INFORMATION TO USERS This dissertation was p ro d u c e d from a microfilm c o p y of th e original d o c u m e n t. While th e m ost advanced technological m eans to p h o to g ra p h and re p r o d u c e this d o c u m e n t have been used, th e quality is heavily d e p e n d e n t u p o n th e q u a lity of th e original sub m itted . T h e following e xp lanation o f te c h n iq u e s is provided to help you u n d e r s ta n d markings or p a tte rn s which m ay ap p e a r on th is reprod uction . 1. T he sign or " ta r g e t" fo r pages a p p a ren tly lacking from th e d o c u m e n t p h o to g ra p h e d is "Missing Page(s)". If it was possible to o b ta in th e missing page(s) or section, they are spliced into th e film along w ith a djacent pages. This m ay have necessitated c u ttin g th ru an image a n d duplicating a d jacen t pages t o insure you c o m p le te c o ntinuity. 2. When an image on th e film is o b lite ra te d w ith a large ro u n d black mark, it is an indicatio n th a t t h e p h o to g ra p h e r suspected t h a t th e c op y may have m ov ed during e x p o su re an d th u s cause a b lu rre d image. You will find a g o o d image of t h e page in th e a djacent fram e. 3. When a map, draw ing o r chart, etc., w as part of th e material being p h o t o g r a p h e d t h e p h o to g r a p h e r follow ed a definite m e t h o d in " sec tio n in g " th e material. It is c u sto m a ry to begin p ho to in g a t th e u p p e r left hand c o r n e r of a large sheet a n d to c o n tin u e p h o to in g f r o m left t o right in equal section s with a small overlap. If necessary, sectioning is c o n tin u e d again — beginning belo w th e first ro w and co n tin u in g o n until c o m p le te . 4. T h e m ajority of users indicate t h a t the te x tu a l c o n te n t is of g re a te st value, however, a s o m e w h a t higher q u a lity r e p ro d u c tio n c o u ld be m ade from " p h o to g r a p h s " if essential to th e understan ding o f th e dissertation. Silver p rints of " p h o to g r a p h s " may be o rd e re d at additional charge by w riting th e Order D e p a rtm e n t, giving th e c atalog num b er, title, a u th o r and specific pages y o u wish re produced. University M icrofilms 300 N orth Z e e b R oad Ann Arbor, M ichigan 48106 A Xerox E d u c a tio n C o m p an y 73-5388 HAKIMIAN, Massoud, 1941EXTRACTAB1LITY OF CARBON, IRON AND ALUMINUM FRCM SPODIC HORIZONS OF REPRESENTATIVE MICHIGAN SPODOSOLS, USING VARIOUS CHELATING AGENTS. Michigan S t a t e U n i v e r s i t y , Ph.D., 1972 A g r i c u l t u r e , s o i l scienc e University Microfilms, A XEROXC om pany, Ann Arbor, Michigan EXTRACTABILITY OF CARBON, IRON AND ALUMINUM FROM SPODIC HORIZONS OF REPRESENTATIVE MICHIGAN SPODOSOLS, USING VARIOUS CHELATING AGENTS By Massoud H akim ian A THESIS Subm itted to M ichigan S t a t e U n i v e r s i t y in p a r t i a l f u l f i l l m e n t of th e requirem ents f o r th e degree of DOCTOR OF PHILOSOPHY D e p a rtm e n t o f Crop and S o i l S c i e n c e s 1972 PLEASE NOTE: Some p a g e s may h a v e indistinct Fi l me d a s Uni ve rsi ty Microfilms, print. rec e iv e d . A X e r o x E d u c a t i o n Company ABSTRACT EXTRAC TAB I L I TY OF CARBON, IRON AND ALUMINUM FROM SPODIC HORIZONS OF REPRESENTATIVE MICHIGAN SPODOSOLS, USING VARIOUS CHELATING AGENTS By Massoud H akimian S o i l sam ples of th e sp o d ic B h o riz o n s o f some r e p r e ­ s e n t a t i v e M ichigan S p o d o s o ls , as w e ll a s , t h e A h o r i z o n s , t h e arg illic horizon, o r t s t e i n and t h e f r a g i p a n were s u b j e c t e d t o e x t r a c t i o n w ith d i f f e r e n t i n o r g a n i c and o rg a n ic c h e l a t i n g agents o f v a r y i n g pH. The a m o u n t s o f e x t r a c t a b l e i r o n a n d a lu m i n u m w e r e d e t e r m i n e d i n t h e s o i l e x t r a c t s . Th e a m o u n t s o f e x t r a c t a b l e c a r b o n w ere d e te r m in e d from t h e d i f f e r e n c e betw een th e t o t a l c arb o n of t h e s o i l sam ples b e f o r e and a fte r extraction. S t a t i s t i c a l analysis of th e e x tra c tio n d ata re v e als t h a t t h e O.IM Na2 ~NTA, O.IM Na^PgOy a n d O.IM Na2 ~EDTA e x ­ t r a c t i o n p r o c e d u r e s f o r Fe p r o d u c e d e c r e a s i n g a m o u n t s w i t h s i g n i f i c a n t d i f f e r e n c e s b e tw e e n them . re s u lte d in th e p r e c ip ita tio n Na^-DPTA, a t pH 1 2 , o f Fe i n t h e s o i l e x t r a c t . Th e O.IM Na^-DPTA a n d O.IM Nag-NTA e x t r a c t a b l e A1 w e r e com parable. H ow eve r DPTA e x t r a c t a b l e A1 r e s u l t s w e r e s i g n i ­ f i c a n t l y h i g h e r t h a n f o r O.IM Na2 ~EDTA a n d O.IM N a ^ - P 2 0 ^ . The O.IM Na2 -NTA i s s u g g e s t e d t o b e a s u i t a b l e A1 e x t r a c t o r . M assoud H akim ian The low pH s o l u t i o n s tractan ts fo r carbon. (EDTA a n d NTA) w e r e g o o d e x ­ H o w e v e r , EDTA r e s u l t s w e r e s i g n i f i ­ c a n tly g r e a t e r than f o r th e o th e r e x t r a c t a n t s . NTA p r o d u c e d c o m p a r a b l e r e s u l t s w i t h t h e h i g h pH e x t r a c t a n t s . I n g e n e r a l t h e O.IM Na2 ~NTA o f f e r s g r e a t e r p r o m i s e a s a n e x t r a c t a n t o f F e , A1 a n d C, a n d h e n c e a s a c l a s s i f i c a t i o n to o l, t h a n e x t r a c t a n t s w h ic h w ere e q u a l l y o r more " e f f i c i e n t " i n e x t r a c t i n g A l (DPTA) o r C (EDTA). The a m o u n t o f e x t r a c t a b l e i r o n a n d a l u m i n u m i s low est in th e p o o rly d ra in e d K in ro ss pedon. the However, t h e maximum Fe a c c u m u l a t i o n o c c u r s i n t h e s o m e w h a t - p o o r l y t o mo­ d e r a t e l y w e l l - d r a i n e d A u G r e s - C r o s w e l l member o f a s a n d y t o p o sequence. E x t r a c t a b l e a l u m i n u m maximum o c c u r s i n t h e s o m e ­ w h at-p o o rly d ra in e d Saugatuck-A uG res. The m a g n i t u d e o f t h e Al complex e x t r a c t e d by t h e c h e l a t i n g a g e n t s u s u a l l y ex ceed ed t h e c o r r e s p o n d i n g amounts o f i r o n . The l o w e s t e x t r a c t a b l e C o c c u r r e d i n t h e w e l l - d r a i n e d member o f t h e d r a i n a g e c a t e n a , nam ely C r o s w e ll- G r a y c a lm , w h i l e t h e h i g h e s t amount o f t h e e x t r a c t a b l e c a r b o n was f o u n d i n t h e so m e w h a t p o o r l y - d r a i n e d Saugatuck-A uG res. The a m o u n t o f i l l u v i a l F e , A l a n d C i n c r e a s e s w i t h th e i n c r e a s e i n th e p ed o g en ic developm ent o f th e s p o d ic h o r i ­ zons of t h e w e l l - d r a i n e d S p o d o so ls s t u d i e d . s p o d i c Bs (Omega a n d E a s t p o r t ) Thus t h e w e a k e s t c o n t a i n e d t h e l o w e s t amount o f e x t r a c t a b l e F e , A l a n d C, w h i l e t h e s t r o n g e r H i a w a t h a M assoud H akim ian a n d M u n i s i n g e x h i b i t t h e h i g h e s t am o u n t o f e x t r a c t a b l e F e , A l a n d C. The a c c u m u l a t i o n p r o d u c t s o f t h e s p o d i c B h o r i z o n a r e used as a chem ical c r i t e r i a f o r c l a s s i f i c a t i o n of th e Spo­ d osols. I t is suggested th a t th e c u rre n tly used r a t i o of % e x t r a c t a b l e Fe and A l o v e r % c l a y s h o u ld b e re d u c e d from .15 t o .10 t o in c l u d e m ost S p o d o so ls w e l l - G r a y c a l m and M u n i s i n g ) . It is (A uG res-C rosw ell, C rosa ls o suggested t h a t the r e q u ire d r a t i o be low ered t o 0.04 fo r th e w e ll- d r a in e d , te x tu r e d as w e ll as th e p o o rly - d ra in e d Spodosols and K i n r o s s ) . fin e- (Onaway Furtherm ore, th e d a ta o b tain ed in t h i s study i n d i c a t e t h a t t h e % t o t a l c a r b o n , % e x t r a c t a b l e F e a n d fo e x t r a c t a b l e Al o v er % c l a y , t h e p r e v io u s c r i t e r i o n classificatio n fo r the of S podosols, p ro v id es a b e t t e r e stim a te of the i l l u v i a l m a te r ia l of th e spodic B h o riz o n f o r c l a s s i f i ­ c a tio n purposes in th e s e Spodosols. TO THE MEMORY OF MY FATHER ACKNOWLEDGMENTS S incere g ra titu d e is e x p r e s s e d t o D r . E. P . W h i t e s i d e , th e a u t h o r 's m ajor p r o f e s s o r , f o r h is guidance and d e v o tio n th ro u g h o u t th e course of t h i s study. The a u t h o r w i s h e s t o e x p r e s s h i s a p p r e c i a t i o n t o D r . A. R. W o l c o t t , D r . M. M. M o r t l a n d , D r . B. G. E l l i s a n d D r . H. B. S t o n e h o u s e f o r s e r v ­ i n g on h i s PhD. C o m m i t t e e a n d f o r t h e i r h e l p f u l r e m a r k s a n d suggestions. S p e c i a l t h a n k s a r e e x t e n d e d t o Mr. J o h n B a r n a r d f o r h i s h e l p a n d co mm en ts on t h e s t a t i s t i c a l a n a l y s i s d ata. of th e The s o i l t e s t i n g l a b o r a t o r y , t h e s o i l c h e m i s t r y l a b o ­ r a t o r y and t h e g e o c h e m is try l a b o r a t o r y s t a f f w ere a l s o v e ry h e lp f u l w ith the a n aly se s. The a u t h o r a p p r e c i a t e s t h e c o o p e r a t i o n a n d u n d e r ­ s t a n d i n g of h i s w if e J e a n and th a n k s h e r f o r t h e t y p i n g o f th e f i r s t d r a f t of th is m anuscript. The f i n a n c i a l s u p p o r t o f t h e I r a n i a n g o v e r n m e n t a n d t h e M ichigan A g r i c u l t u r a l E x p e rim en ta l S t a t i o n a r e a l s o ap p reciated . TABLE OF CONTENTS Page DED ICATION..................................................................................................... ii ACKNOWLEDGMENTS........................................................................................... iii LIST OF T A B L E S ........................................................................................... vi LIST OF FIGURES........................................................................................... v iii INTRODUCTION ................................................................................................ LITERATURE REVIEW............................................................................. I l l u v i a l S p o d i c H o r i z o n ................................................... T h e o r ie s of O rganic M a tt e r and S e s q u i o x id e s T r a n s l o c a t i o n and A c c u m u la tio n i n S u b s o i l ........................................................................ Co m pl e x F o r m a t i o n a n d C h e l a t i o n R e a c t i o n s . . S o i l O rganic M a tte r and C h e l a t i o n ....................... E x t r a c t i o n of O rganic M a t t e r fromS o i l s . . . MATERIALS AND M E T H O D S .............................................................. 1 3 3 5 8 10 17 30 S o i l s U se d i n t h e S t u d y .......................................... 30 M e t h o d s U s e d i n t h e S t u d y ..................................... 39 E x t r a c t i n g p r o c e d u r e .............................................. 40 S o i l e x t r a c t c o l o r ................................................... 40 S o i l e x t r a c t r e a c t i o n .......................................... 40 Fe a n d A l i n t h e s o i l e x t r a c t ................... 40 T o tal carbon in s o i l s b e fo re e x tr a c ­ tio n 42 T o tal carbon in s o i l s a f t e r e x tr a c ­ t i o n ...................................................................................... 43 RESULTS AND D I S C U S S I O N .............................................................. P relim inary E ffect E ffect treatm Effect 44 S t u d i e s ............................................................. 44 of c o n c e n t r a t i o n ofe x t r a c t a n t . . 44 o f e x t r a c t i o n tim e and s h a k i n g e n t s .............................................................. 44 o f pH o f t h e e x t r a c t a n t s . . . . 48 iv P age P r i n c i p a l S t u d i e s ................................................... . . . pH o f e x t r a c t i n g s o l u t i o n s b e f o r e and a f t e r c o n t a c t w i t h t h e s o i l s a m p le s . C o l o r o f t h e s o i l e x t r a c t s .............................. Fe e x t r a c t i o n r e s u l t s ......................................... Aluminum e x t r a c t i o n r e s u l t s .......................... Carbon e x t r a c t i o n r e s u l t s ............................... S t a t i s t i c a l a n a l y s e s .............................................. C l a s s i f i c a t i o n o f t h e s o i l s .......................... 50 51 53 64 70 75 80 SUMMARY AND C O N C L U S I O N S ................................................................... 87 REFERENCES..................................................................................................... 94 v 50 LIST OP TABLES P age TABLE 1 2 3 4 5 6 7 8 9 10 11 Some p h y s i c a l a n d c h e m i c a l p r o p e r t i e s o f t h e p r o f i l e s s t u d i e d ............................................................. 32 S o i l t y p e na mes a n d l e g a l d e s c r i p t i o n s o f l o c a t io n s of th e p r o f i l e s s tu d ie d (s e e a l s o F i g . 1 ) ........................................................................................... 33 C h e m i c a l f o r m u l a e a n d some o f t h e e q u i l i ­ brium c o n s ta n ts of th e c h e l a t i n g a g e n ts used i n t h i s s t u d y ............................................................................ 4l E f f e c t s o f c o n c e n t r a t i o n o f e x t r a c t a n t s on t h e e x t r a c t i o n o f Fe a n d A l f r o m s o i l s . . . . 45 E f f e c t o f s h a k i n g a n d e x t r a c t i o n t i m e on t h e a m o u n t o f Fe a n d Al e x t r a c t e d b y t h r e e O.IM c h e l a t i n g a g e n t s ........................................................ 47 The e f f e c t o f t h e pH o f O.IM NacDPTA s o l u ­ t i o n s on t h e e x t r a c t a b i l i t y o f F e ........................... 49 pH v a l u e s o f t h e e x t r a c t i n g s o l u t i o n s b e f o r e a n d a f t e r c o n t a c t w i t h s o i l s a m p l e s ...................... 52 C olo r of th e spodic B e x t r a c t s by d i f f e r e n t e x t r a c t a n t s ................................................................................. 5^- P e r c e n t t o t a l c a r b o n and e x t r a c t a b l e i r o n and aluminum c o n t e n t of s o i l sam p les w i t h d iffe re n t ex tractin g solutions (ch elatin g a g e n t s ) ........................................................................................... P e r c e n t f r e e i r o n oxide and t o t a l e x ch an g e­ a b l e A l o f some o f t h e s o i l p e d o n s u s e d i n t h e s tu d y by o r th o p h e n a n th r o lin e c o l o r i ­ m e t r y a n d f l u o r i d e t i t r a t i o n m e t h o d s ....................... 67 P ercent of t o t a l carbon a f t e r e x tr a c ti o n , p e r c e n t e x t r a c t a b l e c a r b o n , and t h e p e r c e n t of t o t a l carb o n e x t r a c t e d by th e d i f f e r e n t e x t r a c t a n t s u s e d i n t h i s s t u d y .................................... 72 vi 56 TABLE 12 13 lb P age A nalysis of v a ria n ce of th e e x tr a c ta b le F e , A l a n d c a r b o n ............................................................. 77 The a c c u m u l a t i o n i n d e x a n d t h e p e r c e n t e x t r a c t a b l e Fe p l u s Al o v e r % c l a y by d i f f e r e n t e x t r a c t a n t s of s p o d ic h o r iz o n s u s e d i n t h i s s t u d y ........................................................ 83 The r a t i o o f % t o t a l C, % e x t r a c t a b l e F e , and % e x t r a c t a b l e Al o v e r $ c l a y f o r s p o d i c h o r i z o n s u s e d i n t h e s t u d y ..................... 86 LIST OF FIGURES FIGURE 1 2 3 Page Map o f M i c h i g a n s h o w i n g l o c a t i o n s o f r e p r e s e n ta tiv e s o ils used in the study . . . 3^ E x tra c ta b le iro n co n ten t of s e le c te d h o riz o n s of pedons s tu d ie d u sin g d i f f e r ­ e n t e x t r a c t a n t s ........................................................ 58 E x t r a c t a b l e aluminum c o n t e n t o f s e l e c t e d h o riz o n s of pedons s tu d ie d u s in g d i f f e r ­ e n t e x t r a c t a n t s ........................................................ 59 v iii INTRODUCTION Spodosols by a d i a g n o s t i c ( p o d z o ls ) a r e s o i l s w hich a r e c h a r a c t e r i z e d s u b su rfa c e h o riz o n , th e spodic h o riz o n . spodic h o riz o n i s illu v ia l The on e i n w h i c h a r e l a t i v e l y h i g h c o n t e n t o f o r g a n ic m a t t e r and s e s q u i o x i d e s occurs. These su b ­ s t a n c e s form an a c t i v e amorphous m a t e r i a l w i t h a h i g h e x ­ change c a p a c ity , large surface area, and h ig h w a te r r e t e n ­ tio n property. I n b o r d e r - l i n e c a s e s where t h e m o rp h o lo g ic a l f e a t u r e s a r e so w eakly e x p re ss e d as t o p r e v e n t th e i d e n t i f i c a t i o n such s o i l s i n t h e f i e l d by t h e s o i l s c i e n t i s t , of th e chem ical c r i t e r i a b a s e d on t h e l a b o r a t o r y m e a s u r e m e n t s o f o r g a n i c m a t e r i a l a n d s e s q u i o x i d e s w o u l d b e o f much v a l u e i n i d e n t i ­ f i c a t i o n and c l a s s i f i c a t i o n of th ese s o ils . One o f t h e t h e o r i e s c o n c e r n i n g t h e f o r m a t i o n o f spodic h o rizo n s p o s tu la te s th e m utual f l o c c u l a t i o n tiv e ly charged sesquioxide c o llo id s organic c o l l o i d s . O ther t h e o r i e s of p o s i­ and n e g a t i v e l y c h a rg e d suggest the changes in r e d o x - p o t e n t i a l o r i n pH a s a p r i m a r y c a u s e f o r o r g a n i c m a t e r i a l and s e s q u io x id e s f l o c c u l a t i o n . The m o r e r e c e n t a n d a c c e p te d t h e o r i e s i n d i c a t e th e in v o lv em en t of a c h e l a t i o n 1 2 r e a c t i o n and e l e c t r o s t a t i c bonds i n t h e a s s o c i a t i o n betw een organic m a tte r, i r o n , and aluminum. S u c h co mp ou nds a r e s o l u b l e a n d a r e i m m o b i l i z e d w he n : t h e c o n c e n t r a t i o n o f s e s ­ quioxide reaches a c r i t i c a l o r g a n i c m e ta l complex i s lev el, or th e h y d ro ly sis o f th e i n d u c e d b y a c h a n g e i n pH, o r t h e r e i s b io l o g i c a l d e s tr u c ti o n of organic lig a n d s . A l a r g e n u m b e r o f o r g a n i c com po unds w i t h a p p r o p r i a t e e le c tr o n - d o n o r groups c a p a b le o f c h e l a t i n g th e m e ta ls can be used to e x tr a c t th e organic m a tte r, i r o n and aluminum from t h e im m o b iliz e d amorphous m a t e r i a l o f t h e s p o d ic h o r i z o n . The o b j e c t i v e s of th is study a re as fo llo w s: ( 1 ) To s t u d y v a r i a t i o n s v i a l organic carbon, of the e x tra c ta b le i l l u ­ i r o n and aluminum c o n t e n t s of th e spodic h o r iz o n w ith d i f f e r e n t i n o r g a n i c and o rg a n ic aqueous c h e ­ l a t i n g a g e n ts and t h e i r r e l a t i o n s h i p t o t h e pH o f t h e ex tractio n . ( 2 ) To i n v e s t i g a t e t h e e x t r a c t a b i l i t y of i l l u ­ v i a l o r g a n i c c a r b o n , i r o n and aluminum o f t h e s p o d i c h o r i z o n as a f f e c t e d by th e p o s i t i o n o f t h e ground w a te r ( i n a to p o seq u en ce o f S p o d o s o ls ) and th e d e g re e o f s p o d ic h o r i z o n developm ent ( i n w e l l - d r a i n e d S podosols w ith v a r y in g d e g re es of spodic h o riz o n developm ent). ( 3 ) To e v a l u a t e t h e r e l a t i v e su itab ility of the v a r i o u s e x t r a c t i n g a g e n ts i n t h e c h a r a c t e r i z a t i o n and c l a s s i ­ ficatio n o f t h e p e d o n s s t u d i e d a c c o r d i n g t o t h e ne w S o i l T ax onom y, 1 9 7 0 . LITERATURE REVIEW I l l u v i a l Spodic H orizon The e a r l y W e s t e r n E u r o p e a n o b s e r v e r s its o f o r t s t e i n and s u b s e q u e n t r e c o g n i t i o n by R u s s ia n w o rk e rs b r o u g h t a b o u t t h e i d e a o f t h e downward t r a n s l o c a t i o n o f s u b s t a n c e s the upper lay ers o f th e s o i l t o low er l a y e r s . from In g en eral, t h e t r a n s f e r e n c e was t h o u g h t o f a s o c c u r r i n g i n s o l u t i o n . P a v l i n o v i n 1887 s u g g e s t e d t h a t t h e mo ve m e nt o f c l a y p a r t i ­ cles o ccurs i n s o l u t i o n (M uir, 1961). However, t h e more g e n e r a l c o n c e p t o f i l l u v i a t i o n i n t h e p e d o l o g i c a l s e n s e was s u g g e s t e d b y V y s o t z k y i n 1 8 8 9 , who d e f i n e d t h e i l l u v i u m a s t h e m a t e r i a l washed o u t o f t h e s u r f a c e s o i l and d e p o s i t e d below t o form a d e f i n i t e h o r i z o n o f a c c u m u l a t i o n , th e i l l u v i a l h o riz o n (M uir, 1961). such as Z a k h a r o v i n 1906 a d v o ­ c a te d th e r e c o g n itio n of th e i l l u v i a l h o riz o n as a p a r t of t h e p o d z o l i c p r o f i l e and p ro p o s e d t h a t t h e f o ll o w i n g l e t t e r s should sym bolize th e v a rio u s h o riz o n s : zon; B, t r a n s i t i o n a l v ial (o rtstein ) A, u p p e r humus h o r i ­ or p o d z o l i c - e l u v i a l h o riz o n ; h o r i z o n ; D, p a r e n t m a t e r i a l . C, i l l u ­ This p a r t i c u ­ l a r u s a g e o f s y m b o l s c o n t i n u e d among many R u s s i a n w o r k e r s u n t i l a b o u t 1 9 3 0 , w he n t h e f o r m e a r l i e r p r o p o s e d b y G l i n k a : A, e l u v i a l ; B , i l l u v i a l ; C, p a r e n t m a t e r i a l , w i t h t h e a d d i t i o n 3 4 o f num eral s u b s c r ip ts (M uir, f o r s u b d i v i s i o n s , became t h e s t a n d a r d 1 961 ). S t o b b e and W r ig h t (1 9 5 9 ) g i v e a more d e f i n i t e d i s ­ t i n c t i o n b etw een t h e i l l u v i a l h o r iz o n and o t h e r h o r iz o n s of a c h a r a c t e r i s t i c p o d z o l s o i l i n t h e f o l l o w i n g s eq u e n c e where A0 o r C>2 h o r i z o n i d e n t i f i e s th e organic s u rfa c e la y e r . D ir e c tly under th e s u rfa c e organic h o rizo n i s a lig h t-co lo red e l u v i a l A2 h o r i z o n w h i c h h a s l o s t r e l a t i v e l y m o r e s e s q u i o x i d e th an s i l i c a . The A2 h o r i z o n r e s t s over a d ark -co lo red i l l u ­ v i a l h o r i z o n i n w hich t h e o r g a n i c m a t e r i a l and s e s q u i o x i d e s l e a c h e d f r o m t h e A2 h o r i z o n h a v e a c c u m u l a t e d . Th e new c o m p r e h e n s i v e s y s t e m o f s o i l c l a s s i f i c a t i o n d e v e lo p e d by t h e U .S. D e p a rtm e n t o f A g r i c u l t u r e ( S o i l Taxo­ nomy , 1 9 7 0 , u n e d i t e d ) d e f i n e s s p o d i c h o r i z o n s a s d i a g n o s t i c s u b - s u r f a c e i l l u v i a l h o riz o n s w hich a r e c h a r a c t e r i s t i c tu res of most S p o d o so ls fea­ ( p o d z o l s ) and a r e d e v e lo p e d from medium t o c o a r s e - t e x t u r e d m a t e r i a l u n d e r h u m id e n v i r o n m e n t and f o r e s t or h e a th v e g e t a t io n . a c t i v e amorphous m a t e r i a l s These h o riz o n s c o n ta in composed o f o r g a n i c m a t t e r and aluminum, w ith or w i t h o u t i r o n . Th e w o r d " a c t i v e " to d e s c r ib e m a t e r i a l havin g high exchange c a p a c ity , surface area, and h ig h w a te r r e t e n t i o n . is used large 5 T h e o r ie s of O rganic M a t t e r and S e s q u io x id e s T r a n s l o c a t i o n and A c cu m u la tio n ~ in S u b s o i l The m echanism s by w h ich t h e o r g a n i c m a t t e r a nd s e s q u i ­ oxides, p a r t i c u l a r l y th e l a t t e r , have b e e n removed from t h e A h o r iz o n s and d e p o s i t e d i n th e i l l u v i a l B h o r i z o n , been of most co n cern i n th e p ro c e s s ever, have of p o d z o liz a tio n . How­ t h e p o d z o l i z a t i o n p r o c e s s w i l l n o t b e t a k e n t o me an only th o s e r e a c t i o n s i n v o l v e d i n m o b i l i z a t i o n and s u b s e q u e n t d e p o sitio n of sesquioxides in the pedo-sphere. w i l l b e n e c e s s a r y t o c o n s i d e r t h e sum t o t a l R ather, it of a l l th e r e ­ a c t i o n s a p p a r e n t l y a s s o c i a t e d w ith t h e developm ent of t h e k i n d and s e q u e n c e o f s o i l h o r i z o n s d e s c r i b e d by S t o b b e and W right as c h a r a c t e r i s t i c In g eneral, of podzols. th e r e a re th r e e groups of r e a c tio n s as b e in g c o n t r i b u t o r s t o p o d z o l i z a t i o n . 