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ABSTRACT 

IMPLANTABLE VLSI SYSTEMS FOR COMPRESSION AND COMMUNICATION 

IN WIRELESS BIOSENSOR RECORDING ARRAYS 

By 

Awais Mehmood Kamboh 

 

Successful use of microelectrode arrays to record neural activity in the cortex has 

opened new opportunities for scientists to decode the intricate functionality of the 

human brain and the behavior of neurons that enable its complex operation. The 

resulting brain-machine interface devices play a critical role in enabling patients 

with neural disorders to achieve a better lifestyle. Such interfaces provide a direct 

interface to the brain and show great promise in many biomedical applications.  

This thesis explores some of the major obstacles impeding the advance of 

wireless neural implants and addresses them through development of highly 

efficient algorithms and implantable hardware. An overwhelming amount of data 

is generated by the microelectrode arrays, resulting in a data bandwidth 

bottleneck. To overcome this problem, an implantable system has been devised 

to enable control over the amount of data that must be transmitted without 

compromising the information contained in the array of neural signals. 

Furthermore, the nature of the wireless communication channel across the skin 

tissue is not well characterized. In this thesis, solutions have been developed to 

maximize that data throughput and enable unfailing yet low-power 

communication of bidirectional data between the implanted device and the 

external world. Finally, a unified energy-efficient, implantable CMOS integrated 



circuit was developed to address these two critical problems. The resulting 

integrated solution ensures seamless multi-modal operation, and thus 

establishes a pathway to the design of next-generation neuroprosthetics devices. 

Although the motivation for this thesis comes from the field of neuroprosthetics, 

the solutions devised are pertinent to a wide range of implantable applications.  
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1 Introduction 

1.1 Motivation 

How the brain functions is one of the questions that have puzzled scientists and 

philosophers alike for centuries. Modern scientists have been making significant 

advances towards solving this mystery. Apart from just satiating an intellectual 

desire, a better understanding of brain functions has been helping 

neurophysiologists develop treatments for a variety of disorders including 

Parkinson‟s disease or several auditory disorders. It also helps us understand 

better the physiological changes during various seizures, migraines and epilepsy. 

Restoration of motor and sensory capability for the disabled such as 

quadriplegic, blind, deaf or persons with missing or damaged limbs is one of the 

main reasons for continued interest in a better understanding of working of the 

brain. Deep brain stimulation and visual implants are some treatments that 

benefit from the partial understanding of the brain functionality. 

Ability to monitor, record and process neural signals is thus essential to the 

development of treatments for any of the numerous neural disorders. 

Neuroprosthetics devices and Brain Machine Interfaces (BMIs) are increasingly 

playing a vital role in helping patients with severe motor disorders achieve a 

better lifestyle by enabling direct interface to the central nervous system. Thus 

far, it has only been possible to monitor limited brain activity observable above 

the scalp, however, scientists need to explore cortical signals observable only 
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under the skull to find solutions to above mentioned problems. Any advancement 

in the ability to monitor those signals will help millions of individuals with different 

neural disorders. 

Recent advances in biomedical research have enabled recording of neural 

signals from large populations of cortical cells under the skull. However, lack of a 

wireless data acquisitioning system hinders their use in brain machine interfaces 

for freely moving subjects. The research presented in this dissertation addresses 

this problem by developing an implantable hardware employing on-chip signal 

processing and enabling wireless data telemetry for further processing of neural 

signals. 

1.2 Neural Recording Techniques 

There are different ways of recording neural activity currently in use, 

Electroencephalography (EEG), Magnetoencephalography (MEG), functional 

Magnetic Resonance Imaging (fMRI) and Positron Emission Tomography (PET), 

all of which are non-invasive. In several situations it is desirable to have high 

spatial resolution as well as high time resolution for better understanding of intra-

cranial connectivity and neural activity than provided by the above mentioned 

recording techniques. This can only be achieved with highly invasive methods 

and introduction of strip electrodes or microelectrode arrays. 

Electrocorticography (ECoG) and Intracranial EEG are two such invasive 

techniques. An overview listing pros and cons of these techniques can be found 

in the Appendix. 
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1.2.1 Intracranial EEG   

Intracranial EEG has shown the capability of recording activity of individual cells, 

and has recently been made possible by the use of microelectrode arrays. The 

signals are recorded by implanting electrodes into the cortex. Recording the 

activity of cortical neurons with microelectrode arrays was shown to be essential 

to quantify the degree of involvement of each neuron in encoding movement 

parameters. Use of microelectrodes allows extremely high spatial and temporal 

resolution and allows recording from single cells at arbitrary sampling rates, 

thereby enabling decoding of the neural signals and eventually control of artificial 

limbs [1].  

There are several challenges associated with this highly invasive procedure. 

Firstly, as with ECoG, a surgery is required to implant the electrode array and 

supporting electronics into the cortex. Secondly, such high resolutions on the 

order of microseconds and micrometers result in tremendous amount of data 

being generated. Thus far, clinical trials have used wires that extend from the 

skull to the external machines to record the signals. However, enabling wireless 

telemetry of these signals will allow free movements to the subject in addition to 

long term or permanent implants without any chance of infection in the scalp. 

Such BMIs show great promise in many biomedical applications.  

1.3 Characteristics of Neural Signals 

Neural signals recorded using high density microelectrode arrays can be 

subdivided into two kinds of potentials, the action potentials, also known as 
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neural spikes, and the Local Field Potentials (LFP). A summary of salient 

features of these signals is mentioned below. 

1. Action Potentials  

Action potentials are the primary signal of interest for implantable neural signal 

processing systems. They are generated at the cell membrane of the neuron but 

can be recorded if the electrodes are a few microns away from the cell. Each 

electrode can thus receive signal from multiple neurons. These neural spikes 

have a wide frequency bandwidth ranging from 100 Hz to 10 KHz, while a typical 

spike lasts for about 1.5 ms. Amplitude of these spikes is about 100 mV relative 

to extracellular fluid at the cell membrane, however it reduces to within a range of 

50-200 µV when measured using an electrode a few micron away. The recording 

electrodes also see a relatively large DC offset of 50 mV at the input. A typical 

neuron fires between 10 to 100 spikes per second when active. 

2.  Local Field Potentials   

Local Field Potentials (LFP) are low frequency signals less than 100 Hz which 

are generated as a result of electrical discharges from many neurons at the same 

time. Thus where action potentials are the signals from individual neurons, the 

local field potentials are the superimposed signals from a large collection of 

neurons. The amplitude of LFP is about 5 mV. The LFPs contain useful 

information about collective activity of the signal, however this information does 

not change drastically from one electrode to another in a microelectrode array 

based data acquisition. All the electrodes in the microelectrode array are likely to 



5 

 

record the same signal for LFP. As a result the signal acquired by the array 

records the high frequency action potentials superimposed with the low 

frequency LFP where the LFPs can be up to a few thousand times stronger in 

amplitude than the action potentials. Since action potentials are the primary 

signal of interest, the LFPs have to be filtered out to allow any further signal 

processing. 

1.4 Source Separation and Spike Sorting 

Each electrode can acquire signals from more than one neuron based on its 

location relative to the cells. The acquired waveform is thus a superposition of a 

number of spike trains from as many neurons. Since complex brain processes 

are a result of activity in a large number of neurons, it becomes necessary to be 

able to separate the activity of each neuron from the other to enable 

understanding of inter-neuron functional and physical connectivity.   

The process of separating spikes from different neurons is called spike sorting. 

Spikes from these neurons may or may not have different amplitudes based on 

location of the electrode, however, they almost always tend to have slightly 

different shapes which are unique to each neuron. This difference in shape can 

be used to separate spikes from one neuron from the spikes of others. Two 

parameters are deemed important by the neuroscientists to enable further 

research, the shape of the spike and its time of arrival. Thus the task of any 

neural data acquisition system is to maintain those features of the waveform that 

enable spike sorting.  
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Fig. 1.1 shows a typical intracranial EEG recording using microelectrodes. Band 

pass filtering has been applied to remove LFP and high frequency noise. The 

inset shows a single action potential which is about 1.5ms long. Action potentials 

from different neurons have slightly different shapes owing to their relative 

position to the recording electrode. The noise on the signal is not necessarily 

white Gaussian.  

 

1.5 Challenges Associated with Array Based Recording 

There are various challenges associated with wireless recording of multi-channel 

neural signals using implanted microelectrode arrays. Any system designed to 

enable wireless neural recording must address these issues. 

 

Fig. 1.1. A typical neural signal recording using a microelectrode after band pass 

filtering to remove LFP and high frequency noise. For Interpretation of the references 

to color in this and all other figures, the reader is referred to the electronic version of 

this dissertation. 
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1. Data Bandwidth  

One particular challenge with BMI technology is the need to transmit the high 

bandwidth neural data from the implanted device to the outside world for further 

analysis. For example, a typical recording experiment with a 100-electrode array 

sampled at 25 kHz per channel with 12-bit precision yields an aggregate data 

rate of 30 Mbps, which is well beyond the reach of state-of-the-art wireless 

telemetry links for biological applications.  

2. Implant Size  

Another significant challenge is the need to fit implanted circuitry within ~1 cm
2
 

for the entire signal processing system because of surgical reasons. Large size 

of the system results in physical implantation challenges. There is a small 

clearance between the cortex and the skull, thus small size is needed to 

minimize tissue trauma and displacement. 

3. Wireless Power   

Power supply to implantable system is also one of the major challenges as use of 

a battery provides a highly invasive yet short term solution as batteries need to 

be replaced and recharged. Inductive power transmission can be used as an 

alternative to deliver power to an implanted system over short distances from the 

power source. However, inductive power transmission has its limitations in terms 

of maximum deliverable power and interruptions in power supply because of coil 

misalignment due to motion in freely moving subjects.  

4. Implant Power Density   
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High power dissipation of the system can result in damage to the neighboring 

neurons and cortical tissue, in effect killing the neurons that are being recorded 

from. Studies show that an increase in temperature over one degree Celsius can 

result in tissue damage. A power density of 0.58 mW/mm
2
 results in one degree 

rise in temperature in the tissue.  Thus any design of implantable system must 

conform to the dissipated power density limitation. 

5. Processing capability  

The above mentioned challenges also directly influence the processing capability 

of the implantable system as more computations translate to higher power 

dissipation whereas more memory elements require larger area in silicon. These 

stringent requirements force the use of application specific integrated circuits 

over general purpose processors.  

6. Signal Noise  

The recorded signal contains various kinds of noise. Apart from the recording 

and thermal noise associated with the electronics the acquired signal also 

contains background noise. Background noise is in effect the attenuated signal 

from neurons located far from the recording electrode. As a result the 

background noise is correlated to the signal, occupies the same spectrum as the 

signal, and also contains similar features as neural spikes. However, the 

background noise has smaller amplitude than the signal of interest. Cross 

channel interference between recordings from different electrodes is another 

source of noise, as well as the interference between the analog, the digital and 
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the wireless transceiver blocks. Physiological noise as a result of LFP, muscle 

EMG or cardiac activity also damages the signal quality. 

1.6 Contemporary Research Groups 

1.6.1 Review 

The problem of acquiring neural signals from the cortex using an implantable 

system and transmitting them to external processing units is being explored by a 

number of research groups. These groups tackle similar problems with slightly 

different goals and approaches. 

1. Duke University, Durham, North Carolina 

Absolute thresholding is used in time domain to detect and extract spikes [2, 3]. 

Spikes can be extracted and transmitted for only a subset of channels; as a 

result spike sorting is possible for only a few channels in parallel. Streaming raw 

data for only one channel can be transmitted in parallel to the extracted spikes. 

Another mode transmits the spike count in time bins where a packet is 

transmitted every 50ms. This loses information about spike shapes and their 

occurrence times. A commercial 1 Mbps transceiver is used for data 

transmission.  

2. University of Utah, Salt Lake City, Utah  

Absolute thresholding used in time domain to detect spikes in the analog front 

end before digitization [4, 5]. Thresholds are programmable for individual 

channels. A „one‟ is sent if a spike is detected, a zero is sent otherwise. As a 

result spike shapes are not preserved. In addition, one channel of raw data 
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(sampled at 15.6KSps) can be transmitted in parallel. Spike sorting not possible 

on other channels. Data, power and clock are transmitted over the inductively 

coupled wireless link. A 96 channel prototype using 100 amplifiers with 10-bit 

ADC is presented, consuming 8mW power.  

3. Stanford University, Stanford, California  

Raw data can be transmitted for a single channel sampled at 15.6KSps. 

Recording system is wireless but not implantable [6]. Salient feature is the 

transmission range of up to 4 meters away from the subject at a power 

consumption of 63.2mW with a sampling frequency of 15.6KSps. The design has 

been reported to be scalable and suitable for an increase in the number of 

channels in future. 

4. Ecole Polytechique de Montreal, Montreal, Canada 

Spike detection is implemented by applying a threshold to a nonlinear energy 

operator after digitization [7, 8]. This approach is reported to have better 

detection results compared to spike detection using thresholding in time domain. 

This operator uses temporal as well as instantaneous spectral information to 

detect spikes. 64 8-bit data samples (2ms window @ 30KSps sampling rate) are 

transmitted for each detected spike. System is reported to handle 16 channels in 

parallel. The extracted spike samples retain necessary features to allow spike 

sorting. Data overflow is reported when burst activity is encountered in the 

neurons. 

5. University of Michigan, Ann Arbor, Michigan  
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Absolute threshold used in time domain after digitization to detect spikes [9-12]. 

The system can transmit raw data for one channel in scan mode. In a separate 

mode binary values are transmitted to indicate presence or absence of a spike. 

Spike shapes are not preserved. Prototype designed to handle 64 channels, 

where later versions may include neural stimulation in addition to recording. 

Clock, power and data are communicated through an RF link.  

6. Brown University, Providence, Rhode Island 

The design uses broadband infrared transmission using vertical- cavity surface-

emitting laser (VCSEL) diode to transmit raw data from 16 channels 

simultaneously [13]. No data rate is provided. Power can be delivered through an 

inductive RF link or IR link. An important drawback is that the alignment of IR 

transmitter and receiver is critical for successful broadband transmission.  

7. University of California, Santa Cruz, California 

Raw data from 128 channels sampled at 40KSps with 9 bit resolution is 

transmitted using UWB 90Mbps transmission link [14, 15]. Ex vivo experiment 

results have been presented. The system allows one channel to be processed 

on-chip to extract spike features for classification using on-chip energy based 

spike detection, noise shaping filter and min-max feature extraction. No results 

are provided for the quality of spike sorting achieved based on this feature set. 

Apart from off chip training required to set detection thresholds, the noise 

shaping filter (32 tap) also needs offline training and on-chip memory for storing 
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coefficients. A programmable front-end can support various types of biological 

signals. 

Various other groups provide parts of the system e.g. amplifiers or ADC or simply 

transmit single channel recordings. Some groups present multi-channel systems 

with discrete components that are not implantable and thus do not have stringent 

power and bandwidth requirements. 

1.6.2 Drawbacks 

All of the above mentioned systems try to reduce the amount of data that needs 

to be transmitted out of the brain. Almost all systems use programmable 

thresholds to detect spikes; which means offline training is necessary to 

determine these thresholds. Some systems maintain spike shapes to allow off 

chip spike sorting while others use binary values to represent the presence of 

spikes.  

Following are some of the drawbacks of these approaches:  

1. Most other designs use spike extraction to preserve spike shapes but are 

constrained to small number of channels because of limited bandwidth. 

Data overflow is reported when burst activity is encountered. 

2. Some systems use binary values to represent the presence or absence of 

a spike but lose all information that enables spike sorting at later stages.  
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3. Most designs use thresholding in time domain to detect the spikes. This 

can lead to a large number of false positives in low SNR conditions, or a 

large number of spikes can be missed when liberal thresholds are used. 

4. False positives result in significant bandwidth loss if complete spike 

extraction is used, however, these can be detected and ignored in offline 

processing. Whereas, a false positive will remain undetectable if binary 

values are used to represent the presence or absence of spikes even in 

later stage of processing. 

5. None of the systems takes into account the unreliability of the 

communication channel. Although the maximum data rates are sometimes 

mentioned, the performance of the transceivers has not been discussed 

thoroughly. Neither any assumptions about the channel have been stated 

nor any measure of data transfer accuracy has been established. 

6. Transmission of raw data has been made possible by the use of UWB 

transceivers, however, their feasibility for use in freely moving subject is 

still under investigation since precise alignment of infrared receiver is not 

possible when the subject is moving.     

1.7 Research Goals and Approach 

1.7.1 Goals Statement 

The goal of this thesis is to solve some of the major obstacles impeding the 

advance of wireless neural implants. The problems addressed in this thesis lie in 
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the realm of low-power system design and can be solved by developing highly 

efficient algorithms and hardware suitable for implantation, establishing a 

pathway to the design of modern neuroprosthetics devices. Based on a review of 

the state of the art neural recording systems it has been identified that this goal 

can be achieved if the following objectives are met. 

First of the problems is the overwhelming amount of data generated by the 

microelectrode array resulting in a data bandwidth bottleneck. The objective is to 

devise a system to enable some degree of control over the amount of data that 

needs to be transmitted without compromising the information contained in the 

array of signals. The second problem addressed in this thesis is the unreliable 

nature of the wireless communication channel across the skin tissue. The 

objective is to maximize the data throughput and enable unfailing yet low-power 

communication of bidirectional data between the implanted device and the 

external world. The final objective is the integration of these respective solutions 

into a unified energy efficient implantable system for seamless operation of these 

functions. 

Although the motivation for this thesis comes from the field of neuroprosthetics, 

the aim is to devise solutions that are applicable to a wide range of implantable 

applications.  

1.7.2 Approach 

To achieve the above mentioned goals and in contrast to the existing approaches 

listed above, this research will explore the realization of an implantable low-
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power on-chip signal processor to acquire and compress the multi-channel 

neural data before wireless transmission to the external units. The use of high 

level processing on-chip for lossy as well as lossless compression would allow 

efficient use of the bandwidth. Configurability built into the system would allow 

various degrees of signal information retention. The communication channel 

across the skin tissue would be studied and a communication protocol and 

hardware will be devised to maximize the data throughput for streaming data 

communication. Finally, a scheme will be developed for ultra low power 

hardware-constrained signal compression for scalability and suitability to handle 

simultaneous recording from thousands of channels.  

1.7.3 System Architecture 

Based on the above-mentioned system approach, Fig. 1.2 gives the conceptual 

diagram of the proposed wireless neural recording system. The system consists 

of two main modules, the implantable Neural Interface Node (NIN), and the extra-

cranial Manager Interface Module (MIM).  

The NIN is implanted on the cortex under the skull and is connected to one or 

more microelectrode arrays. The captured signals are amplified and digitized in 

the analog front end, which relays them to the neural processing unit (NPU). The 

NPU is responsible for the overall operation of the NIN, including the different 

modes of operation, compression of signals and error-free bi-directional 

communication between the NIN and the MIM. The data is transmitted through 

an RF wireless transceiver, which also receives commands from the MIM. The 
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NIN is a battery-less module, which receives power and clock through an 

inductive link from the MIM.  

The MIM is placed outside the scalp opposite to the NIN. This provides the best 

alignment between the NIN and MIM coils for power and data transfer. The two 

modules are only a few millimeters apart from each other, however, in freely 

moving subjects the NIN on the cortex cannot remain fixed and thus 

misalignment of coils is expected during the experiment. The MIM receives the 

data from the NIN and transmits it to the external processing unit (EPU). The 

EPU issues appropriate commands to the MIM, which relays them to the NIN to 

change the operation of the system.  

Fig. 1.3 shows the detailed block diagram of the NIN. The neural signal is 

acquired through the microelectrode array and then amplified and band pass 

filtered before conversion to digital words. The signals are sampled in a time-

multiplexed fashion at a rate of 25KSamples per second per channel. The 

function of this front-end analog block is controlled by an analog interface 

controller. The data is then passed to the compression engine, which is 

responsible for the lossy as well as lossless compression of the multi-channel 

neural data. Finally, the data is transmitted to the MIM through a communication 

controller, which handles the outgoing data and incoming commands over a half-

duplex wireless link.  
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The wireless transceiver uses RF circuits to handle bi-directional data transfer. In 

addition, it is responsible for power transfer from MIM to NIN, as well as 

extraction of system clock signal from the wireless carrier frequency. A global 

controller on the NIN unites all these components into a working system. Its most 

important task is to interpret the commands from the MIM and change the 

operation of the NIN accordingly. It is also responsible for managing the power 

and clock for each of the blocks.  

 

Fig. 1.2. Concept diagram for the proposed wireless neural recording system showing 

implantable neural interface node and the extra-cranial manager interface module. 

 



18 

 

All the digital components of the NIN are shown in green in Fig. 1.3. Focus of this 

thesis is the design and fabrication of these components and the study of 

algorithms involved. 

 

1.8 Challenges 

To following challenges need to be managed to achieve the goal and its 

objectives outlined above. 

1. The compression engine has been identified as the most computationally 

intensive of all the blocks. The main challenge is to identify and model 

different algorithms and architectures and to achieve the lowest area-

power consuming implementation. Intelligent hardware design is required 

 

Fig. 1.3. Block diagram of the implantable neural data compression engine and its 

position within an implantable neural recording system.  
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for area-power efficient circuit. This requires understanding of the 

hardware requirements of various compression algorithms. 

2. A communication protocol is required to be designed that enables error-

free half-duplex data communication of the streaming data while 

maintaining a high data throughput. The challenge is posed by the 

unavailability of any information about the transceiver performance and 

channel error profile. Channel characteristics need to be measured and 

transceiver performance needs to be analyzed and a protocol able to 

handle this communication needs to be developed. 

3. With the rapid increase in the number of channels in a microelectrode 

array, the challenge is to design an ultra constrained set of features that 

allows spike sorting for thousands of channels simultaneously. 

4. All the components including the analog interface controller, the 

compression engine and the communication controller have to come 

together into a single highly configurable system and work seamlessly. 

The challenge is the design of the system within the „implantability‟ 

limitations, i.e. the area, power and power density limitations discussed 

earlier. 
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2 Hardware Realization of DWT for Neural Recording 
  

2.1 Discrete Wavelet Transform for Neural Recording 

For implanted microelectrode arrays, the power required to wirelessly transmit 

raw data to extra-cranial processing units is prohibitively large. Likewise, the 

hardware required to perform full neural data analysis is too complex to be 

implemented within an implanted system. Data compression before transmission 

is an attractive alternative, if it can be performed with minimal hardware 

resources. Discrete wavelet transform (DWT) is a very effective method for 

compressing neural data [16, 17].  

Discrete wavelet transform enables time-frequency domain analysis of neural 

signals, which manifests more information than either the time domain or the 

frequency domain analysis with selectable tradeoff between time and frequency 

resolutions. In addition to the co-existence of time and frequency in wavelet 

domain, it also provides the flexibility of choice between large set of basis 

functions, which can result in different numbers of high-energy coefficients after 

the transform.   

For an appropriately selected wavelet basis function, the resulting non-zero DWT 

coefficients give a sparse representation of the signal that greatly reduces the 

power required to upload data. The useful information is mostly contained in the 

short transients, or spikes, above the noise level that result from the activity of an 

unknown number of neurons. It can be observed that the scarcity introduced by 
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the DWT compaction property enables very few “large” coefficients to capture 

most of the spikes‟ energy, while leaving many “small” coefficients attributed to 

noise. This property permits the later ones to be thresholded [18], yielding the 

denoised signal. 

2.1.1 Background 

VLSI implementation of the discrete wavelet transform (DWT) has been widely 

explored in the literature as a result of the transform efficiency and applicability to 

a wide range of signals, particularly image and video [19, 20]. These 

implementations are generally driven by the need to fulfill certain characteristics 

such as regularity, smoothness and linear phase of the scaling and wavelet 

filters, as well as perfect reconstruction of the decomposed signals [21]. In some 

applications, it is desirable to meet certain design criteria for VLSI 

implementation to enhance the overall system performance. For example, 

minimizing area and energy consumption of the DWT chip is highly desirable in 

wireless sensor applications where resources are very scarce. In addition to 

miniaturized size, minimizing power dissipation is strongly sought to minimize 

tissue heating in some biomedical applications where the chip needs to be 

implanted subcutaneously. 

With few exceptions, recent efforts to optimize DWT hardware have concentrated 

on increasing throughput at the expense of area and power [22, 23]. In contrast, 

our work tries to identify an optimal implementation of the DWT architecture 

where chip area and power have priority over speed [24]. The case of computing 
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the DWT for high throughput streaming data has not been fully explored [25]. It 

has been argued that a lifting scheme [26] provides the fewest arithmetic 

operations, allowing larger savings in power consumption but at the expense of 

longer critical path than that of convolution-based ones [26]. Recent work by 

Huang et al.[27] focused on analyzing DWT architectures with respect to 

tradeoffs between critical path and internal buffer implementations. Such critical 

path can be shortened using pipelining with additional registers or using a so-

called flipping structure with fixed number of registers [28]. The B-spline 

approach [29], on the other hand, requires fewer multipliers than lifting, replacing 

them with adders that may permit a smaller chip area [23]. Nonetheless, most of 

the reported hardware approaches focus on computational speed and do not 

adequately address severe power and area constraints. By comparing with other 

implementations of the DWT in this chapter, we demonstrate that the appropriate 

compromise among power, size and speed of computations is achieved with a 

sequential implementation of integer arithmetic lifting approach. 

