I I I I 71-23,158 ASHTON, Peter Geoffrey, 19*4-0RECREATIONAL BOATING CARRYING CAPACITY: A PRELIMINARY STUDY OF THREE HEAVILY USED LAKES IN SOUTHEASTERN MICHIGAN. Michigan State University, Ph.D., 1971 Environmental Sciences U niversity Microfilms, A XEROXC om pany , A nn A rbor, M ichigan RECREATIONAL BOATING CARRYING CAPACITY: A PRELIMINARY STUDY OF THREE HEAVILY USED LAKES IN SOUTHEASTERN MICHIGAN By Peter Geoffrey Ashton A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Resource Development 1971 PLEASE NOTE: Some pages have small and Indistinct type. Filmed as received. University Microfilms ABSTRACT RECREATIONAL BOATING CARRYING CAPACITY: A PRELIMINARY STUDY OF THREE HEAVILY USED LAKES IN SOUTHEASTERN MICHIGAN By Peter Geoffrey Ashton The tremendous growth of participation in recre­ ational boating has focused attention on the ability of surface waters to support different types of water-based recreation under intensive use. Many recreation resource planners believe that both the environment and the quality of the experience deteriorate when water is used too in­ tensively. If state agencies responsible for controlling the access to and use of .water are to follow a policy of maintaining high quality water-oriented recreation, ade­ quate methods for doing so must be adopted. In order to regulate usage of a water surface, the basic relationship of users to the physical resource and the ways in which satisfaction may change with different amounts of use must be known. The position of this r e ­ search is that water carrying capacity is a combination of both these relationships. Peter Geoffrey Ashton These relationships were investigated during the summer of 1969 on Union, Cass, and Orchard Lakes in O a k ­ land County, M i c h i g a n using attitude responses and aerial photography. The m a j o r thrust of the research was to: (1) investigate the attitudes of water-oriented user groups during times of intense use, (2) develop a measure of the level of boating activity intensity, (3) relate boater attitudes to levels of boating activity intensity in order to develop a method of expressing boating ca r r y ­ ing capacity quantitatively, and (4) determine if a significant difference exists between the selected socio­ economic characteristics of boaters indicating unfavorable conditions of use and the characteristics of those indi­ cating favorable conditions of use. The analysis was divided into three successive phases. In the first phase, a least squares stepwise deletion analysis technique was used to examine various methods of measuring the amount of boating taking place. The dispersion and consumption by boating activities on the water surface were used as coefficients for describing the intensity of boating usage. These coefficients were investigated for possible relationships individually and in combination. In the second phase, a deletion analysis technique was again used to: (1) compare the attitudes toward boating experiences with the level of boating activity intensity, and <2) compare the number of acres per boat with the level of boating activity intensity. Peter Geoffrey Ashton T h e a t t i t u d e of u s e r s was d e f i n e d in terms of a n i n d e x c a l c u l a t e d by d i v i d i n g the n u m b e r of u n f a v o r a b l e r e s p o n s e s b y b o a t e r s b y the total n u m b e r of r e s p o n s e s time, period, a n d place. for a g i v e n T h e n u m b e r o f acres p e r b o a t w a s d e t e r m i n e d b y d i v i d i n g the a r e a of e a c h lake z o n e b y the t otal n u m b e r of b o a t s i n v o l v e d in all a c t i v i t i e s . The c o m b i n a t i o n of the two r e l a t i o n s h i p s was u s e d to d e v e l o p a m e t h o d of d e t e r m i n i n g b o a t i n g c a r r y i n g capacity. t h i r d phase, In the c h i - s q u a r e anal y s i s w a s u s e d to d e t e r m i n e if s i g n i f i c a n t d i f f e r e n c e s in s e l e c t e d s o c i o - e c o n o m i c c h a r a c ­ t e r i s t i c s e x i s t e d b e t w e e n boa t e r s indicating unfavorable c o n d i t i o n s of use and those i n d i c a t i n g f a v o r a b l e c o n d i t i o n s of use. T h e s t u d y res u l t s in P h a s e X s h o w that "the s p a c e c o n s u m p t i o n s a f e t y c o e f f i c i e n t p r o c e d u r e " SCSC-P, w h i c h computes the t o t a l sur f a c e w a t e r space u s e d b y all a c t i v i ­ ties and d i v i d e s by the area of the lake in w h i c h a c t i v i ­ ties t o o k place, a d e q u a t e l y m e a s u r e s the level o f b o a t i n g a c t i v i t y intensity. (1) T h e results in P h a s e II indicate: that a s i g n i f i c a n t r e l a t i o n s h i p ex i s t s b e t w e e n the u s e r a t t i t u d e in d e x UAI and the space c o n s u m p t i o n s a f e t y c o e f f i c i e n t SCSC, and (2) the n u m b e r of acres p e r b o a t an d the space c o n s u m p t i o n safety c o e f f i c i e n t . A method for d e t e r m i n i n g a b o a t i n g c a r r y i n g c a p a c i t y r a n g e for c o m b i n e d a c t i v i t i e s in terms of n u m b e r of a c r e s p e r b o a t wa s d e v e l o p e d u s i n g the above r e l a t i o n s h i p s . T h e P h a s e III Peter Geoffrey Ashton results demonstrated that there is a significant differ­ ence in the socio-economic characteristics of boaters responding to unfavorable conditions and those responding to favorable conditions of use at the same point in time and at the same location. To my one-year-old son, Geoffrey, who diligently and enthusiastically tore into this dissertation as I did. ACKNOWLEDGMENTS I w o u l d like -to a c k n o w l e d g e the e n c o u r a g e m e n t and p r o f e s s i o n a l d i r e c t i o n g i v e n to me by the m e m b e r s of m y g u i d a n c e committee: Dr. R. B a r l o w e , R. Marty, Dr. S. Romberger, Dr. a n d Dr. M. C. H u m p h r y s , Dr. Stei n m u e l l e r . P a r t i c u l a r a c k n o w l e d g m e n t is g i v e n to Dr. M. Chubb, w h o h as s e r v e d as the c h a i r m a n o f this d i s s e r t a t i o n c o m m i t t e e and has b e e n of i n v a l u a b l e a s s i s t a n c e as the m a j o r a d v i s o r for this research. p e r s i s tence, It has b e e n t h r o u g h his patience, under s t a n d i n g , a n d i n s i g h t s t h a t this p r o j e c t has r e a c h e d its c o n c l usion. T o Dr. C. H u m p h r y s for his guidance, direct i o n , and s up p o r t as c h a i r m a n of m y c o m m i t t e e , I give m y t h a n k s . To Mr. W. A l l a r d and Mr. J. Teeter, A p p l i c a t i o n Programming, C o m p u t e r Center, M i c h i g a n S t a t e U n i v e r s i t y for t heir v a l u a b l e a s s i s t a n c e in w o r k i n g o u t the t e c h n i c a l de t a i l s of p r o c e d u r e and s t a t i s t i c a l analysis. To Dr. D. Gilliland, Probability, D e p a r t m e n t of S t a t i s t i c s and I w i s h to e x p r e s s a s p e c i a l note of thanks. I, as do o t h e r g r a d u a t e s t u d e n t s a s s o c i a t e d w i t h the D e p a r t m e n t of P a r k and R e c r e a t i o n R e s o u r c e s , owe h i m a d e b t w h i c h ca n n o t b e repaid. He h a s m a d e us p r o u d of our association with the Department of Park and Recreation Resources of Michigan State University, both within and without the university. To Mr. K. Wilson, Director, Waterways Division, Michigan Department of Natural R e s o u r c e s , for financial assistance which enabled me to do this research. To Mr. R. Lanier, Field party Leader, Southwest Resources Group, Economic Research Service, through his generosity, has allowed me to work full-time towards the completion of my degree. To my wife, Theresa Anne, I pay tribute. Through crisis after crisis she remained steadfast, understanding, and sympathetic. T A B L E O F CONT E N T S Page LIST OF T A B L E S ....................................... xi LIST O F F I G U R E S ....................................... xii LIST OF A P P E N D I C E S ................................... xiv Chapter I. INTRODUCTION ................................ 1 The P r o b l e m ........................... 2 S emantics of C a r r y i n g C a p a c i t y . . . The I m p o r t a n c e o f C a r r y i n g C a p a c i t y to M a n a g e m e n t .................... II. 3 4 Objectives of the S t u d y ............. 6 REVIEW OF L I T E R A T U R E .................... 7 Previous R e s e a r c h ......................... E x i s t i n g C a r r y i n g C a p a c i t y Standards and C u r r e n t S u r v e y s ................ C o n c lusions from R e v i e w of the L i t e r ­ ature on C a r r y i n g C a p a c i t y Standards . III. 8 10 18 RESEARCH D E S I G N F O R M U L A T I O N ......... 20 The P r o b l e m S t a t e m e n t ................ 20 S u m m a r y .............................. . . . . . . . . Objectives. H y p o t h e s e s ........................... 20 . 20 21 The Study A r e a ....................... Selection . . . . . Geographical and Geological Features C h e m i c a l and P h y s i c a l Features . . . v 21 . 21 23 30 Chapter Page B i o l o g i c a l C h a r a c t e r i s t i c s ............... Climate * • • ■ • • • • * • • L a k e D e v e l o p m e n t ................. 31 IV. M E T H O D S A N D PR O C E D U R E S . The I n t e r v i e w . .............. ............................. The Interview Schedule .................. 33 33 38 T h e Q u e s t i o n n a i r e ..................... 41 ......................... Aerial Photography I n t e r p r e t a t i o n of the P h o t o g r a p h s . . . 42 45 G r i d C o n s t r u c t i o n ................. 45 A c t i v i t y I n t e r p r e t a t i o n .................. 53 B o a t i n g S p a c e C o n s u m p t i o n ...... 58 B o a t i n g D i s p e r s i o n ...................... 63 U s e r A t t i t u d e ........................ V. 30 31 65 P u b l i c A c c e s s U s e r ................. R i p a r i a n U s e r ..................... 65 68 A N A L Y S I S ................................ 69 P h a s e I— M e a s u r e s of L e v e l of B o a t i n g A c t i v i t y I n t e n s i t y ................. 69 Least Squares Deletion Analysis . . . T h e B e s t P i t C u r v e ................. 71 P r o c e d u r e s for D e t e r m i n i n g Le v e l s of Boating Activity Intensity. . . . Procedure 1 Procedure 2 Procedure 3 Procedure 4 ......................... . ..................... . . . .......... ..................... I l l u s t r a t i o n b y the P l o t XY C o m p u t e r R o u t i n e ............................ 73 73 73 73 74 74 P h a s e I I — U s e r A t t i t u d e and L e v e l of B o a t i n g A c t i v i t y I n t e n s i t y R e l a tionship. P r o c e d u r e s for C o m p a r i n g User A t t i t u d e s w i t h L e v e l s of B o a t i n g A c t i v i t y I n t e n s i t y ........................ 75 vi 69 74 Chapter Page Procedure Procedure Procedure Procedure VI. 1 2 3 4 ........................... ........................... ........................... ................. 75 75 75 76 Plot XY Computer R o u t i n e .............. 76 Phase III— The Relation of User Attitudes to Boating Conditions by Socio-economic Characteristics ........................ 76 Frequency Dist r i b u t i o n s................. Chi-Square T e s t ........................ 77 77 R E S U L T S ...................................... 78 Phase I— Measures of Level of Boating Activity Intensity ..................... 78 Procedures for Determining the Best Method of Expressing the Intensity of Boating Activity ................. 82 Procedure 1 ........................... Procedure 2 ........................... Procedure 3 ........................... 82 83 84 Phase II— Relationship of User Attitudes to the Level of Boating Activity I n t e n s i t y ............................... 85 Procedures for Comparing User Attitudes with Levels of Boating Activity Intensity .............................. 87 Procedure Procedure Procedure Procedure 1 2 3 4 ........................... ........................... ........................... ........................... 87 90 92 93 Phase III— The Relation of User Attitudes to Boating Conditions by Socio-economic Characteristics ........................ 94 Frequency D i s t r ibutions ................. Chi-Square T e s t ........................ 95 95 Chapter VII. Page SUMMARY A N D D I S C U S S I O N ......................... Levels of B o a t i n g Acti v i t y Intensity. . 97 C o n s u m p t i o n ............................... D i s p e r s i o n ................................... C o n s u m p t i o n - D i s p e r s i o n Relationship . . 97 100 102 User A t t i t u d e . . . Public Access Boater R iparian O w n e r Boater . . . . . . . 104 ..................... ..................... Rel a t i o n s h i p of User Attitudes to the Level of B o a t i n g A c t i v i t y Intensity . 104 105 . 106 Public A c c e s s ................................ Riparian O w n e r ............................ 106 109 Inverse R e l a t i o n s h i p of the N u m b e r of Acres Per B o a t to the Level of Boa t i n g A c t i v i t y Intensity ......................... 110 Nu m b e r of A c r e s Per B o a t .................. 110 A M e t h o d for D e t e r m i n i n g Recreational B o a t i n g C a r r y i n g C a p a c i t y .................. Ill A p p l i c a t i o n ................................ 112 Step 1 Step 2 Step 3 VIII. . 96 ................................... ................................... ................................... 113 114 114 C o m p a r i s o n Of A t t i t u d e s Toward B o a t i n g C o n d i t i o n s by Respondents w i t h D i f f e r e n t S o c i o - e c o n o m i c C h a r a cteristics . . . . 115 General C h a r acteristics of the Public Acc e s s U s e r ................................ 115 I n c o m e ................................... E d u c a t i o n ................................ O c c u p a t i o n ................................ 118 118 119 CO N C L U S I O N S A N D R E C O M M E N D A T I O N S .............. 120 C o n c l u s i o n s ................................... R e c o m m e n d a t i o n s ................................ 120 122 viii Chapter Page ........................ ........................ ........................ ........................ 123 124 125 126 LIST OF R E F E R E N C E S ................................... 127 Recommendation Recommendation Recommendation Recommendation 1 2 3 4 APPENDICES Appendix A. B. C. D. E. F. Letter, Interview Schedule, and Question­ naire ..................................... 131 Values Used for Constructing Perspective G r i d s ..................................... 141 Tables Showing Sample Dispersion C o e f ­ ficients, Total Dispersion Coefficients, Space Consumption Sample Coefficients and Space Consumption Tracing Paper Coefficients . . . . . . . . . . 143 Tables Showing User Attitude Responses, Intensity Coefficients, Space Consumption Safety Coefficients, and Number of Boats. 150 Tables Showing Frequency Distribution for I ncome, E d u c a t i o n , and Occupation Classes by Response, Chi-Square on Income, Education, and Occupation . . . 158 Tables and Plots Showing Least Squares Deletion Analysis for Sample Dispersion Coefficients and Total Dispersion C o e f ­ ficients , Space Consumption Safety Coef­ ficients and Space Consumption Tracing Paper Coefficients and Sample Dispersion Coefficients, Space Consumption Safety Coefficients and Sample Dispersion Coefficients ............................... 160 Page Ch a p t e r G. Tables and Plots Showing L e a s t Squares D e l e t i o n A n a l y s i s for User A t t i t u d e Indices and Intensity Coefficients, User A t t i t u d e Indices and Space C o n s u m p t i o n S a f e t y Coeffi cients, User A t t i t u d e In­ dices for R i p a r i a n Owners and Space C o n ­ sump t i o n Safety Coefficients, N u m b e r of Ac r e s per B o a t and Space C o n s u m p t i o n Safety C o e f f i c i e n t s ..................... x 171 LIST OF TABLES Table 1. 2. 3. 4. Page T o t a l B o a t s C o u n t e d and P e r C e n t B o a t e r s I n t e r v i e w e d at A c c e s s Sites, J u l y 4 Through September 1,19 69 .................. 39 V a r i a t i o n in T o t a l B o a t Number, S p a c e C o n ­ sumption, a n d D i s p e r s i o n for F i v e P h o t o F l i g h t s on Union, Cass, a n d O r c h a r d L a k e s (June 29, 1 9 6 9 ) ............................. 44 M e a n D i s t a n c e (Feet) B e t w e e n B o a t s b y A c t i v i t y (Tracing P a p e r Technique) A u g u s t 24 a n d 30, 1969 ...................... 61 Range and M e a n V a l u e s for U s e r A t t i t u d e Indices, S p a c e C o n s u m p t i o n C o e f f i c i e n t s , and A c r e s p e r B o a t (July 4 T h r o u g h S e p t e m b e r 1, 1 9 6 9 ) ......................... 91 LIST OF FIGURES Figure 1. Page Relationship Between Acres and Boat Number Observed and Circumference of an Ellipsoid Lake. Source: [Threinen, An Analysis of Space D e m a n d s , p. 8]. 15 U nion Lake, Pontiac, Michigan. T.2N, R.8-9E., Sections 1, 5, 8. (460.6 A c r e s ) . . . . 25 Cass Lake, Pontiac, Michigan. T.2-3N, R.9E., Sections 2, 3, 4, 9, 10, 11, 33, 34, 35. (1209.9 A c r e s ) ..................... 27 O rchard Lake, Orchard Lake Village, Michigan. T.2N, R.9E., Sections 9, 10, 11, 14, 15. (778.9 Acres) ............................... 29 Lake Maps Shown to Respondents During Inter­ v i e w s .......................................... 37 A ngular Relations of an Oblique Photograph. Source: [Manual of P h o t o g r a m m e t r y , p. 8 8 7 ] ...................................... 47 Perspective Grid. Source: [Manual of P h o t o g r a m m e t r y , p. 8 8 7 ] ..................... 49 High Oblique Photograph Projected on a Perspective G r i d ............................ 52 Procedure for Transferring Boating Activity Locations from a Photograph to 1" = 400' M a p ...................................... 52 10. Photo of Map of Cass Lake Divided Into Zones. 55 11. Photo of M a p of Union Lake Divided Into Z o n e s .......................................... 55 2. 3. 4. 5. 6. 7. 8. 9. xii Figure Page 12. P h o t o of M a p of O r c h a r d Lake D i v i d e d Into Z o n e s ............................. 55 13. Techn i q u e Used for M e a s u r i n g Boa t i n g Trails by M a p M e a s u r e ........... 14. 15. 16. T r a c i n g Paper T e c h n i q u e for D e t e r m i n i n g Co n s u m p t i o n b y A c t i v i t i e s . . . . 57 . 57 Exa m p l e of Chart U s e d to Rec o r d F a v o r a b l e and Unfavorab le Responses .............. V a r i a t i o n of Tot al Surface W a t e r C o n s u m e d by A c t i v i t y on Union, Cass, and Orch a r d Lakes D u r i n g A u g u s t 24, 1969. xiii 67 . 98 LIST OF APPENDICES Appendix A. Page Letter, Interview Schedule, and Questionnaire Al. Copy of Letter Requesting Agencies and Universities for Information on Carrying C a p a c i t y ..........................................131 A2. Copy of Interview Schedule Used at Public Access S i t e s ...................................... 133 A3. Copy of Questionnaire Used by Riparian O w n e r s ............................................. 137 B. Values Used for Constructing Perspective Grids Bl. Grid for 400-Foot E l e v a t i o n ..................... 141 B2. Grid for 4 50-Foot E l e v a t i o n ..................... 141 B3. Grid for 500-Foot E l e v a t i o n ..................... 142 C. Cl. C2. Tables Showing Sample Dispersion C o e f ­ ficients, Total Dispersion Coefficients, Space Consumption Sample Coefficients, and Space Consumption Tracing Paper Coefficients Sample Dispersion Coefficients and Total Dispersion Coefficients for Union, Cass, and Orchard Lakes {July 17,1969) . . . . Space Consumption Safety Coefficients and Space Consumption Tracing Paper C o e f ­ ficients for Union, Cass, and Orchard Lakes (August 23 and 24, 19 6 9 ) ............... xiv 143 144 Appendix C3. C4. D. Dl. D2. D3. D4. E. El. E2. Page Space Consumptio n T r a c i n g Paper Coefficients and Sample Dispersion Coefficients for Union, Cass, and Orchard Lakes (August 23 and 24, 1 9 6 9 ) ............................... 146 Space Consumption Safety Coefficients and Sample Dispersion Coefficients for Union, Cass, and Orchard Lakes (August 23 and 24, 1 9 6 9 ) .......................................... 148 Tables Showing User Attitude Responses, Intensity Coefficients, Space Consumption Safety Coefficients, and Number of Boats User Attitude Responses and Intensity C o e f ­ ficients for Union, Cass, and Orchard Lakes (August 23 and 24, 1969) . . . . 150 User Attitude Responses and Space C o n ­ sumption Safety Coefficients for Union, Cass, and Orchard Lakes (August 23 and 24, 1 9 6 9 ) ................................... 153 Space Consumption Safety (Sq.Ft.), Number of B o a t s , User Attitude Responses for Union, Cass, and Orchard Lakes (August 23 and 24, 1 9 6 9 ) . ... ......................... 