4 7 0 -2 0 ,4 3 1 AL-AGIDI, W aleed K h a lld H a s s a n , 1 9 3 7 A CHRONOLITHOSEQUENCE OF SOILS ON PLEISTOCENE TERRACES ALONG MAPLE RIVER IN NORTHEASTERN CLINTON COUNTY, MICHIGAN, U .S .A . (THEIR MORPHOLOGIC, GENETIC AND GEOMORPHIC INTER­ RELATIONSHIP). M ich ig an S t a t e U n i v e r s i t y , P h .D ., 1970 A g r ic u ltu r e , s o i l sc ie n c e University Microfilms, A XEROXC om pany, A nn Arbor, M ichigan A CHRONOLITHOSEQUENCE OF SOILS ON PLEISTOCENE TERRACES ALONG MAPLE RIVER IN NORTHEASTERN CLINTON COUNTY, MICHIGAN, U. S. A. (THEIR MORPHOLOGIC, GENETIC AND GEOMORPHIC INTERRELATIONSHIP) By Waleed K h a l i d H a s s a n A l - a g i d i A THESIS Submitted to Michigan S t a t e U n iv e r s it y in p a r t i a l f u l f i l l m e n t o f t h e r e q u i r e m e n t s fo r the degree of DOCTOR OF PHILOSOPHY D e p a r t m e n t o f Cr o p a n d S o i l 19 70 Sciences PLEASE NOTE: Some p a g e s have s m a ll an d i n d i s t i n c t ty p e . F ilm ed a s re c e iv e d * U n iv e r s ity M ic ro film s ABSTRACT A CHRONOLITHOSEQUENCE OF SOILS ON PLEISTOCENE TERRACES ALONG MAPLE RIVER IN NORTHEASTERN CLINTON COUNTY, MICHIGAN, U . S . A . (THEIR MORPHOLOGIC, GENETIC AND GEOMORPHIC INTERRELATIONSHIP) By Waleed K h a l l d Hassan A l - a g i d i B a s e d on s o i l s u r v e y w o r k i n 1967 a n d 1968 a n d t h e a r e a ge omorphology s e v e n pedons w e r e s e l e c t e d a nd s a m p l e d as representatives of the major s o i l s C l in to n County, Michigan. on t e r r a c e s in n o r t h e a s t T h i s wa s d o n e t o d e t e r m i n e t h e i n f l u e n c e of age and p a r e n t m a t e r i a l d i f f e r e n c e s upon t h e s e s o i 1s . T h e n u mb e r o f t e r r a c e s a l o n g t h e M a p l e R i v e r s w a s d e t e r m i n e d by f i t t i n g a straight line o f t h e s a me o r s i m i l a r of each of the four i n d i c a t e d by t h e f a l l i n g on t h a t soils in t h e geomorphic, that passes terrace so ils. terraces through the e le v a tio n s The d o wn st r ea m e x t e n t f o u n d a l o n g t h e M a p l e R i v e r s was la s t observed portion of line. P o s itio n s and that terrace soil interrelations among t h e s e l a n d s c a p e w ere worked o u t from t o p o g r a p h i c , old (1936) and c u r r e n t s o i l maps. were m e c h a n i c a l l y a n a l y z e d and t h e i r m a t e r i a l s t e x t u r e c l a s s e s and s u b c l a s s e s , r e c o n s t r u c t e d and l a t e r As t h e s a m p l e s classified the p e d o n s1 s t r a t i g r a p h y were f u r t h e r m o d i f i e d by t h e f i n e s a n d 1 into W a le e d K h a l i d Hassan A l - a g i d i mineralogy. G arnet, q u a r t z and f e l d s p a r s , b o l e s and o t h e r m in e ra l fractions were’electrom agnetically separated fo r th is purpose. Based on p a r t i c l e s i z e d i s t r i b u t i o n and m i n e ra l o g y t h e pedons were f i t t e d 1 ithosequence of about pyroxenes and amphl- years 1,200 i n t o a complex chrono- time d i f f e r e n c e and sandy t o fine-loamy family tex tu re d iffe re n c e s. The h o r i z o n s in e a c h pedon w e r e th en c h e m i c a l l y c h a r a c t e r i z e d by s o i l exchangeable hydrogen, i n o r g a n ic and t o t a l illuvial exchangeable c a tio n s , CEC, % b a s e s a t u r a t i o n a n d o r g a n i c , carbons. The t r e n d o f t h e CEC i n t h e horizons of the chronosequence of s o i l s i n d i c a t e d an saturation studied increase with age, while the trend of % base in t h e e l u v i a l a decrease with age. reflected reaction, h o r i z o n s o f t h e s a me s o i l s L ith o lo g ic d i f f e r e n c e s were a l s o in t h e c h e m i s t r y o f the horizons m a t e r i a l s and th e f o l lo w in g r a t i o s ( B 2 2 t - c l a y % x Bt t h i c k n e s s e s in from d i f f e r e n t ( B22t % c l a y / A 2 % c l a y ) inches) p a t t e r n s of the c la y f r a c t i o n s in d ic ated s i m i l a r clay mineral v e r m i c u l i t e and k a o l i n i t e ) c o n t e n t and illite were g e n e ra lly proportional assemblages (illite, 2 increase X-ray chlorite, Bo t h c l a y % K+ intensity 001/002 to the in of the plowlayers, regardless of age. diffraction and i n c re a s e d w ith age t h e pedons o f d i f f e r e n t ages and s i m i l a r m a t e r i a l s . diffraction indicated ratio in a g e in t h e W a l e e d K h a l i d H assan A l - a g i d i chronosequence of s o i l s . within Although th e pedons u s u a l l y t h e i r o r d e r s on c l a s s i f i c a t i o n system, none o f t h e s e pedons Sampled B o y e r- S p i n k s pedons retained f r a g i p a n was 'x' series, - Glossic series Constantine s e rie s ; floor (Mol l i e ) (in G ratiot to f i t its series placement. s h o u l d be renamed a Boyer-Fox pedon w i t h a Fragiudalf s i n c e no s u i t a b l e s e r i e s the s u ita b le i n t h e new c l a s s i f i c a t i o n i t wa s s u g g e s t e d , as S t r o h a Psammentic H a p l u d a l f ; remained is - referred known t o f i t t o as it; and t h e d a r k B o y e r - S p i n k s wa s t h e and t h a t o f Boyer w i t h the s i l t y C o u n t y ) w a s t h e Me n o mi n e e s e r i e s clay loam an A l f i c Haplorthod. Fr om p e d o n s c h a r a c t e r i z a t i o n fertility indicate t h a t s o me o f t h e s t u d i e d p e d o n s requires liming and potassium a p p l i c a t i o n s . dimensions of th e mapping u n i t s a s o u r c e of commercial gravel interpretations ( s u c h a s AA, N) D e p e n d i n g on t h e t h e s e , s o i l s may b e o f v a l u e a s and s a n d s . 3 A ffectionately dedicated t o my d e v o t e d w i f e Suham M. A. A l - a g i d i in a p p r e c i a t i o n o f h e r u n d e r s t a n d i n g , p a t i e n c e and a s s i s t a n c e . ACKNOWLEDGMENTS The a u t h o r e x p r e s s e s professor, D r . E. his P. W h i t e s i d e , p a t ie n t guidance throughout thanks encouragement. th e u n d e rsta n d in g and the course of the study. Science Department fo r h is Appreciation guidance committee: is e x p r e s s e d D r . M. M. M i l l e r , p ro fe sso rs of geology, J. for to his major i s a l s o e x t e n d e d t o p r o f e s s o r e m e r i t u s R. L. ex-chairman of the Soil Dr. sincere gratitude Dr . C. S h i c k l u n a p r o f e s s o r s o f s o i l v a l u a b l e comments, and g u id a n c e d u r i n g Coo k, constant to the a u th o r's a n d Dr. E. A. E r i c k s o n , The R. Dr.H. Ehrlich D. F o t h , science for their the authors s t a y on and t h e M i c h i g a n S t a t e U n i v e r s i t y c a mpus * A special mention i s a l s o ma d e o f whom t h e a u t h o r wa s na me d t o s p e c i a l i z e g e n e s i s and c l a s s i f i c a t i o n . the people of in s t u d i e s Iraq of so il by TABLE OF CONTENTS 1. I n t r o d u c t i o n ..................................................................................... 1 2. L i t e r a t u r e R e v i e w ................................................................................ b A. S o i l s a n d g e o m o r p h o l o g y B. S u r f a c e g e o l o g y a. Glacial ................................................... 4 .................................................................... 13 ............................................................. 14 J o h n m o r a i n e ........................................................ 17 2. F l i n t mo r a i n e ............................................................. 17 3. Owosso m o r a i n e ............................................................. 20 1. S t . b. T ill deposits p l a i n . .................................................................. 20 b. Fl'uvio g l a c i a l d e p o s i t s .............................................. 21 c. La k e p l a i n s ............................................................................ 21 d . R i v e r s ............................................................ e. 22 1 . G r a n d R i v e r .................................................................. 2b 2 . Ma p l e R i v e r .................................................................. 2b 3. 25 B a k e r a n d S t o n y C r e e k s ......................................... Recent a l l u v i a C. R e l a t e d h i s t o r y o f . . ........................................ theg l a c i a l l a k e s ....................... D. S t r e a m t e r r a c e s ................................... 25 25 30 a. Mode o f t e r r a c e f o r m a t i o n ......................................... 31 b. Genesis of stream te r r a c e s .................................... 32 c. Nature of t e r r a c e m aterial .................................... 3b d. Formational direction of terrace ..................... 3b 4 E. S o i l s g e o m o r p h o l o g y ............................................................. 3h F. S o i l hi a. f o r m i n g f a c t o r s .............................. P a r e r t m a t e r i a l s ................................................................... h2 1. Mor a i n i c m a t e r i a l s ................................................... h3 2 . Outwash p l a i n and f l u v i o - g l a c i a l m a t e r i a l s ........................................................................ h3 3. T ill p l a i n m a t e r i a l .............................................. hh h . L a k e b e d s m a t e r i a l s ................................................... hh 5. A l l u v i a l h$ b. C l i m a t e . . m a t e r i a l s ................................................... . ......................... ^8 c. V e g e t a t i o n ............................................................................. 52 d. T o p o g r a p h y ............................................................................. 53 e. Ti me 5h ............................................................................. G. P a r a m e t e r s f o r j u d g i n g t h e c h a r a c t e r o f a s e d i m e n t by i t s size d i s t r i b u t i o n c u r v e . . . . 59 H. C r i t e r i a f o r j u d g i n g d e p o s i t i o n a l u n i f o r m i t y o f s e d i m e n t a r y m a t e r i a l s ................................................... 60 I. Weathering i n t e n s i t y of sedim entary s o il m a t e r i a l ............................................................................................ 61 J. Soil t a x o n o m y ............................................................................ 67 K. Land u s e ........................................................................................... 7h 3 . M a t e r i a l s a n d M e t h o d s ........................................................................ 76 A. F i e l d o b s e r v a t i o n s .................................................................. 76 B. Preparation of soil 93 C. Laboratory measurements a. s a m p l e s ........................................ ................................................... 9h C h e m i c a l .................................................................................. 9h v 1. S o i l c a r b o n .................................................................. 9^ Total 3 . I n o r g a n i c c a r b o n .................................................. . 9** k. O r g a n i c c a r b o n .............................................................. 95 . 5. E x c h a n g e a b l e b a s e s ................................................... 95 6 . Exchangeable hydrogen ......................................... 96 7. C a t i o n e x c h a n g e c a p a c i t y .................................... 96 8 . P e r c e n t b a s e s a t u r a t i o n .................................... 96 9. S p o d o s o l i z a t i o n ......................................................... 97 P h y s i c a l .................................................................................. 98 1. M e c h a n i c a l .............................................. 98 C l a y f r a c t i o n a t i o n ................................................... 98 2. D. Sh 2. b. c. r e a c t i o n ............................................................. analyses M i n e r a l o g i c a l ........................................ 99 1. Q u a l i t a t i v e i d e n t i f i c a t i o n o f c l a y m i n e r a l s ............................................................................. 99 2. Total p o t a s s i u m i n c l a y s .................................... 100 3. S a n d m i n e r a l o g y ......................................................... 101 Statistical evaluations ................................................... 103 .................................................... 105 A. S o i l s a n d G e o m o r p h o l o g y o f NE C l i n t o n County. . . . . . . . . . . ......................................... 105 B. T e x t u r e ................................................. 1**1 C. S t r a t i g r a p h y ................................................................................ 1^9 D. S tra ta mineralogic c h a ra cte rizatio n .................... 160 E. C h e m i s t r y ...................................................................................... 178 k. R e s u l t s and D i s c u s s i o n . vi a. Soil r e a c t i o n ...................................................................... b. Exchangeable c a tio n s .................................................. 1. S o d i u m a n d p o t a s s i u m .................................... .... 186 . 187 2 . C a l c i u m a n d m a g n e s i u m ......................................... 189 3. 190 Hydrogen. * .................................................................. c. Cation exchange c a p a c i t y ........................................ 191 d. P e r c e n t b a s e s a t u r a t i o n ............................................. 193 e. Organic and .............................. 196 F. M o r p h o l o g y ....................................................................................... 199 inorganic carbon a. T h ic k n e s s o f s o l a and a r g i l l i e h o r i z o n s . b. Clay c o n t e n t .................................................. 202 c. ( B 2 t / A 2 ) a n d (B2 t h i c k n e s s x B 2 t ) .................... 204 G. C l a y m i n e r a l o g y ...................................................................... 5. 179 a. X-ray d i f f r a c t i o n p a t t e r n s b. Clay t o t a l ................................... potassium content . 199 206 207 .............................. 211 H. T a x a n o m y ............................................................................................ 214 I. S o il a n d m a n a g e m e n t .................................... 223 C o n c l u s i o n s ................................................................................................. 228 L i t e r a t u r e C i t e d ....................................................................................... 233 A p p e n d i c e s ...................................................................................................... 243 fertility vi i L I S T OF TABLES Table 1 A s u m m a r i z a t i o n o f t h e t e rms u s e d in v i e w i n g t h e v a r i o u s p a r t s o f a s l o p e by t h e v a r i o u s i n v e s t i g a t i o n s ................................................... 11 2 B r e t z ' s c o r r e l a t i o n o f e v e n t s i n S a g i n a w Bay B a s i n .............................................................................................................. 2 8 3 G e o l o g i c t i m e s c a l e o f t h e l a k e s t a g e s in Huron B a s i n w i t h t h e i r e l e v a t i o n s a b o v e s e a l e v e l ....................................................................................................2 9 4 C lim ate changes i n f e r r e d from f o r e s t h i s t o r y d e d u c e d f r o m p o l l e n t p r o f i l e s o f t wo b o g s i n SW M i c h i g a n ......................................................................................... 51 5 Mean a n d e x t r e m e s o f t h e w e a t h e r o f t h e s t u d y a r e a and i t s s u r r o u n d i n g s a s r e c o r d e d in t h e r e g i o n c l i m a t o l o g i c a l r e c o r d s .......................................... 6 Computations of least significant difference. 7 I d e n t i f i c a t i o n le gend o f C l i n t o n County u p l a n d m i n e r a l s o i l s .................................... . 52 104 115 8 Key t o u p l a n d s o i l s 9 C o r r e l a t i o n o f t h e t e r r a c e s o i l mapping u n i t s o f the 1936 s o i l su rv ey and t h e c u r r e n t ( 1 9 6 8 ) s o i l s u r v e y ............................................................................. 127 10 o f C l i n t o n C o u n t y ............................118 Various e l e v a t i o n s and d a t e s o f th e a r e a l a n d f o r m s w i t h s o me c h r o n o l o g i c c o r r e l a t i o n s . 135 11 Th e i n v e s t i g a t e d t e r r a c e s a n d t h e i r p r o b a b l e r e l a t i v e a g e s ....................................................................................... 140 12 Me cha ni cal c o m p o s i t i o n , s o l u t i o n l o s s , and t e x t u r e s o f p e d o n s s a m p l e s s t u d i e d ....................................143 « « • VIM R e la tiv e frequencies of the te x tu ra l c la s s e s a n d s u b c l a s s e s i n t h i s s t u d y ................................... ]k7 Grouping of i n i t i a l of t h e i r mechanical 151 m a t e r i a l s on t h e b a s i s a n a l y s e s ................................... A s u mma r y o f h o r i z o n c h a r a c t e r i s t i c s u s e d i n the id e n tif ic a tio n of the d i f f e r e n t s t r a t a o f t h e p e d o n s s t u d i e d .................................................. 15^ I d e n t i f y o f s o i l s t r a t a r e p r e s e n t e d by t h e most u n a l t e r e d sample o f each s t r a t u m . . . . 159 P e r c e n t a g e s o f m in e ra l c o n c e n t r a t i o n s as s e p a r a t e d by i s o d y n a m i c m a g n e t i c s e p a r a t o r f r o m 0 . 2 5 - 0 . 1 0 mm. f r a c t i o n w i t h t h e c a l c u l a t e d w e a t h e r i n g i n d i c e s ..................................... 162 M i n e r a l o g i c c h a r a c t e r i z a t i o n o f f i n e s a n d in v a r i o u s s t r a t a e x p r e s s e d in p e r c e n t and w e a t h e r i n g r a t i o s .................................................................... 168 R e l a t i v e a g e s , sequence and e l e v a t i o n o f t h e s a m p l e d s i t e s on t h e d i f f e r e n t l a n d f o r m s i n v o l v e d ............................................................................................ 172 R a t i o s o f w e a t h e r i n g i n d i c e s ( G/ PA a n d Q/ PA) f o r A2 o r A2 a n d B2 2 t h o r i z o n s t o t h e i r m o s t s i m i l a r p a r e n t m a t e r i a l (SPM) ..................................... 175 Chemical properties of th e pedons h o r i z o n s . . 180 S e le c te d morphological measurements p o s s i b ly u s e f u l i n t h i s c h r o n o l i t h o s e q u e n c e .................... 200 Summar y o f t h e X - r a y d i f f r a c t i o n d a t a on c l a y m i n e r a l s p r e s e n t in t h e s e l e c t e d h o r i z o n s f r o m t h e s t u d i e d p e d o n s ......................... 208 A s umma r y o f % t o t a l K+ a n d i l l i t e 0 0 1 / 0 0 2 p e a k i n t e n s i t i e s of th e c la y samples of s u r f a c e h o r i z o n s s a m p l e d f r o m t h e s i t e s .......................... 213 Major c h a r a c t e r i s t i c s use d in t h e c l a s s i f i c a ­ t i o n o f th e s o i l s under stu d y and o t h e r s i m i l a r w e l l d r a i n e d s o i l s ......................................... 217 C l a s s i f i c a t i o n o f t h e s a mp l e d p edo ns in t h e U.S. C p m p r e h e n s iv e . S o i1 C lass i f i p a t i o n , S y s t e m 220 L I S T OF FIGURES Figure 1 2 3 4 56 M o ra in ic systems o f Michigan showing C li n t o n and G r a t i o t c o u n t i e s . a n d . t h e . study, a r e a . . . . S c h e m a t i c map s h o w i n g l o c a t i o n o f t h e s t u d y a r e a w ith in Mid-Michigan m o rain ic f e a t u r e s . 2 . 16 F e a t u r e s n e a r t h e head o f G l a c i a l Grand R i v e r a f t e r L e v e r e t t ' s 1 9 2 4 ma p , ( B r e t z 1 9 5 1 ) . B a k e r a n d L e w i s c h a n n e l s a r e s hown i n t h e r i g h t s i d e o f t h e f i g u r e w i t h B»Baker and L = L e w i s ........................................................................................ 18 Map s h o w i n g r e l a t i o n o f F l i n t a n d Owo s s o m o r a in e s t o t h e Grand R i v e r Channel. ( A f t e r L e v e r e t t a n d T a y l o r , 1 9 1 5 ) .......................................... 19 S c h e m a t i c d i a g r a m o f 1949 c l a s s i f i c a t i o n o f g r e a t s o i l g r o u p s r e p r e s e n t e d in M i c h i g a n . A s e l e c t i o n o f pedons and la n d s c a p e s from t h e s t u d i e d p e d o n s a n d t h e i r s i t e s ..................... . 70 79 7 S o i l map o f s e c t i o n s 1 5 , 16, 2 1 , a n d 2 2 , O v i d t o w n s h i p , C l i n t o n County Mi ch iga n ( a e r i a l p h o t o I E E - 3 9 ) ......................................................................... 107 8 S o i l map o f s e c t i o n s 3 , 4 , 9 , a n d 10, O v i d to w nship, C l i n t o n County Michigan ( a e r i a l p h o t o I EE- 3 7 ) .............................................................................. 108 S o i l map o f s e c t i o n s 2 9 , 3 0 , 31 a n d 3 2 , D uplain tow nship, C l i n t o n County Michigan (aerial p h o t o I E E - 7 7 ) ......................................................... 109 S o i l map o f s e c t i o n s 27, 28, 33, and 34 D u p l a i n t o w n s h i p , C l i n t o n County Michigan (aerial p h o t o I E E - 3 5 ) ......................................................... 110 S o i l map o f s e c t i o n s . 15, 16, 2 1 , a n d 22 D uplain to w n sh ip , C l i n t o n County Michigan (aerial p h o t o I EE- 3 3 ) ......................................................... Ill 9 10 11 x 12 13 14 15 16 17 18 19 20 21 S o i l map o f s e c t i o n s 13, 14, 2 3 , a n d 2 4 , Duplain township, C l i n t o n County Michigan ( a e r i a l p h o t o I E E - 2 3 ) ......................................................... 112 S o i l map o f s e c t i o n s 3 , 4 , 9 a n d 10, D uplain to wnship, C l i n t o n County Michigan ( a e r i a l p h o t o I E E - 3 1 ) ......................................................... 113 S o i l map o f s e c t i o n s 1, 2 , 1 1 , a n d 12 D uplain township, C l i n t o n County Michigan ( a e r i a l p h o t o I E E - 2 5 ) ......................................................... 114 P o r t i o n of Laingsburg q u a d r a n g l e showing f i e l d s h e e t s , t r a n s e c t s , and sampling s i t e s in s o u t h e r n p a r t o f t h e s t u d y a r e a ( s c a l e i s 1 / 6 2 , 0 0 0 , c o n t o u r i n t e r v a l 1 0 ' ) ........................... 124 P o r t i o n of E l s i e q u a d r a n g l e showing f i e l d s h e e t s , t r a n s e c t s , a n d s a m p l i n g s i t e s in n o r th e r n p a r t of stu d y a re a ( s c a l e is 1/ 6 2 , 0 0 0 contour interval 5 ' ) . . . . . . . 125 Graphic p re se n ta tio n of the te rra c e s along t h e L i t t l e Maple R i v e r a s o r i e n t e d a c c o r d i n g t o d i s t a n c e , e l e v a t i o n and sequence o f s i t e s s o u t h o f t h e j u n c t i o n w i t h t h e Maple R i v e r . . 130 Graphic p rese n tatio n of the te rra c e s along Maple R i v e r as o r i e n t e d a c c o r d i n g t o d i s t a n c e , e l e v a t i o n and sequence of s i t e s n o r t h o f L i t t l e M a p l e R i v e r j u n c t i o n ..... 131 Th e t e x t u r a l t r i a n g l e s h o w i n g t h e common s o i l t e x t u r e c l a s s e s in t h i s s t u d y a s d e t e r m i n e d in t h e f i e l d and t h e l a b o r a t o r y .......................................................................... 145 S t r a t i g r a p h y of th e t e r r a c e s as c o n s t r u c t e d from t n e c h a r a c t e r i z a t i o n o f i n i t i a l m a t e r i a l s .................................................... .................................... A suggested chronolithosequence re la tio n sh ip among s t u d i e d p e d o n s w i t h t h e i r r e l a t i v e a g e s .......................................................................................... 171 xi 1 55 22 23 2k 25 D i f f e r e n c e s in t h e s o i l r e a c t i o n w i t h d e p t h in t h e s t u d i e d p e d o n s ........................................................ 185 V a r i a t i o n i n % b a s e s a t u r a t i o n a n d CEC i n t h e A2 h o r i z o n s a n d t h e maximum c a t i o n e x c h a n g e c a p a c i t y a s e x p r e s s e d in e i t h e r B21 o r B22 w i t h a d v a n c e m e n t i n a g e .......................... 192 G ra phic r e p r e s e n t a t i o n of solum t h i c k n e s s ( o r d e p t h t o Cl h o r i z o n ) i n t h e s t u d i e d p e d o n s ................................................................................................. 201 C l a y c o n t e n t r a t i o b e t w e e n B2 2 t c l a y %/A2 c l a y % i n s e l e c t e d h o r i z o n s a n d (B2 t h i c k n e s s ) ( % c l a y ) p r o d u c t s f o r t h e s a me h o r i z o n s . . . . 205 xi i 1. The 1 9 6 7 , indicated INTRODUCTION 1968 S o i l Survey the presence of the Spinks, and t h e i r c o m b i n a t i o n s as Pleistocene terraces in n o r t h e a s t C l i n t o n C o u n t y B o y e r , a n d Fo x , the major s o i l mapping u n i t s o f t h e Maple R i v e r V a l l e y , The m a p p i n g u n i t s includeawide t h a t ma ke t h e c o m b i n a t i o n s series on t h e Figure 1. ran ge o f c h a r a c t e r is t ics s o me w h a t d i f f i c u l t to recognize or t o map a n d t h e n t o m a n a g e p r o p e r l y . Maple R i v e r lowering of terraces the terraces are landforms temporary g l a c i a l that resulted from the lakes of mid-Michigan. at d ifferen t elevations are related to th is geomorphic chronology and c o n s e q u e n t l y a p e d o lo g ic chronosequence to develop is e x p e c t e d on t h e m b e c a u s e t h e c o n s t i t u e n t p e d o n s sum up t h e influence of a l l of The soil f o r m a t i o n f a c t o r s and r e c o r d t h i s framework interrelationships. Fox, the soil Boyer a n d B o y e r - S p i n k s a r e of the terraces t h e key mapping u n i t s in t h i s a r e a , and investigating p h y s i c s a n d t h e c h e m i s t r y o f t h e ke y p e d o n s may l e a d understanding, e v a l u a t i o n and p r o p e r geomorphic, m orphologic and g e n e t i c characterization will and d e l i n e a t i o n o f p r o v i d e more to the interrelationships. information This for the d e fin itio n and thus s e r v e de ma nd f o r a c c u r a t e maps n e e d e d in t h e a g r i c u l t u r a l agricultural resources. 1 the in te rp re ta tio n of the s o i l , improved mapping u n i t s , management o f s o i l for the and non- 2 IM 7 • fa t* a t tttahffaii O aaartaw at a t canaaryatM N - I ...O H . WINN.' OaalaaMal • a r m WvWw MORAINIC S Y S T E M S OF MICHIGAN I 4 # M N U .M m m V v O H IO . F i g u r e 1. M o r a i n i c s y s t e m o f Mi c hi ga n showi ng C l i n t o n and G r a t i o t c o u n t i e s ( g r e e n ) and t h e s t u d y area (red) 3 Evaluation of so ils will the accumulated surely help in: testing t h e American Comprehensive S o i l ing and r e v i s i n g information about the s e r i e s these t h e i r proper placement C l a s s i f i c a t i o n system, concepts, in develop­ a n d naming t h e i r mappi ng un i t s . The r e s u l t o f this s t u d y s h o u l d a l s o p r o v i d e more m a t i o n on m i d - M i c h i g a n g e o m o r p h o l o g y , especially description of te r r a c e s , and o l d g l a c i a l and h e l p It soil to a s c e r t a i n lake beaches, t h e Cary c h r o n o l o g y is expected th a t the whole stu d y w i l l s c ie n tis ts operating d e c i s i o n making and o v e r a l l p a r t i c i p a t i o n of both s o il u n r a v e l l i n g problems as of techniques for in t h i s in s o i l in t h e channels area. be b e n e f i c i a l to s u r v e y by i m p r o v i n g b o t h efficiency. scientists in t h i s infor­ Finally, joint active and g e o m o r p h o l o g i s t s study w ill in accumulate a wealth t a c k l i n g s i m i l a r problems elsew here. 2. A. Soils and Geomorpoloqy: Soils systems, S|, LITERATURE REVIEW are natural, characterized dynamic b i o - p h y s i c o - c h e m i c a l , by f u n c t i o n a l l y S2 , S3 , S ^ Sn . open interrelated properties These p r o p e r t i e s can be e v a l u a t e d e i t h e r q u a l i t a t i v e l y or q u a n t ita tiv e l y or both. To a c c u r a t e l y describe’ soils to d efin e range of as n a t u r a l bodies their properties. Soil graphy a re p r o p e r tie s of the so il known a s s o i l system properties. it is n e c e s s a r y climate, organisms, the and t o p o ­ system but are not u n i v e r s a l ly The i n i t i a l state i.s d e s i g n a t e d a s p a r e n t m a t e r i a l o f a dynamic s o i l and time is a n o t h e r * > variable. Jenny (1941) has recognized ^these f i v e major pendent v a r i a b l e s or groups of v a r i a b l e s s y stem and c a l l e d s - f in any a c t i v e open s o i l t he m t h e f a c t o r s o f s o i l ( c l , o, r, p, inde­ formation. t ,) where: cl = climate p = o s organisms parent material t = time r = topography Unfortunately at variable the present stage of so il involved Accordingly in t h e d e f i n i t i o n o f s o i l relationship the fa c to rs of so il between individual science not every systems soil f o r m a t i o n c a n b e summed up a s 4 i s known. properties follows: and 5 s = f To s t u d y t h e necessary ( c l , o, r, p, t,.... ) r o l e p l a y e d by a n y o n e s o i l that the chronosequence pendent so il remaining f a c t o r s time is formation so i 1 p r o p e r t y remain c o n s t a n t . the only v a r ia b le factors forming f a c t o r and the it In a s o i l f a c t o r among t h e relation of is inde­ time to a is : s = f (^cl, o, ........... r, The s a me c a n be s a i d a b o u t p a r e n t m a t e r i a l as a s o i l forming factor to a so il property: in a 1 ithosequence s = f ^P^cl, o, and r, its t, relation ................ Pedology and geomorphology a r e s i m i l a r and disciplines. of Their s im i l a r i t y investigating environments. the p ast, from t h e i r the p re se n t, Th e y a r e a l s o s i m i l a r understanding the various in c o n d u c t i n g the factors. natural investigations. pedo-geologic observations mental rise that This co nc ep t interrelated sim ilar functions and the f u t u r e of i n s ome p r i n c i p l e s used in phenomena and methods employed Landforms can be viewed a s resulted is c l e a r l y from a s e t o f e n v i r o n ­ s h o wn in Davis' d i c t u m (1954) Landform = s t r u c t u r e + p r o c e s s + s t a g e Davisian th e o ry e x p l a in e d s t r u c t u r e as unconsolidated geologic m a terials, and chemical events a ffe c tin g processes the s tr u c t u r e s th e c o n s o l i d a t e d and as a l l the physical d ire c tly or 4 6 indirectly, of and s t a g e as the continuous or time involved r e f l e c t e d interrupted processes. g r ap h y , and v e g e t a t i o n both D a v is ' in t h e intensity Except f o r topo­ and J e n n y ' s e q u a t i o n s a r e o f g r e a t s i m i l a r i t y w i t h Jenny e q u a t i o n s as a d e t a i l e d and version. as Davis c o n s i d e r e d "Landform", an e x p r e s s i o n o f t o p o g r a p h y th e dependent v a r i a b l e w h ile Jenny c o n s i d e r e d " s o i l " dependent v a r i a b l e and pendent v a r i a b l e s . soil and a s o i l included is p e d o l o g i c a l 1y more Davis p r o c e s s e s v a r i a b l e landform. include the soil intricate I t s e e ms it to in s o i l He a l s o e m p h a s i z e d t h a t w e a t h e r i n g formation, development and d e n u d a t i o n . s i m i l a r c o n d i t i o n s o f d e n u d a t i o n by e x o g e n e t i c f o r c e s in t h e of time. landform to d i f f e r e n t Decreasing rubble r e ta rd and t h i s until rock m a te r ia l s Under the a l t e r a ­ is a f u n c t i o n r o c k r e d u c t i o n by t h e d i f f e r e n t i a l i s f o l l o w e d by a d e c r e a s e there is r o c k e x p o s u r e by v e g e t a t i o n d e n s i t y a n d in t h e weathering in te n s ity of denudation i s an e q u i l i b r i u m be t we e n t h e a c c u m u l a t i o n o f t h e w e a th e r e d m a t e r i a l s and t h e i r actual b utio n of the weathered m a te r ia l s the include t h e b i o t i c a n d t o p o g r a p h i c c o m p o n e n t s a n d t e r m e d t he m important soil th at the the f a t h e r of q u a n t i t a t i v e geomorphology, the exogenetic f o rc e s . tion than biotic factor effects. Recognized D a v i s ’ landforms e q u a t i o n and expanded both inde­ A l a n d f o r m may h a v e m o r e t h a n o n e k i n d o f system Penck (1953) the topo gr aph y as one o f t h e the geomorphologically considered transport. and t h e i r This d i s t r i ­ t y p e s d e p e n d on i n c l i n a t i o n o f t h e s l o p e and t h e m o b i l i t y o f t h e m a t e r i a l s . And, of I mp r o v e d a s t h e s l o p e s b e c o me s s t e e p e r , t h e n o r ma l soil a r e developed a t then only the the su rface. lower h o r i z o n 7 Bo t h p e d o l o g y a n d g e o m o r p h o l o g y a r e the occurrence d i s t r i b u t i o n required and r e c o g n i t i o n to understand of both taxons and mapping u n i t s . Geomorphologists for regard soil properties as a valuable aid th e r e c o n s t r u c t i o n o f p a s t c l i m a t i c and t o p o g r a p h i c c o n d i ­ tions. Wooldridge (19**9) s t r e s s e d the point that c o n t a i n s many f a c e t s o f v a r y i n g a g e s that soil lengths o f forming p ro cesses different climate, for d iffe re n t and t h a t the h i s t o r y topography have been ex p o s e d is to time a n d /o r reflected in t h e s o i l profile properties. Hu n t a n d S o k o l o f f widespread i n t h e Ro c k y M o u n t a i n a re such as ville (19**9) h a v e d e s c r i b e d a p a l e o s o l to indicate that it and t h e y o u n g e s t m o r a in e s younger than paleosol as than a t the present present. deposits f o r m e d s e e ms glacial drifts is found this t o have had a s great different times a r e of co n tinen tal i n d i c a t e d by t h e f a c t that comparative depths of weathering glaciation. in a r r i v i n g a t Soil r e g i o n s a r e commonl y non-calcareous. from th o s e of kept ahead of e ro sio n . (195*0 s t a t e s in mountain it topographic expression. and l e a c h i n g c a n n o t be u s e d e f f e c t i v e l y many a r e a s in a g e t h a n Lake Bonne­ Wherever Climatic conditions forming p rocesses Thornbury relationships t o p o g r a p h y b u t s l o p e s w e r e much s m o o t h e r L a te W isconsin and p o s t the so il is in t h e W a s a t c h Range b u t is a s s o c i a t e d w ith a d i s t i n c t it Its is o ld e r the o ld est moraines. The t o p o g r a p h y u p o n w h i c h relief region. that profiles stages on g l a c i a l immature and t h e in 8 Ri c h mo n d ( 1 9 5 0 ) h a s p o i n t e d o u t the p o s s i b i l i t y of d i s t i n ­ g u i s h i n g d e p o s i t s o f t h e W i s c o n s i n s u b s t a g e by c o m p a r i s o n o f the th ic k n e ss of developed th e o x i d i z e d and c o l o r e d h o r i z o n in m a t e r i a l s o f d i f f e r e n t a g e s . A l t h o u g h a s o i l map g i v e s less q u a n tita tiv e t o p o g r a p h y t h a n a c o n t o u r map d o e s , the c h a r a c t e r i s t i c ex tern al a general forms o f s o i l p ic tu re of the varying topographic forms, they alm ost always be c o n v e r t e d implications are is used. g l a c i a t i o n a n d may be t h e m, readily grasped. Soil and t h e i r maps c a n T ho r n b u r y (195*0 p o i n t s o u t l a n d f o r ms a r e material that soil in a r e a s o f c o n t i n e n t a l in b e d r o c k g e o l o g y . Many o f t h e r e a d i l y d i s t i n g u i s h a b l e by t h e d i f f e r e n t d e v e l o p e d u p o n t h e m, series in maps do n o t s how d i r e c t l y a l l reflect maps a r e p a r t i c u l a r l y v a l u a b l e glacial i t does g i v e i n t o g e o m o r p h i c maps v e r y e a s i l y wh e n p r o p e r interpretation soils bodies, types of t e r r a i n p re s e n t Although s o i l topographic information about by me a n s o f s l o p e p h a s e s a n d t h e ma ppe d a r e a s . glacial in p r o f i l e s is u s u a l l y and t h e g e o l o g i c age o f th e i n d i c a t e d by t h e p a r t i c u l a r s o i l present. M i l n e ( I 9 6 0 ) by u s e o f t h e c a t e n a generalized of: \ rela tio n sh ip of s o ils illustrated to landscapes, the in h i s c o n c e p t 9 “ . . . . t h e sequence o f s o i l s e n c o u n te r e d between the c r e s t o f a l ow h i l l a n d t h e f l o o r o f t h e a d j a c e n t swamp, t h e p r o f i l e cha nging from p o i n t t o p o i n t o f t h i s t r a v e r s e in a c c o r d a n c e w i t h c o n d i t i o n s o f d r a i n a g e and p a s t h i s t o r y o f t h e l a n d s u r f a c e ................ Two v a r i a n t s o f t h e c a t e n a c a n b e d i s t i n g u i s h e d i n t h e f i e l d .................. In o n e t h e t o p o g r a p h y wa s m o d e l e d by d e n u d a t i o n o r o t h e r p r o c e s s e s f r om f o r m a t i o n s o r i g i n a l l y s i m i l a r in l i t h o l o g i c a l Soil d i f f e r e n c e s were then brought c h a r a c t e r ................... by d r a i n a g e c o n d i t i o n s d i f f e r e n t i a l t r a n s p o r t o f e r o d e d m a t e r i a l and l e a c h i n g , t r a n s l o c a t i o n and r e d e p o s i t i o n o f m o b i l e c o n s t i t u e n t s ................ In o t h e r v a r i a n t s , t h e t o p o g r a p h y wa s c a r v e d o u t o f t wo o r m o r e s u p e r p o s e d f o r m a t i o n s w h i c h d i f f e r 1 i t h o l o g i c a 1 1 y ................." King ( 1 9 5 3 ) developed a landscape evo lu tio n theory that i s b a s e d on f i v e p o i n t s : 1. F l u v i a l e r o s i o n s u r f a c e s develop from d i r e c t r i x - a c o n t r o l l i n g s t r e a m - - a n d e n c r o a c h o n a n d up t h e fla n k s of the a d ja c e n t i n t e r f l u v e s towards the divides. 2. The p r o f i l e o f t h e e n c r o a c h i n g e r o s i o n s u r f a c e is c u r v a t e , concave upward, toward t h e p e r i p h e r y o f t h e w a t e r s h e d in w h ic h i t d e v e l o p s . 3. The e n c r o a c h i n g e r o s i o n s t r i p s t h e p r o d u c t s o f w ea th erin g of o ld e r s u r f a c e s , a younger, f r e s h s u r f a c e i s f o r m e d ; a n d a new c y c l e o f s o i l formation begins. 4. The d i v i d e s r e m a i n a s s t a b l e l a n d s c a p e s s u b j e c t e d t o i n t e n s i v e w e a t h e r i n g u n t i l t h e y a r e l e v e l e d by the encroaching erosion su rfa ce . 5. The d i v i d e s a r e n o t w o r n down b u t u l t i m a t e l y may b e d e s t r o y e d by t h e e n c r o a c h m e n t o f e r o s i o n l e v e l s from o p p o s i t e d i r e c t i o n s . Pallister catena to slope Hill (1956) specifically landscape elements. Brow s e r i e s , related soils The r e l a t i o n s h i p s f r e e f a c e and of M ilne's are: d e b r i s Red E a r t h * waxing 10 p e d i m e n t Red E a r t h , a n d swam s o i l s , Ruhe ( I 9 6 0 ) as well and pediment Table finds t o e s l o p e by swamp r i n g e s e r i e s 1. their ideas sound but says as most g e o m o r p h o l o g i s t s is g e n e r a l l y a c c e p te d t a t i o n are phases of processes. in s t u d i e s o f that weathering, Mos t g e o m o r p h i c s t u d i e s e r o s i o n and s e d i m e n t a t i o n , in a s u p e r f i c i a l of soils landscape. erosion, and se dim en­ t h e m o d i f i c a t i o n o f a l a n d s c a p e by f l u v i a l have a t t e m p t e d t o e v a l u a t e th e s t a g e and p r o c e s s o f e v o l u t i o n o f except they ignore the c h a r a c t e r i s t i c s and geomorphic d i s t r i b u t i o n o f s o i l s It that l a n d s c a p e by s t u d y i n g bu t have n e g l e c t e d wa y . Weathering the weathering results in t h e f o r m a t i o n t h a t have v a l u a b l e d i a g n o s t i c c h a r a c t e r i s t i c s and unique geographic d i s t r i b u t i o n . Ruhe r e v i s e d Wood, King, a n d p r o p o s e d new names f o r f o o t s l o p e and t o e s l o p e . and F r y e ' s e l e m e n ts o f t h e m: upland, pediment backs lope, He i n d i c a t e d t h a t g e o g r a p h y , and c l a s s i f i c a t i o n of s o i l s intimately t o t h e g e n e s i s and e l e m e n ts o f related well developed so il genesis, in t h e c a t e n a r y a s s o c i a t i o n a r e A p a l e o s o l i c chro no-catenary sequence re la tio n sh ip of the s o ils landscape i n Iowa s h o we d t h e to the elements of the o c c u r s on t h e s t a b l e u p l a n d . younger pediment s u r f a c e s o i l s landscape. landscape. On a l o w e r , s h o we d a p r o g r e s s i v e increase in t h e i r s t a g e o f d e v e l o p m e n t from t h e b a c k s l o p e a c r o s s footslope to the to e slo p e . the These d i f f e r e n c e s wer e b r o u g h t A 11 Table 1. A s u m m a r i z a t i o n o f t h e te rm s u s e d in v i e w i n g t h e v a r i o u s p a r t s o f a s l o p e by t h e v a r i o u s invest igators £ a 11 i s t e r 1956 M i l n e , 1936, s o i l e a t e n B. Hill Crest Hill-Brow Ruhe I9 6 0 ( Wa x i n g s l o p e - - U p l a n d -------- Wa x i n g s l o p e S er i es free face Re d E a r t h C Debris s lo p e \ --------< L Pediment ) Pediment / FFrree e f a c e backs lope \j)ebr is slope Pediment footslope Fringe se rie s Swamp s o i I s Swamp f l o o r Wood 19^2 Ki n g 1953 A1luvial toe slope Pediment 12 a b o u t by t h e v a r i a t i o n s in a g e o f s u r f a c e s a n d d i f f e r e n t i a l t r a n s p o r t of eroded m a te r ia l , drainage conditions, leaching, t r a n s l o c a t i o n and r e d e p o s i t i o n o f mobile c o n s t i t u e n t s . Butler (1959) d e v e l o p e d a framework f o r s o i l s t u d i e s on the basis of p e r i o d i c i t y or the recognition of r e c u r r e n t erosion c y c l e s and each c y c l e c o v e r i n g a development o f a s o i l and each c y c l e in i t s e s s e n t i a l features recurring I t may t a k e o n e o r mor e c y c l e s o r t i m e u n i t s change o v e r from one s u r f a c e o f w e a t h e r i n g another. old Common 1y , r e m n a n t s o f s e v e r a l layer in t i me . to complete the in a la n d s c a p e to cycles are evident in landscapes. The o c c u r e n c e o f b u r i e d s o i l s progressive soil prove the a l t e r n a t i o n o f d e v e l o p m e n t w i t h mi n i ma l surface accession p h a s e and p r o g r e s s i v e s u r f a c e a c c e s s i o n w i t h mini mal development phase. periodicity called T h e s e two p h a s e s c o n s t i t u t e in t h e l a n d s c a p e e v e n t s . the s o il c y c l e a "K" c y c l e . is the Butler The t wo a s p e c t s o f t h e "K The u n s t a b l e i n i t i a t i o n o f a new "K c y c l e " w h i l e t h e s t a b l e p h a s e is th e p erio d of s o i l development. enables a chronology of a l o c a l i t y of the s o i l , the evidence of As a t i m e u n i t c y c l e " a r e t h e u n s t a b l e and t h e s t a b l e p h a s e s . phase soil erosional The f o r m a t i o n o f "K c y c l e s " t o be o u t l i n e d on t h e b a s i s and d e p o s i t i o n a l evidence p e r s is tin g in it. Ruhe ( 1967* b ) o f f e r e d soil landscape ev o lu tio n : the following four c o r o l l a r i e s of 13 1. On s t a b l e u p l a n d s s o i l w i l l c o n t i n u e p r a c t i c a l l y u n m o d i f i e d by e r o s i o n . 