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ABSTRACT

A CONFORMAL TAGUCHI OPTIMIZED E-PATCH ANTENNA

By

Chad Michael Gardner

The performance of a cavity-backed E-patch antenna placed conformal to a cylin-

drical conducting surface is explored numerically using the finite element boundary

integral (FE-BI) method. From using rigorous full-wave simulations based on the

finite element method, the effects of curvature are assessed for such antenna charac-

teristics as bandwidth and impedance. The necessary changes to the patch geometry

to maintain an acceptable impedance match and a desired bandwidth for rectangu-

lar cavity-backed E-patch antennas are determined. Cylindrically conformal cavity-

backed E-patch antennas are simulated and perform well with many different cylinder

radii. A experimental cylindrical conformal cavity-backed E-patch antenna was built

to verify simulations and preformed well at the L1 and L2 frequencies. Radiation pat-

terns of both experimental and simulated cylindrically conformal cavity-back E-patch

antennas are analyzed and perform well.

Taguchi’s method of optimization is used to optimize |S11| of rectangular cavity-

backed E-patch antennas. Using Matlab and rigorous full-wave simulations based

on the finite element method in combination, the effects of having different fitness

functions, level differences, and input parameters in Taguchi’s method of optimization

are explored and determined.
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PREFACE

O Ye, who in some pretty little boat,
Eager to listen, have been following
Behind my ship, that singing sails along,

Turn back to look again upon your shores;
Do not put out to sea, lest peradventure,
In losing me, you might yourselves be lost.

The sea I sail has never yet been passed;
Minerva breathes, and pilots me Apollo,
And Muses nine point out to me the Bears

Ye other few who have the neck uplifted
Betimes to th’ bread of Angels upon which
One Liveth here and grows not sated by it

Well may you launch upon the deep salt-sea
Your vessel, Keeping still my wake before you
Upon the water that grows smooth again.

The divine comedy, In Pardiso Canto II Verses 1-15. Colonial Press, 1895.
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Chapter 1

Introduction

1.1 E-patch Background

E-patch antennas were introduced in [1] as a novel way to increase the bandwidth∗

of conventional rectangular patch antennas. Unlike some wider bandwidth patch

antennas and their configurations†, the E-patch is a single uniform patch that is easily

constructed. Figure 1.1 depicts the topology of the antenna. The patch dimensions

are denoted by L, W, h and the antenna is normal to the patch surface fed by a coaxial

probe at position (W − Xf , Yf ). To increase the antenna bandwidth, two parallel

slots are incorporated and positioned in vertical symmetry with respect to the feed

point. Due to the patch resembling the letter “E”, the name E-patch antenna is used.

To maintain vertical symmetry about the top and bottom of the patch, Yf must be

1
2L. The placement of the probe at Xf can affect the properties of the antenna and

is an essential parameter; however, it is not the focus of discussion for this thesis.

The choice of feeding the antenna at (W − Xf , Yf ), was chosen primarily to excite

Mode 2 of the E-patch antenna (discussed by the authors in [1]). Mode 1 and Mode

2 excitation is indicated using the black dotted lines in Figure 1.2. The operation of

∗Bandwidth is defined as the frequency span between -10 dB values of |S11|.
†Some additional patch antennas are discussed by researchers in [4], [5] and [6].
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Figure 1.1: E-patch topology from [1].
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the antenna using Mode 2 excitation is explained later. The slot length Ls, slot width

Ws, slot placement Ps, and dielectric height h are crucial to control the bandwidth of

the antenna. The slots of the E-patch antenna allow it to resonant at two frequencies,

and the bandwidth primarily is determined by the separation of those two frequencies.

Figure 1.3 is from [1] and shows two parallel circuits containing capacitors and

inductors. The parallel circuits of Figure 1.3 can be used to represent the transmis-

sion line resonant circuit model for E-patch antennas. The resonance frequency of a

parallel LC circuit is

f =
1

2π
√

LC
(1.1)

and can explain the existence of the two resonance frequencies. Assuming mode two

excitation, currents flow from the probe to the top and bottom edges of the patch.

Due to the slots, some currents travel a longer distance to reach the extreme edges

of the patch. This added distance that the current travels is modeled as a added

inductance ∆Ls in series with Ls. This added inductance forces the antenna to

resonate at a lower frequency. Current paths which aren’t detoured by the slots do

not have the additional inductance ∆Ls, and thus the antenna resonates at a higher

frequency because the inductance is lower in (1.1).

Controlling the inductance of the slots determined by Ps, Ws, and Ls specifies

where the two resonant frequencies of the antenna will be. Refer to Figure 1.4 for a

sample simulated E-patch frequency response. The dimensions for corresponding E-

patch are given in [1] and are in Table 1.1. Figure 1.4 was simulated with the Method

of Moments (MoM) simulator, Sonnet. The two resonance points of the antenna are

clearly visible at 2.3 GHz and 2.82 GHz.

Another parameter that affects the frequency response of the E-patch antenna is

the dielectric height, h. The resonance frequency for a cavity-model of a rectangular

3



slot

Ground plane

.

Mode 1
(Fudamental mode)

Probe 
placement

Mode 2

slot
Probe 
placement

.

Ground Plane

Figure 1.2: Field configurations (modes) of a E-patch antenna.
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transmission line model for the higher resonant frequency of an E-patch antenna.

5



patch antenna is

(fr)mnp =
1

2π
√

µε

√

(mπ

h

)2
+

(nπ

L

)2
+

(pπ

W

)2
. (1.2)

The values p, n, and m are the mode numbers for the cavity in the x, y, and z

directions respectively. The dielectric height of the antennas explored in this thesis

have insignificant contribution to equation (1.2) frequency of resonance since it is

sufficiently less then a wavelength so that the dominant mode has m = 0; however, the

dielectric h has a significant affect on the bandwidth of the antenna. The authors in [7]

explored how the bandwidth of a rectangular patch can increase up to 20% by varying

the height of patch antenna lying on top of a dielectric slab. The dielectric material

used for exploration in this thesis is air. Air substrates have the advantage that

the dielectric height is simple to vary, and as such is a viable solution to increase the

bandwidth of E-patch antennas. In addition, the bandwidth of a low-order microstrip

patch mode varies as 1√
εreff

when εreff is given by (2.1). Hence, εr = 1 will yield

the largest bandwidth.

Table 1.1: Dimensions for an E-patch example given in [1].

E-patch Dimension Value in mm
L 70
W 45
Xf 7

Yf 35

Ls 35
Ws 4
Ps 9
h 11

Other papers, such as [8], [9], [10], and [11], manipulate the E-patch topology

to obtain better antenna properties such as bandwidth, radiation pattern and S-

parameters. In particular, [11] gives empirical formulas for optimal (broadband op-

6



Figure 1.4: |S11| vs frequency plot of a E-patch antenna found using Sonnet.

eration) E-patch dimensions when a infinite ground plane is implemented. These

empirical formulas are

Ls = .39564λ0, Ws = .026336λ0, Ps = .051134λ0

h = .054557λ0, Xf = .025488λ0, Yf = .25λ0. (1.3)

The symbol λ0 refers to the center wavelength. The center wavelength is defined as

the wavelength in-between the two resonate wavelengths of the E-patch antenna. For

example, the center wavelength between 169.49 mm and 265.49 mm is 217.49 mm. In

[11] the authors reported that equations (1.3) yielded approximately a 40% increase

in bandwidth compared to a rectangular patch, an improvement of about 11% over

that given in [1]. For many E-patch antenna designs the equations (1.3) provide a

simple method for improving the frequency response of the antenna.

In [12] a Particle Swarm Optimization (PSO) was used to further increase the

7



bandwidth of the E-patch from 40% to 55%. In [9] the authors used capacitive

input probes to improve the input impedance of the antenna. The researchers in [13]

implemented a Genetic Algorithm (GA) to optimize the radiation pattern of the E-

patch antenna. Reference [10] documents methods to reduce the size of the E-patch

while maintaing working functionality at the two frequencies of interest. None of the

authors in [1], [4], [5], [11], [14], [12], [9], [13], and [10] explored how the antenna would

behave on a cylindrical curved surface, nor did they address how a cavity-backed E-

patch antenna would function. Airborne applications could benefit from exploring the

functionality and feasibility of a cavity-backed and cylindrically-conformal E-patch.

A goal of this thesis is to present simulated and experimental data of the antenna

properties of a cavity-backed and cylindrically-conformal E-patch antenna.

1.2 Background on Taguchi’s Method of Optimiza-

tion

Taguchi’s Method of optimization was developed by Dr. Genchi Taguchi as a way

of using statistics to design and improve quality in manufactured goods [15]. It is

a fractional factorial approach to optimization. Instead of exhausting all possible

combinations of parameters, a smaller number of the parameter combinations is used

to sample the entire exhaustive set. This fraction of possibilities achieves a comparable

outcome to the full factorial approach. In order to use Taguchi’s Method the concept

of Orthogonal Arrays (OAs) needs to be understood. OAs were introduced in the

1940s in a series of seminal papers [16], [17], and [18]. OAs provide a convenient

and orderly way to utilize the fractional factorial approach to optimization. An

Orthogonal Array is defined in Definition 1 [19].

Definition 1. Let S be a set of s symbols or levels. A matrix A, commonly called an

array, of N rows and k columns with entries from S is said to be an orthogonal array

8



with s levels and strength t (0≤t≤k) if in every N x t subarray of A, each t-tuple

based on S appears exactly the same number of times as any other t-tuple.

OAs are typically represented by the notation OA(N, k, s, t). In Table 1.2 is an

example of an OA with nine rows N , four columns k, three levels s, and a strength t

of two. Each parameter in this OA is selected from three numbers, e.g. s = (0,1,2).

Thus Table 1.2 is a 3-level OA. For example, If one forms a sub-array of any two

(strength t = 2) columns, one can see 9 possible combinations of rows: (0,0), (0,1),

(0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2). Each of these nine combinations appears

exactly the same times as in a row. If Table 1.2 were used in a optimization problem,

the four columns would represent four parameters that need optimization. Each level

number (0,1,2) corresponds to a variation in one of the parameters that is being

optimized. Every row corresponds to a combination of varying level values that affect

optimization. For example, the second row indicates that columns two and three take

on the value of level two; column one takes on the value of level one, and column four

takes on the value of level three. If one were to count all the possible combinations of

Table 1.2: An Orthogonal Array OA(9,4,3,2)

0 0 0 0
0 1 1 2
0 2 2 1
1 0 1 1
1 1 2 0
1 2 0 2
2 0 2 2
2 1 0 1
2 2 1 0

a problem with four parameters that had three different possibilities each, it would be

34 or 81 different combinations. Using Taguchi’s method and OAs, only nine different

experiments are carried out. Due to this being a fraction of the total combinations,

Taguchi’s Method has much to offer in terms of reducing the time and cost required

9



to run simulations and obtain results. Chapter 3 discusses Taguchi’s method and use

of OAs in more detail.

In [20] the authors discuss application of Taguchi’s Method to electromagenetics

(EM). The results and methods of [20] are expanded on in [3] and [21]. The researchers

in [20] and [21] address how to use Taguchi’s method for optimizing radiation patterns,

filter designs, and antenna factors in various EM problems. They do not discuss

explicitly the application to patch antennas. However, the researchers do provide

ample groundwork to create a Taguchi based optimizer for optimizing |S11| of an

antenna. Another goal of this thesis is to investigate Taguchi’s Method and apply it

to optimizing the E-patch antenna in both cavity-backed and cylindrically-conformal

implementations.
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Chapter 2

Conformal E-patch Antenna

2.1 Infinite ground plane simulations

As discussed in Chapter 1, other authors have looked into improving the E-patch

antenna parameters by using a variety of different methods. Most of these researchers

used infinite ground plane simulations for the E-patch. In order to better understand

how the E-patch antenna can be simulated, it would prove useful to try to replicate

some results in [1] and use the formulas in [11] to create a E-patch.

