

COOPERATIVE CONTENT CACHING FOR CAPACITY AND COST

MANAGEMENT IN MOBILE ECOSYSTEMS

By

Mahmoud Taghi Zadeh Mehrjardi

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

 DOCTOR OF PHILOSOPHY

Electrical Engineering

2012

ABSTRACT

COOPERATIVE CONTENT CACHING FOR CAPACITY AND COST
MANAGEMENT IN MOBILE ECOSYSTEMS

By

Mahmoud Taghi Zadeh Mehrjardi

 The objective of this thesis is to develop an architectural framework of social

community based cooperative caching for minimizing electronic content provisioning

cost in Mobile Social Wireless Networks (MSWNET). MSWNETs are formed by

wireless mobile devices sharing common interests in electronic content, and physically

gathering in public settings such as University campuses, work places, malls, and

airports. Cooperative caching in such MSWNETs are shown to be able to reduce content

provisioning cost which heavily depends on service and pricing dependencies among

various stakeholders including content providers, network service providers, and end

consumers. This thesis develops practical network, service, and economic pricing models

which are then used for creating an optimal cooperative caching strategy based on social

community abstraction in wireless networks. The developed framework includes optimal

caching algorithms, analytical models, simulation, and prototype experiments for

evaluating performance of the proposed strategy. The main contributions are: 1)

formulation of economic cost-reward flow models among the MSWNET stakeholders, 2)

developing optimal distributed cooperative caching algorithms, 3) characterizing the

impacts of network, user and object dynamics, 4) investigating the impacts of user non-

cooperation, and finally 5) developing a prototype Social Wireless Network for

evaluating the impacts of cooperative caching in a Mobile Social Wireless Networks.

 iii

To My Wife, Farzaneh Dizaji

For All Her

Love And Support

 iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Dr. Subir Biswas for his

extraordinary support and guidance during my work. He has advised me not only on my

research, but also on my career and life. I thus feel fortunate to work with him and proud

of being a member of his research group. I would also like to thank my committee Dr.

Erik Goodman, Dr. Jian Ren and Dr. Li Xiao for their time and support.

Many thanks goes to Dr. Amir Reza Khakpour and Dr. Alex Liu, for their help and

technical feedbacks on designing a distributed firewalling mechanism. I would also like

to thank Dr. Eric Torng and Dr. Charles Ofria for their technical feedbacks and their

guidance on the problem of finding the upper bound performance of caching.

Thanks must be given to my lab mates Anthony Plummer, Jayanthi Rao, Kris

Micinski, Ali Aqel, Muhannad Quwaider, for all of the brainstorming and

implementation discussions. Last but not least, I would like give thanks to my beloved

wife, Farzaneh Dizaji, and my parents for their unconditional love and support and

encouragement throughout my life. It would not have been possible for me to stand

where I am now without their help and support.

 v

TABLE OF CONTENTS

LIST OF TABLES .. IX

LIST OF FIGURES ... X

CHAPTER 1: INTRODUCTION ... 1

1.1 MOTIVATION .. 1
1.2 CURRENT SOLUTIONS .. 2
1.3 PROPOSED SOLUTION: PRICING BASED COOPERATIVE CACHING 4

1.3.1 Local Caching ... 4
1.3.2 Cooperative Caching .. 5

1.4 COOPERATIVE CACHING COMPONENTS ... 7
1.4.1 Cache Resolution .. 8
1.4.2 Cache Management .. 8
1.4.3 Cache Consistency .. 9

1.5 PRICING MODEL: A FRAMEWORK FOR COOPERATIVE CACHING 10
1.5.1 Minimizing Bandwidth Stress ... 14
1.5.2 Minimizing Energy Consumption ... 14

1.6 HANDLING HUMAN MOBILITY ... 15
1.6.1 Mobility Patterns .. 16

1.7 ANALYZING USER SELFISHNESS .. 16
1.8 APPLICATION OF PROPOSED CACHING .. 17

1.8.1 Distributed Firewalling in MANETs ... 17
1.8.2 Increase Data Availability in MANETs .. 18

1.9 DISSERTATION OBJECTIVES ... 18
1.10 SCOPE OF THESIS ... 19

CHAPTER 2: RELATED WORKS ... 22

2.1 CACHING IN INTERNET ... 22
2.2 COOPERATIVE CACHING IN MANET ... 23

2.2.1 Cache Resolution .. 25
2.2.2 Replacement Polices ... 26
2.2.3 Cache Invalidation Protocols ... 28

2.3 ANALYSIS OF SELFISHNESS .. 29
2.4 DATA REPLICATION .. 29
2.5 FIREWALL RULE CACHING ... 30

CHAPTER 3: OPTIMAL CACHING FOR HOMOGENOUS NETWORKS 32

3.1 MOTIVATION .. 32
3.2 NETWORK MODEL ... 32
3.3 PRICING MODEL ... 33
3.4 REQUEST MODEL ... 34
3.5 SEARCH MODEL ... 35
3.6 COST OF CONTENT PROVISIONING ... 35

 vi

3.7 MINIMIZING OBJECT PROVISIONING COST ... 38
3.8 COOPERATIVE SPLIT CACHE MECHANISM ... 41
3.9 HANDLING OBJECTS WITH DIFFERENT SIZE ... 44
3.10 EVALUATION IN STATIC PARTITIONS ... 44

3.10.1 Hit Rates and Provisioning Cost... 45
3.10.2 Comparison with Traditional Caching Policies 47
3.10.3 Partition Object Density ... 48
3.10.4 Cost Dynamics over Time ... 49

3.11 ANDROID SWNET TEST BED .. 51
3.12 OPERATIONAL FEASIBILITY OF SPLIT ... 53
3.13 PERFORMANCE WITH NON-STATIONARY NETWORKS 55
3.14 SUMMARY AND CONCLUSION .. 58

CHAPTER 4: CACHING FOR HETEROGENEOUS NETWORKS 59

4.1 MOTIVATION .. 59
4.2 PROVISIONING COST WITH HETEROGENEOUS REQUESTS 59
4.3 BENEFITS OF CACHING ... 60
4.4 BENEFIT BASED DISTRIBUTED CACHING HEURISTICS 62
4.5 PERFORMANCE UPPER BOUND: OPTIMAL OBJECT PLACEMENT 64

4.5.1 Optimal Object Placement as a Matching Problem 65
4.5.2 Maximum Weight Matching .. 66

4.6 EVALUATION OF THE DISTRIBUTED BENEFIT STRATEGY 68
4.6.1 Performance with Homogenous Content Requests 68

4.7 PERFORMANCE WITH HETEROGENEOUS OBJECT REQUESTS 70
4.8 SUMMARY AND CONCLUSION .. 79

CHAPTER 5: COMMUNITY BASED COOPERATIVE CACHING 80

5.1 MOTIVATION .. 80
5.2 CONTENT SEARCH MODEL ... 80
5.3 NETWORKS WITH COMMUNITY-LESS MOBILITY .. 81
5.4 NETWORKS WITH COMMUNITY BASED MOBILITY 83

5.4.1 Hierarchical Split Caching ... 83
5.4.2 Centrality Based Community Detection Algorithms 86

5.5 EVALUATION OF COMMUNITY-LESS MOBILITY .. 89
5.5.1 Temporal Partition Characterization ... 89

5.6 HIT RATES AND COSTS UNDER COMMUNITY-LESS MOBILITY 91
5.7 EVALUATION WITH COMMUNITY BASED MOBILITY 95

5.7.1 Simulation Setup and Mobility Traces .. 95
5.7.2 Mobile Social Wireless Networks ... 97
5.7.3 Comparison with non-hierarchical Split Caching 100
5.7.4 Performance of Community Detection Algorithms 103

5.8 SUMMARY AND CONCLUSIONS... 104

CHAPTER 6: IMPACTS OF USER-SELFISHNESS ... 105

6.1 SELFISH BEHAVIOR .. 105
6.2 USER SELFISHNESS AND ITS IMPACTS .. 105
6.3 COST AND REBATE FOR NON-SELFISH NODES ... 106

 vii

6.3.1 Cost Computation ... 106
6.3.2 Rebate Computation.. 108

6.4 COST AND REBATE FOR SELFISH NODES .. 109
6.4.1 Cost Computation ... 109
6.4.2 Rebate Computation.. 110

6.5 PERFORMANCE UNDER FIRST PRICING MODEL .. 110
6.5.1 Networks with Single Selfish Node ... 111
6.5.2 Networks with Multiple Selfish Nodes .. 112
6.5.3 Steady State Analysis .. 115
6.5.4 Impacts of rebate on Node Participation .. 119

6.6 PERFORMANCE UNDER THE SECOND PRICING MODEL 122
6.6.1 Networks with Single Selfish Node ... 122
6.6.2 Networks with Multiple Selfish Nodes .. 122

6.7 SUMMARY AND CONCLUSION .. 127

CHAPTER 7: COOPERATIVE CACHING FOR IMPROVING

AVAILABILITY ... 128

7.1 MOTIVATION .. 128
7.2 LIMITATIONS OF PRIOR WORK .. 129
7.3 OUR APPROACH AND CONTRIBUTION ... 129
7.4 DESIGN OBJECTIVES .. 130
7.5 CACHE RESOLUTION ... 131
7.6 CACHE MANAGEMENT .. 131
7.7 COOPERATIVE CACHING (COOP) .. 132

7.7.1 Cache resolution ... 133
7.7.2 Cache management ... 133
7.7.3 New flavors of COOP ... 133

7.8 PROPOSED COOPERATIVE SPLIT CACHING (CSC) 134
7.8.1 CSC overview .. 134
7.8.2 Cache Splitting .. 135
7.8.3 Cache resolution and replacement ... 136

7.9 COMPUTING BEST POA AND NOA USING CSC .. 137
7.10 EVALUATION IN STATIONARY NETWORKS .. 138

7.10.1 Availability comparison between COOP and CSC 138
7.10.2 Individual characterization of COOP ... 141
7.10.3 Individual characterization of CSC .. 143

7.11 NOA-POA FEASIBILITY IN MOBILE NETWORKS 145
7.12 EVALUATION OF GENERATED NETWORK TRAFFIC 149
7.13 SUMMARY AND CONCLUSION .. 151

CHAPTER 8 : COOPERATIVE FIREWALLING IN MANETS 152

8.1 INTRODUCTION .. 152
8.2 TECHNICAL CHALLENGES .. 153
8.3 USING COOPERATIVE FIREWALL RULE CACHING 153
8.4 RULE DISTRIBUTION FRAMEWORK .. 154

8.4.1 System Model .. 154
8.5 RULE EXPORTING .. 156

 viii

8.5.1 Constructing Export-Policy Table .. 156
8.5.2 Rule Distribution ... 157

8.6 RULE IMPORTING ... 160
8.7 POLICY TABLE CONSISTENCY .. 161
8.8 SECURITY ANALYSIS.. 161

8.8.1 Threat Model ... 161
8.8.2 Securing Rule Distribution ... 162

8.9 PERFORMANCE MODEL .. 164
8.9.1 Protocol Overhead .. 164
8.9.2 Performance Metrics .. 165
8.9.3 Analytical Model ... 166

8.10 OPTIMAL CASES AND THEORETICAL BOUNDS.. 168
8.10.1 Maximum Packet Discarding Ratio .. 168
8.10.2 Minimum Forwarding Cost Ratio ... 170

8.11 RULE ADMISSION AND REPLACEMENT POLICY .. 171
8.11.1 Split Replacement Policy Algorithm ... 171
8.11.2 Proximity Aware Replacement Algorithm 173

8.12 SIMULATION RESULTS ... 174
8.12.1 SRP Performance .. 175
8.12.2 PAR Performance ... 177
8.12.3 Sensitivity Analysis.. 179

8.13 SUMMARY AND CONCLUSION .. 184

CHAPTER 9 : SUMMARY AND CONCLUSION ... 185

9.1 FUTURE WORK .. 186

BIBLIOGRAPHY ... 188

 ix

LIST OF TABLES

TABLE 3-1: NOTATIONS USED IN COST COMPUTATION ... 35

TABLE 3-2: BASELINE SIMULATION PARAMETERS .. 45

TABLE 8-1: EXPORT-POLICY TABLE OF NODE D .. 156

TABLE 8-2: PARAMETER USED FOR COMPUTING BOUNDS ... 168

TABLE 8-3: SIMULATION PARAMETERS .. 174

 x

LIST OF FIGURES

FIGURE 1-1: SNAPSHOT OF AN MSWNET IN A CAMPUS (FOR INTERPRETATION OF THE

REFERENCES TO COLOR IN THIS AND ALL OTHER FIGURES, THE READER IS REFERRED TO

THE ELECTRONIC VERSION OF THIS DISSERTATION) ... 6

FIGURE 1-2: COOPERATIVE CACHING SCHEME ... 9

FIGURE 1-3: AMAZON CONTENT AND COST FLOW MODEL .. 11

FIGURE 1-4: CELL PHONE SERVICE PROVIDER COST FLOW MODEL 13

FIGURE 3-1: SNAPSHOT OF TWO PHYSICAL PARTITIONS IN A SOCIAL WIRELESS NETWORK . 33

FIGURE 3-2: AMAZON CONTENT AND COST FLOW MODEL .. 34

FIGURE 3-3: CACHE PARTITIONING IN SPLIT CACHE POLICY .. 40

FIGURE 3-4: HIT RATES AND COST FOR SPLIT CACHE AND TRADITIONAL POLICIES 46

FIGURE 3-5: PARTITION OBJECT DENSITIES .. 49

FIGURE 3-6: COST AND HIT RATES OVER TIME ... 50

FIGURE 3-7: (A) COST AND (B,C) LOCAL AND REMOTE HIT RATES 52

FIGURE 3-8: FEASIBLE OPERATING REGION IN THE COST-REBATE PLANE 54

FIGURE 3-9: PARTITION DYNAMICS TRACE AND PROVISIOINING COST 56

FIGURE 3-10: COMPARATIVE MINIMUM COST .. 57

FIGURE 4-1: AN OBJECT PLACEMENT PROBLEM AS BIPARTITE GRAPH 66

FIGURE 4-2: LOCAL HIT, REMOTE HIT AND MISS RATE FOR DISTRIBUTED BENEFIT AND

SPLIT CACHE WITH λOPT.. 69

FIGURE 4-3: (A) OBJECT PROVISIONING COST AND (B) OBJECT DENSITY FOR DISTRIBUTED

BENEFIT AND SPLIT CACHE WITH λOPT ... 69

FIGURE 4-4: PDF AND CDF OF GLOBAL POPULARITY FOR ACCESSED OBJECTS IN BU AND

NLANR ... 72

 xi

FIGURE 4-5: LOCAL POPULARITY OF THE MOST GLOBAL POPULAR OBJECT AND NORMALIZED

REQUEST GENERATION RATE IN BU AND NLANR TRACE FILES 73

FIGURE 4-6: COMPARING OBJECT PROVISIONING COST IN BENEFIT BASED STRATEGY AND

SPLIT CACHE FOR BU AND NLANR TRACES ... 73

FIGURE 4-7: PDF AND CDF OF GLOBAL POPULARITY FOR OBJECTS IN NASA AND SASK 76

FIGURE 4-8: LOCAL POPULARITY OF THE MOST GLOBAL POPULAR OBJECT AND NORMALIZED

REQUEST GENERATION RATE IN NASA AND SASK TRACE FILES 77

FIGURE 4-9: COMPARING OBJECT PROVISIONING COST IN BENEFIT BASED STRATEGY AND

SPLIT CACHE FOR NASA AND SASK TRACES. .. 78

FIGURE 5-1: HIERARCHICAL PARTITIONING FOR SUPPORTING COMMUNITIES 84

FIGURE 5-2: TEMPORAL PARTITION SIZE (TPS) DISTRIBUTION .. 90

FIGURE 5-3: AVERAGE TPS WITH DIFFERENT UTDS AND NODE DENSITIES 91

FIGURE 5-4: HIT RATES AND COST: (A,B) UTD 1S; (C,D) UTD 120S 92

FIGURE 5-5: OPTIMAL λ AND MINIMUM COST FOR DIFFERENT UTDS 94

FIGURE 5-6: NUMBER OF ASSOCIATED USERS PER HOUR IN THE UCSD TRACE; (B) NUMBER

OF CONTACTS PER HOUR IN INFOCOM ’06 TRACE .. 95

FIGURE 5-7: OBJECT PROVISIONING COST FOR HCMM TRACE ... 96

FIGURE 5-8: OBJECT PROVISIONING COST FOR THE (A) INFOCOM 06 TRACE AND (B) UCSD

TRACE .. 98

FIGURE 5-9: PERFORMANCE IMPROVEMENT BY USING COMMUNITY BASED HIERACHICAL

SPLIT CASHING WITH RESPECT TO SINGLE LEVEL SPLIT FOR (A) HCMM MODEL (B)

INFOCOM ’06 TRACE, AND (C) UCSD TRACE .. 102

FIGURE 5-10: COST OF HIERARCHICAL AND NON- HIERARCHICAL SPLIT CACHING WITH

DIFFERENT COMMUNITY DETECTION ALGORITHMS ... 103

FIGURE 6-1: CACHE STATUS AT STEADY STATE .. 107

FIGURE 6-2: REBATE PER REQUEST WITH ONE SELFISH NODE IN THE NETWORK 112

 xii

FIGURE 6-3: (A,B) OBJECT PROVISIONING COST AND (C,D) EARNED REBATE PER REQUEST

FOR NON-SELFISH AND SELFISH NODES ... 113

FIGURE 6-4: ANALYSIS OF REBATE AND OBJECT PROVISIONING COST IN STEADY STATE (I.E.

η= ηcritical) .. 117

FIGURE 6-5: IMPACT OF Β (REBATE-TO-DOWNLOAD-COST RATIO) ON THE NUMBER OF

PARTICIPANT NODES AND COST AND REBATE ... 121

FIGURE 6-6: OBJECT PROVISIONING COST WHEN ONLY ONE SELFISH NODE EXISTS IN THE

NETWORK ... 122

FIGURE 6-7: IMPACTS OF SELFISHNESS WITHOUT COLLUSION BETWEEN SELFISH NODES .. 123

FIGURE 6-8: IMPACTS OF SELFISHNESS WITH COLLUSION BETWEEN SELFISH NODES 125

FIGURE 7-1: CACHE PARTITIONING IN THE CSC POLICY ... 135

FIGURE 7-2: FEASIBLE NOA-POA SETS FOR COOP-P-LPO.. 138

FIGURE 7-3: FEASIBLE NOA-POA SETS FOR PROTOCOL CSC .. 140

FIGURE 7-4: COMPARATIVE NOA-POA FEASIBILITY SETS .. 140

FIGURE 7-5: IMPACTS OF DOC ON NOA .. 142

FIGURE 7-6: IMPACTS OF DOC ON PARTITION AVAILABILITY .. 143

FIGURE 7-7: IMPACTS OF DOC AND Λ ON NOA IN CSC .. 144

FIGURE 7-8: IMPACTS OF DOC AND Λ ON POA IN CSC ... 145

FIGURE 7-9: FEASIBLE NOA-POA SETS FOR COOP-P-LPO.. 146

FIGURE 7-10: FEASIBLE NOA-POA SETS FOR CSC ... 147

FIGURE 7-11: NOA-POA FEASIBILITY IN A MOBILE NETWORK .. 148

FIGURE 7-12: IMPACTS OF PAUSE TIME ON NOA-POA FEASIBILITY 149

FIGURE 7-13: IMPACTS OF DOC ON GNT IN PROTOCOL COOP 150

FIGURE 7-14: IMPACTS OF DOC AND Λ ON GNT IN CSC ... 151

 xiii

FIGURE 8-1: RULE DISTRIBUTION ON AN EXAMPLE NETWORK .. 156

FIGURE 8-2: EPT CONSTRUCTION USING FDDS ... 157

FIGURE 8-3: RULE DISTRIBUTION WITH PROACTIVE ROUTING PROTOCOLS 158

FIGURE 8-4: RULE DISTRIBUTION WITH REACTIVE ROUTING PROTOCOLS 160

FIGURE 8-5: THE FORMAT OF A SECURE RULE MESSAGE .. 163

FIGURE 8-6: SRP PACKET DISCARDING RATIO AND FORWARDING COST RATIO FOR

DIFFERENT θ VALUES ... 175

FIGURE 8-7: SRP OVERALL COST ... 177

FIGURE 8-8: PAR PACKET DISCARDING RATIO AND FORWARDING COST RATIO FOR

DIFFERENT σ VALUES ... 178

FIGURE 8-9: PAR OVERALL COST .. 179

FIGURE 8-10: IMPACT OF ZIPF PARAMETER (�) ON FCRMIN ... 181

FIGURE 8-11: IMPACT OF ZIPF PARAMETER (�) ON PDRMAX .. 182

FIGURE 8-12: IMPACT OF SIZE OF IPT ON FCRMIN ... 183

FIGURE 8-13: IMPACT OF SIZE OF IPT ON PDRMAX .. 183

 1

Chapter 1 : INTRODUCTION

1.1 Motivation

Recent emergence of mobile devices and wireless-enabled data applications have

fostered new content dissemination models in today’s mobile ecosystem. A list of such

devices includes Apple’s iPhone, iPad, Google’s Android phones, Amazon’s Kindle and

electronic book readers from other vendors. The contents related to these devices include

phone Apps, electronic books, mp3 music, video clips, news clips etc. The level of

proliferation of mobile applications is indicated by the example fact that as of Feb '12,

Apple offered over 500,000 Apps that are individually downloadable by smart phone

users.

Due to the increase in the number of data-enabled handheld devices and server-

based applications, mobile data traffic is growing at an unprecedented rate. According to

new studies by some researchers from networking and financial sectors [1–4], by 2016

average broadband mobile data traffic for each user will exceed 2.6 GB per month which

is 17-fold increase over the 2011 average of 150Mb per month. The total mobile data

traffic in the world is predicted to reach about 10 exabytes per month by 2016 which is

39 times more than the total mobile traffic in 2009. It is not surprising that 70% of this

traffic is predicted to be video data.

The increasing demand for more bandwidth raises new issues both in providing

ubiquitous Internet access for smart phones and maintaining good voice call quality. In

particular, this becomes a critical challenge in the areas without 3G/4G coverage or with

 2

poor quality coverage. In this thesis we propose a pricing based cooperative caching

mechanism in order to improve data access for different network topologies, human

mobility patterns and communication technologies.

1.2 Current Solutions

There are several solutions to the explosive mobile traffic growth problem. An

obvious solution is to scale the network capacity either by building out more cell towers

or by upgrading the network to the next generation networks such as Long Term

Evolution (LTE) and WiMax. Some providers (e.g. Sprint and Verizon) have already

started to support new generation networks such as 4G. However, upgrading the current

networks to new technologies requires a huge investment, thus affects the pricing plan.

Furthermore, many of the existing hardware and data-enabled mobile devices are not

compatible with the new technologies, and therefore upgrading the network infrastructure

may not solve the problem for them.

The second solution is using technologies such as Femtocell and Picocell, which

can provide a better coverage and capacity, especially for indoors. A Femtocell is a small

cellular base station, typically designed for use in a home or small business. It connects to

the service provider’s network via a broadband connection (such as DSL or cable) and

supports multiple active mobile phones in a residential setting. A Femtocell allows

service providers to extend service coverage indoors, especially where access would

otherwise be limited or unavailable. This solution is very attractive for mobile operators

because in addition to providing good coverage and capacity for their customers it can

reduce both capital expenditure and operating expenses. A Picocell has the same

functionality of Femtocell with bigger coverage and it is suitable for larger indoor

 3

settings like airports. This technology however has two main limitations. First, it can be

only used for small areas, and therefore it is not a permanent large scale solution. Second,

although Femtocells provide better coverage, they still need to have a backhaul Internet

connection. In other words, Femtocells and Picocells are not able to reduce the Internet

bandwidth consumption.

The third solution is to adopt a new usage-based pricing plan which can limit heavy

data usage. Switching to a new data plan from a flat rate price has already been started by

some providers. For example, Verizon has decided to put a limit on its data plan [5] and

MetroPCs offers some prepaid data plan in which user is charged 3 cents per MB.

Switching to a more expensive pricing model is not convenient for users and the

economic and market competition forces the providers to do a thorough analysis of user

behavior and traffic usage before offering a new pricing model. Therefore, switching to

new pricing models cannot be done very quickly. Furthermore, even though a new

pricing model in short term can reduce the pressure on 3G/4G bandwidth; it is not clear

that how it can solve the problem for longer term.

The fourth solution is augmenting (complementing) mobile 3G/4G using WiFi

technology. Many multi-interface devices and smart phones give priority to the WiFi

interface over the cellular interface in data transmissions [6–10]. This on-the-spot data

offloading can reduce the pressure on 3G spectrum by using WiFi connectivity when

possible for transferring data. Some providers are also offering incentives to their

subscribers to reduce their 3G usage by switching to WiFi at home [11]. This solution

relies on the existent wireless hotspots to reduce the bandwidth stress on the 3G network,

 4

but wireless hotspots are not available everywhere and establishing new hotspots requires

investment.

1.3 Proposed solution: Pricing Based Cooperative Caching

In this thesis, we introduce a cooperative caching mechanism as a complement to

the mechanisms described in previous section. Contrary to those mechanisms,

cooperative caching does not require any additional infrastructure and therefore has no

additional cost for service providers or end users.

1.3.1 Local Caching

A simple local content caching can always be used within each data-enabled mobile

device in order to reduce the 3G/4G bandwidth consumption. In local caching, a new

downloaded data item is stored in the local cache in the device to serve the future

requests for the same data item. In addition to reducing the bandwidth consumption, local

caching can reduce the delay of access and power consumption for mobile devices.

Locality principle [12] and Zipf’s law [13] are the two very important and well known

facts that support the idea of caching in general.

The locality principle or locality of reference is the phenomenon of the same value

or related storage locations being frequently accessed. Temporal locality and spatial

locality are two basic forms of reference locality. Temporal locality refers to frequent

access to specific data and/or resources within relatively small period of time. Spatial

locality refers to the use of data elements within relatively close storage locations. The

locality principle has been observed in various fields of Computer Science, e.g. processor

 5

caches, storage hierarchies, Web caches, and search engines. This concept has been also

observed for a wide range of online electronic data items [14–16].

According to many studies, the frequency of access request for a set of electronic

data items e.g., websites [17–19] and video clips [20–22] follows Zipf’s distribution.

According to Zipf’s law [13], if data items are sorted based on their popularity (i.e.

frequency of access request) the access probability of the i
th

 popular item is inversely

proportional to its rank. In other words, �� ∝ ��� where 0 ≤ � ≤ 1. As α increases,

the access pattern becomes more concentrated on the popular data items. Zipf distribution

function belongs to a bigger category of distribution known as power law distributions.

When the frequency of an event varies as a power of some attribute of that event (e.g. its

size), the frequency is said to follow a power law. This category of distribution is also

related to Pareto principle [23], also known as the 80-20 rule. According to the 80-20

rule, for many events, roughly 80% of the effects come from 20% of the causes. The

interpretation of this rule for the Zipf distribution implies that 80% of all access is for

only 20% of the items. In other words, on an average, by storing only 20% of data items

in the cache, 80% of future accesses can be satisfied locally. Therefore, the fact that the

request frequency of electronic online content follows Zipf distribution is another strong

reason for content caching.

1.3.2 Cooperative Caching

Mobile devices usually have a limited storage capacity and they can store only a

few data items. This may affect the performance of caching, especially when data items

are relatively large (e.g. video clips and movies). To alleviate this issue, mobile devices

 6

can share the content of their caches together. In cooperative caching, a node not only can

access to the content stored in its local cache but it can also search its desired item within

stored data items in other caches. The fact that people in the same location tend to share

common interests supports the idea of cooperation among their mobile devices. For

example, people in a classroom share similar interests on the topic of class or people in a

conference have similar interests on the topic of presentation. Under the assumption of

having similar interests by users collocated in the same area, it’s quite possible for a node

to find its desired data item in other nodes’ caches.

To facilitate cooperation among mobile devices carried by people who physically

gather in public places, a Mobile Social Wireless Network (MSWNETs) can be formed

using ad hoc wireless connections. For example Figure 1-1 illustrates the location

snapshot of a 19-node MSWNET. Network partitions can be either multi-hop ad hoc

network as shown for partitions 1, 3, and 4, or single hop access point based as shown for

partition 2.

Figure 1-1: Snapshot of an MSWNET in a Campus (For interpretation of the references to

color in this and all other figures, the reader is referred to the electronic version of this
dissertation)

 7

In the conventional download model, a user downloads data items directly from a

Content Provider’s (CP) server over a Communication Service Provider’s (CSP) network.

With the local caching a user first searches its local cache before downloading the content

from content provider. However, in cooperative caching mechanism, an alternative

content access approach would be to search the local MSWNET for the requested content

after local search for the requested content fails and before downloading it from the CP’s

server. This new access model can reduce the bandwidth stress on 3G/4G network and

improve the content availability when there is no 3G/4G coverage. In this thesis, this

mechanism is termed and referred to as cooperative content caching.

We believe that the cooperative caching mechanism can be added to the existing

solutions (as outlined in Section 1.2) to reduce the 3G/4G bandwidth stress and to

improve content availability. The limited storage capacity and sharing of common

interests by people collocated in the same place, are the two important facts that support

the idea of cooperative caching.

1.4 Cooperative Caching Components

In order to deploy a cooperative caching framework each node must support few

functionalities. For example, due to limited storage capacity in each mobile device, a

replacement mechanism is needed to accommodate a new downloaded data item when a

cache is full. Furthermore, every caching node should manage content of its cache based

on the other nodes’ needs [24–40]. Additionally, a cache resolution mechanism is also

needed to find a requested data item among the remote caches. Below, the cooperative

caching components are explained in more detail.

 8

1.4.1 Cache Resolution

Cache resolution addresses how to resolve an object request either by finding the

object in the local cache or remote caches in the network partition. After a request is

originated by a user (i.e. an application on a mobile device), the device first performs a

local search within its local cache. If it fails to find the requested object, a network

search is performed for the requested item within the current partition. If this step also

fails, and the device has access to the Internet, the requested item will be downloaded

directly from the content provider’s server.

For searching for an object within the network partition, a flooding-based search

mechanism is usually used [28–30]. A Time to Live (TTL) based ring-search can be

employed for constraining the scope of resolution. TTL can range from zero to the

diameter of the current partition. With zero TTL, a node searches only its local cache for

the requested data item. With bigger TTL, more nodes in the partition are searched for

the requested data item. TTL also can be large enough to cover all nodes in the partition.

A node effectively cooperates with all nodes in its ring search. When a node receives a

search request for one of its locally cached objects, it sends a unicast ACK to the

requester. Then the requester starts downloading the data item from the responding node.

1.4.2 Cache Management

Cache management refers to policies that control object placement in the caches

and determine objects distributed in the partition. Cache management comprises

admission and replacement policies.

Admission policy: A node adjusts its cooperative behavior depending on the state of

other nodes’ caches within its ring search. A simple cooperation policy for a node is not

 9

to store an object if it has already been stored within the partition. Under this policy, the

total number of different items stored within the partition can be increased. This in turn

can increase the partition item availability for the case no Internet connection is available

in the partition.

Cache replacement: To store a new downloaded data item when cache is full a

node executes a replacement policy in order to decide as to which data item from its

cache should be replaced. Possible replacement policies include Random (RND) [31],

Least Recently Used (LRU) [32], and Least Popular Object (LPO) [33]. A complete

diagram of a cooperative caching scheme has been provided in Figure 1-2.

Figure 1-2: Cooperative caching scheme

1.4.3 Cache Consistency

Cache consistency refers to mechanisms that try to keep the content of cached data

items and original data items the same. This is a critical component of a caching

framework especially when content of data items is subject to frequent changes. There is

 10

a wide range of strategies for maintaining cache consistency. Some of these techniques

are specifically designed for mobile ad hoc wireless networks [34–51]. In general, cache

consistency strategies fall into two broad categories. In pull-based schemes, a client

initiates data validation by polling the content server to see if data has been changed since

it was stored. In push-based schemes, the content server initiates the data invalidation by

notifying the caching nodes. There are also few hybrid mechanisms in which both

strategies are being used. Depending on the type of data, weak or strong data

consistencies are enforced. In weak consistency, a stalled data item can be returned to the

user, whereas in strong consistency, a stalled data item is never used [52]. Weak

consistency works based on a Time-To-Leave (TTL) field which has been associated

with all cached data items. A cached data item is returned to a user only if its age in cache

is less than TTL. The data item is considered obsolete after its age becomes greater than

its TTL.

1.5 Pricing Model: A Framework for Cooperative Caching

The main purpose of caching is reducing the bandwidth consumption. Cooperative

caching however can also be used to increase the data item availability (when there is no

connection to the server). Furthermore, cooperative caching can reduce the access delay

for end users or even it can reduce the power consumption of mobile devices. In real life,

a different combination of these objectives can also be desired. In this dissertation, we

introduce a generalized pricing framework which can model different combinations of

these objectives.

 11

Figure 1-3: Amazon Content and cost flow model

In this thesis, we assume downloading content through a Communication Service

Provider’s (CSP) network involves a cost which must be paid either by end users or by

the Content Provider (CP). Furthermore, we assume that searching and downloading the

content from other nodes in the network also require some cost. It is obvious that

cooperative caching mechanism can reduce the provisioning cost only when the amount

of rebate for a downloaded object is less that the download cost.

The above pricing model has already been used in real life. For example, in the

Amazon Kindle electronic book delivery business model, the content provider (i.e.

Amazon), pays to Sprint, the communication service provider, for the cost of network

usage due to downloaded e-books by Kindle users. Also in order to entice the End-

Consumers (ECs) to cache downloaded content and to share it with others, a peer-to-peer

rebate mechanism is needed. This rebate can also be distributed among the provider end-

 12

consumer and the end-consumers of all the intermediate mobile devices that take part in

object forwarding within the MSWNET.

In this thesis we adopt the Amazon Kindle
TM

 pricing model in which the content

provider (e.g. Amazon) pays a download cost Cd to the communication service provider

(e.g. Sprint) when an end-consumer downloads an object from the content provider’s

server through the communication service provider cellular network. Also, as shown in

Figure 1-3, whenever an end-consumer provides a locally cached object to another user

within its MSWNET, the provider end-consumer is paid a rebate Cr by the content

provider. Optionally, this rebate can also be distributed among the provider end-

consumer and the owners of all the intermediate devices that take part in content

forwarding. The quantity Cd corresponds to the content provider's object delivering cost

when it is delivered through the cellular network, and Cr corresponds to the rebate given

out to an end-consumer when the object is found within the MSWNET. This framework

can be effective for large items for which the network download cost Cd can be also

large. Large Cd can ensure large Cr, which makes it practical for an end-consumer to use

the received rebate Cr towards its next content purchase from the content provider.

Although in the model used here it is assumed that the network usage cost Cd is

paid by the content provider, a very similar problem can be also formulated in a model in

which Cd is paid by the end-consumer receiving the content. The rebates, in that case,

 13

will be paid by the content-recipient end-consumer to the content-providing user, and

optionally to the intermediate users. This pricing model has been shown in detail in

Figure 1-4.

Figure 1-4: Cell phone service provider cost flow model

Note that the cost items, namely, Cd and Cr, do not represent the selling price of an

object (e.g. an e-book). The selling price is directly paid to the content provider (e.g.

Amazon) by an end-consumer (e.g. a Kindle user) through an out-of-band secure

payment system. A digitally signed rebate framework needs to be supported so that the

rebate recipient users can electronically validate and redeem the rebate with the content

provider. Also, a digital usage right mechanism [53–56] is needed so that an end-

consumer which is caching an object (e.g. an e-book) should not necessarily be able to

open/read it unless it has explicitly purchased the object from the content provider. We

assume the presence of these two mechanisms on which the proposed caching

architecture is built. Operationally, the values of Cd and Cr are likely to be set by the

 14

content provider based on its operating cost and revenue models, and the end-consumers

are less likely to have any control over those parameters.