2. S o i l l a n d s c a p e s on s l o p e s o r on f l a n k s o f u p l a n d s may b e c o me t r u n c a t e d p r o g r e s s i v e l y u p s l o p e o r u p 1a n d . 3. A new c y c l e s o i l poraneously with 4. The o l d s o i l l a n d s c a p e w i l l be b e v e l l e d u l t i m a t e l y w i t h a n i m p r e s s i o n o f a new c y c l e o f s o i l g e n e s i s . landscape w ill develop contem­ the upflank tru n c a tio n . I f t h e Ki ng a n d Ru h e c o r o l l a r i e s soils s h o u l d o c c u r on o l d stable, B.. position than hold then well landscape su rfa ce s developed of h ig h er, more th e younger b e v e l l e d s u r f a c e . Surface Geology; Several Michigan. lobes. Wisconsin g l a c ie r s Three lobes from t h e Huron travelled three followed along lobe in t h e G eologist's W isconsin g l a c i e r began in f o u r main t h e t r o u g h s o f Lake M ic higan, tongue o f i c e move d r e g i o n o f S a g i n a w Bay a n d the s t a t e u n t i l point out that the to uncover Michigan and t h e c o n t i n u i n g n o r t h e r l y re tre a t of the i t me t the other recession of this 14,000 y e a rs ago ice resulted in of Michigan u l t i m a t e l y being exposed about 8,000 years ago. As ice sheets advanced a c ro ss a m o u n t o f b e d r o c k wa s p u l v e r i z e d a n d sheets the s t a t e Another th in southwesterly across lobes. nearly all advanced over the s t a t e of T h e s e g l a c i e r s move d o v e r Lake Huron a n d Lake E r i e . off to develop to be the s t a t e , incorporated la te r deposited as a glacial drift. a large into the ice The t h i c k n e s s of this d riftvaries to 1,200 f e e t f rom o n l y a few i n c h e s in t h e v i c i n i t y in t h e Al pena a r e a o f C a d i l l a c . This d r i f t over sedim entary rock o f the Michigan b asin is s p r e a d i n t h e Lower P e n i n s u l a and t h e e a s t e r n p a r t o f t h e Upper Pens i n u l a and o v e r igneous and metamorphic rocks Peninsula a. (Leverett Glac i a l Moraines or in t h e w e s t e r n p a r t o f t h e Upper 1 9 1 5 , Hough 1 9 5 8 ) . depos i t s are deposits of glacial d r if t generally in r i d g e s h i l l s which w er e f ormed a t t h e m a r g i n o f a f o r w a r d moving i c e sheet. They a l s o w e r e f o r m e d when t h e b a c k w a r d m e l t i n g o f ice e q u a lle d the forward advance of ma r k t h e o u t e r b o r d e r s o f t h e ice the ice s h e e t . the Moraines l o b e a n d a r e c h a r a c t e r i z e d by rugged topography and c o n t r a s t i n g relief. In M i c h i g a n m o r a i n e s a r e commonl y c o m p r i s e d o f g l a c i a l or ice-contact s tr a t if i e d at the ju n c tio n of drift. S u c h m o r a i n e s a r e m o s t common the d i f f e r e n t g l a c i a l Many m o r a i n e s a r e c o m p r i s e d o f t h i n stratified from l / 8 t o l - l / 2 m i l e s , till 1-1/2 m ile s . plains lobes in M i c h i g a n . layers of glacial till over outwash d e p o s i t s . The m o r a i n i c a r e a s exceed till involved in t h i s s t u d y , range in w i d t h a v e r a g i n g a b o u t one m i l e and r a r e l y Their r e l i e f above the a d j a c e n t f l a t t e r o r gr ound m o r a i n e s is g e n e r a l l y s u r f a c e s a r e c o m p a r a t i v e l y smooth. low a n d t h e i r The h i g h e s t k n o l l o n e o f t he m d o e s n o t e x c e e d 6 0 f e e t a b o v e t h e p l a i n o f in any their 15 bases. In some a r e a s they a re f l a t t e n e d out s c a r c e l y p e r c e p t i b l e t o th e eye and low k n o l l s five feet p l a i n s of which of in o t h e r p l a c e s i n h e i g h t . The g e n e r a l they a r e a p a r t to broad sw ells is probably to s c a t t e r e d flatness of the the p r in c ip a l cause t h e i r c o m p a r a t i v e l y even t r e n d and broad c u r v a t u r e , Fig. 1, a n d 2. drainage They show c o m p a r a t i v e l y i s s u i n g from t h e p e r h a p s on t h i s little ice w hile they a r e account t h e i r c r e s ts a re evidence of forming and l e s s broken and ir­ regular. Whe r e t h e s e m o r a i n e s a r e o p e n l y d e p l o y e d , they a r e g e n e ra lly s m o o t h e r t h a n t h e b u l k i e r m o r a i n e s a n d show f ew k n o b s a n d b a s i n s and o t h e r overlap, or the irregular surface features. l a t e r o v e r r id e the e a r l i e r as F l i n t a n d Owosso m o r a i n e s n e a r Ma p l e R a p i d s , and Wh e r e t h e m o r a i n e s irre g u la r or massive, wider, s t e e p s i d e d a n d mo r e r u g g e d . and higher in t h e c a s e o f the t h e y be c o me b r o k e n in p l a c e s , mo r e For e xa mp le , w her e m o r a i n e s a r e d i s t i n c t a n d n o t o v e r l a p p i n g no p o i n t wa s f o u n d w i t h h e i g h t mo r e t h a n 6 0 f e e t a b o v e t h e p l a i n a n d f e w a b o v e kS t o 50 f e e t . In t h e r e g i o n o f o v e r r i d i n g , some i t reached of moraines 100 f e e t a f e w a r e 8 0 t o 90 f e e t a n d relief. i s commonl y a b s e n t Relief (Leverett The m o s t p r o m i n e n t o f t h e m o r a i n e s b r i e f l y as in t h e w a t e r in laid portion 1915). in t h e s t u d y a r e a a r e d e s c r i b e d by L e v e r e t t a n d T a y l o r (1915), F i g u r e 2. S c h e m a t i c map s h o w i n g l o c a t i o n o f t h e s t u d y a r e a w i t h i n Mid-Michigan m o r a i n i c f e a t u r e s 17 1. St. John M o r a i n e ; I t s i d e n t i t y n o r t h o f t h e Grand R i v e r ch a n n el is u n c e r t a i n . I t s c o u r s e i n d i c a t e s t h a t i t r e a c h e s Grand R i v e r c h a n n e l 2 t o 3 m i l e s b e l o w M a p l e R a p i d s , a s s hown i n F i g u r e 3 . At S t . J o h n s , i t i s a s h a r p n a r r o w r i d g e 30 t o kO f e e t a b o v e t h e p l a i n t o t h e n o r t h a n d 20 f e e t a b o v e t h e p l a i n t o t h e s o u t h . Fr om S t . J o h n s w e s t , i t c u r v e s g r a d u a l l y n o r t h w e s t , d i m i n i s h i n g in s t r e n g t h in f i v e m i l e s u n t i l i t c e a s e s t o be a r i d g e and t u r n s I n t o s c a t t e r e d k n o l l s , a n d f a d e s away. Eastward to S t . Johns and w i t h i n a m i l e f r o m S h e p a r d s v i 11e , t h e m o r a i n e i s r a t h e r f a i n t a n d b r o k e n , w i t h low p a r a l l e l r i d g e s n o r t h o f a r a t h e r weak main r i d g e . (Further e a s t i t i s much s t r o n g e r w i t h a n a v e r a g e w i d t h o f a m i l e a n d runs a l i t t l e s o u t h e a s t a c r o s s Shiaw assee County, then t u r n s sharply n o rth e a st 3 miles so u th east of Gaines, passing a m i l e s o u t h o f Rankan t o T h r e a d R i v e r s o u t h o f F l i n t , u n t i l i t b e c o me s w e a k a t R i c h f i e l d , t o l ow s c a t t e r e d n a r r o w k n o l l s whe n c r o s s i n g F l i n t t h e n becomes s t r o n g e r a n d p a s s e s i n t o L a p e e r County). 2. Fi i n t M o r a i n e : I t b e g i n s a b r u p t l y on t h e s o u t h s i d e o f M a p l e R i v e r ( F i g u r e *0 a s a h i g h a n d s t e e p b l u f f r i s i n g c l o s e a b o v e t h e s t r e a m . For about 2 t o 3 m il e s t o th e s o u t h , i t runs as a dou b le r i d g e w ith a small narrow c la y f l a t inbetween, the e a s t e r n rid g e being the s m a l l e r o f t h e two. Fr om t h i s f l a t o n 9 t o 10 m i l e s e a s t t o D u p l a i n , i t i s r e p r e s e n t e d by s c a t t e r e d k n o l l s i n a f l a t c l a y p l a i n , w h i c h i s s o m e t i m e s s wa mp y. Beyond D u p l a i n i t r e a p p e a r s a s a s t r o n g r i d g e a n d t wo m i l e s e a s t o f t h e v i l l a g e f o r m s a s h a r p l o o p t o t h e n o r t h a r o u n d a f l a t h o l l o w a b o u t t wo m i l e s in d i a m e t e r . T h i s h o l l o w i s a l m o s t s u r r o u n d e d by t h e m o r a i n e r e m a i n i n g open t o t h e s o u t h w e s t . Some o f t h e i r r e g u l a r i t i e s in t h i s m o r a i n e f r o m M a p l e R a p i d s t o O v i d may b e d u e t o r e a d v a n c e s by t h e i c e b u t o t h e r s a r e d i r e c t l y o r i n d i r e c t l y r e l a t e d t o t h e p r e s e n c e and t h e i n f l u e n c e o f t h e g r e a t Imlay c n a n n e l , which flowed c lo s e to the f r o n t of the ice a t t h a t tim e. This moraine I s u s u a l l y w i d e w e s t o f Owos s o a n d i s c u t by a t r o u g h o u t s i d e the study area . On t h e a c c o u n t o f t h e s e i r r e g u l a r i t i e s , t h e moraine has unusual b r e a d t h n o r t h o f Ovid. E a s t o f Ovid ( F i g u r e 3 ) i t i s c u t by a n e s k e r w h i c h e n t e r s f r o m t h e n o r t h e a s t , then t u r n s w est and runs p a r a l l e l w i t h t h e m o rain e . Fr om O v i d e a s t , t o a p o i n t n o r t h o f Durand, o u t s i d e t h e s t u d y a r e a i t runs a l i t t l e s o u t h e a s t and between Vernon and D u f f i e l d i t c u r v e s around to the N o rth east to F l i n t . (Like o ld e r moraines of the d e p l o y e d g r o u p i t c o me s t o G r a n d R i v e r c h a n n e l o n t h e s o u t h s i d e w i t h o u t a n y e v i d e n c e t h a t a n y d e p r e s s i o n c h a n n e l wa s p r e s e n t t o i n f l u e n c e t h e i c e mo v e me n t a n d s e e m s t o p a s s on t o t h e n o r t h w i t h t h e s a me t r e n d ) . The F l i n t m o r a i n e h a s o u t w a s h a t s e v e r a l p o i n t s on i t s e a s t s i d e . I t i s a l s o s h a r p l y s e p a r a t e d f r o m t h e n e x t m o r a i n e by a s t r o n g b o r d e r o f an i c e b o r d e r d r a i n a g e w h i c h follow s B u t t e r n u t Creek towards the s o u th w e s t. l* * s : w k :: IPiij ^ :g • •■ sM w .w .v usamm v igjgi: • >1: ^ lip !•? *v«w8l •Siil-IS l-i-yai1 liliill::! issW is:-: 5! ^ i w t • • • ?sg|;lD:;;gg&;& Sr »|a End raorotot* g U s il Cram* M ra lM t SlM lal rhinrt dlm et frwn « 4 |« rf ica f — *1 eiaclal lake i k m Unct LaU m chsMMl B’ M ir t l m n Blonk o r a t am glacial laka bottaai and outlat ebanMln* F i g u r e 3. F e a t u r e s n e a r t h e head o f G l a c i a l Grand R i v e r . A f t e r L e v e r e t t * s 1924 map, ( B r e t z 1951) . Baker and Lewis c h a n n e l s a r e shown in t h e r i g h t s i d e o f t h e f i g u r e w i t h B=Baker and L=Lew i s 4 19 LEGEND FlmnSSrjtuf Ow om o m o r iln t E Or*rnJ m v 3tr c K j n f f t R S I 1 B Im liy c n in ( H l. $ 8 P«v«l*ln1rnf!iyc P =1 OIrMltAn.ef d l i e t e r u of glacial waiara • Ul’.t • % ~'.w• • • 'i!v *#V*** ch«nr>»' Figure k. Map s h o w i n g r e l a t i o n o f F l i n t a n d Owos s o m o r a i n e s t o t h e Grand R i v e r Ch an ne l. ( A f t e r L e v e r e t t a n d T a y l o r 1915) 3. Owo s s o M o r a i n e : I t p a s s e s t h r u I t h a c a and runs s o u t h a few m i l e s , the n s o u t h w e s t t o t h e bank o f Grand R i v e r c h a n n e l a t Maple R ap ids as a s t r o n g and c o n t i n u o u s r i d g e . E a s t o f Maple R a p id s i t forms a d o u b l e r i d g e and a p p e a r s t o be p a r t o f F l i n t m o r a i n e . T h e s e c o n d r i d g e ( i n s e c . 2 T8N R3W E s s e x T o w n s h i p ) a p p e a r s e x t r e m e l y b r o k e n a n d b e a r i n q a n u m b e r o f kames a n d o t h e r i r r e g u l a r i t i e s , and run e a s t p a s s i n g E u re k a . The.north f a c e o f t h i s m o r a i n e i s a h i g h s t e e p b l u f t e v i d e n t l y c u t a wa y s i n c e t h e m o r a i n e was m a d e . South the lake beaches along i t s b a s e may a c c o u n t f o r p a r t o f t h e c u t t i n g b u t n o t f o r m o s t o f i t . O u t s i d e t h e s t u d y a r e a , a n d n o r t h o f Owos s o t h e m o r a i n e r u n s s o u t h w e s t i n t o t h e h e a d o f t h e c h a n n e l an d n e a r Maple R i v e r v i r t u a l l y forms i t s n o r t h bank. On t h e s o u t h s i d e t h e t r e n d o f the moraine is a l s o westward to the head of th e c h a n n el. Taken t o g e t h e r t h e t wo m o r a i n e s , F l i n t a n d O w o s s o , s e e m t o m a r k t h e s id e s of a sharp ice tongue which is p r o j e c t e d westward to the h e a d o f t h e c h a n n e l a n d down t h r o u g h i t a n d b e y o n d F l i n t m o r a i n e . Fr om t wo m i l e s s o u t h e a s t o f E u r e k a e a s t w a r d t o t wo m i l e s e a s t o f E l s i e wa s e i t h e r n o m o r a i n i c d e p o s i t i o n o r t h e m o r a i n e wa s a f t e r w a r d washed away. Be y o n d t h i s g a p t h e m o r a i n e r u n s s o u t h ­ e a s t a s a more c o n t i n u o u s and even r i d g e p a s s i n g j u s t n o r t h o f t h e c i t i e s o f Owos s o a n d C o r u n n a . k. Till plains: T h e s e a r e l a n d s u r f a c e s b u i l t by d i r e c t d e p o s i t i o n o f m a t e r i a l s f r o m w h i c h t h e i c e m e l t e d w i t h o u t much m o d i f i c a t i o n . T h e y a r e f l a t t o g e n t l y r o l l i n g a n d c o n t a i n t h e s a me g e n e r a l m a t e r i a l as th e m o ra in e s. T i l l p l a i n s occupy c e r t a i n wide a r e a s between m oraines o v er which th e ice f r o n t a p p e a r s to ma ke a r a p i d r e c e s s i o n . The t i l l p l a i n m a t e r i a l i s d i v e r s e in t e x t u r e and c o n s t i t u t i o n . I t is well s u i t e d to a g r i c u l t u r e , in g e n e r a l . As a r u l e t i l l p l a i n s h a v e s u f f i c i e n t s l o p e t o permit easy drainage. T i l l p l a i n s a r e o f one t o s i x m i l e s in w id th and o f narrow s t r i p s o f i r r e g u l a r w i d t h . They a r e p l a i n s o f c l a y , more o r l e s s p e b b l y a n d s t o n y , and h a ve en$ra11y a smooth s u r f a c e which, a l t h o u g h f l a t and a p p a r e n t l y evel. in n e a r l y e v e r y w h e r e s l i g h t l y i n c l i n e s in on e d i r e c t i o n o r another, according to the general slope of the region. Till p l a i n s a r e n o rm ally h i g h e s t a t the inner edge of t h e m oraine w i t h w h ic h t h e y a r e a s s o c i a t e d and l o w e s t i m m e d i a t e l y in f r o n t of the next succeeding moraine. ? 21 b. F Iu v io q la c ia 1 Deposits Till p l a i n s may c o n t a i n e s k e r s , Rivers c a rr ie d rock m a te ria l from t h e kames, o r d r u m l i n s . ice, t h e f i n e m a t e r i a l s w e r e c a r r i e d away. sorted It rolled t h e s a n d down t h e s t r e a m t o b e l e f t a s g l a c i a l These g l a c i a l along a l l outwash d e p o s i t s a r e found the r iv e rs . m aterials. till The a s s e m b l a g e o f is a l s o In s t u d y i n g v a l l e y s and t o p o g r a p h i c f o r m s t h a t ma ke up d e p o s i t s and a s s o c i a t e d w a t e r d istin g u ish e d or 1915, 1917). in t h e d e p o s i t i o n o f g l a c i o f l u v i a l in o l d e r d e p o s i t s as the h i l l s deposits r e p o r t e d by S m i t h a r e pebbly g l a c i a t e d t e r r a c e s - d i s s e c t e d and s o r t e d base of h i l l s . are attrib u ted All glacial to the - lie (1965). landforms, lllinoian glaciation. he and t h a t in c o n f u s i o n a t m a t e r i a l s above the t e r r a c e c o r e a r e now r e d u c e d t o t h e v a l l e y f l o o r the line Older Braided- level along the river v a l l e y and even a t h i n c o v e r o f a l l u v i u m would conceal c. in t h e t h e B r a i d - c o r e H i l l s a l o n g t h e Wa bas h R i v e r , indicated that several and d e p o s itio n of the d ep osited t o d i s t i n g u i s h on t h e map ( L e v e r e t t reported the gravel incorporated l a i d m a t e r i a l s which can be e i t h e r e a s i l y Complexities and outwash d e p o s i t . in a l l ice blocks th a t melted a f t e r plains consist of glacial difficult them o u t , O u t w a s h p l a i n s may e x h i b i t s h a l l o w d e p r e s s i o n s p r o d u c e d by s m a l l outwash p l a i n Great t h e m. Lake P l a i n s Many a r e a s in M i c h i g a n w e r e f o r m e r l y lake beds. These la k e beds and t h e a s s o c i a t e d s h o r e l i n e s were th e r e s u l t o f a 22 succession of la k e s o f d i f f e r e n t e l e v a t i o n s which were formed d u rin g th e advance and r e t r e a t o f th e composed m a i n l y o f h e a vy m a t e r i a l s loam, s i l t y clay or c la y . p r o d u c e d when t h e the o u tle ts of sand ridge lake diminished c u ttin g of deeper channels. recognized because of above the general level r i d g e s a r e c ommonl y c o a r s e place. lake. the and t e x t u r e s ice b a r r ie r s flowing rivers were dropped near the margins of silt and c l a y w ere c a r r i e d the g la cia l 4). lake laid or lacaustrine s i l t relief These beach from p l a c e these they c a r r i e d . into the as The l a k e b e d m a t e r i a l s entered the clay and th e their elevated vary g r e a tly dropped th e s e d im e n ta r y m a t e r i a l s d. i n s i z e by s t a g e s D i v i d e s may a c t a s dams t o f l o w i n g w a t e r s Whenever f a s t silty r e p r e s e n t i n g b a r s and la k e bed ( F i g . textured. and a re a s of sand The l a k e b e a c h e s o f lakes a re u su a lly of level such as s i l t - l o a m , lowered owing t o m e l t i n g o f commonl y s t r a t i f i e d Th e y a r e T h e r e a r e s ome l e v e l and a l s o f r e q u e n t s t r e t c h e s beaches ice. are to and form a lakes, they The s a n d s lake as d e l t a s and th e la kes and e v e n t u a l l y formed and c l a y d e p o s i t s (Leverett 1917). Rivers Streams traverse t h e s t u d y a r e a from e a s t glacial drainage valleys outlets for (Fig. th e ir watersheds. 3). in o l d R i v e r s a r e t h e main d r a i n a g e Drainage borders presented considerable v a r ie ty . Penn i n s u l a o f Mi c h i g a n to west in a s s o c i a t i o n w i t h Drainage of the ice the southern is a l m o s t e q u a l l y d i v i d e d between west 23 flowing streams that enter t h a t e n t e r Lake M i c h i g a n and e a s t f l o w i n g s t r e a m s t h e Hur on a n d E r i e b a s i n s . poorly developed The n a t u r a l drainage is in p l a c e s and e x t e n s i v e p o o r l y d r a i n e d p l a i n s a n d swampy l o w l a n d s o c c u r . As t h e S a g i n a w ice l o b e s h r a n k away from t h e g r e a t m o r a i n i c b e l t and formed t h e s l e n d e r m o r a i n e s that lay between close to the River in l i n e s i t a n d S a g i n a w Ba y, th a t were s h i f t e d as the Eventually t o a p o s i t i o n so f a r n o r t h and e a s t , it drainage kept i c e b o r d e r and d i s c h a r g e d s o u t h w a r d t o Grand lower p a s s a g e s were opened. of the g la cia l ice s h r a n k e a s t w a r d and the ice border shrank w ater accumulated in f r o n t t o f o r m L a k e S a g i n a w , w h o s e d i s c h a r g e was w e s t w a r d t h r o u g h t h e Grand R i v e r o u t l e t . At t h e same t i m e t h e L a k e M i c h i g a n lobe h a d r e c e d e d t o t h e n o r t h s o t h a t L a k e C h i c a g o o c c u p i e d much o f Lake M i c h i g an b a s i n and r e c e i v e d d i r e c t d r a i n a g e from t h e m a j o r p a r t of the border of th a t Bretz lake (Leverett 1915, 1917 a n d 1951). R i v e r s which flowed a l o n g types, and t h e i r the f ro n t of the ice a re of l o c a t i o n s a r e s hown i n F i g u r e s 3 a n d k: 1. T h o s e t h a t w e r e t h e o u t l e t o f o n e o r mo r e o f t h e g reater glacial lakes. The y a r e l a r g e , d e e p , e n t r e n c h e d , s h o w i n g l a r g e v o l u m e a n d i n some p a rts suggesting longer d u ratio n . Such r i v e r s a r e m a i n l y G r a n d R i v e r a n d I ml a y o u t l e t ( F i g . 3) . 2. Those t h a t g a t h e r e d t h e i r w a t e r s from t h e ic e and land o f t h e immediate v i c i n i t y o r from a r e a s n o t f a r a wa y . They h a v e r e l a t i v e l y s m a l l a n d s h a l l o w c h a n n e l s , i n d i c a t i n g r e l a t i v e l y small volume and s h o r t d u r a t i o n . Such r i v e r s a r e Ma p l e R i v e r , L o o k i n g G l a s s R i v e r . two 24 1. Grand R i v e r ; G r a n d R i v e r wa s e x t e n d i n g f r o m A r k o n a b e a c h n e a r M a p l e R a p i d s ( F i g . 3) w i t h a n a l t i t u d e o f 7 1 0 f e e t ( a n e r o i d ) t o t h e u p p e r b e a c h o f Lake C h i c a g o w e s t o f Gr a nd R a p i d s w i t h an a l t i t u d e o f 640 f e e t . The f l o o r on t h e d i v i d e n o r t h o f B a n n i s t e r i s 72 f e e t a b o v e S a g i n a w Bay ( 6 5 2 f e e t a b o v e s e a l e v e l ) . The s e c o n d b e a c h o f Lake C h i c a g o is 620 f e e t . If the lake f e l l to its t h i r d l e v e l o r b e a c h w h i l e t h e o u t l e t wa s f l o w i n g , t h e d e c e n t w o u l d b e 75 f e e t i n 100 m i l e s f o r a s t h e l a k e l e v e l f e l l in L a k e C h i c a g o t h e s h o r e move d f u r t h e r w e s t f r o m G r a n d R a p i d s . As a c o n c l u s i o n , t h e g r a d i e n t o f t h e s e g l a c i a l r i v e r s wa s g e n e r a l l y l e s s than one f o o t p e r m i l e , and t h e h i g h e s t being l e s s t h a n 1 - 1 / 2 f o o t p e r m i l e a n d a t t h e l e a s t a T i t t l e more t h a n 1/2 f o o t p e r m i l e . G r a n d R i v e r wa s t h e o u t l e t o f L a k e S a g i n a w throughout most of the lakeb h i s t o r y , even through p a r t o f the t i m e when i t wa s m e r g e d w i t h l a r g e r g l a c i a l l a k e s o f t h e Hu r o n and E r i e b a s i n s . I t wa s i n u s e a much l o n g e r t i m e t h a n a n y o t h e r g l a c i a l c h a n n e l in M i c h i g a n . I t began t o c a r r y la k e w a t e r s whe n t h e o u t l e t o f L a k e Maumee f i r s t o p e n e d n e a r I m l a y , b e f o r e t h e b e g i n n i n g o f Lake S a g i n a w . Next i t r e c e i v e d t h e o v e r f l o w o f t h e merged Lake Arkona and S a g i n a w . L a t e r when t h e i c e r e a d v a n c e d , L a k e S a g i n a w wa s r e s t o r e d t o i n d e p e n d e n t e x i s t e n c e . I t r e c e i v e d t h e w a t e r s o f Lake W h i t t l e s e y and Sa ginaw. I t wa s a b a n d o n e d o n l y when i c e r e t r e a t e d f r o m P o r t H u r o n m o r a i n i c s y s t e m a n d L a k e S a g i n a w m e r g e d e a s t w a r d a n d b e c a me p a r t o f L a k e Wa y n e . The w a t e r s o f t h e m e r g e d l a k e s t h e n d r a i n e d e a s t w a r d t o t h e v i c i n i t y o f S y r a c u s e , New Y o r k . Thru a l l t h e p r e v i o u s changes, a p p a r e n t l y w i t h o u t b r e a k o r i n t e r m i s s i o n from the f i r s t o p e n i n g o f Imlay o u t l e t , i t had c a r r i e d t h e o v e r f l o w westward. Later the ice readvanced c lo s in g the e a s te rn outlet p a s t S y r a c u s e and i n a u g u r a t i n g Lake Warren which a l s o d i s c h a r g e d w e s t t h r u t h e Grand R i v e r . W a r r e n b e a c h e s l i e 20 t o 30 f e e t a b o v e t h e b r o a d , s wampy, d u n e - c o v e r e d d i v i d e a t t h e h e a d o f t h e Grand R i v e r c h a n n e l n o r t h o f B a n n i s t e r . 2. Ma p l e R i v e r : Mapl e R i v e r v a l l e y i s a b o u t a m i l e w i d e . It occupies the o l d G r a n d R i v e r c h a n n e l i n s o u t h e a s t G r a t i o t C o u n t y . ( F i g . 4 ) . . Ma p l e River flows westward and southw estw ard as a s l u g g i s h stream w a n d e r i n a on a swampy f l o o r . I t e n t e r s Grand R i v e r from t h e n o r t h a t Lyons (Fig.3)about 4o m i l e s e a s t o f Grand R a p i d s . Maple R i v e r i s 75 m i l e s l o n g . Th e d i v i d e b e t w e e n M a p l e R i v e r w h i c h f l o w s w e s t t h r u t h e G r a n d R i v e r a n d a b r a n c h o f Bad R i v e r w h i c h f l o w s n o r t h e a s t t o S a g i n a w Bay i s a b o u t 1 - 1 / 2 m i l e s n o r t h e a s t o f B a n n i s t e r a n d T4 m i l e s e a s t o f M a p l e R a p i d s . 25 We s t o f t h e d i v i d e much o f t h e l a k e f l o o r a p p r o a c h i n g t h e h e a d o f Grand R i v e r is t h i c k l y s t r e w n w i t h b o u l d e r s . In a f ew p l a c e s f a i r l y d i s t i n c t m o r a i n i c b e l t s o c c u r , one o f which runs s o u t h e a s t on t h e d i v i d e e a s t o f B a n n i s t e r a n d i s c o n t i n u e d i n a d i s t i n c t m o r a i n i c r i d g e known a s H e n d e r s o n m o r a i n e , w h i c h b e g i n s a b ou t one m i l e s o u t h o f Chapin and runs s o u t h e a s t passing about a m ile south of Henderson. Ma p l e R i v e r d r a i n s a r e a s o f F l i n t a n d Owosso m o r a i n e s . I t o c c u p i e s some o f I ml a y c h a n n e l a t a b o u t S h e p a r d s v i 1 l e t h e n l e a v e s i t when i t s t a r t s n o r t h e a s t towards E l s i e . 3. Baker a n d S t o n y Creeks: The B a k e r c h a n n e l , a s p o i n t e d o u t by B r e t z ( 1 9 5 1 1 c r o s s e s a n Owosso m o r a i n e u n i t n e a r E l s i e ( f i g u r e 3 ) . a l o n g what o r i g i n a l l y must have been a n o t h e r s u b g l a c i a l d r a i n a g e route. I t a p p e a r s t o have been s u p p l i e d l a t e r from t h e Hende r s on m o r a i n e m e l t w a t e r and t o have f ound Lake Saginaw s t i l l a t 725 t o 730 f e e t . S t o n y Cr ee k c h a n n e l r e c o r d s a d e e p e n i n g in t h e t r u n k d r a i n a g e o f G r a n d R i v e r o f a t l e a s t 20 f e e t f r o m t h e t i m e o f th e P o r t l a n d to th e Fowler m o rain es. e. R e c e n t A 11u v i a Since the g la cia l time, flowed t h e i r banks and l e f t they covered. This the streams of sand, flooding a n d c l a y on t h e a r e a s r e c e n t a l l u v i u m o c c u r s on n a r r o w , b ott o m la n ds alo ng s t r e a m s and seasonal silt, today have o v e r ­ (Leverett it is f l a t 19 1 5 , land s u b je c t 1917 a n d S o i l first to Survey S t a f f 1942). C. Related H istory of the Glacial The g e o l o g i c h i s t o r y o f Lakes; th e G r e a t Lakes has been s t u d i e d by d o z e n s o f g e o l o g i s t s o v e r a p e r i o d o f n e a r l y o n e h u n d r e d y e a r s . 26 The f i r s t Geological c o m p r e h e n s i v e t r e a t i s e on t h e s u b j e c t wa s t h e U . S . S u r v e y M o n o g r a p h 53 by L e v e r e t t a n d T a y l o r T h i s w o r k wa s s o im p r e s s iv e and a u t h o r i t a t i v e that d i s c o u r a g e d f u r t h e r w o r k f o r n e a r l y 20 y e a r s . investigations o r e v e n t s and between 1936-1951 in g e n e r a l of the by J . The f i r s t f o r a more q u a n t i t a t i v e m e a s u r e m e n t . represent generally easily (1951) the of the Saginaw, oscillations f e a t u r e s which levels points out Huron, terraces. to that o scillations and E r i e lobes ( F i g . 2-3) caused between times o f a c t i v e deep enin g and o f pauses lakes formed in f r o n t o f them, channel and t h a t remained s u f f i c i e n t l y unchanged during g l a c i a l the shore t h e known t h e s i s which a tte m p ts in s u c h d e e p e n i n g o f t h e G r a n d R i v e r o u t l e t glacial technique re c o g n i z e d beaches and s h o r e e x p l a i n s ome o f the fro n t of the o v erall The e v i d e n c e f o r c r i t i c i z i n g Hough's lake details re-evaluation radiocarbon in c l u d e s h o r e l i n e d e p o s i t s and e r o s i o n a l Bretz local t h e G r e a t L a k e s h i s t o r y w a s ma d e L. Hough ( 1 9 5 8 ) wh e n h e u s e d t h e lakes it apparently accepted without question region wide concepts of 1915. Additional d e a lt with very p i c t u r e o f Mo n o g r a p h 53 ( F i g u r e >*f). in line records. Beginning a t of lake the levels advances to permit t h e maxi mum o f a n a d v a n c e and th e d e p o s i t i o n o f a m o rain e and c o n t i n u i n g during a r e tr e a t, the o u t l e t r iv e r deepened levels fell retreat of until this alternating its channel and lake ceased and a n o t h e r advance began. behavior of the o u t l e t steadily The c a u s e r i v e r wa s a l t e r n a t i n g t — maxima and minima ice that actuated 27 volume o f d i s c h a r g e f rom t h e g l a c i e r m e l t i n g t h e mechanism o f s h a p i n g t h e v a l l e y s . r i v e r v o l u m e d u r i n g a r e t r e a t was additional front melting readvanced river, ice as per mile of advance, in e x c e s s d u r i n g t h e p r e c e d i n g retreat The a s s u m p t i o n o f a p p r o x i m a t e l y p r o b a b l e fo rw ar d and backward s h i f t i n g o f is c o n s i d e r e d moraines. When t h e into the t e r r i t o r y p re v io u sly abandoned, as had been s u p p l i e d equivalent i n c r e a s e d by t h e t o t a l th a t produced the r e c e s s io n . much w a t e r wa s d e n i e d t h e o u t l e t (Figure 4). The in s t a b i l i z i n g During a r e t r e a t , the channel erosion of the d r i f t the g l a c i a l the p o s i t i o n of front the g la c ia l t h e maximum v o l u m e t h a t c a u s e d r e a d i l y c a r r i e d a wa y t h e f i n e c o n s t i t u e n t s being eroded leaving f l o o r of cobbles and boulders t h a t g r a d u a l l y a c c u m u l a t e d and r e t a r d e d the deepening. When maximum v o l u m e c e a s e d t o a r r i v e the v e l o c i t y of the shrunken d i s c h a r g e was s o d e c r e a s e d t h a t lag m a te ria l out of dropped e n t i r e l y transit. Bretz (1964) c h a lle n g e d Hough's G r e a t La ke h i s t o r y a n d interpretations L a k e s t a g e s o f S a g i n a w Bay a n d t i m e s o f ice of s t a g e c o r r e l a t a b l e w i t h an (1917), ice r e t r e a t the readvance of the margin placed rather Bretz, t h e Wayne L a k e than an advance, l a t e Lake Arkona and e a r l y Lake W a r r e n , tio n of the events between l a t e C a r y a n d P o r t Hu r o n t i m e . f o l l o w i n g L e v e r e t t and T ay lo r between the i n d i c a t e d t h a t more a d e q u a t e p r e s e n t a t i o n is n e c e s s a r y and o f f e r e d a c o n v in c in g c o r r e l a t i o n o f Saginaw lobe of i n S a g i n a w Bay b a s i n a r e g i v e n Bretz c o r r e la ­ in T a b l e 2. 28 Table 2. Glacial Bretz's c o rre la tio n of events ice advance to local moraine We s t Ha v e n Chesaning Moraine n o rth of Chesaning P o r t Hu r o n ( o u t e r ) Bay C i t y ( 2 n d P o r t H u r o n ) Ta wa s ( 3 r d P o r t H u r o n ) Theoretical Hough (1983) i n h i s the evidence concerned i n S a g i n a w Bay B a s i n Lake s t a g e E a r l y Saginaw Lake S a g i n a w - - e a r l y Arkona Mi ddle Arkona Late A rkona--W hittlesey Wayne E a r l y Warren Midd le Warren L a t e Warren response to B retz' challenge, discussed in B r e t z s u g g e s t e d c o r r e l a t i o n s t i m e s o f down c u t t i n g a n d p a r t i c u l a r e v e n t s o c c u r r i n g east. Meanwhile, 1966 farther Hough p r e s e n t e d a new a l t e r n a t i v e h y p o t h e s i s w h i c h wa s t o s ome e x t e n t a c o m p r o m i s e o f of view. between the opposing poin ts H o u g h ' s h y p o t h e s i s wa s c h r o n o l o g i c a l l y d e t a i l e d , i n i n T a b l e 3 a n d F i g u r e 2. B e c a u s e t h e Wayne b e a c h s h o ws e v i d e n c e o f s u b m e r g e n c e by a later lake sta g e , b e f o r e any of L e v e r e t t and T aylor d a te d t h e Warren s t a g e s . Hough a l s o s t a t e d immediate p r e - l a t e Warren d a t e would s a t i s f y fo r submergence of negate t h a t an the requirement t h e Wayne a n d s u c h a n a s s i g n m e n t w o u l d n o t t h e p r i n c i p l e on w h i c h B r e t z b a s e d h i s c o r r e l a t i o n s ice advances with Occurrence of with It as forming the the o th e r lake stag e of t h e Wayne b e t w e e n th e Saginaw b a s i n . the middle Warren, l a s t m o r a i n e o f P o r t Huron s y s t e m a n d t h e co rrela ted with B retz's c o n s i d e r a t i o n and theoretical on moraine correlated l a t e Warren is a more r e a s o n a b l e i t wa s a s s i g n e d t h a t p o s i t i o n by Hough i n 1 9 5 8 . GLACIAL EVENT F o r t Wavne De f i a n c e Bi rmingham o & 73 -< (Retreat) OUTLET ELEVATION ABOVE SEA LEVEL - FEET Maumee 1 800 F o r t Wayne Grand V a l i e v F o r t Wayne Imtav i c e - b o r d e r d i s c a h r q e Grand V a l l e y CAPtY-P.H. TfclTER. P o r t Huron 1 -o a 73 feav C i t v Tawas X C" ( f t e t r e a t ) 73 Advance ? n Z (betreat) Sout h - E a s t TWf CREEKS INTER. > tn i Kirkfield P o r t hur on and Chi caqo e rc j m 73 V Ta b l e 3. Ubley i c e - b o r d e r d i s c . Grand V a l l e y ? Grand V a l l e v A g e o l o g i c t i me s c a l e o f t h e l a k e s t a g e s w i t h t h e i r e l e v a t i o n above s e a l e v e l Maumee 11 766 Maumee 111 790 Arkona 1 710 Arkona 11 700 Arkona 111 695 Ypsilanti Sagi naw 6 9 f > ( W h i t t l e s e y 738) Warren 1 690 Warren 11 682 Wayne 660 Warren 111 675 Gr a s s me r e 64o Lundy 620 E a r l v Al qonqui n 605 K i r k f i e l d 560 Al qonqui n 605 in ( 1966) t h e Huron b a s i n 30 D. Stream T e r r a c e s ? A stream te rra c e nearly flat is a b e n c h - l i k e s u r f a c e o f v a r i a b l e dimensions c a l l e d t r e a d and r e l a t i v e l y tread or treads the represent which flowed a t Cotton involves downcutting of as the p r e s e n t v a l l e y bottom. remaining p a r ts l e v e l s above t h a t o f (19^5) pointed out the p rese n t of the flood plain surface terraces Terrace flood plains flood plain. the development of a flood p l a i n the stream channel tion of paired of dissected down t o th a t formation of stream t e r r a c e s a b o v e t h e new s t r e a m level the te rrac e s t e e p s l o p e s on o n e o r m o r e s i d e s the next te r r a c e terraces land form c o n s i s t i n g o f a leaving level. f o l l o w e d by flood plain Terrace remnants level is the r e c o n s t r u c t e d by t h e c o r r e l a ­ determined t o be rem nants o f t h e s a me former floo d p l a i n . Flood p l a i n s d e v e l o p when a s t r e a m a p p r o a c h e s c o n d i t i o n when n e i t h e r c u t t i n g The g r a d e d c o n d i t i o n there is one nor b u ild in g the The s t r e a m ' s load su p p lie d energy is expended from upp er d r a i n a g e reworking and s p r e a d i n g o u t back and f o r t h of stream g rad ien t, v e l o c i t y and load under the p r e v a i l i n g channel characteristics. porting taking place. in w hi ch o v e r a p e r i o d o f y e a r s is a n e a r b a l a n c e between th e f a c t o r s w a t e r volume, is the graded its in t r a n s ­ l i n e s and flood plain m aterial s w i n g a n d down s t r e a m s w e e p a s in by t h e i t meanders. 31 T e r r a c e s may e x i s t a l o n g f o r m e r m e l t w a t e r s t r e a m s , their formation and is b e l i e v e d t o have been th e r e s u l t o f c h a n g in g c o n d i t i o n s a s s o c i a t e d w i th advances and r e t r e a t o f ice. The n u mb e r o f t e r r a c e s e x i s t i n g a t a n y o n e p l a c e a l o n g a valley is e a s i l y levels ex istin g recognized, b u t t h e e x a c t n u mb e r o f t e r r a c e in a v a l l e y , fo rm a tio n and t h e i r their areal relationship, extent, t h e i r mode o f t o m o rain e s and t i l l s h e e t s c a n o n l y be d e t e r m i n e d by c a r e f u l s tu d y and c o r r e l a t i o n of the te rr a c e s . Different terrace classifications n a t u r e o f one o f t h e s e c l a s s i f i c a t i o n a r e proposed and th e d e p e n d s on t h e k i n d s o f t e r r a c e s and th e purpose of th e c l a s s i f i c a t i o n . are the various a. The f o l l o w i n g w i d e l y known c l a s s i f i c a t i o n s i n l i t e r a t u r e : Mode o f t e r r a c e f o r m a t i o n 1. D e p o s i t i o n a l ( G o o d i n g 1957) terraces: (a) Marine t e r r a c e s : and g r a v e l l y , ( r a is e d beaches) a r e sandy o r c o b b l y s h o r e s w a s h e d by w a v e s occuring along o ld or p rese n t lacustrine, sea or oceanic coast. (b) Fluvial terraces: Cyci i c : p a i r e d , depositional terraces.. s a me e l e v a t i o n , the level rejuvenation terraces, incised Usually occur a t the when s t r e a m s c u t new v a l l e y b e l o w o f e r o s i o n p l a i n due to t h e s t o p p a g e o f the v a lle y deepening pro cess, leaving remnants of t h e f o r m e r f l o o d p l a i n a b o v e t h e new s t r e a m level. Noncyclic: unpaired, accompanied w ith River ( c o n t i n u e d down c u t t i n g lateral erosion). reaching a grade s t a r t s plain while it is s t i l l t o form a f lo o d transporting material over a comparatively steep g rad ie n t in t i m e . shifting that T h e s e e v e n t s when c o u p l e d w i t h produces unpaired te rra c e s are very likely terraces. venation t o h a p p e n whe n s t r e a m s drift terraces will terraces and not lateral Unpaired proceed to e x c a v a te masses o f g l a c i a l The r e s u l t i n g decreases differ from r e j u ­ by b e i n g c u t s o l e l y into a so lid m aterial. into rock. 2 . Cu t t e r r a c e s : (a) Dissected streams, terrace surfaces: cutting they entrench (b) A 1 t i p l a n a t i o n into Rejuvenating the bottom of their themselves below t h e p l a i n . terraces: Terraces processes conge1i t u r b a t i o n , by such as c r y o p l a n a t i o n , or congelifraction. G en e sis o f s t r e a m t e r r a c e s (Gooding 1957) G enetically stream te rra c e s are c l a s s i f i e d 1. valley, f o r m e d by f l a t t e n i n g o f summit o f h i g h a l t i t u d e equiplanation young Graded s tr e a m t e r r a c e s : into: Those t e r r a c e s whose t r e a d s 33 a r e f lo o d p l a i n s u r f a c e s o f a former strea m which m aintained the graded c o n d itio n s period of time, for a considerable consist of a sheet of allu v ial m aterials of v a ria b le t h i c k n e s s o v e r an o l d e r s u r f a c e . Graded c o n d i t i o n period of years th e re is one in which o v e r a i s a n e a r b a l a n c e among f a c t o r s o f s t r e a m g r a d i e n t , w a t e r volume, and load under th e p r e v a i l i n g channel 2. Degraded stream te rra c e s: the velocity characteristics. these terraces are the remnants o f f l o o d p l a i n s f o r m e d by a d e g r a d e d s t r e a m - shifting In s l o w d e g r a d a t i o n p r o c e s s equilibrium. unpaired te r r a c e s might develop. c o n d i t i o n when t h e r e is a c h a n g e Degradation in one o f is a the h y d r a u l i c f a c t o r s o f a s t r e a m a n d a new e q u i l i b r i u m h a s t o b e e s t a b l i s h e d by e i t h e r its load or equilibrium lower is its increasing p arts of gradients. Until t h e new reached the streams continues t o be eros ive. 3. Aggraded stream te rra c e s: Those t e r r a c e s forming under aggradion c o n d itio n s stream system such as Aggradation conditions into g en tler gradient valley f i l l s are (and o f t e n braided in t h e f o r m o f a v a l l e y train). is t h a t when s t r e a m s h i f t by b u i l d i n g up t h i c k , of channel. broad, Some l a c u s t r i n e s u r f a c e s may b e a s s o c i a t e d w i t h a g g r a d a t i o n a l surfaces. that flood plain It aggradation along tr i b u t a r y valleys 3** occasionally fa lls valley, behind ag gradation a s h a s b e e n t h e c a s e a l o n g s ome s t r e a m which c a r r i e d g l a c i a l the p e r io d ic in t h e a l t e r n a t i o n o f fine grained, lacustrine materials stratified, layers of coarser m aterial. Nature of 1. meltwater, dammi ng e f f e c t may r e s u l t with c. in t h e main t e r r a c e m a t e r i a l ; (Thornbury Bedrock t e r r a c e s : alluvium, 2. A l l u v i a l where t h e r e or former terraces: local base is 195*0 little o r no level. made o f g r a v e l , sand and f i n e r a l 1u v i u m. d. Formational d i r e c t i o n of 1. C o n v e r g i n g t e r r a c e s : terrace: (Thornbury 195*0 terraces s u r f a c e s come n e a r e r t o g e t h e r down t h e s t r e a m . 2. Diverging te rr a c e s : apart terraces the te r r a c e s s t e e p s l o p e s o r even r e v e r s a l Soil come f u r t h e r in t h e downstream d i r e c t i o n 3 . Wa r p e d t e r r a c e s : E. surfaces have ab n o r m a lly of slo p e (faulting) Geomorphology O r b e l 1 (196**) s t u d i e d a s e r i e s o f f a n s a n d t e r r a c e s a s s o c i a t e d w ith each stream in t h e M a n u h e r i k i a V a l l e y , Z e a l a n d (humid m e s o t h e r m i c c l i m a t e w h i l e Mi ch i gan microthermal). Each f a n o r terraces constitutes found New i s hu mi d one ground 35 surface. R e la tio n sh ip s around these su rfa ce s examined f o r e s t a b l i s h i n g particular is c a r e f u l l y r e l a t i o n s h i p o f one f a n w i t h one terrace. Through u s i n g p h y s i c a l seven ground s u r f a c e s their stratigraphic f e a t u r e s and r e l a t i v e height h a v e b e e n d i s t i n g u i s h e d on t h e ratios lowland and re la tio n sh ip determined. An e x a m i n a t i o n o f t h e s o i l d e v e l o p e d on e a c h g r o u n d s u r f a c e showed: 1. T h e r e was c o r r e l a t i o n b e t w e e n p r o f i 1e c h a r a c t e r i s t i c s and the age o f t h e ground s u r f a c e . Thegreatest d i f f e r e n c e o c c u r r e d between s o i l s o f younger ground surfaces. The d i f f e r e n c e s bec ome l e s s m a r k e d between s o i l s o f t h e o l d e r ground s u r f a c e s . 2. The p a r e n t m a t e r i a l s r a n g e d f r o m g r a v e l t o c l a y s a n d ~ ch a ng e s in t e x t u r e w i t h i n t h e p r o f i l e w er e a t t r i b u t e d , e s p e c i a l l y i n s o i l s on t h e 2 y o u n g e s t g r o u n d s u r f a c e s , to the layered n a tu re of the paren t m a t e r i a l . In s o i l s d e v e l o p e d on t h e o l d e r g r o u n d s u r f a c e s , howeve r , z o n a l p r o c e s s e s a r e a p p a r e n t a n d s ome o f t h e t e x t u r a l changes w i t h i n t h e s e p r o f i l e s were a t t r i b u t e d to s o i l forming p r o c e s s e s . 3. T h e s e s o i l s c o u l d be p l a c e d i n a r e l a t i v e c h r o n o l o g i c a l o r d e r a n d c o m p a r i s o n s o f t h e i r p r o f i l e s made when n u m b e r e d 0 t o . 