IN FO R M A TIO N TO USERS This material was produoad from a microfilm copy of tha original document. Whila tha most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing paga(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on ti>e film is obliterated w ith a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus causa a blurred image. You w ill find » good image o f the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections w ith a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The m ajority of users indicate that tha textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced. 5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received. University Microfilm s International 300 North Zeeb Road Ann Arbor. Michigan 48106 USA St John's Road. Tylar's Qraen High Wycombe, Bucks. England HPtO 8HR 78-3479 DeHAYES , Donald Henry, 1951GENETIC VARIATION IN COLD HARDINESS AND ITS EFFECTS ON THE PERFORMANCE OF PONDEROSA PINE (PINUS PONDEROSA) IN MICHIGAN. ----Michigan State University, Ph.D., 1977 Agriculture, forestry and wildlife University Microfilms International, AnnArbor.Michiganaskm GENETIC VARIATION IN COLD HARDINESS AND ITS EFFECTS ON THE PERFORMANCE OF PONDEROSA PINE ( PINUS PONDEROSA) IN MICHIGAN By Donald H. DeHayes A DISSERTATION Submitted to Michigan S ta te U n iv e rs ity in p a r t i a l f u l f i l l m e n t o f th e requirem ents f o r th e degree o f DOCTOR OF PHILOSOPHY Department o f F o re s try 1977 ABSTRACT GENETIC VARIATION IN COLD HARDINESS AND ITS EFFECT ON THE PERFORMANCE OF PONDEROSA PINE ( PINUS PONDEROSA) IN MICHIGAN By Donald H. DeHayes A rangewide provenance t e s t o f ponderosa p ine was e s ta b lis h e d in 1960 and In c lu d es two r e p lic a te d p la n ta tio n s 1n southern M ich ig an . From 1975 to 1977 g e n e tic v a r ia t io n in s e ve ra l aspects o f co ld h ard iness and o th e r eco n o m ically Im p o rtan t t r a i t s was s tu d ie d . F o lia g e samples were c o lle c te d from 30 s e ed lo ts on 17 d i f f e r e n t d ates from O cto b e r, 1975 to J a n u a ry , 1977. F reezing te s ts were perform ed on needles and tis s u e damage was assessed using e l e c t r i c a l c o n d u c tiv ity . C r itic a l te m p e ra tu re s , d e fin e d as th e h ig h e s t tem perature a t which cold damage could be d e te c te d , were determ ined f o r each s e e d lo t. f o r computing such tem peratures is d e s c rib e d . p e rc e n t f o l i a r m o istu re co n te n t was d eterm in ed . w in te r in ju r y were made d u rin g s e v e ra l y e a r s . A procedure On s ix a d d itio n a l dates F ie ld o b s erva tio n s o f O ther t r a i t s measured were tim e o f le a fin g o u t, f o l i a r d ry in g r a t e from excised tw ig s , h e ig h t, and s u s c e p t ib ilit y to two fungal d is e a r'*... Trees grown from seed c o lle c te d In B r it is h Colum bia, W ashington, Montana, and Nebraska ac c lim a te d to c o ld f a s t e s t , had th e lo w est c r itic a l tem peratures In m id w in ter ( - 4 0 to - 4 7 ° C ) , s u ffe re d l i t t l e or no cold o r d isease damage, le a fe d out e a r l i e s t , had r e l a t i v e l y low f o l i a r Donald H. DeHayes m oisture and slow d ryin g ra te s and were among th e t a l l e s t tre e s a t age 16 (averaged 2 0 .5 f t t a l l ) . Trees from northern Colorado and Utah were s im ila r in several respects but were o n ly 14-15 f t t a l l a t age 16. Trees grown from seed c o lle c te d 1n C a lif o r n ia acclim ated to cold s lo w e s t, had th e h ig h e st c r i t i c a l tem peratures 1n m id w in ter (-2 2 to -2 4 ° C ), s u ffe re d severe cold and disease damage, le a fe d out l a t e s t , had high f o l i a r m o is tu re , and f a s t d ryin g r a te s , and were among th e s h o rte s t tre e s a t age 16 (averaged 14 f t t a l l ) . Trees grown from seed c o lle c te d in A rizona and New Mexico had c r i t i c a l tem peratures o f -3 2 °C , were 1 6 .5 f t t a l l a t age 16, s u ffe re d severe disease damage, had r e l a t i v e l y slow f o l i a r d ryin g r a te s , and were in te rm e d ia te 1n co ld damage, tim e o f le a fin g out and f o l i a r m oisture c o n te n t. C a lif o r n ia tre e s s u ffe re d severe cold damage most years because they d id not achieve a s u f f ic ie n t depth o f hardiness to w ith stand Michigan w in te r s . In c o n tr a s t, A rizo n a , New Mexico, and co a stal Oregon tre e s were s u f f i c i e n t ly hardy in m idw inter to avoid cold damage. However, they s u ffe re d needle In ju r y 1n years when low tem peratures occurred in e a r ly w in te r , b efo re they a tta in e d maximum h ard in ess. Trees from northern o rig in s avoided damage because they acclim ated to cold q u ic k ly and became ve ry hardy In m id w in ter. W in ter d e s ic c a tio n was considered as a p o s s ib le source o f w in te r In ju r y In ponderosa p in e . However, the r e la tio n s h ip between f o l i a r d ryin g ra te s and w in te r In ju r y was not stron g . Trees from Washington and B r it is h Columbia lo s t w ater more r a p id ly 1n w in te r than tre e s from Arizona and New Mexico but s u ffe re d no cold damage. Coastal Oregon tre e s d rie d o u t th e f a s t e s t , but s u ffe re d less cold damage than C a lifo r n ia o r A rizona tr e e s . Thus, 1 t appeared th a t d e s ic c a tio n was less Im portant than cold tem perature 1n causing damage to ponderosa p in e . Donald H. DeHayes Time o f le a fin g out appeared to be re la te d to cold hardening and dehardening. Trees from W ashington, B r it is h Colum bia, Montana, and Colorado hardened to cold f a s te s t 1n f a l l , dehardened most r a p id ly In l a t e w in te r , and le a fe d o u t 10-14 days e a r l i e r than tre e s from southern o r ig in s . D esp ite d iffe re n c e s in le a fin g out phenology, sp rin g f r o s t damage was not a problem In ponderosa p in e . F o lia r m oisture co n ten t v a rie d seas o n a lly as w e ll as among s e e d lo ts , decreasing by 15-16% from summer to w in te r . In g e n e ra l, tre e s w ith high m oisture co n ten t were most s u s c e p tib le to cold damage. This r e la tio n s h ip seemed to hold from sumner to w in te r and als o from n o rth to south w ith in the sp ecies. A p p a re n tly , tre e s w ith high f o l i a r m o istu re co n ten t had more I n t r a c e l l u l a r w ater and thus more w ater to fre e z e and cause damage. W in ter In ju r y had an e f f e c t on growth r a te and age-age h eig h t r e la tio n s h ip s 1n ponderosa p in e . Trees grown from seed c o lle c te d In C a lif o r n ia , A riz o n a , and New Mexico were t a l l e s t a t e a r ly ages, but lo s t t h e i r growth s u p e r io r ity because o f repeated w in te r I n ju r y . By age 1 6 , hardy tre e s from B r it is h Columbia, Washington, Montana, and Nebraska were t a l l e s t , A rizona and New Mexico tre e s were averag e, and C a lif o r n ia tre e s were s h o rte s t. Repeated w in te r In ju r y to southern tr e e s , a ls o re s u lte d in an In crease In the magnitude o f h e ig h t d iffe re n c e s among ecotypes from age fo u r to e ig h t. E rro r variances decreased g ra d u a lly w ith age as average growth r a te In c re a s e d , but were a p p a re n tly u n a ffe c te d by w in te r In ju r y . S u s c e p tib ilit y to damage from two fungal diseases appeared secondary to w in te r In ju r y . Trees which were p h y s io lo g ic a lly weakened by repeated co ld damage s u ffe re d th e most tw ig dleback from d is ea se . s u ffe re d l i t t l e Trees which or no cold damage were le a s t a ffe c te d by d is e a s e . Donald H. DeHayes O ther t r a i t s stu d ied Included m o r ta lit y le a f le n g th , cone p ro d u c tio n , stem ta p e r , diam eter grow th, and incidence o f stem fo rk s . Trees grown from seed c o lle c te d 1n the N orthern P lateau (Oregon, W ashington, and B r it is h Columbia) were most d e s ir a b le 1n a l l re sp ec ts. In a d d itio n to being th e t a l l e s t and among th e most cold hardy, they had th e la r g e s t diam eters (8 .5 1n a t age 1 6 ), th e le a s t m o r t a lit y , th e lo n g e st needles ( 7 .5 to 8 .0 in lo n g ), the most c y lin d r ic a l boles and s u ffe re d o n ly a moderate amount o f fo r k in g . Trees grown from seed c o lle c te d 1n th e Northern P lateau a re recommended f o r fo r e s t and ornamental p la n tin g s In southern M ichigan. ACKNOWLEDGEMENTS I wish to extend njy s in c e re g r a t itu d e to my m ajor p ro fe s s o r, D r. Jonathan W. W rig h t, whose guidance and a s s is ta n c e were e s s e n tia l to th e su ccessfu l com pletion o f my g rad u ate program. I would a ls o l i k e to thank D r. G. S. Howell f o r h is v a lu a b le d iscu ssio n s and f o r p ro v id in g equipment which was e s s e n tia l to t h is stu d y . In a d d it io n , I wish to express my a p p re c ia tio n to th e o th e r members o f my guidance co n m lttee — D rs . J . W. Hanover, J . R. Hannan, and E. H, Everson — f o r t h e i r e s s e n tia l c o n tr ib u tio n s . I owe a s p e c ia l d eb t o f a p p re c ia tio n to my c lo s e f r ie n d and c o lle a g u e Bruce B ongarten, whose a s s is ta n c e , d is c u s s io n s , and f r ie n d sh ip were In v a lu a b le . I a ls o wish to thank my p are n ts f o r t h e i r unending support and encouragement throughout my academic c a r e e r . F in a l l y , I am In d eb ted to my w if e , Annm arle, f o r her p a tie n c e , encouragement, and s a c r if ic e s which were In s tru m e n ta l 1n e n a b lin g me to pursue my personal g o a ls . i1 TABLE OF CONTENTS Page LIST OF TABLES v LIST OF FIGURES v ii CHAPTER 1. INTRODUCTION 1 2. PHYSIOLOGY AND GENETICS OF COLD HARDINESS IN PLANTS: LITERATURE REVIEW 3 3. In tr o d u c tio n 3 F ree zin g and death in p la n t tis s u e s 4 The r o le o f l i g h t 6 A c c lim a tio n 8 P h y s io lo g ic a l and m e ta b o lic changes d u rin g hardening 14 G e n e tic re g u la tio n o f c o ld a c c lim a tio n 20 G en etic v a r ia t io n 25 In h e r ita n c e o f c o ld re s is ta n c e In p la n ts 27 CRITICAL TEMPERATURE DETERMINATIONS IN COLD HARDINESS STUDIES USING ELECTRICAL CONDUCTIVITY MEASUREMENTS 34 In tr o d u c tio n 34 E le c t r ic a l c o n d u c tiv ity as a v i a b i l i t y t e s t 35 C r i t i c a l tem p eratu re d e te rm in a tio n 36 H i CHAPTER 4. 5. 6. 7. Page GENETIC VARIATION IN SEVERAL ASPECTS OF COLD HARDINESS IN PONDEROSA PINE 42 In tro d u c tio n 42 O b je c tiv e s 44 M a te ria ls and methods 45 R esu lts 55 THE EFFECTS OF WINTER INJURY ON AGE-AGE HEIGHT RELATIONSHIPS IN PONDEROSA PINE 92 In tro d u c tio n 92 M a te ria ls and methods 95 Results 97 IMPROVED PONDEROSA PINE FOR MICHIGAN 106 In tro d u c tio n 106 M a te ria ls and methods 108 The v a r ie t ie s and ecotypes 110 R esults 111 P ra c tic a l recommendations 125 SUFtlARY 129 iv LIST OF TABLES TABLE 1. 2. 3. 4. 5. 6. 7. 8. 9. Page R e la tio n s h ip between c r i t i c a l tem peratures ( ° C ) , as determ ined from la b o r a to ry fre e z in g te s ts on December 3 , 1976* and v i s ib l e co ld In ju r y to needles o f tre e s from s ix ponderosa p in e provenances fo llo w in g exposure o f tre e s to -2 6 C tem peratures on December 3 , 1976, 1n a r e p lic a te d southern M ichigan p la n ta tio n . 40 C r i t i c a l tem peratures (1n °C ) f o r needles o f tre e s from e ig h t ponderosa p in e ecotypes on 14 d a te s . C r itic a l tem perature Is d e fin e d as th e h ig h e s t tem p eratu re a t which c o ld In ju r y could be d e te c te d . Data f o r J u ly . 1976 Is based on s ix s e e d lo ts . 56 C onsistency and magnitude o f co ld hardiness d iffe re n c e s among s e e d lo ts w ith in two g e n e t ic a lly v a r ia b le ponderosa p in e eco typ es. 63 D iffe re n c e s 1n cold hardiness between tw ig s and needles o f ponderosa p in e s e e d lo ts on fo u r d ates 1n 1976. 64 Comparison between damage caused by unseasonably co ld w eather (te m p e ra tu re o f -26°C on December 3 , 1976) 1n e a r ly w in te r and c o ld hardiness as measured by c r i t i c a l tem peratures on th e same d a te . The c r i t i c a l tem peratures a re an average o f c r i t i c a l tem peratures on November 1 1 , 1976 and December 1 7 , 1976. 71 R e la tiv e tim e o f bud break o f 16 y e a r o ld ponderosa p in e tre e s from e ig h t ecotypes growing a t K ellogg F o res t In southwestern M ich ig an . 82 Ecotype and seasonal d iffe r e n c e s 1n f o l i a r m o istu re co n te n t o f ponderosa p in e growing a t K ellogg F o res t In southwestern M ich ig an . 84 Simple c o r r e la tio n s between f o l i a r m o istu re c o n te n t and needle c r i t i c a l tem peratures f o r 30 ponderosa p in e s e e d lo ts on s e ve ra l dates 1n 1975 and 1976. 87 Summary o f phenotypic c o r r e la tio n s f o r h e ig h t a t d i f f e r e n t ages 1n g e n e tic v a r ia tio n s tu d ie s o f ponderosa p in e . 94 v Page TABLE 10. Age-Age c o r r e la tio n s f o r h e ig h t among 55 provenances o f ponderosa p in e a t two t e s t p la n ta tio n s In southern M ichigan 100 V a r ia tio n w ith age 1n range o f ecotype means and p ro p o rtio n o f t o ta l g e n e tic v a ria n c e due to ecotype and s e e d lo t w ith in eco typ e. 103 Changes 1n th e c o e f f i c ie n t o f v a r ia tio n ( C . V . ) , F v a lu e among s e e d lo ts , and p la n ta tio n mean h e ig h t w ith age 1n th e n u rsery and two permanent t e s t p la n ta tio n s . 104 M o r t a lit y and m o r t a lit y Increm ents o f 16 y e a r -o ld ponderosa p in e ecotypes growing a t K ellogg and Russ F orests 1n southw estern M ich ig an . 112 14. Growth r a t e and bole form o f ponderosa p in e eco typ es. 113 15. Seasonal d iffe re n c e s 1n cold h ard iness o f needles among ponderosa p in e eco typ es. 116 G en etic d iffe r e n c e s among ecotypes 1n s u s c e p t ib ilit y to stem fo rk in g a t K ello gg and Russ F o re s t p la n ta tio n s . 120 L o cation o f th e two b est stands o f ponderosa p in e In th e N orthern P la te a u and N orthern I n t e r i o r regio ns based on perform ance in two southern M ichigan p la n ta tio n s . 126 11. 12. 13. 16. 17. v1 LIST OF FIGURES Page FIGURE 1. 2. 3. 4. 5. 6. 7. A h y p o th e tic a l model o f g e n e tic re g u la tio n o f cold a c c lim a tio n 1n p la n ts . 23 D is t r ib u t io n o f ponderosa p ine In th e U n ited S ta te s and B r it i s h Colum bia, showing th e lo c a tio n o f stand c o lle c tio n s used 1n t h is study (map r e p r in te d from W e lls , 1 9 6 2 ). 47 Ecotype d iv is io n s o f ponderosa p in e progeny in c lu d ed 1n t h is stu d y . Ecotypes a re d esig n ated by l e t t e r s as fo llo w s : A. NORthern C A H fo rn ia and Southern C A llf o r n la B. NORthern PLATEAU C. Arizona-New Mexico D. southern U Tah-northern New Mexico E. NORthern INTERIOR F. NORthern COlorado-UTah G. COASTal ORegon (Map and ecotype boundaries a f t e r W e lls , 1 9 6 2 ). 53 Seasonal p a tte r n o f co ld hardening and dehardening f o r fo u r I n t e r i o r v a r ie t y ( v a r . scopulorum) ecotypes o f ponderosa p in e growing a t K ellogg f o r e s t in southern M ich ig an . 58 Seasonal p a tte r n o f co ld hardening and dehardening f o r fo u r c o a s ta l v a r ie t y ( v a r . ponderosa) ecotypes o f ponderosa p in e growing a t K ellogg F o res t 1n southern M ich ig an . 60 R e la tiv e e x te n t o f needle w in te r in ju r y on tre e s from e ig h t ponderosa p in e ecotypes a t d i f f e r e n t p la n ta tio n s and ages. Age 17 d ata was c o lle c te d fo llo w in g th e severe w in te r o f 1976-77. 67 M o ttlin g on ponderosa p in e needles damaged by tem per­ a tu re o f -2 6 C on December 3 , 1976. From l e f t to r i g h t th e s e e d lo ts a r e : No. 2234 from A riz o n a , moderate damage; No. 2197 from Montana, no damage; and No. 2036 from C a li f o r n ia , severe damage. 70 v11 Page FIGURE 8. Seasonal changes 1n c o ld h ard iness f o r fo u r s e e d lo ts o f ponderosa p in e . Numbered arrows d e s ig n a te dates o f Im p o rta n t c lim a t ic changes as fo llo w s : Arrow Arrow Arrow Arrow Arrow Arrow 9. 10. 11. 12. No. No. No. No. No. No. 1 2 3 4 5 6 January 18 , 1976 - f i r s t day below -27°C February 15 , 1976 - f i r s t day above 16°C October 18 , 1976 - f i r s t day below -5 C December 3 , 1976 - f i r s t day below -2 6 C December 3 1 , 1976 - f i r s t day below -2 8 C February 7 , 1977 - f i r s t day above 5°C 74 G en etic d iffe r e n c e s 1n w in te r d ryin g ra te s and f o l i a r m o istu re c o n te n t o f ex cis ed tw ig s from f i v e ponderosa p in e s e e d lo ts c o lle c te d on November 2 8 , 1976. S eed lo ts 2034, 2014, and 2091 a re from th e c o a s ta l v a r ie t y ; s e e d lo ts 2164 and 2248 a re from th e i n t e r i o r v a r ie t y . 80 Seasonal changes 1n f o l i a r m o istu re c o n te n t and co ld hardiness f o r tre e s from two ponderosa p in e ecotypes growing a t K ello gg F o re s t 1n southw estern M ich ig an . 89 Change in r e l a t i v e h e ig h t (expressed as a percentage o f p la n ta tio n o r n u rsery means) w ith age f o r tre e s from fo u r ponderosa p in e eco typ es. 99 Severe stem crook causing permanent damage to a t r e e o f New Mexico o r ig in growing a t th e K ellogg Forest p la n t a tio n . v i 11 122 CHAPTER 1 INTRODUCTION Ponderosa pine ( Plnus ponderosa) 1s n a tiv e to th e w estern U nited S ta te s and Is th e la r g e s t ranging species o f pine 1n North Am erica. I t s t a l l , s tr a ig h t tru n k and l i g h t , e a s ily worked wood make 1 t one o f th e most Im p o rtan t tim b e r species 1n th e w o rld . h ig h ly regarded f o r I t s beauty. Ponderosa p in e 1s als o I t s long cle an b o le s , orange p la te d bark and l i g h t green fo lia g e a re admired by most w estern t r a v e le r s . Because o f I t s ra p id growth r a te and a d a p t a b ilit y , ponderosa pine 1s w id e ly used as an e x o tic . In th e G reat P la in s and e a s te rn U nited S ta te s , 1 t Is convnonly used In s h e lt e r b e lt and ornamental p la n tin g s and 1s o fte n considered as a p o t e n t ia lly v a lu a b le tim b er o r pulp sp e c ie s . Cold tem perature is one o f th e most Im p o rtan t fa c to rs l im it i n g th e d is t r ib u t io n o f ponderosa p in e . In ju r y o fte n occurs. When 1 t 1s p la n te d as an e x o tic , w in te r Such In ju r y 1s a problem o f m ajor economic Im p o rt­ ance, o fte n causing severe red u ctio n s 1n growth r a te and u n s ig h tly damage. Ponderosa p in e Is an e x tre m e ly v a r ia b le species g e n e t ic a lly . As a r e s u l t , one would expect to d is c o v e r la r g e d iffe re n c e s 1n c o ld hardiness among I t s geographic ra c e s . However, In s p ite o f I t s im p ortan ce, l i t t l e d ir e c t evidence has been compiled which ev a lu a te s In t r a s p e c if ic v a r ia tio n In ponderosa p in e f o r fa c to r s which are r e la te d to co ld h ard in e ss . Such In fo rm a tio n 1s e s s e n tia l f o r th e s e le c tio n and breeding o f new adapted ra c e s , and f o r o b ta in in g the maximum p o te n tia l o f t h is species as an e x o tic . The s tu d ie s re p o rte d 1n t h is th e s is were undertaken to determ in e g e n e tic v a r ia t io n 1n s e ve ra l aspects o f cold hardiness 1n ponderosa p in e and to d eterm in e which aspects a re most Im p o rta n t 1n l im it i n g th e growth and development o f th e species 1n M ich ig an . O th er goals were to study g e n e tic v a r ia tio n In s e ve ra l o th e r eco n o m ically Im p o rta n t t r a i t s and to d eterm ine th e b est seed sources f o r p la n tin g 1n M ich ig an . CHAPTER 2 PHYSIOLOGY AND GENETICS OF COLD HARDINESS IN PLANTS: LITERATURE REVIEW INTRODUCTION The a b i l i t y o f p la n ts to s u rv iv e s u b fre e z in g tem peratures 1s one o f th e most Im p o rtan t fe a tu re s a f f e c t in g the d i s t r i b u t i o n , m ig ra tio n and u t i l i t y o f a s p e c ie s . Upon th e onset o f changing environm ental c o n d itio n s 1n th e f a l l , many p h y s io lo g ic a l and b io ­ chemical processes a re I n i t i a t e d which Im p art a s ta tu s o f co ld re s is ta n c e to p la n ts . However, th e Im pact o f c o ld re s is ta n c e goes f a r beyond th e p h y s io lo g ic a l and biochem ical Im p lic a tio n s . F ree zin g damage to o u r n a tiv e v e g e ta tio n and crop p la n ts 1s an im p o rta n t problem , w ith m ajor economic Im p acts. In o rd e r to enhance y i e l d s , research ers have worked toward a c h ie v in g a b e t t e r understanding o f the p h y s io lo g ic a l and g e n e tic processes In v o lv e d 1n co ld h a rd in e s s . To d a te , th e p h y s io lo g ic a l aspects a re much b e t t e r understood b u t th e re has a ls o been some b reeding w ork. The u ltim a te advance 1n co ld hardiness Improvement w i l l p ro b ab ly n o t be ach ieved u n t i l p h y s io lo g is ts and g e n e tic is ts combine t h e i r s k i l l s 1n an e f f o r t to determ in e th e g e n e tic b asis f o r th e p h y s io lo g ic a l and m e ta b o lic events which r e s u lt 1n c o ld re s is ta n c e among many h ig h e r p la n ts . In th e ensuing d is c u s s io n , I d e s c rib e th e p h y s io lo g ic a l p ro ­ cesses which a re b e lie v e d to be In v o lv e d In th e In d u c tio n o f cold hardiness 1n p la n ts . I a ls o s p e c u la te on th e r o le o f g e n e tic re g u la ­ t io n and th e p o s s ib le modes o f In h e r ita n c e o f such p h y s io lo g ic a l processes. FREEZING AND DEATH IN PLANT TISSUES F re e zin g 1n p la n t tis s u e s 1s th e conversion o f liq u id s 1n c e lls and tis s u e to a s o lid s t a t e w ith an accompanying loss o f h e a t. types o f fr e e z in g a re recognized 1n p la n ts : Two s o lid ific a tio n o f c e llu la r co n ten ts In to a non c r y s t a l l i n e s t a t e w ith o u t an o r d e r ly m o le c u la r arrangem ent, and s o l i d i f i c a t i o n t h a t in v o lv e s c r y s t a l l i z a t i o n o r an arrangem ent o f liq u id m olecules In to o rd e rly s tr u c tu r e s (A lden and Hermann, 1 9 7 1 ). The f i r s t typ e o f fr e e z in g 1s c a lle d v i t r i f i c a t i o n and occurs as a r e s u lt o f e x tre m e ly ra p id fr e e z in g o f p la n t tis s u e s . This type o f fr e e z in g r a r e ly occurs 1n n a tu re and 1s m a in ly o f academic In t e r e s t because c e lls can s u rv iv e v i t r i f i c a t i o n to ve ry low te m p e ra tu re s . If fr e e z in g 1s ra p id enough to produce subm lcroscoplc ic e c r y s t a l s , no In ju r y occurs in th e p la n t c e l ls ( L e v i t t , 1 9 5 6 ). Most fr e e z in g damage t h a t occurs in p la n ts Is due to th e second typ e o f f r e e z in g . In n a tu re the a i r tem perature r a r e ly decreases more than a few degrees p e r hour. A t such low ra te s o f f r e e z in g , 1ce forms f i r s t o u ts id e c e lls where w a te r 1s p u re s t. Hardy woody p la n ts can s u rv iv e e x t r a - c e l l u l a r fr e e z in g o f t h is ty p e . However, i f 1ce c r y s ta ls form w it h in th e p ro to p lasm , such I n t r a c e l l u l a r fr e e z in g u s u a lly r e s u lts 1n c e ll d ea th . The method by which fr e e z in g In ju r y occurs has been debated 1n th e l i t e r a t u r e . W elser (1 9 7 0 ) suggested t h a t d u rin g fr e e z in g a p o in t 1s reached when a l l r e a d ily a v a ila b le w a te r has been fro z e n e x t r a c e l l u l a r l y and o n ly " v i t a l " w a te r remains 1n th e pro top lasm . With continued lo w erin g o f tem perature v i t a l w a te r 1s p u lle d away from p ro to p la sm ic c o n s titu e n ts to th e e x t r a c e l l u l a r Ic e . This s e ts o f f a ch ain re a c tio n o f d e n a tu ra tlo n , a d d itio n a l v i t a l w a te r r e le a s e , and u lt im a t e ly d e a th . This proposal allo w s f o r an e x p la n a tio n o f death based on e i t h e r mechanical damage, p ro te in d e n a tu r a tlo n , o r d eh yd ratio n o f th e c e l l . Mechanical damage may occur when I n t e r c e l l u l a r spaces a re too sm all to accommodate 1ce fo rm a tio n and c e l ls a re ru p tu re d by s p l i t ­ t in g o f t h e i r w a lls along th e m id dle la m e lla . In ju r y from I n t r a ­ c e l l u l a r 1ce fo rm a tio n r e s u lts from m echanical d is o r g a n iz a tio n o f th e protoplasm by 1ce c r y s ta ls ( L e v i t t , 1 9 5 6 ). P ro te in d e n a tu ra tlo n occurs when c e l l u l a r w a te r 1s removed and s a lt s become co n c e n tra te d 1n the c e l ls to such an e x te n t t h a t p ro te in s a re I r r e v e r s ib l y damaged. Severe d eh yd ra tio n sh rin ks the e n t i r e c e l l , In c lu d in g th e c e ll w a l l , and causes loose tis s u e . O ften th e dehydrated cytoplasm c o n tra c ts around th e nucleus and p la sm atic stran d s b re a k . S u rv iv a l o f c e lls pro bably depends on the te n a c ity o f w a te r b in d in g to p ro to p la sm ic c o n s titu e n ts , o r th e e x te n t to which bound w a te r 1s re p la c e d by p r o te c tiv e m olecules (H e b e r, 1 9 6 8 ). L e v i t t (1 9 6 2 ) proposed a th e o ry which e x p la in s c o ld damage on th e b asis o f p ro te in d e n a tu ra tlo n r e s u lt in g from th e fo rm a tio n o f d i ­ s u lf id e bonds between a d ja c e n t s u lfh y d r y l groups o f p r o te in s . Since th e suggestion o f t h is th e o ry In 1962, c o n s id e ra b le evid en ce has been presented 1n support o f L e v i t t 's Id e a . He thought t h a t high w a te r s tre s s has an e f f e c t upon th e s u lfh y d r y l groups o f p r o te in . As th e la y e r o f w a te r around th e p ro te in m olecule becomes t h in n e r , th e s u lfh y d ry l groups begin to c o n ta c t each o th e r 1n a d ja c e n t pro­ te in s . Upon o x id a tio n the hydrogen 1s removed and d is u lf id e lin k a g e s a re formed. A f t e r re h y d ra tio n , th e d is u lf id e lin k a g e s hold p ro te in s to g e th e r 1n such a May th a t th e developing w a te r la y e r re s u lts 1n d is to r tio n s o f the p ro te in m olecules. Assuming h is hypothesis 1s v a l id , re s is ta n c e to co ld damage 1s re la te d to an In h ib it io n o f th e In te rm o le c u la r d is u lf id e bonds which form between p ro te in s and u l t i ­ m ately d is t o r t them. Heber (19 68 ) found th a t in co ld r e s is ta n t herbaceous p la n ts sugar replaces w a te r 1n form ing a p r o te c tiv e s h e ll around th e p ro te in m o lecu les, and thus in h ib it s fo rm a tio n o f d is u lf id e lin k a g e s . THE ROLE OF LIGHT L ig h t 1s g e n e ra lly b e lie v e d to a f f e c t the development o f cold hardiness through a p ho to p erfo d lc response. E a rly th e o rie s suggested th a t photoperiod a ffe c te d cold re s is ta n c e o f woody p la n ts by Inducing dormancy. Tumanov e t a l (19 64 ) found th a t b lack lo c u s t ( Rob1n1a p su ed oacada) and w h ite b irc h ( B etula v e rru c o s a ), which d id not e n te r dormancy because o f continuous Illu m in a t io n , f a i l e d to develop complete to le ra n c e to cold a t hardening tem p eratu res. They th e re fo r e concluded th a t co ld hardiness could be Induced o n ly a f t e r th e dormant s ta te had been reached. More re c e n t s tu d ie s have shown th a t dormancy m erely accompanies th e onset o f cold a c c lim a tio n and th a t both processes a re Ind ep en d en tly trig g e re d by a p h o to p erlo d ic mechanism. Zehnder and Lanphear (19 66 ) showed t h a t f o lia g e o f Taxus cu spldata developed more hardiness under an 8-h o u r than under a 16-hour photoperiod. Removal o r co verin g o f the leaves In te r f e r e d w ith th e development o f h a rd in e s s , thus suggest­ ing th a t th e leaves a re the re c e p to r o f th e l i g h t stim ulus which I n i t i a t e s h ardening. W illia m s e t a l (19 72 ) suggested th a t reduced photoperiods Induce r e s t and a sim ultaneous In c re as e In hardiness through a phytochrome mediated response. They demonstrated th a t dark p erio d In te rru p tio n s w ith red r a d ia tio n suppressed cold a c c lim a ­ tio n 1n Comus and Weigel a . When red l i g h t was fo llo w e d by f a r red l i g h t , suppression was r e lie v e d . Thus they hypothesized th a t s h o rt days (lo n g n ig h ts ) a llo w an accum ulation o f th e Pr form which 1s subsequently In v o lv ed 1n Implementing cold h ard in ess. Ir v in g and Lanphear (1 9 6 7 a , 1967b) found th a t Acer negundo. Viburnum pUcatum tomentosum. and Weigel a f l o r l d a , which remain 1n a non-growing c o n d itio n w ith o u t bud dormancy under a 6 hour p h o to p e rio d , developed the same degree o f hardiness as dormant p la n ts under an 8 hour photo­ p erio d a f t e r hardening f o r th e same p erio d o f tim e . In a d d it io n , re s is ta n c e to f r o s t by Viburnum p la n ts placed under supplemental l i g h t to p reven t dormancy, equaled th e re s is ta n c e o f p la n ts under n a tu ra l d aylen g th s. These authors th e re fo r e concluded t h a t dormancy Is not re q u ire d f o r hardening and th a t hardiness was Induced by a p h o to p erlo d ic response s im ila r to dormancy and flo w e r In d u c tio n . In c re as in g weeks o f s h o rt days, fo llo w e d by a low tem perature harden­ ing p e rio d , brought about a p ro g ressive In crease 1n h a rd in e s s . Addi­ tio n a l evidence was provided by Young (19 61 ) on g r a p e fr u it . Photo­ p erio d was shown to have no e f f e c t on bud dormancy 1n th is p la n t , but p la n ts under s h o rt days developed a g r e a te r re s is ta n c e to co ld than p la n ts under long days. A com bination p h o to p e rlo d ic and p h o to s y n th e tic r o le 1n co ld hardiness was suggested by Steponkus and Lanphear (1 9 6 8 ) 1n t h e i r work on th e l i g h t req u irem ent o f Hedera h e lix d u rin g c o ld a c c lim a tio n . They found th e fo llo w in g e f f e c t s : 1. S h ort day l i g h t increased development o f c o ld to le ra n c e d u rin g th e f i r s t 6 weeks o f hardening* 2. A f t e r t h is tim e , va rio u s photoperiods from 8 to 24 hours had no e f f e c t on to le r a n c e * 3. 