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ABSTRACT

COMPUTATIONALLY EFFICIENT HIERARCHICAL SPATIAL MODELS
FOR LARGE DATASETS: A CASE STUDY FOR THE ASSESSMENT OF

FOREST CHARACTERISTICS ACROSS THE LAKE STATES

By

Huirong Zhu

The scientific community is moving into an era where data rich environments provide extraor-

dinary opportunities to understand the spatial complexity of ecological processes. Across

scientific fields, researchers face the challenge of coupling these data with imperfect models

to better understand variability in their system of interest. In the environmental sciences

there is recognized urgent need to develop and disseminate methodology capable of accu-

rately accounting for multiple sources of uncertainty. Accordingly, the goal of this thesis

was to explore and illustrate the properties of promising new modeling tools that will en-

able researchers to extract more information from large spatial datasets. In particular, this

thesis was motivated by a larger project’s need to analyze a large forest inventory dataset

with the intent to better understand the potential of managing forests for increased com-

plexity as a climate change mitigation and adaptation strategy. The thesis yields results

from the analysis of synthetic and forestry datasets that clearly demonstrate how model

misspecification, specifically ignoring spatial dependence among model residuals, can result

in incorrect inference about regression parameters of interest. These results have important

implications for hypothesis testing and ultimately forest management and policy decisions.

The thesis details some modeling tools and useful guidelines that allow practitioners to more

fully accommodate model assumptions and draw correct inference for large spatial datasets.
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Chapter 1

INTRODUCTION

The scientific community is moving into an era where data rich environments provide extraor-

dinary opportunities to understand the spatial complexity of ecological processes. Increased

availability of environmental datasets is a result of investments to collect data for regulatory,

monitoring, and resource management objectives, and technological advances in spatially-

enabled monitor and sensor networks along with geospatial information storage, analysis,

and distribution systems. Across scientific fields, researchers face the challenge of coupling

these data with imperfect models to better understand variability in their system of inter-

est. The inference gained through these analyses often supports decisions with important

economic and ecological implications; therefore, it is critical to correctly estimate inferential

uncertainty. In the environmental sciences there is recognized urgent need to develop and

disseminate methodology capable of accurately accounting for multiple sources of uncertainty

(Cressie et al. 2009). However, developing modeling frameworks capable of accounting for

various sources of uncertainty is not a trivial task, especially when datasets are large and

data come from multiple sources.
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The statistical literature acknowledges that spatial and temporal associations are cap-

tured most effectively using hierarchical models that build dependencies in different stages.

Hierarchical models are especially advantageous with datasets having several lurking sources

of uncertainty and dependence, where they can estimate much richer models with less strin-

gent assumptions than traditional modeling paradigms (Banerjee et al. 2004). These hier-

archical models, implemented through Markov chain Monte Carlo (MCMC) methods, offer

increased flexibility to fit models that would be infeasible with classical methods (see e.g.,

Carlin and Louis 2000; Gelman et al. 2004). Despite their power and flexibility, practition-

ers have been slow to adopt these methods, due in part to lack of statistical/mathematical

training, computationally efficient software, and illustration of these methods within their

area of interest.

Accordingly, the goal of this thesis was to explore and illustrate the properties of promis-

ing new modeling tools that will enable researchers to extract more information from large

spatial datasets. In particular, this thesis was motivated by a larger project’s need to analyze

a large forest inventory dataset with the intent to better understand the potential of manag-

ing forests for increased complexity as a climate change mitigation and adaptation strategy.

Therefore, a central objective of this thesis is illustrate how the proposed methods can be

applied to generate valid inference about patterns in forest ownership, forest complexity, and

biomass that ultimately help support the goals of the larger project. To this end, and in

an effort to make these illustrated methods more accessible to practitioners, this work also

produced software and associated documentation for the highlighted geostatistical models.

The thesis yields results from the analysis of synthetic and forestry datasets that clearly

demonstrate how model misspecification, specifically ignoring spatial dependence among
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model residuals, can result in incorrect inference about regression parameters of interest.

These results have important implications for hypothesis testing and ultimately forest man-

agement and policy decisions. The thesis details some modeling tools and useful guidelines

that allow practitioners to more fully accommodate model assumptions and draw correct

inference for large spatial datasets.

The thesis is organized as follows: Chapter 2 details the univariate spatial regression

model, its properties, theoretical assumptions, and how it can be implemented within a

Bayesian framework. Chapter 3 reviews covariance tapering and its ingredients including

compactly supported correlation functions, sparse matrix structures, and software routines

for sparse matrix linear algebra computations. Chapter 4 offers two numerical experiments

used to compare computation efficiency and predictive information loss incurred when using

compactly supported correlation functions in the spatial regression model. These models

are then used to explore the relationship between indices of forest complexity, biomass, and

private forest ownership across Lake States’ forest in Chapter 5. A brief summary and

discussion of future work is given in Chapter 6.
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Chapter 2

Models for spatial data

2.1 A review of hierarchical Bayesian modeling

While the traditional methods, such as maximum likelihood, are reasonable in simpler con-

texts with assumptions of limited sources of variability, they are likely to be inadequate in

capturing the total uncertainty in settings with multiple sources of variation and uncertainty.

In such cases, one needs to model the data hierarchically by introducing parameters in dif-

ferent levels (or hierarchies) that will account for the different sources of measurement error

and other extraneous variation. Over the past two decades hierarchical Bayesian modeling

has seen enormous developments in the statistical literature. I provide a brief review of the

underlying principles of hierarchical Bayesian modeling below.

By modeling both the observed data and any unknown parameters or other unobserved

effects as random variables, the hierarchical Bayesian approach to statistical analysis provides

a cohesive framework for combining complex data models and external knowledge or expert

opinion (e.g., Berger, 1985; Carlin and Louis, 2000; Robert, 2001; Gelman et al., 2003; Lee,
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2004). In this approach, in addition to specifying the distributional model P (y|θ) for the

observed data y =
[
yi

]n
i=1 given a vector of unknown parameters θ = (θ1, . . . , θk), we

suppose that θ is a random quantity sampled from a prior distribution P (θ|λ), where λ is a

vector of hyperparameters. Inference concerning θ is then based on its posterior distribution,

P (θ|y,λ) =
P (y,θ|λ)

P (y|λ)
=

P (y,θ|λ)∫
P (y,θ|λ) dθ

=
P (y|θ)P (θ|λ)∫
P (y|θ)P (θ|λ) dθ

. (2.1)

Notice the contribution of both the data (in the form of the likelihood P (y|θ)) and the

external knowledge or opinion (in the form of the prior P (θ|λ)) to the posterior. If λ is

known, this posterior distribution is fully specified; if not, a second-stage prior distribution

(called a hyper-prior) may be specified for it, leading to a fully Bayesian analysis. Alterna-

tively, we might simply replace λ by an estimate λ̂ obtained as the value which maximizes

the marginal distribution P (y|λ) viewed as a function of λ. Inference proceeds based on

the estimated posterior distribution P (θ|y, λ̂), obtained by plugging λ̂ into equation (2.1).

This is called an empirical Bayes analysis and is closer to maximum likelihood estimation

techniques.

The Bayesian decision-making paradigm improves on the classical approaches to statisti-

cal analysis in its more philosophically sound foundation, its unified approach to data anal-

ysis, and its ability to formally incorporate prior opinion or external empirical evidence into

the results via the prior distribution. Statisticians, formerly reluctant to adopt the Bayesian

approach due to general skepticism concerning its philosophy and a lack of necessary com-

putational tools, are now turning to it with increasing regularity as classical methods emerge

as both theoretically and practically inadequate. Modeling the θi’s as random (instead of

fixed) effects allows us to induce specific (e.g. spatial, temporal or more general) correlation
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structures among them, hence among the observed data yi as well. Hierarchical Bayesian

methods now enjoy broad application in the analysis of complex systems, where it is natural

to pool information across from different sources (e.g. Gelman et al., 2003).

Modern Bayesian methods seek complete evaluation of the posterior distributions us-

ing simulation methods that draw samples from the posterior distribution. This sampling-

based paradigm enables exact inference free of unverifiable asymptotic assumptions on sam-

ple sizes and other regularity conditions. A computational challenge in applying Bayesian

methods is that for many complex systems, the simulations required to do inference un-

der (2.1) generally involve distributions that are intractable in closed form, and thus one

needs more sophisticated algorithms to sample from the posterior. Forms for the prior

distributions (called conjugate forms) may often be found which enable at least partial ana-

lytic evaluation of these distributions, but in the presence of nuisance parameters (typically

unknown variances), some intractable distributions remain. Here the emergence of inex-

pensive, high-speed computing equipment and software comes to the rescue, enabling the

application of recently developed Markov Chain Monte Carlo (MCMC) integration meth-

ods, such as the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970)

and the Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990). Univari-

ate MCMC algorithms are particularly attractive for general purpose implementation, since

all that is required is the ability to sample easily from each parameter’s complete condi-

tional distribution, namely P (θi|y, θj 6=i), i = 1, . . . , k. The recently developed WinBUGS

language (www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml) and the R statistical platform

(www.r-project.org) with its Bayesian packages are promising steps towards a general

purpose software package for hierarchical modeling, though it may be insufficiently general
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in some advanced analysis explored in this thesis.

Statistical prediction in a Bayesian settings is particularly elegant and intuitive. Let

ypred denote the variables (they can be a collection) we seek to predict. Then, we simply

treat ypred as a random variable whose prior, conditional upon the parameters, is the data

distribution P (yrep|θ). Then, all predictions will be summarized in the posterior predictive

distribution:

P (ypred|y) =

∫
P (ypred|θ)P (θ|y)dθ.

