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ABSTRACT 

COOPERATIVE CONTENT CACHING FOR CAPACITY AND COST 
MANAGEMENT IN MOBILE ECOSYSTEMS 

  
By 

Mahmoud Taghi Zadeh Mehrjardi 

 

   The objective of this thesis is to develop an architectural framework of social 

community based cooperative caching for minimizing electronic content provisioning 

cost in Mobile Social Wireless Networks (MSWNET). MSWNETs are formed by 

wireless mobile devices sharing common interests in electronic content, and physically 

gathering in public settings such as University campuses, work places, malls, and 

airports. Cooperative caching in such MSWNETs are shown to be able to reduce content 

provisioning cost which heavily depends on service and pricing dependencies among 

various stakeholders including content providers, network service providers, and end 

consumers.  This thesis develops practical network, service, and economic pricing models 

which are then used for creating an optimal cooperative caching strategy based on social 

community abstraction in wireless networks.  The developed framework includes optimal 

caching algorithms, analytical models, simulation, and prototype experiments for 

evaluating performance of the proposed strategy.  The main contributions are: 1) 

formulation of economic cost-reward flow models among the MSWNET stakeholders, 2) 

developing optimal distributed cooperative caching algorithms, 3) characterizing the 

impacts of network, user and object dynamics, 4) investigating the impacts of user non-

cooperation, and finally 5) developing a prototype Social Wireless Network for 

evaluating the impacts of cooperative caching in a Mobile Social Wireless Networks.  
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Chapter 1 : INTRODUCTION 

1.1 Motivation 

Recent emergence of mobile devices and wireless-enabled data applications have 

fostered new content dissemination models in today’s mobile ecosystem. A list of such 

devices includes Apple’s iPhone, iPad, Google’s Android phones, Amazon’s Kindle and 

electronic book readers from other vendors. The contents related to these devices include 

phone Apps, electronic books, mp3 music, video clips, news clips etc. The level of 

proliferation of mobile applications is indicated by the example fact that as of Feb '12, 

Apple offered over 500,000 Apps that are individually downloadable by smart phone 

users.  

Due to the increase in the number of data-enabled handheld devices and server-

based applications, mobile data traffic is growing at an unprecedented rate. According to 

new studies by some researchers from networking and financial sectors [1–4], by 2016 

average broadband mobile data traffic for each user will exceed 2.6 GB per month which 

is 17-fold increase over the 2011 average of 150Mb per month. The total mobile data 

traffic in the world is predicted to reach about 10 exabytes per month by 2016 which is 

39 times more than the total mobile traffic in 2009. It is not surprising that 70% of this 

traffic is predicted to be video data.  

The increasing demand for more bandwidth raises new issues both in providing 

ubiquitous Internet access for smart phones and maintaining good voice call quality. In 

particular, this becomes a critical challenge in the areas without 3G/4G coverage or with 
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poor quality coverage.  In this thesis we propose a pricing based cooperative caching 

mechanism in order to improve data access for different network topologies, human 

mobility patterns and communication technologies.  

1.2 Current Solutions 

There are several solutions to the explosive mobile traffic growth problem. An 

obvious solution is to scale the network capacity either by building out more cell towers 

or by upgrading the network to the next generation networks such as Long Term 

Evolution (LTE) and WiMax. Some providers (e.g. Sprint and Verizon) have already 

started to support new generation networks such as 4G. However, upgrading the current 

networks to new technologies requires a huge investment, thus affects the pricing plan. 

Furthermore, many of the existing hardware and data-enabled mobile devices are not 

compatible with the new technologies, and therefore upgrading the network infrastructure 

may not solve the problem for them.  

The second solution is using technologies such as Femtocell and Picocell, which 

can provide a better coverage and capacity, especially for indoors. A Femtocell is a small 

cellular base station, typically designed for use in a home or small business. It connects to 

the service provider’s network via a broadband connection (such as DSL or cable) and 

supports multiple active mobile phones in a residential setting. A Femtocell allows 

service providers to extend service coverage indoors, especially where access would 

otherwise be limited or unavailable. This solution is very attractive for mobile operators 

because in addition to providing good coverage and capacity for their customers it can 

reduce both capital expenditure and operating expenses. A Picocell has the same 

functionality of Femtocell with bigger coverage and it is suitable for larger indoor 
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settings like airports. This technology however has two main limitations. First, it can be 

only used for small areas, and therefore it is not a permanent large scale solution. Second, 

although Femtocells provide better coverage, they still need to have a backhaul Internet 

connection. In other words, Femtocells and Picocells are not able to reduce the Internet 

bandwidth consumption.  

The third solution is to adopt a new usage-based pricing plan which can limit heavy 

data usage. Switching to a new data plan from a flat rate price has already been started by 

some providers. For example, Verizon has decided to put a limit on its data plan [5] and 

MetroPCs offers some prepaid data plan in which user is charged 3 cents per MB. 

Switching to a more expensive pricing model is not convenient for users and the 

economic and market competition forces the providers to do a thorough analysis of user 

behavior and traffic usage before offering a new pricing model. Therefore, switching to 

new pricing models cannot be done very quickly. Furthermore, even though a new 

pricing model in short term can reduce the pressure on 3G/4G bandwidth; it is not clear 

that how it can solve the problem for longer term.  

The fourth solution is augmenting (complementing) mobile 3G/4G using WiFi 

technology. Many multi-interface devices and smart phones give priority to the WiFi 

interface over the cellular interface in data transmissions [6–10]. This on-the-spot data 

offloading can reduce the pressure on 3G spectrum by using WiFi connectivity when 

possible for transferring data. Some providers are also offering incentives to their 

subscribers to reduce their 3G usage by switching to WiFi at home [11]. This solution 

relies on the existent wireless hotspots to reduce the bandwidth stress on the 3G network, 
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but wireless hotspots are not available everywhere and establishing new hotspots requires 

investment.  

1.3 Proposed solution: Pricing Based Cooperative Caching 

In this thesis, we introduce a cooperative caching mechanism as a complement to 

the mechanisms described in previous section. Contrary to those mechanisms, 

cooperative caching does not require any additional infrastructure and therefore has no 

additional cost for service providers or end users. 

1.3.1 Local Caching  

A simple local content caching can always be used within each data-enabled mobile 

device in order to reduce the 3G/4G bandwidth consumption. In local caching, a new 

downloaded data item is stored in the local cache in the device to serve the future 

requests for the same data item. In addition to reducing the bandwidth consumption, local 

caching can reduce the delay of access and power consumption for mobile devices. 

Locality principle [12] and Zipf’s law [13] are the two very important and well known 

facts that support the idea of caching in general. 

The locality principle or locality of reference is the phenomenon of the same value 

or related storage locations being frequently accessed. Temporal locality and spatial 

locality are two basic forms of reference locality. Temporal locality refers to frequent 

access to specific data and/or resources within relatively small period of time. Spatial 

locality refers to the use of data elements within relatively close storage locations. The 

locality principle has been observed in various fields of Computer Science, e.g. processor 
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caches, storage hierarchies, Web caches, and search engines. This concept has been also 

observed for a wide range of online electronic data items [14–16].  

According to many studies, the frequency of access request for a set of electronic 

data items e.g., websites [17–19] and video clips [20–22] follows Zipf’s distribution. 

According to Zipf’s law [13], if data items are sorted based on their popularity (i.e. 

frequency of access request) the access probability of the i
th

 popular item is inversely 

proportional to its rank. In other words, �� ∝ ��� where 0 ≤ � ≤ 1.  As α increases, 

the access pattern becomes more concentrated on the popular data items. Zipf distribution 

function belongs to a bigger category of distribution known as power law distributions. 

When the frequency of an event varies as a power of some attribute of that event (e.g. its 

size), the frequency is said to follow a power law. This category of distribution is also 

related to Pareto principle [23], also known as the 80-20 rule. According to the 80-20 

rule, for many events, roughly 80% of the effects come from 20% of the causes. The 

interpretation of this rule for the Zipf distribution implies that 80% of all access is for 

only 20% of the items. In other words, on an average, by storing only 20% of data items 

in the cache, 80% of future accesses can be satisfied locally. Therefore, the fact that the 

request frequency of electronic online content follows Zipf distribution is another strong 

reason for content caching.  

1.3.2 Cooperative Caching 

Mobile devices usually have a limited storage capacity and they can store only a 

few data items. This may affect the performance of caching, especially when data items 

are relatively large (e.g. video clips and movies). To alleviate this issue, mobile devices 
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can share the content of their caches together. In cooperative caching, a node not only can 

access to the content stored in its local cache but it can also search its desired item within 

stored data items in other caches. The fact that people in the same location tend to share 

common interests supports the idea of cooperation among their mobile devices. For 

example, people in a classroom share similar interests on the topic of class or people in a 

conference have similar interests on the topic of presentation. Under the assumption of 

having similar interests by users collocated in the same area, it’s quite possible for a node 

to find its desired data item in other nodes’ caches.  

To facilitate cooperation among mobile devices carried by people who physically 

gather in public places, a Mobile Social Wireless Network (MSWNETs) can be formed 

using ad hoc wireless connections. For example Figure  1-1 illustrates the location 

snapshot of a 19-node MSWNET. Network partitions can be either multi-hop ad hoc 

network as shown for partitions 1, 3, and 4, or single hop access point based as shown for 

partition 2.  

 
Figure  1-1: Snapshot of an MSWNET in a Campus (For interpretation of the references to 

color in this and all other figures, the reader is referred to the electronic version of this 
dissertation) 
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In the conventional download model, a user downloads data items directly from a 

Content Provider’s (CP) server over a Communication Service Provider’s (CSP) network. 

With the local caching a user first searches its local cache before downloading the content 

from content provider. However, in cooperative caching mechanism, an alternative 

content access approach would be to search the local MSWNET for the requested content 

after local search for the requested content fails and before downloading it from the CP’s 

server. This new access model can reduce the bandwidth stress on 3G/4G network and 

improve the content availability when there is no 3G/4G coverage. In this thesis, this 

mechanism is termed and referred to as cooperative content caching.  

We believe that the cooperative caching mechanism can be added to the existing 

solutions (as outlined in Section  1.2 ) to reduce the 3G/4G bandwidth stress and to 

improve content availability. The limited storage capacity and sharing of common 

interests by people collocated in the same place, are the two important facts that support 

the idea of cooperative caching. 

1.4 Cooperative Caching Components 

In order to deploy a cooperative caching framework each node must support few 

functionalities. For example, due to limited storage capacity in each mobile device, a 

replacement mechanism is needed to accommodate a new downloaded data item when a 

cache is full. Furthermore, every caching node should manage content of its cache based 

on the other nodes’ needs   [24–40].  Additionally, a cache resolution mechanism is also 

needed to find a requested data item among the remote caches. Below, the cooperative 

caching components are explained in more detail. 



 

   8 

1.4.1 Cache Resolution 

Cache resolution addresses how to resolve an object request either by finding the 

object in the local cache or remote caches in the network partition. After a request is 

originated by a user (i.e. an application on a mobile device), the device first performs a 

local search within its local cache. If it fails to find the requested object, a network 

search is performed for the requested item within the current partition. If this step also 

fails, and the device has access to the Internet, the requested item will be downloaded 

directly from the content provider’s server. 

For searching for an object within the network partition, a flooding-based search 

mechanism is usually used [28–30]. A Time to Live (TTL) based ring-search can be 

employed for constraining the scope of resolution. TTL can range from zero to the 

diameter of the current partition. With zero TTL, a node searches only its local cache for 

the requested data item. With bigger TTL, more nodes in the partition are searched for 

the requested data item. TTL also can be large enough to cover all nodes in the partition. 

A node effectively cooperates with all nodes in its ring search. When a node receives a 

search request for one of its locally cached objects, it sends a unicast ACK to the 

requester. Then the requester starts downloading the data item from the responding node. 

1.4.2 Cache Management 

Cache management refers to policies that control object placement in the caches 

and determine objects distributed in the partition. Cache management comprises 

admission and replacement policies. 

 

Admission policy: A node adjusts its cooperative behavior depending on the state of 

other nodes’ caches within its ring search. A simple cooperation policy for a node is not 
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to store an object if it has already been stored within the partition. Under this policy, the 

total number of different items stored within the partition can be increased. This in turn 

can increase the partition item availability for the case no Internet connection is available 

in the partition.  

Cache replacement: To store a new downloaded data item when cache is full a 

node executes a replacement policy in order to decide as to which data item from its 

cache should be replaced. Possible replacement policies include Random (RND) [31], 

Least Recently Used (LRU) [32], and Least Popular Object (LPO) [33]. A complete 

diagram of a cooperative caching scheme has been provided in Figure  1-2. 

 

Figure  1-2: Cooperative caching scheme 

1.4.3 Cache Consistency 

Cache consistency refers to mechanisms that try to keep the content of cached data 

items and original data items the same. This is a critical component of a caching 

framework especially when content of data items is subject to frequent changes. There is 
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a wide range of strategies for maintaining cache consistency. Some of these techniques 

are specifically designed for mobile ad hoc wireless networks [34–51]. In general, cache 

consistency strategies fall into two broad categories. In pull-based schemes, a client 

initiates data validation by polling the content server to see if data has been changed since 

it was stored. In push-based schemes, the content server initiates the data invalidation by 

notifying the caching nodes. There are also few hybrid mechanisms in which both 

strategies are being used. Depending on the type of data, weak or strong data 

consistencies are enforced. In weak consistency, a stalled data item can be returned to the 

user, whereas in strong consistency, a stalled data item is never used [52]. Weak 

consistency works based on a Time-To-Leave (TTL) field which has been associated 

with all cached data items. A cached data item is returned to a user only if its age in cache 

is less than TTL. The data item is considered obsolete after its age becomes greater than 

its TTL.  

1.5 Pricing Model: A Framework for Cooperative Caching  

The main purpose of caching is reducing the bandwidth consumption. Cooperative 

caching however can also be used to increase the data item availability (when there is no 

connection to the server). Furthermore, cooperative caching can reduce the access delay 

for end users or even it can reduce the power consumption of mobile devices. In real life, 

a different combination of these objectives can also be desired. In this dissertation, we 

introduce a generalized pricing framework which can model different combinations of 

these objectives.  
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Figure  1-3: Amazon Content and cost flow model 

In this thesis, we assume downloading content through a Communication Service 

Provider’s (CSP) network involves a cost which must be paid either by end users or by 

the Content Provider (CP). Furthermore, we assume that searching and downloading the 

content from other nodes in the network also require some cost. It is obvious that 

cooperative caching mechanism can reduce the provisioning cost only when the amount 

of rebate for a downloaded object is less that the download cost. 

The above pricing model has already been used in real life. For example, in the 

Amazon Kindle electronic book delivery business model, the content provider (i.e. 

Amazon), pays to Sprint, the communication service provider, for the cost of network 

usage due to downloaded e-books by Kindle users. Also in order to entice the End-

Consumers (ECs) to cache downloaded content and to share it with others, a peer-to-peer 

rebate mechanism is needed. This rebate can also be distributed among the provider end-
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consumer and the end-consumers of all the intermediate mobile devices that take part in 

object forwarding within the MSWNET.  

In this thesis we adopt the Amazon Kindle
TM

 pricing model in which the content 

provider (e.g. Amazon) pays a download cost Cd to the communication service provider 

(e.g. Sprint) when an end-consumer downloads an object from the content provider’s 

server through the communication service provider cellular network. Also, as shown in 

Figure  1-3, whenever an end-consumer provides a locally cached object to another user 

within its MSWNET, the provider end-consumer is paid a rebate Cr by the content 

provider. Optionally, this rebate can also be distributed among the provider end-

consumer and the owners of all the intermediate devices that take part in content 

forwarding. The quantity Cd corresponds to the content provider's object delivering cost 

when it is delivered through the cellular network, and Cr corresponds to the rebate given 

out to an end-consumer when the object is found within the MSWNET.  This framework 

can be effective for large items for which the network download cost Cd can be also 

large. Large Cd can ensure large Cr, which makes it practical for an end-consumer to use 

the received rebate Cr towards its next content purchase from the content provider.  

Although in the model used here it is assumed that the network usage cost Cd is 

paid by the content provider, a very similar problem can be also formulated in a model in 

which Cd is paid by the end-consumer receiving the content. The rebates, in that case, 
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will be paid by the content-recipient end-consumer to the content-providing user, and 

optionally to the intermediate users. This pricing model has been shown in detail in 

Figure 1-4. 

 

Figure  1-4: Cell phone service provider cost flow model 

Note that the cost items, namely, Cd and Cr, do not represent the selling price of an 

object (e.g. an e-book). The selling price is directly paid to the content provider (e.g. 

Amazon) by an end-consumer (e.g. a Kindle user) through an out-of-band secure 

payment system. A digitally signed rebate framework needs to be supported so that the 

rebate recipient users can electronically validate and redeem the rebate with the content 

provider. Also, a digital usage right mechanism [53–56] is needed so that an end-

consumer which is caching an object (e.g. an e-book) should not necessarily be able to 

open/read it unless it has explicitly purchased the object from the content provider. We 

assume the presence of these two mechanisms on which the proposed caching 

architecture is built. Operationally, the values of Cd and Cr are likely to be set by the 
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content provider based on its operating cost and revenue models, and the end-consumers 

are less likely to have any control over those parameters.  

The above pricing model is a generalized formulation of the cooperative caching 

problem. Here we explain how this model can be used for specific purposes. 

1.5.1 Minimizing Bandwidth Stress  

In order to reduce the 3G/4G bandwidth demand, we must maximize the percentage 

of requests that can be found within the network partition. In general, finding the best 

object placement to minimize the bandwidth consumption is not easy. However, in 

simple cases when the network is stationary and all nodes can communicate with each 

other (directly or through multi-hop routing) this problem can be formulated in our 

pricing framework model. We can assume finding an object in the network has no cost 

while downloading objects from the server requires a certain cost. This means, in the 

proposed pricing model, we can set Cr=0 and then find a solution to minimize the 

average accessed cost per object. The solution for that problem can be used to minimize 

the bandwidth stress of a 3G/4G network.  

1.5.2 Minimizing Energy Consumption  

Although energy consumption is not the primary focus of this thesis, we can model 

the energy consumption problem using our pricing model. We use the fact that energy 

consumption of WiFi interfaces and 3G interfaces is different.  

Mobile phones usually have multiple network interfaces. A WiFi interface 

generally provides more bandwidth compared to a 3G/4G interface while they consume 

almost the same amount of power during data transmission [57]. Therefore, downloading 
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a data item through a WiFi connection will save energy and increase the battery life 

because of its smaller transmission time. Furthermore, downloading small contents 

through 3G network in a periodic manner consumes more energy [58]. The reason is that 

for a 3G network, a large fraction (nearly 60%) of the energy, referred to as the tail 

energy, is wasted in high-power states after the completion of a transfer. The 

measurement in [58] reports that transferring 50KB data over 3G network with a 20-

second interval requires 12.5 J energy. This number for a one-hop WiFi connection is 

around 7.6 J.  

In order to minimize the energy consumption for the mobile devices, we can use 

the proposed pricing model by appropriately setting parameter Cr. For example, if we 

limit the cooperation to 1-hop neighbors, we can set Cr to 7.6 and Cd to 12.5. We can 

then find the best solution for the pricing model problem and apply it to minimize the 

energy consumption. 

1.6 Handling Human Mobility 

Handheld devices are carried by humans and as people move, the network 

partitions change dynamically. In other words, the set of nodes in a partition vary over 

time. Due to the mobility of people, a mobile node may visit a lot of stranger (unknown) 

mobile nodes. Obviously, a mobile node should not change its caching state because of a 

stranger node that it may never be visited again. In other words, a mobile node should 

limit its collaboration only to those familiar nodes that expected to be visited frequently. 

Detecting and limiting the collaboration to the familiar nodes is a crucial part in 

performance of cooperative caching algorithm when it applied to a human based mobile 
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network. In this thesis, we study different mobility pattern in order to understand and 

analyze the difference between the stranger and familiar nodes. 

1.6.1 Mobility Patterns 

Studying the performance of cooperative caching in social wireless networks 

requires a real human mobility trace. Due to limited number of available human walk 

traces and lack of diversity in the existing traces, people use different human mobility 

generator tools. Statistical analysis of human walk traces in the literature revealed several 

significant properties. For example, it has been shown that human flights (of walk), 

pause-time, and inter-contact times follow truncated power-law distribution. 

Furthermore, it has been observed that individual motilities are confined within some 

specific areas or point of interests. SLAW [59] and HCMM [60] are the two mobility 

generator which are able to generate mobility traces that maintain the above statistical 

properties and therefore we use them in this thesis. In addition to human mobility pattern 

tools we also use available traces from MIT [61] and UCSD [62] and Heagle [63] 

projects.  

Using these traces we will extract the contact pattern between different nodes and 

form the group of nodes that belong to the same community. Cooperative caching is then 

limited only between nodes in the same community.  

1.7 Analyzing User Selfishness 

According to our proposed pricing model, network usage cost and rebates are paid 

by the content provider. The scope for earning peer-to-peer rebate may promote selfish 

behavior in some users. A selfish user is a user that deviates from the network wide 
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optimal caching policy to earn more rebates. Any deviation from the optimal policy is 

expected to incur higher network wide provisioning cost.  

In this thesis we analyze the impacts of such selfish user behavior on the object 

provisioning cost and on the earned rebate in a social wireless network (MSWNET). In 

particular, we compare the provisioning cost under presence of selfish nodes with the 

optimal provisioning cost when all nodes are cooperative.   

1.8 Application of proposed Caching 

In addition to minimizing the object provisioning cost, the proposed cooperative 

caching mechanism can be used in other applications. In this thesis, we show how 

cooperative caching mechanism can be used effectively to reduce the unwanted traffic in 

MANETs. We also explain how cooperative caching mechanism is able to improve data 

availability in nodes without Internet connection. 

1.8.1 Distributed Firewalling in MANETs 

Unwanted traffic wastes significant network bandwidth and the power of resource-

constrained wireless nodes [64]. To discard unwanted traffic before reaching destinations, 

for each wireless node, we need to distribute its firewall rules to other nodes.  However, 

the number of rules that a wireless node can handle is rather limited due to its resource 

limitations. It is a difficult task for a node to decide which rules should be admitted and 

enforced given its resource constraints. 

The proposed cooperative caching scheme can be used as a solution for discarding 

unwanted packet in the MANET.  A firewall rule is modeled as an object and unwanted 
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traffic is considered as object requests. The main question then is how to place firewall 

rules in the network to discard the maximum number of unwanted packets in the network.  

1.8.2 Increase Data Availability in MANETs 

Due to human mobility and lack of complete coverage by WiFi access points, a 

MSWNET can be susceptible to intermittent disconnections for the Internet. This can 

result in partitions of devices that can communicate with each other using ad hoc routing 

protocols, but do not have internet connectivity. This lack of connectivity affects object 

(content) availability within MSWNET partitions for server-based applications such as 

electronic books and Apps downloads.  

The main question is as how to provide high partition level availability while a 

minimum level of node level availability is guaranteed. High partition level availability 

ensures that popular objects are available within MSWNET partitions when it is 

disconnected from the Internet, and high node level availability ensures popular objects 

are available to individual nodes even when they are completely isolated from the rest of 

the network and Internet gateway. In this thesis we explain how cooperative caching 

mechanisms can effectively increase the data item availability for both node and partition 

level. 

1.9 Dissertation Objectives 

The objective is to design an optimal cooperation policy so that under different 

network topologies, mobility patterns and rebate to cost ratio, the network wide average 

per-object provisioning cost is minimized. A key question here is how to store contents in 

devices such that the network-wide content provisioning cost is minimized. It is very 
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important to know the set of nodes can potentially form a group (community) to improve 

the caching performance. In this thesis, we use some well known community detection 

algorithms that are able to find and group the set of strongly connected nodes.  

For contents with varying levels of popularity, a greedy approach for each node 

would be to store as many distinctly popular contents as its storage allows. This approach 

amounts to non-cooperation and can give rise to heavy network-wide content 

duplications. In the other extreme case, which is fully cooperative, a node would try to 

maximize the total number of unique contents stored within the MSWNET by avoiding 

content duplications. We will show that in a stationary network for a given rebate-to-

download-cost ratio, there exists an optimal policy which is somewhere in between those 

two extremes. This optimal policy can minimize the content provider’s cost by striking a 

balance between greediness and cooperation.  

1.10 Scope of Thesis  

The main goal of this thesis is to provide a cooperative caching strategy that 

minimizes the object provisioning cost for data-enabled mobile devices such as smart 

phones, book readers, etc.  

To minimize the object provisioning cost we rely on cooperation among mobile 

devices gathered in a physical setting such as a campus, airport, malls, etc. We propose a 

cooperative caching framework using which mobile nodes are able to share the content of 

their caches together. The main intuition behind cooperative caching is the locality 

principle and common interest between people in the same area. According to the locality 

principle, people tend to access to the same data that has been used recently and 

statistically people in the same area are interested in similar content.  
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Chapter 2 is a survey of other cooperative caching strategies. We review the current 

cooperative caching strategy used for the wired network and explain why those 

approaches are not practical in mobile wireless networks. Furthermore, we highlight the 

differences and advantages of our proposed caching scheme compared to the most recent 

caching schemes in the literature.  

In chapter 3 we propose a cooperative caching strategy to minimize the object 

provisioning cost in a stationary mobile wireless networks where people in the same area 

have very similar interests. Furthermore, we assume the request generation rate for all 

users are the same. Then analytically and experimentally we show that in order to 

minimize cost per accessed data item in such a network, nodes must limit their level of 

cooperation.  

In chapter 4 we formulate the cost model for a heterogeneous network where users 

have different request generation rates and different request patterns. An optimized 

caching strategy will be developed and validated by real human request traces. 

Chapter 5 studies the impacts of human mobility on the performance of cooperative 

caching. Under the varying network partitions, it is very important for a node to 

collaborate only with nodes in the same community. In this chapter we review some of 

well-known community detection algorithms in social networks and propose a caching 

strategy based on the structure of community in the network. 

In chapter 6 we analyze the impacts of selfish user behavior on the object 

provisioning cost and on the earned rebate in a social wireless network (MSWNET). In 

particular, we compare the provisioning cost under presence of selfish nodes with the 

optimal provisioning cost when all nodes are cooperative. 
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In chapter 7 we use cooperative caching for increasing the availability of data items 

in areas without Internet connection. 

Chapter 8 introduces another application of the proposed caching strategy which is 

used to distribute firewalling rules in a social wireless network to stop unwanted packets 

as early as possible.  

