I N F O R M A T I O N T O USERS T h is d is s e rta tio n w a s produced fr o m a m i c r o f i l m copy o f th e o r ig in a l docum ent. W h ile th e m o s t a d v a n c e d technological m e a n s t o p h o to g rap h a n d reproduce this d o c u m e n t have b e e n used, the q u a lity th e original s u b m i t t e d . The fo llo w in g e x p la n a tio n of is h e a v ily dependent u p o n th e quality of te c h n iq u e s is p ro v id e d to h e lp you understand m a rk in g s o r p a t t e r n s which m ay appear o n th is re p ro d u c tio n . 1. T h e sign or " ta r g e t" fo r pages a p p a r e n tly lacking f r o m th e docum ent p h o to g r a p h e d is "Missing P a g e fs l” . If it was possible t o obtain the m issing page(s) or section, t h e y are spliced in to t h e f i l m along w ith a d j a c e n t pages. This m ay have necessitated c u ttin g t h r u an image and d u p l i c a t i n g adjacent pages t o insure y o u c o m p le te c o n t i n u i t y . 2. W hen an m a r k , it copy m ay im age . 3. W hen image on the f ilm is o b lite r a t e d w it h a la rg e round black is an indication t h a t t h e pho to g rap h e r suspected that th e have moved d u r in g e xp o s u re and th u s cause a blurred Y o u will fin d a g o o d im a g e o f th e page in t h e adjacent frame. a map, drawing or c h a r t, etc., was part o f t h e material being p h o t o g r a p h e d th e p h o to g r a p h e r fo llo w e d a d e f i n i t e m ethod in " s e c t i o n i n g " the m aterial. It is c u s to m a ry to be g in p h o to in g at th e u p p e r l e f t hand corner o f a large sheet and to c o n t i n u e p h o to in g fr o m le f t to right in equal s ec tio n s w ith a small s e c tio n in g is c o n tin u e d again — beginning c o n t i n u i n g on u n til com p lete . 4. o v e r la p . b e lo w th e If necessary, firs t row and T h e m a j o r i t y o f users in d ic a te t h a t th e te x tu a l c o n t e n t is o f greatest v a lu e , how ever, a s o m e w h a t h ig h e r q u a lity r e p r o d u c t i o n could be made fro m d is s e r ta tio n . "p h o to g ra p h s " Silver prints if of essential to the u n d e rs ta n d in g o f the "photographs" m ay be ordered at a d d i t i o n a l charge by w r itin g t h e O r d e r D e p a r tm e n t , g iv in g the catalog n u m b e r , title , a u th o r and s p e c ific pages you wish r e p r o d u c e d . U n ive rsity Microfilms 300 N o r th Z e e b R o a d Arm A rb o r, M ic h ig a n 48106 A X e ro x E d u c a tio n Com pany I I 73-5446 MILLER, Michael Charles, 1942THE CARBON CYCLE IN THE HP ILIMN ION OF TWO MICHIGAN LAKES. Michigan State University, Ph.D., 1972 Botany U n iv e rs ity M ic ro film s , A XEROX C o m p an y , A n n A rb o r, M ic h ig a n T H E C A R B O N C Y C L E IN T H E E P I L I M N I O N OF T W O MICHIGAN LAKES By M i c h a e l C. M i l l e r A THESIS Submitted to M i c h i g a n State U n i v e r s i t y in partial fulfillment of the r e quirements for the d e g r e e of D O C T O R OF P H I L O S O P H Y Department of Botany and 1972 Plant Pathology PLEASE Some NOTE: pages may in d ist i n e t Filmed University as Microfilms, have print. received. A Xerox Education Company ABSTRACT T H E C A R B O N C Y C L E IN T H E E P I L I M N I O N OF T W O M I C H I G A N L A K E S By Michael The planktonic were examined C. M i l l e r communities of to q u a n t i f y extracellular sedimentation, dissolved, organic secretion, acetate depletion were determined measurements c ar b o n . particulate of and in r e l a t i o n to s t a n d i n g c r o p s of a l g a l particulate organic carbon heterotrophic and g l y c o l a t e , an d o x y g e n simultaneous carbon, total c a r b o n and humic carbon. Benthic metabolism affected trophs more in t h e heterotrophic shallower u p t a k e of directly with planktonic In c o m p a r i n g organic R a t e s of p r i m a r y input of humic material, u p t a k e of g l u c o s e , lake budgets and dynamics of d i s ­ s o l v e d an d p a r t i c u l a t e o r g a n i c production, two contrasting the carbon lake. In g e n e r a l , small organic algal two la k es , the hetero— th e molecules varied p r o d u c t i o n and secretion. si z e o f t h e p a r t i c u l a t e po ol w a s p r o p o r t i o n a l primary production. the planktonic to the r a t e s of T h e s i z e of t h e d i s s o l v e d o r g a n i c M i c h a e l C. carbon pool was apparently related a m o u n t s of lakes the limiting nutrients. a l g a l c e ll ranked rupture, by a nd p a r t i c u l a t e o r g a n i c Rates of in r a i n w a t e r , plants, these and secretion by and phytoplankton and organic integrating i n to t h e autolysis carbon decomposition transfer discussed and a model s en t e d . In t h e d e e p e r o f t h e t w o importance were: runoff d e c o m p o s i t i o n of a q u a t i c co lumn. inversely to the inputs of d i s s o l v e d organic c a r b o n surtace wate r s Miller secretion, in t h e w a t e r carbon pools results a re is p r e ­ AC K N O W L E D G M E N T S The author would a p p r e c i a t i o n to Dr. logical l i k e to e x p r e s s Robert G. W e t z e l , Station and the D e p a r t m e n t of Pathology, patience, Michigan State University a nd c o n t i n u e d support of much valuable criticism during t i g a t i o n and ciation W. K. Kellogg fo r K. sincere Kellogg for his a d v i c e , this work and t h e c o u r s e of Biological financial George Station, assistance Bio­ Botany and Plant for the inves­ in p r e p a r a t i o n of t h i s m a n u s c r i p t . is a l s o d u e to Dr. versity, W. his Appre­ H. L a u f f , D i r e c t o r , Michigan an d State Uni­ institutional support. A s p e c i a l v o t e of a p p r e c i a t i o n m u s t g o David G. whose inspiration and g u i d a n c e always Frey, D e p a r t m e n t of Indiana University, in t h o s e e a r l y y e a r s w i l l be r e m e m b e r e d . The graduate logical exchange Station student f r o m 1967 and testing of e v o l u t i o n o f t h is Boraas, Zoology, to Dr. Dr. to body at t h e K e l l o g g 1970 all hypothesis approach. Harold Allen, Dr. contributed w h i c h led to Appreciation goes Peter Bio­ Rich, Dr. in the the to M a r t i n Robert Keen, Dr. My J oh n O'Brian, special r e v i e w of thanks Robert to D r . R o b e r t and Dr. Keen for Bruce Manny. his critical th i s m a n u s c r i p t . These the Federal investigations were Water by the U.S. Atomic 1 5 9 9 ( C o o - 1 599-24) Grant GB-6538 supported, in p a r t , by Pollution Control Administration, Research Fellowship 5 —F l - W P — 37, 44 9 - 0 1 , - 0 3 Energy Commission, and t o R. by t h e N a t i o n a l G. W e t z e l . assisted by t h e N a t i o n a l BO-15665 to G. for Peterson, to t h e a u t h o r C o n t r a c t A T (11— 1) — Science Foundation The study was further Science Foundation Grant H. L a u f f , et al^. Inve s t i g a t i o n of F r e s h w a t e r (Coherent A r e a s Ecosystem). Program T A B L E OF C O N T E N T S Page LIST LIST LIST OF T A B L E S ............................................ vi OF F I G U R E S ............................................... v i i i OF A B B R E V I A T I O N S ........................................x i i i Chapter I. INTRODUCTION A. B. C. D. II. IV. 1 C a r b o n C y c l i n g in L a k e s . . . . . D i s s o l v e d O r g a n i c C a r b o n ................ Particulate Organic Carbon . . . . O b j e c t i v e s ................................... 1 3 9 10 T H E L A K E S ......................................... A. B. III. ...................................... L a w r e n c e L a k e ............................... D u c k L a k e ................................... 12 12 17 M E T H O D S ............................................. 21 RESULTS 32 A. B. C. D. E. F. G. H. A N D D I S C U S S I O N ........................... M e a s u r e m e n t and P r e d i c t i o n of P r i m a r y P r o d u c t i o n and S e c r e t i o n by P h y t o plankton 32 Diur n a l Patterns of P h o t o s y n t h e s i s a n d S e c r e t i o n .............................. G1 Annual Budgets of Primary P r o d u c t i o n and S e c r e t i o n .............................. G9 Z o o p l a n k t o n E x c r e t i o n .................... 71 A l g a l C e l l C a r b o n and P a r t i c u l a t e O r g a n i c C a r b o n R e p l a c e m e n t B a s e d on P lank t o n i c — p h o t o s y n t h e s i s 72 S e d i m e n t a t i o n of P a r t i c u l a t e C a r b o n . B7 P l a n k t o n M e t a b o l i s m C o m p a r e d to W h o l e L a k e R e s p i r a t i o n in W i n t e r . . 104 D i s s o l v e d O r g a n i c C a r b o n , Its S o u r c e s a n d U t i l i z a t i o n ...............................107 iv Chapter Page I. J. K. L. V. VI. P l a n k t o n i c S o u r c e s of D O C ................... Heterotrophic Uptake of Labile ...................... Organic Compounds T u r n o v e r o f the S e c r e t o r y P oo l of Organic Substrates ...................... Planktonic Production and Bacterial Heterotrophy .............................. INTERPRETATION AND 131 134 147 156 I N T E G R A T I O N ................... 16 4 C O N C L U S I O N S .............................................171 LITERATURE CITED .......................................... 17 5 APPENDICES Appendix A. B. P h y s i c a l - C h e m i c a l L i m n o l o g y o f D u c k Lake, K a l a m a z o o Co., M i c h i g a n ...................... 190 M o d e l for C a r b o n - F l o w i n the M i c r o p l a n k t o n of a L a k e a t l m . 206 v LIST OF TABLES Table Page 1. M o r p h o m e t r i c p a r a m e t e r s o f L a w r e n c e L a k e and D u c k L a k e .................................... 14 2. S u m m a r y of m e a n o b s e r v e d r a t e s of p r i m a r y p r o ­ d u c t i o n a n d s e c r e t i o n in L a w r e n c e a n d D u c k L a k e s ........................................37 3. P a r t i a l c o r r e l a t i o n by s e q u e n t i a l a d d i t i o n o f v a r i a b l e s for p r i m a r y p r o d u c t i o n a n d a l g a l s e c r e t i o n in L a w r e n c e and D u c k L a k e s . . . 4. C o r r e l a t i o n b e t w e e n p r o d u c t i o n in L a w r e n c e L a k e an d D u c k L a k e o n the s a m e d a y or a d j a c e n t d a y s ............................ 46 5. D i u r n a l p a t t e r n of p r i m a r y p r o d u c t i o n and s e c r e t i o n 1 2 — 13 J u n e 1968; L a w r e n c e L a k e at l m ........................................64 6. Diurnal primary p r o d u c t i o n and e x t r a c ellular r e l e a s e 25 A p r i l 1969; D u c k L a k e a t lm . 7. 8. 9. 10. 11. 39 . A n n u a l b u d g e t s o f p r i m a r y p r o d u c t i o n and s e c r e t i o n in L a w r e n c e a n d D u c k L a k e s . . . E f f e c t of carbon 67 70 z o o p l a n k t o n g r a z i n g o n r a t e s of a l g a l fixation and or g a n i c secretion. . . 73 C o m p a r i s o n o f m e a n s t a n d i n g c r o p s , r at e s, an d r e p l a c e m e n t t i m e s of a l g a l c e l l c a r b o n , particulate and dissolved organic carbon p o o l s in L a w r e n c e a n d D u c k L a k e s . . . . 85 S e d i m e n t a t i o n budgets, L a w r e n c e Lake, 1 F e b r u ­ a r y 1 9 6 9 - 2 7 J a n u a r y 1 9 7 0 (361 da y s) . . . 92 R e d u c t i o n in d i s s o l v e d oxygen c o n c e n t r a t i o n s u n d e r t he ice in L a w r e n c e a n d D u c k Lakes. vi . 106 Page Table 12. H u m i c c a r b o n b u d g e t s for L a w r e n c e a n d D u c k L a k e s ................................................. 128 13. C o m p a r i s o n of k i n e t i c b i o a s s a y p a r a m e t e r s in L a w r e n c e a n d D u c k L a k e s ........................... 135 14. M u l t i p l e r e g r e s s i o n —p a r t i a l c o r r e l a t i o n a n a l y s e s o f s u b s t r a t e u t i l i z a t i o n for g l u c o s e , a c e t a t e , and g l y c o l a t e . . . 15. 16. . C o m p a r i s o n o f a u t o t r o p h y vs. p o t e n t i a l h e t e r o t r o p h y i n t wo l a k e s o n the s a m e d a y s at lm. 140 159 A nnual pe l a g i a l c a r b o n budgets for Lawrence a n d D u c k L a k e s ...................................... 174 vii L IS T OF F I G U R E S Figure 1. 2. 3. 4. 5a. 5b. 6a. 6b. 7a. Page Diagra m m a t i c r e p r e s e n t a t i o n of c a r b o n transfer in t h e p l a n k t o n of a n i d e a l i z e d lake (------- , p a r t i c u l a t e c a r b o n t r a n s f e r , dissolved organic carbontransfers, *--- *---- * t r a n s fe r s ) .................... 6 H o r p h o m e t r i c m a p of L a w r e n c e Lake, B a r r y C o u n t y , M i c h i g a n c o n s t r u c t e d w i t h t h e aid of s o n a r {200Kc sec"^, M o d e l F — 8 50A, F u r u n o E l e c t r i c C o . , L t d . ,J a p a n ) . . . . 16 M o r p h o m e t r i c m a p of D u c k L a k e , K a l a m a z o o County, M i c h i g a n ............................... 19 Isopleths of particulate primary p r o d u c t i o n (mg C m ~ 3 d a y -3-), L a w r e n c e L a k e f r o m A p r i l , 1968, to A u g u s t , 1 9 6 9 ......................... 34 P r i m a r y p r o d u c t i o n (mg C m - ^ d a y - -*-) in th e 0 -5 m s t r a t u m (solid line) and a l g a l secretion or extracellular organic p r o ­ d u c t i o n (mg C m “ 2 d a y - -*-) (dashed line) in L a w r e n c e L a k e f ro m A p r i l , 1968, to August, 1969 ................................... 36 P r i m a r y p r o d u c t i o n an d a l g a l s e c r e t i o n o r e x t r a c e l l u l a r r e l e a s e (mg C m -3 d a y -3-) at lm in L a w r e n c e Lake, f r o m A p r i l , 1968, to August, 1 9 69 ................................... 36 Isopleths of particulate primary p r o d u c t i o n (mg m — 3 d a y -3-)in D u c k Lake, 1 9 6 8 — 1 9 6 9 . . Isopleths of algal s e c r e t i o n or ext r a c e l l u l a r p r o d u c t i o n (mg C m -3 d a y -3-) in D u c k Lake, 1 9 6 8 - 1 9 6 9 ......................................... —2 42 —1 P r i m a r y p r o d u c t i o n (mg C m day ) (solid line) a n d a l g a l s e c r e t i o n (mg C m - 2 d a y " 3 (dashed line) in D u c k Lake, 1 9 6 8 - 1 9 6 9 . . v ii i 42 44 Figure 7b. 8. 9. 10. 11. 12. 13a. 13b. 14a. 14b. Page P r i m a r y p r o d u c t i o n (solid line) and a l g a l s e c r e t i o n or e x t r a c e l l u l a r p r o d u c t i o n ( da s he d line) in m g C m — 3 d a y - 1 a t l m in D u c k Lake, 1 9 6 8 — 1 9 6 9 .......................... 44 I s o p l e t h s o f a l g a l s e c r e t i o n (mg C m ^ d a y ^) in L a w r e n c e L a ke , A p r i l , 1 9 6 8 —A u g u s t , 1969. 49 I s o p l e t h s of t he p e r c e n t a g e e x t r a c e l l u l a r r e l e a s e (PER) in L a w r e n c e L a ke , A p r i l , 1 9 6 8 —A u g u s t , 1 9 G 9 .............................. 56 I s o p l e t h s of p e r c e n t a g e e x t r a c e l l u l a r r e l e a s e (PER) in D u c k L ak e , 1 9 6 8 - 1 9 6 9 ................ 59 Diur n a l p a t t e r n of p r i m a r y p r o d uction, algal s e c r e t i o n , p e r c e n t a g e s e c r e t i o n o v e r s hort, n o n — o v e r l a p p i n g i n c u b a t i o n s a t lm, L a w r e n c e Lake, 12 June, 1968 63 Diur n a l p a t t e r n ofprimary production, algal s e c r e t i o n , PER, g l u c o s e h e t e r o t r o p h i c u p t a k e p o t e n t i a l (Vm a x ) / a n d t h e m a x i m a l e s t i m a t e of n a t u r a l s u b s t r a t e c o n c e n ­ t r a t i o n o f g l u c o s e (as ug C 1 ~ 3 , D u c k Lake, lm, 25 A p r i l , 1 9 6 9 ) ......................... 66 P a r t i c u l a t e o r g a n i c c a r b o n (— ------- ) (mg C m “ 2 X 1 0 2 ) a n d a l g a l c e l l c a r b o n (--------) (mg C ~ 2 X 10l) in L a w r e n c e Lake, 1 9 6 8 — 69 . 76 P a r t i c u l a t e o r g a n i c c a r b o n (---------) (mg C m — 3 X 1 0 2 ) and a l g a l c e l l o r g a n i c c a r b o n (------- ) (mg C m -3 X 101) at lm in L a w r e n c e Lake, 1 9 6 8 - 1 9 6 9 ............... 76 T u r n o v e r or r e p l a c e m e n t t i m e (days) of a l g a l c e l l c a r b o n (---------) a n d p a r t i c u l a t e o r g a n i c c a r b o n (------- ) by p h y t o p l a n k t o n p r i m a r y p r o d u c t i o n (minus 30% for r e s p i r ­ a t i o n day~l) p e r m 2 of the 0 — 5m s t r a t u m in L a w r e n c e Lake, 1 9 6 8 — 1 9 6 9 ............... 78 Turnover or replacement time (days) o f a l g a l cell carbon ( ) and particulate o r g a n i c c a r b o n (------- ) by p r i m a r y p r o ­ d u c t i o n (minus 30% for r e s p i r a t i o n d a y " M a t lm in L a w r e n c e L ake, 1 9 6 8 — 1969. . . . 78 ix Page Figure 15. 16a. 16b. 17a. 17b. 18 . 19. 20. 21. I s o p l e t h s of p a r t i c u l a t e o r g a n i c c a r b o n (g C m — 3) in D u c k Lake, 1 9 6 8 — 196 9 . . . . Particulate organic carbon ( ) (mg C m — ^ x 10^) a n d a l g a l c e l l c a r b o n (-------- ) {mg C m ~ 2 x 103) in D u c k L ake, 1 9 6 8 — 1 9 6 9 80 . 82 —3 2 Particulate organic ( ) (mg C m X 10 ) a n d a l g a l c e l l c a r b o n (------- ) (mg C m — 3 X 10^) in D u c k L a k e at lm, 1 9 6 8 — 1 9 69 . . . 82 T u r n o v e r or r e p l a c e m e n t t i m e (days) o f a l g a l cell carbon ( ) and particulate o r g a n i c c a r b o n (-------) b y p r i m a r y p r o ­ d u c t i o n (minus 30% for r e s p i r a t i o n d a y “ l) p e r m e t e r ^ in D u c k L a k e , 1 9 6 8 - 1 9 6 9 . . . 84 T u r n o v e r or r e p l a c e m e n t t i m e (days) o f a l g a l cell carbon ( ) and part i c u l a t e o r g a n i c c a r b o n (-------) by p r i m a r y p r o ­ d u c t i o n (minus 30% for r e s p i r a t i o n d a y “ ^ ) p e r m e t e r ^ a t lm in D u c k L a k e , 1 9 6 8 — 19 6 9 . 84 D r y w e i g h t of m a t e r i a l in s e d i m e n t t r a p s d a y ^ at S t a t i o n A and D c o m b i n e d w i t h 90% c o n f i ­ d e n c e i n t e r v a l s w h e r e n = 3 (mg d r y wt. m - 2 d a y ” 1); fi v e m e t e r t r a p s {------- ) an d 10 or 1 1 m t r a p s (------- ) ........................... 89 _T O r g a n i c c a r b o n s e d i m e n t a t i o n r a t e s (mg C m d ay ~ l) at 5m (------- ) a n d 10 or 1 1 m (-------) in L a w r e n c e La k e, 1 9 6 9 - 1 9 7 0 . . . 91 P e r c e n t a g e o r g a n i c c a r b o n o f the d r y w e i g h t of p a r t i c u l a t e m a t e r i a l s e d i m e n t e d w i t h 90% c o n f i d e n c e i n t e r v a l w h e r e n = 3 at 5m (------- ) a n d io or 1 1 m -(--------) in L a w r e n c e Lake, 1 9 6 9 — 1 9 7 0 ...................... 94 P e r c e n t a g e CaCC > 3 of th e d r y w e i g h t p a r t i c u l a t e m a t e r i a l s e d i m e n t e d w i t h (9 0% c o n f i d e n c e i n t e r v a l w h e r e n = 3 at 5 m {------- ) and 10 or 11m (------- ) in L a w r e n c e Lake, 1 9 6 9 — 1 9 7 0 ................................................. 96 x Figure Page 22. R a t e s o f t u r n o v e r (days) of p a r t i c u l a t e o r g a n i c c a r b o n by s e d i m e n t a t i o n in L a w r e n c e Lake, 0 — 5m s t r a t u m (lower) and s t a n d i n g c r o p s o f p a r t i c u l a t e o r g a n i c c a r b o n (mg C m ~ 2 X 103) 0 — 1 0 m p e r m 2 s u r f a c e a r e a at 0 m [-------) a n d 0 - 5 m p e r m 2 o f 5m s u r f a c e a r e a (------- ) ( u p p e r ) ................................................ 102 23. I s o p l e t h s of t o t a l d i s s o l v e d o r g a n i c c a r b o n (mg C l - 3) in L a w r e n c e Lake, 1 9 6 7 - 1 9 7 0 . 24. 25a. 25b. 26. 27. 28. 29. 30. 31. . . 109 I s o p l e t h s of t o t a l d i s s o l v e d o r g a n i c c a r b o n (mg C 1~1) , D u c k Lake, 1 9 6 8 — 1 9 6 9 ................. 112 I s o p l e t h s of u l t r a v i o l e t a b s o r p t i o n (250nm, lcm) b y d i s s o l v e d humic m a t e r i a l s , L a w r e n c e Lake, 1 9 6 7 - 1 9 7 0 115 I s o p l e t h s of f l u o r e s c e n c e (460nm, lOx s c a l e unit s) in L a w r e n c e L a k e f r o m J a n u a r y , 1969, to May, 1970 115 2 H u m i c a c i d o r g a n i c c a r b o n per m e t e r in L a w r e n c e L a k e (g C m ~ 2 ) ............................. 117 W e e k l y p r e c i p i t a t i o n at K e l l o g g B i o l o g i c a l S t a t i o n , K a l a m a z o o C o u n t y , M i c h i g a n and d e v i a t i o n s o f t h e lake l e v e l f r o m th e a n n u a l mean, 1967-1970 119 I s o p l e t h s of u l t r a v i o l e t a b s o r p t i o n (250nm, lcm) by h u m i c m a t e r i a l s (upper) and r e l a t i v e f l u o r e s c e n c e ( 3 60 n m 1° fi l te r ) in f l u o r o m e t e r u n i t s X 10 in D u c k Lake, 1 9 6 8 — 196 9 . . . . 122 H u m i c a c i d o r g a n i c c a r b o n p e r m e t e r ^ (g C m~2) (------- ) , t o t a l d i s s o l v e d o r g a n i c c a r b o n (g C m~2) (-- ^ — ) and the d i f f e r e n c e b e t w e e n t h o s e two, r e p r e s e n t i n g t h e m a x i m u m D O C o f a u t o c h t h o n o u s o r i g i n (-- 0 ---) , D u c k L a k e . . 124 C h a n g e s in u p t a k e v e l o c i t y (Vm a x ) , s u b s t r a t e c o n c e n t r a t i o n (Kt + S n ) a n d t u r n o v e r t i m e (Tt) of g l u c o s e , a ce t a t e , a n d g l y c o l a t e in L a w r e n c e L a k e at lm, 1 9 6 3 — 1 9 6 9 137 C h a n g e s in u p t a k e v e l o c i t y (Vm a x ) , m a x i m u m s u b ­ s t r a t e c o n c e n t r a t i o n (K^- + S n > a n d t u r n o v e r t i m e (Tt ) o f g l u c o s e , a c e t a t e , and g l y c o l a t e in D u c k L a k e a t lm, 1968 — 1 9 6 9 139 xi Page Figure 32. 33. 34. 35. 36. 14 Heterotrophic Uptake Rateof C Glucose C a r b o n (yig C 1 _ 1 h r - 1) at 1 . 7 — 1.8 a n d 0 . 7 5 - 0 . 8 0 y g C l - i f r o m Ma y , 1968, to A u g u s t , 1 9 69 ...................................... 145 Primary production, glucose heterotrophic u p t a k e CVm a x ) , and i n s o l a t i o n (cal c m “ 2 day~i) d e t e r m i n e d in s h o r t - t e r m s m a l l bottle incubations usi n g water taken from t h e l a ke a t lm on t h a t d a y (------- ) and f ro m a 20 1 c a r b o y p l a c e d in th e l a k e o n S e p t e m b e r 9, 1969 (---- ) ...................... 149 T i m e c o u r s e o f the u p t a k e of secreted organic c a r b o n f r o m p h y t o p l a n k t o n p h o t o s y n t h e s i s in c o m p a r i s o n to u p t a k e o f g l u c o s e .................. 152 Isopleths of turnover of algal s e c r e t o r y o r g a n i c c a r b o n by h e t e r o t r o p h i c u p t a k e of t h e ^in s i t u b a c t e r i a , D u c k Lake, 1 9 6 8 - 1 9 6 9 . V e r t i c a l p r o f i l e s of p r i m a r y p r o d u c t i o n , a l j a l secretions, percentage extracellular r e l e a s e , a n d t u r n o v e r of a l g a l o r g a n i c s e c r e t i o n s by h e t e r o t r o p h i c b a c t e r i a l u pt a k e . D u c k Lak e, 3 J u n e , 1 9 6 9 ............... 155 158 O 37. 38. 39. 40. 41. 42. T e m p e r a t u r e C C) a n d c o n d u c t i v i t y (ymhos) i s o p l e t h s in D u c k L a k e f r o m S e p t e m b e r , 1968, to S e p t e m b e r , 1969 ............................. Oxygen concentration (mg 0 2 1 in D u c k L a k e f r o m S e p t e m b e r , 1968, t o S e p t e m b e r , 1969. 193 . 195 pH a n d a l k a l i n i t y (mg CaC0 3 1 i s o p l e t h s in D u c k L a k e , S e p t e m b e r , 1968, t o S e p t e m b e r , 1 9 6 9 ................................................. 197 T o t a l d i s s o l v e d p h o s p h o r u s (yg P 1 in D u c k Lake, f r o m S e p t e m b e r , 1968, to S e p t e m b e r , 1 9 6 9 ................................................. 199 A l g a l c e l l n u m b e r s (# x 10^ 1 1 ) a n d a l g a l c e l l v o l u m e (y3 x 10^ l ” i) a t l m in D u c k L ake. . 202 A l g a l c e l l n u m b e r s (# x 10^ 1 and algal v o l u m e (y3 x 10^ 1~1) in D u c k L a k e f r o m S e p t e m b e r , 1968, to S e p t e m b e r , 1969 . cell . . 204 L I S T OF A B B R E V I A T I O N S DOC Total dissolved organic carbon; non-filterable o r g a n i c m a t e r i a l by g l a s s f i b e r f i l t e r (less t h a n 0.3 pm) a f t e i M e n z e l a n d V a c c a r o (1964). EOP E x t r a c e l l u l a r organic p r o d u c t i o n = EPP or e x t r a ­ cellular primary production, more exactly called a l g a l s e c r e t i o n or e x c r e t i o n ; t h o s e o r g a n i c s u b ­ strates rele a s e d by algal cells d u r i n g p h o t o s y n t h e ­ sis. PER Percentage extracellular release = s e c r e t i o n / t i m e x 100 algal primary production/time P OC Particulate organic carbon — filterable organic m a t e r i a l ( g r e a t e r than 0.3 urn) r e t a i n e d o n g l a s s f i b e r f i l t e r s a f t e r m e t h o d s of S t r i c k l a n d and P a r s o n s (1965/ 1968). xiii I. A. INTRODUCTION Carbon Cycling in L a k e s In a c l o s e d a q u a t i c e c o s y s t e m , processes of synthesis and decomposition determine s t a n d i n g c r o p of o r g a n i c c arbon. of o r g a n i c (1) d e t r i t a l (2) storage algae, (3) zooplankton, component (b) the is the (6) fish. The The (a) and (d) communities is terrestrial communities, tivities may be accumulates little organic relatively The c a rb o n, synthesis that d e p e n d s on and m a i n t a i n s in l i m i n e t i c features more closely linked 1 produc­ community usually a large biomass limnetic community and a nd in t e m p e r a t e The terrestrial short-lived producers. therefore, transfer although their primary organic matter synthesis, including organic s m al l c o m p a r e d w i t h long-lived plants. size of any r a t e s of T h e p o o l of n u t r i e n t s similar. (5) the ra t e o f m i n e r a l i z a t i o n . a v a i l a b i l i t y of n u t r i e n t s , ca r bo n . carbon, of p r i m a r y (c) of p r i m a r y o r g a n i c mineralized particulate material, instantaneous rates the limnetic components dissolved organic si z e o f o t h e r c o m p o n e n t s , The rate be, (4) r e s u l t of between components, t he are: bacteria, and the d ynamic of accumulates a small biomass of Aquatic production must in t i m e and space with 2 the p r o c e s s e s o f o r g a n i c d e c o m p o s i t i o n a n d m i n e r a l i z a t i o n . Nutrients 1970). are re-used The continual in h o u r s o r a f ew d a y s (P o m e r o y n e a r e q u a l i t y of r a t e s of p r o d u c t i o n and d e c o m p o s i t i o n is r e f l e c t e d biomasses. biomass Algal during the blooms in e u t r o p h i c is first planktonic fixation 1965, after zo n e of Some and significantly only or d u r i n g m i d - s u m m e r Zill lakes carbon dioxide i n to o r g a n i c compounds secreted 1956). (Fogg The 1952, carbon i n g e s t i o n by z o o p l a n k t o n , death or after l yt i c p h a g e Granhall of or B d e l l o v i b r i o carbon after 1969, (Padan, Hirsch aerobic to t he b o t t o m of the l a ke w h e r e (Hargrave 1970b). some of the algal some of the ce ll (e.g., blue green Shilo and K i s l e v 19G7, unpublished data). are carbon by zooplankton carbon and The readily The limnetic settles it d e c o m p o s e s The and bacte r i a l zooplankton. (1) rupture "natural" is p a r t i a l l y d e c o m p o s e d Rich carbon heterotrophic bacteria. Non-mineralized organic 1969, by Hellebust by o s m o t i c secretion and autolysis u s e d by a v a r i e t y of bacteria. (2) a t t a c k by o t h e r m i c r o b e s s o l u b l e p r o d u c t s of particulate or the algal cell and Hofsten or in a l g a e m a y be as d i s s o l v e d o r p a r t i c u l a t e o r g a n i c and/or autolysis and bacterial e a r l y p r o d u c t s of p h o t o s y n t h e t i c released or Tolbert algal lakes. synthesized algae. a re released accumulates spring p r o d u c t i o n peak In the p e l a g i c HCO-j in s m a l l slowly further assimilate f i sh c o n s u m e 3 Algal and bacterial r a t e s of c a r b o n c y c l i n g because highly These herbivores in u n d i s t u r b e d are g e n e r a l l y eutrophic conditions rates are prese n t l y radioisotopic techniques. change pH) techniques, too imprecise (Beyers Verduin tracer techniques 1959, (1963), Overbeck Storch (1971), Wright (1970) Se k i tw o p r o c e s s e s and the p a r t i c u l a t e B. carbon exists lesser extent, these (1968) , H o b b i e Saunders (1968), to the the and N a u w e r c k 1967) algal p r o d u c t i o n and a nd and b a c t e r i a l often without relating s t a n d i n g c r o p of algae, bacteria ca r bon. Dissolved Organic Carbon an d in the o c e a n m o s t as d i s s o l v e d o r g a n i c c a r b o n as p a r t i c u l a t e o r g a n i c exceed the of carbon. a m o u n t of o r g a n i c Juday Saunders 1969). the o r g a n i c (DOC) a n d b a c t e r i a by s e v e r a l - f o l d 1934, transfers Saunders (1966b, Ohle unpublished the p h y t o p l a n k t o n 1926, as Isotopic carbon (1967) (1969), Wetzel such 1969, 1959) . and d i s s o l v e d o r g a n i c lakes two sources 1970). oxygen or and Hall (1969a a n d tracer methodology, the In all Manny Allen have m e a s u r e d heterotrophy by O'Brien in and bio l o g i c a l l y follow precisely (1970), it e x c e p t bottle V e r d u i n e t a_l. b y t he a l g a e a n d b a c t e r i a . data) , G o l d m a n et al^. lakes, existing methods, insensitive 1960, ca n of 1969, (light-dark a nd O d u m 1956, incapable (S aunders Other iii s i t u d i u r n a l are freshwater the studied adequ a t e l y only wit h the 1958, interactions must control and, to a Minimally carbon in (Birge a n d It is d i f f i c u l t to 4 assess th e d y n a m i c s of d i s s o l v e d lakes. T h e p o o l o f DOC h a s m a n y molecular forms, and its b i o t i c organic carbon s ou r c e s , effects (DOC) a variety in of a r e m o d i f i e d by the environment. Major (1) s o u r c e s of d i s s o l v e d o r g a n i c terrestrial from planktonic lysis and and aquatic algae and or o s m o t i c (4) Wetzel 1969) Shapiro [Figure leached a re formed during materials 1]. f r o m the Christman Otsuki rooted aquatic The Watt and Ghassemi f o r m in although lakes Ghassemi (Boyd 1968, 1966, and (Birge Shapiro humus and Juday 1957). Humic of from 1965, simple rooted aquatic 1964, Christman and 1966). studied extensively Forsberg and Taube Maksimova and Pimenova 1961, auto- 1966, (Otsuki and H a n y a Christman Extracellular products been C3) humic materials come directly l e a c h i n g of t a n n i n s a n d q u i n o n e s macrophytes and Fogg plant tannins 1966, they may secretions higher a ni m a l s terrestrial soil w h e r e (2) plants, decomposition processes similarly 1968) 1957, include a l g a e or h y d r o p h y t e s , e x c r e t i o n s of z o o p l a n k t o n a n d a re 1934, humic materials, r u p t u r e of d e a d ( G o l t e r m a n 1964, carbon Moore and Tischer W a t t and Fogg 1966). of a l g a l (Fogg 1952, 1967, Hellebust 1969, 1965, Merz, photosynthesis 1963, Fogg 1965, Zehnpfennig Nalewajko 1966, have and Watt 1967, and Klima Watt 1966, 5 Figure 1. D i a g r a m m a t i c r e p r e s e n t a t i o n of c a r b o n t r a n s f e r in t h e p l a n k t o n of an i d e a l i z e d l a ke (---p a r t i c u l a t e c a r b o n t r a n s f e r # ------ d i s s o l v e d o r g a n i c c a r b o n t r a n s f e r s , --- *----’---- * CC> 2 transfers). 