INFORMATION TO USERS This was p ro duced fro m a co p y o f a d o c u m e n t s e n t to us fo r m icrofilming. While the m o st advanced technological m eans to pho to g ra p h and rep ro d u c e this d o c u m e n t have been used, the quality is heavily d e p e n d e n t upon the quality o f th e material su b m itte d . T h e following e x p la n a tio n o f techniques is provided to help you u n d erstand markings or n o ta tio n s which m ay a p p e ar on this rep ro d u c tio n . 1. T he sign o r " ta r g e t " f o r pages a p parently lacking from th e d o c u m e n t p h o to g ra p h e d is "Missing Page(s)". If it was possible to obtain th e missing page(s) o r section, they are spliced in to th e film along with adjacent pages. This m ay have necessitated c u ttin g through an image and duplicating adjacent pages to assure you o f c o m p le te c o n tin u ity . 2. When an image on the film is obliterated with a ro u n d black m ark it is an indication th a t th e film inspector n oticed e ith e r blurred co p y because o f m o v e m e n t during exp o su re , or duplicate co p y . Unless we m ea n t to delete cop y rig h ted materials th a t should n o t have been film ed, you will fin d a good image of the page in the ad ja c e n t fram e. If co p y rig h ted materials were deleted y o u will find a target n o te listing th e pages in th e ad ja c e n t fram e. 3. When a m ap, draw ing or ch a rt, e tc ., is p art o f the material being p h o t o ­ graphed the p h o to g ra p h e r has follow ed a definite m eth o d in "se c tio n in g " th e material. It is cu sto m a ry to begin filming at th e u p p e r left han d c o rn e r of a large sheet and to c o n tin u e from left to right in equal sections w ith small overlaps. If necessary, sectioning is c o n tin u e d again—beginning below the first row and co n tin u in g on until c o m plete. 4. For any illustrations th a t c a n n o t be reproduced satisfactorily by xerography, photographic prints can be purchased a t additional cost and tipped into y o u r xerographic copy. Requests can be m ade to o u r Dissertations C ustom er Services D e partm ent. 5. Som e pages in any d o c u m e n t m ay have indistinct print. In all cases we have filmed th e best available copy. University M icrdfilm s International 3 0 0 N Z E E B RD. . A N N A R B O R . Ml 4 8 1 0 G 8212473 Whitfield, Gary Hugh SPATIAL AND TEMPORAL POPULATION ANALYSIS OF THE ONION MAGGOT (HYLEMYA ANTIQUA (MEIGEN)), IN MICHIGAN Michigan Stale University University Microfilms International Ph.D. 1981 300 N. Zeeb Road, Ann Arbor. MI 48106 PLEASE NOTE: In all c a s e s this m aterial h a s b e e n filmed in th e best p o ssib le way from th e available copy. P roblem s e n c o u n te re d with th is d o c u m e n t have been identified h e re w ith a check m ark V 1. Glossy p h o to g ra p h s o r p a g e s 2. Colored illustrations, p a p e r or p rin t______ 3. P h o to g rap h s with d a rk b a c k g ro u n d 4. Illustrations a re p o o r c o p y ______ 5. P ages with black m arks, n o t original c o p y ______ 6. Print sh o w s th rough a s th e re is tex t on both s id e s of p a g e ______ 7. Indistinct, broken o r sm all print on several p a g e s 8. Print e x c e e d s m argin re q u ire m e n ts ______ 9. Tightly b o u n d co p y with print lost in s p in e ______ 10. C om puter printout p a g e s with indistinct print_______ 11. P a g e (s)____________ lacking w hen material re c e iv e d , and not available from school or author. 12. P a g e (s)____________ se em to be m issing in num b erin g only a s text follows. 13. Two p a g e s n u m b e re d _____________ . Text follows. 14. Curling and wrinkled p a g e s ______ 15. Other____________________________________________________________________________ . ^ ‘— i— ' University Microfilms International SPATIAL AND TEM PORAL POPULATION ANALYSIS OF THE ONION MAGGOT (H ylem ya an tiq u e (M eigen)), IN MICHIGAN by G ary Hugh W hitfield A THESIS S u b m itted to M ichigan S ta te U n iv ersity in p a rtia l fu lfillm e n t o f th e re q u ire m e n ts fo r th e d eg ree of DOCTOR OF PHILOSOPHY D e p a rtm e n t of Entom ology 1981 ABSTRACT SPATIAL AND TEM PORAL POPULATION ANALYSIS OF THE ONION MAGGOT (H ylem ya a n tiq u a (M eigen)), IN MICHIGAN by G ary Hugh W hitfield T he onion m aggot, H ylem ya a n tiq u a (M eigen), is th e m ajo r p e st o f onions in M ichigan. This study in v e stig a te d th e sp a tia l and te m p o ra l c h a r a c te ris tic s of th e various life -s ta g e s of th e onion m aggot and th e ir im p a c t on th e crop. E m erg en ce, flig h t behavior, phenology and m o rta lity o f im m a tu re sta g e s, onion p la n t d am ag e, in v e stig a te d . and th e see d -c o rn A population m aggot, H ylem ya p la tu ra (Rond.) w ere m odel fo r th e onion m aggot is p re se n te d and sim u latio n runs a re co m p ared to field d a ta . E m ergence re s u lts su g g ested th a t m ore in fo rm atio n th an ju st soil o r a ir d e g re e days is needed fo r p re d ic tin g a d u lt e m e rg e n c e . A dult flig h t cu rv es w ere o b ta in e d by using a te m p e ra tu re a d ju stm e n t tech n iq u e which a cc o u n te d fo r w ithin day te m p e ra tu re changes and n a tu ra l d iurnal rh y th m . F o lia r p e stic id e s applied to co n tro l ad u lt populatio n s w ere shown to be in e ffe c tiv e . O nly tw o g e n e ra tio n s of la rv a l a c tiv ity w ere found to n o rm ally o c c u r on th e onion crop. The th ird la rv a l g e n e ra tio n o c c u rre d in cull onions or onions not h a rv e ste d u n til la te in th e y e a r. High pupal m o rta lity due to su p e rp a ra sitism by A leo ch ara b ilin e a ta (Gyll.) was ev id en t w here onion field s had not re c e iv e d a g ra n u la r in se c tic id e ap p lic atio n . O v e rw in te rin g m o rta lity w as found to be c o n sta n t fo r all te s t conditions, and freq u e n cy o f diapause was low during th e f ir s t and second g e n eratio n o f pupae. O nion p la n t dam age w as found to o ccu r in a random p a tte rn e a rly in th e season and in a co n tag io u s p a tte rn la te r in th e season. P re se n c e o f v o lu n te e r onions in th e spring a ffe c te d p ro b ab ility o f onion p lan t d am age. F irs t and second g e n e ra tio n d am ag e w as not re d u c ed by fo lia r in se c tic id e sp ray s applied to c o n tro l a d u lt populations. W ithin- and b e tw e e n -fie ld p la n t dam age surveys provided in fo rm atio n on am o u n t o f onion p la n t dam age by th e onion m aggot th ro u g h o u t th e season in M ichigan. S eed-corn m aggots m ay be p rim ary in v ad ers o f onions e arly in th e spring. A dult populations w ere found to be highly c o rre la te d w ith a d u lt onion m aggot de n sities. A population m odel a c c u ra te ly tra c k e d onion m aggot ad u lt em erg en ce a f te r in c o rp o ra tio n o f ad u lt m o rta lity by E n to m o p h th o ra m uscae (Cohn). A dult flig h t cu rv es and phenology o f im m a tu re s ta g e s w ere co m p ared to field resu lts; g e n e ra l a g re e m e n t was ev id en t. DEDICATION To my w ife T e rri, whose c o n sta n t su p p o rt and e n co u rag e m e n t helped m ake it all possible, and to my p a re n ts, who p laced th e ir ch ild ren 's e d u catio n b e fo re all personal goals. ACKNOWLEDGMENTS F or his w illingness to ta k e m e on as one o f his s tu d e n ts and for his c o n sta n t help, e n co u rag e m e n t and ad v ice during th is study, I th an k D r. D ean L. H aynes, my m ajor advisor. I also th an k th e m em b ers o f my c o m m itte e , D r. S tu a rt G age, D r. Edw ard G rafius, Dr. G ary Sim m ons and D r. Lai Turn m ala, fo r th e ir guidance and review o f my w ork. D r. Ja m e s B ath is a p p re c ia te d as a c o m m itte e m em ber and as a d e p a rtm e n t chairm an , for providing an e x c e lle n t a tm o sp h ere fo r s c ie n tific p ursuit and perso n al expression. I th an k Mr. Tom Ellis fo r all his help during th is study and fo r his fle x ib ility and im m e a su rab le p a tie n c e w ith new , stru g g lin g g ra d u a te stu d en ts. D uring th is study, I was fo rtu n a te to have m any e x c e lle n t stu d en t em ployees, who added considerably to th e in te g rity and scope o f th is stu d y . Most notably I th an k Ms. Lisa Johnson, Mr. M ark Sillim an, Mr. Jo h n P u tn am , Ms. L o re tta B renner, Ms. Jo an n e D avidhizer, Mr. Vince F r itz , Mr. J a c k S h irer and Ms. K ellie Dorin. I th an k my fellow g ra d u a te stu d e n ts fo r th e ir in te re s t, help and friendship during th e p a st y e ars. I p a rtic u la rly valued my a sso c iatio n w ith D r. R ay C a rru th e rs , D r. E m m ett L am p ert, D r. W illiam R avlin, Mr. M ichael M ispagel, and Mr. F ran k D rum m ond. A p p re ciatio n is also e x ten d e d to Ms. M arie P an e and Ms. C ath y S te w a rt who p re p a red th e typed copy, and Ms. Susan B a tte n fie ld who e d ite d th e o rig in al d ra ft. • * * 111 I also g ra te fu lly acknow ledge th e fin a n c ial a ssista n c e I re c eiv e d from th e D e p a rtm e n t o f Entom ology, M ichigan S ta te U niversity, and from th e N atio n al R e se a rc h C ouncil o f C anada. TABLE OF CONTENTS L ist o f T a b l e s ........................................................................................................................ v i i L ist o f F i g u r e s ........................................................................................................................ x iv I. In tro d u ctio n ..................................................................................................... 1 II. B a c k g r o u n d ............................................................................................................... 7 Onion M a g g o t .................................................................................................. 7 A. III. 1. A d u l t s ....................................................................................................... 8 2. Im m atu re S tag es ................................................................................. 9 3. N a tu ra l E n e m ie s ..................................................................................... 14 B. Seed C orn M a g g o t ......................................................................................... 16 C. S p a tia l D istrib u tio n and S a m p l i n g ........................................................ 18 E cosystem S tru c tu re , Id e n tific a tio n and C o n cep tu al M odel . . . . 22 A. C o n ce p tu a liz ed M o d e l ................................................................................ 26 B. C o n c l u s i o n ....................................................................................................... 46 IV. Study A r e a .......................................................................... 46 V. M ate ria ls and M e t h o d s .......................................................................................... 51 A. 51 P o p u latio n S a m p lin g .................................................................................... 1. A d u l t s ....................................................................................................... 51 2. L a r v a e ....................................................................................................... 57 3. P u p a e ....................................................................................................... 58 B. W ithin-F ield P la n t D am age S t u d i e s .................................................... 61 C. B etw een -F ield P la n t D am ag e S u r v e y s ............................................... 63 D. A biotic M o n i t o r i n g .................................................................................... 66 v vi TABLE OF CONTENTS, continued VI. VII. R esu lts and D is c u s sio n ........................................................................................ 67 A. A dult E m e r g e n c e ....................................................................................... 67 B. A dult A c tiv ity and R e la tiv e A b u n d a n c e ......................................... 83 1. H eight D istrib u tio n o f A dult F l i g h t ........................................... 83 2. S p a tia l A s p e c ts ..................................................................................... 87 3. W ithin-D ay F lig h t A c t i v i t y .............................................................. 91 4. W eath er E f f e c t s ................................................................................ 93 5. A dult F light C u r v e s ............................................... 102 C. Onion M aggot L arval and Pupal P o p u latio n T r e n d s ............................ H 6 D. Survivorship and P a r a s i t i s m ..................................................................... 120 E. D iapause and O v erw in terin g M o r ta lity ................................................... 1 3 5 F. D istrib u tio n o f O nion P la n t D a m a g e ........................................................141 G. E f fe c t o f V olunteer O nions on the S p a tia l D istrib u tio n o f O nion P la n t D a m a g e ...................................... 1 5 6 H. OM P la n t D am age S u r v e y s .......................................................................... 181 1. R egional S u r v e y s ...................................................................................... 181 2. S ta te S u r v e y s ..................................................................................... ....... I. Seed C orn M aggot C o m p o n e n t ................................................................. 201 J. V alidation o f th e OM Subm odel .............................................................213 Sum m ary and C o n c lu s io n s .................................................................................... 219 L ite r a tu r e C i t e d ................................................................................................................ 226 A p p e n d i x ............................................................................................ 239 LIST OF TABLES T able I. T rapping d ev ices, num ber, p la c e m e n t and purpose fo r m o n ito rin g OM a d u lt populations in G ran t, M ichigan, fo r 1977-80........................................................... 52 T able 2. R egression equ atio n s fo r e stim a tio n o f soil d e g re e day a cc u m u la tio n fo r 1979 and 1980 from a ir d e g re e day accu m u la tio n in G ra n t, M ichigan, fo r 3 soil d ep th s (-3, -8 and 15 cm )................................... 69 Table 3. P ro b it re g re ssio n e q u atio n s fo r a d u lt OM e m e rg e n c e and d e g re e day perio d fo r 50 p e rc e n t em erg en c e (.5 Ep). DD° is a cc u m u la te d d e g re e days above 4.4° C .................................................75 T able 4. P ro b it reg ressio n e q u atio n s fo r a d u lt OM e m e rg e n c e and d eg ree day p erio d fo r 50 p e rc e n t em erg en c e (.5 Ep). DD° is a c c u m u la te d d eg ree days above 4.4° C fo r th e 8 cm soil d ep th a f te r one day o f 1 cm of p re c ip ita tio n in th e sp rin g .........................................................................81 T able 5. A ir and soil d e g re e day e s tim a te s fo r d iffe re n t p e rc e n ta g e s o f em erg en c e o f OM a d u lts fo r 1978-80 in G ra n t, M ichigan...................................................................... 82 Table 6. O ne-w ay analysis o f v a ria n ce and D uncan's m u ltip le ran g e te s t o f m ean c a tc h o f OM ad u lts p er 50 sw eeps fo r d iffe re n t fo liag e during night hours......................................................................................... 92 T able 7. O ne-w ay analysis o f v a ria n ce and D uncan's m u ltip le ran g e te s t fo r d iffe re n t tim e s o f p e rc e n t c a tc h o f to ta l OM ad u lts. All p e rc e n ta g e s w ere tra n sfo rm e d by a rc sin sq u are ro o t b e fo re an aly sis....................................................................... 95 T able 8. T o tal p ro d u ctio n o f OM a d u lts fo r stu d y field s in G ra n t, M ichigan, in 1979-80........................................................ v ii 113 v iii LIST OF TABLES, continued T able 9. P ro b it reg ressio n eq u atio n s fo r p e rc e n t o c c u rre n c e o f im m a tu re s ta g e s o f th e OM and d e g re e day period fo r 50 p e rc e n t o c c u rre n c e (.5P). DD° is a c c u m u la te d a ir d e g re e days above 4 .4 ° C .................................................................................................... 121 T able 10. T o tal p ro duction (TP) and survival (S.) of various life s ta g e s o f th e OM from sam ples o f 60 cm o f onion row in th e re s e a rc h fie ld during 1978-79.......................................................................................................... 123 T able 11. P ro p o rtio n a l m o rta lity o f OM pupae from sam ples o f 60 cm o f onion row in 1978............................................ 124 T able 12. P ro p o rtio n a l m o rta lity o f OM pupae from sam ples o f 60 cm o f onion ow in 1979............................................... 126 P ro p o rtio n OM pupal m o rta lity and p ro p o rtio n of OM pupae w ith e n tra n c e holes m ad e by A. b ilin e a ta from sam p les o f 30 cm of onion row in c o m m e rcial stu d y field s o f G ran t, M ichigan, in 1979........................................................................................................... 131 T able 13. T able 14. O ne-w ay analysis o f v a ria n c e and D uncan's m ultiple ran g e te s t fo r th re e o b serv atio n s on OM pupae c o lle c te d fro m stu d y field s in 1979. All p e rc e n ta g e s w ere tra n sfo rm e d by arcsin sq u are ro o t b e fo re an aly sis....................................................................... 133 T able 15. P e rc e n t of v iable OM pupae re trie v e d from u n d e rn e a th e m erg en c e tra p s and bu ried OM la rv a e follow ing e ig h t w eeks o f a d u lt e m e rg e n c e ....................................................................................................... 138 T ab le 16. O v erw in terin g su rv iv al o f OM pupae p laced a t d iffe re n t soil d ep th s and in various lo c atio n s in 1978-79.......................................................................................................... 140 T able 17. S p a tia l d istrib u tio n o f OM p la n t dam age d e te rm in e d from use o f v a ria n c e m ean ra tio (I) and M orisita's index (Is) fo r various q u a d ra n t dim ensions, sam p le sizes and d a te s in 1978-79.............................. T ab le 18. 149 P earso n 's c o rre la tio n c o e ffic ie n t of B a tc h e le r's ra tio (B1) and C lark and Evans s ta tis tic (R) w ith d en sity fo r d iffe re n t sam p le siz e s................................................................................................................... 152 ix LIST OF TABLES, continued T able 19. S p atial d istrib u tio n o f OM p la n t dam age d e te rm in e d from use o f B a tc h e le r's ra tio (B') and C lark and Evans S ta tis tic (R) fo r various sam ple size s and d a te s in 1978-79...................................................... 154 T able 20. Independence te s t s ta tis tic s o f d ista n ce m e asu re m e n ts A and D fo r tw o d e n sities of v o lu n te e r onions in a D y fo n a te -tre a te d field and fo r one d en sity o f v o lu n te e r onions in a non-D yfonate fie ld .......................................................................................162 Table 21. K olm ogorov-Sm irnoff te s t s ta tis tic and d istrib u tio n of d ista n ce m e asu re m e n ts A and D and th e te s t s ta tis tic P fo r th re e v o lu n teer onion conditions............................................................................................ 165 T able 22. Sum m ary o f P valu es fo r 20, 60 and 100 sam ples o f th e N th n e a re s t onion in p lo ts o f single and a g g re g a te s of v o lu n teer onions.......................................... 167 T able 23. Tw o-w ay analysis o f v a ria n ce fo r values o f P fo r plots o f d iffe re n t d e n sities o f v o lu n teer onions and d iffe re n t N th onion s e le c te d ..............................................170 T able 24A. O ne-w ay analysis o f v a ria n ce and D uncan's m ultiple range te s t fo r values o f P fo r th e N th n e a re s t onion in p lo ts co n tain in g one single v o lu n teer onion............................................................................................. 171 T able 24B. O ne-w ay analysis o f v a ria n ce and D uncan's m ultiple ran g e te s t fo r valu es o f P fo r th e N th n e a re s t onion in p lo ts co n tain in g tw o single v o lu n te e r onions............................................................................................172 T able 24C. O ne-w ay analysis o f v a ria n ce and D uncan's m ultiple ran g e te s t fo r values o f P fo r th e N th n e a re s t onion in p lo ts co n tain in g one a g g re g a te of th re e v o lu n te e r onions..................................................... 173 T able 24D. O ne-w ay analysis o f v a ria n ce and D uncan's m ultiple ran g e te s t fo r values o f P fo r th e N th n e a re s t onion in p lo ts co n tain in g tw o a g g re g a te s of th re e v o lu n teer onions................................................... 174 T able 25. O ne-w ay analysis o f v a ria n ce and D uncan's m u ltip le ran g e te s t fo r values o f P fo r th e 10th n e a re s t s e le c te d in p lo ts o f d iffe re n t d e n sities o f v o lu n te e r onions................................................................... 175 X LIST OF TABLES, continued T able 26. T able 27. T able 28. T able 29. Table 30. T able 31. T able 32. T able 33. T able 34. O ne-w ay analysis o f v a ria n ce and D uncan's m u ltip le ran g e te s t fo r values o f P fo r th e 2 0th n e a re s t onion s e le c te d in p lo ts of d iffe re n t d e n sities o f v o lu n te e r onions................. 177 T o tal firs t g e n eratio n OM d am ag e and num ber of fo liar sprays applied fo r stu d y field s in G ra n t, M ichigan, 1979-1980....................................... 183 T o tal second g e n eratio n OM d am ag e fo r field s 13 and 14 d e te rm in e d by su m m atio n o f w eekly dam age e s tim a te s and fin al h a rv e st asse ssm e n t........................................................................ 187 O ne-w ay analysis o f v a ria n c e and D uncan's m ultiple range te s t fo r p e rc e n t to ta l OM p la n t d am age during th e second g e n e ra tio n fo r study fields in G ra n t, M ichigan, in 1979. All p e rc e n ta g e s w ere tra n sfo rm e d by sq u are root b e fo re a n aly sis................................................................ 188 O ne-w ay analysis of v a ria n c e and D uncan's m ultiple ran g e te s t fo r p e rc e n t to ta l OM p la n t d am age during th e second g e n eratio n fo r study field s in G ran t, M ichigan, in 1980. All p e rc e n ta g e s w ere tra n sfo rm e d by sq u are ro o t b e fo re analysis................................................................ 189 P earso n 's c o rre la tio n c o e ffic ie n t b e tw ee n f ir s t and second g e n e ra tio n OM onion p lan t dam age in 1979 and 1980............................................................. 190 P earso n 's c o rre la tio n c o rre la tio n fo r various com parisons o f to ta l ad u lt p ro d u ctio n and OM p la n t dam age in stu d y field s o f G ran t, M ichigan, during 1979-1980....................................... 192 R egional e s tim a te s o f f ir s t and second g e n e ra tio n OM p la n t d am ag e fo r th e m ajo r onion grow ing a re a s o f M ichigan from 19771980..................................................................................... 194 T w o-w ay analysis o f v a ria n ce fo r p ro p o rtio n of to ta l f ir s t g e n e ra tio n d am ag e fo r d a te and fie ld in 1979. All p ro p o rtio n s w ere tra n s fo rm e d by sq u are ro o t b e fo re analysis. . . 197 xi LIST OF TABLES, continued T able 35. Tw o-w ay analysis o f v a ria n ce fo r p ro p o rtio n of to ta l f ir s t g e n e ra tio n d am ag e fo r d a te and field in 1980. All p ro p o rtio n s w ere tra n sfo rm e d by sq u are ro o t b e fo re an aly sis...................................... 197 T able 36. Tw o-w ay analysis o f v a ria n ce fo r p ro p o rtio n of to ta l f ir s t g e n e ra tio n dam age fo r d a te and fie ld in 1979 a f te r om ission o f field 1. All p ro p o rtio n s w e re tra n s fo rm e d by sq u are ro o t b e fo re a n a l y s i s . ........................................................................................... 199 T able 37. T w o-w ay analysis o f v a ria n ce fo r p ro p o rtio n of to ta l firs t g e n e ra tio n dam age fo r d a te and field in 1980 a f te r om ission o f field 10. All p ro p o rtio n s w ere tra n sfo rm e d by sq u are ro o t b e fo re an aly sis............................................................................................... 199 T able 38. P re d ic te d to ta l p e rc e n t f ir s t g e n e ra tio n d am ag e fo r field s in G ra n t, M ichigan, by use o f point e s tim a te s o f d am ag e and th e c u m u la tiv e p ro p o rtio n al d am ag e cu rv e fo r 1980................................................................................................................. 202 T able 39. P earso n 's c o rre la tio n c o e ffic ie n t fo r to ta l OM and SCM a d u lt seaso n al p ro d u ctio n fo r stu d y field s in G ra n t, M ichigan, in 1979-1980............................................. 211 T able A l. Species of th e genus H ylem ya: R eco rd of d istrib u tio n in M ichigan.............................................................................. 241 T able C l. A ir te m p e ra tu re s and d e g re e -d a y acc u m u la ­ tion in F° (base 4.4° C) fo r G ran t, M ichigan, in 1978-1980...................................................................................................... 251 T able C 2-3. Soil tion and and T ab le C4. te m p e ra tu re s and d e g re e -d a y acc u m u la ­ in F° (base 4 .4 ° C) fo r th re e d ep th s (3, 8, 15 cm ) fo r G ra n t, M ichigan, in 1979 (C2) 1980 (C3).................................................................................................. 255 D aily p re c ip ita tio n and a c c u m u la te d p re c ip ita ­ tion fo r G ra n t, M ichigan, in 1978-1980.............................................. 261 T ables D l-3 . Sum m ary o f fir s t, second and th ird g e n e ra ­ tion e m e rg e n c e in 1978-1980............................................................... 265 T ab le E l. A dult m ale and fe m a le c a tc h o f SC and OM by stic k y board tra p s in 1978....................................................................... 271 x ii LIST OF TABLES, continued T able E2. A dult m ale and fe m a le c a tc h o f SC and OM by stic k y board tra p s in 1979...................................................................... 296 T able E3. A dult m ale and fe m a le c a tc h o f SC and OM by a c tiv ity tra p s in 1978............................................................................... 308 T ab le E4. A dult m ale and fe m a le c a tc h o f SC and OM by a c tiv ity tra p s in 1979............................................................................... 315 T ab le E5. A dult m ale and fe m a le c a tc h o f SC and OM by flig h t in te rc e p tio n tra p s fo r all field s in 1979 and 1980......................................................................................................... 320 T able F. R eco rd ed num ber o f onions dam aged by OM fo r e ac h sam p le, d a te and stu d y field in 1979 and 1980........................................................................................................ 339 T able G l. C o m p u ter program fo r ad ju stin g a d u lt tra p c a tc h a cco rd in g to hourly te m p e ra tu re s and w ithin-day a c tiv ity ....................................................................................... 353 T able G2. C o m p u ter program fo r c a lc u la tio n of B a tc h e le r's B ra tio from p lo ts o f dam ag ed onions (L am p ert, 1980)............................................................................ 355 Table G3. C o m p u ter program fo r c a lc u la tio n o f C lark and Evans’ dispersion s ta t is tic from p lo ts of dam aged onions..............................................................................................357 T able G4. C o m p u ter program for c a lc u la tio n of d ista n ce m e asu re m e n ts A and B and th e te s t s ta t is tic P from p lots o f dam ag ed onions w ith d iffe re n t v o lu n te e r onion d e n sitie s............................................................................358 T able G5. C o m p u ter program listin g of th e OM population dynam ics subm odel................................................................. 360 T able H I. M ean e s tim a te s o f OM second in sta r d en sity fo r sam ples o f 60 cm o f onion row in 1978...................................... 369 T able H2. M ean e s tim a te s o f OM th ird in s ta r d en sity fo r sam p les o f 60 cm o f onion row in 1978............................................ 370 T able H3. M ean e s tm a te s o f OM pupal d en sity fo r sam ples o f 60 cm o f onion row in 1978............................................ 371 x iii LIST OF TABLES, continued T able H4. M ean e s tim a te s o f SC th ird in s ta r d en sity fo r sam ples of 60 cm o f onion row in 1 9 7 8 . .......................................... 372 T able H5. M ean e s tim a te s o f SC pupal d en sity fo r sam ples of 60 cm o f onion row in 1978.............................................. 373 T able H6. M ean e s tim a te s o f OM second in s ta r d en sity fo r sam ples o f 60 cm o f onion row in 1979....................................... 374 T able H7. M ean e s tim a te s o f OM th ird in s ta r d en sity fo r sam ples o f 60 cm o f onion row in 1979.............................................. 375 T able H8. Mean e s tim a te s o f OM pupal d en sity fo r sam ples o f 60 cm o f onion row in 1979.............................................. 376 T able H9. M ean e s tim a te s of OM pupae p a ra sitiz e d by A. b ilin e a ta from sam p les o f 60 cm o f onion row in 1979............................................................................................................ 377 T able H10. M ean e s tim a te s o f SC th ird in s ta r d en sity fo r sam ples o f 60 cm o f onion row in 1979.............................................. 378 T able HI 1. Mean e s tim a te s of SC pupal d en sity fo r sam ples o f 60 cm o f onion row in 1979.............................................. 379 LIST OF FIGURES F ig u re 1. C o n c e p tu a liz a tio n o f th e onion ag ro eco sy stem show ing levels o f in te ra c tio n w ithin th e o b je c t o f c o n tro l and th e m o n ito red en v iro n m en t......................................... 23 F ig u re 2. C o n c e p tu a liz a tio n o f th e o b je c t o f co n tro l for th e onion agro eco sy stem w ith th e onion m aggot, H ylem ya a n tiq u a , as th e re fe re n c e p o in t.................................................................................................................. 25 F ig u re 3. F u n ctio n al diagram o f th e life sy stem o f the OM (S = spacing o f onions, D = dead onion p la n ts, P = m o rta lity due to p e sticid e s, E = eggs, A = p a ra sitism , N = n a tu ra l m o rta lity ). A, subm odel o f th e onion, p e sticid e , and econom ics com ponents; B, subm odel o f th e dynam ics of th e OM population; C, subm odel of th e dynam ics o f th e p a ra sito id p o p u latio n.....................................29 F ig u re 4. S im ulation w ith an in itia l o v erw in terin g population o f 1000 OM pupae p er a c re . A, num ber of ad u lts in p reo v ip o sitio n ary classes; B, p e rc e n t of onions no t dam aged by m aggots over tim e .........................................................................................................40 F ig u re 5. Sim ulation w ith an in itia l o v e rw in te rin g population of 1500 pupae o f w hich 500 a re p a ra sitiz e d . A, n u m b er of a d u lt p a rasito id s; B, num ber o f OM a d u lts in p re o v ip o sitio n ary c la sse s.............................................................................................................. 42 F ig u re 6 . S im ulation w ith an in itia l o v erw in terin g population o f 12,000 OM pupae o f w hich 2000 w ere p a ra sitiz e d . A fo liar spray o f m alath io n w as applied a t day 140, and e v ery 40 days th e r e a f te r (T = sp ray d a te). A, num ber of OM a d u lts in p re o v ip o sitio n ary classes; B, num ber of a d u lt p a ra sito id s................................................. F igure 7. 43 S im ulation w ith an in itia l o v e rw in te rin g population o f 12,000 OM pupae o f w hich 2000 w ere p a ra sitiz e d . A fo liar sp ray o f m alath io n was applied a t d ay 170, and e v ery 40 days th e r e a f te r (▼ - sp ray d a te ). A, nu m b er of a d u lt OMs in preo v ip o sitio n ary classes; B, th e num ber of a d u lt p a ra sito id s..................................................................... 45 x iv XV LIST OF FIGURES, continued F ig u re 8 . P lo t design o f th e re s e a rc h field in G ran t, M ichigan, fo r 1978-1979......................................................................... 48 F ig u re 9. A erial photograph o f th e G ra n t onion grow ing a re a o f N ew aygo C ounty in M ichigan. L o catio n o f stu d y field s 1-14 and th e field la b o ra to ry s ta tio n (*) a re in d ic a te d .......................................................50 F ig u re 10. S c h em atic o f e m erg en ce tra p used to c a tc h a d u lt m ale and fe m a le OM during th e firs t, second, and th ird g e n e ra tio n e m erg en ce in 1978-1980..................................................................................................... 54 F ig u re 11. D im ensions o f flig h t in te rc e p tio n tra p used to tra p ad u lt m ale and fe m a le OM and SCM a d u lts in study field s during 1979-1980............................................. 56 F igure 12. R elatio n sh ip b etw ee n soil d e g re e-d a y s (4.4° C base a t 8 cm depth) and a ir d eg ree-d ay s (4.4° C base) in G ran t, M ichigan, fo r 1979 and 1980................................... 68 F igure 13. C u m u lativ e p ro p o rtio n e m erg en ce o f th re e g e n e ra tio n s o f OM a d u lts co m p ared to Ju lia n d a te in 1978 (A), 1979 (B), and 1980 (C)............................................... F ig u re 14. C um ulative p ro p o rtio n em erg en c e o f th re e g e n e ra tio n s o f OM a d u lts co m p ared to a ir d e g ree-d ay a cc u m u la tio n (4.4° C base) in 1978 (A), 1979 (B), and 1980 (C)........................................................................72 F ig u re 15. C u m u lativ e p ro p o rtio n em erg en c e o f th re e g e n eratio n s o f OM a d u lts co m p ared to soil d e g re e-d a y accu m u la tio n (4.4° C b ase a t 8 cm depth) in 1979 (A) and 1980 (B)............................................................... 7 3 F ig u re 16. A verage c u m u lativ e p ro p o rtio n e m erg en c e and r a te o f em erg en c e o f th re e g e n e ra tio n s o f OM a d u lts from 1978-1980 co m p ared to : A) soil d e g re e-d a y s (4,4° C base a t 8 cm d ep th ), B) a ir d e g re e-d a y s (4.4° C base), and C) Ju lia n d a te ................................ .... F ig u re 17. C om parison o f p e rc e n t c a tc h o f OM ad u lts for d iffe re n t tra p h eig h ts in tw o h a b ita ts: a) w ithin th e onion fie ld and b) grass b o rd er a re a (.95 Cl in d ic a ted )......................................................................................... 84 F ig u re 18A. P e rc e n t o f to ta l OM ad u lt c a tc h a t th e 100 cm n e t h e ig h t in 1978.................................................................................... 8 6 xv i LIST OF FIGURES, continued F ig u re 18B. Onion le a f le n g th during th e onion grow ing season in 1978............................................................................................. 86 F ig u re 19A. M ean c a tc h of OM ad u lts during th e second and th ird g e n e ra tio n flig h t by flig h t in te rc e p tio n tra p s p laced w ithin th e onion re s e a rc h field in 1979............................................................................... 89 F ig u re 19B. M ean c a tc h o f OM a d u lts during th e second and th ird g e n e ra tio n flig h t by flig h t in te rc e p tio n tra p s p la ce d along th e bo rd ers of th e onion re s e a rc h field in 1979........................................................... 89 F ig u re 19C. P ro p o rtio n o f to ta l a d u lt OM c a tc h du rin g th e second and th ird g e n e ra tio n flig h t by flig h t in te rc e p tio n tra p s p laced w ithin and along th e borders o f th e onion re s e a rc h field in 1979....................................... 89 F igure 20. F igure 21. M ean p e rc e n t c a tc h o f to ta l OM a d u lts fo r th e hours o f 4:30 to 22:30, s e v e ra l d a te s d u ring th e season in 1979............................................................................................. 94 R elatio n sh ip b etw ee n p ro b it o f p e rc e n t re la tiv e a c tiv ity (RA) o f OM a d u lts and daily te m p e ra tu re (°C). S ta n d a rd day (100% re la tiv e a c tiv ity ) equals 20° C (d a ta o f Loosjes 1976)............................................................................................................... 97 F ig u re 22. G rap h ical re p re s e n ta tio n o f te m p e ra tu re a d ju sted tech n iq u e, w here a d u lt tra p c a tc h is a d ju sted acc o rd in g to th e a c tiv ity le v el o bserved for th e te m p e ra tu re and hour during th e day.................................................................................................................99 F ig u re 23. M ean hourly tra p c a tc h o f OM a d u lts w ith stic k y boards b e fo re and a f te r a p erio d o f p re c ip ita tio n (a fte r C a rru th e rs 1977)................................................ 101 F ig u re 24. P ro p o rtio n o f to ta l OM a d u lt c a tc h b e fo re (AB) and a f te r (C -F) te m p e ra tu re a d ju stm e n t fo r flig h t in te rc e p tio n tra p s in 1979 and 1980. M ean tra p c a tc h fo r field 7 (G) and fie ld 13 (H).......................................................................................................................104 F ig u re 25. F lig h t curves o f m ale and fe m a le a d u lt OM from flig h t in te rc e p tio n tra p s in c o m m e rcial stu d y field s in 1979................................................................................... 106 x v ii LIST OF FIGURES, continued F ig u re 26. F lig h t curves o f m ale and fe m a le a d u lt OM from flig h t in te rc e p tio n tra p s in co m m e rcial stu d y fields in 1980..................................................................................... 107 F ig u re 27A. M ean tra p c a tc h o f a d u lt OM by flig h t in te rc e p tio n tra p s in field 7 in 1979 (no fo lia r in se c tic id e sprays applied)........................................................................ 1 1 0 F ig u re 27B-D. M ean tra p c a tc h o f a d u lt OM by flig h t in te rc e p tio n tra p s in fie ld 2 (B), fie ld 5 (C), and fie ld 6 (D) in 1979. P erio d s o f fo lia r in se c tic id e a p p lic a tio n a re in d ic a te d (P p a ra th io n , S-Sevin, D -diazinon)...............................................................110 F ig u re 28A. M ean tra p c a tc h o f a d u lt OM by flig h t in te rc e p tio n tra p s in fie ld 13 in 1980 (no fo lia r in s e c tic id e sprays applied)........................................................................ I l l F igure 28B. M ean tra p c a tc h o f a d u lt OM by flig h t in te rc e p tio n tra p s in field 14 in 1980. P erio d s o f fo lia r in se c tic id e ap p lic atio n are in d ic a te d (P -p a rath io n , S-Sevin)................................................................................. I l l F igure 29. P ro p o rtio n o f to ta l OM ad u lt c a tc h b e fo re (AB) and a f te r (C-D) te m p e ra tu re a d ju stm e n t fo r stic k y board tra p s in 1978 and 1979. Mean tra p c a tc h fo r th e re s e a rc h fie ld in 1978 (E) and 1979 (F).................................................................................................... 114 F igure 30. P ro p o rtio n of to ta l OM a d u lt c a tc h b e fo re (AB) and a f te r (C-D) te m p e ra tu re a d ju stm e n t fo r a c tiv ity tra p s in 1978 and 1979. M ean tra p c a tc h for th e re s e a rc h fie ld in 1978 (E) and 1979 (F).............................................................................................................115 F ig u re 31. C u m u la tiv e p ro p o rtio n o f second and th ird in s ta r OM la rv a e (L) and OM pupae (P) fo r tw o g e n e ra tio n s from sam p les of 60 cm o f onion row in 1978 (A) and 1979 (B).....................................................................118 F ig u re 32. C om parison of to ta l OM pupae and nu m b er of pupae p a ra sitiz e d by A. b ilin e a ta from sam p les o f 60 cm o f onion row in 1978 and 1979...................................... . 127 F ig u re 33 A. P h o to g rap h o f an OM pupa show ing th e e n tra n c e hold m ade by A. b ilin e a ta , only a few hours a f te r th e c u tic le was p e n e tr a te d ................................................130 x v iii LIST OF FIGURES, continued F ig u re 33B. P h o to g rap h of e n tra n c e hole of A. b ilin e a ta in OM pupa, show ing th e c o n te n ts o f th e pupa p ro tru d in g from th e hole............................................................................ 130 F ig u re 33C. P h o to g rap h of th e e n tra n c e hole o f A. b ilin e a ta p a rtly se a le d o v e r.......................................................................130 F ig u re 33D. P h o to g rap h o f th e sea le d e n tra n c e hole o f A. b ilin e a ta on an OM p u p a.............................................................................130 F ig u re 34. R elatio n sh ip b e tw ee n p e rc e n t o f OM pupae w ith e n tra n c e holes o f A. b ilin e a ta and p e rc e n t OM pupal m o rta lity fo r study field s in 1979................................................................................................................. 136 F ig u re 35. Onion m aggot p la n t dam age p er day as a p e rc e n t o f to ta l d am ag e during th e 1978 grow ing se a so n ............................................................................................... 142 F igure 36. R elatio n sh ip b etw een d eg ree day o f in itia l OM dam age and th e d e g re e day p erio d th a t a dam aged onon re m a in s visible in th e fie ld ......................................... 144 F ig u re 37A. U se o f th e Sam ple program fo r s e le c tio n of q u a d ra ts o f OM p la n t d am ag e in onion m apping p lo ts................................................................................................................... 148 F ig u re 37B. G rap h ical re p re se n ta tio n o f m ethod used to o b ta in n e a re s t neighbor m e asu re m e n ts NORP and NN fo r c a lc u la tio n o f B a tc h e le r’s R a tio B................................ 148 F igure 37C. G rap h ical re p re se n ta tio n o f m eth o d used to o b ta in n e a re s t neighbor m e asu re m e n ts r A fo r c a lc u la tio n of C lark and Evans' dispersion s ta t is tic ............................................................................................................ 148 F ig u re 38A. M orisita's index o f d ispersion fo r q u a d ra t sam ples o f OM p la n t dam age in a D y fo n a te tr e a te d and n o n -tre a te d p lo t during th e 1979 grow ing se a so n .............................................................................................. 1 5 5 F igure 38B. B a tc h e le r's ra tio o f dispersion fo r n e a re s t neighbor sam pling o f OM p la n t dam age in a D y fo n a te -tre a te d and n o n -D y fo n ate p lo t during th e 1979 grow ing seaso n .............................................................. 155 x ix LIST OF FIGURES, continued F ig u re 39. G rap h ical re p re se n ta tio n o f pro g ressio n o f Om p la n t dam age in p lo t 3 in 1979. L o catio n of individual d am ag ed onions (+) and v o lu n te e r onion p la n ts (*) a re p r e s e n t e d ................................................................ 159 F igure 40. C u m u lativ e d en sity of th e d ista n c e m e asu re m e n ts A and D and te s t s ta t is tic P fo r 60 sam ples in a D y fo n a te -tre a te d a re a ................................................ 164 F ig u re 41. G rap h ical re p re se n ta tio n o f th e value o f P o b tain ed fo r d iffe re n t d e n sities o f v o lu n te e r onions and th e N th n e a re s t onion s e le c te d ..........................................178 F ig u re 42. V alues of P fo r th e N th n e a re s t onion s e le c te d in p lo ts co n tain in g single and a g g re g a te s of v o lu n teer onions............................................................................................ 180 F ig u re 43. P e rc e n t OM p la n t d am ag e during th e f ir s t g e n e ra tio n in field s 13 and 14 (1980).................................................. 185 F ig u re 44. R elatio n sh ip betw een p o in t e s tim a te s of p e rc e n t OM dam ag e and to ta l firs t g e n e ra tio n dam age fo r th e stu d y field s in 1979 and 1980................................ 196 F ig u re 45. C u m u lativ e p ro p o rtio n cu rv e of f ir s t g e n e ra tio n OM p la n t d am ag e in 1979 (A) and 1980 (B) ov er d e g re e days (4 .4 °C b a se )................................................ 200 F ig u re 46. P ro p o rtio n o f to ta l SC a d u lt c a tc h b e fo re (AB) and a f te r (C -F) te m p e ra tu re a d ju stm e n t fo r flig h t in te rc e p tio n tra p s in 1979 and 1980. M ean tra p c a tc h fo r fie ld 7 (G) and fie ld 13 (H)...................................................................................................................... 204 F ig u re 47. F lig h t cu rv es o f m ale and fe m a le a d u lt SC from flig h t in te rc e p tio n tra p s in c o m m e rc ia l stu d y field s in 1979................................................................................... 206 F ig u re 48. F lig h t cu rv es o f m ale and fe m a le a d u lt SC from flig h t in te rc e p tio n tra p s in c o m m e rc ia l stu d y field s in 1980................................................................................... 207 F ig u re 49. P ro p o rtio n o f to ta l SC a d u lt c a tc h b e fo re (AB) and a f te r (C-D) te m p e ra tu re a d ju stm e n t fo r stic k y board tra p s in 1978 and 1979. M ean tra p e a tc h fo r th e re s e a rc h field in 1978 (E) and 1979 (F).................................................................................................... 208 XX LIST OF FIGURES, continued F ig u re 50. M ean d en sity o f th ird in sta r la rv a e and pupae of th e SC from sam p les o f 60 cm o f onion row in 1978 and 1979......................................................................................... 209 F igure 51. C om parison of th e p e rc e n ta g e ra tio s of SC and OM th ird in sta r la rv a e , from sam ples of 60 cm of onion row in 1978 and 1979............................................................... 212 F ig u re 52A. C u m u lativ e p ro p o rtio n OM e m erg en ce fo r m odel (ex p ected ) and fie ld (observed) d a ta fo r G ran t, 1980 (E. m uscae not included).................................................... 215 F ig u re 52B. C u m u lativ e p ro p o rtio n OM e m erg en c e fo r m odel (expected) and field (observed) d a ta fo r G ra n t, 1980, a f te r inclusion o f E. m u s c a e ......................................... 215 F ig u re 52C. P ro p o rtio n of to ta l OM ad u lts fo r m odel and field d a ta in G ra n t, 1979......................................................................... 215 F igure 52D. P roportion of to ta l OM a d u lts fo r m odel and field d a ta in G ra n t, 1980......................................................................... 215 F igure 53. C om parison proportions during th e M ichigan, in in star; B, proportion o f o f fie ld and m odel re s u lts fo r o f im m a tu re s ta g e s o f th e OM onion grow ing seaso n in G ran t, 1979. A, p ro p o rtio n o f second p ro p o rtio n o f th ird in sta r; C, pupae.......................................................................................217 F ig u re A l. C o u n ties and s ta n d a rd co u n ty codes fo r th e s ta te o f M ichigan fo r use w ith T able A l .............................................. 240 I. INTRODUCTION For the p a st tw o decad es, th e re has been a lo t of c o n tro v e rsy surrounding th e use, and sole re lia n c e on, p e sticid e s to c o n tro l in s e c t populations in a g ric u ltu re . Shortly a f te r World War II, problem s a sso c iate d w ith th e ex cessiv e use of ch em ical p e sticid e s, such as re s ista n c e , re su rg en ce, b io m ag n ificatio n , and e n v iro n m en tal c o n tam in atio n , o ccu rred , and th e g en eral public as well as th e sc ie n tific com m unity began questioning th e w holesale use of p e stic id e s. In th e 1960's, th e questions b ecam e th e c a ta ly s t fo r a new philosophy of " in te g ra te d c o n tro l1’—" in te g ra te d p e st m an ag em en t." In te g ra te d pest m an ag em en t (IPM) w as, and still is, widely recognized as a n e ce ssa ry a lte rn a tiv e to th e p e stic id e dilem m a (P im e n tel e t al. 1965, Rabb and G u th rie 1970, G e ier 1966, Tum m ala and H aynes 1977). This approach for suppression of in s e c t populations m ak es use of th e m any re c e n t ad v an ces in various tech n iq u es of in s e c t c o n tro l. O ver th e p ast tw e n ty y e ars, th e re has been an in c re ase in re s e a rc h , d ev elo p m en t and use of biological co n tro l m eth o d s, g e n e tic c o n tro l tech n iq u es, c u ltu ra l c o n tro l m eth o d s, use of a ttr a c t a n ts and host plant re s ista n c e . P rogress and su ccess in th e se a re a s of in se c t c o n tro l allow ed for d ev elopm ent of a lte rn a tiv e in s e c t co n tro l pro g ram s and Jed to m ore judicious use of chem ical in se c tic id e s. Many previous co n tro l pro g ram s involving w idespread use of n o n -se lec tiv e ch em ical in se c tic id e s have been re p la ce d by in te g ra te d c o n tro l pro g ram s. Success of som e of th e se pro g ram s, how ever, has been lim ite d due to a v a rie ty of reasons: 1) th ey focused only on using th e p e stic id e less, 2) m ore o fte n th an n o t, no biological in fo rm atio n on th e in sects a ffe c te d by th e p e stic id e w as c o lle c te d or used in im plem enting th e pro g ram s, 3) a sin g le m ethod o f c o n tro l was used 1 2 in ste a d of se le c tio n and in te g ra tio n of sev e ra l c o n tro l tech n iq u es, and 4) th ey failed to use a m u lti-d isc ip lin ary approach th a t would exam ine and co n sid er all b io tic and a b io tic p a ra m e te rs when designing th e c o n tro l p ro g ram s. In som e case s, c o n tro l program s w e re designed by re s e a rc h e rs from se v e ra l disciplines who w orked on th e sam e crop or s e t of problem s. E ach ta c tic , how ever, was re se a rc h e d as if it was th e only answ er to th e pro b lem . The re su lt was o fte n a m ultid iscip lin ary approach w ith no provision for in te g ra tin g th e many c o n tro l te ch n iq u es (see H aynes e t al. 1980). R ec e n tly , a tra n sd isc ip lin a ry ap p ro ach to in se c t co n tro l has been suggested w hich en ab les re s e a rc h e rs to in te g ra te d iffe re n t in se c t suppression m eth o d s w hen developing a co n tro l pro g ram . A "w id e-area " view of th e whole eco sy stem and analysis o f how th e d iffe re n t m ethods o f c o n tro l a f f e c t th e dynam ics of p e st p opulations a re used to d e te rm in e which c o n tro ls a re b est su ite d and how th ey should be in te g ra te d or sequenced fo r u se. This ap p ro ach channels th e various co n tro l te ch n iq u es in to m ore co m p reh en siv e s tra te g ie s based on th e eco lo g ical c h a r a c te ris tic s of th e to ta l e c o sy ste m . This view , e co sy stem analysis, has been p u t fo rth by sev e ra l a u th o rs over th e p ast d ecad e and is now rep lacin g m ost c o n v en tio n al p e st-c ro p stu d ies (Rabb 1978, P ric e 1975, H aynes e t al. 1980, Dantsch 1970, R abb e t al.). E co sy stem analysis in a g ric u ltu ra l sy stem s en co m p asses th e sam e basic eco lo g ica l principles used for any e c o sy ste m . The m ajor d iffe re n c e is th e g re a t im p a c t th a t m an him self can e x e rt. To produce m axim um cro p yield, m an usually a lte rs th e ag ro eco sy stem w ith trem en d o u s en erg y inputs of fe rtiliz e rs , irrig a tio n , re s is ta n t p la n t v a rie tie s, p e sticid e s, e tc . O fte n th e se inputs a re used to d ire c t e co lo g ica l p ro cesses so a d esired re s u lt o ccu rs (R abb e t al. 1974). 3 H aynes e t al. (1980) d escrib ed inputs o f p e stic id e s or fe rtiliz e rs as d ire c t c o n tro ls and th o se o f p a ra sitism and p re d a tio n as in d ire c t c o n tro ls. They su g g este d th a t d ire c t c o n tro ls can cau se m ajo r disru p tio n s in th e eco sy stem ; w hereas, in d ire c t c o n tro ls, w hile being v ery se n sitiv e to e co lo g ical p ro cesses, usually do not. The changes caused by and th e e f f e c ts o f such d ire c t co n tro ls, th e re fo re , need to be d e te rm in e d and ex am in ed in ad d itio n to th e n a tu ra l p ro cesses o c cu rrin g in th e eco sy stem . The onion a g ro eco sy stem is an exam ple o f w here d ire c t c o n tro ls have been used fo r th e p a st 50 y e ars. H aynes e t al. (1980) ch ro n icled th e ev o lu tio n o f p e stic id e s used as c o n tro ls on th is cro p in th e U n ited S ta te s . In th e onion a g ro e co sy stem , in se c ts and w eeds a re th e tw o m ajor organism s fo r d ire c t c o n tro ls. C rop loss due to p e stile n c e is e s tim a te d to ran g e from 10 to 40%. The onion m aggot, H ylem ya a n tiq u a (M eig.), h e re in re fe rre d to as OM, has been d escrib ed as th e m ajor p e st in th e p ro d u ctio n o f onions in m any a re a s o f N orth A m erica (H arris and Svec 1976, E ckenrode e t al. 1975, G uyer and Wells 1954, E llington 1963, C a rru th e rs p rim ary d ire c t co n tro l. 1979). C h em ical in se c tic id e s w ere and a re th e The OM developed re s is ta n c e to c h em ica l in sec tic id e s which led to in c re ase d a p p licatio n s, hig h er dosages and new com pounds. In se c tic id e re s is ta n c e by th e OM has been d o cu m en ted by s e v e ra l a u th o rs o v e r th e la s t te n years. Brow n (1971) lis te d e ig h t sp ec ie s of soil in sec ts th a t had developed re s is ta n c e to DDT, including th e OM. G uyer and Wells (1959) re p o rte d poor c o n tro l of OM in M ichigan by DDT and re s is ta n c e to DDT by OM was d o cu m en ted by H arris and Svec (1976). C yclodienne in se c tic id e re s is ta n c e by OM also developed. H o w itt (1958) f ir s t re p o rte d cyclodienne re s is ta n c e in OM in W ashington S ta te , and c ro s s -re s is ta n c e o v er th e whole cyclodienne group o f 4 in se c tic id e s has now o ccu rred , including re s ista n c e to d ieldrin, ald rin , h e p ta chlor, ch lo rd an e, endrin, and lindane. H arris and Svec (1976) n o ted th a t field s tu d ie s co n d u cted in all onion grow ing a re a s o f th e U n ited S ta te s re v e a le d poor onion m aggot c o n tro l by cyclodienne com pounds b etw een 1954-1960. R e la te d s p e c ie s of ro o t m aggots also w ere shown to be re s is ta n t to th e cyclodienne's, including th e cab b ag e m aggot (H ylem ya b ra ssic a e (Bouche')), tu rn ip m aggot (H ylem ya flo ra lis (Fallen)), and se e d -c o rn m aggot (H ylem ya p la tu ra (Rond.)) (H arris 1977). In th e 1960's, th e c h lo rin a te d hydrocarbons and cy clo d ien n e in se c tic id e s w ere re p la c e d by o rganopho sp h ates and c a rb a m a te s. and p a ra th io n w ere th e f ir s t to be used. E thion, diazinon, p h o ra te , H arris (1977) re p o rte d re s ista n c e to organophosphate com pounds in th re e soil in se c ts, including th e OM. He re p o rte d th a t s e le c tio n for OM re s ista n c e to th e org an o p h o sp h ate and c a rb a m a te com pounds o c c u rre d b ecause th e in se c t is co n fin ed to a single host, has s e v e ra l g e n e ra tio n s p e r y ear, and e ac h g e n e ra tio n is c o n sta n tly su b je c te d to in ten se in s e c tic id e p ressu re. H arris and Svec (1976) re p o rte d in c re a se d re s ista n c e by th e OM to b o th th e o rg anophosphate and c a rb a m a te in se c tic id e s. The th io p h o sp h ate, D yfonate® (fonophos) is p re se n tly being used (1977-81) in m o st onion p ro d u ctio n a re a s for c h e m ic a l c o n tro l of th e onion m aggot (M ichigan, New Y ork, O ntario), and although a d e q u a te co n tro l is s till d e m o n stra te d by use o f th is com pound, it m ay follow th e course of th e prev io u s reco m m en d ed m a te ria l, Dasanit® (fensulfothion), w hich, th ro u g h re p e a te d use and re s u lta n t re s ista n c e , becam e in e ffe c tiv e . In additio n to in se c tic id e re s ista n c e , o th e r b io tic com ponents o f th e onion 5 ag ro e co sy stem , including w eeds, d iseases, and n em ato d es, a re ex h ib itin g sim ila r c o n tro l problem s (H aynes e t al. 1980). H erbicides and fungicides a re applied a t th re e to sev en day in te rv a ls from p la n tin g d a te to h a rv e st and o fte n n e m aticid e s a re used to fu m ig ate th e soil follow ing onion h a rv e st in p re p a ra tio n o f ro ta tio n w ith c a rro ts (tw o to fo u r y e ar ro ta tio n w ith onions). Weed re s ista n c e to 2,4-D has b een re p o rte d (Hopen 1972) and re s ista n c e to D ithan M -45, used to co n tro l onion le a f blig h t (B o try tis sq u am o sa) has also been n o ted (L orbeer, 1977, pers. com m ., D ept, of P la n t P a th ., C o rn ell Univ.). P a s t and p re se n t onion crop production has been and is d ep en d en t on high en erg y inputs of fe rtiliz e rs , re s is ta n t v a rie tie s, p e sticid e s, and high lev el m e ch a n iz atio n . T hese pro d u ctio n p ra c tic e s d ire c tly depend on dw indling fossil fu el en erg y and new chem ical com pounds. The econom ics o f developing new p e stic id e s, com bined w ith re s ista n c e to e x istin g c h em icals and an aw aren ess of th e d e trim e n ta l e f f e c ts on th e en v iro n m en t, a re forcing re s e a rc h e rs to re -e x am in e c u rre n t co n tro l sy stem s in c o m m ercial onion c u ltu re. The fu tu re o f p e st co n tro l in th e onion a g ro eco sy stem lies p rim arily in how co n tro ls a re used. Single s tra te g y p e st c o n tro l e x e rts trem en d o u s s e le c tio n p ressu re fo r a d a p ta tio n to th e exposed organism and provides litt l e to no fle x ib ility to a cc o u n t fo r sto c h a s tic and reg io n al v a ria tio n in w e a th e r and field conditions (T um m ala e t al. 1975). O fte n , littl e to no in fo rm atio n is c o lle c te d on p e st den sity , d istrib u tio n (sp a tia l and te m p o ral), r a te , tim in g and sp re ad of dam ag e to th e crop, and how th is a f f e c ts th e su ccess of th e c o n tro l m easu res. One o f th e re q u ire m e n ts fo r developing sound p e st m an ag em en t p ro g ram s is having a c c u ra te e s tim a te s o f p e sts or n a tu ra l enem y p o p u latio n d en sities, as well a s re lia b le asse ssm e n ts o f p la n t d am ag e and re s u lta n t e f f e c ts o f co n tro l 6 program s. la rg e -s c a le B iological m onitoring, d escrib ed as one o f th e w e ak e st e lem en ts in re s e a rc h program s, is e sse n tia l fo r su cc e ssfu l o n -lin e p e st m an ag em en t fo r on-line re s e a rc h in populations and co m m u n ities (R abb 1978). In 1976, a p ro je c t was in itia te d a t M ichigan S ta te U n iv ersity to stu d y th e onion ag ro e co sy stem . The o v erall o b jectiv e was to co n d u ct an ecosystem analysis to d efin e and in v e stig a te th e b io tic and a b io tic com p o n en ts of th e onion sy stem . This included a study o f th e eco lo g ical p ro cesses occu rrin g , and fa c to rs d e term in in g o r a ffe c tin g th e p ro cesses and th e ir o u tco m es. S everal in v e stig a to rs w ere involved in th e study, and each in v e stig a to r was responsible fo r a sp e c ific a re a , but in fo rm atio n flow and c o o p eratio n b etw een in v e stig a to rs was m anda­ tory. This th e sis p rim arily ad d resses th e population dynam ics o f th e OM, p a rtic u la rly th e s p a tia l and te m p o ra l dynam ics o f th e OM population in M ichigan. The m ajor o b je c tiv e s o f this stu d y w ere: 1) to in v e stig a te and explore th e w ithin and b etw een g e n e ra tio n dynam ics o f OM life s ta g e s (firs t tw o g en eratio n s), 2) to d e te rm in e fa c to rs a ffe c tin g survival, 3) to ex am in e th e s p a tia l and te m p o ra l d istrib u tio n s o f th e OM and re s u lta n t onion p la n t dam age and, 4) to d o cu m en t th e m any b io tic and a b io tic fa c to rs and th e ir in te ra c tio n s th a t a re involved in th e onion a g ro eco sy stem . In te ra c tio n s o f th e stu d y organism (OM) w ith th e host p la n t and o th e r crops and sp ecies w ere in v e stig a te d w henever possible. In a d d itio n to th e se o b je ctiv es, a biological m o n ito rin g program on a reg io n al sca le was conducted. This e ffo rt provided in fo rm atio n on onion m aggot d e n sitie s bo th w ithin and b etw een field s and also provided in fo rm atio n on th e e x te n t and d istrib u tio n o f OM p la n t d am ag e in M ichigan. It w as f e lt th a t stu d ie s on th e p o p u latio n d ynam ics o f th e OM and a 7 reg io n al biological m onitorin g program would provide som e answ ers to th e m any questio n s re g a rd in g OM population m an ag em en t. A c c u ra te e s tim a te s of popu lation den sity and th e te m p o ra l d istrib u tio n o f th e various ag e classes a re n e ce ssa ry in all in se c t pop u latio n stu d ies. An u n d erstan d in g o f th e s p a tia l d istrib u tio n o f host p la n t d am ag e and fa c to rs d e term in in g or a ffe c tin g th is d istrib u tio n a re also needed . The d istrib u tio n o r disposition o f an organism in sp ace can a f f e c t sam pling program s, m eth o d s of d a ta analysis and c an be used as m easu res o f population size and co n d itio n of th e p o p u latio n (Southwood 1978). In th e p a st, littl e work has b een done on q u a n tify in g th e te m p o ra l d istrib u tio n of th e b io tic com ponents o f th e onion sy stem . In fo rm atio n on th e d istrib u tio n o f th e life -s ta g e s in tim e and sp ace is n eeded fo r fo rm u latio n o f m an ag em en t program s. The onion a g ro eco sy stem p ro je c t encom passed s e v e ra l d e p a rtm e n ts and re s e a rc h e rs in th e u n iv e rsity who w orked to g e th e r to u n d erstan d e co sy stem in te ra c tio n s. In fo rm atio n from this stu d y has gone into a com m on pool of in fo rm atio n from which new m an ag em en t ta c tic s m ay be developed. A sy ste m s point of view has been em ployed to in te g ra te th e various co n tro l tech n iq u es in to a co m p reh en siv e understan d in g based on th e e co lo g ica l c h a r a c te ris tic s of th e e co sy stem and dynam ics th a t e x ist b etw een th e p e st and th e ir en v iro n m en t. This th e sis also provides som e of th e biological p a ra m e te rs n e c e ssa ry fo r inclusion in this m an ag em en t program . II. BACKGROUND A. O nion M aggot The biology of th e OM and co n tro l m e a su re s used in th e p a st hav e been w ell rev iew ed by m any a u th o rs, n o tab ly Loosjes (1976), D oane (1953), T ozloski 8 (1954), P erron and L a F ran c e (1961), P e rro n (1972) and Ellington (1963), and S c o tt (1969) published an e x ten siv e bibliography fo r H ylem ya a n tiq u a (M eig.) A lthough H ennig (1974) p la ce d th e OM in th e genus D e lia , re c e n t lite r a tu r e su g g ests th a t it is s till consid ered to be in th e H ylem ya genus. A t le a s t fo r ty - nine sp ecies o f this genus have been re c o rd ed in M ichigan (Appendix A) o f which s e v e ra l a re co nsidered to be im p o rta n t p ests on a g ric u ltu ra l crops. A d e ta ile d d e sc rip tio n and key to th e genus is given by H u c k e tt (1971). 