Once the posterior samples are available from P (θ|y), it is routine to draw samples from

P (ypred|y) using the principle of composition(Banerjee et al. 2004): for each posterior

draw of θ, say draw a ypred from P (ypred|θ). Details of such methods are particularly well

explained in the texts by Carlin and Louis (2000) and Gelman et al. (2004).

2.2 Univariate spatial regression

Geostatistical settings typically assume, at locations s ∈ D ⊆ <2, where s indexes spatial

coordinates (e.g., easting and northing, longitude and latitude), D is region of interest, and

<2 represents a 2-dimentional space, a Gaussian outcome variable y(s) along with a p × 1

vector of spatially referenced predictors x(s) are associated through a spatial regression

model such as,

y (s) = x (s)′ β + w (s) + ε (s) . (2.2)

In this model the residual comprises a spatial process, w(s), and an independent white-

noise process, ε(s), that captures measurement error or micro-scale variation. With any
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collection of n locations, say S = {s1, . . . , sn}, we assume that the ε(si)’s are identically

and independently distributed as N(0, τ2), where τ2 is often called the nugget.

The w(s) are spatial random effects, providing local adjustment (with structured de-

pendence) to the mean, interpreted as capturing the effect of unmeasured or unobserved

covariates with spatial pattern. A popular modeling choice for the spatial random effects

is the Gaussian process, w(s) ∼ GP (0, K(·, ·; θ)), specified by a valid covariance func-

tion K(s1, s2; θ) = Cov(w(s1), w(s2)) that models the covariance corresponding to a pair

of locations s1 and s2. The process realizations are collected into a n × 1 vector, say

w = (w(s1), . . . , w(sn))′, which follows a multivariate normal distribution MV N(0, Σw),

where Σw is the n× n covariance matrix of w with (i, j)-th element given by K(si, sj ; θ).

8



0.0 0.2 0.4 0.6 0.8 1.0

8
9

1
0

1
1

1
2

Figure 2.1: Illustrative example of model (2.2) fit to <1 data generated from an unknown
function indicated with point symbols. White dashed lines and gray regions indicate the
median and 95% credible intervals of the fitted y. For interpretation of the references to
color in this and all other figures, the reader is referred to the electronic version of this thesis.
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Figure 2.2: Illustrative example of model (2.2) fit to <1 data generated from an unknown
function indicated with point symbols. White dashed lines and gray regions indicate the
median and 95% credible intervals of the intercept β0.
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Figure 2.3: Illustrative example of model (2.2) fit to <1 data generated from an unknown
function indicated with point symbols. White dashed lines and gray regions indicate the
median and 95% credible intervals of the random effects w.

To illustrate the flexibility of a GP, 100 observations were generated from a normal

distribution N(10 + 2 sin(5πx + 1.5), 0.1), where x ranges from 0 to 1, indicated with point

symbols in Figure 2.1, 2.2 and 2.3. These data were then fit using model (2.2). Figure 2.1, 2.2

and 2.3 shows the estimated fitted values, and mean components β0 and w. This figure

clearly shows that even if the underlying function that generates the data is not known, it

can be closely approximated using a GP.

Clearly K(s1, s2; θ) cannot be just any function; it must ensure that the resulting Σw

11



matrix is symmetric and positive definite. Such functions are known as positive definite

functions and are characterized as the characteristic function of a symmetric random variable

(due to a famous theorem by Bochner (see, e.g., Gikhman and Skorokhod, 1974, p.208)).

Further technical details about positive definite functions can be found in Cressie (1993),

Chilés and Delfiner (1999), and Banerjee et al. (2004).

We customarily specify K(s1, s2; θ) = σ2ρ(s1, s2; φ) with θ = {σ2,φ} where ρ(·; φ)

is a correlation function while φ includes parameters quantifying rate of correlation decay

and smoothness of the surface w(s). Then Var(w(s)) = σ2 represents the spatial variance

component in the model (2.2). This specification assumes a stationary and isotropic pro-

cesses. Stationarity, in spatial modeling contexts, refers to the setting when K(s1, s2; θ) =

K(s1 − s2; θ); that is, the covariance function depends upon the separation of the loca-

tions. Isotropy goes further and specifies K(s1, s2) = K(‖s1 − s2‖), where ‖s1 − s2‖ is the

Euclidean distance between the locations s1 and s2. A very versatile class of correlation

functions is the Matérn correlation function given by

ρ(‖s1 − s2‖; φ) =
1

2ν−1Γ(ν)
(‖s1 − s2‖φ)νKν(‖s1 − s2‖; φ); φ > 0, ν > 0. (2.3)

Here φ = {φ, ν} with φ controlling the decay in spatial correlation and ν controlling process

smoothness. Specifically, if ν lies between positive integers m and (m + 1), then the spatial

process w(s) is mean-square differentiable m times, but not m + 1 times. This fact has been

used to study the derivatives of spatial surfaces (e.g., Banerjee, Gelfand and Sirmans, 2003).

Also, Γ is the usual Gamma function while Kν is a modified Bessel function of the third

kind with order ν. Note, when ν = 1/2 (2.3) reduces to the familiar exponential correlation

function.
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For multilevel models, one assigns prior (hyperprior) distributions to the model param-

eters (hyperparameters) and inference proceeds by sampling from the posterior distribution

of the parameters (see, e.g., Banerjee et al., 2004). Note that the spatial process induces

a MV N(0, σ2R(φ)) distribution on w. For the remaining parameters, suppose that β is

assigned a multivariate Gaussian prior, say MV N(µβ, Σβ), while the spatial variance com-

ponent σ2 and the measurement error variance τ2 are assigned inverse-Gamma (IG) priors.

The process correlation parameter(s), φ, are usually assigned informative priors (e.g., uni-

form over a finite range and to perhaps ensure a desired degree of freedom for the spatial

surface) based on the underlying spatial domain and the physical processes under study.

Using notations similar to Gelman et al. (2004), we can write the posterior distribution

by p(β,w, σ2, τ2,φ |y) as proportional to

p(φ)× IG(τ2 | aτ , bτ )× IG(σ2 | aσ, bσ)×N(β |µβ, Σβ)

×N(w |0, σ2R(φ))×
n∏

i=1

N(y(si) |x(si)
′β + w(si), τ

2). (2.4)

Estimation of (2.4) customarily proceeds using an MCMC algorithm. Often a marginalized

likelihood is used that is obtained by integrating out the spatial effects w. This yields the

posterior distribution p(β, σ2, τ2,φ |y) that is proportional to

p(φ)× IG(τ2 | aτ , bτ )× IG(σ2 | aσ, bσ)×N(β |µβ, Σβ)

×N
(
y |Xβ, σ2R(φ) + τ2In

)
, (2.5)

where X is the matrix of regressors whose i-th row is x(si)
′ and In is the n × n identity
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matrix. The log likelihood of N
(
y |Xβ, σ2R(φ) + τ2In

)
is proportional to

−1

2
log |Σy| − 1

2
z′Σ−1

y z, (2.6)

where Σy = σ2R(φ) + τ2In and z = y−X′β.

An efficient MCMC algorithm for updating β from its full conditional MV N(µβ|·, Σβ|·),

where

Σβ|· = [Σ−1
β

+ X′Σ−1
y X]−1 and µβ|· = Σβ|·X′Σ−1

y y . (2.7)

The remaining parameters can be updated using Metropolis steps, where the target distri-

bution for any (set of) parameter(s) is proportional to the product of the terms in (2.5) that

involve that (those) parameter(s). These will yield posterior samples of Ω = {β, σ2,φ, τ2}.

In this sampling scheme, the spatial random effects w are not sampled directly. This

reduces the parameter space, which results in a more efficient MCMC algorithm. A key

advantage of the first stage Gaussian model (as in 2.2) is that samples from the posterior

distribution of w can be recovered in a posterior predictive fashion. More precisely, we seek

to evaluate

p(w |y) ∝
∫

p(w |Ω,y)p(Ω |y) dΩ . (2.8)

Because the full conditional distribution of w in (2.8) is again multivariate normal, (2.8) is

easily evaluated using composition sampling. For each sample {β(l), σ2(l), τ2(l), φ(l)}, we

draw w(l) from N(µw|·, Σw|·), where

Σw|· =




R
(
φ(l)

)−1

σ2(l)
+

In

τ2(l)




−1

and µw|· = Σw|·

(
y−Xβ(l)

)

τ2(l)
. (2.9)
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These posterior samples from w can be mapped using contours or interpolation routines

to produce plots of the spatial process. For predictions, if S0 = {s0,1, s0,2, . . . , s0,n0
} is

a collection of n0 new locations, the posterior predictive distribution of p(w0 |y), where

w0 = (w(s0,1), w(s0,2), . . . , w(s0,n0
))′, is

p(w0 |y) ∝
∫

p(w0 |w, Ω,y)p(w |Ω,y)p(Ω |y)dΩw. (2.10)

Given posterior samples, {Ω(l)}Ll=1, this distribution can again be obtained via composition

sampling: we first draw w(l) for each l as described in (2.8) and then draw w
(l)
0 from

p(w0 |w(l), Ω(l),y), where this last distribution is derived as a conditional distribution from

a multivariate normal and, hence, is again multivariate normal. More precisely, the process

realizations over the new locations are conditionally independent of the observed outcomes

given the realizations over the observed locations and the process parameters. In other words,

p(w0 |w, Ω,y) = p(w0 |w, Ω), which is a multivariate normal distribution with mean and

variance given by

E[w0 |w, Ω] = Cov(w0,w)Var−1(w)w = r0(φ)′R(φ)−1w

and Var[w0 |w, Ω] = σ2
{

R(φ)− r0(φ)′R(φ)−1r0(φ)
}

,

where r0(φ)′ is the n0 × n matrix with (i, j)-th element given by ρ(s0,i, sj ; φ) and R0(φ)′

is the n0 × n0 matrix define analogous to R(φ). Finally, given a set of covariates at a

new location s0, samples from the posterior predictive distribution of the outcome variable,

y(s0)(l), are drawn from N(x(s0)′β(l) + w(s0)(l), τ2(l)) for l = 1, 2, . . . , L.
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2.2.1 Non-spatial and spatial model numerical experiment

In this section a synthetic dataset analysis is used to illustrate how model misspecification can

negatively effect inference. In particular, the analysis shows how regression slope parameter

estimates and model fit changes when one fails to accommodate spatial dependence among

the regression model’s residuals. The synthetic data were generated at 500 locations within a

[0, 100]× [0, 100] unit domain. Observations arose from the likelihood portion of model (2.2).