The MoM simulator Sonnet was used as a comparison simulation tool for the

simulations appearing in [1]. It is important to note that Sonnet uses a infinite

grounded slab for simulating antenna properties. Refer to Appendix A for step-by-

step directions of how to use Sonnet for E-patch antenna simulations. One will note

that the cell size is 1 mm by 1 mm in the Sonnet setup for this work. When Sonnet

incorporates E-patch antenna parameters, the dimensions of the metallic patches are

thus rounded to the nearest mm. Figure 2.1 shows the Sonnet simulation of the

second E-patch in [1]. The dimensions for the antenna used to generate Figure 2.1

are given in Table 2.1. In [1] the authors found that an antenna constructed using

the values in Table 2.1 resonated in their simulation at 2.12 GHz and 2.66 GHz. It is

11



Figure 2.1: Sonnet simulation frequency response of the second E-patch in [1] (L = 70
mm, W = 45 mm). Dimensions provided in Table 2.1.

clear in Figure 2.1 that the results are slightly different than in [1]. In Figure 2.1 the

resonant points are 2.30 GHz and 2.81 GHz; this is a difference of a bit less than 200

MHz from the results in [1]. Figure 2.2 shows the Sonnet simulation of the third E-

patch in [1]. The dimensions for the antenna used to generate Figure 2.2 are in Table

2.2. In [1] the authors found that the antenna constructed using Table 2.2 values

resonated in their simulation at 1.8 GHz and 2.3 GHz. Figure 2.2 shows the Sonnet

simulated resonant points are approximately 2 GHz and 2.6 GHz, a difference again

of about 200-300 MHz. With a 200 MHz shift in frequency noted, one can extrapolate

how an E-patch antenna designed in Sonnet would performed compared to E-patches

simulated in [1]. The 200 MHz shift in frequency maybe due to a different resolution

cell size between Sonnet and the MoM simulator in [1].

The L1 (1.57542 GHz) and L2 (1.2276 GHz) frequencies are used to communicate

12



Table 2.1: Geometry values for the second E-patch example given in [1].

E-patch Dimension Value in mm
L 70
W 45
Xf 7

Yf 35

Ls 35
Ws 4
Ps 9
h 11

Global Positioning System (GPS) signals. This thesis investigates the performance of

the E-patch antenna designed to operate at the frequencies at and between L1 and L2.

The authors in [1] primarily investigated the performance of an E-patch in the S-band

range of frequencies. An L-band E-patch antenna is designed starting from [1] with

the antenna dimensions modified so that the antenna resonates at L1 and L2. Refer

to Table 2.2 and Table 2.3. Table 2.3 values were generated by scaling according to

the first resonant frequency taking Table 2.2 values and multiplying them by the ratio

1.8
1.227 ≈ 1.4. Since given the same substrate and electrical thickness, the resonant

frequencies are primarily determined by the relevant geometric dimensions. Figure

2.3 shows a Sonnet simulation of a designed L-band E-patch using the values of Table

2.3.

It is clear that |S11| in Figure 2.3 is not the desired -10 dB or less at the L1 and

L2 frequencies. Instead of manipulating the dimensions of the antenna by trial and

error, one could use the empirical equations (1.3) in hopes of improving |S11|. If one

uses 214 mm (1.4 GHz frequency) as λo, the E-patch dimensions become those in

Table 2.4. The L and W values were determined using [22]

εreff =
εr + 1

2
+
εr − 1

2

[

1 + 12
h

W

]−1/2
(2.1)

13



Figure 2.2: Sonnet simulation frequency response of the third E-patch in [1] (L = 70
mm, W = 50 mm). Dimensions provided in Table 2.2.

Table 2.2: Geometry values for the third E-patch example given in [1].

E-patch Dimension Value in mm
L 70
W 50
Xf 6

Yf 35

Ls 40
Ws 6
Ps 10
h 15
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Figure 2.3: Sonnet simulation frequency response of a first designed L-band E-patch
(L = 98 mm, W = 75 mm). Dimensions provided in Table 2.3.

Table 2.3: Geometry values for the 40% enlarged E-patch dimensions.

E-patch Dimension Value in mm
L 98
W 75
Xf 8.4

Yf 49

Ls 56
Ws 8.4
Ps 14
h 21
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∆L = 0.412h

(

εreff + .3
)

(

W
h + 0.264

)

(

εreff − 0.258
)

(

W
h + .8

) (2.2)

W =
νo
2fr

√

2

εr + 1

L =
1

2fr
√
εreff

√
µoεo

− 2∆L (2.3)

where εr is the relative permittivity of the dielectric, µo is the permeability of free

space, εo is permittivity of free space, h is the height of the dielectric, fr is the

center frequency between the resonance points of the antenna, and νo is the speed of

light in a vacuum. Equations (2.1) - (2.3) are the typical equations used to design a

patch antenna with a microstrip line feed. Figure 2.4 shows the Sonnet simulation

of the E-patch designed using equations (1.3) and (2.1) - (2.3). The dimensions for

the antenna used to generate Figure 2.4 are given in Table 2.4∗. Figure 2.5 shows

the Sonnet simulation of the E-patch designed using equations 1.3 and the online

calculator found at [2]. The dimensions of the antenna used to generate Figure 2.5

are given in Table 2.5. The L and W values in Table 2.5 were chosen from [2]. The

probe placement for E-patch antennas is typically near the edge of the patch. To

provide a better input impedance match, the online calculator in [2] can estimate the

radiation edge impedance of a rectangular patch antenna. It was approximated that

a 50 Ω radiation edge impedance would yield a better input impedance match to a

E-patch antenna (assuming 50 Ω input impedance).

∗In Sonnet the values from Table 2.4 were rounded to the nearest mm except h, which was
rounded down to the nearest mm.
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Table 2.4: Geometry values for E-patch dimensions generated from equations (1.3)
and (2.1) - (2.3).

E-patch Dimension Value in mm
L 107.14
W 91.1731
Xf 5.4617

Yf 53.57

Ls 84.7800
Ws 5.6434
Ps 10.9573
h 11.6908

Figure 2.4: Sonnet simulation frequency response of the second designed L-band E-
patch (L = 107.14 mm, W = 91.1731 mm). Dimensions provided in Table 2.4.
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Figure 2.5: Sonnet simulation frequency response of the third designed L-band E-
patch (L = 142 mm, W = 90 mm). Dimensions provided in Table 2.5.

Table 2.5: Geometry values for E-patch dimensions generated from equations (1.3)
and [2].

E-patch Dimension Value in mm
L 142
W 90
Xf 5

Yf 71

Ls 85
Ws 6
Ps 11
h 11

18



2.2 K-brick simulations

K-brick is a finite-element boundary-integral (FE-BI) program developed by Professor

Leo Kempel at Michigan State University. K-brick simulates antenna characteristics

(radiation pattern, |S11|, TM modes, TE modes, etc.) for rectangular-cavity-backed

patch antennas. K-brick serves (in this thesis) as a comparison program to HFSS,

a general purpose finite element method simulation program (discussed in section

2.3). K-brick is a compiled Fortran program run within a Unix operating system.

Geometry and operating parameters are specified using an input text file (.txt) which

must be edited each time the program is executed. Appendix D contains a sample

input text file for K-brick and a start-up guide. Figure 2.6 is a depiction of a simulated

rectangular cavity-backed E-patch antenna in K-brick. Dimensions Cx, and Cy are

the length and width of the cavity and h is the depth of the cavity. Figure 2.7 shows

the top view of the cavity backed E-patch antenna with associated dimension labels†.

As discussed in [23], the procedure of formulating the FE-BI begins with a weak form

of the vector wave equation. Quoting from [23],

“The FE-BI formulation begins with the weak form of the vector wave

equation followed by specification of appropriate vector shape functions

and dyadic Greens function. The resulting FE-BI equations are then used

to solve for the total electric fields within the cavity and on the aperture.”

In [23], the authors discussed only circular cavity-backed patch antennas. K-brick was

written after the publication; however, it is functionally similar to programs devel-

oped by Prof Jian-Ming Jin and others. K-brick adheres to the same principles used

and discussed in [23], namely the formulation of the FE-BI equations in rectangular

coordinates.
†It should be noted that K-brick uses the center of the cavity when referencing the probe place-

ment. In other words, the probe is placed irrespective of the cell size of the cavity. This is discussed
in Appendix D.
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Figure 2.6: A typical rectangular cavity-backed E-patch antenna analyzed in K-brick.
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As a starting example for simulating an E-patch antenna in a cavity, a simple

rectangular patch antenna is simulated in K-brick. Figure 2.8 shows the top view

topology of a rectangular patch with associated dimension labels backed by a rectan-

gular. Table 2.6 contains the geometry values for the simulated rectangular cavity-

backed patch. Figure 2.9 depicts the K-brick simulated frequency response of the

cavity-backed rectangular patch antenna in a cavity. The response of the antenna

show in Figure 2.9 is what is excepted of a single rectangular cavity-backed patch

antenna.

In section 2.1 a simulated E-patch with the lowest |S11| at the L1 and L2 fre-

quencies was found in a Sonnet Simulation (no Taguchi method was used); refer back

to Figure 2.5 and Table 2.5. Figure 2.10 shows the frequency response of a antenna

with Table 2.7 values simulated in K-brick. Comparing Figure 2.10 and Figure 2.5 the

simulated frequency response was not the same. Figure 2.10 shows that the simulated

|S11| is not -10 dB and below for L1 or L2 frequencies. The large difference in the

|S11| of the Sonnet simulation and K-brick simulation is due to the presence of the

cavity in the K-brick simulation.

Table 2.6: Dimensions of a cavity-backed rectangular patch antenna. Values were
generated from a Taguchi optimization.

Dimension Value in mm
L 60
W 89
Xf 2.1

Yf 30

Cy 200
Cx 200
H 8.6

In the pursuit of a value of |S11| of -10 dB or below at the L1 and L2 frequencies,

a Matlab graphical user interface (GUI) was written to allow the user to specify a

range of E-patch dimensions to vary. Matlab generates an input file (K-brick .txt
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Figure 2.8: Top and side view of a rectangular patch backed by a rectangular cavity.
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Table 2.7: Dimensions of a cavity-backed E-patch antenna.

Dimension Value in mm
L 142
W 90
Xf 5

Yf 71

Ls 85
Ws 6
Ps 11
h 11

Cx 200
Cy 200

file) for each set of E-patch dimensions, executes K-brick, and places the results in

seven variables h, Ls, Ws, L, Xf , W , and Ps; Yf is always placed along the vertical

symmetry plane of the antenna. At the end of all of the programs run, the desired

output parameters (typically return loss) are written to an output text file. Figure

2.11 shows a screen capture of the GUI. Any or all of these variables may be varied

by specifying starting and ending values, and a step size. K-brick is executed for all

combinations of the parameters that are varied. Appendix F has the Matlab code

associated with this program. After a series of parameter runs, a simulated E-patch

antenna frequency response was found that has a -10 dB for |S11| at the L1 and L2

frequencies. The simulated frequency response of that E-patch is shown in Figure

2.12 and the antenna dimensions are provided in Table 2.8. However, this result is

still not optimal, as the |S11| between the frequencies 1.227 and 1.575 raises above

-10 dB. In section 3.3 a Taguchi based optimizer is used in conjunction with K-brick

to further improve the simulated frequency response of the cavity-backed E-patch

antenna.
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Figure 2.9: K-brick simulation frequency response of the cavity-backed rectangular
patch. Table 2.6 contains the dimension values.

Table 2.8: Dimensions of a cavity-backed E-patch antenna optimized using the GUI
Matlab K-brick interface.

Dimension Value in mm
L 101
W 88
Xf 6

Yf 50.5

Ls 75
Ws 5
Ps 9
h 13

Cx 200
Cy 200
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Figure 2.10: K-brick simulation frequency response of the E-patch antenna with ge-
ometry values given in Table 2.7.

Figure 2.11: Matlab GUI interface for varying the geometry of an E-patch antenna.
For interpretation of the references to color in this and all other figures, the reader is
referred to the electronic version of this thesis.
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Figure 2.12: K-brick simulation frequency response of an E-patch antenna with ge-
ometry values given in Table 2.8.

27



2.3 HFSS flat bottom cavity simulations

To begin the study of conforming the E-patch antenna to a cylinder, it would prove

useful to approximate how the curvature varies according to different cylinder radii.