1. A dults The OM o v e rw in te rs as a diapaused pupae and e m erg es in th e spring. The firs t e m e rg e n c e is re fe rre d to as th e f ir s t g e n e ra tio n flig h t in this re p o rt. The eggs and re s u lta n t la rv a e from th is g e n e ra tio n have been d escrib ed as th e f ir s t la rv a l brood (E ckenrode e t al. 1975). nam ed accordingly. F u rth e r flig h ts and la rv a l g e n e ra tio n s a re T here a re ty p ic a lly th re e g e n e ra tio n s o f flig h t and th re e la rv a l broods e ac h y e a r in M ichigan. Very littl e q u a n tita tiv e w ork has been done on th e behavior o f OM a d u lts in th e field. The m ost e x ten siv e re s e a rc h was co n d u cted by Loosjes (1976), who p re s e n te d re s u lts of d ispersal e x p erim en ts using m a rk -re c a p tu re techniques. He re p o rte d th a t disp ersal r a te was te m p e ra tu re -d e p e n d e n t, bu t in d ep en d en t o f wind d ire c tio n . T h irty -sev e n p e rc e n t o f th e fe m a le s and 50% o f th e m ales w ere found to e m ig ra te a f te r e m erg en c e . and m ating. F e m a le m ig ratio n d e c re a se d during oviposition Loosjes (1976) also re p o rte d th a t a d u lt d isp ersal was 2.5 tim e s g r e a te r o u tsid e onion field s th a n w ithin th e field . In any one onion field th e o a v e ra g e diffusion c o e ffic ie n t w as 2000 m /d ay ; how ever, in an a re a encom passing m o re th a n one fie ld and w ith an a v e ra g e onion fly d en sity , th e 9 diffusion c o e ffic ie n t was 3600 m /d a y (Loosjes 1976). 9 S ev eral a u th o rs have o bserved th a t OM ad u lts fe e d a c tiv e ly on flo w ers or w eed pollen follow ing in itia l e m e rg e n c e (B aker 1928, M aan 1945, R ygg 1960, C a rru th e rs 1979). F em ale OM have been d e sc rib e d as being an anato g en o u s, req u irin g a p ro te in so u rce b e fo re egg laying can o ccu r (M issonnier and S ten g el 1966, M issonnier 1967). M aan (1945) re p o rte d th a t ad u lt OM in th e fie ld live from th re e to four w eeks. Loosjes (1976) p re se n te d survivorship curves for a d u lt OM and re p o rte d th a t 5096 o f th e a d u lts o f th e firs t g e n eratio n died in ten days and 5096 o f th e a d u lts o f th e second g e n e ra tio n died in seven days. He su g g ested th a t th e g re a te r m o ra lity in th e second g e n e ra tio n was due to higher in fe c tio n by E ntom ophthora m uscae (Cohn). He also s ta te d th a t th e field survivorship re su lts a g re e d reaso n ab ly w ell w ith th o se o f la b o ra to ry e x p erim en ts and th e lite r a tu r e on r e la te d sp ec ie s (R ockstein and M iquel 1973). 2. Im m a tu re S tages Eggs o f th e OM a re laid in th e soil around th e b ase o f th e onion p lan t or on th e leav es o f th e p la n t its e lf. Eggs a re n o rm ally la id in groups o f th re e to six, and oviposition o ccu rs re p e a te d ly during th e life o f th e fe m a le fly (K arum a e t al. 1972). R equired d e g re e-d a y accu m u la tio n fo r eclosion was re p o rte d by C a rru th ­ ers (1979) to be 50 d e g ree-d ay s w ith base te m p e ra tu re of 3.88° C. O viposition on previously dam aged onions was o fte n o b serv ed (W orkm an 1958, A rm stro n g 1924, Loosjes 1976, C a rru th e rs 1979). P e rro n (1972) re p o rte d th a t h ealth y , m a tu re onions are usually n o t a tta c k e d by la rv a e d u ring th e seco n d g e n eratio n , and G ray (1924) re p o rte d th a t OM o fte n oviposit on fla c c id onion le a v e s or w here dense onion fo liag e o ccu rs. P e rro n (1972) also re p o rte d th a t g r e a te r d e n sitie s o f eggs w ere found on onions p la n te d a t higher d e n sitie s, bu t n o ted th a t th e n um ber of eggs p e r p la n t re m a in ed th e sam e re g a rd le ss o f p la n tin g d en sity . S e v e ra l a u th o rs 10 have sugg ested th a t onion v o la tile s a t t r a c t a d u lt fe m ale OM fo r feed in g or oviposition (M atsum oto 1970, D indonis and M iller 1980). Ellis e t al. (1979) in v e stig a te d th e in fluence o f onion c u ltiv a rs and th e ir m icrobial c o lo n izers on re s ista n c e to th e OM. They re p o rte d th a t p la n t d en sity , age, and d eg ree o f m icrobial a c tiv ity re g u la te d OM oviposition, and th ey suggested th a t OM populations m ay be m anaged in th e fu tu re by m an ip u latin g th e m icro-organism s responsible fo r th e in te ra c tio n s th a t a f f e c t oviposition. Survival fo r th e im m a tu re sta g e s has been in v e stig a te d in th e la b o ra to ry and under field conditions. H um idity and soil m o istu re can a f f e c t egg develop­ m ent or su rv iv al (Eyer 1922, B aker and S te w a rt 1927, E llington 1963, W orkman 1958). W orkman (1958) re p o rte d th a t 10% soil m o istu re in muck soil was req u ired fo r optim um eclosion. He also re p o rte d , how ever, th a t although low soil m o istu re d elay ed eclosion, when soil m o istu re was in c re ase d a f te r a period of dryness, eclosion o c cu rred w ithin 20 to 30 m in u tes. M aan (1945) q u estio n ed w h eth er a dew in th e m orning could provide th e req u ired m o istu re fo r eclosion to o ccu r. E llington (1963) p re se n te d re su lts o f egg d ev elo p m en t under d iffe re n t te m p e ra tu re s and re p o rte d th a t a t a z ero vapor p ressu re d e fic it, eclosion in c re ase d w ith a d e c re a se in te m p e ra tu re from 90° to 50° F. The survival r a te o f OM la rv a e also a p p ea rs to depend on soil m o istu re and te m p e ra tu re . W orkman (1958) re p o rte d th a t 23% soil m o istu re in m uck soil was needed fo r survival o f one day-old f ir s t in s ta r OM la rv a e and th a t when soil m o istu re w as below th is m inim um , la rv a e w ere only ab le to tra v e l a sh o rt d ista n c e befo re d e ssic atio n led to d e ath . OM la rv a e feed d ire c tly on th e tissu e o f th e onion bulb. D epending on th e la rv a l s ta g e o f dev elo p m en t, th e y m ay m ig ra te to o th e r onions esp e c ially w hen 11 onion bulb volum e is sm all. D eg ree-d ay re q u ire m e n ts fo r co m p letio n o f th e th re e la rv a l in s ta rs w ere re p o rte d by C a rru th e rs (1976) to be 37, 89 and 161 d e g ree-d ay s (4.4° C). T hird in s ta r la rv a e pu p ate in th e soil a t a d ep th o f five to fifte e n cm. D iapause in th e pupal sta g e has been re p o rte d to be induced by low te m p e ra tu re s and sh o rt day le n g th (M acLeod 1965). V arious o b serv atio n s on th e freq u en cy of d iapause or a e s tiv a tio n w ithin th e onion grow ing season have been re p o rte d (M iles 1955, R ygg 1960). P erro n and L a F ran c e (1961) re p o rte d diapause p e rc e n ta g e s o f 0-19, 43.5-91 and 99-100 fo r th e th re e g e n e ra tio n s of th e OM in Q uebec. Loosjes (1976) re p o rte d diapause p e rc e n ta g e s o f 21.9 and 84.6 fo r th e tw o g e n e ra tio n s o f OM in th e N eth erlan d s; how ever, his re s u lts w ere highly v a ria b le, and he su g g ested fu rth e r ex p erim en ts w ere n e ce ssa ry b e fo re any d e fin ite conclusions could be m ade. D eg ree-d ay re q u ire m e n ts fo r pupal sta g e c om pletion w ere re p o rte d by C a rru th e rs (1979) to be 306 d eg ree-d ay s a t a base te m p e ra tu re o f 3 .8 8 °C (39° F). These re s u lts a g re ed w ith E ckenrode e t al. (1975) who re p o rte d a base te m p e ra tu re of 4.4° C (40° F) fo r OM pupae. A biotic fa c to rs also have been shown to a f f e c t OM pupal e m erg en c e , a d u lt su rviv al and a c tiv ity . A ccording to E llington (1963), m axim um survival o f pupae (50% o r m ore) o c c u rre d betw een 60-90° F. He also re p o rte d th a t no ad u lts em erg ed a t 9 0 °F under all m o istu re cond itio n s, bu t th a t th e survival r a te d e c re a se d under low te m p e ra tu re s and higher m o istu re s tre sse s. B aker and S te w a rt (1927) re p o rte d th a t m axim um em erg en ce from OM pupae o c cu rred a t 41696 soil m o istu re. L ittle to no em erg en c e o c c u rre d in soil th a t had been oven d ried . W orkman (1958) found th a t la b o ra to ry -re a re d , a d u lt flie s lived b etw ee n 77 and 101 days for m ales and fe m a les, re sp e c tiv e ly . Miles (1955) concluded th a t 12 70° F was n ecessary fo r oviposition to o ccu r, and M aan (1945) o b serv ed th a t cold te m p e ra tu re s d e c re a se fly a c tiv ity and oviposition b e tw ee n 50-70° F . E llington (1963) re p o rte d th a t m ales te n d ed to e m erg e ap p ro x im ately one day b efo re fe m a les, but m ale lon g ev ity was less th an fem ales. A dult lon g ev ity ran g ed from one day a t 9 0 °F to 84 days a t 6 0 °F. He also s ta te d th a t th e m axim um num ber of eggs w ere oviposited a t 70° F and 10 mm vapor p ressu re d e fic it. A low er vapor p ressu re d e fic it (5 mm) re su lte d in th e m ost eggs being la id a t 6 0 -7 0 °F. Ellington (1963) also found th a t th e p reo v ip o sitio n al p erio d d e c re a se d from 22 days a t 50° F to 2 days a t 90°F . P e rro n and L aF ran ce (1961) ex am in ed th e su rv iv al o f th e OM im m a tu re s ta g e s in th e field under caged conditions. T hey developed life -ta b le in fo rm atio n on population in crease, lon g ev ity and d e n sitie s of a g e -sp e c ific stag e s. T h ree g e n e ra tio n s p e r y e a r w ere re p o rte d as o c cu rrin g in Q uebec; th e highest popula­ tio n in c re a se o c cu rred o c c u rre d during th e th ird . during th e second g e n eratio n , w h ereas th e lo w est They su g g ested th e second g e n e ra tio n w as th e m ost im p o rta n t in te rm s of sp ec ie s su rv iv al sin ce it had th e h ig h est population in c re a se and c o n trib u te d th e g re a te s t num ber o f o v e rw in te rin g pupae. Loosjes (1976) f e lt such re su lts could n o t be r e la te d d ire c tly to field situ a tio n s and fu rth e r q u estio n ed P erro n 's su b seq u en t fie ld -o rie n te d s tu d ie s by saying th e y la ck e d a p re c ise sam pling m ethod and c o n tain ed c o n flic tin g ev id en ce. P erro n (1972) re p o rte d fie ld m o rta litie s o f 45-78% fo r th e egg s ta g e , 74-96% fo r th e la rv a l s ta g e s and 56-84% fo r th e pupae s ta g e , Loosjes (1976) d escrib ed tw o fu ll la rv a l g e n e ra tio n s and a p a rtia l th ird fo r th e onion m aggot in th e N eth erlan d s. He c o n d u cte d p re lim in a ry ex p erim en ts on la rv a l population d en sity and m o rta lity , b u t his re s u lts o f 89.4% m o rta lity in th e 13 la rv a l s ta g e s w ere q u estio n ab le due to th e e x p e rim e n ta l p ro ced u res used and th e la c k o f a s u ffic ie n t sam ple size. His su rv iv al r a te s fo r la rv a e w e re also c o m p lic ate d by poor handling and tra n s p o rt of eggs and u n ex p ected sp ray in g of in se c tic id e s during th e course o f th e e x p erim en t. E llington (1963) co n d u cted field and cag e stu d ie s in New Y ork on popula­ tio n phenology and dorm ancy o f OM pupae. He co ncluded th a t th e re w ere only tw o g e n e ra tio n s o f ad u lts p er y e a r and th a t th e second g e n e ra tio n fa ile d to develop to any a p p re cia b le d e g re e. R ep o rtin g an 11% d o rm ancy o f firs t g e n e ra tio n pupae and le ss than 19% o f th e second g e n e ra tio n , he su g g ested th a t diapaused pupae from th e f ir s t g e n eratio n a c c o u n te d fo r th e o v e rw in te rin g population. probably It a p p ea rs th a t he fa ile d to observe a th ird g e n eratio n , which o c c u rre d la te in th e fa ll and w hich c o n trib u te d m ost of th e o v e rw in te rin g pupae. M cEwen e t al. (1973) c o n d u cte d lif e -ta b le stu d ie s o f th e OM in O n ta rio on u n tre a te d p lo ts o f onions. Egg, la rv a l and pupal s ta g e s w ere sam p led th ro ug h o u t th e season from which p e rc e n ta g e OM su rv iv al was d e term in e d . T hey re p o rte d a high p e rc e n ta g e o f eggs led to a d u lt fly e m e rg e n c e w ith 14% (firs t g en eratio n ) to 79% (th ird g e n eratio n ) m o rta lity o ccu rrin g b etw een th e egg and th e f ir s t la rv a l in s ta r. L ittle in fo rm atio n on sam pling m eth o d s was given, how ever, and th e e x p e rim e n ta l p ro ced u res w ere in a d eq u a te w here survivorship w as c a lc u la te d by re tu rn in g all life -s ta g e s to th e la b o ra to ry fo r a d v an ce to th e n e x t stad iu m . The to ta l num ber o f life -s ta g e s sam p led p er 180 f e e t o f row w ere p re se n te d fo r th re e g e n e ra tio n s, b u t l i t t l e in fo rm atio n and no sig n ific a n c e was a tta c h e d . A biotic m o rta lity . fa c to rs a p p ea r to have littl e e f f e c t on o v e rw in te rin g pupal E llington (1963) re p o rte d an o v e rw in te rin g m o rta lity o f only 0-4% 14 from field cag e stu d ie s in New Y ork. Loosjes (1976) observ ed th a t pu p ae pu t in th e fie ld in D e ce m b e r had a p e rc e n ta g e e m erg en c e in th e sp rin g sim ila r to th a t in th e la b o ra to ry (85-95% ). been fully q u a n tifie d . or a b io tic fa c to rs . The o v erw in terin g m o rta lity of OM pu p ae has not M o rtality can o ccu r due to th e a c tio n o f n a tu ra l e n em ies P e rro n (1972), c o n d u ctin g stu d ie s in Q uebec on u n tre a te d onion p lo ts, found th a t up to 20% o f o v e rw in te rin g pupae had been p a ra sitiz e d by th e S taphylinid p a ra sito id , A leo ch ara b ilin e a ta (Gyll.), and as m uch as 12% p a ra sitism could o ccu r by th e b raco n id p a ra sito id , A p h a e re ta pallipes (Say). Loosjes (1976) re p o rte d an a v e ra g e o f only 5% p a ra sitism o f OM pupae from sam ples c o lle c te d on c o m m e rcial field s in th e N eth erlan d s. 3. N a tu ra l E nem ies S ev eral p a ra sito id s and p re d a to rs of th e OM have been re p o rte d in th e lite r a tu r e (W ishart and M on teith 1954, Saikeld 1959, R ead 1962, P e rro n 1972, Loosjes 1976). O f th e se , only tw o ap p ear to o ccu r re p e a te d ly in m ost stu d ies: A leo ch ara b ilin e a ta (Gyll.) and A p h a e re ta pallipes (Say). P e rro n (1972) re p o rte d th a t th e S taphylinid p a ra sito id , A. b ilin e a ta , was th e m ost im p o rta n t n a tu ra l enem y o f th e OM, a c tin g as a p re d a to r in th e a d u lt s ta g e and as a p a ra sito id in th e la rv a l s ta g e . A. b ilin e a ta has b een re p o rte d as being a very im p o rta n t n a tu ra l enem y o f m any sp ec ie s o f ro o t m aggots, m ost n o tab ly th e cab b ag e m aggot (W ishart 1957, C alhoun 1953, M oore and L egner 1971, N air and M cEwen 1975, F inlayson and C am pbell 1976). A num ber o f a rtic le s have b een published on its biology in g en eral (W adsw orth 1915, W ishart e t al. 1956, R ead 1962), b u t littl e in fo rm atio n is a v a ila b le in re la tio n to i t as a n a tu ra l enem y o f th e OM. A. b ilin e a ta norm ally has tw o g e n eratio n s a y ear, b u t a th ird g en eratio n m ay also o ccu r. A dults e m e rg e from ro o t m aggot pupal cases in th e spring. 15 Eggs are laid in th e soil, w ith each fe m a le lay in g an a v erag e o f 700 eggs (Brom and 1980). F ir s t in s ta r la rv a e a re p a ra s itic and a c tiv e ly s e a rc h o u t ro o t m ag g o t pupae in which to c o m p le te th e ir d ev elo p m en t (W adsw orth 1915). L arv ae e n te r th e pupal c ell by e a tin g a hole in th e puparium ; th ey then consum e th e c o n te n ts o f the puparium and p u p ate w ithin th e ro o t m aggot pupal case. Loosjes (1976) re p o rte d 3-10% p a ra sitism o f OM pupae by A. b ilin e a ta , b u t w arned th a t th e p e rc e n t p a ra sitism re c o rd ed could have been low due to e x ten siv e in se c tic id e sp ray s applied fo r ro o t m aggot co n tro l. C a rru th e rs (1977, pers. com m ., D ept, o f E ntom ology, C ornell Univ.) and R itc e y (1976, pers. com m ., D ept, of E ntom ology, Univ. o f G uelph) o b serv ed th a t p e rc e n t p a ra sitism on OM pupae w as e x tre m e ly low in M ichigan and O n ta rio , re sp e c tiv e ly . B oth re s e a rc h e rs , how ever, m ade th e se o b serv atio n s from pupae c o lle c te d w ithin in s e c tic id e -tre a te d a re as. S tudies on th e c ab b ag e m aggot have re v e a le d th a t when ch em ical c o n tro ls are used, p a ra sitism by A. b ilin e a ta c an d e c re a se rapidly (C oaker 1966). K irknel (1978) re p o rte d on re la tiv e to x ic itie s o f fo u r soil in se c tic id e s to A. b ilin e a ta . He found th a t soil type, exposure tim e in th e field , and th e d e p th a t w hich th e in s e c tic id e was p laced all a f f e c t th e to x ic ity o f th e in se c tic id e to A. b ilin e a ta . Finlayson e t al. (1980) c o n d u cte d bioassays in th e la b o ra to ry w ith A. b ilin e a ta and fo u r g ran u lar soil in se c tic id e s (20 ppm ). C hlorfenvinphos was found to be th e le a s t to x ic w ith no m o rta lity o c cu rrin g a f te r a sev en -d ay exposure. One hundred p e rc e n t m o rta lity o c c u rre d w ith te rb u fo s a f t e r a fiv e-d ay period, and 60% and 85% m o rta lity o c cu rred w ith re sp e c tiv e ly , a f t e r seven days o f ex p o su re. c a rb o fu ra n and isofenphos, F ield e x p erim en ts w ere also c o n d u cte d to d e te rm in e th e e f f e c t o f th e se in se c tic id e s on fie ld pop u latio n s o f 16 A. b ilin e a ta and th e cabbage m ag g o t, H ylem ya b ra ssic a e (W eidem an). P a rasitism o f H. b ra ssic a e pupae by A. b ilin e a ta in c re a se d from 17.7% to 39.8% w ithin a y e a r and from 17.7% to 76.3% in a th re e -y e a r period on u n tre a te d plots. P a ra sitism in tr e a te d p lo ts was sig n ific a n tly less (0-33.3% ). P erro n (1972) re p o rte d th a t th e m ost im p o rta n t hym enopterous p a ra sito id and th e second m ost im p o rta n t n a tu ra l enem y o f th e OM was th e braconid, A. p allipes (Say), th a t was cap ab le o f p a ra sitiz in g up to 12% o f o v erw in terin g pupae for any y e a r. S aikeld (1959) re p o rte d 29% p a ra sitism o f OM pupae by A. p allip es. This braconid has also been re p o rte d as p a ra sitiz in g th e cabbage m aggot (W ishart 1957). S tudies by C a rru th e rs (1981) have shown th e a d u lt to be highly su scep tib le to p e sticid e s, including m ost o f th e h erb icid es used on onions. B. Seed C orn M aggot T he onion p la n t can be in fe ste d by s e v e ra l o th e r sp ec ie s o f D ip te ra , one of w hich is th e s e e d -c o rn m aggo t, H ylem ya p la tu ra (Rond.), h erein re fe rre d to a s SCM. The SCM is co nsidered to be a m ajor p e st o f s e v e ra l fie ld cro p s and a m inor p e st on v e g e ta b le s. H. p la tu ra h as b een re c o rd e d on onions by s e v e ra l a u th o rs who d escrib ed it as an im p o rta n t d ip te ro u s p e st o f th e onion bulb (M athew m an e t al. 1950, R itisc h and S ch w ard t 1949, Hudon and P e rro n 1954, M iller and M cC lanahan 1960). In M ichigan, M errill and H utson (1953) found th a t n e arly one fifth o f th e ro o t m aggots a tta c k in g onions in May and Ju n e w ere SCM. T hey su g g este d applying c o n tro l tr e a tm e n ts soon a f te r p lan tin g , b ecau se dam age to onions was m ainly o bserv ed in th e spring, w hen g e rm in a tin g onions w ere a tta c k e d b e fo re in itia l p la n t e m erg en ce. M iller and M cC lanahan (1960) n o te d th a t a d u lts w ere a ttr a c t e d to m o ist soils and, fo r m any cro p s, a n in fe s ta tio n o f 17 m aggots may be p re se n t b e fo re planting. In fo rm atio n on th e num ber and phenology o f g e n eratio n s o f th e SCM is c o n flic tin g . D ustan (1948) re p o rte d only one g e n e ra tio n a y e a r w hile m ost o th e r a u th o rs re p o rte d b etw een th re e and fiv e g e n eratio n s in N o rth A m erica (R itisch 1950, C a e sa r 1931, S trong and A pple 1958, M iller and M cC lanahan 1960). R e p o rts o f d am age to c u ltiv a te d crops a re lim ite d to th e f ir s t or second g e n eratio n ; th e siz e o f o th e r g e n e ra tio n s d escrib ed a re so sm all th a t in m o st case s th ey are not even d e te c te d in th e field (M iller and M cC lanahan 1960). The flies e m erg e v ery e a rly in th e sp rin g ap p ro x im a te ly tw o to th re e w eeks b e fo re th e OM. A dults oviposit on cole crops, rad ish es and onions; th e second, and la rg e s t, g e n e ra tio n usually is observed on field beans. L ittle q u a n tita tiv e in fo rm atio n is a v ailab le on SCM d am ag e to onions. Hudon and P erro n (1954) re p o rte d on ro o t m aggot sp ec ie s and d e n sitie s in seeded onions in Q uebec over a f if te e n w eek period. Published re s u lts, how ever, w ere red u ced to m onthly to ta ls , w here 19% o f all la rv a e c o lle c te d in Ju n e w ere d e te rm in e d to be SCM. M athew m an e t al. (1950) also re c o rd ed ro o t m aggot sp ecies and d e n sitie s from sam p les o f d am ag ed onions c o lle c te d from e arly Ju n e to Ju ly in O n ta rio . T hey re p o rte d th a t 97% o f th e ro o t m aggots w ere II. a n tiq u e and only 1.3% w ere H, p la tu ra , th e m a jo rity o f th e l a t t e r being found in th e f ir s t tw o w eeks o f July. Loosjes (1976) re p o rte d th a t during th e f ir s t flig h t o f th e OM in th e N eth erlan d s, onions w ith only SCM la rv a e w ere found on s e v e ra l occasions. He su g g ested , how ever, th a t th e SCM should be co n sid ered only a seco n d ary p e st of onions b ecau se th e y could only build up in d e n sity w hen a high d en sity o f OM w as p re se n t as w ell. His conclusions w ere based on o b serv atio n s o f low populations of th e SCM when OM pop u latio n s w ere also low in num ber. 18 Brooks (1951) re p o rte d th a t in a sam p le of d ip tero u s la rv a e , sp ec ie s and th e ir n u m erical p roportions w ere lik ely to vary b o th seaso n ally and g eo g rap h ical­ ly and th a t as m any as 14 sp ecies of D ip te ra had been found in onion p la n ts. As a re s u lt, M athew m an e t al. (1950) f e lt th a t th e value o f o b serv atio n s m ade on ro o t m aggot stu d ies w ere in doubt unless a c a re fu l id e n tific a tio n and analysis of field populations o f m aggots was m ade. C. S p atial D istrib u tio n and Sam pling Many d iffe re n t ty p es o f tra p s have b een d escrib ed and used fo r trap p in g ad u lt ro o t-m a g g o t flies to d e te rm in e phenology, re la tiv e e s tim a te s o f ad u lt abundance, and a c tiv ity (Southwood 1978, E ckenrode e t al. 1975, M cEwen e t al. 1973, Ellington 1963, C a rru th e rs 1979, Loosjes 1976). A c tiv ity tra p s , stic k y tra p s and flig h t in te rc e p tio n tra p s have been used in m ore re c e n t stu d ie s in to OM flig h t a c tiv ity (E ckenrode e t al. 1975, M cEwen e t al. 1973, L oosjes 1976). B aited tra p s have also been used, w ith b a its ranging from blood and bone m eal (E ckenrode, 1979, Ag. Exp. Stn., G eneva, NY, pers. com m .) to fe rm e n te d y e a st m ix tu res (P ete rso n 1924) and onion v o la tile m ix tu res (E ckenrode e t al. 1975, Loosjes 1976). R esu lts o f ad u lt trap p in g have b een used in New Y ork and M ichigan to d escrib e th e phenology of th e a d u lt OM and to id e n tify tim e s o f peak flig h t a c tiv ity (E ckenrode e t al. 1975, C a rru th e rs 1979). E ckenrode e t al. (1975) su g g ested th is in fo rm atio n could be used to help tim e a d u lt c o n tro l a c tiv itie s during th e season and to provide in fo rm atio n on su ccess o f th e c o n tro ls used. D e g ree -d a y re q u ire m e n ts fo r p eak a d u lt flig h t a c tiv ity d e te rm in e d from a d u lt tra p p in g w ere found to be v ery sim ila r in New York and M ichigan 19 (C a rru th e rs 1979). C a rru th e rs (1979) su g g ested cau tio n , how ever, if d eg ree-d ay re q u ire m e n ts w ere used fo r p red ictio n purposes. He s ta te d th a t la rg e d ev iatio n s can o c cu r in p re d ic tin g second and th ird g e n eratio n flig h t a c tiv ity due to u n acco u n ted fo r en v iro n m en tal m o rta lity o f th e la rv a e . His re s u lts, how ever, w ere based on ad u lt tra p p in g fo r only one y ear. L oosjes (1976) used flig h t in te rc e p tio n tra p s to m o n ito r ad u lt a c tiv ity and re la tiv e abundance in th e N eth erlan d s. T rapping re s u lts tra c k e d population d e c re a se s from su ccessiv e s te r ile m ale re le a se s and th e e f f e c t o f d iffe re n t applied c h em ica l c o n tro ls. He also used re le a s e -re c a p tu re ex p erim en ts to e s tim a te OM a d u lt d ensity. A to ta l o f 8,550 m arked flies w ere re le a se d over th re e field s during th e f ir s t g e n eratio n flig h t. P o p u latio n le v els o f 1.7-3.6 flies p er sq u are m e te r w ere c a lc u la te d fo r field s w here onion p la n t dam age was high. M ost of th e in fo rm atio n on sam pling fo r ro o t m aggot la rv a e is co n d u cted on a sm all plo t p e rs p e c tiv e w here a s e t num ber o f p la n ts, s e le c te d random ly, a re exam ined for various in se c t life -s ta g e s . Loosjes (1976) su g g ested th a t s tr a tif ie d random sam pling would be m ore a p p ro p ria te fo r sam pling th e OM sin ce a la rg e v a ria n c e was o fte n a sso c ia te d w ith sam ple re s u lts when sim ple random sam pling was used. S tra tifie d sam pling is reco m m en d ed w here obvious d iffe re n c e s a re n o ta b le in population p a ra m e te rs fo r d iffe re n t classes, s tr a ta or h a b ita t of th e sam ple sp a c e (Jessen 1978), This ty p e o f sam p lin g was shown by C a rru th e rs (1979) to in c re ase sam pling p recisio n and to re d u c e th e num ber o f sam p les re q u ire d when sam pling OM im m a tu re sta g e s . He id e n tifie d tw o c la sse s o f onions (visually h e alth y and visually dam aged) w hich he divided in to fiv e sub­ s tr a ta . He show ed th a t sam p lin g visually h e alth y onions a cc o u n te d fo r m ost o f th e v a ria n c e in sam ple re s u lts and su g g ested th a t to ta l im m a tu re d en sity 20 e s tim a te s could be m ade by using th e sam p le re s u lts of th e o th e r s t r a ta o f onions. C a rru th e rs (1979) a n aly z e d all im m a tu re life -s ta g e s , including th e pupal s ta g e . In an a c tu a l biological m o n ito rin g program , how ever, d e te rm in a tio n of all th e life -s ta g e s is im p ra c tic a l. Loosjes (1976) n o ted th a t up to 50% o f th e eggs o f th e OM m ay be overlooked in sam pling and th a t sam p lin g fo r firs t in s ta r la rv a e re q u ire s e x tre m e ly c a re fu l d isse c tio n o f all p la n t m a te ria l, ru lin g o u t th e use o f a s e a rc h -ty p e program . Southw ood (1978) provides an e x c e lle n t rev iew o f dispersion and p o in ts ou t th e im p o rta n c e o f know ing th e p a tte r n o f d istrib u tio n o r disposition o f an im als in sp ac e . T he OM population has been d escrib ed as being d istrib u te d in an a g g re g a te d p a tte r n w ithin and b e tw ee n field s (P erro n e t al. 1955, W orkman 1958, R aw lins e t al. 1960, C a rru th e rs 1979). C a rru th e rs (1979) f i t observed freq u en cy d istrib u tio n s of onion m aggot la rv a e p e r onion to a n e g a tiv e binom ial freq u en cy d istrib u tio n and re p o rte d th a t a com m on "K," o r f a c to r of a g g re g atio n , ex isted for th e d iffe re n t sam pling periods. He also ex am in ed th e s p a tia l d istrib u tio n o f OM pupae around an onion so u rc e and show ed th a t 90% o f th e pupae w ere lo c a te d w ithin a six inch radius from an onion and th a t all pupae lie above six in ch es in th e soil. Loosjes (1976) re p o rte d th a t th e o c c u rre n c e of pupae in a fie ld co n fo rm ed to th e n e g ativ e binom ial d istrib u tio n w ith K d ep en d en t on th e m ean. L ittle in fo rm atio n has been published on sam p lin g m eth o d s used to assess OM p la n t d am ag e in th e field . M ost re p o rts o f onion loss have b een q u a lita tiv e , describ in g huge losses during c e rta in y ears fo r la rg e onion grow ing a re a s , but no in fo rm a tio n is given on how th e e s tim a te s w e re m ad e (P erro n e t al. M athew m an e t al. 1950, Hudon and P e rro n 1954). 1958, To e s tim a te dam age loss, Loosjes (1976) su g g ested th a t random sam p les o f .5 m e te r to 1 m e te r o f onion 21 row be exam ined (depending on d am ag e in te n sity ). The num ber o f such sam ples is c a lc u la te d by analyzing th e m ean and v a ria n c e o f a p rio r sam p le e s tim a te . C a rru th e rs (1979) also re p o rte d on a design fo r sam pling m ean p lan t d am ag e a t b oth a fie ld lev el and a reg io n al level. d e te rm in a tio n His tech n iq u e provides optim um o f a sam ple u n it, size , and num ber fo r d iffe re n t le v els of p recision. The d istrib u tio n o f onion m aggot p la n t d am ag e has been d escrib ed as contagious (P erro n e t al. 1955, W orkm an 1958, R aw lins e t al. 1960). Through a q u a n tita tiv e study, Loosjes (1976) re p o rte d a n e g a tiv e binom ial d istrib u tio n of onion p la n t d am ag e w ith "K" d e p en d e n t on th e m ean. C a rru th e rs (1979) also re p o rte d a n e g a tiv e binom ial d istrib u tio n o f OM p lan t d am ag e b o th w ithin and b e tw ee n onion fields. S everal reaso n s fo r th e a g g re g a te d p a tte r n o f dam age w ere given by Loosjes (1976) and C a rru th e rs (1979). A lthough no com m on a g g re g atio n c o e ffic ie n t w as found, a co m b in atio n o f in te ra c tin g fa c to rs was su sp e c ted . T hese included: 1) c lu ste re d egg depo sitio n , 2) o vipositional p re fe re n c e fo r c e r ta in sizes o r d e n sitie s o f onions, 3) s tro n g o v ip o sitio n al p re fe re n c e fo r previously dam aged onions, 4) possible d en sity d ep en d en t survival, and 5) e f f e c t o f th e s p a tia l d istrib u tio n o f th e g ran u lar in s e c tic id e p laced in th e row a t tim e o f plan tin g . C a rru th e rs (1979) b eliev ed th a t in itia l p la n t dam age f itte d a random d istrib u tio n and a c te d as a c e n te r fo r f u r th e r d am ag e. He su g g este d th a t su cc e ssfu l in itia l d am ag e was in p a rt due to oviposition on u n p ro te c te d a re a s o f onions w here th e soil in s e c tic id e was no t p re se n t. A nalysis o f d am ag e sam ples from a lim ite d num ber o f D y fo n a te -tre a te d field s su p p o rted th is hypothesis. 22 HI. ECOSYSTEM STRUCTU RE, IDENTIFICATION AND CO NCEPTU A L MODEL. The onion a g ro eco sy stem is an e x c e lle n t sy stem to stu d y in a w id e-area ap p ro ach fo r e co sy stem analysis. Onions in M ichigan a re p re se n tly grow n on m uck soil which o ccu rs in d is c re te p o ck ets in various a re a s of th e s ta te . As a re s u lt, its boundaries a re w ell d efin ed , and system e n v iro n m en t dichotom y is easily p e rfo rm ed . This dichotom y is a f ir s t s te p eco sy stem ap p ro ach (H aynes e t al. 1980). to w ard s developing an F o r m any crops, th e firs t s te p o f a c o n c e p tu a l s e p a ra tio n is d iffic u lt due to th e m any a g ric u ltu ra l and n a tu ra l e co lo g ica l sy ste m s w ithin th e sp ace o f stu d y . T h ese sy ste m s com pound th e in te ra c tio n s and can le a d to a g re a te r lis t o f c o n tro lla b le and u n co n tro llab le fa c to rs th a t becom e d iffic u lt to a s c e rta in in m u ltip le sy ste m -e n v iro n m en t in te ra c tio n s. This im plies th a t a sy stem w ith a m ore d efined g eo g rap h ical region (object o f concern) may lend its e lf b e tte r to th e c o n c e p tu a l fram e w o rk of system en v iro n m en t dichotom y. The s tru c tu ra l fe a tu re s o f in te ra c tio n le v els w ithin th e onion ag ro eco sy s­ te m and th e id e n tific a tio n of th e m o n ito red e n v iro n m e n t and o b je c t o f c o n tro l a re d e sc rib e d by H aynes e t al (1980) (F igure 1). T hese fe a tu re s of th e onion ag ro eeo sy stem design can be re o rg a n iz ed so th a t w hen stu d y in g th e population dynam ics o f th e OM, th e OM b eco m es th e re fe re n c e point (F igure 2). sy ste m -e n v iro n m en t dichotom y, and su b seq u en t re -o rg a n iz a tio n , This provide a fram ew o rk fo r a q u a n tita tiv e analysis o f th e sy stem and th e ir in te ra c tio n s. Id e n tific a tio n of th e co n tro lle d and u n co n tro lled b io tic and a b io tic fa c to rs in th e m o n ito red en v iro n m en t a re n e c e ssa ry to insure th a t m an ag em en t or p ro d u ctio n options a re d e te rm in e d and th a t o th e r p a ra m e te rs a re a t le a s t id e n tifie d and m onitored. 23 Figure 1. Conceptualization of the onion agroecosystem showing levels of interaction within the object of control and the monitored environment. Numbers refer to footnotes in Appendix B (after Haynes et al., 1980). MONITORED OBJECT ENVIRONMENT REFERENCE P O IN T ORDER H ORDER I OF CONTROL ORDER m ORDER 3E ORDER 1 2 UNCONTROLLED ABQTlC FACTORS rwl Rpdd^i Rcw loll W ird TefwtiihTt 1A# aid St»<) Rrisinr* H uT »& 'r L«1 WokT TcMf 5"t>* Com# tS2S5E? UNCONTROLLED b o t ic fa c to r s Se K f f C B*QtC CfiflJDfiS O n e r S « v t - L k S r t ’j> « » ! a c ,4<> C>»*C Btilb NtmeWcM- [Wl'TS'VS MrtCriTtJO-(i>**“nM.M'i* Rjtf- fcjWT1? PO-MqCQC*** ' Ce«*AL ELCWA-fALNA CCUGTCN 5URv£T C#Cp Pu^Oypnv iu d com luccor H R ijp t i n HMC1 Qpw#«3J iRtrCfl ^pcwm Vtfirtftfp fttdoori fienotffit Pc«ii 0ffY*« te'iy | ■ m l jhcrtnq Cu^ivatton 1 ‘ *C. aeitw twL W icitel arscu*cc «a, D*0(1U • M u m , M M V I, L f^TT^«•**!<,IIt]" W 1'W ig trv-H lih t tn m A isiT E ta . *•#«*»«■ | L W lS iV T f ^ tftn t VnrttJjT J 25 OBJECT OF CONTROL R e f e r e n c e Point O+j i O N Order 1 Order II OMON TH PFS M ACGOl OUtO**PLANT Order III O r d e r IV pntOAtoR Adill* 0 (C K S d fttl Cu***pAn«^f> L C A F B L IG H T DolifN* w<*4>*”tut* Du ^ t (H’flrUjni P A IH O G C N L SCCD C O R N AteoCtVor* Mn*Al* MAGGOT Hftrr^yA OlAllrfJ EARTMWOfTM 'elm Figure 2. Conceptualization of the object of control for the onion agroecosystem with the onion m a g g o t , Hvlemya antiqua, as the reference point. 26 A co n ce p tu a l subm odel o f the onion sy stem was developed e a rly during th e onion ag ro -e co sy stem p ro je c t (W hitfield e t al. 1981). The in itia l m odel co n cep ­ tu a liz a tio n and s tru c tu re re su lte d fro m a te a m e ffo rt by Mr. F ran k D rum m ond, Mr. J. V alenti and th is a u th o r. The m odel co n siste d o f s e v e ra l subm odels including th e OM, th e onion p la n t, and a b raco n id p a ra sito id . A biotic v ariab les o f th e m odel w ere soil and fo lia r p e sticid e s, w e a th e r and tim e . T hese v a ria b les w ere used to c o n s tru c t a m odel th a t would show th e d istrib u tio n o f m a tu rity fo r th e organism s a t any point in tim e . This m odel was p rim arily a re s e a rc h tool fo r id e n tify in g a re a s w here m ore in fo rm atio n was needed. It also serv ed as a co m prehensive review of th e lite r a tu r e and as a c a ta ly s t w hich fo rc e d us to e x am in e th e ty p es and e f f e c ts of a v a rie ty o f c o n tro l s tra te g ie s . D esigning th e m odel and id en tify in g th e vario u s p a rts o f th e sy stem involved a p ro cess of breakdow n, re ite ra tio n , and te s tin g th a t en ab led us to view and work w ith the com plex onion sy stem . V alidation o f m odel runs w ere n o t m ade during th is p h ase o f th e m odeling p ro je c t since l ittl e to no q u a n tita tiv e in fo rm atio n w as av ailab le a t th e tim e ab o u t field d e n sities of th e life -s ta g e s o f th e OM, its p a ra sito id , and re s u lts o f applying ch em ica l c o n tro ls. S im ulation runs fo r th is c o n c e p tu a l m odel w ere c o m p ared only to a v ailab le in fo rm atio n from th e lite r a tu r e . A. C o n ce p tu a liz ed M odel T he c o n c e p tu a liz e d m odel (Fig. 3) had c o n tro lla b le inputs: w e a th e r (th re e d iffe re n t w e a th e r s e ts from Lansing, L udington, and H oughton, MI), p a ra sitism (A p h a e re ta p allipes Say), p la n tin g d en sity , ty p e o f p e stic id e , freq u en cy of p e stic id e use, in itia l d a te o f a p p lic a tio n o f p e stic id e , and sp rin g d en sity o f onion m aggot pupae. T he o u tp u ts o f th e m odel a re y ield (am ount p e r a cre), n e t p ro fit, and th e num ber o f individuals in e ac h age class (for e a c h organism ). The m odel 27 was judged a su ccess if th e re was good c o rre la tio n b e tw ee n o u tp u t and in fo rm atio n in th e lite ra tu re . In fo rm u latin g th e m odel, a o n e -a c re fie ld o f onions was co nsidered. It was th o u g h t th a t th e size o f th e field would have no b earin g on th e dynam ic in te ra c tio n s th a t w ere ta k e n in to a c c o u n t by th e m odel. W ith m inor m o d ifica­ tio n , any size field could be im p le m e n te d in to th e m odel s tru c tu re . This assum ption was based on tw o re s tra in ts th a t w ere b u ilt in to th e m odel. F irs t, no im m ig ratio n o r e m ig ra tio n would ta k e p la ce w ith th e OM or th e p a ra sito id com ponent (closed system ). Second, onion bulb g ro w th would be based on a s ta tic reg ressio n m odel th a t would re su lt in uniform g ro w th fo r all onions. T hese re s tra in ts enabled th e m odel to e lu c id a te th e in te ra c tio n s in d ep en d en t of th e siz e of fields. The econom ic se c tio n o f th e m odel was a s ta tic subm odel in th a t th e c o st o f lab o r and m a te ria ls, as well as m a rk e ta b ility o f th e crop, rem ain ed c o n sta n t through tim e . This was no t d e trim e n ta l to th e w orkings o f th e m odel sin c e it provided a s ta n d a rd m easu re w here com parisons b e tw ee n sim u latio n runs could be m ade quickly. The c o n stru c tio n o f a m odel d e ta ilin g th e re la tio n sh ip s b e tw ee n a b io tic p a ra m e te rs and p e stic id e e ffe c tiv e n e s s and breakdow n was n o t u n d e rta k en due to th e co m p lex ity of such a sy stem . In ste ad , it was assum ed th a t d a ta on av erag e, h a lf-life te n d e n c ie s o f c e rta in p e stic id e s a p p ro x im a te d m o st p e stic id e behavior over a wide range of w e a th e r co n d itio n s (F. M atsum ura, 1978, and A. Wells, 1977, p ers. com m ., D ept, o f E ntom ology, Mich. S t. Univ.). A n u m b er of re s tric tio n s or assum ptions w ere in c o rp o ra te d in to th e m odel com ponents co n cern in g th e population dynam ics o f th e OM and p a ra sito id . A ssum ptions th a t applied to all th e organism s w ere: (a) m o rta lity was no t a g e -sp e c ific in each age 28 Figure 3. Functional diagram of the life system of the onion maggot (S=spacing of onions, D=dead onion plants, P=mortality due to pesticides, E=eggs, A=parasitism, N=natural mortality). A, submodel of the onion, pesticide, and economics components; B, submodel of the dynamics of the onion maggot population; C, sub­ model of the dynamics of the parasitoid population. 29 S© ! £ £ © i B £ i I !©I i© I©! i© I 30 class, b u t was d istrib u te d uniform ly; (b) th e re a c tio n of a ll life s ta g e s to te m p e ra tu re was in sta n tan e o u s; and (c) d ev elo p m en t was te m p e ra tu re d ep en d en t. No a g e -sp e c ific m o rta lity was assum ed because no p e rtin e n t in fo rm atio n on this to p ic was found in th e lite r a tu r e . It was fe lt th a t th e b e st ap p ro ach was to t r e a t m o rta lity uniform ly across th e life s ta g e s until re s e a rc h d ic ta te d o th erw ise. P re se n tly , assum ptions b and c form th e basis fo r m ost in s e c t p opulation d ynam ics m odels (R. R abinge, 1978, pers. com m ., A gric. In st., W ageningen, N etherlands) (F ulton 1978). More sp ec ific a lly , th e d a ta o f E llington (1963) and S alkeld (1959) ten d to suggest th a t th e se te m p e ra tu re relatio n sh ip s hold tru e fo r th e OM and A. p aliip es. T e m p e ra tu re had th e m ost w idely d is trib u te d e f f e c ts in th is m odel. It was input to a num ber o f fu n ctio n s th a t a ffe c te d a d u lt e m e rg e n c e , oviposition, surv iv al and le n g th of s ta y in a life s ta g e . T e m p e ra tu re d a ta from th e N atio n al W eather S ervice w as supplied in th e form o f daily m axim um s and m inim um s. T he tim e sequence of th e m odel was in te n th s of days, e ac h te n th or 2.4 hours re p re se n tin g a DT (i.e .,A t). In o rd e r to c a lc u la te an a v e ra g e te m p e ra tu re fo r e ac h DT, te m p e ra tu re changes w ithin a day w ere assum ed to be sinusoidal w ith th e m axim um and m inim um tw elv e hours a p a rt (F ulton 1978). A verage air te m p e ra tu re = Min + [(Max-Min)/2] + [(Max-Min)/2] * [eos(2.4 DT)] T hese c a lc u la te d te m p e ra tu re values, when used to d e te rm in e d eg ree-d ay a cc u m u la tio n s, produced e rro rs th a t w ere in sig n ific a n t w hen looked a t o v er an e n tire season (B askerville and Em in 1969). H e a t units or d e g ree-d ay s w ere used to syn ch ro n ize e m e rg e n c e , to p la ce g rav id OM fe m a le s in th e c o rre c t fe c u n d ity c lass, to re g u la te th e num bers of OM pupae going in to diapause, and to e v a lu a te th e m odel's p e rfo rm a n c e (by co m p arin g observ ed sim u latio n re s u lts w ith 31 in fo rm atio n from th e lite ra tu re ). D egree days = F(t) = Max[0,T(t)-T{)l * DT w here T(t) = te m p e ra tu re a t tim e t To = th resh o ld te m p e ra tu re and h e a t accu m u la tio n in d eg ree-d ay s req u ired fo r m ean d evelopm ent o f a life s ta g e , TDD, is TDD = J x F(t) dt 0 w here x re p re se n ts th e m ean num ber of c a le n d a r days req u ired to c o m p lete d ev elo p m en t in a life sta g e . R egression analysis b e tw ee n d e g re e -d a y a cc u m u la tio n s for a ir and soil have 2 been shown to give c o e ffic ie n ts o f d e te rm in a tio n , r , from .86 to .96 in m in eral soils (L am p e rt 1976). B ath (1975) d ev elo p ed a s o il-a ir te m p e ra tu re m odel fo r m uck soil o f uniform p a rtic le siz e , w ith a slo p e o f less th a n 2% and fo r a d ep th of fo u r inches. ST = 16.41966 + .750848 * a v e ra g e a ir te m p e ra tu re (r2 = .69) This reg ressio n eq u atio n was used to p re d ic t soil te m p e ra tu re s (ST) from a ir te m p e ra tu re s when needed fo r egg, la rv a l, and pupal d ev elo p m en t. The m ain s tru c tu re o f th e m odel could be view ed as a union o f th re e m ain biological com ponents. T hese re p re se n te d th e subm odel o f th e onion, p e sticid e , and econom ics com ponents (Fig. 3 A), th e subm odel o f th e dynam ics o f th e onion m aggot population (Fig. 3B), and th e subm odel o f th e dynam ics of th e p a ra sito id population (Fig. 3C). Using co m p o n en ts w as f e lt to be th e ideal m ethod fo r c o n stru c tin g a m odel o f a sm aller subsystem so th a t th e m odel could be expanded by in te rfa c in g co m p o n en ts w ithout d ra s tic m odel re s tru c tu rin g . T ab le look-up 32 fu n ctio n s (L lew ellyn 1965) w ere used in all th re e com ponents fo r lin e a r in te rp o la tio n s b etw ee n d a ta p o in ts in e ac h e n try and lin e a r e x tra p o la tio n below and above th e m inim um and m axim um values fo r each d a ta se t. T he d en sity o f onions p er a c re av ailab le fo r consum ption by th e OM w as a fu n c tio n o f w ithin-row spacing, sp ec ifie d by th e user. NO = 22366 * 12/SPC w here NO = num ber o f onions p er a cre, SPC = sp acin g o f onions (in inches) w ithin a double row bed. Onion consum ption by each la rv a l s ta g e was d e term in e d a t th e end o f ev ery te n DT's (one day). C onsum ption ra te s w ere based on d a ta by W orkman (1958) and sca le d acc o rd in g to th e la rv a l in sta rs involved. Given th e size o f th e onion bulb a t th a t tim e , consum ption by all in s ta rs was th e n sum m ed and s u b tra c te d from th e num ber o f onions l e f t in th e field. The re la tio n sh ip b etw ee n la rv a l consum ption (volum e o f onion consum ed) and bulb d ia m e te r is as follow s: F irs t in s ta r consum ption = .196 e- *®^ * Second in s ta r consum ption = .4 e“-®5 * T hird in s ta r consum ption = 6.75 e“ ** * w here BD = bulb d ia m e te r (G. Bird, 1976, unpublished d ata). It was assum ed th a t all av ailab le onions in th e fie ld w ere th e sam e siz e a t any one point in tim e and bulb volum e w as o b tain ed from using th e ta b le look-up fu n ctio n fo r an y sp e c ific d a te . bulb volum e = .002 e<-09 * d ays a f te r seeding) The num ber o f onions consum ed (NK) was d e term in e d by s u b tra c tin g th e to ta l volum e o f onion consum ed by all in sta rs from av ailab le onion volum e (bulb 33 volum e * num ber o f onions p e r acre). From th is, th e num ber o f dam aged onions was d e te rm in e d (Loosjes 1976): ND = 1.9 x NK w here ND = num ber o f dam ag ed onions p e r day, NK = num ber o f killed onions p e r day. D am aged onions w ere assigned a p e rc e n t d am ag e a cco rd in g to a n eg ativ e e x p o n en tial eq u atio n w here 50% o f th e dam ag ed onions (ND) w ere assum ed to be 90% consum ed. NO = NO + (ND x .5) x CX w here CX was equal to .1, .2, .3, .4, .5, .6, .7, .8, o r .9. This gave a dam age d istrib u tio n o f nine c lasses fo r th e p a rtia l consum ption o f onions. T he re m a in in g onion volum e w ith in th e se classes was av ailab le fo r consum ption th e n e x t day. The p e rc e n t o f volum e no t consum ed w as c o n v e rte d back to h e alth y onions, based on th e assu m p tio n th a t th e OM la rv a usually m ig ra te s only when th e onion has been consum ed. C a lc u la tio n o f th e num ber of dam aged onions was n e ce ssa ry as an input fo r th e econom ic s u b c o m p o n e n t. Furrow and fo lia r in se c tic id e a p p lic a tio n s w ere av ailab le m an ag em en t options. An in -fu rro w a p p lic atio n th a t in flic ts 98% m o rta lity on all la rv a l sta g e s (A. Wells, 1977, p ers. com m ., D e p t, o f E ntom ology, M ich. S t. Univ.) can be m ade a t p la n tin g tim e . A fo lia r sp ra y d ire c te d a t th e a d u lt OM m ay also be applied a t various tim e s durin g th e season. D epending on th e p a rtic u la r sp ra y chosen, th e m o rta lity f a c to r o f a d u lt OMs and A. p allip es follow s an e x p o n en tial d e ca y cu rv e w ith a h a lf-life o f one, tw o o r four days (F. M atsu m u ra, 1978, p ers. com m ., D ep t, o f E ntom ology, Mich. S t. Univ.). PM ORT = 1.0 - .96 * EXP ((-CPDAY) * (.69314/FR E Q )) 34 w here PM ORT = m o rta lity due to in se c tic id e spray, CPDAY = num ber o f days b e tw ee n sprays, FREQ = resid u al e ffe c tiv e n e ss o f sp ray applied (M alathion - 1 day, P a ra th io n - 2 days, D iazinon - 3 days). A t h a rv e st th e to ta l num ber o f onions rem ain in g in th e fie ld (NO) w as con­ v e rte d to 100 pound q u a n titie s (440 onions p er cw t) and m u ltip lied by th e m a rk e t p ric e ($6.00) to give a gross p ro fit fo r th e end o f th e grow ing season. The n e t p ro fit was o b tain ed by d eductin g th e c o sts o f any p e stic id e s used and th e fixed c o sts of production, e s tim a te d to be $1200.00 (C. C ooper, 1976, pers. com m ., Coop. Ext. Ser., M ich. St. Univ.), from th e gross p ro fit. NETP = ((NO/440) * 6.0) - (CF + CS)) - 1200. w here NETP = n e t p ro fit, NO = num ber of h e alth y onions rem ain in g in field, CF = c o st o f a furrow in sec tic id e , CS = c o st o f fo liar in sec tic id e . It was found th a t th e d ev elo p m en tal perio d o f a population o f organism s was d istrib u te d ov er tim e . T h a t is, fo r th e a g g re g a te flow s, individuals have d iffe re n t lag tim es; th e re fo re , while individuals m ay e n te r th e process a t th e sam e point in tim e, th e o u tp u t flow w ill be d istrib u te d o v er tim e . This was usually due to g e n etic d iffe re n c e s am ong individuals and v ariab le conditions in th e m ic ro c lim a te . A m ethod o f m odeling th is ty p e o f a g g re g a tiv e b eh av io r c an be p e rfo rm ed by using tim e-v ary in g , d is trib u te d delay s (M anetsch and P ark 1977). The basic assum ption in using tim e -v a ry in g , d is trib u te d delays to sim u la te in se c t d ev elopm ent was th a t th e tim e re q u ire d fo r d ev elo p m en t o f a sp e c ific s ta g e had an a sso c iate d m ean and v a ria n ce fo r a te m p e ra tu re reg im e. D epending 35 on th e shape o f th e p ro b ab ility d en sity fu n ctio n o f th e p a rtic u la r process, th e p a ra m e te rs D and K w ere chosen, such th a t D was th e m ean lag tim e , D = D(t), and K d escrib ed th e shape of th e d istrib u te d v a ria b le. When m odeling a continuous p ro cess as opposed to a d is c re te one, th e assum ption is m ade th a t m o rta litie s , d ep en d en t on te m p e ra tu re , o p e ra te d continuously. This im plies th a t: P(t) = P(o) e a t w here t = tim e , a = in sta n tan e o u s survival P(o) = in itia l population, P(t) = population a t tim e t. F ulton (1978) developed th e idea o f in sta n tan e o u s su rv iv al being an ex p o n en tial re la tio n sh ip w ith te m p e ra tu re . This id ea enabled m o rta litie s to be im p lem en ted in th e delay technique. In try in g to apply a survival fu n c tio n over th e e n tire life s ta g e , a co m p licatio n aro se sin ce th e tim e sp e n t w ithin th e s ta g e was also a fu n ctio n o f te m p e ra tu re . The in te ra c tio n was e lim in a te d by using th e in sta n tan e o u s survival ra te as th e p ro p o rtio n al loss ra te : P(t) + DT = P(t) e PLR w here PL E = a + b * te m p e ra tu re The in sta n ta n e o u s survival r a te was used to co m p u te h a lf-liv es o f th e o+ individuals under th e e x istin g te m p e ra tu re reg im e. By s e ttin g P (t)/P (o) = e = 1/2, th e h a lf-life b ecam e t = -(ln 2 /a). This h a lf-life re p re se n ts a m edian survival tim e. The follow ing rela tio n sh ip s b etw een in sta n tan e o u s su rv iv al and te m p e ra ­ 36 tu re w ere used in th e m odel: egg su rvival = .16 - .03 te m p e ra tu re f ir s t in s ta r surv iv al = 1. - .02 te m p e ra tu re second in sta r survival = .5 - .01 te m p e ra tu re th ird in s ta r surv iv al = .11 - .002 te m p e ra tu re The OM com ponent was resp o n sib le (a) fo r sim u latin g th e passage of individuals through th e various ag e classes, (b) fo r sim u la tin g th e e ffe c ts of d iffe re n t m o rta lity fa c to rs , and (c) fo r supplying th e o th e r com p o n en ts w ith num bers o f OMs in various a g e classes. Two im p o rta n t assum ptions w ere m ade: (a) d e n sity -d ep e n d e n t re la tio n sh ip s did n o t o p e ra te in th e OM sy stem ; and (b) all fe m a le a d u lts w ere m a te d and fe rtiliz e d . T hese assum ptions w ere m ade because o f la c k o f d a ta to sp e c ify o th erw ise. The tim e -v a ry in g , d is trib u te d d elay s, fo r a g g re g a te s m oving through th e ag e classes, w ere d e p en d e n t on th e m ean d e v elo p m en tal tim es. The onion m aggot com ponent fo r th e m ost p a rt w as e x e c u te d on a p er DT basis. The m o rta lity a c tin g w ithin th e d e v elo p m en tal s ta g e s was a p ro d u ct of th e "n atu ral" te m p e ra tu re d e p en d e n t m o rta lity and th e m o rta lity due to p e sticid e s. These w e re assum ed to be in d ep en d en t e v en ts. The pupal m o rta lity depended solely on soil te m p e ra tu re . diapause. T he o v e rw in te rin g delay re p re se n te d th e num ber th a t e n te re d The su b ro u tin e "diapause" c o n v e rte d pupae to diapausing pupae, depending on d e g re e -d a y accu m u la tio n s. The th re e g e n e ra tio n s w ere tra c k e d by a cc u m u la tin g d e g re e-d a y s. Ten, 67 and 100% o f th e pupae w ere p u t in to diapause from e ac h g e n e ra tio n , re s p e c tiv e ly (P erro n 1972). D eg ree-d ay s w ere also used to p la ce m a tu re fe m a le s in to fe c u n d ity classes. The num ber of eggs o v iposited by a g rav id fe m a le was tie d to th e te m p e ra tu re 37 re g im e th a t th e individual was exposed to during preoviposition (Loosjes 1976). The a p p ro x im a te le n g th o f th e p reo v ip o sitio n al perio d fo r OM is 120 d e g ree-d ay s. This was c a lc u la te d by: TOTAL = TOTAL + [2.0 * MAXTEMP (I) + MINTEMP (1)] + [MINTEMP (1+1)1/4 .0 w here TOTAL = sum o f a v e ra g e daily te m p e ra tu re s o f p reo v ip o sitio n al period (120 d egree-days) F ive fe c u n d ity delays w ere used a t 50°, 60°, 70°, 80° and 9 0 °F . If a group of fe m a les u n d erw en t preo v ip o sitio n al d e v elo p m en t b etw een 45° and 55° F, th ey w ere put in to delay 50° F. S im ilarly, if an a g g re g a te of fe m a les w ere exposed to an a v e ra g e te m p e ra tu re o f 7 4 °F during p reo v ip o sitio n al d ev elo p m en t, th e y w ere p u t into delay 7 0 °F, e tc . BIN = (.5 + TOTAL/S/10.0) - 4 w here BIN ~ d ev elo p m en tal class (1,2,3,4 o r 5, co rresp o n d in g to classes of 50°, 60°, 70°, 80° and 90° d ev elo p m en tal delays) S = num ber o f days fo r p reo v ip o sitio n al period. Each day th e to ta l num ber o f fe m a le s re m a in in g in e a c h d elay would ovip o sit an a v e ra g e num ber o f eggs for th e ir fe c u n d ity class. 5 NUMEGG =.2j NROLEF(I) * NT w here I = d ev elo p m en tal class 1 through 5, NT = .75, 2.5, 4.0, .5 o r 0, co rresp o n d in g to d ev elo p m en ta l class, NROLEF(I) = num ber of ov ip o sitin g OM fe m a les in each d ev elo p m en tal class (I), NUMEGG = to ta l n um ber o f eggs o v ip o sited p er day. M any fa c to rs will a f f e c t th e p la c e m e n t and s p a tia l d istrib u tio n o f th e eggs. A s ta t ic d istrib u tio n (P erro n 1972), w here 65% o f th e eggs a re o v ip o sited in th e soil 38 and 35% a re oviposited on th e onion p lan t, w as used b ecau se m ore com prehensive d a ta w ere u navailable. This did n o t d e tr a c t from th e m odel sin ce no m ig ratio n tim e was assum ed. The p a ra sito id com ponent involved a s tru c tu re (use of delay s fo r th e various life stag es) sim ilar to th e OM co m ponent. The p a ra site a tta c k m odel was a m odified version o f G riffith and R olling (1969). ANHA = ANO * [[l-(l+ A *T A G *P )]/(A N O * AK)] - AK w here ANHA = to ta l num ber o f hosts a tta c k e d during DT, ANO = prey density, A = num ber o f a tta c k s p e r unit tim e , TAG = to ta l tim e a v ailab le fo r g e n e ra tin g a tta c k s , P = p a ra sito id den sity , AK = dispersion c o e ffic ie n t, "k" o f n e g a tiv e binom ial (p arasite). T he m odel used th e num ber o f av ailab le hosts, along w ith th e num ber o f ad u lt p a ra sito id s, to g e n e ra te a p e rc e n t p a ra sitism . PATT = A N H A /(A N O *2.0/SPC ) * .1 w here PATT = p e rc e n t a tta c k by p a ra site s, SPC = onion p la n t spacing, IPPO = 7.1 * PP w here PP = num ber o f p a ra sitiz e d pupae, IPPO = num ber o f fe m a le p a ra sito id s em erg in g from p a ra sitiz e d pupae. In th e m odel, provisions w ere m ade fo r d isco v erin g individuals th a t w ere previously p a ra sitiz e d . T he d a ta o f Salkeld (1959) su g g est th a t A. p allip es can d isc rim in a te b e tw ee n p a ra sitiz e d and n o n p a ra sitiz e d hosts. This w as sim u la te d in th e OM m odel by rem ovin g th e p a ra s itiz e d la rv a e from th e n orm al flow 39 through th e la rv a l delays. The p a ra sitiz e d la rv a e (each DT) w ere p laced in to a p a ra lle l delay. To g e n e ra te p a ra sitiz e d la rv a e , th e a tta c k m odel used la rv a e only from th e u n p a ra sitize d , OM com ponent. Thus, la rv a e a re n ev er p a ra sitiz e d m ore th a n once. The a tta c k r a te s w ere applied to th e in te rm e d ia te r a te s o f th e la rv a l delays. This a c te d as an a ttr itio n to th e d elay and added to th e p a ra sitiz e d la rv a l in te rm e d ia te ra te s . T he p a ra sitiz e d la rv a l flow p ro ceed ed a t a r a te 20% fa s te r (Salkeld 1959). R esu lts and D iscussion No independent s e t o f d a ta was av ailab le fo r v alid atio n o f th e m odel; how­ e v er, th e m odel m e t known fe a tu re s o f OM biology. T hese fe a tu re s included: 1) The OM has th re e overlapping g e n eratio n s p e r season in M ichigan. 