6 PLANKTON alg al & CARBON b acten al CYCLE resp irat*o n _ ........................... "l alpal p h o t o s y n t h e s i s Z o o p la n k to n P a r t i c u l a r O rg a n ic C a rtx jn y f . ,A l g a e •inoestxTi e^t ion & deatt t / v ter i a particulate inoestior>, mate int ;r e h. o d u to jiy S i S I!& ' * TC- % D is s o lv e d O rg a n ic C arbon s e d im e n ta tio n 4 exCrelmn 7 Dissolved organic matter may directly effect the planktonic inorganic ions community, ( S a u n de r s DOC m a y act directly organic growth as factors or i n h i b i t o r s o f c e l l bacteria 1957, (1) 1963, Wetzel carbon-energy and algae, in c e r t a i n r e s t r i c t e d c o n d i t i o n s , data). are r e q u i r e d Provasoli 1964, Hartman species antibiotics and J a k o b 1949, All aquatic from very Some compete with unpublished * folic acid, thiamine (Hutner an d 1943, Provasoli 1958) (xylose, longchain f a t t y acids) of a l g a e or b a c t e r i a m a y fo r o t h e r Lefevre, species (Lefevre, Jakob and Nisbet 1950, while be Nisbet 1951, an d 1959). Organic matter "peptidizing" synthesis. logically Fe (OH)^ (2) (3) s t i m u l a t o r s s om e p h y t o p l a n k t o n Hutchinson compounds s e c r e t e d b y one s ou r c e s , (Saunde rs, s u c h as b i o t i n , for g r o w t h by other o r g a n i c specific substrates as 1971). first order kinetic mechanisms. for o r g a n i c Vitamins important small orga n i c molecules solutions indirectly 1968, g r o w t h and d i v i s i o n . dilute bacteria by a n d c a n be as and vitamins, can concentrate a nd c a n a c t i n d i r e c t l y by c h e l a t i n g micronutrient metals Humic mater i a l s available to algae; and Fe2(C02)^ and C h r i s t m a n 1968, bind are the necessary for p h o t o ­ i r o n and h o l d inorganic an d R a s h i d 1968, it p h y s i o ­ forms of only slightly soluble Prakish or iron, (Ghassemi Shapiro S o d i u m h u m a t e s c o m b i n e w i t h or d e t o x i f y p e s t i c i d e s 1969) . (DDT), 8 herbicides (Wershaw, (2,4,5, Burcar trichlorophenoxyacetic and Goldberg Three b r o a d classes m a y be recognized owing of dissolved technology needed for t h e i r m e a s u r e m e n t : compounds primarily scarcely decompose waters, occur although (Fede ro v a n d Rhyanen 1968, may oxidize and s e p a r a t i o n and structure. assimilated 1957). t an n in s , and of n a t u r a l utilization Starkely can 1969, Ultraviolet light (< 350nm) in s u r f a c e w a t e r s (Buck 1968). ability th a n b y c h e m i c a l a r e p h e n o l i c p o l y h y dr ox yine t h o x y c a r b o x y l ic 1964, and and Black and Chris t m a n ( Gh a s s e m i small organic 1963) and C h r i s t m a n of b i o l o g i c a l a c i d s — w h i c h are f r o m d i l u t e s o l u t i o n by b a c t e r i a . of t h e s e dynamically and 1968) . availability small molecular weight c o mpounds- - c a r b o h y d r a t e s , rap idly. compounds ar e low; however, readily T he stable with nearly equal galactose Concentrations rates (Allen to be of p r o d u c t i o n of c a r b o h y d r a t e s — and f r u c t o s e — m a y b e d e t e r m i n e d d i r e c t l y or by b i o a s s a y concen­ th ey c y c l e T h e i r c o n c e n t r a t i o n s are c o n s i d e r e d a nd d e c o m p o s i t i o n . glucose, Le w i s the resistant solutions and bacterial A t the o t h e r e x t r e m e a m i n o acids, very humic materials 1963, compounds of p l a n t o r i g i n a s e t of trations Dlyina iron binding They (2) are f un g al (1) and a r e c l a s s i f i e d m o r e by t h e m e t h o d of ( C hr i s t m a n quinones microflora in th e d i l u t e Shapiro humic Humic materials acids slow organic compounds to t h e i r d i f f e r i n g d e g r e e of the h e t e r o t r o p h i c which and CuSO^ 1969). assimilability by include acid) 1968, Hicks either and Carey 1968, 9 Hobbie and W r i g h t 1965, and W r i g h t and Hobbie serine, g l yc i n e , and and acetate— have (Allen Kinson Fogg Webb 1969, 1968, malic 1967). Some and Nalewajko 1962, Ho bbie, Crawford Lactic, ci tric, oxalic 1970). isolated cultures Scendesmus (Weinmann lipids They almost unknown glucose, uronic acids without 1926, bacteria and as Particulate several low in l evels containing Weinmann sources. the b u l k of Walsh 1965a) availability (1970) and are hydrolyzed contained galactose, This in S c e n d e s m u s if it w e r e a g r o u p of polysaccharides 1967, a r a b i n o s e , xylose, C. has Brehm and exact b i o l o g i c a l and glucosamine. in n a t u r a l w a t e r s a nd products m o b ility are include peptides, fraction which mannose, cultures in b i o l o g i c a l ( W al s h 1965b). a polysaccaride f o u n d at compounds w h i c h make up (Birge a n d J u d a y composition ha s b e e n an d 1970). refractory DOC. an d th a t a c c u m u l a t e d in S c e n d e s m u s Intermediate total whose and Eagle from extracellular sterile the acids— glycollate Fogg, A monosaccharide larger more amino acids — glutamate, 1967, of phytoplankton. (3) 1967, Brehm acids have b e e n bacteria Wetzel i d e n t i f i e d a n d a re q u i t e m o b i l e 1968, and W r i g h t in n a t u r a l w a t e r , a l . 1968, alanine— and organic been biologically Vaccaro et rhamnose, fraction fucosc, accumulated cultures with biologically or refractory. Particulate Organic Carbon organic carbon For example, suspended in l ak e w a t e r organic particles are 10 blown or washed algae i n t o the lake, in the w a t e r c olumn, or arise from decomposed resuspended benthic material a n d d e c o m p o s e d b i t s of a q u a t i c m a c r o p h y t e s alga e. algal Two types of p a r t i c u l a t e cell carbon lumped this study. in t hi s a p p r o a c h ; in p l a n k t o n i c algae the and secre t i o n of t hi s ship b e t w e e n p e l a g i c carbon, i m p o r t a n c e of organic the the m e a s u r e d standing organic fluxes relation­ sedimentation to e s t i m a t e (4) the a n n u a l to d e t e r m i n e the in the t r a n s f e r s of and heterotrophs; control simultaneously; carbon algal biomass, and the lake of d i s s o l v e d o r g a n i c autotrophs of o r g a n i c to d e s c r i b e a deep marl to e x a m i n e (3) and (1) of and (5) autotrophy (6) to and to r e l a t e to t h e o b s e r v e d particulate and dissolved the types of carbon. Though data (2) sources the r e l a t i o n s h i p c r o p s of lakes, dissolved phase heterotrophy occurring POC o r i g i n a t e s algal p i i m a r y p r o d u c t i o n humic materials; carbon between investigate lake; o r g a n i c carb on; especially of primary production budget of non-planktonic P O C are 1926). s t u d y were: contrasting and a s h a l l o w s o f t w a t e r of p a r t i c u l a t e m o s t of t h e were Obj e c t i v e s annual budgets in t w o (i'OC) , carbon, s o u r c e s of (Birge a n d J u d a y The objectives and q u a n t i f y Many however, D. attached organic carbon and total p a r t i c u l a t e considered during or varied, the this objectives were study is o n e broad and a p p r o a c h to e x a m i n i n g the 11 i n t e r a c t i o n of p r o d u c t i o n a n d d e c o m p o s i t i o n p r o c e s s e s a natural ecosystem. over the annual is a p o w e r f u l carbon flows The comparison of contrasting c y c l e of n a t u r a l tool environmental in u n d e r s t a n d i n g complex# factors r ea l e c o s y s t e m s . in systems perturbations controlling II. A. Lawrence Lake ice b l o c k lake, is of A u g u s t a Cre e k THE LAKES Lawrence Lake (85" in s o u t h w e s t e r n a r e a of t h e southwest times sides. the surface ate The 1953). the fed, the ma r s h . T he we s t e r n corner, surface under northwest an d about consists of w h i c h is n o w 10 the system largely are la k e h a s and c a l c a r e o u s immediately by muck two small, traverse fallow below 60cm. (Vea tch partially spring- and r e c e i v e d r a i n a g e fr om a s i n g l e o u t l e t , at t h e south­ to A u g u s t a Creek. Lawrence Lake of marl to the s o i l is g e n e r a l l y a s a n d y l o a m of m o d e r ­ inflows inlets which lake, Michigan. the K a l a m z o o m o r a i n i c 1915), are u n d e r l a i n Major N ) , a terminal surrounding watershed, area of f e r t i l i t y at t h e The swamps 27' Barry County, la k e o n the east, (Leverett and Taylor The 42° covers an area equal southern outw a s h ap r o n of f a r m land. W, l o c a t e d at the h e a d w a t e r s of o n e b r a n c h Adjacent marsh vegetation surface 21' is a m a r l lake w i t h g r e a t e r the d e e p e s t p o r t i o n of 12 the b a s i n . th a n 8m Littoral 13 marl be n ches, 20 m e t e r s e s p e c i a l l y on Marl t h e north, dredging during c h a n g e d the s h o r e by 11% and v o l u m e of the is m a x i m u m depth 1.29, shores by 10% 4 .9 6 and (Rich hectares, 12.6 m, m e a n stolonifera Michx. Muhl. 5.9 m, 1, Michx., down Chara and Naj as Lawrence characteristic a re a s. Further, (12.5 m) was selected used Figure flexilis 2). L . , an d C o r n u s Scirpus acutus Floating (7 s p p . ), leaved a nd Lake was Rost. Wetzel selected because lak e for all to d e t e r m i n e de pt h . found low any effects it r e p r e s e n t s a in g l a c i a t e d to v o l u m e station Station that extending 1971). surface A central r o u t i n e work. heterophy H u m & Sc h midt, a nd T h u y it has a r e l a t i v e l y relative side. s u b t e r m i n a l i s T o r r ., a (Wild) (Rich, ar ea a f o u n d a t i o n of s p p .) , Myr i o p h y H u m oligotrophic marl r a t i o an d a h i g h was (several to seven m e t e r s surface are c o m m o n on the n o r t h w e s t e r n S u b m e r g e d are g r o w t h s of S c i r p u s perennial, the surface area 3 2 9 2 , 0 0 0 m , the b e nc h e s . Nuphar variegatum Engelm., Potomogeton N y m p h a e a o d o r a t a Ait. the fructicosa The e m e r g e n t a q u a t i c is a d o m i n a n t on the m a r l has shore development is b u i l t o n Pontentilla 1960 The the v o l u m e (Table shores. s o m e w h a t on 1970a). depth 5.01% tussocks, to increased depth T he m a r s h v e g e t a t i o n sp. f r o m shore, from 1 9 18 line a n d m o r p h o m e t r y and r e l a t i v e Carex extend n o r t h e a s t and southeast the p e r i o d n o r t h e r n and w e s t e r n lake in w i d t h , th e D A (11 m) stream 14 TABLE 1. M o r p h o m e t r i c parameters of Lawrence Lake and D u c k Lake. N o t a t i o n and d e f i n i t i o n s follow H u t c h i n s o n (1957). L a w r e n c e Lake Total drainage Surface Volume area (ha.) (m^) Mean depth (m) (m) (m) Breadth (ha.) 50 4 .96 2 9 2 , 0 00 Maximum depth Length area (m) Duck Lake 48 12 .6 255,000 12 .6 4 .0 5.9 2 .0 349 407 218 305 Shore development 1.29 Relative 5.01% 1 .0 0 % 0.49 0 . 17 depth Surface area voTume Figure 2 Morphometric map of Lawrence Lake- Barry County, Michigan constructed with the aid of sonar (200Kc sec“f, Model F-850A, Furuno Electric Co, Ltd., Japan). Transects at depths of less than 2m were confirmed by direct measurements (cf. Wetzel, et al. in prep, for further details) 8M• Z6l6m LAWRENCE LAKE BAPRv COJNTY. MICHIGAN E VE ’is j 17 i n l e t s m i g h t h av e on s e d i m e n t a t i o n of p a r t i c u l a t e m a t e r i a l d u r i n g p e r i o d s o f h e a v y rain. Duck Lake located (Figure l ak e 3). 22' W, than h as the a regular restrict f ou r t i m e s no 42° 24* N) its its la s t g l a c i a l oval surface inlet o r o u t f a l l table. and farm shore Its s u r f a c e Ha., volume, 1). The a r e a is 2 . 03 m e t e r s the Macintosh variable 12.62 (Table s u b j e c t of (1960); from year The variation period during the w a t e r to year, level the c o u r s e d i e d by submerged 1969. 255,000 m she lf. 3 and mean i n v e s t i g a t i o n by M a n d o s s i a n h o we v e r , in w a t e r littoral shoreline vegetation unlike level of caused changes this (1967-68) Unlike Lawrence Lake Lake. in the s p e c i e s In the h i g h w a t e r investigation, and and is q u i t e t ha t o f L a w r e n c e (sever a l s p p . ) a n d C e p h a l a n t h u s just b e c o m e f o r e s t a n d by zone or c o m p o s i t i o n of emergent vegetation. Salix is c o v e r e d symmetrical morphometry w i t h no c l e a r l y d e v e l o p e d has b e e n le v el land. D u c k L a k e ha s a r a t h e r d ep t h, The the w a t e r The water sh ed p r i m a r i l y by second growth o a k - h i c k o r y lo w to an a r e a (12.6 h a . ) . streams an retreat b a s i n b o u n d e d by area lake It is a l s o immediate watershed f l u c t u a t e s w i t h t he w a t e r fallow is a s e e p a g e Kalamazoo County. formed during It has ridges which basin Puck Lake in n o r t h e a s t e r n ice b l o c k less (85° B. a b a n d of occidentalis selected L. h ad species had no Scirpus or T y p h a 18 Figure 3. M o r p h o m e t r i c m a p of D uck Lake, K a l a m a z o o Count Michigan. The do t t e d line denotes the extent o f the z o n e o f e m e r g e n t a n d f l o a t i n g - l e a v e d p l a n t s ( u s u a l l y N y m p h e a o d o r a t a ). The map was c o n s t r u c t e d w i t h the aTd of s o n a r , d i r e c t m e a s u r e m e n t s and aerial photography. 19 D U C K L A K E SEC. 5 T IS .R .9 W . KALAM AZOO C O U N T Y . M IC H IG A N DO FEE T COMTOURS N 30 0 300 20 were found. occupying The emergents the included: zone leaved plants f r o m t he S a l i x b a n d at 0.5 m t o advena two meters purpurea W a l t . , Brasenia Schreberi ( A i t . ) A i t . , N y m p h a e a o d o r a t a Ait. depth in o p e n w a t e r (4.3 ha.) C e r a t o p h y l l u m d e m e r s u m L. w a s m o s t there w e r e colonizing the b o t t o m of Duck Lake i m p o r t a n t w ay s : a r e a to v o l u m e zo n e (1) ratio Duck Lake (0.49 th a n L a w r e n c e are, several particulate Lake differences in t h r e e (2) its It is m o r e p r o ­ (0.8 vs less c a r b o n a t e 4.6 m e q between the surface and consequently It h a s m u c h for a c o m p a r i s o n of meter completely. to 0.17) (3) stands Tucker. 3-4 ha s m u c h g r e a t e r is m o r e d e v e l o p e d . alkalinity form a basis la ke at contrasts with Lawrence Lake ductive per unit volume. then, the abundant Gmel., Beyond of M y r i o p h y l l u m s p . , a n d P o t o m o g e t o n a m p l i f o l i u s littoral 2 m P o l y g o n o m sp. , P o n t e d e r i a c o r d a t a I*. , U t r i c u l a r i a c o r n u t a M i c h x . , U. Nuphar and floating the two 1 . lakes which annual cycle an d d i s s o l v e d o r g a n i c c ar b o n . There of III. METHODS P h y t o p l a n k t o n p r i m a r y p r o d u c t i o n and were measured with the c a r b o n - 14 t e c h n i q u e (Steemann Nielsen 1951, 1952) using in s i t u incubations bottles (Strickland 1960, Goldman 1963, like W e t z e l (1966a) and Wetzel procedure was preparation) NaH 14 was carbon in except that additional us ed to m e a s u r e the an o p a q u e placed were then to a v o i d Lake an d 1, 2, glass-stoppered kept 19 56). bottles were incubated for Dark 1964). et The a l . (in high specific activity s e c r e t i o n of o r g a n i c 1, 3, 3 meters 5, 7, 10, Lake and sa m pl e r . Pyrex bottles at 0, The s a m p l e was (125 ml) which sunlight ( Go l d m a n a nd W e t z e l 1, 3 m a constant specific activity suspended 12 m e t e r s in D u c k L a k e w i t h b o t t l e s w e r e p r e p a r e d at injected with of k n o w n samples wer e Wetzel s ma l l in a l i g h t - t i g h t b o x o u t of d i r e c t 12 m in L a w r e n c e 14 0, f r o m 0, photo-oxidative damage Edmondson NaH sampled non-metallic Van Dorn into in f il t rate. Water was in L a w r e n c e algal secretion 1, 1963, 5, a n d in D u c k L a ke . a m o u n t of a n d shaken. All sterile The from a n o n-shading buoy and 4-7 h o u r s m i d - d a y at the d e p t h s from which 22 they were collected. through 0.45u (HA M i l l i p o r e ) vacuum within 15-30 minutes Simultaneously, t h r o u g h GS sterile 0.22u M illipore aerated vigorously dilute lost 14 C as NaOH. 14 (20-25 ml) filters (ca. fil ters. This HC1 10-15 minutes exposed Then 2, 4, or (We t ze l the p l a n c h e t s to HC1 14 fumes for and have been (coated w i t h a filters we r e to r e m o v e t r a c e s C r e m a i n i n g o r p r e c i p i t a t e d by a l g a l 14 determined C in l ak e w a t e r a n d no m e a s u r a b l e d e v i a t i o n increasing the v o l u m e through remaining a n d d r i e d at and the d r i e d in la k e w a t e r b y p l a t i n g counts with in 4.4-3.8, of growth 1965a). compounds was effectively to r e m o v e al l 80) 10 m i n u t e s Self-absorption was glucose- filtered 6 m l of t h e t r e a t e d the surf a c t a n t Tween Both inorganic was c ° 2 ' anc^ n e u t r a l i z e d w i t h N a H C O ^ stage. s o l u t i o n of 180 m m Hg f r o m lake. Some volatile organic compounds may at t h i s 35- 4 5 ° C , filtered than to p H f i l t r a t e w e r e p l a t e d on a l u m i n u m p l a n c h e t s 5% were less 100 ml) acidified with for at after removal the r e m a i n d e r filtrate was inorganic Subsamples 4 ml. required when range increasing fr o m a l i n e a r and 14 amounts in d i s t i l l e d w a t e r . volume plated used, for o r g a n i c increase Cof There in for Duck L a k e w a t e r for L a w r e n c e L a k e w a t e r A s e l f - a b s o r p t i o n c o r r e c t i o n of up 1.27 3 w a s 6 m l of L a w r e n c e L a k e w a t e r w a s p l a t e d . 23 C o m p u t a t i o n of particulate algal carbon f i x a t i o n an d s e c r e t i o n d u r i n g p h o t o s y n t h e s i s w a s b a s e d on the relationship: C a s s i m i l a t e d / b o t t l e x 1 .0 6 _ C assimilated m available/bottle where 1.06 1959 ). 14 is the The C: (35.0%) of k n o w n was absolute total (1962) counter with activity. alkalinity which The a r e b a s e d on the reference total calculated f r o m the dissociation constants Total alkalinity, Standard Methods thermistor Ohio) as titratable (1965). themometer calibrated with mometer. Hydrogen metrically The temperature + C 0 2 in w a t e r : (H+ ) < C 03= ) K2 = base, ( H C 0 3“ ) was determined after Temperature was measured with a N.B. S. Yellow corrected mercury a Sp r in g s, ther­ ion c o n c e n t r a t i o n w a s m e a s u r e d e l e c t r o N or Expand o m a t i c pH m e t e r ) . r a t e s of p r i m a r y p r o d u c t i o n the available and pH- d e p e n d e n t (Yellow S p r i n g s C o r p . , ( B ec k ma n M o d e l measured during the S a u n d e r s et aJL. temperature fco2 total) a to s t a n d a r d s carbon t a b l e s of of CaCO^ of f r o m t h e pH, (H+ ) < H C 0 3") K1 = ( So r ok i n a micromil window The e fficiency determined by f or p h o t o s y n t h e s i s w a s factor filters was d e t e r m i n e d w ith N u c l e a r C h i c a g o C o rp . ). counter and C discrimination a c t i v i t y of the gas-flow Geiger-Muller (D-47, 12 available and secretion incubation period was expanded to the 24 who l e day by a diur n a l the p r o p o r t i o n o f th e the factor which to t a l incubation period. daily is the r e c i p r o c a l of sunlight received during Incident solar radiation was monitored daily w ith a Belfort recording pyrheliometer located within 5 km of the lakes. The err o r in the diurnal 2 e x p a n s i o n of p r i m a r y p r o d u c t i o n p e r m of l a k e s u r f a c e area during a m i d - d a y incubation 1965, The percentage Goldman 1960). is +1 0 % (Vollenweider underwater t r a n s m i s s i o n w a s m e a s u r e d at e v e r y d e p t h by photometer (Fred S c h u e l e r , Waltham, li g ht an u n d e r w a t e r Ma s s . ) . P a r t i c u l a t e o r g a n i c c a r b o n w a s d e t e r m i n e d at depths in L a w r e n c e oxidizing Angel filterable 984H, dichromate The Lake solids on glass precombusted at 100°C and was This oxidizes most le ss t h an only single with fiber stored for e a c h 5% of t h e m e a n 1965, in d a r k b o t t l e s 1968). at room 1968) standard glucose and r e p r o d u c i b l y Methodological error r a n g e was value on quadruplicates; thus, f i l t e r s w e r e o x i d i z e d at e a c h c o l l e c t i o n depth. Phytoplankton modified Lugol's samples were iodine (Edmondson preserved with 1959:1200). plankton were counted with a settling chamber 1958) (Reeve (Westenhouse series with technique efficiently compounds. filters sulfuric acid potassium to m i n i m i z e d e c o m p o s i t i o n calibrated solutions. 500°C) in D u c k L a k e by (Strickland and Parsons acid dichromate was temperature and three depths 9 o n an i n v e r t e d p h a s e contrast microscope R o d h e 's The ( U te rmohl (Wild, 25 M o d e l M — 40). 5 to Over 100 10 m m t r a n s e c t s in 10 m l the m a x i m u m r a n g e o f of the m e a n were (Lund, calculated individual the 95% Kipling s h ap e o r w e r e (Nauwerck 1963)* Lake (Wetzel, A ll e n, Dr. in confidence and Le Cren Rich taken in u^l l -2 u m o t i l e ^). here and M i l l e r , converted S lo a n, f r o m the reported 1958) . and Eppley +20% Cell volumes and closest literature counting for and e l s e w h e r e in p r e p a r a t i o n ) . (1966) Algal by values and S t r a thman organic In D u c k L a k e in so t h a t limits were to o r g a n i c c a r b o n (C/V= 10 % w h e r e C is p i c o g r a m s volume chambers Harold Allen did cell 1968, c el l v o l u m e s w e r e from Mullin, settling counted f r o m the o u t s i d e m e a s u r e m e n t s geometric Lawrence cells we re carbon (1967) a n d V is c e l l a large p h a s e — refractory coccoid bacterium was counted in th e same preparation. Dissolved organic carbon was determined by method of Menzel and Vaccaro the s t a n d a r d d e p t h s w e r e (1964). Water immediately vacuum through precombusted glass 210 m m Hg in o r d e r to r e m o v e without disrupting living potassium persulfate ampulated N2 and sealed with was m e a s u r e d w i t h 2 evolved at samples from filtered l e ss than particulate material Samples mixed with (lowered wit h p u r g e d of all an o x y g e n the CC> 2 the filters ce l ls . at p H in t r i p l i c a t e , 30 m i n u t e s , fiber the torch. 3% H^PO^) were i n o r g a n i c CC ^ w i t h After autoclaving for f r o m the p e r s u l f a t e o x i d a t i o n a non-dispersive i n f r a r e d CC > 2 ga s 26 analyzer (B e ck m a n 215a) Electronik 19). The p u r i t y CC > 2 gas. Triple enriched u s ed instrument was 10% o f replicates l e ^s in L a w r e n c e t ha n a nd C a C O ^ the v a l i d i t y of th e deviated more 5%. L a ke t h e At called samples "Gelbstoff" room temperature The (1949), i n the were spectrophotometer, (18-23°C) using m a t c h e d the r e f e r e n c e ; t h e pH o f in mg h u m i c carbon five 1 ^ by absorption on observed selective periods an d sunlight the lakes; the calibrated minimal humic acid in i n f l o w i n g w a t e r d u r i n g a nd high the m a r s h a d j a c e n t fraction­ carbon rainfall to the lake in preparation). Fluorescent humic materials were resin; photo-oxidation; in the w a t e r of at independent methods; anion exchange in 119, 1 c m s i l i c a cells. The UV a bsorption was values per filtered model n o t a lt e r e d . carbon val u e s lake quantified absorption of samples w a s (Miller, depths in s a m p l e v a l u e s dissolved by Kalle Triple distilled water was ation; 10%; at 250 n m w a s m e a s u r e d w i t h a H i t a c h i - Perkin-Elmer UV-visible selective than several range ampuls t h e mean. with ultra-violet absorption. water calibrated with high to t e s t Resistant humic materials wate r, (Honeywell T h e m e a n v a l u e of t r i p l i c a t e generally f ro m 3 s t a t i o n s recorder distilled water blanks if n o n e of t h e variance was was a sensitive samples were prepared sample preparation. was and studied for c o m p a r i s o n w i t h in filtered l a ke w a t e r the U V - a b s o r b i n g humic 27 materials. 460 R e a d i n g s of nm were taken wi th a T u rn er ultraviolet bulb Fluorescence at primary (460 nm) Buck 110 F l u o r o m e t e r u s i n g values were c ompared filter were (1968), checks with (365 nm) selected who and to m a k e investigated "humic" materials in f l u o r o m e t e r u n i t s 365 nm a c t i v a t i o n w a t e r with o c c a s i o n a l The l ak e w a t e r on and 1 cm to t r i p l e distilled the s e c o n d a r y standard. filter comparable t h e role of t he l i g h t path. a fluorescent this w o r k at to fluorescent the m e t a b o l i s m of a q u a t i c m i c r o c o s m s and pond ecosystems. Oxygen concentrations were u n m o d i f i e d W i n k l e r method. a 25°C water bat h (Model RC 16B, 0 . 0 0 7 0 2 N KC1 Instruments) (1000 ohms). to u m h o cm ^ x 10^ Cations on HNO^ acidified, absorption Conductivity was monitored (Ca specific , mg calibrated with Resistances were conductance , K , and N a filtered w a t e r spectrophotometer calibrated with ) were determined samples wi th (Jarrel Ash, triple distilled water persulfate o x i d a t i o n method of Model an e m i s s i o n 82700) ion s t a n d a r d s . Strickland the p o t a s s i u m and Parsons 1968). Kinetic bioassays 1967) converted (Standard M e thods Total dissolved phosphorus was measured by (1965, in using a c on du ct iv ity-resistance bridge Industrial 1965 ). d e t e r m i n e d by the for b a c t e r i a l after Wright and Hobbie u p t a k e of g l u c o s e , glycollate characterized bacterial (1965, a c e t a t e and heterotrophy in the two 28 lakes. Lake water plankton opaque bottles with of used A blank incubated of kno w n fixed with Lugol's the p a r t i c u l a t e m a t e r i a l and incub a t e d Subsamples 0.22 u filtered of (GS, specific iodine was present. Millipore) The bottles were la k e w a t e r , f i l t e r e d at filters, dried, always the substrate at the d e p t h c o l l e c t e d 50 m l w e r e in increasing concentrations to d e t e r m i n e b a c k g r o u n d a b s o r p t i o n of shaken on sequentially lm w e r e radioactive organic substrates activity. by from for 180-340 m m Hg v a c u u m rinsed with fumed with HC1 2-6 hours. 15 ml of a n d the radioactivity measured. An t y p e of S/v vs the L i n e w e a v e r Michaelis-Menten (1965), land w as S plot was made Hobbie (1962). tested equation and W r i g h t The for steady state) e s t i m a t e of s h o w e d a 20% ation was the d a t a (1968), t r a n s f o r m a t i o n of t i m e of the and Parsons least from the s l o p e z er o squares the (P = 95%). The (1/Vm a x ) , y i n t e r c e p t substrate c o n c e n t r a t i o n at intercept ( (KT + Sn) in s i t u substrate concentration). in V m a x and S t r i c k ­ regression and x variation u s i n g o ne following Wright and Hobbie significance turnover linear s l o p e of the key parameters were (Sn/v o r Burke of although or the m a x i m a l Replicates the a n n u a l vari- 2 orders of magnitude. Heterotrophic t u r n o v e r of released extracellular primary production products was monitored by bacterial uptake of the s e c r e t i o n p r o d u c t s following in the p r i m a r y 29 production samples removed, The from which with pH and alkalinity f i l t r a t e f r o m a s s a y of production, 14 inorganic C had been r e t u r n e d to in s i t u v al u e s . in s i t u r a t e s of p r i m a r y was purged with air for 10 m i n u t e s a t pH 4 . 3 - 3 . 