YODER, Wayne Alva, 1943-ACARINA (ARTHROPODA: ARACHNIDA) ASSOCIATED WITH SELECTED MICHIGAN SILPHIDAE (COLEOPTERA).

Michigan State University, Ph.D., 1972 Entomology

University Microfilms, A XEROX Company, Ann Arbor, Michigan

ACARINA (ARTHROPODA: ARACHNIDA) ASSOCIATED WITH SELECTED MICHIGAN SILPHIDAE (COLEOPTERA)

Ву

Wayne Alva Yoder

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Zoology

PLEASE NOTE:

Some pages may have

indistinct print.

Filmed as received.

University Microfilms, A Xerox Education Company

ABSTRACT

ACARINA (ARTHROPODA: ARACHNIDA) ASSOCIATED WITH SELECTED MICHIGAN SILPHIDAE (COLEOPTERA)

By

Wayne Alva Yoder

The systematics of the Acarina associated with Michigan Nicrophorus, Silpha, and Necrodes are presented. Beetles were collected from cans baited with carrion of various types.

A total of 11,743 mites were identified from 246 beetles. Eleven species of mites were collected in numbers of forty or more, including four of Poecilochirus, three of Macrocheles, and four of Anoetidae. Four new species are described: Poecilochirus longisetosa, P. silphaphila, Macrocheles breviseta, and M. necrophoraphila.

Each species of mite is discussed in relation to:

(1) total numbers collected, (2) range in numbers on each
beetle species, (3) percent of beetles infested, (4)
average number of mites/beetle from those beetles having
mites, and (5) site preferences on beetles.

The biology and phoretic behavior of ancetids and Poecilochirus found on Silphidae are discussed. A life history of Macrocheles necrophoraphila is given, including comments on its biology.

ACKNOWLEDGMENTS

My sincere thanks go to Dr. T. Wayne Porter, my major professor, for his guidance and assistance throughout this study. The interest in invertebrates which he helped to instill in me will go with me my entire life.

My appreciation goes as well to other members of my committee. Dr. Roland L. Fischer's editorial assistance, insect loans, and help in securing numerous supplies were invaluable to my work. The "hybridization" of this study reflects his influence on my training. Dr. Ralph A. Pax provided suggestions throughout this study, and kindly reviewed the manuscript. Dr. James W. Butcher made available growth chambers and other supplies for my work, as well as reviewing the manuscript.

As a graduate student, Dr. Sigurd O. Nelson, Jr. made many helpful suggestions regarding my study.

Dr. George H. Lauff made available facilities at the W. K. Kellogg Biological Station for me during two summers.

Dr. Richard Fleming of Olivet College permitted use of his department's Biological Preserve for collection of beetles during the summer of 1970.

Financial assistance for this work has been provided by the Department of Zoology, a University Graduate Council Fellowship, a Grant-in-Aid of Research from the Society of the Sigma Xi, and my wife, Roveen. All are gratefully acknowledged.

My thanks go to Dr. G. W. Krantz of Oregon State University who provided taxonomic advice regarding the Macrochelidae, and to Dr. Richard L. Heinemann of Longwood College, Virginia, who provided the same for the Anoetidae.

My appreciation goes to persons too numerous to mention who provided beetles with mites for examination.

Sincere thanks go to Mrs. Bernadette (Mac)

Henderson for her assistance in securing supplies and
other services.

Finally, my deepest thanks go to my wife, Roveen, for her patience, moral and financial support, and assistance in preparing the manuscript. Without her help this study would not have reached its conclusion.

TABLE OF CONTENTS

	Page
INTRODUCTION	1
PART I. A SYSTEMATIC SURVEY OF THE ACARINA ASSOCIATED WITH MICHIGAN SILPIDAE	
LITERATURE REVIEW	2
PREPARATION METHODS FOR MITES	4
SPECIES	
Poecilochirus subterraneus Poecilochirus longisetosa. Poecilochirus longisetosa. Poecilochirus silphaphila. Macrocheles dimidiatus. Macrocheles vespillo Macrocheles breviseta. Macrocheles necrophoraphila Histiostoma cyrtandrae. Pelzneria crenulata. Spinanoetus pelznerae Anoetus turcastanae. Infrequent species.	17 17 20 21 21
PART II. THE BIOLOGY OF ACARINA ASSOCIATED WITH MICHIGAN SILPHIDAE	
INTRODUCTION	42
LITERATURE PERTAINING TO SILPHIDAE AND CARRION DECOMPOSITION	44

	Page
DISTRIBUTION OF MICHIGAN SILPHIDAE	52
COLLECTION PROCEDURES FOR BEETLES	53
PROCEDURE FOR EXAMINATION OF BEETLES FOR MITES	57
RESULTS AND DISCUSSION	60
MITE ASSOCIATIONS WITH SILPHIDAE	66
THE BIOLOGY AND PHORETIC BEHAVIOR OF ANOETID MITES ON SILPHIDAE	85
THE BIOLOGY AND PHORETIC BEHAVIOR OF POECILOCHIRUS	87
A LIFE HISTORY STUDY OF MACROCHELES NECROPHORAPHILA NEW SPECIES	91
CONCLUDING COMMENTS	100
SUMMARY	102
LITERATURE CITED	104
APPENDICES	
l. Mite Species Found on Each Beetle Species	112
2. Beetle Species Bearing Each Mite	117

LIST OF TABLES

٠. سه

Table			Page
1.	Acarina Occurring Infrequently on Michigan Silphidae		39
2.	Percent of Beetles Infested with Given Mite Species	• •	68
3.	Mean Number of Mites/Beetle from Those Beetles Having Mites		69
4.	Location of Mite Species on Beetles by Percent		70
5.	Survival Time of M. necrophoraphila at	10°C.	98

LIST OF FIGURES

Figure			
1.	Poecilochirus longisetosa New Species, Deutonmyph, Dorsal Shields	16	
2.	Poecilochirus longisetosa, Deutonymph, Sternal Shield	16	
3.	Poecilochirus longisetosa, Deutonymph, Chelicera.	16	
4.	Poecilochirus silphaphila New Species, Deutonymph, Chelicera	16	
5.	Poecilochirus silphaphila, Deutonymph, Sternal Shield	16	
6.	Poecilochirus silphaphila, Deutonymph, Dorsal Shields	16	
7.	Macrocheles breviseta New Species, Female, Dorsal Shield with Enlarged Detail of Seta D ₈	23	
8.	Macrocheles breviseta, Female, Ventral Shields	23	
9.	Macrocheles breviseta, Female, Chelicera .	23	
10.	Macrocheles necrophoraphila New Species, Female, Dorsal Shield with Enlarged Detail of Seta D ₈	23	
11.	Macrocheles necrophoraphila, Female, Ventral Shields	23	
12.	Macrocheles necrophoraphila, Female, Chelicera	23	
13.	Macrocheles necrophoraphila, Larva,	23	

Figur	Page	
14.	Machrocheles necrophoraphila, Larva, Dorsum of Opisthosoma	. 23
15.	Macrocheles necrophoraphila, Male, Ventral Shield	. 32
16.	Macrocheles necrophoraphila, Male, Dorsal Shield	. 32
17.	Macrocheles necrophoraphila, Male, Leg II (Excluding Pretarsus)	. 32
18.	Macrocheles necrophoraphila, Male, Chelicera	. 32
19.	Macrocheles necrophoraphila, Protonymph, Venter of Opisthosoma	. 32
20.	Macrocheles necrophoraphila, Protonymph, Dorsum of Opisthosoma	. 32
21.	Macrocheles necrophoraphila, Deutonymph, Venter of Opisthosoma	. 32
22.	Macrocheles necrophoraphila, Deutonymph, Dorsum of Opisthosoma	. 32
23.	Attractants of Silphidae in Michigan	. 62
24.	Percent of Silphidae Infested by Mites, and Mean Number of Mite Species per Beetle for Beetles Having Mites	. 64
25.	Number of Silphid Species on Which Given Mite Species Were Found	. 67
26.	Mean Development Time for Macrocheles necrophorophila from Egg to Each Instar	. 96

INTRODUCTION

Europe by Müller (1859). Since that time scattered papers have reported the occurrence of several mite families on carrion beetles, the Silphidae, especially on the genus Nicrophorus. Despite these reports, no one has undertaken a systematic study of the mites associated with Silphidae to this time. The first part of this study deals with the systematics of Acarina associated with Silphidae in Michigan. Part II examines the interactions of these mites with silphid beetles, and some aspects of their biology.

PART I

A SYSTEMATIC SURVEY OF THE ACARINA ASSOCIATED WITH MICHIGAN SILPHIDAE

LITERATURE REVIEW

Six genera of mites representing three families have been found commonly associated with Michigan Silphidae. The genus <u>Poecilochirus</u> (Parasitidae) was originally described by G. and R. Canestrini (1882) from specimens on a <u>Carabus</u>. Since then Vitzthum (1930), Neumann (1943), Holzmann (1969), and Micherdzinski (1969) have published systematic works pertaining to <u>Poecilochirus</u>. The keys in Holzmann (1969) and Micherdzinski (1969) include all six valid species of <u>Poecilochirus</u> described until this study was initiated.

Macrocheles (Macrochelidae), another genus of mites common on silphids, was described by Latreille (1829), but major systematic studies on the genus did not follow until Berlese (1903, 1910, 1918). However, most of his publications lack illustrations, and are somewhat limited in usefulness. More recent illustrated systematic articles on Macrocheles include those of Evans and Browning (1956), Ryke and Meyer (1958), Bregatova and Koroleva (1960), Filipponi and Pegazzano (1962, 1963), Krantz (1962), Evans and Hyatt (1963), and Krantz and

Fillipponi (1964). Keys included in Evans and Browning (1956), Bregetova and Koroleva (1960), and the illustrations in Evans and Hyatt (1963) make these publications most useful in identifying species.

Deutonymphs of the genera <u>Histiostoma</u>, <u>Pelzneria</u>, <u>Spinanoetus</u>, and <u>Anoetus</u> (Family Anoetidae) are frequently found on Michigan Silphidae. The two major systematic treatises dealing with this family are Scheucher (1957) and Hughes and Jackson (1958). Keys in both of these publications are very useful in determining species.

MITE METHODS

In order to determine mites to species, specimens must be specially prepared for microscopic examination with a compound microscope. Beetles for this study were collected in 80 percent ethyl alcohol. Removal of mites from the beetles was also done in 80 percent ethyl alcohol by use of a dissecting microscope at nine and twenty-seven magnifications. For all mites, the beetle host was recorded, along with the site of attachment, date, and locality information. Mites were stored in small vials until prepared further for slides, or treated immediately as indicated in the following paragraphs.

Macrocheles, and Uropodidae, were dissected before placing on microslides. Prior to dissection, specimens were placed into a spot plate in a solution of lactophenol made up of lactic acid-50 parts, liquid phenol-25 parts, and water-25 parts. Spot plates were placed in an oven and heated at 44°C from two to twelve hours, until the pleural membranes of the mites were softened sufficiently for dissection.

Dissections were accomplished using either 27 or 54 magnifications of the dissecting microscope. To do this a mite submerged in lactophenol in a spot plate was grasped lightly with a jewelers forceps so that its pleural membrane was facing upward. A minuten needle was then used to pierce the pleural membrane joining the dorsal and ventral shields of the mite. For Poecilochirus and Uropodidae this initial piercing of the membrane was done between the dorsal shield and the peritreme, because the peritreme is more closely attached to the ventral half of the mite. For Macrocheles, the initial piercing was between the peritreme and a leg attachment, since the peritreme fastens directly to the dorsal shield at its anterior end. After the initial piercing, the grip with the forceps was released, and a second minuten needle was inserted into the opening along with the first needle. By using the two needles in a series of lightly opposing pulls toward opposite ends of the mite, the membrane joining dorsal and ventral shields was slowly cut. Experience proved that cutting the membrane along one side of the mite at a time worked best. After the membrane was cut on both sides, the dorsal and ventral halves of the body separated easily. A bit more care had to be taken in cutting the membrane around the anterior end of the mite above the mouth parts, because the shields in this area were less sclerotized, and

easily broken. Also, in <u>Macrocheles</u> the peritremes which attach anteriorly can easily be torn loose from the dorsal shield unless caution is exercised in cutting the membrane.

After the dorsal and ventral halves were separated the internal organs were scraped from each half with needles. Then the halves were transferred to another depression in the spot plate to be rinsed with distilled water. (The "eye" end of a small sewing needle made * useful instrument for such transfers.) Two or three rinses were made to remove lactophenol from the mite, as any remaining lactic acid caused crystals to form when a mite was mounted in Hoyer's solution.

When the rinses were completed the mite halves were transferred to a drop of Hoyer's solution in the center of a 0.8x75x25 mm. microscope slide. At this point the ventral half of the mite was held lightly against the slide with a needle while a second minuten needle was used to push the chelicerae from the body. The needle was inserted into the posterior end of a chelicera, and pushed anteriorly until the chelicera was loosened from the body. Then the mite halves were oriented with the external side upward and a 0 thickness, 12 mm. diameter cover glass applied.

Two labels were applied to all mite slides. The left label bears family and species names, and the right label contains all date, locality, and host information.

After examining a considerable number of Poecilochirus, it became possible to identify species without dissection. From this time on, described species, namely Poecilochirus necrophori Vitzthum and P. subterraneus (Müller), were simply stored in small vials in 80 percent ethyl alcohol with date, locality, and host information rather than mounted on slides.

Although mites of the Anoetidae do not require dissection for determination, they do require special chemical treatment before mounting in Hoyer's solution. Anoetids tend to accumulate a crystalline material in body spaces which makes them opaque and conceals finer cuticular details which must be seen for determination. Two methods of removing crystals were used successfully.

The first involved heating the hypopi in Keifer's clearing agent as suggested by Hughes and Jackson (1958). This treatment required placement of hypopi into the clearing agent in an oven at 44°C over night. Following this they were transferred to a slide into a drop of Hoyer's mountant.

The second method involved heating hypopi in 0.5-1.0 N HCl for one to two hours at 44°C. Following the acid treatment, mites were rinsed once in distilled water and mounted in a drop of Hoyer's solution on a slide. Usually 15-20 anoetid hypopi were put on one slide because they are relatively small and they frequently numbered several hundred at one site of

attachment on a beetle. On examination with the compound microscope, it was not unusual to find that more than one species had been placed on the same slide; but because of the small size of the mites, species characteristics could not be seen with a dissecting microscope.

After mounting all species of mites in Hoyer's solution, the slides were allowed to "cure" at room temperature for one to two weeks before placing them in an oven at 44°C to dry for two to three more weeks. When the drying period was complete, slides were removed from the oven, allowed to cool, and the cover glasses ringed with a compound to seal them. Most commonly fingernail polish was used as a ringing compound. Several named brands of ringing compounds were tried but discarded as being unsatisfactory.

Depositions of type specimens are given under each species. The remainder of the slides are either retained by the author for future investigations, or are deposited in the Entomology Museum of Michigan State University.

In the account which follows, the systematics are presented for the mites found on 246 silphid beetles collected in Michigan. Beetles from which each mite species was collected are given along with date and locality data. More detailed information regarding percent of beetles infested, numbers of mites/beetle,

and site preferences of mites on beetles are reported in Part II of this thesis. A total of 11,743 mites were taken from the 246 beetles. Individual species examined were as follows: 40 Nicrophorus tomentosus Weber, 17 N. americanus Olivier, 6 N. vespilloides Herbst, 7 N. pustulatus Herschel, 9 N. orbicollis Say, 13 N. marginatus Fabricius; 54 Silpha americana Linnaeus, 53 S. noveboracensis Forster, 16 S. lapponica Herbst, 13 S. inaequalis Fabricius; 18 Necrodes surinamensis Fabricius. Approximately equal numbers of male and female beetles were examined, except in the case of N. vespilloides, where only six males were collected.

ORDER ACARINA

Family Parasitidae

Poecilochirus necrophori Vitzthum

- Poecilochirus necrophori Vitzthum, 1930. Zool. Jahrb., Syst. 60: 381.
- Gamasoides eurasiaticus Trägardh, 1937. In part (only the Lapplandic deutonymph, not the south Mongolian), Ark. Zool., 29: 1.
- nec. <u>Poecilochirus necrophori</u> Vitzthum sensu

 Neumann, 1943 = <u>P. carabi</u> Canestr. (after

 Holzmann, 1969. Acarologie, Folge 13:7).

Poecilochirus necrophori has been rather widely reported from Nicrophorus in Europe by the above authors. Additional reports include those of Theodorides (1955) from France, Belozerov (1957) from the U.S.S.R., and Mrciak (1964) from Finland.

P. necrophori collected in Michigan correspond to European descriptions of the species. The total of 448 deutonymphs were distributed on the silphids as follows:

Nicrophorus tomentosus (124), N. marginatus (37), N. americanus (1), N. vespilloides (52), N. pustulatus (168), N. orbicollis (30), Silpha americana (17), S. noveboracensis (18), and Necrodes surinamensis (1).

Beetles bearing P. necrophori were collected in the following counties. N. tomentosus: Eaton, Ingham, Kalamazoo, St. Joseph, Shiawassee (19 June-18 Oct.).

N. americanus: Bay (14 Oct.). N. marginatus: Jackson, Kalamazoo (16 June-14 July). N. vespilloides: Ingham, Shiawassee (4 June-4 Oct.). N. pustulatus: Kalamazoo, St. Joseph (31 May-23 Aug.). Silpha americana: Ingham, Kalamazoo, St. Joseph (9 July-9 Sept.). S. noveboracensis: Kalamazoo (28 June-14 July). Necrodes surinamensis: Kalamazoo (9 July).

All P. necrophori collected were found active on the beetles, and frequently were seen leaving and returning to the beetles as described by previous authors.

Poecilochirus subterraneus (J. Müller)

- Porrhostaspis subterranea J. Müller, 1859. Jahrb. mahr. schles. Gesellsch. Brunn: 176.
- Parasitus subterraneus sensu Oudemans, 1902. Ent. Ber. 1: 238.
- Gamasoides subterraneus sensu Berlese, 1903.

 Redia 1: 258.

Poecilochirus subterraneus Vitzthum, 1930. Zool. Jahrb., Syst. 60: 381.

In addition to reports by the above European authors, P. subterraneus has been reported by Theodorides (1955) from France. In all cases the mites were taken from Nicrophorus. P. subterraneus collected in Michigan from three species of Nicrophorus are in agreement with previously published descriptions. A total of 346 deutonymphs were distributed on silphids as follows: N. pustulatus (183), N. tomentosus (159), N. vespilloides (4).

