeiXi(tk) (5.88)

where Kei is a matrix chosen such that the eigenvalues of eAdesδ are the same as the

eigenvalues of Adis + BdisKei. This method produces similar response times from

the switched system and the desired system. While the requirement that the pair

(Adis, Bdis) to match all eigenvalues is not very restrictive, the resulting gains do not

necessarily produce a smooth space with respect to variations in (n, ke). Also, match-

ing the eigenvalues does not take the eigenvectors into consideration producing different

responded as the order of the system increases. Therefore, we will not consider this

method further for the flexible joint model.
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5.2.2 Minimizing Discrete Difference Between Desired and Ac-

tual Behavior

For the flexible joint model we have additional states, (eθ, ėθ), which were not present

in the rigid body case. However, we note that these additional states do not appear in

the equation for the desired behavior. Therefore, the desired equation of motion of the

states (eθ, ėθ) must be determined before proceeding to the

5.2.2.1 Choosing Desired Behavior based on Passive Impedance

The first method investigated is to choose Ades as an ideal system being controlled by

the passive impedance controller. Ades is then given by

Ades =























0 1 0 0

−M−1(Km + ke) 0 M−1Km 0

0 0 0 1

Ades1 0 −B−1
d

MM−1
θ

(Kc +Km) −B−1
d

MM−1
θ

Kd























(5.89)

Ades1 = B−1
d

(MM−1
θ

Km + (MM−1
θ

− 1)ke) (5.90)

Solving (5.86) from time tk to tk + δ gives

Xdes(tk + δ) = eAdesδXdes(tk) (5.91)

Let Ad be given by

98



Ad = eAdesδ (5.92)

such that

Xdes(tk + δ) = AdXdes(tk) (5.93)

The goal is then to minimize |Xdes(tk + δ)−Xi(tk + δ)|. To solve this we may write

[Ad − Adis]Xi(tk)−Bdisėd = 0 (5.94)

using the Moore-Penrose inverse we find

ėd =
[

BT
disBdis

]−1
BT
dis[Ad − Adis]Xi(tk) (5.95)

We will then let Kh be given by

Kh =
[

BT
disBdis

]−1
BT
dis[Ad − Adis] (5.96)

such that

ėd = KhXi(tk) (5.97)

Then, we have the discrete mapping of the switched system to be given by
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Xi(tk + δ) = (Adis +BdisKh)Xi(tk) (5.98)

5.2.2.2 Choosing Desired Behavior based on Rigid Impedance

For the second method we choose Ades to be the desired rigid joint impedance decoupled

from the additional states (eθ, ėθ). We thus let Ades to be given by

Ades =







Ades1 0

0 0






(5.99)

with 0 being a 2× 2 matrix of zeros, and Ades1 is given by

Ades1 =







0 1

−
Kθ+ke
Mθ

−
Dθ
Mθ






(5.100)

Solving for (5.86) from time tk to tk + δ we have

Xdes(tk + δ) =







eAdes1δ 0

0 0






Xdes(tk) (5.101)

Let Ad be given by

Ad =







Ad1 0

0 0






(5.102)

where Ad1 is given by

Ad1 = eAdes1δ (5.103)
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such that

Xdes(tk + δ) = AdXdes(tk) (5.104)

Our goal is to minimize |CXdes(tk + δ)− CXi(tk + δ)|, where C is given by

C = [I 0] (5.105)

We then have

[CAd − CAdis]Xi(tk)− CBdisėd = 0 (5.106)

Using the Moore-Penrose inverse we set

ėd =
[

(CBdis)
T (CBdis)

]−1
(CBdis)

T [Ad1 − CAdis]Xi(tk) (5.107)

ėd = KhXi(tk) (5.108)

Where Kh is defined as

Kh =
[

(CBdis)
T (CBdis)

]−1
(CBdis)

T [Ad1 − CAdis] (5.109)

The discrete mapping of the switched system is then given by

101



Xi(tk + δ) = (Adis +BdisKh)Xi(tk) (5.110)

We see that as n → 0 the switched system is dominated by the passive impedance con-

troller. However, the passive impedance does not exactly reproduce the rigid impedance

causing the resulting gains of Kh grow unbounded.

5.2.2.3 Choosing Desired Behavior based on Combination of Passive and

Rigid Impedance

Since the passive impedance controller does not exactly produce the desired rigid joint

behavior. Therefore, the first method is not the most appropriate method. However,

as noted the second method which does use the desired rigid joint behavior is not ideal

since it produces unbounded control gains as n → 0. We therefore propose to use a gain

Kh that is a convex combination of the two desired behaviors.