2) The d ev elo p m en t of th e life sta g e s a re te m p e ra tu re co n tro lle d and peaks o f a d u lt e m e rg e n c e m ay be p re d ic te d through d e g re e-d a y a ccu m u latio n s. 3) The m axim um dam age to onions usually o ccu rs e a rly in th e season when bulbs are sm all. F igure (4A) shows how th e m odel a d e q u a te ly sim u la te d th e f ir s t tw o of th e se conditions. G iven an in itia l p o p u latio n o f 1000 pupae p er a c re , th re e , non­ overlapping, g e n e ra tio n s w ere sim u la ted due to th e re la tiv e ly sh o rt tim e sp e n t in preoviposition. The peaks o f th e se cu rv es re p re s e n t m axim um a d u lt e m e rg e n c e and o ccu r a t d e g re e-d a y a cc u m u la tio n s o f 280, 1200 and 1950 (4 .4 °C) fo r E ast Lansing, M ichigan, w e a th e r d a ta o f 1977. T h ese valu es a g re e w ith th o se o f E ckenrode e t al. (1975) who re p o rte d a th e rm a l u n it a cc u m u la tio n fo r th e fir s t, second and th ird broods, re sp e c tiv e ly . The th ird co ndition was also sim u la ted , as illu s tra te d by p lo ttin g th e 40 0 -1 o o < 2“ 190 240 290 90 140 90 APRIL 290 240 140 190 MAY JUNE JULY AUG. SEPT. JULIAN DATE o Figure Simulation with an initial overwintering population of 1000 OM pupae per acre. A, number of adults in preovipositionary classes; B, percent of onions not damaged by maggots over time. 41 p e rc e n t o f onions l e f t in th e fie ld versus th e nu m b er o f days in th e grow ing seaso n (Fig. 4B). in c re ase d . E arly in th e seaso n , d am ag e in c re a se d as to ta l la rv a e D am age th e n te n d ed to le v e l o ff ev en though th e la rv a l p o pu latio n co n tin u ed to in c re a se . The resp o n se w as due to la rg e r bulbs, w hich had a g r e a te r to le ra n c e to la rv a l feeding. G iven th a t th e m odel sim u la te d OM d ev elo p m en t and consum ption c o rre c tly , th re e sim u latio n s w ere m ade to a n aly ze: 1) th e e f f e c t o f a p a ra sito id on OM d e n sitie s and onion yield 2) th e e f f e c t of fo lia r sprays on OM, p a ra sito id d e n sities and onion yield, and 3) th e im p o rta n c e o f th e tim in g of th e f ir s t fo lia r spray. F or th e f ir s t ru n , an in itia l p o p u latio n o f 1000 pu p ae and 500 p a ra sitiz e d pupae per a c re w ere used. p a ra s ite populations (Fig. T h ere w ere th re e d is tin c t p eak s o f rep ro d u cin g 5A) th a t w ere clo sely sy n ch ro n ized w ith th e preo v ip o sitio n peaks o f th e previous run (Fig. 4). The p a ra sito id population d e c re a se d th e seco n d and th ird g e n e ra tio n o f p reoviposition OMs, from peaks of 515 to 220 and from 610 to 200 o v er th e previous ru n (Fig. 5B). The f ir s t g e n e ra tio n was n o t a ffe c te d . As a re s u lt o f th e d e c re a se in th e OM p o p u latio n la te r in th e seaso n , la te d am ag e to onions was less. This sim u la tio n re s u lte d in a n e t p ro fit o f $298.00 p e r a c re , a s opposed to $9.00 w ith o u t p a ra sito id s. In th e second analysis, a sp ray o f m a la th io n w as applied on day 50, and e v e ry 40 days th e r e a f te r , to an in itia l p o p u latio n o f 10,000 pupae and 2000 p a ra s itiz e d pupae p e r a c re . D ay 50 was p ick ed fo r th e f ir s t sp ray d a te to coincide w ith th e end o f th e f ir s t p reo v ip o sitio n p eak o f th e OM, so th a t th e 42 o o On 90 140 190 240 290 o 3 O o o< o w 100 120 MO 160 ISO 200 220 240 260 200 JULIAN DATE Figure 13. Cumulative proportion emergence of three generations of OM adults compared to Julian date in 1978 (A), 1979 (B), and 1980 (C). 72 EM ERGENCE is CUMULATIVE PROPORTION 10 o ID O O o 0 250 500 750 1000 1250 1500 1750 2000 2250 2500 D EG R EE O A Y S AIR < 4 ,4 *C B A S E ) Figure 14. Cumulative proportion emergence of three generations of 0M adults compared to air degree day accumulation (4.4°C base) in 1970 (A), 1979 (B), and 1930 (C). 73 C3 CUMULATIVE PROPORTION EMERGENCE o 500 750 1000 1250 1500 2250 2500 DEGREE DAYS SOIL ( 4 .4 ’ C B A SE ) Figure 15, Cumulative proportion emergence of three generations of OM adults compared to soil degree-day accumulation (4.4°C base at 8 era depth) in 1979 (A) and 1980 (B). CUMULATIVE PROPORTION EMERGENCE 74 © < oc ao 500 750 250& 1500 EMERGENCE DEGREE DAYS S O L (1 ,4 'C BASE! CUMULATIVE PROPORTION a s £o CG s o, 1000 250 1250 1500 1750 2000 CUMULATIVE PROPORTION EMERGENCE DECWEE DAYS Atfl (4 V C BASE) < K 1U 11 10z11 cr UJ 3 in o too 160 220 260 300 JULIAN DATE Figure 16. Average cumulative proportion emergence and rate o£ emer­ gence of three generations of OM adults from 1979-80 com­ pared to: A) soil degree-days (4.4°C base at 8 cm depth), B) air degree-days (4.4°C base), and C) julian date. Table 3 . Probit regression equations for adult OM emergence and degree day period for 50 percent emergence (,5Ep). DD is accumulated degree days above 4.4°C. a) Julian date Year Generation 1979 1980 Avg 1978 1979 1980 Avg 1978 1979 1980 Avg first first first second second second second third third third third Regression Equation Ep Ep Ep Ep Ep Ep Ep Ep Ep Ep Ep = = = = *• = = = = = = -19.22 -19.53 -15.74 —18.87 —21.84 -19.56 -15.34 -42.34 -27.42 -39.24 -33.83 + + + + + + + + + + + .162 .168 .137 .114 .134 .126 .099 .191 .130 .180 .157 *Day *Day *Day *Day *Day *Day *Day *Day *Day *Day *Day r2 .94 .92 .91 .85 .90 .94 .96 .90 .87 .96 .94 .5 Ep 154 145 150 208 200 195 203 248 249 245 247 Variance 38.10 38.10 52.89 76.54 55.69 63.39 100.16 27.53 59.08 30.72 40.46 b) Degree day air (4.4C° base) Year Generation 1979 1980 Avg 1978 1979 1980 Avg 1978 1979 1980 Avg first first first second second second second third third third third Regression Equation Ep Ep Ep Ep Ep Ep Ep Ep Ep Ep Ep = = = = = = = = = = - 1.11 + - .38 + .46 + - 3.98 + - 3.10 + - 2.35 + - 2.18 + -18.33 + -14.70 + -18.12 + -14.27 + .0136*DDO .016 *DDo .011 *DD° .007 *DDo .007 *DDo .007 *DDo .006 *DDO .013 *DDO .011 *DDo .012 *DDO .010 *DDo r2 .5 Ep Variance .94 .93 .88 .89 .97 .94 .96 .88 .82 .95 .97 448 342 399 1,226 1,085 1,033 1,142 1,826 1,760 1,843 1,840 5,375 4,036 7,776 18,673 17,949 19,731 25,299 6,132 7,986 6,359 4,628 Table 3, (continued) c) Degree day soil-8cm (4.4°C base) Year Generation 1979 1980 Avg 1979 1980 Avg 1979 1980 Avg first first first second second second third third third Regression Equation Ep Ep Ep Ep Ep Ep Ep Ep Ep = = = = = = = = = - .16 .82 1.06 - 2.61 - 1.94 - 1.95 -14.93 -16.59 -15.67 + + + + + + + + + Variance - variance of data about a normal curve. .5 Ep - 50% emergence of OM adults (degree days) .015*DD° .016*DD° .012*DD° ,007*DD° .007*DD° .007*DD° .011*DD° .012*DD° .012*DD° r2 .5 Ep Variance .95 .92 .89 .91 .94 .96 .81 .95 .93 348 260 313 1,009 946 990 1,790 1,752 1,769 4,553 3,872 6,339 17,613 18,607 20,315 8,072 6,588 7,330 77 e m erg en ce: Ju lia n d a te , a ir d e g ree-d ay s (4.4°C base), and soil d eg ree-d ay s (4.4°C base). The c u m u lativ e em erg en c e d a ta and fitte d c u rv ilin e a r c u m u lativ e p ro p o rtio n lin es fo r each g e n e ra tio n w ere p lo tte d a g ain st th e se p a ra m e te rs fo r e ac h y e a r (F igures 13-15). F or e a c h p a ra m e te r and g e n e ra tio n , d a ta w ere pooled and c u m u lativ e p ro p o rtio n e m e rg e n c e and r a te o f e m erg en c e fo r th e pooled d a ta w ere d e te rm in e d (F igure 16). T ab le 3 gives th e p ro b it re g re ssio n eq u atio n s fo r e ac h g e n eratio n , y e a r, and p a ra m e te r of p re d ic tio n . The slopes o f th e reg ressio n eq u atio n s w ere found to b e n o t sig n ific a n tly d iffe re n t b e tw ee n y ears in each g e n e ra tio n when soil or a ir d eg ree-d ay s w here used to p re d ic t em erg en c e . S ig n ifican t d iffe re n c e s in th e slopes b etw een y ears fo r e ac h g e n e ra tio n w ere o b ta in e d w here th e Ju lia n d a te w as used in th e p re d ic tio n eq uation. F o r all th re e p a ra m e te rs (a ir soil d e g re e-d a y s and Ju lia n d ate), th e re w ere sig n ific a n t d iffe re n c e s (com parisons o f .95 Cl) b etw een th e in te rc e p ts for e a c h y e a r and g e n eratio n . The la c k o f sig n ific a n t d iffe re n c e s in th e slope o f th e reg ressio n eq u atio n o fte n in d ic a te s th a t d ev elo p m en t is responding equally to an e n v iro n m e n ta l p a ra m e te r such as te m p e ra tu re . The f a c t th a t sig n ific a n t d iffe re n c e s o ccu rred when Ju lia n d a te w as used m ay be e x p e c te d , sin ce te m p e ra tu re a cc u m u la tio n b e tw ee n days can vary consid erab ly . L arg e d iffe re n c e s in th e in te rc e p ts b etw ee n y e ars, how ever, would n o t be e x p e c te d fo r a ir o r soil d e g re e-d a y s if pupae w ere responding only to te m p e ra tu re . M aximum d iffe re n c e s of 106, 193, and 183 a ir d e g re e-d a y s b etw een y e a rs fo r th e f ir s t, second, and th ird g e n eratio n , w ere o b ta in e d fo r 50 p e rc e n t e m e rg e n c e . S im ilarly , m axim um soil d e g re e-d a y d iffe re n c e s b e tw ee n y e a rs o f 88, 63, and 38 w e re o b ta in e d a t 50 p e rc e n t em erg en c e fo r th e fir s t, second, and th ird g e n e ra tio n . 78 V ariab ility in d eg re e-d a y a cc u m u la tio n fo r em erg en c e can cau sed by d iffe re n c e s b etw een y e ars in 1) pupal d istrib u tio n in tb e soil, 2) ra d ia n t energy, 3) soil m oisture, 4) su rfa c e re fle c tio n o f ra d ia n t energy, 5) ground co v er, 6) fall pro duction p ra c tic e s , 7) snow co v er, and 8) ra in fa ll. E ckenrode e t al. (1975) re p o rte d d eg re e-d a y d iffe re n c e s of up to 165 d e g ree-d ay s (298 d e g ree-d ay s °F ) b etw een y e a rs fo r 50% em erg en c e o f th e firs t g e n e ra tio n o f OM in New York S ta te . He also re p o rte d m axim um d iffe re n c e s o f 121 and 244 d eg ree-d ay s b etw een y e ars fo r 50 p e rc e n t em erg en c e of th e second and th ird g e n e ra tio n . Loosjes (1976) re p o rte d co n siderab le d iffe re n c e s when using a cc u m u la te d d e g re edays to p re d ic t OM em erg en c e in th e N eth erlan d s. An ex am in atio n o f his d a ta re v e a le d d iffe re n c e s o f up to 100 d e g ree-d ay s b e tw ee n y ears fo r 50 p e rc e n t em erg en c e in th e f ir s t g e n e ra tio n . Sim ple p re d ic tio n o f OM e m erg en c e m ay n o t be possible through d e g re e day a cc u m u la tio n alone. T ich e le r e t al. (1975) found th a t a slig h t te m p e ra tu re shock to OM pupae in diapause cau sed a c o m p lic ate d re a c tio n p a tte rn such th a t p re d ic tin g d ev elo p m en t was no t possible. M ukerji and G age (1978) found th a t soil ty p e and soil m o istu re a ffe c te d g rassh o p p er egg d ev elo p m en t and th a t h a tc h in g would not o c cu r unless m o istu re s tre s s was re lie v ed (> 13.5%). To in v e stig a te if a b io tic fa c to rs in a d d itio n to te m p e ra tu re a ffe c te d OM pupal d ev elo p m en t in th e spring, th e p ro b it re g re ssio n eq u atio n s of em erg en ce fo r soil d e g re e -d a y s w ere exam ined. The p ro b it re g re ssio n eq u atio n can be re a rra n g e d to include a c o n sta n t such th a t th e c u m u la tiv e d e g re e-d a y d iffe re n c e fo r e m e rg e n c e b etw een tw o y e a rs would b e a t a m inim um . c o n sta n t in to th e eq u atio n , we o b tain : EP = a + b(x-c) By in tro d u cin g a 79 w here: EP = p re d ic te d em erg en ce in p ro b its a = in te rc e p t (desired) b = slope x = c u m u lativ e soil d eg ree-d ay value c = unknown c o n sta n t or: a„ = a , + cb, s 1 1 such th a t fo r a given EP, we s e le c t a g as a sta n d a rd in te rc e p t and a^, b j as the slope and in te rc e p t th a t is a d ju sted to m inim ize th e c u m u la tiv e d e g re e-d a y d iffe re n c e w here: S u b stitu tin g in th e values fo r th e f ir s t g e n e ra tio n e m erg en c e from T able 3 w here 1980 is co n sid ered as a stan d a rd y ear: _ -.1614 - .8206 c = -------------------.01607 =66.2 d eg ree-d ay s soil (4.4° C base) This c o n sta n t im plies th a t d e g re e-d a y accu m u la tio n by OM pupae in 1979 did not s t a r t u ntil 66 d e g ree-d ay s a f te r it should have when com p ared to 1980. All possible fa c to rs th a t would delay an accu m u la tio n o f d e g re e-d a y s in 1979 can now be exam ined in re la tio n to th e le n g th of th e re q u ire d delay. one possible f a c to r may be soil m o istu re o r ra in fa ll. For exam ple, In 1979 th e re w ere 69 a c c u m u la te d d eg ree-d ay s a t th e 8 cm soil d ep th on A pril 24. An e x am in atio n of a c c u m u la te d ra in fa ll (A ppendix C) re v e a le d th a t in 1979 ra in fa ll a cc u m u la tio n w as a ty p ic a l in A pril when co m p ared over a fo u r-y e a r period: 1977-1980. An 80 a cc u m u la tio n o f only 1.24 inches of rain had o c cu rred by A pril 24, 1979, as c o m p ared to 4.59, 3.13 and 3.73 inches in 1977, 1978 and 1980, re sp e c tiv e ly . A lso th e re had been no su b sta n tia l rain (> 1 cm /d ay ) up to this d a te in 1979. D uring th e o th e r years, a su b sta n tia l rain o f a t le a s t 3 cm /d ay had o c cu rred e arly in A pril b e fo re any soil d e g re e-d a y a cc u m u la tio n a t th e 8 cm depth. By rem oving 69 soil d e g ree-d ay s from th e a c c u m u la te d d eg re e-d a y to ta ls , new p ro b it reg ressio n e q u atio n s fo r em erg en ce w ere d e te rm in e d for th e th re e g e n e ra tio n s in 1979 (T able 4). This a d ju stm en t im proved th e use o f soil d e g re e days for p re d ic tin g e m erg en c e for th e tw o y ears and all th re e g en eratio n s. M aximum d iffe re n c e s betw een y e ars o f only 19, 5, and 31 d e g ree-d ay s o ccu rred fo r 50 p e rc e n t em erg en ce. N ot enough in fo rm atio n was av ailab le to confirm w h eth er in f a c t la ck of ra in fa ll or in su ffic ie n t soil m o istu re d elay ed th e 1979 e m erg en ce. It w as observed, how ever, th a t soil m o istu re in G ran t fo r th e spring of th a t y e a r was m uch low er th an o th e r y e ars, and little snow c o v er had o ccu rred during th e previous w in ter m onths. Also, a spring rain can w arm soil su rfa c e la y e rs and in c re a se soil m o istu re w hich im proves h e a t conduction th ro u g h th e soil by re p la cin g th e poorer co n d u cto r, a ir. Sum m ary ta b le s for OM e m erg en ce fo r 1978-80 are p re se n te d in Appendix D. T h ere was no sig n ific a n t d iffe re n c e b etw een tim e o f e m e rg e n c e fo r m ales and fe m a les, although m ales ten d ed to em erg e one to tw o days e a rlie r. Air d e g re e-d a y s and soil d e g re e-d a y s a re th e m ost useful fo r e m erg en c e p re d ic tio n , since th is in fo rm atio n can be used fo r o th e r onion grow ing a re a s. (D eg ree-d ay values (4 .4 °C base) fo r a ir and soil fo r fiv e p e rc e n ta g e s o f c u m u la tiv e e m erg en c e fo r e ac h y ear and g e n eratio n a re p re sen te d , along w ith y e arly a v erag e s in T able Table 4. Probit regression equations for adult OM emergence and degree day period for 50 percent emergence (.5 Ep). DD is accumulated degree days above 4.4 C for the 8 cm soil depth after one day of 1 cm of precipitation in the Spring. Year Generation 1979 1980 1979 1980 1979 1980 first first second second third third Regression Equation Ep Ep Ep Ep Ep Ep = = = = = = .861 .821 - 2.090 - 1.940 -14.160 -16.590 Variance - variance of data about a normal curve. .5 Ep - 50% emergence of OM adults (degree days). + .015*DD + .016*DD + .008*DD + .007*DD +..011*DD + .012*DD r2 .5 Ep Variance .94 .93 .97 .94 .82 .95 279 260 941 946 1,721 1,752 5,375 4,036 17,949 19,731 8,072 6,588 Table 5. Percent Emergence Air and soil degree day estimates for different percentages of emergence of OM adults for 1978-1980 in Grant, Michigan. Degree Day AIR (4.4C base) 1978 1980 1979 Degree Day SOIL (4.4C Average 1979 1980 base) Average FIRST GENERATION 5 25 50 75 95 — — — — 328 398 448 497 568 238 299 342 384 446 255 340 399 458 544 238 303 348 393 458 158 218 260 301 362 183 260 313 367 444 791 920 1,009 1,098 1,227 722 854 946 1,037 1,170 724 894 990 1,085 1,223 1,643 1,730 1,790 1,850 1,938 1,619 1,698 1,752 1,806 1,885 1,629 1,712 1,769 1,827 1,910 SECOND GENERATION 5 25 50 75 95 1,002 1,135 1,226 1,318 1,450 865 996 1,085 1,175 1,305 802 939 1,033 1,127 1,263 8811102 1,035+100 1,142199 1,248+99 1,402198 THIRD GENERATION 5 25 50 75 95 1,698 1,774 1,826 1,879 1,955 1,614 1,700 1,760 1,820 1,907 1,713 1,790 1,843 1,897 1,974 1,683±53 1,776±48 1,840±44 1,882±40 1,957±35 83 5. In te rm e d ia te values can be o b ta in e d through th e p ro b it reg ressio n eq u atio n s and a p p ro p ria te p ro b it tra n sfo rm a tio n s (F isch er and Y ates 1963).) E ckenrode e t al. (1975) re p o rte d a v e ra g e cu m u la tiv e d e g re e-d a y valu es (4.4° C base) for 50 p e rc e n t em erg en c e of th e th re e g e n eratio n s o f OM as 395, 1054, and 1752, w hich a g re e s closely w ith a ir d eg re e-d a y values of 399, 1142 and 1840 re p o rte d here. B. A dult A c tiv ity and R e la tiv e A bundance B efore a d u lt tra p p in g re s u lts could be an aly zed , it was n e ce ssa ry exam ine th e flig h t behavior o f th e a d u lt OM. to S ev eral s e ts of d a ta from ad u lt trap p in g w ere used for th is purpose, in ad d itio n to d a ta on ad u lt flig h t b eh av io r given in th e lite ra tu re . 1. H eight D istrib u tio n o f A dult F lig h t The d istrib u tio n o f flig h t h eig h t was in v e stig a te d in o rd e r to assu re th a t th e h eights o f th e various tra p s used w ere a d e q u a te fo r th e passive tra p p in g m ethods em ployed. C a rru th e rs (1977, unpublished) s e t o u t stic k y tra p s a t various heig h ts in an onion field and w ithin a g rass b o rd er o f th e onion field to m easu re th e heig h t a t which OM a d u lts fly. R esu lts in d ic a te th a t ad u lts fly a t a g re a te r heig h t in th e border a re a s th an w ithin th e onion cro p its e lf (F igure 17). For tra p s p la ce d b etw een onion row s, no ad u lts w ere tra p p e d a t a h eig h t g re a te r th a n 120 cm . Up to 27% o f th e a d u lts w ere tra p p e d a t a h e ig h t g re a te r th a n 120 cm in th e g rass b o rd er a d ja c e n t to th e onions. The re v e rse was tru e a t th e lo w est h eig h t of 0 to 20 cm . Up to 21% of th e to ta l flies tra p p e d w ere cau g h t a t th is h eig h t in th e onion crop, as opposed to none in th e g rass b o rd er. No sig n ific a n t d iffe re n c e s o f m ale to fe m a le ra tio w ere found b etw een th e v ario u s tra p h eig h ts fo r e ith e r lo c a tio n . All trap p in g was c o n d u cte d e a rly in th e season when onion 2 O N K W FIELD 00 - PERCENT CATCH OF TOTAL < 2 BORDER 0 -2 0 20-40 40-60 60-80 80-100 100-120 120-140 140-160 Trap Hei ght ( c m ) Figure 17. Comparison of percent catch of OM adults for different trap heights in two habitats a) within the onion field; and b) grass border area (.95 Cl indicated). 85 p la n ts w ere sm all (Ju n e 7). Loosjes (1976) re p o rte d th a t a d u lt OM w ere seldom o bserved flying m uch above lo c a l v e g e ta tio n , w ith an a v e ra g e flig h t h eig h t o f 10 to 30 cm along d itc h banks, to a m axim um o f 50 cm depending upon m ow ing in te n sity and b o rd er heig h t. In th e G ran t a re a e a rly in th e spring, m ost fo liag e b o rd erin g th e onion fie ld s is ta lle r than th e onion crop. A lthough g rass borders a re norm ally mowed or sp ray ed w ith h erb icid es, th e se a re a s c an a tta in h eig h ts o f up to 120 cm b etw ee n m ow ing or spray in te rv a ls. The ra tio of fo liag e h eig h t of th e borders to onion cro p heig h t, how ever, is no t s ta tic . The onion p lan t norm ally re a c h e s a heig h t of 60-70 cm a t m a tu rity . In o rd er to in v e stig a te w h eth er onion crop h e ig h t can in flu en ce OM flig h t behavior, trap p in g was c o n d u cted w ithin th e onion field a t s e v e ra l d a te s during th e grow ing season. R o ta ry flig h t tra p d a ta from n e ts s e t a t tw o d iffe re n t heig h ts (30 and 100 cm ) re v e a le d th a t th e h eig h t a t w hich ad u lts fly v aries during th e season. E arly in th e season th e 30 cm n e t c au g h t b etw een 90-100% o f th e to ta l a d u lts tra p p e d a t b oth h eig h ts. As th e seaso n p ro g ressed , how ever, a g re a te r p e rc e n ta g e o f flies w ere tra p p e d by th e n e t s e t a t 100 cm (F igure 18A). L a m p e rt (1978, unpublished) m easu red onion le a f le n g th a t various d a te s during th e 1978 season in th e G ra n t re s e a rc h field . L e a st-sq u a re s reg ressio n analysis was p e rfo rm ed on th is d a ta and th e slope o f th e reg ressio n o f d a te versus le a f le n g th of th e onion p la n t was not sig n ific a n tly d iff e r e n t from th e slope o f th e re g re ssio n eq u atio n for d a te versus p ro p o rtio n o f OM cau g h t a t th e tra p h eig h t of 100 cm (F igure 18B). T hese re su lts su g g est th a t OM a d u lts may fly a t or above th e h e ig h t o f th e cro p and th a t flig h t h eig h t in c re ase s o v er tim e due to onion cro p grow th. A tra p h eig h t o f up to 100 cm should be a d e q u a te fo r tra p p in g OM 86 o PERCENT OF CATCH ( 100 CM) to y = —14 5.1+.7 6 92 (x) R ^ .6 4 8 ■ * o - 160 190 200 220 230 240 250 260 o (CM) ID y = —9 5 , 5 2 + . 7676(x) Ra= . 8 7 7 o- ONION LEAF LENGTH U> 150 Figure 18A. Figure 18B, 160 170 180 190 200 J U L I A N DATE 210 2 20 230 Percent of total OM adult catch at the 100 cm net height in 1978. Onion leaf length during the onion growing season in 1978. 87 ad ults th roughout th e onion grow ing season. T raps o f a g re a te r h eig h t may provide higher re la tiv e e s tim a te s o f ad u lt abundance b u t lo g istic a l problem s involving co n stru ctio n and co lle ctio n o f tra p p e d ad u lts may occur. 2. S p a tia l A spects The in flu en ce o f tra p lo c a tio n on trap p in g re s u lts was in v e stig ate d . B ecause trap p in g equipm ent can in te rfe re w ith n orm al production p ra c tic e s , it was n ecessary to d e te rm in e if tra p s could be- p laced along th e edges of th e onion field to obtain re p re se n ta tiv e d a ta on flig h t a c tiv ity . F lig h t-in te rc e p tio n tra p s w ere p laced both w ithin th e field and along th e field edges in 1979. A dult flig h t curves fo r th e second and th ird g e n e ra tio n re v e a le d d iffe re n c e s in th e d en sity of ad u lts tra p p e d b etw een th e tw o lo c atio n s (F igure 19A-B). Up to tw ic e th e d en sity of m ales and fe m a les w ere c au g h t by tra p s p laced along th e border co m p ared to th e tra p s in th e c e n te r of th e onion field. In o rd er to exam ine trap p in g re s u lts in d ep en d en t o f d en sity d iffe re n c e s, tra p counts o f a d u lts w ere tra n sfo rm e d to p ro p o rtio n al counts fo r each lo catio n . The re s u lta n t curves o f a d u lt a c tiv ity w ere observed to b e q u ite sim ilar fo r th e tw o trap p in g lo c a tio n s th ro u g h o u t th e tw o g e n e ra tio n s exam ined (F igure 19C). Since th e re w ere no d iffe re n c e s in th e phenology o f a c tiv ity b etw een trap p in g a re a s and sin ce higher re la tiv e d en sity e s tim a te s a re d esirab le fo r an aly sis of trap p in g re s u lts (o ften n e c e ssa ry fo r use in p a ra m e tric s ta tis tic s ), in te rc e p tio n tra p s may be placed along fie ld borders fo r m on ito rin g ad u lt fly a c tiv ity . T hese re s u lts a g re ed w ith th o se o f Loosjes (1976) who found th a t flig h t in te rc e p tio n tra p s w orked b e st along field borders. B ecause flig h t in te rc e p tio n tra p s fa c e one d ire c tio n , it w as n ecessary to d e te rm in e if th e d ire c tio n and tra p p la c e m e n t would in flu en ce tra p p in g re su lts. 88 Figure 19A. Mean catch of OM adults during the second and third generation flight by flight interception traps placed within the onion research field in 1979. Figure 19B. Mean catch of OM adults during the second and third generation flight by flight interception traps placed along the borders of the onion re­ search field in 1979. Figure 19C. Proportion of total adult OM catch during the second and third generation flight by flight interception traps placed within and along the borders of the onion research field in 1979. 89 U ?J CN MA L E O M F EMALE OM UJ (XL O un UJ r □ • UJ C o o 12D0 MOO 1600 18 00 2000 2200 - - M A L E OM F E M A L E OM >- <_) cc 1200 1400 2000 1600 2200 O N I O N F I ELD BORDER ( 7) cr co UJ RAr=2.134+.07057(x) R*=.957 Qd o *— t CO 00 to Csj, 28 30 32 TEMPERATURE Figure 21. Relationship between probit of percent relative activity (RA) of OM adults and daily temperature (°C). Standard day (100% relative activity) equals 20°C (data of Loosjes, 1976). 98 m axim um te m p e ra tu re fo r th a t day. The p ro ced u re, how ever, fa ile d to a cco u n t fo r th e w ithin-day a c tiv ity o r n a tu ra l daily rhythm o f th e a d u lt. G iven th a t te m p e ra tu re can in flu en ce flig h t a c tiv ity , it is also n ecessary to d e te rm in e if flig h t norm ally ta k e s p la ce a t th e tim e th e te m p e ra tu re o ccu rs. Any a d ju stm e n t fo r te m p e ra tu re m ust be th e p ro d u ct of th e se tw o fa c to rs . The in te ra c tio n of te m p e ra tu re and th e tim e o f day during w hich a c tiv ity ta k e s p la ce is a th re e dim ensional re la tio n sh ip when re la tiv e c a tc h siz e is to be p re d ic te d (Figure 22). One would e x p ec t th a t se v e ra l o th e r w e a th e r p a ra m e te rs , such as so lar ra d ia tio n , re la tiv e hum idity, wind and ra in fa ll, could a f f e c t a c tiv ity and resu l­ ta n t tr a p -c a tc h . An a tte m p t was m ade to an aly z e th e se a f f e c ts by com paring daily tra p c a tc h e s to m easured a b io tic conditions. F lig h t-in te rc e p tio n tra p s in th e re s e a rc h field in 1979 w ere ch eck ed a t hourly in te rv a ls fo r s e v e ra l sam p le d a te s throughout th e season. M u ltiv ariab le-reg ressio n te ch n iq u es w ere used to e v a lu a te th e e f f e c t of re la tiv e hum idity, te m p e ra tu re , and s o la r ra d ia tio n on tra p c a tc h . A lthough th e analysis fa ile d to show any sig n ific a n t relatio n sh ip s, it should not be in te rp re te d as in d icatin g th a t th e se p a ra m e te rs have no in fluence on tra p c a tc h . The assum ptions o f this ty p e o f analysis re q u ire th a t com pounding in te ra c tio n s be id e n tifie d and m easu red . O v erall dep en d en ce o f one v a ria b le on a n o th e r or th e re la tio n sh ip b etw een any p a rtic u la r p a ir o f v a ria b les can th e n be d e term in e d . T he n a tu ra l w ith in -d ay a c tiv ity o f th e a d u lt OM m ay be th e m ost do m in an t fa c to r fo r d eterm in in g a d u lt a c tiv ity . B ecause only a lim ite d num ber o f days under n a tu ra l varying co n d itio n s w ere assessed , i t was fe lt th a t m ore tra p p in g in fo rm atio n , bo th w ithin a day and b etw een days o f v arying conditions, was n e ce ssa ry b e fo re a c o m p le te s tru c tu ra l m odel could be fo rm u la te d to explain a d u lt a c tiv ity . VO vO Figure 22. Graphical representation of temperature adjusted technique, where adult trap catch is adjusted according to the activity level observed for the temperature and hour during the day. 100 H eavy rain and s tro n g winds a re c o rre la te d w ith lo w er te m p e ra tu re s and dim inished tra p c a te h (Loosjes 1976). T h e re fo re te m p e ra tu re a d ju stm e n t m ay be a d e q u a te fo r th e se situ a tio n s. A lig h t ra in , how ever, m ay re v e rse th e situ a tio n . D uring a period o f light ra in o r follow ing m ajo r p re c ip ita tio n , OM a d u lts w ere o fte n a c tiv e in th e field . C a rru th e rs (1977, unpublished) m o n ito red a d u lt OM a c tiv ity in th e field w ith stic k y b o ard s b e fo re and follow ing a lig h t rain . His d a ta re v e ale d an in c re a se in flig h t a c tiv ity im m e d ia te ly follow ing p re c ip ita tio n (F igure 23), but b ecause only one d a ta s e t was a v ailab le fo r ex am in atio n , no a tte m p t was m ade to c o rre c t tra p c a tc h fo r periods of ra in fa ll. R eco rd s of in te n sity o f p re c ip ita tio n , as w ell as a c c u m u la te d am o u n t, may be n e ce ssa ry b e fo re ad ju stm en ts a re to be m ade. Solar ra d ia tio n or lig h t in te n sity has been shown to in flu en ce th e flig h t b ehavior o f cab b ag e m aggot a d u lts in th e la b o ra to ry . w alking a c tiv ity of th e cab b ag e m aggot under H aw kes (1969), m easu rin g d iffe re n t lig h t in te n sitie s, re p o rte d th a t cab b ag e m aggot a d u lts responded to d e crea sin g lig h t in te n sity and th a t w ithin-day a c tiv ity depended on e n v iro n m en tal cond itio n s. T h e re fo re , c o rre c tio n o f tra p d a ta fo r w ith in -d ay a c tiv ity m ay c o m p en sa te fo r ra d ia tio n e f f e c ts during th e day. It has a lre ad y been show n th a t OM ad u lts fly a t o r ab o u t th e h eig h t o f th e surrounding v e g e ta tio n . e x p e c te d to influence A t h eig h ts o f 30-120 cm , ad u lt flig h t a c tiv ity . wind d ire c tio n m ay be L oosjes (1976) ex am ined th e in flu en c e o f wind d ire c tio n on a d u lt flig h t a c tiv ity by co m p arin g tra p c a tc h e s b etw een tra p s fa c in g in d iffe re n t d ire c tio n s. He re p o rte d th a t tra p s p laced along th e borders o f a fie ld w ere le a s t a ffe c te d by d iffe re n c e s in wind d ire c tio n when c o m p ared to tra p s p laced w ithin th e onion field . M ore flie s w ere c au g h t in tra p s O - 101 MEAN TRAP CATCH O -| • CL O UJ o UJ ID O' C!) UJ o 300 500 700 900 1100 1300 DEG REE DAY O F INITIAL DAMAGE Figure 36. Relationship between degree day of initial OM damage and the degree day period that a damaged onion remains visible in the field. 145 To in v e stig a te th e sp a tia l d istrib u tio n of d am ag e to onions by th e OM, th e p lo ts o f onions th a t w ere m apped in 1978 and 1979 w ere an aly zed . A c o m p u te r program was used to an aly ze th e d istrib u tio n o f re s p e c tiv e c lasses of onions using q u a d ra t sam pling tech n iq u es. 1979) The ''sam p le" c o m p u te r program (D im off allow s th e user to s e le c t any num ber or siz e o f q u a d ra ts. Sam ple density and d e sc rip tiv e s ta tis tic s a re provided fo r sam p les ta k en from an x, y c o o rd in a te file o f th e study organism . S ta tis tic s provided by th e program include th e v a ria n ce to m ean ra tio and M orisita's index. T hese indices w ere s e le c te d for use in sp a tia l p a tte rn analysis b ecau se th e y a re w ell known and com m only used by biologists. V ariance to m ean r a t i o ^ is equal to : E (x . 1 = Lrk . x (a fte r E llio tt 1977). - x )2 2 ______ 4 (n -1 ) x This index o f d ispersion can be te s te d fo r sig n ific a n t 2 d e p a rtu re s from unity by re fe re n c e to a ta b le o f X (chi-squared) values w here: 9 if th e X value is less th an e x p ec te d , a re g u la r d istrib u tio n is su sp ected ; if g r e a te r th an e x p e c te d , a contag io u s d istrib u tio n is su sp e c ted . M orisita's index (M orisita 1959) was c a lc u la te d by: n 2 t - 6 _ ( x .) - i=l n ( E i=l n E i=l _ x •) 1 n E i=l x. 1 x. 1 D e p a rtu re s from random ness are judged sig n ific a n t (P < .05) when: n = I A( E x . - l ) a ' n" 1 6 i= i a- x2 + n - n E x. i= i 1 146 o a re ou tsid e 5% sig n ific a n ce le v els fo r X (E llio tt 1977). E ach p lo t o f x,y onion p la n t c o o rd in a te s was sam p led by fixing th e x sam ple c o o rd in a te fo r a p a rtic u la r row and random ly s e le c tin g th e y c o o rd in a te . In this w ay, sam pling was c o n d u cted random ly down e a c h onion row (Figure 37A). C o o rd in a te s o f d iffe re n t s tr a ta o f d am ag ed onions fo r sam pling purposes w ere s e le c te d by sp ecify in g th e onion co n d itio n d esired . T he w idth o f th e q u a d ra t s e le c te d was fix e d a t 8 inches (20 cm ) and q u a d ra t len g th s o f 6, 12, 24, and 48 inches (15, 30.5, 61 and 122 cm ) w ere s e le c te d fo r e a c h sam p le run. F ive, te n and fif te e n q u a d ra ts o f e ac h s iz e w ere sam pled fro m e ac h plot fo r both y ears. A sum m ary of th e s p a tia l p a tte rn an aly sis is p re s e n te d fo r plot 1 in 1978 and 1979 (Table 17). F or bo th p lo ts sig n ific a n t d e p a rtu re from random ness (tending to w ard s contagious) was re v e a le d by I and lg (M o risita’s index) fo r d a te s l a te r in th e season. E arly in th e 1978 season (June 15), only th e 24" (61 cm ) and 18" (122 cm) sam p le size could be e v alu a te d ; a random s p a tia l d istrib u tio n fo r p la n t dam ag e fo r this d a te was in d ic a ted . In 1979, p lo t 1 w as no t tr e a te d w ith a g ra n u la r in se c tic id e and dam ag e o c c u rre d m uch e a r lie r in th is plot o v er th e previous y e a r. A random d istrib u tio n o f p lan t d am ag e w as re v e ale d fo r m ost q u a d ra t sizes fo r th e f ir s t tw o d a te s d u ring th is y e ar. v a ria n c e to m ean r a tio and M o risita’s index in d ic a te d d istrib u tio n fo r all p lo ts, d a te s, and sam p le sizes, d iffe re n c e s b e tw ee n q u a d ra t s iz e In m ost in sta n ce s, th e th e sam e sp a tia l T h e re w ere little to no and n um ber fo r d e te rm in in g sig n ific a n t d e p a rtu re from a random s p a tia l d istrib u tio n o f d am ag ed p la n ts. In so m e c ase s, a q u a d ra t le n g th o f 6" (15 cm ) fa ile d to sam p le any individuals, and in d ices could n o t be c a lc u la te d . S everal a u th o rs have d iscussed th e p roblem s of using q u a d ra ts fo r 147 Figure 37A. Use of the Sample program for selection of quad­ rats of OM plant damage in onion mapping plots. Figure 37B. Graphical representation of method used to obtain nearest neighbor measurements NORP and NN for calculation of Batcheler's Ratio B. Figure 37C. Graphical representation of method used to obtain nearest neighbor measurements r^ for calculation of Clark and Evans' dispersion statistic. r ONIONCOORDINATE (ml T O X 10* C 0 0 * 0 #«A T£ I n ) 0 i * 46 BO 135 1BO 3J S 2 TO 3 19 3«0 C / u t C a o 2> / rO > a l 148 I ONION COORDINATE tm> * O n i o n COORDINATE t " > 0 * 0 -+ - / / Q Table 17. Spatial distribution of OM plant damage determined from use of variance mean ratio (I) and Horisita's index (Ifi) for various quadrant dimensions, sample size and dates in 1978-1979. I Plot 1-Dyfonate 1-no Dyfonate r-random c-contagious Date No. of Onions 06/15/78 06/22/78 06/29/78 07/05/78 07/11/78 07/17/78 4 181 218 260 301 403 05/30/79 06/06/79 06/13/79 06/20/79 07/04/79 07/17/79 34 83 235 516 722 767 I s ■ 8x 12 8x24 8x48 c c c r c c r c c r c c c c c c r c c c c c _ r r c c c r r r c c c c r c c c c c 8x 6 c c c c r 8x 6 8x 12 8x24 8x48 c c c r c c r c c c c c c c c c r c c c c c _ r c c c c r r r c c c r r c c c c c __ c c c c c 150 e v alu a tio n of s p a tia l p a tte rn s o f organism s (E llio tt 1977, Pielou 1977, L am p ert 1980), If th e q u a d ra t s iz e is to o la rg e or to o sm all in re la tio n to th e siz e o f th e clum ps o f individuals, th e sp a tia l p a tte r n m ay be in c o rre c tly d e term in e d . As q u a d ra t s iz e in c re a se s, th e m ean and v a ria n c e will also usually in c re ase , and indices o f dispersion a re , to som e e x te n t, alw ays a ffe c te d . To ov erco m e th e se problem s, n e a re st-n e ig h b o r te ch n iq u es have been developed to te s t fo r d e p a rtu re from random ness for sp a tia l p a tte rn s o f s ta tio n a ry organism s. These tech n iq u es have been used e x ten siv e ly for m easu rin g th e s p a tia l d istrib u tio n o f p la n ts (G reig-S m ith, 1957). Two c o m p u ter program s w ere used to ta k e n e a re st-n e ig h b o r m easu rem en ts of onion p la n t dam age in individual rows o f e ac h m apping p lo t (A ppendix G). One m ethod (C lark and Evans 1954) finds th e n e a re st neighbor (onion plant) to a point previously se le c te d . The d ista n ce from a n e a re s t neighbor to th e organism is th en m easured such th a t: R = r A/ r E w here: r ^ = m ean d ista n ce of th e n e a re s t neighbor to a random ly s e le c te d individual, and r ^ = onion d ista n ce from random individuals to th e ir n e a re s t neighbor if th e population w ere d istrib u te d a t random [1 /(2 /p ), p=population density]. This index is judged sig n ific a n tly d iffe re n t from random when: C = ^r A " r E^ ^ SI*E is g re a te r than 1.96 (P < .05) w here: N = num ber of d ista n ce s m easured 151 sr^, = s ta n d a rd e rro r o f r ^ c a lc u la te d by ,26136/[Np (p = population density) The second m ethod involved th e use o f B atch e lo r's B index {B atchelor 1971) as m odified by L a m p e rt (1980). This m ethod also f ir s t re q u ire s a random point to be s e le c te d ; th e d ista n c e from re c o rd e d . this random p o in t to a n e a re st-n e ig h b o r is This value is sq u ared and divided by th e sq u are d ista n ce from a random individual to th e n e a re s t individual such th a t: n _ NORP _ _ nn“ b w here: NORP = th e m ean sq u ared n e a re st-n e ig h b o r d ista n c e to a random p o int, and NN - th e m ean squared n e a re s t neighbor d ista n c e to a random individual. S ignificant d e p a rtu re from random ness is in d ic a te d when B' is g re a te r th an F w ith 2 and 2 NORP d e g re es of freed o m (M oore 1954). NN Individual row s w ithin each p lo t w ere sam p led by th e se tw o m ethods r a th e r th an a com posite plot of five row s (F igure 37B-C). This p ro ced u re insured th a t row e f f e c ts w ere m inim ized. D am aged onions w ithin th e row w ere s e le c te d fo r sam p le runs by f ir s t sp ecify in g th e onion condition d esired . T h irty , fifty , and one hundred m e asu re m e n ts w ere ta k e n for s e le c te d row s. P earson's b iv a ria te c o rre la tio n analysis (SPSS-Nie e t al. 1975) was used to te s t fo r sig n ific a n t c o rre la tio n b etw ee n onion p la n t d en sity and th e index being m easured. No sig n ific a n t c o rre la tio n s w ere in d ic a te d fo r e ith e r index (T able 18). L ack o f c o rre la tio n b e tw ee n population d en sity and index o f dispersion fo r all sam p le size s is d esirab le since an index o f d isp ersio n should no t be in flu en ced by v a ria tio n in sam ple size , num ber o f sam ples, sam p le m ean, and to ta l num bers in 152 Table 18. Pearson's correlation coefficient of Batcheler's ratio (B1) and Clark and Evans statistic (R) with density for different sam­ ple sizes. R B' sample size coefficient r OS 100 50 30 .009 .487 .264 . 1 1 1 30 .257 .115 100 50 .1 1 2 .312 .310 .194 .213 .185 153 th e sam p le (E llio tt 1977). A su m m ary o f th e sp a tia l p a tte rn d escrib ed by th e se indices is given fo r tw o re p re s e n ta tiv e row s in 1978 and 1979 in T ab le 19. In 1978, no onion p la n t dam age had o ccu rred w ithin th e row by th e f ir s t sam ple d a te and th e s p a tia l p a tte rn could not be d escrib ed . In 1979, how ever, no sig n ific a n t d e p a rtu re from a random d istrib u tio n was in d ic a te d e a rly in th e seaso n by both indices. F o r both y e ars, sig n ific a n t d e p a rtu re from random ness (tow ards contagious) was in d ic a te d la te r in th e season. C a rru th e rs (1979) re p o rte d th a t v a ria b ility in his re s u lts on s p a tia l p a tte rn s of onion p la n t dam age may have been due to p esticid e -in d u c e d m o rta lity . He su g g ested th a t in itia l oviposition and re s u lta n t d am ag e quickly evolved from a random d istrib u tio n to an a g g re g a te d d istrib u tio n in p e s tic id e -tre a te d field s becau se o f higher surv iv al ra te s in a re a s w here th e p e stic id e was in e ffe c tiv e . To te s t this hypothesis, q u a d ra t and n e a re st-n e ig h b o r sam p les w ere ta k en on onion row s in a D y fo n a te - and n o n -D y fo n a te -tre a te d p lo t in 1979. M o risita's index of dispersion was c a lc u la te d fo r sam p les of dam ag ed p lan ts by ta k in g te n q u a d ra ts of 8" (20 cm) by 24" (61 cm ) fo r e ac h d a te . B atch e lo r's ra tio , B \ wfas c a lc u la te d fo r d ista n ce m e asu re m e n ts o f d am ag ed onion p lan ts by ta k in g 100 sam p les from eac h row of e ac h plot. Index values fo r e a c h sam p le m ethod w ere p lo tte d ag ain st sam ple d a te fo r bo th a re a s (F igure 38). F o r b o th indices, a value of g r e a te r th an one in d ic a te d sig n ific a n t d e p a rtu re from random ness. The s p a tia l p a tte r n of dam aged onion p lan ts in th e D y fo n a te -tre a te d a re a s ten d ed to w ard s a co n tag io u s d istrib u tio n a w eek e a rlie r th a n dam aged p la n ts in th e n o n -D y fo n ate a re a . F or b oth a re a s, indices d e c re a se d la te r in th e seaso n , ap p ro ach in g a random d istrib u tio n . C hanges in th e density o f a p o p u latio n o fte n lead to changes in th e sp a tia l 154 Table 19. Spatial distribution of OM plant damage determined from use of Batcheler’s ratio (B1) and Clark and Evans Statistic (R) for various sample sizes and dates in 1978-1979. Row Plot 1-Row 2 Plot 1-Row 2 r-random. c-contagious Date No. of Onions B* R 30 50 100 . 30 50 100 c c c c c c c c c c c c c c c c c c c c c c c c c r r c c c c r r c c c c r r c c c c r c c c c c r r c c c c 0 06/15/78 06/22/78 06/29/78 07/05/78 07/11/78 07/17/78 101 120 c c c c c 05/30/79 06/06/79 06/13/79 06/20/79 07/04/79 07/17/79 5 9 41 114 155 166 r r c c c c 39 76 95 MORISITA'S INDEX 155 oo CM 140 ISO 160 170 190 200 210 220 150 160 190 170 180 J ULI AN DATE 200 210 220 180 CM - BATCHELOR'S RATIO CD - i * 140 Figure 38A. Morisita’s index of dispersion for quadrat samples of OM plant damage in a Dyfonate and no-Dyfonate plot during the 1979 growing season (*--- distribution is contagious above this line). Figure 38B. Batchelor*s ratio of dispersion for nearest neighbor samp­ ling of 0M plant damage in a Dyfonate and no-Dyfonate plot during the 1979 growing season {* distribution is con­ tagious above this line). 156 d istrib u tio n . When a population is sp arse , th e d istrib u tio n o fte n fits a random p a tte rn , sin ce few individuals o c c u r in a sam p le unit (Southw ood 1978). The s p a tia l d istrib u tio n o f populations o f o rg an ism s have o fte n been re p o rte d to in itia lly a p p ea r random w hen low d e n sitie s a re p re s e n t and la te r to d e p a rt from random ness as th e den sity in c re a se s (Finney 1941, D avis and W adley 1949, Iwao 1956, H a rc o u rt 1961). This situ a tio n m ay also be tru e fo r onion p lan t d am ag e. A random d istrib u tio n was d escrib ed e arly in th e season w hen in itia l p la n t dam age was low; th e s p a tia l p a tte rn sig n ific a n tly d e p a rte d from random la te r in th e season as dam age in creased . C a rru th e rs (1979) re p o rte d sim ila r re s u lts when co m p arin g th e s p a tia l d istrib u tio n o f in itia l c e n te rs o f onion p la n t d am ag e to th e s p a tia l d istrib u tio n of dam aged onion p lan ts la te r in th e season. He re p o rte d th a t in itia l p la n t dam age fit a random d istrib u tio n , b u t as tim e p ro g ressed m ore h ig h ly -ag g reg ated p a tte rn s o f dam age b e ca m e a p p a re n t. The highly a g g re g a te d p a tte rn la te r in th e season is due to a d u lts p re fe rrin g to oviposit on p rev io u sly -d am ag ed onions, such th a t c e n te rs of d am ag e gradually in c re a se w ith tim e . As th e d en sity of dam aged p lan ts in c re a se s, th e d istrib u tio n may ten d to w ard Poisson ag ain . This m ay be due to clum ps o f dam age in c re asin g la te in th e season such th a t th e a re a s of th e se clum ps begin to approach e a c h o th e r. G. E f fe c t of V olunteer Onions on th e S p atial D istrib u tio n of Onion P la n t D am age Since tw o o f th e "m apping" p lo ts of onions w ere s itu a te d o v er a re a s of v o lu n te e r onions, th e e f f e c t of th e se v o lu n te e r onions on th e s p a tia l d istrib u tio n o f onion p la n t dam age could be e v alu a te d . The x,y c o o rd in a te o f e ac h v o lu n teer 157 onion was p lo tte d along w ith th e c o o rd in a te s of each dam aged onion in th e plot. This p ro c e d u re was p e rfo rm ed fo r e a c h sam p le d a te and p lo t in 1979. A re p re s e n ta tiv e p lo t (plot 3) is an ex am p le o f w here th e lo c a tio n o f e ac h v o lu n teer onion and a il d am aged or m issing onions a re p lo tte d fo r e a c h m o n ito rin g d a te (F igure 39). It is obvious from visual e x am in atio n th a t onion p la n t dam age o c cu rred m ore o fte n w here v o lu n te e r onions w ere p re se n t. This was also th e c a se fo r plots 1 and 2 w hich w ere lo c a te d in th e n o n -D y fo n a te -tre a te d a re a of th e re s e a rc h field . In itial p la n t d am ag e p rim arily o c c u rre d in th e v icin ity of th e v o lu n te e r onions, and continued m o n ito rin g in d ic a te d th a t th e se a re a s of dam age in c re ase d in size thro u g h th e seaso n . P lo t 4 on th e D y fo n a te -tre a te d side o f th e re s e a rc h fie ld had no v o lu n teers p re s e n t. Up to 2596 less OM dam age o c cu rred in th is plo t when c o m p ared to th e d am ag e on th e sam e side o f th e fie ld in p lo t 3. In 1979, by random ly s e le c tin g po in ts in th e field and m easu rin g the d ista n ce s from th e se points to v o lu n te e r or dam ag ed onions, s e v e ra l s e ts o f d ista n c e m e asu re m e n ts w ere ta k en in th e re s e a rc h field. All m e asu re m e n ts w ere an aly zed fo r possible use in d e te rm in in g a te s t s ta tis tic for q u an tify in g th e re la tio n sh ip o f th e p resen ce o f v o lu n te e r onions and OM p la n t dam age (D im off 1980, unpublished). A te s t s ta tis tic , "P" was a rriv e d a t w here: P-D-A D+A w here D = d ista n c e from a random point to th e n e a re s t dam aged onion, and A = d ista n ce from n e a re s t v o lu n te e r (to th e random point) to n e a re s t dam aged onion. The value of P m ust lie b etw een -1 and 1, w here: P < 0 in d ic a te s th a t th e A d ista n c e is g re a te r th an th a t of th e D d ista n ce , 158 Figure 39. Graphical representation of progression of OM plant damage in plot 3 in 1979. Location of individual damaged onions (+) and volunteer onion plants (•) are presented. (A-June 6 , B-June 13, G-June 20, D-July 17, E-August 1, F-August 16). 159 I E I Ih 9 r I i* i e 1 I ■ 160 3 i ! •• * - } 9 1 .* 3 si *: i •t ♦ * I , li: * i *i » 41 M 111 Ilt 111 I *it I** 111 «M 161 and th e re is less p ro b ab ility o f onions close to v o lu n teers being dam aged. P = 0 A D istance is equal to D d ista n ce and no e f f e c t by v o lu n teers may be assum ed. P > 0 A d ista n ce is less th an D d ista n ce , and th e re is a g re a te r p ro b ab ility o f an onion close to a v o lu n te e r being dam aged. T rad itio n al m ethods o f handling d ista n c e m e asu re m e n ts re q u ire th a t th e d istrib u tio n o f th e v a ria te s be d e term in e d (Pielou 1977). Any c o rre la tio n o r in te rd e p en d e n c e betw een th e v a ria te s also m ust be m easu red and a c c o u n te d fo r if sta n d a rd p a ra m e tric s ta tis tic s a re to be used. To te s t fo r independence b e tw ee n d ista n ce s A and D, s e v e ra l te s ts a re a v ailab le . E ach te s t has d iffe re n t assum ptions and tech n iq u es for d e te rm in a tio n o f independence. P earson's p ro d u ct-rn o m en t c o rre la tio n te s t (S teele and T o rrie 1960), K endall's ra n k -o rd e r c o rre la tio n te s t (H ollander and Wolfe 1973), and Spearm an's ra n k -o rd e r c o rre la tio n te s t (H ajek 1S69) w ere used to d e te rm in e c o rre la tio n c o e ffic ie n ts for th e th re e s e ts o f m e asu re m e n ts ta k en in th e re s e a rc h field in 1979 (Table 20). A and D w ere shown to be in d ep en d en t d ista n ce v a ria te s by all th re e independence te sts. Both A and D d ista n ce s fo r th re e s e ts of m e asu re m e n ts w ere p lo tte d as a cu m u lativ e density and resem b led a n e g a tiv e binom ial d istrib u tio n , w hereas th e P s ta tis tic was found to be close to a norm al d istrib u tio n (F igure 40). A K olm ogorov-Sm irnov te s t re v e a le d no sig n ific a n t d e p a rtu re from th e n e g ativ e binom ial d istrib u tio n fo r b oth A and D v a ria te s or from th e norm al d istrib u tio n fo r th e P s ta tis tic (Table 21). The usefulness of P, fo r te s tin g ag ain st som e p re d e te rm in e d value o f P or for te stin g betw een plots of d iffe re n t d e n sities o f v o lu n teer onions, req u ires th a t 162 Table 20. Independence test statistics of distance measurements A and D for two densities of volunteer onions in a Dyfonate-treated field and for one density of volunteer onions in a non-dyfonate field. Plot (No. Volunteers) Pearson1s Corr. Coefficient Kendall1s Tau Dyfonate (low density) -.117 <*=.327 .076 <*=.179 Non-dyfonate (low density) -.155 <*=.193 -.0 0 1 Non-dyfonate (high density) -.079 <*=.548 -.058 <*=.35 Spearman’s Rho .119 -.048 <*=.983 -.062 163 Figure 40. Cumulative density of the distance measurements A and D and test statistic P for 60 samples in a Dyfonate-treated area. CUMJLflTlVE DE N S I T Y 0 .0 0 -2 0.4 0.6 0.6 ! .0 _P o - t --------------------------- 1----------------------------1--------------------------- 1----------------------------1----------------------------■ 0.2 ■ 0.2 1.0 o.e o sz MEASUREMENT 164 DI STANCE o —* A I ml o 1 tiw 165 Table 21 . Kolmogorov-Smirnoff test statistic and distribution of dis­ tance measurements A and D and the test statistic P for three vol­ unteer onion conditions. Kolmogorov-Smirnoff Statistic Varlate N Dyfonate (low) No Dyfonate (low) No Dyfonate (high) Distribution A1 60 .115 .054 .034 Negative binomial D1 60 .128 .086 .064 Negative binomial P2 60 .104 .145 .107 Normal *Ho: fits negative binomial 2Ho: fits normal 166 ro b u stn ess, a c c u ra c y , and p recisio n be d e te rm in e d and e v alu a te d . C onfidence lim its and sig n ifican ce te s ts fo r th is s ta tis tic a re p re sen tly being developed (D im off 1980, unpublished). In 1980, a c o m p u te r program was developed fo r d e te rm in in g values of P fo r onion p lots th a t co n tain ed d iffe re n t num bers o f v o lu n teers (A ppendix G). The program s e le c ts a random p o in t w ithin an onion row and m easu res th e d ista n ce A and D (previously described) to d e te rm in e a value o f P fo r th e sam p le. Any num ber o f sam ples may be chosen, and a m ean value o f P is re tu rn e d , along w ith th e num ber o f onions p re se n t and v o lu n te e r onion d ensity. Sam ple runs w ere m ade fo r th re e d iffe re n t sam ple size s (20, 60, and 100 d ista n c e m easu rem en ts). V alues o f P w ere d e term in e d for five v o lu n te e r conditions which included d iffe rin g num bers o f single v o lu n teers (2,5) and a g g re g a te s o f v o lu n teers (1 o f 3 and 2 o f 3) p e r p lo t. C heck p lo ts w ere sam pled by random ly d e te rm in in g a v o lu n teer lo c a tio n fo r th e d ista n ce m e asu re m e n t A. V alues o f P and th e v a ria n ce (th re e re p lic a tio n s) a sso c ia te d w ith it a re p resen ted (T able 22). A value of P close to z ero was re tu rn e d fo r all check plots exam ined. This would be e x p ec te d , w here th e v o lu n teer onion lo c a tio n is picked a t random and e sse n tially a c ts as a n o th er random point. Values o f P close to z e ro w ere also re tu rn e d fo r all plo t conditions and sam ple size s when th e clo sest (first) dam aged onion to th e random point and v o lu n teers w ere s e le c te d . On firs t ex am in atio n , a value o f P close to zero for th e n e a re s t s e le c te d dam aged onion may no t have been e x p ec te d , if p resen ce o f v o lu n te e r onions was assum ed to a f f e c t th e sp a tia l d istrib u tio n o f OM dam age. Onion p la n t d am ag e in th e se p lo ts, how ever, was m onitored la te during th e firs t g e n e ra tio n o f OM la rv a l a tta c k and co nsiderable Table 22. Summary of P values for 20, 60 and 100 samples of the Nth nearest onion in plots of single and aggregates of volunteer onions. (1st line = value of P; 2nd line = Cl (.95)) Number o f Sam ples 20 60 Nth Onion No. V o lu n te e rs 1 5 100 Ncli Onion 10 20 25 35 50 .01 .0 2 .0 1 .0 4 .01 .0 2 - .0 3 .026 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .04 .14 .4 0 .34 .1 9 .14 .0 2 .0 8 .04 .08 .0 6 -.1 1 7 .1 8 .2 9 .1 6 .02 .0 6 .0 2 .02 .37 .0 2 10 20 - .0 1 .0 1 .0 9 .0 2 . .0 2 .0 2 .0 2 .0 2 .0 5 - .0 6 .2 9 .4 1 .3 1 .1 0 .0 2 .02 .0 2 .0 2 .1 2 .0 6 .0 9 - .1 4 .2 1 .04 .04 .02 .0 2 .0 2 .4 9 .57 .5 2 .37 .1 2 .0 8 .1 0 .1 0 .1 0 .12 - .0 9 .3 0 .4 3 .42 .2 9 .0 2 .02 .04 .02 .0 6 - .1 1 1 1 Nth Onion 25 35 50 1 5 10 20 25 .0 1 - .2 7 - .1 4 .02 .10 .05 - .0 5 .04 .0 2 .0 2 .0B .0 8 .02 .04 .02 .0 2 .02 .2 0 .13 .0 3 - .0 8 .3 0 .4 0 .31 .18 .1 2 .03 .08 .1 0 .1 2 .0 2 .02 .0 2 .02 .0 8 .06 .0 2 .02 .27 .2 0 .1 0 .05 .0 3 - .1 2 .2 0 .29 .18 .11 .05 .04 .0 2 .0 2 .1 0 .0 2 .02 .0 2 .0 2 .02 .02 .0 2 .02 .02 .0 2 - .0 9 .3 6 .5 0 .5 3 .4 5 .36 .1 2 - .0 3 .3 1 .49 .54 .46 .36 .1 2 .0 2 .02 .0 6 .0 8 .1 0 .1 2 .08 .0 2 .0 2 .02 .06 .OB .10 .08 .0 2 .14 .0 5 - .0 5 9 .3 2 .4 2 .39 .3 0 .1 6 .0 5 - .0 7 .32 .42 .4 0 .31 .15 .05 .02 .0 2 .0 2 .02 .04 .02 .04 .04 .0 2 .0 2 ,0 2 .02 .0 2 .02 .02 .02 - .0 4 - .0 2 35 50 Check 5 -S in g le 1-A ggregate 2 -A g g reg ate 167 2 -S ln g le 168 dam ag e had o c c u rre d in all p lo ts. A g g reg ates o f onion p la n t dam age around a re a s o f v o lu n te e r onions w ere found to be p re se n t, b u t d am ag e was also ev id en t in a re a s w here v o lu n teers w ere no t p re se n t. By s e le c tin g only th e c lo sest dam aged onion to a random point o r v o lu n te e r, it is now u n d e rstan d a b le th a t th e tw o d ista n ce s would be sim ilar due to th e high d en sity of d am ag ed onions p re se n t th ro ughout th e p lo t. To o v erco m e th is problem , a value o f P was d e te rm in e d fo r 11. m e asu re m e n ts o f th e n n e a re s t onion w here: D + A n n 1 L fo r th e n n e a re st neighbor. The c o m p u te r program was ad ju sted to allow th e XL user to s e le c t th e n n e a re s t onion fo r all sam ple runs. Values o f Pn w ere d e te rm in e d fo r n being equal to 5, 10, 20, 25, 35, and 50 (Table 22). By in c re asin g th e value of th e n ^ dam ag ed onion s e le c te d , we e ffe c tiv e ly s e le c te d XL for only a g g re g a te s o f dam age. The higher value o f P o b tain ed as th e n onion was in c re ase d from 1 to 20 (single v o lu n teers) or from 1 to 25 (a g g reg ates) co n firm s th a t a g g re g a te s of OM p la n t d am ag e o c c u rre d in th e v icin ity of v o lu n teer onion p la n ts. The value of P in creased and th en d e crea se d as th e n e a re s t onion d ista n ce was in c re ase d fo r all sam ple runs and plots. F o r p lo ts o f single v o lu n teers th e i. L . value of P re a c h e d a m axim um when th e 20 n e a re s t onion d ista n ce was s e le c te d . For a g g re g a te plots, m axim um value o f P was re a c h e d a t th e 20 th or XL 25 n e a re s t onion d ista n c e . A higher m axim um v alu e o f P was o b tain ed fo r th e a g g re g a te p lots, and th e value d e c re a se d slig h tly as th e num ber o f a g g re g a te s w as in c re a se d from one to tw o p er p lo t. Sim ilarly, th e m axim um value o f P d e c re a se d as single v o lu n te e rs w ere in c re ase d from tw o to five v o lu n teers per 169 plot. To te s t fo r sig n ific a n t d iffe re n c e s b e tw ee n p lo t co n d itio n s and th e n**1 n e a re s t onion s e le c te d , a tw o way analysis o f v a ria n c e was p e rfo rm ed . F o r all p lo t co n d itio n s, sam ple s iz e had l i ttl e e f f e c t on th e v alu e o f P, so all sam ple siz e s w ere pooled b e fo re analysis. A nalysis o f v a ria n c e re s u lts w ere ex am in ed as a tw o way analysis o f m ultip le o b serv atio n s p e r plot to a c c o u n t fo r m u ltip le sam p les from e ac h plot exam ined (S tee l and T o rrie 1960). H ypothesis te stin g re v e a le d sig n ific a n t d iffe re n c e s am ong p lo ts and th e n ^ n e a re s t onion s e le c te d (T able 23). v a ria n ce condition, To te s t fo r w here d iffe re n c e s o ccu rred , a one-w ay an aly sis of w as p e rfo rm ed for th e nth n e a re s t onion s e le c tio n fo r each plot D uncan's m ultiple ran g e te s t re s u lts re v e a le d no sig n ific a n t d iffe r­ en ces betw een n tfl n e a re s t onion s e le c tio n fo r ch eck p lo ts o f no v o lu n teers, but sig n ific a n t d iffe re n c e s w ere d e te rm in e d fo r all o th e r plots ex am ined (Table 24). i j . A sig n ific a n t m axim um value o f P was o b ta in e d fo r th e 10 onion s e le c te d fo r a ll p lo ts exam ined. or 20 n e a re s t From th is in fo rm atio n , it a p p ea rs th a t it. d is ta n c e m e asu re m e n ts of th e 10 to 20 onion m ay be b e st for d e te rm in in g a m axim um P value fo r p lo ts o f d iffe re n t v o lu n te e r d e n sities. 1 L The 10 i l . and 20 n e a re s t onion d ista n c e s w ere s e le c te d to d e te rm in e sig n ific a n t d iffe re n c e s b etw ee n p lo ts fo r valu es o f P. O ne-w ay analysis of 1 L v a ria n c e and su bsequent m u ltip le ran g e te s tin g fo r th e 10 n e a re s t onion re v e a le d th a t plots o f a single a g g re g a te o f v o lu n te e r onions had a sig n ific a n tly g re a te r m axim um P value ov er all o th e r p lo ts (Table 25). The m axim um P value fo r tw o sin g le -v o lu n te ers was th e n ex t h ig h est and was equal to th a t o f th e tw o a g g re g a te -v o lu n te e r plots. A sig n ific a n t group w as re v e a le d fo r th e fiv e sin g le­ v o lu n te e r p lo ts w hich was less th a n th e tw o single v o lu n te e r p lo ts. P lo ts o f no 170 Table 23 . Two-way analysis of variance for values of P for plots of different densities of volunteer onions and different Nth onion selected. Source of Variation DF Sura of Squares Main effect 10 3.48 0.35 175*** Plot 4 2 .0 0 0.50 250*** Nth Onion 6 1.48 0.25 125*** 2-way Interaction 24 0.95 0.04 20 *** Explained 34 4.43 0.13 65*** Residual 280 0.76 0 .0 0 2 To tal 314 5.19 0 .0 2 ***(p<. 001 ) Mean Square F 171 Table 24a, One-way analysis of variance and Duncan’s multiple range test for values of P for the Nth nearest onion in plots containing one single volunteer onion. Variable DF Nth Onion Residual Total 56 62 6 Sum of Squares Mean Square F 1.43 0.48 1.91 .24 .008 27.6*** ***(p<. 0 0 1 ) Group Nth Onion p* 1 2 1 3 4 5 10 20 -.05a .28cd .41e .3 2d .20 bc .14b ,02 a 6 7 5 25 35 50 *means followed by the same letter are not significantly different («=.05) 172 Table 24b, One-way analysis of variance and Duncan's multiple range test for values of P for the Nth nearest onion in plots containing two single volunteer onions. Variable DF Nth Onion Residual Total 56 62 6 Sum of Squares Mean Square .16 .99 .09 1.08 F 104.9*** .0 0 2 ***(p<. 00 1 ) Group Nth Onion 1 2 1 3 4 5 10 20 6 7 5 25 35 50 p* -.13a .19d .28e ,18d .12 c .05b ,03b *means followed by the same letter are not significantly different (“=.05) 173 Table 24c. One-way analysis of variance and Duncan’s multiple range test for values of P for the Nth nearest onion in plots containing one aggregate of three volunteer onions. Variable DF Nth Onion Residual Total 56 62 6 Sura of Squares 2.73 0.71 3.44 F Mean Square 35,9*** ***(p<. 0 0 1 ) Group Nth Onion p* 1 2 1 3 4 5 10 20 -. 02 a .35c .50d .57d .50d ,36c .12 b 6 7 5 25 35 50 *means followed by the same letter are not significantly different (*=.05) 174 Table 24 d. One-way analysis of variance and Duncan’s multiple range test for values of P for the Nth nearest onion in plots containing two aggregates of three volunteer onions. Variable DF Nth Onion Residual Total 56 62 6 Sum of Squares Mean Square 1.95 0.15 .33 .003 F 118.3*** 2 .1 1 ***(p<. 0 0 1 ) Group Nth Onion 1 2 5 3 4 5 6 7 1 10 20 25 35 50 P* -,07a ,31d .42e .40e j31d .15c ,05b *means followed by the same letter are not significantly different («=.05) 175 Table 25. One-way analysis of variance and Duncan's multiple range test for values of P for the 10th nearest onion selected in plots of different densities of volunteer onions. Variable DF Sum of Squares Mean Square F Plots Residual Total 4 40 44 2.49 0.36 2.85 .62 .009 69.4*** ***(p<. 