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ABSTRACT

MODELING HOSPITAL LENGTH OF STAY AND COST WITH
HETEROGENEITY

By

Xiaoqin Tang

Hospital length of stay (LOS) is an important measure of healthcare utilization and is gen-

erally positively skewed and heterogeneous. We fit a Coxian phase-type distribution to LOS

and identify the hidden states of the underlying latent homogeneous Markov model. We

demonstrate that selecting an appropriate number of phases and a regression model for haz-

ard rates can account for some heterogeneity in LOS. The Reversible Jump Markov Chain

Monte Carlo (RJMCMC) method enables us to dynamically uncover the hidden stochastic

Markov structure. A classification method is used to assign patients to different latent LOS

groups according to their mean LOS in hospitals.

Increasing availability of patient LOS and cost data permits joint analysis accounting for

their possible correlations. A bivariate Coxian phase-type/log-normal (CPH-LN) model is

proposed to assess the impacts of covariates simultaneously. Under marginal specification

through parametric models for LOS and cost, shared random effects are introduced in the

model as regressors and the model is easily estimated using SAS Proc NLMIXED.

We also propose an innovative method for the consideration of two-level correlations

between LOS and cost. In our model, we are concerned with intra-hospital correlations, cross-

equation correlations at both the hospital level and patient level. Full maximum likelihood

(FML) is used to derive parameter estimates. A simulation study is conducted to illustrate

our method.

The methodologies are illustrated with application to hospital admissions for acute my-



ocardial infarction (AMI) in the 2003 Nationwide Inpatient Sample (NIS) from the Health-

care Utilization Project (HCUP).
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Chapter 1

Introduction

1.1 Background

Studies of healthcare utilization from national and state administrative databases have been

stymied by a lack of powerful methodological approaches to circumvent the lack of specificity

that is often common in these databases. New statistical and econometric techniques are

needed to account for unobserved heterogeneity and uncover hidden structures in health-

care utilization data. Predictive models are valuable in identifying factors associated with

utilization so that adequate resources are properly allocated. These models are also used

for risk-adjustment in payment for healthcare services and identifying high-risk patients for

disease management programs. An important measure of healthcare resource use is hospital

length of stay (LOS), measuring the number of days from admission to discharge. LOS

can be terminated by cure, transfer to another care facility or death. In the past decade,

health care providers and hospital administrators are interested in LOS predictions for both

economic and organizational reasons. In addition to these aspects of quality control, there
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is also patient interest in anticipated dates of discharge. The development of LOS models

has been useful to economists and statisticians. Some standard parametric models, for ex-

ample, log-normal, Weibull, log-logistic and Generalized Gamma models have been widely

applied to survival data. Another key measure in healthcare utilization analysis is the cost

per individual patient, which is defined to be the total resource use from admission to dis-

charge. Some analysts treat the hospital cost independent of LOS in standard linear mixed

models after log transformation, or by standard survival analysis techniques, for example,

proportional hazards models or accelerated failure time models which specify different error

distributions, such as the extreme-value distribution, normal distribution and logistic distri-

bution, etc. However, the independence assumption is generally not valid since an important

feature of LOS and cost is the correlation between them, possibly in hierarchical levels, i.e.

both at the hospital and individual levels. Hence, although separate univariate models may

suffice to assess the correlates of LOS and hospital cost, the advantage of a multivariate

model over independent models is that the correlation between the outcomes can be esti-

mated resulting in inferences that are more efficient (Polverejan et al., 2003; Gardiner et al.,

2002). The shared random-effects models and the copula-based models are two different

ways to account for this correlation. For example, the correlation between the healthcare

outcomes of individuals in a cluster is often assessed using measures of dependence such as

the Pearson’s correlation coefficient, the Spearman’s rho and the Kendall’s tau. In addi-

tion, to account for correlation in the healthcare outcomes within a cluster or equivalently

heterogeneity between clusters, a random effect term is used, resulting in what are known

as frailty models in survival analysis. In this thesis, however, we propose a joint bivariate

copula random-effects model in a health economics study that includes both hospital-level

2



and individual-level correlation.

This thesis is concerned with two closely related measures of healthcare resource uti-

lization: LOS and cost. We consider models for LOS and joint models for LOS and cost.

Methodological advances have been made for analysis of both measures during the past

decade. In this chapter we first give a basic introduction to relevant models. We also

briefly review related statistical literature. Models are described in detail in the subsequent

chapters.

1.1.1 Length of Stay (LOS)

Length of stay (LOS) is a term commonly used to measure the duration of a single episode

of hospitalization. Inpatient days are calculated by subtracting day of admission from day

of discharge. People entering and leaving a hospital on the same day have a LOS of one.

Hospital LOS is an important measure of healthcare resource use because hospital spending

represents approximately one third of the national health spending which is projected to

reach 4.4 trillion by 2018 (Konetzka et al., 2008; Sisko et al., 2009). Various statistical

models have been used to assess the influence of clinical and demographic factors on LOS

and hospital charge. The primary goal is to estimate the expected value of LOS (Faddy

et al., 2009; Li, 1999; Wang et al., 2002). Analyses of LOS present several challenges to

researchers as LOS data are often skewed and therefore standard regression methods cannot

be applied directly. In addition, several other features of LOS data that need to be addressed

include incomplete observations and heteroscedasticity. Validity of statistical inference on

LOS will depend upon the strength of the methodology in addressing these characteristics

of hospital LOS.
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1.1.2 Cost

Hospital cost constitutes a significant proportion of overall expenditure in health care and

analysis of cost data is another interesting area which has attracted considerable attention

recently. Investigating appropriate models or assessing health outcomes and analysis of these

data can help us identify the most cost-effective treatment and ascertain the determinants

of cost (Liu, 2004).

Patient cost is collected as a final total cost in some national and state databases. For a

treatment or intervention under study, let C(t) be the accumulating cost over time t for an

individual patient. Expenditures terminate at the discharge time from the hospital. In other

situations we record cost C(tj) in a regular time interval (tj−1, tj ]. Similar to LOS, analysis

of hospital cost may have several technical problems, such as skewness, incompleteness,

etc. Sometimes other components of cost such as inpatient or outpatient cost exhibit a

two-part feature as a result of a significant proportion of zero cost. In addition, hospital

cost is often correlated with LOS. With escalating cost, knowing the correlates (also called

covariates) of LOS and in-hospital cost is important for decisions on allocating resources.

Naive analysis treats the hospital cost independent of LOS by standard linear mixed models

after log transformation (Sirbu, 2004), or by standard survival analysis techniques (such as

Kaplan-Meier estimators) (Etzioni et al., 1999; Lin et al., 1997; Lin, 2000; Hallstrom and

Sullivan, 1998). However the estimates might be invalid due to the correlation between LOS

and cost we mentioned before. Therefore there is an interest in developing a joint modeling

approach to analyze both LOS and hospital cost simultaneously.
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1.1.3 Accelerated Failure Time (AFT) Model

The accelerated failure time (AFT) model is presented as an alternative to the proportional

hazards model, which is widely used in medical research and time to event data analysis.

The AFT models also have been studied extensively in the literature for analyzing right

censored data (Buckley and James, 1979; Tsiatis, 1990; Wei et al., 1990; Jin et al., 2003).

Recently, Tian and Cai (2006) studied a numerically efficient simple estimation procedure

to the regression analysis of interval censored data using the AFT model.

Consider the following model,

log T = x′βββ + σε (1.1)

AFT models have a number of advantages, in particular, they offer a wider variety of shapes

of hazard functions than the parametric proportional hazards models that assume a partic-

ular distribution for survival times, since the family includes distributions with unimodal

hazard functions, such as the log-normal, log-logistic distributions. Moreover, the log-linear

formulation of such models emphasizes that the roles of the regression parameters and disper-

sion parameters are clearly separated (Keiding et al., 1997). The regression parameters in an

AFT model are also robust with respect to neglected random effects (Hougaard, 1999), less

affected by the choice of probability distribution, which is not the case for proportional haz-

ards models (Hougaard et al., 1994). In addition, regression parameters in the proportional

hazards model are more sensitive to the distribution of the random component.

The survivor function can be written as S(t|x) = S0

(
(t exp(−x′βββ))

1
σ

)
, where S0 is the

survivor function of the random variable exp(ε). Clearly, the individual characteristics act
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on the duration distribution by transforming the time scale T to T exp(−x′βββ). This may be

an accurate description of the actual variation in the lifetime distribution of complex self-

evolving organisms or mechanisms. Because of the one-to-one relation between a distribution

and its hazard function, the AFT specification can be translated into a specification of the

hazard function of T given x. Assuming a normal or logistic distribution for ε provides a

closed form expression for S(t|x), which will be used in the later chapters when modeling

cost.

1.1.4 Phase-type (PH) Model

Phase-type (PH) distributions are defined as distributions of absorption times T in Markov

processes with m <∞ transient states (the phases) and one absorbing state labeled m+ 1.

Since their introduction by Neuts in 1981 (Neuts, 1981), PH distributions have attracted a

lot of attention in the past decades and have been widely used in queuing theory, reliability

analysis, insurance risk, survival analysis, telecommunications, and healthcare utilization,

such as hospital LOS. Aalen (2002) connects PH models to problems in survival analysis,

for example the incubation time of acquired immune deficiency syndrome (AIDS) shown in

Figure 1.1. Asmussen et al. (1996) propose EM algorithm to estimate PH distributions and

exhibit four samples of the lengths of incoming telephone calls to the service center of one

of Israels major television cable companies. Olsson (1996) extends EM algorithm to cover

estimation from censored data including right-censored and interval-censored observations.

Bitran and Dasu (1994) analyze a queue to which the arrival process is the superposition of

separate arrival streams, each of whose interarrival time distributions is of phase type, and

the service time distribution is also of phase type.
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Figure 1.1: Phase-type model for incubation distribution of AIDS

PH distributions arise from a generalization of Erlang’s method of stages in a form that is

particularly well suited for numerical computation (Erlang, 1917). The simplest examples are

mixtures and convolutions of exponential distributions (in particular Erlang distributions,

defined as gamma distributions with an integer shape parameter). More generally, the

class comprises all series/parallel arrangements of exponential distributions, possibly with

feedback. PH distributions are a versatile class of distributions, which is dense in the class

of distributions defined on the non-negative real line. Hence any distribution on [0,∞) can,

at least, in principle be approximated by a PH distribution. Moreover, their formulation

also allows the Markov structure of stochastic models to be retained when they replace the

simple exponential distributions. Details will be provided in Chapter 2.

1.1.5 Random-Effects (RE) Model

The random-effects (RE) model arises in the context of analysis of survival data, event

counts, jointly dependent continuous and discrete variables and so forth. Random effects

have been used to model dependence, but they can also be viewed as a general approach of
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joint modeling. The RE modeling approach is built using regression models in which either

common or correlated latent variables enter the models in the same manner as regressors.

Such RE models have long history in statistics, for example, in the context of bivariate

distributions they have appeared under a variety of names such as the shared frailty model

in survival analysis (Hougaard, 2000), trivariate reduction model in multivariate count data

analysis (Kocherlakota and Kocherlakota, 1992), and latent variable models for multilevel,

longitudinal and structural equation analysis (Skrondal and Rabe-Hesketh, 2004). Generi-

cally they are all mixture models and can also be interpreted as random-effects models. Liu

(2009) proposes a joint random effects model of longitudinal medical cost data and survival,

taking into account the semi-continuous nature of medical costs. Liu and Huang (2009)

propose a joint random-effects model for a repeated measures process and a recurrent events

process, for which the correlation is modeled by shared random effects. RE models have

been also established as an appealing approach to analyzing longitudinal and survival data

(Vonesh et al., 2006; Ratcliffe et al., 2004; Wulfsohn and Tsiatis, 1997; Gruttola and Tu,

1994; Tsiatis et al., 1995; Henderson et al., 2000; Tsiatis and Davidian, 2004; Xu and Zeger,

2001; Guo and Carlin, 2004).

Let us consider a shared random-effects model for two possibly correlated outcomes Y1

and Y2 with joint density f :

f(y1, y2|x1, x2) =

∫ ∞
0

f1(y1|x1, ν)f2(y2|x2, ν)g(ν)dν (1.2)

where f1, f2, and g are univariate densities. For example, let f1(y1|x1, ν) and f2(y2|x2, ν)

denote normal marginal distributions for continuous variables Y1 and Y2, with conditional

mean µ1 = x′1β1 + ν and µ2 = x′2β2 + γν, where γ is a scale parameter as Y1 and Y2 might
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be in different scales. This approach suggests a way of specifying correlated models based

on a suitable choice of g(.).

In fact, we can consider more flexible bivariate or multivariate parametric models by intro-

ducing correlated, rather than identical, unobserved heterogeneity components in marginal

models. For example, suppose Y1 and Y2 are, respectively, Normal(µ1|ν1) andNormal(µ2|ν2),

where ν1 and ν2 represent correlated unobserved heterogeneity. Dependence between Y1 and

Y2 is induced if ν1 and ν2 are correlated. We refer to (ν1, ν2) as latent factors. For example,

we can assume (ν1, ν2) to have bivariate normal distribution with correlation ρ. The joint

density is of the form:

f(y1, y2|x1, x2) =

∫ ∫
f1(y1|x1, ν1)f2(y2|x2, ν2)g(ν1, ν2)dν1dν2 (1.3)

Similar to other generalized linear mixed models (GLMM’s), a full likelihood analysis of

the above joint model is hindered by the high-dimensional integration. To avoid these

computational problems, several approaches have been proposed, for example, Gaussian

quadrature techniques can be used as a practical estimation tool and computations car-

ried out in available software such as freely available softwares aML (http://www.applied-

ml.com/index.html) or SAS Proc NLMIXED.

1.1.6 Copula-based Regression Model

Copulas are another approach for modeling dependence or correlation in the context of lin-

ear or nonlinear regression models. Copulas, originally introduced by Sklar in 1959 (Sklar,

1959), have been suggested as a useful method for generating joint distributions from the

given marginals. For example, a copula approach can generate a Gaussian distribution when

9



the Gaussian copula is applied to the Gaussian marginal distributions. More importantly,

a copula model can also generate many complicated non-Gaussian joint distributions. This

approach is fruitful when the marginals can be specified with confidence, but the joint dis-

tribution is awkward to establish (Cameron et al., 2004). In the recent years, the copula

models become popular for modeling dependencies between random variables, especially in

such fields as biostatistics, finance and actuarial science (Genest and Rivest, 1993; Joe, 1997;

Nelsen, 1999; Capéraà et al., 2000). Chen and Fan (2002) study the temporal dependence

properties and the estimation of a class of semiparametric stationary Markov time series

models, propose simple estimators of the unknown marginal distribution and the copula

dependence parameter, and establish their large sample properties under easily verifiable

conditions. Miller and Liu (2002) propose a minimum cross-entropy approach that recovers

continuous joint distributions from the joint and marginal moments and the marginal densi-

ties. Smith (2003) models sample selection using Archimedean copulas with the specification

of binary models that are designed to account for data selectivity.

A copula is a function that connects the marginal distributions to restore the joint distri-

bution. In the bivariate case, a joint distribution H(x, y) can be expressed in terms of its mar-

gins FX(x) and FY (y) and a copula function C(·, ·) such that C(FX(x), FY (y)) = H(x, y).

In this approach, C models the dependence structure. Copulas separate marginal distribu-

tions from the dependence structure, and the appropriate copula for a particular application

is the one which best captures dependence features of the data. Details will be shown in

Chapter 4.
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1.2 Outline of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we will systematically

address the principles of PH and Coxian PH regression models. We will also describe the

estimation methods, including a context within the Bayesian framework. Later, we describe

the classification and calculation of partial effects based on the Bayesian posterior samples.

The methodology is illustrated with application to hospital admissions for acute myocar-

dial infarction (AMI) in the 2003 Nationwide Inpatient Sample (NIS) from the Healthcare

Utilization Project (HCUP).

In Chapter 3, we will describe a statistical approach based on shared random effects for

joint modeling LOS and hospital cost. To begin with, conditional on a common latent factor

ν, suppose hospital LOS (denote by T ) has a Coxian PH distribution and cost (denote

by C(T )) is log-normally distributed, they are independent. From this model, we derive

the marginal means, variances, covariances and correlations. The shared random-effects

methodology is applied to the same AMI data set described in Chapter 2, Section 2.9.

In Chapter 4, we address the problem in the correlation of LOS and cost with the bivari-

ate copula random-effects model. We model the hospital-clustered unobserved heterogeneity

through correlated random effects and individual correlation through the copula-based cor-

related measurement errors simultaneously. The full maximum likelihood (FML) is used for

the estimation. We carry out a simulation study to assess model fit and performance of

estimates. Similarly, the joint modeling approach is illustrated by the AMI data set again.

Finally, Chapter 5 summarizes our work and gives some suggestions for future research.
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Chapter 2

Modeling Hospital Length of Stay

with a Coxian PH Regression Model

In this chapter, we will give an overview of the phase-type (PH) distributions. To better

understand this chapter, we need to know the definition of the PH distributions and its

special subclasses, especially Coxian PH distributions, which we will use in our application

with real data. We also provide some basic properties of the PH distributions in Section 2.4.

