#### **INFORMATION TO USERS**

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

- 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.
- 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame.
- 3. When a map, drawing or chart, etc., is part of the material being photographed the photographer has followed a definite method in "sectioning" the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
- 4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.
- 5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.



300 N. ZEEB ROAD, ANN ARBOR, MI 48106 18 BEDFORD ROW, LONDON WC1R 4EJ, ENGLAND

8112117

LINGO, WALTER BOYD

# A STUDENT ENROLLMENT FORECASTING MODEL FOR LANSING COMMUNITY COLLEGE (MICHIGAN)

Michigan State University

Рн.D. 1980

University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106

# A STUDENT ENROLLMENT FORECASTING MODEL FOR LANSING COMMUNITY COLLEGE (MICHIGAN)

By

Walter Boyd Lingo

#### A DISSERTATION

.

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

#### DOCTOR OF PHILOSOPHY

Department of Administration and Higher Education

#### ABSTRACT

# A STUDENT ENROLLMENT FORECASTING MODEL FOR LANSING COMMUNITY COLLEGE (MICHIGAN)

By

#### Walter B. Lingo

This study was designed to develop a useful student enrollment forecasting model for Lansing Community College. From the descriptive data collected hypotheses regarding the forecasting of student enrollment are suggested for subsequent experimental study.

Eight calculation methods: simple average, moving average, double moving average, exponential smoothing, double exponential smoothing, ratio method, simple correlation and regression analysis, and multiple correlation and regression analysis, were selected to forecast the 1979 student enrollment at Lansing Community College. From these eight calculation methods fifty-one 1979 student enrollment forecasts were generated.

Each calculation method required at least one influencing factor to compute a student enrollment forecast. The calculation methods of simple average, moving average, double moving average, exponential smoothing, and double exponential smoothing required only the influencing factor of past Lansing Community College student enrollment data. The ratio method incorporated two influencing factors: past student enrollment and tri-county (Clinton, Eaton, and Ingham) census data. The final two calculation methods, simple and multiple correlation and regression analysis, produced forecasts through the application of twenty-two selected influencing factors/ independent variables.

Each of the fifty-one forecasts resulting from the eight listed calculation methods, and the selected influencing factors, were ranked by its accuracy in forecasting the Lansing Community College 1979 fulltime equated student enrollment. The ranking was based on the percentage of error of each forecast.

The calculation method that produced the most accurate forecast, based on the percentage of error, was the ratio method/18-20 year olds with a percentage of error of -0.4. The above fact revealed that the tested mathematical function methods did not produce a more accurate forecast than a non-mathematical function calculation method.

The range of the percentage of error produced by the eight calculation methods (fifty one scores) tested was 512.6. This indicated that the selection of a calculation method in forecasting student enrollment can produce diverse scores.

In addition, the influencing factors that produced the highest correlation coefficients did not produce a correspondingly high accuracy rate in forecasting student enrollment.

The major finding of this study was that the model that most accurately forecasted the 1979 fulltime equated student enrollment was able to forecast the 1980 student enrollment within an equal percentage of error.

#### DEDICATION

I wish to dedicate this completed dissertation to my wife, Ruth Ann, whose love and industriousness has been an unending source of inspiration.

#### ACKNOWLEDGMENTS

I wish to express my great gratitude to the following people: Dr. Michael M. Byrne for his friendship and advice; Ms. Allyson R. Reynolds for her assistance; Dr. William G. Schaar for his constant support; and to Dr. Diane L. Smolen for her statistics related counsel.

I would like to particularly acknowledge my gratitude to the members of my doctoral committee: Dr. Vandel C. Johnson (chairman), Dr. Keith P. Anderson, Dr. Max R. Raines, and Dr. John H. Suehr.

### TABLE OF CONTENTS

.

|                                             | Page |
|---------------------------------------------|------|
| EDICATION                                   | . i  |
| ACKNOWLEDGMENTS                             | . ii |
| TABLE OF CONTENTS                           | .111 |
| JST OF TABLES                               | . v  |
| hapter                                      |      |
| I. STATEMENT OF THE PROBLEM                 | . 1  |
| Need                                        | . 1  |
| Purpose                                     | . 3  |
| Hypotheses                                  | . 3  |
| Theory                                      |      |
| Overview                                    |      |
|                                             |      |
| 11. REVIEW OF LITERATURE                    | . 6  |
| Introduction                                | . 6  |
| Representative Works                        |      |
| Specific Studies                            |      |
| Summary                                     | . 18 |
| III. DESIGN OF THE STUDY                    |      |
|                                             |      |
| Introduction                                | . 19 |
| Influencing Factors (independent variables) | . 19 |
| Calculation Methods                         | . 35 |
| Operational Measures                        |      |
| Design                                      |      |
| Testable Hypotheses                         | . 45 |
| Analysis                                    | 46   |
| Summary                                     |      |
|                                             | . 10 |
| IV. ANALYSIS OF RESULTS                     | . 48 |
| Introduction                                | . 48 |
| Null Hypothesis                             | . 48 |
| Hypothesis 1a                               | . 86 |
|                                             | . 86 |
|                                             |      |
| Hypothesis 1c                               | . 34 |

.

# TABLE OF CONTENTS (cont'd.)

Page

•

•

.

. .

-

| v.  | SUMMARY  | AND  | DI  | SCU | JSS | SIC | N  | •  | -            | •  | •   | •   | •   | • | • | • | • | • | • | • | • | • | • | • | - | •   | 95        |
|-----|----------|------|-----|-----|-----|-----|----|----|--------------|----|-----|-----|-----|---|---|---|---|---|---|---|---|---|---|---|---|-----|-----------|
|     | Summa    | ry   |     | •   | •   | •   | •  |    |              | •  |     | •   | •   |   | • | • |   | • | • | • |   | • | • | • | • | •   | 95        |
|     | Conclu   | usio | ns  | •   | •   | •   | •  | •  | •            | ٠  | •   | ٠   | •   | • | ٠ | • | ٠ | • | • | • | • | • | ٠ | • | ٠ | •   | 97        |
|     | Discu    | ssio | n.  | •   | ٠   | •   | •  | •  | •            | •  | •   | •   | •   | • | • | • | • | • | • | • | • | • | • | • | • | •   | 98        |
|     | Calcu    | lati | on  | Met | hc  | ds  | 5  | •  | -            |    |     | •   |     | • | • |   | • |   | • | • | • |   | • | • | • | •   | 98        |
|     | Influ    | enci | ng  | Fac | tc  | ors | 5  | •  |              |    | •   |     |     |   |   |   |   | • |   |   | • |   |   |   | • |     | 99        |
|     | Impli    | cati | ons | fc  | r   | Fu  | rt | he | $\mathbf{r}$ | Re | ese | ear | rcł | 1 |   | - | • |   | • |   |   | • |   |   |   | •   | <b>99</b> |
|     | Hypot    |      |     |     |     |     |    |    |              |    |     |     |     |   |   |   |   |   |   |   |   |   |   |   |   |     |           |
|     | Appro    |      |     |     |     |     |    |    |              |    |     |     |     |   |   |   |   |   |   |   |   |   |   |   |   |     |           |
| END | NOTES .  | ••   |     | •   | •   | •   | •  | •  | •            | •  | •   | •   | •   | • | • | • | • | • | • | • | • | • | • | • | • | • - | 104       |
| BIB | LIOGRAPH | Υ.   |     |     |     | •   | •  | •  | •            |    |     | •   |     | • | • | • |   | • |   | ٠ |   | • | • | • | • | •   | 110       |

# LIST OF TABLES

| Table |                                                                                                                           | Page         |
|-------|---------------------------------------------------------------------------------------------------------------------------|--------------|
| 3.1   | Consumer Price Index (all items)                                                                                          | 20           |
| 3.2   | Employment Data (Clinton-Eaton-Ingham-Ionia)                                                                              | 21           |
| 3.3   | United States Gross National Product (1976 Dollars)                                                                       | 22           |
| 3.4   | Lansing Community College Tuition Rate Data                                                                               | 23           |
| 3.5   | Lansing Community College Fall Term Enrollment Data                                                                       | 24           |
| 3.6   | Michigan Selected Public Community College Fall<br>Enrollment Data                                                        | 25           |
| 3.7   | Michigan Higher Education Fall Term Enrollment Data                                                                       | 27           |
| 3.8   | Michigan State University Fall Enrollment Data                                                                            | 28           |
| 3.9   | Lansing Community College General Student Data<br>(State Count Data)                                                      | 29           |
| 3.10  | Lansing Community College Fall Term Student Age Data                                                                      | 31           |
| 3.11  | Lansing Community College Data of Students by<br>High School                                                              | 32           |
| 3.12  | Lansing Community College Divisional Credit Generation<br>Data (Percent of Total College Credits)                         | 33           |
| 3.13  | Tri-County Census Data By Age (Clinton-Eaton-Ingham) .                                                                    | 36           |
| 4.1   | Fulltime Equated Student Enrollment Calculation<br>Method: Simple Average                                                 | 49           |
| 4.2   | Fulltime Equated Student Enrollment Calculation<br>Method: Moving Averages                                                | 51           |
| 4.3   | Fulltime Equated Student Enrollment Calculation<br>Method: Double Moving Average                                          | 52           |
| 4.4   | Fulltime Equated Student Enrollment Calculation<br>Method: Exponential Smoothing                                          | 54           |
| 4.5   | Fulltime Equated Student Enrollment (1972 through 1979)<br>Calculation Method: Double Exponential Smoothing $(\alpha=.1)$ | ) 55         |
| 4.6   | Applying Tri-County Census Data (18-20 Year Olds)<br>Calculation Method: Ratio Method                                     | . 5 <b>7</b> |
| 4.7   | Applying Tri-County Census Data (21-25 Year Olds)<br>Calculation Method: Ratio Method                                     | . 58         |
| 4.8   | Applying Tri-County Census Data (26-30 Year Olds)<br>Calculation Method: Ratio Method                                     | . 59         |

# LIST OF TABLES (cont'd.)

.

•

| Table        |                                                                                                                                                                                                                              | Page |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.9          | Applying Tri-County Census Data (18-30 Year Olds)<br>Calculation Method: Ratio Method                                                                                                                                        | 60   |
| 4.10         | Applying Tri-County Total Census Data<br>Calculation Method: Ratio Method                                                                                                                                                    | 61   |
| 4. <b>11</b> | Fulltime Equated Student Enrollment Calculation Method:<br>Simple Correlation and Regression Analysis<br>(formula: Y = a + bx)                                                                                               | 63   |
| 4.12         | Fulltime Equated Student Enrollment Calculation<br>Method: Multiple Correlation and Regression Analysis<br>(formula: $Y = a + b_1 x_1 + b_2 x_2 \dots b_n x_n$ )                                                             | 65   |
| 4.13         | Forecasts of Lansing Communtiy College Fulltime<br>Equated Student Enrollment                                                                                                                                                | 68   |
| 4.14         | Results of the F Statistic Test* On Selected<br>Independent Variables In the Simple Correlation<br>and Regression Analysis                                                                                                   | 72   |
| 4.15         | Results of the F Statistic Test* On Selected Runs<br>In the Multiple Correlation and Regression Analysis                                                                                                                     | 74   |
| 4.16         | Independent Variables Ranked By Resulting Coefficient<br>of Determination from the Simple Correlation and<br>Regression Analysis                                                                                             | 77   |
| 4.17         | Independent Variable Ranked by Resulting Coefficient from Simple Correlation and Regression Analysis                                                                                                                         | 80   |
| 4.18         | Simple Correlation and Regression Analysis Values of<br>the Correlation Coefficient Required for 95% Level of<br>Significance When Ho: $P = O$ Items (x) Versus Lansing<br>Community College Fulltime Equated Enrollment (y) | 83   |
| 4.19         | Multiple Correlation and Regression Analysis Values<br>of the Correlation Coefficient Required for 95% Level<br>of Significance When Ho: $P = 0$                                                                             | 85   |
| 4.20         | A Ranking of the Lansing Communtiy College Fulltime<br>Equated Student Enrollment Forecast By Calculation<br>Method Based on the Percentage of Error                                                                         | 87   |
| 4.21         | Coefficient Versus The 1979 Lansing Community College<br>Fulltime Equated Student Enrollment Forecasting                                                                                                                     | 60   |
|              | Accuracy (Percentage of Error)                                                                                                                                                                                               | 90   |

# LIST OF TABLES (cont'd.)

| Table |                                                                                                                                       | Page |
|-------|---------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.22  | Forecasting 1980 Fulltime Equated Enrollment Applying<br>Tri-County Census Data (18-20 Year Olds)<br>Calculation Method: Ratio Method | 93   |
| 4.23  | A Summary of the Results of the Tested Hypotheses in this Study                                                                       | 94   |

#### Chapter I

#### Statement of the Problem

#### Need

College administrators need information to effectively plan. Student enrollment which translates to fiscal income is one of the most fundamental elements in planning, and therefore the need for insight regarding future student enrollment is of paramount importance.

The impact of unforseen increases or decreases in student enrollment at a community college can create great institution-wide problems. Normally, the problems of unexpected increases in student enrollment, which require immediate administrative response, are generally more palatable inasmuch as additional revenue is usually generated; however, this revenue is not always commensurate with the required encumberance of dollars created by increased student enrollment. The problems which accompany unforeseen decreases in student enrollment are far more distasteful, for this situation nearly always results in fewer dollars than projected in the budget. Compounding the problem, a decrease in student enrollment often creates a very vicious spiral: decreased student enrollment is followed by a reduction in fiscal support; reduced fiscal support forces cutbacks in personnel and programs; fewer programs often result in even fewer students and in turn yet fewer dollars, et cetera.

The ability to accurately predict changes in student enrollment can permit administrative decision-making that will minimize the impact of decreased student enrollment and maximize the advantages

of increased student enrollment. Given the many ailments within the present economic climate, coupled with the resulting uncertainties, it is a risky and complex undertaking to forecast student enrollment at a specific institution. The risk and complexity of forecasting a community college's student enrollment is great but the need for the positive adaptibility the knowledge of an accurate forecast can produce is equally great.

The Lansing State Journal in its September 2, 1979, edition quoted the president of Lansing Community College: "Trying to predict Lansing Community College's fulltime enrollment for the upcoming schoolyear is like guessing the number of waves that will hit the beach."<sup>1</sup> This statement emphasizes the complexity of developing a student enrollment forecasting model at Lansing Community College. The development of a reliable student enrollment forecasting model for Lansing Community College will provide an instrument that can produce valuable information from which administrative level decisions can be made without guessing.

If the application of the product and by-products of this research was restricted to the provincial needs of one institution, its value would be extremely limited. It is proposed that the commonality existing between a great many community colleges throughout the United States and Lansing Community College will permit a more limitless sharing of the product and by-products of this research. The primary contribution of this research will directly benefit Lansing Community College, and Lansing Community College will thus profit from the potential adaptability produced by the information in meeting its needs.

#### Purpose

The primary purpose of this study is to develop an applicable model that produces an accurate student enrollment forecast for Lansing Community College. As a by-product (secondary purpose) of the development of "the model" noteworthy facts relative to the influencing factors and the demographics of student enrollment at Lansing Community College are expected to be discovered. It is further expected that these noteworthy facts might also be applicable to comparable community colleges. In addition it is anticipated that the fulfillment of the primary purpose (the model) will enable other institutions to apply that model to the forecasting of their student enrollment(s).

#### Hypothesis

Numerous methods could be applied to the forecasting of student enrollment, each having inherent strengths and weaknesses. It is expected that one and only one of the selected calculation methods will most accurately forecast student enrollment at Lansing Community College.

In addition to the calculation method, the identification of major influencing factors, such as, economics, enrollment, and demographics may potentially contribute to accurate student enrollment forecasting. Further it is expected from the analysis of the major influencing factors and the applied and resulting models that:

H<sub>la</sub>: The calculation methods which employ the mathematical functions of both simple and multiple regression will produce more accurate forecasts than the other applied, in this study, calculation methods.

H<sub>lb</sub>: The influencing factors that produce the highest simple correlation coefficient scores (measured against Lansing Community College's fulltime equated enrollment) will provide the most descriminating student enrollment forecasting data when applied to multiple regression analysis.

 $H_{lc}$ : The model that most accurately retrospectively "forecast" the 1979 Lansing Community College fulltime equated student enrollment will forecast the 1980 fulltime equated student enrollment within an equal percentage of error.

#### Theory

There is no existing consensus on the most reliable student enrollment influencing factor(s) nor the most applicable calculation method to accurately forecast student enrollment at a given institution. The available calculation methods and the numerous potential influencing factors together provide researchers the challenge of exercising the scientific method of trial and error. It was stated by Granger in his inaugural address (1977) at the University of Nottingham that, "The current trend in forecasting is towards model building."<sup>2</sup> A model for the purpose of this research shall be defined as a technique (calculation method/influencing factors) which when imitated can produce a fulltime equated student enrollment forecast for Lansing Community College.

It is my belief that a reliable model can be developed through a system of trial and error. This belief is based on the expectation I theorize that a model developed through trial and error, which most accurately forecasted the 1979 fulltime equated student enrollment (a known quantity) at Lansing Community College will be an

effective model in forecasting 1980 and future fulltime equated student enrollments at Lansing Community College.

#### Overview

Though the primary purpose of this research is the development of a useful student enrollment forecasting model, it should be noted that numerous other related purposes might be served as well. Potential purposes related to the primary purpose are demographic descriptions, manpower studies, planning data, resource needs, latent demands, and, of course, policy recommendations. This overview of the setting within which this study exist should enhance one's appreciation of the potential value of this study.

In order to maximize the acceptance of the research and the subsequent conclusions the design of this research is detailed in Chapter III. The design is based to a large extent on the experiences and results of other researchers whose work is reviewed at length in Chapter II.

#### Chapter II

#### REVIEW OF LITERATURE

#### Introduction

Although many college administrators are interested in information related to student enrollment trends, a commensurate amount of contemporary literature on the subject of forecasting student enrollment has not been written. This is not to imply that the available literature is inferior. It should be noted that many heretofore unreported studies may become public as the pressure of inflation demands greater refinement in institutional planning and subsequent desire for more accurate student enrollment forecast models emerge. In the absence of a voluminous bibliography of related literature my review will reflect the most representative literature available.

There are four works which warrant special attention inasmuch as each specifically addresses the topic of forecasting student enrollment. They are: <u>Statewide Planning in Higher Education</u> (Chapter VII - "Meeting Area Educational Program and Capacity Needs")<sup>1</sup>; <u>Methodology of Enrollment Projections for Colleges and Universities</u><sup>2</sup>; <u>Projecting College and University Enrollments</u><sup>3</sup>; and <u>Higher Education</u> <u>Enrollment Forecasting</u><sup>4</sup>. Following a review of the above cited works will be a detailed review of selected representative student enrollment forecast studies.

D. Kent Halstead who authored <u>Statewide Planning in Higher Edu-</u> <u>cation</u> included a chapter (VII) entitled "Meeting Area Educational Program and Capacity Needs," in which he specifically addresses problems related to student enrollment forecasting. Halstead maintains

that, ". . . the fundamental purpose of higher education planning at the state level is to provide information and recommendations for the development of a total statewide system of postsecondary education that residents expect and society requires."<sup>5</sup>

In fulfilling the fundamental purpose stated above Halstead suggests that studies must be conducted and those studies should involve the following three objectives:

. . . to provide within the State an enrollment capacity for anticipated student attendance in each area of recognized program need, to encourage institutional development and growth consistent with assigned differential functions, and to expand existing facilities and initiate new programs in such a way as to enhance geographical accessibility and effective program clustering.6

No statewide planning in higher education can be complete without the application of projection methodology. Halstead notes that, "Even with the most exacting techniques, however, predicting college enrollments is a hazardous undertaking because of the number, variety, and uncertainty of the variables involved."<sup>7</sup>

The variables Halstead is concerned about and which he devotes considerable space and data compilation to include:

. . . state population growth and economic development; high school retention rates and geographic distribution of graduates; future anticipated admission policies, curriculums, . . . overall college entrance rates, patterns of student residence, attendance rates at individual institutions and the ability of institutions to accomodate everyone who would enroll. . . .8

We should be cautioned that the above listed variables are applicable to statewide planning but may not apply carte blanche to the forecasting of student enrollment at individual institutions.

Methodology of Enrollment Projections for Colleges and Universities by L.V. Lins, ". . . is an attempt to assist the many individuals throughout the country who have need for making institutional and/or statewide estimates of future college enrollments."<sup>9</sup> Lins notes that in forecasting student enrollment, "All factors related to enrollment of a particular institution must be considered."<sup>10</sup> Factors submitted by Lins to consider in the development of a student enrollment forecast model include: admission policy, housing, instructional facilities, staff, programs, high school graduates, postbaccalaureate students, related economic structure, international situations, birth rates, veteran enrollments, educational benefits and/or loan and scholarship programs, migration, mortality rates, and Selective Service drafts and deferments. The above list suggest the complexity and riskiness inherent in the forecasting of student enrollment. Lins sums up this section, "Good forecasts will call for logically integrated, analytical techniques."<sup>11</sup>

The remaining contents of his publication are divided into four chapters: (1) "Enrollment Projection Techniques", (2) "Short-Range Estimates of Enrollment", (3) "Long-Range Projections of Enrollment", and (4) "Data Presentation".