155 User Attitude Indices and Space Consumption Safety Coefficients for Riparian Owners on Union, Cass, and Orchard Lakes (August 23, 24, 30, 31, and September 1, 1 9 6 9 ) .......................................... 157 Tables Showing Frequency Distribution for Income, Education, and Occupation Classes by Response, Chi-Square Test on Income, Education, and Occupation Frequency Distribution for Income, E d u ­ cation, and Occupation Classes by Response (Union, Cass, and Orchard Lakes, July 4 through September 1, 1969) . 158 Chi-Square Test on Income, Education, and Occupation Classes by Response for Union, Cass, and Orchard Lakes . . . . 159 xv Page Appendix F. Fl. F2. F3. F4. F5. F6. F7. T a b l e s a n d Plots S h o w i n g L e a s t S q u a r e s D e l e t i o n A n a l y s i s for S a m p l e D i s p e r s i o n C o e f f i c i e n t s and T o t a l D i s p e r s i o n C o e f ­ ficients, Space C o n s u m p t i o n S a f e t y C o e f ­ ficients and Space C o n s u m p t i o n T r a c i n g P a p e r C o e f f i c i e n t s and S a m p l e D i s p e r s i o n C o e f f i c i e n t s , S pace C o n s u m p t i o n S a f e t y C o e f f i c i e n t s and S a m p l e D i s p e r s i o n C o e f ­ ficients . Least Squares Deletion Analysis Sample Dispersion Coefficients Total Dispersion Coefficients Cass, and O r c h a r d L a k e s (July for and for Union, 17, 1969) 160 P l o t s of Sample D i s p e r s i o n C o e f f i c i e n t and T o t a l D i s p e r s i o n C o e f f i c i e n t for Union, Cass, O r c h a r d L a k e s (July 17, 1969) . 161 L e a s t S q u a r e s D e l e t i o n A n a l y s i s for S p a c e C o n s u m p t i o n S a f e t y C o e f f i c i e n t s and S p a c e Consumption Tracing Paper Coefficients for Union, Cass, and O r c h a r d La k e s (August 23 and 24, 1969 combined) . . 162 Plots of Space C o n s u m p t i o n S a f e t y C o e f ­ f i c i e n t a n d Space C o n s u m p t i o n T r a c i n g P a p e r C o e f f i c i e n t for Union, Cass, and O r c h a r d Lakes (August 23 and 24, 1969 ......................... . combined) 163 L e a s t S q u a r e s D e l e t i o n A n a l y s i s for S p a c e Consumption Tracing Paper Coefficients and S a m p l e D i s p e r s i o n C o e f f i c i e n t s for Union, Cass, and O r c h a r d Lakes (August 23 a n d 24, 1969) ......................... 164 Plots of Space C o n s u m p t i o n T r a c i n g P a p e r C o e f f i c i e n t and S a m p l e D i s p e r s i o n C o e f f i c i e n t for Union, Cass, a n d O r c h a r d Lakes (August 23 a n d 24, 1969) 165 L e a s t Squ a r e s D e l e t i o n A n a l y s i s for S p a c e C o n s u m p t i o n S a f e t y C o e f f i c i e n t s and Sa m p l e D i s p e r s i o n C o e f f i c i e n t s for Union, Cass, and O r c h a r d L a k e s (August 23 a n d 24, 1969) ................................ 167 xvi Page Appendix F8. G. Gl. G2. G3. G4. G5. G6. G7. Plots of Space Consumption Safety C o e f ­ ficient and Sample Dispersion C o e f ­ ficient for Union, Cass, and Orchard Lakes (August 23 and 24, 1969) . . . • 169 Tables and Plots Showing Least Squares Deletion Analysis for User Attitude Indices and Intensity Coefficients, User Attitude Indices and Space Consumption Safety C o e f ­ ficients, User Attitude Indices and Space Consumption Safety Coefficients for Riparian O w n e r s , Number of Acres per Boat and Space Consumption Safety Coefficients Least Square Deletion Analysis for User Attitude Indices and Intensity C o e f ­ ficients for Union, Cass, and Orchard Lakes (August 23 and 24, 1969) . 171 Plots of User Attitude Index and Intensity Coefficient for Union, Cass, and Orchard Lakes (August 23 and 24 combined) . . . 172 Least Squares Deletion Analysis for User Attitude Indices and Space Consumption Safety Coefficients for Union, Cass, and Orchard Lakes (August 23 and 24, 1969) 173 Plots of User Attitude Index and Space Consumption Safety Coefficient for Union, Cass, and Orchard Lakes (August 23 and 24, 1969 combined) . . " ................. 174 Least Squares Deletion Analysis for User A ttitude Indices and Space Consumption Safety Coefficients for Union, Cass, and Orchard Lakes (July 4 Through September 1, 1969) ................................... 175 Plot of User Attitude Index and Space Consumption Safety Coefficient for Union Lake (July 4 Through September 1, 1969) . 176 Plot of User Attitude Index and Space C onsumption Safety Coefficient for Cass Lake (July 4 Through September 1, 1969) 177 xvii . Ap p e n d i x G8. G9. G10. Gil. G12. G13. G14. Page Plot, of User Attitude Index a n d Space Con s u m p t i o n Safety C o e f f i c i e n t for O rchard Lake (July 4 T h r o u g h S e p t e m b e r 1, 1 9 6 9 ) .................................... 178 Least Squares Deletion A n a l y s i s for User Attitude Index and Space C o n s u m p t i o n Safety Coefficients for R i p a r i a n Own e r s on Union, Cass, and O r c h a r d Lakes (August 23, 24, 30, 31, and Septe m b e r 1, 1 9 6 9 ) ....................................... 179 Plots of User A t t i t u d e Index and Space Consumption Safety C o e f f i c i e n t for Riparian Owners on Union, Cass, and Orchard Lakes (August 23, 24, 30, 31, and September 1, 1 9 6 9 ) ................. 180 Least Squares D eletion A n a l y s i s for the N umber of Acres per B o a t and Space C o n ­ sumption Safety Coef f i c i e n t s for Union, Cass, and Orc hard Lakes (July 4 T h r o u g h September 1, 1 9 6 9 ) ......................... 181 Plot of the Number of Acres per B o a t and Space Con s u m p t i o n Sa f e t y C o e f f i c i e n t for Union Lake (July 4 T h r o u g h September 1, 1 9 6 9 ) .......................... 182 Plot of the Number of Acres per B o a t and Space Consump tion Safety C o e f f i c i e n t for Cass Lake (July 4 T h r o u g h S e p t e m b e r 1, 1 9 6 9 ) ....................................... 183 Plot of the Number of Ac r e s per B o a t and Space C o n s u mption Safety C o e f f i c i e n t for Orchard Lake (July 4 T h r o u g h September 1, 1 9 6 9 ) .......................... 184 xviii CHAPTER I INTRODUCTION Participation in outdoor recreation is increasing at a startling rate. In 1967, the Bureau of Outdoor Recreation found that "present and anticipated increases in major summertime outdoor activities surpass predictions made by the Outdoor Recreation Resources Review Commission in I960."1 The actual increase was four times greater than that originally forecast. The survey by the ORRRC showed that water was the key element in the increase in demand for outdoor recre­ ation. It reported that "44 per cent of the population 2 prefer water-based activities over any o t h e r ." Resource managers generally agree that improvement of access to surface waters is an important stimulus to water-based recreation activity. ^Bureau of Outdoor Recreation, Outdoor Recreation Trends (Washington, D.C.: Government Printing Office, April, 1967), p. 12. 2 Outdoor Recreation Resources Review Commission, Outdoor Recreation for America (Washington, D.C.: Government Printing Office, 1962), p. 25. 1 2 The continuous expansion in population together w i t h a shorter average work w e e k mean that more people will w a nt to act on their preference for water-based recreation and will have the time to do so. cies are, therefore, State a g e n ­ faced w i t h the need to make effective plans for development of lakes and streams. to do this successfully, If they are they must be able to evaluate the ability of a given body of w a t e r to accommodate recreation. The P r o b l e m The tremendous growth in recreational boating has focused attention on the question of the ability of su r ­ face waters to support the different types of recreational activities. A limited number of acres of water available for boating are being used more and more intensively, and the potential for accidents is similarly increasing. In 1961, O akland County, Michigan had thirteen boating ac c i ­ dents serious enough to be reported, with eleven cases of death or injury.1 By 1969, there were fifty reported accidents, with thirty-eight cases of death or injury. It seems to be a valid assumption that the use of surface water areas will continue to increase, and a concomitant increase in boating accidents will occur. Moreover, many 1Letter from S. K. Swenerton, Lieutenant (j g ) , Investigating Officer, United States Coast Guard, Detroit, Michigan, May 4, 1970. 3 o u t d o o r r e c r e a t i o n m a n a g e r s b e l i e v e t h a t an i n c r e a s e in the i n t e n s i t y of use of w a t e r r e s u l t s in d e t e r i o r a t i o n o f b o t h the e n v i r o n m e n t a n d the r e c r e a t i o n a l e x p e r i e n c e . If a g e n c i e s c o n c e r n e d w i t h w a t e r m a n a g e m e n t a r e to f ollow a p o l i c y of m a i n t a i n i n g h i g h q u a l i t y w a t e r r e c r e ­ a t i o n , a l t e r n a t i v e m e t h o d s suit a b l e for d o i n g so m u s t be adopted. natives, Fur t h e r m o r e , in o r d e r to p r o v i d e s u i t a b l e a l t e r ­ it is n e c e s s a r y to have v a l i d m e t h o d s of a n a l y s i s . L a c k of these m a y re s u l t in a m i s a l l o c a t i o n of w a t e r r e ­ sources and p u b l i c funds. S e m a n t i c s of C a r r y i n g Capacxty P r e s e n t m e t h o d s u s e d for e v a l u a t i n g the c a r r y i n g c a p a c i t y of w a t e r d i f f e r and g e n e r a l l y h a v e n o e m p i r i c a l j u s t i fication.*fusing. T o b e g i n with, the n o m e n c l a t u r e is c o n ­ Webster's New World Dictionary defines capacity as "a m a x i m u m a m o u n t of h o l d i n g space," w h i l e c a r r y i n g means "supp o r t i n g . " a m a x i m u m quantity. T o g e t h e r the terms i m p l y s u p p o r t of This is an a c c u r a t e d e f i n i t i o n , but it is h a r d l y w h a t r e c r e a t i o n m a n a g e r s w a n t in o p e r a t i o n a l d efinition. Furt h e r m o r e , for e v e r y s c i e n c e d i s c i p l i n e , *"M. C h u b b and P. Ashton, Parks and R e c r e a t i o n S t a n d a rds R e s e a r c h , a r e p o r t to the N a t i o n a l R e c r e a t i o n and P a r k A s s o c i a t i o n at the N a t i o n a l F o r u m o n P a r k a n d R e c r e a t i o n S t a n d a r d s in Kansas City, M i s s o u r i , J a n u a r y 12-14, 1969, R e c r e a t i o n R e s e a r c h P l a n n i n g Unit, D e p a r t m e n t of P a r k and R e c r e a t i o n Resources, C o l l e g e o f A g r i c u l t u r e and N a t u r a l Resources, M i c h i g a n State U n i v e r s i t y , T e c h n i c a l R e p o r t N u m b e r 5 (East Lansing, Michigan: J a n u a r y , 1969) , pp. 2-4. 4 carrying capacity has separate meaning and subsequent shortcomings. Chubb has defined the carrying capacity of a recreation resource in two different ways: capacity "is the capability of an area recreation opportunities, first, spatial . . . to provide judged solely on the space avail­ able and the space required to make the activity concerned a satisfactory experience"; second, carrying capacity has a "distinguishing feature being based on consideration of the amount of use that can take place without significant deterioration of the site over time."^ Carrying capacity for this study will not be con­ sidered in terms of the traditional "standard" expressed as an arbitrary number of acres per boat. Instead, a range of values will be presented for management to interpret. This concept is based on the principle that for a given area there is no single level of capacity over time, since capacity is linked to levels of satisfaction by its users. The Importance of Carrying Capacity to Management In any attempt to control an area for a quality experience and to maintain a recreation resource, managers must consider the attitudes of participants. Constant complaints by boaters and riparian owners make state 1 M. Chubb, "Outdoor Recreation Land Capacity: ConceptB, Usage, and Definitions" (unpublished Master's thesis, Michigan State University, 1964), p. 133. 5 agencies aware of u n f a v o r a b l e conditions. A s a result, r e s t r i c tive regulations are p u t into e f f e c t by r e c r e a t i o n a d m i nistrators in order to reduce the d i s s a t i s f a c t i o n in some cases. T o determine w h e t h e r or not it is a p p r o p r i a t e to r e s t rict an activity on a w a t e r body, a m a n a g e r m u s t k n o w b o t h the basic r e l a t i o n s h i p of users to the p h y s i c a l resource and the ways in w h i c h s a t i s f a c t i o n w i l l change w i t h d i f f e r e n t amounts of use. O n e factor alone is not an adequate indicator of capacity. W a t e r c a r r y i n g ca p a c i t y is a c o m b i n a t i o n of b o t h factors, a r e l a t i v e c o n c e p t w h i c h becomes a m a t t e r of a d m i n i s t r a t i v e choice. M anagers are often c o n c e r n e d w i t h the p r o b l e m of deciding w h a t policies to follow in the future w i t h r e s p e c t to overcrowding. Equ a l l y important is the p r o b l e m of how control of lakes for s u s t a i n e d periods of time affects user satisfaction. N u m e r o u s techniques, such as limiting the n u m ber of b o a t s , re g u l a t i n g b o a t s p e e d s , zoning areas for specific use, and formulating traffic patterns, are used to control w a t e r activities. If one aspect of w a t e i - b a s e d a c t i v i t i e s is c o n ­ trolled, however, For example, on a lake. a change may occur in some other aspect. suppose a c e r t a i n nu m b e r of boats is allowed The d e n s i t y of b o a t i n g m i g h t decrease, b u t the average v e l o c i t y of the boats m i g h t increase, additional wave action and more shore erosion. cau s i n g Another example is the diffic u l t y in a n t i c i p a t i n g the increase in 6 use of p u b l i c when better lake facilities (beaches a n d p i c n i c areas) launching ramps and more trailer parking space are provided. There are man y interrelations b e tween user behavior and recreation management. vide study of th e m can p r o ­ i n s i g h t i n t o the b e h a v i o r a l p a t t e r n s a n d p h y s i c a l r e ­ lationships resulting from management control m e a s u r e s . O b j e c t i v e s o f the S t u d y T h e W a t e r w a y s D i v i s i o n of the M i c h i g a n D e p a r t m e n t of N a t u r a l R e s o u r c e s h a s t h e r e s p o n s i b i l i t y of p r o c u r i n g a n d o p e r a t i n g p u b l i c b o a t i n g a c c e s s sites. justify acquiring new access sites In o r d e r to sites and manag i n g p r esent to a c c o m m o d a t e t h e i n c r e a s i n g r e c r e a t i o n a l d e m a n d for w a t e r - b a s e d r e c r e a t i o n , the d i v i s i o n n e e d s a m e t h o d o f a s s e s s i n g the c a r r y i n g c a p a c i t y of s u r f a c e w a t e r s . It is a l s o i n t e r e s t e d in a m e t h o d of d e t e r m i n i n g b o a t e r ' s b e ­ h a v i o r o n i n t e n s e l y u s e d lakes c l o s e to l a r g e m e t r o p o l i t a n areas. A t t h e r e q u e s t of the d i v i s i o n , a proposal was s u b m i t t e d b y the R e c r e a t i o n R e s e a r c h a n d P l a n n i n g U n i t a t Michigan State University, to s t u d y a n d q u a n t i f y r e l a t i o n ­ sh i p s b e t w e e n a t t i t u d e s of b o a t u s e r s a n d v a r y i n g l e v e l s of u s e o n d i f f e r e n t s u r f a c e wat e r s . cedure developed from this U l t i m a t e l y the p r o ­ s t u d y m i g h t be u s e d as a b a s i s for a l l o c a t i n g w a t e r r e s o u r c e s a m o n g a g r o w i n g n u m b e r o f u s e r s w i t h a m i n i m a l d e c l i n e in u s e r s a t i s f a c t i o n o r e m ­ p l o y e d to j u s t i f y the r e s t r i c t i o n of u s e t o a d e s i r a b l e maximum where areas are already over-used. CHA P T E R II REVIEW OF LITERATURE The main purpose of this review of literature is to organize and present relevant material about the study subject. For purposes of classification and organization, it has been divided into three major sections: vious research, (1) p r e ­ (2) existing carrying capacity standards and current surveys, and (3) conclusions from review of the literature of carrying capacity standards. In the initial phase of the literature review, letters were written to authorities that use or have formulated capacity terms for planning. thirty-two federal, One hundred and state, and private agencies including several universities responsible for water-recreation planning were asked to explain their recreation standards.^ The response indicated that the recreation space requ i r e ­ ments and water carrying capacities used were generally 2 developed in an arbitrary manner. ^See Appendix A1 for letter requesting agencies and universities for information pertaining to carrying capacity. 2 Chubb and Ashton, Standards Research, pp. 63-76. 7 8 Previ o u s Research T h e c a r r y i n g c a p a c i t y of w a t e r has b e e n the s u b j e c t of c o n s i d e r a b l e study and has b e e n i n t e r p r e t e d in differ e n t , ev e n c o n f l i c t i n g w a y s .^ W i t h o u t a v a l i d basis for i n t e r ­ p r e t i n g carr y i n g capacity, m a n y bodies of w a t e r m a y be u s e d far in excess of their d e s i r a b l e capabilities. C l a w s o n and K n e t s c h suggest that p e o p l e g e n e r a l l y a n t i c i p ate e n j o y m e n t and solitude w h i l e p a r t i c i p a t i n g in a r e c r e ational experience and place a high value on o b t a i n ­ ing them. But for everyone sharing in a r e s o u r c e - b a s e d activity, a c o n d i t i o n of use will e x i s t w h e n it becom e s u n d e s i r ably cro w d e d for that person. from an activity w i l l diminish, T h e sati s f a c t i o n and after some p o i n t it may no longer be w o r t h experiencing. Levels of s a t i s ­ faction w i l l not be the same for all areas and types of recre a t ional use. O v e r c r o w d i n g of outdoor r e c r e a t i o n areas starts to occur w h e n the intensity of r e c r e a t i o n use rises above an o p t i m u m level of sati s f a c t i o n of the u s e r s . The authors conclude that: . . . our k n o w l e d g e of the relation b e t w e e n i n t e n s i t y of use and satisfaction per u s e r is m o s t incomplete. It is entirely p o s s i b l e that i n t e n s i t y of use co u l d vary cons i d e r a b l y w i t h o u t much, if any, loss in satisfaction, b u t that extremes of intensity w o u l d me a n losses in satisfactions to the users at such t i m e s .2 ^I b i d ., pp. 2 45-46. M. C l a w s o n and J. I». Knetsch, E c o n o m i c s of O u t d o o r Recreationf Resources for the Fu t u r e ( B a l t i m o r e , Maryland: Johns Hopkins P r e s s ) , p. 170. 9 LaPage suggests that there are two main objectives of recreation management: quantity and quality.^- An in­ crease in the number of people using a resource may not necessarily result in a decrease in the quality of an individual experience. Management must find the methods of insuring a compromise between the two objectives. A reduction in either direction can only be determined by methods of social research directed toward an understanding of the relative values involved. Both quantity and quality are dependent mainly upon individual preferences. Many people would not indulge in outdoor recreation if it were not for the comfort of knowing there are others nearby; many are relatively immune to high levels of crowding, provided there are compensating facilities and alter­ natives . F u r t h e r m o r e , the overcrowding of recreation areas may result in hazards to public health and safety as well as danger to the resource itself. LaPage observed that satisfaction is a qualitative value and is a function of the effect of the recreation resource on people, the effect of people on the resource, and the effect of people on each other. "The utility of observations such as this, not only for determinations of carrying capacity and recreational productivity, but in the realm of recreational land values as well, creates ^W. F. LaPage, Some Observations on Campground Trampling and Ground Cover R e s p o n s e , Note NC-68 (St. P a u l , Minnesota: U.S. Forest Service, North Central Forest Experiment Station, 1967). 