Consider Figure 2.13, which shows a simple top down view of a cylinder with a triangle

inscribed inside of the circle. From Figure 2.13 the deflection d can be estimated.

Using Pythagoras’ theorem,

a2 + (
w

2
)
2

= (a + d)2. (2.4)

Then expanding out the squared terms gives

a2 +
w2

4
= a2 + 2ad + d2. (2.5)

Collecting terms and putting them on the left side of the equal sign gives

d2 + 2ad −
w2

4
= 0. (2.6)

Using the quadratic formula then gives

d = −a +

√

4a2 + w2

2
. (2.7)

Simplifying and bringing an a outside the square root produces

d = −a + a

√

1 +
w2

4a2 . (2.8)
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Figure 2.13: Curvature diagram.

Now, assuming that
(

w
2a

)2
! 1 and using the first two terms in the binomial expan-

sion of
√

1 + x ≈ 1 + x
2 , (2.8) becomes,

d ≈ −a + a

(

1 +
1

2

( w

2a

)2
)

. (2.9)

Simplifying (2.9) then gives

d ≈
1

8

w2

a
. (2.10)

Table 2.9 assumes that the cavity dimensions (Cx, Cy , and h) do not change and the

radius a is changing. From Table 2.9 one can note how the curvature of a rectangular

cavity-backed antenna depends on cylinder radius for a flat bottom cavity.

29



Table 2.9: Curvature deflection from using (2.10).

Radius of Cylinder a in cm Deflection d in cm
2000 .025
200 .25
100 .5
70 .714
50 1
25 2

High Frequency Structure Simulator (HFSS) was used to simulate the cylindrically

conformal cavity-backed E-patch antenna. HFSS provides E and H-fields, currents,

S-parameters and near and far radiated field simulation results. Table 2.10 contains

the settings used in the HFSS simulations. Using the standard cylindrical coordinate

system where ρ =
√

x2 + y2, φ = tan−1 y
x and z = z (x, y, and z are variables in

the rectangular coordinate system), one can develop a topology for the cylindrically

conformal cavity-backed E-patch antenna. Figure 2.14 shows a conceptual depiction

of a cavity-backed E-patch conformed to a cylinder. Figure 2.15 is a screen capture

of an cavity-backed E-patch conformed to a cylinder’s surface in HFSS. In order to

analyze how the curvature of the cylinder changes the antenna’s performance, as

compared to the planar cavity-backed case, the E-patch dimensions need to stay

consistent between both cases. Therefore, the width dimensions of the E-patch (W

and Ls) will be specified using φ, at a distance ρ from the z axis. Further, the arc

length along the circumference of the cylinder is

g = ρφ. (2.11)

The variable g in (2.11) is the E-patch width dimension W or Ls. The length dimen-

sions of the E-patch (L, Ws, and Ps) will be along the z axis. To keep the cavity

in the same configuration as the rectangular cavity-backed case, the dielectric h will
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be specified along ρ, Cx will be specified by a φ and Cy will be specified along the

z. The probe feed (Xf , Yf ) will be placed consistent with that of the E-patch. In

other words Xf will be an arc length adhering to (2.11) where g = Xf and Yf will

be specified along the z axis. In all HFSS simulations, the height of the cylinder is

fixed at 100 cm and the cavity dimensions, Cx and Cy, are both 200 mm.

Figure 2.16 shows the simulated frequency response of the cylindrically conformal

(100 cm radius) cavity-backed E-patch antenna. The E-patch antenna in Figure 2.16

has the same dimension values as the rectangular cavity case in Table 3.12. At a

radius of 100 cm, d in (2.10) is 0.5 cm. Figure 2.17 shows the simulated frequency

response of the cylindrically conformal (70 cm radius) cavity-backed E-patch antenna.

The E-patch antenna in Figure 2.17 has the same dimension values as the rectangular

cavity case in Table 3.12. At a radius of 70 cm, d in (2.10) is .714 cm. In Figure

2.18 the simulated frequency response of the cylindrically conformal (50 cm radius)

cavity-backed E-patch antenna is shown. The E-patch antenna in Figure 2.18 has the

same dimension values as the rectangular cavity case in Table 3.12. At a radius of 50

cm, d in (2.10) is 1 cm.

Table 2.10: HFSS settings for the cylindrically conformal cavity-backed E-patch an-
tenna.

HFSS setting HFSS setting value(s)
Frequency of solving 1.6 GHz

Adaptive passes 7
Maximum Delta S .01

Sweep Type Fast
Frequency Set up linear step 1 to 2 GHz step size .02

Initial mesh options do lambda refinement .3
Solution Options First order

Excitation Waveport at the coaxial probe feed
Port Renormalization 50 Ω

Deembed setting checked -35 mm

Figure 2.19 contains all frequency response data in Figures 2.16-2.18 and Figure
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Figure 2.14: A conceptual depiction of an cavity-backed E-patch conformed to a
cylinder. Depicted cavity and E-patch dimensions are not to scale.
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Figure 2.15: HFSS screen capture of an cylindrically conformal cavity backed E-patch
antenna.

3.10. Using Figure 2.19 to compare frequency responses of different E-patch antennas

on different radii of cylinders, a trend is noted for the flat bottom cavity. As the

radius ρ is increased, |S11| decreases for the lower resonant frequency and increases

for the higher resonance frequency. In addition the higher resonance frequency has

shifted upwards in frequency. These differences in |S11| versus frequency might be

due to the mode two resonance point being altered by curvature of the cylinder. With

the exception of the 50 cm radius, at the L1 and L2 frequencies |S11| is less then -10

dB. For the 50 cm radius cylinder case, |S11| at the L2 frequency is approximately

-9 dB, and is less than -10 dB at the L1 frequency.

2.4 HFSS cylindrically conformal cavity simulations

Refer to Figure 2.20 and Figure 2.21 for depictions of the E-patch antenna and as-

sociated cavity conformed to the surface of a cylinder. In [24] the authors discussed

conforming a rectangular patch antenna to the surface of a cylinder. The authors in
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Table 2.11: Dimensions and probe placement of a cylindrically conformal cavity-
backed E-patch antenna.

Dimensions Value in mm
L 96
W 83
Xf 37.5

Yf 48

Ls 65
Ws 7
Ps 13
h 15.6

Cx 200
Cy 200
ρ 1000

Figure 2.16: Simulated frequency response of an cylindrically conformal cavity-backed
E-patch antenna (ρ = 100 cm). Dimensions provided in Table 2.11.
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Table 2.12: Dimensions and probe placement of a cylindrically conformal cavity-
backed E-patch antenna.

Dimensions Value in mm
L 96
W 83
Xf 37.5

Yf 48

Ls 65
Ws 7
Ps 13
h 15.6

Cx 200
Cy 200
ρ 700

Figure 2.17: Simulated frequency response of an cylindrically conformal cavity-backed
E-patch antenna(ρ = 70 cm). Dimensions provided in Table 2.12.
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Table 2.13: Dimensions and probe placement of a cylindrically conformal cavity-
backed E-patch antenna.

Dimensions Value in mm
L 96
W 83
Xf 37.5

Yf 48

Ls 65
Ws 7
Ps 13
h 15.6

Cx 200
Cy 200
ρ 500

Figure 2.18: Simulated frequency response of an cylindrically conformal cavity-backed
E-patch antenna (ρ = 50 cm). Dimensions provided in Table 2.13.
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Figure 2.19: Simulated frequency responses of cylindrically conformal and rectangular
cavity-backed E-patch antennas. Dimensions provided in Tables 2.11 - 2.13 and 3.12.
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[24] did not discuss cavity-backed scenarios and assumed a finite dielectric beneath

the surface of the patch with a free space air dielectric surrounding the patch and

corresponding grounded cylinder. However, the authors in [24]did provide data for

insight into the effect of curvature on patch antennas. The effect of conforming a

patch antenna to a cylinder was to produce a broader radiation pattern and larger

bandwidth for the TM01 mode. As discussed in section 2.3, HFSS provides E and H-

fields, currents, S-parameters and near and far radiated field simulation results. HFSS

is used to provide |S11| for the cylindrically conformal cavity-backed E-patch antenna

for the conformed cavity case. Figures 2.22 and 2.23 show some screen captures of

the simulations from HFSS.

The HFSS settings for the simulations involving the cylindrically conformal cavity-

backed E-patch antenna are listed in Table 2.14. All simulations were done in a driven

set-up.

Table 2.14: HFSS settings for the cylindrically conformal cavity-backed E-patch an-
tenna.

HFSS setting HFSS setting value(s)
Frequency of solving 1.6 GHz

Adaptive passes 7
Maximum Delta S .01

Sweep Type Fast
Frequency Set up linear step 1 to 2 GHz step size .02

Initial mesh options do lambda refinement .3
Solution Options First order

Excitation Waveport at the coaxial probe feed
Port Renormalization 50 Ω

Deembed setting checked -35 mm

Figure 2.24 shows the simulated frequency response of the cylindrically conformal

(100 cm radius) cavity-backed E-patch antenna. The E-patch antenna in Figure 2.24

has the same dimension values as the rectangular cavity case in Table 3.12. Figure

2.25 shows the simulated frequency response of the cylindrically conformal (70 cm
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radius) cavity-backed E-patch antenna. The E-patch antenna in Figure 2.25 has

the same dimension values as the rectangular cavity case in Table 3.12. In Figure

2.26 the simulated frequency response of the cylindrically conformal (50 cm radius)

cavity-backed E-patch antenna is shown. The E-patch antenna in Figure 2.26 has

the same dimension values as the rectangular cavity case in Table 3.12. In Figure

2.27 the simulated frequency response of the cylindrically conformal (25 cm radius)

cavity-backed E-patch antenna is shown. The E-patch antenna in Figure 2.27 has

the same dimension values as the rectangular cavity case in Table 3.12. In Figure

2.28 the simulated frequency response of the cylindrically conformal (15.4 cm radius)

cavity-backed E-patch antenna is shown. The E-patch antenna in Figure 2.28 has the

same dimension values as the rectangular cavity case in Table 3.12.

Table 2.15: Dimensions and probe placement of a cylindrically conformal cavity-
backed E-patch antenna.

Dimensions Value in mm
L 96
W 83
Xf 37.5

Yf 48

Ls 65
Ws 7
Ps 13
h 15.6

Cx 200
Cy 200
ρ 250

Figure 2.29 contains all frequency response data in Figures 2.24-2.28, and 4.11.

Using Figure 2.29 to compare frequency responses of E-patch antennas on different

radii of cylinders, a trend is noted. As the radius ρ is decreased, |S11| stays ap-

proximately the same for the lower resonant frequency and decreases for the higher

resonance frequency. In addition the higher resonance frequency has shifted lower in
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Table 2.16: Dimensions and probe placement of a cylindrically conformal cavity-
backed E-patch antenna.

Dimensions Value in mm
L 96
W 83
Xf 37.5

Yf 48

Ls 65
Ws 7
Ps 13
h 15.6

Cx 200
Cy 200
ρ 154

frequency as the radius decreases. Also, bandwidth enlarges as the radius decreases.

