IN F O R M A T IO N T O USERS This material was produced from a m icrofilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques markings or patterns which may appear on this reproduction. is provided to help you understand 1 .T h e sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced in to the film along w ith adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated w ith a targe round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. Y ou will find a good image o f the page in the adjacent frame. the photographer 3. When a map, drawing or chart, etc., was part of the material being photographed in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. followed a definite method 4. The m ajority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced. 5. PLEASE N O TE : Some pages may have indistinct print. Filmed as received. Xerox University M icrofilm s 300 North Z*»b Road Ann Arbor, Michigan 48106 7 6 -18 ,647 I I LIPPSON, Robert L loyd, 1931- THE DISTRIBUTION OF THE CRAYFISHES OF MICHIGAN WITH ASPECTS OF THEIR LIFE CYCLE AND PHYSIOLOGY. Michigan S ta te U n iv e r s it y , P h .D ., 1976 Ecology Xerox University Microfilms , Ann Arbor. M ichigan 48106 T H E D I S T R I B U T I O N OF TH E C R A Y F I S H E S OF M I C H I G A N W I T H A S P E C T S OF T H E I R L I F E C Y C L E A N D P H Y S I O L O G Y By R o b e r t L l o y d L i p p s o n A D I S S E R T A T I O N S u b m i t t e d to M i c h i g a n S t a t e U n i v e r s i t y p a r t i a l f u l f i l l m e n t of the r e q u i r e m e n t s for the d e g r e e of D O C T O R OF P H I L O S O P H Y D e p a r t m e n t of Z o o l o g y 1975 ABSTRACT THE D I S T R I B U T I O N OF THE CRAYFISHES OF MI CH I G A N W I T H ASPECTS O F T H E I R LIFE C YCLE A N D PHYSIOLOGY By Robert Lloyd Lippson The d i s t r i b u t i o n of the crayfish of M i c h i g a n was i n v e s ­ tigated in o r d e r to d ocument the number of c r a y f i s h species present, their ha b i t a t preferences, crayfish associations, and to p r e s e n t aspects of their life histories. C o l l e cti ons of cr ayfish w e r e made from all 83 M i c h i g a n counties. Rec ord s for species are recorded by county, lake or stream, township, tier, range and section. Th e entire crayfish c o l l e c t i o n has been reposited in thr Entomolo gy Mu seu m of M i c h i g a n State University. Seven s pecies of cra yfish w e r e det erm ine d to be ex t e n t in Michigan; O r c o n e c t e s p r o p i n q u u s , O. v i r i l i s , 0. r u s t i c u s , O. i m m u n i s , Cantbarus r o b u s t u s , C. d i o g e n e s , and F a l l i c a m b a r u s f o d i e n s . o. p r o p i n q u u s was found to be the most ab un d a n t and w ide ly d i s t r i b u t e d species in Michigan. o. v i r i l i s has a similar d i s t r i b u t i o n but is not as ubiquitous o r abundant as o. p r o p i n g u u s . o. r u s t i c u s , a species p r e v i o u s l y c ons id e r e d to b e di s t r i b u t e d o n l y in extreme sou t h e r n Michigan, w a s found throughout the southern and n o r t h e r n regions of the Lo wer Pe ninsula of M i c h i g a n and also in the Upper Peninsula. o. immujiis and C a m b a r u s r o b u s t u s are not w ide ly d i s t r i ­ bu ted in Michi gan a nd are confin ed to M i c h i g a n ' s Lower Peninsula. Fewer d a t a were collected o n c. d i o g e n e s and F a l l i c a m b a r u s f o d x e n s du e to their se cre tiv e bur rowing habits, c. d i o g e n e s w a s d i s t r ibu ted thr oug hou t Michigan, w h i l e f . f o d i e n s w a s c onf i n e d to the L o w e r Peninsula of Michigan. A key to the species found in Michigan is p r o ­ vided. Their d i s t r i b u t i o n is plotted on maps and a l s o p r e ­ se nte d in d etailed lo ca l i t y records. T h e laboratory p h a s e of this study w as de signed to e l u c i d a t e specific p h y s i o l o g i c a l res po n s e s of selected species. Th erm al tolerance e x p e rim ent s d e m o n s t r a t e d the m e d i a n to ler a n c e level (TLm) of o. p r o p i n q u u s ac cli mat ed at 25 C was 34.5 C, and 35.7 C w h e n ac cli mat ed at 32 C. The T L m of o. v i r i l i s , a c c l i m a t e d at 32 C, was al so 35.7 C. The T L m of o. r u s t i c u s , a c c l i m a t e d at 33 C, was 36*2 C. o. i m m u n i s was a c c l i m a t e d at 7 C an d 30 C, a TLm of 34.3 C and 36.2 C was o b t a i n e d respectively. O x y g e n c o n s um pti on rates were d e t e r m i n e d for o. p r o p i n ­ q u u s , o. r u s t i c u s , o. v i r i l i s and c. r o b u s t u s over a t e m p e r ­ ature range of 10 C to 3 5 C. The rate of oxygen c o n s u m p t i o n of O . p r o p i n q u u s a n d C . r o b u s t u s was h i g h e r than that of O. r u s t i c u s and o. v i r i l i s u p to 20 C. O. p r o p i n q u u s and c. r o b u s t u s showed a d e c r e a s e in o x y g e n c o n s u m p t i o n beyond 20 C, wh ile o. r u s t i c u s and o. v i r i l i s showed an increase in ox yge n co n s u m p t i o n above 20 C. A C K N O W L E D G M E N T S I d e e p l y appreciate the encouragement, warmth, and en t h u s i a s m that my p r o f e s s o r and friend, Dr. T. W a y n e Porter, provided me during ou r long association. I am just now beginning to realize the value of the m a n y hours we spent together in the field. My m o t h e r and father, and my wife A l i c e Jane have been supportive in so m a n y ways that I shall ha ppily be forever in their debt. Besides her su ppo rti ve e n c o u r a g e m e n t and enduring patience, my w i f e A.J. ren d e r e d many of the o r i g ­ inal i l l u s t rat ion s and figures for this paper. My sons, Skip, Kev in and Jamie of t e n helped me co llect in the field; we all g a i n e d from those experiences. Dr. A a r o n Rosenfield e n c o u r a g e d me to com plete w h a t I had started. I p r o f o u n d l y ap prec iat e his con cer n in my b e h a l f . I a l s o w i s h to thank my c omm ittee members. Dr. Max Hensley, Dr. Eugene Roelofs, and Dr. Peter Tack for their guidance and helpful c r i t i c i s m of this manuscript. My a p p r e c i a t i o n to Mur iel Bru baker for typing the m a n u ­ script a n d being helpful in so m a n y ways. TABLE OF CON TEN TS A C K N O W L E D G E M E N T S . . .................................. . LIST O F T A B L E S ........................................... LIST OF FI GURES ............................... I N T R O D U C T I O N .......... ............................. .. . M A T E R I A L S AND MET H O D S ................................. D e s c r i p t i o n of the A r e a ............................ Field M e t h o d s ........................................ La b o r a t o r y Met h o d s ................................. Sy ste mat ic List of M i c h i g a n Cr a y f i s h e s . . . . . R E S U L T S .................................................. Gl os s a r y of T e r m s Used in K e y ..................... Key to the Species of M i c h i g a n C r a y f i s h ......... LIFE HIS T O R Y A N D E C O L O G Y ............................... F a l 1icambarus fodiens (C ott le) ..................... Lo ca l i t y Re cords in M i c h i g a n ........................ Cambarus (L a c u n i c a m b a r u s ) diogenes diogenes Gir ard Lo ca l i t y Re cords in M i c h i g a n ........................ Cambarus (P u n c t i c a m b a r u s ) robustus G i r a r d . . . . Lo ca l i t y Re cords in Michigan. . . ' ................ Orconectes propinquus (Girard)..................... Lo ca l i t y Re cords in M i c h i g a n ........................ Orconectes rusticus (Girard)........................ Lo ca l i t y Re cords in M i c h i g a n ........................ Orconectes virilis (Hagen).......................... Lo ca l i t y Records in Michigan. . Orconectes intmunis................................... Lo ca l i t y Records in M i c h i g a n ........................ LA B O R A T O R Y S T U D Y ........................................ Th ermal T o l e r a n c e .................................... The E f f e c t of De cre asi ng Oxy gen C o n c e n t r a t i o n Re lative to M o r t a l i t y ............................... O x y g e n C o n s u m p t i o n ................................... iii Pa ge ii V vi 1 5 5 8 11 23 24 25 25 49 49 52 53 58 60 64 66 73 88 93 96 101 107 113 115 115 122 124 Diurnal O x y g e n C o n s u m p t i o n R h y t h m of O r c o n e c t e s r u s t i c u s .................................... S U M M A R Y .............. . Field S t u d y ........................................... L a bor ato ry M eth o d s ................................. LI TER ATU RE C I T E D ........................................ Page 1 2 6 129 129 134 139 iv L I S T OF TABLES TABLE I. C o u n t y d i s t r i b u t i o n of cr ay f i s h species in M i c h i g a n ...................................... II. N u m b e r of a tta c h e d eggs c a r r i e d by O r c o n e c t e s r u s t i c u s .......... III. N umber of at ta c h e d eggs c a r r i e d by O r c o n e c t e s v i r i l i s ............ PAGE 43 92 98 IV. N u m b e r of a tta c h e d eggs carried by Orcone c t e s immunls ......................... 110 v LIST OF FIGURES F I G U R E PAGE 1. D i s t r i b u t i o n of the c r a y f i s h e s of Mi chi g a n . 9 2. M o d i f i e d M o u n t d e g a s s e r showing A, c i r c u ­ la tio n pump; B, v a c u u m pump; C, r e s p i r a t i o n chamber; D, flow meter; E, w a t e r tank; F, v a c u u m gauge; G, the rmo r e g u l a t o r ; H, M a n o s t a t .................................. 3. M o d i f i e d M o u n t d e g a s s e r showing A, c i r c u ­ la tio n pump; B, heat e x c h a n g e r .......... 4. R e s p i r o m e t e r ch a m b e r uti l i z e d w i t h M o d i f i e d M o u n t d e g a s s e r ............................. 5-9. D i a g n o s t i c f eatures of Camba ru s r o b u s t u s (Girard). Fig. 5, f o r m I gonopod; Fig. 6, d o r s a l v i e w of m a l e carapace; Fig. 7, chela; Fig. 8, form II gonopod; Fig. 9, an nu l u s v e n t r a l i s . 10-14. D i a g n o s t i c featur es of Or c o n e c t e s virilis (Hagen). Fig. 10, f o r m I gonopod; Fig. 11, d ors al v i e w of m a l e carapace; Fig. 12, chela; Fig. 13, form II gonopod; Fig. 14, a n n u l u s v e n t r a l i s ........................... 15-19. D i a g n o s t i c fe atures of C a m b a r u s di o ge n es (Girard). Fig. 15, form I gonopod; Fig. 16, d orsal v i e w of m a l e carapace; Fig. 17, chela; Fig. 18, form II gonopod; Fig. 19, a n n u l u s v e n t r a l i s .......................... 20-24. D i a g n o s t i c features of Fa 11i c a m b a r u s fodiens ( C o t t l e ) . Fig. 20, form I gonopod; Fig. 21, d ors al v i e w of m a l e carapace; Fig. 22, chela; Fig. 23, form II gonopod; Fig. 24, a n n u l u s v e n t r a l i s ........................... 17 19 21 30 32 34 36 vi D i a g n o s t i c f e a t u r e s of O r c o n e c t e s p r o p i n q u u s ( G i r a r d ) . Fig. 25, f o r m I gonopod; Fig. 26, d o r s a l v i e w of m a l e ca rap a c e ; Fig. 27, chela; Fig. 28, f o r m II go nop od; Fig. 29, a n n u l u s v e n t r a l i s ........................... D i a g n o s t i c f e a t u r e s of O r c o n e c t e s r u s t i c u s (Girard). Fig. 30, form I gon opo d; Fig. 31, d o r s a l v i e w of m a l e c ara pac e; Fig. 32, chela; Fig. 33, f o r m II go nop od; Fig. 34, a n n u l u s v e n t r a l i s ........................... D i a g n o s t i c f e a t u r e s of O r c o n e c t e s i m m u n i s (Hagen). Fig. 35, form I g ono pod ; Fig. 36, d o r s a l v i e w of m a l e c ara pac e; Fig. 37, chela; Fig. 38, f o r m II gonopod; Fig. 39, a n n u l u s v e n t r a l i s ........................... D i s t r i b u t i o n Of F a l l i c a m b a r u s f o d i e n s in M i c h i g a n . .................................. F r e q u e n c y of o c c u r r e n c e of f o r m I a n d f o r m II C a m b a r u s d i o g e n e s ............................. D i s t r i b u t i o n of C a m b a r u s d i o g e n e s in M i c h i g a n .......... ........................ D i s t r i b u t i o n of C a m b a r u s r o b u s t u s in M i c h i g a n .................................... F r e q u e n c y of o c c u r r e n c e of f o r m I and f o r m II C a m b a r u s robus t u s ........................... D i s t r i b u t i o n of O r c o n e c t e s p r o p i n q u u s in M i c h i g a n ........................ .. F r e q u e n c y o c c u r r e n c e of f o r m I and f o r m II O r c o n e c t e s p r o p i n q u u s . . . . . ........... S u m m a r i z a t i o n of life c y c l e i n f o r m a t i o n of M i c h i g a n c r a y f i s h s p e c i e s . . . ........... Th e r e l a t i o n s h i p b e t w e e n n u m b e r of e g g s c a r r i e d a nd c e p h a l o t h o r a x s i z e in O r c o n e c t e s p r o p i n q u u s . . . . . . . . . . D i s t r i b u t i o n Of O r c o n e c t e s r u s t i c u s in M i c h i g a n .................................... F r e q u e n c y o c c u r r e n c e of fo rm I an d f o r m II O r c o n e c t e s r u s t i c u s ........................ * vii 38 40 42 51 55 56 6 1 62 67 68 70 71 FIGURE 52. D i s t r i b u t i o n of Orconectes virilis in M i c h i g a n .................................... 53. F r e q u e n c y o c c u r r e n c e of form I and form II Orconectes virilis ........................ PAGE 97 99 54. F r e q u e n c y oc cur ren ce of form I and form II Orconectes immunis ........................ 109 55. D i s t r i b u t i o n of Orconectes immunis in M i c h i g a n .................................... Ill 56. The m e d i a n t ole rance level (TLm) of Orconectes p r op i n q u u s a c c l i m a t e d at 25 C and 32 C. . 