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ABSTRACT 

CROP PRODUCTION AND FUTURE CLIMATE CHANGE IN                                                
A HIGH LATITUDE REGION: A CASE STUDY FOR THE UPPER GREAT LAKES 

REGION OF THE UNITED STATES 
 

By 

Perdinan 

 
Agriculture is particularly susceptible to climate change, as inferred from large historical 

variations in crop production in response to past climate variability. The major goal of this 

dissertation is to evaluate the spatial variability of the impacts of projected future climate change 

on crop production in a high latitude region.  Corn and soybean production in the Upper Great 

Lakes Region (UGLR) of the United States, encompassing the states of Michigan, Wisconsin 

and Minnesota, serves as the case study. The CERES-Maize and CROPGRO-Soybean models 

included in the Decision Support System for Agrotechnology Transfer (DSSAT) were employed 

to simulate county-level crop production for current and future time slices.  

A first step in the analysis was to assign individual counties to nearby climate stations, as 

climate data (e.g., temperature and precipitation) are primary drivers for the DSSAT simulations. 

A climate regionalization procedure was applied to group climate stations from the United States 

Historical Climate Network into subgregions with similar characteristics of the annual cycle of 

temperature and precipitation. Representative stations were chosen from each climate region, and 

counties were assigned to the closest representative station. The regionalization ensured that the 

spatial gradients of temperature and precipitation across the UGLR were captured in the analysis.  

Daily solar radiation, also an important variable for the DSSAT simulation but one which 

is infrequently recorded, was calculated using a mechanistic solar radiation model parameterized 

at a central site within the study area for which concurrent observations of solar radiation,



temperature and precipitation were available. This model was selected after systematically 

evaluating the sensitivity of simulated corn and soybean yield to different solar radiation sources. 

Climate change projections for a mid century (2041-2070) time slice were derived from 

eight combinations of regional climate models and global climate models released by the North 

American Climate Change Assessment Program. The impact assessment revealed that by the mid 

century, assuming the current CO2 level, corn and soybean yield for the northern part of the 

region likely will increase due to more favorable growing season conditions than at present; 

whereas, a slight decrease in yield due to shorter time to maturity may occur in the southern part 

of the UGLR, which is currently a major crop production region. However, under elevated CO2 

concentrations, the number of counties with a projected decrease in yield is smaller due to the 

positive impacts of higher CO2 levels, particularly for soybean production.  

As the DSSAT simulations do not capture the effects of pest and disease infestations or 

economic factors on crop yield, a prototype interdisciplinary model for corn yield was developed 

using an asymmetric production function to integrate the DSSAT simulated yields with 

economic determinants (i.e., costs of pesticides, machinery, labor and fertilizer) to estimate 

observed county-level yield. The interdisciplinary model was shown to be a viable alternative to 

classical yield functions, and this model framework merits future study and refinement.   

In general, this study suggests that more favorable growing conditions by the mid century 

will benefit the northern UGLR where some areas may produce relatively high corn and soybean 

yields especially under elevated CO2 concentrations. Despite a potentially small reduction in 

crop yields, current crop production in the southern UGLR will remain large, partially due to the 

positive impact of elevated CO2 concentrations. 
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CHAPTER 1.                                                                                                           

Background and Research Objectives 

1.1. Background  

Recent studies (e.g., Gilland, 2002; Jaggard et al., 2010; Tilman et al., 2011) raise as a 

serious challenge the ability of global food supply to meet the demand for food consumption in 

2050, as human population is expected to increase to about nine billion. Climate change, 

including changes in the mean climatic state and changes in variability, intensifies the challenge 

of future world food supply (Rosenzweig and Parry, 1994; Schmidhuber and Tubiello, 2007). 

Globally, climate change likely will adversely impact crop productivity in low latitude countries, 

whereas high latitude countries may benefit (Cline, 2007; Parry et al., 2005). The adverse 

impacts of climate change are also projected to increase the risk of hunger in developing 

countries (Parry et al., 2005; Schmidhuber and Tubiello, 2007).   

Given the perspective of climate change as a global threat to human livelihood (Barnett, 

2010; Wilby et al., 2009), the estimated potential benefits of climate change to crop productivity 

in high latitude regions is an interesting subject. Potential benefits are expected because 

increased precipitation in high latitude regions (IPCC, 2007) may offset greater 

evapotranspiration arising from future higher temperatures, leading to more favorable conditions 

for crop production such as in the high latitude regions of North America (Fischer et al., 2005). 

However, this generalization needs further exploration as the impacts of climate change on crop 

productivity in high latitude regions likely is regionally and even locally specific (e.g., Brassard 

and Singh, 2008; Southworth et al., 2002; Southworth et al., 2000). Regional variations in 

climate change impacts are anticipated because changes in temperature and precipitation will 



 2 

vary spatially, as illustrated by the impact of recent (1976-2006) climate trends on county-level 

corn and soybean yield in Wisconsin of the United States (Kucharik and Serbin, 2008).   

This study will evaluate spatial variability of future climate change impacts on county-

level corn and soybean production in counties located within the Upper Great Lakes Region of 

the United States, encompassing the states of Michigan, Wisconsin and Minnesota. Corn and 

soybean, the two most commonly grown crops in the region (Hatfield, 2012; Niyogi and Mishra, 

2013), were chosen to represent the two major crop types, i.e., C4 (corn) and C3 (soybean), 

which are expected to respond differently to climate change (Mera et al., 2006). Although 

agricultural production is considered a major economic contributor for the region, the spatial 

detail of potential future climate change impacts on crop production rarely has been studied for 

the region.  

Previous studies for the study area (Andresen et al., 2000; Southworth et al., 2002; 2000) 

selected a few representative locations to evaluate the potential impact of future climate change 

on corn and soybean production. Ten sites (Southworth et al., 2000) and nine sites (Southworth 

et al., 2002), located across the states of Indiana, Illinois, Ohio, Michigan, and Wisconsin, were 

selected to evaluate the consequences of projected climate change for a future period (2050-

2059) relative to the baseline period (1961-1990) on corn and soybean yields. Southworth et al. 

(2000) found specifically for locations in Michigan and Wisconsin, that future climate change 

may have either a positive or negative impact on grain yield of long and medium season corn 

varieties, depending on the location within these two states and/or climate scenarios; whereas, 

the projected impact was negative for a short season corn variety for all locations and climate 

scenarios. For example, simulated corn yields of long-season variety in the Michigan Thumb and 

eastern Wisconsin were projected to increase up to 50% and 40%, respectively, regardless of 
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climate scenario. In contrast, grain yields of long season variety for south-central Michigan and 

southwest Wisconsin were projected to change from 20% to -20% and 20% to -10%, 

respectively, with the differences in sign corresponding to different climate scenarios. In these 

two locations, the short season variety was projected to decrease by up to 30% and 50%. 

Furthermore, Southworth et al. (2002) found that future climate change is likely to boost 

soybean yields, especially for late-maturing soybean cultivars. They estimated that the yield of late-

maturing soybean cultivars may increase up to 120% in south-central Michigan and the 

Michigan Thumb region. For mid-maturing cultivars, yields were projected to increase by 5% or 

decrease by 25% in southwestern Wisconsin, depending on climate scenarios; whereas, soybean 

productivity in eastern Wisconsin, south-central Michigan, and the Michigan Thumb were  

projected to increase by up to 60%. The largest increase in yields for the early maturing cultivar 

were expected in south-central Michigan where yields could possibly increase up to 120%. 

Overall, the increase in yields for late-maturing variety was expected to be greater than that for 

early maturing cultivars across the study locations (Southworth et al., 2002). 

However, an assessment specifically for the UGLR gives somewhat different projections 

compared to those for the wider Midwest region.  Andresen et al. (2000) did not project a future 

decrease in corn and soybean yields for the ULGR region;  rather, they reported that yields in the 

period of 2000-2099 for 13 locations within the UGLR are likely to significantly increase 

compared to yields for historical records (1896-1996). This increase was attributed to the 

positive impacts of CO2 enrichment on crop yield, particularly for soybean (Andresen et al., 

2000). A similar carbon fertilization effect was also found by Southworth et al. (2002). 

Although, the conclusions drawn from the above studies may be appropriate for 

estimating the impacts of climate change at particular locations, generalizing the conclusions 
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across the region could be problematic, thus further exploration is needed to identify areas with 

decreasing or increasing crop production under future climate change and elevated atmospheric 

CO2 concentrations. In addition, the limited locations employed in the previous analyses also 

prevent the use of their results to explore potential latitudinal shifts of major crop production 

regions to the north that is frequently highlighted by national-scale impact studies for the United 

States (e.g., Thomson et al., 2005; Tubiello et al., 2002). 

A major challenge of regional climate change impact assessments at the county level, the 

scale chosen in this study, is data availability. Ecophysiological models, commonly known as 

crop models (White and Hoogenboom, 2011), often have been employed for climate change 

impact assessments in recent decades as reviewed by White et al. (2011a), require extensive data 

inputs (e.g., climate data, soil information and farming practices) for the model simulations. 

Unfortunately, the required data inputs are not available for each county in the UGLR. 

Specifically for climate data, daily solar radiation, one of the main climate variables which is 

needed for crop model simulations, is infrequently recorded compared to temperature and 

precipitation (Liu and Scott, 2001).    

Crop models are regulallry employed in climate change impact assessments because they 

are able to simulate the non-linear interactions among plants, environment and farming practices 

at a specific location (Hoogenboom et al., 2004; Meinke et al., 2001). However, crop models 

generally poorly simulate the impacts of weeds and pest and disease infestations (Soussana et al., 

2010; Tubiello et al., 2002), and can not capture the contribution of economic determinants to 

yield variability (Kaufmann and Snell, 1997; Vera-Diaz et al., 2008). The inclusion of economic 

stressors has been recommended by the climate impact research community (Challinor et al., 

2009), recognizing the contribution of economic factors to yield variability (Cabas et al., 2010; 
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Kaufmann and Snell, 1997). Socio-economic conditions can influence farmers’ decisions in 

managing their land  and selecting farming practices (de Koeijer et al., 1999). Guan et al. (2006) 

assert that economic factors such as capital and labor can create favorable growing conditions for 

crop production.  

A potential approach proposed to overcome the limitation of crop models is to develop 

yield models that combine the outputs of crop models and economic determinants (i.e, ‘a hybrid 

model’), such as the model proposed by Kaufmann and Snell (1997). This hybrid model, referred 

by Kaufmann and Shell as a “interdisciplinary model”, offers an advantage over the direct use of 

crop models by capturing, at least in part, the influence of socio-economic drivers on crop yield 

fluctuations. In comparison to traditional empirical yield models (e.g., Almaraz et al., 2008; 

Cabas et al., 2010; Tannura et al., 2008), the interdisciplinary model better captures non-linear 

interactions between weather variables, environmental conditions and crop growth processes, 

which are often oversimplified in empirical yield models (Challinor et al., 2009; Soussana et al., 

2010). A recent application is the development by Vera-Diaz et al. (2008) of an interdisciplinary 

model for soybean yield that combines simulated yields from a crop simulation model, 

geographic location (i.e., latitude and longitude) and economic variables (i.e., credit, transports 

costs) to explain soybean yield variability in the Brazilian Amazon.  

Yet, none of the earlier interdisciplinary models include economic determinants 

associated with chemicals to control pest and diseases, capital, and labor. A recent study 

conducted by Guan et al. (2006) proposed an empirical yield model based on an asymmetric 

framework to distinguish the impacts of growth inputs (i.e., land, seed, environmental factors) 

and facilitating inputs (i.e., pesticides, capital and labor) on attainable and actual yield 

(vanIttersum and Rabbinge, 1997), respectively. Unfortunately, the utilization of dummy 
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variables to reflect environmental conditions (e.g., soil and climate) limits the application of the 

model for climate change assessments. However, the model structure proposed by Guan et al. 

(2006) can provide an alternative framework for the development of a new type of 

interdisciplinary model. A crop model can be used to simulate crop yields (i.e., attainable yield) 

based on agricultural growth inputs and agronomic practices (i.e. cultivar, row and spacing, and 

planting dates), and economic determinants are used to adjust simulated yields in order to obtain 

estimated yields (i.e., actual yield). 

 The recent release of future climate projections for the mid century (2041-2070) from an 

ensemble of regional climate models (RCMs) driven by several global climate models (GCMs), 

included in the North American Regional Climate Change Assessment Program (Mearns et al., 

2009), offers an opportunity to utilize higher resolution climate model outputs for the 

development of climate change scenarios. Many studies (e.g., Frei et al., 2003; Kim et al., 2008; 

Kjellstrom et al., 2010) argued that the finer resolution of RCMs offers an advantage in 

simulating details of regional climate compared to the corresponding lateral boundary condition. 

Furthermore, the extensive effort of downscaling outputs of several GCMs to a regional scale 

using multiple RCMs, known as dynamical downscaling (Fowler et al., 2007), is rarely applied 

for regional climate change impact assessments because dynamical downscaling is 

computationally expensive (Fowler et al., 2007; Wilby and Wigley, 1997).  

This dissertation attempts to address the above challenges to better understand the spatial 

variation of future climate change impacts on crop production in high latitude regions by using 

the Upper Great Lakes Region of the United States as a case study. This study offers a 

methodology to prepare required data for crop model simulation at the county-level. 

Additionally, alternative daily solar radiation sources are assessed to choose appropriate daily 
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solar radiation estimates as inputs for crop model simulations. Climate change scenarios derived 

from the NARCCAP datasets are employed to evaluate the potential regional impacts of 

projected climate change for the mid century on crop production in the study region. An 

interdisciplinary model for corn yield is developed to explore the contribution of economic 

determinants to explain the deviation between simulated and observed yields.    

The outcomes of this research contribute to the enhancement of methods for conducting 

regional climate change assessments, especially at the county scale. The impact assessment 

conducted for the study region also enhances our understanding of the spatial variation of future 

climate change impacts on crop production in high latitude regions. The relatively detailed 

spatial analysis of the potential impacts allows potential latitudinal shifts of crop production 

region under exposure of future climate change to be examined. The interdisciplinary model 

provides an alternative approach for evaluating the possible consequences of combining climate 

and economic exposures to crop yield variability. Finally, the outcomes of this research will help 

decision makers in the region to devise agricultural management strategies for climate change 

adaptation.   

   

1.2. Research Objectives  

The main goal of this dissertation is to evaluate the spatial variability of future climate 

change impacts on corn and soybean production in the Upper Great Lakes Region (UGLR) of the 

United States. Specifically, the first goal is to develop an objectively-defined climate 

regionalization for the region that is proposed to prepare climate data for crop model simulations 

at the county scale. The second goal is to evaluate the sensitivity of simulated corn and soybean 

yields to different daily solar radiation estimates in order to choose appropriate daily solar 
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radiation estimates for crop model simulations employed for climate change impact assessments. 

The third goal is to identify the spatial distribution of future climate impacts on corn and soybean 

production over the UGLR. The fourth goal is to develop an interdisciplinary model for corn 

yield that can be employed for regional climate change assessments. This dissertation addresses 

each objective in separate chapters. The objectives and methods will be explained in more detail 

in each chapter.       

1.3. Study Region  

The UGLR is comprised of the states of Michigan, Wisconsin and Minnesota (Safir et al., 

2008). This region is located in the United States (US) Midwest (Pryor and Barthelmie, 2013), 

which is considered the ‘main heartland’ of agriculture in the US (Figure 1-1). Corn and 

soybean, the crops selected for this study, are considered the two major agricultural commodities 

in the region (Hatfield, 2012; Niyogi and Mishra, 2013).  

The major growing areas of corn and soybean are located mostly in the southern part of 

the UGLR (Safir et al., 2008). County averages of corn and soybean yield from 1942 to 2008 are 

larger in the southern part of the region (Figure 1-2). In these areas, the variability of corn and 

soybean yields is also highest. Corn and soybean yields in each of the three states display a 

positive trend since 1942 (Figure 1-3). Corn yield in Minnesota increased about 108 kg/ha per 

year; whereas, in Michigan and Wisconsin, yield increased about 91 kg/ha per year. Trends of 

soybean yields for Wisconsin, Minnesota and Michigan were 31.5, 29.7, and 26.5 kg/ha per year, 

respectively. Improvements in agricultural management and technology and favorable weather 

over the period are considered the key factors contributing to increased corn and soybean yields 

in the region (Andresen et al., 2001; Tannura et al., 2008). 
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Figure 1-1. The study area within the Midwest region of the United States. [“For interpretation of 

the references to color in this and all other figures, the reader is referred to the electronic version 

of this dissertation.”] 
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Figure 1-2. Average and standard deviation of corn (top figures) and soybean (bottom figures) 

yields over the UGLR from 1942 to 2008. Data source: National Agriculture Statistics Service - 

United States Department of Agriculture (NASS-USDA, 2011) 
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Figure 1-3. Trends of corn (top) and soybean (bottom) yields in the UGLR from 1942 to 2008. 
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1.4. Dissertation Structure 

This dissertation is divided into six chapters. The first chapter (Chapter 1) provides a 

background of the research, the research objectives, and the study region.  

Chapter 2 discusses the climate regionalization of the study region. Climate stations 

included in the United States Historical Climate Networks (USHCN) for the UGLR and 

neighboring states were grouped using a combination of principal component analysis (PCA) and 

non-hierarchical (kmeans) clustering method. Euclidian allocation and distance was employed to 

create clustering boundaries and assign a specific climate group to counties, respectively.  

Chapter 3 evaluates the sensitivity of crop models to six different daily solar radiation 

estimations, i.e., point-based estimates (empirical, dynamical, and weather generator), and 

gridded datasets (NASA-POWER, NARR, and NARCCAP). Statistical analyses, e.g., t-test, 

mean absolute error (MAE), root means square error (RMSE), correlation coefficient 

(r)/coefficient determination (R
2
), and mean squared deviation (MSD), were applied to assess the 

performance of the alternative radiation sources and their impacts on corn and soybean yields.   

Chapter 4 elaborates the spatial variation of future climate impacts on corn and soybean 

production across counties in the UGLR. Representative climate stations were selected and 

assigned to each county by considering the climate groups for the UGLR (Chapter 2). Soil 

parameters for each county were obtained from the STATGO database. Faming practices were 

set at the rainfed condition with multiple planting windows to optimally start planting crop 

across the UGLR counties. Climate change projections of precipitation, maximum and minimum 

temperature were derived from eight RCM-gcm combinations available from the NARCCAP 

database.  
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Chapter 5 discusses the development of an interdisciplinary model for county-level corn 

yield in the UGLR. This model was developed by relating the ratio of observed to simulated corn 

yield (predictand) with economic data (predictors) at the county level. Observed corn yields were 

detrended in order to be comparable with simulated yields.  Economic data (i.e., total costs of 

chemical, machinery, labor and fertilizer) for the model development were obtained from the 

agricultural census for 1997, 2002, and 2007 and adjusted using a corresponding price index for 

each economic variable. The model parameters were estimated using nonlinear least square 

(NLS) estimator. The contribution of each economic variable to the dependent variable was 

evaluated using elasticity analysis.     

Chapter 6 summaries findings from Chapter 2 to Chapter 5. Implications of the research 

outcomes and their contribution to enhancing knowledge about regional climate change impacts 

also are discussed.  
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CHAPTER 2.                                                                                                                      

Selection of Climate Information for Regional Climate Change Assessments using 

Regionalization Techniques: a Case Study for the Upper Great Lakes Region, USA 

 
 

In collaboration with 
 

Julie A. Winkler 
 
 

2.1. Introduction  

The impacts of climate change, such as those for crop production, are regionally (e.g., 

Cline, 2007; Motha and Baier, 2005) and even locally (e.g., Goldblum, 2009; Kucharik and 

Serbin, 2008) specific. Consequently, most climate change assessments are conducted at the 

regional scale (Carter et al., 2007). A common approach in regional-scale assessment studies is 

to select a modest number of locations that hopefully capture within-region spatial variations of 

the current climate and potential climate change impacts (e.g., Brassard and Singh, 2008; 

Southworth et al., 2002; Southworth et al., 2000). This approach is in part dictated by the need 

for fine-scale climate scenarios for regional climate change assessments. As pointed out by 

Winkler et al. (2011), climate scenario development, which typically consists of homogeneity 

testing of historical time series of climate observations, application of models (dynamic and/or 

empirical) to “downscale” coarse resolution output from global climate models to the regional or 

local scale, and extensive evaluation of the downscaled variables, is time consuming and 

resource intensive and often a “road block” for an impact assessment. Thus, for many assessment 

studies, developing scenarios for a large number of locations within a region may not be an 

option (Winkler et al., 2002).  
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When selecting locations for an assessment, previous studies typically have considered 

the length of the historical time series or the perceived representativeness of climate stations 

within a region (e.g., Almaraz et al., 2008; Andresen et al., 2000). A concern of the first selection 

criterion is that the stations with the longest records may not adequately capture the spatial 

variability of climate across the study area, whereas the second criterion requires that the size of 

the subregion for which a station is representative be clarified and that the characteristics used to 

evaluate representativeness be specified. These concerns illustrate the need for innovative 

approaches for selecting climate stations for climate change assessments. 

We propose and demonstrate that an objectively-defined climate regionalization can be 

useful when selecting the number and location of representative stations with the goal of 

capturing the spatial variability of a region’s climate. Furthermore, the proposed approach 

provides an indication of the needed resources for climate scenario development. For the 

illustrative application described below, a combination of principal component analysis (PCA) 

and hierarchical and non-hierarchical clustering techniques is employed to group climate stations 

from the United States Historical Climatology Network (Menne et al., 2009) in the Upper Great 

Lakes region (UGLR) of the United States. The regionalization is based on mean monthly 

maximum and minimum temperature and precipitation. These three climate variables were 

chosen so that the regionalization would be applicable to a wide range of assessments, although 

the choice of climate variables for a particular application should be dependent on the assessment 

goals. The regionalization was performed separately for three different periods, 1971-2000, 

1941-1970, and 1911-1940 to investigate the sensitivity of the climate groups to the choice of 

time period for which the regionalization is conducted. To help visualize the spatial variability in 

climate, cluster boundaries were defined using Euclidean allocation (ESRI, 2008). In addition, 
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Euclidian distance was employed to link the cluster regions and site specific information from 

representative climate stations for each region with aggregated datasets (e.g., agricultural, 

biological, social-economic) at the United States county level (USDA-NASS, 2007). The 

regionalization and linkages to political units provide a starting point and framework for further 

assessment activities, including climate scenario development, incorporation of additional 

datasets and multiple aggregation levels into an assessment, and the use and development of 

decision-making models. 

2.2. Data Methods 

2.2.1. Climate Data  

Record length and the quality of climate observations are critical considerations in a 

climate regionalization. For this reason, climate observations from the United States Historical 

Climatology Network (USHCN) ver. 2.0 (Menne et al., 2009) were used. Each station within this 

network is generally considered to have a relatively long time series and the highest quality 

temperature and precipitation observations (Menne et al., 2009) compared to other stations 

within the United States Cooperative Observer Program (COOP) Network (Daly et al., 2007). 

This research utilized 180 climate stations distributed over the study area (Michigan, Wisconsin 

and Minnesota) and neighboring states (Figure 2-1). Stations from neighboring states were 

included to minimize edge effects that can reduce the accuracy of clustering results (e.g., 

DeGaetano, 1996; DeGaetano, 2001; Fovell and Fovell, 1993; Stooksbury and Michaels, 1991). 

Monthly mean maximum and minimum temperature adjusted for time of observation bias and 

other inhomogeneities and total monthly precipitation were extracted from the USHCN database 

for the period 1911-2000.  The monthly time series were used to calculate climatic normals for 

the three 30-year time periods, 1971-2000, 1941-1970, and 1911-1940. Temperature and 
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precipitation were selected for analysis as they are the two most commonly utilized variables for 

climate regionalization (e.g., Bunkers et al., 1996; DeGaetano, 2001; Fovell and Fovell, 1993).  

 

Figure 2-1. Distribution of the USHCN climate stations used in the climate regionalizaiton. The 

UGLR study area is defined as the states of Minnesota, Wisconsin, and Michigan. 

 

2.2.2. Regionalization Procedures 

A combination of PCA and a two step clustering process (hierarchical and non-

hierarchical clustering) was used for the climate regionalization. These techniques have been 

widely applied to understand the structure of climate datasets, as summarized by Jolliffe and 

Philipp (2010). The climate regionalization was initially performed for the period 1971-2000 

(Figure 2-2). Separate regionalizations were conducted for two earlier periods, 1941-1970 and 

1911-1940, although for comparison the number of clusters initially obtained for the 1971-2000 

period was held constant for all three regionalizations. The latest period is preferable as a 

reference, under the assumption it exhibits the current climatic conditions for the region. 
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Figure 2-2. Time periods used for the climate regionalization. 
 

PCA was used to reduce data dimensionality (Kalkstein et al., 1987) and to remove 

multicolleniarity among variables (Bohm et al., 2001). The 30-year monthly maximum and 

minimum temperature and precipitation averages were initially standardized to zero mean and 

unit variance to remove the influence of  different physical units on the PCA performance 

(Fovell and Fovell, 1993; e.g., Stooksbury and Michaels, 1991; Wilks, 1995). The PCA was then 

applied to the correlation matrix calculated from the 36 climate variables (columns) and 180 

locations (rows). A Varimax orthogonal rotation (Kaiser, 1959), which has been widely 

employed in climate research (e.g., Bohm et al., 2001; Dommenget and Latif, 2002; Fovell and 

Fovell, 1993; Richman, 1986), was applied to simplify interpretation. Only rotated components 

with at least one loading >0.5 were retained for the cluster analysis following Guentchev and 

Winkler (2010), resulting in four retained components explaining approximately 93% of the 

variation.   

A two-step clustering process was utilized to take advantage of the strengths of both 

hierarchical and non-hierarchical clustering. Hierarchical clustering was used to provide an 

estimate of the possible number of clusters in a dataset. The k-means partitioning technique, a 

non-hierarchical method, was used to assign objects to clusters. Unlike traditional hierarchical 

clustering, k-means analysis permits the reassignment of objects until a convergent criterion is 

achieved, but requires that the initial number of clusters be specified at the beginning of the 
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clustering process (Dezfuli, 2011; Jolliffe and Philipp, 2010; Rhee et al., 2008; Stooksbury and 

Michaels, 1991). For the hierarchical clustering, the scores of the rotated components were 

grouped into different clusters using Euclidian distance as the similarity measurement and 

various linkage functions (McQuity, median, average, single, complete, centroid, and Ward), all 

of which are regularly used for climate regionalization (e.g., Bunkers et al., 1996; Fovell and 

Fovell, 1993; Kalkstein et al., 1987; Stooksbury and Michaels, 1991). The component scores 

were not standardized preceding the cluster analysis, as such standardization may cause the 

distances between observations to be unrealistic (Johnson, 1998). The number of candidate 

clusters was evaluated using  the Sarle Cubic Clustering Criterion (CCC) (SAS Institute Inc., 

2004), Pseudo-F and Pseudo-t2 statistics (Fovell and Fovell, 1993), and distances between 

clusters (Fovell and Fovell, 1993; Wilks, 1995). Candidate numbers of clusters were chosen by 

searching for a breakpoint in the plots of these indices by merger level. Two breakpoints were 

selected for each criterion to provide a range of possible clusters for input to the k-means 

analysis. 

