70-9644

THOMAS, III, Harley Hastings, 1941-A MARKETING STUDY OF FINE WOOD RESIDUE IN SOUTHERN LOWER MICHIGAN.

Michigan State University, Ph.D., 1969 Agriculture, forestry and wildlife

University Microfilms, Inc., Ann Arbor, Michigan

A MARKETING STUDY OF FINE WOOD RESIDUE

IN SOUTHERN LOWER MICHIGAN

By روبین Harley H. Thomas, III

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Forestry

ABSTRACT

A MARKETING STUDY OF FINE WOOD RESIDUE IN SOUTHERN LOWER MICHIGAN

By

Harley H. Thomas, III

Historically, grade lumber has been the primary product of most hardwood sawmills in Michigan and the utilization of wood residue has amounted to a disposal problem. Consequently, burning residues in the open or in teepee burners or dumping it at the back of the already crowded mill site has been the quick, inexpensive means used to eliminate vast quantities of residue materials from the mill site. Today, new federal and state air pollution legislation is beginning to restrict waste burning. As a result, the production-oriented sawmill operator may be forced to select some alternative in an effort to dispose of wood residues.

Last year (1968), 150 hardwood sawmills in forty-one southern lower Michigan counties alone produced approximately 500,000 tons of wood residue while processing an estimated 171 million board feet of hardwood lumber. It is only reasonable to assume that this great quantity of residue could provide support for even more new industries and serve as the basis for expanding the profit margin of many existing industries. Currently, a few markets are developing for sawdust and bark where the use of wood residue is considered a natural; such as animal bedding, poultry litter, soil improvement, and mulch. These basically agricultural and horticultural markets have a lot of potential in southern Michigan, but they will not expand to any degree without the aid of product information, advertising, a marketing program, and establishment of a dependable source of supply.

In an effort to stimulate interest in greater wood residue utilization and to compile the necessary facts upon which a residue processing plant could be established, the research study was initiated. The primary portion of the study centered around the development of an original heuristic simulation model which could be used as a management decision-making tool. The simulation is used in determining whether or not it is currently economically feasible for a processing plant to geographically concentrate and process sawdust and bark from hardwood sawmills on a large scale for sale to agricultural and horticultural The secondary portion of the study investigated the markets. present wood disposal situation at the sawmill site and the current use of sawdust and bark products in bulk quantities by dairy farmers, orchard growers and tree nurseries and the sale of packaged bark products by lawn and garden centers.

A field survey was conducted among sawmill operators, at which time general information was gathered and photographic documentation was made of the residue disposal problem. Following the field survey, a mail survey was administered among the majority of sawmill operators to obtain specific wood residue handling and disposal data. To aid in determining the feasibility of a residue processing plant, a simulation model was developed. The model evaluates the potential success of a processing plant which purchases bark and sawdust, provides inbound transportation, processes the raw material and sells the finished product f.o.b. plant in relation to current agricultural and horticultural market opportunities.

Costs in the simulation are evaluated using the cost center concept. The location and size of both raw material supply and market demand surrounding any given processing plant location constitutes a market configuration. Many configurations were evaluated during the research and analysis, with three being included in the study as typical examples supporting the findings.

The findings supported, even though in many cases on a marginal basis, the hypothesis that there presently exist agricultural and horticultural markets for fine sawmill residues, and that transformation of the sawmill residue disposal problem into a source of income through the establishment of a firm to collect, process and market bark and sawdust is economically feasible.

ACKNOWLEDGMENTS

During the course of this study, several men gave freely of their time and advice. Their efforts are deeply appreciated and deserve special recognition.

> Professor Eldon A. Behr--academic advisor, consultant, and friend, who guided this project to a successful completion at Michigan State University.

Professor Bernard J. LaLonde--a valued friend, whose valuable advice added genuine depth to the study and whose candid remarks and broad experience gave pragmatism to the study.

Professor Otto Suchsland--whose timely remarks and reviews gave added strength to the final manuscript. Professor William B. Lloyd--for his views, opinions, and encouragement during the study.

The author is also indebted to the Wood Science staff and graduate students for their encouragement and assistance.

In conclusion, the author is grateful to his wife, Carol, for her constant moral support and tireless assistance during the entire degree program.

ii

TABLE OF CONTENTS

																							P	age	
ACKNO	WLEDGI	ement	s	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ii	
LIST	OF TA	BLES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	v	
LIST	OF FI	GURES	;	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	.v	' iii	
LIST	OF AP	PENDI	CE	S	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	x	
Part																									
Ĭ.	INT	RODUC	TI	ON	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	l	
		Stat	:em	en	t	of	t	:he	e 1	?ro	ob]	len	n.	•	•	•	•	•	•	•	•	•	•	2	
		Ba	lck	gr	ou	nđ	ι.	٠	٠	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	5	
		Sc	pop	e	of	t	hε	3 8	δtι	ıdı	! +	٠	٠	٠	٠	٠	•	٠	٠	٠	•	٠	•	8	
		Нурс	oth	es	es	•	•	٠	٠	٠	٠	٠	٠	•	•	•	٠	٠	٠	•	٠	٠	٠	11	
		Meth	rođ	ol	og	Y	•	•	•	•	•	٠	•	٠	•	٠	•	٠	é	•	٠	•	٠	13	
		Limi	ita	ti	on	8	•	•	•	•	•	٠	•	٠	•	•	•'	•	•	•	•	•	•	18	
		Cont	:ri	bu	ti	or	18	•	٠	٠		•	•	•	٠	•	٠	•	•	•	•	٠	•	20	
		Orga	ni	.za	ti	or	1.	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	22	
II.	LIT	ERATI	JRE	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	•	24	
III.	RES	EARCH	łD)ES	IG	N	•	•	•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	44	
		Phas	1e	T:		Ge	ne		1	R	e86	a	ccì	n 8	รมเ	ממ	ort			-		-	-	45	
		Phas	20.	тт	•		ไลเ		; 1 '	1 1	Res	. i /	3116		5 c 5 13 1	rvi	эv эv		Ī	Ī		Ī	•	59	
		Dhac		TT	т.		D	-			i n	1	212	ani	F 9	Sir	- <u>-</u> mii'	lai	- i /	on		•		69	
		Flide	96	**			- 1		، تا نی	30		• •		A 1 4 1			u.		ند ما	011	•	•	•	0,5	
IV.	FIN	DINGS	5	RE	LA	T]	IVI	2 2	ro	P	HAS	SE	13	۲.	•	•	•	•	•	٠	•	•	•	109	
v.	FIN	DINGS	5	RE	LA	T	[V]	3 (ю	P	HA!	SE	I	II	•	•	•	٠	٠	•	•	•	•	140	
VI.	CON	CLÚSI	ION	is	AN	D	1!	4 P :	LI(CA	TI(ON	5.	•	•	•	•	•	•	•	•	•	•	152	
		Imp] Suge	lic ges	at ite	ic d	ns Aj	3. :ea	15	• f(• or	Fi	121	• the	er	Re	•	• ea:	rcl	h.	•	•	•	•	160 162	

GLOSSARY .	•	•	•		•	•	•	٠	٠	٠	٠	•	•	٠	•	•	•	•	•	٠	٠	•	٠	٠	165
LITERATURE	С	II	E)	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	168
APPENDICES		•	•		•	•	•	•	•	•	•		•	٠	•	•	•	-	٠	•	•	•	•		174

LIST OF TABLES

Table	1	Page
1.	Approximate Composition of Wood	-33
2.	Approximate Composition of Bark	33
3.	Approximate Composition of Peat Moss	34
4.	Sawmill Class Size and Production Data Used in 1968 Directory of Wood Using Plants in Michigan	48
5.	Estimates of Hardwood Sawdust by Diameter Class for Mills with Circular Headsaws	50
6.	Estimates of Hardwood Bark by Diameter Class for all Mills	51
7.	Estimates of Solid Residue Material by Diameter Class for Mills with Circular Headsaws	53
8.	Mean Values for the Various Residue Components Based on Per M.B.F. Green Lumber Tally	54
9.	Wood Residue Demand Estimated in TonsA Summary of the Obtainable Market Share in Each County	57
10.	Selected Sawmill Study Area Divided Into Arbitrary Quadrants Showing the Stratification of Sawmills in Each by Mill Class	61
11.	Selected Sawmills Included in 1968 Field Study.	64
12.	Number of Sawmills Included in Mail Survey	68
13.	Deck Order for Control Data 6500	77
14.	Processing Plant Fixed Costs.	93

V

Table		Page
15.	Processing Plant Variable Costs	97
16.	Configuration No. 1Listing of Supplying Mills for Processing Plants	99
17.	Configuration No. 1Listing of Counties in Demand for Processing Plant	100
18.	Configuration No. 2Listing of Supplying Mills for Processing Plant	102
19.	Configuration No. 2Listing of Counties in Démand for Processing Plant	103
20.	Configuration No. 3Listing of Supplying Mills for Processing Plant	105
21.	Configuration No. 3Listing of Counties in Demand for Processing Plant	106
22.	Comparative Retail Prices of Mulches, Soil Conditioners, and Decorative Lawn Products, in Lansing, Michigan	124
23.	Equipment Owned by Hardwood Sawmills	125
24.	Estimated Daily Hardwood Lumber Production	126
25.	Daily Lumber Production by Sawmill Class	127
26.	Number of Sawmill Operating Days Per Year	133
27.	Time Required to Remove Residue from Sawmill Site	134
28.	Summary of Sawdust Sold Last Year	135
29.	Summary of Bark Sold Last Year	136
30.	Hardwood Bark Accumulated by Sawmills Operating Log Debarkers in Southern Lower Michigan	137
31.	Sawmill Residue Production Summary for Southern Half of Lower Michigan	139

vi

Table	· · ·	Page
32.	The Effect of Radius Change on Costs in a Processing Plant Configuration Simulation	142
33.	Summary of Trial Configuration No. 1	143
34.	Summary of Trial Configuration No. 2	145
35.	Summary of Trial Configuration No. 3	147
36.	Summary of Cost Data from Three Test Configurations	149

vii

LIST OF FIGURES

Figur	e ,	Page
1.	Materials Resulting From Sawlog Breakdown	7
2.	Location of Primary Wood Using Plants	15
3.	Location of Wood Residue Study Area Showing 41 Counties Divided into Four Quadrants	60
4.	Distribution of 51 Hardwood Sawmills Included in Wood Residue Field Survey 1968	67
5.	Grid Location System for Locating Geographical Points	71
6.	Basic Flow Chart Showing Major Activities Performed by the Simulation Program	74
7.	System of Material Movement Through Processing Plant	86
8.	Illustration of Proposed Processing Plant	87
9.	Outline of Counties Included in the Demand Phase of Configuration No. 1	101
10.	Outline of Counties Included in the Demand Phase of Configuration No. 2	104
11.	Outline of Counties Included in the Demand Phase of Configuration No. 3	107
12.	Vast Quantities of Wood Residue Found at Most Sawmill Sites	111
13.	Close-up Photographs Showing Characteristics of Fine Wood Residues Compared to Engineered Wood Chips	112

Figure Current Methods of Fine Wood Residue Disposal . 115 14. The Two Major Factors Determining the Location 15. of Current Wood Residue Markets--Population and Agriculture 116 118 Current Uses for Wood Residues. 16. 17. Colorful, Informative, Consumer-Appealing Plastic Bags Used Successfully as Bark Mulch Packages 122 Percentage of Sawmills Advertising Residue 18. Products for Sale ... 128 Sawmill Operators' Estimate of Wood Residue 19. 129 Removal Cost. Summary of Reported Methods of Bark Disposal. . 131 20. 132 Summary of Reported Methods of Sawdust Disposal 21.

ix

Page

LIST OF APPENDICES

Appendix	ſ	Page
A	Mail Survey Cover Letter and Questionnaire	174
В	Estimated Quantity of Hardwood Residue Produced by Sawmills in Southern Half of Lower Michigan 1968	177
C-1	Excerpt from 1968 Michigan Standard Specifications for Landscaping Materials	186
C-2	Lumber and Residue Fractions Developed from Sawmilling	187
C-3	Selected Markets for Wood Residues Visited During Field Survey	190
C-4	County Code and Grid Location of Geographic Center	191
C-5	Functions of Mulches and Soil Conditioners	192
D	Computer Simulation Program	193
E-1	Summary of Supply Data for Configuration No. 1	212
E-2	Summary of Supply Data for Configuration No. 2	213
E-3	Summary of Supply Data for Configuration No. 3	214

x

PART I

UTILIZING WOOD RESIDUES -- A PROBLEM AREA

Introduction

More complete utilization of forest resources must be the goal of our forest products industries if they are to maintain favorable economic growth. Because of new restrictions on air pollution, increasing competition from other materials and rising labor and transportation costs, the woodusing industries have begun to scrutinize their costs for possible reductions. Wood residues are one of the prime areas where this can be done.

Sawmills produce wood residue consisting of slabs, edgings, trimmings, sawdust, shavings and bark which accumulate incidental to the manufacturing of lumber. Within the sawmill industry only an average of 57 percent of the log is currently utilized for the primary product, lumber. The remaining 43 percent ends up as sawmill residue. This residue is commonly called wood waste and, by the connotation, unfortunately portrays the erroneous idea of having little value.

There are presently many uses for wood residues, but numerous economic factors impose limitations that frequently make residue utilization unfeasible. Transportation costs and concentration of residues are factors that often cause economic roadblocks to utilization. It is obvious that uses for residues must pay their way or much of the material will continue to remain unused. Once wood residue markets are established as a paying proposition the cost of residue disposal will be transformed into additional income for the sawmill operator. To date very little progress has been made in the development of Michigan markets for wood residue based products.

Statement of the Problem

The successful utilization of any material requires the consideration of many factors. A thorough understanding of the material itself is essential. More specifically in the case of wood residue this includes knowledge about available quantities, species, sawmill location, properties and characteristics of the wood residues themselves. Equally as important, if a marketing program is to be developed, is a knowledge of uses, consumer requirements, markets, processing methods, capital investment, operating costs and returns. Obviously, individual circumstances regarding these factors will largely dictate which uses will be most advantageous.

It is generally accepted that data are available on the quantity of wood residue available in the State of Michigan. To date, most wood residue research efforts have been directed toward improving lumber production and increasing the utilization of coarse sawmill residue (slabs, edging and trim). Out of this research came the wood hog and chipper which have made coarse residue more compatible with fuel requirements and pulp chips, respectively. Converting coarse residue to pulp chips has been progressing very well in Michigan and the economic picture continues to improve.

The fine residues, sawdust and bark, have not been as fortunate as coarse residue in finding adequate markets. Even more than the coarse residues, the fine residues have often been considered over the years as only another disposal problem. At first bark and sawdust were used as fuel or disposed of in a variety of ways. Recently other uses have been developing which continue to make both bark and sawdust more valuable. Some of the first uses were directed toward using sawdust as a floor sweeping compound or charcoal briquets, but limiting factors such as (1) the high bulk of the product, ' (2) scattered sawmill locations, and (3) small quantities produced at each of the mills have severely limited the growth of such markets.

To most sawmill operators, disposing of hardwood sawdust and bark represents a cost not only in dollars but in valuable space occupied, increased fire risks, insurance problems, and investments tied up in equipment.

The direct costs of disposal alone encourage many operators to look for another way out. These costs range from \$0.25 to \$0.50 per thousand board feet of lumber produced. At \$0.50 per thousand board feet, this amounts to \$2,500 per year for a sawmill cutting 20,000 board feet daily. Annual insurance rates may increase as much as eight percent when residues are piled or burned near a mill.

Disposal costs will increase for many operators -especially those nearest to urban areas. New air-pollution codes and strict enforcement of current laws will force some operators to install pollution control devices on their teepee burners or change from burning to dumping.

Currently, a few markets are developing for sawdust and bark where the use of wood residue is considered a natural, such as animal bedding, poultry litter, soil improvement, mulch, and some pressed-wood products. These markets have a lot of potential in southern Michigan, but they will not expand to any degree without the aid of product information, education, a marketing program, and establishment of a dependable source of supply.

The sawmill industry and the individual sawmill owners are typically production oriented rather than market oriented. If they choose not to develop the markets or to show interest in supplying raw material to a processor, one of two things will happen: (1) it is conceivable that an independent operator will initiate a marketing program for sawdust and bark products, concentrating and processing them as necessary, or (2) the sawmills in general will continue to maintain an indifferent attitude and keep the status quo with the residue disposal problem becoming even worse, and a substantial profit opportunity will be overlooked.

Background

Historically, grade lumber has been the primary product of most hardwood sawmills in Michigan and the utilization of wood residue has amounted to a disposal problem. Consequently, burning residues in the open or in teepee burners or dumping it at the back of the already crowded mill site have been the quick, inexpensive means used to eliminate vast quantities of residue materials from the mill site. Today, new federal and state air pollution legislation is beginning to restrict waste burning. As a result, the production-oriented sawmill operator may be forced to select some alternative in an effort to dispose of wood residues.*

*See Glossary for definition.

Coarse residues, consisting of slabs, edgings and trimming, constitute 21 percent of the total log volume. Fine residues, bark, sawdust and shavings, constitute 22 percent of the total by volume. Figure 1 shows the average percentages of materials that result in the process of converting a log into lumber at the sawmill.

Of these two residue classes, only coarse residue has received the necessary attention from the wood industry to develop adequate processing systems and markets. The reason for this trend is that each individual sawmill in Michigan is relatively small and interested primarily in the production of lumber. Because of this size limitation, sawmill operators have given very little thought to the wood residues that accumulate incidental to the production of lumber other than disposing of them through inexpensive methods.

Last year (1968), 150 hardwood sawmills in forty-one southern lower Michigan counties alone produced approximately 500,000 tons of wood residue while processing an estimated 171 million board feet of hardwood lumber. It is only reasonable to assume that this great quantity of residue could provide support for new industries and serve as the basis for expanding many existing industries.

Current indications are that immediate markets for large quantities of fine sawmill residue do exist and could

be developed at a reasonable cost (8). Background information from sawmill operations on the west coast reveal that some sawmills have been actively processing wood residues and developing markets for some time. This information is cited in support of the idea that wood residue processing can also be done in Michigan.

From a preliminary investigation, indications were that a reasonable amount of opportunity may exist in Michigan for a firm to become established solely on the processing and marketing of wood residue based products. The proposed firm would purchase and concentrate hardwood bark and sawdust from several sawmills at one or more selected processing locations. The material would then be processed as necessary, scheduled for packaging or sale in bulk, the finished goods stored, and promotion and advertising done according to a basic marketing plan. The end result would be the beginning of a formal utilization program for sawdust and bark that would add to the economic growth of Michigan and effectively utilize our wood resources.

Scope of the Study

The material in the study covers several areas. To describe the scope of the study in the most logical order, the individual parts are discussed in order of presentation. Part

II concerns a review of the literature in two areas: (1) the function of mulches and soil conditioners, the common misconceptions that surround their use, and how crops respond to their use, and (2) simulation as an analytical technique used in management decision making.

Part III concerns the research design portion of the study and is broken down into three phases. Phase I contains the research support data, including study assumptions, definitions, and the adoption of wood residue conversion factors used to compute residue quantities in the study. Phase II details the hardwood sawmill residue survey which is broken down into a field study portion and a mail survey portion. Important information is obtained through the use of both surveys which is in turn used in Phase III.

In each survey the primary purpose was to obtain reasonably accurate information about wood residue quantities produced at each sawmill and associated cost data that would contribute to the development of a realistic residue processing simulation. The processing plant included in the study is a hypothetical one with realistic characteristics. The processing plant functions as the center of the simulation in that all raw materials must be brought to, and processed through, the plant. The cost centers within the processing plant are described and the effect of individual variations are discussed.

Phase III describes the simulation program, the cost center concept, processing plant costs, inputs and outputs of the processing plant, and how the simulation functions as a management decision-making tool for analyzing processing configurations. Three processing configurations are included to show the variety of results obtained from different configurations. Each configuration will have different sawmills supplying the raw material and different counties included in the demand. This is readily done by changing the geographic locations of the processing plant.

Important in each configuration are the markets to be considered for products produced by the processing plant. In the study the markets will be limited to agricultural and horticultural markets since the literature cites these as being the most logical ones at a time when wood residue utilization is just beginning. The dairy industry, the nursery and orchard industry, and the home lawn and garden markets are the only ones included in the study. The lawn and garden market is considered to be a packaged product market; all the others are bulk markets. Estimates of market size are included in the study.

Part IV presents the findings of Phase II, the field and mail survey. Supporting the visual observations made during the field survey is a photographic documentation of

wood residue characteristics and sawmill residue disposal methods. Details of the mail survey sent to 106 selected sawmills in lower Michigan describe the methods different sawmills are using to dispose of wood residues and the problems therein. Data which generally point out a lack of interest, on the part of sawmill owners, in wood residue utilization are presented in the form of numerous tables accompanied by brief narrative comments.

Part V discusses the findings of the simulation, described in Phase III, in relation to the hypotheses set forth in Part I. The resulting effect will be to prove or disprove the hypotheses.

Part VI contains the author's summary, conclusions and implications regarding the potential for a wood residue processing plant in Michigan.

Hypotheses

Information about the characteristics of wood residue, the supply and location of raw materials, and the location and potential of markets, is all essential to the intelligent planning of a processing plant which will accumulate and process sawdust and bark into products for selected agricultural and horticultural markets. The method chosen to aid in the evaluation of the basic factors is computer simulation. Ultimately the simulation can process great quantities of data and act as a tool in evaluating the profitability of given market configurations. The simulation will also be able to illustrate the effect on profitability by changing the raw material supply area, raw material costs, competition, inbound transportation, market demand, plant production capacity, processing costs, or price of finished goods.

The thesis of the research study is that there presently exist agricultural and horticultural markets for fine sawmill residues, and that transformation of the sawmill residue disposal problem into a source of income through the establishment of a firm to collect, process, and market the material is economically feasible.

The testable hypotheses are as follows:

- H_{ol} Agricultural and horticultural use of sawdust and bark in bulk units dictates a raw material positioned processing unit.
- H As scale of operations increase, unit costs will decrease up to an optimum size.
- H₀₃ The type of raw material used as product input (i.e., sawdust or bark) will influence the location of the processing unit.

The study is formulated to accomplish the following secondary objectives:

- Evaluate the present sawmill residue utilization situation by both field survey and mail questionnaire.
- 2. Evaluate current agricultural and horticultural market demand for sawdust and bark.

- 3. Adopt a set of wood residue conversion factors which reasonably represent the residue produced by hardwood sawmills in southern Michigan.
- 4. Summarize the functions of bark and sawdust mulches and soil amendments, and the acceptability of their use in relation to the soil.
- 5. Present photographic documentation of wood residue types and the various methods of handling and disposal used by sawmills.
- Assemble current wood residue type, volume and location data for use by both producers and potential consumers of sawmill residue in southern lower Michigan.

Methodology

To determine what had been written about the utilization of wood residues, a review of the technical and promotional literature and reports of various individuals, associations, and government agencies was made. This initially involved a thorough search of the Michigan State University and University of Missouri library resources. Two of the most comprehensive wood industry trade journals, <u>The Forest</u> <u>Products Journal</u> and <u>Wood and Wood Products</u>, were extensively researched. Then, to find out what wood residue utilization programs were in progress or had been completed recently, letters were sent to all universities with forestry programs, all U.S.D.A. Agriculture Experiment Stations, all U.S.F.S. Research Stations, the Southern Pine Association, Western Wood Products Association, and the Forest Products Laboratory in Madison, Wisconsin.

The major objective was to accumulate available research data as background material for this study and to avoid unnecessary duplication of previous research.

Wood residue conversion factor data used to compute quantities of residues produced during sawmilling was secured through library research of wood industry publications. Information about heuristic simulation techniques was likewise obtained from researching the business management and marketing literature and textbooks.

A field survey of hardwood sawmills was designed and completed in the southern forty-one counties of lower Michigan. Only sawmills shown in Figure 2 and listed in the 1968 <u>Directory</u> <u>of Wood Using Plants in Michigan</u> (7) were considered for the sample.

Data collection was done by personal interview and photographic documentation. The survey was designed to better acquaint the author with the actual wood residue problem and to obtain first-hand information about wood residue handling, disposal, and the attitude of sawmill operators toward the local market potential for wood residues. Incorporated into the above survey were planned visits to the most logical markets for wood residues, see Appendix C-3.

· · · · · · · · · · · ·

Figure 2. LOCATION OF PRIMARY WOOD USING PLANTS

15

. .

The mail survey was completed using the mail questionnaire in Appendix A. The mail questionnaire was designed to obtain detailed information about the quantities of wood residues produced by sawmills and how individual mills handle and dispose of sawdust and bark. A sample of 106 sawmills was chosen to receive mail questionnaires.

In the development of an original and highly specialized computer simulation, which has the capability to handle raw material supply data, market demand data, cost center data, and the many control parameters of a bark and sawdust processing plant, several distinct steps were involved. The major steps are outlined on the following two pages. The actual computer program, prepared with the assistance of a professional programmer in the office of Applications Programming of the M.S.U. Computer Center, is included in Appendix D.

Step One: The simulation program designed for this study utilizes a uniform grid system for measuring distances and points. Before the processing plants could be located and the supply data or demand data used as data inputs, the exact location of all 150 operational sawmills and the center point of each county included in the southern Michigan study area were plotted on a grid overlay of a Michigan map.

Step Two: The geographic location of all mills in the study were obtained from a detailed locator card file prepared

by the men in M.S.U. Forestry Extension. The four digit coordinates of all 150 sawmills were recorded. These data were stored on punched cards for later use in the actual simulation. They were used in measuring distances and computing transportation costs for various configurations surrounding selected processing plant coordinate points.

Step Three: To determine the quantities of each type wood residue produced by hardwood sawmills, incidental to the production of hardwood lumber, a set of wood residue conversion factors were adopted from previous research. The conversion factors are detailed in Phase I of Part III. These calculations were made for each sawmill using the annual production figures reported on the mail questionnaire. The resultant quantities estimated for each of the 150 sawmills and each of the forty-one counties are shown in Appendix B.

Step Four: Demand data was next to be determined. Total market size and market share estimates for dairy cattle bedding, orchard mulch, nursery mulch, mulches and soil conditioners for the lawn and garden markets in southern Michigan were made and the quantities demanded by each market shown in tons per county, see Table 9.

Step Five: The processing plant is considered to be the center point (hub) of the simulation. The methodology used in this section is focused on material flow through the

processing plant and should bring about a better understanding of the operation to the reader. The cost center concept utilized to keep a logical accounting of the various types of costs involved in the total processing plant concept and details of the processing plant activities are shown in Phase III of Part III.

The actual computer simulation program which evaluates the supply and demand relations relative to the cost centers and determines the profitability of selected configurations is shown in Appendix D.

Limitations

The field survey was not restricted by any major limitations, although the ideal situation would have included time during the field survey for on-site measurement of residues produced by each sawmill in the study rather than adopting conversion factors developed elsewhere. However, the author feels that this shortcoming was somewhat offset by knowledge gained during the field survey and cross-checking of mail questionnaire responses.

The basic limitation, with respect to the mail survey, was the difficulty of having all questions in the questionnaire answered completely and determining the accuracy of the answers.

A second limitation resulted from insufficient funds to support a 100 percent survey; therefore, data from over 100 small, but important, E, F and LTF-class sawmills had to be estimated from a random sample of 12.

The mail questionnaire is limited in the amount of information that can be asked at any one time; therefore, much information about the sawmill industry and wood residues remains unknown.

The computer simulation used as an aid in the market analysis is limited, as far as the wood industry is concerned, to rather specific applications. It is designed to include only sawmills as suppliers of wood residue products to one specific type of processing plant. Because of the established logic this part of the program cannot be changed.

Confining the market study to the agricultural and horticultural applications of wood residues also constitutes a limitation. Other industries such as those making floor sweeping compound, charcoal, paper, wood fiber products, pressed wood products and others present additional profitable market opportunities. As the technology is developed and the economic situation becomes increasingly favorable, bark and sawdust will be used as a raw material for more and more products.

The study area included in the simulation was chosen arbitrarily and is limited geographically to the forty-one counties in southern lower Michigan. This area includes all counties within a 100-mile radius of Lansing. Within this area of southern lower Michigan is located over eighty percent of the hardwood growing stock and hardwood sawmills, most of the dairy, nursery, orchard, lawn and garden markets, and over ninety-five percent of the population.

Contributions

Two major contributions of the field survey came out of the opportunity to personally visit fifty sawmills in lower Michigan, exchanging information with the sawmill owners and operators about wood residue utilization technology and potential, and photographing the various wood residue handling systems and methods of disposal. This documentation is available, on a limited basis, in the body of the study. The conversation was, in many cases, the initiation of wood residue utilization awareness, and the photographs are valuable in that they point out the tremendous waste of sawmill residues and help to make the case for increased wood utilization. The bulk of the color slides and black and white photographs were collected for the M.S.U. Forestry Department Extension Staff who will use them to plan future extension programs and research studies of the various sawmill operations.

During the field survey samples of various types of wood residues were collected, photographed and included in the study. In presenting photographs of various residue types is important to present utilization potential because it is now possible for persons not familiar with the sawmill process to compare the physical characteristics of the different residue materials.

The mail survey represents a valuable contribution of new knowledge to the Michigan sawmill industry. Quantities of original data were successfully collected from two-thirds of the hardwood sawmills in southern lower Michigan, including lumber production data, operating days per year, equipment owned by the sawmills, the methods they currently use to dispose of wood residues, amount of residue marketing and advertising done, and the amounts and prices of residues sold.

The data is made available in this report and the new profit opportunity should serve as a stimulus to the sawmill industry to improve wood residue marketing efforts and will also serve as a price and information guide to markets interested in purchasing quantities of residue.

With the initiation of a marketing program for bark and sawdust products the problem of air pollution from the previous burning of these materials by sawmills will be significantly reduced. During this time when much attention is focused on

air pollution any method of reducing the problem would be considered a positive contribution.

An original heuristic simulation was developed as a marketing management tool to determine the profitability of wood residue processing on a large scale. The methodology used is not new, but the application of this specific analysis technique to the sawmill industry is considered a significant contribution. The secondary value of this computer simulation comes from the fact that it is not limited to use only in Michigan, but has the potential for broad applications throughout the sawmill industry.

The real value of the simulation comes from its potential value as an aid to management decision making. For example, using this simulation it is possible to determine the quantities of raw materials within a radius of a chosen point, transportation costs to these points can easily be determined, the effect on unit cost can be seen by increases or decreases in raw material cost, transportation rates, or processing costs. Speed and accuracy as well as simultaneous consideration of multiple factors is made possible by using simulation.

Organization

The remaining sections of the study consist of five chapters, each concentrating on a specific aspect of the research. Part II is a review of the literature.
The third Part is a discussion of the research design used in the study. The Part is divided into three phases. Phase I deals with general research support data that are used in the study as a whole. Phase II concentrates on the design of the two hardwood sawmill residue surveys; one a field survey, the other a mail survey. Phase III discusses the design of the simulation and the important factors that are included in the basic simulation system.

Part Four of the dissertation discusses the findings relative to the surveys outlined in Phase II. The discussion centers on the information obtained by the two surveys.

The fifth Part discusses the findings resulting from the computer simulation configuration designed in Phase III.

Part Six presents the conclusions drawn from the results presented in Parts Four and Five. In addition, Part Six discusses the implications of the conclusions and makes suggestions for further research based on the findings of the present study.

PART II

LITERATURE

Introduction

Due to the nature of this study, the literature in a number of areas which relate to the research problem was consulted, but a review of literature for this research study covers only the first two of the following three areas:

- 1. The heuristic approach to problem solving.
- 2. The use of fine wood residues in agricultural and horticultural applications.
- 3. Development and application of wood residue conversion factors.

Research on each of these topics has been conducted independently from each of the others. Of the three basic areas mentioned above, the author does not consider it necessary to duplicate a review of wood residue conversion factors literature for the following reasons.

Only a very few studies have been designed to study wood residue conversion factors. Such studies have often been limited in application to other parts of the United

States and do not apply in this study because of differences in climate, species, soil conditions, and other influences. In most cases the studies were extremely brief in their description of methodology and results; therefore, for the convenience of persons interested in various methods of determining or applying wood residue conversion factors the best articles are footnoted below in order of significance (8) (28) (32) (41) (51).