Finally, in chapter 9 we summarize the thesis and compile a list of future woks. 
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Chapter 2 : RELATED WORKS 

2.1 Caching in Internet 

There are number of studies [12–22] on the characteristics of web proxy traces, which 

have shown the temporal locality and Pareto principle of the web requests. Relying on 

these studies web caching has been widely deployed in Internet to reduce the latency 

observed by web browsers, decrease the aggregate bandwidth consumption of an 

organization’s network, and reduce the load incident on web servers [64-71]. There is a 

rich body of existing literature on several aspects of cooperative caching including object 

replacements [31–33], [65–69], cache consistency [52], [70–76], reducing cooperation 

overhead [24], [77], [78], and cooperation performance in traditional wired networks. 

Different cooperative caching mechanisms have been introduced for web proxies and file 

system in [24–27], [77–88]. These cooperation mechanisms can be broadly categorized to 

hierarchical, directory-based, hash-table and multicast-based approaches. For example, 

Harvest [25][79] is a hierarchical approach in which a user’s request is forwarded to a 

cache hierarchy till the request is found at some level. In such a hierarchical approach, no 

information is exchanged between the caches in different level. In a directory-based 

approach, like Summary Cache [27], each cache exchanges a summary vector of its data 

items to the other caches. So, during cache resolution a cache forwards the request to a 

cache that has a copy of the requested data item. Squirrel [96] is a fully decentralized, 

peer-to-peer cooperative web cache, based on the idea of enabling web browsers on 

desktop machines to share their local caches by using a hash table. The above schemes 

have been evaluated and demonstrated significant performance improvement for Web 
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accessing. However, these schemes are highly dependent on high speed network 

connections and dedicated cache servers with high computation power and storage. They 

also require some kind of structure on the network of cooperative nodes. The Mobile 

Social Wireless Networks (MSWNET), which are often formed using mobile ad hoc 

network protocols, are different in the caching context due to their additional constraints 

such as topological insatiability and limited resources. As a result, most of the available 

cooperative caching solutions for traditional static networks are not directly applicable 

for the MSWNETs. 

2.2 Cooperative Caching in MANET 

There are several studies [28–30], [89–112] on cooperative caching in wireless ad 

hoc networks [109]. Three caching schemes for MANET have been presented in [96], 

[101]. In the first scheme, CacheData, a forwarding node checks the passing-by objects 

and caches the ones deemed useful according to some pre-defined criteria. This way, the 

subsequent requests for the cached objects can be satisfied by an intermediate node. A 

problem with this approach is that storing large number of popular objects in large 

number of intermediate nodes does not scale well. The second approach, CachePath, is 

different in that the intermediate nodes do not save the objects; instead they only record 

paths to the closest node where the objects can be found. The idea in CachePath is to 

reduce latency and overhead of cache resolution by finding the location of objects. This 

strategy works poorly in a highly mobile environment since most of the recorded paths 

become obsolete very soon. The last approach in [96], [101] is the HybridCache in which 

either CacheData or CachePath is used based on the properties of the passing-by objects 

through an intermediate node. While all three mechanisms offer a reasonable caching 
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solution, it is shown in [28], [29], [89], [90], [97] that relying only on the nodes in an 

object's path is not the most efficient approach. Using a limited broadcast based cache 

resolution can significantly improve the overall hit rate and the effective capacity 

overhead of cooperative caching. 

According to the protocols in [29], [102], [103] the mobile hosts share their cache 

contents in order to reduce both the number of server requests and the number of access 

misses. The concept is extended in [30] for tightly-coupled groups with similar mobility 

and data access patterns. This extended version adopts an intelligent bloom filter based 

peer cache signature to minimize the number of flooded message during cache resolution. 

A notable limitation of this approach is that it relies on a centralized mobile support 

center to discover nodes with common mobility pattern and similar data access patterns. 

Our work, on the contrary, is fully distributed in which the mobile devices cooperate in a 

peer-to-peer fashion for minimizing the object access cost. 

 The authors in [104] propose a cache admission policy in which a node does not 

cache objects that come from other nodes that are geographically close. It was shown that 

such distance-constrained admission policies can increase the overall object availability 

in the presence of network disconnections caused due to node mobility. This protocol 

attempts to maximize the overall cache hit rate within a partition by exploiting the above 

distance-constrained cache admission for minimizing the object duplications. [28] 

proposes a distributed algorithm that exploits highly effective network-wide shared object 

storage capacity by completely avoiding object duplication across the network nodes 

(referred to as exclusive caching). In this thesis we have successfully demonstrated that 

the exclusive caching does not necessarily offer an optimal solution under many cost 
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formulations. We have proposed an adaptive cache replacement policy that provides the 

right balance between object duplication and uniqueness to provide the minimum per 

object provisioning cost under a practical set of network and cost models.  

In summary, in most of the existing work, there is a focus on maximizing the cache 

hit rate of objects, without considering its effects on the overall cost which depends 

heavily on the content service and pricing models. We formulate different object 

replacement mechanisms to minimize the provisioning cost, instead of just maximizing 

the hit rate.  

2.2.1 Cache Resolution 

Cache resolution schemes reported in [28], [113–115] have proposed various 

methods to locate objects (i.e. cache resolution) in a mobile network. The protocol in [90] 

proposes a profile based approach to minimize the cost of search among cooperative 

mobile terminals trying to access web pages. This and the schemes in [113],[96] propose 

non-flooding based cache resolution approaches. The main idea behind this kind of 

mechanisms is to avoid the overhead of flooding based cache resolution. Although 

improving cache resolution is not the objective of our work, the object replacement 

approach presented in this work is compatible with all the flooding and non-flooding 

based resolution mechanisms reviewed above. The overhead of cache resolution is 

reduced in the broadcast based strategy in [28] by utilizing the concepts of cooperative 

zones, historical profiles, and hop-by-hop resolution.  
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2.2.2 Replacement Polices 

Cache replacement policies for wireless environments were first studied in the 

broadcast disk project [116][112]. Authors in [116] propose 
ℐ� replacement policy 

which considers data access probability and broadcast frequency for object replacement. 

In [112], replacement decisions are made based on both data access history and retrieval 

delays. An optimal cache replacement policy, called Min-SAUD, was investigated in 

[80]. The Min-SAUD policy incorporated various factors that affect cache performance, 

i.e., access probability, retrieval delay, item size, update frequency, and cache validation 

delay. Defining benefit as the reduction in total access cost, [105] presents a polynomial-

time centralized approximation algorithm that delivers a solution whose benefit is at least 

1/4 (1/2 for uniform-size data items) of the optimal benefit.  

In [106–108] authors analyze the impact of energy on designing a cache 

replacement policy. In [106] authors formulate an energy efficient coordinated cache 

replacement policy, called ECORP, as a 0-1 knapsack problem. It also presents a 

heuristic algorithm called ECORP-Greedy and an optimal solution called ECORP-OPT to 

solve the problem. A generalized value function for cache replacement algorithms under 

a strong consistency model has been introduced in [109]. Their proposed general function 

can be customized for various performance metrics by making the necessary changes. 

Authors in [108] addressed the problem of energy-conscious cache placement in wireless 

ad hoc network. They formulated their problem as an integer linear program and gave 

solutions to design caching strategies that optimally trade-off between energy 

consumption and access latency. Another energy-efficient cache replacement strategy is 
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presented in [117] selects data items with the highest utility to cache in local memory in 

order to minimize the energy cost at mobile nodes. 

A group of location dependent replacement policies are presented in [118–121]. In 

[121] a detailed location dependent query model and a semantic cache replacement policy 

FAR (Furthest Away Replacement) are introduced. An evictee is chosen according to the 

current status of the mobile user. The data which are not in the moving direction and are 

furthest from the user will be discarded first as they are not needed in the near future. In 

[43] two cache replacement policies PA (Probability Area) and PAID (Probability Area 

Inverse Distance) are proposed. Three factors are considered during cache replacement: 

access probability, data distance and valid scope area. The valid scope of an item value is 

defined as the region within which the item value is valid. The set of valid scopes for all 

of the item values of a data item is called the scope distribution of the item. The main 

idea of the policies is that a promising cache replacement policy should choose its evictee 

data item with a low access probability, a small valid scope area, and a long distance. In 

[118], a Mobility Aware Replacement Scheme (MARS), is proposed which considers the 

temporal scores, spatial scores and the cost of retrieving the data item from the server for 

object replacement. The temporal score takes into account the most recent update and 

query time in addition to the query and update rate. The spatial score is based on the 

scope area and direction of movement. MARS+ [119] is an extended version of this 

mechanism in which the movement history of mobile nodes or repeated patterns in their 

paths are taken into account to improve cache replacement accuracy. WPRRP is a 

Weighted Predicted Region based Cache Replacement Policy [120] in which the data 

item cost is calculated based on access frequency, valid scope area, data size and 
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weighted data distance. Authors in [121] propose a replacement policy based on the 

mobility prediction.  

2.2.3 Cache Invalidation Protocols 

Due to bandwidth and power constraints in ad hoc networks, it is too expensive to 

maintain strong cache consistency, and the weak consistency model is more practical and 

feasible. A simple weak consistency model can be based on the Time-To-Live (TTL) 

mechanism, in which a node considers a cached item usable if its TTL has not expired, 

and removes the cached data when TTL expires.  

Cache consistency control can be push or pull based. In push based approach, the 

content server sends invalidation messages to all the cache nodes to indicate the update 

status of data items whereas in pull based method, the cache node polls the owner to 

determine whether its cached data item is stale or not.  

In [34], three invalidation schemes, namely, TS, AT, and SIG, were presented. 

Most of the newly proposed invalidation schemes such as [34–51], [122] are variants of 

these basic schemes. They differ from one another mainly in the organization of contents 

and the mechanism of uplink checking. All of these invalidation schemes incur certain 

cache validation delay for ensuring data consistency before the data is used. 

In location-dependent information services, there is yet another kind of cache 

invalidation, where a previously cached data instance may become invalid when the 

client moves to a new location. In [50], three schemes for this kind of location-dependent 

cache invalidation are proposed.  
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2.3 Analysis of Selfishness 

The authors in [123–125] investigate the impacts of selfishness and mistreatment 

on caching. A mistreated node is a cooperative node that experiences an increase in its 

access cost due to the selfish behavior by other nodes in the network. In [126] authors 

study selfishness in a distributed content replication strategy in which each user tries to 

minimize its individual access cost by replicating a subset of objects locally (up to the 

storage capacity), and accessing the rest from the nearest possible location. Using a game 

theoretic formulation, the authors prove the existence of a pure Nash equilibria under 

which network reaches a stable situation. Similar approach has been used in [127] where 

authors modeled distributed caching as a market sharing game. Our work in this thesis 

has certain similarity with the above works as we also use a monetary cost and rebate for 

content dissemination in the network. However, as opposed to using game theoretic 

approaches, we propose and prove an optimal caching policy. Additionally, the pricing 

model of our work which is based on the practical Amazon Kindle business model is 

substantially different and more practical compared to those used in [126], [127].  

2.4 Data replication  

Data replication is a very similar mechanism to data caching which can be used In 

MANETS to reduce the average latency and to save wireless bandwidth in a mobile 

environment. Hara [128] proposed a replica allocation method to increase data 

accessibility in MANETS. According to [128] a mobile node maintains a limited number 

of popular data items. Replicated date items are relocated periodically based on access 

frequency of each mobile node and access frequency of its neighbors. Consistency of 

replicated data is further considered in [129-131]. An extended version of this replication 
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mechanism has been presented in [129] by considering a periodic updates and integrating 

user profiles consisting of mobile users’ schedules, access behavior, and read/write 

patterns.  

Replicating popular data can increase the data accessibility since a mobile node 

cannot access data when it is isolated from the others [129], [130]. However, due to the 

limited size of data can be stored in a mobile node simply replicating data items cannot 

fulfill users requirements. To overcome the limited information availability in MANET, 

authors in [134],[90] proposed a cooperative caching scheme to increase data 

accessibility by peer-to-peer communication among mobile nodes, when they don’t have 

direct access to the server. The protocol in [90] is implemented on top of Zone Routing 

Protocol (ZRP). [135],[136] suggested the 7DS architecture to share and disseminate 

information among users. It operates either on a prefetch mode, based on the information 

and user’s future needs or on an on-demand mode, which searches for data items in a 

single-hop multicast basis. Unlike other cooperative caching mechanisms this strategy 

focuses on data dissemination, and thus, the cache management including a cache 

admission control and replacement policy is not well explored. 

2.5 Firewall Rule Caching 

We utilize our cooperative caching scheme to deploy a distributed firewalling 

mechanism in MANETs. There are few other works that address the firewalling in 

MANETs but none of them uses the rule caching.  

Maccari et. al. proposed a firewalling scheme for mesh networks in [131]. In this 

scheme, all accepted packets for each node are represented by a bloom filter. They use a 

bloom filter to send the list of accepted packets to all nodes in the network. Thus, when a 
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node wants to forward a packet, it queries the packet from all bloom filters it has received 

from other nodes. If it is found, the packet is forwarded; otherwise, it is discarded. Due to 

large number of accepted packets, the bloom filter is very big (it could be in order of GB 

or TB). To deal with this problem, they only consider packets with class C IP addresses 

and port numbers less than 1024, which is a considerable limitation of their work. The 

authors extend their work in neira08mesh to support stateful firewalls and they use d-left 

counting bloom filter with handover support.  

Alicherry et. al. presented a traffic authentication framework for MANETs in 

[132], [133]. In this framework, a set of trusted nodes is appointed as group controller 

that is responsible for distributing token policies. When a node wants to access an 

authorized service on a destination, the source node sends the corresponding token policy 

to the destination. The destination notifies the source node as well as all intermediate 

nodes along the path to the source about the amount of allocated bandwidth for the 

requested session.  
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Chapter 3 : OPTIMAL CACHING FOR HOMOGENOUS 

NETWORKS 

3.1 Motivation 

In conventional data access model, a data enabled mobile device (e.g. smart phone, 

Amazon kindle) downloads an electronic data item from the server through a 

communication service provider network (e.g. 3G/4G network). The communication cost 

of this download must be paid by end user or content provider. In this chapter we adopt 

the Amazon Kindle
TM

 pricing model in which the Content Provider (e.g. Amazon the 

CP) pays the download cost of an electronic item to the Communication Service Provider 

(CSP). The object provisioning cost can be reduced when mobile devices collaboratively 

share their content to each other. To encourage the end-consumers to participate in this 

cooperative caching, a content provider pays a rebate to an end-consumer when it 

provides a data item to another device.  

A key question for cooperative caching is how to store contents in nodes such that 

the average content provisioning cost in the network is minimized. In this chapter we 

show that in a stationary mobile wireless network an optimal caching strategy exists 

which can minimize the average cost per accessed object.  

3.2 Network Model 

To facilitate cooperation among mobile devices carried by people who physically 

gather in public places, a Mobile Social Wireless Network (MSWNETs) can be formed 

using ad hoc wireless connections. For example Figure  3-1 illustrates the location 



 

   33 

snapshot of a two physical partitions in a 6-node MSWNET setting. 

 In this chapter we consider two types of MSWNETs. The first type involves 

stationary [134] MSWNET partitions. This means that after a partition is formed, it is 

maintained for sufficiently long so that the cooperative object caches can be formed and 

reaches steady states. After the optimality and performance of the proposed caching 

mechanism is evaluated for this stationary case, we investigate the second type to explore 

as to what happens when the stationary assumption is relaxed. To investigate this effect, 

caching is applied to MSWNETs formed using human interaction traces obtained [135] 

from a set of real MSWNET settings.  

 

 
Figure  3-1: Snapshot of two physical partitions in a social wireless network 

3.3 Pricing Model 

We use a pricing model similar to the Amazon Kindle e-book delivery in which the 

content provider (e.g. Amazon) pays a download cost Cd to the communication service 

provider (e.g. Sprint) when an End-Consumer (EC) downloads an e-book from the CP’s 

server through the CSP’s cellular network. Also, whenever an EC provides a cached 
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object to another EC within its MSWNET partition, the provider EC is paid a rebate Cr by 

the CP. Alternatively, this rebate can be distributed among the provider EC and the ECs 

of all the intermediate mobile devices that take part in object forwarding. The flow of 

content and cost has been shown in Figure  3-2. 

 

Figure  3-2: Amazon Content and cost flow model 

3.4 Request Model 

A server-tagged object popularity [136], [137] and a Zipf distribution [19] based 

object request model, which is widely used in the literature for modeling popularity based 

online object request distributions, have been used. We also assume all mobile nodes 

generate the same number of requests per unit time and all users have the same interest. 

This means the probability of generating a request for a given item is the same for all 

nodes. 
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3.5 Search Model 

After a request generated within a mobile device, it first search its local cache for 

the requested item. If local search fails, a broadcast request is sent over the MSWNET to 

search the item in the other nodes in the partition. If the network search for the data item 

also fails the requested item will be downloaded from content provider server through 

communication service provider network. (e.g. 3G network). 

3.6 Cost of Content Provisioning  

Table  3-1 shows the list of notations used in the subsequent derivations. 

Table  3-1: Notations used in cost computation 
 Number of ECs in an MSWNET partition 

C Cache size (No. of objects can be stored locally) 

Cd Cost paid by CP (or End consumer) to CSP per object 
download 

Cr 
Rebate paid by CP (or End consumer) to publisher node per 
object  

β=Cr/Cd 
Rebate to download cost ratio 

α Zipf parameter (0 < α < 1) 

N Total number of objects in the network 

PL 
Local hit rate; probability that a requested object is found in 
the local cache 

PV 
Remote hit rate; probability that a requested object is found 
in the partition 

PM 
Miss rate; probability that a requested object is not found in 
the partition 

pi 
Popularity of object ‘i’ in the network 

Sj 
Set of objects stored at node ‘j' 

ni 
Number of copies of object ‘i’ in the network 

T Least popular object stored in the network 
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Let PL be the probability of finding a requested object in the local cache (i.e. local 

hit rate), PV be the probability that a requested object can be found in the network (i.e. 

Remote hit rate) after its local search failed, and PM be the probability that a requested 

object is not found in the network. We can write PM in terms of PV and PL as: 

 �� = 1 − �� − ��  ( 3-1) 

The provisioning cost for an object is zero if the object is found in the local cache, 

Cr when it is found in the MSWNET, and Cd when it is downloaded from the CP’s server 

through the CSP’s network. Thus, average provisioning cost is:  

 ���� = ���� + ����  ( 3-2) 

Expressing Cr/Cd as β and substituting PM from Eqn. 3-1, cost can be expressed as: 

 ���� = �1 − �1 − ���� − �����  ( 3-3) 

Let 
 be the number of devices within an MSWNET partition, and Sj be the set of 

objects stored in device-j �1 ≤ � ≤ 
�. With pi �1 ≤ � ≤ �� as defined in Eqn. 1-1, 

the probability of finding an object in device-j's cache can be written as �� =
∑ "��∈$% . The resulting probability of finding the object at any given device in the 
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partition is ∑ �� 
 &� 
⁄  or	∑ ∑ "��∈$%
 &� 
⁄  (Recall that the request rate of all nodes 

is the same). This is the average local hit rate PL, and can be simplified as: 

 �� = �
∑ )�"�*�&�  ( 3-4) 

where ni represents the number of copies of object-i within the partition. If C is the 

available cache size (i.e. the number of objects that can be stored) at each mobile device, 

then the maximum number of objects that can be stored within a MSWNET partition is 


�. 

With any popularity based object request model (e.g. Zipf), a meaningful 

cooperative caching approach must ensure the following constraint at steady state. 

Popularity storage constraint: An object should not be cached in a partition when at 

least one object of higher popularity is missing in the partition. Meaning, object i cannot 

be cached while object k (k < i) is missing. With this constraint: 

 �� = �
∑ )�"�
+�&�  ( 3-5) 

Note that the popularity storage constraint does not dictate the level of allowed 

object duplication in a partition. It is allowed to have multiple copies of the same object 

within the partition. Object duplication within a node, however, is not beneficial and not 

allowed. 

Let , represent the set of all stored objects in a partition. The probability of finding 

an object in the partition can be expressed as∑ "��∈, , or ∑ "�-�&� , where the T-th 

popular object is the least popular one stored in the partition. The quantity ∑ "�-�&�  
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represents the overall cache hit rate in the partition which is equal to 1 − ��. 

Substituting ∑ "�-�&�  for 1 − �� and the value of PL from Eqn. 3-5 in Eqn. 3-1, we can 

write  

�� = . "� − 1
.)�"�
+
�&�

-
�&�  

Using Eqn. 3-3, the cost expression can be written as /1 − �1 −
�� /∑ "� − �
∑ )�"�
+�&�-�&� 0 − �
∑ )�"�
+�&� 0 �� which can be further simplified 

as: 

 ���� = /1 − �1 − ��∑ "�-�&� − � �
∑ )�"�
+�&� 0 ��   ( 3-6) 

3.7 Minimizing Object Provisioning Cost 

For a given �, the cost in Eqn. 3-6 is a function of the vector )12 =	<
)�, )5, … . , )* > where )� shows the number of copies of object ‘i’ in the SWNET 

partition in question. An object placement )12 is optimal when it leads to minimum object 

provisioning cost in Eqn. 3-6. In this section, we aim to determine the optimal )12.  
Lemma 1: With any popularity based object request model (e.g. Zipf), the optimal 

placement approach must ensure the following constraint at steady state: 

An object should not be stored in a partition when at least one object of higher 

popularity is missing in that partition. That is, object i (i.e. i-th popular object) cannot be 

cached while a higher popularity object k (k < i) is missing. This is referred to as 

popularity storage constraint. 
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Proof: Let us assume that there is an optimal placement which minimizes the 

object provisioning cost in Eqn. 3-6 and violates the popularity storage constraint. It 

means there is a missing object ‘i’ in the SWNET (i.e. )� = 0) while a less popular 

object ‘j’ is present (i.e. 	� > �, ) > 0).  

Using Eqn. 3-6, it can be shown that if a less popular object ‘j’ is replaced with the 

missing object ‘i’, the cost will be lower. This contradicts the assumption and therefore, 

the optimal object placement must preserve the popularity storage constraint.  

Now let us assume that ‘T’ is the least popular object in the optimal solution. 

According to the popularity storage constraint, there is at least one copy of objects ‘1’ to 

‘T’ in the partition.  Therefore, Eqn. 3-6 can be written as: 

 ���� = /1 − �1 − ��∑ "�-�&� − � �
∑ )�"�-�&� 0 ��   ( 3-7) 

Lemma 2: In the optimal object placement, an object k (i.e. k-th popular object) 

should not be duplicated unless all other objects with higher popularity have been 

duplicated in all nodes.  

Proof: According to the storage popularity constraint in the optimal solution, at 

least one copy of object ‘1’ to object ‘T’ exists. Since object ‘T’ is the least popular object 

in the optimal solution, Eqn. 3-7 can be rewritten as: 

���� = 1 −.91 − � − �:;"� − �:.�)� − 1�"�-
�&�

-
�&�  

Now, let )ℓ ≠ )> , 1 < 	)ℓ, )> < :, and ℓ < ?. It can be observed that by 

increasing )ℓ and by reducing )> it is possible to lower the cost. This can lead to the 

following claim: while there is room for increasing the number of copies of object ℓ (i.e. 
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)ℓ < :), less popular objects (e.g. object k, ? > @�	 should not be duplicated. Following 

the above logic, we cannot duplicate object ‘2’ unless we have duplicated object ‘1’ in all 

nodes (i.e. )� = 
). Similarly, we cannot duplicate objet ‘i’ unless we have already 

duplicated more popular objects in all nodes.   

Claim: The optimal object placement )12 has the following properties: 

1) )� = 
	A�B	1 ≤ � ≤ ℓ, where ℓ is the least popular duplicated object in the 

network, and its value should be determined based on �. One copy of objects 

1…ℓ	will be stored in all nodes. 

2) )� = 1	A�B	ℓ + 1 ≤ � ≤ C, where C = �� − �ℓ + @ + 1. This means the 

remaining space of caches is filled with unique objects. 

3) )� = 0	A�B	� > C 

Proof: According to Lemma 1, There must be at least one copy of objects 1…C in 

the network (i.e. there is no missing object). Lemma 2 states that an object should not 

duplicated before all other objects with higher popularity have been duplicated in all 

nodes. This means if ℓ is the least duplicated popular object in the network, there should 

be 
 number of copies of objects 1. . ℓ in the network. 

Note that the above analysis does not help deciding the value of ℓ, or the set of 

objects that need to be duplicated for the optimal object placement solution. It only shows 

that if the optimal solution requires duplication, it must be across all nodes. In the next 

section we show how to determine the value of ℓ. 

 

Figure  3-3: Cache partitioning in Split Cache policy 

Duplicate Unique

λ.C (1-λ).C

Cache Space (C) 
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3.8 Cooperative Split Cache Mechanism 

To realize the optimal object placement as described in Section  3.7 we propose the 

following Split Cache policy in which the available cache space in each device is divided 

into a duplicate segment (λ fraction) and a unique segment (see Figure  3-3). In the first 

segment, nodes can store the most popular objects without worrying about the object 

duplication and in the second segment only unique objects are allowed to be stored. 

Parameter λ in Figure  3-3 (0 ≤ D ≤ 1) indicates the fraction of cache that is used for 

storing duplicated objects.  

With the Split Cache replacement policy, soon after an object is downloaded from 

the CP’s server, it is categorized as a unique object as there is only one copy of this 

object in the network. Also, when a node downloads an object from another node in the 

network, that object is categorized as a duplicated object as there are at least two copies 

of that object in the network. Because of limited cache storage, a node cannot store all 

downloaded objects. Therefore, to store a new incoming object a node has to select and 

evict another object from its cache. For storing a new unique object, the least popular 

object in the whole cache is selected as a candidate and it is replaced with the new object 

if it is less popular than the new incoming object. For a duplicated object, however, the 

evictee candidate is selected only from the first duplicate segment of the cache. In other 

words, a unique object is never evicted in order to accommodate a duplicated object. The 

Split Cache object replacement mechanism realizes the optimal strategy established in 

Section  3.7. With this mechanism, at steady state all devices' caches maintain the same 

object set in their duplicate areas, but distinct objects in their unique areas. The pseudo 

code of Split Cache replacement policy is shown in Algoritm-1. 
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Cost for Cooperative Split Cache: To compute the provisioning cost for Split Cache 

we first calculate PL (local hit rate) and PV (remote hit rate) and then substitute their 

calculated values in Eqn. 3-3. To facilitate calculation of PL and PV we define a function 

f(k) which represents the probability of finding an arbitrary object within a device's cache 

that is filled with the k most popular objects. This function can be expressed as ∑ "�>�&� . 

Substituting pi for the Zipf distribution, A�?� = ∑ "�>�&� ≈ F G�� H� =>�
I >�JK��L��LM . Now, considering	I = 1 ∑ "���=1N ≈ 1/F 1��H� = 1−��P1−�Q−1?1 , 

we can write: 

 A�?� = >�JK��L�*�JK��L� ( 3-8) 

Local Hit Rate PL: At steady state, total number of unique objects stored in the 

partition is equal to 
��1 − D�. Also, the number of duplicated objects is equal to λC. 