Kh = γKh1 + (1− γ)Kh2, γ ∈ [0, 1] (5.111)

where Kh1 is given by (5.96) and Kh2 is given by (5.109). The variable γ is chosen

such that γ = 1 when n = 0 and γ = 0 when n = 1. Since there are infinitely many

functions, γ(n) which satisfy the boundary conditions, trial and error is used to find an

appropriate combination at each n value.
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5.3 Linear Separation of External Force in Switch-

ing Condition

In the change of switching conditions section we determined a set of values of ed and ėd

at the instant the system is switched from the impedance controller to the admittance

controller. However, we notice that the choice of ėd is dependant on the value of ke,

which may not be known. Therefore, we wish to re derive the conditions used in the

previous section with the external force not modeled as a spring force but as a measured

variable. We will again use the assumption that the system is a single degree of freedom

linear model given by equations (5.1)-(5.3)

5.3.1 Derivation

Let us consider the external force as an unknown input into the closed loop differential

equation. Then the hybrid switched system dynamics may be written as

Ẋi = AiXi +BiFext ∀t ∈ [tk, tk + (1− n)δ)

Ẋa = AaXa + BaFext ∀t ∈ [tk + (1− n)δ, tk + δ) (5.112)

for a positive integer, k, and for 0 ≤ n ≤ 1. Where Xi is given by

Xi = [e , ė , eθ , ėθ]
T (5.113)

Ai is given by
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Ai =























0 1 0 0

−M−1Km 0 M−1Km 0

0 0 0 1

B−1
d

Km 0 −B−1
d

(Kc +Km) −B−1
d

Kd























(5.114)

Bi is given by

Bi =























0

M−1
θ

0

(MM−1
θ

− 1)























(5.115)

Xa is given by

Xa = [e , ė , eθ , ėθ , ed , ėd]
T (5.116)

Aa is given by

Aa =







































0 1 0 0 0 0

−M−1Km 0 M−1Km 0 0 0

0 0 0 1 0 0

Aa1 Aa2 Aa3 Aa4 Aa5 Aa6

0 0 0 0 0 1

0 0 0 0 −M−1Kθ −M−1Dθ







































(5.117)
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Aa1 = B−1
d

(Km +KTK
−1
m ) (5.118)

Aa2 = B−1
d

KSK
−1
m (5.119)

Aa3 = −B−1
d

(Km +Kp +KTK
−1
m ) (5.120)

Aa4 = −B−1
d

(KSK
−1
m +Kd) (5.121)

Aa5 = B−1
d

Kp (5.122)

Aa6 = B−1
d

Kd (5.123)

and Ba is given by

Ba =







































0

M−1

0

0

0

M−1
θ







































(5.124)

Solving the differential equations in (5.112) give the general solutions

Xi(t) = eAi(t−t0)Xi(t0) +

∫ t

t0

eAit−τBaFext(τ)dτ (5.125)

and

Xa(t) = eAa(t−t0)Xa(t0) +

∫ t

t0

eAat−τBiFext(τ)dτ (5.126)
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for a positive integer, k, and for 0 ≤ n ≤ 1.

At time tk the system is switched from the admittance controlled system to the

impedance controlled system. We then have the change of states given by the mapping

Xi = SiaXa Sia = [I 0] (5.127)

At time tk + (1− n)δ, the system is switched from the impedance controlled system to

the admittance controlled system. This results in additional states ed and ėd where ed

is chosen such that the control force is continuous and ėd is chosen to satisfy equation

(5.139). From (5.77) we have

yd = y +
1

Kp

(

Bθ

B
Fi +Kdẏ +

KTF

Km
+

KS

Km
Ḟ − (1−

Bθ

B
)F

)

⇒ ed = ey +
1

Kp

(

Bθ

B
Fi +Kdėy +

KTF

Km
+

KS

Km
Ḟ − (1−

Bθ

B
)F

)

(5.128)

The states at time tk + (1− n)δ are given by the realtion

Xa = SaiXi +KaiFext + Baiėd Sia =







I

S






(5.129)

where S is given by

S =







S11 S12 S13 S14

0 0 0 0






(5.130)
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s11 = −K−1
p KT

s12 = −K−1
p KS

s13 = K−1
P [KP +KT −MM−1

θ
Kc]

s14 = K−1
p (Kd +KS −MM−1

θ
Dθ) (5.131)

Bai is given by

Bai =







































0

0

0

0

−K−1
p Kd

1







































(5.132)

and Kai is given by

Kai =







































0

0

0

0

K−1
p (MM−1

θ
− 1)

0







































(5.133)

For the switched system, the states from time tk to time tk + δ can be expressed by the
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mapping:

X(tk + δ) =Siae
AanδSaie

Ai(1−n)δXi(tk)

+ Siae
Aa(tk+δ)

∫ tk+δ

tk+(1−n)δ
e−AaτBaFext(τ)dτ

+ Siae
AanδSaie

Ai(tk+(1−n)δ)
∫ tk+(1−n)δ

tk

e−AiτBiFext(τ)dτ

+ Siae
AanδKaiFext(tk + (1− n)δ) + Siae

AanδBaiėd (5.134)

We consider the desired behavior of the closed-loop system to be that of the system

under passive impedance control. The desired dynamics can be written as

Xdes = AdesXdes + BdesFext (5.135)

Ades is given by

Ades =























0 1 0 0

−M−1Km 0 M−1Km 0

0 0 0 1

B−1
d

Km 0 −B−1
d

(Kc +Km) −B−1
d

Kd























(5.136)

and Bdes given by
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Bdes =























0

M−1
θ

0

(MM−1
θ

− 1)























(5.137)

The general solution of Xdes from tk to tk + δ is given by

Xdes(t) = eAdes(t−t0)Xdes(tk) +

∫ tk+δ

tk

eAdes(t−τ)Bdes1Fext(τ)dτ (5.138)

As in section (5.2.2.1) we have the goal is to choose ėd at tk + (1− n)δ such that

‖Xdes(tk + δ)−X(tk + δ)‖ = 0 (5.139)

Substituting equations (5.134) and (5.138) into (5.139) we get

eAdesδXdes(tk) + eAdes(tk+δ)
∫ tk+δ

tk

e−AdesτBdesFext(τ)dτ−

[Siae
AanδSaie

Ai(1−n)δXi(tk) + Siae
Aa(tk+δ)

∫ tk+δ

tk+(1−n)δ
e−AaτBaFext(τ)dτ

+ Siae
AanδSaie

Ai(tk+(1−n)δ)
∫ tk+(1−n)δ

tk

e−AiτBiFext(τ)dτ

+ Siae
AanδKaiFext(tk + (1− n)δ + Siae

AanδBaiėd] = 0 (5.140)

To solve equation (5.140) we will consider ėd to be of the form
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ėd = uh + up (5.141)

where uh minimizes the homogeneous portion of (5.140), when Fext ≡ 0, and up mini-

mizes the additional terms when Fext 6= 0. To find uh we let Fext ≡ 0 and up = 0 and

equation (5.140) can then be written as

[eAdesδXdes(tk)− Siae
AanδSaie

Ai(1−n)δX(tk)]− eAanδBaiuh = 0 (5.142)

Letting Xdes(tk) = X(tk), (5.142) simplifies to.

[eAdesδ − Siae
AanδSaie

Ai(1−n)δ]X(tk)− eAanδBaiuh = 0 (5.143)

Using the Moore-Penrose, set

uh = KhXi(tk) (5.144)

where

Kh =
[

(Siae
AanδBai)

TSiae
AanδBai

]−1
(Siae

AanδBai)
T

[eAdesδ − Siae
AanδSaie

Ai(1−n)δ] (5.145)

Since switching occurs at tk + (1− n)δ, it is desirable to write uh in the form
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uh = Kh(e
Ai(1−n)δ)−1Xi(tk + (1− n)δ) (5.146)

By substituting (5.146) back into (5.140) and find

eAdesδXdes(tk) + eAdes(tk+δ)
∫ tk+δ

tk

e−AdesτBdesFext(τ)dτ−

[Siae
AanδSaie

Ai(1−n)δX(tk) + Siae
Aa(tk+δ)

∫ tk+δ

tk+(1−n)δ
e−AaτBaFext(τ)dτ

+ Siae
AanδSaie

Ai(tk+(1−n)δ)
∫ tk+(1−n)δ

tk

e−AiτBiFext(τ)dτ

+ Siae
AanδBinKh(e

Ai(1−n)δ)−1X(tk + (1− n)δ)

+ Siae
AanδKaiFext(tk + (1− n)δ) + Siae

AanδBaiup] = 0 (5.147)

Using equation (5.125) we write (5.147) as

{eAdesδXdes(tk)− Siae
AanδSaie

Ai(1−n)δX(tk)− Siae
AanδBaiKhX(tk)}+

eAdes(tk+δ)
∫ tk+δ

tk

e−AdesτBdesFext(τ)dτ−

[Siae
Aa(tk+δ)