The above pricing model is a generalized formulation of the cooperative caching

problem. Here we explain how this model can be used for specific purposes.

1.5.1 Minimizing Bandwidth Stress

In order to reduce the 3G/4G bandwidth demand, we must maximize the percentage

of requests that can be found within the network partition. In general, finding the best

object placement to minimize the bandwidth consumption is not easy. However, in

simple cases when the network is stationary and all nodes can communicate with each

other (directly or through multi-hop routing) this problem can be formulated in our

pricing framework model. We can assume finding an object in the network has no cost

while downloading objects from the server requires a certain cost. This means, in the

proposed pricing model, we can set Cr=0 and then find a solution to minimize the

average accessed cost per object. The solution for that problem can be used to minimize

the bandwidth stress of a 3G/4G network.

1.5.2 Minimizing Energy Consumption

Although energy consumption is not the primary focus of this thesis, we can model

the energy consumption problem using our pricing model. We use the fact that energy

consumption of WiFi interfaces and 3G interfaces is different.

Mobile phones usually have multiple network interfaces. A WiFi interface

generally provides more bandwidth compared to a 3G/4G interface while they consume

almost the same amount of power during data transmission [57]. Therefore, downloading

 15

a data item through a WiFi connection will save energy and increase the battery life

because of its smaller transmission time. Furthermore, downloading small contents

through 3G network in a periodic manner consumes more energy [58]. The reason is that

for a 3G network, a large fraction (nearly 60%) of the energy, referred to as the tail

energy, is wasted in high-power states after the completion of a transfer. The

measurement in [58] reports that transferring 50KB data over 3G network with a 20-

second interval requires 12.5 J energy. This number for a one-hop WiFi connection is

around 7.6 J.

In order to minimize the energy consumption for the mobile devices, we can use

the proposed pricing model by appropriately setting parameter Cr. For example, if we

limit the cooperation to 1-hop neighbors, we can set Cr to 7.6 and Cd to 12.5. We can

then find the best solution for the pricing model problem and apply it to minimize the

energy consumption.

1.6 Handling Human Mobility

Handheld devices are carried by humans and as people move, the network

partitions change dynamically. In other words, the set of nodes in a partition vary over

time. Due to the mobility of people, a mobile node may visit a lot of stranger (unknown)

mobile nodes. Obviously, a mobile node should not change its caching state because of a

stranger node that it may never be visited again. In other words, a mobile node should

limit its collaboration only to those familiar nodes that expected to be visited frequently.

Detecting and limiting the collaboration to the familiar nodes is a crucial part in

performance of cooperative caching algorithm when it applied to a human based mobile

 16

network. In this thesis, we study different mobility pattern in order to understand and

analyze the difference between the stranger and familiar nodes.

1.6.1 Mobility Patterns

Studying the performance of cooperative caching in social wireless networks

requires a real human mobility trace. Due to limited number of available human walk

traces and lack of diversity in the existing traces, people use different human mobility

generator tools. Statistical analysis of human walk traces in the literature revealed several

significant properties. For example, it has been shown that human flights (of walk),

pause-time, and inter-contact times follow truncated power-law distribution.

Furthermore, it has been observed that individual motilities are confined within some

specific areas or point of interests. SLAW [59] and HCMM [60] are the two mobility

generator which are able to generate mobility traces that maintain the above statistical

properties and therefore we use them in this thesis. In addition to human mobility pattern

tools we also use available traces from MIT [61] and UCSD [62] and Heagle [63]

projects.

Using these traces we will extract the contact pattern between different nodes and

form the group of nodes that belong to the same community. Cooperative caching is then

limited only between nodes in the same community.

1.7 Analyzing User Selfishness

According to our proposed pricing model, network usage cost and rebates are paid

by the content provider. The scope for earning peer-to-peer rebate may promote selfish

behavior in some users. A selfish user is a user that deviates from the network wide

 17

optimal caching policy to earn more rebates. Any deviation from the optimal policy is

expected to incur higher network wide provisioning cost.

In this thesis we analyze the impacts of such selfish user behavior on the object

provisioning cost and on the earned rebate in a social wireless network (MSWNET). In

particular, we compare the provisioning cost under presence of selfish nodes with the

optimal provisioning cost when all nodes are cooperative.

1.8 Application of proposed Caching

In addition to minimizing the object provisioning cost, the proposed cooperative

caching mechanism can be used in other applications. In this thesis, we show how

cooperative caching mechanism can be used effectively to reduce the unwanted traffic in

MANETs. We also explain how cooperative caching mechanism is able to improve data

availability in nodes without Internet connection.

1.8.1 Distributed Firewalling in MANETs

Unwanted traffic wastes significant network bandwidth and the power of resource-

constrained wireless nodes [64]. To discard unwanted traffic before reaching destinations,

for each wireless node, we need to distribute its firewall rules to other nodes. However,

the number of rules that a wireless node can handle is rather limited due to its resource

limitations. It is a difficult task for a node to decide which rules should be admitted and

enforced given its resource constraints.

The proposed cooperative caching scheme can be used as a solution for discarding

unwanted packet in the MANET. A firewall rule is modeled as an object and unwanted

 18

traffic is considered as object requests. The main question then is how to place firewall

rules in the network to discard the maximum number of unwanted packets in the network.

1.8.2 Increase Data Availability in MANETs

Due to human mobility and lack of complete coverage by WiFi access points, a

MSWNET can be susceptible to intermittent disconnections for the Internet. This can

result in partitions of devices that can communicate with each other using ad hoc routing

protocols, but do not have internet connectivity. This lack of connectivity affects object

(content) availability within MSWNET partitions for server-based applications such as

electronic books and Apps downloads.

The main question is as how to provide high partition level availability while a

minimum level of node level availability is guaranteed. High partition level availability

ensures that popular objects are available within MSWNET partitions when it is

disconnected from the Internet, and high node level availability ensures popular objects

are available to individual nodes even when they are completely isolated from the rest of

the network and Internet gateway. In this thesis we explain how cooperative caching

mechanisms can effectively increase the data item availability for both node and partition

level.

1.9 Dissertation Objectives

The objective is to design an optimal cooperation policy so that under different

network topologies, mobility patterns and rebate to cost ratio, the network wide average

per-object provisioning cost is minimized. A key question here is how to store contents in

devices such that the network-wide content provisioning cost is minimized. It is very

 19

important to know the set of nodes can potentially form a group (community) to improve

the caching performance. In this thesis, we use some well known community detection

algorithms that are able to find and group the set of strongly connected nodes.

For contents with varying levels of popularity, a greedy approach for each node

would be to store as many distinctly popular contents as its storage allows. This approach

amounts to non-cooperation and can give rise to heavy network-wide content

duplications. In the other extreme case, which is fully cooperative, a node would try to

maximize the total number of unique contents stored within the MSWNET by avoiding

content duplications. We will show that in a stationary network for a given rebate-to-

download-cost ratio, there exists an optimal policy which is somewhere in between those

two extremes. This optimal policy can minimize the content provider’s cost by striking a

balance between greediness and cooperation.

1.10 Scope of Thesis

The main goal of this thesis is to provide a cooperative caching strategy that

minimizes the object provisioning cost for data-enabled mobile devices such as smart

phones, book readers, etc.

To minimize the object provisioning cost we rely on cooperation among mobile

devices gathered in a physical setting such as a campus, airport, malls, etc. We propose a

cooperative caching framework using which mobile nodes are able to share the content of

their caches together. The main intuition behind cooperative caching is the locality

principle and common interest between people in the same area. According to the locality

principle, people tend to access to the same data that has been used recently and

statistically people in the same area are interested in similar content.

 20

Chapter 2 is a survey of other cooperative caching strategies. We review the current

cooperative caching strategy used for the wired network and explain why those

approaches are not practical in mobile wireless networks. Furthermore, we highlight the

differences and advantages of our proposed caching scheme compared to the most recent

caching schemes in the literature.

In chapter 3 we propose a cooperative caching strategy to minimize the object

provisioning cost in a stationary mobile wireless networks where people in the same area

have very similar interests. Furthermore, we assume the request generation rate for all

users are the same. Then analytically and experimentally we show that in order to

minimize cost per accessed data item in such a network, nodes must limit their level of

cooperation.

In chapter 4 we formulate the cost model for a heterogeneous network where users

have different request generation rates and different request patterns. An optimized

caching strategy will be developed and validated by real human request traces.

Chapter 5 studies the impacts of human mobility on the performance of cooperative

caching. Under the varying network partitions, it is very important for a node to

collaborate only with nodes in the same community. In this chapter we review some of

well-known community detection algorithms in social networks and propose a caching

strategy based on the structure of community in the network.

In chapter 6 we analyze the impacts of selfish user behavior on the object

provisioning cost and on the earned rebate in a social wireless network (MSWNET). In

particular, we compare the provisioning cost under presence of selfish nodes with the

optimal provisioning cost when all nodes are cooperative.

 21

In chapter 7 we use cooperative caching for increasing the availability of data items

in areas without Internet connection.

Chapter 8 introduces another application of the proposed caching strategy which is

used to distribute firewalling rules in a social wireless network to stop unwanted packets

as early as possible.

Finally, in chapter 9 we summarize the thesis and compile a list of future woks.

 22

Chapter 2 : RELATED WORKS

2.1 Caching in Internet

There are number of studies [12–22] on the characteristics of web proxy traces, which

have shown the temporal locality and Pareto principle of the web requests. Relying on

these studies web caching has been widely deployed in Internet to reduce the latency

observed by web browsers, decrease the aggregate bandwidth consumption of an

organization’s network, and reduce the load incident on web servers [64-71]. There is a

rich body of existing literature on several aspects of cooperative caching including object

replacements [31–33], [65–69], cache consistency [52], [70–76], reducing cooperation

overhead [24], [77], [78], and cooperation performance in traditional wired networks.

Different cooperative caching mechanisms have been introduced for web proxies and file

system in [24–27], [77–88]. These cooperation mechanisms can be broadly categorized to

hierarchical, directory-based, hash-table and multicast-based approaches. For example,

Harvest [25][79] is a hierarchical approach in which a user’s request is forwarded to a

cache hierarchy till the request is found at some level. In such a hierarchical approach, no

information is exchanged between the caches in different level. In a directory-based

approach, like Summary Cache [27], each cache exchanges a summary vector of its data

items to the other caches. So, during cache resolution a cache forwards the request to a

cache that has a copy of the requested data item. Squirrel [96] is a fully decentralized,

peer-to-peer cooperative web cache, based on the idea of enabling web browsers on

desktop machines to share their local caches by using a hash table. The above schemes

have been evaluated and demonstrated significant performance improvement for Web

 23

accessing. However, these schemes are highly dependent on high speed network

connections and dedicated cache servers with high computation power and storage. They

also require some kind of structure on the network of cooperative nodes. The Mobile

Social Wireless Networks (MSWNET), which are often formed using mobile ad hoc

network protocols, are different in the caching context due to their additional constraints

such as topological insatiability and limited resources. As a result, most of the available

cooperative caching solutions for traditional static networks are not directly applicable

for the MSWNETs.

2.2 Cooperative Caching in MANET

There are several studies [28–30], [89–112] on cooperative caching in wireless ad

hoc networks [109]. Three caching schemes for MANET have been presented in [96],

[101]. In the first scheme, CacheData, a forwarding node checks the passing-by objects

and caches the ones deemed useful according to some pre-defined criteria. This way, the

subsequent requests for the cached objects can be satisfied by an intermediate node. A

problem with this approach is that storing large number of popular objects in large

number of intermediate nodes does not scale well. The second approach, CachePath, is

different in that the intermediate nodes do not save the objects; instead they only record

paths to the closest node where the objects can be found. The idea in CachePath is to

reduce latency and overhead of cache resolution by finding the location of objects. This

strategy works poorly in a highly mobile environment since most of the recorded paths

become obsolete very soon. The last approach in [96], [101] is the HybridCache in which

either CacheData or CachePath is used based on the properties of the passing-by objects

through an intermediate node. While all three mechanisms offer a reasonable caching

 24

solution, it is shown in [28], [29], [89], [90], [97] that relying only on the nodes in an

object's path is not the most efficient approach. Using a limited broadcast based cache

resolution can significantly improve the overall hit rate and the effective capacity

overhead of cooperative caching.

According to the protocols in [29], [102], [103] the mobile hosts share their cache

contents in order to reduce both the number of server requests and the number of access

misses. The concept is extended in [30] for tightly-coupled groups with similar mobility

and data access patterns. This extended version adopts an intelligent bloom filter based

peer cache signature to minimize the number of flooded message during cache resolution.

A notable limitation of this approach is that it relies on a centralized mobile support

center to discover nodes with common mobility pattern and similar data access patterns.

Our work, on the contrary, is fully distributed in which the mobile devices cooperate in a

peer-to-peer fashion for minimizing the object access cost.

 The authors in [104] propose a cache admission policy in which a node does not

cache objects that come from other nodes that are geographically close. It was shown that

such distance-constrained admission policies can increase the overall object availability

in the presence of network disconnections caused due to node mobility. This protocol

attempts to maximize the overall cache hit rate within a partition by exploiting the above

distance-constrained cache admission for minimizing the object duplications. [28]

proposes a distributed algorithm that exploits highly effective network-wide shared object

storage capacity by completely avoiding object duplication across the network nodes

(referred to as exclusive caching). In this thesis we have successfully demonstrated that

the exclusive caching does not necessarily offer an optimal solution under many cost

 25

formulations. We have proposed an adaptive cache replacement policy that provides the

right balance between object duplication and uniqueness to provide the minimum per

object provisioning cost under a practical set of network and cost models.

In summary, in most of the existing work, there is a focus on maximizing the cache

hit rate of objects, without considering its effects on the overall cost which depends

heavily on the content service and pricing models. We formulate different object

replacement mechanisms to minimize the provisioning cost, instead of just maximizing

the hit rate.

2.2.1 Cache Resolution

Cache resolution schemes reported in [28], [113–115] have proposed various

methods to locate objects (i.e. cache resolution) in a mobile network. The protocol in [90]

proposes a profile based approach to minimize the cost of search among cooperative

mobile terminals trying to access web pages. This and the schemes in [113],[96] propose

non-flooding based cache resolution approaches. The main idea behind this kind of

mechanisms is to avoid the overhead of flooding based cache resolution. Although

improving cache resolution is not the objective of our work, the object replacement

approach presented in this work is compatible with all the flooding and non-flooding

based resolution mechanisms reviewed above. The overhead of cache resolution is

reduced in the broadcast based strategy in [28] by utilizing the concepts of cooperative

zones, historical profiles, and hop-by-hop resolution.

 26

2.2.2 Replacement Polices

Cache replacement policies for wireless environments were first studied in the

broadcast disk project [116][112]. Authors in [116] propose
ℐ� replacement policy

which considers data access probability and broadcast frequency for object replacement.

In [112], replacement decisions are made based on both data access history and retrieval

delays. An optimal cache replacement policy, called Min-SAUD, was investigated in

[80]. The Min-SAUD policy incorporated various factors that affect cache performance,

i.e., access probability, retrieval delay, item size, update frequency, and cache validation

delay. Defining benefit as the reduction in total access cost, [105] presents a polynomial-

time centralized approximation algorithm that delivers a solution whose benefit is at least

1/4 (1/2 for uniform-size data items) of the optimal benefit.

In [106–108] authors analyze the impact of energy on designing a cache

replacement policy. In [106] authors formulate an energy efficient coordinated cache

replacement policy, called ECORP, as a 0-1 knapsack problem. It also presents a

heuristic algorithm called ECORP-Greedy and an optimal solution called ECORP-OPT to

solve the problem. A generalized value function for cache replacement algorithms under

a strong consistency model has been introduced in [109]. Their proposed general function

can be customized for various performance metrics by making the necessary changes.

Authors in [108] addressed the problem of energy-conscious cache placement in wireless

ad hoc network. They formulated their problem as an integer linear program and gave

solutions to design caching strategies that optimally trade-off between energy

consumption and access latency. Another energy-efficient cache replacement strategy is

 27

presented in [117] selects data items with the highest utility to cache in local memory in

order to minimize the energy cost at mobile nodes.

A group of location dependent replacement policies are presented in [118–121]. In

[121] a detailed location dependent query model and a semantic cache replacement policy

FAR (Furthest Away Replacement) are introduced. An evictee is chosen according to the

current status of the mobile user. The data which are not in the moving direction and are

furthest from the user will be discarded first as they are not needed in the near future. In

[43] two cache replacement policies PA (Probability Area) and PAID (Probability Area

Inverse Distance) are proposed. Three factors are considered during cache replacement:

access probability, data distance and valid scope area. The valid scope of an item value is

defined as the region within which the item value is valid. The set of valid scopes for all

of the item values of a data item is called the scope distribution of the item. The main

idea of the policies is that a promising cache replacement policy should choose its evictee

data item with a low access probability, a small valid scope area, and a long distance. In

[118], a Mobility Aware Replacement Scheme (MARS), is proposed which considers the

temporal scores, spatial scores and the cost of retrieving the data item from the server for

object replacement. The temporal score takes into account the most recent update and

query time in addition to the query and update rate. The spatial score is based on the

scope area and direction of movement. MARS+ [119] is an extended version of this

mechanism in which the movement history of mobile nodes or repeated patterns in their

paths are taken into account to improve cache replacement accuracy. WPRRP is a

Weighted Predicted Region based Cache Replacement Policy [120] in which the data

item cost is calculated based on access frequency, valid scope area, data size and

 28

weighted data distance. Authors in [121] propose a replacement policy based on the

mobility prediction.

2.2.3 Cache Invalidation Protocols

Due to bandwidth and power constraints in ad hoc networks, it is too expensive to

maintain strong cache consistency, and the weak consistency model is more practical and

feasible. A simple weak consistency model can be based on the Time-To-Live (TTL)

mechanism, in which a node considers a cached item usable if its TTL has not expired,

and removes the cached data when TTL expires.

Cache consistency control can be push or pull based. In push based approach, the

content server sends invalidation messages to all the cache nodes to indicate the update

status of data items whereas in pull based method, the cache node polls the owner to

determine whether its cached data item is stale or not.

In [34], three invalidation schemes, namely, TS, AT, and SIG, were presented.

Most of the newly proposed invalidation schemes such as [34–51], [122] are variants of

these basic schemes. They differ from one another mainly in the organization of contents

and the mechanism of uplink checking. All of these invalidation schemes incur certain

cache validation delay for ensuring data consistency before the data is used.

In location-dependent information services, there is yet another kind of cache

invalidation, where a previously cached data instance may become invalid when the

client moves to a new location. In [50], three schemes for this kind of location-dependent

cache invalidation are proposed.

 29

2.3 Analysis of Selfishness

The authors in [123–125] investigate the impacts of selfishness and mistreatment

on caching. A mistreated node is a cooperative node that experiences an increase in its

access cost due to the selfish behavior by other nodes in the network. In [126] authors

study selfishness in a distributed content replication strategy in which each user tries to

minimize its individual access cost by replicating a subset of objects locally (up to the

storage capacity), and accessing the rest from the nearest possible location. Using a game

theoretic formulation, the authors prove the existence of a pure Nash equilibria under

which network reaches a stable situation. Similar approach has been used in [127] where

authors modeled distributed caching as a market sharing game. Our work in this thesis

has certain similarity with the above works as we also use a monetary cost and rebate for

content dissemination in the network. However, as opposed to using game theoretic

approaches, we propose and prove an optimal caching policy. Additionally, the pricing

model of our work which is based on the practical Amazon Kindle business model is

substantially different and more practical compared to those used in [126], [127].

2.4 Data replication

Data replication is a very similar mechanism to data caching which can be used In

MANETS to reduce the average latency and to save wireless bandwidth in a mobile

environment. Hara [128] proposed a replica allocation method to increase data

accessibility in MANETS. According to [128] a mobile node maintains a limited number

of popular data items. Replicated date items are relocated periodically based on access

frequency of each mobile node and access frequency of its neighbors. Consistency of

replicated data is further considered in [129-131]. An extended version of this replication

 30

mechanism has been presented in [129] by considering a periodic updates and integrating

user profiles consisting of mobile users’ schedules, access behavior, and read/write

patterns.

Replicating popular data can increase the data accessibility since a mobile node

cannot access data when it is isolated from the others [129], [130]. However, due to the

limited size of data can be stored in a mobile node simply replicating data items cannot

fulfill users requirements. To overcome the limited information availability in MANET,

authors in [134],[90] proposed a cooperative caching scheme to increase data

accessibility by peer-to-peer communication among mobile nodes, when they don’t have

direct access to the server. The protocol in [90] is implemented on top of Zone Routing

Protocol (ZRP). [135],[136] suggested the 7DS architecture to share and disseminate

information among users. It operates either on a prefetch mode, based on the information

and user’s future needs or on an on-demand mode, which searches for data items in a

single-hop multicast basis. Unlike other cooperative caching mechanisms this strategy

focuses on data dissemination, and thus, the cache management including a cache

admission control and replacement policy is not well explored.

2.5 Firewall Rule Caching

We utilize our cooperative caching scheme to deploy a distributed firewalling

mechanism in MANETs. There are few other works that address the firewalling in

MANETs but none of them uses the rule caching.

Maccari et. al. proposed a firewalling scheme for mesh networks in [131]. In this

scheme, all accepted packets for each node are represented by a bloom filter. They use a

bloom filter to send the list of accepted packets to all nodes in the network. Thus, when a

 31

node wants to forward a packet, it queries the packet from all bloom filters it has received

from other nodes. If it is found, the packet is forwarded; otherwise, it is discarded. Due to

large number of accepted packets, the bloom filter is very big (it could be in order of GB

or TB). To deal with this problem, they only consider packets with class C IP addresses

and port numbers less than 1024, which is a considerable limitation of their work. The

authors extend their work in neira08mesh to support stateful firewalls and they use d-left

counting bloom filter with handover support.

Alicherry et. al. presented a traffic authentication framework for MANETs in

[132], [133]. In this framework, a set of trusted nodes is appointed as group controller

that is responsible for distributing token policies. When a node wants to access an

authorized service on a destination, the source node sends the corresponding token policy

to the destination. The destination notifies the source node as well as all intermediate

nodes along the path to the source about the amount of allocated bandwidth for the

requested session.

 32

Chapter 3 : OPTIMAL CACHING FOR HOMOGENOUS

NETWORKS

3.1 Motivation

In conventional data access model, a data enabled mobile device (e.g. smart phone,

Amazon kindle) downloads an electronic data item from the server through a

communication service provider network (e.g. 3G/4G network). The communication cost

of this download must be paid by end user or content provider. In this chapter we adopt

the Amazon Kindle
TM

 pricing model in which the Content Provider (e.g. Amazon the

CP) pays the download cost of an electronic item to the Communication Service Provider

(CSP). The object provisioning cost can be reduced when mobile devices collaboratively

share their content to each other. To encourage the end-consumers to participate in this

cooperative caching, a content provider pays a rebate to an end-consumer when it

provides a data item to another device.

A key question for cooperative caching is how to store contents in nodes such that

the average content provisioning cost in the network is minimized. In this chapter we

show that in a stationary mobile wireless network an optimal caching strategy exists

which can minimize the average cost per accessed object.

3.2 Network Model

To facilitate cooperation among mobile devices carried by people who physically

gather in public places, a Mobile Social Wireless Network (MSWNETs) can be formed

using ad hoc wireless connections. For example Figure 3-1 illustrates the location

 33

snapshot of a two physical partitions in a 6-node MSWNET setting.

 In this chapter we consider two types of MSWNETs. The first type involves

stationary [134] MSWNET partitions. This means that after a partition is formed, it is

maintained for sufficiently long so that the cooperative object caches can be formed and

reaches steady states. After the optimality and performance of the proposed caching

mechanism is evaluated for this stationary case, we investigate the second type to explore

as to what happens when the stationary assumption is relaxed. To investigate this effect,

caching is applied to MSWNETs formed using human interaction traces obtained [135]

from a set of real MSWNET settings.

Figure 3-1: Snapshot of two physical partitions in a social wireless network

3.3 Pricing Model

We use a pricing model similar to the Amazon Kindle e-book delivery in which the

content provider (e.g. Amazon) pays a download cost Cd to the communication service

provider (e.g. Sprint) when an End-Consumer (EC) downloads an e-book from the CP’s

server through the CSP’s cellular network. Also, whenever an EC provides a cached

 34

object to another EC within its MSWNET partition, the provider EC is paid a rebate Cr by

the CP. Alternatively, this rebate can be distributed among the provider EC and the ECs

of all the intermediate mobile devices that take part in object forwarding. The flow of

content and cost has been shown in Figure 3-2.

Figure 3-2: Amazon Content and cost flow model

3.4 Request Model

A server-tagged object popularity [136], [137] and a Zipf distribution [19] based

object request model, which is widely used in the literature for modeling popularity based

online object request distributions, have been used. We also assume all mobile nodes

generate the same number of requests per unit time and all users have the same interest.

This means the probability of generating a request for a given item is the same for all

nodes.

 35

3.5 Search Model

After a request generated within a mobile device, it first search its local cache for

the requested item. If local search fails, a broadcast request is sent over the MSWNET to

search the item in the other nodes in the partition. If the network search for the data item

also fails the requested item will be downloaded from content provider server through

communication service provider network. (e.g. 3G network).

3.6 Cost of Content Provisioning

Table 3-1 shows the list of notations used in the subsequent derivations.

Table 3-1: Notations used in cost computation
 Number of ECs in an MSWNET partition

C Cache size (No. of objects can be stored locally)

Cd Cost paid by CP (or End consumer) to CSP per object
download

Cr
Rebate paid by CP (or End consumer) to publisher node per
object

β=Cr/Cd
Rebate to download cost ratio

α Zipf parameter (0 < α < 1)

N Total number of objects in the network

PL
Local hit rate; probability that a requested object is found in
the local cache

PV
Remote hit rate; probability that a requested object is found
in the partition

PM
Miss rate; probability that a requested object is not found in
the partition

pi
Popularity of object ‘i’ in the network

Sj
Set of objects stored at node ‘j'

ni
Number of copies of object ‘i’ in the network

T Least popular object stored in the network

 36

Let PL be the probability of finding a requested object in the local cache (i.e. local

hit rate), PV be the probability that a requested object can be found in the network (i.e.

Remote hit rate) after its local search failed, and PM be the probability that a requested

object is not found in the network. We can write PM in terms of PV and PL as:

 �� = 1 − �� − �� (3-1)

The provisioning cost for an object is zero if the object is found in the local cache,

Cr when it is found in the MSWNET, and Cd when it is downloaded from the CP’s server

through the CSP’s network. Thus, average provisioning cost is:

 ���� = ���� + ���� (3-2)

Expressing Cr/Cd as β and substituting PM from Eqn. 3-1, cost can be expressed as:

 ���� = �1 − �1 − ���� − ����� (3-3)

Let
 be the number of devices within an MSWNET partition, and Sj be the set of

objects stored in device-j �1 ≤ � ≤
�. With pi �1 ≤ � ≤ �� as defined in Eqn. 1-1,

the probability of finding an object in device-j's cache can be written as �� =
∑ "��∈$% . The resulting probability of finding the object at any given device in the

 37

partition is ∑ ��
 &�
⁄ or	∑ ∑ "��∈$%
 &�
⁄ (Recall that the request rate of all nodes

is the same). This is the average local hit rate PL, and can be simplified as:

 �� = �
∑)�"�*�&� (3-4)

where ni represents the number of copies of object-i within the partition. If C is the

available cache size (i.e. the number of objects that can be stored) at each mobile device,

then the maximum number of objects that can be stored within a MSWNET partition is

�.

With any popularity based object request model (e.g. Zipf), a meaningful

cooperative caching approach must ensure the following constraint at steady state.

Popularity storage constraint: An object should not be cached in a partition when at

least one object of higher popularity is missing in the partition. Meaning, object i cannot

be cached while object k (k < i) is missing. With this constraint:

 �� = �
∑)�"�
+�&� (3-5)

Note that the popularity storage constraint does not dictate the level of allowed

object duplication in a partition. It is allowed to have multiple copies of the same object

within the partition. Object duplication within a node, however, is not beneficial and not

allowed.

Let , represent the set of all stored objects in a partition. The probability of finding

an object in the partition can be expressed as∑ "��∈, , or ∑ "�-�&� , where the T-th

popular object is the least popular one stored in the partition. The quantity ∑ "�-�&�

 38

represents the overall cache hit rate in the partition which is equal to 1 − ��.

Substituting ∑ "�-�&� for 1 − �� and the value of PL from Eqn. 3-5 in Eqn. 3-1, we can

write

�� = . "� − 1
.)�"�
+
�&�

-
�&�

Using Eqn. 3-3, the cost expression can be written as /1 − �1 −
�� /∑ "� − �
∑)�"�
+�&�-�&� 0 − �
∑)�"�
+�&� 0 �� which can be further simplified

as:

 ���� = /1 − �1 − ��∑ "�-�&� − � �
∑)�"�
+�&� 0 �� (3-6)

3.7 Minimizing Object Provisioning Cost

For a given �, the cost in Eqn. 3-6 is a function of the vector)12 =	<
)�,)5, … . ,)* > where)� shows the number of copies of object ‘i’ in the SWNET

partition in question. An object placement)12 is optimal when it leads to minimum object

provisioning cost in Eqn. 3-6. In this section, we aim to determine the optimal)12.
Lemma 1: With any popularity based object request model (e.g. Zipf), the optimal

placement approach must ensure the following constraint at steady state:

An object should not be stored in a partition when at least one object of higher

popularity is missing in that partition. That is, object i (i.e. i-th popular object) cannot be

cached while a higher popularity object k (k < i) is missing. This is referred to as

popularity storage constraint.

 39

Proof: Let us assume that there is an optimal placement which minimizes the

object provisioning cost in Eqn. 3-6 and violates the popularity storage constraint. It

means there is a missing object ‘i’ in the SWNET (i.e.)� = 0) while a less popular

object ‘j’ is present (i.e. 	� > �,) > 0).

Using Eqn. 3-6, it can be shown that if a less popular object ‘j’ is replaced with the

missing object ‘i’, the cost will be lower. This contradicts the assumption and therefore,

the optimal object placement must preserve the popularity storage constraint.

Now let us assume that ‘T’ is the least popular object in the optimal solution.

According to the popularity storage constraint, there is at least one copy of objects ‘1’ to

‘T’ in the partition. Therefore, Eqn. 3-6 can be written as:

 ���� = /1 − �1 − ��∑ "�-�&� − � �
∑)�"�-�&� 0 �� (3-7)

Lemma 2: In the optimal object placement, an object k (i.e. k-th popular object)

should not be duplicated unless all other objects with higher popularity have been

duplicated in all nodes.

Proof: According to the storage popularity constraint in the optimal solution, at

least one copy of object ‘1’ to object ‘T’ exists. Since object ‘T’ is the least popular object

in the optimal solution, Eqn. 3-7 can be rewritten as:

���� = 1 −.91 − � − �:;"� − �:.�)� − 1�"�-
�&�

-
�&�

Now, let)ℓ ≠)> , 1 <)ℓ,)> < :, and ℓ < ?. It can be observed that by

increasing)ℓ and by reducing)> it is possible to lower the cost. This can lead to the

following claim: while there is room for increasing the number of copies of object ℓ (i.e.

 40

)ℓ < :), less popular objects (e.g. object k, ? > @�	 should not be duplicated. Following

the above logic, we cannot duplicate object ‘2’ unless we have duplicated object ‘1’ in all

nodes (i.e.)� =
). Similarly, we cannot duplicate objet ‘i’ unless we have already

duplicated more popular objects in all nodes.

Claim: The optimal object placement)12 has the following properties:

1))� =
	A�B	1 ≤ � ≤ ℓ, where ℓ is the least popular duplicated object in the

network, and its value should be determined based on �. One copy of objects

1…ℓ	will be stored in all nodes.

2))� = 1	A�B	ℓ + 1 ≤ � ≤ C, where C = �� − �ℓ + @ + 1. This means the

remaining space of caches is filled with unique objects.

3))� = 0	A�B	� > C

Proof: According to Lemma 1, There must be at least one copy of objects 1…C in

the network (i.e. there is no missing object). Lemma 2 states that an object should not

duplicated before all other objects with higher popularity have been duplicated in all

nodes. This means if ℓ is the least duplicated popular object in the network, there should

be
 number of copies of objects 1. . ℓ in the network.

Note that the above analysis does not help deciding the value of ℓ, or the set of

objects that need to be duplicated for the optimal object placement solution. It only shows

that if the optimal solution requires duplication, it must be across all nodes. In the next

section we show how to determine the value of ℓ.

Figure 3-3: Cache partitioning in Split Cache policy

Duplicate Unique

λ.C (1-λ).C

Cache Space (C)

 41

3.8 Cooperative Split Cache Mechanism

To realize the optimal object placement as described in Section 3.7 we propose the

following Split Cache policy in which the available cache space in each device is divided

into a duplicate segment (λ fraction) and a unique segment (see Figure 3-3). In the first

segment, nodes can store the most popular objects without worrying about the object

duplication and in the second segment only unique objects are allowed to be stored.

Parameter λ in Figure 3-3 (0 ≤ D ≤ 1) indicates the fraction of cache that is used for

storing duplicated objects.

With the Split Cache replacement policy, soon after an object is downloaded from

the CP’s server, it is categorized as a unique object as there is only one copy of this

object in the network. Also, when a node downloads an object from another node in the

network, that object is categorized as a duplicated object as there are at least two copies

of that object in the network. Because of limited cache storage, a node cannot store all

downloaded objects. Therefore, to store a new incoming object a node has to select and

evict another object from its cache. For storing a new unique object, the least popular

object in the whole cache is selected as a candidate and it is replaced with the new object

if it is less popular than the new incoming object. For a duplicated object, however, the

evictee candidate is selected only from the first duplicate segment of the cache. In other

words, a unique object is never evicted in order to accommodate a duplicated object. The

Split Cache object replacement mechanism realizes the optimal strategy established in

Section 3.7. With this mechanism, at steady state all devices' caches maintain the same

object set in their duplicate areas, but distinct objects in their unique areas. The pseudo

code of Split Cache replacement policy is shown in Algoritm-1.

 42

Cost for Cooperative Split Cache: To compute the provisioning cost for Split Cache

we first calculate PL (local hit rate) and PV (remote hit rate) and then substitute their

calculated values in Eqn. 3-3. To facilitate calculation of PL and PV we define a function

f(k) which represents the probability of finding an arbitrary object within a device's cache

that is filled with the k most popular objects. This function can be expressed as ∑ "�>�&� .

Substituting pi for the Zipf distribution, A�?� = ∑ "�>�&� ≈ F G�� H� =>�
I >�JK��L��LM . Now, considering	I = 1 ∑ "���=1N ≈ 1/F 1��H� = 1−��P1−�Q−1?1 ,

we can write:

 A�?� = >�JK��L�*�JK��L� (3-8)

Local Hit Rate PL: At steady state, total number of unique objects stored in the

partition is equal to
��1 − D�. Also, the number of duplicated objects is equal to λC.