4. Low I n t e n s it ie s o f l i g h t fa v o re d h ard e n in g , Reduced C02 and darkness d u rin g hardening caused a loss o f t o l e r ­ ance^ 5. In creased p h o to s y n th e tic area exposed to l i g h t In creased stem h a rd in e s s ; and 6 . A high c o n c e n tra tio n o f a p h o tosyn thesis I n h i b i t o r (slm eto n e) decreased h ard iness o f leaves and had no e f f e c t on the stems. They b e lie v e d t h a t e f f e c t s 1 , 4 l i g h t In a c c lim a tio n 1s p h o to s y n th e tic . and 5 show t h a t th e r o le o f They could e x p la in th e d is ­ crep an cies noted 1n 2 and 3 o n ly I f a sm all p o rtio n o f th e photosynth a te produced was re q u ire d f o r cold a c c lim a tio n . A p h o to p e rlo d ic response s im ila r to phytochrome Induced flo w e rin g and dormancy was in d ic a te d In e f f e c t s 2 , 3 and 5 . The authors concluded t h a t the phytochrome system 1s a t work and I t In flu e n c e s carb o h yd rate m etabolism , p ro te in s y n th e s is , and o x id a tiv e p h o sp h o ry latio n 1n prom oting th e development o f co ld h a rd in e s s . ACCLIMATION Woody p la n ts c h a r a c t e r is t ic a l l y undergo a s e rie s o f changes 1n the f a l l which en ab le them to cope w ith th e oncoming fr e e z in g s tre s s e s o f w in te r . The process by which p la n ts c a rry o u t th ese changes 1s c a lle d a c c lim a tio n . The a c c lim a tio n process In p la n ts 1s g e n e r a lly b e lie v e d to be c a r r ie d o u t In 2 o r sometimes 3 phases. The f i r s t stage o f a c c lim a tio n 1n p la n ts 1s Induced by the onset o f sh o rt days and 1s p erceived by th e leaves (Howell and W else r, 1970a; Fuch1gam1 e t a l . 1971; Ir v in g and Lanphear, 1967a, 1967b ). Short days 1n the autumn are d etected by a phytochrome clock 1n th e leaves and the Pr form accum ulates. Decreasing photoperiods cause th e cessatio n o f growth and thereby a llo w f o r sto rag e o f photosynthates which are the energy producing s u b s tra te s necessary f o r a c c lim a tio n (Fuchlgarni e t a l , 1 9 7 1 ). Temperature also plays a r o l e , low tem peratures o fte n i n h i b i t 1ng the f i r s t s ta g e . Once th is phase has been Induced, very l i t t l e hardiness Is a c t u a lly a tta in e d 1n the p la n t . A p p a re n tly , th e prim ary r o le o f th e f i r s t stage 1s to cease growth and to I n i t i a t e th e meta­ b o lic changes which f a c i l i t a t e the p la n ts response to low tem perature during the second stage o f a c c lim a tio n . The means by which the f i r s t stage m etab olic changes begin 1s not f u l l y known. However, 1 t has been shown (Fuch1gam1 e t a l , 1971; Howell and W elser, 1970a) th a t upon re c e p tio n o f th e s h o rt day s tim u lu s , the sh o rt day l e a f produces a tra n s lo c a ta b le substance which promotes a c c lim a tio n . Through a s e rie s o f m o d ified p la n t s tu d ie s , I t has been shown th a t th e hardiness promoting fa c t o r 1s o n ly syn th esized 1n s h o rt day le a v e s . Long day leaves produce a su b stance(s) which In h ib it s the In d u c tio n o f a c c lim a tio n . T h e re fo re , under long days and n a tu ra l f a l l tem p eratu res, hardiness can be a tta in e d o n ly a f t e r removal o f the long day leaves ( Ir v in g and Lanphear, 1967b ). Through th e use o f g r a ftin g s tu d ie s , I t has been shown t h a t both In h ib it o r s and promoters o f hardiness e x is t . The second stage o f a c c lim a tio n 1s Induced by low tem peratures. In f a c t , f r o s t o fte n appears to be the tr ig g e r in g stim u lus (Howell 10 and W elser, 1970a). I t has been f u r t h e r noted th a t th e f r o s t Induced phase o f a c c lim a tio n does not In v o lv e tra n s lo c a ta b le fa c to r s . Because o f t h i s , many authors have suggested th a t th e second stage o f a c c lim a ­ tio n 1s a p hysical r a th e r than a m etab o lic process. However, t h is 1s not l i k e l y because a number o f enzyme mediated re a c tio n s a re known to be Induced by low tem peratures (W e ls e r, 19 7 0 ). W elser (1970) has suggested th a t the second stage o f a c c lim a tio n may In v o lv e a r e o r ie n ta tio n o f macromolecules In to s ta b le forms which can w ith stand severe d e h yd ra tio n . P ro tein s and hydrophobic residues are known to be tem perature s e n s itiv e . In the polym erized s t a t e , many p ro te in s a re b io lo g ic a lly a c tiv e b u t s tre s s s e n s itiv e w h ile depolym erized molecules a re In a c tiv e but s tre s s r e s is t a n t . W elser proposed th a t th e re may be a tem perature r e v e r s ib le re g u la tio n o f h yd ratio n which re s u lts In the conversion o f p ro te in s from a polym erized to a depolym erized c o n fig u ra tio n a t low tem p eratu re. The u ltim a te r e s u lt o f such a re a c tio n 1s the high degree o f cold hardiness which 1s a tta in e d during th e second stage o f a c c lim a tio n . During the l a t t e r stages o f t h is phase hardy p la n ts become very cold r e s is t a n t , tis s u e h y d ra tio n decreases and m etab olic a c t i v i t y 1s s l i g h t . I t Is p o s sib le th a t many o f the macromolecular and c e l l u l a r s tru c tu re s asso ciated w ith a c tiv e growth and metabolism are disassembled and 1n a re s tin g s ta te f o r th e w in te r . Tumanov and Krasavtsev (19 59 ) observed t h a t th e re o fte n 1s a t h ir d stage o f a c c lim a tio n 1n hardy woody p la n ts which Is Induced by u ltr a lo w tem peratures In the range o f -5 0 ° C. Prolonged exposure o f prehardened tis s u e to tem peratures In t h is range can d r iv e th e h a r d i­ ness to le v e ls which a re not o r d in a r ily experienced 1n n a tu re . kind o f hardiness is q u ic k ly l o s t . This They noted th a t 1 f hardy stems 11 were thawed f o r as l i t t l e as 6 hours t h e i r hardiness le v e ls would decrease from -1 9 5 ° to -4 5 °C . Tumanov and Krasavtsev als o suggested th a t th e t h ir d phase o f a c c lim a tio n 1s a physical process asso ciated w ith reduced In te rm o le c u la r d istances and thermal motion o f molecules in fro zen c e l ls . Welser (1 9 7 0 )* however, thought th is phase o f a c c lim a ^ o n 1s r e la te d to the amount and degree o f o r ie n ta tio n o f q u a s i-c r y s ta l11ne w ater 1n the c e l l . He p o s tu la te d th a t prolonged low tem peratures c re a te a high degree o f o rd e r among w ate r m olecules. T h is , 1n t u r n . Increases the te n a c ity o f binding which Increases the p ro p o rtio n o f bound w ater and thus Increases d ehydration re s is ta n c e o r reduces th e q u a n tity o f a v a ila b le w ate r f o r d e s tr u c tiv e c r y s t a l l i z a t i o n . Upon warming, therm al a c t i v i t y Increases and thawed e x t r a c e llu la r w ate r q u ic k ly relnvades the c e ll causing ra p id decreases in hardiness le v e ls . Burke e t a l (1974) stu d ied the n u c le a r magnetic resonance o f w a te r 1n a c c lim a tin g Cornus s t o lo n lfe r a and provided evidence which supports W e ls e r1s th e o ry . They found th a t the a b i l i t y o f dogwood to s u rv iv e low tem perature depends p r im a r ily on I t s a b i l i t y to t o le r a t e dim inished q u a n titie s o f w a te r and high protoplasm ic c o n c e n tra tio n s . They a ls o showed th a t the te n a c ity o f hydrophobic w a te r b in d in g Increased a t low tem peratures which re s u lte d 1n Increased re s is ta n c e to deh yd ratio n In c e l ls . The hardiness promoter The n atu re o f th e hardiness promoter which plays a r o le 1n th e f i r s t stage o f a c c lim a tio n 1s s t i l l a m ystery. I t 1s known th a t the hardiness promoting fa c to r 1s synthesized 1n leaves exposed to s h o rt days. I t 1s als o known th a t th e fa c to r 1s not species s p e c i f ic , I . e . 12 the hardiness promoting f a c t o r from leaves o f a hardy species (o r genotype) can enhance a c c lim a tio n o f a le s s hardy species (o r geno­ ty p e ) when th e two a re g r a fte d . A f te r re vie w in g a m a jo r ity o f th e work r e la t in g to th is a re a , W elser (19 70 ) has concluded th a t the promoting substance Is e i t h e r a I n h i b i t o r , a sugar o r a re g u la to ry substance. Growth I n h i b i t o r . I t 1s p o s s ib le th a t the hardiness promoter may p la y an In d ir e c t r o le 1n a c c lim a tio n by m erely stopping grow th, an event which 1s necessary f o r th e onset o f a c c lim a tio n In woody p la n ts . Ir v in g (19 69 ) showed th a t an I n h i b i t o r e x tra c te d from s h o rt day leaves o f Acer negundo was s im ila r to a b s c ls lc a c id 1n chromotograph1c p r o p e rtie s . Subsequent tre a tm e n t o f Acer negundo w ith the e x tra c te d I n h i b i t o r o r a b s c ls lc a d d Increased h a rd in e s s . He, th e re ­ fo r e , concluded t h a t th e hardening process appears to be c lo s e ly c o rre la te d to a b u ild up o f a b s c ls lc a c id le v e ls which a re s tim u la te d by sh o rt days. I t Is p o s s ib le t h a t a b s c ls lc a d d p lays a r o le In a c c lim a tio n by causing growth c e s s a tio n , however, t h a t does not account f o r th e wide spectrum o f m e tab o lic changes which occur d u rin g a c c lim a tio n . I t 1s more l i k e l y th a t th e hardiness prom oter plays an a c tiv e re g u la to ry r o le which does n o t begin u n t i l growth ceases. Sugar. A co n s id e ra b le amount o f evidence p o in ts to the p o s s i­ b i l i t y th a t sugar may be th e tra n s lo c a ta b le f a c t o r . Fuch1gam1 e t a l (19 71 ) has shown th a t p la n ts cannot a c c lim a te when they a re d ep leted o f p h o to s yn th e tic s u b s tra te . Heber (19 68 ) has shown th a t sugar p ro ­ te c ts the enzyme system a s s o c ia te d w ith o x id a tiv e phosp ho rylation 1n spinach c h lo ro p la s ts th a t a re su b jected to fr e e z in g . He b e lie v e s t h a t the p ro te c tiv e In flu e n c e o f sugars may be due to t h e i r a b i l i t y 13 to r e ta in o r s u b s titu te w a te r o f h y d ra tio n o f p ro te in s v ia hydrogen b in d in g . Steponkus (19 71 ) showed th a t Hedera h e lix p ro te in from cold acclim ated tis s u e e x h ib ite d a h ig h e r sugar bin din g c a p a c ity than p ro te in from nonacclim ated tis s u e . Furtherm ore, he a ls o noted a dram atic In c re as e 1n la b e lle d sucrose 1n p ro te in from acclim ated tis s u e s . a r tific ia l A d d itio n a l evidence was o ffe re d by L e v it t (19 59 ) th a t an In c re as e In sugar co n ten t increased the c o ld hardiness 1n cabbage le a v e s . He noted th a t 1n leaves I n f i l t r a t e d w ith fru c to s e osmotic p o te n tia l was h ig h e r and th e f r o s t k i l l i n g p o in t was s i g n i f i ­ c a n tly low er than 1n c o n tro l le a v e s . He concluded, however, t h a t an In crease 1n sugars could account f o r only p a rt o f the n a tu ra l In c re as e 1n hardiness and t h a t th e re must be a d d itio n a l fa c to rs In v o lv e d . Many authors have found seasonal increases In sugar co n te n t which were h ig h ly c o rr e la te d w ith Increases in cold re s is ta n c e . P arker (1959) found s lig h t Increases 1n su cro se, glucose and fru c to s e In 6 co n ife ro u s species during w in te r . He a ls o found d r a s tic in creases in r a ffln o s e and stachyose 1n th e 6 s p e c ie s , which were d ir e c t l y c o rr e la te d w ith w in te r h ard in e ss . In s p ite o f th e c o lle c t iv e w eigh t o f e v id e n c e , no exp erim en tal data has been a b le to show increased hardiness 1n woody p la n ts as a r e s u lt o f a r t i f i c i a l Increases In sugar. There Is l i t t l e doubt th a t some basic le v e l o f sugar 1s necessary f o r a c c lim a tio n , but w hether o r not sugar 1s th e tra n s lo c a ta b le hardiness promoter has s t i l l not been c le a r ly e s ta b lis h e d . R egulatory hormone. Although th e re 1s no exp erim en tal e v id e n c e , Welser b e lie v e s th a t the hardiness promoter may be a hormone o r complex o f hormones which p lay a s p e c ific r o le 1n re g u la tin g a c c lim a tio n . If 14 th is 1s th e case, then 1 t 1s probable th a t u ltim a te re s is ta n c e 1s th e product o f seve ra l d is t in c t processes. PHYSIOLOGICAL AND METABOLIC CHANGES DURING HARDENING Water r e la tio n s Hypotheses to e x p la in p la n t s u rv iv a l a t low tem peratures assume th a t i n t r a c e l l u l a r 1ce fo rm atio n Is avoided in hardy tis s u e s . In ten d er tis s u e s , an In c re as e 1n the p r o b a b ility o f I n t r a c e l l u l a r 1ce occurs during f r o s t due to a la rg e amount o f w ate r w ith in c e lls . McKen2 i e e t a l (1974a) have shown th a t w a te r co n ten t o f stems de­ creases co n s id e ra b ly d u rin g th e I n i t i a l stage o f a c c lim a tio n . This re s u lts as a fu n c tio n o f decreased stom atal re s is ta n c e and Increased ro o t re s is ta n c e to th e uptake o f w a te r. The I n i t i a l high r a te o f l e a f tr a n s p ir a tio n r e f le c t s th e In c re as e 1n metabolism asso ciated w ith th e i n i t i a l s h o rt day Induced stage o f a c c lim a tio n . McKenzie e t a l (1974b) a ls o showed t h a t during th e f i r s t stage o f a c c lim a tio n w ate r permea­ b i l i t y o f th e phloem and c o r t ic a l parenchyma c e lls Increased s i g n i f i ­ c a n tly , and re s u lte d In an Increase 1n hardiness In Comus s t o lo n lf e r a . R e la tio n s h ip s between re s is ta n c e to w a te r flo w 1n p la n ts and hormones a re w e ll known. McKenzie e t a l (1974b) Im ply th a t th e r a t io o f c y to k ln ln s and ABA may d ir e c t th is a d a p tiv e response o f th e p la n t In v o lv in g w a te r flo w . They als o suggest th a t th e tra n s lo c a ta b le hardiness promoter may fu n c tio n p r im a r ily by c o n tr o llin g the hydra­ tio n o f o v e rw in te rin g tis s u e . Chi oropl as ts During hardening two opposing types o f changes have been observed 1n the c h lo ro p la s ts : in some cases the c h lo ro p la s ts r e ta in t h e i r 15 I n t e g r i t y , but m ig ra te from a summer p o s itio n near the c e ll w a ll to a crowded p o s itio n In th e c e ll I n t e r i o r , w ith some loss 1n c h lo ro p h y ll c o n te n t; 1n o th e r cases, th e c h lo ro p la s ts have been shown to a g g lu t i­ n a te , lo s e t h e i r I n t e g r i t y and merge w ith each o th e r to become a continuous mass from which c h lo ro p la s ts reform again as sp rin g approaches (P a r k e r, 1 9 6 3 ). N u cle ic acids LI and W elser (1968) have shown th a t n u c le ic acids 1n apple tw igs begin to show an In c re as e 1n co n c e n tra tio n one week p r io r to a ra p id In crease In cold h ard in e ss . S o lu b le RNA Increased 382 in one week, l i g h t and heavy rlbosomal RNA Increased 412 in two weeks ju s t p r io r to and d urin g th e stage o f ra p id cold a c c lim a tio n . Follow ing t h is p erio d th e re was a s lig h t decrease In these th re e n u c le ic ac id f r a c t io n s . DNA co n ce n tratio n s fo llo w e d the same p a tte rn although the t o ta l c o n c e n tra tio n was much lo w er. These re s u lts suggested th a t sh o rt days a n d /o r low tem peratures 1n the autumn tr ig g e r s the production o f an endogenous growth re g u la to r which Induces ra p id synthesis o f s o lu b le RNA. The s o lu b le RNA p a r tic ip a te s d ir e c t ly 1n p ro te in syn th esis and a ls o probably fu n c tio n s 1n th e re g u la tio n o f a l l RNA and p ro te in syn th esis through a re p re s s o r-in d u c e r type o f system. Such a system may 1n f a c t be working because the tim ing o f RNA Increases suggest th a t i t may be one o f th e i n i t i a l steps In the hardening process. F u rth e r In fo rm a tio n on the r o le o f n u c le ic acids In cold hardiness was ex p la in ed by K essler and F ra n k -T ls h e l (19 62 ) They discovered th a t d eh yd ratio n increased th e r a t io o f guanine and 16 c y to s in e to adenine and u r a c il 1n th e RNA o f o li v e le a v e s . Guanine and c y to s in e p a ire d to form an a d d itio n a l hydrogen bond between the double h e lix o f th e n u c le ic a c id s , which was hyp oth esized to g re a te r s t a b i l i t y to RNA m o lecu les. Im p a rt They concluded t h a t a high guanine and c y to s in e c o n te n t In RNA 1s r e la te d to c o ld re s is ta n c e 1n p la n ts and the a b i l i t y to s y n th e s ize RNA th a t 1s ric h 1n guanine and c y to s in e 1s a b as ic p a rt o f th e co ld hardening process In p la n ts . P ro te in s S1m1nov1tch and Briggs (19 53 ) re p o rte d th a t th e c o n c e n tra tio n s o f w a te r s o lu b le p ro te in Increased In th e bark o f b la c k lo c u s t In th e f a l l along w ith th e development o f co ld h a rd in e s s . In th e s p rin g , t h is c o n c e n tra tio n d e c lin e d a b ru p tly w ith th e disappearance o f h a rd in e s s . Pomeroy e t a l (1 9 7 0 ) found a s i m ila r tre n d 1n the bark and needles o f red p in e ( Plnus r e s ln o s a ). re p o rte d a f a l l F u rth erm o re, P a rk e r (1 9 6 3 ) In c re a s e 1n w a te r s o lu b le p ro te in 1n some s p e c ie s . These works u lt im a t e ly le d to the co n clusion t h a t th e In c re a s e 1n s o lu b le p ro te in may p la y an Im p o rta n t r o le 1n th e development o f f r o s t h a rd in e s s . There a re two schools o f thought which a tte m p t to e x p la in th e p a r a lle lin g In c re a s e 1n w a te r s o lu b le p ro te in s and development o f h a rd in e s s . Many s tu d ie s In d ic a te t h a t th e In c re a s e 1n p ro te in r e s u lts from a breakdown o f p a r t o f th e more complex p ro te in s and n o t from s yn th esis o f new amino acid s and p r o te in s . This view 1s supported by Heber (1 9 6 8 ) who suggested t h a t p ro te in In c re as es a s s o c ia te d w ith the development o f to le ra n c e to co ld may r e s u lt from changes 1n e x tra c ta b 1 1 1 ty o f p ro te in s In flu e n c e d by seasonal changes 1n pH. Others b e lie v e t h a t th e In c re a s e 1n w a te r s o lu b le p ro te in s 17 r e s u lt s from p r o te in s y n th e s is . L1 e t a l (1 9 6 5 ) found an In c re a s e In t o t a l p r o te in and a decrease In amino a c id s upon h ard e n in g o f Comus s t o l o n l f e r a . The d e c lin e In amino a c id s p ro b a b ly in d ic a te s th e y w ere used 1n s y n th e s iz in g w a te r s o lu b le p r o te in s . S1m1nov1tch (1 9 6 3 ) showed t h a t an In c re a s e 1n RNA w ith o u t an in c re a s e 1n DNA o cc u rred p rec ed in g th e In c o r p o r a tio n o f la b e lle d g ly c in e In t o p r o t e in , n e t p r o te in s y n th e s is and c o ld r e s is ta n c e 1n th e parenchyma c e l l s o f b la c k lo c u s t b a rk . The In c o r p o ra tio n o f la b e lle d g ly c in e In t o w a te r s o lu b le p r o te in v e r i f i e s t e i n s y n th e s is 1s In v o lv e d . t h a t t r u e p ro ­ The In c re a s e 1n amino a c id s and n u c le o ­ t id e s n ecessary f o r p r o te in s y n th e s is p ro b a b ly occurs as a r e s u l t o f d e g ra d a tio n , h y d r o ly s is , and movement o f p ro te in s and n itr o g e n from th e le a v e s in t o th e tru n k d u rin g autumn. The In c re a s e d RNA Is b e lie v e d to s y n th e s iz e s p e c i f ic w a te r s o lu b le p ro te in s t h a t promote f r o s t r e s is ta n c e o r tra n s fo rm th e p r o te in s y n th e tic c a p a b i l i t i e s th e photoplasm lc substances 1n th e bark c e l l s . to In c re a s e The changed p h y s ic a l p r o p e r tie s o f th e p ro to p lasm e n a b le 1 t to r e s i s t s tr e s s from d eh yd ra­ t io n caused by I n t r a c e l l u l a r f r e e z in g . Amino a c id s S e v e ra l w orkers have a n a ly ze d th e amino a d d c o n te n t o f w a te r s o lu b le p ro te in s d u rin g h ard en in g and d e h a rd e n in g . P a u li and Zech (1 9 6 4 ) found t h a t a la n in e , a r g in in e , a s p a ra g in e , g lu ta m ic a c id and h l s t l d l n c o n te n ts o f w a te r s o lu b le p ro te in s from w in t e r w heat In c re a s e d to a maximum d u rin g h ard e n in g and d e c lin e d d u rin g d e h a rd e n in g . These amino a d d s p ro b a b ly p ro v id e p ro te in s w ith r e a c t iv e s id e c h a in s t h a t can d is r u p t an 1ce l a t t i c e o f w a te r m o lecules formed around n o n p o la r s id e ch ain s 1n th e p r o t e in . P ro te in s w ith p o la r amino a d d s id e ch ain s In c re a s e d 1n hardened tw ig s e c tio n s o f Cornus s t o lo n lf e r a d u rin g h ard e n in g 18 and a re b e lie v e d to preserve w a te r and p reven t d e n a tu ra tlo n o f pro­ t e in when th e protoplasm 1s dehydrated by e x t r a c e ll u la r fo rm atio n o f Ic e (Van Huystee e t a l . 1 9 6 5 ). L i e t a l , (19 65 ) sumnarlzed th e co ld a c c lim a tio n changes 1n 15 amino acids o f Comus s t o lo n ife r a tw igs by grouping them in to th re e general c a te g o rie s . Group 1 decreased d urin g cold a c c lim a tio n and included the 3 prim ary amino a c id s , a s p a r ta te , g lu ta m a te , and a la n in e . Group 2 amino acids increased 1n c o n c e n tra tio n during cold a c c lim a tio n and Included g lu ta m in e , la n in e , le u c in e and 1soleuc1ne. -a m in o b u ty ra te , phenyla­ Group 3 flu c tu a te d 1n c o n c e n tra tio n during a c c lim a tio n and Included s e r in e , th re o n in e , a s p ara g in e, 8 a la n ln e and c y s tin e . Enzyme a c t i v i t y The changes In amino a c id s , p ro te in s and o th e r o rg an ic compounds as p la n ts a c c lim a te to cold must be brought about by changes 1n enzymes and enzyme a c t i v i t y . Thus, most research in th is area has focused on the e f f e c t o f low tem perature on enzyme syn th esis and a c t i v i t y . The r o le o f enzymes in Inducing cold hardiness and the enzymes Involved a re not as y e t known. Van Huystee e t a l (1 9 6 5 ) have suggested th a t hormonal a c tio n could In flu e n c e the enzyme systems re sp o n s ib le f o r the m etab olic changes 1n cold a c c lim a tio n . They b e lie v e d th is because changes 1n hardiness a re c lo s e ly asso ciated w ith the horm onally reg u lated ce ss atio n o f growth 1n autumn. Roberts (1 9 6 9 ), on the o th e r hand, has proposed th a t th e d e le te rio u s e ffe c ts o f low tem perature may be o f f s e t by th e s u b s titu tio n o f one 1sozym1c form o f a p ro te in f o r a d if f e r e n t form o r by changing the r e l a t i v e p ro p o rtio n s o f th e Isozymes p res en t. 19 Two enzymes which have y ie ld e d re s u lts c o n s is te n t w ith R o b erts' hypothesis a re In v e rta s e and p ero xid ase. I t has been c o n c lu s iv e ly demonstrated th a t In v e rta s e 1s not I r r e v e r s ib ly In a c tiv a te d by k illin g fro s ts . This enzyme* which hydrolyzes sucrose to glucose and fr u c to s e , has been shown to In crease a t low tem peratures u n t il 1 t exceeds th e c o n c e n tra tio n o f some c o m p e titiv e I n h i b i t o r and then re s u lts In an Increased h y d ro ly s is o f sucrose and accum ulation o f reducing sugars. Roberts (19 69 ) found a low er tem perature c o e f f ic ie n t f o r In v e rta s e e x tra c te d from leaves o f cold hardened than from leaves o f unhardened w heat. He suggested t h a t s t r u c t u r a lly d if f e r e n t forms o f th e enzyme a re syn th esized a t low er tem p e ra tu res . He concluded th a t In v e rta s e c o n sists o f a number o f Isozymes w ith d if f e r e n t tem perature c o e ffic ie n ts and th a t growth a t low tempera­ tu res Increases the p ro p o rtio n o f In v e rta s e Isozymes w ith low tem per­ a tu re c o e f f ic ie n t s . Evidence f o r changes In 1sozym1c components have a ls o been re p o rte d f o r p ero x id as e. W in ter clones o f Planthus showed a gradual synthesis o f 2 to 4 new peroxidase Isozymes d u rin g the co ld hardening p eriod (McGown e t a l . 