10 cogent: argument: for further investigative w o r k along these same l i n e s . " 1 Sirles has related reservoir recreation c o s t to capacity. He ca l c u l a t e d a capacity coefficient to d e ­ scribe the m a x i m u m n u m b e r of people w h o can be a c c o m m o ­ d a t e d s i m u ltaneously per unit of area for a p a r t i c u l a r activity. The d e t e r m i n a t i o n of an appropriate v a l u e of the c o e f f i c i e n t for camping, swimming, picnicking, and b o a t i n g is b a s e d on psyc h o l o g i c a l rather than p h y s i c a l crowding. But individuals have different p s y c h o l o g i c a l p e r c e p t ion of crowding. Some prefer crowds, w h i l e others p r e f e r to be completely d i s s o c i a t e d from o t h e r people. T h e s e d i f f e r e n t attitudes cause the capacity of r e c r e a t i o n areas to vary daily according to the type of p e o p l e u s i n g them at a given time. Sirles concludes that a useful refinement of b e n e f i t - c o s t analysis w o u l d be one show i n g that use of recreation areas is influenced b y limited and o v e r c r o wded facilities. E x i s t i n g C a r r y i n g C a p a c i t y Standards and C u r r e n t Surveys The United States Forest Service m a d e the first significant attemp t to measure recreation capacity. The 1l b i d . 2 S. E. Sirles, III, A p p l i c a t i o n of M a r g i n a l E c o ­ nomic A nalysis of Reser v o i r Recrea t i o n P l a n n i n g , W a t e r Resources Institute (Lexington: Univer s i t y of K e n t u c k y ) , 1968. 11 derived berm was called as "Safe C a p a c i t y " and was defined "the n u m b e r of v i s i t o r s w h i c h c a n p r o p e r l y a n d s a f e l y b e a c c o m m o d a t e d w i t h o u t d a m a g e to a n a r e a or s i t e b e y o n d t h a t w h i c h c o u l d b e c o n s i d e r e d n o r m a l w e a r a n d tear."*** A n u m b e r r e p r e s e n t i n g t h e a c r e a g e of a r e c r e a t i o n r e s o u r c e n e e d e d to s a t i s f a c t o r i l y a c c o m m o d a t e o n e v i s i t o r - d a y o f u s e of t h e r e s o u r c e w a s u s e d as a m u l t i p l e t o " d e t e r m i n e the n u m b e r o f a c r e s r e q uired to accommodate the de m a n d 2 p r e d i c t e d for a p a r t i c u l a r a c t i v i t y . " T h e B u r e a u of L a n d M a n a g e m e n t r a t e d c a p a c i t y as t he p o t e n t i a l u s e o f an a r e a t o the y e a r 1976. Areas were 3 j u d g e d "light," " m o d e r a t e , " a n d "heavy." The agency used the term, "total i n s t a l l e d c a p a c i t y , " d e f i n e d as "the t o t a l n u m b e r of p e o p l e w h o c a n b e a c c o m m o d a t e d w i t h o u t c r o w d i n g a t one t i m e b y t h e f a c i l i t i e s w h i c h h a v e b e e n 4 i n s t a l l e d in the r e c r e a t i o n site." T h e B u r e a u of O u t d o o r R e c r e a t i o n s u g g e s t s t h e u se of t w o c r i t e r i a t o r a t e the c a p a c i t y of an area: ^U.S., D e p a r t m e n t of A g r i c u l t u r e , F o r e s t S e r v i c e , W o r k P l a n for t h e N a t i o n a l F o r e s t R e c r e a t i o n S u r v e y ( W a s h i n g t o n , D . C .: G o v e r n m e n t P r i n t i n g o f f i c e , 1959), p. 8. 2Ibid. 3 U.S., D e p a r t m e n t o f I n t e r i o r , B u r e a u o f L a n d M a n a g e m e n t , B u r e a u of L a n d M a n a g e m e n t M a n u a l , R e c r e a t i o n M a n u a l ( W a s h i n g t o n , D . C .: Government Printing Office, 1 & 6 3 ) , s e c t i o n 11-B, .01. 4 Ibid. 12 (1) h o w well could its resources and facilities accommodate increased activity, and (2) was it overcrowded. The r a t ­ ings were made by estimating the increase possible, or state of over-use, to the nearest 10 per cent.**Porter used two methods to measure the optimum capacity of r e s e r v o i r s . The first method was the a p p l i ­ cation of existing standards as the basis of an "area of use system." The second method was a "multiple point value system" of placing w e i g h t e d values on different conditions of each factor. Porter concluded that: A factor in need of further investigation is that of the tolerance to crowding by the recreationist. The social tolerance to crowding is a factor that has been neglected and yet is one that could have far reaching effects in the development of park a r e a s . 2 Lucas studies the capacity of a recreational area to provide satisfaction. The study was conducted on the Quetico-Superior Area for a wilderness experience by canoe. He i n d i c a t e d : The capacity of a recreational area is its ability to provide satisfaction— that is the service being produced, and this service m u s t be described both in quantity and quality terms. T w o types of factors set limits to numbers of people and their satisfaction: U.S., Department of Interior, Bureau of Outdoor Recreation, Nationwide Plan (Manual— Planning and Surveys Series) (Washington, D.C.: Government Printing Office, 1964), p. 241. 2 K. R. Porter, "The Criteria and Techniques for Estimating Optimum Recreational C a p a c i t y at Water Resource Projects" (unpublished Master's thesis, Texas Technological College, 1969), p. 54. 13 (1) p h y s i c a l factors, and (2) the a t t i t u d e s of people. B o t h t y p e s of factors are r e l a t e d to the r e s o u r c e b a s e a n d Its use and m a n a g e m e n t . 1 H a u g e n and S o h n s t u d i e d cy c l e s a n d f l u c t u a t i o n s In r e c r e a t i o n a c t i v i t i e s on s e l e c t e d Iowa lakes b y m e a n s of i n t e r v i e w s a n d p h o t o g r a p h s of c o n f l i c t s b e t w e e n users. T h e y e s t a b l i s h e d c a p a c i t y s t a n d a r d s for e n t i r e b o d i e s of water together with zo n i n g p r o c e d u r e s 2 flicts b e t w e e n u s e r groups. to m i n i m i z e con- B e u l i n g s u r v e y e d 836 lakes in W i s c o n s i n b y a e r i a l observation. T h e n u m b e r of boats fishing, cruising , and w a t e r skiing, was r e c o r d e d w i t h time and w e a t h e r c o n ­ ditions . I n t e r p r e t a t i o n of the d a t a s u g g e s t e d t h a t h i g h e s t d e n s i t y of use o c c u r r e d on small lakes in the n o r t h and c e n t r a l p a r t s of the state, w h e r e a s in the south, m e d i u m ­ sized lakes h a d a d e n s i t y g r e a t e r t h a n one b o a t per t wenty acres. W h e r e a d e n s i t y of one b o a t per ten acres w a s a r b i t r a r i l y set, s m a l l lakes h a d the h i g h e s t de n s i t i e s , 1 R. C. Lucas, T h e R e c r e a t i o n a l C a p a c i t y of the Q u e t i c o - S u p e r i o r A r e a ( S t . Paul, Mi n n e s o t a : U . S . Forest S e r v i c e , L a k e S t a t e F o r e s t E x p e r i m e n t Station, 1964), p. 2 A. O. H a u g e n and A. J. Sohn, C o m p e t i t i v e R e c r e ­ a t i o n a l Uses of S e l e c t e d Iowa L a k e s , C o m p l e t i o n R e p o r t o f P r o j e c t No. A - 0 0 5 - 1 A (Ames, Iowa: Iowa State W a t e r R e ­ sources R e s e a r c h Institute, 1968). 3 A. Beuling, A S u m m a r y and A n a l y s i s of O b s e r ­ vations on B o a t i n g 1 9 5 T (Madison, W i s c o n s i n : Wisconsin C o n s e r v a t i o n D e p a r t m e n t , 1963). 5. 14 medium-sized lakes had the next highest, and large lakes had the lowest values. Beuling postulated a possible relationship between numbers of boats on lakes and lake size. The square root of the areas was plotted horizontally, and the square root of the number of boats vertically. The lakes selected for study had the same population pressures. A curvilinear relationship indicated that as the size of the lake in­ creases the rate of increase of boat density begins to decline after a certain size lake is reached.1 Threinen surveyed the water resources of three southeastern counties in Wisconsin. He made the following observations about b o a t i n g : Boating demand is consumptive of shore and water space and that space consumption on water is directly proportional to speed. Therefore consumption of the water space is much higher for fast boats and for indiscriminate travel such as with water skiing. A water ski rig has 75 feet of rope for towing plus the length of boat to make a total of 90 feet. Speeds of 12 miles per hour are required to achieve necessary dynamic lift for planning of a skier with his skies. Water skiing is the activity of fast boats and it is an activity which keeps them occupied for extended periods. Without water skiing, fast boating would find less employment on the small inland waters. Speed is not a very significant element for the transportation of fishermen or for sightseeing be­ cause sightseeing is most enjoyed at lower speeds. The intensity of motorboating reaches a peak in early summer and declines as the summer ends. Aerial surveys and counts of boats have shown that the number of boats on a lake is related to the amount of shore and that a high shore-area ratio results in high concentration. Figure [reproduced on p. 15 as Figure 1] illustrates that smaller lakes are charac­ teristic of high densities. The number of boats in 1Ibid. 15 100 - 10- 10 -10 AREA CIRCUMFERENCE (1x4 ellipse too 1000 10,000 LAKE SIZE (acres) Figure 1.— Relationship between acres and boat number observed and circumference of an ellipsoid l a k e . The slope of boat numbers-area nearly corresponds to an area-circumference slope. Source: [Threinen, A n An a l y s i s of Space D e m a n d s , p. 8] MILES OF SHORE NUMBER OF BOATS BOAT NUMBERS 16 u s e for f i s h i n g or a n y k i n d o f b o a t i n g is m u c h l o w e r t h a n t h e n u m b e r p r e s e n t on t h e l a k e . T h e c o m m o n l e v e l of u s e a t a p e a k a c t i v i t y p e r i o d is 10 p e r c e n t o f t h e boats present. T h e s p a t i a l d e m a n d o n w a t e r for b o a t i n g a t low s p e e d s c a u s e s a n e g l i g i b l e a m o u n t of i n t r a - a c t i v i t y and inter-activity interference arises. Waves from s p e e d i n g b o a t s d r i v e s o u t t h e f i s h i n g bo a t s , l i k e w i s e w i t h rowing, p a d d l i n g , a n d s a i l b o a t i n g . Water skiing is d e n s i t y d e p e n d e n t a n d w h e n p u r s u e d t o e x c e s s , it l i m i t s the n u m b e r o f p a r t i c i p a n t s . Aerial counts frequently illustrate tha t the de n s i t y of w a t e r skiing s e l d o m b u i l d s u p to m o r e t h a n a b o u t o n e b o a t p e r 20 a c r e s of w a t e r . As the n u m b e r builds up an element o f f e a r i n f l u e n c e s the d o w n e d w a t e r skier, t h e r e f o r e 20 a c r e s is the m i n i m u m s p a t i a l r e q u i r e m e n t for w a t e r skiing. *■ Peterson polled several recreation agencies s t a n d a rds. lation and He federal, st a t e , and county for the o r i g i n of t h e i r r e c r e a t i o n found basic research lacking j u s t i f i c a t i o n of s t a n d a r d s . in the f o r m u ­ Most standards were based on personal e x p e r i e n c e . He believes, of e x i s t i n g s t a n d a r d s furthermore, t h a t the a r b i t r a r y n a t u r e for w a t e r —b a s e d r e c r e a t i o n m a k e s it d i f f i c u l t to i d e n t i f y t h e u n d e r l y i n g c o n c e p t s for d e t e r ­ mining carrying capacity. adminis­ trators, and managers Resource planners, indicated a need resource and user s a t i s faction studies 2 v a l i d standa r d s . for b a s i c n a t u r a l to o b t a i n m o r e W. W. T h r e i n e n , A n A n a l y s i s o f S p a c e D e m a n d s for W a t e r a n d S h o r e , T r a n s a c t i o n s o f the T w e n t y —N i n t h N o r t h American Wildlife and Natural Resources Conference (Washington, D.C.: W i l d l i f e M a n a g e m e n t Institute, March, 1964), pp. 358-59. 2 G. A. P e t e r s o n , "An A p p l i c a t i o n of W a t e r R e c r e ­ ation Capacity to R e s e r v o i r D e v e l o p m e n t Planning" (unpub­ lished M a s t e r ' s thesis, T e x a s A & M U n i v e r s i t y , 1968), p. 12. 17 Wilcox and Held recently proposed for the National Park System: . . . a t e c h n i q u e , or t e c h n i q u e s , for determining in as exact and objective manner as possible the capacity of recreation lands to absorb use for a sustained period of time without destroying definable and m e a ­ surable park and recreation values. The authors state that recreational carrying capacity is not an absolute numerical value but a dynamic measure changing with design, user perception, controls. and management They conclude: The major consideration in determining the level of use of an area is the trade-off between benefits w hich result from admitting additional users to the area or permitting more intensive use of the area and the losses, if any, associated with the increase or intensification of use. 3Crysdale is currently engaged in an analysis of spatial relationships and resource requirements for water 2 skiing. He proposes to study both the attitude of people using a body of water and its physical characteristics necessary to support water skiing. He proposes to divide the number of water skiers of a body of water of known size, depth, and physical attributes into the acreage believed to be capable of accommodating that activity. A. T. Wil c o x and R. B. Held, "A Study to Develop Practical Techniques for Determining the Carrying Capacity of Natural Areas in the National Park System" (unpublished study proposal on file at the Center for Research and Education, Estes Park, Colorado, 1967). 2 D. Crysdale, "An Analysis of Spatial Relationships and Resource Requirements for Waterskiing" (unpublished study proposal on file at Department of Park and R e c r e ­ ation Administration, North Carolina State University, 1969) . 18 T h e d e l i n e a t i o n of a c r e a g e to a c c o m m o d a t e w a t e r sk i i n g w i l l b e b a s e d u p o n four c o n c e n t r i c zones of sensitivity; ph y s ical, o b j e c t i v e safety, s u b j e c t i v e safety, and social. A s a b o a t a n d w a t e r s k i e r i n c r e a s e t h e i r speed, the c o n ­ c e n t r i c zones m a y b e c o m e h o u r - g l a s s s h a p e d w i t h the c o n ­ s t r i c t i o n o c c u r r i n g at the boat. T h e zones w i l l i n c r e a s e and d e c r e a s e in size d e p e n d i n g on the speed of the boat. W h e n the so c i a l zones of the w a t e r skiers overlap, they be c o m e a w a r e of c r o w d i n g a n d the s a t i s f a c t i o n of th e i r e x p e r i e n c e m a y decrease. Q u e s t i o n n a i r e s w i l l be d i s t r i b u t e d to lake u s e r s on a r a n d o m s e l e c t i o n b a s i s to h e l p p r o v i d e a c c u r a t e i n t e r p r e t a t i o n s of the a e r i a l p h o t o g r a p h s a n d o b t a i n the users* s e n s i t i v i t y to a n d a t t i t u d e c o n c e r n i n g crowding. F o l l o w - u p q u e s t i o n n a i r e s w i l l be m a i l e d to all b o a t e r s i n t e r v i e w e d at the lake to a t t e m p t to p r o b e w a t e r s k i e r s ' c o n s c i o u s n e s s of d i s t a n c e r e l a t i o n s h i p s to o t h e r b o a t e r s using the w a t e r surface. C o n c l u s i o n s f r o m R e v i e w of the L i t e r a t u r e o h C a r r y i n g C a p a c i t y Standards' T h e r e v i e w of r e l e v a n t l i t e r a t u r e has r e v e a l e d a n u m b e r o f d i v e r g e n t a p p r o a c h e s to the p r o b l e m of d e t e r ­ mining carrying capacity, a l t h o u g h there app e a r s a g r e e m e n t on a n u m b e r of issues. be d e f i n e d in a b s o l u t e terms. First, to be capacity cannot A si n g l e figure c a n n o t represent areas characterized by different environmental 19 and social variables. S e c o n d , bo a large extent the recreational carrying capacity of an area is set by management goals; as a result use has been restricted in certain cases. Third, capacity is largely influenced by the user's attitude of different levels of use and of various types of use. Fourth, capacity can be changed by different management practices, control measures, and by the use of all available resources. Finally, the research to date on attitudes concerning recreational experiences has been mainly conducted in wilderness areas. The consensus of the studies reviewed in this chapter is that user satisfaction with a recreation experience may decline with an increase in the density of use of the recreational facility. A majority of workers in the field seem to have a preconceived c o n ­ viction that this is true. It is significant that no study came to an opposite conclusion. C H A P T E R III R E S E A R C H DESIGN F O R M U LATION T h e P r o b l e m Statement: Summary Re c r e a t i o n resources should be e v a l u a t e d for two different d e t e r m i n a n t s of use in p l a n n i n g for h e a v i l y u s e d surface waters. T h e s e are: recreation experience, and (1) the p s y c h o l o g y of the (2) the ability of the p h y s i ­ cal resource to a c c o m m o d a t e vary i n g levels of u s e . Objectives This r e s e a r c h p r o b l e m attempts to investigat e recreational e x p e r i e n c e s of w a t e r - o r i e n t e d user groups on three intensively used lakes. B a s e d upon these i n v e s t i ­ gations an a t t e m p t w i l l be made to quan t i f y c a r r y i n g capacity taking a c c o u n t of b o a t e r attitudes to w a r d v a r y ­ ing levels of use. A n a t t e m p t w i l l also be made to relate the socio-economic c h a r a c t e r i s t i c s of boaters to their attitude toward b o a t i n g conditions at the same p o i n t in time and at the same location. 20 21 Hypotheses It Is assumed in this study that the opinions of boaters using surface waters can be used effectively in the development of carrying capacity v a l u e s . The first hypothesis to be tested is that the level of user dissatisfaction is directly related to in­ tensity of use. The level of dissatisfaction is defined as the number of users in relation to the total number of users interviewed indicating that unfavorable boating conditions existed at a particular period in time. The second hypothesis is that the space available for boating is inversely related to the intensity of use. The space available for boating is defined as the number of acres of water surface used per boat in a particular lake zone over time. The third hypothesis is that selected socio­ economic characteristics of boaters indicating unfavorable attitudes toward conditions of use differ significantly from those indicating favorable attitudes toward conditions of use. The Study Area Selection At present the limited research on attitudes con­ cerning recreational experiences has been directed toward wilderness use. Equally important is the need for similar 22 research on intensively used water surfaces. The attitudes concerning wilderness perception involve fewer people than do those in highly used areas close to large population centers. The question whether the quantified insights of wilderness attitude and subsequent management practices are applicable to high-use water recreation areas can be answered only by intensive attitude studies of high-use recreation l a k e s . Three Oak l a n d County lakes were selected as the study area for this investigation. Several factors were involved in this choice: 1. The Waterways Division, Michigan Department of Natural Resources asked that highly used lakes near a large metropolitan area be studied. 2. Oakland and Wayne counties together account for one-fourth of all registered boats in Michigan. Approximately 1,000 lakes in Oakland County are within one-half hour's driving time from the Detroit Metropolitan area. Several hundred of these lakes are large enough to support w a t e r skiing. 3. The Marine Division of the Oakland County Sheriff's Department bility) (water safety respon s i ­ and the Waterways Division of the Department of Natural Resources suggested five 23 large lakes r e p o r t i n g a h i g h n u m b e r o f b o a t i n g a c c i d e n t s , v i o l a t i o n s , a n d u s e r c o n f l i c t s in southeast Michigan. 4. A v a i l a b l e r e s e a r c h funds interviewers. l i m i t e d the n u m b e r o f A m i n i m u m number was needed at e a c h lake to o b t a i n m a x i m u m r e s p o n s e s . 5. Scheduled aerial photography at hourly inter­ vals r e s t r i c t e d the s t u d y to a t o t a l of t h r e e lakes. 6. E a c h lake h a d o n e p u b l i c a c c e s s site, a n d the r e m a i n i n g r i p a r i a n l a n d w a s p r i v a t e l y owned. G e o g r a p h i c a l and G e o l o g i c a l F e a t u res Union, Cass, 4 respectively) and O r c h a r d lakes are s i t u a t e d a b o u t Pontiac, M i c h i g a n . (Figures 2, 3, and five m i l e s s o u t h w e s t of C a s s and O r c h a r d lakes are w i t h i n the C l i n t o n R i v e r Waters h e d . Union Lake drains into the Huron River W a t e r s h e d . The d r a i n a g e a r e a is r e l a t i v e l y s m a l l on all t hree lakes. Average lake e l e v a t i o n is 928 feet above sea level. O a k l a n d C o u n t y has o v e r 1,000 n a t u r a l lake s a n d v i r t u a l l y all of these, i n c l u d i n g Union, Cass, are of g l a c i a l origin. S a n d and g r a v e l soils p r e d o m i n a t e in the s h a l l o w waters, e x c e p t for some d e p o s i t s at the ten to t h i r t y foot c o n t o u r depths. feet. Average and Orchard, lake d e p t h is 100 1,5,8. Figure 2.— Union Lake, Pontiac, Michigan. (460.6 Acres). T.2N, 4.8-9E., Sections ro Figure 3.— Cass Lake, Pontiac, Michigan. 