2.1.2 Wavelet Representation of Signals 

The classical, convolution-based, dual-band DWT of a given signal involves 

recursively convolving the signal through two decomposition filters L(z) and H(z) 

and decimating the result to obtain the approximation and detail coefficients at 

every decomposition level j. These filters are derived from a scaling function and 

a wavelet function that satisfy subspace decomposition completeness constraints 

[16]. A typical FIR low pass and high pass 3-tap filter is expressed as 
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where K is the number of filter taps. The obtained coefficient vectors a
j
 and d

j
 are 

N/2
j
 -dimensional, where N is the length of the original single-channel input 

sequence.  Equations (2.3) and (2.4) describe the original pyramidal algorithm 

reported by Mallat [16]. Reconstruction of the original sequence from the DWT 

coefficients is achieved through 
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where lk  and hk are the coefficients of the synthesis filters, respectively.  
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2.1.3 Basis Selection 

For near-optimal data compression, a wavelet basis needs to be selected to best 

approximate the neural signal waveform with the minimal number of data 

coefficients. A compromise between signal fidelity and ease of hardware 

implementation has to be made. A near-optimal choice was proposed in [17] from 

a compression standpoint and demonstrated that the biorthogonal and the 

symlet-4 wavelet functions are advantageous over other wavelet basis families 

for processing neural signals. From a hardware implementation viewpoint, the 

symlet-4 family has much smaller support size for similar number of vanishing 

moments compared to the biorthogonal basis [30]. Fig. 2.1 displays the wavelet 

basis function of symlet-4. 

 

Therefore, we will focus on symlet basis with order 4 throughout the thesis. The 

high pass and low pass equations of the discrete „symlet-4‟ basis are given by 

 

Fig. 2.1: The „symlet-4‟ wavelet basis function. 
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2.2 Algorithms for DWT 

Mallat‟s algorithm [16] has been used traditionally for evaluating the wavelet 

transform of a given signal and involves recursively convolving the signal through 

two decomposition filters H(z) and L(z) and down-sampling the result to obtain 

the approximation and detail coefficients at every decomposition level [25]. Fig. 

2.2 shows the multi-level decomposition of input data into DWT coefficients 

where the blocks represent the filtering and down-sampling operations. The 

second half of the Fig. 2.2 shows reconstruction of the signal from transmitted 

coefficients. This chapter concentrates on the decomposition portion that must be 

implemented within the implantable device, whereas the reconstruction, if 

needed [31], can be done extra-cutaneously where computational resources are 

not scarce. 

 

 

Fig. 2.2: The multilevel discrete wavelet transform decomposition and reconstruction. 
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2.2.1 Lifting Factorization 

Any finite impulse response (FIR) wavelet transform can be expressed in terms 

of lifting steps [25]. Optimizing the conventional DWT algorithm, the lifting 

scheme analysis is described with a sequence of “predict” and “update” filters, Sn 

and Tn, respectively, which form the lifting steps as evident in (2.2). Each lifting 

step is generally a one or two tap filter, which is computationally more efficient 

than longer, multiple tap filters. 
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Mathematically, lifting DWT is implemented by splitting the data into even and 

odd samples and applying the Sn and Tn filters simultaneously as shown in Fig. 

2.3. The data at each step, after applying the filters, is labeled as f,f1,…,fn, and 

h,h1,…,hn for update and predict steps, respectively. The coefficient values B0 to 

B7 are listed in Table 2.1. The last step in (2.8) is a multiplication by a scaling 

factors K1 and K2, where K1 = 1.571 and K2 = 0.637. Because this multiplication 

can be omitted and correspondingly taken care of at the decoding side, the 

scaling factors have been eliminated in the following discussion. In the case of a 

multi-level decomposition, the outcome at an arbitrary decomposition level j is 

obtained as the approximation a and detail d. The former is fed back for the next 
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level of DWT decomposition if required, whereas the latter is stored or 

transmitted as required.  

 

B0 to B7 in Fig 2.3 and Table 2.1 are the coefficients of the lifting and update filter 

steps for the factorization of symlet-4 filters.  

 

2.2.2 B-Spline Factorization 

It has been shown [23, 29] that wavelet filters can be decomposed as 

Table 2.1: Coefficients of the symlet-4 lifting factorization. 

Coeff. B0 B1 B2 B3 

Value 0.3911 -0.1243 -0.3392 -1.4195 

Coeff. B4 B5 B6 B7 

Value 0.162 0.4312 0.1459 -1.0492 

 

 

Fig. 2.3: Lifting scheme for DWT. 
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where (1±z)
M 

is called the B-spline factor and Q(z) and R(z) are the distributed 

factors. Application of this decomposition to the symlet-4 filters in (2.1), results in 

H(z) and L(z) given by (2.10).  
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(2.10) 

where C1 = -0.076 and C2 = -0.032 are the gain constants. The coefficients A0 to 

A5 resulting from B-spline factorization of symlet-4 filters are listed in Table 2.2. 

Expanding the B-spline polynomials in (2.10) results in (2.11)  
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(2.11) 

which allows all the multiplications required in the B-spline portion of (2.10) to be 

replaced by less computationally demanding shift and add operations. The 

polyphase decomposition can therefore be performed on the distributed parts 

R(z) and Q(z) [29]. This is achieved by splitting the distributed parts into odd and 

even components Re(z) and Ro(z), Qe(z) and Qo(z), respectively. For example, 

the low-pass even distributed part can be represented as Re(z) = 1 + A2z
-2

 + 0.z
-

4
 and likewise for the remaining components. Accordingly, the computation gain 
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in the B-spline method is a reduction in the number of floating point 

multiplications at the expense of more additions [23]. 

 

Fig. 2.4 is a Figurative description of DWT implemented using B-spline 

optimization on the symlet-4 filters. Note that Fig. 2.4 contains two distinct 

portions. The first portion (left) splits the input stream and implements B-spline 

portion of (2.10) where the multiplications are implemented using shifters and 

adders. The model for these shift-and-add multiplications is shown in a blowup 

box in Fig. 2.4. The second portion (right) implements the distributed factors, 

where multiplications require a hardware multiplier. 

Table 2.2: Coefficients of the B-spline factorization. 

H(z) L(z) 

A0 A1 A2 A3 A4 A5 

-3.607 1.867 -0.425 4.391 8.485 2.339 
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2.2.3 Algorithmic Comparison 

According to Fig. 2.2, the downsampling operation follows filtering, but this 

removes half of the samples just calculated and results in wasted computation 

energy. Lifting and B-spline are both motivated by the idea of moving the 

downsampling stage before the filtering stage, so as not to compute results that 

would eventually be thrown away. The resulting filter-downsample operation 

allows polyphase decomposition [25] to be used, which in this case involves 

splitting of the input signal into even and odd samples and filtering them with 

 

Fig. 2.4: B-spline architecture for computing the symlet-4 based DWT. 
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even and odd filter taps, respectively, to minimize hardware resources. This 

approach results in almost half the number of calculations compared to the 

standard convolution-based filtering. Both, lifting and B-spline use polyphase 

decomposition. 

Fig. 2.3 illustrates that lifting does not preserve causality, and thus 

implementation of some of the resulting update and predict filters introduce 

latency between the input and corresponding output of the DWT block. Although 

this implementation does not produce results strictly in real-time, this lag is not 

critical in neuroprosthetics applications where the biologically relevant sampling 

rate is 25 KHz [32]. B-spline does not have any causality issues, and the only 

delay between the input and its corresponding output is the computation delay. 

Table 2.3 compares the computational requirements of convolution, B-spline and 

lifting based DWT implementations. The standard convolution based filter 

requires 16 multiplication and 14 additions. The lifting scheme reduces 

computation requirements to only eight multiplications and eight additions. For B-

spline factorization, the total multiplications required is reduced to 12 and 16 

additions are required. Out of these 12 multiplications, six of the multiplications 

can be implemented using shift-and-add operations. Fig. 2.4 and (2.11) show 

that four of these multiplications require only shift operations to multiply by the 

binary factor of four. The remaining two multiplications have six as the 

multiplicand and require two shifts and one addition operations, as shown in the 

blowup in Fig. 2.4. As a result, the minimized B-spline implementation requires 
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only six multiplications and 18 additions, as shown in parentheses in Table 2.3. 

Based on Table 2.3, Relative to lifting, B-spline requires two fewer multiplications 

at the expense of ten more additions for one level of decomposition. 

Nevertheless, as the detailed low-power/area DWT implementation below will 

show, any benefit to B-spline is diminished for multilevel multichannel 

decomposition. The input data was quantized to 10 bit while the filter coefficients 

were quantized to 6 bits in sign magnitude form based on an analysis of signal 

integrity. A detailed discussion can be found in the Appendix. 

 

2.3 Minimized Hardware Implementations 

2.3.1 Lifting Implementation 

The lifting scheme is a sequence of predict Sn and update Tn filters as shown in 

Fig. 2.3. For the symlet-4 basis, the set of lifting filters can be described by  

1722

261511

241311

120111

0000



















aBRd

RBRBQa

QBQBPR

PBPBfQ

fBhP

 

(2.12) 

Table 2.3: Comparison of required computation. 

 Convolution B-spline Lifting 

Multiplications 16 12(6) 8 

Additions 14 16(18) 8 
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where a and d are approximation and detail results, and P, Q, and R are 

intermediate results. Bi are the eight constant filter coefficients with index i 

ranging from zero to seven. Each equation represents one filter step, and values 

of the filter coefficients are given in Table 2.1. The subscripts of variables in 

(2.12) represent the time sample, where 0 represents the current sample, -1 

represents the previous sample, and so on [34, 35].  

Analysis of the lifting factorization and resulting equations in (2.12) shows that 

there is a noticeable regularity in the required computations. All arithmetic 

operations of the lifting implementation of symlet-4 can be expressed in the 

general form of 

ZBYBXW ji   
(2.13) 

which permits all filter steps to be written as two multiplications and two 

additions, with one of the coefficients set to zero for the first and last step in 

(2.12). This regularity can be exploited to minimize hardware by implementing a 

standard computation core that executes (2.13), as shown in Fig. 2.5. This single 

hardware block can be repeatedly used to perform all the computational steps in 

(2.12) sequentially [36, 37]. Sequential reuse of the same hardware reduces the 

area required by the overall DWT block without impacting performance in this low 

bandwidth application [36]. The hardware block in Fig. 2.5 will be called the lifting 

computation core (CCL) in the following discussion. 



34 

 

 

We have shown that fixed-point integer DWT computation using the symlet-4 

wavelet with filter coefficients truncated to six bits and data values truncated to 

10 bits gives performance comparable to floating-point calculations while 

significantly reducing computational demand [38]. A customized CCL block has 

been designed to support fixed-point multiplications and additions. Using this 

CCL to sequentially execute the steps in (2.12) requires five cycles to compute 

results for one input sample. The critical path for this CCL is Dm+2Da, where Dm 

is the delay of the multiplier and Da is the delay of an adder. 

Applying lifting to a wavelet basis does not guarantee the resulting filters to be 

causal. In the case of symlet-4, there are two filters that introduce non-causality 

into the system. These filters can be identified as S0 and T2 in Fig. 2.3 and are 

used for the calculation of Q and d in (2.12). Thus, the current calculations 

depend on availability of future samples. The corresponding calculations can be 

 

Fig. 2.5: Computation core for lifting DWT [12]. 
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delayed to attain causality, resulting in a latency of three samples between input 

and output. 

2.3.2 B-spline Implementation 

To implement DWT using B-spline factorization in (2.9), equations corresponding 

to (2.12) need to be obtained. The time dependent equations governing the 

calculation of B-spline approximation and detail coefficients of symlet-4 wavelet 

filters can be expressed by 
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(2.14) 

where a and d are approximation and detail results and J, K, L, M, N, P, Q, R, S, 

T, U, and V are intermediate results. The constant coefficients A0 to A5 resulting 

from this factorization are listed in Table 2.2. The subscripts of variables in (2.14) 

represent the time samples, where 0 is the current sample, -1 is the previous 

sample, and so on.  

The B-spline equations in (2.14) do not exhibit the regularity of lifting that allowed 

the general equation of (2.13) to be utilized. However, the required B-spline 

computations can be generalized into two expressions 
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ZAYAW ji 
 

(2.15) 

ZYW   
(2.16) 

where Ai and Aj are constant coefficients. All of the equations in (2.14) can be 

implemented using (2.15) or (2.16) in one or multiple cycles. Although the CCL 

used for the lifting architecture cannot be applied to B-spline, a new computation 

core suitable for sequential evaluation of the filter steps in (2.14) has been 

defined to minimize hardware requirements.  Fig. 2.6(a) shows the hardware-

efficient computation core tailored to the B-spline implementation of (2.15) and 

(2.16), hereafter called CCB1.  Though the B-spline algorithm requires six 

multiplies and 18 additions, the task can be handled by sequential reuse of two 

multipliers, an adder and two multiplexers. Since most of the equations do not 

need multipliers, the inputs are fed directly to the adder stage through 

multiplexers to conserve power and reduce average delay. In following 

discussion, the shifters needed to implement binary integer multiplications are 

ignored because they do not require significant hardware resources. 

Using the CCB1 block, 18 cycles are required to execute all of the steps in (2.14) 

because some of the equations cannot be implemented in a single cycle. To 

reduce calculation delay, notice that the CCB1 implementation relies on the fact 

that (2.16) can be generalized by (2.15) when Ai and Aj are assigned an 

appropriate unity values (1). As a result, some of the steps in (2.14) require two 
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cycles to calculate and no steps can be executed simultaneously using CCB1. 

The time required to calculate all of the steps in (2.14) can be reduced to 11 

cycles by including another adder, as shown in Fig. 2.6(b).  

 

The new computation core, CCB2, allows several computations to be performed 

in parallel. The delay reduction permitted by CCB2 comes at the cost of an 

increase in chip area and a more complex controller to handle the parallelism in 

this multiple-input multiple-output block. Additional performance comparisons of 

CCB1 and CCB2 are discussed later in the chapter. The critical path for both the 

 

Fig. 2.6: (a) Minimum chip area computation core for B-spline, CCB1. (b) Minimum 

delay computation core for B-spline, CCB2. 

 

X

+

X

2
x
1

2
x
1

Ai

Y

Aj

Z

W

X

+

X

2
x1

2
x1

Ai

Y

Aj

Z

W

+
W1

Y1

Z1



38 

 

B-spline CCs is Dm+Dx+Da, where Dm and Da are defined above and Dx is the 

delay due to the multiplexer. 

2.4 Sequential vs. Pipelined Implementations 

In a first-order analysis, the area of a CMOS integrated circuit is proportional to 

the number of transistors required, and power consumption is proportional to the 

product of the number of transistors and the clocking frequency. Through 

transistor-level custom circuit design, circuit area and power consumption can be 

further reduced, with significant improvement in efficiency over held-

programmable gate arrays (FPGA) or standard cell ASIC implementations.  

Parallel execution of the DWT filter steps using a pipelined implementation is 

known to provide efficient hardware utilization and fast computation. In fact, a 

vast majority of the reported hardware implementations for lifting-based DWT rely 

on pipeline structures [22, 30, 39]. However, these circuits target image and 

video applications where speed has highest priority and the wavelet basis is 

chosen to optimize signal representation. A different approach is required to 

meet the power and area constraints imposed by implantability requirements, the 

low bandwidth of neural signals, and the type of signals observed. Two different 

integer lifting DWT implementations, a pipeline approach and a sequential 

scheme, have been optimized and compared for the symlet-4 factorization. 

Furthermore, the hardware requirements for lifting DWT have been compared to 
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a B-spline implementation to verify the advantage of lifting in the application at 

hand. 

2.4.1 Pipelined Design for Lifting DWT 

The integer DWT filter equations in (2.12) can be implemented simultaneously in 

a pipeline structure that permits real time, continuous signal processing to take 

place. Fig. 2.7 illustrates a pipeline structure designed around the customized 

three-term computation core from Fig. 2.5.  

 

The output of each of the five filter stages is held by a pipeline register, and other 

registers provide the necessary delays. By clocking all of the registers out of 

phase from the CC blocks, continuous operation is provided. The computation 

latency is seven cycles, due to the five pipeline stages and the two delay cycles 

built into (2.12). The temporal latency for detail d and approximation a results is 

14 samples because each computation cycle operates on a pair of data samples.  

The overall pipelined computational node consists of five CC blocks, 15 10-bit 

 

Fig. 2.7: Pipeline structure for integer-lifting wavelet transform with data notations to 

match filter equations in (2.12) at a single point in time. Boxes marked with „z‟ represent 

pipeline stages and registers that need to be stored in memory for multi-channel multi-

level processing. 
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registers, and an 8x6b coefficient ROM.  An additional delay phase could be 

added at the ‘d’ output to synchronize the latency of the detail and approximation 

outputs. 

2.4.2 Sequential Design for Lifting DWT 

The pipeline structure achieves fast integer DWT processing via a large 

hardware overhead, and thus well suited for low-power, single channel, neural 

signal processing. However, as discussed below, scaling the pipeline for multiple 

data channels and/or multiple decomposition levels begins to break down the 

efficiency of the pipeline structure. An alternative approach is to process each of 

the filter steps (or pipeline stages) sequentially using a single CC block and fewer 

memory registers. This approach takes advantage of the low bandwidth of neural 

signals that permits the CC to be clocked much faster than the input data 

sampling frequency (typically in the range of 25–40 kHz).  

 Sequential processing of the integer DWT filter steps can be achieved when 

each stage depends only on data from previous cycles or from same-cycle 

outputs generated in a preceding step. The simplicity of data dependencies 

relative to the pipeline structure can be observed from Fig. 2.8, which illustrates 

the sequential structure in a format comparable to the pipeline.  
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Here, each section of the circuit represents a temporal phase rather than a 

physical stage. An important observation is that significantly fewer registers are 

needed because the inputs of subsequent phases rely largely on preceding 

outputs from the same computation cycle. Therefore, it can be shown that the 

overall sequential DWT circuit can be efficiently implemented with six 10-bit 

registers to manage data flow between computation cycles, a single CC block, an 

8 x 6b coefficient ROM, and a simple control block to direct data from memory to 

the appropriate CC input during each phase of operation. Sequential execution 

has a computation latency of two cycles, and the temporal latency for detail and 

approximation results is four samples. 

2.4.3 Pipeline vs. Sequential Lifting DWT 

As stated above, the sequential approach requires only one CC unit and six 10-

bit memory registers compared to five CC units and 15 registers for the pipeline 

circuit. The sequential design does, however, require additional multiplexers and 

control logic to redirect data and coefficients to CC inputs, which are not 

necessary in the inherently hardware-efficient pipeline design. This added 

 

Fig. 2.8: Sequential structure over five operation cycles. Boxes marked with „z‟ 

represent registers that need to be stored in memory for multi-channel multi-level 

processing. 
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circuitry will make the critical path of the sequential circuit longer than that of the 

pipeline structure. Furthermore, to maintain the same throughput, the sequential 

design must be operated at five times the clock rate of the pipeline. Because 

data is processed in a real-time streaming mode, neither approach requires a 

large input data buffer. 

Both architectures have been thoroughly analyzed to determine which approach 

is best suited to the power and area requirements of an implantable neural signal 

processor. To first validate that both approaches can achieve the application 

speed requirements, a custom computation core has been implemented in 

CMOS, and analog simulations show the critical path delay is 6.5ns in 0.5μm 

technology. Thus, approximately 6000 computation cycles could be preformed 

within a nominal 25-kHz sampling frequency for neural signals. Even if an equally 

large memory access delay is included, 3000 computations can be completed 

within a single sampling period. This indicates that speed is not a critical design 

constraint and that circuit optimization can focus on chip area and power 

consumption. 

Using custom design techniques, the chip area, A, required to implement both 

approaches will be roughly proportional to the number of transistors in the circuit 


i

iNTA .  
(2.17) 

where T is the average area per transistor and N is the number of transistors in 

i
th

 circuit block. Empirical observations of several custom circuit layouts shows 
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that a single value for T reasonably approximates all of the integer DWT blocks, 

especially for comparing two similar circuits.  

Although absolute power consumption is inherently difficult to estimate, for the 

purpose of comparing the two similar design alternatives, dynamic power can be 

determined from 

 

(2.18) 

where VDD is the supply voltage and fs is the data sampling frequency 

(nominally 25kHz). The parameter k accounts for the average output load 

capacitance, the average number of transistors operating per output, and the 

average output transitions per clock cycle.  This parameter is a function of both 

fabrication process and circuit topology and has been derived empirically and set 

to a value of 3fF and 0.75fF for 0.5m and 0.13m technology, respectively.  The 

variable s is the clock rate scaling factor relative to fs for each block i such that 

the clocking frequency of each circuit block is (si x fs).  For example, in the 

pipeline configuration, the computation core will be clocked only every other 

cycle, i.e. 0.5fs so that the first of the pair of samples to be processed can be 

acquired in the idle cycle. Correspondingly, because the sequential configuration 

must be clocked at five times the rate of the pipeline, it will have an average 

clocking rate of 2.5fs . In the pipeline approach, all of the blocks are clocked at 

the same frequency, except the coefficient memory, which is static in both 

 
i

iis sNfVDDkP 2
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designs. Since one of the multipliers is idle during two of the five stages, so we 

estimate the sequential CC clock-scaling factor to be 2. Similarly, in the 

sequential controller, most of the circuits are clocked at 2.5fs while others are 

clocked at 0.5fs, so we estimate the clock-scaling factor to be 2 as well. 

Table 2.4 lists the total number of transistors in each approach along with the 

area and power estimated from (2.17) and (2.18) for both 0.5μm and 0.13 μm 

technology. As expected, the pipeline computation unit requires nearly three 

times the area of the sequential approach, and it would occupy about 21% of the 

chip area on a 3x3mm chip in 0.5m technology or 5% of a 1.5x1.5mm chip in a 

0.13m process. The power model predicts that the sequential approach will 

consume only 23% more power than the pipeline.  The larger power consumption 

of the sequential approach can be attributed to its requirement for a more 

complex controller and the need to move more data around within the single 

computation core.  Overall, these results show a tradeoff between area and 

power consumption between the two approaches. 

Conservative values of 80 μm
2
 per transistor for 0.13μm technology have been 

selected to estimate the required chip real estate. 
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If area-power products are taken as the figure of merit then pipelined design is 

about 2.5 times more expensive then the sequential design. Moreover, the above 

analysis does not include static power consumption but since it is directly 

proportional to the number of transistors, it is expected to be higher for pipelined 

design.   

2.5 Multi-Channel / Multi-Level Sequential DWT 

2.5.1 Single Channel / Single Level Architecture 

The computation cores described above require supporting memory and a 

controller to implement the full DWT. The collection of memory, controller and 

computation core blocks into a larger module that is capable of independently 

calculating DWT results will be referred to as computational node (CN).  The CN 

requires three different memory modules to store filter coefficients, intermediate 

results for sequential CC calculations, and intermediate channel/level results as 

described below. It has been shown previously that quantizing the data to 10 bits 

and filter coefficients to 6 bits maintains high signal to noise ratio and does not 

Table 2.4: Characteristics of single-level, single-channel Integer DWT hardware 

for pipeline and sequential configurations at two technology nodes. 

Architecture # transistors 0.5m technology 0.13m technology 

  
area 

[mm
2
] 

power [W] 
area 

[mm
2
] 

power 

[W] 

pipeline 23,336 1.867 15.10 0.117 0.71 

sequential 7,931 0.634 18.55 0.040 0.87 

 



46 

 

distort the signal of interest when lifting DWT is applied. For proper comparison, 

the same quantization is assumed for B-spline. 

1. Computation Core Memory  

Due to the prescribed sequential reuse of CC hardware, temporary memory is 

required to store intermediate calculation results for proper evaluation of (2.12) 

and (2.14). These „computation core memory‟ registers are used over and over 

again for every cycle of the CC. A careful analysis shows that, for lifting-based 

DWT, a total of seven 10-bit registers are required while CC is processing one 

sample. Both CC implementations for B-spline need twelve 10-bit registers to 

hold temporary values during sequential execution. 

2. Coefficient Memory  

A separate „coefficient memory‟ block is required to store the filter coefficients 

listed in Table 2.1 and Table 2.2. For lifting, the coefficient memory block size is 

eight 6-bit registers, while for B-spline only six registers are required. The 

coefficient memory data is constant and can be implemented as ROM. 

2.5.2 Multi Channel / Multi Level Architecture 

Most neuroprosthetics applications require data from more than one nerve or 

from spatially scattered locations. As a result, multiple data streams need to be 

compressed simultaneously in real-time using DWT and transmitted to extra-

cutaneous processing units. Because of area constraints in surgically implanted 

neuroprosthetics, it is desired to process all data channels within a single 

interface chip. Furthermore, increasing the number of decomposition levels 
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inherently improves the compression ratio of DWT [16, 25], which is vital for 

reducing the power required to transmit data from the implanted device. 

Therefore, the design of a computational node that can compute multi-level DWT 

for multiple channels pseudo-simultaneously, i.e. within a single sampling period 

is necessary. Recall that the relatively long period between neurologically 

relevant data samples motivated the design of a sequentially cycled single-stage 

computation core. Analysis of preliminary DWT implementations [36] indicates 

that there is sufficient bandwidth between samples to process many data 

channels sequentially with a single computation core, permitting significant 

savings in chip area. 

1. Channel/Level Memory  

Having adopted a pseudo-simultaneous approach for processing multiple input 

channels, notice that, for each data sample, the CC finishes calculating results 

for a particular channel and then proceeds to calculate results for next channel. 

However, the intermediate values, or state, of the current channel need to be 

stored in memory so they are available when the CC returns to this channel for 

the next data sample. Similarly, when the CC processes a lower level of 

decomposition, the current state of the CC needs to be stored. This 

„channel/level memory‟ is critical to restoring the state of computation when the 

CC switches between different channels and levels. 

Equations (2.12) and (2.14) define which values need to be stored and made 

available to process future samples. For each level and channel (beyond level=1 
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and channel=1), the lifting architecture requires four 10-bit values,  f0,  P0, 

R0,and  Q0, to be saved in CN memory. Similarly for B-spline, there are a total of 

eight 10-bit values, R0, Q0, P0, N0, f-1, f0, h-1 and h0, that need to be stored in 

channel/level memory. Note that these values are set by the algorithm and thus 

do not change with either of the B-spline CCs presented above. Compared to 

lifting, B-spline requires four more 10-bit registers for each additional level or 

channel. Although the number of levels would typically remain small (<5), modern 

neural recording arrays continue to push the boundary on available channels, 

and this difference in memory requirements becomes a key factor for large 

numbers of channels. 