1 9 6 9 ). Roberts a ls o re p o rte d th a t more peroxidase Isozymes were found In leaves o f wheat p la n ts grown a t 6°C than 1n leaves grown a t 20°C. McGown e t a l (1969) concluded th a t changes 1n peroxidase Isozymes during hardening may re g u la te p e rm e a b ility and p reven t In ju r y a t s u b fre e zin g tem peratures. Carbohydrates The f a c t th e re d u c tio n o f carbohydrate reserves reduces co ld hardiness 1n w in te rin g p la n ts 1s w e ll known. Starch decreases to a minimum and sugar Increases to a maximum as p la n ts become a c clim a ted 20 to c o ld . Many authors have re p o rte d s ta rc h to sugar changes 1n bark tis s u e and evergreen leaves o f vario u s tre e s t h a t have developed cold hardiness (evidence c ite d 1n P a rk e r, 1 9 6 3 ). Although s ta rc h to sugar changes a re f a i r l y w e ll understood, th e conversion o f sugars to o th e r sugar complexes and th e r o le o f sugars 1n f r o s t hardiness has not been f u l l y worked o u t. Although no attem p t w i l l be made here to review the myriad o f hypotheses on sugar Involvem ent 1n c o ld h a rd in e s s , one p a r t ic u la r study is worth m entio nin g. O Uen (19 67 ) s tu d ie d the In te rfe r e n c e o f fre e z in g caused by la rg e w a te r s o lu b le p olysacch arid e polymers e x tra c te d from the c e ll w a lls o f hardened wheat p la n ts . These sub­ sta n c es , which co n tain ed la r g e amounts o f sugars (x y lo s e and a ra b ln o s e ), In t e r f e r e d w ith fre e z in g by competing w ith w a te r molecules f o r s ite s 1n th e 1ce l a t t i c e a t th e l iq u id In t e r f a c e . The r e s u lt was th a t they tended to stop c r y s ta l grow th, causing an Im p e rfe c t Ic e mass to form. Only polymers from co ld hardy p la n ts re s u lte d 1n Im p e rfe c t c ry s ta l fo rm atio n 1n th e p la n t. GENETIC REGULATION OF COLO ACCLIMATION A f t e r re v ie w in g th e p h y s io lo g ic a l changes as so c ia ted w ith the achievement o f cold re s is ta n c e 1n p la n ts , one must wonder how p la n ts a re a b le to re g u la te t h e i r metabolism to a t t a in such a s t a t e . Because o f the la rg e a rra y o f m etab o lic changes In v o lv e d , I t seems l i k e l y th a t th e re g u la to ry processes fu n c tio n a t th e le v e l o f n u c le ic ac id tra n s ­ c r ip t io n . W elser (19 68 ) has proposed a hypothesis and asso ciated model (19 70 ) which attem pts to e x p la in the g e n e tic re g u la tio n and asso ciated m etab o lic changes which occur during co ld hardening 1n p la n ts . He has proposed th a t s h o rt days 1n autumn a re d e te c te d by a phytochrome clo ck 21 in the leaves and th e Pr form accum ulates. The Pr phytochrome p ro ­ motes synth esis o f a tra n s lo c a ta b le hardiness promoter which a c t i ­ vates DNA th a t Is n orm ally n o n -fu n c tio n a l during the a c tiv e growing season. New kinds o f mRNA and subsequently s tr u c tu r a l o r enzym atic p ro te in s a re produced which b rin g about th e f i r s t stage o f co ld a c c lim a tio n . The f i r s t stage p h y s io lo g ic a lly and m e ta b o lle a lly prepares the p la n t so i t 1s a b le to respond to low tem perature s tim u li which t r ig g e r the second, tem perature a c tiv a te d stage o f hardening. During th is s ta g e , low tem perature induces n o n trans- 1o c a ta b le but r e a d ily re v e r s ib le a lt e r a t io n s 1n the c e lls which In clu d es the b in d in g o f w a te r to p ro te in s and th e re s is ta n c e o f the protoplasm to d e h y d ra tio n . The model by W elser o ffe r s an e x c e lle n t summary o f the meta­ b o lic changes which occur during a c c lim a tio n . However, h is tre atm en t o f the g e n e tic re g u la tio n in volved 1n co ld a c c lim a tio n seems Incom­ p le te 1n l i g h t o f th e model proposed by B r itte n and Davidson (1 9 6 9 ). They have proposed th a t fo u r types o f genes and a c t iv a to r RNA mole­ cules a c t 1n sequence to tr a n s fe r the message o f an environm ental s tim u li to the r e s u ltin g m etab olic changes known to occur 1n p la n ts . I have attem pted to employ the B r itte n and Davidson model o f gene re g u la tio n to e x p la in th e sequence o f events which occurs from the onset o f s h o rt days 1n the autumn to the a c t iv a tio n o f m etab olic changes which r e s u lt 1n cold h ard in e ss . 1n F ig ure 1. These events are o u tlin e d The hypotheses proposed to e x p la in cold hardiness f i t th e B r itte n and Davidson model o f gene re g u la tio n 1n alm ost every as p e c t. However, in stage G a s lig h t discrepancy 1s noted. B r it t e n and Davidson have proposed th a t th e a c tiv a to r RNA molecules a c t d ir e c t ly on th e re c e p to r genes; I have suggested th a t these mole­ cules must code f o r an enzyme o r p ro te in which 1s In vo lved 1n the production o f a hardiness promoter which 1n tu rn fu n c tio n s by a c tiv a tin g th e re c e p to r genes. B r itt e n and Davidson m ention, however, th a t the r o le proposed f o r a c t iv a to r RNA could w e ll be c a rr ie d out In d ir e c t ly by p ro te in molecules coded f o r by these RNA m olecules. remained I n t a c t . Thus, I fe e l th e b asic s tr u c tu r e o f the model has 23 FIGURE 1. A h y p o th e tic a l model o f g e n e tic r e g u la tio n o f c o ld a c c lim a tio n in p la n ts . 24 GENETIC REGULATION IN COLD ACCLIMATION A) S h ort days a c t as th e e x t e r ­ nal s tim u li (a ls o s p e c tra l changes 1n s u n lig h t ) . H) The h ard iness prom oter is tra n s lo c a te d throughout th e p la n t . W * B) The sensor gene cannot d i r e c t l y d e te c t an e n v iro n ­ mental s t i m u l i. The s tim u li must be tr a n s la te d through a chem ical form (phytochrom e) I) The prom oter a c tiv a te s the re c e p to r g e n e (s ). * # J) The re c e p to r g en e(s) causes the t r a n s c r ip t io n o f the producer g en e(s) to o cc u r. C) S h o rt days a re d e te c te d by a phytochrome c lo c k 1n th e leaves and th e PR form accum ulates. K) The producer g en e(s) y ie ld s new kinds o f messenger RNA. W D) The phytochrome tu rn s on a sensor gene, which re c e iv e s th e s ig n a l from th e e n v iro n ­ ment. * E) The sensor gene a c tiv a te s the s e t o f In t e g r a t o r genes. # F) The In t e g r a t o r genes fu n c tio n 1n th e sy n th e s is o f a c t iv a t o r RNA. G) The a c t iv a t o r RNA must code f o r an enzyme o r p ro te in which 1s th e h ard iness prom oter o r 1s In v o lv e d In producing the h ard iness prom oter. The B ritte n -D a v id s o n model allo w s f o r such a r e a c tio n . * + L) The new mRNA codes f o r s tr u c tu r a l a n d /o r enzym atic p ro te in s which b rin g about th e f i r s t stag e o f a c c lim a ­ t io n . + M) The f i r s t s ta g e o f a c c lim a ­ tio n predisposes th e p la n t to respond to low tem perature s tim u li which tr ig g e r s th e second stage o f h ard en in g . 25 GENETIC VARIATION In species w ith wide geographic ranges the e x is te n c e o f w e ll d e fin e d groups o f p la n ts w ith co n sid e ra b le g e n e tic v a r i a b i l i t y among the groups Is q u ite l i k e l y . Such v a r ia tio n due to seed source u s u a lly p a r a lle ls geographic and c lim a tic d iffe re n c e s o f the physical h a b ita t and Is o fte n c h a ra c te riz e d by extreme forms range w ith a c l I n a l a t the p e rip h e ry o f the In te rg ra d in g o f forms between th e extrem es. The coiranon method o f studying such species v a r i a b i l i t y 1s the uniform environm ent p lo t . This technique has been s u c c e s s fu lly employed to d escrib e geographic v a r ia tio n in fo u r types o f fre e z in g In ju r y th a t can occur 1n woody p la n ts . E vert (19 67 ) has c la s s if ie d these types o f fre e z in g damage as In ju r y th a t can occur: onset o f a c c lim a tio n ; 2. 1. in f a l l b efo re the a t w in te r tem peratures too low f o r the maintenance o f c e l l u l a r s tru c tu re and fu n c tio n ; 3. o r p h y s io lo g ic a l drought; and 4 . from w in te r bum from sp rin g f r o s t s . For th e purposes o f t h is discussion o n ly the f i r s t two types o f in ju r y a re Im p o rta n t. The o th ers a re re la te d to p h y s io lo g ic a l pro­ cesses which are only I n d i r e c t l y as so c ia ted w ith the a b i l i t y o r I n a b i l i t y o f th e p la n t to become acclim ated to cold tem peratures. In th e case o f th e damage from w in te r b u m , th e Im p o rtan t determ in in g fa c to rs a re tem perature and m oisture c o n d itio n s In th e environm ent, as w e ll as m oisture co n ten t and tr a n s p ir a tio n ra te s 1n th e p la n ts . Even p la n ts acclim ated to cold can s u f f e r th is type o f damage given s p e c ific environm ental c o n d itio n s . Damage from sp rin g fr o s ts Is as so c ia ted p r im a r ily w ith e a r ly bud break 1n th e sp rin g b efo re the danger o f f r o s t has passed. I t 1s c lo s e ly asso ciated w ith th e response o f s p e c if ic genotypes to lo c a l environm ental c o n d itio n s . 26 Probably th e most conation type o f co ld In ju r y in woody p la n ts occurs as a r e s u lt o f g e n e tic d iffe re n c e s 1n tim in g o f a c c lim a tio n among c lim a tic races o f a sp e cies . Such v a r ia tio n has been demon* s tr a te d In many woody p e re n n ia ls ( F l i n t , 1 9 7 2 ), e s p e c ia lly Comus s t o lo n lf e r a . Smlthberg and W elser (19 68 ) c o lle c te d c u ttin g s o f 25 races o f t h is species from widespread lo c a tio n s 1n North America and grew them in a uniform environment p lo t 1n S t. P a u l, M innesota. The re s u lts o f cold hardening te s ts showed th a t a l l clones became e q u a lly hardy (-1 9 6 °C ) by m id w in te r; however, d iffe re n c e s 1n tim in g o f a c c l i ­ m ation were profound. N orthern clones a c clim a ted e a r l i e r than those o f southern o r co a stal o rig in s and thus escaped w in te r I n ju r y . Clones from S e a ttle were th e l a s t to harden and as a r e s u lt su stain ed ex ten ­ s iv e w in te r I n ju r y . As would be exp ected , th e dates a t which clones acclim ated to s p e c ific tem peratures were c lo s e ly c o rre la te d to w in te r minimum tem perature and len g th o f growing season a t p lace o f o r ig in . Thus, i t was concluded th a t w in te r In ju r y occurred because some clones f a i l e d to a c c lim a te on tim e even though a l l clones u lt im a te ly a c c l i ­ mated to le v e ls o f cold f a r beyond any th ey would encounter 1n n a tu re . The second type o f cold In ju r y mentioned re s u lts from g e n e tic d iffe re n c e s 1n a b i l i t y o f p la n ts to w ith s ta n d low w in te r tem peratures. W in ter damage o f t h is type has been demonstrated f o r many herbaceous (K ln b a ch er, 1962; M a rs h a ll, 1969; Suneson and M a r s h a ll, 1 9 6 7 ), as w ell as woody p e re n n ia ls . A study o f g e n e tic v a r ia tio n In th is type o f w in te r in ju r y was performed on e a s te rn w h ite pin e ( P1nus s tro b u s ) by Maronek and F l i n t (1 9 7 4 ). They compared tim in g o f a c c lim a tio n and m id w in ter k i l l i n g tem peratures o f 15 seed sources o f e a s te rn w h ite pin e growing In western M ichigan. They found th a t n orthern sources 27 hardened much e a r l i e r than southern sources and a ls o achieved g r e a te r m id w in te r h ard in ess le v e ls . N orthern sources could w ith s ta n d January tem peratures o f -90 °C w h ile southern sources were damaged a t tem per­ a tu re s below -3 0 °C . V a r ia tio n In k i l l i n g tem p e ra tu re was c l i n a l and c o n s is te n tly s i g n i f i c a n t between th e n o rth e rn and southern extremes o f th e sampled rang e. Although a l l seed sources achieved s u f f i c i e n t h ard iness to w ith s ta n d normal M ichigan w in te r te m p e ra tu re s , g e n e tic v a r ia t io n d id e x i s t in th e a b i l i t y o f d i f f e r e n t genotypes to w it h ­ stand low te m p e ra tu re s . Numerous s tu d ie s have been perform ed on woody p la n ts which i l l u s t r a t e p a tte rn s o f g e n e tic v a r ia tio n in v i s i b l e w in te r I n j u r y . No a tte m p t has been made here to review th ese s tu d ie s . INHERITANCE OF COLD RESISTANCE IN PLANTS Upon e s ta b lis h in g t h a t g e n e tic v a r ia tio n e x is ts 1n c o ld h a rd in e s s , th e n ext ste p 1s to examine th e In h e r ita n c e o f th e t r a i t . I t seems, however, t h a t most rese arch ers have not taken t h is f i n a l step, p ro bably because o f e a r ly In d ic a tio n s o f co m p licated In h e r ita n c e o f t h is c h a ra c te r . Dantuma (1 9 5 8 ), in b reed in g wheat and b a rle y f o r w in te r h a rd in e s s , d isco vered t h a t th e crosses made between w in te r X s p rin g v a r ie t ie s and w in t e r X w in te r v a r i e t i e s re s u lte d 1n progeny which d id not ach ieve th e w in te r h ard in ess o f th e most r e s is t a n t p a re n t. In a d d it io n , a n a ly s is o f 139 F2 progeny from w in te r wheat crosses showed In te rm e d ­ i a t e In h e r ita n c e w ith p o s s ib le p a r t i a l dominance. They a ls o noted t h a t the d iv e r s i t y o f forms w ith regard to w in t e r h ard iness and th e complex o f e x te r n a l fa c to r s which in flu e n c e w in te r h a rd in e s s , suggest 28 th a t i t 1s a com plexly In h e r it e d t r a i t . Eunus e t a l th e d ata on th e In h e r ita n c e o f w in te r b a r le y . (19 62 ) an alyzed They observed t h a t no two v a r i e t i e s behaved s i m i l a r l y In th e crosses and concluded t h a t w in te r hardiness was c o n tr o lle d in each v a r ie t y by a d i f f e r e n t com bination o f genes, both a d d itiv e and n o n -a d d 1 tlv e . F urth erm o re, they found t h a t w in te r h ard iness In b a rle y 1s c o n tr o lle d by genes ranging from com plete dominance to com plete re c e s s iv e n e s s . Thus, re s u lts from th e d ia l l e i experim ent in d ic a te t h a t many genes are In v o lv e d 1n w in te r h ard iness in h e r ita n c e and t h a t I t 1s a complex c h a ra c te r . E v id e n tly , genotype X environm ent In t e r a c t io n Is a ls o c o n s id e ra b le In such experim ents and a c ts to confuse th e Issue fu rth e r. Reid (1 9 6 5 ) an a ly zed 13 w in te r X s p rin g b a rle y h yb rid s f o r w in te r s u rv iv a l 1n th e Fg, F^, and F^ g e n e ra tio n s . None o f th e t h ir t e e n crosses were as h a rd y , on the a v e ra g e , as th e h a rd ie s t p are n t but many In d iv id u a l F4 lin e s were w ith in th e p a re n ta l s u rv iv a l range. Thus, as one would e x p e c t, s e g re g a tio n among F^ progeny had occurred and re s u lte d 1n a range o f In te rm e d ia te types between th e p a re n ts . T h is study a ls o showed t h a t d i f f e r e n t w in te r and s p rin g v a r ie t ie s v a rie d 1n t h e i r a b i l i t y to produce hardy progeny. v a r ie t ie s Two w in te r (Kearney and D lc k to o ) and 2 s p rin g v a r ie t ie s (M ln s tu rd l and C15890) c o n trib u te d more h ard in ess to t h e i r progeny than o th e r v a r ie tie s . Such v a r ia tio n suggests t h a t th e genes c o n t r o llin g w in te r hardiness 1n b a rle y d i f f e r f o r d i f f e r e n t v a r i e t i e s . The o v e r a ll co n clusion drawn from th e aforem entioned s tu d ie s Is t h a t cold h ard iness 1s q u a n t it a t iv e ly in h e r it e d , t h a t 1 s , 1 t Is con­ t r o l l e d by many genes w ith sm all e f f e c t s . 29 Evidence f o r an a d d itiv e mode o f In h e rita n c e Daday and Greenham (I9 6 0 and 1964) s tu d ie d the In h e rita n c e o f cold re s is ta n c e among 4 v a r ie t ie s o f a l f a l f a ( Medlcago s a t l v a ) . T h e ir In v e s tig a tio n s demonstrated c le a r d iffe re n c e s w ith in and be­ tween v a r ie tie s 1n hardiness to c o ld . From a study o f d i a l l e i crosses among the 4 v a r i e t i e s , I t was found th a t th e average p e r­ formance (g en eral combining a b i l i t y ) o f th e parents In crosses were s ig n if ic a n t ly d if f e r e n t and th a t th e F^'s were g e n e ra lly In te rm e d ia te 1n hardiness between the p a re n ts . S tudies o f s p e c ific combining a b i l i t y y ie ld e d n o n -s 1 g n 1 fle a n t r e s u lt s . The s ig n if ic a n t d iffe re n c e s 1n general combining a b i l i t y suggest th a t th is c h a ra c te r is c o n tro lle d by genes w ith a d d itiv e e f f e c t s . I . e . one would expect values o f th e Fj g en eratio n to be ap p ro xim ately equal to the mean o f t h e i r p a re n ts . This la c k o f s ig n if ic a n t d iffe re n c e s 1n s p e c ific combining a b i l i t y In d ic a te s th a t dominance o r n o n -a d d itiv e g e n e tic e ffe c ts are less im p o rta n t. A d d itio n a l evidence suggesting a d d itiv e gene e ffe c ts 1n the In h e rita n c e o f co ld hardiness was provided by Omran e t a l f la x ( Linum ). (1968) in Two-hundred F2 fa m ilie s from each o f 2 crosses were stu d ie d In th e F^ and F^ g en eration s f o r re a c tio n s to co ld tempera­ tu re s . A co ld hardiness Index was c a lc u la te d from th e degree o f In ju r y and the percentage o f p la n ts in ju r e d . Dominance d e v ia tio n s could not be d etec ted 1n th e F^ o r F4 g e n e ra tio n s . Narrow sense h er1 tab 11 1ty es tim ate s o f cold hardiness In d ic e s were g e n e ra lly h ig h . Narrow sense her1tab 111t1es a re an e s tim a te o f the c o n trib u ­ tio n o f a d d itiv e g e n e tic varia n c e to the t o ta l v a r ia t io n . Thus, th e high h e r1 ta b 1 l1 t1 e s combined w ith th e f a c t th a t dominance d e v ia tio n s could not be d e te c te d . In d ic a te s th a t In h e rita n c e o f 30 co ld h ard iness 1n f l a x Is p r im a r ily under th e c o n tro l o f many genes w ith a d d it iv e e f f e c t s . G en etics o f c o ld re s is ta n c e 1n wheat P robably th e most comprehensive g e n e tic study o f cold re s is ta n c e was perform ed by Law and Jenkins (1 9 7 0 ) on h ex ap lo ld wheat (T r itlc u m a e s tlv u m ). Through th e use o f backcross procedures and c y to lo g lc a l m arkers, s in g le homologous p a irs o f chromosomes from a hardy wheat v a r ie t y (C a p p e lle -D e s p re z) were s u b s titu te d f o r t h e i r homologues 1n a co ld s e n s itiv e wheat v a r ie t y (Chinese S p r in g ). As a r e s u l t , 1 t was p o s s ib le to produce s u b s titu tio n lin e s f o r each o f th e 21 p a irs o f wheat chromosomes. M oreover, each o f these s u b s titu tio n lin e s d if f e r e d from th e r e c ip ie n t v a r ie ty (C hinese s p rin g ) by a s in g le p a ir o f homologous chromosomes. S u bseq uen tly, chromosome assay e x p e r­ iments were c a r r ie d out to determ ine which chromosomes c a r r ie d genes In v o lv e d 1n th e d e te rm in a tio n o f co ld re s is ta n c e . The r e s u lts o f th e experim ent In d ic a te d t h a t s i g n i f i c a n t d i f f e r ­ ences occurred between Chinese s p rin g and th e s u b s titu tio n lin e s c a rry in g chromosomes 4D, 5D and 7A o f C a p p e lle -D e s p re z. These th re e lin e s were a ls o s i g n i f i c a n t l y d if f e r e n t from C a p p elle-D es p rez which suggests t h a t th e le v e ls o f re s is ta n c e expressed by these s u b s titu tio n lin e s was in te rm e d ia te . In a d u p lic a te exp erim en t e s ta b lis h e d a t a l a t e r d ate th e same r e s u lts were d is c o v e re d . This s u b s ta n tia te d t h a t th e d iffe r e n c e s noted 1n the f i r s t experim ent were a t t r ib u t a b le to th e s u b s titu te d chromosomes and n o t to s e g re g a tio n o f genes f o r c o ld re s is ta n c e In th e background. The d ata acq u ired from the f i r s t two experim ents was subsequently 31 used to determ ine w hether genes on chromosomes 4D , 5D and 7A behave in an a d d itiv e fa s h io n o r a re Independent 1n t h e i r a c tio n . This was determ ined by summing th e d iffe r e n c e s between th e Chinese sp rin g mean (which In c lu d es th e mean o f th e 18 s u b s tit u t io n lin e s and Chinese s p rin g ) and the 3 s u b s titu tio n lin e s c a rry in g chromosomes f o r co ld re s is ta n c e and comparing t h is w ith th e d iffe r e n c e between C ap p elle-D esp rez and Chinese S p rin g . In th e absence o f between chromosome In te r a c tio n s th ese d iffe re n c e s should be th e same. In both experim ents th e two d iffe r e n c e s were s im ila r and when te s te d a g a in s t t h e i r stan d ard e r r o r were n o t s i g n i f i c a n t l y d if f e r e n t from each o th e r . This evidence 1s c o n s is te n t w ith an a d d it iv e b e h a v io r o f th e genes on th e th re e s u b s titu te d chromosomes. These experim ents using i n t e r v a r i e t a l chromosome s u b s titu tio n s su g gest, on f i r s t appearance, th a t th e g e n e tic c o n tro l o f co ld h a r d i­ ness 1n wheat 1s n o t o v e rly complex. However, when one co n siders t h a t 1n h exap lo ld wheats t r i p l i c a t e d lo c i a re p ro bably in v o lv e d , the s i t u ­ a tio n becomes more complex. On th e s im p le s t hyp oth esis o f one lo c i f o r each o f th e th re e Is o la te d chromosomes, s ix o th e r homologous lo c i could o cc u r. I t 1s th e r e fo r e l i k e l y t h a t 1n more c o ld r e s is ta n t v a r ie t ie s some a l l e l i c v a r ia t io n a t th ese lo c i may o cc u r. P o ss ib le m aternal In h e r ita n c e o f c o ld re s is ta n c e The c o n d u c tiv ity o f e le c t r o ly t e s d iffu s in g o u t o f fro ze n and thawed tis s u e o f 3 ap p le v a r ie t ie s hardened under Id e n t ic a l co n d i­ tio n s In d ic a te d t h a t th ey d if f e r e d s i g n i f i c a n t l y 1n s u s c e p t ib ilit y to co ld I n j u r y . N orthern Spy (NS) was a te n d e r v a r i e t y , McIntosh was In te rm e d ia te In h ard iness and Antonovka (A ) was the h a rd ie s t 32 o f the th re e v a r ie t ie s . In an e f f o r t to study th e In h e rita n c e o f cold hardiness among apple v a r i e t i e s , M iln e r (19 65 ) made a l l p o s sib le crosses among the th re e v a r ie t ie s In c lu d in g th e r e c ip ro c a ls . The F1 progeny were su b jected to a range o f fre e z in g tem peratures and t h e i r r e l a t i v e cold hardiness was a s c e rta in e d by use o f th e e l e c t r o l y t i c con­ d u c t iv it y method. The progenies o f the crosses In v o lv in g th e h a rd ie r v a r ie t ie s A and Me g e n e ra lly were more hardy. F u rth e r study o f the data showed th a t progeny o f crosses In ­ v o lv in g hardy fem ale v a r ie t ie s were c o n s is te n tly h a r d ie r than the re c ip ro c a l crosses. This was v e r if ie d by 19 o f th e 21 comparisons made. D iffe re n c e s 1n re c ip ro c a l crosses have been observed In a number o f tr a its 1n s e ve ra l p la n t s p e c ie s , and they u s u a lly In d ic a te the occurrence o f an e x tra n u c le a r o r cytoplasm ic type o f In h e r ita n c e . Several Im p o rtan t b io lo g ic a l p ro p e rtie s have been shown to be In h e r ite d through the cytoplasm . The re s u lts o f M iln e r ’ s work o ffe r s evidence which suggests th a t cold hardiness 1n apples may be c y to ­ plasm ic 1n In h e rita n c e and tra n s m itte d m ainly when brought from the m aternal s id e . The more l i k e l y e x p la n a tio n 1s probably th a t both n u c le a r and e x tra n u c le a r In h e rita n c e systems a re re q u ire d f o r complete g e n e tic expression o f an In d iv id u a l. Genetics o f hardiness 1n f r u i t tre e s Studies e lu c id a tin g the g e n e tic c o n tro l o f cold hardiness 1n woody p la n ts a re not numerous. However, re p o rts c h a ra c te r iz in g hardiness d iffe re n c e s among c u lt lv a r s a re a v a ila b le and a re discussed by S tu sh n o ff (1 9 7 2 ). Dorsey and Bushnell (19 25 ) stu d ied th e In h e rita n c e o f cold hardiness in several in t e r s p e c if ic h yb rid progenies o f plums. They 33 found th a t the h a rd ie s t progenies re s u lte d from crosses in which one o r both parents were s e le c te d from areas o f extreme cold 1n t h e i r n a tu ra l h a b ita t . Watkins and Spangelo (19 70 ) determ ined th e g e n e tic v a ria n c e components f o r w in te r s u rv iv a l and In ju r y in apple tre e s using two d l a l l e l s . T ip In ju r y and stem damage were estim ated to e x h ib it 90 to 100% a d d itiv e va ria n c e and ro o t damage was estim ated a t 59 and 82% in the two s tu d ie s . They concluded th a t w ith th e p o s s ib le exception o f ro o t damage th e re was no evidence to show e it h e r e p is ta s is o r dominance as a m ajor component o f g e n e tic v a ria n c e f o r co ld h ard in e ss . T h e ir evidence 1s in agreement w ith an a d d itiv e mode o f In h e rita n c e f o r cold hardiness as shown In crop p la n ts . CHAPTER 3 CRITICAL TEMPERATURE DETERMINATIONS IN COLD HARDINESS STUDIES USING ELECTRICAL CONDUCTIVITY MEASUREMENTS INTRODUCTION I d e n t i f i c a t i o n o f a procedure to d i f f e r e n t i a t e between c o ld hardy and te n d e r p la n t m a te r ia l c o ld h ard in ess 1n p la n ts . 1s a p r e r e q u is ite to conducting re search on S u rv iv a l o r s u b je c tiv e r a t in g o f v i s ib l e w in te r I n j u r y 1n th e f i e l d has commonly been used f o r t h is purpose. However, th e u t i l i t y o f such procedures Is lim it e d because o f th e In c o n s is te n c y o f t e s t w in te rs and confounding e f f e c t s o f f i e l d r e la t e d to o th e r causes. in ju r y Over th e p ast few decades. In c re as ed In t e r e s t 1n s tre s s p h ysio lo g y o f p la n ts has s tim u la te d th e use o f a r t i f i c i a l fr e e z in g te s ts f o r th e purpose o f e v a lu a tin g r e l a t i v e p la n t co ld h a rd in e s s . One d i f f i c u l t y a s s o c ia te d w ith such la b o r a to r y te s ts Is d e te rm in in g th e amount o f In ju r y to p la n t tis s u e a f t e r fr e e z in g . Many tis s u e v i a b i l i t y procedures have been devised f o r use 1n c o ld hardiness s tu d ie s . T h e ir e ffe c tiv e n e s s and r e l i a b i l i t y has been discussed by s e v e ra l In v e s tig a to r s (P a r k e r, 1953; van den D rle s s c h e , 1969a and 1976; S te rg lo s and H o w e ll, 1973; B la z lc h 34 e t a l . 1 9 7 4 ). 