INPUT: Object Onew 

IF ( Onew is downloaded from another node )  
 RS�T = �ℎV	@VW��	"�"X@WB	�Y�	�)	�ℎV	Z[\]^_`ab		WBVW 

ELSE 
 RS�T = CℎV	@VW��	"�"XW@WB	�Y�	�)	�ℎV	bca^db	eWeℎV 

END 
IF ( RTfg. "�"X@WB��h > RS�T. "�"X@WB��h) 

     db\]`_b		RS�T	i��ℎ	RTfg 
END 

Algorithm 1: Split Cache object replacement policy 
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Therefore, the total number of different objects stored in the partition is D� +
��1 −
D�. Probability that a device can find a new requested object in its local cache is equal to: 

 �� = jk + lm
  ( 3-9) 

where jk = A�D�� corresponds to the cache hits contributed by the objects stored 

in the duplicate area of cache and jn = AoPD +
�1 − D�Q�p − A�D�� represents the hit 

rate contributed by the unique objects (in the partition) which are assumed to be 

uniformly distributed over all 
 devices' caches. 

Remote Hit Rate PV: It is equal to the hit probability contributed by the objects 

stored in the unique area of all devices in the partition, minus the unique area of the local 

cache. This can be expressed as:  

 �� = 
L�
 jn ( 3-10) 

Substituting the value of PL and PV from Eqns. 3-8	�q = jr + js
  ( 3-9 

and 3-10 in Eqn. 3-3, the cost can be simplified as: 

 ���� = /1 − /��Lt�
ut
 0jn − jk0 ��  ( 3-11) 

Using Eqn. 3-8 to expand HU and HD, Eqn. 3-11 can be written as a function of λ. 

By equating the derivative of the cost expression to zero, we can compute λopt at which 

cost is minimized. The values and trend of λopt for different system parameters including 

C,	
, α and β are presented in Section  3.10.  
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3.9 Handling Objects with Different Size 

For the sake of modeling simplicity, so far we have assumed that all objects have 

the same size. In this section, the minimum-cost object replacement mechanism is 

extended for scenarios in which objects can have different sizes. In such situations, in 

order to insert a new downloaded object ‘i' from the CP’s server, instead of finding the 

least popular object, a node needs to identify a set of objects ψ in the cache. The set ψ 

should be identified such that the quantity ∑ "  ∈v is minimized while ∑ " < ∈v
"�and ∑ w > w� ∈v ∑ w > w� ∈v ; the quantity xi shows the size of object ‘i’. This is 

a traditional knapsack problem for which a number of heuristics based solutions are 

available in the literature. If a set ψ, satisfying the above conditions, is found, then all 

objects in that set are evicted from the cache to accommodate the new incoming object; 

otherwise the incoming object ‘i' is not admitted. When an object is downloaded from 

another node in the MSWNET, the members of ψ can be selected only from the objects 

stored in the duplicate area of the cache. Note that dimensioning of the split factor λ with 

varying object size is not addressed in this chapter. 

3.10 Evaluation in Static Partitions 

The performance of Split Cache in static partitions was evaluated using the 

analytical expressions in Section  3.8, and then via ns2 network simulation. For 

simulation, a flooding based object search mechanism has been implemented using the 

baseline AODV [138] route discovery syntaxes. Baseline experimental parameters are 

summarized in Table  3-2. 
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Table  3-2: Baseline simulation parameters 

Number of ECs in a static partition(V) 40 

Download cost (Cd) 10 

Rebate-to-download-cost ratio (β) 10 ≤≤ β  

Cache size in each mobile device (C) 50 

Zipf parameter (α) 0.8 

Object population (N) 5000 

Warm up phase to reach steady state 2000 requests 

Total simulation duration 10000 requests 

3.10.1 Hit Rates and Provisioning Cost 

Figure  3-4(a) depicts the impacts of λ on the hit rates. Smaller λ values lead to 

fewer copies of the popular objects within the local cache and the subsequent low local 

hit rates. Larger number of unique objects in the partition, however, leads to higher 

remote hit rates for smaller λ values. Since with larger λ, more popular objects are 

duplicated, the likelihood of finding objects locally improves, leading to higher PL 

values.  

The miss rate PM depends on the total number of unique objects in the MSWNET 

partition, which increases with higher duplications when λ is increased. The excellent 

agreement between the analytical and the simulation results in Figure  3-4(a) validates the 

analysis in Section  3.8. 
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Figure  3-4: Hit rates and cost for Split Cache and traditional policies 

 

Figure  3-4(b and c) depict the provisioning cost as a function of λ. When � =
0	(i.e. per object credit Cr=0), the cost expression in Eqn. 3-3 reduces to	���� = ����. 

Meaning, for a given Cd, the cost depends only on PM which reduces as λ reduces. 

Therefore, when � = 0, λ=0 results in minimum PM and consequently the minimum 

cost. When = 1 , meaning the r ebate is same as the download cost Cd, the expression in 

Eqn. 3-3 reduces to ���� = �1 − �����, indicating that it depends only on the local hit 

rate for a given Cd. This explains as to why the cost decreases with increasing λ, whereas 
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the local hit rate increases. Intuitively, when Cr = Cd, there is no advantage of fetching 

objects from the MSWNET. The only way to reduce cost in this situation is to maximize 

PL. Observe in Figure  3-4(c) that for both � = 0.5 and � = 0.7, the cost reduces initially 

for increasing λ but after a critical λ= λopt, the cost starts to increase. This critical point 

can be found numerically from Eqn. 3-11. It was established in Section  3.7 that starting 

from the state of zero partition-wide duplication, if the iterative duplication/replacement 

process stops at the correct point, the cost can be minimized. This translates to finding the 

appropriate level of duplication, which is decided by λ. As shown in Figure  3-4(c), λopt is 

0.4 when β is 0.5, and it is 0.6 when β is 0.7. Thus, a larger λopt is needed when the 

rebate is larger with respect to the download cost from the CP's server.  

3.10.2 Comparison with Traditional Caching Policies 

Figure  3-4(d) shows the cost for Least Recently Used (LRU) [32], Least Frequently 

Used (LFU) [136], and Random (RNDM) [31] along with those for Split Cache when λ 

set to 0, 1, and λopt. While LRU and LFU implicitly leverage object popularity by storing 

the most popular objects, RNDM is insensitive to popularity. As expected, Split Cache 

with λopt provides the best cost. λ=0 delivers near-best performance for small β. This is 

because as shown in Eqn. 3-3, for small β (i.e. small rebate Cr), cost depends mainly on 



 

   48 

PM. From Figure  3-4(a), PM is minimum for λ=0, which corresponds to no-duplication 

caching.  

When β is large (e.g. � ≥ 0.7), λ=1 delivers near-best performance. This is because 

as shown in Eqn. 3-3, for large β, the cost depends mainly on PL, which is maximized 

when λ=1. All traditional policies perform in between Split Cache with λ=0 and λ=1. 

Since RNDM is insensitive to popularity, by uniformly distributing the objects in the 

partition, it is able to increase PV, which helps it outperform LRU and LFU for small βs. 

LFU, on the other hand, attempts to distinguish popular objects by keeping track of the 

number of hits for an object. This explains its performance proximity with Split Cache 

when λ=1. 

3.10.3 Partition Object Density 

Partition density refers to the number of copies of an object in the MSWNET 

partition. With Split Cache, the expected density values are 
 (number of ECs in the 

partition) for the duplicated objects, 1 for the unique objects, and 0 for the objects that are 

not stored in any node. This is confirmed in Figure  3-5(a) which reports densities from 

simulation for different values of βs. With increasing β, since λopt increases, more 

objects are duplicated, thus increasing the density. We show results only up to object-id 

50 (i.e. cache size C), because objects beyond C have only one or zero copy. When � =
0, since λopt is also zero, there is no duplication, causing the 
�	most popular objects to 

have one copy and the rest of the objects with zero copy. 
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Figure  3-5(b) depicts simulated object densities for LFU, LRU, and RNDM. 

Observe that for all three policies, certain amount of density skew (i.e. higher density for 

more popular objects) is generated by the Zipf based object requests. For RNDM, the 

densities are minimally skewed, since the policy itself is not sensitive to popularities. 

LFU, on the other hand, shows a density pattern that is closest to the Split Cache with 

λ=1 due to its effective sensitivity to object popularity. Similar to the cost results, the 

density pattern for LRU lies in between RNDM and LFU. This is because the effective 

sensitivity to object popularity for LRU is weaker than LFU, but stronger than RNDM. 

 
Figure  3-5: Partition object densities 
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the high remote hit rates during the warm-up phase. Gradually when nodes download 

0 20 40 50
0

10

20

30

40

50

Object Id

O
b
je

c
t 

D
e
n
s
it
y

 

 

10
0

10
2

10
3

0

10

20

30

40

50

Object Id

O
b
je

c
t 

D
e
n
s
it
y

 

 

LFU
LRU
RNDM

β=0.5

λC=20

β=0.1

λC=2

(a) β=1 λC=50 (b)

β=0.9

λC=43



 

   50 

objects in their cache, less number of subsequent requests needs to be served through the 

CP’s server, which in turn results in lower costs. The value λ was set to 0.68 which is the 

optimal value when � is 0.8.  

At steady state, each node stores object 1 through objet 34 (i.e. λ.C) in the duplicate 

segment of their individual cache, and the remaining 14 slots in the cache are filled with 

unique objects. At time 30000 seconds, the object popularity profile is altered by 

swapping the popularities of objects 1 to 10 with those of objects 1000 to 1010. Meaning, 

object 1000 becomes most popular, and object 1 becomes 1000
th

 popular. A reduction in 

local hit rate and an increase in remote hit rate can be observed immediately after this 

alteration in Figure  3-6(b). Due to these changes in hit rates, the provisioning cost suffers 

from an immediate surge after 30000 second. The algorithm, however, is able to gradually 

bring the cost down by optimal storing the new set of popular objects in the caches.  

 

Figure  3-6: Cost and hit rates over time 
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Figure  3-6(a,b) demonstrate the effects of another popularity alteration that is 

created again at 40000 second. These dynamics show as to how the proposed cooperative 

caching can cope with runtime popularity alterations due to external events. 

3.11 Android SWNET Test bed 

The Split Cache protocol was also implemented as an Android App on a seven-

phone Social Wireless Network. Based on Zipf distribution over 5000 objects, each node 

was programmed to generate 1 request per second. The requests are homogeneous in 

these experiments. Each phone is able to store up to 50 different objects in its local cache 

(i.e. C = 50). After generating a request for an object, a phone first checks its local cache 

and if its local search fails, it searches the object in the other six phones using a ad hoc 

WiFi network acting as the inter-phone peer-to-peer links.  If the node does not receive a 

reply within two seconds after sending the request, it downloads the object directly from 

a desk-top machine that emulates the CP’s server. Note that any object downloaded 

directly from the CP’s server is considered as a unique object and it is stored in the 

unique area of the cache.  

 

 Figure  3-7(a) reports object provisioning costs from both the analytical expressions 

and from the test-bed when D varies between 0 and 1, and the rebate to cost ratio β is set 

to 0.5. The cost is analytically computed according to Eqn. 11 when the parameters m, C, 

α are set to 7, 50, and 0.8 respectively.  
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Figure  3-7: (a) Cost and (b,c) Local and Remote Hit Rates 
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as described above are also high. These cause more frequent erroneous object 

duplications and subsequently higher cost. 

3.12 Operational Feasibility of Split 

 Two relevant operational questions from the Content Provider’s standpoint are: a) 

for a maximum allowable cost point, what is the maximum possible rebate that can be 

generated for the MSWNET users, and b) what would be the minimum cost when the CP 

attempts to guarantee a pre-specified minimum generated rebate for the MSWNET users. 

In what follows, we address these two questions. 

 The shaded region in Figure  3-8 envelopes all feasible pairs of cost and generated 

rebate (GR) that can be generated by varying the parameters β and D. The top edge of the 

region is defined by a line representing	� = 1, and D	varying from 1 to 0. Similarly, the 

bottom edge is defined by a line representing D = 0, and � varying from 0 to 1. The 

figure shows the feasibility lines for specific cases of �, namely, 0, 0.1, 0.5, 0.7, and 1. 

The feasible region is formed by drawing all continuous β values from 0 to 1.  

 Point C on the feasibility region corresponds to the minimum cost as well as the 

minimum GR (i.e. zero), which is achieved by setting	D = 0	and	� = 0	. These result into 

the exclusive caching with zero duplication across the partition, and free object fetching 

from within the SWNET. Point B corresponds to the maximum cost as well as the 

maximum possible GR, which is achieved by setting	D = 0	and	� = 1. These also result 

into exclusive caching, but with a hefty rebate Cr, causing the maximum cost and 

generated rebate. Finally, point A on the feasibility region corresponds to D = 1	and for 

any value of �. This is because with full duplication (D = 1), there is no need for fetching 
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an object from the MSWNET, causing zero generated rebate. This means that the quantity 

Cr does not have any impact on cost at this point, leaving the cost independent of β. 

 

Figure  3-8: Feasible operating region in the cost-rebate plane 
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3.13 Performance with Non-stationary Networks 

The stationary partition assumption is relaxed in this section. We evaluated Split 

Cache and the traditional policies on a dynamic 98-node MSWNET formed by 98 

individuals attending the INFOCOM '05 conference [139]. We have extracted the 

MSWNET partition dynamics from a pair-wise interaction trace obtained from [135]. The 

trace contained synchronized time-stamped pair-wise individual interaction information 

with a granularity of 4 minutes, which is the Hello packet interval used by a small RF 

transceiver attached to all 98 individuals while attending the conference. Figure  3-3(a) 

reports the extracted partition dynamics as the average partition size from individual 

nodes' perspective. For example, at time 20, average partition size across all nodes is 12. 

Figure  3-3 (b) depicts the simulated cost as a function of λ. Observe that the pattern 

in this graph is exactly the same as that observed for the stationary partition case in 

Figure  3-10, indicating that the concept of optimal λ also holds for networks with 

dynamic partitions. Analytical computation of the λopt in this dynamic case, however, 

may not be as straightforward due to the wide variation of the partition size as shown in 

Figure  3-3 (a). A heuristic approach would be to compute λopt for each node individually 

based on its own observed average partition size. 
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Figure  3-9: Partition dynamics from trace and provisioning cost 
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Figure  3-10: Comparative minimum cost 
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the experiment, the partition size is quite small. For small partitions, Split Cache with 

λ=0 generates the best cost which reduces the average cost of the experiment. 

3.14 Summary and Conclusion 

In this chapter we developed a cooperative object caching strategy for provisioning 

cost minimization in Mobile Social Wireless Networks (MSWNETs). The key 

contribution was to demonstrate that the best cooperative caching for provisioning cost 

reduction requires an optimal split between object duplication and uniqueness. We also 

analytically derived this optimal split point and subsequently developed the caching 

performance using a practical network, service and cost formulation that is motivated by 

Amazon’s Kindle e-book delivery model. 
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Chapter 4 : CACHING FOR HETEROGENEOUS 

NETWORKS 

4.1 Motivation 

The Split Cache replacement policy with optimal λ minimizes the provisioning cost 

for stationary networks with homogenous object demands. However, Split Cache is not 

able to minimize the provisioning cost for non-homogenous object requests where nodes 

have different request rates and request patterns. In this chapter we propose a generalized 

benefit based approach to minimize the object provisioning cost in a network with non-

homogenous request model. 

4.2 Provisioning Cost with Heterogeneous Requests 

Recall that the cost for providing an object is zero when the requested object is found 

in the local cache. This cost is βCd when the object is found in the local MSWNET 

partition and Cd when it is downloaded from the CP’s server through a CSP’s network. 

The probability that a node ‘i’ finds the requested object in its own cache is	∑ " � ∈��  

where si indicates the set of stored object in node ‘i’ and "�  shows the probability that a 

generated request in node ‘i’ is for object ‘j’. The probability that a request is found in the 

network after its local search fails is equal to	∑ " � ∈�$∗L���  where S
* 

represents the set of 

all objects stored in the network. Finally the probability that an object is not available in 

the network and needs to be downloaded from the CP’s server is 1 − ∑ " � ∈$∗ . Therefore, 
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the average provision cost for node ‘i’ can be expressed as: 

 ����� = /� ∑ " � ∈�$∗L$�� + P1 − ∑ " � ∈$∗ Q0 ��  ( 4-1) 

Average provision cost in the network for all nodes can be calculated as: 

 ���� = ∑ ��� �{�}�∑ ��� 	=
�1 − ∑ ��∑ |�%%∈�∗� ∑ ��� + � ∑ ��� ∑ {�%%∈�∗K��∑ ��� ���   ( 4-2) 

where µi shows the request generation rate in node ‘i’. With the heterogeneous 

request model, the provisioning cost depends on the request rate at each node, object 

placement in the network, and more importantly, the popularity of each object with 

respect to each node. Contrary to the homogenous model in which all nodes are interested 

in the same set of objects with the same popularity distribution, in the heterogonous 

model the popularity of an object is not the same in different nodes. As a result, finding 

the optimal object placement that minimizes the provision cost is relatively more 

complex than that in the homogeneous scenario. In the following section, we propose a 

distributed algorithm for object replacement which minimizes the overall network-wide 

cost in the presence of heterogeneous object request patterns. 

4.3 Benefits of Caching  

Suppose � is the set of nodes that store a copy of object ‘j’ in their cache. Let  µi, 

be the object request rate for node ‘i’ and "�  be the probability that a generated request in 

node ‘i’ is for object ‘j’ (i.e. node ‘i’ generates	��"� requests for object ‘j’ per unit time). 
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The cost of network usage for downloading an object directly from CP’s server is Cd. 

Therefore, storing object ‘j’ reduces cost at node ‘i’ by the amount	��"� �� 	per unit time. 

This reflects the benefit of storing object ‘j’ in node ‘i’. Thus the benefit of storing object 

‘j’ in the set of nodes specified by � can be written as: ∑ 	��"� ��∀�∈�  

Additionally, every other node in a SWNET partition (i.e. nodes that do not store 

object ‘j’ locally) is able to download object ‘j’ from one of nodes in � with cost βCd. 

This reduces the cost of providing object ‘j’ to any other node in the network by the 

amount �1 − ���� for each request for object ‘j’. Total number of requests for object ‘j’ 

by the other nodes in the SWNET is equal to	∑ �>"> ∀>∉� . Therefore, the remote benefit 

of storing a unique object ‘j’ in the network is equal to�1 − ���� ∑ �>"> ∀>∉� . The 

total benefit (the overall amount of cost reduction) of storing a object ‘j’ in set of nodes 

specified by ‘Q’ can be written as: 

. 	��"� ��∀�∈� + �1 − ���� . �>"> ∀>∉�  

This can be rewritten as: 

 �1 − ���� ∑ �>"> ∀> + ∑ �	��"� ��∀�∈�	   ( 4-3) 

The first term of Eqn. 4-3 refers to the global benefit of storing object ‘j’ in the 

network. Note that global benefit of storing an object in the network does not depend on 

the location and the number of copies of that object. The global benefit of objects (1..N) 

can be represented by a vector s112 where 

  s = �1 − ���� ∑ �>"> ∀> .  ( 4-4) 

The second term of Eqn. 4-3 shows the local benefits of storing object ‘j’ in set of 
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nodes specified by �. The local benefit of storing object (1…�) in nodes (1…
) can be 

represented by a matrix r
×* where: 

 r� = 	���"� �� 	 ( 4-5) 

Using the above notations, the total benefit of storing object ‘j’ in a set of nodes 

specified by ‘Q’ can be written as: 

s + .r> 	>∈�  

4.4 Benefit Based Distributed Caching Heuristics  

With the Distributed Benefit based caching strategy presented in this section, when 

there is not enough space in the cache for accommodating a new object, the existing 

object with the minimum benefit is identified and replaced with the new object only if the 

new object shows more total benefit. The benefit of a newly downloaded object is 

calculated based on its source. When a new object ‘j’ is downloaded by node i directly 

from the CP’s server using the CSP’s 3G/4G connection (i.e. no other copy of the object 

is present in the SWNET partition), the copy is labeled as primary and its benefit is equal 

to s + r� .  

When the object is downloaded from another node in the SWNET partition (i.e. at 

least one more copy of the object already exists in the partition), the copy is labeled as 

secondary and its benefit is equal to r� . The new object is cached if its benefit is higher 

than that of any existing cached object.  

In addition to the benefit based object replacement logic as presented above, 

provisioning cost minimization requires that a primary object within an SWNET partition 
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should be cached in the node that is most likely to generate requests for that object. In 

other words, a primary object j in the partition must be stored in node i such that:  

��"� > �>"> 	A�B	W@@	? ≠ � . 

To satisfy the above constraint, the primary copy of an object ‘j’ must always be 

stored in a node with the highest request generation rate for that object. To enforce this, 

in addition to the object-ID, a node sends its estimated request generation rate for the 

requested-object during the search process within SWNET. Upon receiving the search 

request, an object holder compares its own request rate for the object with that of the 

requesting node. If the request rate of the requesting node is higher and the object copy is 

a primary copy, then the object provider sends the object along with a change_status flag 

to the requesting node. This flag informs the requesting node that the object must be 

considered as a primary copy. Upon receiving of the object and the change_status flag, 

the requesting node considers the object as a primary copy and if it can find an object 

with lower benefit or if it has an empty slot, it stores the new object in its cache. After 

storing it, the requesting node sends another change_status message to the provider node 

which causes the provider node labels its object as a secondary copy. The complete logic 

of the Distributed Benefit heuristics is summarized in Algorithm-2. 

Note that in certain rare situations the object status modification process fails to 

satisfy the above constraint. For example, consider a situation in which only one node in 

the network generates requests and other nodes make no requests. In this case, due to 

storage limitations, the active node can only store a limited number of objects. The object 

status modification process does not help the active node to offload some objects to the 

other nodes in the network. Offloading objects to other caches needs extra protocol 
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syntax and requires additional complexity and overhead in the algorithm and it’s beyond 

the scope of our current work. Object status modification process also fails to work 

perfectly in highly mobile situations. For example, two nodes may consider an object as 

primary copy while they are in the same SWNET partition. This may result in storing 

additional number of copies of some objects. Due to these inconsistencies Distributed 

Benefit heuristics does not guarantee a cost-optimal object placement.  

 

4.5 Performance Upper bound: Optimal Object Placement 

 In this section we introduce a centralized mechanism in order to find the optimal 

object placement. First we map the object placement task to a maximum weight matching 

problem in a bipartite graph. Then we formulate an integer linear objective function to 

find the maximum weight matching, and we show that the linear programming relaxation 

of this problem in fact provides the optimal solution.  

RS�T = RY�Ve�	i��ℎ	:�)�:X:	YV)VA�� 

INPUT: Oj          //The new downloaded object 
             flag        // Change status flag 
IF ( Oj is downloaded from Internet || flag == True) 

 R . YV)VA�� = s� +	r�� 
 R . @WYV@ = �B�:WBh 

ELSE 

 R . YV)VA�� = r�         
  R . @WYV@ = �Ve�)HWBh 

END 

IF (R . YV)VA�� > RS�T. YV)VA��) 
 db\]`_b		RS�T 	i��ℎ	R  
 �bcZ	eℎW)�V	��W�X�	:V��W�V	��	�ℎV	"B���HVB	)�HV		 

END 

Algorithm-1: A distributed heuristic for object placement in SWNETs 
with heterogeneous content requests in node ‘i’ 
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In a maximum weight bipartite matching problem, for a given bipartite graph 

� = ��, ��	with bipartition ��,ℬ� and weight function i:�	 → ℝ, the objective is to 

find a matching of maximum weight where the weight of matching M is given by 

i��� = ∑ i�V�f∈�	 . Without loss of generality, it can be assumed that G is a complete 

weighted bipartite graph (zero weight edges can be added as necessary); it can be also 

assumed that G is balanced, i.e. |�| = |ℬ| = �5�, as we can add dummy vertices as 

necessary.  

4.5.1 Optimal Object Placement as a Matching Problem 

To map the object placement problem to a maximum weight bipartite matching, 

nodes are modeled by vertices )� …)S in partition �, and objects are modeled as 

vertices in partition ℬ. Initially, we assume that each node is able to store only one object 

(i.e. cache size is equal to 1) and later we relax this assumption. 

In object placement, we may put one object in multiple nodes therefore every 

object must be modeled by 
 vertices. For example for object ‘j’ we create vertices 

R� …R
  in partition ℬ. A vertex R�  then is connected to the vertex )� with the weight 

of r�  which shows the local benefit of storing object ‘j’ in node ‘i’. We also add vertices 

�� …�SL�  in partition � and connect vertices R� …R
  to them using the edges with 

weight zero. These new vertices are added to model the situation when object ‘j’ is not 

stored in that node. When there is no copy of object ‘j’ in the network the global benefit 

of object ‘j’ is lost. To model this situation, vertex � 	is added in partition � and it is 

connected with vertices R� …RS  using the edges with weight –s . Note that there is 

only 
 − 1 edges with weight zero and therefore, in perfect matching at least one edge 
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with weight of –s  must be selected when object ‘j’ is not stored in any node. The above 

process is repeated for all objects in the network. Also for every slot of cache space a 

vertex must be created in partition � and the whole process of mapping must be repeated 

again.  Figure  4-1 shows a modeled object placement problem when 
 = 2,� =
2	W)H	� = 1. 

 

Figure  4-1: An object placement problem as bipartite graph 
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4.5.2 Maximum Weight Matching 

For the resulting complete bipartite graph we can formulate maximum weight 

perfect matching as an Integer Linear Programming (ILP) problem as follows: 

Max ∑ i� w� ∀��, �  

Subject to:  (1) A�B	� ∈ � ∶ 	∑ w�  	 = 1 

 (2)	A�B	� ∈ ℬ ∶ 	∑ w� �	 = 1 

 (3) w� ∈  0,1¡		� ∈ �, � ∈ ℬ	  

  where w� = 1 if  ��, �� ∈ :W�eℎ�)�	� and 0 otherwise. We can relax the 

integrality constraints by replacing constraint 3 with: 

 w� ≥ 0			� ∈ �, � ∈ ℬ 

This gives linear programming relaxation of the above integer program. In a linear 

program, the variable can take fractional values and therefore there are many feasible 

solutions to the set of constraints above which do not corresponds to matching. This set 

of feasible solution forms a polytope, and when we optimize a linear constraint over a 

polytope, the optimum will be attained at one of the “corners” or extreme points of the 

polytope .  