∫ tk+δ

tk+(1−n)δ
e−AaτBaFext(τ)dτ

+ Siae
AanδSaie

Ai(tk+(1−n)δ)
∫ tk+(1−n)δ

tk

e−AiτBiFext(τ)dτ

+ Siae
AanδBaiKhe

Aitk

∫ tk+(1−n)δ

tk

e−AiτBiFext(τ)dτ

+ Siae
AanδKaiFext(tk + (1− n)δ) + Siae

AanδBaiup] = 0 (5.148)
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From equations (5.139), (5.140), (5.144), and from linearity we have the choice of up

can only be chosen to minimize portions of (5.148) containing the external force. Thus,

(5.148) simplifies to

eAdes(tk+δ)
∫ tk+δ

tk

e−AdesτBdesFext(τ)dτ−

[Siae
Aa(tk+δ)

∫ tk+δ

tk+(1−n)δ
e−AaτBaFext(τ)dτ

+ Siae
AanδSaie

Ai(tk+(1−n)δ)
∫ tk+(1−n)δ

tk

e−AiτBiFext(τ)dτ

+ Siae
AanδBaiKhe

Aitk

∫ tk+(1−n)δ

tk

e−AiτBiFext(τ)dτ

+ Siae
AanδKaiFext(tk + (1− n)δ) + Siae

AanδBaiup] = 0 (5.149)

Solving for up gives

up =
[

(Siae
AanδBai)

TSiae
AanδBai

]−1
(Siae

AanδBai)
T

{eAdes(tk+δ)
∫ tk+δ

tk

e−AdesτBdesFext(τ)dτ−

[Siae
Aa(tk+δ)

∫ tk+δ

tk+(1−n)δ
e−AaτBaFext(τ)dτ

+ Siae
AanδSaie

Ai(tk+(1−n)δ)
∫ tk+(1−n)δ

tk

e−AiτBiFext(τ)dτ

+ Siae
AanδBinKhe

Aitk

∫ tk+(1−n)δ

tk

e−AiτBiFext(τ)dτ ]

− Siae
AanδKaiFext(tk + (1− n)δ)} (5.150)
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which may be written in the form

up =

∫ tk+δ

tk

Fp(t− τ)Fext(τ)dτ +HpFext(tk + (1− n)δ) (5.151)

where Fp(t) is given by

Fp =
[

(Siae
AanδBai)

TSiae
AanδBai

]−1
(Siae

AanδBai)
T

{eAdes(tk+δ)e−AdesτBdes

− [Siae
AanδSaie

Ai(tk+(1−n)δ)e−AiτBi

+ Siae
AanδBinKhe

Aitke−AiτBi]} (5.152)

for τ ∈ (tk, tk + (1− n)δ], Fp is given by

Fp =
[

(Siae
AanδBai)

TSiae
AanδBai

]−1
(Siae

AanδBai)
T

{eAdes(tk+δ)e−AdesτBdes − Siae
Aa(tk+δ)e−AaτBa} (5.153)

for τ ∈ (tk + (1− n)δ, tk + δ], and Hp is given by

Hp = −
[

(Siae
AanδBai)

TSiae
AanδBai

]−1
(Siae

AanδBai)
TSiae

AanδKai (5.154)
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Chapter 6

Experiments

We now investigate the performance of the hybrid impedance and admittance controller

as we change n value using the KUKA-DLR lightweight arm, shown in Figure 6.1. The

arm is equipped with a force sensor at the end of the effector to measure the external

forces.

Figure 6.1: Photo of Experimental Setup

114



6.1 Experimental Set-up

The reference angle for the arm is shown in Figure 6.2. The large gear ratio in the drive

of the joint causes the arm to act according to the flexible joint model. The joint is

equipped with a force torque sensor to measure the resulting torque between the link

and the motor. The model of the single-DOF flexible joint Kuka-DLR arm is assumed

to be:

q

Figure 6.2: Reference Diagram of Experimental Set-up

mq̈ + g(q) = τ +DmK−1
m τ̇ + JTFext (6.1)

Bθ̈ + τ +D−1
m Kmτ̇ = τm (6.2)

τ = Km(θ − q) (6.3)

(6.4)
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The parameters of the single joint of the KUKA-DLR lightweight arm are given as

follows:

m = 3.6 Kg m2 B = 1.5308 Kg m2 Km = 24000 Nm

Dm = 12 Nms g(q) = −73 sin(q) Nm (6.5)

The parameters of the desired impedance were chosen as follows:

Mθ = m Kθ = 100 Nm Dθ = 1.4
√

KθMθ Nms
B

Bθ
= 4.5 (6.6)

The impedance controller is implemented according to

τm = τi =BB−1
θ

{g(ql(θ)) +MM−1
θ

[−Kθ(ql(θ)− q0)−Dθ(θ − q̇0)]

+Mq̈0 + (MM−1
θ

− 1)τext}+ (1− BB−1
θ

)τ (6.7)

where ql is given by

ql(θ) = h−1
l

(θ) (6.8)

hl is given by

hl(q) = q +K−1
m l(q) (6.9)
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and l(q) is given by

l(q) = g(q)−Kθ(q − q0) (6.10)

and the admittance controller is implemented according to the control law.