35 S e le c tio n o f v i a b i l i t y te s ts f o r co ld h ard iness depends on many fa c t o r s , In c lu d in g s p e c ie s , p la n t t is s u e , tim e and th e o v e r a ll o b je c tiv e s o f th e hardiness re s e a rc h . There 1s p ro bably no one "b est" method f o r a l l No m a tte r which procedure 1s species o r c o n d itio n s . adopted, 1 t Is d e s ir a b le to r e l a t e la b o r a to ry r e s u lts to a c tu a l f i e l d e v a lu a tio n s o f co ld In ju r y w herever p o s s ib le . G e n e r a lly , a v i a b i l i t y t e s t which Is o b je c t iv e , r e l a t i v e l y q u ic k , and cap ab le o f u t i l i z i n g sm all q u a n t itie s o f p la n t tis s u e is p r e fe r r e d . A ls o , i t is d e s ir a b le th a t a s in g le m eaningful exp ressio n o f r e l a t i v e co ld h ard iness can be d e riv e d from th e v i a b i l i t y r e s u lt s , such as a k i l l i n g te m p e ra tu re , T50 o r some o th e r d e fin a b le Index o f h a rd in e s s . ELECTRICAL CONDUCTIVITY AS A VIABILITY TEST A procedure which has been e f f e c t i v e 1n e v a lu a tin g tis s u e v i a b i l i t y a f t e r fr e e z in g te s ts 1s e l e c t r i c a l c o n d u c tiv ity . d escrib ed by D e x te r e t a l T his method, as f i r s t (1 9 3 2 ), is based on th e p r in c ip le t h a t l i v e c e lls q u ic k ly lo s e t h e i r a b i l i t y to re g u la te t h e i r co n ten ts when t h e i r c e l l membranes a re damaged. As a r e s u l t , e le c t r o ly t e s d if f u s e In to s o lu tio n th e re b y causing an in c re a s e In s p e c ific c o n d u c tiv ity o f the s o lu t io n . Thus, th e g r e a te r th e In ju r y to p la n t tis s u e from low te m p e ra tu re , th e h ig h e r th e c o n d u c tiv ity o f th e e x t r a c t . In e a r ly s tu d ie s , s p e c if ic c o n d u c tiv itie s o f le a c h a te s from fro z e n and u nfrozen samples were compared. These comparisons were u s e fu l, but not e x a c t, because t o t a l e le c t r o ly t e s v a rie d f o r d i f f e r e n t samples. S tu a r t (1 9 3 9 ) and M iln e r (1 9 5 9 , 1960) improved on th e procedure by exp ressin g th e amount o f c e l l e le c t r o ly t e s re le a s e d a f t e r fr e e z in g as a percentage o f th e t o t a l e le c t r o ly t e s re le a s e d a f t e r h e a t - k i l l i n g . This measure o f In ju r y has been u s e fu l f o r comparing r e l a t i v e co ld 36 hardiness o f tis s u e exposed to va rio u s te m p e ra tu re s , but does not p ro vid e a s in g le d e fin a b le exp ressio n o f cold h a rd in e s s . F lin t e t a l (1 9 6 7 ) converted th e percentage re le a s e o f e le c t r o ly t e s to an Index o f In ju r y (1 ^ ) s c a le where th e unfrozen c o n tro l sample 1s given a value o f zero and th e heat k i l l e d sample a v a lu e o f 100. A fte r d eterm in in g 1^ f o r samples exposed to a s e rie s o f t e s t te m p e ra tu re s , a tem perature corresponding to any s e le c te d I t co u ld be found and used as an exp ressio n o f hardiness 1n which to compare samples. In making co ld o f p la n t t is s u e . h ard iness comparisons between p la n ts o r samples I t is d e s ir a b le to fin d a s in g le which to comparea l l d e fin a b le p o in t a t samples. K i l l i n g tem p eratu re would be a u s e fu l c r i t e r i a , but 1 t 1s o fte n d i f f i c u l t to d eterm in e when a p a r t i c u l a r sample o f p la n t tis s u e 1s dead. An e q u a lly d e fin a b le c r i t e r i a 1s th e tem perature corresponding to th e p o in t o f e a r l i e s t d e te c ta b le fr e e z in g In j u r y . T h is c r i t i c a l tem p eratu re can be e a s ily c a lc u la te d using th e percentage re le a s e o f e le c t r o ly t e s from u nfrozen c o n tro l samples and samples fro z e n a t v a rio u s t e s t te m p e ra tu re s . The o b je c tiv e o f th e fo llo w in g d iscu ssio n 1s to d e s c rib e a procedure f o r c a lc u la tio n o f c r i t i c a l te m p e ra tu re , where c r i t i c a l tem perature 1s d e fin e d as th e h ig h e s t tem perature a t which fr e e z in g In ju r y to p la n t tis s u e s can be d e te c te d . CRITICAL TEMPERATURE DETERMINATION The procedure I w i l l d e s c rib e f o r c a lc u la tin g c r i t i c a l tem peratures presupposes th a t co ld hardiness comparisons a re being made among s e v e ra l s e e d lo ts and t h a t e l e c t r i c a l c o n d u c tiv ity Is used as a measure o f tis s u e v ia b ility . The steps a re as fo llo w s : Prepare several tis s u e samples per s e e d lo t. R etain some samples o f each s e e d lo t as unfrozen c o n tro ls . Subject th e rem aining samples to fre e z in g a t a s e rie s o f low tem peratures, r e p lic a t in g each se ed lo t a t each t e s t tem p e ra tu re. Choose t e s t tem peratures so th a t a l l seed lo ts w i l l not be damaged a t th e h ig h est t e s t tem p e ra tu re, but w i l l be damaged a t th e low est t e s t tem p eratu re. At each o f th e p re s e le c te d t e s t tem p eratu res, remove samples from th e fre e z in g apparatus and a llo w them to thaw s lo w ly . A f t e r fre e z in g and th aw in g , determ ine tis s u e v i a b i l i t y by th e e l e c t r i c a l c o n d u c tiv ity method. To do t h i s , soak each sample In a measured q u a n tity o f d eio n ized w ater to a llo w lea ch in g o f e le c t r o ly t e s . A f t e r 24 to 30 hours, measure c o n d u c tiv ity o f th e le a c h a te . Autoclave the samples (In c lu d in g le a c h a te ) and measure c o n d u c tiv ity a g a in . C a lc u la te r e l a t i v e c o n d u c tiv ity according to the form ula 100 x (C^/C^.), where C^ * c o n d u c tiv ity o f the le a c h a te b efo re a u to c la v ln g , and C^ = t o t a l c o n d u c tiv ity a f t e r a u to c la v ln g . Perform an a n a ly s is o f v a ria n c e on r e l a t i v e c o n d u c tiv itie s . In c lu d in g data f o r th e th re e h ig h e st t e s t tem peratures o f each s e e d lo t. Choosing data from only th e th re e h ig h e s t tem peratures m inim izes problems o f unequal variances In th e a n a ly s is . From th e ANOVA, compute a standard e r r o r o f the mean c o n d u c tiv ity a f t e r exposure to any one tem p eratu re. M u ltip ly the standard e r r o r by an a p p ro p ria te m u l t ip l ie r to o b ta in a "Least S ig n ific a n t D iffe re n c e " (LSD). 11. Add t h is LSDto th e r e l a t i v e c o n d u c tiv ity o f th e c o n tro l samples f o r each s e e d lo t to determ ine th e low est r e l a t i v e c o n d u c tiv ity s ig n if ic a n t ly d if f e r e n t from the c o n tr o l. 12. The c r i t i c a l tem perature corresponding to t h is r e l a t i v e c o n d u c tiv ity Is found by in te r p o la tin g between th e two t e s t tem peratures f o r each s e e d lo t w ith in whose range the c a lc u la te d c o n d u c tiv ity value l i e s . In te r p o la tio n assumes th a t a lin e a r r e la tio n s h ip e x is ts between r e l a t i v e conduc­ t i v i t y and t e s t tem perature a f t e r damage has been I n i t i a t e d . This c r i t i c a l tem perature Is th e h ig h e st tem perature a t which cold in ju r y to each s e e d lo t can be d e te c te d . 13. Determine c r i t i c a l tem peratures fo r each r e p lic a t e o f every s e e d lo t and e v a lu a te d iffe re n c e s In c r i t i c a l tem peratures among seedlots by conventional s t a t i s t i c a l methods. C r i t i c a l tem peratures re p res en t the tem peratures correspondlng to the e a r l i e s t s t a t i s t i c a l l y s ig n if ic a n t In c re as e in r e l a t i v e conduc­ t i v i t y due to cold In ju r y . The e x te n t o f cold in ju r y a t th a t te m p e ra tu re , from a b io lo g ic a l s ta n d p o in t, can o n ly be found by e v a lu a tin g the r e la tio n s h ip between c r i t i c a l tem peratures and v i s ib l e cold In ju r y 1n f i e l d p la n ta tio n s o r c o n tro lle d environment s tu d ie s . Correspondence between c r i t i c a l tem peratures and f i e l d I have used e l e c t r i c a l c o n d u c tiv ity and c r i t i c a l In ju r y tem peratures In comparing th e cold hardiness o f needles from 30 se ed lo ts o f ponderosa p ine on 17 d if f e r e n t d a te s . The m a te ria l was d e riv e d from a range wide provenance t e s t 1n southern Michigan (W righ t e t a l . 1 9 6 9 ). The re s u lts 39 revealed la rg e hardiness d iffe re n c e s among provenances which were s tro n g ly asso ciated w ith c lim a tic c o n d itio n s In th e regio n o f provenance o r ig in . F ie ld o b servatio n s o f w in te r I n j u r y , made a t the end o f th e 1976-77 w in te r , were h ig h ly c o rre la te d ( r = 0 .8 8 ) w ith c r itic a l tem peratures computed th a t w in te r . Thus, a t le a s t In a r e l a t i v e sense, c r i t i c a l tem peratures seemed to p ro vid e a good e s tim a te o f cold hardiness d iffe re n c e s among s e e d lo ts . I a ls o had the o p p o rtu n ity to e v a lu a te th e r e l i a b i l i t y o f c r i t i c a l tem peratures when th e tem perature dropped to -26°C on December 3 , 1976 In the t e s t p la n ta tio n . On th a t d a te , I c o lle c te d needles from s ix seed lo ts f o r th e purpose o f d eterm in in g t h e i r c r i t i c a l tem peratures In la b o ra to ry fre e z in g t e s t s . A few days l a t e r , I c o lle c te d f o lia g e samples from th e same tre e s and re tu rn e d them to th e la b o ra to ry f o r clo se v is u a l In s p e c tio n o f needle cold In ju r y . The r e s u lts conformed very c lo s e ly to what was expected based on th e la b o ra to ry t e s t s . P ercent v i s ib l e needle In ju r y and c r i t i c a l seed lo ts a re summarized 1n T able 1. tem peratures f o r th e s ix Needles from s e ed lo ts w ith c r i t i c a l tem peratures below -26°C on December 3 , 1976, s u ffe re d no v is ib le w in te r I n ju r y , w h ile needles from o th e r s e ed lo ts were damaged. Thus, a c tu a l damaging tem peratures 1n th e f i e l d seemed to be w ith in a few degrees o f the c r i t i c a l tem peratures as determ ined 1n la b o ra to ry s tu d ie s . The c lo s e r e la tio n s h ip between la b o ra to ry and f i e l d data 1n th e case o f the ponderosa p ine study suggests t h a t c r i t i c a l tem peratures p ro vide meaningful In fo rm a tio n on th e co ld hardiness o f d if f e r e n t s e e d lo ts . However, th e f a c t th a t th e procedure has worked e f f e c t i v e l y on ponderosa pine 1n Michigan does not guarantee th a t 1 t w i l l perform In a s im ila r fash io n on a d if f e r e n t species or under a d if f e r e n t s e t 40 TABLE 1. R e la tio n s h ip between c r i t i c a l tem peratures ( ° C ) , as d e te r ­ mined from la b o ra to ry fre e z in g te s ts on December 3 , 1976, and v is ib le cold In ju r y to needles o f tre e s from s ix ponderosa p in e provenances fo llo w in g exposure o f tre e s to -26°C tem peratures on December 3 , 1976, In a r e p lic a te d southern Michigan p la n ta tio n . S e ed lo t S ta te o f C r itic a l Amount o f Mo.____________O rig in __________Temperature________Needle D is c o lo ra tio n °C % 2012 AZ -2 4 .9 25 2040 CA -1 8 .3 63 2053 CA -1 7 .2 40 2116 UT -2 6 .1 0 2124 BC -2 7 .6 0 2197 MT -4 1 .4 0 41 o f c o n d itio n s . c r itic a l N e v e rth e le s s , p r e lim in a ry r e s u lts suggest t h a t th e tem p eratu re procedure may be a v a lu a b le means o f d e te rm in in g a s in g le d e fin a b le exp ressio n o f p la n t c o ld h a rd in e s s . CHAPTER 4 GENETIC VARIATION IN SEVERAL ASPECTS OF COLD HARDINESS IN PONDEROSA PINE INTRODUCTION Ponderosa p in e 1s one o f th e most im p o rta n t f o r e s t t r e e species 1n th e w o rld . In th e w estern U n ited S ta te s , where 1 t Is n a t iv e , 1 t f u r n i ­ shes more tim b e r than any o th e r species o f pin e and 1s th e m ainstay o f th e econooty in many a re a s . I t 1s a ls o h ig h ly regarded f o r i t s b eau ty. I t towers to g re a t h e ig h ts and produces lo n g , s t r a i g h t , c le a n ly pruned boles which a re admired by t o u r is t s as w e ll as lumbermen. Cold tem p eratu re appears to be one o f th e most Im p o rtan t fa c to r s l im it i n g th e d is t r ib u t io n o f ponderosa p in e . taken from I t s n a tu ra l When ponderosa p in e 1s range and moved to n o rth e rn o r fr e e z in g in ju r y o fte n occurs. In la n d lo c a tio n s Such In ju r y causes u n s ig h tly damage and reduced grow th. Ponderosa p in e , as do o th e r species w ith la rg e ran g es, e x h ib its c o n s id e ra b le g e n e tic v a r ia tio n as a r e s u lt o f long term n a tu ra l s e le c tio n o ve r a range o f h a b ita ts and c lim a te s . When s e v e ra l geographic races o f th e species a re grown 1n a common lo c a t io n , la r g e d iffe r e n c e s 1n many m orphological and growth t r a i t s a re observed. Among such g e n e t ic a lly v a r ia b le t r a i t s a re growth r a t e , needle le n g th , f o lia g e c o lo r and 42 43 s u s c e p t ib ilit y to w in te r I n j u r y . Accounts o f such v a r ia t io n were re p o rte d by Kempff (1 9 2 8 ), Weidman (T 9 3 9 ), W ells (1 9 6 4 ) , and W rig h t e t al (1 9 6 9 ). S tu d ies In v e s tig a tin g g e n e tic v a r ia t io n 1n th e development o f c o ld hardiness 1n woody p la n t sp ecies have re v e a le d th a t co ld re s is ta n c e may be r e la t e d to th e r a t e o f c o ld hardening o r th e depth o f h ard iness p la n ts can ac h ie ve 1n m id w in te r. Sm ithberg and W elser (1 9 6 8 ) found th a t n o rth e rn clones o f re d o s le r dogwood ( Cornus s t o l o n l f e r a ) a c c lim a te d to cold e r a l l e r and f a s t e r than clones from warm re g io n s , when a l l were grown under Minnesota c o n d itio n s . A S e a t t le , Washington clo n e was th e l a s t to harden and as a r e s u lt su s ta in e d e x te n s iv e co ld In ju r y to tw ig s d u rin g f a l l o r e a r ly w in t e r . However, a l l clones became hardy enough to w ith s ta n d tem peratures o f -90°C 1n m id w in te r. Maronek and F l i n t (1 9 7 4 ) c o lle c te d needles o f 15 provenances o f e a s te rn w h ite p in e ( P1nus s tro b u s ) grown In M ich ig an . They c o lle c te d them m onthly and made la b o ra to ry te s ts to determ ine seasonal d iffe r e n c e s 1n h a rd in e s s . They found d iffe r e n c e s among provenances In r a te o f c o ld hardening as w e ll as 1n a b i l i t y to w ith s ta n d extrem e tem peratures 1n m id w in te r. Needles o f n o rth e rn tre e s hardened most r a p id ly and could w ith s ta n d th e lo w est tem peratures In m id w in te r. In December and Jan u ary, tre e s from th e southern A ppalachians were damaged a t tem p eratu res o f -30°C whereas tre e s from Canada could w ith s ta n d tem peratures o f -6 0 °C . 44 OBJECTIVES The o b je c tiv e s o f t h is study were to d e te c t th e presence o f g e n e tic v a r ia tio n In ponderosa p in e 1n th e fo llo w in g aspects o f co ld h a rd in e s s : depth o f h a rd in e s s , r a te o f c o ld hardening and dehardening and w in te r d e s ic c a tio n . I a ls o In v e s tig a te d g e n e tic v a r ia tio n 1n le a f in g o u t phenology and I t s r e la t io n to sp rin g f r o s t damage. In a d d itio n , I hoped to a s c e r ta in th e c o n tr ib u tio n o f each o f these aspects to th e v i s ib le w in te r In ju r y which has occurred to ponderosa p in e 1n M ich ig an . A f i n a l o b je c tiv e was to determ in e th e amount o f g e n e tic and seasonal v a r ia t io n 1n f o l i a r m o istu re c o n te n t and to r e l a t e t h a t v a r ia tio n to g e n e tic d iffe re n c e s among s e e d lo ts In co ld h a rd in e s s . 45 MATERIALS AND METHODS Establishm ent o f p la n ta tio n s The tre e s used in my study are p a rt o f a range wide provenance study s ta rte d 1n 1960 by Dr. 0 . 0 . W e lls , now g e n e tic is t w ith the U. S. F orest S e rvic e a t G u lfp o r t, M is s is s ip p i, w ith seed su p p lied by Dr. R. Z. Callaham , now D ir e c to r o f the P a c ific Southwest F orest and Range Experiment S ta tio n . The seeds were c o lle c te d from 60 n a tu ra l stands lo c ate d In a l l p a rts o f th e w estern U n ited S ta te s (F ig u re 2 ) . The seeds were sown 1n Michigan S ta te U n iv e r s ity 's experim ental nursery a t East Lansing and grown th e re f o r two y e a rs . In 1962 th ey were p lan ted 1n two permanent t e s t lo c a tio n s a t W. K. Kellogg F orest (Augusta, M ichigan) and Fred Russ Forest (Dowaglac, M ic h ig a n ). The p la n ta tio n s fo llo w a randomized complete block design w ith s ix tr e e p lo t s , a 2 .5 * 2.5m spacing, and f i v e r e p lic a te s per p la n ta tio n . These p la n ta tio n s , which averaged 5 .0 and 5 .5 m t a l l re s p e c tiv e ly 1n 1976, were the source o f m a te ria l fo r my s tu d ie s . C o lle c tio n and p re p a ra tio n o f samples On 13 d if f e r e n t dates between O cto ber, 1975 and F eb ru ary, 1977 I c o lle c te d tw igs from two vigorous tre e s (th e same tre e s each tim e ) per p lo t f o r each o f 30 s e le c te d seed lo ts a t the Kellogg p la n ta tio n . A t o t a l o f ten tre e s from f i v e r e p lic a te s were sampled f o r each s e e d lo t on every d a te . Each tw ig was c o lle c te d from th e m iddle o f the crown on th e west sid e o f the t r e e . I Im m ediately placed th e tw igs 1n p la s t ic bags, sealed th e bags, and sto re d them In th e shade a t n ear-am bient tem perature c o n d itio n s . 46 FIGURE 2 . D i s t r i b u t i o n o f ponderosa p in e 1n th e U n ite d S ta te s and B r i t i s h C o lu m b ia, showing th e lo c a t io n o f s ta n d c o l l e c ­ tio n s used 1n t h i s s tu d y (map r e p r in t e d from W e lls , 1962 K f . t iO * W»9»* r $ t 48 W ith in 24 hours th ese samples were re tu rn e d to th e la b o r a to r y and prepared f o r th e fr e e z in g t e s t s . This p re p a ra tio n s ta r te d w ith the removal o f 18 needle fa s c ic le s p e r tw ig (1 2 -1 5 g o f n e e d le s ). Needles were c u t In h a l f and p la c e d , c u t end down, in la b e le d t e s t tu b es. The needles were ap p o rtio n ed 1n such a manner as to r e s u lt 1n 12 t e s t tubes p e r s e e d lo t. Those com prising la b o r a to ry r e p lic a t io n No. 1 were from th e tre e s 1n p la n ta tio n blocks Nos. 1 , 2 , and 3; those com prising la b o r a to ry r e p lic a t io n No. 2 were from p la n ta tio n block Nos. 4 and 5 . For each la b o ra to ry r e p lic a t io n th e re were s ix t e s t tubes p er s e e d lo t, each to be fro z e n a t a d if f e r e n t te m p e ra tu re . This p a r t i c u l a r method o f r e p lic a t io n In su red th a t th e e r r o r terms In c lu d e d b io lo g ic a l as w e ll as in s tru m e n ta l e r r o r . On fo u r a d d itio n a l d a te s , tw ig s as w e ll as needles were prepared f o r f r e e z in g . A f t e r removing 1 cm from each end, th e rem ainder o f th e tw ig s were c u t In to 3 cm segments and placed 1n t e s t tubes In the same way as th e n e e d le s . Twigs were sampled f o r o n ly s ix o f th e 30 s e e d lo ts f o r which needle samples were ta k e n . F ree zin g methods A f t e r th e needles o r tw ig s were placed 1n th e t e s t tu b e s , th e t e s t tubes were sto p p ered . In a c o ld room held a t 4°C . Then two from each s e e d lo t were placed These were th e unfrozen c o n tr o ls . The o th e r ten from each s e e d lo t were placed In a co ld room a t 0°C and were l e f t to e q u il i b r a t e f o r 12 hours. A f t e r e q u il i b r a t i o n , th e t e s t tubes were placed 1n In s u la te d c o n ta in e rs and p u t In a fr e e z e r s e t I n i t i a l l y a t -2 0 °C . Temperatures w ith in th e In s u la te d c o n ta in e rs were m onitored w ith a s e rie s o f therm ocouples. a tu re c o n tro l was lowered 4 to 6°C . Every two hours th e tem per­ The e x a c t amount o f lo w erin g was 49 ju s t enough to m a in ta in a 20°C d i f f e r e n t i a l between th e f r e e z e r and th e in s id e o f th e c o n ta in e rs . 2 to 3°C p er hour. F ree zin g ra te s v a rie d from A t each o f f i v e p re s e le c te d tem peratures two t e s t tubes per s e e d lo t were removed from the fr e e z e r and thawed s lo w ly In th e In s u la te d c o n ta in e rs . Thawing took p la c e a t th e r a te o f about 5°C p er hour. The range o f fr e e z in g tem peratures chosen f o r each sampling d ate was such as to r e s u lt In no damage a t th e h ig h e s t tem p eratu re but some damage to th e h a rd ie s t s e e d lo ts a t th e low est te m p e ra tu re . V i a b i l i t y e v a lu a tio n s T issue v i a b i l i t y was d eterm ined using a m o d ific a tio n o f th e e le c ­ t r o l y t i c d if f u s io n method as d escrib ed by D e x te r e t a l , (1 9 3 2 ). This method 1s based on th e p r in c ip le t h a t l i v e c e lls q u ic k ly lo s e th e a b i l i t y to r e g u la te t h e i r co n ten ts when t h e i r c e l l membranes a re damaged. As a r e s u l t , e le c t r o ly t e s d if f u s e In to s o lu tio n th e re b y causing an In c re a s e In s p e c if ic c o n d u c tiv ity o f th e s o lu tio n . Thus, th e g r e a te r th e in ju r y to p la n t tis s u e s from low te m p e ra tu re s , th e h ig h e r th e c o n d u c tiv ity o f th e e x t r a c t . A f t e r th aw in g , 25 ml o f d e io n iz e d w a te r was added to each t e s t tu b e . Samples were soaked f o r 28 hours a t 4°C . W hile s t i l l a t 4 °C , c o n d u c tiv ity o f th e le a c h a te was measured using a c o n d u c tiv ity b rid g e and a p ip e t t e -ty p e c o n d u c tiv ity c e l l . The sam ples, In c lu d in g th e le a c h a te , were then a u to clav ed a t 121°C f o r 20 m inutes to k i l l a l l rem aining l i v e tis s u e s . Samples were a g a in placed In a co ld room a t 4°C f o r s ix hours a f t e r which t h e i r c o n d u c tiv itie s were remeasured. The c o n d u c tiv itie s determ ined In th e above manner were termed s p e c if ic c o n d u c tiv itie s . They could v a ry w ith sample s iz e as w e ll as 50 amount o f damage. For f u r t h e r c a lc u la tio n s th ey were co n verted to r e l a t i v e c o n d u c t iv it ie s , by exp ressin g each as a p e rc e n t o f th e c o n d u c tiv ity o f th e a u to c la v e d sample. D e te rm in a tio n o f c r i t i c a l tem p eratu re C r i t i c a l tem p eratu re was d e fin e d as th e h ig h e s t tem p eratu re a t which damage could be d e te c te d s t a t i s t i c a l l y . To determ ine i t , I f i r s t su b jected th e r e l a t i v e c o n d u c tiv itie s to an a n a ly s is o f v a ria n c e . The e r r o r term from th e a n a ly s is o f v a ria n c e was used to compute a " le a s t s i g n i f i c a n t d iffe re n c e " (L S D ) v a lu e ( a t th e \% l e v e l ) . The LSD v a lu e , when added to th e r e l a t i v e c o n d u c tiv ity o f c o n tro l samples f o r each s e e d lo t, provided th e p e rc e n t c o n d u c tiv ity corresponding to th e p o in t a t which s i g n i f i c a n t co ld In ju r y could f i r s t be d e te c te d . The tem perature corresponding to t h is p o in t was then found by I n t e r ­ p o la tio n and re p resen ted th e c r i t i c a l te m p e ra tu re . C r i t i c a l tem per­ a tu re s were determ ined f o r each r e p lic a t e o f ev ery s e e d lo t. F o lia r m o istu re c o n te n t and w in te r d ry in g ra te s In September, 1975 and on f i v e d i f f e r e n t dates between J u ly , 1976 and Jan u ary, 1977 I c o lle c te d 15-20 cm tw ig s from ten tre e s (fiv e r e p lic a t io n s ) o f each o f 30 s e le c te d s e e d lo ts 1n th e K ellogg F o res t p la n t a t io n . The same tre e s were used as in th e c o ld h ard iness s tu d ie s . The samples were im m ed iately placed 1n p la s t ic bags and taken to th e la b o ra to ry where t h e i r fre s h w eights were d eterm in ed . placed In a d ry in g oven f o r 48 hours and rew eighed. They were then F o lia r m o istu re c o n ten t was c a lc u la te d as a percentage o f fre s h w e ig h t. Rate o f d ry in g o f cu t branches under la b o r a to ry c o n d itio n s was determ ined f o r 15 s e ed lo ts sampled on November 2 3 , 1976. The tw ig samples were c o lle c te d from blocks 1 to 3; each sample o f tw igs from 51 two tre e s 1n a p lo t was kept s e p a ra te . The c u t ends were waxed, th e tw igs were placed in p la s t ic bags, and th e fre s h w eigh ts o f th e tw igs were determ ined w ith in two hours. Then th e tw ig s were spread o u t on la b o ra to ry benches In a room ke p t a t 20°C but w ith u n c o n tro lle d r e l a ­ t i v e h u m id ity . The tw ig s were weighed d a lly f o r th e f i r s t fo u r days and then ev ery two days. A f t e r ten days th e tw ig s were oven d rie d and reweighed to d eterm in e r e l a t i v e f o l i a r m o istu re c o n te n t. L e a f phenology On May 2 0 , 1976, I scored tn e e x te n t o f shoot development f o r a l l 60 s e e d lo ts p la n te d a t K ellogg F o re s t. I used a sco ring system o f 1 (= buds In w in te r c o n d itio n ) to 10 (=1eaves 2 1n lo n g ). These grades corresponded to a tim e d iffe r e n c e o f a p p ro x im a te ly two weeks In th e s t a r t o f grow th. F ie ld sco rin g o f w in te r In ju r y E stim ates o f w in te r In ju r y were made 1n th e n ursery and a t va rio u s ages 1n both t e s t p la n t a tio n s . Damage was recorded as th e percentage o f needles t h a t tu rn ed brown as a r e s u lt o f w in te r c o ld . F ie ld scorings were made 1n e a r ly s p rin g fo llo w in g damaging w in te r s . S t a t i s t i c a l a n a ly s is For each t r a i t measured, the d ata were summarized by s e e d lo t and r e p lic a t io n . In th ese sunvnarles, th e s e e d lo ts were grouped by th e ecotypes and v a r i e t i e s recognized in th e p u b lic a tio n s by W ells (1 9 6 4 ) and W rig h t e t a l (1 9 6 9 ). The ecotypes and t h e i r boundaries a re I l l u s t r a t e d in F ig u re 3. A f t e r such sum m arization, an a n a ly s is o f v a ria n c e was perform ed f o r each s e t o f d a ta . There was, f o r exam ple, a sep arate a n a ly s is , f o r th e c r i t i c a l tem peratures o b ta in ed a t each d a te . In these a n a ly s e s , mean 52 FIGURE 3 . Ecotype d iv is io n s o f ponderosa p in e progeny In c lu d e d 1n t h i s s tu d y . Ecotypes a r e d e s ig n a te d by l e t t e r s as f o l i o A. NORthern C A H fo r n la and S o uth ern C A H fo r n la B. NORthern PLATEAU C. A rizo n a -N e w M exico D. S outhern U T a h -n o rth e rn New M exico E. NORthern INTERIOR F. NORthern CO lorado-UTah G. COASTal ORegon (map and e c o ty p e b o u n d aries a f t e r W e lls , 1 9 6 2 ). 53 2»»7 to f 4 *o *^ 0 ^fooo \ *0 8 * 1164 *04 f 0 54 squares were c a lc u la te d f o r e c o ty p e, s e e d lo t w ith in eco typ e, r e p lic a t io n , and e r r o r (s e e d lo t x r e p l i c a t io n ) . As a lre a d y m entioned, a "Least S ig n ific a n t D iffe re n c e " (LSD) was c a lc u la te d f o r th e fre e z in g d ata f o r each d a te . This was c a lc u ­ la te d from th e form ula LSD = 2 374 E rro r Mean Square) This LSD was then used to determ ine th e c r i t i c a l tem perature a t which cold In ju r y could f i r s t be d e te c te d . An a n g u la r tra n s fo rm a tio n was used b efo re a n a ly s is on a l l data recorded in p ercen tag e. 55 RESULTS G enetic d iffe re n c e s in cold hardiness Depth o f hardiness and r a te o f hard ening . S ig n ific a n t d iffe re n c e s in needle c r i t i c a l tem peratures were found among th e e ig h t ponderosa pine ecotypes on n e a rly a l l sampling dates (T a b le 2 ) . Only In J u ly * 1976* were a l l tre e s a t appro xim ately th e same le v e l o f cold h ard in e ss . In g e n e ra l, tre e s from n orthern regions could w ith sta n d low er tem peratures w ith o u t damage than could southern tr e e s . In the I n t e r i o r v a r ie ty (F ig u re 4 ) , tre e s grown from seed c o lle c te d 1n the N orthern I n t e r i o r (c e n tr a l Montana, South Dakota, Nebraska) hardened to co ld f a s t e r than those from southern re g io n s , and achieved a g re a te r depth o f hardiness by m id w in te r. Northern tre e s reached maximum hardiness In January when th ey could w ith sta n d tem peratures below -45°C w ith o u t needle damage. At the o th e r extrem e, A rizona and New Mexico tre e s hardened more slo w ly and, a t maximum h a rd in e s s , s u ffe re d damage a t -3 1 °C . A ls o , A rizona and New Mexico tre e s d id not In crease in hardiness from December to January as d id n o rth e rn tr e e s . In the co a stal v a r i e t y , a s im ila r p a tte rn was e v id e n t (F ig u re 5 ) . Trees grown from seed c o lle c te d 1n the Northern P lateau regio n (Oregon, Washington, n o rth e as te rn C a lif o r n ia and B r it is h Columbia) harden to co ld r a p id ly 1n the f a l l and achieved a maximum depth o f hardiness a t -39°C In January. Trees from th e two C a lif o r n ia ecotypes, on th e o th e r hand, were slow to harden and were damaged by tem peratures o f -22°C In e a r ly December. As w ith th e Arizona-New Mexico t r e e s , th e C a lif o r n ia tre e s d id not become more hardy In January than 1n December. TABLE 2. Critical temperatures (In °C) for needles of trees from eight ponderosa pine ecotypes on 14 dates. Critical temperature is defined as the highest temperature at which cold Injury could be detected. Data for July, 1976 Is based on six seedlots. Critical temperature (°C) on Variety & Ecotype Oct. Dec. Jan. Feb. Mar. Apr. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. 22 26 27 30 31 17 30 7 17 10 2 28 11 10 1975 1975 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976 1977 1977 Nor. Plateau -16 -27 -39 -23 -17 -10 - 6 - 7 - 8 -19 -22 -31 -39 -33 Coast. OR -13 -22 -32 -15 -17 - 9 — - 7 - 7 -15 -24 -27 -31 -31 Nor. CA -10 -23 -22 -19 -15 - 6 - 5 - 6 - 7 -13 -17 -21 -24 -22 Sou. CA - 8 -20 -22 -19 -13 - 6 - 5 - 7 - 7 -12 -15 -20 -22 -23 Nor. Interior -19 -38 -45 -28 -19 -15 - 6 - 7 -11 -22^ -28 -39 -47 -41 Nor. CO-UT -14 -32 -41 ro var. ponderosa -19 -13 - 5 - 7 - 9 -21 -26 -35 -42 -36 Sou. NT-NK -13 -29 -35 -27 -18 - 9 — - 6 - 8 -20 -24 -31 -35 -32 AZ-NK -11 -29 -31 -25 -17 - 7 - 5 - 5 - 7 -17 -22 -30 -32 -31 Least Significant Difference (5* level) 3.5 3.1 5.9 3.4 3.3 2.2 .56 .85 2.7 2.4 2.9 4.0 3.9 1 var. Scopulorum ^Needles not damaged at lowest test temperature 57 FIGURE 4 . Seasonal p a tte r n o f c o ld h ard ening and dehardening f o r fo u r I n t e r i o r v a r ie t y ( v a r . Scopulorum) ecotypes o f ponderosa p in e growing a t K ello g g F o re s t in so u thern M ic h ig a n . INTERIOR VARIETY O r CRITICAL TEMPERATURE CC) -10 -20 AZ-NM cn 00 -30 SOU UT-NM NOR CO-UT -40 NOR INTERIOR -50 J-4. I . . I . . I . . I i a -60 OCT NOV DEC JAN 1975 FEB MAR APR MAY JUN JUL I AUG SEP OCT NOV DEC JAN 1976 DATE OF OBSERVATION FEB 1977 59 FIGURE 5 . Seasonal p a t t e r n o f c o ld h a rd e n in g and d eh ard e n in g f o r fo u r c o a s ta l v a r ie ty (v a r. Ponderosa) eco ty p es o f ponderosa p in e grow ing a t K e llo g g F o re s t 1n s o u th e rn M ic h ig a n . COASTAL VARIETY 0 CRITICAL TEMPERATURE PC) -10 ■20 SOU CA -30 NOR. CA COAST OR -40 NOR. PLATEAU -50 -60 I . i I i . Ii . 