A review of the chapter on enrollment projection techniques will be omitted in favor of authors who treat the topic in a more statistical form. In Lins' discussion of short-range estimates of enrollment he suggest that in institutions, ". . . with large evening and/ or part-time programs, total enrollment is a quite unsatisfactory basis on which to estimate. . . . a better index. . . may be faculty-

load data and number of credits. . . .<sup>12</sup> Inasmuch as Lansing Community College possesses a disproportionate percentage of parttime students/evening programs this suggestion is noteworthy.

Lins in this writing indicated that he represents an institution without a limited enrollment policy. Lansing Community is also without a limited enrollment policy. Lins, based on forecasting results at his institution, ". . . has found that a combined ratio, cohortsurvival method yields the best short-range estimates of enrollment."<sup>13</sup>

Under the heading of long range projections of enrollment Lins' maintains that, "Enrollment projections can be made as far as 17 years into the future without estimating births."<sup>14</sup> This of course is based on the fact that nearly all the students who will attend school within seventeen years are born and can be relatively accurately counted.

Projecting College and University Enrollments: Analyzing the Past and Focusing the Future by Wayne L. Mangelson, Donald M. Norris, Nick L. Poulton, and John A. Seeley, is a subjective approach to the topic of student enrollment forecasting and lacks documentation. In spite of this weakness the work merits review in that it presents a unique perspective. The text is presented in three parts: (1) Major Findings, (2) Review and Analysis of Past Projections, and (3) Means of Improving Enrollment Projections.

The major findings submitted by Mangelson resulted from an analysis of several enrollment studies. The major findings included:

- 1. The underlying assumptions in existing enrollment studies have been inadequate for projecting college enrollments.
  - a. The usage of only the 18-21 year old age cohort as the basis for projection is misleading.

Broader cohort populations must be utilized in order to reflect the extension of the period of education and the participation of older learners.

- b. Although it is necessary to utilize birth rate assumptions in predicting the size of traditional college cohort populations beyond 1990, it must be recognized that birth rate trends are currently in a state of flux.
- c. Most projection studies assume implicitly that trends in underlying factors influencing attendance patterns will continue along established lines. Many of such assumptions seem unlikely.
- d. Projection studies have assumed that the institutional composition of higher education will not change. The emergence of the notion of postsecondary education suggests that different institutional forms and enrollment patterns should be considered for the future.
- 2. Existing projection studies are not easily compared.
  - a. Definitions of terms vary among the individual studies.
  - b. The actual factors projected as well as their levels of disaggregation vary from study to study.
  - c. Overly aggregated data may mask significant trends in certain enrollment categories.
- 3. The use of extrapolation assumes that the future will reflect the past along certain important dimensions. To be confident of the results of extrapolation, the factors selected for extrapolation must be appropriate and trend relationships must be understood.
  - a. The enrollment projections of the early sixities, which were based on enrollment trends of the fifties, underestimated consistently the actual enrollments of the early sixties.
  - b. The enrollment projections of the early seventies, however, based on the enrollment trends of the sixties, overestimated consistently the actual enrollment figures of the past several years.
  - c. Existing projections fall short of the mark by extrapolating enrollments, rather than by the influencing factors that actually determine enrollments.
- 4. By extrapolating enrollments rather than the underlying factors actually influencing enrollments, existing projections fail to incorporate mechanisms for explaining why enrollments are changing. Therefore, existing studies are unable to predict what changes in enrollment trends will occur.
- 5. It is recommended that new projection techniques be developed, grounded on an understanding of the relationships between enrollments and underlying social values (e.g., credentialism), social

conditions (e.g., demographic factors), diffusion of communications technology (e.g., cable television), public policy (e.g., financial aid), and educational systems factors (e.g., new institutions).

- a. The incorporation of underlying factors into enrollment projections will improve the quality of actual enrollment projections.
- b. Also, the educator can utilize both the improved projection and the predictions of key factors to develop educational and institutional policy.
- 6. Although a number of the influencing factors are not measured currently, they are regularly monitorable.
- 7. The future states of the underlying factors may be predicted utilizing a combination of the following three techniques: extrapolation of reasonable trends, alteration of trends based on changes in relevant moderating factors, and the recognition of floors and ceilings that may operate to restrict variations in trends to within certain limits.
- 8. Considering the mechanisms for monitoring and predicting the factors influencing postsecondary educational enrollments, it is recommended that a framework be developed for describing the relationships among the key underlying factors and potential learners, educational aspirants, and actual enrollments, appropriately disaggregated.15

In examining the intended purpose of an enrollment projection study Mangelson states that the purpose, ". . . determines in most cases the definition of quantities used, many of the assumptions made, the types of output categories projected, and to some degree the methodological approach used."<sup>16</sup> The purpose(s) of a study according to Mangelson serve to create conceptual bases which he, ". . . groups under three headings: limits to comparison, methodological limitations, and the limitation of underlying assumptions."<sup>17</sup>

Issues discussed under the heading of limits to comparison included: definition of terms vary among individual studies, actual factors projected, as well as their levels of disaggregation, vary from study to study, and the masking of significant trends through over aggregation. Methodological limitations of course vary from method to method. The following three statements regarding methodological limitations are worthy of note:

- (1) The use of extrapolation assumes that the future will reflect the past and often ignores the fact the linear growth along traditional lines is questional given the uncertainties of current enrollment trends.18
- (2) The selection of the factors to be extrapolated determines largely the utility of the projection.19
- (3) Projection studies that suggest policy alternatives do not develop fully the linkage between the enrollment figures and those policy alternatives.20

Given that each study is built on underlying assumptions, it should be noted that those assumptions create limitations. Generally assumptions are based on extrapolations from available data. These assumptions do not permit an examination of the underlying factors actually influencing enrollments. Mangelson maintains that, ". . . until studies incorporate mechanisms for explaining why enrollments are changing we will be unable to predict that changes in enrollment trends will occur."<sup>21</sup>

In the final chapter Mangelson outlines factors which he feels influence postsecondary educational enrollments. They are classified as social values, social conditions, diffusion of communications technology, public policy, and educational systems factors.

Under the heading of social values he suggest that values placed on knowledge, self-improvement, and formal education combined to create an attitude. Attitude along with other factors affect an individual's behavior and postsecondary enrollment.

Social conditions are described as those conditions which are objectively measurable, such as demographics, economics, and leisure time. The advantage of this kind of data is the statistical manageability it possesses.

The diffussion of technology into educational endeavors addressed the impact of such innovations as computer-assissted instruction, aduio-visual cassettes, and a host of similar technologies. Mangelson states that, "The effects of such technologies must be assessed with considerable prudence, the distinction being drawn clearly between window dressing and programs of substantive importance."<sup>22</sup>

Public policy (the level of public financial support) and the educational system (available opportunities) are the final two concerns expressed by Mangelson. He concludes, "By expanding the basis for the projection of postsecondary education's enrollments, the potential exists for expanding the uses of such projections as well."<sup>23</sup>

The final work is the Paul Wing publication, <u>Higher Education</u> Forecasting, which was released for limited distribution by the Board of Directors of the National Center for Higher Education Management Systems (NCHEMS) at the Western Interstate Commission for Higher Education (WICHE) in Boulder, Colorado. The author proposes in his preface that this publication ". . provides a comprehensive treatment of the subject (enrollment forecasting) which will be of value to enrollment forecasting practitioners at higher education institutions and national agencies, as well as those at state agencies."<sup>24</sup> Though a good deal of the topics within this writing are technical, much of the discussion is nontechnical and thus provides a fine source for the establishment of a general

understanding of the problems involved in forecasting higher education student enrollment.

Wing addresses the topic of student enrollment forecasting under the following headings: general consideration, alternative enrollment techniques, constructing an enrollment forecasting procedure, and a summary with conclusions.

The principal concern of forecasting higher education student enrollments according to Wing is ". . . the accurate prediction of future enrollments in specific higher education programs and/or institutions."<sup>25</sup> In an attempt to identify some of the subtleties and difficulties inherent in student enrollment forecasting, he introduced some general considerations such as federal financing plans, student attitudes, and judicial decisions which influence student enrollment.

The uses of student enrollment forecasts can be classified under one of two general headings according to Wing. Those two classifications are:

- (1) Short and medium-range forecasts which can be used as a partial basis for a variety of planning and management activities (for example - budgeting)
- (2) Long-term forecasts which provide a means for altering or reinforcing general expectations for the future, which if properly followed-up enable policy makers to adjust their priorities and frames of reference gradually, over a period of years.26

Additional uses of student enrollment forecasts suggested by Wing included:

(1) Capital planning and budgeting. Contrasting projected enrollments with the current and projected capacity of physical facilities can provide a basis for capital investment decisions.

- (2) Operating budgets for institutions or programs. Projected enrollments can serve as a basis for short- and medium-range budgetary estimates.
- (3) Support for other management systems. Enrollment projections can be applied in analysis of such things as intersegmental student flows (for example, junior college transfers), unit costs of instruction, student access to higher education, impact of instructional programs on labor markets, different strategies for allocating resources, and funding requirements.27

Wing concluded that forecasting techniques and procedures have been under development for several decades by analysts and researchers in a number of fields and that the application of the various forecasting techniques to the specific problems of higher education enrollment forecasting have lagged far behind the technical developments.

Inasmuch as a presentation of selected calculation methods (extracted from more technical treatise) are included in Chapter III in detail I will review here only Wing's suggested classes of alternative enrollment forecasting calculation methods. Wing's four broad classes of enrollment forecasting calculation methods are:

- (1) <u>Curve Fitting</u>: Techniques and models that produce forecasts based primarily on historical enrollment data.
- (2) <u>Causal Models</u>: Tecniques and models that produce forecasts based on historical relationships between enrollments and other parameter(s) or variable(s) (for example, high school graudates).
- (3) Intention Surveys: Techniques based on surveys of the intentions of potential students, producing forecasts or other techniques.
- (4) <u>Subjective Judgment</u>: Those elements and aspects of forecasting procedures based on the judgment of the forecaster rather than some quantitative technique or procedure.28

In a succeeding chapter Wing concludes that, "In practice, causal models have proven to be better than curve-fitting models in most forecasting situations, particularly when enrollment patterns are changing.<sup>29</sup>

Guidelines for constructing a forecasting procedure are submitted by Wing in five steps:

- (1) Partition the population of students. . .
- (2) Identify the most appropriate forecasting techniques. . .
- (3) perform the calculations. . .
- (4) . . . compute the total enrollment figure by summing
- the estimates for each of the individual categories.
- (5) . . . validation of the results.30

As a cautionary submission Wing notes that there is a tendency for administrators to take forecasting too seriously in some situations. He suggest that a means of making more evident the risk of over reliance on a specific student enrollment forecasts ". . . is to provide explicit estimates of 'maximum likely' enrollments along with the 'preferred' estimates."<sup>31</sup> The most significant contribution of this publication is its practical approach to the goal of the development of a functional student enrollment forecasting model. Review of Specific Studies

Besides the review presented above, a number of specific enrollment forecasting studies are important, highly relevant to this study, and merit mention. The importance and relevance of these studies rest on the introduction of selected student enrollment influencing factors and the resulting accuracy of the application of previously completed studies related to other institutions that have forecasted enrollment employing factors such as: <u>past</u> <u>enrollments</u> Coffman<sup>32</sup>, Committee on Enrollment<sup>33</sup>, Lins<sup>34</sup>, Meier<sup>35</sup>, Newton<sup>36</sup>, and Tatham<sup>37</sup>; <u>high school graduates</u> Banks<sup>38</sup>, Educational Research<sup>39</sup>, Springer<sup>40</sup>, and Thompson<sup>41</sup>; <u>work force</u> Gold<sup>42</sup>, Johnston<sup>43</sup>, Martinko<sup>44</sup>, and Smith<sup>45</sup>; <u>participation of high school graduates in</u> <u>higher education</u> Degan<sup>46</sup> and Hassell<sup>47</sup>; <u>population pool</u> Prestiage<sup>48</sup> and U.S. Bureau of Census<sup>49</sup>; <u>cohort survival</u> Oliver<sup>50</sup> and Zimmer<sup>51</sup>; <u>migration</u> Petersen<sup>52</sup> and Purves<sup>53</sup>; <u>economic indicators</u> Gell<sup>54</sup>; <u>land</u> <u>use</u> Tatham<sup>56</sup>; <u>square footage</u> Duncan<sup>57</sup>; <u>new programs</u> New York State<sup>58</sup>; and <u>S.A.T. scores</u> Jewett<sup>59</sup>.

An equally important ingredient in the development of an efficient student enrollment forecast model is the selection of the "most applicable" calculation method(s). Examples of methods and the resulting degree(s) of accuracy include: New York State<sup>60</sup> reported a range of 0.4 to 3.5 percent error using ratio methods and student surveys to predict statewide college enrollment; Evans utilized cohort survival and subjective judgement to achieve accuracy within 1 percent in predicting freshmen enrollment in the California state college system; Zimmer<sup>62</sup> reported an error range of -6.12% to 6.88% in predicting total enrollment in the Minnesota college system applying cohort survival, multiple correlation and regression, Markov transition model, polynomial model, and ratio methods; and finally a one year department forecast, Orwig<sup>63</sup> yielded a 1-6% error range using cohort survival, moving averages, the Markov transition model, and the simple averages method. There are numerous calculation methods available and careful review of the literature must be made to determine which method is most applicable to the fulfillment of the purpose of a particular model. This review of specific

studies provided information that significantly contributed to the selection of both the student enrollment influencing factors and calculation methods applied in this study.

#### Summary

As can be seen from the literature, although research in student enrollment forecasting is sketchy, there is every indication that the calculation methods known and the potentially applicable student enrollment influencing factors might well be sufficient to produce accurate student enrollment forecasts.

Quite likely, further research will generate more specific information regarding the calculation methods and influencing factors that facilitate accurate student enrollment forecasting.

#### Chapter III

#### Design of the Study

#### Introduction

This chapter contains a graphic presentation (tables 3.1 - 3.13) of student enrollment influencing factors (independent variables), a description of selected calculation methods, the operational measures to be applied in this study, the design of the study, its testable hypotheses, a description of the analysis to be used, and finally a summary.

#### Influencing Factors (independent variables)

Prior to detailing the design of this research the items to be considered as potential influencing factors of student enrollment at Lansing Community College are presented. The factors will be introduced under the following headings:

- 1. Economic (Tables 3.1 3.4)
  - 3.1 Consumer Price Index (all items)
  - 3.2 Employment Data (Clinton-Eaton-Ingham-Ionia)
  - 3.3 United States Gross National Product (1976 Dollars)
  - 3.4 Lansing Community College Tuition Rate Data
- 2. Enrollment (Tables 3.5 3.8)
  - 3.5 Lansing Community College Fall Term Enrollment Data
  - 3.6 Michigan Selected Public Community College Fall Enrollment Data
  - 3.7 Michigan Higher Education Fall Term Enrollment Data
  - 3.8 Michigan State University Fall Enrollment Data
- 3. Lansing Community College Demographics (Tables 3.9 3.12)
  - 3.9 Lansing Community College General Student Data (State Count Data)
  - 3.10 Lansing Community College Fall Term Student Age Data
  - 3.11 Lansing Community College Data of Students by High School
  - 3.12 Lansing Community College Divisional Credit Generation Data (Percent of Total College Credits)

# Consumer Price Index (all items)

| Year         | Index          | Index<br>(minus one year)                                                         | Index<br>(minus two years) |
|--------------|----------------|-----------------------------------------------------------------------------------|----------------------------|
| 1957         | 84.3           | 81.4                                                                              | 80.2                       |
| 1958         | 86.6           | 84.3                                                                              | 81.4                       |
| 1959         | 87.3           | 86.6                                                                              | 84.3                       |
| <b>196</b> 0 | 88,7           | . 87.3                                                                            | 86.6                       |
| 1961         | 89.6           | 88.7                                                                              | 87.3                       |
| 1962         | 90.6           | 89.6                                                                              | 88.7                       |
| 1963         | 91.7           | 90.6                                                                              | 89.6                       |
| 1964         | 92,9           | 91.7                                                                              | 90.6                       |
| 1965         | 94.5           | 92.9                                                                              | 91.7                       |
| 1966         | 97.2           | 94.5                                                                              | 92.9                       |
| 1967         | 100.0          | 97.2                                                                              | 94.5                       |
| 1968         | 104.2          | 100.0                                                                             | 97.2                       |
| 1969.        | 109.8          | 104.2                                                                             | 100.0                      |
| 1970         | 116.3          | 109,8                                                                             | 104.2                      |
| 1971         | 121.3          | 116.3                                                                             | 109.8                      |
| 1972         | 125.3          | 121.3                                                                             | 116.3                      |
| 1973         | 133.1          | 125.3                                                                             | 121.3                      |
| 1974         | 147.7          | 133.1                                                                             | 125.3                      |
| 1975         | 161.2          | 147.7                                                                             | <b>133.</b> 1              |
| 1976         | 170.5          | 161.2                                                                             | 147.7                      |
| 1977         | 181.5          | 170.5                                                                             | 161.2                      |
| 1978         | 195.3          | 181.5                                                                             | 170.5                      |
| 1979         | 219.4          | 195.3                                                                             | 181.5                      |
| 1980         |                | 219.4                                                                             | 195.3                      |
| Source:      | 1979), Table I | t of the President, 1979<br>3-43. United States Depa<br>or Statistics, Washington | rtment of Labor            |

# Employment Data (Clinton-Eaton-Ingham-Ionia)

.

.

| Year | Civilian<br>Labor Force | Unemployment<br>Rate | Number of<br>Unemployed |
|------|-------------------------|----------------------|-------------------------|
| 1970 | 177,600                 | 6.5                  | 11,500                  |
| 1971 | 183,500                 | 6.4                  | 11,800                  |
| 1972 | 190,500                 | 6.2                  | 11,800                  |
| 1973 | 194,100                 | 5.0                  | .9,700                  |
| 1974 | 197,300                 | 7.7                  | 15,200                  |
| 1975 | 200,300                 | 11.9                 | 23,900                  |
| 1976 | 208,100                 | 8.6                  | 18,000                  |
| 1977 | 221,500                 | 7.7                  | 17,000                  |
| 1978 | 227,500                 | 6.3                  | 14,400                  |
| 1979 | 235,000                 | 6.7                  | 15,700                  |

Source: Michigan Employment Security Commission, Lansing, Michigan

.

#### G.N.P. Year G.N.P. Year 935.5 1957 442.8 1969 1958 448.9 1970 982.4 486.5 1971 1,063.4 1959 1960 506.0 1972 1,171.1 1973 1,306.6 1961 523.3 1962 563.8 1974 1,413.2 1963 594.7 1975 1,516.3 1964 635.7 1976 1,691.6 1965 688.1 1977 1,887.4 753.0 2,128.3 1966 1978 2,327.1 1967 796.3 1979 1968 868.5

#### United States Gross National Product (1976 Dollars)

Source: Economic Report of the President Washington: G.P.O., 1979

### Lansing Community College Tuition Rate Data

| Year | Resident | Non-Resident | Out-of-State |
|------|----------|--------------|--------------|
| 1957 | 3.11     | 4.33         | 4.33         |
| 1958 | 3.11     | 4.33         | 4.33         |
| 1959 | 3.11     | 4.33         | 4.33         |
| 1960 | 3.11     | 4.33         | 4.33         |
| 1961 | 3.11     | 4.33         | 4.33         |
| 1962 | 3.50     | 5.00         | 5.00         |
| 1963 | 3.50     | 5.00         | 5.00         |
| 1964 | 4.12     | 5.63         | 5.63         |
| 1965 | 4.12     | 5.63         | 5.63         |
| 1966 | 5,00     | 7.00         | 7.00         |
| 1967 | 6.00     | 8,50         | 8.50         |
| 1968 | 6.20     | 8.80         | 8.80         |
| 1969 | 6.80     | 9.60         | 9.60         |
| 1970 | 7.00     | 11.00        | 31.00        |
| 1971 | 7.00     | 13.00        | 31.00        |
| 1972 | 7.00     | 13.00        | 31.00        |
| 1973 | 7.00     | 13.00        | 31.00        |
| 1974 | 7.00     | 13.00        | 22.50        |
| 1975 | 8.50     | 14.50        | 24.00        |
| 1976 | 8.50     | 14.50        | 24.00        |
| 1977 | 8.50     | 14.50        | 24.00        |
| 1978 | 11.00    | 17.00        | 27.00        |
| 1979 | 11.00    | 17.00        | 27.00        |
|      |          |              |              |

Source: Lansing Community College Office of the Registrar

## Lansing Community College Fall Term Enrollment Data

| Year         | Fulltime Equated | Headcount   | Fulltime | Parttime   |
|--------------|------------------|-------------|----------|------------|
|              |                  | <del></del> |          |            |
| 1957         | 166              | 425         | 62       | 363        |
| 1958         | 310              | 678         | 205      | 473        |
| 1959         | 401              | 857         | 265      | <b>592</b> |
| 1960         | 561              | 1297        | 334      | 963        |
| 1961         | 774              | 1604        | 549      | 1055       |
| 1962         | 1037             | 2124        | 720      | 1404       |
| 1963         | 1136             | 2320        | 719      | 1601       |
| 1964         | 1457             | 3021        | 1029     | 1992       |
| 1965         | 2114             | 3842        | 1526     | 2316       |
| 1966         | 2748             | 4166        | 1975     | 2191       |
| 1967         | 2880             | 4946        | 2038     | 2908       |
| 1968         | 3481             | 6047        | 2438     | 3609       |
| 1969         | 4019             | 7130        | 2754     | 4376       |
| 1970         | 4244             | 7230        | 2970     | 4260       |
| 1 <b>971</b> | 4435             | 7951        | 2983     | 4968       |
| 1972         | 4654             | 8773        | 2988     | 5785       |
| 1973         | 5334             | 10640       | 3208     | 7432       |
| 1974         | 6699             | 13280       | 3998     | 9282       |
| 1975         | 8357             | 15901       | 5476     | 10425      |
| 1976         | 8399             | 17102       | 5181     | 11921      |
| 1977         | 8750             | 19042       | 4815     | 14227      |
| 1978         | 8048             | 18313       | 4420     | 13893      |
| 1979.        | 9019             | 21000       | 4718     | 16282      |
|              |                  |             |          |            |

5

Source: Lansing Community College Office of the Registrar

.

