70-15,159

WOOD, Warren W., 1937-GEOCHEMISTRY OF GROUND WATER OF THE SAGINAW FORMATION IN THE UPPER GRAND RIVER BASIN, MICHIGAN.

Michigan State University, Ph.D., 1969 Geology

University Microfilms, Inc., Ann Arbor, Michigan

GEOCHEMISTRY OF GROUND WATER OF THE SAGINAW FORMATION IN THE UPPER GRAND RIVER BASIN, MICHIGAN

By

Warren W. Wood

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Geology

PLEASE NOTE:

2

Some pages have small and indistinct type. Filmed as received.

University Microfilms

ABSTRACT

GEOCHEMISTRY OF GROUND WATER OF THE SAGINAW FORMATION IN THE UPPER GRAND RIVER BASIN, MICHIGAN

By

Warren W. Wood

The Saginaw Formation of Pennsylvanian age serves as a potable water aquifer over 2,500 square miles in the Grand River basin, Michigan. This formation of sandstone, shale, limestone and coal is overlain in most of the basin by several hundred feet of glacial material of Pleistocene age. The ground water hydrology of the system is one of recharge by local precipitation through the overlying glacial drift.

Dissolved solids in the ground water of the Saginaw Formation are evaluated as to the most important source. Glacial drift and soils are found to contribute more dissolved solids to the ground water of the Saginaw Formation than atmospheric precipitation, migration of water from other formations, or solution of minerals from the Saginaw Formation.

Sodium is the only major chemical constituent that exhibited a coherent concentration distribution within the Saginaw Formation. Other constituents failed to yield

5

concentration trends. Dissolved solids within the Saginaw Formation were found to be lower than that of the recharging water of the glacial drift. Zones of high concentration of dissolved solids are found locally in the overlying glacial drift through which the recharge to the Saginaw Formation passes. Anion exchange, mineral precipitation, ultrafiltration, fossil water and selected recharge areas were considered in explaining the difference in dissolved solids between the Saginaw Formation and the overlying glacial drift. It is hypothesized, that by a process of reverse osmosis and ultrafiltration shale members of the Saginaw Formation filter out certain ions. This hypothesis explains many factors associated with the distribution of dissolved solids.

Equilibrium calculations were performed using the common carbonates, sulfate and iron minerals. Siderite was found to be the iron mineral most likely in equilibrium with the ground water. Carbonates of calcite and dolomite were, in general, in equilibrium with the ground water while the sulfates of gypsum and anhydrite were greatly undersaturated.

ACKNOWLEDGMENTS

I wish to thank Dr. Samuel B. Romberger, my thesis advisor, who gave freely of his time in many discussions and also provided many chemical analyses from a concurrent study. I also wish to thank my colleagues Mr. Kenneth E. Vanlier and Mr. Gerth E. Hendrickson of the U. S. Geological Survey who have been particularly helpful in discussions of new concepts as they have developed in the course of the study. Drs. Paul Jones, William Back and Bruce B. Hanshaw, also of the U. S. Geological Survey, gave helpful suggestions on the ion distribution section of the thesis.

I wish also to thank members of my thesis guidance committee, Drs. Robert Ehrlich, William Hinze, Harold Stonehouse and James Trow, who critically reviewed the manuscript. Thanks also go to Mr. Gary C. Huffman of the U. S. Geological Survey who wrote the computer program for the statistical analyses used in this study and the National Science Foundation who provided one-half hour of computer time.

TABLE OF CONTENTS

																						Page.
ACKN	IOWI	LE	DGN	/EN	VTS	3	•	•	•		•	•	•	•	•	•	•	•	•	•	•	11
LIST	: OI	Ţ	TAE	BLE	ES		•	•	•		•	•	•	•	•	•	•	•	٠	•	•	v
LISI	. OI	?	FIC	łUł	RES	3	•	•	٠		•	٠	•	ı	•	•	•	٠	•	• .	٠	vi
INTF	RODI	JC	TIC	ON	•		•	•	•		•	•	•	•	•	•	•	•	•	•	•	ı
τ		~~			-4	Q,																٦
I T	.u	50	80 80	.a.	10. 74	ים ב.			•		•	٠	•		•	•	•	•	•	•	•	2
1	rev	1	JUE	3 i	ろじし ローマ	la.	165	5 . 	•		•	٠	•	•	٠	•	•	•	•	٠		
Ţ	leti	nc	Q B	01		n	ves	521	za	τı	on	٠	•	•	•	•	•	•	•	•	•	4
GEOI	.0G1	Y	OF	TH	ΗE	S.	AGI		N	FO	RMA	T:	ION	ĩ	•	•	•	•	•	•	٠	8
-	·~+-	~~			1 ~~																	8
ן ד	1101			_ ما ت ما		1 	• • • •		٠		•	•			•	٠	•	•	•	•	•	ğ
r	(eg:	LC	na	Li	Set	50.	ine	5.	•		•		•	•	•	•	•	•	•	٠	٠	0
C C)cci	ır	rer	106	з е	n	a 1	yp	e	ЪO	cal	יב.	су.	•	•	•	٠	٠	٠	•	٠	
J	hi.	ck	nes	38	ar	ıd	Гī	mi	ts	•	•	٠	•	•	•	•	•	٠	٠	•	•	10
I	.1t1	20	log	ζУ	•		•	٠	•		•	٠	•	,	•	•	•	٠	٠	•	٠	12
GEOF	IYDI	RC	LOC	łY	•		•	•	٠		•	•			•	•	•	•	•	•	•	17
-						_																7 77
_	nti	rc	aug	C	Lor	ີ	•	•	٠		•	٠	•	•	•	•	•	•	•	٠	•	1
F	leg:	I.C	na]	L	Set	;t:	ing	5.	•		•	٠	•	ŀ	٠	•	•	•	٠	٠	٠	11
GEOC	HEI	MI	STF	۲Y	OF	P (GRC	UN	D	WA	TEF	2	IN	TH	E	SAGI	NA	W F	ORM	IATI	ON	24
	1	_			7				. .		~ 4	• 1	Mad			·						24
	J	9	and	ູ		100	ent	ra	51 J	.on			Ma.	Or	L.	ons	* 1.1-	•	٠	٠	•	24
2	soui	rc	ec	DI.	D	LS	BOJ	.ve	a	20	TIC	lS	1.r	1 6	ro	ouna	wa	ter	٠	٠	•	24
							- T															2/1
	1	A U	mo	3D1	lei	71(re	61	.p1	tat	1	on.	•	٠	•	•	•	٠	•	•	27
		3C	JT.	ar	na _	_G.	тас	:18	£,	Ma	ter	1	аı,	•	٠	•	٠	•	٠	٠	٠	20
		58	.gir	າສາ	γI	ťO:	rme	ti	on	L _	•	•	_ (•	•]	•	•	٠	٠	•	٠	34
		St	rat	11	gre	1p	hic	al	1y	Ľ	owe	r	Fo	orm	at	ions	•	•	٠	•	٠	36
]	D1	.880	51 1	već	1 :	So]	lid	5	Bu	dge	et.						•		•	٠	42

																	Page
Di	ssol	veđ	l Sc	lić	ls	Dist	trit	out:	ion	•	•	•	•	••	•	٠	44
	Are	al	Tre	enda	3.	• • • • • •	•	•	•	•	•	•	•	•	•	•	44 118
	ver	τıc	ат	DIE	5 T I'	IDU	CTOI	1.	•	•	•	•	•	•	•	•	40
		Exp	lan	ati	lon	of	Obs	ser	ved	Dis	trj	but	ion	L.	٠	•	53
			Pre	P]	lei	sto	ene	e al	ge v	ate	r	•	•	•	•	•	53
			Sel	.ect	ed	are	eas	of	rec	har	'ge	٠	•	•	٠	•	54
			Ani	.on	ex	chai	nge	٠	•	٠	•	•	•	•	•	•	54
			Min	iera	11 :	redu	lcti	Lon	•	٠	٠	•	•	•	•	•	55
			Rev	ers	se	osmo	osia	3 ai	nd u	iltr	afi	.ltr	ati	on	•	•	55
Ml	nera	lE	lqui	.1 1 1	ri	a.	•	•	•	•	•	•	•	•	•	•	63
	The	ory	· .	•	•	•	•	•	•	•	•	•	•	•	•	•	63
	Dat	a A	nal	.ysi	L S	٠	٠	٠	•	•	•	•	•	٠	•	٠	68
SUMMA	RY A	ND	CON	ICLU	JSI	ons	٠	•	•	•	•	•	•	•	•	٠	76
BIBLI	OGRA	РНҮ		٠	•	•	•	٠	٠	•	•	•	•	•	•	•	80
APPEN	DIX	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	85

:

•--

,

•

.

iv

LIST OF TABLES

1-

• •

Table		P	age
1.	Physical Properties of Clay from the Saginaw Formation at the Grand Ledge Quarry	•	14
2.	Sources of Dissolved Solids in Ground Water	•	26
3.	Statistical Comparison of Chemical Parameters of Water at High Stream Flow with Low Stream Flow	•	33
4.	Chemical Analyses of Water from the Michigan and Marshall Formation	•	37
5.	Statistical Comparison of Chemical Parameters of Water from Glacial Drift and Low Stream Flow with the Saginaw Formation	•	50
6.	Statistical Comparison of Chemical Parameter of Water from Glacial Drift with the Saginaw Formation	•	51
7.	Statistical Comparison of Chemical Parameter of Water from Wells Cased in Sandstone with Those Cased in Shale of the Saginaw Formation	_	62
A-1.	Chemical Analyses of Ground Water	•	85
A-2.	Chemical Analyses of Stream Water	•	94
A-3.	A Comparison of K _{sp} and K _{iap} for Gypsum, Anhydrite, Calcite, Aragonite, Dolomite		
	and Siderite	•	97

LIST OF FIGURES

Figure		Page
1.	Map Showing Generalized Topography and Location of the Grand River Basin	2
2.	Map Showing Location of Wells Sampled and Extent of the Grand River Group and Saginaw Formation	5
3.	Map Showing Thickness of the Saginaw For- mation	11
4.	Map Showing Potentiometric Surface of the Saginaw Formation	20
5.	Hypothetical Section of Grand River Basin Showing Potential Distribution and Two Dimensional Patterns of Major Ground Water Flow.	23
6.	Map Showing Location of Stream Sampling Sites .	31
7.	Water Analysis Diagram for Selected Paleozoic Formations in Michigan	38
8.	Map Showing Distribution of Chloride in the Saginaw Formation Near an Abandoned Brine Well in the City of Lansing %.4N.,R.2W	40
9.	Map Showing Distribution of Sodium in the Water of the Saginaw Formation	46
10.	Diagram Showing Process by Which Dissolved Solids are Controlled by Hydrology and Geology	60
11.	Graph Showing Solubility of Iron in Relation to pH and Eh at 11°C and 1 Atmosphere Pressure. Total Dissolved Sulfur 10 ⁻³ m, Bicarbonate Species 10 ^{-2.5} m	71

vi

Figure

12

Page

INTRODUCTION

Purpose and Scope.

This thesis describes the distribution, source and mineral equilibria of the major chemical constituents in water of the Saginaw Formation in the Upper Grand River basin of Michigan. This study is an attempt to integrate the major dissolved constituents of ground water with the geology and flow system of a major aquifer system. The ultimate purpose of this thesis is to describe the manner in which the geochemical system functions within the aquifer system. Information of this type is essential to understanding the physical hydrology and utility of the aquifer.

The Saginaw Formation in the Upper Grand River basin was selected for this hydrogeochemical study because the geology and hydrology are relatively well known. Additionally, there are numerous wells tapping the aquifer which are suitable for water quality sampling, and at least one major outcrop area exists for the collection of rock samples.

The area of investigation is near the center of the Lower Peninsula of Michigan (Figure 1). It comprises all of Clinton and Ingham Counties and parts of Eaton, Livingston, Ionia, Gratiot, Montcalm, and Shiawassee Counties--

Figure 1.--Map showing generalized topography and location of the Grand River basin.

an area of about 3,000 square miles. The topography of the basin is given in Figure 1 and the stream network in Figure 6. The Saginaw Formation is utilized as an aquifer throughout its extent in the Upper Grand River basin. The aquifer is used most extensively in the Lansing Metropolitan area, where approximately 30 millions gallons per day (mgd) are presently being pumped (Giroux and Huffman, 1967). Total pumping from the aquifer in the study area, including industrial, agriculture, and domestic supplies is estimated at 45 mgd.

This thesis is concerned with only one aquifer of the many in the Michigan Basin. However, the aquifer system is typical of many in the glaciated north central United States and the relationships observed for this particular hydrologic system should have, with modification, application to other hydrologic systems.

Previous Studies

Geology and hydrology of the Saginaw Formation, in the Grand River basin, have been studied by many workers because of its importance as an aquifer in the Lansing Metropolitan area. Geology of the Saginaw Formation, including the area in the Upper Grand River basin has been described in detail by Kelly (1936). A study of the geology in the Lansing area was made by Mencenberg (1963). Hydrology of the Saginaw Formation in the Lansing area has been studied by Stuart (1945), Firouzian (1963), and

most recently by Wheeler (1967) and Vanlier and Wheeler (1968) by means of a resistive capacitive electric analog model. A report by Vanlier (1964) contains a general discussion of the geology, hydrology and water quality of the area of Clinton, Eaton, and Ingham Counties which are further treated in more detail by Vanlier, Wood and Brunett (1969). Hydrology, chemical quality of surface water, and water use of the Upper Grand River basin has been discussed by the Water Resources Commission of Michigan (1961). There have been no previous studies of the geochemistry of the ground water of the Saginaw Formation.

Methods of Investigation

Location and lithologic description of wells were obtained from the files of the Michigan Geologic Survey and the U. S. Geological Survey. Wells were selected for areal coverage, age of formation penetrated, topographic region and hydrology. As a result of a recent Michigan Drilling Act (Public Act 294 of 1965), which requires drillers to submit a record of all water wells drilled with their description, much of the data used herein are from wells less than 2 years old.

Samples collected for this study (Figure 2, Table A-1) were analyzed by the Water Analysis Laboratory, Department of Geology, Michigan State University. Concentrations of calcium, magnesium and iron were determined by atomic absorption spectrometry on samples acidified shortly

Figure 2.--Map showing location of wells sampled and extent of the Grand River Group and Saginaw Formation.

after collection. Acidification was necessary to maintain the carbonate and iron minerals in solution at atmospheric conditions. Sodium and potassium were determined by flame photometer from the same acidified samples. Chloride was determined by the mercuiric nitrate method (American Public Health Association and others, 1965), and sulfate by the turbidimetric method using a Hach colorimeter (Hach Chemical Company, Ames, Iowa). Bicarbonate was determined at the time of collection, by colorimetric methods, during the early part of the study, and later a potentiometric method was used. The pH was also determined at the time of collection using a standard combination glass electrode and pH meter. Many samples were collected through pressure tanks and associated plumbing in domestic wells. To insure a fresh sample, the water was pumped for five minutes after the pump started or until the temperature of water reflected aguifer temperature or about ll°C. Previously, published chemical analyses were obtained from the Michigan Department of Health and the U. S. Geological Survey. Analyses from these sources were used only if a description of the geologic formation was available. Analyses performed by the U. S. Geological Survey were made at Columbus, Ohio, and follow analytical methods given in Rainwater and Thatcher (1960). Analyses performed by the Michigan Department of Health were made at Lansing and follow procedures given by the American Public Health Association and others (1965).

Analyses were considered to be complete if all the major constituents in the water were determined. Results of complete analyses expressed in this study balanced within 5 per cent, that is the total cations expressed as milliequivalents per liter (meq/1) are within 5 per cent of the total anions also expressed as meq/1. Because ionic solutions must be electrically neutral, the number of equivalents of cations must equal that of the anions. The unit meg/l is the valance of the ion divided by its molecular weight times its concentration in milligrams per liter. This balance insures that all major constituents have been determined and also provides a check on the analytical procedures used. The quality of partial analyses depends upon the reputation of the laboratory and the methods of analyses. Partial analyses used in this study are only from the sources listed above.

Results of analyses are reported in milligrams per liter (mg/l) for all parameters except pH and specific conductance. The pH is reported in standard pH units (negative logarithm of the hydrogen ion activity) and specific conductance in micromohs per centimeter at 25°C. The unit milligrams per liter can be considered numerically equal to parts per million (ppm) in the analyses used in this report because of the dilute nature of the waters studied.

GEOLOGY OF THE SAGINAW FORMATION

Introduction

Material comprising an aquifer system will have a significant influence on the chemistry of the intersitual water. Geochemical process of mineral solution, precipitation, ion exchange and ion filtration are functions of the type and distribution of the lithology of the aquifer system. Therefore, an examination of the geology is critical to the complete understanding of the hydrogeochemical system.

Regional Setting

The Saginaw Formation occurs in the Michigan Basin sedimentary sequence. This sedimentary sequence contains Paleozoic age sediments approximately 14,000 feet in thickness and a thin and scattered sequence of Mesozoic age sediments (Michigan Department of Conservation, 1964). The Michigan Basin is bordered by the Precambrian Shield on the north and northeast; on the west by the Wisconsin Arch; on the southwest by the Kankakee Arch in northern Indiana and northeastern Illinois; and on the east and southeast by the Algonquin Arch in Ontario and the Findlay Arch in northern Ohio. The stratigraphic sequence of the basin contains sediments of all Paleozoic periods except the

Permian. These sediments are deposited in a basin which results in a series of saucer shaped beds with each formation being smaller in areal extent than the formation on which it is deposited (Eardley, 1962). The formations in general dip toward the center of the basin at about one degree. Paleozoic and Mesozoic formations are mantled by a layer of Pleistocene age glacial drift which ranges in thickness from a few feet to over 1,000 feet.

Occurrence and Type Locality

The Saginaw Formation is one of two Pennsylvanian age formations in the Michigan Basin. The other is the Grand River group which unconformably overlies the Saginaw (Figure 2). The name Saginaw Formation was originally proposed by Lane (1901) as a replacement for the terms "Jackson" and "Coal Measures." The name was elevated to group status by Kelly (1936). It has since been returned to formation rank by the Michigan Department of Conservation (1964). The Saginaw Formation as used in this report includes the Parma Foundation described by Winchell (1861). This is necessary because it is impossible to differentiate between the Parma and sandy facies of the Saginaw as shown in well cuttings or driller's descriptions.

The type locality of the Saginaw Formation is the Saginaw Valley outside the study area; however, because there are no outcrops in the type locality and because coal mining has been abandoned, the outcrop in Eaton County

near the town of Grand Ledge has become the type section (Kelly, 1936).

Thickness and Limits

The extent of the Saginaw Formation (Figure 2) should be viewed as an approximation. The problem of defining the extent is complicated because the upper and lower sur-The thickness map (Figure 3) faces are erosion surfaces. was made by subtracting the two surfaces and contouring the residual. Valleys in the pre-Saginaw surface can be readily delineated in areas where data are adequate. In the peripheral area of the Grand River Group, preservation is in low areas of the Saginaw Formation indicating erosion of the Saginaw Formation surface prior to the deposition of the Grand River Group. The combination of this erosion surface with the pre-glacial and glacial erosion results in a highly dissected surface on which to estimate thicknesses. The Howell Anticline further complicates estimates of thickness in the northeast part of the study area. The formation thins rapidly as the structure is approached and may have been involved in uplift and erosion, or the area may have been a topographic high during the deposition of the Saginaw Formation. In this part of the Michigan Basin it is extremely difficult to distinguish the sandstoneshale sequence of the Saginaw Formation from the Michigan, Marshall and Coldwater Formations on the basis of water

Figure 3.--Map showing thickness of the Saginaw Formation (modified after Vanlier, Wood and Brunett, 1969).

well drillers logs; consequently, the extent and thickness of the formation here is uncertain.

Lithology

The Saginaw Formation is similar in composition to other Pennsylvanian age deposits of the Eastern Interior Basins in Illinois and Pennsylvania. It is composed of numerous beds of shale, sandstone, siltstone, coals and occasional limestone. Most of the lithologic types are non-persistent as individual members and cannot be traced over extensive distances. However, Kelly (1936) believes that at least one limestone member, which he calls the Vern Limestone, is recognizable over a large area.

The sandstones are lenticular, often ending abruptly against shale, and are usually less than 20 feet thick. However, in the Lansing Metropolitan area there are 300 feet of sandstone in a formation thickness of about 400 feet. The sandstones are composed of very fine quartz grains and contain abundant light colored mica as an accessory mineral. The dominant colors reported in drillers logs are light buff and dark grey. Kelly (1936) found tourmaline and zircon the most common heavy minerals. In addition to inorganic material there are fossil plant fragments in the sandstone outcrop at Grand Ledge and probably throughout the basin. The cementing agents from samples collected at the Grand Ledge outcrop are silica and and calcium carbonate. The pore space is very small in the samples examined by the author.

The shales of the Saginaw Formation, like the sandstones, are not persistent over great distances and appear to have been truncated by channel sands in many instances. The term shale is used in a broad sense and includes every lithologic type the driller does not consider sandstone, coal or limestone. The latter three lithologic types are easily recognized in drilling. The shale designation includes shale, siltstone and underclay. The colors recorded are black, blue, brown, buff, gray and white. Black or dark gray is the most often recorded color.

Results of examination of the clay fraction (less than 2 microns) from two samples collected at a Grand Ledge quarry are given below. These analyses were performed by Mr. Bailey and Mr. Chazen of the Department of Geology, Michigan State University. The clay fraction was removed from the shale by mechanical disaggregation. Carbonates were removed using a sodium acetate buffer adjusted with acetic acid to a pH of 5. Organic matter was removed by using hydrogen peroxide and free iron oxides were removed by the sodium citrate sodium ditheonite method. The clay sized fraction was obtained by use of sedimentation cylinder.

The fraction obtained was then subjected to analyses indicated in Table 1. In addition, infrared, x-ray

TABLE 1.--Physical properties of clay from the Saginaw Formation at the Grand Ledge quarry.

Sample Number	• • • • • • • • • • • • • • • • • • •	A		B					
Lithologic description and location	Blac shal bott pit	k colored e collect om of a n	fissil ed near ew shale	Light 1 stone 1 near to	brown co to shale op of qua	lored silt- collected arry wall			
Specific surface area, in square meters glycol method	I II	3 <i>5</i> 4 295	Ave 326	I II	395 326	Ave 365			
Cation exchange capacity ca/mg meq/100 gr	I II	76.6 60.8	Ave 67.7	I II	80.5 50.5	Ave 65.5			
Cation exchange capacity K/NH4 meq/100 gr	I II	64 40	Ave 52	I II	54 42	Ave 48			

14 T

diffraction and differential thermal analysis were performed on the sample. The results of these investigations combined with the physical properties (Table 1) indicate the following percentage and type of clay minerals present.

A	В
59% Kaolinite	42% Kaolinite
30% Illite	46% Illite
11% Vermiculite	12% Vermiculite
trace of quartz and chlorite	trace of plagioclase and quartz

The underclays are very light in color at the outcrop and according to Kelly (1936) contain irregular nodules of iron carbonate. Because underclays are seldom recorded in drillers logs as distinct units it is difficult to determine the extent of the facies. Presumably they would be found beneath coal zones.

Coal provided the early impetus to study the Saginaw Formation, however, this is not a common lithologic type in the study area. Because of its color and physical properties it is easily recognized in drilling. Its absence in drillers records is thought to be an indication that coal beds are not abundant in the study area.

Limestone is commonly recorded in drillers logs. However, its thickness is small, usually less than 2 feet, and several different beds are often recorded in a single well. Because limestones are extremely resistant to

drilling even though they are thin, they are recorded by most drillers and probably gives a positive bias to the amount of limestone recorded in the logs. As mentioned previously, Kelly (1936) believed that at least one of these limestones is extensively distributed.

GEOHYDROLOGY

Introduction

Source, distribution and movement of water within the aquifer system affect the water chemistry. To evaluate the type, amount, and spatial distribution of the chemical constituents it is necessary to identify the source and quantity of the water and the potentiometric distribution of the hydraulic head in the formation.