The design matrix X included an intercept and two covariates each with values drawn from

a N(0, 1) distribution. Data were generated using the slope parameters β = (1, 0.01, 0.5)

and Σy was formed using σ2 = 20, τ2 = 0.1, and spatial decay parameter φ = 0.015.

The exponential spatial correlation function was used to construct the correlation matrix

R(φ). Obviously, with such a long effective spatial range of 200 map units and large σ2

these data exhibit strong residual spatial dependence. Here, the effective spatial range is

defined as the distance at which the correlation drops below some value, e.g., 0.05 which is

− log(0.05)/φ ≈ 3/φ.

The candidate models included the spatial model (2.2) and its non-spatial equivalent

(i.e., w = 0). Posterior distributions of the parameters are used to compare between the

non-spatial and spatial models. In addition to comparing the parameter estimates, non-

spatial and spatial models are assessed based on fit using the popular Deviance Information

Criterion, or DIC (Spiegelhalter et al., 2002). This criterion is the sum of the Bayesian

deviance (a measure of model fit) and the (effective) number of parameters pD (a penalty

for model complexity).lower DIC indicates better fit.

Table 2.1 summarizes parameter estimates from non-spatial model. Here, β0, β1, and β2

are statistically different from zero at the 0.05 level. This level of significance would suggest
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Table 2.1: Non-spatial model’s parameter credible intervals for the synthetic data. Parame-
ters that are statistically significant at the 0.05 level are indicated with an “∗”.

2.5% 25% 50% 75% 97.5%
β∗0 2.95 4.48 5.42 6.34 7.96

β∗1 0.09 0.26 0.34 0.42 0.60

β∗2 0.08 0.23 0.32 0.42 0.57

τ2 7.66 8.27 8.62 8.97 9.79

that the covariates are useful for explaining some of the variability in the outcome variable

and, if this was a real dataset, one would make inferential statements about the associated

covariates, e.g., regarding some posited hypotheses.

A simple exploration of the non-spatial model’s residuals would reveal the strong spatial

dependence, which would encourage the subsequent specification of model (2.2). Table 2.2

summarizes parameter estimates from spatial model. Here, intervals for β0 and β1 now

included zero, which suggests they are not contributing significantly to explaining the vari-

ability in the outcome variable. As a result, one would come to very different conclusions

about the impact of these variables. Further, the median parameter estimates are much

closer to the true values used to generate the data.

Table 2.2: Spatial model’s parameter credible intervals for the synthetic data. Parameters
that are statistically significant at the 0.05 level are indicated with an “∗”.

2.5% 25% 50% 75% 97.5%
β0 -2.40 1.45 2.90 4.47 8.25
β1 -0.01 0.04 0.06 0.09 0.14
β∗2 0.48 0.54 0.56 0.59 0.65

σ2 7.40 13.73 19.86 25.02 33.89

τ2 0.02 0.04 0.06 0.10 0.15
φ 0.01 0.01 0.02 0.03 0.05
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Figure 2.4: Illustration of intercept’ posterior distribution in non-spatial model and spatial
model: solid line represents non-spatial model; dashed lines represents spatial model
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Figure 2.5: Illustration of estimated parameter’ posterior distribution for X1 in non-spatial
model and spatial model: solid line represents non-spatial model; dashed lines represents
spatial model
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Figure 2.6: Illustration of estimated parameters’ posterior distribution for X2 in non-spatial
model and spatial model: solid line represents non-spatial model; dashed lines represents
spatial model

These differences in the parameters’ posterior distributions for the two models are illus-

trated in Figure 2.4, 2.5 and 2.6. Here, the posterior distribution shift is induced by the

violation of model assumptions. For intercept, the posterior distribution of β0 for the spa-

tial model is wider than that of the non-spatial model. Because the spatial random effect

is zero-centered, it in effect assumes the centering of β0 and its dispersion is reflected in

the distribution of β0. The posterior distributions of β1 and β2 for the spatial model are

narrower than those corresponding non-spatial model. This is partially because the total
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variance in the spatial model is partitioned between w(s) and ε(s), so that variance related

to β1 and β2 becomes smaller than that of non-spatial model.

The DIC model fit criterion for non-spatial and spatial model are summarized in Ta-

ble 2.3. Compared with the non-spatial model, the approximate decrease in DIC of ∼2000

units suggest the addition of the spatial random effects greatly improve model fit. The sub-

stantially larger pD of the spatial model reflects the addition of the spatial random effects.

Table 2.3: Model comparison using Deviance Information Criterion between spatial model
and spatial model.

Model pD DIC
Non-spatial 3.9 1582.4

Spatial 379 -489

This example highlights the inadequacy of the non-spatial model to capture the extra-

neous structured variation. Failing to specify a model able to accommodate these residual

dependence structures, i.e., meet basic model assumptions, can result in misleading infer-

ences, poor model fit, and erroneous prediction.

2.3 Methods for modeling large datasets

Full inference and accurate assessment of model (2.2) will involve matrix decompositions of

either Σy or Σw, depending on the model parametrization. The computational complexity

of these factorizations are in the order of O(n3), where n is the number of locations. Hence,

we encounter computational in feasibility ,a.k.a the “big n” problem, for large datasets.

Modeling large spatial datasets has received much attention in the statistical literature.

Vecchia (1988) proposed approximating the likelihood with a product of appropriate con-

ditional distributions to obtain maximum-likelihood estimates. Stein et al. (2004) adapt
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this to restricted maximum likelihood estimation. Another possibility is to approximate the

likelihood using spectral representations of the spatial process (Fuentes 2007). These like-

lihood approximations yield a joint distribution, but not a process that facilitates spatial

interpolation. Rather than approximations, one could build models especially geared to-

wards handling of large spatial datasets. These are representations of the spatial process in

a lower-dimensional subspace and are often referred to as low-rank or reduced-rank spatial

models. Here, the idea is to represent the spatial process over the n locations using a smaller

number of locations referred to as “knots” (Higdon 2002; Kamman and Wand 2003; Stein

2007, 2008; Cressie and Johannesson 2008; Banerjee et al. 2008; Crainiceaniu et al. 2008).

In practice, however, it is often difficult for analysts to choose a reasonable knot intensity

and distribution across the domain. Yet another approach, referred to as covariance taper-

ing, considers compactly supported correlation functions (Furrer et al. 2006; Kaufman et al.

2008; Du et al. 2009) that yield sparse correlation matrices which, given sparse solvers, are

used for computationally efficient kriging and variance estimation.

For the simple spatial regression model (e.g., 2.2) this approach requires minimal input

from the analyst beyond evaluation of empirical semivariogram. Hence, from the standpoint

of production-level implementation, this approach can provide substantial computational

gain without requiring a high-level of analyst modeling expertise, relative to other modeling

approaches. In this work, I propose this covariance tapering method to approximate the

likelihood and tackle the big “n”problem in this setting.
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Chapter 3

Covariance tapering

This chapter introduces covariance tapering as an approach to reduce the computational

demand associated with evaluating the likelihood in model (2.2). As noted in Chapter 2.3, the

iterative factorization of the n×n spatial covariance matrix is the computational bottleneck

in estimating this model’s parameters within a Bayesian modeling framework.

The premise of covariance tapering is that the spatial covariance matrix is dominated

by near-zero values. This occurs when the range of residual spatial dependence is short

relative to the size of the domain. The idea of covariance tapering is to replace those near-

zeros entries of the covariance matrix with zeros – effectively making the covariance matrix

sparse. Sparse matrix structures, specially designed to only maintain the information about

non-zero elements, can be used to dramatically reduces computational costs associated with

data movement and storage. A suite of matrix algorithms specially designed to work on

these sparse matrix structures are available to efficiently compute factorizations for the

determinant and inverse.
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Figure 3.1: Covariance tapering with different ratios of taper range and effective range.
Curves of original covariance function (solid line), taper correlation function (fine dotted)
and tapered covariance function (long dashed). Ratio of taper range over effective range is
30%.
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Figure 3.2: Covariance tapering with different ratios of taper range and effective range.
Curves of original covariance function (solid line), taper correlation function (fine dotted)
and tapered covariance function (long dashed). Ratio of taper range over effective range is
50%.
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Figure 3.3: Covariance tapering with different ratios of taper range and effective range.
Curves of original covariance function (solid line), taper correlation function (fine dotted)
and tapered covariance function (long dashed). Ratio of taper range over effective range is
100%.
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Figure 3.4: Covariance tapering with different ratios of taper range and effective range.
Curves of original covariance function (solid line), taper correlation function (fine dotted)
and tapered covariance function (long dashed). Ratio of taper range over effective range is
300%.
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The critical question is: how do we introduce zeros into the original covariance matrix

while ensuring the resulting matrix remains positive definite and maintains desirable proper-

ties of the original covariance matrix. This can be accomplished by taking the element-wise

product of two spatial correlation matrices – the original dense correlation matrix and a

sparse correlation matrix created using a particular type of correlation function, referred

to as a compactly supported correlation function, which produce zeros beyond a specified

spatial range. This idea is illustrated in Figure 3.1, 3.2, 3.3 and 3.4. Here, the three lines

correspond to the original dense correlation function, compactly supported correlation func-

tion, and their product. It can be seen that their product retains several features of the

original correlation function, but also “tapers” to zero at the taper range of the compactly

supported function. From both a computational and model specification standpoint this

figure also highlights the need to balance the ratio of the taper range and effective range,

which will be more fully explored in the remainder of this thesis.