Other memory blocks such as pairing memory and input buffer pose equal 

hardware requirements on both algorithms and are thus discussed in detail in 

next chapter. 

2. DWT Computational Node  

Arranging all the above-mentioned blocks, the CC, the controller, and the 

memories, the general computation unit architecture of Fig. 2.9 is obtained. The 

size of each block varies with algorithm, lifting or B-spline, as noted in the 

discussions above. Based on this design, the next section provides a thorough 

comparison of the VLSI implementations of the two algorithms. 
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2.6 Comparative Analysis for Multi Channel/Level DWT 

2.6.1 Multi Channel / Multi Level Lifting vs. B-spline 

For the sake of comparison, the coefficients and data for both the 

implementations have been quantized with the same precision, i.e. 6 bits and 10 

bits, respectively, with negligible loss in signal fidelity. Table 2.5 summarizes the 

hardware and timing characteristics of both architectures when implemented with 

the CC modules described above. Multipliers, adders, and memory blocks were 

fully custom-designed in 0.18m CMOS and used in all implementations. The 

multipliers were optimized for 10x6 bits to minimize transistor count and reduce 

delay compared to a standard square multiplier. The B-spline shifters are listed in 

Table 2.5, though they require a negligible amount of hardware and contribute 

very small delay.  

To compare critical path delays notice that, for different adder/multiplier 

implementations, the relative delay of multipliers, Dm, and adders, Da, could vary 

significantly. To evaluate the impact of this ratio on computational delays, we 

 

Fig. 2.9: The general computation unit architecture for sequential DWT. 

 



50 

 

defined Dm ≈ •Da and observed the delays in units of Da as a function of . 

Defining the total critical path delay as the CC critical path delay times the 

required number of CC cycles per sample, and assuming that the delay due to 

multiplexers, Dx, in B-spline is negligible, it can be argued that B-spline 2 always 

has less delay than both Lifting and B-spline, indicating the use of CCB2 would 

be preferred where delay poses a critical constraint. With =3, as it is for our 

custom designed adder and multiplier, Lifting delay is only slightly worse that B-

spline 2. The computational load per sample listed in Table 2.5 is the measure of 

computational resources used to calculate results for a single sample and thus 

directly effects the power dissipation. 

 

Table 2.5: Hardware comparison of lifting and B-Spline architectures. 

 Lifting CCl B-spline CCB1 B-spline CCB2 

Multipliers 2 2 2 

Adders 2 1 2 

Multiplexers 0 2 2 

Shifters 0 4 4 

Latency 3 0 0 

Cycles per Sample 5 18 11 

Coeff. Mem. (6bit) 8 6 6 

CC Mem. (10bit) 7 12 12 

Per Chn/Lvl Mem. 4 8 8 

Critical Path Delay Dm+2Da Dm+Dx+Da Dm+Dx+Da 

Computational Load per 

Sample 
5Dm+10Da 4Dm+18Dx +18Da 4Dm+11Dx +18Da 

No. of Tx for CC 1786 1650 1810 
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The lifting approach results in a highly regular set of equations so that the 

corresponding CC has a high utilization factor. The equations governing B-spline 

do not follow a regular pattern, which results in a minimum area CCB1 that does 

not optimally use the capabilities of hardware. As a result, CCB1 requires a high 

number of cycles to process a set of samples. The CCB2, on the other hand, is 

designed to parallelize the computation and improve the hardware utilization and 

thus relatively fewer cycles are required for calculations.  

The lifting architecture the inputs h and f lead to P-1, which is required for 

calculation of Q-2, which is subsequently required for a-2, which finally produces 

d-3. Thus, we cannot compute d-3 until we have received h and f. Hence, as 

discussed above, there is a latency of three samples between input and its 

corresponding output. B-spline does not have any future sample dependence so 

there is no latency between input and output samples. The cost, however, is that 

B-spline requires 18 or 11 cycles, depending upon the type of CC used, to 

process one sample as compared to 5 cycles taken by lifting. This translates to a 

higher clocking rate for B-spline. Note also that most of the transistors in lifting 

architecture are active all the time, however, since B-spline does not use the 

hardware very efficiently, a large fraction of transistors in B-spline remain inactive 

most of the time, dissipating undesirable static power. By counting the number of 

transistors active over different calculation cycles for a single sample, power 

requirements can be modeled by  
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 
j i

jiis SNfVDDKP ,

2

 
(2.19) 

where the first summation j is over the total number of cycles (5, 18 and 11 for 

lifting, B-spline and B-spline 2, respectively) and i refers to the circuit blocks, i.e., 

computation core, controller, and different memory blocks. Ni is the total number 

of transistors in i
th

 block and Si,j is the fraction of transistors active in i
th

 block in 

the j
th

 cycle. K is a constant that depends on IC fabrication process parameters. 

Note that the clock frequency is different for all the three implementations 

because of the different number of required cycles per sample. 

Based on (2.19), and assuming the relative area is directly proportional to 

transistor count, Fig. 2.10 compares the relative area and power consumption of 

the B-spline and lifting designs for an increasing number of channels and 

decomposition levels. The plots show that lifting requires smaller area and 

consumes less power than both implementations of B-spline. CCB1 for B-spline 

requires one less adder than lifting and thus has fewer transistors. However, in a 

multi-channel, multi-level implementation the number of transistors for the entire 

computational node, including memory and controller, increases much more 

rapidly with B-spline than lifting, thus, offsetting any advantage gained by a 

smaller CC. The B-spline implementation with CCB2 requires less power than 

CCB1 mainly because it requires lower clocking frequency. The lifting 

implementation shows increasingly superior performance as the number of 
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channels and levels are scaled up, due in large part to its lower channel/memory 

requirements compared to either B-spline implementation. 

 

For a single-channel, single-level DWT, no channel/level memory is required. As 

channels or levels increase, the difference between the two B-spline CC 

implementations remains constant, however, CCB2 retains the advantages of 

smaller critical path delay and lower power consumption. For every increase in 

the number of channels or levels, lifting requires significantly fewer transistors 

than B-spline, making it preferable for multi-channel applications with power and 

area constraints. 

 

Fig. 2.10: Comparison of relative area and power consumption vs. number of levels and 

channels for B-Spline, B-Spline 2 and Lifting architectures. 
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Multiplication-Free Lifting: The CC unit proposed for lifting DWT uses two 

multipliers so that the calculations required per sample are eight multiplications 

and eight additions that can be completed in. It is noteworthy that a general 

purpose lifting approach based on only shifts and additions was proposed in [21]. 

For the sake of completeness, we compared the demands of a CC unit with 

multipliers to a CC unit without any multiplier, i.e., composed of only a shifter and 

an adder. The later approach resulted in 12 shift operations and 21 add 

operations, and required 21 cycles per sample. This is because the equations 

required to compute multiplication-free lifting DWT did not show any regular 

structure such as the ones in (2.13). Therefore, substituting another adder and 

shifter in the data path did not help in reducing the number of cycles required to 

complete the computation. With respect to area demands, we found that for one 

sample pair, a CC unit without a multiplier requires 52% less area compared to a 

CC with multiplier. This obviously translates into large savings in chip area. 

However, these savings were not substantial when the system is scaled up. For 

example, a 32-channel/4-level DWT system using a CC with multiplier would 

occupy 6.5% of the total chip area as opposed to 3.3% using a CC without 

multiplier. Therefore, the overall savings in chip area are only 3.2%. In contrast, 

the CC without multiplier requires 13.3% more power than a CC with multiplier for 

this specification. We therefore concluded that the reduction in area using a shift 

and add strategy in the lifting approach is overshadowed by the increase in 

power dissipation when multichannel/ multilevel decomposition is sought.  
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2.6.2 Multi Channel / Multi Level Sequential vs. Pipeline 

Both the pipeline and sequential architectures can be scaled to multiple channels 

and/or levels by reusing the computational node hardware and increasing the 

clocking frequency to complete all computations within the input sample period. 

In both approaches, registers within the computational node hold data necessary 

for the next cycle‟s calculation. To sequentially reuse the computational node, 

some register values for a specific channel/level must be saved so they will be 

available when that channel/level is next processed in a future cycle. Fig. 2.11 

shows the multichannel, multilevel, implementations of the pipeline and 

sequential configurations. 

For multiple channels/levels, the need to copy the entire set of pipeline registers 

to memory effectively negates one of the primary advantages of the pipeline over 

the sequential approach. On the other hand, the sequential processing circuit is 

inherently designed to swap new data in/out each clock cycle. To quantitatively 

compare these two approaches, circuit models have been developed to describe 

the power and area for each option as a function of the number of channels and 

the number of decomposition levels. The following models assume the hardware 

(including control logic) has been scaled to manage multiple channels and levels, 

though they are still valid for single channel, single level implementations. 
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The relative area for pipeline and sequential architectures as a function of levels 

and channels is shown in Fig. 2.11. These results demonstrate that the pipeline 

requires significantly more chip area than the sequential approach and its area 

needs grow faster with larger number of channels and levels. This is due 

primarily to the relatively large number of registers that must be stored per 

channel or level (11 for pipeline compared to 4 for sequential).  

Fig. 2.11 also shows the relative power consumption for the two approaches. The 

linear increase in power per channel is slightly higher with the sequential design 

than the pipeline. Although there is a sharp jump in power from L = 1 to L = 2, 

further increases in levels require less and less additional power as the usage 

 

Fig. 2.11. Comparison of multichannel/multilevel pipeline and sequential DWT 

approaches: relative chip area and relative power consumption versus number of levels 

and channels. 
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rate approaches one. The most important observation from Fig. 2.11 is that the 

power consumption of the two implementations is almost similar but the 

sequential design requires significantly less chip area. 

Due to size and power constraints in implantable systems, an important figure of 

merit is the relative area-power product, which is plotted in Fig. 2.12 versus both 

levels and channels. Fig. 2.12 illustrates that the sequential approach is 

increasingly preferable as the number of channels or the number of decomposi-

tion levels increases. The only significant benefits of the pipeline within the 

enforced design constraints are that it can be clocked at a higher rate and that it 

takes fewer clock cycles to complete a computation.  

 

 

Fig. 2.12. Power-area product versus level and channel for pipeline and sequential 

approaches. 
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Both of these factors result in the pipeline having a higher limit on the maximum 

number of channels that can be simultaneously processed. However, based on 

the parameters defined above, the sequential execution architecture has an esti-

mated maximum of around 500 data channels (at L = 1). Given the chip area 

limitations, the area-efficient sequential approach is best suited for this 

application. In an example implementation with 32 channels and 4 levels of 

decomposition, the models predict that the sequential approach will require 0.692 

mm and 50.1μw in 0.13μm CMOS. indicating the feasibility of performing front-

end signal processing within the constraints of an implanted device. 

 Another interesting result of this study is the comparison of the area required by 

the computational node circuitry versus the area required by the memory that 

holds register values required for multichannel/multilevel operation. Fig. 2.13 

illustrates this result for both sequential and pipeline configurations as a function 

of channels at L = 4. Increasing the number of levels or channels does not 

increase the area taken by computation blocks, however, memory requirements 

scale linearly. With 10-bit data resolution, at L = 4 and C = 32, the pipeline 

requires over 14 000 bits of SRAM, while the sequential circuit requires only 

about 5000 bits. Reducing memory requirements becomes increasingly important 

in multichannel applications, again highlighting the advantage of the sequential 

approach. 

As illustrated in Fig. 2.13, the memory required to store intermediate calculation 

values will dominate circuit area in multichannel implementations. Careful 
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analysis of an optimized sequential B-spline implementation [24] has shown that 

eight memory registers are required per channel/level, compared to four for 

sequential lifting and 11 for pipeline lifting. Based on this information and the 

comparisons above, B-spline has a slight advantage over pipeline lifting but 

incurs a significant penalty relative to sequential lifting in terms of area. 

Furthermore, the sequential lifting implementation requires only about 25% of the 

dynamic power of sequential B-spline, primarily because B-spline takes 18 cycles 

to execute sequentially compared to 5 cycles for lifting [24]. The advantage of 

sequential lifting becomes even more profound when static power is considered, 

especially in deep submicron technologies.  

 

 

Fig. 2.13. Relative area versus channels of data memory compared to all other blocks 

for sequential and pipeline designs, at L = 4. 

 



60 

 

2.7 VLSI Architecture for Multi-Channel DWT 

To utilize DWT-based compression with modern neuroprosthetics devices, a 

multi-channel, multi-level implementation is necessary because microelectrode 

arrays sample multiple data channels simultaneously and multiple decomposition 

levels improve signal reproduction accuracy. Thus, area and power efficient 

hardware that can perform multi-channel, multi-level DWT in real time is highly 

desirable. In contrast to traditional DWT applications, neuroprosthetics can afford 

long computation intervals, up to 40μsec [17], permitting hardware to prioritize 

power and area efficiency over speed. From the hardware point of view, integer-

lifting and B-spline DWT factorization schemes have very efficient 

implementations. The lifting approach to the DWT reduces the required 

arithmetic operations and, as an in-place implementation, requires less memory 

at the expense of a longer critical path [22, 23]. The B-spline factorization 

reduces the critical path delay by converting some of the required multiply 

operations into less computationally intensive shift-and-add operations [23].  

With few exceptions, recent efforts to optimize DWT hardware have concentrated 

on increasing throughput at the expense of area and power [22, 23]. In contrast, 

our prior work has identified an optimal implementation of the DWT architecture 

where chip area and power have priority over speed [24]. The approach relies on 

a hardware-efficient integer lifting factorization scheme and the „symlet‟ family of 

wavelet basis that has been shown to provide a near optimal compression of 

neural signals [17]. This chapter describes the design of a highly area and power 
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efficient VLSI circuit that implements multi-channel, multi-level lifting-based DWT 

in real time.  

2.7.1 Architecture Overview 

Fig. 2.14 shows the data flow diagram of lifting-based DWT using the symlet-4 

bases. If h and f are two sequential input samples from the same channel, a and 

d are approximation and detail results, and P, Q, and R are intermediate results, 

the five filter steps in this flow can be expressed by 

1722

261511

241311

120111

0000



















aBRd

RBRBQa

QBQBPR

PBPBfQ

fBhP

 

(2.20) 

where B0-B7 are the eight constant filter coefficients and subscripts of the other 

variables represent the time sample, 0 being the current sample, -1 the previous 

sample, and so on. 

To ease hardware requirements, it has been shown that integer lifting DWT with 

quantized data and filter coefficient values maintains a high signal to noise ratio. 

Based on this analysis, we have chosen 10-bits data and 6-bit coefficients 

(including sign bit) for our hardware implementation. Our previous work 

evaluated two structurally different hardware approaches, namely pipeline and 

sequential, for suitability in implantable devices based on their resource demands 
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[35]. Derived from this system-level analysis, we have found that for the single 

channel case, the pipeline architecture consumes smaller power at the expense 

of considerably larger area as compared to the sequential architecture, resulting 

in a higher area-power product. The difference in area-power product increases 

with the increasing number of channels and levels, making the sequential 

architecture the better choice of the two especially for higher number of 

channels.  

 

Fig. 2.15 describes the DWT architecture resulting from our circuit-level design 

efforts. It is composed of a customized computation core (CC), a digital 

controller, and five memory modules for incoming data, filter coefficients, 

intermediate CC products, and intermediate values necessary to sequentially 

process multiple levels and channels.  

 

Fig. 2.14: Data flow diagram for lifting DWT using the symlet-4 basis. 
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Sequential data samples (inputs h and f) from a given channel are processed in 

pairs to generate the approximate and detail DWT coefficients (outputs a and d). 

To achieve system-level goals of power and area efficiency, each of these 

architectural blocks has been customized at the circuit level to minimize 

transistor count and eliminate unnecessary output transitions. 

2.7.2 Computation Core 

Analysis of the „symlet-4‟ lifting factorization and resulting equations in (2.20) 

shows a noticeable computation regularity; all arithmetic operations can be 

expressed in the general form of W=X+BiY+BjZ. This regularity can be exploited 

to minimize hardware by implementing a single computation core (CC) that 

sequentially executes all computational steps in (2.20). Sequential reuse of the 

same hardware significantly reduces chip real estate requirements without 

impacting performance in this low bandwidth application.  

 

Fig. 2.15. Complete system diagram for sequential calculation of DWT. 
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The merits of using two‟s complement arithmetic versus sign-magnitude 

arithmetic were considered. The 10-bit input data is received in sign magnitude 

form, as are the constant 6-bit filter coefficients. The CC multipliers are required 

to perform 10x6 operations. Methods for multiplying sign-magnitude numbers do 

not work with two's complement numbers without adaptation. We have 

implemented several combinations of adders and multipliers using sign-

magnitude and two‟s complement representation and found that it is most 

efficient to handle multiplication in sign-magnitude form while additions are 

performed in two‟s complement. As shown in Fig. 2.16, the computation core can 

be implemented using two multipliers and a three-term adder formed by 

cascading two two-term adders. Using this CC to sequentially execute the steps 

in (2.20) requires five cycles to compute results for one sample pair. The critical 

path for this CC is Dm+2Da, where Dm and Da are the delays of the multiplier 

and the adder, respectively. Overflows that can occur during these computations 

are handled by replacing the results with appropriate positive or negative 

saturation values. 
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1. Adders 

Ripple carry, carry save and carry look-ahead adders were analyzed for this 

DWT implementation. Because delay does not pose a bottleneck and area and 

power are much more important, the lower transistor count required by ripple 

carry adder was favored. Ripple carry adder performance depends largely upon 

structure of its individual full-adder cells, whose properties can vary widely to 

match different applications. Comparative analysis of several full adder structures 

was performed at the circuit level to take into account transistor count, activity 

factor, and dynamic power due to parasitics. Based on these results, the pass 

gate logic 1-bit full adder presented in [40] and shown in Fig. 2.17 was chosen to 

best suit our DWT application. Unlike some adder cells with slightly lower 

transistor counts, this cell has no internal direct path between power and ground, 

eliminating short circuit current during transistor switching. Furthermore, the use 

 

Fig. 2.16. Computation Core architecture for integer lifting DWT. 
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of transmission gates limits the output voltage swing and reduces dynamic power 

consumption without compromising overall speed or reliability. In 0.18μm CMOS, 

this 16-transistor cell was designed to dissipate 0.4μW power and occupy 

41.5μm
2.

 It was utilized to construct 10-bit adders for the three-term adder block 

and 13-bit adders for the 10x6 multipliers.  

 

2. Multipliers 

The CC requires two multipliers to perform 10x6 operations. Both Booth and 

array multiplier structures were optimized to the specific bit resolutions of our 

DWT application and compared for area and power. The Booth multiplier 

consists of recoders, partial product generators, 3:2 and 2:1 compressors and a 

final adder. The recoders and partial product generators were optimized for low 

 

Fig. 2.17. Single bit full adder cell based on pass transistor logic [8]. 
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power [41]. Two different recoders and partial product generators were 

considered, both requiring 18 transistors each. The two partial product generator 

architectures, NPR3a and NPR3b, presented in [41], were tailored to this 

application and it was determined that, while power consumption is similar, 

NPR3b needs slightly fewer transistors (14 vs. 16) and is preferred. The 3:2 and 

2:1 compressors are full and half adders respectively. In contrast, the array 

multiplier ANDs every bit of the multiplier with every bit of the multiplicand to 

create partial products. A Wallace tree structure was implemented to compress 

the partial products. Both Booth and array multipliers require an adder at the final 

stage. In comparison, a CC design using a Booth multiplier was shown to occupy 

16% more area than a CC design with an array multiplier. Table 2.6 gives area, 

average power and delay measurements of the custom designed adder and 

array multiplier sub-modules selected for use in our DWT CC. It also includes the 

average power, area and delay measurements for the complete computational 

core including two‟s complement circuits. The average power includes static and 

dynamic power dissipation at a clock frequency of 6.4MHz. 

 

2.7.3 Memory Modules 

1. Multi-channel/level memory module 

Table 2.6: CC Transistor Counts and Worst Case Values 

Sub-module # of TX Area (μm
2
) Power (μW) Delay (ns) 

10-bit Adder 160 418 2.07 0.41 

10x6 Multiplier 733 2858 9.04 2.13 

Comp. Core 1854 9828 27.36 6.07 
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Neuroprosthetics applications generally depend upon multiple data streams 

taken from an array of microelectrodes. Thus, our DWT system has been 

designed to compress data from multiple channels simultaneously using multi-

level decomposition in real time. Analysis of our DWT implementation indicates 

that there is sufficient bandwidth within a single computation core to process well 

over 100 data channels sequentially. Sequential processing significantly reduces 

computational hardware demand; however, the intermediate values, or „state‟, of 

the current channel needs to be stored in memory so they are available when the 

CC later processes the next sample from this channel.  

Similarly, memory is needed to store intermediate values while switching 

between different levels. The memory block required to hold these intermediate 

values is called the channel/level memory. The values that need to be stored and 

made available to process future samples are defined by (2.20). For each level 

and channel (beyond one), the lifting architecture requires five 10-bit values, a0,  

f0, P0, Q0 and R0, to be saved, four of which are stored in channel/level memory 

while one is stored in the pairing memory. Every level and every channel requires 

a corresponding 40-bit memory register. In a 32-channel, 4-level design, this 

amounts to 128 registers. The channel/level memory was implemented in both 

an SRAM using standard six transistor cells and a DRAM. For a large number of 

channels and levels, the channel/level memory module was found to dominate 

the power and area of the overall DWT system.  
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For the prototype DWT chip, the channel/level memory was implemented in 

SRAM to maximize reliability and ease system-level testing. However, a DRAM 

implementation is particularly efficient in this application; due to the sequential 

nature of the DWT, the entire memory block is periodically overwritten, 

eliminating the need for refresh circuitry during normal operation. For example, at 

a sampling rate of 25 kHz, the least frequently accessed level 4 data is 

overwritten every 0.64ms, which is much faster than the hold time easily 

achievable by a DRAM cell implemented in a standard CMOS process. This 

feature permits significant area savings over the SRAM implementation, as 

shown in Table 2.7, which compares relative performance criteria for a 32 

channel, 4 level memory block.  

In a standard 0.18μm CMOS process, use of a discrete DRAM storage capacitor 

is prohibitively area expensive. Alternatively, the gate capacitance of a large 

MOSFET has been used to store charge. Assuming that the sense amplifiers 

need a stored value of at least 1V to reliably read the correct value, a MOSFET 

with at least 0.2μm
2
 gate area is required to realize a dependable hold time. 

Constructed in this fashion, comparison of two custom designed CMOS memory 

blocks shows that a DRAM block would permit a 64% area savings over an 

SRAM block for a 32-channel 4-level implementation. 
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2. Input, coefficient, pairing and CC memory modules 

Because DWT operates on data pairs, there is a hold cycle between each 

computation of input pairs wherein the first sample of the pair is acquired. Thus, 

an input data buffer of size equal to the number of channels is required to store 

input samples during the hold cycles. Note that in this architecture, the hold cycle 

is used to compute all results for higher (beyond one) levels of decomposition, 

where the necessary data is available from previous computations. 

A separate coefficient memory block is required to store the eight 6-bit filter 

coefficients. Because this data is static, it is most efficiently implemented using 

hardwired connections, effectively operating as a ROM structure with only the 

electronics necessary to switch the proper coefficient values into the CC at the 

appropriate computation phase. 

To accommodate sequential reuse of CC hardware, at the beginning of each 

computation cycle, four intermediate results from the previous computation cycle 

for the same channel must be loaded into the CC. These values, loaded from the 

channel/level memory module, are stored in a block defined as the CC memory. 

This CC memory block must be capable of loading all four bytes in parallel and 

moving data to the appropriate CC input as it cycles through the filter steps in 

Table 2.7: Comparison of SRAM and DRAM Memory Implementations 

32 Chn/ 4 Level No. of Tx Total Area (μm
2
) Bit Density (μm

2
/bit) 

SRAM 34814 129830 25.36 

DRAM 13414 46433 9.07 
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(2.20). As described below, this requires six 10-bit registers that were 

implemented using flip-flops for parallel load/store and byte-wise shift operations. 

When performing calculations for levels 2 and beyond, the CC input data (f and h 

in Fig. 2.15) does not come from inputs to the DWT circuit. Rather, inputs must 

be pulled from results calculated previously for a lower level. These values are 

stored in a pairing memory that must contain two 10-bit values for every channel 

and level except the highest level. All computation cycles except those of the 

highest level will generate one 10-bit byte to be written to this pairing memory. 

During all computation cycles for level two and beyond, two 10-bit values will be 

read from this block. Due to this unique read/write structure, this block was 

implemented independent of the channel/level memory using an SRAM with 

address decoding circuitry that allows us to enable each 10-bit byte block 

independently. 

3. Power saving strategies for memory 

To reduce power consumption in the SRAM blocks, a divided bit line structure 

[42] was adopted, reducing the overall bit line capacitance and eliminating 

unnecessary dynamic power consumption during read and write cycles. Each of 

the sub bit lines were connected to only eight SRAM cells, and extra logic within 

the decoder controls access to these sub bit lines. With reduced bit line 

capacitance, the SRAM could be implemented without a sense amplifier, 

eliminating the need to access both sides of the SRAM cell and reducing bit line 

currents during read operations.  
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Instead of using a single memory block for all storage, the memory was 

partitioned into smaller modules based on their different access patterns. As a 

result, only a comparably small portion of the whole memory is active and 

undergoes switching at a given time, resulting in saved power.  

2.7.4 State Machine Controller 

The main functions of the controller are to direct overall system operation and 

route data between DWT circuit blocks at the proper time [43, 44]. The sequence 

of actions needed to complete a single DWT computation cycle consists of three 

different phases over a total of eight clock cycles, as shown in Fig. 2.18. As 

managed by the DWT controller, one read cycle is followed by five calculation 

cycles and then two write cycles. During the read cycle, stored values from prior 

calculations are loaded into the CC memory. During the calculation cycles, the 

five filter steps in (2.20) are executed. During the write cycles, results are stored 

onto channel/level and pairing memory blocks. This sequence must be repeated 

for each channel within the input sampling period. For example, with 32 data 

channels and a typical neural signal sampling rate of 25 kHz, the eight operation 

cycles must be clocked at 6.4MHz. For fewer channels, the clock rate can be 

reduced to ensure power is only consumed when computations are required. 

