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ABSTRACT
CROP PRODUCTION AND FUTURE CLIMATE CHANGE IN

A HIGH LATITUDE REGION: A CASE STUDY FOR THE UPPERBREAT LAKES
REGION OF THE UNITED STATES

By

Perdinan

Agriculture is particularly susceptible to climatieange, as inferred from large historical
variations in crop production in response to péstate variability. The major goal of this
dissertation is to evaluate the spatial variabiitghe impacts of projected future climate change
on crop production in a high latitude region. Camu soybean production in the Upper Great
Lakes Region (UGLR) of the United States, encompgdbe states of Michigan, Wisconsin
and Minnesota, serves as the case study. The CBREL and CROPGRO-Soybean models
included in theDecision Support System for Agrotechnology Transfer (DSSAT) were employed
to simulate county-level crop production for cutrand future time slices.

A first step in the analysis was to assign indialdtounties to nearby climate stations, as
climate data (e.g., temperature and precipita@oa)primary drivers for the DSSAT simulations.
A climate regionalization procedure was appliedrmup climate stations from the United States
Historical Climate Network into subgregions witimdiar characteristics of the annual cycle of
temperature and precipitation. Representativesstativere chosen from each climate region, and
counties were assigned to the closest represemt#ttion. The regionalization ensured that the
spatial gradients of temperature and precipitagicnoss the UGLR were captured in the analysis.

Daily solar radiation, also an important varialde the DSSAT simulation but one which
is infrequently recorded, was calculated using ahaaistic solar radiation model parameterized

at a central site within the study area for whiohaurrent observations of solar radiation,



temperature and precipitation were available. Tislel was selected after systematically

evaluating the sensitivity of simulated corn angb&an yield to different solar radiation sources.
Climate change projections for a mid century (2@0Y90) time slice were derived from

eight combinations of regional climate models aloibgl climate models released by the North

American Climate Change Assessment Program. Thaatgssessment revealed that by the mid

century, assuming the current €@vel, corn and soybean yield for the northernt pathe

region likely will increase due to more favorablewing season conditions than at present;

whereas, a slight decrease in yield due to shonberto maturity may occur in the southern part
of the UGLR, which is currently a major crop protias region. However, under elevated £0
concentrations, the number of counties with a ptept decrease in yield is smaller due to the

positive impacts of higher CQevels, particularly for soybean production.

As the DSSAT simulations do not capture the effe€{sest and disease infestations or
economic factors on crop yield, a prototype inteeitilinary model for corn yield was developed
using an asymmetric production function to integtiie DSSAT simulated yields with
economic determinants (i.e., costs of pesticideghimery, labor and fertilizer) to estimate
observed county-level yield. The interdisciplinanpdel was shown to be a viable alternative to
classical yield functions, and this model framewardrits future study and refinement.

In general, this study suggests that more favorgitde/ing conditions by the mid century

will benefit the northern UGLR where some areas prayluce relatively high corn and soybean
yields especially under elevated &€€bncentrations. Despite a potentially small reidumcin
crop yields, current crop production in the sowthdGLR will remain large, partially due to the

positive impact of elevated G@oncentrations.
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CHAPTER 1.

Background and Resear ch Objectives

1.1. Background

Recent studies (e.g., Gilland, 2002; Jaggard e2@1.0; Tilman et al., 2011) raise as a
serious challenge the ability of global food supjalyneet the demand for food consumption in
2050, as human population is expected to increaabdut nine billion. Climate change,
including changes in the mean climatic state armhghs in variability, intensifies the challenge
of future world food supply (Rosenzweig and Pai§94; Schmidhuber and Tubiello, 2007).
Globally, climate change likely will adversely imgaacrop productivity in low latitude countries,
whereas high latitude countries may benefit (CIEZ@)7; Parry et al., 2005). The adverse
impacts of climate change are also projected teease the risk of hunger in developing
countries (Parry et al., 2005; Schmidhuber and dlldyi2007).

Given the perspective of climate change as a glbloaat to human livelihood (Barnett,
2010; Wilby et al., 2009), the estimated potertiehefits of climate change to crop productivity
in high latitude regions is an interesting subj@dtential benefits are expected because
increased precipitation in high latitude regior®GC, 2007) may offset greater
evapotranspiration arising from future higher terapgres, leading to more favorable conditions
for crop production such as in the high latitudgioas of North America (Fischer et al., 2005)
However, this generalization needs further explonads the impacts of climate change on crop
productivity in high latitude regions likely is negally and even locally specific (e.g., Brassard
and Singh, 2008; Southworth et al., 2002; Southwettal., 2000). Regional variations in

climate change impacts are anticipated becausegeban temperature and precipitation will



vary spatially, as illustrated by the impact ofeet(1976-2006) climate trends on county-level
corn and soybean yield in Wisconsin of the Unitéateé® (Kucharik and Serbin, 2008).

This study will evaluate spatial variability of tute climate change impacts on county-
level corn and soybean production in counties kxtatithin the Upper Great Lakes Region of
the United States, encompassing the states of yachiWisconsin and Minnesota. Corn and
soybean, the two most commonly grown crops in ¢iggon (Hatfield, 2012; Niyogi and Mishra,
2013), were chosen to represent the two major tyogs, i.e., C4 (corn) and C&oybean),
which are expected to respond differently to cliengttange (Mera et al., 2006). Although
agricultural production is considered a major ecoitacontributor for the region, the spatial
detail of potential future climate change impaatisoop production rarely has been studied for
the region.

Previous studies for the study area (Andresen €2@00; Southworth et al., 2002; 2000)
selected a few representative locations to evathatpotential impact of future climate change
on corn and soybean production. Ten sites (Southvetral., 2000) and nine sites (Southworth
et al., 2002), located across the states of Indidlimais, Ohio, Michigan, and Wisconsin, were
selected to evaluate the consequences of projeliteate change for a future period (2050-
2059) relative to the baseline period (1961-1990¢@n and soybean yields. Southworth et al.
(2000) found specifically for locations in Michigand Wisconsin, that future climate change
may have either a positive or negative impact @ingyield of long and medium season corn
varieties, depending on the location within these $tates and/or climate scenarios; whereas,
the projected impact was negative for a short seasm variety for all locations and climate
scenarios. For example, simulated corn yields mfdseason variety in the Michigan Thumb and

eastern Wisconsin were projected to increase B0% and 40%, respectively, regardless of



climate scenario. In contrast, grain yields of Ieegson variety for south-central Michigan and
southwest Wisconsin were projected to change fro#o & -20% and 20% to -10%,
respectively, with the differences in sign corregting to different climate scenarios. In these
two locations, the short season variety was prefetd decrease by up to 30% and 50%.

Furthermore, Southworth et al. (2002) found thatrke climate change is likely to boost
soybean yields, especially flate-maturing soybean cultivarBhey estimated that the yield of late-
maturing soybean cultivars may increase up to 1R086uth-central Michigan and the
Michigan Thumb region. For mid-maturing cultivayglds were projected to increase by 5% or
decrease by 25% in southwestern Wisconsin, depgmiirclimate scenarios; whereas, soybean
productivity in eastern Wisconsin, south-centratMgan, and the Michigan Thumb were
projected to increase by up to 60%. The largestase in yields for the early maturing cultivar
were expected in south-central Michigan where gielduld possibly increase up to 120%.
Overall, the increase in yields for late-maturiragiety was expected to be greater than that for
early maturing cultivars across the study locati@muthworth et al., 2002).

However, an assessment specifically for the UGLRgsomewhat different projections
compared to those for the wider Midwest region.déesen et al. (2000) did not project a future
decrease in corn and soybean yields for the UL@Rrne rather, they reported that yields in the
period of 2000-2099 for 13 locations within the U&hre likely to significantly increase

compared to yields for historical records (18964)99 his increase was attributed to the
positive impacts of C®enrichment on crop yield, particularly for soybéAndresen et al.,
2000). A similar carbon fertilization effect wasalfound by Southworth et al. (2002).

Although, the conclusions drawn from the aboveistithay be appropriate for

estimating the impacts of climate change at pdedrdocations, generalizing the conclusions



across the region could be problematic, thus furlploration is needed to identify areas with

decreasing or increasing crop production underéutlimate change and elevated atmospheric
CO», concentrations. In addition, the limited locati@mployed in the previous analyses also

prevent the use of their results to explore po#é¢hdtitudinal shifts of major crop production
regions to the north that is frequently highlighbgdnational-scale impact studies for the United
States (e.g., Thomson et al., 2005; Tubiello e2802).

A major challenge of regional climate change im@estessments at the county level, the
scale chosen in this study, is data availabiligohysiological models, commonly known as
crop models (White and Hoogenboom, 2011), ofterelimaen employed for climate change
impact assessments in recent decades as reviewafthiby et al. (2011a), require extensive data
inputs (e.g., climate data, soil information andrfmg practices) for the model simulations.
Unfortunately, the required data inputs are notlalke for each county in the UGLR.

Specifically for climate data, daily solar radiatjane of the main climate variables which is
needed for crop model simulations, is infrequerglyorded compared to temperature and
precipitation (Liu and Scott, 2001).

Crop models are regulallry employed in climate geimpact assessments because they
are able to simulate the non-linear interactionsragplants, environment and farming practices
at a specific location (Hoogenboom et al., 2004ine et al., 2001). However, crop models
generally poorly simulate the impacts of weeds pegt and disease infestations (Soussana et al.,
2010; Tubiello et al., 2002), and can not capthesdontribution of economic determinants to
yield variability (Kaufmann and Snell, 1997; Verdab et al., 2008). The inclusion of economic
stressors has been recommended by the climate tmgssarch community (Challinor et al.,

2009), recognizing the contribution of economiddas to yield variability (Cabas et al., 2010;



Kaufmann and Snell, 1997). Socio-economic condstican influence farmers’ decisions in
managing their land and selecting farming prastice Koeijer et al., 1999). Guan et al. (2006)
assert that economic factors such as capital dowt zan create favorable growing conditions for
crop production.

A potential approach proposed to overcome thediioib of crop models is to develop
yield models that combine the outputs of crop medeld economic determinants (i.e, ‘a hybrid
model’), such as the model proposed by KaufmannSaradl (1997). This hybrid model, referred
by Kaufmann and Shell as mterdisciplinary model”, offers an advantage over the direct use of
crop models by capturing, at least in part, theuarice of socio-economic drivers on crop yield
fluctuations. In comparison to traditional empitigeeld models (e.g., Almaraz et al., 2008;
Cabas et al., 2010; Tannura et al., 2008), thedisi@plinary model better captures non-linear
interactions between weather variables, environat@ainditions and crop growth processes,
which are often oversimplified in empirical yielcoaels (Challinor et al., 2009; Soussana et al.,
2010). A recent application is the development leyavDiaz et al. (2008) of an interdisciplinary
model for soybean yield that combines simulatettgiérom a crop simulation model,
geographic location (i.e., latitude and longitudedl economic variables (i.e., credit, transports
costs) to explain soybean yield variability in Beazilian Amazon.

Yet, none of the earlier interdisciplinary modeislude economic determinants
associated with chemicals to control pest and dessacapital, and labor. A recent study
conducted by Guan et al. (2006) proposed an emapirield model based on an asymmetric
framework to distinguish the impacts of growth itg(.e., land, seed, environmental factors)
and facilitating inputs (i.e., pesticides, cap#at labor) on attainable and actual yield

(vanlttersum and Rabbinge, 1997), respectivelyodnhately, the utilization of dummy



variables to reflect environmental conditions (esgil and climate) limits the application of the
model for climate change assessments. Howevemdue| structure proposed by Guan et al.
(2006) can provide an alternative framework fordiegelopment of a new type of
interdisciplinary model. A crop model can be usedimulate crop yields (i.e., attainable yield)
based on agricultural growth inputs and agronomactices (i.e. cultivar, row and spacing, and
planting dates), and economic determinants are tasadjust simulated yields in order to obtain
estimated yields (i.e., actual yield).

The recent release of future climate projecti@ngte mid century (2041-2070) from an
ensemble of regional climate models (RCMs) driverséveral global climate models (GCMs),
included in the North American Regional Climate @d@ Assessment Program (Mearns et al.,
2009), offers an opportunity to utilize higher regimn climate model outputs for the
development of climate change scenarios. Many eselig., Frei et al., 2003; Kim et al., 2008;
Kjellstrom et al., 2010) argued that the finer fagon of RCMs offers an advantage in
simulating details of regional climate comparedh® corresponding lateral boundary condition.
Furthermore, the extensive effort of downscalintpats of several GCMs to a regional scale
using multiple RCMs, known as dynamical downscalirgwler et al., 2007), is rarely applied
for regional climate change impact assessmentaubeatynamical downscaling is
computationally expensive (Fowler et al., 2007;diand Wigley, 1997).

This dissertation attempts to address the abovéeohas to better understand the spatial
variation of future climate change impacts on quopduction in high latitude regions by using
the Upper Great Lakes Region of the United States @ase study. This study offers a
methodology to prepare required data for crop meuhellation at the county-level.

Additionally, alternative daily solar radiation soas are assessed to choose appropriate daily



solar radiation estimates as inputs for crop meahellations. Climate change scenarios derived
from the NARCCAP datasets are employed to evalingtg@otential regional impacts of
projected climate change for the mid century opguduction in the study region. An
interdisciplinary model for corn yield is develop@dexplore the contribution of economic
determinants to explain the deviation between satedl and observed yields.

The outcomes of this research contribute to theecdment of methods for conducting
regional climate change assessments, especidhg abunty scale. The impact assessment
conducted for the study region also enhances aderstanding of the spatial variation of future
climate change impacts on crop production in hahude regions. The relatively detailed
spatial analysis of the potential impacts allowseptal latitudinal shifts of crop production
region under exposure of future climate changestexamined. The interdisciplinary model
provides an alternative approach for evaluatingpibesible consequences of combining climate
and economic exposures to crop yield variabiliipally, the outcomes of this research will help
decision makers in the region to devise agricultom@nagement strategies for climate change

adaptation.

1.2. Research Objectives

The main goal of this dissertation is to evaluhtedpatial variability of future climate
change impacts on corn and soybean productioreitiper Great Lakes Region (UGLR) of the
United States. Specifically, the first goal is ®vdlop an objectively-defined climate
regionalization for the region that is proposegrepare climate data for crop model simulations
at the county scale. The second goal is to evathatsensitivity of simulated corn and soybean

yields to different daily solar radiation estimate®rder to choose appropriate daily solar



radiation estimates for crop model simulations exyedl for climate change impact assessments.
The third goal is to identify the spatial distrilmut of future climate impacts on corn and soybean
production over the UGLR. The fourth goal is to élep an interdisciplinary model for corn

yield that can be employed for regional climatengeassessments. This dissertation addresses
each objective in separate chapters. The objectindsnethods will be explained in more detail

in each chapter.

1.3. Study Region

The UGLR is comprised of the states of Michigans®dnsin and Minnesota (Safir et al.,
2008). This region is located in the United St&t¢S) Midwest (Pryor and Barthelmie, 2013),
which is considered the ‘main heartland’ of agricté in the US (Figure 1-1). Corn and
soybean, the crops selected for this study, arsidered the two major agricultural commodities
in the region (Hatfield, 2012; Niyogi and Mishr&13).

The major growing areas of corn and soybean asgddamostly in the southern part of
the UGLR (Safir et al., 2008). County averagesash@and soybean yield from 1942 to 2008 are
larger in the southern part of the region (Figw®).1In these areas, the variability of corn and
soybean yields is also highest. Corn and soybesdsyin each of the three states display a
positive trend since 1942 (Figure 1-3). Corn yieldlinnesota increased about 108 kg/ha per
year; whereas, in Michigan and Wisconsin, yieldéased about 91 kg/ha per year. Trends of
soybean yields for Wisconsin, Minnesota and Michigeere 31.5, 29.7, and 26.5 kg/ha per year,
respectively. Improvements in agricultural managenaed technology and favorable weather
over the period are considered the key factorsrituting to increased corn and soybean yields

in the region (Andresen et al., 2001; Tannura.e808).
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Figure 1-2 Average and standard deviation of corn (top figuaesl soybean (bottom figures)
yields over the UGLR from 1942 to 2008. Data soul&tional Agriculture Statistics Service -

United States Department of Agriculture (NASS-US2811)
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1.4. Dissertation Structure

This dissertation is divided into six chapters. Tin& chapter (Chapter 1) provides a
background of the research, the research objectvesthe study region.

Chapter 2 discusses the climate regionalizatigheftudy region. Climate stations
included in the United States Historical Climateawarks (USHCN) for the UGLR and
neighboring states were grouped using a combinafigmincipal component analysis (PCA) and
non-hierarchical (kmeans) clustering method. Eumfigillocation and distance was employed to
create clustering boundaries and assign a spetifi@te group to counties, respectively.

Chapter 3 evaluates the sensitivity of crop mottelsx different daily solar radiation
estimations, i.e., point-based estimates (empjrebaliamical, and weather generator), and
gridded datasets (NASA-POWER, NARR, and NARCCARAtiStical analyses, e.g., t-test,

mean absolute error (MAE), root means square éRBISE), correlation coefficient

(r)/coefficient determination (?F} and mean squared deviation (MSD), were appbeabsess the

performance of the alternative radiation sourcekthair impacts on corn and soybean yields.
Chapter 4 elaborates the spatial variation of tuttliimate impacts on corn and soybean
production across counties in the UGLR. Represietatimate stations were selected and
assigned to each county by considering the climedaps for the UGLR (Chapter 2). Soil
parameters for each county were obtained from T&T&O database. Faming practices were
set at the rainfed condition with multiple plantwgdows to optimally start planting crop
across the UGLR counties. Climate change projestadprecipitation, maximum and minimum
temperature were derived from eight RCM-gcm contioing available from the NARCCAP

database.
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Chapter 5 discusses the development of an intgpdisary model for county-level corn
yield in the UGLR. This model was developed by tiaathe ratio of observed to simulated corn
yield (predictand) with economic data (predicta@s)he county level. Observed corn yields were
detrended in order to be comparable with simulgteldls. Economic data (i.e., total costs of
chemical, machinery, labor and fertilizer) for thedel development were obtained from the
agricultural census for 1997, 2002, and 2007 apasgetl using a corresponding price index for
each economic variable. The model parameters vatiraaed using nonlinear least square
(NLS) estimator. The contribution of each econowadable to the dependent variable was
evaluated using elasticity analysis.

Chapter 6 summaries findings from Chapter 2 to @ve Implications of the research
outcomes and their contribution to enhancing kndg#eabout regional climate change impacts

also are discussed.
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CHAPTER 2.
Selection of Climate Information for Regional Climate Change Assessmentsusing

Regionalization Techniques: a Case Study for the Upper Great L akes Region, USA

In collaboration with

Julie A. Winkler

2.1. Introduction

The impacts of climate change, such as those &g groduction, are regionally (e.qg.,
Cline, 2007; Motha and Baier, 2005) and even lgdalg., Goldblum, 2009; Kucharik and
Serbin, 2008) specific. Consequently, most clintht@nge assessments are conducted at the
regional scale (Cartet al., 2007). A common approach in regional-scale assesisstudies is
to select a modest number of locations that holyedalpture within-region spatial variations of
the current climate and potential climate changesaicts (e.g., Brassard and Singh, 2008;
Southworth et al., 2002; Southworth et al., 200@)s approach is in part dictated by the need
for fine-scale climate scenarios for regional cliemehange assessments. As pointed out by
Winkler et al. (2011), climate scenario development, which tylhyazonsists of homogeneity
testing of historical time series of climate obsgions, application of models (dynamic and/or
empirical) to “downscale” coarse resolution outfspam global climate models to the regional or
local scale, and extensive evaluation of the doalestcvariables, is time consuming and
resource intensive and often a “road block” foirapact assessment. Thus, for many assessment
studies, developing scenarios for a large numbéaaitions within a region may not be an

option (Winkleret al., 2002).
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When selecting locations for an assessment, preatudies typically have considered
the length of the historical time series or thecpeed representativeness of climate stations
within a region (e.g., Almaraz et al., 2008; Andret al., 2000). A concern of the first selection
criterion is that the stations with the longesiores may not adequately capture the spatial
variability of climate across the study area, whsrthe second criterion requires that the size of
the subregion for which a station is representdieelarified and that the characteristics used to
evaluate representativeness be specified. Thesermillustrate the need for innovative
approaches for selecting climate stations for déndange assessments.

We propose and demonstrate that an objectivelyxdéfclimate regionalization can be
useful when selecting the number and location pifagentative stations with the goal of
capturing the spatial variability of a region’snalite. Furthermore, the proposed approach
provides an indication of the needed resourceslimate scenario development. For the
illustrative application described below, a comhimr of principal component analysis (PCA)
and hierarchical and non-hierarchical clusterirgptégues is employed to group climate stations
from the United States Historical Climatology Netlw@Menneet al., 2009) in the Upper Great
Lakes region (UGLR) of the United States. The regization is based on mean monthly
maximum and minimum temperature and precipitafidrese three climate variables were
chosen so that the regionalization would be appléecto a wide range of assessments, although
the choice of climate variables for a particulaplagation should be dependent on the assessment
goals. The regionalization was performed separ#telthree different periods, 1971-2000,
1941-1970, and 1911-1940 to investigate the seigitf the climate groups to the choice of
time period for which the regionalization is contitet To help visualize the spatial variability in

climate, cluster boundaries were defined usingiBeaah allocation (ESRI, 2008). In addition,
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Euclidian distance was employed to link the clustgnions and site specific information from
representative climate stations for each regioh agigregated datasets (e.g., agricultural,
biological, social-economic) at the United Statesriy level (USDA-NASS, 2007). The
regionalization and linkages to political units yide a starting point and framework for further
assessment activities, including climate scenagie@bbpment, incorporation of additional
datasets and multiple aggregation levels into aesssnent, and the use and development of

decision-making models.

2.2. Data Methods

2.2.1. Climate Data

Record length and the quality of climate observetiare critical considerations in a
climate regionalization. For this reason, climabservations from the United States Historical
Climatology Network (USHCNyer. 2.0 (Mennet al., 2009) were used. Each station within this
network is generally considered to have a relagila@hg time series and the highest quality
temperature and precipitation observations (Mestra&, 2009) compared to other stations
within the United States Cooperative Observer RiogfCOOP) Network (Dalgt al., 2007).

This research utilized 180 climate stations distel over the study area (Michigan, Wisconsin
and Minnesota) and neighboring states (Figure &thtions from neighboring states were
included to minimize edge effects that can redbheeaccuracy of clustering results (e.g.,
DeGaetano, 1996; DeGaetano, 2001; Fovell and Fdv@i3; Stooksbury and Michaels, 1991).
Monthly mean maximum and minimum temperature adpigbr time of observation bias and
other inhomogeneities and total monthly precipitativere extracted from the USHCN database
for the period 1911-2000. The monthly time sewese used to calculate climatic normals for

the three 30-year time periods, 1971-2000, 1941018id 1911-1940. Temperature and
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precipitation were selected for analysis as theytlae two most commonly utilized variables for

climate regionalization (e.g., Bunkers et al., 1996Gaetano, 2001; Fovell and Fovell, 1993).
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Figure 2-1Distribution of the USHCN climate stations usedha climate regionalizaiton. The

UGLR study area is defined as the states of Miniaesisconsin, and Michigan.

2.2.2. Regionalization Procedures

A combination of PCA and a two step clustering pssc(hierarchical and non-
hierarchical clustering) was used for the clima&gionalization. These techniques have been
widely applied to understand the structure of cterdatasets, as summarized by Jolliffe and
Philipp (2010). The climate regionalization wagially performed for the period 1971-2000
(Figure 2-2). Separate regionalizations were cotatufor two earlier periods, 1941-1970 and
1911-1940, although for comparison the number ustels initially obtained for the 1971-2000
period was held constant for all three regionaliret. The latest period is preferable as a

reference, under the assumption it exhibits theeoticlimatic conditions for the region.
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Figure 2-2. Time periods used for the climate regization.

PCA was used to reduce data dimensionality (Kalksteal., 1987) and to remove
multicolleniarity among variables (Bohehal., 2001). The 30-year monthly maximum and
minimum temperature and precipitation averages \wetially standardized to zero mean and
unit variance to remove the influence of differphysical units on the PCA performance
(Fovell and Fovell, 1993; e.g., Stooksbury and Mels, 1991; Wilks, 1995). The PCA was then
applied to the correlation matrix calculated frdra 86 climate variables (columns) and 180
locations (rows). A Varimax orthogonal rotation (&er, 1959), which has been widely
employed in climate research (e.g., Bohm et aD12@ommenget and Latif, 2002; Fovell and
Fovell, 1993; Richman, 1986), was applied to sifgphterpretation. Only rotated components
with at least one loading >0.5 were retained ferdluster analysis following Guentchev and
Winkler (2010), resulting in four retained compotseaxplaining approximately 93% of the
variation.

A two-step clustering process was utilized to ta#teantage of the strengths of both
hierarchical and non-hierarchical clustering. Hielngcal clustering was used to provide an
estimate of the possible number of clusters intas#gd. The k-means partitioning technique, a
non-hierarchical method, was used to assign objeatkisters. Unlike traditional hierarchical
clustering, k-means analysis permits the reassighofeobjects until a convergent criterion is

achieved, but requires that the initial numberlo$ters be specified at the beginning of the
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clustering process (Dezfuli, 2011; Jolliffe andIRip, 2010; Rhee et al., 2008; Stooksbury and
Michaels, 1991). For the hierarchical clusterig, $cores of the rotated components were
grouped into different clusters using Euclidiarta@ince as the similarity measurement and
various linkage functions (McQuity, median, averagjregle, complete, centroid, and Ward), all
of which are regularly used for climate regiondi@a (e.g., Bunkers et al., 1996; Fovell and
Fovell, 1993; Kalkstein et al., 1987; Stooksburg &ichaels, 1991). The component scores
were not standardized preceding the cluster asalgisisuch standardization may cause the
distances between observations to be unrealisti;mmébn, 1998). The number of candidate
clusters was evaluated using the Sarle Cubic &inst Criterion (CCC) (SAS Institute Inc.,
2004), Pseudo-F and Pseudo-t2 statistics (FovdlFawell, 1993), and distances between
clusters (Fovell and Fovell, 1993; Wilks, 1995)n@@ate numbers of clusters were chosen by
searching for a breakpoint in the plots of theskces by merger level. Two breakpoints were
selected for each criterion to provide a rangeosible clusters for input to the k-means
analysis.