8 a n d r e t u r n e d to the o r i g i n a l p H a n d a l k a l i n i t y w i t h NaHCO^ (less t h a n 2 ml per At the same t i m e of day, filtrate was m i x e d hours but 1:1 w i t h d e p t h o f the o r i g i n a l incubations 100 m l 2 4 hours incubation. used Any collected. An l o ss of b a c t e r i a l t r e a t m e n t of the 14 (Lugol's uptake activity water day. from the previous HC1 rinsed with and assayed calculated time for (hours) remove all of filtered o n t o filtrate was filtered the at treated 0.22u lake water, fo r r a d i o a c t i v i t y . t he made c o r r e c t e d by c o m p a r i n g C of n o n - d i l u t e d p l a n k t o n Samples were to 4.5 iodine), caused by 1:1 w i t h f il t e r s , 1.5 for e a c h e x p e r i m e n t a l bot tle. the u p t a k e of p l a n k t o n d i l u t e d sample uptake s a m p l e of t r e a t e d filtrate was of g l u c o s e - f r om the identical mixture, h a d be e n k i l l e d as an a d s o r p t i o n b l a n k uptake Duplicate for 0 . IN N a O H . the treated lake wat e r plankton f r o m a s e c o n d a l i q u o t of e a c h plankton and later, in o p a q u e b o t t l e s w e r e m a d e at the d e p t h in w h i c h fi l tr a te ) (GS, lm w i t h control Millipore) dried, fumed w i t h The turnover time e x t r a c e l l u l a r - r e l e a s e p r o d u c t s was it w o u l d have t a k e n the o r g a n i c c o u l d us e the v a r i e t y of 14 14 the heterotrophs C present, C-organic the assuming substrates the to t h at t h e y at an 30 equal more rate. The r a n g e of r e p l i c a t e s w a s t h a n +50% of large, b u t no t h e mean. S e d i m e n t a t i o n of p a r t i c u l a t e o r g a n i c m a t e r i a l the e p i l i m n i o n in L a w r e n c e L a k e w a s m e a s u r e d i n t e r v a l s by d u p l i c a t e and sediment traps 10 or 11 m at t w o s t a t i o n s , paired long, traps wer e A 5 cm diameter The frames were plexiglas anchored minimize wave disturbance. collected Aliquots into jars. The precombusted glass 5 m 2). cylinders, 60 cm to from the traps were traps were rinsed and resuspended. sample were fiber filters. The coated wooden to a s u b m e r g e d b u o y Samples of e a c h w e l l - m i x e d at (F i gu r e s u s p e n d e d o n e m e t e r a p a r t o n an e p o x y frame. at m o n t h l y suspended an d D from filtered on tared T o t a l d r y w e i g h t of sediment collected was measured on a Mettler microbalance. The by precipitated CaCO^ th e a m o u n t of C O ^ f r a c t i o n o n the released by inside a nitrogen purged 400 CO2 The apparatus was acidification cc chamber. was q u a n t i f i e d by a Beckman CC^ analyzer. times w e r e coated CaCO^ a n d Suess, employed determined (3% H^PO^) T h e CC>2 r e l e a s e d nondispersive i n f r a r e d g as calibrated empirically with at k n o w n t e m p e r a t u r e a n d p r e s s u r e . reaction filter was to (Wetzel a n d A l l e n Four minute fr e e e v e n o r g a n i c a l l y 1971, Chave 1965, and C h a v e 1970). P a r t i c u l a t e o r g a n i c c a r b o n on t h e filters was dete r m i n e d using the o x i d a t i o n of acid treated potassium dichromate S t r i c k l a n d and P a r s o n s (1968). The amount 31 of C a C O ^ and organic car b o n on each filter was expanded 2 then per m of s u r f a c e a r e a at to the a m o u n t p e r t r a p a n d t ha t d e p t h in the lake. of c o l l e c t i o n d a y s organic carbon collection. less t h a n amount bration All a p p r o x i m a t e d the m e a n d a i l y across that m 2 surface of much the m e a n ; it w a s fi l t e r s . precipitated was results s h o w the 90% A n a l y s e s of D a t a w e r e computer at multiple regression-partial i n d e p e n d e n t of variables in the to limits where h a n d l e d o n the correlation the the the amount cali­ l a r g e a m o u n t s of CC>2 . the U n i v e r s i t y of C i n c i n n a t i . program adding usually in p e r c e n t a g e o r g a n i c the g r e a t e s t because confidence f l u x of traps was Variation curves were curvilinear with th e n u m b e r a r e a to t h e d e p t h of replicate variation less b e c a u s e i n i t i a l l y on the of C a C O ^ result divi d e d by Variation between 10% carbon was The IB M n > 3. 360-65 Stepwise u s e d the l i n e a r model. BioMed 02R IV. A . RESULTS AND DISCUSSION M e a s u r e m e n t a n d P r e d i c t i o n of P r i m a r y P r o d u c t i o n and S e c r e t i o n by Phytoplankton New organic matter within th e w a t e r c o l u m n is g e n e r a t e d p r i n c i p a l l y by p r i m a r y p r o d u c t i o n a n d s e c r e t i o n of d i s s o l v e d organic comp o u n d s by the phytoplankton. P a r t i c u l a t e or Lake ranged f r o m 1 6 — 381 m g C m e nd of J u n e , mean of filterable primary production respectively 128 m g C m —2 day of p h o t o s y n t h e s i s w a s 1 96 9 day (Figure ^ 2 day —1 in J a n u a r y t o t h e (Figure 4, F i g u r e . 5 a ) ; with a The max i m u m observed rate 100 m g C m —3 5 b ) ; the m e a n a n n u a l day —1 on June value was 25, 37. 4 m g C m —3 (Table 2) at 1 m e t e r . T h e a n n u a l p a t t e r n of p r i m a r y —2 (m ) w a s s i m i l a r in 1 9 6 8 a n d 1969, w i t h a production spring —1 — in L a w r e n c e pulse in A p r i l and early M a y and two summer m a x i m a between June and August. Th e m i n i m u m p r o d u c t i o n o c c u r r e d in J a n u a r y —F e b r u a r y u n d e r the duction was positively m a t i o n o n all d a t a (0.768), carbon materials algal (0.324), correlated Algal (0.625), with light total dissolved organic secretion (0.363), oxygen concentration 32 primary p r o ­ (after a log t r a n s f o r ­ to n o r m a l i z e v a r i a n c e ) temperature (0.405), ice. hum i c — like (0.332), Figure 4. Isopleths of particulate primary production (mg C Lawrence Lake from April, 1968, to August, 1969. PRIM ARY PRO DUCTIO N mgC mJday'' XVTOv ' 0 t I 1 4 I I; n i t J 7 u it* f 10 s— S. j. 11 II FEB MAR APR MAY JUN JUL AUG SEP OCT NCN DEC JAN FEB MAR APR MAY xM JUL AUG 35 Figure 5a. Figure 5b. —2 —1 P r i m a r y p r o d u c t i o n (mg C m day ) in t h e 0— 5m s t r a t u m ( s ol i d line) a n d a l g a l s e c r e t i o n o r e x t r a c e l l u l a r o r g a n i c p r o d u c t i o n (mg C m “ 2 d a y - l) ( dashed li n e) i n L a w r e n c e L a k e f r o m A p r i l , 1 9 6 8 , to A u g u s t , 1969. P r i m a r y p r o d u c t i o n a n d a l g a l s e c r e t i o n or e x t r a c e l l u l a r r e l e a s e (mg C m “ 3 d a y ~ l ) a t in L a w r e n c e L a k e , f r o m A p r i l , 1 9 6 8 , to A u g u s t , 1969. Ira 36 PRIMARY PRODUCTION mgC m^day LAW RENCE 400 16 mg C m ^dsy-1 ^ROOUCTION x 30 0 <= CL 30 0 100 APR EXTRACELLULAR L AKE MAY J1JN JUL AUG StP ocr NOV Dfc C JAN FEB MAR MAY JUN L AVVRENCL AUG JUl LAKE _ If 110 r 100 3ft 90 3A T XJ £ > 00 30 10 T) a 60 ^ 70 XF O 7 a 1 j! W 1.ft h 3 O 14 ULj ftl* 1O * 20 0 ft I 0 2I V APR " MAY JUN JUL AUG fiF P OCT NQV DEC JAN FEB WAR A fJR MAY JUN .HJl AUC> 37 T A B L E 2. Depth (m) Summary of m e a n o b s e r v e d rates of p r i m a r y p r o d u c t i o n and s e cr e t i o n in L a w r e n c e and Duck Lakes. Mean A n n u a l Primary Production mg C m~"3 d a y - i Lawrence Lake (Aug. Kea n Annual Secr e t i o n me C m -3 d a y - 1 1968-Aug. Mean Secretion Rate ^secretion T. 1° Prod. Mean Secretion Rates £% s e c r e t ion (*) N <%> 1969) Om 32.0 1.28 3.99 6.8 lm 37.4 1.36 3.65 5.9 3m 30.5 1.29 4.24 6.3 5m 21.8 1.13 5.17 7.4 7m 11.4 8.88 17.9 1.01 10m 2.8 1.48 55.4 71.9 12m 2.9 0.96 32.9 48.5 128.1 7.29 5.7 23.5 M e a n per m2 Duck Lake (Sept. 1968-Sept. 1969) 0m 91.6 4.46 4.87 5.31 lm 72.0 2.93 4.07 6.91 3m Mean per m2 28.3 132.5 11.58 10.6 39.9 19.3 8.0 10.5 38 pH (0.301), (-0.282) and and negatively correlated with conductivity (-0.279) alkalinity (P = 0 . 9 5 ^ f 244^' A stepwise addition of transformed variables c o r r e l a t i o n —m u l t i p l e regression analysis light and t e m p e r a t u r e could explain showed 67% of in p r i m a r y p r o d u c t i o n in L a w r e n c e Lake. (1968) of found that light and Eleven non-independent variables algal ce l l with rates 0 .188 (p > 0.90), related with G o l d m a n et^ a l . accounted (available primary for 72% bu t w e r e production 72 % of 3). 1968) produ c t i o n r = 0.282 respectively, for (Table particulate organic carbon. d i c t i o n of d a i l y t he and volumes of p r i m a r y th e v a r i a n c e in L a g o M a g g i o r e . in p h o t o s y n t h e s i s r a t e s numbers that temperature accounted t h e v a r i a t i o n of p h o t o s y n t h e s i s t he v a r i a t i o n in a p a r t i a l Log correlated (p > 0.95) and negatively cor­ The best pre­ in L a w r e n c e L a k e u s i n g least c o n f o u n d e d varia b l e s would be: log p r i m a r y p r o ­ d u c t i o n = 0 . 3 7 4 log l i g h t t r a n s m i s s i o n d a y ^ + 0 . 5 7 9 log o temperature C - 0 . 4 8 2 log c o n d u c t i v i t y — 0 . 1 3 0 log a l k a ­ linity as m g C a C O ^ 67% of th e v a r i a t i o n . Primary production s a m e d a y or w i t h i n Lake C m — ranged 2 basis day —1 1 ^ + 1.7 39. from , was These parameters explained in D u c k L a k e d e t e r m i n e d o n the two d a y s o f t h e m e a s u r e m e n t o n L a w r e n c e 5— 455 m g C m not —2 day —1 . The mean, significantly d i f f e r e n t on an aerial t h a n t h e p r o d u c t i v i t y of L a w r e n c e L a k e The maximum observed 132 m g (Table r a t e of p h o t o s y n t h e s i s w as 2). TABL£ 3. I, Partial correlation by sequential addition of variables for primary production and algal secretion ir. Lawrence and Duck Lakes. variables significantly change the slope of the multiple regression prediction of the dependent variable. Primary Production A. Lawrence Lake 1963-69 r2 F B. - Secretion Light c .112 c.4a Temperature PX ;,64 67.59 Critical F ?5(9236) DOC pH :.~!2 :ri Conductivity Oxygen Alkalinity o n :."2 * 5-92 Duck Lake 1968-69 Light Cell volume Secretion Bacteria « Alkalinity 0.750 0.79 2.315 C.83C r2 ■ 0.53' F - 23.61 Critical F ^ Temperature C.06 Oxygen C.B7 Cell * Conductivity 0.07] 0.37 PX C.B7 pH Calcium 0.87 c.07 DX 0.877 - 2.0 Humic materials were not added to this run. P * .95. II. Underlined The simple correlation with primary production was 0,297(r2 ■ C .09> which was significant U) VS Algal Secretion during photosynthesis A. Lawrence Lake 1963 r2 f B. Production Dxyqer. PX 0.20 0.27 0.29 Cell volume C.31 pH 0.3 3 DX 0.14 Temperature Conductivity 0,35 0.37 Cell * C.30 Alkalinity C.39 Light Humics 0.40 0.405 . 7.05 Critical r,,5(i;il;5} ■ 1-63 Duck u k e 1963-69 r2 Production Cell » PX pH Conductivity DX Light Humics Alkalinity Dkyqeh 0.40 0.61 0.6B 0.70 0.71 C ,72 C.72 0.12 0.73 0,7 3 F - 3.41 Critical F , . . . - 1.92 .95(i4,42) Calcium 0.7 3 Temperature Bacertia * Cell volume 0,73 0.71 0.7 37 388 m g C m —3 day r a t e at O m w a s g r e a t as the —1 on 3 June, 91.6 m g C m p r o d u c t i o n at annual photosynthesis 6a, and -3 7b). 1969, w h i l e day -1 . This was (Table b l o o m in l a t e M a y and e a r l y (Figure 7a) . A l a t e sumir.sr o r in p r i m a r y p r o d u c t i o n w a s (0.667), dissolved organic carbon ticulate organic carbon multiple (-0.541), cell Light, numbers, numbers, accounted The best bacteria for cell conductivity, primary p r o d u c t i o n = 0.447 l in i ty - 2.28 °C + 9 . 6 3 3 (0.343), transformed data (0.636), (0.291) (— 0 . 5 4 7 ) , A algal showed secretion, oxygen, con­ stepwise that 66% of t h e v a r i a t i o n temperature, in bac­ algal P O C , pH, C a + + , a n d D O C in p r o d u c t i o n log light - 2.259 .638 (Table in D u c k Lake v a r i a b l e s w o u l d be: log c o n d u c t i v i t y + (explains 73% of secretion total p a r ­ (— 0 . 3 1 6 ) . primary production least confounded algal ions the significant humic material 88% o f the v a r i a t i o n p r e d i c t i o n of using the pH number volume, alkalinity, increase cell volume with calcium temperature explained production. t er i al algal (0.306), regression on the light and (0.733), (0.377), and n e g a t i v e correlations ductivity light showed 4 19 69 in b o t h y e a r s a f t e r Log t r a n s f o r m e d d a t a temperature as by an J une, early autumnal seen positive correlations with (0.688), times 2, F i g u r e s p a t t e r n was d o m i n a t e d intense a l g a l fal l o v e r t u r n . 2.5 the de p t h of m a x i m u m m e a n in L a w r e n c e L a k e The annual the a n n u a l m e a n log log a l k a ­ log t e m p e r a t u r e the variation in p r i m a r y 3) Figure 6a. Isopleths of particulate primary production (mg ir. in Duck Lake, 1968-1969. Figure 6b. Isopleths of algal secretion or extracellular pro­ duction (mg C m~3 day~l) in Duck Lake, 1968-1969. PRIMARY PRODUCTION DEPTH (m) Soo SEP OCT NOV DEC. JAN. FEB. MAR. APR. MAY JUN. JUL. EXTRACELLULAR 0 PRODUCTION ' (m) \ \ \ AUG. SEP DEPTH 2 3 4 SEP OCT NOV DEC JAN. FEB. MAR. APR. MAY JUN. JUL. AUG. SEP. K) 43 Figure 7a. Figure 7b. —2 —1 P r i m a r y p r o d u c t i o n (mg c m day ) ( solid line) a n d a l g a l s e c r e t i o n (mg C m ~ 2 d a y ~ l ) ( d a s h e d line) in D u c k L a k e , 1 9 6 8 — 1 9 6 9 . P r i m a r y p r o d u c t i o n (solid line) a n d a l g a l s e c r e t i o n or e x t r a c e l l u l a r p r o d u c t i o n ( d a s h e d line) i n m g C m — 3 d a y - 1 a t l m in D u c k L a k e , 1 9 6 8 — 1969. EXTRACELLULAR PRODUCTION mg rrr3day' rr DUCK SEP OCT NOV DEC JAN FEB r MAR APR MAY JUN JUL AUG SEP s EXTRACELLULAR PR O D U C TIO N mg C rrr2d a y '1 *0 O uS o « (N i 2 ^ O trt o o •ft o o o L_Aep o o >- o o o n « uj Noiionaoad q Bui AuvwiHd c* 8 o* ^ e p ^ .w S— 8*■ $ 0 6 lu S 8 S NOIiOnaOdd S $ 8 AHVWdd 45 production). T he number planktonic of a better the e x p l a n a t i o n of in c o n t r a s t t he m o s t duction, temperature t he v a r i a t i o n the question of t h e d a i l y incident ments Wetzel apart is r a i s e d as r = 0.491 -2 (df = 9, on th e This c o r r e l a t i o n was in t hi s from September, history of p = 0.95, 196 8, (Table on t h e 4). (H.S., on t h e for t h e those of 1— 3 days P = 0.95 light on those p = 0. 9 5 df = 19). the m e a s u r e d same adjacent days, df = 19). stronger same Measure­ on L a w r e n c e Lake to A u g u s t , the water was primary production to l akes c a l c u ­ s t u d y and l o w e r t h a n t h a t f or primary production (H.S., two not s i g n i f i c a n t ) . S e r i a l or a u t o c o r r e l a t i o n o f r = 0.782 as compared significantly r = 0.782, a d j a c e n t d a y s was r = 0 . 4 5 9 r a t e s of is d e t e r m i n e d incubation periods et a 1 . {in p r e p a r a t i o n ) (df 19). con­ The correlation b e t ween estimates of p r i m a r y p r o d u c t i o n correlated and p e r h a p s to h o w m u c h of t h e h i s t o r y of t h e w a t e r radiation. lakes w e r e primary p r o ­ primary production from overlapping in l i g h t in b o t h in the r a t e s o f of d a i l y p r i m a r y p r o d u c t i o n m day was p r o d u c t i o n ra t e s , Lake. light and the b i o l o g i c a l lated of important variables explaining, trolling, by a l g a e in D u c k L a k e w o u l d a f f o r d the v a r i a t i o n to L a w r e n c e Since control i n c l u s i o n of c e l l v o l u m e a n d c e l l 1969, T h u s on these d a y s the biological in d e t e r m i n i n g n e x t d a y or t wo the than changes 46 TA B L E 4. C o r r e l a t i o n b e t w e e n p r o d u c t i o n in L a w r e n c e Lake and Duck Lake on the same d a y or a d j a c e n t days. L a w rence L a k e on the same d a y (April to Aug.) Duck Lake Lawrence Lake (present study) L a w rence L ake on the sam e o r adjacent day ( S e p t .- A u g .) L a w r e n c e Lake (RGW) on a djac e n t day s (Sept.-Aug.) r — 0.491 ns r = 0.612 HS r = 0.654 HS b = 0. 359 b = 0.406 b = 0. 390 n = 11 n = 22 n = 21 4 = 1.0 4 = 1.0 r = 0.782 H S # b * 0.904 n Note: = 21 HS = h i g h l y s i g n i f i c a n t p > 0.01% R G W = data c o l l e c t e d by W e t z e l et a l ., (in preparation) ♦ A u t o c o r r e l a t i o n of light on t h e s e d a y s w a s r = 0.459 H S , b = 0.553, n = 21. 47 Algal s e c r e t i o n of d i s s o l v e d over almost two annual from 22 . 5 m g C m m —2 of C m 0.0 t o day —1 ( Fi g u r e s day —1 m e a n annual day in L a w r e n c e L a k e —1 8). when increasing. (Figures secre t i o n was The rates of exceeded 5b a n d 5.7% the l a t e q u a n t i t y of d i s s o l v e d was maximal except at hypolimnion, (1969) a late caused Algal operative a maximum. organic the (Table 3). to l i g h t and of Here, at primary production solved (0.247) (-0.253) (0.447), algal cell number organic and by carbon annual secretion the t o p of by two m e c h a n i s m s , one A these two mechanisms. oxygen (0.289), (0.271), pH with the (0.422), light (0.287), and algal cell log dis­ volume negatively correlated with conductivity and a l k a l i n i t y t he carbon in t h e d a r k . secretion was positively correlated (0.360), The mean increased depth, the other correlation analysis confounds Log carbon remained increase. secretion occurs in t h e production s u m m e r m a x i m u m of p a r t i c u l a t e average The l o w but carbon released lm a n d d e c r e a s e d w i t h at 10 m e t e r s 8) . s u m m e r as p r i m a r y secretion again reached 3.8 m g secretion were maximal b e g a n to d e c r e a s e w h i l e p a r t i c u l a t e o r g a n i c high, rates of p l a n k t o n i c the p l a n k t o n p r o d u c t i o n was During 7.3 m g C The maximum observed in the e p i l i m n i o n percentage ranged with a m e a n of ph ot osynthesis never primary production. in A p r i l , —2 5a a n d secretion during —3 cycles organic materials (-0.229) in 1968. The Figure 8. Isopleths of algal secretion (mg C m Lake, April, 1968-August, 1969. -3 day -1 ) in Lawrence E X T R A C E L LU LA R 0 1 i P R IM A R Y P R O D U C T IO N i )' 3 (m) 4 s 4 DEPTH 7 I * 10 II II FEB MAR APR MAY JU N JUL AUG. SEP OCT. NOV DEC JA N FEB MAR APR MAY JUN JUL AUG 50 r e l a t i o n s h i p of t he v a r i a b l e s d i d cantly using the 1969 d a t a that values for c e l l available. Log 0.267 0.306 (P = 0.95, number organic log o x y g e n c a r b o n + 0.173 log c o n d u c t i v i t y 37% v a r i a t i o n + 1.56 showed log s e c r e t i o n w a s particulate organic organic carbon, alkalinity, and that light In D u c k L a k e summer two weeks m —3 at settled cells at m — 2 following A a mean the v a r i a t i o n pH, oxygen, dissolved cell number, pH, conductivity, inversely but p r o ­ in p r i m a r y p r o d u c t i o n . secretion increased preceded lm b u t from 0 .1 2 of in a n e a r l y production. The algal p e a k s of p r i m a r y not m 2— 3m w e r e over t h e y e a r stepwise functional block li g h t , —2 ( F igures responsible t h e p r o d u c t i o n peak. secretion ranged of conductivity, {T a bl e 4). p u l s e as d i d p r i m a r y secretion maxima A by production, a n d a l k a l i n i t y — c h a n g e d i r e c t l y or to c h a n g e s log — 0.289 to e x p l a i n cell volume, temperature, by log t e m p e r a t u r e 40.2% explained carbon, not log c e l l v o l u m e + log p H of c o n f o u n d e d v a r i a b l e s — o x y g e n , portional except + 0.561 in the d e p e n d e n t v a r i a b l e . partial correlation in the 135) s e c r e t i o n m a y b e s t be p r e d i c t e d log p a r t i c u l a t e c a r b o n — 0 .266 -1.144 df signifi­ and cell volume were log p r o d u c t i o n + 0 . 2 2 0 dissolved not change to 7a a n d for t h e 7b). —2 -2 day —1 day . The increase Quantitatively 102 m g C m 1 0. 6 m g C m p r o d u c t i o n by —1 with This 51 amounted to 8% r e l e a s e o f t h e a n n u a l primary production compared to 5. 7 % f o r t h e in L a w r e n c e L a k e (Table 2) . The June highest 12 w h e n d a r k senescent settled 3m. sa m e p e r i o d secretion was b l o o m of a l a r g e loosely on Much between extracellular release was of the found on associated with a Botryococcus t h e f r o n d s of s p . that the C e r a t o p h y l l u m a t the d i f f e r e n c e in m e a n a n n u a l s e c r e t i o n _2 on a m basis must be attributed two lakes to t h i s o n e d a t e a n d d e p t h ( F ig u r e s Log at a l l d e p t h s g a v e secretion in D u c k L a k e positive correlation with 5a, 6, 7a, and significant l o g s of p r i m a r y p r o d u c t i o n (0.693), cell volume (0.651), particulate organic (0.517), temperature (0.472), algal light (0.434), (0.410), pH (0.418), (— 0.410) log algal cel l 70% v a r i a t i o n regression between rather the 0.545 lakes was indicated se c r e t i o n was of c o n ­ secretion log p H + 0.58 The m a j o r to a c c o u n t for difference in t he in s e c r e t i o n r a t e the i n c l u s i o n of c e l l in D u c k L a k e . that (0.442), carbon l o gs Log carbon log p r o d u c t i o n + 5.54 to e x p l a i n v a r i a t i o n two t he (— 0 . 4 0 9 ) . c a r b o n - 7.57, in s e c r e t i o n . than cell v o l u m e correlation from number log p a r t i c u l a t e o r g a n i c number dissolved organic and calcium could be best predicted + 0.539 cell an d n e g a t i v e c o r r e l a t i o n w i t h ductivity 8). 71% of number A stepwise partial the v a r i a t i o n of e x p l a i n e d by log production, log cel l number, 52 p a r t i c u l a t e o r g a n i c carbon, (Table 3). Some correlative cation. For w e r e more stratified secretion by and important the importance lakes w a s by c u m u l a t i v e ductivity, The most th e s t r o n g d e p e n d e n c e n ot a n n u a l cycle estimated in t e m p e r a t e Lago Maggiore. Watt bution control season. have of Storch examined representative and (Table G o l d m a n e t a_l. 2 8 parameters evaluated secretion on and Saunders secretion over ha s through a complete lakes. over the diurnal the on the depth d i s t r i ­ four d a t e s G o l d m a n found (1968) 14 d a t e s in the ( u n p u b l i s h e d da t a, exceeded photosynthesis during general, important difference (G o l d m a n et al_. , 1968), (1966) se a s o n s . (con­ in L a w r e n c e L a k e investigated s e c r e t i o n an d is s t r a t i f i e d often called the extracellular p r o d u c t s of p h o t o s y n t h e s i s previously not been l a ke e f f e c t s of between cell number s e c r e t i o n in D u c k L a k e a n d secretion, for bu t c o n f o u n d e d b y t h e th e Algal temperature predominantly controlled are modified oxygen). stratifi­ T h e m a g n i t u d e of a l g a l p r i m a r y p r o d u c t i o n while was of v e rtical in t h e r e g r e s s i o n a n a l y s i s r a t e s of p r i m a r y p r o d u c t i o n , pH, lay in t h e d i f ­ oxygen c o n c e n t r a t i o n and L a w r e n c e Lake. parameters which between apparent in th e t w o l a k e s example, in b o t h and c o n d u c t i v i t y of t h e d i f f e r e n c e s factors f e r e n c e in d e p t h pH, same 1971) period during that secretion spring and that, s e c r e t i o n correlated well w i t h decreases in in 3). 53 major a mi at p h y t o p l a n k t o n groups. Deutsche1 (1970) always Watt (1966) found the m a x i m u m the d e p t h o f m a x i m u m p h o t o s y n t h e s i s , present phytoplankton as d i d light 1966 ), density (2) in n a t u r a l 1966), f r o m the populations (1) CC > 2 (high) limitation ( N a l ew a jk o , low light intensity, 1969). e n d s of t h e and (6) (5) grow t h rate light K, (Nalewajko secretion, numerous reaction, Dark and a dark fixing mitochondria 14 rather in the c h l o r o p l a s t , and (Fogg an d fixation and secretion occur c a r b o x y l a t i o n s , for example, CC> 2 i n t o at both the o p e r ­ secretion w h i c h are under d i f f e r e n t controls 1966). and l o w cell and pH c o n t i n u u m i n d i c a t e a light (3) 1966, The h i g h p e r c e n t a g e r e l e a s e d a t i o n of t w o m e c h a n i s m s , Watt, the high population density, intensity (4) (Watt, and Marin, and to be a f u n c t i o n of by h i g h pH), inhibiting s e c r e t i o n or release in c u l t u r e s has been shown W att, secretion st u dy . High percentage (e.g. and Anderson by by the W o o d —We r k m a n four carbon acids in the th an i n t o three carbon phosphates as light m e d ia te d in t h e fixation secretion. Natu re] w i d e range of populations secretion rates: on Lake Onta r i o 1969), (Watt, 10-500% 1 96 6 ), have a 2 3 — 76% i n a d i a t o m b l o o m (Nalewajko and Marin, English reservoirs (Watt, in e u t r o p h i c w a t e r s 1969) , 1 — 33% 27% in th e in L a g o M a g g i o r e in North Atlantic ( G o l d m a n e t a l ., 54 1968). In t hi s release (PER) study the p e r c e n t a g e or p ercentage extracellular secretion during periods of n o r m a l l i g h t —m e d i a t e d g r o w t h w a s q u i t e lm: in L a w r e n c e 6.0% Lake and 6.1% in D u c k Lake I s e c r e t i o n o n al l d a t e s x P E R = -=---- .---------- ^-- ----------- — -q— tE p r i m a r y p r o d u c t i o n o n a ll d a t e s annual basis for e a c h m ^ of L ak e p r i m a r y p r o d u c t i o n a n d were secreted. However, La k e at m o s t o f the depths surface, sampled as t h e m e a n o f P E R of a l l d a t e s of L a w r e n c e 7 PPR the f rom the average (including all depths) In L a w r e n c e L a k e t he Expressed (-- ^-- ) , 2 3 . 5 % o f secreted 10.5% on Duck Lake in L a w r e n c e because more depths secretion mechanisms. particulate production was to 5.7% _ O n an a nigher PER occurred by d a r k compared ,„„ 100. (mean 8. 0 % of D u c k L a k e p r o d u c t i o n were dominated determination low at O and of L a w r e n c e L a k e (Table as 3). percentage secreted with d e p t h w h e n p h o t o s y n t h e s i s decreased. The increased PER was n e g a t i v e l y c o r r e l a t e d w i t h p r i m a r y p r o d u c t i o n at b o t h and 10 m e t e r s were so low, day , was (P — 95%). the Because secretion, high relative although very to t h e l o w in pg C l ' * ' l e v e l s of d a r k as t he fixation l o w e s t at t h e surface, production decreased. p o i n t s of apparently However, high percentage (Figure 9). secreted increasing when there were release With production In D u c k L a k e t h e p e r c e n t a g e of p r o d u c t i o n was rates to t h e p r i m a r y p r o d u c t i o n . increased d e p t h the PER incre a s e d decreased the p r o d u c t i o n 0 at h i g h sufficient production to Figure 9, Isopleths of the percentage extracellular release (PER) in Lawrence Lake, April, 1968-August, 1969. Ul (m ) PERCENT RELEASE ®» D E PT H 4 EXTR AC ELLU LAR SO FEB MAR APR MAY JU N JUL AUG SEP OCT NOV too -K» DEC JAN FEB. MAR ARR 1-0" -4C:',0 MAY JU N JU L joa AUG 57 make the apparent inverse relationship between p r o ­ duction and percentage (Table were 2). The p o i n t s 40% o n November at Om, and of h i g h e s t p e r c e n t a g e 6 — 21, 18% o n S e p t e m b e r these dates and d e p t h s c el l n u m b e r s w e r e between cell number f ro m 0-lm; 0.44 2 w h e n the d a t a lm, 8 at 2m (Figure 10) . h o we v e r , this f r o m 3m w e r e c el l v o l u m e and log c e l l decreased nu m be r possible. a showed t h a t p r oduction r a t e s T he greater (r = 0.371) separation correlation and algal cell so t h a t p r i m a r y of c e l l in volume on all dates and depths. nu m be r s u g g e s t s t h at f r o m small p h y t o p l a n k t e r s c el l v o l u m e ) Because number explained more variation th a n d i d c e l l importance A partial and d ependent, at log p h y t o p l a n k t o n statistical analysis secretion It w a s in D u c k La ke effects was and c e l l to r = (Figure 6 b ) . of t h e i r production On The c o r r e l a t i o n included. (r = 0.563} volume were confounded 22 the p h y t o p l a n k t o n a lower c o r r e l a t i o n b e t w e e n in L a w r e n c e L a k e 19% o n M a y algal s e c r e t i o n w a s r = 0 . 6 9 5 plankton blooms decomposed there was t ha n at in every c a s e and secretion 1968, l a r g e or i n c r e a s i n g . (P - 0.95) 3m t h a t secretion n o n — significant t h a n l a r g e ones, secretion (lar ge s u r f a c e except when the is area/ latter are s c e n e s c e n t o r d e c o m p o s i n g . This K al f f result (1967), agreed with Sa v a g e and o t h e r s who showed photosynthetic activity (1969), Watt that most of in the p l a n k t o n is i n t h e (1969), the Figure 10, Isopleths of percentage extracellular release (PER) in Duck Lake, 1968-1969. Ln 00 PERCENT E X T R A C E L L U L A R R E L E A S E ■ \ : 11 ii1 ' DEPTH (m) 0 1 ■» 40 /V.' 58 2 lOj 20 106 1020 4 4 r-s 10 /■ Y \ '■ ■' ,v/ /' ( ■ Spltti 4 \ ./ w, 3 Tm'"\V-- " ■LZ SEP OCT vv I1 A 1 i r ! i 40 l NOV 16 I . i i DEC JAM 1 FEB MAR. APR MAY JUN, JUL. AUG. SEP 60 nannoplankton. with C 14 organiccarbon and, 14 C These small algae are therefore, than probably larger cells secreted more in w h i c h t h e fixation per unit cell High percentage labelled rapidly carbon r a t e of is s l o w e r . secretion occurred when w a s a 70% p h o t o i n h i b i t i o n o f p h o t o s y n t h e s i s O n 11 d a t e s PER was in L a w r e n c e L a k e a n d o n e higher duction was at 0m t h a n at lower at 0m t h a n at lm. enhanced PER, occurred in the d a r k l y (Watt, in D u c k 1m, w h i l e there 1 966). Lake, the the primary p r o ­ Few observations of c a u s e d p o t e n t i a l l y by p h o t o i n h i b i t i o n , stained waters of Duck Lake where the c o e f f i c i e n t o f l i g h t e x t i n c t i o n w a s m u c h h i g h e r than in L a w r e n c e Lake. The been r a p i d d e a t h or d e c l i n e o f p l a n k t o n n u m b e r s associated with high The h igh h y p o l i m n e t i c Lake in l a t e August, may have and been percentage 1969, partially decomposing study case, at was not an d secretion in L a w r e n c e in D u c k L a k e on least, ^ day the d a r k l ight b o t t l e 3 June The biomass of Botryococcus the h i g h e s t (200 m g C m that of the (G o ldman et a l . , 196 8) . the r e s u l t o f t hi s m e c h a n i s m . in D u c k L a k e had the PER settled at 3m secretion recorded during . However, fixation and in the latter release equalled indicating th at this the light mediated. has secretion 61 B. Diurnal P a t t e r n s of Photosy n t h e s i s and Secretion In o r d e r expanding to t es t t h e d i u r n a l short-term incubations o n t h e f r a c t i o n of the th e p e r i o d as is d o n e Lawrence and Duck Lawrence L a k e at 0800-1200 and incubations, C m —3 day realized between may —1 lakes. lm, On 1 2 - 1 3 June, 1968, hours as (F i gu r e 11). sum of the s h o r t - t e r m e q u a l l e d 3 3 .6 m g C m , respectively; 20 00 h r s sunny conditions 25 A p r i l , 12, Table —3 day —1 and 1. 