Regional Setting

The source of water in the Saginaw Formation in the Grand River basin is precipitation within the topographic basin. In certain instances small amounts of water are lost to or received from adjacent basins, but in general the ground-water basin corresponds very closely to the topographic divide. Precipitation on the Grand River basin above Ionia averages annually 31.12 inches (Water Resources Commission of Michigan, 1961). This value was determined by using the Thiessen method of mathematically weighing precipitation from stations in and adjacent to the basin. Stream runoff for the same area, based on sixteen years of record averages 7.63 inches annually (U. S. Geological Survey, 1968). The difference, 23.49

inches, is the average annual lost to evapotranspiration. The precipitation and runoff data are based on a slightly smaller area than that used in this study. However, they do represent the hydrologic conditions of the study area accurately.

The Grand River at Ionia had 7.05 inches of runoff for the water year 1966 (U. S. Geological Survey, 1967). Because this value closely approximates the long term average of 7.63 inches, it was separated into its components of overland and ground-water runoff by graphical methods (Wisler and Brater, 1949). This was done in order to delineate the relative contribution of ground water to the total annual flow. For this particular year it was found that 58 per cent of the total flow, or 4.09 inches was derived from ground water sources. The area of the drainage basin at Ionia is 2,840 square miles, thus, a total of 0.30 cfsm (cubic feet per second per square mile) is ground-water runoff. This value is considered to be representative of the average ground water contribution to streamflow in the area. However, because of the size of the basin, precipitation may have occurred during periods which were assumed to be at base flow, consequently this figure of 0.30 cfsm may be higher than the true value.

Many pumping tests indicate that the sandstone in the Saginaw Formation has a relatively constant permeability of approximately 100 gpd per sq. ft. (gallons per day per square foot). The permeability of the shale is much lower

and more variable, ranging from 0.01 to 1.0 gpd per sq. ft. Pumping tests also indicate that the Saginaw Formation acts as a leaky artesian system over most of the study area. An average value of the leakage between the glacial drift and the Saginaw Formation was found by Wheeler (1967) to be approximately 0.0012 gpd per sq. ft. under existing head conditions. This value represented the leakage in the Lansing Metropolitan area prior to the extensive pumping development and is used here as an average value of the system throughout the study area.

Assuming steady-state ground-water conditions over most of the basin, with the exception of Lansing Metropolitan area, recharge to the formation will equal the discharge from the formation of 0.0012 gpd per sq. ft., or 0.051 cfsm. This amount would be the contribution from the Saginaw Formation to streams from each square mile in the basin. However, only about 90 per cent of the area is underlain by the Saginaw Formation, which, when accounted for, reduces the contribution from the formation to approximately .046 cfsm. Comparing this to the total ground-water runoff of 0.30 cfsm, the ratio is about 7 to 1. That is about 1/7 of the water in a stream under base flow conditions is from the Saginaw Formation. Most of the remaining water is from the overlying glacial drift.

(Figure 4) is a smoothed reflection of the surface

Figure 4.--Map showing potentiometric surface of the Saginaw Formation (modified after Vanlier, Wood and Brunett, 1969).

topography. This further substantiates that there is a hydrologic connection between the overlying glacial material and the Saginaw Formation. In the Lansing Metropolitan area, however, the potentiometric surface of the Saginaw Formation is greatly depressed as the result of large amounts of ground water having been withdrawn and no longer reflects natural conditions.

The Bayport Formation, which directly underlies the Saginaw Formation in most of the study area, is a dense limestone approximately 40 feet thick. This formation effectively acts as a base to the flow system and prevents the passage of large quantities of water from moving either into the Saginaw Formation from below or from the Saginaw into the lower formations. This contention is supported by the shape of the potentiometric surface of the Saginaw, which is controlled by the local surface topography and not by movement of water into or out of the underlying formations. The Bayport Formation usually transmits only small quantities of water where it is used as an aquifer. However, its quality as an aquifer is dependent on its geologic position. It has a greater permeability where it subcrops directly beneath the glacial draft than where it is capped by the Saginaw Formation. This condition is probably due to preglacial solution channels and fracturing due to load reduction as the Saginaw Formation was eroded. The presence of major faults or fractures in the Bayport Formation would certainly affect its ability

to transmit water. It is therefore possible that in certain areas water moves in relatively large quantities through this formation.

In summary, precipitation falling upon the basin recharges to and discharges from the Saginaw Formation through the glacial drift in a series of small flow systems (Figure 5). The patterns of flow of ground water result from the topography, formation thickness, contrasts in permeability, and basin size (Toth, 1963; Freeze and Witherspoon, 1966, 1967, and 1968). The Bayport Formation acts as a base to the system, minimizing flow into the system from below and retarding flow from the Saginaw Formation into the lower formations.

Figure 5.--Hypothetical section of the Grand River basin showing potential distribution and two dimensional patterns of major ground water flow.

GEOCHEMISTRY OF GROUND WATER IN THE

SAGINAW FORMATION

Type and Concentration of Major Ions

Water in the Saginaw Formation is a calciummagnesium-bicarbonate type; that is, calcium and magnesium ions constitute more than 50 per cent of the cations, and bicarbonate constitutes more than 50 per cent of the anions expressed as milliequivalents. Sodium, silica, chloride, and sulfate are four other major ions found in the water. These seven substances constitute over 98 per cent of the dissolved solids in all the samples examined. Iron and potassium are ubiquitous in the ground water of the Saginaw Formation but never exceed 1 per cent of the total dissolved solids. Nitrate concentrations greater than 2 mg/l are seldom found in the Saginaw Formation. Nitrate in glacial drift wells is usually associated with sewage or agricultural pollution and is not a result of nitrate minerals in the aquifer.

Source of Dissolved Solids in Ground Water

Atmospheric Precipitation

Determining the source of dissolved solids in ground water is essential in demonstrating the relationship between chemical character of the water, hydrology and geology. Because local precipitation is the source of water in the aquifer, several samples of rain water were collected by the author and analyzed for common ions (Table 2). Results of these analyses and others collected in North Carolina and southeastern Virginia (Fisher, 1968), Kentucky (Hendrickson and Krieger, 1964), and northern Sierra Nevada (Feth, Rogers and Roberson, 1964) indicate, that in relation to the total dissolved solids in the Saginaw Formation, very small amounts are contributed by precipitation to the ground water. As a result of evaporation and transpiration, which removes about 85 per cent of the precipitation that does not run directly off the ground, the concentration of dissolved solids contributed to the ground water is about seven times greater than the analyses indicate. Even with this increase in concentration due to evapotranspiration, precipitation cannot account for the magnitude of concentration observed for most of the major ions. Chloride is the only major ion for which precipitation may be a significant source. Continuous analyses of stream and precipitation data would be necessary to establish this relationship.

Soil and Glacial Material

The next source of dissolved solids, when viewed within the hydrologic framework, is the soil and glacial debris on which the precipitation falls. To evaluate
Local					Specific	Ha		
Number	r Sample Description	HCO3	so ₄	Cl	conduct- ance	Ca,Mg	Non-car- bonate	pH
1.	Rain water June 23, 1968 East Lansing, Mich.	7	3.5	.8	< 50	10	0	5.8
2.	Rain water June 27, 1968 East Lansing, Mich.	5	2.0	.9	< 50	10	0	5.3
3.	Soil and glacial material SW 1/4 sec. 19, T.4N.,R.1W.	154	10	10	265	124	0	8.1
4.	Glacial drift NW 1/4 sec. 12, T.3N.,R.1E.	114	11	4.0	225	98	4	7.6
5.	Soil NW 1/4 sec. 12, T.3N.,R.1E.	181	14	5.0	320	160	12	7.5
6.	Fine sand and silt SW 1/4 sec. 18, T.4N.,R.2E.	86	19	22	225	94	24	8.1
7.	Soil SW 1/4 sec. 25, T.4N.,R.1W.	482	14	6.0	750	390	0	8.0
8.	Light brown shale from Grand Ledge quarry 115 mesh 3/8"	9.3	24	4.0	105	30	22	6.8
9.	Black shale from Grand Ledge quarry 115 mesh	30	1020	68	1400	1100	1076	7.7
10.	Sandstone from Grand Ledge quarry 115 mesh 3/8"	5.4	21	8.0	110	33	29	6.7

TABLE 2 .-- Sources of dissolved solids in ground water.

these materials as a source of dissolved solids, a laboratory experiment was designed in which the change in dissolved solids in water were measured after it had been in contact with the soil-glacial material. Five hundred grams of representative soil-glacial material from five localities were dried at room temperature (23°C) and placed in plastic cylinders. The material was not sorted by size, nor was any attempt made to preserve original packing or structure. Five hundred ml (milliliters) of distilled deionized water in equilibrium with the atmosphere were shaken with the sample, stoppered, except for a small air vent, and allowed to stand 5 to 7 days. The water was then filtered through a filter paper and funnel attached to the cylinder. The water slurry acted as a natural filter, giving a clear, usually colorless, filtrate. The filtrate was analyzed by the same methods used for well water.

Water obtained from these leaching experiments (Table 2) was, in general, similar to that observed in the Saginaw Formation and glacial drift wells (Table A-1). Much of the calcium and sulfate in the glacial debris and derived soil material results from the solution of gypsum $(CaSO_4 \cdot 2H_2O)$ and/or anhydrite $(CaSO_4)$. These minerals were probably derived from the Michigan Formation and are irregularly distributed in the glacial deposits. The Michigan Formation, which is a commercial source of gypsum in the Michigan basin (Martin, 1936) subcrops in the

northeastern part of the basin and lies in the path of the last glacial advance in the area (Leverett and Taylor, 1915).

That the sulfate ions are derived from sulfate minerals rather than by oxidation of sulfide minerals can be ascertained by comparison of values of non-carbonate hardness with the sulfate values shown in Table A-1 and Table 2. Most analyses show an approximate one-to-one relationship between sulfate and non-carbonate hardness. This indicates that the sulfate was originally associated with $CaSO_{ll}$ or $MgSO_{ll}$ because, non-carbonate hardness, as the name implies, results from calcium and magnesium from sources other than carbonates. Possible minor sources of non-carbonate hardness are nitrates which contain calcium or magnesium and chlorides as CaCl₂ or MgCl₂ which may be present in very small quantities. However, the chloride ion concentration is generally related to the sodium ion concentration in this water and consequently does not contribute to the non-carbonate hardness. If sulfides were oxidized and brought into solution the resulting water would contain no calcium or magnesium from this source and consequently no non-carbonate hardness.

The major source of calcium, magnesium and bicarbonate is from the reaction of carbonic acid, which is the result of the solution of carbon dioxide (CO_2) in water (H_2O) , with limestone $(CaCO_3)$ and dolomite $CaMg(CO_3)_2$ or magnesium rich limestone. The reactions are summarized by the equations:

$$\frac{CO_2 + H_2O}{4}$$

$$CaCO_3 + H_2CO_3 = Ca^{2+} + 2 HCO_3 - \frac{CO_2 + H_2O}{4}$$

$$\frac{CO_2 + H_2O}{4} + \frac{CO_3 + H_2CO_3}{4} = Ca^{2+} + Mg^{2+} + 3 HCO_3 - \frac{CO_3}{4}$$

Carbon dioxide may be ten to twenty times atmospheric value in the soil due to plant respiration and decaying organic material (Boynton and Reuther, 1938). Soil carbon dioxide concentration and mineral equilibria are probably the controlling factors in the amount of carbonate dissolved in this environment as there is an abundance of carbonaceous material in the glacial drift in the study area (Johnsgard <u>et al.</u>, 1942; Veatch <u>et al.</u>, 1941).

Chloride and sodium ions are derived from solution of halite (NaCl) which, like the sulfate minerals, was probably incorporated in the surficial deposits by the glacier. As mentioned earlier, some of the chloride and sodium may come from precipitation. The relatively small amounts of chloride compared to sulfate ions may reflect greater solubility of the chloride and its removal shortly after deposition, or a lower initial concentration in the drift. Sodium is also obtained by ion exchange with calcium from certain clay minerals present in the glacial drift.

In addition to leaching studies, evidence for a soilglacial debris origin for the dissolved solids can be obtained from evaluation of high water runoff in the streams. During periods of high stream-flow, water is derived primarily from surface runoff and only a small percentage is derived from ground-water discharge. Overland runoff has been in contact only with the upper soil horizons and usually for a short period of time, seldom exceeding a week. Therefore, chemical analysis of stream water under these conditions compared to that of base flow conditions, which is entirely ground water, indicates the relative effects of soil horizons on water quality.

In order to compare the stream water in the two types of flow conditions, statistical analyses, of previously published chemical data from streams (Table A-2), were performed using the "t" test of mean comparison. Location of the sampling sites is given in Figure 6. These sites were selected to avoid known sources of industrial and municipal waste disposal and to give a wide geographic distribution within the basin. The major chemical parameters were found, by single classification analysis of variance technique, not to vary significantly between major sub-basins of the Grand River basin (Table A-2). Chemical data for each parameter were separated into class intervals, arrayed and plotted on normal probability paper

Figure 6.--Map showing location of stream sampling sites.

to check for normal distribution. The data were then subjected to an "F" test at the 5 per cent level of significance to determine if the ratio of the standard deviations were acceptable for use in comparison of the means. If the "F" test indicated suitable ratios, the average of each parameter under high-flow was compared to the average of the corresponding parameter under low-flow by means of the "t" test. A 5 per cent level of significance was chosen and a "t" was calculated using the following formula:

$$t = \frac{\bar{x}_{1} - \bar{x}_{2}}{\sqrt{[SP]^{2}[(1/N_{1}) + (1/N_{2})]}}$$

where

 \overline{X} = average value of samples from populations 1, 2 t = statistic N = number of samples from populations 1, 2 SP² = pooled mean square.

The calculated value of "t" was compared to standard tables (Dixon and Massey, 1957) at the indicated level of significance to determine the acceptance or rejection of the hypothesis. The data are summarized in Table 3.

These statistical analyses indicate that bicarbonate and sodium ions have higher concentrations in streams during base flow than during periods of overland runoff. The remainder of the major chemical parameters, including

Chemical parameter	N ₁	Low fl. X1	<u>ow</u> S ₁	N ₂	High fl X ₂	owS2	s ₁ /s ₂	Accept hypothesis of equal variance "F" test at 5% level of signif.	Hypothesis of means "t" test	Calculated t	Accept hypothesis at 5% level of significance
Ca	34	82.2	13.03	46	85.9	12.12	1.07	yes	₹ <u>1</u> =₹2	-1.31	yes
Mg	34	.26.0	5.77	46	24.5	4.16	1.39	yes	₮₁= ₮ ₂	1.36	yes
Na	35	10.6	6.98	46	7.6	5.26	1.33	yes	₹ 1=₹2	2.22	no
K	32	2.23	1.51	46	2.09	0.812	1.86	yes	₹ <u>1</u> =₹2	0.4	yes
HC03	63	321	40.2	69	256	54.1	0.743	yes	<u>x</u> 1=x2	7•78	no
804	63	74.1	27.1	69	74.0	28.6	0.946	yes	₮₁=₮ 2	0.021	yes
C1	63	12.6	9.03	69	11.1	11.4	0.800	yes	X₁=X 2	0.828	yes
S04/C1	61	7•75	4.45	69	8.61	6.76	0.658	yes	₮₁=₮ ₂	-0.835	yes

TABLE 3.--Statistical comparison of chemical parameters of water at high stream flow with low stream flow.

Where:

N = Number of samples X = Average value of the samplesS = Standard deviation of the samples

t = Calculated statistic

a

the sulfate/chloride ratio, were the same under both flow In base flow a greater percentage of the total conditions. stream flow is derived from the Saginaw Formation than in overland runoff and the greater bicarbonate and sodium concentrations are probably the result of water from this source. Much of the sodium in water of the Saginaw Formation is derived from the clay minerals by ion exchange for calcium and magnesium (Numbers A and B, Table 1). Greater bicarbonate concentration probably result from the combination of greater solubility of sodium bicarbonate compared to calcium bicarbonate, and the greater penetration of ground water into deeper soil zones with a greater carbon dioxide content. The Saginaw Formation itself may contribute some carbon dioxide and subsequently bicarbonate, by the decay of coal in the formation (Foster, 1950).

Saginaw Formation

The next source of dissolved solids to be investigated is the Saginaw Formation. Sandstone and shale collected from the outcrop at Grand Ledge were used in a series of leaching experiments. The samples were from the same location as those used for the clay-fraction analysis. The leaching experiments were performed by the same methods as those used with the soil-glacial material except that the material was crushed and divided into two sizes: less than 115 mesh and between 115 mesh and 3/8-inch.

Results of the leaching experiment indicate that the sandstones yield very small concentrations of dissolved solids (Analysis Number 10, Table 2). The light brown colored shale (Analysis 8, Table 2) also contributed very small concentrations of dissolved solids. The black shale (Analysis 9, Table 2) yielded a calcium sulfate type water relatively high in chloride and is not typical of the water obtained from the Saginaw Formation. This shale is shown later in the report probably to be a calcium and sulfate ion sink for recharging water and not a source of these ions.

Sodium is not readily released from the Saginaw Formation when it is treated with distilled water but is exchanged for calcium and magnesium when these ions are present in the recharging water. This ion-exchange capacity was measured in the dispersed clay sample (A and B, Table 1) and shown to have approximately 66 meq per 100 grams. However, this is a very small sample and may not accurately represent the clays of the basin.

The stratigraphically higher Grand River Group yields water that is the same as the Saginaw Formation and therefore it was not considered as a separate source. Additionally, the Grand River Group overlies only a small part of the Saginaw Formation and could not significantly affect the dissolved solids of the formation.

Stratigraphically Lower Formations

It has been shown previously that over most of the study area it is hydrologically unlikely for water to migrate from a stratigraphically lower formation into the Saginaw Formation. Upward migration of water in the study area is only possible in topographically low areas, usually associated with river valleys. Lack of migration of dissolved solids from lower formations into the Saginaw Formation is demonstrated by a significant chemical difference between the various waters (Table 4). These formations, remote from their subcrop area, contain larger amounts of dissolved solids and in different ratios than the Saginaw Formation. The difference in ratios between the Paleozoic age formation is illustrated in Figure 7. This diagram shows that water from the Saginaw Formation plots in a different section than that of the Michigan and Marshall formations. Water from the latter formations is a calciumsodium chloride type while water from the Saginaw Formation is a calcium-magnesium bicarbonate type.

The Lansing area affords an example of what water quality in the Saginaw Formation would be like if the dissolved solids were derived from stratigraphically lower formations. In 1870, a well was drilled into the Michigan Formation in search of salt (Cook, 1914) near what is now the center of Lansing. The search for salt was a commercial failure and the well was abandoned. Analyses of the water

Local No.	1	2	3	4	5	6
sec. Location 35,		sec. 36, TllN.,R3W.	sec. 30, T.20N., R6W.	sec. 5, TllN.,R.13W.	sec. 18, T12N., H.2W.	sec. 21, T4N.,R4W.
Depth	550	853	1346	741	1260	600
Formation	Michigan	Michigan	Michigan	Marshall	Marshall	Michigan
Ca		30,300	29,700	14,900	2€,700	384
Ng		8,240	7,590	3,880	6,200	56
Na	-	72,500	71,600	38,600	34,700	2,529
K		340	672	598	399	62
HCO3	240		45 47	15	0	2,438
50 ₄	620	231	232	1,010	.7	443
C1	1,800	202,000	196,000	103,000	124,000	2,791
fotal hardness	600	109,500	105,400	43,200	92,900	1,190
Total solids	5,900	314,000	306,000	162,000	192,000	7,460
Source of analysis	Unpublished NDH	l G raf <u>et al</u>. 1966	Graf <u>et al</u> . 1966	G raf <u>et al</u>. 1966	Unpublished USGS	Lane, 1899

TABLE 4.--Chemical analyses of water from the Michigan and Marshall Formation. Analyses in milligrams per liter.

Figure 7.--Water analysis diagram for selected Paleozoic formations in Michigan.

originally produced from this well (Local No. 6) are given in Table 4. In 1954 a well (City of Lansing RS-2) was drilled into the Saginaw Formation near the site of the old brine well and produced water with chloride concentration in excess of 1000 mg/1.

Distribution of chloride in the aquifer adjacent to the brine well is given in Figure 8. The highest chloride values in this figure are not close to the old brine well due to the shape of the potentiometric surface and varying pumping rates of the adjacent wells but there is little doubt that the brine well is the source of the dissolved solids. The fact that the remainder of the cone of depression in the Lansing area is not mineralized like the area near the brine well indicates the effectiveness of the Bayport Formation in preventing dissolved solids from entering the Saginaw Formation from below.

In areas where the dissolyed solids are greater than average and the sulfate/chloride ratio is less than about four, it is suspected that flow is coming from the stratigraphically lower formations. For example analyses 05N04W19DADD1, and 07N03W35CCCB1 (Table A-1) are from wells that were drilled through the Saginaw Formation and then plugged. Analyses 07N03W27DDDD1, 07N03W22CCD1 and 08N04W02DCC (Table A-1) are from wells close to cil well test drillings and probably represent contamination from poorly plugged holes. Water at stream base flow does not show the effects of high chloride in the area of

Figure 8.--Map showing distribution of chloride in the Saginaw Formation near an abandoned brine well in the city of Lansing T.4 N.,R.2 W.

these wells indicating that the mineralization is recent and is probably limited to areas where improperly plugged oil wells exist.

Two natural salt seeps were recorded by Houghton (1838) in section 15 township 8 north and range 4 west along the Maple River. The analysis of water, in mg/l, from one of these seeps as reported by Houghton is given below and is plotted on Figure 7.

Iron	1.1	Bicarbonate	299
Calcium	316	Sulfate	375
Magnesium	129	Chloride	4033
Sodium	2235		

The analysis plots in the same location as the Michigan and Marshall Formation on Figure 7 and is probably from this source.

A detailed search by earlier workers indicated that these are the only two points of natural discharge of brine in the study area. It is difficult to explain why the brine seeps are limited to a small area of the river along which the hydraulic gradient is probably favorable for discharge from lower formations. It would appear that the geologic formations are either disrupted by faulting or the covering impermeable formations are missing through erosion or non-deposition in this very narrow area.

Dissolved Solids Budget

Defining the dissolved solids budget for the basin aids in evaluating the relative magnitude of the various dissolved solids sources. Total dissolved solids input to the basin from atmospheric precipitation is given below.

	<u>mg/1</u>	tons/year		mg/1	tons/year
Calcium	1.32	8,500	Bicarbonate	4.60	29,500
Magnesium	.26	1,600	Sulfate	1.59	10,200
Sodium	•53	3,400	Chloride	•74	4,800
Potassium	.39	2,500			

Because of limited data on the composition of atmospheric precipitation from the study area, values from Feth, Rodgers and Roberson (1964) and Hendrickson and Krieger (1964) were averaged and used to calculate the dissolved solid input. The average values used to calculate loads compare very favorably with the values collected for this thesis (Table 2) and are believed to represent accurately the chemical composition of atmospheric precipitation for this area. The average annual precipitation of 31.12 inch was used in calculating the loads.

Lacking continuous chemical analyses of natural unpolluted stream flow from the basin, total dissolved solid output was evaluated by separating total stream flow into base flow and overland runoff and then using the average value of the chemical parameter for each flow condition (Table 3). The base flow separation used

previously (58 per cent of the average annual flow) was used in calculating the loads. The loads calculated are believed to be a reasonable approximation of the natural unpolluted dissolved solids output of the basin.

Base Flow

	tons/year		tons/year
Calcium	74,900	Bicarbonate	292,500
Magnesium	23,700	Sulfate	67,500
Sodium	9,700	Chloride	11,500
Potassium	2,000		

Overland Flow

	tons/year	•	<u>tons/year</u>		
Calcium	56,700	Bicarbonate	169,000		
Magnesium	16,200	Sulfate	48,900		
Sodium	5,200	Chloride	7,300		
Potassium	1,400		•		

Difference in dissolved solids between the atmospheric precipitation and total of base flow and overland flow is the amount dissolved from the materials in the basin. The amount of sodium the basin yields annually by ion exchange can be estimated from these figures if it is assumed that halite (NaCl) is the only significant soluble sodium mineral present and that all the chloride is associated with sodium and not calcium or magnesium. This last assumption is not completely valid and probably leads to a slightly lower estimate of the amount of sodium removed from the basin by ion exchange. Taking into consideration the difference in combining weights between sodium and chloride and assuming an average annual output of 18,800 tons of chloride, it can be shown that 12,200 tons of sodium should be associated with the chloride. The difference in sodium value between 12,200 tons and the observed output of 14,900 tons is the amount contributed to stream flow by ion exchange. It can be further shown that most of this amount is contributed, as expected, under base flow conditions.