In general, the extreme points of a linear program are not guaranteed to have all 

coordinates integral. In other words, in general there is no guarantee that the solution for 

linear programming relaxation and the original integer program are the same.  However, 

for matching problem we notice that the constraint matrix of linear program is totally 

unimodular and therefore any extreme point of the polytope defined by the constraints in 

linear program is integral. Moreover, if an optimum solution to a linear programming 
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relaxation is integral, then it must also be an optimum solution to the integer program 

[140]. Therefore, the solution found by linear programming is optimal for the maximum 

weight bipartite matching problem to which our object placement problem is mapped 

into. The maximum weight matching M represents the optimal object placement which 

minimizes provisioning cost in Eqn. 4-2. The optimum result of the linear program can be 

treated as the upper bound of cooperative caching performance. Such upper bounds are 

reported in the experimental results in Section  4.7. 

The maximum weight perfect matching can be also found by Hungarian method (also 

known as Kuhn–Munkres algorithm) in polynomial time [140][141]. In literature there 

are many other algorithms for finding the maximum weight perfect matching. 

4.6 Evaluation of the Distributed Benefit Strategy  

4.6.1 Performance with Homogenous Content Requests 

Figure  4-2 depicts average local hit rate, non-overlapping partition hit rate, and 

miss rate in a network when all nodes run Distributed Benefit replacement policy. The 

results correspond to a 40-node network with homogenous object requests and nodal 

cache size of 50. As shown in Figure  4-2, all hit rates for Distributed Benefit and Split 

Cache with optimal λ are exactly equal for a wide range of rebate-to-download cost 

ratios. Since it was already proven in Section  3.7 that the Split Cache delivers optimal 

performance under homogeneous object requests, from the observations in Figure  4-2, it 

can be concluded that the Distributed Benefit strategy is also able to deliver optimal 

performance for the shown range of the rebate-to-download cost ratios. This conclusion 

is further corroborated in the reported cost numbers in Figure  4-3(a). 
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Figure  4-2: Local hit, remote hit and Miss rate for Distributed Benefit and Split Cache 

with λopt 

 

Figure  4-3: (a) Object provisioning cost and (b) object density for Distributed Benefit and 

Split Cache with λopt 

Figure  4-3(b) demonstrates the object density at steady state within a MSWNET 

partition for the Distributed Benefit strategy. It can be observed that the number of copies 

for different objects follows the optimal object placement as we describe in 

chapter  Chapter 3 above. Furthermore, the least popular duplicated objects in Distributed 
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Benefit and Split Cache with optimal λ (Computed using 3-10) are very similar. The 

small difference is due to randomness and inaccuracy of broadcast search in ns2 

simulation. Object density has been measured for different values of β, the rebate-to-

download cost ratio. As shown, Distributed Benefit keeps less duplicated objects in the 

partition for small βs. The reason is when β is low, the benefit of duplicated objects is 

also very low and therefore only few objects are duplicated in the network. To 

summarize, the results in Figure  4-2 and Figure  4-3 indicate that the Distributed Benefit 

strategy can deliver optimal performance, which is the same performance of Split Cache 

with optimal λ, under homogenous object request patterns. 

4.7 Performance with Heterogeneous Object Requests 

In this section we study cooperative caching performance when nodes have 

different request rates and different request patterns. To create node-specific object 

popularity profiles we have used the following web proxy and web server traces:  

BU [142]: The Boston University’s proxy trace which contains access information 

of 28 end users requesting pages from 1840 distinctly different websites during April and 

May, 1998. 

NLANR [143]: A one day trace of HTTP requests to four proxy caches at the 

National Lab for Applied Network Research, on January 10, 2007. This trace contains 

access information of 117 end users to 241173 different websites.  

For the above two proxy traces we map the web-sites to individual objects, and the 

users to MSWNET mobile devices. 

NASA [144]: This trace contains access information of 81983 clients to 21670 

webpage of the NASA Kennedy space center web server in Florida during July, 1995.  
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SASK [145]: This trace contains access information of 162523 clients to 36825 

webpage of a web server in the University of Saskatchewan during June to December of 

1995. For the NASA and SASK traces we map the web-pages to individual objects, and 

the clients to MSWNET mobile devices.  

Since the smallest number of clients among all four traces is 28 (i.e. for BU), in 

order to be able to compare the results across all traces, we extract the access information 

of 28 nodes with the highest request generation rate from all the trace files and use them 

in the caching simulation. In all following simulation experiments nodal cache size is set 

to 25. 

Figure  4-4(a) depicts the global popularity of objects in BU and NLANR traces. 

The global popularity of object ‘i’ is computed as: 

�@�YW@	"�"X@WB��h� = �X:YVB	�A	BV¢XV���	�)	�ℎV	)V�i�B?	A�B	�Y�Ve�	′�′CℎV	���W@	)X:YVB	�A	BV¢XV���	�)	�ℎV	)V�i�B?  

It can be observed that the graph in Figure  4-4(a) closely follows a straight line on 

a log-log scale, indicating the Zipf distribution for object requests.  

Figure  4-4(b) depicts the cumulative probability density function of global 

popularity for both BU and NLANR traces. Observe that when the requests are generated 

from the BU trace, by storing the first 25 popular objects, each node is able to find 40% 

of its requested objects in theist local cache. This number is around 20% for requests 

following the NLANR trace. This confirms that the object popularity in the BU trace is 

indeed more skewed compared to the NLANR trace. 
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Figure  4-4: PDF and CDF of global popularity for accessed objects in BU and NLANR  

 

The probability of generating a request for an object in a single node is referred to 

as the local popularity at that node. Similar to the global popularity, the local popularity 

also follows a Zipf distribution. However, the set of objects from a single node’s 

standpoint is smaller compared to that in the entire network. The Local popularity of 

object ‘i’ at node ‘j’ can be computed as: 

@�eW@	"�"X@WB��h� = �X:YVB	�A	BV¢XV���	Yh	)�HV	′�′	A�B	�Y�Ve�	′�′CℎV	���W@	)X:YVB	�A	BV¢XV���	Yh	)�HV	′�′  

The local popularity of objects is expected to be different at different nodes. For 

the BU and NLANR traces, Figure  4-5 (a) depicts the local popularity of the most 

globally popular objects from the standpoint of different individual nodes in the network.  
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Figure  4-5: Local popularity of the most global popular object and normalized request 
generation rate in BU and NLANR trace files 

 

Figure  4-6: Comparing object provisioning cost in benefit based strategy and Split Cache 
for BU and NLANR traces 

Figure  4-5(b) depicts the normalized (by network-wide request rate) request 

generation rates from different nodes. As shown, few nodes are more active and generate 

more requests per unit time compared to the others. Individual node-specific request rates 
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can have a significant impact on the average object provisioning cost, and therefore it is 

crucial to consider this parameter in object placement algorithm as presented in 

Algorithm 2 for the Distributed Benefit strategy and its associated text. It can be seen that 

the diversity of request generation rate for NLANR trace is higher than that of the BU 

trace. 

 

Figure  4-6(a,b) depict the object provisioning cost for Distributed Benefit, Split 

Cache, linear programming (cost lower bound), and  traditional LRU with the BU and 

NLANR traces. Due to the heterogeneous nature of those traces, Eqn.3-10 cannot be used 

for finding the optimal D in Split Cache. Instead, the optimal D for Split Cache is 

experimentally found by running the protocol for all possible values of D, and then 

selecting the one that generates the minimum cost. This minimum cost is shown as the 

Best Split. Note that LRU is the only representative traditional cache replacement policy 

for which the results are included in Figure  4-6. This is because it outperformed the other 

traditional policies, namely, LFU and RNDM. 

The following observation can be made from Figure  4-6 (a,b). First, due to optimal 

object placement, the linear programming has lowest cost compared to those in the other 

approaches.  The cost difference stems mainly from offloading objects from the active 

nodes (i.e. with very high request generation rate) to other less active nodes as explained 

in Section  4.3.  

Second, the cost in Distributed Benefit is always less that with Best Split (i.e. Split 

Cache run with the experimentally found optimal D) and LRU replacement policy.  The 

reason is that Distributed Benefit attempts, although heuristically, to attain the same 

object placement goals as by the cost lower bound obtained by linear programming. It is 
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however noted that there exists room for improving the Benefit Based heuristics in order 

to reduce its cost to the lower-bound obtained by the linear programming.  

Third, the cost increases with increasing β because by increasing β, the benefit of 

cooperative caching is reduced. In an extreme case, when β=1, nodes can rely solely on 

their local cache for reducing the cost. In that case, the performance of Best Split, 

Distributed Benefit and linear programming become similar. 

Fourth, we can also see that for the experiment with the BU trace, Best Split and 

Distributed Benefit offer almost the same provisioning cost whereas with the NLANR 

trace, the difference between the two mechanisms is relatively higher. The reason is that 

the diversity of request generation rate in the BU trace is less than that in the NLANR 

trace (see Figure  4-5). Furthermore, the variation of local popularity of objects in 

NLANR is much higher than that in BU. This is demonstrated in Figure  4-5. To 

summarize, the lack of diversity in local popularity and request generation rates in the 

BU trace make this request model perform very similar to the homogeneous case. As a 

result, the Split Cache mechanism is able to provide the same provisioning cost as 

Distributed Benefit whereas in NLANR due to the higher heterogeneity of request 

generation rates and local popularities, the Distributed Benefit heuristics provides better 

results compared to the Split Cache with best performing	D.  

Finally, as Figure  4-6 reports, the object provisioning cost for the BU trace is lower 

than that for the NLANR trace.  This can be explained from the graph in Figure  4-4 

which shows the cumulative probability density function of popular objects for the BU 

and the NLANR traces. It can be observed that in the BU trace, storing the same number 

of objects results in higher hit rates compared to NLANR. In other words, the Zipf 
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distribution parameter α in BU is higher than that for NLANR, which results in lower 

provisioning cost for BU. Experiments with the NASA and SASK traces showed 

performance differences very similar to those between the BU and NLANR traces. 

 

We have done similar analysis of the object provisioning costs with both 

Distributed Benefit and Split Cache strategies for the NASA and SASK traces 

respectively. The performance differences between these two traces were very similar to 

those between the BU and NLANR traces for the same set of reasons provided with 

respect to Figure  4-6 (a,b).  

It can be observed that the graph in Figure  4-7(a) closely follows a straight line on 

a log-log scale, indicating the Zipf distribution for object requests. 

 

Figure  4-7: PDF and CDF of global popularity for objects in NASA and SASK 

Figure  4-7(b) depicts the cumulative probability density function of global popularity 

for both NASA and SASK traces. Observe that when the requests are generated from the 

SASK trace, by storing the first 25 popular objects, each node is able to find 50% of its 

requested objects in theist local cache. This confirms that the object popularity in the 
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SASK trace is indeed more skewed compared to the NASA trace. 

For the NASA and SASK traces, Figure  4-8(a) depicts the local popularity of the 

most globally popular objects from the standpoint of different individual nodes in the 

network. Figure  4-8 (b) depicts the normalized (by network-wide request rate) request 

generation rates from different nodes. As shown, few nodes are more active and generate 

more requests per unit time compared to the others. It can be seen that the diversity of 

request generation rate for SASK trace is higher than that of the NASA trace. 

 

Figure  4-8: Local popularity of the most global popular object and normalized request 
generation rate in NASA and SASK trace files 
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Figure  4-9: Comparing object provisioning cost in benefit based strategy and Split Cache 
for NASA and SASK traces. 

 

Figure  4-9(a,b) depict the object provisioning cost in both Distributed Benefit and 

Split Cache strategies for NASA and SASK traces respectively. For the experiment with 

the NASA trace, Best Split and Distributed Benefit offer almost the same provisioning 

cost whereas with the SASK trace, the difference between the two mechanisms is 

relatively higher. The reason is that the diversity of request generation rate in the NASA 

trace is less than that in the SASK trace (see Figure  4-8(b)). Furthermore, the variation of 

local popularity of objects in SASK is much higher than that in NASA. This is 

demonstrated in Figure  4-8(a). To summarize the third observation, the lack of diversity 

in local popularity and request generation rates in the NASA trace make this request 

model perform very similar to the homogeneous case. As a result, the Split Cache 

mechanism is able to provide near-best provisioning cost whereas in SASK due to the 

higher heterogeneity of request generation rates and local popularities the Distributed 
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Benefit heuristics provides better results compared to the Split Cache with best 

performing λ. 

4.8 Summary and Conclusion 

In this chapter we proposed a benefit based strategy to minimize the provisioning 

cost in networks with heterogeneous content demand, in which each node maintains 

different content request rates and request patterns. It was experimentally shown that the 

benefit based strategy and the cache split based strategy can deliver very similar content 

provisioning costs under homogenous content request model, and the benefit based 

strategy outperforms the split strategy when the content request rates and patterns are 

heterogeneous across the network nodes. 
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Chapter 5 : COMMUNITY BASED COOPERATIVE 

CACHING  

5.1 Motivation  

A key question for cooperative content caching is how to store contents in devices 

of mobile user such that the network wide provisioning cost is minimized. In this chapter 

we show that the optimal caching policy can depend heavily on user interaction patterns 

and their resulting social community formation. Analysis of real-life human mobility 

traces [60], [146–148] reveal a strong hierarchical structure in inter-node contact patterns.  

It is consistently found that certain nodes in a network can belong to strongly connected 

social communities where they frequently meet each other, while certain other nodes can 

be isolated and rarely meet other. It is desirable that a node should adjust its cache status 

based on those in nodes in its same social community. Also, it should not alter its cache 

based on those outside the community. In this chapter we propose a community based 

cooperative caching abstraction that exploits community formation hierarchy for 

reducing network wide content provisioning cost.  

5.2 Content Search Model 

After an object request is originated, a mobile device first searches its local cache. If 

the search fails, it searches the object within its local MSWNET. Depending on the user 

tolerable delay (UTD), a device can opt for searching the content in nodes not only within 

its current physical partition, but also in nodes within its future partitions. This may lead 

to a larger Temporal Partition Size (TPS), thus improving its odds of finding the content. 

The UTD, which can be content type specific, acts as the time horizon for determining 
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the TPS.   

If the search in MSWNET fails, the object is downloaded from the CP’s server using 

CSP’s cellular network. In this paper, we have modeled objects such as electronic books, 

music, etc, which are time non-varying, and therefore cache consistency is not a concern. 

Each node is assumed to be able to store up to ‘C’ different objects, and all objects are 

popularity tagged by the CP’s server [137]. This tag shows the global popularity of an 

object which is the probability that an arbitrary request in the network is for that object.  

5.3 Networks with Community-less Mobility  

In this section we relax the assumption in  Chapter 3 that all nodes are able to meet 

each other within their respective temporal partitions. In other words, we consider UTD 

values that correspond to TPS (temporal partition size) which are smaller than the total 

number of nodes in the network. Nodes are assumed to follow random walk without any 

structured contact patterns, thus emulating a community-less mobility model. Contact 

homogeneity is maintained by ensuring that the probability of contacts between any node 

pair in the network is the same. Random walk, although not the best model to represent 

human mobility, is evaluated in this section in order to study the performance of the 

proposed caching strategy in a community less network.  

The local hit rate PL for a node with random walk mobility depends only on the set 

of objects stored locally. Following the same logic for developing Eqn. 3-8, the local hit 

rate in this case can be expressed as   �� = jk + jn ℳ⁄ , where ℳ	is the total number of 

nodes in the entire MSWNET. In other words, ℳ	refers to the size of the set of devices 

that see each other and can cooperate for cost reduction. For example, ℳ	for a student’s 
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device would indicate the size of the set of devices belonging to his/her friends in the 

University, coworkers in the work place, and social peers in dorm and other frequently 

visited places. The quantities HU and HD used in Eqn. 3-3 need to be recomputed in this 

case using 	ℳ as opposed to 
, which was the static partition size.  

The remote hit rate with user mobility depends on the Temporal Partition Size 

(TPS) which indicates the number of distinctly different nodes visited by a node within a 

time horizon. For a given user mobility pattern and a pre-defined time horizon, let 

Γ	�1 ≤ Γ ≤ ℳ� be the TPS observed by a node at an arbitrarily chosen point in time. If 

¦�Γ�	is the probability that a node’s TPS at an arbitrarily chosen time is Γ, and 

��§represents the remote hit rate within a static partition size	Γ, then PV in the presence of 

mobility can be written as:   

�� = ����|Γ� = . ¦�Γ���§ℳ
§&� = . jn �Γ − 1�¦�Γ� ℳ⁄ℳ

§&�  

The above equation can be further simplified as: 

 �� = ���Γ� − 1�jn ℳ⁄ .PV = E�Γ�-1m PV = E�Γ�-1m       ( 5-1) 

Substituting the above expressions of PL and PV for the mobility case in Eqn.  5-3, 

the average provisioning cost in the presence of mobility can be calculated as: 

 ���� = /1 − /��Lt�­�§�utℳ 0jn − jk0 ��. ( 5-2) 

After expanding HU and HD, Eqn. 5-4 can be written as a function of λ. By 

equating the cost derivative to zero, we can compute λopt at which the cost is minimized.  
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5.4 Networks with Community based Mobility 

Unlike in random walk, real-life human mobility is often abstracted by underlying 

social community structures, which can and should be leveraged for cooperative caching. 

Node contact probabilities in community based mobility can have various forms of 

locality which should be considered while designing caching policies. In this section we 

develop a hierarchical split-cache strategy for leveraging such locality structures in inter-

contact times. 

5.4.1 Hierarchical Split Caching 

From each node’s standpoint, any other node in a mobile network can be in-

community or out-of-community (i.e. stranger). Nodes in the same community meet 

more frequently an often for longer duration. Frequencies of contacts between strangers 

are usually low and last shorter. These properties are experimentally found in a number 

of real-life human mobility traces [62], [63] and models [60], [149] used by various 

researchers in the community.  

These observations lead to the following approach in which the level of cache 

collaboration between two nodes depends on whether they are in-community or out-of-

community. The split-cache mechanism is extended to a hierarchical version 

(Hierarchical Split Cache or HSC) in which the cache space in each node is divided into 

three separate areas. Certain number of very objects is cached in the first area in order to 

secure their access locally. Objects stored in this area can be duplicated at nodes across 

and outside communities. The second area is reserved for cooperation among in-

community nodes. The objects stored in this second cache area of a node cannot be 

duplicated across its in-community member nodes, but duplication of such objects can be 
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allowed in its stranger nodes. In other words, these are unique within a community. 

Finally, the third area in the cache is used for implementing global cooperation among all 

nodes by maintaining global uniqueness. This third area of cache helps nodes in a small 

community to take advantage of cooperation with stranger nodes. This is especially 

useful in situations in which one meets many strangers in public places such as train 

stations and airports. One’s device in such situations can retrieve content from the third 

cache area of those strangers’ devices.  Figure  5-1 illustrates the hierarchical splitting of 

the cache space. The best split factors between the three areas need to be determined 

based on the social community properties of the network. 

 

Figure  5-1: Hierarchical partitioning for supporting communities 

Cost Computation: The average local hit rate for nodes in the i
th

 community can 

be computed as: 

q� = A�D��� + A��:��� + D���� − A�D���:� + ��1 − D� − ����® × j® 

where :� is community size, �®is the total number of unique objects stored in the 

third cache area of all network nodes, and j® is the corresponding hit rates of these �® 

objects. �® can be computed using the following equation: 

�® = .:��1 − D� − ����∀�  

Hit rate of unique objects can be written as: 

j® = A�O°±² +�®� − A�O°±²� 

Unique in 

Network

Unique in 

community
Duplicate

Cache Space (C)

µiCλiC (1-λi-µi)C



 

   85 

where the parameter RS³´ is the least popular among all objects that have been 

stored in the second cache area. It can be computed as:  

O°±² = max� P��� − D��:� + D�Q� 

Let · be the contact probability between in-community nodes with a specified user 

tolerable delay (UTD). Then the percentage of requests that can be found in remote 

caches within the i
th

 community can be computed as: 

 ¸�� = �:� − 1� × · × �/¹P�S���uº��+QL¹�º�+�0S� + +��Lº�L���*» × j®� ( 5-3) 

The first term refers to hit rate of objects stored in the second cache area of nodes 

in the i
th

 community, and the second term indicates hit rate of objects stored in the third 

cache area.  

   A node in i
th

 community may also meet strangers from other communities.  The 

average remote hit rate of objects found in the stranger nodes can be computed as: 

 ¸�� ≈ §��j®  ( 5-4) 

where Γ¼ represents the average number of stranger nodes that an i
th

 community 

node is expected to see during a specified user tolerable delay. The average object 

provisioning cost for an i
th

 community node can be calculated as:  

����� = �1 − �1 − ��¸� − q���� 

where ¸� = ¸�� + ¸�� is the total remote hit rate for nodes in community-i. The 

overall cost can be computed as: 

 ���� = ∑ S�+{�}�∀�	 �   ( 5-5) 
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where M is the total number of nodes in the entire network. To minimize the 

overall cost, we need to differentiate the above function with respect to all unknown 

parameters (i.e. D�W)H	��) and equate it to zero.  

Observe that when the communities are completely independent (i.e. when nodes 

never meet strangers from other communities), the overall cost can be minimized by 

simply minimizing the cost in each community. In this case, the problem reduces to the 

stationary partition case, as in  Chapter 3, with a single cache split parameter for each 

community.  

5.4.2 Centrality Based Community Detection Algorithms 

In order to deploy hierarchical split caching as described in Section  5.4.1, a 

community detection algorithm is needed using which nodes can identify other members 

of its community. As a first step, the contact pattern of mobile users is mapped as a 

weighted graph in which the vertices represent mobile nodes and edges represent 

connections between nodes. The weight of an edge indicates the strength of connection 

between two nodes. For example, if two nodes always move together (i.e. they are always 

connected), the weight of the edge between them will be 1. In the other extreme, two 

nodes that never meet should have an edge with weight zero.  

As defined in the content search model in Section  5.2, a node may opt to wait up to 

a preset user tolerable delay for searching content in nodes not only within its current 

physical partition, but also in nodes within its future partitions. The weight of an edge 

between any pair of nodes must be computed based on the preset UTD value. Such 

weight is defined as the probability that those nodes meet within UTD duration. In this 

section, we review three commonly used community detection algorithms from the 
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literature that we have used for evaluating our proposed hierarchical cache split 

mechanism. 

Girvan-Newman [150], [151] is one of the oldest hierarchically divisible 

community detection algorithm that works based on finding and removing network edges 

with high betweenness. Edge betweenness is defined as the number of shortest paths 

between pairs of vertices that pass through it. When there is more than one shortest path 

between a pair of vertices, each such path is given equal weight such that the total 

cumulative weight of all the paths is one. The Girvan-Newman algorithm works well 

when the communities are loosely connected by few inter-group edges. In this case, all 

shortest paths between the communities must pass through one of those few inter-group 

edges. Thus, the edges connecting the communities will have high edge betweenness, and 

by removing them the groups (i.e. communities) can get separated.   

The procedure of finding and removing edges stops when the cumulative 

modularity of all communities in the resulting network is maximized.  Modularity of a 

community is defined as the actual number of edges within the community minus the 

expected number of edges in an equivalent network (with the same community divisions) 

when edges placed at random. The modularity can be used as a metric that shows strength 

of community structure in a network. For a random graph this quantity is close to zero 

which indicates no community structure. In practice, modularity of social based networks 

falls in the range from 0.3 to 0.7. 

The original algorithm of Girvan-Newman has a complexity of ½��¾�. The authors 

in [152] proposed a greedy modularity optimization which is a fast implementation of 

Girvan-Newman algorithm. Using more efficient data structure they reduce the 
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complexity of the algorithm to ½��@��5��. In this paper we term this algorithm as 

fastcommunity in the experimental results in Section  5.5. 

 Blondel et al.  [153] propose a two-phase heuristic algorithm which is based on a 

local optimization of Girman-Newman modularity.  As a first step, each network node is 

assigned to a different community and then the algorithm attempts to increase the 

cumulative network modularity by combining nodes and their neighbors. A node is 

grouped with other nodes that result in a network with increased modularity. The process 

of grouping stops when a local maximum of the network modularity is attained, i.e. when 

no individual grouping move can improve the modularity any further.  In the 

experimental results in Section 5.5, this fast community detection algorithm is labeled as 

fastfold. 

   There are many hierarchical clustering algorithms that group similar nodes 

within communities. The similarity between two nodes can be defined based on criteria 

such as Euclidean distance, Pearson correlation [154] and cosine similarity. In this 

chapter, we use Pearson correlation to find node similarities which are computed as:   

w� = 1)∑ �¿�> − ����¿ > − � �> À�À  

 where �� = �T∑ ¿�  , À�5 = �T∑ P¿� − ��Q5 . 

With Pearson correlation measure, nodes with more of common neighbors have 

higher similarity. A stopping criterion is used in which no clique bigger than 3 nodes 

remains in the entire network. In the results Section 5.5, we label the results of such 

community detection mechanism as clique. 
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5.5 Evaluation of Community-less Mobility  

5.5.1 Temporal Partition Characterization  

This section reports the characterization of partition dynamics in an MSWNET with 

simulated homogeneous human mobility within a campus-like setting. 40 mobile nodes 

with 100m transmission range were simulated in ns2 using random waypoint mobility 

model with an average speed of 1-2 m/s and pause time (between movements) of 100 sec.   

 

Figure  5-2 depicts the TPS distribution when the 40 nodes are allowed to move 

within an area of 1500m x 1500m. The node-to-node connectivity is detected using 

beacon messages sent from each node with a period of 500 msec. The four graphs in 

Figure  5-2 reports TPS distribution with the User Tolerable Delay (UTD) set to 1s, 120s, 

210s, and 600s respectively. The UTD represents the delay that an end consumer is 

willing to tolerate before a requested content is provisioned into his or her device. In 

other words, UTD determines the time horizon as explained in Section  5.2. As expected, 

with a larger UTD, a node is able to see larger number of distinct nodes within the time 

horizon (i.e. UTD), causing a larger TPS. This explains the right-shift in the distribution 

with increasing UTD. For the largest case (i.e. 600s) a node is able to see almost all other 

nodes, resulting in the large peaks near 40. With very small UTD (e.g. 1s), a node 

remains either isolated most of the time, or sees partitions of very small sizes, resulting in 

the large peaks near 1.  
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Figure  5-2: Temporal Partition Size (TPS) distribution  

Figure  5-3 summarizes the impacts of UTD and also spatial node density on the 

average TPS, the trends in which are consistent with the distribution peak shifts observed 

in Figure  5-2.   