3 1 m g th e b e s t e s t i m a t e w a s (Table 6), secretion was rain secretion This u n u s u a l result in t h e m o r n i n g a day with p r o d u c t i o n and (Figure 100% sunshine fixation again The percentage organic i n the m o r n i n g , towards dusk. decreased W h e n the d a r k and release w e r e subtracted, of PER lost its s y m m e t r y . The 2m in slightly towards m i d ­ d a y w h e n r a t e s of p r o d u c t i o n w e r e t h e h i g h e s t , increased and by 11). s e c r e t i o n at at m i d d a y a n d w e r e 1200-154 5 period. high 5). all a f t e r n o o n 1969, Duck Lake were maximal in t h e in The primary f r o m the e x p a n s i o n of p r o d u c t i o n a n d On higher short-term p h o t o s y n t h e s i s was m a x i m a l between secretion, 1 6 0 0 and (Figure of continuous the d a y l i g h t hours were m a d e on h a v e b e e n c a u s e d by h e a v y mostly to th e e n t i r e d a y b a s e d insolation received during a series 1600-2000 p r o d u c t i o n and of for p r i m a r y p r o d u c t i o n m e a s u r e m e n t s ( V o l l e n w e i d e r , 1965), incubations during total factor method bottle the d i e l p a t t e r n of and pattern PER observed 62 Figure 11. D i u r n a l p a t t e r n of p r i m a r y production, algal secretion, percentage secretion over s h o r t , n o n — o v e r l a p p i n g i n c u b a t i o n s a t lm, L a w r e n c e L a k e , 12 J u n e , 19 6 8 . The solid l i n e c u r v e is i n s o l a t i o n r e c e i v e d , 304 k c a l m “ 2 / solid bars are primary production, d a s h e d b a r s — t h e a l g a l s e c r e t i o n ( b o t h in yg C 1 — 1 p e r i o d - ! ) , t h e d o t t e d l i n e — p e r ­ centage extracellular release during each incubation period. EXTRACELLULAR * # o rt n - J (s « « t rt h - a 9d 9 n 0 P P uflC r ' n 0 0 _ * D ( J O 6" Nouonaoad Aavwiad TABLE 5. Dirunal pattern of primary production and secretion 12-13 June 1968; Lawrence Lake at lm. Particulate production period mg C m"^ Secretion per period mg C m"3 0448-0800 2.81 0800-1205 Incubation period* Estimated daily total from diurnal factor PER (%) Particulate production per day Secretion per day 0.19 76.74 3.06 3.99 12.96 0.38 62.40 1.83 2.94 1205-1605 9.29 0.33 17.14 0.62 3.61 1605-2022 7.53 0,38 33.75 1.71 5.06 2022-2403 0.64 0.06 100.73 9.51 9.44 2403-0450 0.33 0.04 33.56 1.31 Totals • » • » *The day was rainy until noon; the sun shown intermittently during the afternoon. 12,84 3.92 65 Figure 12. Diurnal pattern of primary production, alg a l s e c r e t i o n , PER, g l u c o s e h e t e r o t r o p h i c u p t a k e p o t e n t i a l (Vm a x ) , a n d t h e m a x i m a l estimate of natural substrate concentration o f g l u c o s e (as ug C 1 “ 1, D u c k L a k e , 1m, 25 A p r i l , 1969) . Upper: --- e Lower: —• — — — ------------- g l u c o s e Vm a x : in ug C 1-1 K t + Sn p r i m a r y p r o d u c t i o n (ug C 1 ^ p e r i o d ~ l ) w i t h 90% c o n f i ­ dence interval algal secretion percentage extracellular r e l e a s e (PER) _^ i n s o l a t i o n (569 c a l m day ) 33 APRIL A ? 30 °0 GLUCOSE C I'V’ 66 Vm a* 10 ofl C I '1 34 34 PER 16 C - -6 L- PRIMARY PRODUCTION 72 '■"•o 0*O 0.4 — 0.3 “ 300 400 600 *00 >OO0 1300 TIME 1400 MOO MOO 3300 0 67 TABUi 6. Diurnal at Incubation 125 ml 0835-1205 1200-1540 1535-1945 short extracellular release 25 April 1969; Duck Lake term Estimated from Diurnal Factor Secretion per period mg C m"^ Part, prod, per day Secretion day_l PER % incubations: 13.93 0. 2 7 1.004 0.182 116.67 L D 26. 86 0.428 1.293 69.07 3. 3 2 5 0. 3 9 6 4.813 92.54 L D 29.64 4.443 1. 3 4 5 0. 0 5 9 72.03 3.263 4 .5 8 1 L 14. 7 5 0.775 0.181 140.36 0.688 Total Particulate P r i m a r y P r oduction as the s u m of all light bottles Total Particulate Primary Production the s u m of light dark bottles ml and L D D 1000 production Particulate production per period mg C m - ^ period bottles, 0537-045 primary lm. 7,22 8.421 67.21 1 . 33 7 .3 7 1 5.25 26. 35 8 5 . IB 4 .417 5. 1 0 79. 35 3 .599 4.53 as minus bottles: Amounts per period are consecutive determined s a m p l e s in by difference the c a r b o y between 540-845 14.91 0 . 4 36 112.30 2 .722 2.924 850-1210 20 .99 1 .048 7 1 . 55 2 .957 4.133 1205-1545 2 3 . B5 0.8B1 6 7 . 34 2.666 3 .958 1545-1945 14 . 9 5 1 .004 75,10 3. 3 8 7 4 .5 1 0 Total i n 14 74 . 70 3. 3 6 9 Production hour incubation 4.511 68 d u r i n g p e r i o d s of l o w p r o d u c t i v i t y d u r i n g t h e m o r n i n g a nd a f t e r n o o n cellular of 14 g av e included t h e c o n t r i b u t i o n of a h i g h e x t r a - r e l e a s e of o r g a n i c — ^^2 * 14 incubations agreement to the s u m o f incubations in small bottles, lative p r o d u c t i o n and (Table period w e r e 6). from t h e Secretion the day w a s l ower the incubation period probably two e x p e r i m e n t s incubation in the at the e n d o f incubations. s e c r e t i o n m a y be e x p a n d e d The as t h e u t i l i z a t i o n of indicate f a c t o r w i t h a b o u t the incubations at n ea r m i d - d a y g i v e same 1936). t h a t s e c r e t i o n and t h e d a y and to the d a i l y the d i u r n a l the extended (Z ebell a n d A n d e r s o n , follow one another over proliferation Measurement short-term bottles increased s e c r e t i o n s by b a c t e r i a amount in a 1 l i t e r t h a n the s e c r e t i o n m e a s u r e d short-term bottle m a t e s of t h e cumu­ production per in the c a r b o y s u m of t h e These of long-term carboy agreed. 24% period th e e n t i r e d ay . s u m of short-term and c o m p a r e d with estimates to from t h e production production the s h o r t - t e r m in d i s c r e t e secretion per Both expanded of p r o d u c t i o n algal to the w h o l e day (cf. a l s o V o l l e n w e i d e r , 1965). Production was measured and the dark a s s i m i l a t i o n T ^ e 1200— 1540 period ex panded t he b e s t carboy C by total erro r. that b y u s e of short-term somewhat higher e s t i ­ s e c r e t e d by n o t a l lowing b a c t e r i a l and u p t a k e to d e v e l o p . 69 C . Annual Budgets of Primary and Secretion The m e a n annual p r o d u c t i o n and Production s e c r e t i o n at e a c h d e p t h w e r e m u l t i p l i e d b y t h e v o l u m e of w a t e r above and b e l o w the totals i n c u b a t i o n de p t h ; for e a c h d e p t h of surface area of the mary production and lake; is m e a n d a i l y p r i — 2 s e c r e t i o n pe r m e t e r of s u r f a c e a re a . times of p a r t i c u l a t e o r g a n i c column for t h e ye a r . t h a n in L a w r e n c e L a k e (6,100 v s assuming equal entire a r e a of t h e e t a l ., in p r e p a r a t i o n ) sampling from weekly larger surface area, Lake was 2,400 kg C greater lake ^ y r ^, pr od uctivity beneath the independent studies closely similar frequency (Wetzel (Table in 1 96 8 7). and i n the W e t z e l in o l i g o t r o p h i c to y e a r Lawrence Lake th a n in D u c k L a k e or and c a n change Extracellular photosynthesis the are study reduced amounted to 3 . 88 g C m —2 Apparently, is m o r e s t a b l e in s m a l l brief, final estimate r e l e a s e of o r g a n i c Primary 1969, t o biweekly b e t w e e n those years. ponds where high production periods missed, in the w a t e r lakes. agreed production estimates were from year t he e s t i m a t e d e s t i m a t e s of p r o d u c t i o n of L a w r e n c e L a k e b a s e d the two c o n c u r r e n t a n d production production in D u c k respectively), although 365 g a v e B e c a u s e of t he t he t o t a l p r i m a r y p r o d u c t i o n on by the th e r e s u l t budget The s u m of t he 12 m e t e r s w a s d i v i d e d The mean d a i l y m e a s u r e m e n t surface the in 0 . 5 m tundra easily ( K a l f f , 1967) . carbon during yr —1 in D u c k L a k e TABLE 7. Annual budgets of primary production and secretion in Lawrence and Duck Lakes. Lake/Date Mean daily primary production mg c m“2 day"^ Mean daily secretion mg C m"2 day“l Total Annual primary production g C yr-l Total Annual secretion g C m'2 yr”l 118.6 128.1 6.1 7,3 43.3 46.7 2.7 Lawrence Lake Present study 1968-69 Apr.-Apr. Aug.-Aug. -j o Wetzel et al. 1968-69 Jan.-Jan. Apr.-Apr. Aug.-Aug. 138 121.5 124.5 50.7 44.4 45.4 1969-70 Jan.-Jan. 115.7 42.2 Duck Lake 1968-69 Sept.-Sept. 132.5 10.6 48.4 3.9 71 and slightly over the during less, sa m e 2.66 g C m interval and —2 yr —1 in L a w r e n c e L a k e sampled o n the s a m e d a t e s the most p r o d u c t i v e p o r t i o n of the year. d i f f e r e n c e was primarily a result of observed secretion in the d a r k at Th e the e x t r e m e l y h i g h 3m on 3 June, 1969, in Duck L a k e . D . Zooplankton Excretion Zooplankton grazing and subsequent excretion of n i t r o g e n and p h o s p h o r u s m a y be a p r i m a r y p a t h w a y of mineralization in m a r i n e systems Physical d i s r u p t i o n of c e l l s releases dissolved order to evaluate affecting term 200 zooplankton 14 densities (Brehm, r o l e of Lake w a t e r 1967) . to 250 ml bottles phytoplankton. in short­ to 4 0 , 1 0 0 , a nd containing The Daphnia s w i m m i n g p oo l ( K a l a m a z o o Co., t ow s s o m e m o n t h s initially Michigan) earlier. and The bottles The p h y t o p l a n k t o n p r o d u c t i o n and The and counted 8900 zooplankton were for 14 C uptake. Gull innoculated with at were measured. t a b l e at filled with on a r o t a t i n g weighed, In zooplankton incubated 25°C. feeding secretion during equivalent 1 ^ were added 1 9 68 ) . and D a p h n i a m e n d o t a g a l e a t a w e r e c o l l e c t e d from a outdoor plankton carbon r a t e s of and natural schedleri zooplankton the p o t e n t i a l the m e a s u r e d incubations, 50 pCi organic by (Johannes, lux for were 4 hours secretion s i e v e d o u t, dried, 72 Plankton secretion in b o t t l e s w i t h h i g h c o n c e n t r a t i o n s of a d d e d a n i m a l s the u n u s u a l l y showed PER compared to the c o n t r o l s but n o t c l e a r w i t h l o w n u m b e r s of D a p h n i a t hi s w a s (Table 8). Grazing pressure also am o u n t of prim a r y of 40, (o n e - w a y A N O V A , increased 100, organisms, seriously reduced 1 However, zooplankton grazing could E. the by 14 C method and important was algal cell In a l g a l required and c o m p e n s a t i o n (Hellebust, that night-time the n i g h t in 1 965). and then However, the equals light— fixed 24-hour 30% o f in Saunders in s i t u If t h e d a y l i g h t r e s p i r a t i o n w e r e respiration for 14 . . . C — r e s p i r a t i o n is for 15% of cultures, production production Storch on the average respired during bations. 1965). carbon no correction (Ryther an d M e n z e l , phytoplankton communities decomposition, reported c a r b o n c a n be in p a r t i c u l a t e c a r b o n e q u a l l e d dark respiration natural standing crop of by n e t p r i m a r y p r o d u c t i o n . measured significantly Algal Cel l Carbon and P a r t i c u l a t e Organic Carbon Replacement B a s e d on P l a n k t o n i c — photosynthesis from increases not secretion. The replacement of algal cell divided if t h e s e e f f e c t s p r o p o r t i o n a t e l y to t h e n a t u r a l d e n s i t y o f a f f e c t p r o d u c t i o n or p e r c e n t a g e estimated the p r o d u c t i o n at the e f f e c t i v e d e n s i t i e s 200 a n i m a l s were reduced P = 0.95) the equal 14 C incu­ to the total c a r bo n f ix e d 73 TABLE 8 . E f f e c t of z o o p l a n k t o n g r a z i n g o n r a t e s carbon fixation and o r g a n i c secretion. N u m b e r of a n i m a l s 1-1 200 N u m b e r of a n i m a l s /250 ml b ottle 5C D r y w t of a n i m a l s ( m g )/ b o t t l e Primary production (cpm/50ml) S e c r e t i o n by a l g a e (cpm/50ml) Percent 1.0 4 2930. secretion 100 40 0 25 10 0 0.47 4951 106.2 5 4 .3 4.00 of a l g a l 1.10 0.29 5596 0 7862 51.5 1.34 73.3 0.94 (%) N ote: All values are the m e a n o f triplicates. A o n e - w a y A N O V A s h o w e d t h at t h e p e r c e n t s e c r e t i o n w a s s i g n i f i c a n t l y d i f f e r e n t for, at l e a s t , o n e o f the a n i m a l densities. O b s e r v e d F = 14.96.,, ^ c r i t i c a l F = 8. 45 for P = 0.99. J ' 74 per d a y w o u l d be respired. The daily 14 POC w a s e s t i m a t e d by the m e a s u r e d minus 30% for daily r e s p iration. value for l o s s by r e s p i r a t i o n not acco u n t carbon in M a r c h , mean of C-primary production On the average seasonal changes. the total s uspended particulate in the e p i l i m n i o n r a n g e d 1970, to 2800 m g m 1491 m g C m —2 f r o m 694 m g ^ in J u n e , (Figure 1 3 a ) . 1969, The replacement time based from 544 d a y s w i t h a m e a n of 4 0 . 7 8.1 to April, 1968-April, ranged from of 8 _ 2 mary production 1. 06 d a y s 1969 a n n u a l m e a n of in o n l y 1050— 18,990 mg C m 16a) and was days with — of fluctuated 17a, from Table calculating 0.30 (mean 2 ; its days from carbon replaced by p r i ­ 1968) or of an e s t i m a t e d standing crop varied — 2 ) 17a, 17 d a y s every Table 1 4 6 — 2 1, 0 3 0 m g C m replacement from (Figures production (Figure mean a mean 14a). Minor differences algal or 2.25 d a y s w i t h a m e a n by p r i m a r y 3.5-90.8 days, 9). turnover A l g a l c e ll It w a s 2990 m g C m 64 d a y s — to ( Fi g ur e between m e a n of 1968 mg C m varied 2 -2 with a i n the e p i l i m n i o n w i t h 13a). the P O C replaced a mean -2 to D e c e m b e r , 3.6 d a y s In D u c k L a k e carbon ( Fi g ur e 14a). (Figure (from A p r i l C m on primary production varied 3 0— 241 m g C m 3.4 m g C m this is p r o b a b l y h i g h a n d d o e s for t e m p e r a t u r e d e p e n d e n t In L a w r e n c e L a k e organic n e t a c c u m u l a t i o n of — 2 and 1 1 — 361 9). Cell with a turnover (Figures in t h e m e t h o d cell v o l u m e undere s t i m a t e d 15 time 16a and of those 75 Figure 13a. P a r t i c u l a t e o r g a n i c c a r b o n (------- ) (mg C m “ 2 x 10^) a n d a l g a l c e l l c a r b o n (------- ) (mg C — 2 x 10l) i n L a w r e n c e L a k e , 1968-69. Figure 13b. P a r t i c u l a t e o r g a n i c c a r b o n (------- ) (mg C m — 3 X 102) a n d a l g a l c e l l o r g a n i c c a r b o n (------- ) (mg C m “ 3 X 101) a t lm in L a w r e n c e L a k e , 1 9 6 8 — 1969. C "fl m'W mg m J ilO au. cmoamc c m k n q * g * n ic MKnCULATE •— * 1 ■* ■*->• « C m« *-*.«■ r _ ‘)3M>*HV T MRnCULATE OWJANC n C ( L l CAJWON 77 Figure 14a. T u r n o v e r o r r e p l a c e m e n t t i m e (days) o f a l g a l c e l l c a r b o n (— ----- ) a n d p a r t i c u l a t e o r g a n i c c a r b o n (------- ) b y p h y t o p l a n k t o n p r i m a r y p r o d u c t i o n (m in us 3 0 % f o r r e s p i r ­ a t i o n d a y “ l) p e r m 2 o f t h e 0 — 5 m s t r a t u m i n L a w r e n c e L a k e , 1 9 6 8 — 1969. Figure 14b. T u r n o v e r o r r e p l a c e m e n t t i m e (days) of a l g a l c e l l c a r b o n (------- ) a n d p a r t i c u l a t e o r g a n i c c a r b o n (------- ) b y p r i m a r y p r o ­ d u c t i o n ( m i n u s 30% for r e s p i r a t i o n d a y - i) a t l m in L a w r e n c e Lake, 196 8 — 1 9 6 9 . 7 8 uiwitNa i PtfTCULATE one « C TuBNOVEft td**> W * OCT NOW OCT LAW RENCE NOW DfC L JAM 1**" 14 SEP Ffa Figure 15. Isopleths of particulate organic carbon (g C Lake, 1968-1969. PARTICULATE ORGANIC CARBON mg L r C DEPTH / SEP 'W OCT O NOV DEC JAM FEB MAR APR MAY JUN JUL. AUG SEP 81 Figure 16a. Figure 16b. P a r t i c u l a t e o r g a n i c c a r b o n (--------) (mg C m ~ 2 x 1 0 ^) a n d a l g a l c e l l c a r b o n (--------) (mg C m ” 2 x 1 0 3) i n D u c k L a k e , 1968-1969. —3 P a r t i c u l a t e o r g a n i c (------- ) (mg C m X 10 and algal cell c a r b o n ( ) (mg C m _ 3 X 102) i n D u c k L a k e a t lm, 1 9 6 8 — 1 9 6 9 . 2 ) 8 2 A 0 DUCK L H * Z * vSEP OCT NO/ DEC JAN. FE B M AR APR. M A V tn JU N JUL DUCK L MAY JUN AUG SEP 1m CC SEP OCT NO/ OEC JAN FEB MAR APR JUL AUG SEP 83 Figure Figure 17a. T u r n o v e r o r r e p l a c e m e n t t i m e (days) o f a l g a l c e l l c a r b o n (------- ) a n d p a r t i c u l a t e o r g a n i c c a r b o n (------- ) b y p r i m a r y p r o ­ d u c t i o n (minus 30% f o r r e s p i r a t i o n d a y “ ^-) p e r m e t e r 2 in D u c k Lake, 1 9 6 8 — 1969. 17b. T u r n o v e r o r r e p l a c e m e n t t i m e (days) of a l g a l c el l c a r b o n (------- ) a n d p a r t i c u l a t e organic carbon ( ) by primary pro­ d u c t i o n (minus 30% for r e s p i r a t i o n d a y “ l) p e r m e t e r ^ at lm in D u c k Lake, 1 9 6 8 - 1 9 6 9 . P A R T I C U L A T E & C E Ll*“ *ORGANIC CARBON TURNOVER TIME (ttoy«) , * §ELL & PART ORG. C TURNOVER (d s y t) o T g ^ S S l S S a S S g S f SEP OCT NOV Dec JA N . X FEB. M AP. APB. JU N . DUCK MAY DUCK JU L. 85 TA BL E 9. A. Co m p a r i s o n of m e a n s t a n d i n g crops, rates, and r e p l a c e m e n t times o f algal cell carbon, p a r t i cu la te and d i s s o l v e d o r g a ni c c arbon pools in L awr e n c e and Duck L a k e s . 0-5 Meters _2 Primary p r o d u c t i o n {mg C m d ay -2 -1 S ecretion {mg C m day ) -2 A l g a l cell c a r b o n (mg m ) ) Algal cell c a r b o n replacement Pa r t i cu lat e o r g an ic carbon POC rep lac e m e n t time (days) -2 (mg C m ) (days) -2 Dissolved o r g a n i c carbon (mg C m ) Primary p r o d u c t i o n / a l g a l cell c a r b o n POC/ p r i m ar y pr odu ct ion At Duck Lake 102 132 n.a. 10.6 83 23 73 1.06 17.3 1492 2990 43 64 20458 18170 0.07 1.2 14.6 DOC/ p r i ma ry pr odu ct ion B. Lawrence Lake 22.6 204 138 POC / algal cell carbon 18 2.7 DOC / algal cell carbon 247 7.1 37 71 1 Meter P r i m ar y p r o d u c t i o n (mg C m day -3 -1 Secretion (mg C m day ) -3 Al g a l cell c a r b o n (mg C m ) ) 3.1 23 453 1 11 324 763 46 46 Al g a l cell c a r b o n replac eme nt Pa rticulate o r g a n i c carbon POC r e p l a c em ent time (days) -3 (mg C m ) 1.4 (days) Dissolved o r g a n i c carbon -3 (mg C m ) Primary pr od uct i o n / a l g a l cell c arbon POC/ primary pro du cti on DOC/ p r i ma ry p r o d u c t i o n 6635 1.4 882 5 0.16 8.7 10.8 180 124 POC / algal cel l carbon 14 1.7 DOC/ algal cel l carbon 288 19.5 86 turnover values 20%. fro m Lawrence Lake, Seasonal differences as a p r o p o r t i o n b u t b y no m o r e in th e a l g a l c e l l of t h e t o t a l c a r b o n fixed, than respiration and n o n ­ equilibrium conditions permitted only a relative com­ p a r i s o n of r e p l a c e m e n t o r t u r n o v e r t i m e s b e t w e e n lakes. 3 The contrast between aerial and meter of p a r t i c u l a t e a n d algal and Duck revealed marked differences. lakes cell organic carbon b i o m a s s of p h y t o p l a n k t o n 24 t i m e s g r e a t e r in the e p i l i m n i o n duction was twice (0-5 m e t e r s ) found and 2 0 lakes (4) rapidly Thus, volume algal times g r e a t e r per m ^ Lake, —3 Duck cell carbon was in L a w r e n c e Lake algal cells 3 at lm. in D u c k L ake (3) Because Lake was only twice identical, in the 46 d a y s three than in Duck Lake two a t lm. times more (Table 9). p h o t o s y n t h e s i z e m o r e per uni t cell in D u c k Lake. In a d d i t i o n , v o l u m e d i d n ot c o r r e l a t e w i t h p a r t i c u l a t e o r g a n i c c a r b o n as it d i d carbon concentration t he c a r b o n and m turned over in L a w r e n c e L a k e t h a n cell 2 the t u r n o v e r of P O C for t h e y e a r w a s n e a r l y Algal Lake was o n the av e r a g e in L a w r e n c e L a k e . the primary production m that of Lawrence (1) T h e w h e r e m o s t of the p r o ­ in s u s p e n s i o n p e r m that in L a w r e n c e t h a n in L a w r e n c e L a k e o n a n a e r i a l b a s i s t o o k pl a c e , (2) T h e P O C in D u c k turnover in D u c k Lake. in b o t h fl u x r a t h e r t he p h y t o p l a n k t o n c r o p Particulate lakes vari e d d i r e c t l y wit h t h a n w i t h the (Table 9). s i ze or v o l u m e of 87 F . S e d i m e n t a t i o n of Particulate Carbon Particulate organic carbon e p i l i m n i o n at r a t e s v a r y i n g w i t h a m e a n of Table 10). 77 m g C m —2 from day settled from the 7 -1 8 0 m g C m — 1 (Figu res —2 18 a n d The m a x i m a occurred during overturn and N o vember in J u l y a n d day 19, in A p r i l a n d d u r i n g p e r i o d s o f m a x i m u m s u s p e n d e d POC September, 10 m e t e r s w a s g r e a t e r 1969. t h a n at The amount sedimenting 5 meters, kept much organic material to except during July-September when a sharp thermal discontinuity et —1 in t he m e t a l i m n i o n a t 5m ( W etzel a l . in p r e p . ) . During the summer the p e r c e n t a g e o r g a n i c car b o n decreased while t h e p e r c e n t a g e b y w e i g h t of p r e c i p i t a t e d CaCO^ ( Fi gures increased 2 0 a nd highest percentage organic or d u r i n g was At resuspended to a depth of several carbon material large amounts centimeters 2 0 and resulting t h e ice of C a C O ^ . m a r l of low organic (Rich, 1970b). This the h i g h e r p e r c e n t a g e o r g a n i c from algal decomposition 21). Sedimentation calculate under the and the b o t t o m m a t e r i a l m i x e d in e f f e c t d i l u t e d (Figures carbon occurred and a u t u m n a l circulation, content was process In g e n e r a l , low-production periods when photosynthesis t o o l o w to p r e c i p i t a t e spring 21). of organic c a r b o n m a y be u s e d to the n e c e s s a r y r a t e o f r e p l e n i s h m e n t o f P O C b y p r i m a r y p r o d u c t i o n to m a i n t a i n the observed standing Figure 18. Dry weight of material in sediment traps day" at Station A and D combined with 90% confidence intervals where n = 3 (mg dry wt. m day-1); five meter traps (------) and 10 or 11m traps ( ). mo DRY W E IG H T £ O m £ < c r~ 1> o C m O n DEC JAN FEB. MAR APR MAY 68 m~2 day Figure 19 -2 -1 Organic carbon sedimentation rates (mg C m day ) at 5m (------) and 10 or 11m (------ ) in Lawrence Lake, 1969-1970. v> Q FEB, MAR APR. MAV JUN JUL AUG SEP OCT NO DEC JAN FEB MAR APR MAY 16 S 8 S $ 8 o day’ m-2 CARBON mg O R G A N IC TABLE 10. Sedimentation budgets, Lawrence Lake, 1 February 1969-27 January 1970 (361 days). Station A Station D 227.01 227,36 227.19 27.65 27.97 27.81 101.81 109.25 105.53 (248 days)* 338.66 315.96 327.31 34,88 29.98 32.43 152.37 152.45 Mean Mean percent organic carbon 5 meters: -2 g dry wt. m „ -2 g Org. C m g CaCO^ m 2 12.24% 10 and 11 meters: g dry wt. m 2 g Org. „ C m “2 „ ™ g CaC03 m -2 152.41 (248 days)* Annual Budget Estimates** g dry wt. m 2 yr „ -2 -1 g Org. C m yr 9.91% 1 ™ g ^CaC03 m -2 yr -1 5 meters 10-11 meters 229.68 330.91 28.11 32.79 145.12 196.44 ♦The total from 248 days of sedimentation; 24 May 1969 to 29 April 1970. **A11 figures increased to one full year. Figure 20. Percentage organic carbon of the dry weight of particulate material sedimented with 90% confidence interval where n = 3 at 5m (------) and 10 or 11m (------) in Lawrence Lake, 1969-1970. ^ u CARBON ORGANIC PERCENT FEB MAR APR MAY JUN. JUL AUG SEP OCT. NOV DEC JAN FEB. MAR APR. MAY Figure 21. Percentage CaCC>3 of the dry weight particulate material sedimented with {901 confidence interval where n = 3 at 5m (------) and 10 or 11m {------) in Lawrence Lake, 1969-1970. ^ UT PERCENT u o CaCOj o o BY W E IG H T o» CD T J3 D JUN JUL AUG .. SEP OCT NCV DEC JAN FEB MAR APR 96 97 crop. Davis small (1968) shown that p o l l e n lakes are r e s u s p e n d e d deposited at the gr e a t e s t matter distributed was has concentrated thermocline. from the de p th s . grains s h a l l o w zones and Small particulate u n i f o r m l y o n t h e s u r f a c e o f the 8— 14 t i m e s by t h e time it p a s s e d R e d i s t r i b u t i o n of p a r t i c l e s particles w e r e of u n i f o r m l y Marl small size at t h e d e e p e s t p o i n t d e p o s i t s of 1 1 m in t h e since the Wisconsin glacial BP. Apparently, resuspended Rich marl in the littoral (1970b) to a d e p t h o f has shown littoral growing Allen (1969b, on r o o t e d lake Cores transect profiles by R i c h (1970b) 1971) plants held showed 0.5, 1, 2, shown in a n is d i s l o d g e d functionally which remains t a k e n at 1 2 m b y W e t z e l a t 0, has in the it a ct s as a l a r g e p i e c e of p a r t i c u l a t e m a t e r i a l littoral. and y e t are evidently When this marl d e p o s i t i o n b y w a v e a c t i o n o r d e a t h of th e p l a n t , in the to be presumably during form a thick crust of m arl organic matrix. c a . 15000 years that bott o m m a t e r i a l was m i x e d in the s h a l l o w s . zone z o ne a n d basin, Larger pieces of marl t h a t the e p i p h y t e s lake. small enough the c e n t r a l several centimeters, thermal overturn. retained to If m a r l in L a w r e n c e retreat, is n ot u n i f o r m l y an d c a r r i e d the t h e y s h o u l d be 9 . 5 m at t h e d e e p e s t p o i n t h a v e d e v e l o p e d Lake lake in a l a k e is o b v i o u s l y a f u n c t i o n o f s i z e of the p a r t i c l e s . deposited mostly in 3, and 5, 7, in and that smaller p a r t icles were 11m deposited at 12 m e t e r s . hypothesized, This finer material, o r i g i n a t e s by p r e c i p i t a t i o n o f s u p e r ­ s a t u r a t e d CaCO-j by p h y t o p l a n k t o n solubility during The greater material g r o w t h or b y the warmer m o n t h s turbulence in the effects observed with phytic in o p e n w a t e r . community The littoral Three zone (Wetzel, lines o f evidence for a p l a n k t o n i c o r i g i n of t h e cent e r of in t h e lake. summer was weight, the the to t raps, position during however, (1) greater decreasing sediment like Toyoda e^t al. than fine CaCO^ epiphytic and macro- 1970) . support the h y p o t h e s i s fine sediment 2 0 sediments in the particulate material % o r g a n i c c a r b o n by 5 m and 9.9% at 1 0 m in biological decom­ total dry w e i g h t th a t s e t t l i n g m a t e r i a l w a s the p o l l e n in F r a i n s (1968) pieces up the m a r l b e n c h e s bake found a s i m i l a r increased, concen­ (Davis, 1 968). increase i n the increased d e p t h in its n i t r o g e n and p h o s p h o r u s deep water the c o n ­ the build a m o u n t of m a t e r i a l d e p o s i t e d w i t h decrease and which indicates The th is pollen must occur with Suspended 12.2% a t settling. indicating trated Thus forms larger o r g a n i c a l l y b o u n d of m arl w h i c h e f f ectively help in t h e 1969). zo n e k e e p s there. s e d i m e n t a t i o n of p l a n k t o n d e t r i t u s precipitated reduced ( B r u n s k il l , littoral from settling p e r m a n e n t l y centration i t is content. and a T he in L a w r e n c e L a k e ha v e a h i g h e r centage organic weight th a n s h a l l o w e r sediments per­ 99 (Rich, 1 970b). carbon of Thus, surface the p e r c e n t a g e o r g a n i c sediments i ncreased with depth, th e while on th e p e r c e n t a g e s e t t l i n g POC decreased. origin with is n o t t im e (2) Sedimentation was correlated standing the y e a r deposits lags c r o p of in o r g a n i c seston w i t h Algal carbon was sestonic organic particulate carbon The r e l a t i o n s h i p the thermal maximal discontinuity biomass lake w a s synthesis would a t w o —w e e k the p r o b a b l e lag Maxima (Figures to changes 13a, s o u r c e of t he sedimented and i n the production corresponded carbon which (3) M e g a r d carbon sediments. s e d i m e n t a t i o n to d e e p e r w a t e r s . in p r i m a r y the a different significantly p = 0.95) . between production, a nd cell and benthic suspended (r = 0.49, and m i n i m a while suggests littoral stronger because of seston, This lake o r g a n i c c a r b o n in f or the through the b o t t o m of t h e 13b). total to t h e b o t t o m stratified. (1968) estimated that algal p h o t o ­ precipitate an additional as p r e c i p i t a t e d C a C O ^ . 2 5 — 40% m o r e The primary production in L a w r e n c e L a k e d u r i n g the s e d i m e n t a t i o n s t u d y w a s 6 8.5 g _o C m a b o v e the 5m c o n t o u r s u r f a c e a r e a and 145 g C a C O ^ (17.4 g CaCO-j—C) were collected from the 5m s e d i m e n t a t i o n t ra p s. T h e r a t i o o f C a C O ^ -C s e d i m e n t e d duction in the e p i l i m n i o n = 17.4 g / 6 8. 5 g X 100 = within the r a n g e c a l c u l a t e d b y M e g a r d Minnesota. to p r i m a r y p r o ­ for m a r l lakes 25%, in 100 To determine th e c o n c e n t r a t i n g e f f e c t o f b a s i n o n the s e d i m e n t a t i o n of a l g a l assumed t h a t all the in th e e p i l i m n i o n at t h e The of t h e 5 m c o n t o u r . Assuming ibr i um , th a t decomposition by t h r o u g h the t h e r m o c l i n e surface a r e a Thus, that is t w i c e the c o n c e n t r a t i o n sestonic organic the c o n c e n t r a t i o n is o c c u r r i n g , sedimentation it w a s settling o r g a n i c carbon produced sedimented 5m c o n t o u r . detritus t h e lake the factor is t w o a n d turnover t ha t no of POC is: -2 m e a n POC in ep i l i m n i o n 0-5m m of 5m s u r fac e area , --------------- *■-------------------- — ------— ------------- = da y s se di men ted organic c a r b o n m d ay at 5 m The d e c o m p o s i t i o n occu r r i n g ticulate production m settling i n to 1969, 1 February, to in t he the 7 4.5 m g C m at 5m. —2 — 2 — 1 above 22); 140 m g C m —1 the was 5m, m i n u s traps. ( — 2 14 is th e par — the amount From 1 February, 2959 mg C m C production day caught traps s h o u l d —1 . 2 therefore, 30% An average in the s e d i m e n t have minus Average replace­ 21 days. tr aps c a u g h t 15 6 5 m g 53 % of that p r o d u c e d . is e s t i m a t e d , , to deple tio n the mean p r i m a r y pro- production was w h i c h is o n l y production. epilimnion the m e a n P O C w a s (Figure day In 21 d a y s decomposition POC 1970, was t i me by a l g a l of C m day of p a r t i c u l a t e m a t e r i a l f or r e s p i r a t i o n ) ment —2 in t h e 5m sediment 0-5m stratum duction is two. c a r b o n i s at e q u i l ­ factor then the area Epilimnetic to be 47 % of the 101 Figure 22. R a t e s o f t u r n o v e r (days) o f p a r t i c u l a t e o r g a n i c c a r b o n by s e d i m e n t a t i o n in L a w r e n c e L a k e , 0 — 5m s t r a t u m (lower) a n d standing crops of particulate o r g a n i c car­ b o n (mg C m — 2 x 103) 0 - 1 0m p e r m 2 s u r f a c e a r e a at O m (------- ) a n d 0 - 5m p e r m 2 o f 5m s u r f a c e a r e a (------- ) (upper) . ^QC SEDIMENTATION TURNOVER '.aa/S ' STANDING CROP POC -ng C ^ 2* to 102 350 RQ(~ O bm a POC. 100 200 100 FEB MAR ARR M AY JUN JUL AUG SEP OCT NOV DCC JA N FEB MAR APR M AY 103 T h e d i s a p p e a r a n c e o f POC u n d e r t h e second method of e s t i m a t i n g d e c o m p o s i t i o n epilimnion because t h e r e wa s ic e is a in the l i t t l e p r o d u c t i o n a n d no r e s u s p e n s i o n of b o t t o m m a t e r i a l . F r o m D e c e m b e r 22 to _2 M a r c h 16 the POC m in the e p i l i m n i o n d e c r e a s e d f r o m —2 3506 to 1318 m g C m . During the interval primary production added total was 2 20 m g C m observed decrease 2188 + 220 decrease. Thus 33% of 7 9 8 / 2 4 0 8 or t r a p s if a ll of the the ice, the the the t r u e p e r c e n t a g e o f in the A third 5m or morphometry. wa s 11m. at —2 — 1 been caught that that und e r the lost Thus l o s s o f POC %; the d e c o m p o ­ 34%. in the p e r c e n t a g e organic is carbon This procedure avoids assumptions t r a p e f f i c i e n c y or c o n c e n t r a t i o n by t h e On April 20.33% organic to 1 5 . 