The non-hierarchical k-means cluster analysis Was performed using each candidate
number of clusters obtained from the hierarchitadtering. A drift option was specified to
update the cluster seeds during the partitioninggsses to allow for adjustments of the seeds
every time an observation was reassigned (SASutsstinc., 2004). The final number of
clusters was determined based on Beale’s PseudteRan (Johnson, 1998) and a graphical
evaluation of the sum of squares of the withinteudistances. Beale’s Pseudo-F was calculated
from the intracluster sum of squares and comparedtical values of the F-distribution to
assess whether a solution with additional clusiffess a significant improvement over a

solution with a smaller number of clusters.
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To help depict the spatial distribution of climg®@ups across the study region, cluster
boundaries were defined objectively using Euclichdlacation, available in ArcGIS (ESRI,
2008). The Euclidean allocation method is preferabier other interpolation techniques when
the data being interpolated (in this case clustmbership) are nominal rather than

interval/ratio measurements. The feature classuster memberships for the climate stations

. . 2 . . :
was converted to a raster grid of approximate giZekm . For cells without climate stations,

the Euclidean distance to the closest sourceicl] ¢ell with a climate station) was calculated
and the cluster membership of the source cell waigiaed to the cell without a climate station.
In effect, the “edges” of the raster cells fallingdifferent clusters form the climate region
boundaries, although the boundaries were identfiglain ArcGIS by converting the “filled in”
raster grid to polygons. Euclidean distance was abed to assign cluster regions to counties.
In this case, the Euclidean distance of all surdougn climate stations to the centroid of each
county was calculated, and the county was assigntee climate cluster of the nearest climate

station.
2.3. Reaults

2.3.1. Climate regionalization for 1971-2000

The hierarchical clustering analyses resultedwide range of possible number of
clusters as input for the k-means non-hierarchikeedtering. As shown in Table 1, the number of
clusters considered were 4-17, 21, 24, 26-28, 3373 41-42, 45-46, 51, 59, and 67. The final
number of clusters was determined based on BeR#ado-F criterion (Johnson, 1998) and a

graphical evaluation of the first and second breaks of the sum of squares of the within
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cluster distances. Beale’s Pseudo-F, suggestedustér solution, whereas either 7 or 21
clusters was suggested by the graphical evaluffiguire 2-3).

The climate regionalization patterns are genesatityilar for the 7 and 21 cluster
solutions (Figure 2-4). The 21-cluster solutiontoags more local characteristics, as indicated
by the larger number, but smaller in size, clustespecially in the lake-modified areas
surrounding the Great Lakes and along the studylaweders. The latter may be a reflection of
“edge effects” on the analysis, in spite of the ofselimate stations outside of the UGLR in the
cluster analysis. The 7-cluster solution suggéststhere is greater spatial variability in regiona
climate in Michigan and eastern Wisconsin whereesgwnon-contiguous clusters are evident.
Both solutions suggest a small number of largeathi@imate regions extending from northwest
Minnesota to central Wisconsin. The discussionweétruses on the 7-cluster solution, given
the overall similarity of the solutions and the BéaPseudo-F test result that the 21-cluster
solution is not a statistically significant imprewent over the 7-cluster solution.
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Figure 2-3. Determination of the number of clusteased on graphical evaluation of the slope of
the relationship between the sum of squares ofinviluster distances (SSWCD) and the

number of clusters. The two arrows indicate thed 2l cluster solutions.
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Figure 2-4. The seven (top) and twenty one (boftdoster solutions. The climate regions for
the 7-cluster solution have arbitrarily been assignumbers for reference in the text. For the 21-
cluster solution, each region is assigned a leitbelp readers distinguish between clusters and

more easily identify non-contiguous clusters.

2.3.2. Differences between the climate regions

The differences between the climate regions weaduated through a comparison of the
deviations of the mean monthly precipitation ancimam and minimum temperature for each

climate region from the average calculated acrbsdimate regions, referred to as the UGLR
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average. Starting with precipitation, western Mswta (labeled Cluster 1 in Figure 2-4) is drier
throughout the year compared to the other climagens (Figure 2-5). In contrast, mean
precipitation for Cluster 4 extending from south®btimnesota to south central Wisconsin is
above the UGLR average for almost all months ofy#ea. Wintertime precipitation is higher
compared to other regions in non-contiguous Clasteand 6, both located in Michigan and
eastern Wisconsin, whereas spring and early surpreeipitation is lower than the regional
average. The seasonal variations are largest tmt€l7. Distinct seasonality is evident in the
deviation of mean monthly precipitation for Clust@; 3, and 5. For Cluster 2, a relatively small
non-contiguous region in southwestern Minnesotammaonthly precipitation is below the
UGLR average for all months except May. In contragtositive deviation in autumn
precipitation is evident for Cluster 5, locatedake effect precipitation-influenced regions of
northeastern Minnesota, northern Wisconsin, andUthyger Peninsula of Michigan. For Cluster
3, extending from central Minnesota to central Wrsin, mean monthly precipitation is above
the UGLR average from June to October but belowatge-scale average for the remainder of
the year.

Distinct differences are also seen between clugigeyms of mean monthly maximum
and minimum temperature. Small, non-contiguous t€hua in western Minnesota has a
relatively higher mean maximum temperature comptodde other climate regions, although
minimum temperature is warmer than that of othgrores only in summer. From winter
through early spring, the highest mean minimum &nafures in the study area are found in
Cluster 6 in eastern Wisconsin and Michigan. Clustin northern Wisconsin and Michigan’s
Upper Peninsula has lower maximum and minimum teatpees during most of the year

compared to the other climate regions with the ptioa of winter when temperatures are lower
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in Clusters 1 and 3 found in Minnesota. In Clu3tea lake-modified region, mean maximum
temperature is above the UGLR average from NovetRbbruary but below the large-scale
average for the remainder of the year. This patédfers from that seen for Cluster 6, another
lake-modified region, where monthly mean maximumgeratures are either similar to or
warmer than the UGLR average throughout the yeagr@ge minimum temperatures for Cluster
2 are above the UGLR average for all months, aedyanerally similar to the mean
temperatures observed in Cluster 6. Cluster 4igguenin that mean monthly maximum and

minimum temperature are close to the UGLR aver#gesighout the year.

2.3.3. Changesin climate regionswith time

The application of cluster analysis to the otheretiperiods shows substantial changes in
the climate regions between the early- (1911-1940) mid- (1941-1970) century time periods,
whereas the cluster pattern for the mid-centuryodes similar to that for the late-century
(1971-2000) period (Figure 2-6). Notable differenwath time in the climate regions are found
in the Lower Peninsula of Michigan, which was gredjnto a single contiguous cluster for the
early time period rather than the fragmented namtigoous clusters seen for the later time
periods. Substantial differences are also fourddirmesota. With time the large climate region
seen in western Minnesota in the early time pemébatats westward, whereas in northeastern
Minnesota and northern Wisconsin, the climate mnegjicoalesce during the mid-century time
period into a fairly large region. This larger r@gis separated again during the late-century time
period into two broad regions, one in northeastewh western Wisconsin and the other in

northern Wisconsin.
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Figure 2-5. Deviation of mean monthly precipitat{dop), maximum temperature (Tmax,
center), and minimum temperature (Tmin, bottom)efach climate region from the average for
the study area. The line symbols refer to clusteniver; see Figure 2-4 for location of each
cluster. Climate regions 1, 2, and 3 are displaydte left-hand panels, and climate regions 4,

5, 6, and 7 are shown in the right-hand panels.
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Figure 2-5. (cont'd)
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Figure 2-6 Application of a seven cluster solution for thregipds, 1911-1940 (top), 1941-1970

(middle), and 1971-2000 (bottom).



2.3.4. Assignment of political unitsto climatic regions and selection of representative climate

stations

One of our goals was to link climate observatioiits wther variables required for
climate change impact studies that are availabdifferent spatial scales and aggregation levels.
For this purpose, we assigned counties to climadegmemberships based on the Euclidean
distance between the county centroid and the neclneste station (Figure 2-7). This
assignment offers an alternative to link climat®eimation from a climate station with other

datasets such as economic data which are avadatie county level.

Climate Region

4 [ s

7

Figure 2-7. Assignment of counties in the studydceclimate clusters.

Furthermore, as discussed in the introduction,yanketivation of the climate
regionalization was to assist in selecting a smathber of representative climate stations for a
climate impact assessment. For this example, timmate stations were selected for each cluster
that was contiguous in space, and one station glasted in each of the separate areas for those
climate clusters that are non-contiguous, withgmezice given to stations that were close to the

midpoints of each region (Figure 2-8). The undedyconsideration in our choice of
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representative stations was uniform spatial coveeagoss the study area; however, the number
of representative stations per cluster and coraiides in their selection should be influenced by

the intended application.

Figure 2-8. The representative climate stationscset! for each climate cluster.

2.4. Discussion

In the discussion below, we consider several isselaged to the application of the
procedures described above; namely, consideratibes interpreting climate regions and
boundaries, the interpretation of non-contiguousate regions, fluctuations in climate regions

with time, and potential contributions of the prepd methods for climate change studies.

24.1. Interpretation of climate regions and boundaries

For any application, care must be taken to not ouverpret objectively-defined climate
regions and boundaries. Although the combinedaggtr of PCA and hierarchical and non-
hierarchical clustering used here has been widalyi@yed in previous regionalizations (e.g.,

Gong and Richman, 1995; Stooksbury and MichaeB11®/inkler, 1992), alternative
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classification approaches exist and may resultfferthg results particularly if the clusters are
not well nucleated (Everitt, 1980). Additionallg\veral previous analyses (e.g. Alijani et al.,
2008; Briggs and Lemin Jr, 1992; DeGaetano, 1986¢ltombined methods for summarizing
climate observations, such as PCA, with spati@rpulation techniques to define climate
boundaries rather than delineating boundaries bais@tlister membership as was used here.
Whatever the method used, the ensuing regionadizatill be influenced by the initial density
of the climate stations, and users must take tidgsaccount for any application. A relatively
coarse station network was employed for the UGLdRorealization presented here. This was a
reasonable choice given that an intended initipliegtion is an assessment of climate impacts
on corn and soybean production; both crops aredbragown across the region. Other
applications may require that a denser networKiofate observations is used. Euclidian
allocation within ArcGIS is a unique approach fetideating climate region boundaries and
provides a convenient means for visualizing clingataups. However, it does not take into
account abrupt climate gradients such as thoseadabe areas of complex terrain and that are
not captured by the climate station density. Alatine means of delineating cluster boundaries

should be considered in these situations.

2.4.2. Non-contiguous climate regions

Several of the UGLR climate regions shown abovenatespatially contiguous. Similar
segmentation of climate regions was found in easliedies that grouped climate stations in the
southeastern United States (Stooksbury and Micha@®l ), the state of Maine in the United
States (Briggs and Lemin Jr, 1992), central antkeadlorth America (Gong and Richman,
1995), and the northeastern United States (DeGaei&96). Several previous authors have

considered non-contiguous climate regions an attdhaggregation error or observation biases,
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under the assumption that near objects should $taweger correlations than distant objects.
Although k-mean clustering is generally considdvetter in retaining spatial coherency than
hierarchical clustering (Gong and Richman, 1999)jtti¢ld et al. (2002) proposed that k-means
clustering results are sensitive to the temporgtegpation level of the climate variables and
found that decreasing the temporal aggregatioreasad, particularly for precipitation, the
proportion of near climate stations that were @testl into the same climate group. Assignment
of geographically-close climate stations into diiet climate regions may also be due to
differences in local site characteristics (e.gpasure) or observational biases (e.g., time of
observation bias) (Briggs and Lemin Jr, 1992). kndther hand, several authors have argued
that spatial contiguity is not a requirement fagating climatologically homogeneous regions
(e.g., Fovell and Fovell, 1993) and found that bgalimate stations may exhibit different
precipitation or temperature patterns (Mtll., 2000). Furthermore, regional climatic
conditions are generally controlled by three bé&sicings, i.e., latitude, elevation or topography,
and distance to water bodies (e.g. DeGaetano, F®ket al., 2008), and non-contiguous
climate regions can reflect spatial variationshiese forces.

For the UGLR climate regionalization, we did natd® the solution into coterminous
regions in contrast to several earlier regionailiret (e.g. Stooksbury and Michaels, 1991; Yeh
et al., 2000), but rather allowed for the segmentatioaliofiate regions. One consideration in
this decision was our use of climate observatioosfthe USHCNer. 2.0 database in the
regionalization. Most of the USHCN stations areated in rural areas, and the monthly mean
maximum and minimum temperatures (but not predipitq are adjusted for time of observation
bias (Menneet al., 2009). Although this dataset is still imperfats,use does reduce the

contribution of observational bias to the segmémadf climate regions. The primary
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consideration, however, was that most of the nariigoous climate regions appeared along the
lake-modified zones of Michigan and eastern Wispoage likely due to the influence of the
lakes on local climate. Similar segmentation ainelie groups located along lake zones was

observed by DeGaetano (1996) in a climate regipa@din for the northeastern United States.

2.4.3. Temporal changesin regionalization patterns

An interesting finding was the substantial charigake climate regionalization between
the 1911-1940 and 1941-1970 periods. Differencdla extent and location of the climate
regions were more modest between 1941-1970 and2@JQ These changes may in part result
from heterogeneities in the time series of tempeeaaind precipitation observations.
Alternatively, the changes in the climate regiaration may reflect spatial differences in
climatic trends. In this case, the spatial distidns of climate groups may be useful for
detecting climate change in the region (Jacob6itp? and can provide an alternative to
traditional trend analysis at individual statioRse{keet al., 2000). Considerable further
analysis is needed to better understand the reésbmsd the differences in regionalization
between the three time periods for the UGLR. Wapsat, however, that these changes are
partly due to climatic trends. The UGLR lies & tiorthern edge of the Midwest “warming
hole” (Kunkelet al., 2006), with a cooling trend reported in southgortion of the UGLR and a
warming trend in the northern portion (Strode, 200Bhese differences in trends may contribute

to the observed changes with time in the climaistefs.

2.4.4. Potential contributions of climate regionalization to impact studies

One advantage of objective regionalization techesqg that they avoid the use of

political boundaries to define climate regions sastwhat is done for National Weather Service
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(NWS) climate divisions (Guttman and Quayle, 19%8)hough frequently used, NWS climate
divisions may not be relevant for summarizing regicclimate conditions (DeGaetano, 2001)
for climate impact studies. In fact, Guttman andi@de (1996) acknowledge that climate
division boundaries, which are delineated basedraimage basins in the western states and crop
reporting districts that generally overlap with nbuboundaries in the eastern states, often do
not have a direct relation to climate. Heterogesedimate conditions may exist within climatic
divisions that can cause difficulties when usingieke data from the divisions for climate
applications (Rheet al., 2008). Additionally, objective climate regionation provides more
flexibility compared to pre-defined climate regiahgch as the NWS climate divisions, as
climate regions can be defined in terms of the &lervariables of interest to a specific
application. Although, the climate variables emgldyor the UGLR regionalization shown here
are commonly-used mean monthly temperature andpson, climate regions can be defined
based on any number of derived parameters suchaagbcumulation units, the frequency of
days above or below threshold temperatures, ptatign rates, or the timing of critical events
(e.g., date of spring freeze). For example, Shifket0) included the ratio of monthly-to-annual
precipitation to identify regions with similar aradwcycles of precipitation occurrence in the
western United States.

A primary contribution of regionalization approashe climate impact studies is that
they can provide an understanding of what climgbe is presented by an individual station
(Pielkeet al., 2002). Thus, they are useful in selecting thelmer and location of climate
stations to include in an impact assessment anqdtbeinsure that regional climate variations
across the study area are captured. The seledtatirnited number of representative climate

stations is helpful for reducing the workload pm&pg the inputs needed for climate change

33



assessments including the development of fine-stiat@te scenarios. Additionally, a climate
regionalization can assist in the evaluation ofaegl climate model (RCM) simulations such
that the RCM performance is evaluated for the diffie climate types within a study area. The
selection of representative stations can alsotaadise formulation of bias correction functions
that are commonly applied to RCM outputs (e.g.jrigjton et al., 2008a) before they are used
for climate applications. Formulating bias correns for all stations within a region is time
consuming, and, depending on the RCM grid resalyttbmate observations are usually not
available for all RCM grid cells. In this situatioRCM grid cells can be related to a climate
group so that the bias correction developed farghaup (i.e., for a representative station of the
group) can be applied to those cells for which atenobservations do not exist.

As demonstrated above, climate regionalizationatao be used to help link different
datasets that are required for climate change steseds but that have varying spatial resolutions
and aggregation levels. The linkage can be perfdioysoverlying the climate regionalization
with the aggregated data, for example county-legelo-economic information, or by assigning
the nearest climate group to an aggregation usidyan Euclidian distance or some other
measure. Using the first approach, a particularegggion unit may overlap two or more climate
groups. The second approach, which was choseimsisttidy, is useful to uniquely link the
aggregated information to a climate region. Forapplication above, we focused on linking
information at the United States county-level te tlimate regions. Rhet al. (2008) also
suggest the use of a county as an aggregatiomecatuse county-level analysis is very useful
for planning and management strategies and mamgelat particularly economic data .that are

useful for decision making, are available at thigl.

34



2.5. Conclusions

This study attempted to demonstrate, employindJjger Great Lakes region (UGLR)
of the United States as an example, the usefubfedsnate regionalization for impact
assessments, specifically for the selection ofesgmtative climate stations for a region and to
assign those stations to different aggregationideldsing a combination of principal
components analysis and clustering methods, theRJ@hcompassing Michigan, Wisconsin
and Minnesota, was grouped into seven climate nsgi@sed on average monthly precipitation
and maximum and minimum temperature. The seveterlgslution is able to distinguish spatial
variability of climatic conditions over the studsea, as indicated by the different annual
variations of the climate variables for each clugkeiclidian allocation, which is readily
available in the widely used ArcGIS software, wagptyed to define cluster boundaries.

Application of the regionalization procedures teethdifferent 30-year time periods
indicates that the greatest changes in the disioibwof the climate types occurred between the
early (1911-1940) and mid (1941-1970) century, duad the climate patterns were relatively
similar for the mid and late (1971-2000) centufhis alteration of cluster memberships can be
employed to provide insights into regional climak&nge.

The climate regionalization for the late centurgdiperiod was used to select
representative climate stations for future analgsid to link the climate observations with
county-level aggregated datasets. The value oftseiethe representative stations based on a
climate regionalization is that the number of clienatations needed for the assessment, is
substantially reduced, but at the same time theadpariability in climate is represented in the
analysis. The results of this study are usefutfionate change studies within the ULGR region,

and the methods are applicable for other regions.
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CHAPTER 3.
Traditional versus Modern Approaches of Estimating Daily Solar Radiation for Input to

Crop Process Models

In collaboration with

Julie A. Winkler and Jeffrey A. Andresen

3.1 | ntroduction

Crop simulation models are useful for estimatingpdoiophysical processes under
different environmental conditions, including clitearariability and change, as well as
simulating the potential impacts of changes inadtural management practices on yields.
Daily solar radiation, which is used in conjunctigith precipitation and air temperature, is
considered a critical input to crop models forraating evapotranspiration, water stress, plant
biomass production, and yield (Hoogenboom, 2000ed@t al., 2003). However, the availability
of solar radiation observations is a major conderrcrop model applications, as this variable is
infrequently measured compared to temperature egapitation (Liu and Scott, 2001).

In the United States, solar radiation measurenmaetsiot included in the observations
taken by the two primary nationial situ observing networks (i.e., the Automated Surface
Observing System (ASOS) and the Cooperative Obs@&nagram (COOP)). Solar radiation is
observed by the recently-established Climate Reteré&letwork (CRN). However, in addition
to the short period in operation, this network ¢stssof only 114 stations (Leduc et al., 2009),

most of which are located outside of primary adtical regions. Additional radiation
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measurements are taken by specialized networkis,agithose maintained by universities and
agricultural extension services, but coverage rsumaform and quality control standards vary.
To illustrate the dearth of radiation measuremantle United States, Wilcox et al. (2007)
reported that of about 1445 meteorological statemehived in the National Solar Radiation
Database (NSRDB), only 40 stations measured sathation. The coarse spatial resolution of
daily solar radiation observations (when availaideglso a concern as estimating radiation from
surrounding, but often distant, stations may noafyeropriate (e.g., Hunt et al., 1998; Rivington
et al., 2006).

Given these challenges, a number of alternativecagpes have been developed to
estimate daily solar radiation at a location. Ingyal, daily solar radiation has been estimated
using stochastic, mechanistic, or empirical meth@ighese, stochastic methods have been
employed more frequently, especially for assesssnaintlimate impacts on crop production
(e.g.,Apipattanavis et al., 2010; Kilsby et al.0ZPand possible adaptation options (e.g., Luo et
al., 2009; Meza and Silva, 2009). Stochastic methindude the use of weather generators such
as WGEN (Richardson and Wright, 1984) and SIMMET(E@ng et al., 1986) to generate
multiple daily time series. The stochastically-gexied series attempt to mimic the statistical
characteristics of a long-term time series of s@dration at a particular site (Garcia and
Hoogenboom, 2005; Woli and Paz, 2012) rather tharvalue for a particular day. Typically,
the estimated daily solar radiation total is seldegandomly from a distribution conditioned on a
sequence of wet and dry days. The representatitrealay-to-day interrelationships between
solar radiation and observed values of other weatiéables (e.g. temperature) is a concern,
particularly as preserving the interactions amaegther variables is important for crop models

(Rivington et al., 2005).
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In contrast, mechanistic and empirical approaghesgide greater synchrony between
estimated daily solar radiation and observed dailyes of other weather variables. Mechanistic

models predict site-specific daily incoming soladiation (S) from daily extra-terrestrial
radiation () at a location and other observations for thatslagh as sunshine duration (e.g.,

Yang et al., 2006), temperature (Bristow and Carthpb@34; Weiss et al., 2001) and/or a

combination of temperature and precipitation (Hetrdl., 1998; Thornton et al., 2000; Thornton
and Running, 1999).Ss calculated based on latitude, day of year rsoigle and solar

constant (Hunt et al., 1998; Liu and Scott, 20@k).the other hand, empirical models use
regression techniques to estimate solar radiatiad@ation from daily weather variables, such
as precipitation and temperature (e.g., Ball e28l04). Ideally, mechanistic and empirical
models should be parameterized for an individueation, which limits their application for
locations without solar radiation observations @t and Savage, 2008). Liu and Scott (2001)
argue that these models can be applied to locatithsa similar regional climate as the site for
which the models were initially developed, but difg “similar” climates can be challenging
particularly for areas with large topographic vaaas.

As the different methods for estimating solar radracan introduce biases that may
significantly impact the outcomes of crop modelsiiNebel, 1994; Weiss et al., 2001), a number
of previous studies have evaluated the sensitofirop model simulations to generated solar
radiation from weather generators (e.g., Cooterlmakhwa, 1996; Garcia et al., 2008) and
mechanistic models (e.g., Abraha and Savage, Z008a et al., 2007). Cooter and Dhakhwa
(1996) found that interannual variability of crojelds is relatively sensitive to different sources
of generated solar radiation, even though the-tengm average of crop yield is not. In line with

this finding, concern has been raised on utiliziegerated solar radiation when forecasting
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seasonal yields (Trnka et al., 2007). The sensitofi crop model outputs (e.g.,
evapotranspiration and total biomass) to genenseslis observed solar radiation also appears
to vary from location to location (Abraha and Saxa2008). Although generated solar radiation
is still considered by many researchers to be laleviaption for crop model applications when
observed solar radiation is unavailable (Cooter@hdakhwa, 1996; Garcia et al., 2008), further
research is needed to explore other possible soofataily solar radiation and evaluate
associated potential biases.

Recently available alternative sources of dailyschdiation time series include
“reanalysis” datasets that blend output from atrhesic models with observations, simulations
from regional climate models, and satellite estiaret. Two potential sources of daily solar
radiation estimates for North America are the inale (32 km) North American Regional
Reanalysis (NARR) datasets (Mesinger et al., 200@)ilable from 1979 to present, and the 50
km resolution regional climate model simulatiorsnfirthe North American Regional Climate
Change Assessment Program (NARCCAP) (Mearns 2G9), available for 1979-2004.
Additionally, the National Aeronautical and Spaagency (NASA) Prediction of Worldwide
Energy Resource (POWER) database (Stackhouse,,2@00i6h was developed with agricultural
uses in mind, provides daily averaged values df dailar radiation at a spatial resolution of one
degree latitude/longitude for the period 1983 tespnt based on satellite estimations.
Implementation of these alternative datasets fop enodel applications would provide a
substantial advantage over mechanistic or empiaippfoaches as no further model development
or parameterization is required, and, unlike stetibapproaches, the interrelationships with
observed daily weather variables are maintained. NARCCAP simulations have an additional

advantage in that projections of daily solar radrafor a future period (2041-2070) are also
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available, facilitating analyses of potential climahange impacts and adaptation options.
However, in spite of the potential utility of theskernative datasets, only a few studies have
assessed the potential biases in the radiatioma&tsts obtained from the POWER dataset and
their impact on crop simulations (e.g., Bai et2011; White et al., 2008; White et al., 2011b),
and potential biases remain largely unaddressetthéoradiation estimates from NARR and
NARCCAP.