For purposes of this research study wood residue conversion factors were adopted from King (32) because of his systematic approach to the problem and study of hardwood species with characteristics similar to those growing in Michigan.

Heuristic Simulation

Very little information is available on the application of heuristic simulation as used in the study because it is an original program; therefore, because there are many who are unfamiliar with heuristics, some of the literature included in this review will discuss heuristics as an approach to problem solving.

<u>Webster's New International Dictionary of the English</u> <u>Language</u> defines the adjective "heuristic" as "serving to discover or reveal." Heuristics, after Newell, Shaw and

Simon (39), are defined as principles or devices that contribute, on the average, to reduction of search in problemsolving activity.

Simon (52) has referred to heuristics as rules of thumb selected on the basis that they will aid in problem solving. In an earlier paper, Simon, in collaboration with Newell and Shaw, used the term "heuristic" to denote "any principle or device that contributes to the reduction in the average search to a solution" (39). Making use of the latter definition, a heuristic program can be defined, after Tonge (56), as a problem-solving program organized around such principles or devices. Simon (52) has distinguished between such programs and algorithms on the basis that only the latter guarantee solution of the problem to a desired degree of accuracy.

Kuehn and Hamburger (33) do not believe that this is the most appropriate way to characterize heuristic programs. They report the existance of many solution procedures, referred to as algorithms, which do not guarantee solutions to a desired degree of accuracy; but rather, as is possible with the heuristic warehouse location program, provide only upper and lower bounds to the solution. An example from Kemeny and Thompson (31) is the fictitious play method for solving matrix games. Furthermore, Courant and Robbins (18) report

the definition of algorithm generally used by mathematicians is "a systematic method for computation." Such a definition would include all computer programs.

For purposes of the study, heuristic simulation is considered to be an approach to problem solving where the emphasis is on working toward optimum solutions rather than optimum solutions. Tonge (56) supports this approach by saying heuristic techniques are most often used when the goal is to solve a problem whose solution can be described in terms of acceptability characteristics rather than by optimizing rules.

Bowersox, Smykoy and LaLonde (16) and Reynolds (45) discuss the development of a computer program for a heuristic simulation as a systematic order that closely parallels the thought process of the human mind. This step-like procedure of adding facilities allows managerial review of system development with related explanation of logic at each step. Thus, the solution, once derived, requires little managerial interpretation. Two limitations are also pointed out: First, heuristics does not necessarily result in selection of the best network among those facilities that appear plausible; and, secondly, although managerial intervention eases the process of understanding study results, the possibility of bias remains a constant danger.

Basic application of the technique are varied. Tonge (55) has prepared a heuristic program to balance production assembly lines in an appliance factory. Clarkson and Meltzer (19) have prepared a heuristic program to simulate investment activity under a trust fund. While no formal results have yet been published, Gere (24) has made several attempts to construct heuristic programs for the job shop scheduling problem. Shycon and Maffei (50) use heuristic simulation techniques in the modeling of warehouse networks because of builtin flexibility which allows for rapid changes as required by new management decisions.

Recent interest in the heuristic approach to problem solving has led to the development of computer programs designed to: compose music (29), play checkers (49), play chess (13) (38), discover proofs for theorems in logic and geometry (40) (23), design electric motors and transformers (27), balance assembly lines (55), and locate warehouses (33).

Of the many applications of heuristics, the one used by management that most closely approximates the processing plant feasibility problem in the study is distribution warehouse location as discussed by Kuehn and Hamburger (33). The processing plant is the "hub" of the simulation and requires an efficient concentration system of raw material supply from many scattered sawmill locations. Similarly, the distribution

warehouse is the "hub" of a system, but works in reverse to efficiently distribute goods to many locations.

According to Kuehn and Hamburger (33) the use of heuristics in problem solving has two prime advantages relative to the currently available linear programming formulations and solutions procedures: First, computational simplicity, which results in substantial reductions in solution times and permits the treatment of large-scale problems; Second, flexibility with respect to the underlying cost functions, eliminating the need for restrictive assumptions. It also represents an important extension to the simulation approach to locating warehouses in that it incorporates a systematic procedure designed to generate at least one nearoptimal distribution system without reducing flexibility in the modeling of the problem.

Wood Residues as Mulches and Soil Conditioners

It is generally accepted that both bark and sawdust make excellent cattle bedding. Cattle bedding is also the largest current market for these materials. Because extensive use of either material for this purpose currently hinges on the economics of transportation and availability of substitute bedding materials, a review of the literature covering this point is considered unnecessary. Primary emphasis of this

portion of the literature review will focus upon bark and sawdust and their relation to the soil as mulches and soil conditioners.

The principal uses of wood residues in agriculture and horticulture are for mulches and soil conditioners (30). Mater reports that both sawdust and bark are widely used for both purposes in some sections of the country (36). Whether employed as mulches or soil conditioners, wood residue, as it decomposes, results in complex transformations of carbon and nitrogen and ultimately supplements the soil humus. The humus, in turn, improves the tilling properties of soil and serves as a reservoir for nitrogen, phosphorous, potassium, sulfur, and other plant nutrients as well as water. The nutrients bound to the humus are slowly released and made available for plant growth by the action of soil organisms.

Benefits of Wood Residues as Mulches and Soil Conditioners

Wood residues are used as soil covers or mulches, or may be mixed with the soil to improve the physical and chemical properties. Dudley and Kelly (20) found that when used as a mulch, water intake is increased, runoff and erosion are decreased, soil temperature is lower, water loss through evaporation is decreased, weeds are controlled to some extent, and it offers a pleasing appearance. In comparison with

leaves and straw, Bollen and Glennie (14) found that wood residues are more easily applied, longer lasting, less susceptible to blowing and fire, and more pleasing in appearance.

Dunn and Emery (21) and Wilde (61) reported that when incorporated with the soil, wood residues improve friability and prevent crust formation as effectively as peat moss, improve tilth in fine textured soils as effectively as peat, increase initial infiltration rate, improve aeration, produce more rapid flowering of some plants and lower bulk density of soils. Although increased moisture retention is often given as an advantage of soil amendments, Lunt and Clark (35) state that the incorporation of coarse organic matter in soil decreases rather than increases moisture-holding capacity and that evaporation rates are increased unless a mulch is also used.

In certain cases, Lunt and Clark (35) report that potassium and phosphorus derived from bark appear to make a contribution to plantings for short periods, but, generally, undecomposed sawdust (and bark) would seldom be worth the cost of hauling if its only value was to supply mineral nutrients. Allison and Anderson (1) support this by saying "The principal effect of bark and wood particles on the macroelement nutrition of plantings in soil mixes is that to be

expected by diluting the soil with relatively inert materials; in other words, more frequent fertilization is generally required."

Lignin makes up approximately half the weight of bark and a quarter of the weight of wood. It is quite resistant to decomposition. For this reason, it is the most desirable fraction of plant material from the standpoint of its beneficial effects on the soil. Because of its slow rate of decomposition, the total nitrogen demand which it creates is low. In addition, it supplements the native humus of the soil, thereby improving tilling properties, serves as a reservoir for plant nutrients, and holds nutrients against the leaching effects of water.

The composition of wood varies somewhat among species, particularly as regards softwoods and hardwoods, and the importance of lignin content in both wood and bark should be noted. The approximate composition of a typical softwood and hardwood is shown in Table 1.

Baxter (11) points out that the composition of bark is quite different from that of wood in a number of important respects. As shown in Table 2, its lignin, extractive, and ash contents are considerably higher than that of wood, while its carbohydrate content is lower. As discussed subsequently,

	Softwood	Hardwood
Acidity - pH	5.1	5.3
Total Organic Matter (%)	98.8	98.6
Mineral Content (%)	0.2	0.4
Water Soluble (%)	4.1	2.5
Carbohydrate (%)	68.5	71.9
Lignin (%) *	28.0	26.5
Nitrogen (%)	0.1	0.1

Approximate Composition of Wood (11)

Table 1

*Based on extract-free weight

Table 2

	Softwood	Hardwood
Acidity - pH	3.5	3.7
Total Organic Matter (%)	99.0	91.7
Mineral Content (%)	1.0	8.3
Water Soluble (%)	23.0	4.0
Carbohydrates (%)	46.4	55.1
Lignin (%)*	52.6	41.8
Nitrogen (%)	0.2	0.2

Approximate Composition of Bark (11)

*Based on extract-free weight

these differences have a bearing on the relative efficacy of these two materials as soil additives.

For purposes of comparison, analytical data for peat moss are given in Table 3. Peat moss is the most widely used material for mulches, soil conditioners, and other horticultural and agricultural purposes in the United States according to Anderson and Blake (6). Dunn and Wolfe (22) support the belief that since peat moss has many desirable properties and has become somewhat of a standard with which other soil additives are compared, its properties are of particular interest in a discussion of the properties of wood and bark as soil additives.

Table 3

Approximate Composition of Peat Moss (11)

Acidity - pH	3.8
Total Organic Matter	95.7
Mineral Content (%)	
Water Soluble (%)	5.2
Carbohydrate (%)	41.2
Lignin (%)	18.0
Nitrogen (%)	0.8

<u>Overcoming the Disadvantages and Misconceptions</u> <u>About the Use of Bark and Sawdust as</u> <u>Mulches and Soil Conditioners</u>

There are several disadvantages and misconceptions concerning the use of wood residues, especially fresh material, arising from past experience in their use. These objections can be eliminated through processing and informed usage, and for this reason are discussed in detail. The primary objections to the use of wood residues are: one, they compete with growing plants for available nitrogen; two, they increase soil acidity; three, finer particles tend to pack, and dust and slivers are objectionable; and four, they contain materials toxic to plants.

Nitrogen Competition

Decomposition of organic substances in soil is accomplished through the action of soil micro-organisms. These essential fungi and bacteria require a source of energy plus nitrogen in order to survive and develop. Bollen and Lu (15) found that some residues cause more inhibition than others. Wood and bark particles provide the carbonaceous material needed for energy, but supply little of the necessary nitrogen.

Micro-organisms must draw on the soil as a source of nitrogen, competing with plants for the available supply. Unless sufficient nitrogen is present in the soil, either naturally or from supplemental applications, to supply the needs of both the growing plants and soil organisms, symptoms of nitrogen deficiency will appear. These symptoms are often mistakenly attributed to toxic materials present in the soil amendment.

Although all carbonaceous materials react similarly when mixed with soil, most commonly used amendments naturally contain higher proportions of nitrogen than wood and bark, causing less nitrogen draft from the soil. If the C/N ratio is much wider than 25/1, Bollen and Glennie (14) report that

micro-organisms carrying on decomposition compete with plant roots for available nitrogen.

The rate of decomposition of sawdust and bark is much slower than materials such as straw, which decomposes rapidly, causing a larger initial nitrogen deficiency but of shorter duration. Most proteins of plant and animal origin are rapidly decomposed and, if nitrogen is adequate, so also are Celluloses are decomposed less rapidly, and lignins sugars. very slowly. Wood residues are, therefore, most persistent. This is advantageous in providing longer-lasting mulches and more prolonged effects when incorporated in the soil. It may be noted also that decomposibility of resistant carbonaceous materials such as sawdust is not greatly enhanced by additions of available nitrogen. The primary rate of decomposition of plant residues of mixed composition and wide carbon-to-nitrogen ratio responds to added nitrogen to a degree largely dependent upon their water soluble carbonaceous constituents which are responsible for initial nitrogen demand.

Lunt (34) observed that the magnitude of nitrogen deficiency is proportional to the rate of decomposition. The duration of induced nitrogen deficiency varies with the rate of application of the amendment. Applications of 3 to 4 tons of dry material per acre will seldom extend nitrate depletion beyond the first season, provided conditions are suitable for decomposition.

The nitrogen assimilated by decay organisms again becomes available upon their death for use by other organisms or plants. Organisms appear to consume the major portion of this nitrogen until decomposition of the organic matter is completed. Nitrogen then is gradually released to plants as the organisms decompose. Allison and Anderson (1) found that for sawdust this time may vary from four months to several years, depending on temperature, moisture, percentage of nitrogen added, quantity of sawdust applied, and the intimacy with which it is mixed with the soil.

Allison and Murphy (4) (5) found that the wood and bark of softwood and of hardwood species each differ in their rates of decomposition. The hardwood species were more easily decomposed than the softwood species studied. Allison and Klein (3) found similar results on other softwoods. Lunt (34) found that birch chips decomposed more rapidly than either oak or pine and would require the most nitrogen to prevent deficiencies. The overall results of the above findings are summarized by saying that the most effective soil amendments are those with high lignin content, thereby holding nitrogen competition to a minimum and making them more stable in soil mixtures.

Soil Acidity

Most barks and woods are acidic. McCool (37) reports ranges from pH 3.5 (approximate value of many peat mosses) to 7.0. Lunt (34) found that addition of sawdust to soil had no appreciable effect on soil acidity and that its initial effect was to decrease it slightly. Allison and Anderson (1) reported that when sawdust is applied to a lime-requiring crop, any acid in it may be slightly harmful if the soil is already near the lower limit of acidity tolerated by the crop. Lunt and Clark (35) suggest where desirable to maintain pH at levels near neutrality, 10 pounds of agricultural limestone per cubic yard of bark or sawdust is satisfactory. For acidrequiring plants such as azaleas, any resulting acidity is beneficial. According to Salamon (48) it is natural to assume that since ash of plants contains more basic than acid constituents, the ultimate effect should be toward a less acid pH.

Particle Size

The nature and extent of the physical effects of mulches and soil conditioners vary somewhat with the size of the particles added. Coarse particles tend to decrease waterholding capacity if incorporated in the soil, and very fine particles tend to pack and exclude water and air from the soil.

Salomon (48) found that the depressive effects on plants caused by nitrogen deficiencies persisted longer from chips larger than one-fourth inch in diameter than from smaller chips. Likewise, Lunt (34) reported that particles larger than one-half inch reduce plant yields more than smaller sizes due to the presence of undecomposed wood. In general, it has been found by Lunt and Clark (35) that particle sizes from three to ten millimeters are satisfactory for most horticultural and agricultural uses.

Bollen and Glennie (14) found that wood chips, shavings, millrun sawdust, and gang sawdust make satisfactory mulches. However, they reported that resaw sawdust, because of its small particle size, tends to pack tightly and thus retard aeration and moisture penetration. All sawdust performed satisfactorily when incorporated if it was well mixed with the soil.

Lunt and Clark (35) summarize by saying that it appears that nearly all sizes of bark fragments can serve satisfactorily in horticultural applications in short-term growing operations up to about three years, provided nitrogen relationships and acidity are properly controlled.

Toxic Effects

Toxic effects attributed to wood or bark soil amendments and mulches are generally the result of nitrogen

depletion and can be prevented or corrected by applying supplemental nitrogen. Lunt and Clark (35) report that some materials do contain sufficient toxic material to retard growth, however. Walnut and cedar shavings adversely effect tomatoes.

Allison and Murphy (4) found no indication that any of the hardwood products used in their study were toxic to organisms that carried out the decay processes. Using garden peas to determine toxicity effects of certain softwood species, Allison, et. al. (2), found that certain west coast woods and barks at low rates of application were very detrimental to growth. Other residues were found to be less detrimental at higher rates. The adverse symptoms observed on the first crop of peas were markedly decreased or entirely absent on a second crop of peas grown on the same medium. These observations are in agreement with those of Gibbs and co-workers (25) (26). Reuszer, et. al. (44) reported that cedar and walnut residues were detrimental to plants. On the other hand, Bollen and Lu (15) found that small amounts of walnut sawdust had no detrimental effect upon plant growth. Armour Research Foundation (9) has found that wood bark treated to neutralize the tannic acids can increase yield more than does peat moss.

ter ne e

Crop Response to Mulches and Soil Conditioners

The beneficial effects of using wood residues as mulches and soil conditioners for ornamental plants have been demonstrated by years of successful use of these materials by horticulturalists and nurserymen in the West, Mid-west and Northeast. Turk (57) reports that considerably less is known by the public about the use of these materials on agricultural crops.

Lunt (34) reports that natural well-rotted pure wood chips or sawdust is a safe material to use under almost any condition.

Sawdust and bark used as mulches have been reported to be superior to other types of mulches for blueberries. Roberts and Mallenthin (46) found that sawdust and bark mulches four to six inches thick were particularly beneficial to blueberries because of their high moisture retention. Similar results were obtained with strawberries. With crops having a higher nitrogen requirement, they recommend the use of one hundred pounds of nitrogen per acre inch of sawdust (twenty tons per acre).

According to Bollen and Glennie (14) farmers in the Bitteroot Valley and Flathead Region of Montana use sawdust almost to the limit of its availability. Some of it is applied directly to fields without having been composted.

Dunn and Emery (21) concluded from field trials that properly composted sawdust is very beneficial to plant growth. Their work dealt with corn, rutabagas, peas, onions, beets, and other crops. Composted sawdust or shavings were superior in promoting plant growth over soil alone with fertilizer.

Lunt and Clark (35) report that normal landscaping and horticultural application of 1/10 to 1/3 by volume (fresh material) may cause nitrogen draft for periods of six months or more. They continue by saying that decomposition limits usefulness of single applications of bark and chips to about five to seven years. One pound actual nitrogen per 100 pounds dry wood or bark, preferably added in three or more applications, is required to offset nitrogen demand.

Because inoculated legumes suffered no reduction in growth following sawdust application and due to erratic results with application of sawdust prior to planting, Lunt (34) recommends that it precede a green manure crop, preferably a legume. Other possibilities are to use sawdust or bark as poultry or cattle bedding before field application, as a mulch preceeding incorporation with the soil or to compost the material before use.

Sawdust mulches one-inch deep in various vegetable plots more than doubled yields and were better than black polyethylenc film in experiments conducted by Pratt and Comstock (43) of the New York Agricultural Experiment Station.

In summary, woods and barks, with few exceptions, can be used satisfactorily in agriculture as mulches and for soil humus maintenance, if adequate amounts of nutrients, especially nitrogen and sometimes lime, are supplied. Most woods behave similarly to common carbonaceous crop residues except that they decompose more slowly because they contain less available carbohydrate and more lignin.

PART III

RESEARCH DESIGN

Introduction

Part III consists of detailed descriptions about each of the three separate components which comprise the research portion of the study. They are designated Phase 1, II, and III.

The first Phase discusses the general research support data that had to be located and examined prior to the initiation of the second and third phases.

Phase II presents the work plan for conducting a hardwood sawmill field survey and the preparation and administration of a mail survey. Both surveys are concerned with: (1) the gathering of data about the methods used to handle and dispose of sawmill residues, (2) developing insight into the local market potential for wood residues, and (3) determining the stage of development of local agricultural and horticultural markets by the sawmill industry.

The simulation model in Phase III represents a large scale bark and sawdust processing plant developed during the

-44

present research to be used as an aid in management decision making. The primary purpose for the development of the model was to examine the profitability of processing wood residue. Secondary reasons were to show that a simulation model could be built and used to test hypotheses concerning the operation of wood residue processing plants and to illustrate the techniques that might be used to build such a simulation. The model was limited to not more than four processing plants operating concurrently, no more than five separate cost centers, no more than three products, no more than 150 suppliers. no more than four markets, and no more than forty-one counties serving as market demand centers. The model could be expanded, however, to model additional types of wood residues and as many markets as desired. The only limitation would be the physical limitations of the computer facilities used.

Phase I: General Research Support

General Study Assumptions

Before significant work could begin on the research program it was necessary to strengthen the study by outlining a number of basic assumptions.

> The most promising markets for bark and sawdust (wood residues) which are immediately available are agricultural and horticultural markets.
> Specifically these include: (a) Dairy--cattle bedding; (b) Nursery--stock mulch, soil conditioning, and decorative applications; (c) Orchard--

fruit tree mulch; (d) Consumer packages--mulches, soil conditioners, and decorative material for home gardeners.

- 2. Most potential buyers of either sawdust or bark products (in bulk) own trucks and are willing to come to the processing plant for their needs and may even pay a premium for the products if they can depend on the following services: (a) a load being available when they get to the plant; (b) the material being loaded for them; (c) short-term credit being available. These same customers have tractors with front loaders to distribute the material once it is dumped near the site of eventual use.
- 3. Two cubic foot packages of bark, available in one ton units on pallets, will be sold through brokers to food chains, garden center chains, and other chain store organizations that handle lawn and garden products. These chains own large fleets of trucks and can schedule regular pick-up or back-haul the bark products.
- 4. Priced competitively, new bark and sawdust products will become accepted into the market in direct proportion to the amount of advertising expenditure, product promotion, and industry education programs.
- 5. The 3 x 3 mile grid system effectively and accurately identifies the location of supplying sawmills, county market demand and the processing plant location in the computer program memory and in reality.
- 6. Estimated demand for finished products is acceptably accurate on a per-county basis for the study.

Sawmill Size Classes and Production Data

. A Salara

The 1968 <u>Directory of Wood Using Plants in Michigan</u> () was adopted as the basic source of information about the number of hardwood sawmills within the study area and their general size relative to annual lumber production. Mills not listed in the directory were not considered in the study. All sawmills listed in the directory that are in the 41 southern counties of lower Michigan were included.

Information in the directory was helpful in the preparation of the initial background for the study by describing the general characteristics of each sawmill, listing sawmill addresses, and indicating the general size of each mill's lumber production. Table 4 was prepared as a summary of the size and production of the 150 sawmills included in the study.

In anticipation of questions about the accuracy of the production figures recorded in the directory, a high, low and average production figure is recorded in Table 4 for each sawmill size class. Depending on the condition of the sawmill industry, this range can be used to compute a liberal or conservative estimate of lumber production which will reflect the amount of wood residues available. These data are important to the planning of a processing plant which will require a large supply of wood residues from sawmills as raw material. For detailed information about individual sawmill lumber production, see Appendix B.

Adoption of Conversion Factors

Information concerning wood residues and the quantities of the several fractions of which it is composed was determined through the use of conversion factors. Since it was not an

Ta	b	le	- 4
		_	

-		Lumber 1	Production		Average
		by	Mill ³	Annual Lumber	Estimated
Mill	Í			Production	Total Annual
Size.	No. of	Daily	Annually ⁴	By Class ⁵	Production
Class ¹	Mills ²		(000)	(000)	(000)
ł		50,000	10,000	20,000	
A	2	44,000	8,800	17,500	17,500
		37,501	7,501	15,002	
[37,500	7,500	7,500	
В	1.	31,000	6,200	5,200	6,200
		25,001	5,001	5,001	
[25,000	5,000	35,000	
С	7	20,000	4,000	28,000	28,000
		15,001	3,001	21,007	
{		15,000	3,000	37,000	
D	29	10,000	2,000	58,000	58,000
		5,001	1,001	29,029	
		5,000	1,000	31,000	
E	31	3,750	750	23,250	23,250
		2,501	501	15,531	
		2,500	500	28,000	
F	56	1,500	300	16,800	16,800
		501	101	5,656	
		500	100	2,400	
LTF	24	250	50	1,200	1,200
		000	00	000	
TOTAL	150		ļ		150,950
	1		• •		

Sawmill Class Size and Production Data* Used in 1968 Directory of Wood Using Plants in Michigan

* All lumber production is in board feet green lumber tally. ¹ Size class set forth in <u>Directory of Primary Wood Using</u>

<u>Plants in Michigan</u>, 1968. Published by Michigan Department of Conservation - Forestry Division.

² 150 mills selected from <u>Directory</u> are in lower 41 counties of Michigan.

³ Estimated levels of production are high, average, and low, respectively.

4 Assuming 250 working days per year.

⁵ The combined production of all sawmills within each individual class.

objective of the study to develop new wood residue conversion, a search was made of the literature for results of previous research investigations of the subject. Conversion factors, when multiplied times a thousand board feet of hardwood lumber produced by a sawmill, determine the tons of wood residue of each type that were also produced.

The conversion factors developed by King (32) were adopted as an integral part of the present study because of the very professional approach used by King and the fact that he considered hardwood species reasonably similar to those growing in lower Michigan.

The average amount of hardwood sawdust produced by a circular headsaw is estimated in Table 5 to be 1.04 green tons* per thousand board feet (MBF) of green lumber tally produced. To determine the total quantity of sawdust produced over a period of time it is necessary to multiply the conversion factor (1.04) times the MBF of green lumber produced during the period and the results are in ton units. Example: 6 MBF x 1.04 (sawdust conversion factor) = 6.24 tons. The effect of log diameter variations on the amount of sawdust produced is also shown in the detail of the table.

Hardwood bark production is determined in a similar manner. Table 6 estimates the average quantity of bark

*Green ton, see Glossary.

Table 5

Estimates of Hardwood Sawdust by Diameter Class for Mills with Circular Headsaws*

		Weight in Tons with Confidence Limits				
		at 95% Probability Level				
		Per 1000	Per 1000	Per 1000		
Log Diam	eter	pd. it.	pd. ft.	Da. It.		
Class	•	green	Doyle-	International		
(inche	\$)	lumber	Scribner	1/4 in.		
		tally	Log-Scale	Log Scale		
7.6-10.5	Green	1.11 <u>+</u> 0.09	1.85 <u>+</u> 0.15	1.15 <u>+</u> 0.09		
	Oven-Dry	0.63 <u>+</u> 0.05	1.05 <u>+</u> 0.08	0.65 <u>+</u> 0.05		
10.6-13.5 Green Oven-Dry		1.18 <u>+</u> 0.09	1.57 <u>+</u> 0.12	1.27 <u>+</u> 0.10		
		0.67 <u>+</u> 0.05	0.89 <u>+</u> 0.07	0.72 <u>+</u> 0.06		
13.6-16.5 Green		0.95 <u>+</u> 0.07	1.24 <u>+</u> 0.10	0.91 <u>+</u> 0.07		
	Oven-Dry	0.54 <u>+</u> 0.04	0.70 <u>+</u> 0.06	0.52 <u>+</u> 0.04		
16.6-19.5	Green	0.93 <u>+</u> 0.07	1.04 <u>+</u> 0.08	1.00 <u>+</u> 0.08		
Oven-Dry		0.53 <u>+</u> 0.04	0.59 <u>+</u> 0.05	0.57 <u>+</u> 0.05		
Average for all four diameter classes Green Weight (Tons) Per MBF Green Lumber Tally		1.04 <u>+</u> 0.08				

*Adapted from King, W. W. 1952. Survey of Sawmill Residue in East Texas, Texas Forest Service. Technical Report No. 3, p. 51.

Salai

Table 6

Estimates of <u>Hardwood Bark by Diameter Class</u> for all <u>Mills</u>*

		Weight in Tons with Confidence Limits				
		at 95%	Proballity L	evel		
		Per 1000	Per 1000	Per 1000		
LOG DIA	meter	DQ. IT.	ba. IC.			
Clas	S I	green	Doyle-	International		
(inche	s)	lumber	Scribner	1/4 in.		
		<pre>/tally</pre>	Log-Scale	Log Scale		
7.6-10.5 Green		0.75 <u>+</u> 0.14	1.30 <u>+</u> 0.24	0.78 <u>+</u> 0.15		
	Oven-Dry	0.53 <u>+</u> 0.10	0.91 <u>+</u> 0.17	0.55 <u>+</u> 0.10		
10.6-13.5	Green	0.64 <u>+</u> 0.09	0.91 <u>+</u> 0.12	0.64 <u>+</u> 0.09		
	Oven-Dry	0.45 <u>+</u> 0.06	0.64 <u>+</u> 0.09	0.46 <u>+</u> 0.06		
13.6-16.5	Green	0.50 <u>+</u> 0.08	0.67 ± 0.11	0.47 <u>+</u> 0.08		
	Oven-Dry	0.35 <u>+</u> 0.06	0.47 <u>+</u> 0.08	0.33 <u>+</u> 0.06		
16.6-19.5	Green	0.44 <u>+</u> 0.10	0.53 <u>+</u> 0.12	0.45 ± 0.10		
	Oven-Dry	0.31 <u>+</u> 0.07	0.37 <u>+</u> 0.08	0.32 <u>+</u> 0.07		
Average for all four diameter classes Green Weight (Tons) Per MBF Green Lumber Tally		0.58 <u>+</u> 0.10				

*Adapted from King, W. W. 1952. Survey of Sawmill Residue in East Texas. Texas Forest Service. Technical Report No. 3, p. 49. accumulated per MBF sawn to be 0.58 tons, or roughly 1200 pounds. For purposes of this study, only mills with log debarkers are considered as sources for bark. Mills not owning a debarker accumulate an equal amount of bark but it remains attached to the slabs and edgings.

To make the study complete, the conversion factor for solid residue material is detailed in Table 7. The factor of 1.24 represents the quantity of solid wood residue produced incidental to the manufacture of one thousand board feet of lumber. No bark content is included in the factor.

Table 8 is a summary of the conversion factors just discussed and a comparison is made of the related factors for Southern Pine. In addition, the amount of chippable material (solid wood) is estimated by respective conversion factors.

The conversion factors will be used later in the study to determine the amounts of each type of wood residue produced by each sawmill in the study area. These quantitites in turn will serve as raw material supply inputs for the utilization simulation. For details about the quantities of each type of residue produced by individual sawmills, see Appendix B.

Estimation of Wood Residue Market Demand

The demand for wood residue (bark and sawdust) products was estimated for four separate markets. The markets included

Table 7

<u>Estimates</u>	<u>of</u>	<u>Solid</u>	Residu	<u>e</u> <u>Materi</u>	<u>al 1</u>	by j	Diameter	<u>Class</u>
	for	: Mills	s with	Circular	Hea	ads	aws*	

		Weight in Tons with Confidence Limits				
		at 95%	Probability	.ity Level		
		Per 1000	Per 1000	Per 1000		
Log Diameter		bd. ft.	bd. ft.	bd. ft.		
Clas	s	🕖 green	Doyle-	International		
(inche	s)	lumber	Scribner	1/4 in.		
		tally	Log-Scale	Log Scale		
7.6-10.5 Green		1.64 <u>+</u> 0.24	2.83 <u>+</u> 0.41	1.66 <u>+</u> 0.24		
	Oven-Dry	0.93 <u>+</u> 0.13	1.60 <u>+</u> 0.23	0.94 <u>+</u> 0.14		
10.6-13.5	Green	1.36 <u>+</u> 0.13	1.95 <u>+</u> 0.18	1.40 <u>+</u> 0.13		
	Oven-Dry	0.77 <u>+</u> 0.07	1.10 <u>+</u> 0.10	0.79 <u>+</u> 0.07		
13.6-16.5	Green	1.04 <u>+</u> 0.13	1.41 <u>+</u> 0.17	0.99 <u>+</u> 0.12		
	Oven-Dry	0.59 <u>+</u> 0.07	0.80 <u>+</u> 0.10	0.56 <u>+</u> 0.07		
16.6-19.5	Green	0.92 <u>+</u> 0.16	1.09 <u>+</u> 0.19	0.93 <u>+</u> 0.16		
	Oven-Dry	0.52 <u>+</u> 0.09	0.62 <u>+</u> 0.11	0.53 <u>+</u> 0.09		
Average for all four diameter classes Green Weight (Tons) Per MBF Green Lumber Tally		1.24 <u>+</u> 0.17				

*Adapted from King, W. W. 1952. Survey of Sawmill Residue in East Texas. Texas Forest Service. Technical Report No. 3, p. 50.

Table 8

<u>Mean Values for the Various Residue Components</u> <u>Based on Per M.B.F. Green Lumber Tally*</u>

	Estimates of Mean Values in To						
	P	INE	HARDWOOD				
Residue Component	Green Oven-Dry		Green	Oven-Dry			
Bark	0.38	0.26	0.58	0.41			
Sawdust .	0.85	0.42	1.04	0.60			
Solid Material	1.18	0.58	1.24	0.70			
Total	2.41	1.26	2.86	1.71			
Chippable Material	1.02	0.49	1.08	0.61			

*Adapted from King, W. W. 1952. Survey of Sawmill Residue in East Texas. Texas Forest Service. Technical Report No. 3. were: (1) dairy bedding, (2) orchard mulch, (3) nursery mulch and soil conditioner, and (4) packaged bark for the home landscaping and gardening market.

The total market size for dairy cattle bedding was based on information from the M.S.U. Dairy Department that a dairy cow requires approximately four cubic yards of bedding material each year, whether it be straw, sawdust, corncobs, ground tree bark or something else.