1934, 1942) t h e o r i e s M a ttso n 's cited (1 9 3 1 * on i s o e l e c t r i c w e a t h e r i n g , w h i l e a p ­ p e a r i n g q u i t e sound c h e m i c a lly , r e q u i r e a pH g r a d i e n t w i t h d e p t h i n t h e s o i l w h i c h i s n o t commonly f o u n d i n p o d z o l s . B e f o r e t h i s mechanism i s l i g h t l y dism issed, however, consi­ d e r a t i o n s h o u ld b e g iv e n t o t h e mechanism as b e i n g r e a s o n a b l y im portant in the e a r l i e s t s t a g e s o f p o d z o l d e v e l o p m e n t when t h e r e may b e a s u f f i c i e n t pH g r a d i e n t i n t h e p r o f i l e . A more w i d e l y a c c e p t e d r e a c t i o n u s e d t o e x p l a i n p o d ­ z o liz a tio n has been th e c i t a t i o n ence i n s o l u b i l i t i e s quioxides of iro n . of th e s ig n if ic a n t d i f f e r ­ of th e reduced versu s th e o x id ized s e s ­ Link ( 1958) r e p o r t s v a rio u s s o l u b i l i t y 6 p r o d u c t ( KSp ) v a l u e s f o r f e r r o u s o x i d e (FeO) a n d f e r r o u s h y d r o x i d e Fe (O H )g r a n g i n g f r o m 7x l O - 1 3 t o 4 . 5 x l 0 ~ 2 1 . The 1 Ko f i g u r e s most a c c e p te d by L ink ( i b i d . ) 2 5 °C o r a s o l u b i l i t y a r e 8x10" o f a b o u t 1 . 5x l O "5 m o l e s / l i t e r a t 2 5 ° C . S o lu b ility products fo r f e r r i c o x i d e ( F e 2 C>2 ) a n d f e r r i c h y d ro x id e F e ^ H ) ^ a r e r e p o r t e d by Link ( i b i d . ) 3 . l 6xlO - ^ at o r 3 . 2 x l O ” 36 an(j s o l u b i l i t i e s as b e in g as b e i n g from 3 t o 3.4 x 1 0 -1 ® m o l e s / l i t e r . To s u b s t a n t i a t e t h i s m e c h a n i s m o f r e d u c t i o n t o t h e fe rro u s s t a t e in th e A horizon w ith a subsequent o x id a tio n to cause p r e c i p i t a t i o n i n th e B horizon* i t m u s t b e s ho wn t h a t s u c h r e a c t i o n s a r e i n d e e d a c t i v e i n s o i l s t h a t show a d v a n c e d p o d zo l m orphology. M c K e n z i e a n d E r i c k s o n ( 1 9 5 ^ ) made r e d o x - p o t e n t i a l m e a s u r e m e n t s i n tw o p o d z o l p r o f i l e s d u r i n g on e summer a n d f o u n d s l i g h t b u t d e f i n i t e e v i d e n c e o f h i g h e r o x i ­ d ation p o te n tia ls in th e B h o rizo n th an in th e A h o riz o n . l a t e r p a p e r b y M cK en zi e* tials ert a l . A ( i 960) re p o rte d redox p o te n ­ f o r a tw o y e a r p e r i o d a n d f u r t h e r c o n f i r m e d t h a t Bi r horizons of podzols have a h ig h e r o x id iz in g p o t e n t i a l th a n do e i t h e r o v e r l y i n g o r u n d e r l y i n g l a y e r s . The c a u s e o f t h e o b s e r v e d v a r i a t i o n i n r e d o x p o t e n t i a l s b e t w e e n t h e A* B a n d C h o r i z o n s was f u r t h e r e x a m i n e d b y M c K e n z i e , et_ al_. They fo u n d t h a t f e r r i c citrate (ib id .). o x i d i z i n g o r g a n i s m s w e r e many t i m e s m o r e common i n t h e A h o r i z o n t h a n i n Bi r h o r i z o n . i m p lic a tio n s a re t h a t d ic a r b o x y lic and t r i c a r b o x y l i c Th e acids a r e f o r m e d i n t h e s o i l a n d a c t a s c o m p l e x i n g o r g a n i c co mpo unds w ith th e m e ta ls. Th e i n f e r e n c e b y M c K e n z i e , a t a l . organo complex i s t h a t a m etal- i n v o l v e d a s a v e h i c l e i n t h e m o ve m e nt o f iro n in the p r o f ile s e r v e s t o i n t r o d u c e a n o t h e r mechanism commonly d e s c r i b e d b y s o i l s c i e n t i s t s p o d zo lizatio n . (ib id .) K aurichev, et. a T . as b e in g i n v o l v e d i n ( 1 9 5 8 ) s u m m a r i z e s much o f t h e R u s s i a n r e s e a r c h on t h e f o r m a t i o n o f i r o n - o r g a n o c o m p l e x e s in the pro cess o f p o d z o l i z a t i o n as fo llo w s : "l. In s o i l s w ith tem porary excess m o is tu re , reducing processes appear during th e sp rin g th a t le ad to th e form ation of fe rro u s ir o n . "2. The f e r r o u s i r o n , r e a c t i n g w i t h w a t e r - s o l u b l e o r g a n ic s u b s t a n c e s , forms complex o r g a n ic i r o n compounds. Upon l a t e r o x i d a t i o n o f t h e i r o n t h e s e com po un ds m a i n t a i n a h i g h s o l u b i ­ l i t y and m ig r a te th ro u g h t h e s o i l . "3. There i s a p o s s i b i l i t y of th e fo rm a tio n of c o m p l e x o r g a n i c - i r o n com pound s u n d e r c o n d i ­ t i o n s o f t h e f o r m a tio n of p o d z o l i c and bog s o i l s as w e l l as s o l o t h s , s o l o n e t z and d e p ressio n podzolized s o i l . " B l o o m f i e l d (1 9 5 3 * 1 9 5 ^ ) f o u n d t h a t a q u e o u s l e a c h a t e s f e ro u s and b r o a d le a f e d f o r e s t l i t t e r drated f e r r ic tio n of c o n i­ re a d ily d isso lv e d hy­ and aluminum o x id e w i t h t h e s u b s e q u e n t f o r m a ­ o f s o l u b l e f e r r o u s and aluminum com plex compounds. a mechanism w ould remove t h e n e c e s s i t y o f f i r s t Such reducing the i r o n as i s n e c e s s a r y i n t h e scheme p o s t u l a t e d by K a u r i c h e v , et a l . (ib id .). However, a n o t h e r mechanism o r o t h e r m echa­ nism s a r e n e c e s s i t a t e d f o r s to p p in g th e m o b iliz e d m a t e r i a l s in th e B horizon. 8 From t h e d a t a p r e s e n t l y a v a i l a b l e i t s i n g l e mechanism i s to tally tra n s p o rt in the process a p p e a r s t h a t no re sp o n sib le fo r sesquioxide of p o d z o liz a tio n . The r e d u c t i o n i n t h e A h o r i z o n s , mo ve m e nt a n d s u b s e q u e n t o x i d a t i o n i n t h e B horizon ap p ears, from l a b o r a t o r y and f i e l d d a t a , p l a u s i b l e m echanism . to be a very Co m pl e x m e t a l a n d o r g a n i c c o m p o u n d s h a v e b e e n shown t o b e a p l a u s i b l e s o l u b i l i z i n g m e c h a n i s m , b o th w i t h com plexes of th e f e r r i c and f e r r o u s io n s as w e l l as w i t h a l u m i n u m f o r t h e i r move me nt i n t h e s o i l . e v i d e n c e now se e m s t o b e i n F u rther f ie ld o r d e r t o e s t a b l i s h t h i s mechanism as a m ajor c o n t r i b u t o r i n th e p o d z o l i z a t i o n p ro c e s s . C o m pl e x F o r m a t i o n a n d C h e l a t i o n R e a c t i o n s M a r t e l l and C a l v i n (1952) have d e s c r i b e d a com plex as b e i n g a s u b s t a n c e w i t h an e l e c t r o n donor t h a t com bines w ith th e m etal io n . However, i f t h e s u b s t a n c e w hich com bines w i t h t h e m e t a l p o s s e s s e s two o r more d o n o r g r o u p s so t h a t on e o r m o r e r i n g s a r e f o r m e d , a c h e l a t e compound o r m e t a l ch elate is formed and t h e donor i s s a id to be a c h e la tin g agent. The a u t h o r s r e p r e s e n t s c h e m a t i c a l l y sim p le examples o f complex f o r m a t i o n and c h e l a t i o n r e a c t i o n s i n t h e f o l l o w i n g manner, w ith o u t f u r t h e r c o n s i d e r a t i o n of th e n a t u r e bonds: I - M e t a l Co m pl e x A M + 4 A = A -lyl- A A of the 9 II - M etal C h e la te Where: A-A M A A M + 2 A-A = A -fy - A A rep resen ts a c h ela tin g agent re p re s e n ts a m etal ion r e p r e s e n t s a com plexing a g e n t T h i s t y p e o f r i n g f o r m a t i o n was t e r m e d c h e l a t i o n b y M o rg a n a n d Drew ( M a r t e l l a n d C a l v i n , used to cover a l l types 1952) and t h e te rm h as b een of r i n g system s w ith m e ta l and w ith h y drogen, w ith o u t r e g a r d t o t h e n a t u r e of th e c h em ica l bond involved. However, as i n o r d i n a r y com plex compounds, t h e ty p e o f l i n k a g e which b in d s th e m e ta l i n t o t h e c h e l a t e ring may b e t h e o r d i n a r y c o v a l e n t o r t h e c o o r d i n a t e c o v a l e n t t y p e w i t h some p a r t i a l i o n i c c h a r a c t e r o f t h e s e c o v a l e n t b o n d s . S i n c e many o r g a n i c m o l e c u l e s h a v e m o r e t h a n t w o p o s i t i o n s th r o u g h which c o v a l e n t or c o o r d i n a t e c o v a l e n t bonds w i t h t h e m e t a l may b e f o r m e d , t h e t e r m s u n i d e n t a t e , b i d e n t a t e , den tate, q uadridentate, e tc., w e re p r o p o s e d by Morgan t o d e n o te com plexes form ed w i t h m o le c u le s one, two, t h r e e , O bviously, four, e tc., tri- or io n s c o n ta in in g donor groups r e s p e c t i v e l y . com plexes w i t h u n i d e n t a t e s u b s t a n c e s would n o t in v o lv e c h e la tio n . T a b l e 3 i n t h e M e t h o d s s e c t i o n shows t h e c h e m ic a l fo rm u la e and c h a r a c t e r i s t i c s o f some c h e l a t i n g agents used. The f a c t o r s c o n trib u tin g to the s t a b i l i t y c h e l a t e a r e d i s c u s s e d b y Lehman ( 1 9 6 3 ) . fies such f a c t o r s ion, (2) e f f e c t in th re e c a te g o rie s: o f 1c h e l a t i n g a g e n t , of a m etal The a u t h o r c l a s s i ­ (l) effect (3) effect of of m etal 10 environm ent. B a s e d on t h e t y p e o f b o n d s f o r m e d , c h a r g e , and th e e l e c t r o - n e g a t i v i t y a r o l e i n t h e complex s t a b i l i t y . its in f lu e n c e through: of th e m etal ion p lay s A c h e la tin g agent exerts t h e number o f r i n g s form ed by a m o le c u le o f c h e l a n t and t h e m e ta l i o n ; late ring; the size steric Among t h e e n v i r o n m e n t a l f a c t o r s la tio n equilibrium , e f f e c t s and e n tro p y a ffe c tin g the che­ tem perature plays a r o le . tem perature g e n e ra lly r e s u l t s constant. of the che­ t h e donor atom , which d e te r m in e s t h e ty p e o f bond form ed; re s o n a n c e s t a b i l i z a t i o n ; effect. the s iz e , Increasing in a decrease in s t a b i l i t y S i n c e c h e l a t i n g a g e n t s a r e g e n e r a l l y Lewis b a s e s a n d w i l l r e a c t w i t h L e w i s a c i d s , pH s h o u l d a l s o b e c o n s i ­ dered. Hydrogen i o n w i l l compete w i t h m e ta l io n f o r t h e c h e l a n t where th e s t a b i l i t y c o n s t a n t i s m etal c h e la te s w ith h igh s t a b i l i t y b y lo w pH. low. However, t h e co n stan t are u n affected E f f e c t i v e c h e l a t i o n a t h ig h pH 's depends on t h e s o l u b i l i t y p ro d u ct of th e hydroxide or a s s o c ia ti o n c o n s ta n t of t h e h y d ro x id e com plex, hydroxide i s 10 i.e., s o l u b i l i t y product of f e r r i c a n d a t a pH o f 8 o r 9 i t b e c o m e s d i f f i ­ c u l t t o g e t good c h e l a t i o n o f i r o n w i t h EDTA. S o i l O rganic M a t t e r and C h e l a t i o n Among t h e m e c h a n i s m s r e s p o n s i b l e f o r t h e c o m p l e x i n g o f t h e m e t a l s by s o i l co ag u latio n , organic m a tte r , ion exchange, c h e l a t i o n and complex surface adsorption, tio n re a c tio n s are described (M ortensen, 1963). and p e p t i z a ­ Very l i t t l e 11 i s known c o n c e r n i n g t h e n a t u r e o f t h e l i g a n d s i n p o l y m e r i c components o f o r g a n ic m a t t e r w hich c h e l a t e m e t a l s , b u t c a r ­ boxyl, carb o n y l, hydroxyl, and amide g ro u p s a r e p r o b a b l y involved. A general c la s s ific a tio n g iv e n by A l l i s o n , nic m atter is "(l) of s o i l organic m a tte r is 1965^ and A l l i s o n , et al., 1965. Th e o r g a ­ d iv id ed in to th e follow ing c a te g o rie s : f r e s h p l a n t and a n im a l r e s i d u e c a p a b l e of r a p i d decom­ p o s i t i o n and l o s s n u trien ts, resistan t (2) of i d e n t i t y w ith sim ultaneous r e l e a s e 'hum us' w hich r e p r e s e n t s t h e v a s t b u l k of organic m a tte r, having a h igh a d s o r p tiv e c a p a c ity f o r c a t i o n s and c a p a b le o f im p ro v in g s o i l s t r u c t u r e , (3) in ert of and f o r m s o f n e a r l y e l e m e n t a l C, s u c h a s c h a r c o a l , c o a l or g r a p h i t e , which a r e o c c a s i o n a l l y p r e s e n t i n a p p r e ­ ciable q u a n titie s." B roadbent (1953) 3 w h ile c o n s id e rin g th e c o n s t i t u e n t s of p la n t t i s s u e as p re c u rs o rs such c o n s t i t u e n t s (l) of s o il i n t o more s p e c i f i c polysaccharides, (2) l i g n i n , organic m a tte r , groups d iv is io n s as fo llo w s: and (3 ) p r o t e i n . M ore r e ­ c e n t s t u d y ( M e h t a et_ al_ 1 9 6 1 ) i n d i c a t e t h a t c a r b o h y d r a t e s a c c o u n t f o r no more t h a n 2 0$ and p o l y s a c c h a r i d e s 2$ o f t h e s o i l organic m a tte r. less than P o lysaccharides are also r e a d i l y a t t a c k e d and u t i l i z e d by t h e s o i l organism s. Because of such s u s c e p t i b i l i t y to m ic ro b ia l a t t a c k th e p r i n c i p a l s tr u c tu r a l p olysaccharides of p la n ts a re th e re fo re not lik e ly 12 t o a c c u m u l a t e i n s o i l , w h e r e a s l i g n i n i s b r o k e n down o n l y slow ly. N evertheless d r a s tic a l t e r a t i o n tak es p la ce in p la n t l i g n i n d u rin g th e co u rse of decom position in s o i l . a c c o u n t s f o r 5% o f t h e s o i l ganic n itro g e n i s organic m a tte r. Much o f t h e o r ­ i n t h e form o f p o l y p e p t i d e s and amino a c i d s i n t i m a t e l y com plexed w i t h p o l y s a c c h a r i d e s , v ativ es, and pigm ents (Bremner, lig n in d e ri­ 1965). In a d d itio n to th e in te rm e d ia ry products of organic m a t t e r breakdow n and s e c o n d a r y s y n t h e t i c p r o d u c t s b ia l actio n , th ere e x ists more r e s i s t a n t p r o d u c t s Th e n a t i v e N itrogen of m icro­ i n s o i l an accu m u latio n of th e of deco m p o sitio n : organic f r a c t i o n of s o i l s t h e s o i l humus. i s made up o f a h e t e r o ­ geneous m ix tu re of polym erized aro m a tic m o le c u le s , p o ly ­ s a c c h a r i d e s , bound amino a c i d s , u ro n ic a c id polym ers, v a r i o u s o r g a n i c p h o s p h o ro u s compounds. is and By d e f i n i t i o n humus a complex m ix tu r e of amorphous and c o l l o i d a l s u b s t a n c e s a r i s i n g from m o d i f i e d p l a n t m a t e r i a l s and s y n t h e s i z e d m i c r o ­ b ial tissu e. The c h a r a c t e r i z a t i o n o f humus i s c o m p le te and c o n c e p ts c o n c e rn e d w ith i t s are, to a larg e ex ten t, speculative f a r from form ative p ro cesses (Stevenson, 1 96 5). M o r t e n s e n a n d Himes ( 1 9 6 5 ) r e c o u n t e d some d i f f i c u l ­ ties a s s o c i a t e d w ith th e f r a c t i o n a t i o n and q u a l i t a t i v e s tu d y of th e s o i l o rg an ic m a t te r . c a n b e overcome. Some o f t h e s e p r o b l e m s Th e m o s t i m p o r t a n t i s inorganic c o n stitu e n ts such as c l a y , th e rem oval of salts, and m e ta ls i f th e 13 physico-chem ical p ro p e rtie s be s tu d ie d . o f t h e o r g a n i c co m p o u n d s a r e t o Th e a u t h o r s h a v e f u l l y d i s c u s s e d t h e v a r i o u s procedures used fo r f r a c tio n a tio n of organic m a tte r e x t r a c t s . Such p r o c e d u r e s i n c l u d e p a r t i a l f r a c t i o n a t i o n o f t h e c om po­ n e n ts i n o rg a n ic m a t t e r e x t r a c t s by p r e c i p i t a t i o n w ith a c id or m etal s a l t s or s o lu b ility d ifferen ces chrom atographic s e p a r a tio n s tio n in organic s o lv e n ts , of crude p r e p a r a tio n s , o f s u b s t a n c e s b y me an s o f a n e l e c t r i c cu rren t, separa­ diffu­ s i o n and s e d i m e n t a t i o n . S t u d i e s b y s e v e r a l r e s e a r c h e r s h a v e shown t h a t m o s t o f th e p r i n c i p a l c h e l a t i n g donor groups a re p r e s e n t i n s o i l o r­ ganic m a tte r . Such gro u p s i n c l u d e am ino, im in o , k e t o , hydroxy, t h i o e t h e r , carboxylate, and p h o s p h o n a te g r o u p s . Many l i g a n d g r o u p s p r o b a b l y f u n c t i o n l a r g e l y a s c e n t e r s ionic for exch a n g e b u t c h e l a t i o n - t y p e r e a c t i o n no d o u b t o c c u r s (M crtensen, 1963). A lthough th e lig a n d groups i n polym ers a r e n o t f r e e t o move a n d c l u s t e r a r o u n d a m e t a l i o n i n a way s m a l l l i g a n d s b e h a v e , a n d m o r e o v e r t h e n u m b e r o f c h e l a t e sites a r e c o m p a r a t i v e l y s m a l l , a fe w l i g a n d g r o u p s s h o u l d b e found i n a r r a y s which a r e s t e r i c a l l y favorable fo r c h e la tio n . S i d e c h a i n g ro u p s a r e u s u a l l y more e f f e c t i v e i n b i n d i n g m e ta ls th a n th e te r m in a l groups (Guard and W ilcox, 1956). The s t u d y o f B l o o m f i e l d i n 1956 on t h e m o b i l i z a t i o n o f i r o n i n p o d z o l s o i l s by a q u eo u s l e a f e x t r a c t s suggests t h a t t h e p o ly m e ric components o f o rg a n ic m a t t e r c h e l a t e 14 m etals. B lo o m fie ld re c o g n iz e s p o ly p h e n o ls as b e in g th e p r i n c i p a l c h e l a t o r s i n aqueous l e a f e x t r a c t s . S chnitzer ( 1 9 5 4 ) a n d S c h n i t z e r a n d DeLong ( 1 9 5 5 ) h a v e i n d i c a t e d t h e considerable c h e la tin g a b i l i t y l e a f e x tra c t's . of poly sacch arid es in aqueous T h e s e co mp ou nd s a r e a l s o f o u n d t o b e a c o n s ­ titu e n t part of fu lv ic a cid . hydrolyzates of s o i l The p r e s e n c e o f a m i n o a c i d s i n organic m a tte r and th e c h e l a t i n g a b i l i t y o f p r o t e i n s a s w e l l a s a n u m b e r o f l o w m o l e c u l a r w e i g h t com­ pounds has b e en c o n firm e d by a number of i n v e s t i g a t o r s (M ortensen, 1 9 6 3 )- A ll such s tu d ie s su g g est th e c h e la tio n r e a c t i o n a s on e o f t h e m e c h a n i s m s b y w h i c h o r g a n i c m a t t e r forms com plexes i n s o i l . However, i n a more s p e c i f i c study S c h n i t z e r and S k in n e r ( 1963) i n v e s t i g a t e d t h e r e a c t i o n s b e ­ tween a number o f m e t a l io n s and t h e o r g a n i c m a t t e r o f a p o d z o l Bh h o r i z o n . titratio n , U sin g p o t e n t i o m e t r i c and c o n d u c to m e tr ic a d s o r p t i o n and i n f r a r e d s p e c tr o s c o p y and f l o c c u ­ l a t i o n m ethods, th ey concluded t h a t th e o rg an ic m a tte r formed s t a b l e w a te r s o l u b l e com plexes w i th a l l stu d ied of th e m etals ( F e + + + , A l + + + , Ca++, Mg**, Cu+ + , a n d N i + + ) o v e r t h e pH r a n g e e n c o u n t e r e d i n p o d z o l s o i l s . F erric iro n , aluminum a n d c o p p e r f o r m e d w a t e r s o l u b l e 1 : 1 m o l a r c o m p l e x e s a t pH 5 . However, a r a n g e o f m o l a r co m p le x es v a r y i n g from 1 :1 t o 6 : 1 w ere form ed and t h e com plexes w ere i n c r e a s i n g l y r e n d e r e d w a t e r i n s o l u b l e a s m o r e m e t a l was c o m p l e x e d . The n u m b e r - average m o le c u lar w eight of organic m a tte r used i n t h i s 15 s t u d y i n tw o d i f f e r e n t s o l v e n t s was f o u n d t o b e 6 7 0 , a n d from t h e m o l e c u l a r w e i g h t and from u l t i m a t e and f u n c t i o n a l group a n a l y s i s , th e m o le c u la r form ula c a l c u l a t e d t o be C2 i H i 2 (C 00 H )6 ( 0 H ) 5 ( C 0 ) 2 . The same a u t h o r s ( S c h n it z e r and S k in n e r, 1963), in a su b seq u en t s tu d y of th e r e a c t i o n s betw een d i f f e r e n t forms of i r o n a n d a l u m i n u m a n d t h e o r g a n i c m a t t e r o f t h e p o d z o l Bh horizon, s h ow e d t h a t on c o n t i n u o u s w e t t i n g a n d l e a c h i n g i n a p e r i o d o f one w e e k on e m o l e o f o r g a n i c m a t t e r m o b i l i z e d one mole o f i r o n from g o e t h i t e and an i r o n s a t u r a t e d e x change resin , and 1 .1 m ole o f aluminum from aluminum s a t u r a t e d e x ­ change r e s i n . Th e m e t a l u p t a k e i n r e a c t i o n w i t h g o e t h i t e a n d g i b b s i t e w as d e c r e a s e d w i t h a n i n c r e a s e i n pH. Th e me- t h y l a t i o n of most of th e a c t i v e a c id groups reduced i r o n uptake i n d i c a t i n g th e im p o rta n t r o l e of carb o x y l groups in the o rgano-m etallic re a c tio n s . S c h n i t z e r and S k i n n e r ( 1 9 6 6 ) c a r r i e d the s t a b i l i t y com plexes. on a s t u d y o f c o n s t a n t o f Cu+ + , F e + + , a n d Zn++ f u l v i c The r e s u l t s acid o b t a i n e d show t h a t t h e l o g K v a l u e s f o r C u - f u l v i c a c i d c o m p l e x e s w e r e pH d e p e n d e n t , t h a t i s , t h e s e v a l u e s w e r e i n c r e a s e d f r o m 5 * 7 8 t o 8 . 6 9 a s pH was i n ­ c r e a s e d from 3 -5 t o 5 - A s l i g h t i n c r e a s e was o b s e r v e d f o r Z n - f u l v i c a c i d c o m p l e x e s w h i l e t h e Fe + + - f u l v i c were u n a f f e c t e d . The o r d e r o f s t a b i l i t i e s formed betw een f u l v i c a c i d com plexes o f com plexes a c i d a n d C u " ^ , Zn+ + , a n d Fe"1^" d i d n o t 16 + > f o l l o w t h e I r v i n g - W i l l i a m s s e r i e s h u t was i n s t e a d Cu +4\ I. Fe Zn • I n a l a t e r a t t e m p t t o e v a l u a t e t h e m e t h o d s f o r the d e te rm in a tio n of s t a b i l i t y c o n sta n ts of m e ta l- f u lv ic a c i d c o m p le x e s , S c h n i t z e r and Hansen ( 1 9 7 0 ) fo u n d t h e f o l l o w ­ i n g o r d e r of' s t a b i l i t i e s F e ^ d a t lo w pH: Al+++> An i n c r e a s e i n i o n i c Cu+t > stren g th a r e more r e l e v a n t (stab ility f o r Co+ + - f u l v i c The a u t h o r s b e l i e v e t h a t s t a b i l i t y (u) Co+j > Pb++ ( u ) a t a pH a s lo w a s 3 c a u s e d a l i n e a r d e crea se in log K v alu es T h i s was e s p e c i a l l y t r u e Ni++> to s o i l s co n stan ts). a c id com plexes. c o n s t a n t s m e a s u r e d a t low th a n th o se determ ined a t higher (u). S c h n i t z e r and D e s ja r d in s ( 1969) stu d ie d th e n a tu r a l l e a c h a t e f r o m a h u m id p o d z o l a n d a n a l y z e d i t b y c h e m i c a l a n d s p e c tro s c o p ic m ethods. About 87$ of th e d r y , o f t h e l e a c h a t e was f o u n d t o b e f u l v i c a c i d , c o n s is tin g m ainly of p o ly s a c c h a rid e s a s h - f r e e w eight th e rem ainder and n i t r o g e n o u s compounds. The o r g a n i c m a t t e r i n t h e l e a c h a t e h a d a l l t h e c h a r a c t e r i s t i c s o f a n e f f i c i e n t irn. d - c o m p l e x i n g a g e n t , high w ater s o l u b i l i t y , as e v id e n c e d from i t s thus p la y in g a s i g n i f i c a n t r o le in m etal organic m a tte r i n t e r a c t i o n s in s o ils . 