As shown in the above results, the effects of user mobility in a mobile MSWNET 

can be captured in terms of the temporal partition size distribution as observed by a 

participating node. In the equations in Section  5.3, it was shown as to how those 

distributions can be used for analyzing the effects of mobility on cooperative caching 

performance. Since both user tolerable delay and MSWNET expanse (i.e. area) affect the 

user mobility in a very similar way, for all the following analysis we will use only UTD 

as the representative parameter for mobility. 
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Figure  5-3: Average TPS with different UTDs and node densities 

5.6 Hit Rates and Costs under Community-less Mobility 

Figure  5-4(a) shows the network wide average hit and miss rates for the mobility 

scenario corresponding to the TPS distribution in Figure  5-2(a) (i.e. UTD of 1s in a 

1200m x 1200m network). Since the average TPS in this case is very small (i.e. around 2) 

a node can rely on only another node for cooperation. This explains the extremely low 

remote hit rate (PV) in Figure  5-4(a). As for local hit rate (PL), it depends primarily on 

the set of locally stored objects, which is an increasing function of the split-factor λ. As 

shown in Figure  5-4(a), with large λ since more objects are duplicated, the local hits are 

more likely. Since the remote hit rates in this case are negligible, the miss rates (PM) are 

effectively the complement of the local hit rates. That explains the decreasing trend of 

PM with increasing λ. 
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Figure  5-4: Hit rates and cost: (a,b) UTD 1s; (c,d) UTD 120s 

 

Figure  5-4(b) demonstrates the network wide average object provisioning cost for 

the same mobility scenario for three different values of the rebate-to-download-cost ratio 

β. In this case, with negligible PV the cost expression from Eqn. 4 reduces to ���� =
�1 − �����.This shows that the cost can be minimized by maximizing the local hit rate 

PL, which can be achieved by setting the split factor λ to 1. Intuitively, in very small 

partitions (e.g. 2 in this mobility scenario), a node should rely mainly on its own cache by 

storing the maximum number of duplicated popular objects. This corresponds to the 

value of λ to be 1.  
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Figure  5-4(c) shows the hit and miss rates for a different mobility scenario 

corresponding to the TPS distribution in Figure  5-4(b) (with UTD set to 120s in the same 

1200m x 1200m network). As indicated by the distribution, since the users are willing to 

tolerate a large delay of 2 minutes, a node’s average temporal partition size in this case is 

larger (i.e. an average of 15) than the one used for the results in Figure  5-4(a,b). Having 

access to more nodes in their temporal partitions, the nodes in this scenario enjoy higher 

remote hit rates compared to the previous mobility scenario. With larger split factor λ, 

since a larger portion of each node’s cache is used for duplicated objects, the unique 

object count in a temporal partition reduces. This causes the observed reduction in remote 

hit rate with increasing λ in Figure  5-4(c). From the PL values in Figure  5-4(a,c), it can be 

confirmed that the local hit rate has very little sensitivity on mobility and its resulting 

temporal partitions. Generally, the miss rate PM decreases with increasing PL, and 

increases with decreasing with increasing PV.  This explains as to why with increasing λ, 

PM initially reduces when PL is high, and then increases later when PV is low. 

The graph in Figure  5-4(d) indicates that the cost for very small β (i.e. 0) follow a trend 

(i.e. lowest for an optimal λ of 0.4) which is similar to that in static networks as observed 

in Figure  3-4. In a static network, for � = 0, the cost is minimized by avoiding object 

duplications by setting λ to 0. However, with mobility, since a node can rely only on a 

subset (i.e. the TPS) of all the network nodes, setting λ to 0 is not the best solution. 

Certain amount of duplication and the resulting local hits are needed for minimizing the 

cost. The role of local hit rate becomes more important as β increases, because the benefit 
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of finding an object in the remote caches within the TPS becomes less. This explains why 

optimal λ shifts to the right with increasing β. In the extreme case, when � = 1, 

cooperative caching is no longer useful. The nodes in that case need to rely only on the 

local hits. Note that the close agreements between the analytical and simulation results in 

Figure  5-4 validate the Eqns. in Section  5.3. 

 

Figure  5-5: Optimal λ and minimum cost for different UTDs 

Figure  5-5(a) reports the optimal split factor for various β and user tolerable delays 

representing varying temporal partition distributions. With lower UTDs, the nodes are 

more likely to be isolated, and they need to rely primarily on their locally duplicated 

cached objects. This explains why optimal λ is close to 1 (i.e. allowing maximum 

duplications) when the user tolerable delay is set to 1s.  

For a given β, with larger UTDs, the nodes are increasingly able to rely more on 

remote hits within larger temporal partitions, leading to larger optimal λ values. For a 

given UTD, as the quantity β increases (i.e. the cost of cooperation increases), the Split 

Cache policy attempts to increase local duplications in each node. This results in larger 

optimal λ values. This trend can be observed for all UTDs in Figure  5-5(a).  
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The graph in Figure  5-5(b) depicts that the minimum provisioning cost can be 

lowered by reducing the quantity β and/or by increasing the user tolerable delay (i.e. 

larger temporal partition size). As shown in the Figure  5-5(b), the absolute minimum cost 

can be achieved by eliminating the rebate and setting a large UTD of 10min.  

5.7 Evaluation with Community Based Mobility 

5.7.1 Simulation Setup and Mobility Traces 

The performance of proposed caching has been evaluated with two human mobility 

traces (i.e. Infocom ’06 trace [147] and UCSD trace[62]) and a synthetic human mobility 

generator HCMM [60]. HCMM is an extension of community based mobility model 

(CMM) which works based on the Caveman-model proposed in [148].  

In the UCSD [62] project 275 freshman were equipped with WiFi enabled PDA 

devices that periodically scanned and logged the visible access points for a period of 77 

days. The contacts between nodes, determined by access point sharing, were extracted 

from the log file. The average inter-contact time in this trace was about 19 hours. 

Figure  5-6(a) reports the number of associated users per hour across all access points in 

the campus during the first 14 days of the experiment.  

 
Figure  5-6: Number of associated users per hour in the UCSD trace; (b) Number of 

contacts per hour in Infocom ’06 trace 
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The Infocom ‘06 trace includes records of Bluetooth sightings by a group of 78 

users attending Infocom 2006. Each of the 78 users was carrying a small iMote device 

during the conference.  5-6(b) reports the number of contacts between nodes per hour 

during 4 days of experiment. Bluethooth discovery is done with a frequency of once 

every 4 minutes. 

For all trace files, a proximity matrix is generated based on the number of recorded 

contacts between users.  To compute proximity matrix, the trace is first divided to a series 

of UTD long intervals.  The proximity between node i and j is then computed based the 

number of intervals that these nodes had a contact. For example, if the total number of 

intervals in a trace is I and nodes i and j have meeting in K of the I intervals, then the 

proximity between i and j is equal to K/I. The proximity matrix indicates the strength of 

connections among all participating nodes. The set of pairs that have proximity higher 

than a specific threshold are fed into the community detection algorithms described in 

Section  5.4. The results reported in this section are based on fastcommunity detection 

algorithm.  

 

Figure  5-7: Object provisioning cost for HCMM trace 
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5.7.2 Mobile Social Wireless Networks 

HCMM trace:  Figure  5-7 reports the measured object provisioning cost for a 

mobile network of 50 nodes generated using HCMM model [60]. With increasing user 

tolerable delay, each node is able to meet more nodes and therefore, the object 

provisioning cost reduces. This is especially pronounced when the rebate to download 

cost ratio (i.e. β) is small. In extreme case, when β=0 (i.e. downloading objects from 

other nodes involves no cost), the provisioning cost can be as low as 6 per object when 

UTD is 1200 seconds. It goes up to 7.8 when the UTD reduces to 10 seconds.  The 

reasons for lower cost with higher UTDs are as follows. 

First, with increasing UTD the percentage of isolated nodes reduces due to 

increasing community size. Isolated nodes are nodes that do not belong to any 

community, thus unable to leverage cooperative caching, leading to higher provisioning 

costs. Thus by reducing the number of isolated nodes it is possible to reduce the average 

network-wide cost. The second reason for cost reduction with higher UTD is due to 

higher community cohesions. Cohesion factor is defined as the ratio of number of edges 

between nodes in a community to the number of edges in a fully connected community 

with the same size. This metric is defined to measure the strength of connections in a 

community. By increasing UTD, the connection between nodes within a community can 

become stronger. This let nodes to have more cooperation, which in turn can reduce the 

provisioning cost. 

Infocom 06 trace: For the infocom ‘06 trace there were very few contacts between 

nodes during the night time part of it. Due to this reason, we have first removed the night 

time part from the trace in order to avoid any skew in the results. The proximity matrix is 
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then computed based on the reduced trace.  From the proximity matrix, all pairs with 

proximity higher than a threshold are extracted and fed into the fastcommunity detection 

algorithm. 

 

 

Figure  5-8: Object provisioning cost for the (a) Infocom 06 trace and (b) UCSD trace 

Figure  5-8(a) reports the provisioning cost for a mobile network derived from the 

reduced Infocom 06 trace. The following observation can be made from this graph. First, 

with increasing β the provisioning cost also increases. This is expected as higher β 

implies higher rebate which, in turn, reduces the benefit of cooperative caching. The 
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second observation is that when users opt to wait longer (higher user tolerable delay), 

they have a higher chance to meet more number of nodes and therefore the overall 

probability of finding the requested object within the network increases. This in turn 

results in lower provisioning cost. The impacts of higher UTDs are more pronounced for 

small βs.  

UCSD trace: Average provisioning cost from the UCSD trace is reported in 

Figure  5-8(b). Similar to the Infocom 06 scenario, as expected, the provisioning cost 

shows a decreasing trend when the UTD goes up, and the cost reduces with decreasing β. 

However, for the UCSD trace cost reduction starts at a higher UTD (i.e. 8 hours) 

compared to that for the Infocom trace (i.e. 10 minutes). The main reason for this is 

higher inter-contact times for the UCSD case in comparison to the Infocom case. An 

interesting observation in Figure  5-8(b) is that the minimum provisioning cost for the 

UCSD trace with 273 users is 6.3 (when β is 0 and UTD is 160 hours). This number for 

the Infocom trace with 98 users is about 5.5 (when β is 0 and UTD is 20000 seconds). 

This result shows that many of the users in the UCSD trace never meet each other (even 

when we increase the UTD to 160 hours). To confirm this we measured the percentage of 

isolated nodes for Infocom and UCSD trace and observed that at least 20 percent of 

nodes in UCSD trace are isolated. This number of Infocom trace was close to zero. 

The second reason for higher provisioning cost in UCSD in spite of having more number 

of nodes in that network is that the connections between users in one single community is 

not as strong as connections in the Infocom 06 trace. To measure the strength of 

connections in a community we measure the community cohesion factor. The cohesion 

factor for the Infocom trace when UTD is at least 10000 seconds is always greater than 
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0.5, for UCSD however this number never goes beyond 0.35 even when we increase 

UTD to 168 hours. 

5.7.3 Comparison with non-hierarchical Split Caching 

So far, all results in Section  5.7 correspond to hierarchical split-caching as 

proposed in Section  5.4. In this section we compare those results with non-hierarchical 

split caching (i.e. single level split caching as presented in  3.8 Chapter 3). This single 

level split does not leverage information about community abstraction. Results are 

compared for HCMM mobility model and both Infocom 06 and UCSD mobility traces.  

The minimum provisioning cost for single level split is numerically found by measuring 

the performance of Split caching over all possible values of the split factor λ. The 

percentage improvement of community based caching (i.e. with hierarchical split cache) 

with respect to the best result obtained by single level caching is reported in the following 

graphs. 

Figure  5-9(a) reports the percentage improvement of hierarchical split caching on 

single level split caching for the HCMM model. Initially when UTD is small, community 

based hierarchical split-caching caching shows no improvement over the single level split 

caching. With small UTDs, the number of contacts between nodes is also very low which 

eliminates any chance of cooperation with in-community peers. In this case, the object 

provisioning cost can be reduced only by local caching and therefore performance of 

hierarchical based caching and single level split caching are the same. By increasing 

UTD however nodes have higher change to meet other in-community nodes. Intuitively 

the number of contacts among nodes in the same community is much higher than the 

number of contacts between nodes in different communities. Considering this fact in its 
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design, community based hierarchical caching is able to take advantage of cooperation 

between nodes in the same community. The single level split caching, however, lacks this 

feature, which leads to higher provisioning costs. 

The percentage improvement generally reduces as we increase the rebate to 

download cost ratio (i.e. β) because by increasing β the cooperation loses its role in cost 

reduction. In the extreme case, when β=1, the effects of cooperation on provisioning cost 

completely disappears. 

   A very similar trend in Figure  5-9(b) can be observed for the Infocom 06 trace. 

Unlike for the HCMM case, however, the percentage improvement of hierarchical based 

caching in the Infocom 06 trace starts falling at relatively higher values of UTD. The 

reason is that by increasing UTD, the communities merge together. In the extreme case, 

when UTD is large enough, all nodes in the network will be in the same community. In 

this case, the performance of split caching and community based caching would be the 

same. For the Infocom  ‘06 trace, only two communities are detected for large UTDs. By 

increasing UTD even more, one community starts growing and the other one shrinks. 

Note that performance improvement of hierarchical based caching is maximized when 

the sizes of all communities are the same. Performance improvement for the UCSD trace 

is shown in Figure  5-9(c). Similar to the two other traces, the community based caching 

shows higher improvement for lower βs and higher UTDs.  
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Figure  5-9: Performance improvement by using community based hierachical split 
cashing with respect to single level split for (a) HCMM model  (b) Infocom ’06 trace, and 

(c) UCSD trace 
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5.7.4 Performance of Community Detection Algorithms 

In this section we compare the impacts of different community detection algorithms 

(see Section  5.4) on object provisioning cost. The UCSD trace with UTD of 48 hours has 

been used for these comparisons presented in Figure  5-10.  

   The object provisioning costs for fastcommunity and fastfold community 

detection algorithms are very similar and both of them provides better cost compared to 

the single level split caching. Both of these algorithms are heuristic in nature, and they 

work based on maximizing the network modularity as described in Section 5.4. The 

community detection algorithm clique provides lower cost solutions when compared to 

the other two. The clique algorithm is also more computationally expensive compared to 

the other two, which are heuristics based. 

With clique all nodes in a community will have a strong connection and therefore 

the cohesion factor in community found by clique is very high which results in lower 

provisioning cost for clique as it is shown in Figure  5-10. 

 

Figure  5-10: Cost of hierarchical and non- hierarchical split caching with different 
community detection algorithms 
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5.8 Summary and Conclusions 

Drawing motivation from Amazon's Kindle electronic book delivery model, this 

chapter develops a set of practical network, service, and pricing models which are used 

for creating a cost- optimal cooperative caching strategy in Mobile Social Wireless 

Networks. It was shown that the proposed strategy can minimize content provisioning 

cost under static and a range of various user mobility scenarios with and without social 

community abstractions. In addition to proving its optimality, we construct analytical 

models and simulation results for evaluating the performance of the proposed strategy 

with prevalent mobility models and real human mobility traces from the literature.  
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Chapter 6 : IMPACTS OF USER-SELFISHNESS  

6.1 Selfish Behavior 

In  3.3 we introduced a pricing model in which the network usage cost and rebates 

are paid by the content provider. The scope for earning peer-to-peer rebate may promote 

selfish behavior in some users. A selfish user is a user that deviates from the network 

wide optimal caching policy to earn more rebates. Any deviation from the optimal policy 

is expected to incur higher network wide provisioning cost. In this chapter we analyze the 

impacts of such selfish user behavior on the object provisioning cost and on the earned 

rebate in a social wireless network (SWNET). It can be shown that beyond a selfish node 

population, the amount of per-node rebate for the selfish nodes is lower than that for the 

non-selfish nodes. In other words, when the selfish node population is beyond a critical 

point, the selfish behavior ceases to produce more benefit from a rebate standpoint. 

There is a second pricing model in which the network usage cost and rebates are 

paid directly by end consumers. In this case the selfish nodes attempt to reduce their 

provisioning cost and maximize the earned rebate. We also analyze the impacts of such 

selfish behavior on the provisioning cost of selfish and non-selfish users within the 

SWNET settings. 

6.2 User Selfishness and its Impacts 

In  Chapter 3 we computed the cost and rebate in a cooperative network where all 

nodes run the split replacement policy with the optimal λ. The impacts of selfishness are 

analyzed in this section. Selfishness in this context is defined as when one or multiple 

nodes execute split replacement with non-optimal λ values to earn more rebates (or to 
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reduce the provisioning cost in the second pricing model). Note that the selfish nodes still 

run cooperative caching but with a non-optimal λ.  

Degree of selfishness in an SWNET is modeled by the parameters η, the number of 

selfish nodes and λs which is the non-optimal split-factor chosen by those nodes. The 

value of λs can be smaller or larger than λo, which is the optimal λ used by the non-

selfish nodes. Average provisioning cost in a 
-node network with both non-selfish and 

selfish nodes can be written as:  

 ���� = Á+{�}�ÂÃÄ��Åu�
LÁ�+{�}ÆÇÆK�ÂÃÄ��Å
   ( 6-1) 

6.3 Cost and Rebate for Non-Selfish Nodes 

6.3.1 Cost Computation 

In order to compute Costnon-selfish using Eqn. 6-1, we need to compute the 

quantities PL and PV for the non-selfish nodes. The steady state cache status for both 

non-selfish and selfish nodes for the case λs<λo is demonstrated in Figure  6-1. 

Local hit rate: The non-selfish nodes store λoC most popular objects in the 

duplicate segment of their cache (areas A1 and A2 in Figure  6-1), and fill the rest with 

unique objects (area A3 in Figure  6-1). Assuming unique objects are uniformly 

distributed in all nodes, the quantity PL for a non-selfish node can be computed as: 

 PÈÉ = HËÉ + �-ÌÍÎ HÏ, ( 6-2) 
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where �� = 	 P�
 − Ð��1 − D{� + Ð�1 − D��Q� represents the total number of unique 

objects stored in an SWNET partition. The quantity jn = A��� + D{�� − A�D{�� 
represents the corresponding hit rate for all unique objects in the partition. The first term 

jk+ = A�D{�� refers to the hit rate contributed by the duplicated objects and the second 

term refers to the hit rate contributed by the unique objects stored in a non-selfish node. 

 

Figure  6-1: Cache status at steady state 

Remote hit rate: After a local search fails in a node, it searches its local partition for 

the desired object. The desired object can only be found in the unique area of the remote 

caches in the partition since the duplicate area (which is same at all the nodes) has 

already been scanned during the local search. Therefore, the probability of finding the 

desired object in the partition (after its local search failed) is equal to the corresponding 

hit rate contributed by all the unique objects stored in the partition except those unique 

objects stored in the requesting device. Thus, the remote hit rate in a cooperative node is 

equal to: 
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 PÑÉ = /1- P�-ÌÒQÎ 0HÏ ( 6-3) 

Substituting the value of PL and PV from Eqns. 6-2, 6-3 in Eqn. 3-3, the cost for 

provisioning objects to the non-selfish nodes can be simplified as: 

 C���T{TL�fÔ¹��Õ = /1 − P��Lt��ut��LºÇ�Q+�+ jn − jk+0 �� . ( 6-4) 

 

Note that HU in the above equation must be computed as: 

 Öjn = A��� + D{�� − A�D{��	iℎV)	D� < D{jn = A��� + D��� − A�D���	iℎV)	D� ≥ D{  ( 6-5) 

6.3.2 Rebate Computation 

The amount of rebate earned by a node depends on the number of requests 

generated in the network for objects stored in its local cache. In addition to the globally 

available objects (stored in the area A1 in Figure  6-1) all non-selfish nodes maintain 

certain duplicated objects in their cache which are not available in the selfish nodes 

(objects in area A2 in Figure  6-1). Thus, in addition to the unique objects (area A3 in 

Figure  6-1), each non-selfish node provides certain duplicated objects (stored in the area 

A2) to the selfish nodes. Therefore, amount of rebate per requested object in the network 

for non-selfish node can be written as:  

 ¸VYW�VT{TL�fÔ¹��Õ = /�Lº×� jn�
 − 1� + ¹�ºÇ+�L¹�º�+�
LÁ Ð0  ( 6-6) 

The first term in Eqn. 6-6 indicates the corresponding rebate for providing unique 

objects (from area A3) to all other nodes in the network, and the second term indicates 

the rebate for providing certain duplicated objects (from area A2) to the selfish nodes. 

The hit rate contributed by the duplicated objects that are not available in the selfish 
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nodes is equal to A�D{�� − A�D���. It is assumed that the generated requests from the 

selfish nodes are serviced by all non-selfish nodes in a uniform manner (that is why the 

quantity A�D{�� − A�D��� divided by m-η). Note when λs > λo, the selfish nodes 

maintain more duplicated objects, and therefore the second term in Eqn. 6-6 vanishes. 

The rebate in this case can be written as: 

 ¸VYW�VT{TL�fÔ¹��Õ = ��Lº×� jn�
 − 1�����.  ( 6-7) 

6.4 Cost and Rebate for Selfish Nodes 

6.4.1 Cost Computation 

Similar to the non-selfish nodes, cost and rebate for the selfish nodes are computed 

using Eqn. 4 based on the local and remote hit rates. PL for a selfish node can be 

computed as: 

 PÈØ = HËØ + �-ÌÍÎ HÏ, ( 6-8) 

where jk* = A�D��� refers to the hit rate contributed by the duplicated objects 

stored in a selfish node, HU is the hit rate contributed by all unique objects in the 

partition, Remote hit rate for a selfish node can be computed as:  

 PÑØ = /1- P�-ÌÙQÎ 0HÏ. ( 6-9) 

Substituting the value of PL and PV from Eqns. 6-8, 6-9 in Eqn. 3-3 the cost for 

selfish nodes can be simplified as: 

 CostÝÞßà¼Ýá = /1- P�-âQÎuâ��-ÌÙ�Î HÏ-HËØ0 Cã. ( 6-10) 
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6.4.2 Rebate Computation 

Assuming that unique objects are uniformly distributed among all network nodes, 

the rebate for a selfish node when λs < λo can be computed as: 

 ¸VYW�V�fÔ¹��Õ = ��Lº�� jn�
 − 1����� . ( 6-11) 

 

When λs> λo, the rebate for selfish nodes changes to: 

 ¸VYW�V�fÔ¹��Õ = ä �Lº�� jn�
 − 1� +
¹�º�+�L¹�ºÇ+�Á �
 − Ð�å��� . ( 6-12) 

In the above equation, the first term indicates the amount of rebate a selfish node 

earns by providing its unique objects to all other nodes, and the second term represents 

the rebate earned by providing its duplicated objects to the non-selfish nodes. The 

quantity A�D��� − A�D{�� corresponds to the hit rate contributed by the objects that are 

not available in non-selfish nodes and duplicated across all selfish nodes. These objects 

are provided only to the 
 − Ð non-selfish nodes. 

6.5 Performance under First Pricing Model 

In this section we analyze the impacts of user selfishness on the object provisioning 

cost when this cost is paid by content provider (i.e. similar to kindle model). In this case, 

earning higher rebate is the main motivation for selfish nodes for deviating from the 

optimal policy. We expect to see a higher provisioning cost under the presence of user 

selfishness. 
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6.5.1 Networks with Single Selfish Node 

Figure  6-2 demonstrates the amount of rebate for each object request when there is 

exactly one selfish node in the network.  With a single selfish node, choosing any λs that 

is different from the optimal λ increases the amount of rebate for the selfish node. The 

maximum value of earned rebate, however, depends on the value of λopt which is a 

function of β. For example, when β=0.9 (i.e. when the optimal value for λ is around 

0.81), a selfish node can maximize its earned rebate by setting λs to 0. On the other hand, 

when β=0.5 (i.e. when λs is equal to 0.21) thr selfish node’s rebate is maximized when its 

λs is set to 1. In summary, a single selfish node can maximize its own rebate by setting λs 

to either 0 or 1, whichever is farther than λopt. The “No Selfishness” marked points in 

Fig. 7(a,b) correspond to the situation where λs = λopt. A notable observation from Fig. 

7(b) is that when the network usage cost is paid by the content provider (i.e when we use 

the first pricing model based on Kindle e-book delivery strategy), the main reason for 

deviating from optimal policy by selfish nodes is to earn higher rebates. The selfish 

policy depends on the value of β which determines the amount of rebate earned for each 

provided object. 
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Figure  6-2: Rebate per request with one selfish node in the network 

6.5.2 Networks with Multiple Selfish Nodes 

6.5.2.1 Impacts on the provisioning cost 

Figure  6-3(a) depicts the impacts of selfish node-count on the cost of provisioning 

objects when β=0.9. As expected, any deviation from the optimal policy increases the 

average provisioning cost in the network. For β=0.9, the selfish nodes choose λs=0 to 

maximize their rebates. Meaning, selfish nodes store only unique objects in their cache 

which in turn increase their provisioning cost. By increasing the number of selfish nodes, 

the number of uniquely stored objects in the network also increases. This new set of 

unique objects reduces the provisioning cost for the non-selfish nodes.  
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Figure  6-3: (a,b) Object provisioning cost and (c,d) Earned rebate per request for non-
selfish and selfish nodes 

Figure  6-3(b) demonstrates the cost of provisioning objects to the selfish nodes, the 

non-selfish nodes, and the network wide average when β is set to 0.5. In this case, the 

selfish nodes set λs to 1, causing them to store the most popular objects in their local 

cache. This helps the cost of object provisioning to the selfish nodes to come down. The 

cost for the non-selfish nodes, however, increases in the presence of selfish nodes due to 

the following two reasons: (1) a selfish node prevents other cooperative nodes to store 

0 10 20 30 40
6.5

7

7.5

8

8.5

9

9.5

Number of Selfish nodes (η)

O
b
je

c
t 

P
ro

v
is

io
n
in

g
 C

o
s
t

 

 

0 10 20 30 40
4.5

5

5.5

6

6.5

7

7.5

Number of Selfish nodes (η)

O
b
je

c
t 

P
ro

v
is

io
n
in

g
 C

o
s
t

 

 

EQ:Non-selfish 

EQ:Selfish

EQ:Average Cost

SIM:Non-selfish

SIM:Selfish

(a) Cost when β=0.9 (b) Cost when β=0.5 

0 20 40
0

0.5

1

1.5

Number of Selfish nodes (η)

E
a

rn
e

d
 R

e
b

a
te

 p
e

r 
R

e
q

u
e

s
t

 

 

0 20 40
0

0.1

0.2

0.3

0.4

Number of Selfish nodes (η)

E
a

rn
e

d
 R

e
b

a
te

 p
e

r 
R

e
q

u
e

s
t

 

 

EQ:Non-selfish node

EQ:Selfish node

SIM:Non-selfish node

SIM:Selfish node

EQ:Non-selfish node

EQ:Selfish node

SIM:Non-selfish node

SIM:Selfish node

η
critical

η
critical

(d) Earned rebate when β=0.5 (c) Earned rebate when β=0.9 



 

   114 

popular objects by storing the most popular objects in its cache (remember that a non-

selfish node will not store a duplicated object in the unique area of its cache). (2) a selfish 

node wastes the global cache capacity by filling its cache with duplicated objects. As a 

result, less number of objects are stored in the network, which in turn reduces the chance 

of finding a requested object in remote caches. The excellent agreement between the 

analytical (labeled as EQ) and the simulation results (labeled as SIM) proves the 

correctness of Eqns. 6-2 to 6-12. 