116 57. The m e d i a n t ole rance level (TLm) o f Orconectes virilis a c c l i m a t e d at 32 C .............. 118 58. The m e d i a n tolerance level (TLm) of O r c o n e c t e s r u s t i c u s a c c l i m a t e d at 33 C .............. 119 59. The m e d i a n t ole rance level (TLm) of Orconectes i m munis a c c l i m a t e d at 7 C and 30 C . . . 121 60. O x y g e n tolerance of A, Orconectes p r o p i n q u u s ; B, Orconectes v i r i l i s ; C, Or co ne c t e s i m m u n i s . .............................. 123 61. Rate of oxygen c o n s u m p t i o n of O r co ne c t e s p r o p i n q u u s , O rc onectes virilis, Orconectes r u s t i c u s , and Ca mb aru s r o b u s t u s ...................................... 125 62. T w e n t y - f o u r hour r h y t h m of o x y g e n c onsum- tion of Orconectes r u s t i c u s ................. 127 v i i i IN TRO DUC TIO N R e p r es ent ati ves of the c r a y f i s h family Ast ac i d a e o c c u r th rou gho ut No r t h Am e r i c a and Eur ope and have been i n t r o ­ d u c e d into Japan and Hawaii (Penn, 1954). Crayfish, as a group, occupy a w i d e range of habitats. T h e y are c h a r a c ­ te ri s t i c and com mon i nha bit ant s of a v a r i e t y of e n v i r o n ­ ments, including m o s t types of r unn ing water, lakes, ponds, sloughs, swamps, u n d e r g r o u n d waters, and e v e n we t me a d o w s (Pennak, 1953). M i l l e r (1965) rep orted t h a t some species of the genus P a c i f a s t a c u s are found in the b rac k i s h w a t e r s of the lower C o l u m b i a River. Riegel (1959) si milarly r e ­ po r t e d that P a d f a s t a c u s l e n i u s c u l u s has been c oll e c t e d in di l u t e d b rac k i s h water. Extensive surveys rel a t i n g to the d i s t r i b u t i o n of c r a y ­ fish (Hay, 1895; Harris, 1903; Ortmann, 1905, 1906, 1931; Pearse, 1910; Turner, 1926; Newcombe, 1929; Creaser, 1931, 1932; Creaser and Ortenburger, 1933; Hobbs, 1942b; Williams, 1954; Crocker, 1957; Penn and Hobbs, 1958; Penn, 1959; M e r e d i t h and Schwartz, 1960; Cro cke r and Barr, 1968) have d e m o n s t r a t e d that some species are c onf i n e d to discrete habitats. C a m b a r u s d i o g e n e s G i r a r d and CamJbarus f o d i e n s (Cottle) usually secrete themselves in burrows, b e t r a y e d only by the te lltale ch imney of p e l l e t i z e d mud capping their 2 excavations. They are se ldo m seen in open w a t e r s e xcept during the sp awning season in spring (Creaser, 19 31). O r c o n e c t e s i m m u n i s (Hagen) is p r i m a r i l y an i nha bit ant of ponds and d itc hes and has a d ec i d e d pr e f e r e n c e for m ud b o t ­ toms and st agnant or v e r y slow m o v i n g w a t e r (Forbes, 1876; Tack, 1941). C a m b a r u s r o b u s t u s (Girard) is a common brook species found in h abi t a t s si milar to C ambarus b a r t o n i (Newcombe, 1929). T r o g l o c a m b a r u s m a c l a n e i Hobbs is largely co nfined to cavern ceilings, of caves, that dip b elo w the wa ter level (Hobbs, 1942). A l t h o u g h early studies w e r e largely of a s ystematic and ge ogr aph ic nature, n atural h i s t o r y and e col ogi cal notes were often included. Helff (1927, 1928) and Hi es t a n d (1931) were among the early in vestigators i nte res ted in r e s p i r a t o r y reg ula tio n in crayfish. In 1940, P a r k , G r e g g an d L u t h e r m a n reported on an ec ology class exe rcise in w h i c h c rayfish w e r e utilized to de m o n s tra te the p h y s i o l o g i c a l factors w h i c h limit some species to ponds and others to streams. A l t h o u g h their p aper wa s a result of class experim ents and not put forward as a critical res ea r c h program, it did stimulate m a n y wor kers to investigate the causal factors that control c rayfish d i s ­ tribution. Park (1945) reported on ad dit ion al p h y s i olo gic al- ec ology studies u t i l i z i n g c ray f i s h species w h i c h also occur in Michigan. B ovb j e r g (1952) furthered this line of r e ­ search w i t h his study of O r c o n e c t e s p r o p i n q u u s and C a m b a i u s f o d i e n s . Since H elf f's report a large series of papers have 3 been p ubl ish ed dealing w i t h oxygen consumption, t emperature tolerance, and endogenous rhythms in cra yfish (Fingerman, 1955; Spoor, 1955; F i n g e r m a n and L a g o , 1957; Presson, 1957; Valen, 1958; W ien s and Armitage, 1961; Aik en 1967; Bovbjerg, 1970). Several e c o l o g i c a l studies of c ray f i s h in M i c h i g a n have b e e n done in re cen t years. Creaser (19 31) d e s c r i b e d the d i s t r i b u t i o n of crayfish in M i c h i g a n and provi ded general ecological remarks. Cre ase r (1934a) rep orted on seasonal changes in m a l e crayfish an d growth and sex ratios of F a x o n i u s (= O r c o n e c t e s ) p r o p i n q u u s . M o m o t (1967a) studied the p o p u l a t i o n dy namics of O r c o n e c t e s v i r i l i s to def ine the role of cr ay f i s h as a c onsumer in a m a r l lake ecosystem. In a second pa p e r Mo mot (1967b) pro v i d e d in for mat ion on the e f fects of br ook trout p red a t i o n on the p r o d u c t i v i t y of a po p u l a t i o n of O r c o n e c t e s v i r i l i s . Mom ot and Gall (1971) pr e s e n t e d data on growth, p o p u l a t i o n de nsity and m o r t a l i t y for blue color phase var iants of O r c o n e c t e s v i r i l i s . Lagler and Hubbs (1940), Lagler and Lagler (1943), and Ball (1948) d o c u m e n t e d the presence of s i g n i fic ant numbers of cra yfi sh in bowfin (Amia c a l v a ) and largemouth bass ( M i c r o p t e r u s s a l m o i d e s ) stomachs from southern M i c h i g a n waters. In this p a p e r the pre sent day d i s t r i b u t i o n of M i c h i g a n cr ay f i s h species is discussed. W i t h the succint s tat eme nt of Hobbs (1942b) , "th e d i f f e r e n c e s a n d 1 i k e n e s s e s b e t w e e n s i t u a t i o n s t h a t a r e m o s t a p p a r e n t to the s t u d e n t a r e by no m e a n s a l w a y s t h e d i s t i n c t i o n m o s t i m p o r t a n t to the c r a y f i s h ," 4 f i r m l y in mind, an a t t e m p t has b e e n m a d e to d o c u m e n t h a b i ­ tat p r e f e r e n c e s , c r a y f i s h a s s o c i a t i o n s , an d a s p e c t s of their life h is tor ies . Dat a are p r e s e n t e d on s e v e n s p e c i e s based, mainly, on field o b s e r v a t i o n s , an d a u g m e n t e d by l a b o r a t o r y e x p e r i m e n t s d e s i g n e d t o e v a l u a t e c e r t a i n e n v i r o n m e n t a l and p h y s i o l o g i c a l f a c t o r s c o n s i d e r e d n e c e s s a r y to f u r t h e r the u n d e r s t a n d i n g of c r a y f i s h ecology. M A T E R I A L S AN D M E T H O D S D e s c r i p t i o n o f the A r e a Mi ch i g a n is c omp r i s e d of two t rac ts of land, the Upper and Lower Peninsulas, se par ate d by the Straits of Mackinac. Most of the state was co ver ed r e p e a t e d l y by gl aci ers mo v i n g d own w a r d from the north, g rin d i n g and m i x i n g rock m a t e ri als in their paths. Great local soil v ari at i o n s resulted from the va rie d m i n e r a l o g i c a l compositions of the ma ter i a l s left by the glaci ers and their m e l t i n g waters. Thick dep osits of u nco ns o l i d a t e d rock material, some over 600 feet, are found t hro ugh out m o s t of the state (Whiteside, Schneider, and Cook, 1963). Two d ist i n c t b ed r o c k provinces oc c u r in Michigan. The Mi ch i g a n Basin co nta i n i n g Cambrian to P e n n s y l v a n i a n shales, sandstones, c arb onate rocks, and e v a p o r i t e s oc cup i e s all the Lower P eni nsu la and the e astern half of the U p p e r Peninsula. The Precam bri an shield, whi ch oc cu p i e s the w e s t e r n half of the Upper Pen in s u l a contains chiefly m e t a m o r p h o s e d lava flows, iron formations, granite, c o n g l o m e r a t e s and s a n d ­ stones (Wayne and Z u m b e r g e , 1965). Mi ch i g a n is richly e ndo wed w i t h wat er resources. Almost entirely surrounded by four of the Gr e a t Lakes - Superior, Michigan, Huron and Erie - the state has 3,121 mi les of shoreline. In add ition there are o v e r 11,000 lakes and 43 6 river systems wi thi n its b o u n d a r i e s (Chandler, 1963). The inland waters are w idely di s t r i b u t e d th rou gho ut the state corresponding, generally, w i t h gl aci al geolog ica l features. L a k e s are numerous in the o u t w a s h plains, mo rainic fo rma tio ns and be d r o c k outcrops, but are r e l a ­ tively few in glacial lake plains. Barry, L i v i n g s t o n and Oa kland Counties, in the s out h e r n part of the Lower Peninsula, and Gogebic, Iron, Marquette, and Luce Counties, in the Upper Peninsula, have 0.4-0.6 lakes per square mile. All of the a bov e counties are in areas c o n t a i n i n g o utw ash plains, moraines, or be drock c lose to the surface. Except for a few small streams in the .ex tre me s o u t h e r n part of the state and in the western part of the Upper Peninsula, all wa ter s drain dir e c t l y into the Great Lakes s yst em (Chandler, 1963). A c c o r d i n g to Brown (1944), Mic h i g a n has 43 principle river systems c omp ris ing ab out 36,000 miles. The Sag i n a w River system is the largest in Mi chi g a n w i t h a d rai nag e area of a p p r o x i m a t e l y 6,500 mi . 2 Gently r o l l i n g topography typifies the e ast ern regions of the Upper Peninsula and southern Lower Pe nin sul a wi th hilly and r o u g h terrain in the w este rn Upp er P eni nsula and no rth -ce ntr al Lower Peninsula. The so ut h e r n half of the Lower Pe nin sul a lies w i t h i n the deciduo us f ore st belt w h i l e the Upper P e n i n s u l a lies en tirely w i t h i n the nor theast conifer forest. Mix t u r e s of both forest types occur in b oth the no rth ern and s outhern parts of the state. The n ort h e r n half of the Lower Peninsula is a transit ion al area wh ere c l i m a x deciduous forest species i nte r m i x with e v e r g r e e n formatio ns (Darlington, 1945). F i e ld M e t h ods C o l l ec tio ns of cra yfi she s w e r e m a d e from all 83 Mi chi g a n cou n t i e s (Fig. 1). Records for species are listed under locality records and are r ecorded by county, lake or stream, township, tier, ra n g e and section as indicated on M i c h i g a n D e p a r t m e n t of C o n s e r v a t i o n cou nty m a p s . Crayfish occupy three generalized habitats; lakes and ponds, streams, and in burrows along the edges of lakes, ponds and streams. An attempt was made to collect as widely as possible, throughout Michigan, so as to include all habitats. It soon became apparent, however, that lake and burrowing habitats were extremely difficult to sample, while stream or lotic environments yielded valuable data with relative ease. Consequently, records for the burrowing species, F a l l i c a m b a r u s f o d i e n s and Cajnl?arus d i o g e n e s , do not reflect the full extent of their state-wide distribution and rela­ tive abundance as compared to the stream and to some extent the lake species. Sufficient collections made in lakes and augmented by a search of the literature, allows the general­ ization that those forms which are found in streams are often found in lakes and that there are no species in Michigan which are confined solely to lakes. ONTARIO WINN, x 0* p r o p i n q u u s A O. i m m u n i s C. r a b u s tus c. d i o g e n e s F. f o d i e n s S C A L E IN MILES o»fAB’ LAKE F i g u r e 1. D i s t r i b u t i o n of tho c r a y f i s h e s of M ich i g a n . 10 An imals w e r e c o l l e c t e d with d i p nets, seines, m o d i f i e d m i nno w traps and hand s c r e e n s . A twig wa s often u t i l i z e d to p r o d or herd specimens into the dip net. C r a y f i s h usually did not e v i n c e alarm when c o n f r o n t e d by such a probe, pro b a b l y b e c a u s e twigs abound and are a na tural component in most streams. The seine is a u sef ul c o l l e c t i n g tool w h e n the area to be sampled is clear of snags and an additional p ers on is available for help. The co mmo n d o u b l e - f u n n e l e d w i r e mi nno w trap, baited with liver, is an e x c e l l e n t de vic e for c o l l e c t i n g in lakes and deep river pools. Th e funnels should be e n l a r g e d s o m e ­ w h a t to a l l o w the ent r a n c e of crayfish. The h a n d s c r e e n or ki c k s c r e e n is the most ef fic i e n t type of eq uip men t for c o l l e c t i n g crayfish, p a r t i c u l a r l y in streams. Ease of h and l i n g and the fact that o n l y one i n ­ dividua l is required for its use m a k e it the g e a r of choice. The screen is a simple device, inexpensive and easily c o n ­ structed in a few minutes. It consis ts of two five ft. poles w i t h a length of w i n d o w - s c r e e n , four ft. high and five ft. wide, t ack ed to the poles. The sc ree n is pla ced on the s t r e a m bottom, if only one individual is present, the tops of the poles are grasped in one hand. The screen t h e n assumes an "A" shape w i t h the ap ex formed by the poles. T h i s me tho d stretches the screen along the b o t t o m and also forms a bag in the center of the screen. The c oll ect or stands u p s t r e a m f r o m the h a n d s c r e e n and kicks 1 1 the r ubble b o t t o m or d i s t u r b s a q u a t i c w e e d beds s u f f i c i e n t l y to d i s l o d g e the c r a y f i s h a nd a l l o w t h e m to be s w e p t i nto the s c r e e n b y the current. T h i s t e c h n i q u e is m o r e e f f e c ­ tual for s a m p l i n g s tr e a m b o t t o m s than a n y of the a b o v e - m e n t i o n e d m