17 E x t r a c t i o n of O rg an ic M a t t e r from S o i l s M o r t e n s e n a n d Himes tio n procedures of s o i l ( 1 ) proxim ate a n a ly s is , clay , ( 1965) have review ed th e e x t r a c ­ organic m a tte r as fo llo w s: ( 2 ) a d s o r p t i o n o f o r g a n i c m a t t e r on ( 3 ) organo-m ineral g e ls , (4) aqueous e x t r a c t a n t s and ch elatin g e x tractan ts. The p r o x i m a t e a n a l y s i s in v o lv e s a t t r a c t i o n betw een s o l u t e a n d s o l v e n t a n d g i v e s some g e n e r a l i n f o r m a t i o n on t h e q u a n tity of d i f f e r e n t c la s s e s o f compounds. d i f f e r e n t i a l s o l u b i l i t y problem s, In a d d itio n to a d s o rp tio n of organic m a t t e r on t h e s u r f a c e o f s o i l m i n e r a l s , p a r t i c u l a r l y c l a y m i n e r a l s , make t h e e x t r a c t i o n of organic m a tte r d i f f i c u l t . Some o r g a n i c m o l e c u l e s a r e a p p a r e n t l y h e l d t o t h e c l a y s u r ­ fa c e through C -H ...0 ( clay -m in eral su rfa ce ) bonds, although any s o r b a t e c a p a b le o f s u p p ly in g e l e c t r o n s t o t h e in c o m p le te P o rb itals of adsorbed or l a t t i c e aluminum c o u l d b e a d s o r b e d . Compounds c o n t a i n i n g e l e c t r o - n e g a t i v e e l e m e n t s may b e a d s o r b e d by a h y d ro g e n b o n d in g m echanism. N egatively c h a rg e d o rg a n ic a n io n s and p o ly a n io n s a r e a p p a r e n t l y l i n k e d t o t h e c l a y s u r f a c e t h r o u g h p o l y v a l e n t i n o r g a n i c c a t i o n s and io n iz e d c arb o x y l groups adsorbed, tioned. (clay-M -OOCR). Among t h o s e c a t i o n s a lu m i n u m o r i r o n h y d r o x i d e p o l y m e r s c a n b e m e n ­ It a p p e a r s t h a t t h e r e a g e n t s w h ic h decompose t h e clay l a t t i c e , such as p h o s p h a te , flu o rid e, s t r o n g b a s e and h y d r o f l u o r i c a c i d may b e m o s t u s e f u l f o r o r g a n i c m a t t e r ex tractio n . 18 O rgano-m ineral c o l l o i d s th o se o c c u rrin g as a r e s u l t w i t h aluminum and i r o n , in the s o i l , p articu larly of i n t e r a c t i o n of organic m a tte r can be t r a n s f e r r e d i n t o w a te r - s o l u b le h y d r o x y c o m p l e x e s i n a s l i g h t l y a l k a l i n e m e d iu m , w h i l e a s t r o n g l y a l k a l i n e med ium may c o m p l e t e l y h y d r o l y z e t h e m . The p r e s e n c e o f f r e e m o n o m e r i c f o r m s o f o r g a n i c m o l e ­ cules s u c h a s amino a c i d s a n d h y d r o c a r b o n s n e c e s s i t a t e s rem oval i n o rd e r t o i n c r e a s e t h e e f f i c i e n c y th eir of e x tr a c ti o n . Such p r e t r e a t m e n t p ro c e d u r e s i n c l u d e t h e u s e o f o rg a n ic r e ­ a g e n ts such as b e n z e n e , m e th a n o l, c h lo r o f o r m , and e t h a n o l , w e ll as b a l l - m i l l i n g t h e s o i l and s u l f a c e t o l y s i s tric f r a c t i o n a t i o n t o remove t h e " u n h u m ifie d " m aterial. as or densim e- or unadsorbed H y d r o f l u o r i c a c i d - h y d r o c h l o r i c a c i d m ix tu r e s and d e c a l c i f i c a t i o n w i t h 0 . 1 N h y d r o c h l o r i c a c i d h a v e i n some i n s ­ tan ces in c re a se d the e ff ic ie n c y Himes, of e x tra c tio n (M ortensen and 1 9 6 5 )Aqueous i n o r g a n i c and o r g a n i c e x t r a c t a n t s h a v e b e e n w idely used to e x t r a c t s o i l organic m a tte r. Th e s u c c e s s f u l u se of n a t u r a l and s y n t h e t i c c h e l a t i n g a g e n ts t o e x t r a c t m e t a l s a n d o r g a n i c m a t t e r f r o m s o i l a r e t o some d e g r e e i n d i ­ cativ e of th e c ir c u m s t a n tia l evidence t h a t m etals a re c h e la ­ t e d by o rg a n ic m a t t e r . S e v e ra l re s e a rc h e r s have used c h e la tin g a g en ts to desorb the m ic ro n u trie n ts able to p la n ts . f r o m t h e s o i l a n d make t h e m a v a i l ­ D i o n a n d Mann ( 1 9 4 6 ) h a v e sh own t h a t n e u t r a l 19 sodium and p o t a s s i u m p y r o p h o s p h a t e s , a s e x t r a c t a n t s f o r m a n­ g a n e s e , a r e much m o r e e f f e c t i v e t h a n t h e c o r r e s p o n d i n g o r t h o ­ p h o s p h a te s and t h a t a s o l u b l e complex o f m a n g a n i-p y ro p h o s p h o ric a c i d H(MnP2 0 y ) h a s b e e n i d e n t i f i e d in the b u ffered pyro­ p h o s p h a te i n which manganese h as a v a le n c e of 3. H e i n t z and Mann ( 1 9 ^ 7 ) i n d i c a t e t h a t v a r i o u s o r g a n i c h y d r o x y - a c i d s a r e a lm o s t as e f f e c t i v e as p y r o p h o s p h a t e and more e f f e c t i v e t h a n t h e c o rr e s p o n d in g u n s u b s t i t u t e d a c id s as s o i l manganese ex­ tractan ts. K a nw a r ( 1 9 5 * 0 w as a b l e t o c o r r e c t t h e c o p p e r d e ­ f i c i e n c y c a u s e d by f i x a t i o n by paddy s o i l s m atter content. high in o rg an ic Sodium v e r s e n a t e and sodium p y r o p h o s p h a t e a p p e a r e d t o be s a t i s f a c t o r y com plex fo rm in g a g e n t s . and S h a rm a 's ( 1961) experim ental r e s u l t s M isra re v e a l th a t the .j, Cu io n s a r e a d so rb e d from c o p p e r s u l p h a t e s o l u t i o n by s o i l s and com post a l i k e , b u t t h e a d s o r p t i o n g r e a t l y depends upon CaCO^ c o n t e n t a n d pH o f t h e m a t e r i a l a n d t h a t t h e a d s o r b e d Cu++ i s read ily e x t r a c t e d by o rg a n ic a c i d s . E x p e rim en ts u s i n g t h e s o l u b l e component of p l a n t r e ­ s id u e s as w e ll as anim al b y p ro d u c ts as e x t r a c t a n t s elem en ts have b een c o n d u cte d by s e v e r a l s c i e n t i s t s . ( 1949) has d e m o n stra te d th e a b i l i t y of tra c e H urw itz of s o l u b l e components of a l f a l f a m e al and o a t s t r a w t o i n c r e a s e t h e amount o f c o p p e r l e a c h e d from a s a n d y loam and s i l t y c l a y loam s o i l . He a l s o i n d i c a t e s t h a t t h e amount o f c o p p e r l e a c h e d from t h e s o i l i s d i r e c t l y p r o p o r t i o n a l t o t h e amount o f p l a n t r e s i d u e u s e d . 20 F u r t h e r m o r e , he c o n c lu d e s t h a t t h e c o p p e r w hich e x i s t s m e t a l o - o r g a n i c complex i s in t h e form a f f e c t e d by t h e s o l u b l e components of t h e p l a n t r e s i d u e . M i l l e r and O hlrogge (1 9 5 8 ), of c h e la te -c o n ta in in g m a te ria ls m etals to p la n ts , i n a s t u d y of i n f l u e n c e on t h e a v a i l a b i l i t y have observed a r e d u c tio n i n a b s o r p tio n Zn a n d Fe by p l a n t s u p o n a d d i t i o n o f w a t e r - e x t r a c t s y a r d manure t o n u t r i e n t s o l u t i o n s . was a p p l i e d t o t h e s o i l . of b a r n ­ o f Zn a n d Cu when i t I t was c o n c l u d e d t h a t t h e c h e l a t i n g agents h eld the m ic ro n u trie n ts i n a l e s s a v a i l a b l e form. M at o m u ra ( 1 9 6 1 ) r e c o g n i z e d t h a t t h e e x t r a c t s m i l k v e t c h had a f a i r l y of They a l s o n o t i c e d t h a t such e x t r a c t s d e c re a se d th e a v a i l a b i l i t y from high d i s s o l u t i o n c a p a c ity f o r b o th i n s o l u b l e i n o r g a n i c i r o n com po un ds a n d i r o n i n s o i l . d i s s o l v e d i r o n was m a i n l y i n f e r r i c of the t o t a l of trace The forms and o n ly 2 0 - 40$ d i s s o l v e d i r o n was i n f e r r o u s form. He a l s o n o t i c e d t h a t t h e d i s s o l v i n g c a p a c i t y f o r a l u m i n u m was much less than fo r iro n . F u rth e rm o re , he co n clu d ed t h a t f a t t y a c i d s and com plex c h e l a t i n g m a t e r i a l s i n e x t r a c t s w ere r e s ­ p o nsible fo r d is s o lu tio n ferric of i r o n and r e d u c t i o n of d is so lv e d i r o n was d u e t o some r e d u c i n g s u b s t a n c e s w h i c h w e r e formed d u r i n g t h e f e r m e n t a t i o n p r o c e s s . The r e s u l t s of s t u d i e s by a number of r e s e a r c h e r s have r e v e a le d t h a t th e i l l u v i a l zon of p o d z o l i c so ils is organic m a tte r in th e B h o r i ­ e a s ie r to e x tr a c t th a n th e organic 21 m atter in the su rface s o i l . sib ility of the p r e c ip ita tio n Such d a t a a l s o s u g g e s t t h e p o s ­ or f l o c c u l a t i o n of organic m a t t e r by i r o n a n d aluminum i n t h e s e s o i l s , and t h a t com plex- in g th e s e m eta ls re n d e rs th e o rgan ic m a tte r s o lu b le in w a te r. A v ariety o f n a t u r a l and s y n t h e t i c organic c h e la tin g agents as w e ll as in o r g a n i c r e a g e n ts have been u sed t o e x t r a c t b o th th e o r g a n ic m a t t e r from t h e s u r f a c e and s u b s u r f a c e l a y e r s of podzolic s o i l s . An e x t e n s i v e r e v i e w c o n c e r n i n g t h e s o l u b i l i z i n g e f f e c t of n a tu r a lly o c c u r r i n g compounds, s i z e d by p l a n t c e l l s , salts such as m a t e r i a l s y n th e ­ e . g . , ADP, a s w e l l a s o t h e r n a t u r a l of o rg an ic and in o rg a n ic a c id s in n a tu re , on t h e i n s o l u b l e m a t t e r can be found i n a r t i c l e s by M andle, G ra u e r , Neuberg (1952 and 1 9 5 3 ). The a u t h o r s c o n s i d e r a n u m b e r o f such n a t u r a l l y o c c u r r i n g c om po un ds a s b e i n g " o b l i g a t o r y in te rm e d ia tes, c o n tin u a lly reform ed, m etabolism , and or f in a l products of or c e l l u l a r c o n s t i t u e n t s ." S ynthetic o rg an ic c h e l a t i n g ag en ts have been used to e x t r a c t m e t a l s complexed by s o i l o r g a n ic m a t t e r w i t h a s u b s e ­ quent d is p e rsio n of s o il organic m a tte r. M a r tin and Reeves ( 1 9 5 7 ) have u s e d a number o f o r g a n i c c h e l a t i n g a g e n t s i n d e alin g w ith podzolic i l l u v i a l h o rizo n s. resu lts T heir experim ental r e v e a l t h a t a c e t y l a c e t o n e a p p e a rs t o be th e most s a t i s ­ f a c t o r y r e a g e n t and r e a d i l y forms com plexes w ith t r a n s i t i o n a l m etals. Th e c h e l a t e s o f A1 a n d Fe w i t h a c e t y l a c e t o n e a r e 22 extrem ely s t a b l e w ith o v e r a ll fo rm atio n c o n sta n ts o f 2 2 .3 and 2 6 .2 r e s p e c t i v e l y . C upferron, (o r log another o r g a n i c r e a g e n t t h e y u s e d i n t h e i r s t u d y , was n o t s a t i s f a c ­ t o r y as an e x t r a c t a n t . N e i t h e r w as t h e o x i n e , w h i c h p r o v e d t o be a slow e x t r a c t o r . T he y c o n c l u d e d t h a t e v e n i f m e ta l c o o r d i n a t i o n com plexes e x i s t i n t h e s e s o i l s , ex tractio n of o rg a n ic m a t t e r would be g o v e rn e d by o t h e r f a c t o r s pH a n d t h e n a t u r e such as of the c a tio n a s s o c ia te d w ith th e re a g e n t. I n a s u b s e q u e n t s tu d y M a r tin and Reeves (1957) on t h e e f f e c t true report of th e c o n c e n tr a tio n of aqueous a c e ty la c e to n e a s w e l l a s t h e e f f e c t o f e x t r a c t i o n t i m e a n d pH on t h e e x ­ tractio n clearly tractio n o f o rg a n ic carb o n and s e s q u i o x i d e s . show t h a t r e a c t i o n t i m e h a s l i t t l e T heir d ata in flu en ce on e x ­ of carbon, w h ile in c r e a s in g re a g e n t c o n c e n tra tio n c a u s e s an i n c r e a s e in c a r b o n d i s p e r s i o n . A l s o , °.2M a c e t y l a c e ­ t o n e a t pH 7 r e m o v e s m o r e c a r b o n a n d i n some c a s e s m o r e A1 c o m p l e x e s t h a n a t pH 4 . 2 , b u t l e s s F e i s pH. F urtherm ore, the s u p e rio rity t y l a c e t o n e was c o n f i r m e d . these fin d in g s lity , in term s log c o n sta n ts low. is d i f f i c u l t to explain of c h e la te s t a b i l i t y (o v er-all s ta b i­ of C u -p y ro p h o s p h a te and C u - a c e t y l a c e t o n e r e a l e x p l a n a t i o n may l i e tio n is of pyrophosphate over a c e ­ W hile i t a r e 1 0 .1 and 1 7 .4 r e s p e c t i v e l y ) , a t pH 7 c o n t a i n s e x tra c te d a t higher th e authors suggest th a t the in the fa c t th a t the a ce ty la ce to n e o n l y 1 - 2 $ f r e e a n i o n a n d t h e Na+ c o n c e n t r a ­ Th u s m e t a l s r e m o v e d f r o m t h e o r g a n i c m a t t e r a r e 23 r e p l a c e d p r e d o m i n a n t l y b y H+ . io n izatio n is W i t h ^ 2^ 2 2 0 7 s t h e d e g r e e o f la r g e and a l a r g e r f r a c t i o n g r o u p s on t h e o r g a n i c m a t t e r s u r f a c e i s of the a c tiv e o c c u p ie d by Na, r e ­ su ltin g in g re a te r d isp ersio n . O ther o rg a n ic com plexing r e a g e n ts such as 8 -h y d ro x y - q u in o lin e , disodium dihydrogen e th y le n e d ia m i n e t e tr a a c e t ic acid, cupferron, acetylacetone, as w e ll as th e in o rg a n ic c h e l a t i n g a g e n t N a -p y ro p h o sp h a te , w ere u se d t o e x t r a c t o rg a ­ n i c m a t t e r from s o i l by C houdhri and S t e v e n s o n ( 1 9 5 7 ) . s tu d ie d the e f f e c ts They of p r e t r e a t m e n t and e x ch a n g e a b le b a s e s , rem o v al o f f r e e i r o n and aluminum o x i d e s , val of s i l i c a t e m inerals on t h e and f i n a l l y , remo­ organic m a tte r e x tr a c ti o n . Th ey c o n c l u d e d t h a t t h e r e m o v a l o f c a l c i u m a n d f r e e i r o n a n d aluminum o x i d e s i n c r e a s e d t h e s o l u b i l i t y of organic m a tte r b y a l m o s t a l l t h e r e a g e n t s t h e y u s e d , b u t h a d n o e f f e c t on e x t r a c t i o n by p y ro p h o sp h a te . c a t e m i n e r a l s was e f f e c t i v e However, t h e re m o v a l o f s i l i ­ in f a c i l i t a t i n g the e x tra c tio n o f h u m ic a c i d b y p y r o p h o s p h a t e a s w e l l a s o t h e r c h e l a t i n g agents used in th e study. P arso n and T i n s l e y ( i 9 6 0 ) have used form ic a c i d , p o l a r compound, as an e x t r a c t a n t f o r s o i l p a rtic u la rly polysaccharides. advantages of th e s o lv e n t i s or h y d r o ly tic p r o p e r t i e s a organic m a tte r, They s t a t e t h a t the la c k of e ith e r one o f t h e o x idizing in th e anhydrous c o n d itio n . T he y a l s o n o t e d an i n c r e a s e i n e x t r a c t i o n e f f i c i e n c y upon a d d i t i o n of in o rg a n ic c a tio n s to th e e x t r a c t a n t . 24 In o rg an ic re a g e n ts have been w idely used to e x t r a c t so il o r g a n i c m a t t e r w i t h some s u c c e s s . (1946) h ave u s e d p y r o p h o s p h a t e , sodium s a l t s late Brem ner, e t a l . , orthophosphate, a n d some o f o r g a n i c co m p o u n d s s u c h a s c i t r a t e as e x t r a c t a n t s upon d i a l y s i s of organic m a tte r. and oxa­ They n o t i c e d t h a t of th e pyrophosphate e x t r a c t th e w a te r - s o lu b le o r g a n i c n i t r o g e n i s n o t removed w h i l e m o st o f t h e m e t a l s a r e removed. T heir r e s u lts fu rth er in d icate th a t, on t h e w h o l e , t h e co mp ou nds t h a t a r e g o o d p o l y v a l e n t c a t i o n e x t r a c t a n t s a r e a l s o good o r g a n i c m a t t e r e x t r a c t a n t s . part of the p o ly v a le n t m etals i s com plexes w ith p a r t uble in w ater. combined a s c o - o r d i n a t i o n of th e organic m a tte r, of th e m etals re n d e rs They i n f e r t h a t and t h e p r e s e n c e o r g a n ic m a t t e r i n t h e com plexes i n s o l ­ They a l s o i n d i c a t e t h a t t h e e x t r a c t i n g power o f 2% N a - h y d r o x i d e i s p r i m a r i l y d u e t o d e g r a d a t i o n o f t h e h i g h m o l e c u l a r w e i g h t co mp ou nd s i n i t i a l l y p resen t in the so il. Bremner and Lees (19^9) f u r t h e r i n v e s t i g a t e d th e q u e s tio n w hether th e s o l u b i l i t y by th e n a t u r e m etals, of o rgan ic m a tte r i s governed o f th e a s s o c i a t i o n betw een o rg a n ic m a t t e r and as w e ll as th e a b i l i t y of th e anion of th e e x t r a c t ­ a n t t o remove t h e i n t e r f e r i n g m e t a l s as e i t h e r i n s o l u b l e p recip itates or s o lu b le c o o r d in a tio n com plexes. accom panying c a t i o n s u sed i n t h e e x t r a c t a n t s , Among t h e + Na , K , a n d + NH^ g a v e r i s e t o a n e f f i c i e n t e x t r a c t i o n , w h i l e Ca p r o v e d t o 25 be a c h ie f i n t e r f e r a n t in above s t u d i e s organic m a tte r e x tr a c ti o n . In the o r g a n i c n i t r o g e n was t a k e n a s a n i n d e x f o r s o i l organic m a tte r. However, i n a s u b s e q u e n t s t u d y , Brem ner ( 19^ 9 ) fo u n d t h a t t h e o r g a n i c c a r b o n and n i t r o g e n a r e i n t i ­ m ately a s s o c ia te d so t h a t th e organic carbon i s d is s o lv e d only i n p r o p o r tio n to o rg a n ic n i t r o g e n . D ilu te inorganic a cid s have been used to e x t r a c t or­ g a n ic m a t t e r from t h e p o d z o l i c s o i l s by S c h n i t z e r and W rig h t (1957). Two p e r c e n t o f t h e c a r b o n o f t h e Ao h o r i z o n a n d a s h i g h a s 96/0 o f t h e c a r b o n o f a B h o r i z o n o f a p o d z o l s o i l w e r e e x t r a c t e d b y HF, HC1, a n d a m i x t u r e o f HC1-HF. c o n c e n t r a t i o n h i g h e r t h a n 0 . 5 $ was l e s s effectiv e. An a c i d The a m o u n t o f c a r b o n e x t r a c t e d b y 0 . 5 $ HC1 s h o w e d a c o r r e l a t i o n w i t h e x t r a c t e d Fe a n d A l , w i t h ma xim a o c c u r r i n g i n t h e B horizon e x tr a c ts . I n a l a t e r s tu d y by S c h n i t z e r , et a l ., s u rv e y o f th e e x t r a c t i v e power o f f i f t e e n was m a d e . ( 1958), in o rg an ic reagents I n c l u d e d among t h e m w e r e NaOH, Na4 P2 0 y , NaF, a n d N a C l. a Na^PO^, The o n l y o r g a n i c r e a g e n t u s e d was Nag-EDTA. The pH r a n g e d f r o m 1 . 4 t o 1 3 . 1 , and t h e amount o f o r g a n ic m a t te r e x t r a c t e d v a r ie d w ith h o riz o n as w e ll as w ith th e e x ­ tractan t. T he y c o n c l u d e d t h a t w h i l e o n l y NaOH r e m o v e d a p p r e c i a b l e a m o u n t s o r o r g a n i c m a t t e r f r o m t h e Ao h o r i z o n , o t h e r s s u c h a s Na2| P 2 0 y , Na^PO^, NaF, NagCO^, a n d EDTA, e x ­ t r a c t e d m o r e t h a n 8 0 $ o f t h e o r g a n i c m a t t e r i n t h e Bg^ horizon. 26 Evans (1959) n o t e d t h a t t h e e x t e n t o f o r g a n ic m a t t e r e x t r a c t i o n t e n d e d t o r i s e w i t h t h e pH o f t h e e x t r a c t i n g s o l u ­ tio n . The c h e l a t i n g r e a g e n t s e x t r a c t e d m o r e o r g a n i c m a t t e r than o th er e x t r a c ta n ts o f c o m p a r a b l e pH, b u t e x t r a c t s b y a l l r e a g e n t s r o s e w i t h i n c r e a s i n g ti m e and t e m p e r a t u r e . and Salam ( 1 9 6 1 ) a l s o c o n firm e d t h e s u i t a b i l i t y p h o sp h a te as w e ll as c i t r a t e , o xalate, T insley of N a-pyro- a n d s u l p h a t e a t com­ p a r a b l e c o n c e n t r a t i o n a n d pH v a l u e s f o r o r g a n i c m a t t e r e x ­ tractio n . The r o l e o f pH was a l s o s t u d i e d b y t h e a b o v e a u t h o r s a n d i t was i n a g r e e m e n t w i t h E v a n ' s p r e v i o u s l y m e n­ tioned stu d ie s. I t h a s b e e n d e m o n s t r a t e d t h a t s e c o n d a r y Fe a n d A l co mp ou nds a n d o r g a n i c m a t t e r i n s o i l r e f l e c t p r o c e s s e s of s o i l f o r m a tio n and i n f l u e n c e s o i l s t r u c t u r e and p l a n t n u ­ trien t statu s. Fe a n d A l e x i s t i n d i f f e r e n t f o r m s i n s o i l , p a rtic u la rly in c ry s ta llin e hydrous o x id e s, o x id e s and s i l i c a t e s , amorphous and as com plexes w i t h o rg a n ic m a t t e r . form i n w hich t h e y a p p e a r i s a diagnostic fe a tu re of the B h o r i z o n o f p o d z o ls and of im p o r ta n c e i n i d e n t i f i c a t i o n the podzolic s o i l s . The of A c o l l e c t i v e term of " a c tiv e " m a t e r i a l h a s b e e n a s s i g n e d t o t h e c o l l o i d a l humus a n d s e s q u i o x i d e s com plexes i n d i c a t i v e of h ig h c a t i o n exchange c a p a c i t y and physico-chem ical p r o p e r tie s . T h e r e f o r e many r e s e a r c h e s h a v e been conducted to d e sig n a sim ple e x t r a c t i o n te c h n iq u e to s e p a r a t e t h e a c t i v e f r o m i n a c t i v e co mp ounds a n d c o m p l e x e s 27 w ith th e o b j e c t o f im p ro v in g t h e i d e n t i f i c a t i o n and c l a s s i ­ ficatio n of podzols. F o r some t i m e f r e e F e o x i d e s h a v e b e e n e x t r a c t e d f r o m s o i l s by d i t h i o n i t e - c i t r a t e - b i c a r b o n a t e (M e h ra a n d J a c k s o n , i 960). ex tractin g so lu tio n McKeague a n d Day ( 1 9 6 6 ) made a com parison of th e e x t r a c t a b i l i t y o f i r o n and aluminum w i t h d i t h i o n i t e a n d a c i d ammonium o x a l a t e , u s i n g some C a n a d i a n podzolic so ils. T heir r e s u lts tractio n d i s s o l v e d much o f t h e i r o n a n d a l u m i n u m f r o m t h e amorphous m a t e r i a l s , rev eal th a t the o x alate ex­ i n c l u d i n g t h e amorphous h y d ro u s o x id e s o f r e c e n t w e a t h e r i n g as w e l l as m e t a l - o r g a n o c o m p le x es, b u t very l i t t l e d ith io n ite from c r y s t a l l i n e oxides. On t h e o t h e r h a n d , the e x tra c tio n disso lv ed a la rg e p ro p o rtio n of c ry s ­ ta llin e iro n oxides, a s w e l l a s much o f t h e a m o r p h o u s m a t e ­ rials. They a l s o n o t i c e d t h a t o x a l a t e - e x t r a c t a b l e Al f r e ­ q u e n tly exceeded d i t h i o n i t e - e x t r a c t a b l e A l, and t h e r a t i o of o x a l a t e t o d i t h i o n i t e - e x t r a c t a b l e F e commonly was h i g h f o r B horizons. Th ey c o n c l u d e d t h a t s i n c e o x a l a t e e x t r a c t s and Al o r g a n i c com plexes from s o i l , e x t r a c t e d by o x a l a t e from B h o r i z o n s m etal-organic iro n some o f t h e Fe a n d A l o f p o d z o ls e x i s t e d as com plexes. F ranzm eier, et_ a l . , ( 1 9 6 5 )5 u s e d a m i x t u r e o f p y r o ­ p h o s p h a t e a n d d i t h i o n i t e i n s o l u t i o n a t pH 7 . 3 t o e x t r a c t F e , A l , and o r g a n ic C from p o d z o l B h o r i z o n s . However, d i t h i o ­ n i t e d i s s o l v e s Fe s i l i c a t e m i n e r a l s a n d a m o r p h o u s Fe o x i d e s . 28 T itova ( 1 9 6 2 ) h a s shown t h a t n e u t r a l s o d i u m p y r o p h o s p h a t e i s c a p a b le o f e x t r a c t i n g i r o n from h y d ro x id e as w e l l as i r o n con ta in in g m inerals. d icates F u r t h e r d a t a b y Kon onova* e t a l . ( 1 9 6 4 ) * t h a t t h e n e u t r a l sodium p y r o p h o s p h a te i s in rath er a s t r o n g r e a g e n t w hich decomposes m i n e r a l s and f r e e s t h e i r o n and aluminum. Therefore, t h e above a u t h o r s do n o t c o n f i r m th e h y p o th e sis t h a t th e pyrophosphate s o lu tio n e x t r a c t s only t h e Fe a n d A l f i x e d b y o r g a n i c s u b s t a n c e s . McKeague ( 1 9 6 7 ) c o m p a r e d F r a n z m e i e r ' s tio n , ex tractin g so lu ­ O.lM N a - p y r o p h o s p h a t e a n d 0.2M a c i d i f i e d ammonium o x a ­ l a t e as e x tr a c ta n ts of th e accum ulation p ro d u c ts in po d zo ls. His d a t a s u g g e s t t h a t o.lM N a - p y r o p h o s p h a t e s o l u t i o n e x t r a c ­ t e d some o f t h e F e - * A l - o r g a n i c m a t t e r p r o d u c t s i n p o d z o l B* b u t d i d n o t d i s s o l v e t h e i n o r g a n i c amorphous or c r y s t a l l i n e Fe and Al s u b s t a n c e s t e s t e d . The o x a l a t e s o l u t i o n e x t r a c t e d Fe a n d A l f r o m a m o r p h o u s i n o r g a n i c s u b s t a n c e s a s w e l l a s amorphous F e - and A l - o r g a n i c m a t t e r c o m p le x e s . d i s s o l v e c r y s t a l l i n e Fe o x i d e s . form s. did not The p y r o p h o s p h a t e - d i t h i o n i t e so lu tio n e x tracted a larg e p roportion cry stallin e It o f Fe a n d A l f r o m o x id e s as w e l l as amorphous o r g a n i c and i n o r g a n i c He re c om me nds e i t h e r a c i d ammonium o x a l a t e o r O.lM p y ro p h o sp h a te as u s e f u l e x t r a c t a n t s f o r e s t i m a t i n g th e accum ulation p ro d u c ts in p o d z o l- lik e B h o riz o n s . Bas co mb ( 1 9 6 8 ) e x t r a c t e d F e a n d c a r b o n f r o m a n u m b e r o f B r i t i s h s o i l s u s i n g O.lM K - p y r o p h o s p h a t e s o l u t i o n . 