The objectives of this study are to 1) comparespled solar radiation to estimated daily
solar radiation from stochastic, empirical, and haggstic models (traditional approaches), and
the POWER, NARR, and NARCCAP datasets (modernagmgbhes), and 2) assess the
sensitivity of simulated grain yield of maize amylsean to the different sources of daily solar
radiation inputs. The inclusion of the NARR and RBCAP gridded datasets distinguishes this
study from recent work that investigated the impadtsolar radiation estimates obtained from
stochastic, mechanistic and empirical models (Algraha and Savage, 2008; Garcia et al.,
2008) and satellite estimates (e.g., Bai et all120Vhite et al., 2011b) on crop model
applications. The analysis was performed for Hakgc@éisconsin, located within an agricultural
region in the Upper Great Lakes region of the Uhi¢ates. Maize and soybean were selected
because they are the two most widely grown croplanegion (Hatfield, 2012) and more
importantly represent the two major crop types, elgn€4 (maize) and G3oybean) plants.
Each type has different light saturation threshaldd photosynthesis mechanisms which can

cause them to response differently to solar raahadis discussed by Garcia et al. (2008).
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3.2. Materialsand Methods

3.2.1. Climate Observations and Study Period

Daily solar radiation observations for the evaloatdf the different radiation estimates
along with the temperature and precipitation meaments used as input to the stochastic,
empirical and mechanistic models were obtained filmer\Wisconsin Automated Weather
Network (WAWN) station at Hancock, Wisconsin (Figu8-1). This station was selected
because of its 1) relatively long period of rec(tfl85 to present) and 2) geographic proximity
to a station (Necedah, Wisconsin) within the ClienBeference Network (CRN). Observations
from the CRN station were used to evaluate theityuaf the solar radiation measurements at
Hancock, assuming that little difference shouldstii the radiation time series given the similar
elevation and climate of the two locations. Thaadily of the means of the radiation time series
was assessed for the overlapping period of 1 Oct2®@4 to 31 December 2010 using both
unpaired t-tests (assuming unequal variance) amedotests. The two-sample F-test was used
to test for equality of variances, and Pearsonfsetation coefficient was calculated to measure
the association between the radiation observatbtize two stations. Means and variances of
the solar radiation time series were not signifiadifferent at the 95% probability level and the
two time series were highly (0.97) correlated. Ehasalyses suggest that the solar radiation
observations recorded at the Hancock WAWN statrercansistent with those from the CRN
reference station.

The study period was constrained by the periodveflap for the different radiation
estimates and observations from 1985 to 2000. tnfately, there were numerous missing
observations for the Hancock WAWN station priod889 so that we further evaluated data

availability from 1990-2000. Within this period]arge number of missing observations
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occurred at the Hancock WAWN in 1991, 1999 and 2010 184, 100, and 84 missing days,
respectively, when at least one climate variab&, (radiation, temperature, precipitation) was
missing. These years were removed, and, as a,reslyt1990 and 1992-1998 were included in
the analysis for a total of eight years. Althouglatively short, an eight-year period was also
used in a recent evaluation of the performancewéil mechanistic models and a variation of

WGEN to estimate daily solar radiation for the $maistern United States (Woli and Paz, 2012).
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Figure 3-1. Location of the Hancock WAWN statiordanf the Necedah CRN station used to
evaluate the quality of the solar radiation timeeseat Hancock. The additional CRN climate
stations in Michigan and Minnesota were used feersitivity analysis of the coefficients of the

mechanistic and empirical models.

43



The limited number of missing precipitation and pemature observations that occurred

in 1990 and 1992-1998 were filled in with observas from the United States Historical

Climate Network (USHCN) Hancock station (Mennelet2009). The missing daily solar
radiation observations were filled in with dailyesgges of the non-missing observations. For the
development of the empirical and mechanistic mgaeé&sasurements for the eight-year study
period were divided two groups. Data from 1990,2,9%994, and 1997 were used for model
calibration, and the remaining data were savedniadel validation. Four additional CRN

climate stations (Goodridge, Minnesota; Sandstbhenesota; Chatham, Michigan; Gaylord,
Michigan) were employed to evaluate the sensitioftyhe coefficients of the mechanistic and

empirical models.

3.2.2. Daily Solar Radiation Estimates

Daily solar radiation is defined here as théydaiean downward shortwave radiation
flux. Estimated daily solar radiation was obtairfieni six different sources, namely a stochastic
weather generator, a mechanistic model, an empeaquzation, POWER, NARR, and

NARCCAP. All daily solar radiation estimates weaneerted to mega-joule per meter squared

(MJ m'2 day'l) for comparison and for input to the crop simwaatmodel.

(@)  Stochastic Generation

Solar radiation was stochastically generated usingather data management program
included in DSSAT called “Weatherman” (Pickeringaét 1994). As noted by Mavromatis and
Hansen (2001), Weatherman is a variant of the lwedlwn WGEN (Richardson and Wright,
1984) weather generator. In Weatherman, all unoigylgnodel parameters are estimated on a

monthly basis. Daily values of the model paramedeescalculated internally using linear
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interpolation to preserve the monthly means. Thpnadvance over WGEN is that
Weatherman replaces coefficients of variation wittindard deviations to stabilize model
estimations when temperatures are close to zemuSdgMavromatis and Hansen, 2001). Solar
radiation is generated separately for wet and dgsdMavromatis and Hansen, 2001; Soltani
and Hoogenboom, 2003or this analysis, Weatherman was parameterizex) udiserved
precipitation and maximum and minimum temperataia drom the Hancock station for the 8-
year analysis period. Observed daily solar radiatvas not included in the parameterization, as
our intent is to evaluate the sensitivity of cropdals to generated solar radiation when observed
daily solar radiation is unavailable for a locatittsing the parameterized Weatherman, we
generated daily series of precipitation, maximum gxnimum temperature, and solar radiation.
However, only the generated solar radiation wad usé¢he following analyses; daily
temperature and precipitation for input to the goopcess models were obtained directly from

the Hancock observations, following (e.g., Andreseal., 2001; Carbone et al., 2003).

(b)  Empirical Model
The regression equation developed by Ball et 8042 to estimate daily incoming solar
radiation at Keiser, Arkansas, United States, waalibrated for the Hancock station. The Ball

et al. model employs a General Linear Model infdren:

Re = Bo + BiX1+ BoXo + B3Xz +...+ B1aXq0 Eq. 3-1
where, R is daily solar radiation (MJ 'r%day'l); Bo andpy . qpare intercept and
regression coefficients, respectivelyj &hd Xg are precipitation (mm) and precipitatisgquared;

X2 and Xg are maximum temperatur%q) and maximum temperature squareg;axd X are

- 0 -
minimum temperature C) and minimum temperature squared;axd Xgare day of year and
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day of year squared. The interaction terms aj€pXecipitation x minimum temperature); X

(maximum temperature x minimum temperature); ¥precipitation x maximum temperature)

and Xq2 (maximum temperature x day of year). Comparidath® radiation estimates when the

model developed for the calibration period (19992, 1994, 1997) was applied to the
validation period (1993, 1995, 1996, 1998) indidateat model performed similarly for both
periods (correlations between simulated and obdettady radiation of 0.87 and 0.89 for the
calibration and validation periods, respectively).

The transferability of the empirical model was asgel by applying the model to
estimate daily solar radiation at other CRN clinstegions within the states of Michigan and
Wisconsin (Figure 3-1) and comparing the estimadeithtion values with observations. The
time periods for which precipitation, temperatunel @olar radiation observations are available
vary for each location (Table 3-1). Days with nmgsobservations were excluded from the

sensitivity analysis.

(c) Mechanistic Model
A number of mathematical models, which we labektras “mechanistic models”, have

been developed to estimate solar radiation baseleofnaction of extraterrestrial radiation}S

reaching to the ground. This fraction is estimated function of the atmospheric transmissivity
(Ball et al., 2004; Donatelli et al., 2003; Spittet al., 1986), which can be modeled based on
temperature and precipitation (Liu and Scott, 20Qf)the numerous mechanistic models
available (e.g., Bristow and Campbell, 1984; Hurdle 1998; Thornton et al., 2000; Thornton

and Running, 1999), those that utilize a combimatibprecipitation and temperature as inputs
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generally are considered to be preferable to thes® only temperature or only precipitation
(Hunt et al., 1998; Liu and Scott, 2001; Woli arazP2012).

For this study, the Hunt et al. (1998) radiationd@lovas used to estimate daily solar
radiation at the Hancock WAWN station. This modakvehosen as it was developed for
Ontario, Canada, which has a relatively similamelie to our study location. Daily solar

radiation was estimated by:

— _+ 105 2
S=apSg(tmax ~tmin) ~ t&tmax taP+azP" +ay Eq.3-2
where S is daily solar radiation (Mizrrﬁajl); a0, a1, &, ag, &y are the coefficients; , ;o3s the
daily extraterrestrial solar radiation (szmiajl), tmax and fyin are maximum and minimum

daily temperatureSOC); and P is daily precipitation (mm). The modetsigquations previously

defined by Spitters et al. (1986) to estimate dsdlar radiation at the top of atmospherg (S

So = Sg:[1+ 0033cos @60y /369]sinS Eq.3-3

where, § is extra-terrestrial irradiance (J 2m;'l); Sscis the solar constant 1370 Fs?, the
cosine term is the yearly course of the distantedxn the earth and sun expressed in degrees,
tq is the day since 1 January, and [sithe sine of the elevation of the sun above thiezbi, is
defined as:

sinB =sinAsind + cosA cosd cosLY(t, —12)] Eq.3-4

where, is latitude of the siteptis hour of the day (solar time), addis the solar declination for

the day of year, measured in degrees and estirbgted

sind = —sin(2345) cos360(ty +10)/365 Eqg.3-5
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The daily value of &is calculated by integrating the extra-terresiri@diance from sunrise till

sunset:

D =12+ (24 A80 arcsin(taml —tand) Eq.3-6

where, D is day length.

The Hunt model performed equally well for both tadibration and validation periods with
correlations between simulated and observed satdation of 0.87 for the calibration period and
0.89 for the validation period. As for the empitioaodel, the mechanistic model parameterized
for Hancock was applied to estimate daily solarat@oh at the other CRN stations (Table 3-1) to

assess the sensitivity and transferability of tlueleh to other locations within the study region.

Table 3-1. Geographic location and analysis peioodhe CRN stations located in the states of

Michigan and Minnesota

Station State Latitude Longitude ElevatioReriod of Analysis Distancet:)

Chatham Ml 46.33 -86.92 267 m 11/10/2004-12/31/2010 320 km
Gaylord Ml 44.91 -84.72 441 m 09/19/2007-12/31/2010 392 km
Goodridge MN  48.31 -95.87 351 m 08/20/2003-12/31/2010 675 km
Sandstone MN  46.11 -92.99 354 m 06/22/2007-12/31/2010 351 km

bDistan(:e from to the Hancock station.

(d POWER

As noted above, satellite estimates of surfacenniog solar radiation were obtained
from the NASA POWER database (Stackhouse, 2006)ladole at http://power.larc.nasa.gov/.
Daily solar radiation in this database was infémsing the Pinker and Laszlo (1992) radiative
transfer model in conjunction with water vapor amsurom the Goddard Earth Observing

System Data Assimilation System version 4 (NASALDOMeasurements from the
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International Satellite Cloud Climatology and paetens from the NASA/Global Energy and
Water Cycle Experiment were used as inputs todbative transfer model. Please refer to the
methodological summary provided by NASA (2011)rdoore detailed information on the
derivation of the radiation estimates. The dadlsies of incoming radiation was extracted from

the POWER archive for thé latitude/longitude grid point nearest the Hancstzkion.

(6 NARR and NARCCAP

The NARR dataset was obtained from the NOAA Eaytst&ns Laboratory
(http://www.esrl.noaa.gov/psd/). Three-hourly valweé downward solar radiation flux were
extracted for the NARR grid point closest to thenetack WAWN station and then averaged to
estimate daily solar radiation. The daily averagege calculated based on local time, using the
3-hourly values from 0900 UTC of the current dap&0 UTC of the next day.

The NARCCAP dataset was accessed through the Egstem Grid gateway at the National
Center for Atmospheric Research (http://www.earsteygrid.org/home.htm). NARCCAP
simulations from four regional climate models -- @R (Canadian Regional Climate Model),
ECP2 Experimental Climate Prediction Center/Regional Spectral Model), HRM3 (Hadley

Regional Model 3), and WRFG (Veather Research & Forecasting Model) -- were included in
the analysis. All simulations employed coarse-scalﬁo X 2.50) NCEP/NCAR reanalysis fields

(Kalnay et al., 1996) as lateral boundary condgioRor each model, the eight 3-hourly values
of surface downwelling shortwave radiation from 04I500 UTC were averaged for the grid

point closest to Hancock to obtain estimates diydailar radiation.
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3.2.3. Crop Yield Simulations

Decision Support System for Agrotechnology TranfE8SAT) version 4.5 was used to
simulate grain yields of maize and soybean at thieddck site. DSSAT is a compilation of
simulation programs that model biophysical intamatt among weather, soil, crops and farming
management (Jones et al., 2003). The programs allawpping system to respond dynamically
to changes in plant biology, farming managementeandronment. DSSAT has been widely
used around the world to explore the consequerfaasvironmental changes and differing
farming practices on crop growth and developmeugt (élartkamp et al., 2004; O'Neal et al.,
2005; Thorp et al., 2008; Vucetic, 2011). This dation package also has been applied to
specifically assess the effects of generated sathation on crop evapotranspiration and yields
(e.g., Garcia et al., 2008). DSSAT's capabilitiad performances have been widely reviewed
(e.g., Mera et al., 2006; Southworth et al., 2@&;thworth et al., 2000).

Two modules of the DSSAT package, CROPGRO-SoybediC&ERES-Maize, were
used in this study. Each module uniquely calculdtesconversion of incoming radiation to plant
biomass though different photosynthetic procesdesummarized by Jones et al. (2003), the
CROPGRO module utilizes leaf-level photosynthestsle the CERES family of models
employs radiation use efficiency. Consequently résponse of each module, as reflected in
crop yields, to different sources of solar radiaii® expected to vary.

DSSAT requires that users supply cropping manageopions such as crop variety,
row spacing and planting date. This study geneeadlypted the cropping management options
utilized by Andresen et al. (2001), who investigateeather impacts on maize, soybean, and
alfalfa production in the Upper Great Lakes Redrom 1895 to 1996 (Table 3-2) and common

farming practices applied in the region (Hoeftlet2000). Following Andresen et al., irrigation
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was not used and soil fertility was set as nontlilgi These choices focus the investigation

only on the sensitivity of the crop model outputsolar radiation estimates.

Table 3-2. Farming management for the DSSAT sinuariat

Management Rules Soybean Maize
Plant populations 29 plants per f 8 plants per i
Cultivar Generic Group 2 Short-season cultivar
Q
- Base temperature: &
- Thermal time for juvenile
phenological stages (P1): 200 degree
days
- Thermal time from silking to
maturity (P2): 685 degree days
Planting dates* Automatically after May 1  Automally after May 22
Harvest At physiological maturity

*Determined automatically based on soil temperaiutée top of 10 cre 100C.

Soil information for Hancock was obtained from S8iEATGO database published by
NRCS-USDA (Soil Survey Staff, 2010). Detailed guhlysical properties needed for running
DSSAT were calculated using SBuild, a supportingkpge designed to create or modify soill
information to meet DSSAT requirements (Uryaseal ¢2003). Model simulations for the two
crops were run independently, and no rotation betvibe two crops was permitted. Simulated

grain yields at the time of maturity were savedftother analysis.
3.2.4. Evaluation Methods
Estimated daily solar radiation from the differentirces was compared to observed daily

solar radiation using the coefficient of determiiuat(Rz) and root mean square error (RMSE),

both of which have been widely used in previouslistsi (e.g., Ball et al., 2004; Hunt et al.,

1998; Liu and Scott, 2001). Similar to Rivingtore&t(2005), we also calculated the daily bias
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(b)) between the daily radiation estimates;%ead observations (§paveraged over the study

period:
b =Sg - o Eq.3-7
13 19
Se :EZSeji and So; :HZSoji Eq.3-8
j=1 j=1

where i is day, j is year, and n is the numberezrg. Additionally, the paired t-test assuming
unequal variance was used to test for significéfegrénces in mean daily radiation by month,
and the F-test was used for evaluating equalityaoince by month.

The differences in crop yields obtained from estedaand observed daily solar radiation
as inputs were initially evaluated using scattetgbf the yields for the study period. Following
Garcia et al. (2008), further evaluation was comeldicising the mean squared deviation (MSD)
as defined by Kobayashi and Salam (2000). MSD nspmsed of three parts, namely squared
bias (SB), squared difference between standaratieni(SDSD) and the lack of correlation
weighted by the standard deviation (LCS). Thesesomres were explicitly developed for
comparing output from crop process models and fewer underlying assumptions compared
to commonly-used evaluation methods (KobayashiSaldm, 2000). SD is a traditional measure
of bias, whereas SDSD provides an indication, Ha application, of how well the yield
estimates obtained from estimated daily solar temiaepresent the magnitude of the annual
fluctuations of the yield estimates obtained ugibgerved solar radiation, and LSC provides an
indication of how well the pattern of the annualktuations is captured. The mathematical

forms of MSD, SB, SDSD, and LCS are:
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MSD = SB+ SDSD + LCS Eq.3-9

B = (x-y)? Eq.3-10
DD = (Dx - Dy)? Eq.3-11
LCS = 2(SDx) (Dy)(1-r) Eq.3-12

n p—
SDx = 1Z(xi -x)? Eq.3-13
Ni=1
L —
SDya/;Z(yi - y)? Eq.3-14
i=1

wherex andglare the means of crop yields obtained from the ig¢ee (x) and observed

(y;) daily solar radiation, iis 1, 2, 3 up to thadgh of study period (n), SDx and SDy are the

standard deviations for crop yields simulated ugsigmated and observed solar radiation,
respectively. The MSD analyses were supplementddmore conventional evaluation methods
including paired t-test for equality of means, Btt®r equality of variances, and correlation

analysis.

3.3.  Reaults

3.3.1. Solar Radiation

Daily averages of observed and estimated solaatiadifor the 8-year analysis period
indicate that the radiation estimations captureatingual cycle relatively well (Figure 3-2). The
large degree of day-to-day variability in the obeerdaily means and the estimated values from
some of the radiation sources, particularly duspgng and summer, may partly be a reflection

of the short study period and the highly varialid cover at this time of year.
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Figure 3-2. Daily averages of estimated (black)lsxed observed (grey line) solar radiation at
Hancock-Wisconsin for the 8-year study period fa weather generator (GEN), empirical
(EMP) and mechanistic (MEC) models, POWER, NARR] tie NARCCAP (CRCM, ECP2,

HRM3, and WRFG) regional climate models.

Seasonal variations in daily bias are seen fontaprity of the radiation estimates,
although the biases should be interpreted carefuMgn the short (eight year) study period over
which they were calculated. Solar radiation estav@btained from the weather generator
display substantial positive biases in spring aill but negative biases during summer (Figure
3-3). In contrast, the magnitude of the averaghy déas is relatively small for radiation
estimates obtained from the empirical and mechamsbddels and especially for the POWER
estimates, although, in general, daily bias teadsetpositive in mid to late spring and negative
in summer. Modest positive biases are seen forstladbdays for the radiation estimates

obtained from NARR. For the four NARCCAP models.( CRCM, ECP2, HRM3, and
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WRFG), substantial fluctuations in daily biases@vserved, with particularly large positive
biases found from early spring to late summer,lainto the pattern seen for the weather

generator.
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Figure 3-3. Average daily bias for the solar ridiaestimates. See Fig. 2 for definition of the

abbreviations.

Further evaluation based on RMSE and coefficiertsdérmination (Igl) suggests that

several of the daily solar radiation sources (POWER, the empirical and mechanical models,
and NARR) perform better than the commonly-usedthexaggenerator (Figure 3-4). However,
daily solar radiation from the weather generatoeag better with daily observations than

estimates obtained from the regional climate mqdelh the exception of the CRCM

simulations which have a higher2 RIthough also a higher RMSE. It is important teenthat

while most of the estimation techniques considatéeimpt to preserve day-to-day relationships

between observed and solar radiation, the weatregrgtor instead imitates the statistical
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structure of a long time series of radiation (Apipatt@nat al., 2010; Castellvi and Stockle,
2001; Garcia and Hoogenboom, 2005; White et al., 2011b), anatsriine observed daily totals

only indirectly through sequences of wet and dry days.
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Figure 3-4. Root mean squared error (RMSE) and the cioorelaith observed daily solar

radiation for the solar radiation estimates. See Fig. 2 famitieh of abbreviations.

Mean daily solar radiation by month differs signifidgiritom observed solar radiation
for most radiation sources, based on paired t-testsg¢ BaB). [Note that a 99 percent probability
level was used to assess significance, given the relatiyer number of values and thus the
greater likelihood that small differences in the mearstatstically, but not necessarily
physically, significant.] Some exceptions are the insigaift differences found for
approximately the first half of the year for the empiricadelcand POWER estimates and in the

second half of the year for the mechanistic model. The ladgfésrences in monthly mean daily
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radiation are seen for the NARR and NARCCAP WRF@redes, which exceed 20 percent in
almost all months, whereas the differences arelestgk10 percent for most months) for the
mechanistic and empirical models and the POWER agtign All four of the NARCCAP
models better capture the monthly variance comp@rdétte other radiation sources, as seen in
the insignificant results of the F-test for equadf variance. The variance is particularly poorly
captured by the weather generator and mechanrsdiempirical models.

The mechanistic model parameterized at Hancoclopag well at the CRN locations in

Michigan (Chatham and Gaylord) and Minnesota (Golggrand Sandstone), as indicated by the

relatively high F% (above 0.79) and low RMSE (3.68 to 4.2 M%//aiay), although model

performance is weaker at Chatham compared to tres cations (Figure 3-5). Model
performance not strongly associated with the desdretween the station and the location where

the model was parameterized. For example, Goodnaigieh is located farthest from Hancock

(~675 km), has lower RMSE and highezr\FaIues (i.e., the “best” performance) compareth&o

other stations. On the other hand, the highest REt8Howest &values are found for

Chatham, which is located closest (~320 km) to ldakcValidation of the empirical model

parameterized at Hancock indicates that it alstopeas well at the other four locations. RMSE

and I% range from 4 to 4.6 MJ/%Yday and 0.74 to 0.79, respectively. Model perfarogais

again weakest at Chatham, although the performainGeodridge is relatively poor in contrast

to the mechanistic model which performed well ab@alge (Figure 3-5).
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Table 3-3. Percent difference by month in the maahstandard deviation of daily solar
radiation for the different radiation sources coneplato observed radiation at Hancock,

Wisconsin.

Monthh GEN EMP MEC POWER NARR CRCM ECP2 HRM3 WRFG
Difference in monthly mean daily solar radiation (percent)

Jan 19.0 -3.7 -16 8.0 39.2 -3.7 21.5 -4.9 22.0
Feb 6.1 5.6 -6.5 4.7 30.8 6.2 17.6 -3.8 19.9
Mar 4.1 -22  -6.6 -1.0 20.4 10.1 11.3 -3.0 26.7
Apr 17.0 2.0 6.2 0.9 22.6 14.3 133 101 28.0
May 18.9 29 101 2.4 27.9 10.6 89 108 25.7
Jun 6.3 -5.0 21 -14 21.0 12.3 5.8 165 21.2

Jul 11 -84 -60 -34 19.9 115 3.7 127 21.7
Aug 49 -36 -49 0.3 25.3 16.5 13.8 227 315
Sep 10.9 4.1 -3.3 3.7 29.1 13.0 16.3 195 30.1
Oct 16.8 14.0 -2.3 8.2 33.2 5.1 201 20.7 28.2
Nov 333 213 25 217 54.9 11.4 322 207 43.6
Dec 24.4 -9.5 06 212 55.9 3.0 31.0 134 32.6
Difference in monthly standard deviation of daily solar radiation (percent)
Jan -72.8 9.7 -259 80 -147  13.6 -12.5 127 12.5
Feb -843 -285 -333 4.7 211 144 -13.5 14.0 3.3
Mar -81.8 -344 -347 -1.0 -11.9 135 -10.3 20.0 -1.3
Apr -784 -37.3 -36.2 0.9 -141  -1.6 -155 8.7 -4.2
May -76.3 -344 -36.0 2.4 -13.4 4.0 -10.7 15.8 -5.7
Jun -777 -31.8 -331 -14 -15.0 -4.1 -10.3 -0.5 1.3
Jul -849 -3b1 -388 -34 -16.1 2.7 -6.4 11.0 3.6
Aug -770 -238 -30.0 0.3 -17.5 -6.9 -46 -7.8 -9.8
Sep -774  -205 -339 37 -16.9 -5.7 -9.8 29 -11.3
Oct -73.0 -1.6 -285 82 -11.1 1.1 -83 79 0.2
Nov -78.2 23 -379 217 -147  10.2 -8.1 117 8.8
Dec -584 385 -294 212 213 142 -165 5.9 10.9

**Bolded values indicate significant differencesla¢ 99 percent probability level based
on a paired t-test (assuming unequal variancegdaality of means or a F-test for equality of

variance.
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Figure 3-5. Evaluation of the performance of the ma@cstic (left) and empirical (right) models

parameterized at Hancock when applied to four Genieference Network stations in

Minnesota (Sandstone and Goodrich) and Michigant{@ina and Gaylord) based on root mean

square error (RMSE) and coefficient of determina(l@%)
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3.3.2. CropYieds

Comparison of maize yields simulated using dailgesied and estimated solar radiation
as input to CERES-Maize indicates a close agreebenteen the simulated yields (Figure 3-6).
Small differences exist between the radiation sesjralthough in general the correspondence
between the yields simulated using observed amuh&®d solar radiation is greatest for lower
(less than 4000 kg/ha) yields, whereas at higheddyithe simulated values when using
estimated radiation are somewhat larger than tbbsened using observed radiation for most
(but not all) radiation estimates.