1i iI 1. . 1 i i 1 * i I . . I . ■I . . I . . I . . 1 , , I . . I . . I OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 1975 1976 AUG SEP OCT NO/ DEC JAN FEB 1977 DATE OF OBSERVATION 61 Comparison o f hardiness le v e ls on October 3 0 , 1975 and October 2 8 , 1976, In d ic a te s t h a t cold a c c lim a tio n began e a r l i e r In 1976 than 1n 1975. In O ctober, 1976, c r i t i c a l tem perature f o r th e 30 se ed lo ts averaged alm ost 5°C low er than In the previous y e a r . By December, 1976, tre e s were o n ly 2°C h a rd ie r than 1n 1975 and by January y e a r ly d i f f e r ­ ences were n e g lig ib le . These d iffe re n c e s may be ex p la in ed by comparing c lim a tic data from Kellogg F o res t f o r the two y e a rs . Monthly mean minimum tem peratures were 3°C c o ld e r and ab s o lu te mlnlmums were 6°C c o ld e r In O ctober, 1976 than in th e previous y e a r . Also tem peratures dropped below 0°C on ten days d urin g September and O ctober, 1976 as compared to two days during th e same months In 1975. The geographic d iffe re n c e s fo r ponderosa p in e a re s im ila r to those re p o rte d f o r e a s te rn w h ite pine by Maronek and F l i n t (1 9 7 4 ). They a ls o found n orthern seed sources to harden to cold more r a p id ly and to achieve a maximum depth o f hardiness In January. In c o n tr a s t, southern w h ite pines hardened slow er In the f a l l , hardened less In w in te r , and reached maximum hardiness in l a t e November. Rate o f dehardening. A ll tre e s had dehardened somewhat by m iddle o r l a t e February o f both years (F ig u re s 4 and 5 ) . C r i t i c a l tem peratures f o r n orthern tre e s decreased by about 16°C from January to F eb ru ary, 1976. For southern tr e e s , c r i t i c a l tem peratures decreased by about 4°C during t h a t p e rio d . D esp ite d if f e r e n t dehardening r a te s , n o rth e rn tre e s remained h a rd ie r than southern tr e e s . Dehardening occurred a f t e r th e advent o f r e l a t i v e l y warm w eather 1n both years and proceeded more r a p id ly from January to F eb ru ary, 1976 than the fo llo w in g y e a r. 1n 1976 than 1n 1977. This was a p p a re n tly due to th e wanner w eather Maximum d a lly tem peratures a t Kellogg Forest averaged n e a rly 10°C h ig h e r 1n February, 1976 than 1n Feb ru ary, 1977. 62 D iffe re n c e s w ith in eco typ es. among ecotypes. So f a r I have discussed o n ly d iffe re n c e s There were a ls o la rg e and c o n s is te n t d iffe re n c e s among seed lots from the same re g io n . Data f o r In d iv id u a l se ed lo ts w ith in the two most v a ria b le ecotypes are given In Table 3. Among th e seed lo ts from the Northern P la te a u , No. 2124 from B r it is h Columbia was among th e h a rd ie s t on a l l d a te s , having a c r i t i c a l tem perature as much as 18°C low er than s e e d lo t No. 2045 from n o rth e a s te rn C a lif o r n ia . There were also la rg e d iffe re n c e s among seed lo ts from the n orthern I n t e r i o r re g io n . S eed lo t No. 2197 from c e n tra l Montana was h a rd ie s t on alm ost a l l d a te s , w h ile s e e d lo t No. 2095 from southern Montana was among the le a s t hardy. Hardiness o f tw igs vs n ee d les. The re s u lts o f cold hardiness comparisons between needles and tw igs f o r s ix ponderosa pine seed lots on fo u r dates are summarized 1n Table 4 . On most d a te s , tw igs had s l i g h t l y low er c r i t i c a l tem peratures than n eedles. In December, the c r i t i c a l tem perature was several degrees low er f o r tw igs than f o r n eed les. This e x p la in s why v is ib le w in te r In ju r y in th e f i e l d was u s u a lly confined to n eedles. G e n e ra lly , on any one d a te , those seed lo ts w ith the low est c r i t i c a l tem perature f o r needles als o had th e low est c r i t i c a l tem perature f o r tw1 g s . My data on needle and tw ig hardiness o f ponderosa p ine a re c o n s is te n t w ith those o f Parker (19 57 ) who could not d e te c t hardiness d iffe re n c e between a c c lim a tin g tw igs and needles o f th is species 1n n orthern Idaho. By m id w in ter 1n P a rk e r's stu d y, hardiness o f tw igs and needles exceeded the tem perature lim it s o f h is fre e z in g apparatus so th a t comparisons could not be made, However, Sakai and Okada (19 71 ) found ponderosa 63 TABLE 3. Consistency and magnitude o f cold hardiness d iffe re n c e s among seed lo ts w ith in two g e n e tic a lly v a ria b le ponderosa p ine ecotypes. Ecotype, S eedlot No. & S ta te o f O rig in Ranking tot c r i t i c a l 1tem perature on Apr. Sep. Nov. dan. rla r. 17 31 11 26 30 1976 1976 1976 1976 1976 O ct. 30 1975 - - 1 = most hardy , 5 = le a s t hardy - - - ■ Jan. 10 1977 - - Nor. P lateau 2124 BC 1 1 1 2 1 1 1 2032 MA 2 2 4 3 2 2 2 2102 WA 3 3 3 4 4 4 3 2034 OR 4 4 5 5 3 3 4 2045 CA 5 5 2 1 5 5 5 C r it i c a l Temperature Range from: -1 0 -2 8 -1 6 - 6 - 7 -1 8 -31 to : -23 -46 -1 9 -12 - 8 -25 -4 7 2197 MT 1 1 1 3 1 1 1 2190 NB 2 4 2 1 2 2 3 2029 SD 3 2 3 2 3 3 2 2095 MT 4 3 4 4 4 4 4 Nor. I n t e r i o r C r i t i c a l Temperature Range from: -17 -41 -1 8 -1 4 -10 -25 -4 3 to : -21 -5 2 -2 0 -16 -11 -29 -5 0 64 TABLE 4 . D iffe re n c e s 1n co ld hardiness between tw ig s and needles o f ponderosa p in e s e e d lo ts on fo u r dates In 1976. C r itic a l S eedlot No. J u l. L and S ta te o f O rig in l 76 Needles Twigs tem peratures ( °C ) on Aug. 26 , 76 Needles Twigs O ct. 7 , 76 Needles Twigs Dec. 3 , 76 Needles Twigs 2012 AZ -5 .4 -5 .4 -7 .8 - 8 .6 -9 .5 -8 .1 2040 CA -5 .4 -5 .5 -6 .9 -7 .1 -7 .4 -7 .7 - 1 8 .3 -1 7 .8 2053 CA -5 .4 -5 .4 -7 .1 - 7 .7 -7 .2 -7 .3 -1 7 .2 - 2 8 .4 2116 UT -5 .4 -5 .0 -8 .4 -9 .8 -1 0 .1 -9 .1 -2 6 .1 -3 5 .2 2124 BC -5 .6 -5 .7 -9 .4 -1 0 .3 -8 .5 -1 0 .7 -2 7 .6 - 4 0 .2 2197 MT -5 .5 -5 .8 - 1 0 .4 -1 0 .9 -1 2 .7 - 1 3 .2 -4 1 .4 - 4 1 .4 Mean -5 .4 -5 .5 -8 .3 - 9 .2 -9 .2 -9 .4 - 2 5 .9 -3 2 .5 -2 4 .9 -31 .7 Were d iffe re n c e s s ig n if ic a n t a t 1 * le v e l? Between tis s u e s Among s e e d lo ts Vac No No No Yes No Yes Yes Yes Yes Yes Yes 65 pine tw ig s to be about 10°C h a r d ie r than needles in m id w in te r in a study conducted 1n Hokkaido, Japan. V is ib le w in te r I n j u r y . n u rsery (W e lls , 1 9 6 4 ). W in te r in ju r y was f i r s t observed in th e I t has been observed s e v e ra l tim es s in c e , p a r t i c u l a r l y a t K ellogg F o re s t. Most o f the In ju r y has been to needles r a th e r than to buds o r cambium. The In ju r y was most severe on y e a r -o ld s e e d lin g s and a t age 17 fo llo w in g the c o ld e s t M ichigan w in te r on re c o rd . D e s p ite d iffe r e n c e s in s e v e r it y from y e a r to y e a r , a s im ila r geographic p a tte r n 1n s u s c e p t i b i l it y to w in te r In ju r y was e v id e n t a t a l l s ite s and in a l l ye ars (F 1g . 5 ) . W in te r In ju r y was n i l on I n t e r i o r tre e s from Colorado n o rth w a rd , w h ile C a lif o r n ia tre e s s u ffe re d severe damage to t h e i r needles 1n a l l ye a rs t h a t w in te r In ju r y was a problem . Some C a lif o r n ia tre e s a ls o had cambium damage a f t e r th e c o ld w in te r o f 1 9 7 6 -7 7 . Coastal Oregon and Arizona-New Mexico tre e s s u ffe re d moderate damage 1n most y e a rs . Trees grown from seed c o lle c te d 1n th e N o rth ern P la te a u (O regon, W ashington, and B r it i s h Columbia) were m o d erately damaged In th e n u rse ry but recovered s u f f i c i e n t l y to be among th e le a s t damaged tre e s a t l a t e r ages. A n o rth to south geographic p a tte r n In w in te r In ju r y has been shown f o r many f o r e s t t r e e s p e c ie s . In a D o u g la s -fir ( Psuedotsuqa m e n z le s l1 ) provenance t e s t In P e n n s y lv a n ia , Gerhold (1 9 6 5 ) observed heavy In ju r y to c o a s ta l t r e e s , moderate In ju r y to A rizo n a and New Mexico t r e e s , and little o r no damage on tre e s from th e n o rth e rn Rocky M ountains. E1che (1 9 6 6 ) a ls o found a n o rth to south p a tte r n 1n w in te r In ju r y In a n o rth Swedish provenance t e s t o f Scotch p in e ( P1nus s y l v e s t r l s ) . In e a s te rn 66 FIGURE 6 . R e la t iv e e x te n t o f n e e d le w in t e r I n j u r y on t r e e s from e ig h t ponderosa p in e e c o ty p es a t d i f f e r e n t p la n t a t io n s and ag es. Age 17 d a ta was c o lle c t e d f o llo w in g th e s e v e re w in t e r o f 1 9 7 6 -7 7 . ECOTYPES NURS KELLOGG FOREST WE I NOR PLATEAU COAST OR NOR CA SOU. CA NOR INTERIOR NOR CO-UT SOU UT-NM AZ-NM AGE 4 AGE 6 LM LM O 100 0 100 0 RUSS FOREST AGE 17 AGE 4 AGE 17 LM k LM 100 0 100 % OF MAXIMUM DAMAGE 0 100 0 100 68 hemlock ( Tsuga can ad en sis) , N le n s ta e d t (1 9 5 8 ) noted a high c o r r e la t io n between f a l l f r o s t damage and provenance growing season le n g th f o r 17 seed sources te s te d In W isconsin. Southern tre e s were a p p a re n tly adapted to r e l a t i v e l y long growing seasons and were damaged most s e v e re ly by f r o s t o c c u rrin g in autumn. In C a l i f o r n i a , Conkle e t a l (1 9 6 7 ) d es crib ed a unique geographic p a tte r n o f w in te r In ju r y among 43 sources o f w h ite f i r ( Abies c o n c o lo r) . S eed lin gs from n o rth e rn C a lif o r n ia su stain ed more w in te r in ju r y than did southern t r e e s . fir ( Abies q ra n d ls ) . This is p ro b ab ly due to 1ntrogress1on w ith grand Grand f i r , alth ou gh a more n o rth e rn s p e c ie s , grows a t much low er e le v a tio n s than w h ite f i r and 1s co n sequ en tly le s s w in te r h ard y . W hite f i r from n o rth e rn C a lif o r n ia has more grand f i r germplasm and th e r e fo r e le s s h ard in ess than w h ite f i r from f a r t h e r so u th. R e la tio n s h ip between c r i t i c a l tem p eratu re and f i e l d r e la t io n s h ip between c r i t i c a l in ju r y . tem peratures and a c tu a l f i e l d The In ju r y were In v e s tig a te d d u rin g the w in te rs o f 1975-76 and 19 7 6 -7 7 . During th e w in te r o f 1 9 7 5 -7 6 , th e low est tem perature recorded In th e K ello gg F o re s t p la n ta tio n was -2 7 °C . mid Jan u ary. T his low was recorded 1n That w in te r tre e s o f th e C a lif o r n ia ecotypes s u ffe re d a sm all amount o f c o ld In ju r y to th e n ee d les . Trees from o th e r ecotypes had s u f f i c i e n t l y hardened by m iddle Jan u ary, having c r i t i c a l tem peratures o f - 3 1 °C o r below to w ith s ta n d th e -27°C te m p e ra tu re . The fo llo w in g w in te r was o n ly s l i g h t l y c o ld e r w ith a low tem p e ra tu re o f -2 8 °C . However, e x tre m e ly c o ld w eather o ccurred e a r ly 1n th e season. A t K ellogg F o r e s t, th e tem p e ra tu re dropped to -26 °C on December 3 , 1976. F o lia g e samples were c o lle c te d a few days l a t e r and brought In to th e la b o r a to ry f o r c lo s e e x am in a tio n . W in te r In ju r y was measured as th e 69 FIGURE 7 . M o t t lin g on ponderosa p in e n ee d les damaged by te m p e ra tu re o f -2 6 °C on December 3 , 1 9 7 6 . s e e d lo ts a r e : From l e f t to r i g h t th e No. 2234 from A r iz o n a , m oderate damage; No. 2197 from M ontana, no damage; and No. 2036 from C a l i f o r n i a , s e v e re damage. 70 71 TABLE 5 . Comparison between damage caused by unseasonably cold w eather (tem p eratu re o f -26°C on December 3 , 1976) in e a r ly w in te r and co ld hardiness as measured by c r i t i c a l tem peratures on the same d a te . The c r i t i c a l tem peratures a re an average o f c r i t i c a l tem peratures on November 11, 1976 and December 17, 1976. V a rie ty P ro p o rtio n o f f o lia g e C r i t i c a l tem peratures and in ju re d on (average o f values fo r Ecotype______________December 3 , 1976__________ Nov. 11 and Dec. 17) % °C 0 - 2 6 .5 Coast. OR 15 -2 5 .5 Nor. CA 45 -1 9 .0 Sou. CA 65 -1 7 .5 Nor. I n t e r i o r 0 -3 3 .5 Nor. CO-UT 0 - 3 0 .5 Sou. UT-NM 5 -2 7 .5 20 -2 6 .0 v a r. ponderosa Nor. P lateau v a r. Scopulorum AZ-NM 72 amount o f m o ttlin g p resen t on needles (F ig u re 7 ) . summarized in T ab le 5 . The r e s u lts a re Also In c lu d ed 1n th a t t a b le a re th e probable c r i t i c a l tem peratures reached by December 3 (averag es o f th e c r i t i c a l tem peratures measured on November 11 and December 1 7 ). As shown 1n T ab le 5 , those ecotypes which had hardened s u f f i c i e n t l y to a t t a i n c r i t i c a l tem peratures o f - 2 7 ° C by December 3 were not o r o n ly s l i g h t l y In ju re d by th e -26°C tem peratures on t h a t d a te . Trees from C a lif o r n ia ecotypes s u ffe re d very severe m o ttlin g as a r e s u lt o f th e co ld w e a th e r. Trees from c o a s ta l Oregon and A rizona-N ew Mexico s u ffe re d a moderate amount o f damage. N orthern P la te a u and A riz o n a - New Mexico tre e s d if f e r e d In th e amount o f ap parent w in te r In j u r y even though both were alm ost e q u a lly hardy acco rd ing to th e la b o r a to ry t e s t s . The r e s u lts summarized 1n T ab le 5 In d ic a te a stron g but not p e r fe c t r e la tio n s h ip between co ld hardiness as measured In th e la b o r a to ry and a c tu a l damage from co ld under f i e l d c o n d itio n s . " c r itic a l A p p a re n tly , th e tem perature" as I measured 1 t In the la b o r a to ry 1s w ith in two o r th re e degrees c e n tig ra d e o f th e a c tu a l c r i t i c a l tem p eratu re o f f i e l d grown p la n ts . Seasonal changes in cold hardiness The seasonal p a tte r n o f c o ld a c c lim a tio n f o r needles o f fo u r ponderosa p in e s e e d lo ts 1s I l l u s t r a t e d 1n F ig u re 8 . That graph 1s based on co ld hardiness d ata f o r fo u r s e e d lo ts which were s tu d ie d 1n more d e t a il d u rin g f a l l , 1976. The curves f o r th e C a lif o r n ia and A rizo n a s e e d lo ts were h ig h e r than f o r th e o th e r two s e e d lo ts a t a l l tim e s . They were much h ig h e r d u rin g w in t e r , b u t o n ly s l i g h t l y h ig h e r d u rin g summer. F o llo w in g o th e rs , th e seasonal changes 1n co ld h ard iness can be d iv id e d In to stages as fo llo w s . The f i r s t occurred from J u ly to e a r ly 73 FIGURE 8 . Seasonal changes In c o ld h a rd in e s s f o r fo u r s e e d lo ts o f ponderosa p in e . Numbered arrow s d e s ig n a te d ates o f im p o rta n t c lim a t ic changes as fo llo w s : Arrow No. 1: January 1 8 , 1976 - f i r s t day below -2 7 °C Arrow No. 2: F ebruary 15 , 1976 - f i r s t day above 16°C Arrow No. 3: O ctober 1 8 , 1976 - f i r s t day below - 5°C Arrow No. 4: December 3, 1976 - f i r s t day below -2 6 °C Arrow No. 5: December 31 , 1976 - f i r s t day below -2 8 °C Arrow No. 6: Feb ru ary 7 , 1977 - f i r s t day above 5°C O r CRITICAL TEMPERATURE (°C) -10 -20 2040-CA •MIMUIH -30 2012-AZ 2II6-UT -4 0 2197-MT -50 -6 0 ja 11 . i . « i J5 i IS 1 1 . i . . i .. i .. i .. OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 1975 1976 i . 1 11 1 1 .^11 1 . . iS . AUG SEP OCT NOV DEC JAN FEB 1977 DATE OF OBSERVATION i 75 O cto b e r, 1976 and was one o f gradual h ard en in g . The second o ccurred from O ctober to mid December and was c h a ra c te riz e d by an a c c e le ra te d r a te o f h ard en in g . The t h ir d stage In v o lv e d d i f f e r e n t changes 1n d i f f e r e n t s e e d lo ts and extended from mid December to mid January 1n both w in te r s . During th e t h ir d s ta g e , th e re was no change 1n c r i t i c a l tem perature f o r s e e d lo ts from warm c lim a te s . f u r t h e r lo w e rin g o f c r i t i c a l However, th e re was a tem peratures f o r s e e d lo ts from cool c lIm a te s . The r e s t o f th e seasonal co ld hardiness c y c le In v o lv e d d ehardening. The fo u r th stage occurred in January and F eb ru ary. I t was c h a ra c te riz e d by a loss o f th e a d d itio n a l hardiness gained 1n th e t h ir d s ta g e s , le a v ­ ing th e tre e s w ith n e a rly th e same hardiness as th e y had In e a r ly December. The f i f t h end o f A p r i l . fifth stage o ccurred from th e end o f February through th e I t was a p erio d o f ra p id d ehardening. The fo u r th and stages seemed to run to g e th e r f o r cool c lim a te s e e d lo ts , but were more d i s t i n c t f o r th e warm c lim a te s e e d lo ts . Presumably th e re 1s a s ix th stage from la t e sp rin g to e a r ly summer, b u t th e re a re no d ata f o r t h a t p e rio d . The stages o f co ld hardiness enumerated above a re s im ila r to those re p o rte d f o r hardwoods (Tumanov and K ra s a v te v , 1959; Ir v in g and Lanphear, 1967b) and o th e r c o n ife rs (G lerum , 1 9 7 3 ). W elser (1 9 7 0 ) has done much work 1n co ld h ard iness on a v a r ie t y o f s p e c ie s . Many s tu d ie s conducted by him and h is stu d en ts were c a r r ie d o u t under c o n tr o lle d c o n d itio n s and enabled them to study th e e n v iro n ­ mental fa c to r s re s p o n s ib le f o r th e seasonal changes. In a summary p a p e r, W elser (1 9 7 0 ) p o s tu la te d th a t th e f i r s t stage o f c o ld a c c lim a tio n 1s Induced by sh o rten in g photoperiods from summer to f a l l and 1s 76 c h a ra c te riz e d by r e l a t i v e l y minor Increases in cold h ard in ess. His conclusions a re supported by stu d ie s on Japanese yew ( Taxus c u s p id a ta ) (Zehnder and Lanphear, 1966) and D o u g la s -f1 r (van den D rle ss ch e, 1970) and seem to be a reasonable ex p la n a tio n f o r th e f i r s t stage observed in ponderosa p in e . The second stage o f a c c lim a tio n 1s a p p a re n tly induced by fre e z in g tem peratures (W e lse r, 1970; Howell and W elser, 19 7 0 a ). In my exp erim en t, s lig h t fro s ts ( - 2 ° to -3 °C ) In September and e a r ly October had l i t t l e e f f e c t on th e cold hardiness o f ponderosa p in e . However, th e re was a ra p id Increase 1n cold hardiness o f a l l ponderosa pine se ed lo ts fo llo w in g tem peratures o f -6 ° to -8°C during la t e O ctober, 1976 (arrow No. 3 1n F ig ure 8 ) . In c o n tro lle d environment s tu d ie s , van den D rlessche (1969b) found no In crease 1n hardiness o f seed lin g D o u g la s -f1 r exposed to tem peratures o f -1 °C , whereas Hmmls and W o rra ll (19 75 ) found th a t evening fro s ts o f -7°C caused ra p id hardiness Increases 1n D o u g la s -f1 r. In c o n tra s t, Zehnder and Lanphear (1966) found th a t su b free zin g tem peratures were no more e f f e c t iv e than 2°C tem peratures f o r Inducing hardiness Increases 1n Japanese yew. W elser (1970) speculated th a t a d is t in c t t h ir d stage o f cold a c c lim a tio n occurrs in hardy woody p la n ts subjected to very low tem peratures ( -3 0 ° to -5 0 ° C ). This stage 1s c h a ra c te riz e d by a ra p id In crease 1n hardiness th a t 1s q u ic k ly lo s t upon re tu rn to m ild temper­ a tu re s . Such a t h ir d stage appeared to be present In the n o rth ern seed lo ts o f ponderosa p in e , which became much h a rd ie r In January than 1n December. Whether o r not 1 t was trig g e re d by extreme co ld weather Is d e b a ta b le . In both seasons the c o ld e s t day o f th e w in te r (arrow Nos. 2 and 4 1n F igure 8 ) seemed to c o in c id e w ith r a th e r than precede the p erio d o f maximum h ard iness. 77 What tr ig g e r s th e fo u rth s ta g e , the loss o f hardiness which s ta rte d In January? Several authors (van den D rlessch e, 1969; Zehnder and Lanphear, 1966) thought th a t warm w eather 1n m id w in ter was th e e n v iro n ­ mental fa c to r causing the dehardening. Howell and W elser (1 9 7 0 b ), who worked w ith tre e s in c o n tro lle d environm ents, found th a t exposure to warm tem peratures was fo llo w ed by a g re a t decrease in hardiness w ith in a day. During th e 1975-76 w in te r , the c o ld e s t day (-2 8 °C ) was January 18, 1976 (arrow N o ..l on F ig ure 8 ) , and the s t a r t o f w eather warmer than 16°C was February 15 , 1976 (arrow No. 2 ) . During th e next w in t e r , th e c o ld e s t day (-2 8 °C ) was December 31, 1976 (arrow No. 5 ) . That was p a rt o f a very cold s p e ll o f 54 consecutive days in which tem peratures were below fr e e z in g . The end o f th a t p erio d o f below fre e z in g w eather occurred on February 7 , 1977 (arrow No. 6 ) when th e thermometer reached +6°C. As a lre a d y n oted, 1 t has been hypothesized t h a t the development o f maximum hardiness is trig g e re d by very cold w ea th e r, and th a t dehardening is trig g e re d by a p erio d o f warm w eather 1n m id w in ter. I f th e f i r s t hypothesis 1s c o rre c t fo r ponderosa p in e , hardiness remained a t a near constant le v e l fo llo w in g th e December sam plings, o n ly to in crease d ra m a tic a lly a f t e r th e very cold days (arrow Nos. 1 and 5 on F ig ure 8 ) . I f the second hypothesis Is c o r r e c t, the p erio d o f maximum hardiness la s te d f o r 20 days o r more (from arrow No. 1 to arrow No. 2 and from arrow No. 5 to arrow No. 6 ) , and then hardiness decreased a f t e r th e beginning o f warm w eather. W in te r d ryin g ra te s W in ter d e s ic c a tio n can occur in evergreen p la n ts when the s o il 1s fro ze n and p la n ts begin tra n s p ir in g in response to warm tem peratures o r 78 d ry w in d s. Such damage 1s o fte n thought to be more Im p o rta n t than In ju r y from low tem peratures and has been a problem on ve ry c o ld r e s is ta n t species In some areas (S a k a i, 1 9 7 0 ). To d eterm in e th e r e l a t i v e Im portance o f d e s ic c a tio n and low tem p eratu re I n j u r y , I performed th e d e s ic c a tio n experim ent d es crib ed under "M ethods." There were s i g n i f i c a n t d iffe re n c e s 1n d ry in g ra te s among th e 15 s e ed lo ts sampled on November 2 3 , 1976. Cut branches o f a l l s e e d lo ts o f th e c o a s ta l v a r ie t y lo s t m o istu re more r a p id ly than d id c u t branches o f any s e e d lo t o f th e i n t e r i o r v a r i e t y . T h is is shown 1n F ig u re 9 , which Inclu d es d ata f o r f i v e s e e d lo ts re p re s e n tin g th e extrem es f o r each v a r ie t y . These d iffe re n c e s 1n d ry in g r a t e may be r e la t e d to d iffe re n c e s between v a r ie t ie s in f o lia g e c o lo r . Trees from th e c o a s ta l v a r ie t y (v a r . ponderosa) a re b r ig h t green whereas tre e s from th e I n t e r i o r v a r ie t y ( v a r . scopulorum) a re g ra y -g re e n . The c o lo r d iffe r e n c e s a re due to d iffe re n c e s 1n s tr u c tu r e o f th e e p id e rm is , th e I n t e r i o r tre e s having a rough ep iderm is which probably a c ts to r e ta r d t r a n s p ir a t io n . There were a ls o d iffe r e n c e s w ith in th e v a r i e t i e s . Four s e e d lo ts from th e n o rth e rn h a l f o f th e i n t e r i o r v a r ie t y (re p re s e n te d by 2164 in F ig u re 9 ) had slo w er d ry in g ra te s than d id th e fo u r (re p re s e n te d by 2248) from f a r t h e r so u th . In th e c o a s ta l v a r i e t y , tre e s from C a l i f o r ­ n ia and c o a s ta l Oregon had th e f a s t e s t d ry in g r a te s . I c a lc u la te d th e c o r r e la tio n between m o istu re co n te n t o f th e fre s h needles (based on th e d iffe r e n c e between fre s h w e ig h t and o ve n -d ry w e ig h t) and d ry in g r a t e as measured by th e slo pe o f th e curves In F ig u re 9. For th e 15 s e e d lo ts , th e c o r r e la tio n was high ( r = 0 . 9 1 ) . In o th e r words, tre e s w ith th e h ig h e s t m o istu re co n te n t d rie d out the f a s t e s t . T h is 1s o p p o s ite to th e r e la tio n s h ip found In D o u g la s -f1 r (DeHayes and 79 FIGURE 9 . G e n e tic d iffe r e n c e s in w in t e r d ry in g ra te s and f o l i a r m o is tu re c o n te n t o f ex c is e d tw ig s from f i v e ponderosa p in e s e e d lo ts c o lle c te d on November 2 8 , 1976. S e e d lo ts 2 0 3 4 , 2 0 14 , and 2091 a re from th e c o a s ta l v a r i e t y ; s e e d lo ts 2164 and 2248 a re from th e I n t e r i o r v a r i e t y . 80 IO O 2248 95 SOU. UT 2164 NOR CO 90 X OF FRESH WEIGHT 574 65 80 75 5813 5R I 2034 OR 70 2014 623 NOR CA 65 2091 COAST OR 626 60 55 50 O 40 80 120 TIME 160 (hours) 200 240 moisture content 81 W rig h t, 1976) and Norway spruce ( Picea a b le s ) ( S a lte r s d a l, 1 9 6 3 ). W lln e r (1 9 5 2 ), working w ith tw igs o f d if f e r e n t hardwood s p e c ie s , found the same r e la tio n s h ip as 1n ponderosa p in e . Trees from co a stal Oregon had much f a s t e r d ry in g ra te s than tre e s from n o rth e rn C a lifo r n ia but s u ffe re d much les s w in te r I n ju r y . Trees from A rizona and New Mexico had s l i g h t l y slow er d ryin g ra te s than tre e s from B r it is h Columbia and e a s te rn Oregon, but s u ffe re d more w in te r in ju r y . Such comparisons in d ic a te th a t cold w eather has been more Im portant than d e s ic c a tio n 1n causing w in te r in ju r y to ponderosa p in e . L ea f phenology The changes In cold hardiness in the w in te r a re c y c lic phenomena. Leaf development In the sp rin g is p a rt o f another c y c lic phenomenon. In o rd er to determ ine whether the two are r e la t e d , I measured e x te n t o f l e a f development on May 2 0 , 1976, using grades o f 1 (buds s t i l l w in te r c o n d itio n ) to 10 (le a v e s 2 in lo n g ). In These grades correspond to an approxim ate 14 day d iffe r e n c e 1n the s t a r t o f growth. The r e s u lt s , summarized 1n Table 6 , show a n o rth to south tre n d . Trees from the n o rth e rn , c o ld e r regions began growing the e a r l i e s t , about 12 to 14 days b efo re tre e s from A riz o n a , New M exico, and C a lif o r n ia . In o th e r words, the same n orthern seed lo ts were f i r s t to become hardened 1n th e f a l l in p re p a ra tio n fo r w in te r c o ld , f a s t e s t to deharden in l a t e w in te r , and f i r s t to s t a r t growth In the s p rin g . Hanover (1 9 6 3 ), re p o rtin g on a ponderosa pin e provenance t e s t 1n northern Idaho als o re p o rte d th a t southern seed lo ts s ta r te d growth la te s t. So d id S te in e r (19 75 ) who re p o rte d on several species In c lu d in g ponderosa p in e . However, D o u g la s -flr and black w alnut were e x c e p tio n a l, southern seed lo ts s t a r t in g growth l a t e s t 1n both sp e cies . 