 

 

Fig. 2.18: DWT circuit operation phases for a single computation cycle. 
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Note that the number of levels has no effect on the clock frequency because 

higher-level results will be computed during intermediate hold cycles while data 

input pairs are being stored. This is illustrated in Fig. 2.19, which describes the 

sequence of computation cycles managed by the controller for one channel and 

four levels. Here, the top line shows the computation cycle count, and the next line 

counts the cycles within each operation sequence (two shown). A level 1 result is 

computed when a pair of data samples is received, a level 2 result is computed when 

two level 1 results are available, and so on. The first results calculated at each level are 

trash values because the memory initially contains meaningless values. After each 2L 

computation cycles (where L is the number of levels), there is an idle (no calc) cycle. 

Each column represents a computation cycle composed of eight clock cycles. 

The number of computation cycles necessary for a complete, repeatable, DWT 

operation sequence is 2L, where L is the number of levels. As shown in Fig. 2.19, 

four levels requires 16 computation cycles for a complete operation sequence. 

Within each operation sequence (2L computation cycles) one cycle will be an idle 

cycle where no computations are necessary, as indicated by NO CALC in Fig. 

2.19. Notice that, in each odd numbered computation cycle, no level one results 

are being calculated. These odd cycles correspond to input hold cycles 

discussed above. While input data pairs are being stored in these cycles (to be 

processed in the following cycle), the CC hardware can be utilized to process 

results for all levels greater than one in the sequence defined by Fig. 2.19. Thus, 

an infinite number of levels could be processed without additional hardware or 

increasing frequency. The number of channels has no impact on this sequence; 
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each channel is processed sequentially within a single computation cycle, which 

can be achieved by increasing clocking frequency by a factor equal to the 

number of channels. Thus, the only major impact of increasing channels or levels 

is an increase in dynamic power consumption and the addition of channel/level 

memory. 

To control the sequence and timing of operations within the DWT circuit, both an 

instruction based microprocessor and a state machine based controller were 

analyzed. Because of the relatively straightforward and repetitive nature of 

operations, the efficiency of a state machine design was found to be much more 

compatible with the power and area goals of this DWT circuit. The inherent 

tradeoff for this efficiency is limited flexibility, and the maximum number of levels 

and channels had to be set before implementing the state machine controller. 

Here we will describe a state machine for 32 channels and 4 levels. This design 

assumes multi-channel input data is multiplexed into a single 10-bit input bus, 

and it will output results sequentially onto a single output bus. 



75 

 

 

 
Fi

g.
 2

.1
9

. P
er

 c
h

an
n

el
 a

ct
iv

it
y 

o
f 

th
e 

C
C

 a
t 

d
if

fe
re

n
t 

le
ve

ls
 o

f 
d

ec
o

m
p

o
si

ti
o

n
 f

o
r 

a 
4

-l
ev

el
 im

p
le

m
en

ta
ti

o
n

. 

7
5

 

 

 



76 

 

For a 32 channel, 4 level DWT system, the state machine controller utilizes a 12-

bit counter to keep track of the current state, channel, and level. The three least 

significant bits of this counter determine the eight clock cycles within a 

computation cycle (Fig. 2.18) defining the operation phase for the CC and 

memory blocks, regardless of the channel or level being processed. The next five 

bits of the counter specify channel being processed. The remaining four bits 

represent the level being processed, where each bit represents an individual 

level (Fig. 2.19). The level 1 bit also determines if the input stream should go to 

the input buffer (hold cycle) or the computation core (compute level 1 results). In 

this fashion, a level 1 result is computed once a pair of data samples is received; 

a level 2 result is computed when two level one results are available; and so on. 

By increasing the width of the counter, more states could be added to support 

additional channels or levels. Fig. 2.20 describes operations within the CC 

memory controlled by the three least significant bits of the state machine counter. 

Here, complex data movement within the CC memory and its interaction with 

other memory blocks is controlled.  
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Fig. 2.20 defines CC memory register names, where X, Y and Z are registers 

connected to respective inputs of the CC while M1, M2 and M3 store 

intermediate computation results. Values are read into the CC memory at the 

beginning of the computation cycle. This is followed by five cycles of calculations 

and register data shifts. The last calculation cycle produces detail and 

approximation DWT results. The detail DWT coefficient is sent to the output bus. 

The approximation DWT coefficient is sent to the output bus and, depending on 

the level being processed, stored in pairing memory. After the last calculation 

cycle, four of the values in CC memory, f0, P0, Q0 and R0, are stored to the 

 

Fig. 2.20. Data movement in CC memory during the five calculation cycles within a 

computation cycle (one per sample per level). Top line shows the six register names. 

Subsequent lines define how data must be moved as the steps in (2.20) are processed 

sequentially. 
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channel/level memory for use in subsequent calculations of the current 

channel/level results. 

2.8 Simulation Results and Analysis 

2.8.1 Hardware Resources 

All of the DWT circuit blocks were custom designed and laid out in 0.18m 

CMOS. Table 2.8 lists number of transistors required for each module. The 

corresponding chip area required by each module, including routing, is also 

shown. The dominance of channel/level memory over other modules is evident, 

where increasing the number of channels by a factor of four (from 8 to 32) results 

in roughly a 300% increase in both the number of transistors and the area 

consumption. Our model 32-channel, 4-level DWT implementation, requires ~54k 

transistors and occupies roughly 470m x 470m. These values were obtained 

with the major memory blocks implemented with SRAM for reliability and testing 

purposes. If the input buffer, pairing and channel/level memory were replaced by 

DRAM blocks, the estimated transistor count for the 32-channel, 4-level circuit 

would drop to around 25,000 and the total DWT circuit area would reduce to a 

little more than 100,000μm
2
, which is less than 50% of the overall circuit using 

SRAM. Table 2.8 also gives the area and transistor count precise estimates for 

100 channel and 250 channel designs. 

A 32-channel system, with a sampling frequency of 25KHz, operating at four 

levels of DWT decomposition requires a clock frequency of 6.4MHz. The power 
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is managed separately for each block, thus the hardware portions not working at 

a given time do not consume any power. Operation of the DWT block can be 

modeled as a state machine which requires 8 cycles to complete its operation, as 

shown in Fig. 2.18.  

 

Table 2.9 gives the average activity per cycle of each hardware module.If the 

maximum delay of 10ns is considered to allow for effects of fabrication non-

idealities, it allows us time to process 500 channels, at 25KHz sampling 

frequency, in a time-multiplexed fashion. However, handling of 500 channels 

does not seem feasible especially at the analog-to-digital converters and the 

neural signal amplifiers. 

Table 2.8: Transistor Count and Area for Hardware Modules 

Module No. of Tx Area (μm
2
) 

Controller 987 6319 

Computation Core 1854 9828 

Comp. Core Memory (Flip-Flops) 2803 10453 

Coefficient Memory (ROM) 122 714 

*Pairing Mem. per Chn/Lvl (SRAM) 120*C*(L-1) Varies 

*Input Buffer per Chn (SRAM) 60*C Varies 

*Per Chn or Lvl Mem (SRAM) 240*C*L Varies 

Complete DWT system: 8 Chn, 4 Lvl 17910 74253 

Complete DWT system: 32 Chn, 4 Lvl 54339 221643 

Complete DWT system: 100 Chn, 4 Lvl 157562 641344 

Complete DWT system: 250 Chn, 4 Lvl 385256 1583832 

*Counts exclude transistors for address decoding circuitry 
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The overall 32 channel, 4 level system at 0.18 micron process technology with 

1.3V VDD and at 6.4MHz of operating frequency consumes an average power of 

76μW, including static and dynamic power dissipation, with highest power being 

consumed by CC memory, the computation core and the controller respectively. 

Since these three modules are operational most of the time, they account for 

about 80% of the total power. 

2.8.2 Data Compression vs. Reconstruction Error 

The DWT circuit outputs interleaved approximate and detail transform 

coefficients that give a sparse representation of the original neural signal. 

Coefficient values below a specific threshold can be set to zero to compress the 

results into a smaller number of bytes. The non-zero coefficients can then be 

encoded using a lossless encoding scheme and transmitted to the extra-cranial 

or extra-cutaneous processing units [17, 45]. Choosing the value of the zeroing 

threshold provides a tradeoff between signal integrity and compression ratio. 

To test our DWT circuit implementation on real neural data, a linear-step analog 

to digital converter was used to convert experimentally obtained neural data into 

Table 2.9: Average Activity per Cycle for Hardware Modules 

Module Average Activity per cycle 

Controller 8/8 = 1 

Comp Core 5/8 

Comp Core Memory (Flip Flops) 8/8 = 1 

Coefficient Memory (ROM) 5/8 

Pairing Memory per channel/level 2/8 = ¼ 

Input Buffer per channel (SRAM) 1/8 

Per Channel or Level Memory 2/8 = ¼ 
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a stream of 10-bit digital values. The data was then processed through the DWT 

system and results were stored for analysis. In one test, the stored transform 

coefficients were used to reconstruct the neural signal, and this result was 

compared to the original signal to measure the quality of reconstruction. This 

analysis was performed for several different zeroing threshold values to evaluate 

signal quality verses the amount of compression obtained. The final performance 

metrics can be defined in terms of three quantities, the root mean squared error 

(RMS), Shannon‟s entropy [46], and the assigned threshold. 

RMS error is a measure of the average difference between the original and the 

reconstructed signal. Here the difference between the original signal and the 

reconstructed signal is comprised of two components: the quantization noise due 

to finite-word length, and the lossy-compression noise resulting from the 

thresholding operation. The mathematical representation of RMS error is given 

by 
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(2.21) 

where nx  is the original signal, nx̂ is the reconstructed signal and N is the length 

of the signal. 

Shannon‟s entropy is a measure of uncertainty associated with a random signal 

and can be interpreted as the average minimum message length, represented in 

bits, which must be transmitted to communicate the exact value of the signal.  
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Entropy gives the theoretical limit to the best possible lossless data compression 

for any communication. Entropy can be mathematically represented as 
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(2.22) 

where N is the total number of possible values (also called symbols in 

information theory literature) and p(xi) is the probability of occurrence of the ith 

value. 

Increasing the zeroing threshold improves the amount of compression achieved 

(decreasing entropy) but degrades RMS error. For neural data processed 

through our DWT circuit, Fig. 2.21 plots the RMS error and entropy as the 

zeroing threshold increases and confirms the anticipated tradeoff.  

Because of this direct tradeoff between RMS error and compression ratio, the 

zeroing threshold must be chosen to match application requirements; if 

bandwidth limitations are not severe, a low threshold could maximize signal 

reconstruction, or if near perfect reconstruction is not needed, a high threshold 

could reduce power for data transmission.  

It is important to note that the measures of entropy and RMS error presented 

here are also dependent on the signal to noise ratio (SNR) of the input signal. In 

high SNR signals, most of the data values (which represent noise) have very low 

amplitude, whereas in low SNR signals the data values are more uniformly 

distributed. As a result, though the trend of decreasing entropy and increasing 
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RMS error with threshold holds true for all data sets, the slope of these graphs 

depends on the particular data set and is dependent on the SNR of the signal.  

 

Fig. 2.22 and Fig. 2.13 show the original and reconstructed signals for threshold 

values of 50 and 120, respectively, as obtained in our experiments with real 

neural data. At a threshold of 50, entropy of 4.78 bits per symbol and an RMS 

error of 37.95 were obtained. For a threshold value of 120, entropy of 1.48 bits 

per symbol and an RMS error of 87.69 were measured.  

It can be seen that a low threshold value, as in Fig. 2.22 results in a good signal 

reconstruction so it is suitable for applications that require high quality signal 

 

Fig. 2.21. RMS error and Entropy in bits per symbol as a function of threshold value for 

the neural data set used in our experiments. 
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reconstruction. A higher threshold value, as in Fig. 2.23, results in a relatively 

worse reconstruction; however, it still captures the spikes in the neural signal 

very effectively and preserves their shapes and sizes.  

Since most of the neural signal analysis and applications are based on the 

information embedded in the spikes only, even this level of reconstruction is 

highly accurate and useful. Thus depending on the specific application 

requirements, the threshold value can be chosen to optimally exploit available 

bandwidth, available power, and desired reconstruction quality. 

 

 

Fig. 2.22 Original and reconstructed signals for Threshold = 50, RMS error = 37.95 and 

Entropy = 4.78 bits per symbol at 4 levels of decomposition with 10 bits data and 5 bits 

coefficients. 
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The resulting DWT circuit can pseudo-simultaneously process multiple channels 

of incoming neural signals in real time, and its ability to perform multi level DWT 

enables very high data compression while maintaining signal fidelity. The small 

size and low power consumption of this DWT VLSI circuit makes it highly suitable 

for font-end data compression in implantable applications. 

2.9 The Design Flow 

The design of an ASIC to implement an algorithm in hardware is completed in 

two main phases, the technology independent phase and the technology 

dependent phase. The technology dependent phase of the design involves fixed-

 

Fig. 2.23. Original and reconstructed signals for Threshold = 120, RMS error = 87.69 

and Entropy = 1.48 bits per symbol at 4 levels of decomposition with 10 bits data and 5 

bits coefficients. 
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point algorithm design in Matlab followed by behavioral and structural design in a 

hardware description language. The ASIC design is verified and prototyped in 

hardware using an FPGA. Although it is a technology dependent technique, 

verification using an FPGA has various pros as described in the following 

section. The FPGA verified hardware description is finally translated to the ASIC 

design for chip fabrication for a particular technology. Fig. 2.24 gives the high-

level steps for the design of proposed ASIC hardware in silicon. 

 

The design flow is divided into three phases,  

1. Technology Independent Phase 

2. Technology Dependent Phase for FPGA based Prototype 

3. Technology Dependent Phase for ASIC 

These phases are described in detail in the Appendix. 

 

Fig. 2.24: High-level ASIC design flow 
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2.10 Integrated Circuit for DWT: Design and Test 

2.10.1 Design 

A 0.5m CMOS process was used to design all the blocks of the neural 

compression engine. The DWT block has been fabricated and the 3mm x 3mm 

chip is shown in Fig. 2.25. The controller was synthesized using OSU‟s Standard 

Cells Library [47], while all other blocks were custom designed for low power and 

low area. The active components of the prototype 32-channel, 4-level DWT 

implementation occupy roughly 3.84mm
2.

 The layout for the threshold and RLE 

blocks requires about 0.95mm
2
 of area. Thus the combined compression system 

is expected to require approximately 5.75mm
2
 including global routing for a 

0.5m process. The tested DWT module consumes only 3mW of power while 

processing 32 channels at 25Ksamples per second, or equivalently 95μW per 

channel. The power consumption per channel is directly proportional to the 

neural data sampling frequency.  

Power Consumed = 95 μW per channel @ 25KSps per channel 

Core Area  = 3.84mm
2
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2.10.2 Test Setup 

To test our designs and algorithms, a stream of experimentally obtained 10-bit 

neural data was processed through the compression system and the resulting 

transform coefficients were used to reconstruct the neural signal. The results 

were compared to the original signal to measure the quality of spike 

reconstruction versus the compression obtained. 

The chip was tested using National Instruments‟ DAQ card, Labview and an 

FPGA. Initially Labview and the DAQ card were used to test the functionality of 

the chip at low speeds. Once verified, the FPGA was used to test the chip at the 

required frequency of 6.4MHz. The resulting coefficients were an exact match to 

the results from fixed-point simulations in Matlab. 

 

Fig. 2.25. DWT system on chip, fabricated in 0.5μm technology. 
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The PCB shown in Fig. 2.26 was designed and fabricated to allow connection 

between the ASIC to be tested, DAQ cards and the FPGA. Apart from connecting 

tips included to provide flexible connections, the PCB also contained several 

adjustable power supplies to allow chip test at several different supply voltages. 

In addition, the test board contains voltage level shifters to allow connectivity 

between different voltage domains. This is necessary since DAQ card uses 5V 

digital IO, the FPGA uses 3.3V digital IO while the ASIC can operate at a range 

of supply voltages. 

The chip was tested using National Instruments‟ DAQ card, Labview and an 

FPGA. The virtual interface used to control the data acquisition is shown in Fig. 

2.27. Initially Labview and the DAQ card were used to test the functionality of the 

chip at low speeds. Once verified, the FPGA was used to test the chip at the 

required frequency of 6.4MHz. The resulting coefficients were an exact match to 

the results from fixed-point simulations in Matlab. The same setup is later used to 

connect the FPGA directly to the DAQ cards during FPGA based prototyping of 

other modules detailed in next chapter. 
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Fig. 2.26. Photograph of Test PCB designed to interface ASIC with FPGA and DAQ 

cards. 
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2.11 Improvements in DWT 

A second version of the DWT block has been designed to improve the 

functionality and power consumption of the block.  

1. Channel Selectivity 

When microelectrode arrays are used for recording from the cortex it is not 

possible to position each electrode independently at the desired location. As a 

result, in general a significant number of electrodes fail to capture any signal at 

all. It is thus not useful to waste precious transmission bandwidth to transmit 

coefficients from those channels. The initial design captured and transformed 

signals from all the 32 channels in a time-multiplexed sequence. The block has 

 

Fig. 2.27. Labview interface to control DAQ cards providing input data and recording 

output data from the ASIC. 
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been modified to be able to handle selectable number of channels. The block can 

now be instructed to compress 32, 16, 8, 4, 2 or 1 channel at a given time.  

Since the reduced number of channels does not require as many computations 

per second as the maximum number of channels, the block can be clocked at 

slower frequencies to save dynamic power. Dynamic power is linearly dependent 

on the frequency of the operation. 

2. Overflow   

The second version of the DWT block has been designed to incorporate better 

handling of data overflow at the output of the computation core. If an overflow is 

detected at the output of an arithmetic computation, then the sign of the correct 

result is determined and the output is truncated to the corresponding maximum 

value. Thus, a negative overflow is replaced by a -511 and a positive overflow is 

replaced by a +511 value. 
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3 Design of Implantable Neural Interface Node 

3.1 Motivation and Approach 

The work in Chapter 2 establishes the design of a highly efficient circuit for 

computing the multi-level DWT of neural signals. However, for this DWT block to 

be useful within a neural implant system, it must be combined with several other 

functional circuit blocks. The DWT does not provide compression on its own, 

however it enables compression by providing time-frequency transformation and 

in doing so compresses energy into a few coefficients. Coefficients with 

„significant‟ energy are separated from those with insignificant energy by the use 

of multi-level threshold. The lesser energy coefficients are reduced to zero 

providing lossy compression. The resulting stream then undergoes lossless 

compression through a run length encoder block. The DWT, the multi-level 

threshold and the run length encoder collectively perform neural data 

compression. Apart from the compression engine, the implantable node needs 

two more interfaces, the analog frontend interface and the RF transceiver 

interface. The analog interface is controlled by a dedicated controller while the 

RF transceiver is interfaced with the communication controller which is also 

responsible for running the communication protocol and providing error free 

communication. The aim for the communication controller is to provide maximum 

data throughput . A global controller is necessary to synchronize the data flow 

between blocks, to manage various configurations, and also maintains the power 

management block. This chapter describes the circuits designed to meet the 
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needs of these individual blocks as well as their collective operation under the 

constraints of area and low power.  

3.2 Architecture Overview 

Fig. 3.1 provides a system level view of an integrated neural data compression 

circuit fabricated on the back of a microelectrode array of the NIN that is 

implanted in the cortex and communicates wirelessly to an EPU. Neural signals 

from multiple channels are amplified, digitized and fed to the DWT block, which 

generates a sparse representation of these signals. The threshold block serves a 

dual purpose of de-noising and spike detection. The Run Length Encoder (RLE) 

removes the redundancy from the streaming data which is then formatted into 

packets for wireless transmission and sent to the transceiver. The system 

employs both lossy and lossless compressions to reduce the data, where the 

DWT, threshold and RLE blocks form the compression engine.  
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3.3 Data Compression Engine at the NIN 

3.3.1 Analog Interface Controller 

Fig. 3.2 shows the analog front end to receive, amplify, and filter signals from the 

electrodes that has been assumed in designing the digital control portion of the 

NIN. The individual signal channels are AC coupled to remove any DC offset and 

are then passed through the pre-amplifiers which provide much needed buffering 

at this stage. The channels are then fed to a transmission gate based analog 

multiplexer which selects one channel at a time. The output of the mux contains 

a superposition of the LFP and the neural spikes. This signal is then passed 

through a band pass filter followed by a variable gain amplifier. A number of 

amplifiers have been reported in literature which satisfy the gain-bandwidth 

requirements of this study [4, 48]. A modified version of [48] is being designed to 

 

Fig. 3.1. Block diagram of the implantable neural data compression engine and its 

position within an implantable neural recording system. 
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allow variable gain amplification. Output of the amplifier contains amplified neural 

spikes. Depending upon the mode of operation, the amplified spike train or the 

LFP is then relayed to the ADC which converts the analog voltage into 10-bit 

digital data. The analog frontend is expected to cover an area of 1.77mm
2
 with a 

power dissipation of 1.1mW. 

 

Operation of this frontend analog module is controlled by a state machine based 

controller, which depending upon the runtime configuration settings, allows the 

flexibility to choose individual channels for recording. The controller time 

multiplexes the channels before the data is handed over to DWT block as well as 

it selects the data path for different modes of operation selecting between spikes 

and local field potentials. The controller allows setting individual channel gains, 

 

Fig. 3.2. Analog module for multichannel neural data recording with variable gain 

amplifier. 
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out of four possible gain settings, for each of the channels. It is also responsible 

of providing appropriate clock to the ADC. 

3.3.2 Discrete Wavelet Transform 

As detailed in Chapter 2, based on the chip real estate available to this research 

project, the DWT block shown in Fig. 3.3 was designed to support up to 32 

channels of data simultaneously with 4 levels of wavelet decomposition. Multiple 

decomposition levels generally result in fewer significant coefficients. The 

relatively long intervals between samples of neural signals allow for computation 

hardware that prioritizes power and area efficiency over speed [43]. Derived from 

our prior system-level analysis [35], the power-area product can be minimized by 

an architecture that sequentially evaluates the DWT of multi-channel data in real 

time. The lifting scheme is used to compute results; it has been shown to require 

fewer computations than convolution based filtering [24].  

 

 

Fig. 3.3. System diagram for sequential calculation of DWT. 
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The computation core performs sequential calculation of DWT coefficients. The 

memory blocks store temporary data and intermediate results and have been 

partitioned based on different access patterns. The controller manages timing 

and data flow among the blocks. The controller was synthesized from a library 

while the other blocks were custom designed to minimize power and chip area. 

3.3.3 Multi-Level Threshold 

Coefficients at the output of the DWT block can be viewed as sparse packets of 

energy which do not, by themselves, result in any compression. However, 

following the DWT by a thresholding stage, which reduces the in-significant low-

energy coefficients to zero and lets high-energy coefficients pass, does permit 

compression. The low-energy coefficients have little or no significant information 

and mainly contribute to noise. The high energy coefficients invariably 

correspond to different spikes and events in the neural signal, allowing spike 

sorting even without reconstruction [17]. The values to which the thresholds are 

set are of critical importance since they determine both the quality of 

reconstruction and the final rate of compression.  

Methods to determine the optimal threshold is an ongoing investigation. 

However, it has been established that the best compression is achieved by using 

separate threshold values for each decomposition level of each channel [17]. 

Thus, DWT results from each level of each channel must be treated separately 

and will form a stream of data containing information that is virtually independent 

of the information from other channels and levels within the data stream. The 
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DWT and the threshold blocks are combined to implement the lossy compression 

on the input signals. The multi-level thresholds thus result in compression and 

denoising of the signal at the same time. 

Fig. 3.4 shows the main functions of the threshold and RLE stages. The 

threshold block includes a set of memory registers that contain threshold values 

for each level of each channel. Since, according to figure 3.6, the last level of 

DWT produces two separate coefficients streams, an N level system would have 

N+1 threshold values for each channel. These values would be determined 

externally and then stored into the memory sequentially before the DWT 

operation begins. Any of these values can be updated during system operation. 

The DWT block generates values in signed-magnitude form. The magnitude is 

compared against the threshold value using a magnitude comparator; if found 

smaller than the threshold, a 10 bit zero is generated at the output. If equal or 

greater, the original value is regenerated at the output.  

As explained later in this chapter, the overall compression system is designed to 

operate in two modes: Monitor mode and Compression mode. In Monitor mode, 

the system bypasses the DWT, threshold and RLE blocks and sends the 

uncompressed neural signal directly to the transceiver. Monitor mode is used by 

the EPU to analyze the statistical properties of individual channels and calculate 

the optimal threshold values for each channel and level. These threshold values 

are then transmitted back to the implanted system to set compression 
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parameters for use in Compression mode, where all system blocks are activated 

to compress data. 

3.3.4 Run Length Encoder 

Several lossless data compressors exist in literature, with varied computational 

complexity and storage requirements. A few popular techniques are Huffman 

coders, Lempel Ziv coder, arithmetic encoders and their variants. Most of these 

algorithms require prior statistical knowledge of the incoming data set, and thus 

the rate of compression achieved is directly related to the accuracy of this prior 

information. Since these algorithms are variable length encoders, under certain 

conditions, they approach the theoretical limits of compression, bounded by the 

entropy of the incoming signal. However, these algorithms require prohibitively 

large storage to maintain the dictionary of codes. Use of Huffman coding is not 

possible, since in this application, the size and statistical properties of the source 

alphabet (number of possible data values) depends on the threshold values, 

which are ideally controllable by the neuroscientist. 