Beetles bearing P. <u>subterraneus</u> were collected in the following counties. <u>N. pustulatus</u>: Kalamazoo (23-28 June). <u>N. tomentosus</u>: Clinton, Eaton, Kalamazoo, St. Joseph, Shiawassee (19 June-23 Aug.). <u>N. vespilloides</u>: Ingham, Shiawassee (4-7 June).

Most P. <u>subterraneus</u> were found active on beetles. It was not uncommon, however, to find them under the elytra or metathoracic wings of the beetles.

Poecilochirus longisetosa new species

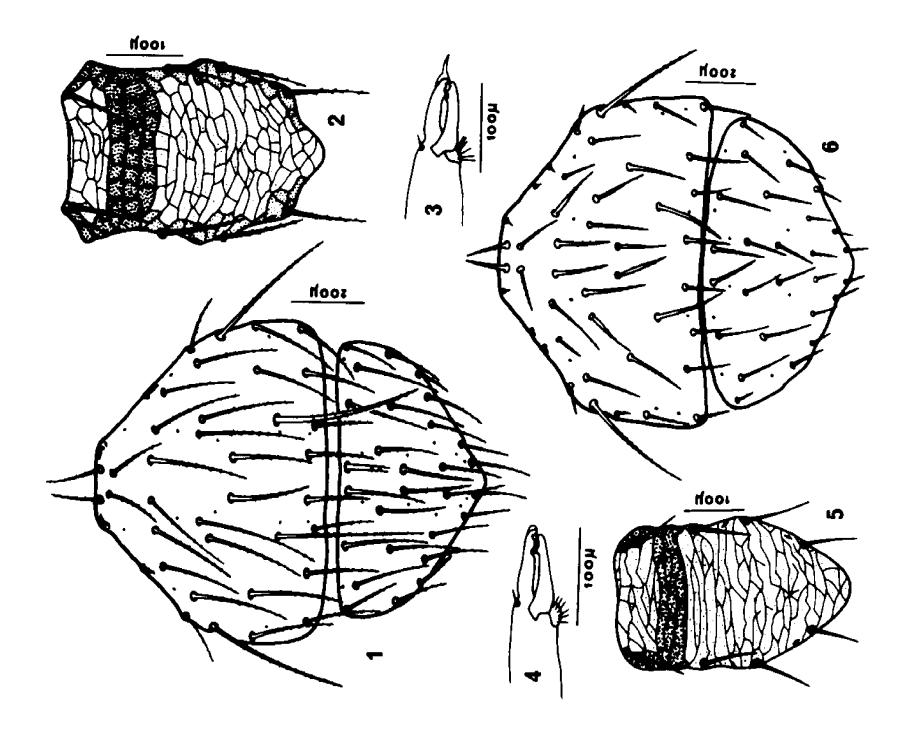
Deutonymph (Figures 1-3): Brownish-amber color. With two closely joined dorsal shields; total length of dorsal shields 0.844-0.974 mm. (average 0.949 mm.); width 0.598-0.775 mm. (average 0.723 mm.) at level of

most posterior marginal setae on podonotal shield; podonotal shield with 20 pairs of setae with relative lengths and distribution as in Figure 1, all 20 pairs commonly pilose to plumose, or with the two smaller anterior marginal pairs sometimes smooth; opisthonotal shield mostly with 13 or 14 pairs of pilose to plumose setae, although one seta frequently is added or subtracted along the right or left margin of the shield by variations in its sclerotization; both dorsal shields finely punctate, and with heavier scale-like to reticulate markings.

Dorsal integument in live specimens commonly extending beyond the opisthonotal shield up to one-third its length; dorsal integument with numerous simple to slightly setose setae.

sternal shield 0.314-0.360 mm. long (average 0.343 mm.); width 0.184-0.238 mm. (average 0.219 mm.) at level of second set of pores; entire shield lightly punctate, and with heavier network of markings (Figure 2); transverse band most heavily sclerotized part of shield, with anterior marginal continuation of band to setae 1 nearly as heavily sclerotized; with posterior marginal continuation of sclerotization somewhat irregular, but generally lighter than either the anterior continuation or the transverse band, extending beyond sternal setae 4, but not quite to posterior edge of shield. Sternal setae lightly pilose.

Anal shield elliptical to oval, lightly punctate, marked posteriorly with six rows of tooth-like markings; somewhat concentric lines around anal valves; with three simple setae about the length of the anal valves.


Peritrematal shield unattached to other shields, extending anteriorly to between the two small marginal setae of the podonotal shield, and posteriorly to midlevel of coxae III. Presternal shields a somewhat straightened s-shape, their length extending nearly half the width of the sternal shield; tritosternum with length of laciniae nearly equal or up to one-third longer than base; gnathosoma with 14 rows of deutosternal teeth, seven of which may be less well developed.

Fixed digit of chelicera with a distal membranous apophysis shaped as in Figure 3; with two well developed teeth ventro-medially and two ventro-laterally; movable digit with one large subterminal tooth; dorsal seta of fixed digit simple.

Approximate lengths of legs (excluding pretarsi) are: I-1.166 mm.; II-0.836 mm.; III-0.936 mm.; IV-1.258 mm.

<u>Diagnosis</u>: The deutonymph of <u>P. longisetosa</u> is easily distinguished from other <u>Poecilochirus</u> deutonymphs by the long dorsal setae, the pattern of the heavier sclerotization of the sternal shield, and the

- Figs. 1-3. Poecilochirus longisetosa new species, deutonymph. 1. Dorsal shields. 2. Sternal shield. 3. Chelicera.
- Figs. 4-6. Poecilochirus silphaphila new species, deutonymph. 4. Chelicera. 5. Sternal shield. 6. Dorsal shields.

form of the membranous apophysis of the fixed digit of the chelicerae.

Material: Holotype deutonymph with the following data: Kalamazoo Co., Michigan; Kellogg Biol. Sta.; TlS: R9W:S9; W. A. Yoder, coll.; ex. Nicrophorus marginatus male WY346, loose in coll. vial; 3 July 1969. Sixteen paratype deutonymphs from same locality as holotype, also ex. Nicrophorus marginatus, 30 June-14 July 1969. One paratype deutonymph from Ingham Co., Michigan; T4N: R1E:S4; G. Manley, coll.; ex. Nicrophorus vespilloides male WY358; loose in coll. vial; 4 June 1971.

The holotype and paratypes will be deposited in the collection of the U.S. National Museum, Washington, D.C. Paratypes will also be deposited in the following institutions: British Museum (Natural History), London; The Institute of Acarology, Ohio State University, Columbus; Michigan State University, Entomology Museum, East Lansing.

Poecilochirus silphaphila new species

Deutonymph (Figures 4-6): Brownish-amber color. With two closely joined dorsal shields; total length of dorsal shields 0.675-0.874 mm. (average 0.790 mm.); width 0.598-0.752 mm. (average 0.677 mm.) at level of most posterior marginal setae on podonotal shield; podonotal shield with 22 pairs of pilose setae, the three smaller

anterior marginal pairs often appearing simple (Figure 6); opisthonotal shield mostly with 13 pairs of simple to pilose setae, although one or two setae are frequently added to the right or left margin of the shield by variations in its extent of sclerotization; setae of both dorsal shields relatively wide at base and tapering uniformly to the tip, or widening to about one-third the distance from the base and then tapering uniformly to the tip; both dorsal shields finely punctate and with heavier scale-like markings in irregular rows.

Dorsal integument of live specimens commonly extending beyond the opisthonotal shield by up to one-fourth its length; dorsal integument with numerous simple, occasionally pilose setae.

Sternal shield 0.261-0.307 mm. long (average 0.285 mm.); width 0.161-0.199 mm. (average 0.179 mm.) at level of second set of pores; entire shield lightly punctate and with heavier network of markings (Figure 5); transverse band of sternum more heavily sclerotized, with its anterior prolongation to sternal setae 1 nearly as heavily sclerotized. Sternal setae acuminate.

Anal shield oval, lightly punctate, marked posteriorly with six rows of tooth-like structures; light, somewhat concentric lines around anal valves; with three setae about one-fourth the length of anal shield.

Peritrematal shields unattached to other shields, extending anteriorly to between the two most anterior small marginal setae and posteriorly to rear edge of coxae III. Presternal shields somewhat straightened shape, their length equal to 0.6 the width of sternal shield; tritosternum with length of laciniae nearly equal to base; gnathosoma with 14 rows of deutosternal teeth, six to eight of which may be less well developed.

Fixed digit of chelicera with rather small distal membranous cap as in Figure 4; with ridge-like tooth ventro-medially and ventro-laterally, or ridge sometimes appearing as two somewhat divided teeth; movable digit with a large submedian tooth and two smaller teeth distad to it; dorsal seta of fixed digit simple.

Approximate lengths of legs (excluding pretarsi) are: I-1.005 mm.; II-0.690 mm.; III-0.805 mm.; IV-1.089 mm.

Diagnosis: Deutonymph of P. silphaphila is easily separated from deutonymph of P. necrophori which it most closely resembles and from other Poecilochirus deutonymphs by small distal membranous cap of the chelicera, length and shape of dorsal setae, and sclerotization pattern of sternal shield.

Material: Holotype deutonymph with the following
data: Eaton Co., Michigan; Pine Lake, Olivet College
Biol. Preserve; TlN:R5W:S31; W. A. Yoder, coll.; ex.

Nicrophorus tomentosus female WY211, loose in coll. vial;
23 Aug. 1970. Fifteen paratype leutonymphs from same
locality as holotype, also ex. Nicrophorus tomentosus,
23 Aug. 1970. Three paratype deutonymphs from Marquette
Co., Michigan; Van Riper State Park near Michigamme;
T4N:R30W:S24; D. D. Wilder, coll.; ex. Nicrophorus
vespilloides male WY316, loose in coll. vial, 25 July
1971. Seven paratype deutonymphs from Mackinac Co.,
Michigan; Cedarville, T41N:R1E:S6; D. D. Wilder, coll.;
ex. Nicrophorus orbicollis male WY317, loose in coll.
vial, 23 July 1971.

The holotype and paratypes will be deposited in the collection of the U.S. National Museum. Paratypes will also be deposited in the following institutions: British Museum (Natural History), London; The Institute of Acarology, Ohio State University, Columbus; Michigan State University, Entomology Museum, East Lansing.

Family Macrochelidae

Macrocheles dimidiatus Berlese

Macrocheles dimidiatus Berlese, 1918. Redia 13: 115.

Only two speciments of this species were found on Michigan Silphidae, one on S. americana from Jackson Co., 31 July 1970, and one on N. americanus from Midland

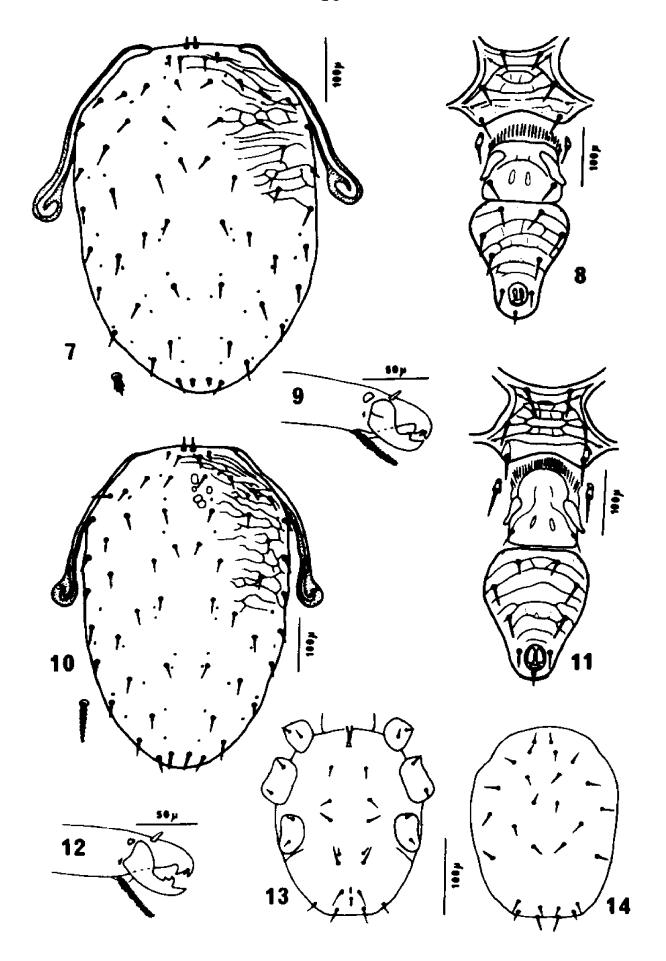
Co. Their occurrence may have been "accidental" as other species of <u>Macrocheles</u> were found in considerably larger numbers. Previous records (Evans and Hyatt, 1963) are mostly from Phaneus.

Macrocheles vespillo Berlese

Macrocheles vespillo Berlese, 1918. Redia
13: 115.

This species was described from mites taken from two species of Nicrophorus from Texas. Krantz (1971) also has specimens from N. marginatus from Iowa. The 111 M. vespillo females collected were distributed on Michigan silphids as follows: N. americanus (97), N. marginatus (13), N. tomentosus (1). Nearly all specimens were attached under the wings of the beetles.

Beetles bearing M. vespillo were collected in the following counties. N. americanus: Kalamazoo (22 June-21 July). N. marginatus: Eaton, Jackson (16 June-24 Aug.). N. tomentosus: Eaton (24 Aug.).


Macrocheles breviseta new species

Female (Figures 7-9): Pale brown. Single dorsal shield 0.468-0.552 mm. long (average 0.509 mm.), width 0.291-0.368 mm. (average 0.323 mm.) at level of setae Mg₂; finely punctate and with heavier punctations and

- Figs. 7-9. Macrocheles breviseta new species, female.

 7. Dorsal shield with enlarged detail of seta Dg. 8. Ventral shields. 9. Chelicera.
- Figs. 10-12. Macrocheles necrophoraphila new species, female. 10. Dorsal shield with enlarged detail of seta Dg. 11. Ventral shields. 12. Chelicera.
- Figs. 13-14. Macrocheles necrophoraphila new species, larva. 13. Venter of opisthosoma.

 14. Dorsum of opisthosoma.

lines forming reticulate pattern over entire shield; with 28 pairs of setae, all acuminate except D_1 and D_8 ; D_1 acuminate to somewhat blunted, D_8 shorter and rather palmate; relative lengths and distribution of setae as in Figure 7. Integumental setae acuminate, mostly not as long as dorsal setae. Peritrematal shields fused anteriorly to dorsal shield, extending to anterior edge of shield near setae M_1 , and posteriorly to about the middle of coxae IV.

Sternal shield 0.086-0.098 mm. long at midline (average 0.091 mm.); width 0.101-0.114 mm. (average 0.108 mm.) at narrowest point between sternal setae 1 and 2 (Figure 8); sternal setae acuminate; metasternal setae like sternals and inserted on small irregular metasternal shields.

Epigynial shield finely punctate with transverse crescent of markings near the midline (Figure 8); the pair of acuminate epigynial setae somewhat shorter than sternals.

Ventrianal shield ornamented as in Figure 8;

0.144-0.193 mm. long (average 0.177 mm.); width 0.107
0.141 mm. (average 0.128 mm.) at level between ventrianal setae 1 and 2; with nine acuminate setae which are only about 0.67 the length of sternals. Ventral integument with numerous simple setae, most of which are shorter than ventrianals.

Tectum tripartite, with central element divided distally. Gnathosoma with five rows of deutosternal teeth with five to seven teeth per row; two transverse ridges without teeth anterior to the toothed rows.

Movable digit of chelicera with one large submedian tooth and a smaller tooth touching it proximally
(Figure 9); fixed digit with one large subterminal tooth
and sometimes a small subterminal tooth distad to it;
dorsal seta of fixed digit simple.

Approximate lengths of legs (excluding pretarsi) are: I-0.376 mm.; II-0.360 mm.; III-0.330 mm.; IV-0.437 mm.

Males and immatures: Unknown.

Diagnosis: M. breviseta appears to represent a new species in the broad concept of the M. dimidiatus group. Females can be separated from other Macrocheles females by the dorsal chaetotaxy (all setae simple, except D₈ palmate and shorter), and the pattern of sternal and ventrianal ornamentation.

Material: Holotype female with the following data: Eaton Co., Michigan; Pine Lake, Olivet College Biol. Freserve; TlN:R5W:S31; W. A. Yoder, coll.; ex. Nicrophorus tomentosus female WY274, loose in coll. vial; 24 Aug. 1970. Sixteen paratype females from same locality as holotype, ex. Nicrophorus marginatus, 24 Aug. 1970. Two paratype females from Kalamazoo Co., Michigan; Kellogg

Biol. Sta.; TlS:R9W:S9; W. A. Yoder, coll.; ex.

Nicrophorus marginatus, loose in coll. vial; 30 June
1969 and 14 July 1969. Five paratype females from

Kalamazoo Co., Michigan; Kellogg Biol. Sta., TlS:R9W:S22;
ex. Nicrophorus marginatus female WY35; loose in coll.

vial; 9 July 1969.

The holotype and paratypes will be deposited in the collection of the U.S. National Museum, Washington, D.C. Paratypes will also be deposited in the following institutions: British Museum (Natural History), London; The Institute of Acarology, Ohio State University, Columbus; Oregon State University, Corvallis; Michigan State University, Entomology Museum, East Lansing.

Macrocheles necrophoraphila new species

Egg: Ovoid, translucent white, longest dimension
0.221-0.255 mm.

Larva (Figures 13-14): White, weakly sclerotized, lacking discernable shields. Idiosoma 0.255-0.298 mm. long (average 0.272 mm.), width 0.190-0.230 mm. (average 0.212 mm.) at level of legs II. Dorsum bearing 14 pairs of simple setae (Figure 14) and two pairs of additional setae inserted ventrally.

Venter (Figure 13) bearing three pairs of sternal setae, and two pairs of opisthogastric setae, of which posterior pair are much longer than anterior pair. Anus

represented by slit; paranal setae nearly twice as long as postanal seta; anal shield indicated by very light line on several specimens. Tritoseternum with base about equal in length to laciniae. Gnathosoma and chelicerae somewhat less sclerotized than legs.

Legs, especially II and III are short and stumpy; approximate lengths of legs (excluding pretarsi) are:

1-0.233 mm.; II-0.212 mm.; III-0.196 mm.

Protonymph (Figures 19-20): White, somewhat more heavily sclerotized than larva. Dorsum covered by two shields; podonotal shield 0.421-0.476 mm. long (average 0.452 mm.), 0.383-0.506 mm. wide (average 0.447 mm.) at level between two most posterior marginal setae; podonotal shield bears 11 pairs of setae all of which may be acuminate or with several pairs spinose as in Figure 20. Opisthonotal shield 0.176-0.222 mm. long (average 0.202 mm.), 0.245-0.322 mm. wide (average 0.284 mm.) at anterior end; bears six pairs of setae, all but most medial of which are plumose as in Figure 20; posterior edge of shield more heavily sclerotized in a crescent shape.

