I 1 7 1 -1 1 ,8 7 6 IBRAHIM, A b d e l w a h i d , 1 9 3 3 THE APPLICATION OF THE GRAVITY METHOD TO MAPPING BEDROCK TOPOGRAPHY IN KALAMAZOO COUNTY, MICHIGAN. M ic h ig a n S t a t e G e o p h y sic s U n iv e rs ity , Ph.D., 1970 U niversity Microfilms, A XEROX C o m p an y , A nn Arbor, M ichigan THE APPLICATION OF THE GRAVITY METHOD TO MAPPING BEDROCK TOPOGRAPHY IN KALAMAZOO COUNTY, MICHIGAN by Abdelwahid Ibrahim A TH ESIS Subm itted to Michigan State U niversity in partial fulfillm ent o f the requirem ents for the d eg ree of DOCTOR OF PHILOSOPHY Departm ent o f Geology 1970 ABSTRACT The gravity method has been w idely used to d elineate buried bedrock va lley s in glaciated a r e a s . The method is based on mapping sp atial perturbations in the gravity field a sso c ia te d with bedrock topography which c a u se s horizontal va riation s in d en sity betw een the bedrock and the generally l e s s d e n se , overlyin g g la cial d r ift. It is d e sir a b le , how ever, in both ground w a te r , geom orphic., and engineering in v esti­ gations to map not only the buried bedrock v a lle y s , but to prepare a bedrock topography map from the gravity o b se r v a tio n s. A method of mapping bedrock topography using gravity m ea su rem en ts in conjunc­ tion with w ell log inform ation has been developed and su c c e ss fu lly applied to Kalamazoo County, M ichigan. Depth to bedrock and gravity observations at w ell s it e s a re used to ca lcu la te a regional gravity anomaly map which ex clu d es the e ffect o f bedrock above a datum . This map is subtracted from the Bouguer gravity anom aly v alu es to obtain a residual gravity anom aly map reflectin g p rim a rily bedrock topography. The residual g ravity a n o m a lies obtained by th is method show a sign ifica n tly im proved c o r re la tio n with bedrock topography over resid u a ls obtained by the conventional graphical and sta tistic a l m eth od s. The residual gravity a n o m a lies a re converted to bedrock elevation using the a ssu m ed d en sity co n tra st betw een the glacia l sed im en ts and the bedrock. The bedrock topography map of Kalamazoo County show s a prevailing w estw ard slop e with a su p erim p o sed , com plex bedrock channel s y s te m . The principal channels g e n era lly trend e a s t— w est or north-south. The map is used to d is c u s s the p reg la cia l and p e r i- glacial drainage and the ground w ater potential o f the County. ACKNOWLEDGEMENTS The author w ish e s to e x p r e s s h is sin c e r e appreciation to the following individuals and organizations: D r. W. J . Hinze o f the Departm ent of G eology, Michigan State U niversity for h is patient gu id an ce, advice and con stru ctive c r itic is m throughout th is study. D r. H. Bennett of the Department of G eology, Michigan State University for h is in te r e s t, su g g estio n s and helpful c r it ic is m . D r. C. E . Prouty and D r. H. B . S torehouse o f the Michigan State U niversity Department o f G eology for th e ir su g g estio n s and cr itic ism concern ing the g eo lo g ica l asp ect of the study. D r. M. M. M ille r , Chairman of the World Center for Explora­ tion for his su g g estio n s concerning the g la cia l a sp ect of the study. The City o f Kalamazoo Water Departm ent and the Upjohn Company of Kalamazoo, Michigan for financial support and providing the w ell logs needed for the study. TABLE OF CONTENTS Page i\ ACKNOWLEDGEMENTS LIST OF TABLES v LIST OF FIGURES vi LIST OF PLATES . vu CHAPTER I. INTRODUCTION 1 Purpose and Method C orrelative Investigations A rea of Study II. III. THE GEOLOGV OF KALAMAZOO COUNTY BEDROCK TOPOGRAPHY Introduction Origin of Buried Bedrock Channels Bedrock Topography in the Southern Peninsula o f Michigan Bedrock Channel D ep osits a s Ground Water A quifers IV. DATA ACQUISITION AND REDUCTION Introduction Field S u rvey Reduction of Field Data Latitude C orrection M ass C orrection F ree A ir C orrection Terrain C orrection S o u r ce s of E r ro r s and A ccuracy V. ROCK DENSITIES 1 4 6 9 13 13 14 17 20 22 22 23 24 25 25 26 27 27 30 Significance of D en sitie s F actors C ontrolling D e n sitie s Published D e n sitie s iU 30 30 32 Page CHAPTER Methods of D ensity Determ ination Introduction Laboratory P rocedures for M easuring D en sities Density P rofile Methods Variable D ensity Approach G eophysical— G eological Method VI. REGIONAL AND RESIDUALS Introduction Conventional Method of Isolation R esiduals Bedrock Topography Residual Bouguer Gravity Anomaly VII. DISCUSSION OF RESULTS Bouguer Gravity Anomaly Gravity R esiduals Bedrock Topography Residual Bouguer Gravity Anomaly Map Gravity R esiduals Obtained by Approximating the Regional by Polynom ial Bedrock Contour Map VIII. INTERPRETATION OF RESULTS Correlation of Bedrock and Surface Topography Relation Between Bedrock Channels and Surface Geology Reconstruction of the Drainage Pattern Before and During Glaciation IX. GROUND WATER POSSIBILITIES IN KALAMAZOO COUNTV, MICHIGAN Introduction Bedrock Channels in Kalamazoo County as Ground Water Aquifers X. CONCLUSIONS Applicability of the Gravity Method in Outlining Bedrock Topography Suggestions for Further Studies BIBLIOGRAPHY 35 35 36 36 39 42 52 52 52 64 76 76 78 78 80 82 86 86 88 88 92 92 97 101 101 102 104 LIST OF TAB LE S Page Table 1 2 3 4 5 Density of glacial sed im en ts near K indersley, Saskatchewan, Canada (after Hall and Hajnal, 1962) 35 Density of sedim ents near Two H ills, Alberta (after Lennox and C arlson , 1967) 35 Density values resulting from applying the geophysical-geologic method to all te st h oles in Kalamazoo County 45 Density values obtained by applying the geop h ysicalgeological method to te s t h oles located in a rea s covered with till deposits 45 D ensities of bedrock and glacial sed im en ts obtained by approximating the two dim ensional gtacial and bedrock m a s s e s by p o ly g o n s. 49 v LIST OF FIGURES Page F ig u r e 1 Area of study 2 Histogram s of sm a ll— sp ecim en butk d e n sitie s of sedim entary rocks (from Birch (1942'), by Grant and W e st(1965) 33 Polygon representation of glacia l and bedrock sedim ents 48 Relation between c r o s s profile resid u a ls (gR) and bedrock elevation (E) 56 Relation between Fifth degree polynomial resid u a ls (gR) and bedrock elevation (E) 62 Relation between Seventh degree polynom ial residuals (gR> and bedrock elevation (E) 63 Model illustrating the calcuations of geologic residual gravity anom aly 67 Errors in calcuating the th ick n ess of bedrock sedim ents above the datum using the infinite slab formula 72 Relation between geologic residual Bouguer gravity (gR) and bedrock elevation (E) 74 Salt content of ground w ater and bedrock topography 95 3 4 5 6 7 8 9 10 8 v’f LIST OF PLATES Surface Geology and Bedrock Channels in Kalamazoo County Gravity Stations and D rill Hole Locations Contour Map of the Bouguer G ravity Anomaly Bedrock Topography R esiduals Bouguer Gravity Anomaly Map Bedrock Topography Map of Kalamazoo County: Scale 1 inch = 1 m ile Bedrock Topography S cale 1 inch = 2 ,0 0 0 Feet Map of the Residual V alues from Fifth D egree Polynomial Approximation to the Bouguer Surface Map of the Residual V alues from the Seventh Degree Polynomial Approximation to the Bouguer Surface Surface Drainage and Bedrock Channels vn CHAPTER I INTRODUCTION Purpose and Method The sea rch for potable water is one of the o ld est endeavors of m an. Ancient civ iliz a tio n s thrived where am ple quantities of su rface w ater were availab le. The fir s t recorded use of ground w ater dates back more than five thousand y e a r s (T olm an, 1937). Ground w ater w as needed then, even a s it is today, to supplem ent su rface su p p lies of water for human consum ption and irrig a tio n . T h e r efo re , the art o f prospecting and developing ground w ater r e so u r c e s is a s old a s the e a r lie st civ iliza tio n known to m an. Today, the exploration and d evel­ opment o f ground w ater su p p lies has becom e an im portant and com plex s c ie n c e . During the la st se v e r a l decad es in d u stria liza tio n , w hile demand­ ing m ore w ater, has resulted in ex ten siv e pollution o f s u r fa c e , and to a certain extent, ground w a ter, through irresp o n sib le w aste d is­ posal p r a c tic e s. The in creasin g rate of su rface w ater pollution and the expanding use o f w ater have in crea sed the demand for the develop­ ment of new ground w ater r e s o u r c e s . T h erefo re, p resen t techniques of ground water prospecting m ust be rev ised and new m ethods p erfected . The application of geophysical techniques to ground w ater exp lora­ tion is a com paratively new field with co n sid era b le p oten tial. This branch of natural sc ie n c e is being u se d , not only in prosp ectin g for ground w ater a q u ife r s, but a ls o in th eir evaluation and develop m en t. A ccordingly, a s in a ll developing f ie ld s , the e ffe c tiv e n e s s o f the geo­ physical m ethods in solvin g d iv e r sifie d h y d ro -g eo lo g ic p rob lem s m ust be exam ined. This w ill eventually lead to the m odification of p resen t methods and the developm ent of new techniques for the a n a ly sis and interpretation of field data. In form erly glaciated a r e a s , g la cia l se d im e n ts a re often the only available sou rce for ground w ater because bedrock form ation s a r e either im perm eable or contain polluted or sa lin e w a te r . sedim ents are known for th eir ex tr em e h ete r o g en eity . G lacial Both la tera l and vertical v aria tio n s of th eir physical p r o p e r tie s a r e com m on. Glacial sed im en ts in bedrock ch a n n els, h o w ev er, have proven to be favorable s it e s for locating ground w ater a q u ife r s. this are a s follows: The rea son for 1) B edrock v a lle y s have a g r e a te r probability of containing thicker se c tio n s o f sand and gravel b eca u se o f the increased th ick n ess of g lacia l drift from the la te st glaciation; 2) Bedrock v a lle y s often a r e the loci o f p reserv ed c r buried outwash deposits from e a r lie r glaciation; 3) Outwash d ep o sits on bedrock highs are m ore lik ely to be eroded (H orberg, 1950). In m ost geologic situ a tio n s, the bedrock form ation s have higher d e n sitie s than the overly in g se d im e n ts. A s a r e s u lt, d e p r e s s io n s in the bedrock su rface produce low er gra v ity read in gs than th e se bedrock a r e a s , which are topographically high. T h is c o r r e la tio n betw een bed­ rock topography and g ravity ren d ers the method su ita b le for mapping bedrock topographic fea tu res p a rticu la rly in c a s e s of sig n ifica n t r e lie f on bedrock su rface or a w ell developed hydrom orphic p attern . B uried bedrock channels can be identified by the unique sinuou s pattern w hich they com m only display on a Bouguer gra v ity m ap. In few c a s e s , buried bedrock channels are d ifficu lt to d elin eate b eca u se g la c ia l d e p o sits have d e n sitie s equal to or slig h tly ex ceed in g that o f bedrock (M cG innis et a l, 1963). Lennox and Cc rlso n (1967) conducted lab oratory d en sity m easurem ents on a lim ited number o f sa m p le s of s i l t , sa n d sto n e, s e n d , shale and t i l l . They concluded that the d e n s itie s o f the fir s t four m aterials are e s s e n tia lly the s a m e . appreciably higher d e n s itie s . The t i l l , on the other hand, showed In th is c a s e , thickening o f the till a s encountered in buried channels could produce a high gra v ity trend along the v a lley a x is . Hall and Hajnel (1962) have found both high and low gravity a n om alies a sso c ia te d with the tren d s o f known buried c h a n n e ls. The gravity method has been applied in d elin ea tin g buried bedrock channels and defining the c r o s s se c tio n of th ese ch an n els through m odel studies at location s w here w ell control is a v a ila b le . The p r e se n t study aim s at expanding the sco p e of the gra v ity m ethod by developing a technique of com puting bedrock topography from gra v ity o b se r v a tio n s 4 and w ell c o n tr o l. A bedrock topography map is valu ab le, not only in ground w ater stu d ie s, but a ls o in engin eerin g and geom orphic investigations. The study w as ca r ried out in K alam azoo County, Michigan because o f the stron g dependence o f the a rea upon ground water s o u r c e s , and a ls o b ecau se of the a v a ila b ility o f am ple w ell data. C orrelative Investigations Kalamazoo County has p rev io u sly been stu d ied , p o ssib ly m ore than on ce, by regional gravity and m agnetic s tu d ie s . T hese investigations w ere ca rried out by oil com p an ies for the purpose of locating oil and gas field s in the buried P a leo zo ic b edrock. No major geophysical in v e stig a tio n s, how ever, have been p rev io u sly undertaken to study the ground w ater r e s o u r c e s o f the g la cia l sedim ents. The only geophysical stu d ies ca r ried out for the purpose of locating ground w ater aq u ifers w ere in the form o f s c a tte r e d , and rather lim ited r e s is tiv ity m easu rem en ts conducted by consulting firm s on behalf o f the City of Kalam azoo Water D epartm ent or local industry. The Department of Natural R e so u rc e s of the M ichigan G eological Survey, in cooperation with the United S ta te s G eological S u rv ey and the City of K alam azoo, r e le a se d Report Number 23 concerning the "Ground W ater Hydrology and G lacial G eology o f the Kalam azoo A rea." T his report is based on an in vestigation which sta rted in 5 1946 and dealt with the a v a ilab ility and quality o f ground w ater in the Kalamazoo area (D eutsch, V an lier, and G iroux, 1960). The investigation involved the c o llec tio n and com pilation o f data p er­ taining to the so u r c e , o c c u r re n c e , and ch em ica l quality o f ground w ater. The United S ta tes G eological S u rv ey , in addition, is con­ ducting a hydrological program in Kalamazoo County which is based 4 on well data, pumping t e s t s , and a d rillin g p rogram . The expected outcome of this study w ill be the delineation of a q u ife r s, com pilation of tra n sm issib ility co efficien t and aquifer th ic k n e ss contour m a p s. A report concerning the findings of th is investigation w ill be r e le a sed in the near future. The Michigan Highway C om m ission is conducting a sh allow co rin g program aim ed at c la ssify in g and delineating su rfa c e glacia l d ep o sits in Kalamazoo County. The purpose o f th is investigation is to locate sand and gravel d ep osits suitable for road construction General d escrip tio n s of the geology of the Southern Peninsula of Michigan including Kalamazoo County can be found in papers by Lane (1895), Leverett (1 912 , 1917) and L everett and T aylor (1915). Martin (1955) com piled an areal geology map o f the Southern Penin­ sula of Michigan and prepared a sp e c ia l report on the g la c ia l h isto ry of Kalamazoo County (M artin, 1957). Reports containing ground w ater data on the Kalamazoo a rea w ere also made by Lane (1899) and L everett (1 9 0 6 , a , b). 6 Area of Study The area covered by this investigation is Kalamazoo County, Michigan. Located in the southw estern corner of the Southern Peninsula (F ig . 1), Kalamazoo County lie s between latitudes 4 2 ° 05' N and 41° 25' N and longitudes 85° 25* and 8 5 ° 45* W. The County is divided into sixteen townships covering T 1S to T4S and R9w to R 12 W. The major river in Kalamazoo County is the K alam azoo. flows from east to w est in the eastern part of the County. It At the City of Kalamazoo it changes direction and flow s northward. There are sev era l sm a ll c r e e k s , the la rg est of which is Portage Creek. It joins the Kalamazoo R iver w here it changes direction and flows northward. There are num erous la k e s, m ostly inter­ connected, the largest of which is Gull Lake, located in the north­ eastern corner of the County. Most of the area is generally flat with a maximum r e lie f o f fifty feet. Surface r e lie f in the northwestern part of the County, however, is appreciably higher due to the Kalamazoo m o ra in es. The maximum elevation of the m oraines is about 1050 feet above sea le v e l, and the r e lie f is about 150 fe e t. The largest m unicipality is the City o f Kalamazoo which has a population of about 2 0 0 ,0 0 0 . Industry includes paper m anufacturing, pharmaceutic products, and transportation equipm ent. T hese industries make a c o n sid e r a b le demand upon the lo ca l ground w a ter so u rces. The su rfa ce w a te r s o f the County, e s p e c ia lly the K alam azoo R iver, have becom e polluted through w a ste d isp o sa l o f the paper companies and oth er in d u s tr ie s . source of usable w a te r . T h u s, ground w a ter i s the m ain I 8 K A L A M A Z O O COUNTY ... f .. \ ALAM O C O O fl R / OSHTEMO / r/ „ ■ftnrflAMAZO 5 t *»' t «• _ *' Clrr *f /-TTL *.• — * . KALAMAZOO .. .* ■* #• • *«*■• \ COMSTOCK CHARLESTON / TEX *i PORTAGE / / / P^AIRE RONDE \ SCHOOLCRAFT / FIGURE I AREA OF ST U D Y CHAPTER II THE GEOLOGY OF KALAMAZOO COUNTY Kalamazoo County Is com p letely covered with glacial sedim ents ranging in thickness from le s s than 50 to 650 fe e t. The th ick est section lie s to the w e st where the Kalamazoo m oraines o v erlie bed­ rock channels. Throughout the area the glacial sed im en ts are variable, ranging from w e ll-so r te d len ticu lar outwash d ep o sits to com pletely unsorted, and m ostly com pact t i l l . The area was subject to two periods o f P le isto cen e glaciation; IlUnoian, and W isconsinan which deposited the main body of glacial sedim ents. Whether the Nebraskan and Kansan glaciation w as active in Kalamazoo County is uncertain. D rilling log s reveal the presence of a so il profile which v ery often contains tr e e lo g s , brush ste m s, muck or peat b ed s. This s o il p rofile is not present e v e ry ­ w here, but it is found in a su fficien t number of p la c e s to e sta b lish the fact that the glacial sed im en ts in Kalamazoo County w ere deposited during m ore than one glacia l a g e . Older g lacial d ep osits a re m ore indurated and cem ented than the younger and may be separated from them by w ell developed so il p ro file s or outwash d e p o sits. 10 The W isconsinan drift sh e e t is the youngest and b e st p r e se r v ed of the P leisto cen e gla cial d e p o s its. Its m orain es have a v e r y d is ­ tinct pattern reflectin g the lobate nature o f the ic e s h e e t s . The pattern r e v ea ls three W isconsinan lob es which invaded the Southern Peninsula of M ichigan. the low lands. The c o u r se of each lobe w as con trolled by The dominant o n e, the Lake M ichigan lo b e , follow ed the Lake Michigan basin and p r esse d into Kalam azoo County in a southeastwardly d ir e c tio n . T his lobe w as r e sp o n sib le for the p resen t surface topography of m ost o f Kalam azoo County. It form ed a ll the m orainic rid ges excep t for the north eastern part o f the Tekonsha moraine which w as deposited by the Saginaw lobe (P la te 1). The retreat of Lake M ichigan lobe w a s not u niform . T here w ere at lea st four m ain in terv a ls during w hich the ic e front w as sta tio n a r y . This is evident from the a r e a l d istrib u tion o f the m ora in ic r id g e s . The Tekonsha m orain es w ere form ed during the fir s t and e a r lie s t halt of the Lake Michigan ice front. deposited the Battle C reek m o r a in e s. The second r e c e s s io n a l halt Part o f th is discontinuous system lie s in R o s s , P a v ilio n , and Brady T ow n sh ip s. The third halt form ed the m orainic b odies located in R ichlano, C ooper and Prarie Ronde T ow nships. The fourth, and perhaps the lo n g est s t i l l — stand of ic e , form ed the K alam azoo m o ra in es which a r e one o f the most highly developed m orainic r id g e s in the Southern P eninsula o f Michigan (M artin, 1957). T his one is com p osed of two w e ll-d e fin e d 11 ridges separated by a narrow , yet n ea rly continuous outwash apron. The width of each ridge v a r ie s between one and four m ile s . The Saginaw lobe followed the Saginaw Bay lowland and invaded Kalamazoo County from the n orth east. This ice produced the e a ste r n ­ most part of the Tekonsha m oraine and retrea ted fa ste r than the other two lo b e s. The third main lobe w as the E rie-H uron lo b e , which cam e in along the E rie—Huron lowland and did not affect the p resen t topog­ raphy in the County (M azola, 1962). B esid es the Kalamazoo and Tekonsha m o r a in e s, Kalam azoo County is covered with outwash d ep o sits and ground m o r a in e s . The southeastern corner is c h a ra cterized by drum lins and is d isse c te d by several sm all c r e e k s and unoccupied str e a m v a lle y s trending northeast-sou th w est. T h ese channels rela te to the Kankakee torren t which in early middle W isconsinan tim e drained a ll th ree ic e lob es in the area of southern M ichigan and northern Indiana (Z um berg, 1960). The bedrock in Kalam azoo County is im m ed iately o v erla in by a relatively continuous layer o f d en se p la stic blue c la y with a lm o st no grains larger than fine san d . T his d ep osit is g en era lly th ick er at locations of low bedrock topography and contians block s of Coldwater shale. It w as probably deposited by turbid ice-d arrm ed and s e m i- stagnant w ater. The P aleozoic bedrock form ation s underlying the g la c ia l d rift a re formed of two u n its. The o ld e s t, the C oldw ater sh a le o f M ississip p ia n 12 a g e f is the bedrock form ation in m o st of the County. The M arshall sandstone o v e r lie s the Coldwater sh ale in the northeastern co rn er of the County though it has not been w ell d elin eated . The Coldwater shale is light co lo r e d , green ish to bluish black, becom ing san d ier toward the top and gradually passin g upward into the M arshall sand­ stone. It o cca sio n a lly contains lim esto n e bands or le n s e s o f M arsh a ll- type sandstone. The sh ale is r e la tiv ely im perm eable and is not known to supply useable w ater in Kalamazoo County. The M arshall sandstone in quite fractured and perm eable and is used a s a ground w ater aquifer in Kalamazoo County and e lsew h ere in M ichigan. topography and followed m ajor bedrock v a lle y s . Broad and sh allow bedrock v a lley s w ere m ore e ffe c tiv e in con tro llin g the d ir e c tio n s o f ice movement than narrow er and deep er v a lle y s (C h a m erlin , 1888). Preglacial v a lley s trending in a lm o st the sa m e d ir e ctio n a s the ice movement w ere m ore effectiv e in the channeling flow than th ose trending at a n gles to it. The e ffe c tiv e n e s s of bedrock topography in controlling glacial m ovem ent a ls o depends on the th ick n ess o f the ice m a ss. Thick ice sh e e ts a re l e s s affected by bedrock topography than thin on es. A lso , th e o r etica lly ice m a s s e s o f m ore tem p erate g la c io - thermal character a re m ore m obile and th eir m ovem en ts subsequently more controlled by bedrock topography than ic e m a s s e s of m ore polar geophysical ch a r a c ter . Ice action g reatly m odified the p r e -p le isto c e n e bedrock landscape in the region of the study. D ifferen tial g la c ia l scou rin g affected some a reas m ore than o th e r s . Soft or jointed bedrock a r e a s a r e gouged by ice to a g re a ter d egree than hard unjointed r o c k s . A ls o , in periglacial conditions wedging activated by fr e ez in g o f w ater in exposed bedrock join ts can prom ote future g la c ia l plucking o r m a ss wastage along v a lley fla n k s. Preglacial v a lle y s undergo the m ost s e v e r e geom orphic m od ifica­ tion as a resu lt o f g la c ia l a ctio n . In a r e a s of continental gla cia tio n tributary v a lley s trending norm al to the ic e front a r e o v errid d en , truncated and often d estro y e d . Those p a ra lle l a r e