To determine if the value of 2,700 tons of sodium is a reasonable yield from a basin of this size, calculations were made indicating approximately 2.5 million cubic feet of shale would be necessary to produce 2,700 tons of exchanged sodium. This calculation is based on an exchange value of 66 meq/100 grams. A shale bed one foot thick over one square mile yields 27.8 million cubic feet, therefore, even if the exchange rate were 1/10 or 1/100 of that observed there is an adequate supply of exchangeable shale in a basin of this size.

Dissolved Solids Distribution

Areal Trends

Knowledge of the three dimensional distribution of dissolved solids in the Saginaw Formation is essential to the understanding of the nature of the chemical processes that affect water chemistry. Additionally, if trends of

certain objectionable ions can be delineated or if drilling techniques affect the distribution of dissolved solids, this information can be utilized in water management decisions. It is known from the previous section that the source of most of the dissolved solids is the glacial drift. It has been previously stated that there is no apparent difference in chemical quality between the sub-basin streams throughout the basin. Therefore, the distribution within the Saginaw Formation must be a function of the water flow patterns and the lithology of the formation.

Concentration of most major chemical parameters in water of the Saginaw Formation is observed to vary over several orders of magnitude (Table A-1). This large range in concentration persists although polluted wells are removed from consideration. To determine if areal distribution trends exist, the major chemical parameters were plotted on a map and contoured. This method of presenting the data was generally unsuccessful in defining trends of ion concentration. Sodium was the only parameter which exhibited a mappable distribution (Figure 9). It is not unexpected that sodium is the only constituent showing a coherent distribution when it is recalled that this is the only major chemical constituent contributed by the Saginaw Formation. Figure 9 was constructed using wells finished in the Saginaw Formation that give no indication of contamination by poorly cased or plugged oil test wells. The areas delineated in Figure 9 are generalized, that is,

Figure 9.--Map showing distribution of sodium in the water of the Saginaw Formation.

۰.

46

occasionally a well will produce water with a higher or lower value than the indicated pattern. The distribution trend exhibited in Figure 9 is probably not affected by sodium from the glacial drift. It was shown previously that sodium ions are associated with chloride ions in glacial drift water, while the sodium concentration in the water of the Saginaw Formation results primarily from ion exchange for calcium and is consequently associated with the bicarbonate ion. Further support for a Saginaw Formation origin of the sodium is obtained from examination of lithologic logs. Logs of wells which yield high concentrations of sodium exhibit a large proportion of shale.

To verify the apparent lack of an areal distribution, statistical analyses of the major chemical constituents were made by comparing the mean values in Ingham, Clinton, Jackson and Eaton Counties by means of a single classification analysis of variance technique (Dixon and Massey, 1957). Results of these analyses failed to show a significant difference between these regions at the 5 per cent level of significance.

Major chemical parameters were plotted on maps in known areas of recharge to and discharge from the Saginaw Formation and compared to determine if mappable differences exist. This procedure failed to define significant differences between the two different flow regions.

Chemical analyses taken from wells drilled by one drilling company were plotted on a map to determine if

regional trends could be established when the personal factor in drilling and casing was held constant. However, because most drillers operate in a limited regional area it was impossible to obtain a sufficient distribution of data to test this factor.

Vertical Distribution

Statistical analyses were made to determine if the large range in concentration of the major chemical parameters were a function of the depth of the well. Depths of Saginaw Formation penetration of 0-100, 101-200, 201-300 and greater than 300 feet were selected and the means of each chemical parameter was compared at each depth by the use of a single classification analysis of variance technique (Dixon and Massey, 1957). No statistically significant differences were observed at the 5 per cent level of significance. In contrast, changes of one or two orders of magnitude in some parameters often occurred between wells of the same depth within several hundred feet distance of each other. Additionally, water from glacial drift wells and base flow of streams appeared to be greater in chloride and sulfate concentration than did water from wells in the Saginaw Formation. This observation is in agreement with comments made by many well drillers that the "better" water is in the "rock." It was also observed that when wells yielded water higher in one parameter, they were generally higher in all other parameters; that is, if the sulfate

was about twice the average value the chloride would also be about twice the average value.

To determine if these differences in chemical concentrations were apparent or real, analyses of chloride and sulfate from base flow of streams (Table A-2) were combined with analyses from glacial drift wells (Table A-1) and compared by means of a "t" test with analyses from the Saginaw Formation (Table A-1). Combining base flow chemical data with data from glacial drift wells to obtain a larger sample size is permissable for these parameters because they are from the same statistical population. Wells affected by pollution were not included in the statistical analyses. Where multiple chemical analyses exist only the most representative was used. The results, tabulated in Table 5, indicate that sulface and chloride concentrations are greater in water from the glacial material than in water from the Saginaw Formation, but the sulfate/chloride ratios are the same. Base flow analyses of iron, which is precipitated on exposure to the atmosphere, calcium, magnesium, and bicarbonate, which are removed by mineral precipitation, and potassium, which is utilized by aquatic vegetation, are not representative of well water from the glacial drift and cannot be combined in a statistical analysis. Analyses of water from drift only wells were compared at the 10 per cent level of significance with analyses of well water from the Saginaw Formation. Results, presented in Table 6, indicate sodium, magnesium and

TABLE 5.--Statistical comparison of chemical parameters of water from glacial drift and low stream flow with the Saginaw Formation.

Chemical parameters	Well glac low N1	s in ial dr: flow st X ₁	ift and tream	Well Sagi N2	s in naw For X ₂	mation S ₂	s ₁ /s ₂	Accept hypothesis of equal variance ("F" test) at 5% level of signif.	Hypothesis of means ("t" test)	Caloulated "t"	Accept hypothesis at 5% level of significance
S04	112	59.9	33.70	241	34.2	40.30	.836	yes	₹ <u>1</u> >₹2	6.37	yes
Cl	110	10.9	12.21	245	6.10	11.10	1.10	yes	₮₁>₮ 2	3.72	yes
S04/C1	109	8.80	8.33	221	8.67	10.75	•775	yes	<u> </u>	.116	yes

Where: N = Number of samples

 $\overline{\mathbf{X}}$ = Average value of the samples

S = Standard deviation of the samples

t = Calculated statistic

Chemical parameter	We gl N1	ells in acial d X1	rift ^S l	We] Sag N ₂	lls in sinaw Fo X2	rmation S ₂	s ₁ /s ₂	Accept hypothesis of equal variance "F" test at 5% level of signif.	Hypothesis of means "t" test	Calculated "t"	Accept hypothesis at 10% level of significance
Fe	46	2.09	2.23	235	1.39	1.67	1.34	yes	X1>X2	2.45	yes
Ca	42	85.1	18.74	223	79.8	21.87	•857	yes	₹ 1> ₹ 2	1.48	yes
Mg	42	29.1	8.10	229	27.6	11.13	•728	yes	<u>7</u> 1>72	.866	no
Na	42	12.7	14.02	218	14.3	17.4	. 805	yes	<u> </u>	-•747	no
K	42	1.68	.91	206	2.69	2.29	•397	no			
нсоз	50	360	70.2	252	376	66.1	1.06	yes	X 1< X 2	-1.49	yes
S04	49	41.7	32.05	241	34.2	40.30	•795	yes	<u>x</u> 1>x2	1.32	yes
Cl	47	8.6	15.3	245	6.1	11.10	1.37	yes	<u>x</u> 1>x5	1.37	yes
504/Cl	47	10.2	11.48	221	8.7	10.75	1.06	yes	<u> </u>	•857	yes

TABLE 6.--Statistical comparison of chemical parameter of water from glacial drift with the Saginaw Formation.

Where: N = Number of samples

 \overline{X} = Average value of the samples S = Standard deviation of the samples

t = Calculated statistic

ក្ម

sulfate-chloride ratio are the same in both formations. The variance of the potassium concentration was too large for comparison. Iron, calcium, sulfate and chloride concentrations are greater in the glacial drift while bicarbonate is less.

Differences in concentrations of major ions between glacial drift wells and wells in the Saginaw Formation can be observed in individual analyses by comparing wells 02N03E14CBA and 02N03E14CBAB1, 05N02W27CCAB1 and 05N02W27CCAD1, 06N02W29BAAA1 and 06N02W29BAAA2, and 07N02W15CBAA1 and 07N02W15CBAB1 (Table A-1). These are pairs of wells drilled adjacent to each other; one well of each pair is in glacial drift, the other is in a rock formation. In every case, the water obtained from the glacial drift well contains greater concentration of major ions than does the well finished in rock. The hydraulic head, based upon topographic relief, in all of these paired wells indicate the water is moving from the glacial drift into the consolidated rock formation.

Difference in concentration of certain chemical parameters between the glacial drift and the Saginaw Formation is perplexing. It was demonstrated that the soil and glacial material were the source of most of the major ions in the water and that hydrologically the Saginaw Formation is recharged by water from the glacial drift. It might be assumed that the water in the Saginaw Formation would be equally mineralized. It might be of a different

chemical type of water through ion exchange or solution of soluble salts, but it would not be expected to be lower in most dissolved species than the recharging water. Most of the differences in water chemistry between the formations, that cannot be explained, exist in the sulfate and chloride concentrations and the apparent concentration of some ions in water from many wells in the glacial drift. Differences in iron, calcium, sodium and bicarbonate concentrations could be explained by cation exchange in varying degrees, but the fact that sulfate and chloride concentrations are lower in water from the Saginaw Formation yet remain in the same ratio as in water from the glacial drift is unusual.

Explanation of Observed Distribution

<u>Pre-Pleistocene age water</u>.--Several possibilities exist that may explain the differences between the water chemistry in the two formations. Water from the Saginaw Formation may not be of Pleistocene age; but rather it may be water remaining in the formation from a period before the glacial cover. The hydrology does not support this hypothesis, but the water has not been dated by radiometric techniques. The potentiometric surface of the Saginaw Formation follows the present land surface, indicating that recharge and discharge are presently taking place. Additionally, Wheeler (1967) demonstrated that the Saginaw system in the Lansing area before extensive pumping was in dynamic equilibrium, with recharge equalling discharge. From these considerations it seems very unlikely that the water is of pre-Pleistocene age.

Selected areas of recharge.--Another possibility is, that water is recharged to the Saginaw Formation at the outcrops and in zones where the glacial drift is composed of coarse sand and gravels which contain few chloride or sulfate minerals. Again this hypothesis is not compatible with the hydrology of the system. The potentiometric surface conforms to the topographic surface, showing recharge is taking place over the entire area and not in selected areas. Also, the amount of outcrop area, or area covered by permeable "clean" sand and gravel, is very small (Johnsgard <u>et al.</u>, 1942; Veatch <u>et al.</u>, 1941) and totally insufficient for supplying the observed discharge.

Anion exchange.--A hypothesis of anion exchange could explain the lower concentrations but there is little experimental evidence to support it. This mechanism would remove sulfate and chloride and replace it with some other anion, presumably bicarbonate. From analogy with cation exchange it would be expected that there would be a greater exchange of either sulfate or chloride, yet the ratio remains the same in both formations. The clay minerals have negative surfaces, as suggested by cation exchange which would seem to preclude anion exchange in this system. Also this

process does not account for the concentrating effects of ions observed in water from many glacial drift wells.

Mineral reduction .-- Sulfate could be removed from water by reduction to a sulfide mineral, if the redox potential were sufficiently low. Reduction probably occurs in small areas in the aquifer as hydrogen sulfide gas is detected in the wells occasionally and pyrite is observed in the coal beds in the Grand Ledge outcrop. However. redox potential is higher (more positive) in most of the aguifer than that required for pyrite formation. This is suggested in the section on mineral equilibrium. The most convincing evidence that sulfate reduction is not a major cause of lower sulfate concentration in the Saginaw Formation is that the sulfate-chloride ratio remains the same in both formations and no mechanism for the parallel decrease in chloride is available under these conditions. Also this hypothesis does not explain the ion-concentrating effects observed in water from many glacial wells.

Reverse osmosis and ultrafiltration.--The best explanation for the differences in water quality between the two formations and the apparent concentration effect in water from wells in glacial material involves a hypothesis that parts of the Saginaw Formation filter out certain ions as the water passes through them. It has been demonstrated that shales act as semipermeable membranes; that is, they allow the water to move through them but retard some of the dissolved solids in the water. An early mention of

membrane properties of natural geologic material was given by Wyllie (1948). Kemper (1961) demonstrated that osmotic pressure will occur on the high salt side of a clay membrane. McKelvey and Milne (1962) demonstrated reverse osmosis could occur in a natural clay sample as did Kemper and Maasland (1964). That is, the application of pressure to one side of a salt solution-clay membrane system results in salt removal and an increase in concentration on the high pressure side of the membrane. The process of reverse osmosis, using synthetic membranes, is one of several methods under investigation for desalination of water (Howe, 1966).

Breedehoeft <u>et al</u>. (1963) used the concept of ultrafiltration to explain the origin of brines in the Illinois basin. Graf <u>et al</u>. (1966) applied essentially the same concept, with some biological functions added, to explain the origin of the brines in the Michigan and Illinois basins. Jones (1968) explains the abnormal fluid pressure and relatively fresh water in some Neogene deposits in the Gulf of Mexico by a modification of this process.

There are several types of forces that can operate on a solution of dissolved solids separated by a semipermeable membrane. Chemical or normal osmosis, which depends upon different activities on either side of a semipermeable membrane, resulting in a mass transfer of water from the side of higher activity to the side of lower activity. Movement will continue until sufficient pressure (osmotic

pressure) is built up to prevent further transfer of water. Electroosmosis is a system in which the charged ionic species are driven by electrical potential through a semipermeable membrane which retards some species while letting others pass through. The transfer of certain species will continue until the potential build up by the ions equals the potential applied across the membrane plus the chemical osmotic pressure that will develop as soon as a concentration gradient exists. Thermoosmotic systems operate when dissolved solids are separated by a semipermeable membrane with a temperature gradient across the membrane. The side with the greatest temperature will lose water to the lower temperature side but not certain ionic species. This process will continue until a chemical gradient of sufficient force is established that will cause the reaction to stop. The fourth process is one of gravity or reverse osmosis, that is, water is transmitted through a membrane by gravitational forces and the membrane retards the passage of certain ions. The transfer of water through the membrane will continue until the concentration of ions on the high potential side increases to the point where chemical osmosis would counter the driving force and all flow would stop. Reverse osmosis could occur in a natural or in an artificial recharge environment.

To determine if the hydraulic gradient observed between the glacial drift and the Saginaw Formation was larger than the osmotic pressure generated by the activity

difference between the formations, calculations of osmotic pressure were made using an approximation to the van't Hoff law

$$\pi = \frac{n_2 R T}{V}$$

where

 π = osmotic pressure

R = gas constant

T = absolute temperature

 n_2 = number of moles difference across the membrane V = volume of solution.

This approximation is probably valid because of the dilute solutions involved in this study. With an assumed difference in activity of 0.0001 moles which is typical for this system, the osmotic pressure is 0.08 feet, that is where the hydraulic head in the glacial drift is 0.08 feet higher than the Saginaw Formation, flow and ion filtering can This small osmotic pressure is exceeded over most occur. of the recharge area. Assuming 0.01 moles difference, which may exist at an interface where the dissolved solids have increased, the head necessary to overcome the osmotic pressure is one hundred times greater or 8 feet. This head difference is exceeded in many areas of the basin, however, in each area of investigation it is necessary to obtain detailed chemical analyses and hydraulic head data in order to determine if reverse osmosis is occurring.

The operation of reverse osmosis in the Saginaw Formation is illustrated in Figure 10. Many observations on ion distribution in the Saginaw ground-water system are included in this illustration. The soluble salts are leached from the glacial drift and filter out on shale lense. The water above the lense becomes concentrated in the ions removed by filtration. Wells in this zone yield water high in dissolved solids.

Comments by local drillers, that water quality is superior when wells are drilled using the hydraulic rotary methods of drilling instead of the cable tool method, are explained by assuming that the casing is cemented in the formation deeper and more securely with the rotary method. This difference in casing techniques could explain why wells 200 feet apart which have overlapping cones of depression and obtain water from the same depth yield water of different quality. Wells from the Saginaw Formation yielding the higher mineralized water have either poor casing cementing or are cased in a fractured rock that lets drift water directly into the well bore without benefit of ion filtering. This situation is emphasized in a recharge area where concentration of dissolved solids have built up over years of recharge. Highly mineralized water may then seep into the well drilled in this environment. The sudden deterioration in water quality reported by some owners is explained in assuming that the casing has rusted, letting water from the glacial drift into the well.

Figure 10.--Diagram showing process by which dissolved solids are concentrated by hydrology and geology.

The effects on chemical quality of water by different drilling methods was compared by the "t" test. No statistically significant difference between drilling methods was observed. It is probable, however, that casing techniques vary with individual drillers and obscures the true effect of drilling methods and consequently casing techniques. The effect of recharge and discharge as illustrated in Figure 10 also affects the chemical quality. However, it was assumed that each drilling method was affected equally.

Using the "t" test, wells cased the first 20 feet in sandstone were compared to wells cased the first 20 feet in shale. It was observed (Table 7) that sulfate, chloride and magnesium concentrations were greater in wells cased in sandstone than in shale and that calcium, sodium and bicarbonate were the same in both lithologic types. Iron, potassium, and the sulfate/chloride ratio varies too much to obtain a valid comparison of means. Results of this statistical analysis further suggests that the shale in the formation act as the ion filter.

The concept of reverse osmosis explains why the analysis of stream water is different from that of the Saginaw Formation yet the sulfate/chloride ratio remains the same. It also explains why the black shale in the leaching experiment yielded the high value of sulfate and chloride. In this environment near the bottom of a freshly dug pit from which the samples were taken for the leaching experiments, the hydraulic gradient is and has been for a
TABLE 7.--Statistical comparison of chemical parameter of water from wells cased in sandstone with those cased in shale of the Saginaw Formation.

loal Jeter		S	aginaw 1	format	ion			ot hypothesis jual variance test at 5%	chesis of means * test	lated "t"	pt hypothesis)% level of lficance
hem aran	W <u>1</u>	ells ca n sands	sed tone	We in	lls cas shale	ed		04 F 0 0 * 0 0 * 0	ypot "t"	alo	t 1(1gn1
<u>о</u> д	N1			^N 2	X2		s ₁ /s ₂	₩ 20≯	#		< ¢ ¢ ¢
Fe	70	1.53	2.11	69	1.09	1.02	2.07	no			
Ca	68	79•3	19.44	66	75.2	22.51	.864	yes	<u>x</u> 1> <u>x</u> 2	1.15	no
Mg	69	28.3	8.24	68	25.1	8.40	•981	yes	<u>x</u> ₁ > <u>x</u> ₂	2.26	yes
Na	67	12.1	15.24	62	15.4	17.51	•870	yes	X 1> X 2	-1.16	no
K	66	2.00	1.32	64	3.27	2.31	•571	no		e ip	4 8 av
HC03	73	380	64.10	71	384	60.70	1.06	yes	<u>x</u> 1> <u>x</u> 5	432	no
S04	73	35.2	39.09	72	25.8	36.27	1.08	yes	x ₁ > x ₂	1.48	yes
Cl	73	4.30	4.84	71	3.03	3.81	1.27	yes	<u>x</u> 1> <u>x</u> 2	1.74	yes
S04/Cl	65	9.32	6.08	62	8.65	11.81	•515	no			-

Where: $\underline{N} =$ Number of samples

÷

 $\overline{\mathbf{X}}$ = Average value of the samples

S = Standard deviation of the samples

attattata fatalunion =

long time down through the shale. The shale in this situation is acting as a semi-permeable membrane and trapping the sulfate and chloride ions along with associated cations. X-ray study of the shale from the pit gave no indication of the minerals gypsum, anhydrite or halite being present in this sample which suggests the substances are present in ionic or amorphous state and not in crystaline mineral form.

Mineral Equilibria

Theory

A study of equilibria between dissolved species in ground water and minerals in the aquifer aids in assessing the potential for precipitation or solution of minerals to occur in the aquifer. The hydrologic consequence of mineral precipitation in the skeletal framework of the aquifer is the reduction of storage and transmissitivity of the aquifer. Conversely, solution of minerals from the aquifer will increase the transmissitivity and the storage. Equilibrium concepts have been used as a tool for locating areas of recharge to an aquifer (Hanshaw, Back and Rubin, 1965). It is also apparent that mineral solution and precipitation will affect the water chemistry.

Attainment of equilibrium between minerals and ground water is generally slow, and metastable conditions may exist for long periods of time. However, the common carbonates, sulfates and iron hydroxides can, in general,

be evaluated by means of equilibrium concepts. The minerals evaluated in this study are the slightly soluble carbonates calcite, aragonite, dolomite and siderite (FeCO₃) and the sulfates gypsum and anhydrite. The common chloride and nitrate minerals are extremely soluble and present in such small quantities that they would not be expected to control water chemistry by equilibrium process. In addition to siderite, other common iron minerals are evaluated for equilibrium by means of an Eh-pH diagram.

The thermodynamic model for this study was given by Back (1961, 1963), Hanshaw, Back and Rubin (1965), and Hem (1960a, 1960b) and is, essentially a method by which values calculated from analytical data are compared to known equilibrium values to determine if the water is in equilibrium with minerals in the aquifer. The following chemical equations describe the reaction of the mineral species where (a) is the activity. The activity of solid phases and water in dilute solution is assumed to be one. The equilibrium constants are given for 25°C and one atmosphere of pressure.

For calcite:

(1) $\operatorname{CaCO}_3 = \operatorname{Ca}^{2+} + \operatorname{CO}_3^{2-}$

For which:

(2) Ksp = (a Ca²⁺)(a^{CO}²⁻) =
$$10^{-8.35}$$

For aragonite:

(3) Ksp =
$$18^{-8.22}$$

For dolomite:

(4)
$$CaMg(CO_3)_2 = Ca^{2+} + Mg^{2+} + 2CO_3^{2-}$$

For which:

For siderite:

(6)
$$FeCO_3 = Fe^{2+} + CO_3^{2-}$$

For which:

(7) Ksp = (a Fe²⁺)(a CO₃²⁻) =
$$10^{-10.5}$$

For gypsum:

(8)
$$caso_4 \cdot 2H_2 o = ca^{2+} + so_4^{2-} + 2H_2 o$$

For which:

(9) (a
$$Ca^{2+}$$
)(a SO_4^{2-}) = $10^{-4.6}$

For anhydrite:

(10) Ksp =
$$10^{-4.5}$$

For the second ionization of carbonic acid:

(11)
$$HCO_3 = H^+ + CO_3^{2-} = 10^{-10.3}$$

The equilibrium constants of all species except dolomite were obtained from tables published in Krauskopf (1967). The equilibrium value of $10^{-16.7}$ for dolomite was obtained from Hsu (1963).

To determine the activities of the various species of solution it is necessary to determine the total ionic strength of each solution by means of the following expression:

$$\mu = \frac{m_1 z_1^2}{2} + \frac{m_2 z_2^2}{2} \dots + \frac{m_1 z_1^2}{2}$$

where

 μ = ionic strength m = molar concentration of species 1, 2, ..., i z = charge on ion

Computation has been simplified by Hem (1961) who developed a nomograph that was used in this study. Values of ionic strength were utilized in the Debye-Huckel equation (given below) for the determination of activity coefficients (γ) for each ion:

$$\log \gamma_{i} = \frac{-Az^{2} \sqrt{\mu}}{1 + Bai \sqrt{\mu}}$$

where

A, B and a are temperature dependent constants tabulated by Klotz (1950)

 μ = ionic strength

z = charge on ion of species i

ai = activity coefficient of species i

Hem (1961) has also developed a graphical procedure for the solution of this equation which was used in this study. The ion activity product, K_{iap} , was calculated from the concentration of the ions, in moles/1000 gms H_20 (which in the dilute solutions considered here can be assumed equal to moles/liter) and from the activity coefficients derived from Hem (1961) using the equation

$$K_{iap} = (\gamma_i)(m_i)(\gamma_j)(m_j)$$

where i and j are the dissolved species considered. The results are found in Table A-3. Before these values could be compared with the theoretical values, the latter values were adjusted to the temperature of the aquifer (ll°C) by means of the van't Hoff equation

$$\frac{d \ln K}{dt} = \frac{\Delta H}{RT^2}$$

where

K = equilibrium constant

T = absolute temperature

R = gas constant

 $\Delta H = heat of solution$

The integrated form of this equation assumes that ΔH remains constant through the range in temperature under consideration. This assumption is probably valid for this study as the temperature changes are only 14°C from the reference temperatures.