To earn the maximum amount of rebate, selfish nodes set the value of λs to either 0 

or 1. It can be seen in Figure  6-3(a,b), depending on the chosen value of λs, the impacts 

of number of selfish nodes on provisioning cost can be substantially different.  

Impacts on the Rebate 

With the first pricing model, earning higher rebate is the only motivation for a node 

to run the selfish policy. From the rebate standpoint, a steady state can be defined as a 

situation in which a node cannot deviate from the optimal caching policy to earn higher 

rebate. In this section we demonstrate the existence of such steady state in a typical social 

wireless network. 

Figure  6-3(c) represents the amount of rebate per request earned by the selfish and 

the non-selfish nodes when β is set to 0.9. Initially, when only few nodes deviate from the 

optimal policy, they are able to supply enough unique objects to the non-selfish nodes so 

that the earned rebate is higher. By increasing the number of selfish nodes, the rebate per 

request for each selfish node reduces for two reasons: 1) number of requests from non-

selfish nodes becomes less, and 2) rebate must be shared among more number of selfish 
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nodes. When the number of selfish nodes reaches a critical value ηcritical, the rebate for 

selfish and non-selfish nodes become equal. In fact, when a node chooses a selfish policy 

while there are ηcritical selfish nodes in the network, its rebate become less than that of 

the non-selfish nodes. This leads to an important claim, namely, having more than 

ηcritical selfish nodes in the network does not serve any purpose for the selfish nodes.   

Figure  6-3(d) represents the amount of rebate for selfish and non-selfish nodes 

when β is set to 0.5. The value of λs at the selfish nodes is set to 1, so that the earned 

rebates by those nodes are maximized.  Observe that for higher β, the value of η is also 

higher. Meaning, more number of nodes can execute the selfish policy and still receive 

higher rebates compared to the non-selfish nodes. 

6.5.3 Steady State Analysis  

This section presents analysis in the steady state, which is when a network contains 

exactly ηcritical number of selfish nodes. Figure  6-4(a) depicts the impacts of β on 

Ð���}��³Ô, which represents the maximum number of nodes that can run the selfish policy 

and still get higher rebates compared to the non-selfish nodes. When β is small, the 

optimal λopt is also small which means each non-selfish node stores only a very few 

popular duplicated objects in its cache. Therefore, a selfish node can earn a high rebate 

by storing the most popular objects in its local cache (i.e. choosing λs=1) and serving a 

large number of requests from other nodes. With increasing β, the quantity λopt increases, 
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which causes each node to store more popular objects in its local cache and therefore, the 

number of remote requests to the selfish nodes reduces.  

 

Figure  6-4: Analysis of rebate and object provisioning cost in steady state (i.e. η= 

ηcritical) 
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This in turn reduces the rebate difference between the selfish and the non-selfish 

nodes, and therefore less number of nodes can run the selfish policy. This explains the 

decreasing trend (see Figure  6-4(a)) of ηcritical as β changes from 0 to 0.8. At β=0.8, the 

amount of rebate for the selfish nodes is very close to the amount of rebate for the non-

selfish nodes. As a result, only very few nodes can benefit from running the selfish 

policy. For β > 0.8, the selfish nodes must set λs to 0 in order to get higher rebates 

compared to the cooperative nodes. In this case, the difference between the rebate earned 

by the selfish and the non-selfish nodes becomes very high which encourages a lot of 

nodes to choose selfish policy, thus drastically increasing the quantity ηcritical. 

Figure  6-4(b) demonstrates the average object provisioning cost in the presence of 

ηcritical selfish nodes. For β=0, as there is no selfish node in the network, the 

provisioning cost in this case represents the minimum possible value. In other cases, as 

expected the average provisioning cost is always higher than the provisioning cost when 

all nodes run the optimal policy. 

Observe that the impacts of selfishness for small βs are always higher than those 

for large βs. For higher β, the non-selfish nodes store more popular objects in their local 

cache and they become less sensitive to the presence of selfish nodes. For β=0.8, the 

average provisioning cost in the presence of selfish nodes is very close to the minimum 

possible provisioning cost. For β greater than 0.8, the selfish nodes set λs to zero and as 

demonstrated in Figure  6-4(a), the number of selfish nodes ηcritical becomes very large. 
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Because of too many selfish nodes, the difference between the cost of provisioning 

objects to the non-selfish and selfish nodes becomes noticeable again.  

Figure  6-4(c) depicts the cost of object provisioning for the selfish and the non-

selfish nodes in the presence of ηcritical selfish nodes in the network. For small βs, the 

cost of provisioning objects to the selfish nodes is much lower than that for the non-

selfish nodes. This is because for small βs the selfish nodes set λs=1 and store popular 

objects locally. Therefore, a high percentage of requests in selfish nodes are satisfied 

locally without any provisioning cost. The difference between non-selfish and selfish 

nodes becomes less as β increases because due to higher λopt, the non-selfish nodes also 

start storing more popular objects. After β=0.8, the cost for provisioning to the selfish 

nodes becomes higher than that to the non-selfish nodes. The reason is by choosing λs=0, 

a selfish node is deprived of having popular objects and only a few percentage of requests 

in selfish nodes in this case can be satisfied from the local caches, which in turn increases 

the provisioning cost. 

Figure  6-4(d) depicts the amount of rebate earned by the selfish and the non-selfish 

nodes. Observe that the amount of rebate earned by the selfish nodes is close and always 

higher than the amount of rebate earned by the non-selfish nodes. Adding even a single 

selfish node beyond ηcritical brings the amount of rebate for the selfish nodes below that 

of the non-selfish nodes. The sharp jump in the rebate at β=0.8 is because of switching 

from λs=1 to λs=0 . 
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6.5.4 Impacts of rebate on Node Participation  

Up to this point, all the presented analysis and performance results are based on the 

assumption that the end-consumers participate in cooperative caching regardless of the 

value of the rebate Cr. They can be selfish (i.e. when use λs) or non-selfish (i.e. using 

λopt), but they do cooperate. In a more realistic situation, however, the participation of a 

node in cooperative caching is expected to be an increasing function of Cr, the amount of 

rebate offered for each peer-provided object. In other words, for larger Cr values, more 

number of nodes are expected to participate in collaborative caching. In this section we 

study the performance of caching under the first pricing model (i.e when provisioning 

cost and rebate is paid by content provider) and with three different increasing functions: 

f
1
,f

2
 and f

3
 as defined below:  

A�:	· = �		 
A5:	· = P1 − VL5tQ �1 − VL5�⁄  

A¾:	· = P1 − V5tQ �1 − V5�⁄  

In the above functions, φ indicates the probability that a node participates in 

collaborative caching. With probability (1-φ), a node does not participate in caching; 

meaning all object requests by that node are served by direct downloads from the content 

provider’s server. Three types of node can be distinguished in the network: 1) non-

participating, 2) participating and non-selfish, and 3) participating and selfish. 
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Figure  6-5(a) depicts the variation of node participation as a function of the rebate-to-

download-cost ratio β following the above three models. Figure  6-5(b) reports the 

network wide average object provisioning cost for the participating nodes when the 

system is in steady state, meaning η=ηcritical. It can be observed that by increasing β, the 

object provisioning cost for the participant nodes initially reduces because more number 

of nodes participates in caching. However, for higher β, the impacts of collaborative 

caching reduce and the cost increases again. Also, the provisioning cost for f
2
 is the least 

because the rate of increase of the number of participant nodes with β is highest in this 

function. Figure  6-5(c) depicts the steady state (see Section 6) selfish node population 

ηcritical under different β and participation dependency functions f
1
 through f

3
.  The 

trend of ηcritical in Figure  6-5(c) is different than Figure  6-4(a) because of number of 

participant nodes in this case is much less. Figure  6-5(d) represents the network wide 

average amount of earned rebate for the participating selfish and non-selfish nodes for the 

linear function for f
1
. 
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Figure  6-5: Impact of β (rebate-to-download-cost ratio) on the number of participant 
nodes and cost and rebate 
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6.6 Performance under the Second Pricing Model 

6.6.1 Networks with Single Selfish Node  

In this section we analyze the impacts of user selfishness on provisioning cost when 

the cost is paid by the end users. In this case, the motivations for user selfish includes: a) 

minimizing the provisioning cost, and b) maximizing the earned rebate. Provisioning 

costs for both selfish and non-selfish nodes in the presence of a single selfish node are 

shown in Figure  6-6. It can be observed that for all β, the selfish nodes can run the split 

caching policy with parameter λs=1 to minimize their own provisioning costs. 

 
Figure  6-6: Object provisioning cost when only one selfish node exists in the network 
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To analyze the impacts of selfish node population on provisioning cost two 
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their own costs. In the second scenario we assume that such nodes collude and they 

choose a selfish policy according to the number of participating (and colluding) selfish 

nodes. 

 

 

Figure  6-7: Impacts of selfishness without collusion between selfish nodes 
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the number of selfish nodes increases, the resulting cost for the selfish nodes in fact may 

get worse than their cost when they run the optimal policy. Figure  6-7(a) and (b) 

demonstrate how the cost of provisioning for both selfish and non-selfish nodes changes 

when the rebate-to-download-cost ratio (β) is set at 0.5 and 0.9. As the number of selfish 

nodes (running caching policy with parameter λs =1) increases, the cost for both selfish 

and non-selfish nodes increases. Initially, the cost for selfish nodes is lower that that of 

non-selfish nodes. However, by increasing the number of selfish nodes the cost paid by 

the selfish nodes also increases. In fact, when the number of selfish nodes is beyond a 

critical η, the cost paid by the selfish nodes becomes larger than that when they run the 

non-selfish optimal policy. From this it can be concluded that in the presence of more 

than ηcritical selfish nodes in the network the motivation of user selfishness disappears 

when end users are responsible for paying the object provisioning costs. 

Figure  6-7(c) demonstrates ηcritical with varying β (rebate-to-download cost ratio) 

between 0 and 1. Intuitively, as β increases, more nodes can afford to be selfish while 

gaining in terms of the provisioning cost. The values of ηcritical are shown for three 

different values of α (Zipf parameter). With higher α, the number of nodes that can run 

selfish policy while being able to reduce their cost of provisioning is also higher. The 

reason is with higher α, the percentage of requests for popular objects is higher and 

therefore, selfish nodes can reduce their cost of object provisioning by finding most of 

the requested objects in their local cache; thus leading to zero provisioning cost. As 

Figure  6-7(d) demonstrates, the cost for non-selfish nodes is always higher than the 
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optimal provisioning cost, and the cost for the selfish nodes is always lower than that for 

the non-selfish nodes. In steady state when there are ηcritical selfish nodes in the 

network, the cost for the selfish nodes is very close (but less than) to the optimal 

provisioning cost (i.e. when there is no user selfishness). When ηcritical is equal to 1, the 

cost of provisioning for the selfish nodes is less than the optimal cost. 

 

 

Figure  6-8: Impacts of selfishness with collusion between selfish nodes 

0 10 20 30 40
2.5

2.6

2.7

2.8

2.9

Number of Selfish nodes (η)

O
b
je

c
t 
P

ro
v
is

io
n
in

g
 C

o
s
t

 

 

0 10 20 30 40
4.6

4.8

5

5.2

5.4

5.6

5.8

Number of Selfish nodes (η)

O
b
je

c
t 
P

ro
v
is

io
n
in

g
 C

o
s
t

 

 

Non-selfish node

Selfish Node

Optimal Cost (η=0)

Non-selfish node

Selfish node

Optimal Cost (η=0)

(a) Object provisioning cost for selfish 

and non-selfish nodes , when β=0.1
(b) Object provisioning cost for selfish 

and non-selfish nodes , when β=0.5

0 10 20 30 40
6.9

7

7.1

7.2

Number of Selfish nodes (η)

η
c
ri
ti
c
a
l

 

 

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Number of Selfish nodes (η)

λ
s

 

 

Non-selfish Node

Selfish Node

Optimal Cost (η=0)
β=0.1

β=0.5

β=0.9

(c) Object provisioning cost for selfish 

and non-selfish nodes , when β=0.9

(d) λ
s
 which minimizes the cost 

for selfish nodes 



 

   126 

6.6.2.2 With Collusion 

The behavior of mutually aware and colluding user selfishness is analyzed in this 

section. It is shown that a selfish node is always able to keep its provisioning cost below 

the optimal cost when it is aware of the number of other selfish nodes in the network. In 

Figure  6-8(a, b and c) the provisioning cost for selfish and non-selfish nodes are 

demonstrated when β is equal to 0.1, 0.5 and 0.9 respectively. It can be observed that the 

selfish nodes can always maintain a lower than optimal cost by appropriately choosing 

λs. The provisioning cost for non-selfish nodes, however, is always higher than the 

optimal cost. One interesting observation from these graphs is that when all nodes are 

selfish, the selfish policy converges to the optimal policy. However, when only few nodes 

run selfish policy, the selfish and optimal policies are different which results in different 

costs of object provisioning for selfish and non-selfish nodes. Figure  6-8(d) demonstrates 

the desirable λs for the selfish nodes as a function of η, which is the selfish node 

population. It can be seen that the selfish nodes need to change their policy (i.e. to choose 

different λs) based on the number of other such nodes. This is because the knowledge of 

η helps keeping their cost always lower than the optimal cost (i.e. provisioning cost when 

there is no user selfishness). When the number of selfish nodes is very low, setting λs to 1 

minimizes the cost for the selfish nodes. However by increasing the number of selfish 

nodes, λs must be set to lower values in order to maintain a lower that optimal cost. 
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6.7 Summary and Conclusion 

In this chapter we analyzed the impacts of selfishness on performance of 

cooperative caching in social wireless networks. Any deviation from optimal split 

caching will increase the average provisioning cost in the network. We showed and 

proved both analytically and experimentally that selfish policy will not help a node to 

increase its rebate when number of selfish users is beyond a specific threshold.  
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Chapter 7 : COOPERATIVE CACHING FOR IMPROVING 

AVAILABILITY  

7.1 Motivation 

Wireless handheld devices and networked data applications on such devices have 

experienced unprecedented consumer penetration in recent years. The Apple iPod Touch, 

Nintendo DS, Sony PSP game console, and numerous other handheld platforms belong to 

this category of devices. An emerging list of data applications for such devices includes 

networked and peer-to-peer games, electronic books, newspaper and magazine readers, 

and thousands of Applications (Apps) that are written for devices such as iPod Touch.  

Due to human mobility and the lack of complete coverage by WiFi access points, a 

MSWNET can be susceptible to intermittent disconnections to the Internet. This can result 

in partitions of devices that can communicate with each other using ad hoc routing 

protocols, but do not have internet connectivity. This lack of connectivity affects object 

(content) availability within MSWNET partitions for server-based applications such as 

electronic book and Apps downloads.  

As an example, consider a game device (e.g. Nintendo DS) that downloads games 

directly from the game server. This device is not able to download the game while it is 

temporarily situated within a disconnected (from internet) MSWNET partition. However, 

with cooperative caching enabled, a DS may be able to download the game by searching 

other DSs and compatible devices within its local MSWNET partition.  

High partition level availability ensures popular objects will be available within 
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MSWNET partitions when it disconnected from the Internet, and high node level 

availability ensures popular objects are available to individual nodes even when they are 

completely isolated from the rest of network and Internet gateway. Note that high node 

level availability does not necessarily lead to high partition level availability. For 

example, storing the same set of popular objects can maximize the average node level 

availability, however keeping multiple copies of the same object in the partition results in 

limited partition availability. The objective of this chapter is to design a cooperative 

object caching mechanism such that the availability of the popular objects can be 

maximized at both partition and node level. 

7.2 Limitations of prior work 

The common objective of the existing cooperative caching mechanisms for 

wireless networks is to achieve high object availability at the partition level. This is 

achieved by avoiding the storage of duplicated objects within a network partition. While 

improving partition level availability, these approaches offer low availability at the node 

level, because only one copy of each popular object exists within a partition. High node 

level availability is desirable so that the popular objects are available to nodes even when 

they are completely isolated without being connected to any other node. A limitation of 

the existing mechanisms is their inability to provide high availability at both partition and 

node levels. Related work is formally presented in  Chapter 2.  

7.3 Our approach and contribution 

The main objective is to develop cooperative caching mechanisms that can 

improve object availability within MSWNET partitions as well as at individual nodes. 
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This is achieved by letting each node in a partition to store a set of objects while allowing 

certain level of duplication in the partition. To control the level of duplication, the cache 

space in a node is divided into two separate areas. The first area is dedicated for storing 

the most popular (duplicated across all nodes in the partition) objects to guarantee high 

availability within a completely isolated node. And the second area is dedicated to store 

partition-wide unique objects to achieve high level of availability at the partition level. 

Using a stochastic model we determine the boundary between the above partitions such 

that a required balance between node and partition level availabilities can be achieved. 

The contribution of the proposed cache partitioning mechanism is to provide high levels 

of node and partition availabilities, and at the same time to reduce the generated network 

traffic.  

7.4 Design Objectives 

The user perceivable performance indexes are: 1) Partition Object Availability 

(POA), which indicates the probability of an arbitrary object to be found within a 

partition; and 2) Node Object Availability (NOA), which indicates the probability of an 

object to be found within a node’s local cache. NOA is a measure of availability for 

completely isolated nodes.  

The network related performance index is the Generated Network Traffic (GNT) 

for fetching each object which is function of average hop-distance between a node and 

the object provider. In addition to the capacity load, GNT indicates the energy overhead 

of object access. The objective is to minimize GNT. A combined objective is to minimize 

the GNT while maintaining pre-specified levels of POA and/or NOA. It will be 

demonstrated that the proposed cooperative caching policy in this chapter is particularly 
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efficient in terms of meeting such combined objectives.  

7.5 Cache resolution  

Cache resolution addresses how to resolve an object request either locally or from 

the local partition. After a request is originated by an end-consumer (i.e. an application 

on a mobile device), it first performs a local search within its local cache. If it fails, the 

end-consumer (EC) performs a network search for the object within its local partition. If 

this step also fails, and the device is situated within a connected partition, the object is 

downloaded from the CP’s server via a gateway mobile node, Access Point, and the 

Internet. If the partition is not connected, the object is deemed unavailable.  

For searching an object within the local partition, a flooding based search 

mechanism is usually used. A Time to Live (TTL) based ring-search can be employed for 

constraining the scope of resolution. This can limit: a) the network costs, and b) the 

degree of caching cooperation [28]. The radius of this ring search (i.e. the search TTL) is 

termed as the Domain of Cooperation (DOC) because a node’s cooperative behavior 

depends on the state of the caches within that ring. In other words, a node effectively 

cooperates with all nodes with hop-distance less than or equal to the operating DOC. 

When a node receives a search request for one of its locally cached objects, it sends a 

unicast ACK to the requester. Then the requester starts downloading the object from the 

responding node. 

7.6 Cache management 

Cache management refers to policies that control which set of objects are kept in 

the cache and how they are distributed in the partition. Cache management comprises 
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object prioritization and replacement policies. 

 

DOC based object prioritization: A node adjusts its cooperative behavior depending 

on the state of other nodes’ caches within a pre-specified DOC, so that the objectives 

POA, NOA, and GNT are met either individually or in a combined manner. A simple 

cooperation policy for a node is not to store an object if it has already been stored within 

the DOC. By doing this, the total number of different objects stored within the DOC can 

be increased. This in turn can increase the partition object availability. We refer to this 

model as Prioritized Cooperation.  

With Prioritized Cooperation turned on, DOC acts as a tunable parameter that can 

control the degree of object duplication within a partition. The value of DOC can range 

from zero (i.e. no cooperation) to the diameter of the network (i.e. the maximum 

cooperation).  

Object replacement: When a node fetches a new object, it executes a replacement 

policy in order to decide as to which object from its cache should be replaced, if any. 

Possible replacement policies include Random (RND), Least Recently Used (LRU), and 

Least Popular Object (LPO). LPO assumes that a device is aware of the server-tagged 

popularity of a downloaded object.  

7.7 Cooperative Caching (COOP) 

The protocol COOP in [28] develops a cooperative caching mechanism that relies 

on DOC based resolution with Prioritized Cooperation, and LRU based replacement in 

mobile networks. To our knowledge, COOP represents the most comprehensive 

cooperative caching approach in the literature. This is why we have chosen COOP to 

compare our proposed mechanism with. The key components of COOP are as follows.  
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7.7.1 Cache resolution  

COOP uses both local and DOC based network search as detailed in Section  7.5. 

Additionally, it implements an optimization for reducing repetitive resolution costs by 

recording the address (called profile) of the node from which an object has been 

downloaded most recently. For subsequent resolutions for the same object by the same 

node, the profile node is first searched using unicast before the entire DOC is searched 

using flooding. This profile of historical access can often eliminate the overhead of 

flooding. In addition, COOP uses a hop-by-hop resolution in which when local, profile, 

and network searches all fail, a request is sent to the CP’s server. Each intermediate node 

on the path between requester and the server investigates the request, and supplies the 

object to the requester if it finds the object in its local cache.  

7.7.2 Cache management  

COOP classifies each object stored within a node’s cache as either primary or 

secondary. A primary object is unique within the pre-specified DOC whereas a secondary 

object is a duplicate. The protocol prioritizes unique object over duplicate objects during 

cache replacement. To implement this, it evicts a secondary object when there is no space 

left in the cache for accommodating a new downloaded object. When no secondary object 

exists in the cache, COOP uses a regular LRU replacement policy among all stored 

objects to choose a candidate from the cache to evict.  

7.7.3 New flavors of COOP  

COOP, as described above, corresponds to the baseline version reported in [28]. 

We have implemented that baseline and a number of new flavors of COOP by altering its 
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replacement policy and turning prioritization on and off. To distinguish among these 

different flavors, we use the following notation. COOP-P refers to the baseline 

implementation with prioritized cooperation, and COOP-N refers to a version with 

prioritization turned off. For both –P and –N, we implement RNDM, LRU and LPO 

replacement policies. For example, COOP-P-RNDM represents the prioritized COOP 

with RNDM replacement. It is found that for different topological characteristics of an 

MSWNET partition, these new flavors of COOP are able to generate better results 

compared to its baseline version.  

7.8 Proposed Cooperative Split Caching (CSC) 

7.8.1 CSC overview 

Together with DOC, the proposed CSC strategy implements an additional 

mechanism for in-domain object duplication control. Unlike in COOP with only DOC 

based duplication control, by manipulating two duplication control parameters in CSC, it 

is possible to provide both high NOA and high POA at the same time, which is not 

feasible using COOP for reasons as described below. 

Although there are certain differences in effective object duplications between 

COOP-P and COOP-N, the primary mode of duplication control in COOP is by varying 

the Domain of Cooperation during the cache resolution. Since the level of object 

duplication determines the interdependency between POA, NOA, and GNT, a finer 

control on object duplication is expected to provide better performance in terms of the 

combined objectives.  

As DOC increases, due to reducing duplications, the NOA drastically reduces. This 

is because in order to store a large number of unique objects within a partition, few nodes 
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are forced to store less popular objects, thus leading to low NOA for those nodes. 

However, larger DOCs, due to lower duplication, can provide higher POA, since more 

unique objects are able to be stored within a partition. This indicates that the NOA and 

POA are conflicting requirements. COOP, equipped with only one duplication control 

parameter is not able to provide both high NOA and high POA simultaneously. 

With the proposed CSC mechanism, however, by manipulating two duplication 

control parameters, it is possible to reconcile between the objectives NOA and POA. This 

is the primary contribution of CSC. 

 

7.8.2 Cache Splitting  

In Cooperative Split Caching (CSC), the cache space in each mobile device is 

divided into a duplicate area and a unique area. As shown in Figure  7-1, the duplicate 

area occupies D	�0 ≤ 	D ≤ 1� fraction of the available cache space and stores D. � most 

popular objects which are duplicated within the domain of cooperation. The unique area 

stores �1 − D�� objects which are unique across the nodes within the domain of 

cooperation. The parameter D is the second tunable quantity for duplication control in 

CSC. While DOC controls partition wide duplication by tuning the depth of ring search 

during cache resolution, D controls the level of duplication within the domain of 

cooperation by shifting the emphasis between storing duplicated and unique objects. 

 

Figure  7-1: Cache partitioning in the CSC policy 

The intuition behind this split is to let a limited number of popular objects to be 

Duplicate Unique
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duplicated at all nodes within the cooperation domain. This duplication helps maintaining 

high Node Object Availability (NOA). Simultaneously, the unique part of the cache space 

can maintain sufficient number of unique objects so that the Partition Object Availability 

(POA) can be also maintained high. This is how, unlike in COOP, CSC can achieve both 

high NOA and POA by tuning the duplication control parameters DOC and D to 

appropriate values.  

7.8.3 Cache resolution and replacement  

Cache resolution in CSC is based primarily on local search and DOC based 

network search as described in Section  7.5. Unlike in COOP, no profile based and hop-

by-hop resolutions are performed. In the presence of mobility it is possible for few 

objects, which are meant to be domain-wide unique, to get duplicated due to the entry of 

new nodes within a domain. CSC implements a simple mechanism to fix such undesired 

duplications in the following manner. When a node sends a broadcast query for an object, 

it may receive multiple ACKs from different nodes within the domain of cooperation (i.e. 

the radius of ring search). Subsequently, the requester notifies all but only one ACK 

senders about the duplication. Upon receiving such notification, a node deletes the 

specific object from its cache only if it has been stored in the unique part of the cache. 

Object replacement is based on popularity and the adopted cache split. When a new 

object is fetched from the CP’s server, the downloading node attempts to replace a less 

popular object from its local cache (including both the duplicated part and the unique 

part). If no less popular object is found then the object is not stored in the cache. When a 

new object is fetched from the cooperation domain, the downloading node attempts to 

replace a less popular object only from the duplicated area of its local cache. If no less 
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popular object is found within the duplicate area then the object is not stored. In other 

words, objects fetched from the local partition are never cached within the unique part of 

the cache. Using the above logic, at steady state, all devices’ caches in a cooperation 

domain will have the same set of objects in their duplicate areas.  

Note that CSC with λ set to zero, is same as COOP-P-LPO. When D is equal to 

zero, no space in cache is reserved for duplicate objects. In other words, there is no 

duplication within a cooperation domain. We refer to this type of caching as exclusive 

caching. Running CSC with λ set to one is same as running COOP-N-LPO. Since λ is 

one, there is no restriction on storing duplicated objects. In other words, D = 1 cancels 

the prioritized cooperation of COOP, which causes all nodes in a partition to store the 

same set of most popular objects. It should now be evident that by varying D it is possible 

to create different levels of object prioritization and subsequent duplications, which in 

turn helps reconciling between the NOA and POA performance. 