The non-hierarchical k-means cluster analysis was then performed using each candidate 

number of clusters obtained from the hierarchical clustering. A drift option was specified to 

update the cluster seeds during the partitioning processes to allow for adjustments of the seeds 

every time an observation was reassigned (SAS Institute Inc., 2004). The final number of 

clusters was determined based on Beale’s Pseudo-F criterion (Johnson, 1998) and a graphical 

evaluation of the sum of squares of the within cluster distances. Beale’s Pseudo-F was calculated 

from the intracluster sum of squares and compared to critical values of the F-distribution to 

assess whether a solution with additional clusters offers a significant improvement over a 

solution with a smaller number of clusters.  
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To help depict the spatial distribution of climate groups across the study region, cluster 

boundaries were defined objectively using Euclidian allocation, available in ArcGIS (ESRI, 

2008). The Euclidean allocation method is preferable over other interpolation techniques when 

the data being interpolated (in this case cluster membership) are nominal rather than 

interval/ratio measurements. The feature class of cluster memberships for the climate stations 

was converted to a raster grid of approximate size of 1 km
2
. For cells without climate stations, 

the Euclidean distance to the closest source cell (i.e., cell with a climate station) was calculated 

and the cluster membership of the source cell was assigned to the cell without a climate station. 

In effect, the “edges” of the raster cells falling in different clusters form the climate region 

boundaries, although the boundaries were identified within ArcGIS by converting the “filled in” 

raster grid to polygons.  Euclidean distance was also used to assign cluster regions to counties.  

In this case, the Euclidean distance of all surrounding climate stations to the centroid of each 

county was calculated, and the county was assigned to the climate cluster of the nearest climate 

station.   

2.3. Results  

2.3.1. Climate regionalization for 1971-2000 

The hierarchical clustering analyses resulted in a wide range of possible number of 

clusters as input for the k-means non-hierarchical clustering. As shown in Table 1, the number of 

clusters considered were 4-17, 21, 24, 26-28, 33, 35-37, 41-42, 45-46, 51, 59, and 67. The final 

number of clusters was determined based on Beale’s Pseudo-F criterion (Johnson, 1998) and a 

graphical evaluation of the first and second breakpoints of the sum of squares of the within 
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cluster distances. Beale’s Pseudo-F, suggested a 7 cluster solution, whereas either 7 or 21 

clusters was suggested by the graphical evaluation (Figure 2-3).     

The climate regionalization patterns are generally similar for the 7 and 21 cluster 

solutions (Figure 2-4). The 21-cluster solution captures more local characteristics, as indicated 

by the larger number, but smaller in size, clusters, especially in the lake-modified areas 

surrounding the Great Lakes and along the study area borders. The latter may be a reflection of 

“edge effects” on the analysis, in spite of the use of climate stations outside of the UGLR in the 

cluster analysis. The 7-cluster solution suggests that there is greater spatial variability in regional 

climate in Michigan and eastern Wisconsin where several non-contiguous clusters are evident. 

Both solutions suggest a small number of large, broad climate regions extending from northwest 

Minnesota to central Wisconsin. The discussion below focuses on the 7-cluster solution, given 

the overall similarity of the solutions and the Beale’s Pseudo-F test result that the 21-cluster 

solution is not a statistically significant improvement over the 7-cluster solution. 

 

Figure 2-3. Determination of the number of clusters based on graphical evaluation of the slope of 

the relationship between the sum of squares of within cluster distances (SSWCD) and the 

number of clusters. The two arrows indicate the 7 and 21 cluster solutions. 
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Figure 2-4.  The seven (top) and twenty one (bottom) cluster solutions. The climate regions for 

the 7-cluster solution have arbitrarily been assigned numbers for reference in the text. For the 21-

cluster solution, each region is assigned a letter to help readers distinguish between clusters and 

more easily identify non-contiguous clusters.  

2.3.2. Differences between the climate regions 

The differences between the climate regions were evaluated through a comparison of the 

deviations of the mean monthly precipitation and maximum and minimum temperature for each 

climate region from the average calculated across all climate regions, referred to as the UGLR 
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average. Starting with precipitation, western Minnesota (labeled Cluster 1 in Figure 2-4) is drier 

throughout the year compared to the other climate regions (Figure 2-5). In contrast, mean 

precipitation for Cluster 4 extending from southern Minnesota to south central Wisconsin is 

above the UGLR average for almost all months of the year. Wintertime precipitation is higher 

compared to other regions in non-contiguous Clusters 7 and 6, both located in Michigan and 

eastern Wisconsin, whereas spring and early summer precipitation is lower than the regional 

average. The seasonal variations are largest for Cluster 7. Distinct seasonality is evident in the 

deviation of mean monthly precipitation for Clusters 2, 3, and 5.  For Cluster 2, a relatively small 

non-contiguous region in southwestern Minnesota, mean monthly precipitation is below the 

UGLR average for all months except May. In contrast, a positive deviation in autumn 

precipitation is evident for Cluster 5, located in lake effect precipitation-influenced regions of 

northeastern Minnesota, northern Wisconsin, and the Upper Peninsula of Michigan. For Cluster 

3, extending from central Minnesota to central Wisconsin, mean monthly precipitation is above 

the UGLR average from June to October but below the large-scale average for the remainder of 

the year.  

Distinct differences are also seen between clusters in terms of mean monthly maximum 

and minimum temperature. Small, non-contiguous Cluster 2 in western Minnesota has a 

relatively higher mean maximum temperature compared to the other climate regions, although 

minimum temperature is warmer than that of other regions only in summer.  From winter 

through early spring, the highest mean minimum temperatures in the study area are found in 

Cluster 6 in eastern Wisconsin and Michigan. Cluster 5 in northern Wisconsin and Michigan’s 

Upper Peninsula has lower maximum and minimum temperatures during most of the year 

compared to the other climate regions with the exception of winter when temperatures are lower 
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in Clusters 1 and 3 found in Minnesota.  In Cluster 7, a lake-modified region, mean maximum 

temperature is above the UGLR average from November-February but below the large-scale 

average for the remainder of the year.  This pattern differs from that seen for Cluster 6, another 

lake-modified region, where monthly mean maximum temperatures are either similar to or 

warmer than the UGLR average throughout the year. Average minimum temperatures for Cluster 

2 are above the UGLR average for all months, and are generally similar to the mean 

temperatures observed in Cluster 6. Cluster 4 is unique in that mean monthly maximum and 

minimum temperature are close to the UGLR averages throughout the year.   

2.3.3. Changes in climate regions with time 

The application of cluster analysis to the other time periods shows substantial changes in 

the climate regions between the early- (1911-1940) and mid- (1941-1970) century time periods, 

whereas the cluster pattern for the mid-century period is similar to that for the late-century 

(1971-2000) period (Figure 2-6). Notable differences with time in the climate regions are found 

in the Lower Peninsula of Michigan, which was grouped into a single contiguous cluster for the 

early time period rather than the fragmented non-contiguous clusters seen for the later time 

periods. Substantial differences are also found in Minnesota. With time the large climate region 

seen in western Minnesota in the early time period retreats westward, whereas in northeastern 

Minnesota and northern Wisconsin, the climate regions coalesce during the mid-century time 

period into a fairly large region. This larger region is separated again during the late-century time 

period into two broad regions, one in northeastern and western Wisconsin and the other in 

northern Wisconsin. 
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Figure 2-5. Deviation of mean monthly precipitation (top), maximum temperature (Tmax, 

center), and minimum temperature (Tmin, bottom) for each climate region from the average for 

the study area. The line symbols refer to cluster number; see Figure 2-4 for location of each 

cluster.  Climate regions 1, 2, and 3 are displayed in the left-hand panels, and climate regions 4, 

5, 6, and 7 are shown in the right-hand panels. 
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Figure 2-5. (cont’d) 
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1911-1940

1941-1970

1971-2000

 
Figure 2-6. Application of a seven cluster solution for three periods, 1911-1940 (top), 1941-1970 

(middle), and 1971-2000 (bottom).  
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2.3.4. Assignment of political units to climatic regions and selection of representative climate 

stations 

One of our goals was to link climate observations with other variables required for 

climate change impact studies that are available at different spatial scales and aggregation levels. 

For this purpose, we assigned counties to climate group memberships based on the Euclidean 

distance between the county centroid and the nearest climate station (Figure 2-7). This 

assignment offers an alternative to link climate information from a climate station with other 

datasets such as economic data which are available at the county level.   

 

 
Figure 2-7. Assignment of counties in the study area to climate clusters. 
 

Furthermore, as discussed in the introduction, a key motivation of the climate 

regionalization was to assist in selecting a small number of representative climate stations for a 

climate impact assessment. For this example, two climate stations were selected for each cluster 

that was contiguous in space, and one station was selected in each of the separate areas for those 

climate clusters that are non-contiguous, with preference given to stations that were close to the 

midpoints of each region (Figure 2-8). The underlying consideration in our choice of 
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representative stations was uniform spatial coverage across the study area; however, the number 

of representative stations per cluster and considerations in their selection should be influenced by 

the intended application. 

 

 
Figure 2-8. The representative climate stations selected for each climate cluster. 
 

2.4. Discussion  

In the discussion below, we consider several issues related to the application of the 

procedures described above; namely, considerations when interpreting climate regions and 

boundaries, the interpretation of non-contiguous climate regions, fluctuations in climate regions 

with time, and potential contributions of the proposed methods for climate change studies. 

2.4.1. Interpretation of climate regions and boundaries  

For any application, care must be taken to not over interpret objectively-defined climate 

regions and boundaries.  Although the combined approach of PCA and hierarchical and non-

hierarchical clustering used here has been widely employed in previous regionalizations (e.g., 

Gong and Richman, 1995; Stooksbury and Michaels, 1991; Winkler, 1992), alternative 
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classification approaches exist and may result in differing results particularly if the clusters are 

not well nucleated (Everitt, 1980). Additionally, several previous analyses (e.g. Alijani et al., 

2008; Briggs and Lemin Jr, 1992; DeGaetano, 1996) have combined methods for summarizing 

climate observations, such as PCA, with spatial interpolation techniques to define climate 

boundaries rather than delineating boundaries based on cluster membership as was used here. 

Whatever the method used, the ensuing regionalization will be influenced by the initial density 

of the climate stations, and users must take this into account for any application. A relatively 

coarse station network was employed for the UGLR regionalization presented here.  This was a 

reasonable choice given that an intended initial application is an assessment of climate impacts 

on corn and soybean production; both crops are broadly grown across the region.  Other 

applications may require that a denser network of climate observations is used.  Euclidian 

allocation within ArcGIS is a unique approach for delineating climate region boundaries and 

provides a convenient means for visualizing climate groups. However, it does not take into 

account abrupt climate gradients such as those observed in areas of complex terrain and that are 

not captured by the climate station density. Alternative means of delineating cluster boundaries 

should be considered in these situations.    

2.4.2. Non-contiguous climate regions  

Several of the UGLR climate regions shown above are not spatially contiguous. Similar 

segmentation of climate regions was found in earlier studies that grouped climate stations in the 

southeastern United States (Stooksbury and Michaels, 1991), the state of Maine in the United 

States (Briggs and Lemin Jr, 1992), central and eastern North America (Gong and Richman, 

1995), and the northeastern United States (DeGaetano, 1996). Several previous authors have 

considered non-contiguous climate regions an artifact of aggregation error or observation biases, 
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under the assumption that near objects should have stronger correlations than distant objects. 

Although k-mean clustering is generally considered better in retaining spatial coherency than 

hierarchical clustering (Gong and Richman, 1995), Whitfield et al. (2002) proposed that k-means 

clustering results are sensitive to the temporal aggregation level of the climate variables and 

found that decreasing the temporal aggregation increased, particularly for precipitation, the 

proportion of near climate stations that were clustered into the same climate group. Assignment 

of geographically-close climate stations into different climate regions may also be due to 

differences in local site characteristics (e.g., exposure) or observational biases (e.g., time of 

observation bias) (Briggs and Lemin Jr, 1992). On the other hand, several authors have argued 

that spatial contiguity is not a requirement for creating climatologically homogeneous regions 

(e.g., Fovell and Fovell, 1993) and found that nearby climate stations may exhibit different 

precipitation or temperature patterns (Yeh et al., 2000). Furthermore, regional climatic 

conditions are generally controlled by three basic forcings, i.e., latitude, elevation or topography, 

and distance to water bodies (e.g. DeGaetano, 1996; Rhee et al., 2008), and non-contiguous 

climate regions can reflect spatial variations in these forces. 

For the UGLR climate regionalization, we did not force the solution into coterminous 

regions in contrast to several earlier regionalizations (e.g. Stooksbury and Michaels, 1991; Yeh 

et al., 2000), but rather allowed for the segmentation of climate regions. One consideration in 

this decision was our use of climate observations from the USHCN ver. 2.0 database in the 

regionalization. Most of the USHCN stations are located in rural areas, and the monthly mean 

maximum and minimum temperatures (but not precipitation) are adjusted for time of observation 

bias (Menne et al., 2009). Although this dataset is still imperfect, its use does reduce the 

contribution of observational bias to the segmentation of climate regions. The primary 
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consideration, however, was that most of the non-contiguous climate regions appeared along the 

lake-modified zones of Michigan and eastern Wisconsin are likely due to the influence of the 

lakes on local climate. Similar segmentation of climate groups located along lake zones was 

observed by DeGaetano (1996) in a climate regionalization for the northeastern United States.  

2.4.3. Temporal changes in regionalization patterns  

An interesting finding was the substantial changes in the climate regionalization between 

the 1911-1940 and 1941-1970 periods.  Differences in the extent and location of the climate 

regions were more modest between 1941-1970 and 1971-2000. These changes may in part result 

from heterogeneities in the time series of temperature and precipitation observations. 

Alternatively, the changes in the climate regionalization may reflect spatial differences in 

climatic trends.  In this case, the spatial distributions of climate groups may be useful for 

detecting climate change in the region (Jacobeit, 2010) and can provide an alternative to 

traditional trend analysis at individual stations (Pielke et al., 2000).  Considerable further 

analysis is needed to better understand the reasons behind the differences in regionalization 

between the three time periods for the UGLR.  We suspect, however, that these changes are 

partly due to climatic trends.  The UGLR lies at the northern edge of the Midwest “warming 

hole” (Kunkel et al., 2006), with a cooling trend reported in southern portion of the UGLR and a 

warming trend in the northern portion (Strode, 2003).  These differences in trends may contribute 

to the observed changes with time in the climate clusters.   

2.4.4. Potential contributions of climate regionalization to impact studies  

One advantage of objective regionalization techniques is that they avoid the  use of 

political boundaries to define climate regions such as what is done for National Weather Service 
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(NWS) climate divisions (Guttman and Quayle, 1996). Although frequently used, NWS climate 

divisions may not be relevant for summarizing regional climate conditions (DeGaetano, 2001) 

for climate impact studies. In fact, Guttman and Quayle (1996) acknowledge that climate 

division boundaries, which are delineated based on drainage basins in the western states and crop 

reporting districts that generally overlap with county boundaries in the eastern states, often do 

not have a direct relation to climate. Heterogeneous climate conditions may exist within climatic 

divisions that can cause difficulties when using climate data from the divisions for climate 

applications (Rhee et al., 2008). Additionally, objective climate regionalization provides more 

flexibility compared to pre-defined climate regions such as the NWS climate divisions, as 

climate regions can be defined in terms of the climate variables of interest to a specific 

application. Although, the climate variables employed for the UGLR regionalization shown here 

are commonly-used mean monthly temperature and precipitation, climate regions can be defined 

based on any number of derived parameters such as heat accumulation units, the frequency of 

days above or below threshold temperatures, precipitation rates, or the timing of critical events 

(e.g., date of spring freeze). For example, Shinker (2010) included the ratio of monthly-to-annual 

precipitation to identify regions with similar annual cycles of precipitation occurrence in the 

western United States.  

A primary contribution of regionalization approaches to climate impact studies is that 

they can provide an understanding of what climate type is presented by an individual station 

(Pielke et al., 2002).  Thus, they are useful in selecting the number and location of climate 

stations to include in an impact assessment and help to ensure that regional climate variations 

across the study area are captured. The selection of a limited number of representative climate 

stations is helpful for reducing the workload preparing the inputs needed for climate change 
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assessments including the development of fine-scale climate scenarios. Additionally, a climate 

regionalization can assist in the evaluation of regional climate model (RCM) simulations such 

that the RCM performance is evaluated for the different climate types within a study area. The 

selection of representative stations can also assist in the formulation of bias correction functions 

that are commonly applied to RCM outputs (e.g., Rivington et al., 2008a) before they are used 

for climate applications. Formulating bias corrections for all stations within a region is time 

consuming, and, depending on the RCM grid resolution, climate observations are usually not 

available for all RCM grid cells. In this situation, RCM grid cells can be related to a climate 

group so that the bias correction developed for that group (i.e., for a representative station of the 

group) can be applied to those cells for which climate observations do not exist.       

As demonstrated above, climate regionalization can also be used to help link different 

datasets that are required for climate change assessments but that have varying spatial resolutions 

and aggregation levels. The linkage can be performed by overlying the climate regionalization 

with the aggregated data, for example county-level socio-economic information, or by assigning 

the nearest climate group to an aggregation unit based on Euclidian distance or some other 

measure. Using the first approach, a particular aggregation unit may overlap two or more climate 

groups. The second approach, which was chosen in this study, is useful to uniquely link the 

aggregated information to a climate region. For the application above, we focused on linking 

information at the United States county-level to the climate regions. Rhee et al. (2008) also 

suggest the use of a county as an aggregation unit because county-level analysis is very useful 

for planning and management strategies and many datasets, particularly economic data .that are 

useful for decision making, are available at this level.  
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2.5. Conclusions 

This study attempted to demonstrate, employing the Upper Great Lakes region (UGLR) 

of the United States as an example, the usefulness of climate regionalization for impact 

assessments, specifically for the selection of representative climate stations for a region and to 

assign those stations to different aggregation levels. Using a combination of principal 

components analysis and clustering methods, the UGLR, encompassing Michigan, Wisconsin 

and Minnesota, was grouped into seven climate regions based on average monthly precipitation 

and maximum and minimum temperature. The seven cluster solution is able to distinguish spatial 

variability of climatic conditions over the study area, as indicated by the different annual 

variations of the climate variables for each cluster. Euclidian allocation, which is readily 

available in the widely used ArcGIS software, was employed to define cluster boundaries.  

Application of the regionalization procedures to three different 30-year time periods 

indicates that the greatest changes in the distribution of the climate types occurred between the 

early (1911-1940) and mid (1941-1970) century, and that the climate patterns were relatively 

similar for the mid and late (1971-2000) century.  This alteration of cluster memberships can be 

employed to provide insights into regional climate change.  

The climate regionalization for the late century time period was used to select 

representative climate stations for future analysis and to link the climate observations with 

county-level aggregated datasets. The value of selecting the representative stations based on a 

climate regionalization is that the number of climate stations needed for the assessment, is 

substantially reduced, but at the same time the spatial variability in climate is represented in the 

analysis. The results of this study are useful for climate change studies within the ULGR region, 

and the methods are applicable for other regions. 
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3.1. Introduction 

Crop simulation models are useful for estimating crop biophysical processes under 

different environmental conditions, including climate variability and change, as well as 

simulating the potential impacts of changes in agricultural management practices on yields. 

Daily solar radiation, which is used in conjunction with  precipitation and air temperature, is 

considered a critical input to crop models for estimating evapotranspiration, water stress, plant 

biomass production, and yield (Hoogenboom, 2000; Jones et al., 2003). However, the availability 

of solar radiation observations is a major concern for crop model applications, as this variable is 

infrequently measured compared to temperature and precipitation (Liu and Scott, 2001).  

In the United States, solar radiation measurements are not included in the observations 

taken by the two primary national in situ observing networks (i.e., the Automated Surface 

Observing System (ASOS) and the Cooperative Observer Program (COOP)). Solar radiation is 

observed by the recently-established Climate Reference Network (CRN).  However, in addition 

to the short period in operation, this network consists of only 114 stations (Leduc et al., 2009), 

most of which are located outside of primary agricultural regions. Additional radiation 
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measurements are taken by specialized networks, such as those maintained by universities and 

agricultural extension services, but coverage is non-uniform and quality control standards vary.  

To illustrate the dearth of radiation measurements in the United States, Wilcox et al. (2007) 

reported that of about 1445 meteorological stations archived in the National Solar Radiation 

Database (NSRDB), only 40 stations measured solar radiation. The coarse spatial resolution of 

daily solar radiation observations (when available) is also a concern as estimating radiation from 

surrounding, but often distant, stations may not be appropriate (e.g., Hunt et al., 1998; Rivington 

et al., 2006).  

Given these challenges, a number of alternative approaches have been developed to 

estimate daily solar radiation at a location. In general, daily solar radiation has been estimated 

using stochastic, mechanistic, or empirical methods. Of these, stochastic methods have been 

employed more frequently, especially for assessments of climate impacts on crop production 

(e.g.,Apipattanavis et al., 2010; Kilsby et al., 2007) and possible adaptation options (e.g., Luo et 

al., 2009; Meza and Silva, 2009). Stochastic methods include the use of weather generators such 

as WGEN (Richardson and Wright, 1984) and SIMMETEO (Geng et al., 1986) to generate 

multiple daily time series.  The stochastically-generated series attempt to mimic the statistical 

characteristics of a long-term time series of solar radiation at a particular site (Garcia and 

Hoogenboom, 2005; Woli and Paz, 2012) rather than the value for a particular day. Typically, 

the estimated daily solar radiation total is selected randomly from a distribution conditioned on a 

sequence of wet and dry days. The representation of the day-to-day interrelationships between 

solar radiation and observed values of other weather variables (e.g. temperature) is a concern, 

particularly as  preserving the interactions among weather variables is important for crop models 

(Rivington et al., 2005). 
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 In contrast, mechanistic and empirical approaches provide greater synchrony between 

estimated daily solar radiation and observed daily values of other weather variables. Mechanistic 

models predict site-specific daily incoming solar radiation (S) from daily extra-terrestrial 

radiation (S0) at a location and other observations for that day such as sunshine duration (e.g., 

Yang et al., 2006), temperature (Bristow and Campbell, 1984; Weiss et al., 2001) and/or a 

combination of temperature and precipitation (Hunt et al., 1998; Thornton et al., 2000; Thornton 

and Running, 1999). S0 is calculated based on latitude, day of year, solar angle and solar 

constant (Hunt et al., 1998; Liu and Scott, 2001). On the other hand, empirical models use 

regression techniques to estimate solar radiation at a location from daily weather variables, such 

as precipitation and temperature (e.g., Ball et al., 2004).  Ideally, mechanistic and empirical 

models should be parameterized for an individual location, which limits their  application for 

locations without solar radiation observations (Abraha and Savage, 2008). Liu and Scott (2001) 

argue that these models can be applied to locations with a similar regional climate as the site for 

which the models were initially developed, but defining “similar” climates can be challenging 

particularly for areas with large topographic variations.    

As the different methods for estimating solar radiation can introduce biases that may 

significantly impact the outcomes of crop models (Nonhebel, 1994; Weiss et al., 2001), a number 

of previous studies have evaluated the sensitivity of crop model simulations to generated solar 

radiation from weather generators (e.g., Cooter and Dhakhwa, 1996; Garcia et al., 2008) and 

mechanistic models (e.g., Abraha and Savage, 2008; Trnka et al., 2007). Cooter and Dhakhwa  

(1996) found that interannual variability of crop yields is relatively sensitive to different sources 

of generated solar radiation, even though  the long-term average of crop yield is not. In line with 

this finding, concern has been raised on utilizing generated solar radiation when forecasting 
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seasonal yields (Trnka et al., 2007). The sensitivity of crop model outputs (e.g., 

evapotranspiration and total biomass) to generated versus observed solar radiation also appears 

to vary from location to location (Abraha and Savage, 2008). Although generated solar radiation 

is still considered by many researchers to be a viable option for crop model applications when 

observed solar radiation is unavailable (Cooter and Dhakhwa, 1996; Garcia et al., 2008), further 

research is needed to explore other possible sources of daily solar radiation and evaluate 

associated potential biases.      

Recently available alternative sources of daily solar radiation time series include 

“reanalysis” datasets that blend output from atmospheric models with observations, simulations 

from regional climate models, and satellite estimations. Two potential sources of daily solar 

radiation estimates for North America are the fine scale (32 km) North American Regional 

Reanalysis (NARR) datasets (Mesinger et al., 2006), available from 1979 to present, and the 50 

km resolution regional climate model simulations from the North American Regional Climate 

Change Assessment Program (NARCCAP) (Mearns et al., 2009), available for 1979-2004. 

Additionally,  the National Aeronautical and Space Agency (NASA) Prediction of Worldwide 

Energy Resource (POWER) database (Stackhouse, 2006), which was developed with agricultural 

uses in mind, provides daily averaged values of daily solar radiation at a spatial resolution of one 

degree latitude/longitude for the period 1983 to present based on satellite estimations. 

Implementation of these alternative datasets for crop model applications would provide a 

substantial advantage over mechanistic or empirical approaches as no further model development 

or parameterization is required, and, unlike stochastic approaches, the interrelationships with 

observed daily weather variables are maintained. The NARCCAP simulations have an additional 

advantage in that projections of daily solar radiation for a future period (2041-2070) are also 
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available, facilitating analyses of potential climate change impacts and adaptation options. 

However, in spite of the potential utility of these alternative datasets, only a few studies have 

assessed the potential biases in the radiation estimates obtained from the POWER dataset and 

their impact on crop simulations (e.g., Bai et al., 2011; White et al., 2008; White et al., 2011b), 

and potential biases remain largely unaddressed for the radiation estimates from NARR and 

NARCCAP.  