6. A-. As t o be e x p e c t e d , t h e d e g r e e o f d i f f e r e n t i a t i o n i n t o d is c r e te pedologic horizons increased with increasing age. The s o i l s o n g r o u n d s u r f a c e 0 d i f f e r e d l i t t l e from p a r e n t m a t e r i a l e x c e p t p er h ap s f o r a s l i g h t d a r k e n i n g o f t h e u p p e r f ew i n c h e s by o r g a n i c m a t t e r . These s o i l s a r e f r e q u e n t l y r e j u v e n a t e d . Dalrymple (1968) introduced a hypothetical s u r f a c e mode ( f o r t h e h u mi d t e m p e r a t e a r e a s ) of the ac tu al for nine u n it land the d e s crip tio n p r o f i l e o f a n y la nd fo r m and a method t o examine 36 geomorphic and p ed o g e n ic p r o c e s s e s a t any The n i n e u n i t s slope fall (2° to 4 ° ), face colluvial wall facet a n d some o f footslope that occurring ( 10°), bed. the of river the slope p r o f i l e . r i v e r has o c c u r r e d and th e u n i t c o v e r e d by f l o o d w a t e r s surface, c l e a r l y no l o n g e r in w h i c h the u n it associated with lateral (26° to 35°), (0 t o 4 ° ) , channel the dominant process material up t o carried right angle down to a d is c e r n ib le depth by t h e m a j o r s t r e a m Wh e r e down c u t t i n g or by t h e i s no l o n g e r o c c a s i o n a l l y i t h a s b e c o me a t e r r a c e o r th e dominant c o n tem p o rary p r o c e s s re-deposition of allu v ia l dominant p ro cesses a r e 45°), R edeposition need not occur carried such t h a t then ( is d e f i n e d as flowing a t has t o be b u i l t r i v e r a n d c o v e r e d by f l o o d w a t e r s . slope toeslope its interfluve, creep slope toeslope i r r e g u l a r and t h e s u r f a c e by m a t e r i a l aggradation ranges are: redeposition of allu v ial f r e q u e n t l y and th e u n i t beneath alluvial The a l l u v i a l v a l l e y by t h e m a j o r s t r e a m o r the d ir e c t i o n of g en eralizatio n . t r a n s p o r t a t i o n a 1 midslope is f r e q u e n t l y is slope convex (0 t o 1 ° ) , (45° to 65°), and ch an n el their level then e i t h e r m aterial. deposition is The f r o m t h e c o m ma n d i n g b e c o me s a c o l l u v i u m u n i t o r p r o c e s s s u b s u r f a c e w a t e r mo v e me n t a n d t h u s the u n i t becomes o f s e e p a g e s l o p e s . Earlier morphological in 196 7* D a l r y m p l e r e p o r t e d differences observed that in s o i l th e m icro and macro profiles are: 37 1. 2. 3. k. 5. 6. Depth and n a t u r e o f d e c a l c i f i c a t i o n Oxidative weathering T hic kn e ss and c h a r a c t e r o f t h e B t - h o r i z o n N ature and i n t e n s i t y and phases of c l a y translocation The p r e s e n c e a n d a b s e n c e o f c l a y f o r m a t i o n , The n a t u r e a n d t h e i n t e n s i t y o f m o t t l i n g . From t h e s e s t u d i e s and i t h a s b e e n shown t h a t s p e c i f i c s o i l p r o f i l e s a r e a s s o c i a t e d w i t h s p e c i f i c geomorphic s u r f a c e s and with s p e c if ic soil properties. Dalrymple a l s o concluded micro morphological deep pha se in t h e macro and p ro p erties of the standard i n t h e s e Gr a y Brown P o d z o l i c s o i l s differences soil that variation in t h e a mo u n t s o f i n t e r m e d i a t e and r e s u l t s more from time a v a i l a b l e f o r w e a t h e r i n g and formation than from any changes in t h e c l i m a t e s . Among t h e r e l i a b l e m e a s u r e m e n t s , made by Ruhe ( 1 9 6 7 a ) h i s s t u d y t o d e l i n e a t e examine and compare t h e k i n d s o f f o r ms in a d e s e r t i c a r e a i n s o u t h e r n New M e x i c o , t h e n a t u r e and o r i g i n o f s o i l s w i t h i n of the r a t e o f change in e l e v a t i o n in land- to determine t h e a r e a was t h e e s t i m a t i o n per u n it d istan ce . T h i s was o b t a i n e d from th e s l o p e o f th e e q u a t i o n e x p r e s s i n g t h e s t r a i g h t line that represents t h e g r a d i e n t on t h e g e o m o r p h i c s u r f a c e s . Ruhe a n d a s s o c i a t e s and s t r a t a (1968) r e l i e d h e a v i l y on s t r a t i g r a p h y p article size distribution, among o t h e r c h e m i c a l and m o r p h o lo g ic al methods of p e d o g e n e s i s , in e v a l u a t i n g Iowan d r i f t e n i g m a Representative samples from a l l in n o r t h e a s t e r n typical I owa . the Iowan l a n d s c a p e a n d v a r i a t i o n s w e r e 38 selected for the s tr a t ig r a p h y . T h e i r c o n c l u s i o n wa s s u p p o r t e d L e v e r e t t and d e c l a r e d exist in n o r t h e a s t e r n is Wisconsin sediment I o wa . that The y a l s o in a g e a n d t h e t i l l is e i t h e r they q u e s tio n e d the indicated beneath Kansan o r N e b r a s k a n . the v a l i d i t y of the I owan t i l l the that they does not that loess or the loess l oam B a s e d on t h e s a me l o g i c I owan d r i f t of northwestern I owa . Ruhe ( 1 9 5 9 ) proposed the term " s t o n e line" for the layers of concentrations of gravel recognized in s o i l s . or in r e a l i t y a th r e e dimensional ' c a r p e d o l i t h 1 in s o i l feature is t h a t may be o n e s t o n e o v erlie s m aterial weathered overlain It is not precluded surface. and by v a r i a b l e A stone indicates t h i c k o r more. thicknesses of fin e r that a stone the so il textured l i n e may o c c u r a t l i n e s u r f a c e s and sediments. the so il geomorphic ex p re s sio n Ru h e d e t e r m i n e d t h e o r i g i n indicated that m ultidirectional e r o s i o n on t h e v a l l e y s l o p e s c a u s e t h e u p l a n d s h o u l d e r towards of the axis of the is may h a v e b e e n d e v e l o p e d f r o m m o r e than one kind o f p a r e n t m a t e r i a l . of stone It generally in p l a c e from b e d r o c k and l i n e s u r f a c e has a s p e c i f i c that 'Stoneline' in te rf lu v e evolved t h e upland d i v i d e and th e formation of to recede in t h e p r e s e r v a t i o n the l a n d s c a p e pediment^ Pediment: an e r o s i o n s u r f a c e t h a t l i e s a t t h e f o o t o f r e c e d e d s l o p e , u n d e r l a i n by r o c k o f t h e u p l a n d , i s b a r r e n o r m a n t l e d by a l a y e r o f a l l u v i u m a n d d i s p l a y s a l o n g i t u d i n a l p r o f i l e n o r m a lly concave upward. the 39 as a new l a n d s c a p e s u r f a c e is a v a i l a b l e f o r a new c y c l e o f pedogenesis. Water e r o s i o n of concentration by l a g o r by t r a n s p o r t o f a s h e e t o f g r a v e l (stone line) on t h e s u r f a c e . highly likely Later results the stone in t h e line surface is t o b e c o v e r e d by t h e y o u n g e r d e p o s i t s . Gooding ( 1957) the p le isto c e n e of southern the pediment in t h e terraces Indiana used i n t e r p r e t a t i o n and c o r r e l a t i o n o f in t h e u p p e r W h i t e w a t e r d r a i n a g e b a s i n lithology, soils, thickness of the geologic deposits, and depth of leaching. increased with thickness of the e ffe c te d geologic deposit such as loess. estimating the Soil Leaching depth l e a c h i n g d e p t h wa s t h e ma i n c r i t e r i a th e time f a c t o r a l t h o u g h he a l s o indicated that absence of a so il in t h e W i sco nso ni an se q u en ce th e time between t h e s u c c e s s i v e f l u c t u a t i o n s o f interval Wisconsonian ice of this for indicated that the d r a i n a g e b a s in were s h o r t and c o l d . By e s t i m a t i o n o f t h e r a t e o f g e o l o g i c p r o c e s s e s a n d t h e i r chronology i t has n o t y e t been p o s s i b l e complete accuracy. As a p p l i e d t o d a t e any e v e n t w i t h to the p le isto c en e t i o n o f t h e d a t e o f a n e v e n t wa s a r r i v e d a t a c t i v i t y o f some p r o c e s s e s n u mb e r o f s u c h u n i t s . b u i l d i n g , wa v e c u t and Dunbar I960). by t h e r a t e o f p er y e a r and th e Some o f t h e s e a c t i v i t i e s retreat, and w e a t h e r i n g and s o i l in t e r m s o f u n i t s stream d iss e c tio n , development (Flint, the determ ina­ are delta falls retreat, 1 9 5 7 , Hough 1958, As B u t l e r (1959) logy o f a l o c a l i t y and d e p o s i t i o n a l developed. K cycles enables a chrono­ t o b e o u t l i n e d on t h e b a s i s o f s o i l evidences, I t meant a l l s u r f a c e s and interval indicated that t h e t e r m o f " g r o u n d s u r f a c e " was those erosional layers which developed and d e p o s i t i o n a l in a l a n d s c a p e d u r i n g one o f t i m e a n d upon w h i c h a u n i t m a n t l e o f s o i l s developed and t h a t of the m a terials of p a tte rn in g erosional the study of s o i l s i n t o components entails has a special grouping in a l a n d s c a p e o n t h e b a s i s in s e d i m e n t a r y an d p e t r o g r a p h i c c h a r a c t e r i s t i c s such as e x a c t concordance o r unconform ity. Components o f a g r o u n d s u r f a c e a r e d i s t i n g u i s h e d on t h e b a s i s o f t h e s e d i m e n t a r y e nv ir onm e nt such as p a r t i c l e petrology, size distribution, bedding, fabric, t h e shape o f t h e s e d i m e n t a r y b o d ie s and t h e p a t t e r n of v a ria tio n in t h e m. R e l a t i o n s h i p among g r o u n d s u r f a c e s a r e g a i n e d from t h e i r s t r a t i g r a p h y o r their relative position s p a c e and t h e n a t u r e o f t h e i r c o n t a c t s one w i t h a n o t h e r . suggested th at layers in t h e a ch a ra cte ristic feature are landscape having a s o il t o be c o n s i d e r e d in Butler m antle as in t h e f o l l o w i n g terms: 1. Separateness of a so il its 2. layer: a s p r o v e d by t r a c i n g c o n t i n u i t y on d i v e r s i t y o f s u b s t r a t e s a n d how none o f the s u b s t r a t e s Vertical e x t e n t and l i m i t s o f v a r i a t i o n : by v e r t i c a l contacts. can be p a r t o f it. as e x p re s se d a s s o c i a t i o n o f comformable and un conformable 4l 3. Hortizontal by t h e 4. e x t e n t and intersection Leverett till c o u l d be used as first of time layers. as a proof of their that the depth of leaching and e a s t e r n U nited S t a t e s indicator of weathering. (1956) t h e Mankato b o r d e r , Wisconsin, layers: suggested the c e n tra l C a r t e r and P e n d e lto n glaciated layer with other as s e t in t i m e . (1915) in t h e g l a c i a l areas of that R e la tiv e placement of the priority within lim its of v aria tio n s: stated t h a t Podzols a re G r a y Brown P o d z o l i c s d u r in g Kansan, found primarily in l l l i n o i a n and e a r l y and middle P l a n i s o l s w i t h more t h a n o ne p h a s e o f c l a y accumulation in a r e a s a s s o c i a t e d w i t h p o s t N e b r a s k a n w e a t h e r i n g a n d Re d Y e l l o w P o d z o l i c s their potential in a r e a s weathering is never g l a c i a t e d such t h a t l i m i t e d o n l y by s u r v i v a l of geomorphic s u r f a c e s . Thornbury (1954) l e a c h i n g o f CaC03 300 f e e t used th e d i f f e r e n c e in t h e in s o u t h e r n lllinoian Indiana an a v e r a g e d e p t h o f 6 f e e t Contrast of a moraine i n M i c h i g a n wa s (1954). to 3-4 f e e t f r o m some l e a c h e d in W i s c o n s i n . leaching during Interglacial side drift in t h e d e p t h o f in t h e d e p t h o f He quoted t h e S a n g a ma n l e a c h i n g on e i t h e r side i n v e s t i g a t e d by A l l e n a n d W h i t e ­ hi F. Soil Forming F a c t o r s D i f f e r e n c e s among s o i l s a r e a s s o c i a t e d w i t h among t h e f o l l o w i n g soil It is independent v a r i a b l e s : =_fp.m., climate, th erefo re useful vegetation, to report Parent m a te r ia l: area are of g l a c i a l , area glacial Owosso m o r a i n e t i l l plains, plains t e r r a c e s and a n c i e n t and r e c e n t a l l u v i a l River, information about and f l u v i a l (Flint, origins. Owos s o, ( F l i n t moraine t i l l p l a i n s and S t . lake beds or beach r i d g e s .... Parent m aterials of s o ils of the fluvio-glacial till time, forming f a c t o r s : involves m a te r ia ls of moraines moraines), topography, the gathered t h e s t u d y a r e a in t e r m s o f t h e s o i l a. inequalities John t i l l r i v e r beds The and S t . John plains, plains), outwash (Imlay River o u t l e t ) , (Arkona Lake bed a nd Wa rr en Lake b e d ) , materials ( o f Maple R i v e r , Ba k e r s C r e e k , Wi se C r e e k , A l d e r C r e e k , D u p l a i n d r a i n a n d Ov i d d r a i n ) in an d in t h e L i t t l e Ma p l e Stevens drain, immediate v i c i n i t y of the study a r e a . The g l a c i e r s stage in t h e resulted local transported unsorted m aterials glacier's in a b u n d a n t w a t e r history. Melting g la c ia l in t h e a r e a , and m o r a i n i c Thus, moraines were F l i n t m o r a i n e was d e p o s i t e d a f t e r S t . a n d b e f o r e Owosso m o r a i n e , ice shrank the g l a c i e r s in volume and s o t h e y r e c e d e d n o r t h w a r d . deposited. forming a John m o r a i n e a n d s o we h a v e m o r a i n i c m a t e r i a l s l a nd forms o f d i f f e r e n t a g e s Hough 1 9 5 8 , a n d V e a t c h 1 9 5 3 ) . (Leverett 1915, 191 7, hi 1. Morainic m a te r ia ls : The m o r a i n e s a r e c o m p o s e d o f w h a t e v e r k i n d o f m a t e r i a l the i c e wa s c a r r y i n g a t muc h . Some p l a c e s other points places l o a m, l o a m, this material i t wa s i t wa s the p a r t i c u l a r largely s i l t or clay varied greatly also. or clay m aterial. l o a m. 150 f e e t in d e p t h Genesee c o u n t i e s . t o ma ke l oa my s a n d , in Ionia, Clinton, the d r i f t F o r a d e p t h o f hO t o hS f e e t d r i f t De p l o y e d m o r a i n e s a r e composed Canadian sources is small P r o b a b l y 90 p e r c e n t o f d e r i v e d from t h e p a l e o z o i c the general rocks m ostly from n ea r th e s u r f a c e . is s u f f i c i e n t l y t o mask c o m p l e t e l y a n y d i r e c t is c a l c a r e o u s . t h e u n d e r l y i n g b e d r o c k on t h e s o i l s , 2. of d r i f t ma s s wa s drift plains, from in t h e s u r f a c e p a r t s This W i s c o n s i n g l a c i a l thick is p r e ­ i n some The p e r c e n t o f c r y s t a l l i n e m a t e r i a l relatively is about Shiawasee and mainly of clay . till sandy The p r o p o r t i o n o f b o u l d e r s The t h i c k n e s s o f p l a c e s w i t h a t i n g e o f brown. of at At o t h e r d o m i n a t e l y c l a y e y w i t h y e l l o w i s h o r b u f f c o l o r and the d r i f t . sand, I t wa s g e n e r a l l y y e l l o w i s h g r a y o r b r o w n i s h g r a y on w e a t h e r e d s u r f a c e s . 100 t o I t may v a r y v e r y was a l m o s t e n t i r e l y of such a m ixture as or s i l t place. lak e beds and a l l u v i a l Th e d r i f t and t h i s is covering influence true for plains. Outwash p l a i n a n d f l u v i o - g l a c i a l materials: As t h e g r e a t v o l u m e s o f w a t e r f l o w e d f r o m t h e m e l t i n g ice, i t c a r r i e d ground rocks of d i f f e r e n t fineness, sand, silt kk and c l a y . In some c a s e s g r a v e l wa s c a r r i e d o r As t h e w a t e r s p r e a d o u t o v e r d r a i n a g e ways, land s u r f a c e s along the the c u r r e n t d e c re a s e d and the c o a r s e r g ravel sand were d e p o s ite d . s a n d wa s d r o p p e d , local the ro lled along. With f u r t h e r d e c r e a s e but s i l t in c u r r e n t , and c l a y were t r a n s p o r t e d and finer into l a k e s o r d e p r e s s i o n s w h e r e w a t e r wa s c o m p a r a t i v e l y quiet, o r e l s e w e r e c a r r i e d a wa y t h r o u g h s t r e a m s into the G reat Lakes. 3. Till plain m aterial: Generally they a re p la in s or less of l o a ms o r c l a y l o a ms m o r e p e b b l y and s t o n e y and have g e n e r a l l y a smooth s u r f a c e . The o u t w a s h a n d to e lim in a te lacustrine deposits irregularities Arkona beaches the land s u rfa c e . the sle n d er moraines were w ater account present Further north of of melt w aters little o r no c o n t r a s t w i t h they a re n ea rly have tended Be l ow t h e l a i d a n d on t h a t the t i l l plains. l e v e l e d by t h e s e v e r e w a t e r e r o s i o n o f t h e waves in t h e g l a c i a l below Arkona b e a ch e s is a p l a i n w ith o u t dominant f e a t u r e s . The h i g h e s t p a r t s the remains of 4. Th e w h o l e r e g i o n carry sc a tte re d patches of boulders, marking the moraines. Lake beds m a t e r i a l s : The r e t r e a t o f glacial lakes. the g la c ie r s left the o u tle ts lakes clogged with d ep o sits of g la c ia l of the rock m a te r ia ls ks a n d i n some c a s e s b e d r o c k l e d g e s f o r m e d n a t u r a l situations areas, resulted the m aterials in t r a n s i e t fine sediments, deposited These la kes and hence o v e r c o n s i d e r a b l e b r o u g h t down by t h e w a t e r f o r a long p e r i o d o f da ms . time and i c e was c o v e r e d by in p l a c e s such as very f i n e sand s i l t in t h e s e lakes and c l a y , were in d e e p e r w a t e r a s waves a r o u n d t h e i r e d g e s left behind t h e c o a r s e r f r a g m e n ts o f sand and g r a v e l . * 5. Alluvial After m aterials: t h e w e s t e r n p a r t o f t h e Grand R i v e r c h a n n e l was a b a n d o n e d by t h e t h a t came i n t o all it tmlay o u t l e t south, and cha nnel At Lyon G r a n d R i v e r , w e l l a s down t h e c h a n n e l alluvial f a n s .(Fi g . k ) . Above Lyons f l o o r s a r e b o ulde ry and entering has b u i l t a l a r g e r a l l u v i a l an a l l u v i a l then every stream began t o b u i l d a l l u v i a l the fans a r e small swampy. river, the channel from t h e f a n w h i c h e x t e n d s up a s for a distance. Stony Creek d e p o s i t e d f an a f t e r Grand R i v e r had d e p o s i t e d a l a r g e fan t h a t crowded S to n y , t wo m i l e s a b o v e M u i r (Fig. 3). s ame t h i n g h a p p e n e d w i t h M a p l e R i v e r g e n e r a l l y s o u t h o f t h e p r e s e n t Grand R i v e r p o s i t i o n . Grand R i v e r c h a n n e l have been s i l t e d only the tops of gravel e a r l i e r channel Bel ow L y o n , lower p a r t s o f up by t h e r i v e r , leaving b a r s and few b o u l d e r y p a t c h e s o f t h e deposits projecting. Lyon o n e o f t h e f i n e s t the A b o u t t wo m i l e s a b o v e te rr a c e fragments along the north s id e of the channel in t h e v a l l e y runs f o r a b o u t t h r e e m i l e s and i s a b o u t 30 t o 3 5 f e e t a b o v e t h e swampy v a l l e y f l o o r . The 46 Between M a t h e r t o n an d Maple R a p i d s in t h e o l d o u t l e t ' s b r o k e n by a c u t that present channel. at its channel e a s t end b u t or r ath e r one long, does not The there are reach island is in a m i l e , t wo i s l a n d s narrow to the bottom of little over i t narrows 1/2 m i l e island the in w i d t h to a 1/4 m ile in w i d t h a n d t o t h e e x t r e m e w e s t b e c o me s 2 5 0 t o 3 0 0 f e e t w i d e . The i s l a n d flat is a remnant o f the o rig in a l floor. divides in e q u a l Ju st west of channel south of this is channel Imlay o u t l e t fiver Maple R i v e r , the south below Maple R a p i d s . the head o f most g l a c i a l particular it appears place, in t h e e a r l y to have s t a r t e d p r e s e n t channel the considerably higher e le v a tio n floor. Subsequently the o u tle t flow the on t h e s o u t h a n d a s m a l l e r s t r e a m on t h e n o r t h , levels are at now, i s l a n d and runs n o r t h e a s t t o Maple R i v e r j u s t At t h i s th e channel Hayworth Creek e n t e r s k i n d a r e common a t drainage o u tle ts . the island. t h e e a s t end o f t h e on t h e swampy f l o o r Islands of t h e Maple R a p i d s p a r ts around th is i s p a s s i n g on t h e n o r t h s i d e . both p l a i n and t o p p e d w i t h a n a l t i t u d e o f 50 t o 6 0 f e e t a b o v e t h e channel of till and than the riv e r occupied and deepened both. A relatively sudden a process of steepening possibly accounts especially for f o r ones lowering in Lake C h i c a g o woul d in t h e Grand R i v e r c h a n n e l . the lower t e r r a c e s introduce This in t h e v a l l e y , t h a t seem r a t h e r p e r s i s t e n t at a height 47 o f 35 t o 40 f e e t a b o v e t h e g e n e r a l refle c t sta b le conditions of channel the r i v e r for floor. long d u r a t i o n s . The t e r r a c e a t 35 t o 4 0 f e e t a b o v e t h e g e n e r a l floor appears t o be p r o m i n e n t and c l o s e l y Arkona b e a c h e s . These t e r r a c e s t o the^. in t h e S a g i n a w b a s i n a r e t e r r a c e s and th e o l d e s t beach r e p r e s e n t s oldest terrace. the in t i m e t h e These bea che s of Arkona and Saginaw in ti me and d u r a t i o n S t o n y C r e e k c omes grade of channel related oldest represent These the te rra c e s t h e w h o l e l i f e o f Lake A r k o n a . i n t o t h e G r a n d R i v e r mo r e e v e n l y a t a level t h a n t h e y do a t p r e s e n t level, n o r t h e a s t o f Lyon, a t t i m e s when Ma p l e r i v e r u s e d t o f l o w west Grand R i v e r has done v i r t u a l l y in its deepening channel. in t h e c h a n n e l C h i c a g o wa s t h e b a s e except level f o r m t h e known G r a n d R i v e r in its own a c t u a l bed. that it below t h e l e v e l The A l l u v i a l materials t wo m i l e s n o r t h ­ 3). l i e 20 t o 25 f e e t a b o v e t h e b r o a d swampy dune-covered divide a t north of Bannister is so is a b o u t 8 5 f e e t o f u p p e r Lake Arkona b e a c h e s Warr en b e a c h e s to terraces. is s c a r c e l y p e r c e p t i b l e and east of E ls ie .( F ig . Lake f o r e r o s i o n d o n e by G r a n d R i v e r The d i v i d e b e t w e e n L a k e A r k o n a a n d L a k e S a g i n a w slight no t h e head o f (Fig. soils s how l i t t l e t h e c h a n n e l o f Grand R i v e r 3). t h a t h a v e d e v e l o p e d on r e c e n t a l l u v i a l . , development b e s id e s being g e n e r a l l y 48 flat (level), Their to ta l poorly drained, acreage economically very difficulty soil the streams. and th e y a r e t h e r e f o r e n o t important. Far m m a c h i n e r y e n c o u n t e r s g r e a t i n o p e r a t i n g on t h e s e a l l u v i a l areas generally soils to is small narrow and p a r a l l e l increase soils. The a l l u v i a l i n w i d t h down s t r e a m . . Alluvial a r e y o u n g g e n e r a l l y a n d h e r e t h e y may b e c o n s i d e r e d represent valley. the youngest terrace in t h e f l u v i a l - g l a c i a l The y a r e s t r a t i f i e d c a l c a r e o u s contain buried soil surfaces as capping of very recent e ro sio n a l terraces. Alluvial soil soil material in s ome a l l u v i a l soil a n d may may h a v e d e p o s i t c o mi n g f r o m h i g h e r c a te n a s encountered here a r e Genesee, Abscota and Landes, b. Climate C l i n t o n County c l i m a t e i s s o me wh a t c h a ra c te r because of the proximity of insular in the Great Lakes. The sal i e n t f e a t u r e s o f t h e c l i m a t e a r e m o d e r a t e l y c o l d w i n t e r s , a n d m i l d s u mme r s , w i t h m o d e r a t e p r e c i p i t a t i o n a n d low w i n d movements. duration. Periods of extreme v a r i a t i o n s are u s u a lly of sh o rt Precipitation throughtout the year with is almost uniformly d i s t r i b u t e d t h e amount d u r i n g w i n t e r s l i g h t l y below t h a t o f t h e o t h e r s e a s o n s . not of a b e a t i n g n a t u r e and tation often Torrential takes The summer r a i n s a r e u s u a l l y in t h e f a l l th e form o f slow, r a i n and d e s t r u c t i v e h a i l Survey S t a f f and s p r i n g misty, drizzly storms a re 1942 a n d M i c h i g a n W e a t h e r S e r v i c e the p r e c i p i­ rains. rare. 1966). (Soil 4 49 Differences in e l e v a t i o n marked c l i m a t i c v a r i a t i o n s variations regards in f r o s t dates locally are throughout crops. fro z en d u r in g most of th e w i n t e r . a v e r a g e s b e t w e e n 50 and 5 5 ° F . is between the county, are of considerable the production of special free period insufficient 160 d a y s . precipitation th e growing season o f most c r o p s , suffer i s 30 throughout inches. the year. to The p r e c i p i t a t i o n insure s a tis f a c to r y often sown c r o p s a n d p e r e n n i a l s p a r t i c u l a r l y on t h e p o o r l y d r a i n e d s o i l s , to prevent severe w inter the atmosphere stro n g ly injuries. influences through Loss o f m o i s t u r e indirectly. the quantity of moisture a v a ila b le the so il while kind and q u a n t i t y o f v e g e t a t i o n but t h i c k and the e ffe c tiv e n e ss form atio n d i r e c t l y and effect decreases colating growth Some i n j u r y d u e t o f r e e z i n g t h e c o v e r i n g o f snow i s g e n e r a l l y s u f f i c i e n t l y in s o i l during from s h o r t a g e o f m o i s t u r e d u r in g and thawing which c a u s e s h e a v in g o f f a l l tation temperature is d i s t r i b u t e d a l t h o u g h c r o p s on t h e s a n d i e r s o i l s t h e h o t t e s t p a r t o f t h e s u mme r . early soil The a v e r a g e a n n u a l inches and is s u f f i c i e n t to a certain extent is n o t i c e a b l e , temperature i n d i c a t e d by t h e a v e r a g e d e p t h o f i s a b o u t 30 t o 3 5 rather uniformly is Wi d e d i f f e r e n c e s b e t w e e n w i n t e r a n d summer t e m p e r a t u r e s a f f e c t s f r o s t p e n e t r a t i o n s which importance as Th e g r o u n d The a n n u a l local The a v e r a g e l e n g t h o f f r o s t 140 a n d to a c o n s id e rab le degree as but to cause indirectly it that develops. into of p r e c ip i­ The d i r e c t in and determines per­ the The h u mi d c l i m a t e o f M i c h i g a n h a s of the e a sily soluble c o n stitu e n ts most o f t h e s o i l s . resulted from t h e upper Some o f t h e s e c o n s t i t u e n t s o u t o f th e s u r f a c e h o r iz o n and d e p o s i t e d Gr a y Brown P o d z o l i c s o i l have s u b s o i l s (Alfisols) r e mo v a l layers of have been washed in t h e s u b s o i l . The of southern Michigan t h a t a r e e n r i c h e d by c l a y w a s h e d f r o m t h e o v e r ­ laying horizons. than areas in t h e T h e s e Bt s u b s o i l horizons are fin e r textured e ith e r the overlaying or underlying horizons. Pollen a n a ly sis used to determ ine the v e g e t a t i o n a l has been h i s t o r y o f an a r e a an d from t h i s , inferred. horizons Z u mb e r g e a n d P o t z g e r i n t wo b o g s c l i m a t i c changes a r e a l s o (1956) were a b l e t o r e l a t e in s o u t h w e s t e r n M i c h i g a n t o r e c e n t p l e i ­ s t o c e n e h i s t o r y by s t r a t i g r a p h y a n d t o d a t e t h e s e h o r i z o n s by r a d i o c a r b o n t e c h n i q u e s . relate the v e g e ta tio n a l to geologic s t a g e s , From t h i s h i s t o r y and a s shown information they could in f e r re d c l i m a t i c changes in T a b l e 4. A l t h o u g h t h e b o g s s t u d i e d w e r e a b o u t 23 0 m i l e s s o u t h w e s t from t h e s t u d y a r e a , t h e c l i m a t e may n o t h a v e b e e n g r e a t l y different especially during Mor e r e c e n t l y immediate p o s t g l a c i a l than 3,500 to 4,000 years before p r e s e n t, t h e c l i m a t e optimum ( f o r p l a n t shown by a n times, i n c r e a s e o f oak, time. growth) c o n t i n u e d t o d e v e lo p as h ic k o r y and p i n e . In m o s t c l i m a t i c c o o l i n g o c c u r r e d d u r in g which p i n e has in a b u n d a n c e a c c o r d i n g t o Z u mb e r g e a n d P o t z g e r (1955). recent increased 51 Table 4. C l i m a t i c changes i n f e r r e d from f o r e s t h i s t o r y d e d u c e d f r o m p o l l e n p r o f i l e s o f 2 b o g s i n SW M i c h i g a n ( Zumber ge a n d P o t z g e r , 1956) Years b e f o r e present Forest cover 11,000 Spruce, fir Climate Cool to cold, moist 8,000 Decline of spruce and f i r , in c r e a s e of pine Moderating clim ate 6,000 P i n e maxi mum, n e a r elim ination of spruce and f u r Wa r mi n g c l i m a t e 5,000 Decline of pine period and ascendency o f oak and c h e s tn u t C o n t i n u e d warming Expanding oak hemlock broad leaved forest Wa r m e s t a n d d r i e s t since r e tr e a t of i ce 2,500-4,000 The c l i m a t i c s t a t i s t i c s o f t h e s t u d y a r e a and a s r e v e a l e d by t h e n e a r e s t w e a t h e r s t a t i o n s in T a b l e No. 5 . both These c l i m a t i c s t a t i s t i c s the tab les Weather S e r v i c e . its surroundings a r e summarized a r e o b t a i n e d from and t h e n a r r a t i v e summaries o f Michigan 52 Table 5 . Means a n d e x t r e m e s o f t h e w e a t h e r o f t h e s t u d y a r e a and i t s s u r r o u n d i n g a s r e c o r d e d in t h e r e g i o n c l i m a t o l o g i c a l reco rd s (Michigan Weather S e r v i c e 1966) H i g h e s t t e mp , r e c o r d e d F° S t a t ion Mean a n n u a l t e mp . F° Owosso 48.4 105 -20 29.42 37.2 S t . John 47.7 102 -22 30.22 36.7 1 on i a 48.1 103 -25 30.86 36.9 FI i n t 46.8 108 -22 3 0 . 14 38.7 E.Lansing 47.3 102 -25 31 . 0 8 46.9 Jackson 48.9 105 -21 31 . 0 3 36.7 c. Mean a n n u a l precipi tat i o n in i nches Mean annua I snow i n i nches V e q e t a t i on When s e t t l e d by E u r o p e a n s a l m o s t t h e e n t i r e c o u n t y was c o v e r e d by a d e n s e f o r e s t deciduous Lowest recorded t e m p . F° trees. prefer soils growth c o n s i s t i n g l a r g e l y of That n a t i v e f o r e s t c o n s i s t e d of s p e c ie s t h a t a r e high in b a s e s , that a n d h i g h t o me di um in s o i l s moisture-holding capacity. These t r e e s were m a in ly h ard maple, b e e c h , a n d o a k s on t h e w e l l drained s o il s . swamp w h i t e o a k , El m, s o f t maple, b l a c k a s h a n d b a s s w o o d w e r e m o s t common s p e c i e s on t h e s o me w h a t p o o r l y d r a i n e d s o i l s . The f o r e s t f l o o r was 53 s p a r s e l y c o v e r e d w i t h an u n d e r s t o r y o f s h r u b s , plants, se dges and g r a s s e s . s h r u b s w e r e common cover co n s is tin g leather depositing a leaf leaf, Survey S t a f f The t r e e s on f i n e r p o p l a r and areas had a Scattered highbush b l u e b e r r y and 19^2). texture soils f e d h e a v i l y on b a s e s , l i t t e r w h i c h wa s c o n v e r t e d t y p e humus by s o i l i n t o m i l d mull microorganisms, w hile the dry sandy s o i l s type of s o il are not extremely acid type of s o i l Some m a r s h l a r g e l y o f g r a s s e s and s e d g e s . (Soil h a v e a mo r e a c i d Tamarack, w h i t e c e d a r , i n t h e s wa mps . bo g s w e r e c o v e r e d w i t h other shrubs. herbaceous humus . In g e n e r a l , the s o ils in s p i t e o f t h e a c t i o n o f a p o d z o l i c formation. The s o u t h e r n pine coincides clo sely with limit of native white t h e b o u n d a r y b e t we e n t h e Gray Brown P o d z o l i c a n d t h e P o d z o l region in Mi ch ig a n a s p o i n t e d out by W h i t e s i d e a n d G a r d e n e r ( 1 9 5 2 ) . d. Topography Topography soil is p r o b a b l y t h e most o b v i o u s and d i s t i n c t forming f a c t o r . Topography t o a g r e a t e x t e n t d e t e r m i n e s the d r a in a g e c o n d i t i o n s o f the s o i l which a r e d e c i s i v e in t h e course of soil is formation not only as formed o r n o t b u t a l s o mineral in d e t e r m i n i n g to whether a peat t h e n a t u r e o f many soils. S o i l s on t e r r a c e s more z o n a l tendencies are older, b e t t e r d r a i n e d a n d s how t h a n t h o s e on f l o o d p l a i n s . Outer 5b terrace edges, nearest the streams, The p o r t i o n s m o r e d i s t a n t Alluvial or from t h e s t r e a m s a r e terrace m aterial transported have th e d e e p e s t s o i l s . existing less well drained, i n o n e z o n e may h a v e b e e n from a n o t h e r w e a t h e r i n g zone (Veatch 1953). Topography and d r a h a g e o f Mjchigan were g r e a t l y m o d i f i e d by g l a c i a l a c t i o n and t h e s e c o n t r i b u t e g r e a t l y variability. soils, Brown P o d z o l i c as intermediate s o ils , region only well areas of e. in t h i s drained s ite s o r on r i v e r the s i t e s occur w ithin (Whiteside e t a l . The t o p o g r a p h y f a c t o r , beach r id g e s local N a t u r a l l y both p o o r l y d r a i n e d and w e ll as well selecting to drained t h e Gray 1963). s t u d y , wa s h e l d u n i f o r m by for sampling, terraces. soil The s l o p e s sampled were n e a r l y level at the tops of in t h e g e n e r a l ( 0 - 1% s l o p e s ) . T ime The t i m e f a c t o r indicates the probable or relative duration of processes t h a t have been a c t i v e of s o i l s . c a n b e e v a l u a t e d by t h e d e g r e e o f d e v e l o p ­ Its effect ment o f s p e c i f i c soil greater land s u r f a c e or than the to w eathering. Soils characteristics. of l a t e Wisconsonian age o f concern to th is in t h e d e v e l o p m e n t Soil a g e c a n n o t be the rock m a te r ia l s exposed the study area are not o ld er the p leisto c en e. s t u d y a r e on p a g e 2 9 . Detailed than the dates of 55 W i l d e ( 1 9 5 8 ) d e v e l o p e d Dokuchai ves c o n c e p t a n d e x p r e s s e d th e r e l a t i o n s h i p between s o i l and p e d o g e n i c f a c t o r s a s an integral: s = f g, where: e, g = geological b, t. substratum, e = environmental b = biological influences, a c t i v i t y and t = t i me Stephen relationships except time, (19^7) developed a s p e c i f i c approach t o s o i l and p o i n t e d o u t that in n a t u r e t h e v a r i a b l e s , in J e n n y ' s e q u a t i o n s a r e n o t c o m p l e t e l y He g a v e a c o m p l e t e l i s t o f a l l form o f p a r t i a l possible differentials. r e l a t i o n s h i p between a s o i l independent. relationships in t h e His c o n s i d e r a t i o n o f th e and i t s factors are best expressed as : S = f where: (c, o, r , w, p) d t c « climate o = organism r m topography w = hydrology p = parent material and t = time Marshall or (19^3) p r o p o s e d a method f o r m e a s u r i n g n e t g a i n s lo s s e s which o c c u rr e d in f o r m a t i o n and in t h e i r s o i l individual soils during their horizons during p r o f i l e development. 56 The m e t h o d mineral i s b a s e d on t h e c o n t e n t that is resistant in e a c h h o r i z o n o f an to weathering, g e n e s i s and is tourmaline, g a r n e t , r u t i 1e o r a n a t a s e a s order immobile, Marshall t o a p p l y M a r s h a l l ' s method the s o il which Stevens its (196*0 f o u n d it index m i n e r a l s . is f i r s t ascertained that t h e amounts and r a t e s composition, carbon, phosphorus organisms, time as a v a r i a b l e Ru h e ( 1 9 5 6 ) it is p o s s i b l e of change total that to compare in m e c h a n i c a l phosphorus and o r g a n i c the climate, parent m aterial, obtained excellent in ten sity of Late Wisconsin results land s u r f a c e s . To q u a n t i f y c o m p a r i n g t wo m i n e r a l o g i c a l o f key h o r i z o n s ; thickness of the B-horizon, These c r i t e r i a indicated in c o m p a r i n g and the p e d o g e n e sis which had taken p l a c e r e v e a l e d by r a d i o c a r b o n m e a s u r e m e n t s , sand f r a c t i o n s and h a v i n g in t h e c o m p a r i s o n . in t h e p a l e o s o l s on t h e Y a r m o u t h , S a n g a m o n , criteria: that i n t wo c h r o n o s e q u e n c e s a f t e r s a m p l i n g u n d e r t h e s a me slope, relating like In parent m aterial. and c o n t r a s t nitrogen, in p e d o ­ r e c o mme n d e d u s i n g z i r c o n , in q u e s t i o n h a s d e v e l o p e d f rom m a t e r i a l i s now a s s u m e d t o b e relief, not formed index the L a t e S a n g a mo n a n d t h e i r age d i f f e r e n c e s , he used t h e f o l l o w i n g ratios in t h e v e r y f i n e thickness of and th e % 2 micron c la y c o n t e n ts . that standard soil c h e m is t ry methods f o r e x c h a n g e a b l e b a s e s c a n n o t be use d b e c a u s e o f enrichment of p a le so ls the so la ; from superimposed s t r a t a . the secondary The m i n e r a l 57 ratios the he used were the heavy m in eral w e a t h e r i n g l ig h t mineral w eathering r a t i o defined as r a t i o and follows: _ zircon + tourmaline (amphiboles + pyroxenes) y W rl - « f ar R esistance of a mineral matter; tions, given s u f f i c i e n t l y to w eathering is a r e l a t i v e long tim e under w e a t h e r i n g c o n d i ­ even t h e most r e s i s t a n t m i n e r a l s w i l l u n d e r g o s ome weather ing. R a e s i d e (1959) are subject by c r y s t a l minerals, to physical that quartz, breakdown th r o u g h d iso rie n ta tio n or c r y s ta llin e especially to d is s o lu tio n . zircon, pointed out iron rich garnet, He l i s t e d the s t r a i n caused inclusions. These may a l s o b e s u s c e p t i b l e five conditions o r g a r n e t s h o u l d n o t be used a s on o l d g a r n e t and z i r c o n under which q u a r t z , index m a t e r i a l s : 1. in s o i l s land s u r f a c e s , 2. in s o i l s t h a t have e x i s t e d f o r l ong perio d s of time under high r a i n f a l l cond i t i o n s , 3 . where the minerals contain abundant inclusions, large or 4 . w h e r e t h e m i n e r a l s show e x t e n s i v e s t r a i n or incipient fissuring, 5. and where g a r n e t s a r e high in iron. 58 Pettijohn (19^1) of heavy m i n e r a l s reviewed the frequency of appearance in a r e n a c e o u s d e p o s i t s o f t h e d i f f e r e n t g e o l o g i c ages and found t h a t complex w i t h the mineral suites increasin g age of the d e p o s its . weatherable minerals disappear, b e c a me l e s s That is, l e a v i n g o n l y t h e mo r e r e s i s ­ tant species. He p r o p o s e d a n " o r d e r o f p e r s i s t e n c e " heavy m i n e r a l s from t h e s e o b s e r v a t i o n s . s e q u e n c e wa s easily In g e n e r a l o f 25 this i n h a r mo n y w i t h t h o s e p r o p o s e d by T h o u l e t , G o l d i c h a n d S m i t h s o n a l t h o u g h e a c h o n e was b a s e d on s o me wh a t different data. persistent garnet, P etiijohn's is: anatase, biotite, epidote, zoisite, augite, and o l i v i n e . garnet. The muscovite, apatite, kyanite, r e l a t i v e o r d e r from most t o l e a s t illmenite, hornblende, sillim anite, rutile, zircon, magnetite, andalusite, He c o n s i d e r e d q u a r t z t o staurolite, topaz, hypersthene, monazite, sphene, diopside, actinolite b e mo r e r e s i s t a n t than r e l a t i v e s t a b i l i t y o f m i n e r a l s was o b s e r v e d t o f o l l o w a p p r o x i m a t e l y t h e r e v e r s e o r d e r o f t h e Bowen r e a c t i o n series, that is the f i r s t minerals to are the f i r s t m inerals crystallize f r o m a magma to weather. Cann a n d W h i t e s i d e ( 1 9 5 5 ) f o u n d t h a t o r t h o c l a s e f e l d s p a r s w e r e mo r e r e s i s t a n t than p la g i o c l a s e f e ld s p a rs in t h e M a r l e t t e soil. Brown a n d J a c k s o n and garnet hornblende ratios (1958) a t t r i b u t e d in A 2 -h o r i z o n s the higher relative 9a r n e pyroxene to the re s t of 59 the p r o f ile s o f t wo H i a w a t h a s o i l s o f pyroxene and h o r n b le n d e . re s is ta n t species G a r n e t was c o n s i d e r e d t o b e a since the g a ^ e t t h e s a me t h r o u g h o u t to the chemical w eathering r a t i o was a p p r o x i m a t e l y the p r o f i l e . In r e c e n t s t u d i e s o f M i c h i g a n s o i l s , (I960) s h o we d a s l i g h t of bisequal soils. decrease Hornblende, Yassoglou and W h i t e s i d e in f e l d s p a r s in t h e A 2 - h o r i z o n o l i v i n e and e p i d o t e w e a t h e r i n g took p la c e in a l l h o riz o n s above th e Bt, w i t h th e weathering increasing with proximity to the soil Magnetite, zircon, inten sity of surface. g a r n e t and to u r m a l i n e were c o n s i d e r e d to be r e s i s t a n t . T h e s e c o n c l u s i o n s w e r e b a s e d on s t u d i e s o f f i n e sand f r a c t i o n s of the s o i l s . G. P a r a m e t e r s f o r j u d g i n g t h e c h a r a c t e r o f a s e d i m e n t by i t s siz e d is tr ib u tio n curve The s o r t i n g o f a m a t e r i a l , e f f i c i e n t of s o r t i n g which th e t h i r d and f i r s t i s m e a s u r e d by t h e c o ­ is t h e s q u a r e r o o t o f t h e q u a r t i l e s , , Q^., w h i c h a r e o b t a i n e d f r o m the cumulative p a r t i c l e s i z e d i s t r i b u t i o n curve. are the p a r tia l siz e values associated with the distribution 1.0. (usually in te rsectio n of with the cumulative curve. c o e ffic ie n t of r a t i o of in d i a m e t e r i n mm) t h e 25 a n d 75 p e r c e n t v a l u e s A p e r f e c t l y s o r t e d se d im e n t has a The s k e w n e s s , i s m e a s u r e d by Th e q u a r t i l e s Q 1 Q3 TMd72 o r symmetry o f a s i z e or the product of the f i r s t 60 and t h i r d q u a r t i l e s 50 p e r c e n t i l e . d i v i d e d by t h e s q u a r e o f Using t h e a v a l u e o f z e r o and a l l l o g 10 p e r f e c t s y m m e t r y h a s other values are e ith e r n e g a t i v e d e p e n d i n g on t h e d i r e c t i o n skewed. Wi t h p o s i t i v e s k e w n e s s , the f i n e , p o sitiv e or in which t h e c u r v e is c o a rs e r admixtures exceed w hile with n e g a tiv e skewness, Kurtosis t h e median o r the converse is t r u e . ^3 ~Q1 whe r e Pgo a n ^ P j o a r e 2 ( p 9 0 ” P 10> p e rc e n tile s or the siz es asso ciated with these percentage values, i s m e a s u r e d by respectively. With K u r t o s i s maximum p l u s o r p e a k e d n e s s 1938 a n d P e t t i j o h n H. C riteria for materials Marshall positional (a) is measured. in t h e (Krumbein and P e t t i j o h n 1957) judging d e p o s ltio n a l (19^3) uniform ity of sedim entary p r o p o s e d t wo c r i t e r i a for judging de- uniformity of sedimentary m a terials: Throughout the p r o f i l e the r e la tiv e proportions o f t wo o r mo r e o f t h e h i g h l y s h o u l d be t h e s a m e . zircon, (b) the q u a n tity tourmaline, Minerals c ite d garnet, Throughout the p r o f i l e bution of a given r e s is ta n t minerals f o r use were r u t i l e and a n a t a s e . the p a r t i c l e s i z e d i s t r i ­ r e s i s t a n t mineral s h o u l d remain t h e s a me . Barshad (1955) added to th e quartz, albite, l i s t of re s is ta n t minerals m icrocline or a combination of several resistan t minerals. 