Notably, the combined first and second resonance bandwidth for the 100 cm case is

245 MHz (-10 dB or lower at 1245 MHz to 1330 MHz and 1590 MHz to 1750 MHz)

while the bandwidth for the 15.4 cm case is 320 MHz (-10 dB or lower at 1250 MHz

to 1340 MHz and 1520 MHz to 1750 MHz). At 50, 25, and 15.4 cm radius, the L2

frequencies |S11| is less then -10 dB. The L1 frequency stays approximately -9 dB for

all the cases. These differences in |S11| versus frequency might be due to the mode

two resonance point being altered by curvature of the cylinder.
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Figure 2.20: An angled-view conceptual depiction of the E-patch antenna conformed
to the surface of a cylinder with a radius ρ.
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Figure 2.21: A 3-view depiction of the E-patch antenna conformed to the surface of
cylinder.
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Figure 2.22: An screen capture of the cylindrically conformal cavity-backed E-patch
antenna in HFSS.
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Figure 2.23: An closer view screen capture of the cylindrically conformal cavity-
backed E-patch antenna in HFSS.
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Figure 2.24: Simulated frequency response of a cylindrically conformal cavity-backed
E-patch antenna (ρ = 100 cm). Dimensions provided in Table 2.11.
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Figure 2.25: Simulated frequency response of a cylindrically conformal cavity-backed
E-patch antenna(ρ = 70 cm). Dimensions provided in Table 2.12.
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Figure 2.26: Simulated frequency response of a cylindrically conformal cavity-backed
E-patch antenna (ρ = 50 cm). Dimensions provided in Table 2.13.
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Figure 2.27: Simulated frequency response of a cylindrically conformal cavity-backed
E-patch antenna (ρ = 25 cm). Dimensions provided in Table 2.15.
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Figure 2.28: Simulated frequency response of a cylindrically conformal cavity-backed
E-patch antenna (ρ = 15.4 cm). Dimensions provided in Table 2.16.
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Figure 2.29: Simulated frequency responses of cylindrically conformal and rectangular
cavity-backed E-patch antennas. Dimensions provided in Tables 2.11 - 2.13, 2.15, 2.16
and 3.12.

50



Chapter 3

Taguchi’s Method of Optimization for

E-patches

3.1 Orthangonal Arrays

As discussed in section 1.2, Taguchi’s method involves using OAs to perform opti-

mization. When using OAs for optimization problems two questions arise: Does an

OA exist, and if so how can it be constructed? To determine the existence of an OA

one must, for given values of k, s, and t, determine the minimum number of rows N

so that an OA(N, k, s, t) exists. One would like to minimize N , as it reduces the

number of experiments carried out. Rao’s inequalities are established as a mathemat-

ical answer to the existence question. To minimize N , the parameters of OA(N, k, s,

t) must satisfy the following Rao inequalities [14],

N ≥
u

∑

i=0

(

k

i

)

(s − 1)i, if t = 2u, u > 0 (3.1)

N ≥
u

∑

i=0

(

k

i

)

(s − 1)i +

(

k − 1

u

)

(s − 1)u+1, if t = 2u + 1, u ≥ 0. (3.2)
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More improvements on the Rao’s inequalities can be found in [14] for different t

strengths and s levels. Numerous techniques to construct OAs are discussed in [14]

and some of these techniques are based on Galois fields and error-correcting codes.

Galois fields are finite sets of elements where one can add, subtract, multiply and

divide within the set. The virtue of the Galois fields is that it is possible to multiply

and divide vectors with a specified number of components. Error-correcting codes

are designed to correct errors in the transmission of data over noisy communication

channels. These error-correcting codes can also be used to construct OAs. One may

consult [14] for more information on error-correcting codes, Galois fields, and their

use in construction of OAs.

An online database, [25], of OAs has been established by the authors in [14]. OAs

with different parameters, levels, and strengths have been developed and archived in

this online database, which can also be found in books related to OAs or Taguchi’s

Method. The online database contains the OAs used in this thesis. The authors in

[20] discuss explicitly how to use Matlab code to produce OAs that adhere to the

Rao inequalities. However, the authors in [20] only discuss constructing OAs with an

arbitrary odd-level (s = 3, 5, 7, ...) and two-strength (t = 2).

OAs have many important properties that are associated with them. The ability

of OAs to lessen the number of experiments in optimization problems is discussed

in Section 1.2. Another property of OAs is that all possible combinations of the

parameters of up to the strength t occur equally; this ensures a balanced and fair

comparison of all interactions of levels (s). In Table 3.1 if one picks any level value

(s = (0, 1, 2)) in a column, that value occurs exactly the same number of times as the

other level values. For example, the level values zero, one, and two all occur six times

in a column. This means that all possible level values are tested fairly within the OA.

Further, if one looks at a combination of any two columns (strength t = 2) as a row,

one sees exactly the same number of combinations. For example, two combinations
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of (0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2) can be noted as a row in any

two columns. To consider more interactions of parameters, one could increase the

strength t, but then more rows (experiments) would need to be included to maintain

the properties of the OA. The OAs in this thesis use a strength of two, as this seems

sufficient for the problems considered.

Another practical property of OAs is discussed by the authors in [20] and is quoted

here:

“... property of OAs is that any N × k′ subarray of an existing

OA(N, k′, s, t′) is still an OA with a notation OA(N, k′, s, t′), where t′ =

min(k′, t). In other words, if one or more columns are deleted from an

OA, the resulting array is still an OA but with a smaller number of pa-

rameters. For example, if we delete the last two columns in [Table 3.1],

we can obtain an [OA(18, 5, 3, 2)]. This property is especially useful when

selecting an OA from an existing OA database. If an OA with a certain

number of columns (k′) cannon be found in a database, one can choose

an OA with a larger number of columns (k > k′) and manually delete the

redundant (k − k′) columns to obtain the desired OA."

This property influences the choice of an OA for Taguchi optimization and is used

later in section 3.2.

3.2 Taguchi’s method and optimization example

Taguchi’s method can be understood using an example optimization problem. In [26]

the authors discuss finding the global minimum of the function

f(x, y) = x sin(4x) + 1.1y sin(2y), 0 ≤ x ≤ 10, 0 ≤ y ≤ 10. (3.3)
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Table 3.1: An Orthogonal Array OA(18,7,3,2)

0 0 0 0 0 0 0
1 1 1 1 1 1 0
2 2 2 2 2 2 0
0 0 1 2 1 2 0
1 1 2 0 2 0 0
2 2 0 1 0 1 0
0 1 0 2 2 1 1
1 2 1 0 0 2 1
2 0 2 1 1 0 1
0 2 2 0 1 1 1
1 0 0 1 2 2 1
2 1 1 2 0 0 1
0 1 2 1 0 2 2
1 2 0 2 1 0 2
2 0 1 0 2 1 2
0 2 1 1 2 0 2
1 0 2 2 0 1 2
2 1 0 0 1 2 2

This function has a global minimum of -18.5547 located at x = 9.0390, y = 8.6682.

The difficulty in finding a global minimum for this function is that there are many

local minima close to the global minimum. Figure 3.1 is a plot for the solution

surface of (3.3). To find the global minimum, one may establish a procedure of

operation for Taguchi’s method. Consider Figure 3.2, which shows a flow chart for

Taguchi’s Method of optimization from [3]. As shown there, selecting an OA for the

optimization problem is the first step. To select the proper OA, first determine the

number of variables that needs to be optimized. For the optimization of (3.3), two

variables are needed because x and y are both varying; thus k = 2. A strength of

t = 2 is chosen by default because there are only two variables in the optimization. A

suitable OA can be constructed from Table 3.2 (from the online database [25]) with

the last two columns deleted. As discussed in Section 3.1 the deletion of columns

is an acceptable practice as it does not invalidate the properties of an OA. The OA

54



Figure 3.1: Three-dimensional solution surface of (3.3).

constructed from Table 3.2 becomes the OA in Table 3.3.

The next step is to select a fitness function. A fitness function is selected based

on its ability to reach the optimization goal. The selection of the fitness function may

be the most important factor in Taguchi’s method. If one chooses a wrong fitness

function, then an optimal solution may not be reached. The fitness function for (3.3)

should take on its lowest value when (3.3) is at the global minimum. The designed

fitness function for (3.3) is,

Fitness = exp (x sin(4x) + 1.1y sin(2y)). (3.4)

The role of the exponential function in the fitness of (3.4) will be explained later in

this section. All one needs to know at this point is that a smaller fitness means a

result closer to the optimum.

A range of numbers needs to be selected for the variables (input parameters) in
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Figure 3.2: Flowchart of Taguchi’s optimization method from [3].
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the fitness function. When an OA is used in Taguchi’s Method, the level values

correspond to numbers in the input parameter range. The input range of (3.3) is

between 0 and 10 for both x and y variables. To determine which input numbers to

be used as level values in each iteration, a level difference (LD) needs to be calculated.

The level difference is the amount of separation between level 2 and level 1 (also level

2 and level 3). The equation,

LD1 =
max-min

number of levels + 1
=

10 − 0

3 + 1
= 2.5 (3.5)

is used to calculate the first LD of the x variable of (3.3). Max and min are the

maximum and minimum values of the input range, in this case 10 and 0 respectively.

If the input range was instead 20 and -10 for the maximum and minimum values,

then the value of LD would be 7.5. As Taguchi’s Method is implemented, the LD

changes depending on the iteration (discussed later in this section). For the first

iteration of (3.3) optimization, the middle of the input range was selected and thus

level 2 becomes 5. Table 3.4 is an OA with input values corresponding to the level

values of the first iteration of (3.3) optimization. Level 1 corresponds to 2.5 (5− 2.5)

and Level 3 becomes 7.5 (5 + 2.5).

Now that the OA level values have input parameters associated with them, exper-

iments can be conducted and a response table can be built. Conducting experiments

means computing the fitness function with the level values for a given row in the OA.

For example, the first experiment outcome is,

Fitness = exp (2.5 sin(4 ∗ 2.5) + 1.1 ∗ 2.5 sin(2 ∗ 2.5)) = .0184. (3.6)

The seventh experiment outcome is,

Fitness = exp (7.5 sin(4 ∗ 7.5) + 1.1 ∗ 2.5 sin(2 ∗ 2.5)) = .000043303. (3.7)
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Table 3.5 shows the OA with the associated experiment outcome (fitness). Once

all experiments have been conducted and fitnesses determined, the fitness values are

converted to a signal-to-noise (S/N) ratio η. The S/N is determined by the following,

η = −20 log10 (Fitness). (3.8)

As (3.4) decreases, (3.8) results in a large S/N ratio. The role of the exponential

function in (3.4) now becomes evident. If (3.3) were used as the fitness function,

then the exponential function compensates for the logarithm in the S/N making the

S/N proportional to the function value. The scaling is such that less than unity gives

positive S/N values. A fitness function of

Fitness = 20 + (x sin(4x) + 1.1y sin(2y)). (3.9)

could also be used as a fitness function for this optimization. However, it relies on

knowing where the minimum point already is. The fitness function (3.9) yields the

same results presented in this section. The S/N ratio for the first iteration (fitness

function (3.3)) is included in Table 3.5.

Table 3.2: An Orthogonal Array OA(9,4,3,2)

0 0 0 0
0 1 1 2
0 2 2 1
1 0 1 1
1 1 2 0
1 2 0 2
2 0 2 2
2 1 0 1
2 2 1 0

When the S/N ratios are obtained, then a response table is built. A response
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Table 3.3: An Orthogonal Array OA(9,2,3,2)

0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

table is populated with the averaged S/N ratios for each parameter n and each level

m using the following,

η̄(m, n) =
s

N

∑

ηi. (3.10)

Here N is the experiment (row) number, s is the total level value (3 in this case) and

i is the iteration number. For example, the average S/N ratio for the 2nd column (y),

1st iteration, 3rd level is:

η̄(3, 2) =
3

9

∑

η1 =
1

3
[(−34.7854) + (−86.2474) + (17.7658)] = −34.4224(dB).

(3.11)

The rest of the average S/N ratios are found in the response Table 3.6. After the

response table has been built, the largest S/N ratio for each parameter is identified.

Italicized in Table 3.6 are the largest S/N ratios. A confirmation experiment is per-

formed using the combination of the optimal levels identified in the response table,

in this case, level 3 for column 1 (x = 7.5) and level 2 for column 2 (y = 5.0). As

mentioned in Section 1.2, Taguchi’s method is a fractional factorial approach. There-

fore, the optimal combination may not be included in Table 3.3. The confirmation

experiment is therefore not a redundant experiment and the fitness value obtained

from the confirmation experiment is regarded as the fitness values of the current i

iteration. If the results of the current iteration do not meet the optimization criteria
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Table 3.4: The Orthogonal Array OA(9,2,3,2) and level values in the first iteration
of Equation (3.3) optimization.