1 7 % to 6 6 a 65% e s t i m a t e of e p i l i m n e t i c d e c o m p o s i t i o n fr om sediment (0 - 5 m) day the b o t t o m . traps was The t h r o u g h the likely, so r e s t r i c t e d really closer — 2 PO C h a d the e p i l i m n e t i c f rom d e c r e a s e s about loss of anywhere on calculated 0m to 9.17 mg C m It is m o r e 5m s e d i m e n t s i t i o n of P O C w a s 798 mg C m lost POC s e t t l e d circulation was settled 5m level. ^ at 5m in 84 d ays ? 20 M a r c h or 5m i s o c l i n e . POC c o u l d h a v e caught the Sedimentation observed was to ar ea above in PO C in the e p i l i m n i o n = 2408 m g C m fr om 2 3 D e c e m b e r in th e _2 5m, 22, 1969, the c a r b o n by w e i g h t . a r e d u c t i o n of surface plankton This was 5.16% o r reduced a 25. 4% c h a n g e lake 104 i n the p r o p o r t i o n o r g a n i c c a r b o n b y d r y w e i g h t * October 23, carbon; in the in t he l l m trap, was 1969, the 5m traps this was 11.9% organic 8.46%/22.2% or a organic surface plankton was reduced carbon. 38% r e d u c t i o n carbon by w e i g h t in 5m. viously the 2 5 — 38% The r e d u c t i o n T h e s e two e x a m p l e s estimated d o u b l i n g of the POC contained t o o high. both living precipitated CaCO^ underestimate of initial the respectively, 5 meters. and the s u r f a c e seston The p r e s e n c e of seston would an d calculating decompo­ gave estimates of 34% d u r i n g for the y e a r , the w i n t e r in t h e u p p e r S e d i m e n t a t i o n was one of carbon the major r o u t e s of from the e p i l i m n i o n L a w r e n c e Lake. G. Ice c o v e r the of th e s p r i n g a n d r e m o v a l of p a r t i c u l a t e o r g a n i c of through true decomposition. sedimentation 47% d u r i n g the p r e ­ percentage organic carbon independent methods s i t i o n of POC d u r i n g 2 5 — 38% and indicate and partially mineralized thus underestimate Three cells. but d e c o m p o ­ sedimenting However, a nd d e a d and in the p e r c e n t a g e in t h e e p i l i m n i o n m a y 5m c o n t o u r w a s 22.2% organic to 1 3 . 7 % p r o b a b l y d o n o t r e p r e s e n t t h e e n t i r e year, s i t i o n of On lakes remaining Plankton Metabolism Compared Whole Lake Respiration in W i n t e r from December to g a s e x c h a n g e from the to t h r o u g h m id M a r c h closed so t h a t o r g a n i c m a t e r i a l preceding summer was oxidized using 105 u nrenewed deep water concentrations of dissolved oxygen. A n e s t i m a t e of o x y g e n u t i l i z a t i o n m u s t of s e d i m e n t e d p l a n k t o n r e m a i n s , aquatic plants, leaf fall summer The O2 m -2 day —1 in the t w o (C0 ratio) or 2 1.0 (Rich, excess of twice ton (T a b l e C (>2 evolution m —2 the — 1 day equal 1970b). the m e a n 11). -2 to 0. 85 The annual Rich —1 . total day —1 (1970b) found It d r o p p e d that far at t h a t primary p r o d u c t i o n of in time the plank­ the m e a n a n n u a l Lawrence Lake was to l e s s t h a n 200 m g C but generally agreed with r e p o r t e d here. as the w i n t e r a d v a n c e d . anaerobic conditions oxygen —2 respi r a t i o n was decreased and showed It tension can t h e ice is p r o b a b l e organic heterotrophs. that the respiration unimpeded when under lack of s u i t a b l e slowed g r o w t h of aerobic continued m Lake (Manny et a l ., 1971) T h e r ate of o x y g e n d e p l e t i o n (1941) Lawrence 284 m g 0 2 from the benthos of day 1 9 6 8 — 69 if t h e r e s p i r a t i o n q u o t i e n t during the winter, results strates 1969). the p r i m a r y p r o d u c t i o n o c c u r r i n g and 320 m g C m was and had d e v e l o p e d lakes: and Duck Lake little difference i0 (Moss, sources, r ates o f o x y g e n d e p l e t i o n d u r i n g It m a d e 2 the s e d i m e n t stratification were v ery nearly equal 2 97 m g decomposing annual from t e r r e s t r i a l any r e m a i n i n g oxygen deb t during include oxidation rate sub­ Lindeman in m i c r o c o s m s oxygen b e c a m e depleted. induce facultative that anaerobes Decreased to 106 TABLE 11, Rtductian in ditiolv«d o x y g e n concentrations und e r the ice in Lawrence and Duck Lakes. g 0 2 m -2 Change in (0? ) g m -^ Oj utilization mg Oj m _2 d a y “ * Prim a r y production mg C irT2 d a y “ l 14.563/89 days 163 .6 33 .81 27,59/92 days 296-7 39.04 21.51/99 days 217.3 20.50 24 .66 15.11/49 days 314.0 28 Jan. 9. 55 7.058/30 days 2 35. 3 27 F e b . 2.49 22.69/7B days 284 .2 Lawrence Lake: 1967-60 18 D e c . 18 Mar. 1-69 16 Dec. 27 Dec. 6 Jan. 20 Jan. 3 Feb. 17 Feb. 4 Mar. 17 M a r . -70 22 Dec. 5 Jan. 19 J a n. 1 Feb. 16 Feb. 2 Mar. 16 Mar. 30 Mar. 74. 10 41. 01 74.91 71.22 69 .17 64. 10 56. 16 55.92 51. 51 47. 32 72.57 60 .60 63 ,50 59 .22 64. 13 51.13 51.H1 51.06 Duck L a k e : 1968-69 11 D e c . 60. 3 107 m e t a b o l i z e a n a e r o b i c a l l y or c h a n g e t h e sition. Thus, it is q u i t e p o s s i b l e depletion method species c o m p o ­ that the o x y g e n reveals only m i n i m u m values of p r o ­ cesses. Th e r a t e s o f o x y g e n d e p l e t i o n and mean annual r a t e s o f p r i m a r y p r o d u c t i o n in t h e w a t e r c o l u m n p e r m were very similar in t h e s e trasting morphology, composition, of n u trient content, and biomass. atory metabolism greatly c o n ­ hydrophyte In b o t h c a s e s species the n e t r e s p i r ­ in w i n t e r w a s t w i c e t h e m e a n a n n u a l plankton production, interface two l a k e s 2 showing that the s e d i m e n t —w a t e r is t h e si te o f a l a r g e r c a r b o n t h r o u g h t h e p h y t o p l a n k t o n in s m a l l lakes f lux t h a n (see a l s o Rich, 1970b). H. Dissolved Organic Carbon, Sources and U t ilization Total dissolved organic carbon varied with f r o m 1.5 a m e a n of frequency of to 9.5 m g C 5.7 m g C l over (Figure sampling was changed in 19 69 t h e r e w e r e (1) 1 I- 1 Its in L a w r e n c e L a k e a 2.5-year period 23). Although from weekly to b i w e e k l y similarities between the y ear s. Highest values were observed during the s u m m e r stratification compared in the to 4-5 m g C surface waters 1 1 at 12m. (2) (7— 9 m g C l 1 ) a s T h e maximum stand- ing crop of d i s s olved or g a n i c carbon (DOC) in S e p t e m b e r the and O c t o b e r just before th e m _2 occurred autumnal mixing. Figure 23. 108 Isopleths of total dissolved organic carbon (mg C l ) in Lawrence Lake, 1967-1970. Sampling was weekly before 1969 and biweekly thereafter (cf. Wetzel et al., in preparation), 109 o 110 (3) M i n i m u m v a l u e s w e r e d u c t i o n was reduced in and 1 968 - 6 9 , Pockets (1 m g C l - 3 m g C I- 1 the ice w h e n pro­ in 1 9 6 7 - 6 8 , 2 mg C l- 1 in 196 9- 7 0 ) . 1 of h i g h a n d often continuing with found under low concentrations for several weeks, occurred, and w e r e c o rrelated inputs of allochthonous organic carbon or intense planktonic production. T h e DO C in D u c k L a k e r a n g e d w i t h a m e a n of 8 . 6 mg C 1 ^ m e a n D O C of L a w r e n c e L a k e . the su mme r; f o u n d at however, 3m in late the i ce summer 24), 1.5 t i m e s the High levels occurred during a nd early autumn of discontinuity to t h a t d e p t h . 1968 and layer p r e v e n t e d c i r ­ Minimal values occurred under in J a n u a r y . Inputs int o the d i s s o l v e d organic phytoplankton secretion, decomposition, i n flo w. enters (Figure the m a x i m u m c o n c e n t r a t i o n s w e r e 196 9 w h e n the t h e r m a l culation f r o m 6— 16 m g C 1 ^ phytoplankton zooplankton secretions, pool included autolysis, benthic an d a l l o c h t h o n o u s Allochthonous dissolved organic material which l a k e s is p r i m a r i l y h u m i c aromatic polyhydroxy carboxylic in c o m p o s i t i o n . acids (fu lvi c These acids) h a v e b e e n c l a s s i f i e d by s t r u c t u r e a nd by s o l u b i l i t y bases 1966). may and acids All ( C h r i st man , 1964; C h r i s t m a n and Ghessemi, fractions absorb ultraviolet fluoresce (Buck, 1968; in light; S i e b u r t h and J e n s e n , some 1968). Ultraviolet absorption was quantitatively calibrated in Figure 24. Isopleths of total dissolved organic carbon (mg C 1 , Duck Lake, 1968-1969. Sampling frequency was biweekly at 0, 1, and 3 meters. TOTAL DISSOLVED ORGANIC W ] * s — T V r \ 10 9 DEPTH CrrD K> i f 1 B > 1 r ' \\\ / f s /j O f 9 / , *. 1 '1 . ?1 ll1 I SEP OCT NOV DEC .. JAN. J Aytn fc’L li CARBON N /••• ! ! I \ \ v : 1 9 8 7 , 8 9 , ^ KJ/ 8' 9 M l " ■ / ‘ '■ ' ! 1 ! i ; •- r - v „ i ,; M M » . ' : i 1 ' , i ! ■ li ■ i i . . .i. i 1 i_ i II , . m .i l.i FEB MAR- APR MAY JUN. JUL AUG. SEP \ J J 113 o r g a n i c c a r b o n by s e v e r a l in p r e p a r a t i o n ) : (95% c o n f i d e n c e complementing methods 1 2.7 m g C 1 ^/0D„C i n t e r v a l — — 1.8) (Miller, in L awrence Lake an d 13.1 m g C 1 ^/O D 250nm in D u c k L a k e . In t h e a n n u a l c y c l e materials o f t h e c o n c e n t r a t i o n of h u m i c in Lawrence L a k e m o s t of the i n c r e a s e s w e r e a s s o c i a t e d w i t h r a i n f a l l w h e n the l a k e w a s stratified (Figures absorption^Qj^ varied 25, 26, and from 0.090 to 27). The ultraviolet 0.200 (mean 0.136) units w h i c h was e q u i v a l e n t to a m a x i m u m c h a n g e of 2.5mg o r g a n i c in a t o t a l d i s s o l v e d over the y e a r . o r g a n i c pool w h i c h v a r i e d and 27). The increase period of rain depended column, the 8 mg C l l a p s e of in absorbance (Fi gures after any given after the r a i n , and Rainfall or snow m elt the recent and ultra­ violet absorption were clearly related o n February 13, April June 13, November 26, May 20 July 19, J u n e 3 1 —A u g u s t 9, J u l y 15 in 19 20, 6 8 Lake occurred 26, , and on a nd O c t o b e r inputs from the bottom during the (12m) 10— of Lawrence summer stagnation period when b i o l o g i c a l o x i d a t i o n h a d u s e d all t h e o x y g e n , and 4, in 196 9. Humic pH, 25, u p o n the t u r b u l e n c e of the water time history of rainfall. Ma y 1 During several weeks of heavy rainfall ultraviolet absorption increased markedly 26, carbon 1 ^ reduced redox potentials (Figures There w a s n e v e r a s u b s t a n t i a l humic input lowered 2 5a a n d b ) . into Lawrence Figure 25a. Isopleths of ultraviolet absorption (250nm, 1cm) by dissolved humic materials, Lawrence Lake, 1967-1970. Figure 25b. Isopleths of fluorescence (460nm, lOx scale units) in Lawrence Lake from January, 1969, to May, 1970. ULTRAVIOLET TT «UG SfP OCT NCW DEC UC AftSCMFTlON SEI> OCT Otc J tH fs* 115 FLUORESCENCE 460 nm T T T T O J t i : /• A \ 30 32 3640 i V/'i v , ); '"-a 30 12S 36 \r A / ij A 10 11 12 A I 's.1 w : i i f a ll ■ JAN FEB / K 7 •^• 40' -i ill - :__ ^ -TILi 34 36" MAR. APR. MAY JUN. JUL. AUG SEP '■ _ A-~\ ■ /"'A U rV 26 V/' \ L / C, OCT NOV DEC JAN FEB MAR f 23 APR. MAY Humic acid organic carbon per meter2 in Lawrence Lake (g C m’2). The vertical arrows denote the major rainfall periods. 116 Figure 26. HUMIC CARBON (A LI T m Figure 27. 118 Weekly precipitation at Kellogg Biological Station, Kalamazoo County, Michigan and deviations of the lake level from the annual mean, 1967-1970. cm PRECIPITATION ~h, rl Il.ir. LAKE L AWRENCE LEVEL LAKE DUCK LAKE -10 NOV DEC 1967 JAN FEB MAR APR MAV JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOv DEC JAN 1966 -I1969 -I- FEB MAR APR '970 may 120 L a k e by t h i s m e a n s b e c a u s e o n l y a s m a l l v o l u m e of w a t e r between 10-12m was effected. was more Humic f r o m 0 . 1 4 2 — 0.627 w i t h (Figure 28). of l- 1 ; the t o t a l pool varied by absorption fa ce w a t e r s d i d and winter reflect (Figures seepage the w a t e r level ta b l e ; humic materials tended to a c c u m u l a t e d u r i n g Lawrence Lake both tuated more level and p a t t e r n of in s u r ­ increase Lake is a surface waters t he s u m m e r period. leave In t h r o u g h the humic c o n c e n t r a t i o n fluc­ t h a n in D u c k L a k e . carbon concentration c o n c e n t r a t i o n i n D u c k L ake g a v e s i m i l a r to t h e a n n u a l c y c l e 29). absorption absorption During is s t a b i l i z e d by the w a t e r surface d r a i n a g e could lake anaerobic decom­ Because Duck entering with S u b t racting humic to t a l D O C 29). the r e l e a s e stratification. the general 27, carbon The m a x i m u m associated w i t h from the bottom by with rainfall and to a m a x i m u m c h a n g e stratification the u l t raviolet lake, 0.200 units dissolved organic in D u c k Lak e w a s p o s i t i o n d u r i n g summer (Figure a mean of humic materials 10 mg C 1 ^ o v e r the y e a r . of dissolved material outlet; 250nm b y This was equivalent 6.25 m g C summer f r o m the b o t t o m i m p o r t a n t in s h a l l o w e r D u c k L a k e . In D u c k L a k e a b s o r b a n c e ranged input of d i s s o l v e d from the a pattern humic materials The simple c o rrelation b e t w e e n humic a n d t otal D O C a t for a l l d e p t h s and d a t e s lm w a s r = 0.73 (p - 0.95); o n log t r a n s f o r m e d d a t a Figure 28. Isopleths of ultraviolet absorption (250nm. 1cm) by humic materials (upper) and relative fluorescence (360nm 1 filter) in fluorometer units X 10 in Duck Lake, 1968-1969, 121 ULTRAVIOLET ABSORPTION -n r ■n— r— r'— ’ — DEPTH Cm) 390 300 220 205 1 -250 \ -300 -/ 170:200 .170 2 \ \ 300 .«0 ! J65.18 220.300 -300220,v -AOO , i 500 .600 ,40 I 400 3 .400 4 ill li ■ : I OCT NOV DEC JAN FEB MAR APR MAY JUN JUL FLUORESCENCE AUG SEP 460 nm DEPTH (mj 0 44 40/ 2 4 OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 123 Figure 29. 2 Humic acid o r g a n i c carbon per m e t e r (g C m - 2 ) (-), t o t a l d i s s o l v e d o r g a n i c c a r b o n (g C m “ 2 ) (-- ■ --- ) a n d t h e d i f ­ f e r e n c e b e t w e e n t h o s e two, r e p r e s e n t i n g t h e m a x i m u m D O C of a u t o c h t h o n o u s o r i g i n ( E3 ) » Duck Lake . DISSOLVED m » -h » £ > . S ORGANIC CARBON ( gm t i ' 1 ) “ w u I C I 5 n » * 8 — K t 124 - o T L L- 5 -- *- ° O * V c # i * 4- ■!-""" * \ * * * 1 i3 ^ O - ((.w U ulO) U 4 3 . ! ^ oao O N OlHDH 9 4 1 25 r = 0.57 (p — released from the bottom, calibration non U.V. 0.95). B e c a u s e m o s t h u m i c m a t e r i a l wa s f a c t o r was t o o 19 d i d causal being released 22, June in a d d i t i o n 25, and production mask the apparent relation between DOC and ultraviolet absorption 29). was c o r r e l a t e d w i t h the duction (r = materials 0. 391), > where organic logs of (r - 0 . 5 4 1 ) , and The level (stepwise multiple log light secretion + duction + .0089, + .059 .351 light .304 (r = 0. 3 6 7 ) , algal temperature with production. m a t e d by log d i s s o l v e d temperature (r = 0.295), (P - 0.95) partial large q u a n t i t i e s of Only on May In L a w r e n c e L ake + carbon high planktonic (Figure .0825 the o r g a n i c s m a l l or absorbing carbon were to the h u m i c m a t e r i a l s . July either secretion and regression): log c o n d u c t i v i t y production, explained (F = 11.9, c e l l v olu m e , alkalinity, — *0^7 only .035 l o g o x y g e n c o n e . D O C in L a w r e n c e conductivity, in DO C. 9 5 ( 9 Lake was 1 2 8 ) = T he temperature, algal humic materials 45.5% of th e v a r i a t i o n critical F log .04 3 log p r i m a r y p r o ­ the variation and correlated log DOC = c o r r e l a t i o n c o e f f i c i e n t s o f light, cell n u m b e r , humic of D O C c o u l d b e s t be e s t i ­ log h u m i c O D 250 + 36% o f pro­ (r = 0.222) light w e r e log t e m p e r a t u r e - explaining carbon secretion, maximally in D O C in 1968 Significantly, primarily associated with fac­ to rs of p r i m a r y p r o d u c t i o n and its c o —c o r r e l a n t s . 126 The total dissolved bake showed all data) simple correlations w i t h humic primary production particulate 0. 410 ), It w a s organic cell 0.471), carbon volume temperature (r = 0 . 4 1 2 ) , (r = 0.377), and (r = 0.572), (r = li g h t (r = bacterial morphotype — 0.4 51) . partial production, F 9 5 ( 3 5 3 an d b a c t e r i a l j = 2.79) of t h e v a r i a t i o n predicted 0.032 added number That = In D u c k L a k e (F — 14.9, 0.296 log h u m i c allochthonous and determining total Lake T h e r e w as a time formation of correlation sidered, DOC, organic products 46% levels absorption + numbers nonplanktonic important (Fi gur e 29) . in In all of its c o — s t r o n g l y correlated with DOC. lag b e t w e e n p r i m a r y p r o d u c t i o n a n d which reduced in b o t h s u c h as been major DOC primary p r o d u c t i o n and correlants w e r e most critical log b a c t e r i a l m a t e r i a l s w e r e the m o s t Lawrence humics, fit c o u l d h a v e b e e n i n p u t s of h u m i c the (r = correlation of lo g p r i m a r y p r o d u c t i o n - 0 . 0 3 8 + 1. 1 2 7 . 0.3 3 2 ) . s i g n i f i c a n t l y to e x p l a i n in D O C . f r o m log D OC (r = (r = — 0.535) and a large m o t i l e c o c c o i d 15 v a r i a b l e s , 0. 4 6 5 ) , secretion negatively correlated with calcium Of in Duck (log t r a n s f o r m a t i o n of compounds concentration (r = organic c a r b o n le v e l lakes. secretion of b e n t h i c contributors t he Other strength of s o u r c e s of D O C that not con­ f r o m a q u a t i c m a c r o p h y t e s or decomposition, could have to the d i s s o l v e d o r g a n i c pool. 127 The strong c o r r e l a t i o n w i t h hum i c material indicated that Annual inp uts f r o m t h e b e n t h o s ar e calculated carbon—equivalency added by a carbon-equivalency fo r the u l t r a v i o l e t absorbing organics v a l u e s of t h a t factor. sampling dates The Lawrence Lake was 12.7 m g C / O D 250* factor streams (F = However, the m i n i m u m 27.6 m g C 1 ^ / O D ^ ^ q indicated that at all in times, ^ crn) at l e a s t t w i c e as m u c h o r g a n i c c a r b o n a c t u a l l y e n t e r e d the as w a s c o n t a i n e d in the h u m i c m a t e r i a l (Miller, in p r e p a r a t i o n ) . A m i n i m u m b u d g e t of dissolved carbon was determined w i t h factor. organic In D u c k a m o u n t of o r g a n i c materials o d only could carbon came the latter the in w i t h t h e h u m i c of a q u a t i c be estimated estimated angiosperms. (13.1 m g i n p u t of d i s s o l v e d to L a w r e n c e L ake w a s and only 8.1 g C m ^ yr fo ld d i f f e r e n c e s u g g e s t s input o f dissolved, swamp and t h e did allochthonous organic 2 5 0 ). Minimal th e that itself lake no w a y t o e s t i m a t e in b e n t h i c d e c o m p o s i t i o n A humic b u d g e t C/ Lak e t h e r e w a s carbon to by m u l t i p l y i n g the d i f f e r e n c e b e t w e e n O D 2 5 0 n m o n c o n s e c u t iv e from inlet important. budgets of d i s s o l v e d humic c a r b o n the l a k e s w e r e factor used in D u c k L a k e not v a r y 32 g C m ^ in 1 9 6 9 yr (Table that complex —1 cm yr for 12). factors h u m i c — like materials lak e b o t t o m f r o m y e a r (105 vs 108 —2 organic to y e a r . 1968 Th e four­ affect f r o m the Rainfall ^ ) significantly between TABLE 12. Humic carbon budgets for Lawrence and Duck Lakes. 1968 1969 Lawrence Lake: Total carbon input/lake 1596.7 kg lake Humic carbon input/lake - 1 yr 732.0 Total carbon input m“2 32,16 g C m Humic carbon input m-2 14 .74 - 1 403.7 kg lake - 1 yr 185.1 _* yr” _o _i 8.13 g C m ” yr” 3.73 Duck Lake: Total humic carbon input/lake Humic carbon input m -2 1040.97 kg 8,25 g m lake ^ yr ^ -2 yr -1 129 19 68 a n d 1969, the w i n t e r a l t h o u g h the w a t e r table 1 9 6 8 — 69 Lawrence Lake was vented (Figure saturated the a e r o b i c incomplete then released to b i w e e k l y The m a r s h in 1969, formation of humic lignins and phenolics. from 27). In spring turnover, f r o m th e b o t t o m . in 19 69 (Figure humic carbon m (199 d a y s t i m e of —2 day) total). 500 d a y s of humic acids low the r u n o f f organic materials The change lowered the accuracy in L a w r e n c e L a k e slow d u r i n g periods of no r a i n (Figure for the m e a n 26). influx. However, when water have that CaC O ^ does seawater because CaCO^ by a n o r g a n i c rapidly Particles of CaCO^ s o m e DOC. Chave coating; the season (Wetzel Suess and inacti­ a d d i t i o n of C a C l ^ or N a H C O ^ c a u s e s r a p i d p r e c i p i t a t i o n of C a C O ^ organic water material. flowing th at c a u s e T he C a C O ^ into Lawrence (1970) in n o r m a l are p r o t e c t e d however, just and adsorbed and not precipitate nuclei in 1969 standing crop s e t t l e d u r i n g the g r o w i n g removing (19.3 m g for a r e p l a c e m e n t standing crop dropped 1971) vated from weekly in O D ^ ^ q , w a s v e r y and A l l e n , shown resulted 25). (1.4 years) (1968), from plant and m o r e c a r b o n was This w o u l d account compounds level w a s after by d e c r e a s e around which perhaps pre­ D e c o m p o s i t i o n of h u m i c m a t e r i a l s as m e a s u r e d 30cm during soi l 1968 e a r l y a n o x i a sampling may have also of e s t i m a t e s rose in the s u p e r s a t u r a t e d an d stream L a k e m a y a c t a s t h e n uc l e i pr e c i p i t a t i o n of more CaCO^ w h i c h adsorbs 130 humic them compounds, effectively removing f r o m so lut i o n . The Lake among others, total in 196 duction, rates 8 input of organic w as 60% of t h e p l a n k t o n i c but only the carbon 15% in 1969 (Table s t a n d i n g c r o p of h u m i c t w o ye ars. Thus the humic t h e w a t e r s h e d of s m a l l lakes p o r t i o n of the a n n u a l o r g a n i c primary pro­ 12). At compounds ated organic carbon were replaced every i nto L a w r e n c e these and a s s o c i ­ by the annual acid influx introduction can r e p r e s e n t from a sizable c a r b o n a c c r u i n g to t h e open water. primarily yr In D u c k L a k e h u m i c c o m p o u n d s w e r e r e l e a s e d -2 by a n a e r o b i c b e n t h i c d e c o m p o s i t i o n (8.25 g m and were of humic carbon In 1 969 absorbing annual sufficient in less the to r e p l a c e the standing crop than one year. influx organic humic compounds c a r b o n in u l t r a v i o l e t - equalled 7.5 and p l a n k t o n i c p r o d u c t i o n in L a w r e n c e respectively. important the d e e p e r were more The inputs in D u c k Lake, column. lakes, f r o m the b o t t o m w e r e m o r e inputs In f r o m the w a t e r s h e d T h e p o t e n t i a l m e t a b o l i s m of heterotrophs on that carbon source was the m e a n d a i l y p r i m a r y and D u c k the the s h a l l o w s e e p a g e lake. Lawrence Lake, important. 16% of production about 15% of for the entire w a t e r 131 I. The most variations Planktonic significant in DOC level factors that contributed in L a w r e n c e L a k e w e r e related w i t h primary production of of o r g a n i c occur via carbon to The 47% of t h e before it and (3) Transfer sediment epilimnetic rapidly (2 ) d e a t h or bacterial d e g r a d a t i o n of trap analysis showed t h a t 2 5% particulate material was s e t t l e d b e l o w 5m. autolyzed all c o r ­ the plankton. (1 ) s e c r e t i o n d u r i n g g r o w t h , cells. to f r o m t h e a l g a l c e l l s to t h e w a t e r m a y autolysis of cells, dead Sources of DOC Probably lost the d y i n g cells and w e r e s u b s e q u e n t l y d e c o m p o s e d by bacteria. Duursma DOC (19 63) in t h e N o r t h Sea, primary production planktonic only 6 dried 2.6 g m —3 (55-75 g C m release of DOC that the net c h a n g e of yr —2 —1 yr was equal — 1 sustain the b a c t e r i a l Scenedesinus organic carbon initial loss w a s soluble compounds first the int o stimulus after 1:40, source fou r d a y s alone Freezetheir immediate autolysis of water the d i s s o l v e d homogenized at 4 0°C to ( O t s u k i , 1968). phase where heteroIn s e w a g e s l u d g e cells provided for a rapid o x y g e n c o n s u m p t i o n w h i c h 500 m i n u t e s phyto- equal l o s t 40% o f trophic d e c o m p o s i t i o n was v e r y rapid. waste diluted Because respiration. s p . in m i c r o c o s m s in t h e }. to the in L a w r e n c e L a k e w a s % of t h e p r i m a r y p r o d u c t i o n t h i s could not Th e estimated (Varma and D i G i a n a , t he stabilized 1968). 132 Thus the present lost substrates in a l g a l for e n h a n c e d cells. phosphates organic autolysis ( G o l t e rma n, nitrogen m o r e four d a y s ) . 1964). of c e l l s nutrient release by hydrolysis material rapid and cells proportionately much late carbon 15% the from in t h e limiting the organic tha t t h e compounds. loss o f o r g a n i c The loss o f p a r t i c u ­ (Melosira) from H a e m a t o c o c c u s , 33%. rapid than the c o n c l u s i o n was q u i c k l y autolysed to the oxygen upta k e by f i r s t two d a y s . the r e l e a s e w a s m o r e intra­ in a e r o b i c d e c o m p o s i t i o n was larger t h a n and first the a c t i o n o f not rate of lost the diatom d o m i n a t e d plankton in 24 hrs, response, 20- 30% by demonstrated fr om k i l l e d bacteria during hydrolysis of organic (only enzymes (1964) are in a f e w h o u r s U V —killed cells cellular Krause is and sl o w l y Autolysis activity Unruptured UV— irradiated cells 50% of t h e i r c e l l u l a r p h o s p h o r u s b e c a u s e of a r a p i d was bacterial the heterotrophic that the cell a n d Since intracellular enzymes released dissolved organic carbon. killed Autolytic l o s s of c e l l m a t e r i a l algae w a s 1 0 ( G o l t erm an, 1968) . c a r b o n occurred added. 0 % of the d r y weight No f u r t h e r in th e nex t 1 0 in d r y w e i g h t autolytic in j u s t d a y s r e d u c t i o n of p a r t i c u l a t e days The a d d i t i o n of P s e u d o m o n a s a c c l i m a t e d to a l g a l loss -2 from sterile until bacteria were s p . which had been materials caused from c h l o r o f o r m killed 6 0 — 70% Scenedesmus 133 in the next 30 days, a t w h i c h t i m e the b a c t e r i a l al so w e r e d e c r e a s i n g . The fraction of organic lost by w e i g h t was d e p e n d e n t u p o n the plankter latter and species its p h y s i o l o g i c a l c o n d i t i o n state determined the c o n t e n t of Thus releases the autolysis is DOC in m i c r o c o s m s , the n 7% of r e m a i n as r e s i d u a l DOC. POC 2.4 g C m resistant to released 7% of t h e (1968) -2 yr -1 or found the total Since P OC evidence produced mg C m —2 from the 34.2 day cell —1 — 2 literature indi­ and that in to d i s s o l v e d to b a c t e r i a l Si n c e as o r g a n i c was secreted not m e a s u r e d immediately during photosynthesis, as a n i n c r e a s e in ce ll c a r b o n . plankton standing crop w e r e unchanging, , is r a p i d l y is c o n v e r t e d production -1 of D O C organic compounds which are refractory 5 . 7 — 8% of the p r i m a r y yr produced. t h e cel l c a r b o n carbon pro— g C m labile d i s s o l v e d organic m a t e r i a l s initial should the p h y t o p l a n k t o n stratum was 6 . 6 in for Scenedesinus further o x i d a t i o n would be f r o m 10 -3 0% o f as carbon formation of biologically in the 0 - 5 m In c o n c l u s i o n , cates that organic f rom c e l l u l a r d e c o m p o s i o n o c c u r r e d as O t s u k i about t he c e l l c o n ­ in the e p i l i m n i o n . L a w r e n c e La k e , d u c t i o n of The the m e chanism w h ich undoubtedly If t h e sa me r a t e o f refractory of p h y t o - at d e a t h . l a r g e s t a m o u n t of d i s s o l v e d i nto t he w a t e r carbon intracellular e n z y m e s p o t e n t i a l l y a v a i l a b l e to d i g e s t tents. numbers th e a tta ck. carbon it w a s If the fl ux of 134 organic carbon transferred through m a y be e q u a l to 23-4 5% of production. Thus, DOC the d i s s o l v e d p h a s e the n e t p a r t i c u l a t e p r i m a r y levels in L a w r e n c e L a k e c o r ­ r e l a t e d b e t t e r w i t h p r i m a r y p r o d u c t i o n t h a n in D u c k L a k e where benthic metabolism was quantitatively more as a s o u r c e of DOC. the p a r t i c u l a t e important A d d i t i o n a l l y , t h e lo ss of 2 3 - 4 3 % production to t h e dissolved phase w i t h th e r a n g e of p e r c e n t a g e w e i g h t of agrees loss o f D O C s e t t l i n g ou t of t h e e p i l i m n i o n . J. If subsystem organic H e t e r o t r o p h i c U p t a k e of L a b i l e Organic Compounds the h e t e r o t r o p h i c m e t a b o l i s m is c l o s e l y carbon, linked to t h e p r o d u c t i o n of d i s s o l v e d then phytoplanktonic molecular weight sugars and o r g a n i c synthesis should correlate with bacterial a s s i m i l a t i o n of t h o s e in the p l a n k t o n i c s e c r e t i o n of acids during p h o t o ­ independent assays substrates. (Wright a n d H o b b i e , 1966) Figures c o r r e l a t e d w i t h p r o d u c t i o n an d secretion rates The glucose 31) to s u p p o r t t his theoretical maximum (v m a x ) both in p a t t e r n o f h i g h and l a k e s at 31). Both corre l a t e d production, secretion, (Table 13, (Table 14). r a t e s of u t i l i z a t i o n lm exhibited of similarity low v a l u e s w i t h m a x i m a o c c u r r i n g in l a t e A u g u s t - e a r l y S e p t e m b e r and hypothesis f or Substrate dilution bioassays 30 and small and in b o t h y e a r s (Figures significantly with primary the c o —c o r r e l a t e s o f 30 TABLE 13. Comparison of kinetic bioassay parameters in Lawrence and Duck Lakes. Duck Lake Lawrence Lake mean range mean range Glucose (Annual) Vmax (ug C 1 ^ hr Kt + Sn (ug C 1“1) Tt (hours) 0,042 2.72 73.0 0.005-0.18 0.15-7.80 17-300 0.143 2.72 19.0 0.04-0.49 0.04-8.40 6-50 0,193 3.93 35.0 0.017-0.66 0.22-7.30 1.7-117 2,06 43.04 16.0 0.24-5.80 2.1-247.0 4.4-43.0 0.075-1,41 2.20-89.4 20-309 1.81 76.39 44.0 0.54-2.84 30.142 34-58 Acetate (Mar.