29 Stu d y in g th e e f f e c t he u s e d a s e r i e s o f pH o f s o l u t i o n on e x t r a c t i o n o f F e , of F e -c o n ta in in g m a te ria ls in c lu d in g a f r e s h ly p r e c ip ita te d hydrated F e ^ H )^ , lep id o cro cite, and x - r a y amorphous F e - o x i d e , cry stalize d g o eth ite, a m oderately and a t r o p i c a l l a t e r i t e . th a t th e e x tra c tio n of c r y s ta llin e 1 0 , c o m p a r e d w i t h pH 7 . He o b s e r v e d o x i d e s was s l i g h t a t pH He a l s o s u g g e s t s l i t t l e s i l i c a t e s by py ro p h o sp h ate. a t t a c k on I n c o n c l u s i o n he s t a t e s pyrophosphate e x tr a c ts p e p tiz a b le rates a poorly c r y s ta liz e d th at o rg a n ic m a t t e r and s e p a ­ a m o r p h o u s f o r m s f r o m t h e l e s s a c t i v e c r y s t a l l i n e Fe o x i d e s b e t t e r a t a pH o f 10 t h a n a t a pH o f 7 o r 1 3 . MATERIALS AND METHODS S o i l s Used i n t h e S t u d y The s o i l p r o f i l e s two g r o u p s o f p r o f i l e s : studied in th is research co n sist of ( l ) S p o d o s o l s d e v e l o p e d on a s a n d y T o p o -b io se q u e n c e i n N o rth e rn M ich ig an and (2) w e l l - d r a i n e d Spodosols w ith v a ry in g degree of spodic h o riz o n developm ent. (T h e a u t h o r e x p r e s s e s h i s a p p r e c i a t i o n t o Dr. J . B. C o l l i n s a n d D r . D. A. L i e t z k e f o r t h e i r p e r m i s s i o n t o u s e t h e s e s o i l samples i n t h i s stu d y .) th e above p r o f i l e s , g illic some o t h e r h o r i z o n s s u c h a s A ^ , K q , a r - h o r iz o n s and f r a g i p a n s w ere a l s o i n c l u d e d i n t h e study. so ils I n a d d i t i o n t o s p o d i c h o r i z o n s from Some o f t h e p h y s i c a l a n d c h e m i c a l p r o p e r t i e s relev an t to th is s tu d y as w e ll as th e k in d s of the of h o r i ­ zons used i n t h e s tu d y a r e g iv e n i n T a b le 1, and th e a p p r o ­ xim ate lo c a t io n s of the s i te s leg al d escrip tio n s a r e shown i n F i g u r e 1 . of the lo c a tio n s a re a ls o g iven i n T able 2. of th e p r o f i l e s The studied The f u l l p r o f i l e d e s c r i p t i o n the s o ils a r e g iv e n by t h e above a u th o r s stu d ies. However, a s h o r t d e s c r i p t i o n of in t h e i r re sp e c tiv e of each p r o f i l e w i l l be given in th e su cceed in g p a ra g ra p h s. The f i r s t g r o u p o f p r o f i l e s w e r e s e l e c t e d f r o m a T o p o b io s e q u e n c e so t h a t i t reflects 30 a g ra d a tio n in s o il m oisture 31 regim e and i t s slope r e l a t i o n s h i p w ith th e v e g e ta tio n along the (C o llin s, sive areas 1971). The s o i l p a r e n t m a t e r i a l s of sandy and g r a v e l l y t i l l s la te p le is to c e n e age. k e ttle holes. of M ichigan. and outw ash p l a i n s Th e u p l a n d a r e a i s V arious types known a s a " J a c k p i n e a r e a " o f bog and m arsh v e g e t a t i o n have known t o b e o f t h e t y p e The s o i l t y p e s can d e s c rib e d as fo llo w s: K inross sand i s a p o o rly d ra in e d , (low -H um ic-G ley) w hich i s T his s o i l has an o rg a n ic H i s t i c H aplaquod d e v e l o p e d f r o m medium t o v e r y s t r o n g l y a c i d sand and g r a v e l t i l l s th ick . The d o m i n a n t s h r u b of " l e a t h e r le a f " b e in g adapted to th e p o o rly - d ra in e d a c id bog. be b r i e f l y of These p l a i n s a re p i t t e d w ith g l a c i a l developed in th e a d jo in in g k e t t l e h o le s . cover is are exten­ of l a t e p l e i s t o c e n e age. s u r f a c e which i s t h i r t e e n inches Th e s p o d i c B h o r i z o n s c o n t a i n a g g r e g a t e s w h i c h a r e a p p a r e n t l y h e l d t o g e t h e r by t h e r e d d is h -b ro w n h u m u s - s e s q u io x i d e s a n d some c l a y . Low-Humic-Gley s o i l s , K in ro s s s e r i e s , w hich i n c l u d e s form er are th e p o o rly to very p o o rly d rain ed member o f c a t e n a s w h i c h i n c l u d e s t h e w e l l d r a i n e d G r a y l i n g or R ubicon s o i l s , th e m oderately w ell d ra in e d C ro sw ell, and t h e s o m e w h a t p o o r l y d r a i n e d AuGres s o i l s . S a u g a t u c k - Au Gre s s a n d i s a s om ew ha t p o o r l y d r a i n e d pedon i n t h e S a u g a tu c k s e r i e s b u t b o r d e r l i n e t o AuGres. It r a n g e s from A e r i e H ap laq u o d s t o E n t i c H ap laq u o d s i n c h a r a c ­ te ristic s ( G round-W ater-Podzols). This s o i l i s d ev elo p ed in 32 T a b l e 1. Some p h y s i c a l and c h e m i c a l p r o p e r t i e s S o i l s e r i e s and horizons Kinross S augatuckAuGres AuGres - Lab No. Bsih 1 B2 2 h l r 2 B2l"'i r b 22-'ii IIRpjhir’ IIBhir'm 3 4 5 of th e p r o f i l e s s tu d ied Natu r a l drainage Munsell De p t h (inches) notation pH clay sand & gravel drifts poorly 11-21 5YR 3 / 3 4.5 2.1 8.2 drained 21-27 5YR 4 / 3 4.7 1.8 6.1 s and somewhat 3- 7 7-11 I t -2 3 5YR 5YR EYR 3’YK 4 .8 4. o 4.5 8.8 6.7 3.1 17.3 14.1 14.3 _E. 0 1.1 6. poorly drained I'oihir Croswell CTEc NaOAC (pH 8 . 2 ) m . e . / l O O gm Parent material s and or.ev.r.a t p oorly to mode r at e y 3/3 3/3 3/4 1/27/ 3 % ■ r, PYR 4 / I 4.7 I VI. • / 4 d .7 4 .6 EYR3 / 3 t o 7 . 5YR4/ 4 EYE 7/ 7 t o 7 . EYR4/4 ;■. eyr 4 / 4 t 'V 7 . EYRE/4 ^.9 K#0 4.5 ‘3. l 8.6 '.2 h.L 2 . r-‘ 3-1 ■- 1 2 7 . r YR 4 / 4 ( 2." .1 - I d drained Croswell- UPPFp j h i r Graycal m 1 ov.’Bo-j h i r Pgh-.ir sand to 1h sand v sand drift s moder­ a t e l y v;ell t o well drained 7 Omega P.pS 12 s a nd well drained Lastport B21 13 sand we l 1 d ra ined 1 -;-i ■ 7 . EYR 4 / 4 ’L O 1-3 v;el 1 dm ined 1-9 1 / 2 10YR 2 / 1 5 YR 3 / 4 4/4 7 . 3-YR 4 / 4 4.5 4.9 11.4 3.7 1 7. 5YR 4 / 4 t, o RYR 3 / 2 5. 0 5.5 E. E 3-11 RYR 2 / 1 5 YR 5 / 1 4/1 5YR 2 / 2 4.5 16.2 11- 17 5YR 3 / 4 5.5 12. E 2 YR 2 / 3 4.5 Ru b i c o n A1 I' 2 ] i r 14 s and lr !•' ort.stein Hi awat ha Ai a2 1I 13 sand wel 1 drained E21n i r Onaway Mun isi ng 0-0 !:■ E2 2 1 r 2 1 Ao B2 i i r 22 23 E2 2 i r E2 2 t 24 A1 a2 26 20 27 Bgjhir 28 B2 2 l r b 3x 29 30 l oam or sandy 1 cam glacial till wel 1 drained sandy l oam glacial till well drained 4.5 2. E ! 2.1 7. 4.1 2.2 4.3 15 . “ 5.0 13.7 7.0 24.9 17.7 4.2 7-12 RYR 3 / 4 5 YR 9 / 6 24-23 EYR 4 / 3 0-1 5YR 2 / 2 5-0 1 -c, 5YR 6 / 2 4.5 5YR 3 / 3 3/2 4 . 5 10.6 7.8 5.0 25.9 14.8 2 . 5YR 4 / 4 5.5 4.4 3-5 9-13 13- 21 21-29 3.8 .38 16 . 5 11.4 17.1 2 6 .5 7.5 T able 2. S o i l t y p e names a n d l e g a l d e s c r i p t i o n s s t u d i e d ( s e e a l s o F i g . 1) of lo c a tio n s of th e p r o f ile s L ocation S o il type Omega f i n e s a n d SW 1 / 4 o f SE 1 / 4 , S e c t i o n 2 7 , T 46 N, R 25 W. M a r q u e tt e County E a s t p o r t sand SW 1 / 4 o f SW 1 / 4 o f SE 1 / 4 o f NE 1 / 4 , S e c t i o n 9 , t 7 N, R 17 E. S t . C l a i r C o u n t y R ubicon sand NE 1 / 4 o f NE 1 / 4 , S e c t i o n 1 , T 45 N, R 19 W. A lg e r County Hiawatha sand NW 1 / 4 o f SE 1 / 4 , S e c t i o n 7 , T 53 N, R 35 W. Houghton County Onaway f i n e s a n d y lo a m SW 1 / 4 o f SW 1 / 4 , S e c t i o n 3 3 , T 4 0 N, R 24 W. D e l t a County M u n i s i n g lo a m y s a n d SW 1 / 4 o f NE 1 / 4 , S e c t i o n 4 , T 51 N, R 31 W. B a r a g a County K i n r o s s ,S a u g a t u c k - A u G r e s , A u G r e s - C r o s w e ll and C r o s w e l l - G r a y c a l m a r e from a sandy to p o -b io s e q u e n c e which i s low er p e n in su la lo c a te d in th e N o rth ern p a r t of M ic h ig a n 's on S t a t e F o r e s t l a n d , i n S o u th C e n t r a l Crowford County. 3^ me «O TAU _— _ P ’O D Z O L i1 t u c e REGjlON _ )LCRAFT ' (SCHOOlCRAM C h a Re C V o i I L I*_ r’ JOTSE«01HONTMOR. 'MAI»t$TtC*t*»ORD jk-JSSAWKCti p o d ;z o l ’ OCCANA ,*»E«ATCO "O SC OM . * 08CMAW ! r e g ;i o n M E C O S T A i. 1I S A B E L L A ^ I J *C»SOM P.’O D Z O Lt I C S T JOSEfhl bmamch F i g u r e 1. r WASM T E A A , t R* E G I O N\ ' MI LL S OAL f ' Map o f M i c h i g a n s h o w i n g l o c a t i o n s t a t i v e s o i l s used in th e study of r e p re s e n ­ 35 sandy d e p o s it s of l a t e p l e i s t o c e n e a g e. s t r o n g l y cem ented o r t s t e i n This s o i l has a in th e low er B h o riz o n w ith w e l l - co ated sand g r a in s in th e spodic h o riz o n s . The w a t e r t a b l e v a r i e s d u r i n g t h e g ro w in g s e a s o n and a v e r a g e s 20" belo w t h e surface. S augatuck s o i l s are im p e rfe c tly to poorly drain ed G ro u n d -W a ter-P o d z o ls o f a c a t e n a which i n c l u d e s i m p e r f e c t l y d r a i n e d AuGres a n d A r e n a c s o i l s w i t h o u t a c e m e n t e d B h o r i z o n , t h e p o o r l y d r a i n e d Roscommon s o i l s the K inross s o i l s ) , (which a r e l e s s a c id th an t h e w e l l d r a i n e d R u b ic o n , and t h e m oder­ a t e l y w e ll d ra in e d C rosw ell s o i l s . A uG res- C ro s w e ll san d i s an i m p e r f e c t t o m o d e r a te l y w e l l d r a i n e d p e d o n i n t h e A u Gre s s e r i e s b u t b o r d e r l i n e t o C rcsw ell. The w a t e r t a b l e a v e r a g e s 3 6 " d e e p d u r i n g t h e grow ing s e a s o n . T his s o i l h as c h a r a c t e r i s t i c s w hich ra n g e from E n t i c H a p laq u o d s t o E n t i c H a p l o r t h o d s and i s d e v e l o p e d i n medium a n d c o a r s e s a n d . It i s a b o r d e r lin e case of A uG re s w i t h r e s p e c t t o d r a i n a g e a n d s p o d i c h o r i z o n d e v e l o p ­ ment. C r o s w e l l - Graycalm sand i s a m oderately w e ll to w ell d r a in e d pedon i n t h e C ro s w e ll s e r i e s b u t b o r d e r l i n e t o Graycalm . It Is c la s s if ie d Podzol i n t e r g r a d e ) . It as E n tic H ap lo rth o d s is ( G r a y Brown d e v e lo p e d from a ra n g e of p a r e n t m a t e r i a l e x t e n d i n g f r o m medium a n d c o a r s e s a n d s t o lo a m y sand and san d d r i f t s w i t h t h i n t e x t u r a l bands i n t h e lo w e r part of the p r o f ile . A weak f r a g i p a n o c c u r s a t t h e d e p t h 36 of 23-28". I t s B2 h o r i z o n s h a v e c h a r a c t e r i s t i c s developed. s p o d ic h o r i z o n . o f a weakly- The w a t e r t a b l e a v e r a g e s 5 8 " d u rin g t h e grow ing s e a s o n . The s e c o n d g ro u p o f p r o f i l e s a r e d e v e lo p e d from sandy t o c o a r s e loamy m a t e r i a l s w i t h w e l l - d r a i n e d m o i s t u r e r e g im e s . Such p r o f i l e s w ere s e l e c t e d ten sity on t h e b a s i s of in c re asin g i n ­ o f p e d o g e n ic p r o c e s s e s as e v i d e n t i n t h e amount o f illu v ial (L ietzke, o r g a n i c c a r b o n , F e , a n d Al i n t h e s p o d i c h o r i z o n 1 9 6 9 )* T h e r e a r e tw o g r o u p s th e se w ell d rain ed Spodosols, of s o i l s included in th o se a ls o having t e x t u r a l B h o riz o n s and t h o s e w ith o u t t e x t u r a l B h o r i z o n s . These s o i l s i n c l u d e a r a n g e o f s p o d ic h o r i z o n developm ent from t h e weak­ e s t t o t h e s t r o n g e s t d e v e lo p m e n t and a r e l i s t e d i n T a b le 1, and d e s c r i b e d b r i e f l y below . Omega f i n e s a n d i s a w e l l d r a i n e d T y p ic Udipsamment (Brown P o d z o l i c s o i l ) w h i c h h a s d e v e l o p e d f r o m s a n d i n a n outwash p l a i n . The v e g e t a t i o n i s r e i n d e e r m oss, and b l u e b e r r i e s . jack pine, sweet f e r n , Some o f t h e Omega s e r i e s is f o u n d t o h a v e i n t e r m i t t e n t t h i n g r a y A2 a n d d a r k r e d d i s h b r o w n B^ h o r i z o n s s u g g e s t i n g a w e ak p o d z o l p r o f i l e . However, th e y g e n e r a l l y la c k ev id en ce of spodic h o riz o n developm ent. Omega i s a w e l l d r a i n e d member o f a c a t e n a w h i c h i n c l u d e s t h e s o m e w h a t p o o r l y d r a i n e d Au Gre s a n d t h e p o o r l y d r a i n e d Roscommon s e r i e s . 37 E a s tp o rt sand i s a w e l l d r a i n e d S p o d ic Udipsamment ( R e g o s o l - P o d z o l i n t e r g r a d e ) w h i c h h a s d e v e l o p e d f r o m s a n d on la k e benches and b e ac h r i d g e s . The v e g e t a t i o n i s a sp e n and choke c h e r r y , w i t h g ro u n d c o v e r o f weeds and g r a s s e s . pedons of t h i s series A few a r e known t o h a v e w e a k l y c e m e n t e d t h i n chunks of o r t s t e i n i n t h e low er p a r t of t h e B h o r i z o n . w ell d rain ed E a s tp o rt, The a l o n g w i t h t h e so m e w h a t p o o r l y d r a i n e d Roscommon, f o r m a d r a i n a g e s e q u e n c e o r c a t e n a . R ubicon sand i s a w ell d ra in e d E n tic H aplorthod (w eakly d e v e lo p e d P o d z o l) w hich h a s d e v e lo p e d from sandy p a r e n t m a t e r i a l on o u t w a s h p l a i n s , The v e g e t a t i o n a s s o c i a t e d w i t h t h i s pine, till p lain s or m oraines. so il consists of red o a k , a few a s p e n , a n d g r o u n d c o v e r o f p r i m a r i l y b r a c k e n fern. Th e s p o d i c h o r i z o n s c a n b e r e c o g n i z e d i r . t h e f i e l d , a n d i n some p e d o n s a f e w w e a k l y c e m e n t e d c h u n k s may b e p r e ­ sent in th e B ^ i r horizon. It i s t h e w e l l d r a i n e d member of a d rain ag e sequence th a t in c lu d e s th e m oderately w ell d ra in e d C rosw ell s e r i e s , series, t h e so m e w h a t p o o r l y d r a i n e d Au Gre s a n d t h e p o o r l y d r a i n e d Roscommon o r K i n r o s s s e r i e s . H iawatha san d i s a w e ll d r a i n e d Typic H a p lo rth o d ( w e l l - d e v e l o p e d P o d z o l) d e v e lo p e d i n sand of outw ash p l a i n s or g l a c i a l t i l l . The v e g e t a t i v e c o v e r a t t h i s site co n sists o f c u t - o v e r h a rd m aple f o r e s t w ith a quack g r a s s and tim o th y sod. H iawatha s o i l s have s t r o n g and d i s t i n c t developm ent. spodic h o rizo n I n some p e d o n s t h e B g q h i r a n d B2 2 i r h o r i z o n s 38 are s lig h tly to s tro n g ly coherent in p la c e s , w ith f a i r l y th ic k pieces o f cem ented o r t s t e i n w hich c r u s h u n d e r m o d erate pressure. H iaw atha i s t h e w e l l d r a i n e d member o f t h e d r a i n ­ age seq u e n c e w hich i n c l u d e s t h e i m p e r f e c t l y d r a i n e d W a te rs meet ( t e n t a t i v e s e r i e s ) , cem ented B ) , S au g a tu ck (Ground-W ater P odzol w ith a n d t h e p o o r l y d r a i n e d Roscommon o r K i n r o s s so ils. Onaway f i n e s a n d y lo a m i s a w ell d ra in e d A lfic H aplor­ t h o d ( m i n i m a l P o d z o l g r a d i n g t o G r a y Brow n P o d z o l i c ) on c a l c a r e o u s lo a m o r s a n d y l o a m g l a c i a l t i l l o r on m o r a i n e s . birch, and a s p e n . Onaway s o i l s h a v e a f i n e lo a m u p p e r s e q u e n c e o f h o r i z o n s horizons in t i l l plains The v e g e t a t i o n i s m a i n l y r e d m a p l e , w h i t e balsam f i r Ag h o r i z o n s , developed sandy o f b l a c k Op h o r i z o n , b r o w n and a d a rk r e d d is h -b ro w n and r e d d is h -b ro w n B p ir of s lig h t o rg a n ic m a t t e r and i r o n a c c u m u la tio n s , and a lo w e r s e q u e n c e o f h o r i z o n s o f l i g h t r e d d i s h - b r o w n and I ! d a r k r e d d i s h - b r o w n lo a m Ap a n d B g p t h o r i z o n s , a n d a l i g h t brown and brown C h o r i z o n s so il is o f loamy c a l c a r e o u s t i l l . Onaway a w e l l d r a i n e d member o f t h e d r a i n a g e s e q u e n c e w h i c h i n c l u d e s somewhat p o o r l y d r a i n e d M ackinac and t h e p o o r l y d ra in e d A ngelica s o i l s . M u n is in g loamy s a n d i s a w ell drained A lfic F rag io rth o d ( P o d z o l g r a d i n g t o G r a y Brow n P o d z o l i c s o i l w i t h f r a g i p a n ) . This s o i l i s rain ic area d e v e l o p e d i n s a n d y lo a m g l a c i a l t i l l of W isconsin age. i n a mo- Hard m a p le and y e llo w b i r c h 39 a r e th e dom inant v e g e t a t i o n i n t h i s so ils are b i-se q u a l s o ils . lo catio n . The M u n i s i n g T y p i c a l l y t h e y h a v e an u p p e r sequum c o m p r i s e d o f t h i n , b l a c k , f i n e s a n d y lo a m A-^ h o r i z o n , a p i n k i s h g r a y l o a m y s a n d A2 h o r i z o n , and d a rk re d d is h -b ro w n and r e d d i s h - b r o w n san d y loam B i r h o r i z o n s . The l o w e r seq uu m i s c o m p ris e d o f a v e r y com pact f r a g i p a n o f g r a y loamy san d ' i ■^2x h o r i z o n , r e d d i s h - b r o w n s a n d y l o a m E ^ i t x h o r i z o n , r e d d i s h t b r o w n s a n d y lo a m B2 p t h o r i z o n , a n d r e d d i s h - b r o w n s a n d y lo a m C horizon. M unising i s seq u en ce which i n c l u d e s a w e l l d r a i n e d member o f a d r a i n a g e s om ew ha t p o o r l y d r a i n e d S k a n e e s o i l s a n d p o o r l y d r a i n e d Gay s o i l s . M ethods Used i n t h i s S tu d y M ethods u s e d i n t h i s (l) study c o n s is t o f two p a r t s : t h e e x t r a c t i o n p r o c e d u r e s and ( 2 ) t h e q u a n t i t a t i v e d e t e r ­ m in atio n of the i l l u v i a l o r g a n i c c a r b o n , Fe a n d A1 i n t h e so il ex tracts. The a q u e o u s e x t r a c t a n t s u s e d i n t h e s t u d y a r e o f t h e ty p e which have t h e a b i l i t y to c h e la te m etals. tin g agents in c lu d e th e te tra -so d iu m s a l t acid ( N a^-pyrophosphate), Such c h e l a ­ of pyrophosphoric an i n o r g a n i c c h e l a t i n g a g e n t , w e l l a s t h e f o l l o w i n g Na s a l t s of organic c h e la tin g ag en ts: d i e t h y le n e t r i a m i n e p e n t a a c e t ic a c id , pentasodium s a l t DPTA); e t h y l e n e d i a m i n e t e t r a a c e t i c EDTA); a n d n i t r i l o t r i a c e t i c as acid, (Na^- disodium s a l t a c id disodium s a l t (Na2 - (Na2 -NTA). 4o The c h e m i c a l f o r m u l a e a n d t h e s t a b i l i t y constants of th e se c h e l a t i n g a g e n t s w i t h F e a n d A1 a r e p r e s e n t e d i n T a b l e 3 . E xtracting procedure: u sed, as fo llo w s: 2g. B asco m b 's air-d ry so il 250ml. c e n t r i f u g e b o t t l e s ( 1 9 6 8 ) p r o c e d u r e was ( < ^ 2mm) w e r e p l a c e d i n ( p o l y p r o p y l e n e ) a n d 2 0 0 m l o f 0.1M e x t r a c t i n g s o l u t i o n were added t o t h e s o i l s . containing s o ils and s o l u t i o n s w ere capped and s h a k e n o v e r ­ n i g h t a t room t e m p e r a t u r e . w ere added and t h e b o t t l e s A fter th is of 0 .4 $ s u p e r flo e shaken a g a in f o r f i v e m in u te s. o r u n t i l t h e s u p e r n a t a n t l i q u i d was c l e a r i n r e ­ flected lig h t. The s o i l e x t r a c t s w e r e t h e n t r a n s f e r r e d t o containers for fu rth er an aly sis. S o il ex tract c o lo r: 100ml g l a s s b o t t l e s , uniform . Five drops t h e s a m p l e s w e r e c e n t r i f u g e d a t 2 , 0 0 0 rpm f o r te n m inutes p lastic The b o t t l e s The s o i l e x t r a c t s w e r e p l a c e d i n th u s keeping th e s o lu ti o n th ic k n e s s Th e c o l o r v a l u e s w e r e d e t e r m i n e d i n r e f l e c t e d l i g h t by me an s o f a M u n s e l l c o l o r c h a r t . S o il e x tra ct re a c tio n : The h y d r o g e n i o n a c t i v i t y of th e e x t r a c t i n g s o l u t i o n s were d e te r m in e d b e f o r e e x t r a c t i o n and im m e d ia te ly a f t e r e x t r a c t i o n . A glass Z e r o m a t i c pH m e t e r was u s e d i n t h e s o i l e l e c t r o d e Bec km an ex tra ct reactio n m easurem ent. Fe and Al i n t h e s o i l e x t r a c t s : The e x t r a c t s w e r e a n a l y z e d f o r i r o n a n d a l u m i n u m u s i n g a 303 m o d e l P e r k i n - E l m e r atom ic a b s o r p t i o n s p e c t r o - p h o t o m e t e r . A c e ty le n e and a i r were 41 Table 3. Chemical formulae and some of the equilibrium constants of the chelating agents used in this study Ligand Abbreviated formula Metal ion Equilibrium constants _____________________ Log (K)_________ Pyrophosphoric acid Fe (II) 0 = P^_OH (Na^PpOy) Fe (III) 0 = P < — -OH ^"-OH A1 (III) Diethylenetriaminepentaacetic acid DPTA HOOCCH,H— , CHpCOO CH2 ?h2 -Ni Fe (II) 16.5 Fe (III) 2 8 .6 (Na5DPTA) CHgCOO A1 CH2 (III) CHo H— OOCCH. -CH2COOH Ethylene diaminetetraacetic acid, EDTA OOCCHp /c h 2 c o o Fe (II) 14.33 Fe (III) 25.1 A1 (III) 16.3 (Na2H2 EDTA) H — iriCH2C H 2Ni HOOCCH, / c h 2c o o h Nitrilotriacetic acid, NTA Fe (II) 8 .8 2 ,c h 2c o o Fe (III) HN- •c h 2c o o h (Na2HNTA) A1 'CH2C00H (III) 15-9 42 used f o r i r o n d e t e r m i n a t i o n as f u e l and o x id a n t, ively. oxide resp ect­ The o x i d a n t u s e d f o r A1 d e t e r m i n a t i o n was n i t r o u s to provide a h o t t e r flam e. th e e x t r a c t were c a l c u l a t e d u s i n g CV ( d f ) % e l e m e n t =vyVj_Q ~$qq ' ' 5 The p e r c e n t Fe a n d A1 i n the follow ing equation: W h er e V = volume i n u n d i l u t e d sample d .f. = d ilu tio n facto r W = w eight of sample C = concentration of elem ent in sample s o l u ­ tio n s obtained from s t a n d a r d c u r v e i n ppm The e l e m e n t a l F e a n d A1 a r e e x p r e s s e d i n p e r c e n t a g e o f t h e s o i l sam p le, oven d r y . T o tal carbon in s o i l s b e fo re e x t r a c t i o n : T otal c a r­ bon i n s o i l s w ere d e te r m in e d by t h e d r y c o m b u stio n method u s i n g a "LECO 70 S e c o n d C a r b o n A n a l y z e r " . S o i l sam ples were ground f o r s i x m in u tes i n a h ig h speed im pact s h a k e r, one h u n d r e d m i l l i g r a m s of f i n e l y ground s o i l then ( 8 0 m e s h ) was p l a c e d i n t o a s p e c i a l c e r a m i c c r u c i b l e a n d one s c o o p ( a p p r o x ­ i m a t e l y 1 gram) e a c h o f i r o n c h i p and t i n added. a c c e l e r a t o r s were The c r u c i b l e was p l a c e d i n t h e s p a c e p r o v i d e d i n t h e c o m b u s t i o n t u b e o f t h e i n d u c t i o n f u r n a c e t h r o u g h w h i c h 02 was b e i n g p a s s e d . over l670°C , read ily . The c o m b u s t i o n t u b e p r o v i d e s a t e m p e r a t u r e s u f f i c i e n t l y high t o o x i d i z e or b u rn t h e sample Th e C i n t h e s a m p l e was o x i d i z e d t o C02 . Th e g a s m i x t u r e l e a v i n g t h e i n d u c t i o n f u r n a c e was p a s s e d t h r o u g h a 43 dust trap to f i l t e r out th e s o l i d t i n and i r o n o x id e s , f o l l o w e d b y a s u l f u r t r a p c o n t a i n i n g Mn02 t o a b s o r b s u l f u r g a se s which m ig h t have b e en o x id iz e d d u r in g t h e c o m b u stio n of th e sam ple, and f i n a l l y th ro u g h a h e a te d c a t a l y s t t o d i z e a n y CO f o r m e d t o C02 . was r e m o v e d b e f o r e i t o xi­ The m o i s t u r e o f t h e g a s m i x t u r e e n t e r e d t h e a n a l y z e r by an an h y d ro n e trap . Th e g a s m i x t u r e ( 0 ^ a n d C02 ) w h i c h h a d u n d e r g o n e t h e c o m b u s t i o n a n d p u r i f i c a t i o n p r o c e s s e s was t h e n p a s s e d i n t o a c y l i n d e r l o c a t e d i n a t e m p e r a t u r e - c o n t r o l l e d oven (450°C) in the analyzer. The t h e r m a l c o n d u c t i v i t y o f t h e g a s m i x t u r e i n t h e c y l i n d e r was m e a s u r e d b y m e an s o f a t h e r m a l c o n d u c ­ tiv ity cell of a t h e r m i s t o r - t y p e . The o u t p u t o f t h e t h e r m a l c o n d u c t i v i t y c e l l was r e a d on a s p e c i a l DC d i g i t a l v o l t m e t e r as p e r c e n t carb o n ($C). T o tal carbon in s o i l s sam ples a fte r ex tractio n : ( a f t e r b e i n g s u b j e c t e d t o e x t r a c t i o n ) were washed w ith d i s t i l l e d w a te r i n #42 f i l t e r p a p e r s on g l a s s f u n n e l s . The w a s h i n g s w e r e r e p e a t e d u n t i l t h e f i l t r a t e n e u t r a l pH. used. The s o i l S i x t o n i n e h u n d re d m l. resum ed a o f d i s t i l l e d w a t e r was Th e s a m p l e s w e r e t h e n a i r - d r i e d a n d t h e i r t o t a l c a r ­ bons were d e t e r m i n e d by t h e d r y c o m b u s tio n p r o c e d u r e a l r e a d y d escribed. RESULTS AND DISCUSSION P relim inary S tudies P relim inary stu d ie s a f f e c t in g the e x tr a c tio n The d i s c u s s i o n concerning th e v a rio u s f a c to r s of Fe, A l, of the r e s u l t s and c a rb o n w ere c o n d u c te d . of such ex p erim en ts fo llo w s: E f f e c t of c o n c e n t r a t i o n of t h e e x t r a c t a n t : o f 0 .1 M , 0.2 M , S o lu tio n s a n d O . 