e t h o d s . The c o l l e c t i o n s sites w e r e d e s c r i b e d as to b o t t o m type, depth, w i d t h o f stream, e s t i m a t i o n of f l o w and p r e s e n c e of a q u a t i c p l a n t s . The c r a y f i s h w e r e k i l l e d and p r e s e r v e d in a s o l u t i o n of 75 p e r c e n t e t h a n o l , 20 p e r c e n t d i s t i l l e d w a t e r and 5 p e r ­ c e n t gly ce r i n e . Th e g l y c e r i n e re t a i n s the f l e x i b i l i t y of the a p p e n d a g e s an d also p r e v e n t s total loss of the s p e c i m e n in the e v e n t of e v a p o r a t i o n of the e t h a n o l . The e n t i r e c o l l e c t i o n o f c r a y f i s h r e s u l t i n g f r o m this s t u d y has b e e n r e p o s i t e d in the E n t o m o l o g y M u s e u m of M i c h i ­ g a n State U n i v e r s i t y w h e r e t h e y are a v a i l a b l e for fu r t h e r s t u d y . L A B O R A TO R Y M E T H O DS The l a b o r a t o r y phase of t h i s s tudy has b een d e s i g n e d to a u g m e n t field o b s e r v a t i o n s a n d to e l u c i d a t e s pec ifi c p h y s i o ­ l o gical r e s p o n s e s of s e l e c t e d species. Sp eci men s c o l l e c t e d in th e field for p h y s i o l o g i c a l e x p e r i m e n t s w e r e t r a n s p o r t e d to the l a b o r a t o r y and i m m e d i ­ a t e l y t r a n s f e r r e d to aquaria. Th e c r a y f i s h w e r e m a i n t a i n e d in n o n - c h l o r i n a t e d a e r a t e d t a p w a t e r at t e m p e r a t u r e s u s u a l l y 12 within 10 d egrees Celsius of the st rea m temperature. On ly those specimens wh ich ap pe a r e d to be in good con dit ion w ere retained. They were m a i n t a i n e d on a d i e t of m o i s t e n e d dry dog food. The crayf ish fed well, m o r t a l i t y was low, and the specimens used in the tests w e r e hea l t h y and vigorous. Therm a l T o l e r a n c e E x p e r i m e n t s A series of experi men ts des ig n e d to test the ab ilities of several c rayfish species to w i t h s t a n d elevated t e m p e r a ­ tures were performed. The m e d i a n tolerance level (TLm), or the te mp era tur e which w i l l kill 50 p e r c e n t of a test p o p u ­ lation for a given e xposure period, wa s utilized. M e d i a n tolerance v alu es for a sp eci es will increase or decrea se as the ac c l i m a t i o n tempera tur e increases or d e c r e a s e s , thus allowing the organisms to tolerate h i g h e r temperatures in the summer c ompared w i t h winter. The T L m m a y be emp l o y e d as a ta xon omi c tool, as it m a y be of v a l u e in indicating the pr esence o r absence of genetic similar iti es b e t w e e n species that are p h e n o t y p i c a l l y different (Fry, 1957). The ba s i c technique for T L m d e t e r m i n a t i o n s is p att e r n e d after the cl ass ic bioassay. C o n s t a n t - t e m p e r a t u r e w a t e r baths of n o n - c hl ori nat ed t apwater were establi she d and held to ±0.5 C. The water w as v i g o r o u s l y ae ra t e d during the entire d u r a t i o n of the experiments. St and a r d W inkler de ter min ati ons for d i s s o l v e d oxygen levels indicated that the oxygen content r emained at 85 per c e n t saturation e ven after an imals were held in the w a t e r for 2 4 hours or more. 1 3 An ima ls w e r e a c c l i m a t e d to a co nst a n t t e m p e rat ure before being uti l i z e d in an experiment. A c c l i m a t i o n t emp era tur es were g e n e r a l l y 15, 20, 25, 30, and 35 C. Al l an imals w ere held in the a c c l i m a t i o n baths for a m i n i m u m of 24 hours, and u s u a l l y not over 72 hours. Spoor (19 55) found that the increase in h e a t - r e s i s t a n c e of Or co ne cte s rusticus was q u i t e rapid -- one day or less w h e n the e n v i r o n m e n t a l temperature was raised from 4 C to 24 C. A c c l i m a t e d an ima ls were i ntro duc ed di re c t l y into a 6 0- liter co ns t a n t t emp era tur e bath. D u r i n g the course of this study the ani mal s were e x p o s e d to a range of t emp era tur es from a level not ex pected to cause m o r t a l i t y to one w h i c h wo uld kill all the o rga n i s m s in a 24-hour p e r i o d of o b s e r v a t i o n . In all e x p e r i m e n t s a sp ec i m e n was p r e s u m e d to be dead based on the following criteria: (a) animal pla ced on d o r s u m m ake s no re sp o n s e to rig ht i t s e l f . (b) no m o v e m e n t of eyes or o t h e r a p p e n d a g e s elicited. (c) animal turgid, first a bdo m i n a l seg ment pu lle d away from carapace, no m o v e m e n t elicited. Upon t e r m i n a t i o n of the 24 -hour e x p e r i m e n t all animals were rem ove d from the wa t e r bath, ca rapace length and sex determined, and via ble specime ns p l a c e d in a rec ov e r y tank for five days at a t e m p e r a t u r e of 22-25 C. Dead animals were removed f r o m the re co v e r y tank d u r i n g the 5-day period and so noted. O x y g e n C o n s um p t ion E xperiments 1 4 A s tudy of individual species* rate of oxygen c o n s u m p ­ tion w a s u n d e r t a k e n to furnish informat ion for a clearer u n d e r s t a n d i n g of habitat s e l e c t i o n and d i s t r i b u t i o n of c r a y ­ fish. Th e d i f f i c u l t y e n c o u n t e r e d in c o n t r o l l i n g d i s s o l v e d ox yge n in test w a t e r may be one reason for the scarcity of data on the eff e c t s of v ari ous oxy gen c o n c e n t r a t i o n s on fishes (Mount, 1961). The a b o v e statement applies e qually to o t h e r s tream forms, such as aquatic ins ects and crustacea. The t e s t w a t e r should be r en e w e d c o n t i n u o u s l y in order to m a i n t a i n u n i f o r m oxygen c o n c e n t r a t i o n and to facilitate re mov al of m e t a b o l i c waste products. M a n y wor k e r s (Fry, 1951; whitemore, Warren, and Doudoroff, 1960) have dev ise d systems u t i l i z i n g the p r i n c i p l e of n i t r o g e n stripping, or the removal of o x y g e n by nit rog en di splacement. M oun t (1961) sta tes that such systems are r e l a t i v e l y expensive, require c o n s i d e r a b l e attention, and the v o l u m e of w a t e r which can be deg assed is limited by the cost of nitrogen. A s y s t e m using a partial v a c u u m to d ega s w a t e r is the m e t h o d of choice. A co m p r e s s o r tank is u s e d as the d e g a s s ­ ing chamber. A continu ous ly r u n n i n g v a c u u m co nne c t e d w i t h a v a c u u m r e g u l a t o r (Manostat) w i l l adjust and co ntr ol the r e ­ q u i r e d d i s s o l v e d oxy gen co nce n t r a t i o n s to c l o s e tolerances. This m e t h o d of d e g a s s i n g w a t e r is simple an d e con omi cal and it can be ap plied to a wide v a r i e t y of uses. 1 5 A mod i f i e d M o u n t degasse r (Mount, 1961, 1964) was d e si g n e d and c o n s t r u c t e d for use in cr ay f i s h re sp i r o m e t r y (Figs. 2-3). The respir ome ter is equ ip p e d w i t h r e f r i g e r ­ ation and hea tin g coils and is c ap a b l e of b rin g i n g 144 liters of w a t e r to the d esir ed test t emp era tur e (±0.5 C) w i t h i n 2 hours. In addition, the r e s p i r o m e t e r in corporates a v a c u u m pump, v a c u u m regulator, aerator, and flow meter. O x yge n c onc en t r a t i o n s are ad ju s t e d by u til i z i n g the v a c u u m pump in concert w i t h the v a c u u m r e g u l a t o r or by introducing oxygen by aeration. This sy ste m ca n m a i n t a i n the d iss o l v e d ox yge n c o n c e n t r a t i o n level at a v a r i a t i o n of less than 0.1 pp m w i t h o u t da ily adjustments. W a t e r flow is d e t e r m i n e d by a flow me ter ca pab le of m e a s u r i n g flow rate from 0 - 850 ml/min. To determine oxy gen co n s u m p t i o n at di ffe r e n t c o n c e n t r a ­ tions, a single cr ay f i s h is p l a c e d in an a cry lic c hamber 30.5 cm long w i t h an inner d i a m e t e r of 10 cm. Th e chamber is c onn e c t e d to the system w i t h p l a s t i c tubing w h i c h allows w a ter to enter and exit in a cl ose d c irc uit (Fig. 4). Static and f l o w - thr oug h assays can be run w i t h this system. Ge ner all y the static test w as chosen b e c a u s e of the very small amounts of oxygen u t i l i z e d by one specimen. The test animal, having been st arv ed for 24-hours, is p l ace d in the c h a m b e r and w ater a l l o w e d to flow t hro ugh at the d e s i r e d t e m p e ra tur e and d i s s o l v e d oxygen c o n c e n t r a t i o n for two hours. U p o n termination of the a c c l i m a t i o n period the o x y g e n c o n c e n t r a t i o n is obt a i n e d by the m o d i f i e d (azide) 1 6 F IGU RE 2. M O D I F I E D M O U N T D E G A S S E R SHO WING A, C IRC ULA TIO N PUMP; B, V A C U U M PUMP; C, RE S P I R A T I O N CHAMBER; D, F L O W METER; E, W A T E R TANK; F, V A C U U M GAUGE; G, THERMOREGULATOR; H, MANOSTAT. 18 F I G U R E 3. M O D I F I E D M O U N T D E G A S S E R S H O W I N G A , C I R C U L A T I O N PUMP; B , H E A T EX CHA N G E R . 19 20 FIGURE 4 R E S P I R O M E T E R C H A M B E R UTI LIZED W I T H MODIFIED MOUNT DEGASSER- ■ t Met* 2 2 Winkler test, the flow is then cut off to the c hamber and shunted t hro ugh the sys tem for 30 minutes. W a t e r is then evacuated from the c hamber into a glass st opp e r e d bottle and the sample as sayed for di sso l v e d oxygen concentration. The chamber is again r efilled w i t h system w a t e r and allowed to recirculate at a c onstant flow for 15 m i n u t e s and the entire process is repeated. A series of four readings per animal are taken in this manner. The specimens are placed in a drying o v e n for 24 hours at a tem pe rat ure of 9 5 C. They are then w e i g h e d on a b a l ­ ance to 0.1 m g accuracy. The dry w e i g h t d i v i d e d into the consumption per hou r yields m g O ^ / l / g m / h r . T w e n t y - f o u r hour tests were p e r f or med in the same m a n ­ ner w i t h 32 readings taken du ring the period. A ll tests were run under a twelve hour light - twelve h o u r dark regime. S t eri liz ed stones were pla ced in the c ha m b e r as a substrate to a p p r o xim ate na tural field conditions. Systematic List of M i c h i g a n C r a y f ishes 23 Family A s t a c i d a e Subfamily Carabarinae H o b b s , 194 2 Genus O r c o n e c t e s Cope, 1872 S e c t i o n p r o p i n g u u s Ortraann, 1905 G r o u p p r o p i n g u u s Ortmann, 1905 O r c o n e c t e s p r o p i n g u u s (Girard) 1852 G r o u p rusticus (Girard) 1852 O r c o n e c t e s r u s t i c u s (Girard) 1852 S e c t i o n v i r i l i s O r t m a n n , 1905 G r o u p v i r i l i s Ortmann, 1905 O r c o n e c t e s v i r i l i s (Hagen) 1870 O r c o n e c t e s i m m u n i s (Hagen) 1870 Genus C a m b a r u s Erichson, 1846 S e c t i o n b a r t o n i i Ortmann, 1905 Camjbarus ( P u n c t i c a m b a r u s ) r o b u s t u s Girard, 1852 S e c t i o n d i o g e n e s Ortmann, 1905 C a m b a r u s (L a c u n i c a m b a r u s ) d i o g e n e s d i o g e n e s Girard, 1852 F a l 1 i c a m b a r u s f o d i e n s (Cottle) 1863 In 1969, Hobbs er ec t e d a new genus, F a l l i c a m b a r u s , in which he p l a c e d Cami>arus ( = F a l 1 i c a m b a r u s ) f o d i e n s . F . f o d ­ i e n s along w i t h seven ot h e r species were w i t h d r a w n from the genus C a m b a r u s , pri ma r i l y based on the c u r v a t u r e of the terminal ele m e n t s of the male first p leo p o d at an angle greater than 95 degrees to the m a i n shaft. F a l l o (L. = deceive) w a s combined w i t h C a m b a r u s to indicate the close 24 resemblance to the species w i t h i n the genus Cambarus. Hobbs (1369) also e rec ted a new subgenus, L a c u n i c a m - b a r u s , and placed C a m b a r u s d i o g e n e s d i o g e n e s w i t h i n it. C a m b a r u s (P u n c t i c a m b a r u s ) r o b u s t u s is yet a nother s p e ­ cies w h i c h has been pla ced into a n e w subgenus ( P u n c t i c a m ­ barus ) by Hobbs (1969). RE SULTS KEY TO THE CRA Y F ISHES OF M I C H I G A N It is g ene rally re cog niz ed (Hobbs, 1942a; Crocker, 1957) that the co pul ato ry stylets, the first pleopods, or g o n o p o d s , all of w h i c h are synonymous terms for the male copula tor y organs, are the m o s t reliable diagno sti c feature of a spe ­ cies. The gonopods, however, should be from a m a l e in b r e e d ­ ing condition, u s u a l l y r eferred to as a form I male. Adult form II males, the n o n - b r eed ing condition, have gonopods which ar e not w e l l - d e f i n e d and are not of p r i m a r y importance in the i den tif ica tio n of a species. Th e key herein p res e n t e d is des i g n e d to identify M i c h i ­ gan cr ayf ish es by u til izi ng several m o r p h o l o g i c a l c h a r a c t e r ­ istics and is not ent ir e l y de pen d e n t on reference to form I male gonopods. Terms w h i c h app ear in the key are de fin ed in the g l o s s a r y below: 2 5 G L O S S A R Y OF TERMS USED IN KEY A C U M E N : AREOLA: C A R A P A C E : CARINA: tip of ros tru m us u a l l y an h o u r g l a s s - s h a p e d area d e ­ limited by s hallow gr ooves on m i d ­ dorsal surface of thorax ex osk ele tal cov e r i n g of c e p h a l o t h o r a x longitudinal ridge located in trough of ro str um CE NTRAL PROCESS: the more distal p rocess of the g o n o p o d CHELA: D A C T Y L : G O N O P O D : pincer of c law the mov e a b l e finger of the claw the mo di f i e d first and second abdominal s wimmerets of male, the pleopod ME SIA L PROCESS: the m o r e proximal p roc ess of the gonopod ROSTRUM: anterior p roj ect ion of the carapace extending forward b e t w e e n the eyes TE RMINAL PROCESS