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ABSTRACT 

URBANIZATION AND ITS CARBON CONSEQUENCES IN 
THE YANGTZE RIVER DELTA, SOUTHEAST CHINA 

By 
Ying Tang 

China’s southeast coastal areas have undergone rapid expansion over the past few decades 

due to increasing population and economic growth. Although there are many studies focusing on 

the urban growth in this part of China, there is very little work that examines the carbon 

consequences of such growth. This research is concerned with the gross primary production 

change associated with urbanization process. 

In this study, MODIS Gross Primary Productivity (GPP) product, along with population, 

built-up area, and GDP data for 16 regions in the Yangtze River Delta were used to establish an 

empirical model which examined and quantified the relationship of urbanization and GPP change 

from 2003 to 2008. Also, Landsat remote sensing data calibrated with biophysical parameters 

were used to assess GPP using the light use efficiency (LUE) method for the Hangzhou city from 

2001 to 2010. Additionally, the method of using vegetation phenology curves and climate 

indicators to forecast or backcast EVI was assessed.  

The empirical model results indicate that there is a significant positive association of a 

one-percent increase in built-up area ratio and a 15.4-percent decrease in annual total GPP for the 

Yangtze River Delta and capitals have a higher GPP given other things being equal. The primary 

cause of decreasing GPP is urban expansion, which encroached on large areas of surrounding 

cropland. Moreover, the estimation of GPP using phenology curves contains great uncertainty. 

The factors that strongly affect vegetation growth should be identified for a better estimation. 
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1 Introduction 

During the past sixty years, humankind has experienced dramatic population growth from 

2.5 billion to 6.7 billion. About sixty-three percent of this gain took place in urban areas, 

especially in developing countries. Over the past three decades, China has experienced rapid 

development from an economic standpoint. With more than 19 percent of the world’s population 

and the world’s second largest Gross Domestic Product (GDP), China’s land use and land cover 

(LULC) change will certainly have effects across national borders and deserves global attention.  

Human activities change the landscape to a great extent which causes a significant influence 

on carbon cycling. This research aims to quantitatively examine the relationship between 

urbanization and Gross Primary Production (GPP) change in one of China’s most economically 

vigorous regions – the Yangtze River Delta.  

Moreover, different approaches of estimating GPP are compared and a new method of using 

phenology curves to estimate GPP in a data-sparse environment is established. For this part of 

study, the city of Hangzhou was chosen as an example study site.  

The objectives of this study are threefold: 1) establish an empirical model to assess the 

relationship between GPP change and urbanization in the Yangtze River Delta; 2) derive 

higher-resolution GPP in the Hangzhou city using light-use efficiency model, and compare 

derived GPP to MODIS GPP; 3) establish the relationship between Vegetation Index (VI) and 

climate indicators to facilitate VI estimation in a data-sparse environment.  

The remainder of Chapter 1 discusses the background of this study and its main purpose. 

Chapter 2 concentrates on the review of the development of studies on urbanization and GPP, as 
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well as their relationship. Chapter 3 provides a brief introduction of the study region: the Yangtze 

River Delta and Hangzhou City. Chapter 4 has three subsections. The first section focuses on 

urbanization and its carbon consequences for the entire Yangtze River Delta. An empirical model 

is constructed with socioeconomic data and GPP value derived from MODerate resolution 

Imaging Spectroradiometer (MODIS) GPP product. The second section aims to look at GPP and 

LULC change in the Hangzhou city. GPP is derived using Light-Use Efficiency (LUE) method 

with Landsat images and MODIS Enhanced Vegetation Index (EVI) products. Two algorithms 

for GPP calculation are compared and analyzed. For the third section, the main purpose is to 

develop and implement an algorithm to forecast or backcast EVI in the Yangtze River Delta 

based on vegetation phenology and climate indicators from 2001 to 2010. The Hangzhou City 

again is used as an example. The research results and discussion are presented in Chapter 5. 

Chapter 6 summarizes this research and discusses directions extending from the presented study. 

1.1 Background 

When the People’s Republic of China was formally established in 1949, there were only 132 

cities in the country. This number increased to 655
1
 by the end of 2008, indicating China’s rapid 

urbanization rate. The urban population reached 0.62 billion with a national urbanization rate of 

46.6 percent by 2009. From 2000 to 2009, urban population increased by 0.163 billion. A report 

released by the Chinese Academy of Social Sciences in 2010 predicted that the urban population 

will reach 52% in 2015 and swell to 65% by 2030. In 2010, China’s GDP reached 5,878.6 billion 

dollars and replaced Japan as the world’s second-largest economy. Along with such growth, 

                                                 
1 Based on reports from National Bureau of Statistics of China. 
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China’s land use and land cover have also undergone dramatic change, southeastern China in 

particular.  

 Urbanization has great impacts on carbon cycling. In developing countries, economic growth 

attracts young people who live in rural areas to quit agricultural activities and move to cities. 

Rapid population growth requires new residential areas. With the development of industry, more 

commercial space is needed. As a result of these processes, cities expand their boundaries by 

encroaching upon surrounding lands occupied by agricultural activities and natural vegetation. 

On the other hand, economic growth may generate greater demand in luxury goods such as meat 

(Sicular, 1985), which requires more land to engage in agricultural activities or more intense use 

of existing agricultural land. Urbanization also has great influence on regional land-atmosphere 

interaction, energy balance, and regional climate. Urban heat island effect changes the 

surrounding area’s temperature and atmosphere (Bounoua et al., 2009). Humans alter 

atmospheric composition by burning fossil fuel. Urban impervious materials cannot hold water 

like soil; they alter the water cycle greatly. All those processes have direct or indirect influences 

on the carbon cycle. 

The most basic needs of food, fiber, and fuel which humankind survive upon are all supplied 

by biological productivity. Consequently, the dynamics of carbon cycling of terrestrial ecosystem 

call for great attention globally. Urbanization process can affect carbon cycling positively or 

negatively. By seeking the linkage between urbanization and biological productivity change, 

insights will be provided for planning and natural resource management for both short-term and 

long-term. 



4 

 The rate at which plants convert light energy during photosynthesis process is termed 

primary production. There are two types of primary production used to describe the amount of 

the fixed carbon by vegetation. Gross primary production is the sum of all the energy converted, 

which indicates the uptake of carbon from the atmosphere; net primary production (NPP) equals 

GPP less the energy loss during plant respiration, which is associated with the net flux of carbon 

between vegetation and atmosphere (Zhao, 2007). 

 Remote sensing has been widely used to estimate GPP and NPP due to its ability to detect 

and measure photosynthetic energy, vegetation volume as represented by vegetation indices, and 

light conversion efficiency factor of different types of vegetation (Running, 2004). GPP’s 

measurement is more directly related to remote sensing measurements and thus is chosen in this 

study to quantify primary production change. 

 Spatial and temporal resolution and extents are important components of this work. For a 

regional study of GPP and LULC change, MODIS products can be adopted. For studies focusing 

on individual cities, the coarse resolution of MODIS products may introduce substantial errors 

and uncertainty. In these cases, Landsat images are more suitable to be used to derive LULC 

maps. For calculation of GPP after 2000, the MODIS VI products enable data inputs with a high 

temporal resolution. However, before 2000, the MODIS VI product is not available and only one 

or two cloud-free Landsat images are usable per year for classification purposes in this region of 

China. To more accurately assess GPP change, more extensive temporal coverage is needed. To 

address this issue, I derive phenology curves for different vegetation types and establish the 

relationship between VI and precipitation, temperature with the facilitation of phenology 
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parameters in order to model GPP based on seasonal biological characteristics of plants. The 

possibility of adopting this approach is examined. 

1.2 Research Question 

 This study considers three research questions. First, this study aims to establish the 

relationship of urbanization and GPP change in the Yangtze River Delta from 2003 to 2008. To 

achieve that, urbanization process needs to be quantified using several indicators (i.e. regional 

GDP, buit-up area, population, etc.); summation of GPP will be calculated for each region every 

year; and finally, the sum of GPP will be regressed against the urbanization indicators. 

Second, as MODIS GPP product is designed to accommodate large geographic area analysis, 

studies for individual cities should adopt different approaches. In this part, a Landsat-based 

light-use efficiency model is empolyed to derive GPP for the Hangzhou city. GPP for Hangzhou 

is derived with MODIS EVI, Landsat images, ground-station climate data and surface shortwave 

incident radiation data. This modeled GPP will be referred to as Landsat GPP in the following 

chapters. Its algorithm has MODIS EVI as input, and the term Landsat GPP is chosen only to 

distinguish it from the MODIS GPP product. Landsat GPP outputs will be compared with the 

MODIS 17A2 GPP product. 

Third, the potential to use EVI phenology curve to model GPP in a data-sparse environment 

(i.e. one usable Landsat image per year) is assessed. Phenology curves are a useful tool to assess 

vegetation growth. By associating this curve to gross primary production, it is possible to assess 

GPP in China from 1970s to 2000, prior to the launch of the MODIS sensor and using only one 

or two cloud-free Landsat images per year. Great insights may be provided toward carbon 
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accounting and long-term policy making. For this part, the analysis will also be performed using 

the Hangzhou city as an example. 
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1.3 Working Flow 
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2 Literature Review 

2.1 Urbanization 

2.1.1 Conceptual Framework 

Although there is currently no international definition for urbanization, the most widely 

accepted definition express urbanization as the process of the concentration of population to 

cities or suburbs. From the prospective of economy, cities are the centers where people engage in 

non-agricultural activities. Thus urbanization is viewed as the transformation process from 

agricultural activity to non-agricultural activity. From the angle of anthropology, urbanization is 

a process which changes human life style. For geographers, besides the change of population and 

economy, urbanization is also concerned as a spatial process.  

 Generally, urbanization can be reflected in the following aspects: (1) concentration of 

population, including both expansion of scale and increase of concentration centers; (2) increase 

of proportion of urban population in total population; (3) prevalence of urban life style and (4) 

change from agricultural activity to non-agricultural activity. 

2.1.2 Phases of Urbanization 

Being a long temporal evolution process, urbanization has several phases: urbanization, 

suburbanization, counterurbanization and reurbanization (Champion, 2001). Those four stages 

correspond to stages of population migration from fringe to center, faster suburb growth than 

inner city growth, decline of population in both center and fringe and recovery of population in 

city center and then in fringe, accordingly (Antrop, 2004) (Fig. 1).  
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Figure 2.1 Cyclic model of the stages of urbanization based upon the population change in 
core and fringe zone of urban agglomerations: U, urbanization; S, suburbanization; D, 
disurbanization or counterurbanization; R, reurbanization phase (After Antrop, 2004) 

 

Over the past decade, China has experienced rapid urbanization while its largest cities have 

rapidly suburbanized (Cervero and Day, 2008). Ever since 1950s, many developed countries 

started to experience suburbanization. In China, suburbanization is relatively new. Nanjing, 

Shanghai, and Hangzhou are among the first batch of cities that experienced suburbanization in 

the Yangtze River Delta. The suburbanization process has placed many residents in locations far 

away from the city centers (Ma, 2004). Economic growth, transportation facility development, 

urban planning and policy making are shown to be the key drivers of suburbanization (Jing, 

2007). 

2.1.3 Urban Remote Sensing 

During the past three decades, remotely sensed data have been applied to numerous urban 

studies (Welch, 1980; Haack et al., 1986; Gallo et al., 1993; Jensen et al., 1999; Weng, 2002; Pan 

et al., 2007). Although maps remain a valuable source of information, remote sensing products 

have advantages in providing multi-spatial resolution and multi-temporal resolution information 
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to support different objectives of various researches. Moreover, for less developed areas where 

project funds are not abundant, publicly accessible remote sensing products (Landsat, MODIS, 

etc) become major data sources. Applying remote sensing to urban areas is relatively new 

compared to work focused on the natural environment (Weng et al., 2006). With the development 

of technology and social needs, urban remote sensing has received more and more interest.  

To meet the special characteristics of urban landscapes, new methods, algorithms, 

technologies, and products were developed. To extract urban features, LIDAR and SAR could be 

utilized to generate large-scale urban orthoimage (Rottensteiner et al, 2002; Dell et al., 2001). 