61 Barshad a l s o summarized t h e v a r i e t y o f c r i t e r i a establishing the uniform ity of so il for p a r e n t m a t e r i a l s and focuse d t h e a t t e n t i o n on t h e f o l l o w i n g c r i t e r i a : (1) Total m ineralogical heavy m ineral (2) a n a l y s e s w i t h e m p h a s i s on t h e suite. Nature of p a r t i c l e size d istrib u tio n of re sis ta n t minerals, (3) fractions of Nature of the a fraction of either th e heavy o r the light the non-clay f r a c t io n . ra tio of t wo r e s i s t a n t m i n e r a l s the non-clay f r a c tio n , in preferably the f i n e sand or c o a rs e s i l t . (k) P a r t i c l e s i z e d i s t r i b u t i o n of the whole n on-clay f r a c t ion. (5) Nature of c lay d i s t r i b u t i o n w ith depth. (6 ) Nature of th e change in ch e m ic al composition of the non-clay f r a c tio n . I. Weathering in te n s ity of sedimentary so il Jackson e t a l . generalizations fractions (19^8) h a v e ma de s e v e r a l fundamental concerning the weathering of the clay siz e in s o i l s and s e d im e n ts . se q u en ce m i g h t be p r e s e n t . sequence m aterial, is co n s id e re d Th e y p o s t u l a t e d a w e a t h e r i n g The p o s i t i o n o f a n y m i n e r a l in t h e t o b e d e t e r m i n e d by t h e o r i g i n a l parent i n t e n s i t y and c a p a c i t y the concept materials factors. They a l s o s e t forth t h a t d i f f e r e n t m i n e r a l s may b e t h e p a r e n t m a t e r i a l 62 in s u c c e s s i v e s t a g e s o f t h e w e a t h e r i n g s e q u e n c e a nd t h a t weathering reactions are reversible Jackson e t a l . and o t h e r s i m i l a r reactions: in n a t u r e . (1952) a t t r i b u t e s layer s i l i c a t e s t h e w e a t h e r i n g o f mica to the fo llo w in g chemical d e p o t a s s i c a t i o n , hydroxyl a t ion, d e a 1u m i n a t i o n , and des i 1 i c a t i on. Van H o u t e n ( 1 9 5 3 ) in s t u d y i n g the clay f r a c t i o n from s e d i m e n t a r y rocks and t h e i r d e r i v e d s o i l s w i t h a revie w o f published studies within of s o i l s the U.S., f o r m e d on s e d i m e n t a r y from t h e i r p a r e n t m a t e r i a l s . is a b un da nt deposited that clay minerals r o c k s a r e commonl y i n h e r i t e d The i 1 1 i t e c l a y m i n e r a l i n many k i n d s o f s e d i m e n t a r y b e d r o c k s , alluvium c a rrie d illite. concluded to depositional The c o m p o s i t i o n o f t h e group and t h a t basins contains considerable recent i 11i t e rich alluvium in t h e s e a has n o t been s i g n i f i c a n t l y a l t e r e d marine environment. The k i n d o f illite by t h e common in s o i l s a n d a l l u v i u m g e n e r a l l y has a lower 1^0 c o n t e n t and S j 02 ratio A 12 ^ 3 than the inherited illite illite i n many s e d i m e n t a r y rocks indicating that g e n e r a l l y h a s b e e n a l t e r e d s o me wh a t by s o i l forming p r o c e s s e s . Brown ( 1 9 5 5 ) h a s shown t h a t theoretical e ffe c t of replacing i n t e r l a y e r p o t a s s i u m w i t h h y d r o x o n i u m i o n (H3 0 + ) i n m i c a s to increase the absolute i n t e n s i t y o f t h e 001 reflection. is The 63 002 r e f l e c t i o n is or replacement, increased or both, to a of lesser extent. Thus, removal i n t e r l a y e r p o t a s s i u m by a n having a s m a lle r s c a t t e r i n g factor will increase the ion intensity r a t i o o f gg^. . Johnson and J e f f e r i e s of illite the well (1957) t o be more p ro n ou n ce d developed s o i l s th a t poor d rain a g e found the e x t e n t of weakening in t h e w e l l from deep g l a c i a l inhibited d r a i n e d me mb e r s o f till. Th e y c o n c l u d e d the formation of v erm ic u lite in th e lower h o r i z o n s . White e t a l . (I960) showed t h a t th e dominant c l a y mineral component o f p a r e n t m a t e r i a l s in t h e g l a c i a l tills textured sedimentary t h e Midwest illite. weathering rocks o f reactions are restricted of the micaceous m in e ra ls primarily v e r m i c u l i t e and montm ori1I o n i t e . is reflected The or com pletely resemble those of influence of resulting weathering of Soils the micaceous m in e r a ls . than s o i l s of poor from the o f good d r a in a g e have h i g h e r p r o p o r t i o n o f v e r m i c u l i t e in t h e u p p e r h o r i z o n s topography in t h e p r o p o r t i o n and d i s t r i b u t i o n o f the v e r m i c u l i t e and montm ori1 I o n i t e nite Thus to a l t e r a t i o n to produce p a r t i a l l y e xp an din g p r o d u c t s whose c h a r a c t e r i s t i c s and d r a i n a g e is and f i n e internal to montmori1 Io ­ internal drai nage. Franzmeier fraction (1963) found counts o f the li g h t mineral i n d i c a t e d no k - f e l d s p a r s w e a t h e r i n g . Plagioclase 64 f e l d s p a r e e x h i b i t e d small but absence i n t h e A2 . proportions in a l l other horizons C h l o r i t e s and th e l i g h t a l t e r e d grains s howe d t h e m o s t e v i d e n c e o f w e a t h e r i n g a n d t h e y w e r e p r o b a b l y altered only in p r e v i o u s w e a t h e r i n g c y c l e s and p e d o g e n e s i s a c t e d in removi ng t h e h i g h l y a l t e r e d m a t e r i a l s . In t h e h e a v y mineral f r a c t i o n n o t i c e a b l e w e a t h e r i n g was o b s e r v e d augite, hornblende, and h y p e r s t h e n e o f t h e A 2 -h o r iz o n s of a l l the chronosequence s o i l s . distribution The p a t t e r n o f t h e c l a y m i n e r a l in t h e p r o f i l e s supported the e a r l y e s t a b l i s h e d w e a t h e r i n g se q u en ce from i l l i t e intergradient vermiculite The r e c e n t South Westland, rapid and c h l o r i t e , possibly through t o m o n t m o r i 11 o n i t e . r e t r e a t of the Franz J o s e f G l a c i e r New Z e a l a n d , morainic debris, in t h e has produced e x t e n s i v e subsequently fashioned in tracts into a se rie s of of t e r r a c e s o f v a r y i n g a g e s by t h e m e a n d e r i n g Wa i h o R i v e r ( S y e r s 1967. ) A s e r i e s o f v e r y yout hf ul s o i l s h a s d e v e l o p e d on t h e parent materials concomitantly with the successive colonization stages of p la n ts. The m a j o r f e a t u r e o f s o i l progressive accumulation of organic m atter development is th e i n t h e u p p e r f ew c e n t i m e t e r s o f m i n e r a l m a t t e r a n d on t h e s u r f a c e a s a d e e p fibrous, g r e a s y br own mor interlaced with a c tiv e ly ramifying roots. In t h i s j u v e n i l e s t a g e o f s o i l development the gradual accumulation o f o r g a n ic m a tt e r governs changes i n many s o i l 65 properties. properties Therefore, of its total constituents the accum ulation, inorganic, the a r e o f paramount l o s s e s and r e d i s t r i b u t i o n organic), and changes o f e c o s y s t e m s have been s t u d i e d . due t o t h e lapse of d if fe re n t also indicated between d i f f e r e n t weathering. likely that exceeds the fractions soil Soil that the time s i n c e development, that in m a g n i t u d e . terraces inorganic P c o u l d be u s e d a s an r a t e a t which the s u r f a c e increases thus initiated. d istrib u tio n of result but in t h e s e q u e n c e differences are r a t e o f d i s s o l u t i o n o f Ca-P, the importance, o f C, N, P ( t o t a l , In t h e e a r l y s t a g e s o f d e v e l o p m e n t into occluded P with fraction in r e a c t i o n increments of were formed and p l a n t s u c c e s s i o n Syers o r g a n i c m a t t e r and the it appeared i.e. apatite, inorganic-P the surface Wi th surface organic-P index of is c o n v e r t e d inorganic-P in c re a s in g degree of is c o n v e rted p o s s i b l y by i n c o r p o r a t i o n o f P i n t o t h e m a t r i c e s into occluded-P of developing g r a in c o a t i n g s and c o n c r e t i o n s . Results modify t h i s of th is pattern. study also indicate t h a t g le y in g might Thus t h e a m o u n t a n d n a t u r e o f s o i l , components c a p a b l e o f s o r b i n g a nd o c c l u d i n g "P" a r e o f c o n s i d e r ­ able of importance inorganic-P in d e t e r m i n i n g t h e forms in s o i l s . F ranzmeier and W h i te s i d e chronosequence the d is t r i b u t i o n of (1963) in n o r t h e r n M i c h i g a n in s t u d y i n g a S p o d o s o l reported the in ten sity of pedogenesis in t h e b ea ch s a n d s o f t h e f o u r s u r f a c e s the r e t r e a t of the of the glacial last glacier and th e f l u c t u a t i o n G r e a t Lakes d u r i n g t h e c r u s t a l n o rth e rn Michigan as uplift i n f l u e n c e d by t i m e f a c t o r s 2 , 2 5 0 y e a r s o f Al goma a g e t o The f o u r s u r f a c e s a s Nipissing, (Valders) in r a n g i n g from 10,000 y e a rs o f th e V a ld e r s m orain e. r e c o g n i z e d by t h e g e o l o g i s t s Algonquin, f o r m e d by a r e Al g o ma , and V a l d e r s . Their p o stu la tio n for the chronology of the morphologic variation in t h e s o i l s o f the d i f f e r e n t s u r f a c e s went as follows: A f t e r o r g a n i c m a t t e r b e g a n t o a c c u m u l a t e on t h e surface, c a r b o n a t e s were l e a c h e d from th e e n t i r e solum. hydrogen ions d i f f e r e n t i a l l y and B h o r i z o n , h o r i z o n s was c o u p l e d w i t h s ig n ific a n t clay accumulation. the beginning of C a p i l l a r y p o r o s i t y and r e a d i l y increased with du e t o t h e material increase of colloidal Detailed mineraloglcal and chemical a n d W h i t e ( 1 9 6 1 ) on t h e 2 - - 0 . 2 and 3 0 - 3 6 inches layers longer than r e l a t i v e age from p e d o g e n e s i s . s t u d i e s made by fra c tio n s of 0--6 indicated that w ea th erin g fo r s o i l s of the Tazewell be a b o u t 6 ^ 0 0 y e a r s it Humus s e g r e g a t i o n a v a ila b le water holding capacity Hensel in t h e A f r o m t h e A- 2 t o t h e B- h w h e r e i m m ob i l i ze d f i r s t as aluminum p h o s p h a t e . in t h e s u b s o i l ions t h e c r e a t e d pH g r a d i e n t c o n d i t i o n p e r m i t t e d the phosphate tr a n s l o c a t i o n was replaced calcium As inches t h e maximum t i m e o f substange in I n d i a n a may that a v a ila b le for weathering 67 of so il o f t h e Cary s u b s t a g e . The end a n d t e r m i n a l moraines of the Tazwel1 su b sta g e were found to have a h ig h e r illite c o n t e n t than t h e ground m o rain e s due t o t h e s u p e r g l a c i a l move me nt a n d e n r i c h m e n t by f o r e i g n m a t e r i a l s , i.e. from t h e Ca nadi an s h i e l d , moraines. also indicated that 2--0.2 fractio n of on e n d a n d t e r m i n a l mica s c h i s t s Th e y t h e r a t e o f w e a t h e r i n g o f K2 O f r o m t h e the 0 -- 6 m o r a i n e s wa s e s t i m a t e d inch samples t o be a b o u t 0 . 1 l o c a t e d on g r o u n d percent per T h i s K2 O c o n t e n t d e c r e a s e d f r o m 2 . 9 t o 2 . 2 p e r c e n t 1000 years. in g o i n g from Cary t o t h e s o u t h e r n b o r d e r o f t h e T a z w e l 1 s u b s t a g e o f ground m o r a i n e s and showed l e s s 30--36 J. S ta te s amidst the well included is s i t u a t e d in n o r t h c e n t r a l known U p p e r G r e a t L a k e s . i n t h e h u mi d t e m p e r a t e c l i m a t i c i s d i v i d e d among d e c i d u o u s , evergreen, the intensities of soil region region that are asso ciated with t o p o g r a p h i e s and unequal development p r o c e s s e s . defined ecosystems of a s s o c ia te d s o i l s different This United and mixed v e g e t a t i o n This c l i m a t e and t h e s e v e g e t a t i o n s various parent m a te ria ls, well that of taxonomy Michigan as a l o c a l i t y zones. than inch sam ples. Soil is a l s o fluctuation These gave r i s e t h a t c o n t a i n e d e i t h e r one o r a range ( Mu r p h y 1968 a n d W h i t e s i d e e t a l . 1953). to 68 With c o n t i n u e d r e mo v a l o f b a s e s , B - h o r i z o n move s p r o g r e s s i v e l y d e e p e r , d e c r e a s e s and a f a i n t " B l e i c h e r d e " ma t the fin e r biological in t h e f o r m e r A - h o r i z o n , Immediately beneath a zone o f s e s q u i o x i d e accumulation develops comparable to th a t podzols. This Veatch e t a l . Soil is c o n s i d e r e d as 1934, Tavernier, classification activity l a y e r forms below t h e l e a f i n w h a t f o r m e r l y wa s t h e A - h o r i z o n . t h i s and a l s o illuvial in w e l l Brown P o d z o l i c developed (Veatch 1954). a s an a r t , s c i e n c e and a p r o f e s s i o n i s a ma n - ma d e i m p e r f e c t s y s t e m o f g r o u p i n g s o i l s i n to taxonomic c a t e g o r i e s o f g e n e t i c a n d / o r ma n a g e me n t s i g n i f i c a n c e v a r ie s w ith the purpose of study were placed the c l a s s i f i c a t i o n . i n t wo s o i l are the morphogenetic classification 1949 o r c l a s s i c a l A me r i c a n C o m p r e h e n s i v e S y s t e m t h a t g e n e s i s and a c t u a l 1938 c l a s s i f i c a t i o n systems. They system and the 1965 i s b a s e d on m o r p h o l o g y , In t h e t h e s e p e d o n s a r e c l a s s i f i e d a s G r a y Brown in t h e 1965 c l a s s i f i c a t i o n they a r e c o n s i d e r e d as A l f i s o l s and S p o d o s o l s , th e g r e a t group taxonomic le v el.(S o il The 7 t h A p p r o x i m a t i o n , system and respectively Survey S t a f f 1938, 1965). Comprehensive C l a s s i f i c a t i o n System was c r e a t e d a f t e r a l m o s t t h i r t y classification that The p e d o n s u n d e r b e h a v i o r and management o f s o i l s . P o d z o l ic s o i l s and P o d zo ls , w h i l e at 1953, years of using its modification the in 1949. 1938 69 When i t replaced the recognized s o il deleted the 1938 s y s t e m series but than t o t a l type) remain from th e system . Actually, it retained and h i g h the type and phase of surveys levels identifies i n me di um in t h e U n i t e d S t a t e s (Soil I960). The r e c o g n i z e d s o i l s large bodies but g e n e r a l l y do n o t o c c u r u n i f o r m l y r a t h e r as small up o f a n u m b e r o f s o i l types which d i f f e r These g l a c i a l series, soil soil rather by g e o m o t p h o l o g i s t s o r s o i l a l t h o u g h s ome o f t y p e s and p h a s e s o f s o i l than s t r a i g h t - 1 ined or a n g u la r, have n e v e r been c l e a r l y defined scientists. are geologically the g la cia l material relatively in Michigan s o i l s young, i n s o u t h e r n M i c h i g a n may have been d e p o s i t e d o v e r 3 0 , 0 0 0 y e a r s a g o . the te x tu re of in v a r y i n g d e g r e e s . mapping u n i t s a r e g e n e r a l l y c u r v i l i n e a r and t h e i r m u l t i t u d e o f v a r i a n t s All Michigan s o i l s in b o d i e s a n d a s s o c i a t i o n s ma de c h e m i c a l l y and p h y s i c a l l y in s u r f a c e c o n f i g u r a t i o n differences that rather (and the type i n t h e common m a p p i n g u n i t s intensity soil Survey S t a f f In o t h e r w o r d s , the s e r i e s in u s e a s a combined l ower c a t e g o r y the predominant s o i l s the then is fo llo w in g a reforming approach revolution since level. r e t a i n e d most o f r e p la c e d the hig h e r c a t e g o r i e s and lower c a t e g o r i e s the 7 th approximation it Major local soil are asso cia ted with v a ria tio n s t h e i r p a r e n t m a t e r i a l s and the n a tu ra l in drainage. 70 Organic s o i l s have developed properties are i n t h e swamps o r m a r s h e s . Their l a r g e l y d e p e n d e n t on t h e k i n d s o f p l a n t s from which t h e y a r e formed and t h e d e g r e e o f t h e i r d e c o m p o s i t i o n . They u s u a l l y o c c u p y t h e although small Whiteside, lowest levels in t h e l a n d s c a p e , a r e a s o c c u r on w e s t s e e p a g e s l o p e s . S c h n e i d e r and Engberg into ten g r e a t groups of mineral (1959) c l a s s i f i e d Michigan s o i l s soils. These g r e a t s o i l g r o u p s a r e s hown i n t h e f i g u r e b e l o w . S o i 1 Order Intrazonal Zona l Azona1 A1luvial Li t h o s o l s Regosols F i g u r e 5. Podzol Gra\y Browni Podzolic Schematic diagram groups r e p r e s e n t e d Bruni zzem em tran­ s i t i on Humi c Gley and B r u n i - Brown G r o u n d Low zem F o r e s t W a t e r Humi c Podzol Gley o f 19 ^ 9 c l a s s i f i c a t i o n in M i c h i g a n . great soil 71 The i n t e r a c t i o n among t h e v a r i o u s n o r t h e a s t C l i n t o n County r e s u l t e d and S p o d s o l s . o f Veatch in t h e G r a y Brown P o d z o l i c r e g i o n . T a v e r n i e r and Smith (1957) Podzolic s o il s a r e found Podzols or a r e restricted Bot h Thor p a n d S m i t h indicated that clays. the B-horizon the and t h e G r a y Brown to younger ca lc a re o u s in t h e p a r e n t m a t e r i a l s . tends than the parent m aterials. these so ils shows an This c o n c e n t r a t i o n of c lay s by t h e b i v a l e n t c a t i o n s With t h e c o n t i n u e d leaching it is i s d e s t r o y e d a n d a Brown P o d z o l i c to develop i n t h e A2 o f t h e G r a y Brown P o d z o l i c soi 1 . But, most o f within the mineral t h e A l f i s o l s wh e n w e l l soils in t h e s t u d y a r e a is fall t o somewhat p o o r l y d r a i n e d an d M o l l i s o l s when p o o r l y t o v e r y p o o r l y d r a i n e d . Alfisol in t h i s area t h e e q u i v a l e n t f o r G r a y Brown P o d z o l i c w h i l e M ollisols are t h e e q u i v a l e n t f o r Humi c G l e y s , the e q u i v a le n ts Spodosols are for Podsols. T h e name G r a y Brown P o d z o l i c wa s p r o p o s e d f o r a g r o u p o f zonal soils illuvial in M ollisols (19^9)» i n s o me w h a t w a r m e r c l i m a t e s is p r o b a b l y due t o t h e i r f l o c c u l a t i o n or Podzol A lfisols, C l i n t o n County w i t h i n horizon c h a r a c t e r i s t i c of accumulation of s i l i c a t e found t h a t forming f a c t o r s t h e American Comprehensive System (1965). (1953) c o n s i d e r e d a l l The i l l u v i a l soil i n a h u mi d c o o l tem perate c l im a te having a blocky B-horizon of clay accumulation. This d e f i n i t i o n was 72 adequate to d is tin g u is h these s o ils c a l l e d G r a y Wooded a n d S o l from t h o s e groups Br un A c i d e . Distinction between t h e Gr a y Brown P o d z o l i c a n d t h e N o n c a l c i c Brown s o i l s no t been c l e a r e x c e p t in terms o f c l i m a t e Cline a ls o pointed out (Cline, later had 19*+9). t h a t Brown F o r e s t s o i l s o f New Yor k i n d i c a t e d t h a t when t h e r e mo v a l o f b a s e s c o n t i n u e s t h e Brown F o r e s t b a s e l e v e l d e c r e a s e somewhat, and th e b i o l o g i c a l the s tr u c tu r a l become c o a t e d w i t h t h i c k aggregates beyond activities in t h e B - h o r i z o n layers of oriented clays indicating t r a n s l o c a t i o n a n d a c c u m u l a t i o n o f c l a y a n d t h u s b e c o me Gr a y Brown P o d z o l i c s o i l s t h a t a r e c h a r a c t e r i s t i c o f th e cool h u mi d temperate c lim a te . A modal a n d a n u mb e r o f Podzolic s o i l s i n t e r g r a d e t y p e s o f G r a y Brown h a v e b e e n r e c o g n i z e d a n d d e f i n e d on t h e b a s i s of t h e pedon c h a r a c t e r i s t i c s . s o i l s may v a r y g r e a t l y in t h e i r The t y p e s o f G r a y Brown P o d z o l i c pedon c h a r a c t e r i s t i c s on t h e p a r e n t m a t e r i a l s a n d n a t u r a l Veatch (1953, depending drainage conditions. 193*0 s e p a r a t e d t h e P o d z o l region of northern M i c h i g a n f r o m t h e G r a y Brown P o d z o l i c r e g i o n o f s o u t h e r n M i c h i g a n by a l i n e w h i c h f o l l o w s a p p r o x i m a t e l y t h e s o u t h e r n lim it of the native white pine maple and b e e c h ) The F o x , recognized as in t h e n a t i v e hardwood ( s u g a r pine veg etatio n . Boyer, and Sp inks s o i l s in t h i s study are r e p r e s e n t a t i v e s o f G r a y Brown P o d z o l i c g r e a t 73 soil groups. The me mb e r s o f a r e c h a r a c t e r i z e d by: (1) A t h e G r a y Brown P o d z o l i c g r o u p (Cline 19^9, T a v e r n ie r and Smith, 1957) m u l l - l i k e A1 h o r i z o n ( 2 ) An A2 h o r i z o n t h a t may v a r y c o n s i d e r a b l y of development. I t may b e y e l l o w i s h b r o wn t o br o wn g r a y o r g r a y . in t h a t its appreciably horizons It d iffe rs boundaries are f r o m A2 o f p o d z o l s it is b r o wn o r b r o w n i s h B2 h o r i z o n w h i c h is c ommon l y l e s s (3) A d e f i n i t e in d e g r e e l e s s a b r u p t and bleached. finer in t e x t u r e than any o f the other in t h e p e d o n . ( k ) A B1 h o r i z o n w h i c h the t r a n s i t i o n transition is o ften d isc o n tin u o u s, f r o m A2 t o B2 h o r i z o n s . f r o m B2 t o that is The the calcareous parent m a te ria ls is g e n e r a l l y d i s t i n c t and q u i t e s h a r p . A1 h o r i z o n s a r e m o d e r a t e l y s a t u r a t e d w i t h b a s e s 85%) w h i l e t h e There l o w e r B2 h o r i z o n (35% t o is almost com pletely s a t u r a t e d . is a v e r y marked a c c u m u l a t i o n o f s e s q u i o x i d e s in t h e B - h o r i z o n b u t o n l y a v e r y s l i g h t o r no a c c u m u l a t i o n o f organic m atter. Gardener and W h i t e s i d e an a r e a Podzolic in c e n t r a l transition these s o ils Michigan region. (1952) s t u d i e d a 1 i t h o s e q u e n c e from l y i n g a l o n g t h e Podzol Regardless of the h a v e a common s e q u e n c e o f h o r i z o n s . G r a y Brown lithology, While s u r f a c e horizons are c l e a r l y A2 a n d B2 h o r i z o n s soils. th o se of a Podzol; they a r e u n d e rla in c h a r a c t e r i s t i c o f G r a y Brown P o d z o l i c In s a n d i e r t y p e s the upper horizons of a r e much m o r e s t r o n g l y d e v e l o p e d than a r e P odzolics sequum, finer is t r u e . These t r a n s i t i o n a l w hile in t h e soils the t e x t u r e o f t h e Podzol t h e G r a y Brown textures are neither n o r t r u e G r a y Brown P o d z o l i c s b u t a l l of both groups. exhibit the reverse t r u e Podzols the c h a r a c t e r i s t i c s The a f f i n i t y f o r o n e o r t h e o t h e r is related (1955) a p p l i e d a m o d ifie d M arsh all Hase man t e c h n i q u e t o s t u d y a P o d z o l - G r a y Brown P o d z o l i c in M i c h i g a n , a n d mode o f o r i g i n . soil of fraction illuvial in an a t t e m p t support resistant coarser t h e two s e t s organic i n t o t h e Bt h o r i z o n s . th e s u g g e s t i o n o f G ardener and W h ite s id e ( 1952) th a t sim ultaneously processes of d if f e r e n t c o n s titu e n ts p a r t s o f th e solum o c c u r K. Inter­ genesis in t h e p r o f i l e s : i n t o th e B -h ir and c l a y involving t h e movement and t h e i r d e p o s i t i o n in d i f f e r e n t in t h i s Intergrade. Land u s e Most o f the land and its They f o u n d t h a t p r o c e s s e s a r e occurring m a t t e r movement to determ ine They u s e d q u a r t z o f t h e instead of zircon. These f i n d i n g s to the parent m a te r ia ls . Cann a n d W h i t e s i d e grade s o il by in t h e a r e a o f s t u d y is in u s e f o r production of e i t h e r c u l t i v a t e d crops or fo ra g es used in 75 dairying. and s h e e p . The m i n o r l i v e s t o c k e n t e r p r i s e s a r e h o g s , poultry Wh e a t i s a m a j o r c a s h c r o p w i t h w h i t e f i e l d a n d s u g a r b e e t s on f a r m s w h e r e c o n d i t i o n s a r e f a v o r a b l e . a r e g e n e r a l l y o f good q u a l i t y . of th e farm b u i ld i n g s (Veatch, This 1953). is reflected beans Far ms in t h e q u a l i t y 3. MATERIALS AND METHODS N o r t h e a s t C l i n t o n C o u n t y was e n t i r e l y c o v e r e d by a me d i u m i n t e n s i t y s o i l 1967 a n d 1 9 6 8 . survey during the survey season of M a p p i n g w a s a c c o m p l i s h e d by d i f f e r e n t s o i l s u r v e y o r s eq u ip p e d w ith a s t a n d a r d i z e d mapping le g en d , p h o t o b a s e maps, and s o i l The d e s c r i p t i o n s o f mapping u n i t s w ere r e v i s e d and u p d a t e d as fre q u e n tly as d escrip tio n s prepared aerial i m p o r t a n t new o b s e r v a t i o n s la b o ra to ry were r e p o r te d . Before l i t e r a t u r e on s u r f a c e g e o l o g y o f An e a r l i e r in 1936. from th e f i e l d initiation of the s o il I t was reviewed d u rin g and t h e i r County w ere r e l a t e d to t h e i r e q u i v a l e n t mapping u n i t s survey. distribution Landscape t h e 19^2 C l i n t o n C o u n t y s o i l the survey, s u r v e y w a s p r e p a r e d on s t u d y and t h e s o i l s current soil or t h e a r e a was a l s o r e v i e w e d . C lin to n County s o i l t o p o g r a p h y b a s e maps in t h e a r e a . this in n o r t h e a s t C l i n t o n in t h e i n t e r p r e t a t i o n s w e r e a i d e d by survey r e p o r t and r e p o r ts of Mid-M ichigan s u r f a c e geo lo g y t h a t were o b t a i n e d from l i t e r a t u r e reviewed above. A. Field observations The s o i l and mapping o f units. survey c o n s iste d of exam ination, the s o i l s in t h e f i e l d a s r e c o g n i z e d mapping M a p p i n g u n i t s w e r e g e n e r a l l y named a s 76 classification phases of types 77 of soil series. internal The s o i l s w e r e c l a s s i f i e d a c c o r d i n g c h a r a c t e r i s t i c s and any a d d i t i o n a l influencing th e ir s u i t a b i l i t y Examination of inches management associated features for various p o ssib le investigations classification in t h i s humid c o o l M a p p i n g d e l i n e a t i o n s w e r e made on a e r i a l as base maps. differences in t h e b o u n d a rie s and f i x unit purposes tem perate photographs The d e l i n e a t i o n s a r e b a s e d on s i g n i f i c a n t landscape plus t h e pedon c h a r a c t e r i s t i c s . T est holes were bored about every f iv e a c re s th e maps. land u se s. p e d o n s t o d e p t h s o f kO t o 6 6 is c o n s id e re d a d e q u a te f o r s o i l and s o i l area. the s o il to t h e i r to d e fin e the t h e i r p o s i t i o n s on b o t h t h e l a n d s c a p e a n d P e r i o d i c pedon d e s c r i p t i o n s w e re p r e p a r e d and mapping in c lu sio n s were e s tim a te d w ith the auger b o rin g s. Four t e r r a c e s a l o n g t h e Maple R i v e r w ere r e c o g n i z e d and e v a l u a t e d from c h a n g e s in c o n t o u r lines, old so il units, t h e c u r r e n t s u r v e y mapping u n i t s , aerial photo from a l l interpretation. A fter these d i f f e r e n t approaches ecosystems, a geomorphic s o i l t e s t during the s o il r e p o r t mapping and s t e r e o s c o p i c integration of to the inform ation interconnected h y p o t h e s i s was made a n d p u t t o survey season. F i e l d e x a m i n a t i o n o f numerous s i t e s selecting survey r e p r e s e n t a t i v e sampling s i t e s provided a b asis at for t h e end o f t h e f i e l d s e a s o n on l a n d f o r m s o f c o m p a r a b l e t o p o g r a p h y a n d v e g e t a t i o n . D e s c r i p t i o n s o f t h e p e d o n s w e r e made on S CS - 2 3 2 f o r m s a n d s a m p lin g o f t h e h o r i z o n s w ere done a c c o r d i n g l y . 78 The a c t u a l reported such as pedon m o rp h olo gy o f e a c h s e l e c t e d s i t e i n t h e n e x t f ew p a g e s . to note fe a tu re s sam pling, and p r o p e r t i e s o f pedons a t and to r e p r e s e n t ecosystem to help They s e r v e d v a r i o u s the s o il is functions th e time of i n s i t u wi t h i n i t s associated i n r e c o g n i z i n g t h e n u mb e r o f s t r a t a w i t h i n e a c h p e d o n a n d t o make t h e n e c e s s a r y c o m p a r i s o n s among t h e d ifferen t sig n ific an t properties of the d e s c rib e d pedons. In F i g u r e 6 p h o t o g r a p h s o f some o f t h e s e l e c t e d s c a p e s and pedons a r e p r e s e n t e d . site land­ 79 Figure 6 . A s e l e c t i o n o f pedons and la n d sca p es from t h e s t u d i e d pedons and t h e i r s i t e s 80 Site: AA P r o f i l e N o . : Cn 6 8 0 5 ( B r o n s o n loam on 1936 map) Ma pp i n g U n i t : 2183 B1 O s h t e m o s a n d y l oam Location: SW 1 / 4 SE 1 / 4 SE 1 / 4 S e c . 21 O v i d T o w n s h i p , C lin to n County, Michigan E levation: 755 f e e t a b o v e s e a l e v e l Physiography: Fluvial te rra c e V egetation: A lfalfa fie ld Parent m a te r ia l: Sandy f l u v i a l m a t e r i a l T y p i f y i n g Pedon depth h o r i zon description 0 t o 10M Ap V e r y d a r k g r a y i s h br own (10YR 3 / 2 ) m o i s t ; s a n d y l o a m ; w e a k me d i u m s u b a n g u la r blocky b reak in g in to m oderate medi um g r a n u l a r s t r u c t u r e ; f r i a b l e ; s l i g h t l y a c i d ; a b r u p t smooth boundary. 10" t o 16" A2 D a r k y e l l o w i s h br own (10YR 4 / 4 ) m o i s t ; s a n d y l oa m; m o d e r a t e medi um a n g u l a r blocky s t r u c t u r e ; f r i a b l e ; n e u t r a l ; c l e a r smooth boundary. 16" t o 23" B1 Y e l l o w i s h b r own (10YR 4 . 5 / 4 ) w i t h f e w o f d a r k y e l l o w i s h b r ow n (10YR 3 / 4 ) a n d y e l l o w i s h brown (10YR 5 / 8 ) , m o i s t ; lo a my s a n d ; m o d e r a t e f i n e subangular blocky s t r u c t u r e ; f r i a b l e ; n e u t r a l ; g ra d u al smooth b o u n d ary . 23" t o 3.1" MB21t D a r k y e l l o w i s h br o wn (10YR 4 / 4 ) ^ m o i s t ; s a n d y l o a m ; m o d e r a t e medium subangular blocky s t r u c t u r e ; f r i a b l e ; n e u t r a l ; c l e a r smooth bou n d ary . 31" t o 35" IIB22t D a r k r e d d i s h b r own (5YR 3 / 4 ) , m o i s t ; s a n d y c l a y l o a m ; m o d e r a t e medium a n g u la r blocky s t r u c t u r e ; firm ; n e u t r a l ; c l e a r i r r e g u l a r boundary. 35" t o 40" I IB3 Y e l l o w i s h br own (10YR 5 / 4 ) a n d few d a r k y e l l o w i s h b r ow n (10YR 4 / 4 ) s p l o t c h e s , m o i s t ; loamy s a n d ; m o d e r a t e medi um a n g u l a r b l o c k y s t r u c t u r e ; f r i a b l e ; n e u t r a l ; a b r u p t smooth boundary. d e s c r i p t i on depth horIzon 40" t o 44" I I IC1 Y e l l o w i s h b r own (10YR 5 / 6 ) m o i s t ; s a n d ; weak c o a r s e s u b a n g u l a r b lo c k y breaking in to s in g le g rain s t r u c ­ tu r e le s s ; loose; ca lca re o u s; c le a r smooth b o u n d a ry . 44" t o 5 2 " I I IC 2 Y e l l o w i s h br own (10YR 5 / 4 ) m o i s t ; sand; s in g l e g ra in s t r u c t u r e l e s s ; loose; c a lc a re o u s. This terrace and IIIC 2 t h e r e sam pling. i s o f t h e L i t t l e Maple R i v e r . Between is a t h i n c o n tin u o u s d a rk band to o sm all T h i s b a n d may b e a n o l d s u r f a c e a t i m e l a g b e t w e e n t wo t i m e s o f d e p o s i t . that IIIC1 for represents S ite: D P r o f i l e No.: Cn 6 8 0 6 Mapping u n i t : 2 55 3 B1 B o y e r - F o x s a n d y l o a m ( F o x l oa m on 1936 map) Location: SE 1 / 4 SW 1 / 4 NE 1 / 4 S e c . 10 O v i d T o w n s h i p , C l i n t o n County, Michigan E levation: 735 f e e t a b o v e s e a l e v e l Physiography: D eltaic flu v ia l te rrac e V egetation: Pasture Parent m a te ria l: C o b b l y f i n e l oa my o v e r s a n d y f l u v i a l m a t e r i a l T y p i f y i n g Pedon depth h o r i zon d e s c r i p t ion 0 t o 9" Ap V e r y d a r k g r a y i s h b r o wn (10YR 3 / 2 ) , m o i s t ; f i n e s a n d y l o a m ; w e a k me d i u m su b an g u lar blocky break in g in to m oderate c o a rs e g ra n u la r s t r u c t u r e ; f r i a b l e ; s l i g h t l y a c i d ; a b r u p t smooth boundary. 9" t o A2 D a r k br o wn (10YR 4 / 3 ) , m o i s t ; f i n e s a n d y loam; m a s s i v e s t r u c t u r e l e s s v e s i c u l a r t o w e a k me d i u m p l a t y s t r u c t u r e ; f r i a b l e ; s l i g h t l y a c i d ; c l e a r smooth boundary. 14" Blx D a r k y e l l o w i s h b r o w n (10YR 4 / 4 ) ; m o i s t ; s a n d y loam; w eak t o m o d e r a t e an g u lar blocky s t r u c t u r e ; f r a g i l e ; s l i g h t l y a c i d ; c l e a r smooth boundary. I IB 2 11 D a r k brown (7.5YR 3 / 3 ) m o i s t ; c l a y l o a m ; m o d e r a t e me d i u m s u b a n g u l a r blocky s t r u c t u r e ; f r i a b l e ; n e u t r a l ; c l e a r smooth boundary. 25" t o 3 4 " I I IB 2 2 1 D a r k brown (7.5YR 3 / 3 ) m o i s t ; c l a y loam; w ea k medium s u b a n g u l a r b l o c k y stru c tu re ; fria b le ; n eu tra l; abrupt wavy b o u n d a r y . 34" t o 41" I I IC1 Y e l l o w i s h b r o w n (10YR 5 / 4 ) m o i s t ; sand; s in g le grain s t r u c t u r e le s s ; loose; m oderately a l k a l i n e ; c le a r smooth bo u n d ary . 14" t o 19.5" 19.5" t o 25" 83 depth horIzon Ifl" t o 50" IIIC2 The s i t e d e s c r i p t i on Brown (10YR 5 / 3 ) m o i s t ; c o a r s e sand and g r a v e l ; s i n g l e g r a in s t r u c t u r e l e s s ; loose; m oderately alkaline. is s l i g h t l y convex. B-horizon e x h ib ite d i n t o t h e C - h o r iz o n and Blx is a f r a g i p a n . is w e ll rounded s to n e s th a t a r e m ostly 3.1% o f t h e pedon l i g h t and d a rk g r a n i t e a n d some w e l l w e a t h e r e d s a n d s t o n e . The s t o n e s 5 and 8 abandoned g rav el inches in d i a m t e r . observed to the e a s t of th is A small pasture. tonguing ranged between p i t was 4 8k S ite: FD Prof i l e N o . : Mappi ng u n i t Cn 6 8 0 7 2 5 5 2 B1 B o y e r - S p i n k s l o a my s a n d s ( Bel 1e f o n t a i n e l o a my s a n d o n 1 9 3 6 map) L o c a t i o n : NE \ / k NW \ / k NW \ / k S e c . 32 D u p l a i n T o w n s h i p , C lin to n County, Michigan E levation: 735 f e e t a b o v e s e a l e v e l Physiography: F luvial te rra c e V egetation: A lfalfa Parent m a te ria l: C o a r s e l oa my f l u v i a l m a t e r i a l T y p i f y i n g P ed o n depth h o r i zon d e s c r i p t i on 0 to 8.5 " Ap D a r k b r o w n (10YR 3 / 3 ) m o i s t ; c o a r s e s a n d y l o a m ; w e a k me d i u m s u b a n g u l a r b l o c k y b r e a k i n g t o w e a k me d i u m granular s tru c tu re ; f ria b le ; s lig h tly a c i d ; a b r u p t smooth b o u n d a r y . 8.5" A2 R e d d i s h b r o w n ( 5 YR k / 3 ) a n d f ew d a r k r e d d i s h b r ow n (5YR 3 / k ) s p l o t c h e s , m o i s t ; s a n d y l o a m ; m o d e r a t e me di um su bangular blocky s t r u c t u r e ; f r i a b l e ; n e u t r a l ; c l e a r smooth b o u n d a ry . to 1 3 . 5‘ A2B1 D a r k br o wn ( 7 . 5 Y R k / k ) m o i s t ; s a n d y c l a y loam; weak f i n e s u b a n g u l a r b l o c k y s t r u c t u r e ; f r i a b l e ; me d i u m a c i d ; c l e a r smooth b o undary. 18" t o 2 2 " B2 1 1 D a r k b r o w n ( 7 . 5 YR k / k ) m o i s t ; c o a r s e s a n d y c l a y l o a m; m o d e r a t e f i n e subangular blocky s t r u c t u r e ; f r i a b l e t o f i r m ; me d i u m a c i d ; g r a d u a l i r r e g u l a r boundary. 22" B2 2 t D ark brown (7.5YR k / k ) m o i s t ; c o a r s e s a n d y c l a y loam; m o d e r a t e l y f i n e su b angular blocky s t r u c t u r e ; firm ; n e u t r a l ; g r a d u a l wa v y b o u n d a r y . 13.5" t o 18" to 25.5" 25.5" to 32 .5" B3 S t r o n g brown (7.5YR 5 / k ) m o i s t ; s a n d y loam; weak f i n e s u b a n g u l a r b lo c k y breaking into s in g le grain s t r u c t u r e ­ less; fria b le ; calcareous; abrupt smooth boundary. 85 depth d e s c r i p t i on h o r i zon 32.5" to 42.5" IIC1 Brown (10YR 5 / 3 ) m o i s t ; c o a r s e s a n d and g r a v e l ; s i n g l e g r a i n s t r u c t u r e ­ le ss; loose; calcareo u s; abrupt smooth boundary. 42.5" t o 57' I IC2 Y e l l o w i s h b r own (10YR 5 . 5 / 4 ) m o i s t ; sand; s in g le g rain s t r u c t u r e l e s s ; loose; calcareo u s. The p e d o n in g e n e r a l is g r a v e l l y a l t h o u g h no l a r g e s t o n e s a r e f o u n d on t h e s u r f a c e , d u e t o p r o b a b l e s t o n e c l e a r i n g by the farm er. l e n s e 70 i n c h e s An e l o n g a t e d is e n c o u n t e r e d in t h e B 3 - h o r i z o n . l o n g o f medi um s a n d 86 S ite: F P r o f i l e No. Cn 6 8 0 8 Mapping u n i t : 2 5 5 2 A1 B o y e r - S p i n k s l o a my s a n d s ( B e r r i e n s a n d y l o a m o n 1 9 3 6 map) L o c a t i o n : SW 1 / 4 NE 1 / 4 SW 1 / 4 S e c . 3 0 D u p l a i n T o w n s h i p , C l i n t o n County, Michigan E levation: 7 05 f e e t a b o v e s e a l e v e l Physiography: Fluvial te rra c e V egetation: A lfalfa Parent m a te ria l: Sandy f l u v i a l m a t e r i a l o v e r c a l c a r e o u s sand T y p i f y i n g Pedon depth 0 to 8.5" 8 . 5" d e s c r i p t i on h o r i zon to 1 2 11 Ap V e r y d a r k g r a y b r o w n (10YR 3 / 2 ) m o i s t ; l oa my s a n d ; w e a k f i n e g r a n u l a r stru ctu re ; fria b le ; s lig h tly acid; a b r u p t smooth b o u n d ary . A2 Dark brown s a n d ; weak structure; acid; c le a r ( 7 . 5 Y R 4 / 4 ) m o i s t ; loamy very f in e g ran u lar very f r i a b l e ; s l i g h t l y wavy b o u n d a r y . 18 11 A2Bt D a r k br own ( 7 . 5 YR 4 / 4 ) m o i s t ; l oa my s a n d ; weak f i n e s u b a n g u l a r b lo c k y s tr u c tu re ; very f r ia b le ; s l i g h tly a c i d ; c l e a r smooth b o u n d ary . 18" t o 2 2 " B21 1 D a r k y e l l o w i s h br own (10YR 4 / 4 ) m o i s t ; l oa my s a n d ; m o d e r a t e me d i u m an g u la r blocky s t r u c t u r e ; f r i a b l e ; n e u t r a l ; c l e a r wavy b o u n d a r y . 22" t o 2 4 . 5 " B22t D a r k br o wn ( 7 . 5 Y R 3 / 2 ) m o i s t ; s a n d y loam; s i n g l e g r a i n s t r u c t u r e l e s s ; f r i a b l e ; n e u t r a l ; g r a d u a l wa v y boundary. 24.5" B23t Y e l l o w i s h b r own (10YR 5 / 4 ) moist; l oa my s a n d ; m a s s i v e b r e a k i n g i n t o s in g le g ra in s t r u c t u r e l e s s ; very f i r m t o l o o s e ; n e u t r a l ; a b r u p t wavy boundary. 12" to t o 27" 4 87 depth h o r i zon 2 7 " t o 37" I 1C D iscontinuous lens c o n ta in in g p la te y b r i t t l e black sh a le fragm ents. Not analyzed. 37" I I I Cl Brown (10YR 5 / 3 ) m o i s t ; c o a r s e s a n d ; s in g le g rain s t r u c t u r e l e s s ; loose; m oderately a l k a li n e . t o 50" Ap-horizon has 5 to gravelly. A b o u t 5% f i n e out th e solum. 10" d e s c r i p t i on 10% r o u n d g r a v e l and th e B -h o rizo n s a r e t o medi um g r a v e l is d i s t r i b u t e d At 27" d e p t h , and w i t h i n the I MCI th ic k discontinuous w eathering p la ty shale the C -horizon. through­ horizon a is e n c o u n t e r e d in 88 Si te: LF P ro fi1 e N o .: Mappin g u n i t : Cn 6 8 0 9 2 5 5 2 B1 B o y e r - S p i n k s l oa my s a n d s ( O s h t e m o l o a m y s a n d on 1 9 3 6 map) Lo c a t i o n : NE 1 / 4 NE 1 / 4 NE \ / h S e c . 2 D u p l a i n T o w n s h i p , C l i n t o n County, Michigan E levation: 710 f e e t a b o v e s e a l e v e l Physiography: Be a c h r i d g e V egetation: Co r n Parent m a te ria l: Sandy, g l a c i a l lake beach m a te r ia l T y p i f y i n g Pedon depth descr iption h o r i zon 0 t o 9" Ap D a r k y e l l o w i s h br own (10YR 3 / 4 ) m o i s t ; s a n d y l o a m ; m o d e r a t e me d i u m sub-blocky s tr u c t u r e ; very f r i a b l e ; me d i u m a c i d ; a b r u p t s m o o t h b o u n d a r y . 9" t o 15" A2 Y e l l o w i s h r e d (5YR 5 / 6 ) m o i s t ; l oa my sa n d ; weak c o a r s e s u b a n g u l a r b lo c k y s tr u c tu re ; very f r ia b le ; s l i g h t l y a c i d ; g ra d u a l smooth boundary. 15" t o 2 3 " B1 Y e l l o w i s h r e d (5YR 4 / 6 ) m o i s t ; s a n d y l o a m ; w e a k me d i u m a n g u l a r b l o c k y b r e a k i n g i n t o w e a k me d i u m g r a n u l a r s tr u c tu r e ; f r i a b l e ; n e u tra l; gradual smooth b o u ndary. 23" to 30" B21 1 R e d d i s h b r o w n (5YR 4 / 4 ) m o i s t ; sa n d y loam; weak f i n e s u b a n g u l a r blocky s t r u c t u r e ; f r i a b l e ; n e u t r a l ; c l e a r wavy b o u n d a r y . 30" to 32" B2 2 1 D a r k b r o wn s a n d ; weak structure: c l e a r wavy 32" t o 37 " B3 (7.5YR 4 / 4 ) m o i s t ; loamy f in e su b an g u lar blocky f r ia b le ; m ildly a lk a lin e boundary. L ight yellow ish m o is t; san d and structureless; clear irregular b r ow n (10YR 6 / 4 ) gravel; sin g le grain loose; ca lc a re o u s; boundary. 89 depth d e s c r i p t ion h o r i zon 37" t o 44" I I Cl Y e l l o w i s h b r o w n (10YR 5 / 4 ) m o i s t ; sand and g r a v e l; s i n g l e g r a in s t r u c t u r e le s s ; loose; c a lca re o u s; c l e a r wavy b o u n d a r y . 44" t o 54" IIC2 G r a y i s h b r ow n (10YR 5 / 2 ) m o i s t ; c o a r s e sand and g r a v e l ; s i n g l e g rain s tr u c t u r e l e s s ; loose; c a 1c a r e o u s . Tonguing is o b se rv e d m ain ly in B 2 2 - h o r i z o n s . B22-horizon. i n 821 a n d t o a Round l a r g e g r a v e l lesser extent are a ls o observed in 90 Site : L P r o f i 1e N o . : Mapping u n i t Cn 6 8 1 0 2 5 5 2 A1 B o y e r - S p i n k s l o a m y s a n d s ( B e r r i e n s a n d y l o a m on 1 9 3 6 map) Location: SW 1 / 4 NW 1 / 4 SW 1 / 4 S e c . 3 D u p l a i n T o w n s h i p , C lin to n County, Michigan Elevation: 690 f e e t ab o v e s e a l e v e l Physiography: Fluvial te rra c e V egetation: A l f a l f a and c lo v e r Parent m a te ria l: S a n d y f l u v i a l ma t e r i a 1 T y p i f y i n g P e d on depth h o r i zon 0 t o 10" 10" to 19 H d e s c r ?p t i on Ap D a r k br own (10YR 3 / 3 ) m o i s t ; lo a my s a n d ; weak f i n e g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; me d i u m a c i d ; a b r u p t smooth b o u n d a r y . A2 R e d d i s h y e l l o w (7.5YR 6 / 6 ) m o i s t ; loa my s a n d ; v e r y w e a k f i n e s u b a n g u l a r blocky s t r u c t u r e ; very f r i a b l e ; s l i g h t l y a c i d ; g r a d u a l wavy b o u n d a r y . 19" t o 25' A2 B i t Y e l l o w i s h b r o w n (10YR 5 / 6 ) m o i s t ; lo a my s a n d ; w e a k f i n e s u b a n g u l a r blcoky s t r u c t u r e ; very f r i a b l e ; n e u t r a l ; g r a d u a l w a vy b o u n d a r y . 25" t o 32" B2 1 1 D a r k y e l l o w i s h b r o wn (10YR 4 / 4 ) w i t h a f ew b r o w n i s h y e l l o w (10YR 6 / 6 ) s p l o t c h e s ; l o a my s a n d ; w e a k me di um subangular blocky s t r u c t u r e ; very f r i a b l e ; n e u t r a l ; c l e a r wavy b o u n d a r y . 32" t o 3 8 " B2 2 t D a r k y e l l o w i s h b r o w n (10YR 4 / 4 ) a n d a f e w b r o w n i s h y e l l o w (10YR 6 / 6 ) s p l o t c h e s , m o i s t ; l oa my s a n d ; w e a k me d i u m s u b a n g u l a r b l o c k y s t r u c t u r e ; n e u t r a l ; c l e a r wavy b o u n d a r y . 38" I IB3 Y e l l o w (10YR 7 / 6 ) a n d a f ew y e l l o w (10YR 6 / 6 ) s p l o t c h e s , m o i s t ; s a n d ; s in g le grain s tr u c t u r e le s s ; loose; n e u t r a l ; a b r u p t smooth boundary. t o 44 " 91 d e s c r i p t ion depth h o r i zon 44" t o 51 I IC1 D a r k y e l l o w i s h b r o w n (10YR 4 / 4 ) m o i s t ; l oa my s a n d ; v e r y w e a k f i n e an g u la r blocky s t r u c t u r e ; f r i a b l e ; c a l c a r e o u s ; c l e a r smooth boundary. 51" to 6 2 " I IC 2 L i g h t - g r a y (10YR 7 / 2 ) m o i s t ; lo a my sand; s in g le g rain s t r u c t u r e l e s s ; loose; c a lc a re o u s; ab ru p t c le a r boundary. I I IC 3 Brown (10YR 5 / 3 ) a n d g r a y (10YR 6 / 1 ) m o i s t ; s i l t y c l a y loam; m a s s i v e s tr u c t u r e le s s ; firm ; calca re o u s; (not sam pled). 62" + The p e d o n Tonguing i s u n d e r l a i n by l a c u s t r i n e s i l t y is o b serv ed is s t a r t i n g to appear in B 2 t - h o r i z o n s . in t h e s o l u m . clay Spodic horizon loam. form ation 92 5 I t*G * N P rofile: Gx 6 80 6 Ma pp i n g u n i t : 13 B1 B o y e r l oa my s a n d Location: SE 1 / 4 NW 1/ 4 SW 1 / 4 S e c . 33 E l b a T o w n s h i p , G r a t i o t County, Michigan E levation: 680 f e e t above s e a l e v e l Physiography: Be a c h r i d g e o v e r l a k e b e d V egetation: Soybeans Parent m a te ria l: Sandy g l a c i a l b e a c h r i d g e m a t e r i a l T y p i f y i n g P ed o n depth h o r izon 0 t o 10" 10" t o 1 4 . 