Yield deviations are also small for soybean, altffothe pattern of overestimation and
underestimation varies from that observed for métrgure 3-7). For the three traditional
radiation sources (weather generator, empiricalrmecdhanistic models), soybean yield obtained
using estimated radiation is larger than that oletiusing observed radiation at yields >1000
kg/ha, although close agreement is observed folenygelds. In contrast, yields simulated
using estimated radiation from NARR and three efNNMARCCAP models (CRCM, HRM3,
WRFG) somewhat underestimate the yields simulated bbserved radiation. Good agreement
is observed between the yield simulations usingnaséd and observed radiation when the

POWER and NARCCAP ECP2 sources of daily solar radiaie employed.
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Figure 3-6. Maize yields for the eight-year analymsiod simulated using daily solar radiation
observations and estimates as input to CERES-M@3& and ESR refer to observed and

estimated solar radiation, respectively.
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Figure 3-7. Soybean yields for the eight-year anslgsriod simulated using daily solar

radiation observations and estimates as input tORPBRRO-Soybean. OSR and ESR refer to

observed and estimated solar radiation, respeytivel

For maize yield, mean squared deviation (MSD) is Es&lvhen radiation estimates

obtained from the mechanistic model, weather géoerand NARCCAP EPC2 regional climate
model were used as input to CERES-Maize and lafgesite other three NARCCAP models
(i.e., WRFG, CRCM, HRM3) (Figure 3-8). SeparatiorM8D into its components indicates that
the lack of correlation weighted by the standandaten (LCS) is the largest contributor to the
MSD values for all radiation estimation techniquesg that, with the exception of the maize

yields obtained using the mechanistic model and RA&diation estimates, squared difference
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between standard deviation (SDSD) is the least darior to MSD. Squared bias (SB) of the
simulated maize yields is small for all but twaotloé radiation estimates (i.e., NARCCAP CRCM
and WRFG). The relatively large LCS values sugdedtthe simulated maize yields using the
radiation estimates do not have the same pattevara@ition across the 8-year study period
compared to the simulated yields obtained usingmes radiation as input. In contrast, the low
SDSD values indicate that the magnitude of the ylaltuations is similar whether estimated or
observed solar radiation serves as input to theEE=RIAIZE process model. The small SB
values for most of the radiation estimates sugthedtthe means are similar for the simulated
yields obtained using estimated and observed radiat

The distribution of MSD for soybean yield acrossdiféerent radiation sources is not
consistent with that seen for maize yields (Figu8).3The smallest MSD values are observed
for soybean yields obtained using the POWER aniN#&eCCAP ECP2 and CRCM radiation
estimates, followed by the empirical and mechamisibdels. The largest MSD values are
observed for soybean yields simulated using saldiation from the weather generator and
NARCCAP WRFG model. SDSD provides the least contrisuto MSD for most radiation
estimates, with the exception of the mechanistidehand weather generator, indicating that the
fluctuations in soybean yield across the studyqakaire similar whether estimated or observed
radiation estimates are used as input. Howevemimrast to what was observed for maize yield,
squared bias (SB) is the largest contributor to M&Tall sources of radiation estimates except
for NARCCAP ECP2 for which the contribution from LCSlarger. This finding suggests that
the mean of the soybean yields obtained usingitfexeht sources differs from the mean

soybean yield simulated using observed daily ramhat
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Figure 3-8. Mean squared deviation (MSD), squaresl (88), squared difference between
standard deviation (SDSD) and the lack of correlatieighted by the standard deviation (LCS)
for maize (left) and soybean (right) yield simuthtesing daily solar radiation estimates
compared to yield simulations using radiation obatons. Please note the difference in the

vertical axes for the two plots. See text for deitom of SB, SDSD, LCS, and MSD.
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Paired tests indicate that, for all the radiatioarses, the differences between maize
yields obtained using estimated versus observdy slalar radiation are insignificant (two-tailed
probability of 95%), in line with the interpretati@bove of the small values of the SD
component of the MSD statistic (Table 3-4). Percemations in mean maize yield range from
slightly over 1 percent for the POWER radiationresties to approximately 7 percent for the
NARCCAP WRFG estimates. Similarly, the insignificaesults for the F-test of equality of
variances for all radiation estimates agree withitherpretation of the SDSD component that
the magnitude of the yield fluctuations over thge@u study period is similar. For all radiation
sources, the standard deviation of maize yielceifby less than 10 percent from that obtained
using observed daily solar radiation. On the oliaard, correlations between the simulated
maize yields from estimated and observed radiarerhigh (>0.90) for all radiation sources,
even though the LCS component suggests that thasyael not have the same pattern of
variation across the study period.

For soybean, significant differences in mean yie&labserved for the majority of the
radiation estimates, as was suggested by the leglgdive contribution of SD to the MSD
values. Mean soybean yields obtained using estoadiation as input are similar to those
from observed radiation for only the empirical mpdBOWER, and NARCCAP ECP2 radiation
sources. Deviations in mean yield are largestr(@%epercent) for the weather generator and
NARCAAP WRFG radiation sources, although the sigffer@d with a negative deviation
(underestimation) for NARCCAP WRFG and a positiveiaion (overestimation) for the
weather generator. An interesting finding is @natrage simulated yield using the NARR
radiation estimates is smaller than that obtairsdguobserved radiation, even though, as seen

above, NARR overestimates daily solar radiationthé&ligh the difference in the standard

65



deviation of the simulated soybean yield, when carag to yields obtained using observed
radiation, is larger for the traditional radiatisources (> 15 percent) compared to the modern
radiation sources (< 10 percent, respectively) Rhests indicate that the differences in variance
are insignificant for all sources of estimated a#idn, in agreement with the small SDSD values
seen above. The high correlations suggest thatatiern of variation of the soybean yield

simulations is similar whether observed or estimal&ily solar radiation is used as input.

Table 3-4. Percent difference in the mean and atandeviation of simulated maize and soybean
yields using estimated versus observed daily sal#iation as input, and the correlation between
the yield time series for the study period. Twitethprobabilities are shown in parenthesis for

paired t-test for equality of means and F-tesefquality of variances.

gggrl itelson Maize Soybean
Difference Differencein . . Differencein
in Mean Standard lC;%r(;r? I\D/I';;ir?%e n Standard g’?irc:r?
(%) Deviation (%) Deviation (%)
GEN 2.63 (0.31) -2.29 (0.95) 0.99 15.58 (0.03) 24.37 (0.58) 0.99
EMP 4.37 (0.16) 1.18(0.98) 0.98 7.23(0.10) 15.11(0.72) 0.99
MEC 1.54 (0.56) -8.67 (0.82) 0.99 9.80(0.04) 17.56(0.68) 0.99

POWER 1.12(0.72) 9.39(0.82) 0.99  -0.81(0.54) 1.00(0.98) 0.99
NARR  3.34(0.31) 7.57(0.85) 0.99 -11.78(0.01) -6.66 (0.86) 0.98
CRCM  6.09(0.09) 4.21(0.92) 0.98  -7.32(0.00)* 3.21(0.94) 0.99
ECP2 4.12 (0.09) 5.32(0.90) 099  -4.37(0.16) 2.09 (0.96) 0.99
HRM3  3.33(0.42) 1.69(0.97) 0.97 -12.48(0.01)* -6.82(0.86) 0.98
WRFG  6.73(0.10) 9.55(0.82) 0.98 -17.73(0.00)* -7.28(0.85) 0.98

Note: Bolded values and asterisks indicate sigmificvalues at 95% and 99% probability levels,

respectively.
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3.4. Discussion

The findings presented above suggest consideraléafmal for the use of non-traditional
sources of daily solar radiation estimates foragtiral applications. Although radiation
estimates obtained from traditional mechanistic emgirical models generally agreed well with
observed daily solar radiation based on a severébpnance measures (bias, RMSE, equality of
means), the gridded POWER satellite-based estimatésrmed as well, and, along with the
radiation estimates obtained from the four NARCCA®Ueis, better captured the variance
compared to the traditional measures. The abifithe NARCCAP models to replicate observed
solar radiation was shown to be model dependeht switaller biases seen for ECP2 and CRCM
and considerably larger biases for WRFG and HRMBpabh, collectively, biases were larger
for the NARCCAP models compared to the other ramiiesiources. Depending on the
application, daily radiation estimates obtainedf®dARR need to be used cautiously, as NARR
consistently overestimates daily solar radiati@me concern of the commonly-used weather
generator is the substantially underestimated neei@f daily solar radiation. Afshin and Gerrit
(2003) also found that the WGEN weather generatorvhich Weatherman is based, poorly
simulated the variance of daily solar radiatiord &voli and Paz (2012) warn that the statistical
properties of observed data on a daily time step mah be well represented by WGENR,
another variation of WGEN.

Several of our findings regarding the agreemensbimated and observed radiation are
consistent with those of previous studies. The RS F% values found here for the POWER

radiation estimates for the grid point closestHtancock, Wisconsin, are similar to those
reported for multiple sites in China (Bai et aD12)and across the continental USA (White et

al., 2011b), suggesting that the POWER gridded daias promising source of daily solar
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radiation for multiple midlatitude locations. Prews work which validated NARR fields with
ground observations for locations across North AcagfMarkovic et al., 2009), within the
Mississippi River Basin (Kumar and Merwade, 20Hhd over the Pacific Northwest (Schroeder
et al., 2009), also found that NARR tended to ostmeate daily solar radiation. As discussed by
Schroeder et al. (2009) and Markovic et al. (20093, overestimation is likely due to the
underestimation of cloud cover in the NARR atmosgh@odel component (i.e., the NCEP Eta
model). Tarasova et al. (2006), who evaluated gropmance of the solar radiation scheme
employed in the Eta model, reported a systemadis ini solar radiation estimates due to
inaccuracies in cloud parameterization. The ramhatstimates obtained from the NARCCAP
regional climate models also display positive béafee most months of the year. One possible
explanation is error in cloud cover within the NC#PBbal reanalysis (Kalnay et al., 1996;
Kanamitsu et al., 2002) used as the lateral boyndarditions for the NARCCAP models, and
that these errors may propagate to the regiormabtd model simulations. A tendency for
regional climate models to overestimate incomingrs@diation was also found by Rivington et
al. (2008b), who validated the output of the Hadlsntre’s HadRM3 for multiple sites in the
United Kingdom, although they attributed the systémbias to the underestimation of cloud
cover within the regional model itself (Rivingtohas., 2008Db).

Although our findings indicate that mechanistic @mapirical models continue to be
viable estimation options of daily solar radiaticoncern remains regarding the transferability of
the model coefficients. The sensitivity analysisgented here indicates that the model
coefficients developed for Hancock, Wisconsin, perfed well across the Upper Great Lakes
region. Unlike Hunt et al. (1998), who reportedttthe applicability of mechanistic model

coefficients depends on the distance from the i&lidn station, our results suggest that local
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climate variations are more important than distanaetermining the transferability of the
model coefficients. For example, the mechanisticemgirical models performed poorest at
Chatham, which experiences lake effect modificatiom both Lake Superior and Lake
Michigan (Andresen and Winkler, 2009). In line withr findings, Liu and Scott (2001)
recommended that models calibrated at a spec#tmstcan be used at other locations with a
similar climate regardless of distance, in conttagtiunt et al. (1998) who specified an upper-
limit (~390 km) from the calibration station wheriegting solar radiation. The greater site
sensitivity shown here of the coefficients of timep&rical model compared to the mechanistic
model suggests that the global solar radiation &sra function of latitude in the mechanistic
model provides considerable stability and trangiditg to mechanistic models.

The primary goal of this research was to evaluateuse of different radiation estimates
in crop process models, and our findings suggestatop-specific differences exist. Maize
yield obtained from the CERES-Maize simulationdwéstimated solar radiation as the input did
not differ significantly from yield obtained usimdpserved solar radiation as input, regardless of
the source of the estimated radiation. In contsaghificant differences were found in soybean
yield for the majority of the radiation sources. Boe non-traditional sources, only the simulated
soybean yields from the POWER and NARCCAP ECP2 dadyation estimates were in good
agreement with the yields obtained using obseradation. It is interesting to note that
although the POWER satellite-derived estimates agnesl with observations throughout most
the growing season, the ECP2 estimates replicatedidberved radiation well only during June
and July, suggesting that the timing of the biasasaffect simulated soybean yield. More
difficult to explain is that simulated yield obtaith from the other gridded datasets (NARR and

the remaining NARCCAP models) was significantly derahan yield obtained using observed
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radiation, in spite of the positive bias in theigdidn estimates. This may partly be explained by
the relatively lower levels of light saturation 168 crops. Net photosynthetic rate for C3
species increases with increasing light intengitly at low values of radiation, whereas for C4
crops it tends to increase at higher levels oftligtensity (Garcia et al., 2008). Another
potential explanation is that the larger posititeshn the radiation estimates led to water stress
as increasing solar radiation can trigger greatsp evapotranspiration (Brown and Rosenberg,
1997). Higher levels of solar radiation can alswease the temperature of the plant canopy
which in turn results in greater water demand fopdranspiration (Payero and Irmak, 2006).
A limitation of this study and all previous worksthe small number of crop types and
geographical locations included in the analysiseWbur findings are placed in the context of
previous studies, potential differences by crogtsipe highlighted. For example, Garcia et al.
(2008) found for nine rainfed agricultural locatsoim Georgia that the substitution of
stochastically-generated solar radiation estimiaiesbserved radiation did not have a
significant impact on simulated maize yield, simtiawhat we found for maize yield at
Hancock, Wisconsin. On the other hand, Garcid €2@08) also found that differences in
simulated yield for peanut, the representative ©p i their study, were insignificant. In
contrast, simulated yield for soybean, the repriede C3 crop for this study, differed
significantly when stochastically-generated radiativas substituted for observed radiation.
When our findings are compared to previous analifsstsemployed radiation estimates obtained
from mechanistic models, we also find some diffeesnin interpretation. Specifically,
Mavromatis and Jagtap (2005) concluded, based dmw#i’s index of agreement, that the yield
variability for a C3 crop (peanuts) at four locasan Florida displayed greater sensitivity than

that for a C4 crop (maize) to the substitution sifreated solar radiation from a mechanistic
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model for observed radiation. Our study, in costirBound no significant differences in
variability, based on the F test for equality ofiaaces, for either maize (C4) or soybean (C3). A
caveat of these is that variants of the radiatgtim&tion techniques can also influence the
interpretation. For example, Cooter and Dhakhawg}) found that, at least for maize, the
impact of generated solar radiation on simulatettycan vary with the type of weather
generator employed to obtain the radiation estimatkhough both Garcia et al. (2008) and this
study used variants of the popular WGEN. Similafinka et al. (2007) found that different
formulations of mechanistic models had a substhinflaence on wheat and barley yield.
Differences in the findings between studies mag edflect geographic influences. For
example, Bai et al. (2010) found that simulatedzaaield obtained when substituting POWER
radiation estimates for observed radiation diddifbér significantly for three regions in China,
similar to our results for Hancock, Wisconsin, that this was not the case for the other two
regions included in their analysis.

Additional considerations also influence the chateadiation estimate for an
application, as summarized in Table 3-5. Availapik a key consideration. One reason for the
current wide use of weather generators in agricall@applications is that they are already
packaged in software systems such as DSSAT, althasgyls must input the temperature and
precipitation time series needed to parameterizevibather generator for an individual location.
The non-traditional gridded datasets (POWER, NARRRRCAP) are also freely available,
although some effort and computer expertise isirequo download and extract the radiation
information, and these series are shorter in piatidength than those obtained with weather
generators. As noted previously, an advantagkesit radiation estimates over weather

generators is that they may better reflect thetdagay relationships between radiation and other
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variables such as temperature and precipitatidre lack of synoptic and temporal synchrony is
particularly a concern for weather generators wherintention is to incorporate the generated
values with observations of other climate paransefer example blending observed
temperature and precipitation with generated saldiation. Additional advantages of the
gridded datasets are that no additional model dpweént or parameterization is usually
required and their large geographic coverage, ¢ioltae case of POWER and across North
America for NARR and NARCCAP. Mechanistic and engairmodels are relatively easy to
develop/parameterize without extensive requiremeht®mputer resources (Ball et al., 2004,
Yang et al., 2006). Considerable care needs tak®snt however, to apply these models only in
regions with a similar climate as the locationwdrich the model was parameterized and those
with relatively stable climates (i.e. little or temporal trends). Another concern of mechanistic
and empirical models is the possibility of negatiadiation estimates, as these models are
usually formulated using multiple regression tegles. Alternative methods that consider daily
solar radiation as a zero bound variable such emsrgaand semi-log regression could be used,
although we found larger biases for daily radiagstimates obtained using these methods
(results not shown). For the analyses above, tladl slmimber of negative values (0.3% for the
mechanistic model and 1.4% for the empirical model$ simply converted to zero.
Nonetheless, the frequency of negative estimatest bmucarefully evaluated whenever
mechanistic or empirical models are used to estirdaily solar radiation.

The development of future scenarios (also oftearrefl to as projections) of daily solar
radiation for climate change assessments placesad constraints on the applicability of the
different sources of radiation estimates investigdtere. All have their limitations. POWER is

an observation-based dataset, and scenario devetpsfor the most part limited to a “delta
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approach” whereby daily time series are adjusted mean change. This is also the case for
reanalysis datasets such as NARR. Weather genetaoe frequently been used to develop
climate change projections, although future chamgése variable(s) used to condition the
weather generator (e.g., precipitation) can hawnticipated effects on the other variables (e.g.,
solar radiation) being simulated (Wilby et al., 2pWilks, 1992). Mechanistic and empirical
models can be readily applied to estimate soldatiaa for future climate conditions when
projected precipitation and temperature datasets\ailable, under the assumption that the
model coefficients are applicable for future clismabnditions (i.e., stationarity). A specific
advantage of the NARRCAP simulations is that progest for a control and future period are
already available. However, larger biases occiendutput from global climate models
(GCMs) is used in place of large-scale reanalysdalalateral boundary conditions for the
region climate models (Olesen et al., 2007; Wilbg &larris, 2006), and a debiasing step may be

necessary (e.g., Rivington et al., 2008a; TH&lret al., 2011).

Table 3-5. Strengths and limitations of traditioaatl non-traditional sources of daily solar

radiation estimates.

Radiation  Strengths Limitations
Sour ce

Traditional Methods

Weather e Often included within widely-used crop ¢ Relatively long time series of

Generator process software systems. temperature and precipitation

* Requires only temperature and needed for parameterization.
precipitation observations to » Day-by-day interrelationships
parameterize. between estimated radiation and

» Can be used for climate change observed temperature and
projections, although future changes in precipitation are not directly
the variable(s) used to condition the retained.
weather generator can have unanticipated Underestimated variance of daily
effects on the other variables being solar radiation at study location*
simulated (including radiation). throughout the year.
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Table 3-5. (cont’'d)

When used as input to
CROPGRO-Soybean (but not
CERES-Maize), resulted in
significant overestimation of
soybean yield at study location
compared to when observed
radiation served as input.

Empirical « Modest deviations in monthly mean daily Model development required by
Models solar radiation when compared to user.
observations at study location. » Daily radiation observations

» For study location, simulated maize needed for model development.
(CERES-Maize) and soybean * Negative values for daily solar
(CROPGRO-Soybean) yield obtained radiation possible.
using radiation estimates did not different Regional climate variations
significantly from simulated yield influence transferability of model
obtained with observed radiation. to other locations.

+ Can be easily applied to the development Underestimated the variance of
of future scenarios of solar radiation, daily solar radiation at study
under the assumption of stationarity of location during growing season.
the model with time.

Mechanistic « Modest deviations in monthly mean daily Model development required by
Models solar radiation compared to observations user.
at study location. » Daily radiation observations

» Coefficients of mechanistic model appear needed for model development.
less sensitive to local site conditions  « Negative values for daily solar
compared to those of empirical models.  radiation possible.

« Can be easily applied to the development Regional climate variations
of future scenarios of solar radiation, influence transferability of model
under the assumption of stationarity of to other locations.
the model with time. « Underestimated variance of daily

solar radiation at study location
throughout the year.
* When used as input to
CROPGRO-Soybean (but not
CERES-Maize), resulted in
significant overestimation of
soybean yield at study location
compared to when observed
radiation served as input.
Non-Traditional Methods
POWER + Downloadable grldded dataset. e Coarser resolution (’1|at|tude X
ts)gtseél(ljte . |G|0b_a| coverage (Llatitude x T 1° longitude) may be insufficient
estimates ongitude). in areas with steep gradients in

Continuously updated.

cloud cover.
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Table 3-5. (cont’'d)

Modest deviations in monthly mean daily
solar radiation compared to observations

at study location.

For study location, simulated maize

(CERES-Maize) and soybean

(CROPGRO-Soybean) yield obtained
using radiation estimates did not different

significantly from simulated yield
obtained with observed radiation.

Overestimated the mean and
standard deviation of daily solar
radiation at the study location
during the cool season (October-
February).

Observation-based dataset; not
applicable for climate change
projections.

NARR * Downloadable gridded dataset. * Overestimates daily solar
« Coverage includes entire North America  radiation.
(32 km resolution). *  When used as input to
e Continuously updated. CROPGRO-Soybean (but not
CERES-Maize), resulted in
significant underestimation of
soybean yield at study location
compared to when observed
radiation served as input.
* Not applicable for climate
change projections.
NARCCAP « Downloadable gridded dataset. * Available only for specific time
regional « Coverage includes entire North America  slices (present-day time slice of
climate (~50 km resolution). 1971-2000 and future period of
models «  NARCCAP models were able to simulate 2041-2070).
(CRCM, the variance of daily solar radiation at * Ability to simulate daily solar
ECP2, study location. radiation varies by regional
HRMS3,  Projected values of daily solar radiation ~ climate model.
WRFG) available for future period (2041-2070). * When used as input to

CROPGRO-Soybean (but not
CERES-Maize), resulted in
significant overestimation of
soybean yield at study location
compared to when observed
radiation served as input.
Error introduced when global
climate model (GCM) output is
used for lateral boundary
conditions may require debiasing
before application.

*Study location is Hancock, Wisconsin.
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3.5. Conclusions

The sensitivity of simulated maize and soybeardyalHancock, Wisconsin, to different
sources of daily solar radiation estimates usddmad the CERES-Maize and CROPGRO-
Soybean crop process models was investigated. aitiation estimates were obtained from
traditional (stochastic generation, empirical arethanistic models) and modern (satellite
estimation, reanalysis datasets, and regional tdirmendel simulations) approaches.
Comparisons of the radiation estimates to obseraeidtion at the study location indicated that
the nature (e.g., magnitude, sign, and timinghefliiases differs considerably among the
different radiation estimates, but that, in gendfra biases associated with the non-traditional
radiation sources are of similar magnitude to thafgbe traditional radiation sources.

Which sources of daily solar radiation estimatesthen preferable as input to crop
process models? Our results indicate that theem® this question is likely crop dependent.
The choice of radiation source did not significamthpact maize yield simulations from
CERES-Maize, whereas significant differences aOf probability level were found for
simulated soybean yield from CROPGRO-Soybean fdvulthree of the radiation sources.
Two of the three insignificant results were for fteeditional sources of radiation estimates
(POWER satellite-based estimations and the NARCCABZRgional climate simulation)
suggesting that non-traditional radiation datapetside a viable alternative to traditional
radiation estimates as input to CROPGRO-Soybean.

Impacts of the different radiation estimates ondyggmulations need to be investigated
for additional crops and geographic locations kefmoad recommendations regarding preferred
sources of radiation estimates for crop processefsahn be made. Furthermore, additional

considerations, such as data availability and mtvdakferability need to be considered when
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selecting a source of daily solar radiation estasdor agricultural applications, including

climate change assessments for agriculture.
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CHAPTER 4.
Spatial Variability of Regional Climate Change Impacts on Crop Production
in High Latitude Regions: A Case Study of the Upper Great Lakes Region

of the United States

In collaboration with

Julie A. Winkler, Jeffry Andresen, Kurt Thelen, aBidaron Zhong

4.1. Introduction

Climate parameters, including precipitation, amperature, and carbon dioxide (§0O

are key factors that control crop growth and dgwelent. Numerous studies have demonstrated
that crop production has been highly sensitivieistorical climate variability (e.g., Chen et al.,
2004; Goldblum, 2009; Porter and Semenov, 2005yeceht climatic trends (e.g., Almaraz et
al., 2008; Lobell and Asner, 2003; Lobell et aQ12). Projected anthropogenic climate change
triggered by elevated atmospheric greenhouse gaentrations is expected to substantially
impact crop production worldwide (e.g., Parry et 2004; Rosenzweig and Parry, 1994).
Additionally, the impacts of climate change on cpspduction are projected to be unevenly
distributed across the globe (Cline, 2007). Inegah adverse impacts are anticipated in low
latitude regions where increased water stress amd rapid crop development and shorter time
to crop maturity due to warmer temperatures areebgal to reduce yield, in contrast to high
latitude regions where a projected longer growiegssn and increased precipitation are
anticipated to provide more favorable growing ctinds (Fischer et al., 2005; Jaggard et al.,

2010; Parry et al., 2005).
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These generalizations are complicated, howevelgrmjitudinal, in addition to
latitudinal, differences in projected climate changarticularly for precipitation; differences
between locations in agriculture production systeansl spatial variations in other
environmental factors important for agriculturabguction, such as soil fertility. Furthermore,
most previous climate impact assessments have piyrf@cused on changes in productivity in
current production regions (e.g., Brown and Rosenl99; 1zaurralde et al., 2003; Parry et al.,
1999), and, with few exceptions (e.g., Thomsor.e2805; Tubiello et al., 2002), have not
explicitly evaluated the potential poleward expansaf crop production.