the two processes, central and mesial# distal to the m a i n shaft of the g o n o ­ pod Key To The Species of M i c h i g a n C r a y f i s h (Decapoda: Astacidae) la Terminal processes of g onopods short, heavy and d i r e c t e d at a ppr oxi mat ely a 90-degree angle from the axis (Fig. 5): r ostrum w i t h o u t lateral spines at base of acumen (Fig. 6). _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2 26 lb Terminal p r o c e s s e s of go no p o d s straight or cu r v e d at less than a 90 degree a ngle from the axis (Fig. 10); d i s t i n c t s houlder formed on r o s t r u m at base of acumen; lateral spines or tub ercles g e n ­ erally p r o d u c e d at base of ac ume n (Fig. 11). - - — _ _ _ _ _ _ _ _ _ _ _ _ O r c o n e c t e s - — 5 2a (1) A r e o l a o b l i t e r a t e d (Fig. 16); carapa ce higher than wide - - - - - - - - - - - - - - - - - - 3 2b A reo la wide or narrow, but never o b l i t era ted (Fig. 6); c a r a p a c e wi der than high - - - - - -4 3a (2) Dactyl of che la w i t h n a r r o w to deep notch at base of opp osa ble m a r g i n (Fig. 22); teeth of chela w e l l - d e v e l o p e d and of v a r i o u s sizes; a bu rro wer inhabiting t e m p o r a r y w o o d l a n d ponds and ditches. - F a l 1 i c a m b a r u s f o d i e n s (Cottle) 3b Dactyl of c h e l a wi thout n otch at base of o p p o s a b l e ma r g i n (Fig. 17); teeth of chela less w e l l - d e v e l ­ oped and m o r e un i f o r m in size; a bur rower along lake and s t r e a m margins. - - - - - - - - - - - - C a m b a r u s d i o g e n e s G i r a r d 4a (2) Outer m a r g i n of chela w i t h d e p r e s s i o n on both dorsal and ve n t r a l a spe cts (Fig. 7); inner m a r g i n of palm w i t h two rows of low tubercles; found in swift, stony streams, o c c a s i o n a l l y burrows. - — — C a m b a r u s r o b u s t u s Girard Outer m a r g i n of chela m a y have slight d e p r e s s i o n on dorsal aspect, but n e v e r ventral; inner m a r g i n of pal m w i t h one row of low tubercles; inhabits swift, sto ny streams a nd rivers, m a y burrow, d i s ­ t r ibution in M i c h i g a n no t confirmed. - - - - - - - - - - - C a rub a r u s b a r t o n i (Fabricius) Terminal processes of gon o p o d s short, straight, and stout (Fig. 25); c a r i n a present on rostrum (Fig. 26); chela wide an d heavy (Fig. 27); the most u b i q u i t o u s species in M ichigan found in streams, ri ver s and lakes. O r c o n e c t e s p r o p i n q u u s (Girard) Terminal pro ces ses of go no p o d s s traight or curved, b ut not short and stout (Fig. 30); carina not present on r o s t r u m (Fig. 31). 6 Terminal pr oce sse s of gon o p o d s straight, or very slightly curved, sl ender shafts w i t h a d ist inc t shoulder at base of c e n t r a l process (Fig. 30); dactyl u s u a l l y sinuous (Fig. 32); t ypi cal ly with a reddish m a c u l a t i o n on lateral a spe ct of carapace in habits streams and rivers, often found below d a m sites. — — — — — — — — — — O r c o n e c t e s r u s t i c u s (Girard) 2 8 6b Ter minal pr oce sses of g ono p o d s curved and w i t h ­ ou t a shoulder (Fig. 35). 7a (6) Te rminal processes of gon o p o d s slender an d gently cu rving caudad, m esi al p r o c e s s sp atu lat e d ist all y {Fig. 10); opposable m a r g i n of dactyl str aight or slightly sinuous, w i t h o u t notch at base {Fig. 12); pr eva len t throughout M i c h i g a n in streams, rivers and lakes. — — — — — — — — — — — O r c o n e c t e s v i r i l i s {Hagen) 7b Terminal processes of g o n o p o d s a bru p t l y cu rved caudad at 45 degree angle, m e s i a l pro c e s s not spatulate di stally (Fig. 35); chela w e a k and tends to be el ongate w i t h a s h a l l o w notch at base of op pos a b l e ma rg in (Fig. 37); a pond or stagnant w a t e r species; may b u r r o w h o r i z o n t a l l y into bank w h e n wa ter is low. - - - - - - - - - - - O r c o n e c t e s i m m u n i s (Hagen) 29 FIGURES 5-9 D I A G N O S T I C F E A T U R E S OF C A M B A R U S R O B U S T U S (GIRARD). FIG. 5, F ORM I GONOPOD; FIG. 6, DO R S A L V I E W OF M A L E CARAPACE; FIG. 7, CHELA; FIG. 8, FORM II GONOPOD; FIG. 9, ANNULUS V E NTRALIS 30 I Figure 5 Figure 6 Figure 7 Figure 9 Figure 8 31 FIGURES 10-14 D IAG NOS TIC FE ATU RES OF O R C O N E C T E S V I R I L I S (H AGE N). FIG. 10, F O R M I GONOPOD; FIG. 11, DO RSA L V I E W OF M A L E CARAPACE; FIG. 12, CHELA; FIG. 13, F O R M II GONOPOD; FIG. 14, AN NULUS VENTRALIS. 32 Figure 10 Figure 11 f Figure 14 Figure 13 33 FIGURES 15-19 DI A G N O S T I C FEATURES OF C A M B A R U S D I O G E N E S (GIRARD). FIG. 15, F O R M I GONOPOD; FIG. 16, DOR SAL V I E W OF MALE CARAPACE; FIG. 17, CHELA; FIG. 18, FORM II GONOPOD; FIG. 19, AN NUL US V E N T R A L I S . 34 Figure 15 Figure 16 Figure 17 Figure 18 35 FIGURES 2 0-24 DI A G N O S T I C F EAT U R E S OF F A L L I C A M B A R U S F O D I E N S ( C O T T L E ) . FIG. 20, F O R M I GONOPOD; FIG. 21, D O R S A L V I E W OF M A L E CARAPACE; FIG. 22, CHELA; FIG. 23, F O R M II GONOPOD; FIG. 24, A NNU LUS V E N T R A L I S . 36 Figure 20 Figure 21 Figure 22 Figure 24 Figure 23 37 FIGURES 25-29 D I A G N O S T I C FEATURES OF O R C O N E C T E S P R O P I N Q U U S (GIRARD). FIG. 25, F O R M I GONOPOD; FIG. 26, DORSAL V I E W OF M A L E CARAPACE; FIG. 27, CHELA; FIG. 28, F O R M II GONOPOD; FIG. 29, A NNU L U S V E N T R A L I S . 38 Figure 25 Figure 26 Figure 27 Figure 28 39 FI GUR ES 30-34 D I A G N O S T I C FEATURES OF O R C O N E C T E S R U S T I C U S ( G I R A R D ) . FIG. 30, FO RM I GONOPOD; FIG. 31, D O R S A L V I E W OF M A L E CARAPACE; FIG. 32, CHELA; FIG. 33, FORM II GONOPOD; FIG. 34, ANNULUS VENTRALIS. 40 Figure 30 Figure. 31 Figure 32 Figure 34 Figure 33 4 1 FIGURES 3 5-39 DIAGNOSTIC FEATURES OF O R C O N E C T E S I M M U N I S (HAGEN). FIG. 35, F O R M I GONOPOD; FIG. 36, DO RSA L V I E W OF MALE CARAPACE; FIG. 37, CHELA; FIG. 38, F O R M II GONOPOD; FIG. 39, ANN U L U S V E N T R A L I S . 42 Figure 35 Figure 38 COUNTY DISTRIBUTION OF CRAYFISH SPECIES IN MICHIGAN TABLE I 0.propinquus 0 .virilis o.rusticus O.immunis C .robustus C.diogenes Species X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X County Alcona Alger Allegan Alpena Antrim Arenac Baraga Barry Bay Benzie Berrien Branch Calhoun Cass TABLE I cont'd County_______________________ Species___________________________ _________ 0 , p r o p i n q u u s 0 . v i r i l i s 0 . r u s t i c u s 0 . i m m u n i s C .rofrustus C . d i o g e n e s F .f o d i e n s Charlevoix Cheboygan Chippewa Clare Clinton Crawford Delta Dickinson Eaton Emmet Genesee Gladwin Gogebic X X X X X X X X X X X Grand Traverse X X X X X X X X X X X X X X X X X X X TABLE I cont’d O . p r o p i nq u us O.vir il i s O . r us t ic u s Species __________________________________________ X X X X X X X X X X X X X X X X X X X X X Ja. U1 County Gratiot Hillsdale Houghton Huron Ingham Ionia Iosco Iron Isabella Jackson Kalamazoo Kalkaska Kent Keweenaw TABLE I cont'd County_____________________________________Species__________________________________________ 0 .propinquus O .v i r i 1 is O .rusticus 0 .immunis C .robustus C .dioge ne s F .fodiens Lake Lapeer Leelanau Lenawee Livingston Luce Mackinac Macomb Manistee Marquette Mason Mecosta Menominee Midland X X X X X X X X X X X X X X X X X X X X X TABLE I cont’d County_____________________________________Species O.propinquus 0,virilis Q.rusticus O.ijnmunis C.robustus C.diogenes F.fodiens Missaukee Monroe Montcalm Montmorency Muskegon Newaygo Oakland Oceana Ogemaw Ontonagon Osceola Oscoda Otsego Ottawa X X X X X X X X X X X X X X X X X X X X TABLE I c o n t ’d County______________________________________ Speci es_________________________________________ 0 .p ro p i n q u u s 0 . virilis O .rusticus 0 . immunis C .robustus C .diogenes F .fodiens X X X X X X X X X X X Presque Isle Roscommon Saginaw St. Clair St. Joseph Sanilac Schoolcraft Shiawassee Tuscola Van Buren Washtenaw Wayne Wexford X X X X X X X X X X X X X X X X X X LIFE H I S T O R Y AND ECO L O G Y Fa 11icambarus fodiens (Cottle, 1863) This species is one of the m o s t poorly u n d e r s t o o d in Michigan. C rea ser (1931) wr o t e that its h abitat prefer enc e is for vernal w o o d l a n d ponds, d r a i n a g e d itc hes and marshes where it con str uct s bu rrows in san dy- cla y soil. F e w a ddi ­ tional di str i b u t i o n a l records have resulte d from this study because of the b u r r o w i n g nature of f . f o d i e n s and its p r o ­ pensity for inhabiting areas whi ch are not n e c e s s a r i l y near streams or p erm ane nt bo die s of water. f . f o d i e n s is usu a l l y found in o p e n water soon after the snow melts and forms tem po r a r y ponds. C rocker and Barr (1968) indicate that f . f o d i e n s c o pu l a t e in the fall or early spring. In Michigan, adults are found in the open water as early as mid-Feb rua ry. P ear se (1910) found females carrying eggs in early A pr il and H ay (1895), Pe ars e (1910), and Cr ocker and Barr (1968) all r epo rt col lec tin g young from early A pr il t hro ugh May. Collecti ons made du rin g the cu r­ rent i nve stigations a gree w i t h ear lie r findings perta ini ng to the time of adults and young found in open water. It was noted that, subsequent to hatching of the young, a spatial distribu ti on o ccu r r e d b e t w e e n the newl y - h a t c h e d cra y f i s h and the adults. In m o s t cases, p a r t i c u l a r l y after the young were a p p r o x i m a t e l y two wee ks or m o r e old, the adu lts re t u r n ­ ed to their secretive burrows, while the young re mai n e d in open w a t e r until later in the spring. They e me r g e d from the 49 50 water as the ponds be gan to dry in M a y and early June and burrowed along the m o i s t margins. f. f o d i e n s is a so litary species and is not ge ner all y found in associa tio n w i t h other cra yf i s h species. O r c o n - e c t e s i m m u n i s , the o n l y species c o l l e c t e d in a s s o c i a t i o n with F. f o d i e n s , o c c u r r e d in 17 p e r c e n t of the collections. A l t h o u g h the d i s t r i b u t i o n a l k n o w l e d g e of f. f o d i e n s is far fro m complete, it appears from this study and that of Creaser's (1931) that f. f o d i e n s is con f i n e d to central and southern lower M i c h i g a n w h i c h coi ncid es w i t h the o c c u rre nce of f. f o d i e n s pe r i p h e r a l to Michigan. Hobbs (1972b) in di­ cates t hat this s pec ies occurs in Illinois, M i c h i g a n and Ohio and additional southe rn states. C r o c k e r and Barr (1968) report this species o n l y in southwest and mid-Ontario, C a n a d a . 5 1 Hi, *'> B1 I ■ifilSsfesA O N T A R I O 49 47 4j 43 ERIE il I •!. 4i c so rr*w=«4,.’C 90 . . . ± y ^ _. l j _ l l I (4 0 1 A H A ^ FT j— »r_i i; ~ O H to 7* '.e3B3S^ii^sfet£3^^isE2SS5^ Figure 41. D i s t r i b u t i o n of F Iiilicari!).-iriis fodiens in Michi g a n . 52 F a l l i c a m b a r u s f o d i e n s (Cottle) Locality R ec o r d s in M i c h i g a n ALLEGAN: Kalamazoo R . , L. Allegan, Al l e g a n T w p . , T.2N: R.13W: S . 19, 18 September 1965, 1?. CLINTON: Looking Gl a s s R. t r i b . , Ba th T w p . , T.5N: R.1W: S . 5, 16 Ma y 1965, 1^ I, is. EATON: B att le Creek R. trib., B e l l e v u e Twp., T.1N: R. 6W: S . 23, 17 M a y 1965, 1^* II, 2??. INGHAM: Baker Woodlot, Mich. State Univ., M e r i d i a n Twp., T.4N: R.1W: S . 19, 6 May 1965, 1« II, 3??. MACOMB: Roadside ditch, Harrison Twp., 25 April 1965, 4rfcf. SAGINAW: Sa ginaw R . , Spaulding Twp., T.11N: R.4E: S . 8, 15 May 1965, IS. 5 3 C a m b a r u s (L a c u n i c a m b a r u s ) d i o g e n e s d i o g e n e s G i r a r d # 1 8 5 2 c. d i o g e n e s , like f . f o d i e n s , is pri ma r i l y a b urr owing species which o f t e n constructs e x t e n s i v e b urrows in poorly d r a i n e d soils. Some of the b u r r o w s are quite com p l e x in construc tio n w i t h lateral tunnels b r a n ch ing from the m ain ve rti c a l burrow an d terminating in a cul-de-sac chamber. They may also join secondary v e r t i c a l shafts or continue as a lateral e x t e n s i o n to the w a t e r s edge. The d i a m e t e r of the bu r r o w and its a t t e n d a n t chimney is a function of the size of the individual and# to some extent, on the d e p t h of the wa t e r table and the type of soil. c. d i o g e n e s , co lle cte d du rin g this study inhabited areas w h e r e the soils ranged from ma rly -cl ay to peat. This sp e c i e s does oc cur in marshy areas w h i c h ma y be some distance f r o m a p erm ane nt standing body of water or a stream. T h e y are, however, found more frequently in and ar oun d pe rma n e n t bodies of water. Th e life cycle of c. d i o g e n e s is not c o m p l e t e l y known due to its secretive habits and inaccessibility. M a r l o w (1960) indicates t h a t copulation t a k e s place from late M a r c h th rough May. A p a i r in copula w a s ob ser ved by the author on M a r c h 21, 196 8 in Sash-Abow Creek, Oakland County, Michigan. Girard (1852), Hay (1895), and O rtmann (1931) report gravid c. d i o g e n e s from M a r c h through May. Williams and L eonard (1952) note a single re cor d of a female with young in June. A female with y o u n g was collected by the wr i t e r in Gull Creek, Kalamazoo County, Michigan, June 8, 1967. 