5 " 14.5" t o 20" Ap Bhirl d e s c r i p t ion V er y d a r k g r a y i s h br own (10YR 3 / 2 ) m o i s t ; loamy s a n d ; w e a k medium g ran u lar s tr u c tu r e ; very f r i a b l e ; v e r y s t r o n g l y a c i d ; a b r u p t smooth boundary. D a r k y e l l o w i s h brown t o y e l l o w i s h br own (10YR 4 / 4 a n d 5 / 6 ) m o i s t ; loamy s a n d ; w e a k v e r y f i n e t o f i n e subangular blocky s t r u c t u r e ; very f r i a b l e to loose; very s tro n g ly a c i d ; c l e a r smooth boundary. Bhir2 S t r o n g brown t o y e l l o w i s h br own ( 7 . 5 YR 5 / 6 - 10 YR 5 / 8 ) m o i s t ; s a n d ; weak v e r y f i n e t o f i n e s u b a n g u l a r blocky s t r u c t u r e ; very f r i a b l e ; s t r o n g l y a c i d ; c l e a r smooth boundary. 20" t o 2 3 " A2Bt Y e l l o w i s h b r own (10YR 5 / 8 ) m o i s t ; loamy s a n d ; w e a k v e r y f i n e s u b a n g u l a r blocky s t r u c t u r e ; very f r i a b l e ; s l i g h t l y a c i d ; c l e a r smooth b o u n d a ry . 23" t o 28" I IB2t S t r o n g br own ( 7 . 5 Y R 5 / 6 ) w i t h some l i g h t y e l l o w i s h br own (10YR 6 / 4 ) a n d v e r y d a r k g r a y i s h b r ow n (10YR 3 / 2 ) m o i s t ; lo a my s a n d ; w e a k f i n e subangular blocky s t r u c t u r e ; f r i a b l e to very f r i a b l e ; s l i g h t l y a c id ; c le a r smooth b o u n d a r y . 93 depth h o r i zon 28" t o 33" I I B3 D a r k b r own ( 7 . 5 Y R k / k ) m o i s t ; lo a my s a n d ; weak t o m o d e ra te s u b a n g u l a r blocky s t r u c t u r e ; f r i a b l e ; m o d erately a l k a l i n e ; a b r u p t smooth boundary. 33" t o 3 8 . 5 " 1 IC1 P a l e b r own (10YR 6 / 3 ) m o i s t ; s a n d a n d gravel; sin g le grain s tr u c tu re le s s ; lo o s e ; c a l c a r e o u s ; a b r u p t smooth boundary. 38.5" + I I I C2 Brown (10YR S / k ) m o i s t ; s i l t y c l a y loam; m a s s i v e s t r u c t u r e l e s s ; f i r m ; calcareous. is u n d e r l a i n by s i l t y The pedon m aterial. A spodic horizon indicated p o s itiv e horizon m a te ria l 6/8 , results. clay loam l a c u s t r i n e t e s t p e r f o r m e d on B h i r h o r i z o n The t e s t results C ollected soil T h en a i r a w o o d en r o l l i n g ignition, t o 2. 5YR 10YR sample samples were s u b je c te d dry samples w ere pin and s ie v e d t h e i r w e i g h t was e x p r e s s e d chem ical, (dry) a co lor of to com plete a i r l ig h t l y crushed w ith t h r o u g h a 2mm. s i e v e . o f , 2 mm. d i a m e t e r w e r e s e p a r a t e d , w a t e r w a s h e d , sample. upon observed. Preparation of soil drying. are: c h a n g e d c o l o r f r o m 10YR 5 . 5 / 8 and upon u s i n g N a - P y r o p h o s p h a t e t e s t , 6 . S / k was B. description F ractions of in p e r c e n t o f air the to ta l 2mm. d i a m e t e r w e r e s a v e d f o r and m i n e r a l o g i c a l m easu rem en ts. Fractions d r i e d and air dry the m echanical, 94 C. L a b o ra to ry measurements a. Chem ical: 1. S o i 1 r e a c t i o n : Soil pH w a s m e a s u r e d on w e i g h t s o i 1 and 2:1 O.INKCl-soil ratios 2:1 w a t e r - suspensions w ith Z e r o m a t i c g l a s s e l e c t r o d e pH m e t e r ( P e e c h Beckman 1965). The 0 . 1 N K C L - s o i l s u s p e n s i o n was t r i e d reduce v a r ia tio n s coming from s o u r c e s o t h e r soil basis 2. system , than (C ollins, 1967). c a r b o n c o n t e n t s w e r e d e t e r m i n e d by t h e dry com bustion method u s in g f i n e l y ground 0 . 2 3. the carbon: The t o t a l samples to and t o p r o v i d e a somewhat c o n s i s t e n t f o r c o m p a r i s o n o f pH d a t a Total in o r d e r in p o r c e l a i n c r u c i b l e s . (A llison gm et al, 1965). Inorganic carbon: S a m p l e s o f known w e i g h t a n d w a t e r c o n t e n t w e r e added to s to p p e re d w eighed b o t t l e s o f 3N HC1, a s m a l l containing amount a t a t im e . effervescence subsided, 10ml. A fter s to p p e rs were re p la c e d and s e t a s i d e w ith o c c a s io n a l sw irling. of 30 m inutes, s t o p p e r s w ere removed for six tim es, and th e b o t t l e s were s w ir le d f o r again a f t e r 24 h o u r s At loosely 15 s e c o n d s , intervals then t o d i s p l a c e a n y CO2 a c c u m u l a t e d 95 w ith the a i r . f l a s k and 1965b). S to p p ers were then i t s c o n t e n t s were weighed ( A l lis o n e t a l . The c a r b o n a t e s a r e d e c o m p o s e d w i t h a c i d a n d CO2 decrease is released the to the atm osphere. in w e i g h t r e s u l t i n g measure of f r o m CO2 l o s s The is a the c a rb o n a te co n ten t of the s o i l : % c a rb o n a te carbon - k. r e p la c e d and th e Grams C0 2 l o s t ________ ( 0 . 2 7 2 7 ) Grams w a t e r f r e e s o i l Organic carbon: O r g a n ic c a rb o n p e r c e n t a g e s w ere o b t a i n e d from t h e equation: (A llison e t a l . 1965c) % o rg a n ic carbon « % t o t a l carbon This - % CO3 c a r b o n i s b a s e d on t h e a s s u m p t i o n t h a t c a r b o n c o n t e n t in t h e s o i l is o f e i t h e r o r g a n ic o r and t h a t most of th e inorganic nature inorganic carbonate is found as carbonates. 5. Exchangeable b ases: E x c h a n g e a b l e c a t i o n s w e r e e x t r a c t e d a t pH 7 . 0 by l . N NHz^Ac f r o m 5 g r a m s o f 1965). 2mm s o i l samples The a d s o r b e d b a s e s w e r e r e m o v e d , (Chapman collected a n d a f l a m e p h o t o m e t e r was u s e d t o d e t e r m i n e p o t a s s i u m a n d s o d i u m , w h i l e t h e s p e c t r o p h o t o m e t e r was u s e d f o r c a l c i u m and magnesium d e t e r m i n a t i o n . ( 100) 96 6 . Exchangeable hydrogen: E x c h a n g e a b l e h y d r o g e n was d e t e r m i n e d by e q u i l i ­ brating 2 .5 of grams o f IN NH^OAc. m ittently 2 mm. air dry s o i l The s u s p e n s i o n w a s s h a k e n f o r one hour, in 25 m l . in ter­ t h e n t h e pH v a l u e s o f s u s p e n s i o n and t h e o r i g i n a l the s o l u t i o n were c a r e f u l l y d e t e r m i n e d t o 0 . 0 2 pH u n i t by u s i n g a G-model Beckman pH m e t e r . hydrogen p er 100 The mi 1 1 ( e q u i v a l e n t s o f e x c h a n g e a b l e grams o f s o i l the follow ing equation: m.eq. w ere c a l c u l a t e d from (Jackson, 1958, e x c h a n g e a b l e H+ / 1 0 0 g r a m s s o i l Peech 1965). - ( 7 . 0 0 - pH o b s e r v e d ) X 2 2 7. Cation exchange c a p a c ity : C a t i o n e x c h a n g e c a p a c i t y w a s e s t i m a t e d by summing t h e mi 1 I i e q u i v a l e n t s o f e x c h a n g e a b l e sodium, ions of hydrogen, p o t a s s i u m , magnesium, and c a l c i u m e x p r e s s e d a s mi 1 1 i e q u i v a l e n t p e r 100 g r a m s o f s o i l (Chapman 1965b). 8 . Percent base s a tu ra tio n : Base s a t u r a t i o n dividing other p e r c e n t a g e s w e r e c a l c u l a t e d by t h e sum o f t h e mi 1 1 i e q u i v a l e n t o f c a t i o n s , than hydrogen, p r e s e n t by t h e c a t i o n e x c h a n g e c a p a c i t y and m u lt ip ly in g t h e p r o d u c t by 1 0 0 . 97 9 . S p o d o z o 1 i z a 1 1o n : D etection of saturating ca v ity of t h e s p o d i c h o r i z o n w a s ma d e by the s o il sample t h a t f i l l s 3/k of the the s ta n d a r d H e l1ige-Truog sp o t p l a t e w ith s a t u r a t e d sodium p y ro p h o sp h a te (fillin g cavity). The s a t u r a t e d s a m p l e s w e r e s t i r r e d mix w e l l , le t stand fo r fiv e m inutes, the to stirred again, l e t s t a n d a n o t h e r f i v e m in u tes and s t i r r e d a t h i r d time b e f o r e inserting a s tr ip the s o lu tio n of f i l t e r had w et t h e p a p e r t o a b o u t the suspension t h e p a p e r was let 1/4 A fter inch above to dry u n til w a t e r s h e e n was g o n e a n d t h e c o l o r o f strip paper. the the p a r t of the b e t w e e n t h e s u s p e n s i o n c o n t a c t z o n e a n d 17 4 - inch above i t was read (L ietzke Color v a lu e s of s i x o r or g reater all 1968). l e s s and chroma o f t h r e e q u a l i f y any p a r t i c u l a r having s u f f i c i e n t iron, B -horizon as c a r b o n , and aluminum to meet t h e T y p ic H a p l o r t h o d o r T y p ic Haplohumod r e q u i r e m e n t . V a lu e and chroma o f 8 /1 or lig h te r elim inate horizons as spodic ho rizo n s. V alues and chromas o f 7 / 1 a n d 7 / 2 may b e u p p e r s u b s o i l s H aplorthods, of eith er Entic E n t i c Haplohumods o r S p o d i c Udipsamment. Other sp o d ic horizon fo r Spodsols. the r e q u i r e m e n t s m ust a l s o be met 98 b. Physical 1. M e c h a n i c a l analyses: (Kilmer e t a l . 1949) The s a m p l e s o f s 2 mm. m a t e r i a l s w e r e s u b j e c t e d mechanical a n a ly s e s removal by t h e p i p e t t e m e t h o d a f t e r o f o r g a n i c m a t t e r by H2 O2 a n d s e v e r a l of g lacial IN. HC1. a c e tic acid. drops E x c e s s a c i d was w a s h e d o u t w i t h d i s t i l l e d used to s a t u r a t e N NaOH t o pH 8 . 4 was th e sample w ith sodium. w e r e t h e n s h a k e n f o r 24 h o u r s , mesh s i e v e , transferred proper The s a m p l e s s i e v e d t h r o u g h a 300 to the sed im entation c y lin d e rs a n d ma de up t o a v o l u m e o f 1000 m . 1 . Pi p e t t i n g s d e p t h s w e r e made a c c o r d i n g c a l c u l a t e d f r o m S t o k e s Law f o r t o t a l fine s i l t the C a r b o n a t e s w e r e r e m o v e d by w a t e r and t i t r a t i o n w i t h 0.1 the to (20 ) , and t o t a l silt to to th e time clay (2 " ) , plus c la y . The sands were su b d iv id e d w ith a n e s t o f s ta n d a r d s ie v e s and a m echanical were: 2-1, shaker. 1-0.5, The f r a c t i o n s 0.5-0.25, 0.25-0.10, separated 0 . 1 0 - 0 . 0 5 3 mm. Then t h e a m o u n t o f e a c h s i z e f r a c t i o n a n d t h e s o l u t i o n l o s s e s w e r e c a l c u l a t e d on a p e r c e n t o v e n d r y , acid insoluble b asis. 2. Clay f r a c t i o n a t i o n : A fter th e com pletion of the mechanical the samples analysis, in s u s p e n s i o n w e r e s i p h o n e d t e n t o t w e l v e times a f t e r sedim enting fo r th e time n e c e s s a r y f o r s e p a r a t i o n o f t h e c l a y from t h e s i l t . 99 c. M ineralogical 1. Q u a l i t a t i v e id e n tific a tio n of clay m inerals: O riented-aggregates of soil diffraction clays (' 2/< ) f o r x - r a y a n a ly s is were prepared according to the K i n t e r a n d Di amond m e t h o d r eco mmen d e d by J a c k s o n The t e c h n i q u e o r i e n t s so th a t are than t h e 001 (1956). the p la te shaped c la y p a r t i c l e s p l a n e s o f most o f t h e c l a y m i n e r a l s in a c o n d i t i o n t o d i f f r a c t x - r a y s more i n t e n s e l y in an o r d i n a r y powder p a t t e r n . The N a - c l a y in its d i s p e r s e d c o n d i t i o n was d e ­ p o s i t e d on a p o r o u s c e r a m i c p l a t e , from t h e c l a y s u s p e n s io n v a c u u m pump. This by d r a w i n g t h e w a t e r through the p l a t e using a l e a v e s a f i l m o f c l a y on t h e s u r f a c e of the p la te . In o r d e r to vary the exchangeable c a tio n , d e p o s i t e d f i l m was leached w ith 0 . 1 N Mg Cl 2 i n 10% g l y c e r o l s a l t was w a s h e d o u t w i t h three increments of by v o l u m e . 10% g l y c e r o l the The e x c e s s solution, the p l a t e was t h e n a i r d r i e d a n d t h e n d r y i n g was c o m p l e t e d i n a d e s s i c a t o r o v e r Ca C l £ a n d t h e x - r a y d i f f r a c t i o n p a t t e r n s were reco rd ed . film s were s a t u r a t e d w ith A fter th is x-raying three the increm ents of 0 . 1 N KC1 a n d t h e e x c e s s KC1 w a s w a s h e d o u t w i t h d i s t i l l e d w a t e r and t h e sa m p les w ere a i r dried 100 at room t e m p e r a t u r e a n d x - r a y e d . The p l a t e s w e r e t h e n h e a t e d a t 3 0 0 ° C f o r t wo h o u r s a n d x - r a y e d a g a i n . F inally, the p l a t e s were h eated a t than fo u r h o u rs, cooled, The i n s t r u m e n t a l CuKc, radiation, scatter slits; scale and x -ra y e d . x-raying conditions 35 KV; 20 MA; 0.006" constant b seconds; 550°C f o r more 1° d i v e r g e n c e and recieving s l i t , scanning used w ere: rate 1° Ni f i l t e r ; 2 tim e per m inute; f a c t o r b. The a r e a under the illite, first and second o rd e r peaks were c a r e f u l l y e s tim a te d as fo llo w s: A fter connecting the in itial peak recorded d e l i n e a t i o n , by w e i g h i n g t h e p a p e r 001/002 2. and f i n a l points of each those a re a s were e s tim a te d in e a c h p ea k and t h e ratio of was o b t a i n e d . Total potassium in c l a y s : A fte r being d rie d in t h e oven a t gram s a m p le s o f N a - c l a y w e r e u s e d f o r analyses. 110°C, 0 .1 total K£0 The h y d r o f l u o r i c a c i d m e t h o d w a s u s e d t o decompose th e c l a y f r a c t i o n o f the s o i l . Total p o t a s s i u m w a s t h e n d e t e r m i n e d by t h e f l a m e p h o t o m e t e r using conventional standards (Jackson 1956, 1958). 101 3. Sand m i n e r a l o g y : T h e f i n e s a n d f r a c t i o n ( 0 . 2 5 - 0 . 10mm.) t h a t w a s sa v ed from t h e m e ch an ical analysis used f o r m agnetic s e p a r a tio n s Separator. grains The m e t h o d according properties of by t h e the s o il Isodynamic M agnetic i s b a s e d on s e p a r a t i n g m i n e r a l to t h e i r m a g n etic and e l e c t r i c a l ( FI i n t e r 1959). The I s o d y n a m i c M a g n e t i c S e p a r a t o r instrum ent. feed of lies It consists is a v e r s a t i l e e s s e n t i a l l y o f an a u t o m a t i c the sand f r a c t i o n to a v ib ra tin g t a b l e which b e t w e e n two e l o n g a t e d p o l e s o f a p o w e r f u l electrom agnet. A wide range o f m in eral be s e p a r a t e d a c c o r d i n g properties table was by a d j u s t i n g (on t h e stren g th of current species to th e ir electro m ag n etic the slope of long a x i s o f the the m agnetic f i e l d the v ib r a ti n g instrum ent), and the (by a d j u s t i n g the in t h e c o i l s ) . The m a g n e t i c s t r e n g t h was f i x e d by p a s s i n g amps, can through th e c o i l s (Fairbairn, and a t i l t of 1 5° was 1.4 chosen. 1943) S tro n g ly m agnetic m in e ra ls such as m a g n e tite were separated f i r s t u sin g a permanent magnet. T he n t h e 102 r e m a i n d e r o f t h e s a n d was p a s s e d t h r o u g h t h e dynamic S e p a r a t o r . Iso­ T h i s g a v e mode r a t e l y - m a g n e t i c , s 1 i g h t 1y - m a g n e tic , and no n -m ag n e tic f r a c t i o n s , as follow s: The n o n - m a g n e t i c m i n e r a l s a r e d e fle c te d a t a value of 1 . 1+ a m p s . s tr e n g th of the s e p a r a to r . those th a t a re not - t h e maximum f i e l d The s 1 i g h t 1y - m a g n e t i c m i n e r a l s w e r e d e f l e c t e d by t h e s e p a r a t o r . The m o d e r a t e l y - m a g n e t i c g r o u p o f p a r t i c l e s w e r e h e l d by the s e p a ra to r a t a value of 1 .4 amps. A fter th e com pletion of a l l were p e t r o g r a p h i c a l 1y examined, separations after fixing the f r a c t i o n s the g r a i n s on g l a s s s l i d e s w i t h g e l a t i n i z e d s u r f a c e s . m ineral g r a i n s were q u a l i t a t i v e l y standard m ineralogical by t h e procedures. Based on t h e m i n e r a l o g i c a l fo r m easuring the identified The com positions two r a t i o s i n t e n s i t y of w eathering were c a l ­ cu late d as follow s: Wr i . _________g a r n e t ___________ pyroxene + amphiboles w » _ quartz + feldspars pyroxenes + amphiboles G a r n e t was s e p a r a t e d a t 0 . 4 a m p e r e , p e r o x e n e s and am p h i- b o le s were s e p a r a t e d a t 0 . 8 - 1 . 2 ampere w h i l e q u a r t z and th e f e l d s p a r s were the m in e ra ls th a t a re non-m agnetic. 103 D. S tatistical S oils evaluations: in t h e i r e c o s y s t e m s a r e o b s e r v e d a t o f o r g a n i z a t i o n and g e n e r a l i z a t i o n . different S election of p r o c e d u r e s d e p e n d m a i n l y on t h e o b j e c t i v e s o f levels the s t a t i s t i c a l the r e s e a r c h and the o b s e rv a tio n s a v a i l a b l e . D ifficulties of c o n tro llin g heterogeneity of soil laboratory cap acity , m aterial the v e r tic a l and h o r iz o n ta l o f mapping u n i t s , and lim ite d lim ited t i m e ma de t h e s e l e c t i o n o f r e p r e s e n t a t i v e pedons f o r a n a l y s e s v e ry n e c e s s a r y the instead of r andom s a m p l i n g . This s e l e c t i o n field i s b a s e d on f i e l d m a p p i n g a n d n u m e r o u s exam inations of s i t e s that f a c i l i t a t e to p ro v id e com parable ecosystem s the pedological S tatistical evaluation tory d eterm in atio n is of the v a r i a b i l i t y required p rio r a sample to com parisons w ith t o know i f than e r r o r s the d iffe re n c e s of com parisons. to su b je c tin g real v alu e through to o n e - f if th D u p l i c a t i n g some o f e a c h the of function. the e r r o r a s so c ia te d la b o ra to ry perform ance. the total k i n d o f d e t e r m i n a t i o n c o m p a r e d t o t h e mean error d istrib u tio n in o r d e r have s i g n i f i c a n c e o r a r e g r e a t e r the d te rm in a tio n s . study o n e - t h i r d labora­ t h e d a t a on th o s e from o t h e r sam ples o f t h e m e a s u r e m e n t s w a s a way t o e s t i m a t e with th e of each observations In t h i s in e a c h i n d i c a t e d a normal 104 The L e a s t S i g n i f i c a n t D i f f e r e n c e accepted s t a t i s t i c a l differences in d a t a . method f o r (LSD) is the w idely indicating s ig n ific a n t LSD i s b a s i c a l l y a s t u d e n t t e s t u s i n g a p o o l e d e r r o r v a r i a n c e a s shown i n T a b l e 6 . b e t w e e n two me an s t o b e s i g n i f i c a n t a t For th e d i f f e r e n c e t h e 5% l e v e l , d i f f e r e n c e m u s t e x c e e d t h e c o r r e s p o n d i n g LSD v a l u e : and T o r i e 1960) 1 Table 6 . Computations of t - 1 s o i 1 sample SS MS E X 2 . . . - ( C) - B t B d 3F error t(r-l) A-B - d Total ( r t - 1) EX2 . j c = co rrectio n (Steele least sig n ific an t difference df Source of V a r ia tio n the observed f a c t o r = ( EX) ? j - (c) - A ... Ft t - n u mb e r o f s o i l samples in a c o l u m n r » n u mb e r o f d u p l i c a t e s d - variance cTF LSD - ( t.05) ( (standard d e v ia tio n ) 2 ■ S j 2 2(S- d) 2 ) r ^ P e r s o n a l c o m m u n i c a t i o n w i t h Dr. C. C r e s s , P r o f e s s o r o f S t a t i s t i c s in t h e D e p a r t m e n t o f C r o p a n d S o i l S c i e n c e s . RESULTS AND DISCUSSION k. A. S o i l s a n d G e o m o r p h o l o q y o f NE C l i n t o n Understanding s o il of s o ils distribution, patterns e.g. The s o i l pattern is were a l s o a re expected in t h e Figure 8 , Thus, of 7, a n d s e c t i o n s two s t o r y approach soils The O w o s s o c a t e n a th e h ig h e r upland se c tio n s along and 27, 28, 33, the 1 6 , 2 1 , a n d 22 ( S h e e t a n d 10 ( s h e e t IEE 3 7 ) , approxim ation about the terraces above the flo o d till. 29, 3** ( s h e e t to determ ine (Fox and Boyer m a i n l y ) was made. p l a n s w e r e ma de t o s u r v e y s p e c i f i c t h e Maple R i v e r V a l l e y Thus s e c t i o n s land- is e n c o u n te re d o n ly where t e r r a c e s From t h e s e o b s e r v a t i o n s , deduced. 15, 3 , **, 9 , t h e y o c c u r o n l y on t h e v a l l e y plain. geomorphology Kinds o f s o i l s mapped in D u p la in Township a f i r s t distribution study. present. During t h e mapping o f s e c t i o n s Figure in t h i s and t o o c c u r on s p e c i f i c inductive process kind and number o f t e r r a c e s IEE 3 9 ) relationships, th e sam pling s i t e s kinds of m a t e r i a l . im portant in t h e e x p l a n a t i o n in tim a te ly connected to a r e a 's by w h i c h s p e c i f i c s o i l s forms o f s p e c i f i c is n e c e s s a r y s o i 1s - t e r r a c e the reasons behind s e l e c t i n g County: 30, 31, to te s t the s o il pattern 32 ( s h e e t IEE 7 7 ) , Figure 9 IEE 3 5 ) o f F i g u r e 1 0, also in D u p la in 0 township o f C l i n t o n County, plus se ctio n s 105 15, 1 6, 21, 22 106 (sheet IEE 3 3 ) o f F i g u r e 11; F i g u r e 12; 3 , 4, 11, IEE 25) o f F i g u r e 12 ( s h e e t 9, 13, 10 ( s h e e t 14, 2 3 , 24 ( s h e e t IEE 3 1 ) o f F i g u r e 14, a l l IEE 2 3 ) o f 13 a n d 1, 2 , in Ovid to w n s h ip o f C lin to n County, w ere a l s o s t u d i e d . S e c tio n s 27, 2 8 , 3 3 , 3 4 ( s h e e t 2DD 77) of G r a t i o t County. in F i g u r e s i d e n t i f i c a t i o n of the predominant s o i l s and key f o r soil John H. L o n g , in C l i n t o n C ounty. Conservation S erv ice, loam a s that 8 . in f l u v i a l range as U .S.D .A ., Figure 11, a n d Dave D r o s c h a , Experiment S t a t i o n . to sand as illustrated The t wo s t o r y s o i l s m aterial. Other key m a i n l y a s in t e x t u r e o f p a r e n t m a t e r i a l s in Morley c a t e n a , P lain field catenas, legend in t h e m appin g o f t h e s e s e c t i o n s a r e : d e r i v e d s o i l s a r e shown i n t h e s o i l s one s t o r y s o i l s Table soils The in e a c h m a p p i n g u n i t s in t h e f o l l o w i n g a b s t r a c t o f t h e 10, o f M i c h i g a n A g r i c u l t u r a l T ill clay involved 15 a n d 16. F i g u r e s 9 a n d 14, a n d P a u l G. C o r d e r , both o f th e S o il Figure is given upland m ineral scien tists in E lb a t o w n s h i p The a r e a c o v e r e d by e a c h o f t h e a b o v e F i g u r e s i s shown on t h e c o n t o u r maps g i v e n on t h e s e s h e e t s is from in O a k v i l l e and by C l i n t o n C o u n t y s o i l s are the s o i l s key th a t a r e developed Kinds and t h i c k n e s s o f t h e m a t e r i a l and t h e c a t e n a r y p o s i t i o n a r e t h e m a j o r d i f f e r e n c e s among t h e s e s o i l s as they ap p e ar the s o il series in t h e s o i l s in t h e s o i l s key. Number s a p p e a r i n g w i t h identification le g e n d T a b le 7, a r e 107 F ig u re 7. S o i l map o f s e c t i o n s 15 , 16 , 2 1 , an d 2 2 , Ovid to w n s h ip , C l i n t o n County M ic h ig a n ( a e r i a l photo IE E -3 9 ) 108 F ig u re 8 . S o i l map o f s e c t i o n s 3 , k , 9 , and 10 O v id t o w n s h i p , Cl i n t o n County M i c h i g a n ( a e r i a l photo IE E -3 7 ) StfLv, 109 F ig u re % S o i l map o f s e c t i o n s 2 9 , 3 0 , 3 1 , and 32 D u p l a i n t o w n s h i p , C l i n t o n C o u n ty M i c h i g a n ( a e r i a l photo IE E -7 7 ) F ig u re l& . S o i l map o f s e c t i o n s 2 7 , 2 8 , 3 3 , an d 3*f D u p la in to w n s h ip , C l i n t o n County M ic h ig a n ( a e r i a l photo IE E -3 5 ) Ill F ig u re 1 1 . S o i l map o f s e c t i o n s 1 5 , 1 6 , 2 1 , and 22 D u p l a i n t o w n s h i p , C l i n t o n C o u n ty M i c h i g a n ( a e r i a l photo IE E -3 3 ) 112 F ig u re 12. S o i l map o f s e c t i o n s 13, \ k , 2 3 , and 2k D u p l a i n t o w n s h i p , C l i n t o n County M i c h i g a n ( a e r i a l photo IE E -2 3 ) 113 F ig u re 13. S o i l map o f s e c t i o n s 3 , *♦» 9 , and 10 D u p la in to w n s h ip , C l i n t o n County M ic h ig a n ( a e r i a l photo IE E -3 1 ) 114 F ig u re 14. S o i l map o f s e c t i o n s 1, 2 , 11 , and 12 .D u p la ln to w n s h ip , C l i n t o n County M ic h ig a n ( a e r i a l photo 1EE-25) 115 T ab le 7. Soil I d e n t i f i c a t i o n le g en d o f C l i n t o n County u p la n d m ineral s o i l s (1968 re v is io n ) symbol S o i 1 f a m i 1y Soil s e r ie s i n map un i t s 1392 B1 0 a kv i 11 e Typic Udipsamment, sa n d y , m ixed, non a c i d , m e s i c . 2183 B1 O s h te mo Typic H a p lu d a lf , m i x e d , mes i c . 2342 A 1 , B1 , Cl Sp i n k s Psammentic H a p l u d a l f , sandy, m i x e d , non a c i d , m e s i c . 2402 B l , Oakv i 11e T ypic Udipsamment, mixed, m e sic. Cl 2411 coarse loamy, sandy, Excavated sands. Boyer Typic H a p lu d a lf, mixed, m esic. 2552 A l , B l , C l , D l , D3, E l , Ee Boyer Spinks See above See above 2592 B l , Cl Me t e a A renic H a p lu d a lf, sandy over f i n e loamy, m ixed , m e s i c . 2443 A l , B l , C l , C3 FoxBoyer See below See below 3445 A l , Fox T y p i c H a p l u d a l f , f i n e loamy o v e r .sandy . o r sandy s k e l e t a l , 2553 A l , Cl Bl, Bl ffl I X G Q | l o a my , tTIGs I C * 3445 C l , C2 D2 , D3, E2 FoxMiami See above See below 3493 A l , B l , Cl O w o ss o - Typic H a p lu d a lf, mes i c See below Miami coarse fine loamy, m i x e d , Table 7, Soil cont. symbol So i 1 f a m i 1y Soi 1 s e r ies i n map u n i t s 3603 Bl , Cl H i l l s d a 1e Typic H a p lu d a lf, mixed, m esic 3623 Bl Elmdale ii S i sson Typic H a p lu d a lf, mixed, m esic. fine l oa my 4505 B l , C l , C2, C3, D l , D2, D3, E2 Mi am i Typic H a p lu d a lf , m i x e d , mes i c . fine loamy, 4525 - Excavated 5355 A l , Bl C e l i na Aquic H a p l u d a l f , mixed, m esic. fine loamy, 5365 A l , Tuscola Typic H a p lu d a lf, mixed, m e sic. fine loamy, 6305 Al Kibbie A quollic H apludalf, mixed,mes ic . 6405 A l , Bl 81o u n t Aquic H a p lu d a lf , mes i c . 6455 A l , Bl Conover A quollic H apludalf, mixed,mes ic . 6463 Al T e a s d a 1e A quollic H apludalf, coarse loamy, m ix e d , m e s ic . 6893 Al Wa s e p i A quollic H apludalf, mixed, m esic. 6945 Al M atherton Mol l i e O c h r a q u a l f , f i n e l oa my o y e r .sandy . o r sa n d y s k e l e t a l , mixed, m e sic. 7352 Al Spinks, s. w . p . d 7512 Al Ottawa, s, w . p . d . 4363 B l , D2 C2 Bl i coarse loamy, ii ii l oa m fine fine, T ypic Udipsamment, mes i c . loamy, illitic, fine loamy, coarse sandy, loamy mixed, 117 Table 7, Soil cont. symbol Soil s e r ie s i n map u n i t s So i 1 f a m i 1y 7592 A l , Bl Selfridge Aquic A re n ic H a p l u d a l f , sandy o v e r loamy, m ix e d , m e s i c . 7613 A l , Bl Metamora A quollic H apludalf, mixed, m esic. 8182 Al Granby T ypic H a p l a q u o l l s , s a n d y , mixed m e s i c , n on - 5 . 8 stone, Solum Lime­ stone < 5 .8 M oderate 1 imes t o n e . pH solum > 5 . 8 L i t t l e o r no l i m e s t o n e . pH solum < 5 . 8 "R'lEMI Grayish to vellow ish SlSSON G r a y is h to vellow ish iiT m ~ TUSCOLA COnOVe R BROOkstoN K’IBBTE COLWOoD TEASDALE BARRY Y e ll o w i s h HlLLsDAIE e LMOAl E Y e ll o w i s h SPINKS Y ellowish SPICKS 1 s.w .p .d . V ellowish OAkVlLLE Yellowish gRa HBy Table 8 , cont. TWO -"STORIED. PARENT MATERIAL" Wei 1 D ra in e d Mod. We11 D ra in e d Im perfectly Dra ined METEA SELFRIDGE Brunizem T ransition HumicGley 119 T e x t u r e , Upper S t o r y T e x t u r e , Lower Storv Sand t o loamy s a n d , 18-42" t h i c k Loam t o s i 1t y c l a y METEA Sand t o loamy s a n d , 42-66" t h i c k Loam t o c l a y OAKVILLE2 OTTAWA s.w .p .d . GRANBY Loamy f i n e sa nd t o f i n e sandy loam, 18-42" t h i c k Loam t o s i l t y c l a y loam 0W0SS0 METAMORA CORUNNA Loam t o s i 11 1oam, 24-42" ( g r a v e l l y c l a y loam B o v e r 10" t h i c k ) G ravel and sand l e s s than 42" t o 1 ime FOX MATHERTON SEBEWA Loamy sa nd t o sandy loam 24-42" (sandy c l a y loam p a r t o f B l e s s th a n 10" thick) Sand and g r a v e l . Less th a n 42" t o 1 ime BOYER WASEPI GILFORD Same a s above Sand and g r a v e l . More th a n 42" t o 1 ime. 0SHTEM0 1. I m p e r f e c t l y d r a i n e d and somewhat p o o r l y d r a i n e d ( s . w . p . d . ) a r e synonymous terms in M ic h ig a n . 2 . O a k v i l l e h e r e a d i f f e r e n t p h a s e o f Oakville in one s t o r y p a r e n t m a t e r i a l . GILFORD 120 th e mapping u n i t sym bols, the upland m ineral where s o i l soils fluvial incising a s was t h e c a s e o f moraine, F ig u re 3. same v a l l e y . are s tr a tif ie d its in t h e c h a n n e l the itself Imlay o u t l e t deposits, actions resulted v a l l e y and low ering th e stream time th e m a tu rin g s tr e a m found in T a b le 8 , in a c a t e n a r y s y s t e m . p ro c e s se s were c o n tin u e d and the to ta l R e l a t i o n s h i p s among i n C l i n t o n c o u n t y a r e s ho w n deposited m aterials in t h e s a m e l o c a l i t y larging Metea 2592. s e rie s are presented The f l u v i a l l y and a s e.g. repeated in e n ­ level. With i n a m o r e roomy v a l l e y riv e r north of the S t. John L a t e r Maple R i v e r o c c u p i e d p a r t s o f t h e This s u g g e s ts that the o ld e s t years o f age) were d e p o s ite d d u rin g terraces t h e p e r i o d when was a c t i v e o r d i s a p p e a r i n g a n d t h e s e w e r e l a t e r ( a b o u t - 1 **000 Imlay o u t l e t d i s s e c t e d by th e flow o f b o th Maple R i v e r s . As t h e g l a c i e r northw ard, it receding to it a g la c ia l (outwash) from t h e Imlay c h a n n e l site to the imm ediately d e p o s ite d F l i n t m oraine and f u r t h e r the north f o r m e d t h e Owosso m o r a i n e a n d s o u t h o f outwash p l a i n a s south of E ls ie , moraines a r e w ith in the t i l l receded Figure 12. (till) an d t h e Boyer Only p o r t i o n s o f these t h e s t u d y a r e a , w h e r e t h e y a r e o c c u p i e d by derived s o i l s , member s o f M o r l e y , t h e Miami a lre a d y m entioned. Miami, H i l l s d a l e , These include Spinks and O a k v ille c a te n a s . When t h e ic e f r o n t began t o r e t r e a t t o t h e S a g i n a w Bay A r e a ( F i g . f r o m t h e Owosso m o r a i n e 1) a n d d u r i n g t h e e x i s t e n c e o f L a k e Maumee, w a t e r was p o n d e d b e t w e e n t h e ice f r o n t to the n o r t h e a s t and th e d i v i d e around th e s o u th w e ste rn edge of the S a g i n a w Bay. Saginaw and At t h e b e g i n n i n g t h e b o d y o f w a t e r was E a r l y L a k e i t d i s c h a r g e d w e s t w a r d down t h e G r a n d R i v e r v a l l e y . L a t e r d o w n - c u t t i n g o f th e Grand R i v e r o u t l e t c h a n n e l the lake T able 3. i n t h e S a g i n a w Bay a r e a f r o m 735 f e e t In t h e n e x t s t a g e , Arkona and a l l Soils textured t o form a s i n g l e in t h e w a t e r bo d y p r o d u c e d t h e Lake Warren levels. to 13,800 y e a rs and Warren e x i s t e d ago. t o 710 f e e t , two l a k e s t a g e s L a t e L a k e S a g i n a w and E a r l y Lake A rkona w e r e j o i n e d F urther reduction f o u n d on t h e s e lake. r e s t o f Lake Arkona e x i s t e d from 13,400 from 12,300 t o lak e beds a r e la c u strin e m aterial and th e those of 12,800 years^ the f in e two s t o r e y s o i l s o f s a n d o r s a n d y l oam d e p o s i t s o v e r t h e l a c u s t r i n e o r t i l l or w ith a l t e r n a t e t h e s e a r e somewhat p o o r l y d r a i n e d s o i l s Teasdale, m aterials, l a y e r s o f c o a r s e and f i n e m a t e r i a l . ground m oraines o r g l a c i a l a n d some B l o u n t . i t flowed northw ard th r u lowered outwashes. developed In among in e r o d e d These w ere m a in ly Conover, As M a p l e R i v e r r e p l a c e d Imlay o u t l e t t h e F l i n t a n d Owosso m o r a i n i c a r e a s , ^ C o m m u n i c a t i o n f r o m J . H o ug h, M a r c h 14, 1969. 122 t h e i r outwash p l a i n s , and t h e g l a c i a l A rkona, and Warren a g e s , Fig. 3. and then w estw ard to jo in As t h e f l o w o f t h e s t r e a m c o n t i n u e d w i t h d o w n -c u ttin g and th e w a te r flow ed t i o n s on t h e landscape, the p re s e n t incised its Grand R i v e r , riv e r channel Lake W arren, r iv e r channel its tim e and of lower e l e v a ­ remained above terraces. The d o w n - c u t t i n g the low erings in Lake M ic h i g a n , Lake A rkona, Fig. Grand R i v e r , as a n d Lake S a g in a w . th a t slo p e d westward C reek and Hayworth C ree k , had e s t a b l i s h e d in t h e p l a n e s previous e le v a tio n s o r d e e p e n i n g ca me a s a r e s u l t o f old la k e p l a i n s o f Saginaw, in th e p a s t (a lo n g Stony 3) was a b a n d o n e d a f t e r northern course The the river th a t provided a b e t t e r flow gradient. The Imlay o u t l e t and Maple R i v e r m a i n l y by Boyer s o i l s Fox, terraces c a t e n a members a n d t o Oshtemo and S p in k s s o i l a re occupied l e s s e r e x t e n t by c a te n a members. The somewhat p o o r l y d r a i n e d m e mb e r s a r e e n c o u n t e r e d m o r e o n t h e s e than th e w ell elevation. d r a i n e d members due t o t h e s m a l l S ome w h a t p o o r l y d r a i n e d a r e a l s o e n c o u n t e r e d on t h e t e r r a c e s previous or higher lake p la in w ith landscapes levels or or its inequalities so ils, cut in u s u a l l y Conover, lake p la in s th a t were e i t h e r due to t h e i r to the terrace lower s u r r o u n d i n g a r e a s w ere f i l l e d the accum ulating f lu v ia l of the h igher p a r ts of till terraces till. me mb er s a r e f o u n d o n l y on t h e deposits that reached the height T h e O w o ss o a n d M e t e a s o i l transition between catena the te rra c e s 123 and th e m o ra in ic v a l l e y w a l l s . this study f a l l Most o f in t h e r a n g e o f c h a r a c t e r i s t i c s B o y er-S p in k s e x c e p t pedon 0 w hich AA w h i c h of is Oshtemo. the tr a n s e c ts of 7-1** a n d is s i m i l a r Their sam pling s i t e s the v a lle y s b la c k d o t and l i n e s , in F i g u r e s the s o ils Landes, soils. respectively, identified deposits soils catenas. G eologically letter or two level, narrow a r e m ainly th e Genesee, The p o o r l y d r a i n e d m e m b e r s , these s o ils here are p ra c tic a lly are very than o t h e r recent because unchanged g e o lo g ic a l e x c e p t f o r s o me o r g a n i c a d d i t i o n s a n d l e a c h i n g w h i c h may b e e n c o u n t e r e d w i t h i n layers by a a r e more f r e q u e n t l y e n c o u n t e r e d the s o i l s m a te ria l location 16-17. and A bscota s o i l c a t e n a members. Boyer and s t u d i e d a r e shown by a c i r c l e d These A llu v ia l c h i e f l y G lendora, in t o Fox a n d pedon and th e The p r e s e n t f l o o d p l a i n s a r e com p osed o f A lluvial of sampled the pedons. The o r g a n i c e n r i c h e d beneatti t h e s u r f a c e a r e m a r t e o f an o l d e r s u r f a c e and a somewhat longer lapse of tim e between the two a d j a c e n t s t r a t a of sedim ent. A few s m a ll northeastern a r e a s o f o r g a n i c s o i l s a r e a l s o mapped C l i n t o n C o u n ty on A l l u v i a l m orainic s u rfa c e s . areas, in terraces, and T h e m o s t common m a p p i n g u n i t s o f o r g a n i c s o i l s a r e C a r l i s l e muck. In s u m m a r y , figures 7 - 1 ** a n d examining the 15- 16, pedological the s o il key a n d and t o p o g r a p h i c a l legend in t a b l e s ma p s 7 -8 , it in igure 15. P o r t i o n o f L ain g sb u rg q u a d r a n g l e showing f i e l d s h e e t s , t r a n s e c t s , a n d s a m p l i n g s i t e s in s o u t h e r n p a r t o f t h e s t u d y a r e a ( s c a l e i s 1/ 6 2 , 5 0 0 , c o n t o u r i n t e r v a l 1 0 ' ) 125 co s iw" 33 „ X( JHSicfcv ‘ : ’^riNu 1 f e a s a i i j zggj r;,..^rf« Figure 16. P o r t i o n of E l s i e q u a d r a n g l e showing f i e l d s h e e t s , t r a n s e c t s and s a m p l i n g s i t e s in n o r t h e r n p a r t o f t h e stu d e n t a re a ( s c a le 1/62,500, contour in te rv a l 5 ') 126 is thus p o s s i b l e to surfaces of c e rta in upland t i l l realize t h a t some s o i l s ages o r o r i g i n s . derived s o ils , a r e f o r m e d on t h e F o r e x a m p l e , we h a v e th e t e r r a c e o r outwash d e riv e d s o i l s and th e f l o o d p l a i n A l l u v i a l or Organic s o i l s as mentioned above. To i d e n t i f y a n d r e l a t e th e Maple R i v e r fluvial geomorphic s u r f a c e s along t o th e s o i l s and t h e i r ages i t was n e c e s s a r y t o a d o p t a s y s t e m a t i c i n d u c t i v e - d e d u c t i v e a p p r o a c h w h i c h made use of both the p u b lis h e d to p o g ra p h ic a l a s shown shown in F i g u r e s in F i g u r e s 15 a n d 16 a n d c u r r e n t s o i l 7 thru pedons o f v a r i o u s bench s u r f a c e s from t h e Maple R i v e r w ere a c c e p t e d as in d ic a tio n s of being p o s s ib le old so il s u r v e y maps a s 14. From t o p o g r a p h i c m a p s , along tr a n s e c ts maps t h a t a r e a v a i l a b l e survey of 1936 w ith u n its of th ese n e a rly level terraces. The m a p p i n g u n i t s o f t h e the c u r r e n t s o il surfaces d i f f e r e n t e l e v a t i o n s were v ery h elp fu l reasonable s u r v e y mapping that are present at in d i f f e r e n t i a t i n g the s u r f a c e s a s t o s o u r c e o f m a t e r i a l s o f s i m i l a r a g e s p a r t l y on t h e b a s i s o f h a v i n g t h e s a me s o i l catena, a s shown catena, or a very s im ila r in T a b le 9. The 1936 m a p p i n g u n i t c o r r e l a t i o n s w i t h u s e d m a p p i n g u n i t s a r e shown in T a b l e 9 . the c u r r e n t l y 127 T ab le 9. C o r r e l a t i o n o f t h e t e r r a c e s o i l m apping u n i t s o f t h e 1936 s o i l s u r v e y a n d t h e c u r r e n t ( 1 9 6 8 ) s o i l survey C l i n t o n C o u n t y 1936 mapping u n i t s C u r r e n t C l i n t o n County mapping u n i t s - - 1969 Brady Wasepi and M atherton Bel 1f o n t a i n e Fox, B errien O akville, Spinks Bronson Boyer an d Oshtemo Conover Same a n d T e a s d a l e Genesee Same a n d K i b b i e G riffin G l e n d o r a , C o h o c t a h , S 1o a n , Washtenaw G i 1f o r d Same Hi 1 I s d a l e Same, Macomb Granby, Mi am i Same a n d M e t a m o r a a n d M e t e a O s h t e mo Same a n d B o y e r , Fox B o y e r a n d Fox Boyer Metea, Metamora, Metamora Corunna Spinks 128 These c o r r e l a t i o n s a r e d ed uced from a c t u a l s o i l s map ped on t h e s a me t r a n s e c t s maps. comparisons of on b o t h t h e o l d a n d new s o i l Comparing t h e e q u i v a l e n t mapping u n i t d e s c r i p t i o n e d t h e s a me r e l a t i o n s h i p s The m a j o r c r i t e r i a r e v e a l e d from t h e s o i l used the maps. in t h i s p a r t o f t h e s t u d y plotting the e le v a tio n s of distance t r a v e l e d by t h e r i v e r s w i t h i n confirm ­ is the recognized s u rfa c e s a g a in s t the area of study. D is ta n c e s w ere m easured from th e f i r s t p o i n t o f o b s e r v a t i o n ( s i t e AA) on t h e L i t t l e M a p l e n o r t h w a r d . of t h e s e bench s u r f a c e s elevation ranges. i t s e l f as a d o tte d values used. the average v alu es were used fo r T h i s was i n d i c a t e d by p l o t t i n g Average v a lu e s of th e d a ta and o v e rlo o k in g represent above th e a l l u v i u m p l o t t e d a lo n g t h e Maple R i v e r s , plain. fourth noted values for in r e d u c i n g t h e v o l u m e th e minor e l e v a t i o n d i f f e r e n c e s . for the lowest s u rfa c e s fo r every o b serv atio n al Figures transect 17 a n d 18, d e l i n e a t e d t e r r a c e above th e a l l u v i a l the averages of ele v a tio n surfaces the range the c e n tr a l tool Connecting of th e a v e ra g e p o in ts tion of the l i n e on b o t h s i d e s o f t h e e l e v a t i o n a v e r a g e every s u r f a c e and th ey a r e a u s e fu l probable f i r s t In p l o t t i n g e l e v a t i o n s flood p la in . t h e most Connec­ from t h e n e x t h i g h e r p l o t t e d d e f in e th e second t e r r a c e above the a l l u v i a l The s a me p r o c e d u r e was u s e d t o d e l i n e a t e t e r r a c e s above th e flo o d p l a i n . in t h e L i t t l e Maple R i v e r t e r r a c e s flood th e t h i r d and G reater g rad ien ts are compared t o t h e Maple 129 R iver, Figures 17 a n d 18, respectively. Each o f t h e s e s u r f a c e s w e r e v e r i f i e d re la tiv e elevation from t h e a l l u v i u m w i t h a n Abn ey a t e a c h c o n t r o l At t h i s s t a g e level have been c h e c k e d transect. i t was n e c e s s a r y t o e x a m i n e t h e s o i l u n i t s on t h e s e t e r r a c e s to note whether they support th e s is of grouping th e se s u rfa c e s Segments o f each in t h e f i e l d a n d t h e i r same a g e s i n c e t h e y a l l the hypo­ into four d if f e r e n t t e r r a c e a r e assumed t o be o f mapping terraces. relatively the were d e p o s ite d d u rin g one p e rio d o f tim e. S p e c i f i c mapping u n i t s a r e c l o s e l y a s s o c i a t e d w i t h p a r t i ­ cular terraces because of the s i m i l a r i t y in t h e s o u r c e o f p a r e n t m a t e r i a l s and p r o c e s s e s o f t h e i r d e p o s i t i o n . first t e r r a c e above th e a l l u v i a l catena is w id e ly d i s t r i b u t e d and b e c a u s e o f some l o c a l Owosso o r M e t e a ponding and is found. t o b e m o r e on t h e f i r s t flood p la in Metea safidier. The O s h t e m o s o i l is found P o o r l y d r a i n e d me mber s a r e n o t i c e d till Owosso c a t e n a p r o t r u d i n g up d e p o s i t s g e t s a s a n d y loam f l u v i a l thick. Kibbie in some o t h e r a r e a s some or low est t e r r a c e . AO i n c h e s On t h e the Boyer-Spinks i n some a r e a s members a r e f o u n d when a lo a my g l a c i a l into f lu v ia l their is found series e n c o u n t e r e d on t h o s e t e r r a c e s smear 20 t o i n a r e a s when t h i s s m e a r is the l e a s t common s o i l because of t h e i r thicker, m oderately co a rse te x tu re . On t h e s e c o n d t e r r a c e a b o v e t h e f l o o d p l a i n , sim ilar mapping u n i t s o f Boyer a n d B o y e r - S p i n k s c a t e n a s a r e f o u n d . is 770 < fv shtemo (Bronson) 760 ♦ ELEVATION IN FEET Gilford\ ♦ Metamora H I Cl IE Ov. 27-50 <0-50 Vcs fanlly ■■ 10.05 6.75 8.20 8.75 14.30 12.40 14.90 17.30 L. Boyar-Sptnks looey AP* Cn68IOOI 2 A2* A2Blt 3 4 B2lt B22t* 5 fi H 83* 7 H Cl 8 H C2 sand, sandy family 0-10 10.00 10-19 14.80 19-25 15.50 25-32 19.70 32-38 16.50 38-44 5.50 44-51 20.40 51-62 43.30 3.40 3.95 3.55 5.60 8.75 0.90 6.70 17.70 i am 14.40 15.50 10.10 11.10 26.20 29.80 38.10 Pal rad Slngla * Valuas of these staples are duplicated. «< I N. Boyar sandy loan. 6x68060) AP* 0-10 2 Bhlrl 10-14.5 3 Bhlr2 14.5-20 A2Bt 4 20-23 I T B2t 5 . 23-28 6 ITB3* 28-33 7 33-38.5 o r Cl* I sand, cosrss loany A as s a van 0-9 38.70 9-15 28.20 15-23 29.80 23-30 46.80 30-32 31.30 32-37 33.50 37-44 41.30 44-54 47.90 I Ms Ft Vf« 34.10 17.50 31.40 26.80 4.00 1.20 Shalay - discontinuous Ions, not anslyztd IF. Boyei^Sptnks loeay AuBnflnfl SHl AP* Gn68090l A2* 2 3 Bl* 4 821* 822 5 6 as 7 Cl 8 C2 LSD Cs (bordsrllns to sandy faatly) _ 16.30 38.90 12.40 2.20 17.80 43.80 10.75 1.55 20.00 40.05 10.60 1.35 17.25 47.90 12.05 0.90 22.10 38.50 8.60 1.00 23.20 46.80 7.90 0.60 27.70 46.60 6.00 0.40 23.90 43.10 8.60 0.50 8.80 9.50 10.20 15.00 23.15 4.40 21.80 34.60 ? Cn680808 6 Dapth Sol. Lab. Texture Field Texture Ts CSI Fsl 80.80 8.90 4.10 14.00 5.10 0.00 vgv.lcs is 79.85 80.63 80.15 86.90 84.40 90.90 95.60 93.20 6.65 2.95 4.15 1.75 1.50 4.00 0.00 0.80 8.00 9.00 5.85 1.25 4.20 0.20 0.00 3.40 14.65 11.90 10.50 3.00 5.70 4.20 0.00 4.20 5.50 7.45 9.35 10.10 9.80 4.90 3.40 2.40 0.38 0.43 0.55 1.09 0.85 0.14 2.66 1.74 gv.les 9 *. la gv.si gv.les gv.ics gv.es gv.es gv.es si is si •! si s & gv s A gv s A gv T«1 Te In .. 