 The objectives of this study are to 1) compare observed solar radiation to estimated daily 

solar radiation from stochastic, empirical, and mechanistic models (traditional approaches), and 

the POWER, NARR,  and NARCCAP datasets (modern approaches), and 2) assess the 

sensitivity of simulated grain yield of maize and soybean to the different sources of daily solar 

radiation inputs.  The inclusion of the NARR and NARCCAP gridded datasets distinguishes this 

study from recent work that investigated the impacts of solar radiation estimates obtained from 

stochastic, mechanistic and empirical models (e.g., Abraha and Savage, 2008; Garcia et al., 

2008) and satellite estimates (e.g., Bai et al., 2011; White et al., 2011b) on crop model 

applications. The analysis was performed for Hancock, Wisconsin, located within an agricultural 

region in the Upper Great Lakes region of the United States. Maize and soybean were selected 

because they are the two most widely grown crops in the region (Hatfield, 2012) and more 

importantly represent the two major crop types, namely C4 (maize) and C3 (soybean) plants. 

Each type has different light saturation thresholds and photosynthesis mechanisms which can 

cause them to response differently to solar radiation as discussed by Garcia et al. (2008).  
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3.2. Materials and Methods  

3.2.1. Climate Observations and Study Period 

Daily solar radiation observations for the evaluation of the different radiation estimates 

along with the temperature and precipitation measurements used as input to the stochastic, 

empirical and mechanistic models were obtained from the Wisconsin Automated Weather 

Network (WAWN) station at Hancock, Wisconsin (Figure 3-1). This station was selected 

because of its 1) relatively long period of record (1985 to present) and 2) geographic proximity 

to a station (Necedah, Wisconsin) within the Climate Reference Network (CRN).  Observations 

from the CRN station were used to evaluate the quality of the solar radiation measurements at 

Hancock, assuming that little difference should exist in the radiation time series given the similar 

elevation and climate of the two locations.  The equality of the means of the radiation time series 

was assessed for the overlapping period of 1 October 2004 to 31 December 2010 using both 

unpaired t-tests (assuming unequal variance) and paired t-tests.  The two-sample F-test was used 

to test for equality of variances, and Pearson’s correlation coefficient was calculated to measure 

the association between the radiation observations at the two stations.  Means and variances of 

the solar radiation time series were not significantly different at the 95% probability level and the 

two time series were highly (0.97) correlated. These analyses suggest that the solar radiation 

observations recorded at the Hancock WAWN station are consistent with those from the CRN 

reference station. 

The study period was constrained by the period of overlap for the different radiation 

estimates and observations from 1985 to 2000. Unfortunately, there were numerous missing 

observations for the Hancock WAWN station prior to 1989 so that we further evaluated data 

availability from 1990-2000.  Within this period, a large number of missing observations 
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occurred at the Hancock WAWN in 1991, 1999 and 2000 with 184, 100, and 84 missing days, 

respectively, when at least one climate variable (i.e., radiation, temperature, precipitation) was 

missing. These years were removed, and, as a result, only 1990 and 1992-1998 were included in 

the analysis for a total of eight years. Although relatively short, an eight-year period was also 

used in a recent evaluation of the performance of several mechanistic models and a variation of 

WGEN to estimate daily solar radiation for the southeastern United States (Woli and Paz, 2012). 

 

 
Figure 3-1. Location of the Hancock WAWN station and of the Necedah CRN station used to 

evaluate the quality of the solar radiation time series at Hancock.  The additional CRN climate 

stations in Michigan and Minnesota were used for a sensitivity analysis of the coefficients of the 

mechanistic and empirical models. 
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The limited number of missing precipitation and temperature observations that occurred 

in 1990 and 1992-1998 were filled in with observations from the United States Historical 

Climate Network (USHCN) Hancock station (Menne et al., 2009). The missing daily solar 

radiation observations were filled in with daily averages of the non-missing observations. For the 

development of the empirical and mechanistic models, measurements for the eight-year study 

period were divided two groups. Data from 1990, 1992, 1994, and 1997 were used for model 

calibration, and the remaining data were saved for model validation.  Four additional CRN 

climate stations (Goodridge, Minnesota; Sandstone, Minnesota; Chatham, Michigan; Gaylord, 

Michigan) were employed to evaluate the sensitivity of the coefficients of the mechanistic and 

empirical models. 

3.2.2. Daily Solar Radiation Estimates 

   Daily solar radiation is defined here as the daily mean downward shortwave radiation 

flux.  Estimated daily solar radiation was obtained from six different sources, namely a stochastic 

weather generator, a mechanistic model, an empirical equation, POWER, NARR, and 

NARCCAP. All daily solar radiation estimates were converted to mega-joule per meter squared 

(MJ m
-2

 day
-1

) for comparison and for input to the crop simulation model.   

(a) Stochastic Generation  

Solar radiation was stochastically generated using a weather data management program 

included in DSSAT called “Weatherman” (Pickering et al., 1994). As noted by Mavromatis and 

Hansen (2001), Weatherman is a variant of the well-known WGEN (Richardson and Wright, 

1984) weather generator. In Weatherman, all underlying model parameters are estimated on a 

monthly basis. Daily values of the model parameters are calculated internally using linear 
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interpolation to preserve the monthly means. The major advance over WGEN is that 

Weatherman replaces coefficients of variation with standard deviations to stabilize model 

estimations when temperatures are close to zero Celsius (Mavromatis and Hansen, 2001). Solar 

radiation is generated separately for wet and dry days (Mavromatis and Hansen, 2001; Soltani 

and Hoogenboom, 2003). For this analysis, Weatherman was parameterized using observed 

precipitation and maximum and minimum temperature data from the Hancock station for the 8-

year analysis period. Observed daily solar radiation was not included in the parameterization, as 

our intent is to evaluate the sensitivity of crop models to generated solar radiation when observed 

daily solar radiation is unavailable for a location. Using the parameterized Weatherman, we 

generated daily series of precipitation, maximum and minimum temperature, and solar radiation.  

However, only the generated solar radiation was used in the following analyses; daily 

temperature and precipitation for input to the crop process models were obtained directly from 

the Hancock observations, following (e.g., Andresen et al., 2001; Carbone et al., 2003). 

(b) Empirical Model 

The regression equation developed by Ball et al. (2004) to estimate daily incoming solar 

radiation at Keiser, Arkansas, United States, was recalibrated for the Hancock station.  The Ball 

et al. model employs a General Linear Model in the form:   

12123322110 ... XXXXsR βββββ +++++=      Eq. 3-1 

where, Rs is daily solar radiation (MJ m
-2

 day
-1

); β0 and β1…12 are intercept and 

regression coefficients, respectively; X1 and X5 are precipitation (mm) and precipitation squared; 

X2 and X6 are maximum temperature (
0
C) and maximum temperature squared; X3 and X7 are 

minimum temperature (
0
C) and minimum temperature squared; X4 and X8 are day of year and 
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day of year squared. The interaction terms are X9 (precipitation x minimum temperature), X10 

(maximum temperature x minimum temperature), X11 (precipitation x maximum temperature) 

and X12 (maximum temperature x day of year).  Comparison of the radiation estimates when the 

model developed for the calibration period (1990, 1992, 1994, 1997) was applied to the 

validation period (1993, 1995, 1996, 1998) indicated that model performed similarly for both 

periods (correlations between simulated and observed daily radiation of 0.87 and 0.89 for the 

calibration and validation periods, respectively).  

The transferability of the empirical model was assessed by applying the model to 

estimate daily solar radiation at other CRN climate stations within the states of Michigan and 

Wisconsin (Figure 3-1) and comparing the estimated radiation values with observations. The 

time periods for which precipitation, temperature and solar radiation observations are available 

vary for each location (Table 3-1). Days with missing observations were excluded from the 

sensitivity analysis.      

(c) Mechanistic Model 

A number of mathematical models, which we label here as “mechanistic models”, have 

been developed to estimate solar radiation based on the fraction of extraterrestrial radiation (S0) 

reaching to the ground. This fraction is estimated as a function of the atmospheric transmissivity 

(Ball et al., 2004; Donatelli et al., 2003; Spitters et al., 1986), which can be modeled based on 

temperature and precipitation (Liu and Scott, 2001). Of the numerous mechanistic models 

available (e.g., Bristow and Campbell, 1984; Hunt et al., 1998; Thornton et al., 2000; Thornton 

and Running, 1999), those that utilize a combination of precipitation and temperature as inputs 
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generally are considered to be preferable to those using only temperature or only precipitation 

(Hunt et al., 1998; Liu and Scott, 2001; Woli and Paz, 2012).     

For this study, the Hunt et al. (1998) radiation model was used to estimate daily solar 

radiation at the Hancock WAWN station. This model was chosen as it was developed for 

Ontario, Canada, which has a relatively similar climate to our study location.  Daily solar 

radiation was estimated by:   

4
2

32max1
5.0

minmax00 )( aPaPatattSaS ++++−=     Eq.3-2 

where S is daily solar radiation (MJ m
-2

 day
-1

); a0, a1, a2, a3, a4 are the coefficients; , ; S0 is the 

daily extraterrestrial solar radiation (MJ m
-2

 day
-1

), tmax and tmin are maximum and minimum 

daily temperatures (
0
C); and P is daily precipitation (mm). The model uses equations previously 

defined by Spitters et al. (1986) to estimate daily solar radiation at the top of atmosphere (S0): 

βsin)]365/360(cos033.01[0 dsc tSS +=       Eq.3-3 

where, S0 is extra-terrestrial irradiance (J m
-2

 s
-1

); Ssc is the solar constant 1370 J m
-2

 s
-1

, the 

cosine term is the yearly course of the distance between the earth and sun expressed in degrees, 

td is the day since 1 January, and  sin β, the sine of the elevation of the sun above the horizon, is 

defined as: 

)]12(15cos[coscossinsinsin −+= htδλδλβ      Eq.3-4 

where, λ is latitude of the site, th is hour of the day (solar time), and δ  is the solar declination for 

the day of year, measured in degrees and estimated by:  

]365/)10(360cos[)45.23sin(sin +−= dtδ       Eq.3-5 
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The daily value of S0 is calculated by integrating the extra-terrestrial irradiance from sunrise till 

sunset:  

 
)tanarcsin(tan)180/24(12 δλ −+=D       Eq.3-6 

 
where, D is day length. 

 
The Hunt model performed equally well for both the calibration and validation periods with 

correlations between simulated and observed solar radiation of 0.87 for the calibration period and 

0.89 for the validation period. As for the empirical model, the mechanistic model parameterized 

for Hancock was applied to estimate daily solar radiation at the other CRN stations (Table 3-1) to 

assess the sensitivity and transferability of the model to other locations within the study region. 

 

Table 3-1. Geographic location and analysis period for the CRN stations located in the states of 

Michigan and Minnesota 

Station State Latitude Longitude Elevation  Period of Analysis Distance
b
  

Chatham 
Gaylord 
Goodridge 
Sandstone 

MI 
MI 
MN 
MN 

46.33 
44.91 
48.31 
46.11 

-86.92 
-84.72 
-95.87 
-92.99 

267 m 
441 m 
351 m 
354 m 

11/10/2004-12/31/2010 
09/19/2007-12/31/2010 
08/20/2003-12/31/2010 
06/22/2007-12/31/2010 

320 km 
392 km 
675 km 
351 km 

b
Distance from to the Hancock station. 

(d) POWER  

As noted above, satellite estimates of surface incoming solar radiation were obtained 

from the NASA POWER database (Stackhouse, 2006), available at http://power.larc.nasa.gov/. 

Daily solar radiation in this database was  inferred using the Pinker and Laszlo (1992) radiative 

transfer model in conjunction with water vapor amounts from the Goddard Earth Observing 

System Data Assimilation System version 4 (NASA, 2011). Measurements from the 
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International Satellite Cloud Climatology and parameters from the NASA/Global Energy and 

Water Cycle Experiment were used as inputs to the radiative transfer model. Please refer to the 

methodological summary provided by NASA (2011) for more detailed information on the 

derivation of the radiation estimates.  The daily series of incoming radiation was extracted from 

the POWER archive for the 1o latitude/longitude grid point nearest the Hancock station. 

(e) NARR and NARCCAP  

The NARR dataset was obtained from the NOAA Earth Systems Laboratory 

(http://www.esrl.noaa.gov/psd/). Three-hourly values of downward solar radiation flux were 

extracted for the NARR grid point closest to the Hancock WAWN station and then averaged to 

estimate daily solar radiation.  The daily averages were calculated based on local time, using the 

3-hourly values from 0900 UTC of the current day to 0600 UTC of the next day.  

The NARCCAP dataset was accessed through the Earth System Grid gateway at the National 

Center for Atmospheric Research (http://www.earthsystemgrid.org/home.htm). NARCCAP 

simulations from four regional climate models -- CRCM (Canadian Regional Climate Model), 

ECP2 (Experimental Climate Prediction Center/Regional Spectral Model), HRM3 (Hadley 

Regional Model 3), and WRFG (Weather Research & Forecasting Model) -- were included in 

the analysis. All simulations employed coarse-scale (2.5
o
 x 2.5

o
) NCEP/NCAR reanalysis fields 

(Kalnay et al., 1996) as lateral boundary conditions.  For each model, the eight 3-hourly values 

of surface downwelling shortwave radiation from 0900-0600 UTC were averaged for the grid 

point closest to Hancock to obtain estimates of daily solar radiation.    
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3.2.3. Crop Yield Simulations   

Decision Support System for Agrotechnology Transfer (DSSAT) version 4.5 was used to 

simulate grain yields of maize and soybean at the Hancock site. DSSAT is a compilation of 

simulation programs that model biophysical interactions among weather, soil, crops and farming 

management (Jones et al., 2003). The programs allow a cropping system to respond dynamically 

to changes in plant biology, farming management and environment. DSSAT has been widely 

used around the world to explore the consequences of environmental changes and differing 

farming practices on crop growth and development (e.g., Hartkamp et al., 2004; O'Neal et al., 

2005; Thorp et al., 2008; Vucetic, 2011). This simulation package also has been applied to 

specifically assess the effects of generated solar radiation on crop evapotranspiration and yields 

(e.g., Garcia et al., 2008). DSSAT’s capabilities and performances have been widely reviewed 

(e.g., Mera et al., 2006; Southworth et al., 2002; Southworth et al., 2000). 

Two modules of the DSSAT package, CROPGRO-Soybean and CERES-Maize, were 

used in this study. Each module uniquely calculates the conversion of incoming radiation to plant 

biomass though different photosynthetic processes. As summarized by Jones et al. (2003), the 

CROPGRO module utilizes leaf-level photosynthesis, while the CERES family of models 

employs radiation use efficiency. Consequently, the response of each module, as reflected in 

crop yields, to different sources of solar radiation is expected to vary.  

DSSAT requires that users supply cropping management options such as crop variety, 

row spacing and planting date. This study generally adopted the cropping management options 

utilized by Andresen et al. (2001), who investigated weather impacts on maize, soybean, and 

alfalfa production in the Upper Great Lakes Region from 1895 to 1996 (Table 3-2) and common 

farming practices applied in the region (Hoeft et al., 2000). Following Andresen et al., irrigation 
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was not used and soil fertility was set as non-limiting.  These choices focus the investigation 

only on the sensitivity of the crop model outputs to solar radiation estimates.   

 
Table 3-2. Farming management for the DSSAT simulation  

Management Rules Soybean Maize 
 
Plant populations 
Cultivar 

 
20 plants per m

2
 

Generic Group 2 
 
 
 

 
8 plants per m

2
 

Short-season cultivar 

- Base temperature: 8 
0
C 

- Thermal time for juvenile 
phenological stages (P1): 200 degree 
days 
- Thermal time from silking to 
maturity (P2): 685 degree days   

Planting dates* Automatically after May 1 Automatically after May 22 
Harvest At physiological maturity 

 
*Determined automatically based on soil temperature in the top of 10 cm ≥ 10 

0
C.     

 

Soil information for Hancock was obtained from the STATGO database published by 

NRCS-USDA (Soil Survey Staff, 2010). Detailed soil physical properties needed for running 

DSSAT were calculated using SBuild, a supporting package designed to create or modify soil 

information to meet DSSAT requirements (Uryasev et al., 2003). Model simulations for the two 

crops were run independently, and no rotation between the two crops was permitted. Simulated 

grain yields at the time of maturity were saved for further analysis. 

3.2.4. Evaluation Methods 

Estimated daily solar radiation from the different sources was compared to observed daily 

solar radiation using the coefficient of determination (R
2
) and root mean square error (RMSE), 

both of which have been widely used in previous studies (e.g., Ball et al., 2004; Hunt et al., 

1998; Liu and Scott, 2001). Similar to Rivington et al. (2005), we also calculated the daily bias 
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(bi) between the daily radiation estimates (Sei) and observations (Soi), averaged over the study 

period: 

 

iii SoSeb −=           Eq.3-7  

∑
=

=
n

j
jii Se

n
Se

1

1
  and  ∑

=
=

n

j
jii So

n
So

1

1
     Eq.3-8 

where i is day, j is year, and n is the number of years.  Additionally, the paired t-test assuming 

unequal variance was used to test for significant differences in mean daily radiation by month, 

and the F-test was used for evaluating equality of variance by month.   

The differences in crop yields obtained from estimated and observed daily solar radiation 

as inputs were initially evaluated using scatter plots of the yields for the study period. Following 

Garcia et al. (2008), further evaluation was conducted using the mean squared deviation (MSD) 

as defined by Kobayashi and Salam (2000). MSD is composed of three parts, namely squared 

bias (SB), squared difference between standard deviation (SDSD) and the lack of correlation 

weighted by the standard deviation (LCS). These measures were explicitly developed for 

comparing output from crop process models and have fewer underlying assumptions compared 

to commonly-used evaluation methods (Kobayashi and Salam, 2000). SD is a traditional measure 

of bias, whereas SDSD provides an indication, for this application, of how well the yield 

estimates obtained from estimated daily solar radiation represent the magnitude of the annual 

fluctuations of the yield estimates obtained using observed solar radiation, and LSC provides an 

indication of how well the pattern of the annual fluctuations is captured.  The mathematical 

forms of MSD, SB, SDSD, and LCS are: 
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LCSSDSDSBMSD ++=         Eq.3-9   

2)( yxSB −=           Eq.3-10 

( )2SDySDxSDSD −=         Eq.3-11 

( )rSDySDxLCS −= 1)()(2         Eq.3-12 

∑
=

−=
n

i
i xx

n
SDx

1

2)(
1

        Eq.3-13 

∑
=

−=
n

i
i yy

n
SDy

1

2)(
1

        Eq.3-14 

wherex  and y are the means of crop yields obtained from the generated (xi) and observed 

(yi) daily solar radiation,  i is 1, 2, 3 up to the length of study period (n), SDx and SDy are the 

standard deviations for crop yields simulated using estimated and observed solar radiation, 

respectively. The MSD analyses were supplemented with more conventional evaluation methods 

including paired t-test for equality of means, F-test for equality of variances, and correlation 

analysis.  

3.3. Results  

3.3.1. Solar Radiation 

Daily averages of observed and estimated solar radiation for the 8-year analysis period 

indicate that the radiation estimations capture the annual cycle relatively well (Figure 3-2). The 

large degree of day-to-day variability in the observed daily means and the estimated values from 

some of the radiation sources, particularly during spring and summer, may partly be a reflection 

of the short study period and the highly variable cloud cover at this time of year.   
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Figure 3-2. Daily averages of estimated (black line) and observed (grey line) solar radiation at 

Hancock-Wisconsin for the 8-year study period for the weather generator (GEN), empirical 

(EMP) and mechanistic (MEC) models, POWER, NARR, and the NARCCAP (CRCM, ECP2, 

HRM3, and WRFG) regional climate models. 

 
Seasonal variations in daily bias are seen for the majority of the radiation estimates, 

although the biases should be interpreted carefully given the short (eight year) study period over 

which they were calculated.  Solar radiation estimates obtained from the weather generator 

display substantial positive biases in spring and fall, but negative biases during summer (Figure 

3-3). In contrast, the magnitude of the average daily bias is relatively small for radiation 

estimates obtained from the empirical and mechanistic models and especially for the POWER 

estimates, although, in general, daily bias tends to be positive in mid to late spring and negative 

in summer. Modest positive biases are seen for almost all days for the radiation estimates 

obtained from NARR.   For the four NARCCAP models (i.e., CRCM, ECP2, HRM3, and 
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WRFG), substantial fluctuations in daily biases are observed, with particularly large positive 

biases found from early spring to late summer, similar to the pattern seen for the weather 

generator.  

 
 
 

 

 

 

 

 

 

 

Figure 3-3.  Average daily bias for the solar radiation estimates.  See Fig. 2 for definition of the 

abbreviations. 

 

Further evaluation based on RMSE and coefficient of determination (R
2
) suggests that 

several of the daily solar radiation sources (i.e., POWER, the empirical and mechanical models, 

and NARR) perform better than the commonly-used weather generator (Figure 3-4). However, 

daily solar radiation from the weather generator agrees better with daily observations than 

estimates obtained from the regional climate models, with the exception of the  CRCM 

simulations which have a higher R
2
 although also a higher RMSE. It is important to note that 

while most of the estimation techniques considered attempt to preserve day-to-day relationships 

between observed and solar radiation, the weather generator instead imitates the statistical 
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structure of a long time series of radiation (Apipattanavis et al., 2010; Castellvi and Stockle, 

2001; Garcia and Hoogenboom, 2005; White et al., 2011b), and mimics the observed daily totals 

only indirectly through sequences of wet and dry days.  

 

Figure 3-4.  Root mean squared error (RMSE) and the correlation with observed daily solar 

radiation for the solar radiation estimates. See Fig. 2 for definition of abbreviations. 

 

Mean daily solar radiation by month differs significantly from observed solar radiation 

for most radiation sources, based on paired t-tests (Table 3-3). [Note that a 99 percent probability 

level was used to assess significance, given the relative larger number of values and thus the 

greater likelihood that small differences in the mean are statistically, but not necessarily 

physically, significant.]  Some exceptions are the insignificant differences found for 

approximately the first half of the year for the empirical model and POWER estimates and in the 

second half of the year for the mechanistic model.  The largest differences in monthly mean daily 
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radiation are seen for the NARR and NARCCAP WRFG estimates, which exceed 20 percent in 

almost all months, whereas the differences are smallest (<10 percent for most months) for the 

mechanistic and empirical models and the POWER estimates.  All four of the NARCCAP 

models better capture the monthly variance compared to the other radiation sources, as seen in 

the insignificant results of the F-test for equality of variance.  The variance is particularly poorly 

captured by the weather generator and mechanistic and empirical models.  

The mechanistic model parameterized at Hancock performs well at the CRN locations in 

Michigan (Chatham and Gaylord) and Minnesota (Goodridge and Sandstone), as indicated by the 

relatively high R
2
 (above 0.79) and low RMSE (3.68 to 4.2 MJ/m

2
/day), although model 

performance is weaker at Chatham compared to the other locations (Figure 3-5).  Model 

performance not strongly associated with the distance between the station and the location where 

the model was parameterized. For example, Goodridge, which is located farthest from Hancock 

(~675 km), has lower RMSE and higher R
2
 values (i.e., the “best” performance) compared to the 

other stations. On the other hand, the highest RMSE and lowest R
2 values are found for 

Chatham, which is located closest (~320 km) to Hancock. Validation of the empirical model 

parameterized at Hancock indicates that it also performs well at the other four locations. RMSE 

and R
2   range from 4 to 4.6 MJ/m

2
/day and 0.74 to 0.79, respectively. Model performance is 

again weakest at Chatham, although the performance at Goodridge is relatively poor in contrast 

to the mechanistic model which performed well at Goodridge (Figure 3-5). 
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Table 3-3. Percent difference by month in the mean and standard deviation of daily solar 

radiation for the different radiation sources compared to observed radiation at Hancock, 

Wisconsin.  

Month GEN EMP MEC POWER NARR CRCM ECP2 HRM3 WRFG 
 Difference in monthly mean daily solar radiation (percent) 

Jan 
Feb 
Mar 
Apr 
May 
Jun 
Jul 
Aug 
Sep 
Oct 
Nov 
Dec 

19.0 
  6.1 
  4.1 
17.0 
18.9 
  6.3 
  1.1 
  4.9 
10.9 
16.8 
33.3 
24.4 

 -3.7 
  5.6 
 -2.2 
  2.0 
  2.9 
 -5.0 
 -8.4 
 -3.6 
  4.1 
14.0 
21.3 
 -9.5 

 -1.6 
 -6.5 
 -6.6 
  6.2 
10.1 
 -2.1 
 -6.0 
 -4.9 
 -3.3 
 -2.3 
  2.5 
  0.6 

  8.0 
  4.7 
 -1.0 
  0.9 
  2.4 
 -1.4 
 -3.4 
  0.3 
  3.7 
  8.2 
21.7 
21.2 

39.2 
30.8 
20.4 
22.6 
27.9 
21.0 
19.9 
25.3 
29.1 
33.2 
54.9 
55.9 

 -3.7 
  6.2 
10.1 
14.3 
10.6 
12.3 
11.5 
16.5 
13.0 
  5.1 
11.4 
  3.0 

21.5 
17.6 
11.3 
13.3 
  8.9 
  5.8 
  3.7 
13.8 
16.3 
20.1 
32.2 
31.0 

 -4.9 
 -3.8 
 -3.0 
10.1 
10.8 
16.5 
12.7 
22.7 
19.5 
20.7 
20.7 
13.4 

22.0 
19.9 
26.7 
28.0 
25.7 
21.2 
21.7 
31.5 
30.1 
28.2 
43.6 
32.6 

 Difference in monthly standard deviation of daily solar radiation (percent) 
Jan 
Feb 
Mar 
Apr 
May 
Jun 
Jul 
Aug 
Sep 
Oct 
Nov 
Dec 

-72.8 
-84.3 
-81.8 
-78.4 
-76.3 
-77.7 
-84.9 
-77.0 
-77.4 
-73.0 
-78.2 
-58.4 

   9.7 
-28.5 
-34.4 
-37.3 
-34.4 
-31.8 
-35.1 
-23.8 
-20.5 
  -1.6 
   2.3 
 38.5 

-25.9 
-33.3 
-34.7 
-36.2 
-36.0 
-33.1 
-38.8 
-30.0 
-33.9 
-28.5 
-37.9 
-29.4 

  8.0 
  4.7 
 -1.0 
  0.9 
  2.4 
 -1.4 
 -3.4 
  0.3 
  3.7 
  8.2 
21.7 
21.2 

-14.7 
-21.1 
-11.9 
-14.1 
-13.4 
-15.0 
-16.1 
-17.5 
-16.9 
-11.1 
-14.7 
-21.3 

13.6 
14.4 
13.5 
 -1.6 
  4.0 
 -4.1 
  2.7 
 -6.9 
 -5.7 
  1.1 
10.2 
14.2 

-12.5 
-13.5 
-10.3 
-15.5 
-10.7 
-10.3 
  -6.4 
  -4.6 
  -9.8 
  -8.3 
  -8.1 
-16.5 

12.7 
14.0 
20.0 
  8.7 
15.8 
 -0.5 
11.0 
 -7.8 
  2.9 
  7.9 
11.7 
  5.9 

 12.5 
   3.3 
  -1.3 
  -4.2 
  -5.7 
   1.3 
   3.6 
  -9.8 
-11.3 
   0.2 
   8.8 
 10.9 

**Bolded values indicate significant differences at the 99 percent probability level based 

on a paired t-test (assuming unequal variance) for equality of means or a F-test for equality of 

variance. 
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Figure 3-5. Evaluation of the performance of the mechanistic (left) and empirical (right) models 

parameterized at Hancock when applied to four Climate Reference Network stations in 

Minnesota (Sandstone and Goodrich) and Michigan (Chatham and Gaylord) based on root mean 

square error (RMSE) and coefficient of determination (R
2
)  
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3.3.2. Crop Yields 

Comparison of maize yields simulated using daily observed and estimated solar radiation 

as input to CERES-Maize indicates a close agreement between the simulated yields (Figure 3-6). 