2.1 Introduction

Phase-type (PH) distributions, introduced by Neuts in 1981 (see Neuts, 1981), are defined

as the distributions of the time to reach an absorbing state in a finite-state continuous-

time homogeneous Markov process. PH distributions have been received a lot of attention

in a wide range of stochastic modeling applications, such as telecommunication, teletraffic

modeling, queuing theory, reliability theory, insurance risk, survival analysis and healthcare

utilization, like hospital length of stay (LOS). PH distributions have enjoyed such popularity
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because they constitute a very versatile class of distributions defined on the non-negative real

numbers that lead to algorithmically tractable models. Since the set of PH distributions is

dense in the set of non-negative distributions with support on [0,∞), any non-negative dis-

tribution, at least in principle, can be approximated arbitrarily closely by a PH distribution.

In addition, their formulation also allows the Markov structure of stochastic models to be

retained when they replace the simple exponential distributions. A Coxian PH distribution

is a special form of PH distributions with the transient states ordered so that transitions

are forward flowing with exit from any transient state. Coxian PH distributions have con-

siderably fewer parameters than general PH distributions (Cumani, 1982). In the past two

decades, Aalen (2002), Marshall and his colleagues (Marshall et al., 2000, 2002; Marshall

and McClean, 2003; Marshall et al., 2005) have applied PH models to analyze LOS data.

Marshall et al. (2007) estimate total inpatient cost for a cohort of patients based on a Coxian

PH distribution for their hospital LOS. Fackrell (2009) gives a general survey of PH models

with applications to healthcare data. More recently, Auśın and colleagues (Auśın and Lopes,

2007; Auśın et al., 2008, 2009) proposed Bayesian methods for estimating a Coxian PH dis-

tribution, treated as “finite mixtures”. McGrory et al. (2009) use a fully Bayesian approach

for inference in Coxian PH models with covariate-dependent mean duration.

McGrory et al. (2009) incorporate covariates into Coxian PH distributions through a log-

linear mean function with the intent of estimating covariate effects on the mean LOS. Auśın

and collegues (Auśın and Lopes, 2007; Auśın et al., 2008, 2009) mention the importance

of ordering the incidence rate parameters in identifying parameter estimates, which has

consequences for classification. Their focus is on the estimation of ruin probabilities in

certain risk reserve processes in insurance claims and on the busy period in queuing systems,
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but they do not consider the influence of covariates. Bayesian methods are used for estimation

and inference.

In this chapter, we apply a similar Bayesian method to estimate Coxian PH regression

models that combine identification of transition probabilities and coefficients of covariates.

We describe a classification method to assign patients to different latent groups, and explain

differences in these groups by covariates.

2.2 Continuous Phase-type Distribution

Continuous phase-type (PH) distributions describe the time to absorption T of an un-

derlying finite-state continuous time Markov process {X(t); t ≥ 0}. We denote by E =

{1, 2, . . . ,m,m + 1} the state space where the single absorbing state is labeled ‘m + 1’ and

the remaining states 1, 2, . . . ,m are transient. X(t) is governed by the (m + 1) × (m + 1)

transition intensity matrix, AAA = {αhj}, h, j ∈ E, with the elements

αhj = lim
∆t↓0

P{X(t+ ∆t) = j|X(t) = h}
∆t

αhh = −
∑
j 6=h

αhj , h, j ∈ E
(2.1)

The probability density function, survival function and k-th non-central moment of T
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have closed forms

f(t) = πππ exp (Qt)(−Q111) (2.2)

S(t) = πππ exp (Qt)111 (2.3)

mk = (−1)kk!Q−k111, k = 1, 2, . . . (2.4)

Here, exp (A) denotes the matrix exponential of the square matrix A (Golub and Van Loan,

1996). The initial probability distribution over the transient states is πππ (row vector), Q is

the m ×m intensity matrix for the Markov chain, restricted to the transient states, and 111

is a column m-vector of 1’s. Equation (2.2) is a representation of a PH distribution given

(πππ,Q). The class of all PH distributions with generator Q is denoted by PH(Q), including

the representation (0,Q), which is the distribution with point mass at zero (or a process that

is instantly absorbed in m+ 1). The class PH(Q) can be described as the convex hull of the

points (0,Q) and (eeek,Q), k = 1, 2, . . . ,m, where eeek is a m× 1 vector with k-th component

equals to 1, and all other components equal to 0.

We now give some special examples of PH distributions, assuming that there is no prob-

ability mass at zero.

(1) Exponential distributions

1
λ - 2

The simplest non-trivial example of a PH distribution is the exponential distribution

with the parameter λ , which has density function f(x) = λ exp(−λx) with a repre-
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sentation

πππ = 1,Q = (λ)

(2) Hyper-Exponential (Mixture of exponential) distributions

1 2 · · · m

?
λ1

?
λ2

? ?
λm

m+ 1

The hyper-exponential distribution with density function f(x) =
∑m
i=1 πiλi exp(λix)

can be represented as a PH distribution with

πππ = (π1, π2, · · · , πm)

Q =



−λ1 0 0 · · · 0

0 −λ2 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · −λm


where

∑m
i=1 πi = 1.

(3) Erlang distributions

1
λ- 2

λ- · · · λ- m λ- m+ 1

The m-Erlang distribution has two parameters, the shape an integer m > 0 and the

rate λ > 0. This is sometimes denoted E(m,λ). The Erlang distribution with the
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density function f(x) =
λmxm−1 exp(−λx)

(m− 1)!
has the PH representation

πππ = (1, 0, · · · , 0)

Q =



−λ λ 0 0 · · · 0 0

0 −λ λ 0 · · · 0 0

0 0 −λ λ · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · −λ λ

0 0 0 0 · · · 0 −λ


m×m

(4) Hypo-exponential distributions

1
λ1- 2

λ2- · · · λk- m λm- m+ 1

The hypo-exponential distribution is a generalization of the Erlang distribution by hav-

ing different rates for each transition (the non-homogeneous case), i.e.

πππ = (1, 0, · · · , 0)

Q =



−λ1 λ1 0 0 · · · 0 0

0 −λ2 λ2 0 · · · 0 0

0 0 −λ3 λ3 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · −λm−1 λm−1

0 0 0 0 · · · 0 −λm


m×m
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(5) Coxian PH distributions

?

1 2 · · · m- - -

? ? ? ?

m+ 1

The Coxian distribution is a generalization of the hypo-exponential distribution. The

absorbing state can be reached from any phase. The PH representation is given by,

πππ = (1, 0, · · · , 0)

Q =



−λ1 p12λ1 0 0 · · · 0 0

0 −λ2 p23λ2 0 · · · 0 0

0 0 −λ3 p34λ3 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · −λm−1 pm−1,mλm−1

0 0 0 0 · · · 0 −λm


m×m

where 0 < pk,k+1 ≤ 1, k = 1, 2, · · · ,m− 1. In the case when all pk,k+1’s=1, it reduces

to hypo-exponential distribution. The Coxian PH distribution is extremely important

as any acyclic PH distribution has a generator that is upper triangular and has an

equivalent Coxian representation. In addition, the process generalised Coxian PH

distribution relaxes the condition that requires starting in the first phase.

(6) Mixture of Erlang distributons

The mixture of two Erlang distributions with parameters E(m1, λ1), E(m2, λ2) and
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(ω1, ω2), such that ω1 + ω2 = 1, ωi ≥ 0 for each i, has the PH representation

πππ = (1, 0, · · · , 0)

Q =

 Q1 0

0 Q2


m×m

where Qk =



−λk λk 0 0 · · · 0 0

0 −λk λk 0 · · · 0 0

0 0 −λk λk · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · −λk λk

0 0 0 0 · · · 0 −λk


mk×mk

As noted earlier the class of PH distributions is dense in the set of distributions on [0,∞).

Unfortunately, this distribution family is over-parameterized and thus not identifiable. Ev-

ery PH distribution has several alternative representations (πππ,Q). This makes parameter

estimation difficult (Fackrell, 2009). For a simple example where one PH distribution can

be represented by two structures, see Figure 2.1. Consider two structures with m = 2,

PH(πππ1,Q1) and PH(πππ2,Q2), where πππ1 = (1, 0), πππ2 = (q, 1− q), Q1 =

 −λ1 qλ1

0 −λ2

, and

Q2 =

 −λ2 λ2

0 −λ1

, λ1 6= λ2. From (2.2), we get

f1(t) = f2(t) = (1− q)λ1 exp (−λ1) +
qλ1λ2
λ1 − λ2

[exp (−λ2t)− exp (−λ1t)]
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?

1 - 2

? ?

3

λ1 λ2

PH(πππ1,Q1)

? ?

1 - 2

?

3

λ1 λ2

q 1− q

PH(πππ2,Q2)

Figure 2.1: Two different representations for one PH distribution

It is also apparent from the examples that representations for PH distributions do not

necessarily have the same order, meaning that the number of transient phases need not be the

same. In fact, there must be a representation that has the minimal order. A representation

that has minimal order is called a minimal representation.

Imposing a special structure on Q can guarantee that every distribution PH(Q) has a

unique representation in the form (πππ,Q). Although one could work with such a minimal

representation, in this thesis we will use Coxian PH distributions because they present fewer

problems in estimation and inference and also provide a simple interpretation of fit for LOS

data.

2.3 Coxian Phase-type Models

A Coxian PH distribution results when the transient states have a natural order and only

forward transitions between them may occur, beginning in state 1: 1→ 2, 2→ 3, . . . ,m−1→

m and exiting from any transient state: 1→ m+ 1, 2→ m+ 1, . . . ,m→ m+ 1. Transitions

between the m+ 1 states is illustrated in Figure 2.2. The actual states of the Markov model

are not observable, that is, we assume every patient enters the system from state 1, but do
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not know the state from which the patients exit.

?

1 2 · · · m- - -

? ? ? ?

m+ 1

Figure 2.2: Representation of (m+ 1)-state Markov process with a Coxian PH distribution

A Coxian PH distribution is represented by (πππ,Q) where πππ = (1, 0, . . . , 0), and

Q =



−(α12 + α1,m+1) α12 0 · · · 0

0 −(α23 + α2,m+1) α23 · · · 0

...
...

...
. . .

...

0 0 · · · · · · αm,m+1


(2.5)

The number of parameters in a general PH distribution is m2 + m, but the number of

parameters in a Coxian PH distribution is reduced to 2m − 1. The Coxian family is also

dense in the class of all distributions on [0,∞) and is appropriate for estimating long-tailed

distributions.

In the context of survival analysis we are interested in the hazard rate for sojourn time in

each state and transition probabilities between states, thus it is constructive to reformulate

this intensity rates ααα’s to hazard rate in transient state k as λk = αk,k+1 + αk,m+1, k =

1, 2, . . . ,m − 1, and in transient state m as λm = αm,m+1. Transition probabilities are

pk,k+1 = αk,k+1�(αk,k+1 + αk,m+1) from k → k + 1, k = 1, 2, . . . ,m− 1 with pm,m+1 = 1.

Suppose we observe duration times of n patients ttt = (t1, t2, . . . , tn)′ from a presumed

Coxian PH with m transient states and covariate matrix X = {x1, . . . ,xn} where xi =
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(x1i, x2i, . . . , xli)
′. We can incorporate covariates in the classical way comparable to a

generalized linear model (Faddy et al., 2009). Assuming λki = λk(xi) = λ0k exp (−x′iβββ),

the conditional mean distribution is log-linear in xi, i.e, log (E(Ti|xi)) = a0 + x′iβββ, where

βββ = (β1, β2, . . . , βl)
′ is the coefficient vector, and a0 is a function of pk,k+1’s and λ0k’s.

From (2.2) the corresponding likelihood function can be written as

L(ttt|X, λ0,βββ,ppp) =
n∏
i=1

πππ[exp (ΛiPti)](−ΛiP111) =
n∏
i=1

πππ exp(Q̃iti)q̃qqi (2.6)

where Λi =



−λ1i 0 · · · 0

0 −λ2i · · · 0

...
...

. . .
...

0 0 · · · −λmi


, P =



1 −p12 0 · · · 0

0 1 −p23 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1


,

πππ = (1, 0, . . . , 0), Q̃iti = ΛiP and q̃qqi = −ΛiP111 = (p1,m+1λ1i, p2,m+1λ2i, . . . , pm,m+1λmi)
′.

The parameters of the model are λλλ0 = (λ01, λ02, . . . , λ0m)′, βββ = (β1, β2, . . . , βl)
′, and p =

(p12, p23, . . . , pm−1,m)′.

The likelihood function (2.6) becomes

n∏
i=1


πππ exp


exp (−x′iβββ)



−λ01 p12λ01 · · · 0

0 −λ02 · · · 0

...
...

. . .
...

0 0 · · · −λ0m


ti




exp (−x′iβββ)



(1− p12)λ01

(1− p23)λ02

...

λ0m






(2.7)

We refer to (2.7) as the likelihood of our Coxian PH regression model. Covariates enter

through a specific parameterization of the mean E(T |x) = exp (a0 + x′βββ). This maintains
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the general form of the mean common to accelerated failure time models, log T = x′βββ + σε

when σ is a scale parameter and ε has a specified distribution on the real line. For example, if ε

is extreme-value, then T has the Weibull distribution with E(T |x) = exp (log Γ(1 + σ) + x′βββ)

where Γ is the Gamma function. The log-normal, log-logistic and Generalized Gamma failure

time distributions also share this structure.

At the expense of a formidable increase in the number of parameters, a general Coxian

PH regression model could be described by specifying λk(xi) = λ0k exp(−x′iβββk) with phase-

type specific parameters βββk. In addition, a logit model log
(
pk,k+1/(1− pk,k+1)

)
= z′iγγγk

could be specified for transition probabilities. However, stability of ML estimates is often

in doubt unless some structural simplifications can be made and exclusion restrictions can

be imposed on the covariates x, z in the two parts of the regression model. Exploration of

various strategies for model formulation and estimation is the subject of on-going research.

2.4 Properties of Phase-type Distributions

In this section, we discuss some of the basic properties of the PH distributions. First, the

set of PH distributions is quite broad and, in theory, any non-negative distribution can be

approximated arbitrarily closely by a PH distribution.

Proposition 2.1. The distribution of PH(πππ,Q) is given by

F (t) = 1− πππ exp (Qt)111

for t ≥ 0, where the matrix exponential is defined by exp(A) =
∑∞
i=0

1

i!
Ai. The density
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function of PH(πππ,Q) is given by

f(t) = πππ exp (Qt)(−Q111)

for t ≥ 0. Let T be a random variable with the PH(πππ,Q) distribution, then

E
[
T k
]

= (−1)kk!Q−k111, k = 1, 2, . . .

The Laplace transformation of PH(πππ,Q) is given by

T̃ (s) = πππ(sI−Q)(−Q111)

where I is an identity matrix and s is a complex number.

Theorem 2.2. Suppose that F and G are PH distributions with representations (π1π1π1,Q1) of

order m1, and (π2π2π2,Q2) of order m2, respectively. Then we have the following.

1. The convolution F1*F2 is a PH distribution with a representation (πππ,Q) of order m1 +

m2 where

πππ =

(
πππ1 π10πππ2

)

Q =

 Q1 −Q1eeeπππ1

0 Q2


where 0 is a m1 ×m2 matrix of zeros and π10 is known as the point mass at zero.

2. The mixture ωF1 + (1− ω)F2, where 0 ≤ ω ≤ 1, is a PH distribution with a represen-
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tation (πππ,Q) of order m1 +m2 where

πππ =

(
ωπππ1 (1− ω)πππ2

)

Q =

 Q1 0

0 Q2



Proof. See Neuts (1981).

2.5 Bayesian Estimation Methods

Several approaches have been proposed for the estimation of PH/Coxian PH models. As-

mussen et al. (1996) develop an expectation-maximization (EM) algorithm to calculate max-

imum likelihood (ML) estimators for general PH distributions. Olsson (1996) extends this

algorithm to right censored and interval censored data. Using Matlab or R routines, Faddy

and McClean (1999, 2005) use ML methods to estimate the LOS of geriatric patients with

Coxian PH distributions. In Faddy (2002), a penalized ML method is carried out to fit Cox-

ian PH distributions with high orders. The method of moments has also been used to fit PH

distributions. Johnson (1993) develops an algorithm that matched the first three moments

of a mixture of Erlang distributions to the empirical moments. Horváth and Telek (2000)

propose a method that separately approximates the main and tail parts of a PH distribu-

tion. More recently, McGrory et al. (2009) propose an innovative fully Bayesian approach for

inference where the number of phases is unknown and the mean duration depends on covari-

ates. Unfortunately, the Coxian model is only identifiable up to permutation of the intensity

rates (Cumani, 1982). This identifiability issue often affects the convergence of the Markov
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Chain Monte Carlo (MCMC) algorithm and the interpretation of the estimated parameters.

Auśın and colleagues (Auśın and Lopes, 2007; Auśın et al., 2008, 2009) use Bayesian meth-

ods for estimating PH distributions and place ordering constraints on the intensity rates to

address this identifiability problem. We incorporate covariates into the model and extend

their Bayesian method to fit the Coxian PH regression model.

Moment Matching Algorithm

The moment matching algorithms are broadly used in computer science, engineering, op-

eration research, etc., where the performance evaluation or optimization in stochastic en-

vironment is needed. The idea is to map a general probability distribution G, into a PH

distribution P , such that some moments of P and G agree. Matching the first moment of

any non-negative distribution is possible by a single exponential distribution, but unfortu-

nately it is often not sufficient, as ignoring the higher moments can result in misleading

conclusions. Generally in cases where matching only two moments suffices, it is possible to

achieve solutions which perform very well. Sauer and Chandy (1975) provide a closed-form

solution for matching two moments of a general distribution with squared coefficient of vari-

ation (CV). They use a two-phase hyper-exponential distribution, for matching distributions

with squared coefficient of variability CV2 > 1, and a generalized Erlang distribution for

matching distributions with CV2 < 1. Marie (1980) provides a closed-form solution for

matching two moments of a general distribution with CV2 > 0. He uses a two-phase Coxian

PH distribution for distributions with CV2 > 1, and a generalized Erlang distribution for

distributions with CV2 < 1. Osogami (2005) improves existing estimates with respect to

methods computational efficiency and provides the closed-form solutions for matching dis-

tributions with Erlang-Coxian (EC) distributions. For example, if G has sufficiently high
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second and third moments, then a two-phase Coxian PH distribution alone suffices. If the

variability of G is lower, however, we might append several exponential distributions to the

two-phase Coxian PH distribution in order to get the variability of P to be low enough.