Data Analysis

The ratio of the K_{iap} to K_{sp} for each of the species is given in Table A-3. A ratio is greater than 1 suggests the water is supersaturated with respect to that mineral, and precipitation may occur. If the ratio is less than 1, the water is undersaturated with respect to the mineral and solution of that mineral in the aquifer is possible. Because of some uncertainty in chemical analyses and in pH determinations, ratios of 0.8 to 1.2 are considered to be in the range of equilibrium. pH was determined in the field at the time of collection but sampling through plumbing could change pH by as much as 0.1 pH unit. This could in turn change the degree of saturation by as much as 0.5.

Most wells sampled in this investigation show saturation or supersaturation with respect to calcite and dolomite and generally undersaturated with respect to aragonite (Table A-3). There appears to be no relationship between degree of saturation and whether the well is located in a recharge or discharge area as was observed by Hanshaw, Back, and Rubin (1965). Nor is there any

apparent difference in saturation between wells in the glacial formation and wells in the Saginaw Formation. This is expected, because it was demonstrated earlier that the water obtains its dominant chemical characteristic within the soil glacial material. It would appear that solution of calcite in the Saginaw Formation is unlikely while precipitation of calcite is possible, particularly, on the filter layers where concentration of calcium and bicarbonate should be the highest.

The apparent greater degree of supersaturation of the dolomite compared to the calcite may result from a poor choice of the equilibrium constant. Perhaps the value should be closer to 2.5 or 3.0×10^{-17} instead of $10^{-16.7}$. Dolomite has not been observed to precipitate in an environment similar to the one under study; however, it may form by replacement of magnesium for calcium in freshly precipitated calcite or aragonite. It can only be stated that the water in the aquifer is probably saturated with respect to dolomite and solution of dolomite is therefore unlikely. Gypsum and anhydrite are understaurated and the water would be expected to dissolve these minerals if they exist in the aquifer.

The factors controlling the solubility of iron are more complex than the solution-precipitation equilibrium of the common carbonates and sulfates because of the existence of two oxidation states trivalent (ferric) and divalent (ferrous). Diagrams of stability fields for

69

aqueous systems containing iron, bicarbonate and sulfate have been constructed by Hem (1960a, b). These diagrams utilize Eh (redox potential), pH and various concentrations of the dissolved species to illustrate the equilibrium position of the common iron minerals. Figure 11 was constructed using the techniques suggested by Hem (1959) and Garrels and Christ (1965) and covers the range in parameters found in this study. Figure 11 was constructed for conditions of 11°C, one atmosphere pressure, sulfur 10^{-3} m and bicarbonate species $10^{-2.5}$.

If three control parameters, species concentration, pH and Eh are known it would be possible to read directly from the graph to determine if the water was in equilibrium with the mineral present. However, Eh values were not determined in this study because the method of sampling was unsuitable for accurate Eh determinations. Through indirect methods it is possible to estimate the Eh, and therefore use the diagram for determining the degree of equilibrium of the water to the mineral species. From Hem and Cropper (1959) it is known that iron rapidly attains equilibrium with its environment and, therefore, the iron determined must be in the ferrous state because the solubility of ferric iron at the pH of the samples is below the limit of detection by analytical procedures used in this study. Iron is also observed to precipitate as ferric hydroxide on exposure to the atmosphere which further supports the assumption of a ferrous oxidation

70

Figure 11.--Graph showing solubility of iron in relation to pH and Eh at 11° C and one atmosphere pressure. Total dissolved sulfur 10^{-3} m, bicarbonate species $10^{-2.5}$ m (modified after Hem, 1960a).

state. From Figure 11 it is shown at the observed pH and iron concentration that the ferrous ion must be in equilibrium with pyrite (FeS₂) siderite (FeCO₃) or ferric hydroxide Fe(OH)3. The problem then is which mineral controls the water chemistry. Further indirect inference from the water analyses shows that SO_{4}^{2-} ion is the dominant sulfur ion and its stability field corresponds with that of It could be siderite and ferric hydroxide and not pyrite. argued that the sulfate resulted from the oxidation of HS ion, which is in equilibrium with pyrite, after collection but before analysis. However, this process would release H⁺ and lower the pH of the solution. The well water is observed to increase and not decrease in pH on exposure to air so it would not appear HS is the dominant sulfur ion. It was also noticed that hydrogen sulfide gas (H_2S) was present in several wells in amounts too small to detect analytically. This is the sulfur species in equilibrium with pyrite at pH below 7. This does not indicate that the system was out of equilibrium because some hydrogen sulfide gas can exist at higher pH and Eh but it is not the dominant species. The presence of H2S gas does indicate that the redox potential is close to the pyrite boundary in these wells. It would be expected that wells which show the trace amounts of H₂S may have HS present and may consequently oxidize to SO_{μ}^{2} .

Calculations were made to determine the degree of saturation with the three mineral species. It was found

that iron was oversaturated with respect to pyrite and ferric hydroxide in all cases. It was in general in equilibrium with siderite and it appears that siderite controls the iron chemistry in the aquifer. Equilibrium calculation for siderite are given in Table A-3. Supporting the contention that siderite is the mineral controlling the iron chemistry is the observation by Kelly (1936) of iron carbonate nodules in the Saginaw Formation. Ferric hydroxide and pyrite may be important locally in controlling the iron chemistry of the aquifer. The Eh is probably very close to the boundary between siderite and pyrite on Figure This condition is illustrated by a sample of Bayport 11. Formation collected at the Bellvue quarry adjacent to the study area. The sample shows signs of fresh siderite and pyrite deposited beside each other. The Eh may change annually due to temperature changes effecting the carbonate system or due to recharging water not containing as much soil carbon dioxide during the growing season. Perhaps the changes are not annual but are a function of the geochemical changes that occurred since Pleistocene time. The addition of organic material and fresh unweathered soluble material are changing continuously in this geologically immature environment. The entire geochemical system may be out of equilibrium because of the rapid changes of type and amount of material in the geological cover.

An example of the equilibrium changes that occur in well water when it is discharged to atmospheric conditions is given in Figure 12. Here water obtained from four typical wells was allowed to stand in beaker covered with watch glasses and the specific conductance was measured each day until no further changes were observed. Immediately after collection, when the sample warmed to room temperature (23°C), the pH changed to about 8.4. At the end of the second day precipitation of calcite crystals (determined by X-ray) and amorphous ferris hydroxide were It can be seen that the dissolved solids, as a visible. function of specific conductance, decreased by almost 40 per cent in these samples as the precipitation continued. This change is explained by carbon dioxide escaping from The loss of carbon dioxide caused a reduction the water. in hydrogen ion concentration and consequent precipitation Iron was oxidized from soluble ferrous ions of calcite. to insoluble ferric hydroxide on exposure to oxygen in the atmosphere.

Figure 12.--Graph showing change in specific conductance of well water with time, on exposure to the atmosphere.

SUMMARY AND CONCLUSIONS

Several processes which affect the chemical quality of the ground water have been observed to operate in the Saginaw aquifer system. Atmospheric precipitation containing relatively small amounts of dissolved solids fall upon soil and glacial material. Approximately 76 per cent of this total water input is lost by evapotranspiration which has the effect of concentrating the dissolved solids in the remaining water. Evapotranspiration concentration processes, however, cannot account for the observed concentration of dissolved solids. Most of the dissolved solids in the ground water are obtained from the reaction of atmospheric precipitation with minerals in the glacial material and chemically active soil zone. Approximately 42 per cent of the water not lost to evapotranspiration discharges to the streams as surface runoff and the remainder seeps into the soil and eventually becomes ground water. The dissolved solids from ground-water discharge in the Upper Grand River basin annually averages approximately 481,000 tons while that from surface-water runoff averages 305,000 tons.

Approximately 6/7 of the water entering the glacial drift is discharged as base flow before it reaches the

Saginaw Formation. The remaining ground water enters the Saginaw Formation and is ion filtered as it passes through shale zones in the formation. As a result of this filtration the water produced from the Saginaw Formation often contains fewer dissolved solids than the water recharging to the formation. Concentrations of dissolved solids increase within and adjacent to the filter zone and consequently the mineral equilibrium is shifted and calcium and iron carbonates are probably precipitated. Calcium and magnesium ions that pass into the shale zone are subject to ion exchange for sodium by the clay minerals in the shale zone which further changes the chemical composition of the water.

The geochemical process of ion filtering is presently in a steady state condition over the natural undeveloped areas of the basin. That is, the amount of dissolved solids concentrated annually by water filtering through shale lenses is removed by local flow cells and lateral movement of the ground water at the filtration interface. This dynamic equilibrium condition can be shown to exist by comparing the concentration of chloride and sulfate at high and low stream flow. If these species were being removed from the recharging water and concentrated on the filtration layers, low stream flow would have smaller concentrations of these species than high stream flow. However, it was shown in Table 3 that the concentrations of these species are the same, hence the system must be in

dynamic equilibrium. In areas of the aquifer where pumping is extensive the flow lines through the overlying glacial material are vertical, concentrations of dissolved solids may be increasing with time. The Lansing Metropolitan area is an example of this hydrologic situation in which the concentration of dissolved solids may reach a point in which osmotic pressure reduces recharge to the Saginaw Formation through the glacial drift.

Ion exchange process operating in this aquifer system are not in a steady state condition. The annual amount of sodium exchanged is almost certainly decreasing with time, as there are a finite amount of exchange sites available in the clay minerals. The present annual yield of exchanged sodium is approximately 2,700 tons. If the yield were known at some other point in the distant past, then a prediction could be made as to when in the future the process should have negligible influence on the chemical composition of the ground water. However, the historical data necessary for this analysis are not available. The process can, however, be considered in a steady state condition for purposes of water management.

The steady state condition of the ion filtration process effects the mineral solution and precipitation process. The lateral movement and local flow cells which prevent the increase of dissolved solids in the filtration zones also prevent the concentration of many ions from reaching supersaturation and consequent precipitation.

Calcium and iron carbonates are probably, however, being deposited in some ion filter zones with probable reduction of the permeability. The precipitation process may be the factor which will ultimately reduce recharge to the Saginaw Formation through the glacial drift. However, when viewed from the time scale utilized by man for water management purposes it is of little concern. In areas where dissolved solids in the filter zone continue to increase with time as is probably occurring in the Lansing Metropolitan area, mineral precipitation may reduce the recharge to the Saginaw Formation through the glacial drift.

BIBLIOGRAPHY

BIBLIOGRAPHY

- American Public Health Association and others, 1965, Standard methods for the examination of water, sewage, and industrial wastes: New York, Am. Public Health Assoc., Inc., 12th ed., 769 p.
- Back, William, 1961, Calcium carbonate saturation in ground water, from routine analyses: U. S. Geol. Survey Water-Supply Paper 1535-D, 14 p.
- Back, William, 1963, Preliminary results of a study of calcium carbonate saturation of ground water in central Florida: Internat. Assoc. Sci. Hydrol. V. 8, p. 43-51.
- Boynton, D., and Reuther, W., 1938, A way of sampling soil gases in dense subsoil and some of its advantages and limitations. Soil Sci. Soc. Am. Proc., V. 3, p. 37-42.
- Bredenhoeft, J. D., Blyth, C. R., White, W. A., and Maxey, G. B., 1963, Possible mechanism for concentration of brines in subsurface formations: Am. Assoc. Petroleum Geologists Bull. V. 47, p. 257-269.
- Cook, C. W., 1914, The brine and salt deposits of Michigan: Michigan Geol. and Biological Survey, Pub. 15, Geol. Ser 12, 188 p.
- Dixon, W. J., and Massey, F. J. Jr., 1957, Introduction to statistical analysis: 2d ed., New York, McGraw-Hill Book Co., 488 p.
- Eardley, A. J., 1962, Structural geology of North America: Harper and Row, Inc., New York, 743 p.
- Feth, J. H., Rogers, S. M., and Roberson, C. E., 1964, Chemical composition of snow in the Northern Sierra Nevada and other areas: U. S. Geol. Water-Supply Paper 1535-J, 39 p.
- Firouzian, Assadolah, 1963, Hydrological studies of the Saginaw Formation in the Lansing, Michigan, area: Unpublished Master of Science Thesis, Michigan State University.

- Fisher, D. W., 1968, Annual variations in chemical composition of atmospheric precipitation eastern North Carolina and southeastern Virginia: U. S. Geol. Survey Water-Supply Paper 1535-M, 21 p.
- Foster, M. D., 1950, The origin of high sodium bicarbonate waters in the Atlantic and Gulf Coastal Plains: Geochim. et Cosmochim. Acta, V. 1, p. 33-48.
- Freeze, R. A., and Witherspoon, P. A., 1966, Theoretical analysis of regional ground water flow. 1. Analytical and numerical solutions to the mathematical model: Water Resources Res., V. 2, p. 641-656.
- Freeze, R. A., and Witherspoon, P. A., 1967, Theoretical analysis of regional ground water flow. 2. The effect of water-table configuration and subsurface permeability variation: Water Resources Res., V. 3, p. 623-634.
- Freeze, R. A., and Witherspoon, P. A., 1968, Theoretical analysis of regional-ground water flow. 3. Quantitative interpretations: Water Resources Res., V. 4, p. 581-590.
- Garrels, R. M., and Christ, C. L., 1965, Solutions, Minerals, and Equilibria: Harper and Row, Inc., New York, 450 p.
- Giroux, P. R., and Huffman, G. C., 1967, Summary of groundwater conditions in Michigan, 1968, U. S. Geol. Survey open-file report, 108 p.
- Graf, D. L., Meents, W. F., Friedman, I., and Shimp, N. F., 1966, The origin of saline formation waters, 3. Calcium chloride waters: Ill. State Geol. Survey Circ. 397, 60 p.
- Hanshaw, B. B., Back, W., and Rubin, M., 1965, Carbonate equilibria and radiocarbon distribution related to ground-water flow in the Floridan limestone aquifer, U. S. A. Internat. Assoc. Sci. Hydrol. Symposium of Dubrownik, p. 601-614.
- Hem, J. D., and Cropper, W. H., 1959, Chemistry of iron in natural water-survey of ferrous-ferric chemical equilibria and redox potential: U. S. Geol. Survey Water-Supply Paper 1459-A, 31.p.
- Hem, J. D., 1960a, Chemistry of iron in natural waterrestraints on dissolved ferrous iron imposed by bicarbonate, redox potential, and pH: U. S. Geol. Survey Water-Supply Paper 1459-B, 22 p.

- Hem, J. D., 1960b, Chemistry of iron in natural water some chemical relationships among sulfur species and dissolved ferrous iron: U. S. Geol. Survey Water-Supply Paper 1459-C, 18 p.
- Hem, J. D., 1961, Calculation and use of ion activity: U. S. Geol. Survey Water-Supply Paper 1535-C, 17 p.
- Hendrickson, G. E., and Krieger, R. A., 1964, Geochemistry of natural waters of the Blue Grass Region, Kentucky: U. S. Geol. Survey Water-Supply Paper 1700, 135 p.
- Houghton, D., 1838, Report of the state geologist; reprinted in Geological Reports of Douglas Haughton: The Mich. Historical Commission, 1928, Lansing, Michigan, 700 p.
- Howe, E. D., 1966, Sea water conversion: in Advances in Hydroscience, V. 3, Ven Te Chow editor, Academic Press, New York.
- Hsu, K. J., 1963, Solubility of dolomite and composition of Florida ground waters: J. Hydrol., V. 1, p. 288-310.
- Johnsgard, G. A., Nivison, T. E., Rogers, H. T., Donahue, R. L., Stone, J. T., and Welles, G. M., 1942, Soil survey of Clinton County, Michigan: U. S. Dept. Agr. Ser. 1936, No. 12, 71 p.
- Jones, P. H., 1968, Geochemical hydrodynamics a possible key to the hydrology of certain aquifer systems in the northern part of the Gulf of Mexico Basin: 23 International Geol. Congress, V. 17, p. 113-125.
- Kelly, W. A., 1936, The Pennsylvanian system in Michigan: Michigan Dept. of Conserv., Geol. Survey Div. Pub. 40, Geol. Ser. 34.
- Kemper, W. D., 1961, Movement of water as effected by free energy and pressure gradients. 2. Experimental analysis of porous systems in which free energy and pressure gradients act in opposite directions: Soil Sci. Soc. Am. Proc. V. 25, p. 260-265.
- Kemper, W. D., and Maasland, D. E. L., 1964, Reduction in salt content of solution on passing through thin films adjacent to charged surfaces: Soil Sci. Am. Proc. V. 28, p. 318-323.
- Klotz, I. M., 1950, Chemical Thermodynamics, Prentice-Hall, Inc., New York, 369 p.
- Krauskopf, K. B., 1967, Introduction to Geochemistry, McGraw-Hill, Inc., New York, 721 p.

- Lane, A. C., 1901, Suggested changes in nomenclature of Michigan formations : Mich. Miner, V. 3, no. 10, p. 9.
- Leverett, F., and Taylor, F. B., 1915, The Pleistocene of Indiana and Michigan and the history of the Great Lakes: U. S. Geol. Survey Mon. 53, 529 p.
- Martin, H. M., compiler, 1936, The centennial geological map of the southern penninsula of Michigan: Michigan Dept. Conserv., Geol. Survey Div. Pub. 39, Geol. Ser. 33.
- McKelvey, J. G., and Milne, I. H., 1962, Flow of salt solutions through compacted clay, <u>in</u> Clays and Clay Minerals: New York, Pergamon Press, V. 9, p. 248-259.
- Mencenberg, F. E., 1963, Ground-water geology of the Saginaw Group in the Lansing, Michigan, area: Unpublished Master of Science Thesis, Michigan State University.
- Michigan Department of Conservation, 1964, Stratigraphic succession in Michigan: Chart 1.
- Rainwater, F. H., and Thatcher, L. L., 1960, Methods for collection and analysis of water samples: U. S. Geol. Survey Water-Supply Paper 1454, 301 p.
- Stuart, W. T., 1945, Ground-water resources of the Lansing area, Michigan: Michigan Geol. Survey Prog. Rpt. 13.
- Toth, J., 1963, A theoretical analysis of groundwater flow in small drainage basins: J. Geophys. Res., V. 68, p. 4795-4812.
- U. S. Geological Survey, 1967, Water resource data for Michigan, 1966, Part 1, Surface water records, 245 p.
- U. S. Geological Survey, 1968, Water resources data for Michigan, 1967, Part 1, Surface water records, 259 p.
- Vanlier, K. E., 1964, Ground water in the Tri-County region, Michigan: Tri-County Regional Planning Commission, Lansing, Michigan, 19 p.
- Vanlier, K. E., and Wheeler, M. L., 1968, Ground-water potential of the Saginaw Formation in the Lansing Metropolitan area, Michigan: Tri-County Regional Planning Commission, Lansing, Michigan.
- Vanlier, K. E., Wood, W. W., and Brunett, J. O., 1969, Water in the Lansing Metropolitan area and environs, Michigan: U. S. Geol. Survey Water-Supply Paper (in preparation.

- Veatch, J. O., Adams, H. G., Hubbard, E. H., Dorman, C., and Jones, L. R., 1941, Soil survey of Ingham County Michigan: U. S. Dept. Agr. Ser. 1933, No. 36, 43 p.
- Water Resources Commission of Michigan, 1961, Water resource conditions and uses in the Upper Grand River Basin: Water Res. Comm. Rept., 137 p.
- Wheeler, M. L., 1967, Electric analog model study of the hydrology of the Saginaw Formation in the Lansing, Michigan, area: Unpublished Master of Science Thesis, Michigan State University, 74 p.
- Winchell, A., 1861, First biennial report of the progress of the geological survey of Michigan embracing observations on the geology, ecology, and botany of the Lower Penninsula (1860), Lansing, 344 p.
- Wisler, C. O., and Brater, E. F., 1949, Hydrology, John Wiley and Sons, Inc., New York, 419 p.
- Wyllie, M. R. J., 1948, Some electrochemical properties of shales: Science, V. 108, p. 684-685.

APPENDIX

TABLE 1. Chemical analyses of ground water

Nemalts in milligrams per liter except as indicated. Agency making analyses: (1) U.S.Goological Servey, (3) Michigan Department of Public Health, (7) Department of Geology Michigan State University. Aquifar: MISM-Segment Formation QBOOglacial works Hulb-Grand Hum-Marshall Formation, MUMI = Michigan Formation, MSM-Segment Formation.