Small differences exist between the radiation sources, although in general the correspondence 

between the yields simulated using observed and estimated solar radiation is greatest for lower 

(less than 4000 kg/ha) yields, whereas at higher yields the simulated values when using 

estimated radiation are somewhat larger than those obtained using observed radiation for most 

(but not all) radiation estimates.  

Yield deviations are also small for soybean, although the pattern of overestimation and 

underestimation varies from that observed for maize (Figure 3-7).  For the three traditional 

radiation sources (weather generator, empirical and mechanistic models), soybean yield obtained 

using estimated radiation is larger than that obtained using observed radiation at yields >1000 

kg/ha, although close agreement is observed for smaller yields.  In contrast,  yields simulated 

using estimated radiation from NARR and three of the NARCCAP models (CRCM, HRM3, 

WRFG) somewhat underestimate the yields simulated from observed radiation.  Good agreement 

is observed between the yield simulations using estimated and observed radiation when the 

POWER and NARCCAP ECP2 sources of daily solar radiation are employed. 
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Figure 3-6. Maize yields for the eight-year analysis period simulated using daily solar radiation 

observations and estimates as input to CERES-Maize. OSR and ESR refer to observed and 

estimated solar radiation, respectively. 
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Figure 3-7. Soybean yields for the eight-year analysis period simulated using daily solar 

radiation observations and estimates as input to CROPGRO-Soybean. OSR and ESR refer to 

observed and estimated solar radiation, respectively. 
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between standard deviation (SDSD) is the least contributor to MSD. Squared bias (SB) of the 

simulated maize yields is small for all but two of the radiation estimates (i.e., NARCCAP CRCM 

and WRFG). The relatively large LCS values suggest that the simulated maize yields using the 

radiation estimates do not have the same pattern of variation across the 8-year study period 

compared to the simulated yields obtained using observed radiation as input.  In contrast, the low 

SDSD values indicate that the magnitude of the yield fluctuations is similar whether estimated or 

observed solar radiation serves as input to the CERES-MAIZE process model. The small SB 

values for most of the radiation estimates suggest that the means are similar for the simulated 

yields obtained using estimated and observed radiation.       

The distribution of MSD for soybean yield across the different radiation sources is not 

consistent with that seen for maize yields (Figure 3-8).  The smallest MSD values are observed 

for soybean yields obtained using the POWER and the NARCCAP ECP2 and CRCM radiation 

estimates, followed by the empirical and mechanistic models. The largest MSD values are 

observed for soybean yields simulated using solar radiation from the weather generator and 

NARCCAP WRFG model. SDSD provides the least contribution to MSD for most radiation 

estimates, with the exception of the mechanistic model and weather generator, indicating that the 

fluctuations in soybean yield across the study period are similar whether estimated or observed 

radiation estimates are used as input. However, in contrast to what was observed for maize yield, 

squared bias (SB) is the largest contributor to MSD for all sources of radiation estimates except 

for NARCCAP ECP2 for which the contribution from LCS is larger.  This finding suggests that 

the mean of the soybean yields obtained using the different sources differs from the mean 

soybean yield simulated using observed daily radiation.  
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Figure 3-8. Mean squared deviation (MSD), squared bias (SB), squared difference between 

standard deviation (SDSD) and the lack of correlation weighted by the standard deviation (LCS) 

for maize (left) and soybean (right) yield simulated using daily solar radiation estimates 

compared to yield simulations using radiation observations. Please note the difference in the 

vertical axes for the two plots. See text for definition of SB, SDSD, LCS, and MSD. 
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Paired tests indicate that, for all the radiation sources, the differences between maize 

yields obtained using estimated versus observed daily solar radiation are insignificant (two-tailed 

probability of 95%), in line with the interpretation above of the small values of the SD 

component of the MSD statistic (Table 3-4). Percent deviations in mean maize yield range from 

slightly over 1 percent for the POWER radiation estimates to approximately 7 percent for the 

NARCCAP WRFG estimates.  Similarly, the insignificant results for the F-test of equality of 

variances for all radiation estimates agree with the interpretation of the SDSD component that 

the magnitude of the yield fluctuations over the 8-year study period is similar.  For all radiation 

sources, the standard deviation of maize yield differs by less than 10 percent from that obtained 

using observed daily solar radiation. On the other hand, correlations between the simulated 

maize yields from estimated and observed radiation are high (>0.90) for all radiation sources, 

even though the LCS component suggests that the yields do not have the same pattern of 

variation across the study period.  

For soybean, significant differences in mean yield are observed for the majority of the 

radiation estimates, as was suggested by the larger relative contribution of SD to the MSD 

values.  Mean soybean yields obtained using estimated radiation as input are similar to those 

from observed radiation for only the empirical model, POWER, and NARCCAP ECP2 radiation 

sources.  Deviations in mean yield are largest (over 15 percent) for the weather generator and 

NARCAAP WRFG radiation sources, although the signs differed with a negative deviation 

(underestimation) for NARCCAP WRFG and a positive deviation (overestimation) for the 

weather generator.  An interesting finding is that average simulated yield using the NARR 

radiation estimates is smaller than that obtained using observed radiation, even though, as seen 

above, NARR overestimates daily solar radiation. Although the difference in the standard 
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deviation of the simulated soybean yield, when compared to yields obtained using observed 

radiation, is larger for the traditional radiation sources (> 15 percent) compared to the modern 

radiation sources (< 10 percent, respectively), the F-tests indicate that the differences in variance 

are insignificant for all sources of estimated radiation, in agreement with the small SDSD values 

seen above. The high correlations suggest that the pattern of variation of the soybean yield 

simulations is similar whether observed or estimated daily solar radiation is used as input. 

 

Table 3-4. Percent difference in the mean and standard deviation of simulated maize and soybean 

yields using estimated versus observed daily solar radiation as input, and the correlation between 

the yield time series for the study period.  Two-tailed probabilities are shown in parenthesis for 

paired t-test for equality of means and F-test for equality of variances.  

Radiation 
Sources Maize Soybean 

 
Difference 
in Mean 
(%) 

Difference in 
Standard 
Deviation (%) 

Corre-
lation 

Difference in 
Mean (%) 

Difference in 
Standard 
Deviation (%) 

Corre-
lation 

GEN 
EMP 
MEC 
POWER 
NARR 
CRCM 
ECP2 
HRM3 
WRFG 

2.63 (0.31) 
4.37 (0.16) 
1.54 (0.56) 
1.12 (0.72) 
3.34 (0.31) 
6.09 (0.09) 
4.12 (0.09) 
3.33 (0.42) 
6.73 (0.10) 

-2.29 (0.95) 
 1.18 (0.98) 
-8.67 (0.82) 
 9.39 (0.82) 
 7.57 (0.85) 
 4.21 (0.92) 
 5.32 (0.90) 
 1.69 (0.97) 
 9.55 (0.82) 

0.99 
0.98 
0.99 
0.99 
0.99 
0.98 
0.99 
0.97 
0.98 

 15.58 (0.03) 
   7.23 (0.10) 
   9.80 (0.04) 
  -0.81 (0.54) 
-11.78 (0.01) 
  -7.32 (0.01)* 
  -4.37 (0.16) 
-12.48 (0.01)* 
-17.73 (0.00)* 

24.37 (0.58) 
15.11 (0.72) 
17.56 (0.68) 
  1.00 (0.98) 
 -6.66 (0.86) 
  3.21 (0.94) 
  2.09 (0.96) 
 -6.82 (0.86) 
 -7.28 (0.85) 

0.99 
0.99 
0.99 
0.99 
0.98 
0.99 
0.99 
0.98 
0.98 

Note: Bolded values and asterisks indicate significant values at 95% and 99% probability levels, 

respectively. 
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3.4. Discussion  

The findings presented above suggest considerable potential for the use of non-traditional 

sources of daily solar radiation estimates for agricultural applications.  Although radiation 

estimates obtained from traditional mechanistic and empirical models generally agreed well with 

observed daily solar radiation based on a several performance measures (bias, RMSE, equality of 

means), the gridded POWER satellite-based estimates performed as well, and, along with the 

radiation estimates obtained from the four NARCCAP models, better captured the variance 

compared to the traditional measures. The ability of the NARCCAP models to replicate observed 

solar radiation was shown to be model dependent with smaller biases seen for ECP2 and CRCM 

and considerably larger biases for WRFG and HRM3, although, collectively, biases were larger 

for the NARCCAP models compared to the other radiation sources.  Depending on the 

application, daily radiation estimates obtained from NARR need to be used cautiously, as NARR 

consistently overestimates daily solar radiation.  One concern of the commonly-used weather 

generator is the substantially underestimated variance of daily solar radiation. Afshin and Gerrit 

(2003) also found that the WGEN weather generator, on which Weatherman is based, poorly 

simulated the variance of daily solar radiation, and Woli and Paz (2012) warn that the statistical 

properties of observed data on a daily time step may not be well represented by WGENR, 

another variation of WGEN. 

Several of our findings regarding the agreement of estimated and observed radiation are 

consistent with those of previous studies.  The RSME and  R
2
 values found here for the POWER 

radiation estimates for the grid point closest to  Hancock, Wisconsin, are similar to those 

reported for multiple sites in China (Bai et al., 2011) and across the continental USA (White et 

al., 2011b), suggesting that the POWER gridded dataset is a promising source of daily solar 
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radiation for multiple midlatitude locations.  Previous work which validated NARR fields with 

ground observations for locations across North America (Markovic et al., 2009), within the 

Mississippi River Basin (Kumar and Merwade, 2011), and over the Pacific Northwest (Schroeder 

et al., 2009), also found that NARR tended to overestimate daily solar radiation. As discussed by 

Schroeder et al. (2009) and Markovic et al. (2009), this overestimation is likely due to the 

underestimation of cloud cover in the NARR atmospheric model component (i.e., the NCEP Eta 

model). Tarasova et al. (2006), who evaluated the performance of the solar radiation scheme 

employed in the Eta model, reported a systematic bias in solar radiation estimates due to 

inaccuracies in cloud parameterization.  The radiation estimates obtained from the NARCCAP 

regional climate models also display positive biases for most months of the year. One possible 

explanation is error in cloud cover within the NCEP global reanalysis (Kalnay et al., 1996; 

Kanamitsu et al., 2002) used as the lateral boundary conditions for the NARCCAP models, and 

that these errors may propagate to the regional climate model simulations. A tendency for 

regional climate models to overestimate incoming solar radiation was also found by Rivington et 

al. (2008b), who validated the output of the Hadley Centre’s HadRM3 for multiple sites in the 

United Kingdom, although they attributed the systematic bias to the underestimation of cloud 

cover within the regional model itself (Rivington et al., 2008b).   

Although our findings indicate that mechanistic and empirical models continue to be 

viable estimation options of daily solar radiation, concern remains regarding the transferability of 

the model coefficients.  The sensitivity analysis presented here indicates that the model 

coefficients developed for Hancock, Wisconsin, performed well across the Upper Great Lakes 

region.  Unlike Hunt et al. (1998), who reported that the applicability of mechanistic model 

coefficients depends on the distance from the calibration station, our results suggest that local 
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climate variations are more important than distance in determining the transferability of the 

model coefficients. For example, the mechanistic and empirical models performed poorest at 

Chatham, which experiences lake effect modification from both Lake Superior and Lake 

Michigan (Andresen and Winkler, 2009). In line with our findings, Liu and Scott (2001) 

recommended that models calibrated at a specific station can be used at other locations with a 

similar climate regardless of distance, in contrast to Hunt et al. (1998) who specified an upper-

limit (~390 km) from the calibration station when estimating solar radiation.  The greater site 

sensitivity shown here of the coefficients of the empirical model compared to the mechanistic 

model suggests that the global solar radiation term as a function of latitude in the mechanistic 

model provides considerable stability and transferability to mechanistic models.    

The primary goal of this research was to evaluate the use of different radiation estimates 

in crop process models, and our findings suggest that crop-specific differences exist.  Maize 

yield obtained from the CERES-Maize simulations with estimated solar radiation as the input did 

not differ significantly from yield obtained using observed solar radiation as input, regardless of 

the source of the estimated radiation.  In contrast, significant differences were found in soybean 

yield for the majority of the radiation sources. For the non-traditional sources, only the simulated 

soybean yields from the POWER and NARCCAP ECP2 daily radiation estimates were in good 

agreement with the yields obtained using observed radiation. It is interesting to note that 

although the POWER satellite-derived estimates agreed well with observations throughout most 

the growing season, the ECP2 estimates replicated the observed radiation well only during June 

and July, suggesting that the timing of the biases can affect simulated soybean yield.  More 

difficult to explain is that simulated yield obtained from the other gridded datasets (NARR and 

the remaining NARCCAP models) was significantly smaller than yield obtained using observed 
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radiation, in spite of the positive bias in the radiation estimates. This may partly be explained by 

the relatively lower levels of light saturation for C3 crops.  Net photosynthetic rate for C3 

species increases with increasing light intensity only at low values of radiation, whereas for C4 

crops it tends to increase at higher levels of light intensity (Garcia et al., 2008).   Another 

potential explanation is that the larger positive bias in the radiation estimates led to water stress 

as increasing solar radiation can trigger greater crop evapotranspiration (Brown and Rosenberg, 

1997). Higher levels of solar radiation can also increase the temperature of the plant canopy 

which in turn results in greater water demand for crop transpiration (Payero and Irmak, 2006).  

A limitation of this study and all previous works is the small number of crop types and 

geographical locations included in the analysis. When our findings are placed in the context of 

previous studies, potential differences by crop type are highlighted.  For example, Garcia et al. 

(2008) found for nine rainfed agricultural locations in Georgia that the substitution of 

stochastically-generated solar radiation estimates for observed radiation did not have a 

significant impact on simulated maize yield, similar to what we found for maize yield at 

Hancock, Wisconsin.  On the other hand, Garcia et al. (2008) also found that differences in 

simulated yield for peanut, the representative C3 crop in their study, were insignificant.  In 

contrast, simulated yield for soybean, the representative C3 crop for this study, differed 

significantly when stochastically-generated radiation was substituted for observed radiation.  

When our findings are compared to previous analyses that employed radiation estimates obtained 

from mechanistic models, we also find some differences in interpretation.  Specifically, 

Mavromatis and Jagtap (2005) concluded, based on Willmott’s index of agreement, that the yield 

variability for a C3 crop (peanuts) at four locations in Florida displayed greater sensitivity than 

that for a C4 crop (maize) to the substitution of estimated solar radiation from a mechanistic 
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model for observed radiation.  Our study, in contrast, found no significant differences in 

variability, based on the F test for equality of variances, for either maize (C4) or soybean (C3). A 

caveat of these is that variants of the radiation estimation techniques can also influence the 

interpretation.  For example, Cooter and Dhakhawa (1996) found that, at least for maize, the 

impact of generated solar radiation on simulated yield can vary with the type of weather 

generator employed to obtain the radiation estimates, although both Garcia et al. (2008) and this 

study used variants of the popular WGEN.  Similarly, Trnka et al. (2007) found that different 

formulations of mechanistic models had a substantial influence on wheat and barley yield.  

Differences in the findings between studies may also reflect geographic influences.  For 

example, Bai et al. (2010) found that simulated maize yield obtained when substituting POWER 

radiation estimates for observed radiation did not differ significantly for three regions in China, 

similar to our results for Hancock, Wisconsin, but that this was not the case for the other two 

regions included in their analysis.   

Additional considerations also influence the choice of radiation estimate for an 

application, as summarized in Table 3-5.  Availability is a key consideration. One reason for the 

current wide use of weather generators in agricultural applications is that they are already 

packaged in software systems such as DSSAT, although users must input the temperature and 

precipitation time series needed to parameterize the weather generator for an individual location. 

The non-traditional gridded datasets (POWER, NARR, NARCCAP) are also freely available, 

although some effort and computer expertise is required to download and extract the radiation 

information, and these series are shorter in potential length than those obtained with weather 

generators.  As noted previously, an advantage of these radiation estimates over weather 

generators is that they may better reflect the day-to-day relationships between radiation and other 
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variables such as temperature and precipitation.  The lack of synoptic and temporal synchrony is 

particularly a concern for weather generators when the intention is to incorporate the generated 

values with observations of other climate parameters, for example blending observed 

temperature and precipitation with generated solar radiation.  Additional advantages of the 

gridded datasets are that no additional model development or parameterization is usually 

required and their large geographic coverage, global in the case of POWER and across North 

America for NARR and NARCCAP.  Mechanistic and empirical models are relatively easy to 

develop/parameterize without extensive requirements of computer resources (Ball et al., 2004; 

Yang et al., 2006). Considerable care needs to be taken, however, to apply these models only in 

regions with a similar climate as the location for which the model was parameterized and those 

with relatively stable climates (i.e. little or no temporal trends).  Another concern of mechanistic 

and empirical models is the possibility of negative radiation estimates, as these models are 

usually formulated using multiple regression techniques.  Alternative methods that consider daily 

solar radiation as a zero bound variable such as gamma and semi-log regression could be used, 

although we found larger biases for daily radiation estimates obtained using these methods 

(results not shown).  For the analyses above, the small number of negative values (0.3% for the 

mechanistic model and 1.4% for the empirical model) was simply converted to zero. 

Nonetheless, the frequency of negative estimates must be carefully evaluated whenever 

mechanistic or empirical models are used to estimate daily solar radiation. 

The development of future scenarios (also often referred to as projections) of daily solar 

radiation for climate change assessments places additional constraints on the applicability of the 

different sources of radiation estimates investigated here.  All have their limitations.  POWER is 

an observation-based dataset, and scenario development is for the most part limited to a “delta 
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approach” whereby daily time series are adjusted by a mean change.  This is also the case for 

reanalysis datasets such as NARR.  Weather generators have frequently been used to develop 

climate change projections, although future changes in the variable(s) used to condition the 

weather generator (e.g., precipitation) can have unanticipated effects on the other variables (e.g.,  

solar radiation) being simulated (Wilby et al., 2002; Wilks, 1992).  Mechanistic and empirical 

models can be readily applied to estimate solar radiation for future climate conditions when 

projected precipitation and temperature datasets are available, under the assumption that the 

model coefficients are applicable for future climate conditions (i.e., stationarity). A specific 

advantage of the NARRCAP simulations is that projections for a control and future period are 

already available.  However, larger biases occur when output from global climate models 

(GCMs) is used in place of large-scale reanalyses as the lateral boundary conditions for the 

region climate models (Olesen et al., 2007; Wilby and Harris, 2006), and a debiasing step may be 

necessary (e.g., Rivington et al., 2008a; Themeβ1 et al., 2011).  

 
 

Table 3-5. Strengths and limitations of traditional and non-traditional sources of daily solar 

radiation estimates.  

Radiation 
Source 

Strengths Limitations 

Traditional Methods 
Weather 
Generator 

• Often included within widely-used crop 
process software systems. 

• Requires only temperature and 
precipitation observations to 
parameterize. 

• Can be used for climate change 
projections, although future changes in 
the variable(s) used to condition the 
weather generator can have unanticipated 
effects on the other variables being 
simulated (including radiation). 

• Relatively long time series of 
temperature and precipitation 
needed for parameterization. 

• Day-by-day interrelationships 
between estimated radiation and 
observed temperature and 
precipitation are not directly 
retained. 

• Underestimated variance of daily 
solar radiation at study location* 
throughout the year. 
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Table 3-5. (cont’d) 
  • When used as input to 

CROPGRO-Soybean (but not 
CERES-Maize), resulted in 
significant overestimation of 
soybean yield at study location 
compared to when observed 
radiation served as input. 

Empirical 
Models 

• Modest deviations in monthly mean daily 
solar radiation when compared to 
observations at study location. 

• For study location, simulated maize 
(CERES-Maize) and soybean 
(CROPGRO-Soybean) yield obtained 
using radiation estimates did not different 
significantly from simulated yield 
obtained with observed radiation. 

• Can be easily applied to the development 
of future scenarios of solar radiation, 
under the assumption of stationarity of 
the model with time.    

• Model development required by 
user. 

• Daily radiation observations 
needed for model development.  

• Negative values for daily solar 
radiation possible. 

• Regional climate variations 
influence transferability of model 
to other locations.  

• Underestimated the variance of 
daily solar radiation at study 
location during growing season.  

Mechanistic 
Models 

• Modest deviations in monthly mean daily 
solar radiation compared to observations 
at study location.  

• Coefficients of mechanistic model appear 
less sensitive to local site conditions 
compared to those of empirical models. 

• Can be easily applied to the development 
of future scenarios of solar radiation, 
under the assumption of stationarity of 
the model with time. 
 

• Model development required by 
user. 

• Daily radiation observations 
needed for model development. 

• Negative values for daily solar 
radiation possible.  

• Regional climate variations 
influence transferability of model 
to other locations.  

• Underestimated variance of daily 
solar radiation at study location 
throughout the year. 

• When used as input to 
CROPGRO-Soybean (but not 
CERES-Maize), resulted in 
significant overestimation of 
soybean yield at study location 
compared to when observed 
radiation served as input. 

Non-Traditional Methods 
POWER 
satellite-
based 
estimates 

• Downloadable gridded dataset. 

• Global coverage (1° latitude x 1° 
longitude). 

• Continuously updated.  

• Coarser resolution (1° latitude x 

1° longitude) may be insufficient 
in areas with steep gradients in 
cloud cover. 
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Table 3-5. (cont’d) 
 • Modest deviations in monthly mean daily 

solar radiation compared to observations 
at study location. 

• For study location, simulated maize 
(CERES-Maize) and soybean 
(CROPGRO-Soybean) yield obtained 
using radiation estimates did not different 
significantly from simulated yield 
obtained with observed radiation. 

• Overestimated the mean and 
standard deviation of daily solar 
radiation at the study location 
during the cool season (October-
February).  

• Observation-based dataset; not 
applicable for climate change 
projections. 

NARR • Downloadable gridded dataset. 
• Coverage includes entire North America 

(32 km resolution). 
• Continuously updated. 

• Overestimates daily solar 
radiation.   

• When used as input to 
CROPGRO-Soybean (but not 
CERES-Maize), resulted in 
significant underestimation of 
soybean yield at study location 
compared to when observed 
radiation served as input.   

• Not applicable for climate 
change projections. 

NARCCAP 
regional 
climate 
models 
(CRCM, 
ECP2, 
HRM3, 
WRFG) 

• Downloadable gridded dataset. 
• Coverage includes entire North America 

(~50 km resolution). 
• NARCCAP models were able to simulate 

the variance of daily solar radiation at 
study location. 

• Projected values of daily solar radiation 
available for future period (2041-2070). 
 

• Available only for specific time 
slices (present-day time slice of 
1971-2000 and future period of 
2041-2070).   

• Ability to simulate daily solar 
radiation varies by regional 
climate model. 

• When used as input to 
CROPGRO-Soybean (but not 
CERES-Maize), resulted in 
significant overestimation of 
soybean yield at study location 
compared to when observed 
radiation served as input. 

• Error introduced when global 
climate model (GCM) output is 
used for lateral boundary 
conditions may require debiasing 
before application.  

*Study location is Hancock, Wisconsin. 
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3.5. Conclusions 

The sensitivity of simulated maize and soybean yield at Hancock, Wisconsin, to different 

sources of daily solar radiation estimates used as input the CERES-Maize and CROPGRO-

Soybean crop process models was investigated.  The radiation estimates were obtained from 

traditional (stochastic generation, empirical and mechanistic models) and modern (satellite 

estimation, reanalysis datasets, and regional climate model simulations) approaches.  

Comparisons of the radiation estimates to observed radiation at the study location indicated that 

the nature (e.g., magnitude, sign, and timing) of the biases differs considerably among the 

different radiation estimates, but that, in general, the biases associated with the non-traditional 

radiation sources are of similar magnitude to those of the traditional radiation sources.   

Which sources of daily solar radiation estimates are then preferable as input to crop 

process models?   Our results indicate that the answer to this question is likely crop dependent.  

The choice of radiation source did not significantly impact maize yield simulations from 

CERES-Maize, whereas significant differences at the 95% probability level were found for 

simulated soybean yield from CROPGRO-Soybean for all but three of the radiation sources.  

Two of the three insignificant results were for non-traditional sources of radiation estimates 

(POWER satellite-based estimations and the NARCCAP EPC2 regional climate simulation) 

suggesting that non-traditional radiation datasets provide a viable alternative to traditional 

radiation estimates as input to CROPGRO-Soybean.   

Impacts of the different radiation estimates on yield simulations need to be investigated 

for additional crops and geographic locations before broad recommendations regarding preferred 

sources of radiation estimates for crop process models can be made.  Furthermore, additional 

considerations, such as data availability and model transferability need to be considered when 
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selecting a source of daily solar radiation estimates for agricultural applications, including 

climate change assessments for agriculture.   
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CHAPTER 4.                                                                                                                 

Spatial Variability of Regional Climate Change Impacts on Crop Production         

in High Latitude Regions: A Case Study of the Upper Great Lakes Region             

of the United States 

 
In collaboration with 

Julie A. Winkler, Jeffry Andresen, Kurt Thelen, and Sharon Zhong 

 

4.1. Introduction 

Climate parameters, including precipitation, air temperature, and carbon dioxide (CO2), 

are key factors that control crop growth and development. Numerous studies have demonstrated 

that  crop production has been highly sensitive to historical climate variability (e.g., Chen et al., 

2004; Goldblum, 2009; Porter and Semenov, 2005) and recent climatic trends (e.g., Almaraz et 

al., 2008; Lobell and Asner, 2003; Lobell et al., 2011). Projected anthropogenic climate change 

triggered by elevated atmospheric greenhouse gas concentrations is expected to substantially 

impact crop production worldwide (e.g., Parry et al., 2004; Rosenzweig and Parry, 1994). 