Maximum likelihood estimate (EM algorithm)

The Expectation-Maximization (EM) algorithm is an iterative method that aims to maxi-

mize the log-likelihood function (Dempster. et al., 1977). The EM algorithm is a broadly

applicable approach to the iterative computation of maximum likelihood (ML) estimates,

useful in a variety of incomplete data problems. On each iteration of the EM algorithm,

there are two steps: the Expectation step (E-step) and the Maximization step (M-step).

Asmussen et al. (1996) propose a novel EM algorithm fitting PH Distributions. Later

Olsson (1996) extends the EM algorithm to censored data. EMpht is a C program for fitting

PH distributions (http://home.imf.au.dk/asmus/pspapers.html). It can be used either to

fit a PH distribution to a sample (which may contain censored observations), or to make a

PH approximation of another continuous distribution. In addition, it is complemented by a

Matlab program, PHplot, for graphical display of the fitted PH distribution.
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2.5.1 Reversible Jump Markov Chain Monte Carlo (RJMCMC)

Green’s (see Green, 1995) Reversible Jump Markov Chain Monte Carlo (RJMCMC) al-

gorithm is basically of Metropolis-Hastings type with specific trans-dimensional proposals

carefully designed to move between different models in a way that is consistent with the

desired stationary distribution of the MCMC algorithm. The idea has been widely applied

in the finite normal mixture models (Richardson and Green, 1997). The key in RJMCMC

is to allow moves between parameter subspaces of different dimensionality by permitting a

series of different ‘move types’. Details can be found in Denison et al. (1998); Dellaportas

and Forster (1999).

A typical way to estimate parameters in finite mixture models is the EM algorithm we

mentioned above. However, the basic EM algorithm has two main drawbacks, slow conver-

gence and lack of an in-built procedure to compute the covariance matrix of parameter esti-

mates. Moreover, some complex problems lead to intractable E-steps, for which Monte Carlo

methods have been shown to provide efficient solutions. Though in the finite mixture prob-

lems, the E-step is easy to implement, the M-step is more difficult using Newton-Raphson

method, Quasi-Newton method or other optimization methods. Diebolt and Robert (1994)

provide the standard Bayesian formulation of the finite mixure models with a known number

of components and its implementation via Markov Chain Monte Carlo (MCMC). For PH

distributions, we first need to do some transformation to make the density function more

like “finite mixture models”.
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2.5.2 Transformation Strategies

We can assume, without loss of generality, λ01 ≥ λ02 ≥ . . . ≥ λ0m. One way to incorporate

the ordering restriction is to represent the hazard rates of the model as follows (Auśın and

Lopes, 2007; Auśın et al., 2008, 2009):

λ0k = λ01ν2ν3 · · · νk, 0 < νj ≤ 1, j, k = 2, 3, · · · ,m.

In addition, we can easily recover the transition probabilities from ηηη = (η1, · · · , ηm).

η1 = 1− p12

η2 = p12(1− p23)

...

ηm−1 = p12p23 · · · pm−2,m−1(1− pm−1,m)

ηm = p12p23 · · · pm−2,m−1pm−1,m

where ηk is the total probability of existing from transient state k. Instead of the parameters

(m,λλλ0,βββ,ppp), we can work with the equivalent set of parameters (m,ηηη, λ01, ννν,βββ) , which is

relatively stable and easy to sample in the MCMC framework.

Based on the new parameter set, the likelihood function (2.6) can be written as

L(t|X,m, λ01, ηηη,ννν,βββ) =
n∏
i=1

{
m∑
k=1

ηkfk(ti|xi, k,ννν,βββ)

}

=
n∏
i=1

{
m∑
k=1

ηkπππ exp(Q?
ikti)(−Q?

ik111)

} (2.8)
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where fk(ti|xi, k, λ01, ννν,βββ) = πππ exp(Q?
ikti)(−Q?

ik111) is a k-phase generalized Erlang distribu-

tion and

Q?
k = λ01 exp(−x′βββ)



−1 1 0 · · · 0

0 −ν2 ν2 · · · 0

...
...

...
. . .

...

0 0 0 · · · −ν2ν3 · · · νk


If all the rates are unequal, we can obtain an explicit form of (2.8) without complicated

matrix exponential computation.

Let

Cj,k =
k∏

r=1,r 6=j

∏r
i=2 νi∏r

i=2 νi −
∏j
i=2 νi

for j = 1, 2, · · · , k

Then

fk(ti|xi, k, λ01, ννν,βββ) =
k∑
j=1

Cj,kλ01 exp(−x′iβββ)

 j∏
r=2

νj

 exp

−λ01 exp(−x′iβββ)ti

j∏
r=2

νj


Due to this re-parameterization, we can borrow ideas from finite mixture models and it is

relatively easy to implement the imputation steps in MCMC.
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2.5.3 RJMCMC for Coxian PH Distribution

We now define the prior distributions for the parameters (m,λ01, ηηη,ννν,βββ) as follows:

First if the number of phases m is known, we assume the following prior distributions:

ηηη ∼ Dirichlet(ξ1, ξ2, · · · , ξm)

λ01 ∼ Improper, i.e. density ∝ 1

λ01

νk ∼ Beta(a, b), for k = 2, · · · ,m

βββ ∼MVN(000, σ2Il)

We specify the priors by setting ξ1 = ξ2 = · · · ξm = 1, a = 1.1, b = 1 and σ = 1000 (Auśın

et al., 2008). The RJMCMC algorithm for our model consists of the following steps.

(1) Update the total exiting weights ηηη = (η1, η2, · · · , ηm)′;

(2) Update the intensity rate λ01;

(3) Update the vector of ννν = (ν2, ν3, · · · , νm)′;

(4) Update the coefficient parameter βββ = (β1, β2, · · · , βl)′;

(5) Update the current number of phases.

Steps (1)-(4) do not alter the dimension of the current model and they are performed

using the Gibbs Sampler with Metropolis-Hastings step. But step (5) accounts for the

jumps between adjacent values of m, which is done using the two types of moves discussed

in Richardson and Green (1997), i.e. the split-combine and birth-death moves suitably

modified for specific needs.

We construct a MCMC algorithm using a data augmentation step, introducing a missing

indicator variable Zi such that p(Zi = k|ηηη,m) = ηk, f(ti|Zi = k) = fk(ti|k, λ01, ννν,βββ), i =
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1, 2, · · · , n.

Then the posterior distribution is

p(Zi = k|ti, ηηη, λ01, ννν,βββ) =
ηkfk(ti|k, λ01, ννν,βββ)∑m
j=1 ηjfj(ti|j, λ01, ννν,βββ)

∝ ηkfk(ti|k, λ01, ννν,βββ), k = 1, 2, · · · ,m

With this missing data approach, the complete data set now is (ti,xi, zi), i = 1, 2, · · · , n.

Given the missing data z, the complete likelihood is calculated by

L(t|z,X,m,ηηη, λ01, ννν,βββ) =
n∏
i=1

fzi(ti|xi, k, λ01, ν2, · · · , νZi ,βββ)

Therefore, step (1) can be achieved as

ηηη|t, z ∼ Dirichlet(1 + n1, 1 + n2, · · · , 1 + nm)

where nj is the number of observations exited from phase j, j = 1, 2, · · · ,m. One advantage

of this reparameterization is that the total exiting probability ηηη can be obtained directly

from Gibbs sampling.

Next we obtain the conditional posterior distributions of λ01, ννν and βββ, which do not have

explicit forms, and require the Metropolis-Hastings algorithm in order to obtain the new

updates through iterations.
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f(λ01|t, z,X, ννν,βββ) ∝
n∏
i=1

fzi(ti|xi, k, λ01, ν2, · · · , νZi ,βββ)π(λ01)

f(νk|t, z,X, λ01, ννν−k,βββ) ∝
n∏

i=1,zi≥k
fzi(ti|xi, k, λ01, ν2, · · · , νZi ,βββ)π(νk), k = 2, 3, · · · ,m

f(βββ|t, z,X, λ01, ννν) ∝ fzi(ti|xi, k, λ01, ν2, · · · , νZi ,βββ)π(βββ)

We use a Gamma proposal distribution λ̃ ∼ G(2, 2/λ(s)) to update λ01 (step (2)) at

step s. To sample ν
(s+1)
k (step (3)), we propose a Beta mixture distribution as a proposal

distribution in order to preserve the mode of ν
(s)
k and avoid clustering around 1 (Auśın et al.,

2008).

ν̃k ∼
1

2
Beta

 1

1− ν(s)
k

, 2

+
1

2
Beta

2,
1

ν
(s)
k

 , k = 2, 3, · · · ,m

The coefficient βββ are generated with the aid of a Metropolis-Hastings step as well, using a

symmetric random walk. The log density of βββ, ignoring terms that do not depend on βββ, is

T (βββ) = log
(
fzi(ti|xi, k, λ01, ν2, · · · , νZi ,βββ)

)
+ log(π(βββ))

Assume that the maximum of T (βββ) exists and that the Hessian matrix H is negative definite

in a neighborhood of βββ(s), define V(s) = −H(βββ(s))−1, and propose β̃ββ ∼MVN(βββ(s),V(s)).

We now describe the relevant maps and constraints that must be satisfied to make these

moves (in step (5)) reversible, so called “detailed balance” (Green, 1995). Assume a discrete

uniform prior defined on [1,Mmax] for m, where Mmax represents an assumed upper limit

of m. If the current number of phases is M , then the proposed number is M?, where

M? = M ± 1. We will need to consider split and combine moves, i.e. split one phase into
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two adjacent phases, or combine two adjacent phases into one. We take a mapping approach

to combine or split phases as follows.

In the combine move, parameters are updated according to η̃r = ηr1 + ηr2, ν̃r = νr1νr2,

where we can obtain λ̃0r = λ0,r2. For the case r = 1, λ̃01 = λ01ν2.

In the split move, we generate u1 and u2 from U(0, 1). Let

η̃r1 = u1ηr

η̃r2 = (1− u1)ηr

ν̃r1 = u2 + νr(1− u2)

ν̃r2 =
νr

u2 + νr(1− u2)

For the case r = 1, we generate ν̃r2 = u2, and λ̃01 = λ01/u2. The parameters in the

remaining phases are not modified.

2.6 Model Checking

To assess model fitting, Faddy et al. (2009) define a generalized residual as observed outcome

divided by the estimated mean from the fitted model, and produce a quantile-quantile plot

for the residuals. However, the residual distribution of a Coxian PH model is unknown. An

alternative approach, which also allows for censored data, compares the empirical Kaplan-

Meier estimate of the survival function with the model based estimates (Lambert et al.,
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2004). The model-based estimated survival for each patient is

Ŝi(ti) = πππ exp
(
Q̂iti

)
111

= πππ exp


exp(−x′iβ̂ββ)



−λ̂01 p̂12λ̂01 · · · 0

0 −λ̂02 · · · 0

...
...

. . .
...

0 0 · · · −λ̂0m


ti


111

(2.9)

Average predicted survival is obtained from point-wise averages of the survival curves over

patients with a specified covariate profile. This procedure is an informal assessment of model

adequacy. Johnson (2004) extends the classical Pearson χ2-test for goodness of fit to the

Bayesian context. A formal diagnostic to departures of the assumed model is beyond the

scope of the present thesis. A unique aspect of PH model specification is the choice of the

number of phases of the hidden Markov process, which is described in the previous section.

2.7 Classification

One of the goals in analyzing healthcare utilization is to predict resource use by differ-

ent groups of patients who exhibit a semblance of within-group homogeneity while having

between-group heterogeneity. Such a classification would be valuable in healthcare resource

management and efficient allocation. For inpatient stays, Marshall and McClean (2004)

investigate the potential of Coxian PH distributions to identify common characteristics in

groups of patients according to their observed LOS. We focus here on the expected mean

LOS and exploit this measure to group patients in the study. Specifically, we use the follow-

ing algorithm to group LOS in m classes. Recall the exit probabilities ηηη = (η1, η2, · · · , ηm)′
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from the transient states which can be obtained directly from MCMC posterior samples after

the reparameterization.

Patients are assigned into different clusters according to their LOS in the ratio η1 : η2 :

· · · ηm. The k-th LOS group Gk is determined by:

Gk =

t̂(i) : n
K−1∑
k=1

ηk < i ≤ n
K∑
k=1

ηk

 , K = 1, 2, · · · ,m. (2.10)

where t̂(i), i = 1, 2, · · · , n denotes the ordered expected mean LOS and n is the number

of patients. Patient characteristics within each latent LOS group may then be explored to

determine if they have any common characteristics and across LOS groups is also be explored

to see if they differ.

2.8 Computation of Partial Effects

Social scientists are sometimes interested in estimating quantities other than survival in Eq

(2.9) or classifying individuals into relatively more homogeneous groups using (2.10). One

estimand favored by social scientists is the marginal effect (or predictive margin, recycled

prediction, partial effect) of covariates with respect to the mean of the dependent variable,

which is, in our case, the mean survival time (Basu and Rathouz, 2005). Under the pa-

rameterization in (2.6) and (2.7), the conditional mean duration is E(T |x) = exp(a0 + x′βββ)

(Faddy et al., 2009). The marginal effects are defined below for continuous and discrete

covariates.
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2.8.1 Continuous Covariates

For continuous covariates, partial effects (PE) are usually computed as the derivative of the

conditional mean with respect to the covariate. In order to assess the overall impact of a

continuous covariate xb on the mean LOS, it is reasonable to consider the following PE:

PE =
d

dx
(E(T |x))

= E(T |x)βββ

= exp(a0 + x′βββ)βββ

(2.11)

The PE is estimated from the posterior samples
{
βββ(s); 1 ≤ s ≤ S

}
by

P̂E
(s)

=
1

n

n∑
i=1

exp(a
(s)
0 + x′iβββ

(s))βββ(s) (2.12)

P̂E =
1

S

S∑
s=1

P̂E
(s)

(2.13)

The standard deviation (SD) of PEb is given by

SD(PEb) =

√√√√ 1

S − 1

S∑
s=1

(
P̂E

(s)
b − P̂Eb

)2
(2.14)

where the subscript ‘b’ denotes the b-th component of P̂E. Here, Eq (2.11) measures the

local rate of change in E(T |X) considered as a function in x, relative to E(T |X), and can

be viewed as an approximation to the percentage change in E(T |X) for one unit increase in

x. Eq (2.13) and (2.14) compute the estimated average PE and SD derived directly from

the posterior samples, instead of bootstrapping by resampling methods.
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2.8.2 Discrete Covariates

For a discrete covariate, the formula (2.11) is no longer valid. The partial effects are more

appropriately derived by partial difference rather than partial derivatives. Without loss of

generality, suppose a covariate has B categories. We can generate B -1 dummy variables for

each level of the covariate other than the reference level. We will estimate the conditional

mean twice. First, we set xb to 1 (e.g., b-th category indicator) in the entire sample; and

then second, we set xb to 0. In both occasions, the values of the other B -2 dummy variables

are set to 0 and the values of other covariates are left untouched. Then the proper analogs

of (2.11) and (2.12) are

PEb = E(Y |xb = 1,x(−b))− E(Y |xb = 0,x(−b)) (2.15)

P̂E
(s)
b =

1

n

n∑
i=1

exp
(
a

(s)
0 + β

(s)
b + x′iβββ

(s)
(−b)

)
− 1

n

n∑
i=1

exp
(
a

(s)
0 + x′iβββ

(s)
(−b)

)
(2.16)

The estimated average PE and SD are hence calculated in the same way as formula (2.13)

and (2.14). The partial effect of the binary variable xb is the change in the mean LOS when

xb changes from 0 to 1 with all other variables kept constant at their observed values.
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2.9 Modeling Hospital LOS for AMI Patients

2.9.1 Patient Sample

We apply the above models to the analysis of length of stay (LOS) for patients with acute

myocardial infarction (AMI) in the 2003 Nationwide Inpatient Sample (NIS). The NIS is

a database of all hospital inpatient stays from a stratified sample of approximately 1,000

community hospitals in the US. In 2003, the NIS contains nearly 8 million discharges from

37 states. Sixty strata are defined by a combination of geographic region (Northeast, South,

Midwest and West), location (urban, rural), ownership (public, private), teaching status,

and bed size (small, medium and large). Summary measures derived from the sample can

be extrapolated to national estimates using sampling weights. Patient demographics in the

NIS include age at admission, gender, race, and primary payer. Patient clinical character-

istics include treatment procedures undergone and comorbidities assessed during the stay.