Sternal shield very weakly sclerotized, gradually widening to insertions of sternal setae 2 (Figure 19), bearing three pairs of simple setae. Anal shield somewhat more sclerotized than sternal shield, with three simple setae. Ventral integument surrounding anal shield with five pairs of simple setae.

Gnathosoma with five rows of weakly developed deutosternal teeth. Approximate lengths of legs (excluding pretarsi) are: I-0.255 mm.; II-0.218 mm.; III-0.200 mm.; IV-0.261 mm.

Deutonymph (Figures 21-22): White, all shields more sclerotized than protonymph, but considerably less than female or male. Dorsum covered by single shield, with wide incisions at margin indicating podonotal and opisthonotal areas (Figure 22); 0.353-0.407 mm. long (average 0.372 mm.); 0.169-0.230 mm. wide (average 0.207 mm.) at level of setae Mg₂ (chaetotaxy follows Evans and Browning, 1956); dorsal shield bears 18 pairs of podonotal setae, 10 pairs of opisthonotal setae, same complement found in adult males and females; all dorsal setae except D₈ acuminate, with D₈ shorter and plumose, approaching shape of those in adults.

Sternal shield (Figure 21) 0.160-0.187 mm. long (average 0.176 mm.), 0.080-0.092 mm. wide (average 0.086 mm.) between sternal setae 2 and 3; with four pairs of acuminate setae.

Anal shield irregularly rounded, with three acuminate setae. Ventral integument with 11 pairs of acuminate setae distributed as in Figure 21.

Approximate lengths of legs (excluding pretarsi) are: I-0.345 mm.; II-0.276 mm.; III-0.238 mm.; IV-0.345 mm.

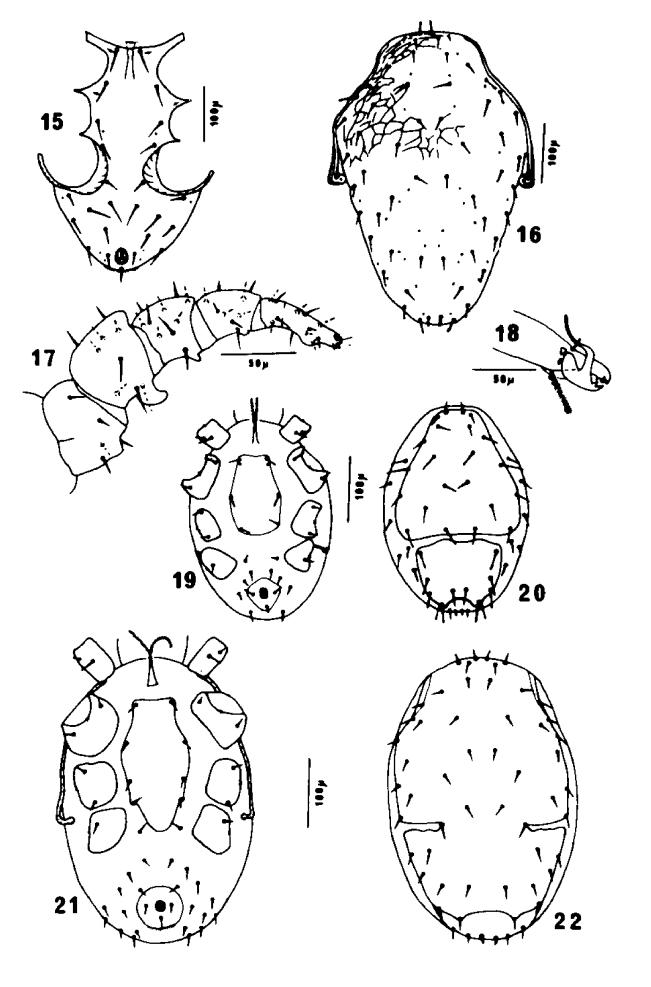
Female (Figures 10-12): Pale brown. Dorsal shield 0.506-0.567 mm. long (average 0.538 mm.) and 0.291-0.345 mm. wide (average 0.320 mm.) at level of setae Mg2; with fine punctations and moderately heavy reticulate pattern over entire shield (Figure 10). Bearing 28 pairs of setae of which 26 are acuminate; setae D1 acuminate to slightly blunted; D8 pilose to plumose; distribution and relative lengths of dorsal setae as in Figure 10. Integumental setae acuminate and of same length as dorsal setae. Peritrematal shields fused anteriorly to dorsal shield, extending anteriorly to between setae M1 and M2, and posteriorly to between coxae III and IV.

Sternal shield (Figure 11) 0.083-0.095 mm. long (average 0.089 mm.) at midline and 0.098-0.120 mm. wide (average 0.109 mm.) at narrowest point between sternal setae 1 and 2; fine punctations over entire surface, ornamented by fine lines and moderately large punctures as in Figure 11; more heavily sclerotized around coxae II. Sternal setae acuminate; metasternal setae like sternals, inserted on small irregular metasternal shields.

Epigynial shield finely punctate, with fine markings as in Figure 11, epigynial setae smooth, slightly
shorter than sternals.

Ventrianal shield 0.172-0.206 mm. long (average 0.189 mm.), and 0.129-0.153 mm. wide (average 0.140 mm.)

at level of second pair of setae; ornamented by light lines as in Figure 11; with nine smooth setae which may be only 0.75 as long as sternal setae. Ventral integumental setae simple, somewhat shorter than any of those on the ventral shields.


Tectum tripartite, with central element distally divided. Gnathosoma bears five rows of deutosternal teeth, in front of which are two transverse ridges without teeth.

Movable digit of chelicera bearing one large subterminal tooth and smaller tooth proximally to it (Figure 12); fixed digit with one large subterminal tooth and smaller one distad to it; internal cheliceral brush extending about 0.75 the length of movable digit; dorsal seta of fixed digit simple.

Approximate lengths of legs (excluding pretarsi) are: I-0.391 mm.; II-0.360 mm.; III-0.337 mm.; IV-0.460 mm.

Male (Figures 15-18): Pale brown. Dorsal shield 0.414-0.491 mm. long (average 0.455 mm.) and 0.245-0.330 mm. wide (average 0.281 mm.) at level of setae Mg₂; finely punctate and ornamented as in Figure 16; bearing 28 pairs of setae, most of which are acuminate; setae D_1 , D_8 , L_1 , Mg₁, and Mg₁₀ rather plumose, Mg₈ and Mg₉ simple to plumose; distribution and relative setal lengths as in Figure 16. Peritrematal shields joined anteriorly to dorsal shield.

- Figs. 15-18. Macrocheles necrophoraphila new species, male. 15. Ventral shield. 16. Dorsal shield. 17. Leg II (excluding pretarsus). 18. Chelicera.
- Figs. 19-20. Macrocheles necrophoraphila new species, protonymph. 19. Venter of opisthosoma. 20. Dorsum of opisthosoma.
- Figs. 21-22. Macrocheles necrophoraphila new species, deutonymph. 21. Venter of opisthosoma. 22. Dorsum of opisthosoma.

Venter (Figure 15) fused as one solid shield;

length 0.330-0.391 mm. (average 0.352 mm.), width at level of sternal setae 3 equals 0.253-0.314 mm. (average 0.285 mm.); with 25 acuminate setae of approximately equal length and similar to female; shield lightly ornamented at anterior end and around anal area. Male genital opening boardered anteriorly by a sclerotic crescent.

Deutosternal teeth and tectum as in female. Movable digit of chelicera bears curved spermatophoral process whose length exceeds digit (Figure 18) and a well developed tooth distad to process; fixed digit with one well developed tooth and two less well developed teeth distad to it; dorsal seta of fixed digit slightly bifurcated; cheliceral brush extending slightly beyond base of spermatophoral process.

Approximate lengths of legs (excluding pretarsi) are: I-0.391 mm.; II-0.322 mm.; III-0.291 mm.; IV-0.391 mm. Leg II bears spur-like process on posterior surface of the femur and small spur on genu and tibia (Figure 17); leg IV also bears spur on posterior aspect of femur.

Diagnosis: M. necrophoraphila appears to represent a new species in the M. subbadius group, and is close to M. merdarius. Females can be separated from other Macrocheles females by dorsal chaetotaxy (all setae simple, except D₈ pilose), and pattern of sternal and ventrianal ornamentation.

Material: Holotype female with the following data: Eaton Co., Michigan; Pine Lake, Olivet College Biol. Preserve; TlN:R5W:S31; W. A. Yoder, coll.; ex. Nicrophorus orbicollis female WY215, on pleural membrane I-II; 23 Aug. 1970. Allotype male reared in laboratory from female collected in Ingham Co., Michigan; Michigan State University, Toumey Woodlot; T4N:RlW:S30; W. A. Yoder, coll.; ex. Nicrophorus orbicollis male WY313; 31 May 1971. Paratypes include ten females, eleven males, eight larvae, 18 protonymphs, 16 deutonymphs. Three paratype females with same information as holotype. Three paratype females from Kalamazoo Co., Michigan; W. K. Kellogg Biol. Sta.; TlS:R9W:S22; ex. Nicrophorus orbicollis male WY352, on terga III-5; 23 Aug. 1969. All remaining paratype females, males, larvae, protonymphs, and deutonymphs reared in laboratory from same original female as allotype male.

The holotype, allotype, and paratypes of all instars will be deposited in the collection of the U.S. National Museum. Paratypes of all instars will also be deposited in the following institutions: British Museum (Natural History), London; The Institute of Acarology, Ohio State University, Columbus; Oregon State University, Corvallis; Michigan State University, Entomology Museum, East Lansing.

Family Anoetidae

Woodring and Moser (1970) discussed the validity of the generic names Anoetus and Histiostoma. I have chosen to follow Scheucher (1957) in separating Histiostoma from Anoetus on the basis of the suckers (or discs) on coxal plates I and III of Histiostoma hypopi where Anoetus hypopi bear setae or setal sockets in place of discs.

Histiostoma cyrtandrae (Vitzthum)

Anoetus cyrtandrae Vitzthum, 1931. Arch. Hydrol. 2: 59.

Histiostoma cyrtandrae Hughes & Jackson, 1958.

Va. Jour. Sci. 9: 59.

Hypopi collected from coxal cavities of single

N. pustulatus (Eaton Co., 24 Aug.) and N. orbicollis

(Kalamazoo Co., 23 Aug.) compare well with specimens of

Hughes' collection except for a slight difference in the

shape of the tarsal seta ta 16 (Heinemann, 1972).

Pelzneria crenulata (Oudemans)

Anoetus crenulatus Oudemans, 1909. Ent. Ber. 3: 23.

Histiostoma crenlatus Buitendijk, 1945. Zool.
Meded. XXIV: 281.

Pelzneria crenulata Scheucher, 1957. Beitrage

zur Systematik und Ökologie mitteluropäischer

Acarina: 347.

Scheucher (1957) established the genus <u>Pelzneria</u> to include those hypopi in which the anterior edge of the notogaster is crenulate, which separates them from the undifferentiated notogaster as found in <u>Histiostoma</u>. Both species which she placed in the genus were collected from <u>Nicrophorus</u> in Europe.

The 6511 P. crenulata hypopi collected made it the most frequently occurring mite on Michigan Silphidae. They were distributed on the beetles as follows: N. tomentosus (3411), N. americanus (967), N. pustulatus (782), N. marginatus (449), N. vespilloides (79), N. orbicollis (10), S. noveboracensis (574), S. inaequalis (190), S. americana (30), S. lapponica (6), Necrodes surinamensis (21). P. crenulata were regularly attached to the underside of the elytra, to the terga, and in coxal cavities.

Beetles bearing P. crenulata were collected in the following counties. N. tomentosus: Clinton, Eaton, Ingham, Kalamazoo, St. Joseph, Shiawassee (19 June-8 Oct.).

N. americanus: Kalamazoo, Midland (22 June-21 July).

N. pustulatus: Eaton, Kalamazoo, Macomb (22 June-24 Aug.). N. marginatus: Eaton, Jackson, Kalamazoo (16 June-24 Aug.). N. vespilloides: Ingham, Marquette (4 June-4 Oct.). N. orbicollis: Eaton, Kalamazoo,

Macomb, St. Joseph (31 July-25 Aug.). S. noveboracensis:
Kalamazoo, Shiawassee, Van Buren (9 April-3 July).
S. lapponica: Kalamazoo (9-14 July).

Spinanoetus pelznerae Scheucher

Spinanoetus pelznerae Scheucher, 1957. Beitrage zur Systematik und Ökologie mitteleuropäischer Acarina: 358.

Michigan hypopi agree well with Scheucher (1957), the only previous report. She collected the species from Nicrophorus, Thanatophilus, and Geotrupes from Europe.

The 2679 S. pelznerae hypopi collected made it the second most common mite on Michigan silphids. They were distributed on the beetles as follows: S. noveboracensis (2149), S. inaequalis (79), S. americana (14), S. lapponica (1), Necrodes surinamensis (422), Nicrophorus marginatus (9), N. tomentosus (4), N. americanus (1). Its most common attachment sites were the abdominal terga and the underside of the elytra.

Beetles bearing S. pelznerae were collected in the following counties. S. noveboracensis: Clinton, Ingham, Kalamazoo, Shiawassee, Van Buren (9 April-22 July).

S. inaequalis: Kalamazoo, Van Buren (9 April-5 July).

- S. americana: Kalamazoo, St. Joseph (28 June-31 July).
- S. <u>lapponica</u>: Kalamazoo (3 July). <u>Necrodes surinamensis</u>: Benzie, Kalamazoo (28 June-24 July). <u>N. marginatus</u>:

Eaton, Jackson, Kalamazoo (16 June-24 Aug.). N. tomentosus: Kalamazoo, Shiawassee (19 June-30 July). N. americanus: Midland (8 July).

Anoetus turcastanae Oudemans

Anoetus turcastanae Oudemans, 1917. Ent. Ber. 4: 391.

Hypopi from five species of Nicrophorus, S.

americana, and Necrodes surinamensis from Michigan agree
with Oudemans (1917) figures, except the Michigan specimens do not have the sterna st3 and st4 fused as they
are in his drawings. The majority of individuals of this
species were attached to the abdominal sterna and terga,
undersides of the elytra, or coxal cavities.

The total 604 A. turcastanae were distributed on silphids as follows: N. marginatus (593), N. americanus (4), N. vespilloides (1), N. orbicollis (1), N. tomentosus (2), S. americana (2), Necrodes surinamensis (1).

Beetles bearing A. trucastanae were collected in the following counties. N. marginatus: Eaton, Jackson, Kalamazoo (16 June-24 Aug.). N. americanus: Kalamazoo, Midland (22 June-8 July). N. vespilloides: Ingham (4 Oct.). N. orbicollis: Kalamazoo (23 Aug.). N. tomentosus: Kalamazoo (30 June-14 July). S. americana: St. Joseph (31 July). Necrodes surinamensis: Kalamazoo (14 July).

ACARINA OCCURRING INFREQUENTLY ON MICHIGAN SILPHIDAE

Mites collected infrequently from Silphidae during this study are listed in Table 1. As most were taken only occasionally, they were considered to be "accidental" and not regularly associated with the beetles. Their identifications and names follow Krantz (1970). The following brief comments concerning their biology are offered only as possible explanations for the collection of each group on the beetles.

TABLE 1. Acarina occurring infrequently on Michigan Silphidae.

	Number of specimens
Suborder Mesostigmata	
Rhodacaridae	3
Ascaidae	1
Uropodidae	31
Suborder Prostigmata	
Pyemotidae	2
Hydrachnidae	1
Suborder Astigmata	
Acaridae	7
Saproglyphidae	4
Labidophoridae	1
Analgidae	1 2
Unidentifiable	2
Suborder Cryptostigmata	2

Rhodacaridae and Ascaidae are frequently collected from leaf litter. It is not unusual that several individuals were found active on the dorsum of silphids. The Uropodidae are generally thought to be fungivores as adults, and deutonymphs often attach to the cuticle of insects by an anal pedicel (Krantz, 1970). The phoresy by deutonymphs of this group on Silphidae may merit further examination, as seen by the 31 sessile specimens collected. The systematics of the group are a problem at this time, however, and could not be included in the scope of this study.

Representatives of the Pyemotidae, Acaridae, and Saproglyphidae are all commonly found in decaying materials, and many are fungivorous. It is not surprising that they might be found in habitats common to Silphidae.

The single labidophorid found was taken from a Silpha noveboracensis collected on a dead muskrat.

Labidophorid hypopi have been reported from muskrats (Krantz, 1970), and perhaps this specimen crawled from the muskrat to the beetle.

One hydrachnid was taken from a <u>Nicrophorus</u>
orbicollis collected at an ultraviolet light trap. It
probably came to the light on an aquatic insect, and
there found its way onto the silphid. The two Cryptostigmata taken from beetles were probably normal soil

inhabitants of an area where collections were made from ground level baited cans.

PART II

THE BIOLOGY OF ACARINA ASSOCIATED WITH MICHIGAN SILPHIDAE

INTRODUCTION

The decomposition of dead animals is a natural process involving a succession of organisms. Under given conditions a dead body will be reduced quickly from a fresh state to dry remains of skin, cartilage, hair, and bones. But any major disturbance of the natural order could have serious consequences upon this succession. Since carrion is a breeding site for many insect vectors of disease (Faust, et al., 1962; and Symes, et al., 1962), a potentially serious public health hazard could result if carrion degradation did not occur quickly. For example, Stonier (1964) reported outbreaks of enormous populations of flies following the atomic bombings of Hiroshima and Nagasaki. United States diseases bred or carried by animals on carrion include dysenteries, scrub typhus, and plague, among others (Symes, et al., 1962).

Carrion beetles, the Silphidae, by their eating of carrion and fly larvae living in carrion, chewing of tissues, and intermixing of decay bacteria, play an important role in the decomposition of dead animals. However, the common association of mites with silphids

has remained largely unstudied, and their possible importance in animal degradation has been, therefore, unknown. For this reason, I undertook a study to examine the acarine fauna found on Michigan silphid species of the genera Silpha, Necrodes, and Nicrophorus, and the types of associations between mites and these beetles.

AND CARRION DECOMPOSITION

Numerous studies have reported the insects found on carrion, including studies which have considered the succession of insects over time. Jaques (1915) examined the fish-feeding Coleoptera from the beaches of Cedar Point, Ohio. Six species of silphids contributed to the rapid reduction of fish to bones and scales. He found that fish removed from the beach to shady places under trees attracted Coleoptera in much larger numbers, representing more species. Fuller (1934) discussed the insect inhabitants of carrion in Australia and their succession during different seasons. She was particularly interested in calliphorid flies and their possible biological control.

