INFORMATION TO USERS This was produced from a copy o f a document sent to us fo r microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality o f the material submitted. The following explanation o f techniques is provided to help you understand markings or notations which may appear on this reproduction. 1 .T h e sign or "target” fo r pages apparently lacking from the document photographed is "Missing Page(s)” . If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you o f complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been film ed, you will find a good image of the page in the adjacent frame. I f copyrighted materials were deleted you will find a target note listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photo­ graphed the photographer has followed a definite method in "sectioning” the material. It is customary to begin film ing at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. I f necessary, sectioning is continued again—beginning below the first row and continuing on until complete. 4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department. 5. Some pages in any document may have indistinct print. In all cases we have film ed the best available copy. University Microfilms International 300 N. ZEEB RD., AN N ARBOR, Ml 48106 8126567 W in slo w , M ark D a v id NITROGEN UTILIZATION IN MICHIGAN WHEAT CULTIVARS, AS RELATED TO GENOTYPE X ENVIRONMENT INTERACTION Ph.D. 1981 Michigan S tate University University Microfilms International 300 N. Zeeb Road, Ann Arbor, M I 48106 NITROGEN UTILIZATION IN MICHIGAN WHEAT CULTIVARS, AS RELATED TO GENOTYPE X ENVIRONMENT INTERACTION By Mark David Winslow A THESIS Submitted to Michigan St at e U n i v e r s i t y i n p a r t i a l f u l f i l l m e n t o f the requirements f o r the degree o f DOCTOR OF PHILOSOPHY Department o f Crop and Soil Sciences 1981 ABSTRACT NITROGEN UTILIZATION IN MICHIGAN WHEAT CULTIVARS, AS RELATED TO GENOTYPE X ENVIRONMENT INTERACTION By Mark David Winslow The s o f t white w i n t e r wheat { T r i t i c u m aestivum L. ) cul t i v a r 'Tecumseh' i s h i g h l y responsive t o heavy a p p l i c a t i o n s f e r t i l i z e r , but is l o w - y i e l d i n g i f N is not a p p l i e d . inc re as in g cost o f f e r t i l i z e r , t h a t use N e f f i c i e n t l y . it is important of nitrogen With (H) the to develop cul t i v a r s This research was conducted t o examine the basis o f Tecumseh's high N requirement and hi gh N responsiveness. Data were c o l l e c t e d on the seasonal accumulation and st r aw grain p a r t i t i o n i n g o f reduced N in the above-ground portions o f cultivars ('Tecumseh', 'Io n ia ', 'Y o r k s t a r ' , and 'Augu st a' ) , fun ct io n o f three r a t e s o f N topdressing ( 0 , three l o c a t io n s in 1980. four as a 45, and 90 k g / h a ) , at The e f f e c t of N topdressing on y i e l d , y i e l d components, and ha r v e s t i n de x, was also measured, over t hr ee years and th r e e l o c a t i o n s . the e f f e c t s o f o t h e r environmental i n e i g h t experiments To compare the e f - f e c t o f N w i t h variables, yield and yield-component responses to improvement in s i t e y i e l d p o t e n t i a l were measured, in f i f t e e n s i t e s over two y e a r s . Tecumseh was as high o r h i g h e r than the e t h e r c u l t i v a r s i n N accumulation per h e c t a r e , a t a l l growing season. r a t e s o f app lied N, by the end of Tecumseh took up approximately twice as much soil the N a f t e r an th es is as the o t h e r c u l t i v a r s , and maintained a h i g h e r who!ep l a n t con cen tr ati on o f N a t a l l growth s t a g e s . I t i s concluded t h a t . Mark David Winslow Tecumseh's high N requirement i s not caused by a d e f i c i e n c y in capa city f o r uptake o f soi l N. The high y i e l d responsiveness of Tecumseh to N was associated with a high responsiveness o f the y i e l d component heads/m 2 (X). Tecumseh was also more y i e l d - r e s p o n s i v e than ot her c u l t i v a r s to improvements in s i t e y i e l d p o t e n t i a l , and t h is was also associated with a high X-responsiveness. Thus, genotype x environment i n t e r a c t i o n f o r Tecumseh r e s u l t s from an unusually high X-responsiveness; t h i s is a general response to improved environments, r a t h e r than a s p e c i f i c response to N. Tecumseh's high y i e l d response t o N was achieved with a p p l i c ­ a t i o n o f N a t any time up u n t i l stage. the crop reached the f u l l y - t i l l e r e d In c o n t r a s t , a high y i e l d response t o N f o r Io n ia was achieved only when N was a p p li e d a t the f u l l y - t i l l e r e d stage . This is i n t e r p ­ re t ed as i n d i c a t i n g an i n h e r e n t l y lower l e v e l o f i n t e r - t i l l e r competition in Tecumseh than in I o n i a . Thus, Tecumseh's high X-responsiveness to improvements i n the environment may be a r e s u l t o f a low l e v e l of i n t e r - t i l l e r com pe tit io n, which allows t h i s c u l t i v a r to achieve a high X d es p it e the seasonal f l u c t u a t i o n s environmental in the supply o f resources t h a t commonly occur in production s i t u a t i o n s . ACKNOWLEDGMENTS I would l i k e to thank Dr. E v e r e t t H. Everson f o r p r ov id in g the op p or tu ni ty f o r me to perform t h i s research. Dr. Russell given generously o f his time in reviewing the manuscript. Adams, St anley K. Ries, Andrew D. Hanson, and David A. D. Freed has Drs. M. Wayne Reicosky have also given valua ble c r i t i c i s m s . This research could not have been done w it h o u t the superb a s s i s t ­ ance o f Mr. Le s te r E. Morrison in p l a n t i n g , m a i n t a in i n g , and ha rv es tin g the f i e l d p l o t s . I t has been a real pleasure to work with L e s t e r these f o u r y ea r s. I am also indebted to Ms. Pamela Hulse, Mr. Rick Blakeney, and Mr. Geoffrey Heinr ich f o r assistance with the f i e l d w o r k and f o r t h e i r support and f r i e n d s h i p . I would l i k e to make a spe cial acknowledgment to the c o n t r i b u t i o n which the l a t e Dr. John E. Gra fius has made to t h i s research. The approach which I took in ana ly zi ng t h i s problem was g r e a t l y i n fl u e n c e d by the ideas o f t h i s outstanding s c i e n t i s t . I consider myself very f o r t u n a t e to have been exposed to Dr. G r a f i u s 1 rigorous but pragmat ic philosophy o f research. TABLE OF CONTENTS Page LIST OF TABLES................................................................................................................... i v LIST OF F IG U R E S .............................................................................................. vi I N T R O D U C T I O N ............................................................................................................. 1 REVIEW OF LITERATURE............................................................................................... 3 MATERIALS AND METHODS................................................................................. 16 RESULTS AND D I S C U S S I O N .............................................................................................. 21 SUMMARY AND CONCLUSIONS.............................................................................................. 40 APPENDIX A, EFFECT OF N TOPDRESSING ON DRY MATTER AND N ACCUMULATION AT THREE GROWTH STAGES, FOR FOUR WHEAT CULTIVARS: DATA FROM SPECIFIC LOCATIONS, IN 1980.......................... APPENDIX B, EFFECT OF LATE-SEASON N SUPPLEMENTS ON GRAIN N AND YIELD VARIABLES OF THREE WHEAT CULTIVARS . . 42 . . 45 APPENDIX C, EFFECT OF N TOPDRESSING ON YIELD VARIABLES OF SEVERAL WHEAT CULTIVARS: DATA FROM SPECIFIC LOCATION-YEARS . . 47 APPENDIX D, EFFECT OF INCREASING SITE YIELD POTENTIAL ON THE YIELD AND YIELD COMPONENTS OF SEVERAL WHEAT CULTIVARS. . . 53 LITERATURE C I T E D .................................................................................................... 57 LIST OF TABLES Table 1. Page Crop N st atus and y i e l d performance a t t h r ee l o ca tio ns in 1980 ....................................................................................................... 21 Pre- and p o s t- an t h es is accumulation o f N, and g r a i n straw p a r t i t i o n i n g o f N, f o r f o u r wheat c u l t i v a r s . 25 Relat io nsh ip between gr ai n N and y i e l d f o r f o u r wheat c u l t i v a r s ................................................................................................ 25 E f f e c t o f N topdressing on y i e l d v a r i a b l e s o f two wheat c u l t i v a r s .................................................................................. 28 E f f e c t o f N topdressing on dry m a t t e r production and N accumulation a t three growth stages in f o u r wheat c u l t i v a r s , a t Mendon.............................................................. 42 A2. E f f e c t o f N topdressing on dry m a t t e r production and N accumulation a t three growth stages in f o u r wheat c u l t i v a r s , a t East Lan sin g................................................ 43 A3. E f f e c t o f N topdressing on dry m a t t e r production and N accumulation a t three growth stages in f o u r wheat c u l t i v a r s , a t S a r a n a c ....................................................... 44 2. 3. 4. A l. B l. . E f f e c t o f la te -s e as on f o l i a r and s o i l N a p p l i c a t i o n s on grain N and y i e l d v a r i a b l e s o f three wheat cultivars. Saranac, 1980 .............................................................. Cl. E f f e c t of N topdressing on y i e l d v a r i a b l e s o f two wheat c u l t i v a r s . Saranac, 1978, experiment 1 46 . 47 C2. E f f e c t o f N topdressing on y i e l d v a r i a b l e s o f four wheat c u l t i v a r s . Saranac, 1978, experiment 2 . 48 C3. E f f e c t o f N topdressing on y i e l d v a r i a b l e s o f three wheat c u l t i v a r s . Saranac, 1979 ................................................. 49 C4. E f f e c t o f N topdressing on y i e l d v a r i a b l e s o f fou r wheat c u l t i v a r s . Mendon, 1980....................................................... 50 C5. E f f e c t o f N topdressing on y i e l d v a r i a b l e s o f fo ur wheat c u l t i v a r s . East Lansing, 1980 51 iv Table Page C6. E f f e c t o f N topdressing on y i e l d v a r i a b l e s o f fo ur wheat c u l t i v a r s . Saranac, 1980.................................. v 52 LIST OF FIGURES F ig u re Page 1. E f f e c t o f N topdressing on dry m at ter production and N accumulation in f o u r wheat c u l t i v a r s , a t m a t u r i t y ...................................................................................... 23 2. Dry matter production and N accumulation over three growth stages, f o r fo ur wheat c u l t i v a r s . . . . 24 3. E f f e c t o f i n c r e a s i n g s i t e y i e l d p o t e n t i a l on the y i e l d and y i e l d components o f Tecumseh wheat, r e l a t i v e to the gene pool m e a n ...................................... 31 4. E f f e c t o f seeding r a t e on y i e l d v a r i a b l e s in wheat . 5. V a r i a t i o n o f y i e l d components across s i t e s of d i f f e r i n g y i e l d p o t e n t i a l .................................................... 34 6. E f f e c t o f d i f f e r e n t dates o f a p p l i c a t i o n o f N topdressing on y i e l d and y i e l d components . 33 o f two wheat c u l t i v a r s ................................................... 36 Dl. E f f e c t o f i n c r e a s i n g s i t e y i e l d p o t e n t i a l on the y i e l d and y i e l d components o f I o n i a wheat, r e l a t i v e t o the gene pool m e a n .................................................53 D2. E f f e c t o f in c r e a s i n g s i t e y i e l d p o t e n t i a l on the y i e l d and y i e l d components o f York sta r wheat, r e l a t i v e t o th e gene pool mean . . . . . . . 54 D3. E f f e c t o f i n c r e a s i n g s i t e y i e l d p o t e n t i a l on the y i e l d and y i e l d components o f Augusta wheat, r e l a t i v e t o the gene pool m e a n .................................................55 D4. E f f e c t o f i n c r e a s i n g s i t e y i e l d p o t e n t i a l on the y i e l d and y i e l d components o f Frankenmuth wheat, r e l a t i v e t o the gene pool m e a n ................................... 56 vi INTRODUCTION Soon a f t e r i t s r e l e a s e in 1974, i t was no ti ced t h a t the Michigan s o f t white w in t e r wheat ( T r i ti c u m aestivum L . ) c u l t i v a r required he a vi e r sp r in g topdressings o f n itr og en 'Tecumseh' (N) f e r t i l i z e r than o th er c u l t i v a r s , i n o r d e r to achieve s a t i s f a c t o r y y i e l d s . fe rtiliz e r Since N is an expensive production i n p u t , i t would be d e s ir e a b le to develop c u l t i v a r s th a t have low N requirements. This research was conducted t o di s c o v e r the reasons f o r Tecumseh's high N requirement and high response to supplemental N. This in fo rm at io n could be h e l p f u l in designing breeding s t r a t e g i e s to improve the e f f i c i e n c y o f N use in f u t u r e c u l t i v a r s . Tecumseh's high N requirement might be caused by a d e f i c i e n c y in ca p a c i ty f o r uptake o f soi l N. To t e s t t h i s hyp othesis, data were c o l l e c t e d on N accumulation in above-ground parts o f f o u r c u l t i v a r s , as a fu nction ments. o f d i f f e r e n t r a t e s o f N topdressing, in th ree e n v i r o n ­ Other f e a t u r e s of N accumulation and p a r t i t i o n i n g were also measured, t o see i f d i f f e r e n c e s in u t i l i z a t i o n o f N occurred among cu ltiv a rs . Since N a p p l i c a t i o n increases y i e l d by inc re as in g the values o f the y i e l d components, c u l t i v a r d i ff e r e n c e s in y i e l d component response to N might e x p la i n d i ff e r e n c e s in y i e l d response to N. To t e s t t h i s hypothesis, y i e l d and y i e l d component responses to N were measured over several years and l o c a t i o n s . 