In addition to the stratification variables in the NIS, we used the following covariates in

our Coxian regression model: age at admission in years, gender, procedure, comorbidity

and insurance status (Pompei et al., 1991). The primary procedure that the patient under-

went was based on the ICD-9 CM Procedure codes: CABG=Coronary Artery Bypass Graft,

PTCA=Percutaneous Transluminal Coronary Angiography, CATH=Cardiac Catheteriza-

tion, Other, or None=no procedure performed. We constructed the Charlson Comorbidity

Index (CCI) to capture comorbidity based on ICD-9 CM diagnoses during the stay (Charlson

et al., 1987; Matsui et al., 1996). The CCI is a weighted sum of 19 conditions such as dia-

betes, with and without complications, congestive heart failure, peripheral vascular disease,

pulmonary disease, renal disease, etc. We categorized the CCI score into 4 subgroups: 1, 2,
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3 and ≥ 4. Insurance status is defined as the expected primary payer: Medicare, Medicaid,

Self-pay or Other (which includes private insurance 33.6%, no charge < 1%).

The LOS of AMI patients could vary widely depending on severity of illness, comorbidity

and type of procedure. Most patients are discharged after a relatively short period of time.

However, some patients may remain in hospital over a long time period receiving continuous

care. This suggests that the distribution of LOS reflects different hidden structures. Figure

2.3 shows the histogram (truncated at 50 days) of the distribution of LOS for 11,749 AMI

patients in the 2003 NIS. The data are highly skewed to the right with a large number

of outliers, because of variation in patient characteristics. The LOS ranges between 1 and

142 days with mean of 5.51 days and standard deviation of 5.90 days. The mean LOS of

female patients (mean=6.01) was higher than that of male patients (mean=5.21). Patients

who underwent CABG had the highest LOS, followed by patients who underwent OTHER,

CATH, PTCA and NONE. Mean LOS was different according to CCI scores. Patients with

CCI≥4 had the highest mean LOS (mean=7.89), followed by CCI=3, CCI=2, and CCI=1

with means 6.70, 5.61 and 3.87, respectively.

Approximately 63% of our patient sample is male. Mean age at admission was 64.6

years (SD=12.7). The most prevalent procedure performed on these patients was PTCA

(40.3%) followed by CATH (19.4%). By definition all patients had CCI≥1. Approximately

37.8% of patients had no other comorbidity (CCI=1), followed by CCI=2 (29.1%), CCI=3

(16.9%) and CCI≥4 (16.2%). As expected in our sample, Medicare was the primary payer

for 52.7% of the patients. We dropped 23 patients from the sample who had invalid or

missing insurance information. See Table 2.1 for additional information.
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Figure 2.3: Histogram of hospital length of stay (LOS) and fitted 4-phases Coxian PH model.
The solid line (—) is the histogram of LOS and the dotted line (- - -) is the model-based
density function estimate (truncated at 50 days).
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Table 2.1: Descriptive Statistics for AMI patients in NIS in 2003 (N=11,749)

Characteristics Group N(%) LOS (days)
Mean (SD)

All Patients 11,749 ( 100) 5.51 (5.90)
Gender Male 7378 (62.8) 5.21 (5.54)

Female 4371 (37.2) 6.01 (6.43)
Procedure CABG&PTCA 107 ( 0.9) 11.73 (8.78)

CABG 1301 (11.1) 11.59 (8.81)
PTCA 4736 (40.3) 4.04 (3.38)
CATH 2275 (19.4) 5.08 (5.12)
Other 1490 (12.7) 7.06 (8.16)
None 1840 (15.7) 3.88 (2.89)

Comorbidity, CCI 1 4438 (37.8) 3.87 (3.79)
2 3423 (29.1) 5.61 (6.22)
3 1981 (16.9) 6.70 (6.54)
4+ 1907 (16.2) 7.89 (7.33)

Disposition of Patients Routine 7635 (65.0) 4.58 (3.51)
Transfer: Short-term Hospital 1451 (12.3) 2.96 (2.96)
Transfer: Other Type of Facility 1119 ( 9.5) 11.33 (10.3)
Home Health Care 883 ( 7.5) 9.25 (10.8)
Died in Hospital 661 ( 5.6) 6.96 (6.65)

Hospital Region Northeast 2524 (24.5) 5.76 (6.60)
Midwest 2633 (22.4) 5.42 (5.43)
South 4986 (42.4) 5.34 (5.72)
West 1606 (13.7) 5.16 (6.00)

Hospital Location/ Rural 1041 ( 8.9) 4.64 (4.20)
Teaching Status Urban non-teaching 5301 (45.1) 5.22 (5.16)

Urban teaching 5407 (46.0) 5.95 (6.76)
Hospital Bedsize Small 950 ( 8.1) 4.79 (5.65)

Medium 2658 (22.6) 5.30 (6.24)
Large 8141 (69.3) 5.66 (5.81)

Primary Payer Medicare 6186 (52.7) 6.25 (6.36)
Medicaid 690 ( 5.9) 6.17 (7.17)
Self-pay 562 ( 4.8) 4.32 (3.64)
Other 4311 (36.7) 4.48 (4.97)
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2.9.2 Estimation of Coxian phase-type Regression Model

For the Bayesian estimation of the Coxian regression model described in Section 2.5, we

performed 100,000 MCMC iterations, discarded the first 50,000 of these iterations as burn-

in period and retained 10,000 thinned posterior samples of (ηηη, λ01, ννν,βββ). The selection of

the best estimate for the number of phases m, using the RJMCMC algorithm, is based on

the highest percent of times out of the 10,000 posterior samples where a particular number

of phases is reached. In our data, the most likely number of phases of the underlying Coxian

PH distribution is 4, with posterior probability of 0.313, followed by a 3-phase model with

posterior probability of 0.273 and the 5-phase model with posterior probability of 0.255 (see

Figure 2.4). The posterior means of the intercept parameters and covariate coefficients are

given in Column 1, Table 2.2. We also use these posterior means as the starting values and

apply the fully Bayesian approach (McGrory et al., 2009) to generate the posterior samples

for measures of interest. Similar results are presented in Column 2, Table 2.2, except for the

first two intensity rates without ordering.

Based on the estimates of the 4-phase model, all patients start in state 1, almost all of

them transfer from state 1 to state 2, then from state 2 to state 3. The total probabilities of

exiting from states 1, 2, 3, and 4 were 0.0002, 0.001, 0.923 and 0.076, respectively. Among

correlates, LOS was positively associated with age, female gender, CCI and procedure type

(Table 2.2). As expected, older patients had longer LOS. A possible explanation is that older

patients have a longer recovery period from their procedures that lengthen their hospital stay.

The effect of female gender on LOS was an estimated 0.076 (β-coefficient), corresponding

to an expected increase in LOS of 1.079 times that of males. Higher comorbidity would

indicate a more severe condition possibly leading to a longer stay in hospital. For example,
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CCI comorbidity scores 2, 3 and ≥4, led to an increase in LOS by 1.23, 1.46, and 1.78 times

the LOS of patients with a CCI score of 1. The expected LOS for patients who underwent

CABG, PTCA, CATH and ’other’ procedures were, respectively, 3.24, 1.25, 1.31, 1.43 times

the LOS of patients without any procedure. In the present study, we found that Medicare

and Medicaid insured individuals had increased mean hospital LOS, compared to self-pay

and ‘other’ (primarily private insurance). LOS variation by region and hospital size has

been explored previously (Xiao et al., 1997). In our study, the highest mean LOS was in the

North East region whereas hospitals in the West region had the smallest mean LOS.

To further justify the proposed 4-phase Coxian model, an alternative model using a heavy

tailed distribution, like the log-normal distribution, was fitted for comparison with the same

structure for the mean LOS. Some similarities are found in the covariate coefficients between

the two different models. However, the adequacy of the specified log-normal is inferior to

the proposed Coxian model. It is discussed later and visually illustrated in Figure 2.5.

Mean LOS can be estimated from the model using a specific covariate profile or by

averaging over the predicted values for each observation. The partial effects, defined in

Section 2.8 for continuous and discrete covariates are reported in Table 2.3. For example,

the mean LOS for patients with CCI equal to 3 was 1.97 days longer than the mean LOS

for patients with CCI equal to 1. Compared to those having no procedures, patients who

underwent CABG had much longer mean LOS, the difference was 8.30 days.

Table 2.4 highlights the sample average of estimates of the fitted mean for different classes.

Combining the fairly small total exit probabilities in the first two phases, an estimated 92.4%

of the sample exited from first three phases. This is regarded as short-stay group, with

predicted average LOS of 4.8 days. The remaining 7.6% of the sample are long-stay patients,
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with predicted average LOS of 13.8 days. For the whole sample, mean LOS estimated from

the model is 5.48 days, with a minimum of 1.75 days and a maximum of 22.46 days. There

is large variation in the mean LOS between these two classes.

To assess model fit, we compared the empirical Kaplan-Meier survival curves to the

model-based average of subject-specific fitted curves from the 4-phase Coxian distribution.

We can obtain values of estimated discharge probability 1−S(t) for the individual, for LOS

ranging from 1 to 142 days. The overall averaged fitted curves and empirical estimates are

shown in the top left plot in Figure 2.5. The step functions, solid lines (—), are the empirical

Kaplan-Meier estimates of Ŝ(t) the dash lines (- - -), the Coxian PH model-based estimates,

are visually superimposed which indicate an adequate level of fitting. Within each stratum

defined by procedure type, the model also fitted fairly well. Patients who had CABG surgery

had the highest discharge probability. For comparison, the dotted lines (· · · ) in Figure 2.5 are

the log-normal model-based estimates. Relative to the better fitting Coxian PH model, the

log-normal model gives similar estimates in covariates coefficents, but inferior fit, especially

for patients with CABG surgery. These patients tended to have longer LOS.
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Figure 2.4: Number of phases dynamically selected by RJMCMC
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Table 2.2: Estimates of posterior means (SD) based on 4-phase Coxian PH model and log-
normal model

Covariate RJMCMC RJMCMC log-normal
(McGrory)

Posterior Mean Posterior Mean Posterior Mean
(SD) (SD) (SD)

λ01 1.297 (0.052) 1.202 (0.103)

N.A.

λ02 1.230 (0.046) 1.203 (0.104)
λ03 1.131 (0.065) 1.231 (0.104)
λ04 0.209 (0.011) 0.206 (0.013)
η1 0.0002 (0.0002) 0.0003 (0.0003)
η2 0.001 (0.001) 0.002 (0.002)
η3 0.923 (0.005) 0.923 (0.007)
η4 0.076 (0.005) 0.075 (0.007)
Intercept 1.042 (0.026) 1.050 (0.024) 0.365 (0.055)
Age 0.008 (0.0007) 0.008 (0.0007) 0.007 (0.0007)
Gender Female 0.076 (0.012) 0.072 (0.012) 0.071 (0.012)
Procedure CABG 1.177 (0.021) 1.171 (0.022) 1.237 (0.025)

PTCA 0.222 (0.018) 0.220 (0.017) 0.237 (0.022)
CATH 0.272 (0.020) 0.268 (0.018) 0.285 (0.021)
Other 0.360 (0.025) 0.361 (0.023) 0.339 (0.022)

CCI 2 0.205 (0.015) 0.205 (0.015) 0.194 (0.024)
3 0.378 (0.019) 0.377 (0.019) 0.357 (0.019)
4+ 0.576 (0.019) 0.574 (0.019) 0.565 (0.020)

Region Northeast 0.094 (0.021) 0.092 (0.021) 0.084 (0.022)
Midwest 0.055 (0.020) 0.056 (0.019) 0.055 (0.021)
South 0.085 (0.019) 0.086 (0.016) 0.084 (0.019)

Location/ Rural -0.135 (0.022) -0.134 (0.023) -0.167 (0.024)
Teaching status Urban non-teaching -0.069 (0.013) -0.072 (0.014) -0.075 (0.014)
Bedsize Small -0.155 (0.026) -0.156 (0.024) -0.176 (0.025)

Medium -0.067 (0.015) -0.066 (0.012) -0.085 (0.015)
Primary payer Medicaid 0.072 (0.029) 0.072 (0.028) 0.056 (0.029)

Self-Pay -0.031 (0.029) -0.031 (0.031) -0.036 (0.030)
Other -0.063 (0.018) -0.069 (0.019) -0.064 (0.018)

Scale 0.433 (0.006)
Note: CCI=Charlson Comorbidity Index.
Reference group: Gender=male, Procedure=none, CCI=1, Region=West,
Bed size=large, Location/teaching status=urban teaching, Primary payer=Medicare.
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Table 2.3: Estimated average partial effects on mean LOS (SD) associated with different
covariates

Covariate Estiamte (SD) Covariate Estimate (SD)
Age∗ 0.043 (0.004) Location/teaching status

Procedure Rural -0.719 (0.111)
CABG 8.296 (0.205) Urban non-teaching -0.379 (0.071)
PTCA 0.918 (0.072)
CATH 1.154 (0.087) Bedsize
Other 1.602 (0.117) Small -0.809 (0.125)

Medium -0.365 (0.081)
CCI

2 0.974 (0.072) Primary Payer
3 1.971 (0.106) Mediciad 0.424 (0.172)
≥4 3.343 (0.127) Self-Pay -0.167 (0.159)

Other -0.340 (0.097)
Region

Northeast 0.507 (0.111)
Midwest 0.288 (0.102)

South 0.455 (0.097)

Note: CCI=Charlson Comorbidity Index.
∗ The partial effect for age was estimated at the mean age.
Reference group:Procedure=none, CCI=1, Region=West,
Bed size=large, Location/teaching status=urban teaching, Primary payer=Medicare.
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Table 2.4: Patient characteristics by classification of LOS

Covariate Total Short LOSa Long LOSa

N=11,749 N=10,856 N=893
Mean LOS (SD) 5.50 (5.90) 4.8 12.8
Mean Age (SD) 64.6 (12.7) 64.26 68.22

N(%) N(%) N(%)
Gender Female 4371 (37.0) 4019 (37.0) 352 (39.4)

Male 7378 (63.0) 6837 (63.0) 541 (60.6)
Procedure CABG 1408 (12.0) 516 ( 0.5) 892 (99.9)

PTCA 4736 (40.3) 4736 (43.6) 0 ( 0.0)
CATH 2275 (19.4) 2275 (21.0) 0 ( 0.0)
Other 1490 (12.7) 1489 ( 3.7) 1 ( 0.1)
None 1840 (15.6) 1840 (16.9) 0 ( 0.0)

CCI 1 4438 (37.8) 4363 (40.2) 75 ( 8.4)
2 3423 (29.1) 3054 (28.1) 369 (41.3)
3 1981 (16.9) 1722 (15.9) 252 (29.0)
≥4 1907 (16.2) 1717 (15.8) 190 (21.3)

Insurance Medicare 6186 (52.7) 5628 (51.8) 558 (62.5)
Medicaid 690 ( 5.9) 622 ( 5.7) 68 ( 7.6)
Self-Pay 562 ( 4.8) 535 ( 4.9) 27 ( 3.0)

Other 4311 (36.7) 4071 (37.5) 240 (26.9)

Note: CCI=Charlson Comorbidity Index.
Reference group: Gender=male, Procedure=none, CCI=1, Region=West,
Bed size=large, Location/teaching status=urban teaching, Primary payer=Medicare.
aSample averages for LOS and age within the short-stay and long-stay groups
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Figure 2.5: Goodness-of-fit curves by procedure type. The solid lines (—) are the Empirical
estimates of discharge probability, the dash lines (- - -) are the Coxian PH model-based
estimates, the dotted lines (...) are the log-normal model-based estimates.
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2.10 Discussion

This chapter demonstrates the application of Coxian PH stochastic regression models to

hospital LOS to account for the heavy skewness and heterogeneity in the data. A Bayesian

method based on RJMCMC was applied to dynamically select the number of phases. This

method avoids arbitrary trimming and transformation of the data. In addition, the approach

allows us to obtain estimates of mean LOS, median, other percentiles, and class character-

istics. While a complete description of the underlying hidden states of the Markov process

would depend on specific applications, we found in this example a meaningful interpretation

based on short-stay, and long-stay subgroups for AMI patients. The two groups differed

primarily on comorbidity and procedure type. Short-stay patients had the lowest CCI; long-

stay patients comprised largely of those who underwent CABG surgery. Procedure type and

CCI were significant correlates of LOS.

The strength of Coxian PH regression models for LOS lies in their flexibility in accom-

modating extreme values, while revealing hidden features such as short and long stays in

hospitals. The management of hospital LOS has become an important issue in cost con-

tainment and control. Determination of relevant factors and hidden structures could inform

discharge planning and allocation of resources (Lanzarone et al., 2010; McDermott and Stock,

2007; Ramiarina et al., 2008). We believe this work contributes to the development of statis-

tical models for analysis of LOS distributions and other consumption variables in healthcare

resource analysis. For example, our proposed Coxian PH model is applicable to other skewed

data such as inpatient cost as well as censored duration data. It can be extended to analyze

longitudinal data exhibiting unobserved heterogeneity.
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Chapter 3

Joint Modeling of Hospital Length of

Stay and Cost with Shared Random

Effects

In this chapter, we consider hospital length of stay (LOS) and cost jointly and construct a

bivariate model from a common constellation of covariates that might influence their joint

distribution. Shared random-effects modeling approach is then developed to conduct the

joint analysis which permits simultaneous assessment of the correlates of LOS and in-hospital

cost. Our model also provides important information for decisions on resource allocation.