INPUT: Object Onew

IF (Onew is downloaded from another node)
 RS�T = �ℎV	@VW��	"�"X@WB	�Y�	�)	�ℎV	Z[\]^_`ab		WBVW

ELSE
 RS�T = CℎV	@VW��	"�"XW@WB	�Y�	�)	�ℎV	bca^db	eWeℎV

END
IF (RTfg. "�"X@WB��h > RS�T. "�"X@WB��h)

 db\]`_b		RS�T	i��ℎ	RTfg
END

Algorithm 1: Split Cache object replacement policy

 43

Therefore, the total number of different objects stored in the partition is D� +
��1 −
D�. Probability that a device can find a new requested object in its local cache is equal to:

 �� = jk + lm
 (3-9)

where jk = A�D�� corresponds to the cache hits contributed by the objects stored

in the duplicate area of cache and jn = AoPD +
�1 − D�Q�p − A�D�� represents the hit

rate contributed by the unique objects (in the partition) which are assumed to be

uniformly distributed over all
 devices' caches.

Remote Hit Rate PV: It is equal to the hit probability contributed by the objects

stored in the unique area of all devices in the partition, minus the unique area of the local

cache. This can be expressed as:

 �� =
L�
 jn (3-10)

Substituting the value of PL and PV from Eqns. 3-8	�q = jr + js
 (3-9

and 3-10 in Eqn. 3-3, the cost can be simplified as:

 ���� = /1 − /��Lt�
ut
 0jn − jk0 �� (3-11)

Using Eqn. 3-8 to expand HU and HD, Eqn. 3-11 can be written as a function of λ.

By equating the derivative of the cost expression to zero, we can compute λopt at which

cost is minimized. The values and trend of λopt for different system parameters including

C,	
, α and β are presented in Section 3.10.

 44

3.9 Handling Objects with Different Size

For the sake of modeling simplicity, so far we have assumed that all objects have

the same size. In this section, the minimum-cost object replacement mechanism is

extended for scenarios in which objects can have different sizes. In such situations, in

order to insert a new downloaded object ‘i' from the CP’s server, instead of finding the

least popular object, a node needs to identify a set of objects ψ in the cache. The set ψ

should be identified such that the quantity ∑ " ∈v is minimized while ∑ " < ∈v
"�and ∑ w > w� ∈v ∑ w > w� ∈v ; the quantity xi shows the size of object ‘i’. This is

a traditional knapsack problem for which a number of heuristics based solutions are

available in the literature. If a set ψ, satisfying the above conditions, is found, then all

objects in that set are evicted from the cache to accommodate the new incoming object;

otherwise the incoming object ‘i' is not admitted. When an object is downloaded from

another node in the MSWNET, the members of ψ can be selected only from the objects

stored in the duplicate area of the cache. Note that dimensioning of the split factor λ with

varying object size is not addressed in this chapter.

3.10 Evaluation in Static Partitions

The performance of Split Cache in static partitions was evaluated using the

analytical expressions in Section 3.8, and then via ns2 network simulation. For

simulation, a flooding based object search mechanism has been implemented using the

baseline AODV [138] route discovery syntaxes. Baseline experimental parameters are

summarized in Table 3-2.

 45

Table 3-2: Baseline simulation parameters

Number of ECs in a static partition(V) 40

Download cost (Cd) 10

Rebate-to-download-cost ratio (β) 10 ≤≤ β

Cache size in each mobile device (C) 50

Zipf parameter (α) 0.8

Object population (N) 5000

Warm up phase to reach steady state 2000 requests

Total simulation duration 10000 requests

3.10.1 Hit Rates and Provisioning Cost

Figure 3-4(a) depicts the impacts of λ on the hit rates. Smaller λ values lead to

fewer copies of the popular objects within the local cache and the subsequent low local

hit rates. Larger number of unique objects in the partition, however, leads to higher

remote hit rates for smaller λ values. Since with larger λ, more popular objects are

duplicated, the likelihood of finding objects locally improves, leading to higher PL

values.

The miss rate PM depends on the total number of unique objects in the MSWNET

partition, which increases with higher duplications when λ is increased. The excellent

agreement between the analytical and the simulation results in Figure 3-4(a) validates the

analysis in Section 3.8.

 46

Figure 3-4: Hit rates and cost for Split Cache and traditional policies

Figure 3-4(b and c) depict the provisioning cost as a function of λ. When � =
0	(i.e. per object credit Cr=0), the cost expression in Eqn. 3-3 reduces to	���� = ����.

Meaning, for a given Cd, the cost depends only on PM which reduces as λ reduces.

Therefore, when � = 0, λ=0 results in minimum PM and consequently the minimum

cost. When = 1 , meaning the r ebate is same as the download cost Cd, the expression in

Eqn. 3-3 reduces to ���� = �1 − �����, indicating that it depends only on the local hit

rate for a given Cd. This explains as to why the cost decreases with increasing λ, whereas

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Split factor(λ)

H
it

ra
te

 %

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Split factor(λ)

O
b

je
c
t
P

ro
v
is

io
n

in
g

 C
o

s
t

0 0.2 0.4 0.6 0.8 1
4.5

5

5.5

6

6.5

7

7.5

Split factor(λ)

O
b

je
c
t
P

ro
v
is

io
n

in
g

 C
o

s
t

0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

β

O
b

je
c
t
P

ro
v
is

io
n

in
g

 C
o

s
t

P
L
(SIM & EQ)

P
V

(SIM & EQ)

P
M

 (SIM & EQ)

β=0.0 (SIM & EQ)

β=1.0 (SIM & EQ)

β=0.5 (SIM & EQ)

β=0.7 (SIM & EQ)

LRU

LFU

RNDM

λ=1

λ=λ
opt

λ
opt

=0.4

λ
opt

=0.6

λ
opt

=0

λ=0

λ
opt

=1

(a) (b)

(c) (d)

 47

the local hit rate increases. Intuitively, when Cr = Cd, there is no advantage of fetching

objects from the MSWNET. The only way to reduce cost in this situation is to maximize

PL. Observe in Figure 3-4(c) that for both � = 0.5 and � = 0.7, the cost reduces initially

for increasing λ but after a critical λ= λopt, the cost starts to increase. This critical point

can be found numerically from Eqn. 3-11. It was established in Section 3.7 that starting

from the state of zero partition-wide duplication, if the iterative duplication/replacement

process stops at the correct point, the cost can be minimized. This translates to finding the

appropriate level of duplication, which is decided by λ. As shown in Figure 3-4(c), λopt is

0.4 when β is 0.5, and it is 0.6 when β is 0.7. Thus, a larger λopt is needed when the

rebate is larger with respect to the download cost from the CP's server.

3.10.2 Comparison with Traditional Caching Policies

Figure 3-4(d) shows the cost for Least Recently Used (LRU) [32], Least Frequently

Used (LFU) [136], and Random (RNDM) [31] along with those for Split Cache when λ

set to 0, 1, and λopt. While LRU and LFU implicitly leverage object popularity by storing

the most popular objects, RNDM is insensitive to popularity. As expected, Split Cache

with λopt provides the best cost. λ=0 delivers near-best performance for small β. This is

because as shown in Eqn. 3-3, for small β (i.e. small rebate Cr), cost depends mainly on

 48

PM. From Figure 3-4(a), PM is minimum for λ=0, which corresponds to no-duplication

caching.

When β is large (e.g. � ≥ 0.7), λ=1 delivers near-best performance. This is because

as shown in Eqn. 3-3, for large β, the cost depends mainly on PL, which is maximized

when λ=1. All traditional policies perform in between Split Cache with λ=0 and λ=1.

Since RNDM is insensitive to popularity, by uniformly distributing the objects in the

partition, it is able to increase PV, which helps it outperform LRU and LFU for small βs.

LFU, on the other hand, attempts to distinguish popular objects by keeping track of the

number of hits for an object. This explains its performance proximity with Split Cache

when λ=1.

3.10.3 Partition Object Density

Partition density refers to the number of copies of an object in the MSWNET

partition. With Split Cache, the expected density values are
 (number of ECs in the

partition) for the duplicated objects, 1 for the unique objects, and 0 for the objects that are

not stored in any node. This is confirmed in Figure 3-5(a) which reports densities from

simulation for different values of βs. With increasing β, since λopt increases, more

objects are duplicated, thus increasing the density. We show results only up to object-id

50 (i.e. cache size C), because objects beyond C have only one or zero copy. When � =
0, since λopt is also zero, there is no duplication, causing the
�	most popular objects to

have one copy and the rest of the objects with zero copy.

 49

Figure 3-5(b) depicts simulated object densities for LFU, LRU, and RNDM.

Observe that for all three policies, certain amount of density skew (i.e. higher density for

more popular objects) is generated by the Zipf based object requests. For RNDM, the

densities are minimally skewed, since the policy itself is not sensitive to popularities.

LFU, on the other hand, shows a density pattern that is closest to the Split Cache with

λ=1 due to its effective sensitivity to object popularity. Similar to the cost results, the

density pattern for LRU lies in between RNDM and LFU. This is because the effective

sensitivity to object popularity for LRU is weaker than LFU, but stronger than RNDM.

Figure 3-5: Partition object densities

3.10.4 Cost Dynamics over Time

The graphs in Figure 3-6(a,b) demonstrate how the provisioning cost and different hit

rates in a static partition (with 40 nodes) changes during the network warm-up phase and

also when the object popularities change as a response to external events. As shown in

Figure 3-6(a), initially, when all caches are empty, nodes have to download their desired

objects directly from the CP’s server and therefore the average provisioning cost is very

high. This can also be confirmed by Figure 3-6(b) which shows the low local hit rates and

the high remote hit rates during the warm-up phase. Gradually when nodes download

0 20 40 50
0

10

20

30

40

50

Object Id

O
b
je

c
t

D
e
n
s
it
y

10
0

10
2

10
3

0

10

20

30

40

50

Object Id

O
b
je

c
t

D
e
n
s
it
y

LFU
LRU
RNDM

β=0.5

λC=20

β=0.1

λC=2

(a) β=1 λC=50 (b)

β=0.9

λC=43

 50

objects in their cache, less number of subsequent requests needs to be served through the

CP’s server, which in turn results in lower costs. The value λ was set to 0.68 which is the

optimal value when � is 0.8.

At steady state, each node stores object 1 through objet 34 (i.e. λ.C) in the duplicate

segment of their individual cache, and the remaining 14 slots in the cache are filled with

unique objects. At time 30000 seconds, the object popularity profile is altered by

swapping the popularities of objects 1 to 10 with those of objects 1000 to 1010. Meaning,

object 1000 becomes most popular, and object 1 becomes 1000
th

 popular. A reduction in

local hit rate and an increase in remote hit rate can be observed immediately after this

alteration in Figure 3-6(b). Due to these changes in hit rates, the provisioning cost suffers

from an immediate surge after 30000 second. The algorithm, however, is able to gradually

bring the cost down by optimal storing the new set of popular objects in the caches.

Figure 3-6: Cost and hit rates over time

0 2 4 6

x 10
4

0.7

0.8

0.9

1

Time(s)

O
b
je

c
t

P
ro

v
is

io
n
in

g
 C

o
s
t

0 2 4 6

x 10
4

0

0.1

0.2

0.3

Time(s)L
o
c
a
l
H

it
 R

a
te

0.2

0.3

0.4

R
e
m

o
te

 H
it
 R

a
te

S
w

a
p
 p

o
p
u
la

ri
ty

 o
f

O
1
 .

..
 O

1
0

S
w

a
p
 p

o
p
u
la

ri
ty

 o
f

O
1
 .

..
 O

1
0
0

W
a
rm

u
p
 P

h
a
s
e

(a) Object Provisioning Cost
over time

(b) Local and Remote Hit rate
over time

 51

Figure 3-6(a,b) demonstrate the effects of another popularity alteration that is

created again at 40000 second. These dynamics show as to how the proposed cooperative

caching can cope with runtime popularity alterations due to external events.

3.11 Android SWNET Test bed

The Split Cache protocol was also implemented as an Android App on a seven-

phone Social Wireless Network. Based on Zipf distribution over 5000 objects, each node

was programmed to generate 1 request per second. The requests are homogeneous in

these experiments. Each phone is able to store up to 50 different objects in its local cache

(i.e. C = 50). After generating a request for an object, a phone first checks its local cache

and if its local search fails, it searches the object in the other six phones using a ad hoc

WiFi network acting as the inter-phone peer-to-peer links. If the node does not receive a

reply within two seconds after sending the request, it downloads the object directly from

a desk-top machine that emulates the CP’s server. Note that any object downloaded

directly from the CP’s server is considered as a unique object and it is stored in the

unique area of the cache.

 Figure 3-7(a) reports object provisioning costs from both the analytical expressions

and from the test-bed when D varies between 0 and 1, and the rebate to cost ratio β is set

to 0.5. The cost is analytically computed according to Eqn. 11 when the parameters m, C,

α are set to 7, 50, and 0.8 respectively.

 52

Figure 3-7: (a) Cost and (b,c) Local and Remote Hit Rates

Observe that although the costs obtained from the test-bed maintain values and trends

very similar to those from the equation, they are always slightly higher. These differences

stem from undesired object duplication as a result of search inaccuracy as follows. When

two or more nodes register cache misses at the same time for a supposedly unique object,

all of them may attempt to download the object from the CP’s server. This can result in

undesired object duplications, causing an effective D which is larger than the target D{|}.
Such faulty duplication was also found to happen due to erroneous object search in the

events of lost search requests in the WiFi phone network. The impacts of undesired

object duplication are higher local hit rates and lower remote hit rates (compared to the

equation) and therefore higher provisioning costs.

It should be also observed that the higher costs due to undesired object duplication

happens more when D is small (i.e., D ≪ 1). This is because when D is very small, the

local hit rate is very low. Thus the number of search requests to the other nodes is quite

high. As a result, the absolute number of simultaneous requests and lost search requests

0 0.5 1
6.4

6.6

6.8

7

7.2

Split Factor (λ)

O
b

je
c
t

P
ro

v
is

io
n

in
g

 C
o

s
t

0 0.5 1

0.1

0.2

0.28

Split Factor (λ)L
o

c
a

l
H

it
 R

a
te

0

0.2

0.4

R
e
m

o
te

 H
it
 R

a
te

Testbed Results

Equation

(a)

(b)

(c)

 53

as described above are also high. These cause more frequent erroneous object

duplications and subsequently higher cost.

3.12 Operational Feasibility of Split

 Two relevant operational questions from the Content Provider’s standpoint are: a)

for a maximum allowable cost point, what is the maximum possible rebate that can be

generated for the MSWNET users, and b) what would be the minimum cost when the CP

attempts to guarantee a pre-specified minimum generated rebate for the MSWNET users.

In what follows, we address these two questions.

 The shaded region in Figure 3-8 envelopes all feasible pairs of cost and generated

rebate (GR) that can be generated by varying the parameters β and D. The top edge of the

region is defined by a line representing	� = 1, and D	varying from 1 to 0. Similarly, the

bottom edge is defined by a line representing D = 0, and � varying from 0 to 1. The

figure shows the feasibility lines for specific cases of �, namely, 0, 0.1, 0.5, 0.7, and 1.

The feasible region is formed by drawing all continuous β values from 0 to 1.

 Point C on the feasibility region corresponds to the minimum cost as well as the

minimum GR (i.e. zero), which is achieved by setting	D = 0	and	� = 0	. These result into

the exclusive caching with zero duplication across the partition, and free object fetching

from within the SWNET. Point B corresponds to the maximum cost as well as the

maximum possible GR, which is achieved by setting	D = 0	and	� = 1. These also result

into exclusive caching, but with a hefty rebate Cr, causing the maximum cost and

generated rebate. Finally, point A on the feasibility region corresponds to D = 1	and for

any value of �. This is because with full duplication (D = 1), there is no need for fetching

 54

an object from the MSWNET, causing zero generated rebate. This means that the quantity

Cr does not have any impact on cost at this point, leaving the cost independent of β.

Figure 3-8: Feasible operating region in the cost-rebate plane

 The bottom edge (i.e. line CB) of the feasible region in Figure 3-8 determines the

maximum possible generated rebate for a given maximum allowable cost. For example, if

the maximum allowable cost is S, then the corresponding maximum GR from the CB line

is R. This situation is shown as the point X on line CB. The other interpretation of this

point is that if the CP wants to provide the minimum GR of R, then the minimum possible

cost using the Split cooperative caching is S. This indicates that the line CB also

determines the minimum cost when the content provider wants to guarantee a pre-

specified minimum GR for the MSWNET users.

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8

O
b

je
ct

 P
ro

v
is

io
n

in
g

 C
o

st

Generated Rebate (GR)

β=0.5

β=0.7

β=0.1

B:(λ=0 , β=1)

A:(λ=1 , 0 < β < 1)

β=0.0

C:(λ=0 , β=0)
R

S

Feasible Region

(λ=0,0 < β < 1)

X

 55

3.13 Performance with Non-stationary Networks

The stationary partition assumption is relaxed in this section. We evaluated Split

Cache and the traditional policies on a dynamic 98-node MSWNET formed by 98

individuals attending the INFOCOM '05 conference [139]. We have extracted the

MSWNET partition dynamics from a pair-wise interaction trace obtained from [135]. The

trace contained synchronized time-stamped pair-wise individual interaction information

with a granularity of 4 minutes, which is the Hello packet interval used by a small RF

transceiver attached to all 98 individuals while attending the conference. Figure 3-3(a)

reports the extracted partition dynamics as the average partition size from individual

nodes' perspective. For example, at time 20, average partition size across all nodes is 12.

Figure 3-3 (b) depicts the simulated cost as a function of λ. Observe that the pattern

in this graph is exactly the same as that observed for the stationary partition case in

Figure 3-10, indicating that the concept of optimal λ also holds for networks with

dynamic partitions. Analytical computation of the λopt in this dynamic case, however,

may not be as straightforward due to the wide variation of the partition size as shown in

Figure 3-3 (a). A heuristic approach would be to compute λopt for each node individually

based on its own observed average partition size.

 56

Figure 3-9: Partition dynamics from trace and provisioning cost

Also, unlike in the static case, it is relatively harder to keep consistency of

duplication under the dynamic scenario. This is because when a node is in a small

partition, it has to download a large number of objects from the CP's server. In other

word, from the standpoint of a node, which is in a small partition, those objects are

unique. Later, when such a node enters a bigger partition, some of those unique objects

may not remain unique anymore in the new partition. To avoid such situations, current

partition size is stored along with the object in the cache and during cache replacement

objects with smaller partition size are evicted before other objects.

0 20 40 60 80 100
0

20

40

60

80

100

Time(Hours)

P
a
rt

it
io

n
 S

iz
e

0 0.2 0.4 0.6 0.8 1
5.2

5.4

5.6

5.8

6

6.2

SPLIT factor(λ)

O
b
je

c
t
P

ro
v
is

io
n
in

g
 C

o
s
t

Actual

Average

β=0.5

β=0.7

(b)(a)

 57

Figure 3-10: Comparative minimum cost

Figure 3-10 depicts that Split Cache with parameter λopt provides the best cost

compared to the traditional policies even with dynamic MSWNET partitions. Similar to

the stationary case, λ=0 and λ=1 deliver near-best performance for small and large β

values respectively. Also note that the cost for all policies except Split Cache with

parameter λopt grows linearly with β. This is because the quantities PL and PV for these

policies do not depend on β. Therefore as seen in Eqn. 3-3 the cost is simply a linear

function of β. One main difference between the dynamic and stationary network

scenarios is that for the dynamic case, Split Cache policy with λ=0 outperforms LRU and

RNDM for all values of β. This is because as shown in Figure 3-3(a) in some durations of

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

9

Rebate to Download Cost Ratio(β)

M
in

im
u
m

 O
b
je

c
t
P

ro
v
is

io
n
in

g
 C

o
s
t

LRU

LFU

RNDM

λ=0

λ=1

λ=λ
opt

λ=0

λ=λ
opt

λ=1

(c)

 58

the experiment, the partition size is quite small. For small partitions, Split Cache with

λ=0 generates the best cost which reduces the average cost of the experiment.

3.14 Summary and Conclusion

In this chapter we developed a cooperative object caching strategy for provisioning

cost minimization in Mobile Social Wireless Networks (MSWNETs). The key

contribution was to demonstrate that the best cooperative caching for provisioning cost

reduction requires an optimal split between object duplication and uniqueness. We also

analytically derived this optimal split point and subsequently developed the caching

performance using a practical network, service and cost formulation that is motivated by

Amazon’s Kindle e-book delivery model.

 59

Chapter 4 : CACHING FOR HETEROGENEOUS

NETWORKS

4.1 Motivation

The Split Cache replacement policy with optimal λ minimizes the provisioning cost

for stationary networks with homogenous object demands. However, Split Cache is not

able to minimize the provisioning cost for non-homogenous object requests where nodes

have different request rates and request patterns. In this chapter we propose a generalized

benefit based approach to minimize the object provisioning cost in a network with non-

homogenous request model.

4.2 Provisioning Cost with Heterogeneous Requests

Recall that the cost for providing an object is zero when the requested object is found

in the local cache. This cost is βCd when the object is found in the local MSWNET

partition and Cd when it is downloaded from the CP’s server through a CSP’s network.

The probability that a node ‘i’ finds the requested object in its own cache is	∑ " � ∈��

where si indicates the set of stored object in node ‘i’ and "� shows the probability that a

generated request in node ‘i’ is for object ‘j’. The probability that a request is found in the

network after its local search fails is equal to	∑ " � ∈�$∗L��� where S
*

represents the set of

all objects stored in the network. Finally the probability that an object is not available in

the network and needs to be downloaded from the CP’s server is 1 − ∑ " � ∈$∗ . Therefore,

 60

the average provision cost for node ‘i’ can be expressed as:

 ����� = /� ∑ " � ∈�$∗L$�� + P1 − ∑ " � ∈$∗ Q0 �� (4-1)

Average provision cost in the network for all nodes can be calculated as:

 ���� = ∑ ��� �{�}�∑ ��� 	=
�1 − ∑ ��∑ |�%%∈�∗� ∑ ��� + � ∑ ��� ∑ {�%%∈�∗K��∑ ��� ��� (4-2)

where µi shows the request generation rate in node ‘i’. With the heterogeneous

request model, the provisioning cost depends on the request rate at each node, object

placement in the network, and more importantly, the popularity of each object with

respect to each node. Contrary to the homogenous model in which all nodes are interested

in the same set of objects with the same popularity distribution, in the heterogonous

model the popularity of an object is not the same in different nodes. As a result, finding

the optimal object placement that minimizes the provision cost is relatively more

complex than that in the homogeneous scenario. In the following section, we propose a

distributed algorithm for object replacement which minimizes the overall network-wide

cost in the presence of heterogeneous object request patterns.

4.3 Benefits of Caching

Suppose � is the set of nodes that store a copy of object ‘j’ in their cache. Let µi,

be the object request rate for node ‘i’ and "� be the probability that a generated request in

node ‘i’ is for object ‘j’ (i.e. node ‘i’ generates	��"� requests for object ‘j’ per unit time).

 61

The cost of network usage for downloading an object directly from CP’s server is Cd.

Therefore, storing object ‘j’ reduces cost at node ‘i’ by the amount	��"� �� 	per unit time.

This reflects the benefit of storing object ‘j’ in node ‘i’. Thus the benefit of storing object

‘j’ in the set of nodes specified by � can be written as: ∑ 	��"� ��∀�∈�

Additionally, every other node in a SWNET partition (i.e. nodes that do not store

object ‘j’ locally) is able to download object ‘j’ from one of nodes in � with cost βCd.

This reduces the cost of providing object ‘j’ to any other node in the network by the

amount �1 − ���� for each request for object ‘j’. Total number of requests for object ‘j’

by the other nodes in the SWNET is equal to	∑ �>"> ∀>∉� . Therefore, the remote benefit

of storing a unique object ‘j’ in the network is equal to�1 − ���� ∑ �>"> ∀>∉� . The

total benefit (the overall amount of cost reduction) of storing a object ‘j’ in set of nodes

specified by ‘Q’ can be written as:

. 	��"� ��∀�∈� + �1 − ���� . �>"> ∀>∉�

This can be rewritten as:

 �1 − ���� ∑ �>"> ∀> + ∑ �	��"� ��∀�∈�	 (4-3)

The first term of Eqn. 4-3 refers to the global benefit of storing object ‘j’ in the

network. Note that global benefit of storing an object in the network does not depend on

the location and the number of copies of that object. The global benefit of objects (1..N)

can be represented by a vector s112 where

 s = �1 − ���� ∑ �>"> ∀> . (4-4)

The second term of Eqn. 4-3 shows the local benefits of storing object ‘j’ in set of

 62

nodes specified by �. The local benefit of storing object (1…�) in nodes (1…
) can be

represented by a matrix r
×* where:

 r� = 	���"� �� 	 (4-5)

Using the above notations, the total benefit of storing object ‘j’ in a set of nodes

specified by ‘Q’ can be written as:

s + .r> 	>∈�

4.4 Benefit Based Distributed Caching Heuristics

With the Distributed Benefit based caching strategy presented in this section, when

there is not enough space in the cache for accommodating a new object, the existing

object with the minimum benefit is identified and replaced with the new object only if the

new object shows more total benefit. The benefit of a newly downloaded object is

calculated based on its source. When a new object ‘j’ is downloaded by node i directly

from the CP’s server using the CSP’s 3G/4G connection (i.e. no other copy of the object

is present in the SWNET partition), the copy is labeled as primary and its benefit is equal

to s + r� .

When the object is downloaded from another node in the SWNET partition (i.e. at

least one more copy of the object already exists in the partition), the copy is labeled as

secondary and its benefit is equal to r� . The new object is cached if its benefit is higher

than that of any existing cached object.

In addition to the benefit based object replacement logic as presented above,

provisioning cost minimization requires that a primary object within an SWNET partition

 63

should be cached in the node that is most likely to generate requests for that object. In

other words, a primary object j in the partition must be stored in node i such that:

��"� > �>"> 	A�B	W@@	? ≠ � .

To satisfy the above constraint, the primary copy of an object ‘j’ must always be

stored in a node with the highest request generation rate for that object. To enforce this,

in addition to the object-ID, a node sends its estimated request generation rate for the

requested-object during the search process within SWNET. Upon receiving the search

request, an object holder compares its own request rate for the object with that of the

requesting node. If the request rate of the requesting node is higher and the object copy is

a primary copy, then the object provider sends the object along with a change_status flag

to the requesting node. This flag informs the requesting node that the object must be

considered as a primary copy. Upon receiving of the object and the change_status flag,

the requesting node considers the object as a primary copy and if it can find an object

with lower benefit or if it has an empty slot, it stores the new object in its cache. After

storing it, the requesting node sends another change_status message to the provider node

which causes the provider node labels its object as a secondary copy. The complete logic

of the Distributed Benefit heuristics is summarized in Algorithm-2.

Note that in certain rare situations the object status modification process fails to

satisfy the above constraint. For example, consider a situation in which only one node in

the network generates requests and other nodes make no requests. In this case, due to

storage limitations, the active node can only store a limited number of objects. The object

status modification process does not help the active node to offload some objects to the

other nodes in the network. Offloading objects to other caches needs extra protocol

 64

syntax and requires additional complexity and overhead in the algorithm and it’s beyond

the scope of our current work. Object status modification process also fails to work

perfectly in highly mobile situations. For example, two nodes may consider an object as

primary copy while they are in the same SWNET partition. This may result in storing

additional number of copies of some objects. Due to these inconsistencies Distributed

Benefit heuristics does not guarantee a cost-optimal object placement.

4.5 Performance Upper bound: Optimal Object Placement

 In this section we introduce a centralized mechanism in order to find the optimal

object placement. First we map the object placement task to a maximum weight matching

problem in a bipartite graph. Then we formulate an integer linear objective function to

find the maximum weight matching, and we show that the linear programming relaxation

of this problem in fact provides the optimal solution.

RS�T = RY�Ve�	i��ℎ	:�)�:X:	YV)VA��

INPUT: Oj //The new downloaded object
 flag // Change status flag
IF (Oj is downloaded from Internet || flag == True)

 R . YV)VA�� = s� +	r��
 R . @WYV@ = �B�:WBh

ELSE

 R . YV)VA�� = r�
 R . @WYV@ = �Ve�)HWBh

END

IF (R . YV)VA�� > RS�T. YV)VA��)
 db\]`_b		RS�T 	i��ℎ	R
 �bcZ	eℎW)�V	��W�X�	:V��W�V	��	�ℎV	"B���HVB)�HV		

END

Algorithm-1: A distributed heuristic for object placement in SWNETs
with heterogeneous content requests in node ‘i’

 65

In a maximum weight bipartite matching problem, for a given bipartite graph

� = ��, ��	with bipartition ��,ℬ� and weight function i:�	 → ℝ, the objective is to

find a matching of maximum weight where the weight of matching M is given by

i��� = ∑ i�V�f∈�	 . Without loss of generality, it can be assumed that G is a complete

weighted bipartite graph (zero weight edges can be added as necessary); it can be also

assumed that G is balanced, i.e. |�| = |ℬ| = �5�, as we can add dummy vertices as

necessary.

4.5.1 Optimal Object Placement as a Matching Problem

To map the object placement problem to a maximum weight bipartite matching,

nodes are modeled by vertices)� …)S in partition �, and objects are modeled as

vertices in partition ℬ. Initially, we assume that each node is able to store only one object

(i.e. cache size is equal to 1) and later we relax this assumption.

In object placement, we may put one object in multiple nodes therefore every

object must be modeled by
 vertices. For example for object ‘j’ we create vertices

R� …R
 in partition ℬ. A vertex R� then is connected to the vertex)� with the weight

of r� which shows the local benefit of storing object ‘j’ in node ‘i’. We also add vertices

�� …�SL� in partition � and connect vertices R� …R
 to them using the edges with

weight zero. These new vertices are added to model the situation when object ‘j’ is not

stored in that node. When there is no copy of object ‘j’ in the network the global benefit

of object ‘j’ is lost. To model this situation, vertex � 	is added in partition � and it is

connected with vertices R� …RS using the edges with weight –s . Note that there is

only
 − 1 edges with weight zero and therefore, in perfect matching at least one edge

 66

with weight of –s must be selected when object ‘j’ is not stored in any node. The above

process is repeated for all objects in the network. Also for every slot of cache space a

vertex must be created in partition � and the whole process of mapping must be repeated

again. Figure 4-1 shows a modeled object placement problem when
 = 2,� =
2	W)H	� = 1.

Figure 4-1: An object placement problem as bipartite graph

To make sure all weights are positive, a large enough constant Δ	is added to all

weights. By adding dummy vertices and edges with weight 0, the graph becomes a

complete bipartite graph.

O22

O12

O21

O11

n2

n1

Z11

Z12

G1

G2

0
0

0
0

A

B

 67

4.5.2 Maximum Weight Matching

For the resulting complete bipartite graph we can formulate maximum weight

perfect matching as an Integer Linear Programming (ILP) problem as follows:

Max ∑ i� w� ∀��, �

Subject to: (1) A�B	� ∈ � ∶ 	∑ w� 	 = 1

 (2)	A�B	� ∈ ℬ ∶ 	∑ w� �	 = 1

 (3) w� ∈ 0,1¡		� ∈ �, � ∈ ℬ	

 where w� = 1 if ��, �� ∈ :W�eℎ�)�	� and 0 otherwise. We can relax the

integrality constraints by replacing constraint 3 with:

 w� ≥ 0			� ∈ �, � ∈ ℬ

This gives linear programming relaxation of the above integer program. In a linear

program, the variable can take fractional values and therefore there are many feasible

solutions to the set of constraints above which do not corresponds to matching. This set

of feasible solution forms a polytope, and when we optimize a linear constraint over a

polytope, the optimum will be attained at one of the “corners” or extreme points of the

polytope .

In general, the extreme points of a linear program are not guaranteed to have all

coordinates integral. In other words, in general there is no guarantee that the solution for

linear programming relaxation and the original integer program are the same. However,

for matching problem we notice that the constraint matrix of linear program is totally

unimodular and therefore any extreme point of the polytope defined by the constraints in

linear program is integral. Moreover, if an optimum solution to a linear programming

 68

relaxation is integral, then it must also be an optimum solution to the integer program

[140]. Therefore, the solution found by linear programming is optimal for the maximum

weight bipartite matching problem to which our object placement problem is mapped

into. The maximum weight matching M represents the optimal object placement which

minimizes provisioning cost in Eqn. 4-2. The optimum result of the linear program can be

treated as the upper bound of cooperative caching performance. Such upper bounds are

reported in the experimental results in Section 4.7.

The maximum weight perfect matching can be also found by Hungarian method (also

known as Kuhn–Munkres algorithm) in polynomial time [140][141]. In literature there

are many other algorithms for finding the maximum weight perfect matching.

4.6 Evaluation of the Distributed Benefit Strategy

4.6.1 Performance with Homogenous Content Requests

Figure 4-2 depicts average local hit rate, non-overlapping partition hit rate, and

miss rate in a network when all nodes run Distributed Benefit replacement policy. The

results correspond to a 40-node network with homogenous object requests and nodal

cache size of 50. As shown in Figure 4-2, all hit rates for Distributed Benefit and Split

Cache with optimal λ are exactly equal for a wide range of rebate-to-download cost

ratios. Since it was already proven in Section 3.7 that the Split Cache delivers optimal

performance under homogeneous object requests, from the observations in Figure 4-2, it

can be concluded that the Distributed Benefit strategy is also able to deliver optimal

performance for the shown range of the rebate-to-download cost ratios. This conclusion

is further corroborated in the reported cost numbers in Figure 4-3(a).

 69

Figure 4-2: Local hit, remote hit and Miss rate for Distributed Benefit and Split Cache

with λopt

Figure 4-3: (a) Object provisioning cost and (b) object density for Distributed Benefit and

Split Cache with λopt

Figure 4-3(b) demonstrates the object density at steady state within a MSWNET

partition for the Distributed Benefit strategy. It can be observed that the number of copies

for different objects follows the optimal object placement as we describe in

chapter Chapter 3 above. Furthermore, the least popular duplicated objects in Distributed

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

C
r
/C

d
 (β)

H
it
 r

a
te

 %

Benefit:P
L

Split:P
L

Benefit:P
V

Split:P
V

Benefit:P
M

Split:P
M

P
L

(a)

P
V

P
M

0 0.5 1
0

2

4

6

8

C
r
/C

d
 (β)

M
in

im
u

m

P
ro

v
is

io
n

in
g

 C
o

s
t

0 20 40 60

10

20

30

40

Object Id

O
b

je
c
t

D
e

n
s
it
y

Benefit

Split with λ
opt

β=0.1

β=0.4

β=0.7

β=0.9

β=1.0
(a) (b)

 70

Benefit and Split Cache with optimal λ (Computed using 3-10) are very similar. The

small difference is due to randomness and inaccuracy of broadcast search in ns2

simulation. Object density has been measured for different values of β, the rebate-to-

download cost ratio. As shown, Distributed Benefit keeps less duplicated objects in the

partition for small βs. The reason is when β is low, the benefit of duplicated objects is

also very low and therefore only few objects are duplicated in the network. To

summarize, the results in Figure 4-2 and Figure 4-3 indicate that the Distributed Benefit

strategy can deliver optimal performance, which is the same performance of Split Cache

with optimal λ, under homogenous object request patterns.

4.7 Performance with Heterogeneous Object Requests

In this section we study cooperative caching performance when nodes have

different request rates and different request patterns. To create node-specific object

popularity profiles we have used the following web proxy and web server traces:

BU [142]: The Boston University’s proxy trace which contains access information

of 28 end users requesting pages from 1840 distinctly different websites during April and

May, 1998.

NLANR [143]: A one day trace of HTTP requests to four proxy caches at the

National Lab for Applied Network Research, on January 10, 2007. This trace contains

access information of 117 end users to 241173 different websites.

For the above two proxy traces we map the web-sites to individual objects, and the

users to MSWNET mobile devices.

NASA [144]: This trace contains access information of 81983 clients to 21670

webpage of the NASA Kennedy space center web server in Florida during July, 1995.