gouged, w idened, 18 in te r io r . The bedrock Is m o stly s h a le , sa n d s to n e , and c a r b o n a te . T hese lith o lo g ies a r e folded and lo c a lly fa u lted . T h eir d efo rm a tio n was caused by region al s t r e s s e s , v e r tic a l co m p a ctio n o v e r buried h ills in the b a se m e n t, faulting o f P r e c a m b r ia n b a se m e n t and s t r a in s due to solu tion o f underlying w ea k er and m o re so lu b le b ed s (N ew co m b , 1933; C oh ee, 1965). Folding in the b ed rock fo r m a tio n s o c c u r s alon g axial tr e n d s, the m o st prom inent o f w hich sh o w s a p r e v a ilin g north— w e st-so u th ea st d ir e c tio n . The p r e g la c ia l d rainage p attern in the S o u th ern P e n in su la and surrounding a r e a s i s not fu lly u n d ersto o d . Two h y p o th e se s p rop o sed regarding p r e g la c ia l d rain age have been su m m a r iz e d by Fennem an (1938), S p en cer (1 8 9 1 ), and H orberg and A n d erso n (1 9 5 6 ). T hey suggest that the p re g la c ia l d ra in a g e in the G reat L akes w as ea stw a rd and em ptied into the S t . L aw rence R iv e r . In C o n tr a st, Grabau (1901) proposed a g en e r a l so u th w e ste r ly d rain ag e d isc h a r g in g into the M ississip p i probably by way o f the p r e g la c ia l T e a y s v a lle y . The fo rm er d rainage pattern im p lie s that s t r e a m s w e r e flow ing into the southward advancing ic e f r o n t . T h is would r e s u lt in dam ­ ming of drainage and the d evelo p m en t o f la r g e p e r ig la c ia l la k e s , with a llied c r o s s d rain age z o n e s and m any d ra in a g e r e v e r s a l s . Mazola (1962) indicated that the p r e s e n c e o f a d e ep ly b u r ie d , c le a n , pebble— free c la y in the g la c ia l d e p o s its o f th is a r e a is p o s s ib ly an evidence o f the d rain age b lo c k a g e . L e v e r e tt (1 8 9 9 ), A r e y (1 9 0 9 ), 19 and U dden, (1 9 0 0 ) s u g g e s t e d th at s i m i l a r c l a y s in Iowa r e p r e s e n t quiet w a te r d e p o s its fo r m ed a f t e r s u b m e r g e n c e o f the r e g io n , a v ie w which su p p o rts d a m m in g o f th e s t r e a m s . B a in (1 8 9 7 ) b e l i e v e s th a t th e se c la y s a r e c l o s e l y a s s o c ia t e d to l o e s s d e p o s it s and p r o b a b ly rela ted to it . A ld en and L eigh ton (1 9 1 9 ) and Kay (1 9 1 6 ) b e lie v e that th ese c la y s r e s u lte d fro m c h e m ic a l le a c h in g and w e a th e r in g o f Kansan and Illin o ia n t i l l s . D r illin g in K alam azoo C ounty r e v e a ls the p r e s e n c e o f an a lm o s t continuous la y e r o f b lu e c la y d ir e c t ly a b o v e th e b e d r o c k s u r f a c e . There is no e v id e n c e o f v a r v in g o r s t r a t if ic a t io n in t h is c l a y la y e r . H owever it c o n ta in s l e n s e s o f sand a n d /o r g r a v e l and in c lu d e s b lo c k s of bedrock m a t e r ia l. In s o m e b e d r o c k v a l l e y s , t h is c la y d e p o s it m a y reach a th ic k n e s s o f 50 f e e t o r m o r e . E v en in p la c e s w h e r e th e c la y is co m p a r a tiv e ly th ic k , a g ra d u a l ch a n g e o f c la y to t i l l h a s not b e e n o b se r v e d . T h is in fo r m a tio n , p lu s the fa c t that th e c la y la y e r is notably th ic k e r in b e d r o c k d e p r e s s i o n s , s u g g e s t s th at it m a y h ave been d ep o sited under sta g n a n t ic e c o n d itio n s due to g la c ia l d a m m in g or drainage and not due to le a c h in g o f o ld e r t i l l d e p o s i t s . T he c la y may a ls o be ou tw ash d e p o s it fo r m e d d u rin g a lo n g in te r v a l o f s t i l l stand in the in itia l p h a se o f W isc o n sin a n g la c ia t io n . In t h is c a s e the c la y m ay be e r o d e d r o c k flo u r p ro d u ced d u rin g th e e a r l y g la c ia l ad van ce. 20 Bedrock Channel D ep o sits a s Ground W ater A q u ifers As p reviou sly sta te d , many bedrock ch an n els in o th er a r e a s contain excep tion ally thick sand and g r a v e l d e p o sits w hich can be developed into ground w ater a q u ife r s. S o m e bedrock v a lle y s , how­ ev er, offer a better chance o f containing so rte d g la c ia l se d im e n ts than o th ers. G en era lly , the quality of g la c ia l se d im e n ts in a buried bedrock channel depends on the follow ing: 1. Age of g la cia l s e d im e n ts . O l d e r g la c ia l d e p o sits a r e m ore com pact and cem en ted than younger s e d im e n ts . 2. D irection o f flow in the channel r e la tiv e to ice a d v a n c e s. a. Bedrock ch an n els w hich slo p e in the sa m e d ir e ctio n a s the ic e advance se r v e d a s s lu ic e w a y s fo r m elt w a ter, in th is situ a tio n , the g la c ia l d e b r is tends to have been so rted resu ltin g in e x c e lle n t ground w ater a q u ifers (W ayne, 1956). The exten t o f so r tin g and quantity o f outw ash d e p o sits in th e se v a lle y s depend on the duration of the period during w hich the channel w as a ctiv e and the sed im en t load c a r r ie d by m e lt w ater (H o rb erg , 1945). b. When the d ir e ctio n o f str e a m flow w a s toward the ic e fron t, the str e a m channel b ecam e dam m ed and g la c ia l la k e s d ev e lo p e d . In th is situ a tio n the s tr e a m channel is m o stly fille d with c la y s i l t , and m ud, thus form ing a p o o r w a t e r b e a r in g m a t e r i a l ( M a z o la , M c G r a in , 1962; 1948; W a y n e , 1 9 5 6 ). P e r i g l a c i a l o r p r e g l a c i a l b e d r o c k c h a n n e l s , d e v e lo p e d p a r a lle l to th e i c e fr o n t w h ile th e i c e fr o n t w a s s t a t io n a r y , m a y r e m a in a s a c t i v e d r a in a g e c h a n n e ls fo r a lo n g t i m e . A c c o r d in g ly , t h e s e c h a n n e ls m a y c o n ta in a p p r e c ia b le t h i c k n e s s e s o f w e l l —s o r t e d o u t w a s h . 24 of the gravity read in gs a g reed to w ithin 0 .2 s c a le d iv is io n s (about 0 .0 2 m g a ls). The o b serv ed g ra v ity reading w a s obtained by a v e r ­ aging the co n siste n t r e a d in g s. The m eter drift w as e stim a te d by reoccu p in g a s e le c t e d b a se station every hour. In ad d ition , g r a v ity r ea d in g s at two p r e v io u sly occupied station s w ere repeated during e a c h hour to add e x tr a p r e ­ cision to the d rift c o r r e c tio n . A b a se sta tio n (at the in te r s e c tio n o f Texas D rive and 8th S tr e e t in K alam azoo County) and fo u rteen s u b bases w ere e sta b lish ed for the s u r v e y . Reduction of F ield Data The observed gravity r ea d in g s a r e not a b s o lu te , but r a th e r a r e related to an a r b itr a r ily c h o se n v a lu e . T h e se r e la tiv e rea d in g s must be co rrected for v a r io u s in flu en cin g fa c to r s w hich have no relation with su b su rfa ce g e o lo g y . The v a lu e s o f th e se c o r r e c t io n s can be accu ra tely ca lcu la ted and applied to the o b se r v e d r e a d in g . The correction s are: (1 ) latitude c o r r e c t io n , (2 ) f r e e — a ir c o r r e c ­ tion, (3) Bouguer or m a s s c o r r e c t io n , and (4 ) te r r a in c o r r e c tio n . The corrected g ravity rea d in g s a r e known a s the B ouguer g r a v ity anomaly which is c a lcu la ted by the fo llo w in g equation: Gb = Go + G f — G bc + Gt — G e where Gj-, is the B ouguer g r a v ity an om aly G0 is the o b serv ed g r a v ity reading c o r r e c te d fo r m e te r d rift 25 Ge *s the latitude co rrectio n is the m a ss co rrectio n Gf is the f r e e -a ir co rrectio n Gt is the terrain co rrectio n Latitude Correction The Earth's gravity field in c r e a se s from the equator to the p o le s . This increase is caused by a gradual d e c r e a s e of the E arth's radius and the centrifugal force which op p oses the E arth's gravitational field from the equator to the p o le s . The rate o f the gravity field increase is 1.307 sin 2 9 m gals/W ule, w here 0 is the latitude. The area under investigation lie s between latitu d es 4 2 ° 05' and 4 2 ° 2 5 'N . The corresponding rates of in c r e a se in the gravitational attraction are 1.3017 and 1.3002 m g a ls /m ile r e s p e c tiv e ly . The d ifferen ce between the two rates is v e ry s m a ll, and their average of 1.301 m gals/m ile or 0.0002 464 m g a ls/fo o t w as a ssu m ed for the en tire area. The gravity station s w ere placed on the M ichigan coordinate system established by the U. S . C oast and G eodetic S u rv ey . A base latitude was se le c te d at the southern border of Kalamazoo County and the latitudes of the sta tio n s w ere related to it. Mass Correction The m ass or Bouguer c o r re c tio n co m p en sa tes for the g rav ita ­ tional effect of the m a ss e x istin g between the ground su rfa ce and 26 the datum. The datum w as ch osen to be 700 feet above s e a le v e l which is the low est su rface elev a tio n in the County. The m a s s c o r ­ rection is computed from the equation: Gbc = 2 Xyodh' where V is the universal gravitational co n sta n t, /© is the overburden density and dhr is the d ifferen ce betw een the datum and sta tion e le v a ­ tion. A density of 2 . 15 g m /c c w as a ssu m ed for the overburden m aterial. The rationale behind th is s e le c tio n w ill be d isc u sse d in detail in the section concerning d en sity c a lc u la tio n s. Free-A ir C orrection The fr e e -a ir co rrectio n c o m p en sa tes for the e ffe c t on the o b served gravity readings of the variation o f su r fa c e elev a tio n at ob servatio n points. The rate of v e r tic a l g ra vity varia tion can be w ritten as: = -0 .0 9 4 0 6 - 0 .0 0 0 7 C*o 24> m g a l s / f t . ; w here 0 is the latitude and is the rate of v e r tic a l g ravity v a r ia tio n . The effect of latitude variation on >9 is sm a ll and can be n eglected ; 3h accordingly = 0 .0 9 4 0 6 A h'm gals; w here is the f r e e - a ir c o r r e c tio n and Ah is the d ifferen ce betw een sta tio n and datum e le v a tio n . r 27 Terrain C orrection in areas w here topography in the v ic in ity o f g r a v ity sta tio n s is reasonably flat, the ap p lication of the in fin ite sla b form u la to e s t i ­ mate the m ass c o r r e c tio n is a d eq u a te. H ow ever, in a r e a s w h ere the topographic r e lie f is g r e a t , lo c a l topography can introduce errors in the c a lcu la tio n s of th e se c o r r e c t io n s . In th e s e a r e a s the terrain correction i s needed to co m p en sa te fo r lo c a l topographic effects. The expected m axim um valu e for the te r r a in c o r r e c tio n is negligible because su rv ey ed road s w e r e s e le c te d to avoid rough topography. This value w a s e stim a te d not to e x c e e d 0 .0 2 m g a ls in the w estern part o f K alam azoo County w h ere the topography i s rather com plex. A s only v e r y few g r a v ity sta tio n s a r e ex p ected to have terrain e ffe c ts req u irin g th is c o r r e c t io n , the te r r a in correction is n e g le c ted . After applying the above d is c u s s e d c o r r e c tio n s to the o b se r v e d gravity read in gs, the r e su ltin g B ouguer g r a v ity v a lu e s w e r e co n ­ toured. P lates 3a and 3b sh ow the r e su ltin g con tou r m ap s fo r both the northern and sou th ern h a lf o f K alam azoo C ounty. Sources of E r r o r s and A cc u r a cy The accuracy o f reduced g r a v ity o b s e r v a tio n s d epends on the magnitude of e r r o r s introduced in s u r fa c e e le v a tio n , and in the 28 t gravity and latitude m e a su r e m en ts. A ccuracy is a ls o affected by the magnitude of the terrain effect which has been assu m ed to be negligible, and by any significant e r r o r in the assum ed d en sity for the glacial sedim ents form ing topography. To examine the accu racy of the gravity o b se r v a tio n s, th irteen gravity stations, each occupied tw ic e , w ere se le c te d so that the two gravity observations at each location corresp ond to differen t drift curves. The standard deviation for th ese repeated sta tio n s w as calculated to be 0 .0 2 3 m g a ls. Surface elevation e r r o r s introduce subsequent e r r o r s in the calculations of free air and m a ss c o r r e c tio n s . In a r e a s of detailed survey, surface elevation s w ere tied to bench m arks to within + 0.01 feet. Assuming no e r r o r in elev a tio n s of bench m a r k s, the above error in surface elevation introduces a subsequent e r r o r of 0.0066 mgals in the calculation of fr ee a ir and m a ss c o r r e c tio n s . In the reconnaissance part of the s u r v e y , su rfa ce e lev a tio n s a re accurate to + 0.1 of the contour interval of the United S ta te s Geolog­ ical Survey Topographic S h e e ts . sheets is either 10 or 20 fe e t. The contour interval in th e se T h er e fo re , the e le v a tio n s are con­ sidered accurate within to + 2 .0 fe e t, which co rresp o n d s to an e r r o r of + 0.132 m gals in the calcu la tio n s o f f r e e - a ir and m a s s - c o r r e c t io n s . Latitude m easurem ents w ere perform ed on a base map having a scale of 1:24,000. Station loca tio n s a re accu rate to +50 fe e t. The Factors Controlling D en sities Density m easurem ents on sam p les taken at different location s in a geologic formation often reveal that the density of individual form a­ tions varies significantly both la tera lly and v e r tic a lly . V ariations in physical properties such as m ineralogy, p o ro sity , com p osition , degree of saturation, textu re, and d egree of cem entation, a re a ll reflected in density variation s. In r e la tiv ely hom ogeneous form ation s, the range of density variations is usually sm a ll and an average density can be easily adopted. heterogeneous. But other form ations may be ex trem ely Thus, the use of an average density in gravity reduc­ tions can distort anom alies and lead to appreciable e r r o r s in inter­ pretation. The extent of formation h eterogen eity is e sp e c ia lly critical where the geologically interestin g gravity an om a lies a re of low amplitude, i. e . , generally le s s than a few m illig a ls . Glacial sedim ents are a typical exam ple of form ations which may exhibit a wide spectrum of d en sity. The pattern of this variation can be very complex and difficult to p red ict. A typical glacial deposit may be composed of a poorly so r te d , inhom ogeneous till which is made up of particles varying from a cla y to boulder s i z e . The boulders are usually randomly d isp ersed in a m atrix of a sm a lle r size particles. A s a result o f this conglom eration of different s i z e s , composition and textu res, the density o f till m aterial usually v a r ie s within a rather wide range in contrast to glacial outwash d ep osits w hich a r e m o r e s o r t e d and h o m o g e n e o u s . T h e r e f o r e , g la c ia l outw ash is e x p e c te d to s h o w a m o r e u n ifo r m d e n s i t y . O u tw a sh d e p o s its , h o w e v e r , a r e u s u a lly l e n t i c u l a r a n d s e l d o m h a v e g r e a t la te r a l or v e r t ic a l d i m e n s i o n s . A ls o , th e e f f e c t o f w a t e r ta b le d e p th c a n b e s i g n i f i c a n t on th e la tera l d e n s ity v a r ia t io n in g l a c i a l s e d i m e n t s . T he th ic k n e s s o f g la c ia l s e d im e n ts ly in g a b o v e w a t e r t a b le in K a la m a z o o C o u n ty v a r ie s b etw e e n z e r o and o n e h u n d red f e e t . S i n c e th e d e n s i t y o f porous s e d im e n t s i n c r e a s e s w ith th e d e g r e e o f w a t e r s a t u r a t i o n , la te r a l v a r ia tio n in t h i c k n e s s o f th e g l a c i a l s e d i m e n t a r y s e c t i o n above the w a te r ta b le i s e x p e c t e d t o c a u s e c o r r e s p o n d i n g l a t e r a l va ria tio n in d e n s it y . T h e o r d e r o f m a g n itu d e o f d e n s i t y v a r ia t io n a s a r e su lt o f s a t u r a t io n c a n b e r e a l i z e d b y n o tin g th a t d r y s a n d s with tw enty p e r c e n t p o r o s i t y upon s a t u r a t io n s h o w 0 . 2 g m / c c in c r e a se in d e n s it y . Published D e n s it ie s A r e v ie w o f lit e r a t u r e c o n c e r n in g d e s i t y r a n g e s o f d if f e r e n t r o c k types g iv e s a q u a n tita tiv e p e r s p e c t i v e t o th e p r e c e d in g d i s c u s s i o n (M anger, 1963; B ir c h , 1 9 4 2 ). F o r e x a m p l e , in F ig u r e 2 , w h ic h i s adapted fr o m B ir c h ( 1 9 4 2 ) by G r a n t an d W e s t ( 1 9 6 5 ) , i n d i c a t e s th a t d en sity o f s o il and a ll u v ia l m a t e r i a l r a n g e s f r o m sto n e s from 2 . 0 to 2 . 7 an d s h a l e s f r o m 1 .6 to 2 . 2 ; s a n d ­ 1 .9 0 to 2 . 8 g m / c c . T h is 33 1 03 1 1 \ --------- SOIL AMD A LLUV AL --------- SANDSTONE -------- SHALES ----------LIMESTONE! 1 i \ . \ I \ t 1 / 0.1 1 1 I__ 1 1 1 1 1 iL V \ • \ / Y / 1 1 / / f JX L •t \ I J \ v i 1 \ 1 \ i ,l 1 1 1 1 T “ K A 4-1 i \ / * ""T N V \ t \ r D EN SITY r _ V ' G /C M * FIGURE 2 HISTOGRAM OF SMALL SPECIMEN BULK DENSITIES OF VARIOUS KINDS OF SEDIMENTARY ROCKS, fFROM BIRCH (1942) 8Y GRANT AND WEST (I965)j 34 figure also suggests an extensive den sity overlap among a ll the sedimentary groups. Part of this overlap probably r e su lts from the fact that these rock d en sities a re plotted without regard to age or depth of burial. Glacial sedim ents exhibit a sim ila r d en sity d istrib u tion . A typical section of glacial sed im en ts may be form ed of outwash or till deposits, or both. The outwash or till se c tio n s are usually formed of thin layers or le n se s of intercalated sand, s i l t , c la y , gravel, or mixtures of each apparently arranged at rnadom . The density variation produced by such random distribution together with the possible density variation within the individual sed im en ts themselves produce a com plex la tera l density variation pattern in the glacial sedim ents. To illu str a te , Hall and Hajnal (1962) con­ ducted laboratory density m easurem en ts on d rill c o re sa m p les of glacial sediments obtained from two t e s t h o les located near Kindersley, Saskatchewan, Canada. The r e su lts of th eir m ea su re­ ments are shown in Table 1 . Table 2 shows a tabulation of d e n sitie s obtained from sa m p les collected from eighteen d rill c o r e s taken from te st d rillin g near Two Hills, Alberta, Canada, and in the neighborhood o f Saskatchew an River (Lennex and C arlson , 1967). The d e n sitie s of s i l t , sand, sandstone, and shale are nearly the s a m e . seems to be appreciable higher. The density o f till H ow ever, th ese d e n sitie s a re based 35 Material D ensity g m /c c clay 2 .0 till 2 .1 0 -2 .2 0 silt 1 *80 sand 1•90— 2 . 15 Table 1. Density of glacial sedim ents near K in d ersley, Saskatchew an, Canada (after Hall and Hajnal, 1962). Material silt Average Saturated D ensity g m /c c 1.99 N o. of S am p les 3 sandstone 2 .0 0 6 sand 2 .0 4 2 shale 2 .0 5 2 till 2 .2 5 5 Table 2. Density of Sedim ents near Two H ills , Alberta (after Lennox and C arlson , 1967) on a very limited number of sam p les and may not be rep resen tative Of the sedimentary rock types and glacia l d ep osits in the cited a r e a s , nor indeed in the area of the present con cern . Methods of Density Determination Introduction The reduction and quantitative interpretation o f gravity observations requires prior knowledge o f d e n sitie s o f various 36 subsurface form ation s. The r e lia b ility of gra v ity findings is largely dependent on the a cc u r a cy with w hich th e se d e n s itie s are determ ined. D e fin ite ly , in situ d en sity ca lc u la tio n s give the best re su lts b ecau se the m ea su rem en ts are c a r r ie d out on rock sam p les in their natural situ a tio n . Such m ethods a s borehole den sity loggin g, N ettleton 's p r o file , variab le d e n sity , together with a su ggested method p resen ted below and r eferred to a s the g r a v ity -g eo lo g ic m ethod, a r e e x a m p les of a vaila b le techniques for in situ rock d en sity c a lcu la tio n . Laboratory P ro ced u res for M easuring D e n sitie s Laboratory d en sity m ea su rem en ts c o n s is t o f ca lcu la tin g the volume and w eight o f rock sa m p le s obtained by an appropriate sampling technique. The procedure is not w ell su ited to uncon­ solidated rocks sin c e the a c q u isitio n , handling, and transportation of sam ples often disturb them and lead to ch an ges in th eir physical p r o p e r tie s. In so m e c a s e s , d en sity m ea su r em en ts a re preformed on sa m p le s taken at regular in terv a ls in a form ation. The resulting d e n sitie s a r e then used to ca lcu la te a w eighted average density o r a sm oothed d ep th -d en sity function. Commonly, the laboratory m ethods a re used to d eterm in e an average density for overburden from sa m p le s r e s tr ic te d to su r fa ce 37 outcrops of the form ation. H ow ever, in g la cia l and g la c io -flu v ia l material differential com p action , cem en tation and satu ration can lead to an in crea se of d en sity with depth (A thy, 1930). To obtain a representative d en sity o f overburden th is method req u ire s a considerable amount of sa m p lin g , a la rge number of m e a su r e m e n ts, and a sampling technique which m in im iz e s sam p le d istu rb a n ce. Density P rofile Methods Nettleton's p rofile method in v o lv es ca lcu latin g an overburden density from gravity rea d in g s. The e stim a ted d en sity r e p r e se n ts the density of m a terial constituting the topographic fe a tu r e . The procedure c o n s is ts o f taking c lo s e ly -s p a c e d g ra vity readings o ver a selected topographic fe a tu r e. Then the gravity read in gs a r e reduced using different p o ssib le d en sity v a lu es for the m a teria l forming topography. The a verag e d en sity o f the overburden is selected to be the one which g iv e s the le a s t c o r re la tio n betw een the Bouguer gravity and topography. The topographic fea tu res em ployed in N ettleton 's method should not be associated with a stru ctu ra l fe a tu re. In other w o r d s, the topographic feature used in th is com putation should not be one which is anom alous in its physical p r o p e r tie s . A lso , the r e lie f of the feature should be ap p recia b le s o that accu rate d en sity calculations can be a c h ie v e d . M o r eo v e r, the regional g ra vity 38 surface must be s im p le . The gravity sta tio n s should be located along a rela tiv ely straigh t line a c r o s s the fea tu r e, th eir e le v a ­ tions should be m easured a c c u r a te ly , and terra in c o r r e c tio n s perform ed. Although th is method d eterm in es the a verage d en sity o f the m aterial forming the topographic r e lie f , it d oes not give inform a­ tion a s to the density of rocks below the lev el o f the lo w e st point of topography ( Vaj k , 1956). Obviously, the Nettleton method req u ires much lab or and r e lie s on personal judgem ent to determ in e the d en sity em p ir­ ica lly . To circum vent the drawbacks of the p ro file m ethod, Siegert (1942) suggested a le a s t square method o f calcu latin g overburden d e n sitie s. He a ssu m ed that the o b serv ed gravity reading along a r e la tiv ely short segm en t o f the p rofile vary linearly with d ista n ce. This assu m ed lin ea r ity p er m its the determination of interpolated gravity and su rfa ce elev atio n at a station from the straigh t lin e s drawn through the ob served gravity and surface elevations o f two sta tio n s on e ith e r sid e of the d e sig ­ nated station. The sa m e p r o c e ss of interpolation is perform ed on each station of the p r o file . If g^ and h^ a re the d iffer en ce s between the interpolated and m easured v a lu es o*1 ob served g rav ity and elevation at station i then gj = - k hf w here k is the com bined free air and m ass fa cto r. The above m athem atical form ulation 9 39 demands that k is chosen so a s to make (g^ - k h^)^ a m inim um , isi where n is the number of gravity sta tion s along the p r o file . The least square procedure is applied to determ ine the value o f k which makes the gravity profile a s sm ooth a s p o ss ib le . T his value of k is readily then converted to the overburden d en sity . Variable Density Approach The application of an average den sity is ju stified in situ ation s where the expected e r r o r due to variab ility of d en sity is n egligib le when compared with the amplitude of the an om a lies of in te r e s t. In many applications, the anom alies under investigation have a low amplitude, thus e r r o r s introduced because of abnorm ally high density variations may be of su fficien t am plitude to sev en ty d isto rt or even mask the actual a n o m a lie s. The se a r c h for Niagaran reefs in Michigan by gravity provides an exam ple of such a situ a­ tion. Some of the m ost o il-p r o lific r e e fs do not exceed se v e r a l tens of feet in th ic k n e ss. of a few thousand fe e t. They are buried under an overburden The gravity a n o m alies a sso c ia te d with these reefs seldom exceed an am plitude of 0 .3 m g a ls. In th ese ca ses if the density of the m aterial form ing the topography v a r ie s 0,1 g m /cc from the se lec ted a v e r a g e, the actual an om alies w ill be distorted by 0 .1 3 m gals in a r e a s w here a su rfa ce topographic relief of 100 feet e x is t s . T his is an appreciable e r r o r com pared 40 to the exp ected a n o m a ly . The approach o f u sin g a v a r ia b le d e n s ity in the re d u ctio n o f gravity data h as not r e c e iv e d a s m uch a tte n tio n a s it r e a lly d eserv es. Only th ree p a p e r s d e a lin g w ith the s u b je c t a r e known to the author. Vajk (1 9 5 6 ) d e m o n str a te d th e n e c e s s it y o f u sin g a variable d e n sity under c e r ta in c o n d itio n s , h o w e v er he did not suggest a d efin ite p ro ced u re for c a lc u la tin g the v a r ia b le d e n s it y . Grant and E lsa h a rty (1 9 6 2 ) c a lc u la te d the v a r ia b le d e n s ity by m inim izing the c o r r e la t io n s b etw een s u r f a c e e le v a tio n and Bouguer g ra v ity r e s id u a ls w hich w e r e e x tr a c te d fr o m the B ou gu er gravity and e le v a tio n s u r f a c e s by a p p r o x im a tin g the r e g io n a l trends by p o ly n o m ia ls u sin g the m ethod o f le a s t s q u a r e s . D e n s ity resid u als at individual s ta tio n s w e r e c a lc u la te d to r e d u c e the correlation betw een s u r fa c e e le v a tio n and B ou gu er g r a v ity r e sid u a ls. T h ese d e n sity r e s id u a ls w e r e added to an a s s u m e d average d en sity to obtain the v a r ia b le d e n s i t i e s . This method o f c a lc u la tin g a v a r ia b le d e n s ity m a y p rod u ce erroneous d e n sity v a lu e s due to the a m b ig u ity o f the p oten tia l field used in the c a lc u la tio n . The e r r o r s in c a lc u la te d d e n s it ie s are expected to be r e la t iv e ly high w hen d e e p ly b u ried m a s s e s produce g ra v ity a n o m a lie s o f id e n tic a l w idth to chose produced by lateral d e n sity ch a n g e s in s u r f a c e s e d im e n t s . It is a ls o obvious that the g ra v ita tio n a l e f f e c t p roduced by la te r a l v a r ia tio n s 41 in density of su rface se d im e n ts, and the su rfa ce elevation residuals are determ ined by approxim ating the regional e ffe c ts by polynomials; a method which takes o b jectiv ity . Human judge­ ment and experience g reatly influence the outcom e o f the com pu­ tations . Merritt (1968) su ggested a method of calculating a variab le density of overburden m aterial by u tilizing ob served g rav ity and elevation readings. All sta tio n s located within a predeterm ined radius of a center station w ere used to calcu late the overburden density at the station . The coord in ates of a ll the sta tio n s in each station group w ere calculated rela tive to the co ord in ates o f the center station. The observed gravity v alu es of sta tio n s surround­ ing and including the cen ter station w ere approxim ated with a polynomial equation. The polynom ial is a fir s t d eg ree function of the station elev a tio n , and a f ir s t , th ird , or fifth d eg ree function of the station co o rd in a tes. degree polynomial equation is For e x a m p le, the fir st e x p r e sse d as: gp = ao f a i X xi + a2 S ^ i “ a 3 £ hi where gp is the predicted observed g ra v ity , is the polynom ial c o e ffic ie n t. Xj and y^ relative station co o rd in a tes, and hi is the station elevation with referen ce to the datum . The function g p i s c h o s e n s u c h th a t I t g Q - 9 p ]^ i s a m in im u m , w h e r e gQ is the m easured ob serv ed g r a v ity . The le a s t square c o e ffic ie n t associated with the eleva tion te r m is u tilized to c a lc u la te the overburden d en sity at the c e n te r s ta tio n . The d e n s itie s obtained by applying this method g r e a tly depend on the grid radius em p lo y ed . If a unique den sity pattern is to be c h o se n , a m ethod m ust be d e v ise d to determ ine the optimum grid ra d iu s. G eophysical-G eological Method The method p resen ted here for ca lcu la tin g rock d e n s itie s is sim ila r to the approach su g g e ste d by Legge (1 9 4 4 ). He noted that the Bouguer g ravity anom aly can be r ep resen ted by where G| is the Bouguer gra v ity anom aly at sta tio n i aj£ is the polynom ial c o e ffic ie n t Xj and y^ a re the x and y co o rd in a te s o f sta tio n i. The Bouguer gravity anom aly a ls o can b e w ritten a s follow s: 9B i = 9i + k ht where t hi is th e d iff e r e n c e b e tw e e n th e s t a tio n e'.ev a tio n and datum 9B i i s th e B o u g u e r g r a v ity a n o m a ly k i s th e c o m b in e d m a s s and f r e e - a i r fa c to r g i i s th e la titu d e c o r r e c t e d o b s e r v e d g r a v it y . 43 The least square principle dem ands that: N , ^ [(g. + khi) i= 1 n j = O . g x (J ] m /= = a m inim um . 0 Legge's method is m odified h ere s o that the a vailab le g eo lo g ic information could be utilized a s additional control in ca lcu latin g an average density for both the g la cia l se d im e n ts and b edrock. The geologic information c o n s is ts of the th ic k n e ss e s o f gla cial and bedrock sedim ents at 256 te s t hole lo ca tio n s a ssu m in g a datum of 300 feet above sea le v e l. For each w ell lo ca tio n , a ssu m e that is the thickness of gla cial se d im e n ts, w hile r e p r e se n ts the thickness of bedrock m aterial above the ch osen datum . Let us assume, a lso , that the Bouguer g ra vity anom aly can be w ritten as: n m where is the Bouguer gravity anom aly at t e s t hole i is a polynom ial c o e ffic ien t and y. a re the location coord in a tes o f t e s t hole i . * 4 The mass or Bouguer co rre ctio n which should be added to the free-air anomaly to obtain the Bouguer gravity anom aly can be written as: K f^ h +^ H ) where K = constant P \ and /°2 are the d e n sitie s o f g la cia l and bedrock s e d im e n ts, re s p e c tiv e ly . 44 A ccordingly, we can w r ite 9Bi = 9o1 ' K (n ^ + /*»> Hi) where gQ| is the f r e e - a ir anom aly at t e s t hole i . The le a s t square principle dem ands that: z [ goi - K ( ^ h t + /*> Ht ) - 2 $ xi 'A ) = a m inim um rO where N rep resen ts the total number o f t e s t h o le s . T h is equation is a fir st d eg ree function o f the th ic k n e ss o f the g la c ia l and bedrock sed im en ts above the datum . D ividing each te r m o f the equation by K, the le a s t sq u are c o e ffic ie n t o f hj and the glacial and bedrock a v era g e d e n s itie s d ir e c t ly . y ie ld D en sity values w ere computed for up to fourth d e g r e e function o f the station co o rd in a tes. The elevation datum w as ch o sen to be the lo w e st known bedrock elev a tio n . F r e e - a ir a n o m a lie s at t e s t h o le s w here direct gravity o b serv a tio n s w ere not made w ere ca lcu la ted by interpolation from a p r e v io u sly com p iled Bouguer g ra v ity contour map using an arbitra. ily c h o s e n d e n sity o f 2 .1 5 g m / c c . This method w as applied to a ll e x istin g te s t h o le s which reached or penetrated the bedrock su r fa c e and the r e s u lts a r e shown in Table 3 . th is table sh ow s the d e n s itie s o f g la c ia l and bedrock sedim ents corresp on d in g to a reg io n a l trend r e p r e se n ta ­ tion of up to the fourth d eg ree p o ly n o m ia l. A lso show n a r e the 45 su m s o f th e s q u a r e d r e s i d u a l s . 1 st 4 th 2n d 3rd 1 .9 0 1 .9 5 2 . 15 2 .0 9 /°2 g m / c c ( b e d r o c k s e d i m e n t s ) 2 . 0 8 1 .9 5 2 .4 3 2 .3 0 248 156 130 D e g r e e o f P o ly n o m ia l /° 1 g m /c c ( g l a c i a l s e d i m e n t s ) Sum o f s q u a r e d r e s i d u a l s Table 3 . 435 D e n s it y v a l u e s r e s u l t i n g f r o m a p p ly in g th e g e o p h y s i c a l g e o l o g i c a l m e th o d to a l l t e s t h o l e s in K a la m a z o o C o u n t y . It i s a p p a r e n t f r o m T a b le 3 th a t f a i r l y r e a s o n a b l e d e n s i t y v a lu e s w e r e o b ta in e d b y u s in g a t h ir d d e g r e e f u n c t io n o f th e x and y c o o r d i n a t e s . T h e fo u r th d e g r e e fu n c t io n r e p r e s e n t a t i o n r e su lte d in a n a b n o r m a ll y lo w b e d r o c k d e n s i t y w h i le t h e s u m o f the r e s id u a ls i s th e l o w e s t . T a b le 4 s h o w s th a t th e r e s u l t s w h ic h w e r e o b t a in e d w h e n c a lc u la tio n s w e r e s t r i c t e d to 2 5 t e s t h o l e s c h o s e n in a r e a s c o v e r e d w ith t i l l ty p e g l a c i a l s e d i m e n t s . M ost o f th e s e w e lls a r e lo c a te d in th e K a la m a z o o M o r a i n e . D e g r e e o f P o ly n o m ia l 1 st 2n d 3rd 4 th 2 .4 4 2 . 16 1 .9 5 2 . 10 g m /c c (b e d r o c k s e d im e n t s ) 2 .9 5 2 .2 9 1 .9 8 2 .0 8 0 .2 6 0 .0 6 0 .0 2 A*| g m / c c ( g l a c i a l s e d i m e n t s ) Sum s o f sq u a red r e s id u a ls Table 4 . 0 .5 6 D e n s it y v a l u e s o b t a in e d b y a p p ly in g th e g e o p h y s i c a l — g e o l o g i c a l m e th o d t o t e s t h o l e s l o c a t e d in a r e a s c o v e r e d w it h t i l l d e p o s i t s . The first d egree r e p r ese n ta tio n in x and y o f the B ouguer gravity produced d e n sity e s t im a t e s w hich ap p ear to be in b e st agreement with v a lu e s an ticip ated from p r e v io u s s t u d ie s . e v e r, How­ the sum o f the sq u ared r e s id u a ls is la r g e r than that obtained from the higher d eg ree e q u a tio n s. To fu rth er in v e stia g e the extent of density dependence on the type o f g la c ia l se d im e n t, Kalamazoo County w as divided into s e v e r a l o verlap p in g a r e a s depending on the nature o f s u r fa c e g la c ia l d e p o s it s . The a r e a s were also delineated to in su re that enough r e lie f on the b ed rock surface existed within ea ch a r e a (m in im u m o f 50 fe e t) to a llo w a reliable estim a te o f d e n s it ie s . T he r e s u l t s , h o w e v e r , did not show a coherent rela tio n sh ip betw een the d e n s itie s obtained and the type of glacial d e p o sit. The failure of the m ethod m ay be accou n ted fo r by the lim ite d data and the interpolation p r o c e s s em p loy ed to obtain g r a v ity values at test hole lo ca tio n s w here d ir e c t g r a v ity o b se r v a tio n s were not availab le. A ls o , the p olyn om ial r e p r e s e n ta tio n o f the Bouguer gravity anom aly m ay not e lim in a te the r e g io n a l e f f e c t s quantitatively. The assumption that K-j (^ ih | +Z32 ^ i) r e p r e s e n t the g r a v ita ­ tional effect of both the bedrock and g la c ia l s e d im e n ts ab ove the (latum implies that topography o f the ground and b ed ro ck s u r fa c e s are sufficiently horizontal that g la c ia l and b ed rock s e d im e n ts 47 above the d a tu m c a n b e r e p r e s e n t e d b y in f in it e s l a b s . H ow ever, in c a s e s w h e r e th e b e d r o c k and s u r f a c e to p o g r a p h y e x h ib it c o n ­ sid era b le r e l i e f th e in f in it e s l a b a s s u m p t io n m a y le a d to e r r o n e o u s r e s u lts . In t h e s e s i t u a t i o n s , a n a l t e r n a t i v e p r o c e d u r e i s s u g g e s t e d based on a m e th o d d e v is e d by T a lw a n i, e t a l ( 1 9 5 9 ) f o r th e c a l c u l a ­ tion o f the g r a v it a t io n a l e f f e c t o f i r r e g u l a r tw o d im e n s i o n a l b o d i e s . The c r o s s s e c t i o n o f th e d r if t and b e d r o c k l a y e r s a r e a p p r o x im a t e d by p o ly g o n s a s s h o w n in F ig u r e 3 . T h e c o m b in e d g r a v it a t io n a l e ffe c t o f th e g l a c i a l a n d b e d r o c k m a t e r i a l a b o v e th e d a tu m c a n b e w ritten a s; f , ( X , Z )/® ! + f2 ( X , Z ) ^ w here f^ ( X , Z ) and fg ( X , Z ) a r e th e g r a v it a t io n a l e f f e c t s o f g l a c i a l and b e d r o c k l a y e r s r e s p e c t i v e l y a s s u m i n g a d e n s i t y o f 1 .O g m / c c . I Z p+ ! They ca n be e x p r e s s e d a s : f ( X ,Z ) = 2 ( a p +bp p = i * - w h e re ap = XP +1 ~ *jp Zp+1 — Zp bp = Xp Z p + i Zp + ) _ X p +1 Z p Zp In t h e s e e q u a t io n s ( F i g u r e 3 ) p r * e p r e se n ts th e p o ly g o n s i d e n u m b e r, X and Z a r e t h e c o o r d i n a t e s o f p o ly g o n c o r n e r s . su m m a tio n i s c a r r i e d o v e r th e [ s i d e s o f t h e P o ly g o n . The A c c o r d in g ly , the le a s t s q u a r e p r in c ip l e d e m a n d s that: 1= N > i * 1 . tgoi-Lfi (x,z) n m + f2 cx.z)^] 21 21 ajk j= o i k 2 yi 1 = k=o a m in im u m w h e r e g 0 ^ i s th e f r e e —a i r g r a v it y a n o m a ly a t w e l l 48 ■IDBQClt SEDIMENTS ______________ FIGURE 3 _Otp»*p)___ __________ POLYGON REPRESENTATION OF AND BEDROCK SEDIMENTS DATUM____ GLACIAL 49 number i and other sym b ols are a s defined a b o v e . The ch oice o f a density of unity for the d en sity o f both the g la cia l and bedrock sediments in calculating f-, (X ,Z ) and f2 (X ,Z ) m akes th eir le a st square coefficients equal the d en sity o f the g la cia l and bedrock sedim ents. This modified approach has been applied to profile P shown in Plate 2a which is esta b lish ed by six w e lls . The profile is located in Com stock and Kalamazoo Townships w here the su r fa c e sediments are m ostly outwash g la cia l d e p o s its . Table 5 show s the densities calculated by fitting p olynom ials of up to the fourth degree to the Bouguer gravity an om ly. /° 1 Degree of polynomial 1st 2nd 3rd 4th gm /cc (glacial sed im en ts) 1.80 1 .9 0 2 .2 7 1 .43 g m /cc (bedrock sed im en ts) 1 .7 0 2 . 16 2 .6 0 1 .76 1 .9 4 0 .9 5 0 .5 5 Sum of squares of resid u als Table 5 . 1 0 .50 D en sities of bedrock and g la cia l se d im e n ts obtained by approximating the two d im ensional g la cia l and bedrock m a sse s by polygons. The third degree polynom ial is shown to yield the b e st d en sity values. It is a ls o c le a r that the fourth d eg ree polynom ial, w hile showing the sm a lle st su m s o f the square of the r e s id u a ls , does not yield r e a listic d e n s itie s . Attempting to a ssig n an av erage den sity to the g la cia l and bedrock sedim ents using the above liste d r e su lts ap p ears to be 50 a risky v en tu re. The sum o f the sq u a re s o f the r esid u a ls cannot be used a s c r ite r io n for se le c tin g the m ost suitable equation to represent the regional e ffe c t. The d en sity v a lu es corresponding to the sm a lle st sum o f the sq u a res o f the re sid u a ls in m ost c a s e s do not fall within the known range of d en sity va ria tio n . A cco rd in gly, a reasonable average den sity w as se le c te d for the g la cia l and bed­ rock m a te r ia ls, based on published d ata. Unconsolidated san d , gravel, and cla y d ep o sits u su ally have a d en sity ranging between 1.9 and 2 .1 g m /c c depending on com p action , cem en tation and the degree of satu ratio n . T ill m a te r ia ls , on the other hand, have generally higher d e n sitie s which vary betw een 2 .1 to 2 .3 g m /c c . An average d en sity of 2 .1 5 g m /c c w as assu m ed for the g la cia l sedim ents b ecau se se d im e n ts could be till or outwash type d ep o sits or a combination of both. T his value la y s m idway between the normal density o f the till m ateria l and that of sa n d , g r a v e l, and clay d e p o sits. T his d en sity value a ls o w as determ ined by K lasner (1963) using N ettleton 's p rofile method in the New Haven, M ichigan area which is im m ed iately to the w e st of Kalam azoo County. The use o f two sep a rate d en sity valu es in the reduction o f g ravity data depending on whether we are dealing with a r e a s co v ered with till or outwash d ep o sits appears v er y ap p ealin g. H ow ever, g la cia l deposits often change nature at d ep th s, and u n le ss proven oth er­ w is e , the use o f an av era ge d en sity s e e m s to be s a f e s t . The density o f the C oldw ater sh a le w a s a ssu m e d to be 2 .5 5 g m / c c . This value w as obtained by lab oratory m e a su r e m e n ts at the D epart­ ment o f Geology o f M ichigan S ta te U n iv e r sity and a p p e a r s to be a reasonable e s t im a t e . CHAPTER VI REGIONAL AND RESIDUALS Introduction One of the m ost unfortunate facts about geop h ysical m ethods of exploration is that the m ea su rem en ts a re not v e r y s e le c tiv e in nature. Consequently they portray not only the d istribution and physical c h a r a c te r istic s o f fea tu res of in te r e s t, but a ls o anom alous bodies creating m easu reab le e ffe c ts at the point o f m ea su rem en t. Surface inhom ogeneities and random reading e r r o r s often add to the com plexity o f the situ a tio n . The ex tra ctio n of the anom aly of interest from th is com plex sp ectru m o f overlapping e ffe c ts i s , therefore, a c r itic a l and c e rta in ly frustrating task en tru sted to the geo p h y sicist. Much of th is fru stration has been laid upon the ambiguity inherent in the m athem atical rep resen tation of the potential fie ld . T his fact hoc been pointed out s e v e r a l tim e s in literature (S k e e ls , 1947; N ettleton , 1954). Conventional Methods of Isolation R esiduals The developm ent of techniques for extractin g resid u al g ravity effects from the total e ffe c ts has been the su b ject of in ten sive study for the la st s e v e r a l d e c a d e s. S e v e r a l m ethods have been su g g ested 52 fo r this purpose. In th is connection, two com p lem en tary te r m s have been introduced in literatu re; the "regional" and " resid u al" . The "regional" or trend (G rant, 1954) is defined a s the Bouguer gravity value which would have been obtained had the a n o m a lies of interest been a b sen t. The a n o m a lies of in te r e st a r e ca lled "residuals" and are obtained by subtracting the regional from the Bouguer gravity. T h e re fo re , depending on what we define a s residual, numerous regional valu es can be obtained, and v ic e v e r s a . The term "regional" by it s e lf has no m eaning u n le ss the exp ected anomalies are co m p letely defined. From the p ractical point of v ie w , the regional is often recogn ized as those smooth broad v aria tion s which have low cu rv a tu r e , su g­ gesting deep-seated d istu r b a n c e s. A d m itted ly, th is definition o f the regional could be m isle a d in g . The e a r lie st method of regional elim in a tion w as by contour o r profile sm oothing. The ju stifica tio n of th is procedure is that the smooth variations a re attributed to anom alous m a s s e s which are considered to be too deep o r broad to be of in te r e st for ex p lo ra tio n . This is the m ost em p irica l approach o f defining the r e g io n a l. T his method may be useful in p articu lar c a s e s when the ''egional is sim p le and has a uniform gradient. H ow ever, in a r e a s w here the regional is complex, the method b eco m es v e r y d ifficu lt to apply (N ettleto n , 54 A m ore refined v e r sio n o f the above m ethod is often ca lle d " c r o s s profiling” . T his in v olves plotting g ra v ity p r o file s in a netw ork of intersecting lin e s . The sp a cin g o f th e se lin e s and th e ir orien tation depends on the d e g ree of co m p lex ity and trend of the r e g io n a l. The advantage of the c r o s s p ro filin g m ethod is that the region al v a lu e s at each point o f in te r se c tio n have to be the sa m e fo r the two in te r ­ secting p r o file s by adjusting and m odifying the region al c u r v e s . This method is s t ill e m p ir ic a l and can lead to e r r o n e o u s r e s u lt s . It is sim ila r to the method of d ir e c t contour o r p ro file sm oothing except that the c r o s s p rofilin g m ethod is done along two s e t s of p ro­ f ile s . This ex tra d im en sio n m ay im prove the a c c u r a c y o f e stim a tin g the region al, e s p e c ia lly in c a s e s w h ere the region al is ra th er co m ­ plicated . To evaluate c r o s s p rofilin g a s a method o f elim in a tin g the regional gravity trend and producing g r a v ity r e sid u a ls in d ica tiv e o f bedrock topography, the m ethod w as applied to the B ouguer g ra v ity map of Kalamazoo County ( P la t e s 3 a , 3 b ). One s e t o f p a r a lle l pro­ files w as esta b lish e d in the n o r th e a st-so u th w e st d ir e c tio n p a r a lle l to the general Bouguer g ra v ity g ra d ien t. The seco n d s e t o f p a r a lle l profiles w as taken norm al to the f i r s t , w ith the sp a cin g betw een lines estab lish ed at about th re e m ile s in both s e t of lin e s . A fter the cro ss profile rou tin es w ere c o m p le te d , the resid u a l g r a v ity v a lu e s at 39 randomly ch o sen te s t h o le s w e r e plotted v e r s u s bedrock elevation (Figure 4 ). The s e le c tio n o f the 39 te s t h oles w as per­ formed by drawing at random , ten percen t of the te s t h o les of each township with a minimum o f two h oles from each Tow nship. Figure 4 shows that the sc a tte r of points on eith e r sid e of the le a st square line is appreciable. A value of 0 .2 1 w as obtained for the co r re la tio n coefficient, resulting in a co effic ie n t o f determ ination of 0 .0 4 indi­ cating that only 4 percent of the ob served variation s o f the g ra vity residuals obtained by c r o s s profiling is attributed to bedrock topog­ raphy. A test of sig n ifica n ce at the 5% and 1% le v e ls in d icates that the above correlation c o e ffic ie n t d o es not d iffer from z e r o . The points in Figure 4 which a r e en closed in sq u a r e s rep resen t m axim um negative deviation from the le a s t square lin e s . M ost o f th e se points correspond to te s t h oles located o v er v ery prom inent, broad, r e la ­ tively low Bouguer gravity a n o m a lies which are caused by deep seated m ass d istrib u tio n s. O bviously, the c r o s s p ro file method did not remove these an o m alies co m p letely and the r e sid u a ls w ere accordingly low er than ex p ected . S im ila r ly , the c ir c le d points of Figure 4 show anom alously higher v a lu e s o f r e s id u a ls . T hese points correspond to te s t h oles located o v er aprom inent broad gravity high which was not co m p letely elim inated a s a regional e f fe c t . A cco rd - ingly, m ost o f the sc a tte r of points in F igure 4 in d icates that the cro ss profile method can produce d istorted g ravity r e sid u a ls in terms of this a n a ly s is . To produce m eaningful r e sid u a ls by applying 56 1.0 oo 0.0 -to B.0 RESNMJAL IN MOALS -to SRAVfTY -4 0 •0 0 TOO •00 BEDROCK ELEVATION IN FEET ABOVE SEA LEVEL 500 FIBURE 4 — RELATION BETWEEN CROBB PROFILE RESIDUALS C p ,) AND BEDROCK ELEVATION ( E ) the cross profile m ethod, the in terp reter m ust be fa m ilia r with the geology of the a r e a . A lso , he should know the approxim