3.1 Compactly supported correlation functions

A compactly supported correlation function, Kθ, is an isotropic correlation function that

equals zero beyond a particular spatial range of θ. This is referred to as the taper range and

it determines the sparseness of the resulting tapered covariance matrix. There are several

approaches to specifying compactly supported correlation functions, see, e.g., Wu, 1995;

Gaspari and Cohn, 1999; and Gneiting, 2002). For practical application, Furrer et al. (2006)

suggested that Kθ be the spherical or Wendland function (Wendland, 1995, 1998).
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For the application in this work, I consider the spherical correlation function

Kθ(t; φθ) =





1− 3

2
φθt +

1

2
(φθ)3t, 0 < t <

1

φθ

0, otherwise,

(3.1)

where t = ‖s1 − s2‖. The spherical correlation function is commonly used in environmental

and biological sciences, and produces zero values beyond the taper range of 1/φθ.

Given a compactly supported correlation function Kθ, a tapered covariance function is

formed by taking the product of the covariance function K and Kθ.

The subsequent development and analyses assumes an exponential spatial correlation

function for K; however, any valid spatial correlation function could be applied. Here, the

(i, j)-th element of Σ (where Σ is either Σy or Σw) is K(‖si− sj‖, σ2, φ) = σ2 exp(−φ‖si−

sj‖). Then given this dense Σ and sparse Σθ =
[
Kθ(‖si − sj‖; φθ)

]n
i,j=1

, the tapered

covariance matrix Σtap = Σ◦Σθ, where “◦” is the direct or Schur product, i.e., the element-

wise matrix product. Importantly, the schur product of two symmetric and positive definite

covariance matrices is itself symmetric and positive definite.

The ingredients of covariance tapering are illustrated in Figure 3.5. Here, the curves

represent the output from the original exponential covariance function, compactly supported

correlation function with 1/φθ = 40 distance units as the spatial taper range, and resulting

tapered covariance function. As shown by the long dashed curve, this tapered covariance

maintains the desired exponential type decay until it is truncated at 40 distance units.
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Figure 3.5: Illustration of covariance tapering: exponential covariance function with φ = 0.06
and σ2 = 1 (solid); compactly supported correlation function (3.1) with φθ = 0.025 (fine
dotted), and; resulting tapered covariance function (long dashed).

3.2 Benefits of covariance tapering method

Stein (1988, 1990, 1997, and 1999) has written extensively about the consequences of mis-

specifying the spatial covariance function. Here misspecification refers to using a covariance

function that is not similar to the true covariance function that gave rise to the data. Stein

and others identify correlation functions from the Matérn family (2.3) as the most versatile

among the common valid correlation functions (see, e.g., Banerjee et al. 2004, p. 27 for a

list). Therefore, it is important to show that even after tapering these correlation functions
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maintain their versatility and optimal predictive characteristics. Much of the theoretical

foundation for justifying covariance tapering is laid out by Furrer et al. (2006), Kaufman et

al. (2008), Zhang and Du (2007), and Du et al. (2009).

In the context of a fixed domain, isotropic and stationary Matérn covariance model,

asymptotic equivalence of the mean squared prediction error of the corresponding spectral

densities can be obtained based on the tail condition (Furrer et al. 2006). Zhang (2004)

showed several important results about the Matérn class to prove the equivalence of two

mean-zero measures and convergence of the estimators under those different, but equivalent,

measure. Kuwfman (2009) summarized the theoretical proof about the equivalent measures

under tapering and convergence of the tapering estimators. Zhang and Du (2004) also proved

almost sure convergence of Maximum Likelihood Estimation (MLE) when using a Matérn

covariance model and several not overly stringent assumptions.

The covariance tapering method can also achieve a linear predictor that is nearly the

same as the non-tapered covariance function. Moreover, the asymptotic mean squared er-

ror of prediction will converge to the minimal error within a fixed domain size and using

tapering functions that are second order stationary and isotropic. This was also empirically

demonstrated by Furrer et al. (2006) using data from the US climate data record.

3.3 Sparse matrix algorithms

The goal of introducing zeros into the covariance matrix is to be able to use sparse matrix

algebra routines to more efficiently evaluate the likelihood (2.6). The most computationally

demanding matrix operation in this evaluation is a factorization that facilities the compu-

tation of the determinant (or log-determinant) and inverse. One of the most efficient ways
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to compute the inverse of a symmetric and positive definite matrix Σ is to use a Cholesky

factorization Σ = LL′, where L is a lower triangular matrix square root, also called the

Cholesky factor. Then solve a system of equations with one or more right-hand sides to

find the inverse of matrix Σ. The log-determinant of Σ is simply 2 times the sum of the log

diagonal elements of L.

As an aside, there is actually no need to calculate the full inverse of Σ to evaluate the like-

lihood (2.6). Rather, using the identity z′Σ−1z = (L−1z)′(L−1z) we can work exclusively

with the Cholesky factorization. This approach also provides additional computational ad-

vantage because calculating the inverse of a triangular matrix and subsequent multiplication

with z is more efficient compared to forming the dense Σ−1 and subsequent multiplication

with z.

The efficiency of the sparse matrix routines used to compute the Cholesky factorization of

Σ depend on the number of non-zero values and where these values occur within the matrix.

In the covariance tapering literature, analyses are conduced with matrices consisting of less

than 1% non-zero values. Moreover, one notable attribute of a sparse matrix is that the

Cholesky factor of a sparse matrix will also be sparse, provided locations of its non-zero

values are properly (deliberately) permuted prior to factorization. There are several ways

to permute these matrices such as the reverse Cuthill-Mckee or minimum-degree ordering.

The analyses presented in this thesis use the spam (Sparse Matrix algebra) R package. This

package provides an interface to lower-level Sparskit FORTRAN routines written by Saad

(1994). The spam package provides two permutation options – multiple-minimum degree

and reverse Cuthill-Mckee from George and Lui (1981). The default is multiple-minimum

degree ordering method, which has been shown to produce a permutation that provides good

32



results in most settings.

In addition to more efficient matrix operations, a sparse matrix storage format also allows

for increased capacity to work with larger datasets. Sparse matrix storage formats only

maintain the non-zero values and their position within the matrix to reduce both storage

and arithmetic needs. For example, to store a n × n matrix with q non-zero elements in

the standard row oriented format, a sparse matrix need only to store q real numbers and

q + n + 2 integers.
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Chapter 4

Numerical experiments using

covariance tapering

In this chapter, I explore several aspects of the practical implementation of covariance

tapering within the Bayesian modeling framework detailed in Chapter 2. Specifically, I use

synthetic datasets to address guiding questions that focus on the balance between gain in

computational efficiency and information loss. These guiding questions are

Question 1 What is the reduction in computation time when using covariance tapering?

Question 2 How much information is lost as a result of covariance tapering?

Question 3 How should the taper range of the compactly supported correlation function be

chosen to effectively balance computational efficiency and information loss?
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4.1 Analysis of computational efficiency

This simulation study focuses on Question 1 which concerns the computational efficiency of

the covariance tapering method compared to the analysis using the dense n× n covariance

matrix. The synthetic data were generated at n random locations within a [0, 100]× [0, 100]

unit domain. The synthetic observations at each location were drawn from the multivari-

ate normal distribution MV N(0, Σ), where the dispersion matrix Σ was formed using an

exponential correlation function with variance and spatial decay parameters σ2 = 1 and

φ = 0.04, respectively. Note, because the exponential correlation function never equals zero,

it is convenient to define an effective spatial range, which again is the distance at which

the correlation drops below some value, e.g., 0.05. Then the effective spatial range for the

synthetic data is 75 units i.e., − log(0.05)/φ ≈ 3/φ.

Given the domain size and fixed φ used to generate the data, the variables that influence

the computational efficiency are i) choice of decay parameter φθ in taper correlation function

Kθ (3.1) and ii) n, the dimension of the dataset. The larger the value of φθ, i.e., the shorter

the taper range, the more zeros in the tapered covariance matrix and hence the shorter the

computation time.

As detailed in Chapter 2, the computational bottleneck for iteratively evaluating the

likelihood (2.6) is computing Σ−1. Therefore, the first experiment explores the relationship

between the computation time for Σ−1, n, and the taper range 1/φθ. Here, I consider values

of n from 500 to 5000 units and taper ranges from 3 to 40. These taper ranges and resulting

percent of non-zero values are summarized in Table 4.1.