.

# Michigan Selected Public Community College Fall Enrollment Data\*

| Year        | Delta | G.R.J.C. | Henry<br>Ford | Macomb | Mott | Oakland | Schoolcraft |
|-------------|-------|----------|---------------|--------|------|---------|-------------|
| 1965        | 2122  | 3543     | 2880          | 4406   | 3877 | 2469    | 1772        |
| 1966        | 2272  | 3836     | 5069          | 5929   | 4264 | 2754    | 2273        |
| 1967        | 2872  | 3889     | 5138          | 6324   | 4793 | 4080    | 2645        |
| 1968        | 3506  | 4132     | 5229          | 7414   | 4986 | 6801    | 3077        |
| 1969        | 3987  | 4040     | 5991          | 8930   | 4370 | 8870    | 3395        |
| 1970        | 4438  | 4331     | 5854          | 10007  | 4757 | 9807    | 3649        |
| 1971        | 4606  | 4283     | 5269          | 10196  | 5041 | 9514    | 3705        |
| <u>1972</u> | 4638  | 4011     | 5614          | 9518   | 5199 | 8717    | 3725        |
| 1973        | 4678  | 4161     | 6159          | 10103  | 5182 | 8913    | 3873        |
| 1974        | 5509  | 4881     | 7064          | 11561  | 6489 | 9871    | 4681        |
| 1975        | 6123  | 5751     | 7530          | 13714  | 7774 | 11383   | 5085        |
| 1976        | 5929  | 5367     | 7548          | 12594  | 5724 | 10572   | 4729        |
| 1977        | 5842  | 5469     | 8048          | 12288  | 4577 | 10495   | 4671        |
| 1978        | 6074  | 5694     | 7906          | 12434  | 5513 | 10555   | 4929        |
| 1979        | 5516  | 7203     | 11153         | 12167  | 5090 | 10661   | 3794        |

•

Table 3.6 (cont'd.)

Delta - Delta College, University Center, Michigan

G.R.J.C. - Grand Rapids Junior College, Grand Rapids, Michigan

Henry Ford - Henry Ford Community College, Dearborn, MIchigan

Macomb - Macomb County Community College, Warren, Michigan

Mott - Mott Community College, Flint, Michigan

Oakland - Oakland Community College, Union Lake, Michigan

Schoolcraft - Schoolcraft Community College, Livonia, Michigan

Source: Senate Fiscal Agency Office Lansing, Michigan "Historical Enrollment Summary" (unpublished)

\*The enrollment data is fulltime equated student enrollment

# Michigan Higher Education Fall Term Enrollment Data\*

| Year | Public<br>Four Year<br><u>Colleges</u> | Public<br>Community<br>Colleges | Independent<br>Colleges | Total<br>Higher Education<br>Enrollment |
|------|----------------------------------------|---------------------------------|-------------------------|-----------------------------------------|
| 1966 | 174,010                                | 45,380                          | 38,065                  | 257,455                                 |
| 1967 | 185,197                                | 51,972                          | 42,609                  | 279,778                                 |
| 1968 | 198,478                                | 61,852                          | 41,923                  | 302,253                                 |
| 1969 | 208,224                                | 70,422                          | 42,727                  | 321,373                                 |
| 1970 | 217,547                                | 77,343                          | · 42,845                | 337,744                                 |
| 1971 | 220, 341                               | 79,507                          | 42,599                  | 342,447                                 |
| 1972 | 219,235                                | 79,849                          | 43,198                  | 342,282                                 |
| 1973 | 222,398                                | 82,848                          | 44,008                  | 349,245                                 |
| 1974 | 230,885                                | 98,853                          | 48,364                  | 378,102                                 |
| 1975 | 242,061                                | 115,861                         | 52,543                  | 410,465                                 |
| 1976 | 236,942                                | 109,750                         | 50,773                  | 397,465                                 |
| 1977 | 236,618                                | 108,365                         | 51,014                  | 395,997                                 |
| 1978 | 236,035                                | 106,649                         | 50,647                  | 393,331                                 |
| 1979 | 196,751                                | 111,564                         | 53,177                  | 361,492                                 |

Source: Senate Fiscal Agency Office, Lansing, Michigan "Historical Ernollment Summary" (unpublished) \*The enrollment data is fulltime equated student enrollment.

# Michigan State University Fall Enrollment Data

| Year    | Headcount                                                                                         | <u>F.Y.E.S.</u> |
|---------|---------------------------------------------------------------------------------------------------|-----------------|
| 1964    | 34,487                                                                                            |                 |
| 1965    | 38,802                                                                                            | 35,499          |
| 1966    | 41,474                                                                                            | 37,946          |
| 1967    | 42,053                                                                                            | 39,497          |
| 1968    | 44,421                                                                                            | 41,061          |
| 1969    | 44,173                                                                                            | 41,782          |
| 1970    | 43,569                                                                                            | 41,253          |
| 1971    | 44,887                                                                                            | 41,124          |
| 1972    | 44,909                                                                                            | 40,349          |
| 1973    | 45,195                                                                                            | 40,623          |
| 1974    | 47,367                                                                                            | 42,732          |
| 1975    | 48,670                                                                                            | 42,839          |
| 1976    | 46,921                                                                                            | 42,839          |
| 1977    | 47,034                                                                                            | 41,095          |
| 1978    | 46,567                                                                                            | 40,730          |
| 1979    | 47,355                                                                                            | 41,374          |
| Source: | Senate Fiscal Agency Office<br>Lansing, Michigan<br>"Historical Enrollment Summary" (unpublished) |                 |

### Lansing Community College General Student Data (State Count Data)

| Year          | Total<br><u>Students</u> | Freshmen<br>(-40 credits) | Sophomores<br>(40+ credits) | Men  | Women  | Married<br>Men | Married<br>Women |  |
|---------------|--------------------------|---------------------------|-----------------------------|------|--------|----------------|------------------|--|
| 1969          | 7181                     | 5873                      | 1308                        | 4893 | 2288   | 2002           | 747              |  |
| 1970          | 7396                     | 5645                      | 1751                        | 4868 | 2528   | 1891           | 837              |  |
| 1971          | 7951                     | 6023                      | 1928                        | 4988 | 2963   | 1978           | 1038             |  |
| 1972          | 8773                     | 6679                      | 2094                        | 5207 | 3566   | 2280           | 1374             |  |
| 1973          | 10,640                   | 8208                      | 2432                        | 5971 | 4669   | 2765           | 1836             |  |
| 1974          | 13,280                   | 10,380                    | 2900                        | 7319 | 5961   | 3380           | 2307             |  |
| 1975          | 15,901                   | 12,120                    | 3781                        | 8385 | 7084   | 3687           | 2774             |  |
| 19 <b>7</b> 6 | 17,102                   | 12,773                    | 4329                        | 8709 | 8393   | 3725           | 3356             |  |
| 1977          | 19,042                   | 14,154                    | 4888                        | 9267 | 9775   | 3868           | 3977             |  |
| 1978          | 18,313                   | 13,582                    | 4731                        | 8558 | 9755   | 3658           | 4384             |  |
| 1979          | 18,826                   | 13,857                    | 4969                        | 8600 | 10,226 | 2835           | 3836             |  |
|               |                          |                           |                             |      |        |                |                  |  |

Source: Lansing Community College Office of the Dean of Student Personnel Services

# Table 3.9 (cont'd.)

## Lansing Community College General Student Data (State Count Data)

| Year | New<br>Students | Re-<br>Admissions | Returning | Transfers   | Resident | Out of<br>District | Out of<br>State | Foreign |
|------|-----------------|-------------------|-----------|-------------|----------|--------------------|-----------------|---------|
| 1969 | 2943            | 674               | 3564      | 374         | 5230     | 1871               | 50              | 30      |
| 1970 | 2811            | 1049              | 3536      | 464         | 5603     | 1738               | 43              | 12      |
| 1971 | 3145            | 1169              | 3637      | 459         | 6253     | 1676               | 18              | 4       |
| 1972 | 3568            | 1528              | 3677      | 581         | 6981     | 1764               | 28              | 0       |
| 1973 | 4393            | 4433              | 1814      | <b>5</b> 42 | 8471     | 2128               | 38              | 3       |
| 1974 | 5221            | 5720              | 2339      | 375         | 10,508   | 2699               | 30              | 43      |
| 1975 | 6866            | 4392              | 4643      | 632         | 12,466   | 3305               | 46              | 84      |
| 1976 | 5653            | 8654              | 2795      | 883         | 13,073   | 3820               | 36              | 173     |
| 1977 | 6317            | 3302              | 9423      | 860         | 14,486   | 4206               | 95              | 255     |
| 1978 | 6278            | 3638              | 8924      | 597         | 13,496   | 4505               | 57              | 255     |
| 1979 | 5417            | 4272              | 9173      | 772         | 14,354   | 4169               | 53              | 250     |

Souce: Lansing Community College Office of the Dean of Student Personnel Services

# Lansing Community College Fall Term Student Age Data Percent of Total Enrollment

| Age           | <u>1971</u> | 1972        | 1973       | 1974           | 1975         | 1976        | <u>1977</u> | <u>1973</u> | <u>1979</u>       |
|---------------|-------------|-------------|------------|----------------|--------------|-------------|-------------|-------------|-------------------|
| -21           | 39.0        | 35,9        | 31.5       | 30.4           | 29.3         | 28.1        | 26.2        | 25.8        | 26.4              |
| 21-25         | 29.8        | 29.1        | 28.1       | 27.5           | 27.7         | 27.8        | 26.4        | 25.5        | 27.1              |
| 26-30         | 13.0        | 14.0        | 15.5       | 16.1           | 18.6         | 20.2        | 19.4        | 18.6        | 17,8              |
| 31–35         | 5.8         | 7.1         | 8.5        | 9.0            | 9.4          | 9.1         | 10.3        | 10.6        | 10.7              |
| 36-40         | 4.3         | 4.3         | 4.9        | 5.0            | 5.2          | 5.0         | 5.6         | 6.5         | 6.2 <sub>ല്</sub> |
| 41-45         | 3.4         | 3.7         | 3.8        | 4.1            | 3.7          | 3.8         | 4.0         | 4.3         | 4.0               |
| 46-50         | 2.0         | 2,6         | 3.1        | 3.3            | 2.6          | 2.4         | 2.9         | 2.9         | 2.7               |
| 51-55         | 1.2         | 1.4         | 2.0        | 1.8            | 1.6          | 1.6         | 2.0         | 2.0         | 2.0               |
| 5660          | .4          | .7          | .9         | 1.0            | .7           | .7          | .9          | 1,1         | .9                |
| 61+           | .3          | .3          | .3         | .5             | .5           | .4          | 1.0         | 1.2         | 1.2               |
| Mean<br>Age   | 25.0        | 25.5        | 26.2       | 26.8           | 26,0         | 26.5        | 20.3        | 27.6        | 27.5              |
| Median<br>Age | 21.0        | 23,0        | 22.5       | - <b>23</b> .0 | <b>24</b> .0 | 24.0        | 25.0        | 25.0        | 25.0              |
| Mode<br>Age   | 19.0        | 19.0        | 19.0       | 19.0           | 18.0         | 19.0        | 19.0        | 19.0        | 19.0              |
| Source:       | Iansing Com | monity Call | eve Office | of the Dea     | n of Studen  | t Dorsonnol | Semicos     |             |                   |

Source: Lansing Community College, Office of the Dean of Student Personnel Services

-

# , Table 3.11

# Lansing Community College Data of Students by High School

|               |                                   | l Graduates               |
|---------------|-----------------------------------|---------------------------|
| Year          | Lansing Community College<br>Area | Lansing Community College |
| 1972          | 7877                              | 4491                      |
| 1973          | 8247                              | 4721                      |
| 1974          | 7839                              | 4445                      |
| <b>197</b> 5  | 8211                              | 4510                      |
| 1976          | 8107                              | 4493                      |
| <b>1977</b> · | 8460                              | 4707                      |
| 1978          | 7947                              | 4382                      |
| 1979          | 8208                              | 4405                      |

## Source: Lansing Community College Office of Admissions

# Fall Term Lansing Community College Divisional Credit Generation Data (Percent of Total College Credits)

|      |              | D            | IVISIONS    |               |              |
|------|--------------|--------------|-------------|---------------|--------------|
| Year | A&S          | Business     | <u>L.R.</u> | <u>S.P.S.</u> | Tech./H.C.   |
| 1970 | 39737 (60.4) | 12840 (19.4) | 72 (0.1)    | 691 (1.0)     | 12436 (18.9) |
| 1971 | 39249 (57.1) | 13357 (19.4) | 156 (0.2)   | 316 (1.1)     | 15168 (22.0) |
| 1972 | 38145 (52.8) | 14939 (20.7) | 207 (0.2)   | 932 (1.2)     | 17918 (24.8) |
| 1973 | 38954 (46.9) | 20034 (24.2) | 475 (0.5)   | 983 (1.1)     | 22234 (26.8) |
| 1974 | 45832 (44.1) | 26588 (25.6) | 1413 (1.3)  | 1481 (1.4)    | 28528 (27.4) |
| 1975 | 56383 (43.5) | 32694 (25.2) | 2547 (1.9)  | 2227 (1.7)    | 35685 (27.5) |
| 1976 | 54811 (42.1) | 32910 (25.2) | 2624 (2.0)  | 3308 (2.5)    | 36534 (28.0) |
| 1977 | 52845 (38.9) | 36963 (27,2) | 2898 (2.1)  | 3998 (2.9)    | 38923 (28.7) |
| 1978 | 47370 (42.1) | 34375 (25.2) | 2642 (2.0)  | 4245 (2.5)    | 36112 (28.0) |
| 1979 | 51148 (38.9) | 38987 (27.2) | 3089 (2.1)  | 4407 (2.9)    | 42160 (28.7) |

ဒ္မ

## Table 3.12 (cont'd.)

A & S - Division of Liberal Arts and Science

Business - Division of Business

L.R. - Division of Learning Resources

S.P.S. - Division of Student Personnel Services

Tech./H.C. - Division of Technology and Health Careers

Source: Lansing Community College Office of the Registrar 4. Population Pool (Table 3.13)

3.13 Tri-County Census Data By Age (Clinton-Eaton-Ingham) These factors will be evaluated for application in the forecasting model whose function is the accurate forecast of Lansing Community College's fulltime equated student enrollment.

#### Calculation Methods

All student enrollment forecasts must be calculated via a predetermined method. "As with all forecasting," states Centra, "the assumption behind most of the projections presented is that there will not be any drastic changes in the nation."<sup>1</sup> This assumption permits researchers the liberty to select from a body of calculation methods the method which is most applicable to the forecasting at an individual institution or other population segment.

The following calculation methods will be applied in this study to the forecasting of the 1979 Lansing Community College fulltime equated enrollment:

| l.                              | Simple Average                                                             |
|---------------------------------|----------------------------------------------------------------------------|
| 2.                              | Moving Average                                                             |
| 3.                              | Double Moving Average                                                      |
| 4.                              | Exponential Smoothing                                                      |
| 5.                              | Double Exponential Smoothing                                               |
| 6.                              | Ratio Method                                                               |
| 7.                              | Simple Regression and Correlation (Y - a + bx)                             |
| 8.                              | Multiple Regression and Correlation                                        |
|                                 | $(Y = a + b_1 x_1 +, b_n x_n)$                                             |
| The                             | method of simple average is nothing more than the calcula-                 |
| tion of                         | the mean $(\overline{x})$ . The mean is defined as:                        |
| $\overline{\overline{x}} = 1$ + | $\frac{x_2 + \cdots + x_N}{N}$ . Glass adds, "The value of the mean is es- |
| pecially                        | affected by what might be called outliers, i.e., scores                    |
|                                 |                                                                            |

shich lie far from the center of the group of scores. Whether

# Tri-County Census Data By Age (Clinton-Eaton-Ingham)

|      |         | · · · · ·             | <u> </u>              | ······         |                 | • • • • • • • • • • • • • • • • • • • |                |
|------|---------|-----------------------|-----------------------|----------------|-----------------|---------------------------------------|----------------|
|      |         |                       | AGE                   |                |                 |                                       |                |
| Year | TOTAL   | TOTAL<br><u>18–20</u> | <b>TOTAL</b><br>21-25 | TOTAL<br>26-30 | FEMALE<br>18-30 | MALE<br>18-30                         | TOTAL<br>18-30 |
| 1970 | 378,000 | 34,625                | 40,994                | 27,711         | 51,924          | 51,133                                | 103,057        |
| 1971 | 382,000 | 36,239                | 43,612                | 27,847         | 53,949          | 53,504                                | 107,453        |
| 1972 | 386,000 | 37,853                | 46,230                | 27,984         | 55,975          | 53,256                                | 114,231        |
| 1973 | 390,000 | 39,467                | 48,848                | 28,120         | 58,000          | 60,618                                | 118,618        |
| 1974 | 394,000 | 41,082                | 51,467                | 28,257         | 60,026          | 62,990                                | 123,016        |
| 1975 | 398,000 | 42,696                | 54,085                | 28,394         | 62,052          | 65,361                                | 127,413        |
| 1976 | 401,800 | 44,310                | 56,703                | 28,530         | 64,253          | 67,733                                | 131,986        |
| 1977 | 405,600 | <b>45,92</b> 5        | 59,322                | 28,667         | 66,279          | 70,104                                | 136,383        |
| 1978 | 409,400 | 47,539                | <b>61,94</b> 0        | 28,803         | 68,304          | 72,475                                | 130,779        |
| 1979 | 413,200 | 49,153                | 64,558                | 28,940         | 70,330          | 74,346                                | 145,176        |

Source: "Population Projections for Michigan to the Year 2000" Information Systems Division, Office of the Budget Department of Management and Budget Lansing, Michigan

.

.

÷

this is an advantage depends upon the particular questions you are asking of the data."<sup>2</sup>

The moving average calculation method offers the advantage of placing greater weight on more current data than on more dated data. Mathematically a moving average is computed:

$$1979^{\text{F}} = \frac{1978^{\text{A}} + 1977^{\text{A}} + 1976^{\text{A}} + \dots}{\text{N}}$$

where: A = actual F = forecast N = number of actual years applied

It can be seen in the above formula that a reduction in N places greater weight on more recent data and an increase in N places less weight on recent data. As stated by Brown, "The process of computing the moving average is quite simple and straight forward. It is accurate: the average minimizes the sum of squares of the differences between the most recent N observations and the estimate of the coefficient in the model."<sup>3</sup> This advantage should be considered in the light of the fact, ". . . that when there are changes in the basic pattern of the variable being forecast moving averages may not adapt rapidly to the changes." Wheelright goes on, "This limitation of simple moving averages to adapt to trend, seasonal and cyclical patterns can be overcome at least in part by using higher order smoothing techniques."<sup>4</sup>

Exponential smoothing is a higher order smoothing technique. As defined by Brown, "Exponential smoothing is quite a common sort of averaging. In the field of systems engineering, this is the simplest case of proportional control. The estimate is corrected with each new observation in proportion to the difference between the previous estimate and the new observation."<sup>5</sup>

The formula for the calculation of exponential smoothing is:

$$1979^{F} = 1978^{A} + \alpha(1978^{F} - 1978^{A})$$
where: A = actual
V = forecast
a = constant

The value of alpha ( $\alpha$ ) must be between 0 and 1. Thus the effect of a large and small alpha is completely analogous to the effect of including a small number of observations in computing a moving average versus including a large number of observations in a moving average.