5M Nag-NTA a n d a l s o 0.1M a n d 0.2M Na2 ~EDTA w e r e a p p l i e d t o s o i l s a m p l e s . The e x t r a c t i o n p r o ­ c e d u r e o f Bascomb was f o l l o w e d a n d s l i g h t l y m o d i f i e d b y using d if f e r e n t c o n ce n tra tio n s The r e s u l t s of th e re a g e n ts as in d ic a te d . a r e shown i n T a b l e 4 . The s e l e c t e d s p o d i c h o r i ­ z o n s a s w e l l a s o r t s t e i n a n d f r a g i p a n s a m p l e s do n o t s eem t o have r e l e a s e d h i g h e r amounts o f s e s q u i o x i d e w i t h i n c r e a s i n g c o n c e n tra tio n of the re a g e n t. However, t h e a r g i l l i c h o r i z o n I ( ^ 2 2 ^ ) o f t h e Onaway s e r i e s a n d t h e H i a w a t h a B2 ^ h i r s ho w e d p r o g r e s s i v e l y low er v a lu e s o f e x t r a c t a b l e Fe w i t h i n c r e a s i n g r e a g e n t c o n c e n t r a t i o n , w h ile e x t r a c t a b l e Al i n c r e a s e d slig h tly . Effect of e x t r a c t i o n tim e and s h a k in g t r e a t m e n t s : Some s e l e c t e d s p o d i c h o r i z o n s a m p l e s w e r e s u b j e c t e d t o 0.1M s o l u t i o n o f Nap-NTA a n d Nap-EDTA f o r t h r e e d i f f e r e n t 44 T able 4. E f f e c ts of c o n c e n tra tio n of e x t r a c t a n t s Al from s o i l s E xtractants N a 2 -NTA H orizon 0 .1M on t h e e x t r a c t i o n o f Fe a n d “0.2M and 675M concentration N a2 -EDTA O I 0.2M Fe% A lfa Fe$ Al % Fefo A l fo Fe% A l fo Fefo Al % .08 .04 .18 .10 trace trace .10 .49 .19 • 03 • 54 .13 .33 .03 .10 .15 .38 .11 .05 .10 .20 .14 .12 • 05 .10 .19 .10 AuG res-Crosw ell C rosw ell-G raycalm B2 j h i r B2 i h i r .29 .16 R ubicon B2 1 i r R ubicon • 51 .26 .18 • 37 .20 .27 .18 • 29 .2 1 .21 .19 .11 • 45 .21 .2 1 o rtstein .23 .11 .33 .23 .41 .10 .39 .20 .05 .11 t r a c e .10 H iaw atha B2 1 h i r • 56 .25 .48 .42 .28 • 51 .21 .45 .28 Onaway B2 2 t .40 .12 • 38 .14 MO CM • trace .20 CM • B2 1 h i r B2 1 h i r mo K inross S augatuck-A uG res .16 . 06 .12 .10 M unising B2 ^ h i r .48 .47 .46 .44 M unising b 3x .07 .49 .09 .15 .44 .50 .04 • 53 .51 .06 t r a c e .28 .21 .17 • 19 mean standard e rro r .25 -.009 .07 t r a c e .26 .23 -.008 .09 .03 .26 .20 .15 .18 .59 .06 .21 46 e x tra c tio n tim es. The f i r s t g r o u p was s h a k e n c o n t i n u o u s l y f o r a p e r i o d o f f o u r t e e n h o u r s b y me an s o f a m e c h a n i c a l shaker. The s e c o n d g r o u p was s h a k e n o c c a s i o n a l l y b y h a n d f o r t h e same p e r i o d o f t i m e . hand o c c a s i o n a ll y Th e t h i r d g r o u p was s h a k e n b y f o r a p e r i o d of f i v e days (120 h r s . ) . Nai4.- P 2 ° 7 was a l s o u s e d a s a n e x t r a c t a n t i n t h e f i r s t The m i x t u r e s group. of s o i l and s o l u t i o n s w ere c e n t r i f u g e d a f t e r each s p e c i f i e d e x t r a c t i o n p e r i o d and t h e c l e a r e x t r a c t s were a n a l y z e d f o r Fe a n d A l . The r e s u l t s of t h i s experim ent a re shown i n T a b l e 5* The d a t a r e v e a l s t h a t i n g e n e r a l t h e f o u r t e e n h o u r s of o ccasio n al shaking tre a tm e n t b j r e s u l t e d i n low er y i e l d s o f b o t h e x t r a c t a b l e Fe a n d A l f r o m t h e s e s o i l s a m p l e s . t r a c t i o n t i m e o f 120 h o u r s , ex tractio n tinuous treatm ent c, o f Fe a n d A l , a n d f i n a l l y shaking tim e, treatm ent a, a m o u n t s o f e x t r a c t a b l e Fe a n d A l . caused th e g r e a te s t th e fo u rte e n hours con­ released interm ediate The e f f e c t s of c o n t a c t betw een s o i l and e x t r a c t a n t , d uration, Ex ­ of th e tim e as w e ll as sh a k in g a r e m o s t d i v e r s e i n t h e a m o u n t s o f Fe a n d A l e x ­ t r a c t e d from t h e b e t t e r d r a i n e d s o i l s w i t h s t r o n g e r s p o d i c h o riz o n developm ent. F urtherm ore, th ese r e s u lts suggest t h a t a l t h o u g h b o t h Na2 -NTA a n d Na2 -EDTA h a v e e x t r a c t e d m o re Fe a n d Al a f t e r 120 h o u r s e x t r a c t i o n t i m e , c r e a s e o f Fe e x t r a c t i o n i s A l. the r a te of i n ­ s u b s t a n t i a l l y h ig h e r th a n t h a t of T able 5 . E f f e c t o f s h a k i n g a n d e x t r a c t i o n t i m e on t h e a m ou nt o f Fe a n d A l e x t r a c t e d b y t h r e e 0.1M c h e l a t i n g a g e n t s E x t r a c t a n t s ,, e x t r a c t i o n t i m e s a n d s h a k i n g t r e a t m e n t s IM3 2 -W'-L'/V iNa2 Na4P2®7 (c ) 14 h r ^ a ) 14 h r ( a ) 14 h r ^ 12 0 h r 1 14 h r l' a ; 14 h r 1, D^ 12 0 h r l' C ^ C helating agent E x t r a c tio n tim e Fe# A l# Fe# H orizon Fe# A l# K inross E'2 2 h i r tr. . 06 tr. .08 tr. S augatuck-AuGres B2 1 h i r . 1 9 • 39 .20 .51 .24 A uG res-Crosw e!1 B 2ihir .24 .29 . 2 9 .3 3 .31 C r o s w e l l - G r a y c a l m B2 ]_hir .1 2 .18 .16 .23 .20 .21 • 29 . 3 0 Rubicon B2 1 i r • 15 . 2 4 .23 .4 1 . 1 5 • 36 .48 Hiawatha B 2ihir • 51 . 2 6 .56 .25 Onaway B2 i i r . 4 0 • 30 .4 3 M unising B pphir .4 7 .2 6 mean standard e rro r A l# Fe# Al# Fe# S o il S eries A l# A l# Fe# Al# .0 8 .12 tr. .09 tr. .05 . 0 7 . 16 .36 .58 .1 3 • 33 .10 • 25 • 19 • 39 .38 • 39 .1 1 .20 .14 .20 • 29 . 2 1 .05 .14 tr. .10 .15 .20 • 50 .10 .20 .05 .18 .21 .28 . 4 7 • 15 . 8 5 • 29 .51 .2 1 • 32 . 1 7 .66 .31 .28 . 3 8 .2 1 • 91 • 35 .22 .21 .17 .30 .24 .60 . 4 8 .4 7 .40 .38 .75 .62 .50 •53 • 31 . 4 2 . 6 7 .5 6 .29 • 29 .3 2 .26 .51 • 39 .20 .24 .1 4 .19 .32 .08 .29 .27 + .0 3 ± . 0 1 ( a ) O v e r n i g h t , 14 h o u r s , s h a k i n g i n a r e c i p r o c a l s h a k e r ( b ) O c c a s i o n a l s h a k i n g o v e r n i g h t , , 14 h o u r s ( c ) O c c a s i o n a l s h a k i n g f o r a p e r i o d o f 5 d a y s , 120 h o u r s .17 .29 The Na^-DPTA s o l u tio n at i t s n a t u r a l pH o f 12* a s w e l l a s a t p H ' s o f 7 a n d 10. were a p p l i e d t o s o i l s . (HC1 was u s e d t o a d j u s t t h e pH t o 7 and 1 0 .) The a m o u n t s o f F e a n d A l w e r e d e t e r m i n e d i n the e x tr a c ts . C a r b o n was d e t e r m i n e d i n t h e s o i l b e f o r e a n d a f t e r e x t r a c t i o n a n d t h e d i f f e r e n c e was r e c o r d e d a s t h e d is p e rs e d organic carbon. The d a t a r e v e a l s The r e s u l t s a re giv en in T able 6 . a g e n e r a l t r e n d o f i n c r e a s i n g amount of e x t r a c t a b l e F e , Al and o r g a n i c c a r b o n w i t h i n c r e a s e pH o f t h e e x t r a c t a n t . However, of the t h e n a t u r a l pH o f 12 o f Na^-DPTA a p p e a r e d t o b e t o o h i g h t o d e t e c t a n y Fe i n so lu tio n . These r e s u l t s a r e in agreem ent w ith th e stu d y of T i n s l e y a n d S a l a m ( 1 9 6 1 ) i n w h i c h t h e y s u g g e s t t h a t a s pH is r a i s e d th e e q u ilib r iu m betw een F e r r ic hydroxide p recip itate Fe 7 / io n c o n c e n tra tio n M etal-o rg an ic com plex^^ Al A lum inate in so lu tio n is lik ely t o be d i s p l a c e d t o th e r i g h t w ith c o n se q u e n t i n ­ crease in s o l u b i l i t y The r e s u l t s o f t h e o r g a n i c complex. o b ta i n e d from t h e p r e l i m i n a r y s t u d i e s make o b v i o u s t h e n e e d f o r some s t a n d a r d p r o c e d u r e a s t o t h e e f f e c t of e x tr a c tio n tim e, reagent c o n cen tratio n , a n d pH. Ev en t h o u g h t h e l o n g e r t i m e o f c o n t a c t b e t w e e n r e a g e n t a n d Table 6. The e f f e c t o f t h e pH o f 0.1M Na^-DPTA s o l u t i o n s on t h e e x t r a c t a b i l i t y of F e, Al and o rg a n ic c a rb o n o f s o i l sam ples Na5 --DPTA CD hi pH = 10 11 pH = 7 H orizon % S o il series k lfo K inross B2 2 M r tr. .08 .08 tr. . 06 - tr. .04 .12 Saugatuck-A uG res B 2ihir .1 2 .30 •89 .15 .41 •97 tr. .53 1.49 AuG res-Crosw ell B2 ^ h i r .09 .19 • 32 .21 • 30 .44 tr. .34 .50 Crosw ell-G raycalm B2 1 h i r .04 .1 2 .10 .10 .19 - tr. .26 - R ubicon B2 1 i r .09 .21 .10 .18 .27 .20 tr. .44 .25 Hiawatha B2 ]_hir .49 . 16 .51 .58 .20 .68 tr. .22 .97 Onaway B2 i i r .20 .20 .37 .33 .47 .48 tr. .41 .42 M unising B2 1 h i r A l A l 1.10 .40 .56 1 .90 tr. A l 2.13 .19 .2 2 .43 .24 • 31 .58 .34 .74 me ans s t a n d a r d e r r o r f o r pH c l a s s C fo* F efo k lfo Cfo Fefo k lfo C.% -. 07 *Th e p e r c e n t a g e s o f e x t r a c t e d c a r b o n i s b a s e d on t h e t o t a l d r y c o m b u s t i o n v a l u e s o f o r i g i n a l s o i l and a f t e r e x t r a c t i o n . Dashes i n d i c a t e n e g a t i v e carb o n v a l u e s . s o i l m a t e r i a l a p p e a r e d t o r e s u l t i n h i g h e r amounts of e x t r a c t a h l e Fe a n d A l , t h e f o u r t e e n h o u r s of continuous s h a k i n g f o r p r a c t i c a l p u r p o s e s i s m o re s u i t a b l e . The r e ­ a g e n t c o n c e n t r a t i o n o f 0 . 1M a l s o p r o v e d t o b e m o r e e f f i ­ c ie n t sin ce the s e n s i t i v i t y of th e atom ic a b s o r p tio n u n i t drops w ith i n c r e a s i n g c o n c e n tr a tio n of th e r e a g e n t. t h e pH h a s a p r o n o u n c e d i n f l u e n c e illu v ia l m aterials, However, i t as i s F in ally , on t h e e x t r a c t a b i l i t y of e v i d e n t f r o m t h e s t u d y w i t h DPTA. seemed d e s i r a b l e t o u s e t h e r e a g e n t s a t t h e n a t u r a l pH o f t h e i r s o l u t i o n s a n d t o s t u d y t h e e f f e c t range of pH 's as w e l l as t h e e x t r a c t a n t s of a them selves. C o n s i d e r i n g t h e above p r e l i m i n a r y s t u d i e s , B asco m b 's ( 1 5 6 8 ) p r o c e d u r e was a d a p t e d a n d s l i g h t l y m o d i f i e d b y s u b s ­ titu tin g d ifferen t organic c h e la tin g agents w ith d i f f e r e n t pH 's f o r t h e K -p y ro p h o s p h a te . A lso, s o d i u m was u s e d a s a n accompanying c a t i o n w ith a l l t h e e x t r a c t i n g r e a g e n t s . d iscussion of th e r e s u l t s The follow s. P rin c ip a l S tudies pH o f t h e e x t r a c t i n g t a c t w ith th e s o i l in th is 4 .6 , sam ples: s o l u t i o n s b e f o r e and a f t e r c o n ­ The e x t r a c t i n g s o l u t i o n s u s e d tudy p ro v id e a range of p H 's. T h e s e a r e pH 3 - 2 , 1 0 , a n d 1 2 , c o r r e s p o n d i n g t o 0.1M s o l u t i o n s Nag-EDTA, N a ^ - p y r o p h o s p h a t e , o f Nag-NTA, a n d Na^-DPTA, r e s p e c t i v e l y . The Na^DPTA s o l u t i o n was b u f f e r e d s t r o n g l y e n o u g h t o m a i n ­ t a i n a c o n s t a n t pH e v e n a f t e r b e i n g i n c o n t a c t w i t h t h e s o i l 51 sam ples s t u d i e d , Table 7. The N a - p y r o p h o s p h a t e s o l u t i o n s m a i n t a i n e d t h e i r i n i t i a l pH v a l u e s w i t h i n 0 . 3 pH u n i t . ever, the How­ h o r i z o n of th e H iaw atha and M unising s e r i e s l o w e r e d t h e pH o f t h e N a ^ - p y r o p h o s p h a t e e x t r a c t i n g s o l u t i o n s 0 . 5 and 0 . 7 u n i t s , resp ectiv ely . c h a n g e t h e pH o f t h e Those h o r iz o n s d i d n o t other e x tra c tin g s o lu tio n s ap p re cia b ly . The p H ' s o f t h e Na2 ~HTA a n d Nag-EDTA e x t r a c t a n t s u s u a l l y r e ­ m a i n e d w i t h i n 0 . 1 pH o f t h e i r o r i g i n a l r e a c t i o n s . Nag-NTA pH was r a i s e d from 3 . 2 t o 3 . 6 a n d t h e Na2 ~EDTA pH was r a i s e d f r o m 4 . 6 t o 4 . 7 h o r i z o n o f t h e Onaway The r i s e The a f t e r c o n ta c t w ith th e a r g i l l i c so il series. i n pH o f e x t r a c t i n g s o l u t i o n s (N a2 -NTA a n d Na2 -EDTA) u p o n c o n t a c t w i t h t h e a r g i l l i c h o rizo n of th e Onaway s o i l s e r i e s may b e a t t r i b u t e d t o a t t a c k m i n e r a l s by s o l u t i o n s on s i l i c a t e o f su ch low p H 's and c o n s e q u e n t r e l e a s e of hydroxyl io n s to th e environm ent. C olor o f th e s o i l e x t r a c t s : for e x tra c t colors The M u n s e l l n o t a t i o n s a r e shown i n T a b l e 8 . The A-j_ h o r i z o n e x t r a c t s were c o n s i d e r a b l y l i g h t e r i n c o l o r as compared t o th e spodic h o riz o n e x t r a c t s . w e r e m o re y e l l o w i s h i n c o l o r H o w e v e r , t h e Na^-NTA e x t r a c t s ( w i t h h u e s o f 2 . 5 7 a n d 57 ) w h i l e t h e Na^-EDTA, N a ^ - p y r o p h o s p h a t e , colors a n d Na^-DPTA e x t r a c t r a n g e d from t h e y e l l o w i s h brown t o d a r k brow n. poorly drained s o ils (K in r o s s and S a u g a tu c k ) had c o l o r s m o stly in brow nish y ello w (107R 6/ 6 ) w i t h Na2 -NTA a n d The T able 7. pH v a l u e s o f t h e e x t r a c t i n g s o l u t i o n s b e f o r e a n d a f t e r c o n ta c t w ith s o i l sam ples S o il se ries H orizon E x t r a c t a n t ( i n i t i a l pH) Na2 NTA Nag'EDTA Na^P^O^ ( PH = 3 » 2 ) K inross ( pH =4 . 6 ) (pH =10) B2 1 ^ B2 2 h i r 3.2 4 .4 9 .8 3-2 4 .4 9 .9 B2 i h i r 3-3 4.6 10.1 B2 2 h i r 3.3 4 .5 IIB 2 ]_hir' I I B h i r ’m 3.3 3.2 4 .5 9 .9 1 0 .0 1 0 .0 B2 ]_ hir B2 2 h i r 3.2 3.3 4 .6 4 .6 10.2 10.3 3 .3 3.2 4 .6 4 .5 10.2 10.2 B2 2 h i r 3.1 4 .5 10.3 Omega b22 4.6 10.3 E astport b21 3.3 3.2 10.3 Rubicon A1 B 21ir B 22ir o rtstein 3.2 4 .5 4 .4 3-3 4 .6 3.1 3.2 3.2 4 .6 3.3 3.2 4 .5 4.6 3.3 3.2 4 .5 9-9 10.2 4 .5 9 .8 3.3 3.3 3.6 4 .5 4 .4 4 .7 4 .4 4 .4 4.6 4 .6 10.0 10.1 10.1 Saugatuck-A uG res A uG res-C rosw ell C ro sw e ll-G ray c a lm U PP.Bp^hir l o w B2 j h i r H iaw atha Al a2 B2 ]_hir B22 l r Onaway M unising a2 B22lr B2 2 i r B2 2 t A1 A2 B2 l h i r B2 2 i r 3.2 3.2 3 .3 3.3 4 .5 4 .4 9.7 10.1 10.2 10.2 9-5 1 0 .0 9.3 9 .9 9-9 10.1 53 Na^-EDTA, w h i l e y e l l o w c o l o r s w e r e d o m i n a n t w i t h N a ^ - p y r o p h o s p h a t e a n d Na^-DPTA. spodic h o riz o n s The c o l o r o f t h e h i g h l y d e v e l o p e d (H iaw atha and M u n isin g ) ra n g e d from s t r o n g b ro w n ( 7 - 5 YR 5 / 6 ) t o y e l l o w i s h r e d (5Y 5 / 6 ) . developed sp o d ic h o riz o n s Th e l e s s (A uG res-C rosw ell, C rosw ell-G raycalm and R ubicon) w ere m o s tly w h ite (5Y 8 / 2 - 8 / 1 ) . In gen eral, Nac -DPTA c o l o r s w e r e m o s t l y y e l l o w ( 2 . 5Y - 5Y) w h i l e t h e o t h e r e x t r a c t a n t s were co m p arab le i n c o l o r , Fe e x t r a c t i o n r e s u l t s : I n g e n e r a l t h e Na2 -NTA c h e l a ­ tin g agent r e s u lte d in the e x tra c tio n o f s u b s t a n t i a l am ounts o f e x t r a c t a b l e Fe f r o m m o s t o f t h e s o i l s a m p l e s s t u d i e d (T able 9 ). Na2 -EDTA e x t r a c t i n g s o l u t i o n y i e l d e d v e r y low amounts o f F e , less and N a ^ - p y r o p h o s p h a t e e x t r a c t e d somewhat t h a n Na2 ~NTA. The m e t h o d s w e r e m o s t d i v e r s e i n t h e a m o u n t s o f Fe e x t r a c t e d f r o m t h e R u b i c o n p r o f i l e . Na^-DPTA e x t r a c t s c o n t a i n e d t r a c e a m o u n t s o f Fe 5 ( n e t shown i n T a b l e 9 ) . As d i s c u s s e d e a r l i e r i n t h e p r e l i ­ minary, s tu d y o f th e e f f e c t Fe, A l, o f pH on t h e e x t r a c t a b i l i t y of a n d C, t h e lo w q u a n t i t y o f i r o n i n t h e s e e x t r a c t s was d u e t o t h e h i g h pH o f t h i s caused the p r e c i p i t a t i o n If e x t r a c t a n t , w hich would have o f Fe a s F e ^ H ) ^ . only th e e f f e c t o f pH w e r e t o b e c o n s i d e r e d , d a t a r e v e a l s t h a t t h e lo w pH e x t r a c t a n t s h a v e r e s u l t e d the in t h e h i g h e s t amounts of e x t r a c t a b l e Fe; y e t t h e N a ^ -p y ro p h o s phate (pH=10) h a s a l s o e x t r a c t e d a s much F e a s Na^-EDTA (pH =4.6). Furtherm ore, t h e Na2 -NTA e x t r a c t a b l e Fe i s 54 T a b l e 8. C olor o f th e sp o d ic B e x t r a c t s by d i f f e r e n t ex tractan ts Na2 NTA M unsell n o t a ti o n s E xtractant Na5DPTA Na2 EDTA N a ^ P ^ y B2 1 h B ophir 10YR7/8 10YR7/8 7.57H 5/8 10YR6/8 10YR6/8 2 . 5y7/8 2 .5 7 7 /8 2 .5 7 7 /6 B2 } h i r 10YR 6/8 10YR6/8 10YR6 / 8 2 .5 7 7 /6 B2 2 h i r 10YR7/8 10YR6/8 2 . 577/8 2.577/8 I I B 21h i r ' IIB h ir'm 10YR6/8 2 . 5 Y 7 /8 10YR6/8 2.577/8 2 .577/8 2 .577/8 2 .577/8 2 . 5Y7/8 B2 i h i r B2 2 h i r 2 . 5 Y 7 /8 - 577/6 578/1 2.5 7 7 /6 577/4 2 . 5Y7/8 5 Y 8/ 4 A1 B2 i i r 5 Y 7 /8 5Y 8/2 5Y 7/ 6 5Y 8/2 577/6 578/1 7-5YR5/8 5Y8/4 577/6 578/2 5YR3/4 2 .5 7/6 577/6 578/3 5Y7 / 6 5Y8 / 2 5YR3/3 2 . 5Y6/8 B2 2 i r 5Y 8/3 578/1 578/1 S o il series; K inross S augatuckAu Gre s AuGresC rosw ell C rosw ellGraycalm Rubicon Hiawatha H orizon UPPB2 i h i r lo w B2 i h i r B2 2 h i r Al B 2ihir 2.577/6 578/3 7 .5 7 R 5 /6 7-5YR5/8 2 . 5Y7/8 2 . 5 7 7 / 8 577/6 5Y 8/2 1 OYR5 / 6 2 .575/6 7 . 5YR5/6 2 . 5 Y 6 / 8 2 . 5Y6 / 6 577/8 Onaway B2 2 i ^ B2 l i r B2 2 i r 2 . 5 Y 6 /8 2 . 5 Y 7 /8 2 . 5Y6 / 8 2.577/8 IOYR7 / 8 2 .5 7 7 /6 2 . 577/8 5Y7 / 8 M inising Al 2.577/6 10YR6/8 5YR3/4 7 . 57R4/4 B2 ^ h i r 5YR5 / 8 2.577/8 5YR5 / 8 2.5Y 7/8 IOYR5 / 6 10Y R6/8 2.5 7 6 /8 577/8 B2 2 i r 55 commonly n o t s i g n i f i c a n t l y h i g h e r t h a n N a ^ - p y r o p h o s p h a t e e x t r a c t a b l e F e , b u t r a t h e r c o m p a r a b le t o them. The c h e l a t i n g p o w e r s o f t h e r e a g e n t s a r e d i f f e r e n t . M a r t e l l and C a l v i n (195*0 g i v e t h e s t a b i l i t y NTA w i t h F e ++ a s 8 . 8 2 a n d t h a t Therefore, lates EDTA i s constants of o f EDTA w i t h F e ++ a s 1 4 . 3 3 * c a p a b l e o f f o r m i n g m o re s t a b l e F e c h e ­ c o m p a r e d t o NTA. In ad d itio n , EDTA p o s s e s s e s tw o donor groups in t h e s t r u c t u r e which re n d e r a s t r o n g e r a b i ­ lity to c h e la te m etals. so ils However, th e d ata o b tain ed fo r the s t u d i e d h e r e show m o r e e x t r a c t i o n b y NTA t h a n EDTA i n a l l sam ples. Na-DPTA h a s t h r e e d o n o r g r o u p s , t h e h i g h e s t number 5 o f d o n o r g r o u p s among t h e t h r e e o r g a n i c c h e l a t i n g a g e n t s used in th e study. T herefore, l a t e m e ta ls most r e a d i l y . Nac -DPTA w i t h Fe ++ i s 16. 5. i t w ould be e x p e c t e d t o c h e ­ The s t a b i l i t y c o n s t a n t of As m e n t i o n e d e a r l i e r , pH v a l u e may h a v e m a s k e d t h e c h e l a t a b i n t y ant. Its Its ex tractio n ab ility of th is th e high ex tract­ o f i r o n was g r e a t l y i m p r o v e d a t pH 1 0 . t o c h e l a t e aluminum w i l l be d i s c u s s e d l a t e r . N a^-pyrophosphate i s an i n o r g a n i c c h e l a t i n g a g e n t and h a s r e s u l t e d i n c o m p a r a b l e a m o u n t s o f e x t r a c t a b l e Fe a s Na2 ~NTA a n d Na2 ~EDTA. background, th e r e s u l t s W ith t h e above g e n e r a l i z a t i o n s as o b ta in e d f o r each of th e p r o f i l e s s t u d i e d a r e shown i n T a b l e 9 a n d F i g u r e 2 a n d w i l l b e e x a ­ mined i n t h e f o l l o w i n g p a r a g r a p h s . 56 I T a b l e 9- P e r c e n t t o t a l c a r b o n and e x t r a c t a b l e I r o n and al umi num c o n t e n t o f s o i l samples wi th d i f f e r e n t e x t r a c t i n g s o l u t i o n s ( c h e l a t i n g a g e n t s) — % total ______________________________________ c a r b o n S oil series Horizon Lab § Extractant 0.1MNa2 'NTA 0.1MNa2 ~EDTA 0 . lMNaaPPO/, pH=3. 2 pH= 4 . 6 pHSlO j£Fe %Fe % kl %Fe ^A1 0 . lMKac'DPTA pH=10 $Fe S&U Toposequence: Kinross Saugatuck.Au Gres A E2 2 h i r 1 2 l.li . 66 tr. tr. . 05 Ep ] Ri r 3 U 0 .27 1.4o 1 40 6° .11 . 02 .01 .51 . 52 .4 0 . 16 .13 . 05 7 A 1.29 .29 59 • 15 9 10 53 5pci .16 . l '• . 0'< i'2 2 h i r IIE21h i r 1 I IE Li r 1r. Au Gres Croswell B2 i h i r B2 2 b,ir CroswellO rayca1m UPPI'2 j h i r low B o i h i r ~ •: - :. i r 5 C 11 .09 tr. tr. - .10 .09 tr. tr. .08 .06 - .04 .04 - .53 . 41 .48 .16 . 33 • 15 .01 .25 .32 .15 . 02 . 02 • 39 .26 .33 .19 . 33 .22 .11 .04 .20 .10 .24 . 0? .29 .18 - .34 .23 .21 .05 . 12 .12 .18 .1? .03 .14 .16 .07 .18 .20 .10 - .26 .23 .23 .21 .10 . 04 .01 .07 .02 .12 - .07 .02 .05 .03 .20 .06 .11 .02 .02 .21 .26 .01 .14 • 05 - .31 .26 .02 • 51 .21 .04 .10 .03 .24 .12 .19 .01 .02 .26 • 35 .02 .21 . 11 .40 .30 .30 .12 . 06 .11 . 06 •05 .02 - .29 .01 .08 . 01 - .01 - .45 .02 .07 .29 Range o f s p o d i c d e v e l o p m e n t : Omega B22 12 .44 Eastport Hut i c o n £21 13 19 .2" 2 . 5c . 12 .04 19 1-: 17 1i° 20 21 22 1.07 .23 Ai B2 1 i r E2 2 i r ort s t e i n Hi awat ha Onaway .10 . 01 .05 .03 .04 • 15 .03 .08 - .44 - .31 .24 .01 .01 .22 .41 .01 t 22ir 24 .c2 5.40 • 79 2.15 1.3S 1.27 1.45 1.04 B2 2 t —1 29 £6 1.2“ 5.4c. .40 .oC .12 . 02 .16 .04 A? 27 1. 3c • Of .02 .04 .03 .02 E2 l h i r 2" 3 . 1 ■■ .4“ .4? ■50 .53 .47 Bopi r 2 '‘ 1 . :‘2 • 34 .54 . 20 .44 .33 . 46 - .49 V 30 .45 .07 .07 .04 . 06 .07 .37 - • 05 A1 A2 Bpihir E2 2 i r A2 cvj Mun isi ng • 39 .11 . 41 .24 ■05 • 05 .56 .27 . 02 .43 .34 • 1? .02 . 