The experiment results are shown in Figure 4.1. Here the plot axes are n and the

computing time of the tapered Σ−1 in seconds. Each of the six taper ranges detailed in
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Non-zero Percent φθ Taper Range
0.5% 0.300 3.333

1% 0.160 6.250
6% 0.060 16.667

10% 0.050 20.000
20% 0.030 33.333
34% 0.025 40.000

Table 4.1: Computation time experiment variables with the resulting percent of the spatial
covariance matrix non-zero values given a taper range of 75.

Table 4.1 are plotted with different line symbols in Figure 4.1. The corresponding plot

labels are prefaced with spam in the plot legend, which indicates they were generated using

the sparse matrix algebra routines. Also plotted in this figure is the timing results which

assume a dense Σ – labeled LAPACK in the plot legend. As the label indicates these results

were generated using the LAPACK (Linear Algebra PACKage; www.netlib.org/lapack)

FORTRAN library of dense matrix routines.

For values of n greater than ∼1500, Figure 4.1 shows that the sparse matrix routines

for inverting Σ only have an advantage over LAPACK’s dense matrix routines for matrices

with non-zero values of ∼1% or smaller. Referring to Table 4.1, this level of sparseness

corresponds to a taper range of between ∼6.25-10 units. This result is consistent with spam’s

documentation and similar routines found in other sparse matrix libraries. These routines

are highly tuned to work with very sparse and well structured (i.e., optimally permuted)

matrices. When the location of non-zero values is not well structured (i.e., poor structure

is when non-zero values are randomly distributed across the matrix) and/or the percent of

non-zero values is larger than ∼5 percent, then sparse matrix routines will generally not

perform well compared to equivalent routines tuned for dense matrices.
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Figure 4.1: Dense and sparse matrix routine computing times for the inverse of tapered
covariance matrices of varying dimension and number of non-zero values.
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In the contemporary geostatistical literature, some of which is referenced in Chapter 2.3,

a large dataset has a n in the tens or even hundreds of thousands. Typically with these

large values of n the domain is also large. For many of the environmental outcome variables

considered in forestry and ecology, the spatial range of dependence is small relative to the

extent of the domain – as illustrated in Chapter 5. If this is indeed the case, then a sparseness

of ∼2% or less might be realistic. Therefore the next experiment considers a smaller percent

of non-zero values but much larger values of n. The results for this analysis are detailed in

the four figures correspond to n of 10000, 14400, 19600, and 22500.
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Figure 4.2: Dense and sparse matrix routine computing times for the inverse of tapered
covariance matrices of large dimension and sparseness. Dimensions of each matrix n = 10000.
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Figure 4.3: Dense and sparse matrix routine computing times for the inverse of tapered
covariance matrices of large dimension and sparseness. Dimensions of each matrix n = 14400.
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Figure 4.4: Dense and sparse matrix routine computing times for the inverse of tapered
covariance matrices of large dimension and sparseness. Dimensions of each matrix n = 19600.
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Figure 4.5: Dense and sparse matrix routine computing times for the inverse of tapered
covariance matrices of large dimension and sparseness. Dimensions of each matrix n = 22500.

These sub-figures more clearly show when the sparse routines has the computational

advantage. Here the vertical plot axis corresponds to the time in seconds it takes to calculate

the matrix inverse and the horizontal axis denotes the percent non-zero values. As in the first

experiment, beyond ∼2% non-zero values the dense routines have the advantage. However,

for large matrices dominated by zero, the sparse routines offers substantial computational

gains. These gains are on the order of several weeks in computing time when we consider

this matrix operation must occur several thousand times to achieve adequate MCMC chain
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sampling from parameters’ posterior distribution.

In general, covariance tapering and the sparse matrix algorithms can achieve significant

computational gain for large dimension sparse matrices with a small number of non-zero

values. However, as always, “there is no free lunch.” Effectively ignoring data that lie beyond

the taper range results in varying degrees of information loss and can seriously compromise

the usefulness of the modeling exercise. This information loss can be substantial when the

taper range is chosen to be short relative to the range of dependence in the observed outcome

variables.

Therefore, the next set of experiments attempt to quantify one important aspect of

information loss. The results can help inform the choice for the degree of tapering to balance

the computational gain and the model’s predictive performance.

4.2 Analysis of information loss

This simulation study focuses on exploring Question 2 and Questions 3 which consider how

the choice of taper range can effect the model’s inferential performance. The results of this

study are also used to suggest some general guidelines for setting a defensible taper range.

In the following experiment I quantify the information loss of model’s (2.2) predictive

performance given varying degrees of spatial dependence in the underlying data and covari-

ance tapering. Here predictive performance is measured using Mean Square Prediction Error

(MSPE), which is defined as

MSPE(γ̂) = E[(γ̂ − γ)2], where γ̂ is the estimator of γ. (4.1)

42



In this experiment, I consider MSPE calculated using the vector of predicted values y0 (see

equation 2.10 and subsequent development) and the vector of true values y i.e., γ̂ and γ,

respectively. Lower values of MSPE indicate greater predictive performance.

Synthetic datasets of size n equal 300, 600, and 1100 were generated using model (2.2).

The data were produced using 10 different effective spatial ranges (i.e., ∼ 3/φ) in the set

1, 10, . . . , 90, 100. The additional model parameters were fixed at β0 = 0, σ2 = 5, and

τ2 = 1. From each dataset, 100 locations were randomly chosen as a holdout set for model

validation and the remaining locations were used to fit the model and make predictions.

Figure 4.2 illustrates these holdout and modeling data for one of the synthetic datasets.

Here too, the realization of y based on φ = 0.0375 over the observed locations is depicted

in Figure 4.2 and holdout locations in Figure 4.2. An example of the predicted y0 used to

calculate MSPE in the following experiment is provided in Figure 4.2.
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Figure 4.6: A synthetic dataset used to assess the model (2.2) predictive performance un-
der different effective spatial ranges and degrees of covariance tapering. This figure shows
locations of the observed (“•”) and holdout (“+”) locations.
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Figure 4.7: A synthetic dataset used to assess the model (2.2) predictive performance un-
der different effective spatial ranges and degrees of covariance tapering. This figure shows
realization of y over the observed locations.
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Figure 4.8: A synthetic dataset used to assess the model (2.2) predictive performance un-
der different effective spatial ranges and degrees of covariance tapering. This figure shows
realization of y0 over the holdout locations.
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Figure 4.9: A synthetic dataset used to assess the model (2.2) predictive performance under
different effective spatial ranges and degrees of covariance tapering. This figure shows model
predicted values of y0.

Model predictions were based on 10 different taper ranges in the set 1, 10, . . . , 90, 100.

Given the 10 effective spatial ranges used to generate the data, the analysis produced 100 val-

ues of MSPE for each of the three values of n. These results are provided in Figure 4.10, 4.11

and 4.12. Here, each surface is interpolated over the 100 combinations of φ and φθ.

In Figure 4.10, 4.11 and 4.12, the vertical axis of the sub-figures index the taper range

used in the covariance tapering and the horizontal axis is the effective spatial range of

dependence in the synthetic dataset. Recall, Figure 3.4 shows the original covariance curve
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is close to the tapered covariance curve when the ratio of taper range and effective range

is ∼300%. Therefore, Figure 4.12 depicts MSPE corresponding to ratios of taper range to

effective range less than 300% and the sample size n. These surfaces highlight several useful

results:

1. According to Figure 4.10, 4.11 and 4.12, the vertical band of high MSPE along the sub-

figures’ left margin is a result of poor prediction due to short effective spatial ranges in

the data itself. That is, because the range of spatial dependence in the data is short,

prediction is generally poor, regardless of the taper range. Prediction would be poor in

this region even under the full, non-tapered, covariance matrix. Importantly, however,

the MSPE in this region decrease as the n increases. This is because there is simply

more locations within a shorter spatial distances that can be used for prediction.

2. In each Figure 4.10, 4.11 and 4.12, beyond an effective spatial range of ∼30, the

horizontal band of high MSPE along the sub-figures’ lower margin is the result of

information loss from covariance tapering. Here, the taper range is short relative to

the range of dependence in the data and hence prediction is based on only a fraction

of the useful information in the dataset.

3. For Figure 4.10, 4.11 and 4.12, at effective spatial ranges of ∼40, there is negligible

difference in MSPE based on taper ranges of ∼20 and greater. Further, as n increases

this lower bound on the taper range decrease. For instance, at n = 1100, one might use

a taper range of ∼10 without much impact on predictive performance. This trend also

relates to the greater amount of information within proximity to prediction locations

which is afforded by the larger dataset.
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4. In Figure 4.13, when n is small, a taper range to effective range ratio less than ∼0.5

results in high MSPE. This is because too much information is lost when the taper range

is small compared to the effective range. As n increases, the ratio can become smaller

while still resulting in the same MSPE. This is because there is more information (i.e.,

observed locations) within the short taper range from which to borrow information

to use for prediction. Interestingly, when n is small and the ratio is large (i.e., the

original covariance function is not changed much) predictive performance is actually

worse than when the ratio is near 1 – tapering actually improves prediction even though

the data was not generated from a tapered correlation function. This effect decreases

at n increases.
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Figure 4.10: Surfaces of Mean Squared Prediction Error (MSPE) for combinations of φ, φθ,
and dataset size is 300.
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Figure 4.11: Surfaces of Mean Squared Prediction Error (MSPE) for combinations of φ, φθ,
and dataset size is 600
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The contour lines on Figure 4.10, 4.11 and 4.12 also provide some guidance on how to

specify the taper range given the effective spatial range of the data. In practice, and as

demonstrated in Chapter 5, estimates of this effective spatial range can be obtained from

an empirical semivariogram fit to the non-spatial model’s residual values. This experiment

also helps to identify the taper range that balances computational efficiency and information

loss. Specifically, one would chose the smallest possible taper range given some predefined

limit of acceptable information loss. The allowable taper range to effective range ratio is best

explored using Figure 4.13. This surface suggests a defensible taper range can be chosen by

keeping the ratio between ∼0.5 − 1 for small to moderately sized datasets and, given this

allowable ratio decreases as n increases, large datasets could be modeled using much smaller

ratios without compromising predictive performance. Given the results of this synthetic

data analysis and the MSPE objective function, one might safely consider taper ranges

at the lower bound of the blue colored zone in the surface in Figure 4.10, 4.11 and 4.12.