Additionally, the impacts of climate change on crop production are projected to be unevenly 

distributed across the globe (Cline, 2007).  In general, adverse impacts are anticipated in low 

latitude regions where increased water stress and more rapid crop development and shorter time 

to crop maturity due to warmer temperatures are expected to reduce yield, in contrast to high 

latitude regions where a projected longer growing season and increased precipitation  are 

anticipated to provide more favorable growing conditions (Fischer et al., 2005; Jaggard et al., 

2010; Parry et al., 2005).  
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These generalizations are complicated, however, by longitudinal, in addition to 

latitudinal, differences in projected climate change, particularly for precipitation; differences 

between locations in agriculture production systems; and spatial variations in other 

environmental factors important for agricultural production, such as soil fertility. Furthermore, 

most previous climate impact assessments have primarily focused on changes in productivity in 

current production regions (e.g., Brown and Rosenberg, 1999; Izaurralde et al., 2003; Parry et al., 

1999), and, with few exceptions (e.g., Thomson et al., 2005; Tubiello et al., 2002), have not 

explicitly evaluated the potential poleward expansion of crop production.    

This research focuses on the impacts of future climate change on county-level corn and 

soybean production in the Upper Great Lakes Region (UGLR) of the United States, defined as 

the states of Michigan, Wisconsin and Minnesota (Safir et al., 2008). This region, located 

between approximately 41.5°N-49.5°N latitude (Figure 4-1) serves as an excellent case study for 

evaluating potential latitudinal shifts in favorable growing regions. The southern portion of 

UGLR is located along the northern edge of the agricultural heartland of the United States;  and 

Michigan, Wisconsin and Minnesota rank 11(12), 10(15) and 4(3) for grain corn (soybean) 

production, respectively (Hatfield, 2012).  In contrast, little crop production currently occurs in 

the extreme northern portion of the UGLR, an area occupied primarily by forests and other 

natural vegetation (Andresen et al., 2013).  Additionally, several environmental factors 

complicate future northward expansion of crop production, most notably the decrease in soil 

fertility from the deep, rich prairie soils of southern Minnesota and Wisconsin to the thinner, 

sandier spodosol soils of northeastern Minnesota and northern Wisconsin and Michigan.  The 

moderating influences of the Great Lakes, particularly cooler spring and summer temperatures, 

also may impact the future expansion of favorable growing regions.  
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Figure 4-1. Geographical location of the Upper Great Lakes Region  
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agriculture in the UGLR, all of which considered a limited number of representative locations in 
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more nuanced interpretation of future yield changes.  Employing a smaller number of study sites 

(five locations in Michigan, eastern Wisconsin and western New York), but a much larger 

ensemble of climate projections, Andresen et al. (2013) found that the direction and magnitude 

of projected yield change for the 21
st

 century varied with crop type and location.  Under current 

CO2 concentrations, simulated corn yield decreased for the majority of the empirically-derived 

climate projections at all but the northernmost location, whereas wheat yield increased for most 

locations and climate projections.  Furthermore, CO2 enrichment substantially increased 

projected yield for wheat (a C3 crop) but not corn (a C4 crop).  

 In contrast to Andresen et al. (2013; 2000), Southworth et al. (2002; 2000) limited their 

impact assessments to established crop production areas in the portion of the Great Lakes region 

extending from central and southern Michigan and Wisconsin to southern Illinois, Indiana and 

Ohio.  Based on empirically-downscaled climate projections from a single GCM and small 

number (10) locations across the study area, Southworth et al. (2000) found that the sign of the 

projected change in simulated corn yield for a future period (2050-2059) relative to a baseline 

period (1961-1990) varied with location and crop cultivar. Simulated yield for long-season corn 

varieties increased at the Wisconsin and Michigan study sites but not at sites located farther 

south, whereas the projected average yield of medium-season varieties decreased at all locations 

although the decrease was less for the Wisconsin and Michigan locations.  A projected decrease 

in yield for short-season varieties was also found, with the exception of the study site in extreme 

western Illinois.  Based on nine locations within the study region, geographical and varietal 

differences were also found for projected soybean yield, with large increases in yield simulated 

for the Wisconsin and Michigan locations and only small increases, or even a decrease, projected 
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for the southern study locations (Southworth et al., 2002).  In general, yield gains were greatest 

for late maturing rather than the early maturing cultivar (Southworth et al., 2002), and CO2 

fertilization had a positive influence on future yield.     

These previous analyses point to considerable complexity in projected future changes in 

productivity in the UGLR, but, nonetheless, all suggest the potential for increased productivity at 

more northern locations.  Any generalization is limited, however, by the small number of 

locations employed in these earlier assessments.  Thus, there is considerable need for a more 

spatially-detailed assessment of future crop productivity that explicitly considers the potential for 

the poleward expansion of crop productivity, specifically for the UGLR but with implications for 

high latitude regions worldwide.   In order to fill this gap, the major goal of this research is to 

provide a county-level assessment of the spatial variability of the impacts of projected future 

climate change by the mid century (2041-2070) on corn and soybean production across the 

UGLR, including spatial variations in future planting dates, time to maturity, seasonal 

evapotranspiration (i.e., cumulative evapotranspiration at maturity), and crop yield. Additionally, 

the sensitivity of the projected changes to CO2 concentration and, for corn only, to crop cultivar 

are assessed. Corn and soybean are employed in the assessment as they represent the major crop 

rotation in the current UGLR agricultural production regions and are a C4 and C3 crop, 

respectively. The assessment presented here also differs from previous assessments for the study 

region in that dynamically-downscaled, rather than empirically-downscaled, climate projections 

are utilized.  An ensemble of climate projections obtained from the recently-released North 

American Regional Climate Change Assessment Program (NARCCAP) (Mearns et al., 2009) is 

employed.     
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4.2. Data and Methods  

4.2.1. Regional Crop Model Simulation  

Regional simulation of corn and soybean production for all counties in the study region 

was completed using the CERES-Maize and CROPGRO-Soybean models incorporated in the 

Decision Support System for Agrotechnology Transfer (DSSAT) ver. 4.5 (Hoogenboom et al., 

2010). DSSAT is a cropping system model that integrates different computer programs (i.e. 

modules) to simulate daily crop growth and development (Jones et al., 2003). Each module 

specifically handles weather inputs, soil conditions, soil-plant-atmosphere interactions, plant 

growth and development, and farming management. Inputs required for DSSAT simulation are 

climate/weather variables (daily solar radiation, precipitation, maximum and minimum 

temperature), soil information, and farming management.  The DSSAT system shares common 

routines to simulate fluctuations of soil parameters; whereas, crop growth processes are 

simulated by individual plant growth modules (Jones et al., 2003). In the DSSAT system, corn 

and soybean are grouped into cereals and legumes, respectively.  

DSSAT has been used widely around the world to investigate the consequences of 

environmental changes and crop management practices (e.g. Hartkamp et al., 2004; O'Neal et al., 

2005; Thorp et al., 2008; Vucetic, 2011), including climate change impact and adaptation 

assessments (e.g. Brassard and Singh, 2008; Meza and Silva, 2009). DSSAT’s capabilities and 

performances have also been reviewed widely (e.g. Mera et al., 2006; Southworth et al., 2002; 

Southworth et al., 2000). According to White et al. (2011a), who reviewed 221 articles on 

climate change impacts on crop production, the CERES family of models are regularly 

implemented (~40% articles) to evaluate crop responses to climate change scenarios. Although, 

CROPGRO is not as well known as the CERES family (White et al., 2011a), CROPGRO-



 84 

Soybean often has been used for climate change impact assessments in high latitude regions 

(e.g., Alexandrov et al., 2002; Brassard and Singh, 2008). As noted above, both CERES-Maize 

and CROPGRO-Soybean were employed in previous climate impact assessments for the UGLR 

(e.g., Andresen et al., 2013; 2000; Southworth et al., 2002; 2000).  In this research, DSSAT was 

run for each growing season for 30-year historical (1971-2000) and future (2041-2070) periods. 

DSSAT was originally developed for plot level simulations, although it subsequently has 

been employed to estimate yield at a range of spatial scales including for large non-uniform areas 

(e.g., Irmak et al., 2005; Jagtap and Jones, 2002).  For this study, DSSAT was used to simulate 

the spatial distribution of county-level corn and soybean yield.  In this we follow the lead of, 

among others, Haskett et al. (1995) who utilized a crop simulation model (SOYGRO) to simulate 

county-level yield in Iowa.  As pointed out by Irmak et al. (2005, 2344), an implicit assumption 

is that “ the impacts of climate at the aggregate spatial scale are the same as those produced by 

the crop models, which have limited inputs over space”. 

County-level corn and soybean yield were simulated for 30-year historical and future 

time slices.  A 30-year time series has been considered sufficient by a number of authors (e.g., 

White and Hoogenboom, 2011) for climate change impact assessments. Detailed descriptions of 

the inputs for the model simulations including the future climate scenarios are presented below.   

(a) Historical Climate Observations  

Preparing climate data for DSSAT simulation on the county-scale poses some challenges 

as climate stations are distributed unevenly over the study region. Several previous studies have 

employed gridded fields of precipitation and temperature as inputs to crop model simulations at a 

regional scale (e.g., Irmak et al., 2005; Jagtap and Jones, 2002; Quiring and Legates, 2008). 

Although, the “regular” grid is an obvious advantage, the spatial interpolation is sensitive to the 
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density of climate stations, their geographic distribution across  a region, and topographical 

terrain (Hoogenboom, 2000). Gridded time series also are sensitive to inhomogeneities in the 

original station data (Guentchev et al., 2010).  When gridded fields of daily temperature and 

precipitation are used, an  issue that is of particular concern for this study is that the gridded 

fields overestimate the number of days with precipitation and underestimate daily minimum 

temperature (Pollyea, 2013; Quiring and Legates, 2008; West et al., 2007).   

Recognizing these constraints of gridded fields, we elected to directly employ observed 

time series of daily temperature and precipitation. Simply assigning a county to a nearby climate 

station is complicated by differences between climate stations in the length of record, the 

frequency of missing observations,  and the inhomogeneities introduced into the record by 

changes in instrumentation, time of observation, and station relocation. Thus, we sought to 

identify a modest number of high quality observing stations that capture the spatial variations in 

climate across the UGLR. To accomplish this, an objectively-defined climate regionalization 

developed using k-means cluster analysis (see Chapter 2) was utilized to assist in the selection of 

representative climate stations (Figure 4-2).  The climate regionalization grouped monthly means 

of precipitation and maximum and minimum temperature for the period of 1971-2000 from 180 

climate stations within the UGLR and its neighboring states that are included in the United States 

Historical Climate Network ver 2.0 (Menne et al., 2012a; Menne et al., 2009). The results of the 

climate regionalization suggest that the climate stations within the study region can be 

categorized into seven climate types (Figure 4-2, top) that are distinguished by differences in the 

deviation of the annual cycle of temperature and precipitation from the UGLR average.  

Each county was then assigned to a climate region, and based on the county-climate 

memberships, we selected two or more representative climate stations for each climate group, 
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including spatially-fragmented county-climate clusters. A primary consideration in station 

selection was the completeness of the daily time series.  Even though the USHCN stations are 

considered to be the highest quality climate stations in the United States, data completeness and 

record length vary dramatically among the USHCN stations.  Another consideration was to select 

stations that captured the north-south and east-west extents within a climate region.  Thus, more 

stations were selected for larger regions compared to smaller regions. 

A total of 36 stations out of 79 USHCN climate stations within the UGLR were selected 

to capture the spatial climate variability of the region (Figure 4-2-bottom). Daily data 

completeness over the growing season (April to October) of the historical period (1971-2000) is 

more than 85% for the majority of the stations. The distribution of daily data completeness (in 

brackets) at five percentage intervals by station is: 34 stations (>85%), 31 stations (>90%), 27 

stations (>95%), and 12 stations (>99%).  To assign a representative climate station to each 

county, we identified counties and representative climate stations that fell within the same 

climate group memberships, and then assigned a county to the closest representative climate 

station within the climate region based on Euclidian distance between the climate station location 

and the county centroid (Figure 4-2, bottom). 
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Figure 4-2. Selection of representative climate stations for the regional climate change impact 

assessment on corn and soybean production in the UGLR based on an objective climate 

regionalization (top) and their assignment to counties (bottom). Each station is referenced by a 

four character identifier and the colors in the lower panel show the counties assigned to the same 

representative climate station.   
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Missing values of precipitation, maximum and minimum temperature for the USHCN 

stations were filled in using daily climate values obtained from the Iowa Environmental Mesonet 

(IEM) Network (IEM, 2013) for either the same station or a nearby station. IEM recently made 

available complete daily time series for many climate stations in the Midwestern states including 

Michigan, Wisconsin and Minnesota. IEM filled in missing data using an inverse distance 

weighted interpolator applied to climate data from NCEP Stage IV precipitation, airport weather 

data (ASOS/AWOS), and available NWS COOP reports (Drayl, 2012, personal communication). 

Daily solar radiation is a required input for the crop simulations, but this variable is 

infrequently measured.  For this analysis, daily solar radiation was estimated using a mechanistic 

radiation model proposed by Hunt et al. (1998) which requires daily maximum and minimum 

temperature and precipitation as inputs. The choice of this approach was based on a systematic 

evaluation of several alternative estimation procedures for daily solar radiation (see Chapter 3). 

The mechanistic radiation model was calibrated using observed data from 1990-2008 for a 

climate station, at Hancock, Wisconsin, and applied to the 36 representative climate stations.   

(b) Soil data 

As soil characteristics vary spatially, for each county we selected the “dominant” soil 

based on areal coverage. Soil data were obtained from the State Soil Geographic (STATSGO) 

database published by the Natural Resources Conservation Service of the United States 

Department of Agriculture (NRCS-USDA) (Soil Survey Staff, 2010). STATSGO has been 

regularly employed for crop model simulations in the United States (e.g., Carbone et al., 2003; 

Safir et al., 2008). Soil Data Viewer (NRCS, 2012), which is supplied to read STATSGO 

database, was used to extract soil information stored in STATSGO layer by layer, with the 

midpoint of each layer roughly corresponding to the depths in the generic soil requirements in 
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DSSAT.  The eight soil depths employed in the DSSAT based on the extracted layers are: 5 cm 

(0-10 cm), 15 (10-20), 25 (20-30), 40 (30-50), 60 (50-70), 80 (70-90), 105 (90-120), and 135 

(120-150). 

Soil parameters specifically extracted from STATSGO for each soil layer are soil 

classification (e.g., loam, silty loam, sandy loam), slope, drainage, runoff potential, soil texture 

(percent silt and clay), organic content, pH and cation exchange capacity. Soil color and fertility 

factor were retrieved based on soil texture and taxonomy from the National Cooperative Soil 

Survey (NCSS, 2011) and the generic soil database available in DSSAT package, respectively. 

SBuild, a DSSAT supporting package (Uryasev et al., 2003), was employed to prepare soil 

inputs and calculate specific soil information, such as drainage upper and lower limit, required 

for the DSSAT simulations. 

(c) Cropping Management  

DSSAT requires information on agronomic practices, e.g., planting densities, row 

spacing, planting date, and crop cultivar. The agronomic practices were generally adopted from 

Andresen et al. (2001), who applied DSSAT for thirteen locations in the UGLR.  The planting 

densities were determined at 75 cm spacing with the plant population of 6 plants/m
2 and 20 

plants/m
2 for corn and soybean, respectively. These agronomic practices reflected farming 

management and technology in the late 1990s (Andresen et al., 2001), which overlaps with the 

historical time slice used in this study.  

Selecting a crop cultivar for the DSSAT simulations of corn yield is challenging as 

multiple cultivars are grown within each county.  Furthermore, the relative proportion of 

different cultivars varies spatially across the UGLR (Coulter et al., 2010b) and also annually as 
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farmers consider weather conditions and economic profits for planting a particular corn hybrid 

(Hao et al., 2010). Given the focus of this analysis we selected, from several options, the cultivar 

for the DSSAT simulations that best reproduced the spatial distribution of county-level corn 

yield.   As potential options we considered the modified short season cultivar employed by 

Andresen et al. (2001), and the three corn cultivars (i.e., short, medium and long season) used by 

Southworth et al. (2000). Based on visual comparisons and statistical indexes (i.e., spatial 

correlation and the Willmott Index (Willmott, 1981)), we found that for the 1971-2000 historical 

period the median values of simulated corn yield for the  medium season cultivar better captured 

the spatial variability of observed county-level corn yield defined as crop production divided by 

planted areas. This was true even when compared to simulating the yield for multiple cultivars 

and selecting the yield value that best matched the observed county yield (results not shown). 

The cultivar characteristics for the medium season are presented in Table 4-1. 

 
Table 4-1. Cultivar characteristic of the medium season corn cultivar used in the DSSAT 

simulations.   

P1 Degree days (base 8 
0
C) from emergence to end juvenile phase 200 

P2 photoperiod sensitivity (0-1)  0.3 

P5 degree days (base 8 
0
C) from silking to physiological maturity  800 

G2 potential kernel number 700 

G3 potential kernel growth rate (mg/d) 6.3 

PHINT degree days required for a leaf tip to emerge (phyllochron interval) (
0
C d) 38.9 

Source: Southworth et al. (2000)    

In contrast to the simulations for corn, four maturity groups were preselected for the 

soybean DSSAT simulations. The maturity groups were roughly assigned to each county based 

on the distribution of soybean maturity groups in the United States published by the National 

Soybean Research Laboratory (NSRL, 2013). These different maturity groups reflect the 
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sensitivity of soybean to photoperiods (Carbone, 1995). The cultivar characteristics for the four 

maturity groups were available from the soybean cultivar file supplied by DSSAT version 4.5. 

Planting dates were determined using the DSSAT automatic planting option. Planting 

occurs when percentage soil water and soil temperature in the top 10 cm are at least 20% and 10 

0
C, respectively, during a specified planting window. For the historical simulations, five and six 

different planting windows were employed for the corn and soybean simulation, respectively. 

The planting windows were determined by moving the starting date of a planting window later 

by roughly 15 days during the period April 1
st

 to June 10
th

 for corn and from April 1
st

 to June 

30
th

 for soybean (e.g., planting windows of April 1
st

-June 10
th

, April 16
th

-June 10
th

, and so on). 

The end dates of the planting windows for both crops were obtained from the typical planting 

and harvesting dates for corn and soybean in Michigan, Minnesota and Wisconsin as reported by 

(NASS-USDA, 1997). For the future simulations, the starting date of the planting windows was 

set earlier to March 1
st

 considering the potential warming condition for the region. For both the 

historical and future periods, the highest annual simulated yield for each county from the 

different planting windows was retained for the analysis. Harvesting dates for both the historical 

and future simulations were determined at maturity stage (i.e., R6 for corn and R8 for soybean) 

following Andresen et al. (2001).  

The different planting windows were used to take into account the short ‘optimum’ time 

period to grow corn in the UGLR (Thelen, 2007) and to allow for replanting decisions following 

adverse climate conditions (Benson, 1990; Laurer, 1997). Additionally, the multiple planting 

windows in part compensate for the use of a single soil type to represent the soil conditions for a 

county,  as suggested by Moen et al. (1994). 
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No change in cropping practices over time was assumed. The crop simulations assumed 

rainfed conditions were initiated at the first of January each season with soil water initialized at 

drained upper limit. The nitrogen option within the DSSAT environment was turned off for corn 

simulations, but turned on for the soybean simulations to capture nitrogen fixation as soybean is 

a leguminous crop that is able to fixate nitrogen (Coulter et al., 2010a). 

4.2.2. Climate Change Scenarios 

Future climate change scenarios were developed based on the outputs of the NARCCAP 

simulations, available at a 50 km
2
 resolution. Eight combinations of RCM/gcm simulations were 

available for a future (2041-2070) and control (1971-2000) period (Table 4-2). The model 

combinations are CRCM-ccsm, CRCM-cgcm3, HRM3-hadcm3, HRM3-gfdl, RCM3-cgcm3, 

RCM3-gfdl, WRFG-ccsm, and WRFG-cgcm3. The model ID presented in Table 4-2 will be used 

as a reference for the model identifier in the figures included in this Chapter.  

 
Table 4-2. The NARCCAP model combinations employed for the study 

ID Model ID Model ID Model ID Model 
A CRCM-ccsm B CRCM-cgcm3 C HRM3-gfdl  D HRM3-hadcm3 
E RCM3-cgcm3 F RCM3-gfdl G WRFG-ccsm H WRFG-cgcm3 

 
 

Daily maximum and minimum temperature and precipitation from the land grid points 

nearest each of the 36 representative climate stations were extracted to calculate monthly means 

for the future (2041-2070) and control (1971-2000) periods. Differences (∆T) in monthly means 

of temperature and percentage changes (%∆P) in monthly precipitation were calculated between 

the two periods for each RCM/gcm simulation and applied to the observed historical daily time 

series of maximum and minimum temperature and precipitation for the 36 representative climate 

stations. This simple approach of developing future climate change scenarios has been 
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previously applied for numerous climate change impact assessments (e.g., Mearns et al., 1997; 

Tubiello et al., 2002; Wang et al., 2011).  

For reference, delta values for the growing season (March-October) are shown in Figure 

4-3. The projected change in seasonal mean maximum and minimum temperature and 

precipitation for the region depends upon the combination of RCM/gcm (Figure 4-3). HRM3-

gfdl projects larger increases in temperature and greater decreases in precipitation, particularly 

for the southern areas of the UGLR, than the other NARCCAP models. WRFG-cgcm3 and 

WRFG-ccsm project slightly warmer and relatively wetter conditions compared to the other 

RCM-gcm combinations. In general, the regional climate of the UGLR by mid century, as 

derived from the majority of the NARCCAP models, is projected to be warmer than currently, 

particularly in the southern UGLR, and wetter than currently, especially for the northern UGLR 

(Figure 4-3). 

Atmospheric CO2 concentration for the historical period (1971-2000) was set at 370 ppm 

(i.e., approximate CO2 concentration at the end year of the historical period). The SRES A2 

emissions scenario, the CO2 scenario used in the NARCCAP simulations, projects CO2 increases 

from about 490 ppm to 635 ppm during the mid-century (2041-2070) future period (IPCC-DDC, 

2011). We selected the projected CO2 values at the start and end of the mid century period (i.e., 

490 and 635 ppm) as input to the DSSAT simulations to assess the spatial variability of carbon 

fertilization on corn and soybean production.  
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Figure 4-3. Projected changes in °C for simulated average maximum temperature (left) and 

minimum temperature (middle), and percent change in precipitation (right) for the growing 

season (March-October) between the future (2041-2070) and the control (1971-2000) periods for 

the eight NARCCAP models. Letters of A-H are the NARCCAP model identifiers (Table 4-2). 
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4.2.3. Evaluation of CERES-Maize and CROPGRO-Soybean   

Before the NARCCAP simulations were used as input to the crop models, simulations 

using observed climate time series were first compared to historical county yields to evaluate 

how well the simulated yields capture the observed spatial variability across the UGLR.  This 

evaluation is essential background for interpreting the spatial variations in projected future yield.  

Observed county-level crop yields were calculated by dividing crop production by 

planted areas as reported by the National Agriculture Statistics Service, United States 

Department of Agriculture (NASS-USDA, 2011). Because of advancement in farming practices 

and technology, such as new cultivars and pest management which significantly contributes to 

increased crop yields (Egli, 2008), temporal trends are expected in observed yields, whereas 

temporal trends are not expected for simulated yields as farming practices and technology are 

held constant throughout the simulation period. Thus when comparing observed and simulated 

yield, any temporal trends in the observed yield should first be removed  (e.g., Andresen et al., 

2001; Jagtap and Jones, 2002) . We detrended observed yields separately for each county with at 

least five years of available data to the base year of 2000 using the approach proposed by 

Tannura et al. (2008) that assumes a linear temporal trend in crop yield.   
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Figure 4-4. The median value of observed and DSSAT simulated yields for corn (left) and 

soybean (right). The yield ratio was calculated by dividing simulated yield by observed yield for 

each county. Available data refers to the numbers of years with reported yield for each county.   

Note: The scale for median yield is different for corn and soybean.      

Corn Soybean 
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Figure 4-4 shows that the simulated corn and soybean yields are generally able to capture 

the spatial distribution across the study area of observed yield for both crop types. Observed corn 

and soybean yields gradually decrease from south to north across the UGLR. Higher yields are 

specifically found in southern Minnesota and Wisconsin for both crops. This pattern is generally 

captured by the DSSAT simulated yields, although some discrepancies appear. For corn, 

underestimations are seen in southwestern Minnesota and northern Michigan, whereas yield is 

overestimated in the northern portion of the study area, especially in areas where little crop 

production currently occurs. Simulated soybean yields exceed observed yields particularly in the 

southern part of the region, while underestimations appear in most northern counties. Overall, the 

median value of simulated yield, averaged across all counties, is higher for corn by about 136 

kg/ha (~2.3%) and lower for soybean by about 244 kg/ha (~9.5%), than the reported county 

statistics. The Willmott Index of agreement and the spatial correlation of the median yields are 

0.83 and 0.70 for corn, while the two indeces are both 0.65 for soybean. The Wilmott Index 

ranges from 0 to 1 with 1 indicating good agreement (Willmott, 1981). The modest high values 

of the Willmott Index and the small deviations in region-wide median yields indicate the 

simulated county-level yields of corn and soybean capture the observed yield patterns well.   

4.2.4. Regional Impact Assessment of Projected Climate Change  

The potential consequences of future climate change were assessed by estimating the 

median changes in planting dates, time to maturity (defined as the days from planting to full 

maturity, i.e., to R6 for corn and R8 for soybean), seasonal evapotranspiration, and grain yield 

for all NARCCAP climate model combinations at 370, 490 and 635 ppm. The first CO2 

concentration was defined as a reference, while the other two are used to evaluate sensitivity of 
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the simulated outcomes to elevated atmospheric CO2 concentrations.  We also compared the 

coefficient of variation (COV) of crop yields between the future and the historical period to 

evaluate potential change in future yield variability (Tubiello et al., 2002). COV was calculated 

for each county by dividing the standard deviation of the crop yield for a time slice by the mean 

value.  High values of COV indicate high interannual yield variability, whereas small values 

imply more stable annual production (Tubiello et al., 2002). 