			**********				1914) =	Hichigan	Fornation,	Kiver gi NSM =Baj	roup, Will port for	etion.	formation,			215: 51	06460 1100	HARDITI CAI	55 AS			••••
LOCAL WELL NUMBER	NFPIH. FEET	4011)- FER	DATE UF CullFC~ Tion	TFH- PERA- TijRF (+F)	SILICA (5102)	LRUN LFF 1	GALGIUM (CA)	HAG— NFSILH4 (MG)	50010= (~A)	011- 25510- (K)	5-7684- 6-5-688 646648	50(+ 1- (504)	Гні ПР (Ин 401.)	FLINIR‡DI {F}	F NETRATE EMITE	CAE171- LATE0	4 5 341 4 6 [Htt - 63 3 8(1-1)	C.64- Mich-834		γ + Σγ = ++= γ= γ= 	2754	848-
**************************************								*******	CLII	TON COL	MTY											•
05401W14ABAA 1 05401W170800 2 05401W18CBC 1 05401W28C008 1 05401W24ABB 1	505 37# 220 300 76	N15A 0600 N15A N15A 0600	03 11 65 03 11 65 11 30 67 03 11 65 03 11 65	45 •••• 42	•••••	1=0 •40 2,4 3.0	67]4] a	 4_4	3]0 308 305 784 576	77 9_0 35 12	12 2.0 3.2 5.0 6.0	•••••	.9 .1 .7		· · · · · · · · · · · · · · · · · · ·	268 284 225 247 267	6 11 0 11	43] 518 535 571	7.4 7.5 7.67 7.6 7.5)
05401127CD 1 05401220CD 1 05402205AC 1 05402205AC 1 054022013CC 1	175 161 200 44 160	N15A N15A 0600 N15A	03 06 45 03 09 45 01 17 45 06 26 67 01 22 45	· · · · · · · · · · · · · · · · · · ·	4.0 4.6 17 6.0	7.0 5.0 7.0 4.4 . 30	171 64 73 45 61	17 23 24 78 14	22 12 5.44 6.45 13	1.4	256 332 365 345 245	150 5.3 4.4 27 2.6	9•0 4•0 4•0 2•5 4•0	••••• •••••			4#7 78] 317 746	372 257 302 427 231	161 0 2 4 0	••••••• •••••••	7,47	1 1 7 1
05%02%14AAAA 1 05%02%180CD 1 05%02%20D4 1 05%02%22D6A 1 05%02%22D6DA 1	240 215 217 192 225	NISA NISA NISA NISA NISA	06 22 67 06 22 67 01 17 45 01 18 45 04 04 68	••••• •••••	4.6 17	. 40 . 60 . 40 . 49	55 58 71 68	14 19 16 29 20	20 18 17 8.3 9.0	4,7 3.1 	414 414 301 474 312	3./ 2.4 2.4 2.4 8.4	7+0 1+5 4+0 4+0 1+3	• K	1.4 .0	2~+ 2+7 		294 273 214 247 257	0 0 0 0 0	·····	7.75 7.55	7 7 1 1 7
05402220COC L 05402227CAAA L 05402227CB08 L 05402227CCAB L 05402227CCAB L 05402227CCAB L	230 85 240 105 240	N 1 54 0600 N 1 54 0600 N 1 54	03 28 68 03 28 68 03 28 68 04 04 69 03 28 68	•••••	•••••	•10 . 3.8 2.4 7.2 .80	62 106 57 76 83	22 34 13 16 25	20 25 21 12 9,0	3.6 1.6 4.2 3.0	30A 354 79D 307 345	19 #1 14 37 8.0	5.4 48 1.5 7.0 1.7	• • • • • • • • • • • • • • • • • • •	•••••	244 675 244 304 324	· · · · · · · · · · · · · · · · · · ·	764 404 196 766 310	0 115 0 17 0	· · · · · · · · · · · · · · · · · · ·	7.14 7.15 7.19 7.42 7.10	7 7 7 7 7
05402427CDBA 1 05402428880A 1 054024240CAC 1 054024240CAC 1 054024240C 1 054024334448 1	92 190 200 135 120	OGDO N15A N15A N15A	03 28 68 04 04 68 03 28 68 03 06 45 04 04 68	••••• •••••	7.A	1.3 2.0 3.0 .60 L1	40 93 129 77 78	21 24 38 20 18	12 9.0 7.5 10 17	3.7 2.0 1.4 	351 379 417 207 242	37 44 340 24 44]+5 6+3 6+7 8+0 7+2	••••• •••••	``````````````````````````````````````	31-, 30- 5-2 307		284 331 274 273 269	n 61 136 21 0	••••••	1.24 7.56 7.17 7.40	7 7 1 7
054024334848 1 054024334C8 1 0540243384A4 1 0540243384A4 1 054024336008 1 0540243548 1	245 200 235 731 1P0	NISA NISA NISA NISA NISA	03 28 68 03 28 68 03 78 68 04 04 68 03 01 45	•••••	7.2	.70 .45 1.2 4.5 1.5	127 74 184 178 40	34 20 42 51 24	8_0 8_0 14 10 29	4,4 2,3 7,7 7,5	746 717 741 519 317	170 72 749 741 741	1.4 1.4 7.5 5.1	•••••• •••••		517 204 774 747		247 437 654 200	176 7 336 228	••••••	7,23 7,20 7,1# 7,2(7 7 7 1
05N03W105CCDD 1 05N03W108A 1 05N03W130C 1 05N03W130C 1 05N03W15RRCC 1 05N03W15RRCC 1	140 279 178 160 164	N3GR N15A N15A N15A N15A	06 13 68 01 18 45 01 18 45 06 13 68 03 07 45		16 7.6 13	.73 .69 .30 .60 .30	60 97 64 140 76	26 38 23 33 26	14 1.9 12 4.0 4.4	1.4 1.5	151 425 333 461 128	11 27 2.5 8.0 5.1	1.7 4.0 5.0 1.3 4.0	•••••	•••••	285 17 ₆	407 270 244	257 254 356 295	1 24 14 1	••••••	7,50	7 1 1 7 1
054038144484 1 054038180044 1 05403821888 1	154 140 220	N15A N15A N15A	06 13 68 06 13 68 06 22 67	••••	•••••)_# _47 _60	90 87 70	37 27 76	9,5 5,5 14	7.7 2.1 4.3	4054 405 400	8.4 9.1 6.4	1.1 1.4 2.0	•••••		- () 721 	•••••	557 515 252	r 	•••••	7.40 7.22 7.72	7 7 7
054038238484 1 054038240C 1 054038278C84 1 0540382944 1 0540382944 1	1#0 1#7 142 164 140	N15A N15A N15A N15A	ne 13 em n3 01 45 ne 13 em n3 07 45 07 08 67	•••••	10 15	,43 ,50 1.F ,40	67 91 119	25 22 24	15 18 4,0 5,2	1.A	700 354 310 47# 346	1,4 42 6,4 3,6	5.4 1.7 4.0 4.0	•••••	·····	324	297 140 321	260 323 32: 290	5 6) 1 0		7.52	1 7 } 1
05%03%32%C 1 05%04%120000 1 05%04%144CR4 1 05%04%14CR4 1 05%04%14DA44 1	268 140 140 165 120	N15A N15A N15A N15A N15A	0] 16 45 06 22 87 06 08 64 06 06 64 07 16 65	•••••	14	5.1. 2.5 1.1 .45 2.4	40 115 42 75	34 63 77 7H	7.5 12 7.5 6.0	7.2 1.4 1.2	486 435 434 380 410	5,4 12 11 14	2.0 3.0 1.1 1.7 1.0	•••••	.0	547 35∡ 314	356	356 506 33: 310 442	- 	·····	7.50 7.22 7.*g	1 7 7 7
0540++140400 1 6540++214000 1 0540++214000 1 0540++214000 1 0540++264444 1 0+ 01#12+ =0 1	343 364 164 171	NISA NISA NISA NISA NISA	02 16 65 0n 13 69 0n 13 n4 18 13 n4 18 13 n4	43	*****		78 36 46 46	24 641 344 24	9 12 71 7>	14m 14m 14m 14m 143	3713 432 462 415 446	434 31 69 60 44	120 1-2 14 2-8 5.0	· · · · · · · · · · · · · · · · · · ·	2.6 	334 44 374 342		-66 310 406 338 315	0 0 0 26 6 0	38.5	7.6 7.35 7.40 7.62 7.52	1777

1

	مەر با جرا شر															0] V S S0]) 1 -	- IRP - 1				
LOCAL MELL NUMBER	DEPTH, FEET	AQUI- FER	NATE O CULLEC TIUM	TEN- F PERA - TURE (+F)	S1LICA (5102)	IRON (FE)	CALCIUM (CA)	MAG- NESILIM (MG)	50011/# [NA]	PNT- ASS1///M (K)	NICAR- NONA75 (NCO3)	\$11[FA]F (516)	CHEORITHE COLORITHE	FL99419 (F)	F N]THATF (NI\3)	CALGH- 1 411 1:	Egrade in 1 Al Juerra	(AH- 411M&TH	с., річ С др., 	fstfun= fstfun= ₩ers /T.2* >r 1		· • • • •
G64614140600 I	250	NISA	11 30 6	,			52	20	14	3.4	307	2.1	1.4	•••••	•••••	745	•••••	212	1.	•••••	•	,
040010198CDC 1	200	M 1 54	11 30 6			4.5	82	33	F.0	1.4	440	3.0	1.2			34 -		-41	n		7. ***	7
GENO2HOPCCEC I	200	N3GR	07 11 6			.5	70	32	13	7.4	392	11	1.2			327		406	0		7.25	-
06#02W09DCCC 1	265	N154	07 11 6			. 52	58	30	24	7.A	384	9,11	1.4	*****	******	320	•••••	744	0	******	7,	7
04M02W14C888 1	200	N 3GR	06 18 6	• • • • •	• •••••	1.4		36	13	2.7	480	·**''	1			•••	******	-		******	7.30	
06402W22DAAA 1	255	N3GR	04 18 6	A		2.4	56	26	16	2.0	361	7.4	1.0		•••••	78-		247	<u>e</u>	******	7,11	?
06402W23CAAA 1	140	N3GR	06 18 6			3.5	82	34	16	1.8	471	19	2.1	*****	******	141	******	145	n A	******	7.40	;
06402W24ACCD 1	230	NJGR	06 18 6			20	62	18	30	2.4	316	 	1.5	*****		401	*******	287			7.57	;
064028258C88 1	200	D(CUI)	06 18 6	;	 	1.0	75	29	9,5	1.4	415	А.н.	1.0	*****	••	376		306	Ó		7	7
							**	-			104	• •	1.0			314		290	0		7.56	7
G6402828ADAA] D68028298AAA]	250 205	N3GR N1SA	02 08 6		· ·····	.31	74	24 28	n.,7 6.5	2.0	344	3.1	1.2	******	******	104		3.14	0		7.50	7
SteepEng Lanna 2		N3GR			• • • • • • • • •					-									-		-	-
DANOZNZ9BAAA 2	70	0600	02 08 6				92	36	15	1.7	444	17	14	*****	******	204		34.4			7.30	;
04N02W30C000 1	225	N15A 0600	07 11 6			1.2	65	30 26	10	1.9	361	1	2.0	******	••••••	3114		70-	4	******	· · · ·	,
		4000				••••			••				÷ ()					746	6		7.5	,
04403413AAAA 1	204	N1SA M3CB	07 11 6		• • • • • • • •	- 90	56	23	44	3.1	476	25	-•·•		******				•	••••		•
06403#158488 1	135	N3GA	07 11 6			1.2	84	31	13	3,4	407	34	3.4		******	374-		237	7		7.75	7
04403436004A 2	230	N 3GR	06 14 6			2.8	45	29	15	1.4	4A2	24	 *			*		374	0		/.49	7
1 333340WA0MAD	462	N15A	10 25 50		. 11 0	.75	88	29	12	1.5	472	7	۰.۱	•1	••	•••••	44.7	340	ſ.	600	7.4	?
06H04W04CCCC 1	462	N15A	. 04 06 6		- 13	1.1	84	32	13	1.5	435	77	•	• *	•4	******	34 m	441		- / ·		•
1 333340440440	355	NISA	09 20 5		. 11	.75	A1	32	10	1.4	430	. # "11	1.4	••	•**		***	4	••••	676	7. •	4
ALNOLING&CCCC 1	366	N158	08.06.6			- 60	84	30	11	1.4	435	10	••	.,			i fra	334		AND	7	4
GANDANDSAAAA 1	A7	4660	06 06 6		• • • • • • • •	3.2	#6	35	16	1.5	436	27	7.1			346		344	1	******	7.4	7
06N04W23RABR 1	305	N158	02 08 60			1.2	40	34	18	2.7	467	16	2.2		******	446		34-	0		7.44	7
04H04H25AC8 1	111	0600	06 23 6			3.0	56	41	11	2.0	512	22	2.0	*****		177	*******	272	, ,	******	77	1
OANOAH3ACCAR 1	340	N154	06 06 6	****	• • • • • • •	.70	75	36	[m	1.1		14	17	******								_
07%01%120%04 1	344	HH	09 07 61	****	· 4.0	•00 40	74	74	*******	*****	144		77	n.	-0	******	414	300	10	741	2.8	4
07N01W1208CA 1	346	Tisă	05 15 64		10	.30	76	23	79	2.2	340	44	17		••• ••1		144	745		~ 3.0		1
07401430944 1	220	N154	PH 26 61			-20	75	38	17	2.1	485	14	1.5		_ {1	.72		444	r		-59	,
070020036044 1	137	N 368	07 18 45			3.6					220		÷		,			100	2	1.1		,
07N02W09ACAD 1	500	NISA	12 11 57		11	20	62	26	35	2.1	340	17	10		-0		350	260		201		
07N02H099C8C 1	501	N15A	01 07 5:		R.0	.35	56	30			35A	47	1-	.1			400	257				•
07402W09CB8A 2	525	NISA	06 18 54	52	2 12	- 34	66	29	45	2.0	142	43	22	.4	• *	46 ⁻⁷ -6	ڪن ڪ	7°\$	ú	×91	· • •	1
07N02W09C88A 2	550	N15A	01 07 55	****	9.0	. 30	5A	29			356	6	۲٩	• 2	•''		344	764		-:	· 4	:
07N02W13BAA 1	250	NISA	02 01 64	•••••	******	.76	34	10	46	3.R	219	44	3.7			247		126	e.			•
07402W15EBAA 1	303	NISA	02 01 68	*****	*****	.51		30	21	2.4	396	* • *	1.A	*****	******	514		× 78	1			-
07402#360000 1	240	*15A	06 26 67			0.9	111 34	46 38	26	1.6	342	74	1.7	******	•••••			251	. T	******	- 30	-
								-		- • /			-		÷	••		-				
07N03W13A000 1	136	0600	07 11 68 07 11 68	•••••	*****	• 34	35	12	40	1.5	241	12	1.7	•••••	•••••	47-	•••••	197	Ŀ	•••••	7.50	7
·· 7#/3#1 ~99970 1	235	1130 1134	- 07 11 6M	*****	*****	1.2	7.5 AR	71	77 P4	4.1	397	24	بي. راي	******	******	- A - A		ونه مدر	r •		. 57	
1 000000 H	20	.154	17 16 A5		******	.A7	********				355	4	a	******		*******		210		1920	7.9	-
07113 8270 006-1	7.1	5184	7.11.45		*****	.1-	13	4.5	79-1	7 4	460	17.	31-			81	*******	41			8.20	•
17-53#27" (H-1	74.7	*] S Z							<u>Fu</u>		445		ι.		- `		430	200		718		,
1.1.13434-444-3	7	454	11 14 45		*****	4.1	********	******	*******		477	14-			1.4	*******		242		1124		
7-53			· 10 65		•••••	.74	• • • • • • • • • •				34.7	•	1~		1.2			210	24	67	- 6	:
	•••	-1.5	1		•••••	••••••	********	*****	******		-1-	1	4 • · ·	•••••	••••			364	105	1240ÿ	.9	
		•		*****	* * * * * *	• · · · ·	6.40	4 4	4 **		بر مش	•	N -14	******	• ''	546	*******	•	150		.7	

98

.

-

						ł										93 4	21. 21.					
				164-						10 - 100					•	1.31.11-						
LOCAL NFLL	06014, FEET		CULLEC-		SILICA (5102)	TEON (FF)	CALCTIN (CAL	NFS72H	(IN)		INS 1100	LFATE C	ננרז ונרז	1,406 1,416 (1-1	NITRATI (MU4)	1-11-1		1.44	114	25-11	* _ +	171
																		<u>1</u>	-	4114		
THOMAN I	2	0000	02 01 65			ţ						ć -		-	-		j i r	ć	c	0001		
OTHOMAL TOACD 1	*	4154 4154	02 10 65								Ķ	2	2		u .			1 1 1	đ	Ş		_
		N 3CB				•	:	97		•	445	11	0-2			117		107	c			
n7M04W24N004 1 07M04W30A400 1	5 £						۲ ۲	1 2		-	145	:	1.1		:::::::::::::::::::::::::::::::::::::::	202		į	c		9	
			14 00 40			1	2	ñ	4	4 • 1	-112	4. 7	17				[];	R	• •			
ORMOINNICOCC 1						2	2	2	1	•	101	بر	5				ļ	9.1	•	Ê		_ ,
	250	MISA	02 01 48			\$4.	ÛĽ	31	ž	4 - E	174	Ţ	2			435		ċ	2		×	~
		N 36N	17 52 72				69	2	11	5 ° 5		4	4			•••••	44.7	414	č,	145	-	
OMOINICACC 1	E=1						57	:22	~~~	1	ž,	=£	ç, ç	¢		••••••	100	- 14.3 5 - 14.3	:	ĨÇ.	1	
04M01~1286CH 1	Ş		AC DC 21					: :		•			146					• • • •	:		7.4	¢
"I Jylaciniond"	Ĩ	NLSA N	7 : 2 : 4 :	1	ļ		5 S							-	C		-U			404	· · ·	.
COMOLUL 30CC 1	33		11 25 52		2							5	4						:**			• •
DOMOTIVE 1	; ;	0000	05 10 54	5	1				••••••				£ \$					5	2	7.00		н. 1
OAMOLWIJACC 1 OAMOLWIJACC 1	33		65 0F 21		. 15	04	3			4		5	7	•	¢.	•••••	Ĩ	142	2	17		•
	: :				:		80				(11	911	2	~	с .		<i>41</i> 3	Car	101			r •
CONCIMINED					•	2.0					Ş	Ŧ	42					ç,	2 3	22		
OPMUTATION I	:5	0000	10 12 54									5	2	• • •					41	014		H.
Openite 300C 1	5	0030	5 2 2	;;								5	, ç				•••••	311	54	121		•
								1		;	100	064	-	•	2		71.4	51	147	90-	1.1	-
DANNINI JANC 1	57	DUP/O					10	22					Ē					102	=]			4 7
DOWNTULATAAA 1	Ĩ	WISA	04 19 53		3.8	5	ţ	ĸ	1		540	2	2	4	•			į	Ē	u-u-l		~
04441414844 1	ī	N SI	15 CI CI	39							12		1.1					•	171	1441	:	-
	Ē,			τ		,				0	695	4	145	°.	с .		eor.		511	unut.		۰.
0840]=]44444] 72201=]44444]							Ìì	٤ χ		7	i.	3	110		ſ,	514	580	92B	n. ⊂ ≪	975 114		
0=-11=15C6P 1	ŝ	aut N	64 65 61			-	÷	•	2	7	000	<u>}</u>	-			31.7		<u>+</u>			1	~
1 OUT IN INTERED 1	5/1 5/12	NISA N				1	22	r A	2 =	1	UUT	2	-				4 [-:	105	c	4 4 5	~~~	-
		00161	02 V3 71			78.	ş	ĸ) • t	1162	74	II				5 U T		27	6 4 4 7 4 4	: ; • •	
	÷۶	UC-10				-	6.7	2		1	462	3	C • 7	•••••			115	12	; -	7		
OMOLW29CDCn 1	215	T>TH	1 1 1				÷.	2:	č.	ď. :	14	1 ;	u, 4			342		, ș	-6		0	•
044014354400 1 044024094000 1	4. 14.		19 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10				f 7	7 X		-	Ĩ					20-		237.	5		Ģ.	•
			97 10 13			7	2	1	ę	0.7	4741	٤	1			191		<u>.</u>	÷		55. 2	·
COMPACT START	016 208				-	۽ ۽	151	(1	1.44		220	-UP	14.5	c.	2	•••••	34.1		3	6		• ••
2 THEUNEUMOU	22	1	** ** **		2	-] 4 R	4	<u>د ،</u>	;	412	11	4	د			41.	;÷	10	Ē	~	r*
1 -Theory Units	44	onno Diane			22		1 2	59	27		į		Ē	•			62,	40,	,9;	0111	:	•
						- -	:	12	2	1.1	141	4 7				314		274	=		1.0.1	
2 0 mm 0 3m2 / C UOM 1	220						, r.		1	-		4	, <u>'</u>			323		140	2		Ę	
	i i										2112	i,	, F		c.1			04	9 <u>6</u> 6	4120		.
CHARGE OF A COMPANY	4						ţ	ĉ	-	7 ° 1	171		* ~ ~	•••••				51	19.	3530	Ņ	-
	23	• •	15				;;	16	• • •	1.1	4	5	3.0		<u>د</u>	151		- 7	23			•

,

1

																01550 501	104 1144 0	нанімі Сас	55 85	SPECIFIC COMPACT-			
LOCAL WELL NUMBER	DFPTH. FEET	AQUI- FER	DATE OF COLLEC- TION	164- PERA~ TURE (#F)	SILICA (5102)	IROM (FE)	CALCIUM {CA}	MAG- NESTUM (MG)	5001UM (NA)	PNT- ASSTIM (K)	NICAR- NONATE IHCN3)	SULFATE (CHLORIDE ICL)	+L(NI#30) (F)	F NITHATE (NIS)	CALCH- LAIFD	FVAPII~ PATED AT 120*C	CAR- RUNATH	NIN- CAR- RUNATE	AHCF (M1CRI)- MH()S AT 254C)	рн	ANG- LYST	
									EAT		Y												
01004013A8A 1 020030300AB 1 02003032000 1	150 250 95	M15A M15A OGDO	03 14 68 03 14 68 03 14 68	•••••	•••••	2.5 ?_7 3.5	56 A5 86	20 20 30	610 610 710	13 2.4 1.0	434 322 386	1.0 40 19].4 1.9 3.6	·····	•••••••• •••••	570 31# 332	••••••	204 337	0 30 21	· · · · · · · · · · · · · · · · · · ·	7.65 7.45 7.7]	1 7 7	
024-73#344CAB 1 024-03#34000C 1 024-04#04C88C 1 024-04#10486C 1	294 185 110 70	N15A N15A N15A N <u>1</u> 5A	01 17 61 10 19 67 03 14 68 10 19 67	•••••	1D	.30 .45 2.4 .87	#0 116 76 98	21 29 23 27	3.5 11 2.0 3.0	.# 2.6 .9 1.0	725 384 298 346	35 ML 37 53	2+0 14 2-9 4-2			446 286 358	3NA 	285 412 285 356	27 97 41 77	574	7.5 7.67 7.62 7.30	3 7 7 7	•
02N05W038CCC 1 02N05W0208AA 1 02N05W1000CC 1 02N05W24AB8 1	140 106 300 230	4384 R15Å R15Å R15Å	05 02 48 09 15 44 09 15 44 01 11 65	••••• ••••• •••••	· • • • • • • • • • • • • • • • • • • •	4.8 .59 1.5 2.4	83 87 548	23 42 141	17 ۹٫۶ ۲۶3	4.4 1.5 20	424 411 180 372	11 37 " 1120 8.8	1.4 2.0 810 4.0	·····	1.3	352	417 3180	302 340 1930 787	0 26 1780 0	725 4330 570	7 .60 <u>7</u> .4 7.7 7.6	7 1 1 1	
024064/28ADD 1 034034/056AB 1 034034/358AB 1 034/144/090CCD 1	180 111 120 164	R15A N3GR N15A N15A	04 18 64 03 14 68 03 14 68 10 26 67	***** *****	•••••	4.5 2.4 1.5 1.6	94 75 R6 74	24 30 28 26	13 4.0 3.5 3.7	6+0 2+# 1+2 2+4	410 354 402 337	9,0 24 2,0 23	1.4 4.4 1.7 2.0	••••••	•••••• •••••	351 323 321 300	•••••	334 310 325 293	0 20 0 17		7.35 7.78 7.73 7.55	7 7 7 7	88
03404423006 1 03404423006 2 03404423006 2 034044268000 1 034044298444 1 034054298444 1 03405428444 1 03405428444 1 03405428444 1	300 200 100 106 269 268	N15A N15A N15A N15A N15A N15A	12 14 60 12 14 60 10 26 67 04 18 68 04 18 68 04 18 68		15 15	2-3 -70 7.0 1.6 -51 3.0	116 92 114 102 46 80 86	39 32 36 35 16 30 33	12 4.6 6.7 5.5 87 9.5 7.5).7 .8 1.4 1.3 7.8 2.5 1.7	440 400 450 442 407 425	A5 3A A2 33 7.0 10 13	25 7.0 12 6.4 2.0 1.2 2.2	n. 0. 	۵. ۱۰.	480 408 380 342 358	40A 394	650 360 432 399 181 323 351	89 32 62 31 0 3	800 450	7,3 7,5 7,5 7,4(7,42 7,55	377777777777777777777777777777777777777	ω
03405429846 1 03406427846 1 03406428848 2 03406428848C 1 04403486 1 044034674888 1	410 167 94 160 110	0600 N15A 0600 0600 N15A N15A	10 26 47 05 02 68 05 28 59 09 16 64 07 08 65 05 02 68		15	2,3 1,4 .90 .34 .94 .55	112 130 88 103 75	38 32 34 42 32	7.1 14 5.8 4.2 4.4 11	1+7 7.2 .A 1.0 7-1	400 3A3 425 444 418 421	5A 145 23 44 940	A.5 4.4 3.0 2.0 3.0 1.3	••••	0. 0.	441 534 		637 667 630 630 819	33 151 66 57 0	450 75¤ 849	7.69 7.39 7.5 7.6 7.5	7 7 1 1 7	
04403013400 1 64403014048 1 0440302540 1 64404028460 1 044040108884 1	425 450 110 404 90	N15A N15A N18A N15A N15A	06 19 64 01 07 64 01 10 45 12 14 60 10 26 67	 56 	10 9.0 13	-60 -40 -90 -50 - 90	R0 52 73 80 72	24 26 27 29 32	13 31 6.4 11 17	7.# 3.0 1.5 1.9	400 390 347 345 400	4.0 8.0 3.4 18 23	•0 5•0 3•0 5•0 2•0	.? .3 .2	ח. ה. ה.	341	334 374 307 354	300 260 245 320 313	0 0 4 0	56በ 58በ 60ዓ ******	7.4 7.4 7.5 7.5	7 3 1 3 7	
-+++++++++++++++++++++++++++++++++++++	190 225 225 200 260	N15A N15A N15A N15A N15A	12 14 60 06 17 54 12 14 60 10 26 67 10 26 67	50	17 16 15	2.0 .83 .50 .95 . 5 0	R() 93 92 74 38	30 31 34 32 24	6.0 6.9 6.0 6.6 49	,R }.0 .R].9 3.4	364 405 373 378	41 31 50 24 10	3.0 3.5 4.0 1.5 1.2	•3 •1 •0	۲ 1 0	243 379 317	370 377 400	325 360 370 320 142	27 27 38 15 0	800 651 850	7.5 7.3 7.4 7.67 P.07	3 1 3 7 7 7	
4706802CADB 1 - 48068200CC 1 - 48068200CC 1 - 48068214444 1 - 4806824CDC 1	174 340 245 245	0600 N1SA N1SA N1SA	10 28 59 06 14 65 01 11 65 10 26 67	•••••	17	1.0 1.7 7.9	RL R(32 26	#.3 	1.0	410 362 425 385	17 9,6 4,0 4,0	5.0 1.0 1.0 .9	n. 	n, 7. 4.	311	180 	340 320 139 309	10 0 0	698 545 515	7.7 5.4 7.5 7.65	3 }] 7	

..

TABLE A-1.--continued.

ŝ.