-Sept.) Vmax (ug C 1"^* hr-* Kt + Sn (ug C l"1) Tt (hours) Glycolate (May-Sept.) Vmax (ug C 1"! hr"*-) Kt + Sn (ug C 1“1) Tt (hours) 0.63 47.65 99,0 Figure 30, Changes in uptake velocity (Vmax), substrate concentration (Kt + Sn) and turnover time (Tt) of glucose, acetate, and glycolate in Lawrence Lake at 1m, 1968-1969, 136 LAWRENCE LAKE 1m O ? 4 f > o ? 137 MJQ I0 » OCT NOV JUN Figure 31. Changes in uptake velocity (Vmax), maximum substrate concentration (Kt + Sn) and turnover time (Tt) of glucose, acetate, and glycolate in Duck Lake at lm, 1968-1969. a1 r *4 t r 01 jI l!O •I M* 139 I I 3 m xt now mc m TABLE 14, Multiple regression-p*rtial correlation analysts of substrate u t i l n a t i o n for glucose, acetate, and glycalate. Partial correlation of r‘ F found Critical variables F m Simple order linear correlations (significant P > 0.95) of significance ? ^ i-95 Lawrence L a k e : I. Glucose c7* 14, It 2,39 T e m p e r a t u r e , secretion, (df 2,29! h u m i c s . light, oxygen Produc t i o n 1.740), temp. (.630) Acetate 964 Hurics, c . 29 Jf - 4 ■ glucose -secret ion, light, temperature Glycolate 994 55.41 6.79 ■'d f " 4 1 (-.470) Humics 1.943), i ,735), DOC (-.625) Temp. I . 6 2 0 , light production (.994) (.779), p r o d u c t i o n secretion, alkalinity, temp. gluclose v n T e m p e r a t u r e , DOC , I i g h t , humics 1.587), a l k a ­ linity (.839), p r o d u c t i o n ! .609) , secretion (.587) , humics (.583) Duck L a k e : 1. Glucose 954 : 3. -c Temperature, (df, r,17) dark secretion, . Acetate 994 23.44 production cell number, 344 14.13 (.579), (.563) , secretion 19.4 -Secretion, {df 12,2] bacterial pH, -DOC, numbers, 9.28 Temperature, ,'df 3,31 numbers, POC, cell volume, light production, Slycolate dark fixation dark fixation, temperature, 3. (.753), (.684), dark secretion pH 2 Temp. alkalinity, production, (.492) None, df 11 .553, secretion number ;.555), critical r (-.505), S (-.517) , cell humics 1.359) cell number bacterial -oxygen light {.6Cl!, cell volume None, oxygen df 5 critical (-.691), temperature r • .754 humics (.608) (.645) 140 3, I-,6471, s ecretion 1 .61’ ), light I. humics {.667), conduc t i v i t y 141 production was (Table 14). related m o r e dissolved to h u m i c o r g a n i c organic D u c k Lake. and secretion lakes. showed maxima in A p r i l , Acetate V with dissolved and in J u n e a n d J u l y i n J u n e —J u l y , unlike glucose, factors carbon for u p t a k e were not related directly Wright and Hobbie (1966) utilizing heterotrophs t o be p h y s i c a l l y and H o b b i e (and n o t attached in bo t h to (1967) secretion. found filterable In D u c k Lake the acetate V_ with particulate max particu­ partial organic significant. the same dates, in m i d - s u m m e r . except Glycolate V„ max that to g l u c o s e u p t a k e . temperature, of heterotrophic under similar too small the (NS), humics, A l though the number to d r a w c o n c l u s i o n s , u p t a k e of g l y c o l a t e showed (NS), light and p o s i t i v e c o r r e l a t i o n s w i t h the c o n t r o l of occurred In D u c k L a k e g l y c o l a t e V _ max and bacterial numbers. samplings was two in L a w r e n c e L a k e c o r r e l a t e d negative correlations with secretion ( N S ), the the m a x i m a w i t h p r o d u c t i o n - s e c r e t i o n an d h u m i c m a t e r i a l s , and oxygen acetate heterotrophs) Glycolate v max showed no pattern bet w e e n lakes on in of acetate, the g l u c o s e to l a r g e r in L a k e E r k e n . correlation of and S e p t e m b e r humic m a t erials and negatively w i t h total d i ssol ved o r g a n i c late material to total correl ated very s ignif icantl y max The controlling carbon was carbon than max carbon. A cetate V_ -------max Lawrence Lake In L a w r e n c e L a k e g l u c o s e V the in D u c k L a k e m a y be non-planktonic system lik e a c e t a t e . 142 In L a w r e n c e L a k e in t h e of iri s i t u an d 31) substrate concentration, increased before (V ). max s p r i n g the m a x i m a l Kt + Sn the b a c t e r i a l T h e m a x i m u m Kt + S n o b s e r v e d with temperature, is e v e n s t r o n g e r for g l u c o s e 196 9a) and that this physical than regulation by species of of bacteria occurred velocities control substrate the y e a r w h e n 30 Annual cycle data o f all s u b s t r a t e - u p t a k e suggest bility during parts ( Fig u r e s uptake potential in t h e a u t u m n w h e n V _ max was decreasing. and high correlations estimate availa­ temperature are changing {Allen, {Daubner, 1969) . The estimates for g l u c o s e glycolate acetate acetate were (Table 13). The in b o t h times Lake turnover time (faster) the s a m e , The production, glucose-C, less t h a n the fo r levels 10-20% (Table 13). in D u c k of b o t h greater f o r all Figures levels of than However, 8 times Lake than the same substrates 30 a n d in time to 5 0% than higher or less in L a w r e n c e 31). heterotrophic were m u c h higher 10.6 X 1 The replacement in s i t u wa s a b o u t 13, 8 ug C of a c e t a t e w e r e 2 times higher in D u c k L a k e (Table c a r b o n 1 ^) e s t i m a t e of m a x i m u m c o n c e n t r a t i o n o f g l u ­ lakes wa s glycolate Lawrence Lake 10 In D u c k L a k e , th e m e a n c o n c e n t r a t i o n s and (mg o r g a n i c and g l y c o l a t e carbon w e r e glucose. cose and o f Kt + S n activity in D u c k L a k e for a c e t a t e - C , and ( Vm,a„x) , like (3.4 X fo r 2.6 X f or g l y c o l a t e - C ) 143 t h a n in L a w r e n c e Lake. Glycollate-C occurred h i g h e s t c o n c e n t r a t i o n of a l l thre e s u b s t r a t e s Wright 11970] found). Allen cose (as G l u c o s e and a c e t a t e Kt + Sn in L a w r e n c e L a k e w e r e s i m i l a r to t h o s e (1967, in the found by W e t z e l 1968) in two n e a r b y I nd i a n a m a r l (1969) found acetate Kt + Sn m u c h h i g h e r th an g l u ­ in L a k e L o t s j o n (max. d e p t h 2.5m) lakes (14m deep). b e c a u s e of an a p p a r e n t r e l e a s e of a c e t a t e f r o m the b o t t o m o f the pond. The is o bvious. s i m i l a r i t y t o Duck L a k e W h e n t h e h e t e r o t r o p h i c up t a k e r a t e o f a c o n s t a n t 14 low concentration glucose-C w a s p l o t t e d (v = g l u c o s e - C u p t a k e jjg C 1 ^ hour ^) o v e r heterotrophic had levels b y m i d - A p r i l the biomass dependent V r e a c h summer t he v e l o c i t y o f u p t a k e of low c o n c e n t r a t i o n s o f rea ched s u m m e r Apparently the year, levels until June, instantaneous ni3x substrate (Figure 32). , w h i c h did not did n ot e f f e c t the uptake significantly. The m u l t i p l e r e g r e s s i o n - p a r t i a l c o r r e l a t i o n analysis indicated secretion may that p r i m a r y p r o d u c t i o n a nd o r g a n i c be the s ou r c e of substrates controlling a portion of t he p l a n k t o n i c b a c t e r i a l h e t e r o t r o p h y (Table 14). The validity of depended upon b i o a s s a y for V (a) max this t e n t a t i v e c o n c l u s i o n the t i m e c o u r s e i n d e p e n d e n c e of the and (b) t h e a b i l i t y to r e s o l v e c a u s e a n d effect r e l a t i o n s h i p s d u r i n g d i u r n a l c y c l e and o v e r a w e e k l y period. (c) T h e b i o a s s a y of W r i g h t and H o b b i e Figure 32. 14 -1 -1 Heterotrophic uptake rate of C glucose carbon (pg C l hr ) at 1.7-1.8 and 0.75-0.80pg C 1”! from May, 1968, to August, 1969. 144 LAWRENCE L Im 80 60 40 v- G LU CO SE C 20 to 8 6 4 A:.75-.8Qug Glucose C 2 0 MAY JUN JUL. AUG SEP OCT NOV D€C JAN. FEB. MAR. APR MAY JUN. JUL. AUG 146 (1965) has problems been shown to h a v e c e r t a i n m e t h o d o l o g i c a l (H ami l t o n e t a l ., 1966)- If u n i f o r m l y in t h i s st u d y , labelled the m o s t d a t i o n of assimilated showed occurred Thus, too low, between lakes on 25, Calculated V max * (F igu re levels 12). between synthetic 1969, max at 0845-1530 fixation and u p t a k e of lm i n D u c k L a k e s h o w e d occurred hrs. 1 ^ hr 22 °C — 0 . 5 ° C between 845— 1200 T h e e s t i m a t e of Kt + S n r e m a i n e d p a t t e r n of Kt + Sn, Thus 9, yg G l u c o s e - C p a t t e r n of hetero t r o p h i c 1969, m a x i m u m e s t i m a t e of V incubations. the s a m e d a y . September The diurnal in c a l c u l a t e d v„ max directly comparable 0.207 0.149 0.110 0.012 glucose on April 1S miniIIl^ zed f o r v m a x roay be 25% T i m e F r o m t_ o D u c k L ake , c °2' three-hour nonetheless, 1 .00 hr 3 . 50 6 . 43 10.25 (b) 14 to summer data b u t t hey are, the t wo C (28%) a sizable reduction experimental Cumulative 14 namely the oxi- d e t e r m i n a t i o n of u p t a k e k i n e t i c s be t w e e n o n e - h o u r and the error, a r e u s e d as 1969). A time c o u r s e that V a c c a r o a nd J a n n a s c h , substrates serious organic (Hobbie a n d C r a w f o r d , (a) 1966; The hrs at high p a t t e r n of p h o t o ­ secretion also highest between a l o o k e d l i k e th e 0 8 4 5 — 1530 hrs. t h e p a t t e r n of h e t e r o t r o p h i c m e t a b o l i s m o f g l u c o s e ^ 147 in s i t u w a s c l o s e l y l i n k e d duction. time S a u n d e r s and S t o r c h lag b e t w e e n Potter (1 9 6 4 ) had (unpublished data) for in Frains (1971) observed s e c r e t i o n an d b a c t e r i a l observed b acterial n u m b e r s over changes to secretion and p r i m a r y p r o ­ in S t o r c h and S a u n d e r s investigated cumulative pool secretory compounds using Lake, assimilation. short-term fluctuations 24 h o u r s . have a slight Michigan. similar size techniques They observed maximum accumu­ l a t i o n of s e c r e t o r y products a b o u t two h o u r s after s un­ s e t w i t h s u b s e q u e n t u t i l i z a t i o n d u r i n g the night. (c) Daily variation heterotrophic u p t a k e of g l u c o s e mined between 1200-1400 hrs 8— 13 S e p t e m b e r , ture 1969, at l m The (Figure and glucose (r = 0. 762 , 33). Water this algal significant over Thus, from tempera­ significantly over was P = 0. 9 5 ) . and in D u c k b a k e w a s d e t e r ­ simple linear correlation between photosynthesis six days production f o r six c o n s e c u t i v e d a y s and w e a t h e r d i d not c h a n g e interval. in primary the synchronization of p r i m a r y p r o d u c t i o n a n d b a c t e r i a l h e t e r o t r o p h y b y extracellular secretion during photosynthesis to b e s u b s t a n t i a t e d o n a d a i l y , weekly, and seems seasonal basis. K. T u r n o v e r of the S e c r e t o r y of O r g a n i c S u b s t r a t e s The d y n a m i c s of th e photosynthetic products Pool secretory pool of algal in D u c k b a k e w a t e r w a s d e t e r m i n e d 148 Figure 33. Primary production, glucose heterotrophic u p t a k e (Vm a x ) , a n d i n s o l a t i o n (cal c m - 2 d a y ” 1) d e t e r m i n e d in s h o r t - t e r m s m a l l b o t t l e i n c u ­ b a t i o n s u s i n g w a t e r t a k e n f r o m t h e la ke at lm o n t h a t d a y (------- ) a n d f r o m a 20 1 c a r b o y p l a c e d in the l a k e o n S e p t e m b e r 9, 1969 ( ). 149 ro DUCK 500 & £ CD 1m L 400 300 in situ 120 100 00 > Q ■§ Or cr 60 C arboy o >- 5"4 0 0C < 20 cr cl 'T- t_rn .5 L±J^,4 O 3 .3 y | .2 O > .1 8 SEP 9 S E P 1 0 S E P 11-SEP 12 S E P 13 S E P IV 150 by m i x i n g 14 the m i c r o f l o r a w i t h C-labelled organic lake w a t e r c o n t a i n i n g t h e secretory products. The pool size in c p m d i v i d e d b y t h e u p t a k e per h o u r b y t h e b a c t e r i a g a v e a n e s t i m a t e of t u r n o v e r some cases the counts time in t h e m i c r o b e s (minus t h e a d s o r p t i o n blank) an y u p t a k e . using the were Three alternative sible on these occasions: substrates, ( rem o v a l t i m e ) . (2) after incubation i n s u f f i c i e n t to d i s c e r n interpretations were p o s ­ (1) the b a c t e r i a w e r e 14 the In C not labelled o r g a m c s were be i n g d i l u t e d w i t h a large p r e - e x i s t i n g pool of the same compounds, or (3) another molecule compound in t h e substrate inhibition or restricted secretory the u p t a k e o f t h e m a j o r pool. A c o m p a r i s o n of G l u c o s e — 14 C u p t a k e untreated water samples was used of b a c t e r i a l upt a k e activity. were assimulating in u p t a k e o f uptake of bottles. enzyme sent 34). Such delay control in and for losses case the b a c teria the c o n t r o l O n e t y p e of t i m e c o u r s e and glucose showed that 14 C was taken up a c t i v e l y could have b e e n caused by i n h i b i t i o n o r r e p r e s s i o n by o t h e r o r g a n i c s p r e ­ in the w a t e r Gaudy, C in t r e a t e d secretory p r oduct was delayed 60 m i n u t e s w h i l e g l u c o s e — (F igu re 14 secretory products labelled as a In e a c h the g l u c o s e — (u n t r e a t e d s a m p l e s ) repression by Ga u d y , ( S t u m m - Z o l l i n g e r , 1966; and Komolrit, an d S t u m m - Z o l l i n g e r , 1969). 196 3; M a t e l e s Pseudomonas Gaudy, 1962; and Chain, 1969; aeroginosa would Figure 34. 151 Time course of the uptake of secreted organic carbon from phytoplankton photosynthesis in comparison to uptake of glucose. 40 1600 GLUCOSE UPTAKE 1200 E CL U 800 152 UJ ¥ o 2 x> CL 3 3 K - 10 400 o u o 90 MINUTES 120 153 not t a k e u p g l u c o s e at a l l as l o n g as o n e o f t h e glycolate, succinate, and R o m a n o , from a m i x e d small organic or lactate) in p r e p a r a t i o n ) . acids and g a l a c t o s e Other lar there growth t i m e —c o u r s e p a t t e r n s to t h a t o f g l u c o s e — The 14 (Mukkada S e q u e n t i a l u t i l i z a t i o n of is a s e q u e n t i a l in d i a u x i c (acetate, w e r e present particular compounds ha s been observed for e x a m p l e , substrate m e d i a in sewage, u t i l i z a t i o n of g l u c o s e (Stumm— Z o l l i n g e r , 1966). sh o w e d immediate uptake third h y p o t h e s i s assumes that t h a t a s s i m i l a t i o n of that p r o d u c t 14 little measured the 14 times occurred w h e n organic materials was t h e lo w e s t winter). the when Ma y the 22, between Conversely, percentage June 15) The substrate availability and The limit of secretory—product g i v e n a v a l u e of ti m e s (Figure highest (November 3, t u r n o v e r time, to u t i l i z e p e a k the t e c h n i q u e from suggests that l eve ls of sub­ for d e t e r m i n i n g 100 hours; accordingly, no u p t a k e w a s e v i d e n t w e r e a r b i t r a r i l y "100 35). in t h e inverse relationship turnover was about on all points when fastest the secretion of these d a t a and f rom kinetic bioassays, strates. The turnover times o c c u r r e d secreted was t h e the b a c t e r i a a r e u n a b l e in t h e (3m u n d e r t h e ice longest ( F i g u r e 35). C—secretory i n c l u d e d so C t h a t no u p t a k e c o u l d b e m e a s u r e d . turnover simi — C. p r o d u c t s w e r e so d i l u t e d by p r e - e x i s t i n g p o o l s water where, hr s" for t h e isopleths of turno v e r Figure 35. Isopleths of turnover of algal secretory organic carbon by heterotrophic uptake of the in situ bacteria, Duck Lake, 1968-1969. Values of 100 hrs are not real, but assigned maximum values when no uptake was found (see text). e x tr a c e llu la r o rg C tu rn o v e r (m ) h 20/WO ,1 1060 DEPTH 10 60 '2 0 10 10! Si i __ L SEP OCT NOV D EC JA N FEB MAR A PR MAY JU N JU L AUG SEP 156 The m e a n annual of algae was m a x i m a l l y Th u s , turnover of 2 0.4 h o u r s the secretory p r o d u c t s o n t h e a v e r a g e of o n c e (Figure 36) shows secretion, by h e t erotrophic u p t a k e . time were turnover was very secretion was L. Table (V max A depth profile 19 69, during a (probably B o t ryococcus b e t w e e n the processes Quantity secreted assimilated and s e c r e t i o n —p r o d u c t inversely related. u p o n the amounts cellular 3m 3 June, interrelationships of production, the r e a l p o i n t s . in D u c k Lake w ere from Duck Lake on the fo r all e v e r y 24 h o u r s . b l o o m of an unknown alga at sp.) secretory products Time because s h o r t at secreted 0— lm, turnover and turnover l ags o b v i o u s l y d e p e n d the Tt = secretion—product 1 hr, where t h e least. Flanktonic Production Heterotrophy and B a c t e r i a l 15 s u m m a r i z e s p r i m a r y p r o d u c t i o n , secretion, X 24 hours) and g l y c o l a t e ) . and extra­ the s u m o f h e t e r o t r o p h i c for t h r e e s u b s t r a t e s The ratio (glucose, potential acetate, of h e t e r o — t r o p h i c p o t e n t i a l to p r i m a r y p r o d u c t i o n s h o u l d b e c o n s t a n t o n e a c h d a t e if p r o c e s s e s o f n u t r i e n t c y c l i n g at e q u i l i b r i u m . cate variable sition Deviations ti me and c a r b o n c y c l i n g w ere from constancy should indi­ lags b e t w e e n p r o d u c t i o n a n d d e c o m p o ­ in t h e p l a n k t o n o r a n e x t e r n a l p e r t u r b a t i o n to t h e s yst em. Time l ags c o u l d be c a u s e d by t h e a c c u m u l a t i o n or b y n o n s y n c h r o n o u s t r o p h i c an d h e t e r o t r o p h i c diel activity. cycles substrate of a u t o - Figure 36 . Vertical profiles of primary production, algal secretions, per­ centage extracellular release, and turnover of algal organic secretions by heterotrophic bacterial uptake, Duck Lake, 3 June, 1969. Light bottles {----- ) and opaqued bottles (------ ). 158 C E ■w * r> i a u r> * m 3 3 T" TABLE 15, Comparison of autotrophy vs. potential heterotrophy in two lakes on the same days at lm. Insolation (g cal cm -2 day -1 ) Lawrence Lake: ^ ^ Primary Prod, (mg C m day ) Extracellular P.P. (mg C day"l) 13 May 10 June 469 611 31,7 0.5 64.4 1.5 9 July 432 19 July 95 5 Aug 414 73.2 1.2 25.3 0.8 50.9 1.5 21 Aug 8 Sept 507 62.4 1.9 Heterotrophic Potential Vmax(mg C m 3 day 3) glucose acetate glycolate Total Hetero. Potential 1° Production Duck Lake: Primary Prod. Extracellular Primary Prod. 1,03 4.65 5.45 0.72 1.41 8.56 1.83 5,90 17.12 2.60 15,78 33.84 1.65 7.29 19.97 4.31 5.85 5.86 11.13 10.71 24.85 52.22 28.91 16.02 0.35 0.16 0.34 2.06 0.57 0.26 101.3 5.6 146,5 3.6 164.2 2.1 42.1 0.6 82.5 2.7 104.9 3.3 76.1 1.5 Heterotrophic Potential glucose acetate glycolate 1.96 11.59 12.86 3.29 13.08 28.66 3.91 55.92 57.82 1.60 138.48 17.62 1.80 8.64 55.68 3.37 60.96 68.16 Total 26.41 45.03 117.64 157.70 66.12 132.49 0.26 0.31 0.72 3.75 0.80 1.26 Hetero. Potential 1“ Production 7.5 82, 63. 153 2.0 160 In L a w r e n c e L ake potential varied The f r o m 0.26 increased occurred and 19, (19 38) observed bacteria In this except for Jul y 19 that c a u s e d of t h e the h i g h e s t entire year lakes, in both on July 17, concentration (lm) . Henrici large n u m b e r s but not into of soil seepage lakes. the h e t e r o t r o p h i c m e t a b o l i s m o f b o t h lake (L awr enc e Lake) i n D u c k Lake heavy rainfall that r a i n s w a s h e d instance (July 19). Th e one anomolous v a l u e into drainage the seepage the s u m m e r in September, after a v e r y of humic mate r i a l s to p r i m a r y production once reaching 2.06 throughout 3.75. 1969, r a t i o of h e t e r o t r o p h i c substrates i n M a y to 2. 01 it r e a c h e d lakes 18, the th r e e f r o m 0 . 1 6 t o 0.57, ratio when for the (Duck Lake) was primary production. a n d the d r a i n a g e lake stimulated greatly c o mpared In D u c k L a k e the to i n t r o d u c t i o n by r a i n f a l l r u n o f f w a s e x c l u s i v e l y to the a c e t a t e pool; in L a w r e n c e Lake, to g l u c o s e , glycolate pools. Thus and/or bacteria in to t h e acetate, and introduction of organic lake with heavy apparently d o e s have p r o n o u n c e d t r o p h i c m e t a b o l i s m in t h e effects on the hetero— epilimnion. primary production in t h e r a n g e Lake) the n o r m a l v a r i a t i o n time substrates rainfall If t h e r a t i o of t o t a l h e t e r o t r o p h i c approximates especially 0.16-0.57 potential to (in L a w r e n c e ( a c c o u n t i n g for lags b e t w e e n p r o d u c t i o n a nd d e c o m p o s i t i o n ) , then higher ratios may indicate a higher sustained level of 161 organic input from littoral or allochthonous Wetzel (1969) has investigated the amounts li ng m e c h a n i s m s o f an e x o s m o t i c dissolved organic carbon of g l u c o s e ) laboratory under (1970) measured species the of aquatic their production. 14 C-organic meters (including a hig h c o n c e n t r a t i o n plants Allen in L a w r e n c e (1969b, once —1 yr conservative. (Miller, 1971). in s i t u t o 1 — 3% o f measured th is plants day entire —1 . lake (1969), t his v a l u e is (Rich, 1970; 8 7.9 R i c h et; al ■ , r e l e a s e w e r e o n l y 3% -2 -1 thi s w o u l d b e 2.6 4 g m yr is a l m o s t epiphytic s e c r e t e d DO C (Wetzel and A l l e n , g C exosmotic That A very thick release of the unpublished data). as m u c h as the 2.66 g m — 2 y r — 1 s e c r e t e d b y p h y t o p l a n k t o n s tud y. pelagic 2 in organic w e i g h t -2 in L a w r e n c e L a k e w a s 262 g m of t h e p r i m a r y p r o d u c t i o n , — that The m e a n a n n u a l If s e c r e t i o n a n d 7.2 m g m estimated acutus. in m i d - s u m m e r studies aquatic plants for the al. several their estimated net primary production was —2 or showed in 0— 4m of w a t e r a m o u n t e d On t h e b a s i s of W e t z e l ' s m 1971) products may diffuse net carbon-C'*'^ a c c u m u l a t i o n of r o o t e d Rich et L a k e and f r o m s u b m e r g e d p o r t i o n s of S c i r p u s probably flexilis) sterile conditions. Naj as s e c r e t i o n m e a s u r e d and (N a j a s s t a n d i n g b i o m a s s o f Naj as an d o t h e r exosmotic Lawrence Lake and c o n t r o l ­ l o s s o r s e c r e t i o n of from aquatic angiosperms in the sources. 1971, in community mediates from rooted and Allen, aquatic 1969, 1971). 162 This release littoral all of of is l o c a l i z e d zone. In D u c k the w a t e r in t h e secretion mix with in c o n t r a s t Lake the lake; the s u m m e r , volume of water s e c r e t i o n by primary s o u r c e of tsee W e t z e l a n d M a n n y , ratio in D u c k L a k e the m o r e intensive s i t i o n of annual bacterial substrates in h e t e r o t r o p h i c aquatic plants than 1972). potential its d e c a y . growth and d e c o m p o ­ probably provided more through the The summer increase to a p e a k t h e b u i l d - u p of m a c r o p h y t i c O n th is last date, plant biomass was visibly decaying floating masses. increased through in L a w r e n c e Lake. 8 September coincided with large zo ne i n c l u d e s the c o m b i n e d h e t e r o t r o p h i c p o t e n t i a l : planktonic production biomass and a n d in t h e or higher amounts Direct c an be a t h i r d dissolved organic carbon on similar to L a w r e n c e Lake. Because littoral a m u c h smaller rooted aquatic plants out in t h e e p i l i m n i o n m u c h of t h e and c o l l e c t i n g In a d d i t i o n , there was in a marked i n c r e a s e of h u m i c c o n c e n t r a t i o n at t h e 3 m c o n t o u r w h e r e organics released slowly f r o m the s e d i m e n t s c o u l d d i f f u s e into s u r f a c e w a t e r s . In c o n c l u s i o n , heterotrophy in L a w r e n c e a n d D u c k several points. (1) differing sources, glucose th e c o m p a r i s o n acetate f r o m the p l a n k t o n . of b e n t h i c sources lakes Specific organic e.g. (2) of b a c t e r i a l illustrated substrates have f r o m t h e b e n t h o s a nd The relative for p e l a g i c h e t e r o t r o p h s importance is d e p e n d e n t 1 63 upon the c o n t r i b u t i o n o f th e p r o d u c t i o n of the r o o t e d aquatic plants to t h e or m o r e g e n e r a l l y , of th e lake. (3) t o t a l c a r b o n b u d g e t of the r a t i o of Surface runoff following heavy increase bacterial surface waters. (4) products. (5) T h e the l e v e l of h e t e r o t r o p h y algal processes, blooms probably and r o o t e d rainfall in in b a c t e r i a l supply of algal s e c r e t o r y s e a s o n a l l y by s u b s t r a t e s d e r i v e d biological heterotrophy Day-to-day variation upor la ke, s u r f a c e a r e a to v o l u m e can dramatically heterotrophy depends the aquatic is s u s t a i n e d from longer-termed f r o m d e c o m p o s i t i o n of plants. V. INTERPRETATION AND INTEGRATION The c a r b o n cycle of the epilimnion was examined w i t h algal were secretions total (2) for (1) Budgets (5) sedimentation of particulate carbon, bacterial and compounds, organic carbon compounds. integrated with other (6) 1970). benthic in the the f u n c t i o n of s y s t e m was d e d u c e d the a n n u a l secreted standing respiration, zone, and littoral Chydoridae these general heterotrophy of littoral et a l . i n p r e p a r a t i o n ; The turnover of s t u d i e s o n the g r o w t h a n d production and Wetzel some small Lake was water of input of hum i c The work on Lawrence plants, epiphytic community (4) bacterial crops of aquatic chemistry, ice, heterotrophy of organic lation dynamics and m e c h a n i s m s primary production and lake m e t a b o l i s m u n der materials, lakes e m p h a s i s o n the u p t a k e of by bacteria. investigated secretion, (3) special in t w o Allen, 19 69b , components from c o m p a r i s o n of the p o p u ­ (Rich, 1970; 1971; Ke en, in t h e tw o th e lakes lake through cycle. The d a t a c o l l e c t e d steady state system, suggest relative to 164 the o p e r a t i o n of the short life a span of 165 the algae and mean bacteria. During the g r o w i n g season t u r n o v e r of p a r t i c u l a t e constant, while organic instantaneous rates T u r n o v e r of C a r b o n Pools is r e l a t i v e l y could vary widely. (days)— Summer 1969 POC-production POC-sedimentation Cell C 15 (5— 38) 35 (25-55) 0.94 (0.14-3.7) Lawrence Lake Duck Lake 2 2 ( 8 — 50} not d e t e r m i n e d Primary production varied 200— fold carbon th e 7 . 