 The only statistical information available for our thresholding compression 

system is that much of the data stream at the output of the threshold block 

consists of zeroes. Run Length Encoding is best suited for data with long 

repetitive strings of values; in addition, it is very conservative in required 

hardware resources. Because we expect long strings of zeros at the output of the 

threshold block, RLE is a good lossless compression choice. Though RLE is not 
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an optimal encoding scheme in general, when given very long repetitive 

sequences it approaches the performance of near-optimal algorithms. 

 

Given that, for this implementation, a byte refers to 10-bit values in sign 

magnitude form ranging from -511 to +511 and that a 10-bit counter can count up 

to 1023, our implementation of RLE can be summarized by the following rules.  

1. Transmit all non-zero bytes as is. 

2. Convert all negative zeros (represented by X) to positive zeros. 

3. Replace a sequence of zeros (two or more) with an X (negative zero) byte 

and a zero-count byte. 

4. If the zero count reaches 1023, send 1023 and restart a new sequence of 

zeros. 

Following these rules, the example RLE operation of Fig. 4 shows the original 40-

byte sequence has been reduced into a 20-byte sequence. Sequences from real 

 

Fig. 3.4 System diagram for the Threshold and the RLE blocks. 
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neural recordings have been observed to yield much better compression ratios. 

Since we do not expect long sequences of repeating non-zero values, this 

implementation compresses only the sequences of zeros. This scheme results in 

fixed length codes, which have a computational resource advantage. 

 

3.4 Communication Controller and Interface 

A communication system is required to communicate neural spike data from the 

NIN to the MIM and at the same time take configuration settings and commands 

from the MIM to the NIN. This communication takes place across the skull and 

the scalp, thus the NIN and MIM are effectively only a few inches apart. A 

Communication Controller module is designed to control the transmission, 

reception of the data and general working of the RF transceiver. The controller 

must adhere to a few requirements for the system to work effectively. 

 

Fig. 3.5 Example of the system specific run length encoding. 
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Power dissipation is again a primary concern while designing the communication 

system. Since the human tissue is known to absorb higher radio frequencies 

more than lower frequencies, carrier frequencies in the range of a few megahertz 

are suitable. The system has been designed to abide by the FCC Part 15 

recommendation of 13.56MHz.  

3.4.1 Packet Structures   

The neural data is considered pristine, which means error detection is necessary 

at both ends of the communication channel so that the packets can be 

retransmitted until error free data has been received. Two different packet 

structures are used during communication, one for uplink from NIN to MIM and 

the other for the downlink from MIM to NIN. As shown in Fig. 3.6, the uplink 

packet, also called the Data Packet, is large and contains eighty 10-bit values 

representing the compressed neural data. The packet contains 8-bits of channel 

and DWT level information as the first data value in the packet. This channel and 

level information is only required for the first data value and subsequent values 

conform to a predetermined sequence of channels and levels set by the DWT 

block. The packet contains one bit to represent the current Packet ID to establish 

proper data sequencing at the receiving side. It also contains a Command 

Request ID as an acknowledgement for the last packet received. If the request ID 

is the same as the ID of the last transmitted packet, the receiver is requesting 

retransmission of the last packet. Finally, the packet contains 8-bits of Cyclic 

Redundancy Check (CRC) for error detection. A standard 8-bit CRC (CRC-8-
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CCITT) is used for this application to detect anticipated error patterns possible 

during communication. The polynomial for the CRC-8-CCITT is given as  x
8
 + x

7
 

+ x
3
 + x

2
 + 1 

The CRC bits allow error-detection at the receiver side. The choice of CRC 

depends on two factors; the length of the message, and the desired percentage 

of error detection. No CRC choice can guarantee absolutely error free 

communication, however, greater number of CRC bits correspond to better error 

detection capabilities. These capabilities are achieved, essentially, at the cost of 

higher redundancy and thus lower throughput. This code guarantees to detect all 

single bit and double bit errors as well as all odd number of errors. It also 

guarantees detection for burst errors of up to 8 consecutive bits. Some errors 

may pass through if the error pattern results in another valid pattern. For the 8-bit 

CRC there is an average of 1 error pattern which will not be detected for every 

255 which would be detected, that is, we should be able to detect 255/256 or 

99.6% of all possible 8 bit errors [49]. As a result, the total size of the data packet 

becomes 818 bits. 

The downlink packet, also called the Command Packet, is used to send 

commands from NIN to MIM. This 25-bit packet contains 8 bits for the Command 

Code and 10 bits for corresponding Command Data. As in the Data Packet, the 

Command Packet also contains identification and request bits. A 5-bit CRC is 
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sufficiently powerful for a packet of this length. The polynomial used to generate 

CRC-5 is x
5
 + x

4
 + x

2 
+ 1. 

 

3.4.2 Protocol Design  

A major limitation in the protocol design is the use of a half-duplex transceiver, 

chosen to conserve power and bandwidth. As a result, a single 1Mbps channel is 

used for both uplink and downlink data transfer. A stop-and-wait based approach 

has been taken to meet the requirements of the system, including a need for the 

NIN to wait for a packet to fill before transmission of streaming data. At the same 

time, the MIM has to transfer various configurations and commands to the NIN. 

However, the MIM does not have to wait for streaming data to become available. 

Since the system clock is generated wirelessly, another issue is the transmitter-

receiver re-synchronization once a disruption takes place.  

Automatic Repeat Request (ARQ) is the error control method based on 

acknowledgements and timeouts to achieve reliable data transmission. The Stop-

and-Wait protocol has been customized and redesigned to cater for the fact that 

NIN is generating streaming data and thus may have to wait for data to become 

 

 
Fig. 3.6 (Top) MIM to NIN Command Packet. (Bottom) NIN to MIM Data Packet. 
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available for transmission. The protocol in its innate form is known to be not as 

efficient as other more sophisticated window-based variations of ARQ e.g. 

Selective Repeat (ARQ) or Hybrid (ARQ) but since the error characteristics of 

communication across human tissue for such an application are unknown and 

are highly dependent upon the ambience and transceiver coil alignment, it is not 

evident if any gain in efficiency would be achieved by switching the protocol to 

any of the other variations. Several sophisticated window-based protocols have 

been reported in the literature. However, with streaming data, where the 

transmitter sometimes has to wait for the data to become available, window-

based protocols may take very long to hand channel control back to the MIM. 

This would preclude instant changes in configuration of the NIN. In addition, the 

protocol presented here has the obvious hardware area and complexity 

advantage of not having to maintain a number of previous packets.  The other 

protocols require a large buffer to maintain a „transmission window‟. Since this 

buffer is based on hundreds of bits of shift registers, the hardware cost in 

comparison to the other blocks in the system is tremendous. However, 

improvements can be made to the current protocol or the choice of CRC etc 

depending upon the profile of error statistics generated and collected from the 

first generation of design. 

Fig. 3.7 shows the flow diagram of the modified protocol. The diagram depicts 

normal flow of data as well as error handling. Command Packets are represented 

with a „C,‟ Data Packets are represented with a „D,‟ and the acknowledgement is 
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represented with an „A‟. Three important parameters in the flow diagram are the 

three configurable timeout values described below. 

An essential feature included in the protocol is the programmable „Data Not 

Ready‟ timeout, referred to in Fig. 3.7 as Timeout N1 (TN1). This timeout occurs 

when the MIM requests new data from NIN but the NIN packet is not filled 

completely and thus not ready for transmission. TN1 is the maximum time that 

the NIN waits before bit-stuffing and transmitting the packet if it is incompletely 

filled. This timeout is only relevant when neural activity is low and the spikes are 

sparse. A packet is transmitted as soon as the buffer fills; however, if a single 

spike is followed by a very long string of zeros it can take up to approximately 

100ms to completely fill the Data Packet. This „delay‟ in transmission may not be 

acceptable for certain applications where real-time spike recording and decoding 

is important. The default value of TN1 is set to 8ms, but it can be reconfigured to 

any temporally relevant value of less than 32ms through a command from the 

MIM.  
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The MIM transmits a Command Packet as soon as it receives a Data Packet 

from the NIN; it does not have to wait for a new command to become available 

and always maintains a preconfigured Command Packet. If the NIN does not 

receive a Command Packet within a specified time, then Timeout N2 (TN2) 

occurs. The NIN assumes a ‘Data or Command Packet lost’ error and retransmits 

the Data Packet. Let ‘TD’ be the time to transmit a Data Packet and ‘TC’ be the 

transmit time of a Command Packet. With a transmission frequency of 1Mbps, 

 

Fig. 3.7. Flow diagrams for the communication protocol. The diagram shows normal 

flow as well as handling of error conditions. 
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the 818-bit Data Packet takes TD=0.818ms for transmission, and the 25 bit 

Command Packet takes TC = 0.025ms. TN2 can then be expressed as 

msTTTT PCDN 85.022   
(3.1) 

where TP is the packet propagation delay, which is negligible due to the close 

proximity of the NIN and MIM. Similarly, the idle time between reception of a 

packet and transmission of a preconfigured packet is also negligible. 

The reconfigurable Timeout N3 (TN3) acts as a watchdog timer for the 

communication controller. If the NIN does not receive a packet from the MIM for 

three consecutive Data Packet transmissions, then the NIN communication 

controller resets itself assuming a „Break‟ in communication requiring re-

synchronization. TN3 can be expressed as 

213 3 NNN TTT   
(3.2) 

The default value of TN1= 8ms gives TN3≈ 10.6ms. If needed, a reset command 

can be issued through the MIM that resets the NIN and initializes all settings to 

their default values. 

Fig. 3.8 shows the functional diagram of the communication controller. The 

transmitter and the receiver use serial data in and out lines in conjunction with 

corresponding clock signals to communicate with the transceiver. The controller 

contains two frames. At any given time, one frame is the active frame while the 
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other acts as a reserve frame. The reserve frame is filled while data from the 

active frame are being transmitted. It is desirable to be able to transmit the active 

frame twice (in case of an error) before the reserve frame fills and data 

overflows. As a result, from (3.1), the buffer should be large enough to store 

incoming data for a time greater than 2*TN2 ≈ 1.7 ms seconds. This can be 

achieved by settings the appropriate threshold and frame size. 

The RF transmitter and the receiver use serial data in and out lines in conjunction 

with corresponding clock signals to communicate with the communication 

controller. The NIN controls the select line which enables the transceiver or the 

receiver according to the protocol presented in Fig 3.7. The transmit and receive 

clocks have a frequency of 1Mbps where the data-bits are transmitted or 

received at the positive edge of the clock as shown in Fig 3.9. Tx/Rx Select 

signal is generated by the communication controller in addition to the Tx clock 

and Tx data. The Rx clock and Rx data are the signals generated by the RF 

receiver. 
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3.4.3 Efficiency  

The analysis and results of the DWT, threshold and RLE blocks have been 

presented in [50]. The communication system can be seen as operating in two 

 

Fig. 3.9. Timing diagrams (Top) Packet transmission from NIN. (Bottom) Packet 

reception at the NIN. 

 

 

Fig. 3.8. Functional diagram for the communication controller. 
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phases. In the beginning, the NIN has data to send to the MIM and the MIM has 

configuration commands to send to NIN. During this phase the protocol efficiency 

is maximum and is given by 

1
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(3.3) 

Steady state is reached when the initial configuration is complete and the MIM 

has very few commands for the NIN. During this phase, the efficiency of protocol 

can be given by 
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The efficiency expression in (3.4) is valid when there are no errors during 

transmission. The probability of error because of a CRC failure or lost packet is 

denoted by Pe. If T is the amount of time taken to successfully transmit a packet 

and receive its acknowledgement in the presence of errors, then the average 

time it takes to successfully transmit a packet in presence of errors, E[T], is given 

by 
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During steady state, in the absence of any errors, the data throughput of the 

compressed coefficients can be given as 
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NIN Throughput = (No. of Data Bits / Total Bits) * Tx. Rate 

= (800/(818+25)) * 1Mbps ≈ 950 Kbps 

(3.6) 

Thus, a 1Mbps channel can transfer data generated at rates less than 950Kbps. 

However, as with other protocols, if successive packets result in failed CRCs or 

are lost, then multiple retransmissions may be required for each packet. If at the 

same time there is a burst of activity in the neurons, then this may result in data 

being generated at a higher rate than the throughput of the channel, raising the 

possibility of a buffer overflow and thus data loss at the NIN. 

3.5 Global Controller 

In addition to the local controller for each block, a global controller binds all the 

components together into a system and is responsible for the correct operation of 

the NIN. It is responsible for synchronization of data flow between blocks, 

generation of respective clocks and the engagement or bypass of certain blocks 

in the data path. The controller also contains a power management module. 

However, most importantly, the global controller interprets the different 

commands from the MIM and changes the configuration and operation of the NIN 

accordingly. The operation of the NIN is controlled by several configuration 

registers. The values in these registers can be changed by the MIM to control the 

operation of the NIN.  

3.5.1 Modes of Operation   

The system operates in three modes controlled by the configuration registers. 

The first two are monitor modes in which no signal processing is employed and 
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the data is transmitted without compression. These modes are called monitor 

spikes (MS) mode and monitor LFP (MF) mode, where LFP refers to local field 

potential. Because data is uncompressed in monitor modes, the obvious 

bandwidth limitation dictates that only one selectable channel can be active at a 

given time. In MF mode, the system bypasses the high gain amplifiers and routes 

the analog signals directly to the ADC. The signal is transmitted out without any 

further processing. The transmitted signal thus contains the information 

embedded in the LFP as well as the neural spikes. In MS mode, the amplifiers 

and filters are activated resulting in a signal that contains only the neural spikes 

and is free of LFP effects. Gain of the amplifiers is adjustable and can be 

increased or decreased to four different settings.  

The third mode is called the compression mode (CM). This mode engages the 

digital signal compression blocks in the NIN and is capable of processing up to 

32 channels simultaneously. The configuration registers dictate which channels 

will be sampled and which, if any, will be ignored. The channels are sampled in a 

time division multiplexed manner maintaining separate gain settings for each 

channel. The ADC output is then fed to the DWT block which computes the 

wavelet coefficients up to four levels of scaling. These coefficients are generated 

in a predefined sequence. They are then passed through the threshold block, 

which keeps the significant coefficients and discards the insignificant values. The 

MIM assigns appropriate values to each threshold, which are stored on the NIN. 

The resulting signals are sent to the RLE block that compresses the data and 

forwards it to the communication controller for transmission to the MIM. 
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Upon reset, the system will sample channel one at 25Ksamples/s in MS mode. 

The MIM receives and processes the uncompressed data to compute 

appropriate thresholds and transmits the resulting values back to the NIN. Then 

the NIN is configured to monitor the next channel and the procedure repeats. 

Once the thresholds for all the channels have been set, the NIN can be 

reconfigured for operation in CM mode and begin processing all channels 

simultaneously. 

3.5.2 Power Management   

The global controller also manages power for the NIN. Two main techniques are 

used to conserve power. First, dynamic frequency scaling (DFS) is employed 

whenever the NIN system is not required to function at its maximum capability; 

the clock frequency is scaled down, which linearly effects the power dissipation.  

A dedicated block in the global controller is used to generate clock signals for all 

the NIN blocks. The controller also disables any components not on the signal 

data-path for a given mode of operation, reducing unnecessary transistor 

switching. The analog, digital and RF modules are being designed to work with 

separate supply voltages, each working at the minimum required voltage to 

conserve power. Reducing supply voltage increases signal propagation delay. 

However, as the NIN has a pipeline-based architecture, the performance of 

components is not limited by the signal propagation delays, which allows for the 

use of dynamic voltage scaling (DVS) in addition to DFS for future generations of 

the design. 
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3.6 RF Data and Power Receiver 

A transceiver is responsible for inductively transferring power from the MIM to the 

NIN as well as providing the master clock to the NIN. The transceiver also allows 

bidirectional data transfer between the two modules. Two pairs of perpendicularly 

aligned coils are required for these transfers. Since the communication protocol 

is half-duplex only one module is transmitting at a given time, this allows for the 

use of one only pair of coils for both directions of communication. 

There has been extensive research in designing high data rate, high efficiency 

RF transceivers and antenna coils, and various designs have been published 

recently [48, 51]. The design presented in [51]  can be modified accordingly and 

used in our application. Fig. 3.10 shows the functional diagram of the RF power, 

clock and data transmission circuit from MIM to NIN. It must be noted that the 

design of the transceiver is out of the scope of this thesis. The design is 

described here to help understand the blocks the global controller must interface 

with. 
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The NIN and the MIM are separated by the skull and the scalp and the coils 

transfer the power and data inductively. An LC tank is used in conjunction with a 

power amplifier to generate the power carrier which is received at the NIN coil, 

rectified and regulated to generate a constant and stable power source for other 

blocks in the NIN. The data is transferred using frequency shift keying (FSK) 

modulation and high quality LC tank. The receiver amplifies and demodulates the 

received signal to regenerate the transmitted data bits. The RF transceiver 

covers an area of 2.2mm
2
 and consume power up to 7.3mW. The coils for the 

power and data transfer, however, are expected to be 10mm x 10mm wide. 

3.7 Results & Performance Evaluation 

A system enabling data telemetry using very high data compression of neural 

recording is presented. All the necessary components of the system have been 

 

Fig. 3.10 Functional diagram of circuits for inductive power and clock transfer and RF 

data transmission from MIM to NIN. 
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detailed including the analog frontend, the digital neural signal processor and the 

RF data and power transceiver. The analog frontend interfaces with the 

electrodes implanted in the cortex. The neural signal processor control the 

functionality of the NIN and employs the compression engine to compress the 

neural signals while maintaining high signal fidelity has been described. The 

processor also manages different modes of operation and various configurations 

built into the design. Finally, a communication protocol is presented which 

enables error free transmission of data to the MIM and reception of commands at 

the NIN.  

A 0.5m CMOS process was used to design all the blocks of the neural 

compression engine. The DWT block has been fabricated and the 3mm x 3mm 

chip is shown in Fig. 3.12. The controller was synthesized using OSU‟s Standard 

Cells Library [47], while all other blocks were custom designed for low power and 

low area. The active components of the prototype 32-channel, 4-level DWT 

implementation occupy roughly 3.84mm
2
. The layout for the threshold and RLE 

blocks requires about 0.95mm
2
 of area. Thus the combined compression system 

is expected to require approximately 5.75mm
2
 including global routing for a 

0.5m process. The tested DWT module consumes only 3mW of power while 

processing 32 channels at 25Ksamples per second, or equivalently 95μW per 

channel. The power consumption per channel is directly proportional to the 

neural data sampling frequency.  
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To test our designs and algorithms for the compression engine, a stream of 

experimentally obtained 10-bit neural data was processed through the 

compression system and the resulting transform coefficients were used to 

reconstruct the neural signal. The results were compared to the original signal to 

measure the quality of spike reconstruction versus the compression obtained. 

This analysis was performed for several different zeroing threshold values. For a 

fair comparison, the same threshold value was used for all channels and levels. 

As discussed in previous chapter, Root Mean Squared (RMS) error and Entropy 

are used as the primary measures to evaluate the performance of our system. 

RMS error is a measure of the average difference between the original and the 

reconstructed signal. Shannon‟s entropy gives the theoretical limit to the 

achievable lossless data compression for a given data set. 

For a given spike train, Fig. 3.12 plots the number of detected spikes, RMS error, 

the entropy of the transmitted sequence and the RLE compression achieved with 

respect to the threshold. The plots confirm the anticipated tradeoff between 

compression and RMS error. As expected, when thresholding is not employed, 

the RLE does not result in any compression, while entropy is at its maximum and 

RMS error at its minimum. The RMS error never goes to zero because of 

quantization noise. As the threshold value (and thus the number of zeros) 

increases, the RLE compression approaches the theoretical limit of entropy, 

which proves the effectiveness of our design. A threshold increase also results in 

an increase in the RMS error. This region of operation removes noise from the 

signal while preserving all the neural spikes and their shapes. At very high 
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threshold values, the system starts distorting neural spikes, which results in a 

drop in the number of spikes detected at the output. The point of operation, thus, 

must be selected just before this region. The optimal point of operation may vary 

from one application to another depending upon the quality of reconstruction 

desired. Because of this direct tradeoff between RMS error and compression 

ratio, the zeroing threshold must be chosen to match application requirements; 

i.e. available bandwidth, quality of signal reconstruction required, and the power 

available for data transmission. 

 

Fig. 3.11 shows the results for a sample spike train which contains 27 spikes. 

Almost perfect reconstruction is achieved for a zero threshold, but at the cost of 

high data rate. Beyond the threshold value of 110 the system starts losing spikes 

 

Fig. 3.11 System performance as a function of threshold value for the neural data set 

used in our experiments. 
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for this particular data set. Thus, the region of operation should be set between 

the values of 50 and 100 depending on the application and the desired spike 

reconstruction quality. The measure of quality of reconstruction depends highly 

on application specific spike detection and classification algorithms employed by 

the neuroscientist.  

The DWT chip has been tested and works as designed with an excellent match 

between simulated and experimental results. Because the RLE block has not yet 

been fabricated, data presented in Fig. 3.11 is based on a combination of 

measured and simulated results. Fig. 3.12 shows the same spike at four different 

de-noising thresholds and compression ratios. For our prototype 32 channel 

design, a conservative threshold value of 80 resulted in an output data rate of 

less than 370Kbps, providing a compression of more than 20 times over 8Mbps 

for unprocessed data. The authors are not aware of any other publications where 

the spike shapes have been maintained, thus we are unable to compare our 

results against other methods of neural signal compression. 
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To test the functionality and integrity of the design, 32 channels of neural spike 

trains were simulated and sampled at 25Ksamples/sec per channel. Each 

channel contains spikes at a high firing rate of 90 spikes per second which are 

multiplexed into a single stream and provided to the compression engine. The 

system was tested in both the monitor and compression modes. The monitor 

mode resulted in an exact reconstruction of the original signal. For the 

compression mode, Fig. 3.13 shows a comparison of the original signal with a 

signal reconstructed by keeping only 2.5% of the coefficients, which means each 

bit of compressed data represents 40 bits of raw signal. No data loss due to 

overflows was recorded during the transmission. Same thresholds were used for 

consistency across channels, resulting in similar quality of reconstruction for all 

channels.  

 

Fig. 3.12  (a) Original signal. (b) 2 times compression. (c) 16 times compression. (d) 62 

times compression. 

 

(a) (b) 

(c) (d) 
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Fig. 3.14 shows a histogram of the time taken for incoming neural data to 

completely fill each frame during the experiment. It can be seen that, on average, 

each packet was filled in about 4ms. Corresponding to the highest level of activity 

in the neurons, the minimum time taken to fill a packet was recorded as 2.6ms 

which is within the allowed time limit of 1.7ms to avoid data overflow. However, in 

experiments using very low threshold values, packets have been observed to fill 

faster than they can be transmitted, which is expected and demonstrates the 

need for setting thresholds that result in the greater data compression. Our 

ongoing work aims at raising the thresholds to their highest possible value to 

enable spike sorting to simultaneously take place [52]. 

 

 

Fig. 3.13. Part of the 32 neural signals received and reconstructed by the MIM, at a 

compression ratio of 40, in comparison to the original signal acquired by the NIN. 

Despite some apparent signal loss, spikes are easily discriminated. 
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Fabricated in 0.5μm CMOS, the DWT block require only 3.84mm
2
 of area to 

process 32 channels of data at 4 levels of in real time, while consuming only 

3mW of power. The layout for neural signal processor covers an area of 

13.8mm
2
 with a power dissipation of 8.8mW. The analog frontend is expected to 

cover an area of 1.77mm
2
 with a power dissipation of 1.1mW. The RF 

transceiver covers an area of 2.2mm
2
 and consume power up to 7.3mW. Thus at 

peak performance, the NIN module is expected to consume 11.4mW of power 

covering an area of 17.77mm
2
 in 0.5μm technology. The coils for the power and 

data transfer, however, are expected to be 10mm x 10mm wide. Table 3.1 

summarizes the estimated area and power requirements for all the modules in 

the NIN. Empirical measurements show that this area would be reduced by 

 

Fig. 3.14. Histogram of time taken in milliseconds by the compressed neural data to 

completely fill each Data Packet. 
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roughly a factor of 10 if implemented in a 0.18m process reducing the chip area 

to 1.8mm
2
 with power consumption in the proximity of 5mW. However, this 

system is sufficiently small for implantation even in 0.5m CMOS. 

 

This highly configurable area-power efficient hardware results in  large 

compression rates while extending flexibility to the neuroscientists to choose the 

„perfectness‟ of reconstruction of neural data from a multitude of neural signals. 

The small size and low power consumption of the system makes it highly suitable 

for implantable high-density microelectrode array devices. 

3.8 Hardware Implementation and FPGA Test 

Once the algorithms were designed and tested in Matlab; the hardware for the 

complete NIN digital system including the Multi-Level Threshold block, the Run 

Length Encoder the Communication Controller, the Analog Frontend Controller 

and the Global Controller was designed in HDL using Verilog.  In addition, the 

design of DWT was improved to include channel selectivity and dynamic 

frequency scaling. To enable high degree of testability, the analog frontend 

Table 3.1.  Estimated Area and Power Requirement for Implantable Hardware Modules 

in 0.5 micron CMOS technology 

Module Area (mm
2
) Power(mW) 

Analog Frontend Module 1.77 1.1 

Digital Neural Signal Processor 13.8 8.8 

*RF Data and Power Transceiver 2.2 7.3 

*Complete NIN block for 32 Channels 17.77 11.4 

*Area numbers do not include coil area for RF transceiver 
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controller was modified to receive input from two different sources, one serial and 

one parallel. Test points were inserted in the design to enable testing of data 

outputs from each block.  