	******										****			*******		(+155) 5(4)	145	HARIN	FKK 25 103	SPECIFIC CONDUCT-		
LOCAL WELL NUMBER	BEPTH, FEET	AQU1- FER	DATE OF Collec- tion	TEH- PERA- TURE (+F)	SILICA (SIQ2)	ERON (FE)	CALCIIM ECA)	MAG- NESIUM (MG)	SODIUM (NA)	POT~ ASS1U# (K)	ATCAR- BONATE (HCD3)	SULFATE I SO4)	CHENRINF (CL)	FLOHRIDE (F)	NETRATE (NF3)	62100- 14160	+VAPII- 94150 AT 140=C	CAR- RIJNATH	NIIN- CAH- RIINATE	ANCH (M[CHI]- MH()S AT 25+C}	рн 	ANA- LVST
								بت هه وب چو	186	NAM CON	RTY											
01N016238000 1	11	NISA	10 05 47	••••		1.3	106	35	5.3	.R	410	3A 49	21 #+0	•••••		409		40A 385	68 57		7.70 7.4	7 1
0100123688CC (01001082CAAA 1	140	M15A	10 05 47	*****	******		59	14	6.6	4.6	272	3.0	.5			>>3		207	0	******	H,05	7
01H01W178888 1	100	NISA	10 05 67			2.0	85	26	3.3		130	51	3.0		••••••	345	- 10			800	7.1	3
01001W28AAD0 1	1#5	NISA	04 11 61	*****		. /0	1.20	27	7.1	1.40	,							064		750	7.4	1
CINCINZAAADD 1 OLNOINZODAD 1	223 118	N15A N15A Q600	02 08 42 10 05 47	•••••	11	.60 1.9	130 90	23 28	5.7 3.0	1.2	360 366	125	2.0	•••••	•••••	111		317	37	583	7.6	í 1
INDER LANC 1	70	NESA	07 29 64	****	*****	•••••	85	22	6.1	1.1	224	101	1.0	******		240	*******	271			7.60	i
010070790440 1	178	N1SA N1SA	11 -07 67	*****	******			25	20	6,8	434	ü	3.7	*****		36R		320	0	•••••	7.80	7
							40	33	A 0	1.1	174	3.0	.9			253		245	0		7.80	7
02001E25C00A 1	136	M15A M75A	11 05 48	*****	******	.53	57	18	7.5	1.8	295	2.0	•			231	•••••	276	0	******	7.51	7
OZNOINOSACCC 1	210	N115	05 12 41		14	. 30	80	27	4.6	1.0	374	6.0	4.0	.,			616	440	139	440	6_A	ì
02W61W9500A0 1	149	W1SA 0000	10 26 59	*****			130	33		*.*	397	RO	44	•••	1.0		520	400		#20	7.3	3
Acattanerura I											360	91	108	-0	4.5		620	442		1000	7.4	3
OZNEINOEAACO 1	48	0600	05 12 41	50	10	.19	108	30			361	43	14				4.84	395		800	7.3	3
0210110996888 1	43	0600	04 00 42		A.0	.00	84	30	14	2.5	304	73	23	••	1.5		00-4	276		670	7.50	3
02001W138C88 1	135	NISA	10 17 46	••••	*****	- .3 7	54	22	32	7.4	376	+2 ^{•0}	14	******		274		363	59		7,75	7
054614160CCC 1	129	M124	Ta 02 64	•••••	*****		144	20								600		385	45		7.30	7
024014268088 1	130	NISA	10 17 48		*****	1.2	95	36 28	5.7	1.2	396	19	2.4	*****		338		340	15	******	7.32	7
02001928C888 1 02002F024C00 1	110	NISA	10 05 67	*****	******	1.4	44	30	5.7	1.0	380	41	12	•••••		373	•••••	359	47	•••••	7.93	7
OZNEZEZADAAA 1	101	MIMA	10 05 67		•••••	1.9	114	36	4.0	1.1	435	74	2.7	•••••		472						
02002634CAA 2	340	1341	10 05 67	•••••		.90	116	36	10	2.8	435	4 P	1.5	•••••	•••••	L79	•••••	436	RO	•••••	7.63	7
03002534544 2	176		10 05 68			5.9	120	42	33	1.6	500	97	33	•••••	•••••	579	• • • • • • •	477	64	••••	7.55	7
OZNOZWINAARA I	140	NISA	05 02 68			• 3R	R0	30	7.0	2.7	344	14	1.7 6.0	******			1	98	Ō	633	7.A	i
OSHOLEGZAAAA 3	167	N15A	03 15 67		7.7		33	11	116	•••••• 5_6	431	10	8.5	.5	•t	413	-05	125	0	684	7.7	1
O3NO1EOZAAAA 3	147	NISA	10 29 58	•••••	7.0	-15	34	10	117	K.2	427	17	7.0	•1	-1	• • • • • • • • •	±1n	125		700	/	,
030016034444 3	145	N154	03 24 67						100		400	21	P.0	•••••	•••••		396	110	0	656 274	7.7	1
03101602884 1	40	0600	02 08 52		7.3	.90	60	1.4	3.5	••••	214	49	2.0	· •0		,	474	307		610	7.3	,
03401602884 1	38	9600	10 29 58	•••••	9.0	2.5	R6 28	10	0.0		3#3	11	2.0				356	110) 0		A-1	9
03H01E08A848 1	185	N15A	10 12 67	•••••		.35	47	12	90	7.5	- 444	5.0	1.*	•••••		, <u>3</u> 84	•••••	148	0		1.13	1
03N01E0800CC 1	41	NISA	10 12 47	••••		#1.2	80	30	7.9	1.6	405	6.0	-4	•••••		327	•••••	372	• •	•••••	7.45	7
03001E128CC I	184	NISA	03 15 47	••••		••••••			R.6		746	9.2	4.0	•••••	•1		222	194	0	392	7.9	1,
03N01E128CC 1	184	HISA	10 17 46	•••••	*****	1.1	90	30	7,5	4.0 1.4	645 346	2.0	1.4	*****		277		265	0	******	7.75	÷
03401E228AAU 1 03401E3288CC 1	100	NISA	10 17 48	*****	******	.57	12	ŽŘ	10	1.4	374	5.0	1.0			302		295	0		7.51,	2
03H01E34A000 1	145	N115	10 12 67	••••		. 35	44	15	65	7.4	376	5. 0	1.1	•••••	•••••	324	•••••	171	D	•••••	H. 04	'
03001834868 1	32	QGO O	12 12 68	50		••••					348	58	5.5	•••••	••••	424	•••••	324	34	ሳፋቦ	7.5	17
034018178886 1	172	NISA	10 17 68	•••••	*****	2,4	94	77	3,9	1.	471	23	1.2			349		350	3		7.79	7
03N01W03R485 1 03N01V074444 1	150	NISA	10 17 68				42	28	5.0	2.1	390	15	2.0			12-	*******	320	n		7.44	7
03N01W10458C 1	240	NISA	10 12 67	*****		.40	75	29	13	4 . f	1 785	9 . 1)	•*	•••••	•••••	271	•••••	304	C.	•••••	1.15	'
03801#15880A 1	200	N154	10 17 68	•••••		.37	8.×	27	R.4	· •••	474	3.0	1.0	•••••		34+		14	0		7.12	7
03401#230CCC 1	235	NISA	10 17 60			.63	90	30	11	5.4	661	11	1	•••••		169 169		341	17		7.20	+
03N01w754044 1	110	NICA	10 17 64			50	6. 19.	37 1	7.5	1.4	344	73	1.1 5.1	******		165		341	'n		7.8	7
	46	1941 °.# 1411 € #	13 17 68	•••••			GA	30			104	46	÷. •	*****		319		1.5	19		7.50	7

								******	*				********			D1556 SU	105	HARDNI CAC	55 AS	SPECTATC CUNDUCT-	**	
LOCAL WELL MUMBER	DEPTH. FEET	AQU1- FER	DATE OF COLLEC- Tion	TEM- PERA- TURE (PF)	STLICA (5102)	IRDN (FE)	CALCIUM ICA>	MAG- NESTUM (NG)	SOD THM {NA)	POT- ASS104 (K)	RICAR- RONATE (HCQ3)	SULFATE (SN4)	CHLORIOF (CL)	FLOURIDE (F)	N]TRATF (ND3)	CALCU- LATED	EVAPII- RATED A1 140+C	CAR- RIJNATE	NIN- CAF- BUNATE	ANCE INICHI- HHDS A3 25401	C M	ANA- LYST
G3N01W3248AA 1 C3N02E04ACCC 2 O3N02E06ADDD 1 O3N02E128CAD 1	130 180 200 144	N15A N15A N15A N15A	10 17 60 10 24 68 09 29 64 10 12 67		•••••	.58 .60 1.0 1.9	86 85 11 84	30 31 5.0 27	3.0 9.0 272 4.9	.6 3.1 1.7 2.2 8.5	334 432 542 386 386	79 1.0 134 8.0	5.7 .9 14 .7			367 343 319	746	338 340 44 370 307	64 0 0 4 0	11#0 577	7.45 7.40 8.5 7.90 7.4	7 7 1 7 1
03N02E15A00C 1 03N02E17ADDD 1 03N02E25CAAA 1 03N02E24CC0C 1 03N02E04CC0C 1	140 295 125 32 90	NISA NISA 0600 0600	10 12 67 10 24 68 12 12 68 20 24 68	50	·····	.92 .43 2.1 3.3	46 76 83	10 24 27	90 13 3.0	R.4 A.4	382 399 342 347	25 7.0 18 52	14 3.7 1.5 1.6			384 330 338 347 274		156 305 268 318 290	0 0 33 7	520	7.70 7.32 7.6 7.40 7.30	7 7 1 7 7
03H02W11ADAD 1 03H02W18DC6 1 03H02W18DC6 1 03H02W18DC6 1 03H02W19CCC8 1 03H02W21C80 2	113 110 50 100 118	N15A N15A N15A N15A N15A	11 05 68 11 05 68 11 05 68 11 05 68 11 05 68 10 16 59			.01 .00 .35 .70 2.2	75 86 72 77 87	25 32 24 26 30	2.7 7.0 5.0 5.0 4.0 2.9	1.2 L.4 1.8 .9	289 428 322 346 370	24 24 14 27 34	3.1 .A 1.7 1.P 7.0	· · · · · · · · · · · · · · · · · · ·		265 337 281 397 341		744 347 279 299 341	11 0 15 15 30		7.51 7.59 7.42 7.42 7.6	7 7 7 7
03M02W230C00 1 03M02W23C0AD 1 04M01E0ADADA 1 04M01E110CC 1 04M01E13CCAA 2	228 403 344 250 325	N15A N15A N15A N15A N15A	10 14 59 06 13 68 10 12 67 10 12 67 04 04 68		13	.60 .95 .60 .78	24 94 68 54 124	27 30 18 24 24	5.9 3.2 29 16 20	1.4 .9 5.2 4.4	200 390 368 327 292	11 55 4.0 5.0 180	12 4.0 1.0 .6 1.7			30A 267 500	198 438	171 360 244 236 409	7 N 0 169	310 640	7.2 7.1 7.50 7.55 7.51	137777
TOANOIE20CCA 1 PANOIE20CCAA 1 PANOIE20CCAA 1 PANOIE20CCBC 1 PANOIE07CACD 1 PANOIE07CACD 1	260 260 235 392 392	N15A N15A N15A N15A N15A	04 04 68 04 04 68 18 12 67 12 29 65 02 29 68		12	.46 1.2 .80 2.0 1.0	74 176 80 114 96	14 21 10 36 34	11 26 10 9.2 13	4.3 6.4 4.8 1.4 3.0	302 373 294 390 395	13 320 22 10A 76	1.5 2.7 1.1 15 12			267 688 277 430	 540	243 525 242 435 380	0 301 0 56	780	7.55 7.50 7.60 7.2 7.23	7737
	385 385 385 385	N15A N15A N15A N15A	07 31 52 04 23 53 04 26 54 11 19 59	51 51	10	.40 2.9	80 116	30 	13 10	1.6	38A 37A 388 462 384	45 40 118 55	4.0 3.0 2.0 5.0 7.0		.0 	•••••	420	325 320 330 470 360	·····	650 710 850 680	7.2	3
	385 380 385 385	NISA NISA NISA NISA	02 29 68 02 08 52 04 26 54 05 12 61	51	10	1.2 .#0	л5 А2 76	32 36 33	12 11 13	1.4	39A 417 400 38R	46 38 35 33	6.2 3.0 3.0 4.D	••••• ••••• •*		376	740 396	345 355 33n 325	20	590 700 620	7.30	7 3 3 1
04N01W07DCA8 1 04N01W07DDAD 1 04N01W07DDAD 1 04N01W07DDAD 1 04N01W00CCCA 1 04N01W00CCAD 1	380 391 391 411 393	N15A N15A N15A N15A N15A	02 29 68 03 31 55 02 29 68 02 29 68 02 09 68	51	R.0	1-0 •50 4-0 2.9 •20	80 92 106 120 76	34 32 38 43 26	9,5 12 12 20	2.7 7.3 2.3 2.3	414 395 436 462 360	32 35 93 130 44	4.1 2.0 9.1 13 2.0	 	n. 	47R 551	376 386	340 421 477 295	64 99	670	7.5 7.2A 7.20 7.6	3 7 7 3
04401W108ADA 1 04401W108ADA 1 04401W108ADA 1 04401W108ADA 1 04401W1100D 1 04401W1100DC 1	390 300 390 333 343	N15A N15A N15A N15A N15A	11 19 59 06 07 65 03 07 68 03 07 68		14 13	•30 •20 1•3 1•2 2•1	54 64 56 62 70	24 16 22 23 24	11 12 12 8.0 7.9	1.0 1.1 1.4 1.6	320 310 295 317 366	2.0 .0 3.0 7.0 3.0	.0 .0 1.3 1.5 1.3	.5	0. 7.	241 240 279	244 262	233 225 231 250 27-	0 0 7	500	7.8 7.5 7.83 7.7} 7.7} 7.4]	3
04N01W11CDDC 1 04N01W11CDDC 1 04N01W11CDDC 1 04N01W11CDDC 1 04N01W11CDDC 1 04N01W174B44 1	343 343 343 250 413	N15A N15A N15A N15A N15A	04 05 55 11 14 59 06 07 65 03 07 68 04 04 68	50	13 15 19 12	+60 +30 +70 1+2 +40	66 58 70 62 76	24 23 19 23 27	10 7.6 8.0 15	1.2 1.3 1.4 2.2	336 308 350 350 317 360	12 7.0 .0 7.0 35	2.0 1.0 .3 1.5 2.0	.3 .5 .5	.0. .0 .0. .0	260	266 276 300 386	245 245 255 255 300	 n	540 500 490 610	7.A 7.7 7.5 7.71 7.5	1 1 1 1
04M01W18B4D 1 04M01W18B4D 1 04M01W18B4D 1 04M01W18B4D 1 04M01W18B4D 1	≈80 480 ≈80 ≈80 ≈80	N158 N158 N158 N158 N158	07 31 52 04 23 53 n4 27 54 n5 12 61 02 29 68	51	10 14	1.1 .RC 1.7	ВР РА]]4	34 37 42	7.0 18 14	1.2 2.0	102 378 378 376 376 376	55 52 76 70 [[+]	8.0 5.0 11 12 25	•? ••••• •4	n. 	574	410 	34(3 350 376 325 545		740 475 860 700	7.4 7.4 7.5	

0444011124CABC 0444011124CDBC 0444011124BAAD 0444011124DAAD 04W72W0%C8C4, 04V72W110800 04V72W12CC7 04V72W12CC7 04N02N04CABC 04N02N04CABC 04N02N04D0CC 04N02N04D0CC 04N02N05CCCC 04N02N04CANC 04N02E140C0 04N02E140C0 04N02E33C000 04N02E33C000 04N02N04CANC 144014295888 344014295888 044014296888 048011278488 048011278488 048811278464 0440112540014 0440112540014 044011254064 044011254064 044011254064 14461W2702884 34461W270280 34461W270248 34461W270248 34461W270248 144014308000 144014308000 04401127C884 34401127C884 34402105CCCC 34402105CCCC 04402105CCCC 04402105DCDC **1** PEET PEET 55 93 94444 14110 95 9440 95 93 94444 1410 95 9440 95 93 94444 14166 95 460 26222 20 200 84448 i se NI SA 0000 NI SA 1101 1011 1011 1011 NIS NIS NIS NIS NIS a si si 15 LN 15 LN IS LN **NIS** NIS. 37 225 92229 2292**3** 22377 77 33822 22 234 389**8**8 38279 2782 22222 DATE OF 92259 395 13 291 3**3**9 8988 35553 38928 88 39888 22023 210223 22 22 ***** 52 . . 22222 <u>s</u> <u>s</u> :: ::: :: ::: 22 1127 2 3 50 52 -2222 3 *** 55 55 25 2 7 12 ••••• = (SIDS) :::: 77N = 2.0 5 Ş 77 Ŧ 75.5 7 7 F .20 .20 ***** (FE) 2.0 2.5 2.5 2.5 1.2 7.0 7.0 7.0 7.0 <u>,</u> 55 **** 52 ĭ 55 X N S ¥. CALCIUM 66 25 7,35 33 359 69 25 87 28 3 ; Estat 12 332 8828ž 82 22 11119 3 7 7 7 8 HESIUM 377 6 57 24 5 W 7 1 W W *22*2 ł 10 13 •••••• ******* 1441 = 5 Isi S⊇S エルマロ 5.223 7 7 7 7 :: 2.2 2.0 ASSING (X) N . 7 ***** ••••• 2.2 2.2 1.1 1.2 1212 NOWATE NICAR-**** 22222 <u>22</u> 3390 235 354 * * * * 55 SINFATE CHURTINE FLOWINE NITRATE (SD4) (CL) (F) (ND3) NILLI. ***** ••••• : 25 \$ ****** 1.0..... -------************* ************ ***** 202 t 5 2 2 2 .n..... ~. .0..... ,0..... 5 5 ь : 5 \$ 34 26E ***** : sul lus ul Scal Men 55 335 Ş 280 333 62 É лўс N AVIED --104 066 345 ****** [NO+C 47E 25E ĩ 312 -310 ¥. 20 302 38 2 A INA I F エロルシスナップ 1000 × 3155 315 325 320 320 320 -33 11112 1000 242 3275 -22 311 3 117 23 17 155 RINALT 111 NIN-1350 476 207 2 **> 0** 0 750 540 540 . 17 74-26 CINEDIA CUNEDIA ANCE CUNEDIA 1300 1400 1400 748 - STO -1440 515 590 600 542 500 100 500 \$ 7... 7.1 -----..... 1111 11 111 111 1111 111 1111 111 1111 111 1111 1111 1111 1111 111 3 E L 13

TABLE

A-l.--continued

τб

TABLE A-1.--continued

.

-

				768-		<u></u>										01550 581	LVFN .1PS	HARDNE	55 AS	IPEGIFIC CONTHET-		•
LOCAL WELL NUMBER	DEPTH, FEET	AQU1- FER	DATE OF COLLEC- TIGN	PERA- TURE (OF)	SILICA (SID2)	IRDN (FE)	CALCIUM (CA)	MAG- NESTUM (MG)	SODIUM (NA)	POT- ASS1UM (K)	BICAR- BONATES (HCO3)	SULFATE((SD4)	HLDRIDE (CL)	FLIRIR LDE (F)	N] TRATE (NO3)	CALCH- LATED	FVAPU- RATED AT 180°C	CAR- NONATE	NON- CAR- BUNATE	INJERD- N-05 AT 254C1	P 4 (LANA-
04802V12CBA 1 04802V12CDA 1 04802V12CDA 1 04802V12CDA 1 04802V12CDA 1 04802V140AA 1	305 305 305 305 445	M15A M15A M15A N15A M15A	07 31 52 04 23 53 00 21 61 02 29 68 02 08 52	50	10 15 8,4	2.5 3.5 3.2 .30	112 128 110 110	34 40 38 34	7,0 6,9 8,5 46	1.6 2.2 2.4	421 425 425 435 375	105 103 140 91 78	3.0 2.0 6.0 6.9 90	•2 •2 •0	0. 0. 0.	473	518 414 400	430 430 485 431 425	75	#00 750 #10 910	7.3 7.4 7.23 7.8	7 3 7 3
04N02W16DAA 1 04N82W16DAA 1 04N02W18DA6 3 04N02W18DA6 3 04N82W18CAAC 1 04N82W18CAAC 1	445 455 399 404 404	NISA NISA NISA NISA NISA	04, 22 53 03 29 55 16 27 40 04 22 53 83 22 54	53 53 50 51	15 2.0	.40 .30	76 68	24 28	5.7 9.7	, R	378 371 364 346 373	60 70 10 5.4 5.0	93 107 _0 _0		¢.	•••••	320 314	410 345 290 285 275	•••••	900 1010 600 580 550	7.5 7.5	3 3 3 3
04802010CA4C 1 04802010CACA 1 0480202300CC 1 0480202300CC 1 04802024ADDD 3 0480202400CC 1	484 417 400 425 352	MISA MISA MISA MISA	10 27 40 10 27 40 04 22 53 04 23 53 04 23 53	51 52 51	14 14 11 15 3.3	.40 .40 .50 1.1 .25	84 78 106 79 70	27 28 39 27 27 27	6.9 6.9 5.6 7.1	1.0 .8 1.6	376 372 415 378 358	30 20 93 7.1 6.6	2.0 -0 #.0 .9 .0	-4 -4 -1 -2 -0	n. 5 0. 2.9 •0	•••••	370 350 500 325 300	325 310 425 308 285	•••••	610 600 750 565 570	7.6 7.5 7.8 6.9 7.5	3 3 1 3
04N82V25AABA 1 04N82V25BABA 1 04N82V25BABA 1 04N82V25BABA 1 04N82V25BABA 1 04N82V35CDC 1	340 367 367 336 450 375	NLSA NLSA NLSA NLSA NLSA	02 29 68 04 23 58 02 29 68 04 22 53 07 07 61 02 29 48	50	3.0	.44 .30 .56 .50 1.3	90 72 76 80 105 94	30 17 26 24 28 29	4.0 5.5 7.0 4.4 3.5	1.3 1.3 .9	394 372 365 368 387 417	35 A.O 16 74 23	3.9 .0 1.8 1.0 3.0 2.8			35R 299 	326 444	34# 250 247 300 378 354	27 0 68 12	600 687	7.20 7.5 7.32 7.4 6.9 7.29	7 3 7 3 1

JACKSON COUNTY

01501F08DAAD	190	M384	11 02 47		1-1	95	10				4.3				480		340	3	41	-
		N1 SA				~ * *	30	201	1.7			£ • *	*****	******	340		3444		• •	
01501E224888 1	160	NISA	11 02 67	•••••	2.3	**	16			30.4					34.6		323	A	7	7
01501W2240CA 1	165	B1 SA	11 02 47		1.8	6.4	12	347		798	N _10	1		******	202	*******	214	60	7.40	7
01501H234884 1	100	0000	11 03 17		117	38	11	240	7.n	200		<.*		******						÷
	100	41.00	11 02 07	***** ******	3.3	PD.	14	3.1	, A	297	23	1.1	*****	******	763	*******	764			
AT201#1#088 1	104	M 3 M A	01 16 65	***** ******	.97	*******	******	*******		256	17	3.0	*****	.7	••••		777	14 47-		<i>i</i>
11502W04CCCC 1	120	NISA	11 02 67		. 75	54	14	2.4	1.0	1.00	10				205		144	4 11	• -	1
015020330000 1	40	00193	11 00 47			~								****			24.13		7. **	7
			11 09 01	***** *****	4.6	12	20	3.0	1.1	417	20	1	*****	******		• • • • • • • • •	/14			· .
012030120000 (27	0600	11 05 91		.60	73	14	2.9	1.4	77m	29	N. I		******	270		744	/4		-
025016176000 1	104	9600	11 02 67	***** *****	3.0	68	20	A-1	1.4	472	4	·,·	*****	******	314		254	***	·••1	'
07501W05CERC 1	125	N154	11 09 67		2.0	83	76		6 6		a (1	,,			331		21.4	·	7.41	7
1125/1-044055 1	110	10.3.001	31 09 47	***** *****		74	22	E • •							101		11-	1		7
	110	4384	11 07 01	***** ******	1	17	22	***	11	- 20	78	~ ••							•	
02502w25C8P 1	109	N154	02 26 65		9.1					44.0	37	2 13		.4			744	14 5-4	7.0	1
	• • •	N3M1						*******			/-	••••	•••••	• •				•		
07502#31#600 1	76	m344	11 02 67		3.6	174	37	15	4.5		7-	62			64n		447	172		7
2502w35CAPA 1	60	NISA	11 02 67			28	20	14		34.7		16			382		3 1	1	. • •	7
					• • • 7		30		· · ·	-47					,		-1		•	
451 • 1 1 1	90	1 1 5 4	01 10 05		.45					740	27	4,0		7.6	••••		2 A C	•• •••	- . -	l
nti en l	÷4	1.1 C A	11 02 47		4.3	**	16	2.0	1.0	144	41	7.4			124		2 - 1	********	• '	,
•																				