0 0 1 ) Group Plot 1 2 0 2 -single 3 4 5 5-single 1 -aggregate 2 -aggregate P* .02 a .40c .28b .50d .42c *means followed by the same letter are not significantly different («=.05) 176 v o lu n teers had a sig n ific a n tly low er P th an all o th e r p lo ts exam ined. A nalysis of v a ria n ce and m ultiple range te s tin g fo r th e 2G**1 onion s e le c te d re v e a le d sim ila r re s u lts, e x c e p t fo r id e n tific a tio n o f a s e p a ra te group fo r tw o sin g le-v o lu n teers and tw o a g g re g a te -v o lu n te e r p lo ts (Table 26). From th is in fo rm atio n it ap p ears th a t a single a g g re g a te of v o lu n te e rs can le a d to th e g re a te s t num ber of onions being dam aged by OM in th e vicin ity o f th e v o lu n te e rs, when co m p ared to p lo ts o f single v o lu n teer onions. F u rth e r com parisons re v e a l th e follow ing o rd er of m ag nitude for num ber o f dam ag ed onions o c c u rrin g in th e v icin ity o f a v o lu n teer source: 1 a g g re g a te > 2 a g g re g a te s > 2 sin g le v o lu n teers > 5 sin g le v o lu n teers (F igure 41). A d e c re a se in th e value of P as th e num ber o f a g g re g a te or num ber of single v o lu n teers p e r plot is in c re ase d m ay be due to th e lim ite d size o f th e p lo t. The OM a d u lt m ay be using bo th visual and o lfa c to ry cu es when responding to th e p resen ce o f a v o lu n te e r onion. The e ffe c tiv e ground a re a or a ir sp ace around e ac h v o lu n teer or a g g re g a te o f v o lu n teers th a t th e OM responds to is not known. It is h y pothesized th a t as th e d en sity or lo c a tio n o f v o lu n te e rs for a fixed a re a in c re ase s, d isru p tio n of th e se signals or confusion by th e OM a d u lts ta k e s p lace, and oviposition does n o t o ccu r only in th e im m e d ia te v icin ity o f v o lu n teer onions. A sim ilar s itu a tio n has been observed and re p o rte d in in se c t pherom one re se a rc h w here, in a re a s w here high c o n c e n tra tio n s o f a sex pherom one w ere re le ase d , m atin g d isruption o ccu rred . For all plots w here v o lu n teers w ere p re se n t, th e value o f P d e c re a se d from 1 u a m axim um value as th e n n e a re s t onion s e le c te d was fu r th e r in creased . For m ost p lo ts, th e value o f P d e c re a se d to a value close to z e ro when th e 35 n e a re s t onion d ista n ce w as s e le c te d . th This in fo rm atio n m ay be u seful fo r 177 Table 26. One-way analysis of variance and Duncan's multiple range test for values of P for the 20th nearest onion selected in plots of different densities of volunteer onions. Variable DF Sum of Squares Mean Square Plots Residual Total 4 40 44 2.34 0.47 2.81 .0 1 1 .58 F 4 9 ,9*** ***(p<. 0 01 ) Group Plot 1 2 0 2 -single 3 4 5 1 -aggregate 2-aggregate 5-single P* .04a .32b .18c .55d ,39e *means followed by the same letter are not significantly different (°==. 05) .54 .13- 178 -.27. Figure 41. Graphical representation of the value of P obtained for different densities of volunteer onions and the Nth nearest onion selected. 179 d e te rm in in g th e size o f th e a g g re g a te s o f OM p la n t d am ag e around v o lu n teer onion p la n ts. The siz e o f th e se a g g re g a te s m ay in tu rn provide in fo rm atio n ab o u t th e e ffe c tiv e a re a o f in flu en ce by v o lu n te e r onions. F o r th is purpose, tw o v o lu n te e r conditions (a g g re g ate v o lu n teers and single v o lu n teers) w ere s e le c te d fo r fu rth e r sam pling to o b ta in values of P. The n^*1 n e a re s t onion was in c re m e n ta lly in c re ase d by one fo r a single sam ple size of 60. P lo ts o f th e value o f P and n ^ n e a re s t onion s e le c te d fo r m e asu re m e n t, re v e ale d tw o sig n ific a n t values o f P for th e tw o v o lu n te e r co n d itio n s (F igure 42). It m ay be assum ed th a t e a c h o f th e se peaks a re due to th e o c c u rre n c e o f an a g g re g a te o f dam aged p la n ts as we m ove ou t from th e lo c a tio n o f th e v o lu n teer onion. th is is tru e , th e n If n e a re s t onion value fo r th e f ir s t peak would d escrib e th e m ean clum p siz e fo r an a g g re g a te o f OM dam ag ed p la n ts around th e v o lu n teer onion. F u rth e r peaks would d escrib e th e m ean clum p siz e fo r o th e r a g g re g a te s of O M -dam aged plan ts and th e ir d ista n c e from th e s ite o f th e v o lu n teer onion. From th e se re s u lts, it a p p ea rs th a t d am ag ed onion p lan ts co n sist o f a g g re g a te a re a s (w hich a g re e s w ith th e in fo rm atio n alre ad y p re se n te d on th e sp a tia l d istrib u tio n o f OM p la n t dam age). M ean clum p siz e fo r th e firs t a g g re g a te around a single v o lu n te e r onion is ap p ro x im a te ly 34 onions, o r a radius of 32 cm (15 plan ts p er 30 cm ). T he m ean clum p siz e fo r th e firs t a g g re g a te of OM p lan t dam age around an a g g re g a te o f v o lu n te e rs is a p p ro x im a te ly 37 onions, o r a radius o f 35 cm . From th is in fo rm atio n , it ap p ears th a t th e a re a o f d am ag e around an a g g re g a te o f v o lu n teers is only slig h tly g r e a te r th an th e a re a around a single v o lu n teer. The a re a th a t a v o lu n teer onion a ffe c ts , in te rm s o f OM p la n t d am ag e, m ay be g re a te r th an th is in fo rm atio n rev eals. As we m ove aw ay from th e s ite o f th e o — Single Volunteer — A ggregate Volunteer o CO a. o CM o o 20 30 N* N EAREST ONION Figure 42. Values of P for the Nth nearest onion selected in plots containing single and aggregates of volunteer onions. 181 v o lu n te e r onion, th e d ista n c e b etw een a g g re g a te s o f dam age m ay in crease; th e re fo re , th e population o f O M -dam aged p la n ts n e a r s ite s o f v o lu n teer onions may co n sist of s e v e ra l a g g re g a te s, w here a la rg e a g g re g atio n of th e se a g g re g ate s o ccu r in th e vicin ity o f v o lu n teer onion p lan ts. F u rth e r e v a lu a tio n and in te rp re ta tio n o f th is tech n iq u e is needed b e fo re its use can be fully ju s tifie d in s p a tia l p a tte r n analysis. S im ilar tech n iq u es have been developed fo r analysis of s p a tia l p a tte rn s in p la n t ecology through q u a d ra t sam pling (G reig-S m ith 1957). M o risita (1959) d eveloped a tech n iq u e fo r m easu r­ ing clum p size by using d iffe re n t q u a d ra t size s and his index o f dispersion (I ). The index is d e te rm in e d fo r a num ber of q u a d ra ts w here th e q u a d ra t size is doubled e ac h tim e . The ra tio o f I fo r one q u a d ra t siz e and I for a q u a d ra t b b tw ic e th a t size is p lo tte d a g a in st q u a d ra t siz e and, w here peaks o ccu r, m ean clum p size is assum ed. H. 0?*I P la n t D am ag e Surveys 1. R egional Surveys F irs t g e n eratio n OM p la n t dam age was m easu red w eekly in th e study fields and re s e a rc h fie ld in 1979 and 1980 (A ppendix F). P e rc e n t dam age in e ac h field for each sam ple d ate during th e firs t g e n e ra tio n OM a tta c k was d e term in e d by dividing th e m ean num ber o f dam aged p la n ts p er 30 m sam p le of onion row by onion p la n t density (1500 p la n ts p e r 30 m). Onion p lan ts a re decom pose rapidly a f te r o fte n in fe c te d by s o ft ro t b a c te ria and th e re fo re being dam aged by CM la rv a e . A fte r co m p le te decom position, th e p la n t is o fte n no lo n g er visible and w ill n o t be reco rd ed during reg u lar OM p la n t dam ag e sam pling. To insure th a t all OM d am ag e is 182 re c o rd ed , it is n ecessary to sam p le dam age a t tim e in c re m e n ts no t m ore th an th a t re q u ire d fo r onion decom position. Sam ple in te rv a ls g r e a te r th a n th is tim e m ay u n d e re stim a te th e to ta l p lan t d am ag e th a t has o ccu rred . The d e g re e -d a y period fo r onion p la n t d eco m p o sitio n has been shown to depend upon th e d e g re e -d a y perio d o f in itia l a tta c k . The a v e ra g e le n g th of tim e fo r to ta l onion decom position in th e sp rin g was found to be 155 d eg ree-d ay s. T h e re fo re , sam ple in te rv a ls of a p p ro x im a te ly one w eek (av erag e o f 20 d e g re e days per day) during th e Spring w ere a d e q u a te fo r re c o rd in g OM p la n t d am age. To o b tain th e am ount of to ta l d am ag e th a t o c cu rred fo r th e f ir s t g e n e ra tio n of OM a tta c k , w eekly e s tim a te s o f p la n t dam age w ere sim ply a cc u m u la te d . T o tal OM p la n t dam age during th e firs t g e n e ra tio n was d e te rm in e d fo r th e c o m m e rcial stu d y fields and re s e a rc h field fo r 1979 and 1980 (Table 27). The e x te n t of dam age d iffe re d considerably b etw een field s fo r each y ear. P ro d u ctio n p ra c tic e s , soil type, and field lo c atio n w ere probably m ore im p o rta n t th a n fly d e n sity in d eterm in in g th e am ount of dam age e ac h fie ld receiv ed . All fields had been tr e a te d w ith a g ran u lar in se c tic id e (D yfonate) a t p lan tin g , and fo liar in se c tic id e sprays w ere applied a t various tim e s to som e field s during th e firs t g e n eratio n a tta c k by th e OM. Up to 85% dam age o c cu rred in th e a re a o f th e re s e a rc h field in 1979 w here no g ra n u la r in sec tic id e w as applied. In co m m e rcial field s co n sid erab le dam age was so m etim es observed a t th e ends of onion row s or along a whole field len g th . It was le arn ed th a t in th e se cases, th e g ran u lar in se c tic id e had no t b een p laced in th e row due to m achinery lim ita tio n s or m alfu n ctio n . F o r s e v e ra l field s in 1979 and 1980, fo liar sp ray s o f in se c tic id e s w ere applied to co n tro l first g e n e ra tio n a d u lts. It has alre ad y been shown th a t w here 18 3 Table 27 . Total first generation OM damage and number of foliar sprays applied for study fields in Grant, Michigan, 1979-1980. 1979 Field Number of Foliar Sprays 1 2 4 3 4 5 6 5 4 4 5 7 0 6 N 20 20 20 20 20 20 20 % Damage .33 1 .6 8 1.80 1.55 1.69 3.95 2.73 VAR SE .25 .71 1.28 .53 1.06 2.83 1.91 .18 .25 .16 .23 .38 .31 VAR SE .1 1 Cl (.95) + + + + + + + .2 2 .37 .50 .32 .46 .75 .62 1980 Field 8 Number of Foliar Sprays 10 11 12 4 4 3 4 4 13 14 7 9 0 N % Damage 20 20 20 20 20 20 20 1.73 2.91 1 1 .1 0 5.48 3.75 6.99 7.33 1.17 1.62 11.43 2.09 5.50 8 .2 1 9.77 .24 .28 .75 .32 .52 .64 .69 Cl (.95) + .48 + .57 +1.51 + .64 +1.04 +1.28 +1.39 184 sprays w ere applied, a d u lt popu latio n s did n o t d e c re a se sig n ific a n tly . To d e te rm in e if fo liar sp ray s applied in th e sp rin g sig n ific a n tly d e crea se d OM p lan t d am ag e, p e rc e n t to ta l dam age fo r sp ray ed and n o n -sp ray ed field s w ere com pared a t th e end o f th e f ir s t g e n e ra tio n . S tu d e n ts T - te s t was used to co m p are th e m eans of field 7 (non-sprayed) and fie ld s 1-6 (sprayed) in 1979. F o r 1980, field 13 (non-sprayed) was co m p ared to field s 8-12 and 14 (sprayed). F o r both y ears, p e rc e n t to ta l dam age in non-sprayed field s w ere found to be n o t sig n ific a n tly d iffe re n t from sprayed field s ( a = .05). F ield 13 and 14 in 1980 w ere s e le c te d sp e c ific a lly to d e te rm in e if OM plan t dam age was d e c re a se d by using fo liar sp ray s. T hese field s w ere a d ja c e n t to each o th e r and only field 14 was sp ray ed w ith fo liar in se c tic id e s o f e ith e r Sevin or p a ra th io n during th e firs t g e n e ra tio n o f OM a c tiv ity . P e rc e n t OM p la n t dam age fo r each fie ld was com pared ov er th e season by p lo ttin g bi-w eekly sam p le re su lts (F igure 43). Very few d iffe re n c e s in p e rc e n t dam age o c cu rred . Second g e n eratio n OM p la n t d am ag e was d e term in e d by reco rd in g all d am age (re c e n t and old) a t h a rv e st. Since dam aged onions re m a in ed in th e field g r e a te r than 270 d eg ree-d ay s or tw o to th re e w eeks, it was e x p e c te d th a t to ta l OM dam age o ccu rrin g la te in th e season could be d e te rm in e d by re c o rd in g all d am age p re se n t a t th e end o f second g e n e ra tio n OM a tta c k . To d e te rm in e if this pro ced u re was a d e q u a te , second g e n e ra tio n d am ag e was re c o rd ed e ac h w eek in field s 13 and 14. Since only re c e n tly dam aged onions w ere re c o rd ed during sam pling, th e sum of th e se e s tim a te s should be eq u al to th e p e rc e n t to ta l dam age (re c e n t and old) re c o rd ed a t h a rv e st. C om parison o f th e tw o sam pling procedures re v e a le d th a t p e rc e n t to ta l dam age re c o rd ed a t h a rv e st was not s ig n ific a n tly d iffe re n t from c u m u lativ e e s tim a te s of d am ag e o b tain ed by Df l MRDE CO 185 P E R CE NT FIELD FIELD M 130 140 MRY Figure 43. 1 50 16 0 1 70 JUNE 1 BO 2 00 19 0 JULY Percent OH plant damage during the first generation in fields 13 and 14 (1980). 186 re c o rd in g new dam age each w eek (Table 28). Based on th e se re su lts, onion plant d am ag e re c o rd e d a t h a rv e st was f e lt to be a p p ro p ria te fo r d eterm in in g to ta l second g e n e ra tio n dam age. O ne-w ay analysis of v a ria n c e and a D uncan's m u ltip le ran g e te s t re v e ale d sig n ific a n t d iffe re n c e s in to ta l second g e n e ra tio n dam age b etw een field s fo r e a c h y e ar (T ables 29-30). F o r b o th y ears, no n -sp ray ed field s w ere shown to have no m ore sig n ific a n t d am ag e th an se v e ra l sp ra y ed field s. F ield 1 (1979) and 8 (1980) (sam e field) had th e lo w e st p e rc e n t onion p lan t dam age for both th e f ir s t and second g e n e ra tio n ; w h ereas, field 5 (1979) and field 10 (1980) had th e h ig h e st. E ach of th e se field s w as sprayed w ith fo lia r in se c tic id e s th re e to fiv e tim e s during th e second g e n eratio n . P earso n 's B iv a ria te C o rre la tio n te s t was used to d e te rm in e if p e rc e n t dam age during th e f ir s t g e n e ra tio n was c o rre la te d to p e rc e n t dam age during th e seco n d g e n e ra tio n . For 1979 no sig n ific a n t c o rre la tio n was e v id en t, bu t fo r 1980 c o rre la tio n b etw een firs t and second g e n eratio n d am ag e was sig n ific a n t (Table 31). To d e te rm in e if p e rc e n t OM d am ag e was c o rre la te d w ith OM p opulation den sity , to ta l a d u lt in cid en ce and to ta l seaso n al p ro d u ctio n was d e te rm in e d fo r e a c h field and y e ar by in te g ra tin g th e a re a under a d u lt flig h t cu rv es and dividing by a d u lt d ev elo p m en ta l tim e. P e a rso n 's b iv a ria te c o rre la tio n analysis was used to te s t fo r sig n ific a n t c o rre la tio n fo r th e follow ing p airs of values: a) first g e n e ra tio n a d u lts /firs t g e n e ra tio n dam ag e, b) second g e n eratio n a d u lts/se c o n d g e n e ra tio n dam age, c) firs t g e n e ra tio n d a m ag e /sec o n d g e n e ra tio n ad u lts, d) second g e n e ra tio n d a m a g e /th ird g e n e ra tio n a d u lts, e) second g e n e ra tio n 187 Table 28 . Total second generation OM plant damage for fields 13 and 14 determined by summation of weekly damage estimates and final har­ vest assessment. % Damage % Damage Field 13 14 Date (per week) Cl (.95) I 211 1.28 + .66 1.28 216 2.61 ±!. 56 3.89 225 1.69 + .93 5.58 232 ,30 + .2 0 5.88 238 0 .0 0 + 0 .0 0 5.88 211 1.95 + .96 1.95 216 3.61 +2.60 5.56 225 1.48 + .50 7.04 232 1.40 + .42 8.44 238 0 .0 0 + 0 .0 0 8.44 (harvest) Cl (.95) 5.00 + 2 .0 i 6.57 + 2 .6 8 188 Table 29. One-way analysis of variance and Duncan’s multiple range test for percent total OM plant damage during the second genera­ tion for study fields in Grant Michigan, in 1979. All percentages were transformed by square root before analysis. Variable DF Field Residuals Total 83 89 Sum of Squares 6 Mean Square 23.80 28.06 51.86 F 11.7*** 3.97 .34 ***(P<.001) Field N 1 2 6 5 15 15 15 15 15 7 10 3 4 5 Number of Foliar Sprays X OM* Damage SE 3 5 4 5 5 .62a 2.73cd 1.13ab 3.26cd 6.26e 4.33de 2 .Olbc .39 .36 .17 .39 1.16 .54 .57 2 0 Cl (.95) +1 .1 1 + .73 + .35 + .84 +2.49 +1.16 + .73 *Means followed by the same letter are not significantly different. (a:=.05) 189 Table 30. One-way analysis of variance and Duncan's multiple range test for percent total OM plant damage during the second genera­ tion for study fields in Grant, Michigan, in 1980. All percent­ ages were transformed by square root before analysis. Variable DF Field Residuals Total 83 89 Sum of Squares 6 57.03 37.98 95.02 Mean Square F 9.50 .46 20.7*** ***(P<.001) Field 8 9 10 11 12 13 14 N 10 10 10 10 10 20 20 Number of Foliar Sprays 3 4 4 3 2 0 3 % OM* Damage 1 .11 a 5.49c 17.53d 4.89bc 2 .86 b 5.00c 6.57c SE .24 .87 1.06 .76 .56 .8 8 1.17 Cl (.95) + .55 +1.99 +2.43 +1.74 +1.28 + 2 .0 1 + 2 .6 8 *Means followed by the same letter are not significantly different. (-=.05). X90 Table 31. Pearson's correlation coefficient between first and second generation OM onion plant damage in 1979 and 1980. cc 1979 7 .39 .191 1980 7 .004 CO N 00* Pearson's Coefficient Year 191 d a m a g e /th ird g e n e ra tio n ad u lts up to h a rv e st, f) f ir s t and second g e n e ra tio n d a m a g e /firs t and second g e n e ra tio n a d u lts, and g) f ir s t and second g e n e ra tio n d a m ag e /sec o n d and th ird g e n e ra tio n a d u lts. For b o th y e ars, th e re was sig n ifi­ c a n t c o rre la tio n b e tw ee n f ir s t g e n e ra tio n d a m ag e and seco n d g e n e ra tio n a d u lts (T able 32). No o th e r sig n ific a n t c o rre la tio n s w ere re v e a le d (a > .05). The la c k o f sig n ific a n t c o rre la tio n b e tw ee n a d u lt fly p o p u latio n s and d am ag e fo r th e sa m e g e n e ra tio n m ay be due to e m ig ra tio n of flies follow ing in itia l e m e rg e n c e o r p reovipositio n . Loosjes (1976) re p o rte d th a t up to 50% of OM a d u lts m ig ra te to o th e r field s follow ing e m e rg e n c e . C o rre la tio n o f firs t g e n e ra tio n d am ag e and th e follow ing g e n e ra tio n of a d u lts m ay be e x p e c te d , how ever, if p re se n c e of d am ag e in d ic a te s su c c e ssfu l la rv a l a tta c k and develop­ m ent. T he la c k o f c o rre la tio n b e tw ee n second g e n e ra tio n dam age and th ird g e n e ra tio n a d u lts m ay have been due to fie ld p ro d u ctio n p ra c tic e s . D uring th ird g e n e ra tio n a d u lt a c tiv ity , onion field s a re h a rv e ste d and, in so m e cases, a c o v er c ro p is p la n te d . T hese p ra c tic e s could cau se co n sid erab le m ig ratio n or im m ig ra­ tion depending on individual field conditions. Onion fie ld s w here la rg e num bers of cull onions a re l e f t behind a f te r h a rv e st m ay also, fo r exam ple, be m uch m ore a ttr a c tiv e to ovipositing a d u lts th an field s w ith low num bers o f cu ll onions. F ields p la n te d to cover crops (rye grass), have also b een shown to have sig n ific a n tly fe w e r OM in fe ste d cull onions follow ing h a rv e st (D rum m ond 1979, unpublished). 2. S ta te Surveys T he sam pling sch e m e o f C a rru th e rs (1979) was used to e s tim a te regional and fie ld le v e l onion p lan t dam ag e in th e m ajo r onion grow ing a re a s of th e s ta te . B oth sam pling com ponents (field and reg io n al level) w ere designed so e a c h could 192 Table 32. Pearson's correlation coefficient for various comparisons of total adult production and OM plant damage in study fields of Grant, Michigan, during 1979-1980. A with B N Pearson* s Coefficient OC 1979 2— adult s- 2— damage 7 .26 .28 1” damage- 2^ - adults 7 .92 .0 01 *** 2— damage-3— 7 -.24 .30 7 -.06 .45 7 .34 .23 adults 2— —■ damage—3“ — adults (H) 1— and 2— damage- 2— and 3 ^ adults 1980 1— adults- 1— damage 7 -.09 .42 2— adults- 2— damage 7 .32 .31 1— damage- 2— adults 7 .74 .03* 2— damage-3— adults 7 .24 .31 2— damage-3^- adults (H) 7 -.27 .27 1— and 2— damage- 1— and 2— flies 7 .11 ,41 1— and 2— damage- 2— and 3 ^ flies 7 .47 .14 ***(P<.001) *(P<.05) H-up to harvest a - alpha level 193 be used in d ep en d en t o f one a n o th e r o r in con ju n ctio n if d esired . S im ilar m ethods of d a ta c o lle c tio n , im p le m e n ta tio n , and an aly sis fo r fie ld and reg io n al e s tim a te s allow fo r tw o sam pling le v e ls th a t m ay be lin k ed fo r an o v e ra ll m o n ito rin g sy stem . The d am ag e e s tim a te s provide a h isto ric a l re c o rd fo r d iffe re n t fields, regions, and y e ars. This in fo rm atio n can be used to e v a lu a te e ffe c ts o f changing m an ag em en t decisions, sp e c ific g ro w er p ro d u ctio n p ra c tic e s , or ch em ical c o n tro l m ethods. I t also provides in fo rm a tio n fo r crop loss a sse ssm e n t. Sam pling p ro ced u res fo r d e te rm in in g d am ag e e s tim a te s a re usually c r iti­ c ize d as e ith e r being to o g e n eral fo r a d e q u a te d ecisio n -m ak in g o r to o in tensiv e fo r econom ic c o n stra in ts. In ten siv e fie ld -lev e l sam pling o f all onion field s in an a re a m ay be p ro h ib itiv e. H ow ever, m ore sp e c ific in fo rm atio n m ay be n ecessary fo r som e fields w here m an ag em en t decisio n s a re to be m ade. In ten sified regional sam pling can be used in itia lly to id e n tify field s above or below a sp ec ifie d d am ag e level. By using a less co m p reh en siv e sam pling m ethod firs t, th e to ta l a re a can be divided in to p o rtio n s of v a ria b le in te re s t: a re a s needing im m e d ia te a c tio n (e x tre m e ly high dam age), a re a s w here m ore in ten siv e field lev el sam pling is needed, or a re a s req u irin g no fu r th e r a c tio n (e x tre m e ly low dam age). The reg io n al program was c o n d u cted su ccessfu lly in m o st m ajor onion grow ing a re a s o f M ichigan from 1977-1980 (Table 33). In som e cases, it was no t possible to o b ta in c o m p le te d a ta s e ts (all fields) fo r an a re a , b u t th e sam p le program was ro b u st enough to to le r a te a sig n ific a n t am ount of m issing d a ta . P e st m an ag em en t personnel and co u n ty a g e n ts found th e program to be w orkable and useful. R ecords o f p ro d u ctio n p ra c tic e s , c o lle c te d a t th e sam e tim e , have been used to help explain som e an o m alies o r tren d s in th e re su lts. P e rc e n t dam age e s tim a te s provide a re la tiv e e s tim a te o f d am ag e a t one point in tim e . To d e te rm in e how this e s tim a te was r e la te d to to ta l dam ag e, 194 Table 33. Regional estimates of first and second generation OM plant damage for the major onion growing areas of Michigan from 19771980. FIRST GENERATION ONION MAGGOT DAMAGE Region and Year 2 NF n 21 20 6 6 10 Regional Mean Standard Error 3.30 1.48 2.60 .45 1.34 .91 .60 .23 .04 17.70 2.23 7,56 .02 12 2.48 .38 .98 19773 Bravo Grant Jackson Lapeer 23 15 19783 Bravo Grant Jackson Lapeer 20 12 23 24 7 16 19 7 4 1979 Bravo Grant Jackson Lapeer 20 21 20 8 13 9 7 5.70 3.47 .32 4.02 4.18 .67 .17 .47 20 8 1 1 .2 0 24 24 4 20.44 30.10 7.15 19804 Bravo Grant Jackson Lapeer 20 8 13 2 8 SECOND GENERATION ONION MAGGOT DAMAGE Regional Mean n 3.51 .36 3.14 .07 2.48 .23 .44 .03 16 19 7 3.90 5.16 2.24 .36 .78 .58 .42 .07 — ---------- — 4 7 10 15 10 Twenty samples taken per field. .13 — 7 .46 .09 2.83 8 1 . 01 24 16.40 5.40 5.18 .24 14.01 .31 Number of fields sampled per region (n). Ten samples taken per field. .51 ----------- — ---------- — 8 ^Approximate number of fields per region (NF). 3 Standard Error .30 — .055 195 p oint e s tim a te s of d am ag e from c o m m e rcial stu d y field s w ere com p ared to th e c a lc u la te d to ta l, firs t-g e n e ra tio n d am ag e fo r 1979 and 1980. w ere ta k en on o r about Ju ly 1 fo r b o th y ears. P o in t e s tim a te s A sec o n d -o rd e r polynom ial curve was found to give a good fit to th e d a ta (F igure 44). The re lia b ility o f th is eq u atio n can n o t be d e term in e d w ith o u t fu rth e r field e x p erim en tatio n ; how ever, this re la tio n sh ip m ay be e x p e c te d to change from y e a r to y ear. D am age e s tim a te s from w eekly sam p les o f c o m m e rcial stu d y field s and th e re s e a rc h field in 1979 and 1980 w ere tra n sfo rm e d to p ro p o rtio n al e s tim a te s by dividing each sam ple count o f dam aged onions by th e to ta l d am ag e th a t o ccu rred in e ac h field . A lthough e ac h field had a d iffe re n t d en sity o f dam aged onions p re se n t a t each sam ple d a te , p ro p o rtio n al e s tim a te s fo r each d a te allow ed com parison o f dam age b etw een field s in d ep en d en t o f d en sity . The c u m u la tiv e p ro p o rtio n al e s tim a te s d escrib e th e r a te o f change o f OM d am ag e during th e firs t g e n e ra tio n o f OM la rv a l a c tiv ity . For th e G ra n t a re a , th is r a te o f d am ag e during th e f ir s t g e n e ra tio n ap p eared to be th e sam e fo r all fields in a y e ar, re g a rd le ss o f th e am o u n t o f dam age. Tw o-w ay analysis o f v arian ce was p e rfo rm ed fo r each y ear to te s t fo r sig n ific a n t d iffe re n c e in p ro p o rtio n d am ag e e s tim a te s (T ables 34-35). fo r d a te s and field s D iffe re n c e s b e tw ee n d a te s w ere e x p e c te d b u t d iffe re n c e s b e tw ee n field s in d ic a te th a t although th e r a te o f dam age a p p ea re d sim ilar fo r all field s, sig n ific a n t d iffe re n c e s w ere p resen t. To d e te rm in e which field s w ere c o n trib u tin g th e m ost v a ria n ce , tw o-w ay analysis of v a ria n ce was p e rfo rm ed on six field s w here fo r e ac h analysis a d iffe re n t field was d e le te d . No sig n ific a n t d iffe re n c e s b etw een th e six fields w ere observed when field 1 in 1979 and field 10 in 1980 w ere d e le te d from th e I . w-l 100 Figure 52A. Figure 52B, Figure 52C, Figure 520. 150 200 JULIAN GATE 250 300 ISO 250 200 J U L I A N DAT E Cumulative proportion OM emergence for model (expected) and field (observed) data for Grant, 1980. (_E, museae not included.) Cumulative proportion OM emergence for model (expected) and field (observed) data for Grant, 1980, after inclu­ sion of E. tnuscae. Proportion of total OM adults for model and field data in Grant, MI, 1979. Proportion of total OM adults for model and field data in Grant, MI, 1980. 350 216 su g g ested th a t a s h ift of th e p re d ic te d second and th ird g e n e ra tio n em erg en ce by th e m odel o ccu rred due to ad d itio n al a d u lt m o rta lity c au sed by E. m u scae. A dult m o rta lity was ad ju sted in th e m odel acc o rd in g to field d a ta on in fe c tio n levels o f E. m uscae (C a rru th e rs 1981). Model p re d ic tio n o f second and th ird g e n eratio n e m erg en c e of OM a d u lts fo r 1980 was found to tra c k th e field e m e rg e n c e re su lts a c c u ra te ly (F igure 52). Based on th e se re s u lts, a d u lt OM m o rta lity by E. m uscae was included in all p ro ceed in g m odel runs. T e m p e ra tu re -a d ju ste d tra p c a tc h o f flig h t-in te rc e p tio n tra p s fo r 1979 and 1980 (field 7, 13) w ere co m p ared to m odel re s u lts fo r th e sam e y ears. C ounts w ere tra n sfo rm e d to a p ro p o rtio n of to ta l c a tc h so re s u lts could be exam ined independent of d e n sity (F igure 52). for b oth y e ars. M odel re s u lts w ere sim ilar to field re su lts In 1979 th e m odel p re d ic te d a higher peak p ro p o rtio n o f a d u lts fo r th e second g e n e ra tio n when com p ared to th e field d a ta. T he to ta l a d u lt incidence for th e second g e n eratio n , how ever, was th e sam e fo r th e m odel and th e field . F or b o th years, m odel and field re su lts d escrib ed a sim ilar phenology of a d u lt a c tiv ity . Model runs w ere m ade fo r 1979 to exam ine th e phenology of th e im m atu re sta g e s of th e OM (Figure 53). F ield sam p lin g re s u lts and m odel p re d ic tio n s a re p re sen te d as a p ro p ortion o f the to ta l so com parisons can be m ade independent of density. Only tw o g e n eratio n s o f la rv a l a c tiv ity on im m a tu re onions w ere re v ealed . T hese re su lts a g re e w ith in fo rm atio n p re se n te d e a rlie r from im m a tu re sta g e sam pling in th e field. The phenology o f im m a tu re s ta g e s p re d ic te d by th e m odel, do not a g re e co m p letely w ith p o p u latio n e s tim a te s from field sam pling. Such d ev iatio n s in th e phenology m ay be p a rtly due to th e use o f only one d ev elo p m en tal base te m p e ra tu re (4.4° C) in th e m odel. D iffe re n t base te m p e ra - P R O P O R T I O N DF T OT AL 0 .0 2 0.0k PUP AE P R O P O R T I O N O F T OT AL 0 .0 2 3 tNSTpR P R O P O R T I O N O F T OT AL 2 0 .0 2 INSTRH 0 .0 3 c. 9 X a 9 a igure 53, Comparison of field and model results for proportions of immature stages of the OM during the onion growing season in Grant, Michigan, in 1979* A) Proportion of second instar, B) Proportion of third instar, and C) Proportion of pupae* 218 tu re s fo r th e various life -s ta g e s m ay ex ist, w hich, if in c o rp o ra te d in to th e model, would a f f e c t p re d ic te d phenology co n sid erab ly . D ev iatio n s b etw een th e m odel and fie ld re s u lts for p ro p o rtio n al size o f th e second and th ird g e n e ra tio n a re also e v id e n t. This is probably due to sam p le lo c a tio n and p ro ced u res used fo r o b ta in in g e s tim a te s o f im m a tu re s ta g e s in th e field . F ield sam ples co n sisted of d am aged a re a s o f 60 cm of onion row . To m o re a c c u ra te ly co m p are field and m odel re su lts, th e num ber o f dam aged a re a s in th e fie ld fo r e a c h g en eratio n would need to be included. From th e previous s e c tio n on OM p la n t d am ag e, it is ev id en t th a t m ore dam age o ccu rs early in th e season and th u s higher d e n sities or a higher p ro p ortion of f ir s t g e n e ra tio n la rv a e would be e x p e c te d . Model v a lid a tio n w ith fie ld d a ta w ill be g re a tly en hanced when an onion p la n t com ponent is a v ailab le . This co m p o n en t is p re se n tly being in v e stig a te d fo r inclusion in an OM-E. m uscae p opulation m odel (P et 1982, M ichigan S ta te U niv ersity , p ro je c te d d a te o f MS th e sis com pletion). Inclusion o f a dynam ic p la n t m odel will provide an o p p o rtu n ity to exam ine im m a tu re and ad u lt survival, e f f e c ts o f a lim ite d food re so u rce on su rv iv al and e f f e c ts o f onion p la n t s p a tia l d istrib u tio n on b o th th e a d u lt and im m a tu re stag e s. 219 V. Sum m ary and C onclusions This re s e a rc h has sought to provide in fo rm atio n on th e s p a tia l and te m p o ra l d istrib u tio n o f th e OM in M ichigan and th e d istrib u tio n and e x te n t of OM p la n t dam age. The phenology o f th e SCM w as also in v e stig a te d and its im p o rta n c e as a p e st o f onions is e v a lu a te d . A subm odel o f th e OM p opulation dynam ics is provided and m odel o u tp u t was co m p ared to fie ld re s e a rc h re su lts on a d u lt and la rv a l phenology. A c o n c e p tu a l m odel o f th e onion a g ro eco sy stem was designed to illu s tra te th e in te ra c tio n s of th e OM in th e sy stem and to show how th e various subcom ponents a re linked and in te g ra te d . R esu lts of a d u lt e m erg en c e stu d ies in d ic a te th a t OM em erg en c e each y e ar may be p re d ic te d by accu m u la tio n o f e ith e r soil o r air d e g re e-d a y s. D eg ree day values o f em erg en c e u p d ated fo r G ra n t, MI, m ay be used in p re d ic tio n of OM e m e rg e n c e fo r d iffe re n t a re a s o f th e s ta te . T h ese values have been shown to closely a g re e w ith d e g re e-d a y values re p o rte d fo r OM e m erg en c e in New Y ork. B iotic and a b io tic p a ra m e te rs o th e r th a n te m p e ra tu re can also in flu en ce OM e m e rg e n c e . If g re a te r a c c u ra c y in p re d ic tio n of OM e m e rg e n c e is needed, m ore stu d y is n e ce ssa ry to id e n tify th e se o th e r e ffe c ts and how th e y m ay be m o n ito red and used fo r p re d ic tiv e purposes. In this re p o rt, th e e f f e c t o f soil m o istu re on OM e m e rg e n c e was in v e stig a te d by co m p ariso n o f e m e rg e n c e and p re c ip ita tio n re c o rd s. A lthough no d e fin ite conclusions can be m ade, it ap p ears th a t soil m o istu re can a f f e c t a d u lt OM e m e rg e n c e in th e spring. S ev eral a sp e c ts o f OM flig h t b eh av io r w ere in v e stig a te d . A dults w ere observed to fly a t or a b o u t th e h eig h t o f th e onion crop. H eight o f tra p s used fo r m onitoring a d u lt a c tiv ity and abundance should th e re fo re be ad ju sted during th e season. A 100 cm tra p heig h t, how ever, should be a d e q u a te if one h eig h t o f tra p 22 0 is d esired fo r tra p p in g ad u lt ro o t m ag g o ts during th e whole of th e season. It was also found th a t re la tiv e tra p p in g d ev ices w orked b e st when p la ce d along field b o rd ers, and th a t th e d ire c tio n o f th e tra p or th e fo liag e ty p e o f th e b o rd er had l ittl e in flu en ce on re la tiv e c a tc h size. D uring n ig h t hours, th e m a jo rity o f OM a d u lts w ere observed to re s t in b o rd e r h a b ita ts o f g rass or c a rro ts . High m o istu re co n d itio n s and p ro te c tio n in th e se a re a s m ay a c c o u n t fo r th is s p a tia l d istrib u tio n a t night. A dult ro o t m aggots in fe c te d by E. m uscae o fte n a tta c h to fo liag e in th e se b o rd er a re a s a t n ig h t in o rd e r to sp o ru la te (C a rru th e rs 1981). A g g re g ates o f a d u lts in th e se a re as a t n ig h t is th e re fo re d e sira b le fo r sp o re a tta c h m e n t and in fe c tio n by E. m u scae. Studies w ere c o n d u cted w ith flig h t in te rc e p tio n tra p s to ex am in e th e w ithin-day a c tiv ity o f OM a d u lts. a.m . and 5:30-8:30 p.m . G re a te s t a c tiv ity o ccu rred b etw ee n 5:30-9:30 In fo rm a tio n from th e lite r a tu r e on how a b io tic fa c to rs in flu en ce OM fig h t w ere e v a lu a te d , and a te m p e ra tu re -a d ju s tm e n t program was w ritte n to a d ju st tra p d a ta fo r a b io tic e f f e c ts on OM flig h t a c tiv ity and n a tu ra l diu rn al rh y th m . T he program a p p ro p ria te ly a d ju ste d tra p d a ta fo r e ffe c ts of m ajor w e ath e r d istu rb a n ce s on a d u lt a c tiv ity . A sim ila r tech n iq u e was used to ad ju st a c tiv ity tra p d a ta of ro o t m aggot a d u lts in th e N eth erlan d s (Loosjes 1976). Inclusion of w ithin-day a c tiv ity in tra p c a tc h a d ju stm e n t enhanced th e tech n iq u e by providing a re a lis tic tra n s fo rm a tio n o f a c tiv ity d a ta su ch th a t n e g a tiv e valu es w ere avoided. A dult flig h t cu rv es o f te m p e ra tu re -a d ju s te d d a ta w ere p re se n te d fo r se v e ra l stu d y field s e ac h y ear. T h ree g e n e ra tio n s o f a d u lt OM flig h t w ere observed, w ith th e th ird flig h t o c cu rrin g v ery la te in th e seaso n , o fte n a f te r onion h a rv e st. A dult flig h t cu rv es o f all field s in th e region re v e a le d a sim ilar 221 phenology o f a d u lt flig h t during th e season. B e tw e e n -fie ld d iffe re n c e s in ad u lt d en sity w ere a p p a re n t, how ever, and th is was a ttr ib u te d to s e v e ra l fa c to rs influding d iffe re n t soil ty p e s and p re sen c e or ab sen ce o f p ro te c tiv e b o rd er areas. A pplications o f fo lia r in se c tic id e sp ray s had litt l e e f f e c t on a d u lt d e n sitie s and fa ile d to sig n ific a n tly re d u c e pop u latio n s o f a d u lt ro o t m aggots in field s w here th e y w e re used. F o liar ap p lic atio n s of th e in se c tic id e s m alath io n , p a ra th io n and diazinon are th e re fo re n o t reco m m en d ed as a co n tro l fo r OM ad u lts. Phenology and o c c u rre n c e o f OM im m a tu re sta g e s w ere in v e stig ate d . O nly tw o g e n e ra tio n s o f la rv a l a c tiv ity w ere observ ed during th e onion grow ing season. The th ird la rv a l brood o c c u rre d p rim arily on m a tu re onions a t h a rv e st or cull onions le f t in th e fie ld follow ing h a rv e st. M atu re onions n o t h a rv e ste d until la te in th e fa ll w ere o bserved to be d am ag ed by th e th ird la rv a l brood. Onions read y fo r h a rv e st th a t had been "lifte d " and physically d istu rb ed w ere not dam aged by th e th ird la rv a l g e n eratio n . T he m ajo r p ro p o rtio n o f th e th ird la rv a l brood occurs on cull onions which are m issed during h a rv e st or dum ped back into th e field follow ing processing. Phenology o f th e im m a tu re s ta g e s was found to depend on tim e o f OM a d u lt e m erg en c e and a c tiv ity . T o tal second and third in s ta r la rv a l m o rta litie s o f 52% fo r th e firs t and 43% and fo r th e second g e n e ra tio n s w ere observed. Pupal m o rta lity d iffe re d sig n ific a n tly am ong a re as w ith d iffe re n t c o n tro l program s. S u p erp arasitism by A. b ilin e a ta in c re a se d pupal m o rta lity during th e second and th ird g e n eratio n . caused B ecause p a ra sitism by A. b ilin e a ta was low w here a g ra n u la r o r fo liar in se c tic id e was applied, it follow s th a t p e rc e n t p a ra sitism and OM pupal m o rta lity was probably low er in c o m m e rcial fields during th e onion grow ing season due to w idespread use of th e in se c tic id e D y fo n ate and w eekly a p p licatio n s of fo liar in sec tic id e s. 222 T hese com pounds d e c re a se d p o te n tia l OM pupal m o rta lity by red u cin g f ir s t in s ta r p a ra sitism by A. b ilin e a ta . R e c e n t stu d ie s have shown t h a t som e g ran u lar in se c tic id e s used fo r ro o t m aggot c o n tro l a re less to x ic to A. b ilin e a ta th a n th e com pounds (F inlayson e t al. 1980). C om pounds such as chlorfenvinphos m ay provide a d e q u a te OM co n tro l and be le ss to x ic to n a tu ra l enem y populations. F o liar ap p lic atio n s o f in se c tic id e s m ay also re d u c e to ta l pupal m o rta lity and p a ra sitism by d ecrea sin g p a ra sito id populations. R educed use o f th e se sprays in th e fu tu re would allow n a tu ra l enem y populations to in c re ase . O nly 3% o f OM pupae during th e second g e n e ra tio n w ere observed to be in diapause. This value is m uch low er th a n p e rc e n ta g e s re p o rte d fo r Q uebec and New Y ork. O v e rw in te rin g m o rta lity o f OM pupae was in v e stig a te d , and d ifferin g a b io tic conditions w ere found to have lit tl e e f f e c t. O v erall m o rta lity of o v e rw in te rin g OM pupae was found to be 12.2% fo r b o th y ears o f th e study. P a ra sitism by A. b ilin e a ta and A. p allip es was o b serv ed in o v e rw in te rin g OM pupae. A c tu al p e rc e n t p a ra sitism was not d e term in e d , b u t re c e n t stu d ies in d ic a te th a t sig n ific a n t p a ra sitism o f OM pupae by th e se sp ec ie s has been low due to p re sen t onion p ro ductio n p ra c tic e s . S tudies by C a rru th e rs (1981) have shown th a t many of th e c u rre n t reco m m en d ed m a te ria ls including som e herbi­ cid es can cause high m o rta lity of OM n a tu ra l en em ies. The e x te n t and d istrib u tio n o f onion p la n t dam age by th e OM was in v e stig a te d by "m apping" th e con d itio n and lo c a tio n o f individual onion plan ts th ro u g h o u t th e season. S ix ty -fiv e p e rc e n t o f th e to ta l seaso n al d am ag e was found to occur during th e firs t g e n eratio n brood. A t this tim e , onion p lan ts are sm all and fre q u e n t m ig ratio n o f OM la rv a e to n earb y onion p lan ts o ccu rs. Onion plan ts dam aged e a rly in th e season w ere observed to rem ain in the fie ld an a v erag e o f 155 d eg ree-d ay s. P la n ts d am ag ed la te r in th e season 22 3 re m a in ed visible in th e field over a g re a te r le n g th o f tim e, sin ce th e siz e o f th e onion p la n t is g r e a te r and d eh y d ratio n and s o ft ro t do no t lead to bulb d ecom position as quickly. A sam ple in te rv a l o f one w eek or less was n ecessary fo r d e te rm in a tio n o f OM p la n t d am ag e in th e spring to en su re th a t m ost dam aged onions w ere av ailab le fo r re c o rd in g b e fo re to ta l deco m p o sitio n o ccu rred . T o tal second g e n e ra tio n dam age can b e st be assessed a t h a rv e st, sin ce d am ag ed onins re m a in visible in th e field lo n g er th a n tw o w eeks. O nion plant dam age in th e spring was found to be d istrib u te d in itia lly in a random p a tte rn . S ig n ifican t d e p a rtu re from random ness to w ard contagious was re v e ale d la te r in th e spring as dam age p rogressed. The d istrib u tio n o f dam aged onions in p lots tr e a te d w ith D y fo n ate in se c tic id e te n d ed to w ard a contagious p a tte rn a w eek e a rlie r th an th a t o b serv ed fo r d am ag ed p la n ts in n o n -tre a te d plots. F o r bo th p lo t conditions, th e d istrib u tio n of dam ag ed p lan ts approached a random p a tte rn la te in th e season as th e d en sity of dam ag ed p lan ts in creased . V olunteer onions w ere shown to a f f e c t th e s p a tia l d istrib u tio n o f OM plant dam age. A te s t s ta tis tic was developed fo r co m p arin g onion p la n t dam age in a re a s o f d iffe re n t v o lu n teer onion d en sity . It was also used fo r e stim a tio n of a v erag e clum p siz e o f dam aged p la n ts around v o lu n teer onions. A g g reg ates of v o lu n teer onions a ffe c te d OM p la n t d am ag e m ore th an single v o lu n teer onion plan ts. The a re a o f onion p la n ts d ire c tly a ffe c te d by v o lu n teer onions was found to be a p p ro x im ately 35-37 cm (radius). Onions close to v o lu n teer onion plants had a higher p ro b ab ility o f being dam ag ed by th e OM in th e spring. This in fo rm atio n m ay be useful for d e te c tio n -ty p e sam p lin g of OM p la n t dam age early in th e season, by s e le c tin g field s w here v o lu n te e r onions a re p re se n t fo r in itia l dam age surveys. When onion seed lin g d am ag e is f ir s t observed in th e se a re a s 224 clo se to v o lu n teer p lan ts, d am ag e su rv ey s can be in itia te d in all field s o f th e region. P la n t dam age during th e f ir s t g e n e ra tio n o f th e OM was d e term in e d by a c c u m u la tin g w eekly d am age e s tim a te s in th e spring. F o liar in se c tic id e sprays did not sig n ific a n tly re d u c e OM la rv a l d am ag e during th e f ir s t or second g e n e ra tio n . F irs t g e n e ra tio n OM p la n t dam age was sig n ific a n tly c o rre la te d w ith second g e n eratio n ad u lt populations. P o s t-h a rv e s t p ro d u ctio n p ra c tic e s m ight a f f e c t th e s p a tia l d istrib u tio n o f th e th ird g e n e ra tio n o f ad u lts, sin ce no c o rre la tio n b etw een second g e n e ra tio n d am ag e and th ird g e n e ra tio n a d u lts was evident. R egional surveys o f OM p la n t d am ag e w ere co n d u cted in M ichigan fo r both th e firs t and second g e n eratio n over a fo u r-y e a r perio d . M ost field s in four m ajor onion-grow ing a re a s w ere surveyed, and reg io n al e s tim a te s o f dam age w ere d e term in e d . T hese surveys provided in fo rm atio n on e x te n t o f OM d am ag e in th e s ta t e and use and success o f c o n tro l program s. Onion p la n t d am age in all stu d y field s in G ran t was o bserved to p rogress a t th e sam e r a te ov er a lim ite d ran g e o f onion dam age d en sity . d am age curves w ere d e te rm in e d fo r th e G ra n t reg io n fo r tw o y ears. P ro p o rtio n al T o tal firs t g e n eratio n Om p la n t dam age was d e term in e d fo r 19 field s in 1980 by use of a propo rtio n al dam age curve. The r a te o f d am ag e m ay be d e te rm in e d each y e a r by sam pling a lim ite d num ber o f field s in th e a re a . D am age e s tim a te s from regional surveys (point e stim a te s ) can th en be used to e s tim a te to ta l p e rc e n t OM plant dam age a t th e end o f th e firs t g e n eratio n o f d am ag e. A dult flig h t cu rv es o f th e SCM w ere p re s e n te d fo r s e v e ra l field s in th e G ra n t a re a . F our g e n eratio n s o f a d u lt flig h t w ere observ ed and th e se d a ta 225 a g re e d w ith re s u lts o f im m a tu re sta g e sam pling. T h ere was sig n ific a n t c o rre la ­ tio n b e tw ee n SCM and OM a d u lt populations for a ll field s and y e a rs exam ined. SCM in th e p a st has been d e sc rib e d a s e ith e r a sec o n d a ry p e st o f onions o r as being p re se n t only w hen OM la rv a l populations w ere also p re s e n t. SCM la rv a e w ere o b serv ed to be th e p rim ary in h a b ita n ts o f dam ag ed onions e arly in th e season, e sp ecially when no g ra n u la r in se c tic id e was used. A reas o f SCM onion p la n t d am age m ay, th e re fo re , a c t as c e n te rs o f a ttr a c tio n fo r OM oviposition la te r in th e spring. A c o n c e p tu a l m odel o f th e su rv iv al and d ev elo p m en t o f th e OM was p re s e n te d . B ehavior o f th e c o n c e p tu a l m odel was found to be a c c e p ta b le fo r know n fe a tu re s o f OM biology. V alid atio n o f th e OM p o p u latio n dynam ics subm odel w as possible by com parison o f m odel o u tp u t and fie ld re s e a rc h re su lts. S im ulation o f a d u lt e m erg en c e re v e a le d a la g perio d o f s e v e ra l days b etw een field re s u lts and m odel p re d ic tio n o f second and th ird g e n e ra tio n e m erg en ce. In c o rp o ra tio n of a d u lt m o rta lity by E. m uscae g re a tly im proved m odel re su lts. T he m odel a c c u ra te ly tra c k e d seco n d and th ird in s ta r and pupal phenology w hen re s u lts w ere co m p ared to field d a ta. S im ulation re s u lts also p re d ic te d only tw o g e n e ra tio n s o f la rv a l a c tiv ity on onions b e fo re h a rv e st. A th ird a d u lt e m erg en c e was p re d ic te d to o c cu r follow ing onion h a v est in e a rly S ep tem b er. S ev eral assum ptions and lim ita tio n s o f th e m odel w ere p re s e n te d , including th e n eed for an onion plant subcom ponent. LITERATURE CITED A rm stro n g , T. 1924. Onion m aggot stu d ie s in th e d is tric t o f M ontreal, Q uebec, 1924. Ann. R p t. Entom ol. Soc. O nt. 1923 54:42-45. B aker, A.D. 1928. T he h a b its o f th e onion m ag g o t flies (H ylem ya a n tiq u a M eigen). Ann. R p t. E ntom ol. Soc. O n t. 1923 54:42-45. B aker, A.D. and K.E. S te w a rt. 1927. T he onion ro o t-m a g g o t (H ylem ya an tiq u a M eigen) on th e island o f M ontreal. 2 0 th R p t. Q uebec Soc. fo r P ro t. P lan ts 92-130. B askerville, G.L. and P. Emin. 1969. R apid e stim a tio n o f h e a t accu m u latio n from m axim um and minim um te m p e ra tu re s . Ecology 50:514-17. B a tc h e le r, C .L . 1971. E stim a tio n o f d en sity from a sam ple o f jo in t point and n e a re st-n e ig h b o r d ista n c e s. Ecology 52(4):703-9. B ath, J.E . 1975. V egetable su b p ro je ct. In: B ionom ics and M anagem ent o f Soil A rthropod P e sts, M.L. F a irc h ild (ed.). EPA G ra n t R es. No. R802547, Second Ann. R pt. pp. 247-380. Bird, G. 1976. M easu rem en ts on onion p la n t g ro w th . U npublished d a ta . Mich. S t. U niv., E. Lansing. B irley, M.H. 1977. T he e stim a tio n o f in se c t d en sity and in s ta r survivorship fu n c tio n s from census d a ta . J . A nim. Ecol. 46:497-510. B rom and, B. 1980. In v e stig atio n s on th e b iological c o n tro l o f th e cabbage ro o tfly (H ylem ya b ra ssic a e ) w ith A leo ch ara b ilin e a ta . W est P a le o a rc tic R egional S ection B ulletin, Volume 3, No. 1. Brooks, A .R . 1951. Id e n tific a tio n of th e ro o t m aggots (D ip tera: A nthom ycidae) a tta c k in g c ru c ife ro u s g ard en crops in C anada, w ith n o tes on biology and c o n tro l. C an. Entom ol. V 83:109-20. 226 227 Brown, A.W.A. 1971. P e s t re s ista n c e to p e sticid e s. In: P e stic id es in th e E nvironm ent, Vol. 1, P a rt 2, R. W hite S tevens (ed.). M arcel D ekker, New Y ork. pp. 457-552. C a e sa r, L. 1931. In se cts a tta c k in g v e g eta b le s. O n ta rio D ept. Agr. Bull. 359 pp. C alhoun, E.H. 1953. N otes on th e s ta g e s and th e biology o f B aryodm a o n ta rio n is C osey (C o leo p tera: Staphylinidae), a p a ra s ite o f th e cabbage m aggot, H ylem ya b ra ssic a e (B auche1) (D ip tera: A nthom yiidae). C an. Entom ol. V 85:1-8, C a rru th e rs , R .I. 1979. P o p u latio n sam pling and s p a tia l d istrib u tio n o f th e im m a tu re life sta g e s o f th e onion m aggot, H ylem ya a n tiq u a (M eigen). MS th esis, Mich. S t. U niv., E. Lansing. 197 pp. C a rru th e rs , R .I. 1981. The biology and ecology o f E n to m o p h th o ra m uscae (Cohn) in th e onion a g ro e co sy stem . PhD th esis, Mich. St. Univ., E. Lansing. 238 pp. C lark, P .J. and F .C . Evans. 1954. D istan c e to n e a re s t neighbor as a m easure of s p a tia l elatio n sh ip s in populations. Ecology 35:445-53. C o ak er, T.H. 1966. The e f f e c t o f soil in sec tic id e s on th e p re d a to rs and p a ra site s of th e cabbag e ro o t fly (E rio isch ia b ra ssic a e (Bauche')) and on th e subsequent dam age caused by th e p e st. Ann. Appl. Biol. 57:397-407. C ro ft, B.A., J.L . Howes and S.M. W elch. 1976, A co m p u te r-b a se d e x ten sio n pest m anagem ent deliv ery sy stem . J . Environ. Entom ol. 5:20-34. D avis, E.G. and F.M . W adley, 1949. G rasshopper egg-pod d istrib u tio n in th e n o rth e rn G re a t P lains and its re la tio n to eg g -su rv ey m ethods. USD A C irc. 8 1 6 . 1 6 p p . 228 D e m p ste r, J .P . 1961. The analysis o f d a ta o b tain ed by re g u la r sam pling of an in s e c t population. J . Anim. Ecol. 30:429-32. D im off, K. 1979. Sam ple. M ich. S t. U niv., D ept, o f Entom ology. Dindonis, L.L. and J.R . M iller. 1980. H o st-fin d in g b eh av io r o f onion flies, H ylem ya a n tiq u a . Envir. E ntom ol. 9(6):769-72. D oane, C .C . 1953. The onion m aggot in W isconsin and its re la tio n to ro t in onions. PhD th esis, Univ. o f Wise. 129 pp. D ustan, A.G. 1948. S eed-co rn m aggot. C an . D ep t. Agr. Pub. 80. Eckenrode, C .J. and R .K . C hapm an. 1971. O b serv atio n s on cab b ag e m aggot a c tiv ity under field conditions. Ann. Entom ol. Soc. Am. 64:1220-30. Eckenrode, C .J., E.V. V ea and K.W. S tone. 1975. P o p u latio n tre n d s o f onion m aggots c o rre la te d w ith a ir th e rm a l u n it a cc u m u la tio n s. Envir. Entom ol. 4(5);7 85—89. E llington, J .J . 1963. F ield and la b o ra to ry o b serv atio n s on th e life h istory of th e onion m aggot, H ylem ya a n tiq u a (M eigen). PhD th esis, C o rn ell Univ. 124 pp. E llio tt, J.M . 1977. Som e m ethods fo r th e s ta t is tic a l an aly ses of sam ples of b e n th ic in v e rte b ra te s . F re sh w a te r Biol. Assn. S c ie n tific P u b licatio n N. 25. 160 pp. Ellis, P.R ., C .J. E ckenrode and G.E. H arm an. 1979. In flu en ce of onion c u ltiv a rs and th e ir m icro b ial co lo n izers on re s ista n c e to onion m aggot. J . Econ. Entom ol. V 72:512-15. E yer, J .R . 1922. Bionom ics and co n tro l o f th e onion m aggot. Penn. Agr. Exp. Bull. 171:16. 22 9 Finlayson, D.G. and C .J. C am pbell. 1976. C arab id and stap h y lin id b e e tle s from a g ric u ltu ra l land in th e Low er F ra s e r V alley, B ritish C olum bia. J. E ntom ol. Soc. B rit. C olum bia 73:10-19. F inlayson, D .G., J .R . M ackenzie and C .J. C am pbell. in sec tic id e s, a 1980. In te ra c tio n s o f carab id p re d a to r, a stap h y lin id p a ra site and cab b ag e m aggots in cau liflo w er. Envir. Entom ol. 9(6):789-97. Finney, D .J. 1941. W ireworm populations and th e ir e f f e c t on crops. Ann. Appl. Biol. 28:282-95. Finney, D .J. 1971. P ro b it A nalysis, 3rd ed. C am b rid g e Univ. P ress. 333 pp. F isch er, R .A . and F. Y ates. 1963. S ta tis tic a l ta b le s fo r biological, a g ric u ltu ra l and m edical re se a rc h . T able IX. O liver and Boyd, Edinburgh. F ulton, W.C. 1978. The d ev elo p m en t o f a m odel fo r use in th e on-line c o n tro l of th e c e re a l le a f b e e tle (O ulem a m elanopus) (L.)). PhD th esis, Mich. St. U niv., E. Lansing. 121 pp. G age, S.H. 1974. E cological in v estig atio n s on th e c e re a l le a f b e e tle , O ulem a m elanopus (L.), and th e p rin cip al la rv a l p a ra s ite , T e tra stic h u s julis (W alker). PhD th esis, Mich. St. Univ., E. Lansing. 172 pp. G eier, P.W. 1966. M anagem ent of in se c t p e sts. Ann. R ev. Entom ol. 11:471-90. G ray, H.E. 1924. The onion m aggot in A lb e rta . Ann. R p t. Entom ol. Soc. O nt. 1923 54:36-38. G reig^Sm ith, P. 1957. Q u a n tita tiv e P lan t Ecology. A cadem ic P ress, Inc., New York. 198 pp. G riffith , K .J. and C.S. Holling. 1969. A c o m p e titio n subm odel fo r p a ra site s and p re d a to rs. C an. Entom ol. 101:785-819. 23 0 G uyer, G .E. and A. Wells. 1959. E v alu atio n o f in se c tic id e s fo r c o n tro l o f th e c h lo rin a te d h y d ro c a rb o n -re sista n t onion m aggot. M ich. A gric. Exp. Stn. Q u a rt. Bull. 41:614-23. H ajek, J . 1969. N o n p a ram etric S ta tis tic s . H olden-D ay, San F ran c isco . 184 pp. H a rc o u rt, D.G. 1961. S p a tia l p a tte rn o f th e im p o rte d cabbagew orm , P ieris ra p a e (L.) (L epidoptera: P ierid ae), on c u ltiv a te d C ru c ife ra e . Can. Entom ol. 93:945-52. H arris, C .R . 1977. In se c tic id e R e sista n c e in Soil In sects A tta c k in g C rops. In: P e s tic id e M anagem ent and In se c tic id e R esista n ce . A cad em ic P ress, Inc., New York. H arris, C .R . and H .J. Svec. 1976. O nion m aggot re s ista n c e to in sec tic id e s. J . Econ. Entom ol. 69:617-20. H aw kes, C. 1969. E rioischia The b eh av io r and ecology o f th e ad u lt cabbage ro o t fly, b rassicae (B auche'). PhD th esis, D ep t, of Zoology and C o m p a rativ e Physiol., Univ. o f B irm ingham , W ellesbourne, W arwick. 151 pp. H aynes, D .L., R.L. Turn m ala and T.L, Ellis. 1980. E cosystem m an ag em en t fo r p e st co n tro l. BioSci.30(10):690-96. H elgeson, R.G. 1969. The w ith in -g e n e ra tio n population dynam ics o f th e c e re a l le a f b e e tle , O ulem a m elanopus (L.). PhD th esis, Mich. St. Univ. H elgeson, R.G. and D.L. H aynes. 1972. P o p u latio n dynam ics of th e c e re a l le a f b e e tle , O ulem a m elanopus (C o le o p te ra: C hrysom elidae): m odel fo r a g e- s p e c ific m o rta lity . C an. Entom ol. 104:797-814. H ennig, W. 1974. A nthom yiidae. In: Die F lieg en d er P a la e rk te s c h e n R egion, E. L indner (ed.), 63a, 306:681-776 (c ite d in Loosjes 1976). 231 H ollander, M. and D.A. W olfe. 1973. N o n p a ra m e tric S ta tis tic a l M ethods. John Wiley and Sons, New Y ork. 503 pp. Hopen, H .J. 1972. G row th o f com m on p u rslan e as in flu en cin g c o n tro l and im p o rta n c e as a w eed. Weed Sci. 20:20-23. H o w itt, A .J. 1958. C h em ical c o n tro l o f H ylem ya a n tiq u a (M eigen) in th e P a c ific N o rth w est. J . Econ. Entom ol. 51:883-87. H u c k e tt, H .C . 1971. A nthom yiidae o f C a lifo rn ia ex clu siv e o f th e su b -fam ily S cato p h ag in ae. Bull, o f th e C a lif. In se c t Survey 12:121. Hudon, M. and J .P . P erron. 1954. D ip tero u s sp ec ie s in fe stin g onions in the m uckland a re a s o f so u th w e ste rn Q uebec. R p t. Q uebec Soc. P ro t. P la n ts V 36:89-92. Iw ao, S. 1956. The re la tio n b etw een th e d istrib u tio n p a tte rn and th e p opulation den sity o f th e la rg e tw e n ty -e ig h t-s p o tte d lady b e e tle , m a c u la ta M otoschulsky, in eg g -p la n t field . P a tte r n E pilachna 28o f th e sp a tia l d istrib u tio n of in se c t 6. Ja p . J . Ecol. 5:130-5. Ja n ts c h , E. 1970. In te r- and tra n sd ise ip lin a ry u n iv ersity : a sy stem s ap p ro ach to e d u ca tio n and innovation. Policy S ciences, pp. 403-428. Je sse n , R .J. 1978. S ta tis tic a l Survey T echniques. Johnson, C .G . 1969. Wiley, New York. 520 pp. M igration and d isp ersa l o f in se c ts by flig h t. M ethuen, London. 763 pp. K arum a, G.A., F.M . K halil and A. E l-Sebae. 1972. P relim in ary stu d ie s on th e biology o f th e onion fly. Bull. Soc. d'E gypte 56:429-35. K iritan i, K. and F. N akasuji, 1967. E stim a tio n o f th e s ta g e -s p e c ific survival r a te in th e in se c t popu latio n w ith o v erlap p in g s ta g e s. 9:143-52. R es. Popul. Ecol. 2 32 K irknel, E. 1978. The in flu en ce o f diazinon, tric h lo ro n a te , c a rb o fu ra n and chlorfenvinphos on p a ra sitism c a p a c ity o f th e ro v e b e e tle , A leo ch ara b ilin e a ta (Gyll.). T idsekr. P la n te a v l. 82:117-29. L a m p e rt, E.P. 1976. W hite cutw orm (Euxoa scan d en s (Riley)): biology in asparagus in M ichigan. sam pling and MS th esis, M ich. St. Univ., E. Lansing. 136 pp. L a m p e rt, E.P. 1980. E ndem ic ecology o f th e c e re a l le a f b e e tle (O ulem a m elanopus (L.)). PhD th e sis, Mich. S t. U niv., E. Lansing. 526 pp. L lew ellyn, R.W. 1965. Fordyn, an in d u stria l dynam ics sim u la to r. C o pyright 1965 R.W. L lew ellyn, R aleigh, N o rth C aro lin a. Loosjes, M. 1976. (M eig.). Ag. Ecology and g e n e tic co n tro l o f th e onion fly, D elia a n tiq u a R es. R p t. 857 P, W ageningen. 179 pp. M aan, W .J. 1945.Biology en phaenologie van de u ie n v lie t, (C h o rto p h ila (M eigen) en a n tiq u a de p re im a t, A crolepia a sse d e lla (Z eller) de p re im a t, als grondslag voor de b estrijd in g . M eded. T eu n voorlickingsdienst 39, 92 pp. (c ite d in Ellington 1963 and Loosjes 1976). M anetsch, T .J. and G.L. P ark . 1977. System analysis and sim u latio n w ith ap p lic atio n s to econom ic and so cial sy stem s. D ept. Elec. Engr. and Sys. Sci., Div. of Engr. R es., Mich. St. U niv., E. Lansing. Manly, B .F .J. 1975. A com pariso n o f m eth o d s fo r th e analysis o f in se c t s ta g e - freq u en cy d a ta . O ecologia 17:335-48. M anly, B .F .J. 1976. Extensions to K iritan i and N akasuji's m eth o d fo r an alyzing in se c t sta g e -fre q u e n c y d a ta . R es. Popul. Ecol. 17:191-199. M athew m an, W.G., A.W. R othw ell and J .P . L aehaine. 1950. N otes on th e sp ec ie s o f ro o t m aggots dam aging onions, cabbage and rad ish a t O tta w a in 1948. C an. Entom ol. 82:12-16. 233 M atsum oto, Y. 1970. V olatile o rg an ic su lfu r com pounds in in s e c t as in sec t a ttr a c t a n ts w ith sp ec ia l re fe re n c e to host s e le c tio n . In: C o n tro l o f In se c t B ehavior by N a tu ra l P ro d u cts, D. Wood e t al. (eds.). A cadem ic P ress, New Y ork. pp. 133-58. M cEwen, F .L ., G, R itc e y and R. M cG raw . 1973. C o n tro l o f th e onion m aggot, H ylem ya a n tiq u a (M eigen), by use o f th e s te r ile m ale tech n iq u e. Sum m ary R e p o rt to th e O n tario P e stic id e A dvisory C o m m itte e . 22 pp. M cLeod, D .G .R . 1965. Some o b serv atio n s on th e physiology and ecology of soil in se c ts. P ro c. N. C e n t. B ranch Entom ol. Soc. Am. 20:158-59. M errill, L.G. and R. H utson. 1953. M aggots a tta c k in g M ichigan onions. J. Econ. E ntom ol. V 46:678-80. M iles, M. 1955. S tudies o f A nthom yiid flies. VI. T he annual cy cle of g e n e ra tio n s in som e A nthom yiid ro o t flies. Bull. Entom ol. R es. 46:11-19. M uller, J . 1969. U ntersuch u n g en zu dem in d er o v ip o sitio n sze it von H ylem ya a n tiq u a (M eig.) w irksam en o rien tieru n g sm ech an ism u s. Wiss. Z. E rn st- M oritz-A rn d t-U n iv . G reifsw ald 18, M ath .-N at.:7 3 -7 8 . M iller, L.A. and R .J. M cC lanahan. 1960. Life h isto ry o f th e see d -c o rn m aggot, H ylem ya c ilic ru ra (Rond.) and of H. litu r a ta (Mg.) (D ip tera: A nthom yiidae) in so u th w e ste rn O n ta rio . C an. Entom ol. V 92:210-21. M issonnier, J . 1967. Influence de la n u tritio n sur la m u ltip lica tio n des A nthom yiides. Int. Symp. F y to fo rm . F y tia t. 19:338-56. M issonnier, J . and M. S ten g el. 1966. E tude des fa c te u rs de fe c o n d ite des a d u lte s de C h o rto p h ila b ra ssic a e B., H ylem ya a n tiq u a Meig. and Pegom yia b e ta e C u rt. Annls. Epiphyt. 17:5-41. 234 M oore, I. and E.F. L egner. 1971. H ost re c o rd s o f p a ra sitic stap h y lin id s of th e genus A leo ch ara in A m erica (C o le o p te ra: Staphylinidae). 64(5): 1184—85. M oore, P.G . 