7.9 Computing best POA and NOA using CSC 

Maximum node level availability (NOA) is achieved when all nodes in a domain 

store the most popular objects and in CSC, this situation corresponds to D = 1. In this 

case maximum possible NOA is limited by the cache size in each node and is equal to 

f(C). Maximum POA is achieved when all available capacity in a domain is used to store 

the maximum number of objects. Thus, to maximize POA, the split factor D must be set 

to 0 (which corresponds to zero duplication). The maximum POA is determined by the 

total number of objects we can store in a domain which is limited by cache size and 

number of nodes in the domain, and is equal to f(VC). 
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7.10 Evaluation in stationary networks 

In order to evaluate and compare the proposed cooperative caching mechanism, we 

have implemented all flavors of COOP (see Section  7.7.3) and CSC using ns2 network 

simulator. Simulation has been run for 100 nodes with the cache size at each node set to 

100. Total number of objects is 10000, and the object popularity follows a Zipf 

distribution with the parameter α set to 0.8. Nodes are uniformly distributed in a 

1500mx1500m area. All nodes use 802.11 MAC layer with a communication range of 

250m.  

7.10.1 Availability comparison between COOP and CSC 

It was established in Section  7.7 that protocol COOP cannot achieve high NOA and 

POA at the same time. The proposed protocol CSC attempts to remove this limitation by 

adding the cache splitting factor	D, which together with the Domain of Cooperation 

(DOC) can provide a finer granularity of object duplication control. By using this finer 

duplication control the protocol CSC achieves high NOA and POA at the same time. 

 

Figure  7-2: Feasible NOA-POA sets for COOP-P-LPO 
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Figure  7-2 shows the feasible NOA-POA points and the corresponding Traffic 

(GNT) values obtained from the ns2 simulation of COOP-P-LPO protocol. COOP-P-LPO 

is shown because it outperforms all other versions of COOP including the LRU based 

baseline reported in [28]. Each point in Figure  7-2 demonstrates the feasibility of a 

specific combination of NOA and POA as a requirement, and the corresponding GNT 

when the combination is feasible. For COOP, different (NOA, POA) points are generated 

by varying the DOC. Observe that while low (NOA, POA) points are generally mostly 

feasible, it is not so when either the NOA or the POA is increased. This clearly validates 

the logic presented in Section  7.7 that the protocol COOP cannot achieve high NOA and 

POA at the same time with relying only on DOC as a means for duplication control.  

Figure  7-3 demonstrates CSC’s NOA-POA feasibility results. Different (NOA, 

POA) points in this case are generated by varying the combination of DOC and the cache 

split factor D.Observe how the protocol CSC is able to achieve high NOA and POA 

simultaneously by leveraging the additional duplication control parameter, namely, the 

cache split factor D. For the experimented range of NOA and POA, only one (NOA, 

POA) situation, namely, (0.3, 0.8) is not achievable by CSC, whereas a large (NOA, 

POA) area is not feasible with COOP (see Figure  7-2). Note that the minimum possible 

GNT in CSC is slightly smaller than the minimum possible GNT in COOP-P-LPO 

uniformly across all feasible (NOA, POA) points. 
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Figure  7-3: Feasible NOA-POA sets for protocol CSC 

Figure  7-4 compares the feasibility region of CSC with all flavors of COOP with 

different cache replacement policies, namely, LRU, LPO, and RNDM. For a given 

replacement policy, the presented results are either for –P or –N version of COOP 

(whichever achieves better overall feasibility). The figure shows that the NOA-POA 

feasibility of CSC remains superior to all flavors of COOP irrespective of the chosen 

replacement policy.  
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The above results indicate that when both high NOA and NOA are needed, the 

proposed protocol CSC significantly outperforms all flavors of the protocol COOP, while 

not increasing the corresponding Traffic (GNT). In fact, as shown in Figure  7-2 and 

Figure  7-3, the GNT of CSC is slightly lower than that for COOP at the feasible (NOA, 

POA) points. This property of CSC was found to be valid for different cache size and 

also for different Zipf parameters. 

7.10.2 Individual characterization of COOP 

Node Object Availability (NOA): As defined in Section  7.6 , for a given Domain of 

Cooperation (DOC), using object prioritization reduces duplication by storing more 

unique objects within the DOC region. As shown in Figure  7-5, since lower object 

duplication leads to less likely local hits, the NOA is generally lower with prioritization 

turned on for all flavors of COOP. With prioritization on, since increasing DOC reduces 

the level of object duplication, the quantity NOA reduces with increasing DOC. With 

prioritization off however, DOC does not have major impact on NOA because in this 

case the level of object duplication is already high and is decided primarily by the local 

replacement policies such as LRU, LPO or RNDM. 
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Figure  7-5: Impacts of DOC on NOA 

 

Partition Object availability (POA): As shown in Figure  7-6, unlike in NOA, the 
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Figure  7-6: Impacts of DOC on partition availability 

7.10.3 Individual characterization of CSC 

As explained in Section  7.8, DOC and cache split factor D are the two parameters 

which control the object duplication level, thus determining the availability performance 

for the proposed CSC mechanism. Figure  7-7 demonstrates the impacts of DOC and λ on 

the Node Object Availability (NOA). Observe that NOA depends a great deal on λ. larger 

λ values cause higher levels of object duplications, leading to larger node level 

availability due to increasing local hit rates. With smaller λ, more unique objects are 

stored within the cooperation domain, leading to lower node level local hit rates, thus 

causing lower NOAs. In CSC, the set of duplicated objects in all nodes are the same and 

this set does not change as we increase DOC. In other words, varying DOC does not 

change NOA as it is shown in Figure  7-7.  

The impacts of DOC and cache split factor λ on the Partition Object Availability 
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(POA) are reported in Figure  7-8. As expected, with lower λ, since more unique objects 

are cached within a cooperating domain, the likelihood of finding an arbitrary object 

within the partition increases. This explains the higher POA numbers for lower λ values. 

As for the impacts of DOC, with higher DOCs, a node searches a bigger network area for 

an object, thus increasing the likelihood of finding it in the partition – leading to higher 

POAs.  

 

Figure  7-7: Impacts of DOC and λ on NOA in CSC 
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Figure  7-8: Impacts of DOC and λ on POA in CSC 

 

From the NOA and POA results in Figure  7-7 and Figure  7-8, it can be observed 

that unlike in COOP, the proposed CSC caching protocol can achieve high NOA and 

POA simultaneously by carefully adjusting the two object duplication control parameters 

DOC and λ. The impacts of this advantage of CSC over COOP have already been shown 

in terms of the NOA-POA feasibility landscapes in Figure  7-4. 
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(which is close to human speed) and pause time 300 seconds. Impacts of different pause 

times, representing different levels of mobility, are also evaluated. 

 

Figure  7-9 shows the feasible NOA-POA points and the corresponding Traffic 
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(GNT) values for the COOP-P-LPO protocol, which provides the best feasibility results 

among all flavors of COOP. Observe that like in the stationary case, while low (NOA, 

POA) points are mostly feasible, it is not so when either the NOA or the POA is 

increased. The main difference between this graph and that of stationary network (i.e. 

Figure  7-2) is that because of mobility, DOC and its resulting object prioritization have 

less impact on NOA and POA. When nodes are mobile, it’s difficult to prioritize unique 

objects over duplicated objects since there is always a minimum degree of undesired 

duplication in the network. This explains why achieving high values of POA is not 

possible for COOP based schemes. Note that because of using object prioritization 

achieving high values of NOA also is not feasible. 

 

Figure  7-9: Feasible NOA-POA sets for COOP-P-LPO 
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Figure  7-10: Feasible NOA-POA sets for CSC 

 

The NOA-POA feasibility points for the proposed CSC scheme are reported in 

Figure  7-10. Comparing Figure  7-3 and Figure  7-10, it can be observed that the NOA-

POA feasibility performance of CSC does not change appreciably when mobility is 

introduced. Different (NOA, POA) points in this case are generated by varying the 

combination of DOC and the cache split factor D. Like in the stationary case, the 

minimum possible GNT in CSC is slightly smaller than the minimum possible GNT in 

COOP-P-LPO across all feasible (NOA, POA) points. 
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Figure  7-11: NOA-POA feasibility in a mobile network 

Figure  7-11 compares the feasibility region of CSC with all flavors of COOP with 

different cache replacement policies. The figure shows that the NOA-POA feasibility of 

CSC remains superior to all flavors of COOP irrespective of the chosen replacement 

policy. The above results indicate that in addition to stationary networks, the proposed 

protocol CSC significantly outperforms all flavors of the protocol COOP under mobile 

networks. Moreover, as shown in Figure  7-9 and Figure  7-10, the GNT of CSC is slightly 

lower than that for COOP.  

The impact of the degree of mobility is evaluated by changing the pause time 

between two subsequent moves in ns2 random waypoint mobility. Figure  7-12 shows that 

for mobile network the maximum POA is slightly lower than that of a stationary network. 

The main reason is under mobile network there is always a minimum degree of undesired 

duplication in a domain which reduces the maximum possible POA. For example when a 

node gets isolated, it has to download all objects from the CP’s server when they are not 
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available in the local cache. Among those object node will store the most popular objects. 

Later when a node gets connected to a bigger partition, it has a set of duplicated objects 

and the number of these objects is more that D�. This extra undesired duplication reduces 

the total number of unique objects stored in the partition and, in turn, reduces the POA. 

As discussed in Section  7.8.3, in CSC the requester notifies all nodes who maintain a 

duplicate object so that those nodes can remove the duplicated object from their cache to 

accommodate a new unavailable object in the partition. This mechanism alleviates the 

impact of undesired duplication; however, it cannot completely fix it. 

 

Figure  7-12: Impacts of pause time on NOA-POA feasibility 

7.12 Evaluation of Generated Network Traffic  

Figure  7-13 shows the effects of DOC on GNT for the COOP family of protocols. 

GNT is a function of NOA, POA, and the topological descriptors Cd and β. The quantity 

Cd is the average hop-count between a node and Internet gateway and the quantity β.Cd 

is the average hop-count between any two nodes in a domain.  
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Figure  7-13: Impacts of DOC on GNT in protocol COOP 

 

In Figure  7-13, it can be observed that the GNT first decreases with increasing 

DOC and then after an optimal point, it starts increasing back up. The reason is initially, 

by increasing DOC, a percentage of the requested objects are found within the domain in 

a distance smaller than Cd. In a small domain, the average hop-count between the 

requester and found object in the domain is significantly smaller than the average hop-

count between a node in the domain and the gateway nodes (i.e. β << 1). 

For larger domains, however, the distance between the requester and the found 

object increases and get closer to the average distance between a node and the gateway 

node (i.e. β ~ 1). This causes the GNT to go up again. 

 

Figure  7-14 reports the generated traffic as a function of the two duplication control 

parameters DOC and D in CSC. Similar to COOP, there is an optimal DOC at which 

GNT is minimized. Furthermore, there is second point of optimality for D at optimal 
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DOC which provides the minimum GNT among all CSC policies using the optimal DOC. 

This explains as to why GNT for CSC is slightly smaller than that of COOP at all feasible 

points (as shown in Figure  7-9 and Figure  7-10).  

 

 

Figure  7-14: Impacts of DOC and λ on GNT in CSC 

7.13 Summary and Conclusion 

We have developed a cooperative object caching mechanism for providing high 

network and node level object availability in Mobile Social Wireless Networks. This is 

achieved by using a novel cache partitioning method which can be used for fine grain 

object duplication control within isolated network partitions. It was demonstrated that by 

using this cache partitioning strategy, the proposed mechanism is able to outperform the 

existing schemes while reducing network traffic. The above conclusion holds for both 

stationary and mobile networks. 
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Chapter 8 : COOPERATIVE FIREWALLING IN MANETS 

8.1 Introduction 

Wireless networks, such as Mobile Ad Hoc Networks (MANETs) and wireless 

mesh networks, have become an integral part of the Internet infrastructure. Unwanted 

traffic, which constitutes 2 to 12 percent of the Internet traffic, wastes significant network 

bandwidth and the power of resource-constrained wireless nodes [64]. For example, 

worm attacks are one the most severe cyber threats for MANETs in which worms with 

arbitrary payload can saturate the networks in a matter of seconds [155].  

On the Internet, firewalls are widely deployed on the border of private wired 

networks to stop unwanted traffic to and from the public network. However, unlike wired 

networks, it is difficult to deploy firewalls for wireless mobile networks because each 

wireless mobile node often manages itself and therefore a central firewall is often 

unrealistic to reach and impractical to enforce. Furthermore, due to the mobility and 

topology dynamism, wireless mobile networks often lack the concept of private networks 

and therefore have no clear line of defense. To defend against malicious attacks, each 

wireless node has to implement the firewall functionality by itself. However, discarding 

unwanted traffic at destination nodes in wireless networks leads to significant waste of 

scarce resources, such as bandwidth and power, used by intermediate nodes to forward 

unwanted traffic.  

In this chapter we use the proposed cooperative caching scheme as a solution for 

discarding unwanted packet in the MANETs. A firewall rule is considered as an object 

and unwanted traffic is considered as object requests. Knowing the restricted capacity of 
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mobile node, only a limited number of rules can be stored in each node, the main 

question then is how to place firewall rules in the network to discard the maximum 

number of unwanted packets in the network.  

8.2 Technical Challenges 

To discard unwanted traffic before reaching destinations, for each wireless node, 

we need to distribute its firewall rules to other nodes. However, distributing firewall rules 

in wireless networks is a technically challenging problem. First, the topology in wireless 

mobile networks is dynamic and so are the forwarding paths. Thus, for the firewall rules 

that a node wants other node to enforce, it is difficult to identify which nodes these rules 

should be sent to. Second, the number of rules that a wireless node can handle is rather 

limited due to resource limitations. Thus, for the firewall rules that a node receives, it is 

difficult to decide which rules should be admitted and enforced given its resource 

constraints. 

8.3 Using Cooperative Firewall Rule Caching  

In this section we propose a distributed firewalling scheme for wireless mobile 

networks where nodes collaboratively discard unwanted packets for each other. We 

address the first challenge of topology and path dynamism by embedding firewall rules 

within routing messages and distributing a node’s rules along the paths that the node 

receives unwanted traffic so that unwanted packets can be discarded before they reach the 

node. Coupling rule distribution with routing update messages allows us to find the paths 

that unwanted traffic are received and therefore distribute rules along them. For proactive 

routing protocols, where each node periodically sends routing messages to other 
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neighbors, firewall rules are sent out along proactive routing messages so that the nodes 

receiving the routing messages can enforce these rules. For reactive routing protocols, 

when a node wants to send a packet, the header of the packet is included in the route 

request message. If the packet is unwanted, the destination node includes the rule for 

discarding this packet in the corresponding route reply messages and hereby notifies all 

intermediate nodes in the path from the packet source to the packet destination. We 

address the second challenge of resource limitations by each node enforcing portions of 

its received firewall rules based on rule admission policies and replacing obsolete rules 

by new rules based on rule replacement policies. We use Split Cache replacement policy 

as described in  Chapter 3 and also we propose another heuristic based rule admission and 

replacement policies to maximize the number of unwanted packets discarded before 

reaching their destinations. 

8.4 Rule Distribution Framework 

In this section, we present our rule distribution scheme addressing both rule 

exporting (i.e., determining which rules to export to neighbors and how to export them) 

and rule importing (i.e., determining which received rules to be enforced).  

8.4.1 System Model 

The wireless network is formed by mobile nodes without any prior contact, trust or 

authority relation. The nodes are able to communicate with each other using different 

multi-hop routing protocols. Since the nodes can be mobile, the topology of the network 

may change frequently over time. Mobile nodes are usually resource constrained in 

energy, bandwidth, storage, memory and computational ability. Each mobile node may 
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have some firewall policy that specifies what packets it does and does not want to receive 

from other nodes. The firewall policy is represented by an Access Control List (ACL) 

consisting of a sequence of rules. Each rule has a predicate over some packet header 

fields and a decision (i.e., action) to be taken for the packets that match the predicate. The 

decision of a rule is typically accept (i.e., permit) or discard (i.e., deny). ACL rules 

are often overlapping and decisions are made based on the first match semantics (i.e., the 

decision that an ACL makes for a packet is the decision of the first rule that the packet 

matches in the ACL). Thus, for rule distribution purposes, we need convert each 

overlapping ACL to an equivalent non-overlapping ACL. Each node only exports discard 

rules (i.e., the rules whose decision is discard) and they are stored in a table called 

Export-Policy Table (EPT). To ensure that the rules exported by a given node can only be 

matched by packets that destined to this node, the destination field of each rule in the 

node’s EPT must be the address of the node. Accordingly, for each node, we store the 

rules that it receives and it wants to enforce in a table called Import-Policy Table (IPT). 

Before forwarding a packet, a node checks the packet header against IPT rules and 

discard the packet if it matches a rule in the IPT. Figure  8-1 shows a simple example 

network where node D distributes the rules in its EPT, as shown in Table  8-1: Export-

Policy Table of node D, to other nodes. In this example network, for three rules of D, we 

suppose node A admits rule B� and B5, B admits rule B�, C admits rule B5, and S admits 

nothing. Suppose node S sends a packet with destination port 80 to D, it is forwarded by 

B but discarded by A before reaching D because this packet matches rule B5 in A’s IPT.  
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Figure  8-1: Rule distribution on an example network 

Rule Src IP  Dest IP  Src Port  Dest Port  Protocol Action B�  10.10.0.5 10.10.0.1  *  8080  TCP  discard B5  10.10.0.7 10.10.0.1  *  80  *  discard B¾  10.10.0.3 10.10.0.1  *  *  *  discard 
Table  8-1: Export-Policy Table of node D 

8.5 Rule Exporting 

8.5.1 Constructing Export-Policy Table 

To construct EPTs, we need to convert overlapping ACLs to equivalent non-

overlapping ACLs. We perform this conversion using Firewall Decision Diagrams 

(FDD), a tree-based data structure for representing ACLs [156]. An FDD is a directed 

acyclic graph (DAG) with the following properties: (1) It has exactly one root node. (2) 

Each non-terminal node represents a packet field and each terminal node represents a 

decision. (3) A directed path from the root to a terminal node is called a decision path. 

The node labels on every decision path are unique. (4) Each edge is labeled with a non-

empty set of integers within the domain of the field that labels the node where the edge is 

originated. (5) The sets of integers that label the outgoing edges of a node are non-

overlapping. The union of these sets equals to the domain of the field that labels the node. 
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After converting an overlapping ACL to an equivalent FDD, we can generate an 

equivalent non-overlapping ACL from the FDD by generating one rule per decision path. 

Deleting accept rules from the non-overlapping ACL yields the EPT. Figure  8-2 

illustrates the process of calculating an EPT from an overlapping ACL. Figure  8-2(a) 

shows a toy example of a two dimensional ACL whose rules are overlapping. We first 

convert this ACL to an equivalent FDD shown in Figure  8-2(b), and then using this FDD, 

we extract non-overlapping discard rules to construct the EPT in Figure  8-2(c).  

 

Figure  8-2: EPT Construction using FDDs 

8.5.2 Rule Distribution 

We distribute rules in EPTs along with routing messages. Below, we discuss our 

rule distribution scheme based on two types of routing protocols used in wireless mobile 

networks: proactive protocols and reactive protocols.  
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8.5.2.1 Rule Distribution with Proactive Routing Protocols 

In proactive routing protocols such as OLSR [157] and DSDV [158], each node 

periodically sends routing updates to its neighbors to keep the nodes’ routing table 

consistent. Such protocols are suitable for stationary networks such as wireless mesh 

networks and the wireless networks that are communication intensive. Using such 

protocols, for each discard rule in the EPT of a given node, this node keeps track of the 

hit rate of the rule, i.e., the number of received packets that match the rule per unit time; 

once the hit rate of a rule exceeds a threshold, the node sends out the rule piggybacked on 

its routing messages. A rule B is associated with two variables, hit rate denoted ℎ and 

admission distance denoted H. When a node receives a rule and admits it in its IPT, it 

resets the admission distance value of this rule to be its distance to the node that this rule 

is originated from and then forwards the rule to the next hop. To control the number of 

hops a rule traverses, each rule has a Time to Live (TTL) value. A rule is not forwarded if 

its TTL value is equal to 0. Figure  8-3 shows an example scenario that illustrates the 

above rule distribution process. 

 

Figure  8-3: Rule distribution with proactive routing protocols 

1
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8.5.2.2 Rule Distribution with Reactive Routing Protocols 

Reactive routing protocols, such as AODV [138] and DSR [159], are suitable for 

wireless networks that are mobile and that are not communication intensive. In such 

protocols each node broadcasts a Route Request (RR) message to find a path to the 

destination node that it wants to send messages; upon receiving an RR message, a Route 

Reply (RRep) message is sent either by an intermediate node (if the node knows a path 

from itself) to the destination or the destination node. The RR messages include source 

and destination address to discover the route to the destination. In our rule distribution 

scheme, we modify RR messages so that they also include other packet header fields such 

as destination port, source port, and protocol type. Before the destination node or an 

intermediate node replies to an RR message with an RRep message, it checks the packet 

header fields included in RR message against the rules in its IPT. The destination node, 

however, checks the packet header against its EPT. If the packet header does match any 

of the rules, the node includes the corresponding rule B with its hit rate ℎ and admission 

distance H = 0 in the RRep message and sends it over to the source. Note that hit rate of 

rule B is updated each time a packet header matches rule B. When an RRep messages 

travels back to the source node, it informs all intermediate nodes in the path about rule B. 

Upon receiving the RRep message, the source node or the intermediate nodes can decide 

whether to import the rule based on its hit rate and admission distance. Note that if a node 

decides to import rule B to its IPT, it must reset H in RRep message to be its distance to 

the destination before forwarding the rule to the next hop. Figure  8-4 shows an example 

scenario that illustrates the above rule distribution process. In this example, node � wants 

to send an HTTP request to node r over destination port 80. To find the path to node r, 
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node � sends an RR message including source port (SP=1111), destination port (DP=80), 

and protocol (P=TCP). As rule B5 in the EPT matches the packet header fields in the RR 

message, node r includes rule B5 along with its ℎ and H = 0 to the RRep message and 

sends it over to node �. As node ¿ adds this rule in its IPT, it updates H to 1. Finally, 

node � realizes from the RRep message that its packet will be discarded by node r. 

Hence, node S stops sending any HTTP request.  

As reactive routing protocols usually use route caching, a node may receive 

unwanted packets without receiving the corresponding RR message. Thus, only relying 

on reactive approach to distribute rules may not be sufficient. Therefore, we can use the 

proactive approach along with the reactive approach.  

 

Figure  8-4: Rule distribution with reactive routing protocols 

8.6 Rule Importing 

When a node receives a rule, it decides whether to admit the rule to its IPT based 

on its admission and rule replacement policies. Rule admission policy is based on 

multiple factors such as the rule’s originator, hit rate, and admission distance. For 

instance, a node may ignore a received rule if its hit rate is less than a prescribed 

threshold. If a node decides to store a new rule while its IPT is full, it must evict another 
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rule from its IPT to accommodate the new rule based on certain replacement policy. In 

Section  8.11, we introduce two replacement policies to optimize rule distribution based 

on our system performance metrics.  

8.7 Policy Table Consistency 

When the ACL rules of a node are modified, probably by its administrator, the EPT 

of the node has to be recomputed. The new EPT rules may be different from the old EPT 

rules, which may have been exported and admitted by other nodes. To avoid such 

inconsistency, we propose two mechanisms that all nodes can employ to remove the 

admitted rules originated from a particular node: rule revocation and rule expiration. In 

the rule revocation mechanism, a node can broadcast a revocation message that contains 

all the rules that this node wants to revoke. In the rule expiration mechanism, each rule in 

an IPT has an expiration time, which is set based on the rule lifetime. The rule is deleted 

when it expires. These two mechanisms can be used together. 

8.8 Security Analysis 

8.8.1 Threat Model 

Distributing rules in an insecure network in which mobile nodes have low physical 

security and can be easily stolen or compromised by an adversary raises some serious 

security issues. First, an adversary node can impersonate a victim node and send forged 

rules to deceive intermediate nodes to discard the legitimate traffic destined to the victim 

node. Second, an adversary node can modify forwarding rules such that they cause partial 

or complete unreachability of the victim node from the rest of the network. Third, an 

adversary node can modify the rule lifetime to extend or shorten the rule effectiveness, 
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which leads to unexpected reachability problems. Fourth, an adversary node can store and 

resend a rule to cause unexpected reachability problems (aka replay attack). Fifth, an 

adversary node can generate or store and resend a revocation message to all the nodes in 

the network, which disrupts rule inconsistencies and causes unexpected reachability 

problems.  

8.8.2 Securing Rule Distribution 

To address the first three security threats, we need to employ a set of security 

mechanisms that provides rule sender authentication and rule integrity. Such security 

mechanisms require pre-distributed symmetric keys or a reliable Public-Key 

Infrastructure (PKI). While mesh networks that have solid network topology often have 

pre-established security infrastructure, MANETs may not have such infrastructure due to 

node anonymity or network unreliability caused by node mobility, sparse connectivity, 

etc. Thus for mesh networks, we assume that the network has pre-distributed symmetric 

keys or PKI, in which each node knows which key (or public key) is associated to which 

IP address. And for MANETs, we assume that the nodes are auto configured using secure 

auto configuration scheme proposed by Wang et al.in [160]. In this scheme, each node 

first computes its public key and accordingly chooses an IP address, which is the hash of 

its public key. Using such a scheme or similar ones that provide key-to-IP mapping is 

useful for rule sender authentication. Hence, using a PKI system with a key-to-IP 

mapping, a rule sender node creates and distributes a message containing the rule and its 

attributes such as hit rate, admission distance, TTL, lifetime and a nonce as well as the 

rule digital signature and the node’s public key. An example exported rule message is 

shown in Figure  8-5.  
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Figure  8-5: The format of a secure rule message 

On the other hand, when a node receives a rule, it first checks whether the public 

key belongs to the rule sender. It then verifies the message digital signature for message 

integrity and authentication. Finally, it ensures that the rule’s destination field is the rule 

sender IP address. This verification is to confirm that the rule sender is not impersonated 

and the rule as well as its attributes is not modified. Once the rule is verified, it is added 

to the node’s IPT with its corresponding nonce.  

To address the replay attack (i.e.the fourth security threat), each rule has a nonce. 

For reactive routing protocols the nonce is the RR message sequence number for which 

the rule is exported. Thus, as each rule is assigned to an RR message, an adversary cannot 

replay a rule with no corresponding RR message. For the proactive routing protocols, on 

the other hand, the nonce is a timestamp, which is the time that the rule is exported. Let 

�� be the timestamp and �� be the receiver node clock. The receiver node accepts a rule if 

|�� − ��| ≤ æ. Using this condition, we bound the replay attack time window (|�� − ��|) to 

a constant value æ which is set by the receiver node. If the nodes are even loosely time 

synchronized, æ can be chosen to be very small; otherwise, it needs to be chosen large 

enough to create a balance between unexpected unreachability and unwanted packet 

filtering.  