Two obvious limitations in the moving average calculation, that is, the need to store the last N observations and the fact of equal weight to all N observations, are removed in the exponential smoothing method. According to Wheelwright, "What we should like is a weighting sceme that would apply the most weight to the most recent observed values and decreasing weights to the older values."<sup>6</sup> Exponential smoothing does just that plus it eliminates the need for storing all past observations.

The limitations of exponential smoothing are much the same as moving averages: (1) not effective in handling trends, (2) they are nonstatistical methods and thus difficult to evaluate in any exact terms.

It is interesting to note that the simple average and the moving average have the inherent weakness that a forecast will always fall below or above the actual data if a trend exist. The double <u>moving average</u> is an attempt to eliminate the phenomenon. This is done by ". . . taking the difference between the single moving average and the double moving average and adding it back to the single moving average."<sup>7</sup> Unfortunately the same two limitations, that is, storage of data and equal weight for all observations, exist in the method of double moving averages as in moving averages.

<u>Double exponential smoothing</u> as with single exponential smoothing is able to eliminate the two limitations cited above. In applying double exponential smoothing the same concluding steps as described in the double moving averages are executed, that is, we add to the single exponential smoothed value the difference between itself and the double smoothing and then adjust.

The <u>ratio method</u> produces student enrollment forecasts based on trends in ratios of enrollment to selected variables. Once the ratio is established, here a decision must be made whether to use the median, mean, or most recent ratio and which calculation method to apply, it is then possible to make a forecast by multiplying the calculated ratio by the projected variable.

This method has been used widely and is based on the assumption that "the habit" reflected in the calculated ratio will continue.

It should be noted that all of the above calcualtion methods discussed heretofore are "non-statistical". A non-statistical model is defined by Wheelwright as, ". . . models that do not follow the general rules of statistical analysis and probability theory . . . , based much more on intuition . . . than on

fundamental statistics."<sup>8</sup> The intent of including the above models is that required statistical wizardry is minimal and thus; if one of the above models "proves efficient," the appeal to apply that model woul- be greater. A measure of efficiency for each of the applied models will be detailed later in this chapter.

<u>Simple correlation and regression analysis</u> is a statistical method which attempts to determine the relationship between enrollment (dependent variable) and an "influencing factor" (independent variable). In forecasting work simple correlation and regression analysis is considered to have the following strengths and weaknesses:

Strengths:

- 1. A greater range of forecasting situations can be handled with regression analysis than with smoothing techniques (non-statistical models).
- 2. It is a statistical model and thus its accuracy can be closely evaluated in terms of statistical measures.

Weaknesses:

- 1. It is suitable only for linear relationships.
- 2. It requires a considerable amount of data to produce statistically significant results.
- 3. It treats all observations of the data as being equal.

<u>Multiple Correlation and Regression Analysis</u> applies the same principle as the simple correlation and regression analysis. The difference in practice is that there are situations in which more than one independent variable (influencing factor) can be used and then simple correlation and analysis is not adequate and should be replaced by multiple correlation and regression analysis. In addition to the above mentioned advantage we can compute the individual coefficient of correlation for each of the pairs of independent variables.

As a statistical model there are tests of significance which can evaluate the model. The application of the above tests will produce a better understanding of each equation and the reliability which might be placed on each equation. Of course the chief interest in the value of multiple correlation and regression analysis is its applicability to the forecasting of student enrollment. Before this interest can be realized, the influencing factors (independent variables) must be statistically examined.

### **Operational Measures**

Past Lansing Community College fulltime equated enrollment data will be the only influencing factor applied to the following student enrollment forecasting methods:

- Simple Average 1.
- 2. Moving Average
- 3. Double Moving Average
- Exponential Smoothing 4.
- Double Exponential Smooth 5.

The ratio method of forecasting Lansing Community College's fulltime equated enrollment will employ only census data. The census data will include the population pool of Clinton, Eaton, and Ingham counties and will incorporate the following age ranges:

18 - 20 Year Olds 1. 21 - 25 Year Olds 2. 26 - 30 Year Olds 3. 18 - 30 Year Olds 4.

The simple correlation and regression analysis calculation method will be applied to all included influencing factors and will serve two purposes. The first is to produce data which will allow the application of the Y = a + bx formula to the forecasting of the 1979 Lansing Community College fulltime equated student enrollment. The second purpose is to evaluate each of the influencing factors via statistical methods (which will be detailed later in this chapter). That evaluation will be followed by the application of the multiple correlation and regression analysis calculation method to the statistically evaluated and selected influencing factors. The simple correlation and regression analysis will be applied to the following dependent variables (Lansing Community College enrollments) and influencing factors (independent variables):

I. Fulltime Equated Enrollment (dependent variable)

- A. Independent Variables
  - 1. Lansing Community College Headcount Enrollment
  - 2. Lansing Community College Fulltime Enrollment
  - 3. Lansing Community College Parttime Enrollment
  - 4. Lansing Community College Area/High School Graduates
  - 5. Lansing Community College District/High School Graduates
  - 6. United States Gross National Product
  - 7. Michigan Public Community Colleges Enrollment
  - 8. Michigan Independent Colleges Enrollment
  - 9. Michigan Total Higher Education Enrollment
  - 10. Michigan Public Four Year Colleges Enrollment (Headcount)
  - 11. Michigan Public Four Year Colleges Enrollment (FTE)
  - 12. Michigan State University (Headcount)
  - 13. Michigan State University (FYES)
  - 14. Lansing Community College Tuition (out of state)
  - 15. Lansing Community College Tuition (resident)
  - 16. Lansing Community College Tuition (non-resident)
  - 17. Consumers Price Index (all items)
  - 18. Consumers Price Index (all items) minus one year
  - 19. Consumers Price Index (all items) minus two years
  - 20. Delta College
  - 21. Grand Rapids Junior College

- 22. Schoolcraft College
- 23. Macomb County Community College
- 24. Henry Ford Community College
- 25. C.S. Mott Community College
- 26. Oakland County Community College
- 27. Lansing Community College Division of Arts & Sciences
- 28. Lansing Community College Division of Student Personnel Services
- 29. Lansing Community College Division of Technical Health Careers
- 30. Lansing Community College Division of Business
- 31. Lansing Community College Division of Learning Resources
- 32. Tri-County Census Data (18-30/male)
- 33. Tri-County Census Data (18-30/female)
- 34. Tri-County Census Data (18-20)
- 35. Tri-County Census Data (21-25)
- 36. Tri-County Census Data (26-30)
- 37. Tri-County Census Data (18-30)
- 38. Civilian Work Force
- 39. Number of Unemployed
- 40. Unemployed Rate
- II. Fulltime Enrollment (dependent variable)
  - A. Independent Variables
    - 1. Michigan State University Enrollment (headcount)
    - 2. Consumers Price Index (all items)
    - 3. Consumers Price Index (all items) minus one year
    - 4. Consumers Price Index (all items) minus two years
    - 5. United States Gross National Product
- III. Parttime Enrollment (dependent variable)
  - A. Independent Variables
    - 1. Michigan State University Enrollment (headcount)
    - 2. Consumers Price Index (all items)
    - 3. Consumers Price Index (all items) minus 1 year
    - 4. Consumers Price Index (all itmes) minus 2 years
    - 5. United States Gross National Product
  - IV. Headcount Enrollment (dependent variable)
    - A. Independent Variables
      - 1. Michigan State University Enrollment (headcount)
      - 2. Consumers Price Index (all items)
      - 3. Consumers Price Index (all items) minus 1 year
      - 4. Consumers Price Index (all items) minus 2 years
        - 5. United States Gross National Product

The resulting data from the simple correlation and regression analysis will be evaluated to determine which independent variables will be employed in the multiple correlation and regression analysis. The methods of evaluation for the data from each of the forty independent variables tested will include:

- 1. Ranking by correlation coefficient.
- 2. Ranking by coefficient of determination.
- 3. Eliminate independent variables (R) which do not permit rejection of Ho: P = 0 at 95% confidence level.
- 4. Accept only regression equations which are significant at the 95% confidence level (F statistic).
- 5. Subjective judgment.

The application of multiple regression and correlation analysis will encompass six runs of separate combinations of selected independent variables tested. These combinations will be determined by the collective influence of the above stated methods of evaluation. The data produced by these six runs will be tested by the following measurement devices:

- 1. Examine correlation coefficient.
- 2. Examine coefficient of determination.
- 3. Reject models which do not produce a large enough R to permit rejection of Ho: P = 0 at the 95% confidence level.
- 4. Accept only regression equations which are significant at the 95% confidence level (F statistic).

#### Design

The framework around which this study is built is quite straight forward. The design of the study or plan is predictive. It is the goal of this study, through the application of several selected models, to discover a model which accurately "predicts" the 1979 fulltime equated student enrollment at Lansing Community College. The basic design then requires the thoughtful selection of the factors most influential to student enrollment and the subsequent application of those factors to calculation methods which mathematically/ statistically possess the power to effectuate reliable results. This design will allow a conclusion regarding the relative accuracy of the models tested to the prediction of the 1979 fulltime equated student enrollment at Lansing Community College.

### Testable Hypotheses

Null hypotheses: No difference will be found in the 1979 forecasting accuracy (Lansing Community College fulltime equated student enrollment) of the selected calculation methods as measured by the percentage of error.

Symbolically: Ho:  $M_1 = M_x$ 

- Legend: M<sub>1</sub> = the difference from 9019 generated by the simple average calculation method's forecast of the Lansing Community College fulltime equated student enrollment.
  - $M_{x}$  = the forecasted student enrollments + 9019 generated by each of the selected calculation methods.

Alternate hypothesis  $H_{la}$ : The calculation methods which employ the mathematical functions of simple and multiple regression produce more accurate forecasts than the other applied calculation methods in this study.

Alternate hypothesis  $H_{1b}$ : The influencing factors (independent variables) which possess the highest correlation coefficient (measured against the dependent variable) will produce the most accurate student enrollment forecast.

Alternate hypothesis H<sub>lc</sub>: The model which most accurately forecast the 1979 fulltime equated student enrollment at Lansing Community College will forecast the 1980 enrollment within an equal percentage of error.

#### Analysis

The null hypothesis and the alternate hypothesis a and b will be tested by comparing the accuracy of their respective forecast. This will be done by computing the percentage of error. This computation is specifically only a matter of subtracting the forecasted enrollment (s) from the actual enrollment (9019) and dividing the difference by the actual enrollment (9019) thus producing the percentage of error.

Alternate hypothesis lc must be tested by determining which of the applied models produces the most accurate 1979 fulltime equated student enrollment. This will be done by comparing the percentage of error of each model. Upon determining which model has the lowest percentage of error that model will be used to forecast the 1980 Lansing Community College fulltime equated enrollment. The resulting percentage of error can then be compared to the percentage of error of the selected model in predicting the 1979's enrollment and the test for hypothesis lc will be complete.

#### Summary

The design of this study is such that from collected data useful information will be generated relative to the accurate forecasting of student enrollment at Lansing Community College. The testing of the above described hypotheses are expected to respectively reveal:

- A. The relative accuracy of selected calculation methods to forecast the 1979 fulltime equated student enrollment of Lansing Community College.
- B. The relative impact of the selected influencing factors upon the accurate forecasting of the fulltime equated student enrollment at Lansing Community College.

- C. The relative accuracy of the applied calculation methods to forecast the 1979 fulltime equated student enrollment of Lansing Community College.
- D. A recommended model to forecast the 1980 fulltime equated student enrollment at Lansing Community College.

#### Chapter IV

#### Analysis of Results

#### Introduction

The accumulated data of this study will be analyzed, discussed, and interpreted in this chapter. The above task will be achieved by directly presenting the results of the four stated hypotheses.

#### Null Hypothesis

The null hypothesis: No difference will be found in the 1979 forecasting accuracy (Lansing Community College fulltime equated student enrollment) of the selected calculation methods as measured by the percentage of error.

Symbolically: Ho:  $M_{\gamma} = Mx$ 

Legend: M<sub>1</sub> = the difference from 9019 generated by the simple average calculation method's forecast of the Lansing Community College fulltime equated student enrollment.

> Mx = the forecasted student enrollments  $\stackrel{+}{-}$  9019 generated by each of the selected calculation methods.

The selected calculation methods which were used to forecast the 1979 fulltime equated student enrollment of Lansing Community College included:

- 2. Moving Average (Table 4.2)
- 3. Double Moving Average (Table 4.3)
- 4. Exponential Smoothing (Table 4.4)
- 5. Double Exponential Smoothing (Table 4.5)

6. Ratio Method (Tables 4.6 - 4.10)

<sup>1.</sup> Simple Average (Table 4.1)

# Forecasts of the Succeeding Year's Lansing Community College Fulltime Equated Student Enrollment Calculation Method: Simple Average

| ·            |               | _       |                          |                          |                          |                        |
|--------------|---------------|---------|--------------------------|--------------------------|--------------------------|------------------------|
| Year         | Running Total | Divisor | Simple<br><u>Average</u> | Forecasted<br>Enrollment | Actual Enrollment (Year) | Percentage<br>of Error |
| 1957         | 166           | 1       | 166.0                    | 166                      | 310 (1958)               | -46.4                  |
| 1958         | 476           | 2       | 238.0                    | 238                      | 401 (1959)               | -40.6                  |
| 1959         | 877           | 3       | 292.3                    | 292                      | 561 (1960)               | -47.9                  |
| <b>196</b> 0 | 1438          | 4       | 359.5                    | 359                      | 774 (1961)               | -53.6                  |
| 1961         | 2212          | 5       | 442.4                    | 442                      | 1037 (1962)              | -57.3                  |
| 1962         | 3249          | 6       | 541,5                    | 541                      | 1136 (1963)              | -52.3                  |
| <b>1963</b>  | 4385          | 7       | 626.4                    | 626                      | 1457 (1964)              | -57.0                  |
| 1964         | 5842          | 8       | 730.2                    | 730                      | 2114 (1965)              | -65.4                  |
| 1965         | 7956          | 9       | 884.0                    | 884                      | 2748 (1966)              | -67.8                  |
| 1966         | 10704         | 10      | 1070.4                   | 1070                     | 2880 (1967)              | -62.8                  |
| 1967         | 13584         | 11      | 1234.9                   | 1234                     | 3481 (1968)              | -64.5                  |

| Year          | Running Total | <u>Divisor</u> | Simple<br>Average | Forecasted<br>Enrollment | Actual Enrollment (Year) | Percentage<br>of Error |
|---------------|---------------|----------------|-------------------|--------------------------|--------------------------|------------------------|
| 1 <b>96</b> 8 | 17065         | 12             | 1422.0            | 1 <b>422</b>             | 4019 (1969)              | -64.6                  |
| 1969          | 21084         | 13             | 1621.8            | 1621                     | 4244 (1970)              | -61.8                  |
| 1 <b>97</b> 0 | 25328         | 14             | 1809.1            | 1809                     | 4435 (1971)              | -59.2                  |
| 1971          | 29763         | 15             | 1984.2            | 1984                     | 4654 (1972)              | -57.3                  |
| 1972          | 34417         | 16             | 2151.0            | 2151                     | 5334 (1973)              | -59.6                  |
| 1973          | 39751         | 17             | 2338.2            | 2338                     | 6699 (1974)              | -65.0                  |
| 1974          | 46450         | 18             | 2580.5            | 2580                     | 8357 (1975)              | -69.1                  |
| 1975          | 54807         | 19             | 2884.5            | <b>2</b> 884             | 8399 (1976)              | -65.6                  |
| 1976          | 63206         | 20             | 3160.3            | 3160                     | 8750 (1977)              | -63.8                  |
| 1977          | 71956         | 21             | 3426.4            | 3426                     | 8048 (1978)              | -57.4                  |
| 1978          | 80004         | 22             | 3636.5            | 3636                     | 9019 (1979)              | -59.6                  |

.

.

.

# Forecasts of the 1979 Lansing Community College Fulltime Equated Student Enrollment Calculation Method: Moving Averages

| Years   | Total Enrollment<br>(Schoolyears) | 1979 <sup>F</sup><br>(Moving Average) | <u>1979<sup>A</sup></u> | Percentage<br>of Error |
|---------|-----------------------------------|---------------------------------------|-------------------------|------------------------|
| 1969-78 | 62939 (10)                        | 6293.9                                | 9019                    | -30.2                  |
| 1970–78 | 58920 (9)                         | 6546.6                                | 9019                    | -27.4                  |
| 1971–78 | 54676 (8)                         | 6834.5                                | 9019                    | -24.2                  |
| 197278  | 50241 (7)                         | 7177.2                                | 9019                    | -20.4                  |
| 1973–78 | 45587 (6)                         | 7597.8                                | 9019                    | -15.7                  |
| 1974–78 | 40253 (5)                         | 8050.6                                | <b>9019</b>             | -10.7                  |
| 1975–78 | 33554 (4)                         | 8388.5                                | 9019                    | - 6.9                  |
| 197678  | 25197 (3)                         | 8399.0                                | 9019                    | - 6.8                  |
| 1977–78 | 16798 (2)                         | 8399.0                                | 9019                    | - 6.8                  |
| 1978    | 8048 (1)                          | 8048.0                                | 9019                    | -10.7                  |

F = Forecasted Enrollment

A = Actual Enrollment

# Forecasts of the 1964 through 1979 Lansing Community College Fulltime Equated Student Enrollment Calculation Mehtod: Double Moving Average

| Year          | Actual<br>Enrollment | Four Year<br>Running<br>Average | Four Year<br>Moving<br>Average of<br>Col. 3 | Value<br>of<br><u>A*</u> | Value<br>of<br><u>B**</u> | Forecast<br>(A + B) | Percentage<br>of Error |
|---------------|----------------------|---------------------------------|---------------------------------------------|--------------------------|---------------------------|---------------------|------------------------|
| 1957          | 166                  |                                 |                                             |                          |                           |                     |                        |
| <b>1958</b> · | 310                  |                                 |                                             |                          |                           |                     |                        |
| 1959          | 401                  |                                 |                                             |                          |                           |                     |                        |
| 1960          | 561                  |                                 |                                             |                          |                           |                     |                        |
| 1961          | 774                  | 360                             |                                             |                          |                           |                     |                        |
| 1962          | 1037                 | <b>512</b>                      |                                             |                          |                           |                     |                        |
| 1963          | 1136                 | 693                             |                                             |                          |                           |                     |                        |
| 1964          | 1457                 | 877                             | 607                                         | 1147                     | 179.8                     | 1327                | - 8.9                  |
| 1965          | 2114                 | 1101                            | 796                                         | 1406                     | 203.1                     | 1609                | -23.9                  |
| 1966          | 2748                 | 1436                            | 1027                                        | 1845                     | 272.4                     | 2117                | -23.0                  |
| 1967          | 2880                 | 1864                            | 1320                                        | 2408                     | 362.3                     | 2770                | - 3.8                  |
| 1968          | 3481                 | 2300                            | 1675                                        | 2925                     | 416.3                     | 3341                | - 4.0                  |
| 1969          | 4019                 | 2806                            | 2102                                        | 3510                     | 468.9                     | 3979                | - 1.0                  |

| Year          | Actual<br>Enrollment | Four Year<br>Running<br>Average | Four Year<br>Moving<br>Average of<br>Col. 3 | Value<br>of<br><u>A</u> * | Value<br>of<br> | Forecast<br>(A + B) | Percentage<br>of Error |
|---------------|----------------------|---------------------------------|---------------------------------------------|---------------------------|-----------------|---------------------|------------------------|
| 1970          | 4244                 | 3282                            | 2563                                        | 4001                      | 478.9           | 4480                | 5.6                    |
| 1971          | 4435                 | 3656                            | 3011                                        | 4301                      | 429.6           | 4731                | 6.7                    |
| 1972          | 4654                 | 4045                            | 3447                                        | 4643                      | 398.3           | 5041                | 8.3                    |
| 1973          | 5334                 | 4338                            | 3830                                        | 4846                      | 338.3           | 5184                | - 2.8                  |
| 1974          | 6699                 | 4667                            | 4177                                        | 5157                      | 326.3           | 5483                | -18.2                  |
| 1975          | 8357                 | 5281                            | 4583                                        | 5979                      | 464.9           | 6444                | -22,9                  |
| 1976          | 8399                 | 6261                            | 5137                                        | 7385                      | 748.6           | 8134                | - 3.2                  |
| 1977          | 8750                 | 7197                            | 5852                                        | 8542                      | 895.8           | 9438                | 7.9                    |
| <b>1978</b> · | 8048                 | 8051                            | 6698                                        | 9404                      | 901.1           | 10305               | 28.0                   |
| 1979          | 9019                 | 8389                            | 7475                                        | 9303                      | 608.7           | 9912                | 9.9                    |
| 1980          |                      | 8554                            | 8048                                        | <b>90</b> 60              | 337.0           | 9397                |                        |

\*A is the result of the difference between columns 3 and 4 added back to column 3.