1 I t was recognized t h a t there may be s i m i l a r i t i e s between crop response to N and crop response to o t h e r growth-promoting f a c t o r s , such as moisture and cool t em pe r at ur es , which cause much o f the d i f f e r ­ ences in s i t e y i e l d p o t e n t i a l o f Michigan. among s i t e s in the wheat-producing areas Thus, d i f f e r e n t i a l same basis as d i f f e r e n t i a l y ie ld potential, c u l t i v a r response to N may have the c u l t i v a r response to improvements in s i t e and may t h e r e f o r e be a model system in which t o study "genotype x environment i n t e r a c t i o n . " To examine these id e a s , y i e l d and yield-component performance across a s e t o f s i t e s o f d i f f e r i n g y i e l d p o t e n t i a l , were measured. REVIEW OF LITERATURE The i n t e n s i v e c u l t i v a t i o n o f cropland has reduced s o i l (N) f e r t i l i t y nitrogen to such a degree t h a t the use o f supplemental N f e r t i l i z e r is necessary f o r high y i e l d s and p r o f i t a b l e farming ( 4 5 ) . use o f chemical N f e r t i l i z e r s has several drawbacks. However, the I t i s expensi ve, accounting f o r approximately 10% o f a f a r m e r 's production costs in Michigan ( 5 8 ) . I t is e n e r g y - i n t e n s i v e ; o n e - t h i r d o f the energy r eq ui r ed to produce a corn crop in the United States goes toward the manufacture, d i s t r i b u t i o n , and a p p l i c a t i o n o f f e r t i l i z e r N ( 8 6 ) . Much' o f the f e r t i l i z e r a p p l i e d i s l o s t through le ach in g or d e n i t r i f i c a t i o n , which can cause serious environmental problems ( 8 8 ) . Despite these drawbacks, increased use o f N f e r t i l i z e r i s essential (105). i f food production is to keep pace w ith population growth Thus, agronomists are faced with the challenge o f developing e f f i c i e n t systems o f s o i l cultivars. Vose ( 9 9 , N f e r t i l i t y management and e f f i c i e n t crop 100) and Epstein (20) argue t h a t gr eat p o t e n t i a l e x i s t s f o r improving the e f f i c i e n c y o f n u t r i e n t use in crops, by g e n e ti c means. Evidence f o r g e n e ti c v a r i a b i l i t y in N use e f f i c i e n c y has been rep ort ed in the l i t e r a t u r e . Ch e v a l ie r and Schrader (13) measured the amount o f n i t r a t e and reduced N accumulated ( p e r p l a n t ) and hybrids in s o l u t i o n c u l t u r e . in the amount o f n i t r a t e by corn inbreds They found d i f f e r e n c e s among genotypes taken up from s o l u t i o n and in the p a r t i t i o n i n g 3 o f reduced N among p l a n t p a r t s . ol d pl ant s in s o l u t i o n c u l t u r e , (which has the same parentage disappeared a l . ( 7 1 ) , using 28-day found t h a t the wheat c u l t i v a r ' A r th u r ' as Tecumseh) took up more n i t r a t e from the s o l u t io n than did ' A t l a s 66' the s o l u t io n was low. Mugwira e t . when the con centration o f n i t r a t e in However, the d i f f e r e n c e between c u l t i v a r s when con cen tr ati on of n i t r a t e was high in the s o l u t i o n . Thus, A t l a s 66 was more responsive than A r t h u r , uptake per p l a n t , to increases i n n i t r a t e in terms o f n i t r a t e supply. This group of workers also found d i f f e r e n c e s among c u l t i v a r s o f t r i t i c a l e in n i t r a t e uptake per p l a n t . Lai e t . al. (57) and r y e , found t h a t t r i t i c a l e c u l t i v a r s accumulated more N per hectare than did wheat c u l t i v a r s , but considerable w i t h i n - s p e c i e s v a r i a t i o n occurred f o r both crops. Harvey ( 4 4 ) , in s o l u t io n c u l t u r e stu die s w it h corn and tomatoes, found c u l t i v a r d i f f e r e n c e s in dry matter production per p l a n t , as a fun ct i on o f s o l u t io n n i t r a t e co n c e n t r a ti o n . He re po rt ed t h a t c u l t i v a r s t h a t were low in dry m a t t e r production a t low n i t r a t e l e v e l s were more responsive ( i n terms o f dry matter production) nitrate to increases in the level. G e r l o f f (3 2) advocates- the use o f the v a r i a b l e "N e f f i c i e n c y ratio" (mg dry wt per plant/mg N absorbed per p l a n t ) as a measure of p l a n t e f f i c i e n c y in the use of accumulated N f o r dry m a t te r production. Using t h i s c r i t e r i o n , c u l t i v a r d i f f e r e n c e s were found in tomato (74) and ryegrass ( 1 0 1 ) , on a p e r - p l a n t basis, in s o l u t io n c u l t u r e experiments. The f i n d i n g t h a t c u l t i v a r s can d i f f e r in dry m a t t e r production per u n i t N absorbed implies o f N in p h y s io lo g i c a l t h a t they d i f f e r in the e f f i c i e n c y o f use processes. One e x p la n at io n f o r t h i s could be t h a t c u l t i v a r s d i f f e r in t h e i r ca pa ci ty to convert the absorbed inorganic n i t r a t e i n t o useful organic forms o f N. The r a t e - l i m i t i n g step in t h i s process i s the reduction o f n i t r a t e to n i t r i t e reductase ( 1 6 ) . Genetic d i f f e r e n c e s in n i t r a t e have been reported ( 1 6 , 17, 3 0 ) . by the enzyme n i t r a t e reductase a c t i v i t y (NRA) I t was hoped t h a t g e n e ti c d i f f e r e n c e s in NRA would c o r r e l a t e with d i f f e r e n c e s in p l a n t v i g o r , gr ai n y i e l d , and grain p r o t e i n , and would t h e r e f o r e would provide a basis f o r s e l e c t i o n in breeding programs. have been weak ( 1 4 , U n f o r t u n a t e l y , however, the c o r r e l a t i o n s 16, 17, 8 2 ) . I t appears t h a t i n e f f i c i e n c i e s in ot her N use processes, such as uptake and t r a n s l o c a t i o n , compensate f o r high NRA, so t h a t gain in economic t r a i t s would not be achieved by s e l e c t i n g f o r high NRA alone ( 1 6 , 17, 8 2 ) . The r e l a t i o n s h i p o f g e n e ti c v a r i a t i o n in the e f f i c i e n c y o f the various N use processes among c u l t i v a r s , has recieved considerable a t t e n t i o n . to gr ai n p r o t e i n produ ction, Studies in wheat (70) and corn (47) i n d i c a t e t h a t c e r t a i n h i g h - p r o t e i n c u l t i v a r s accumulate more N from the soil ( pe r hectare.) or from s o l u t i o n c u l t u r e than do l o w - p r o t e in c u l t i v a r s . conducted by Cataldo e t . (per p l a n t ) , respectively, However, a growth-chamber pot study a l . (1 1) revealed t h a t a h i g h - p r o t e i n oat c u l t i v a r accumulated no more N than a l o w - p r o t e in c u l t i v a r ; rather, high g r ai n percent p r o t e i n r e s u l t e d from a lower accumulation o f carbo­ hydrate in the h i g h - p r o t e i n c u l t i v a r . There does not appear t o be any co n s is te n t as s o c i a ti o n between gr ai n percent p r o t e i n and l e a f N c o n ce nt r at io n. High-protein c u ltiv a rs have been found to have l e a f reduced N concentrations hi gh er ( 7 9 ) , lower ( 5 4 ) , and equal (87) to those o f l o w e r - p r o t e i n c u l t i v a r s . One study advocated the use o f seedling reduced N con centration as a screening c r i t e r i o n f o r id e n tify in g high-protein lines The study o f Cataldo e t . (48). a l . mentioned above found t h a t the high p r o t e i n oat c u l t i v a r continued to accumulate N from the pot a f t e r a n t h e s is , whil e the low p r o t e i n c u l t i v a r did not. study using s i x oat c u l t i v a r s , a l ., However, in a f i e l d i n c l u d in g the two studied by Cataldo e t . another group (79) obtained the opposite r e s u l t s f o r these two c u l t i v a r s ; the l o w - p r o t e in c u l t i v a r took up more N a f t e r anthesis than did the h i g h - p r o t e i n c u l t i v a r , per he c ta re . Thus, caution must be ex er cis ed in extending conclusions deriv ed from growth-chamber pot experiments on s i n g l e plants to make inferen ces about crop performance in the f i e l d . Among the s i x c u l t i v a r s in the l a t t e r study, no c o r r e l ­ at io n was found between po s t- a n t h e s i s N accumulation and gr ain percent protein. In a f i e l d experiment using c u l t i v a r s o f wheat studied in the present rese arch , Heinr ich (46) found t h a t Tecumseh (which has a high g r ai n percent p r o t e i n ) was g r e a t e r in p o s t-a nt he si s N uptake than lower-protein c u ltiv a rs . H i g h - p r o t e i n c u l t i v a r s o f wheat ( 5 3 , 55, 8 7 ) , oats ( 7 9 ) , and r i c e (7 8) were found to t r a n s l o c a t e more N from the v e g e t a t i v e parts i n t o the g r a i n , than l o w - p r o t e in c u l t i v a r s . wheat found no such r e l a t i o n s h i p (70). However, another study in The study o f Cataldo e t . a l. mentioned above found t h a t the h i g h - p r o t e i n c u l t i v a r a c t u a l l y t r a n s l o c ­ ated less N from the v e g e t a t i v e part s to the g r a i n , than did the lowprotein c u l t iv a r . Thus, i t seems t h a t there is no s i ng le ph ys io lo gi cal t r a i t that can be used to p r e d i c t o r s e l e c t f o r high grain percent p r o t e i n . Rather, gra in percent p r o t e i n is the r e s u l t o f the i n t e r a c t i o n o f many processes t h a t may show compensatory s h i f t s when one p a r t i c u l a r process is increased or decreased. individual I d e n t i f i c a t i o n o f genotypes su p e r io r f o r processes may be valua ble in c o l l e c t i n g parents f o r high- p r o t e i n breeding programs, even i f these parents are not p a r t i c u l a r l y high in grain percent p r o t e i n themselves; "p h y s io lo g ic a l (102) complementation" o f these processes in segregating generations may lead t o hi gh- p ro te in l i n e s among the progeny. This idea o f using p ar en ta l component complementation to achieve progress in s e l e c t i o n f o r complex t r a i t s was used su c ce s s fu l ly by Gra fiu s e t . a l . (40). Many breeders have n ot ic ed a ne g at iv e c o r r e l a t i o n beween y i e l d and grain percent p r o t e i n in segre gat ing populations ( 8 , 66, 77, This c o r r e l a t i o n f i t s ( 9 , 81) . 95). the e x p e c t a t io n from a b i o e n e r g e t i c p o i n t o f view Approximately twice as much glucose is re q u i r e d to synthesize one gram o f p r o t e i n as compared to one gram o f carbohydrate ( 9 ) . i f the pool o f a s s im i la t e s is f i x e d , Hence, and i f i t l i m i t s gr ain pr odu ction, any increase in p r o t e i n production w i l l be accompanied by a decrease in carbohydrate production ( t h e r e f o r e y i e l d w i l l dec re ase ). However, by increasing the ca pa ci ty o f a c u l t i v a r to a s s i m i l a t e s o l a r energy in useful forms, gains in both y i e l d and p r o t e i n could be achieved ( 8 1 ) . In actual breeding programs, simultaneous increases in y i e l d and pr ot ei n have been achieved ( 5 4 ) . Thus, gr ai n percent p r o t e i n and y i e l d can be increased simultaneously , i f both are se le c t e d f o r , but because o f the negative c o r r e l a t i o n , progress w i l l be slower than i f j u s t one or the oth er t r a i t was emphasized in s e l e c t i o n . Although s e l e c t i o n f o r hi g h er g r a i n percent p r o t e i n slows progress for y ie ld , cultural p r a c t i c e s e x i s t which can g r e a t l y increase p r o t e i n , withou t s a c r i f i c i n g y i e l d . (Th is observation casts doubt on the assumpt­ ion underlying the b i o e n e r g e t i c argument described above, i . e . th a t a s s im i la t e supply l i m i t s y i e l d and p r o t e i n production in c u r r e n t l y grown c u l t i v a r s , since c u l t u r a l N amendments also r e q u i r e p l a n t energy f o r reduction and in c o r p o r a t i o n i n t o p r o t e i n ) . Late season N su p p le ­ ments, app lie d to the s o i l o r f o l i a g e , boost g r a i n percent p r o t e i n ( 2 3 , 33, 50, 69, 83, 8 5 ) . The leaves play an important ro l e in late -se aso n N uptake and t r a n s l o c a t i o n t o the g r a i n , as demonstrated in le af-removal experiments ( 7 0 , n i t r a t e reduction 73). The f l a g l e a f is p a r t i c u l a r l y important in ( 41 , uptake from the s o i l 7 0) . i s soil A very important f a c t o r determining N a v a i l a b l e mois tu re ; drouthy conditions reduce N uptake markedly ( 1 9 , 89, te n s i o n , 96). Drouth increases s o i l water reducing mass flow of n u t r i e n t s to the roots ( 9 8 ) . Thus, adequate s o i l moisture i s necessary f o r high p r o t e i n production per hec tare. An i n t e r e s t i n g aspect o f crop N use is the phenomenon of v o la tiliza tio n losses o f N. S i g n i f i c a n t amounts o f N are l o s t from the st ra w, p r i m a r i l y as ammonia ( 1 5 , 4 9 ) , in a maturing wheat crop. Presumably, the ammonia is a product o f p r o t e i n catabolism during r e m o b i l i z a t i o n o f amino acids to the developing g r a i n . V o latilization losses are g r e a t e r a t high temperatures ( 9 4 ) . The breeding o f c u l t i v a r s with g r e a t e r y i e l d responsiveness to heavy a p p l i c a t i o n s o f f e r t i l i z e r N, was a key f a c t o r in the spe ct a cu la r y i e l d increases achieved during the "Green Revolution" o f the e a r l y I 9 6 0 ' s. The new s h o rt -s tr aw ed c u l t i v a r s withstood the increased growth s t im u l a t e d by N w i t h o u t lodging ( 1 2 ) . These c u l t i v a r s had s m a l l e r , more e r e c t le a v e s , so t h a t the increased l e a f area r e s u l t i n g from N a p p l i c a t i o n did not cause as much mutual shading as in t r a d i t i o n a l cultivars (5, 12, 18, 1 0 8 ) . Mutual shading reduces net photosynthesis in the lower l e v e l s o f the canopy, thus reducing net a s s i m i l a t i o n ra te ( 12). Donald and Hamblin (18) po in t out t h a t the s h o r t e r straw and s m a l le r leaves o f modern c u l t i v a r s cause them to have a hi gh er har ve st index (HI=wt o f g r a i n / w t o f whole p l a n t ) . Thus, modern c u l t i v a r s are more N-responsive because they are less competitive (l e s s mutual shading), and t h i s is r e f l e c t e d in a hi g h er H I. They propose s e l e c t i n g f o r HI to continue inc re as in g N responsiveness. Well hausen (104) describes the g r e a t e r N responsiveness o f modern corn c u l t i v a r s developed in Mexico. se le ct ed to give r e l i a b l e , land near the v i l l a g e s . itional agricultural Traditional cultivars had been but low, y i e l d s on the continuously cropped No types o f f e r t i l i z e r s were used in the t r a d ­ systems, so the s o i l s were ve r y low in f e r t i l i t y . The modern c u l t i v a r s were s e l e c t e d