5 4 Fi gur e 42 shows the f req uenc y of o c c u r r e n c e of form I (sexually mature) and form II (reproductively inactive) males on an a nnu al basis. A l t h o u g h the d a t a suffers from insufficient n u m b e r s of spe ci m e n s (N=15) and a lack of mo n t h l y sequential collections, form I mal es do comprise the m a j o r i t y from F eb ruary t h r o u g h mid-May. T h e s e data substan tia lly agree with M a r l o w ' s (1960) o b s e r v a t i o n s that c o p u l a t i o n oc cur s from late M a r c h through May. c. d i o g e n e s , alt ho u g h g e n e r a l l y a solitary bu rrowing species, does f r e q u e n t lakes a n d streams from M a r c h through June. o. p r o p i n q u u s and o. v i r i l i s were found in a s s o c i a ­ tion w i t h c. d i o g e n e s in 26 p e r c e n t and 20 p e r c e n t of the collections, respectively. Cr e a s e r (1931) states that the d i s t r i b u t i o n of c. d i o ­ g e n e s is not as w e l l - k n o w n in M i c h i g a n as that of some o t h e r species, however it is found thr oug h o u t the U p p e r and L owe r Peninsulas. The d i s t r i b u t i o n a l m a p (Fig. 43) and Table I indicate the c o u n t i e s in w h i c h c. d i o g e n e s w e r e collected during the c u r r e n t study. The p a u c i t y of c o u n t y records should not ind icate to the r e a d e r that c. d i o g e n e s does not occur m o r e w i d e l y in Michigan, b u t only that bu rro win g forms are d i f f i c u l t to collect and, therefore, are not generally reporte d upon w i t h the same t h o r o ugh nes s as st rea m and lake f o r m s . c. d i o g e n e s is re ported by Hobbs (1972b) to be widely- di s t r i b u t e d t h r o u g h o u t large po rti o n s of the Un ite d States and ranges from the southern si.ttes to N e w J e r s e y and w e s t 5 5 FORM I FORM I EXTRAPOLATION FORM H -------- FORM E EXTRAPOLATION (Marlow, 1960) E C N E R R U C C O T N E C R E P 100 - 90- 80- 70- 60- 50- 40- 30- 20- 10- 0 - j F r~ M A § ' / \ * , \ / / / \ \ / / I / / ; / \ / \ \ • \ i \ t -f t — r — ) 1— — r S A M J A J i ' O T" D M O N T H S F i g u r e 42. F r e n q u c n c y of o c c u r r e n c e of form I a n d form II Cti mb rt r u s diogenes. 56 T A R (6 Ei -47 1— 46 h-« -«1 I 1 l;3i OT^'S I S C A L E I N M I L E S I N D I A N A OHIO [ f i l l Fi gur e 43. D i s t r i b u t i o n of C a m b o r t m d io genes in M i c h i g a n . 57 to Wyoming. Cr o c k e r and B a r r (1968} rep ort that c. d i o ­ g e n e s is the r a r e s t Ontario crayfish, o c c u r r i n g only in scattered co lo n i e s along the n o r t h shore of Lake Erie. 5 8 Canibarus d i o g e n e s Gi r a r d Lo ca l i t y Records in M i c h i g a n BARRY: Law rence L . , Barry Twp., T.lN: R.9W: S . 27, 23 July 1964, 3 rfrf I, 1 9* Law r e n c e L . , Barry Twp., T.lN: R.9W: S. 27, 8 April 1965, 2 j I’icjure ': 6 * D ,i s t /'I bll L i o;' ! O f Oifruicriii1:; p r u p i. n q u u u i n H i or'! i cjnn . 6 8 FORM FORM 1 0 0 - 90 - 70 - 60 - 50 - — 30 - 20 - 10- E C N E R R U C C O T N E C R E P J F ■1--- t----- r---- 1 J M A M J M O N T H S A D F i g u r e 47, F r e q u e n c y o c c u r r e n c e o f form I a n d fo rm II O r o o n o o t or; p r o p i n q u u s . 69 are all s e c o n d form, the n o n - c o p u l a t o r y phase. The females spawn in the spring from A p r i l to June and their eggs a r e c arried for a p p r o x i m a t e l y two weeks. H a t c h ­ ing occurs f r o m mid-A p r i l thr o u g h mid- J u n e (Fig. 48). Eggs of 54 o v i g e r o u s females ranged from 40 to 314, w i t h a m e a n of 127 per individual. Figure 49 shows the co r r e l a t i o n b e ­ tween the n u m b e r of eggs car r i e d per individual and the length of the cephalothorax. o. p r o p i n q u u s , w i d e l y d i s t r i b u t e d t h r o u g h o u t Mich i g a n in a variety of habitats, o f t e n occurs w i t h o t h e r crayfish species. T h e r e is a general c o r r e lation of a s s o c iation w i t h the other s p e c i e s based on the hab i t a t p r e f e r e n c e and the relative a b u n d a n c e of those species. O r c o n e c t e s v i r i l i s f the second m o s t w i d e l y - d i s t r i b u t e d species in M i c h i g a n and one which has similar h a b i t a t preferences as that of o. p r o ­ p i n q u u s f w a s found to be a s s o c i a t e d w i t h o. p r o p i n q u u s in 20 percent of the collections. O r c o n e c t e s r u s t i c u s , found in fewer numbers and less w i d e ly-d istributed, o c c u r r e d with o. p r o p i n q u u s in 6 p e r c e n t of the collections. A c o r r e ­ sponding 6 p e r c e n t of a s s o c i a t i o n was also o b s e r v e d with c. r o b u s t u s . Th e frequency of a s s o ciation d e c l i n e d bet w e e n o. i m m u n i s , c, d i o g e n e s , and o. p r o p i n q u u s . T h i s may be e x ­ plained by the limited d i s t r i b u t i o n of o. i m m u n i s and by the ability of o. i m m u n i s to t ol erate lower d i s s o l v e d oxygen concentratio n s and generally m o r e adverse e n v i r o n m e n t a l c o n ­ ditions than o. p r o p i n q u u s . c. d i o g e n e s is u s u a l l y not found in open water, except d u r i n g the time of c o p u l a t i o n and O. propinquus O. virilis O. immunis O. rusticus C. diogenes C. robustus F. fodiens M . J O . N Liz: W ' / / S S COPULATION OVI GEROUS HATCHING -j o " ] .v ._ v. « . t - O Figure 48. Summarization of life cycle information of Michigan crayfish species. 7 1 L A U D I V I D N I R E P S G G E F O R E B M U N 325 305 235 265 245" 225 205 185 145“ 1 2 5 - 1 0 5 - 8 5 - 25H 2 3 2 5 27 29 33 35 CEPHALOTHORAX (mm) F ig u r e 49. The r e l a t i o n s h i p between number o f eggs c a r r i e d i n O r c o n e c t e s p r o p i n q u u s . and e e p h a lo t h o r a x s i z e 72 subsequent hatching of the young. Therefore, their associ­ ation with other species is limited. o. p r o p i n q u u s is w i d e ly d i s t r i b u t e d throughou t Ontario, Quebec, Canada; Illinois, Indiana, Michigan, N e w York, Ohio, Pennsylvania, and Wisconsin M O r t r a n L ' C t t ' r , r u s t i c u s . F i q u r e 5 1 . F r e q u e n c y o c c u r r e n c e o f f o r m I a n d f o r m I I O z —( 92 T A B L E II N U M B E R O F A T T A C H E D E G G S C A R R I E D B Y O r c o n e c t e s r u s t i c u s C e p h a l o t h o r a x L e n g t h (mm) N o . of Eggs 25.0 25. 0 27. 0 30.0 30. 0 33.0 33. 5 37. 5 40. 0 55 161 168 26 54 206 9 5 260 236 o. r u s t i c u s o c c u r r e d w i t h o. p r o p i n q u u s in 43 p e r c e n t of the c o l l e c t i o n s , and w a s a s s o c i a t e d w i t h o. v i r i l i s 16 p e r ­ c e n t of the time, and w i t h c. r o b u s t u s in 8 p e r c e n t of t h e c o l l e c t i o n s . The p e r c e n t a g e a s s o c i a t i o n w i t h o. p r o p i n q u u s , o. v i r i l i s a nd o. r o b u s t u s is p r o p o r t i o n a l to the r e l a t i v e a b u n d a n c e of those s p e c i e s in Michi g a n . o. r u s t i c u s has a l i m i t e d d i s t r i b u t i o n in O n t a r i o a n d is found in Illinois, Indiana, Kentucky, M a i n e , M a s s a c h u s e t t s , M i c h i g a n and Ohio. H o b b s (1972b) q u e s t i o n s the r e c o r d s for Iowa and N e w M e x i c o . 93 O r c o n e c t e s r u s t i c u s (Girard) Loca l i t y Rec or ds in M i c h i g a n ANTRIM: C e d a r R . , Kearney T w p . f T.30N: R.7W: S . 19, 4 J u n e 196 8 , 1 S (gravid); J o r d a n R. , Jordan Twp., T.31N: R . 6 W: S . 20, 4 June 1968, 3 ?? (1 gravid). BRANCH: C o l d w a t e r R . , U n i o n Twp., T.5S: R.7W: S . 4, 25 O c t o b e r 1967, 2 ** I, 2 ** II, 2 ??; St. J o s e p h R. , Union Twp., T.5S: R.7W: S . 4, 25 O c t o b e r 1967, 1 * 1 . CALHOUN: K a l a m a z o o R - , H o m e r Twp., T.4S: R.4W: R.4W: S . 8 , 3 Jan u a r y 1968, 1 S. C H A R L E V O I X : D e e r C r . , South A r m Twp., T.32N: R.7W: S . 25, 22 J u l y 1966, 2 ** I, 2 ** II, 5 ¥?; A d v a n c e Cr., Evangeline Twp., T.33N: R . 6 W: S . 32, 1 S e p t e m b e r 1966, 1 * II, IS; M a s o n C r ., M a r i o n Twp., T.33N: R.3W: S . 14, 31 A u g u s t 1966, 1 * 1 , 2 ??; Porter Cr., W i l s o n Twp., T.32N: R . 6 W: S . 5, 1 September 1966, 4 ** I, 5 ??; L o e b C r . , M a r i o n Twp., T.33N: R . 8 W: S . 11, 4 June 1968, 1 * II. CHEBOYGAN: P i g e o n R . , Ellis Twp., T.34N: R.2W: S . 2, 5 J u n e 1968, 1 * 1 , 2 ** II, 1 s (gravid). CLARE: T o b a c c o R., Grant Twp., T.17N: R.4W: S . 30, 16 April 196 8 , 1 * 1 , 1 ?; S. Br. T o b a c c o R . , G r a n t Twp., T.17N: R.4W: S . 33, 16 April 1968, 1 * I, 5 S?; M c C u r a n Cr., Grant Twp., T.17N: R.43W: S . 13, 16 A p r i l 1968, 1 * I, 2 ** II, 1 ?. CRAWFORD: E. B r . Au Sable R . , Lovells Twp., T.28N: R.2W: S . 30, 6 June 1968, 12 ** II, 15 S?. 94 EMMET: M a p l e R . , M a p l e R i v e r Twp., T.36N: R.4W: S . 24, 23 J uly 1966, 1 ?; Bear R . , Bear Cr. Twp., T.34N: R.5W: S . 16, 1 September 1966, 3 f> F i g u r e b 2 . D.isi-r o n o r O r c o J i t ’f-'iLf1: v iri.'lis .in M i c h i g a n . 9 8 under laborat ory conditions for up to 96 hours. M ating o c c u r s from m id-July t h r o u g h m i d - S e p t e m b e r as indicated by the pr ese nce of sexually a ctive (form I) m ale s only during that pe rio d (Fig. 53). T hes e data concur w i t h Momot (196 7) w h o obs er v e d c opu lat ion of o. v i r i l i s pairs from m i d - A u g u s t th rou gh September in W e s t Lost Lake, Ots e g o County, Michigan. Females with eggs w e r e obs erved from M a y through early June (Fig. 48). The e x t r u d e d eggs from six o. v i r i l i s f e males w e r e removed and counted. The n umb er of eggs ranged from 61 to 528 per female as indicated in Table III. TABLE III N U M B E R OF A T T A C H E D EGGS CAR RIE D BY O r c o n e c t e s v i r i l i s C e p h a l o t h o r a x length (mm) No. of eggs 2 1 . 0 27.5 30.0 32.5 35. 0 38.5 61 232 281 251 357 528 Momot (1967) reported that the a v e r a g e number of o v a r i a n eggs counted from o. v i r i l i s females f r o m West Lost Lake, M i ch i g a n was 162 and the mean number of eggs att ached to the abdomen of females in 1963 w a s 94. The m e a n number of 99 F O R M JT E C N E R R U C C O T N E C R E P 100 - 90 80 70 60 H 50 - 40 30- 20 - 1 0 - 0 J F t \ T----- r A i S O r---- r D N “1 f I M A M T J J M O N T H S Figure; 'j3 - l'rLrju:..ncy occurrence* o f f o r m .1 a nd f o r m If Ore.-on r e t i-r, v i r j 1 i ;; . 1 0 0 a ttached eggs p e r female c a l c u l a t e d du rin g the present study is 285* The n u m b e r of o v i g e r o u s females u t i l i z e d to o b t a i n this m e a n is m u c h too small to be s t a t i s t i c a l l y significant. However, the o v i g e r o u s females w e r e c o l l e c t e d from several areas in M i c h i g a n and the r e l a t i v e l y high num ber of eggs per female as c o m p a r e d to those fro m West L o s t Lake m ay indicate that the o. v i r i l i s po pul ati on in West L o s t Lake m a y have a lower r e p r o d u c t i v e capacity w h e n compared to the M i c h i g a n p o p u l a t i o n as a whole. o. v i r i l i s , as indicative of its abi lit y to inhabit a wide range of environments, o c c u r r e d w i t h all other c r a y f i s h species ex cep t f. f o d i e n s , o. v i r i l i s ha s been repo r t e d in a d i s c o n t i n u o u s d i s t r i ­ b u t i o n across N o r t h America f r o m Mai ne to California, and n o r t h w a r d from the Mi ssi ssi ppi v a l l e y to Ontario, Manitoba, and Saskatchewan, C a n a d a (Aiken, 1968). Hobbs (1972b) records o. virilis from Alberta, Manitoba, Ontario, Quebec, Saskatchwean, Canada; Arizona, Arkansas, California, C o l o ­ rado, Illinois, Indiana, Iowa, Maine, Maryland, M ass achusetts, Michigan, Minnesota, Missouri, Montana, Nebraska, N e w H a m p ­ shire, N e w Mexico, N e w York, N o r t h Dakota, Ohio, Oklahoma, South Dakota, Tennessee, Wisconsin, and Wyoming. 1 0 1 O r c o n e c t e s v i r i l i s (Hagen) Lo cality Records in Mic hig an ALGER: Scotts Cr., M athias Twp., T.44N: R.21W: S . 19, 24 M a y 1968, 1 9. ALLEGAN: Swan C r ., Val ley Twp., T.2N: R.14W: S . 17, 22 July 1964; K a l a m a z o o R . , M a n l i u s Twp., T.3N: R.15W: S . 17, 28 June 1965, 2 rftf II; K a l a m a z o o R . , T r o w b r i d g e Dam, Ots ego Twp., T.2N: R.12W: S . 6 , 18 September 1965, 4 rfrf I, 2 n ( 7 99; K a l a m a z o o R . , A l l e g a n L . , A l l e g a n Twp., 18 September 1968, 2 tfrf I, 1 ? ; Pine C r . , Otsego Twp., T.lN: R.12W: S . 32, I ^ I . ALPENA: Lower S. Br. T hunder Bay R . , Wi lso n Twp., T.30N: R.7E: S . 22, 6 June 1968, 1 9 (gravid). ANTRIM: Intermed iat e R . , Echo Twp., T.31N: R-7W: S . 27, 22 July 1966, 1 9; Ce dar R . , Kearney Twp., T.30N: R.7W: S . 19, 4 June 1968, 1 o o o o o o 6 0 i -H Ti o c 110 T A B L E IV N U M B E R O F A TT A C H E D E G G S CAR R I E D BY O r c o n e c t e s i m m u n i s Ce ph a l o t h o r a x Len gth (mm)______________ No. of Eggs 26.5 27.0 29.0 29.0 29.5 29.5 30.5 31.0 31.0 111 175 133 199 122 190 245 151 201 o. i m m u n i s is not an a b u n d a n t or w i d e l y d i s t rib ute d species in Michigan. It w a s abundant, however, in large numbers at the Wolf Lake S tate Fish Hatchery, V a n Buren County, M i c h i g a n and less so at the Sal ine Fish Hatchery ponds at Saline, W a s h t e n a w County, Michigan. Th e d i s t r i b u t i o n ma p (Fig. 55) a nd c o u n t y checklist (Table I) for o. i m m u n i s shows that this species is c o n f i n e d to the so ut h e r n portion of the Lower Peninsula. The m a p pr obably does not re flect the actual e x t e n t of d i s t r i b u t i o n of o. i m m u n i s in M ic h i g a n as the p o t e n t i a l habitats of thi s species have not b e e n a d e q u a t e l y investigated. o. i m m u n i s w a s co lle cte d in a s s o c i a t i o n w i t h o. p r o p i n ­ q u u s , O. v i r i l i S r C . d i o g e n e s , and F. f o d i e n s . Ill { — ,,... -• wz'1'.