To test the design of digital system in absence of the prototype analog frontend 

and RF transceivers, the system was mapped on an Altera Cyclone III FPGA and 

interfaced with a custom designed printed circuit board containing the analog 

frontend components.  The amplified signals were sent to the PCB designed with 

discrete components containing an analog multiplexer and an analog to digital 

converter. The control signals for the A/D were generated by the analog frontend 

controller present in the FPGA. The time-multiplexed outputs from the board are 

received by the FPGA which processes the signals as per the settings. The input 

data was received at the analog frontend, passed through various blocks and 

observed at the output of the communication controller. The RF interface was 

replaced with a wired connection between the NIN-FPGA and a host computer 

acting as the MIM. The control signals for the transceiver were generated by the 

communication controller in the FPGA. The signals were then received by the 

MIM computer through a data acquisitioning system. The MIM completes the 

necessary processing and generates the command packets which are finally 

received by the NIN in the FPGA. The basic functionality of the NIN was tested 

and verified, however, since the MIM emulation was very rudimentary, the 

elaborate testing of NIN functionality, its various configurations and modes of 

operations was not possible. These tests allowed us to test the system using real 
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input signals. In the process the system allowed testing for situations that were 

ignored or not represented accurately during simulations.  

Although the basic functionality was tested, the power consumption and area 

requirements of the system implemented on FPGA could not be used to estimate 

the requirements for the system implemented in the ASIC because of the 

difference in fabrication technology and various architectural overheads 

associated with the FPGA. As a result, the prototype was not be able to give an 

accurate estimate of the power consumption of the system.  

3.9 VLSI Layout of Digital System on Chip in 0.13 Micron CMOS 

Once the design was functionally verified on the FPGA, the layout was prepared 

for fabrication in IBM 8RF 0.13 micron CMOS process. This involved preparation 

of various components of the ASIC for automatic place and route. This includes 

synthesis and routing for all the different digital blocks and generation of different 

memory blocks. Third party Low-Vt Standard Cell Libraries and Low-Vt SRAM 

generators provided by ARM were used for low power operation. Synopsys 

Design Vision was used for logic synthesis. Once all the components are 

available, floorplanning was completed, clock trees were created and the final 

place and route is completed with the inclusion of pads with electrostatic 

discharge protection. The layout was passed through the design rule checks 

(DRC) for the rules outlined from the fabrication foundry. Fig. 3.15 shows the final 

layout of the system.  
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The chip layout was generated to enable measurement of chip area and to allow 

simulations for power measurements. The chip may be fabricated at a future 

date. Note that for area optimization all the blocks have been merged together 

into a single unit. The core of the design is 1.1mm x 1.1mm whereas including 

the IO and power pads the area of the NIN chip becomes 1.9mm x 1.9mm = 

3.69mm
2
. Simulation results on the core show 800μW of power consumption 

with a power supply of 1.2V. 

 

 

Fig. 3.15: Layout of the complete NIN digital system in 0.13 micron CMOS technology. 
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3.10 Analysis 

The digital neural signal processor described above has exceeded  the original 

design goals for area and power. However, while developing this chip, some 

limitations and unexpected challenges were observed and are described below. 

The research described in the next two chapters was undertaken in order to 

address these challenges and demonstrate how the performance of the neural 

recording systems can be improved for various applications. 

Optimal design of the communication controller requires information about the 

error characteristics of the channel within its intended environment, including 

across skin. Although inductively coupled transmitters and receivers have been 

used in earlier studies, there has been no effort on quantifying the error 

characteristics of the channel. For example, design of the communication 

protocol and the packet format rests on the distribution of bit errors in a packet. 

This affects the decision on the use of error correction vs. error detection and 

thus affects the total number of retransmissions necessary for error free 

transmission. The number of parity bits needed is dependent on the maximum 

possible errors in a single frame. Similarly the number of consecutive packets in 

error defines the transmission buffer size at the receiver. Because this error 

profile has never been reported in literature, extensive trace collection and 

analysis of this error process was undertaken, as described in the next chapter.  

The DWT based compression engine design has its own merits and demerits. 

The DWT based neural recording system developed in this research permits a 
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large amount of processing to be completed on-chip to retain much of the 

information in the spike train and needing only a fraction of coefficients to be 

transmitted off-chip. The result is the ability to reconstruct the signal as faithfully 

as needed for a particular application. This however is achieved at a tremendous 

cost of processing every sample of the neural channel, which includes 8 

additions and 8 multiplications, and then deciding if the resulting coefficients 

need to be kept or discarded. This is an overkill for applications that do not 

require signal reconstruction (an issue that is still highly debated in the neural 

engineering community) or applications that can afford some degree of 

inaccuracy in spike sorting capability (again, this issue is debatable as no clear 

physiological need has been established). The research in this chapter has 

shown that it is possible to process many channels within an implanted chip; 

however, the presented solution does not scale well to neural systems 

demanding simultaneous processing of a higher number of channels, say one 

the order of a few hundred or more. With the DWT-based design, area, power 

and fabrication costs make it impossible to complete such level of processing on 

an implantable system. It thus becomes imperative to search for an ultra 

hardware resource constrained and computationally efficient set of features that 

can provide high spike sorting performance for a fraction of the area-power cost. 

A set of features that meet this goal was explored as presented in Chapter 5. 

  



131 

 

4 Channel Characterization for Implant to Body Surface 

Communication 
 

4.1 Introduction 

To achieve reliable communication between nodes on an implant-to-body-

surface biotelemetry link, knowledge of the power and data transfer 

characteristics of the transceivers and the channel is required. There has been 

recent interest in the field of Body Area Networks; however, it is still a new field 

and no standards for the design of power and data transceivers or 

communication protocols have been adopted. The search for the most suitable 

transceiver is a topic of continuing research and hence there are no limitations, 

requirements or capabilities that the transceiver hardware should conform to. 

Recent research has focused on employing inductive links for data 

communication [5, 9, 48, 53]. The transceiver design reported in [53] is distinctive 

as it is capable to transmitting power and data over the same inductive channel 

using a technique called „back telemetry‟. For the rest of the chapter we call such 

inductive power / data transceiver „Inductively Coupled Transceivers‟ (ICT). 

Implantable ICTs are of particular interest to the biotelemetry research 

community because they are based on a wireless communication techniques that 

allows low power communication at reasonable data rates. It is expected that 

ICTs will be used extensively in biotelemetry applications. Although various ICT 

designs have been presented, a concerted effort and detailed experimental 
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analysis is necessary to quantify the performance and limitations of the 

transceiver before they can be used in implantable applications.  

Communication of digital data sees errors at two levels, the bit-level and the 

packet level. These random errors observed over time can be modeled as a 

random process. A deeper understanding of this error process is necessary for 

the optimal design of various components of the communication system including 

the use of error detection and correction codes, the protocol design, the packet 

size and the hardware resources required to allow retransmission of erroneous 

packets.  

The purpose of this study is twofold. Firstly, it is to estimate the performance 

limitations of the ICT presented in [53] under bandwidth and power constraints by 

studying the effects of various orientations of transmitter and receiver. Secondly, 

the error patterns for the channel across the skin for implant to body surface 

power/data communication need to be characterized to enable design of 

protocols for reliable data communication. 

Trace collection has been used to model error processes of various wireless 

communication standards including 802.11x WLANs [54-55], and 802.15.4 LR-

WPANs [56-57]. The same approach will be followed to analyze the ICT link. 

4.2 Wireless Power / Data Transceiver 

The neural recoding system consists of two modules, the Implanted Module (IM) 

and the Surface Module (SM). The IM is implanted inside the body, preferably 
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within a couple of centimeters from the body surface. It needs to be powered 

wirelessly from an external source. The SM is placed on the surface of the body 

and is supplied with continuous power through a battery. The data transmitter is 

part of the IM, while the data receiver is part of the SM. On the other hand, the 

power transmitter is part of SM while the power receiver is part of the IM. Each 

module contains a flat inductive coil etched on a printed circuit board to allow 

inductive coupling. The SM generates an AC signal of 13.56MHz which is 

coupled to the IM coil. This frequency belongs to the FCC mandated ISM band 

which is allocated for industrial, scientific and medical research. The IM houses a 

power rectifier that converts the signal received at the coil into a DC voltage. The 

detailed design is presented in [53]. The rectifier has been designed to provide 

20mW of power to the IM, which includes the frontend analog and digital 

processing parts in addition to the transceiver. The system uses „passive back 

telemetry‟ to transmit data over the same power channel. This is achieved by the 

use of Load Shift Keying (LSK). Under normal operation, when there is no data to 

be transmitted, the IM is constantly receiving power from the SM. However, when 

the IM wants to transmit a „one‟ bit, it creates an open circuit at the power 

receiver coil for 0.2μsec. As a result, the IM stops receiving power from the SM 

for this duration of time. This change in „load‟ is sensed at the SM by a change in 

current and a „one‟ is detected by the data receiver. Thus at the IM the power 

receiver coil also works as the data transmitter coil, whereas on the SM the 

power transmitter coils also works as a data receiver coil. The current design is 
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capable of data transfer at a maximum rate of 500kbps. The transmitter power is 

fixed at 1mW which corresponds to 2nJ energy per bit transmission. 

Both the power and data are dependent on a single coil based inductive link. 

Inductive links are highly directional and the quality of induction depends heavily 

on the orientation and alignment of the coil. The distance between the two coils 

also affects the amount of induction achieved. Since in practical situations it is 

not possible to guarantee a perfect alignment between an implanted coil and a 

surface coil, it is important to study the effect of relative coil orientation on the 

quality of data transfer achieved to enable design of suitable communication 

protocols to maximize data throughput. 

4.3 Experimental Setup 

4.3.1 Trace Collection 

Trace collection refers to transmission of a large number of packets from the 

transmitter and reception of those packets at the receiver. Since the contents of 

the transmitted and received packets are known, any errors in transmission can 

be identified at the bit and packet levels. A bit-wise XOR operation on the 

transmitted and received packets results in a „zero‟ if the bits match, and results 

in a „one‟ if the bit has been flipped during communication. Thousands of packets 

need to be transmitted and received in order to formulate an unbiased model. 

The statistics that can be extracted from these traces are the Packet Error Rates 

(PER) and the Bit Error Rates (BER). PER is the fraction of transmitted packets 

that are received with at least one bit in error. 
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PacketsTotal

ErrorsPacket
PER

_
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(4.1) 

BER is the fraction of transmitted bits that are received in error. 

BitsTotal

ErrorsBit
BER

_

_


 

(4.2) 

Some papers report Packet Reception Rate (PRR) instead of PER, which is 

related to PRR by 

PERPRR 1  (4.3) 

To our knowledge, this is the first thorough trace collection effort for inductively 

coupled transceivers for biotelemetry links. For this study, error traces of 

approximately 3 million packets were collected, where each transmitted and 

received bit was logged for detailed analysis. 

4.3.2 Physical Setup 

The trace-collection setup is depicted in Fig. 4.1. It consists of a surface module 

(SM) and an implantable module (IM). The SM houses a power transmitter in 

addition to a data receiver, whereas the receiver houses a power receiver in 

addition to a data transmitter. The power source is only connected to the SM. A 

data acquisition card (DAQ) card is connected to both the SM and IM to provide 

the data to be transmitted to the IM and to record the data that is received at the 

SM. The DAQ card is connected to a host PC running a LabView application that 

continuously retrieves data from the receiver and logs it. The SM and IM are 

placed in a Faraday cage to minimize the effect of external electromagnetic noise 

on the data communication.  
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The size of the packet is 820 bits, and the packet format is detailed in previous 

chapters as well as in [58]. The packet is composed of 800 bits of data, 10bits of 

addressing information and 8 bits of CRC. 

4.4 Transceiver Performance Analysis 

The performance of the power and data transceiver was examined to determine 

the operating conditions for which the transceiver provides acceptable 

performance. 

4.4.1 Transceiver Orientation Diversity 

Packets were collected over a period of weeks, at different times of the day, in a 

typical lab environment. Each trace collection was characterized by the location 

of the transmitter and receiver, separation between them, the tilt of coils, and the 

misalignment from the center. Fig. 4.2 shows the scaled diagram for different 

settings used to measure the performance of the transceiver. The amount mis-

alignment is represented with „z‟, the distance is represented with an „x‟ and the 

 
Fig. 4.1. Experimental setup used for transceiver characterization.  
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tilt is represented with a θ. For the scaled Fig. 4.2, x=10mm, z=10mm and θ=30
ο
. 

The transmitter has a fixed transmission power of 1 mW.  

For each setting, a total of 100,000 packets were transmitted in segments of 

5000 each with two minutes of inactivity between each segment. This 

corresponds to 200 seconds of packet transmission for each segment. As a 

result a total of 82 million bits were transmitted for each setting. The data was 

transmitted at a rate of 500kbps, which corresponds to packets being transmitted 

at a rate of 25 packets per second. 

 

4.4.2 Transceiver Characterization Results 

Figures 4.3-4.5 plot the BER and PER vs. the three parameters of distance, mis-

alignment and angular tilt. The BER is plotted against a logarithmic scale. As 

expected, both the BER and PER deteriorate by increasing the values of these 

 
Fig. 4.2. Scaled diagram of different settings used to measure the performance of the 

transceiver, including the distance, the tilt and the misalignment. 
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parameters. It must be noted that the minimum value plotted in each plot 

corresponds to zero errors, i.e. no errors were detected for those settings. 

However, becasue BER can only be detected up to 1E-8 (because of the number 

of transmitted bits), the value of 1E-8 is plotted for the least value. Similarly, the 

minimum plotted value for PER is 1E-5. 

It must be noted from Fig. 4.3-4.5 that the initial settings of 5mm distance, 11 

degrees tilt and 5mm mis-alignment do not result in any transmission errors. 

These are the typical settings expected in practical situations when the 

transmitter is implanted into the body and the receiver is placed on the body 

surface. Fig. 4.3 shows that a nominal acceptable BER value of 1E-4 is achieved 

at 14.5mm of distance with a PER of about 10%.  

 

 
Fig. 4.3. Bit Error Rate and Packet Error Rate versus the Distance in mm. 
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Fig. 4.4 shows that 11mm of mis-alignment provides a BER of 3E-5, beyond 

which the BER increases sharply. It is interesting to note that from 9mm to 11mm 

the BER remains almost constant (from 2.6E-5 to 3.1E-5); however PER 

increases rapidly (0.4% to 2.5%). This suggests that, although the number of bits 

in error remain approximately same, the errors are spread over a larger number 

of packets. Conversely, it can be seen that at 12mm and 13mm misalignment the 

BER increases sharply (0.25% to 1.4%) while the PER barely increases (84% to 

100%), suggesting an increase in number of bit errors per packet. 

Fig. 4.5 shows that at 34 degrees of tilt a BER of 2E-4 is achieved with a 

corresponding PER of 2.3%. Both the BER and the PER show similar amount 

change with increasing tilt.  

 

 
Fig. 4.4. Bit Error Rate and Packet Error Rate versus the Mis-Alignment in mm. 
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Disturbance Effect: The transmitter and receiver were physically disturbed to 

simulate the effect of body movement, which is expected to affect all three 

parameters of distance, tilt and mis-alignment. Disturbance was created as a 

combination of all six degrees of freedom, include the three translational and 

three rotational axis. Although the disturbance magnitude could not be measured 

scientifically, the relative initial displacement of the transceivers was recorded to 

be ±1.5mm from the center points. The disturbances were created at a frequency 

of about 2Hz, but each disturbance resulted in higher frequency damped 

vibrations because the Tx and Rx were suspended in air using copper wires. 

Fig. 4.6 shows the number of packets in errors over time for the case when 

disturbance was added to the initial setting of 5mm distance between 

transceivers. To plot the results, the 100,000 packets have been divided into bins 

 
Fig. 4.5. Bit Error Rate and Packet Error Rate versus the Angular Tilt in degrees. 
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of 100 packets each. As a result, the 1000 bins show the number of erroneous 

packets in each bin. Note the „burst‟ nature of errors, i.e. whenever there is an 

error it is very likely that there will be more packets with errors in the same 

vicinity.   

 
Fig. 4.7 compares the BER and PER at distances of 5mm and 10mm distance 

with and without disturbance. It can be seen that disturbance has a significant 

effect on the quality of channel and the total number of errors. 

 
Fig. 4.6. Packet errors versus time for disturbance effect test. The 100,000 packets are 

divided into bins of 100 packets and show the number of packet errors in each bin 

 



142 

 

 

4.5 Channel Memory 

Most wireless channels show „burstiness‟ in the packet-level and bit-level errors. 

Thus, if a packet (or bit) error has been seen in transmission, the probability that 

the subsequent one or more packets (or bits) will be in error increases. This 

increase in probability is a characteristic of the channel and varies from one 

channel to the other. This phenomenon is called Channel Memory. The degree to 

which effects of a particular bit error are carried over time can be quantified by a 

measurement of the packet level channel memory, PM, and the bit-level channel 

memory, BM, respectively [57]. In essence, channel memory provides an 

 
Fig. 4.7. Bit Error Rate and Packet Error Rate versus the Distance in mm showing the 

effect of physical disturbance on BER and PER. 



143 

 

estimate of the average number of consecutive errors expected whenever an 

error is observed. 

4.5.1 Bit Level Memory 

Knowledge of the amount of bit-level memory of a channel helps in the design of 

error detection and correction schemes. Correlograms are commonly used to 

measure the memory of a process [54-56]. A correlogram is a plot of the auto-

correlation function, RXX(t), of the process. In this case, it is a bit level trace 

consisting of zeros (when the bit is correct) and ones (when the bit is inverted) as 

a function of time, t. 
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The correlogram was computed for each erroneous packet over the length of the 

packet. The lag „t‟ for which RXX(t) becomes insignificantly small, less than 0.15, 

was taken as a measure of bit level memory [54]. A histogram of the memories 

was computed and a cumulative distribution function is presented. 

4.5.2 Packet Level Memory 

A similar correlogram-based analysis was applied to the packet level, in which 

each erroneous packet is represented with a one and each correct packet is 

represented with a zero. In order to observe time-dependent effects on PM, this 

measurement was performed separately for all 20 segments for each setting. A 



144 

 

histogram of memories of these individual traces was computed and a 

cumulative distributed is provided to show the trend. 

For the test case of 5mm distance with disturbance, the histogram and 

cumulative distribution of packet level memory is shown in Fig. 4.8, where the red 

(line) plot shows an 85% chance that the errors will be solitary and a 95% chance 

that there will be four or fewer consecutive errors. No error correction capability is 

assumed for memory calculations; however, if error correction were applied then 

the packet memory is expected to reduce even further. Note that a memory of 

zero means that either zero packets are in error or solitary packets are in error. 

Memory of one means that two consecutive packets are in error, a memory of 

two means that three consecutive packets are in error, and so no. 

 

 
Fig. 4.8. Histogram of packet level memory for 5mm distance with disturbance. 
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Fig. 4.9 gives the bit-level memory of the channel, showing the consecutive 

number of bits in error. It can be seen that 79% of the time the bit-errors are 

solitary, and 98% of times there are four or fewer consecutive bits in error.  

 
For the movement artifacts with 5mm distance there were 913 erroneous packets 

out of 100,000 and 1909 bits in error out of 82 million, given the PER = 9.13E-3 

and BER = 2.33E-5. Fig. 4.10 shows the histogram of number of bit errors in 

each erroneous packet. Only the packets containing errors are considered for 

this plot. It can be seen that most packets have only one bit in error, while 89.4% 

packets have only three or fewer bits in error. If error correction techniques are 

applied that can correct up to 3 errors, then retransmissions could be reduced by 

90%. 

 
Fig. 4.9. Histogram of bit level memory for 5mm distance with disturbance. 
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4.6 Channel Characterization Across Animal Skin 

4.6.1 Physical Setup 

Several experiments were conducted using chicken skin to model the general 

effects of skin tissue on inductive power transfer and data communication. 

Experiments were conducted without a Faraday cage in the open lab 

environment containing many sources of electromagnetic noise. For 5mm 

distance measurements, a 4mm thick layer of skin was sandwiched between the 

transmitter and receiver coils. For 10mm distance measurements, layers of skin 

adding up to 8mm thickness were used. However, tilt and movement effects 

could not be measured with the skin between the transmitter and receiver. Fig. 

4.11 shows the setup used for these measurements. 

 
Fig. 4.10. Histogram of number of bit errors per packet form 5mm distance with 

disturbance. 
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4.6.2 Channel Characterization Results 

The results for the case of 10mm distance with 8mm thick layer of skin between 

the transmitter and receiver are discussed in this section. A total of 0.5 million 

packets were transmitted and a PER = 7.43E-3 was recorded. The 5000 bins of 

100 packets each are shown in Fig. 4.12. 

The cumulative distribution of packet memory is shown in Fig. 4.13, where the 

red plot shows 84% chance that the errors will be four or fewer errors and a 89% 

chance that there will be 7 or fewer consecutive errors.  

 
Fig. 4.11. Experimental setup used for channel characterization including animal skin.  
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Fig. 4.13. Histogram of packet level memory for 10mm distance through animal skin. 

 

 
Fig. 4.12. Packet errors versus time for the case of 10mm distance with animal skin. 

The 500,000 packets are divided into bins of 100 packets and show the number of 

packet errors in each bin. 
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Fig. 4.14 gives the bit-level memory of the channel, showing the consecutive 

number of bits in error. It can be seen that 68% of the time the bit-errors are 

solitary, and 97% of times there are 3 or fewer consecutive bits in error.  

For the skin effects at 10mm distance, there are 3716 erroneous packets out of 

500,000 and 15144 bits in error out of 410 million, giving the PER = 7.43E-3 and 

BER = 3.69E-5. Fig. 4.15 shows that most packets have only one bit in error, 

66% packets have only three or fewer bits in error and 89.8% have 9 or fewer 

bits in error. If error correction techniques were applied that can correct up to 3 

errors, then retransmissions could be reduced by 66%. It must be noted that a 

packet was found with 69 bits in error, which means the error detection capability 

should be able to handle such cases of large errors in a packet, even though 

most of the packet have only a few bits in error. 

 

 
Fig. 4.14. Histogram of bit level memory for 10mm distance through animal skin. 
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Fig. 4.16 shows the comparison of disturbance artifacts for the skin-based 

channel and the air-based channel. It can be seen that disturbance has the most 

effect on the performance of the transceiver while the introduction of skin also 

degrades the error characteristics of the channel in comparison to the air based 

channel. 

 
Fig. 4.15. Histogram of number of bit errors per erroneous packet for 10mm distance 

through animal skin. 
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4.7 Forward Error Correction 

There are several forward error correction (FEC) coding techniques and 

algorithms which provide various degrees of error correction capability. Also, 

different codes can handle certain types of errors better than others. Most codes 

have separate error detection and correction capability. The experiments 

described above have established that error detection capability is extremely 

important for the system. The addition of error correction capability can improve 

the throughput of the system and can also help in reducing the retransmission 

buffer length at the transmitter, saving hardware resources. 

 
Fig. 4.16. Comparison of BER and PER versus distance for various experimental 

settings. 
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Table 4.1 shows the comparison of BER, PER and packet memory PM for 

different settings before and after a 3-bit FEC is applied. The minimum 

measureable PER is 1.0E-5 and BER is 1.0E-8. Note that apart from the 

reduction in BER and PER, the FEC also impacts the packet memory, which 

dictates the amount of data-buffering capability required at the transmitter end. 

Smaller memory means only a small buffer is required to hold the data until it is 

successfully transmitted. The cumulative distribution value of 0.9 was chosen to 

calculate these memories. 

 

Fig. 4.17 shows the comparison of PER before and after 3-bit FEC is applied. It 

can be seen that using as few as 3-bits of FEC reduces the PER greatly, which in 

turn reduces the number of retransmission necessary for error free data 

transmission.   

Table 4.1: Comparison of BER, PER and Packet Memory for different settings before 

and after 3-bit FEC is employed. 

  
Before FEC After 3-bit FEC 

Distance Setting BER PER PM BER PER PM 

5mm 

Air 1.00E-08 1.00E-05 0 1.00E-08 1.00E-05 0 

Skin 1.32E-06 5.22E-04 0 5.64E-07 8.75E-05 0 

Disturbance 2.33E-05 9.13E-03 1 9.66E-06 9.70E-04 1 

10mm 

Air 6.27E-06 5.13E-03 0 1.00E-08 1.00E-05 0 

Skin 3.69E-05 7.43E-03 5 2.75E-05 2.48E-03 2 

Distrubance 1.28E-04 2.74E-02 3 9.17E-05 7.52E-03 1 
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Fig. 4.18 shows the comparison of BER before and after 3-bit FEC is applied. 

The effect of FEC is not very profound on BER which means that, although most 

of the packets can be corrected using FEC, the BER is contributed mostly by a 

few packets with a large number of bits in errors. It can be concluded that, 

although BER may appear high, the system needs only a few packets of 

retransmission to maintain a high data throughput. 

 
Fig. 4.17. Comparison of PER before and after 3-bit FEC for different settings. 
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4.8 Conclusions 

From the above results it can be concluded that, although it is important to keep 

the BER to a minimum, it is the PER and the packet memory that most affect the 

throughput of the system (by forcing packet retransmissions) and the hardware 

resources required for error-free communication. For the typical setting of 5mm 

distance between transceiver and receiver with no disturbance, the 

communication controller developed by this research and presented in previous 

chapters is capable of handling the communication task effectively. A departure 

from the typical channel parameters will still work correctly as long as the 

transceiver settings result in a small packet level channel memory and the 

 
Fig. 4.18. Comparison of BER before and after 3-bit FEC for different settings. 
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compression engine produces a reasonable output data rate. However, if the 

channel has a greater packet level memory, then the transmission buffer may 

overflow. This, however, can be avoided by increasing the size of the 

transmission buffer and making appropriate changes to the packet structure. 

These changes are discussed in the section for future work.   
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5 High Density Feature Extraction 

5.1 Introduction 

Advances in microelectronics and nanostructures have enabled scientists to 

combine thousands of electrodes into microelectrode arrays [59], permitting 

capture of neural signals from hundreds of neurons simultaneously for use in 

neuroprosthetics applications and neuroscience research. However, existing 

implantable wireless transceivers lack the capability to transmit the large amount 

of data generated by these electrodes. This mandates the use of implantable 

signal processing systems that enable on-chip data reduction while maintaining 

necessary information embedded in the neural spikes. On-chip feature extraction 

for spike sorting has been identified as a way to reduce transmission bandwidth 

[60].  