1954. sp acin g in p la n t populations. Ecology 35:222-27. M orisita, M. 1959. M easuring th e dispersion o f individuals and an aly ses o f th e d istrib u tio n a l p a tte rn s . M em. F ac. Sci. Kyusku U. S eries E (Biol.) 2:215- 35. M ukerji, M.K. and S.H. G age. 1978. A m odel fo r e stim a tin g h a tch and m o rta lity o f grasshopper egg popu latio n s based on soil m o istu re and h e a t. Ann. E ntom ol. Soc. Am. 71:183-90. N air, K.S.S. and F.L . M cEwen. b ra ssic a e (D ip tera: 1975. Ecology o f th e cab b ag e m aggot, H ylem ya A nthom yiidae), in ru ta b a g a in so u th w este rn O n tario , w ith som e o b serv atio n s on o th e r ro o t m aggots. C an E ntom ol. 107:343-54. Nie, N .H ., D.H. Hull, J .C , Jen k in s, K. S te in b ren n e r and D.H. B ent. S ta tis tic a l P ack ag e fo r th e S o cial S ciences, 2nd ed. 1975. M cG raw -H ill, New York. P e rro n , J .P . 1972. E ffe c ts of som e eco lo g ical fa c to rs on populations o f th e onion m aggot, H ylem ya a n tiq u a , under field conditions in so u th w este rn Q uebec. Ann. Soc. Entom ol. Q uebec 17(l):20-47. P erro n , J .P ., D.G. Finlayson and A.G. D ustan. 1955. The onion m aggot. C an D ept. A gric. Pub. 935. 4 pp. P erro n , J .P ., J .J . Jasm in and J . L aF ran ce. onions to th e onion m aggot, 1958. V a rie ta l re s ista n c e o f seed ed H ylem ya A nthom yiidae). C an Entom ol. 90:653-56. a n tiq u a (M eig.) (D ip tera: 235 P erro n , J .P . and J . L afran ce. 1961. N otes on th e life h isto ry o f th e onion m aggot, H ylem ya a n tiq u a (Meig.) (D ip tera: A nthom yiidae), re a re d in field cag es. C an. Entom ol. 93:101-6. P e te rso n , A. 1924. Som e ch em icals a ttr a c t iv e to a d u lts of th e onion m aggot (H ylem ya a n tiq u a Meig.) and th e see d -c o rn m aggot (H ylem ya c ilic ru ra R ond.). J . Econ. E ntom ol. 17:87-94. Pielou, E.C, 1977. M ath e m a tic al Ecology. John Wiley and Sons, New York, 385 pp. P im en te l, D., D. C h an t, A. K elm an, R .L. M etc a lf, L.D. Newson and C. Sm ith. 1965. A ppendix Y l l . Im proved p e st c o n tro l p ra c tic e s in re s to rin g th e q u a lity o f an en v iro n m en t. R pt. o f Envir. P o llu tio n Panel, P resid e n t's S cience A dvisory C o m m itte e , pp. 227-91. P ric e , P.W. and G .P. W aldbauer. 1975. E cological a sp e c ts o f p e st m an ag em en t. In: In tro d u ctio n to In se ct P e st M anagem ent, R .L. M etc a lf and W. Luckm ann (eds.). John Wiley and Sons, New Y ork. pp. 37-73. R abb, R.L. 1978. A sh arp focus on in se c t populations and p e st m an ag em en t from a w id e -a rea view. ESA Bull. 24:55-61. R abb, R.L. and F.E . G u th rie. 1970. C o n ce p ts o f p e st m an ag em en t. Proc. C onf. held a t N orth C aro lin a St. U niv., R aleig h , M arch 25-27, 1970. R abb, R .L ,, R.E. S tin n er and G.A. C arlson. 1974. E cological p rinciples as a basis for p e st m an ag em en t in th e ag ro eco sy stem . In: P roc. Sum m er In s titu te on Biol. C o n tro l o f P la n ts, In se cts and D iseases, F. M axw ell and F.A . H arris (eds.). M ississippi Univ. P ress, Jack so n , pp. 19-45. R aw lins, W.A., M .J. Sloan, R.G . S trong and J .J . Ellington. m aggot and its co n tro l. pp. 1960. The onion New York (C ornell) Ag. Exp. S tn. Bull. 947. 18 236 R ead, D .C . 1962. (C o le o p te ra; fo r th e N o tes on th e life h isto ry o f A leo ch ara b ilin e a ta (Gyll.) S taphilinid ae) and on its p o te n tia l value as a c o n tro l a g en t cab b ag e m ag g o t, H ylem ya b ra ssic a e (Bouche1) (D ip tera: A nthom yiidae). C an. Entom ol. 94:417-24. R ich ard s, O.W, and N. W aloff. 1954. S tu d ies on th e biology and population dynam ics o f B ritish g rassh o p p ers. A n ti-L o cu st Bull. 17. 182 pp. R ich ard s, O.W., N. W aloff and J .P . S p radberry. 1960. The m e asu re m e n t of m o rta lity in an in s e c t p o p u latio n in w hich re c ru itm e n t and m o rta lity w idely o v erlap . O ikos 11:306-10. R itisch , S.S. 1950. Biology o f th e see d -c o rn m aggot, H ylem ya c ilic ru ra (R ondani), and p re lim in a ry stu d ies on its c o n tro l. PhD th e sis, C o rn ell Univ., Ith a c a , New Y ork. R itisch , S.S. and H.H. S ch w ard t. 1949. Biology and c o n tro l o f th e see d -c o rn m aggot on beans in New York. J . Econ. E ntom ol. 42:77-80. R o ck stein , M. and J . M iquel. 1973. Aging in in sec ts. In sects, Vol. 1, 2nd ed., M. R o ck ste in (ed.). In: The Physiology of A cadem ic P ress, New York, pp. 371-478. Rygg, T. 1960. The onion fly (H ylem ya a n tiq u a M eig.): in v e stig atio n s on its biology and co n tro l in N orw ay. Medd. St. P la n te v . 18:1-56. Salkeld, E.H. 1959. N otes on an ato m y , life h isto ry and b eh av io r of A p h a e re ta p allipes (Say) (H ym enop tera: B raconidae), a p a ra s ite o f th e onion m aggot, H ylem ya a n tiq u a (M eig.). C an. E ntom ol. 91:93-97. S c o tt, D .R . 1969. A s e le c te d bibliography o f th e onion m aggot, H ylem ya a n tiq u a (M eigen). Bull. Entom ol. Soc. Am. 15:345-54. Southw ood, T .R .E . 1978 E cological M ethods, 2nd ed. C hapm an and H all, L td ., London. 524 pp. 237 S te e le , R .G .D . and J.H . T o rrie. 1960. P rin cip les and P ro c e d u re s o f S ta tis tic s . M cG raw -H ill, New Y ork. 481 pp. S trong, F.E . and J.W . Apple. 1958. S tu d ies on th e th e rm a l c o n sta n ts and sea so n al o c c u rre n c e o f th e see d -c o rn m ag g o t in W isconsin. J . Econ. E ntom ol. 51:704-7. T ic h e le r, J.H .G ., J . N oorlander, J.A .B .M . T heunissen, M. Loosjes and J.P.W . N oordink. door 1975. B estrijd in g van de uievlieg, H ylem ya a n tiq u a (M eig.), m iddel van de " s te rile -m a le '’ tech n iek . Ju a rv e sl. 1974 Inst. P lz ie k te n k . O nderz, W ageningen. pp. 90-93. T ozloski, A .H. 1954. C o n tro l o f th e onion m aggot on see d s e ts in th e C o n n e c tic u t V alley. J . Econ. Entom ol. 47:494-97. Turn m ala, R .L. and D.L. H aynes. 1977. O n-line p est m an ag em en t sy stem s. Environ. Entom ol. 6:339-49. T um m ala, R .L., W.G. R uesink and D.L. H aynes. a p p ro a ch to th e m an ag em en t o f th e 1975. A d is c re te com ponent c e re a l le a f b e e tle eco sy stem . Environ. Entom ol. 4(2): 175-86. W adsw orth, J.T . 1915. On th e life h isto ry o f A leo ch ara b ilin e a ta Gyll., a staphylinid p a ra s ite o f C h o rto p h ila b ra ssic a e Bouche'. J . Econ. Biol. 10:126. W hitfield, G .H ., F.A . D rum m ond and D.L. H aynes. 1981. A sim u latio n m odel fo r th e survival and d ev elo p m en t of th e onion m aggot. P ro c. Entom ol. Soc. o f O nt. V1U:39— 55. W illiams, C .D . 1961. S tudies on th e e f f e c t o f w e a th e r conditions on th e a c tiv ity and abundance o f in s e c t populations. B244:331-78. Phil. T rans. R. Soc. 238 W ishart, G. 1957. Surveys of p a ra s ite s of H ylem ya A nthom yiidae) th a t a tta c k c ru c ife ro u s crops in C an ad a. spp. (D ip tera: C an. Entom ol. 89:450-54. W ishart, G ., J .F . Doane and G.E. M aybee. 1956. N o tes on b e e tle s vs. p re d a to rs of eggs o f H ylem ya b ra ssic a e (Bouche') (D ip te ra : A nthom yiidae). C an. Entom ol. 88:634-39. W ishart, G. and (H ym enoptera: E. M onteith. C ynipidae), 1954. a p a ra s ite T ry b lio g rap h a of H ylem ya ra p a e (W estw.) spp. (D ip tera: A nthom yiidae). C an. Entom ol. 86:145-54. W orkman, R .H ., J r. 1958. The biology o f th e onion m aggot, H ylem ya an tiq u a (M eigen), under field and g reen h o u se conditions. PhD th esis, O regon St. C oll. 82 pp. Wyman, D. 1972. Y ork. 1222 pp. W yman's G ardening E ncyclopedia. M acM illan C ol., New APPENDIX A 239 Appendix A. Figure Al. Table Al. Distribution of Hylemya spp. in Michigan Counties and standard county codes for the state of Michigan for use with table Al. Distribution of Hylemya spp. in Michigan (codes refer to county codes in figure Al.), 2 40 "7 08, 131 053 013 103 003 071 H IM 043 153 *041 1 09 141 031 etuco A lf ltM 137 007 112. 039 0 79 wiuutti M IH M ' 1 13 12 9 HUQH extou 1 05 133 > '- s niwut iIU ■UtON in 0 63 0 17 OCUM i 12 7 073 111 123 117 139 0 81 067 151 145 037 155 . w c iu m 0 65 | iM K im 093 1 25 CUH0W 02 5 163 161 H ta O i 023 11! Figure Al . Counties and standard county codes for the state of Michigan (from U.S. General Services Administration). b9 TABLE A l . Species of the Genus Hylemya fugan hinei inconspicua inormata laevis lasciva latifrontalis lineariventris longipalpis muscaria 55, 17, 33 7, 9, 45, 113 51, 111 35, 65, 97, 5, 17, 1, 51, 1, 65 19, 65, 79, 81, 85', 87,111, 159 9, 13, 41, 53, 61, 63, 83, 97, 103, 111, 113, 127, 131 17, 33, 41, 53, 61, 71, 87, 97, 111, 133, 153 65, 159 73, 111, 145 111 73, 77, 87, 101, 111 111, 123 11, 17-21, 31, 37, 45, 51, 59, 63-7, 73, 83, 87, 47, 123, 157 17, 103, 153 57, 81, 111 17, 19, 31, 81, 87, 93, 111, 125, 127 93, 97, 111, 123, 127, 143, 145. 53 9, 19, 21, 27, 33, 47, 51, 69, 83, 111, 113, 133, 143, 159, 165 3, 11, 21, 31, 35, 45, 51, 63, 65, 75-9, 83, 93, 101, 107, 111, 113, 117, 121, 123, 141, 153-7 65, 67, 73, 77, 81, 107, 111,133, 143, 155 35, 51, 97, 111, 143 51 131, 133 11, 21, 59, 79, 111, 121, 139 29, 31, 45, 47, 51, 53, 61,65, 79, 83, 93, 109, 111, 131, 153 103 33, 41, 69, 103 37, 137 111, 143, 145 149 133, 241 abitibiennsis aemena aestiva alaba alcathoe antiqua arnolitra atomaris betarum bicaudata brassicae bucculenta cinerella cinerosa coensiaeformis curipes depressa discreta filicis flavipennis florilega Record of distribution in Michigan (codes refer to counties in figure Al). _ „ . Species of the Genus Hylemya (continued) octoguttata parvaeformis pilifemus platura Record of distribution in Michigan (codes refer to counties in figure A l ), 79 113, 123 21, 51, 73, 91, 111 1, 3, 7-13, 17-21, 25-43, 51-63, 67, 71-85, 89, 91, 95, 9 137-45, 149, 153, 155, 159, 165 3, 13, 33, 37, 39, 41, 51, 53, 67, 81, 101, 103, 111, 113 49 5, 51, 81, 83, 95 69, 77, 111 45, 65, 111, 115, 133, 149 35, 43, 61, 143, 153 41, 53, 153 35 27, 81, 125 3, 29, 33, 41, 71, 73, 97, 111, 131, 153 111, 153 35, 69 85, 131 25, 31, 37, 69, 81, 111, 113, 127, 149, 159 15, 25, 35, 37, 41, 45, 49, 59, 65, 69, 71, 77, 111, 143 242 pluvialis probpscidalis profuga pullula radicum replicata restorata salicola setigera setitarsata spinosossima stratifrons trilinesta trivitata variata Table Al. (continued) -------- Appendix B {footnotes for Figure 1) 243 Footnote 1: Nye, P. H. e t al. grow th 1975. The possibility of predicting solute uptake and plant response from independently m easured soil and plant c h a ra c te ris itc s. Plant and Soil 42:161-70. Robinson, J. C. 1973. Studies on th e p erform an ce and growth of various shortday onion v arieties (Allium cepa L.) in th e Rhodesian low veld in relation to d a te of sowing. Rhod. 3. Agric. Res. 11:51-69. Footnote 2: Hancock, J. G. and J. W. Lorbeer. 1963. Pathogenesis of Botrytis c in erea , B. squamosa and B. allii on onion leaves. Phytopathology. 53:669-73. Footnote 3: Ellington, 3. J. 1963. Field and laboratory observations on the life history of th e onion maggot, Hylemya a n tiq u a (Meigen). Ph.D. thesis, Cornell U niversity. 124 pp. Kendall, E. W. 1932. Notes on the onion maggot, Hylemya antiqua (Meigen), Entomol. Soc. O ntario Rep. 62:82-84. Foo tno te 4: Lewis, T. 1973. Thrips, their biology, ecology and economic im portance. New York: A cadem ic, 366 pp. Foo tno te 5: Martin, G. C. 1958. Root-knot nem atodes (Meloidogyne spp.) in the federation of Rhodesia and Nyasaland. N em atologica 4:122-25. USDA. 1960. Index of Plant Diseases in th e United S tates, Agriculture Handbook, No. 165. USDA. p. 365. Crops R esearch Division, Ag. R esearch Service, 244 Footnote 6: 5prague, R . 1950. Diseases of C ereals and G rasses of North A m erica. Ronald Press, New York. F ootnote 7; Perron, 3. P. 1972. E ffe cts of some ecological fa c to rs on populations of the onion m aggot, Hylemya a n tiq u a , ufield conditions in southw estern Quebec. Ann. Soc. Entomol. Que. 17{i}:29-47. Foo tno te 8: Perron, 3. P. 1972. E ffe cts of some ecological facto rs on populations of the onion m aggot, Hylemya an tiq u a , under field conditions in southw estern Quebec. Ann. Soc. Entomol. Que. 17{1 >:29-47. F o o tno te 9: Stoffolono, 3. G. 1969. N em atode parasites of the face fly and the onion maggot in France and Denmark. 3. Econ. Entomol. 62:792-95. Footnote 10: Perron, 3. P. and R. C re te . Empusa m uscae Cohn. 1960. Prem ieres observationes sur le champignon, (Phycomycetes: Entom ophthora) p a ra sita n t la mouche de l'oignon, Hylemya an tiq ua (Meig.) (Dipteres: Anthomyiidae) dons le Quebec. Ann. Entomol, Soc. Q uebec 5:52-56. F ootn ote 11: Perron, 3. P. 1972. E ffects of some ecological fa c to rs on populations of the onion maggot, Hylemya a n tiq u a , under field conditions in southw estern Quebec. Ann. Soc. Entomol. Que. 17(l):29-^7. 245 Footnote 12: Russell, H. M. 1912. An internal p a ra site of Thysanoptera. Tech, Ser. Bur. Ent. U.S. 23:25-52. F oo tn o te 13: C harles, V. K. 1941. A prelim inary check list of th e entom ogenous fungi of North A m erica. Tech. Bull. U.S. Dep. Agric. 21:707-85. F ootn ote 14: Cobb. N. A. 1917. The Mononchs, a genus of free-living predatory nem atodes. Soil Science 3:431-86. F ootn ote 15: Mankau, R. e t al. 1975. The life cycle of an endoparasite in some tylenchid n e m ato d es. N em atologica 21:89-94. F ootn ote 16: C onnard, M. H. and P. W. Zimmerman. 1931. Origin of adventitious roots in cutting s of P ortulaca o le ra c e a . C ontrib. Boyce Thompson Inst. Plant Res. 3:331-46. Zim m erm an, C. A. 1969. The causes and c h a ra c te ris tic s of weediness in P o rtu laca o le ra ce a L, Ph.D. Thesis, University of Michigan. 248 pp. Footnote 17: Shorthouse, 3. D. and A. K. Watson. Plant galls and the biological control of w eeds. Insect World Digest pp. 8-11. F o otn o te 18: Sawyer, A. J . 1976. The e f f e c t on the cereal leaf b eetle on planting oats with a companion crop. M.S. Thesis, Michigan S ta te U niversity. 145 pp. 246 Footnote 19: Perron, 3. P. 1972. E ffe cts of some ecological fa c to rs on populations of the onion m aggot, Hylemya a n tiq u a , under field conditions in southw estern Quebec. Ann. Soc. Entomol. Que. 17{l):29-47. F ootnote 20: Webster, 3. M. 1972. N em atodes and biological control, pp. 469-96. In: W ebster (Ed.) Economic Nem atology. A cadem ic Press, N.Y. F o otn ote 21; Gorske, S. F. 1973. The bionomics of the purslane sawfly, Schizocerella pilicornis. M.S. Thesis, University of Illinois. I OS pp. F oo tno te 22: USD A. 1960. Index of plant diseases in the United S tates. A griculture Handbook No. 165. Crops Res, Div., Agric. Res. Ser. 531 pp. Foo tno te 23: USD A. 1960. Index of plant diseases in th e United States. Ag. Handbook No, 165. Crops Res. Div,, Ag. Res. Ser. 531 pp. Foo tno te 24: USDA. I960. Index of plant diseases in th e United States. A griculture Handbook No. 165. Crops Res. Div., Agric. Res. Ser. 531 pp. Footnote 25; Goeden, R. D. e t al. 1974. P rese n t s ta te s of projects on th e biological c o ntro l of weeds with insects and plant pathogens in the United States and C anada. Weed Science 22:490-95. 247 Footnote 26: Breeland, S. G. 1958. Biological studies on the arm yw orm , Pseudaletia unip un cta (Haworth) in Tennessee. 3. Tenn. Acad. Sci. 33:263-347. F o o tn o te 27: H elgesen, R. G. and D. L. Haynes. 1972. Population dynamics of the cereal leaf b e etle, Oulem a melanopus (C oleoptera: Chrysomelidae): a model for ag e specific m o rtality . C an. Entomol. T um m aia, R. L. e t al. 104:797-814. A d isc re te com ponent approach to th e m an ag em ent of th e cereal leaf b e etle ecosystem . Environ. Entomol. 4:175-86. F ootnote 28: Perron, 3. P. 1972. E ffects of some ecological fa c to rs on populations of the onion m aggot, Hylemya a n tiq u a , under field conditions in southw estern Q uebec. Ann. Soc. Entomol. Que. 17(0:29-47. F o o tn o te 29: W ebster, F. M. and C. W. Mally. 1900. The purslane sawfly—Schizocerus z ab resk el. Can. Entomol. 32:51-55. F o o tn o te 30: Gorske, S. F. 1973. The bionomics of the purslane sawfly, Schizorella pilicornia (Meig.). M.S. Thesis, Univ. of Illinois. 108 pp. F ootnote 31: Mankau, R., 3. L. Imbiani. 1975. The life cycle of an endoparasite in some tylenchid nem atodes. N em atologica 21:89-94. F o otn ote 32: W ebster, 3. M. 1972. N em atodes and biological control, pp. 469-496 In: 3.M. Webster (ed.) Economic Nematology. A cademic Press, N.Y. 248 Footnote 33: Cobb, N. A. 1913. N otes on mononchus and tylenchulus. Washington Acad. Sci. 3:287-88. Cobb, N. A. 1917. The mononchs, a genus of free-living pred atory nematodes. Soil Science 3:431-486. F o o tn o te 34: Ravlin, F. W. 1975. A revision of the genus 3uennicke (D iptera: Tachindae) for A m erica north of LMexico. M.S. Thesis. Michigan S ta te U niversity. 80 pp. F o o tn o te 35: Danks, H. V. 1975. F a c to rs determ ining levels of parasitism by Winthemia ru fo p icta (Diptera: Tachinidae), with p a rtic u la r re fe re n c e to Heliothis spp. (Lepidoptera: Noctuidae) as hosts. Can. Entomol. 107:555-684. Danks, H.V. 1975. Seasonal cycle and biology of W inthemia rufo picta (Diptera: Tachinidae) as a parasite of Heliothis spp. (Lepidoptera: Noctuidae) on to bacco in North Carolina. Can. Entomol. 107:639-54. F oo tno te 36: G age, S. H. and D. L. Haynes. 1975. E m ergence under natu ra l and manipulated conditions of T etrastichus julis, an introduced larval p arasite of the cereal leaf beetle, with re fe re n ce to regional population m anagem ent. Environ. Entomol. 4(3):425-34. F o otn ote 37: Maltby, H. I., F. W. Stehr, R. C. Anderson, G. E. Moorehead, L. C. Barton and 3. D. Paschke. 1971. Establishm ent in the United S ta te s of Anaphes flavipes (Foerster), an egg parasite of the cereal leaf b eetle, Qulema melanopus (L.) 3. Econ. Entomol. 64:693-97. 249 Footnote 38: P erron, 3. P. onion 1972. m aggot, E ffects of some ecological fa c to rs on populations of the Hylemya an tiqu a (Meig.), under field conditions in southw estern Quebec. Ann. Soc. Entomol. Que, 17(l):29-47. F o o tn o te 39; Thompson, W. R. 1943. A c ata lo g u e of the parasites and predators of insect pests. Sect. I, Pt. 2. Belleville, O ntario, C anada. The Imperial P a ra site Service. 99 pp. F o o tn o te 40: U5DA. 1960. Index of plant diseases in th e United S tates. Agriculture Handbook No. 175. Crops Res. Div., Agric. Res. Ser., p. 280. F o o tno te 41: Gorlenko, M.V., I. V. Voronkevich and T. S. Maksimova. 1956. M u t u a l r e l a t i o n s betw een the onion fly and onion syrphid and the b a c te ria th a t cause damp rots in plants, (in Russian) Zool. Zh. 35 pt. 1 pp. 16-20, 6 refs. Moscow, 1956. (with a summary in English, Suppl. p. 4). F oo tn o te 42: Newhall, A. G. and B. G. Chitwood. 1940. Onion eelworm or bloat caused by th e stem or bulb n e m atod e, Ditylenchus dipsact. Phytopathology 30:390400. F o otn o te 43: U5DA. 1960. Index of plant diseases in the United S tates. Handbook No. 165. Crops Res. Div., Agric. Res. Ser. p. 365. A griculture APPENDIX C 250 Appendix C. Table C l . Air te m p e r a tu r e s and D egree Day A ccu m ulatio n in F ° (base 4.4 C) for G ra n t, Michigan, in 1978-1980. Table C2-3. Soil te m p e r a tu r e s and D eg ree Day A ccum ulation in F ° (base 4.4°C ) for th re e d epths (3, 8, and 15 cm) for G ra n t, Michigan, in 1979 (C2) and 1980 (C3). Table C4. Daily p re c ip ita tio n and a c c u m u la te d p re c ip ita tio n for G rant, Michigan, in 1978-1980. All d a ta files are lo c a te d on UP2017 and UP2018 dump ta p e s a t th e Michigan S ta te U niversity C o m p u te r C e n te r. CDDA78GRANTTEMPMAXMIN CDDA79GRANTTEMPM AXMIN CDDA80GRANTTEMPMAXMIN CDDA79CUMDDAY79SOIL CDDA8QCUMDDAY80SOIL CDDA7879GRANTPRECIP CDDA80GRANTTEM PPRECIP 85 15 It St I* fit St 6t zs 15 99 t9 ZS 55 Cf be zs 9t SY LB If 05 St E5 et 9; BS 55 St es zs 9S 9t Ot Ct OS zs z; tt e* Yi et tS 05 ts Bt 65 95 95 95 Oi 69 9f LY 6S CS S9 It It 6t St 15 55 05 ts Bt es 05 15 15 ts ES 99 tt St St St zt 9. bo tt 95 LL tl 6L OB 91 8. LL 81 11 81 LL SI EE ES ZE El 11 El SE 8: SE OE BE »E OE El ZE ce ce SB 51 El SI 81 18 11 11 tl 51 81 1. IB ze si sc ZB IS SE ZB ZB Si tB ze IE si ti Di OB El EB 9E ZE ze ti ts Z9 te 9E SE te t: Si ti ZB tl El 01 CS dbi'Zl Bull KIK XYW e*sttc s*sotc fSiZC t*9t:t t *5ZZC fiB IC 6*B9It 6*ttlC t -ZZ1C t'160C t'B90C t * 9 C0 C fiOOC t*116Z E*tsez e*616Z t ' BBBZ E ’ssez 6 *SCBZ t ■SIBZ t B9B1Z t *9S1Z 6 *CZiZ t “Z69Z t*9S9Z fZZSZ t'o ss: t'SESZ t “ 9C5Z f*tI5Z f t e t : 6*95tZ t ’iZ t: 6‘io t: S' EBEZ t*196Z S*tttZ t *6it: fCSZZ e-zizz 6 ‘ ZSZZ 6*BZZZ B’ TTZZ B*OBt ! f *ZSTZ C ’ SZTZ COOTZ C tiO Z e*icor F*6D0Z C' 5 9 6 1 B’ i Z SI t*S6B1 r u e i C'BtBI E*6I BI f z s n t's s n t*6C11 f z z n S'ZOil C-B191 E *6991 8*5191 B*ZBE1 C'SSSI fOCSI E'tOSI c*zen e*E9ti C Ztt* B 'lO tl B 'T ltt fiC C I B' SDCI C* 9 t Z 1 B*0SZ1 c itz i B'ZIZI B*SE11 XV0Z30 *30Y s i /1 /e 8 1 /9 /S Bi/S t i ei/t n S i / t /S Bi/Z /S Bi/1 /£ B i/u/e B i/Ot/E Bi/SZ/E Bi/BZ/E Bi/tZ/E B1/9Z/E Sl/SZ/E 81/tZ/E Bt/CZ/E Bi/ZZ/E Bi/IZ/f Bt/OZ/B Bt/61/1 81/B I/B 81/11/E B1/91/B 8i / r t / E 81/tl/E Bt/Cl/E B1/Z1/E 81/11/E 81/01/E 81/S /F Bi/E /E B i / i /E Bi/S /E Bi/S t i B i / t /B Bi/I / B Bi/Z t l Bi/1 t i B i/U /i fii/OC/i B1/ 6Z/ *. Bl/BZ/l Bi/iZ/1 B1/9Z/1 8i/EZ/l B i/tZ/i Si/CZ/1 Bl/ZZ/l B l/IZ /i Bl/OZ/i 81/61/1 Bi/81/1 81/11/1 81/91/1 B t/SI/i B i/tl/i 81/CI/l B t/ZI/i Bt/11/1 Bi/OI/1 Bi/6 / i Bi/B / i B i / i /1 Bi/9 / t Bi/S / i 8 i / t IL fii/C / i Bi/Z / i BI/1 / i B1/0C/9 St/SZ/S E1/6Z/9 Bt/IZ/9 B1/9Z/5 fii/SZ/9 Bt/tZ/9 Bi/IZ/5 81/ZZ/9 Ei/IZ/5 Bl/OZ/9 IS 55 19 ss zs 1C sc 09 ZB St Zt tt 1! St It zt 91 os ss 9S IE Z? IS m£ Si St St tt it sr 19 9t IS tt EE ts ZE IS 9E St tt 9C It Ct CE Bt Ot SC CC sz 1Z tt BZ Ct 9t Zt tt it SZ It BC It BC tz 1Z 91 01 tt 55 ts 65 99 t5 E9 95 55 t9 19 ZS St 55 99 05 95 CE li BE 69 69 59 C9 05 15 95 St 09 St 95 95 St it tt 65 Bt 65 If if 15 6t 95 IS et tc St dWI 6K EI KIK vvw it tz 9C tz BZ It 91 9t 1Z It It SZ S1VC 61 91 Z1 ti 61 19 V9 99 SE El zi k1 Si IB Cl Si B5 B9 ze 61 OE 06 06 BE SB te tE 91 11 59 ti IB IE t*I91I t'BCIT e-otii fte o i B * 6 S0 I ftC O I 1 *9Z01 9* f l O I 9 116C 1*856 9*9CS 9*616 T' ZOS i "tie 1*158 i*tce 9*sie c*coe 0 * f Bi S*tSi G*9Z1 5*169 5*t99 C*BZ5 5 * 565 0 * S9E c *i t s 5*915 5*96t 1 *ZFf C*Oit 5*Ztt 0 *€ T t 0 *C6C o'cic C*f 5C O' SCC 5 *6 1 C D' 86Z c-eiz C * I 9Z 0 *9 t Z s*srz o*ozz 0* BOZ 0*661 1*561 9*181 t * 911 Z* B9 I 0 *C9I e*e5i t*5fl f f t l i*ZZI 9*601 t*66 f i t E*CB i*li e*n e*69 C *65 t * 15 S'ZS f i t 9*9t 9" t t z*ct 5*96 5 *t t Z*i Z 0*iZ 0 *51 i*It Z*tl 6’B Z*5 S*f S*t ZVQ03C *aav 81/61/9 Bl/Bl/9 BI/I1/5 61/51/5 81/51/5 B i/H /9 Bi/CI/5 81/Z1/9 Bi/11/9 Si/OI/5 B i/t /5 Bi/E / 5 Bi/t t i Bi/9 t i 81/S /9 B i/t /9 Bi/t t i Ct/Z / 5 81/1 /9 Bi/IE/S 81 / OC/ E B1/6Z/5 Bi/SZ/E Si/iZ/5 B 1/9Z/E 81/5Z/5 8i/tZ/£ Bi/CZ/5 Bt/ZZ/S Bi/IZ/5 Bi/OZ/E 81/6I/S Bi/BI/S B i/il/S B1/9I/E Bi/SI/5 B i/tl/E B i/tl/E Bi/Zl/5 Bi/11/5 Bi/CI/i BLtt ' 5 81/6 /5 Bi/i / E f i t / 5 /■ Bi/5 tS B i / t /5 Bi/t t i Bi/Z /5 B i / I tS St/OC/t B i/CZ/f 51/B Z/t B i/lZ/t Bi/9Z/f Bi/SZ/t B i/tZ/t B i/tZ/t Bi/ZZ/t Bi/TZ/t ei/oz/t B i/61/t ei/ei/t El/il/t Bi/91/t 8i/S1/t B i/tl/t B i/C l/t B i/Zl/t B i/n/t Bi/DI/t E i / E /t B l / E tt Bi/i / t B i / 5 tt 8 1 / 5 /t Bi/t / t Bi/E / t 8 i / Z /t Bi/I / t ■:vc ra n a v i ISZ iS It TS IS SS SS fit it it Bt SB at os tc BE OS Zi LI Zt sc It It St ss as St c; ss os IS TB Bt it tt SS 85 ts SS ts CE OS St at it ts St ct tt £t It Bt tt It tl It SC tt t! ec at sc tt DC Bt BE ts SS TS OB ft tl Tt Bt It 61 EC tl tt Tt dWji k: k te 6B fie EB ES te os TS Bi ti 91 Si 6i ZS Si Si IB TB 6! ti Cl ts SS 6i Si TB ti es IS EE ts Si ti ti tt Ei ts OS te LL os TB Ei PS 61 ts ti EE OS CS 9S EE ES IS IS 01 01 IB Ci es ts IS ts CE Ti ts CE SE OS 01 CE CE CE ES BE tt ZE It SE dWI JCVh 0*t6iT B'SEiT BTZiT E'iSST E'BEPI O'tlST 0 ‘ E6ST S * 6SST O’ BtST I'OCST O'tTET 0 ‘ SS t T D’ SBt T E'TttT S ’ CItT 0*i6C7 0-6BCT O’ ZtCT O’ CTCT S*Z6ZT e-siii t ’ fi si T fS tIT 6* t l l T 6 “I 6 TT € Bt 9T T fTtTT 6 ‘ ITTT 6*0607 fiE O T 6*EI0T t*966 I *6iC 6 ‘ CSE t *stt ftlfi 6*IBS 6 " Bt E t*ste 6 *IEi 6*191 t'IC I t ’ fTi i * S6S fE iS I *6tS r*tcs t “ 6TS 6 ’ IDS t*9SB 6*CBE I'TiS i ‘ OSS I'ttS T*ttE T‘IIS E* BOS E'SBt 0"6St B *ttt 6 * CCt B*CZt B* I O t t * B6 C S*I6E B‘ t 9 E TTCC 9*961 T* C 9 I T*BCI T*6TI I ‘ ETI 9*0TI S'TOI T * 9BT E* OET C’ l i T S-EiT t'E IT xvaoao *0DV ti/tT /. 6 i/n /i n 61/TT/i 6i/07/t n oe is or s: 9E 29 6 f9 92 9r 6 2 /9 /L oc er 61/C / i ti zt SC 62 BT 62 €1/62/9 61/12/9 OC f-T ST OC 61/9J/9 $L/ZZ/9 6L/IZ/9 tz n 6i / u / 9 61/02/9 oc it 6l/flT/9 sc tz BI It Ot Tt II Ct Tt 6t 62/9T/9 61/ST/? fii/K /9 6l/ri/5 u /zx/s 61/11/5 61/01/9 6 1 /6 /9 € i/ 9 /9 6 L/L / 9 61/9 /9 6 l/ S /9 6 1 / 1* / 9 61/C / 9 61/2 / i 61 SC 6t EC It EC EC EC Bt St It Ot tt it St 9t Ot ct BC TE Ct BC DC IB it Tt It EC Tt CE IE ES 9E BE fit fit TE IE 61/TC/5 61/0C/5 61/12/S 61/92/S 61/E2/S 62/22/5 62/02/S 61/ S V S e i/n /s 6i/n/E 61/11/5 61/Dt/S 62/9 /» 61/C /5 19 IS TS IS T5 61/12/f dKIi. KIK S1VC IE ES iS Ei iS Bt Ci es ss T6 SB Bt fit ts Ci Ct OE tt zc ec sz St ot CS SC BC os ss Bt fit 9E Bt ES IE fit 89 Oi ts 9E BE SE ts BE tt EE OS IS es TP fit it os ts TS ES 01 IS ES IS ss IS ES t 9 ti iS ts T9 IB TB Ei 69 Ei Ci II C9 CS BE Dfi Ei 66 dwsi XYK S'fiST E - 79T 0*091 E*EIT O'OTT ffit :*tB 7*Ti i *09 S*IE T *t t f i t etc i*OC i*ii 6i / 9Z / t 6i / s z / r 6i / t l / t fii/CI/t 6i / t l / t S'BiOt foiot i ’ BEOt S' SEOt O' t E Ot O' Bt Dt o*ttot E'BCOt I ‘ ECOt I * 6I 0t i ’ t TCt T’ DOOt C‘ E 66C B'SBfiC I * 0B6C t ‘ Ei f C C* 0i 6t B*I 96C 9*T96C E'EEfiC E * Tt 6E 0*BI 6C C*9T6C C*S 06t T'EOfiC t * I 06C fteec t ’ oeet fi'fiSBC 6‘ EEBC i ’ TtBt i ’ ei bc I * 90BC 0* 96iC T* 96iC T' ESI C i'E S it I ’ttiC fEItC t *c u r e*ooic 6*CB9C ftESC fSISt C *0D9C f i tt t t ' EESC ftcsc fi'ITEC t'EfitC 6* r i t c fi*ittc fio tc fi'titc fii/TI/t fii/OI/t f i i / 67/ t 6i / B l / t fii/IT/t 6i / 9T / t fii/ST/t 6i / t * ' t ei/n/t 6i / Z T / t fii/TT/t fii/CT/t fii /6 / t 6I / B / t ti/i /t f i i /9 / t 6i / £ / t 6I / t / t 6i / t f t 6i / t f t fii/ T f t Bi/ TC/ ST Bi/OC/OT Bi / EI / OT BI /BI / OT ei/ti/DT B i / S I /07 B l / E I /07 Bi/tt/OT Bi / CI / QT Si/II/OT Bi / TI / OT B i / 0I /07 BL/ 6T / 0T Bi/BT/OT B i / i T /07 Bi/ST/OT Bi / ET/OT Bi / t T / O T S i / E T /01 Bi / I T/ OT BI/TT/OT B i / 0T/07 B i/t /o: B i /6 t OT B i / i /OT B i / S /OT Bi / S /CT B i / t /OT B i / t /OT B i / I /OT Bi / T /OT Bi/ OC /6 B i / 61/6 Bi / BI / f i E i / i t /6 B i / 91/6 Bi/SI/fi B I / t Z /6 61/ C I /6 B I / I I /6 BI/TI/t B I / O I /6 Bi / E T /6 Bi/BT/t B I / 17/6 B i / 9T/fi B i / E T /6 B I / t l /6 BI / ET /6 Si/IT/fi BI / T T /6 e i / O T /6 Bi/ fi f i Bi/E f t Kvooas *3DV a i vc 6*1 C*I 6*t €*t 0*t 0*t 0*t f l i ’l 0*0 0*0 oanKiiHoc: 1is i -iby; zsz 253 TABLECl - CONTINUED ———---------- . ————----------------------- ■ OAT! 7/15/79 7/16/79 * '17/79 13/79 7/19/79 7/20/79 7/21/79 7/22/79 7/23/79 7/23/79 7/23/79 7/23/79 7/27/-»9 7/28/79 7/29/79 7/30/79 7/31/79 9/ 1/79 9/ J/79 9 / 3/79 8 / 4/79 3 / S/79 8 / 3/79 9/ 7/79 3/ 9/79 9/ 9/79 8/10/79 3/11/79 3/13/79 9/13/79 3/14/79 3/15/79 9/16/79 3/17/79 a/ia/79 8/19/79 a/20/79 3/21/79 9/22/79 3/23/79 3/24/79 3/25/79 3/26/79 3/27/79 9/28/79 9/29/79 3/30/79 3/31/79 9 / 1/79 9/ 2/79 9/ 3/79 3/ 4/79 9/ 5/79 9/ 6/79 3,- 7 / 7 9 3/ 3/79 9/ 9/79 9/10/79 9/11/79 9/12/79 3/13/79 9/14/79 9/15/79 9/16/79 9/17/79 9/16/79 9/19/79 9/20/79 3/21/79 9/22/79 3/23/79 9/24/79 3/25/79 3/26/79 9/27/79 9/26/79 3/29/79 3/30/79 10/ 1/79 10/ 2/79 ACC. OECTAT 1830.0 1857.5 1881.5 1901.5 1924.0 1948.5 1976.5 2007.0 2039.5 2071.0 2104.0 2132.0 2161.0 2193.0 2220.3 2249.5 2281,5 2309.0 2337.5 2366.5 2397.0 2426.0 2452.0 2486.5 2516.5 2543.0 2573.5 2591.0 2606.3 2628.8 2644.3 2660.3 2674.6 2691.1 2716.6 2742.1 2768.1 2794.6 2821.6 2853.1 2879.1 2902.1 2923.1 2941.6 2969.6 2999.5 3030.1 3060.6 3090.6 3123.6 3149.6 3176.5 3204.1 3232.1 3247.6 3257.5 3272.1 3297.6 3320.1 3350.1 3377.6 3394.1 1405.5 3423.1 3442.6 1467.6 1477.0 3493.7 3513.7 3524.1 3534.9 3550.1 3566.6 3584.3 3604.4 3624.9 3652.4 1676.9 3691.2 3710.2 ------------------ - - - - - - — “ aj : TEMP 88 82 76 80 84 86 3S as 99 79 76 79 97 83 35 82 80 74 81 81 82 82 79 88 78 80 76 71 73 70 63 70 73 63 76 77 72 79 76 79 69 72 78 65 74 78 31 83 80 79 78 7a 83 82 59 64 70 73 75 84 71 64 66 77 77 76 65 75 68 57 57 72 73 79 81 80 33 77 74 64 Mrt TEMP 64 53 52 40 41 43 50 55 56 64 70 57 51 61 50 56 64 61 56 57 59 56 S3 61 62 53 65 44 38 54 4B 43 11 50 55 54 60 54 58 64 63 54 44 52 62 62 58 58 60 57 54 56 52 54 52 33 19 53 50 56 64 49 35 38 42 54 27 18 52 28 30 33 40 15 19 41 52 52 31 54 OATS ACC. DECDAY ———- ——————------10/ 3/79 1 0/ 4/79 10/ 5/79 10/ 6/79 10/ 7/79 10/ 9/79 10/ 9/79 10/10/79 10/11/79 10/12/79 10/13/79 10/14/-9 10/15/79 10/16/79 10/17/79 10/18/79 10/19/79 10/20/79 10/21/79 10/22/79 10/23/79 10/24/79 10/25/79 10/26/79 10/27/79 10/28/79 10/29/79 10/30/79 10/31/79 4 / 1/80 4 / 2/80 4 / 3/90 4 / 4/80 4 / 5/80 4 / 6/90 4 / 7/80 4 / 9/90 4/ 9/90 4/10/80 4/11/30 4/12/80 4/13/90 4/14/80 4/15/80 4/16/90 4/17/80 4/18/80 4/19/80 4/20/80 4/21/BO 4/22/80 4/23/80 4/24/80 4/25/90 4/26/90 4/27/80 4/28/80 4/29/80 4/30/80 5 / 1/80 5 / 2/80 5 / 3/30 5 / 4/80 5 / 5/80 5 / 5/80 5/ 7/90 9 / 3/80 5/ 9/80 5/10/80 5/11/80 5/12/80 5/13/80 5/14/80 s/is/ao 5/16/80 5/17/90 5/18/80 5/19/80 5/20/80 5/21/60 3723.2 3731.2 3738.3 3747.3 3752,8 3758.1 3763.4 3766.4 3767.4 3770.3 3772.0 1774.4 3734.4 3790.5 1805.5 1818.0 3839.5 3860.5 1890.0 1920.5 3924.0 3925.7 3925.7 3926.7 3929.3 3935.3 3940.7 3947.5 1964.3 2.1 10.9 11.0 12.4 18.7 28.9 41.4 54.4 55.0 55.0 56. 2 56.7 57.} 57. J 58.3 60.0 63.5 63.5 75.4 90.3 196.9 133.3 141.5 141.6 145.4 151.4 159.4 167,4 175.4 1B6.9 203 .9 220.0 240.5 262.5 285,5 298.1 302.1 306.0 312.7 326.4 344.4 360.4 376.4 ie4.o 391.2 404.8 419.3 437.3 458.3 478.3 498.0 MAX TEMP ———————— ■52 60 59 55 51 54 51 49 44 47 45 49 64 55 60 60 66 70 73 75 45 45 38 44 50 51 55 57 72 4S 61 41 45 57 64 59 59 42 38 44 42 45 37 42 47 52 37 66 74 72 94 56 41 52 54 55 55 53 5a 68 73 32 34 33 68 51 52 57 69 67 70 63 99 52 68 01 64 75 75 63 MIN TEMP 44 33 30 43 40 33 36 32 32 38 36 25 33 35 50 4S 55 54 56 56 42 36 32 22 29 41 26 24 42 26 34 23 32 11 24 46 47 36 32 35 16 29 20 12 24 24 16 27 2j 40 £0 39 26 *Am 1 37 41 41 41 45 46 39 29 40 43 26 n Z9 31 19 49 42 49 11 34 32 46 54 47 45 15 254 TABLE cl DATE 5/22/90 5/23/80 5 /2 4 /8 0 5/25/BO 9/36/BO 5/37/BO 5/31/90 5/29/80 5/30/30 5/31/SO 6 / 1/60 6 / 3/BO 6 / 1/30 4 / 4/30 6 / 3/BO 4 / 5/BO 4 / 7/BO 5/ 3/80 5 / 3/BO 5 /1 0 /3 0 5 /1 1 /3 0 4 /1 3 /8 0 4/13/BO 6/14/80 4 /1 5 /9 0 6/14/80 6/17/90 6/18/80 5 /1 9 /9 0 6/3 0 /8 0 6/2 1 /3 0 6/3 2 /6 0 6/23/30 6/34/90 6/39/30 6/26/80 5/27/30 6/38/30 4/29/80 6/30/30 7 / 1/80 7 / 2/80 7 / 3/80 7/ 4/30 7 / 5/30 ' / 6/80 7 / 7/80 7 / 3/30 7 / 3/80 7/1 0 /8 0 7/11/BO 7/1 2 /9 0 7/13/80 7/14/30 7/13/80 7/14/80 7/17/BO 7/1B/80 7/19/30 7 /2 0 /3 0 7 /2 1 /8 0 7/22/80 7 /2 3 /8 0 7/34/80 7/29/80 7/36/80 7/37/80 7/28/80 *729/90 7/3 0 /8 0 7/31/80 8/ 1/80 9/ 2/80 1 / 3/BO 8 / 4/80 8 / 9/30 3 / 6/30 3 / 7/80 8 / 3/80 8/ 9/80 9/10/80 CCKTISUED ACC. OEGDAY MAX TEMP HIS TEMP DATE ACC. OEODAY MAX TEMP HIS TEMP 521.0 546.0 980.0 608.0 629.0 649.0 670.0 699.9 723.5 747.5 760.0 782.5 806.5 923.5 841.0 367.9 895.0 905.0 917,3 924.0 927.1 955.2 976.7 1005.2 1036.7 1041.2 1094.5 1078.0 1094.0 1110.2 1132.7 1161.7 1192.2 1235.7 1259.2 1296.7 1324.7 1354.7 1383.7 1407,7 1433.7 1461.2 1436.2 1516.7 1950.7 1574.2 1506.2 1638.2 1665.7 1696.7 1735.7 1772.2 1805.7 1843.7 19B2.7 1915.2 1947.2 1975.7 2014.7 2057.7 2089.2 2119.7 2149.7 2170.2 2199.3 2228.2 2257.2 2392.2 2323.3 2345.7 2376.7 2411.2 2438.2 2468.7 2495.2 2525.2 2556.7 2993.2 2627.7 2662.7 2697,7 95 85 84 92 77 BO 90 T3 79 71 58 73 73 74 71 78 79 53 64 59 72 77 80 91 63 69 71 77 97 74 78 82 37 aa 38 39 30 34 75 75 83 91 37 95 94 79 93 95 93 99 93 85 89 94 86 86 80 86 92 96 75 79 80 33 36 73 76 83 32 76 84 87 75 33 86 93 87 87 36 84 84 41 45 64 54 36 40 50 58 37 57 47 52 55 40 44 55 56 42 40 29 30 39 43 56 50 40 33 50 55 38 47 <6 54 59 59 66 56 56 80 55 49 94 43 56 64 48 56 59 52 53 65 63 58 62 72 59 64 31 66 70 38 62 52 47 52 66 63 67 60 49 58 62 59 58 47 57 56 56 63 66 56 8 /11/30 8 /1 2 /8 0 8 / 1 3 /BO 8/14/80 8 /15/80 8/1 6 /8 0 8/1 7 /8 0 8 /13/80 8/1 9 /8 0 8/2 0 /8 0 3/2 1 /8 0 3/22/80 8/2 3 /8 0 8 /24/80 8/2 5 /8 0 8/2 6 /8 0 8/2 7 /8 0 8/28/80 8 /2 9 /8 0 8 /3 0 /8 0 a / 3 i / s a 9 / 1/80 9/ 2/80 3/ 3/80 9 / 4/80 9/ 5/80 9/ 5/80 ? ' 7/90 9 / 9/BO 9 / 9/80 9/1 0 /8 0 9/1 1 /8 0 9/1 2 /8 0 9/1 3 /8 0 9/1 4 /8 0 9/1 5 /8 0 9/1 6 /8 0 9/1 7 /8 0 9/1 3 /8 0 9/19/80 9/2 0 /8 0 9 / 2 1 / a o 9/22/80 9/2 3 /8 0 9/2 4 /8 0 9/2 5 /8 0 9/2 6 /8 0 9/2 7 /8 0 9/2 8 /8 0 9/2 9 /8 0 9/30/80 1 0 / 1/BO 10/ 2/30 10/ 3/80 1 0 / 4/80 10/ 5/80 10/ 6/80 10/ 7/80 1 0/ 3/80 10/ 9/80 10/10/80 10/11/80 1 0/12/80 10/13/80 10/14/80 10/15/80 10/16/80 10/17/30 1O/1S/B 0 10/19/50 10/20/80 10/21/80 10/22/80 10/23/90 10/24/80 10/25/80 10/26/80 10/27/80 10/28/80 10/29/80 10/30/80 10/31/80 2724.7 2751.2 2771.2 2900.2 2823.2 2841.2 2865.7 2897.7 2925.2 2956.7 2990.2 3016,7 3042.7 3068.2 3096.2 3129.7 3163.2 3197.7 3234.7 3268.2 3298.7 3 3 2 7 .T 1358.7 3381.2 3410.2 3432.7 3457.7 3483.7 3512.2 3534.7 3549.2 3566.7 3584.2 3614.2 3641.2 3658.7 3676.7 3690.2 3702.9 3719.9 3747.4 3776.9 3795.4 3806.4 3 8 1 7 .a 3S31.B 3838.8 3849.0 3862.5 3880.5 3900.0 3920.5 3933.5 3936.1 3937.6 3941.1 3947.4 3957,6 3962.2 3969.3 3979.5 3983.0 3994.5 4002.2 4002.6 4005.9 4017.9 4034.9 4042.9 4049.9 4053.2 4057.9 4061.4 4068.0 4077.9 4079.9 4079.9 4080.0 4080,1 4081.3 4083.5 4088.8 73 76 72 81 76 74 57 81 86 36 81 81 37 34 75 95 37 84 39 32 74 74 76 30 32 78 90 31 84 71 70 73 65 81 74 62 64 51 68 72 ■5 75 69 61 65 66 56 64 63 73 76 73 64 46 45 49 57 66 53 59 64 49 S3 60 42 4? 63 67 SO 52 48 50 52 55 62 43 39 41 41 46 49 52 61 57 48 37 50 42 62 53 49 37 66 52 45 47 61 62 60 65 65 65 67 54 66 49 52 47 50 i * 53 54 39 42 50 59 60 53 52 46 36 42 60 64 48 41 37 42 37 34 44 43 43 4B 42 39 34 36 31 29 32 30 34 18 40 31 33 35 41 47 46 42 40 36 25 37 37 41 36 28 25 16 19 18 255 |! rt* rt fl r) rt rt rl rl * * ■ • ♦ » < » * I Nt HNNNNNNf t N ' f D n Q < r 4 ' < n « ^ h ' t N t 0 4 O i 9 9 i H « f t n p ) H D i ^i]W M5> d *i9**tm nn i r 4 H - f 4 > ^ t O K i A ' t p > \ O M i H H M H M M H H O * N r4 c (N rm N r4 'n n ri i 5 s§ iN nhflun u H H i H H H n r ^ n n N N n M n n n t « * i n i >i WTSWW&WWOWB9'- U >♦ C J< aa u >* 33 tJ fl O uuS> <* ?>B©© 9 9 o a «0n^' 1OtCI}N^CD' i«CDaHD»' Nf*( OD « ft ifi F+ft n If irt tfi r- d ^ O ^ N r t>< j Q600SBBQtt$91lfiBQ9SII> (p9C$IBIE9ISiB>lSl6't&SISBI90f tJOt * • * • * . . . ♦ . * » ♦ * * * . * ► * ♦ • . * ........................................ .... < Jl II ^S^CAOQOS'C U o<^ I4i- FSI’SIBDIJIJ ** * - C>SOSB9OGSeaseSf20OSC*SWSWQOOCW(Bi9i«t B tlS B C fiC B T C T S B C P C S C l^tyes-iS S rtrt ?J * 4 D S 5 S 5 « ( ? ( (.>< BD5ar)(PS8))D9Br)lIBCl5SOOI>ta555SCEEC'jH. ©&S,Q999'*lQ SSQOO!)BO?BeO®5COKOOC5ICfCC'8C'C!l55C!5COOOD2rtlE # 0 9 9 9 9 9 9 9 ® ®SWCt t SBGS GGOOCS GQ 9 * ©C EO G >PG B D Q B B iA S B B S O S iB95QBBBB6BQB S Q B ^B S C B ffiO K d E S O 'a b D09590^D w < BQ96B9SBB6SBGSDS QQ 'J >* sb ■J>J S © 9 9 9 G G 9 Q 9 9 9 ,B 9 © ® O S O ® © ® S © © ® X ' ,t T i G 9 ® ^ ® 9 ® ® ' ' » r - l W* BG®9CB3iS^N^tin«ridina %Ot0i0ij>k0ip4}iO'O^r«r»r>r'r>»^r'>^^'99CO3]99'T>'D99O'Ol )9>'?4^^(^(^7«7kC3 256 N nnnn9V ^^u> in in Ji4 > « h F 'r< D C D iQ 9 '0 '^[)Q G fi^ M iF iN h f4 '* in ^ > 4 ^ i v v t f f i o s n G : 4 4 i i n k O B A » r < n Q n i r t ^ 9 » f i 9 t MnnnriinoniniM&N9(Mt'f4'|>9>4in944'Sin 1 0>^^ 3n H n n ^ n ^ M n p i H > « M H i H H ' i H r t r i r t n N f i f i N r i r i N N r i r N N N M N PJ « < B O 9 )ailD iO 9 4 1 } in A IA n 9 fttflV O t|fiaS 0 Q )fiD fiB Q > A M ^H r - I i x u t ^ n i m 9 N t n N f f i N n i n r > A r t « ' > t n ^ o t f i r t > , > « - 4 3 - 4 ' >) M ^ ^ n n t f o i P i i 0 f f i N M N n ' ai n n ^ ^ < f ^ * i t f > i n i P i n i n t a o « p i O v o r ,> r > r « i ' r « < ' s x i 3 } D d i i S f f i O ' ^ 0 i s o c 3 m u < ■ja 721 S3 Q p i h n M n ^ Q < j > n f i h > ^ o * * 3 ^ O 9 9 O D M n n N t {i}m -4H r«Q 0iioi0yrf - ^ M M H N r « « N ( N N M w « i N M « n r iH N N M ^ M N H " i - iN r < ( N « r * M n P T n n » »JJ< >* r t i r t t f t i ' . t Q3 M N « « r ^ n * f ^ t 0 h 3 » 9 r« r i n 4 t n « r > f f i a t i & n N i 257 8< 513 Hi *>t 1 < I ■jn l •M• U o l r I n l ■H I J ) n U < I• U *tf»* •JO < O 1m U I OQ a i -r *f j t|H< i tn^t u x t Ur* ulk i QQ I u X S3 13 >* m< I r> to —~ a a l i * -i rt i it) iA 1 3 >2 i n N « i n A 7 Q S N r > j ) 9 n i M n ’,9 f t 7 i n i r t f i < N i l ) H n n N n f i t ) t f > k n r > 9 i f l r ' i n S ^ • n . « t i * > m m R m _ _ _ _ > p x N f 4 i ^ f n r TT*f ^^ V) ur >uIikC>M)i4lt>r«r^r^7)3tQ3iO*A0li S O 9 i D i 0 M ^ - f ^ ) 9 < 4 ^ t v 4 3 v r ' ^ i n i T > n i n c O M ^ r > f f i n t n i4 e i r 4 ^ p > s r t 33 i m n n N r t n w n N M N M f i n n r < N n n i n i i ^ n ) f l ) « N r i M N r ( r i N N P ( N « N n «hiX < .^M « 'Mi P M ^ i Nn ^^oMr *r^l ^n iN^ ^r ^t Nf «N< nn nf le f9li N^ 9N« Np >N^ N o a W. d 3" 4041 .0 U a 21.0 U <) U *<£ *J 3 i m < r t ' Q i n t n 9 H r i t o ,D r i i n D S ' O ^ O t N i o d n * ^ ( t ^ n |0 O t ^ 4 t s ^ - t >fl T) ^ tftmmto j>ij)>l0 r*i**r*r+'iit£il)&>O*B*ifr&Q&**i-n~rnrvt*r*'rimnrm f ^ f ^ m *n n N P i n n r i N r j « N r t N o M N r t n n r t n n l ' ,l n r t H n r ) r n r t r i ^ ’t n f l n ffi n 20.5 (4 r t N d r tr < r ( N n n < l n n n f l f i r t n n n ^ V K f f ^ l v ^ i n W ( ^ M M P l r i f < M r t l N « N « N « N « h n f ,4 f 4 r t < N N « r J r < r J N 260 U < UQ <<3 1S52. 7 3401 £ 4 ( H r > M N N r 4 N f i t n » i n r 4 9 t « s < n 9 i n i H g r t p > n ( A i n i A i n i i T M ,« ^ ^ r 4 r 4 i n d C « T 619 258 i nTirta,o'ih9'binH»h4r'^Ni4 V i r r > ( D 9 i i s « n v t i ,' { nji MiA n, r > 4 i < - » 4 « i ] « ' i n i O 9 > f S ^ r ' p i - i ' ,> i 0 J 3 « i t r « j t l A i A ^ r ^ o c ' S N j i P i n H F i v a n ' B ' f r i ' D J t a d i a t i ' i n n i n r ^ n ' n ' O G ' O N ' n ’j ^ i t >3 1119.2 hvtnnm^isstn^ r* ■/ (* jifl* — * r * n r + « r * ~ ~ n n n ,,i n 26.6 TJ < U i 4( r' f' *M' 2S.3 S3 23.0 SinQDi nM in F iF i^ rfr v 3 !0 < X J * r > T M O u > A M )r* £ { (J< f i Ba(DSS' 011Q' 3aOS‘5 0 Q O S ,t^(V-i* as T j ^ o s s t i i s Y O t S © l^ ' 5 < 5 ( f i ^ t » r t ' l 5 i M r f ( r * F i i i i # F i M f M ^ n i n a - i * - i p i p i i f i/> p, T ) 5 i 3 F i n n < # t f t ' j i r ' ' t l J » S i F i P > » ^ ^ M ^ n n F i F i> i- i p ir 4 r 4 l 9 9 l9 f Q S S s e O Q C S S f ) a T ® ' 9 GQ9 ® S ® ®® n ® 9 1SQSQ99SQQOQSS& f 1*^ Tl ifi rliC MFi II D s 'I "0 '/*i * (!) f t ? T B aj n n j o! ai 3i tj*i > <* q a 170 276.0 a o <-ttt,f'}5iCiLfl'ah*tf»ttl5»'-in**>t>e,r‘ r4<—f» —Mtt tttt^'*^i/imwimiOi*r-Ff*-r-r**CDras>«]ajaimei«Qflittr'irtttttttP4nttttir**'t N M H f < N r j« ( ^ f< P 4 M N N P < n r tN N N r> rir* r< rin n n r5 n n n n n '> n f* )'n T n ul iO !3" i/nn' H/iir' 5JinMB,t ’f ' T) n( 7i ns nGj U) Mnd<- , r i ^Qs ni 9' ^i / ' 0®' i h- f t B a >* 20.0 HNNNr t r t NnNNN 3510.7 3375.6 0£ 3(3 '$t>ttMinr4pf**lf>p* 'J >• 20.7 S3 h Kl r^ N • II ^rin^>r>4ir>q]9k(9F4nn^irti0r^9iMB^r4n^4A4it«ifi4) ------------. _ _ — NNNPINnPIPIINMfirfr* (n«NNf+r^5Onmr i»D5 rr-n» p’33' rs*N^ nMi ')BmTu) rJ ,*J '' "aisi ^' ia3j f,‘HC» I tj tj u S' 250 IO i n n n n n « " i f l n n n n n N N i N N n f + N n n n n i i N r ( i w r < n n ' i n n M ,' i ^ B i 1452.4 Nfir»a^*r(is*iit M*nO<-*N®iOiBi nrt r(nn 4f»lN«f' if«^f*o©N«it>fl'tN U >« I J i r t n n i 25.0 S3 H */ *0 Pi P* t t T i J ' ' f H T * t t t t » f l i U t t a ) t t t t h H f i t t f i i t t * i j o o > n ,T5*fs<»5>0i n n 7 * i v ^ i n u n n i | i ^ J > O t » r ,' ' D a f f l J ' f l ' J H M 5 o S p i P i « M W N «NMNNNM^r<r»-»"inpl«PI«NP(-lPl-ir| Pl 1tOu n 't m /I nt m -j r- g» -r r* 9 *t 'f n r j n s i 'g i 't n h m i in •S -5 .0 3* ! tt «r •A *r't 7# o 7.0 sOfl ^ Fi ® S t ' tt -ji 0 ■»»** p-i *r60•/» * tt a x i * nn tt n n ri tt f«* tt tt tt tt hi rn n tt tt tt h>hi tt tt tt tt tt 1"'' hi tt tt tt tt ■u < aa r t r t ' B t 'fl 4 4 >p j m n n n m n*i pi n r> n n 231 <3.7 * 32.0 ■ 35.3 HffiinnO^U'ijr.-O if r** t t r - 2126.3 ■ T *>1 t h> p. fp s r* p i ^ ^(t p* v i ui m h 3] 1 } in m h> if ^ ^ n in r* j i/t N B p* p* i f f i j p i r t ' f p i n p * j n n « f i r ( c * M W H P i N M n « r * r i N n M n n n i l n n n n " i N r ( M M ' T i r * > n p i ' ,' p i 35.6 I I I I s i^r hM» nr ' ^r *i nr ^hDi r^«n3 n) it ifj(}ri taiaO' 9r (' 0®9f' fa vi ]Qj ' r( tr ri 9i nt d^ itoni -Ca tfj 'v' BA ^d 3' ^' po rf ii iPi ii 'f#>J&i ' oJ iS3 fQ' (D0 Q7 i 4 230 1 260 M l • >* ’J < tj >3 < y jj a — h n mi Ml *rt 261 TABLE C 4 • DATE UAILX PRECI P ACCUUULATIDH 4/ i m 4/ 2/7d 4 / 3/78 4/ 4/7B 4/ 5/73 4/ 6/?d 4 / 7/7U 4 / 8/78 4/ 9/78 4/10/78 4/11/78 4/12/72 4 /1 J/7d 4/14/73 4/15/73 4/16/78 4/17/73 4/13/73 4/19/78 4/20/73 4/21/73 4/22/78 4/22/78 4/24/73 4/25/78 4/26/73 4/27/78 4/23/73 4/29/73 4 / 30/7d 5 / 1/78 5 / 2/78 3/ 3/76 5 / 4/78 5 / 5/78 5/ 6/76 5/ 7/73 5 / a / 78 5/ 9/78 5/10/73 5/11/70 5/12/78 5/13/78 5/14/70 5/13/76 5/16/70 5/17/78 5/10/70 S/19/73 S/20/7B 5/23/78 5/22/76 S/23/76 S/24/76 5/25/73 5/26/78 5/21/78 5/28/76 5/29/78 5/30/78 5/31/78 6/ 1/78 6/ 2/78 6/ 3/78 6/ 4/70 6 / 5/70 6 / 6/76 6 / 7/70 6 / 3/70 6 / 9/70 6/10/76 6 / U /7a 6/12/78 6/13/73 6/14/70 6/15/76 6/16/73 6/17/78 6/19/70 6/19/78 e.oo *86 1.60 0.30 .j.* .59 0,60 0.60 .37 .44 .32 .02 0.00 0,00 0.00 0.80 0.80 .12 .83 .03 O.00 0.00 .15 3.00 0.00 0.00 0.80 0.00 0.00 0.00 0.30 0,00 0.80 .06 0.00 0.80 .1 1 ,07 . 01 0.30 .40 • 6S .55 .05 0.00 0.06 8 .00 0 .80 0.30 . 13 0.00 0.00 O.JO 8.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0. 110 0.00 0.06 .11 0.00 0.06 .30 3 . on 3.00 6.00 .49 0.06 6.00 0 .80 .11 .40 1 ,4** 0.00 8.00 0.00 *86 1 .06 1 .06 I . jfc 1.95 1 .95 1 .45 2.32 2.76 2.78 2.30 2 . JO 2 * 83 2 .80 2*30 2.80 2.92 2.95 2.98 2.98 2.93 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.22 3.22 3.22 3.33 J.40 3.41 3.41 3 .dl 4.46 5.01 5,06 5 .86 5.36 5.06 5*36 5.06 5.19 5.19 5 .19 3 .14 5 .19 5.19 5.19 5.19 5.19 3.19 5.19 S . 19 5.19 5*19 5.19 5 .30 5.30 5.30 5 .60 5 .60 5.60 5.60 6.89 6.09 6.09 6.09 6.20 6.60 8.04 d.D4 U.04 DATE 6/20/79 6/21/79 6/22/78 6/23/78 6/24/78 6/25/79 6/26/78 6/27/78 6/29/78 6/29/78 6/30/79 7 / 1/7B 7/ 2/78 7/ 3/79 7/ 4/78 7/ 5/78 7/ 6/78 7/ 7/70 7/ d / 7 0 7/ 9/70 7/10/70 7/11/70 7/12/78 7/13/78 7/14/70 7/15/70 7/16/78 7/17/78 7/18/78 7/19/78 7/20/78 7/21/70 7/22/78 7/23/78 7/24/78 7/25/78 7/26/75 7/27/79 7/20/70 7/29/7b 7/30/70 7/31/78 0/ 1/78 9/ 2/78 0/ 3/78 0/ 4/70 a/ 5/7d 8 / 0/70 0 / 7/78 d/ 9/70 d/ 9/70 d/10/70 d /1 1/78 8/12/78 a / 1 3/70 d/14/70 d / 15/78 d/16/70 d/17/78 d/IB/70 3/19/78 9/20/70 d/21/78 9/22/78 0/23/79 8/24/78 0/25/78 d/26/79 3/27/73 3/20/73 8/29/78 0/30/78 0/31/73 9/ 1/70 9 / 2/78 4 / 3/79 9/ 4/70 4/ 5/7B 9/ 6/78 9/ 7/78 DAI LX P AECI P 0.OB 0.00 0.00 0.00 0.00 1.80 d.00 0 .00 0.00 0.00 4.00 .50 SJ.D0 0.00 0.00 0.00 0.00 0.00 0.00 .21 0.00 0.00 .01 .01 0*d0 O.Ort O. 0 O 0.08 O . H0 0.00 .20 .09 .05 4. 0C, 0 .00 0.00 .1 3 0 .00 .04 0.00 0.00 0.00 0.00 .04 0.00 0.03 0.00 0.00 0.03 .22 0,00 0.00 0.00 O. 0 U 0.00 0*00 .97 .03 0.00 4 . dO 0.00 0.00 0.00 0.00 .09 0.00 0.00 0.00 .70 .03 0.00 n.au 0.00 3*30 0.00 (1.00 a.on 0.00 0.00 3.00 ACCUMULATION 0*34 9.04 9 .34 3.04 9.04 9.84 9.84 9.84 9.84 9.84 9.84 10.24 10. 3*4 10.34 10.34 10.34 10*34 10*34 10.34 10.55 10.55 10.55 17.55 1«* 5 7 10.37 10.57 10.57 10.57 1.7,57 10.57 1 Ti . 7 7 1 0 . uC 10,91 10.91 10.91 10.91 11 . 0 4 11 . 0 4 11 . 0 8 11 . 0 6 11 . 0 8 11 . 0 8 11 . 0 8 11,12 11.12 11.12 11.12 11.12 11 . 1 2 11 . 3 4 11 . 5 4 11 . 3 4 11 . 3 4 11 . 3 4 13 . 3 4 11 . 3 4 12.23 12.24 12.24 16.84 16.84 16.34 16.84 16.64 16.93 16.93 16.93 16.93 17.63 17.66 17*66 17.66 17.66 17.66 1 7.66 1 7.66 17,66 17.66 17.66 17.66 LATE OAJLK PREC1F 9/ 8/78 9/ 9/78 9/18/73 9/11/78 9/12/78 9 / 1 3/7d 9/14/78 9/15/73 9/16/73 4/17/78 9/13/78 4/19/78 9/20/76 9/21/73 4/22/73 9/2J/73 9/24/76 9/25/78 9/26/78 9/27/73 9/26/78 9/29/78 9/30/79 10/ 1/73 10/ 2/70 10/ 3/70 10/ 4/78 10/ 5/78 10/ 6/76 1*1/ 7 / 7 B 10/ 3/73 10/ 9/76 10/10/76 10/11/78 10/12/78 10/13/78 10/14/78 10/15/76 10/16/78 !0/17/76 10/16/78 10/I9/78 10/20/78 10/21/78 10/22/78 10/23/78 10/24/79 10/25/76 10/26/76 10/27/78 10/26/78 10/29/76 10/30/78 10/31/76 4 / 1/79 4/ 2/79 4/ 3/79 4/ 4/79 4/ 5/79 4/ 6/79 4/ 7/79 4/ 8/79 4 / 9/79 4/16/79 4/11/79 4/12/79 4/13/79 4/14/79 4/15/79 4/16/79 4/17/79 4/18/79 4/19/79 4/20/79 4/21/79 4/22/79 4/23/79 4/24/79 4/25/79 4/26/79 0.00 0.00 0.00 1 *00 .46 .67 .67 0.00 0.00 .70 .02 0,0 0 .15 0.00 0.00 t>.0k) 0.00 ■3. 00 0.00 .28 .03 0 . 0 0 .01 0*00 .24 .40 .13 .80 0.00 0.00 0.00 .10 0.00 a.n» 0.00 0.00 9.00 .52 0.00 *01 .02 0.00 0.00 0.00 .04 0.00 O.00 .46 .04 0.00 0.00 0.00 0.00 0.00 .29 0.Q0 0.00 .03 .23 0.00 0.00 0.00 0.00 0 . 0 0 .27 .17 0.00 0*00 0.00 6.00 ACCUUULATIOU 17.66 17.66 17.66 18.66 19.12 19.79 20.46 20.46 20.46 21 . 1 6 21 *18 21 . l a 21 . 3 3 21 . 3 3 21 . 3 3 21 . 3 3 21 . 3 3 21 *33 21 . 3 3 21 . 6 1 21 . 6 4 21 . 6 4 21 . 6 5 21 . 6 5 21 . 8 9 22.29 22.42 23.22 23.22 23.22 23*22 23.32 23 . 3 2 23 . 3 2 23 . 3 2 23 . 3 2 23 , 3 2 23.a4 23 . 8 4 23 . a S 23.87 23.87 23 , d 7 23 . 8 7 23 , 9 1 23 , 9 1 23*91 24.37 24*41 24,41 24.42 24.41 24.41 24.41 ,29 .29 .29 .32 .55 .55 .55 .55 .55 .55 .82 .99 .99 ♦ 99 .99 .94 0 . 0 0 0.00 0 . 0 0 0.00 0.00 0.90 0.00 .25 .76 .60 .99 ♦4 9 .99 .99 ,99 1 .2** 2.0i‘ 2 .60 262 TAfiLC C4 * CATE 4 4 4 4 5 5 5 5 S 5 5 5 5 5 5 5 5 5 i 5 5 5 5 S s 5 5 * 5 5 5 5 5 5 5 6 6 6 6 6 C 6 6 a 6 tj 6 6 6 q 6 6 6 6 6 6 4 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 27/79 28/79 29/79 20/79 1/79 2/79 2/79 4/79 5/79 6/79 7/79 0/79 9/79 10/79 11/79 12/79 13/79 14/79 15/79 16/79 17/79 J3/79 19/79 20/79 21/79 22/79 23/79 24/79 25/79 26/79 27/79 23/79 29/79 30/79 31/79 1/79 2/79 3/79 4/79 5/79 6/79 7/79 0/79 9/79 10/79 11/79 12/79 13/79 14/79 15/79 16/79 17/79 10/79 19/79 20/79 21/79 2 2 / 7y 23/79 24/79 25/79 26/79 27/79 30/79 29/79 30/79 1/79 2/79 3/79 4/79 5/79 6/79 7/79 0/79 9/79 10/79 11/79 12/79 13/79 14/79 15/79 CQMT1UU&D U M1 . * PREC2P 0.00 0.00 .33 □ .00 .02 .94 0.00 0.00 .05 0.00 U.00 0.00 0.00 0.00 O.00 0.00 .38 0.00 0.00 0.00 0.08 0.00 .13 0.00 0.00 .01 3.00 0.00 0.00 3.00 3.00 0.00 0.00 0.00 .46 0.00 0*00 0.00 0.00 0.00 0.00 ACCUfllfLATlUU 8.00 2*68 2.60 3.43 3.43 3.45 4* 29 4.39 4.39 4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.J2 4.82 4.82 4.62 4.82 4.82 5.00 5.00 5.00 5.81 5.01 5.81 5.01 5.01 S.dl 5.01 5.01 5.01 5.47 5.47 5.47 5 .**7 5.47 5.47 5 .*7 5.91 6.91 5.91 6.53 6.53 6.53 6.53 6.53 6.53 6.53 6*53 6.53 6*62 10.34 10.64 10.64 10.64 10.6* 10.64 10.64 1 8 *6 4 10.93 10.93 11 . 6 3 11 . d 3 0.00 .41 0.00 0.00 0.00 0.00 0.00 .42 .01 a . 0U 0.00 0.00 0.00 0.00 12.24 12.24 12.2 4 12.2 4 12.24 12.24 12.66 12.67 12.67 12.67 12*67 12*67 12*67 .44 0.0 0 0.00 .62 0.00 0.00 0.00 O. O0 0.00 0.00 0.00 0.00 .09 4.02 4.00 3.00 0.00 0.00 0.00 0.00 0.00 .29 0.00 .90 n .83 DATE 7/16/79 7/17/79 7/18/79 7/19/79 7/20/79 7/21/79 7/22/79 7/23/79 7/24/79 7/23/79 7/26/79 7/27/79 7/28/79 7/29/79 7/30/79 7/31/79 8 / 1/79 3/ 2/79 8/ 3/79 8/ 4/79 8 / 5/79 3/ 6/79 8/ 7/79 3/ 0/79 8/ 9/79 a / 10/79 8/11/79 6/12/79 6/13/79 8/14/79 6/13/79 6/16/79 8/17/79 d/19/79 d/19/79 d/20/79 a/ 2 1 /7 9 8/22/79 3/23/79 8/24/79 8/25/79 d/26/79 d/27/79 d/26/79 6/29/79 »/30/79 a / 31/79 9/ 1/79 9/ 2/79 9/ 3/79 9/ 4/79 9/ 5/79 9/ 6/79 9/ 7/79 9/ 8/79 9/ 9/79 8/10/79 9/11/79 9/12/79 9/13/79 9/14/79 9/15/79 9/10/79 9/17/79 9/18/79 9/19/79 9/20/79 9/21/79 9/22/79 9/23/79 9/24/79 9/25/79 9/26/78 9/27/79 9/26/79 9/29/79 9/30/79 10/ 1/79 10/ 2/79 10/ 3/79 DAILY PREC1P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 .40 0.00 0.00 .97 0.00 0*00 *20 0.00 0.00 0*00 0.00 *5 0 0.00 0.00 0.00 0*00 1 .07 0.00 0.00 .02 .02 0.80 0.00 .36 .30 0.20 .29 .39 0.00 1 .35 *25 0.00 Q * 00 0.0b .27 .27 0*00 0.00 0*00 .09 0.00 0.8D 0*00 .02 0.00 0.00 8.00 9.00 0*08 0*00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0*00 0.00 0.00 0.00 .06 0,00 0.00 0.00 0*00 0.00 0.00 .03 0.30 .12 ACCUHULATK/H DATE DAILY PAECZP 12.67 12*67 12.67 12.67 12*67 12*67 12.67 12.67 13.07 13.07 13.07 14*04 14.04 14*04 14.24 14.24 14.24 14.24 14*24 14*74 14.74 24.74 14*74 14*74 I S *81 15.81 15 . 81 15.83 15.85 15* d5 25.85 16.21 16.51 16.51 16*80 17*19 17.19 13.54 18.7 9 18.79 18*79 16.79 19.06 19*33 19.33 19.33 19.33 19.42 19*42 19.42 19*42 19.44 19.44 19.44 19.44 19*44 19*44 19.44 19.44 19.44 19*44 19.44 19.44 19.44 19.44 19 . 4 4 19.44 19.44 19.44 19.44 19*50 19.50 19.50 19.50 19.50 19.50 19*50 19.53 19.53 19*65 10/ 4/79 10/ 5/79 20 / 6 / 7 9 10/ 7/79 10/ 6/79 10/ 9/79 10/10/79 10/11/79 10/12/79 10/13/79 10/14/79 10/15/79 10/16/79 10/17/79 10/19/79 10/19/79 10/20/79 10/21/79 10/22/79 10/23/79 10/24/79 10/25/79 10/26/79 10/27/79 10/28/79 10/29/79 10/30/79 10/31/79 4 / 1/60 4 / 2/80 4 / 2/60 4/ 4 /80 4/ 5/80 4 / 6/ 8*3 4/ 7/60 4 / 8/ri0 4/ 9/ao 4/1 d /8 0 4/11/80 4/12/60 4/13/89 4/14/80 4/15/89 4/16/80 4/17/80 4/18/80 4/19/60 4/20/60 4/21/60 4/22/00 4/23/09 4/24/90 4/25/80 4/26/80 4/27/39 4/28/BO 4/29/09 4/30/9O 5 / 1/dO 5/ 2/30 5/ 3/80 5/ 4/80 3/ 5/30 5/ 6/60 5/ 7/30 5/ d/80 5/ 9/b0 5/10/60 5/11/30 S/12/30 5/13/80 5/14/90 5/13/bO 5/16/30 5/17/00 5/18/00 5/19/80 5/20/80 3/21/00 5/22/CO 0.00 *8 6 .16 0.00 *3 0 .02 .04 .39 .44 0*00 0.00 0.00 .07 0.00 .37 *2 3 8.00 0.00 *35 .35 *35 0.00 O. O0 0.00 .1 3 G.0O 0.00 .29 *02 0*00 .dO 0.00 0.00 .04 .32 1 .07 .10 0.80 .31 0.00 .31 .49 0.00 0.00 .01 9.00 0.00 0.00 0.00 0.00 *2 4 .02 a.do 0.00 .09 .26 .19 4.00 B.aa .06 0*00 0.00 0.00 0.00 0.00 o.ue 0 .00 0.00 .09 .39 *03 . Ob 0.00 0.00 .88 0.00 .03 0.4O 0.00 0.00 ACCUrtULATlOU 19.65 19*71 1 9 .d? 19.87 20.1 7 20.19 20.23 20.62 21.06 21.06 21 . 0 6 21 . 0 6 2i *13 21 . 1 3 21 . £ 0 21 . 7 3 21 . 7 3 21.7 3 22 . 0 8 22.43 22.76 2 2 * 76 22.78 22*78 22.91 22.91 22.91 23 . 2 0 .02 .02 .82 .d2 .82 ■dt) 1 .16 2.25 2.35 2*35 2.66 2.66 2.97 3.46 3*46 3.46 3.47 3.47 3.47 3*47 3-47 3.47 3 .71 3 ,73 1.71 3.73 3.82 4.08 4-27 4.27 4.27 4-33 4.33 4.3 J 4.33 4.33 4.33 4.33 4.33 4.JJ 4.42 4.71 4.74 4 ,80 4 , dt) 4.80 5 .66 5*66 5.71 3.71 5,71 5.71 263 t'A8L£ C4 * DATE 5/23/dO 5/24/00 5/25/39 5/26/00 5/27/80 5/29/00 5/29/60 5/30/60 5/31/80 6/ 1/8 0 6 / 2/86 6/ 3/90 6 / 4/80 8 / 5/80 6/ 6/80 6 / 7/00 6/ 8/80 6 / 9/80 6/18/80 6/11/0B 6/12/60 6/12/80 6/14/80 6/15/80 6/16/80 6/17/80 6/18/80 6/19/60 6/20/60 6 / 2 1 /60 6/22/60 6/23/e0 6/24/6U 6/25/60 6/26/80 6/27/63 6/26/80 6/29/dk) 6/30/80 7/ 1/90 7 / 2/BB 7/ 3/6 0 7/ 4 /8 0 7/ 5/60 7/ 6/90 7/ 7/90 7/ 8/90 7/ 9/80 7/1 0/80 7/1 1/00 7/1 2/60 7/1 3/80 7/1 4/80 7/1 3/80 7/16/90 7/17/81) 7/18/90 7/19/90 7/20/90 7/21/90 7/22/90 7/23/90 7/24/90 7/25/90 7/26/90 7/27/80 7/28/90 7/29/60 7/30/90 7/31/80 9/ 1/90 8/ 2/60 8/ 3/80 6 / 4/60 0/ 5/80 d/ 6/60 6/ 7/69 9/ 6/60 8/ 9/80 8/1 0/60 CONTINUED DAILY PKEClP ACCUMULATION >03 0.00 0.00 0.00 0 .00 0.00 .02 . 51 0.00 . 11 .45 0.00 0*90 0.00 0.00 1 .00 0*00 0.00 0.00 O.00 0.00 .63 0.00 .02 0.00 O. O0 *r)0 .35 5.74 5*74 5.74 5*74 5.74 5*74 5*76 6.27 6.27 6.38 6 .83 6*d3 6.83 6.83 6.83 7 ,83 7.83 7.63 7.63 7.63 7.63 3.46 3.46 3.48 9.46 6.48 3.48 S . 63 9.62 6*83 d . 83 3 >j 1 6 .63 a . <*3 9.63 4.05 9.05 9 .05 9.05 9.95 9.05 9.66 9.66 9.66 9.66 9.66 9 *66 9.66 0 0.00 0.00 0.00 0.00 0.60 3.60 0 .617 .22 0.00 0.00 0.80 0 .00 0*00 . 61 0.00 0 .00 0.00 0.08 0.00 0.00 0.00 0.00 .03 0*00 .04 .01 0.00 0*00 0.00 0.00 1 . 02 *11 0.00 0.00 0.00 0.00 .72 0.00 0.00 0.00 0.00 0.00 0.00 . 11 0.00 0.00 .03 .03 1 *55 .50 0.00 0*00 ^*66 9.66 9.69 9.69 9.73 9*74 9.74 9.74 9.74 9.74 J0.76 10.87 10.87 10.87 10.87 If}, a ? n .59 11 . 5 9 11 , 5 9 11 . 5 9 11 . 5 9 11 . 5 9 11 . 5 9 11 . 7 0 11 . 7 0 11 ,7{5 11.73 11 . 7 6 13*21 13.81 13*81 13.81 DATE 3/11/80 3/12/60 8/13/80 3/14/80 8/15/80 8/16/80 8/17/60 8/16/60 3/19/80 8/20/80 8/21/30 8/22/80 8/23/60 d/24/80 8/25/80 8/26/60 a / 27/00 0/28/30 8/29/80 3/30/80 B/31/BC 9 / 1 / Q0 9/ 2/ae 9/ 3/80 9/ 4/00 9/ 5/80 9/ 6/60 9/ 7/00 9 / 0/BO 9 / 9/ BO 9/1 0/80 9/1 1/80 9/1 2/60 9/13/80 9/14/80 9/1 3/00 9/1 6/80 9/17/80 9/18/80 9/19/80 9/20/80 9/21/60 9/22/00 9/2 3/80 9/2 4/80 9/25/80 9/26/80 9/27/60 9/23/80 9/29/80 9/3 0/80 10/ 1/60 10/ 2/60 10/ 3 / 8 0 10/ 4/60 1 0 / 5/B0 10/ 6/ 80 10/ 7/ 80 10/ a/aa 10/ 9/ 80 lu/ia/aa 10/11/00 10/12/80 10/13/80 10/14/80 10/15/80 10/16/80 10/17/60 10/16/U0 10/19/60 1O / 2 0 / U 0 10/21/BB 10/22/80 10/23/80 18/24/60 10/25/60 10/26/60 10/27/60 10/23/60 10/29/80 CMLY PR£Clf> ,79 0.00 0.00 0 « HO 0.00 .02 0.00 0.00 3 .99 *26 0.00 0*00 0.00 0.00 0.00 0.00 0,00 0.00 0 .00 0.00 .19 .45 1 .70 0.00 0.00 0*00 p . on 0 .00 .33 0.00 0.30 .05 1 .04 *04 .02 a . jo 1 . 61 0.80 J.00 .39 .09 .70 *72 0.00 .00 .34 0.00 0.00 0*00 0.00 0.00 *07 .24 • 02 0.00 0.00 0.80 0.00 0.00 0.00 0.00 0.00 0*00 .03 .37 .75 .27 . 11 .02 0*00 .15 0.08 0.00 0*00 .52 0.00 0.00 0*00 0.00 0.00 0 ACUUHULA1 DATE DAILY ACCUMULATION P RECI P 14.60 14 . 6 0 14.60 14 *60 14.60 14 *62 14.62 14.62 18.61 18.87 18.87 l b . 87 18.87 18.87 16*87 18.87 16.67 18 * 8 7 18*07 13.67 19.06 19.51 21 .21 21 .21 21.21 21 . 21 21 *21 21 .21 21 . 3 4 21.54 21.34 21.59 22.63 22.67 22.69 22.69 24.30 24.30 24.30 24.69 24 *7u 25.48 26.28 26.20 26 *20 26.54 26.54 26 *54 26.54 26.54 26.54 26.61 26.85 26.37 26.87 26.87 26*67 26.87 26*37 26.37 26.67 26.67 26*67 26.90 27.27 26 *02 28.29 23.40 26.42 26.42 2B. S7 28.57 26.57 26.57 29.09 29.09 29*09 29.09 29.09 29*09 10/30/80 10/31/80 0.00 0.00 29.09 29.09 APPENDIX D 264 Appendix D. Tables D l-3 . Sum m ary of firs t, second and third g e n eratio n e m e rg e n c e in 1978-1980. R aw d a ta of m ale and fem ale ad ult c a tc h for OM and SC by tr a p and d a te are on dump ta p e s UP2017 and UP2018 a t th e Michigan S ta te U niversity C o m p u te r C e n te r. CDDA78EMGRANT2 CDDA78EMGRANT3 CDDA79EMGRANT1 CDDA79EMGRANT2 CDDA79EMGRANT3 CDDA80EMGR ANT 1 CDDA80EMGRANT2 CDDA80EMGRANT3 265 TABLE Dl. Surrmary DATE 198 200 202 206 209 212 214 216 218 221 223 227 235 237 232 235 237 240 243 248 251 254 257 26 1 264 268 o f f i r s t and sec o n d g e n e r a t i o n emergence i n 1978. TOTAL MALE OM 25 32 62 75 45 45 17 4 21 7 4 8 4 13 0 30 30 39 56 93 66 70 58 57 14 2 TOTAL FEMALE OM 16 31 36 52 24 39 38 8 18 12 12 24 13 9 0 12 22 40 63 135 90 68 57 63 11 3 TOTAL MALE SC 0 0 5 1 1 2 0 0 5 2 2 10 0 1 0 0 0 1 47 50 54 36 52 31 8 5 TOTAL FEMALE S< 5 2 9 3 3 1 1 0 14 9 14 9 5 3 0 1 2 5 42 55 88 25 70 29 8 4 266 Sumnary o f f i r s t , sec on d and t h i r d g e n e r a t i o n emergence in 1979. DATE 130 132 139 144 151 154 158 160 164 167 173 178 185 1 86 187 188 194 195 198 199 200 201 202 205 206 207 208 209 212 213 214 215 217 219 220 221 229 230 233 234 TOTAL MALE OM 0 1 8 12 34 22 66 23 27 5 7 0 16 2 0 14 7 13 29 10 15 8 7 29 3 9 12 9 19 9 1 4 3 5 0 0 0 0 7 3 TOTAL FEMALE OM 0 0 13 17 21 26 43 29 38 9 10 2 6 2 2 8 12 17 31 1 10 14 7 21 6 9 7 16 25 11 3 7 1 4 1 1 0 3 11 5 TOTAL MALE SC 0 6 7 4 3 2 11 7 16 11 20 0 7 0 2 6 2 1 2 2 3 9 3 11 6 5 2 4 6 0 0 0 0 0 1 0 0 1 0 2 TOTAL FEMALE SC 0 4 7 4 4 3 14 8 7 4 10 2 8 0 0 6 1 3 7 4 9 5 1 13 1 3 3 4 8 0 0 0 0 4 0 0 0 2 2 0 26 7 TABLE D 2 • DATE 235 236 237 240 241 242 243 244 248 249 250 251 254 255 256 257 258 2 62 271 276 CONTINUED TOTAL MALE OM 5 2 5 4 4 0 0 1 21 13 8 2 11 5 17 18 1 12 10 0 TOTAL FEMALE OM 4 3 3 6 4 4 0 8 8 15 11 3 15 7 14 15 1 21 13 0 TOTAL MALE SC 0 0 0 0 1 0 1 0 2 0 0 0 16 17 23 10 7 6 0 0 TOTAL FEMALE Si 0 1 0 0 1 2 1 0 0 2 0 0 4 12 15 18 5 10 0 0 268 e D3. DATE 130 134 135 136 137 140 141 142 143 144 148 149 150 151 154 155 156 157 158 161 162 163 164 165 168 169 170 171 172 174 182 183 184 185 190 191 192 193 196 197 Surrmary o f f i r s t , seco n d and t h ir d g e n e r a tio n em ergence i n 1979. TOTAL MALE OM 0 14 13 0 10 16 40 35 41 9 120 10 13 6 5 2 2 0 0 2 1 0 0 0 2 0 0 0 0 0 6 4 7 8 83 11 3 11 34 24 TOTAL FEMALE OM 0 6 7 0 10 31 35 37 40 23 103 31 15 9 10 4 2 3 0 2 7 0 2 0 4 0 0 0 0 0 4 3 2 8 48 9 6 10 15 9 TOTAL MALE SC 3 0 0 2 5 0 0 4 8 1 TOTAL FEMALE SC 1 0 0 0 3 1 1 1 2 1 269 TABLE D 3 . DATE 198 199 204 205 206 207 210 211 213 217 218 221 223 224 225 231 232 233 234 235 238 239 240 241 242 246 249 253 254 255 256 262 265 268 CONTINUED TOTAL MALE OM 9 12 55 0 2 2 4 0 3 0 2 1 1 0 0 28 22 60 42 33 313 175 200 301 310 362 301 420 39 39 69 143 15 3 TOTAL FEMALE OM 7 18 45 6 4 6 9 3 4 1 1 2 2 0 0 14 20 43 42 26 220 139 143 229 233 355 291 346 49 38 74 118 15 1 TOTAL MALE SC 0 8 7 0 3 0 0 2 0 0 0 0 0 0 0 0 0 0 6 9 56 23 18 16 12 55 21 26 4 6 10 5 13 1 TOTAL FEMALE S« 2 2 8 1 1 0 0 0 0 0 0 0 0 0 0 7 0 0 12 11 72 24 22 30 21 55 26 27 12 2 10 12 9 3 APPENDIX E 270 Appendix E. Table E l . Adult male and f e m a le c a t c h of SC and OM by stickyboard t ra p s in 1978. Table E2. Adult ma le and f e m a le c a t c h of SC and OM by stickyboard tr a ps in 1979. Table E3. Adult ma le and fema le c a t c h of SC and OM by a c ti vi ty tr a ps in 1978. Table E4. Adult male and fema le c a t c h of SC and OM by a c ti v it y tr a ps in 1979. Table E5. Adult male and fe m a le c a t c h of SC and OM by flight int er cep ti o n t ra p s for all fields in 1979 and 1980. All d a t a files are loc at ed on UP2017 and UP2018 dump t a p e s a t the Michigan S t a t e University C o m p u te r C e n t e r . CDDA78STICKYBOARD CDDA79STICKYBOARD CDDA78 ACTIVITY CDDA79ACTIVITY CDDA79INTERCFIELDR CDDA79INTERCFIELD1 CDDA79INTERCFIELD2 CDDA79INTERCFIELD3 CDDA79INTERCFIELD4 CDDA79INTERCFIELD5 CDDA79INTERCFIELD6 CDDA80INTERCFIELD8 CDDA80INTERCFIELD9 CDDA80INTERCFIELD10 CDDA80INTERCFIELD11 CDDA80INTERCFIELD12 CDDA80INTERCFIELD13 CDDA8 OINTERCFIELD1k 271 TRAP 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 1 39 139 139 1 39 1 39 1 39 139 139 139 139 139 139 139 139 139 139 139 139 139 139 1 39 1 39 1 39 139 139 139 139 139 139 139 139 139 139 139 139 129 139 139 139 139 139 139 139 139 139 I 2 3 4 9 6 7 8 9 10 11 12 13 14 IS 16 17 IS 19 20 21 22 23 24 23 26 27 26 29 10 11 22 33 34 35 16 17 18 19 40 41 42 43 44 45 46 47 48 49 50 51 52 S3 54 S5 56 57 59 59 60 61 62 63 64 65 66 67 66 69 70 71 72 73 74 75 76 77 78 79 60 ON F E H A lS 4 L2 0 2 3 I 0 0 1 1 0 1 0 2 0 2 0 L a a l 4 1 4 0 0 4 7 0 0 4 2 0 2 7 1 2 I 1 0 0 0 1 4 I 1 0 2 0 0 0 0 0 2 1 2 0 2 2 0 1 0 0 1 0 4 0 0 0 0 0 0 0 0 0 4 0 1 Q 1 ON HALS 1 5 0 1 0 1 1 1 I 1 a a a a 1 0 1 2 a 0 1 1 0 2 0 0 1 8 0 0 0 : 1 0 1 0 2 1 0 0 1 1 0 0 0 2 1 Q 0 0 0 0 0 0 0 0 1 Q 0 2 2 2 1 0 0 FENALI 4 1 1 2 4 10 4 17 0 12 7 iz 4 is 4 21 4 13 o 7 0 4 5 10 0 I 7 7 15 9 10 li 3 12 2 6 4 4 3 2 5 2 4 16 3 4 1 1 1 15 z 4 1 25 1 2 3 10 4 2 1 10 2 6 7 2 12 1 1 0 Q 2 a 0 1 0 1 0 0 1 1 3 8 2 14 4 a 7 2 I 0 I 12 5 7 SC HA OATS 1 1 1 Z 1* t* 7 » Z 14 <3 16 3 16 6 13 1 9 0 1 0 1 0 0 2 3 < 6 6 6 6 7 12 6 12 10 1 3 0 0 i ] ! 