-- [ ^ g 7 &6 E5 «i Op 1 41 47 - 1 1 r . «J •a 50 ;v*$! t^erifKL 7 _ 4J 9D I N D I A N A 15 «i L’daKSi^SBBSSi O H I O ■ 4 13 F i g u r e 5 5 O r c o t i o c t n a i O O > S o i I i i ■ to r\j rn 1 1 6 to cn I \ COo CO CO JO W - CO tO_ o w _ 'V 117 S u b s e q u e n t to exposure at a given co nst a n t test t e m p e r ­ ature for 24 hours, the a nimals were pl ace d in a r e c o v e r y tank for five days at am bien t tempe rat ure s b etw e e n 2 2 and 25 C. The pe rce nta ge m o r t a l i t y for o. p r o p i n q u u s held in the r e c o v e r y tank d uri ng this in vest iga tio n was 9.5, as contrasted to the m o r t a l i t y for all species, held in r e ­ covery, of 31.5 percent. One g r o u p of o. v i r i l i s (N=26) was a c c l i m a t e d at 32 C and s u b j e c t e d to a r ang e of test tempera tur es from 35 C to 36 C. F i g u r e 57 shows a 24-hour TLm v a l u e of 3 5.7 C. The mortali ty rate of those specimens held in the rec ov e r y tank subsequent to the thermal test was 27 percent. o. r u s t i c u s wa s also tested in the same m ann er as the above species. o. r u s t i c u s fN=50) were a c c l i m a t e d at 33 C and s u b j e c t e d to a range of temper atu res b et w e e n 35 C and 37 C in a series of four r e p l i c a t e tests. Figure 58 i n d i ­ cates the 24-hour TLm of o. r u s t i c u s ac c l i m a t e d at 33 C for a m i n i m u m of 24 hours is 3 6.2 C. Spoor (1955) indicated in his paper on the h e a t - t o l e r a n c e of o. r u s t i c u s that specimens acclimated be t w e e n 22 C and 26 C had a 24-hour T L m of 3 5.6 C. The m o r t a l i t y rate of o. r u s t i c u s held in the recove ry tank was 36 percent. The f o u r t h species, o . i m m u n i s , was tested in a similar manner as the three p r e c e e d i n g species. Two a c c l i m a t i o n temperatures w e r e u til i z e d d u r i n g these tests. A g r o u p of O. i m m u n i s (N=24) were o b t a i n e d d uri ng the w i n t e r a nd were, therefore, e n v i r o n m e n t a l l y c o n d i ti one d to a low temperature. 118 100 A C C L IM A T IO N T FM PER ATU R E 80 --------32 C 60 - 50 -r ^ ^ m,m e P M — 4 0 3 5 .7 0MW 0 W 0 Y T I L A T R O M T N E C R E P AO- 30 20 “ 10 - - - - 30 31 32 33 34 35 36 I 3 7 TEMPERATURE C Ficjure 57, T h e m e d i a n t o l e r a n c e level (Tim) o f O r c o n c c t e s v i r i l i s a c c l i m a t e d at 32 C. 119 A C C L I M A T I O N T E M P E R A T U R E 33 C 3 6 . 2 100 90- 8 0 - 7 0 ~ 60- 50 40- 20 - Y T I L A T R O M T N E C R E P 32 33 3 4 3 5 36 3 7 TEMPERATURE C F i y u r e 58. The m e d i a n t o l e r a n c e level (Tim) of O r c o n p c t c s r u s t i c us a c c l i m a t e d at 33 C. 1 2 0 The w i n t e r - c o l l e c t e d species were a c c l i m a t e d in the lab or­ atory at 7 C. A second gro up of o. I mmunis (N=150) c o l l e c t ­ ed dur ing A u g u s t and early September w e r e ac cli mat ed at 3 0 C. The specimens a c c l i m a t e d at 7 C were e x p o s e d to a range of temperatures from 30 C to 35 C in a series of three replicate tests. The sec ond g r o u p of o, immunis w h i c h were acclim ate d at 30 C w e r e e xpo sed to a tem per atu re r ang e of 35 C - 37 C in a series of nine r e p l i c a t e tests. Fig ure 59 de mon str ate s that the 7 C a c c l i m a t e d specimens had a 24-hour TLm of 34.3 C. Those a c c l i m a t e d at 30 C were m o r e heat t olerant and had a 24-hour T L m of 36.2 C. The one m o s t ob vious m a n i f e s t a t i o n of stress o bse r v e d in all species d u r i n g heat tolerance e x p e r i m e n t s was turgidity. The first a bd om i n a l s egment separated from the car apace and the exp o s e d tissue was bloated. The c aus e was pr ob a b l y the inability of the o r g a n i s m to o s m o r e g u l a t e at a normal rate and m a i n t a i n their h y p e r o s m a t i c c o n c e n t r a t i o n relative to the ambient m e d i u m under inc ipi ent lethal te mpe rat ure l e v e l s . Fry (1947) d i s c u s s e d abn ormal o smotic pr es s u r e as a c o n s e ­ quence of an e n v i r o n m e n t a l factor w h i c h places an undue b u r ­ den (loading stress) o n an organism, n e c e s s i t a t i n g the rapid or steady r elease of energy. No re lat i o n b et w e e n size, sex and thermal toler anc e could be discerned. All specimens were e i t h e r sub-adults o r adults and ran ged in c e p h a l o t h o r a x length b e t w e e n 10 and 49.5 mm, with an a v e r a g e c e p h a l o t h o r a x length of 27.9 mm. The stage of the m o l t cycle was not determined, h o w e v e r several crayfish 1 2 1 -ACCLI M AT ION TEM PERATURE ------------- 7 C 30 C 34.3 36.2 100 y t i l a t r o m t n e c r e p 40- 30- 20 - 10 - 30 31 32 33 34 3 5 TEM PE RATURE C 3 6 37 F i g u r e 59. Tiie itiociici:i t o l e r a n c e level (Tim) of Orconoct'.es x e;.i u r. i & acc l i m a t e d at 7 C and 30 C. 1 2 2 m o l t e d s u c c es sfu lly d u r i n g a c c l i m a t i o n during the course of the tests and whi le b e i n g retained in the rec ov e r y tank. The Ef fec t of D e c r e a s i n g Ox yge n C o n c e n t r a t i o n Rel at i v e to M o r t a l i t y . A series of tests w e r e run u t i l i z i n g three species of O r c o n e c t e s ; O. p r o p i n q u u s , O. v i r i l i s and O. i m m u n i s . Field o b s e rv ati ons of these species in dicate that o. p r o p i n q u u s pr efers h i g h l y - o x y g e n a t e d water such as that found in trout streams, m o d e r a t e - t o - s w i f t - f l o w i n g riv ers and the shores of lakes. o. v i r i l i s , w h i l e often found in similar habitats, p r ed o m i n a t e l y inhabits rivers w i t h m o d e r a t e to slow currents, impound men ts and the d e e p e r portions of lakes. o. i m m u n i s is m o s t oft en c o l l ect ed in ditches, slugg ish creeks, or p o n d s . Th e tests were d e s i g n e d to e v a l u a t e the c o n c e n t r a t i o n of d i s s o l v e d o x y g e n re qu i r e d to sustain life for e a c h species. o. p r o p i n q u u s was the m o s t sensitive species t est ed in terms of its a bil ity to s urv ive at low c oncentrations. No d e ath s occ u r r e d above 2.6 mg C^/l? h o w e v e r at 2.5 mg O 2 /I m o r t a l i t y w as obs er v e d in o . p r o p i n q u u s . A rather u nif orm m o r t a l i t y curve was o b t a i n e d for this species w i t h death oc cur rin g from 2.5 to 0.1 mg 0 2/l w i t h the gr ea t e s t p e r c e n ­ tage m o r t a l i t y o c c u rri ng between 0.6 to 1.5 m g 0 2/l (Fig. 60A) . o. v i r i l i s d e m o n s t r a t e d a higher tolerance for d e c r e a s e d 0 2 c o n c e n t r a t i o n than o. p r o p i n q u u s . Figure 60B shows that 123 A B 100 80H 60“ 4 Or E0- 60 40 20*v O' O Oz U J Z3 o IL1 or z IX J u O' 1 C U - Q 5 0.5-I.0 l.l-is 1.6-20 21-25 0 2 C O N C E N T R A T IO N F i g u r e GO. Ox y ge n t o l e r a n c e of A, O r a n n o c t c s p r o p i n q u u s B, O r r o n e t t e s v i r i l i s ; C, O r o o n o c t o s iir.munis. 124 no m o r t a l i t i e s o c c u r r e d until the O c o n c e n t r a t i o n dec re a s e d to 1.5 m g O 2 /I. Only 8.7 p e r c e n t of the d e a t h s occurred b e ­ tween 0.6 and 1.5 mg 0 2 / 1 * A p rec ipi tou s i ncrease in m o r ­ tality took place as the c onc ent rat ion of o x y g e n decreas ed to 0.5 m g C^/l, w i t h a peak m o r t a l i t y d i s c e r n i b l e at a p p r o x ­ imately 0.3 mg O 2/I. A significant number (39 percent) of o. v i r i l i s died at an oxygen co nce ntr ati on w h i c h was v i r t u ­ ally u n d e c t a b l e and w a s recorded as <0 . 1 mg 0 ^ / 1 . o. immunis shows a similar p at t e r n to that of o. v i r i l i s (Fig. 6 0 C ) . H o w e v e r , a slightly greater pe r c e n t a g e of m o r ­ tality oc curred in the higher o x y g e n range b e t w e e n 0 . 6 and 1.5 mg 0^/1. 36 p e r c e n t of the deaths o c c u r r e d at <0.1 mg ° 2/i- O x y g e n C o n s u m p t i o n . The o x y g e n c o n s u mpt ion rates of o. p r o p i n q u u s , O. r u s t i c u s , O. v i r i l i s , and C. r o b u s t u s were de t e r m i n e d in the m o d i f i e d Mo unt d egasser o v e r a temperature range of 10 C to 3 5 C. Tem per atu re greatly aff e c t e d the o x yge n c o n s u m p t i o n of all species, with a no tea b l e increase in o x y g e n c o n s u mp tio n w i t h an increase in temperature. F i g u r e 61 shows the oxygen consumption of o . p r o p i n q u u s and c. r o b u s t u s , s pec ies ge ner all y found in swift -fl owi ng streams, or h i g h -e ner gy habitats. The oxy gen consu mpt ion of o . v i r i l i s and o. r u s t i c u s , species which t y p i c a l l y inhabit ponds, lakes, and slow-m ovi ng streams, are a l s o indicated in Figure 61. T h e two species w h i c h inhabit fast-flowing streams, o. p r o p i n q u u s and c. r o b u s t u s , e x hibit a s i m i l a r p att ern of 125 3.C H 2 .8 - O. p r o p i n q u u s C, r o b u s t us 2.6 - 0. r u s t i c u s 2.4 H 2.2 2.0 - l.C E 1.6 t>o 1.4 CN O bo E 1.2 l.o 0.8 0-6 0-4 0.2 - 0 - O . v i r i l i s / ~T 10 T 15 r 20 r " 2 5 r 3 0 1 3 5 T E M P E R A T U R E C F i g u r e 61* K a te o f oxygen c on s u m p tio n o f O r c o n o c t ; p r o p i n q u u s , O r c o n o c t o s virilis, O r c o n a c t o s rusticus, a n d C a m b a run robustus. 126 oxygen consumption. Their increase in oxygen co n s u m p t i o n correlates w i t h the rise in tempera tur e up to 20 C. Ox y g e n consumpt ion d e c r e a s e s s ign ifi can tly in both sp eci es as the temperatures rise a b o v e 20 C. It is d i f f i c u l t to state w i t h confidence w h y o x y g e n c ons umpt ion pl ateaus at 20 C and then declines as t e m p e r a t u r e s are increased. One p o s s i b i l i t y is that these species e n t e r into a stress con di t i o n ca use d by the syn e r g i s t i c e f f e c t of r educed ox yge n c o n c e n t r a t i o n and increased temperature. o. r u s t i c u s and o. v i r i l i s , species w h i c h o fte n inhabitat slow-moving streams and impoundments, show a d i s t i n c t i n ­ crease in ox yge n c o n s u mpt ion w i t h rising temperatures. T here is no i ndi cat ion of stress at any temperature up to 35 C relative to a r e d u c t i o n in o xyg en consumption. Diurnal O x y g e n C o n s u m p t i o n R h y t h m of O r c o n e c t e s r u s t i c u s . The 24-hour o x y g e n c o n s um pti on rate of o. r u s t i c u s was determined, u t i l i z i n g the m o d i f i e d Mo unt degasser. Figure 62 shows that the m a x i m u m rate of o x y g e n c o n s u m p t i o n occurs between 2000 hours and 0400 hours. These times coincide with d ark n e s s d u r i n g the summer m o n t h s in Michigan. O b s e r v a t i o n s m a d e during field collections on o. r u s t i c u s and other species sup p o r t the h i g h e r rate of a c t i v i t y as e v i ­ denced b y the inc re a s e d oxygen consumption, d u r i n g the pe r i o d of darkness. Typically, o. r u s t i c u s is active du rin g the night in its na tur al habitat. It is often seen in large numbers c rawling a b o u t the bo tto m searching for food and in 127 LIGHT PERIOD LIGHT PERIOD 3.6 r h 3.2 / Tl , 9 y / 2 ° 3 m 2.8 2.4 0.8 0.4 1200 1600 2000 i— p~-f 2400 T l M E 0400 0800 1200 F i g u r e 6 2 TV o n t y - f o u r h our rh y th m o f oxygen c o n s u m p tio n O f O r c o n a etcr, r u s t i c u s . 128 copulation. D u r i n g the d a y l i g h t hours o. rusticus nor mal ly lies co ncealed and remains quiescent. SU MMA RY Field Study The d i s t r i b u t i o n of the c r a y f i s h of M i c h i g a n wa s in v e s ­ tigated to d e t e r m i n e the n u m b e r of species extant, their ha bitat preference, species i n t e r a c t i o n and s a l i e n t life history information, in cluding selected p h y s i o l o g i c a l a s p e c t s . Two ear lie r studies of M i c h i g a n crayfish w e r e c ond ucted by Pe ars e (1910) and Cr eas er (1931). Both w r i t e r s r eco rde d eight species in Michigan, one of which, P r o c a m b a i u s ( O r t m a n n i c u s ) a c u t u s a c u t u s (Hobbs, 1972a) ( = P r o c a m b a r u s b l a n d i n g i i a c u t u s ) was s u b s t a n t i a t e d by one l i v i n g specimen, ob ta i n e d by Creaser, from B e r r i e n County in e x t r e m e southern Michigan. S e v e n species ar e now r e c o r d e d for Michigan, no c o l l e c ­ tions of P rocam. ba ru s a. a c u t u s w e r e obtained d u r i n g this study. A con ce r t e d effort w a s m ade to co l l e c t this species in M i c h i g a n including visits to the location c i t e d by Pe a r s e for his r eco rd of P r o c a m b a r u s a. a c u t u s . F a l 1 i c a m b a r u s f o d i e n s and C a m b a r u s ( La cu n ic a n t b a r u s ) d i o g e n e s d i o g e n e s remain the l e a s t understood species in M i c h i g a n in terms of d i s t r ibu tio n. Their s e c r e t i v e habits place gr e a t difficu lti es on the ability to o b t a i n adequate collect ion s on a state-wide basis. The locality records and 129 130 d i str ib uti ona l maps h e r e i n included in dicate only a general pattern of their distribution. However, the data o b t a i n e d and the d i s t r i b u t i o n a l p at terns d e s c r i b e d for f1. f o d i e n s and c. d i o g e n e s are similar to the d i s t r i b u t i o n a l pat t e r n s r e ­ ported b y Cr eas er (1931). C . r o b u s t u s is a m o n t a n e species in that its pro bab le center of d i s t r i b u t i o n is the A p p l a c h i a n m o u n t a i n s (Ortmann, 1905). O r t m a n n (1905) regarded c. r o b u s t u s as a p os t - g l a c i a l form w h i c h has m i g r a t e d w est w a r d from the St. La wre n c e Basin. c. r o b u s t u s shows a d e c i d e d pr efe ren ce for m o u n t a i n - l i k e streams or brooks, a habitat type w h i c h is