Urban landscapes are typically composed of features smaller than a pixel from medium 

resolution satellite imagery, such as Landsat Thematic Mapper (TM) or Enhanced Thematic 

Mapper Plus (ETM+). Subpixel analysis algorithms and bayesian spectral mixture analysis thus 

could be adopted under this situation to produce fraction image with a more realistic 

representation of the nature of a surface (Ji et al, 1999; Song, 2005). Besides urban land use and 

land cover monitoring, detection and prediction, remote sensing is also used in applications of 

planning and socioeconomic studies including urban heat island identification, environmental 

assessment, and population estimation (Streutker, 2003; Güneralp et al., 2008; ). 

In China, the first city to conduct an aerial remote sensing experiment was Tianjing (Chen et 

al., 2000). National Oceanic and Atmospheric Administration (NOAA) Advanced Very High 

Resolution Radiometer (AVHRR) and Landsat images were used to produce ecological 

environment atlas of Beijing-Tianjin-Tangshan region (Fu et al., 1989). During 1985 to 1995, a 

series of studies were carried out with remote sensing images on environmental issues over more 
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than 90 cities in China (Chen et al., 2000). With thirty years’ efforts, remote sensing has 

contributed greatly to land resource planning, decision-making and management of various 

projects of the State Land Management Bureau, such as nation-wide second land use 

investigation, the state key mineral resources investigation, and ecological environment 

investigation in the Qinghai-Tibet Plateau, the Yangtze River Valley, and the Yellow River valley. 

Coastal cities that are medium to large in size in southeastern China and large cities in the 

inner land draw most attention in urban expansion researches (Seto et al., 2005; Xiao et al., 2006; 

Weng, 2002). Weng combined remote sensing, GIS and stochastic modeling in assessing land use 

and land cover changes in the Zhujiang Delta, China. During the period 1989 – 1997, urban area 

and horticulture farms increased in area, with a decrease in area of cropland (Weng, 2002). Seto 

et al. examined urban growth for Guangzhou, Zhoushan, Donguan and Shenzhen using time 

series landscape metrics derived from remote sensing images. Results show that the average 

annual rate of urban land-use change was 17% between 1988 and 1999. Total urban land for the 

four cities almost quadrupled during the study period (Seto et al., 2005). Xiao et al. investigated 

urban expansion and land use change in Shijiazhuang with remote sensing and GIS. The urban 

area of Shijiazhuang city expanded from 6.31 km
2
 in 1934 to 165.5 km

2
 in 2001 at an average 

rate of 2.4 km
2
 per year (Xiao et al., 2006). 

The Yangtze River Delta has also experienced great land use change during the past three 

decades: main expansion areas are widely distributed along and to the south of Yangtze River, 

presenting the trend of urban agglomerations; Shanghai, Nanjing, Suzhou-Wuxi-Changzhou, 

Hangzhou-Shaoxing-Ningbo, Zhenjiang-Yangzhou-Taizhou formed as five centers of land use 
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dynamic areas (He et al., 2006). He also concluded that large cities basically expanded from the 

developed center; medium cities developed along main transportation routes; cities that are 

relatively small developed along the main transportation lines toward the regional developing 

center. Urbanized areas were mostly converted from farmland, followed by conversion of a 

portion of forestland and grassland (Seto et al., 2005; He et al, 2006; Weng, 2002; Seto et al., 

2003; Xu et al., 2000). Population growth, GDP growth, and the State's macro-control and 

economic policy play significant roles in driving urbanization. 

2.2 Gross Primary Production 

2.2.1 Carbon Sequestration Measurement 

 Various methods have been established to estimate carbon sequestration. Biomass field 

measurement, eddy-covariance flux tower method, model estimation, and remote sensing method 

are most common ones found in literature (Niu et al., 2008). Field measurement is the most 

direct method. It can be conducted by tree diameter measurement, growth rate analysis, 

defoliation collection and so forth. The objective of field measurement is to calculate 

above-ground net primary productivity and underground net primary productivity (Ni, 2004). 

However, its high cost in time and labor limits the applications towards large study areas. For 

eddy-covariance method, CO2, H2O, wind and temperature are measured to quantify atmospheric 

flux and to determine ecosystem gross primary production, autotrophic respiration, heterotrophic 

respiration and net ecosystem exchange (Curtis et al., 2002). Ecosystem models simulate the 

carbon cycle of energy, nutrients and micronutrients in order to provide estimations of carbon 
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budget. Even though the modeling process compensate for the discreteness of measurement, 

accuracy of modeling is still bounded by ecological mechanisms at multi-scales. 

 Date collected from remote sensing satellites contribute to the possibility of estimating 

carbon balance over large areas with intensive temporal repetition. By transforming from 

multi-points data to continuous surface data, spatial distribution pattern over the study area could 

also be examined. 

2.2.2 Satellite-derived Measurement of Gross Primary Production 

 Before the 1980s, biologists focused on the organism level and ecological studies, and no 

attention was paid to global scale study (Running et al., 2004). The earliest attempt was made by 

geographers to investigate ecological process at global scale. In 1975, Lieth and Whittaker 

published first global NPP estimates. These estimates were based on regressions of actual 

evapotranspiration calculated from temperature against a few NPP field plots (Lieth and 

Whittaker, 1975). Running et al. (2004) concluded that three activities built the foundation of 

global scale terrestrial ecology: the expansion of atmospheric flask sampling usage enabled 

gaining information on a biospheric scale about the photosynthetic uptake and evolution of CO2 

(Tans et al., 1990); more submodels of land surface processes were incorporated into global 

climate models; efforts were made by a few ecologists to apply meteorological satellite data on 

vegetation analysis. The first image of Normalized Difference Vegetation Index (NDVI) became 

the cover of Science in August 1985 which also gave impetus to global vegetation research 

(Tucker et al., 1985).  
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Monteith was the first to propose the relationship between Absorbed Photosynthetically 

Active Radiation (APAR) and NPP with the logic that NPP of well-watered and fertilized annual 

crop plants was linearly related to APAR (Monteith, 1972; Monteith, 1977). In the early 1980s, 

National Aeronautic and Space Administration (NASA) was encouraged by the Reagan 

administration to pursue ecological science projects with a broader geographic scope. With such 

impetus, new exploration trying to relate NDVI to GPP, NPP began to emerge. Goward et al. 

(1985) examined seasonal variation of NDVI and proved its agreement with vegetation 

phenology. Running et al. analyzed growing-season dynamics and related NDVI to simulation of 

photosynthesis and transpiration (Running et al., 1988). These studies presented the great 

potential in applying remote sensing to ecological process. 

The light use efficiency method was established based on previous theories and experiments 

and widely accepted and adopted in numerous studies (Turner et al., 2003; Xiao et al., 2005; 

Stavros et al., 2007; Wang et al., 2010). MODIS Terra was launched in 1999 and the MODIS 

Aqua satellite was launched in 2002. Both satellites are operating across the world every day and 

distributing GPP products every 8 days globally. The theoretical basis of light use efficiency 

method and algorithm for global GPP will be discussed in the Chapter 4.  

2.2.3 Impact of Urban Expansion on primary production 

 Vegetation productivity is the source of all food, fiber and fuel for humankind consumption. 

Rapid urban sprawl and associated dense population and economic development have exerted 

high pressure on ecosystem.  
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In the United States, urban land transformation in the mid-1990s has reduced the amount of 

carbon fixed through photosynthesis by 0.04 petagram per year (Imhoff et al., 2004). Their 

results also show that even though urbanization is taking place on the most fertile land, the 

reduction in NPP due to urbanization of agricultural lands is equivalent to the caloric 

requirement of 16.5 million people. The change of GPP associated with urbanization has notable 

spatial difference. The Detroit-Ann Arbor-Flint Metropolitan statistical Area (DMSA) of 

southeastern Michigan has an increased GPP during 1991 and 1999. It is mainly due to the 

increase in the fraction of tree cover throughout the entire region (Zhao et al., 2007).  

Lu et al. examined the effects of population, GDP, and settlement on GPP in southeastern 

China with Pearson’s correction analysis based on remote sensing data in 2000. The analysis 

shows that NPP is negatively correlated with settlement, population and GDP with settlement 

generally linearly related to NPP and population and GDP nonlinear related to NPP (Lu et al., 

2010). In Shenzhen, 80.1% change of land use is due to the urban sprawl and cropland reduction 

during 1999 – 2005 with a decrease of total NPP from 1811.0 Gg C to 1489.49 Gg C (Yu et al., 

2009). Other studies in China also show similar results that urbanization leads to reduction in 

GPP or NPP (Xu et al., 2007; Hu et al., 2009).  

2.3 Summary 

In consideration of large scale analysis on the effects of urbanization on GPP, adopting 

remote sensing data is necessary and advantageous. Current research on subjects like 

urbanization or NPP, GPP change in China usually provides single snapshots based on one image 

or examine two to three time points; regression analysis are also always based on these one to 
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three time points; most research calculated NPP or GPP based on NDVI or Leaf Area Index (LAI) 

(Imhoff et al., 2004; Yu et al., 2009; Xu et al., 2007). With the MODIS GPP product, seasonal 

variability of GPP could be examined. Moreover, MODIS GPP 8-day composite output can be 

used to show seasonal variability in analysis, which may provide more insights than simply use 

one summed value for each year, providing more samples in the dataset as well. As MODIS GPP 

product is not designed for small scale analysis, GPP calculation based on Landsat image may 

provide important information on GPP analysis for individual cities. A method combining a 

recent algorithm which adopts Enhanced Vegetation Index as model input will be compared with 

original MODIS algorithm. More details about this method will be discussed in the method 

chapter.  
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3 Study Area 

3.1 Yangtze River Delta 

The Yangtze River Delta, when referred to geographically, is the area that was formed from 

gathered mud and sand brought down by the river. It is generally thought to be the territory east 

of Zhenjiang city, south of Tongyang Canal, and north of Hangzhou Bay. It is a part of 

Middle-lower Yangtze Plain. As now people are more concerned about the socioeconomical 

status of this area, the geographical boundary of the Yangtze River Delta has three different 

definitions. 

The first definition is referred to as Small Yangtze River Delta which includes 16 regions 

including Shanghai, southern Jiangsu province and northern Zhejiang province. These 16 regions 

are Shanghai, Wuxi, Ningbo, Zhoushan, Suzhou, Yangzhou, Hangzhou, Shaoxing, Nanjing, 

Nantong, Changzhou, Huzhou, Jiaxing, Zhenjiang, Taizhou (pingyin, Tàizhou, referred to as 

Taizhou4 in later descriptions to distinguish with the other city) and Taizhou (pingyin, Tāizhou, 

referred to as Taizhou1 in the following chapters). In 1992, 14 regions that are close in 

geographic locations organized the meeting in which the 14-region cooperation committee was 

founded. In 1997, with the joining of Taizhou4 into this association, the name of the committee 

was changed to Yangtze River Delta Urban Economic Coordination Committee. The event that 

Taizhou1 joined the committee in 2003 is a milestone that the “Yangtze River Delta” represents 

an economic zone more than only a geographic area. With 6 other regions applied to join the 

committee, the committee has 22 region members by 2010.  

The State Council issued “On The Yangtze River Delta Region To Further Promote The 
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Reform And Opening Up And Economic And Social Development Of Guidance” in 2008 which 

brought in the second definition of Yangtze River Delta – all the area of Shanghai, Jiangsu 

Province and Zhejiang Province. The third definition introduces the idea that Anhui Province and 

Jiangxi Province should also be included in the Yangtze Economic Zone. 

 

 

Figure 3.1 Map of Yangtze River Delta 

(For interpretation of the references to color in this and all other figures, the reader is referred to 
the electronic version of this thesis.) 
 

In this study, the Yangtze River Delta only refers to the 16 regions mentioned in the first 

definition (Figure 3.1). It is mainly because of their close geographic locations and similar 
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economic status. Also, the study period spans mainly before 2010. So regions joined the 

committee in 2010 are not considered in this study. Data assemblage issues in different versions 

of statistical yearbooks is another reason that only the 16 regions are chosen as study region. 

Another important point to get here is that the 16 regions that was referred to earlier include 16 

cities and their subordinate cities and counties, while further analysis of Hangzhou in the 

following chapters only refer to districts of Hangzhou City, not including its subordinate cities 

and counties. In other words, whenever Hangzhou is mentioned together with other 15 regions, it 

is referring to Hangzhou City and its subordinate cities and counties, as shown in Figure 3.1; 

otherwise, it only means the city itself (Figure 3.6).   