2,3,4,9,10,11,33,34,35. (1209.9 Acres). T.2-3N, R.9E., Sections Figure 4.— Orchard Lake, Orchard Lake Village, Michigan. R.9E., Sections 9,10,11,14,15. (778.9 Acres). T.2N, NJ 00 29 I \ ; ,< i t> \ («»k\ ‘ i- » ■i 30 C h e m i c a l and Phys i c a l Features T h e w a t e r of Union, Cass, a n d O r c h a r d lakes is fairly c l e a r and m o d e r a t e l y hard. T h e d e p t h limit of v i s i b ility is about fifteen feet. T h e pH values are 7.2 to 8.5, and m e t h y l orange a l k a l i n i t y tests r a n g e from 83 to 115 parts p e r m i l l i o n of c a l c i u m c a r b onate i n d i c ating alkalinity. In summer months, further the d i s s o l v e d oxygen is su f f i c i e n t to support fish life at forty foot depths. Surface w a t e r temperatures range from 60° to 75°F. to 40° and 4 5 ° F. at lower depths. season, D u r i n g the summer temperatures of the e p i l i m n i o n m a y vary gre a t l y from day to day d e p e n d i n g upon air t e m p e r a t u r e . Tempera­ tures in the h y p o l i m n i o n remain u n i f o r m w h i l e the t h e rmocline show sharp drops at successive d o w n w a r d depths. Biological C h a r a c t e r i s t i c s B i o l o g i c a l l y all three lakes are productive. Sub- m e rgent v e g e t a t i o n grows in d e e p e r pa r t s of shoal areas moderate abundance. The p r i n c i p l e s u b m e r g e n t species are musk grass, coontail, and p o n d weed. (chiefly bullrushes) E m e r g e n t plan t s are common in sha l l o w areas. A wide vari e t y of forage fish is found in all three lakes. abundant. B l u n t nose min n o w s and silversides are Game fish include y e l l o w perch, largemouth bass, rock bass, smallmouth bass, bluegill, p u n k e n s e e d sunfish, n o r t h e r n pike, cisco, yellow bullheads, in lake trout, walleye, and longnose gar. 31 Climate O a k l a n d C o u n t y is in s o u t h e a s t e r n M i c h i g a n a n d t h u s is b u f f e r e d on t h r e e s i d e s b y the G r e a t L a k e s w h i c h e x e r t a m o d e r a t i n g i n f l u e n c e o n the c l i m a t e . c o l d a n d h e a t a r e t h e r e f o r e n e i t h e r as as w o u l d b e the c a s e a t t h i s L a kes. The county's i n c h e s of w h i c h months. l o n g n o r as a v e r a g e a n n u a l p r e c i p i t a t i o n is 3 0 . 6 0 29 p e r c e n t o c c u r s in the t h r e e s u m m e r from about May 7, 11, o r a p e r i o d o f 157 days. S u m m e r s are c h a r a c t e r i z e d b y w a r m m o d e r a t e at u r e s w i t h Airmass intense latitude w i t h o u t the Great The growing season extends to O c t o b e r Periods of extreme light surface winds temper­ f r o m the w e s t a n d s o u t h w e s t . type thunderstorms may occur in the afternoon, w i n d s g u s t i n g f r o m n o r t h w e s t to s o u t h e a s t . The with thunder­ s t o r m s u s u a l l y y i e l d h e a v y a m o u n t s o f p r e c i p i t a t i o n in r e l a t i v e l y s h o r t p e r i o d s of t i m e . o v e r e x t e n s i v e u r b a n ar e a s , When heavy showers move existing drainage overflow and subsequently raise lake levels systems often in a s h o r t p e r i o d of t i m e . La k e D e v e l o p m e n t Union and Cass development. 2 a n d 3. lakes h a v e u n d e r g o n e intensive T h i s is e v i d e n t f r o m e x a m i n a t i o n o f F i g u r e s M o s t residences are p e r m a n e n t y e a r a r o u n d homes varying from small run-down cottages level h o u s e s w i t h large to e x p e n s i v e m u l t i ­ lake f r o n t a g e . Most homes have 32 septic tank systems. 'Jo facilities are mainta i n e d for providing storm water drainage other than roadside ditches. Most runoff water empties into nearby marshlands or inlet and outlet streams. mostly oiled. Roads in and around the lakes are Both lakes have a public access site. The Dodge Brothers 4 State Park is located on Cass Lake. O rchard Lake is entirely surrounded by expensive estates and a large country club. Orchard Lake Village maintains a full-time police force, roads are p a v e d and have extensive storm wa t e r drainage systems. Residents either have septic tanks or are connected to city s e w e r s . The lake has one public access site. C H A P T E R IV METHODS AND PROCEDURES T h e c a r r y i n g c a p a c i t y of w a t e r for r e c r e a t i o n a l b o a t i n g is d e p e n d e n t u p o n the attit u d e s of p a r t i c i p a n t s as t h ese m a y be m o d i f i e d b y levels of use pp. 8, 10, and 12). (see C h a p t e r I I , T h e a t t i t u d e of the b o a t e r s cated by their responses is i n d i ­ to v a r y i n g levels of use. Two v a r i a b l e s w e r e c h o s e n to d e s c r i b e the level o f b o a t i n g a c t i v ity on a b o d y of water. s u m p t ion of w a t e r surface, T h e s e were: and (1) c o n ­ (2) d i s p e r s i o n of boats. T h e o b s e r v a t i o n p e r i o d s on Union, Cass, O r c h a r d lakes w e r e s c h e d u l e d e v e r y w e e k e n d , day d u r i n g the summer, w e a t h e r pe r m i t t i n g , t h rough S e p t e m b e r 1, 1969. and a n d on e w e e k ­ from July 4 R e s p o n s e s to h i g h d e n s i t y u s e c onditions w e r e c o n t i n u o u s l y o b t a i n e d b y m e a n s of i n t e r ­ views of b o a t e r s as t h e y left the lakes; the areas w e r e p h o t o g r a p h e d at o n e - h o u r i n t e r v a l s . The Interview E a r l y in the f o r m u l a t i o n of this study, it was d e c i d e d to focus on the a t t i t u d e s a n d b e h a v i o r o f w a t e r o r i ented users u s i n g p u b l i c ac c e s s sites on i n t e n s e l y u s e d 33 34 lakes. The interview schedule employed in this investi­ gation was divided into three p a r t s : (1) the first section dealt with the composition of the boating party and the type of boat, (2) the second section asked for information on boating activity by designated areas, (3) the third section sought data on the socio-economic characteristics of b o a t e r s . Several steps were involved in the preparation of the interview used in this study: 1. The author prepared a series of rough drafts under the direction of his major professor. 2. After an acceptable draft of the interview schedule had been prepared, the author inter­ viewed the Park Superintendent of Dodge Brothers 4 State Park on Cass Lake, the deputy sheriff in charge of water safety, of the Marine Division, Oakland County Sheriff's Department, and the Chief of the Waterways Division, Michigan Department of Natural Resources• The questions asked in the inter­ view schedule were discussed with each of these persons to obtain their views on inter­ preting attitudes of boaters and use patterns. 3. Another revision in the content and arrangement of the interview schedule was made after these 35 critiques. A t the req u e s t of the W a t e r w a y s C o m m i s s i o n , several additional q u e s t i o n s w e r e included. 4. The interview was then t e s t e d b y a d m i n i s t e r i n g it to a sample of boaters d u r i n g a h i g h - u s e period. 5. A n o t h e r revision of the q u e s t i o n s and format was then 6. undertaken by the author. Finally, the interview was a g a i n te s t e d by administering it to boaters d u r i n g a h i g h - u s e period before July 4. The interview schedule was s u p p l e m e n t e d b y a m a p of the lake involved. On this map, the lake w a s d i v i d e d into n umbered geographically distinct z o n e s .1 final In its form, the interview was desi g n e d to o b t a i n as m u c h relevant information as possible about the b e h a v i o r o f individual b o a t e r s . The following is a sum m a r y of the information w h i c h the interview was d e s i g n e d to obtain: 1. the 2 Information p e r t a i n i n g to time spent on boating a. arrival and departure times of b o a t e r b. total days respondent u s e d the lake for boa t i n g to date ^See Figure 5 for lake maps shown to r e s p o n d e n t s during i n t e r v i e w s . 2 See A p p e n d i x A2 for interview s c h e d u l e u s e d at public access sites. 36 Figure 5.— Lake maps during i n t e r v i e w s . sh o w n to r e s p o n d e n t s 37 ■in m m ■"i" i. r i'iw i ■11 ii ■ i uip i 0*C«M*D LMMt 38 c. total days r e s p o n d e n t b o a t e d anywhere to date d. time spent on various recreational and r e l a t e d activities at the lake conce r n e d 2. L o c a t i o n of b o a t i n g activities and use patterns 3. C o m p o s i t i o n of the b o a t i n g party a. n u m b e r of people in the party by age and sex b. n u m b e r of boats in the party 4. T y p e of b o a t and h o r s e p o w e r 5. In f o r m a t i o n a b o u t the reason the lake was selected for b o a t i n g 6. I n f o rmati on c o n c e r n i n g the boater's attitudes c o n c e r n i n g amount of use and quality of the ex p e r i e n c e 7. In f o r m a t i o n about occupation, income, and education. O n l y c e r t a i n port i o n s of the data obtained from the i nterviews were used in this study. The remaining information w i l l be inc o r p o r a t e d into the final report submitted to the W a t e r w a y s D i v i s i o n of the M i c h i g a n D e p a r t m e n t of N a t u r a l R e s o u r c e s . The I n t e r v i e w Schedule T h e i n t e r v i e w i n g was c o n d u c t e d between 1000 hours and 19 30 hours on w e e k e n d s (and the one weekday) three lakes as shown in Table 1. at all Each interview team 39 TABLE 1 TOTAL BOATS COUNTED AND PER CENT BOATERS INTERVIEWED AT ACCESS SITES JULY 4 THROUGH SEPTEMBER 1, 1969 Number of Boats Interviewed Number of Boats Counted _ . interviewed interviewed Lake Date Union Cass Orchard July 4 July 4 July 4 4 3 12 4 3 12 100 100 100 Union Cass Orchard July 5 July 5 July 5 32 69 83 34 72 89 94 95 93 Union Cass Orchard July 6 July 6 July 6 34 54 54 92 93 92 Union Cass Orchard July 20 July 20 July 20 28 51 59 Union Cass Orchard July 26 July 26 July 26 29 66 75 37 58 59 31 57 65 33 72 80 Union Cass Orchard Union Cass Orchard Aug. 2 Aug. 2 Aug. 2 28 65 63 32 71 72 88 92 88 Aug. 3 Aug. 3 Aug. 3 41 59 74 47 69 89 87 86 83 Union Cass Orchard Aug. 9 Aug. 9 Aug. 9 30 42 26 87 81 88 Union Cass Orchard Union Cass Orchard Aug. 10 Aug. 10 Aug. 10 26 34 23 41 59 71 45 69 82 91 86 87 A u g . 17 Aug. 17 Aug. 17 20 43 34 22 49 38 91 88 89 Union Cass Orchard Aug. 21 Aug. 21 Aug. 21 3 9 5 3 9 5 100 100 100 90 89 91 88 92 94 40 TABLE 1— Continued Lake N umber of Boats Interviewed Date Number of Boats Counted Per Cent Interviewed Union Cass Orchard A u g . 23 A u g . 23 A u g . 23 28 56 57 33 66 69 84 85 83 Union Cass Orchard Aug. Aug. Aug. 24 24 24 39 46 58 43 57 68 91 81 85 Union Cass Orchard A u g . 30 Aug. 30 Aug. 30 22 38 52 26 43 61 85 88 85 Union Cass Orchard Aug. 31 A u g . 31 A u g . 31 35 49 67 91 83 84 Union Cass Orchard Sept. 1 Sept. 1 Sept. 1 32 41 56 33 28 50 37 33 60 89 85 83 41 consisted of two or three students. Frequently, a deputy from the Marine D i v i s i o n of the O a k l a n d C o u n t y Sher i f f ' s Department assisted at the lake's p u b l i c access site by d i r e cting depar t i n g b o a t e r s to the i n t e r v i e w team. Almost every boater was in t e r v i e w e d be f o r e 1500 and after 1700 hours. F r o m 1500 to 1700 hours (the m o s t c r o w d e d t i m e ) , approximately 80 per c e n t of the boa t e r s w e r e inter v i e w e d . ^ It took approximately six m i n u t e s to a d m i n i s t e r the i n t e r ­ view schedule. A n analysis of the responses o b t a i n e d in the i nterviews will be u n d e r t a k e n in C h a p t e r V. The Questionnaire Early in the study, it was d e c i d e d to also i n v e s t i ­ gate the attitudes and p a t t e r n s of b o a t i n g use of r i p a r i a n owners on each lake. A self-administered questionnaire was d esigned for this purpose. 2 Each questionnaire with a self-addressed stamped e n v e l o p e w a s i n d i v i d u a l l y d i s t r i ­ buted to all riparian owners or o c c u p a n t s of the property. The potential respondents w e r e a s k e d to desc r i b e their feelings about the l a k e 's use for a previ o u s w e e k (August "^The interview teams u s e d h a n d counters to c o u n t all boats leaving the access site. In addition, the boater registration n u m b e r w a s o b t a i n e d for all boaters not interviewed. See T a b l e 1 for the total boats c o u n t e d and per cent boaters interviewed. 2 T h e q u e s t i o n n a i r e was p r e p a r e d by Mr. Robe r t Dittrick, graduate assistant, D e p a r t m e n t of Park and Recreation Resources, M i c h i g a n State University, as p a r t of the contract w i t h the W a t e r w a y s Commission. See Ap p endix A3 for questionnaire. 42 18 through 24). The questionnaire was distributed again in a similar manner the following week September 1). (August 25 through The average response to the questionnaire amounted to 63 per cent. Information relating to specific times of unfavor­ able activity conditions was extracted from these question­ naires for this study. An analysis of the responses is given in Chapter V . Aerial Photography The use-patterns of boaters were recorded by aerial photography. vertical photographs. Initially, it was intended to use A 35mm 250 frameback motorized camera with intervolometer was ordered. Shortly before the study started, the Recreation Research and Planning Unit was notified that the equipment would not be avail­ able until after completion of the study. A Nikkormat 35mm single lens reflex camera equipped with a 50mm fl.4 Nikkor lens was borrowed and used for the entire summer. Black and white panchromatic film of various film speeds (ASA 25, 32, 64, 120, and 600) and several color films, Kodacrome Ektacrome (ASA 25), Ektacrome (ASA 64), High Speed (ASA 160), were tested at different elevations. The purpose was to select the film which would permit enumeration of the boating activities underway and measurement of other phenomena such as boat speeds. After an analysis of these tests, High Speed Ektacrome 43 (ASA 160) at an altitude of 500 feet above the lake levels was selected. The camera was hand held and the exposures were high oblique. Several trial flights followed to determine sequential exposure stations for all three lakes. Total flight time needed to cover all three lakes was thirty-five minutes. The purpose of the photography was to record levels of boating use over t i m e . Continuous photography of the water surface was not possible because of the high cost of aircraft rental and the two-hour flight time limit of the aircraft. In order to obtain a representation of the water surface usage for a given hour with minimal p h o t o ­ graphy, a test was conducted in w h i c h all three lakes were continuously photographed for one hour during a high-use weekend. This resulted in five complete "flights" per lake using the predetermined photography p r o c e d u r e s . Examination of the photographs showed that the total number of boats in each lake zone varied only slightly over a given one-hour time span was, therefore, (see Table 2). The author able to assume that photographing the water surface once during an hour w o u l d adequately r e p r e ­ sent the level of use for that hour. Aerial photography flights were generally u n d e r ­ taken on the following schedule: 1800, 0800, 1000, 1400, 1500, 1600, 1700, flight at sundown (approximately 1930 h o u r s ) . 1200, 1300, 1900 hours, and one final TABLE 2 VARIATION OF TOTAL BOAT NUMBER, SPACE CONSUMPTION, AND DISPERSION FOR FIVE PHOTO FLIGHTS ON UNION, CASS, AND ORCHARD LAKES (JUNE 29, 1969)a TIm 1*00 -------- 1taion Space Con*. Total Safety Boat Laka (Acraa) Count Zona i ] 4 5 11 12 10 ft S 1 IS _ .11 Jl 12 10 10 6 25.11 3».7) 12.72 K.U 3.02 11.92 21.7* 19.77 23.33 39.10 21.22 27.33 0.13 7 | 1 } 3 4 is ii u 11 11 10 23.99 20 .ta 23.29 39.37 22.13 27.90 ft I u 11 u 1) 11 1 2 3 4 5 ft f 1423 1433 144? 7 1 1 2 3 3 ft 7 I 1 2 1 .... 2.06 1.10 1.71 1.03 1.16 1.(2 2.35 1.71 2.32 3.67 3.39 2.(1 3.12 3.23 1.21 J.IJ 1.16 2.21 3.22 1.99 3.23 2.H 3.11 2.02 2.13 3.11 2.35 1.66 2.07 3.22 . ?,Pii.ii 3.01 1.22 1.99 3.21 2.01 6.07 3.27 Tie* 1300 Total Boat Count Lake Zona 1 2 3 4 5 ft 7 ft 1525 1337 u u 9 1 2 3 4 5 ft 7 1 9 1 2 3 4 3 6 7 8 ft 1 2 3 70.37 120.93 50.72 32.36 25.51 26.63 73.92 26.(3 37*99 60. U 122.00 51.23 33.12 27.31 29.72 33.31 2(.91 *0.11 71.22 130.1* 60.73 *0.23 27.11 29.(6 10.12 30.19 *3.»L_ 75.37 133.11 70.U 11.37 26.33 30.11 13.19 37.33 13.97 34 23 19 23 13 IS 4ft 13 11 34 23 19 24 14 IS 47 13 1ft 35 23 1ft 25 14 15 49 14 1 2 9 4 5 ft 7 B ft 1511 Can Space Cana. Safety (Acret) - 1*33 24 20 25 14 IS 52 1ft 20 R S R 5 S S R 3 3 KSEfSiS J S S > ft 7 • 6 * 1* __ u 11 11 11 11 7 1 It 11 H.I9 2t.U 20.40 27.01 10.37 23.71 27.33 7.03 16.20 21.35 ... » . n .. 17.32 10.92 23.19 21.31 7.90 16.31 23.01 20.62 Ottpereiea Scpli Coafflcfaat 4 Tba aqilanatlen of ip K l a re n a ,t too *od dlipenlire a n preeented In 1 i 5 6 7 • 9 ffk nW (3 . D1apart!on 5«pl« Coafflelant — 3,55 4,39 3,5ft 2,io 2*55 2*77 1,59 l.ftO 9*09 i,oi 3.Z7 2*46 3*44 3,04 4.09 2.23 3.10 4.5ft i.ur2.26 3.33 1.00 l.0( 2.11 1.01 2.0( 2.76 1 .0 0.(9 1.21 3.22 1.11 2.01 1.01 %99 1.03 0.(9 2.12 2.03 1.90 2.09 0.(6 1.91 2.02 2.H TIm 1600 1610 lake lane 1 2 3 1 3 6 7 1 3 4 5 ft 1620 1631 I6li 7 1 2 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 ft 7 0i Total ' Sptft Gona* Boat Cotint a 22 13 13 15 2ft 11 i 22 13 17 17 27 13 B 23 6.52 51.56 16.26 20.(6 11.76 16.26 15.76 Ml 53.63 15.23 20,62 13.71 17.U 15.70 (.33 31.61 13 15 2B 13 B 24 IS 17 17 2ft 15 9 27 1ft 16 13 32 11.11 11.23 K.37 _ 11.01 1.11 55.31 16.13 11.21 17.23 19.(3 16,93 7.01 56.33 19.11 16.19 K.61 16.11 19.21 « la*U Caaf fldent 1.(3 2.76 2.20 2.36 3.37 2.39 3.27 (.a 1.12 3.11 1.36 2.03 1.57 2.22 T.'« ’ 3.21 3.37 1.90 3.02 2.96 3.U 1.99 2.(7 3.U 2.91 l .d 3.01 1.19 1.69' 3.22 1,11 3.03 3.07 1.99 2.11 45 Interpretation of the Photographs Grid Construction The location of boats on the aerial photographs was interpreted by means of one p o i n t perspective q u a d r i ­ lateral gri d s . 3- These grids are a representation in perspective of imaginary squares laid out on the ground. The size of these squares is dependent on the camera depression angle and height of the camera at the time of exposure. The 35mm color slides were proje c t e d a distance of 90 inches onto a viewing screen. 24-x36-inch image. This prod u c e d a The first step in p r e p a r i n g a grid was to locate the principal point on the projected image and draw the apparent horizon. A principal line was drawn through the principal point at right angles to the apparent horizon. The depression angle (6') of the optical axis from the apparent horizon was calculated as: 9 ' = arc tan ph ' £ ■■■ where P is the principal point in the p h o t o g r a p h , h* is the apparent horizon, and f is the focal length of the camera. ^American Society of P h o t o g r a m m e t r y , Manual of Photogramme try (Menasha, W i s .: Banata Publishing Co.), 46 The vertical angle a (see F i g u r e 6) (subte n d e d a t the e x p o s u r e s t a t i o n b y rays to the a p p a r e n t and t r u e h o r i zon) w a s c o m p u t e d b y the f o l l o w i n g equation: a = arc tan 0.9216 ✓ R R ) for the same flights. The levels of boat i n g 74 a c t ivity w e r e c a l c u l a t e d in this m a n n e r b y zone, and h o u r for two d a y s (August 23 a n d 24). P r o c e d u r e 4 .— In the f o u r t h p r o c e d u r e , values (designated as the d e p e n d e n t variable) by the S C T P C - P values able) lake, the S C S C - P were replaced (designated as the i n d e p e n d e n t v a r i ­ and c o m p a r e d in a m a n n e r s i m i l a r to P r o c e d u r e 3 for the same flights. I l l u s t r a t i o n by the P l o t XY C o m p u t e r Rou t i n e The final least squ a r e s e q u a t i o n s for P h a s e I procedures w e r e g r a p h i c a l l y i l l u s t r a t e d b y m e a n s o f the plot XY c o m p u t e r r o u t i n e .^ series rou t i n e P l o t XY is a s t a t i s t i c a l for g e n e r a t i n g co d e s f r o m the C D C 2 co m puter to d i r e c t a m e c h a n i c a l p l o t t e r . 3600 P h a s e I I — U s e r A t t i t u d e a n d L e v e l of Boating Activity Intensity Relationship T he o b j e c t i v e of P h a s e II w a s to e x a m i n e the re l a tionships b e t w e e n u s e r a t t i t u d e s a n d m e a s u r e s of b o a t ­ ing activity. T h e least s q u a r e s s t e p w i s e d e l e t i o n a n a l y s i s was used for this purpose. 1P l o t XY w a s p r o g r a m m e d b y P. M. S c h w i s i n , S T A T . Series D e s c r i p t i o n No. 16 P l o t XY (East L a n s i n g , M i c h .: Agriculture Experiment S t a t i o n , Michigan State University, 1969) . 2T h e C a l c o m p m e c h a n i c a l x - y p l o t t e r is a m e c h a n i c a l device w h i c h c o n s i s t s of a p e n m o u n t e d in an a r m t h a t slides b a c k and f o r t h h o r i z o n t a l l y w h i l e drawing. The p l otter p a p e r is fed a r o u n d a d r u m w h i c h m o v e s b a c k a n d forth v e r t i c a l l y w h i l e drawing. 