typ ified by the Rifle R i v e r and its tributaries in the eastern lower p e n i n ­ sula of Michigan. C r e a s e r (1931) reports that c. r o b u s t u s is found in gre at e s t a bun dan ce at the h e a d w a t e r s of the various river systems, in accordance w i t h its h a b i t a t p re­ ference. The d i s t r i b u t i o n of c. r o b u s t u s , as d e l i n e a t e d in this study, closely a p p r o x ima tes that report ed by C r e a s e r (1931). c. r o b u s t u s has not been success ful in pen etr ati ng further w e s t or n o r t h of the range first m a p p e d by Cr ea s e r (1931). c. r o b u s t u s has failed to e s t a b l i s h itself in the Lake M i c h i g a n d rai n a g e system, as was also noted by C rea ser in 1931. The rivers w h i c h flow into Lake M i c h i g a n are typ i­ fied by low gradient, s and y- b o t t o m e d streams which are unlike the rocky-bottomed, swift, cool, streams us ually freque nte d by c. r o b u s t u s . o. p r o p i n q u u s is found throughout M i c h i g a n in all the major r i v e r systems and has a b r o a d range of h abitat 131 preference. o. pr o p i n q u u s may be found in the swift waters of a rocky riffle zone, in the back wa ter s of a silt-laden meander, or along the r u b b l e-s trew n shores of a clear lake. O. p r o p i n q u u s is d i s t r i b u t e d a l m o s t h o m o g e n e o u s l y throughout Mi c h i g a n and is the m o s t ubiquitous species e n c o u n t e r e d in the state. Th e major m a t i n g period of o. p r o p i n q u u s , b a s e d on the pr e d o m ina nce of the sexually a ctive form I male, is from July through September. Spawning oc cur s from A p r i l to June and the eggs hatch f r o m mid-April t hro ugh mid-June. o. p r o p i n q u u s is found in v a r y i n g degrees of a s s o c iat ion with al l other species in M ich iga n except f. f o d i e n s . o . r u s t i c u s has rad iated out of the s o u t h - c e n t r a l United States and has e x t e n d e d its range to the north and east. It is c o m m o n l y found in southw est ern O h i o in streams of the Ohio River dra inage s y s t e m (Rhoades, 1962). It is not known how 0. r u s t i c u s has m i g r a t e d into the St. J ose ph River. Creaser (1931) suggests a m o v e m e n t of this species from streams of the O h i o River into streams of the M a u m e e River, whi ch e x ­ tends into southern M i c h i g a n d uring flood periods. The ac cid ent al i n t r o d u c t i o n of o. r u s t i c u s by fi she rme n from Ohio and Indiana m u s t also be c o n s i d e r e d as a v i a b l e m e c h a n ­ ism for the a p p e a r a n c e of 0. r u s t i c u s in lower Michigan. The area immediately e a s t of the S turgis Dam on the St. Jo sep h River is a p o p u l a r bass fi shing spot fa vored by anglers from O h i o and Indiana. Langlois (1936) remarks that o. r u s ­ t i c u s is widely use d by anglers as b a i t for bass. Cr ocker 132 and Barr (1968) re po rt that o. r u s t i c u s is an introduced species in Ontario. A p p a r e n t l y o. r u s t i c u s is a r ela tiv ely r e c e n t addition to the cr ay f i s h as sem bla ge of Michigan. It is difficult to determine h o w o. r u s t i c u s has become so successful in such a short span of time since C r e a se r*s 1931 study. It is p r e ­ dictable that o . rusticus, if c o m p e t i v e l y successful with other c ray f i s h species, w o u l d slowly r ad i a t e out into lower Mi ch i g a n o v e r a long p eri od of time. T u r n e r (1926) states that c. ( = o r c o n e c t e s ) r u s t i c u s re pre sen ts a n e w and v i g o r ­ ous wave of the subgenus F a x o n i u s w h ich is pu sh i n g the old er me mbe rs of the propinq uus g rou p to the eastward. Turner comments further that C. ( = O r c o n e c t e s ) p r o p i n q u u s s a n b o r n i m a y not be able to compete success ful ly w i t h o. r u s t i c u s and, therefore, des ti n e d to completely disappear. Rhoades (1962) s ubs tan tia tes the tenacit y of o . r u s t i c u s in his d i s ­ c u ssion of the a s s o c i a t i o n of o. s l o a n i and O. r u s t i c u s and the e n v i r o n m e n t a l factors unfavo rab le to o . s l o a n i by r e ­ ma r k i n g that O. r u s t i c u s p e rs i s t s where O. s l o a n i is sup­ pressed. The fact that o. r u s t i c u s is found c u r r e n t l y throughout Mi chi g a n and is di s t r i b u t e d disjunctively, tends to pr ecl ude the postulate that it is a r ela tiv ely new species whi ch slowly m i g r a t e d into M i c h i g a n from areas to the south. The n o r t h e r n popula tio ns of o. rusticus may be a relict fauna separated from the s out h e r n p o p u l at ion s by a physical or biotic change in the e n v i r o n m e n t and o v e r l o o k e d in previous studies. 133 The so uthern p o p u l a t i o n w h i c h has r e c e n t l y ap pe a r e d in lower M i c h i g a n is pr ob a b l y the res ult of na tural immigration, reinforced by oc cas ion al i n t r o d ucti on by fishermen from adjacent states. o . v i r i l i s is not res tri cte d to a d i s c r e t e ha bitat type, but o c c u p i e s a wide range of aqu a t i c e n v i r onm ent s from small ponds a nd the de pth s of Lake Michigan, to the riffle areas of sw if t - f l o w i n g streams and the b ack wat ers of dams. It is widely d i s t r i b u t e d thr oug hou t M i c h i g a n and is the s e c o n d most a b u n d a n t species after o. p r o p i n q u u s . The m a j o r m a t i n g period of o. v i r i l i s oc cur s from m id- July th rough mid-September. The m e a n nu mbe r of ext rud ed eggs pe r female was 285, a s i g n i f i c a n t l y larger n umb er than Momot (196 7) found for O. v i r i l i s from W e s t Lost Lake, Michigan. M o m o t and Gall (1971) r e p o r t e d on a p o p u l a t i o n of blu e o. v i r i l i s from No rth Twin and South Twin Lakes, Otsego County, Michigan. On e h undred and e lev en blue color phase o. v i r i l i s were c o l l e c t e d in these small m a r l lakes in 1968 and 1969. Mo mo t a nd Gall e s t i m a t e d that the blue v a r i a n t o. v i r i l i s c o mpr ise d 0 . 2 to 0 . 8 per cen t of the total p o p u ­ lation in both lakes. During the course of the cu rre nt study o n l y one blue phase o. v i r i l i s was col lec ted from the entire state. o. i m m u n i s is c onf i n e d to small m u d - b o t t o m e d ponds and lakes and s l o w l y- mov in g streams. o. i m m u n i s is not w i d e l y 134 d i s t r i b u t e d t h r o u g h o u t Michigan, nor is it p a r t i c u l a r l y a b un d a n t exc ept at the Wolf Lake State Hatchery, V a n Buren County, Michigan. M a t i n g occurs be t w e e n early A p r i l and m i d - M a y and b e ­ tween late June and early November. The females lay their eggs in the fall and carry them until the following spring. o. i m m u n i s may be more w i d e l y d i s t r i b u t e d than indicated in this study. The difficu lti es en c o u n t e r e d in sampling ponds and lakes, in particular, w h e r e o. i m m u n i s g e ner all y occur, are r e f l e c t e d in the l imited catch rec ords for o. i m m u n i s in Michigan. L a b o r a t o r y Met hod s Th e p h y s i o l o g i c a l requir eme nts of a species g reatly in­ fluences its b e h a v i o r and e c o l o g i c a l distribution. Wiens and A r m i t a g e (1961} state that " t h e d e v e l o p m e n t o f a v a r i e t y o f p h y s i o l o g i c a l m e c h a n i s m s h a s a l l o w e d c l o s e l y r e l a t e d a n i m a l s to d i s t r i b u t e t h e m s e l v e s i n t o h a b i t a t s that a r e d i f f e r e n t in c e r t a i n q u a l i t i e s . A l t h o u g h m o r p h o l o g i c a l di f f e r e n c e s a r e p r e s e n t , it is o f t e n p h y s i o l o g i c a l d i f f e r ­ e n t i a t i o n w h i c h h a s a l l o w e d r a d i a t i o n a n d e v e n t u a l s p e c i - a t i o n s to o c c u r in m a n y a n i m a l s " . A limited comparat ive study of heat tolerance and oxygen co n s u m p t i o n on selected species is pre se n t e d in this paper in an a t t e m p t to c ont rib ute to a f urther u n d e r s t a n d i n g of cr ay f i s h distribution. o. p r o p i n q u u s is the singularly most imp or t a n t species 135 in Mi chi g a n in terms of d i s t r i b u t i o n and rel a t i v e n u m b e r s . The m e d i a n lethal tolerance of this species exceeds 35 C w h e n a ccl im a t e d at 32 C. The test te mpe rat ure s exceed the average m a x i m a r eco r d e d for m o s t streams in M i c h i g a n (Mich. W a t e r Res. Comm., 1963; U.S. G e o l . Survey, 1968). The three o t h e r species, o. v i r i l i s r o. r u s t i c u s , and O. immunis d i s p l a y e d similar t ole ran ces be t w e e n 35.7 C and 36.2 C. S u bse que nt to each test the sp eci men s were held in a re cov e r y tank at a m b i e n t t emperatures b e t w e e n 22 and 25 C. o. p r o p i n q u u s in cu r r e d only 9.5 p e r c e n t mortality, while the p e r c e n t m o r t a l i t y for o. v i r i l i s , o. r u s t i c u s and 0. i m m u n i s ra nge d from 27 p e r c e n t to 53.5 percent. The results of the thermal tests indicate that the four species of O r c o n e c t e s found in M i c h i g a n are relatively t o l ­ e r a n t of high t e m p e rat ure regimes. o. i m m u n i s has the ab il i t y to ad jus t to high temper atu res (30 C - 35 C) s ub­ se quent to a low a c c l i ma tio n temper atu re (7 C ) . It must be stated, however, that o. i m m u n i s h a d the h igh e s t m ort a l i t y d u r i n g recovery, un der these conditions. An o t h e r factor w h i c h m u s t be considered, w h e n i n t e r p r e t ­ ing the results of t hermal tests, is the life-cycle stage of the individuals tested. All spe cim ens tested we re adults or sub-adults, b a s e d on size or e vid e n c e of sexual maturity. N o p r e - j u v e n i l e s were utilized in these tests. Therefore, if one were to e x t r a p o l a t e these data for the p urp ose of d e m o n s t r a t i n g a h i g h d egr ee of to lerance to p owe r plant 136 ef flu ent s all stages of the species life cycle m u s t be considered. It is interesting to note that d u r i n g the thermal t o l e r ­ ance tests, the c omm e n s a l b r a n c h i o b d e l l i d s , so c los ely a s s o c i a t e d w i t h crayfish, were not n e a r l y as tol e r a n t to high t e m p e ra tur es as their hosts. The b r a n c h i o b d e l l i d worms r e l i n q u i s h e d their g r a s p on the c r a y f i s h and d r o p p e d to the bottom, w h e r e they at first crept a b o u t and then u l t i m a t e l y died in large numbers. The o x y g e n toleran ce tests p e r f o r m e d on o. p r o p i n q u u s , o. v i r i l i s , and o. i m m u n i s d e m o n stra te that 0 . p r o p i n q u u s is the least toler ant to low d iss olv ed o x y g e n levels. o . v i r i ­ l i s and o. i m m u n i s are m o r e tol erant of low oxy gen levels, w h i c h is co nsi ste nt w i t h their e c o l o g i c a l distribution. The o x y g e n c o n s u m p t i o n rates of four species, o. p r o p i n ­ q u u s , O. v i r i l i s , o. r u s t i c u s , and C. r o b u s t u s were d e t e r ­ m i n e d u t i l i z i n g the m o d i f i e d Mount degasser. o. p r o p i n q u u s and c. r o b u s t u s are o f t e n found in sim i l a r ha bitats w her e the w a t e r s are s w i f t - f l o w i n g , or in the wave- swept, r u b b l e - s t r e w n areas of lakes. o. v i r i l i s an d o. r u s ­ t i c u s are typical inhab ita nts of ba ck waters, ponds, and slow-mov ing s trearns. O. p r o p i n q u u s and C. r o b u s t u s , the two species m o s t oft en found in h igh ly o x y g e n a t e d w at e r s sh owe d similar o x y g e n c o n ­ su mption rates. T h e i r o x y g e n c o n s u mp tio n showed a m a r k e d i n ­ crease w i t h temperat ure s to 20 C and a de cr e a s e thereafter. These sp eci es are a p p a r e n t l y adjustors, in that their 137 ox y g e n c o n s u m p t i o n varies, m o r e or less p r o p o r t i o n a t e l y w i t h the o xygen t e n s i o n of the surroun din gs (Van Weel, Randall, and Takata, 1954). o. v i r i l i s and o. r u s t i c u s , two species found in less o x y g e n a t e d w a t e r s showed an increase in o x y g e n con sum pti on w i t h an increase in temperature. W ien s and A r m i t a g e (1961) re p o r t that o. i m m u n i s , wh i c h has similar h a b i t a t p r e f e r ­ ences to o. v i r i l i s and 0 . r u s t i c u s , respond to te mperature increases wi th a u n i f o r m incre ase of oxy gen c o n s u m p t i o n up to 36 C. These spe c i e s are p r o b a b l y partial regula tor s u n d e r mod era te e x p e r i m e n t a l stresses. C o n s i d e r i n g b o t h groups, th ere is a real d i f f e r e n c e in t o l e r a t i o n to d i s s o l v e d ox yge n levels and i n c r e a s i n g t e m p e r ­ atures. o. p r o p i n q u u s and c. r o b u s t u s are less tolerant to low d i s s o l v e d o x y g e n levels, p a r t i c u l a r l y as te mperatures increase wh ich m a y be important factors in their absence f r om static waters. o. v i r i l i s and o. r u s t i c u s are more t o l e r a n t of the s ame conditions w h i c h pro bab ly a ccount for their ability to i n h a b i t slow b a c k wa t e r s and ponds. T h e oxygen c o n s u m p t i o n rate of o. r u s t i c u s over a 24-hour p e r i o d c o r r el ate d cl osely w ith o b s e r v a t i o n s of their a c t i v ­ ity p a t t e r n s in t h e field. S c h a l l e c k (1942) reports that 0. v i r i l i s we re m o r e active at n i g h t than d u r i n g the day. E d w a r d s (1950) s h o w e d that the o x y g e n c o n s u m p t i o n of the fi ddler crabs U c a p u g i l a t o r , y. p u g n a x , and v . m ina x was n o r m a l l y higher at night than d u r i n g the daytime. o. r u s ­ t i c u s , similarly, s h o w e d a h e i g h t e n e d activity pat t e r n 138 du rin g the nig ht as evi den ced by its oxygen consumption. o. virilis and, to a lesser extent, o. p r o p i n q u u s have also been o bse r v e d m o v i n g about st rea m bottoms at ni ght wit h gr eat er i nte nsi ty than d uri ng the day. LI T E R A T U R E CITED LI TER ATU RE C I T E D Aiken, D.E. 1967- T h e crayfish O r c o n e c t e s v i r i l i s : survival in a r e g i o n w i t h s evere winter conditions. Cand. J. Zool. 46:207-211. Ball, R.C. 194 8 . R e l a t i o n s h i p b e t w e e n a v a i l a b l e fish food, feeding ha bits of fish and to tal fish p r o d u c t i o n in a M i c h i g a n lake. Mich. State Coll., Agric. Exp. Station, Tech. Bull. 206:1-59. Bovbjerg, R.V. 19 52. C o m p a r a t i v e e col ogy and physio log y of the c r a y f i s h O r c o n e c t e s p r o p i n q u u s and C a m b e r us f o d l e n s . Phy siol. Zool. 2 5 : 3 4 — 55. _______________ 1970. Eco log ica l isolation a n d c o m p e tit ive ex clu s i o n in t wo cra yfish ( O r c o n e c t e s v l r i l i s and O r c o n e c t e s i m m u n i s ) . Ecol. 51 (2):225-236. Brown, C.J.D. 1944. Mi ch i g a n L a k e s and Streams, Mich. Dept. C o n s e r v . , Fish D i v . , P a m p h l e t No. 24. Caldwell, M.F. an d R. V. Bovbjerg. 