Although, the taper range and effective range ratio as well as n are important variables,

predictive performance will depending on additional dataset characteristics. Therefore, I

recommend using an exploratory analysis, similar to the one conduced here, when choosing

a taper range.

This experiment only considered predictive inferences based on the MSPE criterion.

Other criterion could be considered and might reveal different aspects of information loss.

Gneiting and Raftery (2007) detail several such criterion that might be considered. Further,

this analysis only focused on predictive performance. Depending on the inferential focus, one

might consider looking at information loss in the model parameters, such as the regression

slopes and/or spatial and residual variances.
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Chapter 5

Illustrative analyses of forest

complexity and biomass

As described in Chapter 1, a central objective of this thesis is to define modeling methods

and create software to help meet the research objectives of a larger project entitled “Forest

complexity in the Lake States: Implications for carbon storage.” The goal of the larger

project is to identify forest management opportunities that might aid in climate change

mitigation and adaptation. The premise of this project is that forest managers are seeking

strategies to create stands that can both adapt to new climatic conditions and help mitigate

increases in atmospheric CO2. One approach to adaptation involves maximizing forest com-

plexity, which can be characterized as both compositional complexity in species diversity and

structural complexity in tree sizes. Enhanced forest complexity may contribute to climate

change adaptation because trees of different species and/or sizes may respond differently

to weather fluctuations or disturbances. However, forests must also provide mitigation of

climate change by maintaining carbon storage and/or sequestration and forest complexity
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may be negatively related to carbon storage or sequestration because more complex forests

may contain a higher proportion of smaller and/or less productivity trees. Although the

importance of forest complexity for climate change adaptation and mitigation is clear, few

studies have examined how land ownership influences forest complexity across large areas or

directly related complexity to carbon cycling.

In the following sections, I present several illustrative analyses that will help guide the

more thorough exploration of the larger study’s research objectives. These analyses are

a subset of the models that will be explored in the larger study. The analyses show the

advantage of using a hierarchical spatial model and compliment the synthetic data analyses

in Chapter 4 by providing additional insights into covariance tapering.

5.1 Data

The data considered in the following analyses was collected by the USDA Forest Service

Forest Inventory and Analysis (FIA) program. This program has established field plots in

permanent locations by using an equal probability sampling design (Bechtold and Patterson

2005). In each forested plot, they calculated total tree biomass based on established equations

that use tree-level variables, such as species, diameter at breast height (DBH), and total

height. Additional plot-level variables such as stand age and ownership were also recorded.

The dataset consists of the 8670 FIA database observations measured between 1999-2006 that

were designated as completely forested and fell within Minnesota, Wisconsin, and Michigan.

Here too, I only considered plots that fell within a single private ownership category. The

ownership categories considered are defined in Table 5.1.
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Table 5.1: USDA Forest Service Forest Inventory and Analysis private ownership categories.
Variable name Description
OWN-41 Corporate
OWN-42 Non-governmental conservation/Natural resources organization
OWN-43 Unincorporated local partnership/association/club
OWN-44 Native American (Indian)
OWN-45 Individual

5.2 Analyses and results

The subsequent analyses use the five forest ownership categories defined in Table 5.1 to

explain the variability in an outcome variable of interest. This analysis of variance is con-

ducted using both the spatial model (2.2) and its non-spatial equivalent (i.e., w = 0). For

all analyses, OWN-41 was arbitrarily chosen as the baseline category. This choice should ob-

viously change to accommodate specific hypotheses to be tested in the larger project. Given

the computationally prohibitive size of the dataset, I again taper the spatial random effects

covariance matrix. I consider several different taper ranges for each analysis to assess the

robustness of the results.

In addition to comparing the parameter estimates, the popular Deviance Information

Criterion, or DIC is used to measure the difference between models and lower DIC indi-

cates better fit. Moreover, an empirical semivariogram was fit to the non-spatial models’

residuals. These semivariograms served to help guide the choice prior distributions for the

model parameters and the taper range.

To complete the model specification, the regression slope parameters were assumed

to have the customary flat prior, the variance parameters were assigned inverse-Gamma

IG(shape, scale) where the shape hyperparameter was set to 2 and the scale was taken as

the semivariogram’s partial sill and nugget value for σ2 and τ2, respectively. Note, with
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a shape of 2, the mean of the IG equals the scale value and the distribution has infinite

variance, see, e.g., Gelman et al., (2004) for the IG parametrization. Again assuming an

exponential spatial correlation function, the prior support for the spatial decay parameter φ

followed a Uniform U(0.00025, 0.03), which corresponds to 100 to 12,000 m.

Three MCMC chains were run for 1,500 iterations each. Convergence was diagnosed

using the CODA package in R by monitoring mixing of chains and the Gelman-Rubin statistic

(Gelman and Rubin 1992). Satisfactory convergence was diagnosed within 1,000 iterations

for all models and posterior inference was based on a post-burn-in sample of 1,500 iterations

(500 from each chain).

5.2.1 Standard deviation of DBH and ownership

The standard deviation of DBH (SD-DBH) is one measure of a forest stand’s complexity.

Stands with large SD-DBH will have a greater distribution of diameters. For example, stands

with uneven age structure and/or multiple tree species with different shade tolerances will

likely exhibit SD-DBH larger than stands that consist of trees within a single age class. One

would expect single species and even-aged plantations to have some of the lowest SD-DBH

within the dataset. For this analysis the variability in the outcome variable SD-DBH is

described by the ownership categories defined in Table 5.1. The distribution of the outcome

variable was approximately normal and no transformation was considered.

Table 5.2 summarizes parameters’ posterior distribution estimated using the non-spatial

model. Here, β0 is the mean standard deviation of DBH for the baseline ownership category.

Subsequent β estimates are the offset from the baseline mean. Ownership categories with

95% credible intervals that do not include zero are statistically different from the baseline at
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the 0.05 level. Given this definition, these estimates suggest that the four ownerships have

statistically higher average SD-DBH than the baseline OWN-41 category.

This non-spatial regression model is adequate in the absence of extraneous structured

variation, beyond what is explained by the ownership. However, when observations are spa-

tially indexed, we might expect similar outcomes in proximate locations, possibly resulting

from common environmental conditions, disturbance regimes, and/or management practices.

As illustrated in Chapter 2.2.1, ignoring this spatial dependence can result in falsely precise

estimates of model parameters and erroneous predictions. Hoeting (2009) offers a nice dis-

cussion on consequences of not meeting the assumption of uncorrelated model residuals. As

detailed in Chapter 2, a common solution to spatial dependence among the residuals is to

include a spatially-varying model intercept through the addition of a spatial random effect.

Beyond helping to ensure the statistical validity of the model, the addition of a spatial ran-

dom effect to the intercept allows for partitioning of residual uncertainty into a spatial and

non-spatial component which can improve model fit.

Table 5.2: Non-spatial model’s parameter credible intervals for standard deviation of DBH
and forest ownership. Parameters that are statistically significant at the 0.05 level are
indicated with an “∗”.

Parameter 2.5% 25% 50% 75% 97.5%
β∗0 3.22 3.27 3.30 3.33 3.38

β∗OWN−42 0.09 0.39 0.54 0.70 0.98

β∗OWN−43 0.13 0.29 0.39 0.47 0.63

β∗OWN−44 0.40 0.54 0.62 0.69 0.83

β∗OWN−45 0.28 0.34 0.37 0.40 0.46

τ2 2.39 2.44 2.46 2.49 2.54

Figure 5.1 shows the semivariogram of the non-spatial model’s residuals. Here, the long

effective spatial range of ∼85 km and large size of the partial sill compared to the nugget,
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suggests there is substantial residual dependence. This encourages further analysis using the

full spatial model (2.2). Again, given the size of this dataset, I tapered the random effects

covariance matrix to reduce the computational burden. As in the synthetic data analyses,

I again used the spherical compactly supported correlation function (3.1). I considered

taper ranges (i.e., 1/φθ) of 30%, 50% and 100% of the estimated effective spatial range

∼85 km, which correspond to 26, 42, and 85 km, respectively. These taper ranges result in

spatial covariance matrices with 0.5%, 1%, and 2% non-zero values. Give the relatively large

dimension of the dataset, these levels of sparseness result in substantial computational gains

over the dense matrix computations – on the order of days.