The number of animals in the study area was obtained from M.S.U. Extension Bulletin 582 (62). Figures include the estimated number (in thousands) of dairy cows in each county.

At this point the author made four assumptions:

- 1. That every dairy cow uses approximately four cubic yards of some type bedding material.
- That sawdust and/or bark bedding offered for sale by a processing plant could obtain a 10 percent share of the total bedding market in all counties within a reasonable distance.
- 3. That bark and sawdust would split the 10 percent market share in a 50-50 basis, each getting 5 percent.
- 4. That demand is best calculated in units of one county to conform to available data.

By multiplying the number of cows times 4 cubic yards (approximately one ton) the approximate tonnage of bedding material required by the market is determined. Ten percent of this total is then taken and divided 50-50 between the

requirement for sawdust and ground bark under the heading of dairy.

The four markets within each county are shown in Table 9 and the quantities representing the estimated share obtainable shown in tons.

The demand for orchard mulch was estimated in much the same way as dairy cattle bedding. The number of fruit trees (apple, sour cherry, peach, sweet cherry and pear) in the study area was obtained from M.S.U. Extension Bulletin 582 (p. 58). The trees of each type are listed for each county. After talking with a M.S.U. horticulturist it was then assumed that each tree could be adequately mulched with ground bark or other material using an average of one cubic yard per tree. The second assumption was that, of the total mulch required for trees within each county, bark mulch supplied by a local processing plant could capture a market share of 10 percent. Five cubic yards of ground bark weigh approximately one ton. The tonnages in Table 9 represent 10 percent of the total orchard mulch market.

The demand for nursery mulch and soil conditioners was estimated using the 1969 <u>Directory and Buyer's Guide</u> of the Michigan Association of Nurserymen as a data base. The <u>Directory</u> lists the nurseries in each Michigan county and the number of planted acres operated. The number of acres in

<u>Table 9</u>

	Saw	dust		Bark		دين <u>محمد الم</u> اريخي والليا هي
County	Dairy	Nursery	Dairy	Nursery	Orchard	Package <u>Bark</u>
Allegan	750	2.150	750	2.150	14.080	17
Barry	500	160	500	160	_ ,	8
Bav	250	,1,120	250	1.120		32
Berrien	250	5,500	250	5,500	45,680	50
Branch	500	60	500	60		10
Calhoun	600	1,190	600	1,190		44
Cass ·	250	530	250	530	1,840	11
Clinton	800	510	800	510	·	12
Eaton	600	140	600	140		16
Genesee	400	1,420	400	1,420	1,100	124
Gratiot	450	190	450	190	• • • •	11
Hillsdale	700	150	700	150		10
Huron	1,200	170	1,200	170		10
Ingham	750	1,420	750	1,420		70
Ionia	800	140	800	140	2,160	12
Isabella	700	110	700	i1 0	•	9
Jackson	600	320	600	320	1,040	40
Kalamazoo	250	2,650	250	2,650	1,340	54
Kent	750	1,830	750	1,830	13,560	119
Lapeer	1,000	830	1,000	830	820	13
Lenawee	600	220	600	220		23
Livingston	650	450	650	450		13
Macomb	450	2,620	450	2,620	1,820	155
Mecosta	400	40	400	40		6
Midland	100	590	100	590		16
Monroe	200	3,120	200	3,120		31
Montcalm	650	770	650	770	740	12
Muskegon	250	1,660	250	1,660	2,840	46
Newaygo	450	60	450	60	2,860	8
Oakland	250	3,140	250	3,140	1,760	228
Oceana	200	160	200	160	26,820	5
Ottawa	700	9,770	700	9,770	4,440	32
Saginaw	600	1,890	600	1,890	•	60
St. Clair	800	2,910	800	2,910		34
St. Joseph	350	960	350	960		14
Sanilac	1,950	50	1,950	50		10
Shiawassee	650	140	650	140		17
Tuscola	700	170	700	170		13
Van Buren	300	6,880	300	6,880	21,260	17
Washtenaw	700	580	700	580	1,100	57
Wayne	50	3,100	50	3,100		800
TOTAL	23,100	59.870	23,100	59.870	145,260	2.269

<u>Wood Residue Demand Estimated in Tons--A Summary</u> of the Obtainable Market Share in Each County

each county were tallied. After discussions with nursery operators in the Lansing area, the total mulch and soil conditioner market was estimated to be approximately 100 tons per acre of nursery operated. An assumption was then made based on the fact that bark and sawdust do make good mulching materials, that a processing plant for these materials could realistically capture a 10 percent share of the nursery markets located in nearby counties.

The 10 percent market share amounts to an average of 10 tons per acre of nursery. The demand was estimated to be equally divided between bark and sawdust. The demand would, therefore, amount to a 5-ton per acre average for bark and the same for sawdust. The tonnage (5 percent bark and 5 percent sawdust) representing 10 percent of the total nursery demand per county is shown in Table 9.

Due to the nature and use of packaged bark products sold to the rapidly growing and increasingly affluent lawn and garden market, it was arbitrarily decided by the author that the market was basically limited to households with incomes of \$10,000 and over.

The 1968 <u>Michigan Statistical Abstract</u> (17) was used as the source of information about the number of households in each county and their income category.
After talking with the managers of several Lansing area lawn and garden centers, it was apparent that the mulch and soil conditioner market is very large and absorbs great quantities of products. It was suggested during the course of conversation with the managers that a product of the type mentioned above could expect a minimum of sales in the first year amounting to one ton for every 1000 households in the county having an income of \$10,000 or more.

Considering the estimated size of the market, the low price of the product, and the limited production of only one processing plant, this method of estimating the market share appears adequate until such a time when the question can be researched in detail.

Phase II: Hardwood Sawmill Residue Survey Introduction

Hardwood sawmills located within the 41 southern most counties of lower Michigan were selected as the population to be included in this marketing study. In Figure 3 the 41 counties in the study area were divided into four arbitrary quadrants to facilitate analysis. Each of the 150 sawmills within the area is listed in the 1968 <u>Directory of Wood Using</u> <u>Plants in Michigan (7)</u>. Table 10 shows the number of sawmills within each quadrant; first by county and then by mill size

Table 10

<u>Selected Sawmill Study Area Divided Into</u> <u>Arbitrary Quadrants Showing The</u> <u>Stratification of Sawmills in</u> <u>Each by Mill Class</u> (January 1969)

				Cl	ass Si	ze	
	Total					_	F &
County	Sawmills,	<u>A</u>	В	<u> </u>	<u>D</u>	<u> </u>	LITE
Quadrant No	<u>o. 1</u>						
Ionia Kent Mecosta* Montcalm Muskegon Newaygo* Oceana* Ottawa	6 0 5 5 8 7 2		0 0 0 0 0 0 0	0 1 0 0 2 0	2 1 2 2 0 2 0	1 0 2 3 5 2 0	3 0 1 0 1 3 2
Subtotal	39	0	0	3	9	14	13
Quadrant No	. 2						
Bay* Clinton Genesee Gratiot Huron Isabella* Lapeer Midland* Saginaw Sanilac Shiawassee Tuscola	1 0 2 6 3 4 3 5 3 0 9	0 0 0 1 0 0 0 1 0		00000000000	0 1 0 0 1 1 0 3 2 0 2	1 0 0 1 1 1 0 0 1	0 0 2 5 1 2 2 0 0 0 6
Subtotal	37	2	0	2	10	5	18

Table 10, cont.

		Class Size					
	. Total		1				F &
County	Sawmills	<u>A</u>	B	C	D	E	LTF
<u>Quadrant No.</u>	<u>3</u> .						
Hillsdale	4	0	0	o	lo	0	4
Ingham	4.	0	0	0	0	1	3
Jackson	2 ,	0	0	0	0	1	1 1
Lenawee	3	0	0	0	2	0	1
Livingston	2	0	1	0	1	0	0
Macomb	3	0	0	0	0	1	2
Monroe '	2	0	0	0	1	0	1 1
Oakland	4	0	0	0	0	1	3
St. Clair	6	0	0	0	0	1	5
Washtenaw	3	0	0	0	0	3	0
Wayne	1	0	0	0	1	0	0
_			i		i 		
	· · ·				1		
Subtotal	34	0	1	0	5	8	20
Quadrant No.	4		1		•		
Allegan	5	0	0	o	1	o	4
Barry	9	0	0	0	0	2	7
Berrien	2	0	0	0	0	1	1
Branch	2	0	0.	0	2	0	0
Calhoun	4	0	0	0	0	0	4
Cass	5 .	0	0	1] 1	0	3
Eaton	5	0	0	1	1 1	1	2
Kalamazoo	2	0	0	0	0	0	2
St. Joseph	1	0	0	0	0	0	1
Van Buren	5	0	0	0	0	0	5
Subtotal	40	0	0	2	5	4	29
1 5 Min 1							'
GRAND TOTAL	150	2	1	7	29	31	80
					J	1	(I

*Means Region III, as described in the Michigan Conservation Commission <u>Directory of Primary Wood Using Plants in Michigan</u> (1968), has been expanded for purposes of this report to include the next tier of counties adjacent to the northern edge of Region III; thereby including six more counties in the study area and simultaneously reducing the size of Region II by this same amount. class. Stratification of mills is helpful in determining the general size and location of sawmills in southern Michigan.

The <u>Directory</u> mentioned above indicates the general size of each sawmill by dividing them into seven classes according to estimated annual lumber production. Detailed information about this classification is shown in Table 4.

To confirm the accuracy of lumber production figures presented in the above mentioned directory and to better acquaint the author with the residue problem, a field survey was initiated in the summer of 1968. Later the same year a mail survey was developed that would provide cross-check data for the field survey findings and accumulate new data about the industry which was needed for the eventual industry simulation discussed in Phase III.

Field Survey-Selection of Sample: In selecting a sample of sawmills to include in the field survey, it was arbitrarily decided to include all of the medium and large A, B, C, and D-class sawmills in the study area. Even though small in size, four E-class sawmills, one from each quadrant, and eight F-class mills, two from each quadrant, were also included. No mills with production less than F-class (LTF) were included. The name of each sawmill visited, its size, the city and county in which it is located, are shown in Table 11.

Table 11

Selected Sawmills Included in 1968 Field Survey*

Mi11

No.	County	Class	Name	City
Ouad	rant No. 1			
Raaa	2440 101 2			
1	Ionia	D	Bayer Lumber Company	Portland
2	Ionia	D,	Devereaux Sawmill, Inc.	Pewamo
3	Ionia	F	Hills' Crate Mill	Belding
4	Kent	С	Schneider Lumber Co., Inc.	Sparta
5	Kent	D	Teesdale Sawmill	Cedar Springs
6	Montcalm	D	Custom Woodworking, Inc.	Howard City
7	Montcalm	D	Waldron's Sawmill	Stanton
8	Muskegon	E	Meyer's Sawmill	Montague
9	Muskegon	D	Roger's Sawmill	Muskegon
10	Muskegon	D	Wenting Bldg. & Mfg. Co.	Muskegon
11	Newaygo	C	O. J. Brigg Lumber Co.	White Cloud
12	Newaygo	, C	Dix Lumber Company	Newaygo
13	Oceana	D	Hesperia Crate Works	Hesperia
14	Ocean a	D	Shelby Sawmill	Shelby
15	Ottawa	F	Anthony Elenbaas & Sons	Hudsonville
Ound	want No 2			
Vuau	Lanc No. 2			
16	Bay	Е	DuRussell Lumber Co.	Munger
17	Clinton	D	St. Johns Hardwood Lbr.	St. Johns
18	Huron	A	Fairhaven Ind. Wood Prod.	Bay Port
19	Isabella	D	Mobark Lumber Company	Winn
20	Isabella	F	Weber Brothers	Weidman
21	Gratiot	F	A. Inbody Sawmill	Ithaca
22	Lapeer	D	D. T. Fowler Mfg. Co.Inc.	Lapeer
23	Saginaw	С	Devereaux Brothers	Oakley
24	Saginaw	С	M.C. Richmond Lbr. Co.	St. Charles
25	Saginaw	D	S & V Products	St. Charles
26	Saginaw	С	Szepanski Sawmill, Inc.	St. Charles
27	Saginaw	D	Grant Willsie Lumber	Freeland ,
28	Sanilac	A	Buskirk Lumber Company	Sandusky
29	Sanilac	D	Gordon Ferguson	Snover
30	Sanilac	D	McCarty Brothers, Inc.	Ubly
31	Tuscola	D	Cass River Lumber Co.	Tuscola
32	Tuscola	D	H. Whittaker Hardwood Lbr	.Cass City

Table 11, Cont.

and the states of the second second

and a star of the second of

Mill				
No.	County	Class	Name	City
Ouad	Trant No. 3			
Quat	Italic No. 5			
33	Hillsdale	F	Cleveland Lumber Company	Hillsdale
34	Ingham	F	Monroe Brothers Lumber	Webberville
35	Lenawee	D	R. Bradish Veneer & Hdwd.	Adrian
36	Lenawee	D,	Hawkins Lumber Company	Rollin
37	Livingston	D	Dimension Hdwd. Lbr. Co.	Milford
38	Livingston	В	Thureson Lumber Company	Howell
3 9	Monroe	D	Lyle E. Farver & Son	Ida
40	Jackson	E	Love's Sawmill	Springport
41	Wayne	D	Fair Lumber Company	Livonia
Ouad	irant No. 4			
42	Allegan	, D	Door Brothers Lbr. Co.	Wayland
43	Barry	F	Gordon Johncock Mill	Hastings
44	St. Joseph	F	Shear's Sawmill	Centreville
45	Branch	D	Superior Pallet, Inc.	Union City
46	Branch	D	Union City Hardwood Co.	Union City
47	Cass	D	Marquette Lbr. Co, Inc.	Cassopolis
48	Cass	С	Richmond Lumber Mill, Inc	.Dowagiac
49	Eaton	С	L. L. Johnson Lbr. Mfg.Co	.Charlotte
50	Eaton	D	Sunfield Ind.Wood Prod.In	c.Sunfield
51	Eaton	Е	Verhoeven Lumber Company	Lansing

*Mills are listed by quadrant to include: all A, B, C, and D class mills, (1) E class mill and (2) F class mills per quadrant. Quadrants were arbitrarily chosen.

Figure 4 shows the general location of the 51 sawmills included in the field survey. Each dot represents one sawmill. For the general location of all sawmills in the State of Michigan, see Figure 2.

<u>Mail Survey--Selection of the Sample</u>: Reliable information about the Michigan sawmill industry and their wood residues is almost non-existent. For purposes of the study it was, therefore, essential that current data of an original nature be obtained. Hardwood sawmills to be included in the mail survey were selected in the following manner.

First, the study area, as defined in Figure 3, was expanded to include the row of counties located along the northern edge of the basic study area in an effort to check for unusual sawmill operations adjacent to the arbitrarily selected study area. Located within this area are 169 hardwood sawmills. Each sawmill is listed in the 1968 <u>Directory</u> of <u>Wood Using Plants in Michigan</u> (7). It is possible that other mills may be located within this area, but since they are not listed in the <u>Directory</u> there was no opportunity for them to be included in the survey.

Second, it was arbitrarily decided to include 100 percent of the A, B, C, and D-class mills in the study along with 50 percent of the relatively small and numerous E, F, and

LTF-class mills. The 106 mills included in the mail survey are shown in Table 12.

and the strength of the strength of

Table 12

Number of Sawmills Included in Mail Survey

Mill Class	Total No. of Mills	% Included in Sample	No. of Mills in Sample
А	2	. 100	2
В	2	100	2
с,	7	100	7
D	30	100	30
E	38	50	20
F	65	50	33
LTF	25	50	12
	169		106
	•		•

The Mail Questionnaire: Once the sawmill sample was selected, a short mail questionnaire was developed (Appendix A). The original questionnaire was subjected to six revisions through the combined efforts of both Forest Products and Marketing experts at Michigan State University in an effort to insure the best possible return. The overall effect of the revisions was to reduce the length of the questionnaire and make the questions as clear and concise as possible. Upon completion of the initial revisions a pre-test was conducted among four sawmill operators. Once again revisions were made of a minor nature. The two-page questionnaire, along with a cover letter telling about the study and asking for the individuals' cooperation was then printed. Mailing envelopes were addressed and self-addressed, stamped envelopes were enclosed along with the cover letter and the questionnaires. On February 1, 1969, all questionnaires were mailed. Fourteen days later the first follow-up was mailed; twenty-one days after the initial mailing the second and last follow-up was mailed. The return was 86 percent.

A computer data coding form was drawn up and as the returns came in the responses were recorded. These were later keypunched and analyzed by a simple computer program to determine the frequency of response for each question by mill class. The findings are discussed in Part IV.

Phase III: Wood Residue Processing Simulation

Introduction

and the superior of the state of the second state of the

Same in the Suite of

The method used to evaluate the potential success of a large scale bark and sawdust processing plant is heuristic simulation which is often used today by managers in business to aid in making improved management decisions. For purposes of the study the importance of the simulation should not be misunderstood. The development of the simulation is not the primary objective of the study; rather the simulation is used only as a means to an end. The primary objective of the study is to prove or disprove the research hypotheses concerning the

feasibility of processing wood residues on a large scale for the agricultural and horticultural markets in southern Michigan. Within Phase III the factors directly related to the development of the grid location system, the inputs and operation of a proposed processing plant and the activities and cost centers influencing the actual simulation are discussed in detail.

The Grid Location System

Before prospective processing plant locations could be selected or supply and demand data used as simulation inputs, it was necessary to develop a means of locating given points on a scale map of Michigan with reasonable accuracy. A map location system was selected which used a transparent grid overlay. The scale of the base map and the grid overlay selected were compatible. A Michigan highway map having a scale of one-inch equals twelve miles was used as the base; making every one-quarter inch equivalent to three miles. It was then possible to use a $\frac{1}{4} \times \frac{1}{4}$ inch grid overlay making each grid square equivalent to 3 x 3 miles.

The construction of a uniform grid system was necessary. to facilitate the storage of location data in electronic computer memory for later use in computing distance, quantity, time and cost data using the Control Data 6500 electronic computer.

To prepare the input data for inclusion in the simulation, coordinates of the following points were located:

(1) All 150 operational hardwood sawmills (SUPPLY);

(2) The geographic center point of 41 southern Michigan counties, Appendix C-4 (DEMAND);

(3) Twelve prospective locations for processing plants.

X-Y axes were drawn on the grid overlay in such a way that most of the grid surface was in the upper right hand quadrant, Figure 5. The center of the axes was located on the southwestern tip of southern lower Michigan and the X-axis lined up parallel with the Michigan-Indiana boundary line.

To number the grid squares, now enclosed on two sides by the X-Y axes, the zero point was located at the intersection of the X-Y axes. Using two position digits, the numbers were placed along the X-axis: 01, 02, 03, 04, 05...etc., placing the numbers under the respective columns of grids. The Y-axis was then numbered in a similar manner placing each number opposite a row of grid squares. All points (grid squares) can now be located by a four digit number; the first two digits being read along the X-axis, the second two along the Y-axis.

In the study, distance from one point to another is always determined in relation to the X-Y axes, never across the shortest distance between the two points. To determine

distance in miles from one point to another, first count the grid squares along the X-axis, then along the Y-axis to the target point; add them together and multiply the total by three.

For purposes of uniformity, each mill was assumed to be located in the center of the grid square that overlayed the actual geographic location. In every case only one sawmill was located in any one grid square.

The Computer Simulation Program

The computer simulation program (Appendix D) uses previous simulation technology to conduct one phase of the current research. The basic ideas involved and the originally written program are unique in their application of simulation to the sawmill industry. Preparation of the program was completed using the professional assistance of the Applications Programming Group of the Michigan State University Computer Laboratory.

Operational Flow Chart

The operational flow chart, Figure 6, shows the basic activities performed by the program in a simplified manner.

For specific details about the operations performed by the program, see Appendix D. General information describing the format of various inputs and controls are included on the next few pages of the research design.

Figure 6. Basic Flow Chart Showing Major Activities Performed by the Simulation Program

*P.P. = Processing Plant

1.3 Mar

Program Deck Order

The order of the deck of cards used in the simulation, Table 13, is included in the research design to better describe the data inputs and system control cards used by the program. It is not considered necessary to describe the individual control cards in detail; but, by having the deck order available, it will be easier to adapt the program to other computer installations provided the computer is compatible with the Control Data 6500.

Format of Supply Inputs

The actual sawmill supply data used in the simulation was determined earlier using the mail survey and the adopted wood residue conversion factors. For use in the simulation the information was put on data cards in the following format:

Card Column	Description
1-3	Sawmill code number
5-8	Sawmill grid coordinate
21-30	Estimated annual lumber pro- duction in MBF
31-40	Estimated tons of sawdust
41-50	Estimated tons of bark

Table 13

Deck Order for Control Data 6500 (April 30, 1969)

	1.	PNC card
	2.	JOB card
	3.	FTN (L)
	4.	LGO
	5.,	7 B card 9
	6.	Program Deck (including all subroutines)
	7.	7 8 card 9
	8.	Parameter Card No. 1
	*9.	a. Parameter Card No. 2 b. Corresponding Parameter Card No. 3
	10.	County Cards with the Demand Data
	11.	Card with 99 in Column 1-2
	12.	Data Cards from Supplying Sawmills
	13.	Card with 999 in Columns 1-3
	14.	6 7 card 8 9
Note:	А. В.	Cards 8-13 are the data input cards Cards 1-7 and 14 are the system control cards
*Item	No.	9 (a. and b.): To get multiple runs these card

*Item No. 9 (a. and b.): To get multiple runs these cards can be repeated for up to six processing plants (P.P.). Both cards for P.P. No. 1 should be first, then both cards for P.P. No. 2, etc.

Format of Demand Data

7-16-26

うち たいのかいろう ないない ないない ないない ないない 大学 たいのない

Demand data were estimated earlier and the information concerning each individual county demand center entered on data cards. The geographic center of each county is used as the demand center for each county. All units demanded are in tons.

Card Column	<u>Description</u>
1-2	County code number
3-6	County grid coordinate
7-16	Name of county
21-30	Tons of sawdust demand Dairy Industry
31-40	Tons of sawdust demand Nursery Industry
41-50	Tons of bark demand - Dairy Industry
51-60	Tons of bark demand - Nursery Industry
61-70	Tons of bark demand - Orchard Industry
71-80 ,	Tons of bark demand - Package Market

Format of General Simulation Parameters

The general parameters are included to not only detail the computer simulation inputs, but to illustrate that the multiple processing plant simulation is relatively flexible as shown by the notes pointing out positions of variable data entry. Three basic parameter cards are included as follow:

Card.No. 1: (one card for each computer run)

Card Column	Description
5	Number of processing plants as many as six different ones in the same run
10	Insert (1) if it is desired that the supplying sawmills be included in only one processing plant's supply radius during a computer run; thus evaluating multiple processing plant locations. Leave the column blank if the mills can be included in more than one processing plant configuration.

Note: If card column 10 is (1), the sawmills will be included in the first processing plant configuration where it can be used.

Card	No.	2:	(one	card	for	each	processing	plant)
------	-----	----	------	------	-----	------	------------	--------

Card Column	Description
1-5	Insert the letters "PARAM" to indicate this is a parameter card
6	Processing plant number - must be in a sequence from 1-6. (These will be 1-N, where N is the number in column 5 of para- meter card No. 1.)
10-13	Coordinate of the processing plant
14-15	Radius of the proposed supply circle around the processing plantlimits supply to only those sawmills inside the circle.
16-25 ,	Minimum annual lumber produc- tion, in thousand board feet (MBF) for the smallest sawmill that the processing plant will include in its supply estimate potential.
26–27	The number of counties (two digits) to be included in the demand portion of the configu- ration. If all 41 counties in southern Michigan are to be included, insert the number 99.
*28-32	Conversion factor for dairy sawdust demand
*33-37	Conversion factor for nursery sawdust demand
*38-42	Conversion factor for dairy bark demand
*43-47	Conversion factor for nursery bark demand
*48-52	Conversion factor for orchard . bark demand
*53-57	Conversion factor for packaged bark demand

うちょう たいていたい たいとう きんたち たいとうしんかい たんかい

*The demand data are recorded assuming ten percent of the market, in which case these columns would have a (1) punched in the rightmost position. If the user wishes to assume a market share of twenty percent, he would insert a (2) or if he wished to assume only five percent, he would insert (.5). Within one computer run the conversion factors for all processing plants must be the same.

<u>Card No. 3*</u> :	(one card for each processing plant)
Card Column	Description
1-3	Insert the letters "CTY" to indicate this is a county demand card
6	Processing plant number (1-6) (same as for card No. 2.)
9-10	Demand county code #1
11-12	Demand county code #2
13-14	· Demand county code #3
• • •	etc.
77-78	Demand county code #35

Note: The counties in columns 9-78 do not have to be listed in numerical order, but the simulation does process and satisfy the demand for the first county listed, then proceeds to the next one.

*If columns 26-27 of parameter card No. 2 is equal to 99, indicating all counties are to be included in the demand area, this card must be eliminated.

Description of Simulation Cost Centers

The cost center concept was used in this study. It was used to combine many general costs in the overall simulation into fewer logical units containing all costs common to a specific activity. For purposes of this research study, the five following cost centers are utilized in the analysis:

- 1. Raw Material Cost
- 2. Inbound Transportation Cost Fixed Variable
- 3. Inventory Holding Cost
- 4. Processing Plant Cost Fixed Variable
- 5. Outbound Loading Cost

Considering that these costs are all related to the purchasing, concentrating, processing and selling of bark and sawdust, their meaning is self-explanatory. The costs related to these cost centers will be included under the following section, the processing plant, because the simulation uses the processing plant as the hub of all activity.

The cost centers used in this simulation are detailed below with the costs included under each activity. In all cases the figures used may not agree with estimates made by other people. This does not, however, cause great concern because the simulation is flexible enough to accept new cost figures in place of old ones and the results observed in the following computer run.

L.	Raw Material	Cost:	Sawdust	\$2.00/ton
			Bark	\$1.25/ton

2. Inbound Transportation Cost: (two trucks)

Including: A. loading cost B. over-the-road C. unloading

Fixed Cost Truck

Depreciation Insurance License

The second of the second second second second second second

\$3600.00/year 600.00/year 250.00/year

\$4450.00/year

Total

Variable Cost Truck

Loaded mile charge Driver @ \$3.00/hour

\$0.60 each truck \$0.05 per minute for each driver

3. Inventory Holding Cost:

Annual Raw Material Cost x 2%

- 4. Processing Plant
 - A. Fixed Cost:
 - Sawdust only\$ 461.00/yearAll Bark to (Y)1,471.00/yearBulk Bark after (Y)0.00/yearPackage Bark after (Y)7,631.00/yearTo be allocated22,227.00/year

B. Variable Cost:

Sawdust only	\$ 0.06/ton
All Bark to (Y)	0.18/ton
Bulk Bark after (Y)	0.00/ton
Packaged Bark after (Y)	13.14/ton

5. Outbound Loading Cost:

Sawdust\$ 0.10/tonBark (bulk)0.30/tonPackaged Bark0.25/ton

Special Information

Selling Price

Sawdust\$ 4.00/tonBark (bulk)4.00/tonBark (packaged)63.65/ton

Capacity of packaging plant: (one man inside plant)

Output/Day 600 bags or 8.8 tons Output/Year (250 days) 150,000 bags or 2200 tons

The Processing Plant

The processing plant is designed to buy bark and sawdust from local hardwood sawmills, concentrate and process the material, and sell the finished goods f.o.b. plant.

Supply for the processing plant is to be provided by hardwood sawmills located within a short radius of the processing plant and having a predefined minimum annual lumber production. Raw material is to be purchased on a loaded basis; therefore, it is essential that the sawmill have adequate loading equipment to be considered as a supplier. Raw material will not be purchased from the very small mills because they do not have the necessary material handling equipment or the capital to invest in equipment to load sawdust and bark into large trucks owned and operated by the processing plant.

Sawdust will be purchased in truck load units of forty cubic yards weighing approximately ten tons; bark is somewhat lighter and will be purchased in units of forty cubic yards or approximately eight tons. Two trucks are used to haul raw material to the processing plant.

The trucks loaded with raw material will be driven to the processing plant where the loads are dumped into a forty cubic yard surge hopper. Time to unload is minimal. The driver and truck are then ready to return for another load.

The raw material moves through the processing plant in one of three ways, shown in Figure 7. All finished goods will be stored outside. Sawdust is concentrated at the site and sold only in bulk units. Bark, on the other hand, is processed through a wood hog to reduce the particles to a uniform size, then conveyed to an outdoor storage pile. From here it is either sold in bulk units like sawdust or sent through the packaging plant where it is put into colorful, nicely printed, plastic bags for sale to consumers through grocery chains, nurseries, and garden supply stores.

The processing plant, Figure 8, will employ one manager, one bookkeeper, two truck drivers, one front-loader driver to move raw material into the plant and load customer trucks, one machine operator to operate the bag machine, the sealing machine, load bags onto pallets, and drive the fork-lift to handle finished packaged goods.

All finished products are to be picked up at the processing plant, where plant personnel will load the outbound products ' on the customer's truck.

Basic assumptions under which the processing plant operation was designed are:

1. A bark and sawdust processing plant can operate all year (250 days) on the raw material supply accumulated by two company owned trucks working a basic forty hour week.

Figure 7. System of Material Movement Through Processing Plant

Figure 8. Illustration of Proposed Processing Plant.

KEY

1. Truck Dump

語言語を行うという。ために、ためにはながらなどのなどがないないないないないないと、たいたけていたものになったというのからなる

- 2. Hopper # 1
- 3. Sawdust Bin
- 4. Sawdust Pile
- 5. Wood Hog
- 6. Bark Pile
- 7. Front Loader
- 8. Hopper # 2
- 9. Screen
- 10. Bag Machine
 - 11. Bag Sealer
 - 12. Pallet

- 13. Outside Storage
- 14. Bag loading Dock
- 15. Store Room
- 16. Office
- 17. Bulk Loading
- 18. Bin Loading

- Market demand will dictate the ratio of bark and sawdust that will be accumulated by the processing plant during the year.
- 3. Packaged bark products return the most profit to the processing plant and, therefore, can justify the most processing expense.
- 4. The processing plant is able to adjust the product mix and markets served over the course of a year to reduce seasonal variation in demand.
- 5. All raw materials for the processing plant will be purchased in units of forty cubic yards--no partial loads.
- 6. Sawmills supplying raw materials to the processing plant will load the company trucks at the mill site. Most mills presently have the necessary handling equipment.
- 7. The demand for packaged units of bark will be given first priority in the product line; second priority will be given to bulk bark and third priority to bulk sawdust sales.
- 8. A purchase agreement is signed with each sawmill supplying new material to the processing plant. This will guarantee a source of supply at a given cost.

Specific assumptions that relate to the supply and demand phase of the processing plant simulation are outlined below:

- All costs are allocated by tons of material processed.
- 2. Limits built into the computer program are:
 a. maximum of six processing plants
 b. maximum of 83 counties in demand configuration
 c. maximum of 170 sawmills in supply configuration
- 3. Two dump bed trucks are used to concentrate a supply of raw material. If truck No. 2 is not utilized to seventy percent (70%) capacity, the wages of truck No. 1 driver are figured at overtime, and the cost of truck and driver No. 2 omitted.
- Classes of costs cannot be added, but some can be left out.
- 5. The closest sawmill meeting the minimum production limitation is processed through the simulation first.
- 6. All bark in the supply area is brought into the processing plant first, then sawdust.
- 7. Pay rate of truck driver is \$3.00 per hour.
- 8. Driver works between: 1870.5 and 1891.7 hours/year.

9. Demand within the simulation is satisfied in the

following order:

- A. Bark:
 - 1. Packaged
- B. Sawdust: 1. Dairy
 - 2. Nursery

- Dairy
 Orchard
- 4. Nursery
- . nurbery

10. Raw Material Data Summary:

			Hardwood Bark	Sawdust
	Weight	t: (green)		
•	Per	cubic foot	15#	19#
	Per	cubic yard	405#	513 #
		-	(5 cubic yards/ ton)	4 cubic yards/ ton)
	Cost:	(loaded)		
	Per	cubic yard	\$ 0.25	\$ 0.50
	Per	ton	1.25	2.00
	Per	load	10.00	20.00
11.	Truck	Capacity:	8 tons	10 tons
12.	Rated	speed of truck	: 40 MPH	

The cost figures included under the general cost center categories mentioned earlier require additional background if they are to be evaluated for further use and up-dated. The next few pages briefly outline the costs and calculations used for this particular processing plant simulation that have not already been discussed.