 71

SASK [145]: This trace contains access information of 162523 clients to 36825

webpage of a web server in the University of Saskatchewan during June to December of

1995. For the NASA and SASK traces we map the web-pages to individual objects, and

the clients to MSWNET mobile devices.

Since the smallest number of clients among all four traces is 28 (i.e. for BU), in

order to be able to compare the results across all traces, we extract the access information

of 28 nodes with the highest request generation rate from all the trace files and use them

in the caching simulation. In all following simulation experiments nodal cache size is set

to 25.

Figure 4-4(a) depicts the global popularity of objects in BU and NLANR traces.

The global popularity of object ‘i’ is computed as:

�@�YW@	"�"X@WB��h� = �X:YVB	�A	BV¢XV���	�)	�ℎV)V�i�B?	A�B	�Y�Ve�	′�′CℎV	���W@)X:YVB	�A	BV¢XV���	�)	�ℎV)V�i�B?

It can be observed that the graph in Figure 4-4(a) closely follows a straight line on

a log-log scale, indicating the Zipf distribution for object requests.

Figure 4-4(b) depicts the cumulative probability density function of global

popularity for both BU and NLANR traces. Observe that when the requests are generated

from the BU trace, by storing the first 25 popular objects, each node is able to find 40%

of its requested objects in theist local cache. This number is around 20% for requests

following the NLANR trace. This confirms that the object popularity in the BU trace is

indeed more skewed compared to the NLANR trace.

 72

Figure 4-4: PDF and CDF of global popularity for accessed objects in BU and NLANR

The probability of generating a request for an object in a single node is referred to

as the local popularity at that node. Similar to the global popularity, the local popularity

also follows a Zipf distribution. However, the set of objects from a single node’s

standpoint is smaller compared to that in the entire network. The Local popularity of

object ‘i’ at node ‘j’ can be computed as:

@�eW@	"�"X@WB��h� = �X:YVB	�A	BV¢XV���	Yh)�HV	′�′	A�B	�Y�Ve�	′�′CℎV	���W@)X:YVB	�A	BV¢XV���	Yh)�HV	′�′

The local popularity of objects is expected to be different at different nodes. For

the BU and NLANR traces, Figure 4-5 (a) depicts the local popularity of the most

globally popular objects from the standpoint of different individual nodes in the network.

1 25100 1000 20000
10

-6

10
-4

10
-2

10
0

Network Object Ranking

G
lo

b
a

l
P

o
p
u

la
ri

ty
 (

P
D

F
)

1 25100 1000 20000
0.01

0.1

0.4

1

Network Object Ranking

G
lo

b
a
l
P

o
p
u
la

ri
ty

 (
C

D
F

)

BU

NLANR
BU

NLANR

(a) global popularity of objects in
BU and NLANR traces

(b) CDF of global
popularity

 73

Figure 4-5: Local popularity of the most global popular object and normalized request
generation rate in BU and NLANR trace files

Figure 4-6: Comparing object provisioning cost in benefit based strategy and Split Cache
for BU and NLANR traces

Figure 4-5(b) depicts the normalized (by network-wide request rate) request

generation rates from different nodes. As shown, few nodes are more active and generate

more requests per unit time compared to the others. Individual node-specific request rates

0 10 20 30
0

0.1

0.2

0.3

0.4

Node ID

L
o
c
a
l
p

o
p
u

la
ri

ty
 o

f
o
b
je

c
t

1

0 10 20 30
0

0.05

0.1

0.15

0.2

Node ID

R
e

q
u

e
s
t

R
a
te

BU

NLANR BU

NLANR

(c) Local popularity of
object 1 in different nodes

(d) Normalized request
generation rate

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

C
r
/C

d
 (β)

O
b
je

c
t

P
ro

v
is

io
n
in

g
 C

o
s
t

0 0.2 0.4 0.6 0.8 1
4

5

6

7

C
r
/C

d
 (β)

O
b
je

c
t

P
ro

v
is

io
n
in

g
 C

o
s
t

Best Split

Benefit

LP

LRU

(a) Object provisioning
cost for BU trace

(b) Object provisioning
cost for NLANR trace

 74

can have a significant impact on the average object provisioning cost, and therefore it is

crucial to consider this parameter in object placement algorithm as presented in

Algorithm 2 for the Distributed Benefit strategy and its associated text. It can be seen that

the diversity of request generation rate for NLANR trace is higher than that of the BU

trace.

Figure 4-6(a,b) depict the object provisioning cost for Distributed Benefit, Split

Cache, linear programming (cost lower bound), and traditional LRU with the BU and

NLANR traces. Due to the heterogeneous nature of those traces, Eqn.3-10 cannot be used

for finding the optimal D in Split Cache. Instead, the optimal D for Split Cache is

experimentally found by running the protocol for all possible values of D, and then

selecting the one that generates the minimum cost. This minimum cost is shown as the

Best Split. Note that LRU is the only representative traditional cache replacement policy

for which the results are included in Figure 4-6. This is because it outperformed the other

traditional policies, namely, LFU and RNDM.

The following observation can be made from Figure 4-6 (a,b). First, due to optimal

object placement, the linear programming has lowest cost compared to those in the other

approaches. The cost difference stems mainly from offloading objects from the active

nodes (i.e. with very high request generation rate) to other less active nodes as explained

in Section 4.3.

Second, the cost in Distributed Benefit is always less that with Best Split (i.e. Split

Cache run with the experimentally found optimal D) and LRU replacement policy. The

reason is that Distributed Benefit attempts, although heuristically, to attain the same

object placement goals as by the cost lower bound obtained by linear programming. It is

 75

however noted that there exists room for improving the Benefit Based heuristics in order

to reduce its cost to the lower-bound obtained by the linear programming.

Third, the cost increases with increasing β because by increasing β, the benefit of

cooperative caching is reduced. In an extreme case, when β=1, nodes can rely solely on

their local cache for reducing the cost. In that case, the performance of Best Split,

Distributed Benefit and linear programming become similar.

Fourth, we can also see that for the experiment with the BU trace, Best Split and

Distributed Benefit offer almost the same provisioning cost whereas with the NLANR

trace, the difference between the two mechanisms is relatively higher. The reason is that

the diversity of request generation rate in the BU trace is less than that in the NLANR

trace (see Figure 4-5). Furthermore, the variation of local popularity of objects in

NLANR is much higher than that in BU. This is demonstrated in Figure 4-5. To

summarize, the lack of diversity in local popularity and request generation rates in the

BU trace make this request model perform very similar to the homogeneous case. As a

result, the Split Cache mechanism is able to provide the same provisioning cost as

Distributed Benefit whereas in NLANR due to the higher heterogeneity of request

generation rates and local popularities, the Distributed Benefit heuristics provides better

results compared to the Split Cache with best performing	D.

Finally, as Figure 4-6 reports, the object provisioning cost for the BU trace is lower

than that for the NLANR trace. This can be explained from the graph in Figure 4-4

which shows the cumulative probability density function of popular objects for the BU

and the NLANR traces. It can be observed that in the BU trace, storing the same number

of objects results in higher hit rates compared to NLANR. In other words, the Zipf

 76

distribution parameter α in BU is higher than that for NLANR, which results in lower

provisioning cost for BU. Experiments with the NASA and SASK traces showed

performance differences very similar to those between the BU and NLANR traces.

We have done similar analysis of the object provisioning costs with both

Distributed Benefit and Split Cache strategies for the NASA and SASK traces

respectively. The performance differences between these two traces were very similar to

those between the BU and NLANR traces for the same set of reasons provided with

respect to Figure 4-6 (a,b).

It can be observed that the graph in Figure 4-7(a) closely follows a straight line on

a log-log scale, indicating the Zipf distribution for object requests.

Figure 4-7: PDF and CDF of global popularity for objects in NASA and SASK

Figure 4-7(b) depicts the cumulative probability density function of global popularity

for both NASA and SASK traces. Observe that when the requests are generated from the

SASK trace, by storing the first 25 popular objects, each node is able to find 50% of its

requested objects in theist local cache. This confirms that the object popularity in the

1 10 25
10

-6

10
-4

10
-2

10
0

Network Object Ranking

G
lo

b
a

l
P

o
p

u
la

ri
ty

 (
P

D
F

)

10
0

10
2

10
4

.01

.03

0.1

0.2

0.5

1

Network Object Ranking

G
lo

b
a

l
P

o
p

u
la

ri
ty

 (
C

D
F

)

NASA

SASK

NASA

SASK

(a) global popularity of objects
in NASA and SASK traces

(b) CDF of global
popularity

 77

SASK trace is indeed more skewed compared to the NASA trace.

For the NASA and SASK traces, Figure 4-8(a) depicts the local popularity of the

most globally popular objects from the standpoint of different individual nodes in the

network. Figure 4-8 (b) depicts the normalized (by network-wide request rate) request

generation rates from different nodes. As shown, few nodes are more active and generate

more requests per unit time compared to the others. It can be seen that the diversity of

request generation rate for SASK trace is higher than that of the NASA trace.

Figure 4-8: Local popularity of the most global popular object and normalized request
generation rate in NASA and SASK trace files

0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

Node ID

L
o
c
a

l
p

o
p

u
la

ri
ty

 o
f

o
b

je
c
t

1

0 10 20 30
0

0.05

0.1

0.15

0.2

Node ID

R
e

q
u

e
s
t

R
a

te

NASA

SASK
NASA

SASK

(c) Local popularity of object 1
in different nodes

(d) Normalized request
generation rate

 78

Figure 4-9: Comparing object provisioning cost in benefit based strategy and Split Cache
for NASA and SASK traces.

Figure 4-9(a,b) depict the object provisioning cost in both Distributed Benefit and

Split Cache strategies for NASA and SASK traces respectively. For the experiment with

the NASA trace, Best Split and Distributed Benefit offer almost the same provisioning

cost whereas with the SASK trace, the difference between the two mechanisms is

relatively higher. The reason is that the diversity of request generation rate in the NASA

trace is less than that in the SASK trace (see Figure 4-8(b)). Furthermore, the variation of

local popularity of objects in SASK is much higher than that in NASA. This is

demonstrated in Figure 4-8(a). To summarize the third observation, the lack of diversity

in local popularity and request generation rates in the NASA trace make this request

model perform very similar to the homogeneous case. As a result, the Split Cache

mechanism is able to provide near-best provisioning cost whereas in SASK due to the

higher heterogeneity of request generation rates and local popularities the Distributed

0 0.5 1
0

2

4

6

C
r
/C

d
 (β)

O
b
je

c
t

P
ro

v
is

io
n
in

g
 C

o
s
t

0 0.5 1
1.5

2

2.5

3

3.5

C
r
/C

d
 (β)

O
b
je

c
t

P
ro

v
is

io
n

in
g

 C
o
s
t

Best Split

Benefit
Best Split

Benefit

(a) Object provisioning
cost for NASA trace

(b) Object provisioning
cost for SASK trace

 79

Benefit heuristics provides better results compared to the Split Cache with best

performing λ.

4.8 Summary and Conclusion

In this chapter we proposed a benefit based strategy to minimize the provisioning

cost in networks with heterogeneous content demand, in which each node maintains

different content request rates and request patterns. It was experimentally shown that the

benefit based strategy and the cache split based strategy can deliver very similar content

provisioning costs under homogenous content request model, and the benefit based

strategy outperforms the split strategy when the content request rates and patterns are

heterogeneous across the network nodes.

 80

Chapter 5 : COMMUNITY BASED COOPERATIVE

CACHING

5.1 Motivation

A key question for cooperative content caching is how to store contents in devices

of mobile user such that the network wide provisioning cost is minimized. In this chapter

we show that the optimal caching policy can depend heavily on user interaction patterns

and their resulting social community formation. Analysis of real-life human mobility

traces [60], [146–148] reveal a strong hierarchical structure in inter-node contact patterns.

It is consistently found that certain nodes in a network can belong to strongly connected

social communities where they frequently meet each other, while certain other nodes can

be isolated and rarely meet other. It is desirable that a node should adjust its cache status

based on those in nodes in its same social community. Also, it should not alter its cache

based on those outside the community. In this chapter we propose a community based

cooperative caching abstraction that exploits community formation hierarchy for

reducing network wide content provisioning cost.

5.2 Content Search Model

After an object request is originated, a mobile device first searches its local cache. If

the search fails, it searches the object within its local MSWNET. Depending on the user

tolerable delay (UTD), a device can opt for searching the content in nodes not only within

its current physical partition, but also in nodes within its future partitions. This may lead

to a larger Temporal Partition Size (TPS), thus improving its odds of finding the content.

The UTD, which can be content type specific, acts as the time horizon for determining

 81

the TPS.

If the search in MSWNET fails, the object is downloaded from the CP’s server using

CSP’s cellular network. In this paper, we have modeled objects such as electronic books,

music, etc, which are time non-varying, and therefore cache consistency is not a concern.

Each node is assumed to be able to store up to ‘C’ different objects, and all objects are

popularity tagged by the CP’s server [137]. This tag shows the global popularity of an

object which is the probability that an arbitrary request in the network is for that object.

5.3 Networks with Community-less Mobility

In this section we relax the assumption in Chapter 3 that all nodes are able to meet

each other within their respective temporal partitions. In other words, we consider UTD

values that correspond to TPS (temporal partition size) which are smaller than the total

number of nodes in the network. Nodes are assumed to follow random walk without any

structured contact patterns, thus emulating a community-less mobility model. Contact

homogeneity is maintained by ensuring that the probability of contacts between any node

pair in the network is the same. Random walk, although not the best model to represent

human mobility, is evaluated in this section in order to study the performance of the

proposed caching strategy in a community less network.

The local hit rate PL for a node with random walk mobility depends only on the set

of objects stored locally. Following the same logic for developing Eqn. 3-8, the local hit

rate in this case can be expressed as �� = jk + jn ℳ⁄ , where ℳ	is the total number of

nodes in the entire MSWNET. In other words, ℳ	refers to the size of the set of devices

that see each other and can cooperate for cost reduction. For example, ℳ	for a student’s

 82

device would indicate the size of the set of devices belonging to his/her friends in the

University, coworkers in the work place, and social peers in dorm and other frequently

visited places. The quantities HU and HD used in Eqn. 3-3 need to be recomputed in this

case using 	ℳ as opposed to
, which was the static partition size.

The remote hit rate with user mobility depends on the Temporal Partition Size

(TPS) which indicates the number of distinctly different nodes visited by a node within a

time horizon. For a given user mobility pattern and a pre-defined time horizon, let

Γ	�1 ≤ Γ ≤ ℳ� be the TPS observed by a node at an arbitrarily chosen point in time. If

¦�Γ�	is the probability that a node’s TPS at an arbitrarily chosen time is Γ, and

��§represents the remote hit rate within a static partition size	Γ, then PV in the presence of

mobility can be written as:

�� = ����|Γ� = . ¦�Γ���§ℳ
§&� = . jn �Γ − 1�¦�Γ� ℳ⁄ℳ

§&�

The above equation can be further simplified as:

 �� = ���Γ� − 1�jn ℳ⁄ .PV = E�Γ�-1m PV = E�Γ�-1m (5-1)

Substituting the above expressions of PL and PV for the mobility case in Eqn. 5-3,

the average provisioning cost in the presence of mobility can be calculated as:

 ���� = /1 − /��Lt�­�§�utℳ 0jn − jk0 ��. (5-2)

After expanding HU and HD, Eqn. 5-4 can be written as a function of λ. By

equating the cost derivative to zero, we can compute λopt at which the cost is minimized.

 83

5.4 Networks with Community based Mobility

Unlike in random walk, real-life human mobility is often abstracted by underlying

social community structures, which can and should be leveraged for cooperative caching.

Node contact probabilities in community based mobility can have various forms of

locality which should be considered while designing caching policies. In this section we

develop a hierarchical split-cache strategy for leveraging such locality structures in inter-

contact times.

5.4.1 Hierarchical Split Caching

From each node’s standpoint, any other node in a mobile network can be in-

community or out-of-community (i.e. stranger). Nodes in the same community meet

more frequently an often for longer duration. Frequencies of contacts between strangers

are usually low and last shorter. These properties are experimentally found in a number

of real-life human mobility traces [62], [63] and models [60], [149] used by various

researchers in the community.

These observations lead to the following approach in which the level of cache

collaboration between two nodes depends on whether they are in-community or out-of-

community. The split-cache mechanism is extended to a hierarchical version

(Hierarchical Split Cache or HSC) in which the cache space in each node is divided into

three separate areas. Certain number of very objects is cached in the first area in order to

secure their access locally. Objects stored in this area can be duplicated at nodes across

and outside communities. The second area is reserved for cooperation among in-

community nodes. The objects stored in this second cache area of a node cannot be

duplicated across its in-community member nodes, but duplication of such objects can be

 84

allowed in its stranger nodes. In other words, these are unique within a community.

Finally, the third area in the cache is used for implementing global cooperation among all

nodes by maintaining global uniqueness. This third area of cache helps nodes in a small

community to take advantage of cooperation with stranger nodes. This is especially

useful in situations in which one meets many strangers in public places such as train

stations and airports. One’s device in such situations can retrieve content from the third

cache area of those strangers’ devices. Figure 5-1 illustrates the hierarchical splitting of

the cache space. The best split factors between the three areas need to be determined

based on the social community properties of the network.

Figure 5-1: Hierarchical partitioning for supporting communities

Cost Computation: The average local hit rate for nodes in the i
th

 community can

be computed as:

q� = A�D��� + A��:��� + D���� − A�D���:� + ��1 − D� − ����® × j®

where :� is community size, �®is the total number of unique objects stored in the

third cache area of all network nodes, and j® is the corresponding hit rates of these �®

objects. �® can be computed using the following equation:

�® = .:��1 − D� − ����∀�

Hit rate of unique objects can be written as:

j® = A�O°±² +�®� − A�O°±²�

Unique in

Network

Unique in

community
Duplicate

Cache Space (C)

µiCλiC (1-λi-µi)C

 85

where the parameter RS³´ is the least popular among all objects that have been

stored in the second cache area. It can be computed as:

O°±² = max� P��� − D��:� + D�Q�

Let · be the contact probability between in-community nodes with a specified user

tolerable delay (UTD). Then the percentage of requests that can be found in remote

caches within the i
th

 community can be computed as:

 ¸�� = �:� − 1� × · × �/¹P�S���uº��+QL¹�º�+�0S� + +��Lº�L���*» × j®� (5-3)

The first term refers to hit rate of objects stored in the second cache area of nodes

in the i
th

 community, and the second term indicates hit rate of objects stored in the third

cache area.

 A node in i
th

 community may also meet strangers from other communities. The

average remote hit rate of objects found in the stranger nodes can be computed as:

 ¸�� ≈ §��j® (5-4)

where Γ¼ represents the average number of stranger nodes that an i
th

 community

node is expected to see during a specified user tolerable delay. The average object

provisioning cost for an i
th

 community node can be calculated as:

����� = �1 − �1 − ��¸� − q����

where ¸� = ¸�� + ¸�� is the total remote hit rate for nodes in community-i. The

overall cost can be computed as:

 ���� = ∑ S�+{�}�∀�	 � (5-5)

 86

where M is the total number of nodes in the entire network. To minimize the

overall cost, we need to differentiate the above function with respect to all unknown

parameters (i.e. D�W)H	��) and equate it to zero.

Observe that when the communities are completely independent (i.e. when nodes

never meet strangers from other communities), the overall cost can be minimized by

simply minimizing the cost in each community. In this case, the problem reduces to the

stationary partition case, as in Chapter 3, with a single cache split parameter for each

community.

5.4.2 Centrality Based Community Detection Algorithms

In order to deploy hierarchical split caching as described in Section 5.4.1, a

community detection algorithm is needed using which nodes can identify other members

of its community. As a first step, the contact pattern of mobile users is mapped as a

weighted graph in which the vertices represent mobile nodes and edges represent

connections between nodes. The weight of an edge indicates the strength of connection

between two nodes. For example, if two nodes always move together (i.e. they are always

connected), the weight of the edge between them will be 1. In the other extreme, two

nodes that never meet should have an edge with weight zero.

As defined in the content search model in Section 5.2, a node may opt to wait up to

a preset user tolerable delay for searching content in nodes not only within its current

physical partition, but also in nodes within its future partitions. The weight of an edge

between any pair of nodes must be computed based on the preset UTD value. Such

weight is defined as the probability that those nodes meet within UTD duration. In this

section, we review three commonly used community detection algorithms from the

 87

literature that we have used for evaluating our proposed hierarchical cache split

mechanism.

Girvan-Newman [150], [151] is one of the oldest hierarchically divisible

community detection algorithm that works based on finding and removing network edges

with high betweenness. Edge betweenness is defined as the number of shortest paths

between pairs of vertices that pass through it. When there is more than one shortest path

between a pair of vertices, each such path is given equal weight such that the total

cumulative weight of all the paths is one. The Girvan-Newman algorithm works well

when the communities are loosely connected by few inter-group edges. In this case, all

shortest paths between the communities must pass through one of those few inter-group

edges. Thus, the edges connecting the communities will have high edge betweenness, and

by removing them the groups (i.e. communities) can get separated.

The procedure of finding and removing edges stops when the cumulative

modularity of all communities in the resulting network is maximized. Modularity of a

community is defined as the actual number of edges within the community minus the

expected number of edges in an equivalent network (with the same community divisions)

when edges placed at random. The modularity can be used as a metric that shows strength

of community structure in a network. For a random graph this quantity is close to zero

which indicates no community structure. In practice, modularity of social based networks

falls in the range from 0.3 to 0.7.

The original algorithm of Girvan-Newman has a complexity of ½��¾�. The authors

in [152] proposed a greedy modularity optimization which is a fast implementation of

Girvan-Newman algorithm. Using more efficient data structure they reduce the

 88

complexity of the algorithm to ½��@��5��. In this paper we term this algorithm as

fastcommunity in the experimental results in Section 5.5.

 Blondel et al. [153] propose a two-phase heuristic algorithm which is based on a

local optimization of Girman-Newman modularity. As a first step, each network node is

assigned to a different community and then the algorithm attempts to increase the

cumulative network modularity by combining nodes and their neighbors. A node is

grouped with other nodes that result in a network with increased modularity. The process

of grouping stops when a local maximum of the network modularity is attained, i.e. when

no individual grouping move can improve the modularity any further. In the

experimental results in Section 5.5, this fast community detection algorithm is labeled as

fastfold.

 There are many hierarchical clustering algorithms that group similar nodes

within communities. The similarity between two nodes can be defined based on criteria

such as Euclidean distance, Pearson correlation [154] and cosine similarity. In this

chapter, we use Pearson correlation to find node similarities which are computed as:

w� = 1)∑ �¿�> − ����¿ > − � �> À�À

 where �� = �T∑ ¿� , À�5 = �T∑ P¿� − ��Q5 .

With Pearson correlation measure, nodes with more of common neighbors have

higher similarity. A stopping criterion is used in which no clique bigger than 3 nodes

remains in the entire network. In the results Section 5.5, we label the results of such

community detection mechanism as clique.

 89

5.5 Evaluation of Community-less Mobility

5.5.1 Temporal Partition Characterization

This section reports the characterization of partition dynamics in an MSWNET with

simulated homogeneous human mobility within a campus-like setting. 40 mobile nodes

with 100m transmission range were simulated in ns2 using random waypoint mobility

model with an average speed of 1-2 m/s and pause time (between movements) of 100 sec.

Figure 5-2 depicts the TPS distribution when the 40 nodes are allowed to move

within an area of 1500m x 1500m. The node-to-node connectivity is detected using

beacon messages sent from each node with a period of 500 msec. The four graphs in

Figure 5-2 reports TPS distribution with the User Tolerable Delay (UTD) set to 1s, 120s,

210s, and 600s respectively. The UTD represents the delay that an end consumer is

willing to tolerate before a requested content is provisioned into his or her device. In

other words, UTD determines the time horizon as explained in Section 5.2. As expected,

with a larger UTD, a node is able to see larger number of distinct nodes within the time

horizon (i.e. UTD), causing a larger TPS. This explains the right-shift in the distribution

with increasing UTD. For the largest case (i.e. 600s) a node is able to see almost all other

nodes, resulting in the large peaks near 40. With very small UTD (e.g. 1s), a node

remains either isolated most of the time, or sees partitions of very small sizes, resulting in

the large peaks near 1.

 90

Figure 5-2: Temporal Partition Size (TPS) distribution

Figure 5-3 summarizes the impacts of UTD and also spatial node density on the

average TPS, the trends in which are consistent with the distribution peak shifts observed

in Figure 5-2.

As shown in the above results, the effects of user mobility in a mobile MSWNET

can be captured in terms of the temporal partition size distribution as observed by a

participating node. In the equations in Section 5.3, it was shown as to how those

distributions can be used for analyzing the effects of mobility on cooperative caching

performance. Since both user tolerable delay and MSWNET expanse (i.e. area) affect the

user mobility in a very similar way, for all the following analysis we will use only UTD

as the representative parameter for mobility.

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

Temporal Partition Size (TPS)

P
ro

b
(%

)

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

Temporal Partition Size (TPS)

P
ro

b
(%

)

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

Temporal Partition Size (TPS)

P
ro

b
(%

)

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

Temporal Partition Size (TPS)

P
ro

b
(%

)

(a) Distribution of temporal
parttion size, when UTD=1s

(b) Distribution of temporal
parttion size, when UTD=120s

(c) Distribution of temporal
parttion size, when UTD=210s

(d) Distribution of temporal
parttion size, when UTD=600s

 91

Figure 5-3: Average TPS with different UTDs and node densities

5.6 Hit Rates and Costs under Community-less Mobility

Figure 5-4(a) shows the network wide average hit and miss rates for the mobility

scenario corresponding to the TPS distribution in Figure 5-2(a) (i.e. UTD of 1s in a

1200m x 1200m network). Since the average TPS in this case is very small (i.e. around 2)

a node can rely on only another node for cooperation. This explains the extremely low

remote hit rate (PV) in Figure 5-4(a). As for local hit rate (PL), it depends primarily on

the set of locally stored objects, which is an increasing function of the split-factor λ. As

shown in Figure 5-4(a), with large λ since more objects are duplicated, the local hits are

more likely. Since the remote hit rates in this case are negligible, the miss rates (PM) are

effectively the complement of the local hit rates. That explains the decreasing trend of

PM with increasing λ.

0 200 400 600
0

10

20

30

40

User Tolerable Delay (s)

A
v
e
ra

g
e
 T

P
S

500 1000 1500
0

10

20

30

40

Area (m x m)

A
v
e
ra

g
e
 T

P
S

Area=500x500

Area=1000x1000

Area=1500x1500

UTD=1s

UTD=60s

UTD=120s

(a) (b)

 92

Figure 5-4: Hit rates and cost: (a,b) UTD 1s; (c,d) UTD 120s

Figure 5-4(b) demonstrates the network wide average object provisioning cost for

the same mobility scenario for three different values of the rebate-to-download-cost ratio

β. In this case, with negligible PV the cost expression from Eqn. 4 reduces to ���� =
�1 − �����.This shows that the cost can be minimized by maximizing the local hit rate

PL, which can be achieved by setting the split factor λ to 1. Intuitively, in very small

partitions (e.g. 2 in this mobility scenario), a node should rely mainly on its own cache by

storing the maximum number of duplicated popular objects. This corresponds to the

value of λ to be 1.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Split factor(λ)

H
it
 r

a
te

 %

0 0.5 1
7

8

9

10

Split factor(λ)

O
b
je

c
t
P

ro
v
is

io
n
in

g
 C

o
s
t

0 0.5 1
0

0.2

0.4

0.6

Split factor(λ)

H
it
 r

a
te

 %

0 0.5 1
4

6

8

10

12

Split factor(λ)

O
b
je

c
t
P

ro
v
is

io
n
in

g
 C

o
s
t

P
L
(SIM & EQ)

P
V
(SIM & EQ)

P
M

 (SIM & EQ)

β=0.0 (SIM & EQ)

β=0.5 (SIM & EQ)

β=1.0 (SIM & EQ)

P
L
(SIM & EQ)

P
V
(SIM & EQ)

P
M

 (SIM & EQ)

β=0.0 (SIM & EQ)

β=0.5 (SIM & EQ)

β=1.0 (SIM & EQ)

(a) UTD=1s (b) UTD=1s

(c) UTD=120s (d) UTD=120s

 93

Figure 5-4(c) shows the hit and miss rates for a different mobility scenario

corresponding to the TPS distribution in Figure 5-4(b) (with UTD set to 120s in the same

1200m x 1200m network). As indicated by the distribution, since the users are willing to

tolerate a large delay of 2 minutes, a node’s average temporal partition size in this case is

larger (i.e. an average of 15) than the one used for the results in Figure 5-4(a,b). Having

access to more nodes in their temporal partitions, the nodes in this scenario enjoy higher

remote hit rates compared to the previous mobility scenario. With larger split factor λ,

since a larger portion of each node’s cache is used for duplicated objects, the unique

object count in a temporal partition reduces. This causes the observed reduction in remote

hit rate with increasing λ in Figure 5-4(c). From the PL values in Figure 5-4(a,c), it can be

confirmed that the local hit rate has very little sensitivity on mobility and its resulting

temporal partitions. Generally, the miss rate PM decreases with increasing PL, and

increases with decreasing with increasing PV. This explains as to why with increasing λ,

PM initially reduces when PL is high, and then increases later when PV is low.

The graph in Figure 5-4(d) indicates that the cost for very small β (i.e. 0) follow a trend

(i.e. lowest for an optimal λ of 0.4) which is similar to that in static networks as observed

in Figure 3-4. In a static network, for � = 0, the cost is minimized by avoiding object

duplications by setting λ to 0. However, with mobility, since a node can rely only on a

subset (i.e. the TPS) of all the network nodes, setting λ to 0 is not the best solution.

Certain amount of duplication and the resulting local hits are needed for minimizing the

cost. The role of local hit rate becomes more important as β increases, because the benefit

 94

of finding an object in the remote caches within the TPS becomes less. This explains why

optimal λ shifts to the right with increasing β. In the extreme case, when � = 1,

cooperative caching is no longer useful. The nodes in that case need to rely only on the

local hits. Note that the close agreements between the analytical and simulation results in

Figure 5-4 validate the Eqns. in Section 5.3.

Figure 5-5: Optimal λ and minimum cost for different UTDs

Figure 5-5(a) reports the optimal split factor for various β and user tolerable delays

representing varying temporal partition distributions. With lower UTDs, the nodes are

more likely to be isolated, and they need to rely primarily on their locally duplicated

cached objects. This explains why optimal λ is close to 1 (i.e. allowing maximum

duplications) when the user tolerable delay is set to 1s.

For a given β, with larger UTDs, the nodes are increasingly able to rely more on

remote hits within larger temporal partitions, leading to larger optimal λ values. For a

given UTD, as the quantity β increases (i.e. the cost of cooperation increases), the Split

Cache policy attempts to increase local duplications in each node. This results in larger

optimal λ values. This trend can be observed for all UTDs in Figure 5-5(a).

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Download to Cost Ration(β)

O
p

tim
a

l λ

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Download to Cost Ration(β)M
in

im
u

m
 P

ro
v
is

io
n

in
g

 C
o

s
t

UTD=1s

UTD=120s

UTD=210s

UTD=600s

(a) (b)

 95

The graph in Figure 5-5(b) depicts that the minimum provisioning cost can be

lowered by reducing the quantity β and/or by increasing the user tolerable delay (i.e.

larger temporal partition size). As shown in the Figure 5-5(b), the absolute minimum cost

can be achieved by eliminating the rebate and setting a large UTD of 10min.

5.7 Evaluation with Community Based Mobility

5.7.1 Simulation Setup and Mobility Traces

The performance of proposed caching has been evaluated with two human mobility

traces (i.e. Infocom ’06 trace [147] and UCSD trace[62]) and a synthetic human mobility

generator HCMM [60]. HCMM is an extension of community based mobility model

(CMM) which works based on the Caveman-model proposed in [148].

In the UCSD [62] project 275 freshman were equipped with WiFi enabled PDA

devices that periodically scanned and logged the visible access points for a period of 77

days. The contacts between nodes, determined by access point sharing, were extracted

from the log file. The average inter-contact time in this trace was about 19 hours.

Figure 5-6(a) reports the number of associated users per hour across all access points in

the campus during the first 14 days of the experiment.

Figure 5-6: Number of associated users per hour in the UCSD trace; (b) Number of

contacts per hour in Infocom ’06 trace

0

200

400

0 200 400
Time (hour)

(a) Number of users per hour

0

500

1000

1500

2000

0 100000 200000 300000
Time (second)

(b) Number of contact per hour

 96

The Infocom ‘06 trace includes records of Bluetooth sightings by a group of 78

users attending Infocom 2006. Each of the 78 users was carrying a small iMote device

during the conference. 5-6(b) reports the number of contacts between nodes per hour

during 4 days of experiment. Bluethooth discovery is done with a frequency of once

every 4 minutes.

For all trace files, a proximity matrix is generated based on the number of recorded

contacts between users. To compute proximity matrix, the trace is first divided to a series

of UTD long intervals. The proximity between node i and j is then computed based the

number of intervals that these nodes had a contact. For example, if the total number of

intervals in a trace is I and nodes i and j have meeting in K of the I intervals, then the

proximity between i and j is equal to K/I. The proximity matrix indicates the strength of

connections among all participating nodes. The set of pairs that have proximity higher

than a specific threshold are fed into the community detection algorithms described in

Section 5.4. The results reported in this section are based on fastcommunity detection

algorithm.

Figure 5-7: Object provisioning cost for HCMM trace

 97

5.7.2 Mobile Social Wireless Networks

HCMM trace: Figure 5-7 reports the measured object provisioning cost for a

mobile network of 50 nodes generated using HCMM model [60]. With increasing user

tolerable delay, each node is able to meet more nodes and therefore, the object

provisioning cost reduces. This is especially pronounced when the rebate to download

cost ratio (i.e. β) is small. In extreme case, when β=0 (i.e. downloading objects from

other nodes involves no cost), the provisioning cost can be as low as 6 per object when

UTD is 1200 seconds. It goes up to 7.8 when the UTD reduces to 10 seconds. The

reasons for lower cost with higher UTDs are as follows.

First, with increasing UTD the percentage of isolated nodes reduces due to

increasing community size. Isolated nodes are nodes that do not belong to any

community, thus unable to leverage cooperative caching, leading to higher provisioning

costs. Thus by reducing the number of isolated nodes it is possible to reduce the average

network-wide cost. The second reason for cost reduction with higher UTD is due to

higher community cohesions. Cohesion factor is defined as the ratio of number of edges

between nodes in a community to the number of edges in a fully connected community

with the same size. This metric is defined to measure the strength of connections in a

community. By increasing UTD, the connection between nodes within a community can

become stronger. This let nodes to have more cooperation, which in turn can reduce the

provisioning cost.

Infocom 06 trace: For the infocom ‘06 trace there were very few contacts between

nodes during the night time part of it. Due to this reason, we have first removed the night

time part from the trace in order to avoid any skew in the results. The proximity matrix is

 98

then computed based on the reduced trace. From the proximity matrix, all pairs with

proximity higher than a threshold are extracted and fed into the fastcommunity detection

algorithm.

Figure 5-8: Object provisioning cost for the (a) Infocom 06 trace and (b) UCSD trace

Figure 5-8(a) reports the provisioning cost for a mobile network derived from the

reduced Infocom 06 trace. The following observation can be made from this graph. First,

with increasing β the provisioning cost also increases. This is expected as higher β

implies higher rebate which, in turn, reduces the benefit of cooperative caching. The

 99

second observation is that when users opt to wait longer (higher user tolerable delay),

they have a higher chance to meet more number of nodes and therefore the overall

probability of finding the requested object within the network increases. This in turn

results in lower provisioning cost. The impacts of higher UTDs are more pronounced for

small βs.