2 I I 5 3 } . . f J ! i S I ; 2 2 L? 1 } : » * 7 k I ? ;2 2 2 * S ! * 3 139 139 1J9 139 139 139 139 139 139 139 143 U3 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 162 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 TRAP 61 83 03 84 85 86 97 86 89 90 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 56 S9 60 61 62 63 64 65 66 67 68 69 70 ON TZH ALZ ON NALC 0 0 0 0 0 a a 0 0 0 0 2 3 0 4 a l i 2 2 0 6 2 0 5 I I 1 1 Q 4 0 2 0 0 0 0 0 I 1 I 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 2 6 2 10 I 5 1 1 0 0 3 14 3 3 6 3 0 0 0 4 2 4 3 Q 2 3 9 0 4 1 3 0 3 0 2 0 0 2 0 a 2 2 0 1 0 1 1 1 0 0 0 0 0 2 2 4 0 1 0 0 0 4 1 2 4 1 3 0 2 2 7 1 2 2 1 1 0 0 7 2 5 4 0 t 1 2 0 a a a a a a o a a i o o 9 a *l 1 Q 3 0 0 0 1 3 a l o a l a o 2 2 0 0 0 2 4 0 I 0 I I 0 3 0 5 1 0 1 2 1 0 o 4 0 2 1 0 D 0 Q 9 a 0 1 4 1 0 0 0 3 0 0 0 * 0 1 0 3 0 0 1 3 9 2» 2 27 2 TRAP OH 8 CHAU OH HALE SC rc H A U sc DATE TRAP 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 151 153 153 153 153 151 153 153 153 153 151 151 151 111 1 51 153 151 153 153 153 153 153 153 153 111 153 153 1 51 153 153 1 51 15 1 153 153 153 151 1 53 15 3 153 1 51 15 3 153 151 151 151 151 151 153 15] 151 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 32 83 84 85 86 a? 88 39 90 1 2 3 4 5 6 7 3 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 10 11 32 33 34 15 36 37 38 39 40 41 42 42 1 1 3 0 0 0 6 a l 0 1 0 0 0 2 1 0 0 0 0 4 2 0 0 3 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 2 44 45 a l a 0 a 0 0 a 0 0 0 0 9 a HALE ON rSHALE I DMt COST INUCD 1K * 1 1 TABLE E l 141 143 141 143 141 143 143 143 143 143 143 14 1 143 143 14 3 143 143 143 143 141 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 14 6 14 6 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 71 71 73 74 75 76 77 78 79 1 1 1 1 0 1 1 0 0 0 2 5 1 8 2 1 1 l l 0 0 0 0 0 0 a aa 1 3 1 0 0 0 3 1 1 1 1 1 0 4 0 0 0 0 0 1 0 1 1 0 0 0 0 0 3 0 81 61 S3 84 85 86 87 as 89 90 1 1 3 4 5 6 7 6 9 10 11 11 13 14 IS 16 17 19 19 10 11 11 13 14 15 16 17 18 19 30 31 11 33 34 35 36 37 38 19 40 41 41 43 44 45 46 47 48 49 50 51 51 5} 54 55 56 57 58 59 60 1 1 1 1 0 1 1 0 0 2 1 2 8 0 1 2 2 1 1 0 3 a 2 a 0 0 5 0 1 a 3 7 0 1 3 1 a 0 a 3 l l 1 a 0 i 0 0 0 3 2 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 a 0 l i 6 0 a l l 0 a 0 1 0 a 0 0 1 0 0 0 a 0 0 a 0 0 0 0 a 2 a 1 1 a a i 0 a 0 0 a i 0 5 18 0 1 0 1 0 0 1 1 3 0 0 a 1 0 1 1 2 1 1 6 2 1 0 l t 0 1 0 0 0 0 1 0 a 0 2 0 i l a 4 2 0 1 a 2 0 2 5 1 0 0 0 0 0 0 0 0 1 0 0 0 0 a 0 i l a i 0 0 0 0 0 a 0 a a 0 0 0 0 1 0 0 0 a 0 i l i 3 0 0 0 0 0 0 0 a 2 3 a 3 a 3 a 0 0 0 i 7 3 2 6 0 0 0 1 2 a 7 I 7 0 1 1 4 0 5 1 0 0 1 a 3 2 2 3 0 46 47 48 a 0 0 a 0 0 0 0 0 0 0 a 0 0 0 0 1 a 0 0 0 0 0 0 0 a 0 0 0 I I 3 I 2 sc fCKAL£ 2 1 1 t 2 5 X 2 2 J I 3 0 1 2 2 1 S 1 1 X 7 3 S 0 9 9 S 9 0 0 0 0 j 0 I 3 9 9 0 1 9 I 0 2 9 1 0 2 a 0 0 9 i 2 9 a 0 a j 0 2 a 0 49 0 0 0 0 0 50 0 a 3 2 a 0 c 0 0 I 0 0 0 0 1 9 0 0 Q 0 0 0 0 0 0 9 G 0 0 0 0 0 0 a 0 0 0 a a 0 0 9 9 9 0 0 0 0 c 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 a sc i 0 0 a 0 l 9 0 I 0 i 1 2 0 1 2 0 0 1 0 7 0 0 1 9 a L 0 0 1 0 0 0 0 9 0 0 0 a X 0 a 0 9 0 0 ' 0 0 G 0 0 a l a L 0 0 a 0 a 2 G 0 0 a 0 Q a 0 0 0 0 0 9 a 0 D 9 9 273 T A IL * DATE 13 3 13 3 133 133 133 133 133 133 133 153 133 133 133 133 153 133 153 153 133 153 133 133 153 133 133 133 153 153 153 153 153 133 133 133 133 133 153 153 133 133 137 137 137 137 1 37 1 57 1 37 157 137 137 137 137 137 1 37 157 137 137 1 37 137 137 137 157 137 137 137 157 137 1 37 137 137 137 137 1 37 157 1 37 137 137 137 137 157 E l* C O N TIN U ED TRAP 31 SI 33 54 33 56 37 30 59 60 61 61 61 64 63 66 67 60 69 70 71 71 73 74 73 76 77 70 79 00 01 02 93 04 95 06 07 09 09 90 1 2 3 4 3 6 7 9 9 10 11 12 11 14 13 16 17 IS 19 20 21 22 21 24 25 26 27 28 29 30 31 32 31 34 35 16 37 30 39 40 OH FEMALE 0 0 0 1 1 a 3 0 0 0 0 0 1 a 0 a 3 0 0 0 1 0 0 1 0 2 0 0 0 2 1 1 0 a 0 a i i 0 0 L 1 1 9 0 L 0 0 1 0 0 0 0 0 0 0 2 0 0 0 4 2 2 1 0 2 0 0 9 0 0 0 0 0 9 0 1 0 L 1 on MACE 0 0 2 1 3 0 I 0 D 0 9 0 2 0 0 0 2 1 J Q 3 0 0 2 a i a 0 a 2 0 0 2 0 1 1 2 4 sc FEMALE 0 0 0 0 0 0 0 0 0 a 0 0 0 0 a 0 G 0 0 a G 0 0 0 9 a 0 a Q 0 0 0 9 0 0 0 0 1 a a 3 1 0 0 1 1 3 0 0 0 1 0 0 9 9 2 9 0 0 9 9 0 0 u a 2 1 0 0 0 0 a a Q a 0 0 a 0 0 0 1 0 0 a l l 0 9 2 0 9 9 0 0 0 0 0 0 0 0 0 1 1 a 0 9 0 0 0 0 9 0 0 0 9 0 9 0 0 i 0 sc MALI 0 0 0 0 0 0 0 0 a 9 0 0 0 9 0 a 0 G a 0 0 9 9 0 0 a 0 Q 0 9 9 0 0 G 0 1 G 0 0 0 1 0 0 I 2 1 0 0 a G a 0 0 0 l 0 a 0 0 0 0 9 0 9 0 0 0 0 0 a a 0 0 a 0 a 0 0 0 a DATE TRAP ON FERALX 1ST 157 157 157 157 157 157 157 157 157 157 157 157 157 157 157 157 157 157 157 157 LS7 157 157 137 L57 137 137 137 137 137 157 157 137 157 157 137 157 157 137 157 157 157 137 157 157 157 137 157 157 159 158 158 158 158 13B 138 135 138 138 158 158 158 158 138 159 158 159 159 159 158 158 158 158 158 158 138 158 158 158 41 42 43 45 48 47 49 49 50 51 52 53 54 55 58 57 59 59 40 81 42 83 44 45 46 67 48 69 70 71 72 73 74 73 76 77 78 79 80 31 32 83 34 85 96 97 98 89 90 434 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 on MALE 0 2 2 0 0 I 0 0 0 9 1 1 9 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 1 0 0 9 0 0 0 a Q 0 l 0 1 1 G 0 1 2 0 0 0 0 0 1 0 a 0 l G 0 1 2 0 0 0 0 0 1 1 1 0 0 1 2 0 0 0 0 0 2 a l l 0 0 0 0 a 0 0 0 0 1 0 Q 0 0 0 3 3 0 0 0 0 0 1 0 0 1 I I 1 0 0 0 0 0 Q 0 0 0 2 0 0 1 1 0 a 7 0 0 0 2 2 0 0 0 0 0 0 t 2 0 Q 5 1 9 a 2 0 0 0 2 1 5C sc FEMALE HALE 0 0 2 a a 0 Q 0 a a 0 Q 0 Q a 0 G 0 0 1 a 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 a 0 G 0 0 0 0 9 0 0 0 0 0 0 a 0 0 a a 0 0 0 0 1 0 G a 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 1 0 a a a 0 0 a a a a 0 a 0 a 0 0 0 0 3 0 0 9 9 0 9 0 9 9 9 0 9 0 a a a l 0 a 0 0 0 a 9 Q 0 0 0 0 a a 0 a 9 0 a 0 0 0 0 0 0 0 9 9 0 0 1 0 i 0 a 9 i l 0 I a 0 0 3 a 274 T M U GATE is a is a L58 is a is a is a 138 158 158 LS8 158 158 158 158 158 is a 1 58 158 1 50 150 1 58 158 150 158 158 138 158 158 158 158 15B 158 150 158 158 158 156 158 158 158 150 1 58 LS8 150 158 150 158 130 158 130 158 158 150 ISO 158 150 158 156 156 158 160 ISO 160 160 160 160 160 160 160 160 160 160 160 160 160 1 60 1 60 1 60 L60 160 El • C O N TIN U ED TRAP 31 31 33 34 ' 35 36 37 30 30 40 41 42 43 44 45 46 47 48 49 OH rEHALE 31 32 33 54 35 56 57 50 59 2 2 1 0 0 0 0 1 1 4 0 2 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 60 0 SO 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 05 86 37 98 89 90 1 2 3 4 5 6 7 0 9 10 11 12 13 14 IS 16 17 IB 19 20 OH HALS 5 3 1 0 0 2 a 3 2 4 0 0 2 0 1 1 0 5 1 0 0 0 0 0 0 0 0 0 0 1 1 3 0 0 2 0 3 1 1 0 0 0 0 0 0 5 1 3 0 2 0 5 0 2 0 0 0 0 10 0 0 2 0 0 0 1 1 L 1 2 0 0 2 0 0 0 3 0 0 0 4 1 0 3 0 0 a 3 0 0 1 1 0 0 0 0 0 0 0 a i i 0 0 0 0 0 0 0 L 3 2 0 2 0 0 0 0 0 1 4 0 2 0 0 0 0 2 0 Q SC FEMALE sc HALE 1 1 0 0 0 0 Q 1 1 0 1 0 2 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 L 0 0 1 g a 0 0 0 0 1 0 a 0 0 i i 0 0 0 0 a 0 l 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 a 0 0 0 1 2 0 0 0 <3 0 0 0 0 a 1 0 0 0 0 0 0 1 1 0 0 i 0 0 0 1 I 0 1 Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 a 0 0 0 0 a a 0 2 1 I 0 I 0 0 0 0 0 0 0 0 0 0 0 I 1 0 1 0 0 0 0 1 0 0 DATS TRAP 16Q 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 163 163 163 163 163 163 163 163 163 163 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 30 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 00 01 02 03 04 as 86 87 08 09 90 1 2 3 4 5 6 7 a 9 10 OK FEMALE 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 3 I 0 1 0 0 0 0 0 2 0 0 0 1 0 2 0 0 3 0 0 0 0 1 0 0 0 1 0 0 0 1 OH MALE 4 5 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 z 1 1 1 I 2 0 0 0 4 0 0 0 0 0 1 0 7 0 2 0 0 1 0 0 0 8 0 0 0 2 1 1 I 1 4 L 1 sc FEMALE 1 1 0 0 Q 0 0 0 0 0 0 0 0 0 0 0 0 0 9 9 a a 0 3 a 0 0 0 0 9 0 J 0 0 3 0 9 0 3 0 0 a 0 0 0 0 0 0 0 0 i 0 9 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 Q 0 0 a 0 0 1 a 0 a 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 9 Q 0 a 0 SC HALS a 2 0 0 0 a 0 0 0 0 a 0 0 a 0 a 0 a 0 0 a 0 3 3 0 1 1 1 9 0 0 1 0 0 0 0 0 0 0 0 0 0 0 a 2 0 0 0 1 1 0 0 0 1 9 0 0 1 1 3 0 1 0 I 0 ; 0 0 0 0 Q 0 a 0 0 0 a 0 0 0 275 TA B U E l . DATE COMTIHUED TRAP ON FEMALE 162 161 163 L63 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163 » U 12 13 14 16 16 17 18 19 0 0 20 21 0 0 1 0 0 1 0 0 22 23 24 25 26 27 26 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 0 0 1 0 0 0 I sa 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 00 61 92 93 94 95 96 97 38 99 90 0 1 0 Q 0 0 0 0 SO sc FEMALE HALE 0 0 0 0 0 0 0 9 0 0 0 0 3 7 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 I 0 0 0 0 0 0 1 37 1 0 49 49 SO 54 2 0 0 0 0 0 0 0 9 0 I 0 9 0 9 0 0 0 0 0 0 55 56 OH HALE 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 47 51 52 53 ' 9 2 9 1 0 1 0 2 0 2 0 a 2 0 0 0 0 1 a 0 a Q 0 0 0 0 0 2 0 0 9 a a 0 a a a a a 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 2 a 0 0 0 0 0 0 1 0 0 0 0 0 3 0 a I 1 0 0 a a a 0 0 0 0 0 0 1 1 0 2 a 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 a 9 0 0 0 0 0 2 a 9 0 1 0 1 0 0 0 3 3 L 1 0 4 5 0 0 0 4 p 4 a l 1 9 0 0 9 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 9 0 0 0 0 2 0 DATE 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 163 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 163 165 165 165 165 165 165 165 165 163 165 165 165 165 163 165 165 165 165 163 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 163 165 165 165 TRAP 1 2 3 4 5 6 7 9 9 10 U 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 14 35 36 37 36 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 59 59 60 61 62 63 64 65 66 67 68 69 70 71 72 71 74 75 76 77 76 79 60 OH FEMALE 3 3 0 1 a 3 0 0 2 1 1 1 3 2 a i 3 1 7 0 1 2 2 0 0 0 0 4 0 3 0 I 0 1 0 3 7 0 0 0 0 0 0 0 0 5 0 3 4 1 2 6 0 2 12 1 3 2 0 0 2 0 I 5 1 OH sc sc HALE FEMALE HALE 14 5 2 3 * 2 0 1 3 1 1 1 2 8 2 1 1 1 4 Q 0 0 2 0 0 0 0 I 1 2 Q 0 0 3 2 1 2 3 a 0 i 0 1 2 I 9 0 3 0 0 1 2 2 5 10 5 1 1 2 i 1 I 0 0 0 a a l 2 3 2 0 L 0 1 3 i 1 1 1 0 2 2 0 7 0 0 1 0 0 1 0 0 2 a i 0 0 Q 0 *1 0 7 0 0 0 1 L 4 2 1 2 0 3 2 Q 0 0 0 0 0 0 0 0 0 0 i 0 0 0 0 0 1 0 0 1 l l 0 I 1 1 ; l L 3 L 0 1 0 0 2 1 1 1 2 L i 4 1 a 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 1 1 0 1 0 2 0 1 3 0 0 5 2 1 0 1 1 1 1 2 0 L 0 2 0 3 0 0 0 1 0 0 0 2 0 a 0 0 i l 0 1 0 0 0 0 0 3 0 3 2 1 1 2 L 1 1 2 1 0 0 0 0 0 0 1 1 0 0 0 0 0 Q * 276 TAB L I E l . TRAP OM MALE SC FEMALE sc MALE DATE TRAP OM FEMALE 81 82 83 84 85 36 37 38 39 90 1 2 3 4 3 6 7 3 9 10 11 U 13 14 IS 16 17 18 19 20 22 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 41 0 7 0 2 0 1 0‘ 0 1 0 1 1 1 0 0 0 0 0 0 1 2 0 1 0 I * i 0 1 0 2 0 0 0 1 0 0 0 0 a 0 a 0 44 1 1 2 1 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 l L 1 1 1 0 4 2 a l 2 1 1 1 I 1 0 1 0 2 0 a 0 l 2 2 1 4 4 3 2 0 2 6 0 2 0 0 1 2 0 1 2 0 0 0 0 0 0 a 1 0 0 0 1 Q 1 Q 0 a 0 0 1 1 0 0 0 9 0 0 0 0 0 2 1 0 0 0 0 2 0 0 0 0 0 a l 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 2 2 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 a a 2 l a 0 0 0 1 0 1 l 0 0 a 1 0 1 0 0 0 0 0 0 0 0 0 2 1 1 2 1 6 0 0 0 1 1 1 1 1 0 0 Q 1 a 2 0 1 0 1 3 2 0 1 2 1 1 1 9 1 1 4 3 6 2 3 0 0 1 0 2 0 2 1 0 Q 1 1 0 0 0 0 0 0 0 1 1 1 2 1 0 1 1 1 a i 0 l 0 0 2 I 1 1 1 1 3 0 0 0 1 0 0 0 a i i 0 0 0 0 0 L 0 167 167 167 167 167 167 167 167 1 67 167 167 167 167 167 167 167 167 167 167 167 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 17 a 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 86 89 90 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 26 17 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 1 2 0 0 1 0 0 3 0 0 0 2 2 1 7 0 0 2 2 2 1 2 4 1 1 2 0 0 1 3 5 0 4 8 4 3 0 0 0 4 2 0 9 2 9 3 13 3 0 0 2 1 5 5 a 3 1 1 1 2 2 3 1 1 0 1 1 I 0 0 0 5 4 1 6 1 0 3 5 0 2 3 9 SC FEMALE SC MALE 1 J 163 16! 165 163 165 163 165 165 165 165 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 • 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 167 < 1 X 1 1 OM FEMALE o OATS C O N TIN U ED 0 2 2 0 1 1 1 0 a 2 0 2 2 0 0 a i 0 2 2 0 0 3 0 0 0 1 0 0 2 2 5 1 2 1 2 0 0 1 1 1 0 t 1 0 4 2 0 3 0 0 0 0 0 0 3 2 0 0 0 3 2 0 3 1 0 2 3 1 0 0 1 0 4 2 2 7 0 1 1 1 1 1 1 3 0 0 0 1 0 0 0 0 0 3 0 0 a 0 0 0 i a i 9 0 5 2 1 0 0 2 0 5 t 0 0 4 0 2 1 0 0 0 0 5 0 2 1 0 2 0 0 1 0 22 1 7 0 t 0 9 0 20 3 2 19 2 7 4 3 0 1 0 4 1 1 0 a l 7 3 2 0 a i 0 0 t 0 20 2 9 5 2 4 7 0 19 0 0 0 0 0 4 0 1 0 0 0 1 0 0 2 LO 1 0 2 0 0 1 1 6 4 1 i; 6 2 7 0 1 IS IS 4 9 Q 0 9 a l 0 0 1 3 i 2 4 0 0 2 1 1 0 1 a 0 277 TABU El . DATS COM TINUCD TRAP on r 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 61 62 63 64 65 66 67 66 69 70 71 72 73 74 73 76 77 76 79 80 81 82 63 84 65 86 67 66 89 90 1 2 3 4 5 6 7 8 9 10 11 12 13 14 13 16 17 IB 19 20 21 22 23 24 25 26 27 26 29 30 31 32 33 34 35 36 37 36 39 40 41 42 43 44 45 46 47 46 49 50 d ia l s 0 4 3 4 4 0 0 2 0 0 0 4 1 3 0 1 0 7 0 3 0 8 3 3 4 2 0 3 2 6 1 1 0 4 0 1 0 1 3 6 0 3 5 1 1 1 2 4 1 0 2 0 1 t 4 2 0 2 0 0 0 0 0 0 0 3 1 ‘ 0 1 0 0 0 0 0 2 2 0 Q 2 1 091 MALE 1 12 7 0 1 0 1 1 0 0 0 0 0 2 0 1 1 4 0 0 0 17 7 3 5 2 0 3 2 6 6 1 0 3 2 0 3 0 5 3 2 4 2 7 1 0 1 L2 3 2 0 5 0 0 2 I 1 0 0 1 1 0 1 0 0 1 1 0 0 0 0 2 1 1 2 2 2 3 1 3C 7 SHALE 0 2 1 2 0 0 o l 0 0 0 c 0 2 Q 0 0 2 0 0 0 6 4 5 3 0 0 1 1 2 3 2 1 2 0 0 0 2 2 L 0 0 1 1 0 1 0 3 L 1 1 : i i 0 l 0 0 1 0 0 0 0 0 0 1 1 0 a 0 0 0 0 0 0 0 0 0 0 0 SC MALE 2 2 2 0 0 0 0 1 0 0 0 1 0 0 0 0 0 2 0 3 1 10 3 4 5 1 0 3 1 2 0 2 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 2 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 a l 0 0 0 0 1 1 t 0 0 0 0 E TRAP 51 52 53 54 55 56 57 68 59 60 61 62 63 64 65 66 67 66 69 70 71 72 73 74 75 76 77 78 79 30 31 32 33 34 35 86 97 98 B9 90 1 2 3 4 5 6 7 6 9 10 lA 12 L3 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 36 39 40 OM FEMALE 0 2 0 7 2 0 0 0 0 a 0 5 4 1 0 0 a l l 0 2 4 1 0 0 0 0 0 3 0 2 1 1 2 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 t 1 1 1 0 a 0 0 i i 2 0 1 0 5 0 a 1 0 0 0 0 0 0 a i l 0 1 0 9 0 9 OM . MALE 1 7 L 2 2 2 1 2 3 4 10 1 1 1 1 1 7 1 1 0 2 3 1 5 2 1 3 3 4 0 1 9 9 0 0 0 1 0 3 0 0 0 2 0 0 9 2 9 L 0 4 0 0 1 0 0 1 1 1 0 0 1 0 a 6 l 0 0 0 SC FEMALE 0 1 0 0 2 0 I L 0 1 1 a a 0 0 0 0 0 0 9 1 0 9 9 0 9 9 a a 0 l 0 0 9 0 0 3 0 0 0 a 0 0 0 0 9 0 9 L 0 0 a 0 0 0 0 ; 0 0 0 3 1 0 a a a 9 0 0 0 0 0 0 a 0 0 a 0 0 SC MALE 0 0 0 1 0 3 0 i 0 0 0 1 1 9 9 9 1 0 0 1 1 1 0 0 9 0 0 a a 0 0 0 9 1 0 0 0 2 9 2 0 1 0 0 9 a 0 l 0 0 0 0 0 1 0 9 9 9 L 0 0 1 9 1 0 9 0 9 9 9 L a L 0 9 2 : 0 9 9 278 TABU El . C O N TIN U ED OATS TRAP 174 174 174 174 1 74 L74 1 74 174 174 174 174 174 1 74 1 74 174 1 74 174 174 174 1 74 174 174 174 174 174 174 1 74 1 74 174 174 174 174 174 174 174 174 1 74 174 174 174 174 174 174 174 174 174 174 174 174 174 179 179 179 179 1 79 1 79 1 79 1 79 179 179 179 179 179 179 179 179 179 179 179 179 1 79 179 1 79 179 1 79 179 179 179 1 79 179 41 42 43 44 43 4« 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 90 91 82 93 84 8$ 86 97 38 69 90 1 2 3 4 5 6 7 9 9 10 11 12 13 14 15 16 17 10 L9 20 21 22 23 24 25 26 37 28 29 JO OM rC H A U 0 0 a 1 0 3 0 0 1 0 1 1 1 4 0 0 0 0 0 0 0 0 0 0 Q a i 0 0 0 0 0 0 a 0 0 0 0 0 0 0 1 0 0 0 I 1 1 2 3 1 1 1 L 1 3 1 1 2 4 2 2 OH KAU 0 0 1 0 0 0 0 0 J 3 0 3 1 4 0 Q 1 0 1 0 0 I 1 a i 0 0 0 0 0 0 1 0 1 a 0 L 0 0 1 0 0 0 3 0 I 2 2 2 3 2 0 2 a 0 0 i 0 3 2 1 Q 3 0 9 1 5 1 2 2 3 5 5 3 5 3 a I 0 0 4 1 s 2 2 I SC fEMALC 0 0 0 0 0 1 O Q 0 a 0 l a 0 0 a Q 0 0 0 0 0 0 9 0 0 0 0 0 0 a 0 a 0 a 0 0 0 9 O 0 0 0 0 0 0 0 0 1 1 0 2 1 0 1 2 0 0 0 Q 0 0 2 1 1 0 2 1 1 I 0 1 3 2 9 0 0 1 0 1 1 SC KALE 0 0 0 a a 0 l l 0 a 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 I 0 0 0 2 1 0 1 1 9 u 0 0 0 0 0 0 1 I 0 0 2 0 0 1 A a 0 0 0 0 11 1 1 2 0 0 0 2 2 D 1 2 9 1 0 0 L 0 9 Q DATE TM P 179 179 179 179 179 179 L79 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 L79 179 179 179 179 179 179 181 181 181 181 181 181 181 181 181 181 181 181 181 181 181 101 ISL 101 101 181 31 32 13 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 91 82 83 84 65 66 87 88 89 90 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 OH FEMALE OH MALE 1 SC FEMALE 1 S I SC HALE 1 1 o o 1 1 a o O 0 0 3 0 S 0 1 i I 0 1 l 0 l 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 4 1 1 0 S 0 0 0 0 ) 0 1 1 1 0 o 1 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 1 0 1 1 o 0 0 1 0 1 0 4 0 1 0 1 0 1 1 5 5 o 0 o 1 0 0 0 1 0 0 0 0 a o a 0 1 0 t 1 1 0 0 I I 0 0 1 0 0 1 0 0 0 3 0 0 0 0 0 0 1 0 1 0 o 0 o 1 0 0 0 0 o 0 o 0 i 0 0 0 6 0 o o 0 a l o o o o 1 0 0 1 S 3 0 0 0 0 o 0 0 1 1 3 1 0 0 o 1 0 0 4 0 0 0 a o i 6 0 0 a o o a 4 a 1 0 1 1 1 0 1 o 1 o l i 0 i o 0 o 1 a 0 1 3 o 0 a o 0 0 3 1 0 0 3 o 2 0 a 1 3 t 0 a 2 0 2 2 0 0 1 0 0 o i a a 1 1 o o o 0 0 o 1 0 1 2 1 2 0 1 0 1 0 o 0 1 0 0 o o o o 3 4 4 1 0 0 0 1 0 0 1 S o 0 3 0 2 o 0 0 0 0 1 0 4 1 0 3 279 TABU E l , COVTIHUED DATS TRAP 191 161 ill 111 111 111 in 161 181 161 181 181 181 181 181 U l 181 181 181 181 191 181 181 161 181 181 111 181 131 181 181 181 181 161 131 161 181 111 181 181 181 181 191 181 181 161 161 161 181 181 161 161 181 181 181 181 181 181 181 181 181 181 181 181 181 181 181 181 181 131 134 184 194 194 184 194 194 164 164 164 21 22 29 24 2S 26 27 28 29 3Q 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 S3 54 55 56 57 56 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 33 84 85 86 67 88 89 90 1 2 3 4 5 6 7 9 9 10 OH r SHALE 1 3 0 2 1 2 2 1 2 2 1 1 1 3 4 1 I 2 1 1 3 1 7 1 0 0 1 0 0 0 0 0 1 0 2 ,i 3 4 I 3 1 0 2 3 1 G 1 3 3 1 1 0 5 0 2 1 1 1 6 0 0 0 7 2 0 3 4 2 0 0 a 0 OH HALE 0 4 2 i 0 1 1 1 1 0 0 3 0 0 0 3 0 1 0 G 0 Q 0 0 1 0 4 0 a 0 0 0 1 4 2 1 1 1 1 1 4 I 1 3 3 1 1 1 2 I 1 2 2 1 2 5 1 2 3 2 6 2 2 10 2 2 4 I 3 € 2 SC P EHAL I 0 1 0 1 3 0 2 0 0 0 Q 0 0 0 0 1 0 0 Q 1 2 1 0 0 0 1 0 0 0 0 0 * 0 1 1 0 1 L a a 0 0 0 2 2 G 0 0 4 0 0 0 2 0 1 0 0 0 3 a 2 0 0 0 0 0 0 0 0 0 1 7 0 0 2 3 2 2 1 0 SC HALS 0 2 2 a i 0 i 0 0 1 2 0 1 0 2 0 1 0 0 0 0 0 0 0 0 2 0 0 0 1 0 3 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 a l a 0 i 0 1 0 0 0 0 2 0 0 0 1 0 0 1 0 1 Q 2 4 9 4 1 2 0 1 2 3 DATS TRAP 194 184 194 184 184 184 164 164 164 164 184 184 194 194 194 194 194 184 194 194 184 184 184 184 184 184 194 184 184 194 164 184 184 184 184 164 194 194 184 194 194 184 184 184 184 184 184 194 194 194 194 184 194 164 184 164 164 184 184 194 184 194 194 164 164 164 104 184 184 164 194 164 184 184 104 184 194 194 194 194 11 12 13 14 15 16 17 18 13 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 36 39 40 41 42 43 44 45 46 47 48 49 50 51 52 S3 54 55 56 57 56 59 60 51 62 63 64 65 66 67 61 69 70 71 72 73 74 75 76 77 70 79 00 91 82 93 84 85 86 87 98 99 90 OH F SHALE 0 0 3 0 0 0 2 1 0 0 2 5 2 4 0 0 1 a i 0 4 2 3 0 0 0 2 3 0 1 1 4 1 0 1 0 3 0 3 2 a a 0 l 7 0 1 0 0 0 0 Q 2 4 2 4 2 1 2 3 5 5 1 5 1 3 4 5 4 2 12 Q 1 1 CH HALS 3 0 4 0 0 0 0 2 0 3 1 0 2 3 0 0 3 2 1 1 6 1 4 0 0 a 4 0 0 0 s 1 a 0 4 0 1 0 1 1 0 0 0 0 2 a 0 0 0 i 0 0 1 2 4 G I 0 1 1 0 3 2 1 2 1 5 0 0 0 0 0 Q 0 1 0 3 0 0 0 sc F SHALE 0 0 2 0 1 1 0 3 2 0 2 3 3 2 0 0 1 0 0 a 6 1 3 0 0 2 1 2 0 2 5 4 3 0 0 3 9 0 a i a 0 0 l 0 i i 4 G G 0 0 1 4 4 2 4 1 4 1 3 2 1 3 2 3 4 3 4 1 0 0 0 sc HALE 0 0 3 0 0 0 0 2 0 0 4 1 2 1 0 0 1 2 0 3 11 2 2 a 2 2 3 0 0 3 2 1 G G 0 0 1 0 T * Q 0 3 0 1 2 0 4 2 3 0 a a 2 2 1 0 1 0 L G I Q 1 0 3 0 2 2 1 4 4 0 3 2 2 3 4 D 0 280 TM LE El . □a t e la c ia e 186 186 186 186 186 186 186 186 186 186 186 IBS 186 186 186 186 166 186 186 186 186 186 186 186 146 186 186 186 136 186 186 186 186 186 186 186 186 186 186 16 6 18 6 18 6 186 186 186 136 136 186 186 186 136 186 186 1 86 1 36 1 86 136 136 186 1B6 186 186 1 86 1 36 1 86 1 86 1 86 186 186 186 186 186 186 186 186 136 1 86 1 36 C O N TIN U ED TRAP 1 OH PEHALE 1 3 4 3 6 7 3 3 10 11 11 13 14 IS IS 17 18 19 10 11 0 1 0 0 0 1 11 13 14 IS 16 17 18 29 30 31 31 33 34 35 36 37 36 39 40 41 41 43 44 45 46 47 46 49 50 SI SI S3 54 SS 56 57 58 59 60 61 61 63 64 65 66 67 68 69 70 71 71 73 74 75 76 77 78 79 80 0 0 2 0 0 0 0 I I 0 1 1 ON MALE I 1 0 0 9 0 1 0 1 0 5 3 1 6 1 1 4 0 1 0 3 5 5 4 0 1 0 0 i 3 a 9 1 1 1 0 2 1 2 9 1 S 1 0 0 1 0 a l a 0 l 2 0 0 1 Q X 4 2 I 0 a I 0 3 1 2 2 L 0 3C PEHALE 1 0 2 0 0 L 2 0 3 4 I 9 0 L X 3 9 0 a i i 3 5 3 2 0 0 1 2 1 6 5 L 1 0 0 0 0 0 1 0 0 1 0 0 1 2 0 0 9 1 L a a 2 1 a 0 i 9 0 0 0 X 0 2 9 0 1 9 0 2 0 I 1 2 I 9 2 1 0 0 1 3 3 1 0 0 3 2 1 X 1 2 1 0 0 4 1 3 9 1 2 2 2 0 3 Q 9 Q 7 0 2 X X 1 0 0 Q 2 0 9 9 Q 4 3 I 3 3 1 I 1 2 I 4 I X X 3 3 2 I 0 0 X a 0 sc HALS 1 1 1 0 Q a X 2 2 1 0 a 0 3 I 3 4 2 0 I L 4 I S 4 0 0 2 2 2 IS 3 5 a 2 0 9 2 1 9 5 0 X 0 X 9 9 0 X X 0 Q a a 2 1 0 0 0 0 0 Q 0 a 3 0 2 0 0 a x 0 2 a X 3 1 X X 9 SATE TRAP 186 196 19* 19 6 196 186 186 186 186 186 188 188 188 188 188 188 188 188 168 18 8 186 18 8 IBB 188 188 18 8 188 10 8 188 188 198 188 10 8 188 188 188 188 189 108 108 168 188 108 10B 108 106 IBS 188 188 198 198 198 198 188 X98 188 10 8 108 108 109 138 186 189 196 196 198 X96 188 186 188 X0 6 108 188 188 188 189 196 186 196 188 01 92 93 94 90 96 97 98 99 90 X 2 3 4 8 6 7 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 20 26 27 29 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 49 49 SO sx 52 S3 54 SS 56 57 58 59 60 61 62 63 64 65 66 67 60 69 70 ON fENALX 3 1 0 0 2 0 0 0 0 3 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 X X 1 0 0 0 0 0 0 0 0 0 0 0 0 0 a a 0 0 X 0 0 0 9 0 1 0 2 0 0 3 0 0 0 0 0 3 0 0 0 1 0 0 ON HALE 4 1 0 0 0 L 2 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 X I 0 0 0 0 0 0 2 0 0 2 0 0 X 0 0 X 2 0 0 0 0 0 0 0 0 2 3 0 9 X X 0 9 0 9 2 1 0 0 0 0 1 0 0 0 0 0 0 0 X sc PEMALE 0 0 2 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 9 0 a a X 0 a 0 SC MALE 0 1 0 1 0 0 X X X 2 0 0 X 0 0 0 0 Q 0 0 0 0 0 0 0 9 0 0 1 X 9 0 9 0 X 0 1 9 » 0 a 0 9 0 0 0 0 2 0 a 0 a l 0 a 9 0 9 0 0 0 0 0 a l 3 0 0 0 L 1 0 9 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 X 0 5 0 0 X 9 9 9 9 9 9 9 0 0 9 9 9 28 1 T A B LE E l . C O N TIN U ED DATE TRAP laa iaa 188 188 188 188 108 IBB 168 IBS ' 168 IBS 188 188 188 188 188 188 168 188 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 71 72 73 74 75 76 77 78 79 80 81 82 83 84 88 86 67 88 69 90 1 2 3 4 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 36 39 40 OH FEMALE 0 0 0 0 0 0 2 0 0 0 0 1 0 I 1 0 0 0 1 0 0 0 0 0 0 a a 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 3 0 0 0 0 0 0 a 0 Q 0 Q a a a 0 0 a 0 l 0 l 0 3 0 0 0 1 0 1 1 0 * 0 0 2 0 0 1 0 1 0 0 sc HALE 0 0 0 0 0 0 0 0 9 0 1 0 2 2 1 0 0 1 0 0 1 0 2 0 0 0 1 0 0 0 1 0 0 0 0 0 5 1 0 2 0 0 3 0 1 1 1 2 0 0 0 2 1 0 I 2 0 0 2 1 1 1 0 2 42 43 0 0 0 0 0 4 60 0 2 0 1 0 0 0 0 0 0 0 2 0 a 0 1 a 0 0 0 Q Q 0 Q 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 3 0 1 0 1 45 46 47 48 49 50 91 52 53 54 55 56 57 56 59 sc FEMALE 1 0 0 0 0 a 0 0 0 a 0 I l l l l 0 2 0 0 1 1 0 0 2 0 0 0 41 44 OH HALE 1 0 0 0 Q 1 1 1 2 0 0 0 0 a l i i 0 a G a a 2 i 0 a 1 0 0 0 0 i l t 0 a l 0 0 0 a Q 0 Q 1 0 0 0 2 0 -2 0 0 2 2 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 * DATE TRAP 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 01 62 63 64 65 66 67 68 69 70 71 72 73 74 73 76 77 78 79 80 81 62 83 64 65 86 87 98 09 90 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 OH FEMALE OH HALE sc FEMALE sc HALE 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 2 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 2 0 0 2 1 1 2 0 0 0 2 2 0 I 9 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 a 0 0 l i 0 0 0 0 0 0 0 Q 0 0 a 0 0 0 l 0 2 2 1 1 1 0 0 a 1 0 1 0 0 2 0 2 2 1 0 2 1 1 I 0 0 0 0 0 1 1 q 0 1 0 a 0 a a l I 0 1 0 0 0 2 0 1 0 a 0 0 a i i 0 0 I 2 0 1 0 0 0 I 0 1 0 0 0 1 L 2 2 1 0 1 0 0 3 1 2 2 0 0 0 0 1 1 0 0 0 0 0 1 0 a l 2 0 0 0 0 0 0 0 a 1 0 1 9 0 2 2 2 2 0 0 0 0 0 0 0 0 1 1 3 1 0 0 0 0 0 0 0 0 0 1 0 2 0 a 0 0 2 Q 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 a a 2 0 0 0 0 a 0 a * 2 1 0 2 3 3 0 0 0 0 0 0 2 2 1 0 0 0 0 0 0 0 0 0 0 2 3 1 2 0 0 0 0 3 0 2 0 0 0 0 a q 2 q 0 0 0 0 0 0 0 0 0 282 TA V Lf E l - DATS 193 193 193 193 193 193 193 193 193 193 193 193 193 19 3 19 3 19 3 193 19 3 19 3 193 19 3 193 193 193 193 193 193 193 193 193 193 193 193 193 L93 19 3 193 L93 193 193 L95 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 19J 195 195 195 195 195 195 195 195 195 195 19 5 195 195 195 195 195 195 195 C O N TIN U ED TRAP 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 66 69 70 71 72 73 74 75 76 77 78 79 ao 81 82 33 84 65 36 87 86 39 90 1 2 3 4 5 6 7 9 9 10 11 12 13 14 15 16 17 19 19 20 21 22 23 24 25 26 27 26 29 30 31 32 33 34 35 36 37 38 39 40 OK FEMALE 0 0 0 0 1 1 Q I 0 1 0 1 0 2 0 0 1 0 0 0 0 0 0 0 1 1 0 2 0 0 0 1 0 2 1 1 1 0 0 0 1 1 0 2 0 0 2 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 2 0 0 0 0 0 0 1 1 0 0 0 0 0 1 2 2 1 OH KALE 0 0 0 0 1 0 0 q l l 0 0 0 1 1 2 4 0 0 0 0 0 1 0 3 2 0 0 0 0 0 2 1 2 2 0 0 0 3 0 2 1 1 0 0 0 1 0 0 0 0 0 L 1 0 0 0 1 2 0 I 0 0 0 0 0 0 0 0 0 1 1 0 0 0 a a 0 0 0 sc FEMALE 0 0 0 0 1 0 0 Q 0 0 0 1 0 0 a l i 0 a 0 0 a 2 1 I 0 0 2 0 3 0 2 1 1 1 2 0 0 0 a i 0 l 0 0 0 I 1 a 0 a 0 0 q q a 0 0 2 2 2 0 3 0 0 a 0 0 0 1 l 0 0 0 0 0 2 1 1 0 sc HALE 0 0 0 0 2 0 0 0 1 1 0 0 0 0 0 0 2 0 0 0 0 0 2 0 I 0 0 0 0 0 0 1 0 2 a 0 a a 0 0 Q 0 0 0 o 0 1 0 0 1 0 0 1 0 0 0 1 0 2 2 2 O 1 a 0 0 a 0 0 0 2 0 a 0 0 0 l 0 i 0 . DATE TRAP 195 195 195 195 195 195 19 5 195 19 5 19 5 195 195 195 195 195 195 195 195 195 195 195 19 5 19 5 19 5 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 19 6 19 5 19 5 195 195 195 195 195 195 195 19 0 19 0 19 0 190 190 190 19 8 190 190 196 198 196 190 196 190 191 191 19 1 196 19 8 19 8 19 0 190 196 190 19 0 190 190 190 198 41 42 43 44 45 46 47 40 49 50 SI 32 S3 54 55 56 57 58 59 60 61 62 63 64 65 66 67 60 69 70 71 72 73 74 75 76 77 78 79 00 81 82 83 84 85 86 87 80 09 90 1 2 3 4 5 6 7 3 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 21 25 26 27 28 29 30 OH FEMALE a 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 Q 0 9 a 0 0 9 9 0 0 0 0 0 9 0 0 0 0 0 1 0 0 0 a 0 0 a 0 1 0 0 0 0 1 0 1 1 1 2 1 1 I 1 1 1 0 1 1 2 1 1 I 1 1 1 0 CH HALE 3 0 0 0 0 3 1 4 0 3 0 0 0 0 4 1 1 a l 0 0 0 0 4 a 1 0 l 9 0 a a 0 a 0 0 2 0 0 0 0 1 0 1 0 4 0 0 0 0 1 2 0 1 1 1 0 0 1 0 1 a 9 2 1 0 2 a 2 0 3 0 0 l a a 0 2 3 1 SC FEMALE 2 a 0 0 a 3 0 0 1 2 0 0 q a 4 1 0 1 9 0 3 a a 1 1 1 1 1 0 0 0 9 t 0 0 0 2 a 0 a a 3 0 2 2 1 0 0 0 a i 0 9 0 1 1 0 9 0 9 9 0 0 a 0 q a 0 l 0 l l 0 0 1 q 0 2 2 9 SC HA LI 0 9 0 0 a 5 5 a i 2 0 q 0 0 3 1 a a 0 0 0 0 0 1 0 0 9 2 0 0 0 9 0 1 1 0 2 a 0 a a a a 2 7 0 0 0 0 0 i q 0 0 1 q a q a 0 i 0 0 1 I 0 0 q 1 q q 1 1 q 0 a 0 0 0 4 283 T A lL t E l . C O N TIN U ED DATE TRAP 19ft 199 L99 199 199 199 199 L99 199 199 19B 198 198 198 199 198 199 199 199 198 199 199 199 199 199 199 199 198 198 198 198 198 1 96 198 198 198 198 198 198 198 199 199 198 198 198 198 198 198 198 198 198 198 198 198 198 198 198 198 198 198 206 300 300 300 200 300 300 200 200 300 200 200 200 200 200 300 300 200 300 2 00 31 32 33 34 35 36 37 36 39 40 41 42 43 44 45 46 47 40 49 SO 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 66 69 70 71 72 73 74 75 76 77 78 79 80 31 92 83 84 35 96 37 as 89 90 1 2 3 4 5 € 7 a 9 10 11 12 13 14 15 16 17 19 19 20 OM FEMALE 2 3 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 1 0 Q 0 0 0 a 1 Q 1 0 0 0 0 0 2 0 1 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 L 0 1 0 0 0 a 2 1 Q a 1 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 OH HALE 8 0 0 0 0 0 2 1 2 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 6 0 0 3 1 0 a a 0 l 3 0 0 0 0 0 0 0 2 0 1 2 3 0 0 0 0 2 2 1 1 1 0 0 0 0 1 <3 0 0 1 1 0 1 0 1 0 0 2 0 0 0 0 0 3 1 SC FEMALE a 0 0 0 0 0 l 0 0 0 0 0 0 0 0 3 0 1 1 2 0 0 0 0 3 0 1 1 1 0 0 0 0 0 1 3 0 <3 0 0 0 Q 4 0 2 0 2 0 0 a 0 2 2 1 1 0 0 0 0 0 0 0 0 0 0 9 0 1 0 0 0 0 0 0 1 0 0 0 0 0 sc MALE 0 1 0 a 0 0 2 0 0 2 1 0 0 0 0 2 0 3 2 0 0 0 0 0 1 3 0 0 0 0 0 0 0 1 0 0 0 1 3 0 0 0 4 0 3 0 1 a Q 0 a 3 2 2 1 2 0 0 0 0 0 0 0 0 1 0 L 0 0 0 0 0 I 0 0 0 0 0 1 0 DATE TRAP 200 20 0 200 200 200 200 200 200 200 200 200 200 20 0 20 0 200 20 0 20 0 2Q0 200 2QO 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 2QO 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 2QQ 200 200 200 200 200 200 202 202 202 202 202 20 2 20 2 20 2 2Q2 20 2 21 22 23 24 23 26 27 28 29 30 31 32 33 34 35 36 37 39 39 40 41 42 43 44 45 46 47 48 49 50 51 51 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 69 69 70 71 72 73 74 75 76 77 78 79 80 61 82 83 94 35 36 87 88 99 90 1 2 3 4 5 6 7 8 9 10 OM FEMALE OM HALE SC FEMALE SC MALE 2 2 0 0 0 0 0 a 0 3 5 0 0 0 0 0 0 2 1 3 0 0 Q 0 0 1 1 1 1 0 0 0 0 0 0 9 2 0 1 9 0 0 a l a a 2 0 9 0 0 0 1 1 0 2 0 0 0 0 <3 0 0 3 0 2 I L 0 0 2 5 0 4 4 8 3 15 9 9 6 2 1 0 0 0 0 I I 1 3 0 0 a a 0 3 1 1 0 1 0 9 0 a 6 0 5 1 1 0 0 0 9 2 1 3 0 5 0 0 0 a 0 a a 2 a 0 0 0 0 2 0 1 1 0 0 0 0 0 2 2 2 I 3 1 0 0 0 3 4 4 9 6 12 17 1 14 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 a 0 0 0 0 0 2 0 l 0 a 0 0 0 0 0 0 0 0 0 1 9 0 a 0 0 0 i 9 9 9 0 a a 0 0 0 0 2 9 0 9 a 0 0 0 0 0 0 0 9 0 0 0 0 0 9 0 0 0 0 0 0 1 0 a 0 0 0 a 0 9 1 0 1 9 0 0 0 9 9 3 0 0 9 0 1 L 0 * i 0 0 9 9 0 9 0 a a 9 0 0 0 0 9 0 0 0 9 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 2 0 0 2 0 0 0 0 9 284 TA BLE E l . C O K TIH U EO DATE TRAP 102 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 20 2 20 2 20 2 20 2 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 11 12 13 14 19 16 IT IB 19 20 21 22 23 24 29 26 27 26 29 30 31 32 33 34 33 36 17 38 39 40 41 42 43 44 43 46 47 48 49 30 31 32 S3 34 33 36 37 38 39 60 61 62 63 64 63 66 67 69 70 71 72 73 74 73 76 77 78 79 80 81 82 83 84 S3 86 87 88 89 90 OM FEMALE OM HALE SC FEMALE 6 2 2 6 1 1 7 10 7 0 0 0 1 3 1 0 1 0 1 1 2 0 2 0 0 0 1 0 2 L 0 1 1 1 0 0 0 0 2 0 0 0 0 0 0 I 0 3 Q 0 0 1 0 0 4 0 1 0 0 0 2 1 1 1 0 0 0 0 0 3 1 0 0 0 0 0 0 a 0 0 l l 2 1 2 2 0 1 6 7 1 3 3 3 4 3 2 2 2 3 3 4 1 3 7 4 2 1 1 1 1 1 3 3 1 6 1 3 2 1 7 4 2 1 1 3 6 2 7 1 1 3 1 3 3 4 4 3 1 1 2 3 1 1 1 3 3 3 4 7 4 2 5 17 7 4 7 22 10 1 4 10 4 10 4 1 3 2 4 20 3 14 6 10 "s 5 3 3 2 3 3 12 2 2 4 5 I 4 9 10 12 2 4 2 6 6 11 17 1 10 4 1 11 S 13 13 2 3 3 7 5 3 9 $ 3 3 3 3 6 B 10 4 6 SC MALE 2 0 0 0 I 0 0 1 0 0 0 0 0 0 1 2 0 2 0 0 1 1 0 0 1 1 0 1 0 0 1 0 a 0 a 0 0 0 0 0 0 3 1 s 0 0 1 0 0 2 1 1 1 0 0 0 0 0 0 0 3 2 0 Q 0 1 0 0 0 1 4 0 1 1 I 2 I 0 0 I DATE TRAP 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 20? 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 20 7 20 7 207 207 20 7 207 t 2 3 4 S 6 7 S 9 10 11 12 13 14 13 16 17 IS 19 20 21 22 23 24 25 26 27 36 29 30 11 32 32 34 35 36 17 36 39 41 42 43 44 45 46 47 46 49 $0 SI S2 S3 54 55 56 57 58 59 60 61 62 63 64 65 66 67 69 69 70 71 72 73 74 75 76 77 78 79 80 OM FEMALE 0 5 0 3 1 5 17 4 11 4 4 1 1 3 6 9 1 7 9 10 14 5 5 11 * 5 5 ; i 7 19 10 9 5 7 2 2 3 4 11 7 6 7 10 15 S 1 4 5 5 7 5 5 2 17 7 9 3 2 3 3 9 10 3 4 7 4 3 7 0 2 on HALE 4 10 1 9 9 9 25 15 12 7 14 9 5 15 12 13 9 16 25 21 17 3 5 5 7 9 0 0 10 19 13 10 6 11 7 4 5 6 12 IQ 9 13 3 12 20 9 12 7 13 S 12 10 9 14 9 10 9 11 19 18 17 14 9 7 6 14 4 S 12 8 5 6 8 5 2 4 7 3 7 SC FEMALE 2 0 0 0 0 2 6 0 2 0 1 2 0 0 1 * 0 0 9 3 1 1 1 2 3 1 2 4 3 7 1 0 0 9 9 1 1 2 0 1 0 0 1 12 3 9 1 0 1 0 2 1 0 3 L 2 0 3 3 0 1 1 0 0 1 L 1 3 a i l 2 1 0 Q 0 1 3 SC MALE 0 1 0 1 0 0 0 0 1 0 2 a i 3 0 1 0 0 3 3 2 1 1 3 0 1 1 0 0 1 2 0 0 a a 0 i l i 0 2 3 1 1 1 0 0 t 2 0 1 0 0 1 0 0 1 0 5 0 0 0 0 0 1 0 0 0 2 0 1 0 a a 0 3 1 0 1 285 T A B U Cl OATS 2 07 207 2 07 207 2 07 207 207 2 07 20? 207 209 209 209 209 2Q9 209 209 209 209 209 209 209 209 209 209 209 209 2Q9 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 2Q9 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 CO N TIN U ED TRAP 91 92 93 94 99 96 97 96 99 90 i 2 3 4 5 6 7 3 9 10 11 12 13 14 15 16 17 19 19 20 21 22 23 24 25 26 27 29 29 30 31 32 33 34 35 36 37 36 39 40 41 42 43 44 45 46 47 46 49 50 51 52 53 54 55 56 57 sa 59 60 61 62 63 64 65 66 57 66 69 70 OH fEHALC 2 4 6 9 6 4 0 4 2 2 0 1 1 1 0 2 5 2 2 3 0 3 2 0 0 0 2 2 0 0 1 6 1 0 Q 2 Off KALE U 15 18 2 1 2 7 3 0 1 2 1 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 I I 0 1 2 2 1 0 0 0 0 0 0 Q 0 0 1 1 0 Q 0 0 1 0 0 0 1 2 2 5 2 1 1 2 2 4 1 4 1 1 4 3 7 2 1 2 1 7 2 1 1 0 1 1 1 3 2 3 2 2 0 0 7 3 2 1 1 1 0 0 2 1 0 0 I 1 0 4 0 5 1 5 3 3 1 6 0 4 6 7 0 1 2 0 5 2 3 sc HALE 0 0 0 I 2 2 2 1 SC t CHAU I 1 1 1 5 4 3 1 2 10 L 12 1 3 3 4 1 4 4 6 4 3 2 2 4 L 4 4 L 3 3 2 2 3 G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 Q 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 G 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 Q L DATE 209 209 209 209 209 209 209 209 2 09 209 209 209 2Q9 209 209 2Q9 209 209 209 209 TRAP 71 72 73 74 76 77 78 79 60 61 62 63 64 85 2 12 212 212 212 212 212 11 12 2 12 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 2 12 2 12 2 12 2 12 2 12 2 12 2 12 2 12 212 2 12 212 2 12 2 12 2 12 2 12 2 12 2 12 2 12 212 212 21 2 212 212 212 212 212 21 2 21 2 212 212 212 212 212 0 2 4 2 75 66 67 98 69 90 1 2 3 4 5 6 7 212 OH FEMALE OH MALE 3 2 4 6 3 2 2 1 2 2 8 2 2 1 3 2 3 1 T 2 2 S 4 2 5 4 3 1 2 1 2 3 13 14 15 16 1? 16 19 20 21 22 23 24 25 26 27 26 29 30 31 32 33 34 35 36 37 3B 39 40 41 42 43 44 45 46 47 1 1 5 4 2 0 0 50 51 52 53 54 55 56 57 58 59 60 0 0 0 2 0 0 0 0 1 4 0 0 0 0 0 2 0 1 0 0 Q 0 0 0 0 0 0 0 0 0 0 0 0 2 7 1 5 2 5 5 7 4 6 4 4 6 9 3 ,6 i' 1 2 5 2 2 4 2 2 4 0 0 1 0 2 0 0 0 i 48 49 0 Q 0 0 0 0 1 0 0 1 1 21 2 2 1 14 3 6 2 5 3 5 3 2 7 0 0 9 6 1 2 5 2 3 1 2 2 3 2 1 0 7 3 0 0 Q 4 2 3 2 sc HALE 5 9 10 SC FEMALE 11 4 5 3 7 2 0 6 3 1 16 10 6 10 15 5 4 7 4 5 2 6 3 3 0 a 1 a l 2 0 a 2 1 0 0 0 0 0 0 0 0 0 L I 0 0 0 0 0 0 0 9 0 0 0 0 3 I 4 4 0 a l a 0 a 0 0 3 5 0 2 4 5 1 0 0 0 1 a 2 a 0 0 0 0 0 1 0 0 0 0 0 0 0 9 0 2 0 a l 0 0 0 a 0 i l Q 0 0 1 0 0 0 0 0 0 9 1 9 9 0 0 0 9 0 0 1 0 3 0 0 0 0 0 286 TABU El . C O N TIN U ED DATE TRAP 112 212 112 112 212 31Z 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 75 77 73 79 00 81 82 83 84 95 86 97 68 89 90 1 2 3 4 5 7 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24 39 26 27 28 29 30 31 32 33 34 39 36 37 38 39 40 41 42 43 44 49 46 47 49 49 50 CM FEMALE OM MALE 2 2 2 1 2 4 5 9 4 1 Z 12 2 7 7 4 3 2 1 7 3 4 5 5 1 4 3 7 3 5 5 9 a 2 6 2 0 2 0 2 1 3 0 1 3 3 3 0 2 1 0 0 5 9 0 1 2 3 4 4 4 2 2 2 3 4 3 4 3 2 2 5 3 2 7 7 1 4 2 1 2 1 3 1 1 1 2 2 1 2 1 5 0 10 0 4 3 4 4 3 3 3 1 0 sc FEMALE 0 0 0 0 0 0 0 a 2 0 0 2 1 1 Q Q I 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 a 0 1 0 0 0 0 0 0 1 a l 0 0 0 a 0 1 3 3 3 2 3 7 1 3 9 4 7 6 3 3 3 0 4 2 1 1 2 4 3 2 1 3 S 2 6 9 2 6 3 0 0 2 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 4 7 0 2 2 5 44 1 1 4 2 1 a 0 0 0 0 SC * MALE 0 0 0 0 0 0 2 0 2 0 2 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 & 0 1 0 0 G 0 0 0 0 0 0 0 0 0 0 0 0 0 L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O' 0 0 0 0 0 0 0 0 0 0 0 DATE TRAP 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 2 14 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 214 216 216 216 216 216 216 216 216 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 90 81 92 93 94 05 96 87 88 09 90 1 2 3 4 5 7 9 10 11 12 13 14 19 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 33 39 40 OM FEMALE OM MALE SC FEMALE sc MALE 0 1 3 0 0 0 0 0 0 0 0 1 0 S 4 4 Q 2 6 1 2 2 4 2 3 7 S 4 6 5 4 5 2 3 1 8 3 4 3 0 6 1 0 2 7 1 6 1 4 3 1 ’ 4 3 5 2 5 0 0 1 1 0 2 1 4 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 4 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 a 0 a l a l a l l 0 0 6 1 1 2 7 5 4 0 1 I 2 1 1 0 4 3 1 0 1 2 0 1 3 0 0 L a 0 0 0 0 0 3 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 a a 0 0 0 0 0 0 0 3 0 0 0 1 3 1 3 5 6 1 4 1 1 5 2 3 3 1 4 3 4 3 2 4 2 3 2 4 3 4 3 3 3 2 4 1 2 2 1 2 1 2 4 2 3 1 3 3 1 1 1 4 1 2 1 2 2 3 2 2 1 1 2 i 0 0 0 a 0 0 0 0 \ 0 Cl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 287 TA SLC E l . DATS 214 214 214 214 214 214 214 214 214 214 214 216 214 216 216 216 216 216 216 214 216 214 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 214 216 216 216 216 216 216 216 216 216 216 216 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 2 21 221 221 221 221 221 221 221 221 COHTXKUEO TRAP 41 42 42 44 44 46 47 48 49 90 *51 52 53 54 55 56 57 SB 59 60 61 62 63 64 65 66 67 66 69 70 71 72 73 74 75 76 77 79 79 80 81 82 83 84 63 66 67 88 69 90 L 2 3 4 5 6 7 8 9 10 U 12 13 OH rCNALS OH HAH 0 5 2 0 2 L 1 3 0 3 3 16 1 2 3 6 4 6 1 6 5 2 3 3 1 2 3 0 0 0 2 2 0 I 2 0 3 0 2 1 1 2 I 2 0 0 3 1 1 2 3 1 3 3 3 3 4 3 I 3 0 1 2 1 0 0 3 0 1 1 0 2 6 6 1 3 3 I 2 0 0 2 4 1 2 6 0 3 10 a 2 1 0 9 1 0 4 1 2 3 0 2 3 0 4 1 4 5 0 4 30 3 1 1 0 0 1 1 1 2 0 1 0 3 4 5 4 1 6 5 4 7 6 1 2 0 2 0 9 3 0 3 3 3 1 6 1 4 3 3 2 0 0 3 0 0 0 0 0 0 0 0 9 0 3 0 9 0 2 2 sc 0 1 1 0 0 I 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TRAP HALS 0 0 0 0 0 1 3 4 3 14 15 16 17 IB 19 20 21 22 23 24 25 26 27 28 29 0 0 0 0 0 Q 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 SC TSHAL* 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 46 49 50 51 52 53 54 55 56 57 58 99 60 61 62 63 64 65 66 OH OH sc FIHALX HALS fSMALS sc HALS 0 2 0 I 0 4 4 0 1 I 5 1 4 0 0 10 6 9 2 7 11 1 3 14 a 6 5 6 2 0 0 0 0 0 0 I 0 0 0 0 0 0 0 Q 0 0 0 0 0 0 0 0 0 0 0 0 0 q 0 0 0 a a 0 0 0 a l 0 0 0 0 0 0 0 0 a 0 0 0 0 0 1 0 9 0 1 0 0 0 0 0 0 0 0 1 0 0 a a 0 0 0 0 0 0 0 0 2 1 5 2 3 2 1 2 5 2 3 3 2 4 1 1 5 7 5 4 3 3 4 3 5 70 71 72 73 74 75 76 77 78 79 80 41 82 83 34 85 66 87 88 69 90 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 18 19 20 1 2 9 1 1 4 4 3 2 2 5 4 67 68 69 4 2 3 S 7 7 2 ! 3 4 4 3 0 1 3 3 15 9 5 10 2 1 3 12 q I 0 0 0 1 0 0 0 0 0 3 7 I 3 a 3 11 3 1 1 0 2 6 1 4 2 1 9 J 6 1 1 5 4 0 0 0 0 1 0 0 0 0 0 0 Q 0 a 0 1 I 0 0 1 7 2 2 0 0 1 9 i 0 0 1 0 0 3 0 1 0 0 0 2 0 a a 0 2 0 0 0 I 0 0 3 0 0 0 0 0 0 2 0 1 9 0 0 a i 0 0 0 0 0 a a 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 a 288 T A tL C E l . CO N TIN U ED OATB TRAP 223 223 223 233 223 223 223 223 22 3 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 227 227 227 227 227 227 227 227 227 227 21 22 23 24 23 26 27 20 29 3Q 31 32 33 34 33 36 37 30 39 4G 41 42 43 44 43 46 47 40 49 50 51 52 53 54 55 56 57 50 59 60 61 62 63 64 63 66 67 60 69 70 71 72 73 74 73 76 77 79 79 30 01 32 93 34 35 86 97 88 09 90 1 2 3 4 5 6 7 B 9 10 OH FEMALE OH HALE 3C FEMALE sc MALE DATE TAA 0 1 0 1 0 0 0 L t 1 0 0 0 1 0 t 0 0 I 1 0 0 I 0 0 2 0 1 0 1 I 4 0 3 0 0 0 0 a 1 1 1 0 2 0 0 4 0 L 0 t 2 2 0 0 1 0 1 0 1 0 3 1 0 2 0 2 0 2 2 L 1 3 0 2 9 a l a 0 0 l 0 2 0 2 2 0 0 1 0 a 0 i i i 2 3 9 9 1 0 2 1 9 0 1 1 3 4 3 3 3 9 0 9 I 9 0 0 9 1 0 0 0 9 0 9 1 0 1 I L 0 0 1 0 0 0 a 0 i 9 0 2 0 9 0 9 0 0 0 a 9 9 9 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 9 9 0 9 9 0 0 0 0 Q 0 a 0 0 0 0 0 0 0 0 1 0 0 1 0 0 a 0 3 1 1 0 0 I 0 0 0 0 a 0 a 0 9 0 a a 0 0 0 0 0 a 0 a a a 9 0 9 9 0 0 0 0 9 0 0 9 0 0 0 0 0 0 0 227 227 227 227 2 27 227 227 227 227 227 227 227 227 227 227 227 227 227 327 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 127 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 2 27 227 227 227 227 227 227 227 237 227 227 227 227 227 237 227 227 227 227 227 227 11 12 13 14 15 16 17 10 19 29 21 22 23 24 25 26 27 20 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 46 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 60 69 70 71 72 73 74 75 76 77 70 79 00 01 82 93 84 95 86 07 88 09 90 i i 9 0 9 1 9 a i l a a 1 3 a 2 0 a 1 0 0 0 1 9 2 0 1 0 0 1 L 1 9 9 0 *8 2 10 8 14 i 7 2 10 a Q 2 9 9 9 G G 0 0 0 a 0 0 0 a 0 0 0 9 Q 0 a a OH FEMALE CM HALE 3C KHALI 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 2 L 2 0 9 0 0 0 0 3 0 0 0 0 3 0 0 9 0 Q I 0 0 0 0 0 I 0 a 0 9 0 9 0 0 0 1 L 0 0 0 1 0 0 0 Q 0 0 0 0 0 a o o 0 0 0 a a sc HALE 0 0 0 0 9 0 0 0 a 0 0 0 0 1 0 9 0 0 0 0 0 Q 0 0 2 0 9 0 Q a o a 0 0 9 a g a a a 9 9 a a a 0 0 9 Q Q 0 0 0 0 0 0 0 0 0 0 0 0 2 9 9 0 0 Q 0 a o o o 0 0 0 G 0 a o 289 C O B flN U E D TRAP 230 230 230 230 230 230 230 230 230 230 230 2 30 230 230 230 230 230 230 230 230 230 230 230 230 230 230 2 30 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 23Q 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 23Q 230 230 230 230 230 230 330 230 1 2 3 4 5 6 7 a 9 to 11 12 13 U 15 16 17 ia 19 20 21 22 23 24 25 26 27 26 29 30 31 32 33 34 35 36 37 33 39 40 41 42 43 44 45 46 47 46 49 SO 61 52 53 54 55 96 57 56 59 60 61 62 63 64 65 66 57 66 69 70 71 72 73 74 75 76 77 76 79 90 OH FEMALE 1 0 2 0 0 0 0 1 0 0 1 0 X 3 2 1 2 4 0 1 0 2 2 3 0 0 0 1 2 0 0 0 0 0 1 1 0 1 0 0 1 0 1 3 1 0 0 2 0 0 1 s 1 2 0 1 X 1 0 1 1 0 0 0 0 2 0 2 1 4 0 0 0 0 L 0 0 2 0 1 OH HALS 0 1 0 0 0 2 0 1 0 0 0 0 2 X 0 0 2 1 0 1 0 4 1 1 0 3 0 0 0 2 0 0 0 1 0 1 1 1 1 0 1 1 2 1 0 1 1 4 0 1 0 1 1 6 0 6 1 3 0 7 X 0 X 0 0 1 1 a 2 0 0 1 0 0 I 2 1 2 0 0 30 rC H A U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 ( a 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 X 0 0 0 30 HALE 0 a 0 0 0 0 0 Q Q 0 A 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 a 0 0 0 1 0 0 0 0 L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 9 0 0 0 0 0 DAT! trap oh FEMALE 230 230 230 230 230 230 230 230 230 230 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 23 3 233 233 233 233 233 233 233 233 233 23 3 233 233 233 233 233 23 3 233 233 233 233 233 233 233 233 233 233 233 233 233 233 23 3 23 3 233 233 23 3 233 233 233 233 23 3 233 233 233 233 233 233 233 233 233 23 3 61 62 d3 64 65 46 67 66 69 90 I 2 3 4 5 6 7 6 9 10 11 12 13 14 15 16 17 16 19 20 21 22 23 24 23 26 27 29 29 30 31 32 33 34 35 36 37 36 39 40 41 42 43 44 45 46 47 46 49 30 51 52 53 54 55 56 57 58 39 60 61 62 63 64 65 66 67 68 69 70 0 0 2 1 X 2 2 X 1 0 0 1 0 L X 1 a l 0 0 0 0 0 1 0 1 1 2 0 0 0 0 1 1 2 1 9 0 0 0 0 2 2 0 0 0 0 0 z 2 1 0 0 0 1 Q X 0 0 2 S 2 2 0 0 1 2 0 2 0 1 X 0 0 9 1 1 2 1 an MALE 0 1 5 : 2 0 0 2 9 1 0 0 X 0 a 0 0 0 0 a i 0 3 0 0 0 0 0 0 3 a 4 0 1 0 1 0 0 0 0 a 0 0 2 0 0 0 1 0 2 1 I 0 0 1 0 1 6 0 0 1 0 3 2 0 3 0 2 1 2 2 X 0 2 9 0 1 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a o 0 0 0 0 0 a o o a o a I 0 0 0 0 0 0 0 0 01 * 0 a 0 0 I 0 0 0 a a a a o 0 0 0 0 0 0 2 0 1 0 0 a 0 0 290 7MU EJ* COHTJHUED TRAP 71 72 73 74 75 76 77 7a 79 ao ai 82 93 84 85 96 07 98 89 90 1 2 3 4 5 7 9 IQ 11 12 13 14 15 16 17 lfl 19 2D 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 OK FEMALE OK KALE sc FEMALE 0 0 0 0 1 0 0 1 0 0 0 0 0 L 1 0 0 0 0 0 2 0 Q 0 0 0 0 2 0 0 1 0 a '0 0 2 0 0 0 0 0 0 2 0 0 1 Q Q a 2 1 0 0 2 0 I 0 0 0 1 0 3 3 0 L 0 s 0 0 0 0 1 0 0 9 I 0 a l 0 0 0 0 1 0 3 0 0 0 0 0 0 0 2 3 0 0 0 0 0 0 0 1 2 a 0 3 0 0 0 0 1 0 0 0 0 Q 0 Q 0 0 0 0 Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 Q 0 0 2 L 0 0 0 0 L 0 0 0 0 0 6 2 1 0 1 1 0 0 0 0 0 2 1 0 0 0 0 1 0 1 0 a 0 0 0 0 0 3 1 0 0 0 0 0 0 Q 1 0 0 0 a 0 0 0 0 1 0 a 0 0 1 0 a 0 i 0 0 D 0 0 9 SC KALE a 0 Q 0 a 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 a 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 BATE 237 237 237 237 237 237 237 237 237 237 237 237 237 237 23 7 237 237 237 237 237 237 237 237 237 237 237 237 237 23 i 237 240 240 240 240 240 240 240 240 240 240 240 240 240 240 2 40 240 240 240 240 240 24Q 240 240 240 24Q 240 240 240 240 240 240 240 240 2 40 240 240 240 240 240 240 240 240 24Q 240 240 240 2 40 240 240 TRAP 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 BO 81 82 83 84 85 56 87 88 89 90 I 2 3 4 5 6 7 8 9 U 12 13 14 15 16 17 18 19 20 21 22 23 24 25 28 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 <6 47 48 49 50 OM TCHALE I 0 0 0 1 0 a Q 0 a a 0 3 3 a 0 0 0 0 0 0 a i i 0 1 2 0 0 0 a 9 20 4 16 3 11 5 27 10 13 13 9 4 28 12 2 13 15 16 6 10 L 1 3 17 3 12 2 5 3 2 4 1 6 6 3 2 5 1 a OM KALE 0 0 0 2 0 0 Q 0 0 9 0 0 1 2 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 SC fem ale 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 9 9 20 16 22 13 29 10 28 20 65 16 25 33 30 37 16 25 45 6 13 a 42 11 1 0 I 7 12 11 20 1 11 10 27 29 16 7 10 6 1 5 12 5 10 4 5 5 29 6 U IS 3 11 L 0 0 0 9 1 0 L 0 1 0 a 0 i 9 I 0 0 0 0 0 1 SC KALE 0 0 0 a 0 0 0 0 0 0 0 0 0 1 Q 0 0 0 0 0 9 0 0 0 I 0 0 0 a 0 9 0 0 0 9 7 0 1 0 0 1 0 5 0 0 0 0 0 0 2 0 0 9 0 0 0 3 0 0 1 0 0 a 0 0 3 1 0 1 1 1 0 0 0 0 0 0 2 3 0 0 1 1 1 0 1 c i L 0 0 0 0 9 0 13 1 0 0 I 3 0 291 CO N TIN U ED TBAP OH fC K A L I 240 240 240 240 240 240 240 240 240 240 240 240 240 24Q 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 210 240 240 240 240 240 242 242 24 2 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 24 2 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 SI 52 53 54 S5 56 57 SB 59 60 51 <2 43 64 65 66 67 68 69 70 71 73 73 74 75 76 77 70 79 ao 01 02 03 04 05 06 07 SB 69 90 1 2 3 4 5 6 7 0 9 10 11 12 13 14 IS 16 17 19 19 20 21 22 23 24 25 26 27 26 29 30 31 32 33 34 J5 36 37 38 39 40 5 1 1 5 2 1 1 3 28 3 3 3 3 2 1 6 1 7 1 2 4 11 3 3 6 5 4 5 2 2 7 7 2 12 13 9 3 13 5 7 7 6 14 9 2 1 11 7 4 4 24 1 I 2 9 1 9 6 13 2 I 4 11 16 5 3 2 1 1 1 2 OH HACJC 5 2 12 16 6 0 0 6 9 0 10 1 12 4 12 I ’ 10 6 9 11 2 6 L3 23 19 7 6. 12 32 LO 14 4 12 0 26 LO 16 12 13 11 4 24 26 IS 15 3 7 7 26 12 S 0 6 19 12 13 11 46 3 10 2 26 S 14 9 21 3 5 0 6 14 13 4 11 3 14 3 IQ 1 10 SC PtKALZ L 0 1 0 0 0 0 2 0 0 0 0 0 2 I 0 a 0 2 0 1 0 2 0 0 0 0 0 2 0 2 0 0 0 2 1 2 0 1 1 0 0 0 0 1 1 0 1 0 1 0 5 a 4 1 2 1 3 1 0 0 2 1 3 0 0 0 1 0 0 2 1 3 2 0 1 0 0 0 0 sc HALS 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 a i 0 0 a 3 2 0 1 a 0 12 4 2 0 1 6 0 0 0 4 1 0 0 0 0 1 1 0 0 0 0 Q 0 9 1 0 a l a l 9 0 DATE TRAP OM FEMALE * 1 4 42 43 44 43 46 47 49 30 31 51 53 54 35 36 SC FEMALE 6 4 0 11 2 4 1 4 1 7 S 7 1 11 1 48 OM MALE S 0 4 5 5 0 13 6 14 3 3 6 13 6 20 3 9 3 20 3 0 0 1 1 1 0 0 0 0 0 1 1 0 0 4 7 5 14 a 9 12 3 2 9 4 io 7 11 4 20 9 6 7 10 6 0 1 3 0 o 4 1 0 2 0 0 o 0 0 2 0 0 1 1 1 0 1 0 1 12 1 57 30 59 50 si 62 S3 64 S3 66 67 se 69 70 71 72 73 74 73 76 77 79 79 ao 2 5 3 1 5 1 3 2 3 1 10 2 2 4 3 3 26 3 13 82 83 84 83 85 87 88 89 90 1 2 3 4 5 6 7 3 9 3 4 12 4 8 2 10 10 20 0 3 0 1 1 0 1 2 0 11 12 13 14 15 ' 1 6 17 18 19 20 21 22 23 24 0 3 1 1 0 1 0 4 1 o 1 0 1 0 4 a 1 11 3 3 0 3 3 0 0 0 0 0 0 o 0 0 0 a 0 0 0 0 26 27 I 3 3 3 0 0 29 30 2 1 2 1 0 1 4 81 2 10 23 28 5 . 0 1 42 13 36 10 5 17 33 7 19 16 41 13 29 4 II 4 4 a 2 2 2 11 10 3 2 1 4 0 0 SC MALE 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 1 0 o 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 3 0 0 0 1 0 2 0 0 0 0 o 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 o 0 0 0 0 0 0 1 0 0 0 0 a 0 0 0 a 0 0 0 0 0 3 0 0 0 1 0 0 292 TABU El . C O H TIH U ED DATE TRAP 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 244 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 11 11 11 14 19 IS 37 11 39 40 41 41 41 44 49 46 47 48 49 SO SI 91 SI 94 99 96 97 SB 99 60 61 61 63 64 65 66 67 6B 69 70 71 71 73 74 75 76 77 78 79 30 31 91 33 34 39 OH FEMALE 1 1 1 a l a i 1 i 1 i a 8 0 1 4 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 87 89 90 1 1 1 4 5 6 7 8 9 10 U 11 13 14 IS 16 17 18 19 10 3 6 1 0 1 6 a l a a 1 l l 3 9 1 0 1 0 3 1 3 3 1 3 5 1 6 1 4 5 S 4 3 1 0 3 1 1 5 I 1 9 1 1 1 1 9 11 1 1 1 36 38 ON HALE 1 1 1 1 1 1 1 1 1 1 4 4 14 1 I 4 1 3 3 1 9 11 9 1 6 3 8 7 6 6 1 3 3 8 4 1 1 1 11 18 13 8 9 7 IS 41 9 1 11 16 14 18 3 1 11 9 18 3 1 4 SC rtNALC 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 a a a 0 a a a 0 0 0 0 0 0 0 0 a 0 3 a 0 0 l l a a l a a 0 a 0 a 0 a 0 1 1 a 0 0 0 l i 0 0 I I 1 a 0 l i 0 0 0 0 a 0 sc HALE 0 a a 0 a 0 0 t 0 0 0 a 0 a 0 l 0 a 0 0 0 0 0 0 0 a 0 0 a a 0 a 0 0 0 0 0 a a a 0 0 0 0 0 0 0 a a 0 0 0 0 0 0 a a 0 0 0 0 1 0 1 0 0 0 i 0 1 0 i 0 1 a 0 0 0 0 0 OATS TRAP 147 147 1 47 147 147 147 147 147 147 147 147 147 147 147 147 1 47 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 ISO 150 150 150 250 150 150 150 150 150 11 12 13 14 25 26 27 28 19 10 11 12 11 14 15 16 37 18 19 40 41 42 41 44 45 46 47 48 49 90 51' 52 53 54 55 56 57 SB 39 60 61 62 43 64 45 66 47 68 69 70 71 71 73 74 75 76 77 78 79 80 81 82 81 OH FEMALE ON MALE 2 4 1 1 7 9 20 6 18 6 11 9 4 1 2 14 19 8 10 7 16 S 9 8 7 7 4 14 23 9 11 1 I 1 6 1 1 1 1 6 1 1 2 1 2 6 1 4 1 4 I 2 I 2 1 L 2 2 1 3 1 5 1 4 0 5 5 5 1 4 1 0 1 3 2 3 5 84 35 86 87 88 89 90 1 1 1 4 5 6 5 1 4 10 2 5 1 0 2 0 0 8 0 0 0 9 10 L 1 7 * 6 a is 10 4 3 11 5 10 4 11 8 11 10 6 12 6 1 3 5 19 10 17 3 15 13 7 4 2 1 30 9 17 11 2 22 8 14 9 20 40 19 1 2 3 3 5 0 3 1 15 8 SC TZHMZ 1 9 2 I 0 0 0 0 0 0 I 0 2 1 1 0 1 Q 0 a l 0 a 0 0 0 0 0 0 I 0 0 0 0 0 a 0 i i i i i 0 3C KAU 1 0 a a Q 3 0 a 0 0 4 0 0 1 1 L a 0 3 0 T 2 1 1 0 0 0 a 0 i 0 i a 2 a 0 i 0 i l l a a 2 0 0 0 0 0 0 0 0 0 0 2 1 3 a O i 1 0 0 0 l 0 I 0 0 a Q a 3 i 0 0 a (3 1 0 3 0 1 0 1 0 o 3 D 0 0 0 i l i 0 a a i 0 a a 0 0 2 3 i a i 2 0 0 0 0 0 0 293 TA SLI El , DATE 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 :s o C O N TIN U ED TRAP 11 12 13 14. 15 16 17 ie 19 20 21 22 23 24 25 26 27 23 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 43 49 51 52 53 34 35 56 57 53 39 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 ' 75 76 77 78 79 80 81 82 83 84 35 86 87 88 99 90 OH FEMALE 0 0 0 1 0 0 0 0 0 4 0 2 1 2 1 2 2 0 2 0 0 0 4 1 2 2 1 3 1 1 3 0 1 0 1 0 0 1 0 2 1 1 0 1 1 0 1 1 3 0 2 0 2 2 1 1 0 0 0 1 0 2 1 1 0 0 I 0 1 3 1 1 1 3 3 3 0H HALE T 7 3 5 2 5 5 3 6 1 17 1 5 1 6 4 0 9 6 5 3 1 12 4 1 6 2 3 2 3 14 12 7 6 7 3 8 3 4 2 3 7 4 9 7 4 1 1 10 1 2 1 4 2 3 I 4 1 2 6 3 2 3 9 4 3 4 12 1 1 3 SC FEMALE 0 0 0 0 0 1 0 0 0 0 0 3 0 1 0 3 1 2 0 G 0 0 0 0 0 3 0 2 0 0 0 3 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 3 1 1 1 9 SC MALE 0 0 0 0 0 0 1 0 0 0 0 2 0 2 1 Q 1 2 0 0 2 2 0 0 2 0 0 2 0 0 1 0 2 0 0 1 0 0 0 0 2 0 1 0 0 2 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 2 1 1 0 0 0 1 0 1 2 0 0 0 3 0 0 1 3 SATE 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 TRAP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 75 79 30 OH FEMALE 0 6 2 1 2 3 4 3 2 1 4 1 2 3 5 4 2 4 5 7 1 2 3 1 11 1 2 1 5 3 1 3 2 i 1 1 2 4 5 1 5 3 5 3 5 1 1 2 3 3 2 5 2 5 3 1 3 1 1 2 2 5 2 2 1 OH HALE 2 32 29 10 6 3 9 10 14 22 12 11 9 8 13 5 3 6 22 3 14 15 38 9 29 9 28 10 26 12 37 10 24 4 12 19 12 5 23 4 15 7 10 9 i'a 16 34 9 28 15 26 12 17 IS 18 27 17 22 19 22 28 20 100 9 47 2 30 11 39 11 18 21 8 19 12 7 27 18 17 12 SC 5C FEMALE HALE 2 3 I 2 1 1 1 1 1 2 0 2 0 1 2 0 1 2 1 0 3 13 2 4 1 1 1 1 0 2 2 1 1 3 1 1 3 1 1 1 2 1 3 13 3 5 2 1 2 5 1 2 3 2 4 2 2 22 2 3 2 1 1 1 0 2 2 3 22 2 3 3 1 1 2 1 2 3 5 2 4 5 15 5 2 6 1 4 5 15 5 I 2 2 9 2 0 2 G 4 3 2 3 7 8 5 2 2 5 4 3 10 3 3 10 2 1 3 1 5 4 3 3 a a 6 2 3 6 6 7 4 4 4 10 3 2 2 12 16 2 6 2 7 1 2 13 17 3 7 2 8 4 4 294 TA BLE C l . DATE C O N TIN U ED TRAP ON fem a le 234 234 234 254 234 234 234 234 254 234 237 257 2 37 237 237 237 257 237 137 157 237 237 257 137 237 237 137 237 157 257 157 237 237 237 157 237 157 257 137 237 237 237 237 257 237 137 237 237 257 237 257 237 237 237 237 237 237 237 2 37 237 237 257 157 237 237 237 237 237 237 1ST 1ST 257 237 157 237 157 237 257 257 157 81 82 81 84 83 88 87 83 89 90 t 2 1 4 5 6 7 a 9 10 u 12 11 14 13 IS 17 18 19 20 21 22 21 24 23 28 17 28 19 30 11 12 33 34 35 38 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 81 62 63 64 65 66 67 68 69 70 4 0 12 0 3 0 4 4 10 0 1 2 2 0 0 1 8 1 4 2 I 4 1 2 2 0 0 3 4 0 2 0 1 4 7 3 4 3 0 0 2 0 0 0 l l 13 2 4 2 3 1 6 7 1 11 1 2 1 0 9 2 11 3 12 4 0 3 1 5 2 7 6 2 6 7 5 2 6 7 OH HALE SC rE H A U 16 18 21 10 25 14 10 23 43 14 9 6 6 7 10 12 7 18 5 16 5 3 4 5 1 3 0 4 3 I 1 2 0 0 2 2 2 1 1 1 1 11 0 2 4 1 1 4 3 3 0 3 0 18 1 2 0 1 1 15 7 6 8 6 3 a 8 3 15 10 7 13 8 11 6 11 10 44 14 6 18 12 13 17 23 11 19 19 18 12 T 13 38 4 2 5 3 13 4 3 4 2 1 12 11 1 2 1 1 11 I 2 4 2 3 2 1 3 3 14 5 3 7 7 4 3 3 6 3 19 10 5 11 5 14 9 5 7 4 3 4 3 13 12 11 5 11 6 19 SC HAM 10 13 7 18 4 17 3 4 5 5 2 4 4 4 2 1 2 1 2 2 2 1 2 1 11 2 4 2 2 4 4 4 I 1 1 19 1 3 1 1 15 7 7 8 6 6 a a 3 IS 10 7 15 9 11 6 11 10 43 15 6 28 12 i: 18 22 12 20 19 19 13 7 13 38 DATE 257 257 2 37 2 57 257 257 257 237 257 257 237 237 2ST 257 257 257 237 257 237 257 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 26 1 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 TRAP 71 72 73 74 75 76 77 78 79 BO 81 82 83 84 85 86 87 88 89 90 1 2 3 4 5 6 7 8 9 10 11 12 13 14 13 16 17 18 19 20 21 21 23 24 25 26 27 28 29 30 31 32 33 34 33 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 51 54 55 56 57 58 39 60 OH FEMALE OH HALE SC FEMALE SC HALE 3 3 3 0 0 1 2 3 2 1 2 a 4 0 2 1 0 2 14 1 0 3 1 0 8 14 16 1 1 2 4 4 8 I 3 2 7 1 5 2 4 8 11 7 29 10 8 a 3 6 2 12 27 7 1 7 6 7 3 5 4 2 36 0 5 4 2 7 8 2 11 25 2 4 6 9 4 13 4 6 41 13 3 1 4 11 9 22 13 7 9 1 6 4 8 14 9 17 30 10 1 12 1 13 12 12 9 14 I 4 2 3 4 5 2 3 3 20 5 20 8 6 4 8 2 5 1 0 0 1 2 0 1 1 4 a 0 1 1 0 l l 4 0 8 1 4 1 1 0 0 0 2 1 4 3 1 4 3 3 1 1 2 2 3 3 2 5 1 5 4 1 2 10 2 7 1 1 4 3 10 4 7 7 1 1 12 14 1 5 1 4 3 3 1 3 2 21 4 19 7 3 4 2 5 1 0 0 0 2 0 1 1 4 0 0 0 2 3 2 1 7 4 2 2 1 5 2 1 4 18 *1 3 21 2 7 2 2 2 16 1 1 3 1 2 2 4 2 3 2 2 2 2 4 2 2 2 I 4 2 7 4 1 2 1 5 3 1 4 0 1 4 21 2 7 1 2 1 IS 1 1 3 3 2 1 4 2 4 2 1 t 3 3 4 3 7 3 1 2 4 2 295 C O N T tN U Z D 7 RAF 251 2 61 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 61 62 63 64 65 66 67 69 69 70 71 72 73 74 73 75 77 73 79 30 31 32 33 94 35 36 37 98 89 90 on PCfULZ on MALE 3 10 2 3 2 1 0 a l 9 2 7 2 5 0 10 0 s 2 41 1 5 1 2 1 6 1 16 13 8 45 16 4 2 25 14 34 0 10 47 4 4 • 12 4 19 13 26 17 8 14 34 25 3 14 7 10 27 36 19 SC fENALZ a 4 2 3 6 3 L 3 sc MALZ 4 4 6 4 1 4 5 5 2 10 s 1 4 5 5 7 5 5 2 10 s 6 7 10 1 4 7 7 10 2 5 7 6 9 10 5 7 9 6 2 4 6 7 296 TABLE E ? Tt TRAP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 18 17 18 19 20 21 22 23 24 25 26 27 28 29 20 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 SI 52 S3 54 35 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 00 1 OH FEHALE L 2 2 0 0 0 0 0 0 0 0 0 0 L 0 0 0 0 0 0 0 0 0 0 0 Q 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0 0 3 0 i 0 0 0 0 1 0 1 0 1 Q Q 0 0 Q 0 0 0 0 0 0 9 3 3 1 3 9 1 0 I 0 0 OH HALE 0 0 0 0 0 0 a 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 a Q 0 a 0 0 0 0 Q 0 0 3 5 9 0 0 0 9 9 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 3 a 0 0 2 1 0 1 1 0 1 a 0 9C FEMALE SC HALE 12 12 0 0 0 3 1 0 0 I 1 0 0 2 0 0 0 1 3 0 a 0 0 0 Q 0 I 0 0 0 1 a l l l 3 7 6 0 2 I 4 a 5 0 0 0 0 0 a 0 0 0 3 1 4 1 4 0 1 0 0 0 1 0 2 2 1 1 0 3 9 4 11 6 1 0 I 0 2 6 12 5 0 0 1 1 0 0 1 1 I 0 0 a 0 0 2 0 0 a 0 0 9 9 0 1 0 0 3 1 0 L 1 1 1 4 6 3 0 0 0 Q 1 0 0 2 1 0 L 1 a 0 2 0 1 9 0 1 0 0 0 0 1 L 0 0 3 0 0 3 i 2 2 1 0 1 0 9 DATE TftAP 132 132 132 132 132 132 132 132 132 132 13 8 138 138 130 138 138 13 8 138 138 138 138 13 8 138 138 138 138 138 138 138 138 13 8 138 138 130 138 13 0 138 130 138 138 130 138 136 136 13 d 138 130 138 138 130 130 138 138 130 138 138 136 136 138 138 1JB 130 138 136 136 136 136 136 13 6 138 138 138 138 138 138 136 136 138 138 130 81 82 63 64 85 86 97 88 89 90 1 2 3 4 5 6 7 0 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 20 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 40 49 50 SI 52 S3 54 55 56 57 56 59 60 61 62 $3 64 65 66 67 66 69 70 QH FEMALE OH HALE 0 1 0 0 0 2 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 2 1 I 0 1 2 1* *i 1 0 0 1 0 1 0 0 2 0 0 I 1 1 1 I 0 1 0 0 1 Q k 1 a l i 0 2 3 L 2 1 1 2 1 1 I 1 2 1 1 2 1 I I I 1 L 1 I 1 2 5 1 1 : 3 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 3 1 1 1 2 i 1 1 0 1 i i l 0 1 3 1 9 1 0 0 0 0 1 0 0 0 I 1 I 2 2 1 1 1 1 1 1 2 1 SC FEMALE SC HALE 0 0 0 0 a 10 0 2 0 4 1 6 0 2 1 3 3 1 S 3 2 1 1 9 2 1 0 1 L 1 3 2 3 4 2 5 I 4 2 8 1 4 2 1 2 1 9 30 5 2 2 18 14 30 4 3 2 3 2 2 1 7 1 5 6 9 2 9 1 2 3 4 2 5 1 3 5 3 3 7 1 0 0 0 j 3 1 0 1 1 4 4 1 7 4 I 5 J 4 3 2 3 0 2 1 2 2 1 4 1 1 4 1 2 1 1 3 1 1 2 2 1 1 1 4 1 2 9 3 4 S 3 9 11 0 2 2 1 4 3 2 1 L 2 2 1 3 1 1 2 1 I 0 1 1 2 Z 2 i 1 297 T A B U E2 . DATS na u s L38 13a us 138 138 13B 138 138 138 138 138 138 138 138 138 138 138 138 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 135 153 135 155 155 155 155 153 155 155 133 155 133 133 155 153 153 155 155 15$ 155 135 155 135 135 153 135 155 135 153 153 133 155 155 C O N TIN U ED TRAS 71 72 73 78 75 78 77 78 79 80 81 82 83 84 85 86 87 88 89 90 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 13 34 35 16 37 38 39 40 41 42 43 44 45 48 47 48 49 50 31 52 53 34 35 56 37 38 39 SO ON rCMLX 1 1 1 1 1 3 1 4 1 1 1 1 0 0 4 0 1 2 1 1 7 4 4 18 2 5 a 2 7 4 4 11 1 7 7 16 1 5 9 18 25 22 11 20 10 19 16 9 11 26 4 13 4 2 2 1 7 7 4 12 3 12 14 19 9 13 2 11 3 11 3 1 5 27 14 16 6 10 11 12 ON KALI 1 2 1 1 3 a 2 3 0 0 a 0 l 0 3 0 1 0 1 1 0 2 3 1 0 4 2 5 5 1 2 2 11 3 8 8 10 8 14 20 4 19 3 18 2 10 6 7 1. 9 2 9 1 a i i 6 0 2 1 2 6 2 7 1 13 3 3 3 10 1 2 1 6 12 6 2 5 1 3 SC r m u 3 14 5 21 5 10 3 16 I male 2 1 1 3 3 4 1 4 4 4 7 3 7 2 1 5 4 10 1 4 3 1 2 3 2 1 1 1 1 1 7 6 1 1 I 6 2 2 2 1 3 2 1 1 1 3 2 1 3 0 0 1 2 1 t 4 4 2 0 3 5 3 1 2 2 4 3 2 L 1 2 1 12 2 4 2 2 2 1 1 0 a 0 l 3 0 3 0 4 2 t 2 1 2 1 1 2 L 3 2 I 1 I L 12 L 2 1 2 I 2 1 2 1 1 1 0 2 0 0 0 2 DATE TRAP 153 155 135 155 135 135 155 135 155 153 155 155 135 155 155 155 L55 133 133 133 155 135 135 155 155 155 135 153 153 133 166 1S6 166 166 166 166 166 166 166 166 146 166 166 166 L66 166 166 166 166 166 166 166 166 166 164 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166 L66 166 166 166 166 166 166 166 61 62 63 64 65 66 67 60 69 70 71 72 73 74 75 76 77 76 79 30 31 92 93 34 35 96 37 30 39 90 I 2 3 4 5 6 7 3 9 to 11 12 13 14 15 16 17 19 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 33 36 3? 38 39 40 41 42 43 44 45 46 47 48 49 50 OH FEMALE 3 9 4 10 11 15 10 IT 5 23 3 16 4 9 4 23 9 11 3 13 S 33 12 10 5 9 5 10 9 11 5 3 3 3 2 3 . COMTINUED DATE TRAP 157 137 157 157 157 157 157 137 155 155 155 155 158 138 158 138 135 155 135 158 158 135 138 158 138 138 138 158 158 180 180 160 140 140 160 160 160 160 140 160 160 160 160 160 160 160 160 160 160 160 163 161 161 163 161 141 161 161 163 161 161 161 161 163 163 161 161 161 161 161 161 165 165 165 163 165 163 165 165 163 63 64 65 66 67 68 68 70 50 51 52 51 54 53 36 37 58 58 60 61 62 63 64 65 66 67 68 69 70 30 51 52 53 54 35 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 SO 31 32 53 34 35 36 37 58 39 60 61 62 61 64 63 66 67 68 69 TO 30 51 52 31 54 35 56 57 38 OH TEMALE 2 0 7 6 1 1 10 16 6 3 5 11 5 6 11 3 6 2 8 2 6 2 1 S 11 0 2 0 a 8 6 11 19 6 1 6 9 10 0 3 1 8 4 2 3 4 1 3 2 4 IS 0 0 0 3 12 26 0 10 3 11 0 0 OH HALE 2 1 7 4 1 1 18 4 1 1 2 2 I 7 3 3 1 3 2 4 13 1 2 1 3 3 1 4 5 4 1 1 5 10 1 0 2 0 2 1 0 0 1 2 0 1 0 0 2 1 0 3 0 8 0 I a 0 0 a a 0 i 3 a 0 0 1 0 1 1 0 1 a i 3 2 0 2 3 1 a l 2 2 9 0 0 0 2 5 5 a 5 2 4 2 4 2 3 1 I } 1 t 1 2 1 5 2 12 13 5 2 a 2 2 2 5 1 5 4 1 1 1 2 10 1 7 0 0 0 1 2 7 4 1 9 7 4 a 13 14 LI a 3 0 17 27 0 0 0 6 1 0 1 1 0 a a a 2 1 1 12 7 2 1 4 4 1 1 2 2 4 7 30 HALE 11 4 1 0 0 6 a 12 20 1 2 2 9 SC FEMALE 3 5 2 4 21 11 2 6 17 3 2 2 2 3 2 1 7 0 a 0 l 10 10 4 0 6 14 1 1 2 1 0 0 0 1 0 DATE 165 165 163 165 165 163 165 165 163 168 163 165 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 17 4 174 174 174 174 17 4 174 174 174 174 174 174 174 174 174 174 174 174 17 4 17 4 174 177 17 7 177 177 177 TRAP 59 60 61 62 63 64 63 66 67 68 69 70 50 51 52 53 54 55 56 57 38 59 60 61 62 63 64 65 66 67 68 69 70 30 51 52 53 34 55 56 57 38 59 60 61 62 ' 63 64 65 66 67 68 69 70 30 31 52 53 54 55 56 57 sa 59 60 61 62 63 64 65 66 67 68 69 70 50 51 52 53 54 OM FEMALE 2 4 1 ON MALE SC FEMALE SC MALE a 1 12 1 3 1 2 9 3 3 2 2 0 6 0 0 0 17 6 12 0 9 1 IS 3 0 14 0 0 i a i 0 0 0 1 1 0 1 3 0 0 a 7 5 12 0 5 1 13 1 0 6 6 29 20 S G 8 26 0 0 1 1 1 0 1 I 2 0 1 2 0 i 4 l 4 1 a 2 3 2 3 0 4 6 0 a a 2 2 13 0 0 3 11 5 0 2 6 37 13 15 0 I 39 2 1 5 9 a 3 6 4 10 0 8 6 0 a 5 12 4 2 6 15 6 3 23 1 4 6 5 3 7 9 13 0 0 a u 2 23 4 10 16 7 4 7 35 13 15 3 47 3 3 2 12 4 1 7 4 3 1 2 2 5 9 2 6 2 1 3 4 I 2 1 i i 3 2 1 2 1 2 2 2 3 2 2 3 1 1 4 3 1 2 7 2 2 5 6 7 1 1 2 1 16 63 19 14 a 19 46 1 1 1 1 1 1 3 5 4 0 0 2 0 2 1 3 5 1 0 T 7 0 2 2 2 0 1 0 0 3 1 1 0 0 0 2 2 2 2 0 3 2 3 10 13 6 5 a 3 1 1 0 4 3 0 1 0 0 1 0 2 0 0 1 0 0 a 0 0 a l l a 0 a 1 2 3 4 5 310 TABU E l . DATE 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 ia i la i 191 181 101 191 191 191 ia i 191 191 191 191 191 101 191 ia i 191 191 101 101 104 194 184 194 104 104 104 104 184 104 134 104 104 104 104 194 134 134 184 134 134 196 C O M T IH U ID TRAP 55 56 57 59 59 60 61 62 63 64 65 66 67 60 69 70 SO 51 52 S3 54 55 56 57 sa 59 60 61 62 63 64 65 66 67 60 69 70 50 51 52 53 54 55 56 57 59 59 40 61 62 63 64 65 66 67 6S 69 70 50 51 52 S3 54 55 56 57 59 59 40 51 62 63 64 65 66 67 6B 69 70 SO OH FEMALE OH HALE 3 15 4 0 2 3 6 5 10 4 12 9 a 1 0 7 0 2 I 3 4 6 1 U 4 a 2 0 14 4 1 1 4 1 3 5 1 2 2 4 0 3 1 4 7 7 0 1 13 26 0 1 2 4 2 6 1 5 4 0 2 5 0 5 2 0 1 0 1 0 20 2 0 0 4 2 0 13 20 U 5 11 3 5 14 2 5 3 6 3 IS 2 6 9 11 1 5 12 26 2 3 0 3 1 3 3 0 1 0 2 0 0 1 3 2 4 0 2 0 10 3 5 3 9 7 4 4 L 2 2 3 6 3 1 1 0 0 1 2 1 a 2 1 1 0 1 3 L 2 2 0 2 2 2 1 1 5 7 2 0 SC FEMALE 0 0 2 0 0 4 7 7 4 2 14 20 a l 0 n 1 6 6 6 7 1 7 2 S 2 1 4 2 3 2 3 a 0 2 10 6 0 9 5 1 14 0 3 3 4 0 2 4 0 0 3 1 5 0 0 0 4 9 9 4 4 6 4 10 4 7 2 0 14 11 10 6 6 9 5 3 3 11 1 SC HALE 2 6 3 0 1 6 6 4 5 4 12 10 17 3 0 6 0 1 1 1 0 0 5 2 1 1 0 3 2 2 2 3 3 0 2 1 6 0 3 2 3 2 0 2 0 1 1 0 0 1 1 1 0 2 0 2 0 1 6 10 0 3 4» 4 4 1 1 0 6 5 3 4 4 5 0 6 2 1 4 2 CATC TRAP 196 196 196 196 196 186 196 186 166 106 186 106 196 106 106 196 106 196 196 106 190 100 108 198 189 108 188 108 108 L98 108 198 198 ia& 198 108 130 198 190 190 108 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 51 52 53 54 55 56 57 50 59 60 61 62 63 64 €5 66 67 60 69 70 50 51 52 53 54 55 56 57 50 59 60 61 62 63 64 65 66 67 69 69 70 50 51 52 53 54 55 56 57 59 59 60 61 62 63 64 65 66 67 60 69 70 50 51 52 S3 54 55 56 57 59 59 60 61 62 63 64 65 66 67 ON FEMALE 1 0 4 5 5 5 2 1 2 : 5 3 2 6 1 2 1 3 1 10 0 0 0 0 1 0 0 0 3 0 0 0 3 0 2 1 3 3 3 0 1 0 2 1 3 1 OH HALE 1 1 2 3 4 1 1 2 4 1 2 1 1 2 1 3 1 0 2 I 4 1 0 3 1 0 3 0 3 2 1 2 0 1 2 2 1 L 1 1 2 3 1 1 1 0 0 2 2 i I 0 2 0 0 4 1 2 0 1 0 3 1 0 0 0 0 1 1 1 1 5 4 4 4 2 10 5 1 1 1 3 SC HALE 0 4 3 2 2 I Q L 3 0 3 0 0 0 0 t 0 2 1 17 0 3 0 3 3 0 0 1 1 3 3 0 0 A. 0 2 3 0 1 2 3 2 2 3 1 2 3 0 0 1 1 * 1 2 0 3 0 SC FEMALE 1 1 2 2 1 3 3 1 3 1 4 1 1 2 4 1 3 4 *3 2 1 1 5 4 4 4 5 9 2 2 3 7 1 0 I 0 0 0 0 0 0 3 1 1 0 0 2 0 0 2 0 0 0 3 1 2 1 0 0 3 3 0 4 1 1 * 1 4 5 * 0 3 0 0 0 1 4 3 2 0 1 I 3 2 0 0 0 1 0 0 0 0 3 2 2 7 3 I 4 1 0 T 3 0 0 0 L 0 3 2 L 0 311 T A IL ! E3 DATE 193 1 93 1 93 1 95 L95 1 95 195 1 95 1 95 19S 1 95 1 95 1 95 1 95 1 95 195 1 95 1 95 1 95 1 95 195 195 195 195 198 194 194 196 194 194 196 194 196 198 196 196 194 190 196 196 191 191 196 196 196 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 202 202 202 202 202 202 202 202 202 202 202 202 202 202 CO M TIH UEO TRAP <6 69 70 30 51 52 53 54 55 56 57 56 59 60 61 62 63 64 65 66 67 68 69 70 50 51 52 53 54 55 56 57 59 59 60 61 62 63 64 65 66 67 68 69 70 50 51 52 53 54 55 56 57 56 59 60 61 62 63 64 63 66 67 68 69 70 50 51 52 53 54 55 56 57 58 59 60 61 62 63 on f CHALK 0 0 I 6 3 15 6 4 12 2 0 44 9 9 9 10 27 12 3 to 9 14 7 17 3 2 1 5 3 3 2 9 3 5 4 1 1 2 7 on HALE 2 1 9 2 11 9 5 SC FEMALE 0 1 1 3 3 3 3 4 2 5 4 3 5 19 10 2 7 1 9 12 16 2 3 3 2 2 1 4 0 0 9 4 11 4 7 7 7 5 13 7 4 4 1 1 4 1 2 2 4 2 6 6 1 1 4 7 1 9 7 2 2 2 2 2 1 2 6 1 1 3 4 5 5 7 7 6 11 12 IS 6 5 3 4 4 0 0 0 0 a 3 1 4 1 2 3 4 3 4 3 2 I 4 4 3 L 4 2 I 1 1 4 2 2 7 3 2 I 3 1 3 0 1 1 2 5 3 13 14 10 5 2 9 5 4 2 2 6 1 L4 1 4 4 202 202 202 202 202 202 202 203 203 203 203 203 203 203 2Q3 203 203 203 203 203 203 203 203 203 203 203 203 203 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 209 212 212 212 212 212 212 212 212 212 212 4 4 1 3 4 0 0 1 9 3 5 4 0 4 0 0 8 11 3 3 1 2 1 4 1 2 2 5 1 DATE 5 4 1 5 7 SC HALE 2 7 3 5 4 4 1 3 2 3 4 17 14 2 5 1 7 2 7 6 1 11 1 1 3 3 3 4 4 12 14 6 9 4 I 4 7 4 4 1 2 Q 1 1 1 1 1 3 1 TRAP 64 65 66 67 68 69 70 50 51 52 53 54 55 56 57 56 59 60 61 62 63 64 65 66 67 68 69 70 50 51 52 S3 54 55 56 57 58 59 60 61 62 63 64 65 66 57 66 69 70 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 50 51 52 S3 54 55 56 5? 