ate amplitude, width and shape of gravity a n o m a lies which are to be defined as r e sid u a ls. All the methods o f contour or p rofile sm oothing depend on the experience and judgement of the in te r p r e te r . In e x tr em ely co m p li­ cated situations, different in terp reters might a rriv e at totally different regional m aps. The apparent inadequacy o f the sm oothing technique has led various workers to the other approaches for regional evaluation. These techinques w ere designed in such a way that the in ter p r e te r's judgement is rem oved, as much a s p o s s ib le , from affectin g the outcome of the regional ca lcu la tio n s. Griffin (1949) su ggested defining the regional a s the weighted mean o f the ob served v a lu es at a number of points in the surrounding a r e a . Using cy lin d rica l coordinates he defined the regional according to the following equation: G- where G is the regional and g ( r ,9 ) is a gravity value at a point on a circle of radius r centered at the data point. that this approach elim in ates human b ia s. He pointed out P e te r s (1949) and Elkins (1951) indicated that the residual obtained by applying th is rc^thod could be equivalent to the second d e r iv a tiv e . N ettleton (1954), 58 Swartz (1954) Dean (1959), and Ray and Jain (1961) indicated that the approach leads to different r e su lts depending on the grid spacing and the formula u sed . It is apparent that human judgem ent is not completely elim inated because the ch oice of the grid configuration and dimension is not based on any th eo retica l co n sid eration . In addition to the sm oothing and griding m ethods of calculating the regional, a group of analytical methods has been introduced in the geophysical litera tu re. T hese methods commanded a great deal of popularity in recent y e a r s . The polynom ial approxim ation o f the regional by the method of lea st sq u ares has proved to be one o f the most popular of analytical m ethods. The e a r lie s t v e r sio n w as employed by Numerov (1929) on gravity data obtained over a la k e. He assum ed the regional to be a fir s t d eg ree polynom ial o f the form a + bh + dy + cx; where x and y are C artesian co o rd in a tes, h is the depth of water in the la k e, and the co n sta n ts, a , b, c , and d are determined by the le a st square m ethod. A gocs (1951) dem onstrated the applicability of the method for the rem oval of a plane regional superimposed on the gravitational e ffe c t of a sp h e r e . He rem arked that the method can be used to approxim ate a m ore com plicated regional by using a higher o rd er polynom ial. a higher order polynom ial. Sim pson (1954) used He conceded that large am plitude local anomalies or blunders in observation s could lead to local u n r ea listic estim ates of the reg io n a l. 59 While the idea of using polynom ials s e e m s to keep human bias at a minimum, som e assum ptions have to be made a s to the p ro p erties or behavior of the raw data. T hese assu m p tion s are usually em ployed to establish checks and co n tro ls through which the equation that best fits the data can be s e le c te d . It is usually assu m ed that the re sid u a ls occur at random and that p ositive and negative local d isturban ces have about equal probability of o c c u r re n c e. T h erefo re, the sum o f r e sid ­ uals should be a m inim um . In the traditional way of executing the le a st square fitting o f a polynomial, a low order polynom ial equation is in itia lly u se d , and the least square method is applied to ca lcu late the c o e ffic ie n ts . More term s are then added to produce a higher o rd er equation which is subjected again to the le a st square a n a ly s is . T his p r o c e ss of add­ ing more term s and calculating c o e ffic ie n ts is usually repeated until a polynomial equation which produces a minim um sum o f the squared values of resid u als is obtained. to several polynomial eq u ation s. O bviously, certa in te r m s are com m on The co effic ie n t of each one of th ese term s is determ ined once for each equation in which it e x is t s because the coefficient o f a certain term m ay depend on the polynom ial equa­ tion in which it e x is t s . To avoid the added labor of calculating the coefficient of som e te r m s se v e r a l t im e s , the approach can be m odi­ fied in such a way that the e ffec t o f any term in the polynom ial can be separately investigated so that, step by ste p , a check o f the goodness 60 of fit can be a c h ie v e d . T his approach w a s d e sc r ib e d by Oldham and Sutherland (1955), and Grant (1 9 5 7 ), who a ssu m e d a r eg io n a l equa­ tion of the form: G = t)Qp0 + b ip-j + .................................................................+t>nPj where the and *s a r e p o ly n o m ia ls in x and y , the b 's a r e c o e f f ic ie n t s , being of d eg ree j . = O when j*k. values of x and y . The p o ly n o m ia ls a r e d eterm in ed s o that The su m m ation is taken o v e r a ll the o ccu p ied T h is m odified v e r s io n is s u p e r io r to the co n v en ­ tional polynomial approxim ation b ec a u se the c o e ffic ie n ts and the standard e r r o r a re independent of the d e g r e e o f the polynom ial fitte d . The com putations can be c a r r ie d out fa s te r and w ith l e s s la b o r . T h is is e sp e c ia lly advantageous in c a s e o f high d e g r e e p o ly n o m ia ls. The re sid u a ls obtained by fitting a polynom ial to the reg io n a l a r e not particularly su ited for quantitative in te r p r e ta tio n . The s t a t i s ­ tical b a sis behind the method a s s u m e s that the a v e r a g e valu e o f the residual is z e r o . In oth er w o r d s , the p ro b ab ility o f o c c u r r e n c e o f positive and negative r e sid u a ls is eq u a l. In the m a jo r ity o f actu al c a s e s , this assu m p tion s e e m s to be hardly te n a b le . When w e , fo r exam ple, w ish to d elin ea te p r e g a lc ia l v a lle y s o r lo ca te s a lt d o m e s , we are expecting to com pute a reg io n a l w hich w ill y ie ld p red o m i­ nately negative r e s id u a ls . The extraction o f gra v ity r e sid u a ls by approxim ating the region al gravity trend by a polynom ial applying the m ethod o f le a s t s q u a r e s performed on the B ouguer g r a v ity m ap o f K alam azoo C ounty. Th# gravity r e sid u a ls co r re sp o n d in g to the fifth and se v e n th d e g r e e polynomial rep resen ta tio n of the reg io n a l w e r e c a lc u la te d at the 39 test hole locations d e sc r ib e d in the d is c u s s io n o f the c r o s s p r o file method. These resid u al v a lu e s plotted v e r s u s b ed rock e le v a tio n s and the results a re shown in F ig u r e s 5 and 6 w hich c o r r e sp o n d respectively to the fifth and se v e n th d e g r e e p olyn om ial r e g io n a l. It is apparent that F igure 5 d is p la y s l e s s s c a t t e r o f p oin ts than Figure 6 . This is a ls o apparent from the v a lu e s o f the c o r r e la tio n coefficients of 0 .4 4 for the fifth and 0 .3 4 fo r the se v e n th d e g r e e polynomial rep resen tation of the r e g io n a l. The c o r re sp o n d in g coefficients of d eterm in a tio n s a r e 0 .1 9 and 0 . 12 r e s p e c t iv e ly . These values of the c o e ffic ie n t o f d e te r m in a tio n s a ls o in d ica te th a t, in this study, the g ra v ity r e s id u a ls obtained by ap p roxim atin g the regional trend by p o ly n o m ia ls is s u p e r io r to th o se from c r o s s p ro ­ filing in reflecting bedrock top ograp h y. T e s ts o f s ig n ific a n c e o f the correlation at the 5% le v e l in d ic a te s that the c o r r e la tio n b etw een bedrock elevations and p olyn om ial r e s id u a ls is s ig n ific a n t. At the 1%level the c o r r e la tio n b etw een fifth d e g r e e p olyn om ial r e s id u a ls and bedrock e le v a tio n s is sig n ific a n t w h ile the se v e n th d e g r e e p o ly ­ nomial residuals a r e not sig n ific a n tly c o r r e la te d to b ed ro ck e le v a ­ tions. The deviations o f the r e s id u a ls fro m the le a s t sq u a r e lin e s in Figures 5 and 6 in d ic a te s that the m ethod o f r e p r e s e n tin g the naglonal trend by polynom ial a n a ly s is o ften r e s u lt s in d isto r te d IN MGALS RESI0UAL8 GRAVITY 500 600 700 800 BEDROCK ELEVATION IN FEET ABOVE SEA LEVEL FIGURE 5 RELATION B ETW EEN F IF T H D E G R E E POLY­ NOMIAL RESIDUALS (g R ) AND BEDROCK ELEVATION (E). OO 05 OO 06 9R4VITY RESIDUALS IN 00 900 600 700 600 500 BEDROCK ELEVATION IN FEET ABOVE 8EA LEVEL FIGURE 6 - RELATION BETWEEN SEVENTH DEGREE POLYNOMIAL R E SID U A L S (g R ) AND BEDROCK ELEVATION ( E ) . _______________________________________ 64 residuals as in the c a s e o f the c r o s s p r o file r e s id u a l. The above d isc u ssio n co n cern in g the a v a ila b le m ethods fo r the e x t r a c t i o n of the resid u a l an om aly from the o b se r v e d potential f ie ld , point out that, although the m ethods a r e num erou s and d iv e r s if ie d , none of them s e e m s to o ffe r a to ta lly o b je ctiv e r e s id u a ls . some are m ore o b jective than o t h e r s . tive and e m p ir ic a l. H o w ev er, The grid m eth od s a r e s u b je c ­ The lab elin g o f th e ir r e s u lts a s r e s id u a ls is questionable. The polynomial ap p roxim ation o f the regio n al m ay lead to a m ore realistic evaluation o f the region al than the grid m e th o d s, e s p e c ia lly in situations w here the region al is s im p le and can be r e p r e se n te d by a low degree p olyn om ial. In m o st c a s e s , h o w e v e r , the resid u a l pat­ tern obtained is only su ited for lo ca tin g tr en d s ra th er than fo r quan­ titative interpretation. The c r o ss-p r o filin g m ethod is g e n e r a lly favored in producing the most re a listic r e s id u a ls , e s p e c ia lly when the in te r p r e te r h as a fa ir ly thorough knowledge o f the su b su r fa c e g e o lo g y o f the a r e a , and par­ ticularly, of the stru ctu re he is e x p lo r in g . Geologic Residual G ravity A nom aly The above d is c u s sio n d e m o n str a te s the fact that g r a v ity r e s id u a ls obtained by em ploying any o f the d e sc r ib e d m eth od s can be e x tr e m e ly inaccurate in defining the b edrock top ograp h y. The a p p lica tio n of these resid u als in ca lcu la tin g the d im e n sio n s and d epths o f m a s s 65 distributions ch aracterized by sm a ll am plitude a n o m a lie s in a r e a s of c o m p le x regional gravity m ay lead to e rro n eo u s r e s u lt s . The a c c u r a c y of the r e su lts is c e rta in to be enhanced when known geology is incorporated. It is the goal o f th is su g g ested method to apply the geologic information av ailab le in K alam azoo County, and the o b served Bouguer gravity in calculating g ravity regional and resid u a l e f f e c t s . The available geologic inform ation c o n s is ts of 256 te s t h o le s reach ­ ing or penetrating the bedrock su rfa ce tog eth er with 50 additional te s t holes which penetrated a co n sid era b le th ic k n e ss o f g la c ia l s e d im e n ts . To apply this m ethod, it is e s s e n tia l to a ssu m e that the regional gravity effect is broad, and the te s t h o le s a r e located s o that the interpolation of calculated regional g ra vity at te s t hole lo ca tio n s completely defines the regional g ravity e ff e c t. The a ssu m p tion that the regional effect is sim p le and regional a n o m a lie s rather broad is justified because the regional a n o m a lie s a r e cau sed by d e e p e r , and generally broader d en sity v aria tion s in the P a le o z o ic se c tio n and underlying ro ck s. The regional gravity e ffe c t at a s p e c ific location is h ere defined as the observed Bouguer g rav ity which would be obtained had the bedrock m ateria l, above a datum , been rep laced by g la c ia l s e d i­ ments. The datum w as ch o sen to be the lo w est e le v a tio n point on the bedrock su rface in Kalam azoo County, and is 300 fe e t above s e a level. A ccordingly, the resid u a l Bouguer g ra v ity anom aly is defined as the gravitational effec t of the su rp lu s m a ss due to the e x is te n c e o f d e n s e r bedrock above datum e le v a tio n r a th er than g la c ia l s e d im e n t s . To illustrate the m e th o d , le t u s a s s u m e that at a s p e c if ic t e s t h ole location^, a n d /® 2 and H a r e the d®n s i t i e s artd t h ic k n e s s e s o f g la c ia l bedrock sed im en ts r e s p e c t iv e ly (F ig u r e 7 ) . At th is lo c a tio n the surplus mass caused by the p r e s e n c e o f H fe e t o f b ed ro ck m a te r ia l instead of glacial se d im e n ts c o n tr ib u te s to the gravity reading. Bouguer gravity. g = 2fTtf H ( /° 2 “ ) m illig a ls T h is e f fe c t h e r e d efin ed a s the r e sid u a l F or a c o n sta n t d e n sity c o n t r a s t , the r e sid u a l Bouguer gravity is d ir e c tly p rop ortion al to the th ic k n e s s o f the bed­ rock section above the a ssu m e d datum e le v a t io n . The reg io n a l Bouguer gravity at the lo c a tio n is obtained by su b tr a c tin g th e r e s id u a l Bouguer gravity from the o b se r v e d B ou gu er g r a v ity . It m u st be emphasized here that the su r p lu s m a s s e f fe c t o r r e sid u a l B ou gu er gravity is alw ays p o sitiv e a s lon g a s H is p o s it iv e . H o w e v e r , in locations where bedrock s u r fa c e i s b elo w the a s s u m e d datum e le v a ­ tion, H is negative and the r e sid u a l B ou gu er g r a v ity a ls o i s n e g a tiv e . A density c o n tra st o f 0 . 4 g m /c c w a s a s s u m e d fo r the d e n sity contrast C ^ 2 ~ and the reg io n a l g r a v ity e f f e c t at e a c h t e s t h o le location w as ca lcu la ted a s d e s c r ib e d a b o v e . T he r e g io n a l v a lu e s which w ere com puted at w e ll lo c a tio n s w e r e in terp o la ted to d e fin e the regional s u r f a c e . A su ita b le a p p roach w ould be to fit a p o ly ­ nomial using the m ethod of le a s t sq u a re to the r e g io n a l v a lu e s o r to contour them d ir e c t ly . D ir e c t co n to u rin g w a s s e le c t e d b e c a u s e r 67 GLACIAL DAIFT BEDROCK SURFACE * *• BEDROCK FRURE 7 MODEL ILLUSTRATING RESIDUAL GRAVITY THE CALCULATION ANOMALY OF GEOLOGIC 68 many te st h o le s , not reach ing b ed ro ck , have been em ployed a s ex tr a control in the contouring p r o c e s s . The m axim um depth o f p en etra­ tion of th ese t e s t h o le s w as u sed in the sa m e m anner to c a lc u la te a minimum value o f the region al w hich w as used a s a regio n al con ­ touring g u id e. The B ouguer gra v ity v a lu e s at the t e s t hole lo ca tio n s were computed from d ir e c t g r a v im e tr ic read in gs o r interpolated from the Bouguer gra v ity contour m ap. The g ra v ity reg io n a l contour map was em ployed to e stim a te the g ra v ity region al at e v e r y g ra v ity s ta tio n . The gravity region al value w a s su b tra cted from the B ouguer g ra v ity anomaly value at each g ra v ity sta tio n to produce the r esid u a l g ra v ity anomaly v a lu e. T h ese w ere contoured to produce the r e sid u a l g r a v ity contour map show n in P la te s 4a and 4 b . mgals was s e le c t e d . A contour in terval o f 0 .2 The c o n v e r sio n o f r esid u a l g r a v ity to bedrock elevation can be ach ieved usin g the follow in g equation: EB = g R / f 2 t f > C / ° 2 - ^1>]+ D where 9R is the value o f the r esid u a l g r a v ity at a g r a v ity sta tio n y is the u n iv ersa l g rav itation a l con sta n t D /® 2 is the ch o sen datum ele v a tio n (300 fe et above s e a le v e l) “ ^°i *s the d en sity c o n tr a st betw een bedrock and g la c ia l se d im e n ts ( 0 .4 g m /c c ) E g is bedrock e le v a tio n r e la tiv e to s e a le v e l. It is apparent from th is eauation that a r esid u a l valu e o f z e r o r e p r e ­ sents a bedrock ele v a tio n o f 300 fe e t above s e a l e v e l . P o sitiv e and 69 ttve residual valu es rep resen t bedrock elev a tio n s g re a ter o r le s s i^apectively. Bedrock elev a tio n s w ere calculated a t each gravity gMtton and contoured to obtain the bedrock topography map (P la te s 5 , «§*and 6 b). Because of the density of the glacial d rift in particular may vary ■Considerably, the ex p ressio n ( Aj) is a lso expected to v a r y . The .^effect of this variation on the accu ra cy o f the method of calculating ' gravity residuals depends on the range o f d en sity v a riation . In a r e a s where local density co n tra sts a re m ore than the a ssu m ed 0 .4 g m /c c , calculated bedrock elev ation s a r e expected to be higher than true 'values, and vice v e r s a . The assum ption that the bedrock upper su rfa ce is a gently 'undulating Surface to ju stify the approxim ation o f bedrock m a s s e s by infinite •labs, is another p o ssib le sou rce of e r r o r . G lacial e r o sio n certa in ly Smoothed and reduced the r e lie f on the bedrock su rface; y e t, som e glaciated v a lle y s may have su fficien tly ste ep s id e s to im pair the validity of the assu m p tion . To evaluate the e ffe c t of an irregu lar k bomplex bedrock su rface on the a ccu ra cy of our c a lc u la tio n s, le t us gwsume a situation a s shown in Figure 7 . The glacial drift is shown to o v erla y a flat bedrock su rface excep t the p resen ce of a bedrock ch an n el. Suppose that the elevation the bedrock su r fa c e is to be calculated at points A , B , C , D , and employing the residual gravity v a lu es at each location . The e r r o r s In tro d u c e d in the c a lc u la tio n s o f the r e g io n a l, r e s id u a l, and b ed rock elevations at any point betw een A and E can be exp la in ed a s fo llo w s: ( 1 ) At point A lo ca ted at a la r g e d ista n c e from the edge o f the v a lle y , the errors introduced a r e in sig n ific a n t. (2 ) At B , d ir e c tly above the edge of the v a lle y , the e r r o r is ex p ected to be m a x im u m . Its m agn i­ tude depends on the d ep th , and the s t e e p n e s s o f the v a lle y s i d e s . The application of the in fin ite sla b fo rm u la to the r e s id u a ls in th is lo c a tio n to calculate bedrock e le v a tio n im p lie s that the v a lle y is n e g le c te d . The presence o f the v a lle y r e n d e r s the va lu e o f the r e sid u a l g r a v ity at location B l e s s than w hat it would be in the a b se n c e o f the v a lle y . Therefore, the a p p lica tio n o f the in fin ite sla b form u la to c a lc u la te the bedrock e le v a tio n s at B from the r e sid u a l g r a v ity va lu e r e s u lt s in bedrock e lev a tio n w hich a r e l e s s than the tru e v a lu e s . the error is a ls o m a x im u m . (3 ) At D , The in fin ite sla b a ssu m p tio n im p lie s the absence o f the b ed rock m a te r ia l ab ove the v a lle y f lo o r . The presence of su ch m a te r ia l r e n d e r s the r e sid u a l g r a v ity at lo ca tio n D more than its valu e if the bedrock m a te r ia l ab ove the v a lle y flo o r was absent. T h e r e fo r e , at lo c a tio n D , the c a lc u la te d b ed ro ck e l e ­ vation is expected to be h ig h er than the a ctu a l v a lu e s . (4 ) A s we move towards E , the e r r o r s d e c r e a s e until th ey r e a c h a m inim um at the cen ter of the v a lle y . (5 ) At lo c a tio n C betw een B and D , the absolute value o f the e r r o r is l e s s than that at e ith e r p o in t, B o r D . In this region applying the in fin ite s la b fo rm u la im p lie s that w e a r e 71 a d d in g the bedrock m a s s la b eled 1 and at the s a m e t im e , ign o rin g the presence of the m a s s la b eled 2 (d o tted ). The two e r r o r s red u ce each others e ffe c t, and the net r e s u lt is a s m a lle r e r r o r . At a c e r - 1 tain location C , betw een B and D , the g ra v ita tio n a l e ff e c t o f the added mass is equal to that o f the ig n ored m a s s , and the net e r r o r is z e r o . Because the number two m a s s is a lw a y s c l o s e r to the s u r fa c e than f mass number o n e, point C is a lw a y s c l o s e r to B than D . The magnitude o f e r r o r s introduced in the c a lc u la tio n s o f bed­ rock topography by applying the in fin ite s la b form u la in a r e a s o f complex bedrock topography ca n be v is u a liz e d by a m o d el stu d y . The model em ployed i s show n in the upper right hand s id e o f Figure 8 . The m odel in d ic a te s a fla t-la y in g b ed rock s u r fa c e m odi­ fied by a ste e p -sid e d b ed ro ck c h a n n e l. valley sid es w as a ssu m e d to be 1 0 The s lo p e o f the b ed ro ck ° and it s flo o r w idth The glacial se d im e n ts w e r e a ss u m e d to be 1 0 0 1 0 0 0 fe e t. fe e t th ick and the valley depth was v a r ied betw een 25 and 125 f e e t , at 25 fe e t in te r ­ vals. For each v a lle y d ep th , the g r a v ita tio n a l e f f e c t r e s u ltin g from the e x c e s s m a s s produced by the p r e s e n c e o f b ed ro ck s e d i­ ments instead o f g la c ia l s e d im e n ts above the datum w a s c a lc u la te d at several su r fa ce s ta tio n s u sin g the m ethod su g g e ste d by T a lw a n i, at al (1959). U sing a d e n sity c o n tr a s t o f 0 .4 0 g m / c c , t h e s e g r a v i- tational valu es c o r re sp o n d to w hat h a s b een defin ed e a r l i e r a s the residual Bouguer a n o m a ly . The s u g g e s te d ap p roach fo r c a lc u la tin g AXIS 0*0 GLACIAL SEDIMENTS •EOMOCl 1000 FT h= 1 0 0 FEET u. UO -0.5 0-5 . _ A X I S ( D I S T A N C E FROM MID P O I N T OF S L O P I N O I N T E R F A C E IN K I L O F E E T ) 20 FIGURE 8 ERRORS IN CALCULATING THE TH IC K N ESS OF BEDROCK SEDIMENT8 ABOVE DATUM USING THE INFINITE SLAB FORMULA the bedrock e le v a tio n fr o m the r e s id u a ls w a s th en a p p lie d to e a c h r e s i d u a l value at e a c h s u r f a c e s t a t io n . The e r r o r s in tro d u ced in the calculations o f b ed ro ck e le v a t io n s fr o m th e g r a v it y r e s id u a ls by applying the in fin ite sla b fo r m u la w a s o b ta in ed a t e a c h s u r f a c e s t a ­ tion by su b tractin g the known b e d r o c k e le v a t io n s at e a c h s u r f a c e s t a t i o n (r e la tiv e to datum D) fr o m th e c a lc u la t e d v a lu e s . F ig u r e 8 shows the m a g n itu d es o f the e r r o r s in t e r m s o f d is t a n c e fr o m m id ­ p o in t on the s id e o f the b e d r o c k c h a n n e l. A s d is c u s s e d a b o v e , th e g r a p h s show that the e r r o r s in c a lc u la tin g b e d r o c k e le v a t io n s fr o m the residual g r a v ity v a lu e s a r e m in im u m a t g r e a t d is t a n c e fr o m the adga of the v a lle y and a p p r o x im a te ly h a lf w a y down i t s s i d e s . E rrors a r a , h o w ev er, m a x im u m at th e u p p er and lo w e r p o in ts on th e v a lle y s id e s . To d em o n stra te the s u p e r io r it y o f t h is g e o lo g ic m eth od o f is o l a t — ing gravity r e s id u a ls r e f le c t in g b e d r o c k to p o g r a p h y , th e 39 t e s t holes p r e v io u sly u se d to e v a lu a te th e r e s id u a l m a p s w e r e a s s u m e d nonexistent. The r e g io n a l g r a v ity v a lu e s a t e a c h o n e o f t h o s e t e s t holes w as e s tim a te d by in te r p o la tin g the r e g io n a l g r a v it y v a lu e s obtained by the g e o lo g ic m eth od a t th e su r r o u n d in g t e s t h o l e s . T he Interpolated r e g io n a l g r a v ity v a lu e a t e a c h t e s t h o le w a s s u b tr a c te d from the c o r r e sp o n d in g B o u g u e r g r a v it y v a lu e s to ob tain r e s id u a l g ra v ity v a lu e s . T h e s e r e s id u a l g r a v it y v a lu e s a r e p lo tte d v e r s u s b sd ro c k e le v a tio n in F ig u r e 9 . T h is fig u r e s h o w s th a t the p o in ts in ■ 1 * 500 600 700 800 BEDROCK ELEVATION IN FEET ABOVE SEA LEVEL FIGURE 9 - RELATION BETW EEN GEOLOGIC RESIDUAL BOUGUER GRAVITY (gR ) AND BEDROCK ELEVATION (E ) . 