τm = τa =
B

Bθ
[−Kpθ −Kd(θ̇)−KT (θ − q)−Ks(θ̇ − q̇)

+ (Km +KT +Kp)K
−1
m g(qd) +Kpqd +Kdq̇d] + (1−

B

Bθ
)τ (6.11)

with qd again being given by

Mθ(q̈d − q̈0) +Dθ(q̇d − q̇0) +Kθ(qd − q0) = JTFext (6.12)

We see that the mapping ql is a steady state approximation of the value of q at a given

value of θ. The control gains chosen to be

Kp = 6732.78 Nm Kd = 292.09 Nms

KT = −0.402 Nm Ks = −0.00446 Nms (6.13)

We implemented the hybrid controller described by (5.32). At the instant that the

system is switched from the impedance controller to the admittance controller we con-

sider the choice of states qd and q̇d such that the control force τm is continuous. Setting

equations (6.7) and (6.11) equal gives

117



(Km +KP +KT )K
−1
m g(qd) +Kpqd = (Kd +KS −Dθ)θ̇

+(Kp +KT )θ −KT q −KS q̇ +Kθ(q0 − ql(θ)) + g(ql(θ))−Kdq̇d (6.14)

Inverting equation (6.14) may be difficult analytically, However, given q̇d we find that

(6.14) may be solved using the same iterative process used in section (4.2.4). To solve

for q̇d we wish to use a process similar to that used in section (5.3). However, the non-

linearity of the control and switching complicates the minimization equations. Therefore,

to simplify the process we consider the linearization of the equations about the operating

point and use the linear method to find q̇d.

We have q̇d given by

q̇d = uh + up (6.15)

where uh and up are given by the relations

uh =
[

(Siae
AanδBai)

TSiae
AanδBai

]−1
(Siae

AanδBai)
T

eAdesδ(eAi(1−n)δ)−1Xi(tk + (1− n)δ)

−Siae
AanδSaie

Ai(1−n)δ(eAi(1−n)δ)−1Xi(tk + (1− n)δ) (6.16)

up =

∫ tk+δ

tk

Fp(t− τ)Fext(τ)dτ +HpFext(tk + (1− n)δ) (6.17)

Note that the solution of up requires knowledge of the external torque at future times
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t ∈ [tk+(1−n)δ, tk+ δ]. We then use theorem 3.2.3 from [20] which allows us to rewrite

(6.17) as

up = Up(tk + δ)Fext(tk + δ) +HpFext(tk + (1− n)δ) (6.18)

This again requires Fext(tk + δ) which is not known at time tk + (1 − n)δ. However,

Fext(t) is surjective and therefore there exists a right inverse allowing us to write

up = [Ûp(tk + δ) +Hp]Fext(tk + (1− n)δ) (6.19)

Since Ûp(tk + δ) cannot be calculated at the time the experiment was performed, we

instead show the validity of the approach by choosing a set of values constant Kpa where

up = KpaFext(tk + (1− n)δ) (6.20)

We now proceed to analyse the response of the system under different values of Ĥp to

demonstrate the change in response and verify that there exists a time varying function

that satisfies (6.20) is equivalent to (6.17).

6.2 Results for Desired Response Equal to Passive

Impedance

In (5.2.2) we discussed briefly that it is possible to choose different desired behaviors

for a flexible joint model based on the passive impedance control response and the rigid

impedance control response. Therefore, we will analyse multiple desired behaviors the
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understand fully the advantages and disadvantages of each.

First we consider the desired behavior to be given by the passive impedance control

response. The experimental response of the hybrid system when no external force is

shown in Figure 6.3 with a switching rate of 25 ms

0 1 2 3 4 5 6 7 8 9 10
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Figure 6.3: Free Space Hybrid Response for Different n values with δ = 25 ms, and
using the passive impedance as the desired behavior

From Figure 6.3 we see that there is little deviation between the passive impedance

controlled system and the hybrid system during the free response case. This is not

surprising since the passive impedance controller is used as the desired behavior for
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the choice of states of the switching conditions, and because gravitational feedback was

tuned for the passive impedance control. To verify that there is a difference in response

for different values of n in the case with no external force let us consider the application

of the gravity free control in the system with gravity.