82 TABLE 6 . R e la tiv e tim e o f bud break o f 16 y e a r o ld ponderosa pine tre e s from e ig h t ecotypes growing a t Kellogg F o rest 1n southwestern M ichigan. V a rie ty and Ecotype Time o f bud 1 - l a t e , 10 v a r. ponderosa Nor. P lateau 1 0 .0 Coast. OR 5 .2 Nor. CA 2 .9 Sou. CA 1 .0 v a r. scopulorum Nor. I n t e r i o r 8 .7 Nor. CO-UT 8 .9 Sou. UT-NM 4 .4 AZ-NM 1 .6 83 In o th e r s p e c ie s , such as w h ite spruce ( Picea g la u c a , N ie n s ta e d t and King, 1 9 7 0 ), balsam f i r flr ( Abies balsamea, L e s te r, 1970) and Douglas- (S te in e r and W rig h t, 1 9 7 4 ), d iffe re n c e s In date o f growth I n i t i a t i o n a re r e la te d to amount o f damage from la t e sp rin g f r o s t s . G e n e ra lly , those seed lo ts which s t a r t growth e a r l i e s t s u ffe r th e most damage. This r e la tio n s h ip 1s not tru e f o r ponderosa p in e . Newly expanded leaves o f th a t s p e c ie s , and most o th e r pines as w e l l , are not damaged by th e tem peratures o f - 2 ° to -4°C which occur so fre q u e n tly a f t e r the s t a r t o f th e growing season 1n M ichigan. Evidence to th is has been re p o rte d by Sorenson and M ile s (1974) on ponderosa pine and lodgepole pin e ( P1nus c o n to rta ) 1n c e n tra l Oregon. Frosts o f -3°C In e a r ly June damaged f l o r a l s tru c tu re s but not leaves In both sp ecies. Appar­ e n t ly , ponderosa p ine needles a re a b le to w ith sta n d a few degrees o f f r o s t a t any stage o f development. F o lia r m oisture co n ten t The m o istu re co n ten t o f a l l 30 seed lo ts was measured in September, 1975 and on s ix dates from J u ly , 1976 to January, 1977. The re s u lts a re shown in Table 7 . On each date th e re was a one to fo u r percent d iffe r e n c e between th e two v a r ie t ie s . N e a rly a l l seed lo ts o f th e west coast v a r. ponderosa had a h ig h e r m oisture co n ten t than any seed lo ts o f I n t e r i o r v a r. scopulorum. There were als o d iffe re n c e s w ith in th e v a r i e t i e s , the southern ecotypes o f each being more su ccu lent than th e n o rth ern ones. On most dates th e re were two to th re e percent d iffe re n c e s among ecotypes from the same v a r ie t y . 84 TABLE 7. Ecotype and seasonal d iffe re n c e s 1n f o l i a r m o istu re c o n ten t o f ponderosa p in e growing a t K ellogg F o re s t 1n southw estern M ich ig an . F o lia r m o istu re c o n ten t on V a r ie ty Sep. J u l. Aug. and 20 Nov. Jan. 28 25 Ecotype 1975 1976 1976 1976 1976 1977 % % % % % % Nor. P la te a u 6 5 .4 7 1 .0 6 2 .5 61 .6 5 7 .9 5 6 .9 Coast. OR 6 8 .6 73.1 6 6 .2 6 4 .8 61 .6 5 7 .2 Nor. CA 6 7 .7 7 3 .0 6 5 .7 6 3 .4 6 0 .8 5 6 .9 Sou. CA 6 8 .2 7 3 .7 6 6 .3 6 4 .3 61.1 5 7 .7 Nor. I n t e r i o r 6 2 .5 6 9 .5 6 1 .2 59.1 5 6 .0 5 5 .8 Nor. CO-UT 6 4 .0 7 0 .4 6 1 .3 5 9 .6 5 6 .9 5 6 .4 Sou. UT-NM 6 5 .8 71 .0 6 2 .3 6 0 .0 5 7 .4 5 6 .6 AZ-NM 6 5 .8 7 2 .4 64.1 6 1 .9 5 8 .5 5 6 .7 .9 .9 .6 7 26 O ct. 7 v a r. ponderosa v a r. scopulorum Least S ig n if ic a n t D iffe r e n c e (5% l e v e l ) 1 .4 .9 1 .2 85 P h a rls and F e r r e ll (1 9 6 6 ) found d iffe r e n c e s In f o l i a r m o istu re c o n te n t o f D o u g la s -flr v a r ie t ie s even g r e a te r than those I found f o r ponderosa p in e . In t h e i r w ork, th e west co ast v a r ie t y averaged s ix p e rc e n t g r e a te r m o istu re c o n te n t than th e I n t e r i o r v a r i e t y . S everal au th ors have found n o rth to south d iffe re n c e s in l e a f succulence 1n o th e r c o n ife r s . Among th e species which have been s tu d ie d a re Scotch p in e (L a n g le t, 1 9 3 6 ), Norway spruce ( S a lt e r s d a l, 1 9 6 3 ), ja c k pine ( P1nus banks1a n a, T e lc h , 1968) and D o u g1as-f1r (DeHayes and W rig h t, 1 9 7 6 ). In c o n tr a s t, McLemore e t a l (19 61 ) found no geographic p a tte r n to th e d iffe r e n c e s 1n m o istu re co n te n t o f l o b l o l l y p in e ( Pinus ta e d a ) . There were a ls o seasonal d iffe r e n c e s 1n f o l i a r m o istu re c o n te n t (T a b le 7 ) . In g e n e r a l, m o istu re c o n te n t d e c lin e d from summer to w in t e r . The most ra p id decrease o ccurred between J u ly and August when r e l a t i v e m o istu re co n ten ts f o r tre e s o f a l l ecotypes decreased by seven to e ig h t p e rc e n t. T h e r e a fte r , r e l a t i v e m o istu re c o n te n t decreased a t a steady r a te through November. By November, tre e s from n o rth e rn ecotypes reached a n ea r co n s ta n t f o l i a r m o istu re c o n te n t, but tre e s o f southern o r ig in continued to d e c lin e . In Jan u ary, 1977, th e d iffe re n c e s among ecotypes were s m a lle r than a t any p reviou s d a te . S im ila r d e c lin e s 1n r e l a t i v e f o l i a r m o istu re c o n te n t from summer to w in te r have been shown f o r s e v e ra l hardwood and c o n ife ro u s species (L a n g le t, 1936; A c k le y , 1954; Kozlowskl and C lausen, 1965; P h a r ls , 1967; Jameson, 1 9 6 6 ). In c o n tr a s t, Gary (1 9 7 1 ) could f in d o n ly s lig h t changes In m o istu re co n te n t o f one y e a r o ld Engelmann spruce ( P1cea en q elm a n n H ) needles from summer to w in t e r . R e la tio n s h ip between f o l i a r m o istu re co n te n t and h a rd in e s s . S ig n i­ f i c a n t n e g a tiv e c o r r e la tio n s were found between f o l i a r m o istu re c o n te n t 86 and c r i t i c a l tem peratures on a l l sampling dates (T a b le 8 ) . seedlots w ith th e h ig h e st m o istu re were le a s t hardy to c o ld . re la tio n s h ip has been re p o rte d by o th e rs . In g e n e ra l, A s im ila r Telch (1 9 6 8 ), working w ith ja c k p in e , found a strong r e la tio n s h ip between f o l i a r m o istu re co n ten t and cold In j u r y , th e most succulent seed sources s u ffe re d th e most cold damage. M e tc a lf e t a l (1 9 7 0 ) demonstrated a s im ila r p a tte rn f o r th re e c u lt lv a r s o f b a rle y ( Hordeum v u lg a re ) and wheat ( T rltic u m aestlvu m ) . The seasonal r e la tio n s h ip between m oisture co n ten t and cold hardiness Is I l l u s t r a t e d in F ig u re 10. As m o istu re co n ten t decreased, from summer to w in te r , hardiness In c re a s e d . However, the seasonal changes 1n m o istu re were not p ro p o rtio n a l to th e seasonal changes 1n h ard iness. For exam ple, th e decrease 1n succulence was g re a te s t In midsummer whereas th e changes 1n hardiness were g re a te s t In th e f a l l . The p a tte rn o f h ard ln e ss -m o is tu re co n ten t changes 1n ponderosa pine agrees w ith th a t found by McKenzie e t a l o s ie r dogwood. (1974) 1n stems o f re d - T h e ir s tu d ie s in d ic a te d th a t m o istu re c o n ten t changes during summer were caused by decreased stom atal re s is ta n c e to tr a n s ­ p ir a tio n and sim ultaneous increased ro o t re s is ta n c e to w a te r u ptake. They suggested th a t th e s h o rt day Induced stage o f cold a c c lim a tio n may o p e ra te v ia re g u la tio n o f processes In v o lv ed In p la n t w a te r r e la t io n s . Furtherm ore, th e I n i t i a l la rg e d e c lin e 1n tis s u e m oisture co n ten t may be a p r e r e q u is ite f o r th e subsequent la rg e In creases 1n cold hardiness th a t occur durin g f a l l and w in te r . The le v e l o f tis s u e m o istu re c o n ten t has o fte n been Im p lic a te d as a fa c to r which Is re sp o n s ib le f o r d iffe re n c e s 1n p la n t co ld h a rd in e s s . In s ta n c e , McKenzie e t a l (19 74 ) thought th a t a t high m o istu re contents th e re Is an Increased lik e lih o o d o f I n t r a c e l l u l a r 1ce fo rm atio n and For 87 TABLE 8 . Simple c o r r e la tio n s between f o l i a r m oisture co n ten t and needle c r i t i c a l tem peratures fo r 30 ponderosa p ine seed lo ts on several dates In 1975 and 1976. C o rr e la tio n between M oisture c o n ten t on: _______ and C r i t i c a l tem perature on: C o rr e la tio n c o e f f ic ie n t Sep. 2 0 , 1975 O ct. 3 0 , 1975 -.6 6 * * J u l. 7, 1976 Aug. 2 , 1976 -.3 7 * Aug. 26 , 1976 Sep. 17, 1976 -.7 6 * * Oct. 7 , 1976 Sep. 17, 1976 -.8 4 * * O ct. 7 , 1976 Nov. 11, 1976 -.7 9 * * Nov. 2 8 , 1976 Nov. 11, 1976 -.7 7 * * Nov. 28 , 1976 Dec. 17, 1976 -.8 9 * * Jan. 2 5 , 1977 Jan. 1 0 , 1977 -.5 3 * * * S ig n if ic a n t a t 5 * le v e l ** S ig n if ic a n t a t 1 * le v e l 88 FIGURE 10 . Seasonal changes in f o l i a r m o is tu re c o n te n t and c o ld h a rd in e s s f o r tr e e s from two ponderosa p in e e c o ty p es g row ing a t K e llo g g F o re s t in s o u th w e s te rn M ic h ig a n . MOISTURE CONTENT WEIGHT) OF FRESH (% MOISTURE SOU. CA -20 NOR. INTERIOR DATE OF OBSERWION TEMPERATURE CO FOLIAR CRITICAL CONTENT COLO HARDINESS 90 c o ld I n j u r y d u rin g a f r o s t because o f th e la r g e amount o f w a te r w it h in c e lls . In a summary p a p e r, Burke e t a l (1 9 7 6 ) su p p o rte d t h is v ie w p o in t. They suggested t h a t , a t h ig h m o is tu re c o n te n ts , la r g e q u a n t i t ie s o f w a te r f r e e z e r a p i d ly and th e r e s u l t in g tio n . ic e c r y s t a ls cause t is s u e d is r u p ­ O th ers have s u p p lie d e v id e n c e in s u p p o rt o f a h a rd in e s s -m o 1 s tu re c o n te n t r e l a t i o n s h i p . a r tific ia l B ltte n b e n d e r and How ell (1 9 7 5 ) d em o n strated t h a t In c re a s e s in t is s u e h y d ra tio n w ere accompanied by a d ec rea se In c o ld h a rd in e s s o f flo w e r buds o f hlghbush b lu e b e r r y ( V accln iu m a u s t r a l e ) . w h ile a d e c re a s e in m o is tu re c o n te n t was r e la t e d to an In c re a s e 1n h a rd in e s s . In a d d i t i o n , L i and W elser (1 9 6 9 ) and Chen e t a l (1 9 7 5 ) found t h a t p a r t i a l d e h y d ra tio n and w a te r s tr e s s caused a d e c re a s e in t is s u e m o is tu re c o n te n t and an In c re a s e in c o ld h a rd in e s s 1n stems o f re d -o s 1 e r dogwood. Based on th e e v id e n c e d is c u s s e d , 1 t i s te m p tin g to co n clu d e t h a t f o l i a r m o is tu re c o n te n t 1s a key f a c t o r c a u s in g d if f e r e n c e s h a rd in e s s 1n ponderosa p in e . 1n c o ld How ever, th e problem is to e x p la in why tr e e s w it h h ig h m o is tu re c o n te n t a r e th e most s u s c e p tib le to c o ld damage. T h is 1s a r e l a t i o n s h i p w hich seems t o h o ld fro m summer t o w i n t e r , and a ls o from n o rth to so u th w it h in th e s p e c ie s . D iffe r e n c e s 1n o sm o tic c o n c e n tr a tio n due t o th e p resen ce o f sugars In c e l l sap can o f f e r p r o t e c t io n a g a in s t f r e e z in g to te m p e ra tu re s a few degrees below f r e e z i n g . How ever, th e c o n c e n tr a tio n o f s o lu te s I n a p la n t s ' sap 1s n e v e r enough to p re v e n t w a te r from f r e e z in g a t th e low te m p e ra tu re s a c h ie v e d d u rin g a M ic h ig a n w in t e r . W else r (1 9 7 0 ) s ta t e d t h a t th e fo rm a tio n o f Ic e c r y s t a ls w it h in c e l l s is th e p rim a ry mechanism o f c o ld damage. A p p a re n tly I n t e r c e l l u l a r w a te r can f r e e z e In most h ard y tis s u e s w ith o u t c a u s in g to o much damage. 91 I f W elser 1s c o r r e c t , then 1 t is p o s s ib le th a t th e h ig h e r th e m o istu re co n ten t 1n g e n e r a l, th e h ig h e r th e m o istu re c o n te n t w it h in c e l l s , and th e g re a te r th e amount o f w a te r to be fro ze n and cause damage. CHAPTER 5 THE EFFECTS OF WINTER INJURY ON AGE-AGE HEIGHT RELATIONSHIPS IN PONDEROSA PINE INTRODUCTION Growth r a t e 1s one o f th e most Im p o rtan t c h a r a c te r is t ic s considered In a f o r e s t tr e e improvement program. The expression o f growth r a te o b ta in ed f o r tre e s o f d i f f e r e n t seed sources In fo r e s t g e n e tic s ex p er­ iments 1s a com bination o f In h e re n t growth p o te n tia l and response o f tre e s to environm ental s tre s s e s such as w in te r c o ld . T h is ch a p te r e v a lu a te s th e e f f e c t s o f w in te r In ju r y on age-age h e ig h t re la tio n s h ip s In th e ponderosa p in e provenance t e s t . The r e la tio n s h ip between ju v e n ile and l a t e r growth r a te In proven­ ance te s ts o f many species has been good when w in te r In ju r y and diseases have n o t been problem s. Nanson (1 9 6 8 ) re p o rte d strong c o r r e la tio n s between h e ig h t a t ages fo u r to ten and ages 40 to 60 years 1n provenance te s ts o f Scotch p in e and D o u g la s -flr . Others have a ls o demonstrated strong age-age c o r r e la tio n s 1n provenance te s ts o f th e same species (W rig h t e t a l . 1957; Namkoong e t a l , 1 9 7 2 ). In ponderosa p in e , age-age c o r r e la tio n s have been re p o rte d by several In v e s tig a to rs from many d if f e r e n t types o f g e n e tic s tu d ie s . T h e ir r e s u lts a re summarized 1n T able 9. In g e n e ra l, c o r r e la tio n s from provenance te s ts and e le v a tlo n a l zone comparisons were stro n g when w in te r 92 93 In ju r y was not a problem. For m iddle and low e le v a tio n p la n ta tio n s In C a lif o r n ia , Conkle (19 73 ) found very strong c o r r e la tio n s between h eig h ts a t ages 3 and 25. However, in a high e le v a tio n p la n ta tio n th e age 3 to 25 h e ig h t c o r r e la tio n was low , presumably because o f w in te r In ju r y which occurred a t age 10. Kempff (1 9 2 8 ) a t t r ib u t e d changes in h e ig h t ranking among 21 provenances o f ponderosa p ine to w in te r in ju r y In a n o rth e rn Idaho provenance t e s t . 94 Stannary o f phenotypic c o r r e la tio n s f o r h e ig h t a t d if f e r e n t ages In g e n e tic v a r ia tio n stu d ie s o f ponderosa p in e . Last C o rre la tio n s between h e ig h t a t la s t measurement Author^ Measi 1 {Age 2 or 3 5 6 or 7 8 11 o r 12 20 25 Comparisons o f tre e s from seven e le v a tio n zones 25 — .92 .9 8 .98 — — .96 — Co 25 — .87 .91 .91 — .96 .98 — Co 25 — .14 .04 .02 — .45 .98 — Co --------- W& P Comparisons o f 10 to 35 provenances 8 .5 7 .66 .81 --------- — --------- CQ 42 C ft. c J Q 5 .O T 30 — .81 .51 .67 — .56 .7 3 — s & s 30 — .4 0 .85 .83 — .91 .88 — s & s 30 — .53 .75 .7 9 — .90 .91 — s & s 30 — .51 .54 .61 — .75 .89 — s &s 30 — .92 .61 .75 — .90 .87 — s & s 25 .81 _ — .84 — --------- --------- --------- Mo .85 1 .0 0 N & Co — — W ft P Comparisons o f 71 to 271 h a l f - s1b fa m ilie s 29 — .0 5 .19 -.4 7 8 .23 .37 .7 3 --------- 15 --------- .30 ~ —— -.6 0 — —— - .64 — C & H 95 Table 9 continued Comparisons o f 112 to 448 in d iv id u a l tre e s 25 ------------ .12 .19 .37 ------------ .62 .93 — Co 25 ----------- .25 .60 .70 ------ .84 .94 — Co 25 ------ .41 .60 .68 ------ ------ .93 — Co 20 ----- .08 .02 ------------ ------------ .75 ------------ ------------ C & D 20 _ _ _ .02 .18 ___ _ __ .67 — — — — •» — C & D ^ C o = C onkle, 1973 N & Co ■ Namkoong and C onkle, 1976 W & P = Wang and P a te e, 1973 C & H * Callaham and H a s e l, 1961 S & S = S q u ill ace and S i l e r , 1962 C & D 3 Callaham and D u f f le ld , 1962 Mo = Moore, 1944 96 MATERIAL AND METHODS The ponderosa pine study is p a r t o f a range wide provenance t e s t I n i t i a t e d in 1960. Seed from 60 provenances was sown 1n an East Lansing, Michigan nursery using a fo u r r e p lic a te d randomized complete block design. Two years l a t e r , seed lin g s were tra n s fe rre d to two permanent te s t p la n ta tio n s a t W. K. Kellogg F orest (Augusta, M ichigan) and Fred Russ Forest (Dowagiac, M ichigan) 1n southern M ichigan. The p la n ta tio n s fo llo w a randomized complete block design w ith s ix tr e e p lo ts and a 2 .5 x 2 .5 m spacing. F u rth e r d e t a ils o f p la n ta tio n design and estab lish m en t are provided by W right e t a l (1 9 6 9 ). H eight measurements were made in the nursery a t ages one and two and a t va rio u s ages 1n both t e s t p la n ta tio n s up through age 16. Estim ates o f w in te r In ju r y to needles were made fo llo w in g th e f i r s t y e a r In the nursery and a t ages 4 , 6 , and 17 In th e p la n ta tio n s . Analyses o f varia n c e were performed on a l l nursery and p la n ta tio n data using p lo t means as Item s . From th e analyses o f v a ria n c e and expected means squares from h e ig h t d a ta , varian ce components due to ecotype and s e e d lo t w ith in ecotype e f f e c ts were c a lc u la te d . These components were expressed as a percentage o f th e t o t a l g e n e tic varia n c e (sum o f ecotype and s e e d lo t w ith in ecotype components). C o e ffic ie n ts o f v a r ia tio n were computed f o r each age from the e r r o r mean squares. Product moment c o rr e la tio n s were c a lc u la te d between s e e d lo t mean h eights a t age 16 and a l l previous h e ig h t measurements. 97 RESULTS Changes in r e l a t i v e growth r a te The g e n e tic v a r ia tio n p a tte rn f o r h e ig h t 1n ponderosa p in e changed d ra m a tic a lly w ith age (F ig u re 1 1 ). A fte r the f i r s t growing season, the la r g e s t tre e s were those grown from seed c o lle c te d 1n C a lif o r n ia and Arizona-New Mexico. The s m a lle s t tre e s were those grown from seed c o lle c te d In the n o rth e rn I n t e r i o r (Montana, South Dakota, Nebraska) and northern Colorado and U tah. By age 16, tre e s grown from seed c o lle c te d In the northern P late au regio n (Oregon, Washington, B r it is h Columbia) and northern I n t e r i o r were fa s te s t grow ing, Arizona-New Mexico tre e s were below average, and C a lif o r n ia tre e s were s m a lle s t. The g re a te s t changes in r e l a t i v e h e ig h t growth occurred during the f i r s t f iv e years o f growth (T ab le 1 0 ). C o rre la tio n s between h e ig h t a t age 16 and a t ages 1 and 2 were n e g ative o r near zero f o r both p la n ta ­ tio n s . A f t e r p la n ta tio n e s ta b lis h m e n t, c o rr e la tio n s Increased somewhat but were s t i l l g e n e ra lly le s s than ju v e n ile -m a tu re c o r r e la tio n s rep o rted 1n o th e r ponderosa p ine provenance te s ts (T ab le 9 ) . The poor c o r r e la tio n s were brought about by a sharp d e c lin e 1n growth f o r th e C a lifo r n ia tre e s which was accompanied by a steady In crease In r e l a t i v e growth o f n orthern P late au and n orthern i n t e r i o r tr e e s . By age s ix , the rankings among seed lots had s t a b iliz e d and remained constant through age 16. The changing p a tte rn o f growth w ith age was caused by w in te r In ju r y which occurred 1n th e n ursery and a t vario u s ages 1n both p la n ta tio n s (F ig u re 6 ) . During the f i r s t w in te r 1n the n u rs e ry , tre e s from C a lif o r n ia and co astal Oregon o rig in s s u ffe re d s e v e re ly . Arizona-New Mexico and 98 FIGURE 1 1 . Change in r e l a t i v e h e ig h t (e x p re s s e d as a p e rc e n ta g e o f p la n t a t io n o r n u rs e ry means) w ith age f o r tr e e s from fo u ponderosa p in e e c o ty p e s . I50r 140 130 120s 110- A Z -N M 100 s, SOU CA 13 (YEARS) 15 17 100 TABLE 10. Age-Age c o r r e la tio n s f o r h e ig h t among 55 provenances o f ponderosa pine a t two t e s t p la n ta tio n s 1n southern M ichigan. P la n ta tio n S ite C o rre la tio n between h e ig h t a t age 16 and a t age 1 2 4 5 6 7 8 9 10 Kellogg -.3 1 .0 8 .56 .57 .73 .78 .85 .91 Russ - .0 7 .07 .49 --- — .65 --- — 13 .93 — .97 101 northern P la te a u tre e s s u ffe r e d moderate damage. o rig in s s u ffe re d l i t t l e o r none. Trees from a l l o th e r The e f f e c t s o f c o ld on C a lif o r n ia tre e s were so severe t h a t th ey could no lo n g e r m a in ta in t h e i r ra p id growth r a te a f t e r age one. Arizona-New Mexico tre e s recovered s u f f i c ­ i e n t l y to c o n tin u e t h e i r ra p id growth r a t e through age fo u r . However, repeated in ju r y 1n subsequent y e a rs in th e t e s t p la n ta tio n s re s u lte d 1n a gradual d e c lin e 1n growth r a t e . N orthern P la te a u tre e s s u ffe re d l i t t l e 1n th e f i e l d and became th e f a s t e s t growing tre e s in both p la n ta t io n s . Northern i n t e r i o r tr e e s emerged as r e l a t i v e l y ra p id growers a f t e r f i e l d p la n tin g p r im a r ily because o f t h e i r high degree o f c o ld r e s is ta n c e . Among the I n j u r y - f r e e n o rth e rn s e e d lo ts , h e ig h t ranking s were c o n s is te n t from y e a r to y e a r . one were t a l l e s t t h e r e a f t e r . The s e e d lo ts which were t a l l e s t a t age However, among th e h e a v ily damaged C a l i f o r ­ n ia and A rizona-N ew Mexico s e e d lo ts , ran kin g v a rie d g r e a t ly w ith age. W ith in th e southern C a lif o r n ia e c o ty p e , th e th re e t a l l e s t s e e d lo ts a t age one, were n ear average a t age tw o , and among th e s h o rte s t a t age 16. Thus 1n th e absence o f w in te r I n j u r y , age-age c o r r e la tio n s 1n ponderosa p in e a re expected to be h ig h . Changes 1n v a ria n c e components due to ecotype and s e e d lo t w ith in ecotype W ells (1 9 6 4 ) d es crib ed e ig h t geographic ecotypes o f ponderosa p in e , basing h is d e s c rip tio n s on n u rse ry measurements. W rig h t e t a l and Kung and W rig h t (1 9 7 2 ) fo llo w e d th e same c l a s s i f i c a t i o n . (1 9 6 9 ) I d id , to o , because W e lls ' o r ig in a l grouping o f s e e d lo ts In t o ecotypes was as v a lid a t age 16 as a t age 3 . N orthern ecotypes m a in ta in ed th e same growth r a te s as 1n e a r ly years whereas southern ecotypes s u ffe re d rep eated w in te r In ju r y and severe 102 reductions 1n growth r a t e . They were s h o rte s t a t age 16. range 1n ecotype means has Increased (T a b le 1 1 ). Thus, the This in c re as e caused an Increase 1n the p ro p o rtio n o f the t o t a l g e n e tic v a ria n c e due to between-ecotype d iffe re n c e s (T ab le 1 1 ). At age f o u r , those d iffe re n c e s accounted f o r 67% o f th e t o t a l g e n e tic v a ria n c e . That r a t io Increased to 76% by age e ig h t and remained n e a rly co n stant t h e r e a f t e r . Changes 1n e r r o r varia n c e w ith age One might expect th a t repeated w in te r in ju r y would cause an Increase In e r r o r v a ria n c e and, th u s , a l t e r experim ental p re c is io n . To in v e s tig a te t h is r e la t io n s h ip , I computed c o e ff ic ie n t s o f v a r ia tio n f o r height measurements made a t a l l ages. These are given 1n T able 12. The c o e ff ic ie n ts decreased from age one to two in the n ursery d e s p ite severe In ju r y th e f i r s t w in te r . A p p a re n tly , th e w in te r In ju r y s u ffe re d on th e nursery was so uniform w ith in seed lo ts as to c o u n te ra ct any Increased v a r i a b i l i t y 1n growth ra te from age one to age two. C o e ffic ie n ts o f v a r ia tio n 1n th e t e s t p la n ta tio n s seemed to change 1n r e la t io n to average growth r a te r a th e r than w in te r in ju r y . A fte r f i e l d p la n tin g , tre e s grew r e l a t i v e l y slo w ly f o r th e next two years (Table 12) and c o e ffic ie n ts o f v a r ia tio n Increased s h a rp ly . Trans­ p la n tin g shock undoubtedly c o n trib u te d to slow and e r r a t i c growth. These e f f e c t s lessened by age f i v e a t Kellogg F orest but not u n t il a f t e r age seven a t Russ F o re s t. T h e r e a fte r , the v a r ia tio n c o e ff ic ie n t s d eclin ed g ra d u a lly as average growth r a te In c re a s e d , s im ila r to th e fin d in g o f Namkoong and Conkle (1 9 7 6 ). W in ter In ju r y d id not seem to e f f e c t e r r o r variances In th e t e s t p la n ta tio n s . H eight d iffe re n c e s among seed lo ts were la r g e r a t Kellogg F orest than a t Russ F orest as In d ic a te d by th e h ig h e r F values (T a b le 1 2 ). 103 TABLE 11. V a ria tio n w ith age in range o f ecotype means and p ro p o rtio n o f t o t a l g e n e tic va ria n c e due to ecotype and s e e d lo t w ith in ecotype. Age Range In Ecotype Means P ro p o rtio n o f t o t a l g e n e tic varian ce due to _________________________ Ecotype S eedlot w ith in ____________________________________________________________ ecotype years % * % 4 35 67 33 5 40 70 30 7 — 73 27 8 50 76 24 9 49 76 24 16 52 75 25 TABLE 12. Changes 1n the c o e ffic ie n t o f variation (C .V .), F value among seedlots, and plantation mean height with age 1n the nursery and two permanent tes t plantations. Pertinent Site Statistics Nursery C .V . (X) 7 8 9 10 13 16 — — — — - --- — 1 2 15.9 12.3 — 16 — — 19.3 17.1 16.5 17.7 15.3 13.7 — 14.5 9 .6 11.4 8 .9 9,0 10.5 10.7 — 9 .5 4 5 C r uv aa il Uita c Russ 5 C .V. — { %) Aw — F value — Mean Ht. (cm) — — 28 C.V. — — 18.2 — 19.6 — — 4.4 — 4.3 ( %) F value Mean Ht. (cm) . . . 38 50 107 88 131 r — 177 222 — — 490 — — — 14.9 14.4 -- - — — 5.8 5.5 ------ . . . . . . 397 520 104 Kellogg Mean Ht. (cm) 105 This was t r u e even though e r r o r v a ria n c e s were th e same. The la r g e r d iffe re n c e s a t K ellogg F o re s t a re p ro b ab ly r e la te d to th e more severe w in te r In ju r y a t th a t s i t e which tended to maximize g e n e tic d iffe r e n c e s 1n h e ig h t. W in te r In ju r y was e v id e n t a f t e r many w in te rs a t K ellogg F o re s t, but o n ly a f t e r th e fo u r th and seven teen th growing seasons a t Russ F o re s t. CHAPTER 6 IMPROVED PONDEROSA PINE FOR MICHIGAN INTRODUCTION Those f a m i l i a r w ith th e w e s te rn U n ite d S t a t e s , q u ic k ly d e v e lo p a p p r e c ia t io n f o r th e s iz e and b e a u ty o f ponderosa p in e . n a tu r a lly in e v e ry s t a t e and M e x ic o . T h is i s th e 1n A r iz o n a . I t grows w est o f th e p la in s and a ls o 1n p a rts o f Canada mostw id e ly d is t r i b u t e d s p e c ie s o f p in e 1n N o rth A m e ric a , found fro m n e a r sea le v e l 1 0 ,0 0 0 f t an Its ta ll 1n th e P a c i f i c N o rth w est to s t r a i g h t b o le s , orange p la t y back and r ic h y e llo w -g r e e n f o l i a g e fram e many o f th e g ra n d e s t view s a s s o c ia te d w ith th e rugged w e s te rn t e r r a i n . In a d d it io n to i t s tim b e r t r e e . W ith in i t s a e s t h e t ic v a lu e , ponderosa p in e 1s a v a lu a b le n a tu r a l ra n g e , p o n d e ro s a p in e fu rn is h e s more tim b e r th an any o t h e r p in e and 1s th e m a in s ta y o f th e economy f o r many a re a s . Ponderosa p in e grows r a p i d l y , a c h ie v e s la r g e s iz e a d a p ta b le . T ree s o v e r 200 f t t a l l Nevada M o un tains a r e n o t uncommon. a ttra c te d S ta te s . and 8 f t and 1s v e ry In d ia m e te r in th e S ie r r a F o r th e s e re a s o n s , th e s p e c ie s has i n t e r e s t from f o r e s t e r s 1n th e c e n tr a l and e a s te r n U n ite d I t has been used comnonly as a s h e l t e r b e l t t r e e 1n th e G re a t P la in s , as an o rn am en tal f a r t h e r e a s t , and Is b e in g te s te d f o r use 1n 106 107 s t r ip mine reclam atio n In Pennsylvania (D avidson, 1 9 7 7 ). Ponderosa pine als o appears to have p o te n tia l as a tim b er tr e e In th e E a st. For example, a 29 y e a r -o ld stand 1n East Lansing, Michigan has outgrown n a tiv e hard pines p la n te d near 1 t and averaged 45 f t t a l l and 8 .5 In In d ia m e ter. Ponderosa pine Is an ex tre m e ly v a r ia b le species g e n e t ic a lly . grown from seed c o lle c te d 1n some areas grow seed c o lle c te d o th e r p la c e s . Trees th re e tim es as f a s t as Some seed sources s u f fe r severe damage from w in te r c o ld , o th e rs are hardy to even th e most extreme c o ld . A ls o , tre e s from some areas have long n eed les, w h ile o th ers have r e l a t i v e l y sh o rt needles s im ila r to those found on A u s tria n p ine ( Pinus n ig r a ) . Thus, th e success and value o f ponderosa p ine p la n ta tio n s In th e e a s te rn United S ta te s depends as much on choosing th e proper seed source as on s it e s e le c tio n and c u ltu r a l p r a c tic e s . Work rep o rted 1n t h is ch a p te r was undertaken to p ro vide M ichigan nurserymen w ith p r a c tic a l In fo rm a tio n on th e best seed sources to use f o r tim b e r and ornamental p la n tin g s . 108 MATERIAL AND METHODS In 1959, D r. 0 . 