The Yangtze River Delta Region exhibits a “W” shape with Shanghai at the joint of two 

“V”s, cities from the Jiangsu Province at the north wing and cities from the Zhejiang Province at 

the south wing. It covers a large area of 109,890 km2. In 2009, this region contributed to 20% of 

national GDP with approximately 1% of total land area and 7% of total population of China. The 

GDP contribution is much greater than Pearl River Delta and Jing-Jin-Tang area, showing the 

leading position of Yangtze River Delta in economic growth.  

 During the recent years, the Yangtze River Delta is experiencing a decline in the primary 

industry, an increase in tertiary industry, and the secondary industry is relatively stable (Figure 

3.2). The State government encourages greater development of tertiary industry and further 

adjustment of industry structure.  
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Figure 3.2 Industry Percentage from 2003 to 2008 in the Yangtze River Delta 

 

Figure 3.3 Population Change from 2003 to 2008 in the Yangtze River Delta 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

2003 2004 2005 2006 2007 2008

In
du

st
ry

 P
er

ce
nt

ag
e

Year

Primary Industry

Secondary Industry

Tertiary Industry

8100

8150

8200

8250

8300

8350

8400

8450

2003 2004 2005 2006 2007 2008

Po
pu

la
tio

n 
(1

0,
00

0 
pe

op
le

)

Year



21 

 

Figure 3.4 Built-up Area Change from 2003 to 2008 in the Yangtze River Delta 

 

  

Figure 3.5 GDP Change from 2003 to 2008 in the Yangtze River Delta 

  

The Yangtze River Delta has a marine monsoon subtropical climate. The typical weather is 

hot and humid in summer, cool and dry in winter, and warm in spring and fall. This region 

contains the most fertile soil in China. While paddy rice is the dominant crop in this region, there 

are also large areas of cropland growing cotton, wheat, peanut and rapeseed.  
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 The Yangtze River Delta is one of the regions have best natural resources in China. However, 

the rapid economic growth has high pressure on the environment and natural resources, which 

threats sustainable development of this area. Among all the issues, land use is one primary issue 

which is often neglected during development. From 1980 to 1995, the Yangtze River Delta lost 

247,000 hm
2
 agricultural lands with a losing rate 6.7 times higher than the State average. With 

the loss of agricultural lands, the remained agricultural lands may suffer more intense use with 

stronger use of fertilizer, which may introduce degradation issues in the future. 

The growing population, fast economic development and industry structure adjustment will 

all have great influences on LULC change and ecosystem (Figure 3.3-3.5). This makes Yangtze 

River Delta a great region to study urbanization and its carbon consequences. Furthermore, to 

study the method of derivation of GPP for a smaller geographic area, the city of Hangzhou was 

chosen as an example. 

3.2 Hangzhou 

Hangzhou is the capital city of Zhejiang Province. It has a long history of more than 2200 

years since the Qin Dynasty governed it as a county. It’s located in the south wing of Yangtze 

River Delta, west of Hangzhou Bay. The center geographic coordinates of the city is 30°16´N, 

120°12´ E. There are 8 districts in the city, with a total area of 3068 km
2
 (Figure 3.6). According 

to the census in 2008, there are 7.97 million people living in the city, of which 69.3% is urban 

population. The population density is 480 persons per square kilometer. Comparing to 2007, the 

ratio of Hangzhou’s three industries in 2008 changed from 4.1:50.2:45.7 to 3.7:50.0:46.3. The 

center of the city is built-up area, surrounded by large area of cropland. Forests are distributed 



23 

near the western boundary. The Hangzhou City is chosen due to its rapid development and 

urbanization, various land cover types (crop and forest), and more available data. 

 

 

Figure 3.6 The City of Hangzhou (Landsat Image Acquired in 2002) 
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4 Data and Methods 

4.1 Changing GPP in Yangtze River Delta 

 This section will discuss the preparation process of building an empirical model to address 

the relationship of urbanization and GPP: calculating GPP data for each one of 16 region in the 

Yangtze River Delta, gathering and choosing socioeconomic data factors that have influence on 

GPP change, and construct the equation to describe the relationship of two subjects.  

4.1.1 MODIS Land Cover Data 

MODIS is a key instrument aboard the Terra and Aqua satellites. Terra and Aqua are two 

satellites viewing the earth every one to two days with Terra passing the equator from north to 

south in the morning and Aqua passing the equator from south to north in the afternoon. They 

acquire data in 36 spectral bands at three spatial resolutions: 250m, 500m and 1000m.  

The MCD12Q1 yearly product was used in this study. It is derived from observations of both 

Terra and Aqua with 500m grid. The MODIS Land Cover Type product contains five 

classification schemes. The primary classification scheme used in this study identifies 17 land 

cover types which are defined by the International Geosphere Biosphere Programme (IGBP).  
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Figure 4.1 MODIS Sinusoidal Tiling System (after MODIS Land Team) 
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The MODIS Land Cover Type product uses the Sinusoidal grid tiling system with tiles that 

are 10 degrees by 10 degrees in size at the equator. The tile coordinate system starts at (0, 0) in 

the upper left and ends at (35, 17) in the lower right corner (Figure 4.1).  

To encompass the whole area of Yangtze River Delta, four tiles of images are needed. They 

are h27v5, h27v6, h28v5 and h28v6. To enable processing the files in ERDAS, ENVI and 

ArcGIS, MODIS Reprojection Tool was used to reproject and mosaic these images. Data from 

2001 to 2009 were downloaded, reprojected to geographic coordinate system WGS1984 and 

reclassified into five types: built-up, crop, tree, water and others.  

4.1.2 MODIS GPP Product 

The MODIS GPP product is a cumulative estimation of GPP based on radiation use 

efficiency. Each output is an 8-day composite at 1 kilometer spatial resolution. There are 46 

output images per year. The 46
th

 output is the summation for 5 days in a non-leap year or 6 days 

in a leap year.  

The accuracy of GPP products is assessed and the uncertainties are analyzed taking global 

conditions into consideration. The Psn_QC_1km layer contained in the MODIS GPP product is 

produced to assure data quality (Table 4.1). However, in this study, no GPP data was ruled out, 

due to the consistency in the control of regression analysis. One assumption is that all cities have 

somewhat similar chance of getting good quality GPP estimates due to their close geographic 

locations. 
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Table 4.1 MOD 17 Product Output Layers 

Science Data Sets 
(HDF Layers) 

Units Bit Type Fill Valid Range Multiply By 
Scale Factor 

Gpp_1km: Gross 
Primary Production  

Kg 

C/m
2
 

16-bit signed 
integer 

32761–32767 0–30000  0.0001  

PsnNet_1km: Net 
Photosynthesis 

Kg 

C/m
2
 

16-bit signed 
integer 

32761–32767 -30000–30000 0.0001  

PSN_QC_1km: QC 
for GPP/PSN  

Bit 8-bit 
unsigned 
integer 

255  0–254  NA  

 

This study used MODIS 17A2 to calculate GPP for the Yangtze River Delta area. The MOD 

17 products are also in the integerized sinusoidal projection. Data for four tiles (h27v5, h27v6, 

h28v5 and h28v6) were downloaded, reprojected, and mosaiced at 1 km resolution.  

As most of standard MODIS products have a valid range, the valid data range for MODIS 17 

GPP layer is 0 – 30000. Any value beyond the range is fill value representing different types of 

land cover (Table 4.2). Batch command was executed in ERDAS for all files to change values 

that fall out of this range to zero. All the images were kept in integer format with values 10000 

larger than actual index value.  

Table 4.2 MODIS 17A2 Fill Values 

Value Description 
32767 Fill value 
32766 land cover assigned as perennial salt or inland fresh water 
32765 land cover assigned as barren, sparse vegetation (rock, tundra, desert.) 
32764 land cover assigned as perennial snow, ice 
32763 land cover assigned as "permanent" wetlands/inundated marshlands 
32762 land cover assigned as urban/built-up 
32761 land cover assigned as "unclassified" or not able to determine 
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The processed GPP product was then subset to the extent of 16 regions, i.e. Shanghai, Wuxi, 

Ningbo, Zhoushan, Suzhou, Yangzhou, Hangzhou, Shaoxing, Nanjing, Nantong, Changzhou, 

Huzhou, Jiaxing, Zhenjiang, Taizhou4 and Taizhou1. The area with fill values were replaced with 

data derived using MODIS algorithm with NDVI-FPAR function2. FPAR stands for the Fraction 

of Photosynthetically Active Radiation (FPAR). 

Two values were summarized for each 8-day composite image for each region. The first one 

is the total sum of GPP calculated by adding raster values for all cells together, which will be 

referred to as GPP sum in the following discussion. GPP sum quantifies the amount of GPP 

produced in certain cities each year. The second value is the mean GPP value of all the cells. 

Equation for converting GPP sum into GPP mean can be written as: 

GPP sum = GPP mean * Cell(number)  

Annual GPP sum = ∑ GPPsum(i)ġ �ୀଵ  

Annual GPP density = Annual GPP Sum / Cell (number) 

GPP mean: 0.0001 kg C/(m
2 * year) 

Cell (number): the total number of raster cells that fall in the city boundary 

The cell number is not the product of column number and row number because of the 

irregular shapes of cities. If the product of column number and row number was used, GPP mean 

would be underestimated.  

In order to count the cell numbers for each city, raster layers were converted to ASCII format 

                                                 
2 Method can be found on Algorithm Theoretical Basis Document , 
http://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf 
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and summarized. It is also important to note that the GPP sum value is not in the standard unit. In 

order to get the total GPP in unit of kg C for each study area, the size that each cell represents 

(i.e., 1 km
2
) should be multiplied to GPP sum.  

4.1.3 Empirical Model 

The empirical work considers the impact of urban expansion on GPP through a balanced 

panel of 16×6=96 observations (one for each city-year from 2003 to 2008 within the 16 cities 

located in Yangtze River Delta).  

The two subsections give the analysis of effect on GPP from two perspectives: first build an 

annual GPP sum equation, and then construct an annual GPP mean equation. These two 

functions can estimate the average effect of urban expansion on the quantity of GPP in this area. 

The built-up area and built-up ratio are used as two urbanization indicators in the equations 

mentioned above. They measure the expansion process directly. Population and GDP are also 

considered in the empirical model: a larger population often means higher pressure on the 

ecosystem (i.e. disturbance of natural environment and vegetation growth); regions with higher 

GDP may be more willing to sacrifice environment protection for economic growth or more 

focused on “smart growth”, which preserves natural environment and make planning decision 

more wisely. 

4.1.3.1 Annual GPP Sum Equation  

This subsection investigates the effect of urban expansion on annual GPP sum through 

equation (1): 

(1) 1332210log εstateαstateαT'ITM'ITbuiltupαITGPP ++++++= lha
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where ITGPP  represents the annual GPP sum for city I and year T; 1ε is the random error 

items for equation (1). The dependent variable, logarithm of annual GPP sum in the function, 

depends on: 1) ITbuiltup  is the urbanization indicator for city I and T; 2) ITM'  vector other 

characteristics including logarithm of population, logarithm of land area, logarithm of GDP, and 

the dummy variable of whether it is a capital city; 3) T'  vector 5 year dummy variables for 

each year from 2004 to 2008; 4) 2state  and 3state  are the province dummy variable for 

Jiangsu and Shanghai, respectively. 

4.1.3.2 Annual GPP Density Equation  

This subsection considers the effect of urbanization on annual GPP density through equation 

(2). 

 (2) 

where ITGPPDENSITY  represents the annual GPP density for city I and year T; 2ε is 

random error items for equation (2). The dependent variables, logarithm of annual GPP density 

in the function, depends on: 1) ITbuiltup  is the urbanization indicator for city I and T; 2) ITN'  

vector other characteristics including logarithm of population density, logarithm of GDP, and the 

dummy variable of whether it is a capital city; 3) T'  vector 5 year dummy variables for each 

year from 2004 to 2008; 4) 2state  and 3state  are the province dummy variable for Jiangsu 

and Shanghai, respectively. 