1. Raw Material Cost - Completed

- 2. Inbound Transportation Costs: (two trucks) Fixed Costs:
 - a. Two new trucks @ \$10,000 each = \$20,000
 less \$2,000 trade-in value + 5 year
 depreciation life = \$3,600 cost per year
 + 250 days = \$14.40 daily cost.
 - b. Insurance @ \$300 per year per truck =
 \$600 + 250 days = \$2.40 daily cost.
 - c. Truck license @ \$125 per year per truck =
 \$250 + 250 days = \$1.00 daily cost.

Variable Costs:

the storage was a supplication of the supplica

- Truck (each) \$0.60 per loaded mile charge to cover gas, oil, tires, and once a year overhaul of \$250.00.
- Daily truck maintenance (each) \$1.50 per working day to cover driver's maintenance time of thirty minutes.
- c. Driver wages (each) @ \$0.05 per minute or \$3.00 per hour; overtime calculated at a rate of \$4.50.
- d. Truck loading time @ \$0.05 per minute for driver who is idle; 20 minutes for sawdust and 30 minutes for bark.

- e. Truck driving time @ \$0.05 per minute for driver.
- f. Truck unloading time @ \$0.05 per minute for driver who is idle; 10 minutes total for both bark and sawdust.
- 3. Inventory Holding Cost Completed
- 4. Processing Costs: The plant and equipment needs are detailed in Table 14 and 15; first the fixed costs which are allocated according to the product receiving the greatest use each year, and then the variable costs which are allocated in dollars per ton of product produced.
- 5. Outbound Loading Costs
 - a. Bulk Sawdust using a sawdust bin, it requires two man-minutes per ton at \$0.05 per minute;
 total cost is \$0.10 per ton.
 - Bulk Bark using a front loader, it requires four man-minutes per ton at \$0.05 per minute plus \$0.05 per ton for loader gas, oil, tires, and maintenance; total cost is \$0.25 per ton.
 - c. Packaged Bark using a fork-lift truck, it requires five man-minutes per ton at \$0.05 per minute plus \$0.05 per ton for fork-lift gas, oil, tires and maintenance; total cost is \$0.30 per ton.

Table 14

The comparison of the second state second second state of the second state of the second state of the second s

фс

Processing Plant Fixed Costs

					.Cost Allocation Breakdown			
					Saw-	A11	Package	To be
		Total		Trade-in	· dust	Bark	Bark	Allo-
	FIXED COSTS	Cost	Life	Value	Only	to Y	After Y	cated
		New	Years	Dollars	\$/year	\$/year	\$/year	\$/year
1.	Land: 10 acres @ \$200/acre	\$ 2,000	25	1,000				40
2.	Plant Office (inside plant)	1,200	10	200			25	75
3.	30 x 60 Package Bark Building	2,400	10	240			216	
4.	60 x 100 concrete [.] storage area @ 30¢ per sq. ft.	1,800	10	0			180	
5.	Interest on Investment @ 7%	2,436	0	0	186	626	917	707
6.	Office Furniture	1,100	10	100	•		25	75
7.	Interest of Office and Furniture @ 7%	160					40	120
8.	Manager's Salary	12,000	0	0			3,000	9,000

93

Tab	le	14,	cont.

· · · · ·					Cost Allocation Breakdown			
					Saw-	A11	Package	To be
	•	Total		Trade-in	dust	Bark	Bark	Allo-
	FIXED COSTS	Cost	Life	Value	Only	to Y	After Y	cated
		New	Years	Dollars	\$/year	\$/year	\$/year	\$/year
9.	Bookkeeper's Salary	5,580	0	0			1,500	4,080
10.	Property Tax	100	0	- 0			25	75
11.	Insurance	300	0	0			75	225
12.	Telephone	600	0	0			300	300
13.	Utilities	1,052	0	0		·	452	600
14.	Surge Hopper # 1, 40 cu. yd. capacity	1,200	10	200				100
15.	Conveyor # 1, 20 ft @ 520/foot	400	10	0				40
16.	Conveyor # 2 to sawdust bin and pile, 100 ft @ \$20/ft.	2,000	10	0	200			
17.	80 cu. yd. capacity sawdust bin @ \$5/cubic yard	400	10	0	40			
18.	Model 60 Mitts & Merrill Wood Hog	6,000	10	600		540		
19.	Wood Hog Installation	200	10	0		20		
Table 🔅	14, d	cont.						
---------	-------	-------						
---------	-------	-------						

			· <u>· · ·</u> ·	·	Cost Allocation Breakdown			kdown
					Saw-	A11	Package	To be
		Total		Trade-in	dust	Bark	Bark	Allo-
	FIXED COSTS	<u>Cost</u>	Life	Value	Only	to Y	After Y	cated
		New	Years	Dollars	\$/year	\$/year	\$/year	\$/year
20.	Bldg. for Hog 10 x 10 ft.	500	10	0		50		
21.	Conveyor #3 to bark pile 100 feet @ \$20/foot	2,000	10	0		200		
22.	Front Loader with 2 cu. yd. bucket	8,000	10	800				720
23.	Loader Driver @ \$3/hr.	6,000	0	0				6,000
24.	Surge Hopper #2, 3 cu. yd. capacity	200	10	20			18	
25.	Conveyor #4, 50 feet @ \$20/ft. (yard into plant)	1,000	10	0			100	
26.	6 x 6 ft. vibrating screen	300	10	0			30	
27.	Bag Machine	200	10	0			20	
28.	Electric Heat Type Sealing Machine	1,200	10	120			108	
29.	Conveyor #5 Portable (for finished product)	1,000	10	0			100	

.

Table 14. cont.

					Cos	ation Bre	akdown	
	FIXED COSTS	Total Cost New	Life Years	Trade-in Value Dollars	Saw- dust Only \$/year	All Bark to Y \$/year	Package Bark After Y \$/year	To be Allo- cated \$/year
30.	8 Electric Motors	800	5	· 0	20	20	80	40
31.	Total Electrical Wiring	1,200	10	0	15	15	60	30
32.	Gas Engine Fork Lift	4,000	10	40 0			360	
	TOTAL FIXED COSTS				\$461	\$1,491	\$7,631	\$22,227

·.

and the second second

Table 15

Processing Plant Variable Costs

<u> </u>		Cos	t Alloca	tion Brea	kdown
		Saw-	A11	Package	To be
	VARIABLE COSTS	dust	Bark	Bark	Allo-
		<u>Only</u>	to Y	After Y	cated
		\$/ton	\$/ton	\$/ton	\$/ton
	·				
1.	Processing Plant Operator				
	one man producing:				
	1.5 bags/minute				
	50 minutes pèr hour				
	75 bags output/hour			2.50	
_					
2.	Wood Hog Utilities @ \$0.10/ton		0.10		
3.	Convevor Motor Utilities @ \$0.002/ton/motor	0.04	0.04	0.08	
4.	Electric Sealing Machine Utilities @ \$0.05/ton			0.05	
5.	Wood Hog Maintenance: sharpening and replacements		0.02		
6.	Front Loader Gas and Maintenance to move bark into				
	processing plant			0.20	
7.	48 x 48 one-way block pallets			2.25	
Q	Multi-color Poly back printed @ \$0.12 each			S 04	
ο.	Multi-color Poly Bays, princed @ 30.12 edch			0.04	
9.	Maintenance on conveyors and surge hoppers	0.02	0.02	0.02	
	TOTAL VARIABLE COSTS	\$0.0 6	\$0.18	\$13.14	

•

To complete this section of cost data it is necessary to include the price of the finished good sold. The raw material purchase price is also included for sake of comparison with the selling price.

Purcha	<u>ase Price</u>	Product	Selling	Selling Price		
(Per Yard)	(Per Ton)		(Per Yard)	(Per Ton)		
\$0,50	\$2,00	Sawdust: Bulk	\$1.00	\$4.00		
\$0.25 [,]	\$1.25	Bark: Bulk	\$1.00	\$4.00		
\$0.25	\$1.25	Bark: Packaged	\$0.95	\$63.65		

Trial Configurations

Three trial configurations selected from a total of four dozen computer runs are outlined in the research design. Each configuration is different from the other two and serves to illustrate the supply and demand inputs of the computer simulation which were used to compute the findings in Part V.

The supply sawmills for each configuration are shown first in Tables 16, 18, 20. Tables 17, 19, 21, summarize the counties included in the demand portion of the configuration. Lastly, a map showing the approximate location of the processing plant and the surrounding counties constituting the demand area are shown in Figures 8, 9, 10.

Information at the top of the supply table tells:

1. The plant number (1-6) of a multiple computer run.

Configuration No. 1--Listing of Supplying Mills for Processing Plant

Coordinate 4635...Radius 21 Miles...Minimum Annual Production 501 MBF

Mill			Production	Tons	Tons
<u>No.</u>	Coordinate	Distance	(in thous.)	Sawdust	Bark
139	4636	3	1800,000	1872.00	0.00
138	4735	3	4000,000	4160.00	0.00
140	4736	6	11340,000	11793.60	6577.20
137	4732	12	2400,000	2496.00	1392.00
141	4840	21	1050,000	1092.00	0.00
75	4238	21	300,000	312.00	0.00
	Tot	al		21725-60	7969,20

٠

Configuration No. 1--Listing of Counties in Demand for Processing Plant

CONTRACTOR OF THE OWNER

The state of the second second second

Coordinate 4635...No. of Counties 14

			Tons of	of Sawdust Tons of Bark		rk	Pkg.	
County	Coord.	Distance	Dairy	Nursery	Dairy	Nursery	Orchard	Bark
Isabella	3544	60	700	110	. 700	110	0	9
Clinton	3928	42	800	510	800	510	0	12
Shiawassee	4728	24	650	140	650	140	0	17
Genesee	5429	42	400	1420	400	1420	`1100	124
Oakland	5021	84	250	3140	250	3140	1760	228
Midland	4344	36	100	590	100	590	0	16
Gratiot	3836	27	450	190	450	190	0	11
Saginaw	4836	9	600	1890 .	600	1890	0	60
Ingham	4320	54	750	1420	750	1420	0	70
Tuscola	5940	54	700	170	700	170	0	13
Macomb	6722	102	450	2620	450	2620	1820	155 _.
Bay	4944	36	250	1120	250	1120	0	32
Livingston	5120	60	650	450	650	450	0	13
Lapeer	6231	60	1000	830	1000	830	820	13
· ·	Totals		7750	14600	7750	14600	5500	773
Tota	l Sawdust	22	350.0	Percen	t of Sup	ply 1.	03	
Tota	l Bark	28	623.0	Percen	it of Sup	ply 3.	59	

.

Configuration No. 2--Listing of Supplying Mills for Processing Plant

Coordinate 3528...Radius 21 Miles...Minimum Annual Production 299 MBF

Mill			Production	Tons	Tons	
No.	<u>Coordinate</u>	Distance	(in thous.)	Sawdust	Bark	_
		_				
93	3529	3	2640,000	2745.60	1531.20	
91	3326	12	1920,000	1996.80	1113.60	
69	4028	15	3000,000	3120.00	1740.00	
73	3323	21	3000,000	3120.00	1740.00	
71	3223	24	50,000	52.00	0.00	
95	3024	27	300,000	312.00	0.00	
94	2931	27	312,000	324.50	0.00	
	Total			11670.90	6124.80	

Configuration No. 2--Listing of Counties in Demand for Processing Plant

а. Д

٠

Coordinate 3528...No. of Counties 11

			Tons of	f Sawdust	T o	ons of Barl	k	Pkg.
County	Coord.	Distance	Dairy	Nursery	Dairy	Nursery	Orchard	Bark
		20	650	770	650	770	740	10
Montcalm	3036	39	650	770	650	//0	. 740	12
Ionia	3128	12	800	140	800 ·	140	2160	12
Barry	3720	48	500	160	500	160	0	8
Kent	2330	42	750	1830	750	1830	13560	119
Shiawassee	4728	36	650	140	650	140	0	17
Gratiot	3836	33	450	190	450	190	0	11
Clinton	3928	12	800	510	800	510	0	12
Eaton	3520	24	600	140	600	140	0	16
Ingham	4320	48	750	1420	750	1420	0	70
Oakland	6021	96	250	3140	250	3140	1760	228
Wayne	6212	129	· 50	3100	50	3100	0	800
						- • - • • • • •		
Tot	als		6250	11540	6250	11540	18220	1305
Total	Sawdust	2	2350.0		Percen	t of Supply	v 1.	03
Total	Bark	2	8623.0		Percen	t of Supply	y 3.	59

.

Configuration No. 3--Listing of Supplying Mills for Processing Plant

Coordinate 3520...Radius 27 Miles...Minimum Annual Production 299 MBF

Mill			Production	Tons	Tons
No.	<u>Coordinate</u>	Distance	(in thous.)	Sawdust	Bark
				•	
70	3519	3 -	3875,000	4030.00	2247.50
73	3323	15	3000,000	3120.00	1740.00
74	3922	18	750,000	780.00	0.00
72	3817	18	< 300,000	312.00	0.00
71	3223	18	. 50,000	52.00	0.00
88	4119	21	90,000	93.60	0.0
54	2921	21	600,000	624.00	0.00
98	3815	24	800,000	832.00	0.00
91	3326	24	1920,000	1996.80	1113.60
87	4219	24	750,000	780.00	0.00
48	2821	24	750,000	780.00	0.00
47	3116	24	300,000	312.00	0.00
95	3024	27	300,000	312.00	0.00
93	3529	27	2640,000	2745.60	1531.20
89	4016	26	300,000	312.00	0.00
55	2818	27	300,000	312.00	0.00
50	2721	27	300,000	312.00	0.00
49	3016	27	100,000	104.00	0.00
52	2916	30	50,000	52.00	0.00
92	2825	36	750,000	780.00	0.00
61	· 3013	36	300,000	312.00	0.00
	Total			18954.00	6632.30

105

Total

Configuration No. 3--Listing of Counties in Demand for Processing Plant

			Tons o	f Sawdust	To	ns of Bark	·	Pkg.
County	Coord.	Distance	Dairy	Nursery	Dairy	Nursery	`Orchard	Bark
Patas	2520	0	600	140	600	140	0	16
Eaton Olimpian	3520	26	800	510	800	510	0	10
Clinton	3928	30	800	. 210	800	510	0	12.
Ionia	3128	36	800	140	800	140	2160	12
Barry	2720	24	500	160	500	160	0	. 8
Kalamazoo	2312	60	250	2650	250	2650	:.340	54
Calhoun	3312	30	600	1190	600	1190	0	44
Jackson	4212	45	600	320	600	320	1040	40
Ingham	4320	24	750	1420	750	1420	0	70
Shiawassee	4728	60	650	140	650	140	0	17
Kent	2330	66	750	1830	750	1830	13560	119
Oakland	6021	78	250	3140	250	3140	1760	228
Tet	ale		6550	11640	6550	11640	19860	620
100	.a 79		0000	11040	0000	11040	20000	
Total Sa	wdust	18	190.0		Percent o	f Supply	.96	
Total Ba	ark	38	670		Percent o	f Supply	5.83	

Coordinate 3520...No. of Counties 11

- 2. The processing plant coordinate
- 3. The radius of the supply circle
- 4. The minimum annual lumber production or mills to be included as suppliers inside the circle.

Now looking at the demand tables, two numbers are shown near the bottom after percent of supply. These two ratios relate the amount of supply to the amount of demand within the configuration. The closer the number is to 1.00 the better supply and demand are in balance.

All other information is reasonably self explanatory.

PART IV

FINDINGS--RELATIVE TO PHASE II

Introduction

The results of the field survey and mail survey are discussed in the following paragraphs. Discussion of both field survey results and mail results are centered on the secondary objectives mentioned earlier and the results obtained from the mail survey presented in summary tables. Tables are presented in the text and in the appendix to facilitate the discussion.

Field Survey Findings

During the field survey it was observed that almost every sawmill site was the scene of vast accumulations of wood residues. Piles of slabs, edgings, end trim, sawdust, and bark were commonplace. In some cases slabs and edgings had been cut into firewood lengths and piled in equally large piles.

Wood Residue Accumulations and Characteristics

The quantities of wood residue accumulated around the typical hardwood sawmill in southern Michigan were photographed by the author. Figure 12 inadequately illustrates the quantities accumulated adjacent to the sawmill, but the general idea is clearly shown.

To be more specific about what the accumulations of wood residues are like, the characteristics can be seen in the Figure 13 close-up photographs in comparison with engineered wood chips. In photograph (A) hardwood sawdust is shown. The sawdust is relatively free of bark particles because the sawmill uses a log debarker to remove the bark prior to breaking down the log on the head saw.

Photograph (B) shows hardwood bark (American Beech) as it looks when removed from the log by a rosser-head type debarker. The bark is usually green and very wet and, depending on the species, the bark particles vary widely in both size and shape. It is not clearly evident in the photograph, but often as much as 25-50 percent wood fiber is attached to the bark. The percent of wood fiber attached to the bark depends on several factors:

the species being debarked
the experience of the machine operator
the season of the year
the uniformity of the log surface
the condition of the cutter head

Figure 12. Vast Quantities of Wood Residue Found at Most Sawmill Sites

End Trim Α

Sawdust

Hardwood Bark С

Slabs

Edgings Е

Slabs cut into F Firewood

A Sawdust from Mill with Debarker

C Sawdust from Mill without Debarker Contains Bark Particles

E Engineered Wood Chips

B Hardwood Bark Removed by Debarker

D Hogged Bark and Sawdust Mixed

Dry Planer Shavings

F

Photograph (C) shows the characteristics of sawdust coming from a sawmill without a log debarker. Rather than being a light uniform color, like the sawdust shown in (A), the sawdust contains a considerable amount of dark bark particles.

The hogged bark and sawdust mix seen in photograph (D) represents a combination of bark and sawdust. It can be seen that the bark has more uniform characteristics than in (B). The uniformity is obtained by processing the bark through a mechanical wood hog. Mixing processed bark and sawdust together is often done by sawmills having customers who prefer a product with the basic characteristics of bark, but also want the additional bulk furnished by the sawdust.

Photograph (E) shows the characteristics of uniform engineered wood chips prepared for the pulp and paper industry. The chips are carefully manufactured from coarse wood residue at many sawmills in Michigan. They are shown here for comparison with the fine wood residues.

Dry planer shavings are shown in Photograph (F). Wood shavings have the characteristics of being dry, fluffy, and relatively dust free. Because of these good qualities, there are many profitable markets for shavings.

Current Methods of Residue Disposal

The methods used to dispose of wood residues by different sawmills were observed by the author to be many in number, but essentially the same in that most methods involved an expense to the sawmill rather than a source of income.

The most frequently used methods of fine wood residue disposal are shown in Figure 14. The photographs point out one basic fact: that currently there are many more unprofitable ways being used to dispose of fine wood residues than profitable ones. The greatest percent of wood residues at small sawmills is either burned in the open, given away, or dumped at the back of the mill site. Some of the larger mills operate teepee burners. Of the total mills in southern Michigan, only a very few mills make any effort to sell bark or sawdust.

Current Markets for Wood Residues

Finding out what the current available markets are for hardwood bark and sawdust in southern Michigan was an important part of the field survey. The data in Figure 15 served as the initial indicators for residue markets. Upon interviewing the sawmill operators that are currently engaged in marketing sawdust and bark products, it was found that population density and amount of agricultural activity within a county are in fact reasonably good indicators of the market Figure 14. Current Methods of Fine Wood Residue Disposal

Conveying Residues to A Teepee Burner

Open Burning в

С Dumping at Back of Mill Site

Conveying to Pile D

Selling Sawdust and Bark Е for Dairy Bedding, etc.

Giving Residues Away

Figure 15. The Two Major Factors Determining the Location of Current Wood Residue Markets--Population and Agriculture

.

size. The best general indicator for packaged bark markets is population since the product is sold primarily to the home gardener. The amount of agricultural activity within a county was found to be a good general indicator for potential sales of bark and sawdust. Sawmill operators reported that, of the bark and sawdust they sold, the greatest quantity was purchased by dairy farms for cattle bedding. Some bark was reported sold to the orchard industry for fruit tree mulch, and some bark and sawdust had been sold to tree nurseries for mulch.

To check out the reported markets mentioned by the sawmill operators, several visits were made to the purchasers of sawmill bark and sawdust. Figure 16 shows five of the most common uses for wood residues. In all cases the users were well pleased with the actual material even though they were still unsure about the validity of the "old wives' tales" concerning the uses of sawdust and bark. Most were in agreement about the cost being too high and the general difficulty in obtaining the material.

It was observed during the field survey that between 25 and 50 percent of all sawdust produced is being sold, but very little bark. Because of the apparent difficulty in establishing markets for bark, special attention was directed to the problems encountered by sawmills that consider marketing

Figure 16. Current Uses for Wood Residues

A Orchard Mulch

B Nursery Mulch

C Fruit Mulch

D Decorative Ground Cover

E Dairy Bedding

bark products. The findings are summarized as follow:

- 1. Great quantities of bark are available, usually in scattered locations.
- 2. The disposal problems surrounding bark are severe and becoming more severe. Burning is not an efficient or profitable disposal technique at this point; air pollution legislation is imminent.
- 3. Barks are not uniform. Each specie differs and there is a wide range of quality within species.
- 4. Each bark species has certain advantages and dis-'advantages. Consideration must be given to color, structure, density, sorptive capacity, resistance to decomposition, and fiber characteristic.
- 5. Barks in general are considered a waste product or, at best, a low-value product and have little consumer appeal in their natural form.
- 6. When processed as a decorative mulch or soil conditioner, care must be given to uniformity of color, texture, and size.
- 7. Foreign matter such as wood fiber, slivers, and splinters have varying degrees of importance upon the finished product.
- 8. Low cost and effective substitutes for any known bark products are available in local markets at competitive price and volume levels.
- 9. Demand is limited because bark products are relatively unknown to the consumer.

Wood Residue Market Competition

During the field survey it was found that sawdust and bark used as dairy cattle bedding receives the greatest competition from straw, the traditional bedding material. But it was pointed out that as more hybrid grains are grown the stalks are becoming shorter and shorter making less straw bedding available on the farm. Another current practice is for the dairy farmer to grow less grain crops and spend more time specializing in dairy management. Dairy managers were quick to point out that the competition for suitable bedding material will continue to increase.

It was found out during talks with nursery operators that the use of sawdust as a nursery mulch has always received stiff competition from peat moss and straw. This has primarily been because of the nitrogen depletion problems that arose if the user was not familiar with the use of sawdust (or bark) as a mulching material. Misinformation and old wives' tales about the toxic content of sawdust were also found to limit the use of wood residues as mulches in nurseries. Many requests were made for up-to-date information on how to use wood residue mulches.

The use of bark as an orchard mulch was found to be limited, not by a competitive material, but by the fact that adequate information is not available on how to use the mulch or resulting benefits. The orchard operators are reluctant to try wood residues as mulches without knowing more about the possible effects.

The utilization of packaged bark from various parts of the United States used for soil improvement, soil amendment, growing mediums, and decorative covers was found to be a rapidly growing business. Packaged bark sold through lawn and garden centers was found to be in direct competition with traditional soil amendments such as peat moss, sludge, manures, humus, sand, leaf mold, composted waste products, etc. A summary of the limiting factors for domestic hardwood bark utilization, cited by operators of lawn and garden centers, was that today the customers are demanding a quality bark product free from wood particles, of uniform size and color, and sold at the same price they paid several years ago.

It was reported that the most recent competition in the decorative ground cover market was coming from substitutes such as volcanic rock and ash, colored stones, and wood chips.

ときのないないとないというできたというできたというないないないないないないというできたという

Upon visiting Lansing and Grand Rapids area lawn and garden centers it was found that bark is usually sold in bags. Home owners and other small quantity users consume most of the hardwood bark mulch produced. Thus most producers, including one small Michigan producer, market their mulch in colorful plastic bags holding two or three cubic feet, Figure 17. It was reported that retailers and consumers seem satisfied with these bags because they are easily handled, weatherproof, and resistant to damage--especially from internal

Figure 17. Colorful, Informative, Consumer Appealing, Plastic Bags Used Successfully as Bark Mulch Packages

moisture. Retailers reported greatly increased sales of bark products now that attractive, colorful, informative bags are used to merchandise the product as well as function as a container.

Comparative retail prices for mulches, soil conditioners and decorative lawn products observed during the 1968 field survey are presented in Table 22. Competitive bark products from the west coast are presently selling on a tight margin because of high freight rates. The current prices cannot be lowered more than 14 percent and still remain profitable.

In bulk sales, sawmill operators having log debarkers reported selling hardwood bark mulch for \$2 to \$5 a ton f.o.b. plant. Sales are made to nurseries, orchards, landscapers, dairy farmers, and other large users. To date only a few bark sales in bulk quantities have been reported.

Mail Survey Findings

A total of 106 mail questionnaires were mailed to selected sawmill owners and operators. A total of 92 completed questionnaires were returned. This represents a return of 87 percent which is exceptional.

In some cases the respondents did not answer all of the questions that were asked; therefore, the total number of responses on the following tables will seldom equal 92.

Table 22

<u>Comparative Retail Prices of Mulches, Soil Conditioners,</u> <u>and Decorative Lawn Products, in Lansing, Michigan*</u>

		Price at Garden
I	tem (Summer 1968) Co	enter or Nursery
1.	2 cu. ft. Hardwood Bark Mulch	1.77
2.	3 cu. ft. Pine Bark Mulch	2.29
3.	4 cu. ft. Pine Bark Mulch, fortified	3.98
4.	3 cu. ft. Vita-Bark Ground Cover	3.98
5.	5 cu. ft. Shredded Hardwood Bark (45#)	3.98
6.	Baled Wheat Straw (35-45#)	1.25
7.	50# Ground Corn Cobs	2.40
8.	l cu., ft. Sphagnum Peat Moss	0.89
9.	4 cu. ft. Canadian Peat Moss	3.97
10.	50# Buckwheat Hull Mulch	2.95
11.	25# Cocoa Shell Mulch	1.99
12.	50# Dairy Compost	1.59
13.	25# Dairy Compost	0.97
14.	1 cu. yd. engineered wood chips (local	l del)10.00
	(local delivery)	-
15.	4 cu. ft. Vermiculite (18#)	2.99
16.	50# White Decorative Stone (Marble)	1.99
17.	50# Black Decorative Stone (Obsidion)	2,99
18.	50# Crushed Vitrified Tile	1.65

*Prices listed are extremely variable, depending upon freight charges, sales outlets, local prices of competing goods, and other factors.

None of the questionnaires returned from the six counties outside the basic study area represented any circumstances not common to the basic study area other than the fact that mills further north process softwood species in part or in total.

The findings of the mail survey are included in tables and figures on the following pages along with brief narrative

comments. For sake of order, the tables and summary figures are presented in the same order sequence as the questions listed on the questionnaire (Appendix A).

General question (A) asked the sawmill owner or operator to check the appropriate box in front of each piece of equipment used around the sawmill. Table 23 presents the responses. The important point to note is the number of log debarkers and the size mill operating them.

Table 23

	No. of			Wood		Fork	Теерее
Class	Responses		Chipper	Hog	Tractor	lift	burner
A	2	2	2	1	2	2	. 1
В	2	2	1	1	0	2	2
С	6	4	4	2	5	6	3
D	24	12	11	1	5	23	3
Е	17	4	1	0	10	14	0
F	28	2	2	0	13	24	0
<u>LTF</u>	9	0	0	0	5	6	0
Total	88	26	21	5	40	77	9

Equipment Owned by Hardwood Sawmills

Source: Mail Questionnaire - January 1969

General question (B) was self-explanatory in asking for the approximate daily lumber production. The responses to the question were recorded in Table 24 showing the sawmill production by sawmill class and daily production of lumber which is helpful in comparing the actual capacity of mills within the general classes.

<u>Table 24</u>

Estimated Daily Hardwood Lumber Production by Individual Sawmills

	No. of	Thousand Board Feet																		
Class	Responses	1	1	2	3	4	5	6	7	8	9	10	11	12	15	18	25	30	45	55
A	2											1								1
B	2									1							1			
с	6		ļ				ĺ		1						3	1			1	
D	24	1					3	1	2	5		6		4	2					
Е	17			1	1	3	6			1	1	1	2 	2				1		
F	28	4	4	8	5	1	2	2		1			1							
LTF	9	2	2		2		2			1										
Total	88	7	6	9	8	4	13	3	3	9	1	8	1	6	5	- 1	. 1	1	1	1

Source:	Mail	Questionnaire	-	January	1969
---------	------	---------------	---	---------	------

Average daily lumber production by sawmill class is presented in Table 25. The figures serve as indicators of sawmill size relative to the other mills in the same class and point out where the greatest volume is produced.

the set of the second second

Class	Average Daily Production (MBF)	% of Total Production Contributed by Each Sawmill Class
A	32.5	37
В	16.5	18
С	. 19.7	21
D	8.8	10
E	7.5	8
F	2.9	. 3
LTF	2.9	3
Total	90.8	100

Ta	bl	e	25

Daily Lumber Production by Sawmill Class

General question (C) asked the sawmill owner to check the methods of advertising used to promote the sale of wood residues. A summary of responses indicated less than 5 percent of all sawmills in the study area advertise any bark, sawdust, slabs, firewood, bedding or mulch. Figure 18 shows the percentage of sawmills advertising in some manner at this time.

Figure 18. Percentage of Sawmills Advertising Residue Products for Sale.

General question (D) asked sawmill owners to place a check (\checkmark) in front of the approximate quantity of wood residue they produced each year. The responses were determined to be invalid and are not presented in the study.

General question (E) asked sawmill operators to indicate how costly they consider wood residue removal from the sawmill site. The responses are presented in Figure 19.

Residue Removal Cost

129

Removal Cost.

Figure 19. Sawmill Operators' Estimate of Wood Residue

In answer to general question (F) sawmill owners each reported several methods of residue disposal. Figures 20 and 21 present a summary of current wood residue disposal methods for sawdust and bark. Because each mill made multiple responses to the question, only general trends can be concluded.

ĝ i

١

t

In general question (G) sawmill owners were asked to insert the number of operating days they worked last year. Table 26 presents the responses of 83 mills. By multiplying the number of operating days given in (G) times the daily lumber production figure given in (B) an approximate annual lumber production figure is found for each individual sawmill. The results of these calculations are marked with (*) in Appendix B.

Table 26

Number of Sawmill Operating Days Per Year

Class	No. of Responses	Less than 100	101- 150	151- 200	201- 225	226- 250	251• 275	276- 300	301- 325	Over 325	Wt. Avg.
A	2	0	0	0	0	1	1	0	0	0	25 ⁰
В	2	0	0	1	1	0	0	0	0	0	200
с	6	0	0	2	о	1	2	1	0	0	234
D	22	0	1	2	1	10	1	6	0	1	246
Е	15	1	2	3	2	3	1	3	0	0	209
F	28	5	5	8	2	5	ο	2	1	0	201
LTF	8	4	2	0	0	2	0	0	0	0	126
Total	83	10	10	16	6	22	5	12	1	1	

Source:

Mail Questionnaire - January 1969

General question (H) asked the approximate number of man-hours spent each week in removing wood residues from the mill site. The responses shown in Table 27 were used to estimate the expense involved in residue removal. Of the total responses, 70 percent estimated less than 10 hours were required each week to remove residue.

Table 27

	No. of				Man-Hou	rs Per	Week
Class	Responses	1-5	6-10	11-15	16-20	21-25	26-30
A	1	1					
В	1					1	
с	4	1	1		1		1
D	16	8	3	1.	2		2
Е	15	1	6	2	3		3
F	25	16	6		1		2
LTF	7	6	1				
Total	69	33	17	3	7	1	8

Time Required to Remove Residue from Sawmill Site

Source: Mail Questionnaire - January 1969

Only two of the remaining questions on the questionnaire are important to the study. The others were designed to lead the respondent into the "target questions."