 Specifically for corn, we also evaluated the sensitivity of future climate change impacts 

to different corn cultivars, recognizing that a range of cultivars are grown in the UGLR.  In 

addition to the medium season cultivar, we compared yield changes between the future and 

historical periods for short season and long season cultivars.  These comparisons were limited to 

simulations using only the highest CO2 concentration (635 ppm) for the future period.  

Potential shifts in major growing regions were estimated by modifying, for each county, 

the median value of the reported historical county-level yield by the suite of projected changes  

in median corn and soybean yield from DSSAT simulations  obtained using the eight NARCCAP 

climate simulations and the three levels of atmospheric CO2 concentration.            

4.3. Results  

4.3.1. Historical Simulation  

The DSSAT simulated median values of planting date, time to maturity, cumulative 

seasonal evapotranspiration and grain yield for the historical period provide a reference for 

evaluating potential future changes.  The spatial variations in the simulated values are briefly 

summarized below. 
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The simulated median planting dates (PDAT) for the historical (1971-2000) period fall 

between Julian day (JD) 120-127 (~April 30 to May 7).  There is a slight latitudinal variation in 

planting date (Figure 4-5), with median planting dates between JD 113 (~Apr 23) to JD 127 

(~May 7) for the majority of the counties in northern Michigan and in central and northern 

Wisconsin and Minnesota. Earlier simulated planting dates (before JD 106 (~April 16)) are seen 

for a small number of counties in northwestern Minnesota, whereas for the majority of the 

southern counties simulated planting dates for corn fall between JD 120 (~April 30) and JD 141 

(~May 21). Simulated median planting dates are considerably later for a small number of 

counties in the central and southern Lower Peninsula of Michigan (Figure 4-5). For soybean, 

simulated median planting dates lie between JD 120 and JD 127 for the majority of counties in 

Minnesota and between JD 120 and JD 141 for the Upper Peninsula of Michigan, and northern 

Wisconsin. On the other hand, a wider range (JD 120 – JD 156) in simulated median soybean 

planting dates is seen for counties in the Lower Peninsula of Michigan with simulated planting 

dates as late as early to mid June (>JD 156) for a small number of counties in the central Lower 

Peninsula. 

The simulated median time to maturity (TMAT) for corn displays a marked south-to-

north gradient (Figure 4-5), with a generally shorter TMAT of almost 20 days for counties in the 

southern compared to northern portion of the UGLR. Simulated median TMAT for soybean is 

generally between 120 and 140 days for most counties in the UGLR. A few counties in 

northeastern Minnesota and the eastern Upper Peninsula Michigan display simulated median 

TMAT values of 140-160 days.  

The regional distribution of the simulated median values of cumulative seasonal 

evapotraspiration (ET) exhibits higher ET for counties in the south than for counties in the north 
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with only a slight difference in ET between corn and soybeans (Figure 4-5). Simulated ET for 

corn is about 550 to 700 mm for the southern UGLR counties and about 400 to 600 mm for the 

majority of the northern counties. Simulated ET for soybean is in the range of 500 to 700 mm for 

the southern counties and about 400 to 550 mm for the northern counties. For some counties in 

the northern Lower Peninsula of Michigan, simulated ET is lower than 400 mm.  

A south-north gradient is also seen in the distribution of simulated median yield for corn 

and soybeans. Simulated median yield in southern Michigan, Minnesota and Wisconsin exceeds 

7500 kg/ha, whereas the median yields fall between 1500 – 4500 kg/ha for most of the northern 

counties. For soybean, the simulated median yields are about 2500 to 3500 kg/ha for the southern 

counties with several counties having median yields over 3500 kg/ha, while the northern counties 

display yields of 500 – 2500 kg/ha with a few counties in the northern Minnesota and the Upper 

Peninsula of Michigan having higher (2500-3000 kg/ha) and lower (<=500 kg/ha) simulated 

yields, respectively.                       
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Figure 4-5. Median values of simulated planting date (PDAT), time to maturity (TMAT), 

cumulative seasonal evapotranspiration (ET), and grain yield (Yield) for corn (top four panels) 

and soybean (bottom four panels) in the UGLR for the historical period (1971-2000)   
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4.3.2. Future Climate Impacts  

Planting Dates and Time to Maturity  

Substantial future changes in the spatial distribution of planting date (PDAT) for corn 

production are suggested for the future time slice (Figure 4-6). In spite of differences between 

climate scenarios, earlier planting dates are projected for most counties in the southern portion of 

the study area. Earlier planting dates are projected for a larger number of southern counties for 

the HRM3-gfdl, CRCM-cgcm3 and RCM3-cgcm3 simulations compared to the other 

NARCCAP simulations; whereas, the projected future climate from WRFG-cgcm3 suggests later 

planting dates for most southern counties except for the southeast Michigan. Later planting dates 

(<20 days) are projected for most counties in the central and the northern UGLR, particularly 

when corn production is simulated using climate scenarios from CRCM-ccsm, CRCM-cgcm3, 

HRM3-gfdl, HRM3-hadcm3, and RCM3-gfdl. For the extreme northern UGLR, slightly earlier 

planting dates (0-10 days) are projected by most climate models (particularly WRFG-ccsm and 

WRFG-cgcm3), with the exception of HRM3-hadcm3 for which later planting dates are 

projected (Figure 4-6). When the projected changes in PDAT are averaged across all climate 

scenarios (Figure 4-6, average), earlier and later planting dates are seen for the southern and 

northern counties, respectively, with the exception of three counties in northern Minnesota where 

earlier planting dates are projected.  

Projected changes in time to maturity (TMAT) for simulated corn production suggest, a 

shorter TMAT for most UGLR counties, with the exception of counties in the Upper Peninsula 

of Michigan and a few counties in northwest Minnesota. For these counties, a slightly longer 

TMAT (<10 days) is projected when climate simulations from WRFG-ccsm and WRFG-cgcm3 

served as input to CERES-Maize.                   
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Figure 4-6. Projected change in the median of planting date (PDAT, above) and time to maturity 

(TMAT, below) between the historical (1971-2000) and the future (2041-2070) period for corn 

production in the UGLR at the reference level of CO2 (370 ppm) concentration. Letters of A-H 

are the NARCCAP model identifiers (Table 4-2). 



 104 

 For soybean production, planting dates are projected to occur earlier for most counties 

located in Minnesota, Wisconsin and the Upper Peninsula of Michigan based on the climate 

scenarios obtained from CRCM-cgcm3, RCM3-cgcm3, RCM3-gfdl, WRFG-ccsm, and WRFG-

cgcm3. On the other hand, later planting dates (10-30 days) for soybean production are estimated 

for counties in Wisconsin and the Lower Peninsula Michigan by CRCM-ccsm, HRM3-gfdl, 

HRM3-hadcm3, RCM3-gfdl, and WRFG-ccsm. When the average change in planting dates 

across all climate scenarios is considered (Figure 4-7, average), a primarily west-east gradient is 

observed across the UGLR, with earlier planting dates projected in the western UGLR and later 

planting dates projected in the central and eastern UGLR.  

 The changing pattern of time to maturity (TMAT) for soybean production, when 

averaged over all climate scenarios, suggests a shorter TMAT (~-20 days) for most counties in 

the UGLR, although a slightly longer (<10 days) TMAT is projected for several counties in 

south-central Minnesota (Figure 4-7, average). Four RCM-gcm combinations (i.e., CRCM-

cgcm3, RCM3-cgcm3, WRFG-ccsm, and WRFG-cgcm3) project more counties with longer 

TMAT compared to the other NARCCAP combinations, particularly in the western and southern 

UGLR (Figure 4-7).                
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Figure 4-7. As Figure 4-6, but for soybean production  
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Evapotranspiration and Crop Yield  

The spatial pattern of projected change between the future (2041-2070) and the historical 

(1971-2000) period in the median value of simulated cumulative seasonal evapotranspiration 

(ET) for corn production, when averaged across all climate scenarios, clearly displays a north-

south gradient  with decreased ET projected for the southern UGLR and increased ET for the 

northern UGLR (Figure 4-8, average). Moreover, this general pattern is seen for the majority of 

NARCCAP models, although some differences exist. Substantially larger decreases in ET (<-

15%) are projected for counties in the Lower Peninsula of Michigan by CRCM-ccsm, CRCM-

cgcm3, HRM3-gfdl, and WRFG-ccsm. On the other hand, the area projected to experience  

higher ET in the future is larger for the RCM3-cgcm3, RCM3-gfdl, WRFG-ccsm and WRFG-

cgcm3 climate scenarios.    

Similar to the spatial pattern of ET change, corn yield is projected to decrease for most 

southern counties and increase in the northern counties (Figure 4-8, below). A substantial portion 

of the southern and central UGLR is projected to have decreased yield  for the HRM3-gfdl, 

CRCM-ccsm, CRCM-cgcm3, and HRM3-hadcm3 scenarios, with projected decreases as large as 

-25% to -50%. Increased yield in the northern UGLR is seen for all climate scenarios, although 

the area with projected yield increases is larger for WRFG-ccsm and WRFG-cgcm3 compared to 

the other climate scenarios.  
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Figure 4-8. Change in the median of cumulative seasonal evapotranspiration (ET, above) and 

crop yields (Yield, below) between the historical (1971-2000) and the future (2041-2070) period 

for corn production in the UGLR at the reference level of CO2 (370 ppm) concentration. Letters 

of A-H are the NARCCAP model identifiers (Table 4-2). 
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For soybean production, small (-5% to 5%) changes in ET are projected for almost all 

counties in the UGLR with no clear spatial pattern evident (Figure 4-9, average). A notably 

larger area, particularly in Wisconsin and Minnesota, is projected to have increased (although 

small) ET for RCM3-cgcm3, RCM3-gfdl, WRFG-ccsm, and WRFG-cgcm3 compared to the 

other climate scenarios (Figure 4-9), whereas future ET simulated using future climates obtained 

from CRCM-ccsm and HRM3-gfdl exhibits a slight decrease (~-10%) for the majority of 

counties in the UGLR.    

 Future climate change is projected to benefit soybean yield for the majority of the 

northern counties of the UGLR, although a slight decrease in soybean yield is seen for the 

HRM3-gfdl climate scenario (Figure 4-9). The climate projections from HRM3-gfdl also result 

in a notable decrease in yield (ranging from -25% to more than -50%) for most counties located 

in the southern and central part of the UGLR. Moreover, a slight (~-25%) decrease in yield is 

projected by RCM3-cgcm3, RCM3-gfdl and WRFG-cgcm3 for the central and southern 

counties, whereas CRCM-ccsm, CRCM-cgcm3, HRM3-hadcm3, RCM3-cgcm3 and WRFG-

ccsm project a moderate decrease (~-50%) for the southern counties, particularly those  in 

Minnesota and Michigan (Figure 4-9). Overall, the projected change in soybean yield averaged 

across all climate projections (Figure 4-9, average) shows a distinct south- north gradient with 

decreased yield in the southern part of the UGLR and increased yield in the northern part. 
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Figure 4-9. As Figure 4-8, but for soybean production 
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4.3.3. Carbon Fertilization Effects  

The consequences of different levels of atmospheric CO2 concentration on crop 

production are assessed by evaluating the average changes in simulated PDAT, TMAT, ET and 

Yield between the future (2041-2070) and the historical (1971-2000) period between elevated 

CO2 concentrations of 490 ppm and 635 ppm and in comparison to the reference level (370 ppm) 

CO2 level. The analysis reveals that PDAT and TMAT are relatively insensitive to elevated CO2 

concentration compared to ET and Yield. This pattern is consistent for both corn (Figure 4-10) 

and soybean (Figure 4-11) production. Thus, we explore below only the sensitivity of the spatial 

distribution of ET and Yield to elevated CO2 concentrations. 

For corn production, the north-south gradient in projected changes in ET and Yield seen 

for the reference CO2 concentration also are evident for the higher CO2 concentrations.  

However, the projected decrease in ET for the southern and central counties is larger, and the 

projected increase in ET for the extreme northern counties is smaller, for the higher CO2 

concentrations, particularly for the simulations employing CO2 levels of 635 ppm. These 

projections suggest less future moisture stress under higher CO2 concentrations, potentially 

benefiting corn production (Figure 4-10).  

For soybean production, the higher CO2 concentrations appear to have little effect on the 

projected spatial distribution of ET across the study region. In contrast,the projected increase in 

soybean yield across much of the study area is larger for the elevated CO2 concentrations and the 
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number of counties in the southern Wisconsin and Michigan  with a projected decrease in yield is 

smaller for the higher CO2 concentrations (Figure 4-11).   
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Figure 4-10. Change in median planting date (PDAT), time to maturity (TMAT), seasonal 

evapotranspiration (ET) and crop yields (Yield) between the historical (1971-2000) and the 

future (2041-2070) period averaged across all climate model combinations for corn production in 

the UGLR under elevated CO2 concentration of 490 ppm (left) and 635 ppm (right) 
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Figure 4-11. As Figure 4-10, but for soybean production 
  

When the projected changes in ET and Yield for the future period (2041-2070) are 

expressed as a percent difference between the projected values under the elevated CO2 level (490 

or 635 ppm) and the projected values under the reference CO2 level (370 ppm), e.g. (ET490-

ET370/ET370))*100, the smaller projected ET with increasing CO2 concentrations is more 

clearly seen for corn production Figure 4-12). The percent changes in projected ET under CO2 

concentration of 490 ppm and 635 ppm with respect to projected ET under the reference CO2 

level (370 ppm) ranges from -2% to -6% and -2% to -8% , respectively.  The spatial pattern is 

not as uniform for soybean production, although, as noted above, the number of counties 
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projected to have increased future ET is smaller for the higher CO2 concentration levels 

compared to the reference CO2 level.  

Corn yield in the UGLR is expected to increase moderately as the CO2 concentration 

increases. At 635 ppm corn yield in the northern areas could increase up to 80% with respect to 

the reference CO2 level (370 ppm). As for corn, soybean yield likely also will benefit from 

higher concentrations of atmospheric CO2. All counties in the study region are projected to have 

substantially higher yields as atmospheric CO2 concentration is increased to 635 ppm (Figure 

4-12). Overall, soybean grown in the UGLR is expected to benefit more from increasing CO2 

concentration than corn production. 
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Figure 4-12. Percent change of projected seasonal evapotranspiration (ET) and crop yield (Yield) 

for the future period (2041-2070) under elevated CO2 concentration of 490 ppm (490-370, left) 

and 635 ppm (635-370, right) for corn (above) and soybean (below) with respect to projected ET 

and Yield for the future period (2041-2070) under the reference level of CO2 concentration (370 

ppm). ET and Yield are obtained by averaging estimated future ET and Yield across all 

NARCCAP climate models. 
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4.3.4. Cultivar Sensitivity  

Specifically for corn, we also evaluated the potential impacts of future climate change on 

grain yield for short and long season cultivars.  This evaluation was performed for only the 

highest (635 ppm) CO2 concentration. The projected changes in future yield for the short cultivar 

displays a south-north gradient similar to that seen earlier for the median season cultivar with 

small yield reductions in the southern and central portions of the UGLR and modest increases in 

the northern UGLR (Figure 4-13). This pattern is seen for the majority of the NARCCAP climate 

scenarios. In contrast, the sign of the projected changes in future yield is positive across almost 

the entire study area for the long season cultivar (Figure 4-13), with only a small numbers of 

counties in southern Wisconsin and Michigan projected to experience  a small (~-25%) yield 

decrease.  The projected increases in yield are substantial (50-100%) and are seen for all the 

NARCCAP climate scenarios, although  the HRM3-gfdl scenario is slightly less favorable for 

some counties in south Minnesota, south-west Wisconsin and south-east Michigan (Figure 4-13, 

Long).    
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Figure 4-13. Change in the median value of corn yield between the future (2041-2070) and the 

historical period (1971-2000) for short season (Short) and long season cultivar (Long) under 

different climate change projections and elevated CO2 of 635 ppm. The median values of 

simulated yield for the historical period for each cultivar are presented in the first row as a 

reference. Letters of A-H are the NARCCAP model identifiers (Table 4-2). 
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4.3.5. Coefficient of Variation  

Calculation of the coefficient of variation (COV) for the historical period (1971-2000) 

indicates that annual corn yield variability is higher for the northern areas of the region than for 

the major corn production regions in the south  where values of COV are not more than 0.4 and 

can be less than 0.1  (Figure 4-14). Future projections, holding CO2 concentrations constant at 

370 ppm and employing a medium season cultivar, suggest a slight increase in the annual 

variability of corn yield in the southern UGLR, particularly for southern Wisconsin and the 

Lower Peninsula of Michigan, as indicated by the ratio of future COV to historical COV which 

falls between 1 and 1.25. Comparison among the eight climate scenarios reveals that those 

derived from CRCM-ccsm, HRM3-hadcm3 and HRM3-gfdl project COV ratios greater than 1 

for a larger number of counties in the southern UGLR compared to the other remaining 

scenarios. On the other hand, yield variability is projected to decrease by approximately half for 

the mid century time slice for most counties in the northern UGLR (Figure 4-14). When the 

COV ratio is averaged across the all climate scenarios, the number of counties in southeast 

Wisconsin and southern with a slight increase in annual yield variation decreases as CO2 

concentrations increase from 490 to 635 ppm.  On the other hand, the number of counties in 

northern Minnesota and Wisconsin and in the Upper Peninsula of Michigan with substantially 

smaller projected future annual yield variability increases as CO2 levels increase (Figure 4-14).                

For soybean yield, the majority of counties in the UGLR have a COV less than 0.55 for 

the historical period with several counties in the Upper Peninsula of Michigan and few counties 

in northwestern Minnesota possessing a relatively high COV (> 0.7 or higher) (Figure 4-15).  By 

the mid century, and assuming a reference CO2 level for the DSSAT simulations, the climate 
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scenarios obtained from six of NARCCAP climate models (i.e., CRCM-ccsm, CRCM-cgcm3, 

HRM3-gfdl, HRM3-hadcm3, RCM3-cgcm3, RCM3-gfdl) project higher COV values for the 

majority of counties in Minnesota, whereas WRFG-ccsm and WRFG-cgcm3 suggest smaller 

COV values for the majority counties in the UGLR with the exception of increased annual yield 

variability for southern Wisconsin and Michigan. The HRM3-gfdl scenario projects substantially 

larger future yield variability in the southern UGLR. When averaged across all climate scenarios, 

annual variability of soybean yield is likely to increase slightly (COV 1-1.25) for most counties 

in south-central Minnesota, central Wisconsin and the eastern Lower Peninsula Michigan, 

whereas a relatively higher annual yield variation (COV 1-1.50) by the mid century is projected 

for southern Wisconsin and the southern Lower Peninsula of Michigan. On the other hand, a 

majority of counties in the currently unproductive northern UGLR likely will have lower COV 

values in the future (Figure 4-15). Elevated CO2 concentration is expected to reduce the area 

experiencing increased future yield variability, although a slight increase in annual yield 

variability in the southern UGLR is projected, even for the highest CO2 concentration employed 

in this study (Figure 4-15).      



 119 

Historical

490ppm 635ppm

COV Sensitivity to Elevated CO2 concentration

COV
<=0.10

0.10 - 0.25

0.25 - 0.40

0.40 - 0.55

0.55 - 0.70

0.70 - 0.85

0.85 - 1.00

>1.00

COV Ratio
<=0.50

0.50 - 0.75

0.75 - 1.00

1.00 - 1.25

1.25 - 1.50

1.50 - 1.75

1.75 - 2.00

>2.00

A B C

D E F

G H Average

 
Figure 4-14. Ratio of coefficient of variation (COV Ratio) of corn yield for the future period 

(2041-2070) with respect to the historical period (1971-2000) under different climate projections 

derived from NARCCAP models at the reference CO2 (370 ppm) level. Average is the COV 

ratio averaged across all climate projections. Below two panels are the average COV Ratio under 

elevated CO2 of 490 (left) ppm and 635 ppm (right). Letters of A-H are the NARCCAP model 

identifiers (Table 4-2). 
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Figure 4-15. As Figure 4-14, but for soybean yield  
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4.3.6. Potential Expansion in Major Growing Areas  

In order to better visualize the potential spatial changes in corn and soybean production, 

several yield thresholds were selected and projected future county yield was categorized as 

falling above or below the threshold.  For corn the yield thresholds are 5000, 6000, 7000, 8000 

and 9000 kg/ha, and for soybean the thresholds are 2000, 2500, 3000, 3500, and 4000 kg/ha.  

The lower threshold categories were chosen based on current yields in the major production 

regions within the UGLR; the higher thresholds were added given the projections discussed 

above of future higher yield in some parts of the UGLR.   

Starting with the lowest threshold (5000 kg/ha), corn production regions is anticipated to 

expand northward into northern Minnesota and the Upper Peninsula of Michigan, especially 

under the highest (635 ppm) CO2 concentration (Figure 4-16), but to contract in southern 

Wisconsin and the southern Lower Peninsula of Michigan, at least for the reference (370 ppm) 

CO2 concentration. This same pattern is seen for the 6000 kg/ha threshold.  For the higher 

threshold of 7000 kg/ha, and assuming the reference CO2 concentrations in the DSSAT 

simulations, counties with projected yields,  above the threshold are confined primarily to 

southern Minnesota, similar to the spatial pattern seen for the historical simulations.  A larger 

number of counties, including some counties in south-central Wisconsin, east-central Michigan 

and the Upper Peninsula of Michigan, have projected yields above this threshold when the 

elevated CO2 levels were employed in the DSSAT simulations. Increasing the yield threshold to 

8000 and 9000 kg/ha results in the projected yield for a smaller number of counties exceeding 

the threshold, as expected, although the spatial pattern is more “scattered” compared to that for 
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the historical simulations where counties with yields exceeding these high thresholds are 

confined to primarily southern Minnesota (Figure 4-16).                  
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Figure 4-16. Potential expansion in major corn production regions of the UGLR assessed by 

categorizing the median simulated corn yields for the future period (2041-2070) is equal to or 

higher than a given yield threshold, namely: 5000 kg/ha (first row), 6000 (second row), 7000 

(third row), 8000 (fourth row), and 9000 (fifth row). 

 

At the lowest threshold for soybean production (i.e., 2000 kg/ha), the spatial distribution 

of counties with yields above the threshold is generally similar for the historical and mid-century 

periods when the lower (370 ppm) CO2 concentrations were used in the DSSAT simulations 
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(Figure 4-17).  At higher CO2 levels, projected yield for a larger number of counties, particularly 

in northwestern Minnesota and the northern Lower Peninsula of Michigan, exceeds the 

threshold. As the yield threshold is increased to 2500 kg/ha and 3000 kg/ha, the number of 

counties with projected yield above the threshold, assuming a constant CO2 concentration, is less 

than that for the historical simulations, with large changes particularly seen in southern 

Michigan. In contrast, the spatial extent of counties with projected yields above the threshold 

expands northward for the two higher CO2 concentrations.  For the historical period, no counties 

have simulated yield that exceeds the two highest thresholds (3500 and 4000 kg/ha), but future 

projected yield is greater than these thresholds for several, spatially scattered, counties, 

particularly for the simulations employing higher (635 ppm) CO2 concentrations. 
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Figure 4-17. As Figure 4-16, but for soybean    
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4.4. Summary and Discussion  

4.4.1. Spatial Variation of the Climate Change Impact  

This study was primarily purposed to evaluate the potential consequences of future 

climate change on the spatial variability of corn and soybean production in the UGLR by the mid 

century (2041-2070) with reference to a historical period (1971-2000) using DSSAT crop models 

and climate scenarios obtained from NARCCAP simulations. The crop model simulations for the 

historical period demonstrate that these models are able to capture spatial variations in planting 

dates for corn and soybean in the UGLR, and the simulated planting dates fell within the range of 

usual planting dates reported by NASS-USDA (NASS-USDA, 1997).  The south-north gradient 

of observed county-level yield also was well depicted by the DSSAT simulated yields.     

The impacts of future climate change on corn and soybean production in the UGLR are 

complex considering non-linear interactions between a changing climate and crop growth and 

development. The inclusion of eight climate scenarios derived from the NARCCAP simulations 

(i.e., RCM-gcm “combinations”) results in a range of possible climate change impacts for corn 

and soybean planting date, time to maturity, evapotranspiration and grain yield.  

Assuming for the DSSAT simulations a constant level of CO2 at 370 ppm, planting dates 

for corn were projected to occur earlier for counties located in the southern UGLR and slightly 

later for counties in the northern UGLR for most of the climate scenarios.  In contrast, a west-to-

east gradient was found for soybean production with earlier planting dates in the western UGLR 

and later dates in the eastern UGLR.  The changes in planting date may be associated with the 

relative magnitude of warmer and wetter condition projected across the region and possible 

future changes in ‘optimum’ planting windows. A number of planting windows were used in the 

DSSAT simulations, and the highest yield from the different planting windows was selected for 
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further assessment. This criterion assumed that the highest yield reflected the ‘optimum’ planting 

window (Thelen, 2007). Future climate change is projected to moderately shorten time to 

maturity (TMAT) for corn production but slightly decrease TMAT for soybean production. 

These findings likely reflect changes in the thermal time (i.e., growing degree days) for corn or 

in photothermal period for soybean needed to complete crop growth and development.    

For corn production, the projected decrease ET in the southern UGLR, in contrast to a 

projected increase in the northern UGLR, may reflect a shorter future TMAT. Theoretically, ET 

will increase as temperature increases, but a shorter TMAT will reduce the amount of time to 

accumulate ET during the corn growing season.   

For soybean production, only small changes in ET are projected with no clear spatial 

pattern.  These small changes likely reflect opposing changes in ET, precipitation and 

temperature.  For example, the HRM3-gfdl climate scenario suggests that a shorter TMAT, 

warmer temperatures and drier conditions in Michigan will result in lower ET. However, for 

other parts of the study area the increasing temperature and wetter conditions associated with this 

climate scenario result in a slightly higher future ET, even though the crop growth period is 

projected to be shorter.             

    A relatively moderate decrease in corn and soybean yield is estimated for the majority of 

counties located in the central and southern areas; whereas counties in the Upper Peninsula of 

Michigan, northern Wisconsin and Minnesota will benefit from climate change. This result 

supports and provides more spatial detail regarding the potential positive impacts of climate 

change on crop yields as suggested by previous studies for a small number of  northern locations 

in the UGLR (e.g., Andresen et al., 2013; Tubiello et al., 2002). On the other hand, the projected 
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moderate decrease in yields for the southern UGLR may occur due to a shorter TMAT resulting 

from warmer conditions, even with wetter future conditions.  