4.1.3.3 Socioeconomic Data and Urbanization Indicators 

This subsection describes the data that is used to perform the analysis in equation (1) and (2). 

As discussed above, the key independent variable is the urban expansion indicator. The 

2332210log εstatestateT'ITN'ITbuiltupITGPPDENSITY ++++++= bbdubb
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econometric model including equation (1) and (2) presented above is examined two times, once 

for each urban expansion indicator.  

The first eligible indicator, ITbuiltup 1- , measures the logarithm of built-up area for city I 

and year T. The second indicator, ITbuiltup 2- , measures the percentage of built-up area in total 

land area. As a result, the coefficient of the first indicator can predict the effect when built-up 

area increased by one percent (i.e. the built-up area increased from 100 km
2
 to 101 km

2
) and the 

coefficient of the second indicator can predicts the effect when built-up area ratio increased by 

one percent (i.e. the land area for a city is 1000 km
2
, within which the built-up area ratio 

increased from 10 percent (100 km
2
) to 11 percent (110 km

2
). MODIS LULC product has a 

fixed urban/built-up boundary and is thus not suitable for urbanization analysis. So efforts were 

made to collect indicator parameters from statistical reports. Both the data of built-up area 

(BUILTUPAREA) and the land area (LANDAREA) for each city-year are available in THE 

YEARBOOK OF CHINA’S CITIES. Therefore, the mathematical formula of ITbuiltup 1-  and 

ITbuiltup 2-  are: 

)(log1 ITABUILTUPAREITbuiltup =-  

1002 ´=-
ITLANDAREA
ITABUILTUPARE

ITbuiltup
 

THE YEARBOOK OF CHINA’S CITIES also provides the data the following variables 

including city population, and GDP that play as independent variables in equation (1) and (2). 

The population density can be derived through dividing population by land area in a city. 

Summary statistics of the data used in the regression analysis are provided in Table 4.3. 
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Table 4.3 Summary Statistics of Variables for the Empirical Model 

Variable Mean Std. Dev. Min Max Variable Explanation and 
Unit 

GPP 
4.30×10

7
 3.64×10

7
 7.70×10

6
 1.79×10

8
 

Cell number * 0.0001 Kg 

C/(m
2
 * year) 

GPPDENSITY 6552.2 2120.0 3570.1 11768.9 
0.0001 Kg C/(m

2
 * year) 

BUILTUPAREA 187.229 204.162 34 886 
Km

2
 

LANDAREA 6864.95 3319.46 1440 16596 
Km

2
 

Builtup-1 4.83638 0.822889 3.52636 6.78672  
Builtup-2 2.93652 3.087871 0.712411 13.97476 percentage 
POPULATION 518.1245 275.9652 96.58 1391.04 10,000 people 
POPDENSITY 0.0801702 0.038677 0.038731 0.2194069 10,000 people / Km2 
GDP 2.37×107 2.40×107 1.7×106 1.40×108 10,000 RMB 
capital 0.1875 0.3923613 0 1 =1 if it is a capital city; 

otherwise=0 
state2 0.4375 0.4986825 0 1 =1 if it is in Jiangsu 

Province; otherwise=0 
state3 0.0625 0.2433321 0 1 =1 if it is Shanghai; 

otherwise=0 

4.2 Changing GPP in the Hangzhou City 

4.2.1 Landsat-derived Land Cover Data 

 Landsat MSS/TM/ETM+ data collected spanning 1970s to 2010 were downloaded from 

NASA website. The entire Hangzhou city is located within path 119 and row 39 of Landsat 

swath. The satellite images of this region often have large area of cloud cover. Due to this reason, 

it is usually the case that only one scene is qualified for use of classification each year. Even 

though it is favorable to have images acquired at approximately the same time of every year, 

such requirement is often impossible to achieve. From 2001 to 2010, one image per year was 
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classified to get the land cover information (Table 4.4). During this study period, most of the 

images were acquired by Landsat ETM+ with one exception – classification of 2005 used a 

mosaic image from Landsat TM and ETM+ due to cloud coverage.  

 

Table 4.4 Landsat Image Used for Classification from 2001 to 2010 

Acquired Time Sensor 
2001/02/16 Landsat ETM+ 
2002/07/13 Landsat ETM+ 
2003/03/26 Landsat ETM+ 
2004/02/09 Landsat ETM+ 

2005/10/17, 2005/11/26 Landsat TM and ETM+ 
2006/04/19 Landsat ETM+ 
2007/05/08 Landsat ETM+ 
2008/01/03 Landsat ETM+ 
2009/03/10 Landsat ETM+ 
2010/12/10 Landsat ETM+ 

  

As Landsat level 1T data, each image has been geographically registered in WGS 1984 

UTM projection UTM Zone 50 with a cell size of 30 meter. Each band was then atmospherically 

corrected using the method in the paper written by Chander et al., which summarized radiometric 

calibration coefficients for Landsat MSS, TM and ETM+.  

 On May 31, 2003, an instrument malfunction occurred onboard Landsat 7. The problem was 

caused by failure of the Scan Line Corrector (SLC), which results in the stripes in SLC-off 

Landsat data. Many efforts and progresses have been made to assess the usability and develop 

interpolating method for Landsat 7 product ever since
3
. In this study, Landsat images with a 

                                                 
3

 USGS SLC-off usability assessments, 2003 
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SLC-off issue were interpolated with an add-on function of ENVI software. The Landsat 

SLC-off image and the interpolated result are shown in Figure 4.2. As suggested by previous 

research, even though interpolated images may not be as accurate as the SLC-on image, they 

remain valuable in providing LULC information and calculating statistics, which provides more 

useful information than masked images. After that, all the bands except the thermal bands were 

stacked together and clipped to the extent of Hangzhou city for subsequent analysis. 

 

Figure 4.2 Landsat 7 SLC-off image (upper) and interpolated image (lower) 
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Unsupervised classification was performed to classify images into five categories: built-up, 

crop, tree, water, and others. The raster images were first grouped into 80 classes and classified 

based on false color composite images. The first round of classification usually leaves many 

mixed features. Then, those pixels could not be classified in the first round will be exported for 

unsupervised classification again. It usually took six to ten cycles to classify a single image. 

During the classification process, Google Earth was used to verify as the ground truth as it has a 

finer resolution and also has historical images at multiple time points. The atmospheric 

correction process and unsupervised classification process were both conducted using ERDAS 

IMAGINE software. Following classification, the urban boundary was delineated combining 

classification results and visual interpolation with false color image on the background.  

4.2.2 GPP derived using Light-use Efficiency Method 

4.2.2.1 Light-use Efficiency Method 

Satellite-based studies have been using light-use efficiency approach to estimate GPP 

(Running et al., 2000; Imhoff et al., 2004; Stagakis et al., 2007). Significant efforts and progress 

have been made during the past decade. The method used in this study is a combined approach 

based on the MODIS GPP algorithm with some adjustments from a recent algorithm published 

by Xiao et al..  

Running et al. proposed the GPP algorithm based on Monteith’s logic that the primary 

production of well-watered and fertilized annual crop plants is related to the amount of absorbed 

solar energy linearly. So the daily GPP could be calculated by: 

GPP = ε * APAR 
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APAR = PAR * FPAR 

ε=εmax * TMIN_scalar * VPD_scalar 

where APAR is absorbed photosynthetically solar energy and ε is the energy-to-carbon 

conversion efficiency (i.e., LUE, g C / MJ), PAR is the daily incident radiation, and FPAR is the 

fraction of PAR absorbed by vegetation. TMIN and VPD scalars are temperature and Vapor 

Pressure Deficit (VPD) linear attenuation scalars that quantify the effect of severe climatic 

constraints. Subfreezing temperature and high vapor pressure deficits may force leaf stomata to 

close. εmax can be found from Biome Parameter Look-Up Table (BPLUT). 

In the original algorithm developed by Running et al., FPAR is equal to or approximately 

equal to normalized difference vegetation index (NDVI) which uses red band and near-infrared 

(NIR) band reflectance (Running et al., 2000). 

NDVI = (ρnir - ρred)/ (ρnir + ρred) 

EVI is calculated as: 

EVI = G * (ρnir - ρred) / (ρnir + C1* ρred – C2 * ρblue + L)  

where G = 2.5, C1=6, C2=7.5, and L=1. The ρblue, ρred, and ρnir represent reflectance at 

the blue (0.45-0.52µm), red (0.6-0.7µm), and Near-Infrared (NIR) wavelengths (0.7-1.1µm), 

respectively (Huete et al., 1997). 

MODIS GPP product adopts MOD 15 algorithm for FPAR, which is also based on 

NDVI-FPAR relationship. Grigera and Oesterheld carried out a study in wheat and pasture sites 

to compare parameterization of FPAR and LUE. Their study suggested that even though that 

NDVI-FPAR relationship was adopted in many satellite products’ algorithms and widely used, 
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enhanced vegetation index (EVI) may be more suitable for deriving FPAR as it presented a more 

linear relationship with FPAR at study sites (Grigera and Oesterheld, 2006). Xiao et al. used EVI 

in their studies on forests and grasslands and suggested a better correlation of EVI to GPP than 

NDVI (xiao et al., 2005). In their study, FPAR is calculated as: 

FPAR = a * EVI 

a = 1 

Comparing to NDVI, EVI algorithm corrects some distortions in the reflected light caused 

by the particles in the air and the ground cover below the vegetation. It also does not become 

saturated as easily as the NDVI in densely vegetated areas like rain forests.  

This study combines light-use efficiency method from previous studies and calculates GPP 

by: 

 GPP =εmax * TMIN_scalar * VPD_scalar * EVI * PAR 

PAR = SWRad * 0.45 

TMIN_scalar = (TMIN – TMIN_min) / (TMIN_max – TMIN_min) 

VPD_scalar = (VPD_max – VPD) / (VPD_max – VPD_min) 

where SWRad is incident shortwave radiation, TMIN is daily minimum temperature, VPD can 

be calculated using daily average temperature and relative humidity. Parameters for 

TMIN_scalar and VPD_scalar are illustrated in Table 4.5 and Figure 4.3. VPD is the difference 

of mean saturation vapour pressure (es) and actual vapour pressure (ea), es and ea can be 

calculated with daily maximum temperature, daily minimum temperature, and dew point 

temperature (Td): 
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 VPD = es – ea 

 es(T) = 0.6108 * expଵa.x ∗଼Ú (ÚାǬxp.଴)⁄  

 es = 
ୣୱሺÚúǴƼሻାୣ ୱ(Úú�୬)Ǭ  

 ea = es(Td) = 0.6108 * expଵa.x ∗଼Úୢ (ÚାǬxp.଴)⁄  

In this study, TMIN_scalar and VPD_scalar are calculated with equations stated above based 

on ground-station data of daily maximum temperature, daily minimum temperature, daily 

average temperature, and daily dew-point temperature from the NOAA National Climatic Data 

Center. The ground station is located at N 30°13′58″E 120°10′1″, in the Shangcheng District of 

Hangzhou City. Generally, spatial interpolation is favorable in estimating temperature surface. 

However, stations in surrounding cities are geographically too far away and some stations only 

have data before 2000 (i.e. Changzhou, etc). So data from station No. 584570 was used in 

calculation. This approach may introduce uncertainty in ε estimation.  

The results of daily TMIN_scalar and VPD_scalar were aggregated into 23 outputs for each 

one-year period. The ε value for built-up area was assessed based on averaged built-up green 

percentage (36%) assuming an even distribution of trees and grasses in the built-up land and 

estimated percentage of 18% and 18%. The ε value of tree, crop/grass and built-up types for each 

one of 23 periods are stored in integer format multiplied by scale factor of 1000,000.  
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Table 4.5 BPLUT parameters for daily gross primary productivity 

Parameter Units Description 
εmax (kgC/MJ) The maximum radiation conversion efficiency 
TMINmax (°C) The daily minimum temperature at which ε = εmax (for 

optimal VPD) 
TMINmin (°C) The daily minimum temperature at which ε = 0.0 (at any 

VPD) 
VPDmax (Pa) The daylight average vapor pressure deficit at which ε = 

0.0 (at any TMIN) 
VPDmin (Pa) The daylight average vapor pressure deficit at which ε = 

εmax (for optimal TMIN) 
 

 
Figure 4.3 The TMIN and VPD attenuation scalars are simple linear ramp functions of daily 
TMIN and VPD 

 

In this study, EVI is from MODIS 13 vegetation indices product and has a 250m spatial 

resolution and a 16-day temporal resolution. For MODIS Terra, EVI product has 23 outputs per 

year starting from Day 001 (i.e., 001, 017, 033, …, 353). The εmax for forest and crop are from 

the Biome Properties Look-Up Table (BPLUT)
4
.  