37.50 38.60 49.90 46.60 38.85 29.20 43.90 32.90 28.30 25.20 24.30 23.70 14.10 60.70 17.70 3.40 4.50 5.10 2.95 1.20 1.05 1.20 1.10 0.50 82.50 82.35 90.90 92.10 85.90 96.40 91.20 89.20 4.90 5.60 3.00 2.10 4.40 0.70 2.70 5.20 8.10 7.40 3.40 2.30 0.90 0.20 1.00 2.10 13.00 13.00 6.35 4.40 5.30 0.90 3.70 7.20 4.50 4.90 2.75 3.40 8.80 2.70 5.10 3.60 6.70 8.19 1.57 0.00 8.01 0.00 2.10 2.60 Is Is s s les s gv.es gv.es Is Is Is Is Is s Is s Is Is s s gv.s gv .is gv.fs Is Is s Is Is Is s A gv % _______________Nor. (Continued) 2.20 4.80 4.70 6.20 4.10 7.60 4.05 11.80 7.20 20.20 18.92 13.80 16.45 6.45 47.40 25.70 52.80 40.40 57.10 37.20 32.10 16.00 32.80 12.40 23.05 12.50 21.50 53.80 2.60 10.80 0.90 2.00 1.90 1.80 0.85 80.00 81.30 91.00 89.57 89.40 84.55 97.25 5.10 ,3.50 2.20 4.05 2.70 1.80 1.10 9.30 6.00 3.40 1.65 3.20 5.85 0.30 14.40 9.60 5.60 5.70 5.90 7.70 1.40 5.50 9.10 3.40 4.73 4.60 7.75 1.35 0.36 0.63 0.29 0.27 0.11 0.38 0.36 0.44 0.62 1.24 1.73 0.88 1.22 0.79 1.10 0.45 0.65 2.71 3.80 1.85 2.59 1.07 1.50 1.28 1.78 0.67 0.80 4.32 5.86 *1 *11 TABLE (2 - I00A / \ / \ 9 0 y r - ----- *\0 Legend: .20 80,f ----70; ,3 0 40 A 60. CLAY V \ /* ff\V 4% " C S / / / p / \ * -Correct infield ® * Border IIm © =lncorrect,< 1/2 elate difference * * Incorrect, > 1/2 d o es difference \ / \ X \ t / \ V / •\ roY -rL ; \\5 0 ■ \ O SILTY \ \ / \ e< LAY’« \ X X A60 \ \C L A Y LOAM / \ / SANDY CLAY L 0 A M \ * \ A / SILTY /V \ ' \ • t/ \ /# A \ / / \ / \ / \ / \ / * V X ' \ / \ / V V 20 ^---------%— X GC •4 J . (D Ma p l e R i v e r ^ F L. M a p l e R i v e r ----------------- AA --------------------------------- b2 b3 coarse loa my l oa my JZ I (4) 14,000 ( 1) 12,800 y rs 1 2 (, 8!>0 0 y r s f ine 0) o c a> 3 O' a> tn O FD bl sandy coarse co arse* chronosequence- l o a my » II Maple R iv e r ( 1) 12,800 y rs N --------- cl (3) 13,400 y rs ( 1) 12,800 y rs ► L —> c2 cl sandy beach o f L. W a r r e n LF sandy c o a r s e l oa my b e a c h o f U. Sag i naw-Arkona age c o a rs e * Chronosequence* C oarse in c lu d e s sandy and c o a r s e b o rd er Iin e to sandy Figure 21. loamy p e d o n s , S u g g e s t e d c h r o n o l i t h o s e q u e n c e r e l a t i o n s h i p s among the s tu d ie d pedons, w ith t h e i r r e l a t i v e ag es. Gtacketed n u m b e r s a r e o r d e r o f t e r r a c e s ( o r b e a c h e s ) from lo w e s t t o h i g h e s t a l o n g t h e Maple R i v e r . T a b l e 19. S ite R e l a t i v e a g e , s e q u en c e and e l e v a t i o n s o f t h e sampled s i t e s on t h e d i f f e r e n t l a n d forms i n v o l v e d Elevation ft. F 705 AA 755 N 685 L 690 LF 710 FD 735 D 735 G lacial Stage Mapping u n i t and soi 1 mapped Land form L a t e Warren Boyer l . s . terrace Upper and Middle Warren Oshtemo terrace Upper Warren Boyer l.s. beach Lower Arkona and Upper Warren Boyer l.s. terrace Lower Arkona Boyer gv. si beach 13,800-14,000 P o s t Saginaw and Upper Arkona Boyer s i deltaic terrace 14,000-15,000 P o s t Imlay and E a r l y Saginaw Boyer-Fox si deltaic beach terrace R e la tiv e age*in y e a r s and sequence 12,300 12,600-12,800 12,800 12,800-13,400 13,400 *Ages a r e b a s ed on J . L . Hough d a t e s i n d i c a t e d in h i s l e t t e r o f March 14, 1969 ( s e e Appendix 111). 173 Pedo n s o l a o f D a n d FD a r e o f d i f f e r e n t s t r a t i g r a p h y s i n c e D i s o f ' a 1m a t e r i a l in F i g u r e 2 1 . a n d FD o f b l m a t e r i a l At t h e f a m i l y 15,000 y e a r s o f a g e a n d FD i s o f This (D i s 14,000- 13,800 - 14,000 y e a rs of is e x p e c te d to e x i s t in t h e i r s i t u a t i o n . 1 i t h o s e q u e n c e s i t u a t i o n may b e e x p a n d e d t o LF o f t h e c2 m a t e r i a l , D pedon is o f c o a r s e - S in ce they a r e both o f com parable ag es, age) a 1ith o s e q u e n c e indicated texture c la s s ific a tio n i s o f f i n e - l o a m y c l a s s i f i c a t i o n a n d FD p e d o n l o a my . as i n c l u d e pedon sandy fam ily c l a s s i f i c a t i o n , and 13,400 years of age. These t h r e e se q u en ces F i g u r e 21 a p p e a r providing a ll to f i t other soil in t h e arrangement presen ted in a c o m p l e x c h r o n o l i t h o s e q u e n c e forming f a c t o r s a re held c o n s ta n t. The r e s u l t i n g m e c h a n i c a l l y a n d m o r p h o l o g i c a l l y strata, in recognized can be f u r t h e r examined f o r v a r i a t i o n s a s s o c i a t e d w i t h pedon d i f f e r e n t i a t i o n or age d i f f e r e n c e s . none o f t h e c l a s s i c a l a p p ro a c h e s , which r e q u i r e uniform p a r e n t m aterials, is a p p l i c a b l e Due t o t h e f a c t in t h e s e s t r a t i f i e d pedons, that t h e exam­ i n a t i o n s w e r e a c h i e v e d by p r o p o s i n g c o m p a r i s o n s o f s i m i l a r horizons in s i m i l a r m a t e r i a l s Mechanical in d i f f e r e n t p e d o n s . a n a l y s e s and m i n e r a l o g i c d a t a a l s o showed t h a t no o n e o f t h e p e d o n s i s o f t h e sa me m a t e r i a l a r e o f t h e same s t r a t i g r a p h y n o r a n y t wo p e d o n s th u s M a rsh a ll and Haseman's approach,w hich emphasizes p a r e n t m a te r ia l (1943) u n i f o r m i t y f o r making * m ch ro n o lo g ic com parisons fore data in t a b l e is n o t a p p l i c a b l e 17 c a n n o t b e u s e d f o r p r o v i s i o n s a r e ma de t o t a k e in d ic e s ) were sition rising f in e sand m in e ra lo g ic indications o f solum p a r t s by r e l a t i n g There­ purpose unless effects. from s t r a t i f i c a t i o n s data i n t e n s i v e l y examined f o r and l i t h o l o g i c this case. into account s t r a t i f i c a t i o n To o v e r c o m e t h e v a r i a t i o n s in e a c h p e d o n , in t h i s w ith (as w eathering the expected chronologic t h e m i n e r a l o g i c compo­ (A2 a n d B 2 2 t h o r i z o n s ) to s im ila r parent AJ m aterial ( SP M) , in d iv id u a lly as solum m i n e r a l o g i c c o m p o s it i o n sim ilar parent m aterial parent m aterials or c o lle c tiv e ly as average ( P e d o n s FD, LF, L a n d F) to a o r a v e ra g e o f each h o riz o n and s i m i l a r ( P e d o n s N, AA a n d D) a s The c o l l e c t i v e w e a t h e r i n g ratios indicated in t a b l e 20. a r e c a l c u l a t e d by t h e f o l l o w i n g f o r m u 1a : A2 + B221 r a t i o = HEE— ^ SPM _ C ollective Thus, in t h e s e c o l l e c t i v e c o m p a r i s o n s , there e x is t two l e v e l s o f r e l i a n c e d e p e n d i n g on t h e d e g r e e o f c o m p l e x i t y o f calculation form ulae. and p r o b a b l y o f Data lesser Those o f f o u r v a r i a b l e s reliance than i n t a b l e 20 s ho w t h e e n t i r e co m p lex ity and its basis in t h e pedon D h a s a t h r e e s t r a t a of a - m a t e r i a l which is those of a r e more com plex three v a ria b le s. range of m in e ra lo g ic l a s t column. solum, their For exam ple, i t s A2 h o r i z o n m a t e r i a l is t h e f i n e s t s t r a t u m s t u d i e d and has no T a b l e 20. R a t i o s o f w e a t h e r i n g i n d i c e s (G/PA and Q/PA) f o r A2, o r A2 and B22t h o r i z o n s t o t h e i r most s i m i l a r p a r e n t m a t e r i a l (SPM) Pedon symbol and f a m i l y texture Gravel 1iness f i n e loamy, D -/g r c o a r s e loamy, FD c o a r s e loamy, F G/PA Q/PA A2 . B22t 5FR W 2 S trata i n v o lv e d A2 , B22t 5FR + SPFT 2 A2 12.77 6.99 1 .1 4 1.16 g v /g v 2.31 2.39 0.67 0.64 ( b l + b l )? 2 b3 Cb4> g v/gv 0.60 0.52 1.90 1.63 (c2+c2) t 2 c3 sandy, L mj w 0 .5 3 0 .3 3 2 .5 8 2 .0 6 ( c l + c l ) _f 2 c3 sandy, N mj m 0.86 1.33 3.87 2 .2 8 cl+dl i 2 c j ^ s a n d y , AA -/gv 2 .1 5 1.39 0 .9 5 1 .3 2 c o a r s e loamy, LF g v /g v 1*185 4.23 K48 i loo A2 !TPM i?(bio+I f 4 b2 . c2 f m w 'c i (b3+b3) ? 2 b3(b 4) 176 very s im ila r p a re n t m a te ria l t o compare it w ith. For c u r i o s i t y , i t was c o m p a r e d t o t h e n e a r e s t c o a r s e r u n a l t e r e d s t r a t u m h a p p e n e d t o be b3(b*t) w h i c h is t h e c o a r e s t among b - m a t e r i a l s and t h a t m i n e r a l o g i c a l l y q u a l i f i e s Thus, f o r a new s u b c l a s s g reater values are obtained for latter the in Q/PA c o m p a r i s o n s . in b o t h G/PA a n d t o a The s m a l l e r ratio for the is p r o b a b ly due to t e x t u r e and m i n e r a l o g i c s o r t i n g o f initial m aterials t h a t made t h e m c o a r s e a n d h i g h l y s i l i c e o u s . The B 2 2 t h o r i z o n m a t e r i a l w h i c h i s o f c3 m a t e r i a l to the u n a lte r e d horizon of s i m ila r m a te r ia l G/PA, t h e r a t i o o f B22t /SPM i s small compared to that (b4). t h e A2 h o r i z o n w e a t h e r i n g compared t o t h e c h o s e n p a r e n t m a t e r i a l , lesser extent that 12.77 f o r the g re a te r w eathering than t h a t in B22t d e p t h . r a t i o a m iddle of 6 .9 9 le sse r w eathering is compared below it. found t o be 1.22 which For is very t h e A2 h o r i z o n a n d t h i s may i n d i c a t e is taking p lace near the su rfa ce By a v e r a g i n g A2 a n d B 2 2 t w e a t h e r i n g is o b t a i n e d , which c o n t i n u e s in t h i s to r e f le c t co m b in atio n o f h o r iz o n s compared to t h e A2 a b o v e . The r a t i o o f sim ilar to ra tio s 1.22, for t h e G/PA o f B 2 2 t / S P M, is very f o r Q/PA i n t h e A2 a n d A2 + B 2 2 t . i n d i c a t e t h a t t h e B22t / SPM c o m p a r i s o n s a r e m o r e v a l i d ratios for t h e A2/SPM. much g r e a t e r is less than f o r than f o r B22t. In t h e latter, t h e B2 2t / SP M, a n d than the t h e G/PA f o r A2/SPM i s i n t h e Q/PA t h e A2/SPM This a g a in c o n f ir m s o f t h e a s s u m e d SPM f o r t h e A2 h o r i z o n . T h i s may the d i s s i m i l a r i t i e s 177 P e d o n FD w h i c h treated that is o f b l - m a t e r i a l solum ( T a b le 20) in t h e same m anner an d from s t r a t i g r a p h y i t m ust be com pared t o b3(bA) m a t e r i a l p e d o n LF w h i c h Sim ilar fa c ts is s t i l l in in m i n e r a l o g y . i n L a n d LF p e d o n s , a lth o u g h pedon LF i s c o m p a r e d t o a m o r e s i m i l a r p a r e n t m a t e r i a l . a n d L p e d o n s G/PA r a t i o v a l u e s i t was f o u n d o f B3 h o r i z o n c o a r s e r and d i f f e r s are observed is In t h e LF dropped t o below u n i t y and t h i s me a n s t h a t g r e a t e r w e a t h e r i n g h a s taken p la c e in t h e p a r e n t m aterial is a b s u r d . B u t , Q/PA r a t i o than in t h e s o l u m . i n d i c a t e more normal reflected values le s s e r w eathering As f o r This - that is g r e a t e r in t h e B22t h o r i z o n . p e d o n s N a n d AA t h e s i t u a t i o n o f D pedon w here solum than u n i t and i s ma de o f separate m ineralogic ev a lu atio n . is as complex as two s t r a t a that that require In t h e e v a l u a t i o n o f A2 d e g r e e o f w e a t h e r i n g p e d o n N i n G/PA a n d p e d o n AA i n Q/PA d r o p p e d b e l o w unity. both, The s i t u a t i o n s t h e B22t w e a t h e r i n g Q/PA r a t i o m aterial is n o t i c e d It for thus to b3(b4) that of th e s e unusual ratios t h e s a me p e d o n . v a l u e s a r e c l e a r e d by a n d t h e o t h e r s e t G/PA o r All o f pedon F solum i t s w e a t h e r i n g c o m p a r i s o n s a r e ma de unaltered m aterial i n A2 h o r i z o n is a p p a re n t a t o f FD p e d o n . than this (N, the c r i t e r i a . t h a t no r e a l w e a th e r in g indicates achronologic p a tte rn the c h ro n o se q u e n c e s in r e l a t i o n G reater w eathering i n B 2 2 t by b o t h o f stage i s o f b3 L, LF a n d F , ratio is observed f o r e i t h e r of AA, FD) b e c a u s e o f t h e i r 178 initial 1 i t h o l o g i c d i f f e r e n c e s where f l u v i a l both p a r t i c l e size d istrib u tio n sorting affected and m i n e r a o l o g i c c o m p o s i t i o n . The n e a r e s t s i m i l a r u n a l t e r e d m a t e r i a l s proved to be in a d e q u a te fo r such c h r o n o lo g ic com p ariso n s. O t h e r c a u s e s may a l s o h a v e a f f e c t e d chronologic m ineralogic ratios. the v a l i d i t y of th ese The s e n s i t i v i t y o f the w eathering i n d i c e s o r t h e i r m e a s u r e m e n t s may n o t be a d e q u a t e l y d i f f e r e n t i a t i n g among w e a t h e r i n g intensities refined for o f such complex situations. F inally, the chronologic g e n e ra liz a tio n i s t h a t o l d e r p e d o n s o f D a n d FD a p p e a r amounts o f w e a t h e r i n g throughout t o h a v e s o me w h a t e q u a l th e ir sola o f p e d o n D, A 2 - h o r i z o n G/PA r a t i o ) t h a t c a n be made (with the exception by b o t h r a t i o s . s a n d y me mbe r s o f t h e c h r o n o s e q u e n c e s As f o r ( F , AA, a n d N, L, LF) a g r e a te r degree of w eath erin g took p la c e near the s u r f a c e in t h e B 2 2 t h o r i z o n are in e i g h t o f t h e t e n c o m p a r i s o n s . i n N p e d o n by G/PA r a t i o a n d the i n AA by Q/PA r a t i o , than Exceptions which a r e below 1 and u n r e a l i s t i c v a l u e s . E. Chemi s t r y Chemical the c h a r a c t e r i s t i c s of horizons l a s t c o n s id e re d s in c e they a r e in e a c h s t r a t u m a r e relatively dynamic p a r a m e t e r s w h i c h a r e g r e a t l y a f f e c t e d by t h e p e d o g e n e t i c p r o c e s s e s o f addition, depletion, tra n slo catio n or transform ation. Thus, 179 none o f th e p r e s e n t chemical initial chemical the initial status m aterial, data is e x p e c te d t o r e p r e s e n t in t h e s e s t r a t a . or in t h e s o i l at Organic m a tte r time z e ro , t h e p a r e n t m a t e r i a l was a s o l u m e l s e w h e r e b e f o r e ported. Inorganic carbon uniform ly d i s t r i b u t e d soil (carbonates) throughout the p e d o g e n e s i s was the in is z e ro u n le s s i t was t r a n s ­ u s e d t o be somewhat initial i n i t i a t e d and then it m aterial started to until leach downward. Mo s t o f the chemical com parisons needed f o r data w ill the chronological o f <: 2mm. d i a m e t e r w e r e s u b j e c t e d total carbon, be used com parisons. to chemical pH, e x c h a n g e a b l e b a s e s , analyses Samples to determ ine inorganic carbon, e x c h a n g e a b l e h y d r o g e n by t h e c o n v e n t i o n a l t h e c h a p t e r on m a t e r i a l s a n d m e t h o d s . in m aking t h e c h e m ic a l and methods d e s c r i b e d in Cation exchange c a p a c ity , p e rc e n t base s a t u r a t i o n and o r g a n ic carbon were c a l c u l a t e d from these in laboratory data. Table 21. S tatistical the chemical All th e chemical data a re LSD v a l u e s n e e d e d f o r p a r a m e t e r s a r e shown a t duplicated or sin g le determ inations. reported the e v a lu a tio n of t h e end o f T a b le 21, S tarred values for in t h e tab le a re averages of d u p lic a te d eterm in atio n s. a. Soil S o i 1 r e a c t ion reaction is a dynamic s o i l an e q u i l i b r i u m s t a t e suspensions, that c o n d i tio n which b e t w e e n t h e H+ a n d 0H“ i o n s is s u s c e p t i b l e to change as reflects in w a t e r the fa c to rs TABLE 21 Horizon AA Cn68050l 2 3 4 5 6 7 8 4 5 6 7 Chantcal Prapartlas of tha Radons Horizons T io lT pH In Stratum pH HjO pH in KcL AP A2 Bl IT B2lt H B22t H B3 ITT Cl HTC2 b2 b2 b2 C2 e2 c3 dl dl 6.29 6.30 6.30 6.30 6.30 7.00 c alc. c alc. 6.00“ 6.43“ 6.80“ 6.83“ 6.70 7.80 8.38“ 8.38“ 3.24* 5.48* 5.70* 5.80* 5.85 6.80 7.80* 8.30* AP A2 BIx IT B2lt I I I B22t nr ci n r C2 a a a bl c3 c3 c3 6.20 6.00 6.30 7.00 7.00 8.00 8.00 6.18* 6.80* 6.60 6.50* 7.50 8.45* 8.58* 3.38* 5.33* 5.20 4.80* 6.45 7.23* 7.78* AP A2 BIA2 B2lt B22t B3 H Cl HC2 bl bl bl bl bl b3(b4) d2 d2 6.00 6.50 5.75 5.75 6.50 7.00 Calc Calc 6.10* 6.23* 6.55 6.48* 6.70 6.70 8.50 8.60 3.15* 4.95* 4.80 5.08* 5.60 5.45 7.40 7.80 b3 b3 b3 b3 b3 '■ 6.00 6.20 6.30 6.50 6.73 6.28* 6.60 6.80 6.85 7.60 5.83* 3.73 5.85 5.85 6.70 T M M A jW U CHI6M in m.a.par 100 gp.soll No K Mg Ca _ 0.13* 0.06* 0.07* 0.07* 0.13 0.13 0.13 ME/1DO gn.sotl 9.90* 10.12* 7.04* 7.04 6.16 3.74 1.32 0.19* 0.13* 0.13* 0.01* 0.26* 0.07* 0.26* -0.13 0.09 0.05 1.35* 6.50* 1.20* 7.80* 1.40* 7.60* 4.30* 15.70* 13.30* 32.50* 6.44 36.80 2.10 34.05 0.07* 0.07 0.13 0.13* 0.06* 0.05 0.05 — 1.40* 3.00* 1.40 2.60 1.50 10.40* 1.64* 10.40* 1.80* 8.00 2.40 7.80 1.28 32.0 1.50 48.0 0.14 0.05 0.03 0.03 0.03 1.19 0.70 1.13 5.05 8.10 — — ,— — — — — — 1---------- 1 ! IMF I | I ganlc CB/IOO got. Clay CEC.Z I 8.S. iTofal C, I Carton 0.13* 10.70* 0.90* 7.25* 0.90* 7.35* 0.90* 7.80* 1.40 10.40 8.00 10.70 1.BO 16.00 1.50 32.00 — _ W 7W ] gm.90l l | | 20.86 18.33 15.36 15.81 18.09 52.54 44.79 54.17 55.47 69.95 83.43 93.14 96.82 0.85 — 0.49 0.33* X— — 0.24* X— 0.45 0.82 xO.16 1.49* *0.68 1.98 *1.49 0.83 0.49 0.33 0.24 0.43 0.66 0.81 0.49 321 411 415 491 234 407 — — 9.68* 8.36* 7.26* 9.75* 5.93* 1.35 0.88 17.92 17.49 16.39 30.01 45.98 32.20 33.71 67.54 88.59 96.23 97.63 — 1.18* 1.03* X— 0.30* x_ 0.41* 0.75* *0.11 3.86 *3.05 3.64 *2.99 1.18 1.03 0.30 0.41 0.64 0.81 0.65 235 388 120 128 8.36* 8.80 10.12 8.36* 7.26* 7.28 2.64 0.22 12.83 12.80 22.15 20.53 17.13 17.53 34.84 31.25 54.31 99.30 37.68 38.17 92.66 99.56 0.79* — 0.31* 0.22 0.31 0.32* >0.19 1.25 >0.79 2.88 * .4 3 2.88 * .3 2 0.79 0.31 0.22 0.31 0.53 0.43 0.43 0.56 190 138 167 118 (887) (156) 9.68 7.26 6.38 7.27 5.28 16.82 13.83 13.54 18.75 13,08 42.45 47.08 52.88 61.13 65.00 mm 0.89 — 0.23 — 0.21* — 0.29 0.60 *0.14 0.89 0.23 0.21 0.29 0.46 377 242 163 334 (195) 1.10 mm — FD 0)660701 2 3 4 3 6 7 8 — — __ — — — — F 0*690801 2 3 4 5 AP A2 A3Bt B2!t B22t — — — — 5.83 5.73 6.00 6.40 1.54 — 180 D 0*600601 2 3 - TABLE_ 21 — Continued Horizon Cn680807 8 6 LF. Cn68090l 2 3 4 5 6 7 8 L Cn68IOOI 2 3 4 3 6 7 8 N 6x680601 2 3 4 5 6 7 Lsd Soil Reaction Field pH In pH In Stratum Kcl P« H20 c3 B23t 7.00 Cl d2 e.do a shale fragments 7.00 AP A2 Bl B2I B22 B3 Cl C2 c2 c2 c2 c2 c2 d2 d2 d2 3.80 6.20 6.60 7.00 7.30 Calc. Calc. Calc. Exchangeable Cations In n .e . p«r 100 gn, so n Na K Mg Ca 8.30 8.43* 7.10 7.35 7.80* 6.70 6.93 6.85 6.90 6.65 7.93 8.05 8.10 8.28 5.95 5.90 6.10 3.60 6.70 7.40 7.70 7.78 mm -— , AP A2 A2Blt B21t B22t IT B3 n Cl HC2 cl 3.70 cl 6.20 cl 6.90 cl 6.50 cl(c4) 7.00 dt(b4) 7.20 d2 Calc. d2 Calc. 5.95* 6.45* 6.73* 6.70 6.85* 7.20 7.80 8.10 5.05* 5.58* 5.70* 5.80 5.58* 6.20 6.80 7.85 AP Bhtrl Bhlr2 A2Bt U B 2t n as n ci el 5.90 cl 5.80 cl 6.00 cl 6.30 d2(c4) 7.00 02(c4) Calc. 02 Calc. 5.55 3.85* 5.80 6.08* 6.40 6.70 7.50 4.65 4.80* 4.90 5.23* 5.55 5.85 6.50 mm — — —* — — me u — — -----— — 0.05 — 2.70 1.04 — 40.00 18.00 — Nc/100 gn.aoli Kt Nc/100 1.22 0.44 43.92 19.33 ge.soll CECitf 7.92 9.02 7.24 4.24 1.76 1.32 0.40 ~ 16.47 18.15 15.20 12.70 23.11 0.07 0.05* 0.07 0.06* 0.07* 0.13 0.80 3.00 1.20* 2.80* 1.40 7.85 1.25* 7.85* 1.88* 7.60* 5.64 18.25 1.50 32.00 2.30 40.00 8.04 6.82 6.82 7.04 7.68 7.92 5.06 1.10 11.91 10.87 16.14 16.20 17.23 31.94 0.40 7.50 0.80 2.63 0.80 4.51 5.60 0.85 0.90* 7.03* 1.05* 10.02* 1.75* 38.90 11.44 7.04 7.92 7.85 7.88 7.04 0.44 19.47 10.54 13.50 14.40 13.86 18.17 1.43 2.19 1.93 2.35 — mm 0.13 0.07 -----0.07 0.03 0.07 0.05* m e# 0.07* 0.09* 0.06* — duplicated observation 0,02 0.12 0.72 0.53 Single observation 0.98 0.75 0.03 0. IB • Duplicated eeasuraeants ( ) Value - questioned because °* present. 0.30 0.54 0.93 i . re B.S. 97.27 97.75 — 0.15 0.60 7.80 0.06*" 1.42* 7.65* 0.05 1.86 6.00 0.06* 1.84* 6.50* 0.05 3.30 18.00 — 1.04 28.00 0.05 2.85 34.50 0.05 2.80 44.00 me t Inor­ t ___ ___ — — "" — ganic Total C. Carbon t 2.48 3.37 15.20 xl.98 2.78* t Organic Carbon 0.44 0.59 __ ~ 1.12 299 0.32 0.15 0.22 0.45 0.44 0.16 0.18 213 161 125 (235) 0.81 264 0.14 221 386 476 31.91 50.30 53.33 66.61 92.38 95.65 98.93 100.00 1.12* 0.32 0.15 0.26* 0.60 3.04 3.63 3.41 32.40 37,26 57.74 56.54 58,40 75.20 86.88 97.48 0.81* 0.14* 0.44 0.38 0.40 0.16* 0.27 3.91 41.24 50.28 40.60 45.21 50.32 61.25 96.93 1.02* 0.22 0.30 0.31 0.35 0.66 1.64 n.d. x | . 17 0.47 3.97 4.44 0.21 1.29 0.12 0.17 0.19 0.24 x Calcareons - gravel noted In th is horizon. CEC/100 gae. Clay me 0.04 xO.15 X2.60 X3.47 3.23* 0.14 x — X — X — X0.06 3.49 _ __ __ 0.44 0.38. mm — 0.40 0.16 0.19 0.42 195 1.02 0.22 0.30 0.31 0.35 354 115 397 304 344 (234) 118 — • • — 182 affecting the t h e s e two i o n s d i f f e r . ecosystem The m a j o r s i n g l e f a c t o r in is n o r m a l l y p r e c i p i t a t i o n w h ich p r o v i d e s more H+ i o n s t h r u t h e u n i o n o f t h e a t m o s p h e r i c w a t e r w i t h a t m o s ­ p h e r i c a c i d f o r m i n g g a s e s s u c h a s CO2 , SO2 a n d n i t r o g e n o x i d e s if present. A c c o r d i n g t o b o t h mass a c t i o n and t h e face reactio n s, hydrogen, i n t i m e , may r e p l a c e m o s t o f t h e b a s e s p r e s e n t on t h e e x c h a n g e c o m p l e x , new r a t i o thus resulting in a b e t w e e n H+ i o n s a n d t h e r e s t o f t h e *i o n s on t h e e x c h a n g e c o m p l e x a n d a d i f f e r e n t pH. the ecosystem distribution S in ce added m o is tu re to i s o f a known r a n g e a n d a p p r o x i m a t e e q u a l in t h i s h u mi d t e m p e r a t e r e g i o n , in a d d i n g a c t i v e h y d r o g e n and th e ionic s u r ­ ions, the m oisture e f f e c t removal o f t h e a d s o r b e d b a s e s re s u ltin g e q u i1ibrium .should r e f l e c t th e tim e in t h e s e p e d o g e n i c p r o c e s s e s t o p r o d u c e a new l e v e l hydrogen The s o i l ion c o n c e n t r a t i o n . involved of activ e reaction data are presented in T a b l e 2 1 . The pH v a l u e s o b t a i n e d lower th a n t h o s e o b t a i n e d in KC1 s o l u t i o n a r e a b o u t o n e u n i t in w a t e r . The KC1 pH r e a d i n g s a r e c o r r e l a t i v e w i t h t h e w a t e r pH r e a d i n g s . t h a t KC1 pH r e a d i n g s a r e and t h a t C ollins (1967) l e a s t a f f e c t e d by t h e s e a s o n a l i s why t h e s e KCl pH r e a d i n g s w e r e m a d e . showed variation U sually t h e same tr e n d s and b re a k in g p o i n t s a r e i n d i c a t e d by b o t h m e t h o d s f o r t h e sa me p e d o n s . l a b o r a t o r y pH d a t a some v a r i a b i l i t y Both s e t s o f relative to those determ ined indicate in t h e f i e l d . 183 Mo s t h o r i z o n s s h o w e d f i e l d 0.1 pH d i f f e r e n c e s in t h e r a n g e - o f - 0 .8 o f a u n i t . compared to th e w a te r pH 's The p e d o n s s t u d i e d from medium a c i d alkaline in a c i d i t y m e a s u r e d i n s o me s u r f a c e layers i n m o s t o f t h e 83 h o r i z o n s . so la as measured of s i t e ranged in w a t e r N t o pH 8 . 0 5 The l a t t e r in w a t e r i n t h e Ap h o r i z o n LF. C alcareous i n t h e 83 h o r i z o n s o r C h o r i z o n s . r a n g e d f r o m pH 6 . 7 0 t o i s a n u n u s u a l l y h i g h pH r e a d i n g a n d i t may be a t t r i b u t e d m o s t l y t o c a l c i u m a n d m a g n e s i u m c a r b o n a t e s in that in la y e r s in c e M ichigan s o i l s sodium. However, i n c r e a s e i n pH v a l u e s w i t h pedon D d e c r e a s e d to increase indicate a in d e p t h . in h o r i z o n s ab o v e B21t. f r o m A2 t o B21t i n H2 O, then in crease again w ith depth. S i n c e Ap h o r i z o n s in a l l except t h a t o f th e N pedon, are a ll the i n pH i n KC1, I t d e c r e a s e d by 0 . 3 o f a pH u n i t started a r e n o t known t o b e h i g h R e a c tio n s o f each o f th e pedons g e n e r a l l y pattern of to The r e a c t i o n o f t h e i n t h e B3 h o r i z o n o f s i t e T h e pH o f t h e s e c a l c a r e o u s h o r i z o n s pH 8 . 6 . laboratory. to m ildly a lk a lin e r a n g e d f r o m pH 5 . 5 5 m a te r ia ls were en c o u n tered in t h e of th e pedons have been limed, and p a r e n t m a t e r i a l s in C h o r i z o n s c a l c a r e o u s a n d n o t a f f e c t e d by l e a c h i n g , the horizons le f t fo r chronologic horizons. leach in g com parisons a r e The A2 h o r i z o n is h o r i z o n o f maximum l e a c h i n g . t h e A2 a n d 8 t h e h o r i z o n n o r m a l l y known a s Exam ination o f a l l t h e Sandy Pedons s t u d i e d f o r p o s s i b l e c h r o n o l o g i c pH r e l a t i o n s h i p s functions ( T a b l e 2 1 and F i g u r e 22) e x c e p t i o n o f N pedon f a l l s ig n ific a n t differences As f o r points out th a t B22 h o r i z o n s , generally w ithin i n A2 , 61, of th e s e pedons w ith the range of non­ t o e x i s t among F, o r LF, a n d N, In B3 h o r i z o n s o n l y N pedon a p p r o a c h e d s i g n i ­ f r o m AA, F , a n d LF p e d o n s . somewhat u n i q u e i t s more a c i d re st of the B21, Cl a n d C2 h o r i z o n s . ficant differences to the depth a n d b e t w e e n N, AA a n d L p e d o n s . S ig n ifica n t differencesappear in reaction there are n o n -sig n ifican t differences b e t w e e n F a n d LF p e d o n s , pedons. in a l l the Thus N pedon is r e a c t i o n d e p th f u n c t i o n compared the pedons. T h e n AA o r L, a n d F o r LF s h o w g e n e r a l l y d e c r e a s i n g a m o u n t s of leaching intensity in t h e sandy p e d o n s . Lack o f d i f f e r e n c e s in l e a c h i n g among F , a n d LF p e d o n s may b e e x p l a i n e d a s a r e s u l t o f pedon d o l o m i t i c g r a v e l l i n e s s . ( ^ 2mm. f r a c t i o n ) seems n o t Sola w ith d o lo m itic gravel t o be s i g n i f i c a n t l y t i m e a s a c o n t i n u o u s s u p p l y o f Ca++ a n d Mg++ i s w eathering. Pedons of g rav elly s t r a t a Table Table 20. 15 a n d For exam ple, are leached w ith r e l e a s e d by indicated in p e d o n s F , LF a n d FD t h a t are of g rav elly sola over gravelly parent m aterials exhibited non-significant differences In b o t h o f the more i n t e n s e l y a c i d In l e a c h i n g . n o n - g r a v e l l y p e d o n s o f Na n d L, in t h e solum w h i l e pedon L is pedon t h e more N is 185 pH in HgO 7_________8 AVERAGE DEPTH AND HORIZONS Ap I - 9 .3 A2 H 4 .9 B1 1-20.4 Bhir 2 ) B21 1-25.9 B22 H 303 ***** B3 h-35.1 Cl —43,9 — C2 F ig u re 22. D i f f e r e n c e s in t h e s o i l r e a c t i o n w i t h d e p t h in t h e s t u d i e d p e d o n s 186 intensively leached as w ill t h i c k n e s s e s and illuvial d e p t h t o Cl h o r i z o n pedon. be seen in t h e d i s c u s s i o n o f s o l a h o riz o n s where L s o la is found t o be g r e a t e r Parent m aterial differences b. the N reaction differences Exchangeable c a tio n s is a d e q u a te , process. regio n s where a v e ra g e p r e c i p i t a t i o n the d if f e r e n tia l changeable bases from t h e s o i l the pedons, by s o l u t i o n exchange complex complex w i l l is a c o n t i n u o u s t h e amount o f t h e e x c h a n g e a b l e b a s e s may b e v e r t i c a l l y the p e rc o la tin g w a te rs. of the e x ­ s y s t e m and t h e amount p e r c o l a t e d th e pedon o r c o m p le te ly available removal D e p e n d i n g on t h e b a l a n c e b e t w e e n w ate r added to th e s o i l ionic that of chronosequence pedons. In humid a n d t e m p e r a t e w ithin than among t h e s e p e d o n s a r e g r e a t enough t o mask t h e c h r o n o l o g i c s o i l in t h e c o a r s e thickness or translocated removed from t h e s o i l Vacant s i t e s thru on t h e s o i l body w i t h exchange be o c c u p i e d by t h e e x c h a n g e a b l e h y d r o g e n a l r e a d y in t h e s o i l system from v a r i o u s replacem ents a re continuous, be a t i m e f u n c t i o n . be z o n a l l y d e p l e t e d th eir sources. i n t e n s i t y must then Thus, w ith advancement in e x c h a n g e a b l e b a s e s lo catio n or degree of bases removal As t h e s e in a g e , s o ils w ill due t o e i t h e r trans­ from th e ped o n s. E xch an g eab le c a t i o n s a r e p o s i t i v e l y c h a rg e d and th e y a r e attracted to the su rfa c e o f th e exchange complex which is 187 n e g a t i v e l y ch a rg e d o r g a n i c and organic fra c tio n the n eg ativ e charges a r is e - - OH g r o u p s a n d p e r h a p s In t h e in t h e m i n e r a l io n iz a tio n o f hydroxyl at is the and th e second - - NH2 g r o u p s . i s c a u s e d by t h e groups a t ta c h e d th e broken edges o f th e t e t r a h e d r a l ion e x c h a n g e f i e l d COOH a n d isomorphous s u b s t i t u t i o n contain a heterogenous population of the In t h e negative charges g e n e ra lly a r i s e The f i r s t lattices from t o s o me e x t e n t f r o m t h e inorganic fra c tio n from two s o u r c e s . Inorganic su b sta n c e s. to the s i l i c o n atoms planes. usually ions S oils th a t were added to from w e a t h e r i n g p e d o s p h e r e m i n e r a l s , biosphere o rg an ic m a tte r decom position, or fe rtiliz e rs and l e a s t p r o b a b l y from th e a tm o s p h e r e . (1) Sodium and p o t a s s i u m : Only f i v e s a m p le s o f traces t h e 53 s a m p l e s a n a l y z e d s h o w a n y o f e x c h a n g e a b l e s o d i u m a s sh o wn in T a b l e 2 1 . These f iv e m easured e x c h a n g e a b le sodium c o n te n ts a r e e n c o u n te r e d p e d o n s 0 a n d N. The v a l u e s ranged from 0.01 e q u i v a l e n t p e r h u n d r e d gram o f s o i l in t h e two to 0.09 m i l l i - m aterial. This n e a r a b s e n c e o f e x c h a n g e a b l e s o d i u m may b e a t t r i b u t e d to a b s e n c e o f s o l u b l e s o d i u m c om p o u n d i n t h e d e p o s i t s the near prior to p e d o g e n e sis and t h e i r slow r e l e a s e d u r in g w e a t h e r i n g . No s o d i u m w a s a d d e d t o t h e s e s o i l s i n c e t h e somewhat h i g h p r e c i p i t a t i o n of w ater. This, w ith systems is through w a te rin g the predom inant so u rce the a r e a s 1 tem perature p la c e these eco- 188 systems in t h e h u mi d t e m p e r a t e r e g i o n . p r a c t i c e d on t h e s e s o i l system s. Irrigation Where p r a c t i c e d , w ater p assin g over or th ru d e p o s its high t r a n s p o r t and thus irrigation i n s o d i u m may d i s s o l v e , i n t r o d u c e s o d i u m t o many s o i l Exchanged p o ta s s iu m is n o t g e n e r a l l y is a w ater s o lu b le system s. ion an d h e n c e is r e a d i l y m o b i l i z e d by a d y n a m i c m o i s t u r e r e g i m e a f t e r r e p l a c e d m a i n l y by Ca++ a n d H+ . In t h e c o a r s e f l u v i a l the major flow v e c t o r f o r th e ex c ess o f f r e e w a te r The s o m e w h a t h i g h p r e c i p i t a t i o n coarse tex tu red m aterial th e se pedons and thus the exchange complex calcium . added of th is the through in t h e p r e s e n c e o f c o n s i d e r a b l e s o l u b l e chemical equilibrium is a t t a i n e d s y s t e m s w here t h e amount o f e x c h a n g e a b l e p o t a s s i u m in f e r t i l i z e r s in r e l a t i o n o r r e l e a s e d by w e a t h e r i n g is e q u iv a le n t E x c h a n g e a b l e K+ t o t h e u n a v a i l a b l e and s lo w ly a v a i l a b l e forms o f K+ a r e c o n t i n u o u s l y i n d i c a t e d by t h e s o i l low c o m p a r e d t o t h e a d e q u a t e s u p p l i e s fertility t h a t r e q u i r e somewhat h i g h s t a n d a r d s f o r a number o f c r o p s le v e ls o f p o ta ssiu m such as g r a in s or crops m arketed f o r t h e i r v e g e ta t iv e p a r t s . potassium is downward. r e mov e t h e e x c h a n g e a b l e p o t a s s i u m f r o m t o t h e a m o u n t o f p o t a s s i u m r e m o v e d by c r o p s . levels deposits region along w ith caused w ater to p e r c o la te G radually a n atu ral in t h e s e s o i l being i s known t o b e a p r o b l e m n u t r i e n t This i s why in s u c h s o i l s . 189 Exchangeable potassium of these s o ils position. It is n o tic e d to accu m u late b e c a u s e o f o r g a n i c m a t t e r a d d i t i o n s , and decom­ ranged from 0 .0 7 o f t h e Ap h o r i z o n s . t o 0 . 1 9 m . e . / l O O gm m a t e r i a l R e l e a s e o f p o t a s s i u m from t h e c r y s t a l la ttic e of s i l i c a t e clays is v e ry small studied are and i t s m inerals in t h e s u r f a c e low i n c l a y s , because the s o i l s r e l e a s e from t h e s e p r im a r y is slow . 2. C alciu m and magnesium: In t h i s humid r e g i o n ev e n s o i l s frequently acid in t h e s u r f a c e formed from lim e s to n e a r e layers because of the removal o f t h e b a s e s a n d s p e c i f i c a l l y c a l c i u m a n d m a g n e s i u m i o n s by leaching. colated As w a t e r c o n t a i n i n g d i s s o l v e d c a r b o n d i o x i d e p e r ­ through th e pedons ions d i s p l a c e d a c t i v e hydrogen t h e s e b a s e s g r a d u a l l y on t h e e x c h a n g e c o m p l e x . Calcium is c o n t a i n e d calcite, through th e y e a rs , apatite, in a number o f m i n e r a l s s u c h as d o l o m i t e , calcium fe ld s p a rs and am p h ib o le s. d i s i n t e g r a t i o n and d ec o m p o sitio n ca lciu m Magnesium in t h e s o i l originates t h e magnesium i s s e t f r e e released. in t h e d e c o m p o s i t i o n o f rocks c o n t a i n i n g m in e r a l s such as b i o t l t e , s e r p e n t i n e and o l i v i n e . is On^iiheir dolom ite, On t h e d e c o m p o s i t i o n o f chlorite, these m inerals in to the surrounding w a te rs. most o f t h e c a l c i u m and magnesium ions w ere o r i g i n a l l y form o f c a r b o n a t e s o f e a c h o f them o r b o t h t o g e t h e r , as But, in t h e in t h e case o f d o lo m ite which i s f r e q u e n t l y o b s e r v e d m a c r o s c o p i c a 11y as rock frag m en ts w i t h i n th e pedons o r m ic r o s c o p ic a ll y d u rin g petrographic exam inations. The p o s s i b i l i t y a b l e amount o f C a - f e l d s p a r s in t h e s e s o i l as r e v e a le d from th e p e t r o g r a p h i c calcium c o n te n ts in Ap h o r i z o n o f AA p e d o n t o in B 2 2 t o f AA p e d o n . con t e n t s a r e g r e a t e r of in a l l of ranged from 2 .6 0 13.3 m.e p e r m aterial those b earin g calcium . Mg++ o f t h e s e p e d o n s g e n e r a l l y effect of leaching near chronological 3. 100 g r a m s o i l This be d i s c u s s e d T h i s may b e b e c a u s e in t h e p ed on s B o t h Ca++ a n d depth due to th e leaching as a later. Hydrogen: Exchangeable hydrogen on t h e s o i l of the c a tio n t h e amount o f hydogen a d s o r b e d i n mi 1 1 i e q u i v a l e n t p e r I t was d e t e r m i n e d t o be u s e d exchange c a p a c ity . decreased w ith depth II is exchange complex e x p r e s s e d 100 g r a m s o i l . m.e in increase w ith the s u r fa c e . phenomenon w i l l ran g ed from t h e s e pedon h o r iz o n s c a lc iu m th a n magnesium c o n t e n t s . than I n A2 B3 h o r i z o n o f th e s e pedons lo w e r amounts o f m a g n esiu m b e a r i n g m i n e r a l s in itial is small Exchangeable 100 g r a m i n t h e L pedon, w h i l e magnesium c o n t e n t s o f 0.13 m aterials investigation. in t h e s t u d i e d p ed on s h o r i z o n o f FD p e d o n t o 18 m . e p e r of having a n o t i c e ­ in a l l C2 o f FD p e d o n t o Ap o f t h e N p e d o n . of in t h e c a l c u l a t i o n Exchangeable hydrogen g e n e r a lly th e pedons and ranged from 0 .2 2 11.44 m.e p e r 100 g r a m s o i l in t h e 191 c. C ation exchange c a p a c ity occupying th e s i t e s on t h e s o i l mi 1 1 i e q u i v a l e n t p e r 100 g r a m s o i l . of c a tio n exchange c a p a c ity , m a t t e r was n o t r e m o v e d . i s o f some c o n s e q u e n c e it t h e sum o f c a t i o n s exchange complex e x p r e s s e d When c o n s i d e r i n g is w ell in the r e s u lts t o r e m e mb er t h a t o r g a n i c The c a p a c i t y a d d e d by t h e o r g a n i c m a t t e r i n t h e u p p e r s o l a h o r i z o n a s shown by the o rg a n ic carbon c o n te n ts in T a b le 21. e x c h a n g e c a p a c i t y d u e t o s i 1t this is kind o f s i l i c e o u s soil in t h e is e x p e c t e d t o be n e g l i g i b l e from m aterials. The c a t i o n e x c h a n g e c a p a c i t i e s ranged from 10.5 s u b s u r f a c e o f pedon N t o 5 2 .0 m.e p e r B22t o f p e d o n D, T a b l e 2 1 . V ariations in t h e 100 g r a m o f s o i l in t h e The u s u a l l y h i g h e r CEC v a l u e s in t h e Ap h o r i z o n s c a n b e e x p l a i n e d on t h e b a s i s o f h i g h e r a m o u n t s o f o r g a n i c m a t t e r s u c h a s A p - h o r i z o n o f LF p e d o n . C olloidal m aterial o f the s o il exchange complex t h a t c a u se s h i g h e r CEC i n t h e s o l a a r e e x p e c t e d t o horizon.w ith tim e. increase in t h e B22t The maximum CEC v a l u e s o f B 2 t h o r i z o n s o f the s t u d i e d pedons p l o t t e d F pedon t h e y o u n g e s t i n f i g u r e 23 g e n e r a l l y i n c r e a s e from in t h e c o a r s e c h r o n o s e q u e n c e t o FD p e d o n t h e o l d e s t o f t h e s a me s e q u e n c e . Cation exchange c a p a c ity per T a b l e 21 w a s c a l c u l a t e d for all 100 g r am c l a y a s shown i n horizons c o n te n ts and c a t i o n exchange c a p a c i t i e s . made a s a n a d d i t i o n a l from t h e i r p e r c e n t c l a y T h i s c a l c u l a t i o n was c h a r a c t e r i z a t i o n o f th e n a tu r e of the m.e CEC OR % BASE SATURATION 70 60 60 xFD F ,A A * N ,L x FD 40 30 20 12,000 N,L • tn.® F ® ----- 1— 1 F,AA • 12,800 13,400 14.000 AGE ( in y e a r s ) F i g u r e 2 3 . V a r i a t i o n i n % b a s e s a t u r a t i o n a n d CEC in t h e A2 h o r i z o n s a n d t h e maximum c a t i o n e x c h a n g e c a p a c i t y as e x p r e s s e d in e i t h e r B21 o r B22 w i t h a d v a n c e m e n t i n a g e in sandy f a m i l i e s 193 m aterials in t h e s e s o i l horizons and if possible l i g h t on t h e n a t u r e o f t h e c l a y f r a c t i o n . The v a l u e s o b t a i n e d a r e v e r y h i g h a n d r a n g e d f r o m 120 m . e p e r BIX h o r i z o n o f D p e d o n t o 586 m . e t h e s e c a l c u l a t e d CEC's v a l u e s , phous m a t e r i a l is likely B3 a n d Cl h o r i z o n s , of soils. in From the and o r g a n i c m a t t e r and am or­ H i g h CEC v a l u e s l ow o r g a n i c m a t t e r c o n t e n t , in p a r e n t h e s e s . able for calcareous t h a t most o f t h e main s o u r c e . by t h e c a l c a r e o u s c o n d i t i o n enclosed 100 g r a m c l a y i n A2 B1 t o f L p e d o n . it appear charges a re of non-clay f r a c tio n t o s h e d some in a re caused in t h e s e h o r i z o n s w hich a r e The CEC p r o c e d u r e u s e d These v a lu e s w ill identifying the clay m in e ra ls. so le ly w ith th e ir x-ray d iffra c tio n is n o t s u i t ­ n o t be u s e d Clay m in e r a ls w i l l patterns later in be i d e n t i f i e d in t h i s chapter. d. Percent base s a t u r a t i o n : A p p r e c i a b l e amounts o f c a t i o n s sola a c c u m u l a t e on a n d in t h e from t h e p e d o g e n ic p r o c e s s e s o f a d d i t i o n and t r a n s f o r m a t i o n . With tim e t h e s e c a t i o n s a r e d i f f e r e n t i a l l y translocated or r emo v e d b y t h e a d d e d c l i m a t i c p r e c i p i t a t i o n w a t e r replaces that f i r s t t h e c a t i o n s on t h e e x c h a n g e c o m p l e x t h e n t r a n s f e r s t h e m down t o lower d e p th s w i t h i n the ground w a te r . As t h i s the so il bodies o r deeper process continues, to stronger ac id ity 19^ and lower p e r c e n t b a s e s a t u r a t i o n saturation sites develops. Percent base is a measure o f th e p ro p o rtio n o f the exchange o c c u p i e d by t h e e x c h a n g e a b l e b a s e s s u c h a s a n d Ca++ on t h e e x c h a n g e c o m p l e x . like soil ships. K+ , Mg++ Thus p e r c e n t b a s e s a t u r a t i o n r e a c t i o n can a l s o be use d in e x p r e s s i n g age r e l a t i o n ­ C ation exchange c a p a c i t y , which is t h e summation o f b o th b a s e s a t u r a t i o n and a c t i v e hydrogen c o n c e n t r a t i o n term s, must a l s o e x p r e s s ag e d i f f e r e n c e s a r e age a s s o c ia te d p r o p e r tie s that since in e x c h a n g e its components in c lu d e o r g a n i c and inor­ g a n ic components o f the exchange complex. Percent base s a tu ra tio n c o r r e l a t e d w i t h pH v a l u e s values g en erally is cru d e ly , (Table 21). increase w ith depth, though n o t w e ll Base s a t u r a t i o n a n d pH but p e rc e n t base s a t u r a t i o n may b e a t mi ni mum i n t h e A2 o r B1 h o r i z o n s . All of t h e p ed o n s s t u d i e d a r e somewhat exchangeable c a tio n s , first second because o f the initial that are rich leached of b e c a u s e o f t h e hu mi d c l i m a t e a n d coarse textured parent m a terials in r e s i s t a n t m i n e r a l s s u c h a s q u a r t z . exchangeable c a tio n s low - T a b l e 2 1 . in a l l N aturally their The o f t h e s e p e d o n s s o l urns a r e g e n e r a l l y the percent base s a tu ra tio n reflects the p re s e n t base s t a t u s o f th e se exchangeable c a tio n s a f t e r b e i n g a f f e c t e d by c l i m a t e , relatively r e f l e c t e d by t h e v e g e t a t i o n and tim e. in te n s ity of the S in ce time is leaching of these 195 exchangeable c a tio n s , of base s a tu r a tio n useful it is u s e fu l in e a c h p e d o n . to investigate M orphologically, is more are observed in e i t h e r exchange c a p a c i t i e s which B21 o r B22 h o r i z o n s (Figure 23). horizons of th e s t u d i e d pedons e x h i b i t e d g r e a t e r values t h o s e o f A2 h o r i z o n s than saturation values l i m e d by t h e f a r m e r s w i t h p e d o n N, w h e r e n o m a n a g e m e n t AA, FD, a n d FL o r that re s t of the their pedons lower b ase Since a ll of the l i m e was the the ex cep tio n o f i n f o r m a t i o n was a v a i l a b l e , th a t only a p o rtio n of Ap base s a tu r a tio n i n AA, FD, LF a n d i n D, L, N a n d F p e d o n s . pedon s u r f a c e s a r e that ( o r u p p e r B h o r i z o n o f p e d o n N) a n d t o c o m p a r e s o l u m ma xi ma c a t i o n oh t h e it t o com pare s o l a minima o f p e r c e n t b a s e s a t u r a t i o n i s d i s p l a y e d by t h e A2 h o r i z o n s appears the degree it le a c h e d from pedons lim e a p p l i c a t i o n w ere more r e c e n t - considering t h a t N p e d o n may h a v e b e e n 1 imed t o o . The s u b s u r f a c e p e r c e n t a g e b a s e s a t u r a t i o n s when e x a m i n e d , T able 21, pointed out a decreasing the c o a rse pedons. v a l u e was n o t i c e d . to be years of age, w h ile the years average ag e ). in t h e rest of and p l o t t e d a g a i n s t ag e trend o f th e pedons in F i g u r e 23, in b a s e s a t u r a t i o n w i t h tim e in The g r e a t e s t p e r c e n t b a s e s a t u r a t i o n in t h e y o u n g e s t pedon F o f l o w e s t v a l u e was t h e FD p e d o n The p e r c e n t b a s e s a t u r a t i o n t h e pedons a r e due t o the 12.800 (13,900 differences lithologic variations. than 196 e. O rganic and Inorganic carbon B a s e d on t h e s o u r c e o f inorganic carbon, t h e c a r b o n , s o i l s may c o n t a i n o r g a n i c a n d T able 21. The b i o t i c s o i l is e n t i r e l y responsible for presence of the m aterials. The d i s t r i b u t i o n on p e d o g e n e s i s . in t h e p e d o n s w i t h colloidal of is a t t r i b u t e d o rg an ic carbon because of is m ainly c a rb o n a te s R e la tiv e age d if f e r e n c e s the depth o f the carbonates o rg an ic carbon c o n te n ts , leaching, as w ell i n f e r r e d from as from t h e m a g n i­ th e s e pedons have r e l a t i v e l y T able 21. t h e humid t e m p e r a t e c l i m a t e . required in t e r m s o f s o i l m atter content high leaches w ith in t h e p a r e n t can a l s o be This Time is an is o f c a u s i n g d i f f e r e n c e s among t h e s t u d y p e d o n s . is the calcareo u s the o rg a n ic carbon w ith depth. The Ap h o r i z o n s o f of o f B 3 , Cl o r L and N pedons, where t r a n s l o c a t e d t i m e 'from t h e s o l a a n d r e m a i n s c o n c e n t r a t e d tude o f in p edon s u r f a c e s in t h e s e h o r i z o n s . In o rg a n ic carbon which m aterial. to accum ulate illuviation o r g a n i c m a t t e r was f l o c c u l a t e d conditions to parent tends i t s ma x i ma in t h e z o n e s o f i s AA, D, FD, F , the th e se kinds of carbon depends tim e and reac h and a s s e c o n d maxima C2 h o r i z o n s a s the o rganic carbon, w hile in o rg an ic carbon C olloidal forming f a c t o r form ation fo r t o become c o n s t a n t . high indirect less influence influence Only a s h o r t in tim e the su rfa c e organic O rganic m a tte r is somewhat i n t h e s u r f a c e h o r i z o n o f D, LF a n d N p e d o n s a n d d e c r e a s e s 197 ra p id ly w ith depth o rg a n ic carbon in a l l of the pedons. is e n c o u n te re d The g r e a t e s t s u r f a c e in pedon D t h a t h a s been u n d e r p astu re fo r q u ite a length of tim e and th e i n t h e s u r f a c e o f p e d o n FD, a c u l t i v a t e d textured m a te ria ls. t h e s e two v a l u e s . expected earlier in t h e to the p e d o l o g i c a l 1y . d ifferen tially The r e s t o f initial soil influences of downward w i t h of m aterial the B and C h o r iz o n s . the pedons, tim e the depths e s p e c i a l l y rise have has been exposed geologically or in t h e p ed o ns an d a c c o r d i n g l y is found iI I u v i a 1 d i s t r i b u t i o n in v a r i a b l e a m o u n ts An i m p o r t a n t f a c t o r in t o be m e n t i o n e d h e r e perm it g r e a te r m o b ility w ith in to h ig h e r o rg a n ic carbon a t the g r e a te r i n p e d o n s L a n d N. le ss o rg an ic carbon the zone of o rg a n ic less than illu v iatio n i n some p e d o n s a r e s o m e w h a t h i g h factors. (B2, in o r g a n i c c a r b o n . One p o s s i b i l i t y is i n A2 t h e ma x i ma T h e A2 i s c o mmo n l y t h e z o n e o f maximum e l u v i a t i o n . c a u s e d by s e v e r a l is o r g a n i c m a t t e r may move i n t h e Aps a n d a l i t t l e the horizons of between l e s s e r amounts o f o r g a n i c c a r b o n . The p e d o n s u s u a l l y c o n t a i n e d horizons than it factor lower zones o f textured s tr a ta giving unless the b io tic i s why t h e o r g a n i c c a r b o n coarser the c o a rs e r t h e s u r f a c e o r g a n i c m a t t e r downward w i t h i n (B3 a n d Cl h o r i z o n s ) w i l l that of the pedons v a rie d Charged c o l l o i d a l th e pedons and n a t u r a l l y is field is n o t i c e d No o r g a n i c m a t t e r o r o r g a n i c c a r b o n d is trib u te portions This low est the in B3 o r C l ) . The C - h o r i z o n s T h i s may b e relatively 198 active percolation texture of that is f a c i l i t i a t e d th e pedons so t h a t o r g a n ic m a tte r down w i t h i n th e pedons u n t i l and t h e o r g a n i c c o l l o i d s L, by t h e o v e r a l l is translocated the ca lca re o u s m a terial become f l o c c u l a t e d a s is reached i n p e d o n s N, F a n d LF. A second p o s s i b i l i t y that is rich in o r g a n i c of a carbonaceous is th e p r e s e n c e o f an a l l u v i a l m a t t e r a s n o t i c e d in pedon lense dark s h a le fragm ents of in rock fragm ent as t h e Cl AA o r the i n o r g a n i c c a r b o n was o b s e r v e d o n l y least altered is c o n s i d e r a b l y below t h a t o f C horizons. Among t h e Cl a n d C2 h o r i z o n s , p e d o n LF h a s the g r e a t e s t in itial of the high initial fin e earth m aterial in t h e p a r e n t m a t e r i a l s However, of is likely th at of d a t a may a c t u a l l y At l e a s t , no m arked T h e CaC03 to be t h e c a u s e o f inorganic carbon c o n te n ts the pedons. of this in t h e s e p e d o n s . ion and t h e Ca++ i n c l u d e s some s o l u t i o n exchangeable. o n l y o n e Cl carbonate co n ten ts. lime a r e e v i d e n t e x c h a n g e a b l e Ca++ the u n d erly ing i n o r g a n i c c a r b o n , w h i c h m i g h t be due in o rg an ic carbon ac cu m u latio n . accum ulations o f Most i n o r g a n i c c a r b o n c o n t e n t among t h e B3 it their A ppreciable T h e B3 h o r i z o n s o f p e d o n horizons but represent horizons i n B3 andC h o r i z o n s . fre e of carbonates. LF h a s t h e g r e a t e s t presence in t h e c a s e o f t h e r a n g e d f r o m 1. 