03 .25 .49 .02 .23 .16 • 51 .10 .01 .22 .17 .03 .07 C'O - - .41 .22 57 A. T o p o s e q u e n c e o f p r o f i l e s : K inross: The I^-^h a n d horizons of K inross s e r i e s y i e l d e d n e g l i g i b l e a m o u n t s o f Fe u p o n e x t r a c t i o n w i t h a ll of th e e x tr a c tin g s o lu tio n s used in t h i s findings study. These a re in agreem ent w ith a r e c e n t stu d y by C o llin s ( 1 9 7 1 ) i n w h i c h t h e a u t h o r was a b l e t o d e t e c t Fe i n h i s p y r o p h o s p h a t e e x t r a c t s . only t r a c e s T his p r o f i l e i s of lo cated t w e n t y f e e t o u t i n t o a l e a t h e r - l e a f - s p h a g n u m b o g on a n e a r l y le v e l area w ith poor d ra in a g e. Th e w a t e r t a b l e i s a t 6" b e l o w t h e s u r f a c e d u r i n g t h e g r o w i n g s e a s o n . commonly I t was d e v e l o p e d i n r e d u c i n g c o n d i t i o n s w i t h low pH w h e r e a l l i r o n may b e i n t h e f e r r o u s f o r m s a n d i s Saugatuck-A uG res: l e a s e d by a l l the l e a c h e d away. The a m o u n t o f e x t r a c t a b l e F e r e ­ e x t r a c t a n t s were c o n s i d e r a b l y h i g h e r i n u p p e r s p o d ic h o r i z o n s and d e c r e a s e d w ith d e p t h . the Nag-NTA and N a ^ -p y ro p h o s p h a te e x t r a c t e d t h e h i g h e s t amount o f i r o n from B ^ ^ h i r and B ^ h i r , w h i l e Na2 ~EDTA e x t r a c t e d l e s s the upper B ^ h i r h o rizo n . from The a m o u n t s o f Fe r e l e a s e d b y t h e t h r e e r e a g e n t s w e r e a l m o s t t h e same f o r b o t h t h e l o w e r Bg a nd c e m e n t e d s p o d i c h o r i z o n s , I T E ^ ^ h i r 1 a n d I I B h i r ' m . s i d e r i n g t h e m o i s t u r e regim e of th e p r o f i l e th a t the in te r n a l drainage i s Con­ and t h e f a c t im p e rfe c t, w ith the w ater t a b l e a t an a v e ra g e d e p th of 2 8 " d u rin g th e grow ing s e a s o n , th e data c l e a r l y sho ws t h a t t h e l o w e r c e m e n t e d h o r i z o n s f r o m l6"-33" are le ss a e r a t e d as th e r e s u l t of th e p re s e n c e of a SAUGATUCK -AU GRES RUBICON S B hir'm ONAWAY Orfstein .10 .20 .30 % Fe .40 .50 .10 .20 % Fe .30 .10 .40 HIAWATHA CROSWELL-GRAYCALM .2 0 .30 % Fe .40 .50 MUNISING cn 00 2 upp B 2 ihi r hir low B2 , hi r ir 822^*1 nt F ig. 3x .10 .20 %Fe 2. .30 .10 .20 .3 0 % Fe .40 .50 .60 .10 .2 0 .3 0 % Fe E x t r a c t a b l e ir o n c o n te n t o f s e l e c t e d h o riz o n s o f pedons s t u d i e d u sin g d ifferen t e x tra cta n ts. .40 .5 0 mmmmsmtmmmfm'm’ SAUGATUCK -AU GRES ONAWAY RUBICON B21 hir Bgghir IT 8 2 1 hir' I I B hir'm Orlstein .10 .20 .30 % AP .4 0 .5 0.55 .20 .30 % AP .40 .50 .10 .20 .30 %AP MUNISING HIAWATHA CROSWELL-GRAYCALM .40 ui VD upp B 2 1 hir 621 hir .10 .2 0 % AP F ig. 3. .3 0 .10 .20 .3 0 % AP .40 .50 .2 0 .30 .40 % AP E x t r a c t a b l e a l u m in u m c o n t e n t o f s e l e c t e d h o r i z o n s o f p e d o n s s t u d i e d using d i f f e r e n t e x tr a c ta n ts . .5 0 .60 6o w ater ta b le . C onsequently, th e p r e v a i l i n g red u cin g c o n d i­ t i o n s h a v e r e s u l t e d i n l o w e r Fe c o n t e n t . The Fe ma xima i s in th e u p p e r s p o d ic developm ent w ith f i n e r t e x t u r e . tractab le iro n in th is p r o f ile Th e e x ­ decreased w ith depth i n th e spodic h o riz o n . A uG res-C rosw ell: Among t h e t h r e e e x t r a c t a n t s the Na^-NTA e x t r a c t e d t h e l a r g e s t a m o u n t o f i r o n . Na, - p y r o p h o s £ 4 p h a t e a n d Na^-EDTA r e l e a s e d t h e i n t e r m e d i a t e a n d l o w e s t amounts o f F e , taken i s respectively. The s i t e w h e r e t h e s a m p l e was a b e t t e r d rain ed lo c a tio n w ith a d rain ag e c la s s im p erfect to m oderately w e ll d ra in e d . of The d e p t h o f t h e w a te r t a b l e a v e ra g e s 36 " d u r in g th e grow ing s e a so n . The Fe maximum o c c u r s i n t h e s p o d i c h o r i z o n s o m e w h e r e i n t h e u p p e r B2 h i r a n d d e c r e a s e s i n t h e l o w e r p a r t o f t h i s C rosw ell-G raycalm : The Fe maximum o c c u r s i n t h e l o w e r B2 ]_hir i n t h e l o c a t i o n f r o m w h i c h t h i s taken. horizon. s a m p l e was The Na2 -NTA a n d N a ^ - p y r o p h o s p h a t e r e l e a s e d t h e same amounts o f i r o n from t h i s h o r i z o n w h i l e Na -EDTA e x t r a c t e d th e l o w e s t amounts of Fe. b e tte r drained s i t e in th is This p r o f i l e is toposequence. located a t a It i s m oderately w e l l d r a i n e d w ith t h e w a t e r t a b l e a t an a v e r a g e d e p th d u rin g t h e grow ing s e a s o n . The e x t r a c t i o n o f Fe i s of 58" low er i n t h e B2 2 h i r h o r i z o n . Summary: The e x t r a c t i o n d a t a o v e r a l l shows a h i g h a c c u m u la tio n o f Fe i n a l l t h e s p o d ic h o r i z o n s of the s o i l s 6l i n t h i s t o p o s e q u e n c e e x c e p t t h e v e r y p o o r l y d r a i n e d m e m be r, K inross. Th e maximum a c c u m u l a t i o n i s d r a i n e d me mbers ( C o l l i n s , B. P ro files i n t h e somewhat p o o r l y 1971). r e p r e s e n t i n g range of sp o d ic developm ent: The s e c o n d g r o u p o f s o i l s in c lu d e s a range of spodic h o r i z o n d e v e lo p m e n t from t h e w e a k e s t t o t h e s t r o n g e s t d e v e l ­ op m e nt i n M i c h i g a n ( L i e t z k e , ex tractio n 1969). The r e s u l t s o f t h e Fe f o r t h e s e s o i l s a r e summarized i n t h e f o l l o w i n g paragraphs. Omega: The B22 h o r i z o n o f Omega s e r i e s contained a l a r g e p r o p o r t i o n o f Na2 - N T A - e x t r a c t a b l e Fe a s c o m p a r e d t o Na^-EDTA a n d N a ^ - p y r o p h o s p h a t e . r e l e a s e d only very l i t t l e E astp o rt: The l a t t e r t w o e x t r a c t a n t s i r o n from t h i s p a r t i c u l a r h o r i z o n . B21 e x t r a c t a b l e F e c o n t e n t w i t h t h e c h e l a ­ tin g agents used in t h i s s t u d y was g e n e r a l l y h i g h e r i n com­ p a r i s o n w i t h Omega B2 2 . The e x t r a c t a b i l i t y reagents in a decreasing order i s o f i r o n by th e s e as fo llo w s : N a ^ - p y r o p h o s p h a t e = Na2 -NTA^> Nag-EDTA Rubicon: th is A]_, B2 ^ i r , B2 2 i r a n d o r t s t e i n h o r i z o n s of s o i l s e r i e s were s u b j e c t e d t o e x t r a c t i o n w ith th e c h e ­ la tin g agents. E x c e p t f o r t h e A^ h o r i z o n s w h e r e b o t h N a^- p y r o p h o s p h a t e a n d Na,-,-NTA y i e l d e d s i m i l a r s m a l l q u a n t i t i e s e x tra c ta b le Fe, of t h e e x t r a c t i o n p a t t e r n f o l l o w e d t h e same g e n e r a l t r e n d i n t h a t Na2 -NTA e x t r a c t e d t h e h i g h e s t q u a n t i t y 62 o f F e , Na2 -EDTA t h e l o w e s t a m o u n t , a n d N a ^ - p y r o p h o s p h a t e interm ediate q u a n titie s . Th e a m o u n t o f e x t r a c t a b l e F e f r o m th e o r t s t e i n h o riz o n l i e s betw een t h a t horizons. o f B2 1 i r a n d B2 2 i r O r t s t e i n o c c u r s a t a d e p t h r a n g i n g f r o m 9" t o 2 7 " w ith chunks or tongues 1 1 /2 " -3 " t h i c k , W h ite s id e and J o h n so n ( 1 9 6 7 ). as d e s c r i b e d by This s o i l g ives r i s e F e maxima d u e t o t h e p r e s e n c e o f o r t s t e i n , t o two i n which e x t r a c t - a b l e Fe c o n t e n t o f t h e s e c o n d z o n e o f maxima i s considerably l o w e r t h a n t h e f i r s t Fe maxima i n t h e B2 1 i r h o r i z o n . H iaw atha: z on o f t h i s an ts. Th e p e r c e n t Fe e x t r a c t e d f r o m e a c h h o r i ­ so il is The q u ite s im ila r fo r the d i f f e r e n t e x t r a c t ­ a n d A2 h o r i z o n s y i e l d e d t h e l o w e s t v a l u e s w h i l e t h e maximum e x t r a c t a b l e Fe o c c u r r e d i n t h e B2 l h i r h o r i ­ z on w h e r e t h e s p o d i c h o r i z o n e x p r e s s i o n i s in th e f ie ld . q u i t e pronounced Th e d i f f e r e n c e s i n t h e a m o u n t s o f e x t r a c t a b l e Fe o b t a i n e d w i t h t h e s o l u t i o n s u s e d i n t h i s n o t i c e a b l e i n t h e B2 2 i r h o r i z o n . s tu d y were q u i t e The o r d e r o f e x t r a c t i o n i s sh ew n b e l o w : Nag-NTA - N a ^ - p y r o p h o s p h a Na2 -EDTA T h is s o i l i s w e l l d r a i n e d and has b e e n c l a s s i f i e d a s a T ypic H a p l o r t h o d a c c o r d i n g t o 19 67 c l a s s i f i c a t i o n s . ch aracteristics field . and m orphology a r e e a s i l y The s p o d i c observable in the The h i g h c o n t e n t o f e x t r a c t a b l e F e a l s o c o n f i r m s t h i s s tr o n g developm ent. 63 ! Onaway: th is The A2 , B ir, B ^ ir, a n d B2 2 t h o r i z o n s of s o i l s e r i e s w e r e s t u d i e d f o r e x t r a c t a b l e Fe c o n t e n t . The r e s u l t s s h ow e d t w o F e m a x im a . T h e s e o c c u r r e d i n B2 -^ir r a n d t h e a r g i l l i c h o r i z o n B2 2 t wlrien Na^-NTA was u s e d a s t h e ex tractan t. The o t h e r t w o e x t r a c t a n t s , N a ^ -p y ro p h o s p h a te and Na2 -EDTA, r e s u l t e d i n o n l y on e Fe maximum i n t h e B ^ i r h o r i ­ zon. Na2 -EDTA e x t r a c t e d t h e l o w e s t a m o u n t o f Fe f r o m t h e B2 i r , w hile s im ila r , larg er q u an tities o f e x t r a c t a b l e Fe w e r e o b t a i n e d w i t h N a ^ - p y r o p h o s p h a t e a n d Na2 ~NTA s o l u t i o n s . As m e n t i o n e d e a r l i e r , t h e N T A - e x t r a c t a b l e Fe c o n t e n t f r o m t B2 2 t was c o n s i d e r a b l y h i g h e r t h a n t h e a m o u n t e x t r a c t e d w i t h the other s o lu tio n s . clay p a r tic le s T h i s may b e d u e t o t h e f a c t t h a t t h e in th is p a r t i c u l a r horizon (c la y c o n ten t = 2 4 . 9 $ ) w e re more s e r i o u s l y a f f e c t e d by t h i s O th e r forms o f F e , acid s o lu tio n . in a d d itio n to those c h a r a c t e r i s t i c sp o d ic h o r i z o n s , were e x t r a c t e d as w e l l . of The o t h e r s o l u ­ t i o n s , w i t h h i g h e r p H ' s , w ere more s p e c i f i c as t o t h e form of iro n b ein g e x tra c te d . M unising: E x c e p t f o r t h e B2 2 i r h o r i z o n , w h i c h yield ed d iff e r e n t q u a n titie s o f e x t r a c t a b l e Fe w i t h t h e e x ­ tractan ts all so il used in th e stu d y , re s u lte d in the re le a s e the oth er horizons of s i m i l a r q u a n t i t i e s w ith th e th re e c h e la tin g agents used. of th is o f Fe The A , A2 a n d f r a g i - p a n B^x c o n t a i n e d t h e l o w e s t e x t r a c t a b l e F e c o n t e n t s . B2 l h i r h o r i z o n c o n t a i n e d t h e h i g h e s t a m o u n t . The Therefore, an 64 F e maxima o c c u r r e d i n t h i s h o r i z o n n e a r t h e t o p . has more c l a y c o n t e n t t h r o u g h o u t t h e p r o f i l e T his s o i l a s c o m p a r e d mo H i a w a t h a , y e t t h e e x t r a c t a b l e Fe c o n t e n t o f t h e s p o d i c h o r i ­ zon i s q u i t e com parable t o t h a t of H iaw atha. Aluminum e x t r a c t i o n r e s u l t s : The e x t r a c t i o n o f A1 w ith th e c h e la tin g agents used in t h i s g e n e r a l p a t t e r n as t h a t s t u d y f o l l o w t h e same o f F e , T a b l e 9? F i g u r e 3 j e x c e p t t h a t s u b s t a n t i a l q u a n t i t i e s w e r e e x t r a c t e d b y Na^-DPTA. I n c o n t r a s t t o Fe e x t r a c t i o n , a c o n s i d e r a b l e amount of A l was e x t r a c t e d f r o m a l m o s t a l l t h e s o i l s w i t h a h i g h pH Na,--DPTA s o l u t i o n . T h i s was p a r t i c u l a r l y t r u e o f t h e Onaway, S augatuck-A uG res, Rubicon, and C ro sw ell-G ray calm ped o n s. Na^-NTA e x t r a c t e d m o r e A l a s c o m p a r e d t o N a ^ - p y r o p h o s p h a t e a n d Na2 ~EDTA e x t r a c t a n t s . However, t h e m a g n itu d e o f d i f f e r ­ e n c e s a r e m a r k e d l y h i g h e r w i t h t h e B2 ]_ir a n d B2;- , i r h o r i z o n s o f R u bicon and C r o s w e ll- G r a y c a lm p e d o n s . The o t h e r p e d o n s d o n o t show a c o n s i s t e n t d i f f e r e n c e i n t h e a m o u n t o f e x t r a c t a b le Al w ith th e d i f f e r e n t ex tractan ts, although th e re ex ists a v e ry p ro n o u n c e d v a r i a t i o n i n t h e amount of e x t r a c t a b l e Al from h o r i z o n t o h o r i z o n w i t h i n a p r o f i l e . is e v id e n t i n th e low er B g ir h o r iz o n s . This r e l a t i o n s h i p The p r o f i l e v a r i a t i o n s w i l l be d i s c u s s e d i n more d e t a i l i n t h e f o l l o w i n g p a r a g r a p h s . D a t a on s o l u b i l i t y of Al i n s o l u t i o n s a t d i f f e r e n t pH v a lu e s i s g iv e n by M a g is ta d (1 9 2 5 ), J a c k s o n ( 1961) , ( i 9 6 0 ). and R ich The s u g g e s t e d b e h a v i o r o f A l i n r e s p o n s e t o v a r i o u s 65 pH v a l u e s i n d i c a t e t h a t i n s t r o n g l y a c i d s o l u t i o n t h e A l ex ists as t h e t r i v a l e n t c a t i o n complex w i t h s i x w a t e r m o le ­ cules in s ix c o o rd in a tio n s, (1961) form ing A l(H 20)^p. Jackson d e s i g n a t e s t h e r e s u l t i n g t r i v a l e n t i o n complex "alum inohexahydronium ". W i t h i n c r e a s i n g pH t h e H2 O g r o u p s l o s e a n H* i o n t o f o r m a n OH ion. This r e s u l t s in d i- or m ono-valent hydroxy-Al c a ti o n s w ith th e form ula A l ( 0 H 2 )p_(0H) +2 a n d A1(0H2 ) ^ ( 0H)2 + 1 , r e s p e c t i v e l y . subsequent in c re a se s w ill re su lt. W ith i n pH t h e p r e c i p i t a t i o n A l ( O H ) 0 H 2 ) ^ H o w e v e r , f u r t h e r i n c r e a s e i n pH w i l l s o l u b i l i z e A l b y f o r m a t i o n o f A l( O H ) g . T h e r e f o r e t h e h i g h e r amounts of A l e x t r a c t e d b y Na^-DPTA may b e a r e f l e c t i o n a s s o c ia te d w ith t h i s o f t h e h i g h pH e x tractan t. The a m o u n t o f A l e x t r a c t e d b y a l l t h e c h e l a t i n g a g e n t s m a rk e d ly e x c e e d s t h e c o r r e s p o n d i n g amounts o f e x t r a c t a b l e Fe. This i s i n a g re em e n t w i t h M a r t i n and Reeve ( 1 9 5 7 ) . These a u t h o r s p o s t u l a t e t h a t t h e h i g h e r c o n t e n t of e x t r a c t a b l e Al may b e a r e f l e c t i o n present in a l l of th e excess so ils. o f t o t a l A l o v e r t o t a l Fe C onsequently i t is d i f f i c u l t t o assume t h a t Al h a s a p r e d o m in a n t i n f l u e n c e i n c o m b in in g w i t h t h e organic fractio n . The f r e e i r o n oxide c o n te n ts a nd t h e t o t a l A l o f some o f t h e p e d o n s u s e d i n t h e s t u d y , lab o rato ry , a r e shown i n T a b l e 1 0 . exchangeable d e t e r m i n e d b y SCS The o r t h o p h e n a n t h r o l i n e c o l o r i m e t r y a n d f l u o r i d e t i t r a t i o n m e t h o d s a r e u s e d f o r Fe 66 oxide and exchangeable Al determination, respectively. The data shows that, except for the Onaway B21ir and B22ir hori­ zons, the spodic B horizons have higher contents of Al com­ pared with Fe. Al exceeds Fe six to seven times in the case of Munising Bpqhir and B22ir. These results may serve to confirm the validity of Martin and Reeve's postulate. The results of the extractable Al for all the pedons are further discussed in the following paragraphs. A. Toposequence of profiles: Kinross: The Bpqh and B22hir horizons released more Al upon extraction with the chelating agents as compared with Fe, but the extractable Al was also lowest in this poorly drained member of the toposequence. The extractable Al of this soil is comparable with all four extractants used. From the very low amounts of extractable Fe it seems that Fe plays little or no part in stabilizing organic matter in this poorly drained soil. It is therefore concluded that Al is the "active" metal involved in stabilizing the organic fraction in the spodic horizon of this soil. Saugatuck-AuGres: The amount of Al extracted by the chelating reagents is quite diverse. more Al than any other horizon. The Bpqhir released The effect of the extracting solutions on the amount of extractable Al is as follows: A1-DPTA> Al-NTA Al-pyrophosphata> Al-EDTA 67 T a b le 10. S o il series P e r c e n t f r e e i r o n oxide and t o t a l ex ch a n g e ab le A l o f some o f t h e s o i l p e d o n s u s e d i n t h e s t u d y by o r t h o p h e n a n t h r o l i n e c o l o r i m e t r y and f l u o r i d e t i t r a t i o n methods and h o r i z o n T o ta l i r o n oxide a s % Fe % Exchangea b l e Al Omega B22 0.40 0 .4 0 Eastport i— i CM PQ 0.30 0.10 Al 0.20 0.60 B2 1 i r 0.50 i . 4o B 2 2 ^-r 0.20 0.40 ortstein 0.20 0.50 Al 0.40 0.10 A2 o . 4o 0.30 B2ihir 1.10 2.40 E^ir o.6o 1.90 a2 0.50 0.40 B2iir 1 .7 0 i . 4o Bgpir 1.40 1.00 B2 2 t 2.00 trace A1 o . 4o 0.30 A2 0.40 0.90 B22hir 1.00 6.10 B22ir 0.60 4.00 b 3x o .4o 1.20 Rubicon Hiawatha Onaway Munising 68 The h o r i z o n w i t h t h e n e x t h i g h e s t e x t r a c t a b l e a m o u n t o f A l was I I B 2 ] _ h i r ' . The E ^ h i r h a s an i n t e r m e d i a t e amount o f e x t r a c t a b l e A l , w h i l e t h e I I B h i r ' m y i e l d e d t h e l e a s t amount of Al upon e x t r a c t i o n . T h e d a t a s u g g e s t t h a t A l was l o s t f r o m t h e B2 2 h i r h o r i z o n a n d a c c u m u l a t e d i n t h e I I B g ^ h i r ' , p r o b a b l y c o m p l e x e d a nd f i x e d w i t h o r g a n i c m a t t e r . The B ^ h i r and I I B ^ h i r 1 e x t r a c t a b l e Al c o n t e n t s w ere q u i t e d i ­ v e r s e u p o n DPTA, NTA a n d p y r o p h o s p h a t e e x t r a c t i o n * w hile EDTA e x t r a c t e d t h e same a m o u n t o f A l a s p y r o p h o s p h a t e . A uG res-C rosw ell: The DPTA e x t r a c t a b l e Al f r o m t h e B g i h i r a n d B2 2 h i r h o r i z o n s w e r e g r e a t e s t * t r a c t e d t h e l e a s t amount o f A l. w h i l e EDTA e x ­ The o t h e r tw o e x t r a c t i n g s o l u t i o n s r e s u l t e d i n i n t e r m e d i a t e amounts of e x t r a c t a b l e A l. I n e v e r y c a s e t h e B ^ h i r h a d m o r e e x t r a c t a b l e A l com­ p a re d w ith th e low er B ^ h i r h o riz o n . C rosw ell-G raycalm : The maximum e x t r a c t a b l e A l o c c u r r e d i n t h e l o w e r B2 q h i r when EDTA a n d p y r o p h o s p h a t e w e r e u s e d a s t h e e x t r a c t i n g a g e n t s , w h i l e t h e maximum o c c u r r e d i n t h e u p p e r B p ^ h i r w i t h DPTA a n d NTA. In general, t h e DPTA s o l u t i o n e x t r a c t e d t h e h i g h e s t amount o f Al from a l l h o r i ­ zons, order. f o l l o w e d b y NTA, p y r o p h o s p h a t e , a n d EDTA, i n d e c r e a s i n g The a m o u n t o f A l e x t r a c t e d was l e s s in t h is w ell d r a i n e d member o f t h e t o p o s e q u e n c e t h a n i n t h e s o m e w h a t p o o r l y d r a i n e d member. 69 B. Profiles representing range of spodic development: Omega: Al. The B22 had a high amount of DPTA extractable The NTA extractable Al was intermediate, while EDTA and pyrophosphate extracted lower amounts of Al. Eastport: The B21 horizon had a high DPTA extract- able Al content as compared with other extracting solutions. NTA and pyrophosphate extracted the same intermediate amounts of Al from this horizon, and EDTA the least. Rubicon: The A-j_, B^ir, B ^ i r and an ortstein were subjected to extraction by the chelating agents. The A^ had a trace amount of extractable Al with all of the reagents used. Maximum Al occurred in the B21ir horizon. The B22ir contained less extractable Al compared to the upper B22ir. Ortstein had an intermediate amount of extractable Al. This drop in the amount of Al in the B22ir and its subsequent increase in the ortstein was only evident with EDTA and pyrophosphate extractions. DPTA and NTA showed a continuous decrease in the amount of extractable Al from the B22ir hori­ zon downward. DPTA and NTA extracted more Al from the B2^ir horizon compared to Al extracted from the same horizon by EDTA and pyrophosphate. Hiawatha: The A^ and A2 horizons contained traces of extractable Al with all the extracting agents used. The B ^hir had the less extractable Al than the lower B22ir. NTA resulted in the maximum extractable Al from the B22ir, 70 f o l l o w e d b y DPTA, p y r o p h o s p h a t e , order. a n d EDTA i n d e c r e a s i n g The d a t a s u g g e s t t h a t t h e A l h a d b e e n t r a n s l o c a t e d deeper in t h i s p r o f i l e th a n i n th e o th e r pedons s tu d ie d , where t h e e x t r a c t a b l e Al u s u a l l y d e c r e a s e s w i t h d e p t h . Onaway: The A2 h o r i z o n c o n t a i n e d t r a c e s of e x t r a c t- a b l e Al w i t h a l l t h e e x t r a c t i n g s o l u t i o n s . t r a c t a b l e A l o c c u r r e d i n t h e B2 1 i r ; an a r g i l l i c ®22^-r ' horizon; Th e maximum e x t t h e l o w e s t i n t h e B2 2 t , and i n t e r m e d i a t e e x t r a c t a b l e Al i n th e g e n e r a l> t h e DPTA e x t r a c t a b l e Al c o n t e n t was c o n ­ s i d e r a b l y h i g h e r t h a n t h e c o r r e s p o n d i n g EDTA e x t r a c t a b l e A l , w h i l e p y r o p h o s p h a t e a n d NTA s o l u t i o n s r e l e a s e d i n t e r m e d i a t e amounts o f A l. M unising: The A-j_, A , a n d t h e f r a g i p a n h o r i z o n s c o n ­ t a i n e d v e r y lo w q u a n t i t i e s of e x t r a c t a b l e A l. The h i g h e s t a m o u n t o f A l o c c u r r e d i n t h e B2 ^ h i r a n d B g ^ i r h o r i z o n s . The d i s t r i b u t i o n o f e x t r a c t a b l e Al depended upon t h e e x t r a c t ­ ing ag en t used. Upon e x t r a c t i o n w i t h N a ^ - p y r o p h o s p h a t e a n d Na^-EDTA, t h e maximum o c c u r r e d i n t h e B2 -j_hir, w h i l e NTA r e ­ s u l t e d i n maximum e x t r a c t a b l e A l i n t h e B2 2 i r . DPTA e x ­ t r a c t e d t h e same a m o u n t f r o m b o t h t h e B0 -^hi r a n d B2 2 i r h orizons. Carbon e x t r a c t i o n r e s u l t s : The t o t a l c a r b o n c o n t e n t of th e s o i l s used, b e fo re e x tr a c tio n w ith d i f f e r e n t c h e la tin g agents, a r e shown i n T a b l e 9- s am p les and l a c k o f c a r b o n a t e s , (Due t o t h e lo w pH o f t h e s o i l th e t o t a l carbon is tak en to 71 be equal to th e organic carbon p r e s e n t in th e s o i l . ) The e x t r a c t a b l e c a r b o n was o b t a i n e d f r o m t h e d i f f e r e n c e i n c a r ­ bon betw een th e n o n - t r e a t e d so il, (o rig in al) a s shown i n T a b l e 1 1 . s o i l and t h e t r e a t e d Th e f a c t t h a t some c a r b o n m e a s ­ u rem en ts were g r e a t e r a f t e r e x t r a c t i o n i s w i l l be d isc u sse d l a t e r . a p e c u lia rity th at Th e p e r c e n t o f t o t a l c a r b o n e x ­ t r a c t e d by th e d i f f e r e n t e x t r a c t a n t s a r e a l s o c a l c u l a t e d in T a b le 11. Wh ere c a r b o n m e a s u r e d d i d n o t c h a n g e o r i n c r e a s e d w ith e x t r a c t i o n , no f i g u r e i s g iv e n and a d a s h i s In a d d i tio n to spodic h o riz o n s , A ^ , A2 , o rtstein , arg illic su b stitu ted . o t h e r h o r iz o n s su ch as and f r a g i p a n were s u b j e c t e d t o e x ­ t r a c t i o n by t h e d i f f e r e n t c h e l a t i n g a g e n t s . The h i g h o r g a n i c m a t t e r s u r f a c e h o r i z o n s , su ch as R u b i c o n A ^ , H i a w a t h a A ^ , a n d M u n i s i n g A^ h a v e v e r y l i t t l e tr a c t a b l e carbon. ex­ H o w e v e r , t h e h i g h pH Na^-DPTA s o l u t i o n e x ­ t r a c t e d a s much a s 2 2 $ o f t h e t o t a l c a r b o n f r o m M u n i s i n g A^. In g en eral, it used in t h i s can be c o n clu d e d t h a t th e c h e l a t i n g e x t r a c t a n t s study a re n o t s p e c if ic m atter p re sen t in surface s o i l, efficien cy of e x tra c tio n t o t h e form o f o r g a n ic a s e v i d e n t b y t h e v e r y low o f s u c h m a t e r i a l s , T a b l e 11. A2 h o r i z o n s u s e d i n t h e s t u d y a r e low i n i n i t i a l ten t. The carbon con­ Th e H i a w a t h a A2 d i d n o t y i e l d a n y e x t r a c t a b l e c a r b o n . The o t h e r horizons tiv e ly higher contents (Onaway a n d M u n i s i n g ) , w h i c h h a v e r e l a ­ of organic carbon, y ie ld e d sm all amounts o f e x t r a c t a b l e c a r b o n . 72 T a b l e 1 1. P e r c e n t o f t o t a l c a r b o n a f t e r e x t r a c t i o n , p e r c e n t e x t r a c t a b l e c a r b o n , and th e p e r c e n t o f t o t a l carbon e x t r a c t e d by t h e d i f f e r e n t e x t r a c t a n t s used In t h i s stu d y E xtractan ts S o il series H orizons Kinross SaugatuckAuGr es AuGresCroswell C rosw ellGraycalm Omega Eastport R u b l e on Na2 -NTA -------------------------------------------#C a f t e r $ e x t . % o f extracc(l) to ta l C tlo n e x t .(2 ) .70 . 41 . 27 37 40 .77 .05 .34 .61 30 92 .73 .77 . 3 8 37 .3° E? ] h i r 1 .78 I .03 75 c; q 1.13 1.12 4y .79 37 1 .27 F-2 2 h i r I I B 21h i r I I B h i r ' ■■ .*7 t-4 57 a .77 .7] .76 1 . 00 .77 - r . 20 .>*1 . --4 . 49 - •5 .67 • o2 Bo/iir . 62 .67 51 .7 k 72 .62 F22n i r 59 - .37 . 22 37 .57 UPPE2 1 h i r Low B2 1 h i r E2 2 h i r t■0 . 53 .57 . 5 8 50 . 12 1 8 .78 1.79 65 . 7 9 97 .07 - .77 . 70 .97 .70 k [ .76 92 . 1 9 21 .77 3fc .79 . 90 38 .05 - .79 . 1 0 16 . 47 .05 11 • 37 .16 30 .70 _ _ _ 34 .11 12 66 - - - - 30 .77 .37 .77 QQ - .30 - - .78 - - .58 - - - I-22 - - . 3'-' - - .82 - - .77 - - - - ■7 k - - .71 - - .£'9 - - 2.3" 1 . :,2 .37 . 06 r. A1 E2 1 i r B2 2 i r Ai 2 . 99 .11 4 17 . 54 • 15 .23 5. 1 “ 7" .37 . 66 . 22 4 7.93 - - . 72 1 . 02 7 :- 1.37 *"3 E22^-r 1 .20 . 1 '' 13 a2 E2 1 i r 1 .25 . 02 1 ] .13 '7 (' 2 .11 .42 41 •7s ,?7 ■"1 .k k - ■. , 4 3 B2ihir P22 i r '~ 2 2 t Munising - Na^-DPTA ------------------- B21 a2 Onaway Na4 - P 2 0 ., ----------------------- B22*^r ortstein Hiawatha Na2 -EDTA ----------------------- ’2 Ai A- 7.4- E2 1 h i r 1.11 ^2 2 ^r e 3x 1.1/ 7 .40 .17 2 . )■: 12 1.14 59 11 .05 . 10 6 2.85 .11 7 2.50 . 05 - 1.10 - - .82 - - . 76 - - .58 - .70 - - .66 .37 6 - - .k 7 - 5.03 - 1 . 1 3 52 • 32 1 . 0 2 73 • 97 1 . 2 1 - - 2 . 6 7 2 . 5 3 47 1. 90 1.1 . '-7 4n . 67 4f . -1 .77 56 37 .1*+ 11 1.20 .07 6 1.16 . 11 . 70 77 . 6 0 70 .02 - 1.06 kk .88 1.02 1.00 . 7 2 23 .07 - , a7 ( 7 1.12 .16 12 1.23 • 05 - 8. 6 0 - . 77 o7 1.2.6 - 2 . 3 1 72 . 6 1' 1 . 2 3 67 .24 . 'OP ■29 23 - . 2 1 76 1.16 2.01 - 63 . 7 9 1 . 1 3 96 .76 - .77 - 7 . 2 6 1 . 21 22 1.36 - - 1 . 06 2 . 1 3 66 . 66 1 . 0 6 55 .79 - ( 1 ) C a l c u l a t e d from t h e d i f f e r e n c e b e t w e e n t h e o r i g i n a l ( T a b l e 9 ) and t h e t r e a t e d s a m p l e s . D a s h e s I n d i c a t e w h ere n e g a t i v e v a l u e s w e r e r e c o r d e d . ( 2 ) P e r c e n t e x t r a c t a b l e c a r b o n d i v i d e d by p e r c e n t t o t a l o r i g i n a l c a r b o n ( T a b l e 9 ) x 1 0 0 . - 73 The o n l y e x t r a c t a n t c a p a b l e o f d i s p e r s i n g c a r b o n f r o m t h e o r t s t e i n h o r i z o n o f t h e R u b i c o n p e d o n was t h e a c i d i c u t i o n o f Na2 -NTA ( p H = 3 . 