75 Procedures for Comparing User Attitudes with Levels of Boating Activity Intensity Procedure 1 .— The first procedure made two com­ parisons between user attitudes and levels of boating. First, the user attitude index procedure (UAI designated as the dependent variable) was compared with the space consumption safety coefficient procedure as the independent variable) 24) by flight. Second, for two days (SCSC designated (August 23 and the UAI values were compared with a new procedure for assessing the level of boating. The new procedure, called "the intensity coefficient procedure" IC-P, divided the SCSC by the SDC.^ Both comparisons were made for all flights on each lake for August 23 and 24. Procedure 2 .— The second procedure compared the UAI values (designated as the dependent variable) with the SCSC-P values (designated as the independent v a r i a b l e ) . Each lake was analyzed for all observations and flight intervals made during the summer. This was an extension of the first part of the analysis of Procedure 1. Procedure 3 .— The third procedure investigated the relationships of riparian owner attitudes to levels of ^The SCSC was in square feet and the SDC was in feet. The SDC was squared to obtain a dimensionless quotient. The purpose of combining the two coefficients was a final attempt to incorporate dispersion in the m e a ­ sure of boating activity. 76 boating. The UAI values (designated as the dependent variable) were modi f i e d to represent the total lake usage on two weekends. The SCSC values (designated as the inde­ pendent variable) were also modified to evaluate levels of boating for the entire lake. Procedure 4 .— The fourth procedure compared the number of acres per boat variable) (designated as the dependent with the SCSC values pendent v a r i a b l e ) . (designated as the inde­ Data from the three lakes and all flights and interviews made during the summer were a n a l y ­ zed in this manner. Plot XY Comp u t e r Routine The plot XY computer routine was again used to illustrate the relationships in the procedures of Phase II. Phase III— The Relation of User Attitudes to Boating Conditions by Socio-economic Characteristics The objective of Phase III was to compare selected socio-economic characteristics obtained from the interviews at the public access sites of boaters who indicated u n ­ favorable conditions of use with those of boaters indicat­ ing favorable conditions at the same point in time and at the same location. The purpose of comparison was to d i s ­ cover if there is a significant relationship between socio­ economic characteristics and the attitude of boaters. 77 Examination of frequency distributions and chi-square analysis were used to accomplish the objectives in Phase III. Frequency Distributions The socio-economic variables analyzed were income, education, and occupation. Each variable was divided into classes and frequency distributions were computed for the three lakes at all observation p e r i o d s . Chi-Square Test The chi-square analysis is useful for examining relationships between populations under similar circu m ­ stances. It is used for determining whether actual d iffer­ ences are greater than could be expected on the basis of chance variations. The test was conducted between the two types of responses for each socio-economic v a r i a b l e . C H A P T E R VI RESULTS The complete data for the various measures of level of boating activity intensity used in Phase I of the analysis are presented in Appe n d i x C. The Phase II data, presented in Appendix D are the comparisons of attitude with the level of boati n g activity intensity during July 4 through September 1. The frequency distributions for responses to boating conditions in Phase III are presented in Appendix E. Phase I — Measures of Level of Boating Activ i t y Intensity The relationships between the various measures of the intensity of boating activity were tested in Phase I procedures by the least squares stepwise deletion routine. The results are tabulated in Appe n d i x FI as shown in the excerpt on the following page. The entire tabulation of this data and the remaining Phase I procedures are i n ­ cluded in Appendix F. An analysis of variance was performed in each procedure to determine the significance of the overall 78 APPENDIX FI July 17 54 Union | | 0.2476 269.4374 0.0005 0 -0.0062 0.0000 0.998 3 1.2163 526.6913 <0.005 6 -0.0099 160.7748 <0.0005 •H h 1 S i g n i ficance (Sig.) Fb P artial Regres s i o n Coefficients .91 r V ariables Introduced 3 PS Ho S ignificance +1 1-1 « tflUH F Test Number Step Number of Observations 0) V <0 Q Lake j j LEAST SQUARES DELETION ANALYSIS FOR SAMPLE DISPERSION COEFFICIENTS AND TOTAL DISPERSION COEFFICIENTS FOR UNION, CASS, AND ORCHARD LAKES (July 17, 1969) 80 reduction in sums of squares due to regression on deleting equations. Analysis of variance showed the final equations as significant at the 5 per cent level through F 8 ) . (see Appendix FI The partial regression coefficients, the square of the multiple correlation coefficient, error of estimate, F Test standard (performed on the overall analysis of v a r iance), the F^ and the significance probability for i on every equation for all procedures in the analysis are presented in Appendix Fl through F 8 . gression coefficients The partial re­ (b^) provide an estimate of the rate of change of the dependent variable associated with one unit change in each independent variable as listed in Appendix Fl through F 8 . The partial regression coef­ ficients cannot be ranked according to their values b e ­ cause they are not in standard units of measure. the computed t-values (t^ ~ Fb . However, ^ degree of freedom) of the partial regression coefficients can be ranked b e ­ cause they represent the value of the partial regression coefficient in terms of its standard error. The ranking of the partial regression coefficients is based on their respective t-values. The coefficients ranked in order of their contribution to the regression are b b > b > i i -1 The standard deviations of the partial > b . i -2 x i-n regression coefficients were found by the following formula: where: S C .3 is the standard error of estimate, and t.h is the element of the i row and j column 0 f the inverse of squares and cross products matrix. The standard error of estimate the mean square for error) {square root of was computed for the overall analysis of variance for each deleted equation. The standard error of estimate is in the same units of measure as the original data. Therefore, approximately 95 per cent of the dependent variable in each procedure can be expected to vary from the mean + units (S^ ) of the original data. i The principal objective of Phase I was to examine quantitative expressions of the intensity of boating a c t i v ­ ity and determine if relationships exist between these e x ­ pressions. The least squares deletion routine was used for each procedure in Phase I . The various measures of the level of boating activity intensity were compared for the 2 square of the multiple correlation coefficients (R ). The 2 R value shows the percentage of the variability around the mean of the dependent variable which was associated with variation in the independent v a r i a b l e s . that produce the highest R procedures. The variables values were used in Phase I 82 P r o c e d u r e s for D e t e r m i n i n g the Best M e t h o d of E x p r e s s i n g the Intensity of B o a t i n g A c t i v i t y P r o c e d u r e 1 .— T h e first p r o c e d u r e c o m p a r e d the sample d i s p e r s i o n c o e f f i c i e n t SDC v a l u e s w i t h the total d i s p e r s i o n c o e f f i c i e n t T D C v a l u e s on J u l y 17 for the three lakes (see A p p e n d i x F l ) . had R 2 's of .91, .8 8 , and Union, Cass, .75 respectively. ships b e t w e e n the two p r o c e d u r e s sented in A p p e n d i x F2. and O r c h a r d lakes The relation­ for e a c h lake are p r e ­ The regression equation illus­ t r a ting the e f f e c t s of the s e l e c t e d i n d e p e n d e n t v a r i a b l e s on SDC a r e : U n i o n Lake, Cass Lake, Y = -0.0002 + 1.2163 Y = 0.0488 + 1.1263 O r c h a r d Lake, (X3 ) - 0. 0 1 0 1 Y = 0.1828 + 1.4120 + 0.0506 (X3 > - 0.0099 (X4 ) (X5 ) (X4 ) - 0.5204 (X5 ) (Xg ) m1 The h i g h c o r r e l a t i o n b e t w e e n the two c o e f f i c i e n t s indi­ cated either p r o c e d u r e c o u l d be u s e d to d e s c r i b e d i s p e r s i o n . The SDC-P was s e l e c t e d b e c a u s e it e n a b l e d the a u t h o r to extend the e x a m i n a t i o n of the n u m b e r of b o a t i n g p o s i t i o n s and to record fewer c o o r d i n a t e s . ‘'"Variables are: T D C as (X3 ) , TDC squa r e d as TDC cubed as (X^) , a n d T D C fourth d e g r e e as ( X g ) . (X 4 ) , 83 Procedure 2 .— T h e second procedure space c o n s u m p t i o n s a f e t y c o e f f i c i e n t s consumption lakes SCSC tracing paper coefficients for A u g u s t 23 a n d 24 compared and the (see A p p e n d i x F3) . three 2 T h e R *s for Union, Orchard lakes were .84 r e s p e c t i v e l y . relationships between .79, and the two p r o c e d u r e s presented in A p p e n d i x F 4 . Cass, for each The regression equation trating the e ffects of the s e l e c t e d space S C T P C on the derived between the coefficients .77, the and The lake are illus­ independent variables on S C S C a r e : U n io n Lake, Y = -0.0134 + + 0.0033 Cass Lake, Y = -0.0367 + 0.0008 Orch a r d Lake, + 0.2128 (X4 > - 0 . 0 3 5 6 - 0.2267 (Xl g ) 85 Cass Lake, Y = -0.0604 + 32.0892 + 7.8632 O r c h a r d Lake, Y = The regression equation Cass Lake, illustrating Y = (X1 6 ) . the effects of the on SCSC a r e : 0.0379 + Y = -0.0097 0.0957 (X1 5 ) - 0 . 0 2 7 1 + 1.8695 + 0.4349 Orchard Lake, (X1 5 ) - 0 . 7 5 0 1 Y = 0.2387.^ P h a s e I I — R e l a t i o n s h i p o f U s e r A t t i t u d e s to the L e v e l of B o a t i n g A c t i v i t y I n t e n s i t y The relationships and v a r i o u s m e a s u r e s of the were tested in the P h a s e stepwise de l e t io n A p p e n d i x G3 between II p r o c e d u r e s routine. The second phase user attitude ing levels included the are on the least squares t a b u l a t e d in following page. data and the remaining Phase in A p p e n d i x G. of t h e a n a l y s i s indices UAI w i t h of b o a t i n g o n by results as s h o w n i n t h e e x a m p l e II p r o c e d u r e s a r e index intensity of b oating activity The e n t i r e t a b u l a t i o n of t h i s The the u s e r a t t i t u d e first compared two procedures two days. Second, ^ V a r i a b l e s are: S D C a s (X5 ) , S D C SDC c u b e d as ( X ^ ) , a n d S D C f o u r t h d e g r e e for d e s c r i b ­ user attitude s q u a r e d as as (X^g) . (X^4 ) , APPENDIX G3 Partial Regression Coe f f i c i e n t s 0.1865 9.0537 0.004. 0 0.2226 ■H A h Significance (Sig.) F. i Variables In t r o d u c e d .11 Si g n i ficance 4 Ho 72 F Test Union Standard Error of Estimate | Step August 23 0.1826 first case (Xg ) . 2 and the results little difference. on the Y X p l a n e b e t w e e n U A I and the the S C S C d e p a r t e d c o n s i d e r a b l y Numerous points w e r e + (X5 ) The points IC a n d b e t w e e n U A I from the best and fit curve. found at approximate coordinates "'’V a r i a b l e s are: IC as (X 5 ) , IC s q u a r e d as IC c u b e d as ( X ^ ) , a n d IC f o u r t h d e g r e e as (X^g) . 2 of of (X 1 4 ) , V a r i a b l e s are: S C S C as ( X c ) , S C S C s q u a r e d as (X1 4 ) , S C S C c u b e d as ( X . c )t a n d S C S C f o u r t h d e g r e e as • 89 5,100 and 100,5.^ E x a m i n a t i o n of the points c l u s t e r e d about the 5,100 coordinates r e v e a l e d they w e r e compu t e d 2 from a small number of r e s p o n s e s . The points c l u s t e r e d about the 100,5 coordinates w e r e found to have b e e n de3 rived under similar circumstances. U n i o n Lake e x h i b i t e d 2 the h i g h est R 's. The points on the Y X p l a n e i n v o l v i n g the UAI and the IC and i n v o l v i n g the UAI and SCSC followed a general linear fit (see A p p e n d i x G2 and G 4 ) . A comp u t e r program was dev i s e d to e l i m i n a t e poi n t s at the app r o x i m a t e 4 coordinates of 5,100 and 100,5. Both p r o c e d u r e s , SCSC-P and I C - P , for d e s c r i b i n g the level of boa t i n g act iv i t y i n t e n s i t y w h e n c o m p a r e d to 2 the UAI-P had similar R *s (see A p p e n d i x Gl and G 3 ) . The The 5,100 coordinates i l l u s t r a t e hi g h e r user attitude indices for low c o n s u m p t i o n values. The 100,5 coordinates illustrate low user atti t u d e indices for h i g h consumption v a l u e s . 2 For example, one b o a t e r i n d i c a t e d an un f a v o r a b l e boating condition occu r r e d at 0800 hours in lake zone 3. If the total number of responses to the lake zone for 08 00 was one, and had he been the only b o a t e r p r e s e n t d u r i n g aerial photography, the UAI w o u l d be 100 for a low level of boating. 3 For example, five boat e r s i n d i c a t e d u n f a v o r a b l e boating conditions compared w i t h a total of s e v e n t y - f i v e responses for 1600 hours in lake zone 3. If the seventyfive boaters were photographed, the UAI w o u l d be .06 for a high level of boating. 4 Pro g r a m by W. B. Allard, M i c h i g a n State U n i ­ versity, Comp u t e r Center. A l l h o u r l y a t t i t u d e responses of 5 or less (including 0) w e r e eliminated. 90 SC S C - P a l l o w e d e a r l i e r interpretation of data and was s e l e c t e d to r e p r e s e n t the m e a s u r e of t h e l e v e l o f b o a t i n g activity intensity Procedure for f u r t h e r a n a l y s i s . 2 .— T h e s e c o n d p r o c e d u r e b r o u g h t t o g e t h e r all d a t a to b e i n t e r p r e t e d b y t h e U A X - P a n d the SCSC - P . C o m p a r i s o n s w e r e m a d e b e t w e e n U A I *s a n d S C S C 's b y th e l e a s t squares d e l e t i o n r o u t i n e o n e a c h l a k e The R .35, 's d e r i v e d for U n i o n , .34, and Cass, .21 r e s p e c t i v e l y . (see A p p e n d i x G 5 ). and O r c h a r d lakes were Overall analysis of vari­ ance for t h e r e g r e s s i o n e q u a t i o n s p r o v i d e d F - t e s t s a t the 5 p e r c e n t l e v e l for e a c h significant lake. The plot XY r o u t i n e i l l u s t r a t e d the r e s u l t s b y g r a p h i c a l l y p l o t t i n g all data. C u r v e s o f b e s t fit for the p l o t s w e r e d r a w n for e a c h e q u a t i o n (see A p p e n d i x G 6 , G 7 , a n d G 8 ) . The regression equations i l l u s t r a t i n g the e f f e c t s of the s e l e c t e d i n d e p e n d e n t v a r i a b l e s on the UAI are: Union Lake, Y = 0.0306 + 3.5665 + 3.3932 Cass Lake, - 6.4558 (X1 4 ) (X1 5 ) Y = 0.0656 + 0.1745 O r c h a r d Lake, (Xg) (Xg) Y = 0.0995 + 4.7952 + 44.9732 - 0.0079 (X1 4 ) (Xg)- 2 3 . 1 9 7 2 (X1 5 ) - 3 2 . 7 1 8 1 (X1 4 ) (X ^ ) . 1 ^ V a r i a b l e s are: S C S C as (X 5 ) , S C S C s q u a r e d as (X1 4 ) , S C S C c u b e d as (X-^g) , a n d S C S C f o u r t h d e g r e e as (X^g) . 91 The R 2,s of .35, .34, and .21 s h o w t h a t a b o u t 21 p e r c e n t o f t h e v a r i a b i l i t y with variation and O r c h a r d the S C S C m e a n s in the UAI w a s in t h e i n d e p e n d e n t v a r i a b l e s lakes respectively. Table and range of values variable on Union, Cass, 35, TABLE on Union, 4 lists lakes. and associated encountered and Orchard 34, Cass, the UAI and for each The standard 4 RANGE A N D ME A N VALUES F O R U S E R A T T I T U D E INDEX, SPACE CONSUMPTION SAFETY COEFFICIENT, AND ACRES PER BOA T F O R UNION, CASS, A N D O R C H A R D LAK E S (JULY 4 T H R O U G H S E P T E M B E R 1, 1969) Maximum Value Variable Lake Union Cass Orchard UAI SCSC Ac res/Boat 0 .000 0 .008 UAI SCSC Acres/Boat 0 .000 0 .002 0.801 1.355 298 .490 UAI SCSC Acres/Boat 0 .0 0 0 0.005 3.166 0.723 141.320 1.820 error of e s t i m a t e s w e r e 0.1913 c o m p u t e d as (see A p p e n d i x G 5 ) . is in u n i t s Therefore, of m e a s u r e The approximately Mean Value 0 .294 0.248 13.457 1.000 1.129 81.470 0.287 0 .253 18.636 1.000 0 .136 0 .147 18.049 1.000 0.2652, 0.2548, and standard error of estimate identical to t h e o r i g i n a l d a t a . 9 5 per cent of Lake c a n be e x p e c t e d to v a r y + .29. Minimum Value .26 u n i t s Similarily Cass Lake would vary + the UAI on Union from the m e a n of .25 u n i t s from the 92 m e a n of .28 and O r c h a r d L a k e w o u l d v a r y ± the m e a n of .19 u n i t s f r o m .13. P r o c e d u r e 3 .— T h e third p r o c e d u r e c o m p a r e d the r i p arian owners' (SCSC) attitudes (UAI) to t h e level of b o a t i n g for two w e e k e n d s on e a c h lake. for Union, Cass, respectively. The derived R and O r c h a r d lakes w e r e .49, 2 's .47, a n d .10 T h e o v e r a l l a n a l y s i s of v a r i a n c e for the r e g r e s s i o n e q u a t i o n s was s i g n i f i c a n t at the 5 per c e n t level (see A p p e n d i x G 9 ) . The regression equations illus­ t r a ting the e f f e c t s of the s e l e c t e d i n d e p e n d e n t v a r i a b l e s on UAI for r i p a r i a n o w n e r s are: U n i o n Lake, Y = 7.8603 + 130.4458 - 189.0972 C a s s Lake, (X5 ) Y = 6.3436 + 323.9609 - 44 7.8 4 6 1 O r c h a r d Lake, (X4 ) (X5 ) (Xg) Y = 2.4128 + 112.8 6 8 2 (Xg ) . 1 Each lake was p l o t t e d for the b e s t fit curve f r o m the equations (see A p p e n d i x G 1 0 ) . V a r i a b l e s are: SCSC as (X3 ) , S C S C s q u a r e d as SCSC c ubed as ( X g ) , and SCSC fo u r t h d e g r e e as ( X g ) . (X4 ) , I 93 Procedure 4 .— T h e f o u r t h p r o c e d u r e c o m p a r e d the n u m b e r of a c r e s p e r b o a t w i t h S C S C ' s o n a l l o b s e r v a t i o n data for t h e t h r e e squares e q u a t i o n s and lakes (see A p p e n d i x G i l ) . T h e l e a s t 2 for e a c h l a k e p r o d u c e d R *s o f .72, .65, .79 for Union, C a s s , The o v e r a l l a n a l y s i s and O r chard Lakes of v a r i a n c e s i g n i f i c a n t at the 5 p e r c e n t for e a c h lake w e r e p l o t t e d . e q u a t i o n s are i l l u s t r a t e d respectively. for the e q u a t i o n s w a s level. The best The relationships fit curves in A p p e n d i x G 1 2 , G13, The regression equations from the and G 1 4 . i l l u s t r a t i n g the e f f e c t s of the s e l e c t e d i n d e p e n d e n t v a r i a b l e s o n t h e n u m b e r of acres p e r b o a t a r e : U n i o n Lake, C a s s La ke, Y = 4.7387 + 64.3988 - 296.4646 (X? ) + 4 2 4 . 9 1 2 9 - 192.4412 (X9 ) + 0 . 6 3 9 3 Y = 27.5915 + (X3 ) - 102.4274 136.8646 + 0.5937 (X1 Q ) (X3 ) (X? ) - 5 8 . 3 1 0 0 (X1 Q ) (Xg ) (Xg) 94 O r c h a r d Lake, The R 2 's of .72, Y = 2.6954 + 101.1552 (Xg ) + 616.5863 HD 7 1 0 .2 3 7 3 3 *0 9 7 7 9 *7 1 8 2 6 .0 9 6 7 7 .5 4 9 2 6 *2 1 9 7 9 , 47 1 0 3 2 *0 7 1 0 6 5 *1 ) 1 1 3 6 .4 3 1 1 9 2 *7 2 1 2 4 6 *1 2 1 5 0 3 *2 0 1 )3 9 ,1 4 1 4 1 4 .4 6 1 4 7 0 .7 3 1 5 2 7 .) 2 1 3 6 6 ,0 3 1 6 4 2 ,3 9 1 6 9 9 .9 6 1 7 3 7 .7 4 1 6 1 5 .6 6 1 6 7 3 *2 1 1 9 5 2 ,3 4 1 9 9 0 *3 9 20 4 9 *5 2 2 1 0 6 .7 6 2 1 6 7 .3 ) 2 2 2 3 .3 4 2 2 8 6 .3 6 2 3 4 4 .3 6 2 4 0 5 .2 0 2 4 6 3 .4 4 2 )2 4 .6 1 2 )6 7 .1 6 2 6 4 3 .7 9 2 7 0 7 ,6 3 2 7 6 4 .9 3 2 6 2 4 .7 4 2 6 6 7 *» VS 1 7 .7 3 1 6 ,3 2 1 9 .4 9 2 0 . 70 2 1 .9 3 2 1 .3 0 2 4 .4 6 2 5 .6 0 2 7* 12 2 6 .4 6 2 9 .8 9 3 1 .2 0 3 2 ,5 6 3 3 *9 3 3 5 *3 6 56* 76 36* | 6 3 9 . 70 4 1 .0 6 4 2 *4 9 4 3 ,9 4 4 5 .3 9 4 6 .H) 46*3(1 49*7 3 3 1 ,2 3 3 2 *6 6 3 4 .1 6 3 3 .6 3 3 7 .1 6 3 6 .6 0 6 0 ,1 3 4 1 ,6 3 6 3 .1 2 6 4 ,6 7 6 6 .0 9 6 7 ,6 9 6 9 .1 2 7 0 ,6 1 7 2 .1 0 hv 3 .0 1 3 .2 1 3 .4 1 3 .6 2 3 .6 4 4 ,0 6 4 ,3 8 4 ,3 1 4 *7 3 4 .9 6 3 .2 2 5 ,4 6 3*7 0 5*9 4 6 ,1 9 6 *4 3 6 .6 6 6 .9 ) 7 .1 6 7 ,3 6 7 .6 1 6 .0 7 6 ,3 3 6 .3 9 6 .6 ) 9 .1 1 9 . 36 9*6 5 9 *6 9 1 0 ,1 6 1 0 , 42 1 0 *6 9 10*7 6 1 1 .0 4 1 1 .3 1 1 1 .3 6 1 1 .6 4 1 2 .0 9 1 2 ,3 ) 12*6 2 142 A P P E N D I X B3 GRID F O R 500—FOOT ELEVATION 9h a .15 2 .5 0 2 .7 5 3 .0 0 3 .2 3 3 .3 0 3 .7 3 4 .0 0 4 .2 3 4 .5 0 4 .7 3 3 .0 0 3 .2 5 3 .3 0 3 .7 3 6 .0 0 6 .2 3 6 .3 0 6 .7 5 7 .0 0 7 .2 3 7 .3 0 7 .7 3 6 .0 0 6 .2 3 6 .3 0 6 .7 3 ♦ .0 0 ♦ .a s 9 .3 0 9 .7 3 1 0 .0 0 1 0 .2 3 1 0 .3 0 1 0 .7 3 1 1 .0 0 1 1 .2 3 1 1 .3 0 1 1 .7 9 1 A rc t a n ■46) (♦ •6 ( 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 L 1 1 1 1 I 1 1 1 I 1 1 1 1 2 .0 0 * 96« 946 960 966 966 966 966 966 966 966 966 966 966 966 966 966 966 966 966 966 966 966 966 966 966 966 966 966 966 966 966 966 966 9 66 9 66 966 966 966 966 966 1 .1 4 3 1 .2 7 0 1 .3 9 7 1 .3 2 4 1 .6 3 1 1 .7 7 6 1 .9 0 3 2 .0 3 2 2 .1 3 9 2 .2 6 6 2 .4 1 3 2 .5 4 0 2 .6 6 7 2 .7 9 4 2 .9 2 1 3 .0 4 6 3 .1 7 3 3 .3 0 2 3 .4 2 9 3 .3 3 6 3 .6 6 3 3 .6 1 0 3 *936 4 .0 6 3 4 . 