17% i n p e d o n N t o 3.**9% i n p e d o n L. o f t h e s o l urns a r e laminae h o riz o n of F pedon. Inorganic carbon c o n te n t of to coarse A ctually th e c a r b o n a te s and th e measured is n o t a l l 199 F. Morophology a. T h i c k n e s s o f s o l a and a r g i l l i c H orizonation reflects the horizpns: i n t e n s i t y o f pedogenic p r o c e s s e s a s e v i d e n t f r o m t h e h o r i z o n s o f maximum e l u v i a t i o n (A2) a n d h o r i z o n s o f maximum i l l u v i a t i o n B-hori.zons th e d e g r e e o f time and w i t h i n also illuviation the e lu v ia l increases w ith horizons (62). commonly i n c r e a s e s w i t h the degree of e lu v ia tio n tim e. C hronology e s t a b l i s h e d from gemomorphic is confirm ed Table 22. W ithin th e interpretations in t h e s e l e c t e d m o r p h o l o g i c m e a s u r e m e n t s o f These measurements a r e th e depth o f depth o f solum ( F i g u r e 2 k ) , which is e i t h e r leaching, or to th e bottom of B3 o r t o t h e t o p o f Cl h o r i z o n s a n d t h e t h i c k n e s s e s o f t h e illuvial h o r i z o n s a s e x p r e s s e d by B21 + B22 o r B1 + B2 + B3 h o r i z o n s a s Bs . In c o m p a r i n g h o r i z o n s , norm ally of o ld e r age. This is r e v e a l e d from t h e e x a m i n a t i o n and e v a l u a t i o n o f sandy o r c o a rs e T able 22. lo a my p e d o n s a s shown The t r e n d o f t h e s e d a t a p o i n t s o u t t h a t thickness of these horizons age th ic k e r horizons are in p a r t s of the coarse is g e n e ra lly the in creasin g w ith loamy c h r o n o s e q u e n c e p e d o n . in 20 0 Table 22. S e le c te d m orphological measurements p o s s i b ly u s e f u l in t h i s c h r o n o l i t h o s e q u e n c e n Pedo n . Family t e x t u r e Thicknesses of „ , . . ___ _____ R e l a t i v e B21+B22 T o t a l BF a g e s in _____________________________________________________________________ y e a r s D fine FD coarse LF coarse L 1oamy 15 20 14,000 l oa my 7 19 14,000 lo a my 7 24 13,400 sandy 13 32 12,800 N sandy 8 18.5 12,800 AA sandy 8 24 12,800 F coarse 5 15 12,800 lo a my 201 • SANDY m COARSE LOAMY 60 x FINE LOAMY THICKNESS (in inches) 50 L • 40 LF x D FD 30 20 12 £ 0 0 13,400 14,000 AGE (in y e a r s ) F i g u r e 2k. G r a p h ic r e p r e s e n t a t i o n o f solum t h i c k n e s s ( o r d e p t h t o Cl h o r i z o n ) in t h e s t u d i e d p e d o n s From T a b l e 22 it is c l e a r t h a t p e d o n s L a n d LF h a v e t h e t h i c k e s t o f B21 + B22 a n d t o t a l B horizons o f an o l d e r age compared to F pedon. least thicknesses site. in t h e s e p a r a m e t e r s . thus, Pedon F, Thus, LF p e d o n exhibited it is is the the youngest Pedon N o f t h e s a n d y f a m i l y e x p r e s s e d m e a s u r e m e n ts o f i n t e r m e d i a t e m a g n i t u d e among t h e p e d o n s o f s i m i l a r a g e (AA a n d L pedons). Because o f the d iffe re n c e s in t e x t u r e s a n d s i m i l a r i t y a g e p e d o n D ( f i n e - l o a m y o v e r s a n d y ) a n d FD ( c o a r s e - l o a m y ) fitted i n t o a 1 i t h o s e q u e n c e w i t h LF o f b o rd e rlin e group. D pedon thinner, it criteria In F i g u r e 2 k . is f i n e r is a c t u a l l y thicker t h a n FD p e d o n by t h e , t w o Clay c o n t e n t ; of e i t h e r f lu v ia l or that sim ilar soil parent m aterial la c u strin e sorted deposits have t h e same o r s i m i l a r c l a y c o n t e n t s and s i n c e c l a y that is produced d u rin g s o i l i n t o s u s p e n s i o n when a d e q u a t e m o i s t u r e is s u b j e c t zones a r e ment o f duration l oa my t e x t u r e d an d e x p e c t e d t o be h o r i z o n a l l y On t h e a s s u m p t i o n m aterial are On t h e b a s i s o f t h e a b o v e m o r p h o l o g i c a l criteria b. th e sandy c o a rs e in to tra n slo c a tio n the e lu v ia l these horizons deeper A2 a n d t h e is a c o l l o i d a l fo rm a tio n and t h a t goes is a v a i l a b l e , in t h e p e d o n s . illuvial processes. clay m aterial Translocation B horizons. is a f u n c ti o n o f tim e, of s p e c if ic pedogenetical in itially D evelop­ intensity or Clay co m p rise s a 203 p o rtio n o f both th e e l u v i a t e d and th e Thus m e a s u r i n g t h e a m o u n t o f c l a y indicate pedons o f the in illu v iated m aterials. illuvial i n t e n s i t y and the r e l a t i v e initially Clay c o n t e n t s o f a l l sim ilar horizons w ill t i m e d i f f e r e n c e s among t e x t u r e and p h y s io g r a p h i c p o s i t i o n s . pedons in T a b le 12 i n d i c a t e a maximum i n one o f t h e i r B - s u b h o r i z o n s a n d t h a t maximum i s n o r m a l l y w ith in t h e c o a r s e the age decrease of clay l oa my s e q u e n c e o f p e d o n s . greater The in A2 i n t h e o l d e r p e d o n s o f 0 a n d FD c o u l d b e in te rp re te d as a r e s u lt of tra n s lo c a tio n of clay f r o m A2 t o B h o r i z o n s a s much a s d u e t o k i n d o f t h e i r m aterials. Considering fam ilies among t h e m . in t h e sandy pedon N l e a s t amount o f c l a y o r p r o b a b l y t h e y o u n g e s t However, a pedon o f s i t e s Thus t h e t h e h o r i z o n o f maximum i l l u v i a t i o n t h a t a r e o f s i m i l a r maximum c l a y c o n t e n t , a p p e a r s t o be o f textures. initial 1ithosequence is d e t e c t e d between FD a n d D b e c a u s e o f t h e d i f f e r e n c e s The sa me r e l a t i o n large d iffe re n ce s the in t h e p r o f i l e i s e v i d e n t b e t w e e n p e d o n s LF a n d FD. in c l a y d i s t r i b u t i o n here a re the re su lt of a chronolithosequence. Large amounts o f s i l t s are present in t h e u p p e r m o s t h o r i z o n s and t h e y a p p e a r t o d e c r e a s e w i t h d e p t h e x c e p t in s i t e F, T a b l e T h i s may i n d i c a t e t h a t s i l t i n c r e a s e s w i t h a g e due t o t h e w eath erin g o f the sand s i z e fraction. D istribution of s i l t in t h e p e d o n s may f o l l o w t h e p a t t e r n o f t h e p h y s i c a l w e a t h e r i n g i n t e n s i t y a n d may b e d u e t o t h e action ( S t . Arnaud, 1961). r e p e a te d f r e e z i n g and thawing 12. 204 c. ( B 2 t / A 2 ) a n d B2 t h i c k n e s s x B 2 t ) : To f u r t h e r test the chrono-m orphological of th e pedons th e r a t i o o f p e r c e n t c l a y in A2 h o r i z o n s w e r e c a l c u l a t e d , t h e (B2 h o r i z o n thickness) in B22t t o p e r c e n t c l a y and graphed times (% c l a y o r p r o d u c t may b e t t e r tion reflect fo r a chronologic i n F i g u r e 25 w i t h In t h e B 2 2 t ) . b o t h A2 a n d B2 t c l a y c o n t e n t s o r B2 h o r i z o n c o n te n ts a r e f u n c tio n s of tim e, evaluation If t h ic k n e s s and c l a y c o m b i n i n g t he m a s a q u o t i e n t the r e l a t i v e total clay accumula­ r e l a t i o n s h i p among a s e q u e n c e o f p e d o n s from s i m i l a r p a r e n t m a t e r i a l s . With t im e , in t h e p e d o n s . content greater This translocation tends to c o n tin u o u sly d ecrease the c la y i n t h e A2 h o r i z o n a n d horizons. Thus, the r a tio increase B/A2 w i l l In t h e s t u d i e d p e d o n s , 1.36 the f i n e r 1.95 i n c r e a s e d from i n t h e o l d e s t FD p e d o n o f in t h e o l d e s t D pedon o f texture. ratio (0.50). Thus, clay content the Bhirl c la y c o n te n t realistic is o b ta in e d - t h a t f a l l s ratio ratios. pedogenesis In t h i s resulted in a i f B h i r 2 h o r i z o n c l a y c o n t e n t was su b stitu ted for of the in t h e Bt o r B 2 2 t the r a tio loamy t e x t u r e f a m i l y t o 4 . 1 2 In p ed o n N t h e h i g h B t / B h i r l sm aller it increase with age. F ig u re 25, in t h e y o u n g e s t F pedon t o the c o a rs e is expected to take p lace i n t h e s a me p e d o n , in l i n e w i t h the s a n d y s e q u e n c e t h e Bt/A2 r a t i o s i n t e n s i t y o r a g e d e c r e a s e f r o m p e d o n s L, to a more rest indicate AA t o N. r 205 3 >- < -J O 2 CM L• § O N« Si CM CD 0 1 2 ,4 0 0 1 2 ,8 0 0 1 3 ,4 0 0 1 4 ,0 0 0 AGE (in years) •D FD L • LF CM CD 1 2 ,4 0 0 1 2 ,8 0 0 1 3 ,4 0 0 1 4 ,0 0 0 AGE (in years) F ig u re 25. C l a y c o n t e n t r a t i o b e t w e e n B 2 2 t Cl ay%/ A2 C l a y % in s e l e c t e d h o r i z o n s a n d (B2 t h i c k n e s s ) (% c l a y ) p r o d u c t s f o r t h e s a m e h o r i z o n s 206 In t h e s a m e t i m e , loamy f a m i l i e s o n l y , increase 68.6 the sequences of the (B2t t h i c k n e s s ) in m a g n itu d e from 3 8 .5 i n t h e LF p e d o n t o of these two c r i t e r i a chronosequence. g. support to Thus t h e f i n d i n g s the age r e la tio n s h i p of are of p a rtic u la r In t h e w e a t h e r i n g o f c a l c a r e o u s of s ilic a te s and ex c e ss calcium silicates (F pedon) the F ig u re 25. u s u a l l y no a l t e r a t i o n Carbonates in t h e y o u n g e s t values Clay m in e ra lo g y : study. leached, (B2t c l a y ) 1 3 5 . 1 0 i n FD p e d o n . The c l a y m i n e r a l s this th e sandy and c o a r s e tend to retard accounting may r e c o m b i n e to sedim ents in there is carbonates a re com pletely io n s are removed from t h e e n v i r o n m e n t . the d i s i n t e g r a t i o n o f the prim ary t o Grim 1968. As w e a t h e r i n g p r o c e e d s a s K+ - f e l d s p a r s , until im portance in b r e a k i n g down o f m i n e r a l s , ionic s o lu tio n s , w ith o th er K+ i o n s a r e ions o r c o l l o d i a l such r e l e a s e d and m aterials in i 11ite form ati on. In t h e h u m i d t e m p e r a t e calcium , alteration may b e i n th e development of a s i l i c a r i c h Bt h o r i z o n . t h e removal o f the A l f i s o l i c d ire c tio n w ith r i c h A2 h o r i z o n a n d a s i l i c a t e The c l a y m i n e r a l calcareo u s sedim ents o f illite, reg io n and a f t e r component these g la c io flu v ia l k a o l i n i t e and c h l o r i t e . in t h e clay initial m aterials a r e m ainly 207 T he.pleistocene t i l l s t u d i e d and i 11i t e o f North America has been e x t e n s i v e l y is th e dominant c l a y m in e ra l c h l o r i t i c m ica, m ontm ori1l o n i t e and in it. C hlorite, kaolinite are frequently present in sm all a m o u n ts . Clay m in e ra ls o f f l u v i a l reflect th e ir provenance. C e r t a i n amounts o f sedim ents leaching a c tio n s i n t h e s e s e d i m e n t s a r e e x p e c t e d a n d t h i s may t e n d t o d e v e l o p kaolIn i te . (a) X-ray d i f f r a c t i o n p a t t e r n s : Q u a n tita tiv e cla y m ineralogy any s i t e c h r o n o l o g i c relationships, data is required to reach but a g e n e r a l i z a t i o n might b e made f r o m t h e q u a l i t a t i v e c l a y m i n e r a o l o g y p r e s e n t e d in T a b le 23. All th e samples indicate t h e p r e s e n c e o f q u a r t z a s shown by t h e 3 . 3 5 A ° a n d k.2€> S p e a k s . The a b s e n c e o f e x p a n d i n g c l a y o f any further increase is i n d i c a t e d by t h e a b s e n c e i n t h e 10 A ° s p a c i n g w i t h K - s a t u r a t i o n a n d increase w ith heating t o 5 3 0 ° C . E x c e p t f o r t h e B21 h o r i z o n o f s i t e D much r a n d o m l y i n t e r s t r a t i f i e d is p r e s e n t . This interstratificatio n is c la y mineral i n d i c a t e d by t h e b r o a d p la tf o r m between 1*+ t o 17 a n d 10 A° i n t h e g l y c e r a t e d s a m p l e s . This p la tf o r m l o w e r e d by t h e K - s a t u r a t i o n a n d h e a t . is The c l a y m i n e r a l s m aterials in t h e r e p r e s e n t a t i v e (B3 h o r i z o n s o f FD, L, N s i t e s Initial fluvial a n d B23 o f s i t e F, T a b l e 23) a r e c o m p l e x a s s e m b l a g e s o f f o u r p r i m a r y c l a y m i n e r a l s - TABLE 23 - Summaries of the X-Ray d iffractio n data on clay minerals present tn the selected horizons of the studied pedons. S ites D Clay Minerals / P Mont. A2 B2I+ - x .l x .l k x.l x.2 * Vermlcul I t k.2 FD I Ap LF B2lt B3 - x. 1 X.l Ap X. 1 « x .l -L A2 B2I - - k x. 1 x. 1 - X. 1 x.l "k ' e X. 1 x. 1 X. 1 x .l X. 1 llllte x .l K aolInite X. 1 X. 1 X. 1 X. 1 x .l Quartz X.l x .l x .l X * Present .1 - sharp peak .2 - domal peak x .l — x x .l - x. 1 B3 - e X. 1 x. 1 x.l k X. 1 x.l N 1 Ap Bhlrl - - « X. 1 x. 1 1 AA B3 Ap A2 Bl - - - x. 1 X. 1 X. 1 x.l k x .l k k ' X.l x.2 x .l x .l x.l « - - x. 1 " "F 1 B2I . Ap B22t B23 x.l x .l * k X. 1 x.l k k x .l x.2 x .l ■T " k X. 1 x.l k" x.l x.l k x .l x .l x.2 X. 1 k X.l X. 1 X. 1 ■k x.2 x .l X. 1 X. 1 x. 1 X. 1 x.l X. 1 X. 1 x .l X. 1 X.l x .l x .l x .l X. 1 X. 1 x .l x .l x .l X. I x .l x .l x .l x .l X.l x.l X. 1 x .l X.l » absent = very small peak x .l x .l * c h lo rltlc in te rs tra tific a tio n s - x .l 208 - x. 1 L Horizons. Ap B2IT - * C hlorite ........ . X. 1 x .l 209 illite, chlorite, k a o l i n i t e and s e c o n d a ry c l a y m i n e r a l s as v e r m i c u l i t e . M o n tm o ri1I o n i t e formed as an a l t e r a t i o n product of both illite and c h l o r i t e . m o r i l I o n i t e a r e most d i f f i c u l t in a l l such stages of a lte r a tio n The v e r m i c u l i t e a n d m o n t - to e v a lu a te because they occur th ro u g h complex mixed la t t i c e clay m inerals. The l a y e r s i l i c a t e s o f th e p a re n t m a te r ia ls a r e thus composed m a i n l y o f k a o l i n i t e , chlorite. C hlorite o f pedons noticed i 11i t e , is not d e te c te d v e r m i c u l i t e a n d some in t h e p a r e n t m a t e r i a l ( FD, L a n d N) a n d o n l y a s m a l l in t h e p a r e n t m a t e r i a l The c l a y m i n e r a l s p r e s e n t chlorite o f sandy s i t e peak is F. in t h e B - h o r i z o n s represent same m i n e r a l s m e n t i o n e d e a r l i e r a n d t h e a l t e r a t i o n th e se'm in erals. w eathering Most o f to possible and v e r m i c u l i t e . o f p e d o n D. the c l o s e l y the pedons. com position is n o t i c e d o n ly D istortion of the broadening and rounding of th e rest of in t h e c a s e indigenous c la y in t h e A2 h o r i z o n s . The m o s t a p p a r e n t e f f e c t o f t h e w e a t h e r i n g compared t o t h e of c h lo rite f r o m Ap, A2 , a n d B h o r i z o n s w e r e is g r e a t e s t on t h e X - r a y d i f f r a c t i o n by t h e c h a n g e s p r o d u c e d by w e a t h e r i n g , spaced samples taken from a l l mineral M o n t m o r i 11 o n i t e To e v a l u a t e products of these clay m inerals a re a lte r e d random i n t e r s t r a t i f i c a t i o n the is the general 17 A ° p e a k f o r m o n t m o r i 1 I o n i t e curves of the B horizon of s i t e the s i t e s . D, 210 In t h e s p o d i c h o r i z o n B h i r l the degree o f that interstratification is recognized (chlorite) in p e d o n N, in c r e a s e d and t h a t o f m o n t m o r i 1 I o n i t e a n d v e r m i c u l i t e may a p p e a r a l s o a s p e a k s due t o c h l o r i t e and spodic horizon illite decrease in t h e i s d o m i n a t e d by v e r m i c u l i t e , small amounts o f illite The however, peaks of and k a o l i n i t e a r e a l s o Other m o d if ic a ti o n s ap p a re n t minor d e c re a s e intensity. identified. i n c o m p o s i t i o n a r e s u g g e s t e d by t h e in illite near the su rfa ce , of c h l o r i t e and perhaps a l s o o f v e r m i c u l i t e as m odification i n d i c a t e d by t h e peaks shape and d e g re e o f d i f f r a c t i o n . The p a t t e r n o f c l a y m i n e r a l suggest th at chlorite, distribution in t h e p r o f i l e t h e w e a t h e r i n g s e q u e n c e may b e f r o m i l l i t e p o s s ib ly through v e r m ic u lite and t o m o n t m o r i 11 o n i t e , in the c la y f r a c t i o n . In o r d e r t o u s e c l a y m i n e r a l com positions in a m e a n in g f u l way f o r t h e c o r r e l a t i o n o f t h e s t r a t a a n d e v a l u a t i o n o f s o i l pedons, it is n e c e s s a ry to c o n s id e r the type, r a t e and d ep th o f m i n e r a l a l t e r a t i o n c a u s e d by w e a t h e r i n g . The m o s t s e n s i t i v e c l a y m i n e r a l is c h l o r i t e . s t a r t s w ith the o x id a tio n of the d e p o s its . may o c c u r , p a r t i c u l a r l y o f the leaching of c a l c i t e begins. to v e r m ic u lite whereas iron Its a lte r a tio n A ppreciable a l t e r a t i o n rich v a r ie tie s , Iron r i c h c h l o r i t e before readily a lte r s t h e more magnesiu m r i c h c h l o r i t e a l t e r s to heterogenous sw ellin g m in erals. A lteration of c h lo rite detected to g re a t depths much m o r e r e s i s t a n t in p e r m e a b l e d e p o s i t s through translocation. to a lte r a tio n c a n be Illite by w e a t h e r i n g . Illite to v e r m i c u l i t e and e x p a n d a b le c l a y m i n e r a l s and th u s i s a c c o m p a n i e d by a n (b) Clay t o t a l increase according to Jackson e t . al fractions (19^8) in t h e s e q u e n c e in s o i l s illite cation, The p o s i t i o n follow s i s d e t e r m i n e d by t h e o r i g i n a l th e f o llo w in g chemical d e a 1u r n i n a t i o n , et. al (I960), i l l i t e w eathering sequence parent layer s i l i c a t e s reactions: and f i n a l l y utilized in a r r i v i n g a t c h r o n o l o g i c d i f f e r e n c e s among some g l a c i a l i s b a s e d on t h e f o l l o w i n g Replacing the in m i c a , o f any such depotassi- desilication 1952). L a te r W hite, This the i n t e n s i t y and c a p a c i t y f a c t o r s . hydroxylation, (Jackson, and se d im e n ts in w h i c h o n e o r more o f W e a th e rin g o f mica and o t h e r s i m i l a r as loss follow s a continuous, in te r m e d ia te s t a g e s m ight be a b s e n t . plus its in e x p a n d a b l e c l a y m i n e r a l s . re v e rs ib le sequence of sta g es m aterial alters potassium c o n te n t: W eathering of c la y s i z e m ineral is increases the concept of the the approxim ate landforms Indiana. rationale: i n t e r l a y e r potass?um w i t h oxonium the a b s o lu te i n t e n s i t y o f 001 The 0 0 2 r e f l e c t i o n is to a th e removal a n d / o r replacem ent of th e increased in reflection. lesser ex tent. in terlay er i o n (H 3 0 + ) Therefore K+ by a n ion 212 having a s m a lle r s c a t t e r i n g f a c t o r w ill ratio 001. Thus t h e 001 TO? White (I9 6 0 ) involved The p e r c e n t t o t a l are given in s o i l t h a t can be u s e f u l in genesis. p o ta s s iu m and illite 001/002 peak o f t h e s u r f a c e c l a y s a m p le s from t h e s t u d i e d pedons in T ab le 2k. V ariations i n t h e K2 O c o n t e n t s w e r e s t a t i s t i c a l l y and showed t h a t s i g n i f i c a n t d i f f e r e n c e s e x c e p t b e t w e e n AA a n d D p e d o n s different intensity r a t i o w a s s u g g e s t e d by as a w e a th erin g fu n c tio n studying processes intensities intensity TO? increase the e x i s t among a l l pedons ( l s d - 0 .0 6 ) and D is from a tex tu re parent m aterial. were not t r i e d examined The K2 O c o n t e n t o f B - h o r i z o n s because of the g r e a te r expected f lu c tu a ti o n than in t h e s u r f a c e h o r i z o n . When L a n d LF p e d o n s w h i c h a r e b o r d e r l i n e b e t w e e n s a n d y a n d coarse l oa my a r e c o n s i d e r e d a s o f s a n d y t e x t u r e s , o f d e c r e a s i n g K2 O c o n t e n t is o b se rv e d F o r F, LF a n d FD c o a r s e d e c r e a s i n g K2 O c o n t e n t a significant clear cut in t h e s e p e d o n s . l oamy 1 i t h o - c h r o n o s e q u e n c e a a n d b e t w e e n t h e F a n d FD p e d o n s . b e t w e e n t h e LF a n d FD p e d o n relationship trend i s n o t i c e d b e t w e e n t h e F a n d LF p e d o n s a s difference, the d i f f e r e n c e s a slight is reversed. But No is th u s e v i d e n t between age and t h e K - c o n t e n t o f t h e c l a y among t h e s e m o s t c o m p a r a b l e m a t e r i a l s texture. A pparently the lit h o lo g ic v a r ia tio n s m a t e r i a l s o b sc u re th e small age d if f e r e n c e s . in t h e initial in 213 T able 24. A s u mma r y o f t h e % t o t a l K+ a n d i l l i t e 0 0 1 / 0 0 2 p e a k i n t e n s i t i e s o f th e c la y samples of s u r f a c e h o rizo n s sam pled from t h e s i t e s S i t e and relative age sequence (youngest to ol d e s t ) Landform, and s t r a t a E sta b li shed age (Hough) K % total clay 1n t e n s i t y 001/002 Soi 1 f a m i 1y texture F terrace, b3 12,800 2.79 0.409 coarse 1oamy AA terrace, b2 12,800 2.41 0.8440 sandy N beach, cl 12,800 2.49 0.732 sandy L terrace, cl 12,800 1.98 1.440 sandy LF' beach, c2 13,400 1.91 1.542 coarse loamy FD terrace, bl 14,000 2.69 1.453 coarse 1oamy D terrace, a 14,000 2.44 1.176 fine l oa my 214 T he 0 0 1 / 0 0 2 ratios increases in pedons o f s i m i l a r m a t e r i a l but d i f f e r e n t in ag e a s a s an a v e r a g e ( 0 . 6 2 6 ) a n d t h a t o f FD p e d o n ( 1 . 4 5 3 ) w h i c h sim ilar b-m aterial. average (1,086) c-m aterial. i n p e d o n s AA a n d F o f t h e b r m a t e r i a l is of The s a me i s n o t i c e d b e t w e e n N a n d L a s an a n d t h a t o f t h e LF ( 1 , 5 4 2 ) The c l a y f r a c t i o n o f age h a v e on t h e a v e r a g e of the s i m i l a r the c - m a te r ia ls of the youngest lower p o ta s s iu m and h ig h e r 001/002 than do t h e c l a y f r a c t i o n s o f b - m a te r i a ls most com parable a l s o s ho w s a s l i g h t d e c r e a s e the b -m a te ria ls . in t e x t u r e ratios The y o u n g e s t to the o ld e r b -m aterial in K - c o n t e n t . The a - m a t e r i a l of t h e D pedon h a s no y o u n g e r e q u i v a l e n t f o r t h e s e c o m p a r i s o n s . H. Taxonomy T he p u r p o s e o f s o i l classification our o b s e r v a t i o n and knowledge o f s o i l s significant ch a ra cte ristic s al relationships carefully the s o i l s o t h a t we c a n r e me mb e r o f th e s e s o i l s and t h e i r e n v iro n m e n t­ to one an o th er. d e v e lo p p r i n c i p l e s and g u i d e l i n e s management. is to o r g a n iz e and a r r a n g e A f u r th e r purpose for units are re c o rd e d and examined n o t o n ly b ecause they h e lp d e f i n e b u t a l s o b e c a u s e t h e y s h e d l i g h t on t h e s o i l processes. accidental characteristics characteristics genesis D ifferentiating c h a ra c te ris­ t i c s sh o u ld be s u b j e c t t o p r e c i s e m easurem ents, tiating to t h e i r p r o p e r use and The s i g n i f i c a n t c h a r a c t e r s o f t h e s o i l a n d on t h e c u r r e n t s o i l w hile is such as texture, a re not re la te d to the d if f e r e n ­ a n d n o s t a t e m e n t c a n b e made a b o u t t he m fo r the c l a s s as a whole. To c l a s s i f y s o i l s is to p la c e the s o i l s into arranged c l a s s e s a c c o r d i n g t o c e r t a i n common c h a r a c t e r i s t i c s . presupposes that identity so ils i d e n t i f y and the s o il s is have been f i r s t described. t o re c o g n iz e and to e s t a b l i s h in d iv id u a lity as characteristics. This To both t h e i r to com position and inherent The c l a s s e s a s a w h o l e can be d e f i n e d in term s o f d i f f e r e n t i a t i n g c h a r a c t e r i s t i c s o f t h e modal a n d t h e r e s p e c t i v e d e v i a t i o n from t h o s e v a l u e s w i t h i n modal the range of the c l a s s . i s u s u a l l y b a s e d on t h e o b s e r v e d p r o p e r t i e s The of a real individual w ith in a c l a s s . V ital distinction needs t o be c l e a r l y factual- between d e s c r i p t i o n and c l a s s i f i c a t i o n recognized. D escription inform ation whereas c l a s s i f i c a t i o n commonly i n c l u d e s interpretive does n o t c h a n g e w i t h o r when a d d i t i o n a l inform ation. is largely recording in a n a t u r a l Factual system inform ation t i m e e x c e p t when e r r o r s h a v e t o b e c o r r e c t e d fa c ts are discovered. useful c la ssific a tio n also and an i n f e r e n c e o f e x p e c t e d b e h a v i o r d e d u c e d by i n t e r p r e t a t i o n s of f a c t u a l requires On t h e o t h e r h a n d , a interpretation of inform ation. The s o i l series in t h i s s t u d y a r e known t o b e o f G r a y Brown P o d z o l i c a n d G r a y Brown P o d z o l i c - P o d z o l according to th e soil inform ation 19**9 U . S . s o i l groups a re a l l zonal intergrades classification. These g r e a t s o i l s o f t h e h u mi d t e m p e r a t e r e g i o n ^ 216 The f a m i l y level in t h a t s y s t e m p r e s e n t e d a c o n t i n u o u s p r o b le m t h a t ma de i t a p r a c t i c a l im possibility. the most a c t i v e c a te g o r y in t h e Johnson and W h i t e s i d e in t h e 1965 s o i l The s e r i e s 19^9 U . S . system . (1967) had p l a c e d a l l classification. l e v e l was Schneider, Michigan s o i l series T a b l e 25 s h o w s how t h e s e s o i l s w e r e c l a s s i f i e d among t h e i r s i m i l a r o r m o s t c ommon l y a s s o c i a t e d soil series. Soil phase o f mapping u n i t s the s o il in C l i n t o n County a r e u s u a l l y a t type ca te g o ry . Evaluation of our s o il tion of concepts the c u rre n t c l a s s i f i c a t i o n c a t i o n can the requires system . remain s t a t i c w h i l e knowledge for interpretation all soil scien tists change. continuous e v a lu a ­ No u s e f u l i n c r e a s e s a n d demands Changes m ust c o n t i n u e must a s s i s t classifi­ t o b e ma de a n d in m a k in g t h e s e c h a n g e s in an o r d e r ly manner. A soil segment o f individual is and t h e s h a p e s a r e this dynamic la n d s c a p e w i t h u n iq u e pedons and u n iq u e g e n e s i s . U n lik e t h e two d i m e n s i o n a l lately known t o b e a t h r e e d i m e n s i o n a l profiles, soil individuals have shape im portant f a c t s of t h e i r c o n s t i t u t i o n . Thus, idea has been dev elo p ed f u r t h e r em ploying th e c o n c ep t o f t h e "pedon" a s t h e s m a l l e s t volume t h a t can be c a l l e d a soil and th e c o n c e p t o f "p o ly p ed o n " a s a group o f c o n tig u o u s s im ila r pedons. I n t h e new U . S . system , soils (including so il m o is tu re and s o i l them selves ch aracteristics of the tem perature) TABLE 25 - Major C h a rac teristics used In th e C la ssificatio n of the S o ils Understudy and o th er Sim ilar w ell-drained s o ils Soil Series Parent M aterials Topography Oakvl1le Neutral to calcareous sand Low dunes o r nearly level areas Neutral o r calcareous loamy sand or fin e sand Gently sloping o r steep sloping Spinks Oshtemo Boyer Fox Owosso Level and Calcareous outwash loamy p itte d sand to sandy p lain s loam over neu­ tr a l to calcareous sand and fin e graveT. Vege­ ta tio n f i n lo” Upper slopes of moramie v alley s. Permeabl1Ity '&ea+ Sot)' Group 1949 Of'flcfal - 7th approx. C la ssificatio n placement-July 1969 Typlc Udlpsament (or spodic Udlpsammant), mixed, meslc Trees A, A2, B2, C rapid 5a Regosol Trees Al, A2, B 2lt, C rapid 4a Gray Brown PodzolIc Trees Al, A2.B2I, B22, B3I, B32.H D moderately rapid 4a Gray Brown PodzolIc Typlc Hapludalf, . coarse loamy, mixed, meslc 4a Gray Brown PodzolIc Typlc Hapludalf, coarse, loamy, mixed, meslc 3a ®ray Brown PodzolIc Typlc Hapludalf, fin e joamy over sandy o r s a n ^ s k e le ta l, mixed, 3/2a Gray Brown PodzolIc Sandy to sandy R olling, Trees loam s t r a t i level and steep ous coarse sand ogravel Nearly level Loamy mater­ ial underlain outwash Trees by s tr a t if ie d p la in s p itte d by shallow dry calcareous depressions gravel&sand S tr a tif ie d sandy loam over, c a lc a r­ eous loam or Horizons Management Group Trees AP, A2, Bl, B2I, B22t, HC AP, A2. Bl, H fct. 622t ; moderate to to moder­ ate ly rapid moderate AP, A2, B2lt .moderate H B 2 2 t, n c Psamraentlc Hapludalf, sandy, mixed, meslc Typlc Hapludalf, fin e loamy, mixed meslc. p:- • 218 are the only c r i t e r i a fo r d if f e r e n tia tio n of the c la s s e s . Genesis does n o t a p p e a r in t h e c l a s s d e f i n i t i o n b u t k n o w l e d g e and t h e o r i e s o f g e n e s i s g u i d e d t h e s e l e c t i o n o f t h e p r o p e r t i e s used t o d e f i n e th e t a x a . a property. Soil partly v is ib le Soil genesis is a p r o c e s s and n o t g e n e s is p roduces c h a r a c t e r i s t i c s which a r e (e.g. horizons) and p a r t l y invisible T o d a y we n o l o n g e r c o n s i d e r s o i l s a s n a t u r a l by a f ew known p r o p e r t i e s . natural by c e r t a i n processes reactions). objects R a t h e r , we c o n s i d e r s o i l s bodies developed ac co rd in g to c e r t a i n subject to a l te r a ti o n (e.g. natural defined t o be laws and that are s t i l l c o n t inu in g . Thus, istics s o i l s a r e g r o u p e d on t h e b a s i s o f common c h a r a c t e r ­ in h i g h e r c a t e g o r i e s and s u b d i v i d e d into lower c a t e g o r i e s according to o th e r s i g n i f i c a n t d if fe re n c e s or narrower ranges in common c h a r a c t e r i s t i c s used a t hig h er c a te g o r ie s . S i n c e t h e a p p e a r a n c e o f t h e new A m e r i c a n C o m p r e h e n s i v e System in I9 6 0 , has of the e f f o r t to a c c u r a t e l y p la c e Michigan s o i l s involved c o n tin u o u s work. 1959) o ffic ia l classifications s t u d y a r e a s shown (July of the so il 1969 a n d t h a t series in t h i s in t h e l a s t c o l u m n o f T a b l e 2 5 . The w o r k i s s t i l l through th e s o i l The c u r r e n t c o n t i n u i n g on t e s t i n g survey progress tio n and c o r r e l a t i o n s t u d i e s . th e se placem ents reviews and s o i l characteriza­ 219 B a s e d on f i e l d mapping u n i t s and laboratory soil characterization r e p r e s e n t e d by t h e s a m p l e d p e d o n s their c la ssific a tio n resulted in t h i s in t h e p l a c e m e n t s of the study, presented in T a b le 26. In s u m m a r y , the A lf is o l a s shown o r d e r e x c e p t pedon N w hich Spodosol o r d e r . coarse is a l s o o f is pedons s tu d i e d a r e o f revealed Psammentic H a p lu d a lf , which textured, the A lfiso l minimal order, c h a r a c t e r i s t i c s which a r e A lfisol. the it exhibited extra placem ent (Mol l i e ) are dark co lo red , F ragiudalf. mi nmal A l f i s o l s , p ed o n N i s a m i n i m a l less d ifferen tiatin g t h e o c c u r e n c e o f t o n g u i n g o f A2 and a d a r k c o l o r e d s u r f a c e . is G lossic is a d a r k A lthough pedon D in to Bt, a f r a g ip a n , horizon w ith t o be o f P e d o n s AA a n d L, h a v e t h e s a m e c l a s s i f i c a t i o n placement d e f in e d as colored, in T a b l e 26 a l l Pedon D P e d o n s F, FD a n d LF Mol l i e H a p l u d a l f s , and Spodosol w i t h an a r g i l l i e a n d a s p o d i c than 1.16 p e r c e n t o r g a n i c c a rb o n . Thus it is an A l f i c H a p l o r t h o d . At t h e f a m i l y the te x tu ra l differentiations It is t h e new c l a s s i f i c a t i o n classification to the c r i t e r i a All level of the c o n tro l t h e examined pedons f a l l t h e humid t e m p e r a t e and a v e ra g e s e c tio n according in t h i s c o m p r e h e n s i v e s y s t e m . are also presented rainfall region i s 30.3 system req u ires R esults of th ese in T a b l e 2 6 . w i t h i n one c l i m a t i c (average tem perature inches). Although s i t e region. i s if 7 . 7 ° F N pedon TABLE 26 - C la ssific a tio n o f th e sampled pedons In th e U.S. comprehensive Soil C la ssific a tio n System Mapping Unit O fficial Placement, July 1969 .C la ssific a tio n of Studied Pedon Suggested Series AA Oshtemo sandy loam 2183 Bl Typlc Hapludalf, coarse-loamy, mixed, meslc Psamammentlc Hapludalf, sandy, mixed, meslc Stroh loamy sand D Boyer-Fox sandy loams 2553 Bl Typlc Hapludalf, fIne-loamy mixed, meslc (Fox) G losslc (Mollie) Fragludalf, fine-loamy, over sandy off sandy s k e le ta l, mixed, mos ic ^ X sandy loam (a v a ria n t o f th e Fox s e r ie s , unnamed) FD Boyer-Splnks loamy sand. 2552 Bl Typlc Hapludalf, coarse-loamy, mixed, meslc, (Boyer) Mol lie Hapludalf coarse-loamy, mtxed, meslc Constantine sandy loam F Boyer-Splnks loamy sand 2552 Al M Mol lie Hapludalf, coarse-loamy mixed, meslc Constantine loamy sand L Boyer-Splnks loamy sand 2552 Al m Psammenttc Hapludalf, sandy, mixed, meslc Stroh loamy sand LF Boyer-Splnks loamy sand 2552 Bl N Bower sandy loam 13 Bl ,' i ■ a Mol lie Hapludalf, coarse-loamy, mixed, meslc Constantine gravelly loamy sand Alflc Haplorthod, sandy over loamy mixed, mexlc Menominee loamy sand 220 S ite 221 may b e o f a s l i g h t l y spodosolization, it d iffe re n t clim ate since and s i n c e it is not s e p a r a t e d from th e level. Thus a l l pedons a r e From t h e c l a y m i n e r a l o g y and t h e X -r a y d a t a it is o f th e minimal is e x h i b i t i n g spodsolization r e s t o f th e pedons a t the fam ily t e r m e d c l i m a t o l o g i c a 11y a s m e s i c . shown t h e p e t r o g r a p h i c d a t a (Table 23), all class, 17 pedons showed m i x t u r e s o f m i n e r a l s w i t h no d o m i n a n c e o f a p a r t i c u l a r m i n e r a l . for the fam ily m ineralogy table all Thus, pedons have been term ed as mixed. Comparing t h e s e p la c e m e n ts w i t h ment o f t h e mapped ment in a l l series soil pedons. name. series the o f f i c i a l indicated there of the te x tu ra l is a d i s a g r e e ­ P e d o n D h a s n o known e q u i v a l e n t f o r of Indiana because B-horizon o f this its soil heavy fits its the p o sitio n The G o t h a m s e r i e s and l i g h t sa n d y te x tu re d s e r ie s w ith l oam B - h o r i z o n s . The p e d o n o f s i t e s F, th eir series name. b e t w e e n S t r o h a n d Gotham s e r i e s . is a c o a r s e t h e Midwest l o a my f i n e s a n d the d e s c r ip tio n of t h o s e p e d o n s a n d t h u s S t r o h was s u g g e s t e d a s placem ents o f place­ P e d o n s L, a n d p o s s i b l y AA s h o w e d s i m i l a r i t y w i t h the Stroh s e r ie s P e d on AA h a s regional July, r e g i o n do n o t 1969, list soil lo a my s a n d series the Stroh s e r ie s . FD a n d LF s h o w e d a n a g r e e m e n t w i t h C o n s ta n tin e s e r i e s o f M ichigan which i s a l oa my s a n d t o s a n d y loam ( 2 0 t o ^ 0 " ) in a c o a r s e - l o a m y f a m i l y , w i t h B-horizon as sandy c l a y less loam o v e r s a n d an d g r a v e l . than 10" o f C onstantine 222 soil series classification b ee n r e p o r t e d y e t . As f o r p e d o n N, t h e Me n o mi n e e s e r i e s w h i c h silty clay i n t h e new c l a s s i f i c a t i o n has not the c l a s s i f i c a t i o n is sand to loamy s a n d o v e r fit closely l o a ms t o l oa ms t h a t a r e e n c o u n t e r e d b e t w e e n 2 0 a n d 4 0 " d e p t h . These Spinks (Stroh), Boyer ( C o n s t a n t i n e ) so ils are closely associated s o ils . intergrade The s o i l l e g e n d shows t h a t they commonly i n c l u d e d in t h e sa me m a p p i n g u n i t . those t ndersoorded i s p r e s e n t e d a n d Fox (X) survey d e s c rip tiv e in to each o t h e r and a r e A full in t h e a p p e n d i x . description of The i n t e r g r a d a t i o n s pose a somewhat c o n t i n u o u s p r o b l e m in mapping due t o t h e d i f f i c u l ­ ty in i d e n t i f i c a t i o n and s e p a r a t i o n betw e en any two a d j a c e n t soils in t h e co n tin u u m such a s S p in k s and Boyer, Fox. The m a i n p r o b l e m horizon o r Boyer and is th e r e c o g n itio n o f the t e x t u r a l i n t h e a r e a s o f maximum d e v i a t i o n w i t h i n range o f c h a r a c t e r i s t i c s f o r e a c h o f t h e m. B- the recognized Sometimes v a r i a t i o n s in to th e g r e a t e r depth o f the B -horizon of weakly developed Boyer l e a d s to c o n s id e ra tio n of Spinks. occur over a f lo o r of These s o i l s la c u strin e m aterial sometimes in t h e e x t i n c t g l a c i a l l a k e - b e d a r e a s u c h a s p e d o n s L a n d N. Because o f th e deep depths o f th e se f l o o r s , as they u su u a lly , the c l a s s i f i c a t i o n o f th e s e pedons a t series categories. the a re a Personal i n L, d i d n o t a f f e c t the s e rie s or the phase of communication w ith s o i l mappers in i n d i c a t e d t h a t a b o u t 50 p e r c e n t o f t h e m a p p e d B o y e r h a s dark c o lo re d s u r fa c e of 10YR 3 / 2 to 10YR 3 / 3 e s p e c i a l l y in loamy 223 sands, and th e p o s s i b i l i t y w i t h a mol l i e County. r a is e d and c o n s id e re d The F o x - B o y e r u n i t content is true is found to c o n t a in h ig h e r gravel t h a t we d o n o t y e t know a l l classification and needs placem ents, a s sh o wn requires testin g of effort.. the ideas o f improvement a s the its shortcom ings Every c l a s s i f i c a t i o n t i m e when i t was d e v e l o p e d . research advances. Thus f u t u r e in t h i s evolutionary The m o st r e a s o n a b l e e x p l a n a t i o n o f t h e d i s t r i b u t i o n in t h e landscape m aterial and age f a c t o r s I. F ertility is d i r e c t l y fertility related of to th e kind of in t h e g e o m o rph o log y o f t h e a r e a . a n d Management C h aracterizatio n of a so il s t a t u s and under the d i f f e r e n t so il to a s s e s s system has t h e p l a c e m e n t s must be c o n s i d e r e d these s o i l s Soil dynamics, in T a b l e 2 6 . to be co m p leted and r e v i s e d . system r e f l e c t s the o v e ra ll is e s s e n t i a l interpreting its ecosystem s, and a l l that control in r e c o g n i z i n g its production p o te n tia ls management s y s t e m s . economics and t e c h n o l o g i c a l ) a crop. p ro p e rtie s of these is s u f f i c i e n t f o r working out s u i t a b l e Obviously every c l a s s i f i c a t i o n soil intergrade. but th e p r e s e n t knowledge o f c h a r a c t e r i s t i c s , and g e n e s i s o f s o i l s It in C l i n t o n in t h e solum th a n Boyer and B o y e r - S p i n k s It soils, s u r f a c e was o f e s t a b l i s h i n g a new m a p p i n g u n i t It is a l s o n e c e s s a r y m ajor f a c t o r s (social the production of The s o i l chemical, s y s t e m can be d e s c r i b e d physical, in t h r e e main ways - - and m i c r o b i o l o g i c a l . made t o d e s c r i b e t h e p h y s i c a l A ttem pts a r e u s u a lly and chem ical c o n d i t i o n s and p r e t them in t e r m s o f t e x t u r e a n d a s s o c i a t e d f o r optimum p l a n t g row th and la n d u s e , natural drainage, Soil rate, perm eability, soil such as a v a i l a b l e m o is tu re , structure, a e r a t i o n and s o i l in t h e s e s o i l s size d is tr ib u tio n w ith depth. is to sandy c la y porosity, tilth . important controls in b u i l d i n g loam. ranged conditions texture in t h e p a r t i c l e in t e x t u r e from san d The f i n e s t texture chemically a c t i v e s o i l the s o il structural the su b -su rfa c e chem istry The c o a r s e r An i m p o r t a n t p o i n t the v a r ia tio n the B-horizon where th e h ig h e s t c la y c o n te n t Clay is one o f t h e m ost in filtration As i t w a s p r e s e n t e d e a r l i e r , the h o r iz o n s of th e pedons s t u d i e d and g r a v e l favorable and e r o d i b i l i t y . texture effects t o be d i s c u s s e d properties inter­ th a t of is e n c o u n te re d . fractions units im portant is that is and l a r g e l y in p l a n t n u t r i t i o n . in t h e u p p e r h o r i z o n s p r o v i d e s f a v o r a b l e f o r b e t t e r oxygen and w a t e r p e n e t r a t i o n to the root a b s o r p t i o n zon es due t o t h e good m acro- and m i c r o - p o r o s i t y allow e x c e l l e n t a i r and w a te r flow . that At t h e s a m e t i m e t h i s coarse te x tu r e perm its easy t i l l a g e as well as adequate space f o r growing h e a l t h i e r root fu n c tio n s . ro o t systems The c o a r s e r required to obtain texture B-horizon a r e a d e q u a te n a t u r a l proper in t h e h o r i z o n s below t h e me a n s f o r removing e x c e s s m o i s t u r e 225 from t h e s e s o i l s a t a t i m e whe n t h e y Bo ye r a v a i l a b l e m o i s t u r e c a p a c i t y a n d Fox i s h i g h e r . re c e iv e high p r e c i p i t a t i o n . is m o d e ra te, Spinks Exposed r i d g e to p s a r e s u s c e p t i b l e wind e r o s i o n and g r e a t e r e v a p o t r a n s p i r a t ion l o s s e s . are su scep tib le is lower t o some Slopes t o b o t h w i n d a n d w a t e r e r o s i o n when n o t protected. The d a r k c o l o r a n d t h e s o m e w h a t h i g h o r g a n i c c a r b o n t h e s e pedon s u r f a c e s an d t h e t h i c k n e s s o f reasonably high o rg a n ic m a tte r textured s o il s productive. to a marked d e g r e e f o r surface s o ils . reduction of drought. levels the adequate so il Good s t r u c t u r e perm its is layers to r e ta in a reasonable source of is structure responsible common in filtratio n r u n -o f f and thus m oderates The o r g a n i c f r a c t i o n in t h e o f w a t e r and t h e p e r i o d i c midsummer the source of a larger the exchange c a p a c ity of bases a g a in st indicate t h a t ma k e t h e s e c o a r s e The o r g a n i c f r a c t i o n o f n i t r o g e n a n d p r o v i d e s much o f surface t h e Ap h o r i z o n in leaching, the m ajor p a r t of besides reserve these being the n a tiv e o rg an ic p h o sp h o ru s t h a t becomes a v a i l a b l e during The o r g a n i c m a t t e r o f is e a s i l y d e p l e t e d but f r e q u e n t the su rfa c e a d d itio n s of crop resid u es perm it r a i n f a l l at to soak r e s t o r e a c t i v e o r g a n i c m a t t e r and into the s o i l . the s u rfa c e helps prevent s o il S o i l s o f pH v a l u e s th e growing se aso n . Leaving crop blowing and red u ce s l o w e r t h a n 6 . 