from land races t h a t had evolved in the few h i g h l y - f e r t i l e lakebottom ar ea s. When grown in the n u t r i e n t - depleted areas, these modern c u l t i v a r s y i e l d e d no more (and sometimes l e s s ) than the t r a d i t i o n a l cu ltivars. When f e r t i l i z e r was supplied, however, the modern c u l t i v a r s y i e l d e d twice as much as the t r a d i t i o n a l c u l t i v a r s , and ap pro ximately seven times as much as when not f e r t i l i z e d . Hence, the use o f f e r t i l i z e r N and the breeding o f c u l t i v a r s more responsive to i t have been inc re as in g y i e l d s in g r a i n i ns epa ra ble components o f the s t r a te g y for crops in modern times. In the United S t a t e s , corn production u t i l i z e s hyb rid c u l t i v a r s r a t h e r than the o p e n - p o l l i n a t e d c u l t i v a r s and syn th e tic s o f Mexico. There are d i f f e r e n c e s among corn inbred l i n e s in y i e l d responsiveness to N ( 6 ) . ( 10 , 9 3 ) . Hybrids may be more responsive than inbreds I t is accepted t h a t modern s m a l l - g r a i n c u l t i v a r s ar e more y i e l d responsive to N than are t r a d i t i o n a l cultiva rs . Are t h er e d i ff e r e n c e s among modern c u l t i v a r s themselves, with regard to N responsiveness? Several studies have come to d i f f e r e n t conclusions. Two studies found no d i f f e r e n c e s in y i e l d responsiveness to N among diverse c o l l e c t i o n s o f wheat c u l t i v a r s (76, 84). Two o t h e r re por ts ( 6 7 , 92) demonstrated s i g n i f i c a n t d i f f e r e n c e s among c u l t i v a r s in response of the y i e l d 10 components to N, but not o f y i e l d i t s e l f . ical Despite the lack o f s t a t i s t ­ s i g n i f i c a n c e , however, th ere was a tendency f o r the more y i e l d - responsive c u l t i v a r s to be those which were more responsive in the y i e l d component heads per u n i t area ( X ) , in one o f the re ports (92). In e i g h t s t u d i e s , s i g n i f i c a n t d i f f e r e n c e s in y i e l d response to N among s m a l l - g r a i n c u l t i v a r s were r epo rt ed ( 2 5 , 42, 58, 65, 72, 107). 103, 106, In f o u r o f these s t u d i e s - - one with wheat ( 7 2 ) , one w it h b a r l e y ( 1 0 3 ) , one w ith oats were measured. ( 2 5 ) , and one with r i c e In a l l ( 1 0 7 ) - - the y i e l d components f o u r , the c u l t i v a r with the hi ghest y i e l d response to N was the one t h a t e x h i b i t e d the hi ghest X response to N. Thus, high X-responsiveness seems to be important in causing high y i e l d - r e s p o n s i v e ness to N, in modern s m a l l - g r a i n c u l t i v a r s . Since X is the r e s u l t o f the growth and development o f t i l l e r s , i t i s necessary to understand the processes c o n t r o l l i n g t i l l e r develop­ ment in order to understand X-response to N. T i l l e r s are e s s e n t i a l l y branches, a r i s i n g from a x i l l a r y buds in the basal leaves o f a grass culm. Conditions which f a v o r p l a n t growth as a whole, such as adequate m oi st u re , fe rtility , and tem per at ur e, fa v o r t i l l e r i n g (60). Active t i l l e r i n g is a process occ ur ring in the v e g e t a t i v e stage o f p l a n t growth; once the api cal meristem begins to d i f f e r e n t i a t e i n t o a re pr oductive s t r u c t u r e (s pike in w h e a t ), t i l l e r i n g 60). from the base o f t h a t culm is i n h i b i t e d ( 3 , This i n h i b i t i o n i s hormonal in nature ( a u x i n ) , r a t h e r than being due to competition f o r n u t r i e n t s among t i l l e r s (51 , 52, 62, 63 , 6 4 ) . T i l l e r s which have begun t o e l o n g a t e , but have not y e t begun to d i f f e r ­ e n tia te t h e i r spike, w il l senesce and die i f t h e i r parent culm is d i f f e r e n t i a t i n g i t s spike ( 3 , 6 3 ) . Asp in all (3), in a greenhouse pot experiment with b a r l e y , found t h a t a p p l i c a t i o n o f a n u t r i e n t s o l u t io n reduced t h i s i n h i b i t i o n ; tille r bud elo ng at io n was again s t im u l a t e d , and senescence o f s m a l le r t i l l e r s prevented. In a subsequent experiment ( 4 ) , he compared two c u l t i v a r s , a h i g h - t i l l e r i n g type and a l o w - t i l l e r i n g t yp e, with regard to the degree o f rel eas e o f i n h i b i t i o n ation. Apex removal fo ll o w in g apex removal and n u t r i e n t supplement­ caused a g r e a t e r in crease in number o f f e r t i l e heads in the l o w - t i l l e r i n g c u l t i v a r than in the h i g h - t i l l e r i n g c u l t i v a r . N u t r i e n t supplementation gave the same r e s u l t . He concluded t h a t , since rel eas e from i n h i b i t i o n was g r e a t e r in the l o w - t i l l e r i n g c u l t i v a r , t h i s c u l t i v a r must have a g r e a t e r degree o f ap ic al situation dominance in the normal ( w i th o u t supplementation o r apex removal). Note t h a t t h i s study was conducted during the heading stage o f growth, which is l a t e r than the stage in which senescence o f s m a l le r t i l l e r s occurs, in f i e l d situations. The p o i n t a t which spike d i f f e r e n t i a t i o n begins (and hence tille rin g (59) ceases), i s c a l l e d the f u l l y - t i l l e r e d stage. Lang and Holmes found t h a t a p p l i c a t i o n o f N f e r t i l i z e r a t t h i s time gave the g r e a t e s t y i e l d response. much t i l l e r i n g , bear seed. They commented t h a t e a r l i e r a p p l i c a t i o n s s t i m u l a t e d too and t h a t many o f these t i l l e r s would not survive to They did not s p e c i f i c a l l y say whether the N a p p l i c a t i o n the f u l l y - t i l l e r e d stage s t im ul at ed new t i l l e r i n g , senescence, or both. Gericke (31) reduced t i l l e r found t h a t delayed a p p l i c a t i o n (by two to f o u r weeks) o f IN gave the maximum number o f f e r t i l e oat p la nt s in greenhouse pots. at In f i e l d stud ies with o a t s , tille rs in Frey (27) and Frey and Wiggans (28) found t h a t a two-week delay in N a p p l i c a t i o n maximized y i e l d , as a r e s u l t o f maximizing X. The f u l l y - t i l l e r e d st age occurs approximately two to f o u r weeks a f t e r the beginning o f spring growth in small grains (personal o b s e r v a t i o n s ) . delay o f n u t r i e n t a p p l i c a t i o n u n t i l Thus, i t appears t h a t the f u l l y - t i l l e r e d stage maximizes 12 X-response to N, although genotypic d i f f e r e n c e s f o r t h i s response may exist. The a p p l i c a t i o n o f N f e r t i l i z e r st im ul at es an increase in the y i e l d components heads/m 2 (X) and seeds/head ( Y ) , although c u l t i v a r s d i f f e r as to which component is s t im ul at ed the most ( 2 5 , 67, 72, 92, 107). 103, In c o n t r a s t , the seed weight component (Z) is r e l a t i v e l y unaff ect ed by N supplementation. To some e x t e n t , the response o f Y to N supplementation is reduced as a r e s u l t o f the a l lo m e tr y o f y i e l d component development ( 3 7 , 4 3 ) . All ome try r e f e r s to the r e l a t i o n s h i p o f the siz e o f d i f f e r e n t p l a n t p art s to one another. The concept arose from the observation o f S i n n o t t (90) t h a t "the size o f any organ depends upon the siz e o f the growing p o i n t out o f which i t has developed". A grass p l a n t begins shoot growth a t a s i n g l e ap ic al meristem. As t h i s meristem develops, l e a f buds appear with small meristems in t h e i r a x i l s . t i l l e r bud Since these t i l l e r buds are s m a l le r than the apical meristem o f t h e i r parent culm, the culms which are e v e n t u a l l y d erived from these t i l l e r buds w i l l per S i n n o t t 1s law. be s m al le r than the pa re nt culm, as Thus, more d i s t a l culms w i l l be p r o g r e s s iv e ly s m al le r. The spike a r i s e s from the apical meristem o f a culm. The apical meristem a r i s e s from the t i l l e r bud meristem, from which t h a t culm originated. Since more d i s t a l t i l l e r buds are s m a l l e r , t h e i r culm apices are also s m a l l e r , and thus they give r i s e to s m a l le r spikes. Thus, more d i s t a l tille rs have sm a l le r spik es , with fewer seeds. T h e r e fo r e , as N f e r t i l i z e r s t im u la t es t i l l e r i n g , it increases the production o f sm al le r culms, with sm al le r spi kes, bearing fewer seeds. This i s not to say t h a t N causes a decrease in average Y; on the c o n t r a r y , 13 N u s u a ll y causes an in crease in Y, as a r e s u l t o f b e t t e r p l a n t n u t r i t i o n . However, t h i s increase would probably be g r e a t e r i f not f o r the dampening e f f e c t o f allometry. Seed s i z e is q u i t e d i f f e r e n t from the o t h e r y i e l d components, in terms o f response to changes in resource supply. Many p l a n t species, when coping with a l i m i t e d resource supply, s a c r i f i c e seed number ( X- Y) but conserve seed size (Z) (91). Cereal crops appear to have evolved compensatory mechanisms to insure proper development o f Z in the face o f considerable s t r e s s . Pinthus and Sa r-S ha lo m, (80) found t h a t l a t e p l a n t i n g o f a wheat crop reduced the seed f i l l seed f i l l achieved. p e r i o d , but the ra t e o f increased t o compensate, with the r e s u l t t h a t normal G al la g h e r e t . Z was a l . ( 2 9 ) , working w it h b a r l e y , found t h a t stem carbohydrate reserves were m o b i li z e d to the g r ai n to a g r e a t e r degree in years o f poor c l im a t e and in s t r e s s f u l environments, again as a compens­ a t o r y mechanism to complete s e e d - f i l l i n g . Fi scher (24) found t h a t shading o f wheat pl a n t s during the g r a i n - f i l l little e f f e c t on y i e l d ; period had remarkably presumably, stem reserves were m o b i li z e d to the gr ai n to compensate f o r the reduction in c u r r e n t ph o to sy nt ha te . Stebbins (91) o f f e r e d an e v o l u t i o n a r y j u s t i f i c a t i o n f o r the con­ stancy o f Z . life The se e dl in g stage i s the most vulnera ble stage in the cycle o f the growing p l a n t . An optimum seed s iz e probably e x i s t s f o r a given sp ec ie s, in i t s ecosystem. Any sm a l le r seeds w i l l enough carbohydrate reserves to survive t h i s stage. not have Larger seeds c a r r y unecessary carbohydrate t h a t could have been used to increase the number o f seeds produced by the parent p l a n t . Thus, t her e may be a strong s e l e c t i o n pressure towards the e v o l u t i o n o f mechanisms t h a t maintain Z a t a f a i r l y preci se val ue. N is j u s t one o f many environmental factors a ffe ctin g y ie ld . The e f f e c t o f environmental f a c t o r s on y i e l d can be c l a r i f i e d by examining t h e i r e f f e c t on the y i e l d components ( 6 1 ) . Optimum balances among the y i e l d components may e x i s t f o r maximizing y i e l d , and these optima are probably d i f f e r e n t in d i f f e r e n t environments ( 3 5 , 3 8) . Thus, i t appears p l a u s i b l e t h a t c u l t i v a r d i f f e r e n c e s in y i e l d response to improvements in s i t e y i e l d p o t e n t i a l , described by the phrase "genotype x environment i n t e r a c t i o n " , may be caused by d i f f e r e n c e s in y i e l d component response (26). I f the y i e l d components are important in determining y i e l d and y i e l d response to environmental v a r i a b l e s , then breeders should be i n t e r e s t e d in changing the y i e l d components to maximize y i e l d . However, because o f t h e i r developmental interdependency, the expression o f the y i e l d components in segregating populations e x h i b i t (compensatory) c o r r e l a t i o n s (1). negative Se le c ti o n to increase one component r e s u l t s in a decrease in the ot he rs . There does appear to be some amount o f u n c o r re la t e d v a r i a n c e , however; the d i f f i c u l t task is to f i n d and u t i l i z e t h i s v ar ia nc e . Since Z i s r e l a t i v e l y i s o l a t e d from the compensatory f l u c t u a t i o n s t h a t c h a r a c t e r i z e X and Y, i t has been the e a s i e s t to work w i t h . Knott and Talukdar (56) were able to c a p i t a l i z e on the u n c or re la te d variance f o r t h i s component in t h e i r gene pool. By backcrossing a high Z parent i n t o an adapted c u l t i v a r and s e l e c t i n g f o r high Z, they e v e n t u a l l y i s o l a t e d li n e s which had the high X-Y (seeds per h e c ta r e ) o f the adapted r e c u r r e n t p a r e n t , but had the high Z o f the donor p a r e n t , and thus were higher y i e l d i n g . Gra fius e t . a l . (40) were able to f i n d unc or re la te d variance f o r Y in t h e i r p o p u la t i o n , and by making the proper cross, obtained a progeny whose mean y i e l d ( u ns el ec te d) was highe r than t h a t o f the h i g h e r - y i e l d i n g 15 pa ren t . This is a c h a r a c t e r i s t i c o f h e t e r o s i s , but t h i s was not t ru e h e t e r o s i s , since these progeny were homozygous (F^ g e n e r a t i o n ) . The apparent h e t e r o s i s was a t t r i b u t e d to "component complementation", which is a r e s u l t o f the m u l t i p l i c a t i v e i n t e r a c t i o n o f component t r a i t s described by G ra fiu s ( 3 4 ) and Adams and Duarte ( 2 ) . MATERIALS AND METHODS The e f f e c t o f spring n itr og en (N) topdressing on reduced N accumulation and on y i e l d components o f f o u r s o f t white w i n t e r wheat c u l t i v a r s adapted to Michigan, was measured in e i g h t f i e l d experiments, over three years (1978-1980) and in t h r ee environments (Mendon, East Lansing, and Saranac). In a d d i t i o n , y i e l d component responses across a s et o f environments o f d i f f e r i n g y i e l d p o t e n t i a l , were measured in f i f t e e n s i t e s , over two yea rs. N accumulation was measured in t h r ee o f the experiments o nl y. The experiments were a t th re e d i f f e r e n t s i t e s chosen to present a range o f con ditio ns o f N a v a i l a b i l i t y and y i e l d p o t e n t i a l . Mendon is in southwest lower Michigan (St. Joseph Co.) I t i s the wannest s i t e , with an average o f 2800 growing-degree days ( 4 0 ° base) between A p r i l 