75 the graph exh ib it a p p r e c ia b ly l e s s s c a t t e r around the le a s t s q u a r e s line tf»n th ose in F ig u r e s 4 , 5 and 6 . A c o e ffic ie n t o f d eterm in a tio n of 0.83 was ca lcu la te d fo r the p oin ts o f F ig u re 9 . The c o r r e la tio n between bedrock e le v a tio n s and g e o lo g ic r e sid u a l B ouguer g r a v ity is highly sig n ifica n t at the 1% le v e l. T h is sh o w s that the g e o lo g ic method is far s u p e r io r to the m ethods o f c r o s s p ro filin g and p oly­ nomial approxim ation o f r e g io n a ls by the m ethod o f le a s t sq u a r e in producing resid u a l g r a v ity v a lu e s w hich r e fle c t b ed rock topography. Most of the points in F ig u re 9 w hich sh ow a p p r e c ia b le d ev ia tio n from the least sq u a r e s lin e c o r re sp o n d to t e s t h o le s lo ca ted in a r e a s w h ere additional bedrock c o n tr o l is v e r y s c a r c e . The r eg io n a l v a lu e s a t these test h o les w e r e thus obtained by in terp olatin g fro m reg io n a l gravity values located a t la r g e d is ta n c e s fro m the t e s t h ole s i t e s . CHAPTER VII D ISC U SSIO N O F R E S U L T S B o u g u er Gravity A nom aly Tire Bouguer g ra v ity a n o m a ly con to u r m ap o f K alam azoo County is shown in P la te s 3 a and 3 b . A s m en tion ed p r e v io u s ly , a d e n s ity of 2.15 g m /c c w as a ssu m e d for the g la c ia l s e d im e n t and an e le v a tio n of 700 feet above s e a le v e l w a s taken a s the d atu m . The B o u g u er gravity contour map r e p r e s e n ts the g r a v ita tio n a l e ffe c t o f a ll d i s ­ turbing m a sse s beneath the ground s u r f a c e . T h e se e f f e c t s in clude lateral density v a ria tio n and the lo c a l th ick en in g and thinning w ithin the glacial s e d im e n ts , and the e f f e c t o f str u c tu r e and d e n s ity v a r ia ­ tions in the P a le o z o ic s e c t io n and b a se m e n t c o m p le x . The Bouguer g r a v ity a n o m a ly m a p s e x h ib it the fo llo w in g broad features: 1. A general n o r th e a s t-s o u th w e s t g ra d ien t o f rou gh ly 0 . 8 m a g ls /m ile is a p p a re n t, w ith v a lu e in c r e a s in g to th e so u th . 2. A gravity high is c e n te r e d in the so u th w e ste r n c o r n e r o f Com stock T ow n sh ip . It e x te n d s e a stw a r d a c r o s s c e n tr a l C harleston T ow nsh ip to the e a s t e r n b o r d e r o f th e c o u n ty . This g r a v ity high s e e m s to d is a p p e a r to w a r d s the w e s t in 76 77 west cen tra l K a la m a zo o T o w n sh ip , due to the p r e s e n c e o f a bedrock c h a n n e l. It b e c o m e s n o t ic e a b le a g a in in s e c t io n 22 and b ro a d en s in O sth e m o and A la m a T o w n s h ip s . 3 . A prom inent g r a v ity high c o v e r s P r a ir i e R o n d e, S c h o o l­ cra ft, and the s o u th e r n h a lf o f P o r ta g e and T e x a s T o w n s h ip s . This g r a v ity high tr e n d s n o r th -n o r th w e s t and d is p la y s it s stron gest e x p r e s s io n in N o r th w e s t S c h o o lc r a f t T o w n s h ip . 4. A gravity high is lo c a te d a t the s o u t h e a s t e r n c o r n e r o f th e County and a p p e a r s to e x te n d s o u th e a s tw a r d in to C alh ou n and S t . J o se p h C o u n tie s . 5. A prom inent a r e a w h e r e th e g e n e r a l B o u g u e r g r a v it y g r a d ­ ient is v e r y lo w tr e n d s n o r t h w e s t - s o u t h e a s t fr o m th e northern b o u n d a r ie s o f R ich a ln d and C o o p e r to c e n t r a l R ic h ­ land and C h a r le s to n T o w n s h ip s . It c r o s s e s th e K a la m a z o o County lin e at th e s o u t h e a s t e r n c o r n e r o f C h a r le s t o n T ow n­ sh ip . In t h is a r e a a b ro ad lo w a n o m a ly s e e m s to be r e s p o n ­ sib le fo r c a n c e llin g o r g r e a t ly r e d u c in g th e lo c a l g r a v it y g r a d ien t. T h is fe a tu r e c o in c id e s w ith a v e r y p r o m in e n t lo w in the to ta l m a g n e tic f i e l d . 6 . A g r a v ity lo w c e n t e r e d in e a s t — c e n t r a l C lim a x T o w n sh ip exten d s e a s tw a r d a c r o s s so u th P a v ilio n and s w in g s to the n o rth w est in P o r ta g e T o w n sh ip . F r o m t h e r e , it e x te n d s w estw a rd c r o s s i n g th e c o u n ty lin e in w e s t T e x a s T o w n sh ip . I r I 78 Most of the a n o m a lie s d isc u sse d above g e n e r a lly have c o r r e ­ sponding magnetic a n o m a lie s (H in ze, 1963). T h is c o r r e la tio n is very important in identifying the c a u sa tiv e b o d ies of th e se a n o m a lie s and the isolation o f g ra v ity r e s id u a ls . The g la c ia l and P a le o z o ic sediments are known to have little or no m agnetic e f f e c t s . T h e r e fo r e , we can conclude that th e se broad fe a tu r es in the Bouguer anom aly map are caused by stru ctu ra l and lith o lo g ic v a r ia tio n s in the b a se­ ment complex and hence should be elim in a ted a s r e g io n a l. T h is interpretation is sub stan tiated by the g e n e r a lly low g ra d ien ts o f the gravity a n o m a lie s, which again indicate a deep s o u r c e . In addition to th ese broad fe a tu r e s , the map a ls o in d ica tes the presence of local lin ea r tren d s o f r e la tiv e ly low B ouguer g ra vity values. T hese tren d s a r e cau sed by bedrock ch an n els and w ill be described in detail in the s e c tio n regard ing the gra v ity r e sid u a ls and bedrock topography. Gravity R esiduals Bedrock Topography R esid u al B ouguer G ravity A nom aly Map Plates 4a and 4b show the g ra v ity r e sid u a ls ca lcu la ted by employing the w ell log inform ation and the B ouguer g ra vity anomaly contour m ap. The resid u a l v a lu e s r e p r e se n t the g r a v i­ tational effect of the e x c e s s m a s s r esu ltin g from the p r e se n c e of denser bedrock se d im e n ts above the datum ele v a tio n (300 fe e t 79 above s e a le v e l) in ste a d o f g la c ia l s e d im e n t s . D efin ed in t h is m anner, the r e s id u a l g r a v ity v a lu e s a r e p o s it iv e a s lon g a s the bedrock e le v a tio n i s g r e a t e r than the datum e le v a t io n . N eg a ­ tive resid u a l g r a v ity v a lu e s in d ic a te b e d r o c k e le v a t io n s l e s s than the datum e le v a t io n . Insp ection o f the r e s id u a l c o n to u r m ap r e v e a l s the p r e s e n c e o f se v e r a l lin e a r tr e n d s c h a r a c t e r iz e d by lo w e r g r a v ity r e s i d u a l s . T hese tr e n d s r e s e m b le a flu v ia l d r a in a g e p a tte r n and a r e b e lie v e d to be c a u se d by b e d r o c k c h a n n e ls . The m o s t p r o m in e n t lin e a r low r e sid u a l a r e a i s lo c a te d ju s t e a s t o f th e w e s t e r n b o u n d ary o f K alam azoo C o u n ty . H ere it g e n e r a lly tr e n d s n o r t h -s o u th . T h is trend e n t e r s th e C ounty at th e n o r th w e s te r n c o r n e r and c r o s s e s the so u th ern b ou n d ary at so u th —c e n t r a l P a r a r ie R onde T o w n sh ip . The lo w e st r e s id u a l g r a v ity v a lu e s o f z e r o m g a ls o c c u r a t tw o lo c a litie s a lo n g the a x is o f the tr e n d a t the s o u th w e s te r n c o r n e r of O shtem o and the w e s t - c e n t r a l p o r tio n o f T e x a s T o w n s h ip s . S e v e r a l a d d itio n a l low r e s id u a l tr e n d s a r e a p p a r e n t and have an e a s t - w e s t o r n o r t h w e s t - s o u t h e a s t d ir e c t io n . The m o s t p r o m ­ inent e x te n d s g e n e r a lly e a s t - w e s t a c r o s s c e n tr a l K a la m a zo o County. It e n t e r s th e C ounty a t th e n o r th e a s te r n c o r n e r o f C h a rlesto n T o w n sh ip , c o n tin u e s n o r th w e stw a r d to c e n t r a l R o s s Township w h e r e it tu r n s so u th w a r d , th en w e s tw a r d and c o n tin u e s r 80 in this d ir e c tio n a c r o s s C o m sto c k , K alam azoo, and O shtem o Townships. T h is m ajor trend i s join ed by s e v e r a l tr ib u ta r ie s trending n o r th w e st-so u th e a st and n o r th e a s t-s o u th w e s t. The drainage s y s te m of th is trend a p p ea r s to be v e r y co m p le x in and west of the C ity o f K alam azoo. Other m inor tr e n d s include an e a s t — w e st b ed rock channel and its two tr ib u ta r ie s . T h is trend o c c u p ie s the n o rth w estern and north-central part o f K alam azoo C ounty. In addition to the above m entioned low r e sid u a l g r a v ity t r e n d s , sev era l resid u a l g r a v ity high s a ls o e x i s t . The m o st p rom in en t o f these a r e lo c a te d in n o rth w estern NAfakeshma, so u th w e ste r n C lim a x , and so u th e a ste r n P a v ilio n T o w n sh ip s. S e v e r a l ad d ition al a r e a s of high r e sid u a ls a r e apparent in n o rth w estern K a la m a zoo, sou th ­ eastern O sh te m o , n o r th ea ste rn R ich lan d , and n o rth w estern R ose T ow nsh ips. T h e se high g r a v ity r e s id u a ls r e fle c t r e la t iv e ly high bedrock top ograp h y. Gravity R e sid u a ls Obtained by A pproxim ating the R egional by P oly n o m ia ls A s m entioned p r e v io u s ly , g r a v ity r e s id u a ls obtained by fittin g a polynom ial to the g r a v ity data fo r the p u rp ose o f sep a r a tin g regional tr e n d s m ay not be su ita b le fo r q u an titative in te r p r e ta tio n . They a r e u s e fu l, h o w e v e r , fo r v isu a l stu d y o f a n o m a lo u s t r e n d s . With th is in m in d , g r a v ity r e s id u a ls w e r e com puted for g ra v ity 81 regionals approximated by p o ly n o m ia ls of fifth and se v e n th d e g r e e s . The County was divided into two p a rts by an e a s t - w e s t tine in su ch a way as to perm it a re a l o v e r la p . separately on these two h a lv e s . The c a lc u la tio n s w e r e p erform ed R e sid u a ls co rresp o n d in g to the fifth and seventh degree polynom ial r e g io n a ls a r e illu str a te d in P la te s 7 a p 7bf and 8a, 8b. Examination o f the resid u al contour m aps r e v e a ls the c lo s e s im i­ larity between the fifth and sev en th d e g r e e r e s id u a ls . H ow ev er, a s expected, the seventh d e g ree r e s id u a ls a n o m a lie s a r e g e n e r a lly o f less amplitude than the fifth . A ls o , the se v e n th d e g r e e r e s id u a ls show better resolution o f a n o m a lie s than the fifth . A careful com parison betw een r e s id u a ls obtained by approxim ating the gravity regional by a sev en th d e g r e e polynom ial and the b ed rock topography residual Bouguer g ra v ity an om aly d e m o n str a te s the a b ility of the least square technique to ou tlin e a n om a lou s a r e a s . the method fails to define the reg ion a l q u a n tita tiv ely . H ow ev er, The r e s u lt is that gravitational e ffe c ts o f d e ep er b o d ie s a r e not c o m p le te ly e lim in a te d , thus causing d istortion s to the g ra v ity r e s id u a ls . F or e x a m p le , the gravity high located in southern C om stock i s s t ill v e r y prom inent in the fifth and seventh d e g r e e polyn om ial r e s id u a ls . T h is an om aly is caused by basem ent e f fe c t s and should be elim in a ted a s a r e g io n a l. •*hne situation is rep eated in sou th ern T e x a s and n orthern Preire Ronde Townships w here a g r a v ity high ca u sed by the basem ent is not c o m p le t e ly e lim in a te d a s r e g io n a l. Som e n e g e t t v e gravity a n o m a lie s c a u s e d by a n o m a lo u s fe a t u r e s in the p a le o z o ic se c tio n o r the b a se m e n t a r e a l s o a p p a ren t in the r e s id u a l m ep e. T hese n eg a tiv e a n o m a lie s cou ld g iv e a f a ls e in d ic a tio n o f a b ed ro ck channel. T h is ca n be illu s tr a t e d by an a r e a in W akeshm a Tow nship w here it a p p e a r s from the r e s id u a ls ob tain ed by a s e v e n th d e g re e polynom ial r e g io n a l that th e "F" v a lle y (p la te s 5 ) e x te n d s farther south into B ra d y and w a k e s h m a T o w n sh ip s, than s u g g e s te d by g eo lo g ic in fo r m a tio n . B edrock Contour Map P la te s 5 , 6 a and 6b sh ow the b ed r o ck to p ograp h y m ap o f K alam azo o C ounty. T he co n to u r lin e s a r e d ash ed in a r e a s w h e r e b e d ro c k control and g r a v ity c o v e r a g e i s in s u ffic ie n t to p e r m it a c c u r a te outlining o f b ed ro ck to p o g r a p h y . The co n to u r m ap in d ic a te s a p r e v a ilin g w e stw a r d s lo p e o f the b e d r o c k s u r f a c e . B ed ro c k e le v a tio n s a s high a s 8 5 0 fe e t a r e e n c o u n te r e d in the e a s te r n part o f the C ounty w h ile t h e s e a t the w e s t e r n part a r e u n d e r 350 fe e t at c e r t a in lo c a t io n s . S u p e r im p o s e d on t h is g e n e r a l b e d ro c k s u r fa c e s lo p e a r e s e v e r a l p ro m in e n t high to p o g ra p h ic f e a tu re s w hich a r e lo c a te d in s o u th w e s te r n S c h o o lc r a f t , so u th ­ w estern O sh te m o , n o r th e a ste r n T e x a s , n o r th w e ste r n R o s s , and n o r th e a s te r n C o m sto c k T o w n sh ip s. L oca l low e le v a t io n s on the bedrock su r fa c e e x i s t s alo n g the a x e s o f b ed rock c h a n n e ls . A c lo s e exam ination o f the b ed rock topography m ap in d ic a te s the p r e s e n c e of a v e r y c o m p lic a te d b ed ro ck channel s y s t e m . The m ain b e d ro c k ch an n els s e e m to tren d g e n e r a lly e a s t - w e s t o r n o r th so u th . H ow ever, the tr ib u ta r ie s o f the m ain b ed rock c h a n n e ls trend northw est-southeast. B ed ro ck ch a n n e ls a r e d e sig n a te d in p late 5 by alphabetic sy m b o ls fo r e a s y r e f e r e n c e . The "A" v a lle y tr e n d s w estw a rd a c r o s s K alam azoo C ou n ty. It p o s s e s s e s fa ir ly ste e p s id e s and a rounded flo o r in d icatin g the p o ssib le e ffe c t o f g la c ia tio n , o r indeed co m b in ed g la c ia l and fluvial e r o sio n . Its channel e x h ib its a p p r e c ia b le m ea n d erin g in dicatin g stron g flu v ia l e f f e c t s . S e v e r a l co n to u r c lo s u r e s alon g the axis of the channel and lo c a l r e v e r s a ls o f s lo p e a r e a p p a r e n t, f u rth e r su g g estin g g la c ia l o r g la c io - f lu v ia l in f lu e n c e s . The m ost p rom in en t fea tu re o f the "A" ch an n el is the fa c t that most of its tr ib u ta r ie s in K alam azoo County s e e m to jo in the r iv e r from the sou th . The la r g e s t o f th e s e tr ib u ta r ie s i s the "F" Channel which o r ig in a te in c e n tr a l B ra d y T o w n sh ip . The "F" -Channel has a v e r y broad ch an n el and a r a th e r s tr a ig h t c o u r s e . Its s id e s show v e r y g en tle s l o p e s . The "G" channel is an oth er tr ib u to a ry to the "A" b ed ro ck c h a n n e l. It s e e m s to join th e "A" Channel near the sa m e point at w hich th e " A " and "F" c h a n n e ls m e et. The "j" v a lle y is a n o th er tr ib u ta r y to the "A" c h a n n e l. ft tea a n a r r o w e r c r o s s s e c t i o n a n d v e r y s t e e p s i d e s . The "E" c h a n n e l j o i n s t h e "A" c h a n n e l a t t h e c e n t e r o f Comstock T o w n sh ip a n d t r e n d s w e s t w a r d p a r a l l e l to t h e "A" ctannel. Its c h a n n e l c o i n c i d e s w it h t h e MG" c h a n n e l f o r a b o u t a mile in s o u t h e a s t e r n K a la m a z o o T o w n s h ip a n d s w i n g s w e s t w a r d to meet the "F" c h a n n e l in s o u t h w e s t e r n K a la m a z o o T o w n s h ip . It changes c o u r s e to s o u t h w e s t w a r d a n d m e e t s th e 11K*1 c h a n n e l in w e s t-c e n tr a l T e x a s T o w n s h ip . * M The "C* and ,fC M c h a n n e l s a r e t r i b u t a r i e s t o t h e "C" c h a n n e l which w as flo w in g w e s t w a r d in n o r t h e r n A la m o T o w n s h ip . I ts direction o f f lo w b e c o m e s n o r t h w a r d in s e c t i o n 4 o f t h e T o w n s h ip and c r o s s e s th e K a la m a z o o b o r d e r in t o A l l e g a n C o u n t y . T h is channel and i t s t r i b u t a r i e s a r e b r o a d w it h g e n t l y s l o p i n g s i d e s . The "K" and "B" s e g m e n t s r e p r e s e n t t h e d e e p e s t b e d r o c k channels in K a la m a z o o C o u n t y . have ste e p s i d e s . T h e ir c h a n n e ls a r e n a r r o w and T h e l o w e s t b e d r o c k e l e v a t i o n in K a la m a z o o County e x i s t s a lo n g th e a x i s o f th e "K" s e g m e n t a n d o c c u r s in w e st-c e n tr a l T e x a s an d s o u t h e a s t O s h t e m o T o w n s h i p s . The "M" c h a n n e l i s t h e s o u t h e r n m o s t b e d r o c k c h a n n e l in Kalamazoo C o u n ty . Its d i r e c t i o n o f f lo w w a s w e s t —n o r t h w e s t w a r d . This channel m a y n o t b e v e r y a c c u r a t e l y d e l i n e a t e d b e c a u s e o f lack o f a c c u r a t e g r a v i t y a n d w e l l lo g in f o r m a t io n in t h i s p a r t o f 85 the County. H ow ever, its e x is t e n c e i s e s ta b lis h e d by th e p r e s e n c e of a bedrock channel in Van B u ren County w h ich s e e m s to be a continuation o f the s a m e d ra in a ge (G iro u x , e t a l , 1964). CHAPTER VIII IN TER PR ETA TIO N O F R E S U L T S C o r r e l a t i o n o f B ed rock and S u r f a c e T o p o g ra p h y In areas co v ered w ith a thin g la c ia l d e p o s it , s u r f a c e to p o g ra p h y very often r e fle c ts b e d r o ck to p o g r a p h y . In K a la m a z o o C o u n ty , h o w e v e r , glacial sedim ents a r e s u f f ic ie n t ly th ic k th a t m u ch o f the b e d r o c k to p o g ­ raphy is masked by the g la c ia l c o v e r . T h u s , w h ile the b e d r o c k s u r ­ face generally s lo p e s dow nw ard to the w e s t , s u r f a c e to p o g ra p h y i s highest at the w e s t s id e o f th e c o u n ty . S u r f a c e to p o g r a p h y i s g r e a t ly influenced by the a r e a l d is tr ib u tio n o f t e r m in a l m o r a in e s in th e County. The d istr ib u tio n d o e s not s e e m to be r e la te d t o b e d r o c k topography. Because a c o r r e la tio n b e tw e e n s u r f a c e to p o g ra p h y and b e d r o c k topography is la c k in g , th e c o r r e la t io n b e tw e e n s u r f a c e d r a in a g e and the bedrock channel s y s t e m i s e x p e c te d to be v e r y p o o r . T he a v a il­ able bedrock in fo rm a tio n in th e s o u t h w e s t e r n p a r t o f th e S o u th e r n Peninsula of M ichigan in d ic a te s a p r e v a ilin g w e s tw a r d s lo p e o f th e bedrock su r fa ce . A s s u m in g p o s t - g l a c i a l rebound to be l e s s than th e relief difference in b e d r o c k , th e p r e v a ilin g d ir e c t io n o f p r e g la c ia l 86 d rain ag e 1° area (w hich in c lu d e s K a la m a zo o C ounty) w ould p r e ­ sum ably have been w estw ard to w a r d s the Lake M ich ig a n L ow lan d . It is alao apparent that p r e s e n t s u r f e c e d r a in a g e i s to the w e s t , but lit t le of its coincides with the p r e g la c ia l d r a in a g e l i n e s . C o in c id e n c e b e­ tween the present su r fa c e d r a in a g e and b e d r o c k c h a n n e ls e x i s t o n ly in areas where d ifferen tia l c o m p a c tio n o f th ic k g la c ia l d e p o s it s h a s occurred in bedrock c h a n n e ls , o r w h e r e g la c ia l d e p o s it s a r e in su f­ ficient to fill these c h a n n e ls. There are se v e r a l e x a m p le s in K ala m a zoo C ounty w h e r e b e d r o c k channels (as proven by d r illin g ) h a v e s u r f a c e e x p r e s s i o n . channels are shown in P la te 9 . T h ese T h e m o s t p r o m in e n t e x a m p le a r e th e tributaries of Pine C reek in K a la m a zo o C ounty w h ic h s e e m to be flo w ­ ing over the "C” and the n o r th e rn p a rt o f th e MB n b e d r o c k c h a n n e ls . The "B" channel c o in c id e s w ith a tr ib u ta r y o f P in e C r e e k w h ich joins Rupert, M urry, H ip p s, and B a rb o u r L a k es to the m ain c r e e k . Southward the su rfa ce e x p r e s s io n o f the MB ,? ch a n n e l d is a p p e a r s beneath the g lacial d e p o s its o f the K a la m a zo o m o r a in e s w h ich c o n c e a l its surface e x p r e s s io n . P a r t o f th e "E" ch a n n el lo c a te d b e tw e e n the W F" and "K" channel a ls o c o in c id e s w ith the s u r f a c e d r a in a g e lin e a — tion of the w est fork o f P o r ta g e C r e e k and C r o o k e d , D u ck , and P r e tty Lakes. A third ex a m p le o f b e d r o c k ch a n n el b ein g r e o c c u p ie d by „ M surface stream s is the b e d r o c k "C" ch a n n e l w h ic h g e n e r a lly c o in c id e s with Spring and Brook C r e e k s . T he a s s o c ia t io n o f the p r e s e n t 88 Kalamazoo R iver to seg m en ts of the "A", "D", and "C" channels is a ls o apparent. T his su g g e s ts the p o ssib ility that the Kalamazoo R iver follow s su rface d ep ressio n s along bedrock ch an n els. Relation Between Bedrock Channels and S u rface Geology Plate 1 show s the distribution o f bedrock channels and su rfa ce geology in Kalamazoo County. It is apparent from the m ap, that the two distributions are totally independent and u nrelated. This su g g ests that bedrock topography was not a m ajor factor in con trol­ ling the m ovem ent of g la c ie r s . Exam ination o f the bedrock topog­ raphy map (P late 5) and Plate 1 a ls o indicates no apparent relation between bedrock channel distribution and bedrock su rfa ce geology. R econstruction o f the Drainage Pattern B efore and During Glaciation Before d isc u ssin g the c la ssific a tio n of bedrock channels in Kala­ mazoo County, a few pertinent facts a re worth restating: (1) P re- glacial bedrock channels flow in the general d irection of the bedrock surface s lo p e . T heir c o u r s e s , however may be controlled by str u c ­ ture and differen tial hardness o f bedrock. (2) The bedrock su rface of the southw estern part of the Southern Peninsula of M ichigan, which includes Kalamazoo County, slo p e s w estw arc towards Lake M ichigan. The structural trend i s , how ever, to the northw est. (3) P reg la cia l channels n ever c r o s s drainage divides which may be formed o f m ore resista n t bedrock form ation s. 89 A careful study of Plate 5 indicates that w ater in bedrock channels ”CMand its trib u taries "C" and "C", a s w ell a s the "A" and MM" channels, generally flow in a prevailing w e ste r ly direction towards the Lake Michigan B a sin . T hese channels appear to have r ela tiv ely broad floors up to a m ile wide and exhibit noticeable m eandering. These facts su ggest that the above m entioned bedrock channels may have represented the p reglacial fluvial drainage in Kalamazoo County, Michigan. The "F1*, "G", and "J" channels appear to have been tributaries to the "A" channel and a r e believed to be p reg lacia l as w ell. In term s of th ese configurations the follow ing sequence of even ts is postulated. When the ice front of the Lake Michigan lo b e, which invaded Kalamazoo County from the northw est, covered the north­ w estern corner of the County, it blocked the westward flowing m aster "C" channel. The dammed w ater began to r is e until it reached the elevation of the drainage b a r rie r between the "A" and "C" ch an n els. The dammed w ater then breached the drainage b a r r ie r in Kalamazoo Township to form the MD" segm en t o f the bedrock drainage channels which w as flowing southward. Thus, the p reg alcial drainage in the "CMand part of the "C" w as seem in g ly diverted to -low southward and join the "A” ch an n el. This drainage pattern apparently did not last v ery long because the floor elev a tio n s o f the f,C M, "C" and M D” channels a re appreciably higher than that o f the "A" channel. 