192 4 ,3 1 9 4 .4 4 6 4 .3 7 3 4 .7 0 0 4 .6 2 7 4 .9 3 4 3 .0 6 1 3 .2 0 6 3 .3 3 3 3 .4 6 2 3 .3 6 9 3 .7 1 6 3 .6 4 3 3 .9 7 0 6 .0 9 7 49 47 24 44 46 39 16 46 09 46 31 34 36 36 60 62 63 63 66 67 66 69 70 71 71 72 73 73 74 74 73 73 76 76 76 77 77 77 76 76 76 79 79 79 79 60 60 60 22 29 31 27 16 06 30 31 09 43 16 49 16 43 11 I 33 36 19 40 39 16 33 32 06 23 36 31 05 17 29 41 X 21 21 31 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 71 21 49 32 '4 37 39 61 62 64 65 67 69 70 71 72 72 73 74 7% 73 73 76 76 76 77 77 76 76 21 21 2! 31 21 21 21 21 21 21 66* ■ in ) la in ) 76 79 79 79 79 60 60 60 60 61 10 06 43 03 09 00 39 09 30 43 30 32 46 39 27 11 32 30 06 39 10 39 06 32 36 19 40 01 20 39 36 U 29 44 39 12 26 36 30 02 1 .1 3 7 1 1 .2 6 6 1 1 .4 1 5 0 1 .3 4 4 6 1 .6 7 4 2 1 .6 0 4 0 1 .9 3 3 3 2 .0 6 4 0 2 .1 9 4 3 2 .3 2 3 6 2 .4 3 4 3 2 .3 6 7 1 2 .7 1 9 9 2 .6 4 7 6 2 .9 6 0 0 3 .1 1 1 3 3 .2 4 3 6 3 .3 7 5 9 3 ,3 1 0 3 3 .6 4 2 9 3 .7 7 6 0 3 .9 0 6 9 4 .0 * 0 4 4 .1 7 6 0 4 .3 0 6 6 4 .4 4 3 4 4 .3 7 3 6 4 .7 1 1 4 4 *6 4 3 0 4 .9 6 1 9 3 .1 1 2 6 5 *2 5 0 9 3 .3 6 6 6 3 .3 2 0 9 3 .6 6 1 7 3 .7 6 9 4 3 *9 3 3 3 6*0 6 2 4 6 .1 9 7 0 6 .3 3 7 6 t M l'-P H * 2 .2 7 7 2 .3 3 1 2* 764 3 .0 4 0 3 .2 9 4 3 .3 3 0 9 .6 0 4 4 *0 6 2 4 .3 1 6 4 .5 7 3 4 .6 3 0 5 .0 9 1 5 *9 4 9 3 .6 0 4 3 .6 6 5 6 *123 6 .3 6 4 6 .6 4 4 6 .9 0 9 7 .1 6 9 7 .4 3 1 7 .6 9 2 7 .9 3 2 6 .2 1 6 6 .4 7 9 6 .7 4 4 9 .0 0 0 9 .2 7 2 9 . 331 9 .6 0 4 0 .0 2 7 0 .0 3 1 0 .0 3 4 0 .0 4 0 0 *044 0 *050 0 *034 0 *062 0 *066 0 .0 7 3 0 .0 6 0 0 .0 9 1 0 .0 9 9 0 .1 0 4 0 .1 1 5 0 .1 3 3 ' 0 .1 3 4 0 .1 4 4 O , 139 A , 169 I f . 161 0 ,1 9 2 0 *2 0 2 0 .2 1 6 0 .2 2 9 0 *2 4 4 0 *2 5 0 0 .2 7 2 0 .2 6 1 0 .3 0 4 1 0 *9 9 1 1 0 ,3 3 1 1 0 .6 0 1 1 0 .6 6 3 1 1 .1 4 2 1 1 .3 9 3 1 1 .6 7 6 jll. 9 3 0 1 2 ,1 9 3 1 2 *4 7 2 0 .3 5 2 0 ,3 3 1 0*363 0 .3 9 2 0 .3 9 3 0 *4 2 6 0 *4 3 0 0 .4 4 3 0 *4 7 5 a\ V mi\ * ho 1 *3 2 9 4 1 .6 2 9 1 1 .7 3 2 7 1 .6 4 0 2 1 .9 5 0 1 2 .0 6 2 7 2 *1 7 6 6 2 .2 9 3 3 2 *4 1 1 4 2 .3 2 9 9 2 .6 3 0 4 2 .7 7 3 6 2 .6 9 6 0 3 .0 1 6 1 3 .1 4 3 3 3 .2 6 6 3 3 *3 9 4 3 3 .3 2 0 9 3 *6 5 0 2 3 .7 7 7 7 3 .9 0 6 1 4 .0 3 4 6 4 .1 6 2 7 4 .2 9 4 1 4 *4 2 3 1 4 * 3343 4 ,6 6 1 7 4 .6 1 6 3 4 .9 4 3 2 3 .0 6 1 3 3 ,2 0 9 7 5*3 4 4 9 3 .4 7 6 6 3 .6 1 0 7 3 .7 4 9 3 3 .8 7 3 1 6 .0 1 7 0 6 .1 4 4 3 6 .2 7 7 2 6 .4 1 6 0 7 6 4 .7 0 6 1 4 .3 3 6 6 6 .3 3 9 2 0 *1 0 9 7 3 .0 3 1 0 3 1 .1 3 1 0 9 6 .5 0 1 1 4 6 *7 3 1 2 0 5 *7 0 1 2 4 4 ,9 5 1 3 2 3 .2 0 1 3 6 6 .6 0 1 4 4 6 *0 0 1 5 0 9 *0 3 1 5 7 1 *6 3 1 6 3 4 .1 3 1 6 9 7 .2 3 1 7 4 0 .4 3 1 6 2 5 .1 0 1 6 6 6 .6 5 1 4 3 3 .0 5 2 0 1 7 .4 0 2 0 6 1 .3 3 2 1 4 7 *0 3 2 2 1 6 .0 3 2 2 7 7 *2 3 2 3 4 0 .6 3 2 4 0 6 *1 3 2 4 7 2 .6 0 2 3 4 0 *6 3 2 6 0 4 .6 3 2 6 7 2 .4 5 2 7 3 9 .4 0 2 6 0 5 ,3 5 2 6 7 4 .4 5 2 9 3 7 .3 3 30 0 6 *5 0 3 0 7 2 ,1 3 3 1 3 6 ,6 0 3 2 0 6 ,0 0 15 1 9 ,1 1 2 0 .3 6 2 1 .6 3 2 3 .0 0 2 4 .3 7 2 3 .7 6 2 7 .2 0 2 6 *6 6 3 0 .1 4 3 1*62 3 5*13 3 4 .4 7 96. 2 0 3 7 ,7 2 3 9 .2 9 4 0 ,6 3 4 2 .4 3 4 4 *0 1 4 5 *6 2 4 7 .2 2 4 6 *3 7 3 0 .4 3 52*0 3 3 3 .6 7 5 3 .4 0 36*9 3 56*3 2 6 0 ,2 0 6 1 .9 1 6 3 .3 1 6 3 .1 2 6 6 *6 1 6 6 ,4 6 7 0 *1 3 71*6 6 7 3 .4 3 7 3 .2 1 7 6 .6 0 7 6 ,4 6 6 0 .2 0 hv 3 .0 1 3 *2 1 3 *4 1 3 *6 2 3 *6 4 4 ,0 6 4 *2 6 4 ,3 1 4 ,7 5 4 .9 6 3 *2 2 5 .4 6 5 .7 0 5 .9 4 6 .1 9 6 .4 3 6 ,6 6 6 .9 3 7 ,1 6 7 .5 6 7 ,6 1 6 .0 7 6 .3 3 6 .5 9 6 .6 3 9 .1 1 9 .3 6 9 *6 3 9 .6 9 1 0 .1 6 1 0 .4 2 10*6 9 1 0 *7 6 1 1 .0 4 1 1 .3 1 1 1 .5 6 1 1 .6 6 1 2 .0 9 1 2 .3 5 1 2 .6 2 APPENDIX C TABLES SHOWING SAMPLE DISPERSION COEFFICIENTS, TOTAL DISPERSION C O E F F I C I E N T S , SPACE CONSUMPTION SAMPLE COEFFICIENTS AND SPACE CONSUMPTION TRACING PAPER COEFFICIENTS 143 A P P E N D I X Cl SAMPLE DISPERSION COEFFICIENTS AND TOTAL DISPERSION C O E F F I C I E N T S F O R U N I O N , C A S S , A N D O R C H A R D LAKES (JULY 17, 1969) _________ Dl a p a r t to n L ake JIB. U n io n oooo TBST O rc h a rd “TORT w Caaa orchard 1400 Caaa 1400 Oretiiri tH a p a ria n T o ta l iMpll IHaporalfin - “ " fc a 2.13 1.30 1*93 2.93 2*33 1 .3 4 . . . - - 1.31 1*97 2 .0 0 1.27 1*03 2.10 1.82 3*90 3 .4 6 3,28 1.60 2.77 2*23 1.61 1.0ft 3 .6 4 4*3? 2.13 2.33 1*69 2.43 2 ,3 9 L IU • a a p ln Jl t f l l r l T I 1 ,73 1.41 0 .0 0 0 .0 0 1 .24 1.24 0 ,0 0 0 ,0 0 n .io n. i ft 0 ,6 } 0 .3 6 o .o n 0 .0 0 2.7 4 2*74 _2*oo . QaAfi------1 0 .4 3 n.-ai 1.7 ft 3 .12 1.84 1.49 n.n o 0 .0 0 o .o o 0 ,0 0 0 .0 0 0 .0 0 U.83 0 .7 2 7.7 ft 2 .76 0 .4 9 ___ ---------a . u — 0.62 3.14 3.16 1*41 t . ftf t o.o u U.00 3*62 3.30 2.13 2.13 2.1ft 2.11 2.11 2.16 2.16 2*12 2.AH 1.41 1.4L 0 .6 ft 0 . 66 0 .0 0 0 .0 0 1*19 1.19 0 .7 1 1.17 ■ “ i ;« t — 1.96 ’ 3.00 1 .3ft 4 .4ft 3.43 0 .0 0 o .o o 2 .4 0 2.39 2 .2 4 2*11 0.0(1 0.00 0*00 u*uo 1 ,84 2 .2 4 ___ 2 .20 * 1 *1 5 — 1 2*79 3 .1 ft 1*53 1 .33 0.97 0 .9 7 3 .17 3.17 2 .09 2 .0 9 2 .1 0 1.30 ‘ •‘ i ; 9 r 1*91 1 2.27 1.46 1*09 1*75 1.37 2 ,13 1.11 1 .46 0.72 0 .3 7 2 .1 ) 1.33 _ W ? I ___ 2. S3 - .........M S 4*03 3.62 4 .1 9 4 .2 ft 4 .3 7 3 .62 3 .13 2 .9 ft 1.92 1 .99 1 .36 2.23 1 .34 1.23 2 .97 4.42 0 ,0 0 0*00 2*74 2*30 2*03 1.36 1.22 1.62 2.83 1.60 2 .26 1,63 1.21 _ t.tt 1 .73 2.2 ft 2.0 ft 1*33 1.19 3.04 2 .06 3 .9 3 3 .3 6 3 .12 2.30 3.41 2*23 1.61 1.30 Lahi iHUl&iMk. 1.40 1.13 I.U3 1.33 2.17 1.66 7TT" i.o» 1.23 3 .14 2 .26 2*32 3. 14 K II 3.17 1 .33 2.2ft 1TW I 7.11 ilA0 .9 6 O rc h a rd 'lWHJ ---4 TTST U n io n TfBT "TO Orchard -\ - i j~ i . .1 .1 1 .17 7.01 0 .7 4 2 .33 1*60 1. 79 l.ft'J 2 .28 1.97 ■ r ; s v -------1.54 1 ,84 2.21 6.32 1,27 3.27 2. 34 ‘ 6 .04 4 .02 7. 79 2*90 3*40 1.08 1 .0 9 l.ft6 3 .3 ) ----------r ru ft — 3.31 1 .6 6 1 .1 3 2 .2 3 2. 64 2 ,61 — htt____ ? f2 2 ____ 1 1.67 1.73 1.30 1 .3 9 1 .3 9 1*13 :. 9 o 1*23 0 .0 0 0 .0 0 n . ?o 0 .7 0 . . ... . 2 .4 0 1*73 .... - 1 ? * * 3 .4 7 iv w 6.06 2*82 2.40 3*37 3.64 3 .9 ? 2.41 2 .1 0 1*69 2.36 1,01 l.o l 2*10 2 .3L 2 .4 4 TTiJT------— “ * 3 .0 0 2.30 2*03 1 .3 9 1,94 1*90 2,9 3 3*09 2.97 3.31 2.4 3 3,22 2 .6 4 2 .2 4 1.69 3 .17 2*72 2*53 ~ 1 .3 *~ “ 2.43 2.01 2.41 1.28 1 .3b 3.27 2 .34_ 2 ,4 0 4 .13 4*21 4*23 3 .33 1.07 1*09 2.52 3 .0 9 --------' l . W “ 2.53 2*05 1*50 2.83 Union 1 .6 1 1 .1 9 2. 14 2 .2 4 0 .9 3 1.34 1.00 imr 1.20 W A la p o r a lp n Tot a! C— £11 c I APPENDIX C2 SPACE CONSUMPTION SAFETY COEFFICIENTS AND SPACE CONSUMPTION TRACING PAPER COEFFICIENTS FOR UNION, CASS, AND ORCHARD LAKES (AUGUST 23 AND 24, 1969) ' Ipne* CnneMttlnn W i n Trnclnf 0*00 I Unlnn lorn IfttHltlri) 0.01 0.0T 0.00 0.0* 0.00 0.03 0*07 n U00 1 Cm * 0.1* 0.00 O.Ot 1000 UMW *■|.i) 1000 1000 Att«. 1] Cm * Orcbnr* 1100 | Onion 00.60 01.1* 00.00 oo. n 00.11 01.** 00.11 00.13 00.1* 00.1* 00.13 00.lt 00.1* 01.10 0.0* o.» 0.1* 0.11 00.17 01.00 01.** 00.77 0.1* 01.U 0.03 0.30 0.11 0.3* 0.61 o.u Out. 11 1100' Onion ob.it 0.0* 0.10 0.11 0.11 0.11 A*. 21 1200 Orcbnrl 00. 0.01 0.01 0.03 0.01 0.01 0.01 0.13 0.U 0.11 0.1* o.to o.n 0.1* 0.11 o.oT 0.1* 0.13 0.07 0.06 h *. 23 1100 Cm* A*. 13 1100 Qretnri 01.*7 wnrl 00.70 01.07 00.31 0.13 0.13 01.13 0.1* 00.** TTTT Ukn Au|. 23 1*00 Orchnrt An(. 21 1300 Union An*. 11 1300 I Con I j I 01.11 0.11 01.0* 0.11 01.10 0.1* 03.13 0.1* Ol.tl 01.Of 0.13 0.10 00.11 0.11 01.70 0.03 0.** 0.10 0.*1 0.13 0.11 0.11 Ao*. 13 1*00 Oslo* "Of 0.30 01.03 00.00 00.61 00.11 00.** 00.1* 01.31 01.13 TC7T Tin* Dtt* ( tag* ^3 1300 Dtcfcnrt 01.1* 01.lt 01.31 01.63 tog. U 1*00 Union 0.14 01.31 01.01 00.** 01.31 Ol.tl 00.3* ul.lt 01.00 ul.tt 01.*» 01.7* 02.01 ot.ot Ol.SS ul.ll inn*' 00.t* Ol.tt 01.0* 0.11 0.11 0.11 0.1* 00.03 00.01 0.1* 0.17 0.10 0.23 0.11 0.19 0.11 0,16 0.10 0.07 0,07 0.1* 0.07 0.U 0.U lo*.11 1*00 I 01.*0 Ol.tl 01.09 01.0* 01.1* 01.01 01.0* 00.73 01.** 01.70 01.11 00.*1 0.00 0.11 00.00 01.01 0.3* 0.1* 0.*3 M.0» 0.10 0.10 0.17 0.11 0.12 i 7 01.71 OLOO 01.lt 0.0* 0.*3 0.3* L ■ Cm * 00.1* 00.43 00.17 10 0.10 1100 00.00 0.00 0.0* 0.0* O .tl h*. U 00.19 00.1* 00.0* 'SB* Tint 00,00 i 0.01 0.17 0*00 T OrcUr* 00.6*! 0.03 0.00 ■. ii 00.13 I Otti a Utt I TIm >pic« C n riu a fc ln n 3* 1*13 T r n c ln f to n * it M ff lf l* m > T 1*00 02.1* 03.31 01.43 01.73 01.01 01.12 O l. tl 07.11 01.02 J>U7 An*. 11 1600 Ukn ton* 1 1 3 * 3 6 7 1 " I 1 * 3 6 7 0 ~f ' 2 3 * 3 6 7 1 • 1 1 1 * 3 * 7 1 2 3 * 3 ! t . - * 1 2 1 * 3 6 7 * * OrdurO 1 2 1 * 3 » | 7 ! Cm * Intei (pK* C o m u ^ t l m lltM) TtOCit'l l*t« 0.** 01.3* 01.03 0.30 0.07 01.00 Ol.tl 0.11 01.12 0.20 00,71 0.0* 0.2* 01.23 ~n.o* t. U 01.tt 0.A1 0.10 00 .to ot.ot 0.30 0.1* ot.lt 02.0* 0.21 01.7* 0.** 0.3* Dt.03 0.11 ■"OT.t* 0.15 01.01 Ol.tl 0.** 0.12 Ol.tl 0.11 01.3* 03.07 0.1* 07.11 0.4* 0.2* 02.3* 0.33 03.2* 6.0 ■ ■ n : w 02.70 o.» 0.17 01.(0 01.4* 0.27 0,10 Ol.tl 0.20 Ol.tl 00.7* 0.0* 64.06 0.31 01.** 0.23 01.41 0.37 01.03 02.07 0.17 01.71 0.22 0.2* 01.0* 0.6* 06.70 0.37 ~ 02.H 1 0.10 00.** 0.27 01.1* ! 0.** 02.7* 0,3* 02.73 00.93 0.10 03.40 0.4* 0.** 00.20 0.70 ai.ni 0.13 M.U .... 0.1* 0.17 0.13 0.1* 0,11 ---- 1________i 00.I* 01.11 02.03 01.13 Ol.tl Catwtma’ iam Ukn A*. 11 •*«. U An*. 23 As*. 11 An*. 11 Am- Tim LU« lam 1700 Union 1 1 3 * 3 t 7 * 1700 Ca m 1 2 1 * 3 i 7 0 * 1700 OrchaN 1 1 1 * 3 * 7 lift1 Dalm 1 2 1 * 3 ( 7 * 1*00 Cm i 1 2 3 * 3 ( 7 1 u 1900 Orchard 24 0100 Tr Im 1 1 3 A 3 6 7 1 2 1 * 3 I |7 r ten;, 0.3* 0.33 0.4* 0.40 0.33 0.01 0.31 0.1* 6.M 0.11 0.U 0.1* 0.23 0.11 0.1* 0.0* 0.40 0.0* 0.1* 0.27 0.01 0.13 0.20 --0.27 0.1* 1.11 0.17 0.U 0L4* 0.11 0.17 0.10 0.23 0.02 0.23 0.22 0.0* 0.1* 0.00 o.5 0.12 0.1* 0. 0 O.Ot 0.10 0.03 1.(1' 0.23 0.01 0 .M 0.00 0.03 0.0* 0.03 01.7* 02.7* 03.0* 03.0* 01.17 00.10 03.01 04.21 01.11 02.0* 01.02 00.41 01.** 04.20 04.10 01.13 04.03 01.t* 02.11 01.0* 00.13 01.72 01.H ------Ol.tl n.** I0L71 01.11 01.30 01.3* n.u W.TO 01.11 01.4* 00.33 01.71 01.7* 01.40 02.40 01.11 00.11 01.11 00.07 00.1* 00.31 01.10 00.1* 'W.H 01.10 00.11 01.17 00.00 00.1* 00.33 00.1* APPENDIX C2— Continued [lac* 4a|. 2* Tlw 0100 Ao|. 2* Lak* Caaa Orckari 4B|. » 10DQ Oalaa fef- 2* 1000 Caaa i* ta». >* 1000 lHH iWo Orckari Dale* 1 2 J a s 4 7 1 0 1 2 1 * 5 4 7 1 2 1 * J 6 7 1 r 2 3 4 3 4 7 1 f 1 I 3 4 3 4 7 f 2 3 4 3 4 7 1 Caaa 2 3 * 3 4 7 t ( Tin* 00.24 00.30 00.33 00.13 00.(0 01.(2 00.1( 00.00 00.40 00.13 00.33 ' 00.14 00,24 00.20 00.1( 00.14 Bk.dS 00.32 0.07 00.31 0.07 01.73 0.30 00.37 0.02 0.03 00.33 0.47 01.03 0.30 02.17 01.43 0.22 02.(4 0.23 01.43 0.13 00.(4 0.10 0.03 03.73 01.00 0.30 07.10 0.3* 0.40 02.(3 f 0.20 02.31 0.3* 03.(1 0.30 02.00 00.74 i 0.U o 00.(3 0.00 j 0.11 00.(1 0.07 00.43 0.04 00.74 t t t - "TB.H 0.10 02.04 0.20 02.14 03.41 ■ 0.03 03.14 0.40 00.11 0.13 03.32 0.37 0.43 03.1( <9.13 0.33 0.03 0.10 0.01 0.01 0.11 0.32 0.01 0.01 0.14 olii 0.03 0.03 0.04 0.03 0.03 0.02 0.10 0.24 0.33 0.(0 o.u 0.40 0.(7 01.40 02.21 02.43 03.44 0(.1( 02.04 04.11 Lak* 4a|. 24 1220 Orchard laf. 13C0 talon 24 4*f. 24 A*f. 24 4*0- 24 lot. 24 1100 Caaa u:o Orchard 1400 talon Lak* Zona I Z J 4 3 4 7 1 2 1 4 3 4 7 f 1 2 1 4 3 4 7 0 ( 1 2 1 4 3 4 7 1 2 3 4 3 4 7 1 1400 rCaaa 2 1 4 3 4 7 1 ( 4*$. 24 1430 OrtUrl I i L .. , *«*• » 1300 talon 2 3 4 3 4 7 1 2 3 4 3 4 7 I Spies Canajaptian Safata Traclni [Caafflriant) 00.00 0.00 02.43 0.10 01.42 0.22 02.04 0.27 02.07 O.K 0.21 01.44 0.23 02.00 00,47 0.11 0.20 01.03 01.47 0.23 02.12 0.44 00.17 0,02 00.(2 0.01 03.1( o. u 01*31 0.31 02.72 0.34 00.3( 0.00 02.20 0.34 02.27 0.14 02.43 0.21 02.(7 0.10 13,(4 0.(0 0.24 01.13 03.11 D.3( ' 6.K " U T . H 01.14 0.31 0.23 01.74 02.23 0.23 02.(3 0.23 01.13 0.13 02.31 0.13 0.41 01,73 0.47 01.14 0.40 03.13 0.71 03.(7 00.17 0.17 02.31 0.30 0.71 03.70 0,34 04.(5 " '4.U04.30 04.41 0.30 02.24 0.34 0.20 02.21 04,02 0.34 03.10 0.30 14.34 O .K O.K 02.11 04.74 0.(4 i c r i m r 0.44 01.(2 0.24 02.23 04,(1 0.72 01.07 0.21 0.11 02.10 0.23 02.12 0.40 S . 04 0.43 03.40 0.14 02.14 0.47 04.23 0.20 01.31 02.17 0.10 04.(4 0.44 04.10 0.34 Data laka Zaaa lim Aa|. 24 1300 Caaa Aug. 24 IMA Orckari lat. 24 iwA 4a«. 24 1(00 Caaa “* 5 n r id. 14 ■WB balaa OrcMra 1(00 Oalaa 1 2 1 4 3 4 7 4 ( 1 1' 2 1 4 5 4 7 1 2 3 4 3 4 7 1 ' I 2 3 4 3 4 7 1 ( 1 2 3 4 5 4 7 1 2 1 4 3 4 7 1(00 Caaa 2 1 4 4 7 1 ( tpac* Conai^tlan Salats Trad-* 0.47 0.1( 0.47 0.42 0.41 0.33 0.14 0.43 0.30 7i:rr 0.31 0.27 0.34 0.2( 04.41 02,32 02.70 03.35 03.42 03.07 11.44 04.34 07.05 01.lt 03.11 02.32 04.14 02.74 Laka Zaaa Tina in|. 24 0.14 B.U 0,32 0.40 0.71 0.11 0.11 1.11 O.U 0.40 0.41 0.30 0.32 0.31 0.30 03.0( 03.04 01.43. I 03.23 04.20 j 00.44 01.10 f 07.07 i 04,40 AMA 03.10 03.42 03.32 • 02.H 03.32 0.04 0.40 0.10 0.40 0.20 0.10 0.40 0.20 0.31 0.33 0.11 0.44 0.24 0.14 0.27 0.24 Q.2i 0.30 0.24 0.24 0.21 0.35 0.44 0.31 0.14 0.44 03,41 04.10 n.n 03.24 02.03 02.40 03.(0 02.14 03.44 02.10 02.11 02.04 01.34 01.42 02.24 01.11 02.37 02.17 01.31 01.70 01.07 02.47 02.44 03,00 00.14 04.74 1(00 Orckari - * | 1 1 i 1 | 1 2 3 4 3 4 7 Saac* h r awa'laft Safat- Traced 0.07 0.10 0.00 0.13 0.2* 0.13 0.20 00.31 00.(4 00.(3 00.(4 01.44 01.11 01.51 145 *i- 2* tpaca Caoft^ptlan uk * Safat* - Traclni In* ICaafdelate) APPENDIX C3 SPACE CONSUMPTION TRACING PAPER COEFFICIENTS AND SAMPLE DISPERSION COEFFICIENTS FOR UNION, CASS, AND ORCHARD LAKES (AUGUST 23 AND 24, 1969) Lak* Aag* 23 a i Oaf. O 0*00 UniM 1 1 3 4 3 * T 0100 Ciu 1 1 3 * 3 4 7 1 0*00 1000 1000 Orcbar* HUM Caaa l" 1 3 4 3 4 7 " I 1 3 4 3 4 7 1 1 2 3 4 tea. 13 4*. 13 1000 1100 5 4 7 0 0 OrckaH 1 1 3 4 3 t _ 7.... Doi*a 2 3 4 7 1 0.13 0.44 0.00 0.20 0.00 0.34 0.40 - H0,00r 0.22 0.24 0.04 0.43 0.37 0.10 0.31 1.4* ITT 0.1* 0.1* 0.33 0.1* 0.1* 0.11 B.B 3.10 0.37 1.00 1.4* 0.77 --— 1.23 D.«] 0.02 2.31 1.01 l.*7 0.4* 1.31 1.42 0.34 ■ff.IT1.03 0.00 0.41 0.32 0.4* O.tt A.'TT 2.07 0.32 2.10 1.41 3.1* 2.04 1.14 01.41 01.** 00.00 00.44 00.00 00.44 02.04 Oat* te«. 23 T1m 1200 U ka space (Sa. ilaparafan Laka Traclni lapi ’ Saapla Zaaa C ut 1 1 3 4 3 4 7 4 * Orckari “ T 2 3 4 5 * 7 Dalea " ! 2 3 4 3 4 7 • “T 0*4* . si*7* 00,00 01.73 te,.-n lift 01.44 00.00 01.04 01.41 00.47 00.41 01.34 te|. 13 u u " oi.67 — 03.17 ] 01.4* 02.33 1 02.73 01.43 02.34 U.H ta4. 13 IMA 01.41 00.40 01.30 01.44 01.11 .... 01.13 BJ.I* . 06,3* te(. 23 U00 Orckari 03.*3 03.43 03.13 01.31 01.34 01.01 03.22 la,. 13 i«B n s i M 1' 00.00 02.44 02.11 01.33 01.44 02.10 02.40 L oi.ii tag* 23 140(P Caaa 02.47 j 02.*2 1 1 02.17 ■ 01.40 01.6* 01.43 oo.u 2 3 4 3 4 7 • t 1 2 3 4 s 6 7 1 I 3 * S 6 7 S I 2 3 4 3 6 7 a J- 03.14 1.34 1.04 03.14 03.44 1.44 1.4* 03.37 1.74 01.04 2.02 02.21 01.14 4.0* 02,13 2.33 44 02,19 1,21 " “ ITTT*' TJTTK 0.4* 03.03 01.43 1.4* 1.0* 01.6* Data TiM Laka bf. 21 1400 Orchari la*. 23 iUB 02.21 1.53 02.23 1.13 ISA* ---KXl--- T H . B 01.94 2.*3 02.41 2.11 0**4 01.10 1.0* 01.24 01,07 2.14 3.23 02.30 00.44 1.61 si,n r*r b«. 21 1300 0,*1 03.04 1.7* 03.00 03.14 1.34 02.*2 1.16 1.3* 02.03 ------01.» 1.43 b*. 23 1400 1.33 02.93 T.TBM.H 02.24 1.71 01.*4 2.00 2.34 01.73 03.47 2.04 0.73 02,24 l.«* 01.34 b*. U 1400 ■ i : w ■ "BI.I* 3.33 02.0* 0.91 01.14 -----0.00 00.00 1.41 01.40 01.4* 2.14 1.04 01.73 3.53 44.it M*. 23 1400 04,7* 1.63 1.73 04.24 1.41 03.1* 1.31 02,72 02.43 1.14 7.12 01.90 3.42 01.49 _.*JI--- . S U B ___ Hiln Cut Sptct Con*. U k* Tr*ein| Za h I 2 2 4 J 4 7 T ‘ 2 3 4 3 6 7 a 2 3 4 5 Ordin M« r C«M Orck*n 1 7 a * 1 2 3 4 S 1 7 1 2 3 4 S a 7 1 2 3 4 5 4 7 a a I 2 1 4 S 6 7 3.34 3.03 1.00 1.41 2.11 0.73 2.23 ""J. K 2a39 0.** 4.04 2.44 1.04 1.74 6.13 i aR 1.42 1.93 1.61 1.31 3.07 7.31 1.34 1.2* J.TB ' 2.70 1.40 3.*4 1.14 i.n 0.74 X u f 1.** 1.43 3.03 2.07 2.71 2.04 4.70 2.** 0.4* 2.24 2.74 2.73 0.V3 3.41 4.11 5.00 ro*— 0,00 1.33 2.03 2.33 l.«l 4*aci Co m . HiparalH Laka Tracing Pa*a lafll Diaparsios Saapte | 01.44 02.14 02.42 01.31 ■ 03.44 i 02.33 02,6* 1■ O 02.9* 02.44 01.47 01.10 01,34 02.07 01.74 03.iS 04.34 01.41 01,77 03.32 01.13 01.34 02.4* , 03.10 nr:o— 02.27 01.44 02.47 03.42 02.44 £ 5 01.44 02.21 01.10 01.47 01.31 02.24 01.42 03.44 04.34 01.41 03.91 01.44 02.33 01.31 01.94 03.40 ro 2 . n ' 02.34 01.71 02.13 02.4* 02.0* te|. 21 1700 Oalaa te|. Z3 1.74 2.74 3.0* 1.04 1.37 0.30 3.01 4.21 2.11 2.04 1.01 1.43 l.*» 4.1* 4.10 1.43 4.03 i:»— 1.41 1.4* 0.33 1.71 1.13 0.00 1 2 3 4 3 4 7 * Caaa 2 3 4 3 4 7 1 » K i r n ] 1700 Orckari 2 3 4 3 6 7 s i. n TUT W af “ 2 1 4 3 * 7 1 4a*. 23 i*4o Caaa — 1 1 4 3 6 7 4 aa*. 13 1100 OrckaH te|. 24 0*00 Oaloo 1 t 1 1 3 4 6 7 1 1 3 4 3 6 7 4 1.0 1.M 0.71 1.11 1.14 3.34 1.11 n w — 1.11 1.44 0.33 1.71 1.74 1.40 1.4* 1.11 0:13 1.41 0.47 0.1* 0.31 1.10 0.14 0.41 1.1* 0.13 1.17 0.00 0.14 0.33 0.1* 01.1* 01.44 01.31 01.9* 01.41 00.00 01.03 01.3* 03.97 04,13 04.37 03.17 03.27 02.11 01.34 01.12 01.13 “BTTs 02.43 02.22 01.07 03,13 02.40 00.00 ---- 1 01.1* 02.34 01.14 01.71 01.41 01.01 01.4* ■ BC T T " 03.40 02.72 01.11 01.30 01.10 oi.n 01.71 U.43 M.»” 02.43 Ol.*l 03.11 02.4* 02.49 01-4* 01.10 02.11 01.11 02.10 00.00 01.43 01.71 02.00 146 tec. 13 Space C m . H*panlaa Lak* Tracing Tap< : Sa^l* Z m r APPENDIX C3— Continued Spaca C m ” p«tt iit 14 a * . 24 0800 t r a c in g fapai Io n * Caafflclant Caaa 0.26 0.3 0 0.33 Orchard 0.1) 0.® 1.01 0.1) 0.M 0.1) 0.)) 0.1) o .» o.» 0.1) 0.1 4 T.M *■*.» 1000 0.)t 0.11 11® Orchard 1 2 3 t 3 6 *». « 11® Oslo* 1 1 ) 4 3 6 7 M .3 6 eOT 01.74 M .« O l. T t 0).ll 0 2 .3 * ».« 01.)) 4®. 14 D M C m 03.13 01.12 01.® 4a*. 24 14 13® 14® Orchard Dnlea 0 3 .1 ) 01.4) 0 .74 02.40 02.68 01.® .h 02.61 01.67 0.92 0 .4 ) 0.74 m 1 .M 1.14 ).4 1 ) .1 4 02.30 Tir ur.ir' An*. 2* 3.3) 01.11 02.1) 01.)) 01.® 02.2) 02.)4 3.1) 01.77 1.® 1.2) 2.4) ).46 9.14 2.06 6.31 03.11 01.® m .« 01.12 01.9) 01.94 0).0) 14® 1 2 Cat 1 00.00 0.® 02.® 1.6) 01.1* 1.41 2.04 01.67 2.07 03.® 02.37 1.® 02.24 2.® " Car TUJ " 0 1 .3 4 l.M 1.67 02.® 01.® 1.02 00.® 0.17 M.61 0.® 01.® 1.1) 01.® ).)! 2.7l uin 0.)) H.67 1.10 03.6) 03.17 2.27 2.4) M.61 02.® 2.97 M.M 0.® 01.11 1.13 03.01 3.11 filTts 3.13 01 .)) 7.16 0 1 .0 1 1.76 01,1) 2.21 2.® M.® 02.1) 1.33 2.® M.M TH.TT 01. *4 N.2) M.01 01.1) 01.U M.22 01. B 4.1004.® 4.61 04.30 2.26 2.2) 04.26 4.® M.70 >.10 M.3) Data Tit 6*. 24 13® *t. 14 IS® St- 14 1 UB 4®. 24 16® 4a|. 24 16® 4 4 1 2 ) 4 3 4 7 1 ) 1 2 3 4 3 6 7 1 2 ) 4 ) 6 7 01.14 ).ll t.M 3.32 iW tST fa* 24 Uka p 9a as >s *s s ■e s a 1 Oatea Tit I Orchard 0.11 r 01.® 00.00 00.00 01.® 1.3) Data 0 4 .4 ) 01.17 01.10 0.6) , 14 0).)) 01.6) 1.M 7.10 l^. 2* 11® 01,18 ) .7 ) 1.0) ipaca Can. Diaparalon Laka Tracing lapel Iona Coefficient Cecfficlan 5-*l« 1.T) 01.01 0.J7 n . ® 0 .5 ) 01.12 1.0) M .1 9 01.17 2.37 1.^r- oaiia 1 .84 03,40 1 .4 ) 0.04 01.® a*, it 10® 35TTTW H a p a ra la o 'Bln 4a*. 24 M O M Laka Caaa 1 2 ) 4 3 6 7 t ) Orchard 1 2 3 4 3 6 7 Qniea ■1“ 2 3 4 3 * 7 * 1 Caaa 2 3 4 3 6 7 1 ) Orchard 1 2 3 4 3 * 7 Halt is 3 6 7 Aug. 24 24 14® 11® Orchtrt! ! I ! 1 [ Unit ‘ 1 f 1 2 3 4 3 * 7. 1 2 j 3 !* ! j *6 1 1 1« 2.63 6.76 ).» ).M 2.23 4.6) 1.67 2.® 2.11 3.04 ).® 2.1) 4.23 1.31 1.17 4.66 4.30 M.6) 03. *6 01.77 02.44 M.6) 02.® 01.11 M.I1 M.M M.« 01.14 01.27 01.1) 01.11 , 01.3* M.14 ■M . n Spat* Cona. Mapcraiac Laka Tracfrj Tape Saapla 2at 7 6 *®. 24 19® Caaa V 2 3 4 3 * i; ! 1 ! ♦ 4.41 2.32 2.7) 3.55 3.42 3.07 03.39 M.6) M.16 M.1) 03.3) M.4* 4.34 7.03 l.M 3.3* 2.52 4.34 2.76 0.® 3.0) 3.R 3.63 3.13 4.2) 0.64 1.10 7.07 4.® 3.® 3.® 3.® 3.32 2.6) 3.32 01.91 02.93 01.® 02.® 02.1* 01.63 03.1* 00.00 02.15 oz,® 02.43 02.33 02.02 W.7) ®.*1 02.86 02.04 01.22 M.U 03.93 0).42 03.01 02.1) 4.30 03.41__ 3.14 L03 2.6) 3.9) 2.® 3,4* 02 !32 Space Cana Otaparalaa T r a c is * r a p t Sa®la Data m- 24 IW O Uka Orchard a~ o.si 0.N 0.0 01.12 N.5S 01.® 0.M M.M 1 .64 1.11 1.31 02.71 M.3) 02. *1 M.® 02.24 “u n * — 01.(1 02.13 01.1) M.22 01,16 02.31 01.41 DM! 04.3) 04.48 03.61 M.M 02.07 01.02 M.14 M.I3 " !.U ' 1.31 2.® 1.3* I.® 2.26 1.61 2.37 M » 1.31 1.71 1.67 2.67 2.46 ).*) 9.6* 4.74 03.0) 02.1) n.n •u >1 APPENDIX C4 SPACE CONSUMPTION SAFETY COEFFICIENTS AND SAMPLE DISPERSION COEFFICIENTS FOR UNION, CASS, AND ORCHARD LAKES (AUGUST 23 AND 24, 1969) Sput Con* Hipoiloi Laka Sifity tcpl* S|au Cut, Hiynitii L*hi Safety 3*4,1* Uka T1m Du* U W Spue Can*. tt>p*r*lM Uk * S*f*ty SMgU le-« *t*ca Cm *. h(Marti** Ut * lafaty Itgli Bat* 1 *m - is two Onfan 0 .0 0 0.03 0.07 0.34 00.*4 03.04 01.71 3 4 3 0 .1 0 t 0 .0 0 0 0 .0 0 6 1 0.04 0.03 01.73 03.40 7 1 0.13 0.13 0 .0 1 0 .0 0 0 .0 1 0 0 .0 0 0 1 .0 0 0 1 .0 1 7 3 * 3 * 7 I t n O MO Orthgr* 1 1 0 7 1000 23 1700 U*lM 0.32 0.31 0.13 0.37 0.37 0 .2 1 3 * 01.40 01.6* 0 .1 2 0 .1 1 « 7 4 01.03 00.00 03.03 01.64 02.34 02.61 01.31 03.44 02.35 02.64 0.23 0,46 0.0* 01.00 01.73 d>.u 04.74 04.2* 03.14 01.72 02.43 01.40 0.36 0.34 1 2 3 4 3 t 7 g 01.67 02 . » 02.46 01.67 teg- 21 1700 Cm * 1 3 4 3 0 1 .1 0 01,34 02.07 01.74 01,23 04,3* 01.41 01.77 03.32 01.43 01.34 02.4* 03.20 01.43 02.27 02,4* 02.67 6 7 1 Am - 23 1700 Orckart T 1 2 3 4 3 Ang. 13 1400 Dale* 0 .0 0 0 0 .0 0 0.17 0.3* 01.16 02.34 01 .1* 01.71 01.41 0 .1 1 0.27 0.31 0.46 0.13 o.2> 0.16 0.13 B . W " 03.6* 01.72 4 0 .0 2 0 1 .1 2 3 0.13 ( 7 0 .2 2 01.30 01.40 1 1 o.n 01.41 01.(4 3 4 0.14 0.03 0.10 02.11 3 0.06 0.46 0.46 0.71 0.23 0.30 0.14 0.17 0.23 01.33 01.94 03.03 ( 7 0.16 0.03 0.06 0.13 0.2* 0.15 0.34 0.33 0.4* 0.40 0.33 0 .0 1 0.31 0.24 6 f Aug. 13 1400 Orcturg Aag. 1* 0600 Onion 02.** 02.6* 02.0* 01.36 01.64 02.51 01.4* 01.61 06.00 01.03 01.3* 1 3 3 4 3 ( 7 | 02.36 02.3* 01.71 02.23 Am . 24 0400 Cm * 0 2 .0 1 0 1 .0 * 1 2 1 02.