3.1 Introduction

Random-effects (RE) models are of interests and widely used in capturing statistical de-

pendence for a variety of data types, and allow for prediction, imputation, and hypothesis

testing within a general regression context. The shared random effect approach has a very
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intuitive appeal to a lot of researchers who generally believe that there might be some latent

quantity underlying an individual’s susceptibility to both in-hospital LOS and cost. This

latent quantity may represent environmental risk factors or hospital site effects yet to be

identified. The latent process also induces dependence between the two explicitly observed

processes. In this chapter, we illustrate the use of shared random effects to account for the

correlation, build a joint Coxian phase-type /Log-normal (CPH-LN) model and describe the

details of the marginal measurement. The idea of introducing random effects to incorporate

correlation is not new, but a lot of previous work has focused on joint modeling the multivari-

ate survival times through frailty models, with the same underlying model and β -coefficient

for covariates. Here, we develop a flexible joint modeling approach with different distribu-

tion types and scales. We propose a modeling framework using a finite-state continuous

time Markov process with a single absorbing state (discharge) to describe the hospital LOS,

introduced in Chapter 2. Each phase represents an unknown health status and absorbing

state is interpreted as the healthcare is terminated and discharge from the hospital or death.

In addition, we assume cost is log-normally distributed. The correlations between outcomes

are introduced by shared random effects, which can also affect the marginal means, variances

and covariances. This approach adjusts for patient level characteristics while allowing for

the inherent correlation structure.

The rest of the chapter is organized as follows. Section 3.2 introduces the joint modeling

approach of LOS and cost via shared random effects. We provide a detailed description for

marginal mean, variance and covariance structure. Then Section 3.3 describes the estimation

methods using likelihood reformulation (LR). Application of the proposed model is given in

Section 3.4. Finally in Section 3.5, we conclude and outline further research direction.

53



3.2 Shared Random-effects Model

Let Yi1 (i = 1, 2, . . . , n) denote in-hospital LOS and x1i be a vector of l1 explanatory

variables that might have impact on the distribution of Yi1, and similarly, Yi2 (i = 1, 2, . . . , n)

denote cost, x2i are the l2 variables that may affect Yi2. In practice, covariates x1i, x2i

may represent the same covariate constellation, but not necessarily so. The observed data

for patient i are (Yi1, Yi2,x1i,x2i, 1 ≤ i ≤ n). The underlying relationship between LOS

and its risk factors is modeled by a Coxian phase-type regression introduced in Chapter

2, where the mean structure is assumed to be a log-linear function of covariates x1, i.e.

log (µCPHi ) = βCPH0 +x′1iβββ
CPH . Similarly, the relationship between cost and risk factors is

modeled by a log-normal regression log Yi2 = βLN0 +x′2iβββ
LN +σε = µi+σεi, where µi is the

location parameter linear in x2i, σ is the scale parameter and εi ∼ N(0, 1). Corresponding

mean function of cost is given by log (µLNi ) = µi + 1
2σ

2 = βLN0 + x′2iβββ
LN +

1

2
σ2. That is

Yi1 ∼ Coxian PH(λ0, ppp,βββ)

µCPHi = exp (βCPH0 + x′1iβββ
CPH)

Yi2 ∼ log-normal(µi, σ)

µi = βLN0 + x′2iβββ
LN

(3.1)

The separate regression models described above are not suitable for dependent data because

the two healthcare utilization measures, LOS and cost, are most of the time, correlated. To

accommodate the inherent dependence between LOS and cost at the subject (individual,

patient) level, shared random effects bi, 1 ≤ i ≤ n are incorporated into the linear prediction
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(Liu et al., 2007). Then (3.1) can be rewritten as:

Yi1|bi ∼ Coxian PH(λ0, ppp,βββ)

µCPHi = exp (βCPH0 + x′1iβββ
CPH + bi)

Yi2|bi ∼ log-normal(µi, σ)

µi = βLN0 + x′2iβββ
LN + γbi

bi ∼ i.i.d.F (.)

(3.2)

where F (.) is the distribution function for i.i.d. random effects bi(1 ≤ i ≤ n). Condition on

bi, Yi1 and Yi2 are independent, i.e. conditional independence. γ measures the different scale

for the variance components. In (3.2), bi characterizes the correlation between Yi1 and Yi2

within the same subject. When the correlation is high, fitting separate models might lead

to biased covariate effect estimates. Economists are interested in marginal means, variances,

covariances or correlations, which can be derived from conditional measurements by the

following basic formulas:

E[Yij ] = E[E(Yij |bi)], i = 1, 2, . . . n j = 1, 2 (3.3)

Cov(Yij , Ykl) = E[Cov(Yij , Ykl|bi)] + Cov(E[Yij |bi], E[Ykl|bi]),

i, k = 1, 2, . . . , n j, l = 1, 2

(3.4)

In addition, under the assumption of conditional independence, we have Cov(Yi1, Yi2|bi) = 0.

Marginal Means

The marginal means for LOS and cost, averaging over the distribution of random effects b,
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are easy to calculate from (3.4):

E[Yi1] = E[exp(βCPH0 + x′1iβββ
CPH + bi)]

= exp(βCPH0 + x′1iβββ
CPH)E[exp (bi)]

(3.5)

E[Yi2] = E[exp(βLN0 + x′2iβββ
LN + γbi +

1

2
σ2)]

= exp(βLN0 + x′2iβββ
LN +

1

2
σ2)E[exp (γbi)]

(3.6)

Without loss of generality (WLOG), we can assume E[exp (bi)] = 1, under which the

marginal means keep the same in both separate models and joint model for LOS and only a

scale changed for cost. For example, assume Wi = exp (bi), and Wi ∼ Gamma(1
θ , θ), i.e.

p(wi) =
w

(1
θ
−1)

i exp (−wiθ )

Γ(θ−1)θ
1
θ

Then E[Wi] = 1, and V ar(Wi) = θ. Large values of θ signify a closer positive relation-

ship between LOS and cost for the same subject and greater heterogeneity among subjects.

Accordingly, bi ∼ log-Gamma(1
θ , θ) with density function

p(bi) =
(exp (bi))

1
θ exp (−exp (bi)

θ )

Γ(θ−1)θ
1
θ

For some identifiability reasons, we restrict γ=1.

E[Yi1] = exp(βCPH0 + x′1iβββ
CPH)

E[Yi2] = exp(βLN0 + x′2iβββ
LN +

1

2
σ2)
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which retains the unchaged marginal means.

Marginal Variances

From (3.4), we have

Cov(Yij , Yij) = E[Cov(Yij , Yij |bi)] + Cov(E[Yij |bi], E[Yij |bi]), i = 1, 2, . . . , n j = 1, 2

(3.7)

Therefore under the log-Gamma assumption for bi, the marginal variances can be derived:

Cov(Yi1, Yi1) = E[V ar(Yi1|bi)] + Cov(E[Yi1|bi], E[Yi1|bi])

= E[V ar(Yi1|bi)]

+ Cov(exp(βCPH0 + x′1iβββ
CPH) exp (bi), exp(βCPH0 + x′1iβββ

CPH) exp (bi))

= E[V ar(Yi1|bi)] + exp(2(βCPH0 + x′1iβββ
CPH))V ar(exp(bi))

= E[V ar(Yi1|bi)] + exp(2(βCPH0 + x′1iβββ
CPH))θ

(3.8)

From Coxian PH properties in Chapter 2, we can obtain

V ar(Yi1|bi) = E(Y 2
i1|bi)− (E(Yi1|bi))2

= 2(πππQ̃−2111)− (πππQ̃−1111)2

= E[exp (2(x′1iβββ
CPH + bi))]

(
2πππ(Λ0P)−2111− (πππ(Λ0P)−1111)2

)
= exp(2(x′1iβββ

CPH))ME[exp(2bi)]
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where M = 2πππ(Λ0P)−2111− (πππ(Λ0P)−1111)2, Λ0,P can be found in Chapter 2, Section 2.2.

E[exp(2bi)] = E[W 2
i ]

=

∫
w2
i

w
1
θ
−1

i exp (−wiθ )

Γ(θ−1)θ
1
θ

dwi

=

∫
w

1
θ

+1
i exp (−wiθ )

Γ(θ−1)θ
1
θ

dwi

=
Γ(θ−1 + 2)θθ

−1+2

Γ(θ−1)θθ
−1

= θ + 1

With above results, marginal variance of Yi1 in (3.8) can be rewritten as:

Cov(Yi1, Yi1) = exp(2(x′1iβββ
CPH)M(θ + 1) + exp(2(βCPH0 + x′1iβββ

CPH))θ

= exp(2(x′1iβββ
CPH)(M(θ + 1) + exp(2(βCPH0 ))θ)

(3.9)

Cov(Yi2, Yi2) = E[V ar(Yi2|bi)] + Cov(E[Yi2|bi], E[Yi2|bi])

= E[(exp(σ2)− 1) exp(2µi + σ2)]

+ Cov(exp(βLN0 + x′2iβββ
LN +

1

2
σ2)ebi , exp(βLN0 + x′2iβββ

LN +
1

2
σ2)ebi)

= (exp(σ2)− 1) exp(2(βLN0 + x′2iβββ
LN ) + σ2)E[e2bi ]

+ exp(2(βLN0 + x′2iβββ
LN +

1

2
σ2))V ar(ebi)

= exp(2(βLN0 + x′2iβββ
LN ) + σ2)[(exp(σ2)− 1)(θ + 1) + θ]

(3.10)
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Marginal Covariances

Under the assumption of conditional independecne,

Cov(Yi1, Yi2) = E[Cov(Yi1, Yi2|bi)] + Cov(E[Yi1|bi], E[Yi2|bi])

= 0 + Cov(E[Yi1|bi], E[Yi2|bi])

= [exp(βCPH0 + x′1iβββ
CPH + bi), exp(βLN0 + x′2iβββ

LN +
1

2
σ2 + bi)]

= exp(βCPH0 + x′1iβββ
CPH + βLN0 + x′2iβββ

LN +
1

2
σ2)V ar(exp(bi))

= exp(βCPH0 + x′1iβββ
CPH + βLN0 + x′2iβββ

LN +
1

2
σ2)θ

(3.11)

Marginal Correlations

Corr(Yi1, Yi2) =
Cov(Yi1, Yi2)√

V ar(Yi1)
√
V ar(Yi2)

=
exp(βCPH0 )θ√

(M(θ + 1) + exp(2βCPH0 )θ)
√

(exp(σ2)− 1)(θ + 1) + θ)

(3.12)

Obviously,

θ → 0, Corr(Yi1, Yi2)→ 0

θ →∞, Corr(Yi1, Yi2)→
exp(βCPH0 )√

M + exp(2βCPH0 )
√

exp(σ2)
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3.3 Estimation

Let Oi denote the observed data of a particular subject i, i.e. Oi = (Yi1, Yi2,x1i,x2i) are

i.i.d. for subjects, i = 1, 2, . . . , n. The likelihood for Oi is

L(Oi) =

∫
f(yi1|bi)f(yi2|bi)p(bi|θ)dbi

=

∫ {
πππ[exp(exp(−x′1iβββ

CPH − bi)Λ0Pyi1)](− exp(x′1iβββ
CPH − bi)Λ0P111)

}
1

yi2
√

2πσ
exp(−

(log yi2 − (βLN0 + x′2iβββ
LN + bi))

2

2σ2 )p(bi|θ)dbi

(3.13)

A variety of numerical methods have been used to assess the above integral, for example,

Laplace approximation, partial quasilikelihood, Gauss-hermite quadrature, adaptive Gaus-

sian quadrature, and various Monte Carlo techniques. We will use SAS Proc NLMIXED

(SAS Institute, Cary, NC, USA) for estimation in our joint modeling with shared random

effects, based on the likelihood reformulation (LR) method proposed by Liu and Yu (2008).

The basic idea is to reformulate the conditional likelihood on non-normal random effects

to standard normal random effects and improve its computational efficiency. Apply LR

method to reformulate (3.13) with respect to a log-Gamma density to a standard normal

density φ(ai), which gives,
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L(Oi) =

∫
f(yi1|ai)f(yi2|ai)

p(ai|θ)
φ(ai)

φ(ai)dai

=

∫ {
πππ[exp(exp(−x′1iβββ

CPH − ai)Λ0Pyi1)](− exp(x′1iβββ
CPH − ai)Λ0P111)

}
1

yi2
√

2πσ
exp(−

(log yi2 − (βLN0 + x′2iβββ
LN + ai))

2

2σ2 )
p(ai|θ)
φ(ai)

φ(ai)dai

=

∫
exp(l

A1
i + l

A2
i + lBi − l

C
i )

(3.14)

where l
Aj
i is the conditional log-likelihood of Yij , j = 1, 2, i.e.

l
A1
i = log

{
πππ[exp(exp(−x′1iβββ

CPH − ai)Λ0Pyi1)](− exp(x′1iβββ
CPH − ai)Λ0P111)

}
l
A2
i = − log yi2 − log σ − 0.5 log 2π −

(log yi2 − (βLN0 + x′2iβββ
LN + ai))

2

2σ2

lBi is log of log-Gamma density function, i.e.

lBi = log p(aiθ) = −θ−1 log θ − log Γ(θ−1) +
ai
θ
− exp(ai)

θ

and lCi is log of standard normal density function, i.e.

lCi = log φ(ai) = −1

2
a2
i + Constant

After above reformulation, likelihood function in (3.13) can be easily constructed by regular

SAS programming statement and maximized by ’general’ option in the ’Model’ statement in

Proc NLMIXED with adaptive Gaussian quadrature method.
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3.4 Application to 2003 NIS AMI Hospitalized Patients

In this section, we apply the proposed joint modeling approach to the analysis of LOS and

cost for acute myocardial infarction (AMI) patients in the 2003 Nationwide Inpatient Sample

(NIS), which is introduced in Chapter 2, Section 2.9. The LOS of AMI patients could vary

widely depending on severity of illness, comorbidity and type of procedure. Most patients

are discharged after a relatively short period time. However, some patients may remain in

hospital over a long time period receiving continuous care. The LOS ranged between 1 and

142 days with mean 5.50 days and SD 5.90 days. Cost had a range from $90 to $962,611, with

the median $31,704. Preliminary descriptive statistics is shown in Table 3.1. The mean LOS

of female patients (mean=6.01) was higher than that of male patients (mean=5.21). The

mean cost of female patients was $45,166, approximately $2,000 lower than that of males.

Patients who underwent CABG had the highest LOS, followed by patients who underwent

OTHER, CATH, PTCA and NONE. The same conclusion was obtained for CABG patients

having highest mean cost of $109,188. Mean LOS and median cost were different according

to CCI scores. Patients with CCI≥4 had the highest mean LOS (=7.89) and mean cost

(=$52,282), followed by CCI=3, CCI=2 and CCI=1, respectively. However when concerning

with median cost, the order could be changed. The plot of log-total charge versus LOS in

Figure 3.1 indicates the positive correlation between the two outcomes.
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Table 3.1: Characteristic of patients for LOS and Cost (N=1,1749)

Variable Subgroup N(%) Mean LOS (SD) Mean Cost (SD) Median (Cost)
Gender Female 4371 (37.2) 6.01 (6.43) 45,166 (54,755) 29,381

Male 7378 (62.8) 5.21 (5.54) 47,054 (54,394) 33,278
CCI CCI=1 4438 (37.8) 3.87 (3.79) 39,782 (39,497) 30,724

CCI=2 3423 (29.1) 5.61 (6.22) 48,883 (57,602) 33,489
CCI=3 1981 (16.9) 6.71 (6.54) 50,985 (61,542) 32,802
CCI≥4 1907 (16.2) 7.89 (7.33) 52,282 (68,103) 30,561

Procedure CABG 1408 (12.0) 11.60 (8.81) 109,188 (89,822) 81,701
PTCA 4736 (40.3) 4.04 (3.38) 46,555 (33,949) 375,71
CATH 2275 (19.4) 5.08 (5.12) 34,825 (40,781) 23,087
Other 1490 (12.7) 7.06 (8.16) 41,722 (65,561) 21,710
None 1840 (15.7) 3.88 (2.90) 15,744 (13,404) 11,946

Because healthcare utilization outcomes LOS and cost may be correlated, we apply our

joint modeling approach proposed in Section 3.2 to fit the 2003 AMI patients data, linking

the LOS and cost at the individual level with shared random effects. Potential correlates

of LOS and cost included demographic and clinical variables that could be identified at

admission, and the use of any cardiac procedures. In many applications, a two-phase Coxian

model can provide sufficient flexibility to describe the evolution of the process over time.

Therefor for simplicity we assume LOS has a 2-phase Coxian distribution. States typically

represent unknown healthcare status. Gardiner et al. (2002) shows it is suitable to assume

that in-hospital cost is log-normally distributed. SAS Proc NLMIXED with 10 quadrature

points is used for estimation. Results are summarized in Table 3.2. Both LOS and cost

are positively associated with age, female gender, CCI and procedure types. As expected

older patients had longer LOS, higher cost, and the effect of female gender on LOS was an

estimated 0.073 (β-coefficient) corresponding to an expected relative increase in LOS of 1.08,

while female gender effect on cost is not significant. Higher comorbidity led to an increased

stay by 1.25, 1.46, 1.78, and increased cost by 1.18, 1.29, 1.44 for CCI scores 2, 3, and ≥ 4
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Figure 3.1: Plot of LOS vs. Log (Cost), truncated at 50 days
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relative to a CCI score of 1. The effects of CABG, PTCA, CATH and ’other’ procedures,

compared to no procedure was an estimated relative increase by 3.78, 1.42, 1.49, 1.63 for LOS

and 8.24, 3.82, 2.33, 2.17 for cost, respectively. These results were consistent with the raw

data. In addition, from Table 3.2 we observe that random effects exist among the subject

level. The significant random effect variance component (θ̂ = 0.290, p − value < 0.0001)

indicates that a patient with longer length of stay tends to have higher cost.

For comparison, we also fit the separate models in (3.1) without random effects assum-

ing 2-phase Coxian for LOS, and log-normal for cost. Results are provided in Table 3.3.