2.5 2.5
2.5 5.0
2.5 7.5
5.0 2.5
5.0 5.0
5.0 7.5
7.5 2.5
7.5 5.0
7.5 7.5

or termination criteria (discussed later), then the process is repeated in the next it-

eration. The optimal level values of the current iteration are used as level 2 values

in the next iteration. For example, after the first iteration of (3.3) optimization, 7.5

would be the new level 2 value for the 1st element (x variable) and 5.0 would be the

level 2 value for the 2nd element (y variable). To reduce the optimization range for a

converged result, the LD is multiplied by a reduction rate to obtain a new LD for the

new iteration. An example reduction rate is rri, where i is the iteration. The larger

rr is, the slower the convergence rate. Typically, rr is chosen to be between .9 and

.5. For (3.3) optimization, the rr is chosen to be .9. After the first iteration in (3.3)

optimization process, LD2 would be

LD2 = LD1 ∗ rri = 2.5 ∗ (.9)1 = 2.25. (3.12)

If LDi is large enough, and the level 2 of the next generation is close to the upper or

lower input parameter bounds, then a danger exists that the corresponding level 1 or

level 3 values may lay outside the input parameter bounds. A simple solution is to

use an if-then statement at the start of the iteration. If the level value is below the

minimum input parameter, then that level is set to the minimal value of the input

parameter. Similarly, if the level value is above the maximum input parameter, then
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that level is set to the maximum value of the input parameter.

Table 3.5: The Orthogonal Array OA(9,2,3,2), level values, S/N ratio, and experiment
outcome in the first iteration of Equation (3.3) optimization.

Experiment (row) Elements (columns) Fitness S/N ratio
1 2.5 2.5 .0184 34.7183
2 2.5 5.0 .0129 37.8025
3 2.5 7.5 54.8621 -34.7854
4 5.0 2.5 6.8736 -16.7437
5 5.0 5.0 4.8192 -13.6595
6 5.0 7.5 20529 -86.2474
7 7.5 2.5 .000043303 87.2696
8 7.5 5.0 .000030361 90.3537
9 7.5 7.5 .1293 17.7658

Table 3.6: Response table for the optimization of (3.3).

Level (row) Averaged S/N ratio (columns)
1 12.5784 35.0814
2 -38.8835 38.1655
3 65.1297 -34.4224

A termination criteria in the optimization procedure may be established by using

the following condition
LDi
LD1

< converged value. (3.13)

Normally the converged value is set between 0.0001 and 0.01 depending on the prob-

lem. The iterative optimization process is stopped if the optimization criterion is met

or if (3.13) is satisfied.

Appendix C shows the Matlab code used in the optimization of (3.3) and can be

used as a guide for coding other optimization problems. Figure 3.5 shows the value

of (3.3) versus the iteration number of Taguchi’s method. Figure 3.3 and Figure

3.4 show the x and y variables versus the iteration number of Taguchi’s method.

The optimization goal (global minimum of (3.3)) was not met. The global minimum
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Figure 3.3: X value of (3.3) versus iteration number in Taguchi’s Method.

of -18.5547 located at x = 9.0390, y = 8.6682 was not found after 68 iterations of

Taguchi’s method. The reason for not finding the global minimum is that LD1 wasn’t

large enough to contain for the necessary x and y variables. If LD1 is enlarged by

50% then the input optimization range is wider and contains the location of the global

minimum. This global minimum is found after 71 iterations.

Techniques of decreasing the number of iterations to more quickly achieve the op-

timization result, such as increasing the level number, changing boundary treatments,

and using a Gaussian reduce function, are discussed in [26]. The Rosenbrock function

was also optimized using Taguchi’s method. It is included in Appedix .
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Figure 3.4: Y value of (3.3) versus iteration number in Taguchi’s Method.
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Figure 3.5: Value of (3.3) versus iteration number in Taguchi’s Method.
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3.3 Taguchi-K-brick-Matlab results

In section 3.2 a Taguchi based optimizer was described that locates a global minimum

in a two variable function. Techniques discussed in section 3.1 and 3.2 provide intro-

ductory information (OA selection, fitness selection etc.) needed to create a Taguchi

based optimizer for |S11| of a cavity-backed E-patch antenna.

Following the procedure shown in Figure 3.2 for developing a Taguchi optimizer,

one of the first steps is determining a suitable OA. First, consider the number of

parameters of a cavity-backed E-patch antenna to be optimized. For simplicity, the

cavity’s width Cx (x-direction) and length Cy (y-direction) are fixed at 20 cm x 20

cm. This is done so that the cell size in K-brick is 1mm x 1mm x h (and thus K-

brick’s calculation time is lessened considerably). The probe placement Yf (in the

y-direction) is always at the vertical symmetric middle of antenna (since the desired

mode is symmetric about the y-direction of the probe placement); this eliminates the

need for Yf to be a parameter of optimization. The rest of the E-patch dimensions,

h, Ls, Ws, L, Xf
∗, W , and Ps are the same dimensions as shown in Figure 2.7.

The restriction of the dimensions of the cavity to 20 cm x 20 cm, and Yf to the

vertical symmetric middle of antenna, yields seven different dimensional parameters

that affect the geometry of the E-patch, and thus the value of |S11|.

An OA of seven columns is needed to include the effects of the seven parameters

that determine |S11|. An OA (27,13,3,2) (selected from the online database [25]),

modified by deleting the last six columns, yields a suitable OA. As discussed in section

3.1, the deletion of columns or variables in an OA is an acceptable practice. Table 3.7

is the OA (27,13,3,2) and Table 3.8 is the OA (27,7,3,2). An OA (27,7,3,2) fits all the

criteria for this optimization in that it contains seven columns or variables, each of

the variables has a middle, higher, and lower value, (three levels) and it satisfies the

∗Probe placement Xf is different then the previous E-patch designs in that that the probe
placement is given from the center of the cavity instead of placed at (W − Xf).
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equations 3.1 and 3.2. As with all the Taguchi optimizations in this thesis, a strength

of two is sufficient for the problems considered.

Table 3.7: An Orthogonal Array OA(27,13,3,2)

0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 2 2 0 1 2 1 0 0
2 0 2 2 2 1 1 0 2 1 2 0 0
0 1 0 1 1 1 2 2 0 1 2 1 0
1 1 1 2 2 0 1 2 1 0 0 1 0
2 1 2 0 0 2 0 2 2 2 1 1 0
0 2 0 2 2 2 1 1 0 2 1 2 0
1 2 1 0 0 1 0 1 1 1 2 2 0
2 2 2 1 1 0 2 1 2 0 0 2 0
0 0 1 0 1 1 1 2 2 0 1 2 1
1 0 2 1 2 0 0 2 0 2 2 2 1
2 0 0 2 0 2 2 2 1 1 0 2 1
0 1 1 1 2 2 0 1 2 1 0 0 1
1 1 2 2 0 1 2 1 0 0 1 0 1
2 1 0 0 1 0 1 1 1 2 2 0 1
0 2 1 2 0 0 2 0 2 2 2 1 1
1 2 2 0 1 2 1 0 0 1 0 1 1
2 2 0 1 2 1 0 0 1 0 1 1 1
0 0 2 0 2 2 2 1 1 0 2 1 2
1 0 0 1 0 1 1 1 2 2 0 1 2
2 0 1 2 1 0 0 1 0 1 1 1 2
0 1 2 1 0 0 1 0 1 1 1 2 2
1 1 0 2 1 2 0 0 2 0 2 2 2
2 1 1 0 2 1 2 0 0 2 0 2 2
0 2 2 2 1 1 0 2 1 2 0 0 2
1 2 0 0 2 0 2 2 2 1 1 0 2
2 2 1 1 0 2 1 2 0 0 2 0 2

The next step in designing a Taguchi based K-brick optimizer is the selection of

a proper fitness function. Consider the equation

Fitness = |(db1 + 40)| + |(db2 + 40)|. (3.14)

The variables db1 and db2 are the simulated |S11| in dB produced by K-brick at the
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Table 3.8: An Orthogonal Array OA(7,13,3,2)

0 0 0 0 0 0 0
1 0 1 1 1 2 2
2 0 2 2 2 1 1
0 1 0 1 1 1 2
1 1 1 2 2 0 1
2 1 2 0 0 2 0
0 2 0 2 2 2 1
1 2 1 0 0 1 0
2 2 2 1 1 0 2
0 0 1 0 1 1 1
1 0 2 1 2 0 0
2 0 0 2 0 2 2
0 1 1 1 2 2 0
1 1 2 2 0 1 2
2 1 0 0 1 0 1
0 2 1 2 0 0 2
1 2 2 0 1 2 1
2 2 0 1 2 1 0
0 0 2 0 2 2 2
1 0 0 1 0 1 1
2 0 1 2 1 0 0
0 1 2 1 0 0 1
1 1 0 2 1 2 0
2 1 1 0 2 1 2
0 2 2 2 1 1 0
1 2 0 0 2 0 2
2 2 1 1 0 2 1
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L1 and L2 frequencies, respectively. For optimization one would want |S11| to be a

minimum at the L1 and L2 frequencies. The absolute value ensures equal weight in

the fitness calculation. For example, if db1 was -50 and db2 was -3, this would not

be optimal. Indeed, the fitness would be 47, whereas a db1 and db2 value of both -40

would yield 0. Obviously, the antenna is optimized when the fitness function is 0.

The value of 40 was chosen as a sufficient number to add to an optimal dB response

of |S11| at the L1 and L2 frequencies. Another fitness function considered was

Fitness = |(db1 + 20)| + |(db2 + 20)|. (3.15)

Different but similar fitness functions yield different results as discussed later in this

section.

In Table 3.9 is the input parameter selection of seven variables used in the op-

timization of (3.14). In Table 3.10 is the input parameter selection of the seven

variables used in the optimization of (3.15). With the OA, fitness function, and input

Table 3.9: The input parameter ranges for E-Patch Taguchi optimization. Fitness
function is (3.14).

E-patch dimension variable Min Value in mm Max Value in mm
W 60 90
L 85 110
Ls 40 89
Ws 1 10
Ps 5 25
h 8 20

Xf 0 70

parameters chosen, the Taguchi optimization can proceed. However, special attention

needs to be given to undesirable E-patch geometries that may occur during optimiza-

tion. For example, if Ls was 75 mm and W was 65 mm then the slots would cut

through the patch and would yield three separate patch antennas. To exclude these
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Table 3.10: The input parameter ranges for E-patch Taguchi optimization. Fitness
function is (3.15).

E-patch dimension variable Min Value in mm Max Value in mm
W 60 90
L 85 110
Ls 40 89
Ws 1 7
Ps 8 15
h 8 16

Xf 0 70

geometries a simple if-then statement is used in the Matlab code. Another parameter

to monitor is the Xf placement. If the probe is placed off the antenna, then the

impedance result would not be practically useful. Once again during optimization, a

simple if-then statement is used to check this condition.

The reduction rate (rr) used for all cases was .9. Note, however, that this value

of reduction rate poses a problem with K-brick input. With the cell size restricted

to 1 mm by 1 mm by h, only integer mm multiples of the dimensions parameters

will be accepted into K-brick (otherwise K-brick crashes). To make sure K-brick will

not crash, after the reduction rate has been applied to the current iteration of input

parameter values, the E-patch dimensions are rounded to the nearest mm†. Refer to

Appendix F for the Matlab code used in the K-brick Taguchi optimization. Due to the

rounding of E-patch parameters during Taguchi optimization, there is potential for

wasting computation time after the iteration number has grown significantly. Wasting

of computation time by the rounding of input parameters is not fully addressed in

this thesis and remains a future improvement to the Matlab code.