*1 01.64 04.36 0 2 .2 2 0.26 0.15 0.17 0.4* 0.34 .an*L _ 03.13 01.73 61.41 Q.M. 0 .0 1 0.06 0 .1* 0.06 0 .O1 0.16 0 1 .1 1 7 7 4 01.67 01.31 02.14 0.14, 0.13 0.61 0.14 0 .0 * 0.40 0 .0 * 0.36 0.27 1 2 * 0 2 .2 1 0 1 .1 0 0 .1 1 1 01.(7 04.13 04.17 03.27 03.27 61.21 01.3* 6 3 Aag- 13 1400 Cm * 0.24, 0.23 ; 01.07 0X33 02.46 04.32 3 4 0 1 .(2 0 2 .6 * 03.730 2 .0 * 01.14 l 1 2 3 4 0.01 0,26 0.00 0.03 0.04 0.03 j ™ , | Saftti tat* An§ 1* Ltk* [fera 01 00 01 01 00 00 01 00 01 C*M OS 0* 0* OS at 91 04 03 Drdwf ot 01 0* 01 0* 01 0* 02 07 01 0* 01 07 o T" 'tailJE*” 1 04 1 00 04 01 OS 01 04 01 04 01 a ■00 04 00 01 01 t an 0* 01 09 04 13 01 11 01 11 01 11 01 U 00 0* 01 01 Oitkiri or 04 01 04 •1 0* 04 09 03 a* 04 04 w - 04 BJ b*i*a 01 07 04 00 04 01 07 02 03 02 04 01 04 . 01 12 01 t an 13 01 1* 03 04 14 04 14 01 1* thin 00 00 00 00 00 00 00 « "41 00 01 01 00 00 00 00 00 — -#f~ a : U c»4* V r.fw w r. Bit* 0.04 0.13 0.02 0.14 0.00 0.03 0.04 0.03 0.03 0.10 0.0* 0.01 0.11 0.12 0.01 0.01 0.14 0.4Z 0.03 0.01 0.04 0,01 0.01 0.01 d.8 0.07 0.07 0.10 0.02 0.01 0.47 0.03 o .fi 0.21 0.13 0.10 0.43 0.10 0.19 0.4* *.20 0.30 0.10 0.11 0.04 0.11 0.07 fc04 *a§ H C m 01 11 11 u M M 14 19 17 0* 01 0} c: m U 00 01 01 M 7«rp Tt 06 0} 01 01 01 01 01 01 or or 01 01 01 01 04 20 00 11 or- » 06 04 01 ] 0.00" .* 01 0.1* 0.21 0.2S #.n 0.10 o .n 0.44 0.01 0 .H 01 0.11 14 It 14 16 12 16 tm"' 0.2T 01 ir SfKt C m , Safat, Cfl.ftlel.i 0* t * ;31 0.11 0.09 Ok L iI a .* 1.00 0.M 0.14 0.21 0.30 0.90 10 10 0.14 "IT- o:» 17 0.11 10 0.21 ID 17 0.10 0.1* 0.93 0.4* 0.11 0.37 0.43 0.13 0.30 0.10 0.1* 0.11 0.40 --------- 4 0.64 0.64 0.97 01 21 21 ] Ifici Cenl. Safaty £gif{ltUa(B 0.31 0.11 0.11 0.11 O liM 07 :: 0.10 07 02 0.10 0.44 04 32 04 0.14 01 w "iff" " X * » “ 01 0.19 12 00 0.47 13 0.41 04 13 04 0.41 13 01 0.31 12 04 0.(4 IS 01 0.43 09 - U .10___ 01 0.11 11 07 0.31 14 0.17 03 13 04 0.34 17 07 0.19 19 11 0.14 09 04 0.14 10 9.62 TIT" "TR 10 0.11 05 ii 02 0.40 10 0.71 02 0* 02 0.13 0* 02 0.11 07 02 1.11 0* 01 0.11 A ttite O * fafat, CwfHclaat 06t« *■* 14 Orebar* 0] 01 *■* 21 M m 04 07 04 00 03 0.11 0.10 0.01 0.07 01 01 0.04 00 04 00 01 ~w 00 JB_ 00 01 0.03 0.07 0.14 0.00 0.04 0.05 00 00 00 00 00 00 00 OrcUJ 0.19 0.09 0.13 0.14 04 04 oo 00 00 -J 00 01 -SHl- 00 “Cm" 07 07 0* 01 01 01 01 01 01 0.00 0.00 0.01 0.00 0.0* 0.04 01 0.00 01 0.17 APPENDIX D2— Continued II a J D>M Uk* Ubfn (*M« 03 0] 07 07 03 01 01 01 01 01 ORkVi 01 0) 0* 04 Spta t m > Safety H* Fnvar CsalficUnt Ot It 10 It 11 11 n a is ..!£_ 04 10 ii n is is ot 11 11 11 10 0.14 0.M 0.17 Data 4 w 13 Uka Ortkart Ualoa 1 Attitnda Spaea Cana. 1 f a m - M ___ . Safacy Vafaaatl T a w , Caafficiant “ 0.B 0.13 0.11 0,lt 0.11 0.14 0.B 0.11 0.01 0.10 0.07 0.11 0.13 0.13 B.JS 4.35 0.11 0.14 e.» 0 .K Oi Oi ( 04 J’r— — u r Oataa 0) 03 04 04 ot 03 10 o.» 04 ot __ 0.14____ 04 n B.B ' W " 6 h it 0.10 07 B o.n 01 U 0.15 03 10 0.21 01 M 0.31 04 B 0.47 04 It 0.14 01 14 0.10 01 — K B — Otdxrt — H T 04 0.44 04 11 o .B 01 14 0.41 04 11 as 0.11 It 0.11 ot It * o.ft___ 03 . - 1? 0.37 Ot 04 M u O.SO 04 Ot 1 Oi 01 0.04 O.JT 04 00 04 0.00 00 04 o.n 00 0.34 OS Oi Ot 0.14 BZ__ — 4.13— --- Oi CaU 17 0.10 oi 11 0.11 Oi 17 0.17 01 it 0.13 01 17 0.12 OS It 0.45 04 17 01 0.54 14 5*44__ ____, ___,_ ill.. M 0.44 Orckari 01 00 0.30 04 11 0.07 01 IS OS 0.11 IS O.B OS 17 07 0.0t 17 Onkari ttalaa Caaa OrekaH Dalaa Caaa — Uka tpaca Caaa. Aitlru* JtatSBI Dnfaaac f f c s Caafficiant 01 M OS u 04 10 ot 0.10 0.51 ot 0.34 03 00 0.U 02 OS 01 -• 00 M 00 oo 00 00 00 07' 02 04 01 01 01 03 01 01 00 01 00 00 00 00 00 OS OS OS OS Caaa Data 01 ot 04 07 0 7__ 0 4 ” 13 Ot IS 07 14 03 14 01 14 03 13 OS 14 01 10 01 _QI__ 07 04 11 OS IS 04 14 04 11 Ot IS -41— 8 os ■ Oi 03 01 OS 07 OS ot OS Ot OS OS OS 01 ■V' 01 10 01 11 ot 11 03 11 •1 12 03 11 04 11 01 00 01 ff 01 07 04 U 03 15 03 IS 04 17 01 14 01 10 _ #*' 03 04 05 04 04 04 01 04 01 04 01 04 01 04 ftl 1 01 Uri 03 01 OS M 02 i 07 01 i 07 01 i O’ 04 _S* 0,14 s.u 0.43 0.44 0.54 0.21 tat » Caaa 02 03 04 04 0.01 O.tO Orehart oi 03 04 0.0* 07 0.30 03 Ot 00 ot 01 0.27 0.01 Onlaa 0.15 0,41 0.12 0.11 0,10 0.44 0.14 0.S1 O.AV O.B 0.17 0.27 0.10 0.B 0.04 0,32 0.S1 0.15 0.17 0.17 o.a 0.B 0.44 0.17 0.10 0.17 0.40 0.30 0.10 0.4* 0.40 0.71 K U 0.30 OLli 0.17 0.15 0.10 0.15 BT H 0.33 0.40 0.40 0.33 0.01 0.51 0.21 8.B 0.23 0.21 0.34 0.13 0.41 0,20 cot— ORktrO “ ot -00 00 00 00 00 00 00 u 04 01 03 01 02 01 02 al 00 02 01 Ol' 04 04 02 0.1S O.B O.B --0.17 0.31 0.11 0.27 0.U 0.44 0.13 T7TZ7 0.11 0.15 0.01 0,15 0.11 0.01 O.B 0.04 0.U 0.11 0.14 0.01 0.04 0.10 0.05 ' APPENDIX D3 Lain Union ClU 1 2 1 4 5 6 7 0021* 00000 0021* 00*** 01922 1 2 ) 4 3 6 1 1 » OrthlH M m i 7 1 * 1 t t t " T CMS 2 ) t 1 t 7 1 ] . . 1 j. 1 ; OrcfaiO 2 3 1 * 1 5 ! M m CMS 7 1 02032 l T 00*73 1 2 1 01313 0037* ; 1 031*7 012*0 I Uk* 00 01 03 01 0* 01 01 01 0* TO 03 0* 03 0* 03 03 U 12 01 01 02 02 03 0* 11 09 30 11 0* 0* 0* 0* 01 12 11 0* 03 01 02 02 03 03 0* 0* 0* 03 02 0* 03 Orchirf 02 01 03 01 oi ! 01 ; 03 1 01 j 01 1 'To 1 00 01 1 01 | 07 1 02 1 00 ! 03 , 03 1 03 ! 0* 03 03 0* . _ _03 n_ Onion 2 3 * 3 t 7 { Orchard Bulat 01.. .. .92 _ 0* 02 02 09 03 0* 0* 03 03 02 1 2 3 * 3 • 1 I * n St 0* j 1 1 I 2 3 * 3 t 7 1 2 1 * 3 t 7 ( C m 10 11 12 Csss 04 03 0* 0* ot Oi™ 0* 0* i ! 7 I 0387S 13 8 i 00455 _ 0} 11 1 T 0*2*1 2 J 03029 It 3 j 03*0* It 4 j 031*7 00 3 f 0375* 09 02 03 03 07 07 03 01 } 6 ft ! i " 1 ' 2 i i 1 * * l Orehart 05 o* 04 05 ot 19 20 19 21 19 !i$i ClU Ufa Im < t ; ;1 L : 9 i 2 3 1 ? _______ 1 . L Onion 1 1 I 4 3 i .. Space Cor.*, la. of Safatv laata 0212* 01*93 ooitt 00*17 0190* 00390 011*9 01*03 01*9* 03U1 02303 02*33 007*1 00173 01*73 02303 OOM2 ' UBJI' 02139 0*403 0190* 02*82 03102 03*3* 01*10 _ 00*3* 0021* 039** 022*2 03291 • 03*43 01327 0231* 021*0 01399 001*0 0309* 01*01 02119 010*2 ■«ni" 0900* 03909 01131 027*1 02230 0110* 0311* 0*091 01*19 0*011 00713 06 06 61 08 13 06 06 14 09 16 13 09 03 03 09 U 07 It 11 19 U 17 *1 03 07 oi 1* 1* 09 U 10 f* 10 11 03 0* oo 0* ' 0* i !S 2* 10 11 . 07 ! 11 j« 1! 23 0* 03220 ! 21 01272 ! ot 02924 1 “ 01628 T f 03048 11 0* 00793 03160 12 03 01272 tttitii*. l i a p n M Favor 1 Ifalswr. 01 01 02 01 0* 0* 0* ot - TO *1— 01 03 0* « 01 0* « o* 07 0* 01 0* 0* 01 01 * 0* 01 0* 03 0* 01 0* 0* 0* 0* 0* 0* 03 ot 0* 0* 0* 02 01 03 0* 01 02 T5T" 0* 01 03 07 03 03 0* 03 Uk. 13 12 1- I J 04 10 12 11 11 13 09 ' ii 11 11 10 09 10 o* 09 1* 20 i* 20 1* 20 19 1* 17 04 11 l* u 11 14 12 09 09 09 0* 00 0* 0* 07 17 1* 17 1* » 19 17 1* 10 00 12 15 15 17 Union i i Cut , ' ! 1 Oicksr* 1 ■ : Onion , , ' ! 1 1 ! ■ Onkai* 1 1 Oslst Csss ! i* 09 09 10 09 " 'em ! ‘ Orckit* J Ufa ZOH * 7 1 1 2 1 * 3 * 7 0 9 1 1 3 * * 7 1 2 1 * 3 * 7 ( 1 2 3 * 5 * 7 * * 1 3 * 5 * 7 1 2 1 4 3 * 7 * 1 2 i * 3 * 7 t 1 2 tufa Cent. In. Slf.t, nf (left.) ion* 01023 0271* 02233 0333* 07*** 10123 01SO* 0112* 03*3* 032** 01*0* 03317 0191* 03999 0193* 021** 02917 02*** 00701 020*5 0370* 02019 02013 01*0* 01010 0179* 027*0 TOM 02937 03910 0*21* 04*22 00977 033*1 02*6* 04039 07 13 21 a 29 31 13 1* IS 39 11 11 0* 22 11 19 19 17 03 1) 1* 10 09 07 0* 12 1* 'W 12 27 21 1* 03 13 33 1* 03973 22 0133* 0* 013** 07 0*010 1* 17 0*300 01*91 I* oHH ~ir ■ 0230* u 0*011 12 0219* 0* 01219 02 00072 01 0320* 20 01207 1* (•*02 X 0*7*2 13 0*431 21 0*101 1* 029*4 11 0*12* 1* 02010 22 07 00303 02*72 1* &AU6 03 010*1 It Sttltodc Onfnor. Ufa Zov Ufa 03 0* ! 03 ot 07 07 1 ~S'" 1 11 1 00 is ; 09 1* 01 1* 02 1* 03 13 03 14 I 01 io ; 01 07 |— S " “ 07 1 0* 11 ! 03 0* i* ! 0* 11 ; 07 H 1 01 . 12 J ~ W 0* 03 0* 03 07 03 0* 03 0* 05 03 03 03 0* 0* — 0 2 --liH 03 15 0* 13 03 12 02 1) 01 11 0* 11 01 00 03 0* 3 4 S Orcfait ! 1 2; 1j *| 3! 11 7j Oj Ii II 3> *' 3' t> 7; 0j 9s 1 2 31 *< 3! 11 7. 1 2 3 * 3 t 7 • 1 2 1 * 3 t 7 0 9 1 OnUa Cut 15 0* 03 03 0* 00 02 W 0* 0* 0* 0* 0* 0* 0* TO 03 03 02 01 01 0* 02 03 01 01 ■■ 11 15 13 17 1* 10 03 03 0* 01 01 02 02 01 0* 09 0* 07 07 00 0* 0* « 07 Orefar* M m Can Orcfari U m ■ ! 3 4 i 1 r7 i * r 4 01033 001*4 02*12 0*00* 02923 0120* 0109* 0122* 00*69 01010 01*** 029*4 003*4 0*3*0 01331 03107 0021* 030*0 02201 00*41 01711 001(0 UTO1 0055 01*07 0023* 01029 02317 00190 UHo 01003 001*4 01190 00000 0021* 00200 0021* 007*1 02903 01399 001*4 01290 011*7 00072 00072 00039 00072 00**9 0021* 002(0 00*32 001(0 0021* TO j u 00301 01*19 00072 0021* 7 0101* 0 0021* 033*0 1 J- ___0*0**_ 5 C m insct Cans. On. .1 5sf«* (S,.7t.) (aatt 11 02 17 11 11 fatttsOs l U M — >1 00 10 02 01 01 12 OS IS 11 17 01 09 10 00 09 OS 01 1* 09 01 00 00 0* 05 0* 02 TO 00 03 0* 01 (1 0* 13 02 TO 00 01 01 03 01 09 0* 0* 0* 03 01 ■TO07 03 03 02 03 01 00 00 00 00 00 00 00 . 00 02 02 0* 01 01 02 01 01 01 00 01 00 00 00 00 00 od 00 00 00 00 00 00 00 01 00 02 01 00 oo 00 00 00 ■ 'TO 01 01 02 02 01 01 “TO 00 0* 01 03 00 03 rr 01 01 01 00 00 Ot — j 09 oo 09 00 M 00 00 00 00 00 00 SB 02 0* 03 03 01 02 01 M 00 01 01 04 0* 01 01 00 00 00 01 « m TO 09 06 09 0* M 09 00 09 09 07 09 0* 0* TO 06 03 TO 155 1 3 4 J 4 7 01239 00930 00072 0103* 00072 00321 00*39 01(7* wjir 003*0 00211 003*0 00*33 003*0 003*0 002*2 030*1 0073* 01*9* 00*9* 00**3 01377 00M1 ntf 0*310 0*990 03302 0*321 0092* 01731 013*7 M B L 00072 02003 0IM3 003*3 01022 00 00 00 00 oo 00 00 00 00 00 00 00 00 00 00 00 00 IB 00 00 00 ei 00 01 ■M 01 02 01 01 01 01 01 n 02 03 01 00 01 03 00 03 07 00 03 00 03 0* 0021* 00303 lUpOMH tifngir r Span Cpu ~ of Uta Salat, Zont (S,.Ft.l ■m u L SPACE CONSUMPTION SAFETY (SQ.FT.), NUMBER OF BOATS, USER ATTITUDE RESPONSES FOR UNION, CASS, AND ORCHARD LAKES (AUGUST 23 AND 24, 1969) 1 APPENDIX D3— Continued I p a C om *o. af Safatj <3*.Ft.) Imi l4k« 03112 01231 07310 02*70 02*70 02*3* 01200 07373 04000 01270 004*4 01(0* 0104* 00432 TOW ' TEST 012(4 02331 03173 01(22 00*03 03*47 017(3 03 01 01 01 00 ■esr Mh 02 03 0* 04 TT 13 0200* 03 03 033*7 0*012 031*0 030*7 03 01 01 0241* 00072 0041* 02430 02130 0242* 07*32 01*03 02330 02*03 04(11 0143* Onkar* 0* ur 01033 0*434 02(00 01133 03*12 0213* 02*2* -SUL 00 01 03 12 10 2* 07 2* a 17 1* 03 07 00 23 10 10 30 11 030*3 03*00 00*43 01731 04311 01*42 0*73* 00*0* 07347 02370 0*317 0300* 0*3*7 0221* 03*47 01124 00324 02*73 037*0 034*4 02*03 02(33 _ L 1 2 3 4 S i 7 * * 1 2 3 4 3 * I7 Daloa 03 '03 0* 0* 05 "i(r 10 0* 07 07 0* 0*, ... Bj 2 3 * S ( 17 20 0* IS OS 03 — 07 0* 0* 04 01 03 03 02 n— Or M 1* Oalaa 1* 14 1* 12 1* 10 IS 17 20 10 10 0* 0* 1_1 3 » 1 7 » 1 , Caa* 04 0* 04 OS 0* 03 r i ! 2 I 4 3 1* 3 n 3 21 10 1 7 ( ! • 11 2* 1* 13 03 Ct 17 13 " BTHT Cau is ! 1! ! 7 * 1* 1* 1* 04 n 04*11 0131* 02330 007(1 01330 04233 01322 14 10 11 11 0* 03 12 04 0* 14 04 01 0* 03 07 03 03 03 23 - I t - __ 91 - . -fil_ 10 03 *0 44 13 03 14 0* 2* 13 03 1* 1* 22 04 0* 20 12 7* 1* 0* 0* 04 10 0* 03 0( oi' 0( 2* i 17 03 a ! 20 03 23 ; 07 23 » 1 12 12 1* 10 0* 1* ' 'SMS 1* 1* 00 H 0* 03 03 03 02 02 02 "O 03 07 07 03 02 03 02 3 4 3 * 7 11 0* 03 07 Or M 0* 0*0*4 01*03 CtU 07 03 04 03 02 02 01 01 h Mtltu(a l U H B W IkfwK " 43 ' 113(0 33 0*711 2* 27 032*7 0S120 22 031*4 33 7S 0*233 03(73 11 03312 23 ® K “ 0* 040*1 N 02*7* 1* 042(1 IS 0M73 2* 0*411 31 17 03(33 T T oJW 03*02 1* 032*0 l* m i 12 00303 02 04 00*03 0712* 21 013*0 14 Of*** 34 1(331 *7 12371 31 0(333 *3 03737 20 03743 31 10002 *2 030*3 1( 02*7* 24 n — Orchard CalM OS 03 03 02 02 02 01 '10 ■ 1 1 3 4 3 * 7 _r_ 2 3 4 S * 7 Cm * ~l 2 4 3 * 7 0 04 12 ■ 03 1 13 00 I 0* 13 04 IS 03 12 04 1* 0* 02 10 02 — n .. 0T 07 14 OS IS 17 03 07 It Ot 11 10 0* It--- - o r ~ 03 10 02 11 02 10 02 0( 02 0* 02 07 01 nr03 12 04 13 0* 14 00 IS 0* 13 03 IS 04 10 02 11 03 __ Uk* Uka (aaa CxehnsT 1 2 3 4 3 ( 7 Ipaei BaaaJ n c r i tttltoia af Safaty l*a.rtO 1 B*1 00(3* 033*3 031M 0131* 0773* 04003 0(1** inui 021** Q1SS3 0142* OIKS 01230 01717 01213 0M7S 07(0* 03022 033*0 0*30* 043*1 022(0 01MT 002(0 024*1 01003 01042 030(1 020*3 03232 03 1( 1* 13 K 24 13 H 0( 13 OS 04 0* ot 11 10 21 IS 0* 12 32 0* .IL0* 14 0* 04 17 10 10 03 03 03 03 OS 10 04 ■ W '' 10 10 10 ot ‘Ot (07 _i#l — ^3 OS 0* 07 0* 02 03 02 02 " 04 (3 03 0* 07 04 Faatt. 07 0* 10 13 14 07 07 o r ■— 03 01 01 01 01 01 01 0* 0* 11 11 10 11 07 07 04 03 07 07 0* 01 03 1 antaat 23 a M 24 lllucrscaa ky M a l a tk* (at* f a n aaa* la la t o M a U t parcaptiaa a( aa* **4 laaal af keaUaf. Tka rnalala| (at* (Jaly 4 tknapk (apt* >• 1***) M U ka paaaaaca* ta tka (ktuaqi Dl*i*U%Rlckl|*a Oaparnaat af (ataral laaaair* la a tackdcal raaarr. * 156 ~r 03 03 03 04 OS 04 01 TROT .msL.-t > 00 I T 03133 02431 13 0» 01130 IT OMIT IT 02*04 12 02132 ~ora to M 0* TT o* oo ot 0* 04 0* 02 0* U 0* 0* 07 07 0* 0* 10 0( 13 07 OS 12 13 Uk* 13 11 13 11 14 0* 04 027*7 Oaikar* fOM pact Cana, t s t U k a Safaty •f I*** (Sc.rt.) loua 157 A P P E N D I X D4 U S E R A T T I T U D E INDICES A N D SPACE C O N S U M P T I O N SAFETY C O E F F I C I E N T S F O R RIPARIAN OWNERS ON UNION, CASS, A N D O R C H A R D LAKES (AUGUST 23, 24, 30, 31, A N D S E P T E M B E R 1, 1969) Jaar ueituM In te a (T o ta l U k a ) (MlA t t l t o t e Intel M i » C on* T o t a l C o o ff . (T o ta l Laka) (T a tn l U k a ) Im la n C aa* Qatar*. Q re h a rl rc h a g d n io n Union O rc lia r Union Caaa U n io n Caaa U n io n Caaa fifth#** Union Caaa B kJ iu U n io n Caaa O rc h a rd O iilo n Caaa t* OMO Uti Union Caaa Orchard Caaa O rc h a rd U n ion Caaa O rc h a rd U n ion Caaa O rc h a rd llnloA | Caaa O rc h a rd u n io n “ 15w O rc h a rd BESUU u n io n Caaa f ilSUU U n io n O rc h a rd .Or^hijri O rc h a rd U n io n Caaa O rc h a rd U n io n Caaa O rc h a rd U n ion Caaa O rc h a rd U n io n Caaa ONbri U n io n Caaa -UOK bar* n io n Caaa O r# U n io n Caaa O rc h a rd fWTlKi ion Caaa P tth d rti U n io n Caaa O ra h a rd Caaa O rc h a rd ! U n io n Caaa grcha*d4_ U n io n Caa* O rc h a rd B p a c * Cona T o t a l CoafC (T o ta l Laka) APPENDIX E T A B L E S S H O W I N G F R E Q U E N C Y D I S T R I B U T I O N F O R INCOME, ED UCATION, A N D O C C U P A T I O N C L A S S E S B Y RESPONSE, C H I - S Q U A R E ON INCOME, EDUCATION, AND OCCUPATION APPENDIX El FREQUENCY DISTRIBUTION FOR INCOME, EDUCATION, AND OCCUPATION CLASSES BY RESPONSE FOR UNION, CASS, AND ORCHARD LAKES (JULY 4 THROUGH SEPTEMBER 1, 1969) C— PworibU towoawt Educulos OcctfiCloo t Cod* i ~c3« C ot* ca* isci U n e a tio a lO c c o M tla a w r 001 oo; Ml oca ooo 000 00* 001 oos oos 002 oos 002 00} 001 00* 002 001 002 ) 17 00* * l o w clu.lHeotim o n (1) **.IM or vote, (2) 55,000 to it,Ml, (J) *7,000 to 7,fM, (*) 5*,000 to I,Ml, (S) $10,000 to 1*,M9, (6) HS.OOO to tl.M*. (7) *20,000 to t*,MI, (I) *»,000 m i m u, (01 rtfoM*. * Mocotlon cluiMlcotlou o n (1) «l|btb p i * or ltu, (2) m m bl,b odool, (3) hl,b ukool (rotooco, (*1 l a i calloft, (5) colloft |ro*utt, (i) poot p iluti nrt, (7) otvoocot tofno, (I) ttodoot (eolloc*) (0) rtfsoo*. ' Denpotloa clontficotloai u i (1) profuolonol, (2) ( c n w o g o n , (3) oootjori, (*) cUrlcol, (SI uloo, (tl croftnos, (7) oporotlnt, (I) print* hHintolt, (I) ootvle*, (10) f*i* boo*,(ll) lokor, (12) Itaitot, (13) hoaonrlfo, (I*) rotlroo, (13) BtUtorj, (It) lMM^lopot, (17) otkor, (0) nfooot. 158 001 159 A P P E N D I X E2 CH I - SQ U A R E T E S T ON I N C O M E , E D U C A T I O N , A N D O C C U P A T I O N CLASSES BY R E S P O N S E F O R U N I O N , C A S S , A N D O R C H A R D LAKES Lake Union Union Union Cass Cass Cass Orchard Orchard Response U n f a v orable F avorable Unfavorable F a v o rable U n f a v orable Favor a b l e Unf a v o r a b l e Favorable Un f a v o r a b l e Favorable U n f a v orable Favorable Unf a v o r a b l e Favorable Unfavorable F avorable Socio-economic Variable Income Income Education Education Occupation Occupation Income Income Education Education Occupation Occupation Income Income Education Education x2 d.f . 13.76 57 .97 7T.73* 8 203.49 10.44 21 J. 3 3* 9 72 .19 41.54 113.73* 17 49 .50 17.52 57.65* 8 55.60 14. 80 TT.'Sff* 9 26.41 11.65 3-ff.OS* 17 43 .40 27 .08 40.48* 8 21.37 9 .19 9 Orchard U n f a v orable Favorable Occupation Occupation 65.02 103.48 168.50* 17 *Signi f i c a n t l y d i f f e r e n t at the .05 level, tested by chi-square. T h e r e is less than five chances in 100 of the d i f f erences b e i n g the r e s u l t of chance. APPENDIX F TABLES AND PLOTS SHOWING LEAST SQUARES DELETION ANALYSIS FOR SAMPLE DISPERSION COEFFICIENTS AND TOTAL DISPERSION COEFFICIENTS, SPACE CONSUMPTION SAFETY COEFFICIENTS AND SPACE CONSUMPTION TRACING PAPER COEFFICIENTS AND SAMPLE DISPERSION COEFFICIENTS, SPACE CONSUMPTION SAFETY COEFFICIENTS AND SAMPLE DISPERSION COEFFICIENTS 160 A P P E N D I X PI L E A S T SQUARES D E L E T I O N A N A L Y S I S FOR SAMPLE D I S P E R S I O N C OEFFICIENTS A N D T O T A L D I S P E R S I O N C O E F F I C I E N T S F O R UNION, CASS, A N D ORC H A R D LAKES (JULY 17, 1969) I _ s m * l Mo* O ftoob L+m • to y K *. 9a ■ to n n n rd l Irro r of S o tla o ta ¥ »0 ■I* . Toot J u l y IT U n io n 94 1 • 9) 0 ,1 4 9 1 13 3 .0 7 1 1 < 0 ,0 0 0 1 - J u l y 17 U n io n ii z ;n V .H II 1 7ft. 4 99(9 < b .b o 0 3 it U n io n ! u i? " ■ j r — r ~ b . i4 7 f t 'H i. ljr * 0 3 4 3 ft 0 3 3 Cooo A3 TT Cooo AS J u l y 17 Cooo *3 J u ly i .M 0 .4 4 * 4 ♦§ * “ " B . U T & 3 • f t* 111 .3 1 3 0 < 0 ,0 0 0 1 r tt.u n 4 - 0 .0 1 * 7 1 .3 9 7 * • 0 .3 0 1 7 0 ,1 0 4 2 • 0 .0 3 1 1 T r .in S t * 1 .1 * 2 * o .o n o • 0 .0 1 2 0 3 ft 1 *114 3 • 0 ,0 0 9 9 < E « a r_ -------- ■--------- “4 J u ly it P a r t ia l fto g r o o o ln n C n n f f le lo n c V o r.* {D .B 5 0 9 0 3 _ 4. 9 A " 0 — 3 5 A 0 .4 3 1 1 “ 1 8 3 3 J u ly IT O ro h o rd 49 1 • 73 0 .4 4 3 J 3 1 ,7 9 3 * C0 .0 0 0 3 0 3 4 5 J u ly 17 O re h o rd 49 a • 79 0 . 4393 44 ,4 1 3 7 < 0 .0 0 0 3 0 4 1 ft ■ III. 0 .0 9 7 ft 0 ,7 6 9 < 0 .0 0 0 3 1 9 ,4 0 3 0 1 *1 3 *4 0 .2 9 1 0 .2 7 2 1 .2331 O. 125 2 .4341 X .O M H S .ftftl 1 1 3 .3 4 0 0 < 0 .0 0 0 3 O .llf tl 0 .7 3 2 3 ,4 4 * 4 — 1 1 ,5 6 6 5 “ — 6 T W J — 3 2 4 ,4 9 1 3 < 0 .0 0 0 5 1 4 0 .7 7 4 * 0 .0 0 0 5 • 0 ,0 1 4 0 O.OOAI 0 .9 3 4 1 ,0 0 4 9 4 ,0 4 9 0 0 .0 1 1 O .lft ll 0 .9 2 1 * 0 .4 7 3 -Q .O A 7 * 1 ,2 9 9 * 0 ,2 5 9 0 .0 0 4 * 1 ,2 2 * 0 0 ,2 7 2 - 5 ,8 7 4 1 * 777219*"* — i r m — 1 1 9 .4 * 4 1 1 .2 * 9 2 < 0 ,0 0 0 9 • 0 .0 2 3 3 3 .7 3 1 0 0 .0 2 0 0 .0 0 1 7 2 ,1 1 0 7 0 .1 9 2 B IT O T " ■ B .T M » 1 .1 2 * 3 3 2 4 ,7 9 0 4 < 0,0009 - 0 ,0 1 0 1 9 2 .2 * 4 7 < 0 .0 0 0 9 0 ,0 7 9 6 0 .3 1 f t) 1 .1 2 2 2 - 0 ,4 3 * 3 n ,0 4 0 7 0 .2 2 4 0 3 .0 * * 3 4 ,7 9 3 * 0 .1 * 2 * 1 .4 1 2 0 • 0 .9 2 0 4 0 ,0 3 0 * 0 ,7 7 4 ) 3 1 .2 2 6 ) 3 1 .1 * 2 3 2 0 ,9 4 0 * 0 .0 0 7 0 .6 3 9 0 ,0 *6 0 ,0 3 4 4 V a r t a b la * In tr o d u c e d a r « c o n s t a n t * d r a t , i m m 4 , t h i r d , oo 0 , 3 , 4 , 3, and ft r o o y o e t lv o ly . f o u r t h d o g r o t to n a d l i p i n l M 0 ,3 *4 < 0 ,0 0 0 9 < 0 ,0 0 0 3 < 0 .0 0 0 3 t o t a l c o e f f ic ie n t 161 sample dispersion coefficient A P P E N D I X F2 total d i s p e r s i o n coefficient sample dispersion coefficient Plot of sample dispersion coefficient and t o t a l d i s p e r s i o n c o e f f i c i e n t for U n i o n L a k e (July 17, 1969) total d i s p e r s i o n coefficient sample dispersion coefficient P l o t of s a m p l e d i s p e r s i o n c o e f f i c i e n t and t o t a l d i s p e r s i o n c o e f f i c i e n t for C a s s L a k e (July 17, 1969) total dispersion coefficient o■ ■ *m •m *.«• s.** • • m Plot of sample dispersion coefficient and t o t a l d i s p e r s i o n c o e f f i c i e n t for O r c h a r d L a k e (July 17, 1969) 162 A P P E N D I X F3 LEAST SQUARES DELETION ANALYSIS FOR SPACE CONSUMPTION SAFETY COEFFICIENTS AND SPACE CONSUMPTION TRACING P A PER COEFFICIENTS FOR UNION, CASS, AND O R C H A R D L A K E S ( A U G U S T 23 A N D 24, 1969) ■ rro r o f Ho. U n io n I» 1 • TT "o li a* • ft* 0 .1 0 0 * iM .ttia < 0 .0 0 0 9 ; U n io n 1 5 *"' 3 , TT '"I"' •15 Cooo 0 *1 0 0 9 “ I W . T W l * h4 f l . W W " o*ioi5 45,ood4 C o oo 133 3 .n 0 *1 0 0 7 1 *1 *3 1 3 0 CD.0 0 0 3 OrtWri 11* I •M 0 .0 9 * * 1 4 d .M ll < 0 ,0 0 0 3 P a r t ia l la g r a a a lM V a rf 0 4 11 13 U - *8 " 4 11 U 6 4 11 13 13 0 4 11 11 . 0 4 11 Orchard 11* 13 13 Orchard ~U* ' i Virliblii traclaf 0 ,0 3 * 4 3 .1* ***** C M f l t o l M t 5. oivf 1 * 7 , 4 7 4 4 < 0 .0 0 0 9 1 * 4 .7 3 * 3 iQ.oddi '8 4 11 13 "8— 4 13 V . • 0 .0 1 9 * Q .3310 - 0 .0 4 1 4 0 .0 0 4 T • 0 .0 0 0 1 •0 ,0 1 1 1 0 .2 1 3 0 -0 .0 3 9 4 0 .0 0 3 3 •0 .0 1 2 4 0 .1 9 4 4 • 0 .0 3 0 3 0 ,0 0 0 4 0 .0 0 0 0 -0 .0 3 4 ? 0 .3 0 2 4 • 0 .0 2 2 3 0 .0 0 0 4 0 .0 0 3 3 0 .1 3 2 4 -0 .0 0 7 4 -0 .0 0 1 4 0 .0 0 0 7 8:88ir 0 .1 3 0 3 - 0 .0 1 3 1 0 *0 0 0 9 *•0 1 9 * 0 .1 0 * 2 0 .0 0 0 2 0 ,2 3 1 1 4 .7 1 9 * 0 .7 3 0 4 0 .1 4 4 4 0 .0 1 4 1 0 .2 * 4 1 3 1 .2 0 0 1 4 .2 3 7 6 k.iSig 4 0 ,3 9 4 9 4 .1 * 4 4 0 .4 4 4 3 0 .0 * 2 2 2 .7 4 5 1 1 7 0 .3 2 9 7 4 4 .1 1 9 7 3 J*4 *4 *_ 0 .0 2 9 0 3 .4 9 4 9 0 .0 1 4 0 0 .0 0 4 4 0 .1 2 5 0 0 .6 3 2 0 .0 0 4 0 .3 4 4 0 .6 4 4 0 .4 9 * 0 .6 1 3 < 0 .0 0 0 3 0 .0 1 4 0 .0 2 3 0 .3 1 4 0 .0 0 0 3 0 .0 0 3 0 .3 9 9 0 *7 4 2 0 ,0 9 7 < 0 .0 0 0 9 « 0 *0 0 0 9 4 0 ,0 0 0 3 _ o.Uo 0 .0 4 4 0 .9 0 * 0 .9 2 7 0 .7 2 * <:8fl8^ K w j " 2 4 .2 3 * 4 1 .4 1 *4 3 .3 4 0 4 1.11*7 1 * 4 .0 4 2 * 4 .3 1 0 4 < 0 .0 0 0 9 0 .2 3 4 0 ,0 4 * 9.111 0 .0 0 5 0 ,0 4 0 cowtant, flrat, aaeondt third, aai Court Ii 4t|vat tors ifaca cnnatmptfton Coil«n«tai aa 0 . 