To address the fifth security threat and revoke a rule securely, we use the unique 

nonce corresponded to each rule to avoid replaying revocation messages. Thus, to send a 

revocation message, the destination node first recreates the rule message with its original 
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nonce but with lifetime set to zero. It then signs and broadcasts the message in the 

network. As the rest of the nodes receive the revocation message, they delete the rule 

with is corresponding nonce from their IPT. By this technique, an adversary cannot 

generate a revocation message because it must be signed by the rule sender (which is the 

destination field of the rule). Also, an adversary cannot store and resend a revocation 

message because each revocation message is for only one rule with its corresponding 

nonce. Note that the hit-rate and admission distance fields for the revocation messages 

are set to zero.  

8.9 Performance Model 

8.9.1 Protocol Overhead 

Due to network resource constraints, the main objective of protocol design is to 

minimize the computational and transmission overhead of IPT computation and rule 

distribution. As the number of firewall rules for a given node is usually very small, 

finding non-overlapping rules for EPT and distributing them occasionally requires 

insignificant amount of resources. More precisely, using reactive routing messages, the 

rules are piggybacked by RR and RRep messages, which only increases their sizes up to 

5 and 156 bytes respectively, and no extra messages are required. Similarly, using 

proactive routing messages, a node can either piggyback new rules on its own routing 

messages, which again results in a very small overhead, or it can send an explicit 

broadcast message for announcing new rules. Recall that using reactive routing protocol, 

a demand for an unwanted packet triggers rule distribution, and for proactive routing 

protocol, the number of unwanted packet per unit time must exceed a prescribed 

threshold before any new rule is dispatched. Thus, rules are mostly distributed when the 
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network is seemingly under attack. Hence, compared to the number of unwanted packets 

that can be stopped in the path, such small overhead of rule distribution is negligible.  

8.9.2 Performance Metrics 

We define two performance metrics:(1) Packet Discard Ratio (PDR) that represents 

the percentage of unwanted packets discarded in the path before reaching the destination, 

and (2) Forwarding Cost Ratio (FCR) that represents the expected value of the portion of 

its path that an unwanted packet is forwarded before being discarded. The ultimate goal is 

to maximize PDR for destination node and to minimize FCR for the entire network. 

However, achieving both performance goals at the same time is difficult because the size 

of IPTs is limited. To maximize PDR, we need to maximize the number of unwanted 

packets that are discarded before reaching their respective destinations. Thus, we want to 

distribute the maximum number of unique rules on the nodes along a path that match 

unwanted packets. However, as the size of a node’s IPT may be smaller than the number 

of the rules that the node receives, the rules needs to be distributed on the nodes with the 

minimum amount of rule duplication. On the other hand, to minimize FCR, we need to 

maximize the number of the unwanted packets that are discarded at sources (i.e.number 

of forwarding hops is zero). This requires each node to store high hit rate rules in its IPT 

that in turn results in more rule duplications. To address both performance metrics at the 

same time, we define overall cost ç as a weighted function of PDR and FCR as follows:  

ç = è × (1 − �r¸) + (1 − è) × é�¸ ( 8-1) 

In Eqn. 6-1, è ∈ [0,1] is the weight coefficient factor that balances between PDR 

and FCR. For example, when è = 1, the overall cost only depends on PDR, whereas 

when è = 0, the overall cost only depends on FCR.  
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8.9.3 Analytical Model 

Given a network with ) nodes, we first model collaborative firewalling for a single 

destination node that receives unwanted packets from ) − 1 nodes. We then extend this 

model to all nodes in the network.  

Suppose node � sends D� unwanted packets per unit time to the destination node r. 

We assume the destination node r has � rules B�, … , B* in its EPT to export. The 

popularity of a given rule is defined as the percentage of unwanted packets that match 

against the rule. The popularity of �-th rule is denoted by "� and is calculated as "� =
Õ�T∑ º�Æ�ìJ ; where ℎ� is the number of unwanted packets that match against �-th rule. For 

simplicity, we assume rule popularity follows a power law distribution. We model "� by 

Zipf distribution with parameter � and Ω (i.e.Ω = ∑ �M*�&� ) as follows:  

 "� = ���î ( 8-2) 

Note that B�, ⋯ , B* are sorted where B� and B* have the highest and the lowest 

popularity, respectively. Let é�k(�) =< �ð, ��, ⋯ , �S > be the sequence of nodes in the 

path from the �-th node in the network to destination	r. To be able to enumerate the 

nodes in the path, we use �ð to represent the �-th node in the network and �S is the closest 

node to the destination. Let  ̧(�) be the set of rules stored at �  at time � and �(  ̧(�)) be 

the probability that a given unwanted packet matches against one of the rules in  ̧(�). As 

 ̧(�) contains non-overlapping rules, �(  ̧(�)) is calculated as follows:  

 �(  ̧(�)) = ∑ "��∈ñ%(})  ( 8-3) 

Let �r¸� (�) be the PDR of unwanted packets sent from � to � at time �. Thus,  
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 �r¸�k(�) = �(⋃  ̧∀�%∈ó�ô(}) (�))  ( 8-4) 

Using Eqn. 6-4, we can compute the average PDR for all the unwanted packets that 

reach destination r. The average PDR of all unwanted packets from different sources 

denoted by �r¸k(�) is calculated as follows:  

 �r¸k(�) = ∑ (Æ�ìJ º�×õkñ�ô(}))∑ º�Æ�ìJ   ( 8-5) 

And the total average PDR for the destination node r in time period C is calculated 

as follows: 

 �r¸k = F �r¸k-ð (�)H�  ( 8-6) 

Based on the definition of FCR, it is the ratio of number of times that a packet has 

been forwarded to the path length between source node and destination node. For 

example, FCR of an unwanted packet discarded at source node is zero, and it is 1 if it is 

discarded at the destination. Let é�¸� (�) be the FCR of unwanted packets sent from � to 

� at time �. We can calculate é�¸$k(�) for a simple example network in Figure  8-1, 

where é$k(�) =< �, ö, ¿ >, as follows:  

é�¸$k(�) = 1/3{0 × �(¸ð(�)) + 1 × �(¸�(�) − ¸ð(�)) + 2 

�(¸5(�) − ¸�(�) − ¸ð(�)) + 3(1 − �r¸$k(�))} 

¸ð(�), ¸�(�), and ¸5(�) are the set of rules for nodes A, B, and S. The generalized 

equation for é�¸�r(�) is as follows:  

 é�¸�k(�) = ∑ / ×õPñ%(})L⋃ ñøøù% Q0∀�%∈ú�ô(û) |ó�ô(})|   ( 8-7) 

Using Eqn. 6-7, we can compute é�¸k(�), the FCR for all unwanted packets that 

reach destination r as follows:  
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 é�¸k(�) = ∑ º�Æ�ìJ ×ó+ñ�ô(})×|ó�ô(})|∑ º�Æ�ìJ ×|ó�ô(})|   ( 8-8) 

Let D�  be the rate of unwanted packets from node � to node �. We can also extend 

Eqn. 6-8 for the FCR for all nodes in C time period as follows:  

   é�¸ = F ∑ º�%Æ�ìJ ×ó+ñ�%(})×|ó�%(})|∑ º�%Æ�ìJ ×|ó�%(})|-ð H�  

8.10 Optimal Cases and Theoretical Bounds 

We next compute the theoretical bound for maximum possible PDR and minimum 

FCR. Descriptions for the symbols and notation used here are in Table  8-2.  

 

 

Parameters description �:Number of rules �: Zipf parameter "�: popularity of rule � e: size of IPT üℓ: set of nodes in distance ℓ ü∗: set of nodes farther than 

⌊�/e⌋D�:rate of unwanted packet generated by node � to destination 

Table  8-2: Parameter used for computing bounds 

8.10.1 Maximum Packet Discarding Ratio 

To maximize PDR for destination node r, we need to place rules so that the 

number of unwanted packets reaching the destination r is minimized. Thus, we want to 

put the maximum number of unique rules with hit rate as high as possible in the path 

from the unwanted packets source to the destination r. Let e be the IPT size. The best 

placement strategy of the rules that maximize PDR is as the following: (1) We sort the 

rules based on their hit rate from high to low. (2) We place B�, … , B�  in 1-hop distance 
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nodes, B�u�, … , B5�  in 2-hop distance nodes, and accordingly B(>L�)�u�, … , B>�  in 

?-hop distance nodes (note that ? ≤ �/e). Thus, we put the first e rules with highest hit 

rates in all nodes within 1-hop distance so that they are effective in all possible paths to 

the node r. Similarly, we put the second e highest hit rate rules in all nodes within 2-hop 

distance and so forth. Clearly, for nodes with distance more than �/e, all unwanted 

packets are discarded before reaching the destination because all rules have already been 

placed in their path to the destination. Let ü� denote the set of nodes � hops away from the 

destination and ü∗ denote the set of nodes that are located farther than �/e hops distance. 

The total number of packets discarded before reaching the destination is denoted by �S³´ 

and is calculated as follows:  

 �S³´ = ∑ ∑ D  ∈��*/��&� ∑ ">��>&� + ∑ D  ∈�∗   ( 8-9) 

Note that in Eqn. 6-9, the first term is the number of discarded packet generated by 

nodes within �/e hops from the destination. The second term is the number of discarded 

packets generated by nodes whose distance is farther than �/e to the destination. 

Replacing ∑ "���&³  by /�JK�L³JK�
�LM 0ΩL� where Ω = ∑ "�*�&� =

*JK�L��LM , Eqn. 6-9 

can be written as:  

 �S³´ = ∑ ∑ D  ∈��*/��&� (��)JK�L�*JK�L� + ∑ D  ∈�∗   ( 8-10) 

We can calculate the maximum packet discarding ratio as �r¸S³´ =
�S³´/()∑ D�T�&� ). Thus, using Eqn. 6-10, the upper-bound of PDR for node r is 

calculated as follows:  
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 �r¸k ≤ ∑ ∑ º%%∈���/��ìJ (��)JK�KJ�JK�KJ u∑ º%%∈�∗T∑ º�Æ�ìJ   ( 8-11) 

8.10.2 Minimum Forwarding Cost Ratio 

In order to minimize the forwarding cost ratio for a designated destination node r, 

we use the following bottom-up rule placement approach. All paths to a destination node 

can be represented by the shortest path spanning tree rooted at node r. To minimize 

FCR, we need to have the least number of packet forwardings which implies that each 

node needs to discard as many unwanted packets as possible. Note that rules are sorted 

based on their hit rate therefore the leaf nodes in the tree need to store rules from B�, … , B� 

in order to discard the maximum number of unwanted packets. The next level of the 

nodes (i.e.leaves’ parents) need to store the rules that match the maximum number of 

unwanted packets at the nodes. This includes the unwanted packets that the nodes 

generate locally and the unwanted packets they receive from their children. FCR is 

minimized if this process continues recursively along the spanning tree to the root. Since 

calculating the minimum value for FCR is difficult because of its dependency on the 

semantics of rules, network topology (i.e. number of children per node), node’s capacity 

e and the skewness parameter of power law distribution �, we calculate a lower-bound 

for FCR as follows. Suppose node A is located within distance ℓ from the destination. To 

minimize FCR of unwanted packets generated by node A, we need to place rules such 

that rules 1,… , e are stored in node A, rules e + 1,… ,2e are stored in the first node in the 

path, and subsequently rules �e + 1, … , (� + 1)e are stored inthe �-th node in the path. 

Therefore, the total number of forwarding for unwanted packets generated by node ¿ 

within distance ℓ of node r denoted by éℓ� is calculated as follows:   
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éℓ� = �ä1 −." �
 &� å + ä1 −." 5�

 &� å +⋯+ ä1 − ." �×�
 &� å� × D� 

 = (ℓ − ∑ " ℓ×� &� ) × D�  ( 8-12) 

However, as there are multiple sources of unwanted packets and each node has 

limited capacity of e, we cannot place the rules as described. For instance, let node B be 

the first node in the path from node A to the destination node. If node B also is a source 

of unwanted packets, it needs to store rules from 1, … , e, but its IPT is already full by 

rules e + 1,… ,2e that are imported in the first round for unwanted packets generated by 

node A. Hence, assuming Eqn. 6-12 holds for all nodes, which may not be applied in 

reality, we can calculate a lower-bound of FCR for destination node r as follows: 

 é�¸k ≥ ∑ ∑ ó	�∀�∈�ℓℓìJ∑ ∑ (∀�∈�ℓℓìJ º�×ℓ)  ( 8-13) 

Using Eqns. (6-13) and (6-14), the lower-bound for FCR can be stated as follows:  

 é�¸k ≥ 1 − ∑ ∑ (∀�∈�ℓℓìJ ∑ |%ℓ×�%ìJ ×º�)∑ ∑ (∀�∈�ℓℓìJ º�×ℓ)   ( 8-14) 

8.11 Rule Admission and Replacement Policy 

In this section, we present two rule admission and replacement policies: Split 

Replacement Policy (SRP) and Proximity Aware Replacement (PAR).  

8.11.1 Split Replacement Policy Algorithm 

As mentioned before, due to limited size of IPTs, PDR and FCR are dependent on 

the number of rule duplications in the paths to the destination. Thus, we should carefully 
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control the amount of rule duplication to tradeoff between the two potentially conflicting 

goals of minimizing FCR and maximizing PDR. To this end, we divide each IPT into two 

segments: the first segment of an IPT holds rules with highest hit rates with no 

constraints on number of duplications in the path. The second segment of an IPT stores 

the rules that are unique in the path. Keeping the rules with the highest hit rates in the 

first segment of an IPT helps decreasing FCR, and keeping the uniqueness of rules along 

the path to the destination in the second segment of IPT helps increasing PDR. By 

adjusting the size of the first and the second segments of IPTs, SRP can easily regulate 

the total cost of unwanted packets in the network.  

Using SRP, when a node receives a new rule, it imports the rule, if it has a free slot 

in its IPT; otherwise, it executes the following procedure: (1) If the rule has been stored 

in the path (H ≠ 0) and if there is a rule in the first segment of an IPT whose hit rate is 

smaller than the new rule’s hit rate, the rule is replaced with the rule with the lowest hit 

rate; otherwise, the rule will not be imported in IPT. (2) If the rule has not been stored in 

the path (H = 0) and if there is a rule in the second segment of an IPT whose hit rate is 

smaller than the new rule’s hit rate, the rule is replaced with the rule with the lowest hit 

rate; otherwise, the rule will not be imported in the IPT. In case a rule is added to an IPT, 

the rule admission distance is updated to node’s distance to the destination and the rule 

will be forwarded to the next hop. SRP pseudo code is shown in Algorithm 1.1.  
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8.11.2 Proximity Aware Replacement Algorithm 

An alternate approach is to use the distance parameter to control the amount of rule 

duplication in a path. In PAR algorithm, a node accepts rule B� if H� is larger than a 

predefined threshold À. Intuitively, when À is small, high hit rate rules are stored in many 

nodes in the path which decreases both FCR and PDR. On the other hand, when À is 

large, high hit rate rules are stored in few nodes in the path which increases both FCR and 

PDR. In PAR algorithm, a new rule is admitted if a rule is not stored in any node within 

distance	À. In case the node’s IPT is not full, the node imports the new rule; otherwise, if 

there is a rule in the IPT whose hit rate is smaller that the new rule’s hit rate, the rule is 

replaced with the rule with the lowest hit rate. If the new rule’s hit rate is smaller than the 
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lowest hit rate in the IPT, the rule will not be imported in the IPT. PAR pseudocode is in 

Algorithm 2.  

 

8.12 Simulation Results 

We evaluate PDR and FCR based on our replacement and admission policies, 

namely SRP and PAR.  

� Zipf parameter [0.5 … 1] e IPT size [10 … 200] 
 SRP parameter [0 … 1] À Proximity parameter [0 … 10] � Movement speed 0 m/s (static), 1m/s (slow) and � Total number of rules 10000 ) Total number of nodes 100 
A Area 500 m x 2500 m 
Simulation runs for 15000 seconds. Packets are generated every 2 

Table  8-3: Simulation parameters 
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8.12.1 SRP Performance 

Recall that we divide IPT tables into two segments where the first segment stores 

high hit rate rules and the second segment stores unique rules in the path that rules are 

distributed. In practice, the high hit rate rules are duplicated in the first segment of the 

IPT for all nodes in the path. We used parameter 
 to indicate the percentage of IPT 

reserved in the first segment. Figure  8-6(a) shows the impacts of 
 on PDR. The results 

correspond to � = 0.8 and IPT size of 100, which is equal to 1% of the total number of 

rules in the destination node. For small 
 values, nodes only store rules which have not 

been stored by other intermediates nodes in the path. Hence, the total number of different 

rules stored in the path increases which in turn causes more number of unwanted packets 

to be discarded in the path. This explains why PDR is high for small values of 
.  

 

Figure  8-6: SRP Packet Discarding Ratio and Forwarding Cost Ratio for different θ 
values 

However, as 
 increases, the amount of rule duplication along the path that the rule 

is distributed increases and therefore PDR reduces. In an extreme case, when 
 = 1 

(i.e.no second segment in IPT), all nodes will store the same set of high hit rate rules, 
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which in turn leads to the minimum PDR. The slope of decreasing trend of PDR is 

different for three mobility patterns. The more mobile a network is, the less significant 

the impact of 
 is on PDR. The reason is when nodes are moving, rules in the second 

segment of IPT may not be unique along the path. Thus, the number of duplicated rules in 

a path stored in the second segment of IPT increases as nodes move faster. This 

unnecessary duplication of the rules in the second segment reduces the impact of 
 on 

PDR.  

Figure  8-6(b) shows the impact of 
 on FCR. By increasing 
, greater number of 

high hit rate rules are stored in IPT. This leads to discarding more unwanted packets 

locally with minimum FCR of 0. However, as shown in Figure  8-6(a), by increasing 
, 

the number of packets that reaches the destination increases (i.e.PDR decreases). Thus, 

there is more number of unwanted packets with the maximum FCR of 1. The tradeoff 

between percentage of unwanted packets being discarded at the source and the percentage 

of unwanted packets that reach the destination brings up an optimal point for 
 at which 

the average FCR is minimum. For instance, for a static network the 
 that minimize FCR 

is 0.62. The optimal point for mobile networks shifts to the left as their mobility speed 

increases due to unnecessary rule duplications for the rules that are stored in the second 

segment of the IPT.  
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Figure  8-7: SRP overall cost  

Figure  8-7(a) shows the impact of 
 on the overall cost when è = 0.5 

(i.e.performance metrics PDR and FCR are equally important). In this case, the overall 

cost is minimum when 
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 = 0.1 for static network. The 
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overall cost of unwanted packets. As in wireless mobile networks, FCR seems to be more 

important than PDR due to the power constraints on mobile nodes, Figure  8-7(b) shows 

the overall cost when è = 0.25 where FCR is three times more important than PDR. The 

results show that the overall cost for SRP is down to 0.272 for static and 0.285 for mobile 

networks, respectively.  
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number of rule duplications along the path that the rule is distributed. Thus, increasing À 

results in reducing rule duplications and therefore increasing PDR. Note that the PDR 

value is less for mobile network because of unnecessary rule duplications in a path. As an 

extreme case, when À = 0, all nodes have the same set of rules in IPT (which is similar to 

SRP when 
 = 1).  

Figure  8-8(b) shows the impact of À on FCR. Similar to SRP, the number of 

duplicated rules creates a tradeoff between number of packets that are discarded at the 

source (i.e.FCR=0), and number of packets that are discarded at the destination 

(i.e.FCR=1). As number of duplicated rules in a path is determined by À, there is an 

optimal À at which FCR is minimum. For instance, the optimal À for static network is 

equal to 1 and for mobile networks it varies from 2 to 3.  

 

Figure  8-8: PAR Packet Discarding Ratio and Forwarding Cost Ratio for different σ 
values 

Figure  8-9 (a) demonstrates the impacts of À on the overall cost when è = 0.5. The 
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mobile networks. Figure  8-9 (b) shows the overall cost when è = 0.25. The results show 

that the overall cost for PAR is down to 0.28 for static and 0.29 for mobile network.  

 

Figure  8-9: PAR overall cost 
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with 
 < 0.83 and 
 > 0.39, respectively. And Figure  8-8(a) and (b) show that the PDR 

and FCR are better using PAR with all À values and À < 7, respectively.  

Social mobile ad-hoc network can be formed by collection of mobile devices 

carried by people who get together in university campuses, shopping malls, and other 

public places. To model such networks, we use random mobility with low speed of 1m/s. 

As the network topology changes gradually, rule duplications along the paths cannot be 

controlled as in static networks. Therefore, SRP and PAR are less effective which is 

observable from PDR and FCR graphs in Figure  8-6(a) and (b) and Figure  8-8(a) and (b).  

Finally, we look at SRP and PAR performance for vehicular ad-hoc networks that 

are modeled by high-speed mobile networks with speed of 10m/s. When nodes move 

faster, the network topology become more dynamic. In other words, network paths 

changes more frequently over time, which in turn leads to less control on rule 

duplications along the paths. Hence, PDR decreases and FCR increases as nodes move 

faster.  

Furthermore, by comparing the results from Figure  8-7 and Figure  8-9, PAR is 

more sensitive to mobility comparing to SRP, as the maximum cost difference between 

static and high speed mobile networks is 3 and 17 for SRP and PAR, respectively. In 

addition, for large values of 
 and À, the overall cost for different mobility profiles 

converge, which indicates that the number of rule duplications in the paths for both SRP 

and PAR replacement policy is almost the same.  
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Figure  8-10: Impact of Zipf parameter (�) on FCRmin  

 

Impacts of Zipf parameter 
: The parameter � in Zipf distribution determines the 

skewness of the rule popularity distribution. In other words, � parameter is the slope of 

popularity function in log-log scale. Clearly, a Zipf distribution with � = 0 represents a 

rule popularity with uniform distribution.  

Figure  8-10 (a) and (b) show the impact of � on the minimum forwarding cost ratio 
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in a path. This is because a less number of rules match against a greater percentage of 

unwanted packets.  

 

 Figure  8-11: Impact of Zipf parameter (�) on PDRmax 

 

Impacts of IPT size: Intuitively, FCR reduces if we store more number of the rules 

in each node. Thus, we expect a decreasing trend for FCR, while IPT size increases. 

Figure  8-12(a) and (b) show minimum FCR for SRP and PAR replacement algorithms, 

respectively. Interestingly, the impact of increasing IPT for different mobility speeds is 
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Figure  8-12: Impact of size of IPT on FCRmin 

Similarly, Figure  8-13(a) and (b) demonstrate the impact of number of IPT size on 

maximum PDR. Indeed, by storing greater number of rules in each node, more unwanted 

packets are discarded along a path. This is the reason for increasing trend of �r¸S³´ in 

both SRP and PAR.  

 

Figure  8-13: Impact of size of IPT on PDRmax 
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8.13 Summary and Conclusion 

We proposed a collaborative firewalling scheme for mobile networks. We 

introduced two performance metrics, namely Packet Discarding Ratio (PDR) and 

Forwarding Cost Ratio (FCR), to address the effectiveness of distributed firewalling in 

the network. In addition, we developed an analytical model for the scheme using different 

system parameters and calculate theoretical bounds for system performance metrics. We 

further proposed two heuristic algorithms, namely the Proximity Aware Replacement and 

the Split Replacement Policy to maximize PDR and minimize FCR. We finally evaluated 

the performance of the system by extensive simulation on mobile networks with different 

mobility profiles. Our results show that using the proposed collaborative firewalling 

scheme, a considerable portion of unwanted traffic can be discarded before reaching the 

destinations, which saves substantial amount of power and bandwidth. 

The simulation results revealed that for each node by distributing only 1% of its 

firewall rules, about 36% of unwanted packets can be discarded in mobile networks and 

about 42% in static networks. Furthermore, using Split Cache replacement policies, we 

can save the network bandwidth wasted by unwanted traffic up to 30% for different 

mobility patterns and speeds.  
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Chapter 9 : SUMMARY AND CONCLUSION  

In this thesis we showed that cooperative content caching can effectively reduce the 

object provisioning cost for data enabled mobile devices.  We proposed different caching 

strategies for a wide range of scenarios such as homogenous and heterogeneous 

networks. We also analyzed the performance of cooperative caching under various 

mobility patterns in social wireless networks. 

In  Chapter 3 we developed an optimal cooperative caching strategy that minimizes 

the object provisioning cost in a stationary network where all users have the same request 

generation pattern. We also developed an analytical model to compute the optimal split 

parameter to minimize the provisioning cost.  

In  Chapter 4 we extended the optimal strategy and developed a benefit based 

caching strategy to minimize the provisioning cost when users have different request 

generation patterns. In a heterogeneous network, users have different interest and they 

also have different request generation rate. By modeling the problem as a classic 

maximum weight matching in bipartite graphs we showed the upper bound performance 

for the cooperative caching. Our heuristic benefit based caching is able to provide a 

reasonable and comparable performance compared to the upper bound.  

Performance of cooperative caching is highly dependent on node mobility patterns. 

In Chapter 5 we investigated the following mobility patterns and their impacts on 

performance of cooperative caching. a) Random Walk: Random walk is a simple and 

popular mobility pattern in which each node pauses in a waypoint for a while and then it 

selects a random destination before moving to the destination at a randomly selected 

speed. After reaching the destination, it again pauses, and then, repeats the above 
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behavior.  b) Human Walk: we studied the performance of cooperative caching in social 

wireless networks based on real human mobility traces.  

In  Chapter 6 we analyzed the impacts of such selfish user behavior on the object 

provisioning cost and on the earned rebate in a social wireless network (MSWNET). In 

particular, we compared the provisioning cost under presence of selfish nodes with the 

optimal provisioning cost when all nodes are cooperative.  

In  Chapter 7 and  Chapter 8 we introduced two applications of our cooperative 

caching scheme for improving object availability and also for discarding unwanted 

packets in mobile wireless networks. 

9.1 Future Work 

In  Chapter 4 we proposed a heuristic for reducing the object provisioning cost in 

heterogeneous networks. It will be desirable to develop and implement a distributed 

maximum weight matching algorithm to get the optimal solution for these networks. 

In  Chapter 5 we proposed a caching strategy for minimizing the provisioning cost 

in community based social wireless networks. To detect the community we applied the 

existence community detection algorithms. A more detailed study will be useful to 

understand the impacts of community detection algorithms and performance of caching.  

We investigated the impacts of user selfishness in  Chapter 6. However, we did not 

propose any solution for preventing selfishness in the network. The possible solution 

would be detecting and punishing the selfish nodes by revoking its earned rebates. A 

game theory framework can be developed for analyzing the detail dynamics of the game 

between selfish and non-selfish nodes. 
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Analysis of selfishness can be also extended to heterogeneous mobile networks 

where users are highly mobile, have different interest and also different request 

generation rates.  
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