Table 28 presents a summary of estimated sawdust sales during 1968 as a percent of the amount produced by individual sawmills. Only positive responses from mills that did sell some sawdust last year were recorded in the Table.

Table 28

Summary of Sawdust Sold Last Year (1968)

	No. of			1	Percer	nt Sol	ld Ann	ually		
Class	Responses	1_	11-,	21-	31-	41-	51-	61-	71-	91-
		10	20	30	40	50	60	70	90	100
A	1					1				
В	ı ʻ	•							1	
с	3	. 1								2
D	13	•			•	1	1	3	2	6
Е	7 ·	3	1			1	1			1
F	7	. 1	1			2				3
LTF	3		1							2
Total	35	5	3			5	2	3	3	14

Source: Mail Questionnaire - January 1969

vable 29 summarizes estimated bark sales for calendar year 1968 in terms of percent produced.

The quantity of bark accumulated by sawmills in southern lower Michigan was determined as a direct result of information included in the mail questionnaire. Table 30 summarizes the quantities of bark available by mill class. The data are presented here as a major finding which can be used by the industry in resource evaluation and market planning.

	No. of		Pe	rcent S	old Anr	ually	
Class	Responses	1-10	11-20	21-30	31-40	41-50	91-100
A	2	2					
в	2	2					
c	2	l	Ĺ				
D	8	5	1		1		1
Е	2 '	2					
F	0				ļ		
LTF	0						
Total	16	12	2		1		1

Summary of Bark Sold Last Year* (1968)

* By sawmills with log debarkers. Source: Mail Questionnaire - Jaunary 1969

÷

•

<u>Hardwood Bark Accumulated by Sawmills Operating</u> Log Debarkers in Southern Lower Michigan* (1968)

r			
	Estimated	Quantity of	Total Quantity of
Mill	Board Feet	Bark at Each	Bark by Mill
Class	Lumber	Mill	Class
	Production	(Green Tons)	(Green Tons)
	<u>in 1968</u>		
	2,500.0	1,450.0	
A .	12,500.0	7,250.0	8,700.0
В	6,250.0	3,625.0	3,625.0
	2,880.0	1,670.4	
С	3,875.0	2,247.5	
	4,420.0	2,563.6	
	11,340.0	6,577.2	13,058.7
	2,500.0	1,450.0	
	2,000.0	1,160.0	
	3,525.0	2,044.5	
	3,000.0	1,740.0	
	3,000.0	1,740.0	
	1,920.0	1,113.6	
D	2,640.0	1,531.2	
	2,760.0	1,600.8	
	2,000.0	1,160.0	
	2,500.0	1,450.0	
	2,000.0	1,160.0	
	2,400.0	1,392.0	
	2,000.0	1,160.0	
	3,600.0	2,088.0	
	2,400.0	1,392.0	22,181.1
E	3,360.0	1,948.8	1,948.8
	300.0	174.0	
F	300.0	174.0	
	1,380.0	800.4	1,148.4
Total		50,663.0	50,663.0
			••-

*Annual green lumber production data for 1968 determined by mail questionnaire, January 1969. MBF then multiplied by conversion factor (0.58) to determine bark quantity produced in green tons. Table 31 concludes the findings in Part IV. The Table summarizes the residue production for the study. These tables are then multiplied times estimated values for each type of residue to give the cumulative annual gross value of fine and coarse residues. These figures could also be considered the amount of value added to the forest products industry if they were sold.

In summary, Part IV presented the findings of the field and mail survey. Almost in all cases the data presented indicated gross waste of wood residue materials. Most of the current methods used to dispose of wood residues do not yield a return to the sawmill. For the most part little advertising is done to promote the sale of wood residues. Questionnaire responses indicated that the sawmill operator does not consider wood residues to be an unmanageable problem or the cost excessive. Personal interviews with most sawmill operators revealed that few alternatives to current wood residue methods have been considered. The sawmill operators' concern is sawing lumber, whether or not the residues are valuable or what happens to them does not seem to interest them to any measureable degree.

The findings relative to Phase III are discussed in Part V.

138

<u>Sawmill Residue Production Summary for</u> <u>Southern Half of Lower Michigan</u>^a (1968)

·		Detimeted	Fine Res	idue	Cumulative	Coarse Re	sidue	Cumulative
		Estimated	Accumulated	Annually	Annual	Accumula	ltea	Annual Gross
Saw-	NO.	Total	Sawausc	Bark	Gross value	Annua		Value of
mill	of	Lumber Sawn	(green	(green	of Fine	W/O Bark	W/Bark	Coarse
Class	Mills	Annually ^C	tons)	tons)	Residue ^a	(green	(green	Residue
		(000)			(dollars)	tons)	tons)	(dollars)
A	2	15,000.00	15,600.00	8,700.00	42,075.00	18,600.00	0.00	93,000.00
В	1	6,250.00	6,500.00	3,625.00	17,531.25	7,750.00	0.00	38,750.00
С	7	32,265.00	33,555.60	13,058.70	83,434.57	27,918.60	17,745.00	175,083.00
D	29	63,995.00	66,554.80	22,182.80	160,837.22	47,423.80	46,865.00	330,849.00
E	31	32,095.00	33,378.80	1,948.80	69,193.60	4,166.40	52,297.70	125,427.40
F	56	22,037.00	22,918.50	1,148.40	47,272.50	2,455.20	36,503.70	85,283.40
LTF	24	2,125.50	2,210.50	0.00	.4,421.00	0.00	3,868.50	7,737.00
Total	150	173,767.50	180,718.20	50,663.00	424,765.15	108,314.00	157,279.90	856,129.80

^a41 counties in southern half of lower peninsula of Michigan

^bDefined in <u>Directory of Primary Wood Using Plants in Michigan</u>, 1968, Michigan Department of Conservation-Forestry Division

^CBoard feet of green lumber sawn; reported on January, 1969, mail questionnaire

^dEstimated at a value of \$2 per green ton for sawdust and \$1.25 per ton for bark loaded on e customer's truck at the sawmill

Estimated at a value of \$5 per green ton for debarked slabs and edgings and \$2 per ton for coarse residue with bark attached.

6**E**T

PART V

FINDINGS--RELATIVE TO PHASE III

Introduction

The results of the experiments using heuristic simulation are discussed in the following paragraphs. The discussion is centered on the hypotheses presented earlier and presents the results from three of the most typical processing configurations. Tables are presented in the text and in the appendix to facilitate the discussion.

Findings Relative to Hypothesis I

The first hypothesis, agricultural and horticultural use of sawdust and bark in bulk units dictates a raw material positioned processing unit, was investigated using the specially designed heuristic simulation program to calculate all of the costs. The same configuration was processed through the computer six times using a different supply radius. Various supply radii used were 9, 15, 21, 27, 33, and 39 miles. The distance between the processing plant and the sawmills included

within the supply radius was found to be critical for highbulk and low-value products like sawdust and bark.

Table 32 illustrates that it is not profitable to transport these materials to a processing plant except over very short distances. The inbound transportation cost difference between 15 miles and 39 miles is more than double and the increase in tons of raw material increased from 27,389 to only 30,567. The per unit cost of bulk sawdust and bark increases very rapidly as distance between raw material location and processing plant are increased. The most critical cost is inbound transportation. To hold this most important factor to a minimum, it was found necessary to locate as near as possible to the raw material supply.

Findings Relative to Hypothesis II

The second hypothesis, as scale of operations increase, unit costs will decrease up to an optimum size, utilizes the data from three separate configurations. Even though the configurations, Tables 33, 34, and 35, are not located in the same geographic part of the state, the data included from all three will be similar in the general trends because the least cost per unit radius in each configuration was selected. Detailed supply data developed by the computer for each configuration is shown in Appendix E and the individual costs are summarized in Table 36.

141

The Effect of Radius Change on Costs in a Processing Plant Configuration Simulation

Supply Radius (Miles)	9	15	21	- 27	33	39
Raw Material Cost	43,860	48,780	48,780	48,780	50,950	51,680
Total Inbound Transportation	17,178	20,761	20,761	20,761	27,543	42,195
Total Fixed Cost	45,844	45,844	45,844	45,844	45,844	45,844
Total Variable Cost	12,625	13,286	13,286	13,286	13,773	14,379
Inventory Holding Cost	877	975	975	975	1,019	1,033
Total Cost	123,849	13 3,619	133,619	133,619	143,536	160,162
Profit	35,762	37,938	37,938	37,938	34,981	24,505
Total Tons Processed	24,403	27,389	27,389	27,389	29,129	30,567
Average Unit Cost	5.08	4.88	4.88	4.88	• 4.93	5.24

	Pac	kaged Bark	Bu	1k Bark*	· · · · ·	Sawdı	ist	· · · · · · · · · · · · · · · · · · ·	
	Lawn	and Garden		Dairy	Da	iry	Nur	sery	Gross
County	Tons	Sales	Tons	Sales	Tons	Sales	Tons	Sales	Sales
r		570.05	700	0000 00	-	0000 00	110	440.00	
Isabella	9	5/2.85	1 /00	2800.00	700	2800.00	110	440.00	6612.85
Clinton	12	763.80	800	3200.00	800	3200.00	510	2040.00	9203.80
Shiawassee	17	1082.05	650	2600.00	650	2600.00	140	560.00	6842.05
Genesee	124	7892.60	400	1600.00	400	1600.00	1420	5680.00	16772.60
Oakland	228	14512.20	250	1000.00	250	1000.00	3140	12560.00	29072.20
Midland	¦ 16	1018.40	100	400.00	100	400.00	5 9 0	2360.00	4178.40
Gratiot	11	700.15	450	1800.00	450	1800.00	190	760.00	5060.15
Saginaw	60	3819.00	600	2400.00	600	2400.00	1890	7650.00	16179.00
Ingham	70	4455.50	750	3000.00	750	3000.00	1420	5680.00	16135.50
Tuscola	13	827.45	700	2800.00	[!] 700	2800.00	170	680.00	7107.45
Macomb	155	9865.75	450	1800.00	450	1800.00	2620	10480.00	23945.75
Bay	32	2036.80	250	1000.00	250	1000.00	1120	4480.00	8516.80
Livingston	13	827.45	650	2600.00	650	2600.00	344	1374.40	7401.85
Lapeer	<u>13</u>	<u> 827.45 </u>	446	1784.80	1000	4000.00	0	0.00	6612.25
Total	•		•		•				
Demand Satisfied	773	49201-45	7196	28784.80	7750	31000.00	13664	54654.40	163640.65

Summary of Trial Configuration No. 1 (Coordinate 4635--Radius 21 miles)

*No bulk bark was available to satisfy demand of nurseries or orchards, dairy consumed total.

1

······································	Packaged	Bulk	Sawdu	ist	Gross	-
Costs	Bark	Bark	Dairy	Nursery	Sales	-
Raw Material	866.10	8993.90	15490.16	27309.84	52760.00	
Driver	295.36	2749.64	1930.48	3403.52	8379.00	
Variable Truck	408.56	3803.44	3074.87	5421.13	12708.00	
Fixed Truck	117.07	1089.86	1173.73 -	2069.34	4450.00	
Total Inbound Trans.	820.99	7642.94	6179.08	10893.99	25537.00	
Inventory Holding	19.32	179.88	309,80	546.20	1055.20	
Allocated Fixed Cost	426.90	3974.19	4280.03	7545.8 9	16227.00	
Sawdust Fixed Cost	0.00	0.00	166.84	294,16	461.00	
All Bark Fixed Cost	142.68	1328.32	0.00	0.00	1471.00	
Pack. Bark Fixed Cost	7631.00	0.00	0.00	0.00	7631.00	
Bulk Bark Fixed Cost	0.00	0.00	0.00	0.00	0.00	
Total Fixed Costs	8200.58	5302.50	4446.87	7840.04	25790.00	
Sawdust Variable Cost	0.00	0.00	465.00	819.82	1284.82	14
All Bark Variable Cos	t 139.14	1295.32	. 0.00	0.00	1434.46	4
Pack. Bark Var. Cost	10157.22	0.00	0.00	0.00	10157.22	
Bulk Bark Var. Cost	0.00	0.00	0.00	0.00	0.00	
Total Variable Cost	10296.36	1295.32	465.00	819.82	12876.49	
Loading Costs	231.90	1799.05	775.00	1366.36	4172.31	
Total Costs	20535.26	25213.58	27665.91	48776.25	122191.00	
Profit (Loss)	28666.19	3571.22	3334.09	5878.15	41449.65	-

Pack	aged Bark	Bu	1k Bark*		Sawdust			•
<u>Lawn a</u>	nd		Dairy	Da	iry	Nur	sery	Gross
Tons	Sales	Tons	Sales	Tons	Sales '	Tons	Sales	Sales
12 12 8 119 17 11 12	763.80 763.80 509.20 7574.35 1082.05 700.15 763.80	650 800 500 750 650 450 800	2600.00 3200.00 2000.00 3000.00 2600.00 1800.00 3200.00	650 800 500 750 650 450 800	2600.00 3200.00 2000.00 3000.00 2600.00 1800.00 3200.00	770 140 160 1830 140 190 510	3080.00 560.00 640.00 7320.00 560.00 760.00 2040.00	9043.80 7723.80 5149.20 20894.35 6842.05 5060.15 9203.80
10	1010.40	220	0/9.20	750	2400.00	140	560.00	4857.00
228 800 1305	14512.20 50920.00 83063.25	0 0 4820	0.00 0.00 19279.20	250 50 6250	1000.00 200.00 25000.00	69 <u>0</u> 5369	275.60 <u>0.00</u> 21475.60	15787.80 51120.00 148818.05
	Pack <u>Lawn a</u> <u>Tons</u> 12 12 8 119 17 11 12 16 70 228 <u>800</u> 1305	Packaged Bark Lawn and Tons Sales 12 763.80 12 763.80 12 763.80 8 509.20 119 7574.35 17 1082.05 11 700.15 12 763.80 16 1018.40 70 4455.50 228 14512.20 800 50920.00 1305 83063.25	Packaged Bark Bu Lawn and Tons Sales Tons 12 763.80 650 12 763.80 800 8 509.20 500 19 7574.35 750 17 1082.05 650 12 763.80 800 19 7574.35 750 17 1082.05 650 11 700.15 450 12 763.80 800 16 1018.40 220 70 4455.50 0 228 14512.20 0 800 50920.00 0 1305 83063.25 4820	Packaged Bark Bulk Bark* Lawn and Dairy Tons Sales Tons Sales 12 763.80 650 2600.00 12 763.80 800 3200.00 12 763.80 800 3200.00 12 763.80 800 3200.00 19 7574.35 750 3000.00 17 1082.05 650 2600.00 11 700.15 450 1800.00 12 763.80 800 3200.00 11 700.15 450 1800.00 12 763.80 800 3200.00 12 763.80 800 3200.00 16 1018.40 220 879.20 70 4455.50 0 0.00 800 50920.00 0 0.00 800 50920.00 0 0.00 1305 83063.25 4820 19279.20	Packaged Bark Bulk Bark* Dairy Da Isom and Dairy Da Tons Sales Tons Sales Tons 12 763.80 650 2600.00 650 800 3200.00 800 12 763.80 800 3200.00 800 800 3200.00 800 19 7574.35 750 3000.00 750 750 170 650 17 1082.05 650 2600.00 650 450 800 3200.00 800 12 763.80 800 3200.00 650 11 700.15 450 1800.00 450 12 763.80 800 3200.00 800 3200.00 800 16 1018.40 220 879.20 600 70 250 800 50920.00 0 0.000 50 50 50 50 1305 83063.25 4820 19279.20 6250 5	Packaged Bark Bulk Bark* Dairy Dairy Dairy Tons Sales Tons Sales Tons Sales Sales 12 763.80 650 2600.00 650 2600.00 12 763.80 800 3200.00 800 3200.00 8 509.20 500 2000.00 500 2000.00 19 7574.35 750 3000.00 750 3000.00 17 1082.05 650 2600.00 650 2600.00 11 700.15 450 1800.00 450 1800.00 12 763.80 800 3200.00 800 3200.00 12 763.80 800 3200.00 800 3200.00 16 1018.40 220 879.20 600 2400.00 70 4455.50 0 0.00 250 1000.00 800 50920.00 0 0.00 50 200.00 1	Packaged Bark Bulk Bark* Sawdust Lawn and Dairy Dairy Dairy Nur Tons Sales Tons Sales Tons Sales Tons 12 763.80 650 2600.00 650 2600.00 770 12 763.80 800 3200.00 800 3200.00 140 8 509.20 500 2000.00 500 2000.00 160 119 7574.35 750 3000.00 750 3000.00 1830 17 1082.05 650 2600.00 650 2600.00 140 11 700.15 450 1800.00 450 1800.00 190 12 763.80 800 3200.00 800 3200.00 140 11 700.15 450 1800.00 450 1800.00 140 70 4455.50 0 0.00 750 3000.00 1420 228 1451	Packaged Bark Bulk Bark* Sawdust Lawn and Dairy Dairy Dairy Nursery Tons Sales Tons Sales Tons Sales Tons Sales 12 763.80 650 2600.00 650 2600.00 770 3080.00 12 763.80 800 3200.00 800 3200.00 140 560.00 8 509.20 500 2000.00 500 2000.00 160 640.00 119 7574.35 750 3000.00 750 3000.00 1830 7320.00 17 1082.05 650 2600.00 650 2600.00 140 560.00 12 763.80 800 3200.00 800 3200.00 140 560.00 12 763.80 800 3200.00 800 3200.00 140 560.00 12 763.80 800 3200.00 800 3200.00 140 560.00

<u>Summary of Trial Configuration No. 2</u> (Coordinate 3528--Radius 21 miles)

*No bulk bark was available to satisfy demand of nurseries or orchards, dairy consumed total.

	Packaged	Bulk	Sawd	lust	Gross
Costs	Bark	Bark	Dairy	Nursery	Sales
Raw Material	1627.84	6012.16	12479.67	10720.33	30840 00
Driver	646.86	2389.09	2238.51	1922 94	7197 40
Variable Truck	1285.18	4746.62	5210.15	4475.65	15717 60
Fixed Truck	327.29	1208.77	1567.46	1346.48	4450.00
Total Outbound Trans.	2259.33	8344.47	9016.12	7745.07	27365.00
Inventory Holding	32.56	120.24	249.59	214.41	616.80
Allocated Fixed Cost	1193.45	4407.81	5715.76	4909,98	16227.00
Sawdust Fixed Cost	0.00	0.00	247.98	213.02	461.00
All Bark Fixed Cost	313.42	1157.58	0.00	0.00	1471.00
Packaged Bark Fixed Cos	± 7631.00	0.00	0,00	0,00	7631.00
Bulk Bark Fixed Cost	0.00	0.00	0.00	0.00	0.00
Total Fixed Costs	9137.87	5565.39	5963.74	5123.00	25790.00
Sawdust Variable Cost	0.00	0.00	375.00	322,13	697.13
All Bark Variable Cost	234,90	867,56	0.00	0.00	1102.46
Pack. Bark Var. Cost	17147.70	0.00	0.00	0,00	17147.70
Bulk Bark Variable Cost	0.00	0.00	0.00	0.00	0.00
Total Variable Costs	17382.60	867,56	375.00	322,13	18947.30
Loading Costs	391.50	1204.95	625.00	536.89	2758.34
Total Costs	30831.71	22114.78	28709.13	24661.83	106317.44
Profit (Loss)	52231.54	-2835.58	-3709.13	-3186.23	42500.61

Table 34, cont.

Summary of	<u>Trial</u>	<u>Configura</u>	ation	No.	<u>3</u>
(Coordina	te 352	0Radius	27 m	iles))

· ·	Packaged Bark		Bulk Bark *		Sawdust				1
	Lawn a	nd Garden		Dairy	Da	iry	Nur	sery	Gross
County	Tons	<u>Sales</u>	Tons	Sales	Tons	Sales	Tons	Sales	Sales
	•		1						
Eaton	; 16	1018.40	600	2400.00	600	2400.00	140	560.00	6376.40
Clinton	12	763.80	800	3200.00	800	3200.00	510	2040.00	9203.80
Ionia	12	763.80	800	3200.00	800	3200.00	140	560.00	7723.80
Barry	8	509.20	500	2000.00	500	2000.00	160	640.00	5149.20
Kalamazoo	54	3437.10	250	1000.00	250	1000.00	2650	10600.00	16037.10
Calhoun	44	2800.60	600	2400.00	600	2400.00	1190	4760.00	12360.60
Jackson	40	2546.00	600	2400.00	600	2400.00	320	1280.00	8626.00
Ingham	70	4455.50	750	3000.00	750	3000.00	1420	5680.00	16135.50
Shiawassee	17	1082.05	650	2600.00	650	2600.00	140	560.00	6842.05
Kent	: 119	7574.35	462	1849.20	750	3000.00	1830	7320.00	19743.55
Oakland	<u>228</u>	14512.20		0.00	_250	1000.00	3140	12560.00	28072.20
Total	-				u .				
Demand	. 620	39463.00	6012	24049.20	6550	26200.00	11640	46560.00	136272.20
Satisfied		-							
			<u>_</u>		L				

*No bulk bark was available to satisfy demand of nurseries or orchards, dairy consumed total.

Table 35, cont.

	Packaged	Bulk	Sawd	Gross	
Costs	Bark	Bark	Dairy	Nursery	Sales
Raw Material	773.10	7496.90	13071.19	23228.81	44570.00
Driver	331.13	3211.07	2783.68	4946.87	11272,75
Variable Truck	706.05	6846.75	7213.35	12818.85	27585.00
Fixed Truck	111.15	1077.85	1174.25	2086.75	4450.00
Total Inbound Trans.	1148.33	11135.67	11171.28	19852.47	43307.75
Inventory Holding	15.46	149.94	261,42	464.58	891.40
Allocated Fixed Cost	405.31	3930.40	4281.91	7609.38	16227.00
Sawdust Fixed Cost	0.00	0.00	166.00	295.00	461.00
All Bark Fixed Cost	137.51	1333.49	0.00	0.00	1471.00
Packaged Bark Fixed Cost	7631.00	0.00	0.00	`0 . 00	7631.00
Bulk Bark Fixed Cost	0.00	0.00	0.00	0.00	0.00
Total Fixed Costs	8173.82	5263.89	4447.91	7904.38	25790.00
S Sawdust Variable Cost	0.00	0.00	393.00	698.40	1091.40
All Bark Var. Cost	111.60	1082.21	0.00	0.00	1193.81
Packaged Bark Var. Cost	8146.80	0.00	0.00	0.00	8146.80
Bulk Bark Variable Cost	0.00	0.00	0.00	0.00	0.00
Total Variable Costs	8258.40	1082.21	393.00	698.40	10432.01
Loading Costs	186.00	1503.07	655.00	1164.00	3508.07
Total Costs	18555.11	26631.69	29999.81	53312.63	128499.24
Profit (Loss)	20907.89	-2582.49	-3799.81	-6752.63	7772.96

|--|

Summary of Cost Data from Three Test Configurations*							
Product and Con-	(A)	(B)	(C) Inbound	(D)	(E) Trans.	(F) Unit Cost	
figura-	No.	Total	Transporta	- Unit	Unit	Excluding	
tion no.	Tons	Cost	tion Costs	Cost	Cost	Trans.	
Packaged Bark		,					
No. 1	773	20535.26	820.99	26.56	1.06	25.50	
No. 2	1305	30831.71	2259.33	23.33	1.73	21.89	
No. 3	620	18555.11	1148.33	29.92	1.86	28.06	
Bulk Bark							
No. 1	7196	25213.58	7642.94	3.50	1.06	2.44	
No. 2	4820	22114.78	8344.47	4.59	1.73	2.86	
No. 3	6012	26631.69	11135.67	4.42	1.86	2.56	
Sawdust							
No. 1	21414	76442.16	17072.98	3.57	.79	2.78	
No. 2	11619	53390.96	16761.19	4.59	1.44	3.15	
No. 3	18190	83312.44	31023.75	4.58	1.70	2.88	

*Note. A fourth configuration operating on a 20 percent larger scale than number three proved to be less efficient for all products except packaged bark and per unit cost reversed and began to increase, see trend in column (D) above relative to tons processed in column (A).

In column (D) of Table 36 the unit cost is shown and, when compared with the number of raw material tons in column (A), it is found that unit cost for larger scale operations does decrease up to an optimum size and past that point begins to increase. The same results are found when the costs in columns (E) and (F) are likewise compared to the quantities processed in column (A).

Although the increasing cost per unit figures which result when the optimum size scale of operations has been passed are not included in the Table, this was indeed found to be true during the trial computer runs. Over 48 different configurations were tested and six intensively. The computer program and data card listing used in this research are included in Appendix D.

Findings Relative to Hypothesis III

The third hypothesis, the type of raw material used as product input (i.e., sawdust or bark) will influence the location of the processing unit, was also analyzed using the processing plant simulation. As different processing plant locations were evaluated it was found that the raw material used as product input had a considerable effect on the location of the processing plant.

The primary reason found as an explanation for this occurrence was a rather simple one. Only about two dozen

sawmills in lower Michigan have debarkers; therefore, since bark is the most profitable raw material input, the processing unit should locate relatively close to this supply. During actual experiments tried with the simulation, it was found that the type of raw material used as product input did influence the location of the processing plant and the total profitability of the configuration. By locating near the supply of bark, it was possible to maximize the margin on bark products. Likewise, to maximize the less profitable margin on sawdust, the processing plant had to be located extremely close to large sources of sawdust supply.

The conclusions and implications of the results presented above are discussed in Part VI. In addition, suggestions for further research, based on the present project, are presented.

PART VI

CONCLUSIONS AND IMPLICATIONS

After careful coverage of the field survey results, mail survey results, and hypotheses, there is sufficient background upon which to report the author's conclusions concerning the central thesis behind the entire study.

The thesis was:

There presently exist agricultural and horticultural markets for fine sawmill residues, and that transformation of the sawmill residue disposal problem into a source of income through the establishment of a firm to collect, process, and market the material is economically feasible.

After careful examination of the findings, it was concluded that the research data supports the establishment of a wood residue processing plant as outlined in the study.

Because of a wide profit margin between bark as a raw material and units of packaged bark, it was shown that packaged bark products can almost always be produced at a reasonable profit in the majority of configurations. In many cases when the processing plant is located near good supplies of bark, the profit on bark products is sufficient to carry

large losses on sawdust products. Sawdust products have a very narrow profit margin and contribute to the profitability of only those few configurations having a large concentration of sawmills within a 15 mile radius of the processing plant. The above should be pointed out as one of two reservations about the success of the processing plant. To overcome this limitation, a processing plant could be designed just to process bark initially into upgraded products such as cat litter, floor sweeping compound, etc., a little at a time to increase the size of product lines.

The second reservation is that minimum realistic costs were used in simulation. Before entering such a business, it would be necessary for a person to update the program and cost figures to evaluate selected locations for current profitability. Also, to be considered by a person interested in operating a processing plant would be: one, local and out-of-state competition; two, the changes that have taken place in the sawmill industry since the study was completed; and three, changes in the types of sawmill products and methods of producing them.

Because the processing plant is designed to process both sawdust and bark, bulk sales of each can be sold only in local markets until such a time that demand becomes sufficient to raise the price to a level where it is possible to transport

the material greater distances. As opportunities arise for sawdust to be upgraded as a final product, and increased vertical integration takes place in the sawmill industry, increases in both markets and profit will be possible in many more configurations.

Results of the field survey interviews confirm the fact that agricultural and horticultural markets for sawdust and bark products are rapidly growing. Whether or not the market potential is exploited depends on the future attitude of production oriented sawmill operators toward marketing.

The field survey was considered as beneficial, since the information that was set forth in the secondary objectives was obtained in detail. Each of the 50 sawmills visited was in operation during the summer of 1968 and in all cases either the owner or regular operator was on hand and willing to talk and express opinions about wood residue utilization.

Even though vast quantities of wood residues are accumulated around typical Michigan sawmills, it was concluded from talking with the sawmill owners and operators that the typical sawmill does not at this time consider wood residue disposal a serious problem. In general, they do not consider the cost of burning or dumping as significant enough to spend any effort developing bark and sawdust markets. A few mills have developed markets and report being very

pleased. It could be concluded that with the advent of stiffer air pollution legislation, more sawmills will begin aggressive bark and sawdust marketing programs.

It was concluded from on-site observation of the wood residue quantities available that there is definitely enough raw material available in the form of bark and sawdust to provide significant growth to the present sawmill industry and new wood related industries which would use these materials as a basis for new products. The major limiting factor at this time is technology. Until products of greater retail value can be made from these materials, utilization will continue to be limited to agricultural and horticultural markets.

Photographs taken of wood residue will provide a capsule summary of information about its basic characteristics for the agricultural and horticultural markets. It is considered reasonable to assume that the more information that is available to the prospective markets, the sooner they will begin using the products.

During the personal visits to sawmill operations, it was possible to learn whether or not any bark or sawdust was being sold in local markets. Several sawmill operators mentioned markets which were currently buying bark and/or sawdust. Upon visiting some of these markets--orchards,

nurseries, dairy farms and lawn and garden centers--it was concluded that there are very definite applications for which bark and sawdust are considered "naturals." The two biggest limiting factors are price and available sources of supply, but both can be overcome as more utilization information is made available to sawmill operators and potential consumers.

The competition for packaged bark products in lawn and garden centers was briefly listed in Table 22. It can be concluded from a comparison of prices that local hardwood bark mulch in a package is very competitive. A large part of the success is considered to be a direct result of producers using attractive, colorful, informative, plastic bags as containers that merchandise as well as serve a functional purpose. It was concluded that the additional cost of these more expensive bags, over plain paper or plastic bags, is not significant since the affluent lawn and garden market seems to be quality conscious and attracted to these expensive packages.

Concluded from visits to orchards, nurseries, and dairy farms, was that bark is most acceptable to these markets when it has been processed through a wood hog and reduced to a uniform size. This is an expensive process, but numerous sawmills are finding the additional effort well worth the expense in premium sales.

The mail survey was effective in obtaining data not previously available for sawmills in southern Michigan. The major contribution is made in the form of annual hardwood lumber production data. Detailed information on wood residue handling and disposal methods, even though of lesser importance, add greatly to current information about the sawmill industry.

Responses on the mail questionnaire were interpreted to conclude the same as the field survey with respect to the residue problem. From the data in Figure 19 and Table 27 sawmill owners and operators as a whole do not at this time consider wood residue disposal a costly or time consuming task as was believed.

The amount of advertising being done by sawmills, Figure 18, in an effort to stimulate the sale of wood residues, is very small. It can be concluded that the amount being done may be too little and not in the proper media.

The mail survey detailed the disposal methods used for sawdust and bark in Figures 20 and 21, respectively. It is concluded from these data and actual sales data in Tables 28 and 29, that very little bark is presently sold. Sawdust on the other hand was reported to be given away or sold by over half of the respondents. The general conclusion from

this information is that sawdust currently enjoys more markets than does bark and reflects the stronger demand by commanding almost twice the price of bark.

Lastly, it was concluded that the computer simulation designed specifically for the sawmill industry did serve as an effective management decision tool in determining the probable success of the proposed processing plant. The heuristic simulation, even though not a new technique in the wood industry, is nevertheless original in design, structure and application and was effective in bringing new knowledge to the wood industry.

Due to the flexible nature of the program, it will be possible for a computer programmer to update current cost figures and use the simulation for future market evaluations.

Conclusions relative to the first hypothesis, agricultural and horticultural use of sawdust and bark in bulk units dictates a raw material positioned processing unit, were positive. Wood residues are high-bulk, low-value products, which do not greatly increase in value when processed for agricultural and horticultural use. For this reason they cannot be transported very far. The cost of inbound transportation and per unit cost for raw material brought to the processing plant from supply points located at increasing distances increase rapidly. The data in Table 32 shows the

limiting influence of distance. The importance of locating near the source of raw material is provided in this one data summary and constitutes the necessary proof accepting the . hypothesis.

Conclusions relative to the second hypothesis, as scale of operations increase, unit costs will decrease up to an optimum size, were also positive.

Table 36 is a summary of three configurations, each a different scale of operation and each representing the least cost per unit radius for that particular configuration.