90 Apparently, the "B" channel w as a ls o form ed a s a c r o s s drainage by the glacial m elt w ater from the southward advancing and eastw ard spreading Lake Michigan ice front to the "A” channel. This channel is appreciably deep er than the "CMand "D" channels indicating that it was carrying a la rger load of w ater southward. The ice front seem in g ly advanced farther southward and continued to spread to the ea st; eventually blocking the "A" channel. The damming of the p reglacia l "A" channel probably created an a ltern a­ tive route for drainage farther south. T his drainage is suggested on Plate 5 a s the "E" channel which trended sou th w est. S m a ll s e g ­ m ents of the p reg a lcia l "G" and "F" trib u ta ries o f the "A" channel were incorporated in th is new p erig la cia l strea m ch an n el. As a result of this drainage d iv e r sio n , drainage o ffse ts occurred in the w estern part of the "A" channel, and in the northern parts of the "G" and "F" bedrock ch an n els. The "K" channel may a ls o have been created by glacia l m elt w aters flowing southward from the advancing Lake Michigan ice front towards the "M" p reg lacial channel which w as not yet dammed by the advancing ice front. T his segm en t "K", like the "B" channel, is appreciably deeper than the "A" o r "C" channels and has steep sided v a lley w a lls accentuated probably by p o st-g la c ia l down cutting. This evidence su g g e sts that the MB" and "K" channels a re p e r ig la c ia l. It is a lso p o ssib le that the "K" channel w as the locus for a northw est 91 flowing w ater in p reglacial tim e , then a r e v er sa l in drainage occurred during g laciatio n . A s the ic e front advanced further south and e a s t, presum ably the "E" channel drainage w as dammed and the "I" and "H" channels w ere form ed to c a r ry the w estw ard advancing drainage to the "K" and hence to the "M" channel. CHAPTER IX GROUND WATER PO SSIBILITIES IN KALAMAZOO COUNTV, MICHIGAN Introduction The City of K alam azoo's m unicipal w ater n e e d s, in addition to industrial and d o m e stic w ater consum ption in K alam azoo County, is totally dependent on ground w ater s u p p lie s . M ost of th is needed supply co m es from aq u ifers in the g la c ia l s e d im e n ts . The rem ain­ ing portion is supplied by w e lls com pleted in the M arshall sandstone aquifers and located in the n orth eastern co r n er o f the County. The ch em ical quality o f the ground w ater produced from the glacial and sandstone a q u ife r s is quite v a r ia b le . The m o st com m on sa lts are the b icarbonates of ca lciu m and m a gn esiu m . A ccording to Deutch, V a n lier, and Giroux (1 9 6 0 ), the bicarb on ates a r e derived from p a r tic le s o f lim esto n e and sandston e w hich a r e the m ajor con­ stituent of g la cia l s e d im e n ts . In so m e a r e a s , h o w ev er, the m ost abundant d isso lv e d m a teria l is ca lc iu m s u lfa te . The su lfa te s a r e more com m on in the ground w ater produced from w e lls com pleted in sand and g ravel a q u ife rs which a r e in contact with sh a le o r basal t ill. It w as noted by D eutch, V a n lie r , and Giroux (1960) that lo w er­ ing the w ater table r e s u lts in an upward m igration o f the c a lciu m 92 93 sulfate w aters from the Coldwater shale to the aq u ifers in gla cial sedim ents. Iron and m anganese a re a ls o a com m on constituent in the ground w ater o f Kalamazoo County. Their concentration is variable depending on the lo c a lity . The author b e lie v e s that the m igration p r o c e ss is fa ste r in a r e a s occupied by bedrock channels e s p e c ia lly w here a local d ep ressio n in the floor of the bedrock channels e x is t s . Figure 10 show s the normalized concentration (highest concentration taken a s 1 0 0 ) of several chem ical compounds in the ground w ater pumped from five w ells belonging to the Upjohn Company and located along profile "S" (P late Township. 6 a ) c r o s sin g the a x is of the MF" channel in Portage The graph has been constructed from w ater a n a ly sis data supplied by the Upjohn Company. It is obvious that ground w aters obtained from w e lls located along the a x is of the bedrock channel is the highest in sa lt content. The in creased rate o f upward migration of d isso lved s a lts from bedrock sed im en ts to glacial aquifers located in bedrock channels m ay be caused by the com bined effect of th ese suggested factors: (1) The effectiv e area through which sa lin e w ater m igration takes place is g re a ter in a r e a s o f bed­ rock d ep ressio n s than in flat a r e a s . (2) Bedrock c e p r e s s io n s a re possible site for upward m igration o f w a ters o f r e la tiv e ly higher salinity content because the sa lin ity of bedrock sed im en ts g en erally in creases with depth. (3) Som e o f the bedrock channels in 94 Kalamazoo County may be estab lish ed along the troughs of m inor folds in the bedrock su rfa c e . It is a lso p o ssib le that som e o f them follow minor faults or fracture zon es in the bedrock su rface where the resistance to stream ero sio n is m inim um . Whether the channels are established o ver fault z o n e s , fr a c tu r e s, or m inor fo ld s, the rate of upward m igration of sa lin e w a ters from the bedrock to the glacial sedim ents is expected to be enhanced. The evidence of high salinity in ground w aters produced from aq u ifers located at the center of bedrock channels is dem onstrated in one location a s se e n in Figure 10. unknown. Whether this situation e x is t s in other a r e a s or not is More stu d ies a re w arranted. The glacial sed im en ts in Kalamazoo County range in th ick n ess between 50 fe e t, m ostly in the vicin ity of the Kalamazoo R iv e r , to 650 feet in the w est sid e o f the County w here the Kalamazoo m orain es are underlain by bedrock ch an n els. The saturated th ick n ess in a r e a s where the glacial sed im en ts are thin is v e r y sm a ll and the p o ssib ility of developing aquifers suitable for sa tisfy in g the needs of m unicipal­ ities or indu stries is m in im al. A ccord in gly, a r e a s underlain by a thick section of saturated glacial sed im en ts a re m ore favorable for locating aquifers of appreciable th ick n ess and suitable y ie ld . A rea s which are covered with thick outwash and recent channel d ep o sits are e sp e c ia lly favorable for locating ground w ater a q u ife r s. B e sid e s having high p e r m e a b ilitie s, aquifers developed in the channel d ep osits 95 8 M s CA** t TOTAL HARDNESS HCOJ \ CD FE *~ 111 X 2 MQ + + I NA* 50 s F < BC UJ O s o J IfcJ > 5 _i a PROFILE (3) R O R TH —*■ 650 BEDROCK TOPOGRAPHY ieoo- :> a W550 FIGURE io SALT CONTENT OF GROUND WATER BEDROCK TOPOGRAPHY AND of recent s tr e a m s , v e r y o ften , r ep le n ish the w a ter lo s t to pumpage 5y direct recharge from su r fa c e w a te r s . T his is the r e a so n w h y many of the pumping s ta tio n s o f the C ity o f K alam azoo W ater D epart­ ment are located along su r fa c e d r a in a g e . The w a te r s o f the K alam azoo River, which is the la r g e s t su r fa c e d rain age in K alam azoo C ounty, are highly polluted. A c c o r d in g ly , no attem p t w a s m ade to d evelop g ro u n d water a q u ifers in its channel d e p o s it s . G lacial till se d im e n ts in Kalamazoo County a r e m o stly form ed o f red o r blue com p act and impervious se d im e n ts which a r e form ed o f p a r tic le s having a w ide range of s i z e s . H ow ever, in so m e a r e a s , t ill d e p o sits a r e form ed Of fine grained c la y type se d im e n ts w hich a r e g r e y , brow n, o r g r e y ­ ish blue in c o lo r . Both v a r ie t ie s o f t ill d e p o s its a r e un su itab le a s aquifers. Exploration d r illin g in the sp r in g o f 1968 ind icated that the o u twash apron located betw een the ou ter and inner K alam azoo M orain es la underlain by v e r y th ic k , highly p erm ea b le sand and g r a v e l d e p o s its . An exploration te s t hole w as attem pted a t the c e n te r o f s e c tio n 21 o f Oshtemo Township w h ere the mud c ir c u la tio n w a s lo s t at a depth of 860 feet a fter penetrating 50 fe e t o f v e r y c o a r s e g ra v el a n d /o r sand deposits. The d r illin g w a s d iscontinu ed b e ca u se the c ir c u la tio n oould not be r e sto r e d and heaving o f the outw ash d e p o s its m ade drilling im p o s s ib le . The r e s u lt s in d icate an upper aq u ifer o f 90 fe e t Of sand a n d /o r g r a v el and a lo w er aq u ifer beginning at a depth o f 207 foet below the su r fa c e . The total th ic k n e ss o f the lo w er aquifer could not be determ ined b eca u se o f the term in ation o f d r illin g at the site. The lower and upper a q u ifer s a r e sep a rated by 30 fe et o f till deposits. The existence of th is e x tra o rd in a r ily thick seq u en ce of outw ash deposits in the apron m ay be accounted for a s follow s: W hile the Lake Michigan ice front w as sta tio n a ry during the fo rm a tio n s o f the imer Kalamazoo m o r a in e s , the g la c ia l m elt w ater w a s confined between the ice front and the ou ter K alam azoo m orain e to the e a s t , which was already p r e se n t. T h is r e su lte d in the confinem ent o f deposition of the g la c ia l outw ash d e p o s its to the a r e a betw een the two Kalamazoo m o r a in e s. T hick outwash d e p o sits m ay a ls o e x is t d ir e c tly to the east of the ou ter K alam azoo m oraine . The g la c ia l slu ic e w a y which was flowing eastw ard away from the ic e front during the formation of th e se m o r a in e s is exp ected to have d ep o sited the c o a r s e r datrttus directly to the e a s t o f th e se ou ter m o r a in e s . B ad rock Channels in K alam azoo County a s Loci fo r Ground W ater Aquifers Ground w ater exp lo ration in bedrock ch an n els in Ohio ( S c h a e f e r , Write, and V anTyl, 1946), Illin o is (H o rb erg , 1950; P isk in and Bergstrom, 1967; S tep h en , 1967) and Indiana (W ayne, 1956) indicate that bedrock ch an n els a r e e s p e c ia lly favorab le fo r lo ca tin g ground water aq u ifers. H ow ever, in s e v e r a l in s ta n c e s , bedrock ch an n els 98 were found to contain fine grained d ep o sits such a s c la y , s i l t , and impervious sedim ents o r till d ep o sits (M cG rain, 1948; W ayne, 1956). Fine grained glacial d ep o sits m ay be form ed under stagnant conditions due to damming of drainage by ice fr o n ts. In so m e situ a tio n s, it is also possible that p r e -e x is tin g outwash d e p o sits in bedrock channels were excavated and d estro y ed by the advancing ic e , o r a sso c ia te d torrential outwash w a te r s , and then the ch an n els r e filled with poorly sorted till or even fine grained fluvial o r la cu str in e d e p o s its . Under these circu m sta n ces, g la cia l se d im e n ts in bedrock ch an n els u su ally possess low perm eab ility and cannot be developed a s a q u ife r s . The available w ell log inform ation in K alam azoo County is not sufficient to e sta b lish the nature of the g la c ia l d e p o sits in a ll bedrock channels. The C ity of K alam azoo Water D epartm ent undertook a drilling program in 1968 and 1969 to in v estig a te the nature o f g la c ia l deposits in se le c te d lo c a tio n s. About 30 d r ill h o le s w e r e com pleted during this p erio d , m o stly in C om sto ck , R ichland, and O shtem o Townships. H ow ever, few o f th e se te s t h oles w ere located o v e r bedrock c h a n n e ls. B ased on ava ilab le d r ill log in form ation , the following gen eral c o n c lu sio n s a r e drawn regard ing the nature of glacial d ep osits in the bedrock channels o f K alam azoo County: (1) Ths "A” channel (P la te 5) a p p ears to be g e n e r a lly billed with till type d ep o sits. T his co n clu sio n is based on sc a tte r e d d r ill log infor­ mation in C o m sto ck , K alam azoo, and O shtem o T ow n sh ip s. It is possible that the p reg la cia l d e p o s its in th is channel have been e x c a v a te d and d estroyed by g la c ia l a c tio n and then rep la ced by u n sorted till o r even r e la tiv ely unsorted g la c io -flu v ia l d e p o s it s . (2 ) The " F " end "G" bedrock channels appear to contain outw ash d e p o s its . E a st- central Portage Township is e x te n s iv e ly d r ille d by the Upjohn C om pany. Several aquifers w ere developed alon g the se g m e n t o f the " F " v a lle y located in the a r e a . The b etter a q u ife rs in th is a r e a a re lo ca ted along the sides of the bedrock c h a n n e l. A few in fe r io r w e lls w e r e develop ed along the axis w here the g la c ia l outw ash d e p o sits a r e fin e -g r a in e d and less sorted. The w a ter pumped from th e se w e lls sh o w s a r e la tiv e ly higher percentage o f d is s o lv e d s a l t s . (3 ) The "E" bedrock channel is known to contain e x te n siv e outw ash d e p o s it s . T h e se d e p o s its a r e especially thick in the se g m e n t o f the channel to the so u th w est o f the City of Kalamazoo w h ere the bedrock channel c o in c id e s w ith the s u r ­ face drainage lin e s o f the w est fork o f P ortage C r e e k , C rook ed , D uck, and Pretty L a k es. The th ick outw ash d e p o sits in th is se g m e n t probably consists of both g la c ia l outw ash and r e c e n t p o s t-g la c ia l channel deposits. (4) S p rin g and B rook C r e e k s flow south w estw ard and overly the "C" trib u tary o f "C" bedrock c h a n n el. F low g a u g es placed at s e le c te d lo ca tio n s along the c r e e k indicate that during d ry periods ap p reciab le su r fa c e w ater flow i s su sta in e d by ground w a te r . This su g g ests that the p r e se n c e o f p erm ea b le outw ash and channel it deposits in the a r e a surrounding the C re ek and in the "C" bedrock channel* As a r e s u lt, four e x p lo r a tio n d r ill h o le s w e r e co m p leted along the sid e s of the channel in R ichland T ow nship in e a r ly sp r in g o f 1968. The r e su lts indicated the p r e s e n c e o f up to 170 fe e t o f outw ash If deposits underlain by c la y and o th e r la c u s tr in e d e p o s it s . The "C" "C" tributaries o f the "C" ch an n el have not b een d r ille d e x te n ­ sively. However, an ex p lo ra tio n d r ill h ole w a s co m p leted in north­ west Cooper Township about 1200 fe e t south o f the a x is o f the M C" channel which encountered 9 0 fe e t of s u r fa c e outw ash d e p o s its und er­ lain by clay and lake type d e p o s it s . M ore d r illin g i s need to d efin e the nature o f g la c ia l d e p o s its in the channel in o th e r a r e a s . (5 ) The glacial sed im en ts in the "B" and "K" v a lle y s a r e the th ic k e s t in Kalamazoo County. The nature o f the d e p o s its is not known in d e t a il. Besides s e v e r a l o il t e s t h o le s w h ich do not in d icate the nature o f glacial d ep osits in the "B" v a lle y , on ly one e x p lo r a tio n t e s t h o le w a s drilled by the C ity o f K alam azoo W ater D ep a rtm en t. T h is t e s t hole was drilled o v e r the a x is o f the "B" v a lle y in c e n tr a l A lam o T o w n sh ip . The resu lts in d icate the p r e s e n c e o f 55 fe e t o f outw ash d e p o sit in the form of thin la y e r s o f sand a n d /o r g r a v e l and c la y . T h is s e c t io n o f oub*ash i s u n d erlain by t ill and lake type d e p o s it s . The th ick g la c ia l sediments in the "B" and "K" v a lle y s a r e apt to co n ta in th ick outw ash deposits and fu rth er ex p lo r a tio n d r illin g is str o n g ly reco m m en d ed in these a r e a s . ( 6 ) M ore stu d y i s a ls o needed to a c c u r a te ly d efin e the axis and nature o f g la c ia l s e d im e n ts in the "M" v a lle y . CHAPTER X CONCLUSIONS Applicability of the G ravity Method in O utlining B ed rock Topography The resu lts of the g ra v ity in v e stig a tio n in K alam azoo C ounty, Michigan, warrant the follow in g c o n c lu sio n s: (1 ) The g ra v ity method can be s u c c e s s fu lly em p loyed in K alam azoo County to ou tlin e bedrock topographic fe a tu r e s and map the b ed rock s u r f a c e . The density of the g la cia l s e d im e n ts in the a r e a w hich w a s e s tim a te d to be 2.15 g m /c c , is a p p r e c ia b ly lo w er than the rep orted 2 .5 5 g m /c c value for the d en sity o f C oldw ater s h a le . T h is la r g e d e n sity c o n tra st permitted the application of the g ra v ity m ethod to outline b edrock topography. (2) The p roced u re d evelo p ed for iso la tin g the resid u a l gravity anom alies cau sed by buried bedrock topography h as been successfully used to obtain a fa ir ly d eta ile d bedrock topography map of the County. (3) The d e ta il in the c o m p iled bedrock topography map made it p o ssib le to r e c o n str u c t the p r e g la c ia l and p e r ig la c ia l drainage in K alam azoo C ounty. (4 ) The p rop osed approach o f c a l­ culating the av era ge d e n sity o f the g la c ia l and bedrock s e d im e n ts using the f r e e - a ir an o m aly and w ell log in form ation produced d e n sity estimates com parable to m ea su red v a lu e s . 101 H o w ev er, the r e s u lt s r ' ' art inconclusive because of the wide range o f d en sity v a lu e s ob­ tained and the lack o f c o r r e la tio n betw een f r e e - a ir anom aly v a lu es and various types of g la cia l s e d im e n ts . The interpolation of the fTea-air anomaly valu es to w ell lo ca tio n s w h ere d ir e c t g ra v ity obser— vetions were not availab le and the d ifficu lty o f defining the polynom ial equation which b est app roxim ates the regional trend w ere the m ain sources of inaccuracy. (5) The g ravity r e sid u a ls obtained by approximating the regional trend by a polynom ial applying the method of least squares is useful in delin eatin g bedrock c h a n n e ls. The method however, did not r e su lt in a quantitative d efin ition o f the residual Bouguer gravity a n o m a lie s . The r e sid u a ls obtained by approximating the regional by a polynom ial o f up to the seven th degree appeared to be d istorted by the gravitation al e ffe c ts o f deep structures which should have been elim in a ted a s part o f the r eg io n a l. Accordingly, th ese r e sid u a ls w ere not su ita b le for quantitative interpretation. Suggestions for Further S tu d ies Additional gravity o b se r v a tio n s and exp lo ra tio n s! d r illin g is desirable in S ch oolcraft and P r a ir ie Ronde T ow nsh .ps to define accurately the "MMv a lle y and its tr ib u ta r ie s . The "A" v a lle y in Ross and C harleston T ow nships is defined on the b a s is o f only a few gravity o b serv a tio n s. F urther g ra v ity and exp lora tion d r illin g in 103 t a r e a is thus a ls o ju stified for defining the a x is o f the v a lle y and pure o f its glacial se d im e n ts. Very little is known about the g la cia l sed im en ts in the "BMand MK" Hays and so m ore exploration d rillin g is d esira b le here a s w e ll. The glacial d ep o sits o f the outwash apron located between the inner J outer Kalamazoo m orain es appear to be form ed m o stly o f th ick , (hiy perm eable sand a n d /o r gravel h o r iz o n s. B ecause of the mmercial im plications th is area is highly recom m ended for fu r I#**' exploration d r illin g . T h e im plications for detailed g la cia l g eolo gical study in such using geophysical techniques a r e c o n sid e r a b le . They a re not academ ically o f in te r e s t, but can lead to locating further and bStter sources of uncontaminated w ater for future co m m er cia l and municipal u s e . B IB L IO G R A P H Y Agees* W. B - , 1 9 5 1 , L e a s t s q u a r e r e s id u a l a n o m a ly d e t e r m in a tio n : G e o p h y s i c s , V . 13, p . 6 8 6 — 696. Alden, VV. M ., and L e ig h to n , M . M . , 1 9 1 7 , T h e Iow an D r ift: A review o f th e e v i d e n c e s o f th e Iow an s t a g e o f G la c ia tio n : Iow a G eological S u r v e y , V - 2 6 , p . 5 0 - 2 1 2 . A le x a n d e r , H . S . , 1 9 3 2 , P o th o le e r o s i o n : J o u r . G e o l. V . 4 0 , p. 3 0 5 - 3 3 7 . A rey, M . F . , 1 9 0 9 , G e o lo g y o f D a v is C ounty: Survey, V . 2 0 , p. 5 1 1 . Iow a G e o lo g ic a l Athy, L . F .> 1 9 3 0 , D e n s it y and p o r o s i t y o f s e d im e n t a r y r o c k s : B u ll. A m . A s s o c P e t. G e o l., V . 14, p . 1 -2 5 . Bain, H. F . , 1 8 9 7 , G e o lo g y o f D e c a t i e r C ounty: Survey, V . 8 , p . 2 9 2 . Iow a G e o lo g ic a l Birch, F . , 1 9 4 2 , H andbook o f P h y s i c a l C o n s ta n ts : s p e c ia l p a p e r s 36„ G e o l. S o c . A m . , Brown, R . E . , 1 9 6 3 , B e d r o c k t o p o g r a p h y , lit h o l o g y , and g l a c i a l d r if t th ic k n e ss o f L a p e e r an d S t . C la ir C o u n t i e s , M ic h ig a n : M a s t e r ’s T h e s is , M ic h ig a n S t a t e U n i v e r s i t y , p . 2 9 - 3 2 . Coffey, G. N . , 1 9 3 0 , P r e g l a c i a l , i n t e r g l a c i a l , and p o s t g l a c i a l c h a n g es o f d r a in a g e in n o r t h e a s t e r n O h io w ith s p e c i a l r e f e r e n c e to the U pper M u sk in g u m D r a in a g e B a s in : O h io J o u r n a l o f S c ie n c e , V . 3 0 , p . 3 7 3 - 3 8 4 . Cohee, G. V . , 1 9 6 5 , G e o lo g ic h i s t o r y o f th e M ic h ig a n B a s in : Journal o f th e W a sh in g to n A c a d e m y o f S c i e n c e , V . 5 5 , p. 2 1 1 -2 2 3 . Cotton, C . A . , 1941 , T h e lo n g itu d in a l p r o f i l e s o f g la c ia t e d v a l l e y s : Jour. G e o l., V . 4 9 , p . 1 1 3 -1 2 8 . Chamberlin, T . C . , 1 8 8 8 , T h e r o c k s c o r i n g o f th e g r e a t i c e in v a s io n : United S t a t e s G e o lo g ic a l S u r v e y , 7 th A n n . R e p t . , p . 104 1 4 7 -2 4 8 . 105 Dean, W* C ., 1958, F req u en cy a n a ly s is fo r g r a v ity and m a g n etic interpretation: G e o p h y s ic s , V 2 3 , p . 9 7 - 1 2 7 . Deutsch, M , V a n lie r , K. E . , and G ir o u x , P . R . , 1960, Ground water hydrology and g la c ia l g e o lo g y o f the K a la m azoo A reaMichigan: United S t a t e s G e o lo g ic a l S u r v e y P r o g r e s s R ep ort Number 2 3 , p . 122 . Elkins, T. A . , 1951, The se c o n d d e r iv a tiv e m ethod o f g r a v ity in te r ­ pretation: G e o p h y s ic s , V . 2 7 , p. 2 9 - 5 0 . Fenneman, N. M. , 1938, FTiysiography o f E a s te r n U nited S ta te s ; McGraw-Hill Book C om p an y, p . 4 6 8 - 4 7 2 . Fidler, M. M. , 1943, The p r e g la c ia l T e a y s V a lle y in Indiana: Jour. G eol. V 5 , p . 4 1 1 -4 1 8 Giroux, P. R . , H en d rick so n , G . E . , S to im e n o ff, L . E .» and W ietstone, G. W. , 196 4, W ater r e s o u r c e s o f Van B uren County, M ichigan: U nited S t a t e s G e o lo g ic a l S u r v e y In v e sti­ gation 3 . Grabau, A. W. , 1901, N ia g a ra F a lls and V icin ity : State M useum , 4 5 , p . 3 7 - 5 4 . B u ll. N . V . Grant, F. S - , 1954, A th e o r y fo r the r e g io n a l c o r r e c t io n o f poten tial field data: G e o p h y s ic s , V . 19, p . 2 3 - 4 5 . Grant, F. S . , 1957, A p ro b lem in the a n a ly s is o f g e o p h y s ic a l data: G eophysics, V . 2 2 , p 3 0 9 - 3 4 4 . Grant, F. S . , and E k a h a r t y , A . F . , 1 9 6 2 , B o u g u er g r a v ity c o r ­ rections usin g a v a r ia b le d en sity : G e o p h y s ic s , V . 2 7 , p . 6 1 1 615. Grant, F. S . , and W e st, G F . , 1965, In terp reta tio n T h e o r y In Applied G eop h ysics: M cG ra w -H ill Book C om pany. Griffin, R. w . , 1949, R esid u a l g r a v ity in th e o r y and p r a c tic e : G eophysics, V. 14, p. 3 9 - 5 6 . Hall, D. H ., and H ajnal, Z . , 1962 , The g r a v im e te r in s t u d ie s o f buried v a lley s: G e o p h y s ic s , V . 2 7 , p . 9 3 9 - 9 5 1 . 106 Htnze, W. » 1963, Regional g ra v ity and m agnetic anom aly m ap, the Southern Peninsula of M ichigan: R eport of in v estig a tio n 1 , Michigan, G eological S u rv ey D iv isio n , D epartm ent o f C o n se r ­ vation . H o r b e r g , L ., 1945, A m ajor buried v a lle y in E a st-C e n tr a l Illin o is and its regional relationship: J o u r. G e o l., V . 