0 . W ells (p re s e n tly w ith the USFS, Southern Exper­ iment S ta tio n ) re ce ived seed c o lle c te d from 60 n a tu ra l stands o f ponder­ osa pine lo c ate d throughout I t s n a tu ra l range. Each stand was represented by a bulked seed c o lle c tio n from several average tre e s which w i l l h ere­ a f t e r be re fe r re d to as a s e e d lo t. In fo rm a tio n concerning l o c a l i t y o f o r ig in as w e ll as c lim a tic data from p a re n ta l stands accompanied each s e e d lo t. C o lle c tio n was accomplished through th e cou rtesy o f R. Z. Callaham o f the U. S. F orest S e rv ic e . In May, 1960, the seed was sown 1n Michigan S ta te U n iv e r s ity 's experim ental nursery 1n East Lansing. The tre e s were tra n s fe r re d as 2 -0 stock to two r e p lic a te d p la n ta tio n s 1n 1962. The two p la n ta tio n s a re lo c a te d 60 m iles a p a rt 1n southwestern M ichigan. The W. K. K ellogg F o res t p la n ta tio n Is lo c a te d 1n Kalamazoo county and contains 57 seed lo ts and 7 r e p lic a t io n s . The Fred Russ Forest p la n ta tio n 1s lo c a te d In Cass County and co n tain s 55 seed lo ts and 5 r e p lic a t io n s . s ix tr e e p lo ts . The tre e s were p la n te d in a 8 * 8 f t spacing 1n Weed c o n tro l consisted o f a p p lic a tio n s o f slmazene and a m ln o trla z o le f o r th re e years a t the Kellogg p la n ta tio n and one y e a r a t the Russ p la n ta tio n . Measurements were made a t age one In the nursery and have continued through age 17. H eight has been measured a t fre q u e n t i n t e r v a ls , as has m o r t a lity and In ju r y from w in te r c o ld . O ther t r a i t s measured one o r more tim es In c lu d e bole fo rm ,d is e a s e damage, tim e o f bud b u r s t, f o l i a r n u tr ie n t c o n te n t, d ia m e te r, amount o f f o r k in g , f o l i a r m oisture c o n te n t, and s u s c e p t ib ilit y to damage from a r t i f i c i a l fr e e z in g . Many o f the 109 measurements made through age two and age e ig h t have been re p o rte d on p re v io u s ly by W ells (19 64 ) and W right e t a l (1 9 6 9 ). Each s e t o f measurement data was sub jected to a n a ly s is o f v a ria n c e , using p lo t means as Item s. A ls o , sim ple c o rr e la tio n s were c a lc u la te d f o r some t r a i t s , using s e e d lo t means as Item s. 110 THE VARIETIES AND ECOTYPES For convenience, I used th e s u b d iv is io n o f ponderosa p in e In t o v a r ie t ie s and ecotypes as d e lin e a te d by W ells (1 9 6 4 ). W ells recognized two v a r i e t i e s , as d escrib ed p re v io u s ly by taxo n o m ists. They a re west co ast v a r. ponderosa and I n t e r i o r var. scopulorum . The west coast v a r ie ty In c lu d es th e ponderosa p ine from w estern Montana, Id a h o , Washington, Oregon, and C a li f o r n ia . The i n t e r i o r v a r ie ty In c lu d e s ponderosa p in e from th e Rocky Mountain a re a . The s e p a ra tio n o f ponderosa p in e in to two v a r ie t ie s has a b io lo ­ g ic a l fo u n d a tio n . The two d i f f e r 1n s e v e ra l resp ects and In some t r a i t s th e re 1s no o v e rla p p in g . The c h ie f ways In which th e y d i f f e r a re summar­ ized 1n th e fo llo w in g 1 1 s t. As compared w ith th e I n t e r i o r v a r i e t y , th e West co a st v a r ie t y has: G reener and lo n g e r needles E re c t cone p r ic k le s Browner and more lo o s e ly appressed bud s c ale s H igher f o l i a r c o n c e n tra tio n s o f N, K, P , Ca, and B A more c y lin d r ic a l stem form H ig h er f o l i a r m o istu re co n te n t G re a te r p a l a t a b m t y to Jack r a b b its 1n Nebraska. W ells subdivided th e v a r ie t ie s In to ecotypes o r ra c e s , based m a in ly on growth t r a i t s such as growth r a t e and w in te r h a rd in e s s . h is ecotypes in such a manner t h a t d iffe r e n c e s among compared to those w ith in ec o ty p es , a t le a s t 1n He d e lin e a te d ecotypes were la rg e most t r a i t s . I use h is c la s s if ic a t io n p a r t ly as a m a tte r o f convenience, because 1 t 1s much e a s ie r to understand ta b le s g iv in g the means f o r e ig h t ecotypes than f o r a l l 60 s e e d lo ts Inclu d ed 1n th e exp erim en t. Ill RESULTS M o r t a lit y M o r t a lit y by th e end o f th e 1975 growing season was 43% and 40% f o r K ello gg and Russ F orests r e s p e c t iv e ly . M o r t a lit y ra te s were low (13%) f o r the N orthern P la te a u ecotype and moderate o r high f o r th e o th e rs (T a b le 1 3 ). Although th e cu m u lative m o r t a lit y in th e two p la n ta tio n s was s im ila r a t age 16 , th e r a t e a t which m o r t a lit y o ccurred was d i f f e r e n t . At Russ F o res t n e a rly a l l deaths o ccurred d u rin g th e f i r s t two growing seasons. At K ellogg F o r e s t, where i n i t i a l m o r t a lit y was r e l a t i v e l y lo w , death o f tr e e s has co ntinued every y e a r s in c e age f o u r , e s p e c ia lly f o r tre e s o f C a lif o r n ia and Arizona-New Mexico o r ig in s . This continued m o r t a lit y a t K ellogg F o res t 1s p ro bably due to repeated w in te r In ju r y a t th a t p la n t a t io n . Growth r a t e H e ig h t. H eight d ata f o r th e K ello gg and Russ F o re s t p la n ta tio n s were averaged and a re presented 1n T ab le 14. At age 1 6 , average h e ig h ts were 16 and 17 f t a t th e K ellogg and Russ F o res t p la n t a t io n s , r e s p e c t iv e ly . In both p la n ta t io n s , tre e s grown from seed c o lle c te d 1n th e N o rth ern P la te a u (O regon, W ashington, B r it i s h Colum bia) grew f a s t e s t (T a b le 1 4 ). They averaged 22 f t t a l l a t both p la n ta tio n s a t age 16 . Trees grown from seed c o lle c te d 1n th e N orthern I n t e r i o r (c e n tr a l M ontana, South D akota, Nebraska) and c o a s ta l Oregon were a ls o above average a t both p la n ta tio n s . N orthern I n t e r i o r tre e s averaged 19 f t and 18 f t , whereas c o a stal Oregon tre e s averaged 17 f t and 21 f t a t K ellogg and Russ F orests r e s p e c tiv e ly . Slow est growing tre e s were grown from seed c o lle c te d 1n southern C a li f o r n ia , th ey averaged 13 f t and 15 f t In th e two p la n ta tio n s . 112 TABLE 13. M o r t a lit y and m o r ta lity Increm ents o f 16 y e a r -o ld ponderosa p ine ecotypes growing a t Kellogg and Russ F orests 1n southwestern M ichigan. V a rie ty Kellogg Forest and M o r t a lIt y Ecotype (1975) % Russ F orest M o r t a lit y Increm ent—^ % M o r t a lit y (1 9 7 5 ) % M o r t a lit y In c re m e n t^ i v a r. ponderosa Nor. P lateau 14 6 12 0 Coast. OR 58 9 67 0 Nor. CA 49 28 42 0 Sou. CA 68 37 44 8 Nor. I n t e r i o r 40 11 45 0 Nor. CO-UT 32 10 34 2 Sou. UT-NM 39 17 36 3 AZ-NM 45 19 43 5 Mean 43 17 40 2 v a r. scopulorum ^ M o r t a l i t y Increm ent Is expressed as % m o r ta lity 1n 1975 minus % m o r t a lit y 1n 1964. 113 TABLE 14. Growth r a te and bole form o f ponderosa p ine ecotypes. V a rie ty R e la tiv e h e ig h t a t R e la tiv e R a t lo ^ and age diam eter M ld-dlam . age 16 basal d1am. Ecotype 4 2 - 16 - % o f experim ent mean - - - v a r. ponderosa Nor. P lateau 96 113 130 128 .62 Coast. OR 67 86 113 124 .64 Nor. CA 104 88 98 98 .65 Sou. CA 90 85 83 86 .65 Nor. I n t e r i o r 96 111 110 99 .54 Nor. CO-UT 81 83 91 86 .59 Sou. UT-NM 106 104 100 103 .5 5 AZ-NM 148 114 99 101 .56 16 34 505 v a r. scopulorum Average (cm) ^ D a t a from LaFarge, 1971 1 6 .2 114 R e la tiv e growth ra te s have changed w ith tim e (T a b le 1 4 ). The re sp o n sib le fa c to r has probably been d i f f e r e n t i a l w in te r In j u r y . Southern C a lif o r n ia tre e s were t a l l e s t a t th e end o f th e f i r s t growing season but s u ffe re d so much from cold th e f i r s t w in te r as to become among th e s h o rte s t by age two. ra te w ith age. They continued to d e c lin e in growth Trees from A rizona and New Mexico s u ffe re d s lig h t w in te r in ju r y 1n the nursery and more severe w in te r In ju r y 1n l a t e r y e a rs . Thus, although recommended f o r p la n tin g 1n M ichigan a t age tw o, they were no lo n g e r among th e lea d e rs a t age 16. N orthern P lateau and Northern I n t e r i o r se ed lo ts emerged as r e l a t i v e l y ra p id growers 1n the p la n ta tio n s p r im a r ily because o f t h e i r high degree o f co ld h ard in e ss . D iam ete r. The d ata on d iam eter (measured 1 f t above ground) a t age 16 a re summarized 1n Table 14. In g e n e ra l, d ia m e ter d if f e r e d among ecotypes 1n much th e same way as h e ig h t. Fast growing N orthern P lateau tre e s had th e la r g e s t diam eters (8 .6 1n and 8 .0 In th e two p la n t a t io n s ) , and slow growing southern C a lif o r n ia and n orthern C olorado-U tah tre e s had th e s m a lle s t d ia m e te rs . Trees from th e Northern I n t e r i o r ecotype were an excep tio n to t h is g e n e r a lit y . Although among the t a l l e s t tre e s 1n both p la n ta tio n s , th ey were below average 1n d ia m e te r. Thus, N orthern I n t e r i o r tre e s produce a le s s e r volume o f wood than N orthern P lateau and Coastal Oregon tre e s o f th e same h e ig h t. Stem ta p e r LaFarge (19 71 ) measured stem form In th e Kellogg F o rest p la n ta tio n as th e r a t io o f m id -d iam ete r to basal d ia m e te r. He found la rg e d iffe re n c e s between v a r ie t ie s 1n stem ta p e r , but no d iffe re n c e s w ith in v a r ie t ie s (T ab le 1 4 ). Trees from the w estern v a r ie ty were most n e a rly c y l i n d r i c a l . This strong v a r ie t y d iffe r e n c e was e v id e n t d e s p ite c o n s id e ra b le v a r ia tio n 115 In h e ig h t and d iam eter growth w ith in each v a r ie t y . Thus, f a s t growing seed lots from th e Northern P lateau had th e same ta p e r as slow growing tre e s from southern C a lif o r n ia . Fast growing tre e s w ith a high ta p e r r a t io a re l i k e l y to produce more wood than e q u a lly f a s t growing tre e s w ith low ta p e r r a t io s . Trees producing the g re a te s t volume o f wood 1n th is study a re those grown from seed c o lle c te d 1n th e Northern P la te a u . W in ter in ju r y W in ter In ju r y was f i r s t noted a t age one in the nursery and has continued to be e v id e n t 1n many years sin ce p la n ta tio n e s ta b lis h m e n t. In ju r y appears as needle d is c o lo r a tio n d urin g w in te r and u lt im a t e ly , as needle browning by s p rin g . L i t t l e damage has occurred to buds o r cambium and few tre e s have been k i l l e d Im m e d ia tely, but many succumbed a f t e r repeated needle damage. W in ter In ju r y es tim ates 1n th e nursery and p la n ta tio n s are summarized 1n F igure 6. In the w estern v a r ie t y , Northern P lateau tre e s have been damaged s l i g h t l y , co astal Oregon tre e s have s u ffe re d moderate damage and C a lif o r n ia tre e s have s u ffe re d s e v e re ly . In th e I n t e r i o r v a r i e t y , tre e s from C olorado, Utah and northward have s u ffe re d no damage, whereas tre e s from A rizona and New Mexico s u ffe re d moderate damage. In o rd e r to le a rn more about th e cause o f w in te r In ju r y 1n ponderosa p in e , c o n tro lle d la b o ra to ry fre e z in g stu d ie s were perform ed. Needles were su b jected to fre e z in g tem peratures a t va rio u s tim es o f y e a r and damage was measured by e l e c t r i c a l c o n d u c tiv ity t e s t s . summarized 1n T ab le 15. The r e s u lts a re In J u ly , a l l tre e s were e q u a lly h ard y, t h e i r needles s u ffe r in g damage a t -5 .5 ° C . Subsequently, however, tre e s from northern regions acclim ated to cold f a s t e r than those from southern 116 TABLE 15. Seasonal d iffe re n c e s In cold hardiness o f needles among ponderosa p ine ecotypes. V a rie ty and Ecotype Temperature (°C ) a t which needle damage occurred on 9 /1 7 /7 6 1 0 /2 8 /7 6 1 2 /1 7 /7 6 1 /1 0 /7 7 _______ v a r. ponderosa Nor. P lateau -7 .9 -1 9 .2 -3 1 .1 - 3 8 .9 Coast. OR - 6 .7 -1 4 .7 -2 7 .1 -3 0 .9 Nor. CA - 6 .7 - 12.6 -2 0 .9 -2 4 .1 Sou. CA -6 .7 - 1 2 .0 -1 9 .8 - ■10.7 ■ 2 2 .0 -3 9 .0 -4 6 .6 Nor. CO-UT -9 .1 ■ 2 1 .2 -3 4 .9 -4 1 .6 Sou. UT-NM - - 20.0 -3 1 .4 -3 5 .0 AZ-NM - 7 .2 ■17.0 -3 0 .2 -31 .7 22.2 v a r. scopulorum Nor. I n t e r i o r 8.0 117 regions and achieved a g re a te r degree o f hardiness by m id w in te r. Trees from a l l eco typ es, except n orthern and southern C a lif o r n ia , seemed to achieve s u f f ic ie n t m id w in ter hardiness to t o le r a t e th e minimum tem per­ atu res recorded a t Kellogg and Russ F o re s ts . However, due to a slow ra te o f cold a c c lim a tio n , tre e s from A rizona and New Mexico are s u s c e p tib le to cold In ju r y 1n years when low tem peratures occur in l a t e November o r e a r ly December. That happened on December 3 , 1976, when the tem peratures dropped to -26°C a t Kellogg F o re s t. F ie ld observations made on December 17, 1976, revealed severe damage on C a lif o r n ia tre e s and moderate damage on co astal Oregon and Arizona-New Mexico tr e e s . escaped w in te r In ju r y . Trees from o th e r regions During th e w in te r o f 1975-76 th e low est tem perature recorded was -27°C in mid January. By t h is tim e , c o a stal Oregon and Arizona-New Mexico tre e s had achieved s u f f ic ie n t hardiness to t o le r a t e such tem peratures and o n ly C a lifo r n ia tre e s s u ffe re d damage. Thus, tim in g o f co ld appears to be an Im p ortan t fa c to r c o n tr o llin g p la n t s u s c e p t ib ilit y to low tem perature In ju r y . Disease damage Twig d le b a ck , caused by a com bination o f two fungal d is e a s e s , was no ticed a t th e Kellogg Forest p la n ta tio n durin g sunmer, 1975. D r. John H art ( f o r e s t p a th o lo g is t o f Michigan S ta te U n iv e r s ity ) thought th a t the resp o n sib le fungi were D lp lo d ia pinea and Cenanglum ferruginosum . causes dieback o f the c u rre n t season's growth o f hard p in e s . fre q u e n tly serio u s on A u s tria n p in e , but caused l i t t l e ponderosa p in e . D ip lo d ia I t is damage to the Cenanglum. also c a lle d "pruning d is e a s e ", c h a r a c te r is ­ t i c a l l y s ta r ts on low er branches and g ra d u a lly progresses upward. I t is o fte n considered to be a secondary pathogen which causes most damage to tre e s which have been p h y s io lo g ic a lly weakened by adverse w eather 118 c o n d itio n s . The fungus has been asso ciated w ith e x te n s iv e fla g g in g In ju r y on ponderosa pine In the southwest (McKenzie e t a l , 1948) and w ith crown dleback on A u s tria n pine a t Kellogg Forest (W heeler e t a l . 19 76 ). I t has not been a problem on e it h e r A u s tria n o r ponderosa pine a t Russ F o re s t. I t proved d i f f i c u l t to sep arate w in te r in ju r y from disease damage, and even more d i f f i c u l t to recognize damage from th e two fu n g i. Thus, damage estim ates made 1n 1977 were f o r both diseases combined. In g e n e ra l, disease damage was p ro p o rtio n a l to the amount o f w in te r in ju r y . Northern tre e s s u ffe re d much les s (8 to 12% o f tw igs damaged) than the nonhardy types from C a lif o r n ia , A rizona and New Mexico (28 to 30% o f tw igs damaged). Although th e diseases seemed to cause o n ly secondary damage 1n the provenance t e s t p la n ta tio n , th e re was als o minor disease damage e v id e n t 1n o ld e r p la n ta tio n s o f ponderosa pine a t Kellogg F o re s t. These p la n ta tio n s are 39 years o ld and co n tain tre e s th a t are b e lie v e d to be o f n o rth ern o r ig in . There has been no v is ib le w in te r In ju r y 1n these p la n ta tio n s , y e t a few tre e s have s u ffe re d serio us damage and were k i l l e d from what appears to be Cenanglum. Stem s tra ig h tn e s s Ponderosa pine has th e In h e re n t c a p a c ity to grow s t r a ig h t . Crooks and fo rks w i l l d evelop , however, 1 f the te rm in a l bud o r le a d e r 1s damaged o r suppressed. I f such damage o ccu rs, the le a d in g shoot Is re p la ce d by la t e r a l branches and crooks o r fo rk s develop p a rt way up the stem. Depending on the s e v e r ity o f th e damage, crooks may e it h e r be overgrown w ith in a few years o r may p e r s is t r e s u ltin g 1n a perm anently malformed tr e e which Is useless from th e tim b er s ta n d p o in t. 119 Stem fo rk in g Mas Induced by some unknown agent between th e e le v e n th and fo u rte e n th growing season a t both ponderosa p in e p la n t a t io n s . counted th e number o f tre e s w ith fo rk s a t age 17 . I A t t h a t t im e , 36% and 14% o f th e tr e e s were fo rk e d a t K ello gg and Russ F o re s ts , r e s p e c t iv e ly . The geographic p a tte r n in s u s c e p t i b i l it y to fo r k in g was s i m il a r f o r both p la n ta tio n s (T a b le 1 6 ). Trees w ith th e h ig h e s t p ro p e n s ity to fo rk in g were grown from seed c o lle c te d 1n A rizo n a and New M exico , N o rth ern I n t e r i o r and c o a s ta l Oregon. In th e K ello gg and Russ F o re s t p la n t a t io n s , 69% and 30% o f th e A rizo n a and New Mexico tr e e s had f o r k s . A rizo n a and New Mexico tr e e s n o t o n ly had th e h ig h e s t p erc en tag e o f f o r k s , b u t a ls o th e most severe fo rk s (F ig u re 1 2 ) . w i l l be perm anently m alform ed. Most o f th ese tr e e s F ast growing N o rth ern P la te a u tr e e s and tr e e s from southern Utah p aren tag e were In te rm e d ia te 1n f o r k in g . The s h o rte s t t r e e s , from C a l i f o r n i a , n o rth e rn Colorado and U ta h , had th e few e st number o f fo r k s . G e n e r a lly , tre e s above average In h e ig h t a t th e tim e o f le a d e r damage were most prone to f o r k in g , w h ile th e s h o rte s t tre e s were most r e s i s t a n t . Such a p a tte r n suggests t h a t an In s e c t which s e le c ts th e t a l l be th e causal a g e n t. However, s in c e th e t a l l e s t tr e e s from th e N o rth ern P la te a u ecotype s u ffe r e d o n ly In te rm e d ia te f o r k in g , i t d iffe r e n tia l tre e s may 1s l i k e l y t h a t re s is ta n c e among ecotypes a ls o e x is t s . From th e s ta n d p o in t o f tim b e r p ro d u c tio n , tr e e s grown from seed c o lle c te d In th e N o rth ern P la te a u gave th e most s a t is f a c t o r y growth r a t e , co ld h ard in ess and stem s tr a ig h tn e s s a t both p la n t a t io n s . Most crooked tr e e s from th e ecotype would be removed 1n an e a r ly th in n in g , le a v in g more th an enough s t r a i g h t tr e e s to y i e l d a f i n a l q u a lit y saw logs. stand o f h ig h N o rth ern I n t e r i o r t r e e s , w hich a re a ls o f a s t growing 120 TABLE 16 . G en etic d iffe r e n c e s among ecotypes 1n s u s c e p t i b i l it y to stem fo rk in g a t K ellogg and Russ F o re s t p la n ta tio n s . V a r ie ty and Ecotype P ro p o rtio n o f fo rk e d tre e s a t : K ellogg F o re s t Russ F o re s t ■% - - v a r. ponderosa Nor. P la te a u 34 13 C oast. OR 40 20 Nor. CA 16 8 Sou. CA 22 5 Nor. I n t e r i o r 48 22 N or. CO-UT 19 11 Sou. UT-NM 35 15 AZ-NM 69 30 Mean % 36 14 v a r . scopulorum 121 FIGURE 12 S evere stem croo k ca u sin g perm anent damage to a t r e e c New M exico o r i g i n gro w in g a t th e K e llo g g F o re s t p la n ts 123 and c o ld h a rd y , s u ffe r e d to o much fo r k in g a t K e llo g g F o re s t to produce a f u l l y stocked stand o f q u a l i t y tim b e r t r e e s . Stem s tr a ig h tn e s s 1s n o t as Im p o rta n t in ornam ental p la n tin g s as 1n tim b e r p la n t in g s . Most growers p r e f e r tr e e s t h a t a re r e l a t i v e l y f a s t growing and p ic tu re s q u e f o r o rn a m e n ta ls . Thus, s e v e r it y o f crooks o r fo rk s Is a more im p o rta n t c o n s id e ra tio n than th e number o f cro o k s. Stem crooks in most N o rth ern P la te a u and N o rth ern I n t e r i o r tr e e s were m inor and u n im p o rtan t from th e a e s th e tic s ta n d p o in t; th e y co u ld n o t be seen a t d is ta n c e s g r e a t e r than 1 0 -1 5 f t from t r e e s . On th e o th e r hand, tr e e s from A riz o n a and New Mexico had such severe crooks t h a t th e y would be u se le ss as o rn am en tals as w e ll as tim b e r t r e e s . L e a f le n g th There a re la r g e d iff e r e n c e s 1n n ee d le le n g th in ponderosa p in e . Trees from th e c o a s ta l v a r i e t y were u n ifo rm 1n having th e lo n g e s t n eedles re g a rd le s s o f e c o ty p e . 1n le n g th . They had n ee d les ra n g in g from 7 .0 to 8 .0 1n In th e I n t e r i o r v a r i e t y , n o rth e rn seed sources had th e s h o rte s t n e e d le s , ra n g in g from 4 .5 to 5 .5 1n lo n g . Trees from A r iz o n a , New M exico , and so u th ern Utah were in te rm e d ia te In l e a f le n g th having n ee d les from 6 . 0 to 7 .0 1n lo n g . N eedle le n g th s were so u n ifo rm w it h in th e c o a s ta l v a r i e t y and th e i n t e r i o r v a r i e t y e c o ty p e s , t h a t 1 t re p re s e n ts a good c r i t e r i a tify in g ta tio n s . f o r Id e n ­ ponderosa p in e v a r i e t i e s and ecotypes 1n provenance t e s t p la n ­ For In s ta n c e , long n eedled tre e s which a re f a s t growing 1n M ichigan c l e a r l y belong to th e n o rth e rn P la te a u e c o ty p e , whereas s h o rt needled tr e e s w hich a r e f a s t growing can be u n m ls tak ea b ly I d e n t i f i e d as b elo n g in g to th e N o rth e rn I n t e r i o r . L e a f le n g th may be an Im p o rta n t c o n s id e ra tio n f o r th o se w is h in g to grow ponderosa p in e as an o rn a m e n ta l. G e n e r a lly , long n eed led tr e e s a re 124 more p ictu resq u e and are considered more d e s ira b le f o r ornamental o r roadside p la n tin g s . I f th e lo n g est p o s sib le needles a re d e s ire d ,o n e can combine f a s t growth w ith long needles by growing tre e s from seed c o lle c te d In th e Northern P la te a u . Cone production Cone pro du ction was f i r s t n o tice d a t age 13 a t Kellogg and Russ Forests and has been con fin ed alm ost e x c lu s iv e ly to tre e s grown from seed c o lle c te d In th e n o rth ern Rocky M ountains. Of 121 tre e s which produced cones a t age 13 o r 16 , 110 o f them were grown from seed c o lle c te d 1n th e Northern I n t e r i o r o r northern Colorado and U tah. At age 16 a t Kellogg F o re s t, each f r u i t i n g tr e e had an average o f 24 cones. production has been very l i g h t on f a s t growing seed lo ts from the Northern P la te a u . Cone 125 PRACTICAL RECOMMENDATIONS Choosing th e proper seed source 1s th e most Im p ortan t c o n s id e ra tio n f o r those w ishing to grow ponderosa p in e 1n M ichigan. W in te r In ju r y has been so severe on tre e s from some areas th a t seed d e a le rs and nurserymen must s p e c ify ex ac t lo c a tio n s when requ esting seed. In g e n e ra l, the best regions o f seed c o lle c tio n f o r tim b e r o r ornamental p la n tin g s In southern M ichigan a re th e Northern P late au (Oregon, W ashington, B r it is h Colum bia, and western Montana) and Northern I n t e r i o r (c e n tr a l Montana, South D akota, and Nebraska) re g io n s . Trees grown from seed c o lle c te d 1n th e N orthern P lateau have grown fa s t e s t under M ichigan c o n d itio n s and have not been damaged by w in te r c o ld . They a ls o have th e lo n g e st n ee d les , the le a s t m o r ta lit y and a re r e s is ta n t to d is ea se s. most Trees grown from seed c o lle c te d 1n th e Northern I n t e r i o r a re a ls o f a s t grow ing, have sh o rt n eed les, and a re th e most co ld hardy o f a l l tre e s te s te d . However, they seem somewhat prone to fo rk in g and have r e l a t i v e l y slow d iam eter growth. Although the Northern P lateau and Northern I n t e r i o r g e n e ra lly produced the best tre e s f o r M ichigan, th e re were la rg e enough d iffe re n c e s 1n growth r a te among tre e s w ith in these regions to w arran t s e le c tio n o f p a r t ic u la r d e s ira b le stand s. P e rtin e n t In fo rm a tio n on th e lo c a tio n o f th e best stands 1s provided 1n Table 17. S eed lo t Nos. 2102 (W ashington) and 2034 (Oregon) were 17% t a l l e r a t age 16 than some o th e r seed lo ts from the Northern P la te a u . W ith in th e Northern I n t e r i o r , s e e d lo t Nos. 2095 (Montana) and 2180 (Nebraska) were t a l l e s t by 24% a t age 16 1n both Michigan p la n ta tio n s . 126 TABLE 17. Location o f th e two best stands o f ponderosa p ine 1n th e N orthern P lateau and Northern I n t e r i o r regions based on performance in two southern Michigan p la n ta tio n s . S eedlot No. S ta te Ecotype L a titu d e Longitude County E le v a tio n 2102 UA Nor. P lateau 48°46* 118 ° 0 7 ’ Stevens 1400 f t 2034 OR Nor. P lateau 44°16* 120°26 Crook 5000 f t 2095 MT Nor. I n t e r i o r 45°15* 108°28' Horn 4500 f t 2180 NE Nor. I n t e r i o r 4 2 °4 5 ' 9 9 °3 2 ' Rock 2100 f t 127 By using seed c o lle c te d from these s e le c te d a re a s , growers can expect growth ra te s a t le a s t as good as th a t o f o th e r hard pines recommended f o r p la n tin g 1n M ichigan. D r. Donald Dlckmann (Departm ent o f F o re s try , Michigan S ta te U n iv e r s ity ) made growth measurements 1n fo u r 39 y e a r o ld hard p ine p la n ta tio n s o f unknown seed o r ig in a t Kellogg F o re s t. The re s u lts a re ta b u la te d below. Ponderosa pin e was comparable In growth r a te to th e o th e r th re e pines th a t a re commonly p la n te d as ornam entals 1n southern M ichigan. c h a r a c te r is tic s as w e ll. Ponderosa pine has o th e r d e s ira b le For in s ta n c e , 1 t has lo n g e r needles than Scotch p in e , outgrows red p ine on many southern Michigan s i t e s , and appears to be les s plagued by disease problems than A u s tria n p in e . Ponderosa p ine represents th e best choice o f th e long needled pines f o r ornamental p la n tin g s 1n southern M ichigan. Growth o f dominant tre e s Species H eloht Diam eter ft 1n Ponderosa pine 58 12 .9 Red pine 57 1 0 .8 A u s tria n pine 62 1 2 .3 Scotch pine 67 1 2 .3 Seed source s e le c tio n Is th e most Im p o rtan t but not th e o n ly fa c t o r to co n sider when growing ponderosa pine 1n M ich ig an . To o b ta in best re s u lts good seed q u a li t y , s i t e s e le c tio n t and ca re a f t e r p la n tin g a re necessary. I f p la n te d on good s ite s and given good I n i t i a l weed c o n tr o l, 128 tre e s grown from seed c o lle c te d in th e N orthern P la te a u w i l l become e x c e lle n t ornam ental o r f o r e s t p la n tin g s in southern M ich ig an . CHAPTER 7 SUMMARY A rangewlde provenance t e s t o f ponderosa p in e was e s ta b lis h e d 1n 1960 and In c lu d e s two r e p lic a t e d p la n ta tio n s 1n southern M ich ig an . From 1975 to 1977 g e n e tic v a r ia t io n in s e v e ra l aspects o f co ld h ard iness and o th e r eco n o m ically Im p o rta n t t r a i t s was s tu d ie d . F o lia g e samples were c o lle c te d from 30 s e e d lo ts on 17 d i f f e r e n t d ates from O cto b e r, 1975 to Jan u ary, 1977. F re e zin g te s ts were perform ed on needles and tis s u e damage was assessed using e l e c t r i c a l c o n d u c tiv ity . C r i t i c a l te m p e ra tu re s , d e fin e d as th e h ig h e s t tem p eratu re a t which c o ld damage could be d e te c te d , were determ ined f o r each s e e d lo t. f o r computing such tem peratures 1s d e s c rib e d . p e rc e n t f o l i a r m o istu re c o n te n t was d eterm in ed . w in te r In j u r y were made d u rin g s e v e ra l y e a rs . A procedure On s ix a d d itio n a l dates F ie ld o b s e rv a tio n s o f O ther t r a i t s measured were tim e o f le a f in g o u t, f o l i a r d ry in g r a t e from e x c is e d tw ig s , h e ig h t, and s u s c e p t i b i l it y to two fu ng al d is e a s e s . Trees grown from seed c o lle c te d 1n B r it i s h Colum bia, W ashington, Montana, and Nebraska a c c lim a te d to c o ld f a s t e s t , had th e lo w est c r itic a l tem peratures In m id w in te r ( - 4 0 to - 4 7 ° C ) , s u ffe re d l i t t l e or no co ld o r d is ea se damage, le a fe d o u t e a r l i e s t , had r e l a t i v e l y low f o l i a r m o istu re and slow d ry in g ra te s and were among th e t a l l e s t tre e s a t age 16 (averaged 2 0 .5 f t t a l l ) . Trees from n o rth e rn Colorado and Utah were 129 130 s im ila r 1n s e v e ra l re sp ec ts b u t were o n ly 14-15 f t t a l l a t age 16. Trees grown from seed c o lle c te d 1n C a lif o r n ia a c c lim a te d to c o ld s lo w e s t, had the h ig h e s t c r i t i c a l tem peratures 1n m id w in te r (- 2 2 to - 2 4 ° C ), s u ffe re d severe c o ld and d isease damage, le a fe d out l a t e s t , had high f o l i a r m o is tu re , and f a s t d ry in g r a t e s , and were among th e s h o rte s t tre e s a t age 16 (averaged 14 f t t a l l ) . Trees grown from seed c o lle c te d In A rizo n a and New Mexico had c r i t i c a l tem peratures o f - 3 2 °C , were 1 6 .5 f t t a l l a t age 1 6 , s u ffe re d severe d isease damage, had r e l a t i v e l y slow f o l i a r d ry in g r a t e s , and were In te rm e d ia te 1n c o ld damage, tim e o f le a f in g o u t and f o l i a r m o istu re c o n te n t. C a lif o r n ia tre e s s u ffe re d severe c o ld damage most years because th ey d id n o t ach ieve a s u f f i c i e n t depth o f h ard iness to w ith s ta n d M ichigan w in te r s . In c o n tr a s t, A riz o n a , New M exico, and c o a s ta l Oregon tre e s were s u f f i c i e n t l y hardy 1n m id w in te r to avo id co ld damage. However, they s u ffe re d needle In ju r y in ye ars when low tem peratures o ccurred 1n e a r ly w in t e r , b e fo re th ey a tta in e d maximum h a rd in e s s . Trees from n o rth e rn o r ig in s avoided damage because th e y a c c lim a te d to co ld q u ic k ly and became very hardy 1n m id w in te r. W in te r d e s ic c a tio n was considered as a p o s s ib le source o f w in te r In ju r y 1n ponderosa p in e . However, th e r e la t io n s h ip between f o l i a r d ry in g ra te s and w in te r In ju r y was not s tro n g . Trees from Washington and B r it is h Columbia lo s t w a te r more r a p id ly In w in te r than tre e s from A rizo n a and New Mexico b u t s u ffe re d no c o ld damage. C oastal Oregon tre e s d rie d o u t th e f a s t e s t , but s u ffe re d le s s c o ld damage than C a lif o r n ia o r A rizo n a t r e e s . Thus, I t appeared th a t d e s ic c a tio n was le s s Im p o rta n t than c o ld tem p eratu re In causing damage to ponderosa p in e . 