UCSD trace: Average provisioning cost from the UCSD trace is reported in

Figure 5-8(b). Similar to the Infocom 06 scenario, as expected, the provisioning cost

shows a decreasing trend when the UTD goes up, and the cost reduces with decreasing β.

However, for the UCSD trace cost reduction starts at a higher UTD (i.e. 8 hours)

compared to that for the Infocom trace (i.e. 10 minutes). The main reason for this is

higher inter-contact times for the UCSD case in comparison to the Infocom case. An

interesting observation in Figure 5-8(b) is that the minimum provisioning cost for the

UCSD trace with 273 users is 6.3 (when β is 0 and UTD is 160 hours). This number for

the Infocom trace with 98 users is about 5.5 (when β is 0 and UTD is 20000 seconds).

This result shows that many of the users in the UCSD trace never meet each other (even

when we increase the UTD to 160 hours). To confirm this we measured the percentage of

isolated nodes for Infocom and UCSD trace and observed that at least 20 percent of

nodes in UCSD trace are isolated. This number of Infocom trace was close to zero.

The second reason for higher provisioning cost in UCSD in spite of having more number

of nodes in that network is that the connections between users in one single community is

not as strong as connections in the Infocom 06 trace. To measure the strength of

connections in a community we measure the community cohesion factor. The cohesion

factor for the Infocom trace when UTD is at least 10000 seconds is always greater than

 100

0.5, for UCSD however this number never goes beyond 0.35 even when we increase

UTD to 168 hours.

5.7.3 Comparison with non-hierarchical Split Caching

So far, all results in Section 5.7 correspond to hierarchical split-caching as

proposed in Section 5.4. In this section we compare those results with non-hierarchical

split caching (i.e. single level split caching as presented in 3.8 Chapter 3). This single

level split does not leverage information about community abstraction. Results are

compared for HCMM mobility model and both Infocom 06 and UCSD mobility traces.

The minimum provisioning cost for single level split is numerically found by measuring

the performance of Split caching over all possible values of the split factor λ. The

percentage improvement of community based caching (i.e. with hierarchical split cache)

with respect to the best result obtained by single level caching is reported in the following

graphs.

Figure 5-9(a) reports the percentage improvement of hierarchical split caching on

single level split caching for the HCMM model. Initially when UTD is small, community

based hierarchical split-caching caching shows no improvement over the single level split

caching. With small UTDs, the number of contacts between nodes is also very low which

eliminates any chance of cooperation with in-community peers. In this case, the object

provisioning cost can be reduced only by local caching and therefore performance of

hierarchical based caching and single level split caching are the same. By increasing

UTD however nodes have higher change to meet other in-community nodes. Intuitively

the number of contacts among nodes in the same community is much higher than the

number of contacts between nodes in different communities. Considering this fact in its

 101

design, community based hierarchical caching is able to take advantage of cooperation

between nodes in the same community. The single level split caching, however, lacks this

feature, which leads to higher provisioning costs.

The percentage improvement generally reduces as we increase the rebate to

download cost ratio (i.e. β) because by increasing β the cooperation loses its role in cost

reduction. In the extreme case, when β=1, the effects of cooperation on provisioning cost

completely disappears.

 A very similar trend in Figure 5-9(b) can be observed for the Infocom 06 trace.

Unlike for the HCMM case, however, the percentage improvement of hierarchical based

caching in the Infocom 06 trace starts falling at relatively higher values of UTD. The

reason is that by increasing UTD, the communities merge together. In the extreme case,

when UTD is large enough, all nodes in the network will be in the same community. In

this case, the performance of split caching and community based caching would be the

same. For the Infocom ‘06 trace, only two communities are detected for large UTDs. By

increasing UTD even more, one community starts growing and the other one shrinks.

Note that performance improvement of hierarchical based caching is maximized when

the sizes of all communities are the same. Performance improvement for the UCSD trace

is shown in Figure 5-9(c). Similar to the two other traces, the community based caching

shows higher improvement for lower βs and higher UTDs.

 102

Figure 5-9: Performance improvement by using community based hierachical split
cashing with respect to single level split for (a) HCMM model (b) Infocom ’06 trace, and

(c) UCSD trace

 103

5.7.4 Performance of Community Detection Algorithms

In this section we compare the impacts of different community detection algorithms

(see Section 5.4) on object provisioning cost. The UCSD trace with UTD of 48 hours has

been used for these comparisons presented in Figure 5-10.

 The object provisioning costs for fastcommunity and fastfold community

detection algorithms are very similar and both of them provides better cost compared to

the single level split caching. Both of these algorithms are heuristic in nature, and they

work based on maximizing the network modularity as described in Section 5.4. The

community detection algorithm clique provides lower cost solutions when compared to

the other two. The clique algorithm is also more computationally expensive compared to

the other two, which are heuristics based.

With clique all nodes in a community will have a strong connection and therefore

the cohesion factor in community found by clique is very high which results in lower

provisioning cost for clique as it is shown in Figure 5-10.

Figure 5-10: Cost of hierarchical and non- hierarchical split caching with different
community detection algorithms

6.8

7

7.2

7.4

7.6

7.8

8

8.2

0 20 40 60 80 100

C
o

st

β

FastFold

FastCommunity

Single Level Split

clique

 104

5.8 Summary and Conclusions

Drawing motivation from Amazon's Kindle electronic book delivery model, this

chapter develops a set of practical network, service, and pricing models which are used

for creating a cost- optimal cooperative caching strategy in Mobile Social Wireless

Networks. It was shown that the proposed strategy can minimize content provisioning

cost under static and a range of various user mobility scenarios with and without social

community abstractions. In addition to proving its optimality, we construct analytical

models and simulation results for evaluating the performance of the proposed strategy

with prevalent mobility models and real human mobility traces from the literature.

 105

Chapter 6 : IMPACTS OF USER-SELFISHNESS

6.1 Selfish Behavior

In 3.3 we introduced a pricing model in which the network usage cost and rebates

are paid by the content provider. The scope for earning peer-to-peer rebate may promote

selfish behavior in some users. A selfish user is a user that deviates from the network

wide optimal caching policy to earn more rebates. Any deviation from the optimal policy

is expected to incur higher network wide provisioning cost. In this chapter we analyze the

impacts of such selfish user behavior on the object provisioning cost and on the earned

rebate in a social wireless network (SWNET). It can be shown that beyond a selfish node

population, the amount of per-node rebate for the selfish nodes is lower than that for the

non-selfish nodes. In other words, when the selfish node population is beyond a critical

point, the selfish behavior ceases to produce more benefit from a rebate standpoint.

There is a second pricing model in which the network usage cost and rebates are

paid directly by end consumers. In this case the selfish nodes attempt to reduce their

provisioning cost and maximize the earned rebate. We also analyze the impacts of such

selfish behavior on the provisioning cost of selfish and non-selfish users within the

SWNET settings.

6.2 User Selfishness and its Impacts

In Chapter 3 we computed the cost and rebate in a cooperative network where all

nodes run the split replacement policy with the optimal λ. The impacts of selfishness are

analyzed in this section. Selfishness in this context is defined as when one or multiple

nodes execute split replacement with non-optimal λ values to earn more rebates (or to

 106

reduce the provisioning cost in the second pricing model). Note that the selfish nodes still

run cooperative caching but with a non-optimal λ.

Degree of selfishness in an SWNET is modeled by the parameters η, the number of

selfish nodes and λs which is the non-optimal split-factor chosen by those nodes. The

value of λs can be smaller or larger than λo, which is the optimal λ used by the non-

selfish nodes. Average provisioning cost in a
-node network with both non-selfish and

selfish nodes can be written as:

 ���� = Á+{�}�ÂÃÄ��Åu�
LÁ�+{�}ÆÇÆK�ÂÃÄ��Å
 (6-1)

6.3 Cost and Rebate for Non-Selfish Nodes

6.3.1 Cost Computation

In order to compute Costnon-selfish using Eqn. 6-1, we need to compute the

quantities PL and PV for the non-selfish nodes. The steady state cache status for both

non-selfish and selfish nodes for the case λs<λo is demonstrated in Figure 6-1.

Local hit rate: The non-selfish nodes store λoC most popular objects in the

duplicate segment of their cache (areas A1 and A2 in Figure 6-1), and fill the rest with

unique objects (area A3 in Figure 6-1). Assuming unique objects are uniformly

distributed in all nodes, the quantity PL for a non-selfish node can be computed as:

 PÈÉ = HËÉ + �-ÌÍÎ HÏ, (6-2)

 107

where �� = 	 P�
 − Ð��1 − D{� + Ð�1 − D��Q� represents the total number of unique

objects stored in an SWNET partition. The quantity jn = A��� + D{�� − A�D{��
represents the corresponding hit rate for all unique objects in the partition. The first term

jk+ = A�D{�� refers to the hit rate contributed by the duplicated objects and the second

term refers to the hit rate contributed by the unique objects stored in a non-selfish node.

Figure 6-1: Cache status at steady state

Remote hit rate: After a local search fails in a node, it searches its local partition for

the desired object. The desired object can only be found in the unique area of the remote

caches in the partition since the duplicate area (which is same at all the nodes) has

already been scanned during the local search. Therefore, the probability of finding the

desired object in the partition (after its local search failed) is equal to the corresponding

hit rate contributed by all the unique objects stored in the partition except those unique

objects stored in the requesting device. Thus, the remote hit rate in a cooperative node is

equal to:

(a) Non-Selfish node
cache in steady state

available in all
nodes

available only in
non-selfish nodes

available in all
nodes

unique across
the network

(b) Selfish node cache in
steady state

1 1

A1

A2

A3

λsC

λoC

C

λsC

unique across
the network

C

 108

 PÑÉ = /1- P�-ÌÒQÎ 0HÏ (6-3)

Substituting the value of PL and PV from Eqns. 6-2, 6-3 in Eqn. 3-3, the cost for

provisioning objects to the non-selfish nodes can be simplified as:

 C���T{TL�fÔ¹��Õ = /1 − P��Lt��ut��LºÇ�Q+�+ jn − jk+0 �� . (6-4)

Note that HU in the above equation must be computed as:

 Öjn = A��� + D{�� − A�D{��	iℎV)	D� < D{jn = A��� + D��� − A�D���	iℎV)	D� ≥ D{ (6-5)

6.3.2 Rebate Computation

The amount of rebate earned by a node depends on the number of requests

generated in the network for objects stored in its local cache. In addition to the globally

available objects (stored in the area A1 in Figure 6-1) all non-selfish nodes maintain

certain duplicated objects in their cache which are not available in the selfish nodes

(objects in area A2 in Figure 6-1). Thus, in addition to the unique objects (area A3 in

Figure 6-1), each non-selfish node provides certain duplicated objects (stored in the area

A2) to the selfish nodes. Therefore, amount of rebate per requested object in the network

for non-selfish node can be written as:

 ¸VYW�VT{TL�fÔ¹��Õ = /�Lº×� jn�
 − 1� + ¹�ºÇ+�L¹�º�+�
LÁ Ð0 (6-6)

The first term in Eqn. 6-6 indicates the corresponding rebate for providing unique

objects (from area A3) to all other nodes in the network, and the second term indicates

the rebate for providing certain duplicated objects (from area A2) to the selfish nodes.

The hit rate contributed by the duplicated objects that are not available in the selfish

 109

nodes is equal to A�D{�� − A�D���. It is assumed that the generated requests from the

selfish nodes are serviced by all non-selfish nodes in a uniform manner (that is why the

quantity A�D{�� − A�D��� divided by m-η). Note when λs > λo, the selfish nodes

maintain more duplicated objects, and therefore the second term in Eqn. 6-6 vanishes.

The rebate in this case can be written as:

 ¸VYW�VT{TL�fÔ¹��Õ = ��Lº×� jn�
 − 1�����. (6-7)

6.4 Cost and Rebate for Selfish Nodes

6.4.1 Cost Computation

Similar to the non-selfish nodes, cost and rebate for the selfish nodes are computed

using Eqn. 4 based on the local and remote hit rates. PL for a selfish node can be

computed as:

 PÈØ = HËØ + �-ÌÍÎ HÏ, (6-8)

where jk* = A�D��� refers to the hit rate contributed by the duplicated objects

stored in a selfish node, HU is the hit rate contributed by all unique objects in the

partition, Remote hit rate for a selfish node can be computed as:

 PÑØ = /1- P�-ÌÙQÎ 0HÏ. (6-9)

Substituting the value of PL and PV from Eqns. 6-8, 6-9 in Eqn. 3-3 the cost for

selfish nodes can be simplified as:

 CostÝÞßà¼Ýá = /1- P�-âQÎuâ��-ÌÙ�Î HÏ-HËØ0 Cã. (6-10)

 110

6.4.2 Rebate Computation

Assuming that unique objects are uniformly distributed among all network nodes,

the rebate for a selfish node when λs < λo can be computed as:

 ¸VYW�V�fÔ¹��Õ = ��Lº�� jn�
 − 1����� . (6-11)

When λs> λo, the rebate for selfish nodes changes to:

 ¸VYW�V�fÔ¹��Õ = ä �Lº�� jn�
 − 1� +
¹�º�+�L¹�ºÇ+�Á �
 − Ð�å��� . (6-12)

In the above equation, the first term indicates the amount of rebate a selfish node

earns by providing its unique objects to all other nodes, and the second term represents

the rebate earned by providing its duplicated objects to the non-selfish nodes. The

quantity A�D��� − A�D{�� corresponds to the hit rate contributed by the objects that are

not available in non-selfish nodes and duplicated across all selfish nodes. These objects

are provided only to the
 − Ð non-selfish nodes.

6.5 Performance under First Pricing Model

In this section we analyze the impacts of user selfishness on the object provisioning

cost when this cost is paid by content provider (i.e. similar to kindle model). In this case,

earning higher rebate is the main motivation for selfish nodes for deviating from the

optimal policy. We expect to see a higher provisioning cost under the presence of user

selfishness.

 111

6.5.1 Networks with Single Selfish Node

Figure 6-2 demonstrates the amount of rebate for each object request when there is

exactly one selfish node in the network. With a single selfish node, choosing any λs that

is different from the optimal λ increases the amount of rebate for the selfish node. The

maximum value of earned rebate, however, depends on the value of λopt which is a

function of β. For example, when β=0.9 (i.e. when the optimal value for λ is around

0.81), a selfish node can maximize its earned rebate by setting λs to 0. On the other hand,

when β=0.5 (i.e. when λs is equal to 0.21) thr selfish node’s rebate is maximized when its

λs is set to 1. In summary, a single selfish node can maximize its own rebate by setting λs

to either 0 or 1, whichever is farther than λopt. The “No Selfishness” marked points in

Fig. 7(a,b) correspond to the situation where λs = λopt. A notable observation from Fig.

7(b) is that when the network usage cost is paid by the content provider (i.e when we use

the first pricing model based on Kindle e-book delivery strategy), the main reason for

deviating from optimal policy by selfish nodes is to earn higher rebates. The selfish

policy depends on the value of β which determines the amount of rebate earned for each

provided object.

 112

Figure 6-2: Rebate per request with one selfish node in the network

6.5.2 Networks with Multiple Selfish Nodes

6.5.2.1 Impacts on the provisioning cost

Figure 6-3(a) depicts the impacts of selfish node-count on the cost of provisioning

objects when β=0.9. As expected, any deviation from the optimal policy increases the

average provisioning cost in the network. For β=0.9, the selfish nodes choose λs=0 to

maximize their rebates. Meaning, selfish nodes store only unique objects in their cache

which in turn increase their provisioning cost. By increasing the number of selfish nodes,

the number of uniquely stored objects in the network also increases. This new set of

unique objects reduces the provisioning cost for the non-selfish nodes.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Parameter λ in selfish node(λ
s
)

E
a
rn

e
d
 R

e
b
a
te

 p
e
r

R
e
q
u
e
s
t

β=0.5 Non-selfish node

β=0.5 Selfish node

β=0.9 Non-selfish node

β=0.9 Selfish node

No selfishness

No selfishness

 113

Figure 6-3: (a,b) Object provisioning cost and (c,d) Earned rebate per request for non-
selfish and selfish nodes

Figure 6-3(b) demonstrates the cost of provisioning objects to the selfish nodes, the

non-selfish nodes, and the network wide average when β is set to 0.5. In this case, the

selfish nodes set λs to 1, causing them to store the most popular objects in their local

cache. This helps the cost of object provisioning to the selfish nodes to come down. The

cost for the non-selfish nodes, however, increases in the presence of selfish nodes due to

the following two reasons: (1) a selfish node prevents other cooperative nodes to store

0 10 20 30 40
6.5

7

7.5

8

8.5

9

9.5

Number of Selfish nodes (η)

O
b
je

c
t

P
ro

v
is

io
n
in

g
 C

o
s
t

0 10 20 30 40
4.5

5

5.5

6

6.5

7

7.5

Number of Selfish nodes (η)

O
b
je

c
t

P
ro

v
is

io
n
in

g
 C

o
s
t

EQ:Non-selfish

EQ:Selfish

EQ:Average Cost

SIM:Non-selfish

SIM:Selfish

(a) Cost when β=0.9 (b) Cost when β=0.5

0 20 40
0

0.5

1

1.5

Number of Selfish nodes (η)

E
a

rn
e

d
 R

e
b

a
te

 p
e

r
R

e
q

u
e

s
t

0 20 40
0

0.1

0.2

0.3

0.4

Number of Selfish nodes (η)

E
a

rn
e

d
 R

e
b

a
te

 p
e

r
R

e
q

u
e

s
t

EQ:Non-selfish node

EQ:Selfish node

SIM:Non-selfish node

SIM:Selfish node

EQ:Non-selfish node

EQ:Selfish node

SIM:Non-selfish node

SIM:Selfish node

η
critical

η
critical

(d) Earned rebate when β=0.5 (c) Earned rebate when β=0.9

 114

popular objects by storing the most popular objects in its cache (remember that a non-

selfish node will not store a duplicated object in the unique area of its cache). (2) a selfish

node wastes the global cache capacity by filling its cache with duplicated objects. As a

result, less number of objects are stored in the network, which in turn reduces the chance

of finding a requested object in remote caches. The excellent agreement between the

analytical (labeled as EQ) and the simulation results (labeled as SIM) proves the

correctness of Eqns. 6-2 to 6-12.

To earn the maximum amount of rebate, selfish nodes set the value of λs to either 0

or 1. It can be seen in Figure 6-3(a,b), depending on the chosen value of λs, the impacts

of number of selfish nodes on provisioning cost can be substantially different.

Impacts on the Rebate

With the first pricing model, earning higher rebate is the only motivation for a node

to run the selfish policy. From the rebate standpoint, a steady state can be defined as a

situation in which a node cannot deviate from the optimal caching policy to earn higher

rebate. In this section we demonstrate the existence of such steady state in a typical social

wireless network.

Figure 6-3(c) represents the amount of rebate per request earned by the selfish and

the non-selfish nodes when β is set to 0.9. Initially, when only few nodes deviate from the

optimal policy, they are able to supply enough unique objects to the non-selfish nodes so

that the earned rebate is higher. By increasing the number of selfish nodes, the rebate per

request for each selfish node reduces for two reasons: 1) number of requests from non-

selfish nodes becomes less, and 2) rebate must be shared among more number of selfish

 115

nodes. When the number of selfish nodes reaches a critical value ηcritical, the rebate for

selfish and non-selfish nodes become equal. In fact, when a node chooses a selfish policy

while there are ηcritical selfish nodes in the network, its rebate become less than that of

the non-selfish nodes. This leads to an important claim, namely, having more than

ηcritical selfish nodes in the network does not serve any purpose for the selfish nodes.

Figure 6-3(d) represents the amount of rebate for selfish and non-selfish nodes

when β is set to 0.5. The value of λs at the selfish nodes is set to 1, so that the earned

rebates by those nodes are maximized. Observe that for higher β, the value of η is also

higher. Meaning, more number of nodes can execute the selfish policy and still receive

higher rebates compared to the non-selfish nodes.

6.5.3 Steady State Analysis

This section presents analysis in the steady state, which is when a network contains

exactly ηcritical number of selfish nodes. Figure 6-4(a) depicts the impacts of β on

Ð���}��³Ô, which represents the maximum number of nodes that can run the selfish policy

and still get higher rebates compared to the non-selfish nodes. When β is small, the

optimal λopt is also small which means each non-selfish node stores only a very few

popular duplicated objects in its cache. Therefore, a selfish node can earn a high rebate

by storing the most popular objects in its local cache (i.e. choosing λs=1) and serving a

large number of requests from other nodes. With increasing β, the quantity λopt increases,

 116

which causes each node to store more popular objects in its local cache and therefore, the

number of remote requests to the selfish nodes reduces.

Figure 6-4: Analysis of rebate and object provisioning cost in steady state (i.e. η=

ηcritical)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

C
r
/C

d
 (β)

η
c
ri
ti
c
a

l

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

C
r
/C

d
 (β)

A
v
e
ra

g
e

P

ro
v
is

io
n
in

g
 C

o
s
t

η=η
critical

η=0
α=0.7

α=0.8

α=1.0

λ
s
=1 λ

s
=1

(a) Number of selfish nodes in steady

state (η
critical

) for different values of β

(b) Object provisioning cost in best

case (η=0) and steady state (η=η
critical

)

λ
s
=0

λ
s
=1λ

s
=1

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

C
r
/C

d
 (β)

O
b
je

c
t
P

ro
v
is

io
n
in

g
 C

o
s
t

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

C
r
/C

d
 (β)

E
a
rn

e
d
 R

e
b
a
te

 P
e
r

R
e
q
u
e
s
t

Non-selfish nodes

Selfish nodes

Non-selfish nodes

Selfish nodes

(c) Object provisioning cost for non-selfish

 and selfish nodes when η=η
critical

(d) Earned rebate for non-selfish

and selfish nodes when η=η
critical

λ
s
=0

λ
s
=1

λ
s
=0

λ
s
=1

 117

This in turn reduces the rebate difference between the selfish and the non-selfish

nodes, and therefore less number of nodes can run the selfish policy. This explains the

decreasing trend (see Figure 6-4(a)) of ηcritical as β changes from 0 to 0.8. At β=0.8, the

amount of rebate for the selfish nodes is very close to the amount of rebate for the non-

selfish nodes. As a result, only very few nodes can benefit from running the selfish

policy. For β > 0.8, the selfish nodes must set λs to 0 in order to get higher rebates

compared to the cooperative nodes. In this case, the difference between the rebate earned

by the selfish and the non-selfish nodes becomes very high which encourages a lot of

nodes to choose selfish policy, thus drastically increasing the quantity ηcritical.

Figure 6-4(b) demonstrates the average object provisioning cost in the presence of

ηcritical selfish nodes. For β=0, as there is no selfish node in the network, the

provisioning cost in this case represents the minimum possible value. In other cases, as

expected the average provisioning cost is always higher than the provisioning cost when

all nodes run the optimal policy.

Observe that the impacts of selfishness for small βs are always higher than those

for large βs. For higher β, the non-selfish nodes store more popular objects in their local

cache and they become less sensitive to the presence of selfish nodes. For β=0.8, the

average provisioning cost in the presence of selfish nodes is very close to the minimum

possible provisioning cost. For β greater than 0.8, the selfish nodes set λs to zero and as

demonstrated in Figure 6-4(a), the number of selfish nodes ηcritical becomes very large.

 118

Because of too many selfish nodes, the difference between the cost of provisioning

objects to the non-selfish and selfish nodes becomes noticeable again.

Figure 6-4(c) depicts the cost of object provisioning for the selfish and the non-

selfish nodes in the presence of ηcritical selfish nodes in the network. For small βs, the

cost of provisioning objects to the selfish nodes is much lower than that for the non-

selfish nodes. This is because for small βs the selfish nodes set λs=1 and store popular

objects locally. Therefore, a high percentage of requests in selfish nodes are satisfied

locally without any provisioning cost. The difference between non-selfish and selfish

nodes becomes less as β increases because due to higher λopt, the non-selfish nodes also

start storing more popular objects. After β=0.8, the cost for provisioning to the selfish

nodes becomes higher than that to the non-selfish nodes. The reason is by choosing λs=0,

a selfish node is deprived of having popular objects and only a few percentage of requests

in selfish nodes in this case can be satisfied from the local caches, which in turn increases

the provisioning cost.

Figure 6-4(d) depicts the amount of rebate earned by the selfish and the non-selfish

nodes. Observe that the amount of rebate earned by the selfish nodes is close and always

higher than the amount of rebate earned by the non-selfish nodes. Adding even a single

selfish node beyond ηcritical brings the amount of rebate for the selfish nodes below that

of the non-selfish nodes. The sharp jump in the rebate at β=0.8 is because of switching

from λs=1 to λs=0 .

 119

6.5.4 Impacts of rebate on Node Participation

Up to this point, all the presented analysis and performance results are based on the

assumption that the end-consumers participate in cooperative caching regardless of the

value of the rebate Cr. They can be selfish (i.e. when use λs) or non-selfish (i.e. using

λopt), but they do cooperate. In a more realistic situation, however, the participation of a

node in cooperative caching is expected to be an increasing function of Cr, the amount of

rebate offered for each peer-provided object. In other words, for larger Cr values, more

number of nodes are expected to participate in collaborative caching. In this section we

study the performance of caching under the first pricing model (i.e when provisioning

cost and rebate is paid by content provider) and with three different increasing functions:

f
1
,f

2
 and f

3
 as defined below:

A�:	· = �		
A5:	· = P1 − VL5tQ �1 − VL5�⁄

A¾:	· = P1 − V5tQ �1 − V5�⁄

In the above functions, φ indicates the probability that a node participates in

collaborative caching. With probability (1-φ), a node does not participate in caching;

meaning all object requests by that node are served by direct downloads from the content

provider’s server. Three types of node can be distinguished in the network: 1) non-

participating, 2) participating and non-selfish, and 3) participating and selfish.

 120

Figure 6-5(a) depicts the variation of node participation as a function of the rebate-to-

download-cost ratio β following the above three models. Figure 6-5(b) reports the

network wide average object provisioning cost for the participating nodes when the

system is in steady state, meaning η=ηcritical. It can be observed that by increasing β, the

object provisioning cost for the participant nodes initially reduces because more number

of nodes participates in caching. However, for higher β, the impacts of collaborative

caching reduce and the cost increases again. Also, the provisioning cost for f
2
 is the least

because the rate of increase of the number of participant nodes with β is highest in this

function. Figure 6-5(c) depicts the steady state (see Section 6) selfish node population

ηcritical under different β and participation dependency functions f
1
 through f

3
. The

trend of ηcritical in Figure 6-5(c) is different than Figure 6-4(a) because of number of

participant nodes in this case is much less. Figure 6-5(d) represents the network wide

average amount of earned rebate for the participating selfish and non-selfish nodes for the

linear function for f
1
.

 121

Figure 6-5: Impact of β (rebate-to-download-cost ratio) on the number of participant
nodes and cost and rebate

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
r
/C

d
 (β)

%
 o

f
p
a
rt

ic
ip

a
n
t
n
o
d
e
s

0 0.2 0.4 0.6 0.8 1
5

6

7

8

9

C
r
/C

d
 (β)

η
c
ri
ti
c
a
l

f
1

f
2

f
3

f
1

f
2

f
3

λ
s
=0

λ
s
=1

(a) 3 different functions to show
percentage of participant nodes in caching

(b) Average object provisioning cost
when η=η

critical

0 0.2 0.4 0.6 0.8 1
0

10

20

30

C
r
/C

d
 (β)

O
b
je

c
t
P

ro
v
is

io
n
in

g
 C

o
s
t

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

C
r
/C

d
 (β)

E
a
rn

e
d
 R

e
b
a
te

 P
e
r

R
e
q
u
e
s
t

f
1

f
2

f
3

Non-selfish nodes

Selfish nodes
λ

s
=1

λ
s
=1

λ
s
=0

(c) Number of selfish nodes in steady
state (η

critical
) for different values of β

(d) Earned rebate for non-selfish

and selfish nodes for the function f
1

 122

6.6 Performance under the Second Pricing Model

6.6.1 Networks with Single Selfish Node

In this section we analyze the impacts of user selfishness on provisioning cost when

the cost is paid by the end users. In this case, the motivations for user selfish includes: a)

minimizing the provisioning cost, and b) maximizing the earned rebate. Provisioning

costs for both selfish and non-selfish nodes in the presence of a single selfish node are

shown in Figure 6-6. It can be observed that for all β, the selfish nodes can run the split

caching policy with parameter λs=1 to minimize their own provisioning costs.

Figure 6-6: Object provisioning cost when only one selfish node exists in the network

6.6.2 Networks with Multiple Selfish Nodes

To analyze the impacts of selfish node population on provisioning cost two

scenarios are studied. In the first scenario, we assume that the selfish nodes are not aware

of the existence of other selfish nodes, Meaning, all selfish nodes set λs=1 to minimize

0 0.2 0.4 0.6 0.8 1
4

6

8

10

12

Parameter λ in selfish node(λ
s
)

O
b
je

c
t
P

ro
v
is

io
n
in

g
 C

o
s
t

β=0.5 Non-selfish

β=0.5 Selfish

β=0.9 Non-selfish

β=0.9 Selfish

No selfishness

No selfishness

 123

their own costs. In the second scenario we assume that such nodes collude and they

choose a selfish policy according to the number of participating (and colluding) selfish

nodes.

Figure 6-7: Impacts of selfishness without collusion between selfish nodes

6.6.2.1 Without Collusion

When a selfish node is not aware of other such nodes, it should choose a selfish

policy that is likely to minimize its own cost. That policy is to set λs to 1. However, as

0 10 20 30 40
4.5

5

5.5

6

6.5

7

7.5

Number of Selfish nodes (η)

O
b
je

c
t
P

ro
v
is

io
n
in

g
 C

o
s
t

0 10 20 30 40
6.9

6.95

7

7.05

7.1

7.15

7.2

Number of Selfish nodes (η)

O
b
je

c
t
P

ro
v
is

io
n
in

g
 C

o
s
t

η

Non-selfish node

Selfish Node

Non-selfish node

Selfish node

η
critical

η
critical

(a) Object provisioning cost when
β=0.5 and λ

s
=1

(b) Object provisioning cost when
β=0.9 and λ

s
=1

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Rebate to download cost ratio (β)

η
c
ri
ti
c
a
l

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Rebate to download cost ratio (β)

O
b
je

c
t

P
ro

v
is

io
n
in

g
 C

o
s
t

α=0.7

α=0.8

α=1.0

Non-selfish: η=η
critical

Selfish (η=η
critical

)

Selfish (η=1)

(c) Number of selfish nodes (d) Object provisioning cost

 124

the number of selfish nodes increases, the resulting cost for the selfish nodes in fact may

get worse than their cost when they run the optimal policy. Figure 6-7(a) and (b)

demonstrate how the cost of provisioning for both selfish and non-selfish nodes changes

when the rebate-to-download-cost ratio (β) is set at 0.5 and 0.9. As the number of selfish

nodes (running caching policy with parameter λs =1) increases, the cost for both selfish

and non-selfish nodes increases. Initially, the cost for selfish nodes is lower that that of

non-selfish nodes. However, by increasing the number of selfish nodes the cost paid by

the selfish nodes also increases. In fact, when the number of selfish nodes is beyond a

critical η, the cost paid by the selfish nodes becomes larger than that when they run the

non-selfish optimal policy. From this it can be concluded that in the presence of more

than ηcritical selfish nodes in the network the motivation of user selfishness disappears

when end users are responsible for paying the object provisioning costs.

Figure 6-7(c) demonstrates ηcritical with varying β (rebate-to-download cost ratio)

between 0 and 1. Intuitively, as β increases, more nodes can afford to be selfish while

gaining in terms of the provisioning cost. The values of ηcritical are shown for three

different values of α (Zipf parameter). With higher α, the number of nodes that can run

selfish policy while being able to reduce their cost of provisioning is also higher. The

reason is with higher α, the percentage of requests for popular objects is higher and

therefore, selfish nodes can reduce their cost of object provisioning by finding most of

the requested objects in their local cache; thus leading to zero provisioning cost. As

Figure 6-7(d) demonstrates, the cost for non-selfish nodes is always higher than the

 125

optimal provisioning cost, and the cost for the selfish nodes is always lower than that for

the non-selfish nodes. In steady state when there are ηcritical selfish nodes in the

network, the cost for the selfish nodes is very close (but less than) to the optimal

provisioning cost (i.e. when there is no user selfishness). When ηcritical is equal to 1, the

cost of provisioning for the selfish nodes is less than the optimal cost.

Figure 6-8: Impacts of selfishness with collusion between selfish nodes

0 10 20 30 40
2.5

2.6

2.7

2.8

2.9

Number of Selfish nodes (η)

O
b
je

c
t
P

ro
v
is

io
n
in

g
 C

o
s
t

0 10 20 30 40
4.6

4.8

5

5.2

5.4

5.6

5.8

Number of Selfish nodes (η)

O
b
je

c
t
P

ro
v
is

io
n
in

g
 C

o
s
t

Non-selfish node

Selfish Node

Optimal Cost (η=0)

Non-selfish node

Selfish node

Optimal Cost (η=0)

(a) Object provisioning cost for selfish

and non-selfish nodes , when β=0.1
(b) Object provisioning cost for selfish

and non-selfish nodes , when β=0.5

0 10 20 30 40
6.9

7

7.1

7.2

Number of Selfish nodes (η)

η
c
ri
ti
c
a
l

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Number of Selfish nodes (η)

λ
s

Non-selfish Node

Selfish Node

Optimal Cost (η=0)
β=0.1

β=0.5

β=0.9

(c) Object provisioning cost for selfish

and non-selfish nodes , when β=0.9

(d) λ
s
 which minimizes the cost

for selfish nodes

 126

6.6.2.2 With Collusion

The behavior of mutually aware and colluding user selfishness is analyzed in this

section. It is shown that a selfish node is always able to keep its provisioning cost below

the optimal cost when it is aware of the number of other selfish nodes in the network. In

Figure 6-8(a, b and c) the provisioning cost for selfish and non-selfish nodes are

demonstrated when β is equal to 0.1, 0.5 and 0.9 respectively. It can be observed that the

selfish nodes can always maintain a lower than optimal cost by appropriately choosing

λs. The provisioning cost for non-selfish nodes, however, is always higher than the

optimal cost. One interesting observation from these graphs is that when all nodes are

selfish, the selfish policy converges to the optimal policy. However, when only few nodes

run selfish policy, the selfish and optimal policies are different which results in different

costs of object provisioning for selfish and non-selfish nodes. Figure 6-8(d) demonstrates

the desirable λs for the selfish nodes as a function of η, which is the selfish node

population. It can be seen that the selfish nodes need to change their policy (i.e. to choose

different λs) based on the number of other such nodes. This is because the knowledge of

η helps keeping their cost always lower than the optimal cost (i.e. provisioning cost when

there is no user selfishness). When the number of selfish nodes is very low, setting λs to 1

minimizes the cost for the selfish nodes. However by increasing the number of selfish

nodes, λs must be set to lower values in order to maintain a lower that optimal cost.

 127

6.7 Summary and Conclusion

In this chapter we analyzed the impacts of selfishness on performance of

cooperative caching in social wireless networks. Any deviation from optimal split

caching will increase the average provisioning cost in the network. We showed and

proved both analytically and experimentally that selfish policy will not help a node to

increase its rebate when number of selfish users is beyond a specific threshold.

 128

Chapter 7 : COOPERATIVE CACHING FOR IMPROVING

AVAILABILITY

7.1 Motivation

Wireless handheld devices and networked data applications on such devices have

experienced unprecedented consumer penetration in recent years. The Apple iPod Touch,

Nintendo DS, Sony PSP game console, and numerous other handheld platforms belong to

this category of devices. An emerging list of data applications for such devices includes

networked and peer-to-peer games, electronic books, newspaper and magazine readers,

and thousands of Applications (Apps) that are written for devices such as iPod Touch.