Howden (1950), following beetle succession on carrion, found 98 species from 14 families. She stated that at least half of these were primarily predactious on dipterous larvae and puparia; the other half were necrophagous or of dubious food habits. The moisture condition, size, and shape of carcasses were important in determining what beetles were found on them. Scaly,

cornified or unclothed skins inhibited insect succession, while tender skin or skin with hair or feathers facilitated it. Also the larger the natural and artificial openings into the carcass, the more rapid was the succession.

Bornemissza (1957) wrote concerning succession of carrion frequenting organisms on guinea pigs in Australia, and examined the influence of carrion on the typical soil fauna of a woodland. Decomposition of carrion had a maried effect on the normal soil fauna to a depth of 14 cm., causing many normal soil arthropods to leave the carrion area. Reinvasion of the carrion zone by soil arthropods remained incomplete one year after original carrion placement.

Walker (1957) investigated arthropods attracted to unbaited cans, and those baited with commeal, cantaloupe, and fish in four different habitat areas. Four species of Silphidae were attracted only to the fish, and no silphid species was attracted to fish in an abandoned field with little cover.

Reed (1958) studied dog carcass communities in Tennessee. Adults of six silphid species were found on carcasses in the earlier, moist stages of decay. Few adults were found on carcasses in a dry stage, but larvae were found only on carcasses in drier stages. He observed, as Walker, that insect populations in general

were smaller at carcasses in non-wooded areas than in wooded. Ordinarily succession proceeded more rapidly in pastures than in wooded areas.

Payne (1965) compared decomposition of baby pig carcasses decaying with a normal succession of arthropods to decomposition when arthropods were excluded from the carrion by screen. Carrion screened from insects decomposed and dried very slowly, taking on a mummified appearance which it retained as long as two months. While 90 percent of the carrion open to insects was removed in six days, 20 percent of mummified carcasses unexposed to insects remained after 100 days. Maggots of the Sarcophagidae, Calliphoridae, and Muscidae were the primary insects responsible for removal of carrion. Silphidae fed on the maggots as well as the carrion.

Payne and Crossley (1966) gave a list of the animal species found in Payne's 1965 study. A total of 522 animal species were listed, including six species of Nicrophorus, three of Silpha, and Necrodes surinamensis. Their relative abundance was indicated for the five stages of carrion decay. They summarized the role and habits of the major groups found on carrion, and divided them into five groups on the basis of feeding and habits. Mites were treated only casually in this study, with five genera having been collected. Payne, et al. (1968) examined arthropod succession and decomposition of pigs buried at 50-100 cm. in clay soil of a forest. No

Silphidae were collected under these conditions. Twenty-six of the 48 arthropod species collected were found only on buried pigs and not on dead pigs above the ground surface. Buried carcasses were reduced to 20 percent of their original weight in six to eight weeks.

Shubeck (1969) baited for silphids with chicken legs. He found no apparent succession of Silphidae during the time required for total decomposition of the meat, because the amounts were small. He did note a seasonal pattern, however, with Silpha novebaracensis being the species dominant in numbers during early summer, but virtually disappearing by mid-summer. Nicrophorus orbicollis and N. tomentosus on the other hand increased steadily and became dominant in numbers by middle summer.

The biology of the Silphidae has been studied in some detail. According to Pukowski (1933), Gleditsch (1752) was first to report of the striking behavior of Nicrophorus to bury small dead animals. Pukowski (1933) has written the most extensive article about the genus, reporting on six German species of Nicrophoorus. This rather extensive article discusses the attraction of Nicrophorus to carrion, their mating, burial and preparation of carrion for oviposition, development of immatures including brood care by the parents, and the biology of Nicrophorus in general.

Pukowski's work on <u>Nicrophorus</u>. In addition he summarizes information about American species of <u>Nicrophorus</u> and <u>Silpha</u>. His work along with that of Leech (1934) and Milne and Milne (1944) present the most extensive publications concerning the biology of American silphids.

Leech (1934) studied the life history of <u>Nicrophorus</u> conversator in British Columbia, describing burying behavior, development of immatures, and feeding. Milne and Milne (1944) concentrated primarily on burying behavior of six species of Nicrophorus in Ontario.

The feeding habits of Nicrophorus, Silpha, and Necrodes have been observed by numerous authors, and can be classified into three main categories: (1) those feeding on carrion, (2) those feeding on fly larvae living on carrion, (3) those feeding on both carrion and maggots. It is quite possible that many species should be placed into the third category, as few authors have experimented to see whether the beetles actually show a preference for either carrion or maggots, or will feed only on one. Authors who have reported silphids feeding on carrion only include Leech (1934), Dorsey (1940), and Cole (1942). Species in these studies included Silpha americana, S. inaequalis, S. noveboracensis, Nicrophorus orbicollis, N. tomentosus, and N. conversator. Larvae of S. americana and S. inaequalis were noted as feeding on drier carrion than adults.

More authors have observed Silphidae feeding on fly larvae than on carrion. Among these are Bell (1873), Selous (1911), Jaques (1915), Goe (1919), Illingworth (1926), and Steele (1927). Species noted feeding on maggots were Silpha americana, S. rugosa, S. sinuata, S. inaequalis, S. noveboracensis, Necrodes littoralis, Nicrophorus orbicollis, N. tomentosus, N. vespillo, and N. humator. Clark (1895) stated that Nicrophorus marginatus and Silpha lapponica fed almost exclusively on larvae. Illingworth also noted that Silpha and Nicrophorus larvae ate some sarcophagid pupae, and Steele observed that Nicrophorus orbicollis ate the smaller N. tomentosus when they were put together in the same container.

Five species are common to the separate groupings above and therefore, can probably be said to feed regularly on both carrion and fly maggots. In addition to these five, Reed (1958) lists Necrodes surinamensis as feeding on both. But Clark (1895) and Davis (1915) state that this species indicates a definite preference for fly larvae.

Several investigators have examined the orientation of Silphidae to carrion. Selous (1911) noticed that most of the beetles attracted to carrion came in the direction opposite from which the wind was blowing, suggesting that they sensed an odor carried by the wind. Abbott (1927, 1927a) studied the role of the antennae

and palpi of Nicrophorus for detection of carrion in cages. His studies were not controlled as well as Dethier's (1947), however, who concluded that the antennae bear the olfactory receptors for long-range perception, and the palpi bear receptors suited to perception within thirty inches. Dethier (1947) also demonstrated by mark, release, and recapture methods that the three apical segments of the antennae possess the receptors for long range olfactory perception. Ernst (1969) has studied the fine structure of the olfactory hairs (sensilla basiconica) located on these three club segments.

Shubeck (1968) used a mark, release, and recapture method to study whether orientation of S. noveboracensis, N. orbicollis, and N. tomentosus to carrion was random or non-random. He concluded that rate of return of S. noveboracensis from 5 to 75 meters was apparently due to random wandering and not related to orientation to odors. There was a significant increase in ability to return to carrion below two meters. S. noveboracensis was fourteen times more apt in returning to carrion from five meters than N. orbicollis and N. tomentosus combined, whereas in Dethier (1947) about equal returns were noted.

Dethier also obtained a greater overall return to silphids to carrion, which Shubeck suggested was due to Dethier's suspension of carrion five feet above ground. Odors from

the carrion were thus more easily carried by wind currents attracting silphids.

Shubeck (1970) studied attraction of silphids to carrion baited cans on the ground versus cans suspended 1.5 meters in the air. He found that N. tomentosus was attracted primarily to cans in the air, while N. orbicollis, S. americana, and S. noveboracensis were attracted primarily to ground cans.

Ratcliffe and Luedtke (1969) compared the attractiveness to Silphidae of carrion covered with tree bark versus uncovered. Three species were more attracted to covered carrion and four species were more attracted to uncovered carrion. Shubeck (1971) found certain species were more frequently trapped nocturnally than diurnally, and stated that covered carrion of Ratcliffe and Luedtke (1969) could be analogous to nocturnal activity, and uncovered carrion analogous to diurnal activity since they offered similar light conditions.

Authors who have contributed descriptive work on either adult or larval American Silphidae include Schaupp (1881, 1882), Wickham (1895), Blackburn (1936), and Dorsey (1940). Sharp and Muir (1912), Arnett (1944), and Bliss (1949) have done studies pertaining especially to sexual characteristics of Silphidae. R. Heymons and V. H. Lengerken published numerous descriptive and life history studies on European silphids in the 1920's and 1930's.

DISTRIBUTION OF MICHIGAN SILPHIDAE

The range of Michigan's 11 species of carrion beetles extends in all directions beyond the borders of the state. For this reason, no attempt was made in this study to systematically collect silphids throughout the state. Agassiz (1850) included the Coleoptera in his study of the Lake Superior area. Hubbard and Schwarz (1878) reported on Michigan Coleoptera. Major works which have given the distribution of Silphidae throughout the United States include Le Conte (1853), Horn (1880), Leng (1920), and Hatch (1927a).

COLLECTION PROCEDURES FOR BEETLES

The collection of silphid beetles and their mite associates is made relatively easy, although a bit unpleasant, due to their attraction to carrion odors. Primary collection sites for this study in Michigan from 1969-71 included: W. K. Kellogg Gull Lake Biological Station, Kalamazoo County; Rose Lake Wildlife Research Area, Clinton County and Shiawassee County; Olivet College Biological Preserve at Pine Lake, Eaton County; and Michigan State University, Toumey Woodlot, Ingham County. Occasional collections were made throughout various parts of Michigan by the author and others. Collections at the primary sites were usually made between 9 A.M. and noon or early afternoon.

by placing various dead vertebrates into one gallon metal cans such as are readily available from cafeteria kitchens. The different kinds of carrion included dead fish, mice, birds, snakes, and frogs. After preliminary studies dead fish was most commonly used as bait, because it was readily available and was found to produce the

strongest odor detectable by the author in a short time. Other types of carrion were used as available.

After placing the carrion into a gallon can, a wire screen with one-inch mesh was fastened over the opening to prevent vertebrate scavengers from removing the bait. In cases where small animal bodies such as mice were used for bait, a wire mesh smaller than one inch was needed to prevent <u>Nicrophorus</u> from removing the bodies from the cans for burial.

Occasionally silphids were also collected at lights and by examining road kills and vertebrates found dead of natural causes. Dead animals lying at road sides seldom had silphids on them, however.

For all beetles collected the following information was recorded: species and sex, date and site of collection, general habitat type, and kind of carrion from which collected. In addition, all beetles collected from a single dead body were kept together until examined for mites. In this way comparisons could be made to see if beetles collected at one site carried the same or different mites as there is a possibility for exchange of mites between beetles at a common carrion site. The general habitat type was recorded for all beetle collection sites, in order to examine possible beetle preferences.

Beetles were identified using keys from Horn (1880), Hatch (1927, 1927a), and Arnett (1944). Hatch (1927a) includes keys to aberrations of species (variations in color pattern) which were not used in this study, because it was not thought that sub-specific identification would add significantly to the information obtained.

Beetles were collected from the baited cans by grasping one of their hind legs with a forceps. complement of mites found on each beetle was disturbed very little in this way. Unless a beetle or mites on it were to be retained for rearing, each beetle was placed into a vial of 80 percent ethyl alcohol. Separate vials were used for each beetle to retain specific host data. Upon placement into alcohol, Poecilochirus and Macrocheles mites frequently fell from the beetle into the alcohol. This was due to the fact that they were not holding onto the beetle with their chelicerae, but simply holding to the dorsum of the beetle with their Mites found on the beetle at sites other than the legs. dorsum usually remained in place.

Beetles and mites which were to be retained for rearing were collected into dry baby food jars. Care had to be taken to prevent the mites from becoming fastened to the bottom of the jar in the liquid excretions which silphids frequently give off when confined

in a small container. A small piece of paper toweling in the bottom of the jar usually solved this problem.

When it was desirable to remove live mites from beetles, carbon dioxide gas was used to anesthetize both the mites and silphids. In this way the beetles would lie still while they were being examined under the wings, in coxal cavities, etc. for mites. Also the mites could be easily picked up with a moist camel hair brush and transferred to a culture dish.

PROCEDURE FOR EXAMINATION OF BEETLES FOR MITES

Removal of both live and dead mites from silphids was accomplished by use of a dissecting microscope
at 9 and 27 magifications. Each beetle examined for mites
was given a number for future reference starting with
WY1, WY2, WY3. . . . For those beetles collected in
alcohol, removal of mites was also done in 80 percent
alcohol. Several sizes of pipettes were used to suck up
the mites as they were gently prodded to loosen them from
a beetle. The site of mite attachment to the beetle was
recorded for all mites in order to examine their preferences. Terminology used in describing the silphid
anatomy follows Blackburn (1936).

The same sequence was followed in probing the parts of each beetle to insure a thorough examination. In order to hold a beetle under alcohol during examination, one of the hind legs was grasped with a forceps, leaving one hand free to probe the parts of the beetle and suck up the mites. First the beetle was laid on its back and the legs, coxal cavities, and membranous areas

between thoracic sternal sclerites, pleural sclerites, and cervical areas were examined. Next the abdominal sternites were examined, particularly the intersegmental Then the area between the hind coxae and abdomen was pressed apart to determine if mites were attached there. Following examination of the ventral side, the silphid was turned over for examination of the The elytra were lifted, one at a time, and one side of the dorsum was examined before lifting the second elytron and repeating the examination on the second half. First the under-side of the elytron was examined. commonly large numbers of anoetids were attached there. Then the wing bases, scutellar area and thoracic terga were probed, followed by examination of the abdominal terga. Frequently anoetid mites were attached to these terga, especially at the intersegmental membranes. Finally, the terminal segments of the abdomen bearing the genitalia were examined. Mites and nematodes were often concealed on those segments until the segments were drawn out a bit with forceps, as the segments were withdrawn within one another.

Following removal of the mites from the beetles, they were treated for microscopic examination as described under the preceding section on "Mite Methods."

Beetles from which mites were removed are either deposited in the Michigan State University Entomology Museum or are retained by the author for future study.

RESULTS AND DISCUSSION

During this study the acarine fauna found on 246 silphid beetles representing eleven species collected in Michigan was examined. A total of 11,743 mites were taken from these beetles. Individual beetle species examined were as follows: 40 Nicrophorus tomentosus Weber, 17 N. americanus Olivier, 6 N. vespilloides Herbst, 7 N. pustulatus Herschel, 9 N. orbicollis Say, 13 N. marginatus Fabricius; 54 Silpha americana Linnaeus, 53 S. noveboracensis Forster, 16 S. lapponica Herbst, 13 S. inaequalis Fabricius; 18 Necrodes surinamensis Fabricius. Approximately equal numbers of male and female beetles were examined, except in the case of Nicrophorus vespilloides, where only six males were collected.

Larger numbers of N. tomentosus, S. americana, and S. noveboracensis were examined since these species were more frequently collected. Preliminary studies also showed that of the commonly collected silphids

N. tomentosus and S. noveboracensis had a greater frequency of infestation by mite species and individuals.

Nicrophorus americanus was never collected by the author

during this study, and all data for this species are from museum specimens. Although museum records show it has occurred in the past in the same areas collected in this study, no live specimens were seen during the time of this investigation.

The various types of carrion attracting each silphid species in this study are shown in Figure 23. Dead fish and mice were the only two baits used reqularly, as they were readily available and attracted all species. Based on field observations alone, dead fish, which gave off the strongest odor detectable by the author, seemed to attract the most beetles. However, no quantitative data were recorded. Dead Peromyscus sp. also served quite well as bait when six to ten adults were placed into one can. Birds, snakes, frogs, and turtles were used as bait when available, but this was too infrequent to predict whether or not all species would be attracted to them. On one occasion, a partially disinterred horse was found with several Necrodes surinamensis on it. Other large mammals which at times were found inhabited by silphids included deer, opposum, dog, and muskrat. When the large variety of dead animals used in this study and others reported in previous literature are considered, it becomes apparent that most groups of dead vertebrates attract Silphidae.

BEETLE SPECIES	Fish	Mice	Birds	Large Mammals	Snakes	Frogs	Light
Silpha americana	Х	х	Х	Deer			
S. nove- boracensis	Х	х	Х	Deer, Dog Opossum Muskrat			
S. Inacqualis	х	Х	Х	Deer Muskrat		х	
S. Tapponica	Х	Х	Х			Х	
Necrodes surinamensis	Х	х		Horse	х		х
Nicrophorus tomentosus	Х	Х			X	Х	
N. orbicollis	х	х					Х
N. pustulatus	Х	х					Х
N. vespil- loides	Х	х	Х				<u></u>
N. marginatus	Х	Х					

Figure 23. Attractants of Silphidae in Michigan.

As many as four silphid species, often representing two or three genera, were attracted to a single baited can during this study. How many of these species would have remained to reproduce was never determined. But Pukowski (1933) reported that normally only one Nicrophorus female or a breeding pair would remain on dead moles to reproduce, all others being driven off before the burial of the mole was completed and eggs were laid. His experiments were confined to cages, and perhaps more work should be done in a natural setting to determine whether his observations apply to a natural situation.

The percent of each species of beetle infested by mites is given in Figure 24. This graph also shows the average number of mite species found on each beetle. All species of Nicrophorus showed a high infestation of mites, with 89 percent infestation of N. orbicollis the lowest. Three species showed 100 percent infestation. The average number of mite species on different species of Nicrophorus having mites ranged from 2.4 to 3.8. This is in contrast to Silpha which ranged from 1.0 to 1.9 mite species/beetle species for infested beetles. The percent infestation of all species of Silpha was also less than any Nicrophorus. Silpha noveboraensis had the highest infestation with 85 percent while S. americana had the lowest infestation of all silphids collected with only 44 percent having mites.