The |S11| at the L1 and L2 frequencies versus the numbered iteration in Taguchi’s

method determing using the fitness function (3.14) is shown in Figure 3.6. Figure 3.7

†E-patch geometry values h and Xf can be integer values as they are independent of the cell
size of the cavity and therefore not rounded in the matlab code.
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Figure 3.6: Simulated |S11| of an E-patch antenna versus iteration number in
Taguchi’s Method. Input parameter ranges are given in Table 3.9.

shows |S11| at the L1 and L2 frequencies versus the iteration number in Taguchi’s

method with a fitness function of (3.15). Comparing Figure 3.6 and Figure 3.7, it is

seen that |S11| is different at all iteration numbers. The difference in |S11| is primarily

because of the different fitness functions used. Comparing Figure 3.6 and Figure 3.7,

|S11| seems to be greatly different between L1 and L2 when the fitness function (3.14)

is used. This may imply that |S11| results from K-brick between 0 and -20 dB are

more frequent than between 0 and -40 dB. In the fitness function optimizations using

(3.15) and (3.14) the input range of parameters were slightly different, and could have

also affected the values of |S11| for a simulated E-patch in K-brick. However, there is

no conclusive evidence that the different input parameter ranges are a major factor

in the different results shown in Figures 3.6 and 3.7. Another factor that may have

effected both optimizations was the if-then statements used to correct for undesirable

E-patch geometries. These if-then statements, however, executed under the same
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Figure 3.7: Simulated |S11| of an E-patch antenna versus iteration number in
Taguchi’s Method. Input parameter ranges are given in Table 3.10.

conditions for both optimizations possibly unaffecting the end optimization value.

The smallest value of |S11| in Figures 3.6 and 3.7 (iterations 26 and 21 respec-

tively) have E-patch dimensions given in Tables 3.11 and 3.12 respectively. Figures 3.8

and 3.9 show |S11| versus frequency for E-patch antennas optimized in the Taguchi-

K-brick program. In both Figures 3.8 and 3.9, a good result of -10 dB and below for

the L1 and L2 frequencies is noted.

To provide a comparison simulation, HFSS was used to simulate the antenna with

geometry values given in Table 3.12. Figure 3.10 shows |S11| versus frequency found

by HFSS. From Figure 3.10 it is clear that the resonance points are the nearly the

same. However, |S11| is about approximately 6 dB higher. This could be due to

differences of probe modeling in HFSS and K-brick.

Refer to Appendix G for a matlab K-brick-Taguchi code that optimizes a simple

cavity-backed rectangular patch antenna in K-brick.

71



Table 3.11: Dimensions of a cavity-backed E-patch antenna optimized by Taguchi-K-
brick code. Input parameter ranges used to generate the geometry values are given
in Table 3.9.

E-patch Dimension Value in mm
L 96
W 81
Xf 31.7

Yf 48

Ls 71
Ws 8
Ps 11
h 15

Cx 200
Cy 200

Table 3.12: Dimensions of a cavity-backed E-patch antenna optimized by Taguchi-K-
brick code. Input parameter ranges used to generate the geometry values are given
in Table 3.10.

E-patch Dimension Value in mm
L 96
W 83
Xf 37.5

Yf 48

Ls 65
Ws 7
Ps 13
h 15.6

Cx 200
Cy 200
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Figure 3.8: Simulated |S11| of an E-patch antenna optimized in K-brick.. Geometry
values are given in Table 3.11.

73



Figure 3.9: Simulated |S11| of an E-patch antenna optimized in K-brick. Geometry
values are given in Table 3.12.
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Figure 3.10: Simulated |S11| of an E-patch antenna optimized in HFSS. Geometry
values given in Table 3.12.
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Chapter 4

Experimental Results

4.1 Rectangular cavity-backed E-patch antenna

An experimental rectangular cavity-backed E-patch antenna was built to validate

simulations done in HFSS. Figures 4.2 through 4.6 show detailed pictures of the

experimental antenna. Figure 4.7 shows a top and side view depiction of the E-

patch antenna with dimension variables. The ground plane, as shown in Figure 4.2,

was constructed out of a corrugated rectangular cardboard box. The cardboard box

length, width, and depth was 54 cm by 69 cm by 11.2 cm. A hole was cut in the

center of the rectangular box in order to place the dielectric cavity. The hole’s length

and width dimensions are the same as those of the dielectric cavities (20 cm by 20

cm). The cavity and experimental antenna’s dimensions are provided in Table 4.1.

In order to have a good conductor for the ground plane in the experiment, aluminum

tape was adhered to the surface of the rectangular cardboard box. The hole cut out for

containment of the cavity has a small thickness in which copper tape was wrapped

around; refer to Figure 4.5 for a picture of this thickness covered with aluminum

tape. The dielectric cavity material was a rectangular Styrofoam piece cut to the

dimensions of the cavity given in Table 4.1. To cut the Styrofoam to the proper
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dimensions, a Styrofoam cutter was used; Figure 4.9 shows the Styrofoam cutting

tool. Styrofoam’s µ and ε material properties are nearly identical to a free-space air

dielectric and for experimental construction purposes Styrofoam is more practical.

The Styrofoam cavity’s outer and bottom walls had copper tape adhered to them

to provide a good ground plane conductor. The E-patch was constructed with four

pieces of copper tape. The copper tape used to assemble the E-patch was cut to size

using a standard exact-o knife. The E-patch dimensions are provided in Table 4.1.

The probe feed, as shown in Figure 4.6, is a female SMA connector and is placed at

the proper position (Xf , Yf ) as depicted in Figure 4.7. The non-threaded end of the

female SMA connector has a wire soldered to it. The lead was cut to the dielectric

height h. The non-threaded end of the female SMA connector (lead soldered and cut

to h) pierces the copper tap adhered to the bottom surface of the cavity and through

the copper tape conductor of the E-patch antenna. Once the lead end was through

the dielectric cavity and the E-patch, it was soldered to the copper tape (E-patch

copper tape).

Table 4.1: Dimensions of the experimental rectangular cavity-backed E-patch an-
tenna.

E-patch and cavity dimension Value in mm
L 96
W 83
Xf 37.5

Yf 48

Ls 65
Ws 7
Ps 13
h 15.6

Cx 200
Cy 200

The experiment to measure |S11| versus frequency was conducted using a Hewlett

Packard 8753D network analyzer. The power setting was 10 dBm, averaging set
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to 4, IF Bandwidth set to 3700 KHz, the start and stop frequencies set to 1 and

2 GHz. The Hewlett Packard 8753D was calibrated for |S11| using the 3.5 mm

SMA connector Agilent test calibration set 8753D. The experimental antenna was

orientated perpendicular to the ground and rested on a 3 foot block of Styrofoam.

Radiation gain measurements of the E-patch antenna were conducted at 1300

MHz and 1640 MHz in the anechoic chamber located at the engineering building

at Michigan State University. Unfortunately, the measurement setup used is not

calibrated for gain measurements and a reference antenna with a known gain should

be used to determine the true gain of the E-patch antenna. This is a fairly simple

procedure. For instance, if the gain of the reference antenna is known to be Gref and

the uncalibrated measurement produces a gain value Gref_un and if the uncalibrated

measurement of the E-patch antenna gain is measured to be Ge_un then, the true

gain of the E-patch antenna Ge is determined using

Ge = Gref
Ge_un

Gref_un
. (4.1)

In our case, the reference antenna used is a broad band pyramidal horn∗ and its

gain is evaluated using a two identical antenna gain measurement approach. In this

approach, the ratio of the power received (Pr) to the power transmitted (Pt) between

two identical antennas placed a distance R away from each other is used in conjunction

with the Friis equation given in (2).

Pr
Pt

=

(

λ

4πR

)2
G0tG0r (4.2)

From equation (4.2), λ is the operating wavelength, G0t and G0r are the gains of the

transmitting and receiving antenna respectively. Since the two antennas are identical,

∗The antenna specifications are at http://www.cobham.com/media/101070/
H-1734%20Data%20Sheet.pdf
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G0t=G0r and equation (2) reduces to equation (3).

(

4πR

λ

)2 Pr
Pt

= Gref (4.3)

In our setup, both transmitting and receiving antennas are connected to a network

analyzer, and the ratio Pr
P t is the transmission coefficient (|S21|2) measured by the

network analyzer. Note that the network analyzer needs to be calibrated at the end

of the cables connecting the two antennas in order to remove losses from the cables.

Figure 4.1 is a screen capture of the HFSS simulation used to compare with the

experimental rectangular cavity-backed E-patch antenna. The HFSS settings are

listed in Table 4.2. Figure 4.11 is the frequency response data for the simulation of

the experimental antenna.

Table 4.2: HFSS settings for the rectangular cavity-backed E-patch antenna.

HFSS setting HFSS setting value(s)
Frequency of solving 1.4 GHz

Adaptive passes 10
Maximum Delta S .01

Sweep Type Fast
Frequency Set up linear step 1 to 2 GHz step size .01

Initial mesh options do lambda refinement .15
Solution Options First order iterative solver .001

Excitation Waveport at the coaxial probe feed
Port Renormalization 50 Ω

Deembed setting checked -15.6 mm

To understand gain measurements in HFSS realized gain needs to be defined.

Realized gain in HFSS is

realized gain = 4π
U

Pincident
. (4.4)

where U is the radiation intensity in watts per steradian in the direction specified,
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Figure 4.1: A screen capture of the rectangular cavity-backed E-patch antenna in
HFSS.
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69 cm

54 cm

20 cm
Cavity

20 cm

Ground plane

Figure 4.2: A front view of the rectangular cavity-backed E-patch experimental an-
tenna.

and Pincident is power associated with the conjugate match of the accepted power

Paccepted. In HFSS Paccepted is defined as,

Paccepted = Re

∫

A

(

)E × )H∗
)

. )dS (4.5)

Where Re is the real part of a complex number, A is the union of all port boundaries

in the model (including wave and lumped Ports, but excluding Floquet ports), )E is

the electric field and )H∗ is the conjugate of the magnetic field and )dS is the local

port-boundary unit normal directed out of the 3D HFSS model.

Figure 4.10 shows |S11| versus frequency measured on an Hewlett Packard 8753D

network analyzer. Comparing Figure 4.10 with Figure 4.11 in Figure 4.12, |S11| is

near in agreement with simulation and experiment. The bandwidth of the simulation
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11.2 cm

Figure 4.3: A side view of the rectangular cavity-backed E-patch experimental an-
tenna.
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Copper tape is adhered to the bottom 
and side walls of the cavity. Female SMA connector

Figure 4.4: A back view of the rectangular cavity-backed E-patch experimental an-
tenna.
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The thickness of the rectangular box 

is covered with copper tape 

to maintain continuity of the top ground plane.

Figure 4.5: A picture of the copper tape covering up the thickness of the cardboard
box top.
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Female SMA connector

Figure 4.6: A close up picture of the feed point of the experimental cavity.
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Figure 4.7: Top and side view depiction of an experimental E-patch in a cavity.
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was approximately 243 MHz while the bandwidth of experimental antenna was 330

MHz. The return loss difference at both points of resonance (1.3 and 1.64 GHz)

and bandwidth differences may be attributed to differences between the constructed

antenna and the HFSS model.

Refer to Figure 4.8 for a graphical depiction of the coordinate system used to

describe the radiation patterns in HFSS and for the experimental antenna. For the

Z-X plane case, φ = 0◦ and θ is varying from -180 to 180 degrees. -180 degrees

to 0 degrees refers to negative x values and 0 to 180 degrees refers to positive x

values. For the Z-Y plane case, φ = 90◦ and θ is varying from -180 to 180 degrees.

-180 degrees to 0 degrees refers to negative y values and 0 to 180 degrees refers to

positive y values. Figure 4.13 and Figure 4.14 are HFSS simulated radiation patterns

of the experimental antenna. The realized gain for the experiment is approximately

10 dB in the forward broadside direction of the antenna, indicating that the antenna

transmitting capabilities in that direction are good. Figure 4.15 and 4.16 are the

radiation gain measurements of the experimental antenna, and the gain was found

using (4.1). The gain at 0 degrees in Figure 4.16 is about 10 dB and about 7 dB in

Figure 4.15. Comparing Figure 4.13 and Figure 4.16 in Figure 4.17, the simulated

results match reasonably well with the experiment. Differences could be attributed to

human construction of the experimental antenna. Comparing Figure 4.14 and Figure

4.15 in Figure 4.18, the simulated results did not match well with the experiment.

Differences could be attributed to human construction of the experimental antenna

and HFSS’s radiation pattern accuracy.
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Figure 4.8: Coordinate system for the radiation patterns.