Experiments were completed using radii from 3 miles to 39 miles for each of the three configurations. In each case where a larger radius was tried for each of the three configurations included in the study, the scale of operations increased and per unit cost increased. This is due to the radius selected for each of the configurations included being of an optimum nature. It was concluded that unit cost did in each case decrease up to an optimum size scale of operation and then began to increase. On the basis of the above experiments the hypothesis is accepted.

Conclusions relative to the third hypothesis, the type of raw material used as product input (i.e., sawdust and bark) will influence the location of the processing unit, were also positive.

Raw material inputs are often in small quantities and at scattered sawmill locations. Experiments with the simulation program showed that if bark is the desired primary input it was necessary to locate near the bark supply, not only to reduce per unit cost but because bark is not available at every sawmill. Since inbound transportation costs for wood residues often become prohibitive at radii over 21 miles, conclusions were that raw material input will most definitely influence the location of the processing unit. On the basis of the above simulation experiments, this hypothesis is accepted.

Implications

The general implication of the above conclusions is that if wood residues are to be sold as an alternative means of disposal, much more basic marketing research and data collection is necessary. Not only the sawmills need to be studied, but the markets and the methods of reaching them need to be evaluated. It is essential that a program of utilizing wood residues rather than disposing of them in the traditional manner would add as much as \$2,000,000 to the industry income in southern lower Michigan. This would include money earned on new products and dollars saved in disposal costs.

For the most part this study concentrated on the wood residue situation at the sawmill site, although during the field survey contact was made with the dairy industry, orchard industry, nursery industry, and lawn and garden industry. The four industries currently represent the major markets for wood residues and yet persons in the wood industry know very little about the markets and their needs. Going one step further, it can be said that even less is known about how to reach these various markets. In short, the wood industry has remained production oriented during a period when most industries have become market oriented. To meet the competition effectively, even in the bark and sawdust markets, new thinking and new research are necessary in the wood industry to form the needed background.

The simulation that became such an important part of the study is a research tool capable of mass data analysis. This technique is only one of many sophisticated tools that has been brought into the wood industry in recent years to help form a data base upon which to draw the producers of wood residue together with the current needs of the markets. It is almost certain that as demand for these markets increase, the sawmill industry with a long history of production orientation, will at last become aware of the markets around them and effectively change their residue disposal problem into a profitable market opportunity.

The major implication running through this study is that the industry is rapidly changing, in part as a result of progress and technology, but also as a result of outside influences such as air pollution legislation. The pressure from this one program alone will do much to promote the utilization of wood residues by forcing sawmill owners to seek new alternatives to disposal.

The elimination of the expense of residue disposal would contribute significantly to additional income in the sawmill industry each year. Not only would the expense of disposing of the material with no return be reversed, but formal marketing would begin and the materials would be paying their own way; not only to existing businesses but in some cases becoming the primary raw material product of new industries such as the one in the study.

Suggestions for Further Research

As a result of the present research several areas for further study can be identified. The first such area in need of development is a standard unit measure for fine wood residues. The current study used the ton measure, but responses on the mail survey indicated many rather arbitrary units of measure were being used during the sale of residues. This is necessary not only to facilitate the sale of present sawmill residues, but will provide a measure for the time when large scale marketing is done.

A second area for further research is concerned with determining the cost of residue disposal at the sawmill site. Answers on the mail questionnaire reported only small costs being involved. Observations made during the field survey suggest that considerable expense is involved in both men and machine-time to dispose of daily mill residues. The availability of accurate cost figures might provide the impetus toward greater wood residue utilization when presented in conjunction with increasing market opportunities.

A third area in which a great deal of important research could be conducted deals with obtaining detailed market data on the size of agricultural and horticultural markets including the determination of long-range requirements. For purposes of the present survey the size of each market was estimated using available agricultural statistics. A secondary purpose of the study would be to conduct "missionary" work in the potential markets in order to create interest, to inform people about the uses for wood residues and where they might be obtained.

Another area for research is the identification of wood residue markets not included in this study which may offer equally valuable opportunity. Only a small percent of total wood residue quantities produced are utilized and these have not been the high dollar markets offering sizeable return.

One example would be the particle board industry which may have a need for raw material with characteristics similar to available sawmill residues.

A final area for particularly useful research deals with the development of a heuristic simulation of the Grand Rapids, Michigan, furniture industry residue. With the current interest in particle boards made from sawmill and furniture plant residue, it would be extremely valuable to the furniture industry to have detailed data on quantities and costs of residues produced within the city.

By having access to a highly specialized computer simulation such as this, it would be possible for the Furniture Manufacturer's Association to take positive action in planning the future utilization of their wood residues.

GLOSSARY

GLOSSARY

To facilitate a better understanding of the study, the following definitions are included.

- AGRICULTURE: the science or art of cultivating the soil, harvesting crops, and raising crops.
- BARK: outer layer of a tree, comprising the inner bark, or thin, inner living part, and the outer bark, or corky layer, composed of dry, dead tissue.
- BOARD FOOT: a unit of measurement represented by a board 1 foot long, 1 foot wide and 1 inch thick, abbreviated bd. ft.
- CHIPPABLE MATERIAL: that portion of the solid residue component 1" x 1" x 24" or larger which can be converted into pulp chips.
- COARSE WOOD RESIDUE: around a sawmill operation; considered to be the slabs, edgings, and end trimmings that are produced incidental to the manufacture of lumber. Is a valuable source of solid wood often not utilized.
- CONFIGURATION: the general arrangement of elements to be included in a given system. In this application, meaning the geographic arrangement of supply sawmills and demand counties surrounding the residue processing plant.
- COST CENTERS: a group of the most important and closely related activities divided into basic functional units of the business for purposes of accurate control and cost accounting.
- FINE WOOD RESIDUE: around a sawmill operation, considered to be the sawdust, bark, and wood shavings that accumulate incidental to the manufacture of lumber.
- FIXED COSTS: are those elements of expense which do not vary with changes in volume of output but are related to time and plant capacity.
- GREEN LUMBER TALLY: a record of lumber giving the number of boards or pieces by size, grade and species actually sawed from logs in the sawmill. The moisture content of the lumber varies from 30 to 300 percent when it is "green" or unseasoned.
- GREEN TON: a unit of measure for sawdust and bark which takes into consideration their high moisture content at the time of processing at the sawmill, equal to 2000 pounds.
- HARDWOODS: .generally one of the botanical groups of trees that have broad leaves in contrast to the conifers or softwoods. The term has no reference to the actual hardness of the wood.
- HEURISTIC SIMULATION: is designed to seek an acceptable solution to a given problem. The total heuristic process attempts to keep reducing the problem to a manageable size, allowing managerial intervention at critical points in the search process in order to guarantee acceptable results.
- HEURISTICS: is the study of the methods of discovery and invention, and a heuristic is a maxim or proverb or way of approaching a problem which more often than not will yield useful results. A heuristic is not a formula, however, and may or may not work.
- HORTICULTURE: the cultivation of an orchard, garden or nursery on a small or large scale.
- INBOUND TRANSPORTATION COST: the cost of truck and driver to move the raw materials from sawmill to processing plant.
- INVENTORY HOLDING COST: the cost to hold raw materials at the processing plant for processing and finished goods inventory for sale.
- LOG DEBARKER: a machine used to mechanically remove the bark from logs prior to further processing.

- MOISTURE CONTENT OF WOOD: the weight of the moisture in wood, expressed as a percentage of its ovendry weight, abbreviated as m.c.
- MULCH: any substance, as straw, bark, sawdust, leaves, spread upon the ground to protect the roots of plants from heat, cold, or drought.
- OUTBOUND LOADING COST: the cost of loading finished goods on the customer's truck, includes men and machine time.
- PROCESSING PLANT COST: fixed and variable costs realized during the annual operation of the plant; to include men, plant, equipment, utilities and taxes.
- RAW MATERIAL COST: the cost of bark and sawdust purchased at rhw sawmill site and loaded on the truck.
- SIMULATION: is a process by which a model of a particular situation is developed and tested using facts from real world conditions.
- SOIL CONDITIONER: any substance used to improve the structure of the soil and increase its porosity and crumbliness.
- SPECIFIC GRAVITY OF WOOD: the decimal ratio of the ovendry weight of a piece of wood to the weight of the water displaced by the wood at a given moisture content, abbreviated as sp.gr.
- VARIABLE COST: are those expenses that vary with changes in volume of output; they are usually considered as costs of volume which will increase in total at the same rate as volume increases.
- WOOD RESIDUE: all forms of wood resulting from sawmill manufacturing operations that are not currently marketed at a profit because of current economic conditions, insufficient technological development, or inadequate marketing efforts.
- WOOD RESIDUE CONVERSION FACTORS: factors that have been determined through research to represent the quantity (in tons) of wood residue produced during the process of sawing one thousand board feet of lumber. Separate factors are available for individual types of residue produced.

LITERATURE CITED

「あまいろう」をいたいであるというで、ないのでいたので、このでいたいで、このないないではないである」というで、

LITERATURE CITED

- Allison, F. E. and M. S. Anderson 1951. The Use of Sawdust for Mulches and Soil Improvement. U.S.D.A. Circular No. 891.
- Allison, F. E., W. H. DeMar, and J. H. Smith 1963. Toxicity to garden peas of certain finely-ground woods and barks mixed with soil. Agron. Jour. 55:358-360.
- 3. Allison, F. E. and C. J. Klein 1961. Comparative rates of decomposition in soil of wood and bark particles in several softwood species. Soil Sci. Soc. Amer. Proc. 25:193-196.
- Allison, F. E. and R. M. Murphy 1962. Comparative rates of decomposition in soil of wood and bark particles of several hardwood species. Soil Sci. Soc. Amer. Proc. 26:463-466.
- 5. Allison, F. E. and R. M. Murphy 1963. Comparative rates of decomposition in soil of wood and bark particles of pines. Soil Sci. Soc. Amer. Proc. 27:309-312.
- G. Anderson and Blake 1951. Peat and Muck in Agriculture. U.S.D.A. Circular No. 888.

- Anonymous 1968. Directory of Primary Wood Using Plants in Michigan. Michigan Department of Conservation, Forestry Division, Lansing, Michigan.
- 8. Applefield, Milton 1954. Economic Considerations for a Successful Utilization of Sawmill Wood Residues. Forest Products Journal 4(4):11A-17A.
- 9. Armour Research Foundation 1957. Soil Builder from Bark. Chemical and Engineering News 35(5):30.

- 10. Basham, B. M. and W. S. Thompson 1967. An Economic Study of the Production and Use of Sawdust and Bark as Mulches and Soil Amendments for Horticultural and Agricultural Purposes. Mississippi Forest Products Utilization Laboratory, Information Series No. 6.
- 11. Baxter, H. O. 1964. Summary of Research on Sawdust and Bark for Agricultural Uses. Agricultural Experiment Station, College of Agriculture, Athens, Georgia.
- 12. Bear, Firman E., and Arthur L. Prince 1951. Organic Matter in New Jersey Soils. N. J. Agricultural Experiment Station, Bulletin 757.
- Bernstein, A., M. V. Roberts, T. Arbuckle and H. H. Belsky 1958. A Chess-Playing Program forthe IBM 704. Procedures of the 1958 Western Joint Computer Conference, pp. 157-159.
- 14. Bollen, W. B. and D. W. Glennie 1961. Sawdust, Bark, and Other Wood Wastes for Soil Conditioning and Mulching. Forest Products Journal 9(4): 39A-42A.
- 15. Bollen, W. B. and K. C. Lu 1957. Effect of Douglas Fir Sawdust Mulches and Incorporation on Soil Microbial Activity and Plant Growth. Soil Sci. Soc. Amer. Proc. 21:35-41.
- 16. Bowersox, D. J., E. W. Smykay and B. J. LaLonde 1968. <u>Physical Distribution Management</u>. New York: MacMillan, p. 323-347.
- 17. Bureau of Business and Economic Research 1968. Michigan Statistical Abstract. Graduate School of Business Administration, Michigan State University, East Lansing.
- Caurant, R., and H. Robbins. 1941. <u>What is Mathematics</u>. Oxford University Press.
- 19. Clarkson, G. P. and A. H. Meltzer 1960. Portfolio Selection: A Heuristic Approach. Journal of Finance, December.
- 20. Dudley, F. L. and L. L. Kelly 1941. U.S.D.A. Circular No. 608.

- 21. Dunn, S. and J. D. Emery 1959. Wood Wastes in Composts. Forest Products Journal 9(8):277-281.
- 22. Dunn, W., L. P. Wolfe, Jr., W. A. MacDonald, and J. R. Baker 1950. Field Plot Studies with Sawdust for Soil Improvement. Plant and Soil 4:164-170.
- 23. Geleinter, M. and N. Rochester 1958. Intelligent Behavior in Problem-Solving Machines. IBM Journal of Research and Development, Volume 2, pp. 336-345.
- 24. Gere, W. S., Jr. 1960. Heuristics in Job Shop Scheduling. O.N.R. Memorandum No. 70, Carnegie Institute of Technology, June.
- 25. Gibbs, W. M. and H. W. Batchelor 1927. Effect of Tree Products on Bacteriological Activities in Soil. II. Study of Forest Soils. Soil Science 24:351-363.
- 26. Gibbs, W. M. and C. H. Werkman 1922. Effect of Tree Products on Bacteriological Activities in Soil. I. Ammonification and Nitrification. Soil Science 13:303-322.
- 27. Gomary, R. E. 1961. An Algorithm for Integer Solutions to Linear Programs. Princeton--IBM Mathematics Research Project, Technical Report No. 1.
- 28. Haataja, B. A. and L. W. Hooker 1965. Mill Residue Survey. Institute of Wood Research, Michigan Technological University, Houghton, Michigan.
- 29. Hiller, L. A. and L. M. Isaacson 1959. <u>Experimental</u> <u>Music</u>. McGraw Hill, New York.
- 30. Ivory, E. P. and P. Field 1959. Utilizing Bark at Medium-Sized Mills. Forest Products Journal 9(4): 22A-30A.
- 31. Kemeny, J. G. and G. L. Thompson 1958. The Modified Fictitious Play Methods. Dartmouth Mathematics Project Report No. 3.
- 32. King, W. W. 1956. Survey of Sawmill Residues in East Texas. Texas Forest Service Technical Report No. 3.

- 33. Kuehn, A. A. and M. J. Hamburger 1963. A Heuristic Program for Locating Warehouses. Management Science 9(4):643-666.
- 34. Lunt, H. A. 1955. The Use of Wood Chips and Other Wood Fragments as Soil Amendments. Connecticut Agricultural Experiment Station Bulletin 593.
- 35. Lunt, O. R. and B. Clark 1959. Horticultural Applications for Bark and Wood Fragments. Forest Products Journal 9(4):39A-42A.
- 36. Mater, Jean 1967. Bark Utilization, A review and Projection. Forest Products Journal 17(12):15-20.
- 37. McCool, M. M. 1948. Studies on pH Values of Sawdusts and Soil-Sawdust Mixtures. Boyce Thompson Inst. Contrib. 15:279-282.
- 38. Newell. A. J. C. Shaw and H. A. Simon 1958. Chess Playing Programs and the Problem of Complexity. IBM Journal of Research and Development, Volume 2, pp. 320-335.
- 39. Newell, A., J. C. Shaw and H. A. Simon 1958. The Process of Creative Thinking. The RAND Corporation Paper, P-1320.
- 40. Newell, A. and H. A. Simon 1956. The Logic Machine Theory. IRE Transcript on Information Theory, IT-2.

- Page, R. H. and J. R. Saucier 1958. Survey of Wood Residues in Georgia. Georgia Forest Research Council, Resource-Industry Series No. 1.
- 42. Pinck, L. A., F. E. Allison and V. L. Gaddy 1946. The Nitrogen Requirements in the Utilization of Carbonaceous Wastes in Soil. American Soc. Agron. Journal 38:410-420.
- 43. Pratt, A. J. and S. Comstock 1958. Mulches or Cultivation for Vegetable Crops? Farm Research, 4-5 January, New York Agricultural Experiment Station.
- 44. Reuszer, W. H., R. L. Cook and E. R. Graham 1957. Wood Wastes and Soil. Crops and Soil 9(4):12-13.
- 45. Reynolds, W. H. 1968. Heuristics for the Businessman. Michigan State University Business Topics, Winter, pp. 14-22.

- 7

- 46. Roberts, A. N. and W. M. Mellenthin 1959. Effects of Sawdust Mulches. II. Horticultural Crops. Oregon Agricultural Experiment Station, Technical Bulletin 50.
- 47. Salomon, M. 1951. Decomposition of Wood Chips in Soil. N. E. Wood Utilization Council Bulletin 33:81-82.
- 48. Salomon, M. 1953. The Accumulation of Soil Organic Matter from Wood Chips. Proc. Soil Sci. Soc. Am. 17:114-118.
- 49. Samuel, A. L. 1959. Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development, Volume 3, pp. 210-229.
- 50. Shycon, H. N. and R. B. Maffei 1960. Simulation--Tool for Better Distribution. Howard Business Review 38(6):65-75.
- 51. Simmons, F. E. and A. R. Bond 1955. Sawmill "Waste" in Maryland. U.S.D.A. Northeastern Forest Experiment Station, Station Paper No. 74.
- 52. Simon, H. A. 1961. Modeling Human Mental Processes. Procedures of the 1961 Western Joint Computer Conference.
- 53. Simon, H. A. and A. Newell 1958. Heuristic Problem Solving: The Next Advance in Operations Research. Operations Research 6(1):1-10.
- 54. Tenny, F. G. and S. A. Waksman 1929. Composition of Natural Organic Materials and Their Decomposition in Soil. IV. The Nature and Rapidity of Decomposition of Various Organic Complexes in Different Plant Materials Under Aerobic Condition. Soil Science 28:55-83.
- 55. Tonge, F. M. 1960. Summary of a Heuristic Line Balancing Procedure. Management Science 7(1):21-42.
- 56. Tonge, F. M. 1961. The Use of Heuristic Programming in Management Science. Management Science 7(2):231-237.
- 57. Turk, L. M. 1943. The Effect of Sawdust on Plant Growth. Michigan Agricultural Experment Station Quarterly Bulletin 25:10-22.

- 58. Waksman, S. A. 1926. The Origin and Nature of the Soil Organic Matter on Soil Humus. III. The Nature of the Substances Contributing to the Formation of Humus. Soil Science 22:323-333.
- 59. Waksman, S. A. and F. G. Tenny 1927. The Composition of Natural Organic Materials and Their Decomposition in the Soil. II. Influence of Age of Plant upon the Rapidity and Nature of its Decomposition--Rye Plants. Soil Science 24:317-333.
- 60. White, A. W., Jr., J. E. Giddens, and H. D. Morris 1959. Effect of Sawdust on Crop Growth and Physical and Biological Properties of Cecil Soil. Soil Sci. Soc. Amer. Proc. 23:365-368.
- 61. Wilde, S. A. 1958. Marketable Sawdust Composts: Their Preparation and Fertilizing Value. Forest Products Journal 8(11):323-326.
- 62. Wright, K. T. and D. A Caul 1967. Michigan's Agriculture. Michigan State University Cooperative Extension Bulletin 582.

APPENDICES

. '

...

ð

APPENDIX A

Mail Survey Cover Letter and Questionnaire

December 16, 1968

Dear Sawmill Operator:

I am a graduate student at Michigan State University, and I am presently doing a study on the nature and uses of wood residue products in Michigan. If I am successful in my research, I hope to help you and other sawmill operators convert your wood residue from a nuisance to a by-product in the lumber industry.

In order to complete my research, I need some important information that only you as a sawmill operator can supply. I wonder if you would take a few minutes and fill out the attached questionnaire. I know all these figures will not be at your fingertips, so I would appreciate your best estimates if you can't find the exact figures.

Thank you in advance for your help, and you may be sure that all of your answers to the attached questionnaire will be held strictly confidential.

Sincerely,

Harley Thomas Research Associate

Idm a. Behr

Eldon A. Behr Professor

MICHIGAN SAWMILL DATA FORM

January 1969

GENERAL QUESTIONS:

...

1.5

8

λ.	Check (\checkmark) the following	g equipm	ent if use	d by your	sawmill:	•
	<pre>Debarker D Chipper (pulp chips) Wood Hog</pre>	<pre>Tract Tract Fork- Teepe </pre>	or with fr lift truck e burner	ont loader or tracto	bucket or	
в.	Approximately how many each work day?	thousan MB	d board fe F	et of lumb	er do you a	aw
c.	Place checks in the column what methods you use to (\checkmark) as necessary)	lumns un 5 advert	der each w ise. (NOTE	ood produc : Use as	t indicatir many checks	ng S
		SAW-	FIR	e- "Hogge	D" BEDDING	
	BARK	DUST	SLABS WOO	<u>D & MU</u>	ICH	
	Sign at the mill		0 0		0	
	Newspapers	<u> </u>		l	2	
	Trade journal 🔤		0 0	1	0	
	DO NOT ADVERTISE					
D.	How much wood residue of	did you	produce la	st year? (Check one)	
	<pre>[] Large quantity (over [] Medium quantity (500 [] Small quantity (under</pre>	1000 gr - 1000 r 500 gr	een tons) green tons een tons))		
B.	Generally speaking, how remove from your sawmil	w costly Ll? (che	do you co ck one)	nsider woo	d residue (to
	D Very costly	Costl	Y	D Not	Costly	
P.	Place checks in the col indicating all methods	lumn und of resi	er each of due dispos	the four al you use	wood produc ed last y ea :	cts r.
	(mora: 036 as many che	SCAB da	mecessary)		TRIM &	
		BARK	SAWDUST	<u>SLABS</u>	EDGINGS	
	Selling (pulp chips,		Ū		Ū	
	firewood, etc.)					
	Give Away	ב	Ü	Ū	Ġ	
	Fuel			Ū		
	Burn in Open	Ū			D	
	Burn in teepee burner					
	Dump at back of mill s	ite 🗆	Ō	Ō		

G.	How many days did your mill operate last year? days
Η.	Estimate how many man-hours it takes each week to remove the wood residue from
	your mill man-hours
SAW	DUST:
<u>.</u>	What percent (%) of your sawdust did you sell last year?
Β.	How do you sell sawdust? (Check one) Truck load, size truck
	Cubic yard pounds or tons
C.	How much do you charge per unit? 1. Loaded by customer per unit 2. Loaded by mill per unit
	3. Delivered per unit
040	Ka (Answer anly if you have a debarker)
DAN	
Α.	What percent (%) of your bark did you sell last year?
в. С	How many cubic yards of bark old you "peel" tast week?
C.	Approximately how many cubic yards of bark do you usually "peel" in one week!
D.	Do you process bark through a "wood hog"? 🔲 Yes 📋 No
E.	How much would you charge me for 10 cubic yards of bark if I parked my truck under the bark conveyor at your mill? dollars
•••	
<u>SLA</u>	BS: (Answer only if you DO NOT produce chips)
٨.	Do you sell slabs? 🔲 Yes 🗌 No
8.	In your mill do you direct your slabs past a "cut-off" saw where they are cut into FIREWOOD?
c.	How much per cord do you charge for FIREWOOD picked up at the sawmill by the
	If you deliver? price per cord - average
WOO	D CHIPS: (Answer only if you are a chip producer)
A.	Do you buy debarked slabs? 🛛 Yes 💭 No
8.	Where do you sell chips?[] Detroit [] Otsego [] Muskegon
C,	How many <u>road miles</u> is it (one way) from your mill to: Detroit Muskegon Otsego
Ð.	How many chip vans do you OWN? RENT OR LEASE? CONTRACT?
ε,	How many TONS of chips did you haul last week? green tons
F.	How many TONS of chips do you haul in an average week? green tons
G.	If you had the opportunity to go into pulp chip production, and were not already in the business, would you make the investment?

Thank you.

.

:

•	176
G.	How many days did your mill operate last year? days
H.	Estimate how many man-hours it takes each week to remove the wood residue from your mill man-hours
SAW	<u>DUST</u> :
A.	What percent (%) of your sawdust did you sell last year?%
8.	How do you sell sawdust? (Check one) 🗍 Truck load, size truck
C.	How much do you charge per unit? 1. Loaded by customer per unit 2. Loaded by mill per unit 3. Delivered per unit
BAR	K: (Answer only if you have a debarker)
A.	What percent (%) of your bark did you sell last year?%
8.	How many cubic yards of bark did you "peel" last week? cu. yd.
C.	Approximately how many cubic yards of bark do you usually "peel" in one week? cubic yards
D.	Do you process bark through a "wood hog"?
E,	How much would you charge me for 10 cubic yards of bark if I parked my truck under the bark conveyor at your mill? dollars
<u>SLA</u>	BS: (Answer only if you DO NOT produce chips)
A.	Do you sell slabs? 🖸 Yes 🔲 No
B.	In your mill do you direct your slabs past a "cut-off" saw where they are cut into FIREWOOD?
C.	How much per cord do you charge for FIREWOOD picked up at the sawmill by the customer? price per cord - short cord 2x4x8' If you deliver? price per cord - average
WOO	D_CHIPS: (Answer only if you are a chip producer)
A.	Do you buy debarked slabs? 🔲 Yes 🖾 No
Β.	Where do you sell chips? Detroit 🗇 Otsego 🗇 Muskegon
C.	How many <u>road miles</u> is it (one way) from your mill to: Detroit Muskegon Otsego
D.	How many chip vans do you OWN? RENT OR LEASE?
E.	How many TONS of chips did you haul last week? green tons
F.	How many TONS of chips do you haul in an average week? green tons
G.	If you had the opportunity to go into pulp chip production, and were not already in the business, would you make the investment?

Thank you.

.

ESTIMATED QUANTITY OF HARDWOOD RESIDUE PRODUCED BY SAWMILLS IN SOUTHERN HALF OF LOWER MICHIGAN

			Actual							
			lumber		Quantity	/ in Tons		Mill	Sawmill	
		Directory	production			Solid Wood	Solid Wood	Code	Grid	
 County	No.	Class	(in. thous.)	Sawdust	Bark	W/O Bark	With Bark	No.	<u>Coordinate</u>	
							•			
Allegan	1	LTF	67.5*	70.2	0.0	0.0	122.9	42	1818	
-	2	D	2500.0*	2600.0	1450.0	3100.0	0.0	43	2121	
	3	F	300.0	312.0	0.0	0.0	546.0	44	2023	
	4	F	50.0*	52.0	0.0	0.0	91.0	45	1521	⊢
	5	F	480.0*	499.2	0.0	0.0	<u> </u>	46	1442	1
		Tota	3397.5	3533.4	1450.0	3100.0	1633.5			
-	~		200.0	212 0	0.0	0.0	546 0	47	3116	
Barry	6	F	300.0	312.0	0.0	0.0	1365.0	47	2821	
	7	Е	/50.0	780.0	0.0	0.0	T202°0	40	2021	
	8	F	100.0*	104.0	0.0	9.9	182.0	49	2010	
	9	F	300.0	312.0	0.0	0.0	545.0	50	2721	
	10	E	750.0	780.0	0.0	0.0	1365.0	51	2621	
	11	LTF	50.0	52.0	0.0	0.0	91.0	52	2916	
	12	F	300.0	312.0	0.0	0.0	546.0	53	2517	
	13	F	600 . 0*	624.0	0.0	0.0	1092.0	54	2921	
	14	F	300.0	312.0	0.0	<u> </u>	546.0	55	2818	
		Tota	3450.0	3588.0	0.0	0.0	6279.0			
							1			

			Actual						
			lumber		Quantity	/ in Tons		Mill	Sawmill
		Directory	production			Solid Wood	Solid Wood	Code	Grid
County	No.	Class	(in. thous.)	Sawdust	Bark	W/O Bark	With Bark	No.	Coordinate
Bay	15	E	<u> 250.0</u> *	260.0	00	0.0	455.0	2	5339
		Tota	al 250.0	260.0	0.0	0.0	455.0		
Berrien	16	E	750.0	780.0	0.0	0.0	1365.0	56	1102
	17	F	300.0	312.0	0.0	0.0	546.0	57	0705
		Tota	al 1050.0	1092.0	0.0	0.0	1911.0		
Branch	18	D	2000.0	2080.0	0.0	0.0	3640.0	58	3107
	19	D	2000.0	2080.0	1160.0	2480.0	0 0.0	59	3007
		Tota	al 4000.0	4160.0	1160.0	2480.0	3640.0		
Calhoun	20	F	300.0	312.0	0.0	0.0	546.0	60	3509
	21	F	300.0	312.0	0.0	0.0	546.0	61	3013
	22	LTF	50.0	52.0	0.0	0.0	91.0	62	2813
	23	LTF	300.0*	312.0	0.0	0.0	546.0	63	2909
		Tota	al <u>950.0</u>	988.0	0.0	0.0	1729.0		
Cass	24	F	700.0*	728.0	0.0	0.0	1274.0	64	1806
	25	F	300.0	312.0	0.0	0.0	546.0	65	1905
	26	F	150.0*	156.0	0.0	0.0	273.0	56	1706
	27	D	3525.0*	3666.0	2044.5	4371.0	0.0	67	1504
	28	C	2880.0*	2995.2	1670.4	3571.2	0.0	68	1306
		Tota	al 7555.0	7857.2	3714.9	7942.2	2093.0		

Ц

			Actual						
			lumber		Cuantit	y in Tons		Mill	Sawmill
		Directory	production			Solid Wood	Solid Wood	Code	Grid
County	No.	Class	(in. thous.)	Sawdust	Bark	W/O Bark	With Bark	No.	Coordinate
Olinton	20	Л	3000 0*	3120 0	1740 0	3720 0	0.0	69	4028
CITICOI	29	Tota	1 3000.0	3120.0	1740.0	3720.0	0.0	0,	4020.
		1014	1 3000.0	5120.0	17-10.0	572515	0.0		
Eaton	30	С	3875.0*	4030.0	2247.5	4805.0	0.0	70	3519
	31	LTF	50.0	52.0	. 0.0	0.0	91.0	71	3223
	32	F	300.0	312.0	0.0	0.0	546.0	72	3817
	33	D	3000.0	3120.0	1740.0	3720.0	0.0	73	3323
	34	E	750.0	780.0	0.0	0.0	<u>`1365.0</u>	74	3922
		Tota	1 7975.0	8294.0	3987.5	8525.0	2002.0		
Gratiot	35	F	300.0	312.0	0.0	0.0	546.0	75	4238
	36	F	180.0*	_187.2_	0.0	0.0	327.6	76	3835
		Tota	1 480.0	499.2	0.0	0.0	873.6		
Hillsdale	37	F	300.0	312.0	174.0	372.0	0.0	77	3903
	38	F	265.0*	296.4	0.0	0.0	518.7	78	3702
	39	F	300.0	312.0	0.0	0.0	546.0	79	3804
	40	F	90.0	93.6	0.0	0.0	163.8	80	3602
			975.0	1014.0	174.0	372.0	1228.5		
Huron	41	F	300.0	312.0	0.0	0.0	546.0	81	6745
	42	А	2500.0*	2600.0	1450.0	3100.0	0.0	82	6047
	43	LTF	50.0	52.0	0.0	0.0	91.0	83	7050
	44	LTF	50.0	52.0	0.0	0.0	91.0	84	395 0
	45	F	495.0*	514.8	0.0	0.0	900.9	85	7049
	45	LTF	50.0	52.0	0.0	0.0	91.0	85	6650
		Tota	1 3445.0	3582.8	1450.0	3100.0	1719.9		

ىدى. بىرى بەر بىرىسى بىرى بىرى بىرى بىرى بىرىنى بىرىنى بىرىنى تەركىزىكى كەركىكى تەركىيى تەركىيى تەركىيى تەركىي