•

\*\*B is column 3 minus column 4 multiplied by .666  $(\frac{2}{n-1})$ .

•

•

# Forecasts of the Succeeding Year's Iansing Community College Fulltime Equated Student Enrollment Calculation Mehtod: Exponential Smoothing

| Exponentially Smoothed Values<br>and Percentage of Error* |                      |               |                    |               |             |               |                        |
|-----------------------------------------------------------|----------------------|---------------|--------------------|---------------|-------------|---------------|------------------------|
| Year                                                      | Actual<br>Enrollment | $\alpha = .1$ | <u><b>P.E.</b></u> | $\alpha = .5$ | <u>P.E.</u> | $\alpha = .9$ | Percentage<br>of Error |
| 1970                                                      | 4244                 |               |                    |               |             |               |                        |
| 1971                                                      | 4435                 | 4244          | - 4.3              | 4244          | - 4.3       | 4244          | - 4.3                  |
| 1972                                                      | 4654                 | 4263          | - 8.4              | 4340          | - 6.7       | 4416          | - 5.1                  |
| 1973                                                      | 5334                 | 4302          | -19.3              | 4497          | -15.7       | 4630          | -13.2                  |
| 1974                                                      | 6699                 | 4542          | -32.2              | 5598          | -16.4       | 6492          | - 3.1                  |
| 1975                                                      | 8357                 | 4758          | -43.1              | 6149          | -26.4       | 6678          | -20.1                  |
| 1976                                                      | 8399                 | 5118          | -39.1              | 7253          | -13.6       | 8189          | - 2.5                  |
| 1977                                                      | 8750                 | 5446          | -37.8              | 7846          | -10.3       | 8378          | - 4.3                  |
| 1978                                                      | 8048                 | 5776          | -28.2              | 8298          | + 3.1       | 8713          | + 8.3                  |
| 1979                                                      | 9019                 | 6003          | -33.4              | 8173          | - 9.3       | 8115          | -10.0                  |

\$

.

.

### Forecasts of the Succeeding Year's Lansing Community College Fulltime Equated Student Enrollment (1972 through 1979) Calculation Method: Double Exponential Smoothing (α = .1)

| • <u> </u>    |                      |                                    |                                    |                  |                         |                               |                           |
|---------------|----------------------|------------------------------------|------------------------------------|------------------|-------------------------|-------------------------------|---------------------------|
| Year          | Actual<br>Enrollment | Single<br>Exponential<br>Smoothing | Double<br>Exponential<br>Smoothing | Value<br>of<br>A | Value<br>of<br><u>B</u> | Forecast<br>of<br><u>A+BM</u> | Percentage<br>of<br>Error |
| 1 <b>97</b> 0 | 4244                 |                                    |                                    |                  |                         |                               |                           |
| 1971          | 4435                 | 4244                               | 4244                               |                  |                         |                               |                           |
| 1972          | 4654                 | <b>426</b> 3                       | 4244                               | 4282             | 2.10                    | 4284.1                        | -7.9                      |
| 1 <b>97</b> 3 | 5334                 | 4302                               | 4250                               | 4354             | 5.77                    | 4359.8                        | -18.2                     |
| 1974          | 6699                 | 4542                               | 4278                               | 4806             | 29.30                   | 4835.3                        | -27.8                     |
| 1975          | 8357                 | 4758                               | 4326                               | 5190             | 47.95                   | 5238.0                        | -37.3                     |
| 1976          | 83 <del>99</del>     | 5118                               | 4405                               | 5831             | 79.14                   | 5910.1                        | -29.6                     |
| 1977          | 87.50                | 5446                               | 4509                               | 6383             | 104.00                  | 6487.0                        | -25.9                     |
| 1978          | 8048                 | 5776                               | 4636                               | 6916             | 126.54                  | 7042.5                        | -12.5                     |
| <b>197</b> 9  | 9019                 | 6003                               | 4778                               | 7228             | 135.97                  | 7363.9                        | -18.3                     |

Table 4.5 (cont'd.)

$$A = 1.2 (x'+1) - (x''+1)$$
$$B = \frac{\alpha}{1 - \alpha} (x'+1 - x''+1)$$

M = 1 (or the number of years ahead we want to forecast)

Single Exponential Smooth =  $x'+1 = x+\alpha (x^F - x)$ , where x equals previous year's known enrollment and F equals forecasts for previous year.

Double Exponential Smoothing =  $x''+1 = \alpha (x'+1) + (1-\alpha) (x''+1)$ 

# Forecasting 1979 Fulltime Equated Student Enrollment Applying Tri-County Census Data (18 - 20 Year Olds) Calculation Method: Ratio Method

| Year          | Census Data<br>18 - 20 Year C |                        | Percentage<br>of Population |
|---------------|-------------------------------|------------------------|-----------------------------|
| 1 <b>97</b> 0 | 34,625                        | 4244                   | .122                        |
| 1971          | 36,239                        | 4435                   | .122                        |
| 1972          | 37,853                        | 4654                   | .122                        |
| 1 <b>973</b>  | 39,467                        | 5334                   | .135                        |
| 1974          | 41,082                        | 6699                   | .163                        |
| 1975          | 42,696                        | 8357                   | .195                        |
| 1976          | 44,310                        | 8399                   | .189                        |
| 1977          | 45,925                        | 8750                   | .190                        |
| 1978          | 47,539                        | 8048                   | .169                        |
| 1979          | 49,153                        | 1979 Forecast=8975.33* | <b>.</b> 1826**             |

\*Forecast based on the ratio trend percentage multiplied by the projected population.

\*\*The percentage figure was calculated with the moving average method (1976-1977-1978/N=3).

### Forecasting 1979 Fulltime Equated Student Enrollment Applying Tri-County Census Data (21 - 25 Year Olds) Calculation Method: Ratio Method

| Year          | Census Data<br><u>21 - 25 Year O</u> | lds Enrollment         | Percentage<br>of Population |
|---------------|--------------------------------------|------------------------|-----------------------------|
| 1970          | 40 <b>,99</b> 4                      | 4244                   | .103                        |
| 19 <b>7</b> 1 | 43,612                               | 4435                   | .101                        |
| 1972          | 46,230                               | 4654                   | .100                        |
| 1973          | 48,848                               | 5334                   | .109                        |
| 1974          | 51,467                               | 6699                   | .130                        |
| 1975          | 54,085                               | 8357                   | .154                        |
| 1976          | 56,703                               | 8399                   | .148                        |
| 1977          | 59,332                               | 8750                   | .147                        |
| 1978          | 61,940                               | 8048                   | .129                        |
| 1979          | 64,558                               | 1979 Forecast=9122.04* | .1413**                     |

\*Forecast based on the ratio trend percentage multiplied by the projected population.

\*\*The percentage figure was calculated with the moving average method (1976-1977-1978/N = 3).

| Year          | Census Data<br><u>26 - 30 Year O</u> |                       | Percentage<br>of Population |
|---------------|--------------------------------------|-----------------------|-----------------------------|
| 1 <b>97</b> 0 | 27,438                               | 4244                  | .154                        |
| 1971          | 27,603                               | 4435                  | .160                        |
| 19 <b>72</b>  | 27,768                               | 4654                  | .167                        |
| 1 <b>97</b> 3 | 27,933                               | 5334                  | .190                        |
| 1974          | 28,098                               | 6699                  | .238                        |
| 1975          | 28,263                               | 8357                  | .295                        |
| 1976          | 28,604                               | 8399                  | .293                        |
| 1977          | .28,769                              | 8750                  | .304                        |
| 1978          | 28,934                               | 8048                  | .278                        |
| 1979          | 29,099                               | 1979 Forecast=8485.3* | .2916**                     |

### Forecasting 1979 Fulltime Equated Student Enrollment Applying Tri-County Census Data (26 - 30 Year Olds) Calculation Method: Ratio Method

\*Forecast based on the ratio trend percentage multiplied by the projected population.

\*\*The percentage figure was calculated with the moving average method (1976-1977-1978/N = 3).

### Forecasting 1979 Fulltime Equated Student Enrollment Applying Tri-County Census Data (18 - 30 Year Olds) Calculation Method: Ratio Method

| Year          | Census Data<br><u>18 - 30 Year C</u> |                        | Percentage<br>of Population |
|---------------|--------------------------------------|------------------------|-----------------------------|
| 1 <b>97</b> 0 | 103,057                              | 4244                   | .041                        |
| 1971          | 107,453                              | 4435                   | .041                        |
| 1972          | 114,231                              | 4654                   | .040                        |
| 1973          | 118,618                              | 5334                   | .044                        |
| 1974          | 123,016                              | 6699                   | .054                        |
| 1975          | 127,413                              | 8357                   | .065                        |
| 1976          | 131,986                              | 8399                   | .063                        |
| 1977          | 136,383                              | 8750                   | .064                        |
| 1978          | 140,799                              | 8048                   | .057                        |
| 1979          | 145,176                              | 1979 Forecast=8899.28* | .613**                      |

\*Forecast based on the ratio trend percentage multiplied by the projected population.

\*\*The percentage figure was calculated with the moving average method (1976-1977-1978/N = 3).

### Forecasting The 1979 Fulltime Equated Student Enrollment Applying Tri-County Total Census Data Calculation Method: Ratio Method

| Year          | Total<br>Census Data | <u>Enrollment</u>      | Percentage<br>of Population |
|---------------|----------------------|------------------------|-----------------------------|
| 1 <b>97</b> 0 | 378,000              | 4244                   | .011                        |
| 1 <b>971</b>  | 382,000              | 4435                   | .012                        |
| 1972          | 386,000              | 4654                   | .012                        |
| 1973          | 390,000              | 5334                   | .014                        |
| 1974          | 394,000              | 6699                   | .017                        |
| 1975          | 398,000              | 8357                   | .021                        |
| 1976          | 401,800              | 8399                   | .021                        |
| 1977          | 405,600              | 8750                   | .022                        |
| 1978          | 409,400              | 8048                   | .020                        |
| 1979          | 413,200              | 1979 Forecast=8677.20* | .021**                      |

\*Forecast based on the ratio trend percentage multiplied by the projected population.

\*\*The percentage figure was calculated with the moving average method (1976-1977-1978/N = 3).

. •

7. Simple Correlation and Regression Analysis (Table 4.11)

8. Multiple Correlation and Regression Analysis (Table 4.12)

All of the above listed calculation methods produced at least a single forecast of the 1979 Lansing Community College fulltime equated student enrollment. In addition the moving average calculation method produced ten forecasts; the ratio calculation method produced five forecasts; the simple correlation and analysis calculation method produced twenty two forecasts; and finally the multiple correlation and regression analysis calculation method produced six forecasts.

A concise system to compare the results of the selected calculation methods was used. That system is the percentage of error. Simply stated the percentage of error is the actual fulltime equated student enrollment (9,019 in 1979) of Lansing Community College minus the forecasted Lansing Community College fulltime equated student enrollment divided by the actual 1979 fulltime equated student enrollment at Lansing Community College. Table 4.13 presents the results of all the 1979 Lansing Community College fulltime equated student enrollment forecasts that were calculated in this study including the enrollment forecast and the percentage of error.

The summary presented in Table 4.13 reflects, with no need for statistical justification, the conspicuous evidence that requires the rejection of the null hypothesis. The percentage of error range is so great (-62.0 to 512.2) that there is just no doubt the 1979 results of fulltime equated student enrollment forecasting at Lansing Community College is affected by the selection of a calculation method.

## Forecasts of the 1979 Lansing Community College Fulltime Equated Student Enrollment Calculation Method: Simple Correlation and Regression Analysis (formula: Y = a+bx)

|    | Independent Variable (x)                                            | <u>a</u>  | <u>b</u> | Forecast<br>(Y) | Percentage<br>of Error |
|----|---------------------------------------------------------------------|-----------|----------|-----------------|------------------------|
| 1. | Michigan Independent Colleges Enrollment (53,177)                   | -14,946.1 | .449     | 8,930.4         | - ,98                  |
| 2. | Lansing Community College Headcount (21,000)                        | 337.6     | .457     | 9,934.6         | 10.15                  |
| 3. | Michigan Public Community College Enrollment<br>(111,564)           | -1,862.6  | .089     | 8,066.6         | -10.56                 |
| 4. | Lansing Community College Fulltime Enrollment (4,718)               | -266.1    | 1.718    | 7,839.4         | -13.08                 |
| 5. | Lansing Community College Area/High School<br>Graduates (8,208)     | -22,581.9 | 3.697    | 7,763.1         | -13.92                 |
| 6. | Lansing Community College District/High School<br>Graduates (4,405) | 20,883.7  | -2.982   | 7,748.0         | -14.09                 |
| 7. | Lansing Community College Parttime Enrollment (16,282)              | 690,4     | . 598    | 10,427.0        | 15.61                  |
| 8. | Michigan Public 4 Year Colleges (Headcount)<br>Enrollment (240,600) | 10,313.3  | .074     | 7,491.1         | -16.94                 |

.

•

•

|       | Independent Variable (x)                             | <u>a</u> | <u>b</u> | Forecast<br>(Y) | Percentage<br>of Error |
|-------|------------------------------------------------------|----------|----------|-----------------|------------------------|
| 9.    | Consumers Price Index - Minus 1 Year (195.3)         | -6,004.5 | 85.677   | 10,728.2        | 18.95                  |
| 10.   | Consumers Price Indes - Minus 2 Years (818.5)        | -6,765.9 | 96.470   | 10,743.4        | 19.11                  |
| · 11. | Macomb C.C.C. (12,167)                               | -2,230.3 | .778     | 7,235.6         | -19.77                 |
| 12.   | Delta College (5,516)                                | -1,863.4 | 1.602    | 6,973.2         | -22.68                 |
| 13.   | Oakland C.C. (10,661)                                | 47.4     | .640     | 6,870.4         | -23.82                 |
| 14.   | Michigan Total Higher Education Enrollment (361,492) | -7,812.6 | .040     | 6,647.1         | -26.30                 |
| 15.   | Michigan State University Enrollment. (47,355)       | 5,656.7  | -0,009   | 6,072.2         | -32.68                 |
| 16.   | Consumers Price Index ( 219.4)                       | -6,015.8 | 82,637   | 12,114.8        | 34.32                  |
| 17.   | Schoolcraft C.C. (3,794)                             | -2,676.3 | 2.138    | 5,435.3         | -39.74                 |
| 18.   | Michigan Public 4 Year Colleges (F.T.E.) (196,751)   | -9,206.5 | .073     | 5,156.3         | -42.82                 |
| 19.   | Mott C.C. (5,090)                                    | -2,663.9 | 1.536    | 5,154.3         | -42.85                 |
| 20.   | Henry Ford C.C. (11,153)                             | -4,108.4 | 1.529    | 12,944.5        | 43.52                  |
| 21.   | United State/Gross National Product (2,327.4)        | -2,694.5 | 6.734    | 12,978.2        | 43.90                  |
| 22.   | Grand Rapids J.C. (7,203)                            | -8,195.6 | 2.980    | 13,269.3        | 47.13                  |

# Forecasts of the 1979 Lansing Community College Fulltime Equated Student Enrollment Calculation Method: Multiple Correlation and Regression Analysis (formula: $Y = a+b_1x_1+b_2x_2 + \cdots + b_nx_n$ )

|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1979 Forecast | Percentage<br>of Error |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------|
| Run                                          | <u>I</u> <b>a</b> = -1396.353                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,424.894     | -62.02                 |
| X1<br>X2<br>X3<br>X4<br>X5<br>X6<br>X7<br>X8 | United States/Gross National Product (2327.4) (b=1.499)<br>Michigan Public Community College Enrollment (111,564) (b=.067)<br>Consumers Price Index (219.4) (b=24,743)<br>Grand Rapids Junior College Enrollment (7,203) (b=345)<br>Lansing Community College Tuition (resident) (11.00) (b=-260.367)<br>Tri-County Census Data (18-30) (49,153) (b=.16)<br>Michigan Total Higher Education Enrollment (361,492) (b=.000)<br>Civilian Labor Force (253,000) (b=036) |               |                        |
| Run                                          | a = 1321.161                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13,283.752    | 47.28                  |
| X1<br>X2<br>X3<br>X4<br>X5<br>X6             | United States Gross/National Product (2,327.4) (b=4.515)<br>Michigan Public Community College Enrollment (111,564) (b=.248)<br>Consumers Price Index (219.4) (b=-37.518)<br>Grand Rapids Junior College (7,203) (b=-0.738)<br>Michigan Independent College Enrollment (53,177) (b=-0.013)<br>Lansing Community College Tuition (resident) (11.00) (b=114.105)                                                                                                       | -             |                        |

65

X7 Tri-County Census Data (18-30) (49,153) (b=-0.009)

Table 4.12 (cont'd.)

•.

.

•

.

| X9                                           | Delta College (5,516) (b=-3.158)<br>Schoolcraft College (3,794) (b=0.790)<br>Michigan Total Higher Education Enrollment (361,492) (b=004)                                                                                                                                                                                                                                                                                                                                                                                                                   | 1979 Forecast | Percentage<br>of Error |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------|
| X11                                          | Macomb Community College (12,167) (b=-0.097)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                        |
| Run                                          | <u>III</u> a = 2101.647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55,217.189    | 512.23                 |
| X2<br>X3<br>X4<br>X5<br>X6<br>X7<br>X8<br>X9 | United States/Gross National Product $(2,327.4)$ (b=4.046)<br>Michigan Public Community College Enrollment (111,564) (b=.210)<br>Consumers Price Index (219.4) (b=-29.956)<br>Grand Rapids Junior College (7,203) (b=912)<br>Michigan Independent College Enrollment (53,177) (b=.135)<br>Lansing Community College Tuition (resident) (11.00) (b=250.994)<br>Tri-County Census Data (18-30) (49,153) (b=015)<br>Delta College (5,516) (b=689)<br>Schoolcraft College (3,794) (b=-1.066)<br>Michigan Total Higher Education Enrollment (361,492) (b=-0.023) |               |                        |
| Run                                          | iv a = 1082.792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24,063.653    | 166.81                 |
| X2<br>X3<br>X4<br>X5<br>X6<br>X7             | Grand Rapids Junior College (7,203) (b=683)<br>Michigan Independent College Enrollment (53,177) (b=035)<br>Lansing Community College Tuition (resident) (11.00) (b=77.269)<br>Tri-County Census Data (18-30) (49,153) (b=011)<br>Delta College (5,516) (b=-3.342)                                                                                                                                                                                                                                                                                           |               |                        |

Table 4.12 (cont'd.)

|                                              | - <u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                     | 979 Forecast | Percentage<br>of Error |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------|
| Run                                          | <u>v</u> a = 1744.461                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,535.296    | -60.80                 |
| X1<br>X2<br>X3<br>X4<br>X5<br>X6<br>X7<br>X8 | United States/Gross National Product $(2,327.4)$ (b=5.177)<br>Michigan Public Community College Enrollment (111,564) (b=.229)<br>Consumers Price Index (219.4) (b=-41.160)<br>Grand Rapids Junior College (7,203) (=735)<br>Michigan Independent College Enrollment (53,177) (b=276)<br>Lansing Community College Tuition (resident) (11.00) (b=-20.983)<br>Tri-County Census Data (18-30) (49,153) (b=019)<br>Delta College (5,516) (b=2.388) | ·            |                        |
| Run                                          | <u>VI</u> $a = -2100.6848$                                                                                                                                                                                                                                                                                                                                                                                                                     | 9,074.160    | .61                    |
| X1<br>X2<br>X3<br>X4<br>X5<br>X6             | United States/Gross National Product (2,327.4) (b=1.184)<br>Michigan Public Community College Enrollment (111,564) (b=.074)<br>Consumers Price Index (219.4) (b=37.124)<br>Grand Rapids Junior College (7,203) (b=.412)<br>Michigan Independent College Enrollment (53,177) (b=.002)<br>Lansing Community College Tuition (resident) (11.00) (b=-329.961)                                                                                      |              |                        |

٠

Xo Lansing Community College Tuition (resident) (11.00) (b=-329.961) X7 Tri-County Census Data (18-30) (49,153) (b=-.026)

# A Summary of the Results of the Application of the Selected Calculation Methods Forecasts of Lansing Community College Fulltime Equated Student Enrollment

| Calculation Method                     | 1979 Forecast                         | Percentage of Error |
|----------------------------------------|---------------------------------------|---------------------|
| I. Simple Average (Table 4.1)          |                                       |                     |
| 1. Simple Average $(N = 22)$           | 3,836                                 | -59.6               |
| II. Moving Average (Table 4.2)         |                                       |                     |
| 1. 1978 $(N = 1)$                      | 8,048                                 | -10.7               |
| 2. 1977–78 (N = 2)                     | 8,399                                 | - 6.8               |
| 3. 1976–78 $(N = 3)$                   | 8,399                                 | - 6.8               |
| 4. 1975–78 $(N = 4)$                   | 8,388                                 | - 6.9               |
| 5. 1974–78 $(N = 5)$                   | 8,050                                 | -10.7               |
| 6. 1973–78 (N = 6)                     | 7,597                                 | -15.7               |
| 7. 1972–78 (N = 7)                     | 7,177                                 | -20.4               |
| 8. 1971–78 $(N = 8)$                   | 6,834                                 | <b>-24.2</b>        |
| 9. 1970–78 $(N = 9)$                   | 6,546                                 | -27.4               |
| 10. 1969–78 (N = 10)                   | 6,293                                 | -30.2               |
| III. Double Moving Average (Table 4.3) | · · · · · · · · · · · · · · · · · · · |                     |
| 1. Double Moving Average               | 9,911                                 | 9.9                 |
| IV. Exponential Smoothing (Table 4.4)  |                                       |                     |
| 1. $\alpha = .1$                       | 6,003                                 | -33.4               |
| 2. $\alpha = .5$                       | 8,173                                 | - 9.3               |
| 3. $\alpha = .9$                       | 8,115                                 | -10.0               |

# Table 4.13 (cont'd.)

.