Figure 4.9: A picture of the Uchida 3500 Super Hot-wire Foam-Cutter Crafting Tool
used to cut the cavity to the proper dimensions.
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Figure 4.10: |S11| versus frequency measured on a Hewlett Packard 8753D network
analyzer for experimental rectangular cavity-backed E-patch antenna. Dimensions
provided in Table 4.1.
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Figure 4.11: |S11| versus frequency of a simulated rectangular cavity-backed E-patch
antenna. Dimensions provided in Table 4.1.
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Figure 4.12: |S11| versus frequency for experimental and simulated rectangular cavity-
backed E-patch antenna. Dimensions provided in Table 4.1.
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Figure 4.13: HFSS gain radiation pattern of the simulated cavity-backed E-patch
antenna, co-polarization.
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Figure 4.14: HFSS gain radiation pattern of the simulated cavity-backed E-patch
antenna, cross-polarization.
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Figure 4.15: Gain radiation pattern of the experimental rectangular cavity-backed
E-patch antenna, cross-polarization.

94



Figure 4.16: Gain radiation pattern of the experimental rectangular cavity-backed
E-patch antenna, co-polarization.
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Figure 4.17: Gain radiation patterns of the experimental and simulated rectangular
cavity-backed E-patch antenna, co-polarization.
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20

Figure 4.18: Gain radiation patterns of the experimental and simulated rectangular
cavity-backed E-patch antenna, cross-polarization.
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4.2 Cylindrical conformal cavity-backed E-patch an-

tenna

A experimental cylindrical conformal cavity-backed E-patch antenna was built to

compare and verify simulation results in HFSS. Comparing with results from the

experimental rectangular cavity-backed E-patch antenna presented in section 4.1, the

effects of curvature can be investigated.

Using the standard cylindrical coordinate system where ρ =
√

x2 + y2, φ =

tan−1 y
x and z = z (x, y, and z are variables in the rectangular coordinate system),

one can develop a topology for the cylindrically conformal cavity-backed E-patch

antenna. Figure 4.19 and Figure 4.20 show conceptual depictions of a experimental

cavity-backed E-patch conformed to a cylinder. In order to analyze how the curvature

of the cylinder changes the antenna’s performance, as compared to the planar cavity-

backed case, the E-patch dimensions need to stay consistent between both cases.

Therefore, the width dimensions of the E-patch (W and Ls) will be specified using

φ, at a distance ρ from the z axis. Further, the arc length along the circumference of

the cylinder is

g = ρφ. (4.6)

The variable g in (4.6) is the E-patch width dimension W or Ls. The length dimen-

sions of the E-patch (L, Ws, and Ps) will be along the z axis. To keep the cavity in

the same configuration as the rectangular cavity-backed case, the dielectric height h

will be specified along ρ, Cx will be specified by a φ and Cy will be specified along

the z. The probe feed (Xf , Yf ) will be placed consistent with that of the E-patch.

In other words Xf will be an arc length according to (4.6) where g = Xf and Yf will

be specified along the z axis.

Figures 4.21 through 4.25 show detailed pictures of the experimental antenna. As

discussed earlier, Figures 4.19 and 4.20 show depictions of the cylindrically conformal
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cavity-backed E-patch antenna. The ground plane, as shown in Figure 4.21, was

constructed out of a cardboard cylinder. The cardboard cylinder’s height along the z-

axis was 121.92 cm and radius ρ was 15.24 cm. Further E-patch and cavity dimensions

for the experiment are provided for Table 4.3. Figure 4.26 shows the cardboard

cylinder as it was purchased from Home Depot. A hole was cut in the center of

the cardboard cylinder in order to place the dielectric cavity. The hole’s length and

height dimensions are the same as those of the dielectric cavity’s (Cx by Cy). In

order to have a good conductor for the ground plane, aluminum tape was adhered

to the surface of the cardboard cylinder. The hole cut out for containment of the

cavity has a small thickness in which aluminum tape was wrapped around; this was

done to maintain continuity of the top ground plane to the outer and bottom walls

of the dielectric cavity. The dielectric cavity material is made out of two pieces

of Styrofoam as shown in Figure 4.23. To cut the Styrofoam pieces to the proper

dimensions, a Styrofoam cutter was used; Figure 4.9 shows the Styrofoam cutting

tool. The Styrofoam’s µ and ε material properties are nearly identical to an free-

space air dielectric and for experimental construction purposes it is more practical to

use Styrofoam than air. The Styrofoam cavity’s outer and bottom walls had copper

tape adhered to them to provide a good ground plane conductor. The E-patch was

constructed with four pieces of copper tape. The copper tape used to assemble the

E-patch was cut to size using a standard exact-o knife. The probe feed, as shown in

Figure 4.24, is a female SMA connector and is placed at the position (Xf , Yf ) as

depicted in Figure 4.19. The non-threaded end of the female SMA conductor has a

wire lead soldered to it. The lead was cut to the dielectric height h. The non-threaded

end of the female SMA connector (wire lead soldered and cut to the length h) pierces

the copper tap adhered to the bottom surface of the cavity and is placed in between

both pieces of the Styrofoam cavity through the copper tape conductor of the E-patch

antenna. Once the lead end was through the dielectric cavity and the E-patch, it was
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soldered to the copper tape (E-patch copper tape).

Table 4.3: Dimensions of a experimental cylindrical conformal cavity-backed E-patch
antenna.

E-patch and Cavity Dimension Value in mm
L 96
W 83
Xf 37.5

Yf 48

Ls 65
Ws 7
Ps 13
h 15.6

Cx 200
Cy 200
f 509.6
ρ 154

The experiment for the |S11| versus frequency was conducted using a Hewlett

Packard 8753D network analyzer for measurement. The Hewlett Packard 8753D is

located in the Engineering Research Center, at MSU. The power setting was 10 dbm,

the averaging set to 4, the IF Bandwidth set to 3700 KHz, and the start and stop

frequencies were set to 1 and 2 GHz. The Hewlett Packard 8753D was calibrated

for |S11| using the Female SMA connector Agilent test calibration set 8753D. The

experimental antenna was orientated perpendicular to the ground and rested on a 3

foot block of Styrofoam.

Figure 4.27 and Figure 4.28 are screen captures of the HFSS simulation used

to compare with the experimental cylindrically conformal cavity-backed E-patch an-

tenna. The HFSS settings are listed in Table 4.4. Figure 4.30 is the frequency response

data for the simulation of the experimental cylindrically conformal cavity-backed E-

patch antenna.

As discussed in the previous section, the radiation reference gain for the measured
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Table 4.4: HFSS settings for the cylindrically conformal cavity-backed E-patch an-
tenna.

HFSS setting HFSS setting value(s)
Frequency of solving 1.6 GHz

Adaptive passes 20
Maximum Delta S .005

Sweep Type Fast
Frequency Set up linear step 1 to 2 GHz step size .02

Initial mesh options do lambda refinement .3
Solution Options First order

Excitation Waveport at the coaxial probe feed
Port Renormalization 50 Ω

Deembed setting checked -18 mm

experimental E-patch antenna frequencies is determined using equations (4.3) - (4.1)†.

Appendix H contains the matlab file used to convert the gain measurements in the

anechoic chamber at Michigan State University engineering building to true gain

measurements.

Figure 4.29 is |S11| versus frequency measured on a Hewlett Packard 8753D net-

work analyzer. Comparing Figure 4.29 with Figure 4.30 in Figure 4.31, |S11| ver-

sus frequency is similar. In Figure 4.31 there are two distinct points of resonance.

However, the points of resonance are in different positions and |S11| is lower in the

simulated case. The bandwidth of the simulated antenna is 320 MHz (-10 dB or

lower at 1250 MHz to 1340 MHz and 1520 MHz to 1750 MHz). The bandwidth of

the experimental antenna is 321 MHz (-10 dB or lower at 1254 MHz to 1310 MHz

and 1520 MHz to 1785 MHz). The differences in |S11| versus frequency in Figure

4.31 may be due to construction techniques and an inability of HFSS to simulate the

E-patch antenna exactly.

In order to achieve -10 dB and below for |S11| at the L1 and L2 frequencies,

another experimental antenna was built. Figure 4.33 is the |S11| versus frequency for

†The frequencies of interested tested in the cylindrical case were 1.3 GHz and 1.64 GHz.
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a experimental cylindrically conformal cavity-backed E-patch antenna. Dimensions

are provided in Table 4.5. The bandwidth of the experimental antenna in Figure 4.33

is 273 MHz (-10 dB or lower at 1195 MHz to 1253 MHz and 1500 MHz to 1715 MHz).

At the L1 and L2 frequencies |S11| was measured as -12 dB and -20 dB respectively.

Table 4.5: Dimensions of a experimental cylindrical conformal cavity-backed E-patch
antenna.

E-patch and Cavity Dimension Value in mm
L 96
W 83
Xf 37.5

Yf 48

Ls 67.5
Ws 7
Ps 13
h 15.6

Cx 200
Cy 200
f 509.6
ρ 154

Figure 4.32 shows the experimental |S11| versus frequency of the cylindrically

conformal and rectangular cavity-backed E-patch antennas. The bandwidth of the

experimental rectangular cavity-backed patch antenna is 330 MHz (-10 dB or lower

at 1270 MHz to 1370 MHz and 1550 MHz to 1780 MHz). The bandwidth of the

experimental cylindrically conformal cavity-backed E-patch antenna is 321 MHz (-

10 dB or lower at 1254 MHz to 1310 MHz and 1520 MHz to 1785 MHz). The

effect of curvature of the experimental antennas indicates a minor loss in bandwidth

and a slightly lower shift in frequencies of the main points of resonance. However,

the simulation of the experiments shown in Figures 4.31 and 4.12 seem to be good

results verifying HFSS operation. The effect of curvature may have changed mode

two’s operation of the antenna and contributed to the loss in bandwidth and shift

in resonant frequency. Comparing the simulation and experiment bandwidths, the
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difference may be due to construction techniques of the experimental antennas and

an inability of HFSS to simulate the E-patch antenna exactly.

Refer to the blue arrows in Figure 4.19 for the φ and θ values used to describe

the radiation patterns in HFSS and for the experimental antenna. For the Z-X plane

case, φ = 0◦ and θ is varying from -180 to 180 degrees. -180 degrees to 0 degrees

refers to negative x values and 0 to 180 degrees refers to positive x values. For the

Z-Y plane case, φ = 90◦ and θ is varying from -180 to 180 degrees. -180 degrees to

0 degrees refers to negative y values and 0 to 180 degrees refers to positive y values.

For the X-Y plane case, θ = 90◦ and φ is varying from -180 to 180 degrees.

Figures 4.34 - 4.39 are the radiation gain measurements of the experimental and

simulated antenna. The realized gain in the simulation is approximately 10 dB in the

forward broadside direction of the antenna indicating that the antenna transmitting

and receiving capabilities in that direction are good. Comparing the simulated and

experiment radiation patterns in Figures 4.34, 4.36, and 4.39 the simulated results

are near in agreement with the experiment. The gain at 0 degrees in Figure 4.36 and

Figure 4.34 is about 6.7 dB and about 4.5 dB in Figure 4.35 and Figure 4.37. Small

differences could be attributed to construction issues of the experimental antenna.

Comparing Figure 4.35, 4.37, and 4.38 the simulated results were not in agreement

with the experiment. Differences could be attributed to human construction of the

experimental antenna and how the antenna was mounted (non-air dielectric platform)

for the radiation pattern measurement.

Comparing the experimental rectangular and cylindrically conformal cavity-backed

E-patch antenna radiation patterns (Figures 4.15 and 4.16 and Figures 4.34, 4.35, 4.36

and 4.37), it can be noted that the radiation pattern of the cylindrically conformal

case is broader then that of the rectangular case. The broadening of the radiation

pattern might be due to creeping wave effects and subsequent diffraction occurring

around the cylinder.
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Figure 4.19: A angled-view conceptual depiction of the E-patch antenna conformed
to the surface of a cylinder with a radius ρ.
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Figure 4.20: A 3-view depiction of the E-patch antenna conformed to the surface of
cylinder.
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Ground plane

Cavity

121.92 cm

20 cm

20 cm

50.96 cm

Figure 4.21: A front view of the cylindrically conformal cavity-backed E-patch exper-
imental antenna.
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Cavity side and bottom walls have 
copper tape adhered to them. Female SMA connector

Figure 4.22: A top view of the cylindrically conformal cavity-backed E-patch experi-
mental antenna.
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Female SMA connector

Cavity consists of two separate
 piecies of Styrofoam, and the separation 
is denoted by the dashed line.