1 and Ju ly 31. This causes e a r l y m a t u r i t y o f the crop. The experiment was on a Nottawa sandy loam s o i l is a w e l l - d r a i n e d s o i l , and i t s (Typic A r g i u d o l l ) . low w a t e r - h o l d i n g ca p ac ity the high temperatures r e s u l t in drouthy con ditio ns a t t h i s site. This combined with Drouth stress combined with the e a r l y matu ration make t h i s s i t e low in y i e l d potential. The previous crop was corn, which had been supplied with f e r t il izer. East Lansing is in s o u th - c e n tr a l lower Michigan (Ingham Co.) The climate is c o o l e r , with an average o f 2400 growing-degree days between April 1 and Ju ly 31. Crop maturation is about ten days l a t e r than a t 16 17 Mendon. The experiment was on a Capac loam s o i l ( A e r i e O ch r aq u a lf ), 4 which i s somewhat poo rly dr ai ne d. adequate throughout the season. Moisture supply to the crop seemed The combination o f . t h e co o le r temp­ e r a t u r e s and adequate moisture supply make t h i s a s i t e of high y i e l d potential. In an attempt to reduce s o i l N f e r t i l i t y p r i o r to the experiment, a corn crop was grown the previous summer. fe rtilize d , m icro bial I t was not and the s t a l k s were incor pora ted i n t o the s o i l to s t im ul at e im m o b il iz a t i o n o f N. Saranac is l o c a t e d in w e s t - c e n t r a l I t is in te rm e d ia t e in temperature lower Michigan ( I o n i a Co.) (2600 growing-degree days). matures approximately seven days l a t e r than a t Mendon. was on a Miami loam s o i l (Typic H a p l u d a l f ) . The experiment This s o i l is w el 1- d r a i n e d , but moisture supply seemed adequate throughout the season. s oi l moisture but s l i g h t l y high temperatures cause t h i s in te rm e d ia t e in y i e l d p o t e n t i a l . For a l l as a green manure. The adequate s i t e to be experiments a t t h i s previous crop was soybeans inc or po ra te d i n t o the s o i l The crop s i t e , the before f l o w e r i n g , Thus, s o i l N f e r t i l i t y was probably high a t t h i s s i t e before the experiments. In t h i s research, f a c t o r i a l block design, were used. The number o f r e p l i c a t i o n s v a r i e d from three to n i n e , depending on the experiment. six re p lic a tio n s . apart. experiments with a randomized complete- All N accumulation experiments used Pl ot s were 3. 7 m long, w it h e i g h t rows spaced 30 cm Only the c e n t e r f o u r rows were harvested f o r gra in y i e l d , to avoid border e f f e c t s . N t opd res si ng , in the form of urea or ammonium n i t r a t e , was a p p lie d w i t h i n the f i r s t two weeks o f spring regrowth, using a mechanical spreader. This is the period o f t i l l e r in itia tio n . Later soil a p p lic ­ at io ns were made by hand; f o l i a r a p p l i c a t i o n s were made using a hand- 18 held sprayer. In the N accumulation experiments, a l l surface roots) p l a n t m a t e r ia l ( i n c lu d i n g in a 30 cm section o f row (randomly chosen from w it h in the second row o f the p l o t ) was harvested f o r N and y i e l d component a n a l y s i s , a t each o f th ree growth stages ( f u l l y m aturity). 48 hours. The samples were rin sed f r e e o f s o i l At the f u l l y - t i l l e r e d was weighed f o r use in t o t a l the N de t e r m in a ti o n . t i l l e r e d , a n t h e s is , and d r ie d a t 706C f o r and ant hesis stages, the e n t i r e sample dry m a t t e r c a l c u l a t i o n s , and then used in At the m a t u r i t y st age , ten culms were randomly s el ec te d from the sample, and used f o r the N de t e r m in a ti o n . Grain samples were drawn from the p l o t y i e l d bag f o r N de t e r m in a ti o n . Samples f o r N det erm in ati ons were ground in a Wiley m i l l through a screen with 0. 5 mm hole diam eter . t o pass The powder was s t i r r e d t houroughly, and a 30 mg po r t io n taken f o r the N measurement. N was measured using an automated m i c r o - k j e l d a h l Reduced apparatus (the Technicon Auto A n al y ze r ; Technicon C o rp ., Tarrytown, NY) ( 2 1 ) . This procedure uses a c o l o r i m e t r i c assay f o r ammonia-- the B e r t h e ! o t r ea c ti o n (97). Addition o f n i t r a t e ments ( 4 6 ) , to p l a n t samples did not change the measure­ i n d i c a t i n g t h a t only reduced forms o f N are measured in t h i s procedure. Y i e l d components and ha rv es t index were measured in the fo ll o w in g manner. A f t e r removing the ten culms f o r the N de t e r m in a ti o n , the number o f heads in the remaining po rt io n o f the sample was counted (ranging around 40 heads). The po r t io n was weighed and th reshed, and the number o f heads di vi de d i n t o th e weight o f threshed g r a i n , to obtain the average head weight. Harvest index was c a l c u l a t e d by d i v i d i n g the weight o f the threshed grain by the weight o f the po r t io n before th re sh in g. Total m at ter f o r the p l o t was c a l c u l a t e d by d i v i d i n g the harve st index i n t o dry the p l o t gr ai n y i e l d . Seed weight was determined by counting the number o f seeds in a f i v e g sample taken randomly from the p l o t y i e l d bag. The number o f seeds per head was c a l c u l a t e d by d i v i d i n g the average head weight by the average seed weight. Y i e l d and yield-component data were also c o l l e c t e d from the MSU Regional-Advanced Win ter Wheat Nurseries (01 s e r i e s ) in 1979 and 1980. These t r i a l s t e s t 30 e n t r i e s (adapted c u l t i v a r s and advanced l i n e s ) using a 5 x 6 r e c t a n g u l a r l a t t i c e design with three r e p l i c a t i o n s . were 3 . 7 m lon g, with fo ur rows spaced 30 cm a p a r t . were used at a l l Plots The same e n t r i e s s i t e s w i t h i n a y e a r , and 26 o f the 30 e n t r i e s were the same in both yea rs. Data were c o l l e c t e d a t e i g h t s i t e s in 1979 and a t seven s i t e s in 1980. A ll f o u r rows were harvested f o r gr ai n y i e l d . Before h a r v e s t , a random sample o f ten heads was c o l l e c t e d from each p l o t . The average head weight c a l c u l a t e d from t h i s sample was div id ed i n t o the p l o t gr ai n yield, to get the number o f heads per p l o t . Seed weight and number o f seeds per head were determined as in the N accumulation experiments described above. Four c u l t i v a r s were studi ed in the N accumulation experiments. These c u l t i v a r s are adapted to Michigan and are o f con sid er abl e economic importance in the s t a t e . Ionia was the f i r s t c u l t i v a r re leased from the MSU breeding program ( 1 97 2 ). I t s pedigree is Redcoat/3*Genesee. o f the wheat acreage in 1978. I t is t a l l I t was grown on 15% and l o w - t i T i e r i n g , w ith l a r g e seeds. Tecumseh was the next MSU re lease ( 1 9 7 4 ) , and was the most w id e ly grown c u l t i v a r in Michigan in 1978 (30% o f the acre age ). I t s g e n e ti c background i s q u i t e d i f f e r e n t from t h a t o f the o t h e r c u l t i v a r s . I t has 20 the same complex parentage as ' A r t h u r ' (a popular Purdue r e l e a s e ) . Tecumseh matures approximately seven days e a r l i e r than the o t h e r c u l t ­ i v a r s , which may account f o r i t s h ig h -tillerin g , lower y i e l d . I t is s h o rt - s tr a w e d , and high in g r ai n percent p r o t e i n . Yo rk st a r is a 1967 re le as e from C o r n e l l . Norin 10 /B re v o r // Y o r k w i n /3 /3 * G e n e s e e . I t s pedigree is I t y i e l d s well was grown on 13% o f the wheat acreage in 1978. in Michigan, and I t is in te rm e d ia t e in y i e l d components and h ei g h t . Augusta i s a new rel ea se from the MSU program ( 1 9 8 0 ) . pedigree i s 6 e n e s e e /R e d c o a t/ /Y o r k s t a r . y i e l d components to Y o r k s ta r . Its I t is s i m i l a r in h e i g h t and RESULTS AND DISCUSSION Data des cr ib in g the crop N s ta tu s a t the th ree s i t e s used f o r the N accumulation exp eriments, are presented in Table 1. At Mendon, the crop was lowest in N accumulation per h e c t a r e , p l a n t N co n c e n t r a ti o n , and y i e l d . Moisture st r e s s probably l i m i t e d N uptake and g r ai n y i e l d at this s ite . for y ie ld , East Lansing was in te r m e d ia t e f o r the N v a r i a b l e s and but showed the g r e a t e s t y i e l d response to N. r e f l e c t i o n o f the low s o i l N fe rtility This is a a t the beginning o f t h i s exp er ­ iment (see M a t e r i a l s and Methods), combined with adequate m oistu re, which promotes uptake o f N. Table 1 . - - The g r e a t e s t N accumulation, p l a n t N Crop N s t a t u s and y i e l d performance a t three l o c a t io n s in 1980. Meanf Location N accumulated in crop Wh ole-plant N conc'n. a t anthesi s kg/ha Mendon q/ha % 1.23 a 33.6 a 42 % 84 a * Grai n yiel d Mean* yiel d response to N East Lansing 146 b 1.52 b 43 .3 b 69 Saranac 187 c 1.82 c 46.9 c 12 *Means w i t h i n a column follow ed by d i f f e r e n t l e t t e r s are s i g n i f i c a n t l y d i f f e r e n t a t the 5 * l e v e l , by Duncan's M u l t i p l e Range T es t. '•'Experiment grand means (averages o f 72 o b s e r v a t io n s , over f o u r c u l t ­ i va r s and three ra t e s o f N t o p d r e s s in g .) *Mean response o f f o u r c u l t i v a r s . 21 22 co n c e n t r a ti o n , and y i e l d occurred a t Saranac. high N f e r t i l i t y st at us o f the s o i l Because o f the high s o i l This r e s u l t e d from the a t the beginning o f the experiment. N f e r t i l i t y , y i e l d response to supplemental N was low a t t h i s s i t e . Thus, the th ree s i t e s e x h i b i t e d a range o f conditions o f N supply and y i e l d p o t e n t i a l . Despite the d i s s i m i l a r i t y o f the environments, however, the c u l t i v a r p a t t e r n s o f N accumulation and dry m at te r prod­ uction were remarkably c o n s is t e n t over experiments. For t h i s reason, the data were averaged over s i t e s , and are presented in Figures 1 and 2. Data f o r the i n d i v i d u a l experiments can be found in Appendix A. Figure 1 shows t h a t , despite being the lowest in dry m at te r accumulation per h e c t a r e , Tecumseh was as high or higher than the o t h e r c u l t i v a r s in N accumulation per h e c t a r e , a t m a t u r i t y . I t is seen from Figure 2 t h a t Tecumseh lags s l i g h t l y behind the o th er c u l t i v a r s in N accumulation a t a n t h e s i s , but the d i f f e r e n c e s among c u l t i v a r s f o r N accumulation are much less than the d i f f e r e n c e s in dry m at te r accum­ ulation. In o th er words, Tecumseh maintained a s i g n i f i c a n t l y hi gh er w h o le - p l a n t N conc entr ation than the o t h e r c u l t i v a r s , a t a l l stages. growth The values f o r w h o le -p l a n t N concentration a t anthesis were 1.60 $, 1.53%, 1.52%, and 1.44%, f o r Tecumseh, Augusta, Y o rk s ta r , and Ionia, r e s p e c t i v e l y (LSD q ^= 0.05%). Tecumseh also took up approxim­ a t e l y twice as much N a f t e r a n t h e s i s , as did the o th er c u l t i v a r s below). (see Based on these o b s e r v a t io n s , i t i s concluded t h a t Tecumseh's high N requirement i s not a r e s u l t o f a d e f i c i e n c y in c ap ac ity f o r uptake o f s o i l N. Tecumseh appears to be a t l e a s t as ( i f not more) capable o f N uptake as the o th er c u l t i v a r s , which nevetheless y i e l d con side ra bly more than Tecumseh, in conditions o f low s oi l N f e r t i l i t y . 23 y crop dry matter 10 - be* b be e d fg jc -200 g £ a CD o ' >- 5- a a a a Y A o. o on -100 o cc □ Q. O CtL O r T RATE OF N TOPDRESSING ( k g / h a ) Figure 1 . — E f f e c t o f N to pdress ing on dry m a t t e r pr odu ction and N accumulation in f o u r wheat c u l t i v a r s , a t m a t u r i t y . * For a given v a r i a b l e (crop dry m a t t e r or crop N ) , bars topped by the same l e t t e r are not s i g n i f i c a n t l y d i f f e r e n t a t the 5 % l e v e l , by Duncan's M u l t i p l e Range T e s t. Data are means o f 18 o b s e r v a t io n s , over th ree locations. +I = I o n i a , T=Tecumseh, Y = Y or ks ta r, A=Augusta. 24 tO 10 - a } b O c c b CO - a 200 -C CD 5 c be a. o C£ b crop 1=I o n i a T=Tecumseh Y=Yorkstar A=Augusta cn LU >OC o crop dry matter b* „ B m b Q_ 100 b § H h ! T Y A FULLY TILLERED I T Y ANTHESIS A I T Y A MATURITY Figure 2 . — Dry m a t t e r production and N accumulation over t h r e e growth s t ag es , f o r f o u r wheat c u l t i v a r s . * W it h i n growth s t ag es , bars topped by the same l e t t e r are n o t s i g n i f i c a n t l y d i f f e r e n t a t the 5% l e v e l , by Duncan's M u l t i p l e Range T e s t. Data are means o f 18 o b s e r v a t io n s , ov er t h r ee l o c a t i o n s and t h r ee r a t e s o f N to p d r e s s in g . 25 The h i g h e s t - y i e l d i n g c u l t i v a r s were Augusta and Yo rk s ta r ; however, it i s seen in Figures 1 and 2 t h a t these c u l t i v a r s were no higher in N accumulation per hectare than the l o w e r - y i e l d i n g c u l t i v a r s Tecumseh. Thus, i t Io n ia and seems t h a t the breeding o f h i g h e r - y i e l d i n g c u l t i v a r s does not r e q u i r e g en et ic advance in ca pa ci ty f o r N uptake. However, these h i g h e r - y i e l d i n g c u l t i v a r s were lower in gr ai n percent p r o t e i n (see below). Several f e a t u r e s o f seasonal accumulation and s t r a w - g r a i n p a r t i t i o n i n g o f N f o r these fo ur c u l t i v a r s , are presented in Table 2. Tecumseh accumulated approximately twice as much N a f t e r anthesis as did the o t h e r c u l t i v a r s . This l at e -s e as o n surge o f N uptake caused Tecumseh to have the h ig h es t t o t a l 2, m a t u r i t y s t a g e ) . soil seasonal accumulation o f N a t m a t u r i t y (Figure In an experiment with la te -s e as on f o l i a r and /or N supplements, Tecumseh a l s o showed a high ca p ac ity f o r l a t e N Table 2 . - Pre- and p o s t-a nt he si s accumulation o f N, and g r a i n - s t r a w p a r t i t i o n i n g o f N, f o r four wheat c u l t i v a r s . N accumulated by crop: prean t h es is Veg etati ve ANr po s tanthesis Ky/na Grai n N N harvest in d e x * .............. 111 42 -60 102 0.7 0 b* Tecumseh 98 70 -30 100 0.63 a Yo rk st a r 117 32 -62 95 0 . 