.

.

|      | Calculation Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1979 Forecast                                                                                                                                        | Percentage of Error                                                                                                                                  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| ۷.   | Double Exponential Smoothing (Table 4.5)<br>1. $\alpha = .1$<br>2. $\alpha = .5$<br>3. $\alpha = .9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,363<br>8,631<br>7,555                                                                                                                              | -18.3<br>- 4.3<br>-16.2                                                                                                                              |
| VI.  | <ul> <li>Ratio Method/Tri-County Census Data</li> <li>1. 18 - 20 Year Olds (Table 4.6)</li> <li>2. 21 - 25 Year Olds (Table 4.7)</li> <li>3. 26 - 30 Year Olds (Table 4.8)</li> <li>4. 18 - 30 Year Olds (Table 4.9)</li> <li>5. Total Population (Table 4.10)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8,975<br>9,122<br>8,485<br>8,899<br>8,677                                                                                                            | - 0.4<br>1.1<br>- 5.9<br>- 1.3<br>- 3.8                                                                                                              |
| VII. | <ul> <li>Simple Correlation and Regression Analysis (Table 4.11)</li> <li>1. Consumers Price Index</li> <li>2. Consumers Price Index - Minus 1 Year</li> <li>3. Consumers Price Index - Minus 2 Years</li> <li>4. Delta College</li> <li>5. Grand Rapids Junior College</li> <li>6. Henry Ford Community College</li> <li>7. Lansing Community College Area/High School Graduates</li> <li>8. Lansing Community College Fulltime Enrollment</li> <li>10. Lansing Community College Headcount</li> <li>11. Lansing Community College Parttime Enrollment</li> <li>12. Macomb County Connunity College Enrollment</li> <li>13. Michigan Independent Colleges Enrollment</li> <li>14. Michigan Public 4 Year Colleges (F.T.E.)</li> <li>16. Michigan Public 4 Year Colleges (Headcount) Enrollment</li> </ul> | 12,114<br>10,728<br>10,743<br>6,973<br>13,269<br>12,944<br>7,763<br>5,7,748<br>7,839<br>9,934<br>10,427<br>7,235<br>8,930<br>8,066<br>5,156<br>7,491 | 34.32<br>18.95<br>19.11<br>-22.68<br>47.13<br>43.52<br>-13.92<br>-14.09<br>-13.08<br>10.15<br>15.61<br>-19.77<br>-0.98<br>-10.56<br>-42.82<br>-16.94 |

.

# Table 4.13 (cont'd.)

| Calculation Method                                              | 1979 Forecast | Percentage of Error |
|-----------------------------------------------------------------|---------------|---------------------|
| 17. Michigan State University Enrollment                        | 6,072         | -32.68              |
| 18. Michigan Total Higher Education Enrollment                  | 6,647         | -26.30              |
| 19. Mott Community College                                      | 5,154         | -42.85              |
| 20. Oakland Community College                                   | 6,870         | -23.82              |
| 21. Schoolcraft Community College                               | 5,435         | -39.74              |
| 22. United States/Gross National Product                        | 12,978        | 43.90               |
| VIII. Multiple Correlation and Regression Analysis (Table 4.12) |               |                     |
| 1. Run I                                                        | 3,424         | -62.0               |
| 2. Run II                                                       | 13,283        | 47.2                |
| 3. Run III                                                      | 55,217        | 512.2               |
| 4. Run IV                                                       | 24,063        | 166.8               |
| 5. Run V                                                        | 3,535         | -60.8               |
| 6. Run VI                                                       | 9,074         | 0.6                 |

•

.

.

It should be noted that the simple and multiple correlation and regression analysis calculation methods were the only two statistical models, and thus it is possible to make statistical statements about the accuracy and significance of these regressions. The independent variables that were included in the forecasting of the 1979 fulltime equated student enrollment at Lansing Community College survived the following statistical evaluations:

1. F Statistic Test

A. Simple Correlation and Regression Analysis (Table 4.14)

B. Multiple Correlation and Regression Analysis (Table 4.15)

2. Coefficient of Determination (Table 4.16)

3. Correlation Coefficient (Table 4.17)

4. Correlation of Coefficient/Ho: p = 0

A. Simple Correlation and Regression Analysis (Table 4.18)

B. Multiple Correlation and Regression Analysis (Table 4.19)
In order to execute the two formulae, Y = a + bx and Y = a + b,
x, + . . . b<sub>n</sub>x<sub>n</sub> it was necessary to extract both the a and b from
each of the simple and multiple correlation and regression analysis
program runs. "Mini-Regression: A Small Computer Program for Performing Multiple Regression-Analysis" from Mini-Tab was the program
that produced the bulk of this study's statistical data and it was
this program from which a and b were extracted.

Inasmuch as the possibility of a miscalculation existed a cross check was conducted to verify the value of each a and b. The cross check of each linear regression (only the simple correlation and regression) was conducted. Using Texas Instruments 59 Program:

### Results of the F Statistic Test\* On Selected Independent Variables In the Simple Correlation and Regression Analysis

|                                                                                   |                    |            | 95% Confidence |
|-----------------------------------------------------------------------------------|--------------------|------------|----------------|
|                                                                                   |                    | Degrees of | Level          |
| Independent Variable                                                              | <u>F Statistic</u> | Freedom    | Accept/Reject  |
| Lansing Community College Area/High School Graduates                              | 1.75               | 6          | Reject         |
| Lansing Community College District/High School Graduates                          | 0.34               | 6          | Reject         |
| Lansing Community College Enrollment (Headcount)                                  | 1,004.13           | 21         | Accept         |
| Lansing Community College Enrollment (Parttime)                                   | 334.22             | <b>2</b> 1 | Accept         |
| Lansing Community College Enrollment (Fulltime)                                   | 885.46             | 21         | Accept         |
| Tri-County Census Data (18 - 30 Year Olds) Male                                   | 56.16              | 8          | Accept         |
| Tri-County Census Data (18 - 30 Year Olds) Female                                 | 58.36              | 8          | Accept         |
| Tri-County Census Data (18 - 20 Year Olds)                                        | 58.73              | · <b>8</b> | Accept         |
| Tri-County Census Data (21 - 25 Year Olds)                                        | 59.73              | 8          | Accept         |
| Tri-County Census Data (26 – 30 Year Olds)                                        | 58,87              | 8          | Accept         |
| Tri-County Census Data (18 - 30 Year Olds)                                        | 73.76              | 8          | Accept         |
| Civilian Labor Force (Clinton-Eaton-Ingham-Ionia)                                 | 25.98              | 8          | Accept         |
| Number of Unemployed (Clinton-Eaton-Ingham-Ionia)                                 | 10.39              | 8          | Accept         |
| Unemployment Rate (Clinton-Faton-Ingham-Ionia)                                    | 2.92               | 8          | Reject         |
| Lansing Community College Tuition (resident)                                      | 211.11             | 21         | Accept         |
| Lansing Community College Tuition (non-resident)                                  | 285.31             | 21         | Accept         |
| Lansing Community College-Division of Arts & Sciences                             | 51.04              | 8          | Accept         |
| Lansing Community College-Division of Student Personnel Serv                      | ices               |            | -              |
| (Total Credits)                                                                   | 38.54              | 8          | Accept         |
| Lansing Community College-Division of Technical Health<br>Careers (Total Credits) | 582,55             | 8          | Accept         |

| Table 4.14 (cont'd.                                        | Degrees of  | 95% Confidence<br>Level |               |
|------------------------------------------------------------|-------------|-------------------------|---------------|
| Independent Variable                                       | F Statistic | Freedom                 | Accept/Reject |
| Lansing Community College-Division of Business             | 580,98      | 8                       | Accept        |
| Lansing Community College-Division of Learning Resources   | 896.88      | 8                       | Accept        |
| Lansing Community College Tuition (out of state)           | 39.05       | 21                      | Accept        |
| Michigan State University (FYES)                           | 14.38       | 9                       | Accept        |
| Michigan State University (Headcount)                      | 0.02        | 14                      | Reject        |
| Consumers Price Index (all items)                          | 259.07      | 20                      | Accept        |
| Consumers Price Index (all items) minus 1 year             | 202.50      | 21                      | Accept        |
| Consumers Price Index (all items) minus 2 years            | 165.59      | 21                      | Accept        |
| Delta College Enrollment                                   | 105.69      | 12                      | Accept        |
| Grand Rapids Junior College Enrollment                     | 153.41      | 12                      | Accept        |
| Henry Ford Community College Enrollment (fulltime equated) | 84.07       | 12                      | Accept        |
| Schoolcraft Community College Enrollment                   | 104.88      | 12                      | Accept        |
| Oakland Community College Enrollment                       | 25.51       | 12                      | Accept        |
| Mott Community College Enrollment                          | 9.08        | 12                      | Accept        |
| Macomb Community College Enrollment                        | 89.75       | 12                      | Accept        |
| United States Gross National Product (1976 dollars)        | 932.83      | 18                      | Accept        |
| Michigan Public Four Year Colleges Enrollment (headcount)  | 57.74       | 14                      | Accept        |
| Michigan Total Higher Education Enrollment (FYES/FTE)      | 66,85       | 8                       | Accept        |
| Michigan Public Community Colleges Enrollment (FYES/FTE)   | 197.11      | 12                      | Accept        |
| Michigan Independent Colleges Enrollment (FYES/FTE)        | 198.52      | 9                       | Accept        |
| Michigan Public Four Year Colleges Enrollment (FTE)        | 25,91       | 9                       | Accept        |

\*This test indicates the significance (or lack of significance) of the total regression equation at the 95% confidence level.

# Results of the F Statistic Test\* On Selected Runs In the Multiple Correlation and Regression Analysis

| Run                                                                                                                                                                                                                                                                                                    | F Statistic | Degrees of<br>Freedom | 95% Confidence<br>Level<br>Accept/Reject |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|------------------------------------------|
| Ran I                                                                                                                                                                                                                                                                                                  | 221.47      | 14                    | Accept                                   |
| United States Gross National Product<br>Michigan Public Community College Enrollment<br>Consumers Price Index<br>Grand Rapids Junior College<br>Lansing Community College Tuition (resident)<br>Tri-County Census Data (18 - 30)<br>Michigan Total Higher Education Enrollment<br>Civilian Labor Force |             | ·                     |                                          |
| Run II                                                                                                                                                                                                                                                                                                 | 253.64      | 11                    | Accept                                   |
| United States Gross National Product<br>Michigan Public Community College Enrollment<br>Consumers Price Index<br>Grand Rapids Junior College<br>Michigan Independent College Enrollment<br>Lansing Community College Tuition (resident)<br>Tri-County Census Data (18 - 30)<br>Delta College           |             |                       |                                          |

74

÷

Table 4.15 (cont'd.)

| Run                                                                                                                                                                                                                                                                                                                                                               | <u>F Statistic</u> | Degrees of<br>Freedom | 95% Confidence<br>Level<br>Accept/Reject |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|------------------------------------------|
| Schoolcraft College<br>Michigan Total Higher Education Enrollment<br>Macomb Community College                                                                                                                                                                                                                                                                     |                    |                       |                                          |
| Run III                                                                                                                                                                                                                                                                                                                                                           | 174.45             | 12                    | Accept                                   |
| United States Gross National Product<br>Michigan Public Community College Enrollment<br>Consumers Price Index<br>Grand Rapids Junior College<br>Michigan Independent College Enrollment<br>Lansing Community College Tuition (resident)<br>Tri-County Census Data (18 - 30)<br>Delta College<br>Schoolcraft College<br>Michigan Total Higher Education Enrollment |                    |                       |                                          |
| Run IV                                                                                                                                                                                                                                                                                                                                                            | 366.94             | 13                    | Accept                                   |
| United States Gross National Product<br>Michigan Public Community College Enrollment<br>Consumers Price Index<br>Grand Rapids Junior College<br>Michigan Independent College Enrollment<br>Lansing Community College Tuition (resident)<br>Tri-County Census Data (18 - 30)<br>Delta College<br>Schoolcraft College                                               |                    |                       |                                          |

# Table 4.15 (cont'd.)

| Run                                                                                                                                                                                                                                                                                          | <u>F Statistic</u> | Degrees of<br>Freedom | 95% Confidence<br>Level<br>Accept/Reject |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|------------------------------------------|
| Run V                                                                                                                                                                                                                                                                                        | 354,24             | 14                    | Accept                                   |
| United States Gross National Product<br>Michigan Public Community College Enrollment<br>Comsumers Price Index<br>Grand Rapids Junior College<br>Michigan Independent College Enrollment<br>Lansing Community College Tuition (resident)<br>Tri-County Census Data (18 - 30)<br>Delta College |                    |                       |                                          |
| Run VI                                                                                                                                                                                                                                                                                       | 255,91             | 15                    | Accept                                   |
| United States Gross National Product<br>Michigan Public Community College Enrollment<br>Consumers Price Index<br>Grand Rapids Junior College<br>Michigan Independent College Enrollment<br>Lansing Community College Tuition (resident)<br>Tri-County Census Data (18 - 30)                  |                    |                       |                                          |

2

.

### Independent Variables Ranked By Resulting Coefficient of Determination from the Simple Correlation and Regression Analysis

| Independent Variable vs Lansing Community College (FTE)          | Coefficient of Determination |
|------------------------------------------------------------------|------------------------------|
| Lansing Community College - Division of Learning Resources       | .991                         |
| Lansing Community College - Division of Technical Health Careers | .986                         |
| Lansing Community College - Division of Business                 | .986                         |
| United States Gross National Product                             | .981                         |
| Lansing Community College Headcount Enrollment                   | .980                         |
| Lansing Community College Fulltime Enrollment                    | .977                         |
| Michigan Public Community Colleges Enrollment                    | .943                         |
| Lansing Community College Parttime Enrollment                    | .941                         |
| Lansing Community College Tuition (non-resident)                 | .931                         |
| Consumers Price Index (all items)                                | .928                         |
| Grand Rapids Junior College                                      | .927                         |
| Michigan Independent Colleges Enrollment                         | .923                         |

# Table 4.16 (cont'd.)

.

١

| Independent Variable vs Lansing Community College (FTE) | Coefficient of Determination |
|---------------------------------------------------------|------------------------------|
| Lansing Community College (resident)                    | .910                         |
| Consumers Price Index (all items) minus 1 year          | .906                         |
| Tri-County Census Data (18 - 30)                        | .902                         |
| Delta College                                           | .898                         |
| Schoolcraft College                                     | .897                         |
| Michigan Total Higher Education Enrollment              | .893                         |
| Consumers Price Index (all items) minus 2 years         | .887                         |
| Macomb County Community College                         | .882                         |
| Tri-County Census Data (18 - 20)                        | .880                         |
| Tri-County Census Data (21 - 25)                        | .880                         |
| Tri-County Census Data (25 - 30)                        | .880                         |
| Tri-County Census Data (18 - 30)                        | .879                         |
| Henry Ford Community College                            | .875                         |
| Tri County Census Data (18 - 30) male                   | .875                         |
| Lansing Community College - Division of Arts & Sciences | .865                         |

8

.

.

# Table 4.16 (cont'd.)

| Independent Variable vs Lansing Community College (FTE)            | Coefficient of Determination |
|--------------------------------------------------------------------|------------------------------|
| Iansing Community College - Division of Student Personnel Services | .828                         |
| Michigan Public Four Year Colleges Enrollment                      | .805                         |
| Civilian Work Force                                                | .765                         |
| Michigan Public Four Year Colleges Enrollment (FTE)                | .742                         |
| Oakland County Community College                                   | .680                         |
| Lansing Community College Tuition (out of state)                   | .650                         |
| Michigan State University (FYES)                                   | .615                         |
| Number of Unemployed                                               | .565                         |
| Mott Community College                                             | .431                         |
| Unemployment Rate                                                  | .270                         |
| Lansing Community College Area/High School Graduates               | .226                         |
| Lansing Community College District/High School Graduates           | .054                         |
| Michigan State University Enrollment (Headcount)                   | .001                         |

# Independent Variable Ranked By Correlation Coefficient from Simple Correlation and Regression Analysis

| Independent Variable vs Lansing Community College (FTE)          | Correlation Coefficient |
|------------------------------------------------------------------|-------------------------|
| Lansing Community College - Division of Learning Resources       | .996                    |
| United States Gross National Product                             | .993                    |
| Lansing Community College Headcount Enrollment                   | .993                    |
| Lansing Community College - Division of Business                 | .990                    |
| Lansing Community College - Division of Technical Health Careers | .990                    |
| Lansing Community College Fulltime Enrollment                    | .998                    |
| Michigan Public Community Colleges Enrollment                    | .971                    |
| Lansing Community College Tuition (non-resident)                 | .970                    |
| Consumers Price Index (all items)                                | .965                    |
| Grand Rapids Junior College                                      | .964                    |
| Michigan Independent Colleges Enrollment                         | .963                    |
| Lansing Community Colleges Parttime Enrollment                   | .961                    |

| Table | 4.17 | (cont'd. | 3 |
|-------|------|----------|---|
| TUDIC |      | toone up |   |

•

.

.

•

| Independent Variable vs Lansing Community College (FTE) | Correlation Coefficient |    |
|---------------------------------------------------------|-------------------------|----|
| Lansing Community College Tuition (resident)            | .954                    |    |
| Consumers Price Index (all items) minus 1 year          | .952                    |    |
| Tri-County Census Data (18 - 30)                        | .950                    |    |
| Delta College                                           | .948                    |    |
| Schoolcraft College                                     | .947                    |    |
| Michigan Total Higher Education Enrollment              | .945                    |    |
| Tri-County Census Data (18 - 30) female                 | .942                    | 83 |
| Tri-County Census Data (18 - 20)                        | .939                    | -  |
| Tri-County Census Data (21 - 25)                        | .938                    |    |
| Tri-County Census Data (26 - 30)                        | .938                    |    |
| Macomb County Community College                         | .938                    |    |
| Consumers Price Index (all items) minus 2 years         | .938                    |    |
| Henry Ford Community College                            | .936                    |    |
| Tri-County Census Data (18 - 30) male                   | .935                    |    |
| Lansing Community College - Division of Arts & Sciences | .930                    |    |

•

# Table 4.17 (cont'd.)

.

| Independent Variable vs Lansing Community College (FTE)            | Correlation Coefficient |
|--------------------------------------------------------------------|-------------------------|
| Lansing Community College - Division of Student Personnel Services | .910                    |
| Michigan Public Four Year Colleges Enrollment                      | .897                    |
| Civilian Work Force                                                | .874                    |
| Michigan Public Four Year Colleges Enrollment (FTE)                | .862                    |
| Oakland County Community College                                   | .825                    |
| Lansing Community College Tuition (out of state)                   | .806                    |
| Michigan State University (FYES)                                   | .784                    |
| Number of Unemployed                                               | .752                    |
| Mott Community College                                             | .656                    |
| Unemployment Rate                                                  | . 520                   |
| Lansing Community College Area/High School Graduates               | .475                    |
| Lansing Community College District/High School Graduates           | 231                     |
| Michigan State University Enrollment (Headcount)                   | 035                     |

## Simple Correlation and Regression Analysis Values of the Correlation Coefficient Required for 95% Level of Significance When Ho: P = 0 Items (x) Versus Lansing Community College Fulltime Equated Enrollment (y)

|     | <u>Item (x)</u>                              | .95%<br>Confidence Interval | Degrees of<br>Freedom | Coefficient of<br>Correlation Score |
|-----|----------------------------------------------|-----------------------------|-----------------------|-------------------------------------|
| 1.  | Lansing Community College Headcount          | .413                        | 21                    | .990                                |
| 2.  | United State/Gross National Product          | .444                        | 18 .                  | .990                                |
| 3.  | Lansing Community College Fulltime Enrollmen | t .413                      | 21                    | .988                                |
| 4.  | Michigan Public Community College Enrollment | .532                        | 12                    | .971                                |
| 5.  | Lansing Community College Parttime Enrollmen | t <b>.413</b>               | 21                    | .970                                |
| 6.  | Consumers Price Index                        | .423                        | 20                    | .964                                |
| 7.  | Grand Rapids J. C.                           | .532                        | 12                    | .963                                |
| 8.  | Michigan Independent Colleges Enrollment     | .602                        | , <b>9</b>            | .961                                |
| 9.  | Consumers Price Index-Minus 1 Year           | .413                        | 21                    | .952                                |
| 10. | Delta College                                | .532                        | 12                    | .948                                |
| 11. | Schoolcraft C. C.                            | .532                        | 12                    | .947                                |

# Table 4.18 (cont'd.)

•

| 12. | Michigan Total Higher Education Enrollment                  | .632 | 8    | .945  |
|-----|-------------------------------------------------------------|------|------|-------|
| 13. | Consumers Price Index-Minus 2 Years                         | .413 | 21   | .942  |
| 14. | Macomb C. C. C.                                             | .532 | 12   | .939  |
| 15, | Henry Ford C. C.                                            | .532 | . 12 | .935  |
| 16. | Michigan Public 4 Year Colleges                             | .497 | 14   | .897  |
| 17. | Michigan Public 4 Year Colleges Enrollment                  | .602 | 9    | .862  |
| 18. | Oakland C. C.                                               | .532 | 12   | .825  |
| 19. | Mott C. C.                                                  | .532 | 12   | .656  |
| 20. | Lansing Community College Area/High School<br>Graduates     | .707 | 6    | .475* |
| 21. | Lansing Community College District/High<br>School Graduates | .707 | 6    | 231*  |
| 22. | Michigan State University Enrollment                        | .497 | 14   | 035*  |

\*Falls outside the 95% confidence interval

.