The model parameter estimates for the three taper ranges are presented in Table 5.3. At

a taper range of 26 km, the spatial model produces regression slope parameter estimates that

do not differ in sign or significances from those of the non-spatial model. Only considering

dependence up to 26 km would likely leave a substantial portion of residual structured

dependence intact that could negatively impact the model parameter estimates. At a taper

range of 42 and then 85, this residual spatial dependence is substantially reduced. With

the model assumptions better met, the regression slope parameters associated with OWN-

42 and OWN-43 become non-significant. This could be a true signal or perhaps the result

of an insufficient sample size for these two ownership categories. OWN-42 and OWN-43

have the lowest number of observations among the ownerships. The addition of spatial

random effects essentially reduces the effective number of observations (by acknowledging

spatially redundant information) and hence the regression parameters may shrink toward

zero. Figure 5.2, 5.3, 5.4, 5.5 and 5.6 summary the posterior distributions of non-spatial and

spatial model with different taper ranges. It is obvious that including the spatial random
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Figure 5.1: Empirical semivariogram of residuals from the non-spatial version of model (2.2)
for standard deviation of DBH and forest ownership along with the maximum likelihood
estimates of the exponential correlation function’s nugget (lower horizontal line), sill (upper
horizontal line), and effective spatial range (vertical line).

effects influences coefficient estimates, even changes their significance under 95% confidence

level.
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Figure 5.2: Illustration of estimated parameter’s posterior distribution for intercept in non-
spatial model and spatial model for for standard deviation of DBH and forest ownership: solid
line represents the non-spatial model; dashed line, dotted line, and mixture line represents
spatial models with taper ranges of 100%, 50% and 30% of effective range, respectively.
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Figure 5.3: Illustration of estimated parameter’s posterior distribution for OWN-42 in non-
spatial model and spatial model for for standard deviation of DBH and forest ownership: solid
line represents the non-spatial model; dashed line, dotted line, and mixture line represents
spatial models with taper ranges of 100%, 50% and 30% of effective range, respectively.
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Figure 5.4: Illustration of estimated parameter’s posterior distribution for OWN-43 in non-
spatial model and spatial model for for standard deviation of DBH and forest ownership: solid
line represents the non-spatial model; dashed line, dotted line, and mixture line represents
spatial models with taper ranges of 100%, 50% and 30% of effective range, respectively.
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Figure 5.5: Illustration of estimated parameter’s posterior distribution for OWN-44 in non-
spatial model and spatial model for for standard deviation of DBH and forest ownership: solid
line represents the non-spatial model; dashed line, dotted line, and mixture line represents
spatial models with taper ranges of 100%, 50% and 30% of effective range, respectively.
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Figure 5.6: Illustration of estimated parameter’s posterior distribution for OWN-45 in non-
spatial model and spatial model for for standard deviation of DBH and forest ownership: solid
line represents the non-spatial model; dashed line, dotted line, and mixture line represents
spatial models with taper ranges of 100%, 50% and 30% of effective range, respectively.

The DIC model fit criterion for the four models is summarized in Table 5.4. Compared

with the non-spatial model, the approximate decrease in DIC of 1000 units suggest that the

addition of the spatial random effects greatly improve model fit. The DIC values among the

spatial models are comparable.
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Table 5.3: Spatial model’s parameter credible intervals for standard deviation of DBH and
forest ownership. Parameters that are statistically significant at the 0.05 level are indicated
with an “∗”.

2.5% 25% 50% 75% 97.5%
Taper range equals 26 km (30% of effective spatial range)

β∗0 3.32 3.39 3.42 3.46 3.52

β∗OWN−42 0.05 0.31 0.46 0.61 0.87

β∗OWN−32 0.04 0.20 0.28 0.36 0.53

β∗OWN−44 0.15 0.33 0.43 0.52 0.71

β∗OWN−45 0.17 0.23 0.27 0.30 0.37

φ 3.062e-05 3.138e-05 3.287e-05 3.52e-05 4.0e-05

σ2 0.41 0.48 0.52 0.54 0.60

τ2 1.86 1.91 1.94 1.97 2.03
Taper range equals 42 km (50% of effective spatial range)

β∗0 3.36 3.43 3.47 3.51 3.57

β∗OWN−42 0.01 0.27 0.41 0.56 0.83

βOWN−43 -0.01 0.15 0.24 0.33 0.50

β∗OWN−44 0.16 0.35 0.45 0.54 0.72

β∗OWN−45 0.12 0.19 0.23 0.26 0.33

φ 3.05e-05 3.1e-05 3.18e-05 3.28e-05 3.63e-05

σ2 0.39 0.42 0.45 0.47 0.52

τ2 1.93 1.97 1.99 2.02 2.07
Taper range equals 85 km (100% of effective spatial range)

β∗0 3.40 3.48 3.52 3.56 3.63

βOWN−42 -0.03 0.26 0.40 0.55 0.82

βOWN−43 -0.04 0.12 0.21 0.30 0.46

β∗OWN−44 0.24 0.41 0.52 0.60 0.79

β∗OWN−45 0.09 0.15 0.19 0.22 0.29

φ 3.03e-05 3.05e-05 3.11e-05 3.16e-05 3.31e-05

σ2 0.33 0.36 0.39 0.41 0.46

τ2 1.97 2.02 2.04 2.07 2.11

Model pD DIC
Non-spatial 5 16486

Spatial (taper range equals 26 km) 1236 15535
Spatial (taper range equals 43 km) 1186 15967
Spatial (taper range equals 85 km) 966 15908

Table 5.4: Model comparison using Deviance Information Criterion for standard deviation
of DBH and forest ownership.
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5.2.2 Biomass and ownership

This analysis focuses on explaining the variability in the outcome variable metric tons of live

standing biomass per hectare (BIO) using the five ownership categories defined in Table 5.1.

The outcome variable was log transformed to better approximate a normal distribution.

Table 5.5 summarizes parameters’ posterior distribution estimated using the non-spatial

model. Again, those ownership categories with 95% credible intervals that do not include

zero are considered statistically significant at the 0.05 level. Given this definition, these

estimates suggest that OWN-42 and OWN-44 have statistically higher average BIO than the

baseline OWN-41 category.

Table 5.5: Non-spatial model’s parameter credible intervals for biomass and forest ownership.
Parameters that are statistically significant at the 0.05 level are indicated with an “∗”.

2.5% 25% 50% 75% 97.5%
β∗0 7.79 7.89 7.95 8.00 8.11

β∗OWN−42 0.21 0.74 1.02 1.36 1.85

βOWN−43 -0.04 0.29 0.46 0.63 0.97

β∗OWN−44 0.46 0.73 0.88 1.03 1.29

βOWN−45 -0.26 -0.14 -0.09 -0.02 0.09

τ2 9.09 9.25 9.34 9.44 9.63

The semivariogram of the non-spatial model’s residuals is given in Figure 5.7. Here,

similar to the analysis for SD-DBH, the semivariogram shows clear spatial structure among

the residuals which indicates a violation of the model assumptions. This violation could

produce misleading inference about the significance of the regression slope parameters and

hence erroneous statements about the average volume of biomass compared to the baseline

ownership. The vertical line on the semivariogram indicates an estimated effective spatial

range of ∼75 km.

Given the results of the semivariogram analysis, I am again encouraged to explore a model
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Figure 5.7: Empirical semivariogram of residuals from the non-spatial version of model
(2.2) for biomass and forest ownership along with the maximum likelihood estimates of the
exponential correlation function’s nugget (lower horizontal line), sill (upper horizontal line),
and effective spatial range (vertical line).

that includes spatial random effects which arise from a multivariate normal distribution with

a tapered covariance matrix. I considered taper ranges of 50% and 100% of the estimated

effective spatial range i.e., 38 km and 75 km, respectively. Both of these taper ranges produce

a sparse covariance matrix with less than 3% non-zero values. Parameter estimates for these

two spatial models are summarized in Table 5.6. Contrary to the non-spatial model results,

both spatial models suggest the average biomass in ownership category 42 (i.e., OWN-42)

does not differ from the baseline ownership. Figure 5.8, 5.9, 5.10, 5.11 and 5.12 represent
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the correspond posterior distributions of the non-spatial and spatial model. Here too, the

addition of the spatial random effects improves model fit as reflected by the lower DIC values

in Table 5.7.
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Figure 5.8: Illustration of estimated parameter for intercept’ posterior distribution in non-
spatial model and spatial model for for biomass and forest ownership: solid line represents
non-spatial model; dashed line and dotted line represents spatial models with taper ranges
are 100%, and 50% of effective range, respectively.
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Figure 5.9: Illustration of estimated parameter’s posterior distribution for OWN-42 in non-
spatial model and spatial model for for biomass and forest ownership: solid line represents
non-spatial model; dashed line and dotted line represents spatial models with taper ranges
are 100%, and 50% of effective range, respectively.
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Figure 5.10: Illustration of estimated parameter’s posterior distribution for OWN-43 in non-
spatial model and spatial model for for biomass and forest ownership: solid line represents
non-spatial model; dashed line and dotted line represents spatial models with taper ranges
are 100%, and 50% of effective range, respectively.
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Figure 5.11: Illustration of estimated parameter’s posterior distribution for OWN-44 in non-
spatial model and spatial model for for biomass and forest ownership: solid line represents
non-spatial model; dashed line and dotted line represents spatial models with taper ranges
are 100%, and 50% of effective range, respectively.
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Figure 5.12: Illustration of estimated parameter’s posterior distribution for OWN-45 in non-
spatial model and spatial model for for biomass and forest ownership: solid line represents
non-spatial model; dashed line and dotted line represents spatial models with taper ranges
are 100%, and 50% of effective range, respectively.
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Table 5.6: Spatial model’s parameter credible intervals for biomass and forest ownership.
Parameters that are statistically significant at the 0.05 level are indicated with an “∗”.