0 1 2 3 4 5 6 7 8 9 10
0. 6

0. 5

0. 4

0. 3

0. 2

0. 1

0

-0.1

Admittance

n=0

n=1

n decreasing

Time (sec)

P
os
it
io
n
q
(r
ad

)

Figure 6.4: Free Space Hybrid Response for Different n values with δ = 25 ms, and
using the passive impedance as the desired behavior ignoring gravity

We see from Figure 6.4 that when gravity is not considered the system produces

a large steady state error when controlled by the passive impedance controller while it

produces virtually no error when controlled by the admittance controller. We further see
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that the hybrid controller produces a steady state error between that of the admittance

controller and the passive impedance controller. Furthermore, the steady state error of

the hybrid controller decreases as the value of n increases giving more weight to the

admittance controller. However, we find that the hybrid controller does not closely

approximate the admittance controller when n = 0. This is due to restrictions on the

position controller gains due to torque restrictions and noise in the read position and

velocity.

We next consider contact with a soft environment. To this end, a padded surface

is placed in the path of the end effector. Then the link is moved until the effector is

in contact but there is no force. Then the reference position is commanded to move 10

degrees into the surface. Since the presence of the external force requires the particular

solution of the feedback in the form of up in (6.20), we observe the change in response

for a constant n value and a switching rate of 25 ms, and for different values of Kpa.

Figure 6.5 shows the response of the system for n = 1 (admittance control with resetting)

for Kpa with values 0.005, 0.000, −0.001, −0.002, −0.003, −0.004, and −0.005 shown

in decreasing order from right to left. We notice that there is a small change in the

steady state solution as Kpa varies, but the change is small due to the softness of the

external stiffness. We also see that as Kpa decreases, the rate at which the hybrid system

response converges to the steady state solution increases. We may therefore infer that

the changing the value of Kpa changes the transient response of the system. However,

we are unable to compare the system to the admittance controlled system since the

experiment would need to be reinitialized to change the controller, which changes the

set point at which the effector contacts the surface.
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Figure 6.5: Soft contact position response for δ = 25 ms, n = 1, and varying Kpa values
while using passive impedance controller for desired behavior

Figure 6.6 shows the response of the hybrid system with switching rate 25 ms using

a constant value Kpa = 0.005 and varying n from 1 to 0 in decrements of 0.1 shown

from left to right. We see from the figure that there is a small change in the steady state

position as the value of n changes. However, some of the variation can be attributed to

the slight change in initial configuration. We also notice that the rate of convergence

to the steady state solution increases noticeably as n decreases. The change of rate of

convergence is characteristic of the admittance controller with lower gains. From Figures
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Figure 6.6: Soft contact position response for δ = 25 ms, Kpa = 0.005, and varying n
while using passive impedance controller for desired behavior

6.5 and 6.6 we see that when in contact with a soft environment the hybrid system shows

large overshoot and oscillations for small n which decrease as n increase, and that we

may change the value of Kpa to achieve the desired performance for a given n value.

We now study the response when the hybrid controller is implemented during contact

with a stiff environment. The experiment for stiff contact is done in the same manner as

the soft contact, except that the padded surface has been removed completely leaving

only the stiff surface the pad was sitting on. We observe the change in response when
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Figure 6.7: Hard contact position response for δ = 25 ms, n = 1, and varying Kpa while
using passive impedance controller for desired behavior

contact is made with a constant n value and a varying Kpa value. Figure 6.7 shows the

position response when in contact with a stiff environment for n = 1 (admittance control

with resetting) and with Kpa values 0.005, 0.000, −0.001, −0.002, −0.003, −0.004, and

−0.005 shown in decreasing order from right to left. We notice a slight variation in the

mean steady state value, as was the case for soft contact. However, for smaller Kpa

values the system does not reach a steady state value, and produces a high frequency

vibration about a mean value instead. This is because the steady state value of the
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position controller is not the same value as the passive impedance controller, and the

deviation between the steady state values increases as the external stiffness increases.

This also explains why the oscillations were not observed for the soft and free space

cases. Noting that the performance changes as Kpa changes allows us to again infer that

there exists a varying Kpa value that produces the desire result.