58 59 an FEMALE an HALE 10 11 7 13 7 10 6 5 7 4 4 10 5 11 4 5 3 5 6 10 7 1 5 9 13 9 11 6 1 2 1 1 1 9 2 I 5 6 2 1 4 4 4 2 4 7 7 0 5 9 14 8 16 5 12 4 12 1 8 10 13 10 11 2 6 14 4 7 3 *1 2 10 8 7 9 6 5 11 1 1 10 11 8 5 3 2 8 2 2 7 6 6 U 15 6 11 11 9 3 6 SC F 3C HALE 2 1 2 Q 0 1 1 1 : 2 2 I 1 3 0 0 0 2 3 1 3 0 0 0 a 9 16 3 2 0 a 7 7 13 7 5 13 9 7 1 3 fcO 11 12 10 Q 3 3 0 0 0 0 3 a L 0 1 I a c i a U 7 13 3 1 2 1 3 7 3 6 3 7 1 11 3 2 3 2 3 3 2 5 3 4 3 4 5 3 1 0 l 1 Q a 3 Q 3 0 3 1 2 0 3 3 3 3 a o 0 3 3 0 3 0 0 0 0 3 1 0 G a 3 312 TA BU E3 * DATE CDKTIHUCO TRAP OH fe m a le 213 2 12 212 212 212 212 212 212 212 212 212 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 21S 210 219 219 219 219 219 219 219 219 216 216 219 216 219 219 219 219 219 219 219 221 221 221 221 221 221 60 61 62 63 64 65 66 67 66 69 70 50 51 52 S3 54 55 56 57 56 59 60 61 62 63 64 65 66 67 69 69 70 50 51 52 53 54 55 56 57 56 59 60 61 62 63 64 65 66 67 69 69 70 50 51 52 53 54 55 56 57 59 59 60 61 62 63 64 65 66 67 69 69 70 50 51 52 S3 54 55 9 16 13 13 10 1 9 9 5 6 5 4 4 9 17 7 2 a s 5 0 4 6 9 6 2 3 0 4 4 2 2 3 6 1 7 4 4 7 2 0 4 6 3 7 2 7 1 4 1 1 0 2 6 4 15 13 7 6 2 5 I 3 7 6 7 3 6 9 2 3 0 4 3 2 0 4 9 4 OH MALE 5 7 14 7 2 7 6 9 10 1 2 1 2 1 1 4 5 3 t 3 6 1 1 2 3 1 2 2 2 1 2 2 1' 1 1 1 2 5 5 I 4 3 1 1 3 2 2 0 2 1 2 4 3 2 10 6 3 4 5 1 2 2 2 3 SC F ti l ALE 0 0 0 0 1 0 1 1 0 2 0 0 0 1 0 0 0 1 3 2 0 0 1 1 0 0 0 6 0 1 2 2 0 I 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 I 0 0 2 1 1 0 0 1 0 1 1 I 0 0 1 1 1 0 2 1 a a a 3 0 0 0 0 1 0 sc MALE 0 1 0 0 2 0 0 a Q i 0 0 0 0 0 0 0 0 0 a a 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 Q 0 0 0 0 0 0 Q 0 0 0 0 0 0 0 0 0 Q 1 0 a 9 a l 0 0 0 0 Q 0 0 0 0 1 0 a 0 0 0 0 0 0 0 0 DATE TRAP 221 221 221 221 221 22 1 221 221 221 221 221 221 221 221 221 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 223 127 227 227 227 227 227 227 227 227 227 227 227 227 227 227 237 227 227 2 27 227 3 27 221 56 57 59 59 60 61 62 63 64 65 66 67 68 69 70 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 SO 51 52 53 54 55 56 57 59 59 60 61 62 63 64 65 66 67 68 69 70 50 51 52 53 54 55 56 57 59 59 60 61 62 63 64 65 66 67 69 69 70 50 51 221 221 228 229 229 229 229 229 221 228 221 221 221 228 221 228 221 228 228 221 229 229 OH FEMALE 1 2 1 2 4 6 3 7 0 3 2 1 3 0 2 0 0 2 3 5 4 5 4 0 0 Q 6 0 0 0 0 6 1 3 2 1 3 2 6 2 1 3 10 15 4 0 3 9 5 2 2 4 3 0 2 4 3 3 0 OH HALE 2 3 1 3 2 2 5 30 1 5 2 3 3 4 I 0 0 0 0 1 2 9 1 1 3 0 0 0 0 0 4 2 5 4 2 I 3 4 3 5 4 3 3 2 7 4 2 1 1 1 1 2 2 1 0 0 1 0 1 2 Q 1 0 0 0 a a i 0 0 0 0 0 0 3 3 1 SC FEMALE sc MALE 2 0 1 0 0 3 0 9 0 0 1 3 1 2 0 0 3 1 0 4 1 3 2 3 0 0 1 0 0 0 3 1 0 0 1 2 0 I 3 5 3 5 5 2 0 0 2 0 2 1 2 I L 0 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9 0 a 0 a i 0 i 0 1 0 0 0 3 1 9 0 0 0 9 0 9 0 L 0 0 0 3 0 2 1 0 0 0 0 1 9 4 2 2 0 0 0 0 1 1 * 0 1 0 0 9 0 1 2 0 a 0 0 5 0 2 2 6 0 0 3 0 0 0 0 0 0 0 0 9 0 0 9 0 a 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 a 3 2 2 313 TABLE E3 . DATE 229 229 229 229 229 22 9 229 229 229 229 229 229 229 229 229 229 229 229 229 233 233 233 23 3 233 233 235 233 235 235 235 233 233 233 233 2 35 235 235 235 235 235 237 2 17 237 237 237 237 237 237 237 237 217 237 237 237 237 237 237 237 237 237 237 140 240 240 240 240 240 240 240 240 240 240 240 24 0 24 0 240 240 240 240 240 CONTINUES TRAP 52 51 54 55 55 57 38 59 50 51 62 63 64 65 55 67 68 69 70 50 51 52 53 34 55 56 57 58 59 60 61 62 53 64 65 66 67 68 69 70 50 51 ■ 52 53 34 55 56 57 sa 59 60 61 62 63 64 65 66 67 68 69 70 50 51 52 51 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 OH FEMALE OH HALE 0 0 1 2 2 1 0 2 1 1 4 1 0 1 0 0 2 0 5 8 1 6 7 5 7 12 7 2 6 5 5 14 0 2 0 4 3 2 6 3 5 3 2 2 3 3 5 1 0 3 3 3 2 1 a 2 3 a 0 0 i 12 3 6 3 5 4 6 5 T 2 9 a 0 0 2 2 1 0 0 1 1 1 I 0 4 0 0 1 6 6 3 2 2 4 2 4 11 5 5 5 I 4 10 0 0 a 9 5 2 5 8 6 0 4 a 2 2 6 a 0 i 2 4 1 1 0 2 7 2 a 0 1 6 1 1 7 2 2 4 4 8 5 6 4 1 5 11 1 4 5 5 1 1 1 1 3 10 3 7 SC FEMALE X 9 X X 7 2 0 2 9 I Q 0 0 2 1 0 0 a 0 2 2 0 2 5 a 14 2 4 I 3 6 7 0 3 o s a 2 U 6 0 0 0 0 0 X 3 1 0 0 0 I 0 0 0 0 6 0 0 0 I 2 i 0 0 I a 3 2 9 0 4 6 2 a 3 1 5 1 2 OATE TRAP 240 240 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 24 2 244 244 244 244 244 244 244 244 244 244 244 Z44 244 244 244 24 4 244 244 244 244 244 247 247 247 247 247 247 247 247 347 247 247 247 247 247 247 247 247 247 247 247 247 250 25 0 250 250 250 250 250 250 250 250 250 250 250 250 250 60 70 SO 51 52 S3 54 55 56 57 58 59 50 61 62 63 64 65 66 67 68 69 70 50 51 62 53 54 55 56 57 58 69 60 61 62 63 64 6S 66 67 68 69 TO so 51 51 53 54 55 56 57 58 59 60 61 51 63 64 65 66 67 68 69 70 50 51 51 53 54 55 56 57 58 59 ha le 0 0 L I 1 0 a 9 0 9 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 a 0 l i 2 a 0 0 0 9 1 9 9 a 2 a a o 0 0 0 9 0 0 0 0 0 0 0 0 0 o a o a i 3 2 1 9 0 0 Q 0 2 0 1 2 1 3 Q 2 0 1 2 60 61 61 63 64 ON rEHALE OH HALS 3 4 1 2 *1 1 12 2 1 2 1 2 1 4 5 1 2 0 3 4 5 L 5 5 3 2 3 1 1 1 1 1 2 I 1 5 2 3 1 L 1 2 4 X 3 3 6 4 5 7 0 1 8 2 12 3 9 6 I 4 5 2 3 4 1 3 2 5 3 1 1 3 1 5 7 2 3 4 4 4 0 0 0 L 0 2 1 3 1 3 3 L 3 2 2 3 2 7 4 2 3 1 3 4 4 5 15 14 10 7 2 13 7 2 I 2 X i 6 2 4 SC FEMALE SC MALE 0 i 0 t 2 0 0 Q 1 0 0 a 0 0 l 2 I 1 3 0 i 0 a 0 0 0 0 0 0 0 0 0 0 0 9 1 1 1 3 0 0 0 1 I I 0 0 1 0 1 2 0 1 0 1 3 a 4 L 0 0 0 0 0 0 0 0 0 2 0 2 L 0 I Q 1 0 X 3 0 0 0 D a a 0 0 0 0 0 0 1 X 0 0 0 0 0 0 0 0 0 0 0 0 0 a 3 3 0 0 0 3 0 1 3 a 0 a 1 0 0 0 0 0 0 1 0 1 1 0 Q 0 X 0 1 0 0 a 0 0 X 0 0 0 1 0 a 0 0 3 0 0 0 3 3 3 6 1 3 0 0 S 1 2 2 5 0 2 2 314 TABLE E 3 . CONTINUED DATE TRAP 230 250 250 230 250 250 254 254 254 254 254 254 254 254 254 254 254 254 254 254 234 254 2 54 254 254 254 254 55 66 67 55 69 70 50 51 52 53 54 55 56 57 54 59 60 61 62 63 64 65 66 67 68 69 70 0)1 FEMALE on MALE sc FEMALE 2 3 I 3 4 I 25 10 17 5 a IT 3 0 41 0 20 21 0 19 16 3 25 11 26 IT 12 4 4 2 3 7 5 18 I 11 5 6 7 5 0 51 0 12 6 0 26 6 5 28 15 17 11 15 0 0 0 0 1 0 4 3 4 0 0 5 1 0 11 2 7 6 0 10 2 3 4 1 4 4 4 3C MALE 0 0 0 0 2 1 1 0 1 1 0 2 0 0 9 0 1 1 a 4 2 1 2 4 2 315 tA 8L£ E4 CATE TJWP 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 149 149 14S 145 1 49 1 49 145 145 145 143 145 145 145 143 145 145 145 145 145 145 1 83 183 183 193 193 183 1 83 1 93 1 83 193 183 183 183 193 1 93 183 193 183 183 183 i 2 3 4 3 8 7 8 9 10 11 12 13 14 15 18 17 18 19 20 1 2 3 4 S 6 7 a 9 10 11 12 1J 14 IS 16 17 19 19 20 I 2 3 4 S 6 7 a 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 a 9 10 li 12 13 14 15 15 17 19 19 20 OH PEKALI OH HALS 1 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 3 1 0 8 0 0 0 1 0 0 6 1 3 0 1 0 2 1 4 0 0 1 0 1 0 0 0 0 0 t 0 0 1 0 0 0 0 0 0 1 2 2 13 1 0 2 2 0 0 9 2 2 0 1 1 0 0 0 0 1 0 0 0 L 12 Q a 0 0 0 0 0 1 0 5 1 0 0 13 1 0 1 1 0 0 2 1 5 0 3 0 0 1 13 0 2 0 1 0 0 0 0 0 0 1 1 2 1 0 0 0 0 1 2 0 2 1 11 9 2 3 2 0 2 1 a 4 0 1 0 0 3 9 0 1 0 2 t 1 3C PCHALZ 0 1 0 0 0 0 0 4 Q 0 5 2 2 0 0 0 I 9 a 3 3 0 0 0 3 0 0 0 0 d 0 2 0 0 0 6 0 0 0 3 0 1 0 1 I 0 0 0 1 0 0 0 2 0 Q 0 0 0 2 0 9 5 0 1 1 0 3 4 0 2 2 4 4 1 9 0 2 0 0 1 50 HA L I 0 0 0 0 0 0 0 3 0 0 2 0 2 0 0 0 0 0 0 2 5 2 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 11 0 0 0 1 0 0 0 0 I 9 3 1 1 0 1 0 0 0 1 1 0 0 0 2 1 1 8 4 0 4 1 3 10 0 0 0 1 0 9 4 0AT8 TRAP 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 177 177 177 177 177 177 177 177 17 7 177 177 177 177 177 177 177 17 7 177 177 177 16 6 166 166 16 6 166 166 166 166 16 6 166 164 166 166 166 166 166 16 6 16 6 166 166 1 2 3 4 5 6 7 a 9 10 11 12 13 14 IS 16 17 18 19 20 1 2 3 4 5 6 7 9 9 10 11 12 13 14 L5 16 17 18 19 ao t 2 3 4 5 6 7 a 9 10 u 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 18 19 20 OH f ENA L I OH HALE 0 2 1 3 6 1 5 5 0 0 0 I 3 Q 1 0 0 0 0 2 5 3 1 U 6 2 7 4 3 a 9 2 2 2 Q 1 1 1 0 13 0 0 0 1 0 1 Q 0 2 0 0 0 0 0 0 0 0 0 0 0 6 2 0 0 3 2 1 2 1 3 1 0 0 1 4 13 5 4 0 0 3 5 2 Q 1 0 1 0 3 4 2 2 5 5 1 3 4 7 4 8 1 2 1 1 1 1 0 0 IS 3 0 2 0 3 a 0 2 0 0 0 0 0 0 0 0 0 0 0 0 4 2 3 0 0 2 0 3 0 0 2 1 2 0 0 0 6 4 1 4 0 4 0 2 1 4 4 0 0 0 10 sc rEHALC 0 0 0 3 a 0 0 0 0 0 Q 0 0 a 0 a 0 0 0 0 a i 0 3 0 0 1 0 0 1 0 0 0 1 3 0 0 0 0 2 0 0 1 1 1 Q 1 0 1 0 0 1 1 a 0 2 0 0 0 2 1 1 2 Q 0 I 5 1 1 1 0 2 2 0 1 0 1 0 0 3 SC H A Lt 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 2 2 0 4 0 a i l 0 3 I 0 0 0 0 0 0 1 a 2 a 1 o o 0 o a o 0 o 2 2 2 4 S ] 3 L 2 2 J 4 1 2 1 2 2 2 I 0 0 9 316 TA BU E4 . 9ATE 193 193 193 193 193 133 193 193 193 193 193 193 193 193 193 193 L93 193 193 193 IBS 193 195 193 18S 195 195 195 193 195 195 133 135 195 195 195 105 IBS 195 195 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 197 197 197 197 197 197 197 197 197 197 197 197 197 197 L97 197 197 197 197 197 C O N TIN U ED TRAP 1 2 3 4 5 6 7 9 9 10 11 12 13 14 15 16 17 10 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 10 19 20 1 2 3 4 5 6 7 8 9 10 11 i: 13 14 15 16 17 19 19 20 1 2 3 4 5 6 7 0 9 IQ 11 12 13 14 15 16 17 ia 19 20 OH MALE OH PEKALf 0 0 1 0 I 0 0 4 0 0 2 0 2 0 0 0 2 1 0 3 2 2 0 1 0 0 2 1 0 1 0 1 a 0 0 0 0 0 1 1 1 1 2 3 0 0 2 1 0 1 a l 2 1 i 0 a 9 0 2 0 0 1 2 0 0 3 2 0 0 2 0 0 0 0 0 0 0 0 3 1 0 2 0 I 0 4 3 ■ 0 2 0 1 4 0 0 0 1 I 0 7 0 1 0 4 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 2 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 2 0 2 3 2 1 2 7 4 0 0 1 1 2 0 0 0t 0 0 14 SC FEMALE 0 0 0 3 0 0 0 2 0 1 0 0 0 1 1 11 a 0 i * 0 0 3 0 a l 2 0 0 0 1 2 0 0 0 0 2 3 0 0 0 0 0 0 a 0 0 0 3 1 0 1 9 9 1 0 sc MALE 9 0 0 3 0 0 2 4 1 0 9 2 0 0 0 0 0 0 0 0 0 a 0 2 0 0 9 0 0 0 9 2 I 9 0 0 0 3 1 0 9 0 0 0 9 0 0 9 9 0 1T 0 9 0 a 0 0 0 a l 9 0 0 0 0 0 9 0 L 1 0 1 0 0 a 0 0 0 0 a 4 1 a 0 l 9 0 0 0 1 0 0 1 9 1 9 0 9 9 9 0 1 DATE 200 200 200 200 200 200 2Q0 200 200 200 200 200 200 200 200 2QQ 200 200 200 200 20 4 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 207 207 207 207 207 207 207 2 07 207 207 207 207 307 207 207 207 207 Z07 207 207 211 211 211 211 211 211 211 211 211 211 211 211 211 211 211 211 211 211 211 211 TRAP OH FEMALE 1 2 9 9 3 4 3 6 7 0 9 10 11 12 13 14 15 16 17 10 19 20 1 2 3 4 5 6 7 0 9 10 11 12 13 14 15 16 17 19 19 20 1 2 3 4 5 6 7 9 9 10 11 12 13 14 15 16 17 19 19 20? 2 3 4 5 € 7 0 9 ia u 12 13 L4 IS 16 17 18 19 20 0 I 9 9 1 0 0 0 0 1 0 0 0 9 0 0 0 0 9 0 1 1 2 3 3 1 0 0 0 0 1 1 9 0 0 9 0 1 1 1 0 0 2 0 1 1 4 Q 4 a 0 l 0 0 0 OM HALE a 0 0 0 1 1 1 1 0 I 0 0 3 0 9 0 9 9 G 9 0 a 2 0 l 2 Q 9 a 9 i 0 2 0 0 0 0 0 0 6 0 1 0 1 1 0 1 1 1 2 6 0 1 a 0 0 i l SC FEMALE 0 0 0 0 a a 0 0 9 0 0 9 9 9 9 0 0 0 0 6 0 0 0 a 0 9 9 0 a 0 0 0 0 a 0 0 0 0 0 0 a 0 0 1 a 0 2 0 0 0 a 0 0 0 0 0 0 0 9 0 9 a 9 9 9 a 0 a 9 a 0 a 0 9 9 9 0 9 0 0 9 a a 0 0 9 9 9 9 9 0 9 0 0 0 2 0 L 9 9 L L 0 I 0 a 9 0 I 9 0 0 0 0 0 1 1 0 0 3 2 0 0 J 0 0 9 0 0 4 0 a 2 1 0 9 0 2 L 3 a l 0 0 2 0 4 4 1 9 0 0 1 a l 0 0 0 0 0 0 0 SC HALE 9 2 0 0 3 0 a 2 0 0 0 0 1 0 0 9 L a 0 0 0 0 1 9 4 0 0 0 9 3 9 9 0 5 3 6 9 3 317 TABU * 4 . CDHTINUIO OATE TRAP 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 216 216 218 216 216 216 218 219 219 219 213 219 218 216 216 219 218 219 219 219 221 221 221 221 221 221 221 221 221 22L 221 221 221 221 221 221 221 221 221 221 225 L 2 lit III 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 I 4 5 6 7 9 9 10 11 12 15 14 15 16 17 18 19 20 1 2 3 4 5 6 7 6 9 10 u 12 tJ 14 15 16 17 16 19 20 L Z 3 4 5 6 7 a rt FEMALE 1 0 1 1 1 0 0 0 1 1 0 0 3 0 I 0 0 a 0 0 i 0 0 0 0 0 a 0 0 0 1 1 1 1 0 2 0 0 1 0 0 1 0 a 0 0 0 a Q 9 10 0 0 0 a 0 0 0 1 0 0 1 9 0 0 2 0 1 0 0 a 0 0 0 0 3 a 0 0 0 0 0 3 u 12 13 14 IS 16 17 LB 19 20 1 2 3 4 5 6 7 9 9 10 11 12 L3 14 15 16 17 18 19 20 OH MALE 2 0 3 2 0 2 a l 7 0 2 * 0 4 1 0 0 0 0 0 1 0 a 0 a 0 2 0 0 I 0 2 1 2 3 0 a 0 i i 0 1 0 0 0 3 1 a 0 ** 0 i a 0 i i 0 0 0 0 0 1 0 a 0 0 0 0 0 a 0 i l 3C FEMALE 0 0 0 0 0 0 0 a 0 0 1 0 0 0 a a 0 0 2 0 0 1 0 0 0 0 2 a 0 l 0 0 3 0 0 0 0 0 0 0 I 0 0 a 0 0 0 0 0 0 0 0 1 0 0 a 0 1 0 0 0 0 0 a 0 0 0 0 0 0 0 0 t a 0 a a 0 0 0 0 a 0 0 0 0 0 0 sc MALE 0 0 0 2 0 0 0 0 0 0 1 0 2 0 0 a a a 0 0 1 0 0 0 a 0 0 0 a 0 a 0 0 i 0 0 0 0 0 0 t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a a 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 9 0 0 a Q 0 0 DATE TRAP 228 229 228 228 228 228 22B 228 228 228 228 228 228 228 228 228 229 2 26 228 228 23 2 23 2 23 2 23 2 23 2 2 32 2 32 232 232 232 232 232 232 232 232 232 232 23 2 232 232 236 236 236 236 236 236 236 236 236 236 236 236 236 236 236 236 236 236 236 236 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 19 20 1 2 3 4 5 6 7 6 9 10 11 12 13 14 15 16 17 19 19 20 1 2 3 4 5 6 7 9 9 10 11 12 13 14 15 16 17 16 19 20 1 2 3 4 5 7 9 9 10 11 12 13 14 15 16 17 18 19 20 QH FEMALE 0 0 0 - 0 a a 3 0 a 0 9 9 0 0 a a a 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 1 9 9 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 1 0 a 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 OH MALE a a a 0 0 0 0 0 0 a a a a 0 0 0 0 0 0 0 0 0 0 0 a 0 1 0 0 0 0 0 1 1 0 0 Q 0 0 1 1 0 0 0 0 0 9 0 I SC FEMALE 0 0 a 0 0 9 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 9 0 0 0 0 0 0 0 0 0 0 0 2 9 0 0 0 9 9 0 0 9 0 9 0 9 3 0 0 0 0 SC MALI a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 9 0 0 a 0 0 0 0 0 0 a 0 0 0 0 0 0 Q 0 a 0 0 0 Q 9 9 0 a 0 1 0 0 0 0 0 0 0 4 6 0 a 9 0 9 9 9 9 0 0 2 0 a 9 9 0 0 I 1 9 0 9 0 0 0 4 1 9 9 2 0 9 0 9 9 9 9 0 1 t 9 0 1 9 9 3 9 0 9 0 0 0 9 a o 2 0 0 0 0 9 0 I 0 0 0 0 0 0 318 TRAP DATE 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 246 240 240 248 240 243 2 40 2 40 246 24a 240 240 240 240 246 240 248 240 240 240 250 250 250 250 250 250 250 250 25 0 250 250 25Q 250 250 250 250 250 250 250 250 253 253 253 253 253 253 253 253 253 253 253 253 253 253 2 53 2 53 2 53 2 53 2 53 2 53 CONT IN UED t 2 3 4 5 6 7 8 10 11 12 13 14 ts 16 17 10 19 20 1 2 3 4 5 6 7 a ' 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 9 LO 11 12 13 14 IS 16 17 10 19 20 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 10 19 20 OH FEMALE 0 0 0 L 0 I 0 1 0 0 0 1 0 I 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 2 0 0 1 2 0 0 0 0 0 L 1 0 0 0 0 0 I 0 0 0 0 0 0 1 0 Q 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 OH HA LE 4 2 0 L 0 0 1 2 0 0 1 0 1 0 0 0 0 0 0 Q 0 1 1 0 3 0 1 0 0 9 2 1 5 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 a 0 2 0 0 0 0 0 0 0 0 1 2 1 0 0 1 0 1 1 0 Q 0 0 5C FEMALE 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 1 a 0 0 0 0 0 0 0 0 0 0 0 Q 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 a . a 0 0 0 0 0 0 0 0 0 0 0 0 sc DATE TRAP HALE 0 0 0 0 0 0 1 a 0 0 1 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 a 0 0 0 a 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 Q 0 0 0 0 9 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 129 129 129 129 u s 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 U1 131 131 131 131 131 131 131 131 L31 131 L31 131 131 131 131 131 131 131 135 135 135 135 L3S 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 138 138 136 130 139 138 130 138 138 138 138 130 138 130 139 130 138 136 138 130 1 1 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 2 0 0 1 0 Q 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 Q 0 0 0 0 0 0 0 a 4 5 3 0 2 0 0 0 0 0 0 0 0 2 1 0 0 0 1 6 7 a a a 9 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 IS 19 20 1 2 3 4 131 OK FEMALE 1 1 I>o !K * i TABLES*. s 6 7 6 9 10 11 12 13 14 IS 16 17 10 19 20 1 2 3 10 u 0 0 0 0 1 0 0 0 0 0 0 0 2 5 2 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 3 0 0 1 0 0 0 0 0 4 0 0 0 0 4 7 6 9 10 U 12 13 14 15 16 17 18 19 20 0 0 4 2 0 a 0 0 a 0 0 i 0 0 0 0 0 0 0 0 0 a 0 0 i 4 20 1 2 3 1 0 7 2 0 1 0 0 a 0 a 6 19 4 0 1 0 1 L 1 10 4 4 0 0 0 2 1 7 0 a a i 0 0 0 1 a 0 0 0 10 4 Q 2 1 0 0 0 0 0 1 0 3 0 12 17 1 1 1 3 7 1 1 1 4 13 14 15 SC FEMALE 0 0 0 Q 0 0 0 SC HALE 3 2 0 4 I 4 0 1 6 3 3 2 1 3 2 2 1 a 0 0 0 0 0 6 0 0 9 a 9 1 3 a 0 0 0 0 0 0 0 s 0 0 0 1 1 0 1 0 0 0 2 0 1 0 0 0 3 0 0 s 4 6 i 0 1 0 0 a 0 0 0 1 Q 1 1 0 0 0 0 1 0 0 0 a 0 0 0 0 2 2 0 0 0 0 0 a a 0 4 0 1 a 0 1 3 a 319 T A B LE E 4 . DATE 162 162 162 162 162 162 162 16 2 16 2 16 2 16 2 16 2 16 2 16 2 16 2 162 162 162 162 162 149 149 149 149 149 14 9 149 149 149 149 149 149 149 1 49 149 149 149 1 49 1 49 1 49 142 141 1 43 143 143 143 1 43 143 143 143 143 1 43 1 43 1 43 1 43 1 43 143 143 143 143 156 156 156 156 156 1 56 1 56 1 56 1 56 1 56 156 156 156 156 L56 156 156 156 156 156 C W T tN U E D TRAP 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 IB 19 20 20 1 2 3 4 5 6 7 fl 9 10 11 12 13 14 IS 16 17 13 19 20 1 2 3 4 5 6 7 a 9 10 LI 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 9 9 10 11 12 13 14 15 16 17 ia 19 20 OH FEMALE on MALT 3 21 2 12 7 7 2 7 10 2 7 4 a 3 5 7 17 1 2 6 0 3 4 3 a 5 24 2 0 0 1 0 0 0 0 0 0 0 0 3 0 0 0 15 31 4 3 a 2 2 2 IS 7 14 1 0 0 1 0 0 Q 0 0 1 0 0 0 3 0 a u 0 2 3 0 0 0 2 L 0 1 0 2 2 7 0 0 L 0 2 2 1 2 16 4 0 5 6 9 0 3 9 L5 2 0 4 3 0 0 4 0 0 3 23 SC FEMALE 1 2 1 3 1 0 4 0 0 1 0 0 4 3 3 3 U 0 1 3 2 1 2 2 0 0 0 0 0 0 0 9 1 0 0 0 0 0 0 0 2 0 0 0 a i 0 5 0 L 0 2 2 1 1 1 0 0 0 1 3 0 0 2 0 0 0 0 1 0 0 1 1 5 a 0 10 3 1 0 0 a 0 4 0 2 2 1 2 1 1 0 3 3 1 9 0 0 2 2 3 1 2 0 9 5 0 4 2 7 4 la 0 0 2 55 ' SC HALE 3 1 1 2 2 0 0 3 0 2 0 1 0 2 0 X 2 2 3 3 0 0 0 0 0 0 0 0 0 1 a 0 0 0 0 0 2 0 0 0 0 0 1 5 0 1 0 0 5 1 4 1 Q a 0 0 i 0 0 0 4 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 a a DATE trap oh FEMALE 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 1 2 3 4 5 6 7 a 9 10 u 12 13 14 15 16 17 ia 19 20 4 2 1 6 0 1 5 3 0 6 0 0 0 0 0 0 Q 4 0 0 OH HALE SC FEMALE : 2 0 2 0 0 0 1 o 2 0 a 3 0 0 a 1 1 0 0 1 0 1 o 0 6 a 0 0 o 0 1 0 0 i 0 0 o SC HALE 0 1 o 3 1 o 0 a 0 0 0 o 0 2 1 0 0 0 a o 0 0 320 TABLE E3 TRAP NUMBER Lee 1 date 269 169 169 169 172 172 17 2 17 2 176 176 176 176 179 1 79 179 179 133 183 133 193 135 185 195 195 19ft 190 190 190 193 193 193 193 197 197 197 197 20 0 200 Ort FEMALE CM MALE 20 23 10 3 31 45 5 O ft 2 17 16 11 11 4 1 3 2 a la 9 13 1 2 ft 0 ft ft 3 3 2 !J 7 sc FEUALE sc MALE 51 79 11 3 1 2 01 54 37 61 1 i 52 85 5 2 2 1 2 ft 3S 17 5 3 12 1ft 4 0 2 0 1 4 1 0 2 3 0 0 3 3 0 1 3 2 2 0 9 0 1 3 0 0 3 J 3 1 1 ft 2 5 5 1 ft 1 ft ft 1 ft ft .1 ft "i TRAP NUMBER 2 3 4 ft 1 4 55 23 20 S3 i ft 2 3 4 2 3 2 3 4 a 3 ft a u 2 3 4 1 2 3 4 3 ft 3 3 2 ft ft 4 3 4 3 ft 1 3 2 3 4 zee 0 ft 1 ft 0 3 0 ft 1 a 200 0 ft ft .1 3 4 204 204 234 204 207 207 20 7 207 213 213 211 211 214 214 2)4 214 217 217 217 217 221 221 221 221 225 235 225 225 228 228 220 228 232 232 232 232 235 235 235 235 1 3 2 2 13 25 9 3 2 5 4 3 5 9 ft 1 9 3 1 3 2 1 1 G 1 ft 0 0 1 0 3 2 3 4 i 2 2 1 ft 4 St it 3 0 IS 26 13 1ft 0 2 0 ft ft ft n 3 0 ft 0 ft 2 d ft 3 3 ft ft 3 3 1 1 ft ft 2 ;l ft ft 0 3 1 ft ft ji ft ft ] ft ft *3 * i ft ? 0 e 3 0 3 3 0 1 0 ft ft G 4 ft 0 0 3 0 ft ft a 0 ft 0 1 2 ii ft a 2 a 0 a a a A ft 0 2 2 6 0 0 a a a 2 0 ft ft 3 ft 3 2 3 2 ft ft 0 LOC 2 * 4 ft J ft 2 3 0 9 ft 2 3 4 ft n 7 ft 3 3 4 ft ft 2 0 3 4 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 BATS 239 239 239 239 242 242 242 242 247 247 247 247 250 250 25ft 25ft 253 253 253 253 256 256 2 56 256 261 261 261 261 26 4 264 264 264 291 281 291 281 293 203 263 263 29 0 290 29 0 290 295 ?95 295 295 298 2 98 2 93 298 169 169 169 16 9 172 1 72 172 172 176 176 1 76 176 179 179 17 9 179 133 133 183 163 185 135 185 135 190 190 190 1 90 OH FEMALE 3 5 1 ft ft 3 1 1 13 4 0 0 1 5 1 ft 5 12 ft ft 11 20 ft a 17 18 a a E OH MALE 2 3 0 0 5 5 1 1 1ft 5 1 ft 7 6 ft J ft 9 15 2 ft 12 11 ft SC FEMALE 0 0 0 ft 0 G ft ft ft ft n pi 1 9 ft ft 0 2 ft ft 2 0 0 1 O 2 0 5 0 6 $ 3 ft 2 3 ft 0 5 ft ft ft 0 0 ft 1 a ft a n * ft 2 0 3 1 2 PI 3 ft 3 2 1 ft J 0 ft ft 1 0 1 it 2 ft 3 ft 1 1 1 ft 3 04 1 30 49 90 73 45 23 50 Tt 93 21 70 20 14 3 24 26 17 19 7 12 9 1 2 4 2 I 3 SC MALE ft .1 141 139 27 10ft id 25 11 38 69 83 12 70 4 6 2 19 ’. 4 6 10 3 6 7 1ft 2 4 1 1 4 ft 3 ft 3 ft ft 0 ft 3 3 ft ft 221 205 45 68 121 66 7 TO 31 3 jia 69 Ml 54 21 7 22 1 76 ?l 48 47 134 31 27 19 15 5 9 1 * :-3 201 4* jfl 33 :j 5 43 241 3a? 2b 75 :7 14 2 13 119 3? ]2 ft 57 1E1 :4 3 5 321 E5 C O N TIN U ED TRAP DATE HUMBER 193 193 193 193 197 197 197 197 290 :na 200 204 2 04 204 204 704 207 207 207 297 211 211 211 211 214 214 214 214 217 217 217 217 221 221 221 221 225 225 225 725 2 26 226 22B 22B 232 232 232 232 235 235 235 235 239 239 239 239 242 242 242 242 2 47 247 247 247 250 250 2 SO 253 253 253 253 253 256 256 256 256 261 261 261 261 OM FEMALE 7 9 7 2 4 1 1 7 4 5 O 13 2 1 0 0 0 0 10 9 9 2 43 26 ] 1 <3 15 19 5 1 9 12 3 S 0 3 1 6 1 1 1 0 0 0 0 1 2 2 0 1 ■J 4 9 0 3 16 17 Id 6 27 23 18 2 37 11 9 3 2 3 2 2 22 13 9 3 33 22 18 OM MALE 3 5 3 2 2 6 1 0 4 3 1 1 2 7 3 5 0 9 0 0 6 15 13 5 9 21 14 7 6 15 11 3 0 5 5 2 1 3 6 2 0 0 6 1 I 3 0 0 1 3 0 0 1 3 2 0 3 9 9 10 3 15 6 5 4 13 9 4 7 12 4 2 12 35 11 12 9 53 15 13 SC female 29 27 21 2 0 2 0 1 3 4 2 0 2 3 3 .7 1 0 0 0 1 1 2 0 o a 4 9 1 1 -7 0 ,1 3 3 0 .1 J 0 'J 0 0 0 0 9 1 0 0 p n 0 p 1 o 0 <3 2 1 0 2 0 0 3 0 0 .3 0 2 1J a 3 0 10 >1 12 11 12 1 10 9 TRAP NUMBER SC MALE 7 S 3 5 0 a 3 0 0 2 0 1 2 2 1 3 1 0 0 0 0 1 il 0 p 0 0 J 0 0 0 n ,1 .1 ,7 0 1 ,i 3 4 3 3 a 3 2 p a i 28 23 40 5 3 4 4 5 6 7 8 9 10 11 12 7 12 25 13 11 20 a 3 212 212 23 29 10 11 212 212 12 1 212 214 19 22 42 39 26 0 a 1 15 0 23 i d 19 11 2 ) 4 19 5 2 7 5 1 7 17 13 IB 16 10 4 4 4 4 1 4 2 J4 20 0 1 7 214 2 1 a 1 0 0 0 214 214 3 2 2 j 0 0 0 214 9 1 1 3 1 1 2 3 4 S 6 2 2 2 2 2 7 214 8 214 9 214 214 10 11 1 1 1 1 1 4 4 4 4 4 214 214 12 13 14 15 16 17 IB 19 20 21 22 1 2 3 3 1 1 3 2 O 19 1 3 3 2 0 219 219 33 4 219 219 219 16 3 239 219 9 13 14 15 16 17 19 19 20 21 22 1 2 3 2 I2 21 4 214 214 219 2 13 17 219 219 219 219 7 32 59 17 19 20 37 26 18 13 14 15 16 17 3 0 214 214 219 7 7 2 2 a 2 2 S 6 7 10 11 12 17 i 2 5 •a 1 2 3 4 0 1 0 1 0 j 1 El 7 4 4 3 32 6 2 J0 6 4 12 32 26 26 17 10 7 7 4 11 2 29 21 11 10 13 2 6 0 2 2 0 10 a 2 ,T 3 2 3 4 4 219 219 ia 219 219 16 d 219 29 9 0 2 14 30 6 a 6 J 17 13 0 J 0 0 219 219 219 16 2 6 2 2 7 3 6 10 2 1 219 22 11 226 226 226 2 9 3 5 32 33 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ia 19 20 21 22 1 2 3 212 3 4 39 3 0 9 6 6 2 1 2 6 7 8 45 17 3 2 16 a 1 3 4 13 1 1 1 19 20 21 22 1 2 3 4 5 6 7 a 9 10 11 12 13 14 13 16 17 18 19 20 21 22 1 2 3 4 3 6 7 0 9 10 11 12 13 14 15 16 J7 DATE 226 226 226 226 226 226 226 226 226 226 226 2 26 226 226 226 226 226 2 26 226 229 229 229 229 229 229 229 229 229 329 229 229 229 229 229 229 229 2 29 229 229 229 229 233 233 233 233 233 233 233 233 233 232 233 232 2 33 233 233 233 233 233 233 233 233 233 236 236 236 236 236 236 236 236 236 236 236 236 236 236 23 6 236 236 CM OH SC SC FEMALE HALE FEMALE HA 10 3 IS 15 1 9 1 4 4 1 2 1 2 a l 5 2 13 2 2 1 0 3 4 34 16 2 5 2 a 2 6 0 0 2 a 0 a 1 4 2 17 2 2 a a j 0 2 J 1 2 1 0 0 1 1 1 0 1 3 6 2 1 14 3 0 2 1 6 0 0 0 2 0 d 4 a 7 5 0 * 1 a l 3 ; i 7 4 3 1 2 0 0 1 0 1 0 0 a 0 0 2 1 S a 0 f* 11 4 5 2 2 2 I 2 1 a a a l 2 7 4 7 0 47 20 12 ;4 2 1 3 0 0 1 3 0 1 2 0 2 a 2 2 0 7 3 2 2 1 2 3 0 0 0 0 0 a 3 • ,1 1 1 1 4 3 22 41 0 0 0 a l : 0 o a 0 a a e 3 2 0 a i 2 0 4 a i 5 I 0 I a j 3 1 3 0 0 0 0 a 7 i l l 4 1 3 1 2 •3 2 2 0 2 1 .) 3 2 3 1" 9 a 90 52 7 17 0 <} 6 4 J 13 2 .1 7 a 3 T 1 4 3 0 4 1 i 4 2 5 2 3 1 2 6 12 2 2 3 3 5 2 1 0 0 0 19 74 1 3 2 3 1 o 0 0 0 2 2 0 2 rT 3 3 3 a 9 2 .1 6 3 1 *1 1 4 327 DATE 236 236 236 236 236 240 240 240 240 240 240 240 240 240 240 240 240 240 24d 240 240 240 240 2 40 240 240 240 243 243 243 243 243 243 2 43 243 243 243 243 24 3 243 243 243 2 43 2 43 243 243 243 243 24 3 24? 247 247 247 247 247 24 7 247 2 47 247 247 247 247 247 247 247 247 247 24 7 247 247 247 249 249 249 249 249 249 249 249 249 OM FEMALE CM MALE 0 0 1 SC FEMALE 1 3 1 1 1 4 1 2 0 4 7 1 12 2 9 1 11 2 4 3 4 4 3 2 4 11 4 2 1 4 9 1 3 3 0 0 1 4 0 0 0 1 10 5 1 2 IQ 5 12 3 7 5 3 1 1 0 J 0 1 2 1 5 12 16 4 3 25 6 33 5 16 3 25 52 9 9 7 4 1 1 0 1 1 3 0 1 2 3 4 2 2 3 0 4 0 0 7 9 3 2 3 10 0 0 0 7 2 0 0 10 1 1 0 0 2 3 6 2 O 3 21 12 9 0 6 1 9 13 2 5 5 9 13 5 4 5 4 0 4 5 4 2 0 0 1 4 5 13 16 6 4 2 5 2 1 9 3 3 4 11 4 2 0 0 1 0 1 0 2 0 1 2 2 1 2 4 5 9 3 SC MALE -.1 0 2 0 3 0 2 1 1 0 5 7 4 1 0 2 2 3 1 0 S 0 1 7 3 11 17 27 11 7 4 21 3 21 15 12 1 3 9 2 6 6 5 2 7 2 1 5 2 2 2 2 1 5 11 , 1 4 TRAP DUMBER DATE 10 11 12 13 14 IS 16 17 Id 19 20 21 22 1 2 3 4 5 6 249 249 249 249 249 249 249 249 249 249 249 249 249 253 253 253 253 2 53 253 253 253 253 253 25 3 253 253 253 253 253 253 253 253 253 253 2 53 2 57 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 25 7 257 25? 257 257 261 261 261 2G1 261 261 261 261 261 261 261 261 7 3 9 10 11 12 13 14 IS 16 17 ia 19 20 21 22 1 2 J 4 5 6 7 a 9 10 11 12 13 14 15 16 17 :a 2 19 7 Id 7 13 15 2 20 21 22 1 0 4 3 0 6 14 0 6 6 2 4 4 a H 7 : 5 2 11 0 0 2 9 4 1 3 11 2 1 2 3 J A 2 4 1 12 1 2 11 11 7 2 27 20 15 5 I 7 JJ 2 1 7 4 1 15 0 16 21 2 17 12 6 12 4 2 12 n 5 7 4 0 4 e 5 2 3 5 6 7 6 9 10 11 12 13 14 IS 16 17 13 19 20 21 22 1 OH FEMALE 3 9 6 1 2 1 1 4 1 S 3 0 OH MALE 17 25 14 10 12 3 10 10 5 5 19 3 SC M AJ 6 2 0 0 fl 3 1 3 t a 2 0 4 3 0 2 11 9 19 15 24 16 9 a 18 39 6 19 2 2 5 2 3 5 3 7 1 2 1 3 19 7 7 24 48 11 33 7 14 9 0 0 2 12 j 9 9 8 1 6 3 3 22 11 5 7 29 a 23 11 a 20 2q1 10 261 261 261 261 261 261 261 261 261 264 1 2 3 12 14 I9 6 a 12 i2 ]5 3 15 ] 3 15 10 20 J7 a 6 2 7 16 3 3 7 3 54 13 12 13 7 4 2 3 1 3 4 3 1 4 4 9 20 22 37 43 12 11 14 38 12 21 16 35 28 13 7 14 16 36 29 23 27 65 36 40 23 21 20 1] 10 3 12 33 3 4 12 15 11 ? 12 21 42 38 31 10 6 26 7 41 25 34 33 11 13 10 3 34 17 a i 23 26 20 26 21 29 63 22 25 26 22 2^ 11 !4 7 4 3 1 5 17 12 11 21 1 3 11 2 3 0 42 2 17 4 j 6 3 12 328 E 3 C O N TIN U ED TRAP NUMBER DATE 2 3 4 5 6 7 a 9 10 11 12 1J 14 15 16 17 Id 19 20 21 22 1 2 3 4 5 6 7 3 9 10 11 J2 13 14 15 16 17 19 19 20 21 22 1 2 3 264 264 264 264 264 264 264 264 264 264 264 264 264 264 264 264 264 264 264 264 264 269 269 269 269 269 269 269 26 9 269 269 269 269 2 69 2 69 269 269 269 269 269 269 269 269 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 278 278 278 278 278 278 275 278 27R 278 278 278 278 275 278 4 5 6 7 a 9 10 it 12 13 14 15 16 17 19 19 20 21 22 12 1 n 14 2 15 16 3 17 18 4 19 2? 5 21 ni FEMALE OH MALE 9 14 a 5 6 15 4 19 2 3 8 5 1 0 q 3 2 1 3 1 2 51 32 59 28 11 14 13 10 16 21 19 29 16 13 11 21 19 9 14 14 5 3 51 30 47 26 16 23 39 16 41 31 37 68 10 29 18 3d 29 23 17 22 7 14 17 24 4 5 16 1 6 4 8 0 5 0 1 28 34 23 10 7 14 a 38 25 38 28 7 5 7 4 16 9 9 8 1 11 24 23 36 12 9 7 9 13 U 1b 16 19 0 7 3 11 15 6 9 10 1 2 23 21 33 21 18 17 36 15 36 28 30 4J 6 12 26 36 27 29 12 18 4 7 5 7 1 3 6 2 9 3 3 2 2 J 1 4 0 2 3 SC FEMALE SC MALE TRAP NUMBER DATE in 13 13 10 in 16 11 15 10 11 10 14 14 13 10 13 13 5 11 13 13 10 6 3 1 2 4 4 3 6 1 7 6 8 4 7 7 6 11 7 7 3 8 9 3 5 0 a 0 j 0 0 a 5 2 6 3 2 4 7 4 9 10 6 d 1 0 2 J 6 5 3 4 2 0 0 1 0 n 22 6 7 8 9 38 1I 1 2 3 4 5 278 27a 273 2? a 778 278 278 138 n a 136 133 136 1 38 1 38 138 3 38 1 3B 1 30 1 38 1 30 1 30 130 130 1 30 1 30 130 130 130 130 130 130 135 1 35 135 135 135 135 135 1 35 135 135 135 135 129 129 1 29 129 129 1 29 129 1 29 129 129 129 1 29 142 1 42 142 142 142 142 142 142 142 142 142 142 145 145 145 145 145 145 145 145 145 145 145 145 149 a 10 11 4 2 3 1 1 2 1 4 7 9 o 14 a li 9 o 10 11 14 6 7 4 2 2 1 2 3 2 jl 1 3 0 4 2 8 2 5 2 a 7 J 7 0 0 1 5 4 3 2 1 0 3 1 0 a 0 0 0 <3 0 <3 0 0 1 1 2 0 0 >7 ,7 1 *1 (J .*1 2 1 3 $ 7 3 9 in 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 a 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 OH FEMALE 2 3 0 2 3 4 5 21 19 16 a 41 17 9 lo 7 0 14 19 0 O 0 3 0 0 a 0 0 O 0 0 0 ,7 4 15 21 14 13 16 8 11 19 2 0 0 0 0 kl a n A a a ,1 25 75 50 76 92 1 39 21 29 : 33 33 54 70 7 40 21 54 40 23 12 24 24 21 39 32 13 OM ;ia l e 4 1 5 1 2 2 3 32 32 41 14 22 21 31 8 19 32 24 41 >7 0 0 0 0 1 0 0 0 0 0 ;» a 16 1 21 10 19 23 41 19 32 31 11 0 0 0 0 0 n 0 n 7 .1 n 39 22 24 55 24 CO 38 46 1 08 24 45 79 1 55 3 42 7 32 1 '7 24 20 i4 21 7 5 SC FEMALE 1 4 0 0 1 1 0 60 54 71 91 101 6* 72 91 21 71 52 16 13 12 19 51 16 41 18 20 42 18 16 14 81 159 101 1 6*7 110 88 35 1 20 52 11 a 112 171 10 10 5 16 40 30 20 23 33 3 10 22 42 24 29 23 46 57 1: i4 78 29 52 in *1 31 7 r? SC MAL 3 1 O 8 2 2 .1 91 32 62 43 59 31 13 14 5 34 ;9 13 15 U 25 22 25 14 21 35 19 21 30 14 70 1 3*1 J 20 1 50 160 1 no 11 2 70 161 1 70 118 111 20 * 2" 40 18 10 5 J0 5 27 Ivl t 1o 32 i j ;i 33 d 38 19 9 :i 7 38 35 11 1 11 3 15 H 7 20 6 5 1 10 1 13 :4 3 I /i 11 7 16 20 6 10 329 I S SC NT1S1U E0 TRAP NUMBER 2 2 4 5 6 7 9 9 10 11 12 1 2 2 4 5 o 7 a 9 10 11 12 10 11 12 1 2 J 4 5 6 7 3 3 10 :i 12 1 2 3 4 5 6 7 a 9 10 li I2 1 2 3 4 5 6 7 3 9 10 11 12 1 2 3 4 5 6 7 a 9 10 11 12 1 2 3 4 5 6 DATE 149 149 149 149 149 149 149 149 149 149 149 IS 1 131 1SI 151 151 151 J51 IS] 151 151 253 131 156 156 i 56 J 59 159 159 159 OH FEMALE 16 11 209 33 34 19 55 32 26 50 44 6 14 31 60 92 53 29 60 43 31 94 29 92 194 37 66 137 141 172 o;i MALE 13 6 31 o SC fEHALS SC t'lALE TRAP NUMBER DATE 14 13 23 10 24 17 39 27 30 24 20 7 4 4 3 6 5 22 12 18 30 5 7 8 9 10 11 12 1 2 3 4 5 6 7 6 9 10 11 12 1 2 2 173 173 173 173 173 173 177 177 177 177 177 177 177 177 177 177 177 177 180 180 183 180 16 0 18 8 180 180 180 180 180 180 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 22! 221 221 26 11 64 69 21 47 44 3 7 27 90 45 52 41 74 33 20 46 29 25 133 16 15 72 16 26 21 43 35 33 25 131 148 J3 123 irl 7 9 3a 24 21 15 20 a 8 0 i 21 13 ?\ 6 ie 6 16 11 19 13 3 IDS 41 64 159 34 as 1S9 159 159 134 164 125 43 114 i31 70 7S 74 32 53 159 151 33 65 9 5 19 isa 73 42 3 35 47 16 49 82 7 2ft 31 46 17 55 102 27 49 19 29 35 13 65 61 115 20 67 39 102 44 24 25 27 131 40 47 69 58 169 179 107 35* 32 44 23 41 359 159 159 162 362 162 162 162 162 162 162 362 362 162 162 166 166 166 166 j 66 366 166 166 166 166 166 166 170 170 170 170 170 170 170 170 170 170 170 170 173 173 173 173 173 173 66 17 67 107 93 60 103 1SB £4 60 28 105 43 7 59 79 60 53 90 49 122 62 16 56 36 62 26 56 33 26 79 99 96 62 25 73 38 27 26 13 64 67 77 57 109 99 51 54 6 60 26 5 47 53 52 43 70 46 61 31 9 43 11 32 7 49 49 14 59 83 37 38 22 33 13 :i 23 13 21 6 IS 29 29 6 IB S 25 75 10 27 9 j 21 11 33 9 30 63 17 23 7 26 15 12 213 58 146 33 29 23 158 29 18 27 24 241 13 63 116 52 109 174 198 77 35 39 12 24 288 75 52 76 33 573 139 22 87 3 4 5 6 7 a 9 10 11 12 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 13 19 20 21 22 1 2 3 4 5 6 7 8 9 10 U 12 13 14 15 16 17 la 19 20 21 22 1 2 3 4 5 6 222 222 222 222 22 2 222 22 2 222 222 222 222 222 222 222 222 232 222 222 222 232 222 222 2 20 22 0 220 22 0 2 20 220 OH FEMALE OH MALE 39 14 46 27 40 23 5 12 7 8 a 14 IS 7 8 9 6 8 39 14 19 15 27 17 2 11 7 5 S 19 7 6 6 2 4 j 6 9 33 10 3 10 5 8 1 9 2 2 ' 16 2 10 3 6 4 4 3 3 3 0 22 14 24 9 5 23 31 1 10 a 18 16 18 a a 4 15 9 10 13 4 2 12 10 11 17 14 8 9 11 14 9 16 7 a is 13 11 3 2 1 3 3 15 I1 17 9 5 2 7 5 7 3 3 3 6 3 2 4 2 6 5 2 J 3 0 3 6 S 1 3 2 1 S 4 6 7 3 9 2 1 5 4 3 7 2 SC FEMALE 190 120 60 61 44 79 14 41 37 32 32 54 55 67 24 2*1 8 19 2 98 7 30 10 32 12 6 1 8 0 2 1 2 3 0 1 8 2 2 1 2 2 9 3 1 1 1 1 0 i i i i 2 rl 2 5 1 J 1 3 4 2 3 5 2 1 a 3 1 1 2 0 4 3 3 3 2 1 1 2 1 1 1 1 1 0 2 0 1 2 2 SC MALE 127 7ft 51 42 38 42 3 26 16 24 24 28 19 26 17 24 8 9 0 1 24 10 93 10 16 11 16 3 5 3 2 3 4 1 1 •1 2 2 1 3 I 2 3 4 0 ] 0 3 2 0 3 1 1 .1 2 3 4 rl 2 2 9 0 ■3 0 1 3 2 0 1 2 2 ft 1 2 2 ft ft 1 * 2 3 330 ■1ALE 2 20 220 2 20 220 220 220 220 220 2 20 220 220 220 220 220 220 227 22 7 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 229 229 229 22B 226 226 228 226 228 226 226 228 226 226 229 228 229 226 229 228 229 228 2 34 234 234 234 234 234 224 2 34 234 2 34 2 34 234 23 4 234 234 2 34 2 34 234 234 234 5 3 3 2 9 2 6 3 6 OH HALE 2 3 8 0 4 n a a a 0 3 0 0 ■3 & 2 1 0 a g 0 0 1 4 1 0 3 3 0 0 a i 2 1 3 I 1 1 1 2 0 I a l 9 a i l a l 0 2 a a 3 4 1 0 2 3 ] I 3 0 2 0 1 0 2 0 3 I 1 0 1 2 0 i a sc FEKALE 3 a 1 0 4 a 2 0 3 1 1 2 0 5 A 1 1 2 J 0 1 1 2 0 3 1 0 I 2 0 0 1 2 J n 3 3 2 1 ] 2 0 1 0 2 0 3 0 1 0 2 2 1 0 0 2 3 1 TRAP SUHBER DATE J 0 4 9 1 3 0 1 0 2 1 0 21 22 I 2 3 4 5 6 7 a 9 10 I ] ? 0 0 1 2 5 1 0 2 0 i 3 0 2 0 I 12 13 14 IS 16 17 18 19 20 21 22 1 2 3 4 1 2 3 4 3 2 234 234 241 241 241 241 241 2 41 241 241 241 241 241 241 241 241 241 241 241 241 241 24] 241 241 136 130 130 130 135 135 235 135 140 146 146 140 242 142 142 142 J 49 149 149 149 1 50 150 150 154 154 1 54 154 154 158 156 156 156 161 161 161 161 163 163 1 63 1 63 169 169 169 169 170 170 170 173 175 175 17 5 175 177 177 177 177 sc KALE 2 A 2 3 3 n 2 3 J 3 1 3 2 2 e l 0 i 2 0 1 3 2 A i ,i 2 2 11 LOC a 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 0 Li 3 2 (J 1 1 1 0 1 3 3 1 2 0 3 0 1 3 2 3 3 1 3 3 2 0 4 3 1 1 0 2 * 1 3 1 1 0 2 6 3 1 2 a j 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 OH FEMALE 3 1 2 1 3 2 1 3 1 2 6 4 0 1 3 4 1 4 0 3 2 2 3 1 J 0 0 1 1 5 1 1 6 6 1 0 19 3 0 0 30 5 2 0 16 5 1 0 19 6 9 OH HALS 2 2 2 3 2 3 2 4 J 2 5 4 2 3 2 3 ,4 0 0 0 8 0 2 41 3 0 0 30 a 0 64 21 3 37 17 A fl 97 47 32 9 a 5d 43 6 1 35 15 5 129 77 5 9 175 59 6 0 15 12 6 0 50 19 1 0 J 10 15 2 0 9 4 5 2 4 4 1 0 4 3 1 1 5 1 0 1 3 5 0 3 7 14 4 0 7 1 tf n sc FEMALE 1 1 1 0 2 1 2 1 0 1 2 0 j 1 2 0 1 3 1 0 1 1 1 1 1 2 0 sc HALE 1 1 a i 2 l i 0 2 1 3 0 2 1 3 1 2 a 1 l 2 3 6 1 3 2 2 45 35 31 3 15 15 4 3 47 14 3 1 26 9 6 0 4 1 0 1 26 10 9 0 29 16 3 1 39 17 16 18 23 2 5 4 1 1 3 1 4 4 1 0 6 4 3 1 4 3 0 f) 0 1 11 2 1 7 19 14 0 a a 3 3 0 9 11 21 0 11 7 kl J 36 16 2 a 6 4 1 0 9 a l 3 2 4 0 0 3 2 0 a 1 5 2 a 0 a 3 4 0 0 331 c s TQ O TIH U ED TRAP HUMBER DATE 182 182 182 182 184 184 184 184 198 OH FEMALE 8 4 2 8 1 3 0 0 2 OH HALE 7 a 1 1 2 1 3 0 2 198 19 0 9 1 190 192 192 192 192 196 196 196 196 198 198 198 198 204 204 a 2 0 1 0 0 0 1 0 9 7 1 10 22 21 0 0 1 1 0 2 1 3 1 2 6 0 20 26 204 20 1 202 20 10 4 20 28 1 209 209 3 0 1 6 205 210 210 210 213 212 212 212 212 217 217 217 217 219 219 219 219 224 224 224 224 226 22 6 226 226 211 221 211 231 238 238 238 238 240 2 40 240 240 248 248 248 248 292 292 292 2 1 2 3 0 2 1 0 1 0 2 2 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 9 1 3 0 0 0 3 0 0 3 0 3 0 1 0 1 0 0 3 0 0 a 0 >7 3 0 0 0 1 0 9 0 3 3 0 3 3 0 0 0 3 0 0 0 0 0 2 0 0 0 3 0 252 a a 254 234 214 254 0 3 0 3 3 1 0 0 SC FEMALE SC MALE 4 1 6 10 3 3 1 3 1 2 2 9 1 9 0 3 0 0 1 3 1 1 0 9 3 1 1 3 0 5 0 0 0 0 0 0 0 0 0 0 0 3 0 3 0 0 3 a 0 a 0 1 5 2 0 3 3 0 0 0 2 0 3 0 0 0 0 0 1 0 J 0 1 0 0 0 0 7 0 0 0 a 0 n 0 0 a 0 TRAP NUMBER LOC j i 30 9 2 3 4 130 130 130 I 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 I 2 3 4 1 2 3 4 1 2 3 139 0 4 1 1 3 199 1 j 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 0 0 14] 4 4 0 3 3 a 0 1 3 a 1 2 3 1 1 1 9 9 3 3 0 3 3 3 0 ■1 a ■1 0 0 0 0 0 0 0 3 0 3 0 0 0 0 3 0 6 3 0 4 0 0 3 3 3 0 0 0 0 1 0 0 SC FEMALE 0 135 135 135 1 41 141 1 2 3 4 l 2 0 a H HALE 0 2 0 0 0 0 3 0 0 0 3 0 3 O 3 0 0 9 3 O 3 4 3 0 L MALS 2 141 143 143 143 143 14 9 149 149 149 150 150 150 190 155 155 155 155 157 1 57 157 197 16 2 16 2 1 62 162 164 164 164 164 169 169 169 169 171 171 171 171 177 1 77 177 177 178 ]7B 178 :;a 1 83 133 183 1 83 185 185 1 85 185 1 92 1 92 1 92 1 92 193 193 19 3 19 3 19 7 197 197 1 97 199 199 a a 0 3 0 0 a DATE 2 3 5 •1 2 3 1 5 a 15 9 1 3 6 2 * G 4 4 1 0 1 2 1 5 5 17 14 IB la 43 41 7 3 5 3 4 13 16 9 4 12 6 3d 43 33 00 33 15 13 21 4 3 6 14 16 14 71 63 39 75 14 7 29 11 2 13 1 3 3 3 6 19 6 3 5 1J 6 6 1 2 39 19 18 26 123 16 41 J 1 1 5 6 6 9 3 2 6 6 1 1 2 7 3 3 5 13 3 3 1 1 8 3 24 1 2 3 3 5 3 4 3 10 4 2 7 13 5 0 1 1 6 5 3 6 14 6 11 1 7 4 A 1 1 4 7 5 2 2 11 36 6 4 5 33 16 17 29 2 3 12 3 3 2 5 14 7 5 4 3 4 4 3 13 9 7 3 11 11 5 5 1 30 13 7 2 1 11 53 10 3 7 4 6 6 2 19 3 5 3 31 6 13 1 14 33 36 J 26 4 2 5 4 21 6 2 4 fi 10 11 0 3 10 3 1 11 sc MALE 9 7 2 15 9 in 15 14 4 5 3 39 12 16 49 Q 3 J 2 2 13 3 G 10 13 3 :3 2 «T 16 36 18 4 17 5 a 22 10 25 14 2 2 2 1 13 22 7 1 2 17 11 ia 38 23 12 16 21 1 0 29 6 2 14 23 3 16 15 6 9 4 4 4 13 2 6 3 4 0 7 5 332 OH FEMALE OH MALE SC FEMALE MA TRAP NUMBER DATE QM FEMALE OH MALE SC FEMALE 5C MALE 29 15 28 3 7 5 4 16 26 15 19 14 3 13 13 38 26 29 45 a i 13 5 9 6 19 17 6 5 a 31 41 51 1 3 4 2 6 14 3 13 4 4 S 4 34 19 14 33 1 5 9 7 6 6 9 13 4 4 1 2 i j 2*1 n 12 Zti 27 18 15 11 15 19 16 4 4 4 9 5 13 28 9 0 0 1 4 6 9 5 4 9 6 1 6 4 2 2 7 1 1 1 1 * 0 3 t — ——— 203 203 203 206 206 206 206 211 211 211 211 213 213 21 3 21 3 210 218 219 218 221 221 221 22 1 226 225 225 225 229 220 220 220 23 2 232 23 2 232 234 234 234 234 239 239 239 239 24 1 241 241 241 246 246 246 246 240 246 248 240 1 30 130 133 139 135 135 135 6 6 17 6 19 16 8 16 14 16 29 27 1 7 10 2 3 1 7 4 3 1 5 1 2 11 7 1 4 2 S 2 2 1 3 3 1 2 1 3 1 3 1 1 7 1 4 2 7 0 0 0 1 2 5 2 5 9 17 19 13 Id 21 23 27 5 10 20 23 6 4 3 10 J a 3 12 I 3 4 2 3 4 8 17 2 0 3 6 4 2 2 5 4 0 5 4 5 3 10 6 0 0 2 3 12 6 19 9 7 2 7 0 0 1 3 0 0 3 6 3 S I 5 4 2 10 0 6 0 4 S 37 2 1 4 3 12 5 4 3 2 7 11 1 2 0 4 0 0 0 0 1 1 0 1 ,7 ,7 a i l l 0 l 0 0 7 0 0 0 I 1 0 a 3 0 8 0 0 25 20 22 11 5 6 12 6 1 0 a l 9 8 13 13 20 7 22 25 11 6 20 27 16 2 6 1 4 1 1 1 2 2 3 6 4 0 0 0 1 3 O O 0 0 0 0 0 3 tl 0 0 0 0 1 9 9 0 0 1 0 0 •) 1 1 9 3 4 fl *> 0 0 14 10 5 21 5 4 0 1 3 J 0 3 13 I* 9 5 6 7 11 9 16 10 12 17 23 149 149 149 150 150 350 150 154 154 154 154 156 156 156 156 16 1 16 1 16 1 16 1 163 163 163 163 168 168 168 163 170 170 170 170 175 175 175 175 177 177 1 77 177 192 182 102 182 164 184 164 184 190 190 190 190 191 191 191 191 195 196 196 J 96 190 198 198 196 203 203 203 20 3 205 205 205 205 21 0 210 210 210 212 212 212 212 217 24 17 25 7 16 5 11 34 35 48 31 26 15 38 14 24 26 22 39 5 5 6 33 19 22 38 20 S s 5 4 13 16 14 3 5 14 9 3 17 25 10 14 3 4 4 3 13 3 8 20 7 7 4 IS 5 10 13 1i 17 13 14 19 30 34 21 11 16 9 12 22 13 14 16 32 18 15 10 14 18 59 41 45 6 15 6 3 31 54 56 47 22 16 15 14 69 46 36 47 4 3 2 7 id 18 !a 21 3 7 3 1 9 4 3 6 6 13 7 9 12 a 7 5 1 3 4 1 11 8 17 13 2 6 9 18 12 21 28 16 24 19 19 26 27 45 22 20 6 13 10 20 16 15 22 31 4 3 4 10 4 i 4 7 11 9 6 14 9 17 14 14 19 16 7 1 12 7 12 6 5 9 3 2 2 12 4 3 6 10 1 4 4 5 0 1 9 2 1 0 2 2 1 3 0 t 0 3 4 1 0 -1 J SC ;tA a g o 0 1 1 0 0 2 0 3 1 0 1 0 0 0 0 0 0 3 H 3 .1 2 2 0 0 1 1 1 0 0 0 2 0 1 0 0 0 3 0 1 1 .1 0 0 0 0 1 0 0 ,■» 1 0 3 2 4 1 1 0 1 1 3 a a 0 2 9 1 2 ft 2 2 a 3 5 7 0 2 A 3 1 0 0 0 4 2 4 3 0 0 3 3 J 0 1 0 3 0 0 0 336 ES C D O T IilU E D TRA P BATE HUM 0SR o n OH s c s c TRA P FEM ALE HALE FEM ALE MALE HUMBER DATE o n OH SC SC f e m a l e m a l e FEMALE MALE a 0 ft 0 o 0 0 o 0 ft i o 0 ft ft 0 0 0 ft 0 ft ft ft 0 9 a 6 1 9 9 6 5 1 ft 1 9 9 6 3 1 ft 6 7 2 3 2 7 2 3 2 0 1 9 9 2 2 0 ft a 2 3 2 l J 2ft] 9 3 1 ft i 2 3 4 2 2ft] 2 6 3 2ft] 9 4 2ft] 4 5 7 2 1 2 2 3 4 i 0 ft 3 2 3 4 a 5 J 2 4 2 3 4 j ft 2 5 0 4 1 1 2ftl 12 201 8 6 2ft] 5 4 7 1 2 3 4 l 2 3 4 a 2 3 4 a 2 3 4 2 ft * o ft 2ft] 9 ft 2 i 2* 4 12 7 1 ft 1 2 3 9 2 2 20 4 14 13 J 2 2 2 3 9 2 3 2 0 4 9 6 1 2 3 2 3 9 0 ft 2 3 9 0 0 ft 0 1ft 0 1 4 1 5 2 3 9 3 0 ft ft 2 3 9 a 0 ft 2 3 9 a 0 3 3 2 3 9 3 4 0 ft 4 2 0 4 4 5 2 0 4 7 20 4 2 4 2 ft 7 2 0 4 3 4 0 0 2 0 4 6 1 3 7 241 ft a 2 a * 3 a o 0 a ft a ft ft 0 ft 1 2 0 6 7 5 a 0 1 2 2 0 6 6 J 1 2 241 2 0 ft ft 1 2 3 o 1 ft 3 241 ft a 0 0 a 0 ft 4 241 0 a ft 0 ft S 241 a a 0 a 241 a a ft a 7 241 o a a a 0 1 3 2 a 1 6 1 2 0 6 4 2 0 6 5 2 0 6 ft ft 2 0 6 10 ft 6 9 *p 0 2 0 6 9 0 3 a ft 2 41 l a ft 1 2 4 4 3 ft 2 2 4 4 4 7 a 2 0 6 S 1 21 4 2 2] 9 3 211 7 2 0 n 0 3 2 4 4 6 i 7 4 211 1 3 0 ft 4 2 4 4 2 4 6 3 5 211 5 4 ft ft S 2 4 4 3 2 7 211 5 ft ft 2 4 4 0 ft 7 2 44 4 6 1 1 2 4 4 1 5 1ft 24 5 3 2 5 3 1 4 5 7 I 2 211 3 211 9 213 2 213 2 2 2 a 4 ft 0 0 n a a 0 2 1 3 2 24 5 1 6 3 2 4 5 3 9 4 3 4 21 3 21 3 1 ft o 2 ft 4 24 5 3 213 2 2 3 J 5 2 4 5 3 ft 2 4 5 4 24 5 5 24 5 7 1 1 i 213 3 ft 213 2 ft ft 213 ft ft ft 1 21 9 0 2 a 4 ft ft ft ft 7 1 2 1 2 4 3 3 ft 2 7 1 4 2 3 0 3 I 2 4 6 0 ft 2 2 2 4 6 0 2 1 3 2 4 6 2 2 21 3 21ft 1 ft I 3 4 4 2 1 B 0 2 ft ft 4 2 4 6 3 ft 3 J 5 21 9 0 3 0 0 5 2 4 6 1 ft 6 2 2 1 8 3 2 ft 3 2 4 6 2 2 2 7 2 1 9 ft 5 ft 1 ft ft 3 ft ft 2 1 9 2 1 221 0 2 221 2 1 3 221 1 ft 4 221 0 1 a 3 3 0 ft 2 ft ft 1 0 1 ft 1 ft 0 ft 3 0 0 0 a 3 221 s 221 1 2 2 5 22 5 3 0 3 3 J 2 2 5 1 7 221 221 4 3 7 a a 0 3 7 1 3 3 1 2 4 9 0 ft 6 2 4 ft 4 4 ft 9 A 5 2 4 9 2 4 9 0 2 4 8 0 2 4 8 3 1 2 5 0 3 2 5 * 4 0 3 2 5 8 5 2 5 0 2 5 0 2 2 5 0 4 2 5 0 1 3 2 5 0 2 ft 1 2 1 ft j 0 3 0 0 S 3 ft ft 0 ft a 0 0 7 0 3 A 1 2 i 2 2 1 4 ] 3 3 ■J 3 2 J 4 1 5 7 1 ] 22B 0 ft a 1 251 1 2 2 9 0 ft ft ft 2 2 61 0 2 ft a ft 3 251 3 0 4 22$ 2 2Q ft 0 ft 0 4 5 2 2 9 ft 0 0 ft 5 ft 1 ft ft 2 2 8 1 a ft ft 2 2 6 0 ft l ft 0 ft 9 2 2 8 7 ft 4 0 1 a 2 251 3 2 l 3 2 51 ] a 3 ft ft a 3 1 ft 5 2 2 2 5 3 ft 0 4 ft 0 5 1 5 2 0 (i 1 3 7 4 ]2 2 TRAP HUMBER 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 i 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 3 2 3 3 4 1 5 5 14 2 3 3 5 2 1 3 2 3 3 3 2 4 1 2 3 4 DATE 192 192 192 198 199 198 199 199 199 199 199 2P4 204 29 4 20 4 206 206 206 206 21 211 211 211 213 213 213 213 218 219 218 218 221 221 221 2 21 22 5 225 225 225 2 28 229 228 228 232 232 23 2 23 2 234 2 34 234 234 2 39 2 39 2 39 2 39 241 241 241 241 244 2 44 2 44 2 44 2 46 2 48 24 8 243 253 253 253 253 255 255 255 255 OH FEMALE 1 4 1 3 23 3 2 1 3 2 9 13 19 9 12 28 20 13 15 24 23 27 I 6 4 2 12 7 6 3 1 “0 2 *7 1 3 2 2 1 0 1 0 2 1 4 1 I 5 3 0 6 5 7 2 1 A 0 1 2 a a 3 48 22 IS 15 15 17 8 :a 3 11 a 4 OH MALE 3 7 4 24 IB 23 1 0 9 14 23 23 22 10 24 23 9 20 14 14 9 3 4 5 0 13 7 2 3 3 2 2 0 2 2 0 2 a 3 3 0 4 3 7 0 IS 3 6 2 2 2 a 2 2 2 0 2 30 25 34 35 25 21 15 20 6 3 5 9 SC FEMALE 0 1 0 2 1 4 2 i 0 1 2 M 2 1 0 0 1 0 3 0 9 0 1 a 0 .7 0 0 0 0 0 *3 O a 0 A 3 a 0 0 d 3 0 4 a 0 0 : SC MALE 3 1 a 3 2 1 .1 2 0 a l 0 a i 2 0 a 4 1 0 3 3 a 3 0 a a * 0 4 <7 a a a a a * 0 ,T 0 a a o 0 1 0 0 0 o 0 1 3 * 1 0 Cl 0 3 4 ,1 2 I 4 3 .1 .1 a 2 5 4 5 2 36 41 18 59 5 6 1 2 3 21 32 29 34 0 rl 4 7 4 3 2 2 3 1 a 11 3 1 APPENDIX F 338 Appendix F. R ecorded num ber of onions dam aged by OM for e ac h sam p le, d a te and study field in 1979 and 1980. All d a ta files a re lo c a te d on UP2017 and UP2018 dum p ta p e s a t th e M ichigan S ta te U niversity C o m p u ter C e n te r. CDDA79GRANTDAM CDDA80GRANTDAM 339 T A B LE E r . F I E L D SA MP LE DAMAGED NUMBER P LA N TS 1 2 3 4 5 ,6 J 7 a ] 12 13 14 15 16 17 18 19 29 1 2 3 4 5 6 7 a 9 ia 11 12 13 I4 15 16 17 Id 1 19 23 1 1 1 3 4 5 2 i 6 7 a i i i i i 3 4 5 6 J 1 1 1 1 1 1 1 2 7 Id I F I E L D SA MP LE OAHAUED NUMBER P LA N TS a 9 1 0 0 k) U 0 0 :t 9 10 n 12 13 14 15 16 17 Id 19 20 1 2 3 4 5 6 7 a 9 10 II 12 13 14 15 16 11 Id 19 20 0 U d 0 0 9 0 0 0 a 0 j a a a 0 a o 0 a a a a 9 a a o 9 0 d d a 9 10 11 12 13 14 15 16 17 Id 19 20 1 2 3 4 5 6 7 a 9 13 11 12 13 14 15 16 17 16 19 20 a 1 o 2 3 4 5 a 6 0 0 0 0 a 0 0 7 6 a a 9 10 11 12 a 13 s 14 a 0 0 0 0 PI 0 0 a a 0 0 0 0 0 a 0 0 0 15 16 17 18 19 20 1 2 3 4 5 6 7 a 9 10 11 a 12 13 14 a 15 a 16 17 Q ia 9 0 0 19 20 DATE F I E L D SAMPLE OAMAGEO NUMBER PL A NT S 136 136 136 136 136 136 136 136 136 136 136 136 1 36 136 136 126 136 136 136 13 6 138 1 38 138 138 139 13S 13d 13d 138 130 13d 13d 139 13d 13d 13b 13d 13d 13d 38 138 136 133 138 138 130 13S 138 130 138 138 138 138 138 138 138 13d 1 38 136 138 138 13b 138 138 138 138 130 138 138 138 13d 138 138 13d 13d 13d 13d 13d 138 138 1 14 14 14 14 14 14 14 14 U 14 14 14 14 14 14 14 14 14 14 14 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 J i ; i 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 2 3 4 5 6 7 ti 9 ID 11 12 13 14 IS 16 17 Id 19 20 1 2 3 4 5 6 7 a 9 10 11 12 13 14 IS 16 n id 19 30 1 2 3 4 5 6 7 d 9 10 It 12 13 14 15 16 17 Id 19 20 1 2 3 4 S 6 7 d 9 10 11 12 13 14 IS 16 17 Id 19 20 0 0 8 0 0 0 0 0 a a 0 a a 0 a o a a a 0 0 0 9 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 a 0 a 0 a a a 3 a a a 0 9 a a a a 0 0 0 9 0 3 0 a 0 b 0 0 0 0 0 3 0 0 0 0 0 0 0 0 a date 138 n s 138 138 138 138 13d 138 138 138 138 130 138 138 138 138 138 138 138 128 138 138 138 138 13d 1 38 138 U d 133 138 133 130 133 138 138 138 13d 1 3d 130 13d 138 136 138 126 136 138 138 138 136 138 130 : 36 130 13 U 138 136 138 1 30 138 136 130 138 139 138 13d 138 138 130 130 138 133 133 138 133 138 138 13d 138 138 138 FIELD 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 I 5 S 5 5 5 5 5 5 5 5 5 5 5 S 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 SAMPLE DAMAGED NUMBER P LA N TS 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 Id 19 20 1 2 3 4 5 6 7 a 9 10 11 12 13 14 IS 16 17 id 19 20 1 2 3 4 5 6 7 d 9 10 11 12 13 14 15 16 17 16 19 20 1 2 2 4 5 6 7 6 9 1J U 12 13 14 15 16 17 ia 19 20 tj 0 0 a o o 0 e a 0 U 9 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 3 0 0 6 0 0 0 0 0 0 a o d 0 0 3 0 0 0 0 4} t> 0 d 0 0 3 0 O 0 u 0 0 0 3 0 0 0 d 0 o d 0 0 d d 6 0 0 0 0 340 CABLE f . COUTI.HUED DATE c l ELD SAMPLE UAJACED NUMBER PLAMT5 DATE FIELD SAMPLE □AMAt tdUMBER PLAU1 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 129 139 139 139 139 139 139 139 139 139 139 139 1 39 139 139 1 39 139 139 139 139 139 1 39 139 139 139 139 139 139 129 139 139 139 139 129 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 Ml 141 141 141 141 J 41 143 141 141 141 141 141 141 141 Ml 141 Ml 141 141 Ml Ml 141 141 141 Ml 141 141 141 141 141 141 141 141 1 4] MJ 141 Mi 141 141 141 142 142 142 142 142 142 142 142 142 142 142 142 M2 M2 M2 142 M2 142 M2 142 142 142 142 M2 142 142 142 142 142 142 142 142 142 142 M2 142 142 142 142 142 a d 3 a d a a a a 3 a a a 3 a a a 9 a 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 la 12 10 10 Id 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 1 2 3 4 5 6 7 d 9 10 11 12 13 14 15 14 17 Id 19 20 1 2 3 4 5 € 7 d 9 10 11 12 13 14 15 14 17 13 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 10 19 20 1 2 3 4 5 6 7 a 9 10 n 12 13 14 15 16 17 Id 19 23 3 0 0 d 0 0 0 0 0 J 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 9 9 0 0 9 e 3 0 0 0 0 9 3 0 0 3 3 d 3 3 a a a a 4 0 a 3 0 0 a a a 0 0 0 0 0 0 0 a a a 0 0 0 0 (1 0 0 a a 13 13 13 13 13 13 13 J3 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 M 14 14 M 14 14 14 M M M 14 M 14 M M 14 a H a 1 2 1 4 5 6 7 a 9 10 11 12 12 14 15 16 17 0 0 0 8 0 0 0 0 0 0 0 ia 0 19 20 1 2 3 4 5 0 0 6 7 d 9 10 11 12 13 M 15 16 17 id 19 20 1 2 3 a 4 3 3 0 3 a d a 0 3 d a a 5 6 7 U 9 ]0 11 12 13 14 15 16 17 18 19 20 t a d d a 9 9 4 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 2 3 4 5 6 7 3 9 0 0 9 0 0 9 a 9 0 0 0 0 3 0 0 0 0 0 0 0 0 0 U o 0 ti a 0 0 a 0 0 0 0 a a a a 0 0 0 0 0 0 0 a 8 0 0 d 0 0 0 0 0 10 0 11 12 13 0 0 14 0 0 0 0 3 15 16 17 ia 19 20 0 0 a DATE FIELD SAMPLE DAMAGED NUMBER PLANTS DATE FIELD SAMPLE DAMJUitO NUMBER PLAMTS 142 143 M3 M3 143 143 143 143 143 M3 M3 143 143 143 143 143 M3 143 143 M3 143 144 144 144 144 144 M4 1 44 144 144 144 144 144 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 J42 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 J 42 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 143 143 143 143 143 143 143 143 143 142 143 143 I 43 143 143 143 143 10 10 Id 10 10 Id 10 IQ 10 10 10 10 10 10 10 18 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 n 11 11 n n n ii 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 i j 13 \TJ1 11 J1 1 11 J I 11 J 1 i J1 }3 ji j 13 Ij 13 1 2 3 4 5 6 7 9 9 10 11 12 13 14 IS 16 17 Id 19 20 1 2 3 4 5 6 7 a 9 ia il 12 13 14 15 16 17 Id 19 20 1 2 3 4 5 6 7 d 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 a aV 10 n 12 13 14 15 16 17 Id 19 20 a 1 0 a i a 0 o 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 J 0 d 3 0 d 0 0 d 0 0 0 J d 0 O' 0 0 d O 0 0 8 0 0 0 0 0 0 nu 0 /I J 0 0 0 0 0 0 n M4 144 144 144 144 144 144 144 144 M4 144 M4 144 14 4 14 4 M4 M4 144 144 14 4 144 14 4 14 4 144 144 144 144 144 144 144 144 144 M4 144 144 144 144 M4 144 144 144 M M M 14 14 14 14 M 14 14 M 14 M 14 14 14 14 M 14 M 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t 1 1 2 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 IS 19 20 1 2 3 4 5 6 7 s 9 10 U 12 13 M 15 16 17 5 6 7 d r] d 9 10 d 18 19 20 1 2 J 2 11 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 12 13 14 15 16 17 Id 19 20 1 2 3 4 5 6 7 3 3 3 3 3 » 10 11 3 3 144 144 144 144 144 144 J 3 3 3 1 3 9 0 0 0 0 O 0 0 a j o a 2 2 2 2 2 2 1 14 4 0 d 8 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 J 0 0 0 0 d 0 0 0 0 0 4 12 13 14 IS 16 17 ia 19 20 d 0 d a 3 0 d 0 0 0 9 0 0 0 0 3 3 3 0 0 0 0 0 4 0 0 d 0 0 a 3 0 341 TABLE F . CODTIUUECJ DATE F I E L D SAMPLE DAMAGED HUMBER PLA NTS 152 152 15 2 1 52 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 1 52 1 52 152 1 52 152 J 52 252 152 152 152 152 I 52 1 52 1 52 152 152 152 152 152 152 152 1$2 152 152 152 152 152 152 152 152 152 153 153 1 53 153 153 153 153 1 53 153 153 153 153 153 153 153 153 153 153 153 153 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 13 13 13 13 13 13 13 13 13 13 1J J3 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 8 a a d B a d a a a a a a 3 3 3 Q 3 3 a 1 2 3 3 3 4 5 0 0 6 7 3 7 10 11 12 13 14 15 16 17 la 19 20 | 2 3 4 5 a 3 0 a 0 0 a 0 0 0 a 3 g 3 U 3 3 0 0 3 a 0 0 0 0 9 a 6 7 10 11 i 2 13 14 I 5 16 17 Id 19 20 1 2 3 4 5 3 ; a 9 10 11 12 13 14 I5 16 17 ia I9 29 1 2 3 4 5 a 7 a 9 10 tl 12 0 a 0 0 0 a 3 i) J 0 J a a o a a a a a 0 a a a g a 0 0 0 0 0 » 0 0 0 0 0 0 0 0 0 0 0 0 13 14 15 16 17 Id 19 a 20 a 0 0 0 0 0 0 DATE F I E L D 153 153 153 153 153 153 153 153 153 153 153 163 153 153 153 153 153 133 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 133 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 JJ 11 11 11 11 11 11 11 11 11 11 11 11 u 11 11 n 12 12 12 12 12 12 12 12 12 12 12 12 12 12 J2 12 12 12 12 12 SAMPLE DAMAGED NUMBER PL A NT S 1 2 3 4 5 6 7 a 9 ia u 12 13 14 15 16 17 18 19 20 1 2 3 4 6 6 7 a 9 10 11 12 13 14 15 16 1? Id 19 20 1 2 3 4 5 6 7 9 9 10 11 12 13 14 15 16 17 ia 19 20 1 2 J 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 ia 19 20 0 0 0 0 a a o 0 0 a 0 0 0 0 0 a 0 0 0 0 9 0 0 0 0 0 0 a 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 -a a a a a a 0 l 0 o a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a o 0 a DATE F I E L D SAMP LE d a m a g e d NUMBER PL A NT S 155 155 155 155 1 55 1 55 1 55 1 55 1 55 155 155 155 155 155 155 155 155 155 1 55 15 5 1 55 155 155 1 55 1 55 1 55 155 155 155 155 15 5 15 5 155 155 155 155 155 155 155 155 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 15 6 156 1 56 156 156 156 156 156 1 56 1 56 156 156 15 6 156 156 156 156 156 156 156 1 56 156 156 156 J 56 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 1 2 0 0 3 4 5 a 6 7 8 9 10 11 12 13 14 15 16 17 Id 19 20 J 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 Id 19 20 1 2 3 4 5 6 7 d 4 10 11 12 13 14 15 16 17 is 19 2 2 2 2 2 2 20 1 2 3 4 5 6 2 7 d 9 2 10 11 12 2 2 2 2 2 2 2 2 :3 14 15 16 17 Id 19 20 0 a a 0 0 0 0 z a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 a 0 0 0 0 o o o a 0 0 0 0 0 0 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CATE 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 1S 6 156 156 156 156 J 56 156 156 156 156 156 156 156 156 156 156 156 156 156 1*6 156 156 156 156 156 136 156 156 156 166 156 156 156 15 6 156 156 156 15 6 156 156 156 156 156 156 156 156 J 56 156 156 156 156 136 156 156 156 156 156 156 156 156 156 156 156 J 56 156 FIELD s a m p l e damaged NUMBER PLA NTS 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 1 2 6 7 8 9 3 10 0 Jj 3 12 0 0 0 0 0 0 0 13 14 15 16 17 id 19 20 1 2 3 4 6 6 7 d 9 10 11 12 13 14 15 16 17 Id 19 20 1 2 5 5 3 4 5 5 5 5 5 6 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 0 0 0 0 0 0 0 0 3 4 5 7 d 9 10 11 12 1J 14 15 16 17 id 19 20 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 Id 19 20 a a a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 J 0 0 a j 0 0 0 0 0 o o a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J 0 0 342 rM U DATE 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 344 34 4 144 144 144 144 144 144 144 144 144 144 144 F . CO ttT lM U EO FIELD 3AKPLS DUAOKO HUMBER PLA N TS 4 4 4 A % > A ** nj 4 4 4 4 4 4 4 4 4 4 4 S 5 3 5 3 5 3 3 5 5 5 9 9 9 9 9 9 9 9 9 6 6 4 6 6 6 6 6 4 6 6 6 6 6 1 2 9 A 3 A P T/ d 9 10 11 12 12 14 19 16 17 19 19 2a 1 2 2 4 5 6 7 a 9 10 11 12 12 14 19 16 17 Id 19 30 1 2 1 4 5 6 7 a 9 1? ]1 12 13 14 15 16 17 18 19 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 20 1 2 3 4 5 6 7 d 9 10 11 12 13 14 15 16 17 19 19 20 g 0 0 rl 0 rlu 0 0 d a a a 0 9 9 0 0 a a 3 0 0 a a 9 0 0 0 a a a a t> a a a a a a a a a a •9 a 0 0 a a a a a a a a 0 a 0 0 U 0 0 0 0 0 0 0 0 0 9 0 0 a 0 0 0 a a 0 D AT E F I E L D S A M P L E DAMAGED □ A T E F I E L D S A M P L E DAMAGED NUMBER P L A N T S NUMBER P L A N T S 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 US 145 145 145 145 145 145 145 145 145 145 145 US 145 145 145 145 145 145 U S 145 146 MU 148 149 140 149 M 6 MU 34U 140 140 140 140 140 14U M b 140 348 146 MB 148 149 140 u a 148 148 UQ 140 146 148 148 140 34 8 149 146 140 148 140 140 140 U 13 33 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 34 34 34 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 J4 14 14 14 14 14 14 14 14 M 14 14 14 H 14 14 14 14 M 14 1 2 3 4 5 6 7 9 9 10 11 12 13 14 IS 16 17 18 19 20 1 2 3 4 5 6 7 a 9 10 u 12 13 14 IS 16 17 Id 19 20 1 2 3 4 5 6 7 8 9 Id 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 9 9 10 n 12 13 14 IS 16 17 Id 19 2B 0 0 0 a d a *0 0 a ,a 0 0 0 a 0 0 0 0 6 0 0 0 a a 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 2 0 a 0 0 0 0 0 a 0 8 d 0 a a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a a 0 8 0 0 0 0 0 (1 150 150 ISO ISO 150 150 150 ISO 150 150 150 ISO 150 150150 150 150 150 150 150 150 150 150 ISO 150 150 130 130 150 130 150 150 ISO ISO ISO ISO 150 130 ISO ISO 152 1S2 152 152 152 153 152 1S 2 152 152 132 1S 2 152 152 152 132 132 152 132 152 132 152 152 152 152 152 152 152 152 152 152 132 1S2 132 152 152 152 *132 132 132 13 13 13 13 13 13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 M 14 14 14 14 14 14 14 14 24 14 14 14 14 14 14 14 14 14 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 I 2 2 2 2 2 2 2 2 2 2 2 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 a 9 18 11 12 13 14 15 16 17 la 19 20 1 2 3 4 5 6 7 3 3 ia 11 12 13 14 15 16 17 13 19 20 1 2 3 4 5 6 7 6 9 10 11 12 13 14 15 16 17 Td 19 20 0 0 0 0 0 0 0 0 0 8 9 J 0 0 0 9 0 0 0 4 0 0 0 0 0 0 t) 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 d 0 0 0 0 O O 0 0 d 3 0 0 0 d 6 0 9 0 0 0 0 0 0 0 0 0 0 d 0 0 0 a n 0 0 0 8 □ A T E F I E L D S A M P L E OAMA NUMBER PLAN 152 152 152 152 152 152 132 152 152 152 152 j 52 152 152 152 152 152 152 152 132 152 1S2 152 152 1S2 152 152 152 132 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 132 152 152 152 152 152 152 132 152 152 152 152 152 152 152 152 132 152 132 152 152 152 152 152 132 152 152 152 152 152 152 3 3 3 3 3 3 J J 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 3 5 5 5 5 5 5 3 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 18 19 29 1 2 3 4 5 6 7 a 9 to 11 12 13 14 13 16 17 Id 19 20 1 2 3 4 5 6 7 3 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 a 9 10 11 12 13 14 IS 16 17 18 19 20 9 9 9 0 a d 0 0 3 0 a 0 a a 0 9 a 0 0 0 9 a a 4 o a 0 8 0 0 0 0 □ 0 0 0 0 0 0 0 0 0 a a 0 0 0 0 0 0 a o 0 0 o 0 4 9 0 9 0 0 0 0 0 0 d 0 a 0 a 0 0 0 0 0 0 0 0 9 343 tab le t . co m tih u ed DATE FIL L S SAMPLE DAMAGED NUMBER PLANTS 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 157 157 157 157 157 157 157 157 157 157 157 157 157 157 157 157 157 1 57 157 157 157 157 157 157 157 157 157 157 157 157 157 157 157 157 157 157 157 157 157 157 160 160 160 160 169 160 160 160 160 160 160 160 160 160 160 160 160 160 160 I6D 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 U 13 13 13 14 14 14 14 14 14 14 U 14 u 14 14 14 14 14 14 14 14 14 14 d 0 d 0 d a d a A A 3 a A 9 3 A A B 3 A 1 2 3 4 5 6 7 d 9 10 JJ 12 13 14 15 16 17 16 19 20 1 2 J 4 5 6 7 6 9 10 n 12 13 14 15 16 17 Id 19 20 1 2 3 4 5 6 7 d 9 10 11 12 13 14 15 16 17 16 19 20 1 2 3 4 5 6 7 6 9 10 11 12 13 14 15 16 17 19 0 0 0 0 0 A e 0 0 o 0 3 0 0 0 0 0 0 0 0 1 2 3 3 3 10 0 0 0 0 1 0 0 0 0 a 0 lj 0 0 5 0 1 1 1 1 1 1 2 0 0 a 0 0 0 0 9 0 0 0 2 0 10 0 0 0 0 5 0 0 37 15 7 3 1 O 3 9 19 1 20 1 DATE FIELD SAMPLE DAMAGED NUMBER PLANTS DATE FIELD SAMPLE DAMAGED NUMBER PLANTS 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 1 50 160 160 160 160 160 160 160 160 160 160 160 160 160 1 60 160 160 160 160 160 160 160 1 60 160 160 160 160 160 160 160 160 169 160 160 160 160 160 160 160 1 60 160 160 160 1 60 1 60 160 160 160 160 160 1 60 160 160 160 160 160 160 1 60 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 16 0 16 0 160 16 0 1 60 160 160 160 160 160 1 60 160 160 160 160 162 162 162 162 162 162 262 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 ia la 10 ia 10 10 10 10 10 10 1 I \ 11 1 1 H 1 1 11 1 1 1 1 1 11 1 J 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 | 2 12 12 12 12 12 12 1 2 3 4 5 6 7 d 9 10 4 d 10 14 4 6d 11 A 22 5 12 13 14 15 16 17 JU 19 20 1 2 3 4 5 6 7 A a 12 17 9 6 22 21 16 3 16 10 3 2 1 19 19 7 1 a 17 9 10 11 12 13 14 15 16 17 Id 19 20 1 2 3 32 24 16 25 2d 16 22 26 25 19 13 5 2 4 2 s 6 0 3 7 7 d 9 10 11 12 13 14 15 16 17 Id 19 20 IB 5 1 2 3 4 5 6 7 S 9 10 11 12 13 14 15 16 17 10 19 20 2 20 13 5 10 25 17 20 12 d 0 0 7 20 7 0 0 112 2 a 1 0 2 4 1 5 7 5 17 16 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 1 1 1 1 1 1 J 1 2 3 4 5 6 7 A 9 10 11 12 13 14 15 16 17 Id 19 20 1 2 3 4 5 6 7 d 9 10 11 12 13 14 IS 16 17 Id 19 20 1 2 3 4 5 6 13 11 12 13 14 15 16 1 17 1 1 1 2 2 2 2 2 Id 19 30 1 2 3 4 5 2 2 0 0 0 0 0 0 0 O 0 3 6 22 3 5 5 1 0 0 9 1 0 0 0 0 7 1 4 B 4 a 0 0 0 0 0 3 0 0 0 0 a 7 A i 1 1 1 1 1 1 1 1 1 Z 3 10 11 3 15 9 2 1 6 1 0 0 0 o a a 0 0 o 2d 3 4 0 2 1 0 i3 6 7 2 3 9 162 2 2 2 2 2 10 11 12 13 14 2 25 5 162 162 162 162 162 3 2 2 2 2 16 17 IS 19 20 n 6 2 n 3 4 2 3 2 3 0 DATE FIELD SAMPLE DAMAGED NUMBER PLANTS 162 1 62 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 1 62 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 i 62 162 162 162 162 162 162 162 16 2 162 162 162 162 162 162 1 62 1 62 16 2 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 J 62 162 162 162 162 162 J 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 3 5 5 S 5 5 5 5 5 5 5 5 5 i S 5 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 6 15 7 1 2 3 4 5 6 7 2 A 9 in 11 12 13 14 15 16 17 id 19 20 2 3 4 5 6 7 d 9 10 1 12 13 14 15 16 17 13 I3 20 I 20 1 1 6 4 2 1 6 12 g 2 4 7 3 1 5 3 13 0 9 2 A 4 1 4 1 2 6 (1 d 2 1 4 3 1 a 2 3 0 d 12 2B 4 5 6 7 d 9 10 11 12 13 14 15 16 17 Id 19 20 1 2 3 4 5 9 6 0 d 30 10 9 7 0 20 0 Id 10 7 d ID 5 3 10 4 6 7 A 39 31 9 ID 11 2D Id 12 n 14 15 16 17 1d 19 20 22 4 3 10 4 1d 10 5 6 7 9 344 CABLE date 16; 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 162 163 163 163 163 163 163 163 163 163 166 165 163 165 165 165 165 163 155 165 165 T, CO NTIN UE® FIELD SAMPLE DAMAGED NUMBER PLANTS 7 1 12 7 2 4 7 3 72 7 4 IS 7 5 59 7 6 20 7 7 35 7 d 62 7 9 6 7 10 id 7 11 lb 7 12 12 7 13 14 7 14 19 7 15 26 7 16 32 7 17 41 7 18 8 7 19 10 7 20 12 13 1 2 13 2 1 13 3 0 13 4 0 13 5 0 a 13 6 13 7 30 48 13 6 13 9 9 13 10 23 13 11 1 13 12 3 13 13 4 13 14 2 13 15 14 13 16 18 13 17 34 13 18 69 13 19 55 0 13 201 14 5 4 14 2 0 14 3 14 4 0 1 14 5 14 6 31 13 14 ? 6 14 d 4 14 9 14 10 16 14 11 21 12 14 12 3 14 13 17 14 14 0 14 15 26 14 16 14 17 12 14 Id 10 31 14 19 14 20 19 16 13 1 0 13 2 0 13 3 6 13 4 2 13 S 13 6 199 13 7 52 14 13 8 13 9 1 13 10 17 13 11 20 3 13 12 13 13 5 0 13 14 13 IS 0 d 13 16 2 13 17 d 13 Id 13 19 0 13 20 0 LATE FIELD SAMPLE DAMAGED number PLANTS 165 14 i 24 165 14 2 25 3 24 165 14 4 86 163 14 S 17 163 14 6 163 14 78 7 165 14 15 6 18 165 14 16 165 14 9 165 14 10 5 1 165 14 11 0 165 14 12 165 14 13 1 1 165 14 14 165 14 13 3 165 14 16 0 165 14 17 J 165 14 Id 7 163 14 19 3 163 14 20 4 167 13 1 42 167 13 2 30 167 13 3 19 167 13 4 13 167 13 5 0 167 13 6 3 167 13 7 1 167 13 0 d 167 13 9 2 167 13 10 0 167 13 11 J 167 13 12 4 167 13 13 0 167 13 14 3 167 13 15 13 167 13 16 39 44 167 13 17 J67 13 Id 4J 167 13 19 29 37 167 13 20 167 14 1 4 167 14 2 2 167 14 3 14 167 14 4 0 167 14 5 0 167 14 6 2 167 14 7 31 167 14 8 4 167 14 9 3 167 14 10 0 167 14 11 7 167 14 12 1J 167 14 13 17 167 14 14 21 167 14 48 15 167 14 16 30 167 14 17 10 167 14 IB 21 167 14 19 15 167 14 20 62 168 8 1 a 168 8 2 l 160 8 3 24 168 a 4 0 168 8 5 0 168 6 6 0 168 8 7 6 168 8 a 3 160 8 9 0 168 6 10 6 168 B n 12 160 d 12 35 160 8 13 0 160 0 14 29 168 0 15 0 163 8 16 2 168 0 17 9 168 0 18 1 168 8 19 3 168 a 20 10 DATE FIELD SAMPLE DAMAGED DATE FIELD SAMPLE DAMAGED number PLANTS NUMBER PLANTS 1 0 169 1 a 168 9 1 0 2 2 169 1 11 168 9 0 3 ? 169 1 16d 9 3 0 169 1 4 168 9 4 la a 5 169 1 4 168 9 5 l 6 169 1 168 9 6 •1 7 5 7 169 1 3 168 9 0 169 1 d a 4 168 9 0 9 169 1 4 9 16d 9 0 169 1 10 21 16d 9 10 0 169 1 11 to 16d 9 11 0 169 1 12 28 168 9 12 0 169 1 13 10 168 9 13 0 169 1 14 168 9 14 12 0 1 IS 169 4 169 9 15 0 169 1 16 168 9 16 2 0 17 168 9 14 169 1 17 0 169 1 18 9 16a 4 Id 0 169 1 19 168 9 19 5 0 a 169 1 20 168 9 20 d 169 2 1 1 169 10 1 0 2 168 10 2 75 169 2 3 12 169 2 168 10 3 10 0 4 4 169 2 4 168 10 169 2 S 2 5 11 168 10 6 2 18 169 2 168 10 6 16 7 7 169 2 75 168 10 8 169 2 b a 1 169 10 1 9 4 169 2 9 168 10 a 169 2 10 1 169 10 10 4 7 169 2 11 168 10 11 169 2 12 1 16 168 10 12 1 169 2 13 1a 168 10 i 3 1 169 2 14 26 168 10 J4 6 169 2 15 25 166 10 15 1 2 16 169 169 10 16 30 169 2 17 2 24 16d 10 17 2 169 2 id 9 168 10 18 9 169 2 19 16d 10 19 28 I 169 2 20 15 169 10 20 1 J 0 168 11 7 169 3 3 2 168 11 2 1 4 169 168 11 3 3 4 169 3 3 4 168 11 4 1 25 169 3 168 11 5 169 3 5 d 10 169 11 6 3 id 169 3 6 169 11 7 67 169 3 7 11 168 11 7 8 l 169 3 d 168 11 9 0 9 169 3 1 168 ' 11 10 12 1 169 3 10 168 U 17 U 0 169 3 11 168 11 12 14 169 3 12 11 169 11 13 0 13 169 3 13 168 11 14 1 15 169 3 14 169 11 IS 21 1 169 3 15 168 11 16 13 9 169 3 16 168 11 17 5 11 169 3 17 168 11 la 20 8 169 3 Id 17 169 3 19 168 11 19 12 168 11 20 27 169 3 20 6 168 12 0 1 1 13 169 4 168 12 2 2 2 169 4 4 169 4 3 a 168 12 3 2 168 12 4 4 43 169 4 lo 20 168 12 5 169 4 5 34 168 12 6 6 16 169 4 10 7 21 168 12 169 4 7 13 168 12 6 169 4 22 d 12 17 168 12 9 169 4 9 28 17 169 4 10 168 12 10 3 168 12 11 169 4 11 3 10 169 4 6 168 12 12 12 2 168 12 13 0 169 4 13 2 168 12 14 J 8 169 4 14 168 12 15 0 35 169 4 IS 160 12 16 6 169 4 16 4 168 12 17 18 169 4 17 10 168 12 13 5 169 4 id 6 169 12 19 2 3 '.69 4 19 169 12 70 2 69 4 20 2 345 SAB L S t . DATA F I E L D 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 173 170 170 170 170 1 70 170 170 170 170 1 70 170 170 170 170 170 170 170 170 170 5 6 5 5 5 S 5 5 5 5 6 5 5 6 5 6 S 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 7 7 7 7 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 c o trriiiU E D SAMP LE DAHA NUMBER PLAN 1 3 3 4 5 6 7 d 9 10 11 13 13 14 IS 16 17 IB 19 30 1 2 3 4 5 6 7 b 9 10 n 12 13 14 IS 16 17 lb 19 20 1 2 3 4 S 6 7 d 9 10 11 12 13 14 15 16 17 ia 19 20 1 2 3 4 5 6 7 3 9 10 11 12 13 14 IS 16 17 13 19 20 10 29 7 0 0 0 1 0 0 4 0 0 0 3 25 4 14 5 6 0 6 15 20 6 2 41 55 17 19 59 20 45 30 46 4 23 16 Q 0 0 d I a 5 5 13 0 0 0 0 2 3 d 0 2 0 7 3 0 2 0 3 1 0 3 2 65 92 94 63 60 90 149 91 9 0 3 3 4 4 DATE F I E L D SAMPLE 0 AHA ii CD DUMBER PL A NT S late 170 170 170 179 170 170 170 I 78 170 170 170 170 1 70 170 175 175 1 75 175 175 175 175 170 170 170 170 170 170 174 174 174 174 174 174 174 174 174 174 1 74 174 174 174 174 174 174 174 1 74 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 175 175 175 175 175 1 75 175 175 176 175 175 175 176 175 175 175 175 175 175 175 14 14 14 14 14 14 14 14 14 U 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 J3 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 13 n 13 13 13 13 13 13 13 13 13 I 2 3 4 0 0 2 J 5 n 6 7 d 5 30 13 9 64 10 n 12 13 72 47 14 22 57 15 15 16 17 14 19 20 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 1? 