6 7 ab Augusta 108 40 -60 100 0.70 b Io n ia *Means fo llo w ed by the same l e t t e r are not s i g n i f i c a n t l y d i f f e r e n t a t the 5% l e v e l , by Duncan's M u l t i p l e Range Tes t. A l l data are means based on 54 o b s er va t io n s, over two loc at io ns and three rates o f N topdressing. +Net change in N content of non-grain po rt io n o f crop a f t e r an th es is . *N in gr ai n ( kg /h a) di vi de d by t o t a l crop N ( k g / h a ) . 26 uptake (Appendix B). Despite being the hi gh es t in t o t a l seasonal N accumulation, Tecumseh accumulated no more N in the grain po rt io n o f the crop, than the o t h e r c u l t i v a r s (Table 2 ) . This was a r e s u l t o f a lower net t r a n s l o c a t i o n o f N from the v e g et a ti ve p l a n t parts i n t o the g r a i n , for this c u ltiv a r. Tecumseh's low e f f i c i e n c y o f t r a n s l o c a t i o n is r e f l e c t e d in a low N ha r v e s t index. Thus, Tecumseh's high ca p ac ity f o r N uptake is negated ( i n terms o f gr ai n p r o t e i n production per hec tar e) by a compensating i n e f f i c i e n c y in i t s c a p a c i ty to t r a n s l o c a t e N i n t o the gr ai n port io n o f the crop. The r e l a t i o n s h i p between grain p r o t e i n production and y i e l d f o r the f o u r c u l t i v a r s , i s i l l u s t r a t e d in Table 3. The c u l t i v a r s accum­ ulated remarkably s i m i l a r amounts o f N in the g r a i n port io n o f the crop, per hectare. However, they d i f f e r e d in g r ai n y i e l d . Thus, d i f f e r e n c e s in gr ai n percent p r o t e i n among c u l t i v a r s was p r i m a r i l y a r e s u l t of d i f f e r e n c e s in carbohydrate accumulation per h e c t a r e , r a t h e r than in Table 3 . - - Re la t i o n s h i p between grain N and y i e l d f o r four wheat c u l t i v a r s . Grain N Grain yiel d kg/ha q/ha Augusta 88 b* 44.7 d 9.8 a Yo rk st a r 84 a 42.9 c 9.9 a Io n ia 88 b 40.8 b 10.8 b Tecumseh 88 b 36 .7 a 12.1 c C u l t i var Grain proteinr % *Means w i t h i n a column fo llowed by d i f f e r e n t l e t t e r s are s i g n i f i c a n t l y d i f f e r e n t a t the 5% l e v e l , by Duncan's M u l t i p l e Range Test. Data are means o f 54 o bs er va tio n s, over three lo c a t io n s and three rat es o f N topdressing. A d j u s t e d to 14% moisture. 27 N accumulation. This conclusion was reached in a study o f oat c u l t i v a r s d i f f e r i n g in gr oat percent p r o t e i n , as well (11). Using the data o f Table 3, the c o r r e l a t i o n between gr ai n percent p r o t e i n and g r a i n y i e l d is s t r on gl y negative ( r = - 0 . 9 8 4 * , p < 0 . 0 5 ) . fits the t re nd seen in the l i t e r a t u r e This neg ati ve c o r r e l a t i o n (see L i t e r a t u r e Review). Data showing the e f f e c t o f ea rl y- sea so n N topdressing on y i e l d , y i e l d components, and ha rv es t in dex, are averaged over s i x experiments and presented in Table 4 , f o r two c u l t i v a r s . l o c a t i o n - y e a r s can be found in Appendix C. Data f o r the s p e c i f i c In a l l s i x experiments, Tecumseh showed the g r e a t e s t y i e l d response to N. In f i v e o f the experiments, t h i s was associated with the l a r g e s t increas e in the y i e l d component heads/m 2 (X) f o r Tecumseh, as compared to the o t h e r c u l t i v a r s . I o n i a , on the o th er hand, had the l a r g e s t response of a l l cultivars for the y i e l d component seeds/head ( Y ) , in t h r ee o f the s i x experiments. Seed weight (Z) was . r e l a t i v e l y unaff ect ed by N t op dr ess ing . Thus, the two c u l t i v a r s have d i f f e r e n t s t r a t e g i e s o f N response: Tecumseh is more X responsive (and most y i e l d - r e s p o n s i v e ) , w hi le sive. Io n ia i s more Y-respon- Augusta and Y o rk s ta r seem to have more "balanced" responses than these two. The asso ci ati on between high head-number (X) high y i e l d responsiveness to N f o r Tecumseh, f i t s ature (see L i t e r a t u r e Review). responsiveness and a t re nd in the l i t e r ­ Why should X-responsiveness be more important than Y-responsiveness, as a mechanism f o r high y i e l d respons­ iveness to N? Three possible reasons are o f f e r e d below. F i r s t , the ontogeny o f y i e l d component development is in the order X, Y, Z. optimal Since N is u s u a ll y a p p li e d e a r l y in the season, N supply is f o r s t i m u l a t i n g an increase in X. The Y component response must 28 T Table 4 . - cultivars. E f f e c t o f N topdressing on y i e l d v a r i a b l e s o f two wheat Topdressi ng r a t e , kg/ha Variable Cultivar 0 90 LSD* 0.05 response to topdressing % Y i e l d , q/ha I o n ia 33.1 42.4 28 1.6 Heads/m2 Tecumseh 27.3 38.8 Ionia 304 349 42 15 24 Seeds/head Tecumseh 388 494 I o n ia 26 .2 29.7 27 13 1.4 Seed wt, mg Tecumseh 21.2 23.0 I on i a 44.4 44 .2 8 0 0.51 Tecumseh Harvest Index Ionia 35 .7 35 .8 0.368 0.379 0 3 0.008 Tecumseh 0.37 2 0.390 5 *Le as t s i g n i f i c a n t d i f f e r e n c e f o r comparison of i n d i v i d u a l means. Data are means o f 60 o b s e r v a t io n s , over three years and three l o c a t i o n s . 29 u t i l i z e what l i t t l e N may be remaining, or what can be m o b i li z e d from the t i l l e r v e g e t a t i v e t is s u e s . Hence, N supply is more r e s t r i c t e d to the developing s p i k e , than i t is to the t i l l e r . A second reason is t h a t Y is r e s t r i c t e d by developmental controls. X r e s u l t s from a v e g e ta ti v e process ( t i l l e r i n g ) , wh ile Y r e s u l t s from a reproductive process (spike d i f f e r e n t i a t i o n ) . Ve ge ta tiv e processes are p r i m a r i l y c o n t r o l l e d by n u t r i e n t supply, w hi le r epr odu cti ve processes ( i n determinate i n fl o r e s c e n c e s ) are c o n t r o l l e d by developmental l i m i t s , such as photoperiod and temperature. These l i m i t s dampen the ca p a c i ty o f Y to respond to increases in the supply o f n u t r i e n t s . A t h i r d reason is the dampening i n fl u e n c e o f a l l o m e t r y , as described in the L i t e r a t u r e Review. more d i s t a l w ill N st im u l a t e s the development o f culms, but because they a r i s e from sm a l le r meristems, they have s m al le r sp ik es , and hence a sm al le r Y. This reduces the magnitude o f the Y response to N. Table 4 shows t h a t N topdressing did not have a g r e a t e f f e c t on the har ve st index ( H I ) . significant) ars. N caused only a s l i g h t ( bu t s t a t i s t i c a l l y increase in H I ; t h i s increase was s i m i l a r f o r both c u l t i v ­ Thus, N does not a f f e c t the p a r t i t i o n i n g o f dry m at te r between g rai n and straw d i f f e r e n t y f o r these c u l t i v a r s . These f in d in g s are somewhat a t odds w ith those o f Donald and Hamblin ( 1 8 ) . t h a t N c o n s i s t e n t l y decreased H I , though s l i g h t l y . They report ed They al so found t h a t t h i s de c lin e was less in more N-responsive c u l t i v a r s . These modern c u l t i v a r s were less c o m p e ti ti v e , hence v e g e t a t i v e growth s t i m u l ­ ated by N did not cr ea te d e l e t e r i o u s l e v e l s o f mutual L i t e r a t u r e Review). shading (see Perhaps the d i f f e r e n t p l a n t types and more ample moisture supply in Michigan crea te an ecosystem o f lower co m pe tit io n, as compared to the s i t u a t i o n in A u s t r a l i a . I f t h i s is t r u e , the 30 increased v e g e ta ti v e growth in response to N would not n e c e s s a r i l y cause a de c lin e in HI. Increased number o f seeds per head (as a r e s u l t o f both increased number o f s p i k e l e t s per head and seeds per s p i k e l e t ) seem to cause the increase in HI in the Michigan s i t u a t i o n (personal observations). Does Tecumseh respond to increases in s i t e y i e l d p o t e n t i a l across a range o f production environments, in a fashion s i m i l a r to i t s response to N, i . e . by a large X-response? To answer t h i s q ue st io n, y i e l d and yield-component data were p l o t t e d as a f u n ct io n o f l o c a t io n mean y i e l d , over the set o f t e s t s i t e s used in the MSU wheat breeding program. These data are shown in Figure 3. v a r i a b l e s ( y i e l d and i t s The values o f the dependent components) are p l o t t e d as a percentage o f the mean value a t a p a r t i c u l a r l o c a t i o n - y e a r . This allows p r e s e n ta ti o n o f the data f o r y i e l d and i t s components on a s in g le graph. d e v ia t i o n o f a po in t above or below the 100% l e v e l In t h i s f i g u r e , i n d i c a t e s a value g r e a t e r o r less than t h a t o f the "average c u l t i v a r " , respectively. A regression l i n e slope s i g n i f i c a n t l y d i f f e r e n t from zero i n d i c a t e s "genotype x environment i n t e r a c t i o n " , i.e . t h a t the p a r t i c u l a r c u l t i v a r is responding d i f f e r e n t l y than the average c u l t i v a r to increases in s ite y ie ld potential. Figure 3 shows the data f o r Tecumseh; several o t h e r c u l t i v a r s are shown in Appendix D. Tecumseh expressed s i g n i f i c a n t genotype x environment i n t e r a c t i o n f o r y i e l d ; and t h i s i s seen to have been caused by an unusually high X response. The o t h e r two y i e l d components behave s i m i l a r l y to those o f the average c u l t i v a r . No s i g n i f i c a n t genotype x environment i n t e r a c t i o n was found f o r the other c u l t i v a r s Thus, i t (Appendix D ) . is concluded t h a t Tecumseh's high y i e l d response to improve­ ments in s i t e y i e l d p o t e n t i a l , like its response to N, is caused by 31 LO TECUMSEH o o CO r-J o Qi 2 O X o UJ o s: 5 + +■ o O o CO o W=YIELD B= 0 .5 7 * * X=HEADS/M2 B= 0 .8 6 * * Y=SEEDS/HEAD B= 0 .0 3 NS Z=SEED WT B = -0 .0 8 ns 30'. 0 35.0 40.0 45.0 LOCATION MEAN YIELD ( 50.0 Q / 55 .0 ha) Figure 3 . - E f f e c t o f i n c r e a s i n g s i t e y i e l d p o t e n t i a l on the y i e l d and y i e l d components o f Tecumseh wheat, r e l a t i v e to the gene pool mean. **Slope s i g n i f i c a n t l y d i f f e r e n t from zero a t the NS= slope not s i g n i f i c a n t l y d i f f e r e n t from zero. 1% probability level. 32 an unusual cap acity f o r X response. seems to be a general Thus, X-responsiveness f o r Tecumseh growth response to improvements in environmental resource supply, r a t h e r than a s p e c i f i c response to N. (The main f a c t o r s b el i e v e d to d i f f e r e n t i a t e s i t e s in Michigan with regard to y i e l d p o t e n t i a l are moisture supply and temp er at ur e) . Since X-responsiveness i s important in e x p l a i n i n g Tecumseh's high y i e l d responsiveness, experiments were conducted to examine some o f the f ea t u r es o f y i e l d component response in these c u l t i v a r s . The e f f e c t o f varying p l a n t population le v e l on y i e l d and y i e l d components is shown in Figure 4. With in cr e a s i n g seeding r a t e , X increased d r a m a t i c a l l y , but a compensating d e c li n e in Y (and to a l e s s e r e x t e n t Z) kept y i e l d almost constant. Thus, the increase in i n t e r p l a n t competition brought about by a s i x t e e n - f o l d increase in seeding r a t e causes compensatory adjustments in X and Y, such t h a t Z is almost un a ffe ct ed . almost unaff ect ed. HI was also This i n d ic a t e s t h a t the pr opo rtion o f grain to culm dry m a t te r remained c on st a nt , despite l a r g e declines in the dry weight o f both these two components. This is an e x c e l l e n t example o f the importance o f a l lo m e t r y in crop development. Since both the v e g e ta ti v e and spike portions o f the culm a r i s e from the same o r i g i n a l meristem, reduction in growth o f both due to crowding w i l l correlated. apical be h i g h l y The near constancy o f HI in the N experiments reported e a r l i e r was also a r e f l e c t i o n o f t h i s growth c o r r e l a t i o n . The e f f e c t o f i n c r e a s i n g s i t e y i e l d p o t e n t i a l components o f the "average c u l t i v a r " years, is presented in Figure 5. on the y i e l d (means o f 30 e n t r i e s ) , f o r two X and Y f l u c t u a t e in a compensatory manner across s i t e s , w h il e Z is almost un a ff e c t e d . The y i e l d and y i e l d component balances o f p a r t i c u l a r l o c a t io n s change from y e a r to y e a r . For example, Tuscola was the t h i r d - l o w e s t y i e l d i n g s i t e in 1979, 33 ELD SEED WT Li_1 UJ oo HEADS 600 LU OO Q UJ UJ 2 oo •s 0 - HARV. INDEX < fio>- 100 300 200 SEEDING RATE ( 400 500 kg/ h a ) Figure 4 . - E f f e c t o f seeding ra t e on y i e l d v a r i a b l e s in wheat. Saranac, 1980. +Means o f 24 o b s er va t io n s, over t hre e N rates and t hr ee c u l t i v a r s . 1980 50- ------------ ---------- 40 1 HEADS CD s e e d s 7 head 30 25 I— S 20 ea UJ LU 00 Cd X Q_ LU 0 0 N < 10 LU UJ s < X LU —I CO O -j < - o < x: 1 — CO < X LU O 0 Cd X O *— CtC X) X X O SI < _J O u CO X 1 — ca 2 —r 35 40 45 LOCATION MEAN YIELD 50 ( q/ 55 ha) Figure 5 . - V a r i a t i o n o f y i e l d components across s i t e s o f d i f f e r i n g y ie ld potential. + Means o f 90 obse rva tion s (30 genotypes x 3 r e p l i c a t i o n s ) . 