2 ) . to tal so l­ T h i r t y - s e v e n p e r c e n t of th e organic carbon of t h i s h o r i z o n was e x t r a c t e d b y Na2 -NTA. T h is e x t r a c t a n t a l s o r e s u l t e d i n r e l a t i v e l y h i g h amounts of Fe and Al from t h i s fore, horizon, as d i s c u s s e d p r e v i o u s l y . There­ Na2 -NTA may h a v e d i s t u r b e d t h e a s s o c i a t i o n b e t w e e n s e s - q u i o x i d e s and o r g a n i c m a t t e r and c o n s e q u e n t l y r e s u l t e d i n hig h er carbon e x tr a c tio n . The low pH e x t r a c t a n t s a p p e a r e d t o b e more e f f e c t i v e i n e x t r a c t i n g c a r b o n from t h e a r g i l l i c Onaway p e d o n . of the t o t a l (B2 2 t ) h o riz o n of th e Na2 -EDTA a n d Na2 -NTA e x t r a c t e d 6 5 $ a n d 51$ organic carbon, resu lted in ex tractio n resp ectiv ely . o f 12$ of th e t o t a l N a^pyrophosphate c a rb o n and th e h i g h e s t pH e x t r a c t a n t r e s u l t e d i n a v e r y m i n u t e a m o u n t o f e x ­ t r a c t a b l e carbon. This p a r t i c u l a r h o riz o n c o n ta in s 2 4 . 9 $ c l a y and i t c a n be p o s t u l a t e d t h a t t h e a c i d i c ants released about ex tract­ o r g a n i c m a t t e r a d s o r b e d on c l a y s u r f a c e s . Na^-EDTA a p p e a r e d t o b e t h e m o s t e f f e c t i v e o f c a r b o n from t h e f r a g i p a n h o r i z o n o f M u n is in g . ex tractan t F o rty -six p e r c e n t o f t h e t o t a l c a r b o n was e x t r a c t e d b y t h i s c h e l a t i n g agent. Na^-NTA r e s u l t e d i n c o n s i d e r a b l y l e s s organic carbon. Th e o t h e r e x t r a c t a n t s extractab le did n o t r e s u l t in d i s p e r s i o n and c o n se q u e n t e x t r a c t i o n o f o rg a n ic M unising f r a g ip a n . c a r b o n from 7^ In general, th e su b -su rfa ce horizons i n i t i a l l y low i n organic carbon c o n te n t d id n o t respond to th e e x tr a c ti n g so lu tio n s, sity regardless of t h e i r i n t e r n a l d ra in a g e or i n t e n ­ of e x p r e s s io n of pedogenic p r o c e s s e s . I n c l u d e d among t h o s e h o r i z o n s a r e C r o s w e l l - G r a y c a l m B2 2 h i r , E a s t p o r t B2 1 , a n d R u b i c o n B2 2 i r . The o r g a n i c c a r b o n c o n t e n t of th e se s o ils p r io r to e x tra c tio n are . 33, re s p e c tiv e ly . Omega B2 2 , .25> . 2 8 , and More o r g a n i c c a r b o n was d e t e c t e d i n t h e s e sam p le s a f t e r t h e s o i l s w ere s u b j e c t e d t o d i f f e r e n t ex tractan ts, nic carbon. r e s u l t i n g i n n e g a t i v e amounts o f e x t r a c t a b l e The p o s s i b i l i t y orga o f t h e a d s o r p t i o n o f some o f th e c h e la tin g ag en ts by s o i l p a r t i c l e s d o e s n o t s ee m t o b e valid since th ese s o ils It a l s o e v i d e n t f r o m t h e p r e c i s i o n o f d e t e r m i n a t i o n on is rep licates c o n ta in very l i t t l e c la y p a r t i c l e s . o f t h e same s a m p l e t h a t t h e v a r i a t i o n i s n o t s u f ­ f i c i e n t to obscure carbon changes in th e s e s o i l s . The c a r ­ bon e x t r a c t i o n r e s u l t s w i l l be f u r t h e r examined as f o ll o w s : K inross: From l 8 / o - 9 2 $ o f t h e t o t a l c a r b o n o f t h e B2 1 h a n d B2 2 h i r h o r i z o n s of th i s s o i l s e r i e s was e x t r a c t e d by t h e c h e l a t i n g a g e n t s u sed i n t h i s study. However, Na^- p y r o p h o s p h a t e d i d n o t e x t r a c t a n y c a r b o n f r o m t h e BQ2h i r horizon. Saugatuck-A uG res: The m o r e a c i d i c ex tractan ts (Na2 ~NTA a n d Na2 -EDTA) w e r e m o re e f f i c i e n t i n e x t r a c t i o n o f o r g a n ic c a r b o n from t h e lo w er B h o r i z o n s , s u c h a s B2 2 h i r , 75 I I B g h i r ' , and I I B h i r 'm . H o w e v e r , t h e u p p e r B (B2 1 h i r ) gave h i g h e r r e c o v e r i e s w i t h t h e h i g h pH Na^-DPTA e x t r a c t a n t . g eneral, In f r o m 2 1 $ t o 71 $ o f t h e t o t a l o r g a n i c c a r b o n was e x ­ t r a c t e d by th e f o u r c h e l a t i n g a g e n ts used i n th e s tu d y . A uG res-C rosw ell: The l o w pH e x t r a c t a n t s r e m o v e d m o r e c a r b o n t h a n t h e h i g h pH e x t r a c t a n t s B2 p h i r h o r i z o n o f t h i s so il series. (NTA, EDTA) from t h e In the b e t t e r drained C r o s w e l l - G r a y c a l m h i g h pH s o l u t i o n s ( p P q I j . 5DPTA) w e r e u n a b l e to e x tra ct d etectab le q u a n titie s of carbon. H i a w a t h a B ^ h i r a n d M u n i s i n g B2 1 h i r r e s u l t e d in the h i g h e s t p e r c e n t a g e o f t o t a l c a rb o n e x t r a c t e d by a l l t h e e x ­ tractan ts used. However, t h e B p p i r h o r i z o n s c o n t a i n so m e w h a t l e s s e x tra c ta b le carbon. d a ta w ith th o s e of s u r f a c e h o riz o n s appears t h a t th e se e x tr a c ta n ts of th e se s o i l s Com paring t h e s e o f t h e same s o i l s , it a r e much m o r e s p e c i f i c to the forms o f o r g a n ic m a t t e r e l u v i a t e d from t h e u p p e r p a r t of the so ils. The Onaway B2 ^ i r h o r i z o n was a l s o e x t r a c t e d e f f i ­ c i e n t l y by th e e x t r a c t a n t s , bon w ere removed. a l t h o u g h l e s s e r amounts of c a r ­ In g en eral, t h e low pH e x t r a c t a n t s appear t o b e so m ew ha t m o r e e f f i c i e n t i n e x t r a c t i n g t h e i l l u v i a l carbon. S ta tis tic a l an aly ses: The d a t a w e r e s t a t i s t i c a l l y a n aly z e d u s in g a C o n tro l D ata C o rp o ra tio n com puter. (CDC) 3 6 0 0 d i g i t a l The M i c h i g a n S t a t e A g r i c u l t u r a l e x p e r i m e n t 76 s t a t i o n STAT r o u t i n e s w e r e u s e d . The e x t r a c t a b l e F e , A l and C by d i f f e r e n t e x t r a c t a n t s were s u b j e c t e d t o a n a l y s i s variance. Th e t w o - w a y a n a l y s i s was u s e d f o r Fe a n d A l . and e x t r a c t a n t . of variance w ith in te r a c t io n The c a t e g o r i e s w e r e s o i l h o r i z o n s T h e d e s i g n u s e d f o r c a r b o n was t h e same e x ­ c e p t f o r t h e u se o f t h e m ethod o f f i t t e d fo r th e h ig h ly unbalanced d a ta . the data is shown i n T a b l e 1 2 . d i f f e r e n c e s due t o s o i l s cant a t the Y fo of lev el. constants A nalysis of t h e v a r i a n c e of The F t e s t and e x t r a c t a n t s to account shows t h a t t h e are highly s i g n i f i ­ However, t h e s t a t i s t i c a l an aly sis f a i l e d t o show a s i g n i f i c a n t d i f f e r e n c e f o r c a r b o n d u e t o d iffe re n t ex tractan ts a t t h e 1 % a n d 5$ l e v e l s . The T u k e y ' s W - p r o c e d u r e was u s e d t o c o m p a r e t h e t r e a t ­ ment means. The f o l l o w i n g c o n c l u s i o n s a r e drawn from t h e com putation of th e d a ta . Th e r e s u l t s f o r Fe e x t r a c t i o n r e v e a l t h a t t h e r e was a s i g n i f i c a n t d i f f e r e n c e b etw een t h e e x t r a c t i n g power of th e NTA, p y r o p h o s p h a t e , a n d EDTA e x t r a c t a n t s a t t h e 5% l e v e l . The t r e a t m e n t m e a n s a r e r a n k e d i n a n i n c r e a s i n g o r d e r a n d the r e s u lts o f t h e T u k e y ' s t e s t f o r Fe w i t h l e a s t s i g n i f i c a n t r a n g e (LSR) (5 /0 = -0265 can be summarized as f o l l o w s : NTA pP0|| EDTA .1673 .1383 .0973 The t h r e e m e a n s a r e s i g n i f i c a n t l y d i f f e r e n t . T a b l e 12. A n a l y s i s of v a r i a n c e of t h e e x t r a c t a b l e F e , Al and c a r b o n Fe Source of v a ria n c e d .f. Soils E xtractant Al M.S. c d .f. M.S. d .f. M .S. 0 . 1 8 8 8 ** 29 0.1107** 29 0.1705** 23 2 0.0742** 3 0 . 0 9 9 0 ** 3 0 . 0 0 8 2 MS S o il ex tracta n t 58 0.0036 87 0.0053 45d ) 0.0398 R em aining e r r o r 90 0.0004 120 0.0006 72 0.0009 T otal 179 239 143 NS = n o t s i g n i f i c a n t a t t h e 5 $ l e v e l ( l ) = d e g re e of freedom com binations. f o r i n t e r a c t i o n r e d u c e d ow ing t o m i s s i n g t r e a t m e n t 78 The T u k e y ' s t e s t f o r A l w i t h ISR ( 5 $ ) = * 0 3 4 8 i s sum­ m a riz e d below : DPTA NTA . 2 4 0 7 ____________. 2 1 1 7 pPO ^ EDTA .1780 .1470 ( a n y t w o m e a n s n o t u n d e r s c o r e d b y t h e same l i n e a r e s i g n i f i ­ can tly d iff e r e n t.) The r e s u l t s a n d DPTA e x t r a c t a n t s show t h a t a l t h o u g h t h e NTA r e s u lt in higher e x tra c tio n of A l, the d i f f e r e n c e s b e t w e e n th e m a r e n o t s i g n i f i c a n t a t t h e 5$ l e v e l . H o w e v e r , t h e DPTA r e s u l t s a r e s i g n i f i c a n t l y d i f f e r e n t f r o m th e pyrophosphate e x tr a c ti o n r e s u l t s . not sig n ific a n tly The l a t t e r i s d i f f e r e n t f r o m t h e EDTA r e s u l t s . f e r e n c e s b e t w e e n NTA a n d pPO^ i s also Th e d i f ­ approaching s ig n if ic a n c e a t t h e 5$. l e v e l . A m o d i f i e d T u k e y " s LSR ( 5 $ ) was u s e d f o r c o m p a r i s o n o f t h e c a r b o n t r e a t m e n t means due t o u n b a l a n c e d number o f o b s e r v a t i o n s i n e a c h t r e a t m e n t mean. is G e n e r a l l y T u k e y ' s LSR d e f i n e d by e q u a t i o n W = q « ( P , n ) Sx ¥ = LSR q«(P , n) i s a f a c t o r o b t a i n e d from a t a b l e percentage p o in ts of upper of th e s tu d e n tiz e d range w ith p t r e a t m e n t , n e r r o r d e g re e o f freedom a n d a n o< e r r o r r a t e . S x = s t a n d a r d e r r o r o f t h e mean 79 I n t h e c a s e o f u n e q u a l o b s e r v a t i o n s on e a c h mean a m o d i f i c a ­ tio n is su g g e ste d by Sokal and R o h lf ( 1969) as: Sx = where S 2 S2 nl + n2 2n^2 = varian ce of in d iv id u a ls n ^ = n u m b e r o b s e r v e d on t h e f i r s t m ean i n th e com parison n 2 = n u m b e r o b s e r v e d on t h e s e c o n d mean i n th e com parison. Th e t w o l o w pH e x t r a c t a n t s d e m o n s t r a t e d t h e g r e a t e s t e ff ic ie n c y in e x tr a c tio n of carbon. th e m a r e s i g n i f i c a n t a t t h e 5 % l e v e l . resu lts The d i f f e r e n c e s b e t w e e n The EDTA e x t r a c t a n t a r e a l s o s i g n i f i c a n t l y d i f f e r e n t f r o m t h e h i g h pH p y r o p h o s p h a t e a n d DPTA e x t r a c t a n t s , w h i l e t h e NTA i s n o t . Th e T u k e y ' s t e s t f o r c arb o n e x t r a c t i o n can b e sum m arized as follow s: EDTA NTA pPO^ . 5117 . 3 7 1 7 _________ . 3 4 1 7 _________ . 2 9 1 7 ( a n y t w o m e a n s n o t u n d e r s c o r e d b y t h e same l i n e DPTA are s i g n i f i ­ c antly d i f f e r e n t . ) The a b o v e s t a t i s t i c a l a n a l y s i s r e v e a l s t h a t DPTA e x t r a c t e d t h e h i g h e s t a m o u n t s o f A l , a n d EDTA t h e h i g h e s t amounts o f c a r b o n from t h e s p o d ic h o r i z o n s u s e d i n t h i s study. However, t h e f o r m e r i s n o t a s u i t a b l e e x t r a c t a n t f o r Fe due t o i t s h i g h pH, a n d t h e l a t t e r e x t r a c t e d t h e l o w e s t 80 a m o u n t s o f Fe a n d A l f r o m t h e s o i l s used. T herefore, e x t r a c t a n t which r e s u l t e d i n t h e m ost e f f e c t i v e the ex tractio n o f F e , A l , a n d c a r b o n f r o m t h e s p o d i c h o r i z o n s u s e d was t h e low pH, . 1M Na2 ~NTA. C lassificatio n of th e s o i l s : The p e d o n s u s e d i n t h i s study a re c l a s s i f i e d a cc o rd in g to th e c r i t e r i a t h e new s o i l c l a s s i f i c a t i o n and as g iv e n by C o l l i n s system ( S o i l T a xono m y , 1 9 7 0 , u n e d . ) (1971) and L i e t z k e ( 19 6 8 ) , a s f o l l o w s : (1) K inross (o rg an ic s u rfa c e ): san d y , m ixed, f r i g i d . (2) S a u g a tu ck -A u G res: A e rie H aplaquod; m ixed, f r i g i d , o r t s t e i n . sandy, (3) A uG res-C rosw ell: m ixed, f r i g i d . sandy, (4) C rosw ell-G raycalm : m ixed, f r i g i d . (5) Omega: (6 ) E astp o rt: (7) R ubicon: frig id . (8) H iaw atha: frig id . (9 ) On awa y: frig id . (10) H i s t i c H aplaquod; E n tic Sideraquod; E ntic H aplorthod; sandy, T y p ic U dipsamment; m ix e d , f r i g i d . S p o d ic U dipsamment; m ix e d , f r i g i d . E n tic H aplorthod; Typic H a p lo r th o d ; A lfic H aplorthod; san d y , m ixed, san d y , m ixed, f in e - lo a m y , m ixed, M unising: A lfic F rag io rth o d ; coarse-loam y, m ixed, f r i g i d . The c h e m i c a l c r i t e r i a considered in th is ratio explained in for c la ssific a tio n of S podosols stu d y a re th e accu m u latio n in d e x and th e o f % p y r o p h o s p h a t e e x t r a c t a b l e Fe a n d Al t o % c l a y , 81 T a b l e 13 . The i n d e x o f a c c u m u l a t i o n i s CEC(pH 8 . 2 ) index i s expressed as tim es th ic k n e s s - 1/2$ c la y i n cm. = 6 5 . This a m e a s u r e o f t h e amount o f amorphous m a t e r i a l i n th e spodic h o riz o n . The c a l c u l a t i o n o f t h e i n d e x i s b a s e d on t h e c o n s i d e r a t i o n o f t h e h i g h c a t i o n e x c h a n g e c a p a c i t y o f t h e amorphous m a t e r i a l , of th e h o rizo n . as w e l l as t h e $ c l a y and t h i c k n e s s T h i s w o u l d s e t some l o w e r l i m i t f o r t h e amount o f p r e c i p i t a t e d i l l u v i a l m a t e r i a l . The $ c l a y i s s i d e r e d in an a tte m p t to c o r r e c t f o r t h a t p a r t change c a p a c i t y which i s sent in the s o il. of th e e x ­ a fu n ctio n of the s i l i c a t e clay pre Th e r e a s o n f o r t h e c o n s i d e r a t i o n o f t h e s o il horizon th ic k n e ss i s tio n con to e v alu a te the v e r t i c a l d i s t r i b u ­ o f t h e amorphous m a t e r i a l i n t h e s p o d ic h o r i z o n . The c r i t e r i o n o f t h e % p y r o p h o s p h a t e e x t r a c t a b l e Fe and Al o v e r % c l a y b e i n g e q u a l o r g r e a t e r t h a n sub-horizon, .2 , i n some i s b a s e d on t h e f a c t t h a t t h e e x t r a c t i o n w i t h p y r o p h o s p h a t e a t pH=10 i s s e l e c t i v e f o r t h e co mp oun ds t h a t a re t y p i c a l of spodic h o riz o n s. Furtherm ore, s in c e sm all amounts o f s e s q u i o x i d e s a r e a s s o c i a t e d w i t h c l a y s u r f a c e s or o t h e r amorphous m a t e r i a l s p r e s e n t i n t h e s o i l , the % c l a y i s c o n s i d e r e d t o a ll o w f o r t h e a d s o r b e d i r o n and alu m ­ inum o x i d e s . T a b l e 13 shows t h e a b o v e r a t i o s a n d t h e Fe a n d A l / $ clay r a t i o s w ith o th er c h e la tin g agents s u b s tit u te d fo r pyrophosphate. The s p o d i c h o r i z o n s s t u d i e d g e n e r a l l y a g r e e 82 w ith th e re q u ire d accum ulation in d ex . However, t h e e x c e p ­ t i o n s a r e Omega a n d E a s t p o r t . Most o f t h e s o i l s do n o t m eet t h e r e q u i r e d r a t i o % e x t r a c t a b l e Fe a n d k \ / % c l a y . This i s p a r t i c u l a r l y tru e w ith th e h ig h ly ex p re ssed spodic h o riz o n s in th e f i e l d , as M unising. l o w e r Fe + ants. In general, of such EDTA e x t r a c t i o n h a s r e s u l t e d i n a A l /% c l a y ratio ascompared w ith th e o th e r e x t r a c t Th e NTA, pPO^ a n d DPTA r a t i o s a re f a i r l y com parable. The c h a n g e s o f t h e % Fe + A l t o fo c l a y w i t h i n t h e p r o f i l e can be f u r t h e r summarized as f o l l o w s : (1) Au Gre s I n tw o o f the so ilp ro files, and H iaw ath a, t h e r a t i o w ith d epth. namely S a u g a tu ck - o f Fe + k l / % c l a y i n c r e a s e d Th e h i g h e r r a t i o s w e r e o b s e r v e d i n t h e l o w e r spodic s u b - h o r iz o n s . (2) I n A u G res-C rosw ell t h e h i g h e r r a t i o o f Fe + k l / % c la y o ccu rred in th e upper spodic B h o riz o n . ( 3 ) I n K i n r o s s , Onaway, a n d M u n i s i n g , t h e Fe + A l t o % c l a y rem ained c o n s t a n t th ro u g h o u t th e p r o f i l e . (4) I n C rosw ell-G raycalm th e r a t i o of Fe + A l/% c l a y in c re a s e d to a c e r t a i n d epth (low er B p p h ir). Beyond t h a t depth th e r a t i o d e c re a se d . ( 5 ) R u b i c o n s how e d a d e c r e a s e o f t h e r a t i o w i t h d e p t h w i t h EDTA a n d p y r o p h o s p h a t e e x t r a c t i o n . NTA a n d DPTA e x t r a c t i o n s out th e p r o f i l e . However, t h e re s u lte d in a co n stan t r a tio through 83 T a b le 13. Th e a c c u m u l a t i o n i n d e x a n d t h e p e r c e n t e x t r a c t a b l e Pe p l u s Al o v e r % c l a y b y d i f f e r e n t e x t r a c t ­ a n ts of spodic h o riz o n s used i n t h i s stu d y — S o il S eries H orizon K inross Bpih B2 2 h i r Acc. index E x t r a c t a n t and % Fe + $ Al/% c l a y NTA EDTA pPO^ DPTA .05 .04 .05 .03 .04 .05 .02 .02 65.3 109.1 227.1 135.1 .0 8 .06 .13 .15 .05 .05 .11 .15 .07 .05 .11 .20 .08 .07 .16 .17 181.4 79.6 Saugatuck-A uG res B2 i h i r B2 2 h i r IIB g ih ir1 IIB h ir'm A uG res-C rosw ell B2 i h i r B2 2 h i r 64.7 44.8 .14 .08 .07 .03 .12 . 06 • 13 .08 C r o s w e l l - Graycalm UppB2 1 h i r 6 . 0 lo w B2 i_hi r 3 2 . 5 B22 b i r 45 .5 .08 .11 .07 .04 .08 .03 . 06 .10 . 06 .08 .11 .11 Omega B22 19.3 .11 .02 .05 .11 E astport B21 28.2 .17 .10 .18 • 30 Rubicon B2 l i r Al B2 2 i r o rtstein 82.8 64.9 27.3 - .17 .02 .16 .33 .08 .01 .03 .17 .11 .02 .07 .2 8 .16 .004 .16 .35 Hiawatha Al B2 i h i r B2 2 i r 78.5 97-5 172.9 .02 .12 .32 .01 .10 .15 .01 .11 .28 .002 .11 .27 Onaway B2 i i r B2 2 i r B2 2 t 65.5 34.6 46.0 .04 .03 .0 2 .0 2 .0 2 .01 .04 .03 .01 .05 .05 .01 M unising Al B2 i h i r B2 2 i r 61.3 209.2 221.4 .0 2 .09 .11 .0 2 .10 .08 .02 .10 .10 .002 .09 .1 1 20.8 .03 .0 2 • 03 .01 B3 x 84 From t h e c o n s i d e r a t i o n o f t h e a b o v e c r i t e r i a , highly d e s ir a b le to s e t a lim it fo r th e r a t i o % clay to prevent the exclusion horizons it is o f Fe & A l / of th e w e ll-d e v e lo p e d spodic observable in th e f i e l d . This i s p a r t i c u l a r l y tr u e f o r t h o s e w i t h a low e x t r a c t a b l e Fe a n d A l c o n t e n t o r h i g h p e r c e n t a g e o f c l a y , which t e n d t o lo w er t h e r a t i o below t h e c u rre n tly accepted re q u ire d v alue. the r a t i o dosols I t is suggested to o f Fe & A l / / c l a y t o = 0 . 1 0 t o i n c l u d e m o s t S p o - (A uG res-C rosw ell, C rosw ell-G raycalm , The same r a t i o i s drained, and M u n isin g ). s u g g e s t e d t o be s e t a t = .04 f o r t h e w e l l - f i n e - t e x t u r e d S p o d o s o ls as w e l l as th e p o o r l y - d ra in e d Spodosols (Onaway a n d K i n r o s s s e r i e s ) . The o l d e r c h e m i c a l c r i t e r i a fo r the r a t i o f o r spodic h o rizo n s c a l l s of % t o t a l carbon or % e x tr a c ta b le carbon, e x t r a c t a b l e F e , and % e x t r a c t a b l e Al over % c l a y . e x t r a c t a n t s w e r e u s e d f o r Fe a n d Al e x t r a c t i o n . q uently, low er % D ifferen t Conse­ d i f f e r e n t l i m i t s were p ro p o se d ( L i e t z k e , 1968). S u c h r a t i o s w e r e s e t a t = . 1 2 when t o t a l c a r b o n a n d a c i d ammonium o x a l a t e was u s e d . T a b l e 14 s hows t h e r a t i o of / t o t a l c a r b o n p l u s % e x t r a c t a b l e Fe a n d A l o v e r % c l a y w i t h th e e x tr a c ta n ts used in t h i s study. e x t r a c t a b l e Fe a n d A l o f L i e t z k e i s parison. The a v a i l a b l e oxalate a l s o i n c l u d e d f o r com­ A ll of th e sp o d ic h o riz o n s u sed i n th e stu d y meet t h e r e q u i r e d r a t i o i n some s u b - h o r i z o n . one o f t h e m a i n c o n s t i t u e n t s S ince carbon is of th e i l l u v i a l m a te ria l of th e 85 spodic h o riz o n in th e s e s o i l s , it is suggested t h a t th e r a t i o h e u s e d i n p r e f e r e n c e t o t h e % Fe & A l / / c l a y r a t i o c u rre n tly in use. 86 T able 14. Th e r a t i o o f % t o t a l C, % e x t r a c t a b l e F e , a n d fo e x t r a c t a b l e A l o v e r % c l a y f o r s p o d i c h o r i z o n s used in th e study S o il S eries H orizon E x t r a c t a n t a n d $ C + $ f ’e + % A l/ % clay _______ NTA EDTA PPO4 DPTA O x a l a l K inross B2 i h B2 2 h i r .58 .40 .58 .39 • 57 .41 .55 .38 B2 1 h i r B2 2 h i r IIB 2]_hir' IIB h ir'm .33 .28 .60 .77 .30 .27 .58 .77 .32 .27 .58 .82 .33 •29 .63 • 79 B 2lhir B2 2 h i r .44 .20 .37 • 15 .42 .1 8 .43 .20 U p p .B 2 i h i r lo w B2 ]_ hir B2 2 h i r .19 • 35 .16 .15 .32 .12 .17 .34 .15 .19 • 35 .20 — b 22 .26 .38 .17 • 31 .2 0 • 39 .26 • 51 • 25 .37 .45 .31 1.01 .36 .18 .85 • 39 .22 • 96 .44 .31 1.03 .4 0 • 29 1.08 .38 .41 B22i r .40 .43 .9 2 • 75 .39 .42 .88 • 36 .42 .87 a2 B2 1 i r B2 2 i r B2 2 t .30 .13 .10 .07 .30 .11 .09 . 06 .31 • 13 .10 . 