Due to human mobility and the lack of complete coverage by WiFi access points, a

MSWNET can be susceptible to intermittent disconnections to the Internet. This can result

in partitions of devices that can communicate with each other using ad hoc routing

protocols, but do not have internet connectivity. This lack of connectivity affects object

(content) availability within MSWNET partitions for server-based applications such as

electronic book and Apps downloads.

As an example, consider a game device (e.g. Nintendo DS) that downloads games

directly from the game server. This device is not able to download the game while it is

temporarily situated within a disconnected (from internet) MSWNET partition. However,

with cooperative caching enabled, a DS may be able to download the game by searching

other DSs and compatible devices within its local MSWNET partition.

High partition level availability ensures popular objects will be available within

 129

MSWNET partitions when it disconnected from the Internet, and high node level

availability ensures popular objects are available to individual nodes even when they are

completely isolated from the rest of network and Internet gateway. Note that high node

level availability does not necessarily lead to high partition level availability. For

example, storing the same set of popular objects can maximize the average node level

availability, however keeping multiple copies of the same object in the partition results in

limited partition availability. The objective of this chapter is to design a cooperative

object caching mechanism such that the availability of the popular objects can be

maximized at both partition and node level.

7.2 Limitations of prior work

The common objective of the existing cooperative caching mechanisms for

wireless networks is to achieve high object availability at the partition level. This is

achieved by avoiding the storage of duplicated objects within a network partition. While

improving partition level availability, these approaches offer low availability at the node

level, because only one copy of each popular object exists within a partition. High node

level availability is desirable so that the popular objects are available to nodes even when

they are completely isolated without being connected to any other node. A limitation of

the existing mechanisms is their inability to provide high availability at both partition and

node levels. Related work is formally presented in Chapter 2.

7.3 Our approach and contribution

The main objective is to develop cooperative caching mechanisms that can

improve object availability within MSWNET partitions as well as at individual nodes.

 130

This is achieved by letting each node in a partition to store a set of objects while allowing

certain level of duplication in the partition. To control the level of duplication, the cache

space in a node is divided into two separate areas. The first area is dedicated for storing

the most popular (duplicated across all nodes in the partition) objects to guarantee high

availability within a completely isolated node. And the second area is dedicated to store

partition-wide unique objects to achieve high level of availability at the partition level.

Using a stochastic model we determine the boundary between the above partitions such

that a required balance between node and partition level availabilities can be achieved.

The contribution of the proposed cache partitioning mechanism is to provide high levels

of node and partition availabilities, and at the same time to reduce the generated network

traffic.

7.4 Design Objectives

The user perceivable performance indexes are: 1) Partition Object Availability

(POA), which indicates the probability of an arbitrary object to be found within a

partition; and 2) Node Object Availability (NOA), which indicates the probability of an

object to be found within a node’s local cache. NOA is a measure of availability for

completely isolated nodes.

The network related performance index is the Generated Network Traffic (GNT)

for fetching each object which is function of average hop-distance between a node and

the object provider. In addition to the capacity load, GNT indicates the energy overhead

of object access. The objective is to minimize GNT. A combined objective is to minimize

the GNT while maintaining pre-specified levels of POA and/or NOA. It will be

demonstrated that the proposed cooperative caching policy in this chapter is particularly

 131

efficient in terms of meeting such combined objectives.

7.5 Cache resolution

Cache resolution addresses how to resolve an object request either locally or from

the local partition. After a request is originated by an end-consumer (i.e. an application

on a mobile device), it first performs a local search within its local cache. If it fails, the

end-consumer (EC) performs a network search for the object within its local partition. If

this step also fails, and the device is situated within a connected partition, the object is

downloaded from the CP’s server via a gateway mobile node, Access Point, and the

Internet. If the partition is not connected, the object is deemed unavailable.

For searching an object within the local partition, a flooding based search

mechanism is usually used. A Time to Live (TTL) based ring-search can be employed for

constraining the scope of resolution. This can limit: a) the network costs, and b) the

degree of caching cooperation [28]. The radius of this ring search (i.e. the search TTL) is

termed as the Domain of Cooperation (DOC) because a node’s cooperative behavior

depends on the state of the caches within that ring. In other words, a node effectively

cooperates with all nodes with hop-distance less than or equal to the operating DOC.

When a node receives a search request for one of its locally cached objects, it sends a

unicast ACK to the requester. Then the requester starts downloading the object from the

responding node.

7.6 Cache management

Cache management refers to policies that control which set of objects are kept in

the cache and how they are distributed in the partition. Cache management comprises

 132

object prioritization and replacement policies.

DOC based object prioritization: A node adjusts its cooperative behavior depending

on the state of other nodes’ caches within a pre-specified DOC, so that the objectives

POA, NOA, and GNT are met either individually or in a combined manner. A simple

cooperation policy for a node is not to store an object if it has already been stored within

the DOC. By doing this, the total number of different objects stored within the DOC can

be increased. This in turn can increase the partition object availability. We refer to this

model as Prioritized Cooperation.

With Prioritized Cooperation turned on, DOC acts as a tunable parameter that can

control the degree of object duplication within a partition. The value of DOC can range

from zero (i.e. no cooperation) to the diameter of the network (i.e. the maximum

cooperation).

Object replacement: When a node fetches a new object, it executes a replacement

policy in order to decide as to which object from its cache should be replaced, if any.

Possible replacement policies include Random (RND), Least Recently Used (LRU), and

Least Popular Object (LPO). LPO assumes that a device is aware of the server-tagged

popularity of a downloaded object.

7.7 Cooperative Caching (COOP)

The protocol COOP in [28] develops a cooperative caching mechanism that relies

on DOC based resolution with Prioritized Cooperation, and LRU based replacement in

mobile networks. To our knowledge, COOP represents the most comprehensive

cooperative caching approach in the literature. This is why we have chosen COOP to

compare our proposed mechanism with. The key components of COOP are as follows.

 133

7.7.1 Cache resolution

COOP uses both local and DOC based network search as detailed in Section 7.5.

Additionally, it implements an optimization for reducing repetitive resolution costs by

recording the address (called profile) of the node from which an object has been

downloaded most recently. For subsequent resolutions for the same object by the same

node, the profile node is first searched using unicast before the entire DOC is searched

using flooding. This profile of historical access can often eliminate the overhead of

flooding. In addition, COOP uses a hop-by-hop resolution in which when local, profile,

and network searches all fail, a request is sent to the CP’s server. Each intermediate node

on the path between requester and the server investigates the request, and supplies the

object to the requester if it finds the object in its local cache.

7.7.2 Cache management

COOP classifies each object stored within a node’s cache as either primary or

secondary. A primary object is unique within the pre-specified DOC whereas a secondary

object is a duplicate. The protocol prioritizes unique object over duplicate objects during

cache replacement. To implement this, it evicts a secondary object when there is no space

left in the cache for accommodating a new downloaded object. When no secondary object

exists in the cache, COOP uses a regular LRU replacement policy among all stored

objects to choose a candidate from the cache to evict.

7.7.3 New flavors of COOP

COOP, as described above, corresponds to the baseline version reported in [28].

We have implemented that baseline and a number of new flavors of COOP by altering its

 134

replacement policy and turning prioritization on and off. To distinguish among these

different flavors, we use the following notation. COOP-P refers to the baseline

implementation with prioritized cooperation, and COOP-N refers to a version with

prioritization turned off. For both –P and –N, we implement RNDM, LRU and LPO

replacement policies. For example, COOP-P-RNDM represents the prioritized COOP

with RNDM replacement. It is found that for different topological characteristics of an

MSWNET partition, these new flavors of COOP are able to generate better results

compared to its baseline version.

7.8 Proposed Cooperative Split Caching (CSC)

7.8.1 CSC overview

Together with DOC, the proposed CSC strategy implements an additional

mechanism for in-domain object duplication control. Unlike in COOP with only DOC

based duplication control, by manipulating two duplication control parameters in CSC, it

is possible to provide both high NOA and high POA at the same time, which is not

feasible using COOP for reasons as described below.

Although there are certain differences in effective object duplications between

COOP-P and COOP-N, the primary mode of duplication control in COOP is by varying

the Domain of Cooperation during the cache resolution. Since the level of object

duplication determines the interdependency between POA, NOA, and GNT, a finer

control on object duplication is expected to provide better performance in terms of the

combined objectives.

As DOC increases, due to reducing duplications, the NOA drastically reduces. This

is because in order to store a large number of unique objects within a partition, few nodes

 135

are forced to store less popular objects, thus leading to low NOA for those nodes.

However, larger DOCs, due to lower duplication, can provide higher POA, since more

unique objects are able to be stored within a partition. This indicates that the NOA and

POA are conflicting requirements. COOP, equipped with only one duplication control

parameter is not able to provide both high NOA and high POA simultaneously.

With the proposed CSC mechanism, however, by manipulating two duplication

control parameters, it is possible to reconcile between the objectives NOA and POA. This

is the primary contribution of CSC.

7.8.2 Cache Splitting

In Cooperative Split Caching (CSC), the cache space in each mobile device is

divided into a duplicate area and a unique area. As shown in Figure 7-1, the duplicate

area occupies D	�0 ≤ 	D ≤ 1� fraction of the available cache space and stores D. � most

popular objects which are duplicated within the domain of cooperation. The unique area

stores �1 − D�� objects which are unique across the nodes within the domain of

cooperation. The parameter D is the second tunable quantity for duplication control in

CSC. While DOC controls partition wide duplication by tuning the depth of ring search

during cache resolution, D controls the level of duplication within the domain of

cooperation by shifting the emphasis between storing duplicated and unique objects.

Figure 7-1: Cache partitioning in the CSC policy

The intuition behind this split is to let a limited number of popular objects to be

Duplicate Unique

λ.C (1-λ).C

Cache Space (C)

 136

duplicated at all nodes within the cooperation domain. This duplication helps maintaining

high Node Object Availability (NOA). Simultaneously, the unique part of the cache space

can maintain sufficient number of unique objects so that the Partition Object Availability

(POA) can be also maintained high. This is how, unlike in COOP, CSC can achieve both

high NOA and POA by tuning the duplication control parameters DOC and D to

appropriate values.

7.8.3 Cache resolution and replacement

Cache resolution in CSC is based primarily on local search and DOC based

network search as described in Section 7.5. Unlike in COOP, no profile based and hop-

by-hop resolutions are performed. In the presence of mobility it is possible for few

objects, which are meant to be domain-wide unique, to get duplicated due to the entry of

new nodes within a domain. CSC implements a simple mechanism to fix such undesired

duplications in the following manner. When a node sends a broadcast query for an object,

it may receive multiple ACKs from different nodes within the domain of cooperation (i.e.

the radius of ring search). Subsequently, the requester notifies all but only one ACK

senders about the duplication. Upon receiving such notification, a node deletes the

specific object from its cache only if it has been stored in the unique part of the cache.

Object replacement is based on popularity and the adopted cache split. When a new

object is fetched from the CP’s server, the downloading node attempts to replace a less

popular object from its local cache (including both the duplicated part and the unique

part). If no less popular object is found then the object is not stored in the cache. When a

new object is fetched from the cooperation domain, the downloading node attempts to

replace a less popular object only from the duplicated area of its local cache. If no less

 137

popular object is found within the duplicate area then the object is not stored. In other

words, objects fetched from the local partition are never cached within the unique part of

the cache. Using the above logic, at steady state, all devices’ caches in a cooperation

domain will have the same set of objects in their duplicate areas.

Note that CSC with λ set to zero, is same as COOP-P-LPO. When D is equal to

zero, no space in cache is reserved for duplicate objects. In other words, there is no

duplication within a cooperation domain. We refer to this type of caching as exclusive

caching. Running CSC with λ set to one is same as running COOP-N-LPO. Since λ is

one, there is no restriction on storing duplicated objects. In other words, D = 1 cancels

the prioritized cooperation of COOP, which causes all nodes in a partition to store the

same set of most popular objects. It should now be evident that by varying D it is possible

to create different levels of object prioritization and subsequent duplications, which in

turn helps reconciling between the NOA and POA performance.

7.9 Computing best POA and NOA using CSC

Maximum node level availability (NOA) is achieved when all nodes in a domain

store the most popular objects and in CSC, this situation corresponds to D = 1. In this

case maximum possible NOA is limited by the cache size in each node and is equal to

f(C). Maximum POA is achieved when all available capacity in a domain is used to store

the maximum number of objects. Thus, to maximize POA, the split factor D must be set

to 0 (which corresponds to zero duplication). The maximum POA is determined by the

total number of objects we can store in a domain which is limited by cache size and

number of nodes in the domain, and is equal to f(VC).

 138

7.10 Evaluation in stationary networks

In order to evaluate and compare the proposed cooperative caching mechanism, we

have implemented all flavors of COOP (see Section 7.7.3) and CSC using ns2 network

simulator. Simulation has been run for 100 nodes with the cache size at each node set to

100. Total number of objects is 10000, and the object popularity follows a Zipf

distribution with the parameter α set to 0.8. Nodes are uniformly distributed in a

1500mx1500m area. All nodes use 802.11 MAC layer with a communication range of

250m.

7.10.1 Availability comparison between COOP and CSC

It was established in Section 7.7 that protocol COOP cannot achieve high NOA and

POA at the same time. The proposed protocol CSC attempts to remove this limitation by

adding the cache splitting factor	D, which together with the Domain of Cooperation

(DOC) can provide a finer granularity of object duplication control. By using this finer

duplication control the protocol CSC achieves high NOA and POA at the same time.

Figure 7-2: Feasible NOA-POA sets for COOP-P-LPO

 139

Figure 7-2 shows the feasible NOA-POA points and the corresponding Traffic

(GNT) values obtained from the ns2 simulation of COOP-P-LPO protocol. COOP-P-LPO

is shown because it outperforms all other versions of COOP including the LRU based

baseline reported in [28]. Each point in Figure 7-2 demonstrates the feasibility of a

specific combination of NOA and POA as a requirement, and the corresponding GNT

when the combination is feasible. For COOP, different (NOA, POA) points are generated

by varying the DOC. Observe that while low (NOA, POA) points are generally mostly

feasible, it is not so when either the NOA or the POA is increased. This clearly validates

the logic presented in Section 7.7 that the protocol COOP cannot achieve high NOA and

POA at the same time with relying only on DOC as a means for duplication control.

Figure 7-3 demonstrates CSC’s NOA-POA feasibility results. Different (NOA,

POA) points in this case are generated by varying the combination of DOC and the cache

split factor D.Observe how the protocol CSC is able to achieve high NOA and POA

simultaneously by leveraging the additional duplication control parameter, namely, the

cache split factor D. For the experimented range of NOA and POA, only one (NOA,

POA) situation, namely, (0.3, 0.8) is not achievable by CSC, whereas a large (NOA,

POA) area is not feasible with COOP (see Figure 7-2). Note that the minimum possible

GNT in CSC is slightly smaller than the minimum possible GNT in COOP-P-LPO

uniformly across all feasible (NOA, POA) points.

 140

Figure 7-3: Feasible NOA-POA sets for protocol CSC

Figure 7-4 compares the feasibility region of CSC with all flavors of COOP with

different cache replacement policies, namely, LRU, LPO, and RNDM. For a given

replacement policy, the presented results are either for –P or –N version of COOP

(whichever achieves better overall feasibility). The figure shows that the NOA-POA

feasibility of CSC remains superior to all flavors of COOP irrespective of the chosen

replacement policy.

Figure 7-4: Comparative NOA-POA feasibility sets

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3P
a

rt
it

io
n

 A
v
a

il
a

b
il

it
y
 (

P
O

A
)

Node Availability (NOA)

CSC COOP-LRU

COOP-LPO COOP-RNDM

 141

The above results indicate that when both high NOA and NOA are needed, the

proposed protocol CSC significantly outperforms all flavors of the protocol COOP, while

not increasing the corresponding Traffic (GNT). In fact, as shown in Figure 7-2 and

Figure 7-3, the GNT of CSC is slightly lower than that for COOP at the feasible (NOA,

POA) points. This property of CSC was found to be valid for different cache size and

also for different Zipf parameters.

7.10.2 Individual characterization of COOP

Node Object Availability (NOA): As defined in Section 7.6 , for a given Domain of

Cooperation (DOC), using object prioritization reduces duplication by storing more

unique objects within the DOC region. As shown in Figure 7-5, since lower object

duplication leads to less likely local hits, the NOA is generally lower with prioritization

turned on for all flavors of COOP. With prioritization on, since increasing DOC reduces

the level of object duplication, the quantity NOA reduces with increasing DOC. With

prioritization off however, DOC does not have major impact on NOA because in this

case the level of object duplication is already high and is decided primarily by the local

replacement policies such as LRU, LPO or RNDM.

 142

Figure 7-5: Impacts of DOC on NOA

Partition Object availability (POA): As shown in Figure 7-6, unlike in NOA, the

POA demonstrates a general increasing trend with increasing DOC. With higher DOC, a

node searches a bigger network area for an object, thus increasing the likelihood of

finding it in the partition. With prioritization turned on, the impacts of DOC are more

pronounced because prioritization itself helps reducing duplication. Therefore, to achieve

high availability object prioritization must be turned on which in turn deteriorates NOA.

0

0.1

0.2

0.3

0.4

0 2 4 6 8 10

N
o

d
e

 A
va

il
a

b
il

it
y

 (
N

O
A

)

Domain of Cooperation (DOC)

COOP-P-LRU COOP-N-LRU

COOP-P-LPO COOP-N-LPO

COOP-P-RNDM COOP-N-RNDM

Theoritical bound for NOA = f(C)

 143

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10

P
a

rt
it

io
n

 A
va

il
a

b
il
it

y
 (

P
O

A
)

Domain of Cooperation (DOC)

COOP-P-LRU COOP-N-LRU

COOP-P-LPO COOP-N-LPO

COOP-P-RNDM COOP-N-RNDM

Theroritical bound for POA = f(VC)

Figure 7-6: Impacts of DOC on partition availability

7.10.3 Individual characterization of CSC

As explained in Section 7.8, DOC and cache split factor D are the two parameters

which control the object duplication level, thus determining the availability performance

for the proposed CSC mechanism. Figure 7-7 demonstrates the impacts of DOC and λ on

the Node Object Availability (NOA). Observe that NOA depends a great deal on λ. larger

λ values cause higher levels of object duplications, leading to larger node level

availability due to increasing local hit rates. With smaller λ, more unique objects are

stored within the cooperation domain, leading to lower node level local hit rates, thus

causing lower NOAs. In CSC, the set of duplicated objects in all nodes are the same and

this set does not change as we increase DOC. In other words, varying DOC does not

change NOA as it is shown in Figure 7-7.

The impacts of DOC and cache split factor λ on the Partition Object Availability

 144

(POA) are reported in Figure 7-8. As expected, with lower λ, since more unique objects

are cached within a cooperating domain, the likelihood of finding an arbitrary object

within the partition increases. This explains the higher POA numbers for lower λ values.

As for the impacts of DOC, with higher DOCs, a node searches a bigger network area for

an object, thus increasing the likelihood of finding it in the partition – leading to higher

POAs.

Figure 7-7: Impacts of DOC and λ on NOA in CSC

0

0.05

0.1

0.15

0.2

0.25

0.3

1 3 5 7 9

N
o

d
e

 A
v
a

il
a

b
il
it

y
 (

N
O

A
)

Domain of Cooperation (DOC)

λ=0 λ=0.2

λ=0.3 λ=0.7

λ=1 Maximum NOA

 145

Figure 7-8: Impacts of DOC and λ on POA in CSC

From the NOA and POA results in Figure 7-7 and Figure 7-8, it can be observed

that unlike in COOP, the proposed CSC caching protocol can achieve high NOA and

POA simultaneously by carefully adjusting the two object duplication control parameters

DOC and λ. The impacts of this advantage of CSC over COOP have already been shown

in terms of the NOA-POA feasibility landscapes in Figure 7-4.

7.11 NOA-POA Feasibility in Mobile networks

In this section we relax the stationary partition assumption which was used for all

the results presented in Section 7.10. The same baseline parameters are used in ns2, with

human mobility modeled as random waypoint with an average node speed of 1.2m/s

(which is close to human speed) and pause time 300 seconds. Impacts of different pause

times, representing different levels of mobility, are also evaluated.

Figure 7-9 shows the feasible NOA-POA points and the corresponding Traffic

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9

P
a

rt
it

io
n

 A
va

il
a

b
il

it
y
(P

O
A

)

Domain of Cooperation (DOC)

λ=0 λ=0.2

λ=0.3 λ=0.7

λ=1 Maximum POA

 146

(GNT) values for the COOP-P-LPO protocol, which provides the best feasibility results

among all flavors of COOP. Observe that like in the stationary case, while low (NOA,

POA) points are mostly feasible, it is not so when either the NOA or the POA is

increased. The main difference between this graph and that of stationary network (i.e.

Figure 7-2) is that because of mobility, DOC and its resulting object prioritization have

less impact on NOA and POA. When nodes are mobile, it’s difficult to prioritize unique

objects over duplicated objects since there is always a minimum degree of undesired

duplication in the network. This explains why achieving high values of POA is not

possible for COOP based schemes. Note that because of using object prioritization

achieving high values of NOA also is not feasible.

Figure 7-9: Feasible NOA-POA sets for COOP-P-LPO

 147

Figure 7-10: Feasible NOA-POA sets for CSC

The NOA-POA feasibility points for the proposed CSC scheme are reported in

Figure 7-10. Comparing Figure 7-3 and Figure 7-10, it can be observed that the NOA-

POA feasibility performance of CSC does not change appreciably when mobility is

introduced. Different (NOA, POA) points in this case are generated by varying the

combination of DOC and the cache split factor D. Like in the stationary case, the

minimum possible GNT in CSC is slightly smaller than the minimum possible GNT in

COOP-P-LPO across all feasible (NOA, POA) points.

 148

Figure 7-11: NOA-POA feasibility in a mobile network

Figure 7-11 compares the feasibility region of CSC with all flavors of COOP with

different cache replacement policies. The figure shows that the NOA-POA feasibility of

CSC remains superior to all flavors of COOP irrespective of the chosen replacement

policy. The above results indicate that in addition to stationary networks, the proposed

protocol CSC significantly outperforms all flavors of the protocol COOP under mobile

networks. Moreover, as shown in Figure 7-9 and Figure 7-10, the GNT of CSC is slightly

lower than that for COOP.

The impact of the degree of mobility is evaluated by changing the pause time

between two subsequent moves in ns2 random waypoint mobility. Figure 7-12 shows that

for mobile network the maximum POA is slightly lower than that of a stationary network.

The main reason is under mobile network there is always a minimum degree of undesired

duplication in a domain which reduces the maximum possible POA. For example when a

node gets isolated, it has to download all objects from the CP’s server when they are not

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3

P
a

rt
it

io
n

 A
v
a

il
a

b
il

it
y

 (
P

O
A

)

Node Availability (NOA)

CSC

COOP-LRU

COOP-LPO

COOP-RNDM

 149

available in the local cache. Among those object node will store the most popular objects.

Later when a node gets connected to a bigger partition, it has a set of duplicated objects

and the number of these objects is more that D�. This extra undesired duplication reduces

the total number of unique objects stored in the partition and, in turn, reduces the POA.

As discussed in Section 7.8.3, in CSC the requester notifies all nodes who maintain a

duplicate object so that those nodes can remove the duplicated object from their cache to

accommodate a new unavailable object in the partition. This mechanism alleviates the

impact of undesired duplication; however, it cannot completely fix it.

Figure 7-12: Impacts of pause time on NOA-POA feasibility

7.12 Evaluation of Generated Network Traffic

Figure 7-13 shows the effects of DOC on GNT for the COOP family of protocols.

GNT is a function of NOA, POA, and the topological descriptors Cd and β. The quantity

Cd is the average hop-count between a node and Internet gateway and the quantity β.Cd

is the average hop-count between any two nodes in a domain.

0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3

P
a

rt
it

io
n

 A
v
a

il
a

b
il

it
y

 (
P

O
A

)

Node Availability (NOA)

Pause time=60s

Pause time=300s

Pause time=600s

Stationary Network

 150

Figure 7-13: Impacts of DOC on GNT in protocol COOP

In Figure 7-13, it can be observed that the GNT first decreases with increasing

DOC and then after an optimal point, it starts increasing back up. The reason is initially,

by increasing DOC, a percentage of the requested objects are found within the domain in

a distance smaller than Cd. In a small domain, the average hop-count between the

requester and found object in the domain is significantly smaller than the average hop-

count between a node in the domain and the gateway nodes (i.e. β << 1).

For larger domains, however, the distance between the requester and the found

object increases and get closer to the average distance between a node and the gateway

node (i.e. β ~ 1). This causes the GNT to go up again.

Figure 7-14 reports the generated traffic as a function of the two duplication control

parameters DOC and D in CSC. Similar to COOP, there is an optimal DOC at which

GNT is minimized. Furthermore, there is second point of optimality for D at optimal

2.5

3

3.5

4

4.5

5

0 5 10

G
e

n
e

ra
te

d
 N

e
tw

o
rk

 T
ra

ff
ic

 (
G

N
T

)

Domain of Cooperation (DOC)

COOP-P-LPO COOP-N-LPO
COOP-P-LRU COOP-N-LRU
COOP-P-RNDM COOP-N-RNDM

 151

DOC which provides the minimum GNT among all CSC policies using the optimal DOC.

This explains as to why GNT for CSC is slightly smaller than that of COOP at all feasible

points (as shown in Figure 7-9 and Figure 7-10).

Figure 7-14: Impacts of DOC and λ on GNT in CSC

7.13 Summary and Conclusion

We have developed a cooperative object caching mechanism for providing high

network and node level object availability in Mobile Social Wireless Networks. This is

achieved by using a novel cache partitioning method which can be used for fine grain

object duplication control within isolated network partitions. It was demonstrated that by

using this cache partitioning strategy, the proposed mechanism is able to outperform the

existing schemes while reducing network traffic. The above conclusion holds for both

stationary and mobile networks.

0
2

4
6

8
10

00.20.40.60.81
2.5

3

3.5

4

4.5

Dom
ain

 o
f C

oopera
tio

n

Generated Network Traffic (GNT)

λ

G
N

T

 152

Chapter 8 : COOPERATIVE FIREWALLING IN MANETS

8.1 Introduction

Wireless networks, such as Mobile Ad Hoc Networks (MANETs) and wireless

mesh networks, have become an integral part of the Internet infrastructure. Unwanted

traffic, which constitutes 2 to 12 percent of the Internet traffic, wastes significant network

bandwidth and the power of resource-constrained wireless nodes [64]. For example,

worm attacks are one the most severe cyber threats for MANETs in which worms with

arbitrary payload can saturate the networks in a matter of seconds [155].

On the Internet, firewalls are widely deployed on the border of private wired

networks to stop unwanted traffic to and from the public network. However, unlike wired

networks, it is difficult to deploy firewalls for wireless mobile networks because each

wireless mobile node often manages itself and therefore a central firewall is often

unrealistic to reach and impractical to enforce. Furthermore, due to the mobility and

topology dynamism, wireless mobile networks often lack the concept of private networks

and therefore have no clear line of defense. To defend against malicious attacks, each

wireless node has to implement the firewall functionality by itself. However, discarding

unwanted traffic at destination nodes in wireless networks leads to significant waste of

scarce resources, such as bandwidth and power, used by intermediate nodes to forward

unwanted traffic.

In this chapter we use the proposed cooperative caching scheme as a solution for

discarding unwanted packet in the MANETs. A firewall rule is considered as an object

and unwanted traffic is considered as object requests. Knowing the restricted capacity of

 153

mobile node, only a limited number of rules can be stored in each node, the main

question then is how to place firewall rules in the network to discard the maximum

number of unwanted packets in the network.

8.2 Technical Challenges

To discard unwanted traffic before reaching destinations, for each wireless node,

we need to distribute its firewall rules to other nodes. However, distributing firewall rules

in wireless networks is a technically challenging problem. First, the topology in wireless

mobile networks is dynamic and so are the forwarding paths. Thus, for the firewall rules

that a node wants other node to enforce, it is difficult to identify which nodes these rules

should be sent to. Second, the number of rules that a wireless node can handle is rather

limited due to resource limitations. Thus, for the firewall rules that a node receives, it is

difficult to decide which rules should be admitted and enforced given its resource

constraints.

8.3 Using Cooperative Firewall Rule Caching

In this section we propose a distributed firewalling scheme for wireless mobile

networks where nodes collaboratively discard unwanted packets for each other. We

address the first challenge of topology and path dynamism by embedding firewall rules

within routing messages and distributing a node’s rules along the paths that the node

receives unwanted traffic so that unwanted packets can be discarded before they reach the

node. Coupling rule distribution with routing update messages allows us to find the paths

that unwanted traffic are received and therefore distribute rules along them. For proactive

routing protocols, where each node periodically sends routing messages to other

 154

neighbors, firewall rules are sent out along proactive routing messages so that the nodes

receiving the routing messages can enforce these rules. For reactive routing protocols,

when a node wants to send a packet, the header of the packet is included in the route

request message. If the packet is unwanted, the destination node includes the rule for

discarding this packet in the corresponding route reply messages and hereby notifies all

intermediate nodes in the path from the packet source to the packet destination. We

address the second challenge of resource limitations by each node enforcing portions of

its received firewall rules based on rule admission policies and replacing obsolete rules

by new rules based on rule replacement policies. We use Split Cache replacement policy

as described in Chapter 3 and also we propose another heuristic based rule admission and

replacement policies to maximize the number of unwanted packets discarded before

reaching their destinations.

8.4 Rule Distribution Framework

In this section, we present our rule distribution scheme addressing both rule

exporting (i.e., determining which rules to export to neighbors and how to export them)

and rule importing (i.e., determining which received rules to be enforced).

8.4.1 System Model

The wireless network is formed by mobile nodes without any prior contact, trust or

authority relation. The nodes are able to communicate with each other using different

multi-hop routing protocols. Since the nodes can be mobile, the topology of the network

may change frequently over time. Mobile nodes are usually resource constrained in

energy, bandwidth, storage, memory and computational ability. Each mobile node may

 155

have some firewall policy that specifies what packets it does and does not want to receive

from other nodes. The firewall policy is represented by an Access Control List (ACL)

consisting of a sequence of rules. Each rule has a predicate over some packet header

fields and a decision (i.e., action) to be taken for the packets that match the predicate. The

decision of a rule is typically accept (i.e., permit) or discard (i.e., deny). ACL rules

are often overlapping and decisions are made based on the first match semantics (i.e., the

decision that an ACL makes for a packet is the decision of the first rule that the packet

matches in the ACL). Thus, for rule distribution purposes, we need convert each

overlapping ACL to an equivalent non-overlapping ACL. Each node only exports discard

rules (i.e., the rules whose decision is discard) and they are stored in a table called

Export-Policy Table (EPT). To ensure that the rules exported by a given node can only be

matched by packets that destined to this node, the destination field of each rule in the

node’s EPT must be the address of the node. Accordingly, for each node, we store the

rules that it receives and it wants to enforce in a table called Import-Policy Table (IPT).

Before forwarding a packet, a node checks the packet header against IPT rules and

discard the packet if it matches a rule in the IPT. Figure 8-1 shows a simple example

network where node D distributes the rules in its EPT, as shown in Table 8-1: Export-

Policy Table of node D, to other nodes. In this example network, for three rules of D, we

suppose node A admits rule B� and B5, B admits rule B�, C admits rule B5, and S admits

nothing. Suppose node S sends a packet with destination port 80 to D, it is forwarded by

B but discarded by A before reaching D because this packet matches rule B5 in A’s IPT.

 156

Figure 8-1: Rule distribution on an example network

Rule Src IP Dest IP Src Port Dest Port Protocol Action B� 10.10.0.5 10.10.0.1 * 8080 TCP discard B5 10.10.0.7 10.10.0.1 * 80 * discard B¾ 10.10.0.3 10.10.0.1 * * * discard
Table 8-1: Export-Policy Table of node D

8.5 Rule Exporting

8.5.1 Constructing Export-Policy Table

To construct EPTs, we need to convert overlapping ACLs to equivalent non-

overlapping ACLs. We perform this conversion using Firewall Decision Diagrams

(FDD), a tree-based data structure for representing ACLs [156]. An FDD is a directed

acyclic graph (DAG) with the following properties: (1) It has exactly one root node. (2)

Each non-terminal node represents a packet field and each terminal node represents a

decision. (3) A directed path from the root to a terminal node is called a decision path.

The node labels on every decision path are unique. (4) Each edge is labeled with a non-

empty set of integers within the domain of the field that labels the node where the edge is

originated. (5) The sets of integers that label the outgoing edges of a node are non-

overlapping. The union of these sets equals to the domain of the field that labels the node.

 157

After converting an overlapping ACL to an equivalent FDD, we can generate an

equivalent non-overlapping ACL from the FDD by generating one rule per decision path.

Deleting accept rules from the non-overlapping ACL yields the EPT. Figure 8-2

illustrates the process of calculating an EPT from an overlapping ACL. Figure 8-2(a)

shows a toy example of a two dimensional ACL whose rules are overlapping. We first

convert this ACL to an equivalent FDD shown in Figure 8-2(b), and then using this FDD,

we extract non-overlapping discard rules to construct the EPT in Figure 8-2(c).

Figure 8-2: EPT Construction using FDDs

8.5.2 Rule Distribution

We distribute rules in EPTs along with routing messages. Below, we discuss our

rule distribution scheme based on two types of routing protocols used in wireless mobile

networks: proactive protocols and reactive protocols.

 158

8.5.2.1 Rule Distribution with Proactive Routing Protocols

In proactive routing protocols such as OLSR [157] and DSDV [158], each node

periodically sends routing updates to its neighbors to keep the nodes’ routing table

consistent. Such protocols are suitable for stationary networks such as wireless mesh

networks and the wireless networks that are communication intensive. Using such

protocols, for each discard rule in the EPT of a given node, this node keeps track of the

hit rate of the rule, i.e., the number of received packets that match the rule per unit time;

once the hit rate of a rule exceeds a threshold, the node sends out the rule piggybacked on

its routing messages. A rule B is associated with two variables, hit rate denoted ℎ and

admission distance denoted H. When a node receives a rule and admits it in its IPT, it

resets the admission distance value of this rule to be its distance to the node that this rule

is originated from and then forwards the rule to the next hop. To control the number of

hops a rule traverses, each rule has a Time to Live (TTL) value. A rule is not forwarded if

its TTL value is equal to 0. Figure 8-3 shows an example scenario that illustrates the

above rule distribution process.

Figure 8-3: Rule distribution with proactive routing protocols

1

 159

8.5.2.2 Rule Distribution with Reactive Routing Protocols

Reactive routing protocols, such as AODV [138] and DSR [159], are suitable for

wireless networks that are mobile and that are not communication intensive. In such

protocols each node broadcasts a Route Request (RR) message to find a path to the

destination node that it wants to send messages; upon receiving an RR message, a Route

Reply (RRep) message is sent either by an intermediate node (if the node knows a path

from itself) to the destination or the destination node. The RR messages include source

and destination address to discover the route to the destination. In our rule distribution

scheme, we modify RR messages so that they also include other packet header fields such

as destination port, source port, and protocol type. Before the destination node or an

intermediate node replies to an RR message with an RRep message, it checks the packet

header fields included in RR message against the rules in its IPT. The destination node,

however, checks the packet header against its EPT. If the packet header does match any

of the rules, the node includes the corresponding rule B with its hit rate ℎ and admission

distance H = 0 in the RRep message and sends it over to the source. Note that hit rate of

rule B is updated each time a packet header matches rule B. When an RRep messages

travels back to the source node, it informs all intermediate nodes in the path about rule B.