60 35 and was c h a r a c t e r i z e d by a low X and moderate Y. In1980, i t h i g h e s t - y i e l d i n g s i t e , with a high X and moderate Y. was the Lenawee was a low-X, high-Y s i t e in 1979, but i t was hi gh- X, low-Y in 1980. The compensatory f l u c t u a t i o n s in X and Y across s i t e s and across y e a r s , probably r e f l e c t v a r i a t i o n in the s e a s o n a l i t y o f a l l o c a t i o n o f growth-promoting environmental temperatures. seasonal resources such as moisture and cool Since the y i e l d components develop s e q u e n t i a l l y , v a r i a t i o n in resource a l l o c a t i o n w i l l components differen tly, promote the d i f f e r e n t depending on how c l o s e l y the period o f ample resource a v a i l a b i l i t y coincides with the period o f growth o f the p a r t i c u l a r components ( 1 ) . the season, X w i l l be promoted; i f X and Y w i l l I f resources are a v a i l a b l e e a r l y in be promoted; i f they are a v a i l a b l e l a t e r , resources are eve nly d i s t r i b u t e d over Y w ill the season, be r e l a t i v e l y balanced. Z is seen to be r e l a t i v e l y i s o l a t e d from component compensation f o r v a r i a t i o n in s i t e y i e l d p o t e n t i a l ( Fig ur e 5 ) . I t was al so found to be r e l a t i v e l y u na ffe ct ed by N topdressing (Table 4) and a l t e r i n g the p l a n t population l e v e l (F igure 4 ) . Small grains have developed b u f f e r i n g systems to maintain Z a t an optimum l e v e l Review). (see L i t e r a t u r e Thus, v a r i a t i o n in t h i s component is not l i k e l y to be import­ ant in e x p l a i n i n g genotype x environment i n t e r a c t i o n . Do genotypes wit h i n h e r e n t l y d i f f e r e n t balances o f the y i e l d components d i f f e r in t h e i r a b i l i t y to compensate f o r seasonal f l u c t ­ uations in resource supply? Gra fius ( 35 , 3 6 ) , Gra fiu s and Okoli (38) and Grafius and Thomas (39) argue t h a t y i e l d component optima e x i s t f o r d i f f e r e n t environments, which supports t h i s p o s s i b i l i t y . An experiment was conducted in which N was supplied a t d i f f e r e n t dates, f o r Ionia and Tecumseh ( Fig ur e 6 ) . Y i e l d response to N was maximum f o r 36 50i r-H IONIA 50-i TECUMSEH SEED WT O 4- rH x YIELD CD s: HEADS y ie l OO Q o 30- 30 s e e d s / head N HEADS Q OO — I Q UJ UJ UJ 204- CO T IM E t im e WEEKS WEEKS WEEKS WEEKS WEEKS WEEKS Figure 6 . - E f f e c t o f d i f f e r e n t dates o f a p p l i c a t i o n o f N topdressing on y i e l d and y i e l d components o f two wheat c u l t i v a r s . r Means o f s i x obse rvat ions ; Saranac, 1979. ^130 kg/ha N as ammonium n i t r a t e a p p li e d a t time 0 (beginning o f spring r egr ow th ), +2 weeks, +4 weeks ( f u l l y t i l l e r e d s t a g e ) , or +6 weeks (hea ding ). 37 Io n ia when the N was a p p li e d a t the f u l l y - t i l l e r e d stage ( f o u r weeks a f t e r the beginning o f spr in g regro wth ). dates markedly reduced the response. A p p l i c a t i o n o f N a t the ot her In c o n t r a s t , a p p l i c a t i o n o f N any time in the f i r s t f o u r weeks caused an i d e n t i c a l y i e l d response, in Tecumseh. in X. These response v a r i a t i o n s were caused by response v a r i a t i o n s Y changed l e s s , d ifferential in compensation f o r the change in X. Thus, X response to date o f N a p p l i c a t i o n caused d i f f e r e n t i a l y i e l d response, in the h i g h - t i l l e r i n g c u l t i v a r Tecumseh, as compared to the l o w - t i l l e r i n g c u l t i v a r I o n i a . These d i f f e r e n c e s can be i n t e r p r e t e d in terms o f the d i f f e r e n t levels of apical i n h i b i t i o n in low- and h i g h - t i l l e r i n g c u l t i v a r s , suggested by As pin all (4) (see L i t e r a t u r e Review). stage i s the po in t o f maximum i n t e r - t i l l e r t im e, older t i l l e r s younger t i l l e r s . assume ap ic al Any t i l l e r The f u l l y - t i l l e r e d com pe tit io n, since a t t h i s dominance, i n h i b i t i n g growth of t h a t survives t h i s compe tit iv e "bottlen ec k" has a high p r o b a b i l i t y o f s u r v i v i n g to produce seed. supplementation reduces apic al of i n t e r - t i l l e r com pe tit io n, inhibition ( 4 ), it and t h i s e f f e c t w i l l Since n u t r i e n t reduces the amount be maximal if the n u t r i e n t s are supplied a t the time o f maximum competition ( f u l l y - t i l l e r e d stage). I f l o w - t i l l e r i n g c u l t i v a r s have a g r e a t e r degree o f apical dominance, as As pinall argued ( 4 ) , then i n t e r - t i l l e r competition a t the f u l l y - t i l l e r e d stage is probably g r e a t e r f o r these types. Aspinall also found t h a t n u t r i e n t supplementation released t h i s apical dominance to a g r e a t e r e x t e n t in the l o w - t i l l e r i n g c u l t i v a r , presumably because o f the g r e a t e r degree o f dominance t h a t e x i s t e d before the n u t r i e n t t re a tm e n t. I f these conclusions can be extended to the present study, the f o l l o w i n g e x p la n at io n o f the d i f f e r e n t responses o f I o n ia and 38 Tecumseh to d i f f e r e n t dates o f N a p p l i c a t i o n seem p l a u s i b l e . E a rl y a p p l i c a t i o n o f N st im u l a t e s t i l l e r i n g in I o n i a , but because o f the higher le v e l o f i n t e r - t i l l e r co m p e ti ti o n , few o f these t i l l e r s survive through the comp et itiv e bot tle n ec k o f the f u l l y - t i l l e r e d stage. Ap p lic a t io n o f N a t the f u l l y - t i l l e r e d stage r e l i e v e s t h i s co m p e ti ti o n , al lo wi ng many t i l l e r s X response. to survive and bear seed, which appears as a la rge E a rl y a p p l i c a t i o n o f N s t im ul at es t i l l e r i n g in Tecumseh as w e l l , but since i n t e r - t i l l e r competition i s l e s s , the com petitive bot tle ne ck o f the f u l l y - t i l l e r e d stage is less r e s t r i c t i v e , and a high proportion o f these t i l l e r s response o f Tecumseh w i l l survi ve to m a t u r i t y . Thus, the larg e X occur over a range o f dates o f N a p p l i c a t i o n . I f these hypotheses are t r u e , then the low y i e l d responsiveness o f Io n ia to N may be an a r t i f a c t o f the e a r l y date o f a p p l i c a t i o n o f N commonly used in commercial production. I t is more convenient to apply N e a r l y in the season, because spring rain s may make f i e l d w o r k impossible f o r considerable periods o f time. However, these data and conclusions suggest t h a t producers o f Io nia wheat may be s a c r i f i c i n g y i e l d with this practice. The high responsiveness o f Tecumseh to N and to improvements in o t h e r environmental f a c t o r s may be a r e s u l t o f the f l e x i b i l i t y o f i t s tille rin g response t o seasonal v a r i a t i o n s in resource supply. Tecumseh can increase X despite d i f f e r e n c e s in the date o f maximum resource a l l o c a t i o n in d i f f e r e n t environments. Thus, on the average, i t appears to be more responsive to improvements in the environment. Y i e l d component balance and response may thus be an important f a c t o r in e x p l a i n i n g genotype x environment i n t e r a c t i o n . as a "model" environmental v a r i a b l e which can reveal N may serve such i n t e r a c t i o n s . Y i e l d components are e a s i l y measured, and t h e i r response t o N may simul­ ate t h e i r response to environments, e s p e c i a l l y i f date o f a p p l i c a t i o n is used as an independent v a r i a b l e (along with r a t e o f a p p l i c a t i o n ) . D i f f e r e n t dates o f a p p l i c a t i o n simulate the seasonal v a r i a t i o n of resource a l l o c a t i o n t h a t occurs in production environments, and hence model an important f a c t o r i n f l u e n c i n g genotype x environment i n t e r a c t i o n . SUMMARY AND CONCLUSIONS 1. Tecumseh's high N requirement does not r e s u l t from a d e f i c i e n c y in ca p a c i ty f o r N uptake. 2. Tecumseh accumulates approximately twice as much N a f t e r anthesis as several 3. o th er c u l t i v a r s , , which are more t y p i c a l o f the MSU gene pool. Tecumseh is less e f f i c i e n t in t r a n s l o c a t i n g N from v e g e ta ti v e p l a n t p ar t s i n t o the g r a i n , than several o t h e r c u l t i v a r s . 4. Di ff e r e n c e s in g r a i n percent p r o t e i n among f o u r c u l t i v a r s (Ion ia, Tecumseh, Y o r k s t a r , and Augusta) are due to d i f f e r e n c e s in carbo­ hydrate accumulation in the g r a i n , r a t h e r than N accumulation. 5. Tecumseh's high y i e l d responsiveness to N is caused by a high response o f the y i e l d component heads/m 6. 2 (X). Tecumseh's high y i e l d response to improvements in s i t e y i e l d p o t e n t i a l i s al so caused by a high X response. 7. The seed weight component (Z) in the supply o f environmental is r e l a t i v e l y una ffected by f l u c t u a t i o n s resources. X and Y (seeds/head) a d j u s t in a compensatory fashion to l i m i t a t i o n s in resource supply. 8. The l o w - t i l l e r i n g c u l t i v a r I o n ia is very s e n s i t i v e to the s e a s o n a l i t y o f resource a l l o c a t i o n . N u t r i e n t supplements app lie d a t the 40 41 f u l l y - t i l l e r e d stage cause a maximum y i e l d response in t h i s c u l t i v a r . This observation i s i n t e r p r e t e d as i n d i c a t i n g a high l e v e l o f i n t e r - t i l l e r competition in t h i s c u l t i v a r . 9. The h i g h - t i l l e r i n g c u l t i v a r Tecumseh is less s e n s i t i v e to the season­ a l i t y o f resource a l l o c a t i o n . time up u n t i l N u t r i e n t supplements a p p lie d a t any the f u l l y - t i l l e r e d in t h i s c u l t i v a r . stage cause a s i m i l a r y i e l d response This observation i s i n t e r p r e t e d as i n d i c a t i n g a low l e v e l o f i n t e r - t i l l e r competition in t h i s c u l t i v a r . 10. The low le v e l o f i n t e r - t i l l e r competition in Tecumseh, which allows i t to u t i l i z e n u t r i e n t s or o t h e r environmental resources across a range o f dates, may thus e x p l a i n the high X-responsiveness o f t h i s c u l t i v a r , both in terms o f response to N and t o v a r i a t i o n s in s i t e y ie ld potential. This low l e v e l thus be the cause of genotype x environment i n t e r a c t i o n f o r Tecumseh. o f i n t e r - t i l l e r competition may APPENDICES APPENDIX A EFFECT OF N TOPDRESSING ON DRY MATTER AND N ACCUMULATION AT THREE GROWTH STAGES, FOR FOUR WHEAT CULTIVARS: DATA FROM SPECIFIC LOCATIONS, IN 1980 42 APPENDIX A Table A l . - E f f e c t o f N topdressing on dry m a t te r production and N accumulation a t three growth stages in f o u r wheat c u l t i v a r s , at Mendon. Variable Dry matter, mt/ha Growth stage Fully tille re d Anthesis Maturity Topdressing r a t e , kg/ha Fully t i l lered Anthesis 3.84 2.98 3.18 3.53 45 3.6 8 3.03 3.53 3. 7 7 90 4.2 1 3.27 3.95 3. 52 0 6.81 4.90 6.82 5.9 6 45 6.58 6.17 7.84 7.43 90 8.00 6. 37 7.43 7. 50 0 7.79 6.67 7.86 7.96 45 9.18 7.98 9.38 9.44 10.3 8.56 10.6 52 .9 43.4 46.0 49.0 45 53.8 50 .2 59 .7 57.6 90 75.0 61.0 65.6 62.5 0 69.5 55.3 75.8 62.3 45 72.3 79.5 97.6 90.9 91.0 98.1 111 65. 2 57 .6 58 . 9 66. 1 45 70.7 96.1 89 . 9 78.9 104 107 91.7 0.57 1.19 0. 94 10 18 110 0 90 LSD* 0.05 10.1 0 90 Maturity Augusta 0 90 N accumul­ a te d, kg/ha Io nia C u l t i var Tecumseh Yorks t a r 16 101 * L e a s t s i g n i f i c a n t d if f e r e n c e f o r comparison o f i n d i v i d u a l means. are means o f s i x o b s e r v a tio n s . Data 43 APPENDIX A Table A 2 . - E f f e c t o f N topdressing on dry m a t t e r production and N accumulation a t th ree growth stages in f o u r wheat c u l t i v a r s , a t East Lansing. Variable Dry matter, mt/ha Growth Topdressing stage r a t e , kg/ha Fully tille re d Anthesis Maturi t y N accumul­ a te d, kg/ha Fully t i l lered Anthesis Maturity Io n ia Cul t i var Tecumseh V o rk st a r Augusta 0 1.78 1.60 1.87 1.61 45 1.76 1.79 1.94 1.97 90 1.96 1.74 1.76 1.76 0 5. 60 4.16 5.74 5.96 45 8. 63 5.45 8.67 6.51 90 9.22 6.89 8. 2 3 7.82 0 7. 5 8 6. 64 7.8 8 7.66 45 11.2 10.1 12.0 11.0 90 13.1 1 1 .8 1 2.0 12.7 0 30.4 28.9 33.4 29 .0 45 46.7 53.4 60.3 52 .4 90 61.7 61.0 55 .3 62.8 0 62.3 52.4 64 .2 6 6 .6 45 120 90 160 0 94.3 8 6 .0 147 98.0 141 144 92.0 89.6 LSD* 0. 05 0.39 1.4 1 .2 10 29 163 91.4 45 133 147 170 *I! jon j 90 193 212 172 210 * L e a s t s i g n i f i c a n t d if f e r e n c e f o r comparison o f i n d i v i d u a l means. are means o f s i x o b s e rv a tio n s . 26 Data 44 APPENDIX A Table A 3 . - E f f e c t o f N topdressing on dry m at te r production and N accumulation a t t hr ee growth stages in fou r wheat c u l t i v a r s , a t Saranac. Variable Dry m a t te r , mt/ha Growth Topdressing stage r a t e , kg/ha Fully t i l i e red Anthesi s M aturity N accumulated, kg/ha Fully t i 1l e r e d Anthesis Maturity Io nia Cultivar Tecumseh York sta r Augusta 0 3. 0 7 2.55 3.21 2.86 45 2.59 2.76 2.6 4 2. 62 90 2.89 2.76 2.66 2.78 0 6.17 4.79 7.16 5. 94 45 8.16 7.19 8.40 6.85- 90 8.14 7.53 7.82 8.22 0 12.9 10.1 11.2 1 1.8 45 14.2 11.4 12.3 11.9 90 14.5 12.1 1 2.0 12.6 0 55.0 52 .0 62.5 57.7 45 85.0 84.7 82 .8 83.1 90 96.4 97.2 95 .1 96.1 0 74.8 68.5 94.3 75.9 45 148 126 144 129 90 182 178 194 187 0 144 164 147 140 45 199 214 182 174 90 240 240 210 197 * L e a s t s i g n i f i c a n t d i f f e r e n c e f o r comparison o f i n d i v i d u a l means, are means o f s i x o b s e r v a t i o n s . LSD* 0.05 0.61 1.4 1.4 16 10 27 Data APPENDIX B EFFECT OF LATE-SEASON N SUPPLEMENTS ON GRAIN N AND YIELD VARIABLES OF THREE WHEAT CULTIVARS 45 APPENDIX B C u l t i v a r d i f f e r e n c e s in ca p a c i ty to accumulate N l a t e in the season were i n v e s t i g a t e d in an experiment t e s t i n g the e f f e c t o f l a t e season f o l i a r and /o r s o i l N a p p l i c a t i o n s on N accumulation in the grain (Table B l ) . Both s oi l and f o l i a r N treatments increased N accumulation in the g r a i n , although the e f f e c t was g r e a t e r f o r the s o i l tre a tm e n t. The f o l i a r trea tme nt caused a s l i g h t amount o f l e a f burn, r e s u l t i n g in reduced seed weight and lowered y i e l d s . The increase in gr ai n percent p r o t e i n f o l l o w i n g f o l i a r N a p p l i c a t i o n was thus p a r t i a l l y a r e s u l t of lower carbohydrate accumulation in the g r ai n po rt io n o f the crop. N accumulation i n the g r a i n f o l l o w i n g the combined s o i l and f o l i a r treatments was less than t h a t f o l l o w i n g s o i l trea tme nt a l o n e , suggesting t h a t f o l i a r damage reduced the crop's a b i l i t y to take up N from the s o i l . This supports the f i n d i n g s o f Mik e se ll al. (73) and Paulsen (70) and Neales e t . t h a t the leaves are important in uptake o f s oi l N. Tecumseh showed the g r e a t e s t increas e in N accumulation ( d i f f e r ­ ence between t r e a t e d and unt re at ed p l o t s ) f o r both the s o i l and f o l i a r t r e at m e nt s , although c u l t i v a r d i f f e r e n c e s were not s i g n i f i c a n t . showed very l i t t l e Augusta in crease in N accumulation from e i t h e r t r e at m e nt . 