We found that estimated coefficient for patients with other procedure types is larger than

our model. There also exists some noticeable difference in the scale parameter estimate for σ.

Table 3.2: Estimates of coefficients and random effects (γ = 1)

Variable CPH-Lognormal
LOS (CPH) Cost (LN)

Estimate (SE) Estimate (SE)
Intercept 1.005 ( 0.026) 9.312 ( 0.021)
AGE 0.008 (0.0007) 0.003 (0.0006)
Gender Female 0.073 ( 0.018) 0.005 ( 0.010)
CCI CCI=2 0.221 ( 0.021) 0.162 ( 0.017)

CCI=3 0.378 ( 0.026) 0.257 ( 0.021)
CCI≥4 0.577 ( 0.027) 0.362 ( 0.021)

Procedure CABG 1.330 ( 0.032) 2.109 ( 0.026)
PTCA 0.353 ( 0.027) 1.341 ( 0.021)
CATH 0.401 ( 0.029) 0.846 ( 0.023)
Other 0.489 ( 0.032) 0.774 ( 0.025)

Scale σ 0.450 ( 0.005)
Random Effect θ 0.290 ( 0.004)

Note:CCI=Charlson Comorbidity Index.
Reference group: Gender=male, Procedure=none, CCI=1.
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Table 3.3: Estimates of coefficients without random effects
Variable CPH-Lognormal

LOS (CPH) Cost (LN)
Estimate (SE) Estimate (SE)

Intercept 0.926 ( 0.021) 9.190 ( 0.020)
AGE 0.008 (0.0005) 0.003 (0.0005)
Gender Female 0.092 ( 0.014) 0.012 ( 0.014)
CCI CCI=2 0.261 ( 0.017) 0.155 ( 0.016)

CCI=3 0.429 ( 0.021) 0.258 ( 0.019)
CCI≥4 0.618 ( 0.021) 0.370 ( 0.020)

Procedure CABG 1.228 ( 0.003) 2.084 ( 0.025)
PTCA 0.265 ( 0.021) 1.285 ( 0.020)
CATH 0.346 ( 0.023) 0.772 ( 0.022)
Other 0.518 ( 0.026) 0.663 ( 0.022)

Scale σ 0.698 ( 0.004)

Note:CCI=Charlson Comorbidity Index.
Reference group: Gender=male, Procedure=none, CCI=1.

3.5 Discussion

In this chapter we propose a novel joint model for correlated LOS and cost data. Our study

demonstrates the application of joint modeling of correlated LOS and total cost for hospital-

ized patients. The underlying distributions, with conditional independence assumption are

Coxian PH for LOS and log-normal for cost. Gaussian quadrature technique implemented

in SAS Proc NLMIXED is used for ML estimation.

Our model is comprehensive yet easy to fit. These advantages make it valuable in practical

data analysis. The strength of Coxian PH regression models for LOS lies in their flexibility in

accommodating extreme values, while revealing hidden status possibly due to the presence of

other comorbid conditions. We find a Coxian PH model serves well for LOS. Cost easily fitted

through a log-normal regression model. The correlation between them can be accommodated

by shared random effects. Joint modeling approach is primarily necessary when researchers

66



are more interested in the association of different two outcomes.

The management of hospital LOS and cost has become an important issue, since the

determination of relevant factors and hidden structures could inform discharge planning and

allocation of resources. In the application, we showed that there exists significant association

between LOS and cost at the subject level. Moreover, this approach can be extended to

analyze longitudinal data or clustered data exhibiting unobserved heterogeneity. If the data

are incomplete, for example, when patients who die in hospital, this joint model can be

generalized to deal with censored observations by modifying the log-likelihood function (Liu

et al., 2007).
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Chapter 4

Bivariate Copula Random-effects

(BCRE) Model for Length of Stay

and Cost

This chapter is concerned with regression models for correlated outcomes constructed using

copula functions and correlated random effects. Our approach entails specifying conditional

marginal regression models with random effects for the outcomes and combining them to

form a joint model via a specified copula.

4.1 Introduction

As we mentioned in Chapter 3, mixed outcomes have attracted more attention in health

and medicine, and joint analysis of such outcomes entails specification of models flexible

enough to accommodate them. Such joint models are potentially advantageous in several

statistical and practical respects. For example, a multivariate model enables analysts to
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account for relationships between outcomes and assess at the same time the joint influence

of predictors/covariates have on them.

Multilevel models (also called hierarchical linear models, nested models, mixed models,

random-effects models, random-coefficient models, or split-plot designs) are statistical mod-

els for addressing variation at more than one level. They can be viewed as generalizations

of linear models.

The multivariate normal distribution is by far the most commonly used to model mul-

tivariate outcomes. However, multivariate normality may not be a proper assumption in

many situations. For example, if two outcomes are positive and skewed, the log-normal or

log-logistic regression models might be more appropriate. This is especially true for LOS

and cost where positive right skewness and correlation are present. In the recent years, some

attempts have been made to relate those two outcomes that permit consideration of the cor-

relation between LOS and medical charges. Gardiner et al. (2002) propose a two-equation

model for total cost and duration of treatment with the endogeneity of the later accounted

for in the model for cost. In their model, correlation is assessed either under the assumption

of bivariate normal for measurement error or by the “seemly unrelated regression”. Often

different survival distributions give better fit to LOS and cost, for example, a log-logistic

LOS and log-normal cost. The new approach that we consider here provides a more general

and flexible model for the related variables.

Our approach is based on copula dependence modeling. Copula functions are useful tools

to model dependence for multivariate outcomes. There is an increasing use of copulas in sev-

eral scientific fields, such as economics (Cameron et al., 2004), survival analysis (Lambert and

Vandenhende, 2002), finance (Bee, 2004; Breymann et al., 2003) and insurance (Klugman
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and Parsa, 1999). A copula is a function that connects the marginal distributions to restore

the joint distribution with a dependence parameter. For example, multivariate Gaussian

distribution can be generated by a Gaussian copula applied to the Gaussian marginal distri-

butions. More importantly, a copula can provide many flexible, complicated non-Gaussian

joint distributions.

The context of our application of copula models is LOS and cost. They are likely to

have different marginal distributions being correlated. In addition to the correlation for

LOS and cost for each patient, another potential correlation exists at the cluster (hospital)

level. For example, unmeasured latent variables (hospital efficiency, provider characteristics,

etc.) induce a random effect shared among patients within the same cluster that affects the

outcomes and results in a within-cluster correlation. We can integrate out this latent random

effect to derive a new marginal distribution for the outcomes, but the forms are typically not

closed and complicated. In fact, the random effect (RE) approach is intuitive to researchers

who believe that there may be some latent quantity underlying a cluster’s LOS and cost.

The random-effects models have been used extensively in clustered and longitudinal data

analysis, see Allison (2005); Chen and Dunson (2003); Wooldridge (2002). For example,

Chen and Dunson (2003) propose an approach for random-effects model selection and apply

it to study the relationship between prenatal exposure to polychlorinated biphenyls and

motor development in young children with possible heterogeneity among the 12 centers.

In this chapter, we develop a new flexible joint model based on correlated measure-

ment errors modeled by copulas and incorporate a cluster level random effect to account

for individual and within-cluster correlations simultaneously. The proposed approach tries

to capture the various dependence structures of LOS and cost (symmetric or asymmetric)
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in the copula function, and takes advantage of the relative ease in specifying the marginal

distributions and introduction of within-cluster correlation based on the cluster level random

effects.

4.2 Copulas and Dependence: a Brief Overview

The study of copula functions was initiated in the 1940s by Hoeffding, and further developed

by Fréchet. Model theories about copulas were introduced by Sklar in 1959 (Sklar, 1959).

Nelsen (1999); Joe (1997); Trivedi and Zimmer (2005) provide a comprehensive discussion

of copulas and their applications. Copulas are parametrically specified joint distributions

generated from given marginal distributions. Therefore, properties of copulas are analogous

to properties of joint distributions. In this section we provide some fundamental properties of

copulas. The copula approach is a modeling strategy whereby a joint distribution is induced

by specifying marginal distributions and a copula function with a dependence parameter.

Sklar’s theorem states that there exists a copula function which acts to represent the joint

cumulative distribution functions (CDF) of random variables in terms of its underlying one

dimensional margins. An m-copula can be defined as an m-dimensional CDF whose support

is contained in [0, 1]m and whose one-dimensional margins are uniform on [0, 1]. Consider

a continuous m-variate distribution F (y1, y2, . . . , ym) with univariate marginal distributions

F1, F2, . . . , Fm and inverse functions F−1
1 , F−1

2 , . . . , F−1
m . Let u1, u2, . . . , um ∈ [0, 1], y1 =
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F−1
1 (u1), y2 = F−1

2 (u2), . . . , ym = F−1
m (um). Then

F (y1, y2, . . . , ym) = F
(
F−1

1 (u1), F−1
2 (u2), . . . , F−1

m (um)
)

= Pr (U1 ≤ u1, U2 ≤ u2, . . . , Um ≤ um)

= C(u1, u2, . . . , um)

(4.1)

where (U1, U2, . . . , Um) are each marginally uniform on [0, 1]. C is the unique copula associ-

ated with the distribution function F . Here for simplicity, we discuss the bivariate copulas

to illustrate copula modeling approach. Consider two random variables X and Y with con-

tinuous distributions F and G, respectively, and joint distribution function H.

Theorem 4.1 (Sklar’s theorem). Let H be a joint distribution function with margins F and

G, then there exists a 2-dimensional copula function Cθ : [0, 1]2 → [0, 1] such that

H(x, y) = Cθ(F (x), G(y))

where θ is the dependence parameter, which measures dependence between the margins.

Assume Cθ, F,G are differentiable, we can write down the joint density function of X

and Y in the form:

h(x, y) =
∂2H(x, y)

∂x∂y
=
∂2Cθ(F (x), G(y))

∂x∂y
= cθ(u1, u2)f(x)g(y) (4.2)

where u1 = F (x), u2 = G(y), cθ(u1, u2) =
∂2Cθ(u1, u2)

∂u1∂u2
and f, g are the marginal univariate

densities.

Three bivariate copulas of importance are
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1. Independent (Product) Copula : Π(u, v) = uv

2. Maximum Copula: W (u, v) = max(u+ v − 1, 0)

3. Minimum Copula: M(u, v) = min(u, v)

where (u, v) ∈ [0, 1]2. W and M are called the Fréchet lower and upper bounds and have

the property that all bivariate copulas C satisfy W ≤ C ≤M (Smith, 2003).

Family of copulas Cθ are indexed by the association parameter θ which captures de-

pendence between the random variables interested since copula parameters have different

ranges and interpretations, they are not comparable to each other. Here, we present three

dependence concepts.

1. Pearson correlation. The Pearson correlation coefficient ρ(X, Y ) for two random vari-

ables is a measure of linear dependence, given by

ρ =
Cov(X, Y )√
V ar(X)V ar(Y )

The Pearson correlation coefficient is the most popular measure of the linear associ-

ation. For elliptical copulas (such as Gaussian copula, ρ appears naturally as the .

An alternative measure of dependence is rank correlation, including Kendall’s tau and

Spearman’s rho, which are measures of concordance.

2. Kendall’s tau and Spearman’s rho. Kendall’s tau and Spearman’s rho are associations

between rankings instead of the actual values of the observations. Hence Kendall’s tau

73



is an alternative measure of association for non-elliptical distributions.

τ(X, Y ) = Pr[concordance]− Pr[discordance]

= Pr[(X1 −X2)(Y1 − Y2) > 0]− Pr[(X1 −X2)(Y1 − Y2) < 0]

where (X1, Y1) and (X2, Y2) are two independent pairs of random variables (X, Y )

from H.

Spearman’s rho is the linear correlation between F (X) and G(Y ) defined as:

ρS(X, Y ) = ρ(F (X), G(Y ))

Both τ(X, Y ) and ρS(X, Y ) can be expressed in term of copulas:

τ(X, Y ) = 4E [C(U1, U2)]− 1 = 4

∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2)− 1

ρS(X, Y ) = 12E[U1U2]− 3 = 12

∫ 1

0

∫ 1

0
u1u2dC(u1u2)− 3

where (U1, U2) ∼ C with uniform margins.

For continuous variables the above measures take value [-1,1]. For the independent

copula Π, both measures are 0. For the Fréchet lower bound W , both measures are -1.

For the Fréchet upper bound M , both measures are 1. From the above expressions for

τ(X, Y ), ρS(X, Y ) both measures depend on the copula of the joint distribution and not on

the margins. They are also invariant with respect to strictly increasing transformation of

(X, Y ). Recall that the Pearson correlation is not a measure of independence: for example,

ρ(X, Y ) = 0 does not imply independence of the two variables. Table ?? below gives the
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functional form of some selected copulas.

For simplicity, we here write down copulas in terms of random variables U1 and U2 that

have standard uniform marginal distributions. Table ?? summarizes several bivariate copula

functions in terms of U1 and U2.

Farlie-Gumbel-Morgenstern (FGM) copula

The FGM copula is defined as

Cθ(u1, u2) = u1u2 (1 + θ(1− u1)(1− u2)) , θ ∈ [−1, 1].

The joint distribution of (X, Y ) is

H(x, y) = F (x)G(y) (1 + θ(1− F (x))(1−G(y))) (4.3)

X and Y are independent as θ = 0, and the FGM copula collapses to independent copula.

The FGM copula does not caputre the Fréchet lower & upper bounds as special cases. The

joint density of the FGM coula is

h(x, y) =
∂2H(x, y)

∂x∂y
= (1 + θ(1− 2F (x))(1− 2G(y))) f(x)g(y) (4.4)

The FGM copula is attractive due to its simplicity but it can only be useful when dependence

between the two margins is modest.
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Gaussian Copula

The Gaussian copula is defined by

Cθ(u1, u2) = Φ2

{
Φ−1(u1),Φ−1(u2); θ

}
, θ ∈ [−1, 1].

The joint distribution of (X, Y ) is

H(x, y) = Φ2

{
Φ−1[F (x)],Φ−1[G(y)]; θ

}
(4.5)

where Φ(.) is the CDF of the standard normal distribution, and Φ2(.) is the standard bivariate

normal CDF with correlation parameter θ. X and Y are independent if θ = 0. The Gaussian

copula contains the Fréchet bounds: for θ = −1 we get W , and for θ = 1 we get M . The

density of H is

h(x, y) =
∂2H(x, y)

∂x∂y
= φ2

{
Φ−1[F (x)],Φ−1[G(y)]; θ

} f(x)

φ(Φ−1[F (x)])

g(x)

φ(Φ−1[G(x)])
(4.6)

where φ2 is the density of bivariate standard normal with correlation θ, i.e.

φθ(x, y) =
1

2π
√

1− θ2
exp

{
−x

2 − 2θxy + y2

2(1− θ2)

}

φ(.) is the standard normal density, f(x) and g(y) are densities of X and Y , respectively.

The higher the association parameter θ , the stronger the dependence. We can see the

dependence structure is symmetric, see left top in Figure 4.1.
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Clayton Copula

Clayton copula has the form

Cθ(u1, u2) =
(
u−θ1 + u−θ2 − 1

)−1/θ
, θ ∈ (0,∞).

The corresponding joint distribution function and density function are

H(x, y) =
(
F (x)−θ +G(y)−θ − 1

)−1/θ
(4.7)

h(x, y) =
∂2H(x, y)

∂x∂y
= (1 + θ)[F (x)G(y)]−θ−1

(
F (x)−θ +G(y)−θ − 1

)−1/θ−2
f(x)g(y)

(4.8)

X and Y are independent as θ → 0. When correlation between two variables is strongest in

the left tail of the joint distribution, Clayton copula is an appropriate choice.

Frank Copula

The Frank copula takes the form:

Cθ(u1, u2) = −θ−1 log

{
1 +

(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

}

The corresponding distribution function is

H(x, y) = −θ−1 log

{
1 +

exp(−θF (x))− 1)(exp(−θG(y))− 1)

exp(−θ)− 1

}
(4.9)

where dependence parameter θ ∈ (−∞,∞) \ {0}. Values −∞, and ∞ correspond (limit) to

the Fréchet lower bound and upper bound, respectively. We also have H(x, y) = F (x)G(y)

77



if θ → 0. The left bottom panel of Figure 4.1 shows the strongest dependence is centered in

the middle of distribution.

Gumbel Copula

The Gumbel copula has the form:

Cθ(u1, u2) = exp
{
−[(− log u1)θ + (− log u2)θ]1/θ

}
, θ ∈ [1,∞].