4 » U ai3a 13 rna*nctiv«ly. am* - A P P E N D I X F4 space consumption safety coefficient 163 space c o n s u m p t i o n tra c i n g p a p e r coefficient space consumption safety coefficient P l o t of space c o n s u m p t i o n safety c o e f f i c i e n t and space c o n s u m p t i o n tracing paper c o e f f i c i e n t for U n i o n L a k e (August 23 a n d 24 combined) space c o n s u m p t i o n tracing p a p e r coefficient space consumption safety coefficient I CM 1C 3 'J P l o t of space c o n s u m p t i o n safety c o e f f i c i e n t and space c o n s u m p t i o n tracing p a p e r c o e f f i c i e n t for Cass L a k e (August 23 and 24 combined) space c o n s u m p t i o n tra c i n g paper co e f f i c i e n t P l o t of space c o n s u m p t i o n safety c o e f f i c i e n t and space c o n s u m p t i o n tracing p a p e r c o e f f i c i e n t for O r c h a r d L a k e (August 23 a n d 24 combined) APPENDIX F5 LEAST SQUARES DELETION ANALYSIS FOR SPACE CONSUMPTION TRACING PAPER COEFFICIENTS AND SAMPLE DISPERSION COEFFICIENTS FOR UNION, CASS, AND ORCHARD LAKES (AUGUST 23 AND 24, 1969) •c r "1“ Lata 4af. 23 71 hlaa n n Mta n ■ear ■ n 1* scwf (n, tuluti .11 i.im ■j s r Otof ■ .11 ! ' L.1IB r Tut 7.77 10.11 1 .11 1.1101 11.17 I •14 i.nu 5.11' “T.— sit. rtf <0.0005 <0.0005 <0.0005 0 5 14 16 0 14 U 0 14 ■■■# 0.#1T 1 14 o tal- U Cut Orctart H - D ^ . 8 Orctart u .03 1 t.un 0.007 1.97 0.76 o.ttll 0.516 ii 1 ‘ •03 o.tia 1.01 0.JU U 1 0.9936 0.11 0.710 Orttar^ u k b O d s w r Bf.'H •13 1 ii w 1 .01 4 fOri 5 1 *00 T H B 0.42)4 1.4310 * .H 0.00 7.61 ~ i .v . 0 5 14 16 0 5 14 tO “ 1.00 40.0005 L , . H Oaio* u I Ai r . w 4.96 <0.0001 W *1 BaUo u 3 .13 l.tttt 15.14 <0.0005 t M 71 1 .33 OKhtri U tJrctur* g» 1 L. . 1~ ' r I i . 1 .10 1 1 1.H 1.139* ~r.ros 1.31 T.iT 5 1* 0 1 0 0 ,5 !* 15 16 0 [s I* 0 15 16 <0.0005 r 0 5 14 15 16 0.170 0 5 14 . 15 16 0.156 I a 1 5 14 »6i 111. Di m 0.044* *■*.21 0.013 0.1154 0.7711 •1.9711 0.301 1.6240 0.107 6.5061 1.1*3* •1.9611 0.261 0,3190 - J L I M t _ htf. It 0.139 0.0416 -0.10V 0.002 In*. 21 -1,1577 1.1199 0.109 6 14 •0.0113 0.7315 0.05*9 0.779 0.079J 0.0017 0.960 -0.0170 1.0100 24.0960 <0.0005 10.7793 <0.0003 -O.SS01 " o n w r "5.T4* ii- n 5.9245 4.6351 0.017 6 24 1.1754 -1.1415 0.079 0.104 0.1743 1.6190 0.319 •O.OZ23 0.4000 0.970 ' •0.0164 0.1920 3.0003 0.005 6 14 •1.0171 0.000 7.31*0 9.5450 . . Q-«* -5L0OB. 0.979 0.0147 0.0007 "Im -R 0.7955 1.1117 0.176 6 1* -1.015* 0.650 0.1075 0.040 0.0410 0.1511 -0.0020 0.0007 0.970 T.IW a.otii 4 . W ' i.om 0.000 1.1140 tat. ii 0.101 -0.9*64 1.754* 6 14 1.4112 o.m 0.9011 o.JH w w 0.460* 0.44] 0.5971 0.444* ■0.0017 ' t.IW 0.00* ■ W . U 0.9000 0.6*1 0.1171 6 14 1.57*1 140.1400 _4.BJNS}_ 0.0917 0.1505 0.761 1.7099 0.6(2 0.1*90 0.6)6 -1,9471 0.11*1 k$. I) 0.3657 1.1*1* 0.435 6 14 •0.4454 0.9*11 0.3)1 0.4109 0.357 0.3490 1,1117 -0,1090 0.1454 0.7710 -0.U67 -0.0*04 31.0091 -17.1505 7.0632 -0.7501 00.0117 1.73151 -0 .1*2 0 ; 0.0141; 0.0275 5.diIs 2.70*9 -0.9506 0.0194 1.00*5 0.31* 1.0)04 0.177 0.574 0.11V 19.4434 <0.0005 14.1627 <0.0005 0.977 0,0000 11.1163 <0.0005 17.7*73 <0.0005 14.6623 <0.0005 12.4*91 0,001 0.0002 0.909 0.569 0.1291 0.0147 1 0.076 0,0000 0.996 0.0045 ; 0.947 0.0002 - 0.900 2.540*1 0.116 1.1175. 0,201 0.4510 1 0.504 it. Ki*_ Ota. It*, ■*. i1 Still* tin btlatt* r ltat 9ixf OrctaH 56 1 .09 1.1211 2.31 .090 OrtkvS 56 4 .04 1.241* i.ii .14* bOCtafE. 'kl 0 3 14 0 5 0 0.1016 0.0615 1.71(1 4.19*9 -0.3*50 1.(143 I.TK! J.XB 2.1406 0.5731 i.%73 IX. W T 11* 0.(01 0.045 0.0*9 ~s j s t 0.14* <0.0005 54 3 .000 1.2144 Omlso 133 1 .30 1.1144 13.99 <0.0005 0 5 14 15 If 0.1*57 41.9431 2.4*59 -0.7144 o.nu 0.140* 0.11*2 0.41*9 0.1407 0.004* 0.704 0.723 0.310 0.70* OklM 135 1 .10 1.30*4 1(,00 <0.0005 0 5 14 15 0.17*3 .0.77*0 2.2254 -0.5623 0.1169 0.41*5 5.6412 ).*07* 0.711 0.3U 0.01* 0.006 0 14 15 -0.0*52 1.6477 -0.4432 0.017* 53.21)9 21.320* 0.0*4 <0.0005 <0.0003 Orctatd 0.000 — 1.0*6 tain 1)3 3 .109 1.3045 2*.U C«ii 152 1 .12 2.6030 3.10 .001 0 55 14 15 16 .0.1716 6.1510 •4.7111 0.963) 0.0447 11.6455 (.6614 6.0605 0,11) 0.001 0.004 0,015 n.AU OttWd 119 1 .0* 1.10(5 1.0* .116 0 5 14 15 16 0.0)54 2.4720 •1.0*90 0.1525 'fliflflft 0.002* 1.5475 0.3201 0.0514 0.0013 0.95* 0.216 0.373 0.111 (Ltlt Onlurt 119 1 .06 1.1017 1.54 .*60 0 0.03*6 0.00)9 0.(50 14 u •1.0110 0.1209 4.1733 1.7441 0.04) 0.100 0 ) 14 0.4932 1.0131 -0.2115 0.7*41 4.7135 3.9441 0.375 0.0)1 0.04* Orcku* 119 3 .04 1.1110 2.40 <0.0005 .096 4 Vulallo Intretau* u (laaa M a ri — aaa. l l B n S a v * 11 te .K Ihrtaa aaa. i — lalaa ■ ■ s n T ii" ■ X l s o.oodj b .ilil ff.O* 0*0001 o .u a s D .IU _ J , i* 5 " i OiJI - 8 s .'H n i!! M ~W t 9.31 "P i- DaJ1 o .im 0*01 *;u a i I.SS *.11 M a .n Baia n tea. I t B nkal M t d .P 0.TCM ia ili Aaa. I i Braharl H i ff.H o .u n la**V aaa. H Bnfcar* M tea. BaaVarl n te a . I i a i* — j ■ ‘ T .N " ' ' ' 0.TE17 SaDa v .m V .V I V.IC M l.W M *■ b .te o .i a n 0»H V Va&aa US i 0 .1 * 0.U S0 U .M ■hiaa US i 0 .1 * 0.1741 !•* » aaa. 1* teaterl E a rn a » " " M ' ' ■ * .0 0 1 ^D.BOS is Caaa te ,. I I v*«?. 1* 19 U ..J 0 1* a ia SAIaa us 9 ' 0*29 0.1717 _ | *7.72 _ i 0.0194 0*9740 2*2214 1*9092 1.944* 0,449 0.927 0*1*1 0.172 0.2*7 *1*249 1.409* 0*090 0.210 0.0099 o .im 3:m h (jt.wm 4 > .o o « ^>.0005 0,090* 0*0779 0.4*42 0.22*9 Otp592 0.4*2 0,741 0.90* 0,494 0*419 0.0047 •0*0244 0.22*4 •0.0*10 0.0149 0.029* 9.2994 *•4*17 0.499 0.479 0.072 0.090 0*0014 0*2042 0.001* 94*0192 19.2271 0 9 1* 19 1* 0*0119 -0.094* 0.9*92 •0*1202 0 9 1* 19 0 I* ... 41*. 0*0101 .0,400* 0 . 03*? -0.49M 0.0*10 -9*9311 0.1909 *0.1449 0.0042 0.9*2 27,7992 <0,0005 u .m t <0,00*9 0,0921 0,414 > .H 1 0,10* 0 . 24*0 5 2*9*01 I* *0.07*9 0*4929 0,4*9 0*00*9 19 0.0591 0,419 -A.fMM A .M M l* Oa 444 o.oos 0 •0,0214 0,407 0*0*02 9 0.2090 4*2944 0,009 •0.0771 I* 4.9551 0,029 1.5147 0.0091 11 o.oio 0.0*72 0,99*1 0,127 0,001 9 0.1*00 9.*99* .0.07%* o.nftl 9-9*01 1* 0 .4 ** 0 0*0120 0.0120 0,911 0*1029 0*1041 0.74* 5 0,4*0 1* 0*0907 0,0219 19 •0.0*90 0,652 0,2059 ..9*524 . 1* 0.00*9 0**0220 0.00*7 0,949 6 .)H 0*0019 0,042 9 0*1959 2,1217 19 •0.02*9 9*2441 0,072 _ 0.079 1* 0n9Q*!,_ j t m i <1.0005 0 .1*0* o .asi 19.4401 .0.0099 0*2420 0,997 19 1* 0*0004 ,9*9091 _ 0 |5 « 0.1614 ” 1 .W h .O H l £.0 00 5 0.0000 1* 0.0274 0.444 <0.0009 " O .T * « _ m . 9 H i T .fi4 4 1* B ill 113 * ■ « • 11 D re H c r* 1 1* 4 14 JUi.'TT 4 1* >refc#r4 1 1* > o .o a 0 ,1 1 * 0 3 .4 1 0 ,0 0 3 111. 0 .0 1 9 3 4 ,4 9 1 0 1, 7304 1 ,3 3 0 ? 4-oiao 0 .4 7 4 0 .0 1 1 0 .1 0 1 0 ,1 4 * 0 .9 4 4 0.00?? 0 .0 3 1 ? 1 0 ,4 4 1 0 4 ,0 0 0 0 9 *4 4 9 3 0 3 .1 * . 0 *1 1 7 4 o .m i -O .O M 9 1 9 * 9 144 O .IM 0 ,0 0 3 0 ,0 0 1 2 ,1 2 7 4 10 ,0 4 1 1 0 *4 9 ? 0 *0 0 1 0 .0 1 0 0 ,0 4 9 i 0 .0 4 0 .1 * 3 * 1 **1 3 0 .1 1 1 0 9 1* 11 1* 0 ,0 0 0 * 0 .1 * 9 1 •OsOOTl • 0 ,0 1 4 0 0 ,0 0 9 0 o .o n v 0 ,3 4 0 1 0 ,0 0 0 4 0 ,1 0 7 1 0 .3 ? * 9 .> .* 1 * 0 .4 5 4 Q .*T ? 0 ,7 * 4 0 ,9 * 4 a 0 .0 4 0 .1 4 3 3 1 ,3 7 9 0 ,0 3 ? 0 3 13 14 0 .0 0 * ? 0 .1 0 4 0 . 0 ,0 9 0 4 0 ,0 0 9 4 0 ,0 1 4 1 7 ,4 1 1 4 9 .4 * * 3 4 ,9 4 0 7 0 .4 *4 0 .0 0 7 0 .0 1 * 0 .0 3 4 V n t i b l M lftC fo 4 » e « 4 i n M M t i M i l l f i t i i M M r i , t h i r d s t r i c i n g i n n e n f f l c t n t 4 n t d > M « l a# 0 , 1 , 11) 11, n d D mi f M f t k 4 * f lt e « t i n n i f n t l» ily > n w t r tm ia p i t n space consumption safety coefficient 169 t APPENDIX F 8 « H o I V sample dispersion coefficient: H ■3 space consumption coefficient safety Plot: of s p a c e c o n s u m p t i o n s a f e t y c o e f f i c i e n t a n d s a m p l e d i s p e r s i o n c o e f f i c i e n t for U n i o n L a k e (August 23, 1969) -s a m p l e d i s p e r s i o n _coefficient space consumption coefficient safety Plot of space c o n s u m p t i o n safety c o e fficient and sample d i s p e r s i o n c o e f f i c i e n t for Cass Lake (August 23, 1969) 1 t * 1 i sample dispersion coefficient Plot of space c o nsumption safety coefficient and s a m p l e d i s p e r s i o n c o e f f i c i e n t for O r c h a r d L a k e (August 23, 1969) space consumption safety coefficient 170 A P P E N D I X F 8- - C o n t i n u e d sample dispersion coefficient space consumption coefficient safety P l o t of space consumption safety c o efficient and s a m p l e d i s p e r s i o n c o e f f i c i e n t for U n i o n Lake ( A u g u s t 24, 1969) nmm a «b tm * sample dispersion coefficient » * -n space consumption coefficient safety Plot of space consumption safety coefficient and sa m p l e d i s p e r s i o n c o e f f i c i e n t for C ass L a k e ( A u g u s t 2 4 , 1969) H•: sample dispersion coefficient Plot of space consumption safety coefficient and s a m p l e d i s p e r s i o n c o e f f i c i e n t for O r c h a r d Lak e ( A u g u s t 2 4 , 1969) APPENDIX G TABLES A N D PLOTS S H O W I N G L E A S T SQUARES DELE T I O N A N A L Y S I S F O R U S E R A T T I T U D E INDICES A N D INTENSITY COEFFICIENTS, U S E R ATTIT U D E INDICES A N D SPACE C O N S U M P T I O N SAFETY COEFFICIENTS, U S E R A T T I T U D E INDICES F O R RIPARIAN OWNERS A N D SPACE C O N S U M P T I O N SAFETY C O E F F ICIENTS, N U M B E R OF A C R E S PER BOAT A N D SPACE C O N S U M P T I O N S A F E T Y COEF F I C I E N T S APPENDIX G1 LEAST SQUARES DELETION ANALYSIS FOR USER ATTITUDE INDICES AND INTENSITY COEFFICIENTS FOR UNION, CASS, AND ORCHARD LAKES (AUGUST 23 AND 24, 1969) ■s, Dit< I! M a ■-_ I Ob*. _**> 1}* \n .07 Odf. 23 IhdM : S t i* I .07 71 JS tM * O r* • 0. 1*331 3 I F fAit 1 Bg Cli CoM Vg~ 0.1070 0.0071 0.0001 -0.0011 1.3203 0,272 I 1-------0. 1010. 1.7037I: 0. 1J0 . 0 10*0 0.0100 71 3 - i -- *0- 23f Mm .03 0.1023 1. 910* ' 0.133 .02 n* * ■ * 2 ? C*M 11 1 0. 10*1 1. 60*0 0.107 " n.iwn~ O-OOOP~T.O0 ~ .00 0.1330 1.3*02 ,00 0. 13S0 2.0137 0.100 M . 23) Cm« II 03 3 .01 0.1310 0. 6303; 0.*30 . 00 0.1377 0. 0000. 1.00 ,09 1 o.tio*T i.* 6i i ! T ii! *■. 23 chi M * 22 Or Im c I. 13 M- 73OrM 63 1.23 63 rst 63 -0* - ^ m i. 2* Mm .M 3 , .06 ■** t 72 0.1331 2.160 0.121 I 0.1503 I 1.7 0.173 0.1303 2. 0*96 0.131 ' 0.1307 2.7171 0.100 « 0-1121 o-oooo US— . . 3* .0. 261* 7. 1*36 <0.0005 2 . 3* 3 . 3* ~ 10 ft H6A0* i0 n.3 e0n1i7V7 n .2 37 !1 I 0. 1*77 ! 1.32*3 0.221 | -0.0362 0.3*1* I 0.361 o.oo** ; 0.2630 ! 0.60* } -0.0002 i 0.3171 0.373 ^ 0.M2I : 0 .12*1 . 3 . 0*2* 0.00* -0.00*9 0. 1*17| 0,663 .. -0. 000? . PUSH | 0.1*2 : 0.0616 0.*«21 0,*04 . 0 .1*75 : I * .6003 <0.0003| ;-o.oofi ’ 6.1136 6.513 4 0.1*0"* (. 190* 0.01S'* 0.061* 1.01*1 0.006 ■ . 0,00*7 ' 1.3770 0.005 ' | 0.000* ; 7. 6U2 0.007 . 1-0.0000 | 6.1263 0.011 ; i 1____ 1 l*.tt*l^O.OOOl 3.0362, 0.006 36 .11 0.1106 1,3623 0,100 0.1200 1.7106 0.176 0,1720 : 0.070 4 .0 10 0.020 -0.0000 0.1170 0. 013* 0.0000 2* OrtWNI .0* 0.1276 I 36 0- 3*1O itto ir 36 M - 2* OrImNT 3* 62* i M m 133 .00 Tmrn] 42* t it . 2jj 4 1* 11* 111 1 .00 .10 - 0.0000 I. i>01 0.003 i ' 0 5 > li 2. 3*47 0.112 0.1312 0.0000 1.000 0.2320 6.*31* <0.0003 0.12*7 .17 3.60311 0.03* -s rw p 0. 170* *7,1111I 0.0003 * 2* Cu> ! 133 0.0031 0.63031 Q.*30 00.1157 ~ 1*7.2411 <0.0005 B.17T sr*-# .w *6 * 0. 1*73 2.6300' 0.12* -0. 0U3 1.37771 0.2*3 h+.TT 0.0032 0.1671 0, 12* 6 2* 11* 16 i -0.0002 fl.W + M IL - 1 0.1232 3,5311T 0.022 0. 076* 2. 636* 0.110 -0.0131 1.***o! 0.21* ___________ 0.315 -T^rn 0.000* 1.0262 0.133* : I*.2911 <0.0003 42* OreUN 119 . 0* ' 1 2*1Mm , 1*: Mm I "H **• 2*| OreUN M 0 5 1* 13 U 0.2107 0.011* -0.0000 0.2*27 m «L. 0.2036 0.006 1.321* 0.223 1.1112 1.1711 0.21* 0.297 JL226- ___ u m ll.*l« 0.0003 0.731* . 03*0 0.000 ao.a** 0. 63* 0. 36.0600 3.1171 0,020 o-io* 66,3*22<0.0 2.1467 0.112 "B O W aw ~ 0 0,1327 6.0206 0.0*7 3 0. 03*1 0.2162 0.621 0.0110 0.2771 0.600 1* 15 •0.0016 O.M10 0.W0 11 0.000 0.3*1* 0.447 0.2321 *.21*0 <0.0001I 0 t 0. 1*27 13. 623* 0.0003 1* ' 0.0209 12.4313 0.00 IS ■ -0,0026 7.32*4 0.000 0,000 *.*10* 0.010 1* ~r 1.17*) 0.011 0 0.03*3 7. 3*0 0.007 0.1212 5 0.05*3 11.9621 0.001 9.3226 0.002 1* 0.0001 13 • 0.0003 7. 212* 0.00 16 )-0.0000 3. 6*36. 0.011 0. 119* 1. 113* 0.013 0 0.112* 10.24*0: 0.00 3 0.0*31 4.1*01 0.04} 1* 0.0211 2.5*63 5.113 13 0,0021 1. 1*61 0.1*1 1.1079 0.10 16 0.0000 3.6*10 0 0.1*02 .014 0 0. 16*3 23. 70*0<0.000 3 0.0167 2. 3*92 0.126 1* -0.002* 0.470 0.40 13 a.ooao 0.100* 0.732 0.11*7 | 5.5171 0 .005 0 0. 172* 1*.***1 10.000 3 0.0300 7.310 0.007 1* -0.0016 1.7110 0.037 1 --0. 1*13 t 7.1573 0.00* 0.2003 101.211*(0.000 7.1373 0.00 0.0102 - - ■ VarUblii Introduce* n eoutmt, (Iru, m c o s I, thirl, n O (Mrth ( q m I n Inttulty c m HI c Im * 6nl|ut«* a , ,14,15, u t 16 nificilaly. 03 171 3 0.021 0. 02* 0.607 0.300 3. 390* 0,0091 0.1327 0. 20*1, fanifV m 0.0303 0.6131j 0.*33 -0.0011 0.0211 0.113 -0.0001 0.0233■ 0. 17* 0.0000 Q.0IU 0.777 r.wr’"■#.m* o.Mii 0.0316 5.3133I 0.021 6*10 0.101 >0.0003 2. 1.U 37! 0.176 0.1279 ’i i w i m 0.0170 *.21*1- 0.0*2 0.107 5i*adEr% *r~ tlClftltt Utt ~ J ib ISelf Obfc j Mo. bi 2.0337 0.136 0.227 1 3 <0.0003 0.2205 31.1202 I 0, 003* 2.0391' 0.007 ■ 41.0002 1. 113* 0.130 mIiiiA; 1*91 ^ 0.113* Vim 1.000 0 0,2047229.0040!<0*0005: VtflablnliimMci*viautae,fine,a a c a v f t ,UlHt■»*fMiftftpittviMicaCMM^tlN UfitrcmUUIM4ail|M«e *•« ■^ '■*"■ 1** P lot of user attitude index and space c o n ­ sumption coefficient for O r c h a r d Lake ( A u g u s t 23 a n d 24, 1 9 6 9 c o m b i n e d ) 175 A P P E N D I X 65 |!I r L E A S T S Q U A R E S D E L E T I O N A N A L Y S I S F O R U S E R A T T I T U D E INDICES A N D S P A C E C O N S U M P T I O N S A F E T Y C O E F F I C I E N T S F O R UNION, CASS, A N D O R C H A R D L A K E S (JULY 4 T H R O U G H S E P T E M B E R 1, 19 69) ih M ir J M ft. V a tla fc l* " O .t.M M )W < 0 .0 0 0 3 .3 5 . .H it 1 0 .6 M 1 < 0 .0 0 0 3 aM o.ln* 0 3 14 15 I* 0 3 14 J3_ 0 3 lL U n lv n 1041 U n i An 16U ,T " I IP* 1 » ta a t 1 _ < 0 .0 0 0 3 1* t ill I lf 4 ( ill o rc h a rd V a r t a k la a U ■.I A l U b a a 1 ii* 9 3 .1 4 0 .1 M IP 1 •ii o . llll ln c » * u c a * i r < a a 10. H I 5 fl . t I A . I V n iu lm , . * 4A d ra t, — ■ — -■- - - - * ■m - ■ ___ em*. .m U d m t h lr * . u n« 13 10 0 3 14 10 0 3 14 0 3 14 13 to 4 4 .A 6 6 I {0 *0 0 0 3 *T H P ” fw n b % h P a r t ia l l« l> il» lin C M lfie tc n t . • 0 .0 4 0 1 4 .0 0 1 0 • 1 1 .7 3 1 0 1 1 .0 2 0 3 • 4 .0 0 3 6 0 .0 3 0 0 3 .3 6 6 3 - 6 .4 3 3 0 3 .3 9 3 2 0 .0 3 2 9 0 .1 9 9 0 - 0 .0 4 2 3 0 .0 0 3 2 - 0 .0 0 0 6 oloSU 0 .1 4 3 3 - 0 .0 0 9 4 - 0 .0 0 0 0 0 .0 0 3 0 0 .1 7 4 3 . 0 .0 0 7 9 0 *0 9 9 3 4 .7 9 3 2 -2 3 *1 9 7 2 4 4 *9 7 3 2 -3 2 * 7 1 0 1 01a. 0 *0 7 9 6 7 .4 1 0 2 2 .7 0 4 7 1 .1 9 2 1 .0 * 0 1 0 3 O a O ilf 1 0 .7 7 1 6 9 ,1 0 2 1 6 .2 0 0 1 0 *172 1 1 .7 0 2 3 0 .3 4 2 3 0 .2 6 0 3 0 .3 7 1 3 0 .6 3 4 $ 3 *0 0 4 2 0 .1 9 7 1 0 .1 5 9 2 0 .4 9 9 2 . 4 .7 0 0 3 7 .3 0 3 1 2 .3 4 1 2 0 .9 9 2 3 6 .3 7 0 2 3 .9 6 1 9 3 .9 4 4 2 0 .7 6 3 0 .0 0 0 0 ,1 1 9 0 .2 6 9 0 .4 3 2 0 .0 3 9 < 0 .0 0 0 9 0 .0 0 4 0 .0 1 6 0 .6 4 0 0 .2 3 2 0 .3 7 1 0 .6 1 9 0 .9 7 9 0 *« 6 2 0 .0 9 3 0 .6 6 4 0 .6 9 9 0 .4 9 9 0 .0 0 5 0 .0 1 4 0 .1 3 9 0 *0 0 7 0 *019 0 .0 2 3 0 .0 3 2 t a n a a , a » « . n a u a * t lo n a . f a t a c o . r r i c l a . 1t w Index APPENDIX G6 f 3 9 user attitude 0 I c 0 * J & 1 e I o 176 s 0 t 0 8 e I & a 0 & Q e 0 oa Plot of user attitude index and space consumption safety coefficient for Union Lake (July 4 through September 1, 1969} x ea j,q * space consumption safety coefficient index F attitude i user APPENDIX G7 J b 0 r o 0 r 0 i 0 I 177 5 O t 0 i 0 I 0 3 0 G o 8 o OQfi 0& C 1? on 0B c Plot, of user attitude index and space consumption safety coefficient for Cass Lake {July 4 through September 1, 1969) I 03 im space consumption safety coefficient ! index APPENDIX G8 f 0 9 user attitude 0 I 0 f 0 «k i o s 0 I o 178 1 0 I o' a o 2 o £ 0 8 o CX * 17 0X a 0 — Plot of user attitude index and space consumption safety coefficient for Orchard Lake (July 4 through September 1, 1969) C -0 0% 0 -C. c. 0 space consumption safety coefficient 179 A P P E N D I X G9 LEAST SQUARES DELETION ANALYSIS FOR USER ATTITUDE INDICES AND SPACE CONSUMPTION SAFETY COEFFICIENTS FOR RIPARIAN O W N E R S O N U N I O N , C A S S , A N D O R C H A R D L A K E S { A U G U S T 23, 24, 30, 31, A N D S E P T E M B E R 1, 1969) [? a *b a r La h a t ln ltf i 49 1 V t'e n J A r J ■ rv p i • ( P Teat " f IU 11.3*10 40.0009 »* • 33 1.9016 P a r t ia l A a g r a ic lo n C o e ff ic ie n t V ir n b U * 0 3 4 3 U n io n 49 a .34 1.BH4 13.1993 40.0009 U n i an 43 3 .40 i.m s 14.444* 4 0 .0 0 0 5 Ca«e 49 <30 1 3.0309 *.3330 <0.0009 4 4 9 4 } 0 3 4 9 C ast 49 • 49 a 11.9043 3.0031 <0.0003 9 3 C aea 49 .49 3 3.0497 19.9190 <0*0009 3 O v « lM v d 43 .13 l 1.40T3 1.34*0 0.370 3 4 9 O rc h a rd ki ...j .. • 13 1.4300 6 " i :h m 4 3 O rc h a rd 43 3 .1 1 1.4400 3.3041 0.0 *4 3 O rc h a rd V iflillic 4 « a 43 4 • 10 L.4339 lM r * 4 u e H m « e o n lt a n tf t a c a a r f, m 0 , 9 , 4 , 5 , and 0 r e s p e c t iv e ly . 4,331* th lv li 0.044 and f o u r t h """ . 9. *403 130.443* 1 4 * , 0*71 1 .9 4 * 9 109.02** - 4*2.4409 1*49.2942 •14*0.9641 9.9290 9.2600 240.5304 373,1*43 4. 3434 323.940* 3.0377 - 23.3*70 331,0301 -1999.4144 2413.4004 1T969* t f . ’l W 4 0 * d a a ra a l y w i Tot M i. 4.3036 0.3010 1.71*3 2.1403 . 2.27*4 20.1494 0.7094 9.2359 3.0064 9.3B14 • 93**440 439.9334 *2619.3144 _2L7_Z* f * 0 * . 4.14*4 339,4930 -1223.9724 R .m k‘ 0,039 0,491 0.190 0.152 0,139 4 0,0003 0.005 0,027 0 f Q30 « 0.0005 ........ 40.0009 0.004 — v . m ------0.173 0,106 0,130 i 17.212* 9.3294 T . tt* S “ 1.9297 1.0197 2.3943 2.01*3 5 .4 « « “ ” . 2.2302 47.3062 19.10*0 . < 1.9990 Q*1259 0.2139 0.0246 0.4761 il.f it a 0.4313 00,490* 0.6474 - 42*.4547 — 1241, 6 3 7 4 . .-..0*9346 43.7930 2.4449 0.7072 • 111.4406 2.4120 112.0402 c o n itfv tlo n a ih ty _91.3410 a .« ? « 0 .1 0 1 0,740 0,140 0.142 < 0.0003 0.0009 0 .1 1 2 0 2 .1 0 1 * , . 4.3219 c o e f fic ie n t 0.170 0.725 0.647 0,372 0.494 0,601 0.306 0.426 0. 340 40.0009 0.409 0,263 4076603 0.044 ‘ 180 A P P E N D I X G10 ! » o r. 'S .5 * G 0) id* .-t S’ Pi* •H " (d M a H 41 +1 01 01 3 space c o n s u m p t i o n s a fety c o e f f i c i e n t P l o t of user attitude index and space c o n s u m p t i o n c o e f f i c i e n t for r i p a r i a n owners o n U n i o n L a k e A u g u s t 23,24,30,31, and September 1, 1969) i i S G •H if 9 01 T3 5 idK ■H a v a M: id u 0) 01 3 space c o n s u m p t i o n saf e t y c o e f f i c i e n t P l o t of u s e r attitude index and space c o n s u m p t i o n coe f f i c i e n t for riparian owners on Cass Lak e (August 23,24,30,31, and September 1, 1969) i i x 0) •c G § •H 1 •H Scu ." +1 -H id M 01 01 3 space c o n s u m p t i o n safety coefficient P l o t of user attitude index and space c o n s u m p t i o n c o e f f i c i e n t for riparian owners on O r c h a r d Lake (August 23,24,30,31, and September 1, 1969) 181 A P P E N DI X Gil LEAST SQUARES DELETION ANALYSIS F O R THE N U M B E R OF ACRES P E R BOAT AND SPACE CONSUMPTION SAFETY COEFFICIENTS F O R UNION, C A S S , A N D O R C H A R D L A K E S (JULY 4 T H R O U G H S E P T E M B E R 1, 1969) Lah« IM tw M h ir O W a r v a t lt M >M » M 1000 lf 1 ,7 1 Im r •( B a tlM ta . * T «t *•*4 4 0 9 1 3 .0 1 4 0 Y a r l'h U * 4 0 ,0 0 0 3 0 3 7 0 0 10 Om i 11S0 1 .* 3 1 4 .0 9 9 1 4 1 ) . TOT* 0 ll» 2 *0 3 1 4 ,0 * 4 0 3 1 1 ,4 3 1 3 ? 0 .0 0 0 3 « 10 0 7 o n h irt 900 ~ 10 t .n 1,1111 0 ~W«.V3lfl 3 7 0 9 10 V a r l a S l i a i n t r M u c « * m w * c m a t a a t , V t n t , i t aM , t k l r i , f a w t t i , I I U I m c i « i l | M t a 4 a i 0 , 3 , 7 , # , 9 , a M 10 r a i f a a t l v a l y i c m 4 ,7 9 * 7 * * ,3 9 0 0 -1 9 4 .4 * 4 * 4 2 4 .9 1 2 9 - 1 9 2 ,4 4 1 2 0 .4 3 9 ) tiiim < 0 .0 0 0 9 3 r CM* • ra rtta l I w r a a a la n f lM fd a iM ta id i I h v it m 4 « n rH *b . 9 .9 7 *0 1 2 .9 3 1 7 7 .3 * 3 1 1 1 9 .9 2 1 4 1 2 .9 * 2 * 7 4 1 .4 2 4 0 U t.Im • 1 1 4 ,9 4 4 * 1 4 .3 0 * 0 1 0 9 .1 9 7 7 3 .1 3 0 9 - 1 2 9 .4 3 7 0 0 ,0 1 * 7 3 0 . *7 0 3 0 .2 3 4 4 _____p j i n ___ ~ U 2 a * f t + 2 . 2 7 ,9 9 1 9 2 )2 .0 1 3 1 4 4 .9 2 7 * - 1 0 2 .4 3 7 4 1 9 .1 7 7 4 1 3 4 .0 4 4 4 - 3 0 ,3 1 0 0 4 .4 0 9 2 0 .9 9 )7 9 )3 .9 1 4 0 2 .4 9 3 4 1.1400 1 0 1 .1 9 3 2 7 .3 3 0 9 4 1 4 ,9 0 4 3 4 .0 0 * 0 1 3 0 4 .9 9 0 4 9 .9 2 0 0 4 ,4 7 9 2 - 9 0 9 .1 1 3 9 0 .4 9 3 ) 1 1 9 0 .4 2 4 0 ta n ■U . 0 .0 0 2 4 0 .0 0 0 9 4 0 .0 0 0 3 4 0 .0 0 0 9 4 0 .0 0 0 3 < 0 .0 0 0 3 4 0 .0 0 0 3 4 0 .0 0 0 3 0 ,0 7 3 0 ,3 * 9 0 .4 2 0 4 0 .0 0 0 9 < 0 .0 0 0 9 4 0 .0 0 0 3 4 0 .0 0 0 9 0 .0 1 1 4 0 .0 0 0 3 0.171 0 .0 0 7 0 ,0 0 9 0 .0 1 * 0 ,0 3 3 <0.000$ c a n a u ^ t l« n a a l a t y APPENDIX G12 boat i number of acres ff per t • * 1 a * \ • . ! o ft 0 i 0 i 182 0 i i 0 i D 5 Q 5 B ► ft 0M o*» e Plot of the number of acres per boat and the space consumption coefficient for Union Lake (July 4 through September 1, 1969} 4. i 4Qi space consumption safety coefficient I APPENDIX G13 I-. . r!t per a acres ■| sn V - number of r I 8 a 183 i e i o s 0 9 e a 8 a qn C a o» o -a 0 plot of number of acres per boat and space consumption safety consumption for Cass Lake (July 4 through September lr 1969) a a» L01 i i- 190 space consumption safety coefficient number of acres per boat: APPENDIX G14 a 0 I B a o*- a n o 3» 0 4 Plot of the number o£ acres per boat and the space n u» consumption safety coefficient for Orchard Lake (July 4 through September 1, 1969) av 3? space consumption safety coefficient