Elevated CO2 concentrations are expected to affect the magnitude of seasonal 

evapotranspiration (ET) and grain yield. Increasing CO2 levels ppm are expected to slightly 

decrease ET for corn production; whereas the impact of elevated CO2 is less for soybean 

production. The reduction in ET for corn production is likely because a C4 crop is assumed to 

have higher stomatal resistance than a C3 crop (Rosenzweig and Iglesias, 1998; White and 

Hoogenboom, 2011) under elevated CO2. The higher stomatal resistance reduces the daily 

transpiration rate, potentially leading to decreased seasonal evapotranspiration.  

Elevated atmospheric CO2 concentrations are projected to benefit corn and soybean 

yield. Of the two crops, soybean (a C3 crop) appears to  benefit more from elevated CO2 than 

corn (a C4 crop) perhaps because C3 crops have higher photosynthesis rates than C4 crops under 

elevated CO2 concentrations (Rosenzweig and Iglesias, 1998). In addition, increased CO2 levels 

may lead to increased radiation use efficiency for C3 crops; whereas, elevated CO2 levels have a 

smaller effect on C4 crops (Stöckle and Kemanian, 2009). Therefore, soybean production is 

anticipated to benefit more from carbon fertilization than corn production. This potential benefit 

from carbon fertilization on crop yield also has been identified by previous studies for the UGLR 

(e.g., Andresen et al., 2013; Southworth et al., 2002; Southworth et al., 2000). However, the 

results presented here, especially for corn, suggest that a moderate decrease (~-25%) in yield 

may still occur by mid century in the southern UGLR even under elevated CO2 concentrations.           
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For corn, we also examined potential consequences of future climate change under the 

highest (635 ppm) CO2 level to different cultivars (i.e., short and long) considering that farmers 

in the study region plant a mixture of different cultivars (Coulter et al., 2010b). The analysis for 

the long season cultivar suggests that yield will increase for almost all counties in the study area. 

Relatively high percentage changes are projected for the northern UGLR where long season 

varieties are currently not widely produced. As for the short season hybrid, projected changes are 

similar for those the medium season cultivar with yield increasing in the northern UGLR and a 

slight yield decrease in the southern UGLR. These results strengthen previous analyses done by 

Southworth et al. (2000) for a few locations in Michigan and Wisconsin which reported that long 

season cultivars will benefit more from future climate change compared to short and medium 

season cultivars likely due to a longer growing season in the future.         

 As mentioned above, an ensemble of climate scenarios derived from the NARCCAP 

simulations with “combinations” of RCM and GCM models was used to evaluate the regional 

impacts of climate change in the UGLR. When the driving GCM was held constant, the RCMs 

were found to produce substantially different temperature and precipitation projections for the 

UGLR, illustrating the importance of including multiple RCMs to dynamically downscale GCMs 

in an ensemble of future climate projections. The variation of regional climate conditions 

projected by different RCMs nested within the same GCM could happen because each RCM may 

employ different grid structures, numerical schemes, surface boundary conditions and model 

parameterizations to solve sub-grid scale processes, even though the RCMs were developed 

using the same fundamental conservation laws and dynamic equations (Winkler et al., 2011).      
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4.4.2. Future Yield Variability and the Potential Expansion in Production Region  

This study revealed that regional variations in projected maximum and minimum 

temperature and precipitation by mid century likely will impact corn and soybean production in 

the UGLR. The northern areas are projected to benefit from climate change; whereas a slight 

decrease in crop yield may occur for the southern areas, especially for corn yield, regardless of 

carbon fertilization. This result to some extent clarifies the regional variations associated with the 

expectation of potential benefits from future climate change in  higher latitude regions (Cline, 

2007; Fischer et al., 2005; Jaggard et al., 2010).  

Furthermore, analysis of future yield variability based on the coefficient of variation 

(COV) suggests that the temporal variability of corn yield will increase slightly for the southern 

UGLR, particularly in Wisconsin and the Lower Peninsula of Michigan, regardless of climate 

scenario. For soybean, annual yield variability for the southern and central counties, including 

the current major production regions, is also expected to increase in the future, regardless of 

climate scenario and CO2 level. As most of these regions have historically low COV values 

(<0.4), a slight increase may still result in “reasonable” annual yield variability (<0.6).  

Nonetheless, the southern areas of the UGLR likely will be more vulnerable to yield variability 

than at present.  

Our analysis of the potential spatial shifts in crop production suggests that favorable 

growing conditions and elevated CO2 concentrations in the future may create an opportunity for 

growing corn and soybean in the northern UGLR, i.e. the Upper Peninsula of Michigan, and 

northern Minnesota and Wisconsin, where historically little production has occurred (Andresen 

et al., 2013; Miller et al., 2005). However, growing conditions will continue to remain favorable 

within the current major crop production areas in the southern UGLR.      
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4.4.3. Limitations    

As for other modeling studies, there are a number of some limitations related to the 

development of the climate scenarios and to model assumptions. The future climate projections 

were derived from a single emissions scenario (i.e., SRES A2) as this is the only emissions 

scenario employed in the NARCCAP simulations. Although, we attempted to overcome this 

limitation by using two elevated CO2 concentrations for the future time slice to capture the 

potential benefits of carbon fertilization, the use of a single emissions scenario does not permit a 

comparison of future yield under different emissions scenarios which may also result in different 

future climate conditions.  

Furthermore, future daily climate series were obtained by modifying daily observed 

climate data (i.e., maximum and minimum temperature and precipitation) with corresponding 

monthly changes calculated from the NARCCAP simulations. Although this approach has been 

regularly applied in climate impact assessments to remove systematic bias involved in future 

climate simulations (Moriondo et al., 2011), it assumes that the variability of the temperature and 

precipitation daily series remain constant in time. Only the magnitude of temperature and 

precipitation is adjusted to reflect future conditions.  

The underlying assumptions of the crop models employed for the assessment also impose 

limitations. The DSSAT models simulate non-linear interaction between abiotic factors (i.e. 

climate and soil condition) and crop growth processes. The models do not simulate well pest and 

disease infestations (Soussana et al., 2010) which may increase under climate change 

(Diffenbaugh et al., 2008; Luck et al., 2011) and do not include exposure to other factors 

affecting yield variability such as economic conditions (Kaufmann and Snell, 1997). Current 

crop models also estimate the effects of carbon fertilization based on experiments conducted in  
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enclosed carbon chambers (Challinor et al., 2009). Thus, the models may overestimate the 

benefits of elevated CO2 concentration (Long et al., 2006), as environmental conditions and 

applied agricultural management practices may influence the crop response to elevated CO2 

concentration (Rosenzweig and Tubiello, 2007). For example, low soil nutrients and irrigation 

may reduce the benefit of carbon fertilization as discussed by many authors (e.g., Rosenzweig 

and Tubiello, 2007; Tubiello and Ewert, 2002).  

Additionally, except for planting date, farming management and technology (i.e., 

cultivar, row and spacing, and planting density) employed for the DSSAT simulations are 

assumed constant for each county in the future (2041-2070) period to isolate the consequences of 

climate change on crop production. This assumption neglects that farmers may use different 

farming practices in the future as farming management and agricultural technology evolve with 

time (Egli, 2008).      

4.5. Conclusion 

Agricultural production has been identified as a key sector susceptible to global climate 

change, and changes in global crop production will challenge the future global food supply. This 

study provides more detailed spatial information regarding potential regional climate change 

impacts on crop production in a high latitude region, which generally are expected to benefit 

from future climate change. The analysis suggests that future climate change will alter planting 

date, time to maturity, seasonal evapotranspiration, and grain yield of corn and soybean 

production in the UGLR.  

For corn production, the southern areas, i.e., the current major production areas, may 

experience earlier planting dates by mid century, whereas slightly later planting dates may occur 
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in the northern areas. For soybean production, climate scenarios derived from the majority of the 

NARCCAP simulations suggest earlier planting dates for most counties in Minnesota and some 

counties in Wisconsin and Michigan with an west-east gradient of changing planting dates from 

earlier planting dates in the western UGLR and later planting dates in the eastern UGLR. 

Warmer temperatures are expected to reduce time to maturity for both crops in the majority 

counties in the region, including in the major production areas in the southern UGLR.  

Seasonal evapotranspiration for corn production in the southern UGLR is expected to 

decrease in the future under warmer conditions, possibly because of a shorter time to maturity, 

and increase in the northern UGLR. For soybean production, seasonal ET is projected to change 

only slightly by the mid century. Furthermore, under the assumption of a constant level of CO2 

concentration, warmer conditions likely result in slightly decreased corn and soybean yield in the 

southern UGLR, partly due to a shorter time to maturity. On the other hand, favorable growing 

conditions in the northern UGLR likely will increase corn and soybean yield. Elevated CO2 

concentrations also are anticipated to benefit crop yield and partially alleviate potential negative 

impacts of climate change in the southern counties, especially for soybean production. 

Specifically for corn, we also found that a long season cultivar is expected to benefit more from 

climate change than medium and short season cultivars.  

It is important to note that the interpretation of future impacts varied somewhat 

depending upon the NARCCAP simulations employed to derive future climate projections. For 

example, warmer and drier growing season conditions for the southern UGLR projected by 

HRM3-gfdl will more adversely impact corn and soybean yield compared to the relatively mild 

and wetter conditions projected by the other NARCCAP simulations (e.g. WRFG-ccsm and 

WRFG-cgcm3). We also found that the utilization of different RCMs to downscale GCM output 
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can introduce uncertainty into the impact assessment, in addition to the uncertainty introduced by 

the choice of GCM. 

 More favorable growing conditions in the northern UGLR likely will create an 

opportunity to grow corn and soybean with relatively high productivity more widely across the 

study region. Interestingly, we did not observe a shift of major production regions to the north as 

the major growing areas in the south are expected to still be productive  in the future in spite of 

the potential slight reduction in grain yield. Instead we observe an expansion of the crop 

production in the future. However, farmers in the current major production areas should be aware 

of several potential negative impacts of future climate change, including a potential increase in 

annual yield variability.  The potential opportunity of the ‘new’ production regions in the 

northern areas of the UGLR hints that further exploration is needed. Further analysis that 

employs more dynamic farming practices (Howden et al., 2007; Tubiello and Rosenzweig, 2008) 

would be particularly useful.        
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CHAPTER 5.                                                                                                             

Development of Crop Yield Interdisciplinary Model for Regional Climate Change Impact 

Assessments: A Case Study for the Upper Great Lakes Region of the United States  

 

In collaboration with 

Julie Winkler and Zhengfei Guan 

 

5.1. Introduction 

Crop production is susceptible to climate variability and change as can be inferred from 

the impacts of recent climatic trends on crop yield (e.g., Kucharik and Serbin, 2008; Lobell et al., 

2011). The potential consequences of projected future climate change on regional crop 

production have been extensively studied around the world as reviewed by White et al. (2011a). 

These efforts have focused on the impacts of climate change on crop productivity which directly 

influences future world food supply (e.g., Parry et al., 2005; Rosenzweig and Parry, 1994).  

Ecophysiological models, commonly known as crop models (White and Hoogenboom, 

2011), are regularly employed for climate change impact assessments as summarized by 

previous reviews (e.g., Kang et al., 2009; White et al., 2011a). Crop models utilize a set of 

mathematical equations derived at a field-scale level to quantify non-linear interactions between 

climate, soil, agronomic practices and crop growth and development. Thus, crop models 

simulate, although imperfectly, the biophysical responses of  a particular crop to environmental 

changes at a particular location (Hoogenboom et al., 2004; Meinke et al., 2001). These models 

also consider the effects of agronomic practices (e.g., cultivar, planting dates, row and spacing) 

on crop yield. 
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A challenging issue in the application of crop models for regional climate change impact 

assessments is how to explicitly include the impacts of potential changes in regional farming 

management associated with economic stressors. The inclusion of economic factors has been 

recommended by the climate impact research and modeling community in recognition of  the 

significant contribution of economic factors to crop yield variability (Challinor et al., 2009). 

Unfortunately, crop models currently are not designed to capture the effects of changes in 

economic factors associated with farming management such as the use of machinery, labor, and 

pesticides that can influence crop production.  

Taking into consideration the limitations of crop models, Kaufmann and Snell (1997) 

proposed an empirical model that integrates the outputs of crop models with economic 

determinants to capture the consequences of ecophysiological and socio-economic drivers on 

crop yield. This ‘hybrid’ model was referred to by Kaufmann and Snell as an “interdisciplinary 

model”. The authors developed an interdisciplinary model for corn yield by relating climate 

variables for corn phenological stages, with the phenological stages being estimated by a crop 

model, representative economic variables (i.e., purchase inputs and loan rate) and technical/scale 

variables (i.e. the use of machinery and  agricultural acreage).  A more recent application of an 

interdisciplinary model is the soybean yield model  developed by Vera-Diaz et al. (2008) that 

combines simulated yields from a crop model, geographic location (i.e., latitude and longitude) 

and economic variables (i.e., credit, transports costs) to explain soybean yield spatial variability 

in the Brazilian Amazon. Geographic location was included to capture the effects of photoperiod 

and environmental gradients on yield; the effects of climatic and edaphic conditions are captured 

by simulated yields; and the economic variables adjust the simulated yields to reflect the effects 

of economic factors on observed soybean yield.  



 135 

This study proposes an alternative specification for interdisciplinary models that is 

derived from an asymmetric production function as proposed by Guan et al. (2006). The Guan et 

al. model is essentially a modification of the traditional translog production function. The 

uniqueness of the Guan et al. model compared to the traditional translog production function is 

that the model specification distinguishes between two types of crop yield, namely: attainable 

and actual yield. This classification differentiates yield  on the basis of governing factors 

(Rabbinge, 1993; vanIttersum and Rabbinge, 1997). Attainable yield is governed by growth-

defining factors (i.e., plant characteristics, solar radiation, and temperature) and growth-limiting 

factors (i.e., nutrients and water). Actual yield fluctuates following growth-reducing factors such 

as weeds, pests, and diseases, in addition to the growth-defining and the growth-limiting factors. 

Guan et al. used growth inputs (i.e., land, seed, fertilizer, and water) and dummy variables (farm 

and year dummy) to represent growth environment (i.e., farm and weather condition) to estimate 

attainable yield and facilitating inputs (i.e., labor, capital, and pesticides) to adjust the attainable 

yield to estimate actual yield. Although, a translog production function such as the Guan et al. 

model offers an advantage to simulate the effects of possible changes in farming management 

strategies on crop productivity, the use of dummy variables prevent the application of Guan et al. 

model for climate change impact assessments. The model developed here replaces the attainable 

yield component of the Guan et al. model with simulated yield, as the crop model can better 

capture the effect of climate on yield compared to the use of dummy variables by Guan et al. The 

interdisciplinary model is developed to estimate county-level corn yield in the Upper Great 

Lakes Region (UGLR) of the United States. This region is selected as agriculture is considered 

as one of key economic activities in the UGLR, and corn is the major agricultural commodity 

(Hatfield, 2012; Niyogi and Mishra, 2013; Safir et al., 2008). 
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 Future climate change is expected to impact regional corn production in the UGLR (e.g., 

Andresen et al., 2013; Southworth et al., 2000). However, the effects of possible changes in 

economic factors have not been included in the previous assessments. Thus, we also demonstrate 

the potential application of the interdisciplinary model for climate change impact assessments. 

The use of the interdisciplinary model is expected to provide a better interpretation of the 

potential future impacts of climate change on crop production compared to the use of crop 

simulation models alone.  

5.2. Materials and Methods  

5.2.1. Study Area 

The Upper Great Lakes Region (UGLR), consisting of the states of Michigan, Minnesota 

and Wisconsin is located in the United States Midwest (Figure 5-1) The southern and central 

UGLR  is part of the US Corn Belt (Aref and Pike, 1998),  and the states of Michigan, Wisconsin 

and Minnesota rank number 11th, 10th and 4th for corn production in the nation, respectively.   

Minnesota

Wisconsin

Michigan

-81°

-81°

-83°

-83°

-85°

-85°

-97°

-97°

-87°

-87°

-89°

-89°

-91°

-91°

-93°

-93°

-95°

-95°

49° 49°

48° 48°

47° 47°

46° 46°

45° 45°

44° 44°

43° 43°

42° 42°

U S A

State Boundary

County Boundary

1 cm = 1,319 km

 

Figure 5-1. Location of the Upper Great Lakes Region 
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5.2.2. Model Specification  

The asymmetric framework proposed by Guan et al. (2006) distinguishes between two 

broad categories of agronomic inputs. Pesticides, labor and capital, which are required to create 

favorable conditions for farming activities, are classified as facilitating inputs. On the other hand, 

factors that affect plant biophysical processes, such as land, seed, nutrients, and water, are 

grouped as growth inputs (Guan et al., 2006). Based on these classifications, the model is 

represented as (Guan et al., 2006, p. 206),      

 
)z,z,F(zE)h;,x,x,G(x y 321321 •=        (Eq.5-1) 

 

where, y is crop-yield; x1, x2, x3 and h are growth inputs (i.e., land, seed, fertilizer, and water); 

z1, z2, and z3 are facilitating inputs (i.e., labor, capital, and pesticides); E represents the growth 

environment (i.e., dummy variables to capture differences in biophysical condition and 

management across farms and interannual variations in yield due to varying weather conditions); 

G(·) defines attainable yield; and F(·) is a scaling function that has a value from zero to one.  

For the modified model proposed here,  G(·) in Eq.5-1 is replaced with estimated yield (ya) 

obtained from simulations of the CERES-Maize model, a crop model including in the Decision 

Support System for Agrotechnology Transfer (DSSAT).    If agronomic practices are held 

constant across space and time for the CERES-Maize simulations, the farm dummy variable of 

the E term is no longer needed, and if temporal variability is assumed to be smaller than spatial 

variability the year dummy can also be omitted.    

The scaling function F(·)can be estimated following Guan et al. (2006, p. 208):   

])zzzexp[-( ),,(F 2
3322110321 ββββ +++=zzz      (Eq.5-2) 
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where, β0 is intercept; β1, β2, and β3 are coefficients for labor, capital, and pesticides.  
 
This function ensures that values of the scaling factor range from zero to one.  Eq.5-1 can now be 

rewritten as  

])zzzexp[-(ya y 2
3322110 ββββ +++•=       (Eq.5-3) 

Further modifications can facilitate the application of this model to county-level yield. If 

crop production is defined as crop yield multiplied by area, county-level economic costs can be 

used instead of unit costs (costs per unit area) and Eq.5-3 can be rewritten as:.    

)exp(])ZZZexp[-(area*ya  area*y 2
3322110 e•+++•= ββββ    (Eq.5-4) 

where, Z1, Z2, and Z3 are the county-level costs of facilitating inputs such as chemicals, 

machinery, and labor; e is the error term. The term “area” on the left hand side of the equation 

can be removed by applying the natural logarithm, and Eq.5-4 can be written as: 

e++++= 2
3322110 )ZZZ(-  ln(y/ya) ββββ      (Eq.5-5) 

The model predictors (i.e., the Z terms) can be extended to include additional variables 

beyond the three terms (chemicals, machinery and labor) originally employed by Guan et al. 

(2006), in order to incorporate additional facilitating factors that are not captured in the crop 

model simulations. For this study, total cost of fertilizer (Z4) and total area of agricultural land 

(Z5) in each county in the UGLR are added to Eq.5-5.    

e++++++= 2
55443322110 )ZZZZZ(-  ln(y/ya) ββββββ    (Eq.5-6) 

 
Fertilizer cost was added to capture spatial and temporal variations in the amount of fertilizer 

applied across the UGLR. Although, DSSAT allows users to include fertilizer in the crop 

simulations, obtaining fertilizer information, including the type of fertilizer application (e.g., 
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nitrogen, potassium), for all counties and years is difficult. Additionally, non-limiting nutrients 

are often assumed for DSSAT simulations in order to isolate the consequences of climate 

fluctuations on yield (e.g., Andresen et al., 2001). In this study, we also simulated DSSAT yields 

under the assumption of non-limiting nutrients. The amount of agricultural land was added to 

capture variations by county of the amount of land available or suitable for agriculture.  The 

inclusion of this term is based in part on Kaufmann and Snell’s (1997) assertion  that crop 

models have a limited ability to simulate the scale effects that the amount of land available for 

agriculture may have on the choice of farming management practices.  

 The final form of the model, with “^” indicating estimated terms is: 

])ZˆZˆZˆZˆZˆˆ[-( expya ŷ 2
55443322110 ββββββ +++++•=    (Eq.5-7)  

5.2.3. Model Implementation 

An overview of the data preparation and model implementation steps is shown in Figure 

5.2 and discussed in more detail below. 

 

 
Figure 5-2. Components of the interdisciplinary model 
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5.2.4. Economic Data 

County-level economic data were obtained from Quick Stats 2.0 provided by the National 

Agriculture Statistics Service, United States Department of Agriculture (NASS-USDA, 2011). 

This database includes information from the agricultural censuses conducted in 1997, 2002 and 

2007. We extracted from Quick Stats 2.0. total corn yield and planted area; total costs of 

chemicals, machinery, labor (contract/hire), and fertilizers; and economic price indices with 

based year of 1990-1992 for each economic variable, and agricultural land area per county.  

County-level economic data reported by the NASS-USDA are aggregated across all 

major crops within a county. The proportion of total cost for each economic variable specific to 

corn was  roughly estimated following the procedures used by Guan et al. (2006) to estimate the 

share of farm-level labor and capital for individual crops. Itemized production costs by major 

crop for the three analysis years (1997, 2002, and 2007) published by the Economic Research 

Service – United States Department of Agriculture (ERS-USDA, 2011) for the three ERS-USDA 

farm resource regions encompassing the UGLR (see Figure 5-3) were employed to calculate the 

total cost proportion for corn production. Based on planted area, six out of the ten crops included 

for the farm resource regions were considered to be major crops in the UGLR. These crops are 

barley, oats, wheat, sugar beets, corn, and soybean.  The total cost for each economic variable 

(i.e., chemicals, machinery, labor and fertilizer) was estimated by multiplying unit costs
i
 by the 

county-level planted area for each of the six major crops with detail procedure of the calculation 

is explained below. 
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REGIONS

Heartland

Northern Crescent

Northern Great Plain

 

Figure 5-3. The United States farm resource regions used to calculate the share of production 

costs for corn. Data Source: the Economic Research Service – United States Department of 

Agriculture (ERS-USDA, 2011). 

 
Each county within a United States farm resource region was assumed to have the same 

unit cost for a particular crop (PCAkj, where k refers to crop type and j to the U.S. farm resource 

region). PCAkj was multiplied by the total planted area for a particular crop in each county to 

estimate the total costs for that crop by county (TPCki where i refers to county).  Next, the total 

costs (TPCki) for the six major crops were totaled, giving the total costs by county (TPCi). The 

proportion (Ski) by county of an economic cost (i.e., chemicals, machinery, labor and fertilizer) 

was calculated by dividing TPCki by TPCi. The calculations were performed separately for each 

analysis year (i.e, 1997, 2002, and 2007) and for each economic variable (i.e., chemicals, 

machinery, labor and fertilizer). Estimated Ski varies spatially and temporally, in response to 

variations in planted area by crop and year. The estimation procedure is summarized as: 

 
TPCki = Aik*PCAkj         (Eq.5-8) 
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where, PCAkj is the unit cost of an economic variable (i.e., chemicals, machinery, labor and 

fertilizer) for crop k in NASS-region j, Aik is the total planted area of crop k for county i, and 

TPCki is the total cost of an economic variable for crop k at county i. 

 
Ski = TPCki/TPCi         (Eq.5-9) 

where, Ski is the proportion of an economic variable for crop k at county i, TPCi is the total costs 

of an economic variable for all major crops by county i.    

5.2.5. Observed Yield 

Observed county-level corn yield was standardized by dividing total corn production by 

total area planted to corn. We chose to use total planted area instead of harvested area as the 

denominator because, especially in years with environmental stress (i.e., extreme weather 

conditions), some of the planted area is often not harvested which inflates the standardized yield 

and reduces the spatial and temporal variations in yield.  

Temporal trends in the standardized observed county-level yields were removed so that 

the observed yield is comparable with simulated yield, as suggested by previous studies (e.g., 

Andresen et al., 2001; Jagtap and Jones, 2002). Advancement in farming practices and 

technology, such as new cultivars and pest management, substantially contribute to yield 

increases with time (Egli, 2008). The observed yields from 1990 through 2008 were detrended 

separately by county following the procedure applied by Tannura et al. (2008). The linear trend 

between observed yield as the predictand and year as the predictor was calculated and used to 

adjust observed yields to a base year of 1990, chosen as it corresponds to the time of the 

economic indices (see above).   The detrended county-level observed yields for 1997, 2002, and 

2007 were extracted for the model development. 
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5.2.6. Crop Model Simulation  

The CERES-Maize model included in DSSAT version 4.5 (Hoogenboom et al., 2010) 

was used to simulate corn grain yield for all UGLR counties. The CERES family has been 

implemented worldwide to simulate crop responses to environmental changes as summarized by 

Jones et al. (2003) and specifically to climate change as reviewed by White et al. (2011a). Data 

inputs required for the model simulations are climate variables, soil information, and farming 

practices.  The primary required climate variables are daily solar radiation, maximum and 

minimum air temperature, and precipitation. Soil data includes general physical soil properties 

(e.g., soil texture, soil classification) and layer-specific soil information (e.g., soil fertility, 

drainage upper and lower limit). Farming practices include agronomic practices such as crop 

variety, row spacing, and planting date. The data preparation for the DSSAT simulation 

generally followed the procedures described in detail in Chapter 4 and summarized below.  

DSSAT simulations were performed for the period 1990 to 2008, which encompasses the three 

years (1997, 2002, and 2007) with available economic data.  The year of 1990 was selected as 

the beginning year for the simulations considering the base year of the economic indices used to 

detrend the economic variables. 

(a) Climate data 

Climate data (i.e., precipitation and maximum and minimum temperature) was obtained 

from 36 representative climate stations (Figure 5-4) from the United States Historical Climate 

Network-USHCN (Menne et al., 2012b; Menne et al., 2009). These representative stations were 

selected and assigned to individual counties with the assistance of a climate regionalization that 

grouped USHCN stations based on their deviations from the regionally-averaged annual cycle of 

precipitation and maximum and minimum temperature (see Chapter 2).  
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Figure 5-4. The representative climate stations (red dots) assigned to the UGLR counties for the 

interdisciplinary model development. The colors indicate the counties assigned with the same 

representative climate station.   