46 APPENDIX B Table B l . — E f f e c t o f la te -se aso n f o l i a r and s o i l N a p p l i c a t i o n s on gr ai n N and y i e l d v a r i a b l e s of t h r ee wheat c u l t i v a r s . Saranac, 1980. N tre a tm e n t 1" Parameter none soil fo lia r soil + fo lia r Ionia 92 120 95 114 Tecumseh 85 116 98 112 Augusta 93 110 93 112 I o n ia 1 0 .8 14.4 12.2 14.4 Tecumseh 1 2.2 14.9 13.8 15.2 9.6 11.5 11.6 12.3 C u l t i var N accumulated in the g r a i n , kg/ha Grain percent protein* Augusta LSD 0.05 11 0.57 Seed w e ig h t, mg Averaged over cul t i vars 41 .1 41.5 39.2 39.8 1.1 Grain y i e l d , Averaged over cul t i vars 44.0 44.4 39.7 42 .3 2.5 kg/ha t Soil t rea tm en t: 90 kg/ha N as ammonium n i t r a t e sidedressed a t an th es is . F o l i a r treatm en t: app roximately 170 kg/ha N a p p li e d as a f o l i a r spray ( 12% urea s o l u t i o n ) f o u r days a f t e r ant hes is. ^Adjusted to 14% moisture. APPENDIX C EFFECT OF N TOPDRESSING ON YIELD VARIABLES OF SEVERAL WHEAT CULTIVARS DATA FROM SPECIFIC LOCATION-YEARS 47 APPENDIX C Table C l . - cu ltivars. E f f e c t o f N topdressing on y i e l d v a r i a b l e s o f two wheat Saranac, 1978, experiment 1. Topdressing r a t e , kq/ha Variable Cul t i var 0 90 LSD* 0.05 response to topdressing % Y i e l d , q/ha I o n ia 31.7 35.0 10 3.1 Heads/m 2 Tecumseh 23 .6 26.9 Io n ia 238 229 14 -4 35 Seeds/head Tecumseh 243 291 I o n ia 31 .5 36.2 20 15 3. 5 Seed w t , mg Tecumseh 26.7 26.5 I o n ia 41. 1 40.9 -1 -1 1 .1 Harvest Index Tecumseh 35.1 34.3 Ioni a 0. 395 0.401 -2 2 0.011 Tecumseh 0.369 0.377 * L e a s t s i g n i f i c a n t d i f f e r e n c e f o r comparison o f i n d i v i d u a l means. are means o f 24 obse rv at ion s. 2 Data 48 APPENDIX C Table C 2 . - E f f e c t o f ' N topdressing on y i e l d v a r i a b l e s o f f o u r wheat cu ltivars. Saranac, 1978, experiment 2. Topdre ssing r a t e , kg/ha Variable Cul t i var 0 LSD* 0.05 90 response to topdressing % Y i e l d , q/ha Heads/m 2 Seeds/head Seed w t, mg Ion ia 2 2 .2 30 .3 Tecumseh 21.6 33.6 Yo rk st a r 24.1 32.1 Frankenmuth 28.2 37.2 Io n ia 170 201 Tecumseh 242 333 Yo rk st a r 211 263 25 Frankenmuth 241 286 19 Io n ia 30.9 36.6 Tecumseh 25.9 28.3 19 9 Y o rk st a r 32.7 35 .8 10 Frankenmuth 33.0 35.0 6 Io nia 41.8 41.1 -2 Tecumseh 34.0 35.2 Y o rk st a r 34.9 32.2 -8 Frankenmuth 36.0 34 .4 -4 36 4.4 56 33 32 ' 18 60 4. 6 38 4 1.2 * L e a s t s i g n i f i c a n t d i f f e r e n c e f o r comparison o f i n d i v i d u a l means. are means o f nine o bs er va tio n s. Data 49 APPENDIX C Table C 3 . - E f f e c t o f N topdressing on y i e l d v a r i a b l e s o f t hr ee wheat cultivars. Saranac, 1979. Topdressing r a t e , kg/ha Va ria bl e Cultivar 0 90 LSD* 0.05 response to topdressing to Y i e l d , q/ha Heads/m 2 Seeds/head Seed w t , mg Ionia 45.0 48 .6 Tecumseh 32.3 45.0 Yo rk st a r 42.4 48.0 13 Io n ia 255 265 4 Tecumseh 312 419 Yo rk st a r 238 288 Io nia 35 .7 37.4 Tecumseh 24.0 25.8 Y o rk s ta r 39 .9 38.6 -3 Io n ia 47.7 47 .2 -1 Tecumseh 42.0 40.0 Yo rk st a r 43.0 41.8 8 5.0 39 39 34 21 5 2 .1 1-4 7 -5 -3 *Least s i g n i f i c a n t d i f f e r e n c e f o r comparison o f i n d i v i d u a l means. are means o f nine obs ervations. Data 50 APPENDIX C Table C 4 .-- E f f e c t o f N to p d r e s s in g on y i e l d c u ltiv a r s . Mendon, 1980. v a r ia b le s o f f o u r wheat Topdressing r a t e , kg/ha Variable Cul t i va r 0 90 LSD* 0.05 response to topdressing % Y i e l d , q/ha Heads/m 2 < Seeds/head Seed w t , mg Harvest Index Ionia 26.0 35.4 Tecumseh 23.8 34.5 Yo rk st a r 29.4 41.5 41 Augusta 29.5 42.6 44 Ionia 288 343 19 Tecumseh 498 529 Yo rkstar 331 387 17 Augusta 421 424 1 Ionia 21.4 23.0 7 Tecumseh 14.1 18.1 York sta r 22.6 25.5 8 Augusta 18.3 24.6 34 Ionia 43.1 46.2 8 Tecumseh 34.9 36.8 Yo rk st a r 40.1 42.1 5 Augusta 39 .3 41.1 5 I o n ia 0. 335 0.353 5 Tecumseh 0. 359 0.403 York sta r 0. 378 0.394 4 Augusta 0. 373 0.422 13 *L e a s t s i g n i f i c a n t d i f f e r e n c e f o r are means o f s i x o b s e r v a tio n s . 40 2. 5 45 6 64 3. 0 28 5 0.87 0.024 12 comparison o f i n d i v i d u a l means. Data 51 APPENDIX C Table C 5 . ~ c u ltiv a r s . E f f e c t o f N to p d re s s in g on y i e l d v a r ia b le s o f f o u r wheat East L a n sin g , 1980. Topdressing r a t e , kg/ha Va ria bl e Cultivar 0 90 LSD* 0.0 5 response to topdressing " Yield, Heads/m q/ha ? Seeds/head Seed w t, mg Harvest Index % Ionia 30.2 53.5 Tecumseh 26.5 47.5 Yorkstar 33.7 51.3 52 Augusta 33.2 56.4 70 Ionia 355 533 50 Tecumseh 420 680 Yorkstar 382 546 Augusta 389 556 43 Ionia 19.3 22.9 19 Tecumseh 19.6 2 0.1 Yorkstar 382 546 43 Augusta 2 1 .8 26.4 21 Ionia 45.1 44 .6 -1 Tecumseh 32.9 35.2 Yorkstar 39.0 38.6 -1 Augusta 39.6 38.8 -2 I onia 0. 398 0.408 Tecumseh 0.399 0.405 Yorkstar 0.428 0. 430 0 Augusta 0.43 3 0. 443 2 11 4.3 QG yt) 79 62 43 3 3.8 7 1.4 3 0 .0 16 *L e a s t s i g n i f i c a n t d if f e r e n c e f o r comparison o f i n d i v i d u a l means. are means o f s i x o b s e r v a tio n s . 2 Data 52 APPENDIX C Table C 6 .- - E f f e c t o f N to p d re s s in g on y i e l d v a r ia b le s o f f o u r wheat c u ltiv a r s . Saranac, 1980. Topdressing r a t e , kg/ha Variable Cul t i var 0 90 LSD* 0.05 - Y i e l d , q/ha Heads/m^ Seeds/head Seed w t , mg Harvest Index response to topdressing % Io n ia 43.7 50 . 8 Tecumseh 35.9 45 .4 Y o rk s ta r 44. 9 46.2 3 Augusta 49. 3 51 . 8 5 Io n ia 519 520 0 Tecumseh 610 710 Y o rk st a r 471 509 8 Augusta 452 513 13 I o n ia 18.2 22 .3 23 Tecumseh 16.9 19.2 Yo rk st a r 25.1 25 .3 1 Augusta 27.5 28.0 2 Io nia 47.5 45. 1 -5 Tecumseh 35.3 33.4 Yo rk st a r 39.8 36.0 -10 Augusta 40.4 36.7 -9 Io n ia 0.342 0.352 Tecumseh 0.360 0.373 Yo rk st a r 0. 403 0. 387 -4 Augusta 0.419 0.414 -1 16 4.3 96 3.4 1 .8 26 16 14 -5 3 4 0. 026 * L e a s t s i g n i f i c a n t d i f f e r e n c e f o r comparison o f i n d i v i d u a l means. are means o f s i x o b s e rv a tio n s . Data APPENDIX D EFFECT OF INCREASING SITE YIELD POTENTIAL ON THE YIELD AND YIELD COMPONENTS OF SEVERAL WHEAT CULTIVARS 53 APPENDIX D ID I ONI A O <0 ^ cr: CJ d CD ■> ^ x _L i ■oT 2 s s: 2 „ -s- B E T D ;— "T" □ Y A v A a P □ _________ □ n uj t □ a A y n a & a A / j. 0 1 ® __ Qi Q L_l I . O O CO V H IE L D X=HEADS/M2 Y=SEEDS/HEAD 2= SEED WT B= - 0 . 0 5 ns B= 0 .0 6 NS B= - 0 . 0 5 NS B= - 0 . 0 5 NS o LD I 30'.0 3 5 .0 40.0 45.0 LOCATION MEAN YIELD 50.0 55.0 60'.0 (q/ha) Figure D l . - E f f e c t o f inc re as in g s i t e y i e l d p o t e n t i a l on the y i e l d and y i e l d components o f I o n i a wheat, r e l a t i v e to the gene pool mean. *NS= slope not s i g n i f i c a n t l y d i f f e r e n t from zero. 54 APPENDIX D ID YORKSTAR o CO o X L-U CD o o O CO W=YIELD X=HEADS/R Y=SEEDS/HEAD B= - 0 .1 0 Z=SEED WT B= 0 .1 8 o o U3 30'. 0 40.0 45.0 LOCATION MEAN YIELD SO.O SS.O 60.0 (q /h a ) Figure D 2 . - E f f e c t o f inc re asi ng s i t e y i e l d p o t e n t i a l on the y i e l d and y i e l d components o f Yo rkstar wheat, r e l a t i v e to the gene pool mean. *NS= slope n o t s i g n i f i c a n t l y d i f f e r e n t from ze ro . 55 APPENDIX D ID AUGUSTA O CO r-vj o os o 22 >■n o X ^ w z 1A # 1 A ------------A----------------------------------------I 1 -I B A "| c n LU O Q• o W=YIELD o Z=SEED WT r* co o to B= - 0 . 1 3 n s * B= - 0 . 02 ns B= - 0 , 0 5 ns B= 0 .0 2 ns J_ _ _ _ _ _ _ I_ _ _ _ _ _ _ L 30*. 0 35.0 40.0 45.0 LOCATION MEAN YIELD 50.0 55.0 60'.0 (q /h a ) Figure D3.— E f f e c t o f i n cr ea si ng s i t e y i e l d p o t e n t i a l on the y i e l d and y i e l d components o f Augusta wheat, r e l a t i v e to the gene pool mean. *NS= slope not s i g n i f i c a n t l y d i f f e r e n t from zero. 56 APPENDIX D in FRANKENMUTH o CD O X o £ s ° ° o 05 LL. O O o 00 ( > Q_ 0 o o W=YIELD: X=HEADS/M2 : Y=SEEDS/HEAD Z=SEED WT B= -0.01NS B= 0 .2 3 ns NS B= B= (p o o la 30'. 0 35.0 40.0 45.0 LOCATION MEAN YIELD ( Q / 50.0 55.0 60'. 0 ha) Figure D 4 . - - E f f e c t o f i n c r e a s i n g s i t e y i e l d p o t e n t i a l on the y i e l d and y i e l d components of Frankenmuth wheat, r e l a t i v e to the gene pool mean. *NS= slope n o t s i g n i f i c a n t l y d i f f e r e n t from zero. LITERATURE CITED LITERATURE CITED 1. Adams, M. W. 1967. Basis o f y i e l d component compensation i n crop pl a n t s w it h special r e f e r e n c e to the f i e l d bean, Phaseolus v u l g a r i s . Crop Sc i. 7 :5 05 -5 1 0. 2. Adams, M. W. and Rodrigo Duarte. 1961. The n a t u r e o f he te ro si s f o r complex t r a i t s in a f i e l d bean cross. Crop Sci. 1 :380. 3. A s p i n a l l , D. 1961. The co nt ro l o f t i l l e r i n g in the barley p l a n t I. The p a t t e r n o f t i l l e r i n g and i t s r e l a t i o n to n u t r i e n t supply. Aust. J. B i o l . S c i. 14:49 3-5 05. 4. A s p i n a l l , D. 1963. The co nt ro l o f t i l l e r i n g in the bar le y pl a n t II. The c on tro l o f t i l l e r - b u d growth during e a r development. Aust. J. B i o l . Sc i. 16:28 5-3 04. 5. Baba, 6. Balko, L. G. and W. A. Ru s s e l l. 1980. l i n e s to N f e r t i l i z e r . Agron. J. 7. Batey, Thomas and David J. Reynish. 1976. The infl ue nc e o f n i t ­ rogen f e r t i l i z e r on gr ai n q u a l i t y in w i n t e r wheat. J. Sc i. . Fd. Ag ri c . 27: 98 3- 9 90 . 8. B h a t i a , C. R. 1975. C r i t e r i a f o r e a r l y gen er ation s e l e c t i o n in wheat breeding programmes f o r improving p r o t e i n p r o d u c t i v i t y . Euphytica 2 4 : 7 8 9 -7 9 4 . 9. B h a t i a , C. R . , and R. Rabson. 1976. Bi oenergetic considerations in cere al breeding f o r p r o t e i n improvement. Science 194: 1418-1421. I. 1961. varieties. Mechanism o f response to heavy manuring in r i c e I n t e r n a t . Rice Comm. N e w sl et te r 1 0 : 9 - 1 6 . Response o f maize inbred 7 2 : 7 2 3 -7 2 8 . 10. Burkholder, Paul R. and I I d a McVeigh. 1940. Growth and d i f f e r e n t ­ i a t i o n o f maize in r e l a t i o n to n i tr o g e n supply. Am. J. Bot. 27: 41 4- 4 24 . 11. Ca tald o, D. A . , L. E. Schrader, D. M. Peterson, and Dale Smith. 1975. Factors a f f e c t i n g seed p r o t e i n c o n ce nt r at io n o f oats I. Metabolism and d i s t r i b u t i o n o f N and carbohydrate i n two c u l t i v a r s t h a t d i f f e r in groat p r o t e i n c o n ce nt r at io n. Crop S c i. 1 5 : 1 9 -2 3 . 57 58 12. Chandler, Robert F. 1969. Pl ant morphology and stand geometry in r e l a t i o n to n i t r o g e n . Jn_: E a s t i n , J. D ., F. A. Haskins, C. Y. S u l l i v a n , and C. H. M. Van Bavel ( e d s . ) , Ph ysi ological aspects o f crop y i e l d . American So ciety o f Agronomy, Madison, Wis. 13. C h e v a l ie r , Peggy and L. E. Schrader. 1977. Genotypic d i f f e r e n c e s in n i t r a t e abs or pti on and p a r t i t i o n i n g o f N among p l a n t parts in maize. Crop Sci. 17 :8 97 -9 01. 14. Croy, 15. Daigger, L. A . , D. H. Sander, and G. A. Peterson. 1972. Nitrogen con ten t o f w i n t e r wheat during growth and ma tu ra tio n. Agron. J. 68 :8 15 -8 18. 16. Dal l i n g , M. J . , G. M. H a l l o r a n , and J. H. Wilson. 1975. The r e ­ l a t i o n between n i t r a t e reductase a c t i v i t y and grain nitrog en p r o d u c t i v i t y in wheat. Aust. J. Ag ric . Res. 2 6 : 1 - 1 0 . 17. Deckard, E. L. and R. H. Busch. 1978. N i t r a t e reductase assays as a p r e d i c t i o n t e s t f o r crosses and l i n e s in spring wheat. Crop S c i . 18:28 9-293. 18. Donald, C. M. and J. Hamblin. 1976. The b i o l o g i c a l y i e l d and ha rv e st index o f ce r e a ls as agronomic and p l a n t breeding c r i ­ te ria . Adv. in Agron. 28:3 6 1- 4 05 . 19. Eck, Ha rol d V. and B i l l y B. Tucker. 1968. Winter wheat y i e l d s and response to ni tro ge n as a f f e c t e d by s o i l and c l i m a t i c f a c t o r s . Agron. J . 60:663-666,, 20. Eps te in, Emanuel. 1972. Mineral n u t r i t i o n o f p la n t s: principles and pe rs p ec tiv e s. John W ile y and Sons, I n c . , New York. 21. F e r r a r i , Andres. 1960. Nitrogen determination by a continuous d i g e s t i o n and a n a ly s is system. N. Y. Acad. Sc i. 8 7 :7 9 2- 8 00 . 22. F i n l a y , K. W. and G. N. Wil ki nso n. 1963. t i o n in a p l a n t - b r e e d i n g programme. 744-754. 23. Finney, K. F. , J. W. Meyer, F. W. Smith, and H. C. F ry er . 1957. E f f e c t o f f o l i a r spraying o f Pawnee wheat w ith urea so lu tio n s on y i e l d , p r o t e i n co n te n t, and pr o t e i n q u a l i t y . Agron. J. 49 :3 4 1 -3 4 7 . 24. Fi sch er, R. A. 1975. Y i e l d p o t e n t i a l in dwarf spring wheat and the e f f e c t o f shading. Crop Sc i. 15:607-613. Lavoy I . and R. H. Hageman. 1970. Re la ti on sh ip o f n i t r a t e reductase a c t i v i t y t o g r a i n p r o t e i n production in wheat. Crop S c i . 10:280-285. The ana ly s is o f ada pta­ Aust. J. Ag ri c . Res. 14: 59 25. Frey, Kenneth J. 1959. Y i e l d components in oats I I . The e f f e c t o f n itr og en f e r t i l i z a t i o n . Agron. J. 51: 60 5-6 08. 26. Frey, K. J. 1959. Y i e l d components in oats I I I . Their contribu­ t i o n to the v a r i e t y x l o c a t i o n i n t e r a c t i o n f o r gr ai n y i e l d . Agron. J. 51:74 4-7 46. 27. Frey, 28. Frey, K. J. and S. C. Wiggans. 1957. T i l l e r i n g stu die s on oats IV. E f f e c t o f r a t e and date o f ni tro ge n f e r t i l i z e r a p p l i c a ­ tion. Proc. Iowa Acad. S c i . 64 :1 60 -1 67. 29. G a ll a g h e r , J. N . , P. V. Biscoe, and R. K. S c o tt . 1975. Ba rle y and i t s environment V. S t a b i l i t y o f gr ai n weight. J. Applied Ec o l . 12: 31 9-3 36. 30. G a ll a g h e r , L. W., K. M. Soliman, C. 0. Qualset, R. C. H u f f a k e r , and D. W. Rains. 1980. Major gene control o f n i t r a t e reduc­ tase a c t i v i t y in common wheat. Crop S c i . 20 :7 1 7 -7 2 1 . 31. Gericke, W. F. 1922. Studies on the e f f e c t o f n itr og en ap p lie d to oats a t d i f f e r e n t periods o f growth. J. Am. Soc. Agron. 14:31 2-32 0. 32. G e r l o f f , G. C. 1976. P l a n t e f f i c i e n c i e s in the use o f n i t r o g e n , phosphorus, and potassium. Ln: Wrig ht , Madison J. ( e d . ) , P la n t a da pt a tio n to mineral s t r e s s in problem s o i l s . Cornell Univ. Ag. Expt. S t a . , I t h a c a , New York. 33. Gorshkov, P. A. and N. Z. Statsenko. 1970. In fl u e n c e o f l a t e non­ r o o t ni tr o g e n dressings on the i n t a k e o f n u t r i e n t s and improve­ ment o f w i n t e r wheat gr ai n q u a l i t y . Physio, and Biochem. C u l t i v . Plants 2: 32 1 -3 2 5. 34. Grafius, 35. G r a f i u s , J. E. 1965. A geometry o f p l a n t breeding. Exper. Sta. B u l l . 