•			Actual						
			lumber	·	Quant	<u>ity in Tons</u>		_ Mill	Sawmill
•		Directory	production			Solid Wood	Solid Wood	Code	Grid
County	No.	Class	(in. thous.)	Sawdust	Bark	W/O Bark	With Bark	No.	Coordinate
						•			
Ingham	47	E	750.0	780.0	0.0	0.0	1365.0	87	4219
	48	F	90.0*	93.6	0.0	0.0	163.8	88	4119
	49	F	300.0	312.0	0.0	0.0	546.0	89	4016
	50	F	300.0	<u>_312.0</u>	<u>174.0</u>	<u>372.0</u>	0.0	90	4421
		Tota	1440.0	1497.6	174.0	372.0	2074.8		
Tania	E 1	P	1000 0+	1006 0	1112 6	2200 0		01	22.2C
lonia	51	D F	1920.0~	1990.8	1113.0	2380.8	0.0	97	3326
	52	E D	750.0	780.0	1521.2	2272 6	1303.0	92	2825
	53	D	2040.0*	2/45.0	1531.2	32/3.0	0.0	93	3529
	54	F _	312.0*	324.5	0.0	0.0	567.8	94	2931
	55	F	300.0	312.0	0.0	0.0	546.0	95	3024
	56	LTF	50.0	52.0	0.0	0.0	<u> 91.0</u>	96	2831
		Tota	1 5972.0	6210.9	2644.8	5654.4	2569.8		
Isabella	57	E	3360.0*	3494.4	1948.8	4166.4	0.0	8	3444
	58	D	2760.0*	2870.4	1600.8	3422.4	0.0	9	3440
	59	F	1380.0*	1435.2	800.4	1711.2	0.0	10	3544
		Tota	1 7500.0	7800.0	4350.0	9300.0	0.0		
Jackson	60	F	100.0*	104.0	0.0	0.0	182.0	97	4110
	61	Е	800.0*	832.0	0.0	0.0	1456.0	98	3815
· ·		Tota	900.0	936.0	0.0	0.0	1638.0		
Kalamazoo	62	F	300.0	312.0	0.0	0,0	546.0	99	2215
	63	F	750-0*	780.0	0_0	0_0	1365.0	100	2309
		- Tota	111050.0	1092.0	0.0	0.0	1911.0		

			Actual						
			lumber		Quantit	y in Tons		Mill	Sawmill
		Directory	production			Solid Wood	Solid Wood	Cođe	Grid
County	No.	<u>Class</u>	(in. thous.)	Sawdust	Bark	W/O Bark	With Bark	No.	Coordinate
Kent	64	LTF	30.0*	31.2	0.0	0.0	54.6	101	2524
	65	LTF	345.0*	358.8	0.0	0.0	627.9	102	2231
	66	F	300.0	312.0	0.0	0.0	546.0	103	2334
	67	E	1265.0*	1315.6	0.0	0.0	2302.3	104	2226
	68	С	4420.0*	4596.8	2563.6	54 80. 8	0.0	105	2132
	69	D	<u>2400.0</u> *	2496.0	0.0	0.0	<u>4368.0</u>	106	2234
		Tota	1 8760.0	9110.4	2563.6	5480.8	-7898.8		
Lapeer	70	D	2000.0	2080.0	0.0	0.0	3640.0	107	6030
	71	F	300.0	312.0	0.0	0.0	546.0	108	6634
	72	F	300.0	312.0	0.0	0.0	546.0	109	6534
	73	Е	750.0	780.0	0.0	0.0	1365.0	110	6434
		Tota	al 3350.0	3484.0	0.0	0.0	6097.0		
Lenawee	74	D	1000.0*	1040.0	0.0	0.0	1820.0	111	4903
	75	D	1500.0*	1560.0	0.0	0.0	2730.0	112	4404
	76	F	2695.0*	2802.8	0.0	0.0	<u>4904.9</u>	113	5206
		Tota	1 5195.0	5402.8	0.0	0.0	9454.9		•
Livingston	77	D	2000.0	2080.0	1160.0	2480.0	0.0	114	5420
-	78	В	6250.0*	6500.0	3625.0	7750.0	0.0	115	5120
	·	Tota	al 8250.0	8580.0	4785.0	10230.0	0.0		
Macomb	7 9	E	1600.0*	1664.0	0.0	0.0	2912.0	116.	6819
	80	LTF	50.0	52.0	0.0	0.0	91.0	117	7023
		Tota	1650.0	1716.0	0.0	0.0	3003.0		

			Actual						
			lumber		Quantity	v in Tons		Mill	Sawmill
•		Directory	production		· · · · ·	Solid Wood	Solid Wood	Code	Grid
County	No.	Class	(in. thous.)	<u>Sawdust</u>	Bark	W/O Bark	With Bark	No.	Coordinate
						•			
Midland	81	E	3000.0*	3120.0	• 0.0	0.0	5460.0	20	4343
	82	LTF	50.0	52.0	0.0	0.0	91.0	21	3946
	83	F	300.0*	312.0	.0.0	0.0	546.0	22	4047
		Tota	al <u>3350.0</u>	3484.0	0.0	0.0	6097.0		
Monroe	84	D	2600.0	2704.0	0.0	0.0	4732.0	118	5704
	85	LTF	150.0*	156.0	0.0	0.0	273.0	119	6007
		Tota	al 2750.0	2860.0	0.0	0.0	5005.0		
Montcalm	86	D	2500.0*	2600.0	1450.0	3100.0	0.0	120	2537
	87	E	750.0	780.0	0.0	0.0	1365.0	121	2436
	88	F	600.0*	524.0	0.0	0.0	1092.0	122	3135
	89	Е	750.0	780.0	0.0	0.0	1365.0	123	3237
	90	D	2000.0*	2080.0	1160.0	2480.0	0.0	124	3235
		Tota	al 6600.0	6854.0	2610.0	5580.0	3822.0		
Muskegon	91	E	720.0*	748.8	0.0	0.0	1310.4	125	1333
-	92	E	750.0	780.0	0.0	0.0	1365.0	126	1039
	93	D	2400.0*	2496.0	1392.0	2976.0	0.0	127	1132
	94	D	2000.0*	2080.0	1160.0	2480.0	0.0	128	1232
	95	E	750.0	780.0	0.0	0.0	1365.0	129	1733
		Tota	al 6620.0	6884.8	2552.0	5456.0	4040.4		

			Actual						
			lumber	Q	<u>antity</u> i	In Tons		Mill	Sawmill
		Directory	production			Solid Wood	Solid Wood	Code	Grid
County	No.	Class	(in. thous.)	Sawdust	Bark	W/O Bark	With Bark	No.	Coordinate
•							,		
Newaygo	96	E	1000.0*	1040.0	0.0	0.0	1820.0	23	1842
	97	С	4350.0*	4524.0	0.0	0.0	7917.0	24	1942
	98	С	1400.0*	1456.0	0.0	0.0	2548.0	25	2039
	99	E	1000.0*	1040.0	0.0	0.0	1820.0	26	1542
	100	E	750.0	780.0	0.0	0.0	1365.0	27	1846
	101	LTF	50.0	52.0	0.0	0.0	91.0	28	1640
	102	E	1000.0*	1040.0	0.0	0.0	1820.0	29	2042
	103	E	2000.0	2080.0	0.0	0.0	3640.0	30	1740
		Tota	al 11550.0	12012.0	0.0	0.0	21021.0		
0-61-64	104	F	300 0	312 0	0.0	0.0	546.0	130	5619
Uakland	104	2	2000.0	2080 0	0.0	0.0	3640.0	131	6026
	106	t opp	125.0*	140 4	0.0	0.0	245.7	132	5816
	100		133.0	52 0	0.0	0.0	91 N	122	5716
	107	Lir	50.0	212.0	0.0	0.0	546 0	134	5826
	108	r m-t-	_ 300.0	312.0	0	0.0	5060 7	TJ4	J020
		TOE	al 2785.0	2895.0	0.0	0.0	2008.7		
Oceana	109	E	400.0*	416.0	0.0	0.0	728.0	31	0945
	110	D	2000.0	2080.0	0.0	0.0	3640.0	32	1442
	111	F	300.0	312.0	0.0	0.0	546.0	33	1242
	112	D	3600.0*	3744.0	2088.0	4464.0	0.0	34	0943
	113	LTF	50.0	52.0	0.0	0.0	91.0	35	1045
	114	LTF	50.0	52.0	0.0	0.0	91.0	36	1043
	115	E	750.0	780.0	0.0	0.0	1365.0	37	1541
		 Tot	al 7150.0	7436.0	2088.0	4464.0	6461.0		

 $\Delta_{\rm cl}$

276 - 27-77

			Actual						
			lumber		Quantit	y in Tons		Mill	Sawdust
		Directory	production			Solid Wood	Solid Wood	Code	Grid
County.	No.	Class	(in. thous.)	Sawdust	Bark	W/O Bark	With Bark	No.	Coordinate
Ot trace	110	17	200 0	212.0	0.0		546 0	125	1076
Uttawa	112	r D	300.0	312.0	0.0	0.0	540.0	120	1020
	111	F.	300.0			0.0	<u> </u>	130	1829
		Tota	1 600.0	624.0	0.0	0.0	1092.0		
Saginaw	118	D	2400.0*	2496.0	1392.0	2976.0	0.0	137	4732
2	119	С	4000.0	4160.0	0.0	0.0	7280.0	138	4735
	120	D	1800.0*	1872.0	0.0	0.0	`3276.0	139	4636
	121	С	11340.0*	11793.6	6577.2	14061.6	0.0	140	4736
	122	D	1050.0*	1092.0	0.0	0.0	1911.0	141	4840
		Tota	1 20590.0	21413.6	7969.2	17037.6	12467.0		
St. Clair	123	F	300.0	312.0	. 0.0	0.0	546.0	142	7430
	124	LTF	50.0	52.0	0.0	0.0	91.0	143	7036
	125	LTF	248.0*	257.9	0.0	0.0	451.4	144	. 7228
	126	E	750.0	780.0	0.0	0.0	1365.0	145	7029
	127	LTF	50.0	52.0	0.0	0.0	91.0	146	[·] 7525
	128	F	300.0	312.0	0.0	0.0	546.0	147	7130
		Tota	1 1698.0	1765.9	0.0	0.0	3090.4		
St. Joseph	129	F	300.0	312.0	0.0	0.0	546.0	148	2304
000 000 april		Tota	1 300.0	312.0	0.0	0.0	546.0		
Sanilac	130	A	12500-0*	13000.0	7250.0	15500.0	0.0	149	6938
	131	ת	3000.0*	3120.0	0.0	0.0	5460.0	150	6639
	132	ے م	1150.0*	1196.0	0.0	0.0	2093-0	151	6742
	± - 2		1 16650 0	17316.0	7250.0	15500.0	7553.0		
			TOODASA	2,020.0		2000000			

FENDY BOARD

1.26 1.17

.

184

.

			Actual						
			lumber		Quantity	<u>in Tons</u>		Mill	Sawmill
	E	Directory	production			Solid Wood	Solid Wood	Code	Grid
County	No.	Class	(in. thous.)	Sawdust	Bark	W/O Bark	With Bark	No.	Coordinate
Tuscola	133	F	300.0	312.0	0.0	0.0	546.0	152	5735
	134	F	·300.0	312.0	0.0	0.0	546.0	153	6040
	135	D	2000.0	2080.0	0.0	0.0	3640.0	154	5536
	136	F	300.0	312.0	0.0	0.0	546.0	155	5637
	137	E	750.0	780.0	_ 0. 0	0.0	1365.0	156	6342
	138	F	300.0*	312.0	0.0	0.0	546.0	157	5939
	139	F	1440.0*	1497.6	0.0	0.0	2620.8	158	623 5
	140	LTF	50.0	52.0	0.0	0.0	` `91. 0	159	5738
	141	D	1250.0*	1300.0	0.0	0.0	2275.0	160	6443
		Tota	1 6690.0	6957.6	0.0	0.0	12175.8		
Van Buren	142	F	300.0*	312.0	0.0	0.0	546.0	161	1316
	143	F	300.0	312.0	0.0	0.0	546.0	162	1508
	144	LTF	50.0	52.0	0.0	0.0	91.0	163	1711
	145	F	440.0*	457.6	0.0	0.0	800.8	164	1714
	146	F	300.0	312.0	0.0	0.0	546.0	165	1611
		Tota	1 1390.0	1445.6	0.0	0.0	2529.8		
Washtenaw	147	E	450.0*	468.0	0.0	0.0	819.0	166	5313
	148	Е	750.0	780.0	0.0	0.0	1365.0	167	4909
	149	Е	1250.0*	1300.0	0.0	0.0	2275.0	168	5508
		Tota	1 2450.0	2548.0	0.0	0.0	4459.0		
Wavne	150	D	2000.0	2080.0	0.0	0.0	3640.0	169	5915
		Tota	1 2000.0	2080.0	0.0	0.0	3640.0		
	GRANI	O TOTAL	173767.5	180718.2	50663.0	108314.0	157279.8		

1997 - Cores

Excerpt From 1968 Michigan Standard Specifications for Landscaping Materials

State of Michigan Department of State Highways

7.21.02 Mulching Materials:

a. Manure.--Manure shall consist of well rotted cow manure or well rotted horse manure aged for at least 3 months in a building or large pile. It shall be free from shavings, sawdust and cornstalks. Straw or similar bedding may be present to the extent of not more than 15 percent by volume, provided that it is well rotted.

In lieu of the above a uniform mixture of 50 percent well rotted, pulvarized sheep manure and 50 percent salvaged soil may be used.

Only well rotted cow manure shall be used in planting areas intended for roses or evergreens.

b. Well Rotted Deciduous Leaves.

のないで、「ないない」で、「ないない」ではない。

c. Wood Chips.--Wood chips shall be the product of a mechanical brush chipper. Not more than 5 percent of the chips shall be over 4 inches in size. At least 50 percent of the chips shall be one inch or less in size. Suitability of chips material and size will be determined by visual inspection.

d. Shredded Bark.--This material shall consist of tree bark which has been stripped and shredded from saw logs by means of a de-barking machine. The material shall be sufficiently fine and free from extraneous material so that it will readily pass through a conventional mulch blower.

e. Coarsely Ground Corncobs.

Special Note: Sawdust and peat moss were deleted from the specifications as a mulch on July 30, 1968.

207	
APPENDIX	C-2

LUMBER AND	RESIDUE	FRACTIONS	DEVELOPED F	ROM SAWMILLING	(1)
		Cubic Foc	t Cubic Fo	ot Weight per	Weight
Fract	ions	Volume Pe	r Volume i	n MBF in	in
		<u>MBF (2)</u>	Percen	t Pounds (2)	Percent
Bark:					
Green bark	(3)	28.66	13.9	1,260	10.3
Green logs					
w/o bark (4)	<u>178.10</u>	86.1	<u>10,970</u>	<u> 89.7</u>
Green logs		**,			
including	bark	206.76	<u>100.0</u>	<u>12,230</u>	100.0
Sawdust:					
Green sawdu	st	33.12	18.6	2,040	18.6
Solid Resid	<u>ue</u> :				
Green slabs		20.12	11.3	1,240	11.3
Green edgin	gs	20.88	11.7	1,290	11.7
Green trim	ends	6.84	3.8	420	<u> </u>
Total Green	Wood				
Residue (5) .	80.96	45.4	<u>4,990</u>	45.4
Lumber:					
Rough Green	Lumber	(6) 97.14	54.6	5,980	54.6
Rough Dry L	umber	88.62	49.8	<u>3,710</u>	33.9
Water in Lu	mber	<u> </u>	4.8	2,270	20.7
Dry Wood Re	sidue:				
Dry shaving	S	28.22	15.9	1,330	12.1
Dry trim en	ds	<u> 1.86 </u>	1.0	70	0.7
Total Dry W	ood	20.00	16 0	1 400	12.0
Residue					
TOTALS:		-			
Total Green	& Dry				
WOOd Resid	ue (8)	111.04	62.3	6,390	58.2
Dried Lumb	ea & er (9)	58.54	32.9	2.310	21.1
	• - •				

SOURCE: Applefield, Milton, 1954. Economic Considerations for a Successful Utilization of Wood Residue. Forest Products Journal 4(4):11A-17A.

Appendix C-2, cont.

In order to better evaluate the data in the previous example an explanation of the basis for the calculations of the author and the interpretations are listed in items (1) through (9) below, corresponding with the parenthesized numbers in the table.

- (1) The various fractions are the result of processing 1,000 board feet, mill tally, of average southern yellow pine logs into 1,000 nominal board feet of finished and dried 4/4 lumber.
- (2) The volumes and weights represent solid wood values.
- (3) Single bark thickness averages .41 inches per log. The bark fraction has not been considered <u>wood</u> residue.
- (4) The average pine saw-log on which these data are based is 9.4" in diameter at the small end, inside bark, and 14.6' including 3" trimming allowance. This log scales 50 board feet mill tally, and has an average, inside bark, taper of 2.4". This average green log, without bark, represents the entire wood volume (100%) from which all residue fractions and percents were calculated. (Log diameter is the principal variable affecting available volume of sawmill wood residue.)
- (5) The weight, per cubic foot, used for all green wood fractions, is 61.6 pounds, obtained as an average of numerous weighings. This coincides very closely with the weight given in U. S. Forest Products Laboratory Technical Note No. 218 which gives cubic foot and board foot weights for various species and moisture contents of round and sawn wood.
- (6) Green lumber is actually sawn 3/32" full in thickness and 1/2" full in width, but is nominally considered 1" lumber. Thus, true volume of 1,000 nominal board feet of rough green lumber is 1,181 board feet and it requires a conversion factor of 10 board feet to make one cubic foot.

Appendix C-2, cont.

- (7) The water in lumber cannot be considered waste or residue, though it is not used in the final lumber end-product. It has been isolated in order to determine more accurately the remaining fractions, and it must be pointed out that the drying and consequent shrinkage of wood does not represent a straight line volume-weight ratio. This fraction represents the water in green lumber, with a 110 percent moisture content which has been kiln dried to about 12 percent moisture content, based on oven-dry weight.
- (8) Excludes the fraction representing water loss from lumber drying.
- (9) Finished lumber, though scant 7/32" in thickness and 3/8" in width, is considered nominal 1" lumber. Thus, there are only 748 actual board feet per nominal MBF of this lumber which requires a conversion factor of 15 1/2 board feet per cubic foot. Average weights of southern yellow pine lumber per MBF (nominal dimensions) are available from the Southern Pine Association, New Orleans, Louisiana.

Applefield's data has been presented on the basis of both weight and volume. In examining the residue fractions, however, most people will prefer to use weight as the standard of measurement because it is simpler to apply in practice, and is also more accurate because there are few variables involved.

Based on these weights, the manufacture of one thousand board feet of finished, nominal 4/4 lumber produces 2,040 pounds of green sawdust and 2,950 pounds of solid green wood residue (slabs, edgings and trims). Dry residue, consisting primarily of shavings, weighs 1,400 pounds. In addition, there is also a bark fraction weighing 1,260 pounds.

Selected Markets for Wood Residues Visited During Field Survey

Included in the field survey were dairy farms, nurseries, and lawn and garden centers.

DAIRY FARMS:

(1) Smith's Dairy - Potterville

(2) Green's Dairy - Leslie

(3) Meadow's Dairy - Swartz Creek

NURSERIES:

(1)	Maple	Hill	- Charlotte

- (2) Smith Lansing
- (3) Cottage Garden Lansing

LAWN AND GARDEN CENTERS:

(1)	Fruit Basket	- Grand Rapids
(2)	Frank's Nursery	- Lansing

(3) Meijer's Thrifty Acres - Lansing

County Code and Grid Location of Geographic Center

Code No.	<u>Grid</u>	Name
03	1820	Allegan
08	2720	Barry
09	́ 4944	Bay
11	0804	Berrien
12	3204	Branch
13	3312	Calhoun
1 4	1604	Cass
19	3928	Clinton
23	3520	Eaton
25	5429	Genesee
29	3836	Gratiot
30	3904	Hillsdale
32	6648	Huron
33	4320	Ingham
34	3128	Ionia
37	3544	Isabella
38	4212	Jackson
39	2312	Kalamazoo
41	2330	Kent
44	6231	Lapeer
46	4804	Lenawee
47	5120	Livingston
50	6722	Macomb
54	2744	Mecosta
56	4344	Midland
58	5804	Monroe
59	3036	Montcalm
61	1235	Muskegon
62	1942	Newago
63	6021	Oakland
64	1244	Oceana
70	1528	Ottawa
73	4836	Saginaw
74	7229	St. Clair
75	2304	St. Joseph
76	7039	Sanilac
78	4728	Shiawassee
79	5940	Tuscola
80	1512	Van Buren
81	5312	Washtenaw
82	6212	Wayne

Functions of Mulches and Soil Conditioners

A mulch is used to:

- 1. Reduce evaporation of the soil moisture.
- 2. Lower soil temperatures in the summer and protect plants from extremely low temperatures in winter.
- 3. Improve the appearance of landscaped areas.
- Control water run-off and, to a degree, prevent erosion.
- 5. Aid in controlling weeds. A good mulch may take the place of frequent cultivation in the control of many kinds of weeds.
- 6. Protect fruits and flowers from soil spattered by rain, as in the case of strawberries, tomatoes, etc.
- 7. Aid seed germination. Because mulching materials reduce evaporation, assist in maintaining uniform temperatures and aid in preventing erosion, they may be used frequently.

A soil conditioner is used to:

- 1. Improve the porosity of the soil (making it more friable), which in turn improves the admission of water and oxygen into the soil.
- 2. Improve the water-holding capacity (unless the particles are too large).
- 3. Help prevent crusting.
- 4. Assist and improve the biological processes that occur within the soil.
- 5. Lower the bulk density of soil, which is important for nurserymen who grow plants in containers.
- Source: Basham, B. M. and W. S. Thompson 1967. An Economic Study of the Production and Use of Sawdust and Bark as Mulches and Soil Amendments for Horticultural and Agricultural Purposes. Mississippi Forest Products Utilization Laboratory, Information Series No. 6.

APPENDIX	۵
	APPENDIX

Computer Simulation Program

TROGAN	5 m 15	-15	FORTRAY	FXTE	NDED V 1.		197750	69	,22.29,04.
4 6 1	ł		LJ. 1940C LJ. 1940C LJ. 1010C LJ. 1011 LJ. 1011						
48>		FARAT FORRAT FORRAT ITENT	(1)=1012 (1)=102 (1)=102	сн) 10%. Г. 9%. 17 1. (94)	8.0.12X,F .12X.4() INT1(N).M	0,0,17%,F10,2 F0,1,16K),3X) 12,6)	,14K.F10.2	,15x,F10.2,1	2x)
4 2 6			2.680) [' Fruck 1 L.660) [' Z.680) [T	7. (PR 7. (PR 7. (PR	INT4(N), N INT2(N), N NT9(N), N	2,0) 2,0)			
6	64	HR17E() HR17E() 60 70 15(178) 15(178)	L. 660) T 2. 660) T 2. 660) T 1690, 495 168, 60, 0 1545, 347	7, (PA 7, (PA 7, (PA 0) 1980 10 10 10 10 10 10 10 10 10		2,6)		,	
	10 00 10	17 (175) 60 70 50114		9115	70 700				
203		60 70 - 15(178- 15(178- 15(175- 00 520- 520- 520- 520- 520- 520- 520- 520-		N	515 515				
5 10									
c16			7074L 2.6603 1 2.6803 1	T, (PR T, (PR	1472(M), M 1472(M), M	=2,6) =2,6)			
529 5	00 0		PROCE	SS AT	ENU OF E	ACH PROCESSIN	IG PLANT		
c2¢	4000	15 (101) 15 (101) 15 (101) 10 1010 10 1010 10 1010	1 (29).60 2 (29).60 2 (29).60 2 (29).6 5 4 1, 29 1 4 1 0 1 9 1 4 1 0 1 9		60 T0 40 60 T0 40 00) 60 T0 011(4)+T0 011(4)+T0	76 0 1058 12(1)			
554	4010 4020 4025	00 402	615, T T 54±1, 29 4) #10TP#	LF (u)+1	0T1(M)				

SORT	FORTRAN EXTENDED V 1.0	05/16/69	.22.29,09.
S	UBROUTINE SORT(I)		·
C	OMMON/SORT/ISNOS(150)		
C	OMMON/SUPPLY/SUP, NHILLPP, HILLPP	-	
D	IMENSION SUP(7,170), NHILLPP(6), HILL	PP(2,150,6),ARR(200)	
Ť	YPE INTEGER ARR		
T	YPE INTEGER STORE		
N	MeNHILLPP(I)		
D	0 5 JalaNM		
Ă	RR(J)=MILLPP(2,J,I)		
5 1	SNOS(J)=0		
Ň	*1		
10 5	TORE=ARR(1)		
Ď	0 15 KU1, NM		
Ī	F (ARR (K), LE, STORE) 25, 15		
15 Č	ONTINUE		
1	SNDS(M)=L		
Ă	RR(L)=999999		
I	F(H.EQ.NH)35.20		
20 Ň	He1 \$ G0 T0 10		
25 L	,*K		
S	TORE=ARR(K)		
Ĝ	10 TO 15		
35 A	ETURN		
6	IND		
	SORT SORT C C C C C C C C C C C C C C C C C C C	<pre>SDRT</pre>	<pre>SORT</pre>

2	00 015 Me1.43 015 Totsem jetotsem j+\$ATEM _N) 202 foternim	
•	C 400 UP COSTS + SANDUST 6 328 K+5	•
=	J (544,69,8,) 80 T0 921 X=[076(J)/34M 80 T0 972 921 X=0. 922 C057(3,K)=C544°X	
2	CO\$T(2,K)=CD#1V9=X CO\$T(2,K)=VTCO\$T5=K CO\$T(4,K)=VTCO\$T6=K CO\$T(5,K)=CO\$T(2,K)=CO\$T(3,K) =CO\$T(4,K) CO\$T(6,K)=CO\$T(2,K)=102 CO\$T(6,K)=CO\$T(1,K)=102	
=	COBT(2,M)=FC5444.ex COBT(2,M)=PCOBT(1,2)=X COBT(13,M)=PCOBT(2,2)=10T5(J) COBT(14,M)=PCOBT(3,2)=10T5(J) Keks1 P25 Continue	
2	C COSTS ALL WARK TO Y	
₹	Kei DD 948 Jet.7.2 If(BARK,ED.8.) 80 TO 926 XeTOTS(J)/BARK 80 TO 927 926 XeB.	
5	927 COST(1,4)=CBARKex COST(2,4)=VTCOSTU=X COST(2,4)=VTCOSTU=X COST(2,4)=FTCBOST COST(2,4)=CST(2,4)+COST(3,4)+ COST(4,4)	
	COST(4,K)=COST(1,K)=,02 COST(7,K]=FCBKAL=× COST(9,K)=FCOST(1,3)=× COST(14,K)=FCOST(2,3)=TOTS(J) Rekal P48 CONTINUE	
Cî,	C C C C C	
7	<pre>[f(gafk,E0,0,)943.942 942 COST(19,1)=PCOST(1.4) COST(15,1)=PCOST(2.4) COST(16,1)=PCOST(2.4)=TOTS(1) COST(16,1)=PCOST(15.4)=TOTS(1) a41 COST(40.4)=FCOST(15.4)=TOTS(1) a41 COST(40.4)=FCOST(15.4)=FCOST(15.4)=TOTS(1) a41 COST(40.4)=FCOST(15.4)=TOTS(1) a41 COST(40.4)=FCOST(15.4)=FCO</pre>	

195

.

1.1 1.1

.22.29.09. FORMAT(1M9,10%,=TOTAL5=10%,6F15,1/140,10%,=T0TAL SANDUST=F15,1,15% 1=PERCENT OF SUPPLY =F10,2/14 ,10%=TOTAL WARK=3%,F15,1,15%,=PERCENT 198 PRINT 195, 1, DEM(1,1),DEM(2,1),JJ
195 FORMAT (1M1,38X+LISTING OF COUNTIES IN DEMAND FOR PROCESSING PLANT
1. 14/140,38X,+COORDINATE +213+ N0, DF COUNTIES +14) / FORMAT 11 .5% -COUNTY=5%,=COORD=,5%=DISTANCE=10%,=DAIRY=8%
4=NURSERY=10%=DAIRY=8%=NURSERY=8%=CRCMARD=7%=PACKAGED=//) 160 FORMAT(140/14 .49X+TONS OF SANDUST+ 22X+TONS OF WANK+1 49/97/60 IF(IDVF.8E.43)80 TO 188 48 PRINT 45.L.ICTY(3.L),ICTY(1.L),ICTY(2.L),ICTY(10.L), 1(CTY(KN.L).MM94.9) 45 FORMAT (14 .[2,X,A10,3X,12,X,12,0X,13,2X,6F15.1) PR_INT_220. (TOT(M).MEL.7).PCTSAN.TOT(6).PCT0AK FORTRAN EXTENDED V 1.0 MEADING ROUTINE COMMON/DEMAND/CTT(10.03) COMMON/D/TOTSUP(2) DIMENSION TOT(0) DIMENSION ICTT(10.03) DIMENSION ICTT(10.03) EQUIVALENCE(CTV.ICTV) TYPE INTEGE DEM DO 1 Jet.8 DO 1 Jet.8 COMMON/A/DEM(95.6).NGTY PCT54M=T0T(7)/T0TSUP(1) PCT64K=T0T(8)/T0TSUP(2) TOT CJS=YGT(L)=CTY(N,L) CONTINUE Tot(7)=Tot(1) + Tot(2) 00 218 J#3,4 ToTre1=ToTre1+ToTrJ} SUPPOUTINE PROENCE) V TONELL (+F10,2) 7 220 FORMATCAND, 10 JJ=DEM(9,1) IF(JJ,60,99), DO 200 K = 1, L= DEM(K+5,1) 00 58 Jel.6 1+JA0[=JA0] 3 OF SUPPLY PRINT 108 PRINT 110 110 FORMAT 1047=0 60 70 40 10VF=43 RETURN END SUMPOUTINE PADEN 219 -1 5 000 ß . 2 2 ñ 5 ę ţ -

.22.29,09. U MRITE (2,445) 445 FORMAT (1M9.+ MILL +8X+MD, LOADS+9X,+TIME TO LOAD+12X+TIME TO TR 1AMS+10X,+TIME TO UNLOAD+12K,+TOTAL TIME+8X,+TMUGX+,5X) 1662,442)1,02441,1,0564(2,1) 1117LE 14476444,392,44157149 of Supply times for processing plakt +15+ 34014476 +213,37X/140,51X,+Supplying m[LLS of +410,53X) J FORMAT(\$MB+ W1LL +12X+TON\$+18X+CO\$T RAW MATEMIAL+13X+VAR TRUCK 18\$T+18x,=00\$t Of DRIVER+13X+TOTAL COST+12X} • 439 IF(IYSA4,EG.1.0A.IYSA4,EQ.3)488(.948 439 MRITE(1.435) 1.0EM(1.1).0EM(2.1).ITILE 495 FORMAT (1M1.39X.°LISTIME OF SUPPLY COSTS FOR PROGESSING PLANT (115 • COORDIMATE • 273.37X/1M8,932X=SUPPLYIM9 MILLS OF •A10,95XX) TÖTALPP(M),TÖTALPP(M)-TÖTPP(M) D0 457 maj0_29 % TÖTL(M)=TÖT1(M)/40, % TÜT2(M)#TÖT2(M)/40, TÖTPP(M)#TÖTPP(M)/40, PRINT 645, (NTRUCK1(N),Ne1,NTRL) Tornat (1MD,=Listing of Mills on Truck 1 =/5(1m ,10]16/)) [[autm2_[[*]] go to 655 05/14/69 60 TO 648 638 If(IPROC.EQ.13 GO TO 642 PRINT 635 635 FORMAT (M4.+TRUCK2 NOT TO 78 PERCENT CAPACITY +) CMANGE MINUTES TO HOURS 80 TO 448 PAINT 459.1TTLE FORMATCHR.#FLACK 2 NOT 4560 FOR •410) D0 425 M41.27 G.1.08. [YBARK.E0.33409.580 PORTRAN EXTENDED V 5.0 HITE (2,478) 478 FORMAT (140+ 40 COORD D15+) ATCSH + NO COORD DIS+) FCTYSAN, EQ. 41 GO TO 3020 (M) 1707+ (M) 49707= (H) 4970' TO(431,435)[PROC 00 458 Je1.6 L=1881(J,1980C) DD 656 MIL 29 MITE(1,460) I YDARK. 440 FON SALSIN 12 12 12 417 F 55 . 637 33 130 3355 υu υu U, PROGKAN 470 **62** 425 5 **163** 1 414 3 -----154 453
	SUBROUTINE PRSUP (1)
	COMMON/SUPPLY/SUP.NMILLPP.MILLPP
	COMMON/SORT/ISNOS(150)
	DIMENSION SUP(7,170), ISUP(7,170), NHILLPP(6), HILLPP(2,150,6)
05	COMMON/A/DEM(55,6),NCTY
	COMMON/D/TOTSUP(2)
	EQUIVALENCE(SUP.ISUP)
	TYPE INTEGER DEM
	TOTSUP(1)=TOTSUP(2)=0.
10	WH# NHILLPP(1) \$ IOVF=43
	DO 500 JJ=1.NM
	K=1SNOS(JJ)
	J=H1LLPP(1,K,1)
	IF(IOVF ,GE, 43) GO TO 100
17	45 PRINT 50, J, ISUP(1, J), ISUP(2, J), MILLPP(2, K, 1), (SUP(H, J), H=3, 5)
	50 FORMAT (1H ,17,5X,12,X,12,5X,18,5X,F14,3,5X,F12,2,5X,F9,2)
	ICVF=ICVF+1
	DO 55 N=1,2
	M=N+3
20	55 TOTSUP(N)=TOTSUP(N)+SUP(M,J)
	500 CONTINUE
	PRINT 505, TOTSUP
	505 FORMAT(1H0,10x,+TOTAL+ 39X,F12,2,5X,F9,2)
	RETURN
27	C
	C HEADING ROUTINE
	C
	100 PRINT 105, 1, (DEM(KK, 1), KK=1,4)
	105 FORMAT (1H1,30X,+LISTING OF SUPPLYING MILLS FOR PROCESSING PLANT +
30	114/+0+28%,+COORDINATE +213+ RADIUS +14+ MIN ANNUAL PHOD +110)
	PRINT 110
	110 FORMAT (1H0/1H ,+MILL NO+5X+COORD+5X+DISTANCE+5X,+PROD(IN THOUS)+
	15x,+TONS SAWDUST+5X+TONS BARK+//)
	IOVF = 0
32	GD TO 45
	END