9 ( 2 — 19) 2 0— fold i n L a w r e n c e L a k e and i n JDuck L a k e . A simple compartmental model linear d i f fe rentia l equations between components. to d e s c r i b e time lags a n d a l i n e a r r e l a t i o n s h i p b e t w e e n c o m p o n e n t s . The can be t he b a s i s the c a r b o n poo l sizes for tonic (1) t hat m a n y s u b s y s t e m and m a y n a n t of s o m e m a j o r o n J u l y 19), history of (2) theoretical fl o w s in L a w r e n c e a c t u a l l y be events there material at and D u c k influence (4) that lakes the p l a n k ­ a dominant determi­ (for e x a m p l e th e r a i n f a l l are t ime l i g h t ) , (3) the b o t t o m c a n a f f e c t p l a n k t o n i c and However, lags (e.g. previous t he p l a n k t o n d e t e r m i n e s p r o d u c t i o n m o r e the daily v a r i a t i o n in la kes , d e t e r m i n a t i o n of l ake s. perturbations annual that s y s t e m assumes in d i f f e r e n t q u a n t i f i c a t i o n of c a r b o n suggested closed the transfers no model This is p r e s e n t e d u s i n g that releases heterotrophy than from in s h a l l o w b i - a n n u a l r e s u s p e n s i o n of p a r t i c u l a t e thermal o v e r t u r n disrupts the normal cont r o l s 166 of p o o l size in t h e m o d e l . cannot predict accurately Thus, this a ny p a r t i c u l a r E a c h t e r m in t h e d i f f e r e n t i a l d e t e r m i n e d by or independent parameters f i x e d by l i n e a r most useful presented to p o i n t mechanisms Duck by than by 3X (Table 9). strictly depend by 2X, organic carbon but indicate that ra ther, crop above s ome SOX, a function of in the e p i l i m n i o n POC and the r a t e of r e m o v a l the threshold however, in s i z e of level. not a function the flux of The correlation and sedi­ the c o n s t a n c y in L a w r e n c e of POC was the POC standing R e s u s p e n s i o n of bottom material was potentially greater D u c k Lake; 2 X , in DO C The concen­ t i m e s by s e d i m e n t a t i o n linearly dependent upon that and b a c t e r i a l h e t e r o t r o p h y of epilimnetic the POC removal Lake POC by organic c a r b o n was not b e t w e e n t h e a m o u n t of P O C of between showed cel l c a r b o n by t h r o u g h t h e a lga e. m e n t a t i o n rates transfer on p r i m a r y p r o d u c t i o n . biomass, is it is Phytoplanktonic biomass did t r a t i o n of p a r t i c u l a t e of a l g a l this work on in t h e t w o l a k e s in a l g a l primary production like (Appendix B ) . s i z e s a n d r a t e s of 1.5X, (o fte n n o n - l i n e a r ) for m o r e L a k e e x c e e d e d L a w r e n c e L a k e in less equations m i g h t be further research and o u t the n eed of o r g a n i c c a r b o n annual cycle. A model in l a k e c a r b o n c y c l i n g Comparing pools regressions. in d i r e c t i n g simple model in the shallower the p h y t o p l a n k t o n c o n t r i b u t e d m o r e 167 o f the t o t a l of log P O C r = -0.15 material POC there and in t h a n in L a w r e n c e L a k e log c e l l v o l u m e , Lawrence is d e n s e r Lake). r = Thus (correlation 0.63 i n D u c k Lake; resuspended than planktonic detritus bottom and only briefly in the w a t e r c o l u m n c o n t r i b u t i n g t o PO C for o n l y a s hor t t i m e after resuspension by resides the currents. T h e m e a n c o n c e n t r a t i o n of d i s s o l v e d o r g a n i c c a r b o n a t lm in D u c k Lake. The La ke w a s D O C pool o n l y 1.4X larger than in D u c k L a k e d i d doubled p r i m a r y p r o d u c t i o n nor the hu mic m a t e r i a l s . Because and s e c r e t i o n o c c u r r e d o f DOC m u s t carbon flux through the higher Possibly, po ol size. Szekielda the c o n c e n t r a t i o n (1968, t he inorganic of p r i m a r y p r o d u c t i o n affects 1969) than a limiting interaction and b a c t e r i a l d e c o m p o s i t i o n w h i c h i n p u t of algal p r o d u c t i o n by s om e t h i n g other it. nutrient determines the not r e f l e c t th e increased in Duck Lake, be regulated in Lawrence t h e m e a n DOC developed a model for m a r i n e p l a n k t o n that a s s u m e d p r o d u c t i o n e q u a l l e d d e c o m p o ­ s i t i o n of o r g a n i c m a t t e r and that p o o l w a s b a s e d on s t o i c h i o m e t r i c predict oxygen, seawater might phosphate, f r o m its o r g a n i c the c o m p e t i t i v e decomposers as reactions. the organic He could and n i t r a t e c o n c e n t r a t i o n of content, and vice versa. H ow relationship between producers it e f f e c t s n u t r i e n t c o n t e n t of t h e size o f the DOC pool sys t e m ? size be l i n k e d to and 168 First order reaction kinetics d escribe how enzymes combine w i t h specific bacterial heterotrophs strates, Thomas by Eppley, Eppley and Cotsworth (1969) have the lowest velocity. inorganic was upon (e.g. Bacteria, showed (196 8), sub­ and McCarthy a n d E p p l e y a nd Generally transport constants continued growth (1933) Rogers, shown that algae c o m p e t e Algae may develop nutrients when 1969). how concentrate carbon—energy first-order mechanisms. have substrates, an d h o w b a c t e r i a a n d a l g a e c o n c e n t r a t e n u t r i e n t s from dilute solution. (196 9), functionally too, and enzymes nutrient the for N O ^ — smaller algae slowest uptake to h y d r o l y z e o r g a n i c sources cannot support phosphotases, Fitzgerald may be nutrient th at F u c u s d e c o m p o s e d et a l ., limited. Waksman faster when N O ^ — a d d e d and t h a t t h e r a t e o f m i n e r a l i z a t i o n d e p e n d e d the a m o u n t o f o r g a n i c Ulva decomposed more circumstances, nitrogen rapidly than Fucus in p a r t b e c a u s e o f content. Waksman bacteria in s t o r e d glucose until dations of c a r b o n in t h e p l a n t and Renn (1936) added. identical its g r e a t e r n i t r o g e n similarly seawater w o u l d not nitrate was under tissue. found t h a t o x idize added Thus, bacterial oxi­ s u b s t r a t e s m a y be l i m i t e d by some nutrient. Algae nutrient. and b a c t e r i a may co m p e t e Addition of organic substrate or this for a limiting nutrient or change in i n s o l a t i o n m a y shift in an the 169 competitive advantage to t h e b a c t e r i a o r t o p l a n k t o n an d u p s e t o r c h a n g e and inorganic adding pool inorganic rich waters dation of sizes. the equilibrium organic Ryhanen (1968) in F i n n i s h b o g s resulted first flora. reserve the b a c t e r i a had advan t a g e over the algae of p o o l s i z e of o r g a n i c depends upon a complex for i n the o x i ­ the c o m p e t i t i v e carbon in aquatic study. Duck Lake h ad lakes A p p e n d i x B) . dissolved organic carbon pool was than the greater is o f t e n l i m i t i n g (Wetzel, Despite influx of non— algal humic materials in D u c k L a k e w e r e systems and energy. availability t o a l g a l g r o w t h in h a r d w a t e r primary production T he c o n t r o l interaction between the bacteria s t o r e of p h o s p h a t e w h o s e M a n n y ejt al_. , 1971; W i t h the h i g h the n u t r i e n t s . for a v a i l a b l e n u t r i e n t s In the p r e s e n t 1965b, i n t o D u c k Lake, The supplied with more organic t h e D OC p o o l m o r e c o m p a r e d mation t h a n the b a c t e r i a in D u c k L a k e w a s ratio was 21: 1 to its the C : N ratio 13:1, w h i l e (Manny et a l ., in L a w r e n c e 1971). bacteria substrates t h e m to r a t e of in L a w r e n c e La k e . d u r i n g t he w i n t e r t he smaller p er unit in L a w r e n c e Lake. reduce 1971; the greater a higher nutrient content which allowed example, that th e l a r g e o r g a n i c c a r b o n r e s e r v e b y t h e p r e ­ DOC energy with found nitrate or phosphate to b r own humus- v i o u s l y N and P s t a r v e d b a c t e r i a l an d a l g a e the p h y t o ­ for­ For in the DOC Lake the C : N The potential 170 uptake rates three times for as simple organic h i g h in D u c k L a k e c o m p a r e d Lake while the production was (Table 13). The bacteria solved organic l a c k of o r g a n i c the a l g a e light are energy. As low energy and Lake). of lakes, substrates in t h e w a t e r . (energy) are limited and nutrients, accumulates c a r b o n of (e.g. is m a i n t a i n e d Lawrence by r e m o v a l on s e t t l i n g precip i t a t e d limitation Sphagnum removes same d i s ­ the decomposers lakes o l i g o t r o p h y nutrient potentially a result dissolved organic and iro n adsorbed In b o g s as h i g h l i m i t e d o n l y by n u t r i e n t s , n o t by nutrient value In m a r l to L a w r e n c e c a r b o n at a b o u t t h e carbon concentration In o l i g o t r o p h i c but only twice lv m a x ) w e r e in D u c k L a k e w e r e assimilating more organic by substrates CaCO^. is m a i n t a i n e d b e c a u s e ions f r o m t h e In s l i g h t l y m o r e incoming water eutrophic (Clymo, 1963, 1964). algae produce organic carbon of high nutrient and energy content w h ich the bacteria decompose a faster rate, maintaining and m i n e r a l i z e t he DO C p o o l centration p e r unit primary production. proposed after e x a m i n a t i o n of experimentally confirmed. exact biochemical bacterial carbon ation or For these conditions two at at a l o w e r c o n ­ This hypothesis, lakes, the immediate thermodynamic the nature of c a n be purposes the the al g a l - interaction which determines dissolved organic levels n e e d n o t b e k n o w n to a p p r e c i a t e in c l o s e d aquatic systems. its o p e r ­ VI. 1. Variation CONCLUSIONS in a l g a l contrasting light over primary production lakes was controlled primarily by the annual c ycl e, but the r e c e n t history of primary production was indicator for the 2. Rates of in t w o a better for p r e d i c t i o n of d a i l y p r o d u c t i o n s u c c e e d i n g d a y or t w o algal than was light. secretion during photosynthesis w e r e d e t e r m i n e d p r i m a r i l y by t h e r a t e s o f p r i m a r y production. Species differences determined whether cell number would correlate more 3. Percentage algal in th e p l a n k t o n or cell volume strongly with secretion. secretion increased with i n c r e a s e d d e p t h as t h e r a t e o f p r i m a r y p r o ­ duction decreased. The p e r c e n t a g e algal was higher on most dates marl 4. secretion in t h e m o r e o l i g o t r o p h i c lake. In c o m p a r i n g t h e two particulate organic lakes, the size of the carbon standing crop was 171 proportional to t h e rates of a l g a l d u c t i o n a n d n o t t h e standing c r o p p rim ary p r o ­ of p h y t o p l a n k ­ ton. P a r t i c u l a t e o r g a n i c carbon s e d i m e n t a t i o n of s eston was l i n e a r l y related t o the the size of t h e p a r t i c u l a t e o r g a n i c carbon s t a n d i n g crop d u r i n g th e g r o w i n g s e a s o n resulting in a con sta nt t u r n o v e r time. A b o u t 4 0% of t h e organic c a r b o n produced trophogenic z o n e was decomposed in t h e there. The p h y t o p l a n k t o n i c primary p r o d u c t i o n and respiration were whole a small p r o p o r t i o n of the l ake c a t a b o l i s m during t h e Heterotrophic winter. u p t a k e of small o r g a n i c s u b s t r a t e s was controlled p r i m a r i l y by t e m p e r a t u r e o v e r annual T h e uptake of g l u c o s e - U - cycle. glycolate—U— secretion, "humic" 14 C correlated w i t h Acetate uptake correlations with secretion, d i s s o l v e d o r g a n i c carbon, a n d upon temperature strates. C and lev e l s of a l g a l d i s s o l v e d organic c a r b o n , a cid s. 14 the and/or showed negative and a t h a n the u p t a k e w i t h total lower d e p e n d e n c e o f other s u b ­ It w a s p osi ti v e l y c o r r e l a t e d w i t h 173 humic acid c o n c e n t r a t i o n sources were indic a t i n g that significantly different it s than glucose and g l y c o l a t e . 8. Diurnal, weekly, h e t e r o t r o p h y of a nd a n n u a l v a r i a t i o n i n b a c t e r i a l small organic (glucose) corresponded to extra-cellular l oss o f o r g a n i c carbon during photosynthesis. Heterotrophic uptake potential coupled 9. substrates to t h e Terrestrial oscillated daily, level of runoff on th e h u m i c acid heterotrophy in substrate and was availability. had p r o n o u n c e d d i r e c t e f f e c t s c o n c e n t r a t i o n and b a c t e r i a l the t r o p h o g e n i c z one o f b o t h lakes. 10. T h e s i z e of t h e d i s s o l v e d o r g a n i c per uni t algal produ c t i o n v a r i e d the total phosp h o r u s the 11. f l u x of o r g a n i c Carbon the two budgets lakes d u c t i o n was community for in t h e carbon pool inversely with system, rather c a r b o n t h r o u g h the D O C the p l a n k t o n i c showed pool. s u b s y s t e m of that algal primary p r o ­ less important to in t h e shallower lake with other s o u r c e s of DOC. than th e h e t e r o t r o p h i c 174 TA B L E 16. A n n u a l p e l a g i a l carb o n b u d g e t s for Lawrence a n d Duck Lakes. Annual budget P r i mary produ c t i o n , {g C m -^ y r “ l) Lawrence L ake Duck Lake phytoplankton 46.7 48.4 2.7 3.9 32.8 n.d. 196.4 n.d. 8.1 n.d. 3.7 8.3 79.2 103.6 117.5 n.d. —2 -1 Rooted aquatic p l a n t s e c r e t i o n (g C m yr ) (3% of p r o d u c t i o n a f t e r Rich 1970b) 2.6 n.d. -2 -1 Autolysis of al g a l cells (g C m yr ) (20% x (primary prod. - 30% P.P)) 6.5 6.8 Al g a l secr e t i o n (g C m POC sedimen t a t i o n -2 (g C m Ca C O j sedi m e n t a t i o n yr -2 -1 yr ) -1 (g C a C O ^ m -2 ), 11m yr -1 ) A l lochtono u s d i s s o l v e d o r g a n i c carbon i n t roduc t i o n (g C m - ^ y r - 1 ) Hu m i c d i ss o l v e d o r g a n i c c a r b o n ( g C m Benthic r e s p i r a t i o n as g m “ 2 y r - l) -2 -1 y r ) (winter time rate Es timates of o t h e r studies Be n thic r e s p i r a t i o n (g C m “ 2 y r “ l) Estimated total (Rich 1970b) input to the DOC pool P e r cent of the p l a n k t o n p r o d u c t i o n 20.5 (18.0) 44% ♦Not c o m p a r a b l e to Lawrence Lake total; this lacks m a c r o p h y t i c excretion, a n d n o n p l a n k t o n i c organic c a r b o n o t h e r than h u m i c materials. LITERATURE CITED LITERATURE CITED Allen, H . L. 19 68. A c e t a t e in f r e s h w a t e r : Natural substrate concentrations determined by dilution bioassay. E c o l o g y 4 9 : 3 4 6 — 349. __________. 196 9a. C h e m o - o r g a n o t r o p h i c u t i l i z a t i o n of d i s s o l v e d o r g a n i c c o m p o u n d s by p l a n t i c a l g a e an d b a c t e r i a in a pond. Int. R e v u e ges . H y d r o b i o l . 5 4 :l-33. __________. 1969b. P r i m a r y p r o d u c t i v i t y , c h e m o —o r g a n o — trophy and nutritional interactions of epiphytic a l g a e a n d b a c t e r i a o n m a c r o p h y t e s in the l i t t o r a l o f a lake. Ph.D. T h e s i s . Michigan State Uni­ ve rs i t y . 186p. __________ . 1971. P r i mary p r o d u ctivity, c h e m o —o r g a n o — t h r o p h y , a nd n u t r i t i o n a l i n t e r a c t i o n s of e p i p h y t i c a l g a e a n d b a c t e r i a o n m a c r o p h y t e s in t h e l i t t o r a l of a lake. Ecol. M o n o g r . 4 1 : 9 7 - 1 2 7 . A m e r i c a n Public H e a l t h Assoc., A m e r . Water Wor k s A s s o c i ­ ation and Water P o l l u t i o n Control Federation. 196 5. S t a n d a r d M e t h o d s f o r the e x a m i n a t i o n of water and wastewater. 1 2 t h Ed. American Public H e a l t h A s s o c i a t i o n , N e w York. 6 26p. A n d e r s o n , G. C. a n d R. P. Z e u t s c h e l . 1970. R e l e a s e of d i s s o l v e d o r g a n i c m a t t e r by p h y t o p l a n k t o n in c o a s t a l a n d o f f s h o r e a r e a s of the n o r t h e a s t Pacific Ocean. Limnol. O c e a n o g r . 15:402-407. Beyers, R. J. and H. T. Odum. 1959. The u s e of carbon d i o x i d e to c o n s t r u c t p H c u r v e s for t h e m e a s u r e m e n t of p r o d u c t i v i t y . L i m n o l . O c e a n o g r . 4 : 4 9 9 — 502, B i r g e , E. A. and C. J uda y. 1926. O r g a n i c c o n t e n t of wa t e r . U.S . Bur. F i s h . , Bull. 4 2 : 1 8 5 — 205. lake __________ a n d _________ . 1934. Particulate and dissolved o r g a n i c m a t t e r in i n l a n d lakes. Eco l. M o n o g r . 4 :4 4 0— 4 74. 175 176 Black, A. P. a n d Ft. F. C h r i s t m a n . c h a r a c t e r i s t i c s of f u l v i c W o r k s A s s o c . 55 : 8 0 7 - 9 1 2 . 1963. acids. Chemical J. A m e r . Water Bledsoe, L. J. a nd G. M. V a n D y n e . 1969. E v a l u a t i o n of a di g i t a l c o m p u t e r method for analysis of comp a r t m e n t a l m o d e l s of e c o l o g i c a l s y s t e m s . Techni­ c a l R e p o r t o f S u b c o n t r a c t No. 2766, O a k R i d g e N a t i o n a l L a b o r a t o r y , O a k R i d g e , T e n n e s s e e . 6 4p. Bo raa s, M. e . 1969. C o n t r o l of e n e r g y f low i n a l a b o r a t o r y e c o l o g i c a l s y s t e m by n u t r i e n t f e e d b a c k mechanisms. Unpublished proposal, Kellogg, Bio­ logical Station, Michigan State University. 23p. Boyd, E. 1968. of p r o t e i n . C. Freshwater plants: a potential Econ. B o t . 2 2 : 3 5 9 — 368. source Brehm, J. 1967. Investigations of the amino a cid c o n ­ t e n t s o f H o l s t e i n w a t e r b o d i e s , e s p e c i a l l y Pl uss See. Archiv. Hydrobiol. Suppl. 32:313-435. (In Ge rman) Br own , A. M. 1968. ecosystem. 72p. A m a t h e m a t i c a l m o d e l of a n a q u a t i c M . S . The sis . University of Cincinnati. B r u n s k i l l , G. J. 1969. F a y e t e v i l l G r e e n L a k e , N e w York, II. P r e c i p i t a t i o n and s e d i m e n t a t i o n o f c a l c i t e in a m e r o m i c t i c lake w i t h l a m i n a t e d s e d i m e n t s . L i m n o l . O c e a n o g r . 1 4 : 8 3 0 — 847. Buck, E. 1968. The limnological and ecological signifi­ c a n c e of d i s s o l v e d y e l l o w o r g a n i c a c i d s i n n a t u r a l waters. M .S. Th esis . M i c h i g a n State University. 160p. Ciiave, K. E. 1965. Carbonates: Association with organic m a t ter in surface seawater. Science. 14 8 : 172 3— 1724. __________ a n d E. S u e s s . 1970. Calcium carbonate saturation in s e a w a t e r : Effects of d i s s o l v e d o r g a n i c matter. L i m n o l . O c e a n o g r . 1 5 : 6 3 3 — 637. C h r i s t m a n , R. F. 1964. T h e c h e m i s t r y of c o l o r i n w ate r. T r e n d s in e n g i n e e r i n g . U n i v e r s i t y of W a s h i n g t o n . Oct. 6 4 : 1 0 — 14 a n d 24. a n d M. G h a s s e m i . 1966. o r g a n i c c o l o r in water. A s s o c . 5 8 : 7 2 3 — 741. C h e m i c a l n a t u r e of J. A m e r . W a t e r W o r k s 177 Clymo, R. S. 1963. Io n e x c h a n g e i n S p h a g n u m a n d its r e l a t i o n to e c o l o g y . Ann. B o t . N.S. 2 7 : 3 0 9 - 3 2 4 . __________ . 1964. T h e o r i g i n of a c i d i t y B r y o l o g i s t . 6 7 : 4 2 7 — 431. in S p h a g n u m b o g s . D a u b n e r , I. 1969. T h e e f f e c t of s o m e e c o l o g i c a l f a c t o r s o n b a c t e r i a in w a t e r . Verh. Internat. Verein. L i m n o l . 1 7 : 7 3 1 — 743. Davis, M. 1968. P o l l e n g r a i n s in l a k e s e d i m e n t s : R e d e p o s i t i o n c a u s e d by s e a s o n a l w a t e r c i r c u l a t i o n . Science. 162:796-798. Duursma, E. K. 1963. The production of dissolved o r g a n i c m a t t e r i n the sea, as r e l a t e d to t h e primary gross production of organic matter. N e t h e r l a n d s J. S e a Res. 2 : 8 5 — 94. E d m o n d s o n , W. T. 1956. T h e r e l a t i o n of p h o t o s y n t h e s i s b y p h y t o p l a n k t o n to l i g h t in lakes. Ecology 37:161-174. _ . (ed.) 19 59. F r e s h w a t e r B i o l o g y , 2nd e d . W i l e y & Sons. N e w York. 124 8p. Eppley, John R. W. and J. L. C o a t s w o r t h . 1968. U p t a k e of n i t r a t e a n d n i t r i t e by P i t y l u m b r i g h t w e i l l i i — kinetics and mechanisms. J. P h y c o l . 4 : 1 5 1 - 1 5 6 . __________ a n d W. H. T h o m a s . 1969. C o m p a r i s o n of h a l f s a t u r a t i o n c o n s t a n t s for g r o w t h a n d n i t r a t e u p t a k e of m a r i n e p h y t o p l a n k t o n . J. P h y c o l . 5 :365-369. _ , J. N. R o g e r s , and J. j. M c C a r t h y . 1969. Half s a t u r a t i o n c o n s t a n t s for u p t a k e of n i t r a t e a n d a m m o n i u m by m a r i n e p h ytoplankton. Limnol. O c e a n o g r . 1 4 : 9 1 2 — 920. Fedorov, M.V. and T. K. D l y i n a . 1963. The use of humic a c i d b y s o i l a c t i n o m y c e s as t h e s o l e c a r b o n and nitrogen source. Microbiologiya 3 2 : 2 7 3 — 276. F i t z g e r a l d , G. P. 1969. Field and laboratory eval u a t i o n s of b i o a s s a y s f o r n i t r o g e n a n d p h o s p h o r u s w i t h a l g a e and a q u a t i c w eeds . Limnol. Oceanogr. 1 4 : 2 0 6 — 212. Fogg, G. E. 1952. T h e p r o d u c t i o n of e x t r a c e l l u l a r n i t r o g e n o u s s u b s t a n c e s by b l u e — g r e e n a l g a e . P r o c . Roy. S o c . B. 1 3 9 : 3 7 2 — 397. 178 Fogg, G. E. 1963. The r o l e o f algae i n d u c t i o n in a q u a t i c e n v i r o n m e n t s . Bu l l . 2:195-205. organic p r o ­ Brit. P h y c o l . __________ , D. J. Eagle, a n d M . e . Kin son . 19 69. The o c c u r r e n c e of g l y c o l l i c acid in n a t u r a l w a t e r s . V e r h . Int. V e r . L i m n o l . 1 7 : 4 8 0 — 4 8 4 . __________ , a n d C. N ale wa j k o . 1962. G l y c o l i c acid a s a n e x t r a c e l l u l a r p r o d u c t of p h y t o p l a n k t o n . Verh. Int. Verein. L i m n o l . 1 5 : 8 0 6 - 8 1 1 . __________ , a n d W. D. Watt. 1966. The k i n e t i c s of r e a l e a s e o f e x t r a c e l l u l a r p r o d u c t s of p h o t o s y n t h e s i s b y phytoplankton. I n C . R. G o l d m a n ( e d . ) , P r i m a r y p r o d u c t i v i t y in a q u a t i c e n v i r o n m e n t s . Mem. 1st. I t a l . I d r o b i o l . , 1 8 S u p p l . :167— 17 4 . F o r s b e r g , C. a nd 0. Taube. 196 7, Extracellular organic c a r b o n form some g r e e n algae. Physiol. P l a n t a r u m 20:200-207. Gaudy, A. F. 1962. S t u d i e s o n i n d u c t i o n and r e p r e s s i o n in a c t i v a t e d s l u d g e systems. A p p l . Microbiol. 1 1 :157-162. __________ , E. T. Gaudy a nd K. Komolrit. 19 63. Multic o m p o n e n t s u b s t r a t e u t i l i z a t i o n b y natural p o p u ­ l a t i o n s and a p u r e c u l t u r e of E s c h e r i c h i a c o l i . A p p l . Microbiol. 1 1 :157-162. G h a s s e m i , M. and R. F. C h r i s t m a n . 1 968 . Properties of t h e y e l l o w o r g a n i c m a t t e r of n a t u r a l waters. L i m n o l . Oceanogr. 1 3 : 5 8 3 - 5 9 7 . Goldman, R. 1960. P r i m a r y p r o d u c t i v i t y and limiting f a c t o r s in three l a k e s of the A l a s k a n P e n n i n s u l a . Ec o l . Monogr. 30 :2 0 7 — 230. __________ , R. M. Gerletti, p. J o v o r n i c k y , U. M e l c h i o r r i S a n t o l i n i , and E. D e Amezaga. 1968. Primary productivity, b a c t e r i a l , phyto— a n d zooplankton in L a k e Maggiore: Correlations and relationships w i t h ecological f a c t o r s . Mem. 1 s t . Ital. Idrobiol. 23:49-127 . , a n d R. G. W e t z e l . 1963. A s t u d y of the p r i m a r y p r o d u c t i v i t y o f Clear L a k e , C a l i f o r n i a . E c o l o g y 44:283-294. 179 G o l t e r m a n , H. L. 1964. Mineralization of algae under s t e r i l e c o n d i t i o n s or by b a c t e r i a l b r e a k d o w n . Verh. I n t e r n a t . Verein. Limnol. 15:544-548. _________ . 1968. I n v e s t i g a t i o n s o n p h o t o s y n t h e s i s a nd m i n e r a l i z a t i o n in e x p e r i m e n t a l pon ds. Mit t. I n t e r n a t . V e r e i n . Limnol. 1 4 : 2 5 - 3 0 , G r a n h a l l , U. and A. V. Hofs t e n . 1969. T he u l t r a s t r u c t u r e o f a c y a n o p h a g e a t t a c k on A n a b a e n a v a r i a b i l i s . P h y s i o l . P l a n t a r u m 22: 7 1 3 - 7 22. H a m i l t o n , R. D., K. M. M o r g a n , a n d J. D. H. S t r i c k l a n d . 1966. The g l u c o s e u p t a k e k i n e t i c s o f s o m e m a r i n e bacteria. C a n . J. M i c r o b i o l . 1 2 : 9 9 5 — 1003. H a r g r a v e , B. T. 1969. E p i b e n t h i c a l g a l p r o d u c t i o n and c o m m u n i t y r e s p i r a t i o n in t h e s e d i m e n t s o f M a r i o n Lake. J. F i s h . Res. B d . C a n . 2 6 : 2 0 0 3 — 2026. Ha rtman, R. T. 1959. A l g a e and m e t a b o l i t e s of n a t u r a l w a t e r s , p 3 8 — 45. In C, A. T r y o n and R. T. H a r t m a n ( e d s . ) . T h e e c o l o g y of a l g a e . Special P u b l i ­ c a t i o n #2, P y m a t u n i n g L a b o r a t o r y , U n i v e r s i t y of Pittsburg. H e l l e b u s t , J. A. 1965. E x c r e t i o n o f so me o r g a n i c c o m ­ p o u n d s by m a r i n e p h y t o p l a n k t o n . L i m n o l . O c e a n o g r . 10 : 1 9 2 - 2 0 6 . _________ . 1967. E x c r e t i o n of o r g a n i c c o m p o u n d s b y c u l t u r e d and n a t u r a l p o p u l a t i o n s of m a r i n e p h y t o ­ plankton. In G. H. L a u f f (ed.). Estuaries. P u b l . Am. A s s o c . Adv. Sci. 8 3 : 3 6 1 — 366. Henrici, Hicks, Ho bbie, A. T. 1938. S t u d i e s of t h e f r e s h w a t e r b a c t e r i a IV. S e a s o n a l f l u c t u a t i o n s o f l a k e b a c t e r i a in r e l a t i o n to p l a n k t o n p r o d u c t i o n . J. Bact. 3 5:129-139. S. E. and F. G. Car ey. 1968. Glucose d e t ermi­ n a t i o n in n a t u r a l waters. Limnol. Oceanogr. 13 : 3 6 1 - 3 6 2 . J. E. 1967. G l u c o s e a n d a c e t a t e in f r e s h w a t e r : c o n c e n t r a t i o n s a n d t u r n o v e r r a t e s . p24 5— 2 51. In H. L. G o l t e r m a n and R. S. C l y m o (eds.). Chemical e n v i r o n m e n t i n t he a q u a t i c h a b i t a t . N.V. Noord-Hollandsche Uitgevers M a a t s h c a p p i j , Amsterdam. 180 Ho bbl e, J. E. a n d C. C. C r a w f o r d . 1969. Bacterial uptake of organic substrate: n e w m e t h o d s of s t u d y and a p p l i c a t i o n to e u t r o p h i c a t i o n . Verh. Int. Ver. Limnol. 17:725-730. _____ # a n d K. L. Webb. 1 968. A m i n o acid , "flux in a n e s t u a r y . Science. 159:1463-1464. a n d R. T. W r i g h t . 19 65. Bioassay with bacterial "uptake k i n e t i c s : Glucose in freshwater. L i m n o l . O c e a n o g r . 1 0 : 4 7 1 — 4 74. 1968 and o f b a c t e r i a in l a k e s 14:64-71 Limnol H u t n e r , S. H. and L. Algae. Ann. A n e w m e t h o d for t h e st udy Mitt. I n t e r n a t . V e r e i n . Provasoli. 1964. Nutrition of Rev. P l a n t P h y s i o l . 1 5 : 3 7 — 56. H u t c h i n s o n , G. E . 1943. T h i a m i n e i n l a k e w a t e r s and aquatic organisms. Arch. B i o c h e m . 2 : 1 4 3 - 1 5 0 , __________. 1957. A treatise on Limnology. Vol. W i l e y a n d Sons. N e w York. p l 6 4 — 194. I. J o h a n n e s , R. E. 1968. N u t r i e n t r e g e n e r a t i o n in la kes a n d oceans. In D r o o p , M. R. a n d E. J. F e r g u s o n W o o d (eds.). A d v a n c e s in M i c r o b i o l o g y o f th e Se a I. p20 3 — 213. Kalff, J. 1967. P h y t o p l a n k t o n a b u n d a n c e and p r i m a r y p r o ­ d u c t i o n in t w o a r c t i c p o n d s . E c o l o g y 4 8 : 5 5 8 — 565. Kalle, K. 1949. F l u o r e s z e n z and G e l b s t o f f in B o t n i s c h e n und Finnischen Meerbusen. D e u t . H y d r o g . Zeit. 2 : 1 1 7 — 12 4. Keen, R. 197 0. P o p u l a t i o n d y n a m i c s o f C h y d o r i d s (Chydo— r i dae ) in L a w r e n c e Lake, M i c h i g a n . Ph.D. Th e s i s . M ichigan State University. 66p. Kr aus e, H. R. 1964. Zur C h e m i e u n d B i o c h e m i c d e r Zertsetzung von Susswasser Organismen, unter besonderer Beruksichtigung des Abbaues der organischen Phos­ p h o r k o m p o n e t e n . V e r h , I n t e r n a t . V e r e i n . Limnol. 15 :549 — 561. Lefevre, M . , H. Ja kob , and M. N i s b e t . 1950, S u r la secretion par certaines C y a n o p h y t e s , de substances a l g o s t a t i q u e s d a n le s c o l l e c t i o n s d ' e a u n a t u r e l l e s . C . R. A c a d . S c i . , P a r i s 2 3 0 : 2 2 2 6 . 181 Lefevre, M., H. J a k o b , a n d M. N i s b e t . 1951. Compati­ b i l i t i e s et a n t a g o n i s m e s e n t r e a l g u e s d ' e a u d o u c e d a n s les c o l l e c t i o n s d ' e a u n a t u r e l l e s . V e r h . Int. V e r e i n . L i m n o l . 11:224-. __________ , M. Nis bet , a n d H. Jakob. 1949. Action des sub­ stances excretes, en culture, par certaines e s p e c i e s d ' a l g u e s , sur le m e t a b o l i s m e d *a u t r e s especies d*algues. Verh. Int. V e r e i n . L i m n o l . 10:259. L e v e r e t t , F. and F. B. Tay lor. 1915, The pleistocene o f I n d i a n a and M i c h i g a n a n d the h i s t o r y o f th e G r e a t Lakes. U.S. Geol. Surv. M o n o g r . 5 3 : 5 2 9 p « Le wis , A. a n d R. L. S t a r k e y . 1969. Decomposition of p l a n t t a n n i n s b y some so il m i c r o o r g a n i s m s . Soil S c i e n c e 1 0 7 : 2 3 5 — 241. L i n d e m a n , R. L. 1941. E x p e r i m e n t a l s i m u l a t i o n of w int e r a n a e r o b i o s i s . A S y m p o s i u m on Hydrobiology, U n i v e r s i t y of W i s c o n s i n , M a d i s o n 1941. p392-393. Lund, J. W. G . , C. K i p l i n g , and E. D. Le C r e n . 1958. The inverted microscope method of estimating algal n u m b e r s a n d t h e s t a t i s t i c a l b a s i s of e s t i m a t i o n s by c o u n t i n g . Hydrobiologia 11:143-170. M a k s i m o v a , I. V. and M. N. P i m e n o v a . 1969. Liberation of o r g a n i c a c i d s by g r e e n u n i c e l l u l a r al g a e . M i c r o b i o l o g i y a 37:77-86. M a n d o s s i a n , A. a n d R. P. M a c i n t o s h . 1960. Vegetation z o n a t i o n o n t h e s h o r e o f a s m a l l lake. Amer. M i d i . Nat. 6 4 : 3 0 1 - 3 0 8 . Ma nny , B. A. and C. A. S. in s t r a t i f i c a t i o n s u r f a c e w a t e r s of Cong. Great Lakes Hall, 1969. Diurnal change and d i s s o l v e d o x y g e n in t h e Lake Michigan. P r o c e e d . 1 2th Res. p 6 6 2 — 634. , M. C. M i l l e r , and R. G. W e t z e l . 1971. Ultra­ v i o l e t c o m b u s t i o n of o r g a n i c n i t r o g e n c o m p o u n d s in l a k e w a t e r . Li mno l. O c e a n o g r . 1 6 : 7 1 — 85. Mateles, R. I. a n d S. strate uptake Sci. T e c h n o l . K. Chian. 1969. K i n e t i c s of s u b ­ i n p ure and m i x e d c u l t u r e . Environ. 3 : 5 6 9-5 74. 182 M e g a r d , R. O. 1968. P l a n k t o n i c p h o t o s y n t h e s i s and t h e e n v i r o n m e n t o f c a l c i u m c a r b o n a t e d e p o s i t i o n in lakes. 3 1 s t Am. S o c . Lim n o l . O c e a n o g r . C o n ' fe re n c e , M a d i s o n , W i s c o n s i n . (Abstr.) M e n z e l , D. W. a n d R. F. V a c c a r o . 1964. The measurement of d i s s o l v e d o r g a n i c a n d p a r t i c u l a t e o r g a n i c c a r b o n in sea w a t e r . Limnol. Oceanogr. 9:138-14 2 Merz, R. Moore, Moss, C., R. G. Z e h n p f e n n i g a n d J. R. Kli ma. 1962. C h r o m a t o g r a p h i c assay of extracellular products of a l g a l m e t a b o l i s m . J. W a t e r Po l l . C o n t r o l Fed. 34 :103— 115. B. G. a n d R. G. T i s c h e r . 1965. Biosynthesis of an e x t r a c e l l u l a r p o l y s a c c h a r i d e b y t h e b l u e - g r e e n algal A n a b a e n a flos-aquae. C a n J. M i c r o b i o l . 1 1 : 8 7 7 - 6 6 5 . ----------------B. Mullin, 1969. V e r t i c a l h e t e r o g e n e i t y in t h e w a t e r c o l u m of A b b o t s P o n d I. D i s t r i b u t i o n of t e m p e r ­ ature and dissolved oxygen. J. E c o l . 5 7 : 3 8 1 - 3 9 6 . M. M . , P. R. Slo a n , a n d R. W. E p p l e y . 1966. R e l a t i o n s h i p between c a r b o n content, cell v o l u m e an d a r e a i n p h y t o p l a n k t o n . Limnol. Oceanogr. 11: 307 -31 1. N a l e w a j k o , C. 1966. P h o t o s y n t h e s i s a n d e x c r e t i o n in v a r i o u s p l a n k t o n i c algae. Limnol- Oceanogr. 1 1 :1- 1 0 . __________ and L. M a r i n . 1969. Extracellular production in r e l a t i o n to g r o w t h of f our p l a n k t o n i c a l g a e and p h y t o p l a n k t o n p o p u l a t i o n s f r o m L a k e O n t a r i o . Can. J. Bot. 4 7 : 4 0 5 - 4 1 3 . N a u w e r c k , A. 1963. Die B e z iehungen z w i s c h e n Z o o p l a n k t o n and P h y t o p l a n k t o n in See Erken. S y m b . Bot. Upsal, 17:1-16 3 . O'Brien, W. J. 1970. E f f e c t s of n u t r i e n t e n r i c h m e n t on the p h y t o p l a n k t o n - i n t e r a c t i o n s in e i g h t e x p e r i ­ mental ponds. Ph.D. T h e s i s . Michigan State U n i ­ versity . Ohle, 1958. D i u r n a l p r o d u c t i o n and d e s t r u c t i o n r a t e s of p h y t o p l a n k t o n in lakes. Rapp. Proc. V erb . 1 4 4 :129-131. W. 183 O v e r b e c k , J. 197 0. A c o m p u t e r a n a l y s i s o f the d i s ­ t r i b u t i o n p a t t e r n o f p h y t o p l a n k t o n and b a c t e r i a in l ake s, m e a s u r e m e n t o f r a t e o f m i c r o b i a l d e c o m p o s i t i o n of organic m a t t e r by means of kine tic parameters a n d remarks o n the bacterial p r o ­ d u c t i o n in l a k e s . In P r o c e e d . S y m p o s i u m o n P r o d u c t i v i t y P r o b l e m s of F r e s h w a t e r s , Z. K a j a k (ed.). p o l i s h A c a d e m y of S c i e n c e s , W a r s a w . In press. Otsuki, A. 1968. B i o g e o c h e m i c a l s t u d i e s o n the p r o ­ d u c t i o n of d i s s o l v e d o r g a n i c m a t t e r in r e l a t i o n to food chain of the hydrosphere. Ph.D. T h e s i s . T o k y o M e t r o p o l i t a n U n i v e r s i t y , Japan. 79p. __________ a n d T. H a n y a . 1965. Some precursors of humic a c i d in r e c e n t l a k e s e d i m e n t s s u g g e s t e d b y i n f r a r e d spectra . G e o c h i m i c a et C o s m o c h i m i c a A c t a 31 :150 5— 1515 . Padan, E . , M. Shilo, a n d N. Kislev. 