92

11

				Th Ma												11] 5 51 5 - 7	1. s	тан т. С	444 AL	SPECIFIC CONDUCT-			
LOCAL WFLL MIMRER	9601# . Feet	4001~ FFR	DATE OF CULLEC~ TIUN	PEDA- TURE (+F)	SILICA (SIO2)	TRUN (FE)	CALCIUM	MAG- NESIUM (MG)	SUDTUM (NA)	PRT- ASS1(IM (R)	RICAR- RONATE (HCD3)	SULFATE (SD4)	СН[ПА]ПЕ 16[]	FL0100 E0F (F-)	NITRATE (NO3)	CALCU- LATED	60203- 682-0 87 1-190	(44- 141541+	5 ; ibia 7 A2- 	(M)CR0- MH025 A1 25-001	рн 	4N8- LV51	
									LIVIN	ISTON C	OUNTY												
2003F14C84	36	****	07 20 65			.76					357	47	R.0		12				n5	646	7.6	1	
12M03E1+CBAR 1	27	H1H4	02 20 65			5.9					390	13	3.0		.4			330	10	547	7.5	1	
12003620400	1.41	HIHA	02 20 65			2.0					252	27	3.0					23P	32	443	7.6	i	
33563670CR4C 1			11 14 47			1.0	70	22	3.5	1.0	312	39	2.5			281		266	10		7.47	+	
03803602000 1	110	#3#)	02 20 65			*****					350	3.2	375		.8	*****	*******	172	44	1540	7.7	i	10
																		-					ŭ
03403F020DC L	110	a 3∎ i	02 20 65			1.1		*******	******	*****	360	10	202	*****	1-1	******	*******	372	76	1160	7.9	1	~
03NO3F19688D 1	6A	O CUD	ll 14 67	*****	*****	1.7	99	32	3.0	1.0	361	91	7.1			412		379	43	******	7.54	7	
03N03F24C000 1	132		11 14 47		******	. 85	110	34	5.5	2.0) 519	14	7.4	******		410		423	0		7.30	7	
03403#246000 1	207	i ittili i	11 14 67		******	6,4	102	3#	4.5	1.9) 530	A.0	1.7			411		411	0		7.39	7	
13863724000 1	170	11 201	02 20 65			7.9					430	38	36					444	41	791	7.4	1	
	1.45		11 14 47			1.7	9A	33	5.5	1.3	489	A.G	1.9			349		4# 1	n.		7.43	7	

۲

SHIAWASSEE COUNTY

050016100000 0600162144000 1 060016350044 1 060026010000 1	77 265 75 140	0600 N154 0600 J154	11 30 67 11 30 67 11 30 67 11 30 67	***** ****** ***** ****** ***** ******	.#0 .47 .#5 .#5	71 40 58 76	27 18 19 30	₽,∩ }& 9,5]0	1.4 4.3 1.2 2.0	371 319 305 405	12 240 1.0 11	2.0 3.4 1.1 2.1	••••	3r 24 34	h 1 1 2	768 774 772 434	n n n	7.41 7 7.41 7 7.80 7 7.47 7
****		*******	***********		*******			*******										

ГР^о

25°C) Ĩ olor lit.rds.ooo Dissolved solids (residus on eveporation at 180 of) -----bolgmai 3 Non-os.rb-Specific (micro Mention (Mg) 3 (HOD) Color in Meen Discharge (cfs) Chloride (El) ce tion NLLTA to NO3 8 8 Potaselv (K) (304) Analyse Calefun (Ca) Station Number Sodium (m) **3111cm** (310₂) Source E . 3 Ŧ. a Stre a fributary Rettle 36 6.0 8.0 4.0 16 479 760 O 7.4 375 7.7 1 Si + sec 2, T.13.3.5 July 11, 1967 342 -Ð --4-1042.8 Battle Greek -43 125 109 60 62 166 425 294 347 212 2)57 58 52 33 1 54 55 43 ē 12 3.6 20 254 51 254 51 284 7.3 7.7 7.3 7.8 7.3 75 1 Ape 28, 1968 .18 -136 R ---_ -----Ξ đ٥ do đo 0 200 July 11, 1967 June 28, 1968 Oct. 6, 1964 June 28, 1968 348 198 1 В ------------Si - sec 15,7.18.8.9 4-1042.9 Big Creek --ō 1111 = .13 --= R _ do do ào э 1.3 320 156 125 NI + sec 20,1.18.8.50 NE + sec 26,1.15,1.60 4.08 ---_ 4-1043.0 Indian Creek э 8.0 21 .14 -1044.5 Battle Creek R Streams Tributary to the Upper Grand River and Portage River 30 105 4-1089.0 NE 2 sec .35 T.35.R.1W Sept 19, 1963 .28 60 98 23 272 6.0 7.1 8.0 7.8 7.9 Grand River 3.99 1.0 278 21244039575975976218 167 1 4444 M + mc 32, T.15, R.21 Sept. 2, 1959 R 16 .7 28 28 1.6 286 Э 67 2.5 450 4-1095.0 Orcnard Greek 610 35 3 3 .3 .6 .7 .7 ... 114 1.2 264 0 170 R 7 50645084250450546507070705350605112208330 đo Dec. 17, 1959 20 16 1.5 17 2.6 4.9 1.0 13 7.5 1.0 700 100 do da. 250 318 Apr. 21, 1960 R 6 7 98 208 24 29 2,0 0 125 10 do 650 80 1 do đ۵ 4 3.0 7.0 1.0 7.0 July 7, 1960 June 25, 1968 1.2 0 7.8 6.9 7.9 7.6 7.4 B 121 78 43 55 79 12 55 60 52 44 43 164 43 700 370 399 297 50 200 do đ۵ đ٥ 118 284 130 242 285 220 205 ME + sec 30 T.1M.R.2E SW + sec 25 T.1M.R.1E 4-1097.0 Orchard Creek R _ _ _ _ ċ July 11, 1967 B --------4-1105.9 Batessee Creek 180 1 0 D June 29, 1968 R 82.0.7.4.58 đo de do 67 _ ---1 Sept. 19, 1963 Sept. 2, 1959 4.6 45.8 7.8 2.2 3.7 1.6 1.5 ME + sec 27, T.158.1E SE + sec. 11, T.25,83W **.**16) 22 26 4-1106.0 75 90 80 do 503 1 82 94 75 85 7.7 7.6 7.9 7.5 7.2 00000000 69 8 4-1106.2 Portage River 750 590 590 7980 798 590 798 590 798 515 50 З 23 16 21 15771.2 do Dec. 17, 1959 R 7 do đ۵ 3 Apr. 21, 1960 Sept. 7, 1960 June 25, 1968 15 9.2) R 3 9 do da de 3 2820 378 254 298 399 42270 166 B R 100 do do do 38 _2) SE + sec 20, T.1M.R.1W SW + sec 28, T.1M.R.1V HE + sec 21, T.15.R.2W Huntoon Creek ---25 4-1106.45 -1 ່າງ ອີເວ Oct. 6, 1964 Sept. 19, 1963 Sept. 2, 1959 Dec. 17, 1959 1.3 1.2 .5 1.2 7.4 7.0 8.0 7.7 8.1 4-1106.5 Huntoon Creek 1.45 .68 .3 .2 .3 .3 .4 .1 .4 .7 67 -1 23 18 -1107.0 Sandstone Creek 6.98 ---3399241492894742 64.8676.80 0 R 37 0 do 15 35 đo đe 22 20 20 0 100 59.53 59.53 70 R 4 do do do **8** 26 10 7 33 26 35 4 63 43 23 13 Apr. 21, 1960 R 2.0 4 da 10 do á٥ 3 54741 000 July 7, 1960 В 10 14 0 đ: do 7.9 60 đo 3 2) 22 18 3.5 1.6 2.6 1.2 76 86 72 2, 1959 36 13 R 7.9 -1103.0 Grand River SH 2 sec. 2, 1.18.,R.34 Sept. 25 3 12 6.4 1.5 1.6 Dec. 17, 1959 R 6 600 382 do . ತಿಂ da. 3 8.3 Apr. 21, 1960 0 R u4 11 đ٥ 520 8.0 7.8 7.3 7.0 7.9 8.1 8.4 do 4: 3 July 7, 1960 June 28, 1968 18 8.5 74 50 17 72 50 В do đa 40 3 2.0 5.0 3 Ó. 34 } sec 27, 7,13.R.34 R .18 _ -----ì 1108.9-ت Spring Brook ---115 4.2 3.7 4.6 3.5 2.6 262 259 Sept. 19, 1963 .07 78 12 1.3 0 1.86 Spring Brook sec 3, 7.18.83W 16 4-1109.0 ----1888 1 23 ·.91 Sept 2, 1959 Dec. 17, 1959 1.0 64 76 R 2.0 10 10 30 3 2222 1 19 92 .0 .\$ 00 5.C 3 270 do 20 ġ¢, 210 3 17 1.2 64 68 1: Apr. 21, 1960 R .3 5 1.2 276 230 450 450 de 22 3 17 is July 7, 1960 B 10 C 296 do 42 240 3

Results in milligrams per liter except as indicated. Agency making analyses: (1) U.S. Geological Servey. (3) Michigan Department of Public Bealth. R=Over land ranoff B+ Ease flow

•

						_			·····		1						ť.		1 . 1		1	
Phe LLon Martin	sources	Loos tion	Date Sampled	Bitecharge (cfe)	(2018)		Bioto (Da)	an (Jay) (Jay)	II (III) III (III) Red Code	antesator (H) Alter	Bit carbona ta (HOO3)	Carbona te (CD ₁)	3ul fa te (304)	Chloride (Cl)	Hitmte NO ₃	[Nasolved solids (residue on everyeration - i anofi	Hards as O ¥ S		Specific conductance (micromhns 2000)	H	Cular In Hexan culor unit	Arelyst.
													1 67	(2	1		1 2000		000	120		
4-1112.0 4-1112.8 40 40 40 40 40 40 40	Red Cedar River Enlamink Greek do do Red Cedar River do do	HE ★ sec 5, 1.30.R.3E SW ★ sec 23, T.20.R.2E do SW ★ sec 2, T.30.R.2E HW ★ sec 2, T.30.R.2E do do do	Sept 19,1963 July 11,1967 June 28,1968 Oct 5,1964 Sept 2,1599 Dec.17,1999 Apr.20,1960 July 7,1960	4.01 B B 1.23 B R R B		11 19 9 9 9 9	79	25 	37 	4.6 2.9 1.0 2.0 1.6	334 337 216 362 317 305 265 350	000000000000000000000000000000000000000	57 71 83 98 52 70 55 63	7.0 6.0 18 15 11 10 7.0	2.1 30 5.0 10 4.4 2.2	414 428 488 422 420 340 420		20 78 113 107 70 83 53 59	630 523 787 610 530 610 530	3.1 7.6 7.6 7.7 7.8 7 7 7 8	15 15 110 10 110	111100000
1114.02 4-1114.0 4-1114.05 4-1114.1 4-1114.1	Donn Creek do Squaw Creek Dietz Creek Donn Creek do do	SE t sec 30, T. JU.R.13 dc BW t sec 32, T. JU.R2B SW t sec 32, T. JU.R2B SW t sec 8, T. JU.R2B SW t sec 8, T. JU.R2B do do	July 11,1967 June 28,1968 Oct.5,1964 July 11,1967 Sept.2,1999 Dec.17,1999 Apr.20,1960	B R .08 B R R R		- .19 - 1.2 .30 .30	9.58.31 I I I	1 1 1 1 2 2 2 2			343 190 364 360 317 314 280	0000000	1738788888	10 10 14 19 9.0 11 5.0	23 .2 4.4 5.0 8.0 6.6 1.0	578 318 452 5792 478 360 454	16 39 39 36 30 30 30 30 30 30 30 30 30 30 30 30 30	134 98 178 79 104 75 83	493 713 856 640 600 650	7.9 7.9 7.7 7.8 7.8 8.4	15 - 17 - 25 - 20	
مه من الله من من من من من من	do do Decr Creek do Decr Creek do do do	do do R ½ sec 33,T.3H.R.1E do do HE ½ sec 11,T.3K.R.1E do do do	July 7,1964 Sept. 26,1964 June 28,1967 June 28,1967 June 28,1968 Sept.2,1999 Dec.17,1959 Apr.20,1960 July 7,1960	2.15 3.70 23.0 115 B B B B B	н Ц 7.0 5.1 6.0		1211228	14 - 1224227		3.2 2.7 1.6 1.8 1.2	296 307 242 194 330 310 258 312	0000000000	103 46 57 75 56	8.0 8.0 14 9.0 10 11 7.0	.3 12 4.5 8.0 7.0 2.0	98 30 - 31 40 80 96 97 97 97 97 97 97 97 97 97 97 97 97 97	356 293 297 200 330 335 295 320	1438488834	69 540 540 610 590 590	9.1 7.2 9.7 7.3 8.0 7.7 7.9 8.4		
مع د-1116-1 د-1116-3 د-1116-3	Unnamed tributary to Red Cedar Rive do Coon Creek do Sloss Creek	7 SW ± sec. 25,T.4M.R.1E 60 SW ± sec 23,T.4M.R.1E 60 8 ± sec 1,T.3M.R.1W	July 1,1967 June 25,1968 July 10,1967 June 25,1968 Sept.26,1963	R B R R		-04 -04 -04 -45			 8.1		376 282 356 286 314	0000	40 86 45 37 98	7.0 14 6.0 22	3.6 2.8	392 446 396 306 408	960 342 3455 280 345 280 345	2 11 53 45 70	639 627 509 622	7.9 7.9 7.7 7.6 7.2		1
80 30 -1124.0 60 80 40	do do Red Cedar River do do	do do 558 - arec 21, 7.45.1.19 do do do	Apr. 5,1963 Ame 28,1968 Sept.2,1959 Dec.16,1959 Apr.20,1960 July.8,1960	10.4 60.0 R R B B	11 8.0 4.5 7.0	.06 .30 .30 .30 .30	1 8 9 70 92	23 24 21 27	5.1 9.2	3.0 1.6 1.8 1.6	255 162 345 296 265 345	0000	34 57 70 55	11 11 11 11 11 10	11 4.0 12 5.2 2.0	194 404 410 340 418	192 115 215 225 225 225	49 63 53 58 64	368 600 500 540 630	7.3 2.3 3.5 9.2	75 75 90 50 45	1
							Street	S Tribu	tary to t	the Looki	ngglass	River	_									
4-1141.5 do do do 40	Lookingglass River do do Lookingglass River	T NH sec 34, T.6N.R.2E do do co T SE 2 sec 34.T.6N.R.1E	Sept 2,1959 Dec 16,1959 Apr 20, 1960 July 8,1960 Sept 19,1963	R R B 2.06	14 6.0 3.7 6.0	-9 8 8 9 - 9 8 9 9 - 1	98 96 84 82 72	25 28 23 28 26	9.7 7.4 5.8 11 11	2.0 1.6 1.6 1.2 2.1	300 300 295 334 286	0 0 0 Tr. 0	100 100 70 50 62	7.0 12 11 11 12	4.0 9.0 2.0 0.0	454 450 370 374 363	346 355 305 320 267	100 109 63 46 52	640 650 600 620 577	5.0 7.7 7.9 8.6 7.0	70 90 85 25	
4-1142.5 4-1142.0 4-1144.0 4-1144.5 40 40	Versilion Greek Nut Creek Lookingglass Rive do do do	HE & sec 56, T.6H.R.1W HW # sec 4, T. SL.R.1W HE # sec 9, T. SL.R.2W HW # sec 17, T. SL.R.3W do do do	July 10, 1967 July 10, 1967 Oct 5, 1964 Sept 2, 1959 Dec. 16, 1959 Apr. 20, 1960 July 8, 1960	B B 10.7 R R B	16 7.0 2.0 9.0	- - .50 .20 .20 .70		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1	- 2.7 1.6 2.0 1.2	349 364 292 268 270 260 340	0 0 0 0 0	65 56 45 70 56 52	12 9.0 9.3 10 12 11 9.0	3.2 1.9 .6 5.0 10 2.4 2.0	443 437 356 380 334 420	365 365 306 312 276 312 271 325	786655974	656 657 507 510 600 521 600	7.8	1112812	1.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
۵۵ ۵۵ ۵۵ ۵۵ ۵۵ ۵۵	Unnamed trib to Lookingglass Rive do Lookingglass Rive do do	SE + sec 1., T.SI.R.H do T SH + sec 10,T.SH.R.H do do	July 10, 1965 June 30,1968 Sept 26,1963 March 31,1965 June 30,1968	B 16.0 673 R		- .06 .24 - .09		29		 1.8 	324 216 325 187 196		96 52 43 57 51	20 14 12 12 10	8.2 20 9.6	460 344 347 304	395 256 299 252 226	127 78 30 99 50	291 291 362 265 255		- 62 - 1 - 35 - 1 - 35 - 1	

TABLE A-2.--continued

-

JOLINA	nonodee ooddaaa addaannood nooodaadaannoona			*******
Color In Hesen color unit	<u>888% 3 8 1 1 8 8 8 8 8 2 2 2 2 2 1 2 2 2 2 1 1 2 2 2 2 2 2 2</u>		111	301
Hq	c_{c}		11 A A A	401-401 1240-401
acentric conductance (Do?S monaccomp	3335524 52538 4 44424355 8 5 338489844823838484838		ESK	3858
28 .drao-now	KUKENBERERAR EFARERERERERERERERERERERE		ជនខ	2388
10 74 °0			ๆสุรั	a a a a a a a a a a a a a a a a a a a
Dissolved no estics (120kr tion 220kr te 220kr te	<u> </u>		식៥봉	3 822
C _{ON} et at 5 Th	0.00000000 000000000000000000000000000		۰۱ [%]	1921
(대) (비) (비)			3 8 8	e 9 0.4
(⁷ 05)	KSK5%48 8636344 43443883388 225564 8542882538523463852		រ្ម័ន ខ	8 <u>5</u> %3
et anod tab ((00)			000	0000
et and table (fCOH)	A MAAAMA MENSELEN AREASHANNEN NAMAANAANAANAANAANAANAANAANAANAANAANAANA	ple River	28 8	፝ ዾ፝ቘ፝ጞ፟፟፟፟፟፟
Formantum (N)		Thorney	151	3313
nu thoi (all)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	to the	121	8°5 8°7 10°2
(3)) 10.52452.00	N N N R I I N R R R I I I I I I I R R R R	ributar	131	8818
autotaŭ (m)	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	trees D	1គឺ 1	*315
(10) ILON	والا فخاط التي التحالية التا المطط والمطلق المالي التي والمناح والمنافع والمن	S	181	8315
(² 019) 10 11 19	اروب في المالية المالية المالية في المالية المالية المعالة المعالة المعالية المعالية المعالية المعالية المعالية		111	2111
ajadiarije (sito)			*****	джд
belqunk et al	And Distance of the set of the se		0ct 6,1944 Sept 19,1963 July 10,1967	Dec 3,1962 Apr 1,1963 July 10, 1967 Sept 20, 1963
an 13 ano J	We are 3 f.G. ML ML WE are 3 f.G. M		St + aec 7, T. M. R. 4 ME + aec 25, T. M. R. 6 St + aec 26, T. M. R. 6	SE & acc 26, T. M.R.64 do SE & acc 33, T.M.R.64. IN & acc 13, T.24.8.74
gantos	Repla River Repla River Little River Little River Rive Creat River Creat Story Creat Story Creat Story Creat Story Creat Story Creat Story Creat Story Creat Story Creat		Thorneyple Miver Thorneyple Miver Unsued tributary	Borrapple River do Smary Brook Qualer Brook
noitaid Soutaid Soutai				-1166.1 -1166.2 -1171.0

,

siderite.		-									
Local well number	Aquifer	Caso4 Kiap x 10 ⁻⁸	Gypsum <u>Kiap</u> Ksp	Anhydrite <u>Kiap</u> Ksp	caco ₃ Kiap x 10 ⁻⁹	Calcite <u>Kiap</u> Ksp	Aragonite Kiap Ksp	CaMg(C03)217 Kiap x 10-17	Dolomite <u>Kiap</u> Ksp	FeCO3 Klap x 10-10	Siderite <u>Kiap</u> Ksp
				Clinto	on Count	y					
05N01W18 CBC-1 05N02W09 BBC-1 05N02W16 AAAA-1 05N02W18 DCD-1 05N02W22 DCDA-1 05N02W22 DCDC-1 05N02W27 CAAA-1 05N02W27 CBDB-1 05N02W27 CCAB-1 05N02W27 CCAB-1 05N02W27 CCAB-1 05N02W27 CCBA-1 05N02W27 CCBA-1 05N02W28 BBDA-1 05N02W28 BBDA-1 05N02W28 BBDA-1 05N02W33 AAAB-1 05N02W33 AAAB-1 05N02W33 ACB-1 05N02W33 ACB-1 05N02W33 CDDB-1 05N02W33 CDDB-1 05N03W15 BBCC-1 05N03W15 BBCC-1 05N03W18 AABB-1	NISA QGOO NISA NISA NISA QGOO NISA QGOO NISA QGOO NISA NISA NISA NISA NISA NISA NISA NISA	7.80 26.5 2.28 1.77 6.78 14.6 91.0 9.59 33.5 7.76 16.3 98.1 180 37.1 229 19.5 447 360 7.90 9.02 9.15 8 62	.003 .010 .001 .001 .003 .006 .035 .004 .013 .006 .038 .070 .014 .089 .007 .174 .140 .003 .004 .004 .004	.002 .005 .000 .000 .001 .003 .018 .002 .007 .002 .003 .020 .036 .007 .046 .003 .089 .072 .002 .002 .002 .002 .002	8.75 26.5 9.79 6.64 10.7 2.94 4.76 2.62 9.50 3.83 4.89 10.3 6.05 8.79 6.70 3.65 7.69 11.5 6.55 8.20 9.61	1.52 4.60 1.70 1.15 1.85 .45 1.65 .66 .85 1.05 1.53 1.63 1.33 2.00 1.14 1.42 1.67 0	1.15 3.50 1.29 .88 1.41 .39 .63 .35 1.25 .51 .64 1.36 .80 1.16 .88 1.01 1.52 .86 1.08 1.27 .60	2.68 33.9 4.07 2.37 5.58 .509 1.21 .263 3.58 .741 1.04 4.62 1.80 2.96 2.01 .592 2.24 6.37 3.10 3.70 5.49 1.51	.85 10.7 1.29 .75 1.77 .16 .38 .08 1.13 .23 .33 1.46 .57 .94 .64 .19 .71 2.02 .98 1.17 1.74 .48	.364 9.68 1.13 .485 .539 .035 1.20 .779 .642 .261 .602 1.65 1.00 .873 .260 .157 .353 2.05 .554 .349 1.36	.83 22.1 2.59 1.11 1.23 .08 2.75 1.78 1.47 .59 1.38 3.78 2.28 2.00 .60 .36 .81 4.69 1.27 .80 3.11 4.8

TABLE A-3.--A comparison of K_{sp} and K_{iap} for gypsum, anhydrite, calcite, aragonite, dolomite and