Existing methods of off-chip feature extraction for spike sorting, e.g. template 

matching, principal component analysis (PCA), and time-frequency transforms, 

are computationally too demanding to be realized in implantable hardware, as 

reported in the comprehensive survey [61]. For implantable systems, the area 

required by circuitry is also a major concern in addition to the power consumption 

during computations. It has been shown that memory is the largest block in 

neural recording systems incorporating on-chip signal processing [43]. Thus, it is 

highly desired to reduce the number of computations while also using a minimum 

number of memory elements. Most high performance algorithms are not scalable 

to 1024 channels, keeping within the area and power limitations, due to the 
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incurred hardware cost of complex processing [43,61]. An implanted system has 

to be low-power, low-area, highly accurate, automatic, and able to operate in 

real-time [61]. 

This section presents a new set of features for spike sorting, named Zero-

Crossing Features (ZCF), and compares their sorting accuracy against PCA 

features for several data sets. PCA has been known to provide good separability 

between spikes for channels with reasonable signal to noise ratio. The ZCF have 

been explicitly framed to be extremely computationally efficient and to not require 

any offline training. Figures of merit for different stages of the system have been 

established. The effect of non-ideal spike detection on the performance of ZCF 

and PCA was studied. In addition, the computational complexity was analyzed 

and a scalable hardware architecture suitable for processing thousands of 

channels in an implantable system is presented.  

5.2 Theory 

Fig. 5.1. shows the general data flow of a spike sorting system. Input signal X[n] 

is the recording from electrodes containing spikes from multiple neurons. S[k] is 

the result of spike detection where only spikes samples are kept while noise is 

discarded, as a result reducing the number of samples. The spikes are fed to a 

feature extractor which generates F[p], where the number of values generated 

per spike equals the number of features.  
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The features are then used either on-chip or off-chip to classify the incoming 

spike as belonging to one of the possible neurons on that channel. All multi-

channel systems keep track of the spikes by recording a „spike arrival time‟ and a 

„channel identifier‟ in addition to the features. Most systems have two phases of 

operation. The „training‟ phase followed by the „acquisition‟ phase [61-62]. During 

the training phase, the neural data is transmitted uncompressed and is used by 

external processors to calculate different parameters, e.g. detection thresholds 

and feature vectors. These parameters are then relayed back to the implanted 

module where they are used in the acquisition phase. These steps are repeated 

for all the channels. Nevertheless, ideally, a system suitable for recording from 

hundreds of channels should require minimum user intervention.  

It is important to note that the ZCF feature extraction presented in this section 

does not require any training. Throughout this section, the „training‟ phase is only 

used to train detection thresholds and classification algorithms. Although this 

section primarily discusses feature extraction, the performance of feature 

extraction is also dependent on the quality of the spike detector used. In addition, 

it is also dependent on the quality of spike classifier in the system. 

 

Fig. 5.1. General data flow and typical components of a neural recording and classification. 

system. 
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5.2.1 Spike Detection and Classification 

Several methods for spike detection have been reported in literature including 

data transformations, derivatives and template matching [62]. All methods 

employ a thresholding step for spike detection at the front-end or later in the 

system. Most high performance methods are computationally very intense and 

require offline training in addition to a large number of memory elements to 

maintain templates or temporary data. Thus, time-domain front-end thresholding 

is the most suitable option for high density multi-channel implanted systems [61], 

where the thresholds are computed off chip in the training phase. Using two 

independent thresholds, one positive and one negative, referred to herein as 

Dual Thresholds (DT), provides significantly improved performance as compared 

to the „absolute‟ threshold. „Absolute‟ threshold is a specific instance of DT where 

a single magnitude is compared to the incoming sample and the polarity of the 

sample is ignored. As a result the DT always performs equally good or better 

than absolute threshold. DT is chosen as the spike detector for this study 

because of its good detection performance. 

Once the features have been extracted, several algorithms are available for off-

chip spike classification. K-Means and Mahalanobis distance based classification 

were considered for this study. Mahalanobis classification was found to perform 

better for almost all tests and was used for classification henceforth. Off-chip 

Mahalanobis clustering also allows for adaptability in clustering as channel 

statistics change and spike amplitudes vary over time. 
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5.2.2 Feature Selection and Extraction 

PCA and Wavelet Transforms (WT) have traditionally been used for off-chip 

spike sorting; however, they are deemed unsuitable for implantable on-chip multi-

channel feature extraction because of the high computational cost and hardware 

resources required to map the neural data onto the feature space. Furthermore, 

both methods require offline training, and neither of the methods provides a 

generic set of features applicable across channels. This means each channel 

requires separate training and results in separate sets of features. This high 

computational cost mandates the design of a new set of features that is explicitly 

framed to be computationally efficient and do not require any offline training while 

maintaining good sorting performance.  

The most prominent and visually distinctive features of a set of different spikes 

are the relative amplitude (or energy) of the spikes, the relative position of 

positive and negative peaks in the spikes, and the widths of the spikes. Each of 

these features can be used to sort spikes of one kind from the others, however, 

the ability to sort spikes based on these features falls sharply with an increase in 

noise level, i.e., in signals with low signal to noise ratio (SNR). However, all these 

features can be combined together to form a new set of features that are 

distinctive, resilient to noise and computationally efficient. The mathematical 

representation of the set of ZCF features can be expressed as 
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where ZC1 and ZC2 are the two features, K is the number of samples in a spike 

and Z is the index of first zero crossing after the spike has been detected. Note 

that in a DT based spike detection system, the spikes are detected when the 

value of the spike is larger than either of the specified thresholds. The value of Z 

in (5.1) is thus the first zero crossing after a significant amount of energy in the 

spike has already been recorded. Features in (5.1) can also be seen as 

recording the pre-zero-crossing and post-zero-crossing energies of the spike. 

Collectively, these features are referred to as Zero-Crossing Features (ZCF) for 

the rest of the section.  

The underlying assumption in selection of these quantities as a feature set is that 

the spikes from different neurons have different „area‟ before and after the first 

zero crossing. Though, in theory, it is possible to have multiple neurons 

generating spikes with same energy before and after zero crossing, in practice, 

experimentally recorded spike waveforms show considerable differences in these 

two values allowing for the use of these features for spike sorting. In case the 

spikes have no zero crossing, ZC1 contains all the area of the spike while ZC2 

remains zero. Even if multiple non-zero-crossing spikes are present in the 

channel, the features still maintain a degree of separability. An average spike is 

about 1.5ms long, which amounts to 30 samples at a 20Ksps sampling rate. The 

factor „K‟ in (5.1) is thus set to 30 and is dependent on the sampling rate.  

The ZCF features are graphically represented in the example of Fig. 5.2. When a 

spike is generated, the electrode potential changes very rapidly. In this example, 
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the spike is detected when the electrode potential crosses the negative 

threshold. There are still some samples before the detection that belong to the 

spike and may contain useful information; thus it is desirable  to be stored some 

samples in a buffer. For the sampling rate of 20Ksps, empirical results show that 

a buffer length of only 3 successfully captures all the useful samples and 

captures the onset of the spike, as shown in Fig. 5.2. 

Buffer length and spike length are the two parameter that effect the amount of 

required hardware resources. The buffer length is dependent on the type of spike 

detector used, and the ideal detector is the one that detects the spike as soon as 

it is generated. Also note that, as in Fig. 5.2, only one spike can be detected 

within any K samples.  

 

 

Fig. 5.2. Graphical representation of ZCF features for a spike detected using dual 

thresholds. 
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5.2.3 Complexity Calculations and Hardware Resources  

The computation complexity of implementing the two features of ZCF was 

compared to that of implementing the two most significant components of PCA, 

where each of the PCA components has K dimensions. Computations for spike 

detection algorithms occur for each input sample, while the computations for 

feature extraction occur for each detected spike. To compare complexity in terms 

of addition operations, each multiplication is considered to be equal to 10 

additions [62] whereas each „comparison‟ operation is considered equal to one 

addition. For the case of DT spike detection, use of two thresholds means that 

every sample is compared against either positive or negative threshold, thus only 

one computation occurs per sample.  

From Table I, it can be seen that for each detected spike, the ZCF needs less 

than 5% of the computations and requires less than 8% of the memory as 

compared to the PCA.  

 

Fig. 5.3 gives the hardware architecture of the proposed DT signal detection and 

ZCF feature extraction algorithms. Light colored blocks represent memory 

elements. A three word FIFO is updated every new sample to implement the 

buffer that ensures spike data before detection is not lost. When a spike is 

Table 5.1: Comparison of Complexity and Required Memory for Different Algorithms 

 Add. Mult. Complexity Memory 

DT 1 0 1 2 

ZCF 30* 0 30* 5 

PCA 60* 60* 660* 65 

* Computations per spike 
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detected, the control logic uses the data stored in FIFO and the subsequent input 

values to accumulate in ZC1. When the zero-crossing-detector (ZCD) detects a 

change in sign, then ZC2 is accumulated until all the 30 samples representing a 

spike are received.  

 

It is important to note that, with a system for 1024 channels; one additional byte 

of storage per channel translates to 1Kbyte of storage for the system. Similarly, 

each additional computation per channel means 1024 additional system 

computations. 

5.3 Methods 

Neural spikes recoded from live experiments were used in conjunction with a 

neural signal simulator to generate signals that mimic electrode recordings. A 

detailed discussion of experimental procedures to collect neural data can be 

found in [52]. A total of ten different spike shapes were used to mimic ten 

separate neural channels, each consisting of three spikes. Fig. 5.4 shows the 10 

 

Fig. 5.3. Hardware architecture of proposed signal detection and feature extraction stages 

units. 
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spike channels used in these simulations. For each dataset, one second of 

„training‟ phase was completed to determine thresholds for DT, principal 

components for PCA and initial statistics for Mahalanobis clustering. The signals 

generated did not contain any overlapped spikes, and are generated for different 

values of SNR, ranging from 18dB to -5dB, as computed by 
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 where σx and σn are the signal and noise standard deviations, respectively. 

 

The performance accuracy of a spike sorting system depends on the collective 

and individual performance of each of the components. Performance accuracy of 

the detection algorithms is computed based on the number of spikes missed and 

the false alarms in relation to the number of original spikes generated by the 

simulator.  Detection Error for Dual Threshold, DEDT, is represented by [63]. 

 

Fig. 5.4. Channels and spikes used in simulations. Ten different channels consisting of 

ten different spike shapes were used with each channel containing three spike shapes. 

(Top Row) Channel 1-5 from left to right. (Bottom Row) Channel 5-10 from left to right. 
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where OS is the number of original spikes, FA is the number of false alarms and 

MS is the number of missed spikes. Performance of ZCF is compared against 

the performance of PCA; however, PCA requires a training phase to find the two 

most significant principal components. When „perfect‟ detection is used then 

Classification Error, CE, can be calculated as 
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 where MCS is the number of mis-classified spikes. Accuracy of the feature 

extraction algorithm is computed through (5.4) treating misses or false alarms as 

misclassified spikes. The effects of non-ideal spike detector on classification 

accuracy are reflected in the classification error formula 
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where DS is the total number of spikes detected. The performance of feature 

extraction is isolated from the performance of non-ideal spike detector by (5.5). 

Since different sets of features are effected differently, (5.5) represents the 

effects of mis-alignment on the classification accuracy caused due to imperfect 

spike detection. This can happen in instances when the noise is such that it 

suppresses the onset of the spike creating a slight „delay‟, resulting in a spike of 

shorter duration; or when the noise is such that it creates a high magnitude just 

before the onset of the spike giving the illusion that the spike started earlier and 
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thus lives longer than other spikes from the same neuron.. Here, the number of 

misclassified spikes includes all the false alarms, because false alarms are 

always wrongly classified. The performance of the complete system including the 

non-ideal DT spike detector, feature extractor and classifier can be computed as 

100





FAOS

MCSMS
DCEDT

 

(5.6) 

5.4 Results and Discussion 

Fig. 5 shows an example of how well the ZCF based clustering performs and 

when Mahalanobis clustering outperforms K-Means clustering sanctioning the 

use of Mahalanobis to create clusters .  



168 

 

 

 

Fig. 5.5a. (Top) Spikes detected on the channel. (Bottom) Color-coded spikes for different 

neurons. This knowledge is available from the neural signal simulator and is presented 

here only for reference. 
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Fig. 5.5b. (Top) ZCF mapping of the spikes on the ZCF feature space as seen by the spike 

classifier. (Bottom) ZCF mappings are color-coded to distinguish between neurons. 
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Fig. 5.5c. (Top) ZCF mappings are grouped into three clusters using Mahalanobis 

distance, 1.71% spikes are mis-classified. (Bottom) ZCF mappings are grouped into 

clusters using K-Means clustering, 6.14% spikes are mis-classified. 
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Neural channel 6 from Fig. 5.4 was simulated for an SNR of 3dB. Fig. 5.5a(Top) 

shows all the spikes that are present on the channel and are detected. Since 

prior knowledge is available from the neural simulator regarding the true 

identities of these spikes, the detected spikes are color-coded to distinguish 

between different neurons in Fig. 5.5a(Bottom). Fig. 5.5b(Top) shows the 

mapping of the spikes on the ZCF feature space with ZC1 (pre zero-crossing 

feature) on the x-axis and ZC2 (post zero-crossing feature) on the y-axis, as 

seen by the classifier. Fig. 5.5b(Bottom) shows the color-coded mappings, using 

prior knowledge from the neural simulator, as a reference to distinguish between 

the three neurons. Fig. 5.5c(Top) is the clusters created by the classifier using 

Mahalanobis distance. Note that, although it looks very similar to the color-coded 

mapping on center right, there still are some mis-classified spikes. Out of 1286 

spikes shown, 22 spikes are misclassified giving an mis-classification ratio of 

1.71%. Fig. 5.5c(Bottom) shows the clusters created by the classifier using K-

Means clustering. The mis-classified spikes can easily be identified in the middle 

of the feature space. A mis-classification ratio of 6.14% is recorded. Both 

classifiers need some training. The K-Means classifier needs sample points to 

calculate the centeroid of the cluster while the Mahalanobis clustering needs 

sample points to compute the covariances of the clusters. 

Fig. 5.6 shows the performance results of detection and classification stages 

using the four figures of merit described by (5.3)-(5.6). Ten different data sets 
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were used in simulations, and the resulting averages have been plotted. Fig. 

5.6(i) shows that the positive and negative DT threshold values that generate the 

minimum detection error (DEDT) in the initial training phase result in comparable 

error in the acquisition phase. The detection error increases sharply for an SNR 

of 3dB and below where noise power becomes comparable to signal power. Fig. 

5.6(ii) compares the performance of ZCF and PCA and represents the 

classification error when ideal detection is assumed (CEP). It can be seen that 

ZCF and PCA perform equally well even under low SNR conditions. Thus, even 

though ZCF requires only 5% of the resources as PCA, it can perform as well as 

PCA-based features. Fig. 5.6(iii) shows that, when non-ideal spike detection is 

employed, the resulting mis-alignment of detected spikes adversely effects the 

classification performance (CEDT) of both ZCF and PCA algorithms. The errors 

have increased by about 50% for each SNR. However, it can be seen that there 

is no performance loss at high SNRs and that both ZCF and PCA still perform 

equally well for all SNRs. Fig 5.6(iv) shows the system level results including 

spike detection, feature extraction and classification. The performance of ZCF 

and PCA are nearly indistinguishable. It can be seen that, even though the ZCF 

and PCA are capable of performing well under low SNR conditions (e.g. 5% 

errors at 0dB), the system performance (55% errors at 0dB) is dominated by the 

perfromance of the spike detector (45% errors at 0dB in addition to the mis-

alignment of detected spikes). Note that this analysis does not reject the 

possibility that if more than two features were used in PCA, then its classification 
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performance may improve, albeit at significant cost of increased hardware 

resources.  

A 1024 channel system with a sampling frequency of 25Ks/sec/channel and 10 

bits ADC resolution would generate raw data at about 250Mbits per second. 

Using ZCF feature extraction, the information to be transmitted could be reduced 

to a time stamp, a channel ID and the two computed features (around 50 bits per 

spike). Assuming the average number of neurons on each channel to be three 

and the neuron firing rate to be 30 spikes per second, data would only need to be 

transmitted at the rate of ~4.7Mbps using ZCF. Thus, ZCF permits transmission 

at is less than 2% of the raw data rate. The resulting savings to transmission 

power is purchased by the cost of ZCF computations, which average to, 2.86 

million computations per second during steady state operation. In comparison, 

PCA provides similar data reduction but costs 60.91 million computations per 

second, many times the dynamic power of ZCF. 
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5.5 ZCF vs DWT 

In this section we present a comparison of a DWT based spike sorting system, 

henceforth called DWT, against a ZCF based spike sorting system, henceforth 

called ZCF. 

 

Fig. 5.6. Percentage values of (i) DEDT, (ii) CEP, (iii) CEDT and (iv) DCEDT versus 

different values of SNR. Data represents performance results for the DT spike detector, the 

ZCF and PCA feature extractor and the combined spike sorting system.  
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1. Sorting Performance: DWT has been shown to have slightly better spike 

sorting results than PCA. Since ZCF performs as good as PCA, we can 

assume that DWT would be able to perform better than ZCF. 

2. Reconstruction Flexibility: DWT is capable of allowing various degrees 

of reconstruction by changing the multi-level thresholds.As a result the 

actual spike shapes may be reconstructed if needed. ZCF based features 

do not allow such reconstruction, however a „monitor‟ mode can be used 

to record the spike shapes in the time domain. 

3.  Computational Complexity and Power Consumption: There is no 

spike detection before DWT; as a result all of the input samples go 

through the time-frequency transformation, which is computationally 

hungry. Each input sample requires 8 multiplications and 8 additions for a 

4 level transform. ZCF processes „detected‟ spikes only, and thus 

computes features only when a spike is detected, which saves a huge 

amount of power and resources.  

4. Detection performance: In DWT, detection is applied offline once the 

data has been transmitted. This allows a higher performance algorithms to 

be used for spike detection.  The performance of ZCF is affected by the 

performance of an on-chip spike detector which may limit the overall 

system performance. 
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5. Neural Activity: Power consumed by a ZCF system is proportional to the 

neural activity on the channels. DWT processes all samples of the channel 

even if it has low neural activity. 

6. Classifier Complexity: ZCF requires only a 2 dimensional spike classifier 

while a 4 level DWT requires a 5 dimensional classifier. However, the 

complexity of classification may not be directly proportional to the 

dimensionality of classifier. 

7.  Scalability: DWT requires a lot of memory for computation and thus does 

not seem scalable for systems with over a thousand channels. ZCF has 

been designed to require minimum memory, only one adder and no 

multipliers, and thus is scalable to a very large number of channels. 

8.  Training and Feedback: Although taking the time-frequency transform in 

DWT does not require any supervision, selection of appropriate thresholds 

to retain or discard features requires initial training and feedback from an 

external processors or user. ZCF does not require any initial training, 

however the preceding spike detector may require some offline training.   

9. Compression: ZCF produces two features for each detected spike, while 

DWT can, theoretically, be trained to produce a single feature capable of 

providing good sorting results in addition to some feature identification 

information. The resulting throughput of both system appears to be similar. 
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The comparison presented above highlights the strengths and weaknesses of 

both the DWT-based and the ZCF-based systems. The DWT has a clear 

advantage when any level of signal reconstruction is needed after the data has 

been received at the output. In addition, because of its time-frequency domain 

processing, DWT-based systems may provide better spike detection and sorting 

performance as compared to only time-domain based ZCF; however the 

difference in performance is not clear and depends heavily on the performance of 

threshold determination algorithm running in the external processing units. On 

the other hand, though the DWT has been shown to effectively handle multi-

channel processing, the ZCF is scalable to a much higher number of channels 

that can be processed on-chip. This is possible because of the extremely 

resource efficient implementation of ZCF resulting in smaller IC area and very 

low power consumption. The power consumption is directly related to the amount 

of neural activity observed, as opposed to the constant power consumed by the 

DWT. 

It can be concluded that both systems perform well for different kinds of 

applications. The DWT is suitable when detection and sorting accuracy take 

precedence over the number of simultaneously processed channels, whereas 

ZCF is suitable when extremely large number of channels are processed while 

slight performance loss is acceptable.  
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6 Summary and Future Work 

 

The summary of this Ph.D. thesis research is provided below followed by a brief 

description of the contributions made in this thesis and a list of tasks that could 

further this research in the future. 

6.1 Summary 

Neuroprosthetics devices and Brain Machine Interfaces (BMIs) are increasingly 

playing a vital role in helping patients with severe motor disorders achieve a 

better lifestyle by enabling direct interface to the central nervous system. Such 

BMIs show great promise in many biomedical applications. 

This thesis addresses some of the critical challenges that impede progress in 

wireless neural implants by developing highly efficient algorithms and hardware 

suitable for implantation. Employing front-end on-chip signal processing, the 

system is tailored to enable simultaneous multi-channel neural recording, 

compression and transmission of 32 neural channels. The system uses an area-

power efficient discrete wavelet transform based compression engine to 

compress the multi-channel data while providing control over the quality of 

reconstruction needed for the particular application. Lossy as well as lossless 

compression algorithms combine to provide high compression ratios. A host of 

low power design techniques have been employed in addition to a power 

management module to keep the system under the low area, low power and low 

bandwidth constraints. A communication protocol has been designed to enable 
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error free data communication between the implanted device and the external 

module on body surface. A salient feature of the system is its ability to compress 

multi-channel data while preserving the important attributes of the signals, 

allowing off-chip spike sorting. Moreover, a scalable design enables 

simultaneous processing of a higher number of channels. In addition to this core 

functionality, the ASIC allows configurability of the entire system supporting real 

time operation, different modes of operation and different levels of compression 

as desired by the neuroscientist. 

The design of a reliable communication and power link between an implanted 

transmitter and a receiver on the body surface depends heavily on the channel 

characteristics across animal skin and the characteristics of low power inductive 

links. These error characteristics have never been explored in literature before. 

This thesis empirically determines the channel characteristics and analyses the 

performance of the inductively coupled data and power transceiver by presenting 

results from extensive testing for different settings and orientations of the 

directional transceivers. The channel characteristics can be used to model the 

communication link for a inductive power-data transceiver implanted in any part 

of the body with different thicknesses of skin.  

Finally, to match the pace of rapidly increasing number of channels on a 

microelectrode array, a new set of features named „Zero Crossing Features‟ has 

been identified and analyzed for extremely efficient feature extraction in 

hardware without sacrificing any spike sorting performance. The sorting 
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capability of the features is compared against the features from principal 

component analysis and shown to perform equally well. A resource efficient 

hardware architecture is also presented for complexity analysis and proves its 

feasibility for implantation. 

6.2 Contributions 

This thesis makes the following contributions to the field of biomedical 

engineering. 

1. The prohibitively large amount of data generated by the microelectrode 

arrays results in a data communication bandwidth bottleneck. We have designed 

and developed a new implantable system that enables control over the amount of 

transmitted data without compromising the vital information contained in the array 

of signals. As a result, a large number of channels can be acquired 

simultaneously within the same bandwidth where the scientist controls which 

channel gets more share of the bandwidth than others do. This will allow the 

scientists to allow more resources to the channels of interest and is expected to 

improve neural decoding accuracy in neuroprosthetics applications. 

2. We have developed a unique architecture for discrete wavelet transform 

that is designed to be extremely area-power efficient in addition to being easily 

adaptable to implement any other wavelet basis with any number of levels of 

decomposition. Accordingly, the DWT architecture can be used as is or can be 
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adapted for use in a wide variety of sensor arrays for signal compression or 

pattern recognition applications.   

3. The unreliable nature of wireless channels poses a formidable challenge 

in the pattern of bit and packet errors seen at the receiver. We have created the 

first ever error profile for inductively coupled transceivers transferring data and 

power between the implanted device and the external world across the skin 

tissue. In addition, we have also designed an efficient half-duplex protocol for 

streaming data to maximize the data throughput and to enable unfailing 

bidirectional data transfer. This error profile enables scientists to evaluate design 

tradeoffs for error correction, data throughput, transceiver hardware complexity 

and power consumption. The general nature of transceiver and skin channel 

ensures that the profile and the resulting protocol are valid not only for neural but 

for any implantable system. 

4. We have developed the first ever implantable digital system that employs 

on-chip high level signal processing of multi-channel neural data. Hardware has 

been designed for all the components including the analog interface controller, 

the compression engine and the communication controller, which have been 

combined together into a single system keeping within the implantability 

limitations of area, power and power density. Although the motivation for this 

design comes from the field of neuroprosthetics, the system developed can be 

used in a wide range of implantable applications. 
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5. Advances in MEMS have allowed thousands of channels to be fabricated 

on to a microelectrode array; however, simultaneous recording from such a large 

number of channels has not been possible. To enable recording from such high-

density microelectrode arrays we have designed a new ultra-constrained set of 

spike sorting features named „Zero-Crossing Features‟ which allows 

computationally and hardware efficient online spike sorting without requiring any 

training or user intervention. Consequently, enabling simultaneous recording 

from thousands of channels will allow decoding of physical and functional inter-

connections between large swathes of neurons, helping our understanding of 

brain functionality. 

6.3 Future Work 

Following is a set of tasks that can further this research. 

1. Update the Communication Protocol using Channel Characteristics 

With the channel error characteristics available through this research, it is now 

possible to improve the communication protocol and optimize for this particular 

biotelemetry application. The goal is to maximize the throughput while keeping 

the power consumption and transmission buffer length as small as possible. 

Based on the results from chapter 4, the number of parity bits included for error 

detection could also be re-evaluated. The cost to compute and transmit FEC bits 

needs to be evaluated further for the tradeoff between power consumed in 

transmission relative to the benefit of increase in throughput. It is evident from 

Fig 4.10 and Fig 4.15 that the system should have a very strong error detection 
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capability, although only a small error correction capability is sufficient. FEC 

algorithms need to be evaluated for the amount of error correction and error 

detection capabilities that they provide relative to what is needed by this system 

for error free low power data communication. 