1967. I s o l a t i o n of " c y a n o p h a g e s " f r o m f r e s h w a t e r p o n d s and t h e i r interaction w ith Plectonema boryanum. Virology 32:234-246. Pa rs o n s , T. R. and J. D. H. S t r i c k l a n d . 1962. O n the p r o d u c t i o n of p a r t i c u l a t e o r g a n i c c a r b o n b y h e t e r o t r o p h i c p r o c e s s e s in s e a wa ter . D e e p S ea Res. 8:211-222. Pomeroy, L>. R. 1970. T h e strategy of mineral cycling. In R. F. J o h n s t o n ( e d .) Ann. Rev. E c o l . a n d S y s t e m a t i c s Vol. 1 : 1 7 1 — 190. Po tte r, F. 1964. P l a n k t o n i c and b e n t h i c b a c t e r i a o f l a k e s and pon ds, p. 14 8— 166. In H. H e u k e l e k i a n a n d N. C. D o n d e r o (eds.). Principles and A p p l i ­ c a t i o n s in A q u a t i c M i c r o b i o l o g y , J o h n W i l e y and so n s , N e w York. Prakash, M. a n d R. F. R a s h i d . 1968. Influence of humic s u b s t a n c e s on t h e g r o w t h o f m a r i n e p h y t o p l a n k t o n d i n o f l a g e l l a t e s . Limnol. Oceanogr. 13:598-606. P r o v a s o l i , L. 1958. N u t r i t i o n a n d e c o l o g y of p r o t o z o a a n d algae. A n n . Rev. M i c r o b i o l . 1 2 : 2 7 9 - 3 0 8 . Rich, P. H. 1970a. Post settlement s o u t h e r n M i c h i g a n m a r l lake. 1970:3-9. influences u pon Mich. Botanist a 184 Rich, P. H. 19 7 0 b . U t i l i z a t i o n o f b e n t h i c d e t r i t u s in a m a r l lake. Ph.D. T h e s i s , M i c h i g a n S t a t e U n i ­ versity. 87p. , R. G. W e t z e l , an d N. V a n T h u y . 1971. Distri­ bution, p r o d u c t i o n and role of aquatic m a c r o p h y t e s in a s o u t h e r n M i c h i g a n m a r l lake. Freshwater B i o l o g y 1 : 3 — 21. R y h a n e n , R. 1968. Die Bedeutung der Humussubstanzen Stoffhaushalt der Gewasser Finlands. Mitt. Internat. V e r e i n . L i m n o l . 1 4 : 1 6 8 — 178. Ryther, im J. H. a n d D. W. M e n z e l . 19 6 5. C o m p a r i s o n of t h e 1 4C — t e c h n i q u e w i t h d i r e c t m e a s u r e m e n t o f p h o t o ­ synthetic c a r b o n fixation. L im n o l . O c e a n o g r . 1 0 :490-492. S a u n d e r s , G. W. 1957. Interrelations of dissolved organic matter and phytoplankton. Bot. Rev. 2 3 : 3 8 9 - 4 1 0 . __________ . 1963. The biological c h a r a c t e r i s t i c s of fresh­ w a te r. Rept. No. 10, G r e a t L a k e s R e s e a r c h D i v . , U n i v e r s i t y o f M i c h i g a n , A n n A r b o r . p 2 4 5 — 257. __________ . 1969. S o m e a s p e c t s o f f e e d i n g in z o o p l a n k t o n . p556-573. In E u t r o p h i c a t i o n : C a u s e s , c o n s e ­ quences, correctives. Nat. A c a d . Sci., W a s h i n g t o n , D.C. __________ , and T. A. S t o r c h . 1971. Coupled oscillatory c o n t r o l m e c h a n i s m s in a p l a n k t o n i c s y s t e m . Natuie 230:58-60. __________ , F. B. T r a m a , a nd R. W. B a c h m a n n . 1962. Evalu­ a t i o n of a m o d i f i e d 1 4C t e c h n i q u e for s h i p b o a r d e s t i m a t i o n o f p h o t o s y n t h e s i s in l a r g e lakes. Publ. G r e a t L a k e s Res. D i v . , U n i v e r s i t y o f M i c h i g a n . No. 8. 61p. Savage, P. D. V. 1969. Studies on size fractionation o f p h y t o p l a n k t o n in t e m p e r a t e a n d t r o p i c a l inshore waters. X I I n e r n a t . Bot. C o n g r e s s , S e a t t l e p. 189. (Abstract) S e k i , H. 1968. Relation between production and m i n e r a l i ­ z a t i o n of o r g a n i c m a t t e r in A b u r a t s b o . I n l e t , Ja pan . J. F i s h Res. Bd. C an. 2 5 : 6 2 5 — 637. Shapiro, J. 1957. C h e m i c a l and b i o l o g i c a l y e l l o w o r g a n i c a c i d s of l a k e w a t e r . O c e a n o g r . 2 : 1 6 1 — 179. s t u d i e s o f the Limnol. 185 Shapiro, J. 1969. Iron in n a t u r a l w a t e r s — i t s c h a r a c ­ t e r i s t i c s and b i o l o g i c a l a v a i l a b i l i t y as d e t e r ­ m i n e d w i t h the f e r r i g r a m . Verh. I n t e r n a t . V e r e i n . Li mnol. 1 7:4 5 6 — 466. Sieburth, J. M c N . and A. J e n s e n . s u b s t a n c e s in the s e a I. m a t e r i a l ) in t e r r e s t r i a l J. e x p . mar . Biol. E c o l . Smith, 1968. S t u d i e s on algal G e l b s t o f f (humic and m a r i n e waters. 2 : 1 7 4 — 189. F. E. 1969. Effects of enrichment in mathem a t i c a l models, p631-645. In E u t r o p h i c a t i o n : Causes, c o n s e q u e n c e s , c o r r e c t i v e s . Nat. A c a d . Sci., W a s h i n g t o n , D.C. Sorokin, Y. I. 1959. De t e r m i n a t i o n of the isotopic d i s c r i m i n a t i o n by p h o t o s y n t h e s i s in c u l t u r e s of S c e n e d e s m u s q u a d r i c a u d a . Bull, Inst. Biol. V o d o k h r a n i l i s h c h 4:7 — 9. (In R u s s i a n ) St e e m a n n N i e l s e n , E. 1951. M e a s u r e m e n t of the p r o ­ d u c t i o n o f o r g a n i c m a t t e r in the sea by m e a n s of C — 1 4 . Nature 1 6 7 : 6 8 4 — 685. 14 1952. T he use o f r a d i o i s o t o p e c a r b o n ( C) for m e a s u r i n g o r g a n i c p r o d u c t i o n in th e sea. J. d u C o n s e i l I n t e r n a t . Explor. M e r 1 8 : 1 1 7 - 1 4 0 . Strathman, R. R. 1967 . E s t i m a t i n g the o r g a n i c c a r b o n c o n t e n t o f p h y t o p l a n k t o n fr om c e l l v o l u m e and plasma volume. L i m n o l . O c e a n o g r . 1 2 : 4 1 1 — 418. Strickland, J. D. H. 1960. M e a s u r i n g t h e p r o d u c t i o n of marine phytoplankton. Bull. F i s h . Res. B d . Can. 122:17 2 p . _________ , a n d T . R. Parsons. 1965. analysis. Bull. 1 25. F i s h . O t t a w a . 203p. A manual of seawater Res. Bd. Can ., _________ and _________ . 1 9 6 8 . A p r a c t i c a l h a n d b o o k of s e a w a t e r analys i s . B u l l . 167. F i s h . Res. B d . Can., O t t a w a . 311p. S t u m m — Z o l l i n g e r , E. 1966. E f f e c t s of i n h i b i t i o n and r e p r e s s i o n of the u t i l i z a t i o n o f s u b s t r a t e s b y heterogeneous bacterial communities. Appl. M i c r o b i o l . 14:654— 6 6 4 . 1969. S u b s t r a t e u t i l i z a t i o n in h e t e r o g e n e o u s ba c terial communities. J. W a t e r P o l l . C o n t . Fed. 2 0 : R 2 1 3 — R229. 186 S z e k i e l d a , K-H. 1968. E i n C h e m i s c h e s M o d e l l fur d e n A u f und Abbau o r g a n i s c h e n M a t e rials u n d dessen A n w e n d u c n g in d e r O f f e n e n See. J. C o n d . perm. Int. E x p l o r . M e r 3 2 : 1 8 0 — 187. __________ . 1969. The a p p l i c a t i o n of a chemical model to c a l c u l a t e t he " t h e o r e t i c a l " o r g a n i c c a r b o n in s e a w a t e r . J. du C o n s e i l 3 3 : 1 4 — 19. Tolbert, N. and L . Zill. 1956. Excretion of glycolic acid by algae dur i n g photosynthesis. J. Biol. Chem. 2 2 2 : 8 9 5 - 9 0 6 . T o y o d a , Y., S. H o r r i e , a n d Y. S a i j o . 1968. Studies on the s e d i m e n t a t i o n in L a k e B i w a f r o m t h e v i e w p o i n t of lake metabolism. Mitt. Internat. Verein. L i m n o l . 1 4 : 2 4 3 — 255. U t e r m o h l , H. 1958. Zur V e r v o l l k o m m u n g d e r q u a n t i t a t i v e phytoplankton methodik. Mitt. int. V e r e i n . L i m n o l . 9:38p. V a c c a r o , R. F., S. E. H i c k s , H. W. J a n n a s c h , a n d F. G. Carey. 1968. T h e o c c u r r e n c e a n d r o l e of g l u c o s e in s e a w a t e r . L i m n o l . O c e a n o g r . 1 3 : 3 5 6 — 360. __________ , a n d H. W. J a n n a s c h . 1966. Studies on hete r o — t r o p h i c a c t i v i t y in s e a w a t e r b a s e d o n g l u c o s e assimilation. Limnol. Oceanogr. 11:596-607. V a r m a , M. M. a n d F. D i G i a n o . u p t a k e by d e a d al g a e . 40:613-626. 1968. K i n e t i c s of o x y g e n J. W a t e r P o l l . Cont. Fed. Veatch, J. O. 1953. S o i l s a n d l a n d of M i c h i g a n . M i c h i g a n State Coll e g e Press, East Lansing. 24 lp. Verduin, J. 1956. E n e r g y f i x a t i o n and u t i l i z a t i o n b y n a t u r a l c o m m u n i t i e s in w e s t e r n L a k e Erie. Ecology 37:40-50. __________ . 1960. Phytoplankton communities of western L a k e E r i e a n d the C O 2 a n d O 2 c h a n g e s a s s o c i a t e d w i t h them. L i m n o l . O c e a n o g r . 5 : 3 7 2 — 380. __________ , E. E. W h i t w e r , a n d B. C. C o w e l l . 1959. Maximal p h o t o s y n t h e t i c r a t e s i n na tur e. S c i e n c e 130: 26 8-2 69. 187 V o l l e n w e i d e r , R . A. 1965. C a l c u l a t i o n m o d e l s of p h o t o ­ s y n t h e s i s —d e p t h c u r v e s a nd s o m e i m p l i c a t i o n s re g a r d i n g d a y rate e s t i mates in prim a r y p r o ­ duction measurements. Mem . 1st. Ital. I d r o b i o l . 18 S u p p l . : 4 2 5 — 457. Wa l s h , G. E. 1965a. Studies on d i s s o l v e d carbohydrates in C a p e C o d w a t e r s . II. Diurnal fluctuations in O y s t e r P o n d . Lim nol. O c e a n o g r . 1 0 : 5 7 7 - 5 8 2 . . 1965b. s t u d i e s o n d i s s o l v e d c a r b o h y d r a t e s in C a p e C o d w a t e r s III. S e a s o n a l v a r i a t i o n in Oyster Pond and Wequaquet Lake, Massachusetts. L i m n o l . O c e a n o g r . 1 1 : 2 4 9 — 256. W a k s m a n , S. A. 1933. M a r i n e b a c t e r i a and t h e i r r o l e in t h e c y c l e o f l i f e i n the sea. I. Decomposition o f m a r i n e p l a n t a n d a n i m a l r e s i d u e s by b a c t e r i a . Biol. Bull. 6 5 : 5 9 - 7 9 . a n d C. E. R e n n . 1936. D e c o m p o s i t i o n of o r g a n i c m a t t e r in s e a w a t e r b y b a c t e r i a . III. Factors i n f l u e n c i n g t h e r a t e of d e c o m p o s i t i o n . Biol. Bull. 70:472-483. Watt, W. D. 1966. R e l e a s e of d i s s o l v e d o r g a n i c m a t e r i a l from cells of phytoplankton populations. Proc. R o y a l S o c . L o n d . B 1 6 4 : 5 2 1 — 551. __________ . 1969. P r i m a r y p r o d u c t i v i t y ra t e s o f i n d i ­ v i d u a l p h y t o p l a n k t o n s p e c i e s in r e l a t i o n to p o p u ­ l a t i o n d e n s i t y a n d d i v e r s i t y . p233. XI I n t e r ­ national B o t a n i c a l Congress Abstracts, Seattle, W a s h . ( A b s t r .> __________ a n d G. E. F o g g . 1966. T h e kinetics of e x t r a ­ cellular glycellate production by Chlorella p y r e n o i d o s a . J. Exp. Bot. 1 7 : 1 1 7 - 1 3 4 . W e i n m a n n , G. Von. 19 7 0 . G e l o s t e K o h l e n h y d r a t e und a n d e r e o r g a n i s c h e S t o f f e in n a t u r l i c h e n G e w a s s e r n u n d in K n l t u r e n v o n S c e n d e d e s m u s q u a d r i c a u d a . A r c h . H y d r o b i o l . S u p p l . 3 7 : 1 6 4 - 2 4 2^ Warshaw, R. L., P. J. B u r c a r , and M. C. G o l d b e r g . 1969. Interaction of pesticides w i t h natural organic material. E n v i r o n . Sci. T e c h n o l . 3 : 2 7 1 — 273. W e s t e n h o u s e , R. G. 1969. Dichromate sition and c a r b o n estimation. 26 :16 64— 16 67. reagent decompo­ F i s h Res. B d . Can. 188 Wetzel, R. G. 1964. A comparative study of the primary productivity o f higher aquatic p l a n t s , periphyton a n d p h y t o p l a n k t o n in a l a r g e s h a l l o w l a k e . Int. Rev. ges. H y d r o b i o l . 4 9 : 1 — 61. __________. 1965a. N e c e s s i t y for d e c o n t a m i n a t i o n of f i l t e r s in C — 14 m e a s u r e d r a t e s o f p h o t o s y n t h e s i s in f r e s h w a t e r s . E c o l o g y 4 6 : 5 4 0 — 542, _________ . 1965b. N u t r i t i o n a l a s p e c t s of a l g a l p r o d u c ­ t i v i t y in m a r l l a k e s w i t h p a r t i c u l a r r e f e r e n c e to enrichment bioassays and their interpretation. M e m 1st. Ital. I dro bio l. S u p p l . 1 8 : 1 3 7 - 1 5 7 . __________. 1966a. V a r i a t i o n s in p r o d u c t i v i t y o f G o o s e and h y p e r s e u t r o p h i c S y l v a n lakes, Indiana. Invest. I n d i a n a L a k e s a n d S t r e a m s 7 : 1 4 7 — 184. _________ . 1966b. Productivity and nutrient relationships in m a r l l a k e s o f n o r t h e r n I n d i a n a . V e r h , I nte rnat. V e r e i n . L i m n o l . 1 6 : 3 2 1 — 332. __________. 1967. D i s s o l v e d organic compounds and their u t i l i z a t i o n in two m a r l lakes. Hidrologia K o z l o n y 4 7 : 2 9 8 — 303. __________. 1968. D i s s o l v e d organic ma t t e r and p h y t o — p l a n k t o n i c p r o d u c t i v i t y i n m a r l lakes. Mitt In ter nat . V e r e i n . L i m n o l . 1 4 : 2 6 1 — 2 70. _________ . 1969. F a c t o r s i n f l u e n c i n g p h o t o s y n t h e s i s and excretion of dissolved o r ganic matter by aquatic m a c r o p h y t e s i n h a r d w a t e r la kes . V erh . Int er n a t . V e r e i n . L i m n o l . 1 7 : 7 2 — 85. __________. 1970. R e c e n t and p o s t g l a c i a l p r o d u c t i o n r a t e s of a m a r l lake. Limnol. Oceanogr. 15:491503 . _________ . 1971. T h e r o l e o f c a r b o n in h a r d —w a t e r lakes. Amer. S o c . L i m n o l . O c e a n o g r . S y m p o s i u m S e r i e s 1 :84-97. __________ an d H. L. A l l e n . 1971. F u n c t i o n s and i n t e r ­ actions of d i s s o l v e d o r g a n i c m a t t e r and the lit­ t o r a l zone i n l a k e m e t a b o l i s m a n d e u t r o p h i c a t i o n . In Kajak, Z. ( e d .}. P r o c e e d . I.B.P. S y m p o s i u m o n P r o ductivity Problems of Freshwaters. Polish A c a d e m y of S c i e n c e s , W a r s a w . (In P res s). , P. H. Rich, M. C. M i l l e r , a nd H. L. A l l e n . (In p r e p a r a t i o n ) . M e t a b o l i s m of d i s s o l v e d an d p a r t i c u l a t e d e t r i t a l c a r b o n in a t e m p e r a t e h a r d ­ w a t e r lake. 189 Wright, R. T. 1970. G l y c o l l i c acid uptake by planktonic bacteria. p521-536. In D . W. H o o d ( e d . ) , Organic m a t t e r in natu r a l waters. U n i v e r s i t y of Alaska, College, Alaska. __________ and J. E. H o b b i e . 196 5. Th e u p t a k e o f o r g a n i c s o l u t e s in l a k e w a t e r . Limnol. Oceanogr. 1 0:2 2-2 8. __________ and __________ . 1966. U s e of g l u c o s e , a c e t a t e b y b a c t e r i a and a l g a e in a q u a t i c e c o s y s t e m s . E c o l o g y 4 7 : 4 4 7 — 464. Zobell, C. E. a n d D. Q. A n d e r s o n . 1936. Observations of t h e m u l t i p l i c a t i o n of b a c t e r i a in d i f f e r e n t v o l u m e s of s t o r e d se a w a t e r a n d t h e i n f l u e n c e o f oxygen tension and solid surfaces. Biol. Bull. 71: 324 — 342. APPENDICES APPENDIX A P H Y SIC All—C H E M I C A L L I M N O L O G Y O F D U C K LAKE, K A L A M A Z O O CO., MICHIGAN Appendix A P h y s i c a l —C h e m i c a l L i m n o l o g y of D u c k L a k e , K a l a m a z o o C o ., M i c h i g a n D u c k Lake was selected the s y s t e m a t i c d i f f e r e n c e s reasons: (1) it h a d bottom of the be (3) system compared and (4) opportunity study of for s e v e r a l to v o l u m e ratio; angiosperms covering t he i m p o r t a n t to t h e o p e n - w a t e r twice (12 y g v e r s u s chemically to L a w r e n c e L a k e than 1.0 m e q compared area it c o n t a i n e d as L a w r e n c e L a k e respectively); surface aquatic l ak e c o u l d planktonic microflora; phosphorus in c a r b o n d y n a m i c s a high (2) c o n t r i b u t i o n of t h e fo r a c o m p a r a t i v e it w a s as m u c h 6 yg P 1 ^ a soft water (total a l k a l i n i t y to 4.5 m e q f r e s p e c t i v e l y ) . for f i n d i n g m a j o r d i f f e r e n c e s o f p l a n k t o n i c p r o d u c t i o n in t h e t o t a l in t h e less The importance lake m e t a b o l i s m was maximized. Several monitored Methods standard and q u a l i t a t i v e d i f f e r e n c e s are described (in p r e p a r a t i o n ) . dimicitic limnological parameters were previously Temperature pattern varying differential. two m e t e r s showed from s t r a t i f i c a t i o n was m a i n t a i n e d and 0® only to in t h e b i o t a n o t e d . in W e t z e l the e x p ected 2 4 °C. summer g r e w to w i t h i n in late J une and 190 The by a 6 QC t e m p e r a t u r e C e r a t o p h y l l u m d e m e r s u m L. of t h e s u r f a c e et a l . acted as a 191 mechanical h i n d r a n c e to m i x i n g d e p l e t i o n at 3m confirmed stable during summer and the su m me r . {F igure 37). tha t the s t r a t i f i c a t i o n was Anaerobisis occurred in win t e r under the b o t h periods. from greater The ice; t h a n 12 to l e s s the less ( F ig u re ( F i g u r e 39). 37). than 3 mg 0 2 1 ^ f r o m 170 lowered summer the pH o f increased decomposition of rooted The a l k a l i n i t y CaCOj equivalents 1 1 to (Figure 39). at C a + + — 1 1. 6 m g 1m: 1 70 m g Th e cations had 1 ^ over th e late phorus at l m ( F ig u re 40). th e f r o m 40 m g the summer I - 1 , K+ — 1.42 m g 1 showed enrichment 1969. in in A h igh c o n c e n t r a t i o n of p h o s ­ in m i d - M a y p r e c e d e d in th e s p r i n g , The annual M o s t o f the nitrogen was Duck N O ^ “ = 125 y g N 1 Lake: entire stratum when m a crophytes were d e c a y i n g summer by following annual means Total dissolved phosphorus the bottom caused the increased 0. 24 m g 9.0 aqua t i c p l a n t s and l- 1 , M g + + — 1.98 m g and N a + — less t han fall r a i n s an d f r o m 6.6 t o decreased probably responding to its CC > 2 e f f l u x . (Fi gure 38). the bicarbonate a l k a ­ The pH v a r i e d By late ranged ymho before T h e s u r f a c e m a x i m u m in p H w a s an algal bloom. p r o f i l e h ad evolved during t h a n 95 in J u n e w h e n s u m m e r phytoplankton growth linity in the surface oxygen concentrations Conductivity decreased turnover to Oxygen present a b l o o m of range was phytoplankton 8 — 80 in t h e o r g a n i c NQ2~ = 2 . 5 yg P 1 ^ . f o r m in yg N 1 1 , Figure 37. 192 Temperature (°C) and conductivity (umhos) isopleths in Duck Lake from September, 1968, to September, 1969. TEMPERATURE DEPTH (ai) 0 2 2b IS 16 u KM64 3 4 SEP OCT NOV DEC . JAN FEB. M AR APR MAY JU N . JU L AUG SEP. 193 (m) CONDUCTIVITY V100 ' >00 100 10095 .95 >00 EPTH 110 1)5120 I I 1)0 U10 125 SEP OCT NOV DEC JAN FEB MAR APR. MAY JJN JUL AUG. SEP Figure 38. Oxygen concentration (mg 0, l”1) in Duck Lake from September, 1968, to September, 1969. 194 OXYGEN CONCENTRATION T DEPTH Cm ) m o 2 i K) 12 . 1 1 8 " i;i SEP / a , NOV i//.lii! DEC :/ U x V Vsi : /' {nlf 1. C CT j i I |tiiii». 1 /{ | ■ ,:i .6 4 m g O jI1 JAN. FEB. [i \tl ll, MAR \ i APR 1 ! ; . L AUG. SEP MAY JU M JUL Figure 39. 196 pH and alkalinity (mg CaC03 l"1) isopleths in Duck Lake, September, 1968, to September, 1969. Cm) 0 DEPTH 70 72 4 SEP OCT. 7.6 7.6 72 7.0 NOV, DEC JA N FEB MAR APR MAY JU N JU L . AUG SEP Cm) DEPTH 2 - 3045 40 45 4 SEP O CT NOV DEC JA N FEB. MAR, APR. MAY JU N . JU L AUG. SEP 197 ALKALINITY (mgCaCOj I '1) 0 Figure 40 Total dissolved phosphorus (pg P 1 1; in Duck Lake, from September, 1968, to September, 1969. TOTAL DISSOLVED i x2 H a 10 S OCT NOV. 8 10 to JA N FEB ,I a 3 SEP DEC h— PHOSPHORUS ^ — ~ n ----------- 200 NH^+ = under 5 0 — 75 y g N 1 ^ , and o r g a n i c the ice in F e b r u a r y N = 5 0 0 — 550 y g N l - ^ (Manny e t al_. , 1971) . P h y t o p l a n k t o n cell n u m b e r s and v o l u m e s several maxima: May, 19 69, November, at lm. 1968, B i o m a s s of a l g a e d i d directly to peak cell numbers plankton were dominated 10y. The autumnal by v e r y primarily an u n i d e n t i f i e d in F e b r u a r y , Dinobryon 1969, was s p . caused T h e m a x i m u m on M a y and 5y. forms, 3 at l m w a s aureus lake a t l a r g e n u m b e r s of by t h e s e occurred over unknown Botryococcus v a l u e s of carbon, (Muell.). in M a y t h e y e a r of c e l l and algal but samples. G o m p h o s p h e a r i a , Anabaena, in A p r i l . perhaps volume on Braunii (Keutzing) A b l o o m of V o l v e x t he w h o l e surface of it w a s m i s s e d c o m p l e t e l y A m a j o r d e v e l o p m e n t of and June yielded volume, secretion. increase 6— 7y c r y p t o p h y t e a smaller Botryococcus subsurface The in c e l l v o l u m e The maximum cell the end of M ay , l es s t h a n smaller m i c r o f l a g e l l a t e . 2 2 was a larger (Ehrenb e rg ) Phyto­ The November pulse was an even (60X 35y). 42). Rhodomonas minuta 4y c h r y s o p h y t e . the p e a k and P e r i d i n i u m c i n c t u m the and and not correspond s m a l l e r n u m b e r s of an u n k n o w n s p e c i e s , Botryococcus June small populations were less t h a n 1969, (Figures 41 a n d (Skuja), smaller cryptomonads, microflagellates M a r c h —A p r i l , showed the h i g h e s t particulate Larger forms of an organic Gleocystis, T r a c h e l m o n a s , an d V o l v e x Figure 41. Algal cell numbers (# x 10^ 1 and algal cell volume (u3 x 109 1"1) at lm in Duck Lake. 20 202 10 0 SEP OCT FEB VAR AF*t MAY J jN SEP Algal cell numbers (# x 10^ 1 and algal cell volume (u3 x 109 1-1) in Duck Lake from September, 1968, to September, 1969, 203 Figure 42, PHYTOPLANKTON CELL NUMBERS x l 0 tfV 2 ° 3 4 SEP OCT NOV DEC JAN FEB MAR APR. MAY JUN. JUL. AUG. SEP w o PHYTOPLANKTON CELL VOLUMES u3x10! — ht 1 1------------ — ■300 SEP OCT NOV DEC. JAN FEB. MAR. APR MAY JUN. JUL AUG. SEP 205 globator Cl.) appeared numbers reached in l a t e s u m m e r w h e n s p e c i e s a maximum. increased dur i n g late Ciliates and r o t i f e r s also s u mmer. T h e r e w a s a l a r g e p o p u l a t i o n of b l u e g i l l , Lepomia machrochirus Rafinesque, hybrids in D u c k L a k e . crappie have been taken t h a n 1 5 c m long, larger animal forms were s o me L e p o m i s A few small bass and personal communication). less and from the lake (Dr. one Gerald T w e n t y — five bluegills, were older than large six years. Esch, all The pl ankton were noticeably scarce and the small d u r i n g mo st of the y e a r . APPENDIX B M O D E L F O R C A R B O N - F L O W IN T H E M I C R O ­ PLANKTON OF A L A K E AT lm Appendix Model Rates: a re specific for C a r b o n — F l o w in -the M i c r o p l a n k t o n o f a L a k e at lm r , rb , , e 3 , e 4 , d 1 , k 2 , k 3 , and k 4 r a t e s of t h e organism per B type mg C transferred per mg hour. Biomass: A = algae, solved o r g a n i c carbon, POC B = bacteria, — dead DOC = d i s ­ particulate organic carbon. X. TI- d A ^j-£- = k^A - r aA — If V — e 2A +P2^ = k 2B + k 3B - e 4B ~ r b B HI, IV' ~ e^A = e ^A + e 2A - k 2B d | t C = d lA ” e 3P O C dCOj dt _ a + e 3POC + e 4B - p 2A - k 3B - Sj^POC A + r B + p co - k A b *1 2 1 T h i s is a set o f s i m u l t a n e o u s d i f f e r e n t i a l e q u a t i o n s w h i c h d e s c r i b e t h e system. E a c h of the terms is i t s e l f a r e l a t i o n s h i p d e s c r i b i n g t h e t r a n s f e r b e t w e e n two b l o c k s . These are o f t e n nonlinear. The transfer t e r m s ar e b a s e d o n f u n c t i o n a l or r e g r e s s i o n a l r e l a t i o n ­ s h i p s in t e r m s of i n d e p e n d e n t p a r a m e t e r s . The model may be s i m u l a t e d u s i n g t h e a n a l o g c o m p u t e r or u s i n g f i n i t e d i f f e r e n c e solutions of the d i f f e r e n t i a l s on a large digital computer. Continuous Systems Programming, General P u r p o s e S i m u l a t i o n S y s t e m , o r D y n a m o II s i m u l a t i o n l a n g ­ u a g e s m a y b e u s e d to s i m p l i f y t h e p r o g r a m m i n g , T h i s m o d e l f o l l o w s t h e f o r m a t of B r o w n (1968) , B o r a a s (1969) , B l e d s o e and V a n D y n e (1969) , a n d S m i t h (1969) . 206 DOC 207 Model for Carbon-Flow in the Microplankton of a Lake at lm r = respiration; d = death; k = active uptake; s = sedimentation; e — excretion; p = passive diffusion. 208 I. Algae: 1. e i^ = e x c r e t o r y or secretory l os s o f D O C d u r i n g photosynthesis. Over a broad range loss fun c t i o n of the r a t e of p r i m a r y p r o - is a l i n e a r duction (Anderson and is a f u n c t i o n of a l g a l log where a lg a e) z biomass (Watt, b(A) k^A = primary production = A'p*X0e ^ If o Dark secretory secretion 19 6 6) . + b(A) is d a r k hour secretion. ^ = A ( P h o t o s y n ./ m g 2 _ —kz , = 1 e g cal o ^ I 1970). secre t i o n = a log p r o d u c t i o n a an d b a r e c o n s t a n t s , 2. _ = I Zeutschell, the rate of = solar N*V w h e r e cm —2 light received at a n y d e p t h . —1 min r a d i a t i o n at the lake p = c o n s t a n t of p h o t o s y n t h e s i s surface per unit algal biomass k = c o e f f i c i e n t of light extinction in w a t e r z = depth where N = n/n max = nutrient coefficient for photosynthesis there is no e f f e c t n = nutrient concentration n max = nutrient c o n e . above which on photosynthesis where V = z^/z^ = mixing at a m b i e n t factor for light light intensity, exposure 209 z^ =depth of t he e u p h o t i c z2 = d e p t h of a 0.02 d e n s i t y zone i n cr e as e c o m p a r e d to surface water w h e r e A = b i o m a s s of a l g a e a nd p = p h o t o s y n t h e s i s per u n i t a lg a l b i omass. 3. r 2 *A = algal respiration = A*RQ e w h e r e A = b i o m a s s of algae, xT e = b a s e of n a t u r a l logs. O at 0 C R q = r e s p i r a t i o n per u n i t b i o m a s s of a lg a e e xT = e x p a n s i o n of temp. respiration (T) of 0— 40°C. in the r a n g e of If Q^g = 2 then x = 0. 69. However, 4. DOC r 2 *A = d^-A losses. x k^ *A in the p r e v i o u s work. = d e a t h r a te of a l g a e - i m m e d i a t e a u t o l y t i c This is a lmost independent parameters. impossible to e s t i m a t e from It c o u l d b e an i m p e r i c a l c o n ­ s t a n t X a l g a l b i o m a s s or by d i f f e r e n c e : d, *A = 1 5. (k.A - e ..A - e ~ A - r + P t A) 1 1 2 z r2 e 2 *A = i m m e d i a t e a u t o l y s i s of d e ad cells, releas­ ing D O C = 1 0-30% o f the a l g a l c e l l c a rbon. e 2 -A = 10 -30% (k-jA - r &A - d ^ A - e-jA + p 2A) 210 6- ^2 *A = a -*-5a ^- u p t a k e of d i s s o l v e d g e n e r a l l y by d i f f u s i o n of D O C (Allen, organic a n d t hu s p r o p o r t i o n a l carbon; to t h e c o n e . 1969a) . p2*A = k^-DOC w h e r e k, is t h e d i f f u s i o n c o n s t a n t , d XI. Bacteria: 1. ^ 2 * B = *3 a c t e r ial u p t a k e o f d i s s o l v e d carbon compounds, a first order uptake which organic is t e m p e r a t u r e and nutrient dependent. k 2 •B = Z B*v Kt2 (DOCi)B*exT -N Z O 1 Kt2 + (DOC±} where K^ 2 DOC^ ~ transport for the = c o n c e n t r a t i o n of t h e B = bacterial v■ constant i c e ll n u m b e r s = v e l o c i t y of u p t a k e 106 bacteria at of t i*1*1 c o m p o u n d compound in n u m b e r s the i t compound ^ by 0 C. yfp e X 10^ m l 4 = the t e m p e r a t u r e c o r r e c t i o n u pt a k e , and T in w h i c h x is t h e temp, for b a c t e r i a l is a c o n s t a n t O in C. (near 0.069) 211 N - n/n = nutrient max coefficient where n — nutrient available (inorganic). nm a x = n u t ^ i e n t c o n c e n t r a t i o n a b o v e w h i c h there is no e f f e c t on t h e r a te o f uptake. 2. *c3 *b = b a c t e r i a l d e g r a d a t i o n detrital POC. over r a n g e us e d. th e This is a l i n e a r k ^ -B = w* POC *e a nd r e s p i r a t i o n of function of temperature xT where w is a c o n s t a n t for d e g r a d a t i o n o f POC day ^ at 0°C. In t h i s POC/ its photosyn. admittedly a crude temperature total study k ^ *PO C w a s replacement in it. POC was d e g r a d e d in t h e 3. assumed time approximation correction = bacterial the c o n c e n t r a t i o n in d a y s . but it No m o r e of This was incorporated than 65% of the epilimnion. secretory to be n e g l i g i b l e u n d e r losses. aerobic These were conditions in t he e p i l i m n i o n of l akes. 4. system rb*B = respiratory is at the steady l a t i o n of b a c t e r i a l loss state from bacteria. then there biomass compared If t h e is n o a c c u m u ­ to the fl u x o f 212 organic carbon passing through it. equals *B + k 3 *B, w h i c h m a k e s the a c c r u a l or equals In g e n e r a l , t e m p e r a t u r e d e p e n d e n t and a f unction of POC it size of the standing crop. III. Dissolved Organic Carbon (DOC) : 1. e^-A = algal aCk ^ 'A ) secretion duringphotosynthesis e^'A = algal X algal + © 2 ^. a u t o l y s i s u p o n ce l l cell death where This is the c o m p l e x independent parameters 3. algal death kinetics. 4. dation its exact (see 1.5). It h a s t he the t b ith s u b s t r a t e . assumed formed from d e g r a ­ It is t e m p e r a t u r e to b e n e g l i g i b l e in o l i g o t r o p h i c lakewater. 5. assumed probably e .•B = b a c t e r i a l 4 s e c r e t i o n or to b e in t h e negligible significant See form. of d e a d p a r t i c u l a t e c a r b o n . and follows form v = e ^ ' P O C = l os s of P O C as D O C dependent; 0.1 to function not d e p e n d e n t u p o n w h e r e S is t h e c o n c e n t r a t i o n of for = cell d e a t h = d ^ A ^ 2 B = ^ a c t e r ^a l u p t a k e o f DOC w h i c h first order II.l. = + b(A) see 1.1. 2. 0.3 the this fermentation; e p ilimnion of in t he h y p o l i m n i o n . lakes, 213 6. P 2 *^ = a l 9 a l h e t e r o t r o p h y , assumed IV. POC 1. d ^ A = algal death; 2. e ^ ’P O C = e x t r a c e l l u l a r to D O C w i t h o u t to be n e g l i g i b l e nion. in m o s t k^'B = bacterial and t h i s of t he P O C k 3 see (POC) : I. 4. e n z y m a t i c d i g e s t i o n of immediate uptake H a l f t i m e of 1968, kinetics; to b e n e g l i g i b l e . Particulate Organic Carbon 3. zero o r d e r Assumed circumstances. d i g e s t i o n o f PO C this process thesis). by b a c t e r i a . is Imperically in t h e e p i l i m — 3 5 — 60 d a y s this w as (Otsuki, from 35-67% formed or *B = .35 to .67 X photosynthetic F O £ _------ 7— replacement where photosynthetic r eplacement time = ^___________________ POC______ _______________ p r i m a r y p r o d u c t . - . 3 OX p r i m a r y p r o d u c t Upon better dependent resolution this ma y s a t u r a t i o n u pt a ke , l ar t o D O C u p t a k e . 4. s ^ PO C See II. a first-order substrate uptake simi­ 2. = sedimentation e p i l i m n i o n or d e p t h o f be a t w o - s t e p losses of POC interest. from In p r a c t i c e the t h is w a s ---time 214 33-6 5% of t h e Sj (POC) = net s^POC time. POC formed. Over the year i nput of C 0 2~C f r o m t h e = the n e t air. . 33 - .6 5 X P O C / p h o t o s y n t h e t i c replacement