06 .29 .14 .12 .06 3.7 .40 .32 .1 2 3.7 .40 • 34 .13 3.3 .39 .35 .11 Saugatuck-A uG res A uG res-C rosw ell C rosw ell-G raycalm Omega E astport B21 Rubicon B2 i i r B2 2 i r o rtstein Hiawatha a2 B 2ihir Onaway M unising a2 B 2ihir Bp2 i r B^x 3.8 .39 .35 .13 - — - _ .44 .78 .15 .13 - - .40 .33 - SUMMARY AND CONCLUSIONS T h i s r e s e a r c h was i n i t i a t e d t o s t u d y t h e d e g r e e o f accum ulation of th e i l l u v i a l m a te r ia l, as m easured by d i f ­ f e r e n t e x t r a c t i n g m edia and i n f l u e n c e d by p e d o l o g i c a l p r o ­ c e s s e s and s o i l fo rm a tio n f a c t o r s , dosols. is in the B horizons The i l l u v i a l m a t e r i a l o f i n t e r e s t (activ e m aterial) c o n s i d e r e d t o b e composed o f s e s q u i o x i d e s t h o s e o f Fe a n d A l ) a n d o r g a n i c m a t t e r . o f Spo- (p articu larly The f o l l o w i n g c o n ­ c l u s i o n s may b e d r a w n f r o m t h e d i s c u s s i o n o f t h e r e s u l t s . S o i l d r a i n a g e and t h e i l l u v i a l m a t e r i a l : g ib le q u a n titie s The n e g l i ­ o f e x t r a c t a b l e Fe i n t h e e x t r a c t s of poorly- d r a i n e d K i n r o s s s o i l may b e e x p l a i n e d b y c o n s i d e r i n g t h e follow ing p o s s i b i l i t i e s : ( l ) Since th e w ater ta b le i s c l o s e t o t h e s u r f a c e and i t commonly a v e r a g e s 6 i n c h e s b e ­ lo w t h e s u r f a c e d u r i n g t h e g r o w i n g s e a s o n , th a t th e p r e c i p i t a t i o n occasional flu sh es (2) it is un lik ely o f i r o n o x id e s have o c c u r re d by of oxy g en ated w a te r which o x i d i z e f e r r o u s compo und s a n d d e c r e a s e t h e i r s o l u b i l i t y . sib ility very However, t h e p o s ­ of m i c r o b i a l o x i d a t i o n s h o u ld a l s o be c o n s id e r e d . The p r e s e n c e o f t h e p r e v a i l i n g r e d u c i n g c o n d i t i o n s p r o ­ b ab ly have r e s u l t e d in th e occurence of th e ir o n in th e r e ­ d u c e d (Fe"*-*") f o r m . C onsequently i t could have been le ac h e d away f r o m t h e s u b - s o i l , since th a t is t h e more s o l u b l e form 88 of iro n . T h i s phenomenon c a n h e s u p p o r t e d by D e b 's (19^9) s t u d y i n w h i c h t h e a u t h o r c o n c l u d e s t h a t t h e l o w pH o f m o s t p o d z o l s p r e c l u d e s t h e e x i s t e n c e o f a n y i r o n a s Fe is 4-4- , which so lu b le a t those re a c tio n s . The d a t a o b t a i n e d i n t h i s s t u d y shows t h e a m o u n t s o f e x t r a c t a b l e Fe from t h e p o o r l y d r a i n e d K in r o s s s u b s o i l i s n eg lig ib le, Therefore i t e v e n when t h e l o w pH e x t r a c t a n t s w e r e u s e d . in v a lid a te s th e p o s s ib ility th e o x id iz e d Fe. Furtherm ore, it is of th e e x is t e n c e of s u g g e s t e d t h a t A1 may be a ss ig n e d a m ajor r o l e in s t a b i l i z i n g th e o rg a n ic m a tte r in the B h o rizo n s of th is so il, although th e q u a n titie s of e x t r a c t a b l e A1 a r e a l s o low i n t h e s u b s o i l o f K i n r o s s . The b e t t e r - d r a i n e d s o i l s of t h i s drainage caten a are shown t o h a v e a h i g h e r a m o u n t o f e x t r a c t a b l e F e . Th e i m p e r ­ f e c t l y - d r a i n e d S a u g a tu c k - A u G r e s c o n t a i n s more e x t r a c t a b l e Fe i n t h e u p p e r B h o r i z o n , a n d d e c r e a s i n g a m o u n t s i n t h e low er B h o r i z o n , where t h e low er p a r t of th is h o riz o n occurs a t th e av erage observed depth to th e w a ter t a b l e . The A u G r e s - C r o s w e l l maximum e x t r a c t a b l e Fe o c c u r s i n t h e u p p e r B h o riz o n , w h ile C rosw ell-G raycalm has i t s u l a t i o n i n th e low er B h o riz o n . o f t h e l a t t e r tw o s o i l s a b le organic m a tte r, those h o rizo n s. maximum Fe a c c u m ­ The maximum e x t r a c t a b l e Fe c o r r e l a t e w i t h t h e maximum e x t r a c t - s u g g e s t i n g g r e a t e r complex f o r m a t i o n i n Among t h e s o i l s of t h i s to p o s e q u e n c e , AuGres- C rosw ell has e x h ib ite d th e h ig h e s t e x t r a c t a b l e Fe. However, 89 t h i s i s n o t in agreem ent w ith th e g r e a t e s t e x t r a c t a b i l i t y of o r g a n i c m a t t e r i n t h e t o p o s e q u e n c e , aid c o n s e q u e n t l y t h e highest in te n s ity of spodic h o riz o n developm ent, as w i l l be seen l a t e r in t h i s chapter. Th e m a g n i t u d e o f t h e A1 e x t r a c t e d b y a l l of the che­ l a t i n g a g e n t s e q u a ls o r e x ce e d s t h e c o r r e s p o n d i n g amounts o f i r o n e x t r a c t e d from t h e s p o d i c h o r i z o n s i n a l l t h e s o i l s s t u d i e d e x c e p t E a s t p o r t , Hiawatha I ^ h i r , may b e a r e f l e c t i o n a n d Onaway. This o f t h e g r e a t e r i n v o l v e m e n t o f A1 i n c h e la tio n r e a c tio n s w ith organic m a tte r , t o t a l A1 o v e r Fe p r e s e n t i n t h e s o i l . or th e ex cess of th e The l a t t e r p o s s i b i l i t y may b e m o r e v a l i d s i n c e t h e e x c h a n g e a b l e A1 e q u a l s or ex ceeds, the t o t a l c i t r a t e - d i t h i o n i t e e x tr a c ta b le Fe, E a s t p o r t a n d Onaway p e d o n s . In th e p o o rly -d ra in e d K inross so il i t is d e f i n i t e l y shown t h a t A1 i s except in th e th e m ajor elem ent a s s o c ia te d w ith th e e x tr a c ta b le o rganic m a tte r. is d if f ic u lt However, i t t o s a y w hich m e ta l h a s t h e p re d o m in a n t i n f l u e n c e in com bining w ith th e o rg a n ic f r a c t i o n of th e spodic h o riz o n s of th e oth er s o i l s . The a m o u n t s o f A1 do n o t seem t o b e i n f l u e n c e d b y d r a i n a g e a s much a s F e . However, t h e p o o r l y - d r a i n e d K i n r o s s s o i l c o n t a i n s t h e l o w e s t a m o u n t o f e x t r a c t a b l e A1 w h i l e t h e so m ew ha t p o o r l y d r a i n e d S a u g a t u c k - A u G r e s h a s t h e h i g h e s t e x t r a c t a b l e A l , w i t h tw o m a x im a , t h e s e c o n d maxima b e i n g a s s o c ia te d w ith a d i f f e r e n t p a re n t m a te r ia l, IIB 2 . The h i g h 90 c o n t e n t o f A1 i n S a u g a t u c k - A u G r e s c o r r e l a t e s w i t h t h e h i g h accum ulation of organic m a tte r as w e ll as th e i n t e n s i t y of spodic h o riz o n developm ent i n t h i s It is so il. a p p a r e n t from t h e e x t r a c t i o n d a t a t h a t c o n s i ­ d e r a b l e amounts o f t h e B h o r i z o n o r g a n ic m a t t e r a r e a s s o ­ c ia te d w ith a f r a c tio n of the t o t a l s e s q u io x id e s . F u rth er­ m ore, i t are spe­ cific is evident th a t the c h e la tin g e x tra c ta n ts to the e x tr a c tio n B horizons, of th e organic m a tte r p r e s e n t i n th e s i n c e v e r y s m a l l amounts o f c a r b o n w ere e x t r a c t e d from t h e s u r f a c e A h o r i z o n . Spodosols of v a rio u s d eg rees of spodic h o riz o n d ev elo p m en t and t h e i l l u v i a l m a t e r i a l : plexed iro n in c re a s e s The a m o u n t o f com- from t h e w e a k e s t s p o d ic h o r i z o n e x p r e s ­ sio n to th e s t r o n g e s t developm ent. Th e maximum e x t r a c t a b l e Fe o c c u r s i n t h e u p p e r B h o r i z o n i n a l l t h e s o i l s group. of th is The Omega a n d E a s t p o r t , w h i c h a r e c l a s s i f i e d a s T ypic Udipsamments (Brown P o d z o l i c s o i l ) ment (R e g o so l Po d zo l i n t e r g r a d e ) , lo w e s t amounts of e x t r a c t a b l e Fe. spodosols, and S p o d ic U dipsam- resp ectiv ely , c o n ta in the O th e r more d e v e l o p e d such as R ubicon, H iaw atha, and M u n isin g s e r i e s , c o n t a i n h i g h e r amounts o f e x t r a c t a b l e Fe. The a m o u n t s o f e x t r a c t a b l e A1 show t h e same t r e n d a s Fe, i n w hich i t developm ent. in c re a s e s w ith the i n te n s ity of p e d o lo g ic a l The A1 a n d Fe maxima o c c u r i n t h e s am e h o r i ­ z o n ( B ^ ^ i r ) i n R u b i c o n a n d Onaway s o i l s e r i e s , w h i l e t h i s i s 91 n o t th e c a s e w ith H iaw atha and M u n isin g . In th e l a t t e r the maximum A1 o c c u r s d e e p e r i n t h e p r o f i l e , n a m e l y i n t h e l o w e r s p o d i c B h o r i z o n (B2 2 i r )* E x t r a c t a h l e Fe i s c o n s i d e r a b l y p r e d o m i n a n t i n t h e Onaway a n d M u n i s i n g p r o f i l e s , w h i l e A1 i s p re d o m in a n t i n t h e R ubicon and H iaw atha p r o f i l e s . However, H i a w a t h a B2 i h i r d a s m o r e e x t r a c t a b l e Fe c o m p a r e d t o A l . A h i g h p e r c e n t a g e "of e x t r a c t a b l e c a r b o n , a s c a l c u l a t e d from t h e d i f f e r e n c e b e tw e e n t h e n o n - e x t r a c t e d and e x t r a c t e d so ils, occurs in th e spodic h o riz o n s . t r u e in s u b s o ils w ith a high i n i t i a l This i s esp ecially carbon c o n te n t. The e x t r a c t a b l e C maximum o c c u r s a t t h e same h o r i z o n ( B g i i r ) Fe a n d A l maxima i n R u b i c o n a n d Onaway s e r i e s . of However, H i a w a t h a a n d M u n i s h i n g e x t r a c t a b l e C a n d F e maxima o c c u r a t the upper B h o rizo n a t th e low er B ^ i r nant ro le (B2 p h i r ) w h i l e t h e A l maximum o c c u r s horizon. T h i s may s u g g e s t t h e p r e d o m i ­ o f Fe i n t h e s e s o i l s in the s o l u b i l i t y of organic m atter. S ta tis tic a l an alyses: The s t a t i s t i c a l analysis of t h e e x t r a c t i o n d a t a r e v e a l s t h a t t h e NTA, pPO^, a n d EDTA e x t r a c t i o n p r o c e d u r e s f o r Fe p r o d u c e r e s u l t s w i t h s i g n i f i ­ c a n t d i f f e r e n c e s b e tw ee n them. The e x t r a c t a b l e F e , EDTA v a lu e s a r e s i g n i f i c a n t l y low er th a n th e o th e r e x t r a c t a n t s . The ETA e x t r a c t a b l e Fe i s i n d i c a t e d t o be a good e s t i m a t e o f t h e amount o f c o m p le x ed F e . 92 The DPTA a n d NTA e x t r a c t a b l e A l a r e a l s o c o m p a r a b l e . H o w e v e r , NTA a n d pPO^ e x t r a c t a b l e A l a r e n o t s i g n i f i c a n t l y d i f f e r e n t f r o m e a c h o t h e r , w h i l e DPTA e x t r a c t a b l e A l r e s u l t s a r e s i g n i f i c a n t l y h i g h e r t h a n p y r o p h o s p h a t e a n d EDTA r e s u l t s . T h e r e f o r e NTA i s suggested to be a s u ita b le e x tr a c ta n t fo r A l. The e x t r a c t i o n o f c a r b o n h a s b e e n m o r e s u c c e s s f u l w i t h t h e lo w pH s o l u t i o n s . EDTA a n d NTA e x t r a c t a b l e c a r b o n a r e s i g n i f i c a n t l y d i f f e r e n t from each o t h e r . H o w e v e r , EDTA i s s i g n i f i c a n t l y d i f f e r e n t f r o m t h e o t h e r tw o h i g h pH e x t r a c t ­ a n t s , w h i l e t h e NTA r e s u l t e d i n c o m p a r a b l e a m o u n t s o f e x t r a c t a b l e C w i t h t h e h i g h pH e x t r a c t a n t s . E ve n t h o u g h EDTA h a s th e h ig h e st e ffic ie n c y fo r th e e x tra c tio n of carbon, s u l t e d i n t h e l o w e s t e x t r a c t a b l e Fe and A l. o v erall s t a t i s t i c a l analysis NTA s o l u t i o n i s it re­ T herefore, the s u g g e s t s t h a t t h e lo w pH, . 1M th e most s u i t a b l e e x t r a c t a n t f o r Fe, A l, and C from t h e M ic h ig a n s p o d i c h o r i z o n s . C hem ical c r i t e r i a ical c rite rio n in s o il c l a s s if ic a t io n : The c hem ­ o f th e % e x t r a c t a b l e Fe and Al o v e r % c l a y , fo r th e c la s s if ic a t io n of Spodosols, is suggested to be low ered to = 0.1 0 to in c lu d e most S p odosols C rosw ell-G raycalm , and M u n i s i n g ) . It is (A uG res-C rosw ell, a lso suggested th a t th e r e q u ir e d r a t i o needs t o be low ered t o = 0.0 4 f o r th e w ell-d rain ed , Spodosols f i n e - t e x t u r e d as w e ll as th e p o o r l y - d r a i n e d (Onaway a n d K i n r o s s s e r i e s ) . The d a t a o b t a i n e d i n 93 th is r e s e a r c h a l s o i n d i c a t e t h a t t h e fo t o t a l c a r b o n , fo e x t r a c t a b l e F e , a n d fo e x t r a c t a b l e A l o v e r % c l a y , = . 1 2 , th e previous c r i t e r i o n f o r c l a s s i f i c a t i o n of Spodosols, g i v e s a much b e t t e r e s t i m a t e o f t h e a c t i v e i l l u v i a l m a t e r i a l of th e spodic B h o riz o n . Therefore i t is suggested t h a t t h i s r a t i o be used i n p r e f e r e n c e t o th e c u r r e n t l y used r a t i o fo e x t r a c t a b l e Fe a n d A l o v e r fo clay. of REFERENCES REFERENCES A l l i s o n , L. E . , 1 9 6 5 * " O r g a n i c C a r b o n " , Agronomy M o n o g r a p h £, Part I I : C hem ical and M i c r o b i o l o g i c a l P r o p e r t i e s , A .S.A . P ublication. A l l i s o n , L. E . , W. B. B o l l e n a n d C. D. M o o d i e , 1 9 6 5 * " T o t a l Carbon", Agronomy M o n o g r a p h . Part II : C hem ical and M i c r o b i o l o g i c a l P r o p e r t i e s , A .S.A . P u b l i c a t i o n . B a s c o m b , C. L . , 1 9 6 8 . " D is tr ib u tio n of PyrophosphateE x t r a c t a b l e Fe a n d O r g a n i c C a r b o n i n S o i l s o f V a r i o u s G roups", J o u r n a l o f S o i l S c i e n c e , 19: 2 5 2 - 2 6 8 . B e l l o , J . A. 0 . , 1 9 7 0 . " D e te r m i n a tio n of T o t a l Carbon by D r y C o m b u s t i o n a n d I t s R e l a t i o n t o For ms o f S o i l N i t r o g e n As M e a s u r e d i n t h e L a b o r a t o r y a n d i n t h e G re e n h o u s e " , Ph.D. T h e s i s , M ich ig an S t a t e U n i v e r s i t y , E a st L an sin g , M ichigan. B l o o m f i e l d , C . , 1953" S e s q u io x id e I m m o b i l i z a t i o n and C lay Movement i n P o d z o l i z e d S o i l s " , N ature, 172:958. B l o o m f i e l d , C ., 1954. "A S t u d y o f P o d z o l i z a t i o n " , of S o i l S c ie n c e , 5 : 50- 5 6 . Journal B lo o m f ie ld , C ., 1956. "The S o l u t i o n - R e d u c t i o n o f F e r r i c Oxide by Aqueous L e a f E x t r a c t s . The R o l e o f C e r t a i n C o n s titu e n ts of th e E x t r a c t s " , T r a n s . I n t 11 . C o n ­ g re s s S o i l S c ie n c e , 6 th C ongress, B-427-432. B rem ner, J . M ., 19^9" S t u d i e s On S o i l O r g a n i c M a t t e r , Part I I I : The E x t r a c t i o n o f O r g a n i c C a r b o n a n d N i t r o g e n From S o i l " , J o u r n a l of Agr. S c i e n c e , 39: 280-282 . B r e m n e r , J . M. S . G. H e i n t z e , P . J . G. Mann a n d H. L e e s , 1946. 'M e ta lo - O r g a n ic Complexes i n S o i l s " , N ature, 158:790-791. B r e m n e r , J . M. a n d H. L e e s , 1 9 4 9 " S t u d i e s on S o i l O r g a n i c M atter, P art I I : The E x t r a c t i o n o f O r g a n i c M a t t e r From S o i l By N e u t r a l R e a g e n t s " , J ournal of A g ric u l­ tu r a l S cience, 39:274-279. 94 95 B r e m n e r , J . M. , 1 9 6 5 . S o i l N i t r o g e n , No. 10 A g r o n o m y , A m e r i c a n S o c i e t y o f A g ro n o m y , I n c . P u b l i s h e r , 9 6 - 9 8 . B r o a d b e n t, F. E . , 1953. "The S o i l O r g a n i c F r a c t i o n " , A d v a n c e s i n A g ro n o m y , N o. 5 , A c a d e m i c P r e s s , I n c . , New Y o r k . C h o u d h r i , M. B. a n d F . J . S t e v e n s o n , 1 9 5 7 . "C hem ical & P h y s i c a l P r o p e r t i e s o f S o i l Humic A c i d s , P a r t I I I : E x t r a c t i o n o f O r g a n i c M a t t e r From S o i l " , S o il S cience o f Amer. P r o c e e d i n g s , 2 1 : 508- 5 1 3 . C o l l i n s , J . B . , 1971. " C h a r a c t e r i s t i c s of S p o d o so ls D e v e l­ o pe d on a S a n d y T o p o - B i o s e q u e n c e i n N o r t h e r n M i c h i ­ g a n " , Ph.D. T h e s i s , M ic h ig a n S t a t e U n i v e r s i t y , E a s t L an sin g , M ichigan. D e b , B. C . , 1 9 4 9 . "T he e s t i m a t i o n o f f r e e i r o n o x i d e s i n s o i l s and c l a y s and t h e i r re m o v a l. «J. S o i l S c i e n c e , 1 : 112 - 1 2 2 . D i o n , H. G. a n d P. J . G. Mann, 1 9 4 6 . " T h r e e - V a le n t Manganese in S o ils", J o u rn al of A g r i c u l t u r a l S c i e n c e , 36:239-245. E v a n s , L. T . , 1 9 5 9 . "The U s e o f C h e l a t i n g A g e n t s a n d A lk a lin e S o lu t io n s i n S o i l O rganic M a tte r E x t r a c t i o n " , J o u rn al of S o i l S c ie n c e , 10:110-118. F r a n z m e i e r , D. P . , B. F . H a j e k a n d C. H. S i m o n s o n , 1 9 6 5 * "U se o f Am orp hou s M a t e r i a l t o I d e n t i f y S p o d i c H o r i z o n " , S o i l S c i e n c e S o c i e t y o f Am erica P r o c e e d i n g s , 2 9 : 737- 743. G u r d , F . R. N. a n d P. E. W i l c o x , 1 9 5 6 . " C o m p le x F o r m a t i o n Between M e t a l l i c C a t i o n s and P r o t e i n s , P e p t i d e s and Amino A c i d s " , Advances i n P r o t e i n C h e m is tr y , 11:312-429. H e i n t z e , S . G. a n d P. J . G. Mann, 19^-7. " S o l u b l e Complexes o f Manganic M anganese", J o u rn a l of A g r i c u l t u r a l S c ie n c e , 37:23-26. H u rw itz , C ., 1948. " E x t r a c t i o n o f C opper from S o i l as A f f e c t e d b y S o l u b l e C o m p o n e n ts o f O a t S t r a w a n d A l f a l f a M eal", S o il S c ie n c e , 65:275-280. J a c k s o n , M. L . , 1 9 6 1 . " S t r u c t u r a l R o le o f Hydronium i n Layer S i l i c a t e s D uring S o i l G e n e sis", T r a n s . I n t e r ­ n a t i o n a l C ongress of S o i l S c i e n c e , 7 t h M adison, V ol. I I , 445-455- 96 Kanwar, J . S . , 1954. " I n f l u e n c e o f O rganic M a t t e r i n Copper F ix atio n in S o il", Jo u rn a l of In d ia n S o c ie ty of S o il S c ie n c e , 2:73-60. K a u r i c h e v , I . S . , V. K u l a k o v a n d M. N o z d r u n o v a , 1 9 5 8 . "For­ m a t i o n a n d M i g r a t i o n o f O r g a n i c I r o n Compounds i n S o il", S o v ie t S o i l S c ie n ce (T ran s.) A ugust, i 960, pp 1 3 0 7 -1 3 1 ^ , P o c h v o v i d e n i y e , # 1 2 , p p . 1 - 9 . K o n o n o v a , M. M . , I . V. A l e x a n d r o v a a n d N. A. T i t o v a , 1 9 6 4 . "D ecom position of S i l i c a t e s by O rganic S u b sta n c e s in the S o il" , S o v i e t S o i l S c i e n c e , 1005-1014. Lehman, D. S . , 1 9 6 3 . "C helates in S o il s : A S y m p o s iu m . Some P r i n c i p l e s o f C h e l a t i o n C h e m i s t r y " , S o il S cience S o c . of America P r o c e e d i n g s , 2 7 :1 6 7 -1 7 0 . L i e t z k e , D. A . , 1 9 6 8 . E v a l u a t i o n o f S p o d i c H o r i z o n C r i t e r i a a n d C l a s s i f i c a t i o n o f Some M i c h i g a n S o i l s , M .S . T h e s is , M ichigan S t a t e U n i v e r s i t y , E a st L an sin g , M ichigan. L i n k , W. F . , 1 9 5 8 . S o l u b i l i t i e s o f I n o r g a n i c a n d M e t a l O r g a n i c Co mp o un ds , V. Van N o s t r a n d C o . , I n c . , P r i n c e t o n , N. J . M cKe agu e, J . A . , 1 9 6 7 . "An E v a l u a t i o n o f 0.1M P y r o p h o s p h a t e a n d P y r o p h o s p h a t e - D i t h i o n i t e i n C o m p a r i s o n W i t h Oxa­ l a t e as E x t r a c t a n ts of th e A ccum ulation P ro d u c ts in P o d z o l s a n d Some O t h e r S o i l s " , Can. J o u r n a l of S o i l S c i e n c e , 47:95-99* M cK eag ue, J . A. a n d J . H. D a y , 1 9 6 6 . " D i t h i o n i t e a n d Oxal a t e - E x t r a c t a b l e Fe a n d A l a s A i d s i n D i f f e r e n t i a t i n g V arious C la sse s of S o i l s " , Canadian J o u rn a l of S o i l S c ie n c e , 46:13-22. M c K e n z i e , L. J . a n d A. E. E r i c k s o n , 1 9 5 4 . "The U s e o f Redox P o te n tia ls in S tu d ies of S o il G enesis", S o il Science S o c . o f Am erica P r o c e e d i n g s , 1 8 :4 8 1 -4 8 5 . M c K e n z i e , L. J . , E. P. W h i t e s i d e , a n d A. E. E r i c k s o n , i 9 6 0 . " O x i d a t i o n - R e d u c t i o n S t u d i e s on t h e M e c h a n i s m o f B H orizon F orm ation in P o d z o ls " , S o il Science S o c. of Am erica P r o c e e d i n g s , 2 4 :3 0 0 -3 0 5 . M a g i s t r a d , 0 . C . , 1925* "The Aluminum C o n t e n t o f t h e S o i l S o l u t i o n and I t s R e l a t i o n t o S o i l R e a c tio n and P l a n t Grow th", S o il S cien ce, 20:l8 l-2 2 6 . 97 M andl, I . , A. G r a u e r a n d C. N e u b e r g , 1 9 5 2 . "S o lu b ilizatio n of I n s o l u b l e M a t t e r i n Nature., I : P a r t P la y e d by S a l t s of A denosine T r ip h o s p h a te " , B i o c h e m i c a ET B i o p h . y s i e a ACTA, 8 : 65^ - 6 6 3 . M a n d l , I . , A. G r a u e r a n d C. N e u b e r g , 1 9 5 3 . "S o lu b ilizatio n o f I n s o l u b l e M a t t e r i n N a t u r e , I I : P a r t P l a y e d by S a l t s of O rg a n ic and I n o r g a n i c A c id s O c c u r r in g i n N ature", B i o c h e m i c a ET B i o p h . y s i c a ACTA, 1 0 : 5 4 0 - 5 6 9 . M a r t e l l , A. E. a n d M. C a l v i n , 1 9 5 2 . C hem istry of th e M e ta lC h e l a t e Compounds, P r e n t i c e - H a l l , I n c . M a r t i n , A. E. a n d R. R e e v e s , .1957. " C h e m i c a l S t u d i e s on Podzolic I l l u v i a l H orizons, I : The E x t r a c t i o n o f O r g a n i c M a t t e r by O r g a n i c C h e l a t i n g A g e n t s " , J ournal of S o il S c ie n c e , 8:268-277. M a r t i n , A. E. a n d R. R e e v e s , 1957" C h e m i c a l S t u d i e s on P o d z o l i c I l l u v i a l H o r i z o n s , I I : The U se o f A c e t y l a c e to n e as E x t r a c t a n t of T r a n s lo c a te d O rganic M a t t e r " , J ournal of S o i l S c ie n c e , 8:279-286. M a tts o n , S . , 1931. "Laws o f C o l l o i d a l B e h a v i o r : Iso -E lec­ tric P recip itates", S o il S cien ce, 31:57-77. M a t t s o n , S . a n d Y. G u s t a f s o n , 193^-. "T he C h e m i c a l C h a r a c ­ t e r i z a t i o n of S o il P r o f i l e s , I: The P o d z o l " , L an tb ru k s-H o g sk o l, a n n . , 1:33-68. M a tts o n , S. and i s t r y of P odzolic H ogskol, M ehra, E. K o u l t e r - A n d e r s o n , 1 9 4 2 . "T he E l e c t r o c h e m ­ S o il Form ation", V.A. L v s i m e t e r S t u d y o f S a l v a t i o n and P r e c i p i t a t i o n , L antbruksA n n u al, 10:241-257. 0. P. a n d M. L. J a c k s o n , I 9 6 0 . " I r o n O x i d e Re m ov al from S o i l s and C la y s by a D i t h i o n i t e - C i t r a t e System B u f f e r e d w i t h Sodium B i c a r b o n a t e " , 7 th N a tio n a l Conf. on C l a y s & C l a y M i n e r a l s , p p . 3 1 7 - 3 2 7 7 M i l l e r , M. H. a n d A. J . O h l r o g g e , 1 9 5 8 . " W a te r-S o lu b le Che­ l a t i n g A gents in O rganic M a t e r i a l s , I I : I n f l u e n c e of C h e l a t e - C o n t a i n i n g M a t e r i a l s on t h e A v a i l a b i l i t y o f Trace M etals to P la n ts " , S o i l S c ie n c e S o c ie ty of Amer. P r o c e e d i n g s , 2 2 : 2 2 5 - 2 2 8 . M i s r a , S . G. a n d M. D. S h a r m a , 1 9 6 1 . "S tu dies in th e R elease of A d sorbed C opper by S o i l s and C om post", S o i l and P la n t Food, 6:103-105. M o r t e n s e n , J . L. , 1 9 6 3 "Complexing of M e ta ls by S o i l Orga­ nic M atter"j S o i l S c i e n c e S o c i e t y o f Amer. P r o c e e d i n g s , 2 7 : 179- 1 8 6 . M o r t e n s e n , J . L. a n d P . L. H i m e s , 1 9 6 5 " S o il O rganic M atter", C hem istry of th e S o i l , ed. F . E. B e a r , 2 n d E d ., R einhold P u b lis h in g C o ., pp. 207-213. M otomura, S . , 1 9 6 1 . " D i s s o l u t i o n o f I r o n Compounds i n S o i l s by M ilk V etch E x t r a c t " , S o i l S c i e n c e a n d P l a n t Nu­ t r i t i o n , 7 : 5^ - 6 0 . M uir, A ., 1961. "The P o d z o l a n d P o d z o l i c S o i l s " , Advances i n Agronomy, 1 3 : 1 - 5 6 , A c a d e m ic Press, I n c . , N. Y. Parsons, J. W. and J. Tinsley, i9 6 0 . "Extraction of Soil Organic Matter with Anhydrous Formic Acid", Soil Science Society of Amer. Proceedings, 24:198-201. R i c h , C. I . , i 9 6 0 . "Aluminum i n I n t e r l a y e r s o f V e r m i c u l i t e " , S o i l S c i e n c e S o c i e t y of Amer. P r o c e e d i n g s , 2 4 : 2 6 - 3 2 . S c h n i t z e r , M ., 195^ • " M o b i l i z a t i o n o f I r o n i n P o d z o l S o i l s by Aqueous L e a f E x t r a c t s " , C h e m i s t r y a n d I n d . , 49 S c h n i t z e r , M. a n d J . G. D e s j a r d i n s , 1959* "C hem ical C h a ra c ­ t e r i s t i c s o f a N a t u r a l S o i l L e a c h a t e f r o m a Humic Podzol", C anadian J o u r n a l of S o i l S c ie n c e , 49:151-158. S c h n i t z e r , M. a n d W. A. D e l o n g , 1955" i n v e s t i g a t i o n s on t h e M o b i l i z a t i o n and T r a n s p o r t of I r o n i n F o r e s t e d S o i l s , I I : The N a t u r e o f t h e R e a c t i o n o f t h e L e a f E x t r a c t and L e a c h a te s w ith I r o n " , S o il Science S o c i e t y o f Amer. P r o c e e d i n g s , 1 9 : 363-3685 S c h n i t z e r , M. a n d S . I . M. S k i n n e r , 1 9 6 3 . "O rganic-M etallic In te ra c tio n in S o ils , I : R e a c t i o n s B e t w e e n a Number o f M e t a l I o n s a n d t h e O r g a n i c M a t t e r o f a P o d z o l Bh H o r i z o n " , S o i l S c i e n c e , 9 6 : 8 6 - r'3. S c h n i t z e r , M. a n d S . I . M. S k i n n e r , 1963"O rganic-M etallic I n t e r a c t i o n s in S o i l s , I I : R e a c tio n s Between D i f f e r e n t For ms o f I r o n a n d Aluminum a n d t h e O r g a n i c M a t t e r o f a P o d z o l Eh H o r i z o n " , S o il S cience, 9 6 :l8 l-l8 6 . S c h n i t z e r , M. a n d S . I . M. S k i n n e r , 1 9 6 6 . "O rgano-M etallic In te ra c tio n s in S o il" , S o i l S c i e n c e , 102: 361- 365. 99 S c h n i t z e r , M. a n d J . R. W r i g h t , 1 9 5 7 . " E x t r a c t i o n o f O rganic M a t t e r f r o m P o d z o l i c S o i l s b y Means o f D i l u t e I n o r g a ­ n ic A cid", C anadian J o u r n a l of S o i l S c ie n c e , 37:89-95. S c h n i t z e r , M . , J . R. W r i g h t a n d J . G. D e s j a r d i n s , 1 9 5 8 . "A Com parison o f t h e E f f e c t i v e n e s s of V a rio u s E x t r a c t a n t s f o r O r g a n i c M a t t e r f r o m Two H o r i z o n s o f a P o d z o l P r o ­ file", C anadian J o u rn a l of S o i l S c i e n c e , 3 8 :4 9 -5 3 . S o i l S urvey I n v e s t i g a t i o n R ep o rt # 1 , 1 967. S o i l S u rv ey Labo­ r a t o r y Methods and P r o c e d u r e s f o r C o l l e c t i n g S o i l S a m p l e s , S o i l C o n s e r v a t i o n S e r v i c e , USDA, W a s h . , D. C. S o k a l , R. R. a n d F . R. R o h l f , 1 9 6 9 . a n d Company p p . 2 3 7 - 2 3 8 . B i o m e t r y , W. H. F r e e m a n S t e e l , R. G. D. a n d J . H. T o r r i e , i 9 6 0 . P r i n c i p l e s a n d P r o ­ c e d u r e s of S t a t i s t i c s . pp. 132-160 and pp. 9 9-128. M c G r a w h i l l Book Company, I n c . S tevenson, I . L . , 1965. "B iochem istry of S o i l " , C hem istry of th e S o i l , Ed. b y F . E. B e a r , 2nd E d . , R e i n h o l d P u b l i s h i n g Co. S t o b b e , P. C. a n d J . R. W r i g h t , 1959* "Mod er n C o n c e p t s o f th e G enesis of P o d z o ls" , S o i l S c ie n ce S o c ie ty of Amer. P r o c e e d i n g s , 2 3 :1 6 1 -1 6 4 . T i n s l e y , J . a n d A. S a l a m , 1 9 6 1 . "Chem ical S t u d i e s o f S o i l O rganic M a tt e r , I : E x t r a c t i o n w i t h Aqueous S o l u t i o n " , J o u rn a l of S o i l S c i e n c e , 12:259-268. T i t o v a , N. A . , 1 9 6 2 . " I r o n Humus C o m p l e x e s i n C e r t a i n S o i l s " , S o v i e t S o i l S c i e n c e , 135I - I 356.