7. 36. G r a f i u s , J. E. 1971. Competition f o r environmental component c h a r a c t e r s . Crop S c i . 12:36 4-36 7. 37. G r a f i u s , J. E. Crop S c i. 38. G r a f i u s , J. E. and Laud B. O k o l i . 1974. Dimensional balance among y i e l d components and maximum y i e l d in an 8 x 8 d i a l l e i of barley. Crop Sc i. 14: 35 3-3 55. Kenneth J. 1959. Y i e l d components in oats IV . E ffect of delayed a p p l i c a t i o n o f n i t r o g e n . Proc. Iowa Acad. S c i. 66: 137-142. J. E. 1959. Hete ro si s in oat s. Agron. J. 51 :5 51 -5 54. Mich. Ag ric . resources by 1978. M u l t i p l e ch ar ac te rs and c o r r e l a t e d response. 18 :9 31 -9 34. 60 39. G r a f i u s , J. E. and Roger L. Thomas. 1971. The case of i n d i r e c t genetic control o f sequential t r a i t s and the s t r a t e g y o f deployment o f environmental resources by the p l a n t . H e re di ty 26 :433-442. 40. G r a f i u s , J. E . , Roger L. Thomas, and John Barnard. 1976. Effects o f parental component complementation on y i e l d and components o f y i e l d in b a r l e y . Crop S c i. 16: 67 3-6 77. 41. Grover, H. L . , T. V. R. N a i r , and Y. P. A b r o l . 1978. Nitrogen metabolism o f the upper t h r e e l e a f blades o f wheat at d i f f e r e n t s o i l nitrog en l e v e l s I . N i t r a t e reductase a c t i v i t y and content o f various nitrogenous c o n s t i t u e n t s . P h y s i o l. P l a n t . 4 2: 28 7292. 42. Gupta, A. P . , S. S. Lohia, and U. C. Shukla. 1976. D ifferential n i tro ge n response in d i f f e r e n t genotypes o f pea rl m i l l e t ( Pennisetum typhodium S t a f f . & Hubb.) and wheat (T r i t i c u m aestivum L . ) I n : Sen, S. P . , Y. P. A b ro l, and S. K. Sinha ( e d s . ) , Nitrogen a s s i m i l a t i o n and crop p r o d u c t i v i t y . Assoc­ i a t e d Publishing Co ., New D e l h i , p p . 229-234. 43. Hamid, Zakri and J. E. G r a f i u s . 1978. and i t s i m p l i c a t i o n to gr ai n y i e l d 18:83 -86. 44. Harvey, Paul H. 1939. H e r e d i t a r y v a r i a t i o n in p l a n t n u t r i t i o n . Genetics 24:4 3 7- 4 61 . 45. Developmental a l lo m e tr y in b a r l e y . Crop S c i. H a u s e n b u il le r , R. L. 1972. So il s c i e n c e - p r i n c i p l e s and p r a c t i c e s . Wm. C. Brown Co., Dubuque, Iowa. 46. H e i n r i c h , Geoffrey M. 1979. Accumulation and d i s t r i b u t i o n o f nitrog en in fo ur w i n t e r wheat c u l t i v a r s . M. S. t h e s i s , Michigan S t a t e U n i v e r s i t y . 47. Hoener, Ir w in R. and E. E. DeTurk. 1938. The absorption and u t i l i z a t i o n o f n i t r a t e n itr og en during v e g e t a t i v e growth by I l l i n o i s high p r o t e i n and I l l i n o i s low p r o t e i n corn. Agron. J. 30:23 2-2 43. 48. Holmes, David P. and Vernon D. Burrows. 1976. Development o f a se edling screening t e s t f o r p r e d i c t i n g r e l a t i v e grain p r o t e i n content in oats., Euphytica 25:51-64. 49. Hooker, M. L . , D. H. Sander, G. A. Peterson, and L. A. Daigger 1980. Gaseous N losses from w i n t e r wheat. Agron. J. 72: 789-792. 61 50. Hucklesby, D. P . , C. 1971. Late sprin g u t i l i z a t i o n and t e i n in wheat. M. Brown, S. E. Howell, and R. H. Hageman. applications o f n itr og en f o r e f f i c i e n t enhanced production o f g r ai n and gr ai n pro­ Agron. J. 63:27 4-2 76. 51. Jameson, Donald A. 1963. vesting. Bot. Rev. 52. Jewiss, 0. R. 1972. T i l l e r i n g in grasses - i t s control. J. Br. Grassld. Soc. 2 7 : 6 5 -8 2 . 53. Johnson, V. A . , A. F. D r e i e r , and P. H. Grabouski. 1973. Yield and p r o t e i n responses to ni tro ge n f e r t i l i z e r o f two w in t e r wheat v a r i e t i e s d i f f e r i n g in inh er en t p r o t e i n content o f t h e i r grain. Agron. J. 65 :2 5 9 -2 6 3 . 54. Johnson, V. A. and P. J. M a tt e r n . 1977. Genetic improvement o f p r o d u c t i v i t y and n u t r i t i o n a l q u a l i t y o f wheat. Report of research f i n d i n g s . U n i v e r s i t y o f Nebraska-USDA-AID. Responses o f i n d i v i d u a l 29:53 2-5 94. p la nt s to h a r ­ s i g n i f i c a n c e and 55. Johnson, V. A . , P. J. M a tt e r n , and J. W. Schmidt. 1967. Nitrogen r e l a t i o n s during spr in g growth in v a r i e t i e s o f T r i t i c u m aestivum L. d i f f e r i n g in gr ai n p r o t e i n con tent. Crop Sci. 7 : 66 4- 66 7. 56. Knott, D. R. and B. Ta lu kd ar. 1971. In cre asi ng seed weight in wheat and i t s e f f e c t on y i e l d , y i e l d components, and q u a l i t y . Crop Sc i. 11:28 0-28 3. 57. L a i , Pyare, G. G. Reddy, and M. S. Modi. 1978. Accumulation and r e d i s t r i b u t i o n p a t t e r n o f dry m at te r and N in t r i t i c a l e and wheat v a r i e t i e s under water s t r e s s c o n d it io n . Agron. J. 70:62 3626. 58. Lamb, C. A. and Robert M. S a l t e r . 1936. t i e s to d i f f e r e n t f e r t i l i t y l e v e l s . 143. 59. Lang, R. W. and J. C. Holmes. 1973. E f f e c t o f nitrog en a p p l i c a ­ t io n at d i f f e r e n t growth stages on the y i e l d o f w i n t e r wheat. Exp. Husb. 23:31-36. 1972. How grasses grow. Response o f wheat v a r i e ­ J. Ag ric . Res. 53:129- 60. Langer, R. H. M. London. Edward Arnold L t d . , 61. Laude, H. H. 1938. w i n t e r wheat. 62. Laude, Horton M. 1975. T i l l e r bud i n h i b i t i o n by young f o l i a g e leaves in j o i n t i n g wheat. Crop S c i. 15:621-624. R e la t i o n o f some p l a n t cha racters to y i e l d in J. Am. Soc. Agron. 30:61 0-6 15. 62 63. Laude, Horton M., Jack R. R i d l e y , and C o i t A. Suneson. 1967. T i l l e r senescence and gr ain development in b a r l e y . Crop Sci. 7:2 31-233. 64. Leopold, A. C. 1949. The con trol o f t i l l e r i n g Am. J . Bot. 36: 437-440. 65. MacLeod, J . A. and L. B. MacLeod. 1975. E f f e c t s o f spring N ap­ p l i c a t i o n on y i e l d and N content o f fo ur w i n t e r wheat c u l t i v a r s . Can. J. Pl an t Sci. 55:35 9-3 62. 66. McNeal, F. H . , M. A. Berg, C. F. McGuire, V. R. S te w ar t, and D. E. Baldr idg e. 1972. Grain and p l a n t ni tro ge n r e l a t i o n s h i p s in e i g h t spring wheat crosses, T r i t i c u m aestivum L. Crop Sc i. 12: 59 9- 6 02 . 67. McNeal, F. H. and D. J. Davis. 1954. E f f e c t o f ni tro ge n f e r t i l i z a ­ t i o n on y i e l d , culm number and p r o t e i n content o f c e r t a i n spring wheat v a r i e t i e s . Agron. J. 46: 37 5-3 78. 68. Michigan a g r i c u l t u r a l s t a t i s t i c s 1980. Michigan A g r i c u l t u r a l po rt in g Se rv ic e , Lansing, Mich. p. 17. 69. Miezan, Kouame, E. G. Heyne, and K. F. Finney.. 1977. Genetic and environmental e f f e c t s on the gr ai n p r o t e i n content in wheat. Crop S c i . 17:591-593. 70. M i k e s e l l , Merrel E. and Gary M. Paulsen. 1971. Nitrogen t r a n s l o ­ c a t i o n and the r o l e o f i n d i v i d u a l leaves in p r o t e i n accumula­ t i o n in wheat g r a i n . Crop S c i. 11:919-922. 71. Mugwira, L. M., S. M. Elgawhary, and A. E. A l l e n . 1980. Nitrate uptake e f f e c t i v e n e s s o f d i f f e r e n t c u l t i v a r s o f t r i t i c a l e , wheat, and rye. Agron. J. 72:58 5-5 88. 72. Nass, H. G ., J. A. MacLeod, and Michio Suzuki. 1976. Effects of ni tr o g e n a p p l i c a t i o n on y i e l d , p l a n t c h a ra c t e r s , and N l e v e l s in grain o f s i x spring wheat c u l t i v a r s . Crop S c i. 16:87 7-8 79. 73. Neales, T. F . , M. J. Anderson, and I . F. Wardlaw. 1963. The r o l e o f the leaves in the accumulation o f ni tro ge n by wheat during e a r development. Aust. J. A g r i c . Res. 14:725-736. 74. O ' S u l l i v a n , John, W. H. Gabelman, and G. C. G e r l o f f . 1974. V a r i a t i o n in e f f i c i e n c y o f ni tr o g e n u t i l i z a t i o n in tomatoes ( Lycopersicon esculentum M i l l . ) grown under n itr og en s t r e s s . J. Amer. Soc. Hort. S c i. 99: 54 3-5 47. 75. Park, S. J . , E. Reinbergs, and L. S. P. Song. 1977. Grain y i e l d and i t s components in spring b a r l e y under row and h i l l p l o t co n d i t i o n s . Euphytica 26 :5 21 -5 26. in grasses by auxin. Re­ 63 76. Pendleton, J. W. and G. H. Dungan. 1960. The e f f e c t o f seeding r a t e and r a t e o f ni tro ge n a p p l i c a t i o n on w i n t e r wheat v a r i e ­ t i e s w it h d i f f e r e n t c h a r a c t e r i s t i c s . Agron. J. 52:31 0-3 12. 77. Pepe, John F. and Robert E. He ine r. 1975. P la n t h e i g h t , p r ot ei n percentage, and y i e l d r e l a t i o n s h i p s in spring wheat. Crop Sc i. 15:79 3-7 97. 78. Perez, Consuelo M., G lo r i a B. Cagampang, B e rn ar di ta V. Esmama, Ruth U. Monserrate, and Bienvenido 0. J u l i a n o . 1973. Protein metabolism in leaves and developing grains o f r i c e s d i f f e r i n g in grain p r o t e i n con tent. Pl ant Ph ysi ol. 51:53 7-5 42. 79. Peterson, David M., L. E. Schrader, D. A. Ca taldo, V. L. Youngs, and Dale Smith. 1975. A s s i m i l a t i o n and r e m o b i l i z a t i o n o f n itr og en and carbohydrates in o a t s , e s p e c i a l l y as r e l a t e d to gr oat p r o t e i n co n c e n t r a ti o n . Can. J. P la n t S c i. 5 5 : 19 -2 8 . 80. Pin th us , M. J. and Y. Shar-Shalom. 1978. Dry m at te r accumulation in the grai ns o f wheat ( T r i t i c u m aestivum L . ) c u l t i v a r s d i f ­ f e r i n g in gr ai n we ight. Ann. Bot. 42: 46 9- 4 71 . 81. Rabson, R . , C. R. B h a t i a , and R. K. M i t r a . Crop p r o d u c t i v i t y , gr ai n p r o t e i n and energy: in p u t s , su bs id ies , and l i m i t a t i o n s . I n t e r n a t . Atom. Energy Agency Res. Comm. 5 7 : 3 - 2 0 . 82. Rao, K. P . , D. W. Rains, C. 0. Qu als et, and R. C. H u ff a k e r , 1977. Nitrogen n u t r i t i o n and g r ai n pr o t e i n in two spring wheat geno­ types d i f f e r i n g in n i t r a t e reductase a c t i v i t y . Crop S c i. 17: 283-286. 83. Robinson, Frank E . , David W. Cudney, and W i l l i a m F. Lehman. 1979. N i t r a t e f e r t i l i z e r t i m i n g , i r r i g a t i o n , p r o t e i n , and y e l l o w berr y in durum wheat. Agron. J. 71: 304-308. 84. Rohde, Charles R. 1963. E f f e c t o f nitrog en f e r t i l i z a t i o n on y i e l d , components o f y i e l d , and o t h e r agronomic c h a r a c t e r i s t i c s o f w i n t e r wheat. Agron. J. 55: 455-458. 85. Sadaphal, M. N. and N. B. Das. 1966. E f f e c t o f spraying urea on w i n t e r wheat, T r i t i c u m aestivum L. Agron. J. 58:13 7-1 41. 86. S a l i s b u r y , Frank B. and Cleon W. Ross. 1978. P l a n t physiology (second e d . ) Wadsworth Publishing Co., Belmont, C a l i f , p. 193. 87. Seth, Jagdish, T. T. H e r b e r t , and G. K. Middleton. 1960. u t i l i z a t i o n in high and low p r o t e i n wheat v a r i e t i e s . J. 52: 20 7- 2 09 . Nitrogen Agron. 64 88. Shapely, Deborah. 1977. W ill SST's? Science 195:658. 89. Singh, N. T . , A. C. V i g , Rachpal Singh, and M. R. Chaudhary. 1979. In fl u e n c e o f d i f f e r e n t l e v e l s o f i r r i g a t i o n and ni tro ge n on y i e l d and n u t r i e n t uptake by wheat. Agron. J. 71:40 1-4 04. 90. S i n n o t t , E. W. 1921. The r e l a t i o n between body s i z e and organ s i z e in p l a n t s . Am. Nat. 55:38 5-4 03. 91. St ebbins, G. Ledyard. 1974. Flowering pl ant s - e v o lu t i o n above the species l e v e l . The Belknap Press o f Harvard U n i v e r s i t y Press, Cambridge, Mass. p . 70. 92. S t i c k l e r , F. C. and A. W. P a u l i . 1964. Response o f f o u r w i n t e r wheat v a r i e t i e s to ni tr o g e n f e r t i l i z a t i o n . Agron. J. 56: 470-472. 93. S t r i n g f i e l d , G. H. 1934. D i f f e r e n t i a l response o f corn v a r i e t i e s to f e r t i l i t y l e v e l s and to seasons. J. Ag ric . Res. 49:99 1- fe rtilize rs harm ozone as much as 1000 . 94. S t u t t e , C. A. and R. T. Weiland. 1978. Gaseous n itr og en loss and t r a n s p i r a t i o n o f several crop and weed species. Crop Sc i. 18:88 7-889. 95. Terman, G. L. 1979. Y i e l d s and p r o t e i n content o f wheat gr ai n as a f f e c t e d by c u l t i v a r , N, and environmental growth f a c t o r s . Agron. J. 7 1 :4 3 7- 4 40 . 96. Terman, G. L . , R. E. Ramig, A. F. D r e i e r , and R. A. Olson. 1969. Y i e l d - p r o t e i n r e l a t i o n s h i p s in wheat g r a i n , as a f f e c t e d by ni tro ge n and w ate r. Agron. J. 61 :7 5 5 -7 5 9 . 97. Van Sl yke , Donald D. and Alma H i l l e r . 1933. Determination o f am­ monia in blood. J. Biochem. 102:4 99- 504 . 98. V i e t s , Frank G. J r . 1972. Water d e f i c i t s and n u t r i e n t a v a i l a b i l i t y I n : Kozlowski, T. T. ( e d . ) , Water d e f i c i t s and p l a n t growth. Vo l. I I I . Academic Press, New York. p p . 217-236. 99. Vose, P. B. Ab str . 100 . 1963. Varietal 33:1-13. d i f f e r e n c e s in p l a n t n u t r i t i o n . Herb. Vose, P. B. 1967. The concept, a p p l i c a t i o n and i n v e s t i g a t i o n o f n u t r i t i o n a l v a r i a t i o n w i t h i n crop species. In_: Isotopes in p l a n t n u t r i t i o n and physiology. I n t e r n a t i o n a l Atomic Energy Agency, A u s t r i a , p p . 539-548. 65 101. Vose, P. B. and E. L. Breese. 1964. Genetic v a r i a t i o n in the u t i l i z a t i o n o f nitrogen by ryegrass species Lolium perenne and L. m u l t i f l o r u m . Ann. Bot. (Lond.) 2 8 :2 5 1- 2 70 . 102 . W a l la c e , D. H . , J . L. Ozbun, and H. H. Munger. 1972. gene tics o f crop y i e l d . Adv. Agron. 2 4 : 97 -1 4 6. 103. Watson, D. J . , G i l l i a n N. Thorne, and S. A. W. French. 1958. Phy­ s i o l o g i c a l causes o f d i f f e r e n c e s in grain y i e l d between v a r i e ­ ties o f barley. Ann. Bot. N. S. 22:321-352. 104. Wellhausen, E. J. 1954. Modern corn breeding and production in Mexico. Phytopathology 44:391 -395. 105. Wortman, S t e r l i n g and Ralph W. Cummings J r . w o r ld - t h e challenge and t h e s t r a t e g y . U n i v e r s i t y Press, London, pp.67-71 . 106. W o r z e l l a , W. W. 1943. Response o f wheat v a r i e t i e s to d i f f e r e n t l e v e l s o f s oi l p r o d u c t i v i t y I . Grain y i e l d and t o t a l wei ght. J. Am. Soc. Agron. 35:1 14-124. 107. Yamada, Noboru. 1959. The n a t u r e o f f e r t i l i z e r response in japonica and i n d ic a r i c e v a r i e t i e s . I n t e r n a t . Rice Comm. News L e t t e r FA0 8 : 1 4 - 1 9 . 108. Yoshida, Sh oui ch i. P l a n t P h y s io l. Physiological 1978. To feed t h i s The Johns Hopkins 1972. Physio log ica l aspects o f gr ain y i e l d . 23:437-464.