5 3 , p . 345— 359. H o r b e r g , L ., 1950, Ground w ater m the P eo ria Region: Illin o is State Geological S u rv ey , and W ater S u r v e y , B u ll, N o. 3 9 . Horberg, L. and A nderson, R . C . , 1956, B edrock topography and Pleistocene gla cial lo b e s in C entral United S ta tes: G eo l. S o . , Am . , V . 6 4 , p. 101-116. Kay, G. F . , 1916, Som e fe a tu r es of the Kansan d rift in Southern Iowa: A b stract, G eol. S o c . A m ., V . 2 7 , p . 1 1 5 -1 1 7 . Ktasner, J . S . , 1964, A study o f buried bedrock v a lle y s n ear South Haven, Michigan by the g r a v ity method: M a ste rs T h e s is , Michigan State U n iv e r sity . Lane, A . C ., 1895, The g eo lo g y o f Low er M ichigan with r e fe r e n c e to deep borin gs, M ichigan G eological Survey: v . 5 , p t. 2 . Lane, A. C ., 1899, Lower M ichigan m in eral w a te r , a study into the connection betw een th e ir c h e m ic a l co m p o sitio n and m ode of occurrence: United S ta te s G eolog ical S u rv ey V ^ te r -S u p p ly paper 31. Legge, J r ., j . A . , 1944, A p rop osed le a s t sq u are method for the determination of the e le v a tio n factor: G e o p h y sic s, V. 9 , p. 175-179. Lennox, D. H ., and C a r lso n , V . , 1967, G eophysical ex p lo ra tio n for buried v a lley s in an a rea north o f Two H ills , A lberta: G e o p h y sic s, V. 32, p. 3 3 1 -3 6 2 . L e v e re tt, F. 1912, S u rface G eology and A g ricu ltu ra l C onditions of the Southern P eninsula o f M ichigan: M ichigan G eological Survey, v . 9. 107 Leverett, F . , 1906, W ater su p p lie s o f K alam azoo C ounty, in L everett and o th e r s , Flow ing w e lls and m unicipal w a ter su p p lies in the southern portion o f the Southern P en in su la of Michigan: United S ta te s G eo lo g ica l S u r v e y W ater-S u p p ly paper 182, p . 127—130. * Leverett, F . , 1906b, G eological con d ition s o f m unicipal and in sti­ tutional w a ter su p p lies in M ichigan: M ichigan A cadem y o f s c ie n c e , Annual R ep o rt, v . 8 . , p. 9 9 -1 3 6 . Martin, H. M . , 1955, Map o f the su r fa c e fo rm a tio n s o f the Southern Peninsula o f M ichigan: M ichigan G eological S u r v e y Pub. 4 9 . Martin, H. M. , 1957, Outline o f the G eolo g ica l H isto ry o f K alam azoo County: M ichigan D epartm ent o f C o n servation and G eolo gica l S u rvey D iv isio n R ep ort. Mazola, A . J . , 1962, The bedrock topography o f Wayne C ounty, Michigan: P a p ers o f the M ichigan A cad em y o f S c ie n c e A r t s , and L e tte r s , V . 2 7 , p t. 1, N atural S c ie n c e , p . 1 9 -2 7 . McGinnis, L. D. Kem pton, J . P . , and H eig o ld , P . C . , 1963, R elationship o f G ravity A n o m a lies to a D rift—fille d B ed rock V alley S y s te m in N orthern Illin o is: Illin o is S tate G eological S u rv ey, C ir c u la r 3 5 4 . McGrain, P . , 1948, Ground w a ter r e s o u r c e s o f H enry County Indiana: P r o c e e d . Indiana A cad em y o f S c ie n c e , V . 5 8 , p. 173-187. Marritt, D . W. , 1968, A g rav ita tio n al in v estig a tio n o f S c ip io Oil field in H illsd a le C ounty, M ich igan , w ith a rela ted stu d y for obtaining a v a ria b le e le v a tio n factor; P h. D . t h e s i s , M ichigan ? State U n iv e r sity . j Nettleton, L. L . , 1954, R e g io n a ls, r e s id u a ls , and stru ctu re: i: G eop h ysics, V . 19, p . 1 -2 2 . £ ^fcimerov, B . , 1929, R e su lts o f g r a v im e tr ic o b se r v a tio n s on S h u v a ? love Lake in the w in ter o f 1927 and 1928: Z e itsc h r ift Fur Geophysik, V . 5 , p . 2 9 5 -3 0 6 . f.; OfcJham, C . H. G . , and S u th erla n d , D . B . , 1955, O rthogonal p oly­ n o m ia ls, th e ir u s e in e stim a tin g the reg io n a l effect: G e o p h y sic s, * V . 2 0 , p . 2 9 5 -3 0 6 . t; 108 »rs, L. J . » 1949, The d ir ec t approach to m agn etic interp retation and its p ra ctica l applications: G e o p h y sic s, V . 14, p . 2 9 0 -3 2 0 . tin, K ., and B e r g str o m , R . E . , 1967, G lacial D rift in Illin ois: T hickness and C haracter: Illin o is S tate G eological S u r v e y , C ircular 4 1 6 , p . 3 3 . ft A . , and J a in , S . , 1961, A sim p le in tegral tran sfo rm and its application to so m e p rob lem s in g eo p h y sical interpretation; G eop h ysics, V . 2 6 , p . 229— 241. Hey, C . , 1943, G lacial p oth oles on Outpost Isla n d s, G reat S la v e Lake, N orthw est T e r r ito r ie s: J o u r . G eol. V . 5 1 , p . 270— 275. | tefer, E . J . , W hite, G. W. , and Van T y l, D . W. , 1946, The Ground W ater R e so u r c e s o f the g la c ia l d e p o sits in the v ic in ity of Canton, Ohio: Ohio W ater R e so u r c e s B oard , B u ll. N o. 3 . p irv o s, G- G. , 1965, A gravitation al in v estigatio n o f N iagaran r e e fs f in sou th eastern M ichigan: P h. D . T h e s is , M ichigan S tate | U n iversity . ; $ p a g e r t, A . J . F . , 1942, D eterm ination o f the Bouguer c o r r e c tio n I constant: G e o p h y sic s, V . 7 , p . 2 9 -3 4 . Ptmpson, S . M. J r . , 1954, L east sq u a r e s polynom ial fitting to gravitational data and d en sity plotting digital com puters: G eop h ysics, V . 19, p . 2 5 5 -2 6 9 . ftfceels, D . C . , 1947, A m biguity in g ra v ity interpretation: V. 12, p. 4 3 -5 6 . G e o p h y sic s, lls , D- C . , 1967, Short note — What is resid u a l gravity: G eop h ysics, V . 3 2 , p . 8 7 2 -8 7 6 . »r, J . W ., 1891, O rigin of the b a sin s o f the G reat Lakes of A m erica; A m . G e o l. V . 7 , p . 8 6 -9 7 . inson, D . A . , 1967, H ydrology o f G lacial D ep o sits o f the Mahomet B edrock v a lle y in E a st-c e n tr a l Illin ois: Illin o is G eological S u r v ey C ircu la tion N o. 4 0 9 1 , 51 p a g e s . it, M ., W o rzel, L. J . , and Iandesm an, M ., 1959, Rapid gravity com putations for two d im en sion a l bod ies w ith a p p lica ­ tions to the M endocine subm arine fra ctu re zone: J o u r . Geophys. R e s . , V. 6 4 , 1959, p . 4 9 -5 9 . 109 Ttortoellt E . , 1941, A n trim -E llsw orth -C old w ater sh ale form ations in Michigan: Bull. A m. A s s o c . P e t. G e o l . , V. 2 5 , p. 7 2 4 -7 3 3 . Ttotman, C . F . , 1937, Ground Water; M cG raw -H ill. tJttdtn, J . A . , 1900, G eology of Pettaw attam ic County, Iowa: Geological S u r v e y , V. 11, p. 258. R.» 1956, Bouguer c o r r e c tio n s with varying density: V. 21, p. 1004-1020. Iowa G eop h ysics, Vfcr Steeg, K . , 1934, The buried topography of N orth-C entral Ohio and its origin: Jou r. G e o l . , V. 4 2 , p. 602— 620. VWqyna, W. J . , 1953, P le isto c e n e evolution o f the Ohio and Wabash valleys: Jou r. G e o l . , V. 6 0 , p. 575— 58 5 . Wtyne, W- J . , 1956, T h ick n ess o f drift and bedrock physiography of Indiana north of the W isconsin g la cia l boundary: Report of p rog ress No. 7 , Indiana G eological su rvey and Departm ent o f Conse rvati o n . Wtllman, H. B . , 1940, P reg la cia l r iv e r Ticona: S c i . , V. 3 3 , p. 172-175. T ra n s. III. A cad. Zumberg, J . H. , 1960, C orrelation o f W isconsin Drift in Illinois, Indiana, M ichigan, and Ohio: Bull. Geol. S o c . A m . , V. 17, p. 117-1188. K A L iA M k 7 /% > O A |^ » * > « | E r 1 PLATE I SURFACE GEOLOGY AND AND BEDROCK CHANNELS IN • • 33 as Lm*» d*m * • v ». TP t' * > KALAMAZOO COUNTY MORAINES g£pa] TILL PLANE GLACIAL DRAINAGE COUNTY pw m MORAINES OUTWASH TILL LAKE PLANE GLACIAL DRAINAGE DEPOSI* BEDROCK CHAWWFI 25 • • • • • 467 • o 563 o • • • • • • TIS 580 o • ....................... A . RI2W I - ■ t 4 4y • K ..................................................... ...... 565 o B9J2 O 612 • A ' •I• • . * * • /• \ • M 0 40 V.'- 580 O 92 O 853 • • 0 • • • • o a® * Oo o o® * O »C9 •' RIIW 6 S r u 35 30 * 796 •7» •itj ' 690 O 634 • 796 643 * %* * R • • • • • / •X • j • • • • r • L RIOW 7M 870 822 732 * * * * * * ** * 758 t> ■ ‘ ■ • N • • • • • [ 25 A im R9W 4 4 ,, f r t ... lM , ' .i* • ■ • **. • * • . * / - • V . a *: . * 4 * V . " ■ ** ■«** • M * - ' . . ■ 0 6 • • ’ V w , j ' * ' ■_ % " ' T . > V : , ,v i* . ■ ’ 4 . , > '> + ■ « ► « ■ * , J I. ' - A ■■ «■ V * P V t •y , ' 1 V ’■ ^ ■ _ 4 4 ,4 .. o i * 1 C ' . -» V ^ m *• V ' . 4 4 - . , 4 , 80* R O S < oO = 0 “O go N S ° go 9 so 9Q » >w • 0 _«> o> 0 o feO • 0 » S° |o So to^. •o * So 9 »O TO « 0 °S <0 so go SO S q nv 50 SO . 2 SO GO So n ♦ "05° ®o 9o 66 8 0 so ■*- * X r y r “*- . It*"’ 11c’*^ r .y . k' , A , '«'l■' ■‘ * , i'V* 4 T : ^* \X ■ . y. ■ •' < u V -■***-• ^ :* * ,■ ‘ 1 '«■*.. f " I ,•'; \ * * ’ . •*’> •:■- • ; '?f ' ' *■ • . ■ -■'>. ■• * ■s'Vi Jbr W;•***/ W': 387 o 699 o T. V "*■ ’ ‘ * i 860 870 630 717 • • o • 711 T•I • • • • F •!• • « 3 . .* • •J* • *•*6 . 7I» 690 762 j ) . . . R- • • •T 0 758 766 670 o A- A V o 021 • L V 810 i • 0 * • • N 808 906 «♦« 421 O gei M F3S • • • • • 334 o / -1 0 *5° 500 O 537 o 584 o 539 o 847 862 o 617 o I 893 O (3 690 681 A • U IM c 606 L 680 775 o 666 639 810 O 670 O 862 o • • 696 854 • 639 O 837 O 824 O o M -A X 3S 880 *845 870 877 i o - T4S • 873 56 2 o P R I 0 E R A N D E I 572 o F I 1 778 • i s c 695 H 0 0 796 rge 699 748 750 788 6 90 O 670 • R A F T 741 o 777 o 805 7 78 776 O 776 B R A'” 605 850 60S O 625 827 A** D •Y I 854 O 839 O 837 O 825 824 O 847 O O _ 8 67 846 855 o 827 o -* o 774 o 810 o 831 w 644 A 895 854 o 850 834 I 22 832 881 K E • S 819 H M 845 * M A • -T4S 810 o 562 661 660 563 643 45 * PL RI2W PLATE 2a GRAVI7 609 o 603 o • 0 40 J____ W\TY i STATION AND RIIW DRILL HOLE 683 O 668 O N LOCATIONS N • • DRILL HOLE REAl DRILL HOLE NOI GRAVITY STATION R 30 J ________ I0LE REACHING OLE NOT STATION BEDROCK REACHING SURFACE , BEDROCK ^ N N IS IS BEDROCK ELEVATION OF SURFACE ELEVATi DEEPEST POINT « 604 o 60S E ■ST ELEVATION POINT i 836 855 25 j ________ i R9W eio os- 42 20 l \ e 6 - 0 V I I \ / \ \ \ \ \ \ \ \ \ i \l 4 _ \ 9 V N V 2 j0 - // 3S \ / / / / / T 0 W 1 / / 4 w ) / / / / / / / / / / r / / / / / / / / / I J I / • I I I I \ \ \ \ I \ • \ ' 7 \ \\ \ \ A \ \ \\ \ \ \ \ ' \ \ \ s ■ / i I j l / I f f m m * * '///mJn i y /m S ' / 9 / '/ y / / / S / / / / / , / / / I / / / / / / / / / / / /? / / / / / / / / I / / / / / / / / / / / / I i / / / /// A 4 \ \ \ \ I / / I > * f ! ! I / I 1 * ' / I / / / / I i / / / / / / ALi/i / if r/ / / / / / / i '! /// // / ' / // // /// / / 1 • / ! / ■ /> • / / / / / / / y y : / y s s S y f , / s / / y t / / / '/ s / / /> / / / a / '- m /M ' / s '/ w ' -K / II in / urn / / / // / ////, ///// 7 ' \ \ \ \ \ \ i / \ \ / / / / / / ( / t I y J T4S I T w / I / / / ! I I // 1 I i I / !\ I I 1 LLI dr \I \ I \ \ I \ \ \ t I \ 1 \ Q l I I \ \-l \ \ \ I 1 \ \ n I / Ic / I / 1 /& / ■ / / / / I I o CO / / / / L d / / I I I / / / / / / / r / // / / 9 / / / / / I / I / I I / / / / w /// ./ r // '/o\ / f V / y \ \ / / / \ o / / / / w / / i l l / / / / 9 / 4 9 9 / / i / / // / / / "l" / / / / / ^ 1 / / y I / /, / / / \ \ \ A w V * t ' 9 l f V / = /n t / / / / / y / / / / /> " ' / cx_ I y t / * / / / / / 1 i / i1 / /\ I \ l l HI I \ \ s t |i J \ V\ \ 5 \ - v O l \ / ' / / ' A f / ' / / / /X '/// A /// / A '/ / / /■ / / / / / /7 / / / / ^ / C O - *■ \% \ / N \\\ \ \\ W ( \ 9 / ' * % \ \Y\\ \a / IY l V ■ \ \ \ \ \ \ V \ \ \ \ V \ \ \ \ \ \ \ \ //// / // I ! h 6 -O i i ✓ r05 42 1 \ 1 RI2W 1 3 I / I 13 r > W^xWWW \ \ \ \VVW\V_ \W % ^ \V I v\v\ V \ \ \ V\\\ ww \ \ \\V \\x V N !ov\ >LATE 3a. CONTOUR IV SOUTHERN H. ®° UR MAP OF RIIW THE BOUG HERN HALF OF KALAMAZOO COUNT SC OUGUER GRAVITY 5UNTY SCALE ANOIV CONTOUR I : 24000 INTE / 30 ANOMALY )UR INTERVAL 0 -2 0 n P M 5 ? I T V = MGALS ? I 5 G M /C .C 00/ M O I d / // \ \ \ / \ (Cw \ 25 \\ V \ ) / // i / ✓ I I I I. I / 1 I / / s \ / / i / / \\ \ \ I I / \ / / / / // / / / / / \ / / i \ \ / I \ / x X / / / " / / / / / / / / / - t / / / / / / / / ' / / f t / f y / / / / / , / / / / / / LJ ’ / ' s / / ' O / / / ' S '? / / / / / r / / / // / / / / / / / ( ' y / / / / / / /// / // / / / / / / / i ! < 1 / 1— ~ 25 \ \ \ \ \ S \ \ \ X V \ \ \ \ \ \ \ v \ \ \\ \\ V \ \\ \ \ \ \ \ N\ \ \ \\ \ \\ V \ \ \ X \ Xw . X \ v \ \ XX x\ \X \ \ X . ^ x v X -2.0V X ' x V X \ \ \ N 8 o 2C) R9W \ \ \ M. \X \ \ V\ \ \ \ \ \\ \ \ v \ \ \ \\ \ \ \ \ I J v 1 1 1 1 / ^ - 7 N\ V / / / \ \ A r> \ \ \ \ \ \ \ i \ \ \ \ V \\ nn v \ \ \ \ \ i^ ^ N V \ \ x ~^ 1\\W \ \ \ ">/ / / \ \ V4?' ! \ \ \ / t 'i / i 1 I I 1 \ \ \\ \ \ \ \ \ \ \ \ V\ \ \ \ \ s, \ \ \ \ 25 N \ \ V\ \ \ \ \ \ V . \\\ \ \ \ \ \ W H P \ \ N i \ m TIS TIS -2 0 6,0 J 6.0 E \ R R C H \ V So. N \ N w •% vV A ' A o \ \ \ ' \\ \ / iM \ ' \ 1! \ \ \ \ '\ IIV:-: Iv — / (" W I i i \ \ i < /)/ I. \ I \ \ v w ! \ w \ \ \ i / // * f i / iI//' 1 1 / 1 • ^ \\C \\\^ \ ): i ii y ' / h / / / / s 1 i -20 S T £ / M— ^ I I1 I \ m \ \ / / I I € / ' X I 1 w / r V / 9 I / I 4 \ \ * \ h \ //7 //> ! 1i / f / /' i I f j / f / / / / A \ * ' * T m V / H i n / / / / / / ' / / / / / / // / / ' // / / /M ' / / > 7 / * / / h ' / / / a — ^/ /// / / / / / /■/ // / y / / / / / / / /////q / / S / y / / / / / / / / / Vi > '/ / / / / ///V /tf m m - 15 / M A 7.0 C K / / ' / / / / i / '///M fr/ / / / ' W ! i ^ j / / / 1/ / / 7 t / y cr \ w / // ' // / / - s 7 I ff // / / / / / i i 1 f / / JiiS////' S ? 0 / / / 0 / / / ' / / / / / / P O CO / / / / ' / - 15 CONTO CONTOUR MAP OF THE THE BOUGUER GRAVIT GRAVITY ANOMALY nc 7.0 NORTHERN HALF OF KALAMAZOC -AMAZOO COUNTY / / / / / / / ///// y/ // '/ ! /*/ 77/ / • -jv r , .tJ W > ■ 'f <• ' 4 «' » **- < 5 / i •? <- w, -' 'V k *+ ,rr i j . ■ r 'Hi -f i■ ■*-* * »!<*«* > :« •*:AJ 4 / /• / •/ ‘tv >>■ U ijf * -.. *v , ( [ Ll P )c 1 M\ A / 1 - , •-C -;>■ A/ ' " T 3 S / -10 X V 1.0 X )c A a A /;/ E \ \- \ Y \ \ \ '■ \ % / ' •' N\ <' \ \ \ \ \ \ I V \ I \ \ I \ x\ .'3.0 3 . 0 \ \ V » 1 / / I /" . / M / i \ \ 1 \ v / \ \ / y ^ ' \ y s I ) \ \ \ S. / s s / I \ V. V / / ' v - - ' \ S' A/ s / / s / / Y /' / ! i F3S <•* .2.0 e k V , " K Ii T4S A. 1.20 R y 0 V 1 I 01 / / / / / S \ s 0 / / / 7/ / / / / / / £ / / ^ /> C / / / / / I - X I A r £ / c c / t- £ , IV \ X C \ ~ \ r \ ' s K \ : \ ' w\ N X s \ \ \ \ \ » \ \ \ \ \ \ \ \ \ ' \ \ \ 's i \ \ '\ ^ dr t: K \ \ \ ' \ -------- >\ » -\ \ \\ \ x \\ I £ V >V V V V % \ \ \ V \ \ — v N ' N N N. \ '' \ ✓ \ N x / s / \ ^ \ Ni \ \ \ X \ >v N \ \ \ \ >• N \ \ \ N \ \ x \ X * x \ \ \ Y i H - O s * % \ x \ Ns V V \ \ N X '\ \ N c \ X \\ \ X V '' \ \ > \ X \ \ % \ \ \ Nv \ " 7 Y 0 \ \ ✓ ✓ 2.0 / \ / / x / V / 1 V / / y / / ✓ r / i i t t \ t \ t \ \ \ C \ \ \ 1 1 1 I \ A \ \ \ \ ) / f/ - \ \ 1 1 I 1 i i* \ t h • p VT’r > \ x -' \ s ( I ? \ 9 E / T4S T4S 05 o 42 RI2W /I j E y y v>y 0 / / \> ‘ y 1.0 / / / I I I \ \ I \ r \ N ■N s I \ AN I / \ / \ V \ \ \ \ -/ w \ \ 40 \ i \ V ' 1 \ N ' \ v 1 * ) ' 1 I I I I c _bi O -'7 0 Xiv ' 2.0 ) / - / 2.60 \ RIIW / Mild t I -jV 4 9 \ \ I tt i 9 n I I \ \d v \ y ✓ s ~ \ » o \ • *. w ' / 2.0 N, I I \ \ \ \ s n ^CTrrrr ^ ■ 9/ ' ' / / / / , ' \ -----------------------' V / \ \ \ " ' s v ^ ' ' ' s ' / s ' ^ * S s * ' ' / \ 1i i \ I! 1 \ \ > » ' 1 » • \ » 1 I i ! t RIIW .3 5 CK TOPOGRAPHY HALF OF KALAMAZOO SCALE I : 2 4 0 0 0 RESI COUNTY I I I ✓ V / .35 RESIDUAL BOUGUER NTY CONTOUR l( DENSIT COB R GRAVITY OUR INTERVAL IT CONTRAST 9 ANOMALY 0 -2 0 MGALS 0 -4 0 GM /CC RIOW 25 R9W \ V I I I I I 1 I \ I R9W ' 85 20 05- 42 J r m m r n VS* s »t* J , •Vv X. -*•* *‘ TS 3 0 ' RIOW } . \ 25 ■ - ... / f **‘• - - r ;* • - ' f*1 V / / I ^ . 9 c r - " ) v y 4 \ \ / / * ■ '■— J ^ — / % f ' / i / D ---------------- / / / /" / / / / / / / / / / // } i ' / J t t * .' / i ' ' / * / • 25 \ .•> % frv -V -*r & \ v / V ■: f \ # 'V \ I ' ^4* J Z .9 C T — ') y « \ I I CO -CO- - 00 -p* V \ \ c \ ■ * • * - ./. 1 \ \ . ■■.S' X I t .;•=-■'■> - . ■ v' ‘- -■■-"'* V rt%i 7‘ \ • N * '•**■ .--* . v > f I I / / I « / \ r ^ ^v- \ / A V / • i F \ y v ^ ___ / / i i \v \ l V \ h ' \ \ V s \ \ . 2 0 ^ N . x 2.0" \ X ' v \ I I I I f 2 / / 3 / . 2 0 ■9* ■f*.r -i 20 i. ■'» / s 4 T / V f 25 /\# v. N l \ A ■ > ■ V \ \ ' ' V. I •. I I I I I fr/ ?* * Av v 1. V i I V ^ ? * 0 2.0 I I I 1 I I / I I / / I 2.20 i / / TIS .«• ♦'*> u V - 0 1.0 i . \ . \ \, -s'V” \ ' / vl t x\ \ p ! r i . \ I . m \ l \ s I I '• . \ » ’ I \ A: ■ . % W ' C ■ ^ ' v 2 . 0 & . . ' ' ' X \ 25 V, rf \ 1 I i r / TIS ’ r * ; L -*^ , .r> * I'W V - 0 1.0 I V /.o i I M 1.0 c > V2.0 / I k ' / 1 \ ^ V-y ) R c . r \ . ■ . -■*';v; **•■'% ■ *v ■7T' T *;v., 1 • ,* v * i.ir .A .s * *. v ■'ft r •■ '. w' ... •.•> ■*"”&v*Tv» *• ?*■ . j / / ' / 0 \ t 9 / / / / / ' * *✓ / I / / / / / ✓ * / / ✓ j ✓ / / ^ i • * ^ f ' "vr *■ * .w»> q \ v \ V i t I! I : ‘ ft*«„ J M / / ( S i/ / trr .i'i> / , ' ! 1 1/ i / !I\ I I * * I I I 1 1 1 \ ' 1 V \ V | i ! * * % v \ ; * 1 / y i 1 1 ! 1 1 1 v \ \ \ i / i i i I I ■ i /A / / / » # i •* / * . / . /./ / i il —. c*/ , / ;/ iO .I / 1 1 * / , / / I / I t / I I/ / ' / V X \ v ■ N V N «. N \ \ \ V \ \ \ V \ \ \ \ \ ' ‘ \ \ \ \ \ ’' % N i ‘ t ? X( .V )y i < f£ u S U J ^ / / . / : *s / ' s . / ✓ N N \ % i i i i o \ \ \ \ p I I I t V 2 0 1 \ / / 1 1 \ / / s / / / I * \ \ $ 2.0 2.0 v /I r CO O ' TIS c A 20 i - r o C D 'i -\ -\ A X 7V r' r n r r r n r r r *4 ?! X/ ' X r i u u L C U \ H / S s / i / 2.0 2.0 s v (L .4 c K X. r r r # l i I I % 1 \ ' / I I \ \ / E I » \ \ \ * \\ 2.0 V . T\ 0\ \ t x i i ' I : / ' x — / f N / I \ / / X N\ \ n T T T -l -L -I-L ^ N > 1 \ \ s V \ \ \ \ r \ \ \ ' x \ \ N\ \ 0 \ 1 \ x " N " ' x \ ' ' \ Tt t X>. \ V I 07 0 V 2 \ * %S>*i -V * .t. r -S s '■ b V A * * * w. a 3 : m . \ \ ' N I £_vJ T r ip s ' 2.80 0 a 0 ■y K- V r <*+■ ^"v- '** TU ’. i-?-. ♦ V 'l r>- >*' f'* T* «* .*■ *v'a*v c *t’ t--*. 'A-*, -•rl 1?*^. >&#* ^ ’ f r+,j iJ* ♦ ■V T 'r , * "V ■£ •ilc> \ *r... V^r* ' - ■' 4 S l: , " V* ' -Sfc'r: ■» ± - ■ ■"■■ i « i'-i.‘ ,V f* < *ax* ^ $ 1 : ; 'r ^ : ■.'*•«* r :T . • J” ' l 1 - . -v / "V^j .S ..; * -> * 'H «8 ~ Si .-■• ■ /v 1 ••• .:sj •*; J S B I o * ,-t. .■ * < .■» *■'■ '& - -■. "' r «.* »' I I \ ^ ' 1 -»*>Y"■ ■ ■ •• j * ;, ■-jS 'v:** x>. ■*«,*: 4 1 f i I , Y *‘ & * !<•>,V* T * r ' w - *«2 f?V f»U^ t -SV r. J: >¥> v. f ' ?, n * t* SrV * ' ’ •;’- / *'. V-'#V *•. v;; r ST ' • ♦ % I \ / * /■ _ s / ■S'*. . ■‘ >, I ‘ ■J ^ ^ V •" 'T \ r/;Ar •• '' M? • , ■*;v f c "Hit- H/"-- * :3 P ’■-’jt. ' *-, / -i :■ .*V-V « rS 4m " «a ^ r * * l#J *X *;■ ?5 . . . ifs vm- ’ * * ^" V * >:YW ‘ ■ i IV, 4*v #- ;*' tv. * L-■- . 'S . v ”. . ' ' • '» * k **s i •' *' j. * ■ t- 'i ■* i a'. k*W V :' ^ ^ . , J L£kJ)r£iL£'.j&!* 4 -V :-; iu . A i* 3 ^ . *’■ St ^ ' - **<*• -*v / ' ' •“' . f v „ ■.. i ■i. .‘ • w * i- J k . jr* ■ «* - • _ s&iM t 'J * ^ ; *v =v / *• 2 5 **- ?s ' r’ V * ™ ; k • ‘ * • r‘ 4 \ ■ * ^ r fc ’ •jk* > . ^ '•*•** 4 *L 03 (L . Cj '^iaj it ,'rjtf vNkj ,* j' ’' ^ ’ ^ ^ V . .' * . 1 v P; > v * V -p * • j' -' * ■**■ >■' ' ■** V • A^^a! * . ' ,. '•■•.r- •• -T;> »'*£-* < V* > / '. a. ■V< tW :. ;>*». - - ,r \ i •-> \ ■’- X > & * - > : > - I L^jSV » £k!IC -;'i& /lA . Ai f •*"* ;4 y J a ^ f k i i k t 'f l B 'X % i i \ , - - . i • * -'• v& . '- > . > . . . i , :"' ~ '-*r-v - w>’-' • *** ' ■"■' ■ - - <* ’. r 4V *<*V 4 n 'V f,, S • ■ 'iLjt. A Jri . i ‘ " * & « £ * : '. ^ ; •v * 1 ’• * » w A ’MM • ......................................................* *’< « ■** - ’*« ■• ' ■ T •■. >*t ^ » - j ':■ i. -.«*',? 4 S .t < -■ : * ti ♦ •• «•* ' •**■'V»•*■ !T '* ■ ■■V*7 »***•' - tfrv -* •IH 1 t * ^■^>' : y 3/C~ * . ', V ; * «• I•»* * ‘ ».K- *■.-* - f*•■ • '7v -*>,vv • *'l l ^■, ■-■ m ■> . '“•■! 1• '‘.* ■,• V ftT •-- <* * ; f K ‘. J • * < •.m; '; : a 4 : ' ' ‘ ■ ■- t* . • ;• A ’ :- Jl V r-k 7» . !>'. : & ■►>■■■*»>■ & , f k V(; ^ * j ' T- * *m . '■- • . '-r? ■ l* > > a *- • - v > ... - £*vjA?v^ ; ' - I ■ r‘ - *■■**,»;■'' '% .: *> '% - -■ ■.A- ' '*’.\*+>** . j£; .: Jyjil» •*, - 7 .t^r'V'Si • ’’ — IS ? * -: ''VI.' ■> ■ \* ii; .'■• 1 1 ? ' '*•?, '% < ' ■ - ■ * > r V }* * « .a - ■ •:.i - : '‘ <*".• *. .**'&> *» * • -j*. ' i ^ ..-•■** ' ' * * S v s e v * *•' /-<•->* - *** - *>-A . «,.•»*•• •*.., " '. ’ V' "* •*•' 0 > -fi'' ^ ' *+ 1 ' I v*a ,] • -f | - --'>•' ^ J 4 *.. • .;* • - . v ... - ft, ’\4 ^ 'i ■ ■ ^ ^ :.^ h .l, • ^ " /■ j;. « \ \ \ I \ 1 1 1 I I I 1 1 1 1 1 1 I 1 I / / ! \ C. y I ■4> tL*. ’ ♦.• --.'J*U •■J?-;*■ “>T- m -.•' ’v»■ 'f,- V ■' ^ ' i ..•■• / - V S ® ? * * j*. '.W ■**, ^ "• v v Eaib-*** Z fh \ A “V .« - ■ '• .'-«k'. • »? ’••“v-vs. «■' -i ■. ■■ '“M - * ‘.a ’» . ' •*; - ~l ■' o i> # * • • S* .*«» **. •-*• ‘'-v* •• ■ • * t 'V v* I ,■ i-’-SOv V \r • ••V zi * 1 « 'Lr?**- •~ 'r. i .fA fc- ^v.1 v * ‘ ► :. << '**»■( <* . ,; *' > '• ^ ; .#* J* •<■ r* * ■■ ■»- * •» - ■<• >■' .. • * * f ** #! jf'fi >>rA: V y ; 4 r s E # ,^ vt i , «4 ••<■'• - 'v * •> ' Z*\•~ , "%e^y ' v .... ■<■ ^ •; » *•- - -'v*4e H*v--. / .-•» •V .' ■«* /> I I I / 15- 3.0 T VJ / i < . .vj -1 * ■*»* > ■ t - ‘-' *•. > .••* ■ »s2. »• - ‘ •‘• *.. " . Vr!" .... u' -4. .< . ,-. *•* ., ■.•••?i, *,F>» f .■ #i ^*Ll» ,!t ■>J\ ■ *'> ' r ?*:. y i f *-"7'*-.' ife'< ’ ’* » V *• r'jt’ *•»•••' .. •« *•. . , * . \* < * <* • - -: \ •i ' W • ** . ,r ,;A J-? ■>?»■ ] , r',- ' , • ? ; * x • J ' *- : **- i ■ skiti ! Hi a .jv ^ X * ;;. • •’♦;/. ::-r:» '; --.* w .-j ••^•* ’ *-■* ' ^ \ i ,-*• - • > ■ pfir. -*v ..'j »v ; -:' ■ ■ •* , .**< -> *• ' :«k* - y rv ? - If"20 4* r g " g — '! "v I .... n . RIOW • . BARRY COUNTY RIOW -|-«oo - A ^ BARRY COUNTY i = f c . RiOW R aw ' > At V 1 : / A l' ,\ \ \ *>'/ ~ ' S 'tfS / « / ^ / - rf *. * ! U i ' . - v v --------- i ‘ ■ ’ f7 I >J \ } V, \ > |V A A i < [ \ / ' s / ' ' / / \ • '■ A / ' Y J/ p y k •;' i "■ i •A \ \ \ \\ / / / / • ooNH:;;::i ■ i j // y A ^ / y -J" " ! // * ; k ) $ / . . - < - ; ) t // /x / A ! E..-V *' L I //V * -j* p ¥ * w ra I 4 lito fl *"20 *“ 15 600] Y O U 4 ■ i $ 1 * $ if ® n » ; j A\!i} | / f i I *! S ? t f © ^ y n a - A s t ,-A x ■6 4V A j H K s ty l 4*3 ^ M / / r ; ; - " ^ - \W ? ! / / / / ,V 15- -k • ^ r > 'x N 3 y j * J | ^ j I yy J » J ^ 4 'T 3 J \ \ V i K # ; >/ /;*A'' * /* 9 \ \ * ^ p y * u k - 3 '* 7 #7 i / i j. IV .' t.V"*V Q I i // / .' ■ ■ : *V «j X' + " - - A- ' y / /- : S ''>V | 1 i \J /r /V # / 1 I ^ A i• , \ \ 4 v 7 ’. ' \ ; / y / r \ 'v\\ A // / ♦ * r \ ---..-■ - \ f\k"-—- ;f"'''7 A -'A ? ~ r ~ ~ — r \ \ •-<" \ i \ t // // . 7y /<>'' N< v\ \ , y ••\ W .- •\ \ . r J / (— *- , y , y \ \/ f A/ / / }\ /; fy ; l / / >" / - \ ftll • \ ri ^ ■• »o- 4a A ; \[ \ J y ,/ ; v ! : JJKr . ' S • ' , i* .* : '*t-A ' A— J+ - 4 ' “t r^ ' - ^ : : - - - 'V/ ,A" /---------v.—*------- — / loo......... T l# U U/ VW m : ! •■ i ' ; A / s '■ v m / $ W < / 4 ; i .\ \ T42P 700 ---i \ < Y> / / i ........ )l / * i I I U PLATE 5 I I \ PLATE 5 BEDROCK TOPOGF u t £ BEDROCK FIS' T O P O G R A P H IC m eet f M AP OF KALAM t a \a i? r A ' 3 £ T O P O G R A P H IC M AP OF K A L A M A Z O O C O U N T Y , M IC H IG A N *' CONTOUR i IN T ER V A L MTVI • 25 LtVCL FEE' £ .A M A Z O O C O U N T Y , M IC H IG A N CONTOUR IN T ER V A L 25 »AT*« •«* ICVCt FEET M m •CO >,x ’ I/'**/ *'''V'1* *’/ '< i ' / V - ' ; t* /' / » % jrj— 4 — K L ' . * t i■ ■ UUi - W' * * r » 'f3 / 1 / -W- / T m r / . S . N .A n n ni ::::: 01 IIM •-"/vy/prr iA- \ ^ -^sSj / / #?/r rx \7/.^ > s,' 7' ) v. •x«- fc v I*; / / 1\ / l' S i ' :/ / 4 ' " V / 1 / / /* \\ \ ~ f / ! / / / / /y / # # / X. X . X '< X \< -4- - -v— v-*-- p » v ~ ,*. ...i,. , ?*» r / •© Y / ' \ M I \X i v i */ , *, - X 1 / in \tf M i l l « < I t fl • / / / *r r - / \ I T I \ A X I .. ■ 4 P* •• r '"sj' ■j"iy 4 V **■ *■■1 * .y H ■' ■ J iit Jsfcl 4 -svv.^'V’ : " ' - * >'*>■ -■' . ’ v ■ A, . ;> <■* V. ■' <■. > , t‘ e * i. ►a • V Sfj •Y 'vr- T .'■y j *'■7-.w •> ** ■*• -f• . ■. * r , OJ v \ •>;£ ' ' > »V ■ . , ■ -l.' f* >v ■*3 4 'T'* . * . ., ; T-':K«' ‘;-»-• Vi-i • *- "<•-* &*!?- *‘+4±z1-, sh?m *i Xr-Jh.th:*•?>. dshjA , “ • ,* . . ; ,*■*« •#/* .** £*’- *f*>d , ‘ •iT , i V ,• *r\ -rw * V V>: 4 ,-■ •. ■■ • • ^ . • v*’ ■“ ' • -< > ^ r:- -■. . , ;'< .,y y ■ V JN' -1 * : t «' 'i?; ^ -.. '. f , 11 t. Tt* >•’ *V ' S*, 'y-v/,..1 •>.*.- - **’* -w < . .* . ^ V . »*I a. * ■I - y* F ; ^ t i A M A Z 0 6 '.C O U H T Y ,^ * - rNTERWU- « 25 ki Is** y - - ■*' % - ^:^~f*>)■*«*:■■ . ; o ,• V v < * v ; . . - , v ' £ - 3 ? j*4 ^5. -- ,..* t y "1 £ * i. , * m 4»*” /N *>' 'A & m *rv-' 1 >% • . > < «‘ >• V m &&&&& : ;• Jk-agr * « i * « r t ^ j SMi "3 - „^. •;. • " i S ^ 't ~ z S i l * : B w* k>r ,* ,VJw** V ^' »f ...4 vf-*J» uS-Jj < r «rf4 -. '* »*, --*4? A'm -ft.-. ±+.A^l. ^ - 1,4v/ ’i/ t ’># •«'■’/_, A*’•«*■ >“ k * •*.- .# ^ •¥*• « • y T “ / •:* - ■ SRi ■as .1* " * . - . ' ' I '*■■». ■■ ■‘ ' ' 1 ■ . c. 1 -f S ; t-J ;V £ * V * ■ ■* - ' . • ■-* *' ‘v ■ , ■< ‘ ' - . V ■;• ►jr. -w.' 4. . ' . ♦» • , . -*.> ■•. ■ 1 . -I.- A #*V «v*’ *' .. v . 1 ' . iv W ^ a N r ^ '- V ' ' ' '■ - x - *• ' / I '■*.. * ‘ y +■*v “‘ x 4- X ■ * •* '* v ■» . ■;* iV. < . . y **r,* 7 *a ...'• .. * • X*' *v *.*•-* : >* ' k. \ » I / I t / / / / / / / / / i/ fI / " / 7/ X ' / ' / / / / r / r | I £ p t e v * *> > ■ v ■ ■*% > A*?’-'. . *. * ^ ir‘ / / ’ / / 9 • / * / & T / V * s s U ' m 0 : i,, nJ| i, j /i j i ff9tftjr; V / / / / / / I / / / 1 / / / / V 800 'f *m * w ■. ' *r;■' t t t • ("Try's*■' .»■ ./ /*■ ' jt .-*•#■ • ■-■•. 1 i* .'; V. .. *K ► - I- JS-* * i f - ‘ r^-4 V* J i • •,«*•>;, ., !•*. '■•'••. */’• • • . .. • 1 \ / / r * 1 / I / / / y j*\' \> H \VV„ V ?. ?■ : ■•' ' »v 't- . ■* ■ ., ■T'-' . ‘ -■ i ' ..**. •*-t-. ~ , T '.,. V.. '> *4 ■* ■ . . v r / « ‘j £ * . i* • <■ i n . -t “ v .-/■ **• . ['&t.■$ -A - ' .« .i c \ / / M\ Vi I I I I II t N/ \ \ ✓ I / 1 I \ I \ I / ■ V / / ' \ \ \ \ \ \ / / / - \ / f I v \ \ \ % \ V \ 9 \ \ \ / / / w % / / / » ✓ / '•'f * S *• 0 3 >V *■ vV * , / / V / / I I M\ / / / / A/ / / X v v/ / ; / — • / r \ i i / tti 9 \W .)) / / / / / / /t / / It E 1= t C' c* * t % / / // / V / I / \ \ I v ; ^ V / * . / V * T : . *- ’- 5V*, * r* jr * J * / ■* :• * ^ w N * ^ a x M ' f i d X > 'v U-'-L'JJdJt, 009 i 0 , \ % \ \ \ V \ \ | \ \ \ i V / i i \ \ / V \ \ \ x '""v v \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ V \ \ \ '' \ \ \ x \ \ \ \ \ \ i \ \ \ \ ' \ \ \ \ ' \ x' \ \ \ \ \ x ' \ \ \ \ \ \ \ ^ x "x \ \ \ \ \ v X V v V v \ \ \ \ \ « ' \ \ \ Nn '' \ \ V \ \ \ \ \ \ \ \ N i & \ \ \ t \ \ \ Nx \ \ \ 4 \ \ \ \ \\ » . i % . ^ \ \ \ \ > \ \ \ yi \ \ \ \ \ \ 9 \ \ \ 0 X * V \ »v \ v\ ' \\ \ \ \ \\ \ ' v 500 / 600 X ■>. . \ X ' X n s x ' ' v \ ' ' ' N j 's . 4 0 0 — .., X » * sr ^ * 1 % 3 f 3 a 3 j * 3 3 3 / I I \ I I * V >-- .'•'■V 009 \J \\ \ \ \ \ I I I ■n VV ; \ \ - . N . \ / V: \ V ««.«•«b»m*>•»— mmmm•»* -*«■<*< *m * mm \ *\ \ \ • / 9 / \ / \* /I /f . I I \ t ! I I •. I / ! * ' j I *f / / S i ' / / I I / '/ Z * I I / y f / » / * * / ' / / / / / * ' s / ^ . ^ / X" / / / X S / ' / * S S / r y / K / I I I K 1 1 I i f l I % \ s 9 \ I I I 800 \ I \ \ \ \ \ 1 / / r :i l \ > ' \ \ " JT V ' / I % \ I OS I 1 ^ i -/ / -/ -s ! ' ' / / I V \ > - f t o n *•. I / V/ * I? f * ** i > . . . V W *',V-'W ' : i v, .. ' v * 1 ■ ‘ ' _ mm*• ———'y f f , ** ' k\ , ’•M"*—.<•* I \ f X e I \ _ \ / ✓ ' S. A A A ^ *• ?.•■ * 1 e X , 800 "» ** *\V. , *4444- ✓V a — 0 0 ^ % 1 r^ i ^ V < x' * f w I \ s o o z / s s s S s s ' 0 o a \ ' N \ \ \ » V \ V V t 1 \ o W \ c v X \ ' ! \ \ —) \ * \ A \ \ \ v Y \ / 's . \ 'v / s ----------' / / \ I I I I \ / - 700 X \ s . / \ \ / ✓ / ; / I § t I \ \ :/ V / 7 / / / ; V \ \ 700 ' / / / / ■/ / -C 700 X x X ' \ / i / s ✓ / / S' JF / / \ trJ / // \ I I I I $ ^ p\ \ V / / / A K ^3 £ £ & \ j I I I s / \ \ \ 700 \ 1 \ \ » I \ I I V / I \ / \ \ I / I I / / / / " N / / ! 1 \ \ \ \ \ \ \ / / \ I / B /R A / / I I % \ \ _______________ A I I * \ J I / i Y I I I I / I \ % I I \\ \ \ I ✓ \ \ I I \ £ 800 ✓ /L / r - I I I I i \ * 800 in \ / M A.. 700 I % \ % I I I I I I \ I # 800 4 i * / I I I I I / ,r,,T,n x / I I I I I ✓s / / / ✓/ t I / ' / ' s * 4 / ///e o / ' / / / I ' SfeL ■ r i* * * .l »