This research focuses on the impacts of futureatBnehange on county-level corn and
soybean production in the Upper Great Lakes Re@@@1LR) of the United States, defined as

the states of Michigan, Wisconsin and Minnesotai{®afl., 2008). This region, located
between approximately 4CH-49.5°N latitude (Figure 4-1) serves as an excellent sasgy for

evaluating potential latitudinal shifts in favoratgrowing regions. The southern portion of
UGLR is located along the northern edge of thecadjural heartland of the United States; and
Michigan, Wisconsin and Minnesota rank 11(12), 5)@nd 4(3) for grain corn (soybean)
production, respectively (Hatfield, 2012). In a@st, little crop production currently occurs in
the extreme northern portion of the UGLR, an ameaupied primarily by forests and other
natural vegetation (Andresen et al., 2013). Addaily, several environmental factors
complicate future northward expansion of crop podidun, most notably the decrease in soll
fertility from the deep, rich prairie soils of sbetn Minnesota and Wisconsin to the thinner,
sandier spodosol soils of northeastern Minnesadananthern Wisconsin and Michigan. The
moderating influences of the Great Lakes, partityileooler spring and summer temperatures,

also may impact the future expansion of favorabteving regions.
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Figure 4-1. Geographical location of the Upper Gtedtes Region

Only few previous studies have investigated themtd! impacts of climate change on
agriculture in the UGLR, all of which consideretimited number of representative locations in

their analyses. In an early study, Andresen €280D0) employed empirically-derived climate

projections for the Zsicentury from two global climate models (GCMs) ss@ss future corn,

soybean, and alfalfa yield at 13 study sites adktisgesota, Wisconsin and Michigan, including
several locations where crop production is curgeinthited. Applying crop simulation models

to a single cultivar for each crop type, the autheported higher simulated average yield of

corn, soybean, and alfalfa for thesﬁdentury compared to a historical period (1896-)9@G@h
the greatest increases found at the more nortledy focations. Additionally, larger yield

increases were obtained when £€richment was included in the simulations. A récgrate

of the earlier study that focuses on corn and whpeatuction (Andresen et al., 2013) suggests a
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more nuanced interpretation of future yield chandesploying a smaller number of study sites
(five locations in Michigan, eastern Wisconsin avestern New York), but a much larger

ensemble of climate projections, Andresen et &l182 found that the direction and magnitude

of projected yield change for thesﬁﬂ:entury varied with crop type and location. Underent

CO», concentrations, simulated corn yield decreasethimmajority of the empirically-derived
climate projections at all but the northernmosatam, whereas wheat yield increased for most

locations and climate projections. Furthermorep@@richment substantially increased

projected yield for wheat (a C3 crop) but not c@rc4 crop).

In contrast to Andresen et al. (2013; 2000), Soatkwet al. (2002; 2000) limited their
impact assessments to established crop produatas & the portion of the Great Lakes region
extending from central and southern Michigan anddsinsin to southern lllinois, Indiana and
Ohio. Based on empirically-downscaled climate @ctpns from a single GCM and small
number (10) locations across the study area, Southwoal. (2000) found that the sign of the
projected change in simulated corn yield for afeifperiod (2050-2059) relative to a baseline
period (1961-1990) varied with location and crofiiear. Simulated yield for long-season corn
varieties increased at the Wisconsin and Michidadyssites but not at sites located farther
south, whereas the projected average yield of medieason varieties decreased at all locations
although the decrease was less for the Wisconsivachigan locations. A projected decrease
in yield for short-season varieties was also fowvith the exception of the study site in extreme
western lllinois. Based on nine locations withie study region, geographical and varietal
differences were also found for projected soybealt ywith large increases in yield simulated

for the Wisconsin and Michigan locations and omhall increases, or even a decrease, projected
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for the southern study locations (Southworth et241Q2). In general, yield gains were greatest
for late maturing rather than the early maturinjicar (Southworth et al., 2002), and O

fertilization had a positive influence on futurelg.

These previous analyses point to considerable atplin projected future changes in
productivity in the UGLR, but, nonetheless, all gagt the potential for increased productivity at
more northern locations. Any generalization istéd, however, by the small number of
locations employed in these earlier assessmeritss, There is considerable need for a more
spatially-detailed assessment of future crop provdtecthat explicitly considers the potential for
the poleward expansion of crop productivity, sgealfy for the UGLR but with implications for
high latitude regions worldwide. In order to fitlis gap, the major goal of this research is to
provide a county-level assessment of the spatrélvidity of the impacts of projected future
climate change by the mid century (2041-2070) am emd soybean production across the
UGLR, including spatial variations in future plargidates, time to maturity, seasonal

evapotranspiration (i.e., cumulative evapotransgipinaat maturity), and crop yield. Additionally,

the sensitivity of the projected changes to@0ncentration and, for corn only, to crop cultivar

are assessed. Corn and soybean are employedasgessment as they represent the major crop
rotation in the current UGLR agricultural producticegions and are a C4 and C3 crop,
respectively. The assessment presented here #isis diom previous assessments for the study
region in that dynamically-downscaled, rather teaapirically-downscaled, climate projections
are utilized. An ensemble of climate projectiobsamned from the recently-releasidrth

American Regional Climate Change Assessment Program (NARCCAP) (Mearns et al., 2009) is

employed.
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4.2. Dataand Methods

4.2.1. Regional Crop Model Simulation

Regional simulation of corn and soybean produdiorall counties in the study region
was completed using the CERES-Maize and CROPGRO-8nybhedels incorporated in the
Decision Support System for Agrotechnology TrandiE8$AT) ver. 4.5 (Hoogenboom et al.,
2010). DSSAT is a cropping system model that integrdifferent computer programs (i.e.
modules) to simulate daily crop growth and develepti{Jones et al., 2003). Each module
specifically handles weather inputs, soil condiiosoil-plant-atmosphere interactions, plant
growth and development, and farming managemenuit$mequired for DSSAT simulation are
climate/weather variables (daily solar radiatioregipitation, maximum and minimum
temperature), soil information, and farming managetn The DSSAT system shares common
routines to simulate fluctuations of soil param&terhereas, crop growth processes are
simulated by individual plant growth modules (Joaeal., 2003). In the DSSAT system, corn
and soybean are grouped into cereals and leguesgmatively.

DSSAT has been used widely around the world to inyat&t the consequences of
environmental changes and crop management pra¢daesHartkamp et al., 2004; O'Neal et al.,
2005; Thorp et al., 2008; Vucetic, 2011), includetignate change impact and adaptation
assessments (e.g. Brassard and Singh, 2008; MeZilaad2009). DSSAT’s capabilities and
performances have also been reviewed widely (eegaMt al., 2006; Southworth et al., 2002;
Southworth et al., 2000). According to White et(aD11a), who reviewed 221 articles on
climate change impacts on crop production, the CEREily of models are regularly
implemented (~40% articles) to evaluate crop resg®is climate change scenarios. Although,

CROPGRO is not as well known as the CERES familyif§t al., 2011a), CROPGRO-
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Soybean often has been used for climate change tfrapsessments in high latitude regions
(e.g., Alexandrov et al., 2002; Brassard and Sigb8). As noted above, both CERES-Maize
and CROPGRO-Soybean were employed in previous dimgtact assessments for the UGLR
(e.g., Andresen et al., 2013; 2000; Southworth.e802; 2000). In this research, DSSAT was
run for each growing season for 30-year historit@lF1-2000) and future (2041-2070) periods.

DSSAT was originally developed for plot level simigas, although it subsequently has
been employed to estimate yield at a range ofapatales including for large non-uniform areas
(e.g., Irmak et al., 2005; Jagtap and Jones, 20B@).this study, DSSAT was used to simulate
the spatial distribution of county-level corn amylsean yield. In this we follow the lead of,
among others, Haskett et al. (1995) who utilizedag simulation model (SOYGRO) to simulate
county-level yield in lowa. As pointed out by Irknat al. (2005, 2344), an implicit assumption
is that “ the impacts of climate at the aggregptdial scale are the same as those produced by
the crop models, which have limited inputs overcgpa

County-level corn and soybean yield were simuléed0-year historical and future
time slices. A 30-year time series has been censitisufficient by a number of authors (e.g.,
White and Hoogenboom, 2011) for climate change ochpasessments. Detailed descriptions of

the inputs for the model simulations including thiire climate scenarios are presented below.

€)) Historical Climate Observations

Preparing climate data for DSSAT simulation on thentpcale poses some challenges
as climate stations are distributed unevenly dverstudy region. Several previous studies have
employed gridded fields of precipitation and tenapere as inputs to crop model simulations at a
regional scale (e.g., Irmak et al., 2005; JagtapJames, 2002; Quiring and Legates, 2008).

Although, the “regular” grid is an obvious advargathe spatial interpolation is sensitive to the
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density of climate stations, their geographic distiion across a region, and topographical
terrain (Hoogenboom, 2000). Gridded time serieg ate sensitive to inhomogeneities in the
original station data (Guentchev et al., 2010). ei/gridded fields of daily temperature and
precipitation are used, an issue that is of palercconcern for this study is that the gridded
fields overestimate the number of days with preatfn and underestimate daily minimum
temperature (Pollyea, 2013; Quiring and Legates820est et al., 2007).

Recognizing these constraints of gridded fieldsgleeted to directly employ observed
time series of daily temperature and precipitat®imply assigning a county to a nearby climate
station is complicated by differences between dinsdations in the length of record, the
frequency of missing observations, and the inhanedgies introduced into the record by
changes in instrumentation, time of observation, station relocation. Thus, we sought to
identify a modest number of high quality observatgtions that capture the spatial variations in
climate across the UGLR. To accomplish this, arctjely-defined climate regionalization
developed using k-means cluster analysis (see €haptvas utilized to assist in the selection of
representative climate stations (Figure 4-2). Timate regionalization grouped monthly means
of precipitation and maximum and minimum tempemfor the period of 1971-2000 from 180
climate stations within the UGLR and its neighbgrstates that are included in the United States
Historical Climate Network ver 2.0 (Menne et aD,12a; Menne et al., 2009). The results of the
climate regionalization suggest that the clima#ti@hs within the study region can be
categorized into seven climate types (Figure 442), tioat are distinguished by differences in the
deviation of the annual cycle of temperature amtipitation from the UGLR average.

Each county was then assigned to a climate regimhpased on the county-climate

memberships, we selected two or more representatimate stations for each climate group,
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including spatially-fragmented county-climate crst A primary consideration in station
selection was the completeness of the daily timese Even though the USHCN stations are
considered to be the highest quality climate statio the United States, data completeness and
record length vary dramatically among the USHCN@tat Another consideration was to select
stations that captured the north-south and eastexésnts within a climate region. Thus, more
stations were selected for larger regions compiradhaller regions.

A total of 36 stations out of 79 USHCN climate &tas within the UGLR were selected
to capture the spatial climate variability of tlegion (Figure 4-2-bottom). Daily data
completeness over the growing season (April to kexfoof the historical period (1971-2000) is
more than 85% for the majority of the stations. Tigribution of daily data completeness (in
brackets) at five percentage intervals by statsoi34 stations (>85%), 31 stations (>90%), 27
stations (>95%), and 12 stations (>99%). To assiggpresentative climate station to each
county, we identified counties and representativeate stations that fell within the same
climate group memberships, and then assigned aytuthe closest representative climate
station within the climate region based on Euchdiéstance between the climate station location

and the county centroid (Figure 4-2, bottom).
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Figure 4-2. Selection of representative climate atatior the regional climate change impact
assessment on corn and soybean production in thdkU@sed on an objective climate
regionalization (top) and their assignment to cmsnfbottom). Each station is referenced by a
four character identifier and the colors in the doywanel show the counties assigned to the same

representative climate station.

87



Missing values of precipitation, maximum and minimtemperature for the USHCN
stations were filled in using daily climate valugsained from the lowa Environmental Mesonet
(IEM) Network (IEM, 2013) for either the same statior a nearby station. IEM recently made
available complete daily time series for many ctienstations in the Midwestern states including
Michigan, Wisconsin and Minnesota. IEM filled ingaing data using an inverse distance
weighted interpolator applied to climate data flNQEP Stage IV precipitation, airport weather
data (ASOS/AWOS), and available NWS COOP reports (D22, personal communication).

Daily solar radiation is a required input for thre simulations, but this variable is
infrequently measured. For this analysis, dailasohdiation was estimated using a mechanistic
radiation model proposed by Hunt et al. (1998) Whiequires daily maximum and minimum
temperature and precipitation as inputs. The chaiickis approach was based on a systematic
evaluation of several alternative estimation procesd for daily solar radiation (see Chapter 3).
The mechanistic radiation model was calibratedgusivserved data from 1990-2008 for a

climate station, at Hancock, Wisconsin, and appiethe 36 representative climate stations.

(b)  Soil data

As soil characteristics vary spatially, for eachirtty we selected the “dominant” soil
based on areal coverage. Soil data were obtaingdtfre State Soil Geographic (STATSGO)
database published by the Natural Resources Catsmmnservice of the United States
Department of Agriculture (NRCS-USDA) (Soil Survey St2f110). STATSGO has been
regularly employed for crop model simulations ie thnited States (e.g., Carbone et al., 2003;
Safir et al., 2008). Soil Data Viewer (NRCS, 2012)jchtis supplied to read STATSGO
database, was used to extract soil informatioredtor STATSGO layer by layer, with the

midpoint of each layer roughly corresponding todleeths in the generic soil requirements in
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DSSAT. The eight soil depths employed in the DSSAE#as the extracted layers are: 5 cm
(0-10 cm), 15 (10-20), 25 (20-30), 40 (30-50), 60-70), 80 (70-90), 105 (90-120), and 135
(120-150).

Soil parameters specifically extracted from STATSGOefach soil layer are soil
classification (e.g., loam, silty loam, sandy loastppe, drainage, runoff potential, soil texture
(percent silt and clay), organic content, pH antboaexchange capacity. Soil color and fertility
factor were retrieved based on soil texture andrtary from the National Cooperative Soil
Survey (NCSS, 2011) and the generic soil databastablain DSSAT package, respectively.
SBuild, a DSSAT supporting package (Uryasev et aD320vas employed to prepare soil
inputs and calculate specific soil information,lsas drainage upper and lower limit, required

for the DSSAT simulations.

(© Cropping Management
DSSAT requires information on agronomic practices., @lanting densities, row
spacing, planting date, and crop cultivar. The agnaic practices were generally adopted from

Andresen et al. (2001), who applied DSSAT for thinteecations in the UGLR. The planting

densities were determined at 75 cm spacing witlplkiet population of 6 plantslzrand 20

plants/m2 for corn and soybean, respectively. These agronpnaictices reflected farming

management and technology in the late 1990s (Aadresal., 2001), which overlaps with the
historical time slice used in this study.

Selecting a crop cultivar for the DSSAT simulatiofgarn yield is challenging as
multiple cultivars are grown within each county.rthermore, the relative proportion of

different cultivars varies spatially across the URG(Coulter et al., 2010b) and also annually as
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farmers consider weather conditions and econonaifitpifor planting a particular corn hybrid
(Hao et al., 2010). Given the focus of this analyge selected, from several options, the cultivar
for the DSSAT simulations that best reproduced tlagiadistribution of county-level corn

yield. As potential options we considered the ified short season cultivar employed by
Andresen et al. (2001), and the three corn cubiyiae., short, medium and long season) used by
Southworth et al. (2000). Based on visual compasisord statistical indexes (i.e., spatial
correlation and the Willmott Index (Willmott, 19§1ye found that for the 1971-2000 historical
period the median values of simulated corn yieldlie medium season cultivar better captured
the spatial variability of observed county-levetrtgield defined as crop production divided by
planted areas. This was true even when compargichtdating the yield for multiple cultivars

and selecting the yield value that best matchealiserved county yield (results not shown).

The cultivar characteristics for the medium seasenpresented in Table 4-1.

Table 4-1. Cultivar characteristic of the mediurassm corn cultivar used in the DSSAT

simulations.
Pl Degree days (baseO&) from emergence to end juvenile phase 200
P2 photoperiod sensitivity (0-1) 0.3
P5 degree days (baseOE{) from silking to physiological maturity 800
G2 potential kernel number 700
G3 potential kernel growth rate (mg/d) 6.3
PHINT | degree days required for a leaf tip to emerge (pblgton interval) ?C d) |38.9

Source: Southworth et al. (2000)

In contrast to the simulations for corn, four magugroups were preselected for the
soybean DSSAT simulations. The maturity groups weughly assigned to each county based
on the distribution of soybean maturity groupshe United States published by the National

Soybean Research Laboratory (NSRL, 2013). Thesediffenaturity groups reflect the
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sensitivity of soybean to photoperiods (Carbon®5)9The cultivar characteristics for the four
maturity groups were available from the soybeativaul file supplied by DSSAT version 4.5.
Planting dates were determined using the DSSAT automianting option. Planting

occurs when percentage soil water and soil temperat the top 10 cm are at least 20% and 10

OC, respectively, during a specified planting windéwr the historical simulations, five and six

different planting windows were employed for thercand soybean simulation, respectively.

The planting windows were determined by movingdtagting date of a planting window later

by roughly 15 days during the period Aprﬁtllo June 161 for corn and from April it to June

30th for soybean (e.g., planting windows of Aprﬁt-J]une 181, April 16th-June 181, and so on).

The end dates of the planting windows for both snapre obtained from the typical planting
and harvesting dates for corn and soybean in Mahiylinnesota and Wisconsin as reported by

(NASS-USDA, 1997). For the future simulations, therting date of the planting windows was

set earlier to Marchsiconsidering the potential warming condition foe tlegion. For both the

historical and future periods, the highest annimlkted yield for each county from the
different planting windows was retained for thelgsig. Harvesting dates for both the historical
and future simulations were determined at matstiige (i.e., R6 for corn and R8 for soybean)
following Andresen et al. (2001).

The different planting windows were used to take #ccount the short ‘optimum’ time
period to grow corn in the UGLR (Thelen, 2007) amallow for replanting decisions following
adverse climate conditions (Benson, 1990; Laur@®/) Additionally, the multiple planting
windows in part compensate for the use of a sisgiktype to represent the soil conditions for a

county, as suggested by Moen et al. (1994).
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No change in cropping practices over time was assguifhe crop simulations assumed
rainfed conditions were initiated at the first ahdiary each season with soil water initialized at
drained upper limit. The nitrogen option within BESAT environment was turned off for corn
simulations, but turned on for the soybean simaitestito capture nitrogen fixation as soybean is

a leguminous crop that is able to fixate nitrogéou(ter et al., 2010a).

4.2.2. Climate Change Scenarios
Future climate change scenarios were developed loast: outputs of the NARCCAP

simulations, available at a 50 %rresolution. Eight combinations of RCM/gcm simuwat were
available for a future (2041-2070) and control (I-ZD00) period (Table 4-2). The model
combinations are CRCM-ccsm, CRCM-cgcm3, HRM3-haddi3M3-gfdl, RCM3-cgcm3,

RCM3-gfdl, WRFG-ccsm, and WRFG-cgcm3. The model iBspnted in Table 4-2 will be used

as a reference for the model identifier in the feguincluded in this Chapter.

Table 4-2. The NARCCAP model combinations employ®dtie study

ID | Model ID | Model ID | Model ID | Model
A | CRCM-ccsm B CRCM-cgcm3| C HRM3-gfd| D HRM3-hadcm3
E | RCM3-cgcm3 | F RCM3-gfd| G| WRFG-ccsm H WRFG-cgcm3

Daily maximum and minimum temperature and predijitafrom the land grid points
nearest each of the 36 representative climatestatvere extracted to calculate monthly means
for the future (2041-2070) and control (1971-2008)iods. DifferencesAT) in monthly means
of temperature and percentage changesRP4n monthly precipitation were calculated between
the two periods for each RCM/gcm simulation andiapdo the observed historical daily time
series of maximum and minimum temperature and pitation for the 36 representative climate

stations. This simple approach of developing futtiitate change scenarios has been
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previously applied for numerous climate change ichpasessments (e.g., Mearns et al., 1997;
Tubiello et al., 2002; Wang et al., 2011).

For reference, delta values for the growing seabtarch-October) are shown in Figure
4-3. The projected change in seasonal mean maxiamghminimum temperature and
precipitation for the region depends upon the coaiton of RCM/gcm (Figure 4-3). HRM3-
gfdl projects larger increases in temperature ardtgr decreases in precipitation, particularly
for the southern areas of the UGLR, than the di#®RCCAP models. WRFG-cgcm3 and
WRFG-ccsm project slightly warmer and relativelyttee conditions compared to the other
RCM-gcm combinations. In general, the regional alienof the UGLR by mid century, as
derived from the majority of the NARCCAP modelspisjected to be warmer than currently,
particularly in the southern UGLR, and wetter ticarrently, especially for the northern UGLR

(Figure 4-3).

Atmospheric CQ concentration for the historical period (1971-20@@s set at 370 ppm

(i.e., approximate C@&concentration at the end year of the historicalog®. The SRES A2

emissions scenario, the G&cenario used in the NARCCAP simulations, proj€ss increases

from about 490 ppm to 635 ppm during the mid-cgn{@b41-2070) future period (IPCC-DDC,

2011). We selected the projected £2@lues at the start and end of the mid centuripgédr.e.,

490 and 635 ppm) as input to the DSSAT simulatiorastess the spatial variability of carbon

fertilization on corn and soybean production.
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Figure 4-3. Projected changes’i@ for simulated average maximum temperature (f&ft)

minimum temperature (middle), and percent chang®enipitation (right) for the growing
season (March-October) between the future (204DR8id the control (1971-2000) periods for

the eight NARCCAP models. Letters of A-H are the NBGAP model identifiers (Table 4-2).
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4.2.3. Evaluation of CERES-Maize and CROPGRO-Soybean

Before the NARCCAP simulations were used as inptiiéccrop models, simulations
using observed climate time series were first caegb#o historical county yields to evaluate
how well the simulated yields capture the obsesgtial variability across the UGLR. This
evaluation is essential background for interprethrggspatial variations in projected future yield.

Observed county-level crop yields were calculatedikiding crop production by
planted areas as reported by the National Agricell8tatistics Service, United States
Department of Agriculture (NASS-USDA, 2011). Becaaadvancement in farming practices
and technology, such as new cultivars and pest gesment which significantly contributes to
increased crop yields (Egli, 2008), temporal tremasexpected in observed yields, whereas
temporal trends are not expected for simulatedlgiak farming practices and technology are
held constant throughout the simulation period.sTWwhen comparing observed and simulated
yield, any temporal trends in the observed yielousth first be removed (e.g., Andresen et al.,
2001; Jagtap and Jones, 2002) . We detrended @asgields separately for each county with at
least five years of available data to the base g£2000 using the approach proposed by

Tannura et al. (2008) that assumes a linear terhfseral in crop yield.
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Figure 4-4. The median value of observed and DSSATlaied yields for corn (left) and
soybean (right). The yield ratio was calculatedilwding simulated yield by observed yield for
each county. Available data refers to the numbgygars with reported yield for each county.

Note: The scale for median yield is different forrc and soybean.
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Figure 4-4 shows that the simulated corn and soybiedats are generally able to capture
the spatial distribution across the study areastoved yield for both crop types. Observed corn
and soybean yields gradually decrease from soutbortih across the UGLR. Higher yields are
specifically found in southern Minnesota and Wissiorfor both crops. This pattern is generally
captured by the DSSAT simulated yields, although sdis&epancies appear. For corn,
underestimations are seen in southwestern Minnesmtaorthern Michigan, whereas yield is
overestimated in the northern portion of the staha, especially in areas where little crop
production currently occurs. Simulated soybean gielkceed observed yields particularly in the
southern part of the region, while underestimatamgear in most northern counties. Overall, the
median value of simulated yield, averaged acrdssoahties, is higher for corn by about 136
kg/ha (~2.3%) and lower for soybean by about 244&{+9.5%), than the reported county
statistics. The Willmott Index of agreement andgpatial correlation of the median yields are
0.83 and 0.70 for corn, while the two indeces ath 9.65 for soybean. The Wilmott Index
ranges from 0 to 1 with 1 indicating good agreenf@fitimott, 1981). The modest high values
of the Willmott Index and the small deviations @gion-wide median yields indicate the

simulated county-level yields of corn and soybeaptuare the observed yield patterns well.

4.2.4. Regional Impact Assessment of Projected Climate Change

The potential consequences of future climate charege assessed by estimating the
median changes in planting dates, time to mat(difined as the days from planting to full

maturity, i.e., to R6 for corn and R8 for soybea@asonal evapotranspiration, and grain yield

for all NARCCAP climate model combinations at 37804nd 635 ppm. The first GO

concentration was defined as a reference, whiletiher two are used to evaluate sensitivity of
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the simulated outcomes to elevated atmospherig c@@centrations. We also compared the

coefficient of variation (COV) of crop yields betarethe future and the historical period to
evaluate potential change in future yield vari&pi{iTubiello et al., 2002). COV was calculated
for each county by dividing the standard deviatbthe crop yield for a time slice by the mean
value. High values of COV indicate high interaningald variability, whereas small values
imply more stable annual production (Tubiello et 2002).

Specifically for corn, we also evaluated the sensitof future climate change impacts
to different corn cultivars, recognizing that agarof cultivars are grown in the UGLR. In
addition to the medium season cultivar, we compgreld changes between the future and

historical periods for short season and long seasttivars. These comparisons were limited to
simulations using only the highest g€@oncentration (635 ppm) for the future period.
Potential shifts in major growing regions were eatiea by modifying, for each county,

the median value of the reported historical codatsel yield by the suite of projected changes

in median corn and soybean yield from DSSAT simateti obtained using the eight NARCCAP

climate simulations and the three levels of atmesphCO, concentration.