14 19 20 92 33 5 IB 13 3 0 0 0 0 0 5 21 5 4 3 3 a 92 a 101 02 59 05 54 di 65 59 33 11 4 95 S 6 7 3 9 10 11 12 13 14 15 16 17 16 19 20 1 2 3 37 37 1 4 5 6 7 a 9 10 ii 12 13 14 IS 16 17 IB 36 6 43 19 104 29 53 38 97 02 23 45 0 66 3 0 0 0 0 0 s 21 5 4 a 82 0 101 02 19 59 05 54 dl 20 65 17 5 175 175 175 175 175 17$ 175 175 175 17$ 175 17$ 176 1 76 176 1 76 1 76 176 176 176 17 6 1 76 176 176 176 176 176 176 J 76 1 76 1 76 1 7A 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 1 76 176 176 176 176 176 176 176 176 F I E L D SAMPLE DAMAGED DUMBER PLANTS 14 14 14 14 14 14 14 14 14 14 14 J4 14 14 14 14 14 14 14 14 1 1 1 1 1 1 1 i 1 i i 1 1 1 1 1 1 i 1 1 2 2 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 IB 59 33 11 95 37 37 36 6 93 19 104 29 52 33 97 92 23 45 19 0 20 1 2 63 3 4 5 6 7 a 9 :o n 12 13 14 15 16 17 ia 19 20 1 2 0 0 1 4 0 3 u 0 0 0 0 0 0 0 9 0 0 3 0 0 2 3 2 3 9 2 2 4 5 2 2 2 6 7 2d 20 11 0 a 0 2 9 2 2 2 10 11 12 13 14 15 16 17 16 19 20 1 2 J 4 5 6 3 0 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 7 0 3 9 3 3 10 11 12 13 14 15 16 17 3 3 3 3 3 3 3 3 18 19 3 20 5 15 J 7 a 2 5 21 0 12 0 1 17 0 a 9 4 a d 4 7 2 3 a 7 2 $ 2 $ DATE 176 176 176 176 1 76 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 1 76 1 76 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 1 76 F IE LD SAMPLE DAMAGED NUMBER PLANTS 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 1 2 3 4 5 6 7 0 3 4 $ 6 5 7 S 8 9 10 11 J2 13 14 15 16 17 ia 19 20 1 2 5 5 5 5 5 5 $ 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 3 5 I 1 3 9 0 0 0 0 0 12 6 0 0 1 0 0 0 0 7 1 0 0 3 3 4 10 22 16 a S 6 19 7 7 9 12 9 12 10 9 3 6 6 6 6 6 4 3 0 0 0 2 0 0 2 3 0 0 1 9 10 11 12 13 14 IS 16 17 13 19 20 1 2 5 5 5 25 IB 11 12 13 14 15 16 17 13 19 20 1 2 3 4 S 6 0 13 9 10 13 16 22 23 34 14 a 6 10 0 5 0 3 0 1 7 7 d 9 10 7 11 9 4 7 7 7 7 7 7 7 7 12 0 13 14 15 16 17 1 0 0 IB 3 19 20 4 0 7 7 2 2 346 fA B L £ □A TE m 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 J 76 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 1 76 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 1 76 176 176 r . f ie l d 8 a a 8 a a a a a a d a a a a a d a d d 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 19 19 18 10 10 10 18 10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 c o n t in u e d SAMPLE DAMAGED DATE F I E L D NUMBER P L A 8 T S 1 2 J 4 5 6 7 8 9 10 11 12 12 14 15 16 17 18 19 20 1 2 J 4 5 6 7 a 9 10 u 12 13 14 IS 16 17 ia 19 1 2 3 4 5 6 7 a 9 10 11 12 13 U 15 16 17 la 19 20 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 18 19 20 4 2 0 0 8 0 2 0 1 7 7 12 13 4 J 2 S 3 1 2 2 2 6 2 0 0 0 4 1 0 9 4 1 16 3 7 12 S 4 5 92 61 43 119 72 71 45 57 a 12 10 16 17 43 21 21 11 30 22 10 11 1 1 9 7 11 13 1 2 43 19 11 4 6 37 4 IS 7 27 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 170 178 178 17d 178 170 178 178 170 178 170 178 1 7Q 170 178 178 178 17u 170 178 178 378 178 178 178 178 178 178 178 179 170 178 170 170 178 178 170 178 170 190 180 100 190 100 180 100 160 100 180 100 180 190 180 180 180 180 180 180 180 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 23 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 SAMPLE DAMAGED NUMBER PLANTS 1 2 3 4 5 6 7 a 9 10 11 12 13 14 IS 16 17 10 19 20 1 2 3 4 5 6 7 8 9 to 21 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 Id 19 20 1 2 3 4 5 6 7 8 9 10 U 12 13 14 15 16 17 IB 19 20 0 0 1 5 4 17 13 14 17 2 J 7 d 11 7 8 22 a 6 1 2 0 2 6 79 56 63 45 0 0 0 0 0 72 81 49 62 19 0 20 41 29 37 5d 26 32 7 11 9 30 38 13 40 19 39 a 6 5 19 33 51 42 23 0 0 0 3 d 21 49 51 33 31 42 44 9 2 0 0 DATE F I E L D SAMP LE DAMAGED NUMBER PL A NT S 180 190 180 190 180 190 180 180 180 190 180 180 180 130 1B8 130 190 180 180 ld 0 191 181 iai 191 101 181 181 191 13 1 191 38 1 161 19 1 191 161 161 Idl 181 1 81 131 191 181 191 191 idl 161 iai 181 181 191 181 191 191 181 181 1B1 181 181 191 101 191 191 181 1B1 181 161 181 191 181 101 iai 161 161 191 101 181 191 191 iai 191 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 a 8 8 a 8 S 0 9 8 9 9 a a a a 8 3 3 a d 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1 2 3 4 5 6 7 a 9 10 11 12 13 14 IS 16 17 13 19 20 1 2 3 4 5 6 7 3 9 10 11 12 13 14 IS 16 17 16 19 20 1 2 3 4 5 6 7 d 9 10 11 12 13 14 15 16 17 13 19 20 1 2 3 4 5 6 7 d 9 10 11 12 13 14 15 16 17 18 19 20 0 0 1 0 2 ia 42 36 45 41 42 SI 33 18 8 a 9 6 1 0 1 0 0 3 0 2 7 0 0 6 0 0 5 1 1 4 7 31 2 3 1 17 2 19 2 0 0 5 6 19 0 4 1 1 5 6 0 20 2 0 3 0 17 76 66 74 31 39 36 78 22 67 77 56 6d 33 4d 52 66 63 JATE 181 181 131 161 181 161 Idl 181 181 161 161 181 181 181 181 16) 181 181 181 iai 131 181 161 181 161 161 181 161 181 181 18 1 181 13 1 131 161 161 18) 161 16) 13 1 183 183 133 133 183 163 163 133 1 d3 163 183 163 163 163 163 163 183 163 183 183 163 133 163 183 183 163 183 163 133 183 183 193 163 163 iaj 183 183 183 183 133 FIELD 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 )2 12 12 12 12 12 12 12 12 12 12 12 12 1 L 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 SAMPLE DAMAL NUMBER P LA 81 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 15 17 13 19 20 1 2 3 4 5 6 7 8 9 10 n 12 13 14 15 10 17 16 19 20 1 2 3 4 5 6 7 d 9 10 11 12 13 14 IS 16 17 16 19 20 1 2 3 4 5 6 7 d 9 10 11 12 13 14 15 16 17 16 19 20 15 36 19 9 21 14 37 12 29 26 13 6 2 16 20 34 17 2b 19 15 3 S 0 0 0 47 57 n 5 Id 2 5 0 5 15 4 a 29 12 2 33 3 J O 0 2 0 4 4 0 0 1 0 0 3 0 1 J 1 3 a a 5 3 4 6 10 0 d 9 5 15 2 2 3 2 4 11 3 5 347 table d ate Ida 183 1 03 183 18 3 183 18 3 18 3 18 3 1 83 1 83 183 1 83 1 83 193 1 83 1 93 1 03 183 103 103 103 1 93 103 10 3 1 03 1 03 1 83 1 83 1 83 1 93 1 83 J 83 1 03 1 03 1B3 1 33 1 83 i 83 1 03 1B3 183 13 3 191 1 93 1 83 183 id 3 1 83 1 03 103 18 3 103 18 3 183 1 83 183 183 103 183 103 103 103 183 183 JB3 193 103 183 183 183 103 183 103 183 183 183 183 183 193 * r CONTINUED LLO SAMPLE DAMAGED NUMBER PLANTS 6 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 6 6 6 1 2 3 4 5 6 7 3 3 10 11 12 13 14 13 16 17 ia 19 20 1 2 3 4 5 6 7 0 9 10 11 12 13 14 15 16 17 18 19 29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 0 9 10 U 12 13 14 13 16 17 18 19 20 2 1 0 0 12 0 5 7 7 12 2 10 7 4 7 a 3 16 4 3 4 5 2 1 2 0 2 0 1 2 4 2 0 0 1 0 2 0 3 10 0 0 33 0 2 0 0 0 1 d 2 1 6 3 2 1 9 2 5 16 10 12 19 2 9 2 0 3 7 4 7 5 9 u 10 S3 17 d 3 2 DATE F IE L D SAMPLE DAMAGED NUMBER p l a n t s 189 189 189 189 189 169 189 169 189 169 169 169 169 189 169 189 189 189 189 139 189 189 169 189 189 189 189 169 199 169 189 109 109 109 169 189 169 109 189 189 109 189 169 169 189 139 169 189 189 189 109 189 1 89 109 189 109 189 189 109 189 189 189 109 189 189 189 189 189 169 169 189 ld 9 189 189 189 189 189 169 109 169 8 a 8 9 8 a a 6 a 8 3 a a e 8 8 a a 8 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 16 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 u 11 11 u u u u u u 11 11 11 11 11 11 11 11 11 11 11 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 ia 19 20 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 10 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 ia 19 30 2 2 0 0 3 2 1 0 0 0 9 1 I 2 3 2 0 8 1 3 22 S 20 6 a 3 10 4 15 4 2 11 0 3 4 1 5 1 2 1 27 53 61 18 19 29 62 33 48 33 0 0 16 10 14 19 42 19 17 5 41 9 26 23 29 21 ja 6 IS 34 4 19 8 10 IS 12 13 7 11 39 date fie l d 189 189 189 139 ld 9 1B9 189 189 189 189 189 189 189 189 189 139 199 1B9 189 189 196 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 198 190 190 190 190 190 190 190 190 190 190 190 190 190 190 19 B 190 190 190 190 190 190 190 190 190 190 1V0 190 190 190 190 190 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 SAMPLE DAMAGED DATE F I E L D SAMPLE DAMAGED NUMBER PLANTS NUMBER PLANTS 1 2 3 4 5 6 7 3 9 10 11 12 13 14 15 16 17 18 19 20 2 3 4 b 6 7 3 9 10 11 12 13 14 IS 16 17 ia 19 20 1 2 3 4 5 6 7 8 9 18 11 12 13 14 IS 16 17 ia 19 20 1 2 3 4 5 6 7 a 9 18 31 12 13 14 IS 16 17 ia 19 20 a o 0 4 S 1 21 11 13 2 17 4 9 4 a 31 27 4 17 5 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 7 0 0 0 0 0 0 2 10 3 S 3 1 2 11 1 J 9 1 I 4 4 2 2 4 12 0 190 190 190 190 190 199 190 190 190 190 1 90 190 190 190 190 190 190 190 29 0 190 190 190 190 190 190 190 190 190 190 190 190 190 190 196 190 190 190 1 90 190 1 90 199 1 90 1 90 1 90 1 90 190 190 1 90 1 90 190 190 198 190 190 190 190 190 2 90 190 1 90 191 191 1 91 192 1 91 191 1 9] 191 191 191 191 191 191 1 91 191 1 9) 191 191 1 91 191 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 S S 5 S 5 S s 5 5 5 S s 5 5 5 5 S 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 13 13 13 13 13 13 13 13 13 13 13 13 13 J3 13 13 13 13 13 13 1 2 3 4 5 6 7 a 9 19 11 12 13 14 15 16 17 18 J9 20 1 2 3 4 s 6 7 8 9 10 11 12 13 14 IS 16 17 Id 19 2D 1 2 3 4 5 6 7 a 4 10 1J 12 13 14 15 16 17 18 19 20 I 2 3 4 5 6 7 a 9 io 13 12 13 14 13 16 17 18 19 30 7 3 S 1 1 1 s 3 3 3 1 1 6 1 2 4 12 2 9 9 9 1 0 4 1 17 3 1 7 4 7 1 3 3 8 8 9 5 6 0 3 0 1 3 0 0 1 1 2 1 2 2 2 0 0 2 0 1 1 30 21 S3 27 1 6 6 0 19 40 17 35 42 IS 17 44 34 2 0 348 r A flL E DAT* 191 191 191 191 191 191 191 191 • 191 191 191 191 191 191 191 191 191 191 191 191 193 193 193 193 193 193 193 199 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 195 195 195 195 195 195 193 J9S 195 195 195 1 95 195 195 195 195 195 195 195 195 t . COUTlHUJm F I E L D SAMPLE DAHAUEt DATS F I E L D DUMBER PL A N TS 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 13 19 20 1 2 3 4 5 6 7 8 9 10 11 12 a a a a a a a a a a 8 a a 24 31 16 201 2 3 4 5 6 7 3 9 19 13 14 15 16 17 ia 19 a 60 la 14 14 14 14 14 14 14 14 14 8 8 4 27 19 n a d 20 24 20 21 2b 13 20 2 1 0 2 2 3 1 7 2 2 3 6 1 0 6 12 0 1 2 11 13 14 13 16 17 14 8 8 3 30 25 31 23 12 20 1 2 3 4 5 6 7 d 9 19 11 12 13 14 15 16 17 18 19 20 ia la 29 a 16 16 7 21 9 2 5 2 10 0 1 2 4 a 0 5 0 a a 4 14 11 10 2 5 0 2 a 0 0 0 1 1 2 0 0 3 5 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 £95 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 U 12 11 11 11 11 11 11 11 11 11 11 U 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 SAMPLE DAMAGED DATE P I E L D SAMPLE DAMAGED NUMBER PLA NTS NUMBER PLANT S 1 2 3 4 5 6 8 9 10 11 12 7 13 14 IS 16 17 10 19 20 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 13 id 19 20 2 3 4 2 3 4 2 6 8 0 2 3 3 3 4 11 12 1 3 1 0 6 9 16 5 23 7 24 29 17 16 4 30 0 14 6 10 7 0 14 10 3 23 3 9 11 0 5 id 7 12 10 11 12 10 24 8 13 14 15 16 17 a 9 3 16 6 a 4 10 19 20 1 2 3 4 5 6 7 a 9 4 3 3 11 5 3 13 2 0 4 10 2 2 3 3 a 10 11 12 0 1 3 6 16 4 0 13 14 15 17 18 19 29 3 5 0 0 3 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 i 97 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 1 1 1 1 1 1 1 i 1 i l 1 1 1 1 1 1 1 1 1 2 1 2 3 4 5 6 7 a 3 la n 12 13 14 15 16 17 18 19 29 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 Id 19 20 1 2 3 4 5 6 7 d 9 10 11 12 13 14 15 16 17 10 19 20 1 2 3 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 5 4 6 4 7 a 9 10 11 12 13 14 IS 16 17 10 19 20 4 4 4 4 4 4 4 4 4 4 4 4 4 1 1 9 0 0 0 0 3 1 0 0 0 0 a 0 0 1 1 2 1 4 4 2 1 2 4 4 4 0 1 1 2 4 10 2 1 0 0 0 0 0 0 2 1 0 1 0 1 0 0 a 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 2 0 0 0 0 1 1 0 0 1 1 1 13 DATS FIELD 197 197 197 197 197 197 197 197 1 97 197 197 1 97 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 1 97 1 97 1 97 1 97 1 97 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 197 1 97 197 197 197 197 197 1 97 197 197 197 197 197 197 197 197 5 5 5 5 5 5 5 5 5 5 5 5 5 5 S 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 13 13 13 13 13 13 13 13 n 13 13 13 13 13 13 13 13 13 13 13 14 14 14 SAMPLE DAMAGED NUMBER PLANTS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 ia 19 20 1 2 3 4 5 6 J a 9 10 11 12 13 14 15 16 17 13 19 20 1 2 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 13 19 20 2 3 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 a a e 0 0 3 1 1 1 1 1 0 0 0 0 0 O a a 0 0 0 0 0 a a a 0 0 14 7 13 17 4 13 17 a 5 5 11 4 4 2 5 14 4 7 14 14 14 14 14 14 J4 14 14 14 14 14 14 14 14 14 5 3 6 7 a 9 0 1 1 12 13 14 15 16 17 ia 19 20 11 13 7 1 7 12 3 7 5 10 9 7 349 tJk B L £ F . C O N TIN U ED CATC f t Z L D SAMPLE DAMAGED DATE FIELD SAMPLE DAMAGED NUMBER PLANTS SUHBER PLANTS 199 1 99 199 199 199 199 199 J 99 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 293 203 203 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 0 0 a a a a o b a a d a b a a a a a a a 9 9 9 9 9 9 9 9 9 9 9 0 9 9 9 9 9 9 0 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 19 19 20 1 2 3 4 S 6 7 a 9 10 11 12 13 14 15 36 17 19 19 20 1 2 3 4 S 6 7 d 9 10 11 12 13 14 IS 16 17 Id 19 20 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 IB 19 20 0 3 0 1 2 0 9 6 10 14 7 S 1 0 3 O S 6 0 e 4 a 2 0 S 6 a a 9 7 5 0 2 3 0 1 0 0 2 2 0 0 2 0 1 6 0 1 0 3 0 0 2 2 0 4 1 I 0 5 2 2 1 0 1 1 0 1 0 0 0 2 0 4 2 1 1 0 0 2 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 294 204 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 u ii u u u ii u u n i ii u u n n ii ii ii ii ii 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 1 1 1 1 2 3 4 S 6 7 d 9 10 11 12 13 14 IS 16 17 ta 19 20 1 2 3 4 S 6 7 a 9 10 11 12 13 14 15 16 17 IS 19 20 1 2 3 4 S 6 7 a 9 10 11 12 13 14 IS 16 17 ia 19 20 1 2 3 4 1 1 5 6 7 a 9 10 11 12 13 14 13 16 17 IS 19 20 1 5 7 2 2 3 11 5 2 12 7 1 2 1 3 1 3 4 2 4 2 5 3 3 2 3 2 4 2 0 0 0 5 1 1 2 9 4 4 2 2 4 5 6 6 1 1 2 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DATE FIELD SAMPLE DAMAGED NUMBER PLANTS 204 294 204 204 204 204 304 204 204 2 04 2 04 204 204 204 204 2 04 294 2 04 2 04 2 04 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 294 204 204 204 204 204 204 204 204 204 204 20 4 204 204 2 04 2 04 204 204 204 204 204 204 204 204 2 04 2 04 204 20 4 20 4 204 204 204 204 2 04 2 04 2 04 2 04 2 04 2 04 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 S 5 3 S 5 5 5 s 5 5 5 5 3 5 5 S S S S 5 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 IS 19 20 1 2 3 4 5 6 7 a 9 10 11 12 13 14 35 16 17 Id 19 20 1 2 3 4 5 6 7 8 9 30 11 12 13 14 15 16 17 ia 19 20 1 2 3 4 5 6 7 a 9 10 n 12 n J4 15 16 17 IS 19 20 1 2 1 1 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 1 0 0 a 0 0 0 0 0 a 0 a 0 5 0 0 0 0 0 0 1 0 0 a 0 0 a a 0 0 9 0 J 0 0 0 a a 0 0 i i e a 0 0 a a a 0 6 a 0 0 0 0 0 0 0 a CATE i I ELD SAMPLE DAMAGED NUMBER PLANTS 204 204 204 204 204 204 204 204 204 204 204 204 2 64 204 204 204 20 4 204 204 204 205 205 20S 205 205 205 205 205 205 205 205 205 20S 205 205 20S 205 205 205 205 205 205 205 205 205 205 2 05 205 205 205 205 205 205 205 205 205 205 205 205 205 207 207 207 207 2 87 2U7 2Q7 207 207 207 207 207 307 207 207 207 207 207 207 207 6 6 6 6 g 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 J4 14 14 14 14 14 13 13 13 13 13 13 13 13 13 1j 13 13 13 13 13 13 13 13 13 13 1 2 3 4' 5 6 7 d 9 10 11 12 13 14 15 16 17 18 19 20 I 2 3 4 5 6 7 d 9 10 11 12 13 14 15 16 17 IS 19 20 1 2 3 4 5 6 7 S 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 d 9 10 11 12 13 14 15 16 17 ia 19 20 1 1 1 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 3 9 1 1 2 4 1 5 i 0 d 2 0 0 a 9 0 9 d 1 1 0 2 1 2 0 O 3 3 2 0 2 0 0 0 2 0 0 0 1 1 0 0 0 4 2 3 3 4 0 1 0 0 2 1 0 3 1 350 FA B L E F . C O N TIN U ED DATE FIELD SAMPLE DAMAGED NUMBER PLANTS 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 U 14 14 14 14 14 14 14 14 14 14 14 14 14 U 14 14 14 14 14 1 2 2 4 5 6 7 8 9 10 11 12 12 14 15 16 17 19 19 20 1 2 0 4 1 2 2 1 6 1 1 2 1 2 2 O 2 0 0 1 0 0 1 1 1 7 a 9 a a 0 10 1] 2 O 0 0 0 0 12 12 14 0 15 16 17 0 0 0 10 19 0 a 1 2 3 1 1 1 4 5 1 0 6 7 8 9 10 11 12 0 0 0 0 0 0 0 14 10 19 20 1 2 3 4 5 6 7 a 9 211 211 6 6 6 6 6 6 6 6 6 6 * 6 0 211 6 0 0 211 211 6 6 Q 0 0 0 0 0 0 0 0 0 0 0 a 0 10 0 11 12 13 14 0 0 0 16 0 17 Id 0 0 19 20 0 0 15 211 211 211 211 211 211 211 211 an iH 13 15 16 17 2 3 4 5 6 7 3 9 10 11 12 n 14 15 16 17 Id 19 20 1 3 4 5 6 DATE FIELD SAMPLE DAMAGED NUMBER PLANTS 0 0 iH 6 2 3 4 5 6 7 3 9 10 11 12 J3 34 15 16 37 IB 19 20 1 2 3 4 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 5 6 7 a 9 30 11 12 13 14 15 16 17 16 19 20 1 2 3 4 5 6 7 9 9 10 11 12 13 14 15 16 17 IB 19 20 0 0 0 0 0 a 0 0 0 a (3 0 0 0 0 0 e i e 0 0 2 1 3 1 10 1 0 3 0 1 3 2 DATE FIELD SAMPLE DAMAGED NUMBER PLANTS 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 212 214 214 214 2 14 2 14 2 14 214 214 214 214 214 214 214 214 2 14 2 14 2 14 2 14 2 14 -»i i 214 214 214 31 4 21 4 21 4 21 4 21 4 21 4 214 21 4 214 214 214 214 2 14 2 14 214 2 14 2 14 2 16 2 16 216 2 16 216 216 216 216 216 21 6 216 21 6 216 21 6 216 216 216 216 216 216 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 19 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Id 19 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 a a a a a 1 2 3 4 5 6 7 a 9 10 11 12 13 14 IS 16 17 IB 19 20 1 2 3 11 a a 8 6 ti a a a a 8 a 0 9 8 8 *i« 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ia 19 20 2 4 6 4 4 2 0 4 1 1 0 0 1 2 1 0 1 1 0 1 0 2 1 0 0 3 1 7 6 9 5 0 5 3 2 0 1 1 2 1 2 0 2 1 1 3 4 3 7 7 d 2 0 3 0 1 1 0 0 1 4 2 1 2 0 1 0 0 0 1 0 0 0 2 1 1 0 1 0 0 DATE FIELD SAMPLE DAMAGED NUMBER PLANTS 216 21 6 216 216 216 216 216 216 216 21 6 21 6 21 6 21 6 216 216 216 216 21 6 21 6 216 2 16 2 16 2 16 216 21 6 216 216 216 216 216 216 216 216 216 21 6 216 2 16 2 16 216 216 216 216 216 21 6 216 21 6 216 21 6 216 216 216 216 216 2 16 316 21 6 21 6 21 6 21 6 21 6 216 2 16 2 16 21 6 2 16 216 21 6 21 6 21 6 216 21 6 216 216 216 216 216 216 216 2 16 2 16 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 ii u a n n ii n ii u n u u 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 13 19 20 1 2 3 4 5 6 7 0 9 10 11 12 13 14 15 16 17 Id 19 20 1 2 3 4 5 6 7 d 9 10 11 12 13 14 15 16 17 IB 19 20 1 2 3 4 5 6 7 8 9 10 11 12 n 14 15 16 17 13 19 20 2 0 1 2 2 1 4 0 1 1 0 0 0 0 0 0 1 1 1 2 d 1 0 17 27 3 9 6 10 21 4 12 6 II 4 9 21 5 5 4 7 S 5 5 3 2 3 3 6 6 2 3 2 0 3 1 0 0 1 4 1 2 a 5 5 6 O 3 2 1 4 2 6 2 3 0 0 0 0 0 351 TABU r. C Q U T IX U Q DATE FIELD SAMPLE DAMAGED dUHBER PLAUTS DATE F t ELD SAMPLE OAHAGED ttUMQER PLAttTS 213 218 213 218 21a 218 218 1 1 1 1 1 1 210 1 213 213 218 1 1 1 1 1 1 I 1 10 II 12 12 14 IS 218 213 210 1 1 1 17 18 19 2 1 8 213 213 213 218 J 1 2 3 4 S 6 7 1 2 0 ii 0 0 0 218 218 218 218 218 218 218 3 9 0 2 1 8 a a l 0 0 0 3 0 0 0 218 213 9 10 4 0 0 213 218 218 213 218 a a a a 5 a S 16 0 0 218 218 213 a a a 17 13 19 0 0 0 1 1 1 1 16 O 0 2 1 8 9 S 5 S S S S a 1 2 2 4 S 6 7 3 2 8 1 1 2 2 11 1 12 12 14 IS 0 0 0 4 213 1 20 0 213 a 20 213 2 2 2 2 1 2 2 2 2 1 a 4 0 3 2ia 6 6 6 6 1 2 3 2 213 218 213 213 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 6 7 3 9 10 11 12 13 14 IS 16 17 13 19 20 1 2 J 4 S 6 7 0 0 0 0 0 0 0 3 0 0 0 0 0 0 O 4 2 1 1 1 1 8 0 0 0 0 0 d 0 0 0 0 0 0 0 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 213 218 213 213 213 218 213 2 ia 218 218 213 218 213 213 218 221 221 221 221 221 221 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 6 7 3 9 10 11 12 13 14 IS 16 17 10 19 20 1 2 3 4 S 6 7 8 9 10 11 12 13 14 19 16 17 Id 19 20 1 2 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 I 2 0 1 0 0 0 1 0 2 0 2 1 4 4 S 6 7 8 1 1 1 2 2 0 14 14 14 14 14 14 IS 16 17 13 14 19 14 20 218 213 213 21a 213 213 213 218 213 213 218 213 213 218 213 213 2 18 213 213 213 218 218 2 ia 213 218 2 ia 218 2 18 2 13 2 13 2 13 218 218 218 213 213 213 213 218 218 218 213 218 218 210 213 213 213 213 218 218 218 213 213 218 213 213 210 218 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 d 9 10 11 12 13 14 IS 16 17 13 19 20 1 2 3 4 S 6 7 B 9 10 11 12 13 14 IS 16 17 13 19 20 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 6 4 a 9 10 11 12 13 1 2 2 4 2 3 1 0 0 0 0 1 2 0 APPENDIX G 352 A ppendix G. Table G l. C o m p u ter program fo r ad ju stin g a d u lt tra p c a tc h according to hourly te m p e ra tu re s and w ithin day a c tiv ity . T able G2. C om puter program fo r c alc u la tio n of B atch eler's B ra tio from plots of dam aged onions (L am p ert, 1980). Table G3. C o m p u ter program fo r c a lc u la tio n o f C lark and Evan's dispersion s ta tis tic from plo ts o f dam aged onions. T able G4. C om puter program fo r c a lc u la tio n of d ista n c e m easu rem en ts A and D an d th e te s t s ta tis tic P from p lo ts o f dam ag ed onions w ith d iffe re n t v o lu n te e r onion d e n sities. Table G 5. C om puter subm odel. program listin g of th e OM p opulation dynam ics 353 ta ble 23 24 69 36 39 31 903 07 12 3fl 34 600 C] PROS RAH TE H PJU aEISPU T.C W TFtJT,TA PE],TA PE3.TA PE4,TA PES) REAL OTAT, !IH7. NHM. MS T. N8M REAL JDAY INTEGER HTXHE D1MEHS10H 1D A T E SE 100),C U H D D (100),R 0A T E 3(100 ) DIMENSION A R G T (1 0 ),C D d 0 ),C T A B (2 4 ) DATA C T A fl/5 * 0 ,. 0 3 7 , . 1 0 2 , . 0 6 7 , . 0 3 3 , , 0 3 9 , . 0 3 9 . . 0 1 3 , . 0 3 6 , . 0 1 9 , . 0 3 4 . . + 3 9 ,.0 3 4 ,.1 3 2 ,.1 4 3 ,.1 3 3 ,.0 0 9 ,0 ,0 ,0 / DATA C D /3 1 .9 , 3 1 . 2 , 4 3 . 3 , 7 3 . 0 , 1 0 0 . 0 , 1 2 3 . , ) 3 6 . 3 , 1 8 1 . 3 . 2 0 7 . , 2 2 1 . 2 / DATA ARGT/53 . 6 , 5 7 . 2 , 6 0 . 9 , 6 4 - 4 , 6 9 . , 7 1 . 6« 7 3 . 2 , 7 0 . 3 , S 2 . 4 , 0 6 . / DO 33 K l - 1 , 7 6 1DATE3(K1 R D A TESEK 1)-0. CUM DDEKl)-*. P R IS T * , “ENTER LENGTH o r DATA FIL E * READ*, IK DO 24 K l - l . I K R E A D (4,69)R D A T E 3(K 11 , ID A T E 3 (X I>.CUHDOEKl) FORMAT [I X , T 6 . 2 , 1 6 , 10X. F I 0 . 4 ) PR IN T *, “ ESTER 1PDATE— (T IR S T DATE)READ*,1PDATE ODAX-IPDATE OOHF *30H M *K S F*OOSH * 0 . P I - 3 .1 4 1 3 9 3 6 3 H O U R -P l/1 3 P R IS T * , “HOW MANY DAYS TO RtM7 “ READ*, XDAY3 ■tOTMF-TOTMM+rOT3F«TOT3M-«, REWIND 4 DO 1 0 0 0 L -l.S D A Y S READ ( 4 , S 6 1 1 SOAX. SK F, IDttt, HSr , SS H FORMAT(7X,1 6 , 2 0 X ,4 ( 2 X ,F 9 .1 ) ) IF (E O F E 4 ) .S E .0 JG O TO 99 NDAY-PLOAT ( 1NOAX ) GAP-SDAY-ODAY SMF-(HHF-OOHF) DKH-lttHM-OOKH) O SF-(H SF-O O SF) DSM-ENSH-OOSK) IG A PC A P DO 6 0 0 1 - 1 , 1GAP H T IH E ^ OHF-OOHF+1 -DHF/QAP OHM-OOMK+I *DWi/GAP 0SPXX3SF+1 *DaF/OAP OSM-OOSM+I -06H /G A P JDAYM30AY+I READ( 3 , 3 0 ) 10AX.THAX, THIS FORMAT ( 6 X .1 3 , 2 ( 3 X .F 3 . 0 ) ) 1F ( EOF( 3 ] . S E • 0 )GOTO 99 TTMF-TTHM-TTSF WTTSH-0 TMEAM-ETMAX+TM1H ) / 2 RASGE - ITMAX-TM IS 1/ 2 DO 9 0 0 J - 1 . 2 4 HT1MEXIT1ME+1 THETA-1HT1HE-9 ) «HOUR TEHP-THEAN+RAN(SE*SIH (THETA) FORMAT ( I X , 1 3 , 3X, 1 3 , 5 X .F 3 .1 ) I F (H T IH E.LT.61G O TO 900 1FEH TIH E.G T.21JG O TO 07 CF+TABEXECD, ARGT, TEMP, 9 ) 1 F E C P .L T .2 0 ) CF-2D D-CTAB(tJTlME) T T M F -m ir+ O H F « D * d 0 0 /C F ) TTrtH-TTMH+OHH*D*(100/CF) T T 3 F -T T 3 F + O S F * D *(100/C F ) TTSM wrT3M +OaM*O*(100/CF) CONTINUE TOTHF -TOTHF +TTMF TOTHH-rOTMM+TTHH TQTSF+TOTSF+TTSF TOTSH-TOTSH+TTSH 1DAY-TOAY+.000S DO 13 K l - l . I K IFE10A Y .E Q .1D A TE 3EK 1))0O TO 60 CONTINUE GO TO 600 TOTM F-TOTHF/dD A Y -IPO A TE) TOTKH-TOTKH/EIDAY-1PDATE) TO TSF*TOTSP/(1DAY-IPDATE) TOTSM-TOTSM/EIDAY-IPDATE) WHITE ( 3 , 3 4 1RDATES ,TOTHT, TOTKM, TOTSF, TOTSM FORMAT II X , F 6 . 2 , 3 P 1 0 .4} TOTHF -TOTKM *TOTS F wTOTSM * 9 . T T H F-T T M M «T T 3F< T 3M ^. 1PDATE-IOAY COST1NUE ODAY-tiDAY ooM Fxm r o o K H -tn w 354 TABLE 01 C0WT1IJUED oosF«dsr 005M 45N 1000 99 c 2 1 c o trrib fU B EUO FUNCTION TABEXtVAL*ARQpDtlH.K) DiMEaSIOM V A L tn .A R G C n 0 0 I J » 2 ,K lF (0 U H .O T .A A O (J> ) GOTO 1 TABeX* > * (V A L < J)-V A L (J-1 H / (ABO ( J ) -A K O (J -l M + V A L (J-1 ) RETUtUJ COHTIUUE TABEX-(DUM -A*0(K-1 ))* (V A L (R )-V A L (K -1 J > / ( AJtQ{ K 1-AAO(JC-1 > )+ V A U K -l J RETURU EHD 355 TABLE C*** G2 PROGRAM BATCHER( IN PU T.O U TPU T,TA PE!. TAPES 1 DIMENSION X ( 3 0 0 ) ,Y ( 3 0 0 ) C ***TH IS PROGRAM WAS WRITTEN TO COMPUTE THE RATIOS OP C***MEAN NORF DISTAHCE/HEAM KM DISTANCE. 1 <;**• REWIND 3 REWIND I C * * * IN tT lA L lS E HUMBER OP SAMPLES AMD PLOT S IZ E PR IS T *."O T T E R NUMBER OF SAMPLES." READ*,HUM PR IN T *, "OTTER PLOT S IZ E — WIDTH, LENGTH• * READ * • X SIZ E , YS XZ E ‘ C***READ IS OATA HEADER AND X.Y COORDINATES FOR OBSERVATIONS 2 201 10 R E A D U ,1 0 0 H D A T E .IT R E A T ,IP L a T ,lR O W ,!I I F { E O P ( l ] l 2 0 0 .2 0 1 DO 10 I - l . l t R E A U tl.1011 X ( l ) , y ( l ) C***CHECK I P USER WAOT3 TO CONTINUE I F N TOO SMALL C«** l F ( H . G T . n 0 0 TO a s PR IN T * ,"S IN C E M • " . N , " * DO YDtl WANT TO CONTINUE HERE?" READ 3 0 0 , IAMS2 IF U A N S 2 .E Q .1 H H ) CO TO 2 C***ZERO OUT VARIABLES 80 C*** SU HM M . SUMHHSQ-C. SUMNH2-0. SUHU0RP*0SS O ffO R F ^. C***CALCULATE RANDOM POINT AND RANDOM INDIVIDUAL C***FROH WHICH TO FIND NEAREST NEIGHBOR# ALSO FIND C***NEARE3T NEIGHBOR TO THE NEAREST NEIGHBOR TO THE C***RANDOM POINT. 13 ( * « •« DO 12 1 - 1 ,NUM X PT -R A M Ft-1)»X SIZ E Y PT -R A M Fl-1)*Y SIZ E 1ND*1 ■►RANF ( - I )*N SM A LL1-100. S M A L L 2-1H . SMALL3-100* DO 13 J * 1 ,N D I S T I " ( ( ( X t J >-X P T )**2 . ) + ( ( Y ( J )-Y F T )**2# ) )* * # S X F(D 15T 1.L T .SM A L L 1) 1 C -J I F f D l S T l . L T .S H A L L Ij SM A LLI-O ISTI I F {W. L T . 2 ) 0 0 TO 13 D 1 S T 3 - < ( ( X ( J ) - X ( I N D > ) * - 2 # ) + ( (Y (J ) - Y ( I N D ) 1 * * 2 * ) ) * * .* 1 F (D 1 S T 2 .N E .0 . 0 . AND*01ST2.LT#SKALL2) SH A LL2-01ST2 CONTINUE C « * * rlN D WEAKEST NEIGHBOR TO WEAKEST NEIGHBOR TO RAH FT (Ji I t 14 SO 14 L - l . H D lS T 2 -(( U H .)-X ( lC M * * I* ) + ( I T tt.) - y ( I C l 1 * * 2 . ) ) * * .! 1 F (D IS T 3 .H E .0 .O .A H D .O I3 T 3 .L T .S H A L L 3 ) SK A L L 3-0IS T 3 3UHHtl<4UMtIH+SMALL 2 sukmhbq ^ uhhhsq « h a ij ,2**2 . SUHHH2-6UKMII3+SKALL3 SUHHaRP^UrHBDKP.SHALLl SSQSOP.P^aCHORK+SHUXl **2. 12 CQHTISUE c*** C **‘ CALCULATE MCAM NEAREST 01STAMCE FOR MUM SAMPLES C‘ “ R-rLOAT (HUM) R 2-PL0A T(H 1 XBMORP-SUMUORP/R XBUH^UHHN/R XBHHSQ-BUMtRISQ/ R XBMH2-6UMHH2/R X BtiORF2-6SaHORF/R C*** C * . ‘ CALCULATE HEAH OEMSlTlt FROH MOORE C* • » CALCULATE BATCHELERS B FOR HH AND NM2 C“ * R M U -R 2/(X S1ZE*Y SITE) D M O O R E - ( tR - l.) /R > * ( l./< 3 .1 4 m » X B tH 3 R P 2 ) ) B-XBUORP/XBm B2-XBHORP/XBUH2 R A T104H 00R E/R K U RAT102—X B M 0R F3/X B nS0 356 TABLE <22 COtrriHUBO c*«* C***OUTPUT VARIABLE3 C * * t W R IT E( J , 901 ) 1D A T E .1T R C A T . IP L a T ,IR 0 W ,y .tfU « ,R H U ,X B H O R F 2 .X B tJ N S Q . RAT 402 200 100 101 901 100 GO TO 2 P R I t r r * , 'A R E YOU OOtfE?* READ 3 0 0 i1 A H S IF (1 A H 8 * EQ ,1K H J 0 0 TO 1 F O R M A T ( I X ,1 6 » 1 X ,X 1 » 1 X * 1 1 ,1 X * I 1 * I X ,1 3 ) FO RM A T(IX , 2 ( F 1 0 « 4 , 2 X ) ) FORMAT( 1 X , 1 6 * I X , I I , I X , 1 1 , I X . 1 1 , I X , 1 4 , 1 X , I S , I X , 4 F 7 . 3 ) FORMAT[ h i ) STOP Esro 35 7 TABLE 0 3 PROGRAM OH8TAT3 * * 2 ) * • . S I T < D D .L T .0 1 O-OD 40 CONTINUE 10 S U H ^U H + O C MEAN DISTANCE OF NEAREST ONION RA-SUM/HUH P R IN T * , “ R A - '.R A R -R A /R E P R IN T * , “ R - * , R C —{R A -R E ) /O R E P R I N T * .* C » " ,C P R IN T * . “ ANOTHER RUN? " READ*, J I F ( J . E Q . 'Y * END ) GOTO 5 358 T A B LE 04 PROGRAM 0N D 1ST ( I N P U T S , 0 « I O N S - « . C U T P U T - 4 5 , B A I T S - 6 3 , N E W F -4 3 . TAP *1 -I N P U T , T A P E 2 -S N I0 N S . TA PE;]-O U TPU T, T A P E 4 - S A I T 3 , TA PE3-4.TW F, TAPEBB- 6 T) C C C C C C C C C C C C C C C C D IH EN S10N X O H 1Q N (S 001 , Y O N 1O N (300 ] , X B A IT ( 5 0 ) . Y B A IT (S O I , R T O IO JC O SIO N d 1, Y 0 N 1 0 N (I J , ( 1H0LD (1 S T 1 . I N T - 1 , 9 ) 101 FORMAT ( l X , 2 ( F 1 0 . 4 . 2 X ) . a i l ) I F d H O L O d D A Y l.E O . IO N STA T) OOTO10 I F d O N S T A T .E Q .~ l ) GOTO 10 X O M IO N d 1-YONION ( 1 1 - 1 0 0 0 10 CONTINUE C S A IT S 22 3 M -l 100 R E A D (4 ,* 1 XBAIT ( M l, Y BAIT ( M l, L IN E I F (E O F < 4 ) . H E .0 ) GOTO30S M * 1+! GOTO 3 0 0 10 5 H -H -l DO 32 K K - l .S 0 0 31 K H -1 , 7 DO S SUM SAH-l.HUM C RESET DISTANCE ARRAYS DO 70 S I - 1 . 3 0 0 R T 0 1 0 ( N 1 .1 1 - V T 0 2 0 1 N 1 , 1 1 - 1 0 0 0 70 R T 0 1 0 (N 1 , 2 1 - V T 0 2 0 ( N 1 , 2 1 - 0 C GET RANDOM P O IN T , PLOT S IZ E I S 1 2 4 X 6 0 . X P T -(R A » F (D U M 1 * J)* 1 XP -RANP ( DUM 1 * 1 2 * 0 I 7 ( X P .O E .8 .0 ) G O TO 4 0 ] I F ( X P .G E .4 * 0 1 G O TO 4 0 2 401 X F T -2 2 . GOTO 4 0 4 402 X F T -S 6 . GOTO 4 0 4 4B3 X P T -9 0 . 404 X PT-XPT+X P YPT-RANF (DUM 1 * 6 0 C NEAREST BA IT TO RANDOM PO IN T D 1 S T -3 0 0 NEARB-0 DO 13 J —I ,M D1STB—( ( (X B A IT (0 J-X P T 1 * * 2 )+■( ( Y S A I T ( J 1-Y PT 1 * * 2 1 1 ** . 3 I F ( D I S T B .L T .D 1 3 T ) N E A R S -J IF 1 D 1 S T D .L T .D 1 S T ) 0 1 S T - 0 1 STB 1S CONTINUE 35 9 TABLE M COHTIKUED C WEAKEST DAMAGED 0H 10M TO RAHDOM P01MT 0 AMD C NEAREST DAMAGED OHOIU TO S A IT (H EA RS) C ASSUMING DAMAGED OHIOH T IL E 1 3 l i t U S E . NEAROF*tlEAROB-0 D IS T ? 2 D H ]IS T B 2 O " ]0 0 DO 20 D lS T P D » ( ( ( X 0 M 1 0 H ( J ) - ] ( S T > * * 2 1 + < ( Y 0 H i a t l ( J ) - l ( P T ) * * 2 ) > " * . S R T O I O ( J ,1 ) - D I S T P D RTOIO ( J , 2 ) - J D 1S T B D H ( (X O M IO N fJ )-X B A lT (HEARBI ) * » 2 ) + ( [YOMIQN ( J i -Y B A IT [HEARS I ) * • * 2 ))* * .J V T 0 2 0 ( J ,1 ) - D 1 S T B 0 V T 0 2 0 ( J ,2 ) » J 20 CONTINUE C SELECTIO N SORT 1 F ( K L L .E Q .I ! U V - 1 I F ( K L L . E Q . 2 ] MV **5 lF ( K L L .E Q .] ] t r V » 1 0 IF ( K L L .E O .4 ] K V - 2 0 lF ( K L L .E 0 .5 ) H V a 2 3 IF ( K L L .E Q .B )M V - J S iriK L L .E a .7 )i» v « 3 0 DO 3 0 J » l ,HV J . W +1 DO 40 I « J J , 5 0 O IF (R T 0 1 0 ( L ,l) .L T .R T 0 1 0 tl.l) ) L-t 50 40 C I F (V T 0 2 0 (M 1 , J ) .L T .V T 0 2 0 ( 1 ■ 1 ) ) Ml “ I CCBTIHUE GOTO 5 0 GOTO 4 0 T E M P -R T O 1 0 (L ,1 ) T - R T O lO tL . 2 ) R T O I O ( L .1 ) - R T 0 1 0 ( J , 1 ) R T O I O ( L , 2 ) - R T 0 1 O ( J , 2) R T O I O ( J ,1 )»TEMP R T 0 1 0 U , 2 )-T C TEMP^rro2o(Hi,i) T - V T 0 2 0 ( M 1 ,2 ) V T 0 2 0 (M I, 1 ) - V T O 2 0 ( J , l ) V T 0 2 0 IM 1. 2 1 -V T 0 2 0 (J , 2 ) V T 0 2 0 ( J , 1 I "TEM P V T 0 2 0 ( J .2 ) * T 30 c c m tih u e C SET OUTPUT VALUES D IS T P 2 D -R T 0 I0 ( H V , I ) N E A R 0P*R T O 10(K V , 2 ) D 1ST B 2D »V T 020< H V . 1 ) N EA ftO B *V T 020(H V , 2 ) D - ( [ (X O tflO H (M E A R O B )-X O M IO »(H E A R O P ))**2 ) + ( (TO N IO N (SEA R O B ) -Y 0 H 1 0 H (H * E A R O P ) ) * * 2 ) ) * « .5 0 1 - ( ( (X PT-XOHIOtHHEAROB I )* * 2 ) + { (Y PT -Y O M IO H (H E A K O a)) » « 2 ) 1 • * . 5 P « tC lS T P 2D -D1 STB 2D) / /2 PPTO T«PPTO T+P I F (O U T E R .H E .2 ) W R 1 T E < 3 ,1 0 7 ) SU M SA M .D X ST.D 1STP2D . D 1 S T B 2 D ,D ,D I , p ■ f .T .B lP I F ( O U T E R .M E .]) WHITE ( 5 , 1 0 7 ) U U M S A M ,D IS T ,0 1 S T P 2 D ,D IS T B 2 D t S ,O *1 . P .T T T .H I P 107 F O R M A T (IX ,1 4 , 7 ( 2X* F B * 4 ) « 2 X ,1 2 ] C NEXT SAMPLE 3 C0MT1MUE P FIH A L -P PT O T /ttU M WRITE (S B , BS J P F IM A I, S V , HUM 80 F O R M A T (F B .4 , 5 X ,1 2 , 5 X , 1 3 ) P P T O T -0 . K LL-RLL+1 51 C0HT1KUE MUH^tUM+ 2 0 X LL*I 52 COSTIHUE EHD 360 TABLE OS PROCRAM MAGGOT { IN P U T , OUTPUT, TAPE £ 0 * 1 NPU T, TAPE £ 1 O U T P U T , T A P B 1, TAPE ♦ 0 , T A P E S .T A P E S ) COHFUTER SIMULATIOM MODEL rO R THE OHIOH MAGGOT, KYLEMYA ANTIQUA tM E IG E N ). T H IS MODEL I S A M O D tflE D VERSION OP A MODEL O RIG IN A LLY PREPARED BY FRANK DRUMMOND. JOHN V A L E N T I, AND GARY W H ITFIELD I B SYSTEM SC IEN C E 0 4 3 . THE MAIN PROGRAM (MAGGOT) CALLS A NUMBER OP FUNCTIONS AND SU BRO U TIN ES, AND A CONTINUOUS TIM E MODEL I S APPROXIMATED U SIN G A D ISC R E TE APPROACH. THE SIM ULATION U T I L I I E S PREVIOUSLY PUBLISH ED DATA FROM MANY SOURCES TO D RIVE A CHAIN OP TIM E VARYING DELAYS WITH A T T R IT IO N . POPULATION D E N S IT IE S AND IN S E C T IC ID E USE AND T IM IN G CAN BE M ANIPULATED. A IR AND S O IL TEMPERATURE DATA CAN BE IN PU T D IR EC TL Y . MAIN PROGRAM .MAGGOT GLOSSARY A P L -(D A T A I DEVELOPMENTAL TIM E ARGUMENT FOR ADULT FEMALE A PE 3T *F O L IA R P E S T IC ID E ( I •M ALATHION, 2 * P A R A T H 1 0 N ,3 -0 1 A Z 1 H O N ) A R G E -(O A TA ) TEMPERATURE ARGUMENT FOR EOO DEVELOPMENT ARGES« ( DATA ) TEMPERATUR ARGUMENT FOR EGG SURVIVAL ARGL1 * ( DATA ] TEMPERATURE ARGUMENT FOR F IR S T INSTAR DEVELOPMENT A R G P F *( DATA) TEMPERATURE ARGUMENT FOR PUPAL DEVELOPMENT A RGPS*(DA TA ) TEMPERATURE ARGUHEKT FOR PUPAL SURVIVAL A R O S L l-(D A T A ) TEMPERATURE ARGUMENT FPR F IR S T IN STAR DEVELOPMENT BIN -EO G CLASS ( 1 - 5 ) ODTOT*OEGRXE DAY TOTAL ( A I R ) OEADMDUMBER O F DEAD ADULT MALES DEAD1-NUMBER OF DEAD ADULT FEMALES OF CLASS 1 0EAD2-NUMBER OF OEAD ADULT FEMALES OF CLASS 2 DEA03-WUMBER OP DEAD ADULT FEMALES OF CLASS I DEAD4^IUHBER OP DEAD ADULT FEMALES OP CLASS 4 DEAD5DUMBER OP DEAD ADULT FEMALES OF CLASS 5 OEGDAYS-OEGREE DAYS (A IR } DEGG*(DATA) DEVELOPMENTAL TIM E AROUHENT FOR EGGS OELAFL-OEVELOPKENT TIM E OF REPRODUCING FEMALES □ELEA-DEVELOPMENT TIM E OP EGGS ( A I R ) D ELEASDEVELOPMENT TIM ES OP EGGS ( S O I L ) 0ELL1-DEVELOPM ENT TIM E OP F IR S T INSTAR DELL2 -DEVELOPMENT TIM E OF SECOND 1NSTAX 0ELL3-DEVELOPM ENT TIM E OP T H IR D INSTAR DEL*LG-DEVELOPMENT T IK E OF ADULT MALES OELMP-OEVELOPMENT T IK E OP MALE PUPAE DELPOP-DEVELOPMENT T IK E OP P R E -O V IP FEMALES DELPPF-DEVELOPMENT T IK E OF FEMALE PUPAE D ELPPO P-PR EV IO U S DELPOP D L l-(D A T A ) DEVELOPMENTAL T IK E ARGUMENT FOR F IR S T INSTAR D L I-(D A T A ) DEVELOPMENTAL T IK E ARGUMENT FOR SECOND INSTAR D L 3 -ID A T A ) DEVELOPMENTAL TIM E ARGUMENT FOR TH IR D 1NGTAR D M -(D A TA ) DEVELOPMENTAL TIM E ARGUHENT FOR MALE ADULTS D P F -(D A T A ) DEVELOPMENTAL T IK E ARGUHENT FOR FEMALE PUPAE D PM -(D A TA ) DEVELOPMENTAL TIM E ARGUMENT FOR MALE PUPAE D T -T IM E INCREMENT (DELTA T ) EGGP-EGGS OH PLANT EGGS-EGGS IN S O IL F L 3 —THIRD IN STARS (FEM ALES) FP-F E K A L E PUPAE FPEST-FURROW IN S E C T IC ID E (0 ^ < O N E , 1 —OYFONATE, 2 -E T H IO N ) FPS-6U RV 1V A L VALUE FOR FEMALE PUPAE FREQ-FREQUENCY OP SPRAY A PPLIC A TIO N I DAY—(JU L IA N D A T E -9 0 ) IPOP-tfU M BER OF P R E -O V IP ADULTS KEA-K FOR EGGS K FL -K FOR REPRODUCING ADULTS K FP -K FOR PUPAE K L l^ C FOR F IR S T INSTAR K L I H t FOR SECIN D INSTAR K L 3-K FOR TH IRD IUSTAR KHHC FOR MALE ADULTS X P - * FOR P R E -O V IP ADULTS L I-T O T A L NUMBER OP F IR S T INSTAR L1A-NUMBER OP F IR S T 1USTAR OH PLANT LIS-U UM BER OF F IR S T 1USTAR IN S IO L LI*4fUKBER OP SECOND INSTAR L 3D U M B E R OF T H IR D IN STAR MA-NUMBER OP HALE ADULTS MAXTEMP*tAXlKUM DAILY TEMPERATURE MINTS H P -T llU l MUM DAILY TEMPERATURE M LG SU RV IVA L VALUE FOR ADULT HALES H L I^ IA L E S T H IR D IN ST A S LAVAE HP-NUHBER OP HALE PUPAE NEGOA-TOTAL STORAGE OP EGGS ( A IR ) NEGOS-COTAL STORAGE OF EGGS ( S O I L ) N PL 3-TO TA L STORAGE FEMALE T H IR D INSTAR N F P ^rO T A L STORAGE OF FEMALE PUPAE NL1 -TO TA L STORAGE OP F IR S T 1N5TAR NL2 -TO TA L STORAGE OP SECOND INSTAR V LB-TO TA L STORAGE OF TH IRD IN STA R ((ML—TOTAL STORAGE OF HALE ADULTS NHL3—TOTAL STORAGE OF HALE T H IR D INSTAR NMP-TOTAL STORAGE OP MALE PUPAE 361 TABLE 0 5 CONTINUED II P O P-TO TA L STORAGE OF P R E -O V IP ADULTS :(R 0L E F -T O T A L STORAGE OF REPRODUCING ADULTS t f & Q L Z F l STO R A G E OP REPRODUCING AOULTS (CLASS 1 ) X R O L & P2-6TO RA G t OP REPRODUCING AOULTS (CLA SS 3 ) tfR O L S P J -STORAGE OP REPRODUCING AOULTS (CLASS 3} N R O L E P M T O R A G E OP REPRODUCING AOULTS (CLA SS 4> !JR 0L E F5-«T Q R A G £ OP REPRODUCING AOULTS (CLASS 5 1 JrtJHEGG I "STORAGE o r EGGS (CLASS 1 ) fcfUH E M 3 -STORAGE OP EGGS (CLASS I) UXIMEGG3 STO R A G E OP EGGS (CLASS 3 1 UUHEGG 4 ^STORAGE OP EGGS (CLASS 41 NIJMEGGS-STORAGE o r EGGS (CLASS S ) P E -R A T E OF ADULT EMERGENCE PMORT M O R T A L IT Y DUE TO P E S T IC ID E (FURROW) PMORTD-EXFONENTIAL DECAY OF PMORT PHORTE M O R T A L ITY DUE TO P E S T IC ID E (F O L IA R ) PMORTED—EXPONENTIAL DECAY OF PMORTE POP-DEVELOPMENT VALUE FOR P R E -O V IP ADULTS R A H ]-RA TE OF REPRODUCING ADULTS (CLA SS 1 ) RAH2-HATE OP REPRODUCING ADULTS (CLASS 2 ) RAH J -R A T E o r REPRODUCING ADULTS (CLA SS 2) AAH4-RATE OF REPRODUCING ADULTS (CLA SS 4 ) RAH5 -R A TE OF REPRODUCING ADULTS (CLA SS 5) RE-RA TE OP EGOS (S O I L ) REA-RATE OF EGGS (A I R ) R FP-R A TE OF FEMALE PUPAE RLM 3-RATE OP KALE TH IR D 1USTAR R L ]-R A T E OF F IR S T IN STAR R L2-R A T E OF SECIN D INSTAR R L3-R A T E OF FEMALE T H IR D INSTAR RMA-RATE OF MALE ADULTS RMF-RATE OF HALE PUPAE RO-NUHBER OF REPRODUCING ADULTS RPO P-RA TS OF P R E -O V IP ADULTS SEGG—SURVIVAL VALUE FOR EGOS SL1 -SU R V IV A L VALUE FOR F IR S T INSTAR SL2-G URV 1V AL VALUE FOR SECOND IN STAR S L 3-S U R V IV A L VALUE FOR TH IRD INSTAR S T « H L TEMP (PER D T) S T E M P -5 0 IL TEMP (P E R 2 HOURS) SUHFP—TOTAL FEMALE PUPAE SUMLT —TOTAL LARVAE S U H L 1-T 0T A L F IR S T INSTAR S U M L2-T 0TA L SECOND INSTAR 5UML3—TOTAL TH IR D 1NSTAA 5U KH A PP-T0TA L HALE PUPAE SUMNKL-TO TA L HALE ADULTS SUMNPU-TOTAL P R E -O V IP ADULTS SUHNRO -TO TA L OF AOULTS IN C LA SSES 1 - 5 SUHOH-TOTAL FEMALE ADULTS SUHRO-TOTAL REPRODUCING AOULTS s u r e g a d - in s t a n t a n e o u s s u r v i v a l o r e g g s ( a i r ) SUREGG A S U R V IV A L OF EGGS ( A I R ) SUREGGD—INSTANTANEOUS SURVIVAL OF EGGS ( S O IL ) SUREGG3-SURVIVAL OF EGGS ( S O I L ) SURFLD -SURVIV AL OF REPRODUCING FEMALES SU R PPS-SU R V IV A L OF FEMALE PUPARE SURFFSD-INSTANTANEOUS SURVIVAL OF FEMALE PUPAE SU R L 1-SU R V IV A L OF F IR S T INSTAR SURL10-INSTA N TA NEOU S SURVIVAL OF F IR S T IN STAR SU R L 2-SU R V IV A L OF SECOND IN STAR SURLIO-1HSTAHTAHEOUS SURVIVAL OF SECOND INSTAR S URL I-S U R V IV A L OF TH IRD INSTAR SU RL30-INSTA N TA NEOU S SURVIVAL OF THIRD 1HSTAK. SUFMLD S U R V IV A L OF MALES 5U RP0PD -G U RV IV A L OF P R E -O V IP FEMALES T-T EM F PER DT (A IR I TO H P^IUH BER I F STARTING PUPAE TOTEGO-TOTAL EGGS (A IR AND S O IL ) TOT PUP-TO TA L PUPAE (MALE AND FEMALE) T P O P —TOTAL ADULTS (MALE AND FEMALE) T P P -T O T A L STORAGE OF PUPAE (MALE AND FEMALE) COMMON BLOCKS COMMON/PESTS/ PDAY,PMORTC, A .A P E S T , FREQ , MFREQ COMMON /WEATHER/DEGDAYS ( 3 0 0 ) .MAXTEMP <3 0 0 ) .M1NTEMP ( 3 0 0 ) TYPE DECLARATIONS FOR MAIN PROGRAM TYPE TYPE TYPE TYPE TY PE TYPE TYPE TYPE TYPE TYPE REAL H H O L E F ,IP O P .N F O P .K F F .M A .K P HEAL M H F ,N F L 3 ,M L 3 ,H M L 3 ,L 3 ,L 2 ,L 1 .H L 3 ,U L 2 REAL M L 1 ,L 1S ,L 1 A .H E G G S S ,N E G G A REAL N R0LEF1 >N R 0LEF2( SR O L EF3,N R O LE FA , N R0LEF3 REAL NHL, NUMEGG1 .NUHEGG2 REAL NUMEGO3 , NUHEGG5 , NUHEGG4 REAL HUS INTEGER B IN . PDAY, DDTOT INTEGER DECDAYS REAL M AJtTEM P.M lNTDtF,M FREQ zsG£iei£n?Dt~xt)*iK*g > D t7 l it t >r»FrOO>&n o ■o~Hni rri PISVQOOmK * Q*D«54 w - I r l | M | aSZ* s ouu f*' 4 K 33 41 in It *0 *0 ijjjA r U *4 b 83 □OUOO( 555 •I >>>>*'} >>> > > £ >* 2D9P!S So 33££?3i Qc o n * (100(1*01 $ •4 o c to £ G I x p B v s .' * I H V -^ M * r* tdtn Q. WMM* o * » * * * B B O 10 AIA9V B C T » B m oo O U) « ss| a B ko» BO WA- B B m * (D - Ok A D £ PkC 0) . B B -s. * g « IB **1• B • O S's. C D4ri Q‘ < ^ 9 f t f l P S ^ p i D ! D 9B|o 9 > s i o r c v 3 * o t > 3 p r r ! J v t < N f j n > n O > ' ' X t O u O O Q U O O O ^ Q O > 3 r o n U N ^ O ,l Q A^ NO in Li O Li Li a (M 7>K lM ^AUtu A=ASWP Wm h h » m o « 3 fiv w u « a )u i * p- w o — d- - X M M 10 8 C►4* s j? Q* L* I *I J QS . M *' a •a n 10 AWM V* • L SAN • s tP4N B t> iOC O * B □ O H H gs)a?)?)?37i?)> > >N > >> oJT 3go> p>»«w w oo * SAW * ** ? AAA A-0-*a>uua UPAAA 3 3 It G ( X S S ( 2 K S « i E B S B a « a a a B S K V 3 E l C f t i e C B R R e i ( C C sj M . . “A ' ffl . Q~ 0* £► * 3 3 90 O MO k i a R H HHMHHHMHHHHHHHMHNMHHHMMHHHMHHHNMH ooooooooooooooooooooaoooooaoooooo kO Q-+. “ 8“" * V v M '- s ^ **l BlOD' > 3 m 8( i 3t ( 2B (1a 3t i 0O t0t A5(0B 3t t 3c i0) i5A 8O 0o u0u 0u i5( a0t t3n 3u (3n 3( a 3u n0i 5f l 3( a8u a8u8( a5H8M8a 1MMOo o o a • 01 P**9 r*it t* r* •UQt • * s * Q Li A » s| • * * Ul Ui Ut Ui U<-l S < D0) < 1 U O O SU Q C w B g B B U klh u a sJUltf gO N W N Kl E+ | (A MB CDM A0 q o AMON a o* Ul o B g O k OOAn AS at * UQ o»u < j -s. sj *> MQ«J < |s|U B g B • +* v* g» ©^s. J a» u> m B h. d "S. OOOOODOOOOOOUOOOOQDUDOOUOOQOUOOQO DOo o o o □ □ a 5555 335 > > > 5S > > > > iM sc LO CTi ro 363 T A fiU C 5 CO NTltftlED KL1-I0 K L2»10 K L 1 -1 0 KEA-10 K rP -2 0 K P -K H ^ F L -1 0 P H O R T * t. 0 FFE5?«A PEST**fl KROLEF1 ^ lR Q L E F 2 * 4 N lO L E F Ji4 ffiQ L E F 4 « tn tO L E F S ^ . 0 NRO£#EF«Q« 0 S U M F P ^U M N R 0 -6 U H tI -fiU H L 2 « S U K L ,3 -0 . 0 S U H tfP O -4*0 LXmQ SUKHAP^.0 SUM ZHL*4. 0 S U H f tO ^ .0 EGG a 6 * 0 D T - .l Z l-O T * 2 4 . 0 E L 7 L 3 -1 * O E L F L 2 * !* O E L F tl-1 , D E L F E A -1 . D E L P E 3 -1 , L -4 • LOOP TO I N I T I A L I Z E ARRAYS • SO I I J - l . K R L 3 IJ 1 - 0 .0 R L 3 ( J ) -0 .0 RL1 ( J ) —0 « 0 R E ( J 1 - 0 .0 R A M I(J )-0 .0 RAMI t J 1 - 0 . 0 R A H K J 1 - 0 .0 R A M 4 ( J J - 0 .0 R A M S ( J ) - 0 .0 R H P 1 J 1 - 0 .0 R M A ( J l- 0 .0 R P O P (J 1 - 0 . 0 R F P (J ) - 0 .0 R M P ( J ) - 0 .0 R L M 3 (J 1 - 0 , 0 R E A tJ CONTINUE 0 0 1 1 3 J —1 1 . 3 0 R r P ( J ) - 0 .0 RHP ( J 1 - 0 . 0 CONTINUE 1-0.0 13 113 * IN PU T S E C T I O N ... F IR S T THE WEATHER DATA 33 3500 » * DO 33 J - 1 , 3 1 4 R E A D (1» 2 5 0 0 JKAXTEMP1J I .M1HTEMP ( 3 ) CALL DEGDAY(HAXTEMP( J 1 .M1HTEMP U 1, 3 9 . 0 , 1HEAT 1 O EG D A Y SIJ1—IHEAT CONTINUE F0R H A T d4X . F 3 .0 .5 X .F 3 .0 1 AND THE RESULTS OP THE PREVIOUS RUN * 1100 1500 1600 1300 1650 1651 * W R IT S ( 4 1 . 1 1 0 0 ) FORMAT(* ONION MAGGOT D E N S IT IE S FROM PREVIOUS RUN#*) CALL 1N PU TE R I1R EA D IH , 2 ) T 0 H P -1 R E A D 1 N I1 ) W R 1 T E I6 1 , 1 5 0 0 ) FORM ATt* IN PU T FURROW P E S T IC ID E — 0 -N O N E , 1 -O Y T O U A TE.• -•2 -E T H 1 0 N * ) CALL IN P U T E R d R E A O I N .I ) F P E S T -IR E A D lB d ) W R I T E t 0 l .l 6 0 0 > . FORMATt* ENTER FO L IA R P E S T IC ID E CODE * / " 0 -W C N E ,* + •1 -KALATHION. 2 -P A R A T H IaN , 3-O IA Z 1 N O U * ) CALL IN P U T E R d R E A S lN i2 ) A P E S T -1 R E A 0 1 H U ) 1F1 A P E 3 T .L E .0 1 G O TO 1 6 5 1 W R I T E I 6 1 ,1 7 0 0 1 FORMAT!* ENTER FREQUENCY OF APPL1CAT10H H F R E a - 2 .0 H P -F L O A T (T O H P ]* S .0 F P - F L O A T (T O N P I* 5 .0 I r ( A P E 3 T . E C . 3 IHF A E C -3 . a • 9 96 97 m • • C OUTER LOOP FOR EACH DAY BEGINS HERE COOTINUB p t- a .a H T1K E*4 * CALL S S T C M P tS T rM P .L X ) LX -1 1CAY-1DAY+1 DDTOT^OOTQT+OCGDAYS flD U Y ) ir(A P E S T > E Q * a J G O TO 97 I? ( I O A Y .L T .K 5 ) G O TO 97 CALL SPRAY COHTITOB INNER LOOP FOR EACH DT BEGINS HERE DO I I H - l . K CALL T E H C A L tN A X T E H P U D A Y l.M IS T E H P IlD A Y I.N .T ) H T I H E -r tT IH E + Il S T - T A B E X E ( S T E H P ,0 .,2 ., l a . H T l H E ) □E L E A «T A B E X (D E G G ,A R G E ,T ,6> DELES-TAHEX [OEGO, A RCE, S T . 6 1 OELL1 -TA BEX (D L1 , A RGL1, S T , 6 ) D E L L 2 -T A B E X Z (D 1 3 ,5 0 . 0 , 1 0 . 0 , 4 , ST 1 DELM P-TABSX(OPM . A RGPF, S T , 6 ) I P ( S T .L E .4 B .1 C E L H P - 1 0 0 . D E L L 3 ^ rA B E X E (O L 3 ,S 0 .0 , I B . a , 4 , S T ) 0 E L F F « rA B E X (D P F .A R G P P ,S T ,6 ) I F t S T .L E .4 B .> O E L P r-1 0 0 . d e lp o p - ta b e x e ip o p ,jo .0 , 10. a , 4 ,t i IF ID E L P O P . L T . 1 . 0 1 DELPOP- 1 a . 0 o e l a f l « t a b e x e ( a f l , s a . a , 1 0 . a , 5 , ti I F [D E L A fL . L T . 1 . 0 I D E L A F L .I a . ■ DELMLG-TABEXEIKLQ. S a . B , 1 B . B , 4 , T ) irtD E L H L O . L T . l . 01D E L M L G -I0 . B S U R E (W A -T A iE X (3 E O O ,A A G E S ,T ,7 1 SUREGGS-TABEX ( 3EG G , A RGE3, S T , 7 ) SURL1 -T A B E X ( S L 1 , A R O SL1, S T , 3 ) S U R L J«T A B E X (S L 3,A R G S L 1 , S T , 3 I S U R L 3 « T A 8 E X (3 L 3 , AROSL1 , S T , 3 ) SUREGAD-AHIH1 (EXP tSUREGOA*DT ) , I . I S U A F P S * T A B S X (F P S ,A R G P 3 ,S T ,4 ) SURE GOD-AM 1 3 1 (EX P WD* SUMTtQ.LE*0 . 1 ) 0 0 TO 1 9 CALL E C G R A T E U D A Y ,B 1U ) SO 10 L - 1 . 5 A M (E*>-0*0 AHtBIfcM -SUHRO COHTlBUE K R O L E F -tfit0 L £ F l* tffta [£ r2 + tfR O L E F 3 + tf1 ia L E F 4 + tf* O £ X F S S U H tfR O ^R O L E F TPO F^JPO P+tfM L+tiRO LEF TPF»«frP*fcM P D H ^ .0 DET 1*0.0 N U K E C 01«0»0 I F ( S R O L E r1 . C T . 0 • 0 ttfUHZGO1 -N R C L E F 1 * 0 * 7 3 S U K t G O 2 ^ .0 1 F [MROLEF2 . O T . 0 - 0 } HUHEGO2 -M ROLEF2 * 2 . 5 HUHEQ03*4« 0 IF (N R 0 L E F 3 .G T , 0 . 0 IN U H EG G IH tR O LEFI * 4 . 0 num eco 4 ^ 3 .0 1 F (N R O L E F 4 .G T .0 .0 J H U H E G G 4 -H R Q L E F 4 /2 .O N U M E C G 5-4.0 E o o ^ m iE c a i-iw L m io c :2 n J W E C Q 3 « n :H E O Q 4 + « U M E o a 5 i r t E c o . C T . a . o j E o c s s - B . e s 'E M 1 F ( ECO .G T . a . a >EOGA-EGG-EGGSS I F ( D D T O T .G T .2 4 0 0 . )E G G S S -« . if ( d o to t .g t . 2400 ie g g a -o . a S U H R O -0 .0 SUMLT -S U M H *SUHL2+SUHL3 SUNOH-SUHNPO.MROLEP T0TPUP-6UHM AP+SUHFP TOTEGG *4tEGGS5+NEGaA 11 10 19 . • OUTPUT SECTIO N • 9999 666 16 WRITE ( 3 , 9 9 9 9 )ID A Y ,D D T O T ,S U K H P O , HAOLEF, +SUMLT, SUMOM, TOT ECO, TOT P U P , T P O P , T P F , PE F O R M A T ( 2 lS ,B F 1 0 .2 ,r i0 .4 ) WRITE ( 3 , 6 6 6 ) ID A Y , DDTOT. N L 1 , H L 2 ,8 1 .3 . NEGGSS, HE OCA, ♦N RO LEF1, NROLEF2 . N ROLEF3. S R 0 L E F 4 F O R H A T ( 2 I J ,9 F 9 .2 ) I F ( I D A Y .E O .2 1 4 ) 0 0 TO 1 6 0 0 TO 9 CONTINUE STOP END FUNCTION D E L L V F ( R IN ,R ,S T R G ,P U l, D E L ,D E L P ,D T .K ) - TIM E VARYING D IS T R IB U T IO N DELAY WITH A T T R IT IO N . T H IS FUNCTION RETURNS A LAGGED VARIABLE GIVEN AN IN PU T OF AN UHLAGGED VARIBLE THE DELAY ADJUSTS GRADUALLY TO CHANGES IN THE IN PU T SUCH THAT THE AGGREGATE FLOW SU B JEC T TO DELAY VARY FROM EN TITY TO EN TITY A TIM E 'VARYING DELAY PARAMETER I S USED GLOSSARY! DEL-DEVELOPMENTAL T IK E (DAYS) DELLVF-CUTPUT OF DELAY (RETURNED TO HAIH PROGRAM) D ELP-PREV IO U S DEVELOPMENTAL TIM E (D E L ) DTHJELTA T (T IM E INCREMENT) I -STA GE K-tiUMBER OF DELAY STAGES P LR M O R T A L ITY CONSTANT (INSTANTANEOUS SURV IV AL) R-RATE OUT O F THE I - T H STAGE R 1N -«A T E INTO THE DELAY STRG-STORAGE (NUMBER OF E N T IT IE S IN EACH STAGE) DIM ENSION R ( 1 ) V 1N -A IH F K -fL O A T (K ) B - l .+ ( D E L - O E L P ) /( F R * O T ) A -F K -D T /O E L DELF-O EL 00 10 l-l.K D R H t(l ) R (1 )—0 R + A * (V 1 N -0 R * B ) 366 TABLE OS C O tm U V E D V IH -O R COHT1HUB la STKG4.0 DO 1 0 l - l , K R ( 1 )-R (l]* P L R S T R Q ^ R O + R d (*D E L /F K COMTIKUE D E L L V r-R (K ) RETURU END IB SUBROUTINE DEGDAYIXM AX.XM IU.BASE, ItTEAT) • • - CALCULATES DEGREE DAY ACCUMULATION FROM A IR TEMP DATA (M AX ,M IN) FOR EACH DAY • • * * • * * • • GLOSSARY) A -S 1H FUNCTION B A S E -3 9 f (BA SE DEVELOPMENTAL TEMPERATURE) XMAX-+LAXIHUH TEMPERATURE XMIH-HIU1MUH TEMPERATURE XHEATK3ECRSS DAY DATA T P I E / 6 . 2 9 3 1 8 1 / , H P t E / 1 . 5 7 0 7 9 5 / ZF (XMAX .G T . BASEJGO TO 1 tH C A T«4 RETURU • CF MAXIMUM TEMPERATURE GREATER THAN BASE COME HERE 1 Z-XHAX-XM IH XN-XMAX+XMIM I F (XHIM *L T . BASE)GO TO 2 X H E A T -X M /2. -BA SE ■ ROUNDOFF ODD U P , EVEN DOWN 10 1HEAT-XHEAT C H ECK -IHEAT I r ( XHEAT-CHECK- 0 . 5 ) f l- 6 , 7 * H A L F -IH E A T /2 I F I H A L F -C H E C K /2 .0 ) 7 . 6 . 3 7 IH EA T-1H EAT+1 3 RETURN * i r MIN1MUH LESS THAN BASE COME HERE 2 7 B A S E -9 A S E * 2 .0 A - A 5 1 N I(T B A S E -X M )/Z ) X H E A T - ( 2 * C 0 S < A ) - ( T a A S E - X H > * { H F I E - A ) ) /T P lE • GO ROUND-OFF AND RETURN GO TO 10 END SUBROUTINE EG G RATE1D AY .BIN ) • • • - CALCULATES WHICH FECUNDITY DELAY REPRODUCING ADULTS ARE PLACED IN NUMBER OF EGGS O V IP O S IT E D I S DETERMINED BY TEMPERATURE EXPOSURE DURING P R E -O V IP STAGE • GLOSSARY) • • • • • aIN -C O O CLASS ( 1 , 2 . 3 , 4 . 5 ) CUHMDD-TOTAL DEGREE SAYS DURING P R E -O V IP DEVELOPMENT CAY^3AY NUMBER S*4fUMBER OF DAYS T I L L 1 2 0 DEGREE DAYS TOTAL-SUM OP AVERAGE DAILY TEMPERATURES FOR P R E -O V IP PER IO D INTEGER DAY,DEODAYS, SIN ,C U H D D REAL HAXTEMP.MINTEMP COMMON /W EATHER/DEODAYS( 2 0 0 ) , MAXTEMP( 3 0 0 ) , H 1H T EH P( 3 0 0 ) CUHDQ-0 • GO BACK IN TIM E U N T IL 1 2 0 DEGREE DAYS ARE REACHED DO 1 0 0 N - l , 1 0 0 CUKDD-CUHDD +DEGUAYS( D A Y -N ) I F (CUHDO .C E . 1 1 3 ) 0 0 TO 2 0 0 100 CONTINUE « NOW N -TH E NUMBER OF DAYS TO FIN D AN AVERAGE TEM P. FOR 200 M-OAY-M TO TA L-0* 0 S -FL O A T (Ml SDAYK>AY-1 DO 3 0 0 t^ i.tf D A Y TOTAL-TOTAL* ( 2 • 0*MAXTEKP( I )+ M IN T E M P (l )+ M lH T E H P { l+ l ) ) / 4 . 0 300 CONTINUE 367 TABLE 0 5 CONTINUED _ lN - lN T ( 0 .S * T O T A L /S /1 0 .0 ) - 4 i r ( ( B I N .L T . 1 ) .OR* ( B IN RETURN .s r . 5 ))B lN -5 end SUBROUTINE SPRAT CALCULATES E FFEC TIV EN ESS OF A FOLIAR SPRAY WtfElf A PPLIE D A P P L IE S A SPRAY WHEN CALLED GLOSSARYi A P E S T -F O L IA R P E S T IC ID E (1 -KALATHlOM , 2-PARA TH 10N * CFDAYHtfUMBCtl OF DAYS BETWEEN SPRAYS PREQ-rftEQUEHCY OF SPRAY M l-R Z Q -ftE S lD U A L E FFEC TIV EN ESS OF SPRAY A PP L IE D P DAY - I NTSRNAL COUNTER ? HORTEM ORTALITY DUE TO SPRAY 3 -O IA Z IN O N ) COMM ON/PESTS/PDAY. PMORTE, A ,A P E S T , FREQ , HFREQ INTEG ER PDAY*FREO INTEG ER A PEST TYPE REAL KFREO 1 3 -A PE ST A -A + l I F ( A .£ Q * 1 ) G 0 TO IB IF44XN1MUM VALUE OF ARGUMENT ARRAY TAQEXE-RETURNED VALUE TO MAIN PROGRAM VAL-ARRAY (VALUE RETURNED AS VAL) DIMENSION V A L ( 1 ) DUK^UKMY-SHALL I* * IN 0 (M A X 1 (1 .0 + Q U H /D I F F , 1 * 0 ) « K ) TA B B X E-< V A L(1*1 ) - V A L ( I ) ) * ( D U H - F U A T ( 1 - 1 ) * O tF F ) /D I F F + V A L f I ) RETURN EMO FUNCTION ?A B E X (V A L ,A R Q f QUH*K) TABLE LOOK-UP FUNCTION THAT DOES EXTRAPOLATION WHERE THE VALUES A UNEQUALLY SPACED A VALUE ARRAY AND ARGUMENT ARRAY ARE HEEDED GLOSSARYi ARG-ARGUMENT ARRAY OUM-OUKMY UNLESS DUMMY I S TOO LARGE Oft TOO SMALL TABEX-RETURWED VALUE TO PROGRAM VAL-AAGUHENT ARRAY DIMENSION V A L ( 1 ) ,A R G ( 1 } DO 1 J - 2 . K lF ( O U M .O f .A R G ( J ) ) G O TO 1 T A B E X -(D U M -M tO C J-l ) ) • (VAL ( J ) -V AL ( J - l ) ) / ( A R C ( J > - A R G ( J - l ) ) ♦ + Y A L (J-1 ) RETURN CONTINUE T A B E X -(D U M -A R a(K -l ) ) * ( V A L (K ) - V A L ( K - 1 ) ) / ( ARG (K ) - A R G ( K -) ) ) i-fV A L (K -) ) RETURN 368 T A B LE 65 C O N TIN U ED era S U B R O U T IN E T E » C A L ( H A X < M l tl ,M ,? ) - CALCULATES A IR TEMPERATURE POA EACH DT BY F IT T IN G A S IN E CURVE TO MAX AND MIN TWELVE HOURS APART GLOSSARY) MAXftAXlKUM DAILY A IR TEMPERATURE KIH-K X NIK U H DAILY A IR TEMPERATURE T “ RETURNED A IR TEMPERATURE PER DT TIM E-410UR OF THE DAY TYPE REAL MAX,MIN A^AX-nm T IM E -2 . A*FLCAT(M ) S - T IM E + 3 « 1 4 1 6 T«M lE f+A /2 • 0 + ( A / 2 * fl*COS ( S | ) RETURN era SUBROUTINE IN FU TE R (1V A L,M } 4 - S P E C IF IC TO CYBER 7 3 0 AHD IT KAMDLES THE IWPUT TORTHE PROGRAM - TTN. H A L -EA SY 1H . LOO. RUH PROGRAM TAPE 1 - A I R TEMPERATURE DATA, T A P E S 3 -3 0 1 L TEMPERATURE DATA ■ * * * 13 1333 D1M ESBI06I I V A L d ) H -l COHTIMUE CALL E A S Y I H ( I V A L .» .J > 1 F (J.E Q .M )R E T U R H W R 1 T E ( 6 1 ,1 0 0 0 ) FORMAT( * IM PROPER T Y P E , THY AGAIH«> GOTO 10 EHO SUBROUTINE S S T E H P (S T E M F ,L X ) * • • • • 10 103 - T H IS 3UBROUTIHE CALCULATES AHARRAY OF S O IL TEH PE RATO RE VALUES FOR EACH DAY I T 1 3 CALLED. REAL S O IL TEMPERATURE VALUES ARE EHTERED FROM T A P E B 3. D IKEHSIO H S T E M P I1 3 ) I F ( L X .G T .0 ) GOTO 1 0 0 SCUM-S DO 1 0 1 - 1 , 1 3 R E A D (R S ,5 3 ) S T E M P ( l) COHTIHUE GO TO 30 CQHTtHUE S T E M P d )-S T E M P (1 3 ) DO TO 1 - 3 , 1 3 READtaa.sei stemp(i ) 23 30 SO COHTIHUE CO ST1SUE FORMAT t F T , 0 ) DO GO 1 - 2 , 1 3 I T ( S T E H P ( 1 ) .L E ,4 0 .A N D , STEHP ( 1 - 1 ) . L B . 4 0 ) GOTO 6 0 IF . L E . 4 0 I GOTO 3 5 1 GOTO 6 6 S C U M * lC U M * (< A B S (S T E H P d ) - S T E M P d - l D /3 + A H 1 S 1 ( S T E M P d ) , STEMP ( 1 - 1 ) ) * -4 0 1 /1 2 GOTO 60 33 D IF ^ T E M P ( I - 1 ) -S T E M P d 1 Y D IF * 3 T E H P d -l 1 -4 0 9 C U M ^ C U M * ( Y D I F /2 1 * ( Y D I F /D I F ) /1 2 GOTO63 66 0 1 F * « T E M P d >- S T E M P d - 1 > Y D IF * 4 T E M P (I ) - 4 0 SCUM ^CUM * (Y D I F /2 1* ( Y D I F /D I F ) / 1 2 60 COST 1 HUE W RITE ( 6 , 9 3 9 9 ) SCUM 9 8 9 3 FO RM A T(IX . F I 3 . 4 ) RETURH EHD (STEMP(I) IT (STEMPd-n.LE.43 APPENDIX H 3 69 Appendix H, Table 1. Mean estimates of OM second instar density for samples of 60 cm of onion row in 1978. ACC. DDAY 1 9 6 .7 261 .1 4 3 5 .6 5 1 0 .9 5 8 8 .8 661 .0 684.1 7 4 2 .9 7 9 5 .7 8 5 0 .2 9 5 6 .8 9 9 5 .7 1 0 7 1 .0 1 1 1 3.2 1211 .6 1 2 3 8.3 1 2 8 8 .8 1 3 8 0 .2 1409.1 1 4 7 5 .8 1 5 3 1.3 1641.1 1 6 7 0 .8 1 7 2 0 .8 1 747 .2 1 836 .6 DATE MEAN VAR 135 140 152 159 166 171 173 177 180 184 191 194 199 201 207 209 213 220 222 226 229 236 238 241 243 249 1 .0 2 .9 1 1 .8 9 .7 7.1 4 .2 4 .2 2 .0 3.1 2 .5 0 .0 .2 . 2 .5 3 .6 9 .9 7 .5 7.1 7 .0 4 .0 2 .7 1 .6 1 .4 .3 .4 0 .0 1 2 9 9 9 6 2 8 8 5 0 .11 .77 1 .07 .1 2 2 .66 1 .1 8 1 .8 4 .0 0 .9 9 . 39 .0 0 .40 .18 1 .61 1 6 .0 4 5 8 . 32 11 . 8 3 41 .8 6 2 4 .4 4 4 .0 0 2 0.2 2 1 .82 1 .60 .90 .49 0. 00 SE .33 .53 1 .38 .96 1 .72 1 .27 1.13 .89 .95 .73 0 . 00 .20 .13 .40 1 .27 2.42 1 .09 2.16 1 .56 .63 1 .36 . . . . 43 40 30 22 0. 00 3 70 Appendix H, Table 2. Mean estimates of OM third instar density for samples of 60 cm of onion row in 1978. ACC. 1 9 6 261 4 3 5 5 1 0 5 8 8 661 DDAY .7 .1 .6 .9 .8 .0 684.1 7 42 .9 795. 7 850. 2 9 5 6 .8 9 9 5 .7 1 0 7 1 .0 1 1 1 3 .2 1211 .6 1238 .3 1 2 8 8 .8 1 3 8 0 .2 1409.1 1 4 7 5 .8 1 5 3 1 .3 1641.1 1 6 7 0 .8 1 7 2 0 .8 1 7 4 7 .2 1 8 3 6 .6 DATE MEAN 135 140 152 159 166 171 173 177 180 184 191 .2 .2 .8 .2 .3 .5 .7 .2 .5 .5 .0 .9 .8 .0 .9 .6 .5 .7 .6 .7 .6 .9 .2 .0 .0 .6 194 199 201 207 209 213 220 222 226 229 236 238 241 243 249 2 1 0 7 1 2 10 9 9 6 1 1 1 1 4 7 9 1 6 1 7 1 0 5 3 3 2 2 1 VAR .40 .18 6 .8 4 1 0 .40 2 4 .6 8 1 1 0 . 94 73 . 34 52.62 5 6.9 4 4 6 .5 0 6 . 22 4 .3 2 8 .1 8 1 .78 24.32 31 .8 2 1 8.72 121.25 8 8.9 3 8 0 .9 0 1 9.25 1 .43 2 ,4 0 5.56 2.67 4 .9 3 SE . 20 ,13 .83 1 .02 1 .57 3.33 2.71 2 .2 9 2 .3 9 2 . 16 .79 . 66 .90 .42 1 .56 1 .78 1 .37 3 .6 7 2 .9 8 2 .8 4 1 . 32 .38 .49 .75 . 52 .70 371 Appendix H, Table 3. Mean estimates of OM pupal density for samples of 60 cm of onion row in 1978. ACC. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DDAY 1 9 6 .7 261 .1 4 3 5 .6 5 1 0 .9 5 8 8 .8 661 .0 684.1 7 4 2 .9 7 9 5 .7 8 5 0 .2 9 5 6 .8 9 9 5 .7 0 7 1 .0 1 1 3 .2 2 1 1 .6 2 3 8 .3 2 8 8 .8 3 8 0 .2 409.1 4 7 5 .8 5 3 1 .3 641.1 6 7 0 .8 7 2 0 .8 7 4 7 .2 8 3 6 .6 DATE 135 140 152 1 59 166 1 71 173 177 180 184 191 194 199 201 207 209 213 220 222 226 229 236 238 241 243 249 MEAN 0 0 0 0 0 1 2 8 6 1 3 1 0 1 2 2 2 8 8 4 1 6 1 8 9 .0 .0 .0 .0 .0 .4 .7 .6 .9 .9 .9 .5 .9 .6 . 4 .6 .8 .6 .8 .5 1 2 .6 1 1 .7 2 5 .9 9 .8 15.1 7 .2 VAR SE 0 0 0 0 0 .0 0 .0 0 . 00 .0 0 .00 .70 .76 .1 4 .2 0 .01 .3 3 .9 6 .42 .81 .6 0 .70 .07 .06 .5 5 .70 .4 4 .29 .3 6 .0 5 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 . 00 4 .9 3 5 .7 9 4 5 .8 2 4 8 .5 4 9 0 .3 2 1 1 0 .9 9 8 7.61 1 1 6 .9 9 32.71 6 7 .6 0 4 .9 3 11 .51 1 0 .0 3 6 4 .8 4 2 8 .9 4 1 3 0 .4 5 5 2 .4 6 5 5 .6 6 41 .96 1 1 2 1 3 2 2 2 1 5 5 .6 6 37.51 3 .95 1 .94 2 2 3 3 2 3 1 2 3 72 Appendix H, Table 4. Mean estimates of SC third instar density for samples of 60 cm of onion row in 1978. ACC. DDAY 1 9 6 .7 261 .1 4 3 5 .6 5 1 0 .9 5 8 8 .8 661 .0 684.1 7 4 2 .9 7 95 ,7 8 5 0 .2 9 5 6 .8 9 9 5 .7 1071 .0 1 1 1 3.2 1 21 1 .6 1 2 3 8 .3 1 2 8 8 .8 1 3 8 0 .2 1409.1 1 4 7 5 .8 1531 .3 1 64 1 .1 1 6 7 0 .8 1 7 2 0 .8 1747 .2 1836 .6 DATE MEAN 135 140 152 159 166 171 173 177 180 184 191 194 199 201 207 209 213 220 222 226 229 236 238 241 243 249 .8 1 .0 .3 0 . 0 0 .0 1 .2 1 .7 2.1 2 .3 1 .6 .6 .6 .1 0 .0 .4 2 .6 0 .0 5 .7 5 .8 2 .2 2 .7 1 .7 1 .8 . 3 . 2 .6 SE VAR .62 1 .56 . 23 0 .0 0 0 .0 0 3 .07 6.01 8 . 10 11 . 3 4 11 . 8 2 1 .60 .71 .10 0 .0 0 .71 9 .1 6 0 .0 0 4 5 .7 9 1 0 .1 8 4 .4 0 3 .3 4 6.01 3.51 .46 .18 1 .16 0 0 1 1 0 0 2 1 .25 .39 .15 .0 0 .0 0 .55 .78 .90 .07 .09 .40 .27 . 10 .0 0 .27 .96 .0 0 .1 4 .01 .66 .58 .78 .59 .21 .13 . 34 373 Appendix H, Table 5. Mean estimates of SC pupal density for samples of 60 cm of onion row in 1978. ACC. DDAY 196. 7 261 .1 4 3 5 .6 5 1 0 .9 5 8 8 .8 661 .0 684.1 7 4 2 .9 7 9 5 .7 8 5 0 .2 9 5 6 .8 995 .7 1071 .0 1 1 1 3 .2 1211 .6 1 2 3 8 .3 1 2 8 8 .8 1 3 8 0 .2 1409.1 1 4 7 5 .8 1531 . 3 1641.1 1 6 7 0 .8 1 7 2 0 .8 1747 .2 1 8 3 6 .6 DATE MEAN 135 140 152 159 166 171 173 177 180 184 191 194 199 201 207 209 213 220 222 226 229 236 238 241 243 249 2.1 2 .5 1 .8 .8 .3 1 . 3 . 6 2 .3 1 .6 2 .5 2 .6 4 .0 7 .9 1 .6 .4 .9 .7 .4 .8 1 .0 3 .4 3 .5 5.1 4 .3 2 .2 .6 VAR 5.21 9 . 39 4 .8 4 1 .29 .46 1 .12 .49 2.23 1 .60 2 .7 2 3 .6 0 1 8 .4 4 1 6 . 32 1 .60 .71 2 .77 .46 .49 2 .1 8 2.22 7.38 1 0 .9 4 6.99 32 .6 8 4 .8 4 1 .60 SE 1 1 1 1 .72 .97 .70 .36 . 21 .34 .22 .47 .40 . 52 .60 . 36 .28 .40 .27 . 53 .21 . 22 .47 .47 .86 .05 .84 .81 .70 .40 374 Appendix H, Table 6. Mean estimates of OM second instar density for samples of 60 cm of onion row in 1979. ACC. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DDAY 3 1 7 .6 344. 1 3 60 .7 4 2 3 .8 4 9 0 .5 5 53 .6 662 . 7 6 9 2 .4 7 60 .6 7 9 0 .8 8 2 6 .7 850.1 9 1 9 .2 9 7 6 .9 0 5 6 .4 0 8 2 .5 1 6 8 .9 2 0 0 .6 2 8 2 .8 314 .7 3 8 1 .4 4 3 9 .4 4 7 8 .2 495.1 585.1 612 .3 6 6 6 .4 700 .3 DATE M EAN 144 148 1 50 155 159 164 171 173 179 181 184 186 191 194 199 201 206 208 213 215 219 223 227 229 235 237 241 243 .5 .1 .8 .5 .6 .8 .4 .4 .8 .0 .8 .6 .6 .6 .0 .4 .0 .2 .6 .0 .0 .0 .8 .4 .0 .0 .0 .8 1 1 7 1 0 1 0 7 5 2 2 4 5 6 8 1 1 9 11 1 0 8 7 4 2 1 0 2 1 VAR SE .94 .99 3 .0 7 2 4 .9 4 3 6 .0 4 9.07 1 0.8 0 1 5.8 0 8 .7 0 1 .50 1 3 .7 0 2 3 .3 0 3 4 .8 0 5 .80 21 . 50 2 5 . 30 2 8 . 50 18.70 2 8.3 0 1 0.0 0 1 6.5 0 4 .0 0 1 .20 . 30 3 .00 0 .0 0 3 . 50 2 . 20 .31 .31 .55 1 . 58 1 .90 .95 1 .47 1 .78 1 . 32 .55 1 .66 2.16 2 .6 4 1 .08 2.07 2 . 25 2 . 39 1 .93 2. 38 1 .41 1 .82 .89 .49 . 24 .77 0 .0 0 .84 .66 375 Appendix H, Table 7. Mean estimates of OM third instar density for samples of 60 cm of onion row in 1979, ACC. DDAY 3 1 7 .6 344.1 3 6 0 .7 4 2 3 .8 4 9 0 .5 553 .6 6 6 2 .7 6 9 2 .4 7 6 0 .6 7 9 0 .8 8 2 6 .7 8 50.1 9 1 9 .2 9 7 6 .9 1 0 5 6 .4 1 0 8 2 .5 1 1 6 8 .9 1 2 0 0 .6 1 2 8 2 .8 1 3 1 4 .7 1 3 8 1 .4 1 4 3 9 .4 1 4 7 8 .2 1495.1 1585.1 1612 .3 1 6 6 6 .4 1700 .3 DATE MEAN VAR SE 144 148 150 1 55 159 164 171 173 179 181 184 186 191 1 94 199 201 206 208 213 215 219 223 227 229 235 237 241 243 0 .0 .1 .7 2 .3 3 .8 6 .9 9 .4 1 0 .4 7 .4 7 .0 6 .8 4 .8 4 .0 1 .4 7 .4 8 .2 9 .2 1 0 .4 1 0 .2 8 .6 6 .2 5 .0 4 .0 2 .2 3 . 2 .2 .8 1 .8 0 .00 .10 1.12 3 .1 2 6 .6 2 2 6.77 1 4.8 0 1 5.3 0 1 2 .3 0 3 3.5 0 5 3.70 1 3 . 20 7 . 50 1 . 30 3 5 .8 0 1 3 .7 0 8 .2 0 2 8 . 30 4 0 .7 0 8 . 30 8 . 20 6 .5 0 7 .5 0 3 .70 2 7 .2 0 . 20 . 70 .70 0 .0 0 .10 .34 .56 .81 1 .64 1 .72 1 .75 1 . 57 2 . 59 3 . 28 1 .62 1 .22 .51 2.68 1 .66 1 . 28 2. 38 2.85 1 . 29 1 .28 1 .14 1 .22 .86 2 . 33 . 20 . 37 .37 376 Appendix H, Table 8, Mean estimates of OM pupal density for samples of 60 cm of onion row in 1979. ACC. DDAY 3 1 7 .6 344.1 3 6 0 .7 4 2 3 .8 4 9 0 .5 5 5 3 .6 6 6 2 .7 6 9 2 .4 7 6 0 .6 7 9 0 .8 8 2 6 .7 850.1 9 1 9 .2 9 7 6 .9 1 0 5 6 .4 1 0 8 2 .5 1 1 6 8 .9 1 2 0 0 .6 1 2 8 2 .8 1 3 1 4 .7 1 3 8 1 .4 1 4 3 9 .4 1478 .2 1495.1 1585.1 1612 .3 1 6 6 6 .4 1700.3 DATE 144 148 150 155 159 164 171 173 179 181 184 186 191 194 199 201 206 208 213 215 219 223 227 229 235 237 241 243 MEAN VAR 0 0 0 0 0 2 3 1 11 6 1 4 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 4.71 4 .8 0 1 .70 9 . 30 0 . 30 5 .0 0 8 .3 0 3 .2 0 7 .7 0 0 .8 0 2 . 20 1 .8 0 7 . 50 7 . 30 9 .2 0 3 .8 0 6 . 30 0.5 0 1 .3 0 5.70 7.5 0 3.5 0 7 . 20 1 2 3 3 1 2 1 .0 .0 .0 .0 .0 .6 .6 .2 .4 .4 .0 8 .6 8. 2 6 .8 3 .4 4 .2 4 .4 4 .0 9 .6 4 .8 1 6 .6 1 4 .4 1 5 .0 1 0 .4 1 7 .2 21 . 0 8 .0 4 .8 1 3 2 2 2 1 8 6 5 7 9 1 8 7 2 1 9 1 7 1 1 5 7 3 SE 0 0 0 0 0 1 1 4 3 .0 0 .0 0 .0 0 .0 0 .0 0 .69 .72 .58 .96 .01 .61 8 .4 7 7 .39 4 .4 2 6 .4 9 4 .0 5 7 .3 7 2 . 35 1 .86 1 . 36 4 . 33 1 .81 3.76 4 . 72 3 . 34 3 .94 2 .5 9 1 .20 377 Appendix H, Table 9. Mean estimates of OM pupae parasitized by A. bilineata from samples of 60 cm of onion row in 1979. ACC. DDAY 3 1 7 .6 344.1 1 1 1 1 1 1 1 1 1 1 1 360. 7 423. B 4 9 0 .5 5 5 3 .6 6 6 2 .7 692 .4 7 6 0 .6 7 9 0 .8 826. 7 850.1 9 1 9 .2 9 7 6 .9 0 5 6 .4 0 8 2 .5 1 6 8 .9 2 0 0 .6 2 8 2 .8 314 .7 3 8 1 .4 4 3 9 .4 4 7 8 .2 495.1 585.1 1 61 2 .3 1 6 6 6 .4 1700 .3 DATE 144 148 150 155 159 164 171 173 179 181 184 186 191 194 199 201 206 208 213 215 219 223 227 229 235 237 241 243 MEAN 0 0 0 0 0 0 0 0 0 1 1 2 2 2 2 1 1 1 1 2 3 1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .2 .4 . 6 .0 .4 .2 .2 .4 .4 .6 .0 .6 .8 .8 .8 .2 .2 .4 .8 VAR 0 0 0 0 0 0 0 0 0 1 1 1 1 1 3 1 1 1 3 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 . 00 .0 0 .0 0 . 20 .80 .80 .50 .30 . 70 .70 .80 .30 .80 .00 . 30 .20 .70 .20 .70 .2 0 .80 .70 SE 0 0 0 0 0 0 0 0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .20 .40 .40 .32 .51 .58 .37 .60 .51 .40 .45 .81 .49 .37 .49 . 58 .80 .40 .37 378 Appendix H, Table 10. Mean estimates of SC third instar density for samples of 60 cm of onion row in 1979. ACC. DDAY 2 7 0 .3 311 .5 3 1 7 .6 344.1 3 6 0 .7 4 2 3 .8 4 9 0 .5 5 5 3 .6 6 62 .7 692 .4 7 60 .6 7 9 0 .8 8 2 6 .7 850.1 9 1 9 .2 9 7 6 .9 1 0 5 6 .4 1 0 8 2 .5 1 1 6 8 .9 ’ 1 2 0 0 .6 1 2 8 2 .8 1 3 1 4 .7 1 3 8 1 .4 1 4 3 9 .4 1 1 1 1 1 1 4 4 5 6 6 7 7 8 .2 95.1 85.1 12 .3 6 6 .4 0 0 .3 DATE 138 143 144 148 150 155 159 164 171 173 179 181 184 186 191 194 199 201 206 208 213 215 219 223 227 229 235 237 241 243 MEAN 4 5 5 3 1 2 3 2 4 4 3 1 1 2 1 1 2 2 2 1 1 0 0 .6 .7 .4 .1 .5 .2 .7 .4 .4 .0 .6 .0 .2 .0 .2 .4 .2 .0 .6 .4 .6 .4 .6 .0 .4 .4 .4 .0 .0 .4 VAR 12 1 0 13 1 6 3 .71 .4 6 . 38 .1 0 .61 .18 1 .12 .49 4 .3 0 1 0 .0 0 5 .8 0 1 7 . 50 7.20 4 .0 0 1 .70 .30 1 .70 8 .5 0 4 . 30 1 .30 7 .3 0 . 30 .80 5 .5 0 4 . 30 6 .8 0 1 .30 0 .0 0 0 .0 0 . 30 SE 1 1 1 1 .13 .02 .16 .27 .60 .13 .34 .22 .93 1 .41 1 .08 1 .87 1 .20 .89 .58 . 24 .58 1 . 30 .93 . 51 1 .21 .24 .40 1 .05 .93 1 .17 .51 0 .0 0 0 .0 0 . 24 379 Appendix H, Table 11. Mean estimates of SC pupal density for samples of 60 cm of onion row in 1979. ACC. DDAY 270. 3 311 .5 3 1 7 .6 344.1 3 6 0 .7 4 2 3 .8 4 9 0 .5 5 5 3 .6 6 6 2 .7 6 9 2 .4 7 6 0 .6 7 9 0 .8 8 2 6 .7 850.1 9 1 9 .2 9 7 6 .9 1 0 5 6 .4 1082 .5 1 1 6 8 .9 1200 .6 1 2 8 2 .8 1314 .7 1 3 8 1 .4 1 4 3 9 .4 1 4 7 8 .2 1495.1 1585.1 1612 .3 1 6 6 6 .4 1700 .3 DATE 138 143 144 148 150 155 159 164 171 173 179 181 184 186 191 194 199 201 206 208 213 215 219 223 227 229 235 237 241 243 MEAN 3 7 6 5 5 2 1 1 2 1 1 2 1 4 4 2 3 2 3 1 1 1 1 3 3 3 .0 .0 .1 .0 .6 .4 .7 . 6 .4 .0 .2 . 2 .4 .8 .6 .4 .8 .2 .6 .8 .8 .4 .8 .0 .2 .2 .8 .6 .4 .6 SE VAR 1 4 1 2 1.11 3.3 3 8.99 8.89 4 0 6 4 1 .4 9 .2 7 .01 .16 .80 2.00 6 .2 0 1 .70 4 .3 0 1 5 .2 0 1 .30 13.30 3.70 1 .70 7 .3 0 7 .7 0 1 5 .7 0 1 .30 1 .70 .50 .20 1 .70 3.20 7.30 5 .3 0 11 . 3 0 1 2 1 1 .05 .0 8 .38 .70 2.01 .79 .63 .34 .40 .63 1 .11 .58 .93 1 .74 . 51 1 .63 .86 .58 1 . 21 1 . 24 1 .77 .51 . 58 . 32 . 20 .58 .80 1 . 21 1 .03 1 . 50