SWRad data are from Global Land Data Assimilation System (GLDAS) Noah Land Surface 

                                                 
4 MODIS 17 User Guide, http://www.ntsg.umt.edu/modis/MOD17UsersGuide.pdf 
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Model L4 monthly 0.25 x 0.25 degree product in NetCDF format. They are downloaded, 

converted to raster, and aggregated into 16-day composite by assigning certain number of days 

from a certain month to the intended 16-day period output (i.e., 001, 017, … , 353).  

 

4.3 Estimating GPP in a Data-sparse Environment using Phenology Curves 

With the facilitation of various remote sensing products, estimating GPP remotely for a large 

area has never been easier. However, most of these products are enabled after 2000. The physical 

world has changed a lot since the 20
th

 century. Past always provides significant meaning to the 

future. It would be of great value to be able to assess GPP in the 1970s. This section will 

introduce the data and method used to derive vegetation phenology curve and the possibility of 

adopting this approach in carbon storage assessment.  

 

4.3.1 Extracting Time-series Data and Seasonality 

 MODIS 16-day 250m global VI product (i.e. MOD 13Q1) is used in this study to extract 

time-series and seasonality parameters. There are ten-year (2001 to 2010) EVI available with 23 

images per year. TIMESAT software developed by Lars Eklundh and Per Jönsson was used in 

data processing. Raster images of EVI were converted to flat binary file with IDL programming. 

Converted binary files were then viewed, processed in TIMESAT. Outputs containing time-series 

were written to ASCII files for further processing (Figure 4.4). To reduce noise (cloud 

contamination effect, etc.) in the data, original time-series data were fitted with double logistic 

functions. The fitted data were processed and written to ASCII files afterwards (Figure 4.5). The 
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seasonal parameters were extracted to better understand the vegetation phenology in Hangzhou 

City. The seasonality parameters include the start of the season, the end of the season, and the 

length of the season. 

 The EVI image for Hangzhou city has 333 rows and 393 columns within which only 

selected windows (each window contains a few rows and columns) with forest land cover were 

examined to develop the algorithm. The processing windows are chosen by editing column and 

row numbers in TIMESAT (Figure 4.6). The seasonality parameters were extracted within the 

whole image extent. 
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Figure 4.4 Ten-year EVI Time-series Displayed in TIMESAT  
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Figure 4.5 Ten-year EVI Time-series with Fitted Function 
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Figure 4.6 Processing Windows for Data-extracting 
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4.3.2 Establish EVI-climate Function 

 Iwasaki tried to predict NDVI distribution over Mongolia with precipitation and temperature 

data a few months before prediction (Iwasaki, 2009). The grids were aggregated into spatial 

resolution of 0.25°×0.25°and analyzed with stepwise linear regression. The predicted results 

agree well with the actual NDVI. This method may well suit the need for short-term prediction. 

However, long-term forecast or backcast may bring in more issues such as human disturbance, 

ecosystem evolution, etc. So this study will only perform the analysis on the relative stable land 

cover type, i.e. the forest land cover.  

 To estimate EVI for a relatively long time period, the de-trended value for each cell’s EVI is 

first presented with a function (Figure 4.7): 

F(t) = C1cos(wt) + C2sin(wt) + C3 

where w = 20π/t, and t = 1, 2, 3, …, 230. 

EVI_diff = EVI – F(t) 

EVI_diff2 = EVI_fit – F(t) 

where EVI_diff is the difference between MODIS EVI and F(t) function. 
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Figure 4.7 Seasonal Variation of EVI from 2001 to 2010 

  

The next step is to establish the relationship of the difference between actual EVI and F(t) 

and climate conditions. As F(t) function represents the seasonal cycle of vegetation growth, the 

main purpose is to test whether it is possible to explain interannual variation through temperature 

or precipitation difference. There are some assumptions of made in adopting this method: the 

land cover type did not change significantly during the study period; the vegetation species 

remains stable during the study period; seasonal differences are mainly attributing to climate 

conditions. As vegetation growth is affected by temperature and precipitation a few months 

before, Iwasaki established NDVI function for one grid as: 

NDVI_Aug = 0.04 ×Precpitation_Jul + 0.002 × Temperature_Mar + 1.01 

 Efforts are made in this study to build the function in the format of: 

EVI_diff  =  B1×Precpitation(tn) + B2 × Temperature(tm) + B3 

EVI_diff2 =  B4×Precpitation(tn) + B5 × Temperature(tm) + B6 
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where EVI_diff and EVI_diff2 are differences between actual EVI or fitted EVI with F(t) 

function, B1, B2, B3, B4, B5, and B6 are coefficients, tn and tm are time periods before EVI 

acquisition. Each cell would have a set of coefficients across the ten-year period.  
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5 Results and Discussion 

5.1 Yangtze River Delta 

5.1.1 Decreasing GPP in the Area 

GPP for each one-year period in Yangtze River Delta were added together and summarized 

(Table 5.1). GPP sum for several years are shown in Figure 5.1 - 5.4. Figure 5.5 presents the 

10-year 8-day daily average GPP in Yangtze River Delta Region. Each 8-day period GPP was 

divided by 8 with 5-day or 6-day periods divided by 5 or 6. The X axis shows time increment 

and the Y axis is GPP mean in units of 0.0001 Kg C/(m
2
*day). The higher values correspond to 

the time of growing season of vegetation while the lowest GPP values are often found during the 

winter. From 2003 to 2010, the decreasing GPP trend is obvious. Figure 5.6 shows the difference 

of annual GPP of 2010 and 2003. The northern area of Yangtze River Delta presents a higher 

GPP of 2010 than 2003 while most of the southern part has a lower GPP. For the whole delta, the 

mean GPP in the nonurban area decreased by 12.5 percent from 2003 to 2010. The average 

annual decrease is approximately 1.8 percent.  

The empirical model in the next section presents the quantitative relationship and GPP 

change and urbanization.  
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Figure 5.1 GPP in Yangtze River Delta in 2003 
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Figure 5.2 GPP in Yangtze River Delta in 2005 
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Figure 5.3 GPP in Yangtze River Delta in 2007 
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Figure 5.4 GPP in Yangtze River Delta in 2009 
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Figure 5.5 Daily Average GPP in Yangtze River Delta from 2003 to 2010  
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Figure 5.6 GPP Difference between 2003 and 2010 
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Table 5.1 Summary Statistics of GPP in Yangtze River Delta 

Year Mean Min Max Std. Dev. 
2003 6709.464 0 27641 4820.187 
2004 6832.934 0 26643 4466.003 
2005 6100.812 0 27926 3913.752 
2006 6164.190 0 24955 4053.594 
2007 6365.581 0 25339 4378.622 
2008 5987.022 0 25096 4074.264 
2009 6193.568 0 25401 4410.703 
2010 5867.574 0 22244 4107.373 

Mean, Min, Max: 0.0001 kg C/(m
2
*year) 

 
5.1.2 Empirical Model Results 

Table 5.2 and Table 5.3 report Ordinary Least-Squares (OLS) regressions of equation (1) 

and (2) using the balanced panel of 16×6=96 observation, respectively. 

5.1.1.1 Results from Equation (1) 

Column 1 in Table 5.2 shows that 1) a one-percent increase in built-up area (i.e. the 

built-up area increased from 100 km2 to 101 km2) is significantly correlated to 1.066 percent 

decrease in annual GPP sum; 2) a one-percent increase in population is significantly 

correlated to a 1.176-percent decrease in annual GPP sum; 3) a one-percent increase in land 

area is strongly correlated to a 1.368-percent increase in annual GPP sum; 4) a one-percent 

increase in GDP is strongly correlated to a 0.994-percent increase in annual GPP sum; and 5) 

capital city has a 1.468 times higher annual GPP sum on average compared with other cities 

when other things being equal. 

Column 2 in Table 5.2 shows that 1) a one-percentage increase in built-up area ratio (i.e. 

the land area for a city is 1000 km2, within which the built-up area ratio increased from 10 

percent (100 km2) to 11 percent(110 km2) ) is significantly correlated to a 15.4-percent 

decrease in annual GPP sum; 2) a one-percent increase in land area is strongly correlated to a 

0.865-percent increase in annual GPP sum; and 3) capital city has a 0.902 times higher 

annual GPP sum on average compared with other cities when other things being equal. 
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Table 5.2 Summary of Regression Analysis for Equation (1) 

Dependent Variable log (GPP) 
 (1) (2) 
Urbanization Indicator   
Builtup-1 -1.066***  
 (0.198)  

 Builtup-2  -0.154** 
  (0.054) 

Other Independent Variable   
 log (POPULATION) -1.176*** -0.544 
 (0.308) (0.330) 
 log (LANDAREA) 1.368*** 0.865* 
 (0.246) (0.343) 
 log (GDP) 0.994*** 0.273 
 (0.213) (0.154) 
 capital 1.468*** 0.902** 
 (0.263) (0.268) 
Year fixed effects   
 year2004 -0.0846 0.0504 
 (0.154) (0.168) 
year2005 -0.216 -0.0459 

 (0.158) (0.170) 
 year2006 -0.390* -0.0923 
  (0.172) (0.178) 
 year2007 -0.489* -0.114 
 (0.186) (0.187) 
year2008 -0.612** -0.171 

 (0.200) (0.197) 
Province fixed effects   
 state 2 -0.162 -0.116 
 (0.132) (0.145) 
state 3 0.0475 0.672 

 (0.365) (0.425) 
_cons 1.297 8.916*** 

 (1.936) (1.601) 
R-square 0.6959 0.6262 
No. of Obs. 96 96 

Standard Error in parentheses, * p < 0.05, ** p < 0.01, *** p < 0.001 
 

5.1.1.2 Results from Equation (2) 

Column 1 in Table 5.3 shows that 1) a one-percent increase in built-up area (i.e. the 

built-up area increased from 100 km2 to 101 km2) is significantly correlated to a 
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0.155-percent decrease in annual GPP density; 2) a one-percent increase in population 

density is strongly correlated to a 0.248-percent decrease in annual GPP density; and 3) 

capital city has a 20.0 percent higher GPP density on average compared with other cities 

when other things being equal. 

Column 2 in Table 5.3 shows that 1) a one-percentage increase in built-up area ratio (i.e. 

the land area for a city is 1000 km2, within which the built-up area ratio increased from 10 

percent (100 km2) to 11 percent (110 km2)) is significantly correlated to a 4.92-percent 

decrease in annual GPP density; and 2) capital city has a 22.2 percent higher GPP density on 

average compared with other cities when other things being equal. 

Table 5.3 Summary of Regression Analysis for Equation (2) 

Dependent Variable log (GPPDENSITY) 
 (1) (2) 
Urbanization Indicator   
Builtup-1 -0.155*  
 (0.063)  

 Builtup-2  -0.0492*** 
  (0.013) 

Other Independent Variable   
 log (POPDENSITY) -0.248* -0.0682 
 (0.094) (0.105) 
 log (GDP) 0.0755 -0.0221 
 (0.046) (0.028) 
 capital 0.200* 0.222** 
 (0.088) (0.074) 
Year fixed effects   
 year2004 0.0446 0.0713 
 (0.057) (0.055) 
year2005 -0.0365 -0.00126 

 (0.058) (0.063) 
 year2006 -0.0649 -0.0112 
  (0.060) (0.056) 
 year2007 -0.0656 0.0022 
 (0.062) (0.055) 
year2008 -0.109 -0.0289 

 (0.064) (0.060) 
Province fixed effects   
 state 2 0.409*** 0.423*** 
 (0.049) (0.048) 
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Table 5.3 (cont’d) 
state 3 0.122 0.288* 

 (0.137) (0.135) 
_cons 7.400*** 8.823*** 

 (0.587) (0.524) 
R-square 0.7622 0.7806 
No. of Obs. 96 96 

Standard Error in parentheses, * p < 0.05, ** p < 0.01, *** p < 0.001 

 

 In summary, the increase of build-up area and population is strongly related to GPP 

decrease: the increasing built-up area may take the space of cropland and forest, causing 

overall less vegetation in the whole area; on the other hand, the increasing needs for food 

along with the population growth is not satisfied or supplied by the Yangtze River Delta, food 

are importing from elsewhere, so cropland area didn’t have large increase; higher population 

density may lead to the degradation of ecosystem in this area. Capitals like Nanjing, Shanghai, 

Hangzhou have higher GPP mean than other cities given equal population and GDP. It is 

probably because the capital cities focus more on the protection of environment and turn 

away high potential pollution industries. The capitals are usually key tourism cities: they are 

usually more concerned about increasing green space and attracting more people for 

eco-tourism. Given other things being equal, the positive correlation of GDP and GPP may 

because that regions with a better economic status are more concerned about environment 

protection, or simply have more funds for planting trees and protecting forests. Two 

equations actually established the relationship of urbanization and GPP change from four 

models. Even though the regression results do not have identical parameters, the general 

information that they carry are similar. 