4.3. Results
4.3.1. Historical Simulation

The DSSAT simulated median values of planting dates to maturity, cumulative
seasonal evapotranspiration and grain yield fohte®rical period provide a reference for
evaluating potential future changes. The spataightions in the simulated values are briefly

summarized below.
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The simulated median planting dates (PDAT) for tiséohical (1971-2000) period fall
between Julian day (JD) 120-127 (~April 30 to May There is a slight latitudinal variation in
planting date (Figure 4-5), with median plantingegdbetween JD 113 (~Apr 23) to JD 127
(~May 7) for the majority of the counties in northéfiichigan and in central and northern
Wisconsin and Minnesota. Earlier simulated plantdates (before JD 106 (~April 16)) are seen
for a small number of counties in northwestern Misota, whereas for the majority of the
southern counties simulated planting dates for €atmetween JD 120 (~April 30) and JD 141
(~May 21). Simulated median planting dates are cenaldy later for a small number of
counties in the central and southern Lower Peningulichigan (Figure 4-5). For soybean,
simulated median planting dates lie between JDalDJD 127 for the majority of counties in
Minnesota and between JD 120 and JD 141 for theetJBpninsula of Michigan, and northern
Wisconsin. On the other hand, a wider range (JD-12D 156) in simulated median soybean
planting dates is seen for counties in the Loweliri3eiha of Michigan with simulated planting
dates as late as early to mid June (>JD 156) $onal number of counties in the central Lower
Peninsula.

The simulated median time to maturity (TMAT) foroalisplays a marked south-to-
north gradient (Figure 4-5), with a generally sholf®IAT of almost 20 days for counties in the
southern compared to northern portion of the UG&iRulated median TMAT for soybean is
generally between 120 and 140 days for most caairtithe UGLR. A few counties in
northeastern Minnesota and the eastern Upper RegaikBchigan display simulated median
TMAT values of 140-160 days.

The regional distribution of the simulated mediatues of cumulative seasonal

evapotraspiration (ET) exhibits higher ET for coestn the south than for counties in the north
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with only a slight difference in ET between cormaoybeans (Figure 4-5). Simulated ET for
corn is about 550 to 700 mm for the southern UGhRnties and about 400 to 600 mm for the
majority of the northern counties. Simulated ETdoybean is in the range of 500 to 700 mm for
the southern counties and about 400 to 550 mnh&onobrthern counties. For some counties in
the northern Lower Peninsula of Michigan, simula&ddis lower than 400 mm.

A south-north gradient is also seen in the distidsuof simulated median yield for corn
and soybeans. Simulated median yield in southermilgin, Minnesota and Wisconsin exceeds
7500 kg/ha, whereas the median yields fall betwld#® — 4500 kg/ha for most of the northern
counties. For soybean, the simulated median yigklalaout 2500 to 3500 kg/ha for the southern
counties with several counties having median yielsr 3500 kg/ha, while the northern counties
display yields of 500 — 2500 kg/ha with a few ceesin the northern Minnesota and the Upper
Peninsula of Michigan having higher (2500-3000 kpArad lower (<=500 kg/ha) simulated

yields, respectively.
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Figure 4-5. Median values of simulated planting R2AT), time to maturity (TMAT),

cumulative seasonal evapotranspiration (ET), aathgreld (Yield) for corn (top four panels)

and soybean (bottom four panels) in the UGLR ferhtstorical period (1971-2000)
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4.3.2. Future Climate | mpacts

Planting Dates and Time to Maturity

Substantial future changes in the spatial distrdsutif planting date (PDAT) for corn
production are suggested for the future time gkagure 4-6). In spite of differences between
climate scenarios, earlier planting dates are ptegefor most counties in the southern portion of
the study area. Earlier planting dates are prajefctea larger number of southern counties for
the HRM3-gfdl, CRCM-cgcm3 and RCM3-cgcm3 simulat@ompared to the other
NARCCAP simulations; whereas, the projected futlireate from WRFG-cgcm3 suggests later
planting dates for most southern counties excephi® southeast Michigan. Later planting dates
(<20 days) are projected for most counties in th@ral and the northern UGLR, particularly
when corn production is simulated using climatenac®s from CRCM-ccsm, CRCM-cgcm3,
HRM3-gfdl, HRM3-hadcm3, and RCM3-gfdl. For the extienorthern UGLR, slightly earlier
planting dates (0-10 days) are projected by masiaté models (particularly WRFG-ccsm and
WRFG-cgcm3), with the exception of HRM3-hadcm3widnich later planting dates are
projected (Figure 4-6). When the projected chamg&DAT are averaged across all climate
scenarios (Figure 4-6, average), earlier and fd#arting dates are seen for the southern and
northern counties, respectively, with the exceptibthree counties in northern Minnesota where
earlier planting dates are projected.

Projected changes in time to maturity (TMAT) for slated corn production suggest, a
shorter TMAT for most UGLR counties, with the extiep of counties in the Upper Peninsula
of Michigan and a few counties in northwest Minrtaséor these counties, a slightly longer
TMAT (<10 days) is projected when climate simulaidrom WRFG-ccsm and WRFG-cgcm3

served as input to CERES-Maize.
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PDAT Change (days) TMAT Change (days)
Bl =30 | 0-10 B <=s50 | -20--10
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. ]-10-0 M >30 1-30--20 I > 10

Figure 4-6. Projected change in the median of plgrdate (PDAT, above) and time to maturity

(TMAT, below) between the historical (1971-2000§iahe future (2041-2070) period for corn
production in the UGLR at the reference level of2G870 ppm) concentration. Letters of A-H

are the NARCCAP model identifiers (Table 4-2).
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For soybean production, planting dates are prajeict@ccur earlier for most counties
located in Minnesota, Wisconsin and the Upper Paiénof Michigan based on the climate
scenarios obtained from CRCM-cgcm3, RCM3-cgcm3, Bajtl, WRFG-ccsm, and WRFG-
cgcma3. On the other hand, later planting dates3(L@ays) for soybean production are estimated
for counties in Wisconsin and the Lower Peninsulahijan by CRCM-ccsm, HRM3-gfdl,
HRM3-hadcm3, RCM3-gfdl, and WRFG-ccsm. When the agerchange in planting dates
across all climate scenarios is considered (Figufeaterage), a primarily west-east gradient is
observed across the UGLR, with earlier plantingeslatrojected in the western UGLR and later
planting dates projected in the central and easi&hR.

The changing pattern of time to maturity (TMATY) soybean production, when
averaged over all climate scenarios, suggestsréesHdMAT (~-20 days) for most counties in
the UGLR, although a slightly longer (<10 days) TM& projected for several counties in
south-central Minnesota (Figure 4-7, average). F@&ivIRjcm combinations (i.e., CRCM-
cgcm3, RCM3-cgem3, WRFG-ccsm, and WRFG-cgem3) ptopeze counties with longer
TMAT compared to the other NARCCAP combinationstipatarly in the western and southern

UGLR (Figure 4-7).
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Figure 4-7. As Figure 4-6, but for soybean production
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Evapotranspiration and Crop Yield

The spatial pattern of projected change betweefutiiee (2041-2070) and the historical
(1971-2000) period in the median value of simulatechulative seasonal evapotranspiration
(ET) for corn production, when averaged acrossletiate scenarios, clearly displays a north-
south gradient with decreased ET projected fosthghern UGLR and increased ET for the
northern UGLR (Figure 4-8, average). Moreover, gfgaeral pattern is seen for the majority of
NARCCAP models, although some differences exist. tanlially larger decreases in ET (<-
15%) are projected for counties in the Lower PernaetiMichigan by CRCM-ccsm, CRCM-
cgcm3, HRM3-gfdl, and WRFG-ccsm. On the other héimel area projected to experience
higher ET in the future is larger for the RCM3-cg@;mRCM3-gfdl, WRFG-ccsm and WRFG-
cgcm3 climate scenarios.

Similar to the spatial pattern of ET change, cogidyis projected to decrease for most
southern counties and increase in the northerntissugrigure 4-8, below). A substantial portion
of the southern and central UGLR is projected twelhgecreased yield for the HRM3-gfdl,
CRCM-ccsm, CRCM-cgcm3, and HRM3-hadcm3 scenaridb, pvojected decreases as large as
-25% to -50%. Increased yield in the northern UG&Reen for all climate scenarios, although
the area with projected yield increases is largefWRFG-ccsm and WRFG-cgcm3 compared to

the other climate scenarios.
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Figure 4-8. Change in the median of cumulative seglsevapotranspiration (ET, above) and

crop yields (Yield, below) between the historicE®71-2000) and the future (2041-2070) period

for corn production in the UGLR at the referenceeleof CO, (370 ppm) concentration. Letters

of A-H are the NARCCAP model identifiers (Table 4-2)
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For soybean production, small (-5% to 5%) changésTirare projected for almost all
counties in the UGLR with no clear spatial pattevident (Figure 4-9, average). A notably
larger area, particularly in Wisconsin and Minnas@ projected to have increased (although
small) ET for RCM3-cgcm3, RCM3-gfdl, WRFG-ccsm, aWeRFG-cgcm3 compared to the
other climate scenarios (Figure 4-9), whereas fufilresimulated using future climates obtained
from CRCM-ccsm and HRM3-gfdl exhibits a slight degse (~-10%) for the majority of
counties in the UGLR.

Future climate change is projected to benefit saghyeeld for the majority of the
northern counties of the UGLR, although a slightrdase in soybean yield is seen for the
HRM3-gfd| climate scenario (Figure 4-9). The climatrojections from HRM3-gfdl also result
in a notable decrease in yield (ranging from -28%nbre than -50%) for most counties located
in the southern and central part of the UGLR. Meezpa slight (~-25%) decrease in yield is
projected by RCM3-cgcm3, RCM3-gfdl and WRFG-cgcm@tfe central and southern
counties, whereas CRCM-ccsm, CRCM-cgcm3, HRM3-h&]d&CM3-cgcm3 and WRFG-
ccsm project a moderate decrease (~-50%) for théheo counties, particularly those in
Minnesota and Michigan (Figure 4-9). Overall, thejpcted change in soybean yield averaged
across all climate projections (Figure 4-9, averagp@ws a distinct south- north gradient with

decreased yield in the southern part of the UGL&Riaoreased yield in the northern part.
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Figure 4-9. As Figure 4-8, but for soybean production
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4.3.3. Carbon Fertilization Effects

The consequences of different levels of atmospt&dg concentration on crop

production are assessed by evaluating the averegges in simulated PDAT, TMAT, ET and

Yield between the future (2041-2070) and the his&bi(1971-2000) period between elevated

CO» concentrations of 490 ppm and 635 ppm and in cosgrato the reference level (370 ppm)

COy level. The analysis reveals that PDAT and TMAT ratatively insensitive to elevated GO

concentration compared to ET and Yield. This patterconsistent for both corn (Figure 4-10)

and soybean (Figure 4-11) production. Thus, we eggdelow only the sensitivity of the spatial

distribution of ET and Yield to elevated G©@oncentrations.

For corn production, the north-south gradient ingoted changes in ET and Yield seen

for the reference C&concentration also are evident for the highep €Cncentrations.

However, the projected decrease in ET for the ssathnd central counties is larger, and the

projected increase in ET for the extreme northeumdes is smaller, for the higher gO

concentrations, particularly for the simulationspdoging CG, levels of 635 ppm. These

projections suggest less future moisture streserumdher CQ concentrations, potentially
benefiting corn production (Figure 4-10).

For soybean production, the higher £€ncentrations appear to have little effect on the
projected spatial distribution of ET across thalgttegion. In contrast,the projected increase in

soybean yield across much of the study area iglday the elevated Cfconcentrations and the
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number of counties in the southern Wisconsin anchidan with a projected decrease in yield is

smaller for the higher Cfconcentrations (Figure 4-11).

PDAT Change (days)

Bl <=30 [ 10-10

B -30--20 £7110-20
01-20--10 NN 20-30
~1-10-0 > 30

TMAT Change (days)
Bl <=-50 . 1-20--10
B -50--40 [ 1-10-0
N -40--30 [ 10-10
1-30--20 WW=>10

ET Change (%)

B <=15 [ 10-5
o ]-15--10 E715-10
BN -10--5 EW10-15
1-5-0 15

Yield Change (%)

Bl <=-50 25 -50
1-50--25 I 50-100
. 1-25-0 W 100-150
. 10-25 I >150

Figure 4-10. Change in median planting date (PDAie to maturity (TMAT), seasonal
evapotranspiration (ET) and crop yields (Yield)ven the historical (1971-2000) and the

future (2041-2070) period averaged across all ¢émaodel combinations for corn production in

the UGLR under elevated G@oncentration of 490 ppm (left) and 635 ppm (fight
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Figure 4-11. As Figure 4-10, but for soybean proauncti

When the projected changes in ET and Yield forftitere period (2041-207@re
expressed as a percent difference between thecfgdjealues under the elevated{ével (490
or 635 ppm) and the projected values under theaeée CQ level (370 ppm), e.g. (ET490-
ET370/ET370))*100, the smaller projected ET withreasing CQ concentrations is more
clearly seen for corn production Figure 4-12). Thecpnt changes in projected ET under,CO

concentration of 490 ppm and 635 ppm with respeptojected ET under the reference O

level (370 ppm) ranges from -2% to -6% and -2%88 - respectively. The spatial pattern is

not as uniform for soybean production, althoughmated above, the number of counties
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projected to have increased future ET is smalletife higher CQ concentration levels

compared to the reference g@vel.

Corn yield in the UGLR is expected to increase nnatdy as the C&concentration
increases. At 635 ppm corn yield in the northegaarcould increase up to 80% with respect to

the reference C&level (370 ppm). As for corn, soybean yield likaelgo will benefit from

higher concentrations of atmospheric£@Il counties in the study region are projectedhéve

substantially higher yields as atmosphericy@0Oncentration is increased to 635 ppm (Figure

4-12). Overall, soybean grown in the UGLR is expddb benefit more from increasing €0

concentration than corn production.
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Figure 4-12. Percent change of projected seasonpbeaaspiration (ET) and crop yield (Yield)
for the future period (2041-2070) under elevated €Cancentration of 490 ppm (490-370, left)
and 635 ppm (635-370, right) for corn (above) anygbsan (below) with respect to projected ET

and Yield for the future period (2041-2070) undex teference level of CQroncentration (370

ppm). ET and Yield are obtained by averaging edgohéuture ET and Yield across all

NARCCAP climate models.
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4.3.4. Cultivar Sensitivity

Specifically for corn, we also evaluated the potdnthpacts of future climate change on

grain yield for short and long season cultivarsisievaluation was performed for only the

highest (635 ppm) C&concentration. The projected changes in futurkel @ the short cultivar

displays a south-north gradient similar to thansearlier for the median season cultivar with
small yield reductions in the southern and cemgoations of the UGLR and modest increases in
the northern UGLR (Figure 4-13). This pattern isnstee the majority of the NARCCAP climate
scenarios. In contrast, the sign of the projecteahges in future yield is positive across almost
the entire study area for the long season cul{ivegure 4-13), with only a small numbers of
counties in southern Wisconsin and Michigan pra&édb experience a small (~-25%) yield
decrease. The projected increases in yield argtautml (50-100%) and are seen for all the
NARCCAP climate scenarios, although the HRM3-gtirsario is slightly less favorable for
some counties in south Minnesota, south-west Wsoamnd south-east Michigan (Figure 4-13,

Long).
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Figure 4-13. Change in the median value of corryleltween the future (2041-2070) and the

Yield Change (%)

historical period (1971-2000) for short season (§hand long season cultivar (Long) under

different climate change projections and elevat€g 6f 635 ppm. The median values of

simulated yield for the historical period for eaxhtivar are presented in the first row as a

reference. Letters of A-H are the NARCCAP model tidiems (Table 4-2).
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4.35. Coefficient of Variation

Calculation of the coefficient of variation (CO\Qrfthe historical period (1971-2000)
indicates that annual corn yield variability is lméy for the northern areas of the region than for

the major corn production regions in the south neh&lues of COV are not more than 0.4 and

can be less than 0.1 (Figure 4-14). Future prajestiholding C@ concentrations constant at

370 ppm and employing a medium season cultivagestca slight increase in the annual
variability of corn yield in the southern UGLR, faularly for southern Wisconsin and the
Lower Peninsula of Michigan, as indicated by theoraf future COV to historical COV which
falls between 1 and 1.25. Comparison among the elghate scenarios reveals that those
derived from CRCM-ccsm, HRM3-hadcm3 and HRM3-gfdijpct COV ratios greater than 1
for a larger number of counties in the southern BGlompared to the other remaining
scenarios. On the other hand, yield variabilitgnsjected to decrease by approximately half for
the mid century time slice for most counties in tioethern UGLR (Figure 4-14). When the

COV ratio is averaged across the all climate seéesathe number of counties in southeast

Wisconsin and southern with a slight increase muahyield variation decreases as£0O

concentrations increase from 490 to 635 ppm. @rother hand, the number of counties in

northern Minnesota and Wisconsin and in the UppairBela of Michigan with substantially
smaller projected future annual yield variabilitgieases as CQevels increase (Figure 4-14).

For soybean yield, the majority of counties in tHeélLR have a COV less than 0.55 for
the historical period with several counties in thgper Peninsula of Michigan and few counties

in northwestern Minnesota possessing a relativigly EOV (> 0.7 or higher) (Figure 4-15). By

the mid century, and assuming a reference @€el for the DSSAT simulations, the climate

117



scenarios obtained from six of NARCCAP climate medek., CRCM-ccsm, CRCM-cgcms3,
HRM3-gfdl, HRM3-hadcm3, RCM3-cgcm3, RCM3-gfdl) peot higher COV values for the
majority of counties in Minnesota, whereas WRFG-cesmtt WRFG-cgcm3 suggest smaller
COV values for the majority counties in the UGLRwihe exception of increased annual yield
variability for southern Wisconsin and Michigan.eTHRM3-gfdl scenario projects substantially
larger future yield variability in the southern URLWhen averaged across all climate scenarios,
annual variability of soybean yield is likely tochease slightly (COV 1-1.25) for most counties

in south-central Minnesota, central Wisconsin dreddastern Lower Peninsula Michigan,
whereas a relatively higher annual yield varia(iG@®V 1-1.50) by the mid century is projected
for southern Wisconsin and the southern Lower Petangf Michigan. On the other hand, a

majority of counties in the currently unproductivathern UGLR likely will have lower COV
values in the future (Figure 4-15). Elevated Q©ncentration is expected to reduce the area
experiencing increased future yield variabilitthaligh a slight increase in annual yield
variability in the southern UGLR is projected, e¥enthe highest C®concentration employed

in this study (Figure 4-15).
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COV Sensitivity to Elevated CO2 concentration

&

&

635ppm

490ppm
Figure 4-14. Ratio of coefficient of variation (CQRAtio) of corn yield for the future period

(2041-2070) with respect to the historical perib871-2000) under different climate projections
derived from NARCCAP models at the referencex @870 ppm) level. Average is the COV
ratio averaged across all climate projections. Belgo panels are the average COV Ratio under

elevated CQ@ of 490 (left) ppm and 635 ppm (right). Lettersfef are the NARCCAP model

identifiers (Table 4-2).
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Figure 4-15. As Figure 4-14, but for soybean yield
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4.3.6. Potential Expansion in Major Growing Areas

In order to better visualize the potential spatl@nges in corn and soybean production,
several yield thresholds were selected and prajdateire county yield was categorized as
falling above or below the threshold. For cornyedd thresholds are 5000, 6000, 7000, 8000
and 9000 kg/ha, and for soybean the thresholdaGde, 2500, 3000, 3500, and 4000 kg/ha.
The lower threshold categories were chosen basedroant yields in the major production
regions within the UGLR; the higher thresholds wadeed given the projections discussed
above of future higher yield in some parts of thHeLR.

Starting with the lowest threshold (5000 kg/ha) hgaroduction regions is anticipated to

expand northward into northern Minnesota and thpddPeninsula of Michigan, especially
under the highest (635 ppm) @@oncentration (Figure 4-16), but to contract intketn
Wisconsin and the southern Lower Peninsula of Mighjat least for the reference (370 ppm)

CO» concentration. This same pattern is seen for @@® &g/ha threshold. For the higher

threshold of 7000 kg/ha, and assuming the refer@&@econcentrations in the DSSAT

simulations, counties with projected yields, abtheethreshold are confined primarily to
southern Minnesota, similar to the spatial pattsen for the historical simulations. A larger
number of counties, including some counties inls@antral Wisconsin, east-central Michigan

and the Upper Peninsula of Michigan, have projegields above this threshold when the
elevated CQ levels were employed in the DSSAT simulations. lasieg the yield threshold to

8000 and 9000 kg/ha results in the projected ymlé smaller number of counties exceeding

the threshold, as expected, although the spatitdrpas more “scattered” compared to that for
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the historical simulations where counties with ggeéxceeding these high thresholds are

confined to primarily southern Minnesota (Figur&@)-

g

<fFr
S S
:='-'-':-.*=' /

Yield of Threshold
B Higher [ |Lower | |NA

Figure 4-16. Potential expansion in major corn prtéidaaegions of the UGLR assessed by
categorizing the median simulated corn yields lerfuture period (2041-2070) is equal to or
higher than a given yield threshold, namely: 508M& (first row), 6000 (second row), 7000

(third row), 8000 (fourth row), and 9000 (fifth rpw

At the lowest threshold for soybean production (R@00 kg/ha), the spatial distribution

of counties with yields above the threshold is galtesimilar for the historical and mid-century

periods when the lower (370 ppm) €€oncentrations were used in the DSSAT simulations
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(Figure 4-17). At higher C&levels, projected yield for a larger number of mioes, particularly

in northwestern Minnesota and the northern Loweiri3eita of Michigan, exceeds the

threshold. As the yield threshold is increased3@®kg/ha and 3000 kg/ha, the number of

counties with projected yield above the threshagfuming a constant G@oncentration, is less

than that for the historical simulations, with larghanges particularly seen in southern

Michigan. In contrast, the spatial extent of coestivith projected yields above the threshold

expands northward for the two higher £€ncentrations. For the historical period, no ti&sn

have simulated yield that exceeds the two higheesholds (3500 and 4000 kg/ha), but future

projected yield is greater than these thresholdsdweral, spatially scattered, counties,

particularly for the simulations employing highéB6 ppm) CQ concentrations.
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Figure 4-17. As Figure 4-16, but for soybean
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4.4. Summary and Discussion

4.4.1. Spatial Variation of the Climate Change | mpact

This study was primarily purposed to evaluate thgeptial consequences of future
climate change on the spatial variability of conal doybean production in the UGLR by the mid
century (2041-2070) with reference to a historpaiiod (1971-2000) using DSSAT crop models
and climate scenarios obtained from NARCCAP simaoiteti The crop model simulations for the
historical period demonstrate that these modelslaleto capture spatial variations in planting
dates for corn and soybean in the UGLR, and thelated planting dates fell within the range of
usual planting dates reported by NASS-USDA (NASS-USIDH®7). The south-north gradient
of observed county-level yield also was well degilcby the DSSAT simulated yields.

The impacts of future climate change on corn amytbsan production in the UGLR are
complex considering non-linear interactions betwaehanging climate and crop growth and
development. The inclusion of eight climate scergderived from the NARCCAP simulations
(i.e., RCM-gcm “combinations”) results in a ranggossible climate change impacts for corn

and soybean planting date, time to maturity, evapgpiration and grain yield.

Assuming for the DSSAT simulations a constant le¥&©, at 370 ppm, planting dates

for corn were projected to occur earlier for coestiocated in the southern UGLR and slightly
later for counties in the northern UGLR for mostloé climate scenarios. In contrast, a west-to-
east gradient was found for soybean production eattier planting dates in the western UGLR
and later dates in the eastern UGLR. The chamgplsunting date may be associated with the
relative magnitude of warmer and wetter conditionjgcted across the region and possible
future changes in ‘optimum’ planting windows. A nioen of planting windows were used in the

DSSAT simulations, and the highest yield from théedént planting windows was selected for
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further assessment. This criterion assumed thdtighest yield reflected the ‘optimum’ planting
window (Thelen, 2007). Future climate change isquigd to moderately shorten time to
maturity (TMAT) for corn production but slightly deease TMAT for soybean production.
These findings likely reflect changes in the thdrtimae (i.e., growing degree days) for corn or
in photothermal period for soybean needed to cotmmep growth and development.

For corn production, the projected decrease ETarstiuthern UGLR, in contrast to a
projected increase in the northern UGLR, may réfeshorter future TMAT. Theoretically, ET
will increase as temperature increases, but aesh®MAT will reduce the amount of time to
accumulate ET during the corn growing season.

For soybean production, only small changes in ETpasgected with no clear spatial
pattern. These small changes likely reflect opmpshanges in ET, precipitation and
temperature. For example, the HRM3-gfd| climatenac® suggests that a shorter TMAT,
warmer temperatures and drier conditions in Michigall result in lower ET. However, for
other parts of the study area the increasing teatper and wetter conditions associated with this
climate scenario result in a slightly higher fut&€, even though the crop growth period is
projected to be shorter.

A relatively moderate decrease in corn and saglyield is estimated for the majority of
counties located in the central and southern argasteas counties in the Upper Peninsula of
Michigan, northern Wisconsin and Minnesota will eBinfrom climate change. This result
supports and provides more spatial detail regarttiagpotential positive impacts of climate
change on crop yields as suggested by previougesttm a small number of northern locations

in the UGLR (e.g., Andresen et al., 2013; Tubiell@l., 2002). On the other hand, the projected
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moderate decrease in yields for the southern UGEBR occur due to a shorter TMAT resulting

from warmer conditions, even with wetter future dibions.

Elevated CQ concentrations are expected to affect the magaitdideasonal

evapotranspiration (ET) and grain yield. Increasd@@y levels ppm are expected to slightly

decrease ET for corn production; whereas the implaetevated CQis less for soybean

production. The reduction in ET for corn productistikely because a C4 crop is assumed to

have higher stomatal resistance than a C3 cropefRegeig and Iglesias, 1998; White and
Hoogenboom, 2011) under elevatedCThe higher stomatal resistance reduces the daily
transpiration rate, potentially leading to decrélasmasonal evapotranspiration.