131 Time o f le a fin g out appeared to be re la te d to cold hardening and dehardening. Trees from Washington, B r it is h Columbia, Montana, and Colorado hardened to cold fa s te s t 1n f a l l , dehardened most r a p id ly 1n l a t e w in te r , and le a fe d out 10-14 days e a r l i e r than tre e s from southern o r ig in s . D esp ite d iffe re n c e s In le a f in g out phenology, sp rin g f r o s t damage was not a problem in ponderosa p in e . F o lia r m oisture co n ten t v a rie d seaso n ally as w e ll as among s e e d lo ts , decreasing by 15-16% from summer to w in te r . In g e n e ra l, tre e s w ith high m o istu re co n ten t were most s u s c e p tib le to cold damage. This re la tio n s h ip seemed to hold from summer to w in te r and als o from n o rth to south w ith in the sp e c ie s . A p p a re n tly , tre e s w ith high f o l i a r m oisture co n ten t had more I n t r a c e l l u l a r w ate r and thus more w ate r to fre e z e and cause damage. W in ter In ju r y had an e f f e c t on growth r a te and age-age h e ig h t re la tio n s h ip s 1n ponderosa p in e . Trees grown from seed c o lle c te d In C a lif o r n ia , A riz o n a , and New Mexico were t a l l e s t a t e a r ly ages, but lo s t t h e i r growth s u p e r io r ity because o f repeated w in te r In ju r y . By age 16, hardy tre e s from B r it is h Columbia, Washington, Montana, and Nebraska were t a l l e s t , A rizona and New Mexico tre e s were averag e, and C a lifo r n ia tre e s were s h o rte s t. Repeated w in te r In ju r y to southern tr e e s , a ls o re s u lte d In an in crease 1n the magnitude o f h e ig h t d iffe re n c e s among ecotypes from age fo u r to e ig h t . E rro r variances decreased g ra d u a lly w ith age as average growth r a te In c re a s e d , but were a p p a re n tly u n a ffe c te d by w in te r In ju r y . S u s c e p t ib ilit y to damage from two fungal diseases appeared secondary to w in te r In ju r y . Trees which were p h y s io lo g ic a lly weakened by repeated cold damage s u ffe re d the most tw ig dleback from d is e a s e . s u ffe re d l i t t l e Trees which o r no cold damage were le a s t a ffe c te d by d is ea se . 132 O th er t r a i t s s tu d ie d In c lu d ed m o r t a lit y l e a f le n g th , cone p ro d u c tio n , stem t a p e r , d ia m e te r g ro w th , and In c id e n c e o f stem fo r k s . Trees grown from seed c o lle c te d 1n th e N orthern P la te a u (O regon, W ashington, and B r it is h Colum bia) were most d e s ir a b le In a l l re s p e c ts . In a d d itio n to being th e t a l l e s t and among th e most co ld h a rd y , they had th e la r g e s t diam eters ( 8 .5 1n a t age 1 6 ) , th e le a s t m o r t a li t y , th e lo n g e s t needles ( 7 .5 to 8 .0 In lo n g ), th e most c y lin d r ic a l boles and s u ffe re d o n ly a moderate amount o f fo r k in g . Trees grown from seed c o lle c te d in th e N orthern P la te a u a re recommended f o r f o r e s t and ornamental p la n tin g s in southern M ich ig an . LITERATURE CITED A c k le y , W. B. (1 9 5 4 ). Seasonal and d iu rn a l changes In th e w ate r contents and w ate r d e f i c i t s o f B a r t l e t t pear le a v e s . P la n t P h y s io l. 2 9 :4 4 5 -4 4 8 . A ld en , J . and R. K. Hermann (1 9 7 1 ). Aspects o f the cold hardiness mechanism 1n p la n ts . B ot. Rev. 3 7 :3 7 -1 4 2 . B 1ttenbender, H. C. and G. S. Howell (1 9 7 5 ). In te ra c tio n s o f tem perature and m oisture co n ten t on sp rin g d e -a c c lim a tio n o f flo w e r buds o f hlghbush b lu e b e rry . Can. J . P la n t Sc1. 5 5 :4 4 7 -4 5 2 . B la z ic h , R. A .; D. R. E v e rt; and D. E. Bee (1 9 7 4 ). Comparison o f th re e methods o f measuring w in te r hardiness o f in te rn o d a l stems o f F o rs y th la in te rm e d ia 'Lynwood1. J . Amer. Soc. H o rt. S c i. 9 9 (3 ):2 1 1 - 2 lT ! B r it t e n , R. J . and E. H. Davidson (1 9 6 9 ). Gene re g u la tio n f o r h ig h e r c e l ls : a th e o ry . S c i. 1 6 5 :3 4 9 -3 5 7 . Burke, M. J . ; R. G. B rya n t; and C. J . W eiser (1 9 7 4 ). N u clear magnetic resonance o f w ate r 1n co ld a c c lim a tin g re d o s le r dogwood stems. P la n t P h y s io l. 5 4 :3 9 2 -3 9 8 . Burke, N. J . ; L. V. Gusta; H. A. Quaimte; C. J . W eiser; and P. H. LI (1 9 7 6 ). F reezing and in ju r y In p la n ts . Ann. Rev. P la n t P h y s io l. 2 7 :5 0 7 -5 2 8 . Callaham , R. Z. and A. A. Hasel (1 9 6 1 ). Plnus ponderosa - h e ig h t growth o f w in d -p o llIn a te d pro genies. S ilv a e Genet. 1 0 :3 3 -4 2 . Callaham , R. Z. and J . W. D u ff1e ld (1 9 6 2 ). H eights o f s e le c te d ponderosa p in e seed lin g s d urin g 20 y e a rs . Proc. F o r. Gen. Workshop, Macon, G eorgia. 10 -1 3 . Chen, P; P. H. L1; and C. J . W eiser (1 9 7 5 ). In d u c tio n o f f r o s t hardiness 1n re d -o $ 1 e r dogwood stems by w ate r s tr e s s . H o rt. S c i. 1 0 :3 7 2 -3 7 4 . C onkle, M. T . ; W. J . L ibby; and J . L. Hamrick (1 9 6 7 ). W in te r In ju r y among w h ite f i r seed lin g s . . . unusual p a tte rn 1n seed source stu d y. P a c if ic SW For and Range E xpt. S t a . , USFS, Res. Note PSW-138. 7 pp. Conkle, M. T. (1 9 7 3 ). Growth data f o r 29 years from the C a lif o r n ia e le v a tlo n a l tra n s e c t study o f ponderosa p in e . F o r. Sc1. 1 9 :3 1 -3 9 . 133 134 Daday, H. (1 9 6 4 ). G enetic r e la tio n s h ip s between cold hardiness and growth a t low tem perature 1n Medicago s a t iv a . Hered. 1 9 :1 7 3 -1 7 9 . Daday, H. and C. G. Greenham (1 9 6 9 ). G enetic s tu d ie s on cold hardiness in Medicago s a t iv a . J . o r Hered. 51 :2 4 9 -2 5 5 . Dantuma, G. R. (1 9 5 8 ). Breeding wheat and b a rle y f o r w in te r h ard iness. Euphytlca 7 :1 8 9 -1 9 5 . Davidson, W. H. (1 9 7 7 ). Performance o f ponderosa p ine on bituminous mine s p o ils in Pennsylvania. USDA For. Serv. Res. Paper NE-358. 6 pp. DeHayes, D. H. and J . W. W right (1 9 7 6 ). Improved s tr a in s o f D o u g la s -fir f o r th e n o rth e as te rn U nited S ta te s . Proc. T w e lfth Lake S ta te s For. Tree Improvement Conf. , August, 1975. Tech. Rep. N C -26 :6 4-7 3. D e x te r, S. T . ; W. E.Tottingham ; and L. F. Graber (1 9 3 0 ). P re lim in a ry re s u lts in measuring th e hardiness o f p la n ts . P la n t P h y s io l. 5 :2 1 5 -2 2 3 . Dorsey, M. J . and J. Bushnell (1 9 2 5 ). Plum in v e s tig a tio n s I I . The In h e rita n c e o f hard iness. U n iv. M1nn. Tech. B u ll. 32:34 pp. E1che, V. (1 9 6 6 ). Cold damage and p la n t m o r t a lity In exp erim en tal provenance p la n ta tio n s w ith Scots p ine in n orthern Sweden. S tu d la F o re s ta l1 a S u eclca, SkoghSgskolan, Stockholm :1 -2 1 8 . Eunus, A. M .; L. P. Johnson; and R. Akeel (1 9 6 2 ). In h e rita n c e o f w in te r hardiness In an eig h teen p aren t d ia l l e i cross 1n b a rle y . Can. J . Gen. and C y to l. 4 :3 5 6 -3 7 6 . E v e rt, D. R. (1 9 6 7 ). The physiology o f cold hardiness Proc. I n t l . Shade Tree C o n f.:4 0 -5 0 . 1n tr e e s . 43rd F l i n t , H. L. (1 9 7 2 ). Cold hardiness o f tw igs o f Quercus rubra as a fu n c tio n o f geographic o r ig in . Ecology. 53:1163-11^0. F l i n t , H. L . ; B. R. Boyce; and D. J . B e a ttie (1 9 6 7 ). Index o f in ju r y a useful expression o f fre e z in g In ju r y to p la n t tis s u e s as determ ined by the e l e c t r o l y t i c method. Can. J . P la n t Sc1. 4 7 :2 2 9 -2 3 0 . Fuchlgaml, L. H .; C. J . W eiser; and D. R. E v ert (1 9 7 1 a ). In d u c tio n o f cold a c c lim a tio n In Cornus s t o lo n lf e r a . P la n t P h y s io l. 4 7 :9 8 -1 0 3 . Fuchlgam l, L. H .; C. J . W eiser; and D. R. E v e rt (1 9 7 1 b ). hardiness prom otor. P la n t P h y s io l. 4 7 :1 6 4 -1 6 7 . A tra n s lo c a ta b le G ary, H. L. (1 9 7 1 ). Seasonal and d iu rn a l changes in m oisture con ten ts and w ater d e f i c i t s o f Engelmann spruce n eed les. B ot. Gaz. 1 3 2 ( 4 ) :327-332. G erhold, H. D. (1 9 6 6 ). Growth and w in te r In ju r y 1n D o u g la s -f1 r 1n a th re e -y e a r provenance dem onstration. Proc. from 13th N o rth e a s t. For. Tree Improv. C o n f., August, 1 9 6 5 :5 0 -5 2 . 135 Glerum, C. (1 9 7 3 ). Annual trends in f r o s t hardiness and e l e c t r i c a l Impedance f o r seven co n ifero u s sp ecies. Can. J . P la n t S c i. 53 :8 8 1 -8 8 9 . Hanover, J . W. (1 9 6 3 ). Geographic v a r ia tio n in ponderosa p ine le a d e r growth. For. S c i. 9 :8 6 -9 5 . Heber, U. (1 9 6 8 ). Freezing in ju r y in r e la t io n to loss o f enzyme a c t i v i t i e s and p ro te c tio n a g a in s t fr e e z in g . C ry o b io l. 5 :1 8 8 -2 0 2 . H o w ell, G. S. and C. J . Weiser (1 9 7 0 a ). The environm ental c o n tro l o f cold a c c lim a tio n 1n ap p le . P la n t P h y s io l. 4 5 :3 9 0 -3 9 4 . H o w ell, G. S. and C. J. W eiser (1 9 7 0 b ). F lu c tu a tio n s in the cold re s is ta n c e o f apple tw igs during spring dehardening. J . Amer. Soc. H o rt. Sc1. 9 5 (2 ):1 9 0 -1 9 2 . Ir v in g , R. M. and F. 0 . Lanphear (1 9 6 7 a ). source o f co ld hardiness in h ib it o r s . The long day l e a f as a P la n t P h y s io l. 4 2 :1 3 8 4 -1 3 8 8 . Ir v in g , R. M. and F. 0 . Lanphear (1 9 6 7 b ). Environmental c o n tro l o f cold hardiness in woody p la n ts . P la n t P h y s io l. 42 :1 1 9 1 -1 1 9 6 . Ir v in g , R. M. and F. 0 . Lanphear (1 9 6 8 ). R egu lation o f cold hardiness Acer negundo. P la n t P h y s io l. 4 3 :9 -1 3 . I r v in g , R. M. (1 9 6 9 ). C h a ra c te riz a tio n and r o le o f an endogenous I n h i b i t o r In the In d u c tio n o f cold hardiness 1n Acer negundo. P la n t P h y s io l. 4 4 :8 0 1 -8 0 5 . Kempff, G. (1 9 2 8 ). Non-1nd1genous w estern y e llo w pine p la n ta tio n s 1n n orthern Idaho. Northwest S c i. 2 :5 4 -5 8 . K e s s le r, B. and J. F ra n k -T is h e l (1 9 6 2 ). Dehydration induced synth esis o f n u c le ic acids and changing o f composition o f rib o n u c le ic a c id s ; a p o s s ib le p r o te c tiv e re a c tio n In drought r e s is ta n t p la n ts . N ature. 19 6:5 42 -54 3. K inbacher, E. J . (1 9 6 2 ). E ffe c t o f seed source on th e co ld re s is ta n c e o f pre-emerged Dubois w in te r o a t s e e d lin g s . Crop. Sc1. 2 :9 1 -9 3 . K ozlow ski, T. T. and J . J . Clausen (1 9 6 5 ). Changes 1n m oisture contents and dry w eights o f buds and leaves o f fo r e s t tr e e s . B ot. Gaz. 1 2 6 :2 0 -2 6 . Kung, F. H. and J . W. W right (1 9 7 2 ). P a r a lle l and d iv e rg e n t e v o lu tio n in Rocky Mountain tr e e s . S llv a e Genet. 2 1 :7 7 -8 5 . LaFarge, T. (1 9 7 1 ). In h e rita n c e and e v o lu tio n o f stem form 1n th re e n o rth e rn pine sp ecies. Ph.D. th e s is , Michigan S ta te U n iv e r s ity . 333 pp. 136 L a n g le t, 0 . (1 9 3 6 ). S tu d le r o ve r t a lle n s fy s io lo g ls k a v a r l a b l l i t e t och dess samband med k lim a t e t . E t t b id ra g t i l l kannedomenom t a lle n s e k o ty p e r. Stockholm: S taten s S k o g s fo rs o k s a n s ta tt Meddelanden. 2 9 :2 1 9 -4 2 0 . Law, C. N. and G. Jenkins (1 9 7 0 ). A g e n e tic study o f c o ld re s is ta n c e In w heat. G e n e tlc a l Res. 1 5 :1 9 7 -2 0 8 . L e s te r. D. T . (1 9 7 0 ). V a r ia tio n in s e e d lin g development o f balsam f i r a s s o c ia te d w ith seed o r ig in . Can. J . B o t. 4 8 :1 0 9 3 -1 0 9 7 . L e v itt, J. (1 9 5 6 ). The Hardiness o f P la n ts . 278 pp. Academic L e v itt, J. (1 9 5 9 ). E ffe c ts o f a r t i f i c i a l in c re as es in f r o s t h a rd in e s s . P la n t P h y s io l. 3 4 :4 0 1 -4 0 2 . P ress. New York. sugar co n te n t on L e v itt, J . (1 9 6 2 ). A s u lf y h y d r y l- d ls u lf id e hypothesis o f f r o s t In ju r y and re s is ta n c e in p la n ts . J . o f T h e o re t. B io l. 3 :3 5 5 -3 9 1 . L e v itt, J. (1 9 6 8 ). The e f f e c t o f s u lfy h y d ry l reag en ts on fr e e z in g o f hardened and unhardened cabbage c e l l s . C ry o b io l. 5 :2 7 8 -2 8 0 . L i , P. H .; C. J . W eiser; and R. B. van Huystee (1 9 6 5 ). Changes in m e ta b o lite s o f r e d -o s ie r dogwood d urin g cold a c c lim a tio n . Proc. Am. Soc. H o rt. Sc1. 8 6 :7 2 3 -7 3 0 . L i , P. H. and C. J . W eiser (1 9 6 8 ). M etabolism o f n u c le ic a c id s in apple tw igs d u rin g c o ld a c c lim a tio n . A b s tr. from th e F i f t h Ann. M eeting Soc. f o r C ry o b io lo g y , C ry o b io l. 4 :2 7 4 . L i , P. and C. J . W eiser (1 9 6 9 ). In c re a s in g co ld re s is ta n c e o f woody stems by a r t i f i c i a l d e h y d ra tio n . C ry o b io l. 6 :2 7 0 . Maronek, D. M. and H. L. F l i n t (1 9 7 4 ). Cold h ard iness o f needles o f Plnus strobus as a fu n c tio n o f qeoqraphlc source. F or. S c i. 2 0 :T $ 5 -U 1 . M a r s h a ll, H. G. (1 9 6 9 ). E f f e c t o f seed source and s e e d lin g age on th e fr e e z in g re s is ta n c e o f w in te r o a ts . Crop. Sc1. 9 :2 0 2 -2 0 5 . McGown, B. H . ; G. E. Beck; and T . C. H a ll (1 9 6 9 ). The hardiness response o f th re e clones o f Dianthus and the corresponding com­ plem ent o f p ero xid ase 1soenzymes J . Am. Soc. H o rt. S c i. 9 4 :6 9 1 -6 9 3 . McKenzie, H. L . ; L. S. G i l l ; and D. E. E l l i s (1 9 4 8 ). The P re s c o tt s c ale (Matsucoccus v e x illo ru m ) and a s s o c ia te d organisms t h a t cause fla g g in g In ju r y to ponderosa p in e 1n th e southw est. J . A gr. Res. 7 6 :3 3 -5 1 . M cKenzie, J . S .; C. J . W eiser; and P. H. L i (1 9 7 4 a ). Changes in w a te r r e la t io n s o f Cornus s t o lo n lf e r a d u rin g c o ld a c c lim a tio n . J. Amer. Soc. H o rt. S c i. 9 9 :2 2 3 -2 2 8 . 137 M cKenzie, J . S .; C. J . W eiser; E. J . Stadelm ann; and M. J . Burke (1 9 7 4 b ). W ater p e rm e a b ility and co ld hardiness o f c o rte x c e l ls In Cornus s t o lo n if e r a — a p re lim in a ry r e p o r t. P la n t P h y s io l. 5 4 :1 7 3 -1 7 6 . McLemore, B. F . ; A. B. Crow; and P. C. Wakely (1 9 6 1 ). Dry m a tte r c o n te n t o f l o b l o l l y p in e needles appears u n re la te d to geographic seed source. For. S c l. 7 :3 7 3 -3 7 5 . M e tc a lf, E. L . ; C. E. Cress; C. R. O lie n ; and E. H. Everson (1 9 7 0 ). R e la tio n s h ip between crown m o istu re c o n te n t and k i l l i n g tem perature f o r th re e wheat and th re e b a rle y c u l t lv a r s . Crop. Sc1. 1 0 :3 6 2 -3 6 5 . Moore, A. M. (1 9 4 4 ). Pinus ponderosa Douglas, comparison o f va rio u s types grown e x p e rim e n ta lly on Kaingaroa S ta te F o re s t. New Zealand J . F o r. 5 :4 2 -4 7 . Nanson, A. (1 9 6 8 ). La v a le u r des te s ts precoces dans la s e le c tio n des a rb re s f o r e s t l e r s , en p a r t l c u l i e r au p o in t de vue de la c ro ls s a n c e . Ph. D. th e s is . F a c u lte 1 Des Sciences Agronomlques de L 'e t a t . Gembloux, France. Namkoong, G .; R. A. U sanls; and R. R. S i l e r (1 9 7 2 ). A g e -re la te d v a r ia t io n 1n g e n e tic c o n tro l o f h e ig h t growth In D o u g la s -f1 r. Theor. A p p l. Genet. 4 2 :1 5 1 -1 5 9 . Namkoong, G. and M. T . Conkle (1 9 7 6 ). Time tre n d s in g e n e tic c o n tro l o f h e ig h t growth In ponderosa p in e . F o r. S c l. 2 2 :2 -1 2 . N le n s ta e d t, H. (1 9 5 8 ). H e ig h t growth is In d ic a t iv e o f th e r e l a t i v e f r o s t re s is ta n c e o f hemlock seed sources. Lake S ta te s F or. E x p t. S t a . , USFS, Tech. Notes No. 525. 2 pp. N ie n s ta e d t, H. and J . P. King (1 9 7 0 ). Breeding f o r delayed budbreak in Picea glauca (Moench) Voss — p o te n tia l f r o s t avoidance and growth g a in s . Second FA0/IUFR0 World C o n s u lt. F o res t T ree Breed. (Wash. DC) 1969, No. F O -F T B -6 9 -2 /5 . 16 pp. O lie n , C. R. (1 9 6 7 ). F ree zin g s tre s s e s and s u r v iv a l. P h y s io l. 1 8 :3 8 7 -4 0 8 . Ann. Rev. P la n t Omran, A. 0 . ; I . M. A tk in s ; and E. C. G ilm ore (1 9 6 8 ). H e r i t a b l H t y o f co ld h ard iness In f l a x (L ln u m ). Crop Sc1. 8 :7 1 6 -7 1 8 . P a rk e r, J . (1 9 5 3 ). C r ite r ia o f l i f e : Amer. Sc1. 4 1 :6 1 4 -6 1 8 . some methods o f m easuring v i a b i l i t y . P a rk e r, J . (1 9 5 7 ). Seasonal changes 1n some chemical and p h y sica l p ro p e rtie s o f l i v i n g c e l ls o f Pinus Ponderosa and t h e i r r e la t io n to fr e e z in g re s is ta n c e . Protoplasm s. 4 8 :1 4 7 -1 6 3 . P a rk e r, J . (1 9 5 9 ). Seasonal v a r ia t io n in sugars o f c o n ife rs w ith some o b s erva tio n s on co ld re s is ta n c e . F or. S c l. 5 :5 6 -6 3 . P a rk e r, J . (1 9 6 3 ). Cold re s is ta n c e in woody p la n ts . B ot. Rev. 2 9 :1 2 4 -2 0 1 . 138 P a u li, A. W. and A. C. Zech (1 9 6 4 ). Cold h ard iness and amino a c id co n te n t o f w a te r s o lu b le p ro te in s In crowns o f w in te r w heat. Crop. S c l. 4 :2 0 4 -2 0 6 . P h a rls , R. P. and W. K. F e r r e ll (1 9 6 6 ). D iffe re n c e s In drought re s is ta n c e between c o a s ta l and In la n d sources o f D o u g la s -f1 r. Can. J . B o t. 4 4 :1 6 5 1 -1 6 5 9 . P h a rls , R. P. (1 9 6 7 ). Seasonal flu c t u a t io n s in th e f o lia g e m o istu re c o n te n t o f w e ll-w a te re d c o n ife r s . B ot. Gaz. 1 2 8 :1 7 9 -1 8 5 . Pomeroy, M. K .; D. S im onovitch; and F. Wightman (1 9 7 0 ). Seasonal biochem ical changes 1n th e l i v i n g bark and needles o f red p in e ( Pinus re s in o s a ) in r e la t io n to a d a p ta tio n to f r e e z in g . Can. J. B ot. 4 6 :9 5 3 -9 6 7 . R e id , D. A. (1 9 6 5 ). W in te r hardiness o f progenies from w in te r x sp rin g b a rle y cro s se s. Crop. S c l. 5 :2 6 3 -2 6 6 . R o b erts , D. W. (1 9 6 7 ). Tem perature c o e f f ic ie n t s o f in v e rta s e from th e lea ve s o f co ld hardened and co ld s u s c e p tib le w heat. Can. J . B ot. 4 5 :1 3 4 7 -1 3 5 7 . R o b erts , D. W. (1 9 6 9 ). A comparison o f th e pero xid ase Isozymes o f wheat p la n ts grown a t 6 and 20 C. Can. J . B o t. 4 7 :2 6 3 -2 6 5 . S a e te r s d a l, L. S. (1 9 6 3 ). The r a te o f d ry in g o f young excised p la n ts o f v a rio u s provenances o f Norway spruce and D o u g la s - flr . Meedelsen f r a V e s tla n d e ts F o rs tU g e F o rs tk s s ta s jo n . 3 8 :8 8 pp. S a k a i, A. (1 9 7 0 ). Mechanism o f d e s ic c a tio n damage o f c o n ife rs w in te r in g In s o il fro z e n a re a s . Ecology. 5 1 (4 ):6 5 7 -6 6 4 . S1m1nov1tch, D. and D. R. B riggs (1 9 5 3 ). The ch em istry o f l iv i n g bark o f th e b la c k lo c u s t tr e e 1n r e la t io n to f r o s t h ard in e ss . IV . E ffe c ts o f rin g in g on tr a n s lo c a t io n , p ro te in s y n th e s is , and th e development o f h ard in e ss . P la n t P h y s io l. 2 8 :1 7 7 -2 0 0 . S1m1nov1tch, D. (1 9 6 3 ). Evidence from In c re a s e 1n r ib o n u c le ic ac id and p r o te in sy n th e s is 1n autumn f o r In c re a s e 1n protoplasm d u rin g th e f r o s t hardening o f b la c k lo c u s t bark c e l l s . Can. J . B ot. 4 1 :1 3 0 1 -1 3 0 8 . Sm lthberg, M. H. and C. J . W eiser (1 9 6 8 ). c lim a t ic races o f r e d - o s ie r dogwood. P a tte rn s o f v a r ia t io n among Ecology. 4 9 :4 9 5 -5 0 5 . Sorenson, R. C. and R. S. M ile s (1 9 7 4 ). D i f f e r e n t i a l f r o s t to le ra n c e o f ponderosa and lo d g ep o le p in e m egasproanglate s t r o b l H . F o r. S c l. 2 0 :3 7 7 -3 7 8 . S q u llla c e , A. E. and R. R. S i l e r (1 9 6 2 ). R a c ia l v a r ia tio n In ponderosa p in e . F o r. Sc1. - Monograph 2:2 7 pp. 139 S t e in e r , K. C. and J . U. W rig h t (1 9 7 4 ). D o u g la s -fir C hristm as tr e e s : V a r ia tio n 1n f r o s t s u s c e p t i b i l it y and tim e o f le a f in g o u t 1n M ich ig an . M1ch. Acad. 7 ( 2 ) :1 8 5 -1 9 0 . S t e in e r , K. C. (1 9 7 5 ). P a tte rn s o f g e n e tic v a r ia tio n w ith in f i f t e e n t r e e sp ecies 1n tim es o f bud b u rs t and flo w e r in g . Ph.D . t h e s is , M ichigan S ta te U n iv e r s ity . 160 pp. Steponkus, P. L. and F. 0 . Lanphear (1 9 6 8 ). The r o le o f l i g h t 1n cold a c c lim a tio n o f Hedera h e lix v a r . T h o rn d ale. P la n t P h y s io l. 4 3 :1 5 1 -1 5 6 . Steponkus, P. L. (1 9 7 1 ). Cold a c c lim a tio n o f Hedera h e !1x v a r. T h o rn d ale. P la n t P h y s io l. 4 7 :1 7 5 -1 8 0 . S te r g lo s , B. G. and G. S. Howell (1 9 7 3 ). E v a lu a tio n o f v i a b i l i t y te s ts f o r c o ld s tres se d p la n ts . J . Amer. Soc. H o rt. Sc1. 9 8 (4 ):3 2 5 -3 3 0 . S t u a r t , N. W. (1 9 3 9 ). Com parative c o ld hardiness o f scion ro o ts from f i f t y ap p le v a r i e t i e s . Proc. Am. Soc. H o rt. S c l. 3 7 :3 3 0 -3 3 4 . S tu s h n o ff, C. (1 9 7 2 ). Breeding and s e le c tio n methods f o r c o ld h ard iness 1n deciduous f r u i t cro p s . H o rt. S c l. 7 :1 0 -1 3 . Suneson, C. A. and H. G. M arsh all Crop S c l. 7 :6 6 7 -6 6 8 . (1 9 6 7 ). Cold re s is ta n c e 1n w ild o a ts . T e lc h , A. H. (1 9 6 8 ). F o l i a r m o istu re c o n te n t as a c r i t e r i o n f o r r e s i s ­ tance to f r o s t and S c le r o d e r r ls canker 1n ja c k p in e . B1-mo. Res. N o tes, Department F o r. Canada. 2 4 (1 ):3 . Tlmmls, R. and J . W o rra ll (1 9 7 5 ). Environm ental c o n tro l o f c o ld a c c lim a tio n 1n D o u g la s -fir d u rin g g e rm in a tio n , a c t iv e g ro w th , and r e s t . Can. J . F o r. Res. 5 :4 6 4 -4 7 7 . Tumanov, I . I . and 0 . K rasavtsev (1 9 5 9 ). Hardening o f n o rth e rn woody p la n ts by tem peratures below z e ro . S o v ie t P la n t P h y s io l. 9 ( 6 ) :6 6 3 -6 7 3 . Tumanov, I . 1 . ; G. V. K u zina; and L. D. K am lkova (1 9 6 4 ). Dormancy and w in te r h ard iness in w h ite b irc h and w h ite a c a c ia . S o c le t P la n t P h y s io l. 1 1 :5 9 2 -6 0 1 . van H uystee, R. B . ; C. J . W eiser; and P. H. Li (1 9 6 5 ). Some p o s tu la te d r e la tio n s h ip s among autumn phenomena In woody p la n ts . N a tu re . 2 0 9 :8 9 -9 0 . van den D rle s s c h e , R. (1 9 6 9 a ). Measurement o f f r o s t h ard in ess 1n tw o -y e a r-o ld D o u g 1as-f1r s e e d lin g s . Can. J . P la n t Sc1. 4 7 :1 5 9 -1 7 2 . van den D rle s s c h e , R. (1 9 6 9 b ). In flu e n c e o f m o istu re s u p p ly , tem p e ra tu re and l i g h t on f r o s t h ard iness changes 1n D o u g la s -fir s e e d lin g s . Can. J . B o t. 4 7 :1 7 6 5 -1 7 7 2 . 140 van den D rlessche. R. (1 9 7 0 ). In flu e n c e o f l i g h t In t e n s it y and photo­ p erio d on f r o s t hardiness development 1n D o u g la s -f1 r s e e d lin g s . Can. J . Bot. 48:2129-2134. van den D rlessche. R. (1 9 7 6 ). P re d ic tio n o f cold hardiness In Douglasf i r seedlings by Index o f In ju r y and c o n d u c tiv ity methods. Can. J . For. Res. 6 :5 1 1 -5 1 5 . Wang, C. W. and R. K. Patee (1 9 7 3 ). Progeny performance o f 271 ponderosa pine p are n ts . A b s tr. from West. For. Gen. Assoc. Symposium. 12 pp. W atkins, R. and L. P. S. Spangelo (1 9 7 0 ). Components o f g e n e tic varian ce f o r p la n t s u rv iv a l and v ig o r o f apple tre e s . Theor. A ppl. Genet. 4 0 :1 9 5 -2 0 3 . Weldman, R. H. (1 9 3 9 ). Evidence o f r a c ia l in flu e n c e In a 2 5 -y e a r t e s t o f ponderosa p in e. J . A g ric . Res. 59 :8 5 5 -8 8 7 . W elser, C. J . (1 9 6 8 ). Endogenous c o n tro l o f cold a c c lim a tio n in woody p la n ts . A b s tr. from th e F if t h Ann. M eeting, Soc. f o r C ry o b lo l. C ry o b lo l. 4 :2 7 7 . W elser, C. J . (1 9 7 0 ). Cold re s is ta n c e and in ju r y in woody p la n ts . S c i. 169:1269-1278. W e lls , 0 . 0 . (1 9 6 2 ). Geographic v a r ia tio n in ponderosa p in e . th e s is , Michigan S ta te U n iv e rs ity . 112 pp. Ph.D. W e lls , 0 . 0 . (1 9 6 4 ). Geographic v a r ia tio n 1n ponderosa p in e . I. The ecotypes and t h e i r d is t r ib u t io n . S ilv a e G en etica. 1 3 :8 9 -1 0 3 . W heeler, N. C .; H. B. K r le b e l; C. H. Lee; R. A. Read; and J . W. W right (1 9 7 6 ). F ifte e n y e a r performance o f European b lack pine 1n provenance te s ts in North C en tral U nited S ta te s . S ilv a e G en etica. 2 5 :1 -6 . W illia m s , B. J . ; N. E. P e l l e t t ; and R. M. K le in (1 9 7 2 ). Phytochrome c o n tro l o f growth cessatio n and I n i t i a t i o n o f cold a c c lim a tio n in woody p la n ts . P la n t P h y s io l. 50 :2 6 2 -2 6 5 . W lln e r, J . (1 9 5 2 ). A Study o f d e s ic c a tio n In r e la t io n to w in te r in ju r y . S c le n t. A gr. 32 :65 1-6 58 . W lln e r, J . (1 9 5 9 ). Note on an e l e c t r o l y t i c procedure f o r d if f e r e n t i a t i n g between f r o s t In ju r y o f ro o ts and shoots In woody p la n ts . Can. J. P la n t Sc1. 3 9 :5 1 2 -5 1 3 . W lln e r, J . (1 9 6 0 ). R e la tiv e and ab s o lu te e l e c t r o l y t i c conductance te s ts f o r f r o s t hardiness o f apple v a r ie t ie s . Can. J . P la n t Sc1. 4 0 :6 3 0 -6 3 7 . W lln e r, J . (1 9 6 5 ). The In flu e n c e o f m aternal p aren t on f r o s t hardiness o f apple progenies. Can. J . P la n t S c l. 4 5 :6 7 -7 1 . W rig h t, J . W. and H. I . Baldwin (1 9 5 7 ). The 1938 In te r n a tio n a l Union Scotch pine te s ts 1n New Hampshire. S ilv a e G en etica. 6 :2 -1 4 . 141 W rig h t, J . W .; W. A. Lemmlen; and J . N. B rig h t (1 9 6 9 ). E a rly growth o f ponderosa p in e ecotypes 1n M ich ig an . F o r. Sc1. 1 5 :1 2 1 -1 2 9 . Young, R. H. (1 9 6 1 ). In flu e n c e o f d a y le n g th , l i g h t I n t e n s it y , and tem p eratu re on g ro w th , dormancy, and c o ld h ard in ess o f red blush g r a p e fr u its tr e e s . Proc. Am. Soc. H o rt. S c l. 7 8 :1 7 4 -1 8 0 . Zehnder, L. R. and F. 0 . Lanphear (1 9 6 6 ). The In flu e n c e o f tem p e ra tu re and l i g h t on th e co ld h ard iness o f Taxus c u s p ld a ta . P roc. Am. H o rt. Soc. 8 :7 0 6 -7 1 3 .