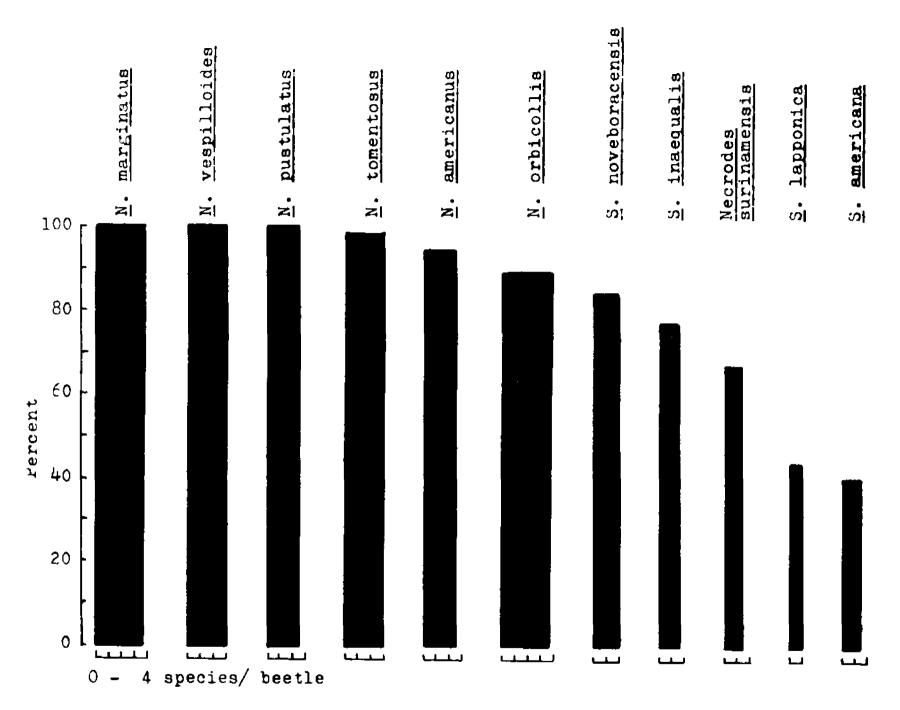


Figure 24. Percent of Silphidae infested by mites, and mean number of mite species per beetle for beetles having mites.

While factors affecting the preferential attraction of mites to the eleven different silphid species were beyond the scope of this study, several possibilities are suggested. Differences in beetle size or structure may make one beetle species more attractive than another. For example, the indentation in the elytra of Necrodes surinamensis provided an attachment site for 15 percent of all the Spinanoetus pelznerae collected. Habits of the different beetle species may make one more attractive than another. Food regurgitations of Nicrophorus could serve as a stimulus to bring mites to them which would not be drawn to Silpha. Likewise, the burying behavior of Nicrophorus could keep them in an environment more suitable for mite associations than Silpha and Necrodes which spend most of their time near the surface of the ground. The question of why one beetle species is more attractive to mites than another is part of a more basic question of why are mites attracted to beetles at all, which will be discussed later.

MITE ASSOCIATIONS WITH SILPHIDAE

Eleven mite species were found on Michigan Silphidae in numbers of 40 or more. The number of beetle species hosting each mite species is presented in Figure 25. Their distribution follows a normal pattern with Pelzneria crenulata being found on all eleven silphid species, while Macrocheles breviseta and Poecilochirus longisetosa were found on only two beetle species. The remaining seven species were distributed on intermediate numbers of beetles.

In the following discussion, each of these mite species will be discussed in relation to: (1) its total number collected, (2) range in numbers on beetle species, (3) percent of beetles infested, (4) average number of mites/beetle from those beetles having mites, (5) site preferences on beetles. For each mite being considered, the reader is referred to Table 2 for the percent of each beetle infested by given species of mites, and to Table 3 for the mean number of mites/beetle. Locations of mites on beetles are given in Table 4.

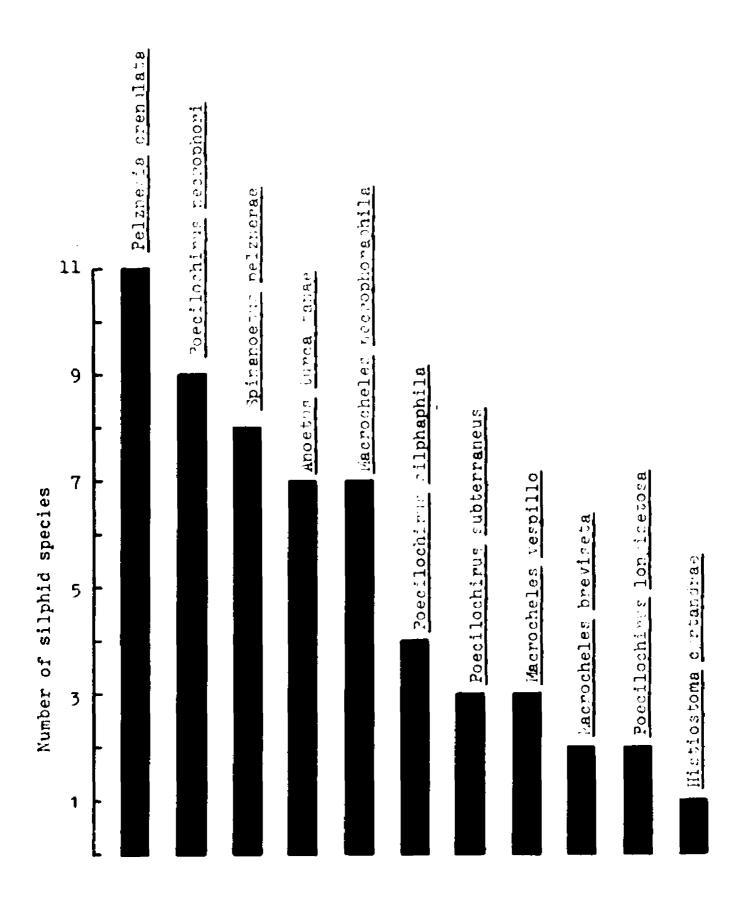


Figure 25. Number of silphid species on which given mite species were found.

TABLE 2. Percent of beetles infested with given mite species. (Numbers in parentheses following species names indicate number of specimens.)

Beetle species	1 5 6	Poecilochiruc subsernanews (344)	Poecilochimus lorgisetosa (je)	Poecilochirus rilphaphila (52)	necrocheles necroporaphila (162)	Lacrocheles breviseta (61)	serocheler Vespillo (111)	Pelzneria orenilata (6519)		Anoeths tirassasse (604)
Nicrophorus tomentosus (40)	70	68	13	28	5	3	3	83	10	5
Nicrophorus americanus (17)	6	0	0	12	77	0	24	59	6	12
Nicrophorus vespilloides (6)	50	33	0	17	83	0	0	67	0	17
Nicrophorus pustulatus (7)	29	57	0	0	14	0	0	86	0	0
Nicrophorus orbicollis (9)	45	0	0	22	67	0	0	44	0	11
Nicrophorus marginatus (13)	31	0	62	0	0	63	23	69	39	69
Silpha americana (54)	11	0	0	0	2	0	0	11	9	4
Silpha novebora- censis (53)	17	0	0	0	2	0	O	57	76	0
Silpha lapponica (16)	O	0	0	0	0	0	0	25	6	0
<u>Silpha</u> inaequalis (13)	0	0	0	0	0	0	0	77	3 8	0
Necrodes surinamen- sis (18)	6	0	0	0	0	0	0	11	67	6

TABLE 3. Mean number of mites/beetle from those beetles having mites. (Numbers in parentheses following species names indicates number of specimens.)

Seetle species	Foecilochirus necrophori (448)	Foecilochirus subterraneus (346)	<u>Poecilochirus</u> <u>longisetosa (</u> 56)	Foecilochirus silohaphila (52)	Lacrocheles necrophoraphila (762)	Lacrocheles breviseta (65)		<u>Felzneria</u> crenulata (6519)	Spinanoetus pelznerae (2679)	Anoetus turcastanae (604)
Nicrophorus tomentosus (40)	4.4	5•7	2.6	3.5	3.5	2.0	1.0	103.4	1.0	1.0
N. americanus (12)	1.0	0	0	1.0	45.4	0	24.3	96.7	1.0	2.0
<u>N</u> . vesnilloides	17.3	2.0	0	3.0	4.2	0	0	19.8	0	1.0
(6) N. pustulatus (7) N.	84.0	45.8	0	0	25.0	0	0	130.3	0	0
N. orbicollis (9) N.	7.5	0	0	4.5	19.3	0	0	2.5	0	1.0
marginatus (13)	9•3	0	5.4	0	0	7.9	4.3	49.1	1.8	65.9
Silpha americana (54)	2.9	0	0	0	1.0	0	0	5.0	2.8	1.0
<pre>s. novebora- censis (53)</pre>	2.0	0	0	0	1.0	0	0	19.1	53.8	0
S. lapponica (16)	0	0	0	0	0	0	0	1.5	1.0	0
S. inaequalis (13)	0	0	0	0	0	0	0	19.0	15.8	0
Necrodes surinamen- sis (18)	1.0	0	0	0	0	0	0	10.5	35.2	1.0

TABLE 4. Locations of mite species on beetles by percent.
(Numbers in parentheses following species names indicate number of specimens.)

rite species	Poecilochirus necrciphori (448)	<u>Foecilochirus</u> subterraneus (346)	Poecilochirus longisetosa (56)	Poecilochirus silphaphila (52)	Lacrocheles necrophoraphila (762)	<u>lacrocheles</u> <u>breviseta</u> (65)	lacrocheles vespillo (111)	<u>Pelzneria</u> crenulata (6519)	Spinanoetus pelznerae (2679)	Anoetus turcastanae (604)
Loose	1.00	62.9	98.2	92.3	8.8	29.2	1.8	18.9	7.1	13.8
Abdominal terga	0	6.1	0	5.8	8.0	0	2.7	15.5	67.1	6.1
Thoracic terga	0	12.2	0	0	9•5	0	0	0	0	0.2
Abdominal sterna	0	0	1.8	0	3.8	0	8.2	1.6	0.2	46.3
Thoracic sterna	0	0	0	0	0	0	0	0.5	0	0.2
Cox al cavities	0	O	0	0	0	0	0	32.9	0.2	6.8
Underside of elytra	0	18.8	0	O	1.7	0	0	25.1	25.4	26.6
Spiracles	0	0	0	1.9	67.2	0	80.9	0	Ö	Ö
Genitalia	0	0	0	0	0	0	0	3.4	0	0.2
Posterior edge of pleuron I	0	0	0	0	0	70.8	6.4	0	0	0
Cther	0	0	0	0	1.0	0	0	2.0	Ó	0.4

FAMILY ANOETIDAE

Members of the Anoetidae were found on silphids in greater numbers than any of the other families. They were found only in the deutonymph or hypopus instar, attached by their suckers to various parts of the beetles.

Pelzneria crenulata (Oudemans)

Anoetus crenulatus Oudemans, 1909: 23.

Histiostoma crenulatus Buitendijk, 1945: 281.

Pelzneria crenulata Scheucher, 1957: 347.

The 6519 P. crenulata specimens were the largest number of any mite species collected. It was found on all eleven silphid species ranging in numbers from 1 to 574 individuals/beetle. Infestation ranged between 86 percent of Nicrophorus pustulatus and 11 percent of Silpha americana and Necrodes surinamenis. The highest average number of P. crenulata/beetle species was found on N. pustulatus, with 130.3/beetle, and the lowest average was 1.5/beetle on Silpha lapponica. High average numbers per beetle were also recorded for N. tomentosus (103.4), N. americanus (96.7), and N. marginatus (49.1).

Lower averages were recorded for N. vespilloides (19.8),
S. noveboracensis (19.1), S. inaequalis (19.0), and
Necrodes surinamensis (10.5). Overall, much higher
average numbers of P. crenulata were found on Nicrophorus
than on Silpha or Necrodes.

Of all the P. crenulata collected, 32.9 percent were found in coxal cavities I and II of the beetles. They were usually attached to the medial and posterior surfaces of the coxal cavities, although when in larger numbers they would cover the entire surfaces of the cavities. Twenty-five percent of the P. crenulata were found attached to the underside of silphid elytra. Most often they were clustered toward the proximal end of the elytra, but extended two-thirds of the way toward the distal end when in larger numbers, coating the entire surface of the elytra to that boundary. The abdominal terga were the attachment site for 15.5 percent of the P. crenulata collected. Only the terga covered by the elytra when at rest were occupied by mites in most cases. They would cluster toward the intersegmental membranes unless larger numbers were present, and forced onto the more sclerotized surfaces of the terga. The genital sclerites were the sites of attachment for 3.4 percent of this species. It was the only species which was found there with any frequency. It is interesting to speculate as to whether they reached the genitalia by

crawling there after they were on some other part of the beetle, or if their original site of entrance onto the beetle may have been the genitalia. All but one of 221 P. crenulata taken from the genitalia were on female beetles, so the possibility exists that these mites could have crawled onto the ovipositors of females as they were depositing eggs at a carrion site. When beetles were placed into collecting vials containing alcohol, 18.9 percent of the P. crenulata became dislodged from their attachment site. Such mites were all combined into a category called "loose" in Table 4, for this and following species.

Spinanoetus pelznerae Scheucher

Spinanoetus pelznerae Scheucher, 1957: 358.

The total of 2679 <u>S. pelznerae</u> collected made it the second most commonly collected mite species. It was found on eight of the eleven silphid species. Numbers found on a single beetle ranged from 1 to 281, the highest number being found on <u>S. noveboracensis</u>. Seventy-six percent infestation of <u>S. noveboracensis</u> was also the highest infestation by this mite on any species of beetle, and only 6 percent of <u>N. americanus</u> and <u>S. lapponica</u> carried this species. Only three species of beetles had a high average number of this mite/beetle:

- S. noveboracensis, 53.8; Necrodes surinamensis, 35.2; and S. inaequalis, 15.8. It is interesting to note that this was the only mite species which infested Silpha and Necrodes in greater numbers than Nicrophorus for reasons unknown.
- S. pelznerae was found primarily in two locations on silphids. The abdominal terga were the attachment sites of 67.1 percent of the species, and 25.4 percent were found on the underside of the elytra. Fifteen percent of the specimens were attached to the elytra of Necrodes surinamensis, even though only 16 percent of the total were found on this beetle. The elytra of N. surinamensis bear an indentation, lacking in other silphids, which perhaps makes them a more attractive or suitable attachment site for hypopi. For some reason, S. pelznerae was the only anoetid mite which was not frequently found in the coxal cavities, and which showed only two clear site preferences on the beetles.

Anoetus turcastanae Oudemans

Anoetus turcastanae Oudemans, 1917: 391.

Only 604 A. turcastanae were collected in contrast to much larger numbers of the preceding anoetid mites. It was found on seven silphid species. Nicrophorus marginatus was the only beetle which had more than three of this mite on it, one specimen having 387

individuals. N. marginatus had 69 percent infestation, with the other species having only 4 to 12 percent infestation. N. marginatus having A. turcastanae averaged 65.9 mites/beetle, but no other beetle averaged greater than two/beetle.

This species was generally distributed over the beetles with the abdominal sterna bearing 46.3 percent, the underside of the elytra 26.6 percent, coxal cavities 6.8 percent, and the abdominal terga 6.1 percent.

<u>Histiostoma cyrtandrae</u> (Vitzthum)

Anoetus cyrtandrae Vitzthum, 1931: 59.

Histiostoma cyrtandrae Hughes & Jackson, 1958:

59.

Forty specimens of <u>H. cyrtandrae</u> were collected from a single <u>Nicrophorus pustulatus</u>. Twenty of these were found in coxal cavities I and II, and twenty were detached from the beetle in the collecting fluid. It is unusual that such a large number of a species should be collected from only one beetle during the entire study. No explanation can be given for it at this time. Many other beetles were collected from the same area during a period of one week.

FAMILY PARASITIDAE

Representatives of this family were found on silphids only as deutonymphs. Most frequently the mites would be running about freely on the dorsum of beetles when collected, although they were also commonly clinging to the undersides.

Poecilochirus necrophori Vitzthum

Poecilochirus necrophori Vitzthum, 1930: 381.

Poecilochirus necrophori was the largest mite species collected from Silphidae. A total of 448 specimens were collected from nine siliphid species, making it the second most commonly collected mesostigmatic species. It was never collected from Silpha inaequalis or S. lapponica, but was found on all other Michigan silphids. Infestations ranged from one mite/beetle to a high of 146 mites/beetle on a Nicrophorus pustulatus. Excluding that one individual, the highest infestation was 32 mites/ beetle. Seventy percent of Nicrophorus tomentosus carried this species, but only 6 percent of Necrodes surinamensis had it. Only 6 percent of Nicrophorus americanus carried it as well, but all N. americanus were museum specimens, and probably were placed in cyanide killing jars rather than in vials of alcohol, as were the rest of the beetles in this study. If so,

it is quite likely that a number of <u>P</u>. <u>necrophori</u> would have been lost in collection. All <u>Nicrophorus</u> except <u>N</u>. <u>americanus</u> had at least 29 percent infestation of <u>P</u>. <u>necrophori</u>, and the collection method could account for its being much lower. The only two <u>Silpha</u> carrying <u>P</u>. <u>necrophori</u>, <u>S</u>. <u>americana</u> and <u>S</u>. <u>noveboracensis</u>, had only lipercent and 17 percent infestation respectively.

For those beetles bearing P. necrophori, the average number/beetle for Nicrophorus ranged from 1.0 on N. americanus to 84.0 on N. pustulatus. Again, however, a more reliable estimate of the average number would probably exclude the museum specimens of N. americanus.

Then N. tomentosus would have the lowest average number/beetle with 4.4. This is still considerably higher than the 2.9 and 2.0 mites/beetle found on Silpha americana and S. noveboracensis. Both average numbers of P. necrophori/beetle and percent infestation suggest that this mite species has a definite preference for Nicrophorus over Silpha or Necrodes. In addition, this was the only one of four species of Poecilochirus found on Silpha and Necrodes at all. Possible reasons for this preferential attraction will be discussed later.

All P. necrophori were in a "loose" association with silphids, running on the beetles, or off the beetles onto carrion, feeding, and returning to the beetles. They seldom remained stationary on a beetle, and were seldom

seen holding onto a beetle while a beetle was on the ground. For this reason, the mites fell off when the beetles were placed into vials of alcohol. Occasionally a mite was seen with a beetle seta in its chelicerae, indicating that perhaps this was their method of holding to a beetle during its flight. But there were no indications of site preferences on the beetles.

Poecilochirus subterraneus (Müller)

Porrhostaspis subterranea Müller, 1859: 176.

Parasitus subterraneus Oudemans, 1902: 238.

Gamasoides subterraneus Berlese, 1903: 258.

Poecilochirus subterraneus Vitzthum, 1930: 381.

Three hundred forty-six P. subterraneus were collected from only three species of Nicrophorus. Their numbers ranged from one mite/beetle, to 132 mites/beetle on one N. pustulatus. N. tomentosus had the highest percent infestation with 27 percent while N. pustulatus and N. vespilloides had only 4 percent and 2 percent infestation each. Of the beetles bearing P. subterraneus, N. pustulatus had the highest average number with 45.8/beetle, while N. tomentosus had 5.7/beetle and N. vespilloides 2.0/beetle.