1969. N a t u r a l history of the two c r a y f i s h of n o r t h w e s t e r n Iowa, O r c o n e c t e s v l r i l i s and O r c o n e c t e s i m m u n i s . P r o c . Ia. Acad. Sci. 76:463-472. Chandler, D.C. In D.G. Frey (ed.) L i m n o l o g y in North A merica. Univ. Wise. Press, M a d i s o n . 1963. Michigan, p. 95-115. Creaser, E.P. 1931. The M i c h i g a n dec apo d crustaceans. Pap. Mich. Acad. Sci. 13:257-276. ______ _______ 1932. The d e c a p o d crustace ans of Wisconsin. W i s e . Acad. Sci., Arts, L e t t e r s 27:321-338. _________ 1934a. Age, growth, and sex r a t i o s in the crayfish, F a x o n i u s p r o p i n q u u s . Pap. Mich. Acad., Arts and Letters 19:581-585. fish. Sci. 79 (2051):364. 1934b. Some n o t e s o n North A m e r i c a n cray- ______________ and A.I. Ortenburger. 1933. T h e dec a p o d crustace an s of Oklahoma. Biol. Sur. Okla. 5 (2):15-46. 140 141 Crocker, D.W. 19 57. The c r a y f i s h e s of N e w Y o r k State (Decapoda, A s t a c i d a e ) . N.Y. State Mus. Sci. S e r v . , Bull. No. 355, 97 pp. Crocker, D.W. and D.W. Barr. 1968. H a n d b o o k of the c r a y ­ fishes of Ontario. Univ. T o t o n t o Press, Toronto, Cand. :1-158. Darlington, H.T. 1945. T a x o n o m i c and e c o l o g i c a l work on hi ghe r p lan ts of Michigan. Mich. State Univ. Agr. Exp. Sta., Tech. Bull. 201. Edwards, G.A. 1950. The in flu e n c e of eye s t a l k removal on the m e t a b o l i s m of the fi ddler crab. Physiol. Comp, et Oecol. 3:34-50. Faxon, Walter. 1884. D e s c r i p t i o n s of n e w species of C a m b a r u s . P r o c . Am. Acad. Arts and Sci. 20:107-158. _______ _______ 1898. O b s e r v a t i o n s on the A s t a c i d a e in the Un i t e d St ate s N ational M u s e u m and in the M u s e u m of C o m p a r a t i v e Zoology, w i t h d e s c r i p t i o n s of n e w species. Proc. U.S. Nat. Mus. 20:643-694. Fingerman, M.W. 1955. F a c t o r s influe nci ng the rate of ox yge n c o n s u m p t i o n of the dwarf crawfish, catnbarel lus s h u f e l d t i i . T u l . Stud. Zool. 3{6):103-116. Fingerman, M.W. and A. Lago. 1957. Endo gen ous t w e n t y - f o u r hour rh ythms of locomotor a cti v i t y and o x y g e n c o n s u m p ­ tion in the cra wfish O r c o n e c t e s c l y p e a t u s . A m e r . Midi. Natur. 58 (2) :383-393. Forbes, S.A. I f 76. List of Illinois c rus tac ea w i t h d e s ­ cr ipt ion s cf new species. Bull. 111. Mus. Nat. Hist. 1(1):3-25. Fry, F.E.J. 1947. Effects of the e n v i r o n m e n t on animal activity. Univ. Toronto Stud. Biol., S e r ., No. 55, Pub. O n t a r i o Fish Res. Lab., No. 68:1-62. _ 1951. A fra c t i o n a t i n g column to pr o v i d e water of various di sso l v e d o x y g e n concentrations, Canad. J. Tech. 29:144-146. _ 1957. The lethal t e m p e r a t u r e as a tool in taxonomy. Ann. Biol. 33 (5-6):205-219. Girard, C. 1852. A re vision of the North A m e r i c a n A s t a c i , w i t h o b s e r v a t i o n s on t h e i r habits and g e o g r a p h i c a l distribution. Proc. Acad. Nat. Sci. Philad. 6:87-91. 142 Harris, J.A. 19Q3. An e c o l o g i c a l cat al o g u e of the c r a y ­ fishes b e l o n g i n g to the genus Cambarus. Kans. Univ. Sci. Bull. II (3) :51-187. Hay, W.P. 1895. The cr a w f i s h e s of the State of Indiana. Ann. Rept. Ind. Geol. S urvey 20:47 5-507. Helff, O.M. 1927. R e s p i r a t o r y r e g u l a t i o n of the c r a y f i s h ( C a m b a r u s i m m u n i s ) . P r o c . Soc. Exp. Biol. Med. 25(3): 157-158. _________ 1928. The r e s p i r a t o r y r e g u l a t i o n of the c r a y ­ fish, Camiarus i m m u n i s ( H a g e n ) . Physiol. Zool. 1:76-96. Hiestand, W.A. 1931. The i nfl uen ce of v ar y i n g te nsi o n s of o xyg en upon the r e s p i r a t o r y m e t a b o l i s m of c er t a i n aquatic insects and the crayfish. Physiol. Zool. 4:246-270. Hobbs, H.H. Jr. 1942a. A g e n e r i c r evi s i o n of the c r a y ­ fishes of the s u b f a mil y C a m b a r i n a e (Decapoda, Astacidae) Amer. Midi. Natur. 28 ( 2) :334-357. ___________ 1942b. The c r a y f i s h e s of Florida. Univ. Fla. Biol. Sci. Ser. 3{2):1-179. 1967. The current status of the cr ayf i s h e s ITstecTTsy Girard (1852) in his "A r evi s i o n of the North A m e r i c a n A s t a c i . . . " (Decapoda, Astacidae). ________________ 196 9. On the d i s t r i b u t i o n and p h y l o g e n y of the cra y f i s h genus C a m b a r u s . In Perry C. Holt, Richard L. Hoffman, and C. W i l l a r d Jr., eds. The Di str ibu tio nal His t o r y of the Biota of the S o u t h e r n Appalachians, Part I: Invertebrates. V i r g i n i a P o l y ­ technic Institute, R e s e a r c h D ivi s i o n Monograph, 1:93- 178. ________________ 1972a. T he su bge ner a of the cra y f i s h Genus P r o c a m b a r u s (Decapoda: Astacidae). Smith Contr. Zool. 117:22 pp. ___________ _ 1972b. B i o t a of Fre shw ate r Ecosystems, Id ent ifi cat ion Man ual 9: C r a y f i s h e s (Astacidae) of North and Mid dle America. W ate r Pol lut ion C ont rol R e s e a r c h Series. U.S. E n v i r o n m e n t a l P r o t e c t i o n Agency. Hobbs, H.H. Jr. and L.J. Marchand. 194 3. A c o n t r i b u t i o n toward a kno wl e d g e of the cr ayf ish es of the R e e l f o o t Lake area. Jour. Tenn. Acad. Sci., 18(l):6-35. 143 Kendall, A. and F.J. Schwartz. 1964. S a l i n i t y toleran ces of two M a r y l a n d crayfish. O h i o J. Sci. 64(61:403-409. Lagler, K.F. and M. J. Lagler, 1943. N a t u r a l enemies of cr ayfish in Michigan. Pap. Mich. Acad. Sci. 29:293-303. Lagler, K.F. and F. V. Hubbs, 1940. Food of the long-no sed gar (L e p i s o s t e u s o s s e u s o x y u r u s ) and the bowfin (Amia c a l v a ) in s outhern Michigan. Copeia 4:239-241. Langlois, T. H. 1936. N o t e s on the ha bit s of the crayfish, C a m b a r u s r u s t i c u s Girard, in fish p o n d s in Ohio. Ohi o Dept. A g r i c . , Bull. No. 135, Div. C o n s e r v .:3-6. Marlow, Guy D. 1960. The subspecies of C a m b a r u s d i o g e n e s . Am. Midi. Nat., 64 (1) :229-250. Meredith, W. G. an d F. J. Schwartz. 1960. M a r y l a n d c r a y ­ fishes. Md. Dept. Res. Ed. Ser. 46:1-32. M i c h i g a n W a t e r R eso urc es Commission. 1963. State of M i c h i g a n W ate r Q u a l i t y M o n i t o r i n g Program, W ate r Qu ality records, 1963. Mich. Wa ter Res. comm., Lansing, Mich. 69 p. Miller, G. C. 1965. W e s t e r n North A m e r i c a n crawfis hes (P a c i f a s t a c u s ) in b r a c k i s h w a t e r environments. R e search Briefs, F i s h Comm. O reg on 11(1):42-50. M o m o t , W. T. 1967a. P o p u l a t i o n d ynamics and p rod u c t i v i t y of the crayfish, O r c o n e c t e s v i r i l i s , in a marl lake. Amer. Midi. Natur. 78(1):55-81. __________ _ 1967b. E f f e c t s of brook t r o u t pre dat ion on a c ray f i s h population. Trans. Amer. Fish. Soc. 96(2): 202-209. Momot, W.T. and J. E. Gall. 1971. Some ec o l o g i c a l notes on the blue color ph ase of the crayfish, O r c o n e c t e s v i r i l i s , in two lakes. Ohio J. Sci. 76(6):363-370. Momot, W. T. and H. Gowing. 1972. D i f f e r e n t i a l seasonal m i g r a t i o n of the c r a y f i s h O r c o n e c t e s v i r i l i s (Hagen), in marl lakes. Ecol. 53(31:479-483. Mount, D.I. 1961. D e v e l o p m e n t of a sys tem for c o n t r o l l i n g d i s s o l v e d - o x y g e n c o n t e n t of water. Trans. Amer. F ish Soc., Vol. 9 0 ( 3 ) :323-327. ______ 1964. A d d i t i o n a l information on a system for co n t r o l l i n g the d i s s o l v e d oxygen c o n t e n t of water. Trans. Amer. Fish. Soc. Vol. 93(1):100-103. 144 Ne wcombe, C. L. 192 9. The crayfis hes of W e s t Virginia. O h i o J. Sci. 29 (6):267-288. O r t m a n n f A. E. 1905. The m u t u a l affinities of the s p e c i e s of the genus C a m b a r u s , a n d their d i s p e r s a l over the U n i t e d States. Amer. Phil. Soc. 5 4 ( 1 8 0 J :91-136. _______________ 1906. The c r a w f i s h e s of the State of Pennsylvania. Mem. Carn. Mus. 2:343-524. _______ _______ 1931. C r a w f i s h e s of the so uth e r n A p p a l a ­ c h i a n s and the C u m b e r l a n d plateau. Ann. Carn. Mus. 20(2):61-160. Park, T. 1945. A further r e p o r t on to ler ati on exp e r i m e n t s by ec ology classes. E c o l o g y 26(3):305-308. Park, T . , R. E. Gregg, and C. Z. Lutherman. 1940. Toler­ ation experiments by ecology classes. Ecology 21(1) : 109-111. Pearse, A. S. 1910. The c r a w f i s h e s of Michigan. M i c h i g a n Geol. and biol. Survey, Pub. 1., Biol. Ser. 1,:8-21. Penn, G. H. 1954. I n t r o duc tio ns of A m e r i c a n crawfishes into foreign lands. Ecol. 35(2). ________ _ 1959. An i l l u s t r a t e d key to the crawfishes of L o u i s i a n a w i t h a summary of their d i s t r i b u t i o n w i t h i n the State (Decapoda, Astacidae). Tul. Stud. Zool. 7(1): 3-20. Penn, G. H. and H. H. Hobbs, Jr. 1958. A co ntr ibu tio n to war d a kno wl e d g e of the crawfishes of Texas. Tex. J. Sci. 10 (4) :452-483. Pennak, R. W. 1953. F r e s h - w a t e r invertebrates of the U n i t e d States. The R o n a l d Press Co., N e w York. 769 p. Presson, A. V. 1957. A study of the r e l a t i o n s h i p b e t w e e n in org ani c c o n t e n t of the b l o o d of c r a y f i s h and t hei r environment. Ph.D Thesis Purdue University. Riegel, J. A. 1959. The s y s t e m a t i c s and d i s t r ibu tio n of c r a y f i s h e s in California. Cal. Fish and Game 45(1): 29-50. Rhoades, R. 1962. The e v o l u t i o n of c r a y f i s h e s of the g e n u s O rc o ne c te s S ect i o n L i m o s u s . Ohio J. Sci. 62(2):65-96. Schalleck, W. 1942. Some m e c h a n i s m s c o n t r o l l i n g l o c o m o t o r a c t i v i :y in the crayfish. J. Exp. Zool. 91:155-166. 145 Schwartz, F. J., R. Rubelmann, and J. Allison. 1963. E c o l o g i c a l p o p u l a t i o n e x p a ns ion of the introdu ced crayfish, O r c o n e c t e s v i r i l i s . O h i o J. Sci. 63(6): 226-273. Spoor, W. A. 1955. L o s s and gain of h e a t - t o l e r a n c e by the crayfish. Biol. Bull. 108:77-87. Tack, P. I. 1941. The life history and ecology of the c r a y f i s h C a m b a r u s i m m u n i s H a g e n . 25(2):420-446. A m e r . M i d i . N a t u r . Turner, C. L. 1926. The crayfishes of Ohio. Ohio Biol. Survey, Bull. 13, Vol. I l l (3):145-195. U.S. D e p a r t m e n t of Interior, Geo log ica l Survey. 1968. W a t e r r e s o u r c e s d a t a for Michigan. Part 2. Water q u a l i t y records U.S. Dept, of Interior, Geol. S u r v . , W a t e r Res our ces Div. Lansing, Mich. 72 p. Valen, E. 1958. O xyg en c o n s u m p t i o n in rel a t i o n to t e m p e r ­ ature in some p o i k i l o t h e r m s . A c t a Physiol. Scand. 42: 358-362. Van Deventer, W. W. 1937. Studies on the b iology of the cr ay f i s h C a m b a r u s p r o p i n q u u s Girard. 111. Biol. Mono. 15(3):1-67. Van Weel, P. B., J. E. Randall, and M. Takata. 1954. O b s e r v a t i o n s on the o x y g e n c o n s u m p t i o n of ce rta in ma rin e crustacea. P a c i f i c Sci. 7:209-218. Wayne, W. J. a nd J. H. Zumberge, 1965. Pl e i s t o c e n e geology of In d i a n a and Mi chigan, p. 63-84. In H. E. Wright, Jr. an d D. G. Frey (eds.) The Q u a t e r n a r y of the Un i t e d States, P r i n c e t o n Univ. Press, Princeton. Whitmore, C. M . , C. E. W a r r e n and P. Doudoroff. 1960. A v o i d a n c e reactions of salmonid and c e n t r a r c h a r i d fishes to low ox yge n concen trat ion s. Trans. Amer. Fish. Soc. Vol. 89 (1) :17-26. Whiteside, E. P., I. F. S c h n e i d e r and R. L. Cook. 1963. Soils of Mich. State Univ. Agr. Exp. S t a . , Spec. Bull. 402. Wiens, A. W. and K. B. Armitage. 1961. The o xyg en c o n s u m p ­ tion of t he cra y f i s h o r c o n e c t e s i m m u n i s and O r c o n e c t e s n a i s in re sp o n s e to t e m p era tur e an d to ox yge n saturation. Physiol. Zool. 34:39-54. 146 Williams, A. B. 1954. S p e c i a t i o n and d i s t r i b u t i o n of the crayfishes of the Ozark pl at e a u s and Oua c h i t a p rov inc es Univ. Kans. Sci. Bull. 36, Pt. 2 {12}: 803-918. Williams, A. B. and A. B. L e o n a r d 1952. The c r a y f i s h e s of Kansas. Kans. Univ. Sci. Bull., 34 Part 2(15):960-1012. 4