PROGRAM	SAN	SIM	FORTRAN	FXTENDED	V 1.0		05/16/69	.22 .29 ,09.
		N=DEM	(M,I)					
•		PRINT	1020.101	Y(3,N),(S	AT(K,MM),K	(=1,13)		
	1020	FORMA	(1H .A10	.5X.6(F7.	0.F11.2).F	12.2)		,
	1025	CONTI	IUE	•				
800		PRINT	1030, TO1	'S				
	1030	FORMA	(1H0,3X	+TOTAL+,7	X,6(F7.0,F	11,2),F12,2/	/1H0,11H+++COS	15+++,/)
		DO 104	0 J=1,1)	• •			
		PRINT	1035, (NA	MES(K,J)	K=1,2),(CO	ST(J,L),L=1	7)	
	1035	FORM	T(1H .2/	10,1X,F12	.2.5(6X.F1	2.2), F12.2)		
805	1040	CONTI	ILE		• - · · •	• • • •		
		PRINT	1045,PRC	CCST			•	
	1945	FORMA	(1H0,+T0	TAL COSTS	+4X,6(6X,F	12,2),F12,2)	
		PRINT	1050, PRC	FIT		• • •		
	1050	FORMA	(1H0,+PF	OFIT (LOS	S)+2X,6(6)	(,F12.2),F12	2)	
810		PRINT	1060,1					
	1060	FORMA	(1H1,+EN	D OF PROC	ESSING PLA	NT +15)		
	C		• - • - • -					
	C			END OF DO	LOOP			
	C			-				
817	2000	CONTI	NUE					
		PRINT	2005					
	2005	FORMA	(1H1+EN!) OF RUN+)				
		END						

.22.29,09.					,						
iamsim Portraw Extended V 1.0 B5/14/49	741 FORMAT(1M1,20%,0PROCESS SANDUST0) 1 Proc=2 1 Titlea10MSamhust NTR1=NTR20 Rewind 1 5 Rewind 2	UU 745 HETELE TOT1(M)=TOT2(M)=60 TOT2(M)=TOT2(M)=60 TOTPP(M)=TOTPP(M)=60 743 CONTINUE	1074440 D0 748 41.28 A4 T011(M)=T072(M)=101PP(M)=0 A4 PRIMT 745 244 PRIMT 745	ALASSALASSALASSALASSALASSALASSALASSALA	BFGIN PAGCESSING CLEAR ARRAYS DD DD 805 Ja1,29 DD B1D Ja1,946 B1D SAT(J)80 B1D B15 Ja1,946 B1D B15 Ja1,126 B1D B15 Ja1,126 DD B15 Ja1,126 DD B15 Ja1,126	020 PROCCET(J)=0. Allocate Fixed Costs om Toms of Samdust and Bark	X=SAW=BARK PSAW=SAW/X PSAW=SAW/X FCSAMAL=PCOST(1.1)=PSAW FCGWAL=PCOST(1.1)=PSAW FTCS=TRFIXC FTCS=TRFIXC FTCB=TRFIXC=PAAPK	SATISFY DEMAND PACKAGE BARK	ТААМК-ВАКК JJEDEM(5,1) [F(JJ.E0.99)JaNCTY DC 925 ме1,JJ Мерем(My,1) [F(TaARK,LT.CTY(0,M)) GC TO 8JC	SaT(1,#)#CTY(0,%) SaT(2,m)#CTY(0,%)*SP(3) Teametbark-CTY(9,%) B29 Cont1%UE 60 To 840	030 SAT(1,#)#TBAR# Sat(2,#)#TBAR##SP(3)
PRUGNAN	580	263	, 66			911 911	¢19	000 729	¢29	5 , J	637

PROGNAN	SANSIN PO	RTMAN EXTENDED V 1.0	87/14/49	.22.29,09.
	4030 15419405. 98187 435 60 70 409	0 Eq.1) GO TO 4002 12		
876	4040 PRINT 645 If (NTA2. Print 490 4855 00 4854 M	, (%TRUCK1(%),%=1,%T%1) [e,0] go to 4055 [e,1] (%TRUCK2(%),%=1,%T%2) [e1,2]		
848	4894 1014(99(8) 4897 1014(97(8) 4897 10149(9) 80 409789 1148941 1148411 1148411 1148411 1148411 114841	1.=*01ALPP(M)+101PP(M) 1.=*01ALPP(M)+101A(M)/40. \$ 7072(1.01PP(M)/40. 1.*4 .********************************	П) = T 0 7 2 (M) / 4 0 .	
6+5		=TOTPP(L) =TOTP(L) =TOT2(L)		
554	4058 7818146(J) 11488 10(J) 11488 10(J) 11488 10(J)	=TOT2(M) AL 60) IT,(PRINT1(M),M=2,6) 60) IT,(PRINT4(M),M=2,6)		
553	11111111111111111111111111111111111111	160. 1 160. 11.(PR[NT2(N),MH2,6) 160.11.(PR[NT5(N),402,6) 160.11.(PR[NT5(N),402,6) 160.11.(PR[NT5(N),442,6)		
56¢		ND SAUDUST OF BARK		
265	C 4070 PRINT 403 4075 FORMATCL 4975 FORMATCL 60 TO 740 C	75, ITITLE 40,000 - Å10,4 TO BE PROCESSED0) 0 print Lu 1 and Lu 2		
574	700 ENDFILE RENFILE RENIND 1 RENIND 1 LUE	-10		
573	705 READ(LU, 710 FORMAT(1, 15(EOF(LL 715 PRINT 71	710) \ 3411,46) U)725,715 B, 14 5		
560	725 IF(LU EG 730 LU=2 60 70 70 740 IF(1990C 941M1 74	.2)74A,738 5 .50.2) GD 744 1		

.22.29.09. 02/14/40 CALCULATE DISTANCE FROM EACH PP TO Each Sannill SORT SUPPLY \$ Call PhSUP(1) Figure Distance to Eacm Demand Centem And Calculate total amt meèded SQUARE RADIUS OF PP FOR CHECKING MORK ON EACH PP SEPARATELY D0 158 141,170 If(15UP(1,1).EQ.0) 00 T0 156 D0 125 Ja1,4PP D1(J)=CDEM(1,J)=ISUP(1,1))=5 D2(J)=CDEM(2,J)=ISUP(2,1))=5 D1(J)=CDEM(2,J)=1SUP(2,1))=5 D1(J)=CD1(J)=D1(J)) R(J)=CD1(J)=D1(J))=02(J)) R(J)=CD1(J)=D1(J))=02(J)) R(J)=CD1(J)=D1(J)=D2(J)) R(J)=CD1(J)=D1(J)=D1(J)=2 IF(R(J),LE,PPRAD(J)=125 MMANNILLPP(J)=MTLPP(J)=1 MMANNILLPP(J)=1 MMANNILL PRINT 1910 [MILLPF(N.K.1).Ma1.2) 193 Formattan [15]110) 194 Contimue MillPP({,4w,J)s1 MillPP(2,4w,J)s01(J)+D2(J) 15UP(6,[]=[5UP(6,1],0R,MA5K(J) 15UP(7,[]=[5UP(7,1],0R, MA5K(J) 1255 CONTINUE 158 CONTINUE 158 CONTINUE PRIMT 131. (WMILLPP(J),Je1.4) 151. FORMAT(1, ,419) WwammillPP(1) FORTRAN EXTENDED Y 1.0 D0 110 1=1,4PP PPRAD(1)=DE4(3,1)=DE4(3,1) JJOBEM(3,1) [F(JJ,E0,09) 160,155] Le6 DO 165 Ve1,A3 00 2000 [#1.4#P Aemind 1 Aemind 2 Aemind 2 90 SUP(J.L] =CT(J) 15UP(7_L]=0 15UP(6_L]=0 60 T0 77 MMILLPP(1)=0 00 105 Je1,300 105 MillPP(1,1)=0 110 CONTINUE CALL SORT(1) 1,1 \$AHSIN 160 140 υu υu 000 υ 000 PROGNAN 155 135 \$ 154 110 120 125 130 140 115

1

÷...

,22.29,09. 1000 PAINT 1005, 1.(DEM(J.1),J01,3) 1005 FORMAT (1M1,39%SATISFIED DEMAND FOR PROCESSIMG PLAKT +15,• COURDI 1005 FORMAT (1M1,39%SATISFIED DEMAND FOR PROCESSIMG PLAKT +15,• COURDI 1004 FORMAT(1M0,56%,08ULK BARK•37%SAMDUST•/1M 17%,•PACKAGEU BAMK•,9%, 1004 FORMAT(1M0,56%,08ULK BARK•37%SAMDUST•/1M 17%,•PACKAGEU BAMK•,9%, 2.0004 FORMAT(1M0,56%,08ULK BARK•37%SAMDUST•/1M 17%,•PACKAGEU BAMK•,9%, 2.0004 FORMAT(1M0,56%,08ULK BARK•37%SAMDUST•/1M 17%,•PACKAGEU BAMK•,9%, 2.0005*/1M .•COUMTY•,9%,6(3K,•TOMS•,0%,•SALES•),4%,•SALES•//) 1010 D0 1025 MMa1,JJ C0\$T(17,M)=C0\$T(13,M)=C0\$T(14,M)=C0\$T(15,M)=C0%T(10,M) P#OCCST(M)=P#OCCST(10)=C0ST(1,M)=C0ST(15,M)=C0ST(12,M) 69/97/50 PRINT SATISFIED DEMAND AND COSTS ADD INTERNEDIATE TOTAL COSTS D0 995 Je1.4 D0 965 Me1.16 985 COST(M,7)=COST(M,J) 985 COST(7)=PAOCCST(7)=PAOCCST(J) 990 CONTINUE PAOFIT(7)=TOTS(13)=PAOCCST(7) DC 978 Me1.4 D0 965 J07.11 C0\$T(12,M)=C0\$T(12.M)=C0\$T(J,M) FORTRAN EXTENDED Y 1.0 COST(11,K)=PCOST(1,5)=X COST(14,K)=PCOST(2,5)=TOTS(J) COST(18,K)=PCOST(3,5)=TOTS(J) 00 980 M=2,12,2 PROFIT(L)=T015(M)-PROCCST(L) COST BULK WARK -T015(3)-T015(5)+T015(7) CALCULATE PROFIT 00 958 Ja3,7.2 1F(Y.EQ.0.) 00 TO 949 247019(J)/Y 60 TO 948 1+COST(17,M)+COST(10,M) 972 CONTINUE L=L+1 CONTINUE K=K=1 CONTINUE Xeð. Ë K=2 SANSIN SANSIN 131 986 į 11 576 υu 000 000 000 ч u PRUGHAR 262 175 794 770 33 754 23 748 765 700 785

204

PROGRAM	\$4NS	SIN FORTRAN EXTENDED V 1.6	82/310/68
•	295	:[fc1CTYc1,N).NE.0)162,145 DEMC(_1[}=M Lalas	
169	193	Continue JJancty Bet11,11aget(2,1)=0, D0 200 Jat,JJ	
1 21	U	K = UEN(J=9.1) J_4WU CTYS IM PP K=CTY = D15L = U_4WU CTY(L.K))+3 D15L = CDEN(2.1)-1CTY(L.K))+3 [CTY(L0.K)=[A05(D15L)-[A05(D152)	ı
61	5	00 179 Me4.5 66714.3]9677(M.K)+667(1.1]) 601140 00188 Me4.9 001281]9627(2.1)+ CTV(M.K)	
100	11 000	GGMTIMUE S CALL PADEM(I) Continu e s Call Padem(I) Take closest mill at a time	
445	201	PRINT 201 Format 201 Nnew11LPP(1) Totdetot0000. Covred6	
867	50 C 562	TOTPP(N)=TOT1(N)=TOT2(N)=TOTALPP(N)=0. DO 282 Ja1,29 TEMP(J)=0.	1
195	8 8 8 0 0 0	FRINT 286 FRINT 286 FRINT 286 FRINT 286 FROMETCIME PROCESS BARKe)	•
a . C	298	IYBARKAS RMas NTR1sYT72ss NTR1sYT72ss	
402		JETENDS(JJ) Kemil(Pets,J2:) Kemil(Pets,J2:) MmeSup(Rm,r).Ann.Mask([) If(Mm,Le,0)60 70 207	
214	3 000	CMÉCK YÉARLY PADDUCTION / Yeden(4,1) / If(SuP(3,K),L1,Y)60 TO 280	

.22.29.49.

.22.29,09. 233 PAINT Z95,nsy 275 Format(1400-Truck 1 Full - Sammill - 15 omill hut fit in Truck 2 -10vErtime Paid For 0F5,10 Hours0/14 _0All of mill Supply arought [N 2 - furtmer Processing StopPed00] PAINT 246.K \$ 80 TO 256 Format(1946.esawmill =15= 0n truck 1 and truck 2=) D0 245 M = 1.29 Tots(m)=Tots(m)=TemP(M) 1 mtrism(trie) 5 mtrucki(ntri)=K 5 ite=1 DTE(M)+TDTE(M)+TEMP(M) & MTR2=4TR2+1 & MTRUCK2(MTR2)+K \$ 178+2 PRIMT 265.K Format 1140- Truck 1 and Truck 2 full DM Sammill MG.- 15) 12/11/41 GO TO 247 [(1)={071_(1)=(TERP(1)=(TERP(1)=PCT)) Pantra=4 5 %(TRUCK2(4)=2)=K Lantra=4 5 %(TRUCK1(4)#12)=K 5 1F(T0T1(29).60,12588) 60 T0 298 X=T0T1(29)+TEMP(29) 1F(X,LE.113988) 60 T0 248 IF(TOT2(20), GE, 112510)60 T0 240 FORTRAN EXTENDED V 1.0 012(M)=7072(M)+TEMP(M)+PCT =1012(29)=164P(29) F(x.66,113506) 60 70 276 10 255 461,29 L'BARKe S LENAZY! Y=X=13598 40 TO (236±239)[PROC | Z=18+028+0708[YE |LOAD=LBARK 60 70(271.272)[PR0C Conive-Conive-Y 238 7075(M)=7075(M)=(T -19. •28. •TBRIVE PCT=(1,0+W)/LGAD D0 238 He1,29 CONTYS=CORTYSY TCDRTY=TCDRTY=Y IARK=TCBARK+T || | v=7COR[v + Y CSAN=7CSAN=Y • P(KH_K)=B B-FXN.X)-B 00 70 292 200 PRINT 205.K I+THLN-T 2-X-113966 10 70 273 20 10 273 0 10 200 •.125 0 40 41 10 14 12/201 Nev/ 54×51P 32 222 27 12 272 272 ----ž 335 e a PROGNAN 970 309 . 290 202 502 382 271 275

207

427

İ

PHOGKAN	SANSIM _ FORTAAN EXTENDED V 1.0 03/14/49 .22.29.	
	3825 EXCESS(M)=0. 60 to 3902	
•	C C DEMAND SATISFIED ON SANDUST	
	250 [F(1Y5AM,EQ,2) 60 10 232	
	IVSAME1 355 format (140°Sambust Demand Satisfied on Will NG. «15) 366 frint 345.4 20. to 145	
a	365 FORMATCIMO+SANDUST PROD MOT INCLUDED FOR MILL MD. + 15) 367 Toexsesup(4,K1) 5 60 70 800 375 Print 355,K 1ysaus1 Print 380,K,K 300 Formatcimo,F10,2,* Toms of Sandust included Fom Mill +15) 15au=X/10.	
~	TOEXSeSUPIA,KJ=X 5 CO TO 233 10EXSeSUPIA,KJ=X 5 CO TO 233 155 SateToEXS LSateSat/10,	208
•	JATTIFE(1,348)1111CE MR14E(2,348)111CE DO 369 Me1,29 389 Ercess(m)a0, 1f(1YSA4,60.3) GO TO 390 1f(1YSA4,60.2) GO TO 332	
0	175AV02 5 60 TO 233 390 175Av02 5 60 TO 500 C paint Temp == COST FIGURES FOR 1 Mill	
3	C 400 If(10VF,GE.46)450.405 405 D0 415 Ma14.29 415 TEPPINJSTEMP(4)/60. 415 TEPPINJSTEMP(4)/60.	
0	<pre>F=1972(J)=769CC) F=1972(J)=7EMP(L) F=1972(J)=7EMP(L) 407 PA14(2)=15440)(L) 407 PA14(2440)(L) 407 PA14(2400)(L) 407</pre>	
2	12.121) MR17E(2.420)K.[SUP(1.K],[SUP(2.K],(PR1NT2(M),MR1.41.41.17A 420 FORMAT14 .313.14 .4x.17 .12K.f8,1.3(19K.f8.1).12K.1 62 429 MF1.29 429 FEPEURES 1745-1045-2	

•

.22.29.09.

8

2

*P_D15, 944, 846K, GEAM, CEARK, CTAR, VTCOSTS, VTCOSTE, 14TCOST, CDRIVE, TCDRIV, TCSAM, TCBARK, TOTCOS, LSAM, LEARK, TMS, TMB, TOTLD, 1, TTAANSP, TTRANS, TUTRE, TUTRE, TTUTE, TOTTS, TOTTE, TOTTUE, HT1(6), PRINT2(6), PRINT3(6), PRINT4(6), PRINT5(6), PRINT NSIGN PCOST(3.5),547(13,42),5P(3),COST(10,7),T075(13), APE2+LU2 03/14/40 . (CT. [CT1, (SUP. |SUP), (TEMP. DIS) 150 DMR F14 C DMD COSTS DMVAM COS TRANS #FTX CO3 IND FIX C NIGLONN N TRUC DAPI . ΥND JPADCCST(7), PADF11(7), NAMES(2,46) EQU[VALENCE(CTY,1CTY), (CT.1CT), (SUP,1SUP) 17PE [NTEGEN DEM.D1,D2.R,PPEAD,D151,D152 TTPE INTEGEN D15 ET(2,4), MARUCK2(50),1E Ruckl(50),MTRUCK2(50),[N(14) 12,23, .Let. 6) st. J.E. 9. 11.1. 111.13 12.2 ing ny ССИНОМ/8001/15N05 Сомиси/80PPL//SUP.MMILLPP.MILLPP Сомиси/86м440/СТТ 55.4),677(19,83),1 1(4),D2(4),R(4),P HT01 1, Je1, 21=10H [NY SANSINLINPUT, OUTPUT, LU . [PR2(6,2),EXCES (e).MTRUCK1(56).MTRUCK2(0M DCONV(6).TGTALPP(29) 10M PR[MT1(6).PR]MT2(6) FORTRAN EXTENDED V 1.0 · [=],5)=461.,),[s<u>1</u>,3)s<u>1</u>622 [96 =(2'3=) E1,33+147 2)=10 11=11 1=(2,1=/, 1=12,27=1 C000000000 (**88488888**88) 5,102.0 2879534. 2 0×/4/bE×,4C77 DATA(TRTICT445 DATA(TC057(1) DATA(TC057(1) DATA(TC057(1) DATA(TC057(1) DATA(TC057(1) DATA(TC171) DATA(TT11) DATA(TT11) DATA(TT11) DATA(TT11) DATA(TT11) DATA(TT11) DATA(TT11) 1, 150P(7,170), 01 215N05(190), 967(3707PP(20), NTRUC CAN DENCE PR1(4.2) 1.015.1 COMMON/ 1CDAJVS. DINENS 041400 041400 041400 041400 DATACI **BATACI** DATAC DATACI DATAC DATAS DATACI DATAC DATAC DINEN DATAC FROM DATAG DATA DATA DATA DATA DATA 10101 Diric **NHDD** 20 DATA **E** M SANSIN SANSIN PROCKAN

2

2

\$

\$

\$

3

\$

3

/16/89 .22.29.04.	O LUW+) Tisfied or Trucks	₩ RMEVIQUS PP+)			-15)	•151	[tt •]5}		{x2¢,010. Y						
SANSIM FORTRAN EXTENDED V 1.0	205 FORMATIMO-SAAMILL-14 - DROPPED - PRODUCTION TU GD TO 980 201 IDOME-1 202 PAIMT 205.K 205 FORMAT (1402.03AUMILL 014 - DROPPED DEMAND 5A 205 FORMAT (1402.03AUMILL 014 - DROPPED DEMAND 5A	2010 10 3080 207 PRINT 200.K 298 FORMATCIND «Saumill «Is « DROPPED Includeu I 60 TO 590	C NHEN DEMAND IS SATISFIED ON ULWK	210 [F1]YBARK.E0.2) GO TO 222 Vetot9-5465.4) 1666f12,]}-V [f(x.66, 0) GO TO 330	PRINT 315.4 5 IVOANA3 315 FORMAT (140.054ARK DEMAND SATISFIED ON MILL NO.	J26 FRINT J29 5 60 70 340 J25 Format (140-8444 Prod Not 14CLUDED For Mill No.	 335 FORMAT (140.550,2.+ TONS OF BARK INCLUDED FOR M	ITERNES TOERBEUP(5,K)=K 5 GO TO 229 340 TOERBEUP(5,K) 5 GO TO 400 345 BARKETOERB	LØARK-ØARK/0 347 mrite(1,348)1111LE #Pite(2,348)111LE 348 formatiin0,135x/140,49x,+Mills That Coulu Suppl	DO 349 445.29 349 ETCESS(4)=0. 1f(178484,E0.3) GO TO 346 1f(17848,E0.3) GO TO 222 1764842 4 GO TO 225 346 1764842 4 GO TO 320	C ADD INTO EXCESS	3092 D0 3095 Ma1,29 3092 D0 3005 Ma1,29 3009 Etcess(4)=Excess(M)=TemP(M)	5010 1754444 3010 1754444	3020 WVICE10 2349 ITILE 3020 WRITEC103489 ITILE *RITEC234891111LE	1754422 Do 3025 441,29
720524	92 5	25	5.5			•••	:	6 7	95E	ctl	360		- COL		79 17

05/16/49 CHECK TO SEE IF GOES TO TAUCK 1 UR 2 GO TO 500 0 GO TO 350 5,4),60,0.) 40 70 500 ,67,067(2,1)) 40 70 310 FORTRAN EXTENDED V 1.0 COST SANDUST TOTLD-TMB 8484+VTCOST8+COR1V6 58444 FLIVSAN.EQ.23 GO TO 3000 H+VTCOSTS+CORIVS IF4IVBARK.E0.233008,235 0175=1784455+145+10785 TTRANS8+TNB+TUTA8 E#TOTT8 T8={D]\$+L84RK}+,6 \$1=VTC0578 =[#48K+10, TC05TS={D15=L54=1++6 r.cer(1.1)) RIVSetTOTTS., 85) DRIVeCORIVS 228 G0 T0(221,230)1PR0C 221. T018+T078+SUP(5,4) CTOTT8+, 85) 070+SUP(4,K) SS=TDR[VE=LS Bettrakss LBARX+10, DRIVE 5=L3AV+10 [#E=T0TTS 'DR1YE=(D15+2 54H+28. 3°(X°S) 2 X+38. Setur Tegro. SAWAL TRANS i a T D = 1 NeS1(NS ... 0110 utas CTAH 0111 CDAIV CONT 0100 TDATY TTRAK 222 BARK= **TTRAN** VTC01 in Tu TUT 0171 30 SANS IN 232 233 225 230 u u **u u u** PROGNAM 263 260 240 243 . 250 225 233 215 220 225 238

.22.29,09.

APPENDIX E-1

ł٠

Summary of Supply Data for Configuration No. 1

				S	<u>upplying Mil</u>	<u>ls of Bark</u>				
						Var.			Total	
Mill				No.	Cost/Raw	Truck	Cost of	Total	Time	
No.	Coord	Dis	Tons	Loads	<u>Material</u>	Cost	Driver	Cost	(hours)	
		_								
40	4736	6	6577	822	8220	2959.20	2383.80	13563.00	794.6	
37	4732	12	<u> 1392 </u>	<u> </u>	1740	1252.80	661.20	3654.00	220.4	
Total			7969	0	9960	4212.00	3045.00	17217.00	1015.0	
Truck	1		7969	· 0	9960	4212.00	3045.00	17217.00	1015.0	
Truck	2		0	0	0	0.00	0.00	0.00	0.0	
				Su	oplying Mill	s of Sawdus	st			
39	4636	3	1872	187	3740	336.60	364.65	4441.25	121.5	
38	4735	3	4160	416	8320	748.80	811.20	9880.00	270.4	
40	4736	6	11794	1179	23580	4244.40	2829.60	30654.00	943.2	
37	4732	12	2496	249	4980	1792.80	821.70	7594.50	273.9	
41	4840	21	1092	109	_2180	<u>1373.40</u>	506.85	4060.25	168.9	
Total			21414	0	42800	8496.00	5334.00	56630.00	1778.0	
Truck	1		12094	0	24180	3267.00	2630.25	30077.25	867.7	
Truck	2		9320	0	18620	5229.00	2703.75	26552.75	901.2	

APPENDIX E-1

Summary	<u>of</u>	Supply	Data	for	<u>Configuration</u>	<u>No</u> .	<u>1</u>	

				<u></u>	upplying Mil	<u>ls of Bark</u>			
•						Var.			Total
Mill				No.	Cost/Raw	Truck	Cost of	Total	Time
No.	Coord	Dis	Tons	Loads	Material	Cost	Driver	Cost	(hours)
		_							
40	4736	6	6577	822	8220	2959.20	2383.80	13563.00	794.6
37	4732	12	<u>1392</u>	<u> </u>	1740	1252.80	661.20	_3654.00	220.4
Total			7969	0	9960	4212.00	3045.00	17217.00	1015.0
Truck	1		7969	0	9960	4212.00	3045.00 `	17217.00	1015.0
Truck	2		0	0	0	0.00	0.00	0.00	0.0
				Su	pplying Mill	s of Sawdus.	st		
39	4636	3	1872	187	3740	336.60	364.65	4441.25	121.5
38	4735	3	4160	416	8320	748.80	811.20	9880.00	270.4
40	4736	6	11794	1179	23580	4244.40	2829.60	30654.00	943.2
37	4732	12	2496	249	4980	1792.80	821.70	7594.50	273.9
41	4840	21	1092	109	2180	1373.40	506.85	4060.25	168.9
Total			21414	0	42800	8496.00	5334.00	56630.00	1778.0
Truck	1		12094	0	24180	3267.00	2630.25	30077.25	867.7
Truck	2		9320	0	18620	5229.00	2703.75	26552.75	901.2

APPENDIX E-2

Summary of Supply Data for Configuration No. 2

				<u></u>	upplying Mil	<u>ls of Bark</u>			
•						Var.			Total
Mill				No.	Cost/Raw	Truck	Cost of	Total	Time
No.	Coord	<u>Dis</u>	Tons	Loads	<u>Material</u>	Cost	Driver	Cost	(hours)
93	3529	3	1531	191	1910	343.80	467.95	2721.75	156.0
91	3326	12	1114	139	1390	1000.80	528.20	2919.00	176.1
69	4028	15	1740	217	2170	1953.00	922.25	5045.25	307.4
73	3323	21	1740	_217	2170	2734.20	1117.55	6021.75	372.5
Total			6125	0	7640	6031.80	3035.95	16707.75	1012.0
Truck	: 1		6125	0	7640	6031.80	3035.95	16707.75	1012.0
Truck	: 2		0	0	0	0.00	0.00	0.00	0.0
				Su	pplying Mill	ls of Sawdus	st		
93	3529	3	2746	274	5480	493.20	534.30	6507.50	178.1
91	3326	12	1997	199	3980	1432.80	656.70	6069.50	218.9
69	4028	15	3120	312	6240	2808.00	1170.00	10218.00	390.0
73	3323	21	3120	312	6240	3931.20	1450.80	11622.00	483.6
95	3024	27	312	31	620	502.20	172.05	1294.25	57.3
94	2931	27	324	32	640	518.40 ⁻	177.60	1336.00	59.2
Total			11619	0	23200	9685.80	4161.45	37047.25	1387.1
Truck	: 1		8462	0	16900	5490.00	2640.00	25030.00	880.0
Truck	2		3156	0	6300	4195.80	1521.45	12017.25	507.1

÷				<u>S1</u>	upplying Mil	ls of Bark			
						Var.			Total
Mill				No.	Cost/Raw	Truck	Cost of	Total	Time
No.	Coord	Dis	Tons	Loads	Material	Cost	Driver	Cost	(hours)
70	3519	3	2247	280	2800	504.00	686.00	3990,00	228,7
73	3323	15	1740	217	2170	1953.00	922.25	5045.25	307.4
91	3326	24	1114	139	1390	2001.60	778.40	4170.00	259.5
93	3529	27	<u>1531</u>	<u>191</u>	<u>1910</u>	3094.20	1155.55	6159.75	385.2
Total			6632	0	8270	7552.80	3542.20	19365.00	1180.7
Truck	1		6632	0	8270	7552.80	3542.20	19365.00	1180.7
Truck	2		0	0	0	0.00	0.00	0.00	0.0
				Su	oplying Mill	s of Sawdus	t		
70	3519	3	4030	403	8060	725.40	785.85	9571.25	261.9
73	3323	15	3120	312	6240	2808.00	1170.00	10218.00	390.0
74	3922	18	780	78	1560	842.40	327.60	2730.00	109.2
72	3817	18	312	31	620	334.80	130.20	1085.00	43.4
54	2921	21	624	62	1240	781.20	288.30	2309.50	96.1
98	3815	24	832	83	1660	1195.20	423.30	3278.50	141.1
91	3326	24	1997	199	3980	2865,60	1014.90	7860.50	338.3
87	4219	24	780	78	1560	1123.20	397.80	3081.00	132.6
48	2821	24	780	78	1560	1123.20	397.80	3081.00	132.6
47	3116	24	312	31	620	446.40	158,10	1224.50	52.7
95	3024	27	312	31	620	502.20	172.05	1294.25	57.3
93	3529	27	2746	274	5480	4438.80	1520.70	11439.50	506.9
89	4016	27	312	31	620	502.20	172.05	1294.25	57.3
55	2818	27	312	31	620	502.20	175.05	1294.25	57.3
50	2721	27	312	31	620	502.20	175.05	1294.25	57.3
92	2825	36	<u> 630 </u>	62	1240	<u>1339.20</u>	427.80	3007.00	142.6
Total			18190	0	36300	20032.20	7730.55	64062.75	2576.8
Truck	1	-	7580	0	15160	3997.80	2136.45	21294.25	712.1
Truck	2		10610	0	21140	16034.40	5594.10	42768.50	1864.7

APPENDIX E-3 Summary of Supply Data for Configuration No. 3

1.5

1.1