P. <u>subterraneus</u> was distinct from the other three <u>Poecilochirus</u> in its site preferences on the beetles.

Only 62.9 percent of P. subterraneus were in "loose"

association with the beetles and fell off when placed in alcohol, compared to 92-100 percent of the other three species. The remaining 37.1 percent not "loose" were found on thoracic or abdominal terga under the elytra, or between the elytra and membranous wings. The fact that P. subterraneus is only about half the size of other Poecilochirus probably allows it to crawl under the elytra onto the terga where the others cannot easily go. When on several occasions it was noted that there were also nematodes under the wings, the question was raised of whether the mites were simply under the wings seeking attachment sites for phoresy, or whether they might be seeking nematodes as a food source. Until now nothing has been published concerning food habits of P. subterraneus, including this study. But this would probably be a profitable area for investigation.

Poecilochirus longisetosa new species

Nicrophorus marginatus and N. tomentosus carried a total of 56 P. longisetosa. It ranged in number from one mite/beetle to 32/beetle on one N. marginatus.

Thirteen percent of N. tomentosus and 62 percent of N. marginatus carried it. The average number per beetle for those having this species was 2.6 for N. tomentosus and 5.4 for N. marginatus.

A single specimen of <u>P</u>. <u>longisetosa</u> was found holding to an abdominal sternite. All others fell off the beetles when collected into alcohol, as was typical for most individuals of the genus.

Poecilochirus silphaphila new species

A total of 52 P. silphaphila were collected from four species of Nicrophorus. It ranged in number from one to eight mites/beetle. Percent infestation by species was less than for any other Poecilochirus, with 28 percent infestation of N. tomentosus being the highest.

N. americanus carried the lowest average number of mites/beetle with 1.0, while N. orbicollis averaged 4.5 mites/beetle for specimens with it.

This species showed little site preference on beetles as 92.3 percent were loose after collection into alcohol. One specimen was found holding to the edge of a thoracic spiracle and 5.8 percent were found on abdominal terga under the elytra.

FAMILY MACROCHELIDAE

This family was represented on Michigan Silphidae by five species of Macrocheles. They were found on the beetles only as adult females.

Macrocheles vespillo Berlese

Macrocheles vespillo Berlese, 1918: 115.

One hundred eleven specimens of this species were taken from three species of Nicrophorus. Their numbers per beetle ranged from one to a high of 47 on one specimen of N. americanus. Twenty-four percent of N. americanus and 23 percent of N. marginatus examined carried M. vespillo, while only a single N. tomentosus had one specimen on it. The average number per beetle was 4.3 on N. marginatus and 24.3 on N. americanus. The spiracles of N. americanus were the attachment site of 80.9 percent of this species. This was a much higher percentage than was found on any other sites on all beetles, with only 8.2 percent being found on the abdominal sterna, 6.4 percent under the posterior edge of pleuron I, 2.7 percent on the abdominal terga, and 1.8 percent loose in the collection vials. The high percentage found clustered around the spiracles would suggest that perhaps a certain gas or humidity concentration found there was more suitable for M. vespillo. A high percentage of M. necrophoraphila, which follows in this discussion, was also found in greatest numbers at the spiracular openings. The same stimulus might have attracted both species of Macrocheles to the spiracles.

Macrocheles necrophoraphila new species

The 762 specimens of M. necrophoraphila collected made it the most common Macrocheles on silphids. It was taken from seven species of beetles in numbers ranging from 1 to a high of 282 on a single N. americanus. Percent infestation ranged from 2 percent on S. americana and S. noveboracensis to 83 percent on N. vespilloides. N. americanus had 77 percent infestation and N. orbicollis 67 percent, while N. pustulatus and N. tomentosus had only 14 percent and 5 percent respectively. For those beetles bearing mites, the average number per beetle ranged from 1.0/beetle for S. americana and S. noveboracensis to 45.4 mites/beetle for N. americanus. This was the only species of Macrocheles for which any specimens were found on Silpha. N. pustulatus and N. orbicollis had high infestations with 25.0 and 19.3 M. necrophoraphila/beetle respectively. N. vespilloides carried only 4.2/beetle, and N. tomentosus 3.5/beetle.

The spiracles of Nicrophorus were the attachment site of 67.2 percent of this species collected. The spiracles of N. americanus alone accounted for 66.7 percent of the specimens. As mentioned in the discussion of M. vespillo, a common stimulus may have attracted these two mite species in large numbers to the spiracles of N. americanus. Since N. americanus beetles were all museum specimens, it is quite possible that they were

killed with cyanide gas, and perhaps the mites were attracted to the beetles spiracles as their oxygen supply was diminished. However, this would not explain the greatest percentage of both species being attracted to N. americanus initially. Ideas concerning the initial attraction of mites to beetles will be discussed later. In addition to the M. necrophoraphila found attracted to the spiracles, 19.2 percent of this species were found either on the thoracic or abdominal terga or under the elytra, away from the spiracles. Combined with those specimens found at the spiracles, 86.4 percent of this species were found under the wings of silphids. Most of the remainder had fallen off the beetles into the alcohol when collected.

Macrocheles breviseta new species

Sixty-three M. breviseta were found on N.

marginatus and two on N. tomentosus. The highest number on any beetle was 21. M. breviseta infested 62 percent of N. marginatus, and only a single specimen of N. tomentosus. The average number of mites on N. marginatus was 7.9. The inside of the posterior edge of pleuron I was the attachment site for 70.8 percent of this species, all on N. marginatus. This sclerite, connected by a membrane to the rest of the body wall, provided enough room for at least 21 mites to crawl snuggly under it,

almost concealing them completely from observation from the outside. Beetles were taken on four different dates and from two counties with this species under the edge of the pleuron. The 29.2 percent not found under the pleuron had fallen from the beetles into the collecting fluid.

THE BIOLOGY AND PHORETIC BEHAVIOR OF ANOETID MITES ON SILPHIDAE

Although the biology of Anoetidae found on silphids was not examined in detail, knowledge of other anoetids allows reasonable assumptions regarding the role of silphids in the biology of anoetids found on them. is well known that hypopi do not possess functional mouth parts and, therefore, the anoetids which were collected from silphids in this study could not be feeding on the beetles or other materials found on them. Hughes and Jackson (1958) state in regard to the other instars of the family that for nearly all species encountered so far "they appear to thrive best when fermentation of organic matter is evident. They are surface feeders, and most seem to prefer a thin film of fluid in which to wade while feeding. It is presumed that they engulf yeasts, and other microorganisms." In most cases, carrion becomes quite moist during the early stages of decay, and probably forms a suitable habitat for anoetid reproduction. Woodring (1963) reported that when the anoetid food medium dries, hypopi form in ever increasing numbers. And when

fresh medium is again made available, most hypopi molt to tritonymph. So it is quite possible that hypopi carried by silphids could leave the beetles when they reach a new, moist carrion site, complete their life cycle, and reproduce new young. The new young upon reaching the hypopal stage could attach to silphids, and emigrate to new carrion sites as the old carrion dried, and the adult beetles left it. Factors controlling the formation of hypopi in the life cycles of anoetids are not well understood (Woodring, 1963), but the formation of hypopi probably has adaptive benefit for anoetids in getting them to new wetter habitats as their old habitat dries. A great deal of work remains to be done in order to understand the problems of anoetid nutrition and hypopal formation and termination, and to correlate this with their phoresy on silphids.

THE BIOLOGY AND PHORETIC BEHAVIOR OF POECILOCHIRUS

A study was undertaken from 13 August to 6
September 1971, in Michigan State University's Toumey
Woodlot to determine whether <u>Poecilochirus</u> would be
found on carrion which had not been visited by beetles.
Limited observations by Springett (1968) indicated that
P. necrophori was not found on dead terms on the Farne
Islands until <u>Nicrophorus</u> had visited the dead birds.

For this study two six-foot square screen cages were erected in the woodlot several hundred feet apart. The screen, a mesh 20 lines per inch, excluded beetles but not mites. A gallon can baited with dead mice was placed inside each cage. Outside each cage, thirty feet from them, a similarly baited control can was placed. Cans were collected one or two days after freshly killed mice were placed into them, and the mites recorded from caged cans and uncaged controls.

Results and Discussion

Nicrophorus were found in all control cans, or there was definite evidence that they had visited the cans

and left. In several of the control cans no Nicrophorus were collected, but the mice were chewed in a way that had previously been observed as characteristic for Nicrophorus.

Comparison of the total mites collected in caged versus uncaged cans shows that 0 Poecilochirus were collected in nine caged cans where Nicrophorus were excluded, whereas 113 Poecilochirus were collected in the uncaged cans. This indicates, as was suggested by Springett (1968), that Poecilochirus are carried to carrion initially by silphids, and are not simply a normal part of the soil fauna. They are dependent on beetles for their transport and dispersal from one carrion site to another.

A total of five mites other than <u>Poecilochirus</u> were collected from the total 18 cans. These mites were all members of groups that would normally be expected in soil or leaf litter, and therefore, probably could be considered accidental visitors of the carrion. They did not require silphids to carry them to the carrion site.

Only two investigators have studied the feeding habits of <u>Poecilochirus</u> in any detail, and their results are opposed. Neumann (1943) reported that <u>P. necrophori</u> (reported by Holzmann (1969) to have been <u>P. carabi</u>) could be reared to adults very easily on crushed fly maggots in the absence of silphids. Springett (1968) concluded that <u>P. necrophori</u> are apparently unable to produce young in the absence of <u>Nicrophorus</u>, although he

that on one occasion P. necrophori protonymphs were observed feeding on the brown fluid regurgitated by Nicrophorus, and implied that this fluid or other beetle excretions may be very important to the mites. Their diet of fly eggs and small larvae in the absence of beetles apparently did not supply all requirements for reproduction.

In some preliminary experiments during this study, 14 P. necrophori deutonymphs were maintained in the laboratory apart from beetles in order to compare results with those of Springett (1968). They were kept on a moist plaster of Paris-charcoal substrate at 21-27°C, and offered a diet of crushed Tenebrio molitor larvae, nematodes, and eggs and larvae of Calliphora sp. Although all mentioned food items were accepted to at least some degree and all mites fed regularly on one or more of the items, none ever molted and reached the adult instar before its death. The number of days from placement in culture to death ranged from 27-92 days. This would have been adequate time for their molt and reproduction if conditions were proper, as Neumann (1943) reported a generation time of only 8-9 days for P. carabi. While these results are preliminary at best, they suggest that P. necrophori may not be capable of reproduction in the absence of Nicrophorus. Adults and immatures probably feed on nematodes and fly larvae on the carrion, and

deutonymphs are transported from one carrion site to another. At the new carrion site apparently some still unknown interaction between the silphids and deutonymphs of P. necrophori is necessary before they will molt to adulthood and reproduce. Such possible interactions should be investigated further.

A LIFE HISTORY STUDY OF MACROCHELES NECROPHORAPHILA NEW SPECIES

Two female Macrocheles necrophoraphila new species were taken from a male Nicrophorus orbicollis collected in Michigan State University's Toumey Woodlot, East Lansing, Michigan on 31 May 1971. These females were collected live and transferred to culture cells to obtain specimens of their immature instars and to study the life history of their offspring.

Methods and Materials

Culture cells were made by cutting the bottom off one-inch diameter plastic vials and setting them into a plaster of Paris-charcoal mixture. This mixture was made up of nine parts plaster of Paris: one part fine bone charcoal. Water was added to make it a soupy consistency into which the vials were set. As the plaster set, the vials became firmly anchored. The plaster and vials can be set in different sized containers, depending on how many vials are desired in one unit. For this study, plastic containers 8 cm. high, 10 cm. diameter were found to be a convenient size for holding four vials as a unit.

Holes were cut into the lid of the containers so that the four vials could protrude above it, and the lid could prevent rapid evaporation of water from the plaster. In order to maintain a high relative humidity in the vials, distilled water was added to the plaster every one to four days, keeping it nearly saturated. A one-fourth-inch diameter hole was drilled into the lid of each vial to allow ventilation, and covered with a nylon mesh 400 lines/inch to prevent escape of mites.

Culture cells were kept at constant temperatures of 10, 15, 21, and 27°C (all ± 1°C) to determine the effect of different temperatures on development rates of the Macrocheles. Growth chambers Model R30BI from Sherer-Gillett Company, Marshall, Michigan, were used. The growth chambers had no artificial light in them, so mites were in constant darkness except when being examined under the microscope. Macrocheles lack eye spots, so it was thought the constant darkness might not affect them appreciably. However, possible effects of light on Macrocheles could be a subject for future study, especially since it is known to affect the silphid beetles on which these mites are found.

The M. necrophoraphila were fed a diet of nematodes, Rhabditella sp., which they were regularly observed ingesting. The Rhabditella in turn were reared within each vial on torn mealworms, Tenebrio molitor.

Rhabditella were originally extracted from rotting fruits lying on soil. Stock cultures of Rhabditella were maintained in jars of oatmeal on a wet sand substrate, modifying a method used by Singh and Rodriguez (1966). After an initial culture of nematodes was transferred to torn mealworms, they reproduced, and no addition of nematodes was necessary to maintain an adequate supply of worms for growth and reproduction of M. necrophoraphila. Weekly, one-half of a late instar Tenebrio was added to each culture vial to insure a suitable reproductive medium for the Rhabditella, and consequently, an adequate Rhabditella supply for the M. necrophoraphila.

There was some problem with mold development in these cultures. Each time vials were checked for development of mites, mold was wiped out with a small wad of paper toweling held in a forceps. This was done under a dissecting microscope to insure that no mites or eggs were crushed. It was noted during the latter parts of the study that if large numbers of M. necrophoraphila were kept in one vial, there was seldom any problem with development of mold. The reasons for this are unknown at this time, and should be investigated to see if related to the mites' diet.

All culture vials were checked daily for production of eggs by females, and to determine the length of the mite stadia. Eggs and individuals whose life histories were to be observed were isolated from parent females to new cells. Transfers were most easily accomplished by using a camel hair brush cut to three to five bristles. Eggs were frequently deposited in small holes of the plaster of Paris, and small bits of plaster often had to be chipped away from the egg with a fine needle before it could be picked up on a brush. Many times the eggs were nearly as large as the hole or even larger, leading one to believe that they must expand a bit after deposit by the female.

Individual mites which had reached maturity were checked every two to four days thereafter to determine the length of their life span, and the number of off-spring produced by a single female.

Descriptions of the adult and immature M. necrophoraphila obtained from these cultures are given in the systematic portion of this thesis.

Results and Discussion

The fact that M. necrophoraphila reproduces successfully on a nematode diet in the laboratory is probably related to its natural diet in a carrion habitat. While their feeding in a natural setting cannot be easily observed, it is quite easy to observe masses of nematodes on decaying carrion, and it is likely that they form a large part of the mites' diet there as well. Singh and Rodriguez (1966) reported three other species of Macrocheles which they successfully reared on nematodes. One

of these was M. muscaedomesticae whose biology Axtell (1969) has studied rather extensively as a possible biological control for synanthropic flies. Although the adults of this species preferred house fly eggs over namatodes, its protonymphs and deutonymphs under the same conditions preferred nematodes (Rodriguez, et al., 1962). While M. necrophoraphila can be successfully reared on nematodes, additional studies need to be done to determine more precisely its food preferences in a carrion habitat.

M. necrophoraphila reproduces both bisexually and parthenogenetically. In this study unfertilized females produced only males, and females which were apparently fertilized produced females, as is normal for most species of Macrocheles (Oliver, 1971).

Mean development times from egg to the various instars of M. necrophoraphila are shown in Figure 26.

Development times for immature instars were considerably longer at 15 than at 21 or 27°C. Time for larvae to hatch from eggs was 1.5 days at 15° compared to 0.7 days at 21° and 27°. Times from egg to protonymph were 2.8 days at 15°, 1.2 days at 21° and 27°. Females required 4.3 days to reach the deutonymph at 15°, 2.1 days at 21°, and 2.4 days at 27°, whereas males required 4.2 days at 15°, 2.2 days at 21°, and 1.9 days at 27°. For both males and females development was also considerably faster at 21°

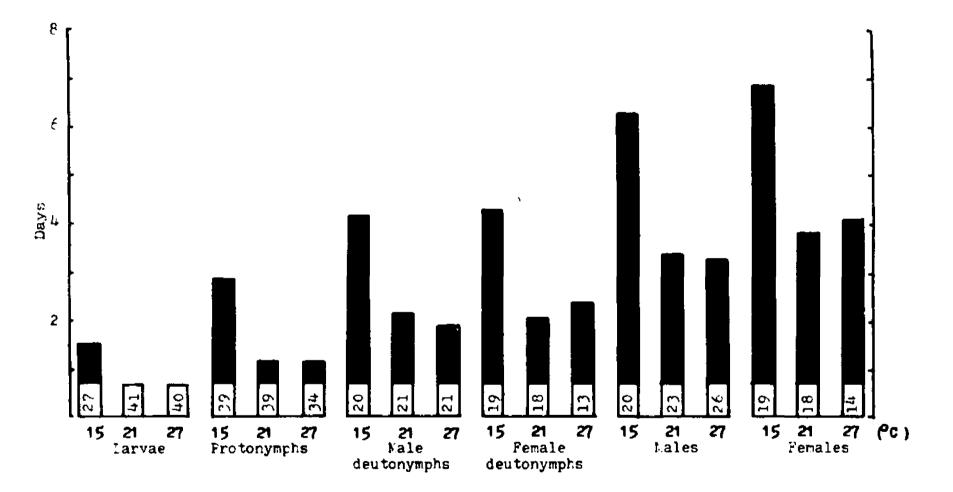


Figure 26. Mean development time for <u>Macrocheles necrophoraphila</u> from egg to each instar at three different temperatures. (Numbers within bars indicate number of specimens).

and 27°C than it was at 15°. Females reached adulthood slightly faster at 21° (3.8 days) than at 27° (4.2 days). In contrast, they required 6.8 days to develop at 15°C.

Males reached adulthood sooner at 27° (3.3 days) than at 21° (3.4 days). As with females, males had considerably shorter development time at 21° and 27°C than at 15° (6.3 days).

It is interesting to note that males reached the adult instar from 0.4-0.9 day sooner than females. Costa (1966) noted that in Macrocheles robustulus, males matured nearly one day earlier than females, and also mounted deutonymphs as if preparing for copulation. M. necrophoraphila displayed the same mounting behavior. Costa observed that insemination of females took place after their final molt, and that females could not be inseminated very long after the molt if their exoskeleton had time to harden. Therefore, mature males would have to be waiting to copulate with females soon after their final molt if they were to be inseminated. Faster male development time would make the chances for this greater.