0 1 2 3 4 5 6 7 8
1.208

1.207

1.206

1.205

1.204

1.203

1.202

1.201

1. 2

1.199

n=1

n=0

n decreasing

Time (sec)

P
os
it
io
n
q
(r
ad

)

Figure 6.8: Hard contact position response for δ = 25 ms, Kpa = 0.005 and varying n
while using passive impedance controller for desired behavior

Figure 6.8 shows the response of the joint angle for Kpa = 0.005, δ = 0.25, and n

varying from 0 to 1, with n decreasing from left to right. Similarly Figure 6.9 shows the

response of the joint angle for Kpa = −0.005, δ = 0.25, and n varying from 0 to 1, with

126



0 1 2 3 4 5 6 7 8
1.208

1.207

1.206

1.205

1.204

1.203

1.202

1.201

1.199

n=1

n=0

1.2

n decreasing

Time (sec)

P
os
it
io
n
q
(r
ad

)

Figure 6.9: Hard contact position response for δ = 25 ms, Kpa = −0.005, and varying
n while using passive impedance controller for desired behavior

n decreasing from left to right. We see from both Figures 6.8 and 6.9 that changing the

value of n changes the steady state behavior of the system, and can result in a persistent

excitation. We also note that the response more closely resembles the passive impedance

controller as n goes to 0. Therefore, we find that we may choose a value of n to produce

the best behavior for a given external stiffness.
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6.3 Results for Desired Response Equal to Combi-

nation of Passive Impedance and Rigid Impedance

In the previous section we analysed experimental results with resetting conditions that

were chosen to minimize the difference between the switched behavior and the ideal

passive impedance behavior. However, the ideal passive impedance behavior does not

exactly match the desired link behavior. Therefore, we investigate experimentally the

effect of switching based on a convex combination of the passive impedance controller

and the rigid joint impedance as described in Section 5.2.2.3. The experiments are

preformed with γ in equation (5.111) given by

γ = (1− n)2 (6.21)

Figure 6.10 shows the response of the system in free motion for varying n values with

δ = 25 ms. For free motion we do not have to consider the external torque. We notice

that there is a change in transient response of the hybrid controller as n is changed,

and that small n values produce transient responses closer to the passive impedance

controller while larger n values produce transient responses closer to the admittance

controller. This is an improvement over the choice of passive impedance as the desired

behavior shown in figure 6.3 since it did not change the transient response as n varied.

However, we notice that there is a difference between the steady state position of the

admittance control compared to both the impedance and hybrid control methods, and

that the steady state response of the hybrid controller does not vary much as n changes.

To investigate the steady state error effects closely, we apply the control again in free
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Figure 6.10: Free Space Hybrid Response for Different n values with δ = 25 ms, and
using a combination of passive impedance and rigid impedance as the desired behavior

space but assume that there is no gravity present.

Figure 6.11 shows the response of the system in free space with varying n, n de-

creasing from left to right, for δ = 25 ms, and without gravity compensation. We see

from the figure that there is a large change in the steady state response as n changes,

with the steady state position of the hybrid controller equal to that generated by the

passive impedance controller when n = 0 and approaching the steady state position of

the admittance control as n goes to 1. However, the steady state response with the
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Figure 6.11: Free Space Hybrid Response for Different n values with δ = 25 ms, and
using a combination of passive impedance and rigid impedance as the desired behavior
while ignoring gravity

hybrid controller never reaches the steady state position of the admittance control. This

is due to the low position gains, constrained by hardware limitations.

We next consider the response of the system when it comes in contact with an external

surface. We first consider a soft surface which is produced by putting a padding on the

rigid surface. We use the same procedure as in the previous section of moving the

effector until it is in contact with the surface but the force measurement is still zero.

We then send a step input command of moving 10 degrees into the surface and record
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Figure 6.12: Soft contact position response for δ = 25 ms, n = 1, and varying Kpa values
while using a combination of passive impedance and rigid impedance as the desired
behavior

the response. Figure 6.12 shows the joint angle response for δ = 25 ms, n = 1, and

for varying Kpa values. We see from the figure that the steady state response changes

as Kpa changes. Also, the rate at which the system converges to steady state changes

as Kpa changes. Clearly, it is possible to change the performance of the hybrid system

through our choice of Kpa. We next investigate the change in response as n varies.

Figure 6.13 shows the response of the system for δ = 25 ms, Kpa = 0.005, and

n changing in decrements of 0.1 from left to right. We see from the figure that the
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Figure 6.13: Soft contact position response for δ = 25 ms, Kpa = 0.005, and varying
n while using a combination of passive impedance and rigid impedance as the desired
behavior

steady state response of the hybrid system varies noticeably as n changes. Also notice

that the transient response changes as n changes. However, we notice that the passive

impedance control, n = 0, does not appear in line with the trend of decreasing n.

Namely, we notice that as n is decreasing, the steady state position gradually decreases

and the rate of convergence of the system gradually increases. When n changes from 0.1

to 0.0, we notice a sudden increase in the steady state position of the system and a very

large decrease in the rate of convergence of the system. This is due to a constant choice
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of Kpa over all n values. We notice from chapter 5.3.1 that the value of Kpa should

ultimately be determined by both the external stiffness, and the switching weight n

and from figure 6.12 we see that the value for Kpa effects the steady state position.