The joint distribution function is

H(x, y) = exp
{
−[(− logF (x))θ + (− logG(y))θ]1/θ

}
(4.10)

X and Y are independent as θ = 1. Gumbel copula exhibits strong right tail dependence,

while does not allow negative dependence.
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Figure 4.1: Bivariate pdf contour plots induced by copula, N(0, 1) margins (Kendall’s
tau=0.5)
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Table 1: Selected examples of copulas

Copula Copula function Cθ(u1, u2) Density cθ(u1, u2) θ-domain Kendall’s τ

FGMa u1u2(1 + θ(1− u1)(1− u2)) 1 + θ(1− 2u1)(1− 2u2) −1 ≤ θ ≤ 1 2
9θ

Gaussian Φθ

{
Φ−1(u1),Φ−1(u2)

} φ2

{
Φ−1(u1),Φ−1(u2); θ

}
φ(Φ−1(u1))φ(Φ−1(u2))

−1 ≤ θ ≤ 1 2
π arcsin(θ)

Clayton
(
u−θ1 + u−θ2

)−1/θ
(1 + θ)[u1u2]−θ−1 (u1 + u2 − 1)−1/θ−2 θ ∈ (0,∞) θ

θ+2

Frank
−θ−1 log

{
1+ −θ(e−θ − 1)e−θ(u1+u2)

(e−θu1 − 1)(e−θu2 − 1) + (eθ − 1)2

θ ∈ (−∞,∞) 1− 4
θ

[1−
(exp(−θu1)− 1)(exp(−θu2)− 1)

exp(−θ)− 1

}
\{0} D1(θ)]b

Gumbel exp

{
−
[
(− log u1)θ + (− log u2)θ

]1/θ} Cθ(u1, u2)(u1u2)−1 (ũ1ũ2)θ−1

(ũθ1 + ũθ2)2−1/θ
θ ∈ [1,∞) 1− 1

θ[
(ũθ1 + ũθ2)1/θ + θ − 1

]
where ũ1 = − log u1, and ũ2 = − log u2

a FGM denotes Farlie-Gumbel-Morgenstern.
b the density function Dk(z) = kz−k

∫ z
0 tk(et − 1)−1dt for k any positive integer.
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4.3 Bivariate Copula Random-effects (BCRE) Model

4.3.1 BCRE Model and Likelihood

In this section, we present our model for the hospital length of stay (LOS) and cost at two

levels. We define notation as follows. Suppose that we observe LOS Tij and cumulative

cost Cij = C(Tij) for the jth subject in ith hospital, where i = 1, 2, · · · , n, j = 1, 2, · · · , ni.

Denote by x1,ij , x2,ij the covariate vectors for the fixed effect, specific to the type of outcome.

In practice, they may represent the same common covariate constellation. Let ui and vi

be the correlated random effects at the hospital level with joint density φ(ui, vi), that is ui

vi

 ∼ N(0,Σ), with Σ =

 τ2
1 ρτ1τ2

ρτ1τ2 τ2
2

 being a positive definite matrix, ρ ∈

[−1, 1].

Denote by ε1,ij and ε2,ij the correlated measurement error terms for the positive values of

Tij and Cij . We assume that measurement errors ε1,ij and ε2,ij are independent of random

effects ui and vi, but jointly distributed with some specified marginal distributions (normal,

logistic, etc.) from a particular copula with dependence parameter θ, for example, assume

ε1,ij ∼ N(0, 1) and ε2,ij ∼ N(0, 1). Our Bivariate copula random-effects (BCRE) model is

defined as

log Tij = x′1,ijβββ1 + ui + σ1ε1,ij

logCij = x′2,ijβββ2 + vi + σ2ε2,ij

(4.11)

where βββ1 and βββ2 are regression coefficient vectors, respectively, σ1 and σ2 are two scale pa-

rameters. The joint distribution of random effects defines the correlation (between, and cross

equation) among clustered measures (Ti, Ci). In one aspect, ui and vi model intra-hospital
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correlation, which induces the ”within-hospital correlation”, i.e. they generate dependence

between those individuals in the same cluster (hospital), whereas conditional on the ran-

dom effects those individuals are independent. In another aspect, the correlation between

ui and vi describes the ”cross-equation correlation” at the hospital level. There might also

be ”cross-equation correlation” at the individual level between the two equations, which is

modeled by copula dependence parameter θ. For example, patients with longer hospital

length of stay tend to incur more cost. Also, patients with higher cost are more likely to be

hospitalized.

Under the assumptions that {(ε2,ij , ε2,ij), 1 ≤ i ≤ n, 1 ≤ j ≤ ni} are correlated and

{(εm,ij , εm,ik),m = 1, 2, j 6= k} are uncorrelated, the variances and covariances are eas-

ily calculated

V ar(log Tij) = V ar(ui) + σ2
1V ar(ε1,ij) = τ2

1 + σ2
1

V ar(logCij) = V ar(vi) + σ2
2V ar(ε2,ij) = τ2

2 + σ2
2

Cov(log Tij , log Tik) = V ar(ui) + σ2
1Cov(ε1,ij , ε1,ik) = τ2

1

Cov(logCij , logCik) = V ar(vi) + σ2
2Cov(ε2,ij , ε2,ik) = τ2

2

Cov(log Tij , logCij) = Cov(ui, vi) + σ1σ2Cov(ε1,ij , ε2,ij)

= ρτ1τ2 + σ1σ2Cov(ε1,ij , ε2,ij)

Cov(log Tij , logCik) = Cov(ui, vi) + σ1σ2Cov(ε1,ij , ε2,ik) = ρτ1τ2

where i = 1, 2, . . . , n, j, k = 1, 2, . . . , ni, j 6= k. Such equations are often necessary by

identifying all the variance/covariance components.
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Likelihood

Denote by ti = (ti1, ti2, . . . , tini) and ci = (ci1, ci2, . . . , cini) the vectors of response variables,

LOS and cost, for the i-th unit (cluster), i = 1, 2, . . . , n. The likelihood for (ti, ci) is

Li =

∫ ∫ ∏
j

Cθ

{
F (

log tij − x′1,ijβββ1 − ui
σ1

), G(
log cij − x′2,ijβββ2 − vi

σ2
)

}
1

σ1tij
f(

log tij − x′1,ijβββ1 − ui
σ1

)
1

σ2cij
g(

log cij − x′2,ijβββ2 − vi
σ2

)p(ui, vi|τ1, τ2, ρ)duidvi

(4.12)

where F and G are CDF of ε1 and ε2, similarly, f and g are PDF of ε1 and ε2, separately.

The whole estimation process can be conveniently implemented in SAS.

4.3.2 Estimation

The EM algorithm (Dempster. et al., 1977) is commonly used for estimation in joint random-

effects models, with random effects treated as missing data. However, for the above models,

the conditional expectations of random effects given observed data do not have a closed

form. Monte Carlo methods (e.g. the Metropolis−Hastings algorithm) are often needed

in the E-step to approximate these terms, making the estimation highly computationally

intensive. Furthermore, the implementation (programming) of the Monte Carlo EM method

is quite difficult and must be treated case by case. Therefore, joint models are not yet widely

adopted in practical data analysis.

Likelihood (4.12) involves an integral with respect to random effects. Numerical integra-

tion techniques, e.g. Gaussian quadrature, thus can be adopted for estimation. The resulting

parametric likelihood can be maximized conveniently by Gaussian quadrature tools in stan-
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dard statistical packages such as Proc NLMIXED in SAS. An introduction to the Gaussian

quadrature technique and implementation in SAS is given in Appendix A.

Generally, we have two estimation methods when using copulas. Full maximum likeli-

hood (FML) approach is the most direct estimation method. To obtain FML estimates,

one maximizes the loglikelihood function l(ΩFML) =
∑n
i=1 Li where Li is obtained from Eq

(4.12) and Ω denotes all parameters. By standard likelihood theory under regularity condi-

tions, the ML estimates Ω̂FML is consistent for the true parameter vector Ω0 and retains its

asymptotic normality (Trivedi and Zimmer, 2005). Joe and Xu (1996) propose a two-stage

estimation method called inference function for margins (IFM). The set of parameters of

the model are estimated through a (nonlinear) system of estimating equations, with each

estimating equation being a score function (partial derivative of a loglikelihood) from some

marginal distribution of the multivariate model. However, the standard error of Ω̂IFM is not

appropriately taken care of, which is typically solved by bootstrapping method. In this chap-

ter, we apply the FML with Gaussian quadrature for the model estimation. By simulations,

we found that such method yields satisfactory estimates.

4.4 Simulation

In this section, we conduct a simulations study to evaluate the performance of the proposed

estimation method. Data are simulated under a regression model with random effects. In

each simulated data set, n = 30 clusters and ni = 20 observations are fixed within each

cluster, which gives 600 observations per simulated data set. The covariate vectors x1,ij

and x2,ij consist of the constant 1 (representing the intercept term) and values randomly

generated from the uniform (−0.5, 0.5) distribution, with associated regression coefficients
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(1, −0.5) for the LOS measure, and (4, 0.5) for the cost measure. The correlation of the

random effects ρ is chosen to be 0.5. We assume that measurement errors ε1,ij and ε2,ij

have normal marginal distributions. The true value of the association parameter θ for each

copula is chosen so that Kendall’s tau is approximately equal to 0.3, except for the FGM

copula, which cannot accommodate dependence of this magnitude. Alternatively in the

FGM case, we set θ = 0.5, with corresponding Kendall’s tau value of 0.11. According to this

simulation design, 30 realizations of the random cluster effects from a normal distribution are

generated for each outcome. The simulation study is designed to evaluate the performance

of the estimators. The number of replications is 500 for each setting considered. For each

replication, new realizations of ε1,ij and ε2,ij are randomly drawn from each type of copula,

which results in the new observations of LOS and cost.

Results of the simulation study are presented in Table 4.2, reporting the average estimate

and mean standard errors of the parameter estimates over the 500 replicates. It is evident

that the FML estimators of the regression coefficients have negligible biases and relatively

small MSE. For variance component parameters, the FML estimator also performs reasonably

well in each setting considered. The simulation results thus confirm the applicability of the

FML for parameter estimation in the correlated regression model with random effects.
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Table 2: Simulation results for bivariate copulas with normal margins

ρ = 0.5
Gaussian Copula Clayton Copula Frank Copula Gumbel Copula FGM Copula

(θ = 0.45) (θ = 0.86) (θ = 5.40) (θ = 1.43) (θ = 0.50)
DGP Est SE SEM Est SE SEM Est SE SEM Est SE SEM Est SE SEM

β01 1.00 0.999 0.152 0.149 1.001 0.151 0.148 1.000 0.149 0.147 1.001 0.147 0.151 1.000 0.149 0.147
β11 -0.50 -0.503 0.120 0.120 -0.502 0.124 0.121 -0.499 0.118 0.127 -0.498 0.121 0.124 -0.499 0.162 0.157
β02 4.00 3.997 0.247 0.246 3.991 0.227 0.228 3.990 0.239 0.224 3.988 0.235 0.227 3.989 0.231 0.222
β12 0.50 0.500 0.267 0.270 0.500 0.260 0.241 0.502 0.258 0.256 0.502 0.271 0.260 0.501 0.262 0.257
σ1 1.00 1.001 0.030 0.031 0.999 0.031 0.029 0.996 0.030 0.029 0.996 0.031 0.031 1.002 0.030 0.028
σ2 2.00 1.999 0.059 0.059 1.998 0.059 0.057 1.997 0.057 0.058 1.995 0.059 0.059 2.004 0.061 0.058
τ1 0.80 0.775 0.113 0.113 0.778 0.116 0.108 0.777 0.111 0.110 0.778 0.113 0.116 0.776 0.111 0.112
τ2 1.20 1.166 0.180 0.176 1.167 0.175 0.170 1.164 0.180 0.175 1.160 0.176 0.175 1.162 0.183 0.179
ρ 0.50 0.502 0.151 0.147 0.504 0.149 0.147 0.505 0.159 0.154 0.503 0.147 0.149 0.502 0.147 0.149
θ 0.452 0.154 0.156 0.863 0.223 0.231 5.409 0.337 0.340 1.434 0.156 0.162 0.504 0.503 0.041

Est is the mean of the parameter estimates (based on 500 replicates); SE is the sampling standard error
of the parameter estimates; SEM is the sampling mean of the standard error estimates.
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4.5 Application to 2003 NIS AMI Hospitalized Patients

We apply our method discussed above to the 2003 NIS for LOS and charges for patients

hospitalized for AMI. There is a high correlation between LOS and cost (rank correlation

r = 0.576 and Kendall’s tau τ = 0.431, N = 11, 749). The range of the LOS was 1 to

142 days, and cost ranged from $90 and $962,611. Figure 4.2 show a plot of log(LOS) and

log(cost).
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Figure 4.2: Plot of Log (LOS) vs. Log (Cost), truncated at 50 days
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The bivariate model we use for LOS and cost allow inference about regression parameters

simultaneously for these two outcomes. Our method accounts for the existence of both the

non-zero intra-hospital and individual level correlations. For comparison, we also fit two

reduced models as special cases. A reduced model A is fit without random effects and a

reduced model B is fit with independent measurement errors. The covariates of interest

include age, gender, comorbidity and procedure type. To correct for skewness to the right of

LOS and cost, we take the logarithm of the outcomes. Level 1 is the subject level, Level 2

is the hospital level. We use the adaptive Gaussian quadrature estimation method with five

quadrature points in Proc NLMIXED. Different starting values are used in the estimation.

We fit with three different copulas (Gaussian, Clayton and Gumbel) and chose the best one

based on BIC. We conclude that in our application, the Gumbel copula performs the best.

We include the results for covariates with Gumbel copula in Table 4.3.

Table 4.3 shows that comorbidities and procedure types are highly significant in both

the LOS and cost of the model. CABG patients have significant longer LOS and higher

cost. Subjects with high comorbidity (CCI≥4) are more likely to stay longer and incur more

cost at a rate of 1.72 and 1.41 respectively, compared to those with low comorbidity CCI=1

(p < 0.0001). Patient age has a significant effect in both equations of the model, but with

very small effect size (β̂1,age = 0.0008, β̂2,age = 0.0003, p < 0.0001). Gender has a significant

effect in LOS, but there is no difference between males and females in cost.

Bottom of Table 4.3 shows the estimates of the covariance matrix and copula association

parameter. We note that both the random effects are present for LOS and cost, as τ1 and

τ2 are highly significant. A significant cross-equation correlation is seen (ρ̂uv = 0.615, p <

0.0001), suggesting that a hospital with higher LOS also has higher cost. At the same time,

88



there is an association between LOS and cost at the patient level, θ̂ = 2.051(p < 0.0001),

resulting in the estimates of Kendall’s tau=0.512. Results for the Gaussian and Clayton

copulas are shown in Table 4.6 and Table 4.7.

For comparison, we fit two additional models. Reduced model A assumes that there

are no random effects at the hospital level. In this model, we only consider association

between LOS and cost at the patient level via measurement errors connected with a copula

function. Results are shown in Table 4.4. We observe that this model yields the estimates

of age, gender, comorbidities and procedure type close to those in our model. However some

notable difference are present. We note a larger variance σ2 for both LOS and cost, which

might be due to ignoring the heterogeneity at the hospital level. Reduced model B only

involves the random effects, assuming independent measurement errors. Table 4.5 shows

the estimates for model B. We see that the estimate ρ̂uv is higher than that in our model

possibly transferring some correlation to the hospital level.
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Table 4.3: Parameter estimates (SE) for log-normal margins with Gumbel copula

LOS Cost
Estimate (SE) p-value Estimate (SE) p-value

Intercept 0.753 (0.019) < 0.0001 9.131 (0.018) < 0.0001
Age 0.008(0.0005) < 0.0001 0.003(0.0004) < 0.0001
Gender Female 0.071 (0.012) < 0.0001 0.001 (0.011) 0.922
Procedure CABG 1.236 (0.023) < 0.0001 1.928 (0.021) < 0.0001

PTCA 0.270 (0.019) < 0.0001 1.189 (0.018) < 0.0001
CATH 0.314 (0.021) < 0.0001 0.704 (0.019) < 0.0001
Other 0.366 (0.022) < 0.0001 0.672 (0.020) < 0.0001

CCI 2 0.096 (0.018) < 0.0001 0.131 (0.013) < 0.0001
3 0.337 (0.019) < 0.0001 0.222 (0.016) < 0.0001
≥ 4 0.542 (0.018) < 0.0001 0.343 (0.016) < 0.0001

Scale (σ) 0.649 (0.004) < 0.0001 0.564 (0.004) < 0.0001
Random Effects (τ) 0.129 (0.007) < 0.0001 0.424 (0.007) < 0.0001
Correlation (ρ) 0.615 (0.011) < 0.0001
θ 2.051 (0.020) < 0.0001
BIC 310631

Note:CCI=Charlson Comorbidity Index.
Reference group: Gender=male, Procedure=none, CCI=1.

Table 4.4: Parameter estimates (SE) for log-normal margins with Gumbel copula, reduced
model A without random effects

LOS Cost
Estimate (SE) p-value Estimate (SE) p-value

Intercept 0.758 (0.019) < 0.0001 9.203 (0.018) < 0.0001
Age 0.008(0.0005) < 0.0001 0.003(0.0005) < 0.0001
Gender Female 0.078 (0.013) < 0.0001 0.004 (0.011) 0.787
Procedure CABG 1.287 (0.027) < 0.0001 2.052(0.026) < 0.0001

PTCA 0.303 (0.021) < 0.0001 1.283 (0.022) < 0.0001
CATH 0.318 (0.026) < 0.0001 0.774 (0.025) < 0.0001
Other 0.330 (0.033) < 0.0001 0.656 (0.023) < 0.0001

CCI 2 0.201 (0.014) < 0.0001 0.142 (0.017) < 0.0001
3 0.362 (0.016) < 0.0001 0.243 (0.016) < 0.0001
≥ 4 0.565 (0.017) < 0.0001 0.362 (0.019) < 0.0001

Scale (σ) 0.662 (0.004) < 0.0001 0.702 (0.005) < 0.0001
θ 1.640 (0.015) < 0.0001

Note:CCI=Charlson Comorbidity Index.
Reference group: Gender=male, Procedure=none, CCI=1.
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Table 4.5: Parameter estimates (SE) for log-normal margins with Gumbel copula, reduced
model B with independent errors

LOS Cost
Estimate (SE) p-value Estimate (SE) p-value

Intercept 0.758 (0.019) < 0.0001 9.236 (0.021) < 0.0001
Age 0.008(0.0005) < 0.0001 0.003(0.0004) < 0.0001
Gender Female 0.077 (0.013) < 0.0001 0.008 (0.011) 0.469
Procedure CABG 1.254 (0.024) < 0.0001 1.922 (0.022) < 0.0001

PTCA 0.257 (0.019) < 0.0001 1.181 (0.019) < 0.0001
CATH 0.294 (0.021) < 0.0001 0.682 (0.020) < 0.0001
Other 0.351 (0.023) < 0.0001 0.657 (0.021) < 0.0001

CCI 2 0.197 (0.015) < 0.0001 0.134 (0.013) < 0.0001
3 0.358 (0.018) < 0.0001 0.228 (0.016) < 0.0001
≥ 4 0.579 (0.019) < 0.0001 0.348 (0.016) < 0.0001

Scale (σ) 0.649 (0.004) < 0.0001 0.543 (0.004) < 0.0001
Random Effects (τ) 0.145 (0.008) < 0.0001 0.461 (0.011) < 0.0001
Correlation (ρ) 0.840 (0.008) < 0.0001

Note:CCI=Charlson Comorbidity Index.
Reference group: Gender=male, Procedure=none, CCI=1.