.

### Multiple Correlation and Regression Analysis Values of Correlation Coefficient Required for 95% Level of Significance When Ho: p = o

|         |       | 95%                 | Degrees of | Coefficient of    |
|---------|-------|---------------------|------------|-------------------|
|         | Runs* | Confidence Interval | Freedom    | Correlation Score |
| Run I   |       | .497                | 14         | .996              |
| Run II  |       | ,553                | 11         | .998              |
| Run III |       | .532                | 12         | .997              |
| Run IV  |       | .514                | 13         | .998 8            |
| Run V   |       | .497                | 14         | .998              |
| Run VI  |       | .482                | 15         | .996              |

\*See Table 4.15 for more detailed information relative to a specific multiple correlation and regression analysis run.

{(2nd) (Pgm) 01, (SBR) (CLR), (RST) and enter data} the a and b of the applied formulae, Y = a + bx and Y = a + b, x,  $+ b_n x_n$ , were deemed to be acceptable.

<u>Alternate hypothesis  $H_{1a}$ </u>: The calculation methods that employ the mathematical functions of simple and multiple regression produce more accurate forecasts than the other applied calculation methods in this study.

Table 4.20 presents a ranking of the applied calculation methods of this study based solely on the percentage of error in forecasting the 1979 fulltime equated student enrollment at Lansing Community College. Based on the information reflected in Table 4.20 alternate hypothesis  $H_{1a}$  must be rejected. The most accurate forecast was not the result of a mathematical function calculation method. The least accurate forecast was the product of a calculation method of the mathematical function. The range in the percentage of error resulting from the mathematical function based calculation methods was 547.2. The above three facts alone dictate the rejection of the alternate hypothesis  $H_{1a}$ .

<u>Alternate hypothesis H<sub>1b</sub></u>: The influencing factors (independent variables) that possess the highest correlation coefficient measured against the dependent variable) will produce the most accurate student enrollment forecast.

The test of this hypothesis is presented in Table 4.21. Table 4.21 exhibits a ranking of the independent variables. This ranking is based on the correlation coefficient resulting from the simple correlation and regression analysis of the independent variable versus the Lansing Community College fulltime equated student

# A Ranking of the Lansing Community College Fulltime Equated Student Enrollment Forecast By Calculation Method Based on the Percentage of Error

|            | Coloulation Nothod                                                                                                                                                                    | Percentage<br>Of |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|            | Calculation Method                                                                                                                                                                    | Error            |
| 1.         | Ratio Method/Tri-County Census Data - 18 - 20 Year Olds                                                                                                                               | -0.4             |
| 2,         | Multiple Correlation and Regression Analysis - Run VI                                                                                                                                 | 0.6              |
| 3.         | Simple Correlation and Regression Analysis - Michigan Independent Colleges Enrollment                                                                                                 | -0.9             |
| 4.         | Ratio Method/Tri-County Census Data - 21 - 25 Year Olds                                                                                                                               | 1.1              |
| 5.         | Ratio Method/Tri-County Census Data - 18 - 30 Year Olds                                                                                                                               | -1.3             |
| 6.         | Ratio Method/Tri-County Census Data - Total Population                                                                                                                                | -3.8             |
| 7.         | Double Exponential Smoothing $-\alpha = .5$                                                                                                                                           | -4.3             |
| 8.         | Ratio Method/Tri-County Census Data - 26 - 30 Year Olds                                                                                                                               | -5.9             |
| 9.         | Moving Average $-1977-78$ (N = 2)                                                                                                                                                     | -6.8             |
|            | Moving Average $-1976-78$ (N = 3)                                                                                                                                                     | -6.8             |
| <u>1</u> . | Moving Average $-1975-78$ (N = 4)                                                                                                                                                     | -6.9             |
| 12.        | Exponential Smoothing $-\alpha = .5$                                                                                                                                                  | -9.3             |
| 13.        | Double Moving Average - Double Moving Average                                                                                                                                         | 9.9              |
| 14.        | Exponential Smoothing $-\alpha = .9$                                                                                                                                                  | -10.0            |
| 15.        | Simple Correlation and Regression Analysis - Lansing Community College Headcount                                                                                                      | 10.1             |
| 16.        | Simple Correlation and Regression Analysis - Michigan Public Community College Enrollment                                                                                             | 10.5             |
| .7.        | Moving Average $-1978$ (N = 1)                                                                                                                                                        | -10.7            |
| _          | Moving Average - $1974-78$ (N = 5)                                                                                                                                                    | -10.7            |
| .9.<br>20. | Simple Correlation and Regression Analysis - Lansing Community College Fulltime Enrollment<br>Simple Correlation and Regression Analysis - Lansing Community College Area/High School | -13.0            |
|            | Graduates                                                                                                                                                                             | -13.9            |

87

÷.

Table 4.20 (cont'd.)

|     |                                                                                             | Percentage  |
|-----|---------------------------------------------------------------------------------------------|-------------|
|     | Calculation Method                                                                          | of<br>Error |
|     |                                                                                             |             |
| 21. | Simple Correlation and Regression Analysis - Lansing Community College District/High School |             |
|     | Graduates                                                                                   | -14.0       |
| 22. | Simple Correlation and Regression Analysis - Lansing Community College Parttime Enrollment  | 15.6        |
| 23. | Moving Average $-1973-78$ (N = 6)                                                           | 15.7        |
| 24. | Double Exponential Smoothing $-\alpha = .9$                                                 | 16.2        |
| 25. | Simple Correlation and Regression Analysis - Michigan Public 4 Year Colleges (Headcount)    |             |
|     | Enrollment                                                                                  | 16.9        |
| 26. | Double Exponential Smoothing $-\alpha = .1$                                                 | -18.3       |
| 27. | Simple Correlation and Regression Analysis - Consumers Price Index - Minus 1 Year           | 18.9        |
| 28. | Simple Correlation and Regression Analysis - Consumers Price Index - Minus 2 Years          | 19.1        |
| 29. | Simple Correlation and Regression Analysis - Macomb County Community College                | -19.7       |
| 30. | Moving Avérage $-1972-78$ (N = 7)                                                           | -20.4       |
| 31. | Simple Correlation and Regression Analysis - Delta College                                  | -22.6       |
| 32. | Simple Correlation and Regression Analysis - Oakland Community College                      | -23.8       |
| 33. | Moving Average - $1971-78$ (N = 8)                                                          | -24.2       |
| 34. | Simple Correlation and Regression Analysis - Michigan Total Higher Education Enrollment     | -26.3       |
| 35. |                                                                                             | -27,4       |
| 36. | Moving Average $-1969-78$ (N = 10)                                                          | -30.2       |
| 37. | Simple Correlation and Regression Analysis - Michigan State                                 | -32.6       |
| 38. | Exponential Smoothing - $\alpha$ = .1                                                       | -33.4       |
| 39. | Simple Correlation and Regression Analysis - Consumers Price Index                          | 34.3        |
| 40. | Simple Correlation and Regression Analysis - Schoolcraft Community College                  | -39.7       |
| 41. | Simple Correlation and Regression Analysis - Michigan Public 4 Year Colleges (F.T.E.)       | -42.82      |
| 42. | Simple Correlation and Regression Analysis - Mott Community College                         | -42.85      |
| 43. | Simple Correlation and Regression Analysis - Henry Ford Community College                   | 43.5        |
| 44. | Simple Correlation and Regression Analysis - United States Gross National Product           | 43.9        |
| 45. | Simple Correlation and Regression Analysis - Grand Rapids Junior College                    | 47.1        |
| 46. | Multiple Correlation and Regression Analysis – Run II                                       | 47.2        |

.

٠

.

# Table 4.20 (cont'd.)

|     |                                                        | Percentage  |
|-----|--------------------------------------------------------|-------------|
|     | Calculation Method                                     | of<br>Error |
|     |                                                        |             |
| 47. | Simple Average - Simple Average                        | -59.6       |
| 48. | Multiple Correlation and Regression Analysis - Run V   | -60.8       |
| 49. | Multiple Correlation and Regression Analysis - Run I   | -62.0       |
| 50. | Multiple Correlation and Regression Analysis - Run IV  | 166.8       |
| 51. | Multiple Correlation and Regression Analysis - Run III | 512.2       |

# <sup>1</sup> Table 4.21

A Comparison of the Independent Variables' Correlation Coefficient Versus The 1979 Lansing Community College Fulltime Equated Student Enrollment Forecasting Accuracy (Percentage of Error)

|     | Independent Variable                          | Correlation Coefficient | Percentage of Error |
|-----|-----------------------------------------------|-------------------------|---------------------|
| 1.  | Lansing Community College Fulltime Enrollment | .998                    | -13.08              |
| 2.  | Lansing Community College Headcount           | .993                    | 10.15               |
|     | United States/Gross National Product          | ,993                    | 43,90               |
| 4.  | Michigan Public Community College Enrollment  | .971                    | -10.56              |
| 5.  | Consumers Price Index                         | ,965                    | 34.32               |
| 6.  | Grand Rapids Junior College                   | .964                    | 47.13               |
| 7.  | Michigan Independent Colleges Enrollment      | .963                    | - 0,98              |
| 8.  | Lansing Community College Parttime Enrollment | .961                    | 15.61               |
| 9.  | Consumers Price Index ~ Minus 1 Year          | .952                    | 18.95               |
| 10. | Delta College                                 | .948                    | -22.68              |

| Table | 4.21 | (cont' | 'd. | ) |
|-------|------|--------|-----|---|
|-------|------|--------|-----|---|

|             | Independent Variable                                 | Correlation Coefficient | Percentage of Error |
|-------------|------------------------------------------------------|-------------------------|---------------------|
| 11.         | Schoolcraft Community College                        | .947                    | -39.74              |
| 12.         | Michigan Total Higher Education Enrollment           | .945                    | -26.30              |
| 13.         | Consumers Price Index - Minus 2 Years                | .938                    | 19.11               |
|             | Macomb County Community College                      | .938                    | -19.77              |
| 15.         | Henry Ford Community College                         | .936                    | 43.52               |
| 16.         | Michigan 4 Year Colleges (Headcount) Enrollment      | .897                    | - 7.32              |
| 17.         | Michigan Public 4 Year Colleges (F.T.E.)             | .862                    | -42.82              |
| 18.         | Oakland Community College                            | .825                    | -23.82              |
| 19.         | Mott Community College                               | .656                    | -42.85              |
| 20.         | Lansing Community College Area/High School Graduates | .475                    | -13.92              |
| <b>2</b> 1. | Lansing Community College District/High School Gradu | uates231                | -14.0 <del>9</del>  |
| 22.         | Michigan State University Enrollment                 | 035                     | -32.68              |

enrollment. The acceptance of alternate hypothesis  $H_{1b}$  then is dependent upon the percentage of error column in Table 4.21 reflecting a descending percentage of error trend. As a consequence of the fact that there is not even a hint of descending values in the percentage of error column, alternate hypothesis  $H_{1b}$  is rejected.

<u>Alternate hypothesis  $H_{1c}$ </u>: The model that most accurately forecast the 1979 fulltime equated student enrollment at Lansing Community College will forecast the 1980 enrollment within an equal percentage of error.

Table 4.13 reveals that the model that produced the most accurate forecast of the 1979 Lansing Community College fulltime equated student enrollment was the Ratio Method/Tri-County Census Data (18 - 20 Year Olds). The percentage of error was -000.48785. The acceptance of alternate hypothesis  $H_{1c}$  requires that a forecast of the 1980 Lansing Community College fulltime equated student enrollment, applying the Ratio Method/Tri-County Census Data (18 - 20 Year Olds) produce a percentage of error figure within  $\pm 000.48785$ .

The forecast of the Lansing Community College 1980 fulltime equated student enrollment presented in Table 4.22 produced a percentage of error equal to 0.37. This figure dictates that the alternate hypothesis  $H_{1c}$  be accepted.

Table 4.23 presents a summary of the results of the four hypotheses tested in this study.

| <u></u>       |                                      |                         |                             |
|---------------|--------------------------------------|-------------------------|-----------------------------|
| Year          | Census Data<br><u>18 — 20 Year C</u> |                         | Percentage<br>of Population |
| 1 <b>97</b> 0 | 34,625                               | 4,244                   | .122                        |
| 1971          | 36,239                               | 4,435                   | .122                        |
| 1972          | 37,853                               | 4,654                   | .122                        |
| 1 <b>97</b> 3 | 39,467                               | 5,334                   | .135                        |
| 1974          | 41,082                               | 6,699                   | .163                        |
| 1975          | 42,696                               | 8,357                   | .195                        |
| 1976          | 4,310                                | 8,399                   | .189                        |
| 1977          | 45,925                               | 8,750                   | .190                        |
| 1978          | 47,539                               | 8,048                   | .169                        |
| 1979          | 49,153                               | 9,019                   | .183                        |
| 1980          | 50,767 1                             | .980 Forecast=9,168.52* | .1806**                     |

### Forecasting 1980 Fulltime Equated Enrollment Applying Tri-County Census Data (18 - 20 Year Olds) Calculation Method: Ratio Method

The 1980 Lansing Community College fulltime equated enrollment was 9134. The forecasted enrollment of 9,168.52 produces a percentage of error equal to .3779.

\*Forecast based on the ratio trend percentage multiplied by the projected population.

\*\*This percentage of population figure was calculated with the moving average method (1977-1978-1979/3).

•

.

# A Summary of the Results of the Tested Hypotheses in this Study

|                   | ан санана се                                 |        |
|-------------------|----------------------------------------------------------------------------------|--------|
| Hypoth            | nesis                                                                            | Result |
| Null:             | No difference will be found in the 1979 forecasting accuracy (Lansing Community  |        |
|                   | College fulltime equated student enrollment) of the selected calculation methods |        |
|                   | as measured by the percentage of error.                                          | Reject |
| H <sub>l</sub> a: | The calculation methods which employ the mathematical functions of simple and    |        |
|                   | multiple regression produce more accurate forecasts than the other applied       |        |
|                   | calculation methods in this study.                                               | Reject |
| H <sub>1</sub> b: | The influencing factors (independent variables) that possess the highest         |        |
|                   | correlation coefficient (measured against the dependent variable) will produce   |        |
|                   | the most accurate student enrollment forecast.                                   | Reject |
| H <sub>1</sub> c: | The model which most accurately forecast the 1979 fulltime equated student       |        |
|                   | enrollment at Lansing Community College will forecast the 1980 enrollment within |        |
|                   | an equal percentage of error.                                                    | Accept |

24

٠,

#### CHAPTER V

#### SUMMARY AND DISCUSSION

#### Summary

This study was designed to develop a useful student enrollment forecasting model for Lansing Community College. From the descriptive data collected hypotheses regarding the forecasting of student enrollment can be generated and subsequently tested by the Division of Student Personnel Services/Lansing Community College.

Eight calculation methods: simple average, moving average, double moving average, exponential smoothing, double exponential smoothing, ratio method, simple correlation and regression analysis, and multiple correlation and regression analysis, were selected to forecast the 1979 student enrollment at Lansing Community College. From these eight calculation methods fifty-one 1979 student enrollment forecasts were generated.

Each calculation method required at least one influencing factor to compute a student enrollment forecast. The calculation methods of simple average, moving average, double moving average, exponential smoothing, and double exponential smoothing required only the influencing factor of past Lansing Community College student enrollment data. The ratio method incorporated two influencing factors: past student enrollment and tri-county (Clinton, Eaton, and Ingham) census data. The final two calculation methods, simple and multiple correlation and regression analysis, produced forecasts through the application of twenty-two selected influencing factors/independent variables.

The resulting data from the simple correlation and regression analysis were statistically evaluated to screen the independent variables for application in the multiple correlation and regression analysis. The evaluation of the data from each of the forty independent variables tested included: ranking by correlation coefficient of determination, testing of Ho: P=O at 95% confidence level, F-Test, and subjective judgment.

The application of the multiple correlation and regression analysis in this study included six runs of separate combinations of test-determined independent variables. The six test-determined combinations were the result of the collective influence of the methods of evaluation listed in the above paragraph. The subsequent data produced by the six runs were then tested by the statistical evaluations of correlation coefficient, coefficient of determination, testing of Ho: P=0 at the 95% confidence level, and the F-Test.

Each of the fifty-one forecasts resulting from the eight listed calculation methods, and the selected influencing factors, was ranked by its accuracy in forecasting the Lansing Community College 1979 fulltime equated student enrollment. The ranking was based on the percentage of error of each forecast. The percentage of error was calculated by subtracting the forecasted fulltime equated student enrollment from the actual 1979 fulltime equated student enrollment and then dividing the difference by the actual 1979 fulltime equated student enrollment.

The calculation method that produced the most accurate forecast, based on the percentage of error, was the ratio method/18-20

year olds with a percentage of error of -0.4. This forecast was only slightly more accurate (by 0.2) than the 0.6 produced by Run Six of the multiple correlation and regression calculation method. The above fact reveals that the tested mathematical function methods did not produce a more accurate forecast than a non-mathematical function calculation method.

The range of the percentage of error produced by the eight calculation methods (fifty one scores) tested was 574.2. This indicates that the selection of a calculation method in forecasting student enrollment can produce diverse scores. It is important to realize that the selection of the most appropriate calculation method is extremely important in the development of a student enrollment forecasting model.

In addition, the influencing factors that produced the highest correlation coefficients did not produce a correspondingly high accuracy rate in forecasting student enrollment.

The major finding of the study was that the model that most accurately forecasted the 1979 fulltime equated student enrollment was able to forecast the 1980 student enrollment within an equal percentage of error. The most accurate model produced a -0.4 percentage of error in forecasting the 1979 fulltime equated student enrollment at Lansing Community College. The same model was used to forecast the 1980 enrollment. The resulting percentage of error was 0.37792.

#### Conclusions

1. Mathematical function calculation methods do not produce forecasts with lower percentages of error than the non-mathematical

97

function calculation methods.

- 2. Accuracy in forecasting student enrollment is significantly dependent upon the selected calculation method.
- 3. The percentages of error produced by the forecasts of the simple correlation and regression analysis calculation method were not proportionately reflected in the correlation coefficient they generated.
- 4. The percentage of error resulting from the most accurate calculation method applied to the 1979 student enrollment forecast produced a forecast with greater accuracy in 1980.

#### Discussion

Certainly the challenges of developing an accurate student enrollment forecasting model for Lansing Community College are worthy of exploration. It should be apparent to even the most uninvolved administrator, faculty member, or staff person that it is extremely advantageous for both the students affected and the college to know as nearly as possible the student enrollment to be expected in succeeding years.

#### Calculation Methods

There are numerous calculation methods that could be applied to student enrollment forecasting. The eight calculation methods selected for application in this study were determined to be most appropriate as a result of a review of the literature available on the subject of student enrollment forecasting. The appropriateness was determined by their forecasting postulates, projection techniques, and the type of data they required. In the literature a good deal is written explaining and evaluating various calculation methods, but few studies have applied more than one calculation method to the same set of data as was done in this study.