8 AAf FD, lim ing f o r growth o f a l f a l f a . F, residues run-off. L and N r e q u i r e P e d o n s D a n d LF e x h i b i t e d a s o i l 226 r e a c t i o n w i t h pH v a l u e t h a n pH 6 . 8 . p ra c tic e s as in t h e plow l a y e r e i t h e r a b o u t o r more This n e u t r a l soil r e a c t i o n - m a y be d u e t o i n d i c a t e d by t h e f a r m e r s . Calcium is n o t a l i m i t i n g n u t r i e n t lime re q u ire m e n t in t h e s e s o i l s crops though sites L a n d N) f o r t h e c o r r e c t i o n o f a c i d i t y Magnesium a s a n u t r i e n t any o f t h e s e s o i l s , Potassium d e fic ie n c y is not l i k e l y less or so il t o be l i m i t i n g in t h e s u r f a c e o f AA a n d ions in t h i s essential This in q u a r t z is t h e K+ kind o f p o ta ssiu m low r e p l a c e m e n t initial su p p lie s of potassium reserves. b u t s i g n i f i c a n t amount o f p h o sp h o r u s organic m a tter. and t h i s illite. study. t o be a s i g n i f i c a n t s o u r c e f o r c r o p s . He n c e t h e s e s o i l s may h a v e m o d e s t A small rich th e m ajor so u rce of such re s e rv e s in t h e p r i m a r y m i n e r a l s and but r e l a t i v e l y of potassium re p le n is h m e n t from th e f e r t i l i z e r The l a t t e r a r e n o t m e a s u r e d may b e t o o s l o w l y r e l e a s e d of Potassium adequate fo r S ince th e s e a r e c o a r s e t e x t u r e d s o i l s which a r e a n d low i n c l a y , in is c h a r a c t e r i s t i c o f th e s e s o i l s requires constant in t h a n 3% o f t h e CEC. in t h e s u r f a c e s o i l . reserves. (as i n some p l a c e s . low c l a y c o n t e n t a l t h o u g h a p p r e c i a b l e q u a n t i t i e s may a c c u m u l a t e f o r most i s p r o b a b l y s o me w h a t h i g h except possibly N pedon w h ere magnesium is good y i e l d s liming is in t h e If c o n d itio n s a r e f a v o r a b l e 'f o r decom position i s e n h a n c e d by t h e g o o d d r a i n a g e a n d c o a r s e for oxidation, c o n s id e r a b le phosphorus is texture released b ut p h o s p h o r u s must be ad de d t o a s s u r e s a t i s f a c t o r y c r o p 227 production. natural F or a g r o n o m ic management t h e s e s o i l s fertility but they are easy to work. readily Corn, w h e a t, small fru its and gardens, soils if ad eq u ately f e r t i l i z e d These s o i l s as n u rse rie s w ithin sh o rt gravel on t h e v e r t i c a l the landscape. and h o r i z o n t a l and potatoes on t h e s e is a d e q u a te . potential, low c o m p r e s s i b i l i t y . in s i z e la y e r s of c o a rs e sands and o f d i f f e r e n t s i z e s and amounts a r e a r e o f commercial hay, do w e ll in t h e s u b s t r a t a v a r y m a r k e d l y d i s t a n c e and s e v e r a l of these s o il s rye, low s h r i n k - s w e l l medium t o h i g h s h e a r s t r e n g t h a n d v e r y The s a n d a n d g r a v e l oats, and r a i n f a l l have g e n e r a l l y low in respond to f e r t i l i z e r s barley, as w ell are gravel in most p e d o n s . Some v alu e depending m ainly dim ensions of such m a t e r i a l s in CONCLUSIONS T erraces along t h e Maple R i v e r where th e s o i l s w ere su rv e y e d in 1 9 6 7 an d 1 9 6 8 , w e r e g e o m o rp h o lo - g i c a l l y e v a lu a t e d and th e s o i l w i t h t he m on b o t h secting in n o r t h e a s t C l i n t o n C o u n t y mapping u n i t s w ere c o r r e l a t e d th e c u r r e n t and th e the te rr a c e s at are predom inantly s o i l s 1936 s o i l selected points. o f th e Boyer, s u r v e y by t r a n ­ S o i l s on t h e s e Spinks, transects a n d F ox c a t e n a s (or very s im ila r darker co lo red s o i l s ) . The n u m b e r a n d e x t e n t o f the te rra c e s as th e Maple R i v e r w e r e o b t a i n e d from a e r i a l maps, f ie ld observations and s o i l l e v e l s w e r e common t h e a r e a . Four t e r r a c e The f o u r t h o r o l d e s t terrace the th ir d or next o ld e s t terrace existed The p r o b a b l e e x p l a n a t i o n r iv e r s were involved in t h e i r O u tle t R iv e r and th e sm all throughout behind th e se form ation. periglacial terraces T h e r e may b e s e v e r a l terraces. But, depositions Maple R i v e r . started 228 that, t wo Imlay Imlay range than the study a re a . t a k i n g p l a c e on e v e r y o n e p e d o g e n e s i s was f l o o d p l a i n s when t h e r i v e r s is The b i g g l a c i a l in t h e southern p a r t o f and the study a re a . covered a la rg e r area o f g r e a te r e le v a tio n t h e y o u n g e r Maple R i v e r of th e se topographic e n d s a t p o i n t LF, a b e a c h o f S a g i n a w - A r k o n a a g e , the f i r s t o r youngest deposits photos, mapping u n i t s . was f o u n d t o t e r m i n a t e a t p o i n t FD, terraces continuums along i n i t i a t e d on t h e i r to discharge th e ir w aters 229 i n t o a new l o w e r g l a c i a l la k e due to t h e f u r t h e r re tre a t of the g l a c i e r . From t h e p e d o n s * m o r p h o l o g y , particle ( w i t h e m p h a s i s on t h e c o a r s e r f r a c t i o n s ) various s t r a t a were and f i n e sand in F i g u r e 2 0 . Based on t h e number o f s i m i l a r i t i e s i n t o f o u r main g r o u p s a , and t h e d -g roup b e in g b, c, and d, the c o a rs e s t. the s t r a t a w ere grouped the a-group being the f i n e s t T h is g r o u p i n g was n e c e s s a r y the pedogenetic com parisons. The a p p r o a c h t o a r r i v e a t was t o the age of the te r r a c e s r e l y c o n s i d e r a b l y on t h e a g e s e q u e n c e , the e x t i n c t major g l a c i a l Mid-Michigan. indicated m ineralogy i d e n t i f i e d and each pedons s t r a t i g r a p h y was e s t a b l i s h e d a s p r e s e n t e d to f a c i l i t a t e size d istrib u tio n s lakes and t h e i r involved the d u ratio n of d ra in a g e systems in There were ch ro n o lo g ic d a ta a v a i l a b l e as in T a b l e 10. Topographic c o r r e l a t i o n of th e sam pling pedons s i t e s th e c h r o n o l o g i c d a t a from both g l a c i a l lakes and r i v e r w ith levels r e v e a l e d t h a t p e d o n s F , N, a n d L a r e o n t h e f i r s t or t e r r a c e o f t h e M a p l e R i v e r a n d AA i s on t h e f i r s t te rra c e of L i t t l e Maple R i v e r . In o t h e r w o r d s , they a r e ( < 1 2 , 8 0 0 y e a r s ) w h i l e p e d o n s 0 a n d FD a r e years). at The o t h e r p e d o n ( L F ) f a l l s 13,400 y e a r s . lowest th e y oungest pedons the o ld e s t between th e s e (14,000 t wo d a t e s 230 Because o f the l i t h o l o g i c and c h r o n o l o g i c d i f f e r e n c e s , the pedons s t u d i e d a r e f i t t e d a s shown in t o complex c h r o n o l i t h o s e q u e n c e s in F i g u r e 21 . P e d o n s F , LF a n d FD ( c o a r s e ( i n c l u d i n g sandy and c o a r s e pedons F ( c o a r s e fitted l oa my p e d o n s ) Because o f 1 i t h o l o g i c a 11y d i f f e r e n t into a coarse c h r o n o s e q u e n c e s , and l o a m y ) , AA ( s a n d y ) a n d FD ( c o a r s e in a n o t h e r c h r o n o s e q u e n c e . ages of the l o a my ) a r e f i t t e d loamy) a r e the com parable D a n d FD p e d o n s they were recognized as a 1 ith o seq u en c e. When t h e i n t e n s i t y o f p e d o g e n e s i s was m i n e r a l o g i c a l l y e v a l u a t e d b y u s i n g G/PA a n d Q / P A, ( T a b l e 20) s i m i l a r strata were s e l e c t e d from th e s o l a to be compared w it h s u i t a b l e (selected) t h a t w e r e s e l e c t e d on b a s i s parent m aterials p artic le size d istrib u tio n first, results that in t h e obtained initial indicated and m in eralo g y second. the degree of m a t e r i a l s were n o t ad eq u ate textural in a s t r a t u m and more r e f i n e d e x p e r i m e n t a l to overcome th e s u b - s t r a t u m d i f f e r e n c e s . a somewhat u n i f o r m indicated of w eathering a t sim ilarity design differences is required However, w e a t h e r i n g t h a t s o l a o f p e d o n D a n d FD h a v e i n t e n s i t y o f w e a t h e r i n g b e c a u s e b o t h A2 a n d B22t h o r i z o n s w e r e somewhat e q u a l values, w hile the The to pursu e such c h r o n o l o g i c co m p ariso n s and t h a t n a r r o w e r t e x t u r a l indices com parisons, of rest of in t h e i r w e a t h e r i n g t h e p ed o n s showed g r e a t e r the s u rfa c e than indices intensity in t h e B22t h o r i z o n s . 231 The s t u d i e d p e d o n s w e r e c h e m i c a l l y c h a r a c t e r i z e d b y h o r i z o n s . The t r e n d s o f th e c a tio n exchange c a p a c i t i e s o f t h e B22t h o r i z o n s a n d p e r c e n t b a s e s a t u r a t i o n o f t h e A2 h o r i z o n s w e r e f o u n d t o reflect th e age d i f f e r e n c e s in t h e c h r o n o s e q u e n c e s by g e n e r a l l y in creasin g c a tio n exchange c a p a c itie s in t h e and d e c r e a s i n g p e r c e n t b a s e s a t u r a t i o n The s t u d y o f the f i e l d (e.g. included horizons, in t h e e l u v i a l horizons. in t h i s e x a m in a tio n of th e s o i l s morphology 1 ithosequences in t h e th e pedons illuvial to observe d iffe re n ce s intensity of the pedological organic m a tte r), transform ation (e.g. e l u v ? a l / i 1l u v i a l ) . clay c o n te n ts, removal clay in t h e c h r o n o - processes of: (e.g . form ation) or translocation Depth o f c a r b o n a t e s , B-horizons thicknesses, increased w ith age assemblages a r e very s i m i l a r , verm iculite, mor i l i o n i t i c m i n e r a l identified in t h e in 1 itho­ of th e pedons formed reg ard less of in t h e s e pedons a r e k a o l i n i t e and w ith illite t r a c e of a m ont­ i n p e d o n D. The d e g r e e o f w e a t h e r i n g / (e.g . in B22t/A 2 h o r i z o n a n d t i m e s Bt t h i c k n e s s e s , The c l a y m i n e r a l s chlorite, addition (D a n d F D ) . Clay m in e ra l age. reflected depth o f c a rb o n a te s ), t h e s t u d i e d c h r o n o s e q u e n c e s and m a r k e d ly v a r i e d sequence pedons involved in p e d o g e n e s i s as r a tio of clay contents B2 2 t - c l a y c o n t e n t study in i 11i t e of in s i m i l a r s t r a t a the su rfa ce horizons a s e x p r e s s e d by 0 0 1 / 0 0 2 , 4 232 generally in c re a se d w ith age clay potassium c o n ten ts in t h e c h r o n o l i t h o s e q u e n c e s w h i l e g en e ra lly decreased w ith age. All o f t h e s t u d i e d pedons a r e c l a s s i f i e d as o f th e A l f i s o l o r d e r e x c e p t t h e N pedon t h a t a p p e a r e d as an a l f i c th e Spodosol Hapludalf order. P e d o n s AA a n d L a r e p l a c e d a s (th e dark co lo red Stroh s e r i e s ) , as a G lo ssic (Mol l i e ) FO a r e c l a s s i f i e d Fragiudalf (series a s Mol l i e H a p l u d a l f s Constantine s e r i e s ) . and subgroup of Psammentic w h i l e pedon D Is p l a c e d X). P e d o n s F , LF a n d (th e dark colored The N p e d o n f a l l s w i t h i n i s c l a s s i f i e d a s an A l f i c H a p l o r t h o d th e Spodosol (the order Men omi n ee se r ie s ). O ccurrence and d i s t r i b u t i o n Stroh (Spinks), and X (Fox) s e r i e s of the C onstantine (Boyer), a r e b e t t e r u n d e r s t o o d when i n t e r r e l a t e d p e d o l o g ic and geomorphic elem e n ts a r e c o n s i d e r e d . Interrelationships among t h e v a r i a n t s series are clearly r e v e a l e d when t h e i r p r o p e r t i e s a r e d i r e c t l y related to th e ir v a ria tio n s graphy t h a t a r e in tricately of the g la c io - f l u v ia l events in t i m e , of investigated soil parent m aterial and to p o ­ co n n e c te d to m agnitude and seq u en ce in t h e a r e a . LITERATURE CITED A l l e n B. L. a n d E. s ome s o i l s Soil S ci. A l l i s o n L. E . P. W h i t e s i d e on t i l l "O rganic Carbon". A llison pp. A l l i s o n L. E . , B. P a r t 2: chemical (1968) F. E. Bear ed. H. Jour. Bretz J . H. pp. B o l l e n a n d C. analysis and b i o l o g i c a l "Soil D. M o o d i e properties. developm ent" (1964) 59. pp. Methods P a r t 2: chemical (1965a) "Total . Agronomy m o n o g r a p h No. the S o i l . N. Y. lakes s ta g e s in Saginaw V alley 244-258. " C o rr e la tio n o f th e g la c ia llake sta g e s and Michigan b a s i n " . Journ. G e o l., Vol. in 72. pp. 618-627. Brown G. /1955) "The e f f e c t o f intensity of the type s t r u c t u r e s " . (00L) 9 pp. 1353-1365. in C h e m i s t r y o f Reinhold P u b l. C orp., Vol. th e H uron-Erie "C arbonates". 1379- 1396. (1951)"Causes o f g l a c i a l Ge ol . , analysis. Chemical and b i o l o g i c a l A g r o n o m y m o n o g r a p h No. 9 , C a rb o n " Methods o f s o i l I. Methods o f s o i l (1965b) properties, a n d W. Barshad in M i c h i g a n " . 1367- 1378. analysis. and b io l o g i c a l Bretz J. P a r t 2: L. E . a n d C. D. M o o d i e of soil of 18:203-206. Agronomy m o n o g r a p h No. 9 , properties, "C haracteristics Cary and Mankato a g e S o c . Am. P r o c . (1965) (195*0 isomorphous s u b s t i t u t i o n reflection M i n . Mag. V o l . 233 on t h e o f mica and c h l o r i t e 30, pp. 657-665. B u t l e r B. E. (1959) for soil A ustr. Cann D. " P e r i o d i c phenomena studies". Soil Commonweal th S c i . Publication B. a n d W h i t e s i d e , of podzolic S c i. Soc. E. Am. P r o c . . Chapman H. D, analysis. Chapman H. D. soil "A s t u d y o f t h e g e n e s i s profile in M ic h ig a n " . The hu mi d s o i l : pp. properties, 902-904. Methods o f (1967) o f normal s o i l s o f New Y o r k . i n v o l v i n g Brown F o r e s t , "Seasonal in s e v e r a l in d i f f e r e n t w a y s " . Chemical pp. 8 9 1 - 9 0 0 . P ro file studies lim e re q u ire m e n t measured Chemical "C ation exchange c a p a c ity " . p r o f i l e sequence B. J o h n n i e Methods o f s o i l P a r t 2: P o d z o l i c , a n d Brown P o d z o l i c s o i l s " . C ollins process Agronomy m o n o g r a p h No. 9» P a r t 2 : (1949) Soil 46:488-507. "Exchangeable b a se s". (1965) and b io lo g ic a l "Soil (1955) (1956) properties, analysis. C l i n e M. G. P. Agronomy m o n o g r a p h No. 9 , and b i o l o g i c a l Organ. 19:497-501. G e o l . Re v . (1965) Ind. Res. 14:8-15. intergrade soil C a r t e r G. F. a n d P e n d e l t o n and.tim e in l a n d s c a p e a s b a s i s Soil G r a y Brown S ci. 68:259-272. v a r i a b i l i t y o f pH a n d s o u t h e r n M i c h i g a n s o i l s when M aster T h esis, S oil Science D epartm ent, Michigan S t a t e U n i v e r s i t y . C o t t o n C. A. (1945) Geomorphology: s tu d y o f Landforms. An i n t r o d u c t i o n John W iley and Sons, Inc., to the New Y o r k . 235 Dalrymple J. unit B. a n d R. J . landscape model". Band 12 H e f t D a v i s W. D u n b ar Blong (195*0 1., nine A n n a l s o f g e o m o r p h . Neue F o l g e . s e i t e 60-76. "Geographical C. 0 . a n d J . ( 1 9 6 8 ) "An h y p o t h e t i c a l Rogers Essays" (I960) D o v e r P u b l . Co. N. Y. H istorical Geology 2nd e d . John W iley and S ons. F a i r b a i r n H. W. index F lint (1943) "Gel a t i n c o a t e d s l i d e s immersion m o un t". R. F. (1957) G lacial Am. Mi n . for refractive 28:396-397. and P l e i s t o c e n e G e o lo g y . John W iley and Son. FI i n t e r B. H. (1959) " T h e m a g n e t i c s e p a r a t i o n o f some a l l u v i a l m i n e r a l s in M a l a y a " . The Am. Mi n . 4 4 : 7 3 8 - 7 5 1 . F r a n z m e i e r D. P. a n d E. P . W h i t e s i d e (1963) o f p odzols in n o r t h e r n M i c h i g a n . properties". P. W h i t e s i d e (1957) S oil. B u i . No. 2 . R. E. Sci. "Pleistocene W hitewater d rain a g e b asin , Gri m (1952) r e g i o n between Podzol re g io n s in M ic h ig a n " . G o o d i n g A. M. Physical and c h e m ic al M i c h i g a n S t a t e Q u a r t e r l y B u i . No. G a r d e n e r D. R. a n d E. transition II. A chronosequence (1968) S o c . Am. P r o c . terraces Richmond, Clay m in e r a l o g y . soils 46. in t h e and Gray-Brown P o d z o l i c Southeastern E a r l ham C o l l e g e , "Zonal 1, V o l . 16:137-141. in t h e u p p e r Indiana". Sci. Indiana. McGraw H i l l , N.Y. 2 3 6 Hensel D. R. a n d J . L. W h i t e genesis of so il Clay M ineral Hough J , L. Hough J . L. 7th C lay and Conference. " Geology (1963) of the G reatLakes". Univ. of 111. " P r e - h i s t o r i c G re a t Lakes o f N orth A m erica". 51:1:84-109. B. a n d V. P. S o k o l o f f (1949) t h e R o c ky M o u n t a i n r e g i o n " . Paper. Jackson till". Urbana*. 111. Am. S c i . H u n t C. "Time f a c t o r and t h e on e a r l y W i s c o n s i n (1958) Press. (1961) 221-G: "Pre-W isconsin Soil U. S . G eol. Survey. in Prof. 109-123. M. L. (1958) Soil chemical analysis. P ren tice H all, M. L. (1956) Soil chem ical analysis - Advanced c o u r s e . N .J. Jackson Pub. by t h e a u t h o r . Dept, of S o ils. Univ. o f W isconsin, M adison, Wise. J a c k s o n M. L. (1959) Frequency d i s t r i b u t i o n o f c la y m in e ra ls in m ajor g r e a t s o i l form ation." pp. Jackson R. 1 3 3 t 1 43 6 th groups, related to f a c to r s of soil Clay and Clay M in e ra ls C o n feren c e , Proc. . M. L . , S . A. T a y l o r , P. P e n n i n g t o n m inerals as in s o i l s generalization". A. L. W i l l i s , (1948) Bourbeau and "W eathering sequence o f c la y and s e d im e n ts . Jour. G. A. Phy. C oll. Part 1: Fundamental Chem. V o l . 52:1237-1260. 23 7 J a c k s o n M. L . , Y H s e u n g , VandenHeurel m inerals (1952) B. C o r e y , E. J. E v a n s a n d R. C. W eathering sequences of c la y s iz e in s o i l s and s e d i m e n t s . w eathering of Proc. R. layer s i l i c a t e s " . Part Soil II. Chemical Sci,Soc. Amer. 16:3-6. J o h n s o n L. J. a n d C. D. J e f f e r i e s (1957) "The i n f l u e n c e o f d r a i n a g e on t h e w e a t h e r i n g o f t h e c l a y m i n e r a l s Allenwood c a t e n a o f P a . " Soil S ci. in t h e S o c . Am. P r o c . 21: 539-542. J e n n y H. (1941) Factors of s o i 1 fo rm atio n : q u a n t i t a t i v e pedology. King L. C. (1953) "Canons o f S o c . Am. B u i . K i l m e r V. J . McGraw H i l l . Vol. 64, pp. Soil Krumbei n W. C. a n d F. Petrography. K r y n i n e P. D. S ci., J. F. survey. L e v e r e t t F. (1949) "Methods o f m e c h a n ic a l P ettijohn (1938) Appleton C e n t u r y c r a f t . (1948) B. 721-751. Vol. 6 8 :1 5 -2 4 . Manual o f s e d i m e n t a r y New Y o r k . "The m eg ascopic s t u d y and f i e l d c l a s s i ­ f ic a tio n of sedim entary Leverett New Y o r k . landscape e v o lu tio n " . G eol. a n d L. T. A l e x a n d e r analysis". A system of (1917) rocks". Jour. Michigan g e o l o g ic a l Geol. S e r ie s 21, B. a n d F . T a y l o r Pub. (1915) Geol. Vol. 56, No. and b i o l o g i c a l 25 ( P u b l i s h e d a s a b u l l e t i n ) . "The p l e i s t o c e n e of I n d i a n a an d M ic h ig an and t h e h i s t o r y o f t h e G r e a t L a k e s " . U nited S t a t e s Geol. Survey. 2. Monograph 53. L i e t z k e D. A. (1968) classification Soil M arshall " E v a l u a t i o n o f s p o d i c h o r iz o n and o f some M i c h i g a n s o i l s " . M aster T h esis, S c ie n c e D epartm ent, Michigan S t a t e U n i v e r s i t y . C. E. a n d J . F. Ha s e ma n evaluation of soil m ineral studies: S o c . Am. P r o c . Michigan (1943) The q u a n t i t a t i v e f o r m a t i o n a n d d e v e l o p m e n t by h e a v y A Grundy s i l t l oa m p r o f i l e . Soil S ci. 7:448-453. W eather S e r v i c e (1966) U.S. Dept, o f Co mm e r ce . " C l i m a t e o f M i c h i g a n by S t a t i o n s " . M i l n e G. (1936) A provisional A frican A gric. Mur phy R. (1968) G. E. earth P allister Geol. P e e c h M. zone". factor New Z e a l a n d S o i l News 2 . (1956) Jour., Vol. 2 nd ed. 1 22 , Part 1. int h e Brown-Gray pp. "S lope development "Hydrogen in 20-25. Uganda". pp. 80-87. ion a c t i v i t y " Methods o f S o i l Agronomy m o n o g r a p h No. 9 . P a r t 2 : Chemical and b i o l o g i c a l Penck W a lte r Amani M e m o i r s . "Time a s a s o i l J . W. (1965) East Co., Chicago. (1964) A nalysis. properties, (1953) (1957) pp. "M orphological M a c m i l l a n a n d Co. P ettijohn S tat. " An i n t r o d u c t i o n t o g e o g r a p h y " . Ra nd M c N a l l y O rbell Res. s o i l map o f E a s t A f r i c a . Lim ited. 914-925. a n a l vs i s o f L a n d f o r m s " . London. S e d i m e n t a r y r o c k s . 2n d e n d . H a r p e r a n d Row, P u b l i s h e r s , New Y o r k . 239 Raeside J. P. (1959) w ith p a r t i c u l a r " S ta b ility of to q u a rtz , Sediment. Petrol. Richmond G. M. (1950) graphic horizon Ruhe R. V. (1956) Soil S c i. Ruhe R. in s o i l s z i r c o n and g a r n e t " . Journ. 29: 493-502. " In terstatia 1 soils as p o s s i b le s t r a t i - in W i s c o n s i n c h r o n o l o g y " . Geol. Soc. Bui. 61. "Geomorphic s u r f a c e and th e n a t u r e o f s o i l s " Vol. 82:6:441-445. V. ( 1 9 5 9 ) " S t o n e l i n e pp. in s o i l s " Soil S c i ., Vol. 87; 223-231. Ruhe R. of Vol. index m in e ra ls V. ( I 9 6 0 ) Intern. Ruhe R. in Soc. V. ( 1 9 6 7 a ) S ci. Inst, V . , W. P. D i e t z , USDA T e c h n i c a l T. E. Invest. R e p o r t No. V. ( 1 9 6 9 ) Schneider I. Iowa". form ation in 1349. F. H a l l (1968) Iowa G e o l . S u r v e y 7. Ames, F . , R. W. J o h n s o n a n d E. classification Iowa". Iowa S t a t e I o wa . P. W h i t e s i d e T e n t a t i v e placem ent o f Michigan s o i l soil Bui. " Q u a t e r n a r y L a n d s c a p e in U niversity Press, deposits Bureau o f Mines and s o i l F e n t o n a n d G. "Iowan d r i f t p roblem o f n o r t h e r n Ruhe R. and s u r f i c i a l o f M i n i n g a n d T e c h n . Me moi r 18. "Landscape e v o lu tio n Iowa". 7 th Congr. Madison, W isco n sin . "Geomorphic s u r f a c e s Resources, V. ( 1 9 6 7 b ) southw estern Ruhe R. of Soil landscape". s o u t h e r n New M e x i c o " New M e x i c o S t a t e and M in e ra l Ruhe R. "Elements o f the s o i l system. July series (1967) in t h e new 1969 r e v i s i o n . 240 S m i t h J . M. (1965) "B raid core H ill Wa b a s h R i v e r " . Soil Survey S t a f f U.S.D.A. Soil Soil (1942) U.S. No. Soil 18, Survey Staff-USDA Ltd. St. V o l . 6 , No. Survey R eport. Survey M anual. (7th ap p ro x .) D. C, classification, Govt. P rint. D. C. Handbook O f f ic e , W ashington, "Soil 1 a compre­ O ffice, "Geomorphology" Logman a n d G r e e n C o . , London. J. Sequence (1961) Pedogenesis of in S a s k a tc h w a n C anada. R. G. D. a n d J . H. T o r i e dure of S t a t i s t i c s " Stephens the D. C. (1965) A r n a u d R. Steel P rint. along O ff ic e , W ashington, Soil (I960) h en siv e system" S p a r k B. W. P rint. (1951) U.S. G ovt. W ashington, Survey H orizon, C l in to n County S o il Govt. Survey Staff-USDA terraces C. G. Trans. (1947) McGraw H i l l "Functional Roy. S o c . A u s t r . S t e v e n s P . R. (1964) sequence of s o i l s G lacier". (I960) pp. B l a c k G r e y Wooded Ph.D. T h e s i s . M. S. U . "P rinciples and P r o c e ­ Book C o . , analysis inc. in p e d o g e n e s i s " . 168-181. "A p r e l i m i n a r y r e p o r t on a c h r o n o - and v e g e ta t io n n ear th e Franz J o se f New Z e a l a n d S o i l News. KRT. 2 . 241 Syers J. K. time" (1967) "In o rg a n ic phosphorus New Z e a l a n d S o i l T a v e r n i e r R. a n d G. D. Smith (Brown F o r e s t S o i l ) Adv. in Agron. T h o r n b u r y W. D. (1954) (1938) U.S. G e o l o g i c a l John Inc. S taff (1915) Survey" o f E l s i e Survey B. in E u r o p e a n d t h e U n i t e d S t a t e s " . P r i n c i p l e s of Geomorohology. Survey "Topographical Van H o u t e n F . "The co n c e p t o f B raunerde Y e a r b o o k " S o i l s a n d Men". "Topographical U.S. G e o lo g ic a l (1957) 1. 9:217-289. Wiley and S o n s ., USDA S t a f f News No. tran sfo rm atio n w ith S taff Survey", (1953) and d e r i v e d s o i l s " . (1917) Department o f Interior and L a in g s b u r g Q u a d r a n g l e s . Department o f Interior D etro it Folio. "Clay m in e ra ls in s e d i m e n t a r y r o c k s Amer . J o u r , o f S c i . , Vol. 251, pp. 6 1 - 8 2 . Veatch J . 0. (1953) " S o i l s and land o f M ichigan". The M i c h i g a n S ta te C ollege Press. Veatch J . 0 , a n d C. E. M i l l a r m ature s o i l s (1934) in M i c h i g a n " . "Some c h a r a c t e r i s t i c s Journ. A rt. No. of 172, M ic h ig a n S t a t e U n iv e r s ity Expt. S ta . W i l d e S . A. (1958) White J. G. W. B a i l y a n d J . L., "F orest S o i l s ". U. A n d e r s o n influence of parent m aterial in t h e M id w e st". Ind. Agr. The R o n a l d P r e s s C o . , N.Y. (I960) "The a n d t o p o g r a p h y on s o i l Expt. S ta. Res. genesis Bui. 693. 242 W hiteside, E. P. (1953) fication of of so ils by s o i l "Some r e l a t i o n s h i p between the c l a s s i ­ r o c k s by g e o l o g i s t s a n d t h e c l a s s i f i c a t i o n scientists". Soil Sci. S o c . Am. P r o c . 17:138-143. W hiteside, E. P . , I . F . S c h n e i d e r a n d R. L . of M ichigan". Michigan S t a t e U n i v e r s i t y , and Agr. E x p t. S t a . W hiteside, E. P ., Cook Bui. (1963) Soil S ci. "S oils D ept., 403. I . F. S c h n e i d e r a n d C. A. Engberg (June 1 959) Taxonomic C l a s s i f i c a t i o n o f M ic h ig a n S o i l s . W o o l d r i d g e S . W. Jour. Soil Y a s s o g l o u N. J . (1949) S ci. Soi. S ci. Z u mb e r ge J . P. W h i t e s i d e containing S o c . Am. P r o c . H. a n d J . I960 fragipans Zu mbe r g e J . H. a n d J . Chronology o f pollen pp. 211-288. in N o r t h e r n M ic h ig a n . E. P o t z g e r (1955) "Pollen p r o f ile s chronology of - t h e Lake 121:309-311. E. P o t z g e r (1956) t h e Lake M ic h ig a n b a s i n studies". Morphology, an d g e n e s i s 24:396-407. ra d io c a r b o n d a t i n g and g e o l o g i c a l Michigan b a s i n . science". 1:31-34. a n d E. o f some s o i l s "Geomorphology and s o i l Bui. Geol. "L ate W isconsin - c o rre la te d w ith S o c . A me r . V o l . 6 7 : APPENDICES APPENDIX I T entative Series S u b je c t to review and ap pro val Stroh S eries The S t r o h s e r i e s i n c l u d e s w e a k l y d e v e l o p e d G r a y - B r o w n P o d z o l i c s o i l s , i n t e r g r a d e t o Brunizem s o i l s , d e v e l o p e d on n e u t r a l t o c a l c a r e o u s f i n e s a n d , s a n d , o r l o a my s a n d g l a c i a l d r i f t o f W i s c o n s i n Age. S t r o h s o i l s a r e t h e Gray-Brown P o d z o l i c , i n t e r The S t r o h grade t o Brunizem ana lo g a e o f th e S pinks s o i l s . s o i l s d i f f e r f r o m S p i n k s in h a v i n g much d a r k e r s u r f a c e s t h a t They d i f f e r f r o m O a k v i l l e are r e l a t i v e l y high in o rg a n ic c o n te n t. s o i l s i n h a v i n g much d a r k e r s u r f a c e s o i l s , a n d i n h a v i n g o n e o r more t e x t u r a l a n d c o l o r B h o r i z o n s o f h e a v y l o a my s a n d t o l i g h t sandy loam. Soil Ap P rofiler 0 - 8 ii Stroh l oa my f i n e s a n d V e r y d a r k g r a y i s h - b r o w n t o v e r y d a r k g r a y (10YR 3 / 2 - 3 / 1 m o i s t ) l oa my f i n e s a n d ; v e r y w e a k f i n e g ran u lar s tr u c tu re ; very f r ia b le ; s l i g h t l y acid ; 7 t o 10 i n c h e s t h i c k . A2 8 - 30 ' 82 30-34" Brown t o s t r o n g br own ( 7 . 5YR 5 / 4 - 4 / 4 m o i s t ) , o r y e I l o w i s h - b r o w n (10YR 5 / 4 m o i s t ) h e a v y l o a m y f i n e s a n d o r l i g h t s a n d y loam; v e r y weak f i n e s u b a n g u l a r b l o c k y s t r u c t u r e ; v e r y f r i a b l e ; 1 t o 10 in c h e s th ick. A2 34-40" P a l e b r o w n o r l i g h t y e l l o w i s h - b r o w n (10YR 6 / 3 6 / 4 m o i s t ) l oa my s a n d t o s a n d ; l o o s e ; s l i g h t l y a c i d t o n e u t r a l ; 2 t o 10 in c h e s t h i c k . B2 4 0 - 4 8 II D a r k b r o w n , o r y e l l o w i s h - b r o w n (10YR 4 / 3 - 5 / 6 m o i s t ) o r s t r o n g b r o w n ( 7 . 5 YR 5 / 6 m o i s t ) h e a v y l o a my s a n d o r l i g h t s a n d y l o a m ; v e r y w e a k f i n e t o medium s u b a n g u l a r b l o c k y s t r u c t u r e ; v e r y f r i a b l e t o n e a r l y l o o s e ; 2 t o 15 i n c h e s t h i c k . 48" + P a l e b r ow n o r l i g h t y e l l o w i s h - b r o w n (10YR 6 / 3 6 / 4 m o i s t ) l oa my s a n d o r s a n d ; l o o s e ; n e u t r a l to calcareous. Y e l l o w i s h - b r o w n t o b r o w n (10YR 5 / 4 - 5 / 3 m o i s t ) l oa my f i n e s a n d t o f i n e s a n d ; m a s s i v e , o r v e r y w e a k me di u m g r a n u l a r s t r u c t u r e ; n e a r l y l o o s e ; s l i g h t l y a c id to n e u t r a l ; 6 to 30 inches t h i c k . 244 - 245 Range o f C h a r a c t e r i s t i c s : The d e p t h a t w h i c h t h e f i r s t Bz h o r i z o n o c c u r s r a n g e s f r o m 15 t o a b o u t 4 0 i n c h e s . The t h i c k n e s s and n u mb e r o f t h e Bz h o r i z o n s i s q u i t e v a r i a b l e . In some a r e a s t h e Bz i s c o n t i n u o u s , w h i l e i n o t h e r a r e a s e a c h B2 h o r i z o n i s o n l y a f ew i n c h e s t h i c k , w i t h s e v e r a l o c c u r r i n g i n t h e p r o f i l e , e a c h s e p a r a t e d by A2 h o r i z o n s . The r e a c t i o n o f t h e s o l u m r a n g e s from pH 5 . 7 t o n e u t r a l , a n d t h a t o f t h e C h o r i z o n f r o m n e u t r a l to c a l c a r e o u s . Topography: N early le v el to g e n t ly s l o p i n g a r e a s p l a i n s , v a l 1 e y t r a i n s , k a m e s , a n d low m o r a i n e s . Ora i n a g e : We l l d r a i n e d . Surface runoff T nternaT d ra in a g e is r a p id . V egetation: Tall is slow to v ery slow ; p r a i r i e g r a s s e s , w ith encroachment of bur oaks. Use: L argely under c u l t i v a t i o n s o y b e a n s in n o r t h e r n I n d i a n a . Dj s t r i b u t i o n : in outw ash Northern Indiana, to corn, wheat, a l f a l f a , and and p r o b a b l y s o u t h e r n M ic h ig an . Type L o c a t i o n : NW 1 / 4 o f NW 1 / 4 o f SE 1 / 4 . LaGrange County, I n d i a n a . S e c t i o n 8 , T37N, 8 1OE. , S e rie s Proposed: S o u r c e o f Name: OCR 6-29-55 LaGrange C ou n ty , V illage Indiana. in L a G r a n g e C o u n t y , Indiana. S oil Survey-Soil Conservation S erv ice U.S. D epartm ent o f A g r i c u l t u r e APPENDI X I I DRAFT SUBJECT TO REVIEW ESTABLISHED SERIES MENOMINEE SERIES The Me n o mi nee s e r i e s c o m p r i s e s w e l l a n d m o d e r a t e l y w e l l d r a i n e d s o i l s w i t h a n u p p e r P o d z o l s e q u u m , 18 t o 42 i n c h e s t h i c k , d e v e l o p ­ ed in s a n d s a n d loamy s a n d s , o v e r a l o w e r G r a y Wooded s e q u u m w h i c h e x t e n d s i n t o t h e l oam t o s i l t y c l a y l o a m . Me nominee s o i l s a r e t h e w e l l a n d m o d e r a t e l y w e l l d r a i n e d member o f t h e d r a i n a g e sequence which in c lu d e s th e i m p e r f e c t l y d r a i n e d Iosco and th e poorly and v ery p o o rly d ra in e d B revort s o i l s . The w e l l - d r a i n e d Mel 1t a s o i l s a r e d e v e l o p e d f r o m s i m i l a r t e x t u r e s w i t h c o m p a r a b l e k i n d s a n d s e q u e n c e o f h o r i z o n s in t h e u p p e r p a r t o f t h e p r o f i l e b u t t h e II h o r i z o n s o c c u r a t d e p t h s o f 42 t o 6 6 i n c h e s a n d r a n g e in t e x t u r e f r o m loam t o c l a y . The w e l l t o m o d e r a t e l y w e l l d r a i n e d M anistee s o i l s have s i m i l a r t e x t u r e s w ith com parable kinds and s e q u e n c e o f h o r i z o n s i n t h e u p p e r P o d z o l s e q u u m , b u t t h e II h o r i z o n s w h i c h o c c u r a t 18 t o h i i n c h e s r a n g e in t e x t u r e from clay to s i l t y c la y . The w e l l t o m o d e r a t e l y d r a i n e d D r y b u r g s o i l s a r e f i n e r - t e x t u r e d ( l o a m y s a n d t o f i n e s a n d y l oa m) i n t h e u p p e r P o d z o l s e q u u m w i t h c l a y t o s i l t y c l a y II h o r i z o n s a t 18 t o h i inches. The w e l l d r a i n e d P o d z o l R u b i c o n a n d K a l k a s k a s o i l s d e v e l o p e d on d e e p s a n d s a n d t h e II h o r i z o n s , i f p r e s e n t , o c c u r b e l ow 6 6 i n c h e s . The w e l l t o m o d e r a t e l y w e l l d r a i n e d G i l c h r i s t s o i l s h av e s i m i l a r t e x t u r e s w i t h c o m p a r a b le k i n d s and s e q u e n c e o f h o r i z o n s i n t h e u p p e r P o d z o l s e q u u m b u t II h o r i z o n w h i c h o c c u r a t 1 8 t o 42 i n c h e s a r e loamy s a n d t o s a n d y l oa m. Soil P ro file; Me n o mi n e e l oa my s a n d . Ap 0-9" LOAMY SAND; v e r y d a r k g r a y i s h br own (10YR 3 / 2 ) ; v e r y w e a k , m e d i u m, g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; medi um a c i d ; a b r u p t s m o o t h b o u n d a r y . 6 t o 12 i n c h e s t h i c k . B2ir 9-18" SAND; d a r k br own ( 7. 5YR 4 / 4 ) ; v e r y w e a k , m e d i u m, su b an g u lar blocky s t r u c t u r e ; very f r i a b l e to l o o s e ; medi um a c i d ; g r a d u a l w a v y b o u n d a r y . 6 t o 14 i n c h e s t h i c k . B3 18-32" SAND; y e l l o w i s h br own (10YR 5 / 4 ) ; s i n g l e g r a i n ( s t r u c t u r e l e s s ; l o o s e ; me d i u m t o s t r o n g l y a c i d ; c l e a r wavy b o u n d a r y . 5 to 20 inches th ic k . 246 247 A12 32-35" LOAMY SAND; p a l e b r o w n (10YR 6 / 3 ) ; w e a k , m e d i u m , su b a n g u lar blocky s t r u c t u r e ; very f r i a b l e ; me d i u m t o s t r o n g l y a c i d ; a b r u p t i r r e g u l a r boundary. 2 to 6 inches th ic k . I IB '2 35-45" CLAY LOAM; d a r k br own ( 7 . 5 Y R 4 / 4 ) ; t h i n c o a t i n g s o f A ' 2 on p e d f a c e s a n d i n c r a c k s in upper 2 to 4 inches; s tr o n g , m edium ,angular b l o c k y s t r u c t u r e f i r m ; me d i um t o s l i g h t l y a c i d ; a b r u p t wavy b o u n d a r y . 4 t o 20 i n c h e s thick. IIC CLAY LOAM; br own ( 7 . 5 Y R 5 / 4 ) ; w e a k , m e d i u m , a n g u la r blocky s t r u c t u r e ; firm ; c a lc a re o u s . 45"+ Ra n g e i n C h a r a c t e r i s t i c s : Loamy s a n d a n d s a n d t y p e s h a v e b e e n m a p p ed . U n d istu rb ed a r e a s have 1 to 3 inches o f very dark gray (10YR 3 / 1 ) A1 a n d 4 t o 10 i n c h e s o f p i n k i s h g r a y ( 7 . 5 Y R 6 / 2 j t o l i g h t b r o w n i s h g r a y (10YR 6 / 2 ) A2 h o r i z o n a b o v e t h e B 2 i r horizon. T h e A2 h o r i z o n i s a b s e n t o r o n l y 1 t o 2 i n c h e s t h i c k w h e r e t h e Ap h o r i z o n r e a c h e s t h e maximum t h i c k n e s s . The c o l o r o f t h e B 2 i r h o r i z o n r a n g e s t o d a r k r e d d i s h b r o wn (5YR 3 / 4 ) r e d d i s h b r own (5YR 4 / 3 - 4 / 4 ) , s t r o n g b r own ( 7 . 5 Y R 5 / 6 ) , o r d a r k y e l l o w i s h br o wn (10YR 4 / 4 ) . A t h i n k (1 t o 3 - i n c h ) d i s c o n t i n u o u s d a r k br own ( 7. 5YR 3 / 2 ) t o d a r k r e d d i s h br own (5YR 3 / 2 ) Bh h o r i z o n o c c u r s a b o v e t h e B 2 i r h o r i z o n i n some a r e a s . Chunks o f c e m e n te d ( o r t s t e i n ) m a t e r i a l o c c u r i n t h e B 2 i r h o r i z o n i n some a r e a s . The A ' 2 h o r i z o n i s a b s e n t o r o c c u r s o n l y a s t h i c k c o a t i n g o n p e d f a c e s i n t h e u p p e r p a r t o f t h e I I B ' 2 h o r i z o n i n s o me a r e a s . The t e x t u r e o f t h e I I B ' 2 h o r i z o n r a n g e s f r o m c l a y l oa m t o s i l t y c l a y loam, s a n d y c l a y loam, h ea v y loam, o r h ea vy s i l t loam. The t e x t u r e o f t h e II C h o r i z o n i s c l a y l o a m , s i l t y c l a y l o a m , l o a m, s i l t l o a m , s a n d y c l a y l o a m , o r h e a v y s a n d y l o a m . Colors and c o n s i s t e n c e r e f e r t o m o i s t c o n d i t i o n s . Topoqraphvi N early le v e l to s tr o n g ly si oping a r e a s t i l l p la i n s , outw ash p l a i n s , and l a k e p l a i n s . on m o r a i n e s D r a i n a g e and P e r m e a b i l i t y : Well and m o d e r a t e l y w e l l d r a i n e d . Runoff is v e ry stow to slow . P e r m e a b i l i t y is r a p i d in t h e Podzol s e q u u m ( s a n d ) a n d m o d e r a t e t o s l o w i n t h e G r a y Wooded s e q u u m (loam t o c l a y loam). V egetation: Mi x e d n o r t h e r n h a r d w o o d s a n d c o n i f e r s . Use: A c o n s i d e r a b l e p r o p o r t i o n is u se d f o r th e p r o d u c t i o n o f Hay, s m a l l g r a i n s , c o r n a n d p o t a t o e s . The r e m a i n d e r i s i d l e o r in s e c o n d g r o w t h f o r e s t . S o i l Ma na g e m e n t g r o u p : 4/2a D i s t r i b u t i o n : C e n t r a l n o r t h e r n p a r t o f t h e Lower P e n i n s u l a a n d th e Upper P e n i n s u l a o f M i c h i g a n a n d p r o b a b l y in W i s c o n s i n , TvDe L o c a t i o n : $ec. Osceola ITrrm, R7w. Series E sta b lish e d : S o u r c e o f Name: County, M i c h i q a n NE 1 / 4 o f NE 1 / 4 o f Me no mi n ee C o u n t y , M i c h i g a n , County 19 2 5 . in M ic h ig a n R e m a r k s : The Me no mi n ee s e r i e s h a s b e e n r e d e f i n e d t o r e q u i r e a P o d z o l s e q u u m i n s a n d o r loamy s a n d , o v e r l y i n g a Gr a y - Wo o d e d se quum i n l oa m t o s i l t y c l a y l o a m . S o i l s f o r m e r l y ma p p ed a s Me n o mi nee , t h a t l a c k t h e l o w e r G r a y Wooded s e q u u m , b u t h a v e c a l c a r e o u s loam t o s i l t y c l a y loam i m m e d i a t e l y b e lo w t h e Podzol s o l u m a r e now o u t s i d e o f t h e r a n g e o f t h e Me n o mi n e e s e r i e s . S o i l w i t h c o n t i n u o u s d a r k r e d d i s h brown (5YR 3 / 3 - 2 / 2 ) o r d a r k brown ( 7. 5YR 3 / 2 ) Bh h o r i z o n s , b u t w i t h t h e s o l a o t h e r w i s e s i m i l a r t o M e n o mi n e e , w i l l a l s o b e e x c l u d e d f r o m t h e Me n o mi n e e s e r i e s . OCR - 3 / 2 6 / 6 4 IPS-intro 8/25/64 Reviewed f o r ORDER: temporary use Spodosol SUBORDER: Orthod GREAT GROUP: N o r m o r t h o d N ational in s e r i e s SUBGROUP: FAMILY: C ooperative Soil Survey - U.S.A. file A l f i c Normorthod Sandy o v e r f i n e s i 1 iceous loamy, AP P E NDI X Ilf THE UNIVERSITY OF MICHIGAN COLLEGE O F ENGINEERING ANN d e p a rtm e n t o f m e t e o r o l o g y a n d ARBOR. MICHIGAN 4010-1 March l , 1969 o c e a n o g r a p h y 4 d F fie tl E A T T E N O . B L D G . »«EA COOC 3 1 3 Mr. Waleed A l i g i d l S e l l s S c ie n c e Departm ent M ichigan S ta t e U n iv e r s it y E ast L a n sin g , M ichigan 4 8 8 2 3 Dear Mr. Aligidl: Your l e t t e r o f December s t , s e n t t o th e U n iv e r s it y o f I l l i n o i s , was forw arded t o th e U n i v e r s it y o f M ich igan where I am now lo c a t e d , and th en in a d v e r t e n t ly f i l e d b e fo r e I p r e ­ pared an answ er. 3 1 F o llo w in g a re th e approxim ate e l e v a t i o n s , and my e s t im a t e s o f th e a g es o f v a r io u s la k e s t a g e s : E le v . Y ears B .P . Maumee I Maumee I I Mauii.ee I I I Arkona I Arkona I I Arkona I I I Y p s lla n t l (lo w s t a g e ) W h itt le s e y - Saginaw 695 Warren I Warren I I Wayne Warren I I I Grassmere Lundy F a r ly A lgonquin K lr fc fie ld A lgonquin 7 3 800 760 . 7 9 0 1 4 . 4 0 1 4 . 2 0 1 4 , 0 0 , )^ 0 0 0 710 700 13 800 1 3 ,6 0 0 693 1 8 690 682 660 675 6 4 3 . 4 0 0 1 3 .2 0 0 1 3 ,0 0 0 . 1 2 ,8 0 0 1 2 ,6 0 0 1 2 . 4 0 0 1 2 ,3 0 0 - • 12,200 12,100 1 2 ,0 0 0 0 620 605 1 1 ,9 0 0 1 1 ,8 0 0 560 - 605 - P le a s e n o te th a t th e o n ly firm d a te in th e l i s t i s years B.P. f o r th e b e g in n in g o f th e A lg o n q u in . A ll e a r l i e r d a te s are p lu s o r minus s e v e r a l hundred y e a r s . 1 1 , 8 0 0 I am e n c lo s in g a few t a b l e s , and a r e p r in t o f my m ost r e c e n t p ap er on th e s u b j e c t . S in c e r e ly y o u rs, *trv\ Tack L. Hough P r o f e s s o r o f Oceanography J L H /b b p E nc. 1 1 ,0 0 0