Table 4.6: Parameter estimates (SE) for log-normal margins with Gaussian copula

LOS Cost
Estimate (SE) p-value Estimate (SE) p-value

Intercept 0.732 (0.019) < 0.0001 9.171 (0.019) < 0.0001
Age 0.008(0.0005) < 0.0001 0.003(0.0004) < 0.0001
Gender Female 0.080 (0.013) < 0.0001 0.014 (0.011) 0.205
Procedure CABG 1.257 (0.024) < 0.0001 1.966 (0.022) < 0.0001

PTCA 0.257 (0.020) < 0.0001 1.224 (0.018) < 0.0001
CATH 0.297 (0.022) < 0.0001 0.715 (0.019) < 0.0001
Other 0.354 (0.023) < 0.0001 0.666 (0.020) < 0.0001

CCI 2 0.202 (0.015) < 0.0001 0.144 (0.013) < 0.0001
3 0.361 (0.019) < 0.0001 0.240 (0.016) < 0.0001
≥ 4 0.579 (0.019) < 0.0001 0.365 (0.016) < 0.0001

Scale (σ) 0.651 (0.004) < 0.0001 0.549 (0.004) < 0.0001
Random Effects (τ) 0.122 (0.007) < 0.0001 0.467 (0.008) < 0.0001
Correlation (ρ) 0.599 (0.010) < 0.0001
θ 0.715 (0.005) < 0.0001
BIC 310979

Note:CCI=Charlson Comorbidity Index.
Reference group: Gender=male, Procedure=none, CCI=1.
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Table 4.7: Parameter estimates (SE) for log-normal margins with Clayton copula

LOS Cost
Estimate (SE) p-value Estimate (SE) p-value

Intercept 0.768 (0.020) < 0.0001 9.098 (0.019) < 0.0001
Age 0.008(0.0005) < 0.0001 0.003(0.0004) < 0.0001
Gender Female 0.076 (0.013) < 0.0001 0.018 (0.011) 0.085
Procedure CABG 1.250 (0.026) < 0.0001 1.978 (0.022) < 0.0001

PTCA 0.180 (0.021) < 0.0001 1.240 (0.018) < 0.0001
CATH 0.305 (0.022) < 0.0001 0.734 (0.018) < 0.0001
Other 0.376 (0.023) < 0.0001 0.682 (0.019) < 0.0001

CCI 2 0.228 (0.016) < 0.0001 0.171 (0.013) < 0.0001
3 0.383 (0.019) < 0.0001 0.270 (0.015) < 0.0001
≥ 4 0.628 (0.020) < 0.0001 0.395 (0.016) < 0.0001

Scale (σ) 0.696 (0.005) < 0.0001 0.565 (0.004) < 0.0001
Random Effects (τ) 0.160 (0.008) < 0.0001 0.459 (0.010) < 0.0001
Correlation (ρ) 0.560 (0.012) < 0.0001
θ 1.387 (0.035) < 0.0001
BIC 314048

Note:CCI=Charlson Comorbidity Index.
Reference group: Gender=male, Procedure=none, CCI=1.
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4.6 Discussion

In this chapter, we have introduced a joint bivariate copula random-effects model to describe

the interplay of LOS and cost. The basic idea is that we start out with a specific latent

response process (conditional on the random effects), connect those two equations through a

copula with the association parameter. This approach flexibly models two-level correlations

and at the same time account for hospital heterogeneity.

• ui and vi, model intra-hospital correlation, which induces the ”within-hospital corre-

lation”, i.e. they generate dependence between those individuals in the same cluster,

whereas conditional on the random effects those individuals are independent.

Cov(log Tij , log Tik) = V ar(ui)

Cov(logCij , logCik) = V ar(vi)

i = 1, 2, . . . , n; j, k = 1, 2, . . . , ni, j 6= k.

• Correlation between ui and vi ρ describes the ”cross-equation correlation” at the hos-

pital level.

Cov(log Tij , logCij) = Cov(ui, vi) + σ1σ2Cov(ε1,ij , ε2,ij)

Cov(log Tij , logCik) = Cov(ui, vi), j 6= k

• Association parameter in copula model θ describes ”cross-equation correlation” at the

individual level due to Cov(ε1,ij , ε2,ij). For example, patients with longer hospital
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length of stay tend to incur more cost.

Our proposed BCRE model overcomes some of the problems in existing models for mixed

outcomes. Full maximum likelihood method is used to estimate parameters simultaneously,

which is easily obtain in SAS Proc NLMIXED. Simulation results indicate that FML per-

forms well. To illustrate our approach, we apply our model to 2003 NIS AMI patient data.

Results obtained from our analysis are similar to previous results in Chapter 2 and 3.

To accommodate model misspecification, our model can be generalized in several aspects.

(a) In this chapter we consider only bivariate normal random effects. It can be easily

extended to other bivariate distributions, eg. Gamma. Liu and Yu (2008) proposed a

likelihood reformulation method which is much faster and can handle more complicated

non-normal random-effects cases.

(b) ε’s are assumed to have normal margins, with some pre-specified copula. We may also

apply logistic distribution for measurement errors, which might be more proper for

LOS (Gardiner et al., 2002) and cost (Luo et al., 2007).

With the easy implementation and satisfactory estimate results, our method greatly facili-

tates the application of joint random-effects models. We expect our estimation method to

gain more popularity in practical data analysis of multiple measures of healthcare utilization.
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Chapter 5

Conclusion and Future Research

5.1 Conclusion

In this thesis, we consider the two closely related measures of healthcare resource utilization:

hospital length of stay (LOS) and cost. The management of hospital LOS has become an

important issue in cost containment and control. Determination of relevant factors and

hidden structures could inform discharge planning and allocation of resources (Lanzarone

et al., 2010; McDermott and Stock, 2007; Ramiarina et al., 2008). In Chapter 2, a Coxian

phase-type (PH) stochastic regression is proposed to model LOS and account for the heavy

skew and heterogeneity in the data. Coxian PH distributions describe the time to absorption

T of an underlying finite-state continuous time Markov process with only forward transitions.

Transitions between states are governed by the Markov assumptions. The actual states of

the Markov process are not observable, i.e, we do not know the state from which a patient

enters the system, or the state from which the patient exits. The Coxian PH model presented

in this thesis retains the general form of the common mean structure E(T |x) = β0 + x′βββ.
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A Bayesian method based on RJMCMC was applied to dynamically select the number of

phases. This method avoids arbitrary trimming and transformation of the data. In addition,

the approach allows us to obtain the estimates of mean LOS, median and other percentiles,

and class memberships. While a complete description of the underlying hidden states of the

Markov process would depend on specific applications, it is easy for us to classify patients

into different groups, for example, short, medium, and long LOS groups. Partial effects are

derived directly from the posterior samples, instead of using any bootstrapping method.

Shared random-effects models are introduced to jointly analyze LOS and cost in Chapter

3, which simultaneously assess the correlates of LOS and in-hospital cost, and provide im-

portant information for decisions on resource allocation. This model helps us ascertain the

degree of correlation between LOS and cost, and to estimate the underlying mechanism for

both processes.

When there is a complex random-effects structure in the model, the corresponding like-

lihood may be computationally prohibitive. Liu and Yu (2008) propose a likelihood refor-

mulation method for non-normal random-effects models, which substantially reduces com-

putational time, while yielding similar estimates to the probability integral transformation

(PIT) method (Nelson et al., 2006).

In this model, we assume that the hospital cost may be correlated with LOS. In the

application, we showed that there exists significant association between LOS and cost at the

subject level, therefore separate models which disregard the correlations are not appropriate.

In Chapter 4, we develop a novel bivariate copula random-effects (BCRE) model for the
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analysis of LOS and cost with two-level correlations.

log Tij = x′1,ijβββ1 + ui + σ1ε1,ij

logCij = x′2,ijβββ2 + vi + σ2ε2,ij

(5.1)

• ui and vi, 1 ≤ i ≤ n model intra-hospital correlation, which induces the ”within-

hospital correlation” among patients for LOS and cost, respectively.

• Correlation between ui and vi, 1 ≤ i ≤ n describes the ”cross-equation correlation” at

the hospital level.

• Association parameter θ in measurement errors (ε1,ij , ε2,ij), 1 ≤ i ≤ n, 1 ≤ j ≤ ni,

describes ”cross-equation correlation” at the individual level.

Full maximum likelihood (FML) is implemented using SAS Proc NLMIXED to derive the

parameter estimates simultaneously. The estimation method yields satisfactory results as

demonstrated by the simulation study. Our model is very comprehensive yet easy to fit.

These advantages make it valuable in real data analysis.

In the application to the 2003 NIS AMI patients, we showed that there are significant

associations between LOS and cost at both the hospital level and the individual level. For

comparison, we also fit the two measures with two reduced models, assuming that there are

no random effects, and that the measurement errors are independent. Those reduced models

are not appropriate due to ignoring either the hospital or the individual level correlations.

Therefore our more comprehensive model should be preferred in such situations.
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5.2 Future Research

The strength of Coxian PH regression models for LOS lies in their flexibility in accommodat-

ing extreme values, while revealing hidden features such as short, long stays in hospitals. A

natural extension of the proposed Coxian PH method is the modeling of censored duration

data, as well as multiple discharge destinations. Olsson (1996) extends the EM algorithm

for estimation of PH distributions for censored data. We further extend the models by

incorporating covariates in the mean specification.

In Chapter 3, an equivalent joint model can be proposed as follows:

Yi1|ai ∼ Coxian PH(λ0, ppp,βββ)

logE(Yi1|ai) = βCPH0 + x′1iβββ
CPH + ai

log(Yi2|bi) = x′2iβββ
LN + bi

(5.2)

where ai and bi are assumed correlated.

 ai

bi

 ∼ N(0,Σ), with Σ being a positive definite

matrix. This equivalent form is more flexible in modeling random effects for two outcomes

with different scales.

In Chapter 4, we assumed that (1) measurement errors (ε1,ij , ε2,ij), 1 ≤ i ≤ n, 1 ≤ j ≤

ni have normal margins with some specified copula. (2) the hospital level random effects

(ui, vi), 1 ≤ i ≤ n are bivariate normally distributed. To accommodate possible model

misspecification, our model can be generalized in several aspects.

(a) Bivariate normal random effects can be easily extended to other bivariate distributions,

eg. Gamma. Liu and Yu (2008) proposed a likelihood reformulation method which
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is much faster in comparison to PIT method, and can handle more complicated non-

normal random-effects cases.

(b) We may also apply logistic distribution for measurement errors, which might be more

proper for LOS (Gardiner et al., 2002) and cost (Luo et al., 2007).

Another attractive extension of the proposed methods in Chapter 3 and 4 is the joint

modeling of LOS and repeated measures via shared random-effects models as wells as copula-

based models. This model can be used to model hospital LOS and daily (monthly) cost jointly

in heathcare utilization studies. More research on identifiability, estimation and inference of

this model is needed.

We apply our methods to hospital LOS and cost for patients with acute myocardial

infarction (AMI) in the 2003 Nationwide Inpatient Sample (NIS). More applications can

be found for other heathcare measures. Generalization to other related areas is of further

interest.
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Appendix A

Gaussian Quadrature

Gaussian quadrature is often used to approximate the likelihood with no closed form. It

approximates the integration by a weighted average of the integrand assessed at Q pre-

determined quadrature points cq(q = 1, 2, . . . , Q) over the normal random effects ui with

density p(ui). The likelihood

Li =

∫ ni∏
j=1

f(cij , tij |xij , ui)p(ui)dui

can be approximated by

Li ≈
Q∑
q=1

ni∏
j=1

f(cij , tij |xij , cq)p(cq)ωq

with cq =
√

2zq and ωq =
√

2ηq exp(z2
q ), where ηq and zq can be can be obtained from

tables (Abramowitz and Stegun, 2002). In the adaptive Gaussian quadrature, the integral

is centered at the empirical Bayes estimate of ui , while it is centered at 0 in the non-

adaptive Gaussian quadrature. Thus, the adaptive Gaussian quadrature provides a better
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approximation for badly behaved integrands. Refer Littell et al. (2006) for details of Gaussian

quadrature in SAS.
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Appendix B

Example SAS code for copula

estimates

The data format for a sample data set is given below.

data gaussian;

input groupid id x1 x2 los;

cards;

1 1 −0.36473 0.43007 8.833 31.83

1 2 −0.37871 −0.47626 14.563 573.40

1 3 0.02560 −0.19365 34.126 190.54

2 1 −0.08726 −0.10627 18.973 7.47

2 2 0.22927 0.05269 16.582 4.40

2 3 −0.23027 −0.00650 33.323 140.89

3 1 0.26273 −0.48568 2.724 8.55

· · · · · · · · · · · ·
;
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B.1 SAS Code for Gaussian Copula

proc nlmixed data=gaussian gconv=0 qpoints=5;

parms b01 0.994 b11 -0.46 sigma1 1.308 b02 3.98 b12 0.35 sigma2 0.938 alpha 0.48

tau1 0.5 tau2 1 rho 0.5;

bounds sigma1>0, sigma2>0, -1≤alpha≤1,tau1>0,tau2>0,-1≤rho≤1;

mu1=b01+b11*x1+u1;

mu2=b02+b12*x2+u2;

p1=cdf(’lognormal’,y1,mu1,sigma1);

if p1>.999999 then p1=.999999;

F1=quantile(’normal’,p1);

p2=cdf(’lognormal’,y2,mu2,sigma2);

if p2>.999999 then p2=.999999;

F2=quantile(’normal’,p2);

logGaussian=-.5*log(1-alpha**2)-.5*(F1**2+F2**2-2*alpha*F1*F2)/(1-alpha**2)

+logpdf(’lognormal’,y1,mu1,sigma1)+logpdf(’lognormal’,y2,mu2,sigma2)-(-F1**2/2-F2**2/2);

model y1∼general(logGaussian);

random u1 u2∼normal([0,0],[tau1**2,rho*tau1*tau2,tau2**2]) subject=group;

run;
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B.2 SAS Code for Clayton Copula

proc nlmixed data=clayton gconv=0 qpoints=5;

parms b01 1.05 b11 -0.48 sigma1 1 b02 4.07 b12 0.6 sigma2 2.1 alpha 0.86 tau1 0.8

tau2 1.15 rho 0.5;

bounds sigma1>0, sigma2>0,tau1>0,tau2>0,-1≤rho≤1;

mu1=b01+b11*x1+u1;

mu2=b02+b12*x2+u2;

p1=cdf(’lognormal’,y1,mu1,sigma1);

if p1>.999999 then p1=.999999;

p2=cdf(’lognormal’,y2,mu2,sigma2);

if p2>.999999 then p2=.999999;

logClayton=log(1+alpha)-(alpha+1)*(log(p1)+log(p2))-(1/alpha+2)*log(p1**(-alpha)

+p2**(-alpha)-1)+logpdf(’lognormal’,y1,mu1,sigma1)+logpdf(’lognormal’,y2,mu2,sigma2);

model y1∼general(logClayton);

random u1 u2∼normal([0,0],[tau1**2,rho*tau1*tau2,tau2**2]) subject=group;

run;

B.3 SAS Code for Gumbel Copula

proc nlmixed data=gumbel gconv=0 qpoints=5;

parms b01 1.1 b11 -0.46 sigma1 1 b02 4.07 b12 0.6 sigma2 2.1 alpha 1.2 tau1 0.8

tau2 1.15 rho 0.5;

bounds sigma1>0, sigma2>0,tau1>0,tau2>0,-1≤rho≤1;
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mu1=b01+b11*x1+u1;

mu2=b02+b12*x2+u2;

p1=cdf(’lognormal’,y1,mu1,sigma1);

if p1>.999999 then p1=.999999;

logp1=-log(p1);

p2=cdf(’lognormal’,y2,mu2,sigma2);

if p2>.999999 then p2=.999999;

logp2=-log(p2);

logGumbel=-(logp1**alpha+logp2**alpha)**(1/alpha)-log(p1*p2)+(alpha-1)*log(logp1*logp2)

-(2-1/alpha)*log(logp1**alpha+logp2**alpha)

+log((logp1**alpha+logp2**alpha)**(1/alpha)+alpha-1)

+logpdf(’lognormal’,y1,mu1,sigma1)+logpdf(’lognormal’,y2,mu2,sigma2);

model y1∼general(logGumbel);

random u1 u2∼normal([0,0],[tau1**2,rho*tau1*tau2,tau2**2]) subject=group;

run;
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