Upon receiving the RRep message, the source node or the intermediate nodes can decide

whether to import the rule based on its hit rate and admission distance. Note that if a node

decides to import rule B to its IPT, it must reset H in RRep message to be its distance to

the destination before forwarding the rule to the next hop. Figure 8-4 shows an example

scenario that illustrates the above rule distribution process. In this example, node � wants

to send an HTTP request to node r over destination port 80. To find the path to node r,

 160

node � sends an RR message including source port (SP=1111), destination port (DP=80),

and protocol (P=TCP). As rule B5 in the EPT matches the packet header fields in the RR

message, node r includes rule B5 along with its ℎ and H = 0 to the RRep message and

sends it over to node �. As node ¿ adds this rule in its IPT, it updates H to 1. Finally,

node � realizes from the RRep message that its packet will be discarded by node r.

Hence, node S stops sending any HTTP request.

As reactive routing protocols usually use route caching, a node may receive

unwanted packets without receiving the corresponding RR message. Thus, only relying

on reactive approach to distribute rules may not be sufficient. Therefore, we can use the

proactive approach along with the reactive approach.

Figure 8-4: Rule distribution with reactive routing protocols

8.6 Rule Importing

When a node receives a rule, it decides whether to admit the rule to its IPT based

on its admission and rule replacement policies. Rule admission policy is based on

multiple factors such as the rule’s originator, hit rate, and admission distance. For

instance, a node may ignore a received rule if its hit rate is less than a prescribed

threshold. If a node decides to store a new rule while its IPT is full, it must evict another

 161

rule from its IPT to accommodate the new rule based on certain replacement policy. In

Section 8.11, we introduce two replacement policies to optimize rule distribution based

on our system performance metrics.

8.7 Policy Table Consistency

When the ACL rules of a node are modified, probably by its administrator, the EPT

of the node has to be recomputed. The new EPT rules may be different from the old EPT

rules, which may have been exported and admitted by other nodes. To avoid such

inconsistency, we propose two mechanisms that all nodes can employ to remove the

admitted rules originated from a particular node: rule revocation and rule expiration. In

the rule revocation mechanism, a node can broadcast a revocation message that contains

all the rules that this node wants to revoke. In the rule expiration mechanism, each rule in

an IPT has an expiration time, which is set based on the rule lifetime. The rule is deleted

when it expires. These two mechanisms can be used together.

8.8 Security Analysis

8.8.1 Threat Model

Distributing rules in an insecure network in which mobile nodes have low physical

security and can be easily stolen or compromised by an adversary raises some serious

security issues. First, an adversary node can impersonate a victim node and send forged

rules to deceive intermediate nodes to discard the legitimate traffic destined to the victim

node. Second, an adversary node can modify forwarding rules such that they cause partial

or complete unreachability of the victim node from the rest of the network. Third, an

adversary node can modify the rule lifetime to extend or shorten the rule effectiveness,

 162

which leads to unexpected reachability problems. Fourth, an adversary node can store and

resend a rule to cause unexpected reachability problems (aka replay attack). Fifth, an

adversary node can generate or store and resend a revocation message to all the nodes in

the network, which disrupts rule inconsistencies and causes unexpected reachability

problems.

8.8.2 Securing Rule Distribution

To address the first three security threats, we need to employ a set of security

mechanisms that provides rule sender authentication and rule integrity. Such security

mechanisms require pre-distributed symmetric keys or a reliable Public-Key

Infrastructure (PKI). While mesh networks that have solid network topology often have

pre-established security infrastructure, MANETs may not have such infrastructure due to

node anonymity or network unreliability caused by node mobility, sparse connectivity,

etc. Thus for mesh networks, we assume that the network has pre-distributed symmetric

keys or PKI, in which each node knows which key (or public key) is associated to which

IP address. And for MANETs, we assume that the nodes are auto configured using secure

auto configuration scheme proposed by Wang et al.in [160]. In this scheme, each node

first computes its public key and accordingly chooses an IP address, which is the hash of

its public key. Using such a scheme or similar ones that provide key-to-IP mapping is

useful for rule sender authentication. Hence, using a PKI system with a key-to-IP

mapping, a rule sender node creates and distributes a message containing the rule and its

attributes such as hit rate, admission distance, TTL, lifetime and a nonce as well as the

rule digital signature and the node’s public key. An example exported rule message is

shown in Figure 8-5.

 163

Figure 8-5: The format of a secure rule message

On the other hand, when a node receives a rule, it first checks whether the public

key belongs to the rule sender. It then verifies the message digital signature for message

integrity and authentication. Finally, it ensures that the rule’s destination field is the rule

sender IP address. This verification is to confirm that the rule sender is not impersonated

and the rule as well as its attributes is not modified. Once the rule is verified, it is added

to the node’s IPT with its corresponding nonce.

To address the replay attack (i.e.the fourth security threat), each rule has a nonce.

For reactive routing protocols the nonce is the RR message sequence number for which

the rule is exported. Thus, as each rule is assigned to an RR message, an adversary cannot

replay a rule with no corresponding RR message. For the proactive routing protocols, on

the other hand, the nonce is a timestamp, which is the time that the rule is exported. Let

�� be the timestamp and �� be the receiver node clock. The receiver node accepts a rule if

|�� − ��| ≤ æ. Using this condition, we bound the replay attack time window (|�� − ��|) to

a constant value æ which is set by the receiver node. If the nodes are even loosely time

synchronized, æ can be chosen to be very small; otherwise, it needs to be chosen large

enough to create a balance between unexpected unreachability and unwanted packet

filtering.

To address the fifth security threat and revoke a rule securely, we use the unique

nonce corresponded to each rule to avoid replaying revocation messages. Thus, to send a

revocation message, the destination node first recreates the rule message with its original

 164

nonce but with lifetime set to zero. It then signs and broadcasts the message in the

network. As the rest of the nodes receive the revocation message, they delete the rule

with is corresponding nonce from their IPT. By this technique, an adversary cannot

generate a revocation message because it must be signed by the rule sender (which is the

destination field of the rule). Also, an adversary cannot store and resend a revocation

message because each revocation message is for only one rule with its corresponding

nonce. Note that the hit-rate and admission distance fields for the revocation messages

are set to zero.

8.9 Performance Model

8.9.1 Protocol Overhead

Due to network resource constraints, the main objective of protocol design is to

minimize the computational and transmission overhead of IPT computation and rule

distribution. As the number of firewall rules for a given node is usually very small,

finding non-overlapping rules for EPT and distributing them occasionally requires

insignificant amount of resources. More precisely, using reactive routing messages, the

rules are piggybacked by RR and RRep messages, which only increases their sizes up to

5 and 156 bytes respectively, and no extra messages are required. Similarly, using

proactive routing messages, a node can either piggyback new rules on its own routing

messages, which again results in a very small overhead, or it can send an explicit

broadcast message for announcing new rules. Recall that using reactive routing protocol,

a demand for an unwanted packet triggers rule distribution, and for proactive routing

protocol, the number of unwanted packet per unit time must exceed a prescribed

threshold before any new rule is dispatched. Thus, rules are mostly distributed when the

 165

network is seemingly under attack. Hence, compared to the number of unwanted packets

that can be stopped in the path, such small overhead of rule distribution is negligible.

8.9.2 Performance Metrics

We define two performance metrics:(1) Packet Discard Ratio (PDR) that represents

the percentage of unwanted packets discarded in the path before reaching the destination,

and (2) Forwarding Cost Ratio (FCR) that represents the expected value of the portion of

its path that an unwanted packet is forwarded before being discarded. The ultimate goal is

to maximize PDR for destination node and to minimize FCR for the entire network.

However, achieving both performance goals at the same time is difficult because the size

of IPTs is limited. To maximize PDR, we need to maximize the number of unwanted

packets that are discarded before reaching their respective destinations. Thus, we want to

distribute the maximum number of unique rules on the nodes along a path that match

unwanted packets. However, as the size of a node’s IPT may be smaller than the number

of the rules that the node receives, the rules needs to be distributed on the nodes with the

minimum amount of rule duplication. On the other hand, to minimize FCR, we need to

maximize the number of the unwanted packets that are discarded at sources (i.e.number

of forwarding hops is zero). This requires each node to store high hit rate rules in its IPT

that in turn results in more rule duplications. To address both performance metrics at the

same time, we define overall cost ç as a weighted function of PDR and FCR as follows:

ç = è × (1 − �r¸) + (1 − è) × é�¸ (8-1)

In Eqn. 6-1, è ∈ [0,1] is the weight coefficient factor that balances between PDR

and FCR. For example, when è = 1, the overall cost only depends on PDR, whereas

when è = 0, the overall cost only depends on FCR.

 166

8.9.3 Analytical Model

Given a network with) nodes, we first model collaborative firewalling for a single

destination node that receives unwanted packets from) − 1 nodes. We then extend this

model to all nodes in the network.

Suppose node � sends D� unwanted packets per unit time to the destination node r.

We assume the destination node r has � rules B�, … , B* in its EPT to export. The

popularity of a given rule is defined as the percentage of unwanted packets that match

against the rule. The popularity of �-th rule is denoted by "� and is calculated as "� =
Õ�T∑ º�Æ�ìJ ; where ℎ� is the number of unwanted packets that match against �-th rule. For

simplicity, we assume rule popularity follows a power law distribution. We model "� by

Zipf distribution with parameter � and Ω (i.e.Ω = ∑ �M*�&�) as follows:

 "� = ���î (8-2)

Note that B�, ⋯ , B* are sorted where B� and B* have the highest and the lowest

popularity, respectively. Let é�k(�) =< �ð, ��, ⋯ , �S > be the sequence of nodes in the

path from the �-th node in the network to destination	r. To be able to enumerate the

nodes in the path, we use �ð to represent the �-th node in the network and �S is the closest

node to the destination. Let ̧(�) be the set of rules stored at � at time � and �(̧(�)) be

the probability that a given unwanted packet matches against one of the rules in ̧(�). As

 ̧(�) contains non-overlapping rules, �(̧(�)) is calculated as follows:

 �(̧(�)) = ∑ "��∈ñ%(}) (8-3)

Let �r¸� (�) be the PDR of unwanted packets sent from � to � at time �. Thus,

 167

 �r¸�k(�) = �(⋃ ̧∀�%∈ó�ô(}) (�)) (8-4)

Using Eqn. 6-4, we can compute the average PDR for all the unwanted packets that

reach destination r. The average PDR of all unwanted packets from different sources

denoted by �r¸k(�) is calculated as follows:

 �r¸k(�) = ∑ (Æ�ìJ º�×õkñ�ô(}))∑ º�Æ�ìJ (8-5)

And the total average PDR for the destination node r in time period C is calculated

as follows:

 �r¸k = F �r¸k-ð (�)H� (8-6)

Based on the definition of FCR, it is the ratio of number of times that a packet has

been forwarded to the path length between source node and destination node. For

example, FCR of an unwanted packet discarded at source node is zero, and it is 1 if it is

discarded at the destination. Let é�¸� (�) be the FCR of unwanted packets sent from � to

� at time �. We can calculate é�¸$k(�) for a simple example network in Figure 8-1,

where é$k(�) =< �, ö, ¿ >, as follows:

é�¸$k(�) = 1/3{0 × �(¸ð(�)) + 1 × �(¸�(�) − ¸ð(�)) + 2

�(¸5(�) − ¸�(�) − ¸ð(�)) + 3(1 − �r¸$k(�))}

¸ð(�), ¸�(�), and ¸5(�) are the set of rules for nodes A, B, and S. The generalized

equation for é�¸�r(�) is as follows:

 é�¸�k(�) = ∑ / ×õPñ%(})L⋃ ñøøù% Q0∀�%∈ú�ô(û) |ó�ô(})| (8-7)

Using Eqn. 6-7, we can compute é�¸k(�), the FCR for all unwanted packets that

reach destination r as follows:

 168

 é�¸k(�) = ∑ º�Æ�ìJ ×ó+ñ�ô(})×|ó�ô(})|∑ º�Æ�ìJ ×|ó�ô(})| (8-8)

Let D� be the rate of unwanted packets from node � to node �. We can also extend

Eqn. 6-8 for the FCR for all nodes in C time period as follows:

 é�¸ = F ∑ º�%Æ�ìJ ×ó+ñ�%(})×|ó�%(})|∑ º�%Æ�ìJ ×|ó�%(})|-ð H�

8.10 Optimal Cases and Theoretical Bounds

We next compute the theoretical bound for maximum possible PDR and minimum

FCR. Descriptions for the symbols and notation used here are in Table 8-2.

Parameters description �:Number of rules �: Zipf parameter "�: popularity of rule � e: size of IPT üℓ: set of nodes in distance ℓ ü∗: set of nodes farther than

⌊�/e⌋D�:rate of unwanted packet generated by node � to destination

Table 8-2: Parameter used for computing bounds

8.10.1 Maximum Packet Discarding Ratio

To maximize PDR for destination node r, we need to place rules so that the

number of unwanted packets reaching the destination r is minimized. Thus, we want to

put the maximum number of unique rules with hit rate as high as possible in the path

from the unwanted packets source to the destination r. Let e be the IPT size. The best

placement strategy of the rules that maximize PDR is as the following: (1) We sort the

rules based on their hit rate from high to low. (2) We place B�, … , B� in 1-hop distance

 169

nodes, B�u�, … , B5� in 2-hop distance nodes, and accordingly B(>L�)�u�, … , B>� in

?-hop distance nodes (note that ? ≤ �/e). Thus, we put the first e rules with highest hit

rates in all nodes within 1-hop distance so that they are effective in all possible paths to

the node r. Similarly, we put the second e highest hit rate rules in all nodes within 2-hop

distance and so forth. Clearly, for nodes with distance more than �/e, all unwanted

packets are discarded before reaching the destination because all rules have already been

placed in their path to the destination. Let ü� denote the set of nodes � hops away from the

destination and ü∗ denote the set of nodes that are located farther than �/e hops distance.

The total number of packets discarded before reaching the destination is denoted by �S³´

and is calculated as follows:

 �S³´ = ∑ ∑ D ∈��*/��&� ∑ ">��>&� + ∑ D ∈�∗ (8-9)

Note that in Eqn. 6-9, the first term is the number of discarded packet generated by

nodes within �/e hops from the destination. The second term is the number of discarded

packets generated by nodes whose distance is farther than �/e to the destination.

Replacing ∑ "���&³ by /�JK�L³JK�
�LM 0ΩL� where Ω = ∑ "�*�&� =

*JK�L��LM , Eqn. 6-9

can be written as:

 �S³´ = ∑ ∑ D ∈��*/��&� (��)JK�L�*JK�L� + ∑ D ∈�∗ (8-10)

We can calculate the maximum packet discarding ratio as �r¸S³´ =
�S³´/()∑ D�T�&�). Thus, using Eqn. 6-10, the upper-bound of PDR for node r is

calculated as follows:

 170

 �r¸k ≤ ∑ ∑ º%%∈���/��ìJ (��)JK�KJ�JK�KJ u∑ º%%∈�∗T∑ º�Æ�ìJ (8-11)

8.10.2 Minimum Forwarding Cost Ratio

In order to minimize the forwarding cost ratio for a designated destination node r,

we use the following bottom-up rule placement approach. All paths to a destination node

can be represented by the shortest path spanning tree rooted at node r. To minimize

FCR, we need to have the least number of packet forwardings which implies that each

node needs to discard as many unwanted packets as possible. Note that rules are sorted

based on their hit rate therefore the leaf nodes in the tree need to store rules from B�, … , B�

in order to discard the maximum number of unwanted packets. The next level of the

nodes (i.e.leaves’ parents) need to store the rules that match the maximum number of

unwanted packets at the nodes. This includes the unwanted packets that the nodes

generate locally and the unwanted packets they receive from their children. FCR is

minimized if this process continues recursively along the spanning tree to the root. Since

calculating the minimum value for FCR is difficult because of its dependency on the

semantics of rules, network topology (i.e. number of children per node), node’s capacity

e and the skewness parameter of power law distribution �, we calculate a lower-bound

for FCR as follows. Suppose node A is located within distance ℓ from the destination. To

minimize FCR of unwanted packets generated by node A, we need to place rules such

that rules 1,… , e are stored in node A, rules e + 1,… ,2e are stored in the first node in the

path, and subsequently rules �e + 1, … , (� + 1)e are stored inthe �-th node in the path.

Therefore, the total number of forwarding for unwanted packets generated by node ¿

within distance ℓ of node r denoted by éℓ� is calculated as follows:

 171

éℓ� = �ä1 −." �
 &� å + ä1 −." 5�

 &� å +⋯+ ä1 − ." �×�
 &� å� × D�

 = (ℓ − ∑ " ℓ×� &�) × D� (8-12)

However, as there are multiple sources of unwanted packets and each node has

limited capacity of e, we cannot place the rules as described. For instance, let node B be

the first node in the path from node A to the destination node. If node B also is a source

of unwanted packets, it needs to store rules from 1, … , e, but its IPT is already full by

rules e + 1,… ,2e that are imported in the first round for unwanted packets generated by

node A. Hence, assuming Eqn. 6-12 holds for all nodes, which may not be applied in

reality, we can calculate a lower-bound of FCR for destination node r as follows:

 é�¸k ≥ ∑ ∑ ó	�∀�∈�ℓℓìJ∑ ∑ (∀�∈�ℓℓìJ º�×ℓ) (8-13)

Using Eqns. (6-13) and (6-14), the lower-bound for FCR can be stated as follows:

 é�¸k ≥ 1 − ∑ ∑ (∀�∈�ℓℓìJ ∑ |%ℓ×�%ìJ ×º�)∑ ∑ (∀�∈�ℓℓìJ º�×ℓ) (8-14)

8.11 Rule Admission and Replacement Policy

In this section, we present two rule admission and replacement policies: Split

Replacement Policy (SRP) and Proximity Aware Replacement (PAR).

8.11.1 Split Replacement Policy Algorithm

As mentioned before, due to limited size of IPTs, PDR and FCR are dependent on

the number of rule duplications in the paths to the destination. Thus, we should carefully

 172

control the amount of rule duplication to tradeoff between the two potentially conflicting

goals of minimizing FCR and maximizing PDR. To this end, we divide each IPT into two

segments: the first segment of an IPT holds rules with highest hit rates with no

constraints on number of duplications in the path. The second segment of an IPT stores

the rules that are unique in the path. Keeping the rules with the highest hit rates in the

first segment of an IPT helps decreasing FCR, and keeping the uniqueness of rules along

the path to the destination in the second segment of IPT helps increasing PDR. By

adjusting the size of the first and the second segments of IPTs, SRP can easily regulate

the total cost of unwanted packets in the network.

Using SRP, when a node receives a new rule, it imports the rule, if it has a free slot

in its IPT; otherwise, it executes the following procedure: (1) If the rule has been stored

in the path (H ≠ 0) and if there is a rule in the first segment of an IPT whose hit rate is

smaller than the new rule’s hit rate, the rule is replaced with the rule with the lowest hit

rate; otherwise, the rule will not be imported in IPT. (2) If the rule has not been stored in

the path (H = 0) and if there is a rule in the second segment of an IPT whose hit rate is

smaller than the new rule’s hit rate, the rule is replaced with the rule with the lowest hit

rate; otherwise, the rule will not be imported in the IPT. In case a rule is added to an IPT,

the rule admission distance is updated to node’s distance to the destination and the rule

will be forwarded to the next hop. SRP pseudo code is shown in Algorithm 1.1.

 173

8.11.2 Proximity Aware Replacement Algorithm

An alternate approach is to use the distance parameter to control the amount of rule

duplication in a path. In PAR algorithm, a node accepts rule B� if H� is larger than a

predefined threshold À. Intuitively, when À is small, high hit rate rules are stored in many

nodes in the path which decreases both FCR and PDR. On the other hand, when À is

large, high hit rate rules are stored in few nodes in the path which increases both FCR and

PDR. In PAR algorithm, a new rule is admitted if a rule is not stored in any node within

distance	À. In case the node’s IPT is not full, the node imports the new rule; otherwise, if

there is a rule in the IPT whose hit rate is smaller that the new rule’s hit rate, the rule is

replaced with the rule with the lowest hit rate. If the new rule’s hit rate is smaller than the

 174

lowest hit rate in the IPT, the rule will not be imported in the IPT. PAR pseudocode is in

Algorithm 2.

8.12 Simulation Results

We evaluate PDR and FCR based on our replacement and admission policies,

namely SRP and PAR.

� Zipf parameter [0.5 … 1] e IPT size [10 … 200]
 SRP parameter [0 … 1] À Proximity parameter [0 … 10] � Movement speed 0 m/s (static), 1m/s (slow) and � Total number of rules 10000) Total number of nodes 100
A Area 500 m x 2500 m
Simulation runs for 15000 seconds. Packets are generated every 2

Table 8-3: Simulation parameters

 175

8.12.1 SRP Performance

Recall that we divide IPT tables into two segments where the first segment stores

high hit rate rules and the second segment stores unique rules in the path that rules are

distributed. In practice, the high hit rate rules are duplicated in the first segment of the

IPT for all nodes in the path. We used parameter
 to indicate the percentage of IPT

reserved in the first segment. Figure 8-6(a) shows the impacts of
 on PDR. The results

correspond to � = 0.8 and IPT size of 100, which is equal to 1% of the total number of

rules in the destination node. For small
 values, nodes only store rules which have not

been stored by other intermediates nodes in the path. Hence, the total number of different

rules stored in the path increases which in turn causes more number of unwanted packets

to be discarded in the path. This explains why PDR is high for small values of
.

Figure 8-6: SRP Packet Discarding Ratio and Forwarding Cost Ratio for different θ
values

However, as
 increases, the amount of rule duplication along the path that the rule

is distributed increases and therefore PDR reduces. In an extreme case, when
 = 1

(i.e.no second segment in IPT), all nodes will store the same set of high hit rate rules,

0 0.2 0.4 0.6 0.8 1

0.35

0.4

0.45

0.5

SRP Parameter (θ)

P
a
c
k
e
t

D
is

c
a
rd

in
g
 R

a
ti
o
 (

P
D

R
)

0 0.2 0.4 0.6 0.8 1
0.67

0.68

0.69

0.7

0.71

0.72

SRP Parameter (θ)

F
o
rw

a
rd

in
g
 C

o
s
t

R
a
ti
o
 (

F
C

R
)

Static

Speed (1m/s)

Speed (10m/s)

Static

Speed (1m/s)

Speed (10m/s)

(a) PDR vs θ (b) FCR vs θ

 176

which in turn leads to the minimum PDR. The slope of decreasing trend of PDR is

different for three mobility patterns. The more mobile a network is, the less significant

the impact of
 is on PDR. The reason is when nodes are moving, rules in the second

segment of IPT may not be unique along the path. Thus, the number of duplicated rules in

a path stored in the second segment of IPT increases as nodes move faster. This

unnecessary duplication of the rules in the second segment reduces the impact of
 on

PDR.

Figure 8-6(b) shows the impact of
 on FCR. By increasing
, greater number of

high hit rate rules are stored in IPT. This leads to discarding more unwanted packets

locally with minimum FCR of 0. However, as shown in Figure 8-6(a), by increasing
,

the number of packets that reaches the destination increases (i.e.PDR decreases). Thus,

there is more number of unwanted packets with the maximum FCR of 1. The tradeoff

between percentage of unwanted packets being discarded at the source and the percentage

of unwanted packets that reach the destination brings up an optimal point for
 at which

the average FCR is minimum. For instance, for a static network the
 that minimize FCR

is 0.62. The optimal point for mobile networks shifts to the left as their mobility speed

increases due to unnecessary rule duplications for the rules that are stored in the second

segment of the IPT.

 177

Figure 8-7: SRP overall cost

Figure 8-7(a) shows the impact of
 on the overall cost when è = 0.5

(i.e.performance metrics PDR and FCR are equally important). In this case, the overall

cost is minimum when
 = 0 for mobile networks and
 = 0.1 for static network. The

results show in general the collaborative firewalling is indeed required to minimize the

overall cost of unwanted packets. As in wireless mobile networks, FCR seems to be more

important than PDR due to the power constraints on mobile nodes, Figure 8-7(b) shows

the overall cost when è = 0.25 where FCR is three times more important than PDR. The

results show that the overall cost for SRP is down to 0.272 for static and 0.285 for mobile

networks, respectively.

8.12.2 PAR Performance

In PAR, a node imports a rule only when its distance to the last node that stores the

rule is less than a threshold À. Figure 8-8(a) and (b) show the impact of À on PDR and

FCR, respectively. These graphs correspond to � = 0.8 and IPT size of 100, which is

equal to 1% of the total number of rules. In PAR, À is inversely proportional to the

0 0.2 0.4 0.6 0.8 1
0.62

0.64

0.66

0.68

0.7

SRP Parameter (θ)

O
v
e
ra

ll
C

o
s
t

(γ
=

0
.5

)

0 0.2 0.4 0.6 0.8 1
0.27

0.28

0.29

0.3

0.31

SRP Parameter (θ)

O
v
e
ra

ll
C

o
s
t

(γ
=

0
.2

5
)

Static

Speed (1m/s)

Speed (10m/s)

Static

Speed (1m/s)

Speed (10m/s)

(a) Total Cost for γ=0.5 (b) Total Cost for γ=0.25

 178

number of rule duplications along the path that the rule is distributed. Thus, increasing À

results in reducing rule duplications and therefore increasing PDR. Note that the PDR

value is less for mobile network because of unnecessary rule duplications in a path. As an

extreme case, when À = 0, all nodes have the same set of rules in IPT (which is similar to

SRP when
 = 1).

Figure 8-8(b) shows the impact of À on FCR. Similar to SRP, the number of

duplicated rules creates a tradeoff between number of packets that are discarded at the

source (i.e.FCR=0), and number of packets that are discarded at the destination

(i.e.FCR=1). As number of duplicated rules in a path is determined by À, there is an

optimal À at which FCR is minimum. For instance, the optimal À for static network is

equal to 1 and for mobile networks it varies from 2 to 3.

Figure 8-8: PAR Packet Discarding Ratio and Forwarding Cost Ratio for different σ
values

Figure 8-9 (a) demonstrates the impacts of À on the overall cost when è = 0.5. The

overall cost is minimum when À = 3 for static network, and it varies from 4 to 4.2 for

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

PAR Parameter(σ)

P
a

c
k
e

t
D

is
c
a
rd

in
g

 R
a

ti
o

 (
P

D
R

)

0 2 4 6 8 10
0.65

0.7

0.75

0.8

0.85

0.9

PAR Parameter(σ)

F
o

rw
a

rd
in

g
 C

o
s
t

R
a
ti
o

 (
F

C
R

)

Static

Speed (1m/s)

Speed (10m/s)

Static

Speed (1m/s)

Speed (10m/s)

(b) FCR vs σ(a) PDR vs σ

 179

mobile networks. Figure 8-9 (b) shows the overall cost when è = 0.25. The results show

that the overall cost for PAR is down to 0.28 for static and 0.29 for mobile network.

Figure 8-9: PAR overall cost

8.12.3 Sensitivity Analysis

Impacts of Mobility: We analyze the performance of the proposed scheme under

three different mobility profiles: static network, random network mobility with 1m/s

speed, and random network mobility with 10m/s speed. These mobility profiles are

designed to represent wireless mesh networks, social mobile ad hoc networks, and

vehicular ad hoc networks, respectively.

Wireless mesh networks usually contain static wireless routers, and they are

modeled by the static network topology. As network and therefore paths are both static,

rule duplication is controlled very well by PAR and SRP schemes in a static network.

Maintaining the desired level of rule duplication results in high PDR and low FCR for

static networks. Figure 8-10(a) and (b) show that the PDR and FCR are better using SRP

0 5 10

0.65

0.7

0.75

0.8

0.85

PAR Parameter(σ)

C
o
s
t

R
a
ti
o
 (

γ=
0
.5

)

0 5 10
0.26

0.28

0.3

0.32

0.34

0.36

0.38

PAR Parameter(σ)
C

o
s
t

R
a
ti
o
 (

γ=
0
.2

5
)

Static

Speed (1m/s)

Speed (10m/s)

Static

Speed (1m/s)

Speed (10m/s)

(d) Total Cost for γ=0.25(c) Total Cost for γ=0.5

 180

with
 < 0.83 and
 > 0.39, respectively. And Figure 8-8(a) and (b) show that the PDR

and FCR are better using PAR with all À values and À < 7, respectively.

Social mobile ad-hoc network can be formed by collection of mobile devices

carried by people who get together in university campuses, shopping malls, and other

public places. To model such networks, we use random mobility with low speed of 1m/s.

As the network topology changes gradually, rule duplications along the paths cannot be

controlled as in static networks. Therefore, SRP and PAR are less effective which is

observable from PDR and FCR graphs in Figure 8-6(a) and (b) and Figure 8-8(a) and (b).

Finally, we look at SRP and PAR performance for vehicular ad-hoc networks that

are modeled by high-speed mobile networks with speed of 10m/s. When nodes move

faster, the network topology become more dynamic. In other words, network paths

changes more frequently over time, which in turn leads to less control on rule

duplications along the paths. Hence, PDR decreases and FCR increases as nodes move

faster.

Furthermore, by comparing the results from Figure 8-7 and Figure 8-9, PAR is

more sensitive to mobility comparing to SRP, as the maximum cost difference between

static and high speed mobile networks is 3 and 17 for SRP and PAR, respectively. In

addition, for large values of
 and À, the overall cost for different mobility profiles

converge, which indicates that the number of rule duplications in the paths for both SRP

and PAR replacement policy is almost the same.

 181

Figure 8-10: Impact of Zipf parameter (�) on FCRmin

Impacts of Zipf parameter
: The parameter � in Zipf distribution determines the

skewness of the rule popularity distribution. In other words, � parameter is the slope of

popularity function in log-log scale. Clearly, a Zipf distribution with � = 0 represents a

rule popularity with uniform distribution.

Figure 8-10 (a) and (b) show the impact of � on the minimum forwarding cost ratio

é�¸S�T for SRP and PAR, respectively. To obtain the minimum FCR we use optimum

value of
 and À for SRP and PAR, respectively. Figure 8-10(a) and (b) illustrate that by

increasing �, FCR reduces for both replacement algorithms. The main reason is that by

increasing � less number of rules represents greater number of unwanted packets. Thus,

the amount of traffic that is discarded at the source is higher which results in the decrease

of the average FCR.

Figure 8-11 (a) and (b) show the maximum PDR in the network. The results

illustrates that larger � values increases the percentage of the packets that are discarded

0.2 0.4 0.6 0.8 1

0.45

0.6

0.8

1

Zipf Parameter α

F
o
rw

a
rd

in
g

 C
o
s
t

R
a
ti
o

static

v=1m/s

v=10m/s

0.2 0.4 0.6 0.8 1

0.45

0.6

0.8

1

Zipf Parameter α

F
o
rw

a
rd

in
g

 C
o

s
t

R
a
ti
o

Static

v=1m/s

v=10m/s

(a) FCR
min

 vs. α for SPR (b) FCR
min

 vs. α for PAR

 182

in a path. This is because a less number of rules match against a greater percentage of

unwanted packets.

 Figure 8-11: Impact of Zipf parameter (�) on PDRmax

Impacts of IPT size: Intuitively, FCR reduces if we store more number of the rules

in each node. Thus, we expect a decreasing trend for FCR, while IPT size increases.

Figure 8-12(a) and (b) show minimum FCR for SRP and PAR replacement algorithms,

respectively. Interestingly, the impact of increasing IPT for different mobility speeds is

different for SRP and PAR. It seems that the impact of increasing IPT in SRP is more

consistent than PAR while nodes are moving fast.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.7

Zipf parameter (α)

P
a

c
k
e

t
D

is
c
a
rd

in
g
 R

a
ti
o

static

v=1m/s

v=10m/s

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.7

Zipf parameter (α)

P
a

c
k
e

t
D

is
c
a

rd
in

g
 R

a
ti
o

Static

v=1m/s

v=10m/s

(a) PDR
max

 vs.α for SRP (b) PDR
max

 vs. α for PAR

 183

Figure 8-12: Impact of size of IPT on FCRmin

Similarly, Figure 8-13(a) and (b) demonstrate the impact of number of IPT size on

maximum PDR. Indeed, by storing greater number of rules in each node, more unwanted

packets are discarded along a path. This is the reason for increasing trend of �r¸S³´ in

both SRP and PAR.

Figure 8-13: Impact of size of IPT on PDRmax

0 100 200
0.6

0.7

0.8

1

0.9

Size of IPT

F
o
rw

a
rd

in
g
 C

o
s
t
R

a
tio

static

v=1m/s

v=10m/s

0 100 200
0.6

0.7

0.8

0.9

1

Size of IPT

F
o
rw

a
rd

in
g
 C

o
s
t
R

a
tio

Static

v=1m/s

v=10m/s

(a) FCR
min

 vs. size of IPT

for SRP

(b)FCR
min

 vs. size of IPT

for PAR

0 100 200
0

0.5

1

Size of IPT

P
a

c
k
e

t
D

is
c
a

rd
in

g
 R

a
ti
o

static

v=1m/s

v=10m/s

0 100 200
0

0.5

1

Size of IPT

P
a
c
k
e
t

D
is

c
a
rd

in
g
 R

a
ti
o

Static

v=1m/s

v=10m/s

(a) PDR
max

 vs. size of IPT

for SRP

(b)PDR
max

 vs. size of IPT

for PAR

 184

8.13 Summary and Conclusion

We proposed a collaborative firewalling scheme for mobile networks. We

introduced two performance metrics, namely Packet Discarding Ratio (PDR) and

Forwarding Cost Ratio (FCR), to address the effectiveness of distributed firewalling in

the network. In addition, we developed an analytical model for the scheme using different

system parameters and calculate theoretical bounds for system performance metrics. We

further proposed two heuristic algorithms, namely the Proximity Aware Replacement and

the Split Replacement Policy to maximize PDR and minimize FCR. We finally evaluated

the performance of the system by extensive simulation on mobile networks with different

mobility profiles. Our results show that using the proposed collaborative firewalling

scheme, a considerable portion of unwanted traffic can be discarded before reaching the

destinations, which saves substantial amount of power and bandwidth.

The simulation results revealed that for each node by distributing only 1% of its

firewall rules, about 36% of unwanted packets can be discarded in mobile networks and

about 42% in static networks. Furthermore, using Split Cache replacement policies, we

can save the network bandwidth wasted by unwanted traffic up to 30% for different

mobility patterns and speeds.

 185

Chapter 9 : SUMMARY AND CONCLUSION

In this thesis we showed that cooperative content caching can effectively reduce the

object provisioning cost for data enabled mobile devices. We proposed different caching

strategies for a wide range of scenarios such as homogenous and heterogeneous

networks. We also analyzed the performance of cooperative caching under various

mobility patterns in social wireless networks.

In Chapter 3 we developed an optimal cooperative caching strategy that minimizes

the object provisioning cost in a stationary network where all users have the same request

generation pattern. We also developed an analytical model to compute the optimal split

parameter to minimize the provisioning cost.

In Chapter 4 we extended the optimal strategy and developed a benefit based

caching strategy to minimize the provisioning cost when users have different request

generation patterns. In a heterogeneous network, users have different interest and they

also have different request generation rate. By modeling the problem as a classic

maximum weight matching in bipartite graphs we showed the upper bound performance

for the cooperative caching. Our heuristic benefit based caching is able to provide a

reasonable and comparable performance compared to the upper bound.

Performance of cooperative caching is highly dependent on node mobility patterns.