As an increased volume of research becomes available in the topic area of student forecasting studies which apply numerous calculation methods to the same data will emerge. This emerging data will then provide necessary information as to the calculation methods that are most efficiently applicable to specific student enrollment settings.

## Influencing Factors

Inasmuch as the actual influencing factors in the problem of accurately forecasting student enrollment are critical, it is of paramount importance that those factors be identified. The forty influencing factors evaluated in this study were not quantifiably labelled regarding their actual influence on the fulltime equated student enrollment at lansing Community College. The evaluation did reveal significantly high correlation coefficients that suggest the value of pursuing an actual influence coefficient, that is, cause and effect. The inability to more accurately forecast student enrollment from extremely high correlation coefficient scores suggest the possibility that there are more discriminating influencing factors than were included in this study.

#### Implications for Further Research

This study concludes that there is a difference in the forecasting accuracy of student enrollment as a result of the selected calculation method. Given this fact it is important that extensive research be conducted to refine the understanding of the strengths and weaknesses of tested calculation methods. The knowledge of a

99

calculation method's strengths and weaknesses would enable a forecaster to apply the calculation method whose characteristics are best matched to the character of the enrollment setting to be forecast.

Another conclusion reached in this study was that the calculation methods that employed the mathematical functions of simple and multiple regression do not produce the most accurate forecasts. The importance of this conclusion can be seen in the extreme complexity, greater clerical demands, and implied superiority of the simple and multiple regression calculation method as compared to the greater ease in the application of alternate calculation methods. Additional research could be applied to test this conclusion on a longitudinal basis or at a large number of institutions during the same forecast period. This kind of a study could produce a more definitive response to the question of the superiority of the mathematical function versus non-mathematical function calculation methods.

The importance of selecting the most discriminating influencing factor(s) for the right calculation method in the forecasting of student enrollment cannot be overstated. It is important to evaluate as many factors that potentially influence student enrollment as can be evaluated. Only those factors that influence student enrollment should be applied to a calculation method. Based on the results of this study it is apparent that a high correlation coefficient score is not sufficient to establish the discriminating power of a specific factor in the influentialness of student enrollment. Further research should be designed to specifically identify those factors that influence student enrollment.

Specific recommendations for further research include:

- 1. Pursue at all cost the identification of at least one influencing factor with a defined cause and effect ratio.
- 2. Investigate in great detail the effect of unemployment upon student enrollment.
- 3. Apply the ratio method (enrollment/18-20 year olds) to a number of comparable institutions to test its applicability value at other institutions.

### Hypotheses for Experimental Study

- A null hypothesis: No difference will be found in the 1980 through 1990 forecast accuracy (Lansing Community College fulltime equated student enrollment) of ten selected calculation methods as measured by the percentage of error.
- 2. A null hypothesis: No difference will be found in the 1980 forecasting accuracy (Lansing Community College and nineteen comparable community colleges) of ten selected calculation methods as measured by the percentage of error.
- 3. The independent variables that produce the most accurate student enrollment forecast using simple correlation and regression analysis data collectively will produce the most accurate student enrollment forecast using multiple correlation and regression analysis data.
- 4. The most influential factors in the forecasting of student enrollment will produce the most accurate forecast using simple correlation and regression analysis.

## Approach to the Future

Increasing fiscal pressure from local, state, and federal levels is placing great demands on higher education. Indeed, many institutions cannot survive these demands. Threats upon higher education in the form of such legislation as Michigan's 1980 Proposal D and local millage defeats must be met with responses emanating from as great a base of objective data as possible. Of course only one element of a necessary data base for effective higher education administration is represented by student enrollment forecasting data. A data base must include numerous compilations similar to the data presented in this study. This data base can be interpolated into information that will enable the fulfillment of the goals and objectives of an institution.

102

# ENDNOTES

#### ENDNOTES

Chapter I: Statement of the Problem

<sup>1</sup>Keith Gave, "L.C.C. Tab: \$," <u>The Lansing State Journal</u>, September 2, 1979, p. 26.

<sup>2</sup>Clive W. Granger, <u>Investigating the Future: Statistical</u> <u>Forecasting Problems</u>, Nottingham, England: The University Press, 1967, p. 46.

Chapter II: Review of Literature

<sup>1</sup>D. Kent Halstead, <u>Statewide Planning In Higher Education</u>, Washington, D.C., U.S. Printing Office, 1974.

<sup>2</sup>L. J. Lins, <u>Methodology of Enrollment</u>, <u>Projections for</u> <u>Colleges and Universities</u>, Washington, Education, 1960.

<sup>3</sup>Wayne L. Mangleson, et al., <u>Projecting College and University</u> <u>Enrollments: Analyzing the Past and Focusing the Future</u>, Ann Arbor, <u>Michigan</u>, Center for the Study of Higher Education, 1973.

<sup>4</sup>Paul Wing, <u>Higher Education Enrollment Forecasting</u>, Boulder, Colorado: National Center for Higher Education Management Systems, 1974.

<sup>5</sup>Halstead, p. 299. <sup>6</sup><u>Ibid.</u>, p. 300. <sup>7</sup><u>Ibid.</u>, p. 302. <sup>8</sup><u>Ibid.</u>, p. 302. <sup>9</sup>Lins, p. 1. <sup>10</sup><u>Ibid.</u>, p. 2. <sup>11</sup><u>Ibid.</u>, p. 2. <sup>11</sup><u>Ibid.</u>, p. 21. <sup>13</sup><u>Ibid.</u>, p. 25. <sup>14</sup><u>Ibid.</u>, p. 31. <sup>15</sup>Mangleson, p. 3.

<sup>16</sup>Ibid., p. 9. <sup>17</sup>Ibid., p. 10. <sup>18</sup>Ibid., p. 17. <sup>19</sup>Ib<u>id</u>., p. 23. <sup>20</sup>Ib<u>id</u>., p. 32. <sup>21</sup>Ibid., p. 23. <sup>22</sup>Ibid., p. 32. <sup>23</sup>Ibid., p. 41. <sup>24</sup>Wing, p. V. <sup>25</sup>Ibid., p. 1. <sup>26</sup>Ib<u>id</u>., p. 5. <sup>27</sup>Ibid., p. 6. <sup>28</sup>Ibid., p. 14. <sup>29</sup>Ibi<u>d</u>., p. 63. <sup>30</sup>Ibid., pp. 62-64. <sup>31</sup>Ibid., p. 66.

<sup>32</sup>Charlie Q. Coffman, "State of Mississippi Enrollment Trends in Higher Education." Board of Trustees of Institutions of Higher Learning, Jackson, Mississippi, 1972.

<sup>33</sup>Committee on Enrollment Planning Maximums. <u>Report of the</u> <u>Committee on Enrollment Planning Maximum Report</u>, (Unpublished report.) Springfield, Ill.: Illinois Board of Higher Education, 1972.

<sup>34</sup>L. J. Lins, <u>Methodology of Enrollment Projections for Colleges</u> and <u>Universities</u>, <u>Washington</u>, D.C.: <u>AACRAO c/o The American Council</u> on Education, 1960.

<sup>35</sup>Terre Meier and Sherie Story, <u>Washington Community Colleges</u> <u>Factbook</u>: Olympia, Washington State Board for Community College Education, 1979. <sup>36</sup>Robert D. Newton, <u>Projections of Student Flow in the Pennsyl-</u> <u>vania State University System</u>, University Park, Pennsylvania: Cffice of Vice-President for Planning, Pennsylvania State University, 1969.

<sup>37</sup>Elaine L. Tatham and Harold L. Finch, "Enrollment Forecasting Techniques," Overland Park, Kansas: Johnson County Community College, 1975.

<sup>38</sup>Jerry Banks and C. L. Hoehenstein, "Conceptual Models and Procedures for Predicting Higher Education Enrollment," Presented at 38th National ORSA Meeting, Detroit, Michigan, October 28-30, 1970.

<sup>39</sup>Educational Research and Services Corporation, <u>Migration of</u> Students To and From New Hampshire, Bedford, New Hampshire. (n.d.)

<sup>40</sup>Colby H. Springer and Michael J. Strumwasser, <u>Nebraska Enroll-</u> <u>ment Projection System, An Overview</u>, Los Angeles, California: Systems Research, Inc., 1972.

<sup>41</sup>Ronald B. Thompson, <u>Projected Enrollments, Colleges and</u> <u>Universities, Commonwealth of Kentucky, 1972–1985</u>, Frankfort, Kentucky: Commission on Higher Education, 1972.

<sup>42</sup>Benjamin K. Gold, "Academic Performance of Los Angeles City College Transfers Entering the University of California: A Twelve Year Summary, 1966-78," Los Angeles: Los Angeles City College, 1979

<sup>43</sup>Stephen A. Johnston and Hazel R. Jolley, "North Carolina Community College System Operating Program, 1975-1980," Durham, N. C.: Research Triangle Institute, 1975.

<sup>44</sup>Agnes Martinko, "Success of Transfer Students in Pennsylvania." Harrisburg: Pennsylvania State Department of Education, 1978.

<sup>45</sup>Jeanne Smith, "Enrollment Data and Future Projections: Oglala Sioux Community College," Pine Ridge, N. D.: Oglala Sioux Community College, 1978.

<sup>46</sup>Francis J. Degnan, <u>An Estimate of the Total Full-Time Under-</u> graduate College Population of Connecticut Residents and a Projection of Enrollments for Higher Education in Connecticut Based upon This Estimate, Hartford, Connecticut: Connecticut Commission for Higher Education, 1970.

<sup>47</sup>Paul H. Hasell, Jr., <u>et at</u>, "A conceptual Formulation of a System of Student Flow Models for Head Count Enrollment and Credit-Hour Production Estimates," (Unpublished Paper.) University, Alabama: Department of Computer Science and Operations Research, University of Alabama, 1972. <sup>48</sup>James J. Prestage, "Preliminary Fourteen-Year Enrollment Estimations for Twenty-four Public and Private Institutions of Higher Education, State of Louisiana," Baton Rouge, Louisiana: Louisiana Coordinating Council for Higher Education, 1972.

49, U.S. Bureau of Census Higher Education Forecast," Washington D. C.: American Council on Education, 1972.

<sup>50</sup>R.M. Oliver, "Models for Predicting Gross Enrollments at the University of California," Report No. 68-3, Berkeley, California: Ford Foundation Research Program in University Administration, University of California, 1968.

<sup>51</sup>John F. Zimmer, "Projecting Enrollments in a State College System," <u>Proceedings of the Eleventh Annual Forum on Institutional</u> <u>Research</u>, (May 17-20, 1971, Denver, Colorado), Seattle, Washington, 1971.

<sup>52</sup>Richard J. Petersen and Carolyn R. Smith, <u>Migration of College</u> <u>Students</u>, Washington, D.C.: National Center for Education Statistics, 1976.

<sup>53</sup>Ralph A. Purves, "California Demographic Trends and Enrollments in Higher Education," (Unpublished paper.) Berkeley, California: University of California, 1971.

<sup>54</sup>Robert L. Gell and Others, "Tentative Ten-Year Enrollment Projections: Fiscal Years 1977-1986.: Rockville, Maryland: Montgomery College, 1975.

<sup>55</sup>Mathematica, <u>Enrollment and Financial Aid Models for Higher</u> Education, Bethesda, Maryland, 1971.

<sup>56</sup>Elaine L. Tatham and Harold L. Finch, "A Computer Model for Demographic Projections in Educational Planning," Overland Park, Kansas: Johnson County Community College, 1974.

<sup>57</sup>Otis Dudley Duncan, "Path Analysis: Sociological Examples," American Journal of Sociology, Vol 72, (1966).

<sup>58</sup>New York State Education Department, <u>Enrollment Projections</u> <u>1968-80, NYS Higher Education</u>, Albany, New York: Office of Planning in Higher Education, 1968.

<sup>59</sup>J. E. Jewett, <u>College Admissions Planning: Use of a Segmen-</u> <u>tation Model</u>, Berkeley, California: Ford Foundation Program for Research in University Administration, Office of Vice-President -Planning, University of California, 1972.

<sup>60</sup>New York State Education Department, <u>Enrollment Projections</u> <u>1968-80, NYS Higher Education</u>, Albany, New York: Office of Planning in Higher Education, 1970. <sup>61</sup>Jerome Evans, "Methods and Procedures for Projecting Enrollment in Higher Education in California," Sacramento, California: Coordinating council for Higher Education, 1980.

<sup>62</sup>John F. Zimmer, "An Evaluation of Four Methods of Enrollment Projection as Applied to a State College System," (Unpublished Ph.D. dissertation.) University of Minnesota, 1969.

<sup>63</sup>M. D. Orwig, Paul K. Jones, and Oscar T. Lenning, "Projecting Freshman Enrollment in Specific Academic Departments," <u>Proceedings</u> of the Eleventh Annual Forum on Institutional Research (May 17-20, 1971, Denver, Colorado), Seattle, Washington, 1971.

# Chapter III: Design of the Study

<sup>1</sup>John A. Centra, <u>College Enrollment in the 1980's: Projection</u> and Possibilities, Princeton, New Jersey: College Entrance Examination Board, 1978, p. 51.

<sup>2</sup>Dave V. Glass and Julian C. Stanley, <u>Statistical Methods in</u> <u>Education and Psychology</u>, Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1970, p. 61.

<sup>3</sup>Robert Brown, <u>Smoothing, Forecasting and Predication of</u> Discrete Time Series, New York: Prentice-Hall, 1963, p. 99.

<sup>4</sup>Steven C. Wheelwright and Spyros Makridakis, <u>Forecasting</u> Methods For Management, New York: John Wiley and Sons, 1973, p. 36.

<sup>5</sup>Brown, p. 104.

<sup>6</sup>Wheelwright, p. 36.

<sup>7</sup>Ibid., p. 41.

<sup>8</sup>Ibid., p. 24.

# BIBLIOGRAPHY

.

.

# BIBLIOGRAPHY

Jerry Banks and C. L. Hoehenstein, "Conceptual Models and Procedures for Predicting Higher Education Enrollment," Presented at 38th National ORSA Meeting, Detroit, Michigan, October 28-30, 1970.

Robert Brown, <u>Smoothing</u>, Forecasting and Prediction of Discrete Time Series, New York: Prentice-Hall, 1963.

John A. Centra, <u>College Enrollment in the 1980's: Projection</u> and <u>Possibilities</u>, Princeton, New Jersey: College Entrance Examination Board, 1978.

Charlie Q. Coffman, "State of Mississippi Enrollment Trends in Higher Education." Board of Trustees of Institutions of Higher Learning, Jackson, Mississippi, 1972.

Committee on Enrollment Planning Maximums. <u>Report of the</u> <u>Committee on Enrollment Planning Maximum Report</u>, (unpublished report.) <u>Springfield</u>, Ill.: Illinois Board of Higher Education, 1972.

Francis J. Degnan, <u>An Estimate of the Total Full-Time Under-</u> <u>Graduate College Population of Connecticut Residents and a Projec-</u> <u>tion of Enrollments for Higher Education in Connecticut Based upon</u> <u>This Estimate, Hartford, Connecticut:</u> Connecticut Commission for <u>Higher Education</u>, 1970.

Otis Dudley Duncan, "Path Analysis: Sociological Examples," American Journal of Sociology, Vol\_72, 1966.

Educational Research and Services Corporation, <u>Migration of</u> Students To and From New Hampshire, Bedford, New Hampshire. (n.d.)

Jerome Evans, "Methods and Procedures for Projecting Enrollment in Higher Education in California," Sacramento, California: Coordinating council for Higher Education, 1970.

Keith Gave, "L.C.C. Tab: \$," <u>The Lansing State Journal</u>, September, 2, 1979.

Robert L. Gell and Others, "Tentative Ten-Year Enrollment Projections: Fiscal Years 1977-1986.: Rockville, Maryland: Montgomery College, 1975.

Dave V. Glass and Julian C. Stanley, <u>Statistical Methods in</u> <u>Education and Psychology</u>, Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1970. Benjamin K. Gold, "Academic Performance of Los Angeles City College Transfers Entering the University of California: A Twelve Year Summary, 1966-78," Los Angeles: Los Angeles, City College, 1979.

Clive W. Granger, <u>Investigating the Future: Statistical</u> Forecasting Problems, Nottingham, England: The University Press, 1967.

D. Kent Halstead, <u>Statewide Planning In Higher Education</u>, Washington, D.C., U.S. Printing Office, 1974.

Paul H. Hasell, Jr., <u>et al</u>, "A Conceptual Formulation of a System of Student Flow Models for Head Count Enrollment and Tredit-Hour Production Estimates," (unpublished paper.) University, Alabama: Department of Computer Science and Operations Research, University of Alabama, 1972.

J. E. Jewett, College Admissions Planning: Use of a Segmentation Model, Berkeley, California: Ford Foundation Program for Research in University Administration, Office of Vice-President -Planning, University of California, 1972.

Stephen A. Johnston and Hazel R. Jolley, "North Carolina Community College System Operating Program, 1975-1980," Durham, N. C.: Research Triangle Institute, 1975.

L. J. Lins, <u>Methodology of Enrollment Projections for Colleges</u> and <u>Universities</u>, Washington, D.C.: AACRAO c/o The American Council on Education, 1979.

Wayne L. Mangleson, et al., <u>Projecting College and University</u> Enrollments: <u>Analyzing the Past and Focusing the Future</u>, Ann Arbor, Michigan, Center for the Study of Higher Education, 1973.

Agnes Martinko, "Success of Transfer Students in Pennsylvania." Harrisburg: Pennsylvania State Department of Education, 1978.

Mathematica, Enrollment and Financial Aid Models for Higher Education, Bethesda, Maryland, 1971.

Terre Meier and Sherie Story, <u>Washington Community Colleges</u> <u>Factbook</u>: Olympia, Washington State Board for Community College Education, 1979.

New York State Education Department, <u>Enrollment Projections</u> <u>1968-80, NYS Higher Education</u>, Albany, New York: Office of Planning in Higher Education, 1968. Robert D. Newton, <u>Projections of Student Flow in the Pennsylvania</u> <u>State University System</u>, University Park, Pennsylvania: Office of Vice-President for Planning, Pennsylvania State University, 1969.

R. M. Oliver, "Models for Predicting Gross Enrollments at the University of California," Report No. 68-3, Berkeley, California: Ford Foundation Research Program in University Administration, University of California, 1968.

M. D. Orwig, Paul K. Jones, and Oscar T. Lenning, "Projecting Freshman Enrollment in Specific Academic Departments," <u>Proceedings</u> of the Eleventh Annual Forum on Institutional Research (May 17-20, 1971, Denver, Colorado), Seattle, Washington, 1971.

Richard J. Petersen and Carolyn R. Smith, <u>Migration of College</u> <u>Students</u>, Washington, D.C.: National Center for Education Statistics, 1976.

James J. Prestage, "Preliminary Fourteen-Year Enrollment Estimations for Twenty-four Public and Private Institutions of Higher Education, State of Louisiana," Baton Rouge, Louisiana: Lousiana Coordinating Council for Higher Education, 1972.

Ralph A. Purves, "California Demographic Trends and Enrollments in Higher Education," (unpublished paper.) Berkeley, California: University of California, 1971.

Jeanne Smith, "Enrollment Data and Future Projections: Oglala Sioux Community College," Pine Ridge, N.D.: Oglala Sioux Community College, 1978.

Colby H. Springer and Michael J. Strumwasser, Nebraska <u>Enroll-</u> <u>ment Projection System, An Overview</u>, Los Angeles, California: Systems Research, Inc., 1972.

Elaine L. Tatham and Harold L. Finch, "A Computer Model for Demographic Projections in Educational Planning," Overland Park, Kansas: Johnson County Community College, 1974.

Elaine L. Tatham and Harold L. Finch, "Enrollment Forecasting Techniques," Overland Park, Kansas: Johnson County Community College 1975.

Ronald B. Thompson, Projected Enrollments, Colleges and Universities, Commonwealth of Kentucky, 1972–1985, Frankfort, Kentucky: Commission on Higher Education, 1972.

U. S. Bureau of Census Higher Education Forecast," Washington D. C.: American Council on Education, 1972.

Steven C. Wheelwright and Spyros Makridakis, <u>Forecasting Methods</u> For Management, New York: John Wiley and Sons, 1973. Paul Wing, <u>Higher Education Enrollment Forecasting</u>, Boulder, Colorado: National Center for Higher Education Management Systems, 1974.

John F. Zimmer, "An Evaluation of Four Methods of Enrollment Projection as Applied to a State College System," (unpublished Ph.D. dissertation.) University of Minnesota, 1969.

John F. Zimmer, 'Projecting Enrollments in a State College System," <u>Proceedings of the Eleventh Annual Forum on Institutional</u> <u>Research</u>, (May 17-20, 1971, Denver, Colorado), Seattle, Washington, 1971.