2.5% 25% 50% 75% 97.5%
Taper range equals 38 km (50% of effective spatial range)

β∗0 7.55 7.68 7.74 7.81 7.94

βOWN−42 -0.01 0.51 0.80 1.10 1.64

βOWN−43 -0.04 0.28 0.45 0.61 0.94

β∗OWN−44 0.38 0.73 0.92 1.10 1.44

βOWN−45 -0.12 0.00 0.07 0.13 0.26

φ 3.07e-05 3.13e-05 3.20e-05 3.31e-05 3.59e-05

σ2 1.25 1.45 1.54 1.62 1.74

τ2 7.41 7.55 7.65 7.77 8.00
Taper range equals 75 km (100% of effective spatial range)

β∗0 7.54 7.67 7.74 7.82 7.97

βOWN−42 -0.04 0.47 0.75 1.03 1.60

βOWN−43 -0.12 0.21 0.38 0.53 0.82

β∗OWN−44 0.50 0.87 1.05 1.24 1.62

βOWN−45 -0.15 -0.01 0.05 0.12 0.25

φ 3.03e-05 3.05e-05 3.112e-05 3.24e-05 3.499e-05

σ2 1.11 1.23 1.30 1.38 1.56

τ2 7.60 7.75 7.85 7.94 8.10

Table 5.7: Model comparison using Deviance Information Criterion for biomass and forest
ownership.

Model pD DIC
Non-spatial 6 28052

Spatial (taper range equals 38 km) 1043 27419
Spatial (taper range equals 75 km) 802 27409
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5.2.3 Stand age and ownership

This analysis focuses on explaining the variability in the outcome variable stand age (AGE)

using the five ownership categories defined in Table 5.1. The distribution of the outcome vari-

able was approximately normal and no transformation was considered. Table 5.8 summarizes

parameters’ posterior distribution estimated using the non-spatial model. These parameter

estimates suggest that stands on all ownerships except for OWN-45 are on average older

than the baseline ownership OWN-41.

Table 5.8: Non-spatial model’s parameter credible intervals for stand age and forest own-
ership. Parameters that are statistically significant at the 0.05 level are indicated with an
“∗”.

β∗0 53.70 54.54 54.97 55.44 56.33

β∗OWN−42 1.24 5.75 8.14 10.55 15.24

β∗OWN−43 2.90 5.62 6.94 8.40 10.75

β∗OWN−44 11.58 13.78 14.99 16.22 18.61

βOWN−45 -0.47 0.56 1.07 1.56 2.45

τ2 616.11 627.72 634.58 640.95 653.95

The semivariogram of the non-spatial model’s residuals is given in Figure 5.13. Here,

similar to the other analyses, the semivariogram shows clear spatial structure among the

residuals which indicates a violation of the model assumptions. The vertical line on the

semivariogram indicates a long estimated effective spatial range of ∼96 km.

Again, given the results of the semivariogram analysis, I added spatial random effects to

the model. For this analysis, I specified a taper range equal to the estimated effective spatial

range. This resulted in a tapered covariance matrix with ∼5% non-zero values. Despite this

level of sparseness, the time required to fit the model was substantially less than it would

take using dense matrix routines. Parameter estimates for the spatial model are summarized

in Table 5.9. Unlike the previous analyses, the addition of the random effects actually made
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Figure 5.13: Empirical semivariogram of residuals from the non-spatial version of model
(2.2) for stand age and forest ownership along with the maximum likelihood estimates of the
exponential correlation function’s nugget (lower horizontal line), sill (upper horizontal line),
and effective spatial range (vertical line).

one of the slope parameters (OWN-45) statistically different from zero. Again, changes in

parameter estimates between the non-spatial and spatial models is expected, due to the

non-spatial model’s violation of assumptions. The posterior distributions of non-spatial and

spatial model parameters are summarized in Figure 5.14, 5.15, 5.16, 5.17 and 5.18. Here

too, the addition of the spatial random effects improves model fit as reflected by the lower

DIC values in Table 5.10.
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Figure 5.14: Illustration of estimated parameter’s posterior distribution for intercept in non-
spatial model and spatial model for for biomass and forest ownership: solid line represents
non-spatial model; dashed line spatial model with the taper range equal to the effective range

78



−5 0 5 10 15 20

0
.
0
0

0
.
0
2

0
.
0
4

0
.
0
6

0
.
0
8

0
.
1
0

Figure 5.15: Illustration of estimated parameter’s posterior distribution for OWN-42 in non-
spatial model and spatial model for for biomass and forest ownership: solid line represents
non-spatial model; dashed line spatial model with the taper range equal to the effective range
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Figure 5.16: Illustration of estimated parameter’s posterior distribution for OWN-43 in non-
spatial model and spatial model for for biomass and forest ownership: solid line represents
non-spatial model; dashed line spatial model with the taper range equal to the effective range
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Figure 5.17: Illustration of estimated parameter’s posterior distribution for OWN-44 in non-
spatial model and spatial model for for biomass and forest ownership: solid line represents
non-spatial model; dashed line spatial model with the taper range equal to the effective range
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Figure 5.18: Illustration of estimated parameter’s posterior distribution for OWN-45 in non-
spatial model and spatial model for for biomass and forest ownership: solid line represents
non-spatial model; dashed line spatial model with the taper range equal to the effective range
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Table 5.9: Spatial model’s parameter credible intervals for stand age and forest ownership.
Parameters that are statistically significant at the 0.05 level are indicated with an “∗”.

2.5% 25% 50% 75% 97.5%
Taper range equals 38 km (50% of effective spatial range)

β∗0 51.90 53.07 53.61 54.21 55.28

β∗OWN−42 0.84 5.17 7.35 9.82 14.10

β∗OWN−43 2.46 5.24 6.65 8.02 10.53

β∗OWN−44 8.60 11.17 12.70 14.13 16.83

β∗OWN−45 0.85 1.85 2.35 2.92 3.93

φ 3.05e-05 3.12e-05 3.2e-05 3.5e-05 4.3e-05

σ2 55.07 64.20 68.44 73.22 86.33

τ2 540.29 552.37 558.76 565.66 577.33

Table 5.10: Model comparison using Deviance Information Criterion for stand age and forest
ownership.

Model pD DIC
Non-spatial 6 64617

Spatial (taper range equals 96 km)(effective range) 704 64307
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Chapter 6

Summary and Discussion

6.1 Summary

The goal of this thesis was to explore the properties of some promising new modeling tools

that will enable researchers to extract more information from large spatial datasets. Despite

their power and flexibility, practitioners have been slow to adopt these methods, due in part

to lack of statistical/mathematical training, computationally efficient software, and illustra-

tion of these methods within their area of interest. To help move motivate this community

to engage new and more applicable modeling tools, this thesis work also yielded software

and associated documentation (http://blue.for.msu.edu/data/huirong-ms-code.pdf)

for the highlighted geostatistical models.

A central objective of this thesis was to illustrate how the proposed methods could be

applied to generate valid inference about patterns in forest ownership, forest complexity,

and biomass that will ultimately help in meeting the goals of the larger project. Results

from the analysis of synthetic and forestry datasets, Chapter 4 and Chapter 5 respectively,
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clearly demonstrate how model misspecification, specifically ignoring spatial dependence

among model residuals, can result in incorrect inference about regression parameters of

interest. These results have important implications for hypothesis testing and ultimately

forest management and policy decisions. Specifically, the forest ownership analyses presented

three cases where the wrong conclusion would be made if practitioners used a simple non-

spatial analysis of variance. Applying a hierarchical Bayesian spatial model, that better

meets model assumptions, provided different conclusions that more fully acknowledged the

information content of the data and sources of uncertainty.

The fundamentals for fitting the Bayesian spatial regression model were offered in the

Chapter 2. Here too, I detailed the computational challenges to fitting this model when the

dataset is large. There are several possible approaches to reducing the dimensionality of this

problem without sacrificing model richness or flexibility. Covariance tapering is a particu-

larly appealing solution to this challenge. Chapter 3 reviewed covariance tapering and its

ingredients including compactly supported correlation functions, sparse matrix structures,

and software routines for sparse matrix linear algebra computations. With the reduced com-

putational demand comes a potential loss of information and hence compromised inference

– “there is no free lunch.” Some care is need in selecting a taper range that balances com-

putational gains with information loss. The synthetic data analyses in Chapter 4 provided

several insights which should be useful to practitioners who want to apply covariance taper.

The models explored in this thesis assumed stationary and isotropic spatial processes.

Obviously, as researchers consider larger domains, and hence are confronted with the mod-

eling challenges partially addressed here, these assumptions are likely to be violated. There

has been considerable advances for specifying nonstationary and anisotropic covariance struc-
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tures (see e.g., Higdon et al. 1999, Fuentes and Smith 2001, Wood et al. 2002, Kim et al.

2005, Christopher et al. 2006). Covariance tapering can be incorporated into some of these

specialized frameworks; however, model specification does become more challenging.

There are of course other options for reducing the complexity or dimensionality of the

models explored in this thesis – beyond covariance tapering. Several of these contemporary

approaches can be applied alone or in combination with covariance tapering. For instances,

my future work will consider combining covariance tapering with a reduced rank or predictive

process representation of the underlying spatial process, see, e.g., Banerjee et al. (2008) and

Finley et al. (2009). The predictive process projects the n realization of the spatial process

to a lower subspace that is defined on a smaller number of knots. This approach will gain

greater computational efficiency by leveraging a sparse matrix specification of the random

spatial effects over the smaller dimension knot-based predictive process.

Although there are still many open questions concerning the application of hierarchical

spatial model to large datasets, this thesis should be helpful for guiding some decisions about

when and how to apply covariance tapering to reduce computational challenges. Further,

the software tools, implementation guidelines, and illustrative analyses will be instrumental

to completing a full analysis of the FIA database to meet the objectives of the overarching

study.
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