 

5.2 Decreasing GPP in Hangzhou City 

5.2.1 Landsat-derived GPP 

Hangzhou experienced rapid urban growth during 2001 to 2010. While forest land cover 
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remained stable, large area of crop were converted to built-up land (Figure 5.7-5.9). GPP for 

Hangzhou city was calculated based on light-use efficiency method for 2001 – 2010 period 

with MODIS 16-day EVI product, Landsat image classification results, and surface 

shortwave incident radiation data from GLDA. Each 16-day GPP (13-day for the last cycle of 

non-leap year, 14-day for leap year) was then accumulated to annual GPP (Table 5.4). Figure 

5.8 is a seasonal GPP plot from 2001 to 2010 with GPP in the unit of 0.0001 Kg C/(m
2
*day).  

GPP change in this area from 2001 to 2010 has three stages: 2001 - 2002, 2003 - 2008, 

and 2009 - 2010. Highest annual GPP is found during 2001 to 2002. In 2003, a rapid drop of 

GPP occurred, very interestingly, corresponding to the starting time point of real estate 

development in Hangzhou. GPP remain stable during 2003 – 2008 except a relatively higher 

GPP value in 2007. Annual GPP dropped again in 2009. The overall trend is decreasing. 

From 2001 to 2010, mean GPP decreased by 23% while built-up area increased by over 80%.  

 

Figure 5.7 Land Cover Type in Hangzhou in 2001 
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Figure 5.8 Land Cover Type in Hangzhou in 2010 

 

Figure 5.9 Land Cover Change in Hangzhou from 2001 to 2010 
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Table 5.4 Summary Statistics of Landsat-derived GPP in Hangzhou City 

Year Mean Min Max Std. Dev. 
2001 5265.396 0 13958.162 3047.003 
2002 5116.157 0 13682.897 3156.753 
2003 4300.502 0 10839.121 2627.860 
2004 4427.953 0 11417.204 2848.209 
2005 4428.471 0 11509.028 2810.447 
2006 4434.384 0 11811.452 2857.593 
2007 4958.486 0 13022.285 3216.418 
2008 4354.339 0 11554.476 2978.814 
2009 3900.385 0 10837.497 2829.646 
2010 4049.857 0 12100.703 3031.548 

Mean, Min, Max: 0.0001 kg C/(m
2
*year) 

 
The TMIN_scalar and VPD_scalar are not the main cause of GPP change across the 

ten-year period (Figure 5.11 - 5.15). Even through the variation range became larger for these 

two factors, the mean scalar of each 16-day period of each year didn’t vary greatly. The 

climate change effects were not the primary cause of GPP decrease in the Hangzhou City 

from 2001 to 2010. The main change of GPP was because of urbanization process changed 

large area of cropland into built-up area. In 2001, cropland occupied more than 50% of the 

city area and build-up area was less than 20%. In 2010, the area cropland and built-up land 

was almost equal. The mean GPP decreased by 23% from 2001 to 2010 most likely due to 

urbanization process. Hangzhou City has the most expensive average house price ($3800 per 

square meter) in China. With such economic stimulus, further development of built-up area 

can be expected, together with decrease in GPP.  

In the analysis, daily minimum, maximum, average and dew point temperature are from 

ground observation data. The data collection is often based on repeated measurement at 

multiple time-points. It makes sure the high quality data are acquired. On the other hand, 

remotely sensed data have higher uncertainties like cloud contamination. Studies that are 

more quantitative in nature may need to perform cloud screening processes to reduce this 

influence. 
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Figure 5.10 GPP in Hangzhou City from 2001 to 2010 
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Figure 5.11 Daily Mean Temperature from 2001 to 2010 

 
Table 5.5 Summary of Temperature Change from 2001 to 2010 

Year Mean Std. Dev. 
2001 17.425 8.531 
2002 17.669 8.111 
2003 17.503 9.409 
2004 17.720 8.700 
2005 17.444 9.841 
2006 18.171 8.972 
2007 18.361 8.769 
2008 17.490 9.432 
2009 17.802 9.330 
2010 17.410 9.072 
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Figure 5.12 Daily T_scalar for Forest Land Cover from 2001 to 2010 
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Figure 5.13 Daily T_scalar for Crop Land Cover from 2001 to 2010  
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Figure 5.14 Daily VPD_scalar for Forest Land Cover from 2001 to 2010 
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Figure 5.15 Daily VPD_scalar for Crop Land Cover from 2001 to 2010 

 
 
 
 
 

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000 2500 3000 3500 4000

VP
D

_s
ca

la
r

Day

Daily VPD_scalar for Crop



68 

5.2.2 Comparison of Landsat GPP and MODIS GPP 

This subsection will compare Landsat-derived GPP with MODIS GPP. Figure 5.14 

shows the GPP derived from two algorithms from 2003 to 2010 (23 periods per year). Mean 

daily GPP value was compared only in the area where MODIS GPP is not using fill value for 

built-up. In other words, the comparison is mainly on cropland and forest.  

Even though MOD 17 product also shows a decreasing trend in GPP, the MOD 17 

calculated GPP has a higher value than landsat-derived GPP (Table 5.5). Figure 5.15 plots 

two algorithm’s result together, showing the relationship of Landsat GPP and MOD 17 GPP. 

The overall trend of two algorithms seems to fit. But comparing to Landsat-derived value, 

MODIS GPP has much higher values during growing seasons. In some years, EVI-derived 

GPP is nearly the half of MODIS GPP during the centermost periods of each year. MODIS 

GPP has more spikes pointing upward or downward, comparing to Landsat-GPP.  

The GPP algorithm in MOD 17 and LUE used in this study is based on same theory, 

calculated as: 

GPP =εmax * TMIN_scalar * VPD_scalar * FPAR * SWRad * 0.45 

 The main difference in the equation is FPAR. MOD 17 uses MOD 15 FPAR product as 

FPAR inputs, while this study adopts EVI as equivalent of FPAR.  

Wu et al. (2008) also found smaller EVI than NDVI in their modeling of GPP. They 

concluded that FPAR estimation based on NDVI-FPAR function is likely to represent the 

FPAR absorbed by all green vegetation, while EVI-FPAR function only represent the FPAR 

absorbed by leaf chlorophyll and EVI-GPP function is more linear related (Wu et al, 2008). 

As EVI is harder to get saturated in densely vegetated area, it is not as noisy as NDVI. In 

theory, whereas the NDVI is chlorophyll sensitive, the EVI is more responsive to canopy 

structural variations.  

The FPAR-EVI function has been examined in temperate forest and temperate grassland. 
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The results of those studies generally agree with the observation based on flux tower 

measurement. The vegetation in Hangzhou is consisting of forest and large area of cropland. 

However, two land cover types both present a lower GPP than MODIS GPP. Many studies 

found that MODIS GPP underestimate or overestimate GPP in many cases when comparing 

MODIS GPP to field flux tower observed GPP (Sjöström et al, 2011; Stagakis et al, 2007).  

In this case, the use of EVI as an equivalent of FPAR may underestimate the GPP 

because the vegetation structure in this area is not very densely vegetated so that using 

FPAR-EVI function didn’t respond well to chlorophyll, which is closely related to 

photosynthesis. Given the linear relationship of EVI and FPAR that has been reported by 

many studies, the coefficient “a” may need further analysis, for this specific study site. Many 

studies reported EVI-GPP relationship with great variation. The contamination of remotely 

sensed VI and different seasonality of EVI and GPP are two main issues: 16-day composite 

may still suffer from cloud contamination when there is no cloud-free acquisition during a 

16-day period; during leaf expansion period, leaf photosynthetic capacity and leaf area 

change may not be coincident (Nagai et al., 2010). Studies should be carried out to observe 

GPP in the field with flux tower and compare the result with two algorithms addressed in this 

study: the difference of remotely sensed VI and ground-observed VI and the difference of 

remotely sensed GPP and ground-observed GPP need to be examined for the specific site. 

In the algorithm, TMIN_scalar and VPD_scalar are two factors having direct influence 

on the ε value. From 2001 to 2010, the daily mean temperature went up slightly (Figure 5.11) 

and seasonal temperature variation is greater during 2006 to 2007. During spring and winter, 

main limitation for ε is temperature. In the summer, vapor pressure deficit is the main limit 

(Figure 5.14-5.15). The MODIS Algorithm uses daily DAO with spatial resolution of 

1.00°×1.25° as meteorological inputs, while this study used ground-station data. As GPP 

value is sensitive to meteorology inputs, higher temperatures may result in high vapor 
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pressure deficits and lower GPP. It is likely that the approach of adopting ground-station 

observation data may introduce uncertainty of GPP estimation to some extent in the 

urban-nonurban transition.  

However, as efforts were made to assess the possibility of deriving scale factors from 

remotely sensed data, the MODIS daily temperature product and evaporation product usually 

have a substantial number of missing values over a very large area. The same situation 

happens with 8-day composite products. MODIS monthly average products are less affected 

by missing data issue. Balance between spatial and temporal resolution is of primary concern 

when making decisions about which product to use.  
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Figure 5.16 Mean Daily GPP Derived from Two Algorithms in Hangzhou City
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Figure 5.17 The relationship of Landsat GPP and MOD 17 GPP 

 
5.3 Method Derivation for Estimating EVI 
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Figure 5.18 Time-series EVI for Built-up Area 
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Figure 5.19 Time-series EVI for Forest Land Cover Type 
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Figure 5.20 Time-series for Crop Land Cover Type
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5.3.2 Function for Estimating EVI 

The F(t) function representing the basic trend of vegetation seasonality. Using the F(t) 

function to fit to time-series data for data from three windows, the R-square generally ranges 

from 0.4 to 0.77: within 120 observations, 15% are above 70%, more than 51% range from 

0.6 to 0.7, the rest are below 0.6. 

Stepwise analysis was performed to construct EVI function with climate indicators 

(temperature and precipitation). Temperature and precipitation data were aggregate into 

16-day average and 16-day summation, accordingly. The regression results indicate that the 

basic seasonal variation has been taken out by F(t) function. Using temperature and 

precipitation as independent variables to explain the interannual difference does not work 

well. One the other hand, the seasonal cycle has very high correlation with temperature 

(generally larger than 0.9). The main seasonal variation is attributed to temperature or 

radiation. Figure 5.21 to Figure 5.23 present the relationship of EVI and temperature (Ti, 

where i represents how many periods before EVI acquisition) using one cell as example. 