Elevated atmospheric G@oncentrations are projected to benefit corn aythean

yield. Of the two crops, soybean (a C3 crop) appaarbenefit more from elevated g@an

corn (a C4 crop) perhaps because C3 crops havertpgiotosynthesis rates than C4 crops under

elevated CQ concentrations (Rosenzweig and Iglesias, 1998 dthtion, increased CQevels

may lead to increased radiation use efficiencyd8rcrops; whereas, elevated £Bvels have a

smaller effect on C4 crops (Stockle and Kemania@920T herefore, soybean production is
anticipated to benefit more from carbon fertilipatthan corn production. This potential benefit
from carbon fertilization on crop yield also hagbedentified by previous studies for the UGLR
(e.g., Andresen et al., 2013; Southworth et al.22@@uthworth et al., 2000). However, the

results presented here, especially for corn, sughasa moderate decrease (~-25%) in yield

may still occur by mid century in the southern UG&®en under elevated G@oncentrations.
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For corn, we also examined potential consequenckgwt climate change under the
highest (635 ppm) C&level to different cultivars (i.e., short and lIQrapnsidering that farmers

in the study region plant a mixture of differenttmars (Coulter et al., 2010b). The analysis for
the long season cultivar suggests that yield wdléase for almost all counties in the study area.
Relatively high percentage changes are projectethéonorthern UGLR where long season
varieties are currently not widely produced. Astfoe short season hybrid, projected changes are
similar for those the medium season cultivar wigld/increasing in the northern UGLR and a
slight yield decrease in the southern UGLR. Thesaelts strengthen previous analyses done by
Southworth et al. (2000) for a few locations in Mgdn and Wisconsin which reported that long
season cultivars will benefit more from future dit® change compared to short and medium
season cultivars likely due to a longer growingssean the future.

As mentioned above, an ensemble of climate saendarived from the NARCCAP
simulations with “combinations” of RCM and GCM mdsigvas used to evaluate the regional
impacts of climate change in the UGLR. When theidg GCM was held constant, the RCMs
were found to produce substantially different terapge and precipitation projections for the
UGLR, illustrating the importance of including mple RCMs to dynamically downscale GCMs
in an ensemble of future climate projections. Taaation of regional climate conditions
projected by different RCMs nested within the s&»@M could happen because each RCM may
employ different grid structures, numerical schemsesface boundary conditions and model
parameterizations to solve sub-grid scale processes though the RCMs were developed

using the same fundamental conservation laws andrdic equations (Winkler et al., 2011).
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4.4.2. FutureYield Variability and the Potential Expansion in Production Region

This study revealed that regional variations ingeted maximum and minimum
temperature and precipitation by mid century likeill impact corn and soybean production in
the UGLR. The northern areas are projected to liteénain climate change; whereas a slight
decrease in crop yield may occur for the southezasy especially for corn yield, regardless of
carbon fertilization. This result to some extemirifies the regional variations associated with the
expectation of potential benefits from future climahange in higher latitude regions (Cline,
2007; Fischer et al., 2005; Jaggard et al., 2010).

Furthermore, analysis of future yield variabilitysled on the coefficient of variation
(COV) suggests that the temporal variability ofrcgield will increase slightly for the southern
UGLR, particularly in Wisconsin and the Lower Penilasof Michigan, regardless of climate
scenario. For soybean, annual yield variabilitytfar southern and central counties, including

the current major production regions, is also etgubto increase in the future, regardless of

climate scenario and GQevel. As most of these regions have historiclally COV values

(<0.4), a slight increase may still result in “reaable” annual yield variability (<0.6).
Nonetheless, the southern areas of the UGLR I@lybe more vulnerable to yield variability
than at present.

Our analysis of the potential spatial shifts inpcpsoduction suggests that favorable

growing conditions and elevated g@oncentrations in the future may create an oppaytdor
growing corn and soybean in the northern UGLR the.Upper Peninsula of Michigan, and
northern Minnesota and Wisconsin, where historydétle production has occurred (Andresen

et al., 2013; Miller et al., 2005). However, grogiconditions will continue to remain favorable

within the current major crop production areashia southern UGLR.
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4.4.3. Limitations

As for other modeling studies, there are a numbsome limitations related to the
development of the climate scenarios and to moskiraptions. The future climate projections
were derived from a single emissions scenarig G@RES A2) as this is the only emissions

scenario employed in the NARCCAP simulations. Aliiflouwve attempted to overcome this

limitation by using two elevated C@&oncentrations for the future time slice to cagtilve

potential benefits of carbon fertilization, the wde single emissions scenario does not permit a
comparison of future yield under different emissi@cenarios which may also result in different
future climate conditions.

Furthermore, future daily climate series were oladity modifying daily observed
climate data (i.e., maximum and minimum temperatmd precipitation) with corresponding
monthly changes calculated from the NARCCAP simaoitest. Although this approach has been
regularly applied in climate impact assessmentsetnove systematic bias involved in future
climate simulations (Moriondo et al., 2011), it@s®s that the variability of the temperature and
precipitation daily series remain constant in tin@nly the magnitude of temperature and
precipitation is adjusted to reflect future cormhts.

The underlying assumptions of the crop models eyguldor the assessment also impose
limitations. The DSSAT models simulate non-lineaerattion between abiotic factors (i.e.
climate and soil condition) and crop growth proess§ he models do not simulate well pest and
disease infestations (Soussana et al., 2010) whashimerease under climate change
(Diffenbaugh et al., 2008; Luck et al., 2011) awddt include exposure to other factors
affecting yield variability such as economic comas (Kaufmann and Snell, 1997). Current

crop models also estimate the effects of carbdilifation based on experiments conducted in
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enclosed carbon chambers (Challinor et al., 2008)s, the models may overestimate the

benefits of elevated Croncentration (Long et al., 2006), as environmerdaditions and

applied agricultural management practices may @mite the crop response to elevateg CO

concentration (Rosenzweig and Tubiello, 2007). kangple, low soil nutrients and irrigation
may reduce the benefit of carbon fertilization ssalssed by many authors (e.g., Rosenzweig
and Tubiello, 2007; Tubiello and Ewert, 2002).

Additionally, except for planting date, farming nagement and technology (i.e.,
cultivar, row and spacing, and planting densityplayed for the DSSAT simulations are
assumed constant for each county in the futurel:Z2B¥0) period to isolate the consequences of
climate change on crop production. This assumpteglects that farmers may use different
farming practices in the future as farming manageraad agricultural technology evolve with

time (Egli, 2008).

45. Conclusion

Agricultural production has been identified as @ Kector susceptible to global climate
change, and changes in global crop productionchiillenge the future global food supply. This
study provides more detailed spatial informatiagareling potential regional climate change
impacts on crop production in a high latitude regiwhich generally are expected to benefit
from future climate change. The analysis suggéstisfuture climate change will alter planting
date, time to maturity, seasonal evapotranspiraiod grain yield of corn and soybean
production in the UGLR.

For corn production, the southern areas, i.e., tineent major production areas, may

experience earlier planting dates by mid centutyeneas slightly later planting dates may occur
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in the northern areas. For soybean production, téireeenarios derived from the majority of the
NARCCAP simulations suggest earlier planting dabesrfost counties in Minnesota and some
counties in Wisconsin and Michigan with an west-gaadient of changing planting dates from
earlier planting dates in the western UGLR and |pkenting dates in the eastern UGLR.
Warmer temperatures are expected to reduce timmatority for both crops in the majority
counties in the region, including in the major proton areas in the southern UGLR.

Seasonal evapotranspiration for corn productiohénsouthern UGLR is expected to
decrease in the future under warmer conditionssiplysbecause of a shorter time to maturity,

and increase in the northern UGLR. For soybean tamhy seasonal ET is projected to change
only slightly by the mid century. Furthermore, unttex assumption of a constant level ofCO

concentration, warmer conditions likely result liglstly decreased corn and soybean yield in the

southern UGLR, partly due to a shorter time to matuOn the other hand, favorable growing
conditions in the northern UGLR likely will incremasorn and soybean yield. Elevated,CO

concentrations also are anticipated to benefit greld and partially alleviate potential negative
impacts of climate change in the southern coungigigecially for soybean production.
Specifically for corn, we also found that a longsseacultivar is expected to benefit more from
climate change than medium and short season awltiva

It is important to note that the interpretatiorftire impacts varied somewhat
depending upon the NARCCAP simulations employecetive future climate projections. For
example, warmer and drier growing season conditionthe southern UGLR projected by
HRM3-gfdl will more adversely impact corn and sogbe/ield compared to the relatively mild
and wetter conditions projected by the other NAR®GAmulations (e.g. WRFG-ccsm and

WRFG-cgcm3). We also found that the utilizatiorddferent RCMs to downscale GCM output
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can introduce uncertainty into the impact assesgnreaddition to the uncertainty introduced by
the choice of GCM.

More favorable growing conditions in the north&lGLR likely will create an
opportunity to grow corn and soybean with relagMaiigh productivity more widely across the
study region. Interestingly, we did not observéi&t ®f major production regions to the north as
the major growing areas in the south are expeatstllt be productive in the future in spite of
the potential slight reduction in grain yield. leatl we observe an expansion of the crop
production in the future. However, farmers in thierent major production areas should be aware
of several potential negative impacts of futurenelie change, including a potential increase in
annual yield variability. The potential opportyndf the ‘new’ production regions in the
northern areas of the UGLR hints that further esqdion is needed. Further analysis that
employs more dynamic farming practices (Howden.e2807; Tubiello and Rosenzweig, 2008)

would be particularly useful.
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CHAPTER 5.
Development of Crop Yield Interdisciplinary Model for Regional Climate Change I mpact

Assessments. A Case Study for the Upper Great L akes Region of the United States

In collaboration with

Julie Winkler and Zhengfei Guan

5.1. Introduction

Crop production is susceptible to climate vari@piéind change as can be inferred from
the impacts of recent climatic trends on crop y{eld)., Kucharik and Serbin, 2008; Lobell et al.,
2011). The potential consequences of projecteddutlimate change on regional crop
production have been extensively studied aroundavidréd as reviewed by White et al. (2011a).
These efforts have focused on the impacts of céroaange on crop productivity which directly
influences future world food supply (e.g., Parraket 2005; Rosenzweig and Parry, 1994).

Ecophysiological models, commonly known as crop e®@White and Hoogenboom,
2011), are regularly employed for climate changpaot assessments as summarized by
previous reviews (e.g., Kang et al., 2009; Whitalgt2011a). Crop models utilize a set of
mathematical equations derived at a field-scalellevquantify non-linear interactions between
climate, soil, agronomic practices and crop groawill development. Thus, crop models
simulate, although imperfectly, the biophysicab@sses of a particular crop to environmental
changes at a particular location (Hoogenboom gP@04; Meinke et al., 2001). These models
also consider the effects of agronomic practices,(eultivar, planting dates, row and spacing)

on crop yield.
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A challenging issue in the application of crop mleder regional climate change impact
assessments is how to explicitly include the impaéipotential changes in regional farming
management associated with economic stressoranclusion of economic factors has been
recommended by the climate impact research and Imgd®mmmunity in recognition of the
significant contribution of economic factors to prgield variability (Challinor et al., 2009).
Unfortunately, crop models currently are not des@jto capture the effects of changes in
economic factors associated with farming managesett as the use of machinery, labor, and
pesticides that can influence crop production.

Taking into consideration the limitations of cropaels, Kaufmann and Snell (1997)
proposed an empirical model that integrates thputsitof crop models with economic
determinants to capture the consequences of edofityisal and socio-economic drivers on
crop yield. This ‘hybrid’ model was referred to Kgufmann and Snell as amterdisciplinary
model”. The authors developed an interdisciplinary mddelkorn yield by relating climate
variables for corn phenological stages, with thenahogical stages being estimated by a crop
model, representative economic variables (i.eglmase inputs and loan rate) and technical/scale
variables (i.e. the use of machinery and agricaltacreage). A more recent application of an
interdisciplinary model is the soybean yield modielveloped by Vera-Diaz et al. (2008) that
combines simulated yields from a crop model, ggaigalocation (i.e., latitude and longitude)
and economic variables (i.e., credit, transportt)do explain soybean yield spatial variability
in the Brazilian Amazon. Geographic location waduded to capture the effects of photoperiod
and environmental gradients on yield; the effe€tdimatic and edaphic conditions are captured
by simulated yields; and the economic variablegstdhe simulated yields to reflect the effects

of economic factors on observed soybean yield.
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This study proposes an alternative specificationrfeerdisciplinary models that is
derived from an asymmetric production function egppsed by Guan et al. (2006). The Guan et
al. model is essentially a modification of the ttiahal translog production function. The
uniqueness of the Guan et al. model compared tvaddional translog production function is
that the model specification distinguishes betweentypes of crop yield, namely: attainable
and actual yield. This classification differentgggeld on the basis of governing factors
(Rabbinge, 1993; vanlttersum and Rabbinge, 199aiable yield is governed by growth-
defining factors (i.e., plant characteristics, so#iation, and temperature) and growth-limiting
factors (i.e., nutrients and water). Actual yidlectuates following growth-reducing factors such
as weeds, pests, and diseases, in addition tadhelgdefining and the growth-limiting factors
Guan et al. used growth inputs (i.e., land, sesdlizer, and water) and dummy variables (farm
and year dummy) to represent growth environmeat, fiarm and weather condition) to estimate
attainable yield and facilitating inputs (i.e., ¢apcapital, and pesticides) to adjust the attdaab
yield to estimate actual yield. Although, a tragspyoduction function such as the Guan et al.
model offers an advantage to simulate the effegb®ssible changes in farming management
strategies on crop productivity, the use of dumrmasgiables prevent the application of Guan et al.
model for climate change impact assessments. Tloelndeveloped here replaces the attainable
yield component of the Guan et al. model with seed yield, as the crop model can better
capture the effect of climate on yield comparethouse of dummy variables by Guan et al. The
interdisciplinary model is developed to estimatarntg-level corn yield in the Upper Great
Lakes Region (UGLR) of the United States. This regsoselected as agriculture is considered
as one of key economic activities in the UGLR, aath is the major agricultural commodity

(Hatfield, 2012; Niyogi and Mishra, 2013; Safir & 2008).
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Future climate change is expected to impact regmra production in the UGLR (e.qg.,
Andresen et al., 2013; Southworth et al., 2000). elew, the effects of possible changes in
economic factors have not been included in theipusvassessments. Thus, we also demonstrate
the potential application of the interdisciplinanpdel for climate change impact assessments.
The use of the interdisciplinary model is expedtedrovide a better interpretation of the
potential future impacts of climate change on gropduction compared to the use of crop

simulation models alone.

5.2. Materials and Methods

5.2.1. Study Area

The Upper Great Lakes Region (UGLR), consistinthefstates of Michigan, Minnesota
and Wisconsin is located in the United States MidWlegure 5-1) The southern and central
UGLR is part of the US Corn Belt (Aref and Pike, 839and the states of Michigan, Wisconsin

and Minnesota rank number 11th, 10th and 4th fan pooduction in the nation, respectively.
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Figure 5-1. Location of the Upper Great Lakes Region
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5.2.2. Model Specification

The asymmetric framework proposed by Guan et BDg2 distinguishes between two
broad categories of agronomic inputs. Pesticidésrland capital, which are required to create
favorable conditions for farming activities, arasdified asacilitating inputs. On the other hand,
factors that affect plant biophysical processeshss land, seed, nutrients, and water, are
grouped agrowth inputs (Guan et al., 2006). Based on these classificgtibiesmodel is

represented as (Guan et al., 2006, p. 206),

y=G(X1,X2,X3,ME)* F(z1,25,23) (Eq.5-1)
where, y is crop-yieldx1, xo, X3 andh are growth inputs (i.e., land, seed, fertilizer] avater);

71, 2o, andzgz are facilitating inputs (i.e., labor, capital, gmekticides)E represents the growth

environment (i.e., dummy variables to capture déifees in biophysical condition and
management across farms and interannual variatioyield due to varying weather conditions);
G(+) defines attainable yield; aiq-) is a scaling function that has a value fronozerone.

For the modified model proposed hef@(-) in Eq.5-1 is replaced with estimated yield (ya)
obtained from simulations of the CERES-Maize modedrop model including in the Decision
Support System for Agrotechnology Transfer (DSSATIj.agronomic practices are held
constant across space and time for the CERES-Maiagdations, the farm dummy variable of
the E term is no longer needed, and if temporahbdity is assumed to be smaller than spatial
variability the year dummy can also be omitted.

The scaling functiofir(-)can be estimated following Guan et al. (200@Q8):

F(z1,22,23) =exp[-(Bp + 121 + Boz2 + Baz3) ] (Eq.5-2)
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where g is interceptf1, B2, andf3 are coefficients for labor, capital, and pestiside
This function ensures that values of the scaligpfarange from zero to on&q.5-1 can now be

rewritten as

y=yas expl-(Bo + Biza + Boz + Baz3) ] (Eq.5-3)
Further modifications can facilitate the applicatairthis model to county-level yield. If
crop production is defined as crop yield multipll®darea, county-level economic costs can be

used instead of unit costs (costs per unit ared)Eap5-3 can be rewritten as:.
y * area= ya* area exp[-(Bo + 12y + BoZ2 + BaZ3)*]* exp@) (Eq.5-4)
where, 4, Zp, and 4 are the county-level costs of facilitating inpstsh as chemicals,

machinery, and labor; e is the error term. The t&mraa” on the left hand side of the equation

can be removed by applying the natural logarithma, Bq.5-4 can be written as:

In(ylya)=-(Bo + BiZy + BoZs + PaZ3)” +e (Eq.5-5)
The model predictors (i.e., the Z terms) can beraktd to include additional variables
beyond the three terms (chemicals, machinery dmat)ariginally employed by Guan et al.

(2006), in order to incorporate additional factiitg factors that are not captured in the crop

model simulations. For this study, total cost ofifieer (Z4) and total area of agricultural land

(Zs) in each county in the UGLR are added to Eq.5-5.
In(ylya)=-(Bo + BiZy + PaZa + PaZs + PaZs + PsZs)’ +e (Eq.5-6)

Fertilizer cost was added to capture spatial angoeah variations in the amount of fertilizer
applied across the UGLR. Although, DSSAT allows useiiaclude fertilizer in the crop

simulations, obtaining fertilizer information, imling the type of fertilizer application (e.g.,
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nitrogen, potassium), for all counties and yeadiffecult. Additionally, non-limiting nutrients

are often assumed for DSSAT simulations in ordesdtaie the consequences of climate
fluctuations on yield (e.g., Andresen et al., 2004 his study, we also simulated DSSAT vyields
under the assumption of non-limiting nutrients. Eneount of agricultural land was added to
capture variations by county of the amount of laadilable or suitable for agriculture. The
inclusion of this term is based in part on Kaufmand Snell’'s (1997) assertion that crop
models have a limited ability to simulate the sefects that the amount of land available for
agriculture may have on the choice of farming managnt practices.

The final form of the model, with “*” indicatingsémated terms is:

§=yas expl-(fo + iZy + BoZs + B3Z3 + 4Z4 + PsZ5) ] (Eq.5-7)

5.2.3. Model I mplementation

An overview of the data preparation and model im@station steps is shown in Figure

5.2 and discussed in more detail below.

Physical environment: Simulated Observed
temperature, solar vield county-

radiation, precipitation, level yielc
soil information

\ Ratio of Observed to

; . County level
DSSAT simulation | Simulated Yield

. economic cost:
at the county level Predicanc /' chemicals,

: . machinery,
Non-linear regression
. , labor, and
analysis to estimate

the model coefficients fertilizer

Yield estimation _><Est|mated counta

level yielc

Predictor

Farming
management an
technology

Figure 5-2. Components of the interdisciplinary mode
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5.2.4. Economic Data

County-level economic data were obtained from Q@tMs 2.0 provided by the National
Agriculture Statistics Service, United States Depantnoé Agriculture (NASS-USDA, 2011).
This database includes information from the agtical censuses conducted in 1997, 2002 and
2007. We extracted from Quick Stats 2.0. total goeid and planted area; total costs of
chemicals, machinery, labor (contract/hire), antllizers; and economic price indices with
based year of 1990-1992 for each economic variablé agricultural land area per county.

County-level economic data reported by the NASS-USIbR\aggregated across all
major crops within a county. The proportion of tatast for each economic variable specific to
corn was roughly estimated following the procedursed by Guan et al. (2006) to estimate the
share of farm-level labor and capital for indivitlaeops. Itemized production costs by major
crop for the three analysis years (1997, 2002,280F) published by the Economic Research
Service — United States Department of AgricultureSEHRSDA, 2011) for the three ERS-USDA
farm resource regions encompassing the UGLR (seed-t33) were employed to calculate the
total cost proportion for corn production. Basedptanted area, six out of the ten crops included
for the farm resource regions were considered tmé&jer crops in the UGLR. These crops are

barley, oats, wheat, sugar beets, corn, and soybHam total cost for each economic variable

(i.e., chemicals, machinery, labor and fertilizegs estimated by multiplying unit co'sb;/ the
county-level planted area for each of the six majops with detail procedure of the calculation

is explained below.
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Figure 5-3. The United States farm resource regised to calculate the share of production
costs for corn. Data Source: the Economic Reseansiic8e- United States Department of

Agriculture (ERS-USDA, 2011).

Each county within a United States farm resourceregas assumed to have the same
unit cost for a particular crop (PCAKj, where k rsfeo crop type and j to the U.S. farm resource
region). PCAkj was multiplied by the total planteeéafor a particular crop in each county to
estimate the total costs for that crop by coun®Qki where i refers to county). Next, the total
costs (TPCki) for the six major crops were totagding the total costs by county (TPCi). The
proportion (Ski) by county of an economic cost (iclemicals, machinery, labor and fertilizer)
was calculated by dividing TPCki by TPCi. The caltiolas were performed separately for each
analysis year (i.e, 1997, 2002, and 2007) anddohe@&conomic variable (i.e., chemicals,
machinery, labor and fertilizer). Estimated Ski earspatially and temporally, in response to

variations in planted area by crop and year. Thienation procedure is summarized as:

TPCKi = AIk*PCAK] (Eq.5-8)

141



where, PCAKj is the unit cost of an economic vagafle., chemicals, machinery, labor and
fertilizer) for crop k in NASS-region j, Aik is thiotal planted area of crop k for county i, and

TPCki is the total cost of an economic variabled@p k at county i.

Ski = TPCKi/TPCi (Eq.5-9)
where, Ski is the proportion of an economic variéerop k at county i, TPCi is the total costs

of an economic variable for all major crops by dyun

5.2.5. Observed Yield

Observed county-level corn yield was standardizedibiding total corn production by
total area planted to corn. We chose to use ttaakg@d area instead of harvested area as the
denominator because, especially in years with enuiiental stress (i.e., extreme weather
conditions), some of the planted area is ofterhaotested which inflates the standardized yield
and reduces the spatial and temporal variatioggeid.

Temporal trends in the standardized observed cdeng} yields were removed so that
the observed yield is comparable with simulatedtyi@s suggested by previous studies (e.g.,
Andresen et al., 2001; Jagtap and Jones, 2002 arfadvnent in farming practices and
technology, such as new cultivars and pest manageswstantially contribute to yield
increases with time (Egli, 2008). The observeddgdtom 1990 through 2008 were detrended
separately by county following the procedure amgpbg Tannura et al. (2008). The linear trend
between observed yield as the predictand and eidregpredictor was calculated and used to
adjust observed yields to a base year of 1990,echas it corresponds to the time of the
economic indices (see above). The detrended gdewetl observed yields for 1997, 2002, and

2007 were extracted for the model development.
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5.2.6. Crop Model Simulation

The CERES-Maize model included in DSSAT version #édgenboom et al., 2010)
was used to simulate corn grain yield for all UGtdRinties. The CERES family has been
implemented worldwide to simulate crop responsesntoronmental changes as summarized by
Jones et al. (2003) and specifically to climatengfeaas reviewed by White et al. (2011a). Data
inputs required for the model simulations are ctenaariables, soil information, and farming
practices. The primary required climate varialslesdaily solar radiation, maximum and
minimum air temperature, and precipitation. Soibdatludes general physical soil properties
(e.g., soil texture, soil classification) and laggecific soil information (e.g., soil fertility,
drainage upper and lower limit). Farming practicedude agronomic practices such as crop
variety, row spacing, and planting date. The dagpgration for the DSSAT simulation
generally followed the procedures described inibiet&hapter 4 and summarized below.
DSSAT simulations were performed for the period 189P008, which encompasses the three
years (1997, 2002, and 2007) with available econalata. The year of 1990 was selected as
the beginning year for the simulations considethrgbase year of the economic indices used to

detrend the economic variables.

@ Climate data

Climate data (i.e., precipitation and maximum andimum temperature) was obtained
from 36 representative climate stations (Figure &atn the United States Historical Climate
Network-USHCN (Menne et al., 2012b; Menne et alQ®0These representative stations were
selected and assigned to individual counties viighassistance of a climate regionalization that
grouped USHCN stations based on their deviations tiee regionally-averaged annual cycle of

precipitation and maximum and minimum temperataesz (Chapter 2).
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Figure 5-4. The representative climate stations dagd) assigned to the UGLR counties for the
interdisciplinary model development. The colorsi@atke the counties assigned with the same

representative climate station.

One criterion in the selection of the represengasitations was a small amount of missing
observations. When missing observations did oectire time series of the representative
USHCN stations, “filled in” values were obtainedrfrahe lowa Environmental Mesonet (IEM)
network (IEM, 2013), either for the same statioriarra nearby station. . IEM recently published
temporally complete series many climate statiorthénMidwest including stations located in
Michigan, Wisconsin and Minnesota. IEM filled ingsing observations using an inverse
distance interpolation applied to climate data flN@EP Stage IV precipitation, airport weather
data (ASOS/AWOS), and available NWS COOP reports (D2&A3, personal communication).