05N03W21	BBB-1	NISA	5.47	.002	.001	14.0	2.43	1.85	12.2	3.86	.850	1.94	
05N03W23	BABB-1	NISA	8,12	.003	.002	7.21	1.25	•95	2.82	. 89	.286	.65	
05N03W27	BCBB-1	NISA	45.3	.018	•009	9.37	1.63	1.23	3.45	1.09	1.28	2.93	
05N04W12		NISA	48.8	.019	.010	18.9	3.28	2.49	27.3	8.64	2.89	6.61	
05N04W16	ACBA-1	NISA	11.4	004	.002	5.60	.97	.74	2.05	.65	•774	1.77	
05N04W18	CBDA-1	NISA	11.0	.004	.002	18.9	3.28	2.49	21.2	6.71	1.62	3.71	
05N04W21	ADCD-1	NISA	9.98	.004	.002	6.69	1.16	.88	2.82	.89	.487	1,11	
05N04W21	BDAC-1	NISA	49.6	.019	.010	9.97	1.73	1.32	6.91	2.19	. 881	2.02	
05N04W24	ABBB-1	NISA	45.8	.018	.009	14.4	2.50	1.90	12.1	3.83	•938	2.15	
06N01W12	BDBD-1	QG00	22.3	.008	004	9.96	1.73	1.31	5.76	1.82	2.01	4.60	
06N01W14	DBDD-1	NISA	1.30	.000	.000	5.80	1.01	•76	2.10	•66	.456	1.04	
06N01W19	ACDC-1	NISA	•097	.000	.000	13.7	2.38	1.81	12.7	4.02	5.30	12.1	
06N02W09	CCBC-1	N 3GR	8.93	.003	.002	4.65	.81	.61	.164	.052	.117	.27	
06N02W09	DCCC-1	NISA	6.08	.002	.001	4.79	.83	.63	1.99	•63	.293	.67	
06N02W14	CBBB-1	N3GR	7.02	.003	.001	10.1	1.75	1.33	7•95	2.52	1.29	2.95	
06N02W22	DAAA-1	N 3GR	4.75	.002	.001	7.64	1.33	1.01	4.52	1.43	2.40	5.49	
06N02W23	CAAA-1	NJGR	16.0	.005	.003	8.59	1.49	1.13	5.13	1.62	2.58	5.90	
06N02W24	ACCD-1	N3GR	6.80	.003	.001	7.79	1.35	1.03	2.98	•94	.202	•46	
06N02W24	ADDC-1	ର୍ତ୍ତ00	12.6	.005	.003	16.2	2.81	2.14	13.8	4.37	-		ğ
06N02W25	BCBB-1		4.19	.002	.001	9•79	1.70	1.29	6.19	1.96	•925	2.12	
06N02W28	ADAA-1	N3GR	6.43	.003	.001	10.7	1.86	1.41	5.85	1.85	1.73	3.96	
06N02W29	BAAA-1	NISA	2.65	.001	.000	11.2	1.94	1.48	7.85	2.48	•320	•73	
06N02W29	BAAA-1	ରୁଜ ୦୦	16.3	.006	.003	9.50	1.65	1.25	5.88	1.86	1.23	2.81	
06N02W30	CODD-1	NISA	18.5	.007	.004	6.25	1.09	.82	3.02	•96	.382	.87	
06N03W08	BAB-1	ର୍ତ୍ତ00	9•79	.004	.002	12.5	2.17	1.65	10.6	3.35	1.63	3.73	
06N03W13	AAAA-l	NISA	16.2	.006	.003	5.27	•91	•70	1.90	.60	• 594	1.36	
06N03W15	BABB-1	N3GR	34.1	.013	.007	18.0	3.12	2.37	19.9	6.29	1.80	4.12	
06N03W36	DDAA-2	N3GR	21.8	.008	•004	9.70	1.68	1.28	5.55	1.76	2.17	4.96	
06N04W05	AAAA-l	ର୍ତ୍ତଠ	20.3	.008	•004	8.45	1.47	1.14	4.89	1.55	2.19	5.00	
06N04W23	BABB-1	NISA	16.2	.006	•003	11.1	1.93	1.46	8,46	2.67	1.16	2.65	
06N04W25	ACB-1	ର୍ତ୍ତ00	22.0	.008	•004	17.1	2.97	2.25	21.8	6.89	3.93	8.99	
06N04W34	CCBB-1	NISA	16.8	.007	.003	8.46	1.47	1.12	5.36	1.70	• 559	1.28	
07N01W30	DAA-1	NISA	12.2	.005	.002	13.2	2.29	1.74	14.8	4.68	.250	•57	
07N02W13	BAA-1	NISA	15.1	•006	.003	4.57	•79	•60	1.01	•32	.258	• 59	
07N02W15	CBAA-1	NISA	3.00	.001	.000	7.10	1.23	•94	4.06	1.28	.412	•94	
07N02W15	CBAB-1	ର୍ତ୍ତ0	82.7	•032	.016	9.20	1.60	1.21	5.85	1.85	•351	•80	

,

Q R Q

1

TABLE A-3.--continued

Local well number	Aquifer	CaS04 Kiap x 10-8	Gypsum Klap Ksp	Anhydrite Kiap Ksp	CaCO ₃ 10-9 Kiap x 10-9	Calcite Kiap Ksp	Aragonite Kiap Ksp	CaMg(C03)217 Kiap x 10 ²¹⁷	Dolomite Kiap Ksp	FeCO3 X 10-10 Kiap x 10-10	Siderite Kiap Ksp
				Clinto	on Count;	y					
07N02W36 CDDD-1 07N03W13 ADDD-1 07N03W14 BBBB-1 07N03W16 BBBA-1 07N03W27 DDDD-1 07N03W27 DDDD-1 07N04W08 DDCC-1 07N04W08 DDCC-1 07N04W24 DDDB-1 07N04W30 BADD-1 08N01W09 ADD-1 08N01W19 DADD-1 08N01W35 AADD-1	NISA QG00 NISA NISA QG00 QG00 QG00 QG00 NISA QG00 QG00	5.79 5.70 14.1 127 23.3 75.6 35.5 16.1 55.9 10.7 78.1	.002 .002 .005 .049 .009 .029 .014 .006 .022 .004 .030	.001 .001 .003 .025 .005 .015 .007 .003 .011 .002 .016	9.38 3.85 4.46 5.86 8.51 24.0 12.4 6.68 5.53 7.70 7.68	1.63 .67 .77 1.02 1.48 4.17 2.15 1.16 .96 1.34 1.33	1.24 .51 .59 .77 1.12 3.16 1.63 .88 .73 1.02 1.01	6.77 1.15 1.31 1.58 4.13 32.1 14.3 2.59 1.97 4.94 3.16	2.14 .36 .41 .50 1.31 10.2 4.52 .82 .62 1.56 1.00	•707 •301 •283 •664 •608 •858 •858 •78 •249 •223 •641 •787	1.62 .69 .65 1.52 1.39 1.96 4.07 .57 .51 1.47 1.80
08N02W09 ADDD-1 08N02W31 AADD-1 08N03W27 CDDD-1 08N03W32 DAAD-1 08N03W32 DCC-1 08N04W02 DCC-1 08N04W06 ADDD-1 08N04W11 BBC-1	NISA NISA NISA NISA QGOO QGOO	1.26 21.1 24.0 30.1 1080 1.60 44.4	.000 .008 .009 .011 .420 .000 .017	000 004 005 006 210 000 009	6.21 10.2 12.5 6.62 20.5 6.78 14.7	1.08 1.77 2.17 1.15 3.36 1.18 2.55	.82 1.35 1.65 .87 2.70 .89 1.94	6.14 7.70 6.77 2.58 14.2 2.54 11.5	1.94 2.44 2.14 .82 4.49 .80 3.64	1.16 .561 1.38 .397 2.95 1.01 .264	2.65 1.28 3.16 .91 6.75 2.31 .60

66

.

	I			Eator	n County				ж		
OINO4W13 ABA	-1 NISA	.646	.000	•000	10.5	1.82	1.38	6.55	2.07	3.29	7.53
01N05W29 AAB	A-1 NISA	45.6	.018	.009	13.5	2.34	1.78	8,26	2.61	2.94	6.73
01N05W32 DAD	D-1 NISA	98.1	.038	.020	10.8	1.87	1.42	9.03	2.86	3.91	8.95
OINOGWIS DDD	-l M3MI	1.52	.001	.000	12.4	2.15	1.63	7.93	2.51	1.45	3.32
OINO6W28 AAC	-1	104	.040	.021	6.81	1,18	•90	2,16	•68	•338	•77
02N03W30 DAB	-1 NISA	39.4	.015	.008	11.6	2.01	1.53	5.36	1.70	2.61	5.97
02N03W32 DDD	-1 QG00	19.0	.007	.004	16.2	2.81	2.13	15.3	4.84	4.65	10.60
02N03W34 DDD	C-1 NISA	106	.04i	.021	19.5	3.39	2.57	15.8	5.00	•530	1.21
02N04W04 CBB	C-1 M3BA	29.9	.012	.006	9.48	1.65	1.25	4.53	1.43	2.10	4.80
02N04W10 ABC	C-1 NISA	60.3	.020	.010	6.42	1.11	.85	1,92	•61	.402	•92
02N05W03 BCC	C-1 M3BA	11.0	.004	.002	14.3	2.48	1.89	9.03	2.86	7.38	16.90
02N05W23 ACD	C-1 NISA	4.79	.002	.001	16.0	2.78	2.11	13.2	4.18	2.80	6.41
02N05W25 ADD	A-1 NISA	201	.082	.040	25.1	4.36	3.31	31.9	10.10	5.59	12.80
02N05W26 CCB	-1 NISA	16.3	.006	.003	11.7	2.03	1.54	7.62	2.41	2.31	5.29
02N05W30 DAD	D-1 NISA	5.81	.002	.001	21.7	3.77	2.86	23.4	7.40	1.82	4.16
02N05W33 DCC	D-1 NISA	42.3	.016	.008	16.4	2.85	2.16	15.1	4.78	1.33	3.04
02N06W28 ADD	-1 NISA	9.58	.004	.002	8.10	1.41	1.07	2.80	.89	2.74	6.27
03N03W05 BAB	-1 N3GR	20.8	.008	•004	15.1	2.62	1.99	15.3	4.84	3.42	7.82
03N03W35 BAB	-1 NISA	1.86	.001	.000	17.3	3.00	2.28	16.5	5.22	2.18	4.99
03N04W09 DCC	D-1 NISA	20.4	-008	•004	8.67	1.51	1.14	4.40	1.39	1.32	3.02
03N04W26 BBB	B-1 NISA	105	.041	.021	17.0	2.95	2.24	15.3	4.84	7.38	16.9
03N04W29 BAA	A-1 NISA	38.4	.015	.008	10.7	1.86	1.41	6.63	2.10	1.19	2.72
03N05W23 AAA	-1 NISA	3.74	•001	.000	8.11	1.41	1.07	3.79	1.20	•055	1.50
UJNU5W23 AAA	-2 NISA	9.25	•004	.002	11.3	1.90	1.49	7.94	2.51	2.88	6.59
03N05W25 CBB	-1 NISA	1.30	.001	.000	12.3	2.14	1.62	9.78	3.09	1.11	2.54
03N05W29 BAB	-1 QG00	70.5	.027	.014	25.2	4.37	3.33	36.1	11.4	3.98	9.11
03N06W27 AAB	-1 M3MI	213	•083	•042	9.98	1.73	1.32	4.10	1.30	• 760	1.74
04N03W07 ABB	B-1 NISA	8.13	.003	•002	9.70	1.68	1.28	0.72	2.13	• 504	1.15
04N04W10 BBB	A-1 NISA	19.2	.007	.004	13.1	2.27	1.73	12.7	4.02	1.14	2.01
04N04W23 DDC	-1 NISA	22.7	.009	.005	12.6	2.19	1.60	11.2	5.54		4.54
04N05W03 CDC	-1 NISA	4.69	.002	.001	15.2	2.64	2.00	24.2	7.00	⊥•41	3.23
04N06W28 CDC	-1 M3MI	7.48	•003	.001	13.2	2.29	1.74	9•53	3.02	3.49	7•99

Local well number	Aquifer	Caso4 Kiap x 10-8	Gypsum Kiap Ksp	Anhydrite Kiap Ksp	caco ₃ Kiap x 10-9	Calcite Kiap Ksp	Aragonite <u>Kiap</u> Ksp	camg(c03)2 ₁₇ Kiap x 10 ² 17	Dolomite Kiap Ksp	FeCO3 Kiap x 10-10	Siderite Kiap Ksp
				 0		5					
OlNOIE23 DDDD-1 OlNOIW02 CAAA-1 OlNOIW17 BBBB-1 OlNOIW29 DDAD-1 OlNO2W29 CAAC-1	NISA NISA NISA NISA NISA	43.8 2.33 50.1 33.1 14.6	.017 .001 .019 .012	.009 .000 .010 .007	19.8 18.6 17.0 22.3 9.63	3.44 3.23 2.95 3.87 1.67	2.61 2.45 2.24 2.94	21.7 13.6 14.8 25.9 3.43	6.86 4.30 4.68 8.19 1.08	1.72 1.66 2.82 3.34	3.94 3.80 6.45 7.64
02N01E15 DDBB-1 02N01E25 CDDA-1 02N01E28 DACC-1 02N01W13 BCBB-1	NISA NISA NISA NISA	1.11 2.38 1.43	.000 .001 .001 .000	.000 .000 .000 .000	23.1 11.2 5.58 6.27	4.01 1.94 .97 1.09	3.04 1.48 .74 .83	25.5 8.05 1.62 2.66	8.07 2.54 .51 .84	1.50 1.11 .366 .310	3.43 2.54 .84 .71
02N01W18 DCCC-1 02N01W26 BDBB-1 02N01W28 CBBB-1 02N02E02 ACDD-1	NISA NISA NISA NISA	72.8 60.1 19.9 43.3	.028 .023 .009 .017	.015 .012 .004 .009	19.4 7.07 7.08 28.6	3.37 1.23 1.23 4.96	2.56 .93 .93 3.77	17.6 3.17 2.59 52.0	5.57 1.00 .82 16.5	2.46 .643 3.44	5.63 1.47 7.87
02N02E24 DAAA-1 02N02E34 CAA-1 02N02E34 CAA-2 02N02W19 AABA-1	MIMA NISA	91.2 124 112 7.28	.035 .048 .043 .003	.018 .025 .022 .001	23.7 19.7 18.2 4.65	4.11 3.42 3.15 .81	3.13 2.60 2.40 .61	29.5 20.0 13.2 2.44	9•33 6.33 4.17 •77	2.78 1.07 6.32 .285	6.36 2.45 14.5 .65
03N01E08 ABAB-1 03N01E08 DDCC-1 03N01E12 BCC-1 03N01E22 BAAD-1	NISA NISA NISA NISA	2.84 5.58 1.99 2.37	.001 .002 .001	.000 .001 .000	10.9 13.7 10.7	1.89 2.37 1.86 2.15	1.43 1.81 1.41 1.64	5.01 11.8 6.38	1.59 3.73 2.02	•581 1•44 •939	1.33 3.29 2.15 2.26
03N01E32 BBCC-1 03N01E34 BCB-1 03N01W03 BABB-1	NISA QGOO NISA	4.34 3.35 24.2	.002 .001 .009	.001 .000 .005	6.00 17.8 7.11	1.04 3.09 1.23	•79 2•35 •94	4.86 18.3 2.79	1.53 5.79 .88	.480 1.00 .425	1.10 2.29 .97

الأحاد المعادية المعادسة مغرر

Same and Bach in

TABLE A-3.--continued

Ē.

and a she was able a latter of the she had been all the

03N01W07	AAAA-1	NISA	14.3	.006	.003	8.58	1.49	1.13	4.18	1.32	.315	•72	
03N01W10	ABBC-1	NISA	6.99	.003	.001	18.5	3.21	2.44	15.2	4.80	•581	1.33	
03N01W15	BBDA-1	NISA	3.15	.001	.000	7.86	1.36	1.04	3.18	1.01	•235	• 54	
03N01W17	BBBC-1	NISA	64.5	-		6.80	1.18	.90	2.20	•70	1.25	2.86	
03N01W23	DCCC-1	NISA	11.2	.004	.002	6.64	1.15	•88	2.46	•78	•334	•76	
03N01W25	ADAA-1	NISA	18.3	.007	.004	5.56	•97	•73	1.83	•58	•339	•78	
03N01W29	CCAA-1	NISA	75.8	.029	.015	20.6	3.58	2.72	23.3	7•37	1.26	2.88	
03N01W31	BBAA-1	NISA	53.1	.021	.011	11.2	1.94	1.48	6.49	2.05	• 998	2.28	
03N01W32	ABAA-1	NISA	78.8	.031	.016	12.2	2.12	1.61	8.65	2.73	.685	1.57	
03N02E02	DACC-1	QG 00	48.7	•019 [°]	.010	6.81	1.18	.90	2.50	•79	1.91	4.37	
03N02E04	ACCC-1	NISA	.99	.000	.000	8.63	1.50	1.14	4.51	1.43	•432	•98	
03N02E12	BCAD-1	NISA	7.87	.003	.002	24.9	4.32	3.28	33.4	10.6	3.95	9.04	
03N02E17	ADDD-1	NISA	13.7	.005	.002	8.61	1.49	1.13	2.73	•86	1.19	2.72	
03N02E25	CAAA-1	NISA	5.97	•00Ž	.001	5.96	1.03	•79	2.18	•69	•239	•55	
03N02W11	ADAD-1	NISA	1.81	.001	.000	5.02	•87	.66	1.40	•44	.288	•66	
03N02W18	DCB-1	NISA	1.90	.001	.000	11.1	1.93	1.46	7.65	2.42	.812	1.86	
03N02W19	CCCB-1	NISA	15.0	.006	.003	5.81	1.01	•77	1.88	•59	.200	•46	
03N02W21	CBB-2	NISA	24.1	.009	.005	6.76	1.17	•89	2.58	.82	.444	1.02	10
04N01E08	DADA-1	NISA	3.33	.001	.000	7.87	1.37	1.04	2.76	•87	•773	1.77	N
04N01E11	DCC-1	NISA	3.46	.001	.000	6.36	1.10	.84	3.08	•97	• 504	1.15	
04N01E20	CCA-1	NISA	12.3	.005	.002	8.03	1.39	1.06	2.07	•65	•356	.82	
04N01E20	CCAA-1	NISA	507	.197	.100	12.3	2.13	1.62	3.00	•95	• 594	1.36	
04N01E20	CCBC-1	NISA	22.3	•009	.004	7.68	1.33	1.01	1.25	•39	•541	1.24	
04N01W07	CACD-1	NISA	79.6	.031	.016	5.88	1.02	•?7	2.05	•65	.432	•99	
04N01W07	DBBC-1	NISA	42.0	.016	.083	6.29	1.09	•83	2.50	•79	.625	1.43	
04N01W07	DCAB-1	NISA	28.8	.011	•006	8.36	1.45	1.10	4.95	1.57	•736	1.68	
04N01W07	DDAD-1	NISA	99•3	•039	•020	7.65	1.33	1.00	3.54	1.12	2.04	4.67	
04N01W08	CCCA-1	NISA	150	•058	.030	7.42	1.29	•98	3.34	1.06	1.27	2.91	
04N01W10	BADA-1	NISA	2.18	.001	.000	11.3	1.96	1.49	8.75	2.77	1.86	4.26	
04N01W11	CDDC-1	NISA	2.54	.001	.000	9.64	1.67	1.27	5.30	1.68	2.03	4.64	
04N01W11	CDDC-1	NISA	5.29	.002	.001	10.1	1.75	1.33	6.30	1.99	1.38	3.16	
04N01W18	BAD-1	NISA	124	•048	.025	7.03	1.22	•93	3.08	•97	•743	1.70	
04N01W19	CCAA-1	NISA	38.4	.015	.008	6.65	1.15	•88	2.47	• 78	1.57	3.59	
04N01W24	DAAD-1	NISA	18.0	.007	•004	7•79	1.35	1.03	1.44	•45	.266	.61	
04N01W24	DDAA-1	NISA	335	.130	.067	13.3	2.31	1.75	3.99	1.26	1.13	2.59	
04N01W26	BCA-1	NISA	5.10	.002	.001	8.67	1.51	1.14	3.41	1.08	1.11	2.54	

.

•

TABLE A-3.--continued

Local well number	Aquifer	CaSO4 Kiap x 10 ⁻⁸	Gypsum Kiap Ksp	Anhydr1 te K <u>1ap</u> Ksp	caco ₃ Kiap x 10-9	Calcite Kiap Ksp	Aragonite <u>Kiap</u> Ksp	CaMg(C03)217 Kiap x 10 ² 17	Dolomite Kiap Ksp	FeCO3 Kiap x 10-10	Siderite Kiap Ksp
				Ingha	am Count	у					
04N01W27 BABB-1 04N01W27 CBBA-1 04N01W29 BBBB-1 04N01W29 BBBB-2 04N01W30 BBAA-1 04N01W30 BCDD-1 04N02W12 BDD-1 04N02W12 CCD-1 04N02W12 CDA-1 04N02W25 BADA-1 04N02W25 BADA-1 04N02W36 DAAD-1	NISA NISA NISA NISA QGOO NISA NISA NISA NISA	18.6 3.78 173 113 14.8 19.4 5.28 120 99.5 36.3 7.34 24.3	.007 .001 .067 .044 .006 .008 .002 .047 .039 .014 .003 .009	.004 .000 .034 .022 .003 .004 .001 .024 .020 .007 .001 .005	7.35 6.72 6.69 8.37 5.86 6.32 6.72 6.32 7.08 5.38 5.59 7.16	1.28 1.17 1.16 1.45 1.02 1.10 1.17 1.10 1.23 .93 .97 1.24	•97 •89 •88 1.10 •77 •83 •88 •83 •93 •71 •73 •94	2.76 2.55 2.42 3.93 2.00 2.26 3.08 2.21 2.89 1.62 3.03 2.64	.87 .81 .77 1.24 .63 .71 .97 .70 .91 .51 .96 .83	1.03 1.67 1.06 .237 .293 .892 .464 .145 .184 .290 .474	2.36 3.82 2.43 .54 .67 2.04 1.06 .33 .42 .66 1.08
			•	Jacks	on Count	;y					
01S01E08 DAAD-1 01S01E22 ABBB-1 01S01W22 ADCA-1 01S02W04 CCCC-1 01S02W13 DDCD-1 01S02W13 ADDD-1 02S01E17 BDDD-1		47.3 4.99 29.6 21.3 17.1 26.1 6.84	.018 .002 .012 .008 .007 .010 .003	.009 .001 .006 .004 .003 .005 .001	7.78 9.49 7.78 18.6 7.68 8.76 9.02	1.36 1.65 1.35 3.23 1.33 1.52 1.57	1.03 1.25 1.03 2.45 1.01 1.16 1.19	3.19 3.49 2.97 15.4 2.71 3.11 3.94	1.01 1.10 .94 4.84 .86 .98 1.25	.691 2.39 1.79 1.84 1.65 .506 2.78	1.58 5.47 4.10 4.21 3.78 1.16 6.36

02S01W05	CCBC-1	8.01	.003	.002	6.91	1.20	.91	2.40	.76	1.70	3.89
02S01W08	ADCC-1	25.4	.010	.051	19.0	3.30	2.51	17.3	5.47	2.12	4.80
02S02W31	BCDD-1	92.4	.036	.018	7.55	1.31	1.00	2.84	.90	1.54	3.52
02S02W35	CADA-1	32.3	.013	.006	8.11	1.41	1.07	3.77	1.19	.625	1.43
02S03W25	CDBB-1	26.6	.010	.005	21.5	3.73	2.83	4.00	1.27	4.93	11.3
02S03W28	DBAA-1	25.6	.010	.005	10.4	1.81	1.37	5.15	1.63	3.38	7.73
				Living	ston Cou	nty				<u></u>	
02N03E20	CBBC-1	32.9	.013	.007	10.0	1.74	1.32	5.21	1.65	1.00	2.29
03N03E10	AAAD-1	98.3	.038	.020	12.4	2.15	1.64	8.29	2.62	1.50	3.43
03N03E26	CDDD-1	18.5	.007	.004	10.2	1.77	1.35	5.77	1.83	.564	1.29
03N03E26	CDDD-2	4.64	.002	.001	8.38	1.45	1.10	6.35	2.01	5.39	12.3
04N03E16	CAAA-1	9.08	.004	.002	12.2	2.12	1.61	8.33	2.64	1.50	3.43
				Shiawas	ssee Cour	nty					·
05N01E10	CCCC-1	10.0	.004	.002	6.59	1.14	.87	2.74	.87	•524	1.20
06N01E21	AADD-1	1.62	.001	.000	5.08	.88	.67	1.29	.41	•282	.64
06N01E35	DDAA-1	.728	.000	.000	11.5	2.00	1.52	7.29	2.31	1•20	2.75
06N02E01	DCDD-1	9.68	.004	.002	8.64	1.50	1.14	4.92	1.56	•683	1.56