The effect of temperature on development is more marked in the time which females require to produce eggs than in development of the mites themselves. Egg to egg generation time (for 16 females) at 15° averaged 18.4 days, whereas it averaged only 7.3 days (for 18 females) at 21° and 8.3 days (for 15 females) at 27°C.

TABLE 5. Survival time of M. necrophoraphila at 10°C. (Time is number of days after placement into 10° cells from 21° cells)

Instar	No. Mites	Average Survival (Days)	Range in Survival (Days)
Larva	3	3.3	2-4
Protonymphs	5	8.0	2-12
Deutonymphs	8	23.0	9-66
Males	4	30.5	9-69
Females	5	91.4	51-170

M. necrophoraphila did not reproduce, nor did immatures molt at 10°. The survival time of the various instars at 10° is given in Table 5.

From these data it can be seen that the older the instar, the better it was able to survive at this colder temperature. Females survived three times longer than males, but even though their average survival time after placement into 10° was 91.4 days, not a single female produced eggs. At 15° the average female produced its first egg 11.6 days after reaching adulthood, at 21° in 3.5 days, and in 4.1 days at 27°. These numbers indicated that apparently something in the egg development processes of the females stops at a temperature between 10 and 15°. A number of implications for the life cycle of the mite follow from this fact.

The silphid species found in Michigan have a wide geographic range, both farther north and south. It would be interesting to see how much farther north than Michigan M. necrophoraphila is found on these beetles since its reproduction ceases between 10 and 15°C. Perhaps in colder, more northern area. M. necrophoraphila is replaced on silphids by other mites which can reproduce at colder temperatures. Also certain silphid species such as S. noveboracensis are more predominantly spring species, while several species of Nicrophorus are more common during summer months. Further studies are needed to determine whether a possible seasonal occurrence of mite species is related to seasonal frequency of the beetles.

Survival by adult and nymphal instars of M. necrophoraphila for over a week at 10°C could certainly help
to adapt this mite to survive temperature fluctuations
that are likely to occur during its active period,
especially in spring and autumn. Its influence in a
carrion habitat must be related to the numbers of individuals present, which in turn are related to factors
regulating its reproduction.

CONCLUDING COMMENTS

Although the factors which initially attract mites to Silphidae and cause them to attach to the beetles were beyond the scope of this study, the discussion would be incomplete without mentioning that these factors provide very basic areas for research. Farish and Axtell (1971) reviewed previous investigations of phoretic behavior in mites, and noted that additional studies were justified. Their study and that of Rapp (1959) are the most extensive and both deal with phoresy of mites on insects from manure.

It should be noted that a phoretic mite receives competitive stimuli. These stimuli attract it to attach to an insect; or they oppose the insect attraction, causing the mite to leave an insect or to remain on a substrate off the insect. Farish and Axtell (1971) theorize that a mite becomes a phoretic when its substrate's attractiveness becomes less than that of its potential insect transport. Possible factors mentioned which stimulate attachment were air currents caused by insect wing movement, emission of carbon dioxide by an insect,

and undetermined chemical attractions from an insect. All of these are possibilities in the case of mites on silphid beetles. The excretions of silphid beetles could well be investigated as an attractant.

Possible detachment factors given by Farish and Axtell (1971) which could cause mites to leave insects included hunger of the mite, chemical attractants and/or moisture in the substrate inhabited by the transporting insect. These are other possible stimuli for mites on Silphidae which remain for future investigation.

SUMMARY

The mite fauna found on 246 Michigan silphid beetles represented by six species of Nicrophorus, four species of Silpha, and Necrodes surinamensis was examined. Beetles were collected from cans baited with carrion of various types.

A total of 11,743 mites were identified from these beetles. Eleven mite species were found in numbers of forty or more. These included four species of Poecilochirus, three species of Macrocheles, Histiostoma cyrtandrae, Pelzneria crenulata, Spinanoetus pelznerae, and Anoetus turcastanae. Four new species are described: Poecilochirus longisetosa, P. silphaphila, Macrocheles breviseta, and M. necrophoraphila.

Each mite species is discussed in relation to:

(1) total numbers collected, (2) variation in numbers on
each beetle species, (3) percent of beetles infested,

(4) average number of mites/beetle, (5) locational
preferences on beetles.

All species of <u>Nicrophorus</u> showed at least 89 percent infestation by mites. Three species were 100

percent infested. The average number of mite species on the various species of <u>Nicrophorus</u> ranged from 2.4-3.8 species/beetle. Infestation of <u>Silpha</u> ranged from 44-85 percent of the specimens. The various species of <u>Silpha</u> averaged 1.0-1.9 mite species/beetle.

Poecilochirus found on Silphidae are discussed. A life history study of Macrocheles necrophoraphila new species is given, including comments on its biology. Egg to egg generation time averaged 7.3 days at 21°C and 18.4 days at 15°C. It failed to reproduce, and immatures did not molt at 10°C.

LITERATURE CITED

-

LITERATURE CITED

- Abbott, C. E. 1927. Experimental data on the olfactory sense of Coleoptera, with special reference to the Necrophori. Ann. Ent. Soc. Amer. 20: 207-216.
- _____. 1927a. Further observations on the olfactory powers of the Necrophori. Ann. Ent. Soc. Amer. 20: 550-553.
- Agassiz, Louis. 1850. Lake Superior: Its physical character, vegetation, and animals, compared with those of other and similar regions. Gould, Kendall and Lincoln, Boston. p. 218.
- Arnett, Ross H., Jr. 1944. A revision of the Nearctic Silphini and Nicrophorini based upon the female genitalia (Coleoptera, Silphidae). Jour. N.Y. Ent. Soc. 52: 1-52.
- Axtell, R. C. 1969. Macrochelidae (Acarina: Mesostigmata) as biological control agents for synanthropic flies. Proc. 2nd Intern. Congr. Acarology, Sutton Bonington, England, 19-25 July, 1967, pp. 401-416, Akademiai Kiado, Budapest, Hungary.
- Balduf, Walter V. 1935. Bionomics of entomophagous Coleoptera. John S. Swift Co., Inc., New York, 220 pp.
- Bell, Prof. 1873. A glimpse of insect life. Can. Ent. 5: 94-95.
- Belozerov, V. N. 1957. Some data on the biology and anatomy of the mite <u>Poecilochirus necrophori</u> Vitzt. (Parasitiformes, Parasitidae) (in Russian, English summary). Zool. Zh. 36: 1802-1812, figs. 1-7.
- Berlese, Antonio. 1903. Acari nuovi II. Redia 1: 258-280.

- Berlese, Antonio. 1905. Monografia del genere Gamasus Latr. Redia 3: 66-304.
- . 1910. Lista di nuove specie e nuovi generi di Acari. Redia 6: 242-271.
- . 1918. Centuria quarta di Acari nuovi. Redia 13: 115-192.
- Blackburn, Norris D. 1936. Illustrations of external anatomy, Silpha americana Linn. (Silphidae, Coleoptera). Ohio Jour. Sci. 36: 284-299.
- Bliss, Raymond Q. 1949. Studies of the Silphidae. I. Secondary sexual differences in the genus Nicrophorus (Coleoptera). Ent. News 60: 197-204.
- Bornemissza, G. F. 1957. An analysis of arthropod succession in carrion and the effect of its decomposition on the soil fauna. Australian J. Zool. 5: 1-12.
- Bregetova, N. G. & E. V. Koroleva. 1960. The macrochelid mites (Gamasoidea, Macrochelidae) in the U.S.S.R. (in Russian, English keys). Mag. Parasit. 19: 132-154, figs. 1-112.
- Buitendijk, A. M. 1945. Voorloopige catalogus van de Acari in die Collectie-Oudemans. Zool. Meded. XXIV: 281-391.
- Canestrini, G. & R. 1882. I. Gamasi Italiani. Monographia. Accademia Sci. Veneto-Trentino-Istriana, Padua, Atti. 8: 3-82 & VI pl.
- Clark, C. U. 1895. On the food habits of certain dung and carrion beetles. Jour. N.Y. Ent. Soc. 3: 61.
- Cole, A. C., Jr. 1942. Observations of three species of Silpha (Coleoptera: Silphidae). Am. Midl. Natur. 28: 161-163.
- Costa, Michael. 1966. Notes on Macrochelids associated with manure and coprid beetles in Israel. I.

 Macrocheles robustulus (Berlese, 1904), development and biology. Acarologia 8: 532-548.
- Davis, W. T. 1915. Silpha surinamensis and Creophilus villosus as predacious insects. Jour. N.Y. Ent. Soc. 23: 150-151.

- Dethier, V. G. 1947. The role of the antennae in the orientation of carrion beetles to odors. Jour. N.Y. Ent. Soc. 55: 285-293.
- Dorsey, Carl K. 1940. A comparative study of the larvae of six species of Silpha (Coleoptera, Silphidae). Ann. Ent. Soc. Amer. 33: 120-139.
- Dujardin, M. Felix. 1842. L 'Institut 10: 316.
- Ernst, Klaus-Dieter. 1969. Die Feinstruktur von Riechsensillen auf der Antenne des Aaskäfers Necrophorus (Coleoptera). Z. Zellforsch. 94: 72-102.
- Evans, G. O. & E. Browning. 1956. British mites of the subfamily Macrochelinae Trägardh (Gamasina-Macrochelidae). Bull. Brit. Mus. (Nat. Hist.) Zool. 4: 1-55, pls. 1-4, figs. 1-85.
- Evans, G. O. & K. H. Hyatt. 1963. Mites of the genus Macrocheles Latr. (Mesostigmata) associated with coprid beetles in the collections of the British Museum (Natural History). Bull. Brit. Mus. (Nat. Hist.) Zool. 9: 327-401.
- Farish, D. J. & R. C. Axtell. 1971. Phoresy redefined and examined in Macrocheles muscaedomesticae (Acarina: Macrochelidae). Acarologia 13: 16-29.
- Faust, Ernest C., Paul C. Beaver, and Rodney C. Jung. 1962. Animal agents and vectors of human diseases. Second edition. Lea and Febiger, Philadelphia. 485 pp.
- Filipponi, A. & F. Pegazzano. 1962. Specie Italiane del gruppo-glaber (Acarina, Mesostigmata, Macrochelidae, Macrocheles). Redia 47: 211-238.
- . 1963. Species Italiane de gruppe-subbadius (Acarina, Mesostigmata, Macrochelidae). Redia 48: 69-91, pls. 22-24, figs. 1-6.
- Fuller, Mary E. 1934. The insect inhabitants of carrion: a study in animal ecology. Commonwealth of Australia, Council for Scientific and Industrial Research, Bull. No. 82, 63 pp.
- Gleditsch, J. G. 1752. Acta reg. soc. (Berolin).
- Goe, Milton T. 1919. Life history and habits of <u>Silpha</u> inaequalis. Ent. News 30: 253-255.

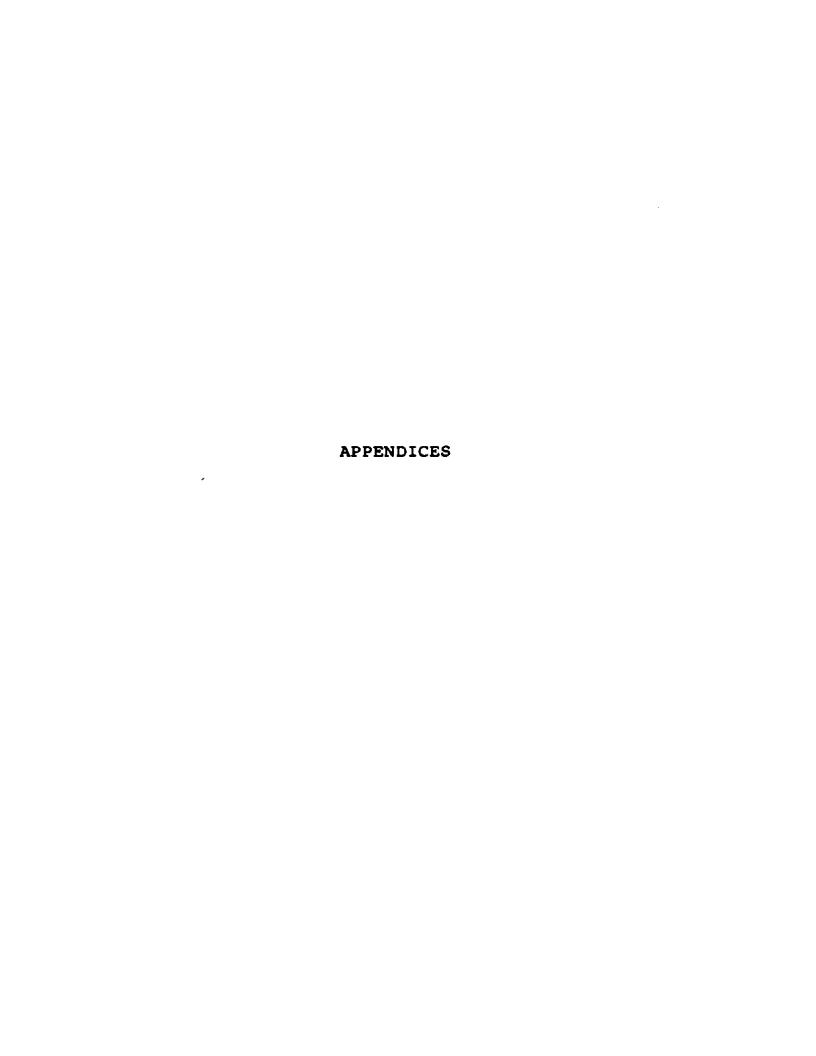
- Hatch, Melville H. 1927. Studies on the carrion beetles of Minnesota, including new species. Univ. Minn. Agr. Exper. Sta., Tech. Bull. No. 48. 17 pp.
- . 1927a. Studies on the Silphidae. Jour. N.Y. Ent. Soc. 35: 331-371.
- Heinemann, Richard L. 1972. (personal correspondence)
 Longwood College, Farmville, Virginia 23901.
- Holzmann, Chr. 1969. Die Familie Parasitidae Oudemans 1901. Acarologie; Schriftenreihe für vergleichende Milbenkunde, Folge 13, 55 pp. + 23 pl.
- Horn, George H. 1880. Synopsis of the Silphidae of the United States with reference to the genera of other countries. Trans. Amer. Ent. Soc. 8: 219-323.
- Howden, Anne Thompson. 1950. The succession of beetles on carrion. M.S. Thesis, Univ. of North Carolina, Raleigh, N.C.
- Hubbard, H. G. & E. A. Schwarz. 1878. The Coleoptera of Michigan. Proc. Amer. Phil. Soc. 17: 593-666.
- Hughes, Roscie D. & Caroline Goode Jackson. 1958. A review of the Family Anoetidae (Acari). Virginia Jour. Sci. 9: 5-198.
- Illingworth, J. F. 1926. Insects attracted to carrion in southern California. Proc. Hawaiian Ent. Soc. 6: 397-401.
- Jaques, H. E. 1915. The fish-feeding Coleoptera of Cedar Point. Ohio Natur. 15: 525-528.
- Kramer, P. 1876. Beitrage zur Naturgeschichte der Milben. Arch. Naturgesch. 42: 28-45.
- Krantz, G. W. 1962. A review of the genera of the family Macrochelidae Vitzthum 1930 (Acarina: Mesostigmata). Acarologia 4: 143-173.
- . 1971. (personal correspondence) Dept. of Ent.,
 Oregon State Univ., Corvallis, Oregon 97331.
- Krantz, G. W. & A. Filipponi. 1964. Acari della famiglia Macrochelidae (Mesostigmata) nella collezione del South Australian Museum. Riv. Parassit. 25: 35-54.

- Latreille, P. A. 1829. <u>In</u> G. Cuvier, Règne Anim. ed. 2, v. 4: 282.
- LeConte, John L. 1853. Synopsis of the Silphales of America, north of Mexico. Proc. Phil. Acad. Nat. Sci. VI: 274-287.
- Leech, Hugh B. 1934. The family history of Nicrophorus conversator Walker. Proc. Ent. Soc. Br. Columbia, 31: 36-40.
- Leng, Charles W. 1920. Catalogue of the Coleoptera, north of Mexico. The Cosmos Press, Cambridge, Mass., pp. 86-87.
- Micherdzinski, Wiktor. 1969. Die Familie Parasitidae Oudemans 1901 (Acarina, Mesostigmata). Zaklad Zoologii Systematycznej, Polskeij Academii Nauk, pp. 626-666.
- Milne, Lorus J. & Margery J. Milne. 1944. Notes on the behavior of burying beetles (Nicrophorus spp.).

 Jour. N.Y. Ent. Soc. 52: 311-327.
- Mrciak, M. 1964. Beitrag zur Kenntnis der Milbenfauna (Acarina) des Gebietes südwest-Häme (Finnland). Sonderabdruck aus Lounais-Mämeen Luonto 15:23-25 Forssa.
- Müller, Julius. 1859. Insectenepizoën der mährischen Fauna. Jahresber. mähr. schles. Gesellsch. Brünn, pp. 157-184.
- Neumann, Karl-Wilhelm. 1943. Die Lebensgeschichte der Käfermilbe <u>Poecilochirus</u> necrophori Vitzth. nebst Beschreibung aller Entwicklungsstufen. Zool. Anz. 142: 1-21.
- Oliver, James H., Jr. 1971. Parthenogenesis in mites and ticks (Arachnida: Acari). Am. Zool. 11: 283-299.
- Oudemans, A. C. 1901. Notes on Acari, third series. Tijdschr. ned. dierk. Ver. (2), 7: 86.
- _____. 1902. Acarlologische Aantekeeningen V. Ent. Ber. 1: 238.
- . 1904. Acarologische Aanteekeningen XIV. Ent. Ber. 1: 191.
- _____. 1909. Acarologische Aanteekeningen XXIX. Ent. Ber. 3: 23-24.

- Oudemans, A. C. 1917. Acarologische Aanteekeningen LXIII. Ent. Ber. 4: 391-393.
- . 1929. Acarologische Aanteekeningen XCVII. Ent. Ber. 7: 449-452.
- Payne, Jerry A. 1965. A summer carrion study of the baby pig <u>Sus scrofa</u> Linnaeus. Ecology 46: 592-602.
- Payne, Jerry A. & D. A. Crossley, Jr. 1966. Animal species associated with pig carrion. ORNL-TM-1432. Oak Ridge National Laboratory, Oak Ridge, Tenn., 70 pp.
- Payne, Jerry A., Edwin W. King, & George Beinhart. 1968.
 Arthropod succession and decomposition of buried pigs. Nature 219: 1180-1181.
- Pukowski, Erna. 1933. Ökologische Untersuchen an Necrophorus F. Z. Morph. Ökol. Tiere 27: 518-586.
- Rapp, A. 1959. Zur Biologie und Ethologie der Kafermilbe <u>Parasitus coleoptratorum</u> L. 1758. Zool. Jb. (Syst.) 86: 303-366.
- Ratcliffe, Brett C. & Robert J. Luedtke. 1969. A comparison of silphids taken from covered and uncovered carrion (Coleoptera: Silphidae). Coleopterists' Bull. 23: 103-105.
- Reed, H. B., Jr. 1958. A study of dog carcass communities in Tennessee, with special reference to the insects. Amer. Midl. Natur. 59: 213-245.
- Rodriguez, J. G., Claude F. Wade, & Charles N. Wells.