I* ' ^ J ' V* * tfr. N \ \ J \ -1 \ ''' \ \ % ' \ . V \ \ b j \ \ \ , \ \ , V X ^ ,* >vS- \ ^ * •<‘.*v«*. - ' ’ ' •' ■’ " ■•■', ‘J -*i'’ : . 1 ■> 1 1 ■■ ■ * v ' - . - w^ r iA ■ y ■. ■ ; . „ • —■ '■ ,»■ V «» ^ *•■ • •'•‘J"‘ ■'■■-.I •* .4■55 • -i ,. ^/ ; fc . *•■»'•' $ _■ •: . ^ \. w. t " * y .^>M..a *K i l7 . f / / / / / « > , / / / / '/> ■ *✓ / ' //# '// //'/ '/ / ( r / ' // '/ » % // * l • / J * ! J § / t / / ' ,/ ' t / / / 0 0 / . / , / — f + ~ s s * 1‘ . * *• t ' »<• ,t ‘ *-*s !* - '•■ ' '■*■■•'. ■ v - V - g?^/ : ■ ' 700 / / / / / f — * /V f?,* + ■* ■ . •- i- . ,T - ■ -..P.i ■*s ■■■■■h ' v Ai r * ' *-■■, ’ ' » • - ,* .« , .- ■A ' ■?% .-:. •-“ ' ■ * • ? V'-'Y v .. ■; ' y» Y Y -V jWVft : n- ■ !-‘ .........................‘ -ft?"- • • •“ •‘- tW V v .t £ 2? f k«.■* ‘^ 4 Y W " V A ■YV \ \I \ \\ I I \ \ \ \ X \ _ N \ \ \ \ \ . 6 \ 0 x \ , V\ 0 ' >, *I \ i » 1 i » / / / B / R / / / / / / / A / I / \ / \ / \ \ I \ \ \ \ \ \ X \ \ \ X \ ' N NV \ \ ^ V \ " ----------------------------------------- . \ \ — r* — " — „ " • • • • .^ O x ................. ''^ N' s --------------- X "x RIOW / 30 A i RIOW »s v I y w. / I I I \ 'C \ \ \ \ \ I y \ > 25 J_______ IftA1! fo"i" I $ 008 / t I I \ \ I I / / VI /M M 6d t \ ooe r / \ \ I i f i # ^ p rn rr^ ij 1 t j j jj,*^ 008 t I I I I \ / / ‘ t i r / I \ 001 TAl I / ____ I I 15 F5#'5«e' * I 45 / 12 W < Mild S£ ✓ > 35 MW T V 30 O / / * ' / / ' / / ✓ / I X \ \ \ :> * / * / 7 / ' X ' f ' , X ' \ o R T ---7 30 RIOW , __ 4 30 RI0W / / f \ 600 w / \ 4 ✓ ✓ ✓ / 9 ' Z I 92 C _____ L . kN v V N\ 1 \ \ V V V \ Vv \ " V W \< * > N N N v "s o \\ \ s N \ N k / ' // S \ \ '• v \ \ \ N \ I \ \ \\ \ \ \ \ \ v\ ' O i \ S \ ' \ -• t^ i/ ' IA 1 l \ _ J i y \ \ \ \ \ \ \ \\ \\ \ ' \\ \ \ \ % \ I 11 1• 'i i' / I I > / j r \ / N \^\W'i i'/O \ \ \ \ ' ' \ \ ^\Yx\i V . VVi u»'• / /' / ' ?- Ar \ \ w ** I j {11 a n \\ \1 w\\ , n j i / f I lL . \\ \ \ ’ I 1 I I i \ \\1 • I'M.' / ' . i i i ; * i I i i li i \ \ \ / . i/" o ' I I ’ 9/ 1 M I * 7 1 ! a Hi I I O \ \ \ 1 I I/ V \ v \ \ \ / ^ \ ' \ S ! \ y \ \ \ ^ / ' N \ \ \ \ '•v \ \ w i> / \ /f I •I\ I II \ V vv N ' '• v / S \ \ v \ * \ IIIU 11 Ii I 1 i l l ii v w * ' CM l O 00 ca ol 7 >2 0 \ \ \ v X "x I t V X X \ V ^ \ A \ X \ > *>' A i i i . _L_ ii_ ‘.U ' N ^ \ 4 2 x\ s' N > v \ ; I I ' \ I \ I -------- « V l>“600" v ~ 7 0 0 ______ 2 5 i). A \ o \ o * » \ V On ) I I '\ \' ' ' ' v \ \ \ \ \ \ \\ \ \ V X \ \ \ I I t \ \ t ' \ \ \ \ \ \ < • \ \ N \ V ______________ — —— V. "s N. N. 600 D Q 008 - t-t rt I I 1 t 1* 1 * / i l >1 I | 1 * / % \ \ . *»V %x ■X X W ***Xfc * *^*S. -w V x Xx X % «Sk " ' \ ' \ ^ ■v* x V *•*% ■- ^IH fc - x - * -*» . V v X ' ' : 0 ' v ' " ' “ O '* ,/ ------ *>v ^ ^ X«- *’»»*,^ ....... ... - ,-T - - — - ---- nr ----------------- _ _ "'•**. — * * * ** * **** » * • mmmm mm ««M» .m * mmmmmmmm ~m mm mm mmmm mmmm ✓ ✓ s / / / / y s s f / ' * s / S ' / ' ' / , ✓ / ' // / / / 0 0 9 /// / / \ /// / ' ' i ! ! f / ' ‘ f */ / * t / J / / f / ' / / > >\ // / / I / — // / / ^ / 1 * / * 7 \ I 1 ^ / ' ^ -x ^ 11 •"tli “ i h ! ! \ u 1 i *U \ \ \ \ nI '\ \\ W " '\ \\ i »\ v \ v v \ \ \\\\w \ \ \ N , * \ \\ *» I \N x l / ' / / O l t \ \ \ 1 \ \ ^ \ SN \^ 0 ) X \V I* \\ \ ' 7 ^ N «* / f t ' - / / / s' / / \ I » »/ * I ! I J ' ' I S 1 i : i ! / / s ' / } ' /' ' '' ' '' •X/ ** / ii ; / i I ! / _ N ^ I '*"*\ / ✓1 N, * / » , i , f / / ! ■ !!!> . / / I I J I I I I 1 ' i i II // • ' < / / * < i> ' X / I j!1 ;/ \| i * * // I I H i1 l l I* I / l1 f ** I t \ f I ' | / \ \ \ \ \ N N \ \ \ vvN V\ X \ \ v \ \ \ \ \ \ \ \ \ ' \ \ t \ \ V V N \ \ \ x \ \ \ V \ X * N \ \ X, XN X. X. N \ x. '\ X \ v \ ^ >xs x Nx * >vX V \ V %1 I n / / ^ / \ X s X ^ I I t I I 1 / / \ 1 *I \ j Xx f / | »«"■ *'*** ^ \ I/ /t * \ / -4 O i! P i \ \ I , ' . _____________ / ' f 9 V 19 / / * ' / / / " / 'V/7// / / /// //,' / ' ' ' // / ■ - A — / / /✓ // / ' ________ ' / / . / / i ' ' '/ I •>i o a> / / i i p ! I 4 o o 6 0 o * 0 0 600 * » O o 6 0 o 4 0 0 5 0 0 4 0 0 5 0 0 ) On n \ 800 8 0 0 I I w\ / / / / / / / / / / / / / / / / / / / / / / / / 1 1 . w ^ \ I 11 f \\V % * \ \ \ v i \ \ A v ^ W. ' \ v\ \ ~to/i /i / ! \\ \ \ \ O / * — \ n. — ^ V j \ ’, / / ' / ✓ y * " — N\ v /// N \ \ \ //// \\ oo !; \v / / / * I \ \ \ \ V \ \ , ' \ / \ i i • \ / s ' y I * / ✓ ✓ / / / ✓ / / / s / / ' / / s ' " \ x \ » < \ \ \ < . I t f / t >• 1 ' u i ' * * * "" s ' ' y > ! > < ! / ' ///"/' / i tiij 1 1 / / i '/ 1' 7 I H i I / 1 1 1 111 l n i I 11 11 • 1 i t / / ' / / — ^ / / / y * / / * / / / S / / y y / i / ' / \ \ \ X ^V\"A\\ \ \ * \ \ \ " J / \ \ x \ \ .---' \ \ \ ) \ \ \ / / ' ' ' : : r O \V \\\ V -i / / / / y \ \\'V w j / / * : / %\ \ s ' / — / / / //• / \ ! \ * * * * z : ____ ' : : ' / ' » s * > y \ \ \ \ x ! ) v- ' / / r / ✓ / (: x/ t / / / ^ ‘ o z ooz -ft* 1 \ \ \ I \ I \* xv \v x\ '\ \ \ v _ / p i- T-T-T “T^ -r "T ( / 500 0 \ \ \ \ V s o u u / s / / \ I \ » I I I I / l I I t ✓J / // / \ \ \ \ 4 e \ 8 0 0 \ \ \ i \ N \ N ' \ T\ 1 008 8 0 0 \ \ * s * \ \ \ s s \ \ \ T ' s o a 1 5 \ PLATE 6 PLATE 6 b BEDROCK N O R T H E R N H A L y^ o o J d o j l V H . 99 :d r o c k ’H E R N H A L F to po g raphy C O N T O U R DATUM SCALE IN T E R V A SEA LEVE I • 240 C O N T O U R DATUM SCALE IN T E R V A L SEA LEVEL I * 24000 2 5 )N T O U R DATUM CALE IN T E R V A L SEA LEVEL I * 24000 2 5 F E E T R IN T E R V A L UM SEA I * LEVEL 2 4 0 0 0 2 5 F E E T N. X ✓ 700 \C \ \ \ \ 8 0 0 8 0 0 k y \ ' s . / / / \ V L V \ \N t \ d T2S n \ I 's / S - NV N v ^ \ S ' I I I I I \ 1 I \ \ \ \ * I \ 700 / \ / \ \ \ \ • ' \ \ '' \ '' ' \ \ \ /I / N / ) / ' ✓ ' ' s ✓ /■ ✓ / / ^ / / I I ^ / I M t / f / • i f i it t t/ i'' ' / / ’ / I ' ^ ' ' \ i ’ i ! ; i / y J / /- / » \ / ' / /f \i \ i / ' v \ - 0 . 8 0 o > c \ o- o- / q 9 > ° I I 1 v r ^ f| ^ .i ii— H .. - T 'S 'S o > - 0 . 8 0 -C P \ A \ \ \ p p 40 \ \ \ \ \ \ \ \ \ \ \ / / / / L 1V^ \ / t / \ . 6 0 / / ) ( \ \ \ \ ivr^. A / / / , I 1 0 - A V v A > \ \ \ '\ A \ n \ 7 y / , 3 \ a v \ \ \ ) i / / / \ \ \ ) \ f ( O o O \ \ \ — •I I / / I // L / / / / / / / / / / \ \ \\ \ \ \ w c \ \ \ \ X \ \ \ \ % X x V x \ x / \ \ I \ \ \ \ 0 .0 0 \ \ D \ \YM - 0 .0 0 w r I \ \ J \ T 4 S ^ \ \ RN \ \ t \ \ \ \ \ \ -05 / 4 2 I I / \ I I I / / 0 8 I - / / N a \ 0 1 \ N W \ E R E / / / / W W \\N \ \ \ \ \ \ \ ' \ \ \ y / \ I ( 0 . 0 0 / \ \ / / ) I ( \ \ / V I/M v \ \ \ \ \ \ H C - 4S os42 4 5 p l a t e - A T E 40 j ____ O E F B O SCALE T H E U G U R E R I • 24000 E S I D S U R U A L F A C V E A L \ X \ N W \\ \ \ i S I D S U R U A L F A C \ w V E A L U E S F R O M ! RIIW .35 F R O M 5 T H D E SOUTHERN CONTOUR G R E E HALF O IN T E R V A L \ / RIIW / .35 T H D E G SOUTHERN R E E HALF OF CONTOUR INTERVAL P O L Y N O M I A L KALAMAZOO 0-20 MGALS P O OF >L L Y N O M I A L KALAMAZOO 0*20 MGALS A P P R O COUNTY X I M A T A P P R COUNTY O X I M A T I O N RIOW 3 0 1 ____ ) N \ \ RIOW 25 25 i R9V R9W 8 5 20' - - J _____ \ N J s ' ✓ 05H 42 45 42, - 25 T 7------------------------------------------------------------------------- --------------------------- 4 5 RI2W RI2W ° o 0 .4 0 1— 4 ■ 0 1-----------7 4 0 1-------- 7 3 5 RIIW 1 .0 0 ) RIIW 1 . 0 0 5 " - h h 0 .0 0 - i 'l O o 1---7 3 0 OO'I' ) ( ( 1 M o i a / o o » - ) ' ' N f (I / MOId / r \ \ 1 X 2 5 \ r\ r i 0 ^ - 2 .0 0 \ ) Q S z c 8 5 2 0 85*20 2 .0 o \ 2 . 0 o 4 2 25-1 TIS Q2i ° Q ° -^ 0 ( 0 .0 0 ° o 0 .0 0 0 0 / U V I > / 1 .0 0 \ 00 1 1 I " f s - 2 0 / O- 0 0 O .O O . ( 00 o 0 0 0 O . O o oO 0 u O ' ° t o o o l > - 2 . 0 0 2 .0 0 0 . 0 0 0 . 0 0 1 . 6 0 /, L A M Z 0 . 0 0 0 d _ a 0 0 G 6 0 ■ O q n 0 . 0 0 3 o . o o C B Q fii C H ° a - 0 . 2 0 - 0 .2 0 l- O q 1 . 2 0 1 . 2 0 Q V 0.00 0.00 OO z O O I r\— o 0 0 0 o o ' 0 0 0 \ 5 ' / t, - "y'j, ° & * W , Q 0 .8 P L A T E 7 b M T A O P B O O F U G l M T A O P B O O F U G T U E R H E S U R R E F A S I D C E U A L T R H E S U R R E F A S I D C E U A L J i K V A L U E S F R O M 5 T H D E C > M t 5 T H D E G R E E R O t ! 1 L Y N O N P ii o l y n o m ia l a p p r o x i m a t * ^ p p r o x /m a t/o /v I NOR1 N O RTH ERN HALF OF I M HALF OF KALAM AZOO COUNTY KALAM AZOO COUNTY 0 . 0 0 1 . 0 0 f - ’V "V / 1 .0 S' 1 1 s P © R E / 1 \ \ \ \ \ t I \ \ \ \ t \ \ \ \ \ \ \ \ \ \ \ \ I \ \ \ \ \ \ \ \ \ I M / M t M / / / / / / / / / / / / / / / / / / / / / / / V f I I' I I \ I \ I I } / / / X L O / ' I I I v ______ W r i — 3S -10 0 . 0 0 * 1 » \ \ \ \ \ \ V V \ \ \ N N \ X \ \ 0 \ . 0 \ / / / / / \ / \ * V i b [ - i ' i i v ______ M / J y ✓ / / / / / / / / I I I I / / / / / / / / / / / / / / / / / / / / / / / / / z'" / i \ u ^ Nv X \ ^ \ ^ \ 7 ( - 1 . 0 \ / / / / i / i.b [ I I I V 3S / / / / / / / / / / / / I / / / S I \ i . o * ^ ^ \ \ 1 * I I ' i / / 1 ! I I 1 1 I V j f R ffjr TipTrrTTT/pjy s / / / / / / 0 . 0 \ < *** TTT1r/,»h* t V \ / / V ' I \ / # / I ' / / / / / I \ I I t / / I / I / / / / R A \ \ \ \ \ / ( 1 \ Yx \ \ \ % \ \ \ \ \ ? \ S N t \ \ N \ I \ \ \ N N\ N N\ \ \ v N \ N \ X \ \ \ \ \ \ \ \ \ \ -Y , ' X X ' \ \ X X \ S \ N / ' / X- * \ x N \ \ v - \ \ \ \ X - x \ \ v\ N N \ I \ / ' » W W \ \ V ^ ' \ x \ V \; ^X X \ Y \ \ X \ X s X X V X. X X \ \ \ \\ \ \\ \ ' X X \ \ \ \ V ' X ' \ \ \ \ "x Y X \ \ \ \ \ X x 'N 'X \\ \ \ ^\ \x \ \ X f r X X X Y X ' v \ i X x \ \ \ \ \ \ \ p- \ ,*° \ ' \ \ \ ' ' /III I P I I X —I \ C \ \ Y \ \ ' \ \ \ \ ^ ' \ ' \ \ \ \ \ \ ( ^ \ N \ V W v ■\ ' ^ \ \ \ \ \ \ \ \ X v / I \ V /' \? \\ X Nv X X W \ \ \ ' vsV s S 5 ^ ' \ XX V X X X V \ \ V n V ^ s\ \ \ \ X x X' ' XX-X~ \ \ N X \ \ v \ \ ( \ ~ \ \ % \ \ \ \ \ ^ \ N \ \ \ X \ \ \ \ \ \ • \ \ \ \ X x v ' X \ ^ x N \ - 1 \ \ ^ I \ \ \ \ \ \ \ \ O \ \ \ \ \ \ O \ \ \ \ \ \ \ \ ____ L _ I _ N ' x ' V \ \ \ \ \ \ \ \ \ V ' \ » ' \ \ \ ' \ \ \ \ \ . 0 \ ■* \ \ \ \ X \ \ \ N ' \ \ \ \ \ \ ' \ i ' _ \ ' \ ' \ \ \ \ \ \ \ \ I \ I \ » 1 \ \ \ \ t \\ \ \ s' \ ^ \ \ \ \ \ \ \ \ \ I 'I '' V \ I \ I I \ \ \ \ \ ' \ s \ \ \ '\ 'V \\ \V \ \ \ \ \ \ '\ '\ \ \ \ \ x \ v '' '' \ \ \ \ \ V \ \ \ \ \ '' ' \ s s '9 \ NV \ \ \ v ° \ \ \ X \ \ ' \ v\ \ 1 \ V \ \ \ . N \ \ \ \ W N \ . ^ \ \ \ \ \ V ^ X \ \ \ V X " 'x X X \ \ ~ s \ O ) s O s \ S N v N s N s \ \ N \ \ I V \ \ \ \ \ N V N \ \ ' \ \ ^ V N \ \ 00 / / / / \ \ ✓ \ / \ \ / \ N \ \ \ \ / \ / \ / \ \ / . s \ \ \ \ V X \ \ N N N \ I \ ' N \ ' \ \\ N\ \ \ \ ' I \ \ \ \ ' 1 \ \ \ \ \ \ \ I \ I \ s \ \ \ \ I I \ \ N 1 I / / / / / / / " \ / \ / \ ^ \ 1 X \ s \ N \ / / / \ \ / ' \ \ \ \ I \ \ ^ \ \ / ' \ \ / \ \ \ / \ \ \ \ I \ \ \ \ / i . o ' \ \ I \ s \ \ \ \ \ \ \ \ \ \ ^ U IU /| I I / do / / / / / / / / / ; ' / / / / / / / / / / / / i / i / / / / / / / / / / / / / / / \ ✓ \ ____ 00 / / / \ / / \ / X / \ ✓ / N '\ / I ' v / t / * / \ \\ V\I \ \ i \ e \ \ / \ X V V % r< c # ^ \ N s : \ x \ \ ' V \ oo N \ \ X \ \ \ \ \ \ X x \ \ \ ^ \ X \ \ 0 \ \ V 1 - \ \ V ' \ / / . ^ t / X V / / * 5 ! \ \ * / \ \ v \ v» O . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x \ N \ S, N \ -X X - W v N v V . X \ \ ■ \ N \ \ N \ \ E ,/ / & \ N\ \ V \ \ x w * ) i\ \ \ \ \ \ \ ^ \ \ / \ / \ \ / \ / \ \ / \ / \ \ \ \ \ X / / V V \ / I t / \ I I / I ^ 0 \ \ \ \ • 1 \ \ I \ \ I \ \ / \ \ \ I 1.0 " I s / I \ N / / N \ / \ \ / / / / / \ \ \ / V \ / \ / \ \ \ V s \ \ N \ X \ \ \ > w \ \ \ \ \ \ i i i / V \ y \ v / VN / \ \ / \ \ \ \ \ \ f \ \ \ 'V \ \ \ V \ ' V \ v \ \ X \ X N \ x N v \ J \ ' / ^ ' / ' ' / 1 / / / "X / ^ / / / / I > / y " / \ N ) / \ \ x N / \ / / ✓ > ' j / - / / / / ' / ' ' / ' ' / 0 . 0 ' / / \ ' / / V ' / / - ■ / / / / / / y / ' / / t t s / / / ' / // / / rs / / ' ' / /✓ ' / ^ s' y ' y- ' ' ' ' y / y / / / S / / y . / // ✓ / S * / / / ' > y y / /w / y / N / / / / / / / y / / / / / / / / // / , 0 0 / / / / / / / S s /y , y s S / / / I \ I / / / / / \ i i \ i \ » / \ \ I \ \ \ \ \ ( i ( i \ y I \ \ \ \ \ 01 \ \ \ v \ \ \ y / / \ \ \ \ I \ \ V I % \ \ ! I \ \ 9 i ! \ \ / / y / \ \ X \ \ \ \ \ \ I ;y / \ / / y 1 y y / / / / / / y / y y y y / \ \ v . y / s / y po / / / / / / / / / / /w / / / / / / / / I / V / / / / / *v / / \ / / / . 0 / I \ / I I / / ' / / / / \ \ 1 / / / \ \ / ' " \ > / I ■ rt" I \ t I \ / x ' ' ' ' / I \ ✓ \ \ \ \ \ \ \ I %« a o » v / ' f \ 01 » x / / / / V ( l\ \ \ I1 I \ \ \ \ ' \ w \ \ \ \ \ v W V \\ \ \ I ' v I -It! / > / 1 .« ? x / I 0 / / / \ ✓ ' / \ I / I / / / / / / / y / / / / / / ' / * \ I I - 1 \ £ \ I I I 0» f I \ I \ . 0 \ I V I <£t u> y — I j 1 1 1 \ \ \ \ 1 \ 1 1 t/ / y / / / / / / V / s ✓ / S / / / / / I I V t \ \ \ \ \ / V \ \ \ / j / / / / / / / / / / / / / / / / y o j / / ' R -05 42 11 i i i I 1 7 ”/ / / / / ! ' / / / i n i 111 / 11' / I / J 1 / i > i i■ It i i 1 i ; ! ! I I ' \ \ I / \ / d / / / / d / / d / / / / / / / / / / / I — \ i w \ \ \ t\ \ n \ / J I I I I / i I I / I \ l /R i t f £ £ I l I f l N| i O \ 1 / i E fe ( I I A f z' § E E / D I % I I S F on* I i 1 1 1 / / / / I \\ \ \ \ \ I K i \ \ \ \ / \ \ / \ \ i \ / \ I \ \ \ \ \ \ I I \ \ \ 1 I \ I I 1 I / I -IX) / / / / / W r--------------- / / / 1 i t / / / / 1 1 ' / / / Q *— •«* i f M / t T r n r m ir c r r t n T T T r r n n T rt*** I ^ U iU lC U .U i.U X U i.lU ii.U lU llL t m - Q u u mj ^ T \ \ N \ N \ \ N \ \ * \ N \ N \ \ \ \ \ X 6 .0\ \ \ \ \ V E \ ' \ x \ \ \ s ^ W N \ X % \ \ \ \ \ X - 1 . 0 \ \ :S i 1 i 3 C’ \ I l i / / / / / / / / / .X / \ X. / O / \ o © \ \ \ V \ \ TH ITT ft! (W #TT M ITT /■ \ i.o \ \ \ \ \ N L i \ C i \ \ \ R 1 I \ i I !.o / \ / ' \ \ I I \ / I X I _\ C. \ I l R i I I I I A I I I \ \ \ I \ I / \ \ \ / / / / / / I / / I I / / I / / / i / T i A \ \ i I I \ I I I \ \ \ I \ \ \ I I v / / / / / / / / / / / / / / / \ / / / T \ \ \ \ \ \ \ \ \ \ ' \ \ \ \ \ \ \ \ \ \ \ \ \ \ / N \ / \ \ \ / \ \ \ / I \ \ \ \ \ \ \ \ \ \ \ \ \ \ V ______ / / / / \ \ / / / \ 0 . 0 / f B \ \ \ A I / / \ / / 1 \ 1 \ I \ \ V \< \ V \ \ \ \ \ N \ \ N \ \ \ X \ \ \ N ^ * J \ / / \ / \ / / / \ V \ \ \ \ \ R \ r i i \ [ \ N \ \ ______ \ \ / r \ 0 . 0 / v \ \ \ \ \ / t \ \ A I / 1 I \ \ D\ \ \ I . ( \ \ / / / I I \ \ \ \ \ V X \ \ : \ N \ X \ X X V / \ I / / \ / X. / \ / / V \ I s ' X i / / 7 ' ( ' s \ I ' ' \ \ N / / / / V / \ X ( X V \ \ X X \ x \ \ v < ;: / f i ‘ 1 \ \ \ \ s \ \ X\ X ' 4n r r > r r t ’ , m * V \ , I \ \ \ \ ^ u i u u i u m ^ \ ) K J \ \ I , Q N \ \ k J V V X X \ \ \ \ \ \ \ \ \ \ \ . \ J \ \ ^ m < v n m 1*4 \ \ / V 1 I V \ / I / / I \ \ \ W \I > / I / ( / / \ \ \ \ ) N / i / \ / / / / / / N \ \ \ \ \ \ - \ - C \ ' " v " n > \ / | S ' > . ✓ / / / / / / s " ^ / > V / - , ✓ ' / / y - ^ - - - _____ / ' / // / w \ ^ / r N \ \ \ ' N V \ \ N \ \ ' v \ »* / \ j 1 1 / / > / K " V w \ / / ^ \ \ , , S / \ / " " \ \ i ✓ / / / I / / » ' ---------------- ! s V ' \ / — ' / / ^ / . / '/ / / / * & r / / / s . ^ . J ‘V . \ k \ \ \ \ \ I \ \ \ \ V \ N \ V \ V V I • \ w \ I \ ' \ / \ V \ \ \ V. \ \ \ \ \ \ \ \ \ \ IAI / H S > i i k ^ h %*/ ' / / ' A / h ' ' \ \ ' / i ( t oN- ' j s ' \ / V / / / / / / / 1 / / / / / / / / / > / > ' > ' / / / / / / / / / i / / / / 1 / / / / / / / ^ ' / / . 1 / // ' / / / ' i / / / / - f t / i / / / I 7 / / / / / / 1 I / S / / / / / / / / / v . / 7 / // '■ / ' / / / / I f / I » I /7 / \ f I V V I in’CM o M /t m/ ///i ! // . 7 \ o\ 1 / / / / 7 7 / 1 i / / / / // i / / i i i i — r 91? / E i 7 QOi IiI/ / / / ’ / 1 I ! \ / 1 1 I / / / ; / / / I / J / 1.0 I / \ \ / \ / / / / \ / / / // / I / / / / '/ / / / // // / / \ \ \ ! I p r ) / f//// 20/ I ' \ \ \ \ \ \ \ \ l \ ; I R I 2 W ✓ > p l a t e 8a RI2W PLATE 8a MAP OF THE T l BOUGl MAP OF THE THE BOUGUER R E S ID U A L SURFAC •s ^ \ \ n \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i I I i i w \ \ N N \ i I i i i \ J i i i / / i i i >i i / i i I ✓ /1 I ! n I I l I I /L9 I I I ' H 40 j ____ THE GUER R E S ID U A L SURFACE VALUES FR I f ? I \ •I I I I I I I I I I 1 I 1 I . £ £ F I e t r I I VALUES F I ! i B i t I B § FROM 7TH RIIW 35 7TH DEGREE S C A L E It POLYN 2 4 0 0 0 RIIW 35 DEGREE S C A L E I: P O L Y N O M IA L 2 4 0 0 0 APF C O N T O fNOMIAL APPROXIMATION C O N T O U R I N T E R V A L O . 2 0 M PPROXIMATION T O U R I N T E R V A L 0 - 2 0 TO M G A L S )N 0 - 2 0 TO M G A L S SOUTHI RIOW SOUTHERN HALF SOUTHERN HALF OF KALAfc 25 I_____ HALF OF KALAMAZOO COUNTY 25 I______ KALAMAZOO COUNTY AIN P3Q8 M 6d / J / / ' o OJ #L O 0 0 CD cr 0 0 CA po < a s u V < M ° ^ r / i / n/ / n - / * /////■ / / / / / / / / / > ///// / / / / / / / / _ < ////r— */ / // / ✓ / / / ' / / / / / — / , y / / / / i / / / / / / // // / / / ' // / / / / / / } / j I / / / i* i. ^ 'I v-. -'*»■ Jl' i vyS- ^ • :'**V , , ** k t k & 3 ‘•ME: •.* V] '••: c«»ft V k .\ * 9, y ^ j . a * ' . V ' , l $ t e & "* ■ > » ■'# v i ' k a f<*.> v /tr? : ;., .■,., 'V Jk: .>■’* ’ V . ....... * t « -V ft. i * .__. v+,,ftV ,5. *. wr* -•* r*> :rr j-i' ; W '■'.*'S>. ., ♦; *■ J ,* ;v ; * *>, ■ • > *k>:V >v '» f'l^' X- ■ . • if f / f^ f;, . ; •A’JI Tl V Sf, ras- *’* ' » 5 a , r*. ■**-. m * s * ' \ '» r + j v *. . m v ! I o ; . ■ ■-N t: ' • •• ,*. • * T «T ' - * * ‘1 -v . *’ - i * *? ^■.'TEWi *■^ 7-.-.: .— V-.-# i-. 'V ■ *■ '■ ■<'' / < ? O P % I ft / / o \ % \ V p E \ L .:* ‘f **^ --*V«?*;.Jl < :> * * ■- ' X - V ■. ' '--V* % jV*—■ • ' '■*•' i V >->' *.»** ' w ^* ; ^ r V - 7 - *V „ V V ,-w * - & v i> ■ ^ f f .■% J* . * ,..•••% ■ t d ■> V c;y. » _ -> .v '9 #' S ^ S & • & . . . ., 71■ »v; v:*' ‘k . * •< S g f r + m % * ? :r ~ R'-l’S: ! ' > • •■ • X *> ^ *\]r ► «* A * l A . ’ *- - i F r l Z »‘ *'V'.„J 1I ‘r*^^ y .& J a x ; ' ■ $“ ■ '. * i , : > ;! A- * 7 * . . ■I V>T* . n W s , ..- T ‘ V "& k ■;- ■ ■' v -• - " - w ! V- > '-.V •* ^ --^ ^ ^ S t k j j r ^ 'f J K s S ■, -*,.*> .*'* *W*■;. V - v »• ' *w,v- ^ " .*mit'-- ;1' .m"' % ■ »V* ' 1 m . *K <#•." V*V V+ »■\i *«. ^ :" ■ - * -A * ■< ' - M-n ■' l # *, K, ■* ■* w »■« »* '>jU> *•1, * D ‘f - '‘ >1 (> “ W ' •«. #•.*v *1. i „ p -• •^ F T T ■ ’•>#■. \ ■ ., ■?■. . x*rJ^ T ffVT- *4--'. te* ri^ '*■.'* \. f ' *W «»* ■ fl~ «5''■*m 1t- .. s - £*? ■V . , *. .■ • ./ • > • “ * > ' \J M D ’y - 'ft-' •''Tr# .■ - *■ .^ "' 1^ i ' *" v ‘ . ■' **- ' / / - A1?* P P Tt; I D 1 v % V4v..y^i n m » - . '. ■$' ' vs. fH* .. . ,'^4 -. s r fc # V> • * V"?’£{►-' >** *,~ m C mgk t ^i n.? • : A- - « v , ■ ^) - - * '' - *„. *JT*:-k t r 4 - ^ ■ v - .?*%'-* ■•*. * ■ r - J -i ■ -:r N / / y ^ = ^ I E — c r s > \ A ? ^ S \ S\ \ \ \ v vJ R x \ t n N C ^ D -v > - .. *■.•?*-, & £ * £ Jv>V-:. j- *■;. 1 ■'•*■;> a w , v, ’•-.♦ $•***-it>«sjJPT^ & s '* * : * - * .. • 4 V • v.T -t* *» ^ '* , - v- ^ t * ^*- ‘i- *, "•*» \ 1 • ' ■ ‘ ' ■»£, ** “ • ' ' * *' * JiV ? -:T - .- - “ >J .; V -v /• •••' *; Aj*- y ^ t y t . * 4 .v(> - .*-•« •• ■;••■ V "% : T * : *. ^ rjA W * ' ^:.-4$S • ifc iS W E iw J * ? •* & * * * ’ ■' ' ■*' > -< ~r *->./•• $ * !* 'J ? * / V I / / \ \ i 1 / a# * " < r. Af -* * %' f :’<"'. ' .." «■ T .,' — j -. > !■" ' » iLV"* *r*,; si*-,. •■< v -** ; ' l v5 ' v v , ■^ - V y * % m ~ I \ I \ \ I I >■ •: - >£ ' ’*•■s l k f t < .r r c yft 1■ ■ j *✓ e > p E *r > ■ * Hr* r *.j » V , 57 ‘ ' ■'*'+’ 4**" ■ £■ 8*-V **, *r -* , ■:■-*,> • * > - ‘V rtJ N ^ :-2 r x * i v*>'•*»; r*#*' * -* r '•?*>r • .'•:'. '. J»‘ **A»- H.-+GB9-'*: r : hr ' -. **r *TT*^M UL* !'■»-♦- •** 4 • ^ •■ ». /T / D • '" ’ t . \ I * ‘ W W 'W 7 - Vf ’r ■ / / r*l /' / / { 1 1f t f / s / m t y |/7 © { ( ( / / > " i / / . \U(| f / / / / ! A \ « U ! # i / / >*' ; *# iml'X*t"? * :- V%> t ; .^->^. rV;. ‘/V~ - '■*£ * ttf I A W' ;■•* . r . ■;1 .- >» * \ X \ \ ' \ Y *' • . » ' •'t ■*>* ;*p-s| . f v *t * ij, & ? r -. > .■'• -: J ^. ft. A \ I \ ■ i \ i I \ I \ I / I \ \ Y \ 11 \ I \ \ \ \\\ \\ \ I V.At ■^1„■J . :4- *ii>»1 .^ '. .W fixS 3 K i ‘« ¥ , -#.■ ■ ■ ' -*» * ■ v\wx **'■*■> :*x i ^ j*v. *v> / ' v ' >** & ✓ ?■ -. % •1 s.nw ^r -y k' '•» <•' 4 .A* *& ?'■* £ • • 7 ’ - Or V4&"**- ' «r!L / 9 / / / / / r / /o > v M t >V ■ vf_#l£--t A..s. if*A o ' / / / / / " / / / / T / / v*;: M m . V / / * lit: / £ V ' •** ; (/ -/ h 'v / ». •/ / m //.< /-/ / / > .' ^ / / / I / / / j f r / L u " _ f * \ £ » , \ \ ^ / :-------------- / I \ r**1 i . •>. m :rr> & & V -, • T t* V * \ \ ~E s '. \ N " " - \ HU < f - A \ x I ' v I 1 \ I \ I \\\ W V \ " > \ W \ \ \ W \ 1 ' \ V I ' x I\ \ \ \ c \ 0 . 0 / 0 . 0 ■ 0 .0 * \ 0 ) 0 \ Ii \ J \ \ \ / \ / 0 . 0 / \ \ \ X \ \ V \ \ \ ' 0 X \ X \ I \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i \ . 0 \ i/i;! / / / / / / / f / r / / I / / 1 / / y / / // y / III I \ / / / ' ✓ / ' / / ' ■' / / / / / / / / / / / / / / / s / s s ' o s / r s /r / \ J 1 . 0 1 . 0 M A' A' C 2 ■ / /w / / / V o — —C------ o M 1 .0 0 . 0 S ' / / I / I / I I I - ' 1 I I I w I f I I 1 I I I I I I I \ I I I I I I I Q ! i t \ I 1 o \ \ / \ X \ \ \ \ \ / o c ""O ' K o / \ s / ■ / / / / // / / /G O / / / / / \ \ \ \ \ \ i \ / / \ I / \ \ / \ \ // ' o $ / \ I I f \ \ \ \ \ \ \ / I I I i \ 1 I I i \ 1 i w $ / ( \ I \ \ u 1 \ \ i t I I \ \ I I i l I I I I . ! i 1 I I I \ Id II I I ! i I I I I i I 1 i ' / / / / / / ' / / / / I / / ; 2 j / / / / / I / / / ' ' l / / / / ' l x ! / / ' ' / -— I I ' no , / / > / c o s / / / / ^ / - & 9 * I ¥ I 4 / f / / I \ / • ^ \ I »• r<- ■ -i./Wl JL f^Vl lb. . •» / / / I / / / / / l / ) ► V •*«? jJUf • ■., *r I 1 ' ' . •* - rV . > “ . S 0 i iV< - ■ ''"J 5 • '• -7.* >./• # vf.. ■ ;^ Tv, ' 3**. : s5l''J Mi w . •* L ■*> L'«? A^7I ^A-ia