Figure 5.24 presents the relationship of EVI and precipitation (Pi, where i presents how many 

periods before EVI acquisition). The fitted-EVI reduced the noise of cloud contamination 

greatly and has a better correlation with temperature (Figure 5.27). As F(t) function or EVI-T 

regression generally underestimate EVI around peak value, temperature is the main factor 

affects vegetation growth, and T0 have highest correlation with EVI, equation (3) was 

established: 

EVI_est = F1 * T0 + F2 * T0
2
 + F3 

where F1, F2, and F3 are one set of coefficients for one pixel, T0 is the 16-day period at the 

same 16-day of EVI acquisition. The result is shown in Figure 5.26.  
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Figure 5.21 The Relationship of EVI and Temperature (T0 to T3) 
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Figure 5.22 The Relationship of EVI and Temperature (T4 to T7) 
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Figure 5.23 The Relationship of EVI and Precipitation (P1 to P4) 
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Figure 5.24 The Relationship of MODIS EVI and Precipitation (P5 to P8) 
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Figure 5.25 The Relationship of Function-fitted EVI and Temperature (T1 to T2) 

  

Figure 5.26 Estimated EVI from 2001 to 2010  
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 Temperature at the same 16-day period of EVI acquisition has the best linear relationship 

with EVI. With the increase of time-period, the results shift from positively correlated to less 

correlated, then to negatively correlated. The EVI-precipitation relationship, on the other 

hand, shows a very low correlation. It indicates that precipitation is not the main limiting 

factor causing seasonal variation of tree growth in Hangzhou as Hangzhou has a humid 

subtropical climate with abundant rainfall all the year around. Other factors including soil 

moisture, relative humidity should be introduced into the estimation function to test their 

correlation to EVI. 

Figure 5.26 shows the estimated EVI and function-fitted EVI. The two EVI generally 

have high correlation (larger than 0.8). However, most difference occurs the peak valley time. 

The temperature factor along is not good enough to be used in the forecast or backcast. The 

quality of EVI may be another problem: data from the satellite suffers from cloud 

contamination even in a 16-day composite; the fitted function is limited by original data, 

which introduce further uncertainty in the later analysis.  

Vegetation grows in a suitable temperature. The lowest and highest temperatures in the 

Hangzhou area are not severe enough to stop tree growth for a long period. So during the 

aggregate of temperature, lower temperature was not ruled out. Generally, the estimated EVI 

was not accurate enough for GPP analysis due to the shifted peak and valley. T0 has better 

correlation than other periods, which is probably because T0 has better linear relationship 

with the effect of “growing degree day”. Growing degree day quantifies the cumulative effect 

of temperature. Further analysis could be carried out to examine phenology change based on 

growing degree day. 

Being a factor controlling vegetation stomata status, vapor pressure deficit was also 

examined with regression. Combination of VPD, temperature and precipitation all yields 

lower correlation than F(t) function.  
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Further analysis of adopting Gaussian function or other functions to derive EVI 

estimation functions is not conducted in this study. The original intention of deriving EVI 

estimation function is to using the curve and a single time-point EVI to derive EVI for the 

whole year. The ideal estimation is based on two parts: basic seasonal cycle of vegetation 

phenology and interannual variation that can be linked to climate indicators or other factors. 

To satisfy this requirement, factors play as the driving factors of interannual variability other 

than temperature should be identified or better estimation function based on temperature 

should be derived first, in order to yield more accurate estimation. In this case, if human 

disturbance is involved to a large extent, the activities are hard to quantify and thus not 

suitable for prediction. One finding during this part of study is that for many studies use VI as 

inputs, the cloud contamination issue can be reduced with suitable filtering method, if the 

studies are not carried out in environment highly disturbed by human activities. 
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6 Conclusion 

In this study, efforts are made to assess urbanization and its carbon consequences in the 

Yangtze River Delta. First, an empirical model was established based on MODIS GPP, 

population, GDP and built-up area data with two equations. The empirical work attempts to 

answer what is the impact of urban expansion on GPP through a balanced panel of 16×6=96 

observations (one for each city-year from 2003 to 2008 within the 16 cities located in Yangtze 

River Delta). Second, GPP in the Hangzhou city area was calculated based on the light-use 

efficiency method with MODIS EVI, Landsat image, NOAA ground-station climate data, and 

GLDA radiation data. The land use and land cover change was assessed from 2001 to 2010 in 

this area. The Landsat-derived GPP was compared to MODIS GPP. Thirdly, the method of 

estimating EVI based on vegetation phenology and climate indicators was assessed in order 

to estimate GPP in a data-sparse environment when VI products with high temporal 

resolution were not available (in 1970s, only one to two scenes of Landsat image can be used 

to derive vegetation indices every year). 

According to the empirical model estimations in the Yangtze River Delta, urban 

expansion is significantly correlated to decrease of both the annual GPP sum and GPP density. 

Column 1 in Table 5.2 shows that 1) a one-percent increase in built-up area (i.e. the built-up 

area increased from 100 km2 to 101 km2) is significantly correlated to a 1.066-percent 

decrease in annual GPP sum; a one-percent increase in population is significantly correlated 

to the by a 1.176-percent decrease of annual GPP sum; Column 2 in Table 5.2 shows that a 

one-percentage increase in built-up area ratio (i.e. the land area for a city is 1000 km2, within 

which the built-up area ratio increased from 10 percent (100 km2) to 11 percent(110 km2) ) is 

strongly correlated to a 15.4-percent decrease in annual GPP sum. The GPP density equation 

yields similar results. Another interesting finding is that capital cities has more GPP sum and 
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density compared with non-capital cities. The possible reason is that those cities have more 

funding and focus more on environment such as a more strict regulation for pollute-intensive 

industry formation. Capital cities are generally key tourism regions: they are more concerned 

about increasing green space and attracting tourists. Finally, the estimation of year fixed 

effects predicts a decrease trend of GPP sum and density across time.  

In the Yangtze River Delta, the efficiency of land use is one major issue. In 1992, the 

development strategy led to rapid establishment of new development zones. In 1991, there 

were only 17 developing zones in the area. By 1993, this number increased to 74. During this 

process, large areas of agricultural land were enclosed blindly and standing idle after 

enclosure. In some cities, the actual land enclosed is three times higher than approval (Liu, 

2005; Yang, 2001). Industrial uses of land were not wisely planned in many cases. The first 

part of this study shows the decreasing GPP with further urbanization in the Yangtze River 

Delta quantitatively. If this process continues to go on, primary production will continue to 

decline. This may increase the possibility of land degradation with heavier use of fertilizer. 

To achieve a sustainable future, land use in the Yangtze River Delta should be planned more 

wisely, and the structure of development should also be changed. To get rid of the dilemma 

of development and environment protection, an intensively sustainable development policy 

must be carried out to support a smart growth of cities in the area. 

In the Hangzhou city area, land cover type has changed dramatically since 2001. In 2001, 

cropland occupied more than 50% of the city area and build-up area was less than 20%. In 

2010, the areas of cropland and built-up land were almost equal. The mean GPP decreased by 

23% from 2001 to 2010 along with the urbanization process. It is very likely that the GPP 

will continue decreasing in the future with further urban expansion. Comparing to MODIS 

GPP, Landsat GPP has an overall similar trend. But MODIS GPP has much higher values 

during growing seasons. As many studies have reported that MODIS GPP tend to 
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underestimate GPP comparing to ground observation GPP, the landsat-derived GPP is likely 

underestimated. The main difference in the algorithm is that Landsat-derived GPP adopts 

FPAR-EVI function. Landsat-derived GPP may underestimate GPP as EVI is more 

responsive to canopy structural variations and does not respond well to chlorophyll. In order 

to make further conclusion, studies should be carried out to observe GPP in the field. 

During the simulation of EVI, regression results show that using F(t) function as seasonal 

cycle and try to explain interannaul difference with temperature and precipitation does not 

work well for the study sites. Temperature at the same 16-day period of EVI acquisition has 

the best linear relationship with EVI (Figure 5.21 - 5.23) while the EVI-precipitation 

relationship shows a very low correlation. The estimated EVI’s shifts in peaks and valleys 

comparing to function-fitted EVI suggest that using estimated EVI is not good enough for 

GPP analysis. To satisfy the need to estimate VI in a data-sparse environment, factors play as 

the drivers of interannual variability other than temperature should be identified first or better 

simulation function should be derived. If human disturbance is the main reason for 

interannual difference, this method is not suitable for backcast, as human activities are hard to 

quantify. On the other hand, the study finds filtering process over noisy VI outputs may 

reduce cloud contamination. However, caution is needed during filtering in case the real 

change is eliminated. 

This study demonstrates that urbanization processes in the Yangtze River Delta has a 

negative correlation with gross primary production. Landsat imagery is suitable for 

urbanization analysis. During the estimation of GPP, FPAR-EVI function needs to be 

examined with ground-truth. Derivation of other functions to better simulate interannual 

variation of VI will contribute to better estimation of VI. However, the factors could involve 

human disturbance, which is hard to quantify. Additionally, satellite products themselves 

contain inevitable errors, which also add difficulties to analysis. 
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Further studies could investigate the demand change of primary production in the 

Yangtze River Delta to better understand the balance and budget of GPP. Future studies could 

also investigate how to derive VPD based on satellite data with better spatial and temporal 

resolution. More ground-measured FPAR-EVI relationship based on different vegetation 

types and geographic areas would certainly provide insights on GPP analysis. Grassland VI 

prediction with temperature and precipitation yields results agree well with actual value 

(Iwasaki, 2009). The prediction resolution is relatively coarse (i.e. 0.25°×0.25°). Vegetation 

phenology is one important tool to improve VI forecast or backcast with higher spatial or 

temporal resolution. For satellite products with substantial errors due to cloud contamination, 

suitable filtering method would reduce the cloud effects. In future similar projects, filtered 

vegetation indices should be adopted. Also, nighttime light generated remote sensing 

products for GDP, population distribution can be used to assess spatial distribution of GPP 

and those factors.  
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ERDAS Script for Changing Fill Values in Raster File to Zero 

 

COMMENT "Generated from graphical model: Change Fill Value"; 

# 

# set cell size for the model 

# 

SET CELLSIZE MIN; 

# 

# set window for the model 

# 

SET WINDOW UNION; 

# 

# set area of interest for the model 

# 

SET AOI NONE; 

# 

# declarations 

# 

Integer RASTER n1_2002_185_clip FILE OLD NEAREST NEIGHBOR AOI NONE arg1; 

Integer RASTER n3_jiaxing FILE DELETE_IF_EXISTING USEALL ATHEMATIC 16 BIT 

SIGNED INTEGER arg2; 

# 

# function definitions 

# 

n3_jiaxing = CONDITIONAL { ($n1_2002_185_clip >= 30000) 0 , ($n1_2002_185_clip < 
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30000) $n1_2002_185_clip } ; 

QUIT; 
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IDL Script for Coverting GeoTiff File to Flat Binary File 

 

 

pro tif2bin 

files = dialog_pickfile(filter='*.tif',/read,/multiple,title='Please input images') 

num=n_elements(files) 

path = 'J:\EVI \' 

FOR i =0, num -1 DO BEGIN 

 tmp = read_tiff(files[i],geotiff = tifinfo) 

 tmp2 = float(tmp)/10000.0 

 newfile = path + file_basename(files[i],'tif') 

 OPENW, 1, newfile 

 ; Write the data  into the file: 

 ; FIX() function is used to change the file format to 16bit signed integer!! 

 WRITEU, 1, tmp2 

 ; Close file unit 1: 

 CLOSE, 1 

ENDFOR 

 

print, 'Congratulations!!!' 

 

end 

  



92 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Bibliography 

  



93 

Antrop, M.. 2004. Landscape change and the urbanization process in Europe. Landscape and 
Urban Planning. 67: 9-26. 

Ardö, J., M. Mölder, B. El-Tahir and H. Elkhidir. 2008. Seasonal variation of carbon fluxes 
in a sparse savanna in semi arid Sudan. Carbon Balance and Management. 3: 7 

Bounoua, L., Safia, A., Masek, J., PetersLidars, C., and Imhoff, M. L. (2009). Impact of 
urban growth on surface climate: A case study in Oran, Algeria. J. Appl. Meteor. Clim., 48, 
217-231.  

Cervero, R., and Day, J. 2008. Suburbanization and transit-oriented development in China. 
Transport Policy, 15(5): 315-323.  

Champion, T., 2001. Urbanization, suburbanisation, counterurbanisation and reurbanisation. 
In: Paddison, R. (Ed.), Handbook of Urban Studies. Sage, London, pp. 143 – 161. 

Chen, S., Zeng, S., and Xie, C.. 2000. Remote Sensing and GIS for Urban Growth Analysis 
in China. Photogrammetric Engineering and Remote Sensing. 66 (5): 593 – 598. 