In Chapter 5 we investigated the following mobility patterns and their impacts on

performance of cooperative caching. a) Random Walk: Random walk is a simple and

popular mobility pattern in which each node pauses in a waypoint for a while and then it

selects a random destination before moving to the destination at a randomly selected

speed. After reaching the destination, it again pauses, and then, repeats the above

 186

behavior. b) Human Walk: we studied the performance of cooperative caching in social

wireless networks based on real human mobility traces.

In Chapter 6 we analyzed the impacts of such selfish user behavior on the object

provisioning cost and on the earned rebate in a social wireless network (MSWNET). In

particular, we compared the provisioning cost under presence of selfish nodes with the

optimal provisioning cost when all nodes are cooperative.

In Chapter 7 and Chapter 8 we introduced two applications of our cooperative

caching scheme for improving object availability and also for discarding unwanted

packets in mobile wireless networks.

9.1 Future Work

In Chapter 4 we proposed a heuristic for reducing the object provisioning cost in

heterogeneous networks. It will be desirable to develop and implement a distributed

maximum weight matching algorithm to get the optimal solution for these networks.

In Chapter 5 we proposed a caching strategy for minimizing the provisioning cost

in community based social wireless networks. To detect the community we applied the

existence community detection algorithms. A more detailed study will be useful to

understand the impacts of community detection algorithms and performance of caching.

We investigated the impacts of user selfishness in Chapter 6. However, we did not

propose any solution for preventing selfishness in the network. The possible solution

would be detecting and punishing the selfish nodes by revoking its earned rebates. A

game theory framework can be developed for analyzing the detail dynamics of the game

between selfish and non-selfish nodes.

 187

Analysis of selfishness can be also extended to heterogeneous mobile networks

where users are highly mobile, have different interest and also different request

generation rates.

 188

BIBLIOGRAPHY

 189

Chapter 10 BIBLIOGRAPHY

[1] “Cisco predicts wireless-data explosion.” [Online]. Available:
http://news.cnet.com/8301-30686_3-10449758-266.html. [Accessed: 13-Apr-
2011].

[2] “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,
2010–2015,” 01-Feb-2011. [Online]. Available:
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/
white_paper_c11-520862.html. [Accessed: 13-Apr-2011].

[3] “The Economist, A special report on managing information: Data, data
everywhere,” Feb-2010. [Online]. Available:
http://www.economist.com/node/15557443?story_id=E1_TVVVSQQP.
[Accessed: 13-Apr-2011].

[4] Tom Kaneshige, “AT&T IPhone Users Irate at Idea of Usage-Based Pricing -
PCWorld,” Dec-2009. [Online]. Available:
http://www.pcworld.com/article/184589/atandt_iphone_users_irate_at_idea_of_us
agebased_pricing.html. [Accessed: 13-Apr-2011].

[5] Marguerite Reardon, “Verizon: Usage Based Pricing.” [Online]. Available:
http://www.dailywireless.org/2011/03/01/verizon-usage-based-pricing/. [Accessed:
13-Apr-2011].

[6] X. Bao, U. Lee, I. Rimac, and R. R. Choudhury, “DataSpotting: offloading
cellular traffic via managed device-to-device data transfer at data spots,”
SIGMOBILE Mob. Comput. Commun. Rev., vol. 14, pp. 37–39, Dec. 2010.

[7] B. Han, P. Hui, and A. Srinivasan, “Mobile data offloading in metropolitan area
networks,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 14, pp. 28–30, Nov.
2010.

[8] K. Lee, I. Rhee, J. Lee, S. Chong, and Y. Yi, “Mobile data offloading: how much
can WiFi deliver?,” in Proceedings of the 6th International Conference on

emerging Networking EXperiments and Technologies (CoNEXT), New York, NY,
USA, 2010, pp. 26:1–26:12.

[9] B. Han, P. Hui, V. S. A. Kumar, M. V. Marathe, G. Pei, and A. Srinivasan,
“Cellular traffic offloading through opportunistic communications: a case study,”
in Proceedings of the 5th ACM workshop on Challenged networks, New York,
NY, USA, 2010, pp. 31–38.

 190

[10] M. Valerio Barbera, J. Stefa, A. Carneiro Viana, M. Dias De Amorin, and M. Boc,
“VIP Delegation: Enabling VIPs to Offload Data in Wireless Social Mobile
Networks,” INRIA, Research Report RR-7563, 2011.

[11] “T-Mobile @Home - General Information.” [Online]. Available: http://support.t-
mobile.com/doc/tm23449.xml#1. [Accessed: 13-Apr-2011].

[12] P. J. Denning, “The locality principle,” Commun. ACM, vol. 48, pp. 19–24, Jul.
2005.

[13] George K. Zipf, Human Behavior and the Principle of Least Effort. Addison-
Wesley, 1949.

[14] S. Jin and A. Bestavros, “Temporal Locality in Web Request Streams: Sources,
Characteristics, and Caching Implications (Extended Abstract),” in In Proceedings

of SIGMETRICS, 2000.

[15] A. Mahanti, D. Eager, and C. Williamson, “Temporal Locality and its Impact on
Web Proxy Cache Performance,” Performance Evaluation, vol. 42, pp. 187–203,
2000.

[16] V. Almeida, A. Bestavros, M. Crovella, and A. D. Oliveira, “Characterizing
Reference Locality in the WWW,” 1996, pp. 92–103.

[17] C. R. Cunha, A. Bestavros, and M. E. Crovella, “Characteristics of WWW Client-
based Traces,” 1995.

[18] M. E. Crovella and A. Bestavros, “Self-similarity in World Wide Web traffic:
evidence and possible causes,” Networking, IEEE/ACM Transactions on, vol. 5,
no. 6, pp. 835 –846, Dec. 1997.

[19] L. Breslau, P. Cue, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web Caching and
Zipf-like Distributions: Evidence and Implications,” in In INFOCOM, 1999, pp.
126–134.

[20] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of YouTube network
traffic at a campus network - Measurements, models, and implications,” Computer

Networks, vol. 53, no. 4, pp. 501 – 514, 2009.

[21] X. Cheng, C. Dale, and J. Liu, “Statistics and Social Network of YouTube
Videos,” in 16th International Workshop on Quality of Service (IWQoS), 2008, pp.
229 –238.

 191

[22] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic characterization: a view
from the edge,” in Proceedings of the 7th ACM SIGCOMM conference on Internet

measurement, New York, NY, USA, 2007, pp. 15–28.

[23] Y. Amiel and F. Cowell, “Monotonicity, dominance and the Pareto principle,”
Economics Letters, vol. 45, no. 4, pp. 447 – 450, 1994.

[24] R. Lancellotti, B. Ciciani, and M. Colajanni, “A Scalable Architecture for
Cooperative Web Caching,” in Proceedings of Workshop in Web Engineering,

Networking, 2002.

[25] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J. Worrell,
“A Hierarchical Internet Object Cache,” in Proceedings of the USENIX technical

conference, 1995, pp. 153–163.

[26] D. Wessels and k claffy, “ICP and the Squid Web Cache,” IEEE Journal on

Selected Areas in Communications, vol. 16, pp. 345–357, 1998.

[27] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scalable wide-
area web cache sharing protocol,” 1998.

[28] Y. Du, S. K. S. Gupta, and G. Varsamopoulos, “Improving on-demand data access
efficiency in MANETs with cooperative caching,” Ad Hoc Networks, vol. 7, no. 3,
pp. 579 – 598, 2009.

[29] C.-Y. Chow, H. Va Leong, and A. T. S. Chan, “Group-Based Cooperative Cache
Management for Mobile Clients in a Mobile Environment,” in Proceedings of the

2004 International Conference on Parallel Processing (ICPP), Washington, DC,
USA, 2004, pp. 83–90.

[30] C.-Y. Chow, H. V. Leong, and A. T. S. Chan, “GroCoca: group-based peer-to-
peer cooperative caching in mobile environment,” IEEE Journal on Selected Areas

in Communications, vol. 25, no. 1, pp. 179 –191, Jan. 2007.

[31] K. Psounis and B. Prabhakar, “A randomized Web-cache replacement scheme,” in
Proceedings Twentieth Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM), 2001, vol. 3, pp. 1407 –1415 vol.3.

[32] A. I. Vakali, “LRU-based algorithms for Web Cache Replacement,” in First

Internat. Conf. on Electronic Commerce and Web Technologies, Lecture Notes in

Computer Science, 2000, pp. 409–418.

 192

[33] L. Rizzo and L. Vicisano, “Replacement Policies for a Proxy Cache,” IEEE/ACM

Transactions on Networking, vol. 8, pp. 158–170, 1998.

[34] D. Barbará and T. Imieliński, “Sleepers and workaholics: caching strategies in
mobile environments,” in Proceedings of the International Conference on

Management of data (SIGMOD), New York, NY, USA, 1994, pp. 1–12.

[35] G. Cao, “A Scalable Low-Latency Cache Invalidation Strategy for Mobile
Environments,” IEEE Transactions on Knowledge and Data Engineering, vol. 15,
pp. 1251–1265, 2003.

[36] S. K. . Gupta and P. K. Srimani, “A strategy to manage cache consistency in a
disconnected distributed environment,” IEEE Transactions on Parallel and

Distributed Systems, vol. 12, no. 7, pp. 686 –700, Jul. 2001.

[37] K.-L. Tan, J. Cai, and B. C. Ooi, “An Evaluation of Cache Invalidation Strategies
in Wireless Environments,” IEEE Transactions on Parallel and Distributed

Systems, vol. 12, pp. 789–807, 2001.

[38] N. Dimokas, D. Katsaros, and Y. Manolopoulos, “Cache consistency in Wireless
Multimedia Sensor Networks,” Ad Hoc Networks, vol. 8, no. 2, pp. 214 – 240,
2010.

[39] J. Cao, Y. Zhang, G. Cao, and L. Xie, “Data Consistency for Cooperative Caching
in Mobile Environments,” Computer, vol. 40, no. 4, pp. 60 –66, Apr. 2007.

[40] J. Cai and K. Tan, “Energy‐efficient selective cache invalidation,” Wireless

Networks, vol. 5, pp. 489–502, 1999.

[41] J. Jing, A. Elmagarmid, A. Helal, and R. Alonso, “Bit-Sequences: An adaptive
cache invalidation method in mobile client/server environments,” Mobile Networks

and Applications, vol. 2, pp. 115–127, 1997.

[42] Q. Hu and D. Lee, “Cache algorithms based on adaptive invalidation reports for
mobile environments,” Cluster Computing, vol. 1, pp. 39–50, 1998.

[43] B. Zheng, J. Xu, and D. L. Lee, “Cache invalidation and replacement strategies for
location-dependent data in mobile environments,” IEEE Transactions on

Computers, vol. 51, no. 10, pp. 1141 – 1153, Oct. 2002.

[44] J. C.-H. Yuen, E. Chan, K.-Y. Lam, and H. W. Leung, “Cache invalidation
scheme for mobile computing systems with real-time data,” SIGMOD Rec., vol.
29, pp. 34–39, Dec. 2000.

 193

[45] S. Lim, W.-C. Lee, G. Cao, and C. R. Das, “Cache invalidation strategies for
internet-based mobile ad hoc networks,” Computer Communications, vol. 30, no.
8, pp. 1854 – 1869, 2007.

[46] B. Y. Chan, A. Si, and H. V. Leong, “Cache management for mobile databases:
design and evaluation,” in Proceedings of 14th International Conference on Data

Engineering, 1998, pp. 54 –63.

[47] T. Hara and S. K. Madria, “Consistency Management among Replicas in Peer-to-
Peer Mobile Ad Hoc Networks,” in Proceedings of the 24th IEEE Symposium on

Reliable Distributed Systems, Washington, DC, USA, 2005, pp. 3–12.

[48] J. Cao, Y. Zhang, L. Xie, and G. Cao, “Consistency of cooperative caching in
mobile peer-to-peer systems over MANET,” in 25th IEEE International

Conference on Distributed Computing Systems Workshops, 2005, pp. 573 – 579.

[49] C. C. F. Fong, J. C. S. Lui, and M. H. Wong, “Quantifying complexity and
performance gains of distributed caching in a wireless network environment,”
International Conference on Data Engineering, p. 104, 1997.

[50] J. Xu, X. Tang, and D. L. Lee, “Performance Analysis of Location-Dependent
Cache Invalidation Schemes for Mobile Environments,” IEEE Transactions on

Knowledge and Data Engineering, vol. 15, pp. 474–488, 2003.

[51] Y. Sawai, M. Shinohara, A. Kanzaki, T. Hara, and S. Nishio, “Consistency
Management among Replicas Using a Quorum System in Ad Hoc Networks,” in
Proceedings of the 7th International Conference on Mobile Data Management,
Washington, DC, USA, 2006, p. 128–.

[52] L. Y. Cao and M. T. Özsu, “Evaluation of Strong Consistency Web Caching
Techniques,” World Wide Web, 2002.

[53] S. Banerjee and S. Karforma, “A prototype design for DRM based credit card
transaction in E-commerce,” Ubiquity, May 2008.

[54] P. Koster and W. Jonker, “Digital Rights Management,” in Multimedia Retrieval,
H. M. Blanken, H. E. Blok, L. Feng, and A. P. Vries, Eds. Springer Berlin
Heidelberg, 2007, pp. 321–345.

[55] Q. Liu, R. Safavi-Naini, and N. P. Sheppard, “Digital rights management for
content distribution,” in Proceedings of the ACSW Frontiers, Darlinghurst,
Australia, 2003, pp. 49–58.

 194

[56] D. KUNDUR and K. KARTHIK, “Video fingerprinting and encryption principles
for digital rights management,” Proceedings of the IEEE, vol. 92, no. 6, pp. 918 –
932, Jun. 2004.

[57] A. Sharma, V. Navda, R. Ramjee, V. N. Padmanabhan, and E. M. Belding, “Cool-
Tether: energy efficient on-the-fly wifi hot-spots using mobile phones,” in
Proceedings of the 5th international conference on Emerging networking

experiments and technologies, New York, NY, USA, 2009, pp. 109–120.

[58] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy
consumption in mobile phones: a measurement study and implications for network
applications,” in Proceedings of the 9th ACM SIGCOMM conference on Internet

measurement conference, New York, NY, USA, 2009, pp. 280–293.

[59] K. Lee, S. Hong, S. J. Kim, I. Rhee, and S. Chong, “SLAW: A New Mobility
Model for Human Walks,” in IEEE INFOCOM, 2009, pp. 855 –863.

[60] C. Boldrini, M. Conti, and A. Passarella, “Users mobility models for opportunistic
networks: the role of physical locations,” in IEEE Wireless Rural and Emergency

Communications - WRECOM07, 2007, pp. 1–6.

[61] N. Eagle, A. Pentland, and D. Lazer, “{Inferring Social Network Structure using
Mobile Phone Data},” PNAS, 2007.

[62] M. McNett and G. M. Voelker, “Access and mobility of wireless PDA users,”
SIGMOBILE Mob. Comput. Commun. Rev., vol. 9, no. 2, pp. 40–55, Apr. 2005.

[63] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau, CRAWDAD

data set cambridge/haggle (v. 2009-05-29). 2009.

[64] M. Morin, “The finacial impact of attack traffic on broadband networks,” Annual

Review of Broadband Communications, vol. 1, pp. 11–14, 2005.

[65] T. P. Kelly, Y. M. Chan, S. Jamin, C. Sugih, J. Jeffrey, and J. K. MacKie-Mason,
“Biased Replacement Policies for Web Caches: Differential Quality-of-Service and
Aggregate User Value,” in In Fourth International Web Caching Workshop, 1999.

[66] S. Jin and A. Bestavros, “GreedyDual* Web Caching Algorithm – Exploiting the
Two Sources of Temporal Locality in Web Request Streams,” in In proceedings of

the 5th international web caching and content delivery workshop, 2000, pp. 174–
183.

 195

[67] S. Jin and A. Bestavros, “Popularity-Aware GreedyDual-Size Web Proxy Caching
Algorithms,” in Proceedings of ICDCS, 1999, pp. 254–261.

[68] S. C. Rhea and K. Liang, “Value-Based Web Caching,” in In Proc. of the 12th Int.

World Wide Web Conference, 2003, pp. 619–628.

[69] P. Triantafillou and I. Aekaterinides, “Web Proxy Cache Replacement: Do’s,
Don’ts, and Expectations,” in Proceedings of The 2nd IEEE International

Symposium on Network Computing and Applications (NCA), 2003.

[70] A. D. Bradley and A. Bestavros, “Basis token consistency: supporting strong Web
cache consistency,” in IEEE Global Telecommunications

Conference(GLOBECOM), 2002, vol. 3, pp. 2225 – 2229 vol.3.

[71] A. S. Z. Belloum and L. O. Hertzberger, “Concurrent Evaluation of Web Cache
Replacement and Coherence Strategies,” presented at the SIMULATION, 2002.

[72] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar, “Engineering Web Cache
Consistency,” ACM Transactions on Internet Technology, vol. 2, p. 2002, 2002.

[73] M. Mikhailov, “Evaluating a New Approach to Strong Web Cache Consistency
With Snapshots of collected content,” in In international World Wide Web

Conference, 2003, pp. 599–608.

[74] C. Liu and P. Cao, “Maintaining Strong Cache Consistency in the World-Wide
Web,” in Proceedings of the Seventeenth International Conference on Distributed

Computing Systems, 1998, pp. 445–457.

[75] E. Cohen and H. Kaplan, “Refreshment Policies for Web Content Caches,” in In

Proceedings of the Twentieth Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM), 2001, pp. 1398–1406.

[76] J. Gwertzman and M. Seltzer, “World-Wide Web Cache Consistency,” in
Proceedings of the USENIX Technical Conference, 1996, pp. 141–151.

[77] J. Yang, W. Wang, and R. Muntz, “Collaborative Web Caching Based on Proxy
Affinities,” in Proceedings of ACM SIGMETRICS, 2000, pp. 78–89.

[78] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. M. Levy,
“On the Scale and Performance of Cooperative Web Proxy Caching,” in ACM

Symposium on Operating Systems Principles, 1999, pp. 16–31.

 196

[79] C. M. Bowman, M. O. T. T. Staff, D. R. Hardy, P. B. Danzig, A. Professor, C.
Dept, and U. S. California, “The Harvest Information Discovery and Access
System,” in Computer Networks and ISDN Systems, 1995, pp. 763–771.

[80] J. Xu, Q. Hu, W. Lee, and D. L. Lee, “Performance Evaluation of an Optimal
Cache Replacement Policy for Wireless Data Dissemination,” IEEE Transaction of

Knowledge and Data Eng., vol. 16, pp. 125–139, 2001.

[81] P. Rodriguez, C. Spanner, and E. W. Biersack, “Analysis of Web Caching
Architectures: Hierarchical and Distributed Caching,” IEEE/ACM Transactions on

Networking, vol. 9, pp. 404–418, 2001.

[82] R. Tewari, M. Dahlin, H. M. Vin, and J. S. Kay, “Beyond hierarchies: Design
considerations for distributed caching on the internet,” Proceedings of the 19th
International Conference on Distributed Computing Systems (ICDCS), 1998.

[83] C. Lindemann and O. P. Waldhorst, “Evaluating Cooperative Web Caching
Protocols for Emerging Network Technologies,” in in: Proceedings of Workshop

on Caching, Coherence and Consistency (WC3), 2001.

[84] Y. Zhu, “Exploiting client caches: An approach to building large web caches,” in
In Proceedings of the International Conference on Parallel Processing (ICPP),
2002.

[85] H. Che, Y. Tung, and Z. Wang, “Hierarchical Web caching systems: modeling,
design and experimental results,” IEEE Journal on Selected Areas in

Communications, vol. 20, no. 7, pp. 1305 – 1314, Sep. 2002.

[86] Y. Mao, Z. Zhu, and W. Shi, “Peer-to-peer web caching: Hype or reality,” in
Proceedings of the tenth International Conferences on Parallel and Distributed

Systems, 2004, pp. 171–178.

[87] M. Busari and C. Williamson, “Simulation evaluation of a heterogeneous Web
proxy caching hierarchy,” in Proceedings of the Ninth International Symposium on

Modeling, Analysis and Simulation of Computer and Telecommunication Systems

(MASCOT), 2001, pp. 379 –388.

[88] S. Iyer, A. Rowstron, and P. Druschel, “Squirrel: a decentralized peer-to-peer web
cache,” in Proceedings of the twenty-first annual symposium on Principles of

distributed computing (PODC), New York, NY, USA, 2002, pp. 213–222.

 197

[89] M. Taghizadeh, A. Plummer, and S. Biswas, “Cooperative caching for improving
availability in Social Wireless Networks,” in IEEE 7th International Conference

on Mobile Adhoc and Sensor Systems (MASS), 2010, pp. 342 –351.

[90] F. Sailhan and V. Issarny, “Cooperative Caching in Ad Hoc Networks,” in
Proceedings of the 4th International Conference on Mobile Data Management

(MDM), 2003, pp. 13–28.

[91] M. F. Caetano, J. L. Bordim, and M. A. . Dantas, “A collaborative cache approach
for mobile ad hoc networks,” in IEEE Symposium on Computers and

Communications (ISCC), 2009, pp. 404 –410.

[92] N. Chauhan, L. K. Awasthi, N. Chand, R. C. Joshi, and M. Mishra, “A
cooperative caching strategy in mobile ad hoc networks based on clusters,” in
Proceedings of the International Conference on Communication, Computing and

Security (ICCCS), New York, NY, USA, 2011, pp. 17–20.

[93] T. Hara, “Cooperative caching by mobile clients in push-based information
systems,” in Proceedings of the eleventh international conference on Information

and knowledge management (CIKM), New York, NY, USA, 2002, pp. 186–193.

[94] T. Hara, K. Maeda, Y. Ishi, W. Uchida, and S. Nishio, “Cooperative caching by
clients constructing a peer-to-peer network for push-based broadcast,” Data

Knowl. Eng., vol. 69, pp. 229–247, Feb. 2010.

[95] Y.-H. Wang, C.-F. Chao, S.-W. Lin, and W.-T. Chen, “A distributed data caching
framework for mobile ad hoc networks,” in Proceedings of the international

conference on Wireless communications and mobile computing (IWCMC), New
York, NY, USA, 2006, pp. 1357–1362.

[96] L. Yin and G. Cao, “Supporting cooperative caching in ad hoc networks,” IEEE

Transactions on Mobile Computing, vol. 5, no. 1, pp. 77 – 89, Jan. 2006.

[97] J. Zhao, P. Zhang, and G. Cao, “On Cooperative Caching in Wireless P2P
Networks,” in The 28th International Conference on Distributed Computing

Systems (ICDCS), 2008, pp. 731 –739.

[98] C.-Y. Chow, H. V. Leong, and A. T. S. Chan, “Distributed group-based
cooperative caching in a mobile broadcast environment,” in Proceedings of the 6th

international conference on Mobile Data Management (MDM), New York, NY,
USA, 2005, pp. 97–106.

 198

[99] N. Dimokas, D. Katsaros, and Y. Manolopoulos, “Cooperative caching in wireless
multimedia sensor networks,” Mob. Netw. Appl., vol. 13, pp. 337–356, Aug. 2008.

[100] J. Zhao, P. Zhang, G. Cao, and C. R. Das, “Cooperative Caching in Wireless P2P
Networks: Design, Implementation, and Evaluation,” IEEE Transactions on

Parallel and Distributed Systems, vol. 21, no. 2, pp. 229 –241, Feb. 2010.

[101] L. Yin and G. Cao, “Supporting cooperative caching in ad hoc networks,” in
Twenty-third AnnualJoint Conference of the IEEE Computer and Communications

Societies (INFOCOM), 2004, vol. 4, pp. 2537 – 2547 vol.4.

[102] C.-Y. Chow, H. V. Leong, and A. Chan, “Cache Signatures for Peer-to-Peer
Cooperative Caching in Mobile Environments,” in Proceedings of the 18th

International Conference on Advanced Information Networking and

Applications(AINA), Washington, DC, USA, 2004, p. 96–.

[103] C.-Y. Chow, H. V. Leong, and A. Chan, “Peer-to-Peer Cooperative Caching in
Mobile Environments,” in Proceedings of the 24th International Conference on

Distributed Computing Systems Workshops (ICDCSW), Washington, DC, USA,
2004, pp. 528–533.

[104] S. Lim, W.-C. Lee, G. Cao, and C. R. Das, “A novel caching scheme for
improving Internet-based mobile ad hoc networks performance,” Ad Hoc

Networks, vol. 4, no. 2, pp. 225 – 239, 2006.

[105] B. Tang, H. Gupta, and S. R. Das, “Benefit-based data caching in ad hoc
networks,” in Proceedings of the 14th IEEE International Conference on Network

Protocols (ICNP), 2006, pp. 208–217.

[106] E. Chan, W. Li, and D. Chen, “Energy saving strategies for cooperative cache
replacement in mobile ad hoc networks,” Pervasive and Mobile Computing, vol. 5,
no. 1, pp. 77 – 92, 2009.

[107] W. Li, E. Chan, and D. Chen, “Energy-Efficient Cache Replacement Policies for
Cooperative Caching in Mobile Ad Hoc Network,” in IEEE Wireless

Communications and Networking Conference (WCNC), 2007, pp. 3347 –3352.

[108] P. Nuggehalli, V. Srinivasan, and C.-F. Chiasserini, “Energy-efficient caching
strategies in ad hoc wireless networks,” in Proceedings of the 4th ACM

international symposium on Mobile ad hoc networking & computing (MobiHoc),
New York, NY, USA, 2003, pp. 25–34.

 199

[109] L. Yin, G. Cao, and Y. Cai, “A Generalized Target-Driven Cache Replacement
Policy for Mobile Environments,” in The International Symposium on Applications

and the Internet, 2003, pp. 14–21.

[110] T. P. Sharma, R. C. Joshi, and M. Misra, “Dual radio based cooperative caching
for wireless sensor networks,” in 16th IEEE International Conference on Networks

(ICON), 2008, pp. 1 –7.

[111] C.-Y. Chow, H. V. Leong, and A. Chan, “Peer-to-peer cooperative caching in a
hybrid data delivery environment,” in Proceedings. 7th International Symposium

on Parallel Architectures, Algorithms and Networks (ISPAN), 2004, pp. 79 – 84.

[112] J. Xu, Q. Hu, D. L. Lee, and W.-C. Lee, “SAIU: an efficient cache replacement
policy for wireless on-demand broadcasts,” in Proceedings of the ninth

international conference on Information and knowledge management, New York,
NY, USA, 2000, pp. 46–53.

[113] H. Artail, H. Safa, K. Mershad, Z. Abou-Atme, and N. Sulieman, “COACS: A
Cooperative and Adaptive Caching System for MANETs,” IEEE Transactions on

Mobile Computing, vol. 7, pp. 961–977, 2008.

[114] B. Tang and H. Gupta, “Cache placement in sensor networks under update cost
constraint,” in Proceedings of AdHoc-Now, 2005.

[115] G.-M. Chiu and C.-R. Young, “Exploiting In-Zone Broadcasts for Cache Sharing
in Mobile Ad Hoc Networks,” IEEE Transactions on Mobile Computing, vol. 8,
pp. 384–397, 2009.

[116] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik, “Broadcast Disks: Data
Management for Asymmetric Communication Environments,” in Mobile

Computing, vol. 353, T. Imielinski and H. F. Korth, Eds. Springer US, 1996, pp.
331–361.

[117] H. Shen, M. Kumar, S. K. Das, and Z. Wang, “Energy-efficient data caching and
prefetching for mobile devices based on utility,” Mob. Netw. Appl., vol. 10, pp.
475–486, Aug. 2005.

[118] K. Y. Lai, Z. Tari, and P. Bertok, “Location-aware cache replacement for mobile
environments,” in Global Telecommunications Conference (GLOBECOM), 2004,
vol. 6, pp. 3441 – 3447 Vol.6.

 200

[119] K. Y. Lai, Z. Tari, and P. Bertok, “Mobility-Aware Cache Replacement for Users
of Location-Dependent Services,” Annual IEEE Conference on Local Computer

Networks, pp. 50–58, 2004.

[120] A. Kumar, M. Misra, and A. K. Sarje, “A weighted cache replacement policy for
location dependent data in mobile environments,” in Proceedings of ACM

symposium on Applied computing (SAC), New York, NY, USA, 2007, pp. 920–
924.

[121] Y. Wang, E. Chan, W. Li, and S. Lu, “Location Dependent Cooperative Caching
in MANET,” International Conference on Parallel Processing, vol. 0, pp. 470–
477, 2008.

[122] Y. Huang, J. Cao, and B. Jin, “A predictive approach to achieving consistency in
cooperative caching in MANET,” in Proceedings of the 1st international

conference on Scalable information systems (InfoScale), New York, NY, USA,
2006.

[123] N. Laoutaris, G. Smaragdakis, A. Bestavros, and I. Stavrakakis, “Mistreatment in
Distributed Caching Groups: Causes and Implications,” in Proceedings of 25th

IEEE International Conference on Computer Communications (INFOCOM), 2006,
pp. 1 –13.

[124] N. Laoutaris, G. Smaragdakis, A. Bestavros, I. Matta, and l Stavrakakis,
“Distributed Selfish Caching,” IEEE Transactions on Parallel and Distributed

Systems, vol. 18, no. 10, pp. 1361 –1376, Oct. 2007.

[125] G. Smaragdakis, N. Laoutaris, I. Matta, A. Bestavros, and I. Stavrakakis, “A
Feedback Control Approach to Mitigating Mistreatment,” in Proceedings of IFIP

Networking, 2006.

[126] B.-G. Chun, K. Chaudhuri, H. Wee, M. Barreno, C. H. Papadimitriou, and J.
Kubiatowicz, “Selfish caching in distributed systems: a game-theoretic analysis,”
in Proceedings of the twenty-third annual ACM symposium on Principles of

distributed computing (PODC), New York, NY, USA, 2004, pp. 21–30.

[127] M. Goemans, L. E. Li, V. S. Mirrokni, and M. Thottan, “Market sharing games
applied to content distribution in ad-hoc networks,” in Proceedings of the 5th ACM

international symposium on Mobile ad hoc networking and computing (MobiHoc),
New York, NY, USA, 2004, pp. 55–66.

[128] T. Hara, “Replica Allocation in Ad Hoc Networks with Periodic Data Update,” in
Proceedings of the Third International Conference on Mobile Data Management,
Washington, DC, USA, 2002, pp. 79–86.

 201

[129] J. Huang and M. Chen, “On the effect of group mobility to data replication in ad
hoc networks,” IEEE Transactions on Mobile Computing, vol. 5, 2006.

[130] T. Hara, “Quantifying Impact of Mobility on Data Availability in Mobile Ad Hoc
Networks,” IEEE Transactions on Mobile Computing, vol. 9, pp. 241–258, Feb.
2010.

[131] L. Maccari, R. Fantacci, P. Neira, and R. M. Gasca, “Mesh network firewalling
with Bloom Filters,” in Proceedings ICC, 2007.

[132] M. Alicherry and A. D. Keromytis, “DIPLOMA: Distributed Policy Enforcement
Architecture for MANETs,” in Proceedings pf International Conference on

Network and System Security (NSS), 2010.

[133] M. Alicherry, A. D. Keromytis, and A. Stavrou, “Deny-by-Default Distributed
Security Policy Enforcement in Mobile Ad Hoc Networks,” Proceedings pf

International ICST Conference on Security and Privacy in Communication

Networks, 2009.

[134] M. Zhao, L. Mason, and W. Wang, “Empirical study on human mobility for
mobile wireless networks,” in MILCOM, 2008.

[135] Cambridge trace file, Human interaction study.

[136] S. Podlipnig and L. Böszörmenyi, “A survey of Web cache replacement
strategies,” ACM Comput. Surv., vol. 35, pp. 374–398, Dec. 2003.

[137] E. Cohen, B. Krishnamurthy, and J. Rexford, “Evaluating Server-Assisted Cache
Replacement in the Web,” in Algorithms — ESA’ 98, vol. 1461, G. Bilardi, G.
Italiano, A. Pietracaprina, and G. Pucci, Eds. Springer Berlin / Heidelberg, 1998, p.
1–1.

[138] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand Distance Vector
(AODV) Routing,” RFC3561, 2003.

[139] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott, “Impact of
Human Mobility on Opportunistic Forwarding Algorithms,” IEEE Computer

Society, no. IEEE Transactions on Mobile Computing, pp. 606–620, 2007.

[140] A. Schrijver, Theory of Linear and Integer Programming. Wiley, 1998.

[141] H. Kuhn, “The Hungarian method for the assignment problem,” Naval Research

Logistic Quarterly, vol. 2, pp. 83–97, 1955.

 202

[142] Six Months of Web Client Traces of Boston University. .

[143] “National Lab of Applied Network Research, Sanitized access log,” Jul-1997.
[Online]. Available: ftp://ircache.nlanr.net/Traces. [Accessed: 14-Apr-2011].

[144] “NASA Kennedy Space Center WWW server access log.” [Online]. Available:
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz. [Accessed: 14-Apr-2011].

[145] “University of Saskatchewan’s WWW server access log.” [Online]. Available:
ftp://ita.ee.lbl.gov/traces/usask_access_log.gz. [Accessed: 14-Apr-2011].

[146] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Understanding individual
human mobility patterns,” Nature, vol. 453, no. 7196, pp. 779–782, Jun. 2008.

[147] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C. Diot, “Pocket
switched networks and human mobility in conference environments,” in
Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant

networking, New York, NY, USA, 2005, pp. 244–251.

[148] M. Musolesi and C. Mascolo, “Designing Mobility Models based on Social
Network Theory,” ACM SIGMOBILE Mobile Computing and Communication

Review, vol. 11, pp. 59–70, 2007.

[149] Kyunghan Lee, Seongik Hong, Seong Joon Kim, Injong Rhee, and Song Chong,
“SLAW: A New Mobility Model for Human Walks,” in INFOCOM 2009, IEEE,
2009, pp. 855–863.

[150] M. E. J. Newman, “Modularity and community structure in networks,”
Proceedings of the National Academy of Sciences, vol. 103, no. 23, pp. 8577–
8582, Jun. 2006.

[151] M. Girvan and M. E. J. Newman, “Community structure in social and biological
networks,” Proceedings of the National Academy of Sciences, vol. 99, no. 12, pp.
7821–7826, Jun. 2002.

[152] M. E. J. Newman, “Fast algorithm for detecting community structure in
networks,” PHYS.REV.E, vol. 69, p. 066133, 2004.

[153] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of
communities in large networks,” Journal of Statistical Mechanics: Theory and

Experiment, vol. 2008, no. 10, p. P10008, 2008.

 203

[154] J. L. Rodgers and A. W. Nicewander, “Thirteen Ways to Look at the Correlation
Coefficient,” The American Statistician, vol. 42, no. 1, pp. 59–66, 1988.

[155] A. K. Ghosh, “Defense against Cyber Attacks on Mobile, Ad Hoc Network
Systems (MANETs),” BAA04-18. Proposer Information Pamphlet (PIP) DARPA

Advanced Technology Office (ATO), 2004.

[156] M. G. Gouda and A. X. Liu, “Structured Firewall Design,” Computer Networks

Journal (Elsevier), vol. 51, no. 4, pp. 1106–1120, Mar. 2007.

[157] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol (OLSR),”
RFC 3626, 2003.

[158] P. B. C. E. perkins, “Highly Dynamic Destination-Sequenced Distance Vector
(DSDV) for Mobile Computers, Protocols and Applications,” Proceedings

SIGCOMM, 1994.

[159] Y. H. D. Johnson, “The Dynamic Source Routing Protocol (DSR) for Mobile Ad
Hoc Networks for IPv4,” RFC4728, 2007.

[160] P. Wang, D. S. Reeves, and P. Ning, “Secure Address Auto-configuration for
Mobile Ad Hoc Networks,” in in Proceedings MOBIQUITOUS, 2005.