Daily solar radiation, an important variable foetDSSAT simulation but not recorded
by the climate stations, was estimated using thet idtial. (1998) mechanistic radiation model,

parameterized using concurrent observations oy gagximum and minimum temperatures,
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precipitation and solar radiation for 1990-20081ahcock, Wisconsin, located roughly in the
center site of the UGLR. The mechanistic radiatimdel was selected to estimate solar
radiation as a systematic evaluation of variouydalar radiation sources (Chapter 3)
suggested that the mechanistic approach is a vogitien for the generation of daily solar
radiation required for crop process models. Thehaeistic model utilizes latitude to estimate
daily global solar radiation, and an empirical tielaship derived from temperature and
precipitation is used to calculate atmosphericamattance (Hunt et al., 1998; Liu and Scott,

2001).

Atmospheric CQ concentrations for the DSSAT simulations were s86&tppm, the

COy, level for early 1990 as reported by the Intergowezntal Panel on Climate Change-Data

Distribution Center (IPCC-DDC, 2011).

(b) Soil Data

County-level soil data were extracted from the STAT@atabase published by the
Natural Resources Conservation Service of the UrState Department of Agriculture (NRCS-
USDA) (Soil Survey Staff, 2010) for the dominant sgpe in each county based on areal
coverage. Soil parameters included soil classiboaslope, drainage, runoff potential, the soll
texture, organic content, pH and cation exchangaaty. SBuild, a DSSAT supporting package
(Uryasev et al., 2003), was used to calculate §pesnil information, such as drainage upper
and lower limits which are not available in STATGI to prepare soil inputs for the DSSAT
simulations. Soil color and fertility, which are allsequired by SBuild, were obtained based on
soil texture and taxonomy published by the Natid®abperative Soil Survey, (NCSS, 2011) and

the generic soil database available in DSSAT.
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(© Cropping Scenarios

CERES-Maize was run under rainfed conditions usimgedium season corn cultivar.
The corn cultivar was selected after evaluatingoiiidormance of multiple corn cultivars
employed by previous studies within the UGLR (iAndresen et al., 2001; Southworth et al.,

2000) in capturing the spatial variability of obssat corn yield in (see Chapter 4). The cultivar

characteristics are presented in Table 5-1.

Table 5-1. Characteristics of medium season coaltivatused in CERES-Maize simulations

P1 degree days (baseOE{) from emergence to end juvenile phase 200
P2 photoperiod sensitivity (0-1) 0.3
P5 degree days (baseOE{) from silking to physiological maturity 800
G2 potential kernel number 700
G3 potential kernel growth rate (mg/d) 6.3
PHINT | degree days required for a leaf tip to emerge (pblgton interval) ?C d) |38.9

Planting densities were determined at 75 cm spaeuithsplant populations of 6

plants./m2 following Andresen et al. (2001). Planting date wagermined automatically using
the DSSAT automatic planting option that initiatesnping when, during a specified planting
window, the percent soil water and soil temperatuthe top 10 cm are at least 20% anc?(to
respectively. The simulations were started on \}airmséwith soil water initialized at the drained
upper limit. Five different planting windows werefided by offsetting the starting date of the

. . .?t 61 . . oSt 81 .
planting window by roughly 15 days from April 1o June 10 (i.e., April 1 -June 10, April
16th-June 181, May lst-June 18], May léh-June 18], and May 3ELh-June 181). The end date

of the planting window reflects the typical obsetvange of planting dates for corn in Michigan,
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Minnesota and Wisconsin (NASS-USDA, 1997). Harvestuag considered to occur when corn
reached physiological maturity. The highest ansuallated yields from the different planting
windows were selected for the development of therdisciplinary model. The DSSAT
simulations assumed no change in agronomic practicer time along with non-limiting

nutrient conditions.

(d) DSSAT Simulated Attainable Yield

As discussed above, the DSSAT simulations providestienates of “attainable yield”
for the interdisciplinary model development, an@iaable yield is assumed to be larger than
observed yield. When the simulated corn yieldsl@87, 2002 and 2007 are compared with the
observed yields reported by NASS-USDA, a modest naifi&® out of a total of 587) of
county-year combinations are seen to have obsetestigreater than simulated yield (Figure
5-5). No distinct spatial or temporal variatiorseen in the distribution of observed county
yields greater than observed yield. These diffezsrmould reflect a number of factors such as
the use of irrigation in some counties, higherdsedn soils within a county that are not
dominant in terms of areal coverage, the use ¢érdiht (e.g., long season) cultivars, uncertainty
in the county-level yield values, among others. Tbenty-year combinations with DSSAT
simulated yield less than observed yield were resddvom the development of the

interdisciplinary model.
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N Observed Yield

Yield (kg/ha) Yield Ratio

Il <=1500 . 14500 - 5500 M <=0.50 £11.25-1.50

B 1500 - 2500 15500 - 6500 M 0.50-0.75 W 1.50-1.75

B 2500 - 3500 EE0 6500 - 7500 [10.75-1.00 WM 1.75-2.00

B 3500 - 4500 BN >7500 . 11.00-1.25 1N >2.00
_INA

Figure 5-5. Observed yield (top), DSSAT simulatedd/ighiddle), and the ratio of simulated to

observed yield (bottom) for the UGLR for 1997, 2@G0®I 2007

5.2.7. Modd Estimation

The nonlinear least square (NLS) estimator was eyepldo solve Eqg.5-6 giving the
nonlinear form of the equation. Initial values loé tmodel coefficients are needed as NLS solves
nonlinear equations iteratively until convergersgachieved (Greene, 2003). To obtain initial
estimates, the error term in Equation 5-6 was asdumbe zero and multiple regression was

applied to solve the liner form of the equation.@q0).
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JIn(yaly)=Bo + B1Z1 + BoZ + PaZ3 + faZ 4 + BsZs (Eq.5-10)

Across-section data analysis (i.e., varied in tand place) is likely to introduce
heteorocedasticity as explained by Gujarati (2@0801). Although, heterocedasticity does not
affect the values of the model coefficients, ttandard errors and the t-statistics may be no
longer valid (Gujarati, 2003). To deal with thisug, heteroskedasticy consistent (HC)
estimators included in the sandwich package (Zi2906) of the R statistical software was
employed to obtain robust estimation of the stash@arors and the t-statistics.

Given the non-linear form of the interdisciplinanpdel, elasticity analysis was
performed to evaluate the contribution of each eodn predictor to the yield deviation assigned
as the predictand in Eq.5-6. First, the derivatbthe model (Eqg.5-6) with respect to each
economic predictor was obtained separately. Seamidg the derived models, the elasticity

values of each economic predictor were calculatédeamean values of each economic variable

(Zx). Below is the example of the elasticity calcuatfor pesticides (7. The standard errors

for the elasticity values were computed using thiéadmethod (Greene, 2003, p.70) available in

R statistical software.

dinylya), Zy _ ... T T 21
Z e 281 (Bo + 12y + BoZp + B3Z3 + BaZy + B5Zs) noiva)

(Eq. 5-11)

5.2.8. Application for a Climate Change I mpact Assessment

The interdisciplinary model is used to evaluateghmesitivity of future corn yield to
variations in facilitating inputs in addition togpected climate change. As an example, we

evaluated the sensitivity of yield changes by tha century (2041-2070) with respect to the

149



baseline period (1971-2000) to a reduction from“therent” investment in chemical
applications of 30%, 50% and 70%. The reductiomage was selected to represent possible
changes in the regulation of chemical applicatiortbe future. The values for the “current”
investment were obtained from the average valuesaifable economic data for the three
analysis years (i.e., 1997, 2002 and 2007). Attdeneorn yields for the future and the baseline
period by county were estimated from the DSSAT &atnons of corn yield by county using the
projected temperature and precipitation obtainethfclimate scenarios developed from the
North American Regional Climate Change AssessmegrBm (NARCCAP) simulations (see

Chapter 4 for more information on the climate scendevelopment and DSSAT simulations).
Atmospheric CQ concentration for the crop model simulations fothbthe future and the

baseline period was set constant at 370 ppm. Enable yield, we used the median values of
the 30-year future and baseline periods of simdlaten yields. Specifically for the future
period, the county-level median corn yields wertawted by averaging the simulated county-
level median corn yield obtained from the DSSATs @or all eight of the NARCCAP-derived

climate projections.

5.3. Reaults

The interdisciplinary model explains about 62% ield variability over the UGLR for
the three analysis years (Table 5-2). The modeficamnts for chemicals, labor, and fertilizer
have a negative sign, whereas the coefficientthivother predictors are positive. A negative
coefficient indicates that additional chemical&dg or fertilizer will decrease the deviation
between simulated DSSAT yields and observed yidhdsther words, observed yields will be
closer to DSSAT yields as chemical, labor or femeil inputs increase. The opposite occurs for

machinery and amount of agricultural land. Theteddg analysis suggests that labor contributes
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less to the yield deviations compared to the otisenomic variables, and the significant test for

the model coefficients shows that only the labamtes insignificant.

Table 5-2. Model coefficients and elasticity anayer the interdisciplinary model of county-
level corn yield for the UGLR parameterized usingikable data of 1997, 2002 and 2007

Model coefficients Elasticity Analysis
Uncorrected Corrected Uncorrected Correcte

Intercept 7.53E-01*** 7.53E-01***
Chemical -5.28E-08* -5.28E-08** -0.278* -0.278**
Machinery 4.76E-Q9*** 4.76E-Q9*** 0.468*** 0.468*
Labor -7.36E-09 -7.36E-09 -0.067 -0.067
Fertilizer -7.30E-08*** | -7.30E-08***| -0.661*** -0661***
Agricultural Land 9.21E-Q7*** 9.21E-07***| 0.224*** 0.224***
Rt 0.62

Note:*** gignificant at 1%, ** significant at 5%, *significant at 10%

The interdisciplinary model was applied to estintagespatial distribution of corn yield
for the UGLR using the simulated DSSAT yield andreamic inputs for 1997, 2002 and 2007
(Figure 5-6). Visual comparison suggests that #tenated yields obtained from the
interdisciplinary model better capture the spatield variability than the simulated DSSAT
yields for each of the three years (Figure 5-§)eeglly in the southern UGLR. Statistical
indices (Pearson’s product moment correlation eaefit, the Willmott Index of Agreement
(Willmott, 1981)) clarify that the estimated yieldbtained from the interdisciplinary model
better imitate the spatial pattern across the U@l do the simulated DSSAT yields. Also, the
deviations in the mean and standard deviation lEtvwedserved and estimated yield are smaller

for the interdisciplinary model than those for D8SAT simulation (Table 5-3).
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Figure 5-6. Comparison between observed county-iggkls (Obs), estimated yields obtained
from DSSAT simulation (DSSAT) and estimated yiebtisained from the interdisciplinary
model (INT) for 1997, 2002 and 2007. The three mayke last row (Data) display county-level

data employed for the model development.
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Table 5-3. Statistical comparison between obseyieds (Obs) and estimated yield (Est)
obtained from DSSAT simulation and the Interdisoi@ty model across the UGLR

DSSAT simulation The Interdisciplinary Model

Variable 1997 2002| 2007| 1997 2002 2007
Willmott Index 0.57 0.59 0.63 0.77 0.74 0.74
Correlation 0.40 0.39 0.44 0.62 0.61 0.61
Mean.Obs 5439.7 | 5471.9 | 4573.1 | 5439.7 | 5471.9 4573.1
Mean.Est 7832.7 6746.1| 5247.9| 5062.2| 4597.8] 3696.5
StDev.Obs. 1533.9 | 1556.1 | 1738.1 | 1533.9 | 1556.1 1738.1
StDev.Est. 2672.8 2081.4| 2350.0| 1908.3| 1686.7 1817.0

As noted above, the interdisciplinary model was aised to explore the potential

impacts of a reduction in the amount of chemicgliaption under projected climate change for
the mid century. Figure 5-7 shows that project@date change under the referencex(é&vel

(370 ppm) will slightly decrease corn yield for imajority UGLR counties, particularly those
located in the southern UGLR, and moderately (UpO8b) decrease corn yield in southern
Michigan. When chemical inputs are reduced, therdisciplinary model suggests that the
number of counties in the southern UGLR with a nmatie(25-50%) reduction in yield will

increase. A similar reduction is not seen in theleon UGLR (Figure 5-7).
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Figure 5-7. Sensitivity of yield changes under potgd climate change for the UGLR by the mid
century (2041-2070) to the reduction in the amaidmhemical application by 30% (second
row), 50% (third row) and 70% (fourth row). A CO@ncentration of 370 ppm was assumed for

the DSSAT simulations.

54. Summary and Discussion

The impacts of projected climate change on agucaltproduction have been
extensively studied during the past decade. Cropetsdhat are designed to operate at a field
scale are commonly applied to evaluate the compl@xicrop responses to future climate
change. A challenging issue associated with agphies of crop models, particularly at a
regional scale, is how to incorporate economicdiacthat reflect farming management but are

not included in the crop model simulation. Thisdst attempted to improve the utilization of a
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field-based crop model called CERES-Maize incorfaatan the DSSAT system to estimate
county-level corn yield for the Upper Great Lakegi®n (UGLR). The model was developed
by integrating simulated DSSAT yields and countyeleeconomic costs, namely: chemicals,
machinery, labor, and fertilizer, and the amouragricultural land per county.

An underlying assumption for the model developmetihat observed yields (i.e., actual
yield) should always be smaller than simulated DB$&Ids (i.e., attainable yield). The
reasoning behind this assumption is that growtlitilagy factors such as pest and disease that can
reduce crop yields are not included in the DSSAfusations. Simulated DSSAT yield primarily
is dictated by climatic conditions, i.e., solariedibn, temperature and precipitation, although
soil factors and some management practices (eap,aultivar) also are important. Although
simulated yields tended to be higher than obseyiadds for most counties and years, there were
a few counties during the three-year model devetoprperiod with observed yields higher than
simulated yields. In particular, DSSAT vyields f@® underestimated county yield in the Lower
Peninsula Michigan. The possible reason is thaDBSAT, which was run under the
assumption of rainfed conditions, may exacerbateeffect of the 2007 drought, considered as
one of the worst drought in the last two decadédiohigan (Andresen, 2008), on yield. On the
other hand, farmers may apply irrigation to comkidih the drought condition. Assumptions
made for agronomic practices used for the modalilsition also may contribute to the deviation
between simulated and observed yields as unifomonagnic practices was assumed for the
entire region. Smaller simulated yields than obsényields were also found for some years by
previous studies that applied crop models to siteutaize (e.g., Safir et al., 2008), soybean

and/or wheat (e.g., Alexandrov et al., 2002; JagtappJones, 2002) yield for a region.
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The model coefficients for the interdisciplinarpdel were estimated based on empirical
relationships of the deviation between simulatedidg and observed yields as the predictand and
county-level economic costs as the predictors.mbdel coefficients for chemicals, labor and
fertilizer have a negative sign which means thexetapositive impact on the estimated yield,
although labor contributes less to the estimateftiythan the other two economic variables. The
signs for chemicals and fertilizer are reasonablel@micals and fertilizer are applied to create
favorable growing conditions for corn growth andelepment. Chemicals (i.e., pesticide) are
applied to manage pest and disease infestationsahadecrease corn yields. Fertilizer is applied
to supply adequate nutrients to support crop gr@amthdevelopment. Consequently, application
of chemicals and fertilizer is expected to resukstimated yields (i.e., actual yield) closer to
simulated yields (i.e., attainable yield). For maelny and amount of agricultural land per
county, the signs of the coefficients are positiech means any increase in these two variables
results in larger deviations between simulateda@bskrved yields. Machinery, likely functions
as a capital stock in the interdisciplinary mogelrtially captures the scale of corn production,
as does the amount of agricultural land.

The estimated corn yields from the interdiscipljnarodel better capture the spatial
variability of observed county-level corn yieldtile UGLR compared to the simulated DSSAT
yields. For this application, the interdisciplinanpdel essentially “corrects”, using a scaling
factor, simulated yields so that they are closettserved yields. The interdisciplinary model
was also applied, as an example, to investigatedhsitivity of yield changes under projected
climate change to a reduction in chemical applicesi The results revealed that decreasing the
amount of chemicals applied to corn production egacerbate the potential negative impacts of

climate change on corn yields in the southern U®LHRch is currently the major production
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region. This consequence may happen because weoméitions in the future will shorten the
time to maturity which eventually will reduce therfd for grain yield production as discussed
in Chapter 4. Furthermore, the decrease in cherapalications will increase the yield deviation
between simulated DSSAT yields (i.e., attainabéddjiand actual yield, which means actual
grain yield will decrease as the chemical applaratiecreases. This example of applying the
interdisciplinary model for climate change impass@sments suggests that the interdisciplinary
model can provide an option for extending the dss@p model simulations for regional climate
change impact assessments. Using the interdisarglmodel, we can experiment with different
scenarios of possible changes in the county-les@h@mic costs, rather than assume, as is done
for most assessments, that the current farming geamant also applies to a future period

(Tubiello et al., 2002).

5.5. Conclusion

The impacts of climate change on crop yield hawenlextensively evaluated. In this
study, we developed an interdisciplinary model Hamean asymmetric production function that
distinguishes between attainable and actual yeeldadel county-level corn yield for the Upper
Great Lakes Region (UGLR). The model integrateentesl (i.e., actual yield) and simulated
(i.e., attainable) yields with county-level econoroosts. The model parameters were estimated
using a nonlinear least square (NLS) estimator.

This study shows that the interdisciplinary mod® eanprove upon the utilization of
simulations from crop models alone and can be tsesdaluate the sensitivity of crop yield to
possible changes in a crop production system &ctefl by changing county-level economic
costs. As an example, we applied the model to assssnple scenario of reduced chemical

applications for controlling pest and disease urderture perturbed climate. The analysis
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revealed that reduced chemical applications magezkate the potential negative impacts of

climate change on corn yields, especially in thelsern UGLR.

End Notes

' When a specific agricultural input cost was naikable for a resource region, the
corresponding input cost from the closest resotgg®n or an older regional classification was
used. The older classification of farm resourceareg)is found in the online documentation
provided by ERS-USDA (2011b).
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CHAPTER 6.

Summary and Conclusion

This study evaluates the potential impacts of gteje climate change for the mid
century (2041-2070) on county-level corn and sogh@aduction in the Upper Great Lakes
Region (UGLR) of the United States, encompassiegsthtes of Michigan, Wisconsin and
Minnesota. Future climate scenarios were deriveshfsimulations obtained from eight
“combinations” of RCMs and GCMs released by thethNldimerican Regional Climate Change
Assessment Program (NARCCAP). The CERES-Maize &®AQRGRO-Soybean models

included in DSSAT were employed to simulate cord soybean production for historical

(1971-2000) and future (2041-2070) periods.p@0Oncentrations for the crop simulations

included a reference level (370 ppm) and two ekv&QO concentrations (490 and 635 ppm).

A major challenge in the application of crop madglich as DSSAT is the availability of
daily climate data (e.g., temperature, precipitaaod solar radiation), due to the relatively
coarse and non-uniform spatial distribution of @teobserving stations. This study proposed
the utilization of a climate regionalization proceel to group climate stations into subregions
with similar characteristics, based on deviationsifthe regionally-averaged annual cycle of
maximum and minimum temperature and precipitafidre climate regionalization can be
applied to help choose representative climateostatior an impact assessment and to assign
these stations to individual counties based om gemgraphic proximity. This approach is an
improvement on previous assessments for regiomadudigire that selected a small number of
climate stations based on data availability orrtleaation with respect to major agricultural

production areas. A concern for these earlier st that the selected climate stations may not
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fully capture the spatial variability of climateraditions across the study region. Selecting
representative stations based on a climate regeatiain helps to ensure that the spatial
gradients of temperature and precipitation aclosstudy area are captured. Additionally, this
approach provides an alternative to the utilizabbgridded datasets for regional crop model
simulations. Gridded data need to be used cauyi@ssthey are extremely sensitive to the
density and inhomogeneities of the original obsgmlenate series.

To overcome the limited availability of daily soladiation, this study systematically
evaluated the sensitivity of simulated corn ancbeay yield to different solar radiation sources.
The sources considered included point-based radiastimates from empirical and mechanistic
models and a stochastic weather generator, angti@destimates obtained from available
satellite, reanalysis and regional climate modieldgd datasets. The comparison of different
daily solar radiation estimates provides a guidetmhelp select an appropriate daily solar
radiation source for a specific application. A mauistic radiation model that estimates daily
solar radiation based on maximum and minimum teatpes and precipitation as inputs was
selected for assessing the potential impact oféutlimate change on crop production in this
study. Comparison of simulated yields obtained fadreerved solar radiation and from
estimated daily solar radiation obtained from trechanistic model showed relatively small
yield differences. Additionally, the mechanistic debmaintains the daily relationships among
climate variables, is easily implemented for didfietrlocations in the UGLR, and can be readily
applied to estimate daily solar radiation for aifetperiod using projected maximum and
minimum temperature and precipitation as inputs.

A detailed spatial analysis of the potential climahange impacts on corn and soybean

production in the UGLR provides a more rigorouslesqtion of the spatial distribution of the
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potential impacts compared with previous studies émployed a limited locations to represent
the entire region. For the mid century, assumimgrédference C®level of 370 ppm for the

DSSAT simulations, the assessment revealed thatasai soybean yield for the northern part of
the study region likely will increase due to moagdrable growing season conditions than at

present; whereas a small reduction in yield duedborter time to maturity may occur in the

southern part which is currently the major cropduction area within the UGLR. Elevated €0

concentration is expected to benefit crop yieldtipalarly soybean yield.

In contrast to previous work, the climate changpadnt assessment conducted in this
dissertation employed an ensemble of climate chaogearios developed from simulations from
different RCM-GCM “combinations” where the RCMs warsed to downscale GCM output,
with lateral boundary conditions obtained from @€Ms. This assessment illustrates that the
utilization of different RCMs and/or GCMs providearying future climate projections and
implies that the direct use of outputs from a gngl few GCMs may not capture well the
uncertainty associated with climate change impss¢ssments. While recognizing that the
coarse resolution of GCMs is not sufficient to captregional climate variation, climate impact
researchers also need to be aware of the additimeairtainty introduced by the choice of RCMs
to dynamically downscale GCM outputs. The use oéasemble of GCMs and RCMs as
implemented by NARCCAP enhances our understanditigeauncertainty introduced into
climate impact assessments by the climate scenarios

This dissertation also contributes to an increasebbrstanding of the potential spatial
shifts in crop production and of future temporalgivariability. A potential northward shift in
crop production has been highlighted by previoudiss at the national scale for the United

States. The findings of this county-level analysdicate that more favorable growing conditions
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by the mid century likely will benefit crop prodim in the northern UGLR where some
counties may produce relatively high corn and saybgelds especially under elevated £O
concentrations. Crop yield in the southern UGLRkisly to remain high, partly due to the

positive impacts of elevated G@oncentrations. However, producers in these ateasld be

aware that future climate change may result in sama¢ increased temporal yield variability, as
indicated by a projected small increase in thefaent of variation by the mid century.

Although this dissertation uses the UGLR as a sas#y for evaluating the regional
impacts of climate change on crop production, @salits imply that the consequences of
projected climate change by the mid century fohHagitude regions can be complex. Climate
change cannot be expected to always benefit craguption in high latitude regions because of
the complexity of crop responses to spatial vametiin temperature and precipitation changes.
Regional soil variations also add to the complegitgrop responses to future climate change.

All climate impact assessments have limitationsl, #ax@ one presented in this dissertation
is no exception. One limitation is that the NARCE simulations employed a single emissions
scenario (i.e., SRES A2), thus the uncertaintyohiced by the choice of greenhouse gas
emissions scenario is not considered. Anotherditiaih is the use of the delta method to modify
daily climate observations (i.e., maximum and mumtemperature and precipitation) by
projected monthly changes calculated from the NAREGimulations, as future changes in
climate variability are not considered.

The underlying assumptions of the DSSAT simulati@ise need to be considered. The
simulations do not include the effects of pest disg¢ase infestations and exposure to other
factors affecting yield variability such as econorexposures. Additionally, the effects of

carbon fertilization are simulated under rainfedditons, whereas different environmental
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conditions and agricultural management practicel ss irrigation may influence the crop
response to elevated GO@oncentration. Except for planting date, farmingnagement and

technology (i.e., cultivar, row and spacing, arahpihg density) employed for DSSAT
simulations were held constant for the historical &uture periods. This allows the
consequences of climate change on crop produdciibe isolated, but is unrealistic in that
management and technology will continue to evoitvthe future with large impacts on crop
production.

A prototype interdisciplinary model that integragasiulated yields obtained from
DSSAT simulations with economic determinants was aleveloped to overcome some of the
limitations of the DSSAT simulations. This modelsyaurposed to explore the contribution of
economic determinants (i.e., costs of pesticidaeerfacals), machinery, labor and fertilizer) to
corn yield variability in the UGLR. The model waswloped using an asymmetric production
function that distinguishes two yield types, namalyainable and actual yield. The attainable
yield was obtained from DSSAT simulations, wheraetsially yield was acquired from reported
observed yields The interdisciplinary model waswaieo improve the utilization of the DSSAT
(i.e., CERES-Maize) simulations on a regional sealé offers an approach to evaluate not only
the potential impacts of climate exposures but atsmomic stresses on crop production.
Although, the interdisciplinary model was developady for corn yield in the UGLR, the
procedures can be applied to other crops and region

Overall, this study suggests that more favoralbdevang conditions will increase corn

and soybean yields in the northern UGLR especiailyer elevated Cfconcentrations. The

positive impacts of higher CQevels will also counteract, or at least minimigetential small
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reductions in crop yields projected for the southdGGLR. Given that the United States is one
of the major players in world grain markets, potrnthanges in corn and soybean production
across all parts of the United States, includirgUiGLR, will significantly influence future

world food supply. Indeed, additional grain prodaoctfrom high latitude locations such as the
northern UGLR can help offset the potential advargeacts of climate change on crop
production in low latitude regions. Hopefully, thissertation will stimulate further research that
applies or extends the methods used here in avddvise plausible adaptation strategies that

can minimize the risks and maximize the benefitsliohate change.
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