Therefore, we are able infer that varying Kpa and n can be used to change the behavior

of the system meaning there is a selection of Kpa and n that will produce the best

response for the soft contact case. However, we notice that the steady state response is

more sensitive to the choice of Kpa then when the passive impedance control is used as

the desired behavior. The admittance controller is again not shown as the system must

be reinitialized in order to run the admittance control which changes the set point of

the surface contact. We have now examined the soft contact and the free space motion

of the link and seen that choosing n and Kpa allows for a wide range of performance

form the system.

We now wish to examine contact with a stiff contact surface. The contact with the

stiff contact is done the same way as in the previous section. The effector is bought

into contact with the surface such that the force sensor continues to read 0 external

force. Then the system is given a step into of 10 degrees into the surface and the

response is measured. Figure 6.14 shown the response curves for stiff contact with

n = 1, δ = 25 ms, and Kpa varying. We see from the figure that there is an increase in

high frequency vibration as Kpa decreases. Furthermore, the high frequency vibration

persists causing the system to never reach a steady state equilibrium. This behavior is

also present when the passive impedance control is used as the desired dynamics. We

now proceed to investigate the effect of varying n for a given Kpa value.

Figures 6.15 and 6.16 show the response of the hybrid controlled system for δ =
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Figure 6.14: Hard contact position response for δ = 25ms, n = 1, and varyingKpa while
using a combination of passive impedance and rigid impedance as the desired behavior

25 ms, n decreasing by 0.1 with each curve from right to left, and Kpa = 0.005 and

Kpa = −0.005 respectively. From figure 6.15 we see that the steady state behavior

changes drastically as n changes from 0.2 to 0.1. Furthermore, we see that the high

frequency behavior decreases as n decreases. However, in figure 6.16 we notice that

the large change in steady state behavior occurs when n changes from 0.3 to 0.2, a

larger n value than in figure 6.15. However, we also see in figure 6.16 that the higher

frequency behavior of the system is of larger magnitude for larger n values. Figures 6.8
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Figure 6.15: Hard contact position response for δ = 25 ms, Kpa = 0.005 and varying
n while using a combination of passive impedance and rigid impedance as the desired
behavior

and 6.9 which use the passive impedance control show smaller deviations in steady state

behavior and smaller effects of the high frequency motion for larger n. However, we see

that the high frequency motion has higher magnitude at steady state when using the

passive impedance control as the desire behavior.

Therefore, we conclude that using a combination of rigid joint impedance and passive

impedance control to find the desired behavior produces better results for larger n in

free space than choosing the passive impedance control as the desired behavior. How-
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Figure 6.16: Hard contact position response for δ = 25 ms, Kpa = −0.005 and varying
n while using a combination of passive impedance and rigid impedance as the desired
behavior

ever, choosing the desired impedance control as the desired behavior is less sensitive to

the chosen value of Kpa as the external stiffness increases. Even with the comparable

behavior we find that we may choose a pair n and Kpa to produce the same or better

performance of the passive impedance control for all external stiffness values, and bet-

ter performance than the admittance control for stiffer external stiffness. Although we

are unable to match the admittance control performance in free space due to hardware

restrictions.
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Chapter 7

Conclusion

We have presented a hybrid switching method as originally proposed by Ott et al. for

a single degree of freedom system [19]. The method uses a duty cycle as a parameter

design to interpolate performance characteristics and stability of the impedance control

and the admittance control. We then expand upon the previous work by providing a new

stability theorem which includes a wider range of possible systems, and produced new

switching conditions to improve improve the performance of the switched system. We

then generalized the theory for general system modelled by the rigid joint model, linear

single degree-of-freedom system modelled with a flexible joint, and a class of non-linear

single degree-of-freedom systems modelled with a flexible joint. Through simulations and

experiments we find that we are able to combine robustness of the impedance control

in stiff contact and accuracy of the admittance control. However, the the combination

is limited by the quality of the position control and becomes numerically difficult to

calculate for the flexible system as non-linearities are added. All analysis of robustness

here is done based on simulation and experimentation and more analytic methods of
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analysis are an important goal of future work. Through experimentation and simulation

we have shown that it is possible to change the performance of the controller for a given

stiffness by changing the duty cycle allowing us to choose one which we believe to be

best. However, since the performance of the hybrid control it based on the external

stiffness and thus a method of adaptive approximation of the external stiffness is also

included as a future research goal.
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