 

One criterion in the selection of the representative stations was a small amount of missing 

observations.  When missing observations did occur in the time series of the representative 

USHCN stations, “filled in” values were obtained from the Iowa Environmental Mesonet (IEM) 

network (IEM, 2013), either for the same station or for a nearby station. . IEM recently published 

temporally complete series many climate stations in the Midwest including stations located in 

Michigan, Wisconsin and Minnesota. IEM filled in missing observations using an inverse 

distance interpolation applied to climate data from NCEP Stage IV precipitation, airport weather 

data (ASOS/AWOS), and available NWS COOP reports (Drayl, 2013, personal communication). 

 Daily solar radiation, an important variable for the DSSAT simulation but  not recorded 

by the climate stations, was estimated using the Hunt et al. (1998) mechanistic radiation model, 

parameterized using concurrent observations of daily maximum and minimum temperatures, 
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precipitation and solar radiation for 1990-2008 at Hancock, Wisconsin, located roughly in the 

center site of the UGLR. The mechanistic radiation model was selected to estimate solar 

radiation as a systematic evaluation of various daily solar radiation sources (Chapter 3) 

suggested that the mechanistic approach is a viable option for the generation of daily solar 

radiation required for crop process models. The mechanistic model utilizes latitude to estimate 

daily global solar radiation, and an empirical relationship derived from temperature and 

precipitation is used to calculate atmospheric transmittance (Hunt et al., 1998; Liu and Scott, 

2001).  

Atmospheric CO2 concentrations for the DSSAT simulations were set at 355 ppm, the 

CO2 level for early 1990 as reported by the Intergovernmental Panel on Climate Change-Data 

Distribution Center (IPCC-DDC, 2011). 

(b) Soil Data 

County-level soil data were extracted from the STATGO database published by the 

Natural Resources Conservation Service of the United State Department of Agriculture (NRCS-

USDA) (Soil Survey Staff, 2010) for the dominant soil type in each county based on areal 

coverage. Soil parameters included soil classification, slope, drainage, runoff potential, the soil 

texture, organic content, pH and cation exchange capacity. SBuild, a DSSAT supporting package 

(Uryasev et al., 2003), was used to calculate specific soil information, such as drainage upper 

and lower limits which are not available in STATGO, and to prepare soil inputs for the DSSAT 

simulations. Soil color and fertility, which are also required by SBuild, were obtained based on 

soil texture and taxonomy published by the National Cooperative Soil Survey, (NCSS, 2011) and 

the generic soil database available in DSSAT. 
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(c) Cropping Scenarios  

CERES-Maize was run under rainfed conditions using a medium season corn cultivar. 

The corn cultivar was selected after evaluating the performance of multiple corn cultivars 

employed by previous studies within the UGLR (i.e., Andresen et al., 2001; Southworth et al., 

2000) in capturing the spatial variability of observed corn yield in (see Chapter 4). The cultivar 

characteristics are presented in Table 5-1. 

 
Table 5-1. Characteristics of medium season corn cultivar used in CERES-Maize simulations  

P1 degree days (base 8 
0
C) from emergence to end juvenile phase 200 

P2 photoperiod sensitivity (0-1)  0.3 

P5 degree days (base 8 
0
C) from silking to physiological maturity  800 

G2 potential kernel number 700 

G3 potential kernel growth rate (mg/d) 6.3 

PHINT degree days required for a leaf tip to emerge (phyllochron interval) (
0
C d) 38.9 

 

Planting densities were determined at 75 cm spacings with plant populations of 6 

plants/m
2
 following Andresen et al. (2001). Planting date was determined automatically using 

the DSSAT automatic planting option that initiates planting when, during a specified planting 

window, the percent soil water and soil temperature in the top 10 cm are at least 20% and 10 
0
C, 

respectively. The simulations were started on January 1
st

 with soil water initialized at the drained 

upper limit. Five different planting windows were defined by offsetting the starting date of the 

planting window by roughly 15 days from April 1
st

 to June 10
th

  (i.e., April 1
st

-June 10
th

, April 

16
th

-June 10
th

, May 1
st

-June 10
th

, May 16
th

-June 10
th

, and May 31
th

-June 10
th

). The end date 

of the planting window reflects the typical observed range of planting dates for corn in Michigan, 
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Minnesota and Wisconsin (NASS-USDA, 1997). Harvesting was considered to occur when corn 

reached physiological maturity. The highest annual simulated yields from the different planting 

windows were selected for the development of the interdisciplinary model. The DSSAT 

simulations assumed no change in agronomic practices over time along with non-limiting 

nutrient conditions.   

(d) DSSAT Simulated Attainable Yield 

As discussed above, the DSSAT simulations provide the estimates of “attainable yield” 

for the interdisciplinary model development, and attainable yield is assumed to be larger than 

observed yield.  When the simulated corn yields for 1997, 2002 and 2007 are compared with the 

observed yields reported by NASS-USDA, a modest number (150 out of a total of 587) of 

county-year combinations are seen to have observed yield greater than simulated yield (Figure 

5-5).  No distinct spatial or temporal variation is seen in the distribution of observed county 

yields greater than observed yield. These differences could reflect a number of factors such as 

the use of irrigation in some counties, higher yields on soils within a county that are not 

dominant in terms of areal coverage, the use of different (e.g., long season) cultivars, uncertainty 

in the county-level yield values, among others. The county-year combinations with DSSAT 

simulated yield less than observed yield were removed from the development of the 

interdisciplinary model.  
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Figure 5-5. Observed yield (top), DSSAT simulated yield (middle), and the ratio of simulated to 

observed yield (bottom) for the UGLR for 1997, 2002 and 2007 

5.2.7. Model Estimation  

The nonlinear least square (NLS) estimator was employed to solve Eq.5-6 giving the 

nonlinear form of the equation. Initial values of the model coefficients are needed as NLS solves 

nonlinear equations iteratively until convergence is achieved (Greene, 2003). To obtain initial 

estimates, the error term in Equation 5-6 was assumed to be zero and multiple regression was 

applied to solve the liner form of the equation (Eq.5-10). 
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 55443322110 ZˆZˆZˆZˆZˆˆ  ln(ya/y) ββββββ +++++=     (Eq.5-10) 

 
Across-section data analysis (i.e., varied in time and place) is likely to introduce 

heteorocedasticity as explained by Gujarati (2003, p.401). Although, heterocedasticity does not 

affect the values of the model coefficients, the standard errors and the t-statistics may be no 

longer valid (Gujarati, 2003). To deal with this issue, heteroskedasticy consistent (HC) 

estimators included in the sandwich package (Zeileis, 2006) of the R statistical software was 

employed to obtain robust estimation of the standard errors and the t-statistics.  

Given the non-linear form of the interdisciplinary model, elasticity analysis was 

performed to evaluate the contribution of each economic predictor to the yield deviation assigned 

as the predictand in Eq.5-6. First, the derivation of the model (Eq.5-6) with respect to each 

economic predictor was obtained separately. Second, using the derived models, the elasticity 

values of each economic predictor were calculated at the mean values of each economic variable 

( xZ ). Below is the example of the elasticity calculation for pesticides (Z1). The standard errors 

for the elasticity values were computed using the delta method (Greene, 2003, p.70) available in 

R statistical software.   

n(y/ya)l
)ZZZZZ(2- 

n(y/ya)l
 

)d(ln(y/ya) 1
554433221101

1

1

ZZ

dZ
•+++++•=• βββββββ   

           (Eq. 5-11) 

5.2.8. Application for a Climate Change Impact Assessment 

The interdisciplinary model is used to evaluate the sensitivity of future corn yield to 

variations in facilitating inputs in addition to projected climate change.  As an example, we 

evaluated the sensitivity of yield changes by the mid century (2041-2070) with respect to the 
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baseline period (1971-2000) to a reduction from the “current” investment in chemical 

applications of 30%, 50% and 70%. The reduction scenario was selected to represent possible 

changes in the regulation of chemical applications in the future.  The values for the “current” 

investment were obtained from the average values of available economic data for the three 

analysis years (i.e., 1997, 2002 and 2007). Attainable corn yields for the future and the baseline 

period by county were estimated from the DSSAT simulations of corn yield by county using the 

projected temperature and precipitation obtained from climate scenarios developed from the 

North American Regional Climate Change Assessment Program (NARCCAP) simulations (see 

Chapter 4 for more information on the climate scenario development and DSSAT simulations). 

Atmospheric CO2 concentration for the crop model simulations for both the future and the 

baseline period was set constant at 370 ppm. For attainable yield, we used the median values of 

the 30-year future and baseline periods of simulated corn yields. Specifically for the future 

period, the county-level median corn yields were obtained by averaging the simulated county-

level median corn yield obtained from the DSSAT runs for all eight of the NARCCAP-derived 

climate projections.          

5.3. Results  

The interdisciplinary model explains about 62% of yield variability over the UGLR for 

the three analysis years (Table 5-2). The model coefficients for chemicals, labor, and fertilizer 

have a negative sign, whereas the coefficients for the other predictors are positive. A negative 

coefficient indicates that additional chemicals, labor, or fertilizer will decrease the deviation 

between simulated DSSAT yields and observed yields. In other words, observed yields will be 

closer to DSSAT yields as chemical, labor or fertilizer inputs increase. The opposite occurs for 

machinery and amount of agricultural land. The elasticity analysis suggests that labor contributes 
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less to the yield deviations compared to the other economic variables, and the significant test for 

the model coefficients shows that only the labor term is insignificant. 

            
Table 5-2. Model coefficients and elasticity analysis for the interdisciplinary model of county-

level corn yield for the UGLR parameterized using available data of 1997, 2002 and 2007  

Model coefficients Elasticity Analysis  

Uncorrected Corrected Uncorrected Corrected 

Intercept 7.53E-01***  7.53E-01***   

Chemical   -5.28E-08* -5.28E-08** -0.278* -0.278** 

Machinery 4.76E-09***  4.76E-09***  0.468***  0.468*** 

Labor   -7.36E-09 -7.36E-09 -0.067 -0.067 

Fertilizer   -7.30E-08*** -7.30E-08*** -0.661*** -0.661*** 

Agricultural Land 9.21E-07***  9.21E-07***  0.224***  0.224*** 

R2-fit           0.62    

Note: *** significant at 1%, ** significant at 5%, *significant at 10% 

 
The interdisciplinary model was applied to estimate the spatial distribution of corn yield 

for the UGLR using the simulated DSSAT yield and economic inputs for 1997, 2002 and 2007 

(Figure 5-6). Visual comparison suggests that the estimated yields obtained from the 

interdisciplinary model better capture the spatial yield variability than the simulated DSSAT 

yields for each of the three years (Figure 5-6), especially in the southern UGLR. Statistical 

indices (Pearson’s product moment correlation coefficient, the Willmott Index of Agreement 

(Willmott, 1981)) clarify that the estimated yields obtained from the interdisciplinary model 

better imitate the spatial pattern across the UGLR than do the simulated DSSAT yields. Also, the 

deviations in the mean and standard deviation between observed and estimated yield are smaller 

for the interdisciplinary model than those for the DSSAT simulation (Table 5-3). 
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Figure 5-6. Comparison between observed county-level yields (Obs), estimated yields obtained 

from DSSAT simulation (DSSAT) and estimated yields obtained from the interdisciplinary 

model (INT) for 1997, 2002 and 2007. The three maps in the last row (Data) display county-level 

data employed for the model development.    
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Table 5-3. Statistical comparison between observed yields (Obs) and estimated yield (Est) 

obtained from DSSAT simulation and the Interdisciplinary model across the UGLR 

DSSAT simulation The Interdisciplinary Model 
Variable 1997 2002 2007 1997 2002 2007 

Willmott Index  0.57 0.59 0.63 0.77 0.74 0.74 
Correlation 0.40 0.39 0.44 0.62 0.61 0.61 
Mean.Obs 5439.7 5471.9 4573.1 5439.7 5471.9 4573.1 
Mean.Est 7832.7 6746.1 5247.9 5062.2 4597.8 3696.5 
StDev.Obs. 1533.9 1556.1 1738.1 1533.9 1556.1 1738.1 
StDev.Est. 2672.8 2081.4 2350.0 1908.3 1686.7 1817.0 

 
 

As noted above, the interdisciplinary model was also used to explore the potential 

impacts of a reduction in the amount of chemical application under projected climate change for 

the mid century. Figure 5-7 shows that projected climate change under the reference CO2 level 

(370 ppm) will slightly decrease corn yield for the majority UGLR counties, particularly those 

located in the southern UGLR, and moderately (up to 50%) decrease corn yield  in southern 

Michigan.  When chemical inputs are reduced, the interdisciplinary model suggests that the 

number of counties in the southern UGLR with a moderate (25-50%) reduction in yield will 

increase. A similar reduction is not seen in the northern UGLR (Figure 5-7).  
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Figure 5-7. Sensitivity of yield changes under projected climate change for the UGLR by the mid 

century (2041-2070) to the reduction in the amount of chemical application by 30% (second 

row), 50% (third row) and 70% (fourth row). A CO2 concentration of 370 ppm was assumed for 

the DSSAT simulations.   

5.4. Summary and Discussion  

The impacts of projected climate change on agricultural production have been 

extensively studied during the past decade. Crop models that are designed to operate at a field 

scale are commonly applied to evaluate the complexity of crop responses to future climate 

change. A challenging issue associated with applications of crop models, particularly at a 

regional scale, is how to incorporate economic factors that reflect farming management but are 

not included in the crop model simulation.  This study attempted to improve the utilization of a 
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field-based crop model called CERES-Maize incorporated in the DSSAT system to estimate 

county-level corn yield for the Upper Great Lakes Region (UGLR). The model was developed 

by integrating simulated DSSAT yields and county-level economic costs, namely: chemicals, 

machinery, labor, and fertilizer, and the amount of agricultural land per county.  

An underlying assumption for the model development is that observed yields (i.e., actual 

yield) should always be smaller than simulated DSSAT yields (i.e., attainable yield). The 

reasoning behind this assumption is that growth limiting factors such as pest and disease that can 

reduce crop yields are not included in the DSSAT simulations. Simulated DSSAT yield primarily 

is dictated by climatic conditions, i.e., solar radiation, temperature and precipitation, although 

soil factors and some management practices (e.g., crop cultivar) also are important. Although 

simulated yields tended to be higher than observed yields for most counties and years, there were 

a few counties during the three-year model development period with observed yields higher than 

simulated yields. In particular, DSSAT yields for 2007 underestimated county yield in the Lower 

Peninsula Michigan. The possible reason is that the DSSAT, which was run under the 

assumption of rainfed conditions, may exacerbate the effect of the 2007 drought,  considered as 

one of the worst drought in the last two decades in Michigan (Andresen, 2008), on yield. On the 

other hand, farmers may apply irrigation to combat with the drought condition. Assumptions 

made for agronomic practices used for the model simulation also may contribute to the deviation 

between simulated and observed yields as uniform agronomic practices was assumed for the 

entire region. Smaller simulated yields than observed yields were also found for some years by 

previous studies that applied crop models to simulate maize (e.g., Safir et al., 2008), soybean 

and/or wheat (e.g., Alexandrov et al., 2002; Jagtap and Jones, 2002) yield for a region.  
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 The model coefficients for the interdisciplinary model were estimated based on empirical 

relationships of the deviation between simulated yields and observed yields as the predictand and 

county-level economic costs as the predictors. The model coefficients for chemicals, labor and 

fertilizer have a negative sign which means they have a positive impact on the estimated yield, 

although labor contributes less to the estimated yield than the other two economic variables. The 

signs for chemicals and fertilizer are reasonable as chemicals and fertilizer are applied to create 

favorable growing conditions for corn growth and development. Chemicals (i.e., pesticide) are 

applied to manage pest and disease infestations that can decrease corn yields. Fertilizer is applied 

to supply adequate nutrients to support crop growth and development. Consequently, application 

of chemicals and fertilizer is expected to result in estimated yields (i.e., actual yield) closer to 

simulated yields (i.e., attainable yield). For machinery and amount of agricultural land per 

county, the signs of the coefficients are positive which means any increase in these two variables 

results in larger deviations between simulated and observed yields. Machinery, likely functions 

as a capital stock in the interdisciplinary model, partially captures the scale of corn production, 

as does the amount of agricultural land.  

The estimated corn yields from the interdisciplinary model better capture the spatial 

variability of observed county-level corn yield in the UGLR compared to the simulated DSSAT 

yields. For this application, the interdisciplinary model essentially “corrects”, using a scaling 

factor, simulated yields so that they are closer to observed yields. The interdisciplinary model 

was also applied, as an example, to investigate the sensitivity of yield changes under projected 

climate change to a reduction in chemical applications. The results revealed that decreasing the 

amount of chemicals applied to corn production can exacerbate the potential negative impacts of 

climate change on corn yields in the southern UGLR which is currently the major production 
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region. This consequence may happen because warmer conditions in the future will shorten the 

time to maturity which eventually will reduce the period for grain yield production as discussed 

in Chapter 4. Furthermore, the decrease in chemical applications will increase the yield deviation 

between simulated DSSAT yields (i.e., attainable yield) and actual yield, which means actual 

grain yield will decrease as the chemical application decreases. This example of applying the 

interdisciplinary model for climate change impact assessments suggests that the interdisciplinary 

model can provide an option for extending the use of crop model simulations for regional climate 

change impact assessments. Using the interdisciplinary model, we can experiment with different 

scenarios of possible changes in the county-level economic costs, rather than assume, as is done 

for most assessments, that the current farming management also applies to a future period 

(Tubiello et al., 2002).     

5.5. Conclusion 

The impacts of climate change on crop yield have been extensively evaluated. In this 

study, we developed an interdisciplinary model based on an asymmetric production function that 

distinguishes between attainable and actual yield to model county-level corn yield for the Upper 

Great Lakes Region (UGLR). The model integrates observed (i.e., actual yield) and simulated 

(i.e., attainable) yields with county-level economic costs. The model parameters were estimated 

using a nonlinear least square (NLS) estimator.  

This study shows that the interdisciplinary model can improve upon the utilization of 

simulations from crop models alone and can be used to evaluate the sensitivity of crop yield to 

possible changes in a crop production system as reflected by changing county-level economic 

costs. As an example, we applied the model to assess a simple scenario of reduced chemical 

applications for controlling pest and disease under a future perturbed climate. The analysis 
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revealed that reduced chemical applications may exacerbate the potential negative impacts of 

climate change on corn yields, especially in the southern UGLR. 

 
End Notes 
                                                 
i
 When a specific agricultural input cost was not available for a resource region, the 
corresponding input cost from the closest resource region or an older regional classification was 
used. The older classification of farm resource regions is found in the online documentation 
provided by ERS-USDA (2011b). 
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CHAPTER 6.                                                                                                                              

Summary and Conclusion 

 
This study evaluates the potential impacts of projected climate change for the mid 

century (2041-2070) on county-level corn and soybean production in the Upper Great Lakes 

Region (UGLR) of the United States, encompassing the states of Michigan, Wisconsin and 

Minnesota. Future climate scenarios were derived from simulations obtained from eight 

“combinations” of RCMs and GCMs released by the North American Regional Climate Change 

Assessment Program (NARCCAP). The CERES-Maize and CROPGRO-Soybean models 

included in DSSAT were employed to simulate corn and soybean production for historical 

(1971-2000) and future (2041-2070) periods. CO2 concentrations for the crop simulations 

included a reference level (370 ppm) and two elevated CO2 concentrations (490 and 635 ppm). 

 A major challenge in the application of crop models such as DSSAT is the availability of 

daily climate data (e.g., temperature, precipitation and solar radiation), due to the relatively 

coarse and non-uniform spatial distribution of climate observing stations. This study proposed 

the utilization of a climate regionalization procedure to group climate stations into subregions 

with similar characteristics, based on deviations from the regionally-averaged annual cycle of 

maximum and minimum temperature and precipitation. The climate regionalization can be 

applied to help choose representative climate stations for an impact assessment and to assign 

these stations to individual counties based on their geographic proximity.  This approach is an 

improvement on previous assessments for regional agriculture that selected a small number of 

climate stations based on data availability or their location with respect to major agricultural 

production areas. A concern for these earlier studies is that the selected climate stations may not 
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fully capture the spatial variability of climate conditions across the study region. Selecting 

representative stations based on a climate regionalization helps to ensure that the spatial 

gradients of temperature and precipitation across the study area are captured.   Additionally, this 

approach provides an alternative to the utilization of gridded datasets for regional crop model 

simulations. Gridded data need to be used cautiously as they are extremely sensitive to the 

density and inhomogeneities of the original observed climate series. 

 To overcome the limited availability of daily solar radiation, this study systematically 

evaluated the sensitivity of simulated corn and soybean yield to different solar radiation sources. 

The sources considered included point-based radiation estimates from empirical and mechanistic 

models and a stochastic weather generator, and radiation estimates obtained from available 

satellite, reanalysis and regional climate model gridded datasets. The comparison of different 

daily solar radiation estimates provides a guideline to help select an appropriate daily solar 

radiation source for a specific application. A mechanistic radiation model that estimates daily 

solar radiation based on maximum and minimum temperature and precipitation as inputs was 

selected for assessing the potential impact of future climate change on crop production in this 

study. Comparison of simulated yields obtained from observed solar radiation and from 

estimated daily solar radiation obtained from the mechanistic model showed relatively small 

yield differences. Additionally, the mechanistic model maintains the daily relationships among 

climate variables, is easily implemented for different locations in the UGLR, and can be readily 

applied to estimate daily solar radiation for a future period using projected maximum and 

minimum temperature and precipitation as inputs.   

A detailed spatial analysis of the potential climate change impacts on corn and soybean 

production in the UGLR provides a more rigorous exploration of the spatial distribution of the 
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potential impacts compared with previous studies that employed a limited locations to represent 

the entire region. For the mid century, assuming the reference CO2 level of 370 ppm for the 

DSSAT simulations, the assessment revealed that corn and soybean yield for the northern part of 

the study region likely will increase due to more favorable growing season conditions than at 

present; whereas a small reduction in yield due to a shorter time to maturity may occur in the 

southern part which is currently the major crop production area within the UGLR. Elevated CO2 

concentration is expected to benefit crop yield, particularly soybean yield.  

In contrast to previous work, the climate change impact assessment conducted in this 

dissertation employed an ensemble of climate change scenarios developed from simulations from 

different RCM-GCM “combinations” where the RCMs were used to downscale GCM output, 

with lateral boundary conditions obtained from the GCMs. This assessment illustrates that the 

utilization of different RCMs and/or GCMs provides varying future climate projections and 

implies that the direct use of outputs from a single or few GCMs may not capture well the 

uncertainty associated with climate change impact assessments. While recognizing that the 

coarse resolution of GCMs is not sufficient to capture regional climate variation, climate impact 

researchers also need to be aware of the additional uncertainty introduced by the choice of RCMs 

to dynamically downscale GCM outputs. The use of an ensemble of GCMs and RCMs as 

implemented by NARCCAP enhances our understanding of the uncertainty introduced into 

climate impact assessments by the climate scenarios.        

This dissertation also contributes to an increased understanding of the potential spatial 

shifts in crop production and of future temporal yield variability. A potential northward shift in 

crop production has been highlighted by previous studies at the national scale for the United 

States. The findings of this county-level analysis indicate that more favorable growing conditions 
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by the mid century likely will benefit crop production in the northern UGLR where some 

counties may produce relatively high corn and soybean yields especially under elevated CO2 

concentrations. Crop yield in the southern UGLR is likely to remain high, partly due to the 

positive impacts of elevated CO2 concentrations. However, producers in these areas should be 

aware that future climate change may result in somewhat increased temporal yield variability, as 

indicated by a projected small increase in the coefficient of variation by the mid century.  

Although this dissertation uses the UGLR as a case study for evaluating the regional 

impacts of climate change on crop production, the results imply that the consequences of 

projected climate change by the mid century for high latitude regions can be complex. Climate 

change cannot be expected to always benefit crop production in high latitude regions because of 

the complexity of crop responses to spatial variations in temperature and precipitation changes. 

Regional soil variations also add to the complexity of crop responses to future climate change.   

All climate impact assessments have limitations, and the one presented in this dissertation 

is no exception.  One limitation is that the NARCCAP simulations employed a single emissions 

scenario (i.e., SRES A2), thus the uncertainty introduced by the choice of greenhouse gas 

emissions scenario is not considered. Another limitation is the use of the delta method to modify 

daily climate observations (i.e., maximum and minimum temperature and precipitation) by 

projected monthly changes calculated from the NARCCAP simulations, as future changes in 

climate variability are not considered.  

The underlying assumptions of the DSSAT simulations also need to be considered. The 

simulations do not include the effects of pest and disease infestations and exposure to other 

factors affecting yield variability such as economic exposures.  Additionally, the effects of 

carbon fertilization are simulated under rainfed conditions, whereas different environmental 
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conditions and agricultural management practices such as irrigation may influence the crop 

response to elevated CO2 concentration. Except for planting date, farming management and 

technology (i.e., cultivar, row and spacing, and planting density) employed for DSSAT 

simulations were held constant for the historical and future periods. This allows the 

consequences of climate change on crop production to be isolated, but is unrealistic in that 

management and technology will continue to evolve in the future with large impacts on crop 

production.   

A prototype interdisciplinary model that integrates simulated yields obtained from 

DSSAT simulations with economic determinants was also developed to overcome some of the 

limitations of the DSSAT simulations. This model was purposed to explore the contribution of 

economic determinants (i.e., costs of pesticides (chemicals), machinery, labor and fertilizer) to 

corn yield variability in the UGLR. The model was developed using an asymmetric production 

function that distinguishes two yield types, namely: attainable and actual yield. The attainable 

yield was obtained from DSSAT simulations, whereas actually yield was acquired from reported 

observed yields The interdisciplinary model was shown to improve the utilization of the DSSAT 

(i.e., CERES-Maize) simulations on a regional scale and offers an approach to evaluate not only 

the potential impacts of climate exposures but also economic stresses on crop production. 

Although, the interdisciplinary model was developed only for corn yield in the UGLR, the 

procedures can be applied to other crops and regions.   

 Overall, this study suggests that more favorable growing conditions will increase corn 

and soybean yields in the northern UGLR especially under elevated CO2 concentrations. The 

positive impacts of higher CO2 levels will also counteract, or at least minimize, potential small 



 164 

reductions in crop yields projected for the southern UGLR.  Given that the United States is one 

of the major players in world grain markets, potential changes in corn and soybean production 

across all parts of the United States, including the UGLR, will significantly influence future 

world food supply. Indeed, additional grain production from high latitude locations such as the 

northern UGLR can help offset the potential adverse impacts of climate change on crop 

production in low latitude regions. Hopefully, this dissertation will stimulate further research that 

applies or extends the methods used here in order to devise plausible adaptation strategies that 

can minimize the risks and maximize the benefits of climate change. 
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