2. Optimization for Low Power Operation 

Once the functional verification of the system is complete, the design can be 

analyzed to identify areas where power saving techniques can be employed to 

reduce the power consumption of the system as a whole, including both the 

digital blocks as well as the analog front end. For the target technology of 0.13 

micron CMOS, the focus of this effort is to reduce the combined leakage and 

dynamic power of the system while keeping a check on the area overhead. 

These techniques may include Multiple Supply Voltages, Dynamic/Adaptive 

Voltage and Frequency Scaling, Clock Gating, Transition rate buffering, operand 

isolation, logic restructuring, memory splitting, substrate biasing, multi threshold 

voltage and power shutoff. 

3. System Design for the Ultra Constrained Spike Sorting 

The hardware design of ultra constrained feature extraction can be extended to 

include spike detection and spike classification. The designs need to be low 

complexity, low power and resource efficient enough such that their resource 

consumption does not overshadow the complexity gains achieved by the feature 

extraction algorithm. Current designs for spike detection are either too resource 

hungry for an implantable system or do not have good detection performance. 
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Spike classification can also be performed through several different algorithms; 

however most high performance classifiers are computationally expensive. It is 

thus required to evaluate the tradeoff between power consumption for on-chip 

spike classification or transmission power required to transmit unsorted spike 

features to be used off chip.  

4. Evaluate the Number of Input Output Pins 

It has been learnt from our experience that for advanced technologies like 0.13 

micron CMOS, the IO and power supply pads for various inputs and outputs take 

up a sizeable amount of overall area, as shown in Fig. 6.1, mainly to enable 

packaging and for protection against electrostatic discharge. The pads are also 

the biggest power consuming blocks in the system since they add large 

capacitances at the interface. Methods to reduce this non-essential power 

consumption could be explored. One way to reduce the number of IO pads is the 

use of serial communication between various components of the design. The 

cost may involve increasing the clock frequency or use of frequency multipliers.  
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5. Test of Fabricated ASIC in Live Animals 

Once the system chip presented in Chapter 3 is fabricated it needs to be tested 

in live animals for two things mainly, functionality and power consumption. The 

tests will verify the initial choices of appropriate sampling rate and suitable 

quantization levels, and will verify the assumptions of amount of data generated 

and the amount of data necessary for off chip spike sorting. Long-term usability 

of the system could also be evaluated for any unforeseen glitches in hardware 

implementation. Including the wireless data and power transfer will enable testing 

of effects of short-time power outages and the functionality of communication 

 

Fig. 6.1. NIN Chip fabricated in 0.13 micron CMOS 
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controller. Once the testing is complete, a data sheet and user manual could be 

created to enable transfer of the chip to users unfamiliar with the design. 
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Appendix A: Neural Recording Techniques 

Overview 

There are different ways of recording neural activity currently in use, 

Electroencephalography (EEG), Magnetoencephalography (MEG), functional 

Magnetic Resonance Imaging (fMRI) and Positron Emission Tomography (PET), 

all of which are non-invasive.  

1. EEG:   

EEG is the recording of electrical activity along the scalp produced by the firing of 

neurons in the cortex (brain). These signals are recorded by placing electrodes 

on the scalp. EEG has been used extensively to test neural activity in different 

regions of the brain and has been helpful in categorizing seizures, brain death, 

coma and epilepsy etc. The electrical activity of the brain can be described in 

spatial scales from the currents within a single neuron to the relatively 

„accumulated‟ potentials that the EEG records from the scalp. Although EEG is 

the most helpful technique for some of these situations, it has several limitations 

the most important of them is poor spatial resolution. EEG has very high time 

resolution, on the order of milliseconds, enabling detection of very small events 

of interest. 

2. MEG:   

MEG and EEG are generated by the same neurophysiologic process, where 

EEG results from accumulated electric fields and MEG results from accumulated 

magnetic fields. The skull and the scalp do not distort magnetic fields as much as 

electric fields; thus MEG has better spatial resolution than EEG. MEG has found 
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its uses in the study of epilepsy, however, EEG signal is much richer in 

information content and is the primary monitoring technique for most 

neurophysiological processes. 

3. fMRI & PET:  

fMRI and PET both record neural activity directly by monitoring changes in blood 

flow or metabolic activity in the cortical tissues respectively. Both these 

techniques have better spatial resolution than EEG in three dimensions, however 

there are limitations associated with both. Poor time resolution is one of the 

limitations where successive recordings can contain several minutes long of 

superimposed information. Another limitation is that the subject cannot move 

freely (or cannot move at all) for the duration of the recording.  

In several situations it is desirable to have high spatial resolution as well as high 

time resolution for better understanding of intra-cranial connectivity and neural 

activity than provided by the above mentioned recording techniques. This can 

only be achieved with highly invasive methods and introduction of strip 

electrodes or microelectrode arrays. 

4. ECoG:  

Electrocorticography (ECoG) provides better resolution by placing the electrodes 

on the cortex under the skull. A fine strip with numerous electrodes is placed over 

the cortex. It records signals which are more pristine and are much more defined 

than the EEG. These signals are recorded without having to pass through the 

skull or the scalp, and thus have not been smeared. Though ECoG provides 
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better resolution, it is still not possible to monitor activity of individual cells. A 

disadvantage of this technique is that a surgery is needed to place the strip of 

electrodes on the cortex and thus far no system has been developed to 

wirelessly transmit the recorded data to the external machines. As a result a set 

of wires extends out of the scalp and feeds signals to the processing machines.  

5. Intracranial EEG:   

Intracranial EEG has shown the capability of recording activity of individual cells, 

and has recently been made possible by the use of microelectrode arrays. The 

signals are recorded by implanting electrodes into the cortex. Recording the 

activity of cortical neurons with microelectrode arrays was shown to be essential 

to quantify the degree of involvement of each neuron in encoding movement 

parameters. Use of microelectrodes allows extremely high spatial and temporal 

resolution and allows recording from single cells at arbitrary sampling rates, 

thereby enabling decoding of the neural signals and eventually control of artificial 

limbs [1].  

There are several challenges associated with this highly invasive procedure. 

Firstly, as with ECoG, a surgery is required to implant the electrode array and 

supporting electronics into the cortex. Secondly, such high resolutions on the 

order of microseconds and micrometers result in tremendous amount of data 

being generated. Thus far, clinical trials have used wires that extend from the 

skull to the external machines to record the signals. However, enabling wireless 

telemetry of these signals will allow free movements to the subject in addition to 
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long term or permanent implants without any chance of infection in the scalp. 

Such BMIs show great promise in many biomedical applications.  
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Appendix B: Quantization 

Power and area requirements of the DWT hardware are determined largely by 

the complexity of the computational circuitry and the required memory. To 

systematically reduce hardware requirements, we have explored different options 

to reduce computation and memory requirements at the algorithm level and 

analyzed their impact on signal integrity to determine an optimal solution. 

Quantization of input signal and wavelet coefficients into finite width words 

effects the signal integrity negatively, at the same time, reducing the word 

lengths has a large effect on the area and power consumed by the processing 

hardware. This tradeoff is analyzed below.  

Signal Quantization  

Fixed-point integer approximation limits the range and precision of data values 

but also greatly reduces the computational demand and memory requirements 

for processing and storage. The choice of signal width also affects the design of 

the analog to digital converter, as width of the data path equals the number of 

bits of the ADC. The input analog signal is first scaled and then digitized to obtain 

data samples within acceptable signal-to-quantization-noise ratio. Traditionally 

neural signals are digitized with a word width between 8 to 12 bits. Our analysis 

shows that a 10-bit quantization provides sufficient signal to noise ratio for most 

spike sorting algorithms, and increasing the width does not improve sorting 

performance. As our results in later chapters demonstrate, the data precision is 

sufficient to maintain signal integrity.  

Quantization of the Filter Coefficients 
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Since the algorithms involve a lot of multiplications and additions, it is important 

to design the multipliers and adders to be requiring low power and smaller area. 

Multipliers required to multiply two 10-bit inputs are considerably larger in area 

than those required to multiply a 10-bit word with a 6-bit word. As a result, 

wherever possible, using unequal input word lengths has power advantage over 

using equal word lengths. Another factor that encourages use of unequal word 

lengths is that the result of a multiply operation consists of a word length equal to 

the sum of input word lengths. Which means that the dynamic range of the output 

is different from the dynamic range of the input. In hardware systems where the 

input and the output of the multiplier are required to have same word length, it is 

essential to further quantize the output by means of discarding a number of least 

significant bits, essentially resulting in quantization error. Use of unequal word-

length inputs requires less number of bits to be discarded, resulting in smaller 

quantization error.  

We quantified the effect of the round off and quantization errors on the signal 

fidelity as a function of word-lengths for the wavelet filter coefficients. Our results 

demonstrate that 6 bits (5 magnitude + 1 sign) for coefficients in conjunction with 

10 bits (9 magnitude + 1 sign) for data can adequately preserve signal integrity. 

Signal Integrity 

We assess the effects of data and filter coefficient approximations on the quality 

of the signals obtained after reconstruction. We quantified the performance in 

terms of the complexity of hardware required to implement the Lifting based DWT 
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and illustrate the results in Fig. B.1. The wavelet filter coefficients were quantized 

to different resolutions ranging from 4 to 12 bits. The data was also quantized in 

the same range. The root mean squared error (RMS) is illustrated in Fig. B.1 

versus data and coefficient word lengths. These results demonstrate that, with 

sufficient precision, the use of integer computations does not result in significant 

signal degradation as quantified by the observed output RMS error. It can be 

noted that there is no significant improvement in SNR when the signal is 

quantized with greater that 10 bits or when the coefficients are quantized with 

greater than 6 bits of resolution. 

 

 

Fig. B.1. Effect of round off and quantization errors on the signal fidelity as a function of 

quantized data word length and coefficient word length. 

 



198 

 

Taking these results all together, it is clear that the choice of 6/10-bit 

coefficient/data quantization offers the best compromise between multiplier 

complexity and signal fidelity as concluded earlier. We should emphasize that 

perfect reconstruction of signals off chip may not be always needed. Typically, 

neural signals contain the activity of multiple neurons that need to be sorted out, 

and this information remains in the compressed data at the output of the DWT 

block. It has been shown elsewhere that sorting the multi source neuronal signals 

can be performed directly on the wavelet transformed data [32, 33], and this topic 

is outside the scope of this research. 
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Appendix C: Design Flow 

 

The design of an ASIC to implement an algorithm in hardware is completed in 

two main phases, the technology independent phase and the technology 

dependent phase. The technology dependent phase of the design involves fixed-

point algorithm design in Matlab followed by behavioral and structural design in a 

hardware description language. The ASIC design is verified and prototyped in 

hardware using an FPGA. Although it is a technology dependent technique, 

verification using an FPGA has various pros as described in the following 

section. The FPGA verified hardware description is finally translated to the ASIC 

design for chip fabrication for a particular technology. Fig. C.1 gives the high-

level steps for the design of proposed ASIC hardware in silicon. 

 

Technology Independent Phase 

 

Fig. C.1: High-level ASIC design flow 
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The technology independent phase of the design involves the algorithm design 

and the register transfer level (RTL) description of the hardware in a hardware 

description language (HDL). This phase has following main components.  

1. Algorithm design 

First step in fabricating an ASIC that implements a signal-processing algorithm is 

the design of the algorithm in a high-level language. Apart from the desired 

functionality of the algorithm, design of the algorithm involves calculation of the 

resources required for processing the data. There are two main resources that 

need consideration, the number of calculations and the number of memory 

elements required. As a general rule, higher number of calculations mean higher 

power dissipation whereas higher number of memory elements mean more 

silicon area in the final ASIC. However, area and power are not always mutually 

exclusive as power loss due to leakage has been the dominating reason for 

power loss lately. Frequency of operation also depends on the degree of 

parallelism inherent in the algorithm. 

Algorithms are generally designed in high-level languages such as C, Python or 

Matlab. We use Matlab for our designs. 

2. Fixed Point Algorithm  

Hardware designs require a finite word length, which is generally much smaller 

than the word lengths available in the high-level languages. This introduces two 

issues, quantization errors and overflows. Both these issues contribute towards 

degrading the signal to noise ratio at the output of the system. It is generally tried 



201 

 

to keep the word length minimum while maintain an acceptable level of signal to 

noise ratio. This is critical as increasing or decreasing the word length of an 8-bit 

system by only one bit may result in increase or decrease of the final silicon area 

by about 10%. Correspondingly, the power consumption of the system also 

changes. Similarly, it is essential to handle overflows correctly whenever the 

result of an arithmetic operation exceeds the available word length. These issues 

make it mandatory to adapt the algorithm for finite precision, fixed-point 

arithmetic and ascertain the integrity of the algorithm.  

Our system is designed with 10 bits of word length. This word length was chosen 

to keep the quantization error small enough to preserve the integrity of the 

incoming data and to enable spike sorting in the later stages. Matlab was used to 

perform the analysis for required bit resolution. 

Once the fixed-point simulations have verified the integrity of the algorithm, a “list 

of specifications” can be created, outlining key requirements for the hardware to 

be designed. Among other specifications, this list includes a list of inputs and 

outputs for the system, number of calculations per second of individual 

components in the system to maintain a desired throughput etc.  

3. Register Transfer Level Hardware Description 

The list of specifications is then used to design the actual hardware using a 

hardware description language (HDL). The benefit of using an HDL is that it is 

easier and faster to create, manage, test and modify larger designs as compared 

to creating a schematic based design. The register transfer level (RTL) of coding 
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is the level next above gates. Registers are the memory elements in the design. 

Meaningful designs contain some combinational logic between different registers. 

RTL thus refers to transfer of signals from one set of registers to the next through 

the combinational logic. The RTL code contains several high-level language 

constructs like if-then-else or switch-case, which are later mapped to complex 

structures like edge-triggered finite state machines or simpler structures like 

multiplexers and decoders during synthesis. 

There are several hardware description languages prevalent in the industry 

including Verilog, VHDL, Verilog-AMS and System Verilog. We use Verilog to 

design the hardware as it is one of the most popular and highly developed 

languages and is supported by majority of vendors to model their technologies 

and systems. Similarly, there are several software tools available that enable 

HDL coding e.g. Modelsim, Nc-Verilog and Xilinx ISE.   

4. Functional verification & Simulation 

The functionality of the designed hardware is verified through simulations. Real 

data is provided in parallel to the Matlab based algorithm in fixed point and the 

Verilog based HDL design. The outputs of both the systems are compared for 

differences. For any given hardware configuration, the outputs of the Verilog 

design should be an exact match to the outputs of the Matlab code. Simulations 

at this stage are independent of the fabrication technology and do not cater for 

the gate delays that are present in the system. As a result, the simulations 

cannot provide insight into the race conditions or spurious glitches that may arise 
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because of different delays and path lengths. However, functional simulations are 

still important at this stage. If some problems are diagnosed at later stages, the 

designed is rolled back to this stage and appropriate changes are made. 

5. Design Constraints File  

The design constraints file is required by the synthesizers to optimize the design 

and conform to the design requirements such as operating frequencies and 

various IO delays. The file specifies the names of the clock pins, internally 

generated clocks, their frequencies and the rise and fall times. The file also 

specifies other parameters e.g. the amount of uncertainty expected in the input 

clock or the maximum allowed delay between two registers in the design. 

Multicycle paths can also be specified here to improve the synthesis results.    

Technology Dependent Phase for FPGA Based Prototype 

As ASIC designs become more complex, prototyping based on FPGAs has 

become one of the most reliable techniques for verification. There are several 

reasons for using FPGAs for prototyping. Bigger designs mean more bugs, 

similarly higher complexity means the bugs are harder to find. Finding and fixing 

these bugs in software requires very long verification and simulation times. It is 

very difficult to develop comprehensive testbenches that can test all possible 

situations and conditions. 

There are several benefits for FPGA-based prototyping including comprehensive 

verification, software development in parallel and field-testing. First and foremost, 

it is a way to prove the functionality of the design, by rigorously verifying it 
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physically using real data, before an expensive ASIC fabrication is undertaken. 

About 70% of ASIC re-spins are a result of functional errors resulting from bugs, 

which could not be detected during simulations and verification. Since ASIC 

fabrication is a very expensive and time-consuming processes spanning over 

several weeks, it is very important to get the design right in the first attempt. 

Secondly, A hardware prototype permits design and early integration of the 

complete system, allowing software and board development to progress in 

parallel to the ASIC manufacturing.  

Finally, a functionally verified hardware prototype spawns more confidence in the 

design, which enables the development of a “right-first-time” ASIC. About 40% of 

all digital ASIC designs are prototyped using ASICs. 

There are various FPGA platforms available for prototyping. We use Altera‟s 

Cyclone III FPGA with sufficient number of logic elements to map the hardware 

design. Following steps are necessary to ensure proper verification. 

1. Synthesis, Placement and Routing for FPGA  

Verilog files are synthesized to the FPGA specific libraries provided by the FPGA 

vendor. The synthesis software converts the RTL level Verilog description into 

gate level circuit. The vendor provided libraries contain information about the 

delays caused by each cell/gate. Since there are multiple ways of implementing 

any given function, the synthesizer uses the constraints listed earlier in the 

Design Constraints File to choose the most suitable topology. This choice results 

in a tradeoff between area, power and performance (speed). These parameters 
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are compared against the requirements set in the Design Constraints File; in 

case of any violations, the synthesis is iterated using any of the other synthesis 

topologies. In case the synthesizer is unsuccessful in creating a gate level circuit, 

it becomes necessary to modify the high level RTL code at the top of the design 

flow. 

Output of the synthesis step is another Verilog file that contains gate-level 

description of the circuit. The synthesized output is then provided to the „place n 

route‟ software which maps these gates to the logic elements present in the 

FPGA. This mapping also takes into account the delays incurred by the long 

wires between different cells. Apart from mapping the gates to the logic 

elements, this step generates a file in the Standard Delay Format (SDF) that 

contains information about the delays resulting from individual wires. 

FPGA vendors provide the required software for synthesis and place n route, 

however, general-purpose synthesizers like Mentor Graphics‟ Leonardo 

Spectrum or Synopsys‟ Design Vision can also be used to synthesize the code 

for the particular FPGA. We use Altera‟s Quartus II to perform these steps.  

2. Post-Synthesis Timing Simulation  

Once the synthesis is complete, the design is simulated and verified again in 

Modelsim. This simulation is based on gate-level synthesized code and also 

includes the information present in the SDF file. Consequently, the simulation 

includes delays experienced by the signals through all the gates and the wires 

connecting them. This gate and wire delay based simulation is necessary to 
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establish the integrity of the design and gives insight into any race conditions 

present in the system as well as the effects of any undesirable change in signal 

value at the output of a gate. Again, the output of the gate-level simulation is 

compared to the output from fixed-point Matlab based simulation for a perfect 

match. 

Although synthesis results for the FPGA are expected to be different from the 

synthesis results for the ASIC due to difference in technology and the FPGA 

architecture; a success at this stage verifies that the hardware has been 

designed suitably enough such that it can be converted to physical hardware 

while keeping within the design constraints.  

3. Hardware Verification 

The simulated and verified code is then „burned‟ on to the actual FPGA for 

hardware verification. Hardware verification of the design requires additional 

hardware and software resources to provide the real data at the inputs of the 

FPGA and, at the same time, record the outputs from the FPGA. Output of the 

FPGA needs to be the same as the simulation results, which should be the same 

as the Matlab based algorithmic simulations. 

We use National Instruments‟ data acquisition cards in conjunction with LabView 

and Python programming language to generate the signals required at the input 

of the FPGA. This setup provides high degree of flexibility in the test design, 

however, these software-based interfaces are not fast enough to test the 

hardware at high frequencies. To test the design at appropriate frequencies, 
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additional FPGAs need to be used to provide and record the signal from the 

FPGA. Though use of FPGA to monitor the signals lacks the flexibility of software 

based monitoring, nevertheless, it verifies the functionality of the design at high 

operating frequencies. 

As mentioned earlier, due to the possible technology difference from the ASIC, 

FPGA based prototyping does not provide an accurate estimate of the power 

consumption or the IO delays. 

Technology Dependent Phase for ASIC 

Once the design has been verified on an FPGA based prototype, it is ready to be 

ported to an ASIC. Choice of the fabrication technology for an ASIC depends on 

many factors. Newer technologies mean smaller feature size, which generally 

translates to less area consumption, smaller power dissipation and faster 

designs. However, fabrication costs as well as design complexity increase 

tremendously with reduced feature size. 

We used AMI 0.5 micron CMOS fabrication process to verify the functionality of 

DWT chip and develop the process design flow. The complete system is to be 

fabricated on an IBM 0.13 micron CMOS process. The use of this process is 

mandated by the low area and low power requirements of this research project. 

Design of digital ASICs requires various libraries and models provided by the 

vendor for proper verification and reliable fabrication. These files include various 

HDL models for simulations, standard cells library files for the synthesizer, and 

the cell layout files for final layouts. Technology specific memory generators are 
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also required to compile large and reliable memory blocks. The following 

technology specific steps are being followed to ensure „right-first-time‟ ASIC 

design for the algorithm. 

1. Synthesis for ASIC 

The Verilog files containing RTL level design description is imported into the 

synthesizer along with the design constraints file. It is ensured that the design 

constraints file does not contain any FPGA specific constraints. Synopsys Design 

Vision is used to synthesize the design and map it to the IBM 0.13 micron CMOS 

specific libraries. The synthesizer outputs a Verilog file containing gate-level 

description of the synthesized block. 

The synthesizers are not capable of generating memory blocks as six-transistor 

SRAM. The synthesizers can only generate flip flop based registers that are 

about three times larger than the SRAM. As a result, special memory generators 

are needed to compile the memory blocks while synthesizing other portions of 

the design using the synthesizer.  

Each block can be synthesized independently or the complete system can be 

synthesized as a large block. We chose to synthesize the blocks independently 

since it allows the system to be divided into various modules. As different blocks 

operate at different clock frequencies, a modular approach helps to reduce power 

consumption at the expense of additional silicon area. 

2. Memory Generation and Custom Blocks 
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Required memory blocks are generated using technology specific memory 

generators provided by the vendor. Memory generators are necessary since 

change in the depth of memory requires Different memory blocks are generated 

with different word size and memory depths depending upon their access 

patterns to reduce the power consumption of memory read or write operations. 

Once generated the memory is simulated for functional and timing verification. 

The memory generators also generate the Verilog model files for the memory. 

We use Cadence systems‟ Virtuoso to compile the memories. 

3. Timing verification for ASIC 

The synthesized blocks and the memory models are combined into a system and 

verified through simulations in Modelsim. These simulations incorporate the IO 

delays and the delays associated with individual gates but do not incorporate the 

wire delays introduced due to parasitic capacitances. 

4. Abstract Generation 

Abstract generation is necessary if the design contains any custom blocks that 

are not included in the standard cells library. Abstract generation is a process 

that extracts necessary information from a custom layout block to enable the 

„automatic place n route‟ software to include the custom blocks in the design. 

Apart from other useful items, this information includes the precise location of 

input and output pins, as well as the areas occupied by different metals. We use 

Virtuoso for abstract generation. 

5. Automatic Placement and Routing 
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Automatic Place n Route is a layout generation process that includes automatic 

placement of different cells representing logic gates on a layout and then routes 

the inputs and outputs of those gates according to the synthesized netlist 

generated by the synthesizer. The resulting layout contains all the gates and 

connections specified in the synthesized Verilog gate level netlist. 

There are various steps involved in the generation of layout from automatic place 

n route. These include floor-planning and generation of clock trees and power 

rings. Each module is placed n routed individually. Once all the digital blocks 

have been routed then global routing is performed. All the digital blocks, memory 

blocks and custom blocks are connected to each other in the global routing 

stage. The output of this stage is a set of SDF files that contain information about 

delays introduced by various connecting wires at the block level and at the global 

level.  

6. Layout Integrity Check  

Automatic place n route follows several technology specific design rules while 

routing signals through various cells. These rules are defined in the technology 

files. However, since various components of the design flow come from different 

vendors it is still possible that there may be some rules which are overlooked by 

the router. As a result a Design Rules Check is performed on the layout files to 

verify the routing. There are some rules that cannot be checked by the router 

automatically and thus need to be checked manually once the process is 

complete.     
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7. Timing verification for ASIC 

The gate level netlists and the SDF files generated by the place n route stage are 

then simulated in modelsim. These simulations include all the system 

components connected to each other (except the pad frame for input / output 

pins) and also uses gate delay and wire delay information to generate accurate 

results. it is highly desirable to simulate at this stage as simulation of moderately 

sized layouts may take weeks to generate output vectors of interest. 

8. Post-Layout Simulations for Timing Verification 

In the final step, the layout is completed by including the pad frame for the input, 

output pins and the power, ground pins. Simulation of the complete layout is time 

consuming but may be necessary to verify some element of design. Since it is 

difficult to verify all the test vectors, a selection of test scenarios can be simulated 

to verify the functionality of the chip. Ocean is a scripting language that can be 

used in Cadence Systems‟ Virtuoso to analyze and extract useful information 

from the multi-gigabytes of data generated during the simulations. 

This step concludes the ASIC design process after which the final layout is taped 

out for fabrication. 
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Appendix D: Design for Testability 

 

Key signals in the design are included into a scan chain designed to increase the 

testability of the system in future generations. Fig. D.1 shows a design to include 

observability and controllability for a particular signal. A standard 4-pin interface 

is used to operate the scan chain. One pin T/N selects Test or Normal mode of 

operation. Serial scan in and serial scan out are used to serially input data to the 

scan chain as well as read register values at the output. T-Clk and U-Clk are the 

Test and Update clocks. They can be controlled through designated pins or can 

be controlled through one T-clk and accompanying control logic.  

 

 

 

  

 

Fig. D.1: Scan chain insertion for testability including both observability and 

controllability 
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