 1962. Nematodes as a natural food for


 Macrocheles muscaedomesticae (Acarina: Macrochelidae), a predator of the house fly egg.

 Ann. Ent. Soc. Amer. 55: 507-511.
- Ryke, P. A. J. & M. K. P. Meyer. 1958. Some parasitoid mites (Mesostigmata: Acarina) associated with Coleoptera in the Western Transvaal. J. Ent. Soc. S. Afr. 21: 139-161.
- Schaupp, F. G. 1881. Description of the larva of Necrophorus tomentosus, Web. Bull. Brooklyn Ent. Soc. 4: 37-38, 5: 18.
- . 1882. Description of the larva of Silpha americana Lin. Bull. Brooklyn Ent. Soc. 5: 2, 18.

- Scheucher, Rita. 1957. Systematic und Ökologie der deutschen Anoetinen. In Beitrage zur Systematik und Ökologie mitteleuropäischer Acarina. Band I, Abschnitt II, (Ed. Hans-Jürgen Stammer), pp. 233-384. Akademische Verlagsgesellschaft Geest and Portig K.-G., Leipzig.
- Selous, C. F. 1911. A preliminary note on the so-called carrion-feeding Coleoptera. Ent. Mo. Mag. 47: 86-89.
- Sharp, D. and F. Muir. 1912. The comparative anatomy of the male genital tube in Coleoptera. Ent. Soc. London, Trans., Part III, pp. 502-505.
- Shubeck, P. P. 1968. Orientation of carrion beetles to carrion: random or non-random? Jour. N.Y. Ent. Soc. 76: 253-265.
- . 1969. Ecological studies of carrion beetles in Hutcheson Memorial Forest. Jour. N.Y. Ent. Soc. 77: 138-151.
- _____. 1970. Silphidae attracted to carrion-baited air cans versus carrion-baited ground cans.

 Coleopterists' Bull. 24: 66-70.
- . 1971. Diel periodicities of certain carrion beetles (Coleoptera: Silphidae). Coleopterists Bull. 25: 41-46.
- Singh, Pritam & J. G. Rodriguez. 1966. Food for macrochelid mites (Acarina) by an improved method for mass rearing of a nematode, Rhabditella leptura. Acarologia 8: 549-550.
- Springett, B. P. 1968. Aspects of the relationship between burying beetles, <u>Necrophorus</u> spp. and the mite <u>Poecilochirus</u> necrophori Vitz. J. Anim. Ecol. 37: 417-424.
- Steele, B. F. 1927. Notes on the feeding habits of the carrion beetles. Jour. N.Y. Ent. Soc. 35: 77-81.
- Stonier, T. 1964. Nuclear disaster. World Pub. Co. (Meridian Books), Cleveland and New York, 225 pp.
- Symes, C. B., R. C. Muirhead Thompson, and J. R. Busvine. Insect control in public health. Elsevier Pub. Co., New York, 227 pp.

- Theodorides, Jean. 1955. Contribution a' l'etude des parasites et phoretiques de Coleopteres terres-tres. Vie et Milieu, Paris, Suppl. No. 4: 1-310.
- Trägardh, I. 1937. Schwedisch-chinesische wissenschaftliche Expedition nach den nordwestlichen Provinzen Chinas. Acari. Ark. Zool., 29: 1-15.
- Vitzthum, H. Graf. 1930. Milben als Pestträger? Zool. Jahrb., Syst. 60: 381-428.
- der Oribatiden und Ixodiden) der Deutschen Limnologischen Sunda-Expedition. Suppl. Bd. 9 "Trop. Binn." Arch. Hydro. 2: 59-134.
- Walker, Thomas J. 1957. Ecological studies of the arthropods associated with certain decaying materials in four habitats. Ecology 38: 262-276.
- Wickham, H. F. 1895. On the larvae of <u>Hyrocharis</u> obtusatus and <u>Silpha</u> surinamensis. Ent. News 6: 170-171.
- Woodring, J. P. 1963. The nutrition and biology of saprophytic Sarcoptiformes. In Advances in Acarology, Vol. I, ed. John A. Naegele, Ithaca, N.Y., pp. 89-111.
- Woodring, J. P. & J. C. Moser. 1970. Six new species of anoetid mites associated with North American Scolytidae. Can. Ent. 102: 1237-1257.

APPENDIX 1. Mite species found on each beetle species.

Nite species	No. beetles with mite species	≸ beetles with mites	Total no. mites	Range mites/ beetle	Kean no. mites for beetles with mites	Wean no. mites for all beetles
<u> </u>		d on 4	O Nicr	opnoru		tosus.
<u> Poecilocnirus</u>						
necrophori	28	70	124	<u>1-19</u>	4.4	<u> 3.1</u>
날. subterraneus	27	68	159	1-28	5.7	3.9
F. Tongisetosa	5	13	13	1-6	2.6	0.3
<u>P.</u> silphaphila	11	28	<u>38</u>	1-8	3.5	1.0
<u>Pelzneria</u> crenulata	33	83	3411_	1-574	103.4	85.3
Spinanoetus pelznerae	4	10	6	1	1.5	0.2
Anoetus turcastanae	2	5	2	1	1.0	0.1
macrocheles necrophoraphila	2	5		1-6	3.5	0.2
r. breviseta	1	3	ے	2	2.0	0.1
vespillo	11	3	1_	11	1.0	0.0
Acaridae	3	8	3_	11	1.0	U. 1
Cribatei	1	3	1	1	1.0	U. 0
analgidae	1	3	11_	1	1.0	0.0

APPENDIX 1. cont'd.

-						
mite species	No. beetles with mite species	≸ beetles with mites	Total no. mites	Range mites/ beetle	Nean no, mites for beetles with mites	Wean no. mites for all beetles
	rou	na on	17 Nic	ropnor	us ame	ricanus.
roecilochi.us necrophori	11	6	11_	<u>1</u>	1.0	0.1
silphaphila	2	12	ہے	11	1.0	0.1
<u>lacrocheles</u> dimidiatus	11	6	11	1	1.0	0.1
necrophoraphila	15_		591	1–282	45.4	<u> 54 • 8</u>
vespillo	4	24	<u> 97</u>	1-47	24.5	2.7
<u>Pelzneria</u> crenulata	10	59	967	2-206	96.7	<u>>6•8</u>
Urorodidae	2	12-	6	1-5	3.0	0.4
Spinanoetus pelznerae	1	6	1	1	1.0	0.1
nnoetus turcastan e	_2	12	4	1-3	2.0	0.2
Acaridae	I	6	2	2	2,0	0.1
roecilocnirus	rou	nd on				illcides.
necrothori	3	50	52	4-26	17.3	8.3
r. subterraneus	2	<u>53</u>	4	1-3	۷.0	0.7
r. silphaphila	<u>1</u>	17	3	3	3.0	0.5
Macrocheles necrophoraphila		<u>83</u>	12_	1-9	4.2	2.2
relzneria crenulata	4	<u> </u>	79	<u>3-34</u>	19.8	13.1
anoetus turcastanae	$\frac{1}{1}$	<u>17</u> -	$\frac{1}{1}$	<u>1</u>	1.0	٠. ٢
oropodidae	L—————				1.0	<u> </u>
knouacaridae	1 1	<u>1</u> 7-7	5	ہے	2.0	0.2

APPENDIX 1. cont'd.

tigmata	<u>podidae</u>	oetus rcastan	lzneria enulata	roche	lidabhil	crophori	eci loch	ridae	o, cuidae	<u>croener</u>	cyrtangrae	laneria inulata	<u>pterr</u>	cropnori	ecilocnin	tte species
	3		14	6	N:	+	r o	12		1	 	6	+	2	٠ 0	No. beetles with mite species
		•	+ +	67	22	45	round on	29	14	14	14	36	57	29	cuna on	% beetles with mites
	16	<u> </u>		116	9	30	9 vic	2	6	<u> </u>	4 0	782	182	891	7 Nic	Total no. mites
	1-5	} 	1-4	1-101	2-2	1-17	crophorus		6	25	4 C		1-152	22-14p	rophorus	Range mites/ beetle
		1•	: ^ ! ^ ! ^ !	10.3	4.5	2.5	orbi	1.0	6.0	25.0	. •	1 か	4 7	34.0	s <u>custu</u>	Mean no. mites for beetles with mites
	١.	١.	• 1	12.9	1.0	2.3	collis.	C 	• 1	•	5.7	111.7	26.2	N. → . C	· santing.	Mean no. mites for all beetles

APPENDIX 1. cont'd.

ALLENDIA I. COL						
·ite species	No. beetles with mite species	% beetles with mites	Total no. mites	Range mites/ beetle	iean no. mites for beetles with mites	Mean no. mites for all beetles
, [panoa	nd on	13 Ni	enzoppozna	nar	ginatus
recrephori	4	<u>></u> 1	3 7	1-30	19.3	2.8
zisetos	00	62	43	1-8	•	•
<u> racrocheles</u>	သ	62	63	1-21	2.9	4
vespillo	3	23	13	2-6	4.3	1.0
relzneria crenulata	9	69	442	1-224	49	• j
pelznerae	5	59	9	1-4		v . 7
castan castan	9	69	593	1-387	5.	45.6
podidae		8_]			1.0	0.1
roecilochirus	round	nd on	18 <u>Ne</u>	ecrodes	surinamens	mensis.
,	1	6	 	1	1.0	C.1
renulata	2	11	21	1-19	10.5	
<u>pelznerae</u>	12	67	422	801-5	35.2	23.4
unoetus Eurcastanae	1	σ,	₽		•	•]
Saproglyphidae		6	1	4	4.0	U. 2
3	round	nd on	13 <u>51</u>	<u>lpha</u> in	<u>aegual</u>	in In
crenulata	10_1	77	190	1-81	19.0	14.6
inanoe				ĺ		İ

APPENDIX 1. cont'd.

Mite species	No. beetles with mite species	% beetles with mites	Total no. mites	Range mites/ beetle	Near no. mites for beetles with mites	no. les
	Fou	ınd on	54 <u>Sil</u>	pha am	erican	<u>a</u> .
necro hori	6	_ 11	17	1-10	2.9	0.3
Macrocheles dimidiatus	1	2	1	1	1.0	U.O
necrocheles	1	2	1	11	1.ე	U.O
<u>relzneria</u> crenulata	_6	11	30	1-20	5.0	0.6
Spinanoetus pelznerae	5	9	14	1-8	2.8	0.3
Anoetus turcastanae	2 2 2	4	5	<u> </u>	1.0	U.O
Uropodidae	11	2	1	1	1.0	O.0
Acaridae	22	4	2	<u> </u>	1.∪	0.0
<u> Fyemotidae</u>	2	4	2	1	1.0	0.0
Ascaidae	<u> </u>	2	11	$\lfloor \underline{1} \rfloor$	1.0	0.0
<u>roecilo</u> chirus	Fou	nd on	53 <u>Sil</u>	pha nov	veborac	censis.
necrophori	L9_]	17	18	1-3	2.0	0.3
hacrocheles						
nccrophoraphila	1	2.	<u> </u>	<u> </u>	<u>1.U</u>	<u> </u>
relzneria crenulata	30	57	573	1-99	19.1	<u>1J.8</u>
Spinancetus pelznerae	<u>40</u>	<u>76</u>	<i>≥</i> 149	1-281	<u>53.8</u>	40.6
caridae	1	2	1	1	1.5	0.0
Labidophoridae	<u> </u>	22	L1	<u> </u>	1.0	<u> </u>
roecirocnirus	Fou	nd on	16 <u>sil</u>	<u>pha la</u>	OFIC.	<u>.</u>
silpharnila	1 1	6	1 1	1	1.0	0.1
relzneria		 		-		
crenulata	4	-25	6	1-2	1.5	0.4
Spinanoetus			·			
pelznerae	<u> 1</u>		┡╶ ╌ ┊╌┥	<u>1</u>	$\frac{1.0}{5.0}$	<u>0.1</u>
shodacari aae	L L		╽ ╶┈┈ ╵ ╶╺┙		1.0	0.1

APPENDIX 2. Beetle species bearing each mite species. (Numbers in parentheses following beetle species indicate number of specimens.)

	No. beetles with mite species	% beetles with mites	Total no. mites	Range mites/ beetle	Nean no. mites for beetles with mites	Lean no. mites for all beetles
Foecilochirus necrophori	on	_				
Nicrophorus tomentosus (40)	28	70	124	1-19	4.4	3.1
N. marginatus (13)	4	31	37	1-32	9.3	2.8
$\frac{N}{americanus}$ (17)	1	6	1_	1	1.0	0,1
<u>N.</u> vespilloides (6)	3	50	52	4-26	17.3	8.3
N. pustulatus (7) N.	2	29	168	22-146	84.0	24.0
orbicollis (9)	4	45	30	1-17	7.5	3.3
<u>Silpha</u> americana (54)	6	11	17	1-10_	2,9	0.3
<u>S.</u> noveboracensis (53)	9.	17	18	1-3	2,0	0.3
Necrodes surinamensis (18)	1	6	1	1	1.0	0,1
Foecilochirus subterrane	us on	-				
Nicrophorus pustulatus (7)	4	57	183	1-132	45.8	26.2
N. tomentosus (40)	27	68	159	1-28	_5.7	3.9
<u>N.</u> vespilloides (6)	2	33	4	1-3	2.0	_0.7
Poecilochirus longisetos	a on:	- · · · · · · · · · · · · · · · · · · ·				
Nicrophorus marginatus (13)	4	31	43	1-32	9.3	2.8
N. tomentosus (40)	5	13	_13	1-6	2,6	0.3

APPENDIX 2

APPENDIX 2. cont	d.					
	No. beetles with mite species	% of beetles with mite	Total no. mites	Range mites/ beetle	hean no. mites for beetles with mites	Lean no. mites for all beetles
Poecilochirus silphaphi	<u>la</u> on:		<u> </u>			
Nicrophorus tomentosus (40)	11	28	38	1-8	3.5	1.0
N. orbicollis (9) N.	2	22	9	2-7	4.5	1.0
<u>vespilloides (6)</u>	l	17	3	3	3.0	0.5
<u>N.</u> americanus (17)	2	12	2	1_1	1.0	0.1
Macrocheles necrophorap	hila o	n:				
Nicrophorus americanus (17)	13	77	591	1-282	45.4	34.8
N. orbicollis (9)	6	67	116	1-101	19.3	12.9
N. pustulatus (7) N.	1	14	25	25	25.0	3,6
vesnilloides (6)	5	83	21	1-9	4.2	3.3
N. Tomentosus (40)	2	5	7	1-6	3.5	0.2
<u>Silpha</u> americana (54)	1	2	1	1	1.0	0.0
<u>S. nove-</u> boracensis (53)	1	2	1	1	1.0	0.0
Macrocheles breviseta o	nı					
Nicrophorus marginatus (13)	_8_[62	63	1-21	7.9	4,8
N. tomentosus (40)	1	3	2	2	2.0	0.1
Macrocheles vespillo on	:					
Nicrophorus		ı		ı .		
americanus (17)	4	24	97	1-47	24.3	5.7
M. marginatus (13) !'.	3	23	13	2-6	4.3	1.0
tomentosus (40)		_ 3 _	11	1	1.0	_0.0

APPENDIX 2. cont'd.

	No. beetles with mite species	% of beetles with mite	Total no. mites	Range mites/ beetle	Wean no. mites for beetles	i.ean no. mites for all beetles
Pelzneria crenulata on		·				
Nicrophorus pustulatus (7)	6	86	782	9-460	130.3	111.7
N. tomentosus (40)	33	83	3411	1-574	103.4	85.3
$\frac{\mathbb{N}}{americanus}$ (17)	10	59	967	2-206	96.7	<u>56.8</u>
$rac{\mathbb{N}}{\mathtt{marginatus}}$ (13)	9	69	449	1-224	49.1	34.0
$\frac{N}{N}$. vespilloides (6)	4	67	_79	3-34	19. 8	13.1
N. orbicollis (9)	4	44	10	1-4	2,5	1.1
<u>Silpha</u> inaequalis (13)	10	77	190	1-81	19.0	14.6
<u>S. nove-</u> boracensis (53)	30	57	574	1-99	19.1	10.8
S. americana (54)	6	11	30	1-20	5.0	0.6
<u>S</u> . lapponica (16)	4	25	. 6	1-2	1.5	0.4
<u>Necrodes</u> surinamensis (18)	2	11	21	1-19	10.5	1.2
Anoetus turcastanae on:						
Nicrophorus marginatus (13)	و	69	593	1-387	65.9	45,6
$\frac{N}{2}$. americanus (17)	2	12	4	1-3	2.0	0.2
<u>N.</u> vespilloides (6)	1	17	1	1	1.0	0.2
N. orbicollis (9)	1	11	1	1	1.0	0.1
ii. tomentosus (40)	2	5	2	1	1,0	0,1
<u>Silpha</u> americana (54)	2	4	2	1	1.0	0.0
Mecrodes surinamensis (18)	1	6	1	1	1,0	0,1

APPENDIX 2. cont'd.

	No. beetles with mite species	% beetles with mites	Total no. mites	Range mites/ beetle	Mean no. mites for beetles with mites	Wean no. mites for all beetles
Spinanoetus pelznerae o	n:					
Silpha nove- boracensis (53)	40	76	2149	1-281	53.8	40.6
<u>S.</u> inaequalis (13)	5	38	79	4-59	15,8	6.1
<u>S.</u> americana (54)	5	9	14	1-8	2.8	0.3
S. lapponica (16)	1	6	1	1	1.0	0.1
Necrodes surinamensis (18)	12	67	422	5-108	35.2	23.4
<u>Nicrophorus</u> marginatus (13)	5	39	9	1-4	1.8	0.7
<u>N.</u> tomentosus (40)	4	10	4	1	1.0	0,2
<u>N.</u> americanus (17)	1	6	1	1	1.0	0.1
Histiostoma cyrtandrae	on:					
<u>Nicrophorus</u> pustulatus (7)	1	14	40	40	40.0	5.7