Curtis, O., Hanson, P., Bolstad, P., Barford, C., Randolph, J., Schmid, H., Wilson, L.. 2002. 
Biometric and Eddy Covariance Based Estimates of Annual Carbon Storage in Five Eastern 
North American Deciduous Forests. Agricultural and Forest Meterology. 113: 3 – 19. 

Dell, A., and Gamba, P.. 2001. Detection of urban structures in SAR images by robust fuzzy 
clustering algorithms: The example of street tracking. IEEE Trans. Geosci. Remote Sensing 
39 (10): 2287–2297. 

Eklundh, L., and Jönsson, P., 2010, TIMESAT 3.0 - Software Manual. Lund University, 74 
pp. Eklundh, L. and Jönsson, P., 2009, Timesat 3.0 Software Manual, Lund University, 
Sweden. 

Jönsson, P. and Eklundh, L., 2002, Seasonality extraction and noise removal by function 
fitting to time-series of satellite sensor data, IEEE Transactions of Geoscience and Remote 
Sensing, 40, No 8, 1824 – 1832. 

Fensholt, R. I., Sandholt and M.S. Rasmussen. Evaluation of MODIS LAI, fAPAR and the 
relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. 
2004. Remote Sensing of Environment 91: 490–507 

Fu, S., and Gao, G.. 1989. Jing-Jin-Tang Atlas of Ecological Environment. Science Press. 
Beijing. 316p. 

G. Grigera, M. Oesterheld. Forage Production monitoring system : parameterization of fPAR 
and RUE. 2006. Poster presented at "Global Vegetation Workshop". University of Montana. 
IFEVA, Facultad de Agronomia, Universidad de Buenos Aires. 
http://www.ntsg.umt.edu/VEGMTG/posters/Griger_VegWorkshop_Missoula2006.ppt 

Gallo, K. P., McNab, A. L., Karl, T. R., Brown, J. F., Hood, J. J., and Tarpley, J. D.. 1993. 
The use of a vegetation index for assessment of the urban heat island effect. International 
Journal of Remote Sensing. 14: 2223- 2230. 

Göckede, M., T. Foken, M. Aubinet, M. Aurela, J. Banza and C. Bernhofer et al.. 2008. 



94 

Quality control of CarboEurope flux data—Part 1: coupling footprint analyses with flux data 
quality assessment to evaluate sites in forest ecosystems, Biogeosciences 5: 433–450 

Goward, S., Tucker, C., Dye, D.. 1985. North American Vegetation Patterns Observed with 
the NOAA-7 AVHRR. Vegetatio. 64: 3 – 14. 

Güneralp, B., and Seto, K.. 2008. Environmental Impacts of Urban Growth from an 
Integrated Dynamic Perspective: A Case Study of Shenzhen, South China. Global 
Environmental Change. 18: 720 – 735. 

Haack, B., Bryant, N., and Adams, S., 1987. Assessment of Landsat MSS and TM Data for 
Urban and Near-Urban Landcover Digital Classi. cation. Remote Sensing of Environment. 21: 
201–213. 

He, J., and Zhuang, D..2006. Spatial and Temporal Land Use Pattern and Environment 
Impacts in Yangtze River Delta. Geographical Research. 25 (13): 388 – 396. (in Chinese) 

Imhoff, M., Bounoua, L., Ruth, D., Lawrence, W., Stutzer, D., Tucker, c., and Ricketts, T.. 
2004. The Consequences of Urban Land Transformation on Net Primary Productivity in the 
United States. Remote Sensing of Environment. 89: 434 – 443. 

Jensen, J., and Cowen, D.. 1999. Remote Sensing of Urban/Suburban Infrastructure and 
Socio-Economic Attributes. Photogrammetric Engineering and Remote Sensing. 65 (5): 
611-622. 

Ji, M., and Jensen, J., 1999. Effectiveness of subpixel analysis in detecting and quantifying 
urban imperviousness from Landsat Thematic Mapper imagery, Geocarto International. 14(4): 
31–39. 

Jing, X. 2007. Suburbanization Trend of Large Cities in the Yangtze River Delta (in Chinese). 
Zhejiang Economy. 11: 17 – 19. 

Jönsson, P. and Eklundh, L., 2004, Timesat - a program for analyzing time-series of satellite 

sensor data, Computers and Geosciences, 30, 833 – 845. 

Kanniah, K.D., J. Beringer, L.B. Hutley, N.J. Tapper and X. Zhu. 2009. Evaluation of 
collections 4 and 5 of the MODIS Gross Primary Productivity product and algorithm 
improvement at a tropical savanna site in northern Australia, Remote Sensing of Environment 
113: 1808–1822 

Lieth H., Whittaker R.. 1975. Primary Productivity of the Biosphere. New York. 
Springer-Verlag. 

Lindroth, A., F. Lagergren, M. Aurela, B. Bjarnadottir, T. Christensen and E. Dellwik et al.. 
2008. Leaf area index is the principal scaling parameter for both gross photosynthesis and 
ecosystem respiration of Northern deciduous and coniferous forests, Tellus Series 
B-Chemical and Physical Meteorology 60: 129–142 

Liu, h. 2005. Situation of land resources in yangtze river delta and counter measures for 
sustainable utilization. Chinese journal of agricultural resources and regional planning. 26(4): 
9 -13. 



95 

Lu, D., Xu, X., Tian, H., Moran, E., Zhao, M., Running, S.. 2010. The Effects of 
Urbanization on Net Primary Productivity in Southestern China. Environmental Management. 
46: 404 – 410. 

Ma, L. 2004. Economic reforms, urban spatial restructuring, and planning in China. Progress 
in Planning. 61: 237 – 260. 

Monteith, J.. 1972. Solar Radiation and Productivity in Tropical Ecosystems. Joural of 
Applied Ecology. 9: 747 – 766. 

Monteith, J.. 1977. Climate and Efficiency of Crop Production in Britain. Philosophical 
Transactions of Royal Society of London, Ser. B: 277 – 294. 

Nagai, S, Saigusa, N, Muraoka, H, Nasahara, KN. 2010. What Makes The Satellite-Based 
Evi-Gpp Relationship Unclear In A Deciduous Broad-Leaved Forest? Ecological Research, 
25(2), 359-365. 

Ni, J.. 2004. Estimating Net Primary Productivity of Grasslands from Field Biomass 
Measurements in Temperate Northern China. Plant Ecology. 174: 217 - 234. 

Niu, Z., Wang, C.. Basis and Application of Carbon Cycle Remote Sensing. Science Press. 
Beijing. 2008. 286p. 

Pan, X. and Zhao, Q.. 2007. Measurement of Urbanization Process and the Paddy Soil Loss 
in Yixing City, China between 1949 and 2000. Catena. 69: 65-73. 

Pant, M. 2008. Response of Vegetation Phenology to Rainfall timing in the Sahel 1982 to 
2004. Thesis Submitted to the International Institute for Geo-information Science and Earth 
Observation. 

Rottensteiner, F., Briese, Ch., 2002. A new method for building extraction in urban areas 
from high resolution LIDAR data. ISPRS. Photogrammet. Comput. Vision, Graz, 
Austria,9–13 September, pp. A-295 ff. 

Running, S., Nemani, R., Heinsch, F., Zhao, M., Reeves, M., and Hashimoto, H.. 2004. A 
Continuous Satellite-Derived Measure of Global Terrestial Primary Production. BioScience. 
54 (6): 547 – 559. 

Running, S., Nermani, R.. 1988. Relating Seasonal Patterns of the AVHRR Vegetation Index 
to simulated Photosynthesis and Transpiration of Forests in Different Climates. Remote 
Sensing of Environment. 24: 347 -367. 

Running, S., R. R. Nemani, F. A. Heinsch, M. Zhao, M. Reeves, and H. Hashimoto. 2004. A 
continuous satellite-derived measure of global terrestrial primary production. BioScience. 
54(6): 547-560.  

Seto, K., and Fragkias, M.. 2005. Quantifying Spatiotemporal Patterns of Urban Land-use 
Change in Four Cities of China with Time Series Landscape Metrics. Land Ecology. 20: 871 
– 888. 

Sicular, T. 1985. Chian’s grain and meat economy recent development and implications for 
trade. American Journal of Agricultural Economics. 67: 1055 – 1062. 



96 

Song, C. 2005. Spectral mixture analysis for subpixel vegetation fractions in the urban 
environment: How to incorporate endmember variability? Remote Sensing of Environment, 
95, 248?263. 

Stavros, s., Markos, N., Levizou, E., and Kyparissis, A.. 2007. Envisat Symposium 2007. 
Montreux, Switzerland. 

Streutker, D.. 2003. Satellite-measured Growth of the Urban Heat Island of Houston, Texas. 
Remote Sensing of Environment. 85: 282 – 289. 

Tans, P., Fung, I., and Takahashi T.. 1990. Observational Constraints on the Global 
Atmospheric CO2 Budget. Science. 247: 1431 – 1438. 

Tetens, O., 1930. Uber einige meteorologische Begriffe. z. Geophys. 6:297-309. 

Tucker, C., Townshend, J., and Goff, T.. 1985. African Landcover Classification Using 
Satellite Data. Science. 227: 369 – 374. 

Turner, D., Urbanski, S., Wofsy, S., Bremer, D., Gower, S., &and Gregory, M.. 2003. A 
cross-biome comparison of light use efficiency for gross primary production. Global Change 
Biology. 9: 383–395. 

Wang, Z., Xiao, X., Yan, X.. 2010. Modeling Gross Primary Production of Maize Cropland 
and Degraded Grassland in Northestern China. Agricultural and Forest Meteology. 150: 1160 
– 1167. 

Welch, R.. 1980. Monitoring Urban Population and Energe Utilization Patterns from Satellite 
Data. Remote Sensing of Environment. 9: 1 - 9. 

Weng, Q.. 2002. Land use change analysis in the Zhujiang Delta of China using satellite 
remote sensing, GIS and stochastic modelling. Journal of Environmental Management. 64 (3): 
273-284. 

Wu, W., Wang, S., Xiao, X., Yu, G., Fu, Y., and Hao, Y.. 2008. Modeling gross primary 
production of a temperate grassland ecosystem in Inner Mongolia, China, using MODIS 
imagery and climate data. Sci China Ser D-Earth Sci. 51 (10): 1501 – 1512. 

Xiao, J., Shen, Y., Ge, J, Tateishi, R., Tang, C., Liang, Y., and Huang, Z.. 2006. Evaluating 
Urban Expansion and Land Use Change in Shijiazhuang, China, by Using GIS and Remote 
Sensing. Landscape and Urban Planning. 75: 69 – 80. 

Xiao, X., Zhang, Q., Saleska, S., Hutyra, L., De Camargo, P.,Wofsy, S., et al. 2005. 
Satellite-based Modeling of Gross Primary Production in a Seasonally Moist Tropical 
Evergreen Forest. Remote Sensing of Environment. 94: 105–122. 

Xu, C., Liu, M., An, S., Chen, J., and Yan, P.. 2007. Assessing the Impact of Urbanization on 
Regional Net Primary Productivity in Jiangyin County, China. Journal of Environmental 
Management. 85: 597 – 606. 

Xu, H., Wang, X., and Xiao, G.. 2000. A Remote Sensing and GIS Integrated Study on 
Urbanization with Its Impact on Arable Lands: Fuqing City, Fujian Province, China. Land 
Degradation and Development. 11: 301 – 314. 



97 

Yang, G. 2001. The process and driving f orces of change in arable2land area in 

The yangtze river delta during the past 50 years. Journal of Natural Resources. 16 (2): 121 - 
127. 

Yu, D., Shao, H., Shi, P., Zhu, W., and Pan, Y.. 2009. How Does the Conversion of Land 
Cover to Urban Use Affect Net Primary Productivity? A Case Study in Shenzhen City, China. 
Agricultural and Forest Meteorology. 149: 2054 – 2060. 

Zhao, T. 2007. Changing Primary Production and Biomass in Heterogeneous Landscapes: 
Estimation and Uncertainty Based on Multi-Scale Remote Sensing and GIS Data. 
Dissertation submitted to the University of Michigan. 

Zhao, T., Brown, D., Bergen, K.. 2007. Increasing Gross Primary Production (GPP) in the 
Urbanizing Landscapes of Southeastern Michigan. Photogrammetric Engineering and 
Remote Sensing. 73 (10): 1 – 9. 

 

 