10 cm

10 cm

Figure 4.23: A close up picture of the front cavity E-patch experimental antenna.
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Female SMA connector soldered 
to the copper tape.

Figure 4.24: A close up picture of the feed point of the experimental cylindrically
conformal cavity.
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Female SMA connector
sleeve soldered to the copper
groundplane. 

Figure 4.25: A closer up picture of the feed point of the experimental cylindrically
conformal cavity.

Figure 4.26: A picture of the cylinder cardboard tube used to construct the cylindri-
cally conformal cavity-backed E-patch antenna.
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Figure 4.27: A screen capture of the cylindrically conformal cavity-backed E-patch
antenna in HFSS.
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Figure 4.28: A closer view screen capture of the cylindrically conformal cavity-backed
E-patch antenna in HFSS.
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Figure 4.29: |S11| versus frequency measured on a Hewlett Packard 8753D network
analyzer for experimental cylindrically conformal cavity-backed E-patch antenna. Di-
mensions provided in Table 4.1.
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Figure 4.30: |S11| versus frequency of a simulated cylindrically conformal cavity-
backed E-patch antenna. Dimensions provided in Table 4.3.
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Figure 4.31: |S11| versus frequency for experimental and simulated cylindrically con-
formal cavity-backed E-patch antennas. Dimensions provided in Table 4.3.
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Figure 4.32: |S11| versus frequency for experimental cylindrically conformal and rect-
angular cavity-backed E-patch antennas. Dimensions provided in Table 4.3 and Table
4.1.
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Figure 4.33: |S11| versus frequency for a cylindrically conformal cavity-backed E-
patch antenna. Dimensions provided in Table 4.5.
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Figure 4.34: Gain radiation pattern of the experimental and simulated cylindrically
conformal cavity-backed E-patch antenna, X-Y plane and co-polarized. Dimensions
provided in Table 4.3.
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Figure 4.35: Gain radiation pattern of the experimental and simulated cylindrically
conformal cavity-backed E-patch antenna, X-Y plane cross-polarized. Dimensions
provided in Table 4.3.
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Figure 4.36: Gain radiation pattern of the experimental and simulated cylindrically
conformal cavity-backed E-patch antenna, Z-X plane and co-polarized. Dimensions
provided in Table 4.3.
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Figure 4.37: Gain radiation pattern of the experimental and simulated cylindrically
conformal cavity-backed E-patch antenna, Z-X plane cross-polarized. Dimensions
provided in Table 4.3.

121



Figure 4.38: Gain radiation pattern of the experimental and simulated cylindrically
conformal cavity-backed E-patch antenna, Z-Y plane and co-polarized. Dimensions
provided in Table 4.3.
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Figure 4.39: Gain radiation pattern of the experimental and simulated cylindrically
conformal cavity-backed E-patch antenna,Z-Y plane cross-polarized. Dimensions pro-
vided in Table 4.3.
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Chapter 5

Conclusion

Infinite ground plane simulations for E-patch antennas were thoroughly investigated

at the L1 and L2 frequencies. The simulated |S11| for the E-patch antenna at the L1

and L2 frequencies performed well when the design equations (1.3) were used. The -10

dB bandwidth of the E-patch antenna in the infinite ground plane simulation extended

between the L1 and L2 frequencies. However, when the same E-patch antenna, whose

dimensions were determined from equations (1.3), was simulated with a rectangular

cavity backing, it did not perform well.

In the pursuit of a value of |S11| of -10 dB or below at the L1 and L2 frequencies

in the rectangular cavity-backed case, a Matlab graphical user interface (GUI) was

written to allow the user to specify a range of E-patch dimensions to vary. Using

K-brick and the Matlab GUI, acceptable values for |S11| at L1 and L2 frequencies

were determined.

A cylindrically conformal cavity-backed E-patch antenna with a flat bottom cavity

was simulated for multiple radii of cylinders. As the radius ρ of the cylinder was

increased, |S11| decreased for the L1 frequency and increased for the L2 frequency.

In addition the higher resonance frequency shifted upwards beyond the L2 frequency.

With the exception of the 50 cm radius case, at the L1 and L2 frequencies |S11|
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was less then -10 dB. For the 50 cm radius cylinder case, |S11| was approximately -9

dB at the L2 frequency, and was less than -10 dB at the L1 frequency. For the flat

bottom cavity case of the conformal E-patch antenna, it is unclear if the operation

of the cylindrically conformal cavity-backed E-patch antenna would be effective and

reliable at the L1 and L2 frequencies.

A cylindrically conformal cavity-backed E-patch antenna with a conformal cavity

was simulated for multiple radii of cylinders. As the radius ρ decreased, |S11| stayed

approximately the same for the lower resonance frequency and decreased for the

higher resonance frequency. In addition the higher resonance frequency shifted lower

in frequency as the radius decreased. The bandwidth does enlarge as the radius

decreases. Notably, the bandwidth for the 100 cm simulated cylindrically conformal

cavity-backed E-patch antenna case is 245 MHz (-10 dB or lower at 1245 MHz to

1330 MHz and 1590 MHz to 1750 MHz) while the bandwidth for the 15.4 cm case is

320 MHz (-10 dB or lower at 1250 MHz to 1340 MHz and 1520 MHz to 1750 MHz).

At 50, 25, and 15.4 cm radius, |S11| at the L2 frequencies is less then -10 dB. The

L1 frequency stays approximately -9 dB for all the cases. These differences in |S11|

versus frequency might be due to the mode two resonance point being altered by

curvature of the cylinder.

Two experimental E-patch antennas were built to verify simulations done in HFSS.

The rectangular cavity-backed E-patch antenna simulation and experiment matched

well. |S11| at frequencies of interest for the experimental rectangular cavity-backed

E-patch antenna was -10 dB less than the HFSS simulation at the two resonant

frequencies. The bandwidth of the experimental rectangular cavity-backed patch

antenna was 330 MHz (-10 dB or lower at 1270 MHz to 1370 MHz and 1550 MHz

to 1780 MHz). The bandwidth of the experimental cylindrically conformal cavity-

backed E-patch antenna was 321 MHz (-10 dB or lower at 1254 MHz to 1310 MHz

and 1520 MHz to 1785 MHz). The effect on curvature of the experimental antennas

125



indicates a loss in bandwidth and a shift in the main points of resonance to lower

frequency. The curvature may have effected mode two’s operation and contributed to

the loss in bandwidth and shift in resonant frequency. Comparing the simulation and

experiment bandwidths, the difference may be due to construction techniques of the

experimental antennas and the lack of HFSS ability to simulate the E-patch antenna

exactly in both cases.

An experimental antenna was built to achieve a -10 dB or lower value for |S11|

at the L1 and L2 frequencies; that antenna’s |S11| at the L1 and L2 frequency was

acceptable with -12 dB at 1227 MHz and -20 dB at 1575 MHz.

The radiation pattern of the two experimental antennas was also investigated and

simulated. The experimental radiation pattern of the cylindrically conformal antenna

was broader than that of the rectangular case. The broadening of the radiation

pattern might be due to creeping wave effects and subsequent diffraction occurring

around the cylinder. In addition the broadside gain of the experimental cylindrically

conformal cavity-backed E-patch antenna was found to be 8 dB, matching well with

the simulated gain from HFSS of approximately 10 dB.

Future investigations into the cylindrically conformal cavity-backed E-patch an-

tenna should include better techniques for construction and better modeling for the

feed in HFSS. An implementation of Taguchi’s method of optimization might improve

|S11| at the L1 and L2 frequencies and the overall bandwidth of the cylindrically con-

formal cavity-backed E-patch antenna.

Taguchi’s method of optimization for E-patches has been proven to be an ef-

fective method for optimizing |S11| for rectangular cavity-backed E-patch antennas.

Through the use of simple fitness functions and orthogonal arrays, |S11| at the two

main resonance frequencies of the E-patch antenna can be minimized. Computa-

tion time and ease of coding make Taguchi’s method of optimization an attractive

alternative to genetic algorithms and particle swarm optimizations.
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Further research using Taguchi’s method for E-patch antennas should be done

to improve the overall bandwidth between both points of resonance of the antenna.

Increasing the bandwidth of the antenna may be accomplished with modification to

the fitness functions presented in earlier chapters.
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Appendix A: Setting up Sonnet for
E-patch antenna simulations

1. Refer to Figure A.1. Create a new Geometry.

2. Refer to Figure A.2. Left click on circuit tab in the upper left corner of the new
geometry layout. Highlight “units" and left click. Once the Unit dialog box has
appeared, highlight the length box and scroll until mm is highlighted. Left click
when mm is highlighted and then left click on the “Ok" button.

3. Refer to Figure A.3. Locate the circuit tab again and highlight “box" and left
click it to bring up the Box dialog box. To initialize the geometries of Figure
2.1 and Figure 2.2 initialization, change the “Cell" size to 1 for the X and Y
directions. Change the box size to 150 for the X and Y directions. Change the
number of cells to 150 for the X and Y directions. To initialize the geometries
Figure 2.3 and Figure 2.4 initialization, change the “Cell" size to 1 for the X and
Y directions. Change the box size to 200 for the X and Y directions. Change
the number of cells to 200 for the X and Y directions. Change the Top metal
to “Free Space" in both cases. Left click on the“apply” button, then left click
on the “Ok" button. For L-band E-patch antenna designs, one should specify
that the box be at least 1λ x 1λ in the X and Y directions respectively. Here λ
is the largest wavelength of L-band. Note that 200 mm is not large enough to
cover the 1λ x 1λ; however, 200 mm yields good approximations for |S11|.

4. Refer to Figure A.4. Locate the circuit tab again and highlight “dielectric layers"
and left click. The dielectric layer box should now appear. Left click the first
dielectric layer so that it is highlighted. Then left click the “edit" button and
change the material name to “Air". Change the thickness of the dielectric to
the designs h height. In this case, the value is 10 mm.

5. Refer to Figure A.5. Left click the second dielectric layer so that it is highlighted.
This is the layer above the metallic patches. Then left click the “edit" button
and change the material name to “Air". Change the thickness of the dielectric
to the height of the antenna. In this case, the value is 10 mm.

6. Refer to Figure A.6. Left click on the “Ok" button on the dielectric layer box.
The dielectric box should now appear as below.
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7. Refer to Figure A.7. Left click on the Analysis tab in the upper left corner.
Highlight and left click setup. A setup box will appear. For the geometry of
Figure 2.1, enter 2 and 3 GHz for the start and stop frequencies, respectively.
For the geometry of Figure 2.2, enter 1.5 and 3 GHz for the start and stop
frequencies, respectively. For the geometry of Figure 2.3 and Figure 2.4 enter 1
and 2 GHz for the start and stop frequencies, respectively. Check the computer
density box if you wish to view surface fields and radiation patterns. Leave the
Adaptive Sweep drop down box as is. Left click on “Ok" when finished.

8. Refer to Figure A.8. Left click on the tools tab in the upper left corner. High-
light “add metallization". Then highlight “add rectangle".

9. Refer to Figure A.9. The rectangle attributes should appear on your screen.
For the width and and length, type in the dimensions of the patch. Left click
on “Ok" when finished. For the Sonnet simulations, four patches were used then
merged when all were placed in the box.

10. Refer to Figure A.10. Place rectangle.

11. Refer to Figure A.11. Left click on the tools tab once again and highlight “via",
then left click on “down to ground". With “via" still highlighted, highlight and
left click on “circular".

12. Refer to Figure A.12. Another warning dialog box may appear. Left click on
“ok" if it does. The circular attributes dialog box should now appear. Change
the diameter to 1.2 mm this is the approximate diameter of a coaxial probe.
The circle should be 10 sided. Left click “Ok" when the changes have been
made.

13. Refer to Figure A.13. Place the via at the designated Xf and Yf point by left
clicking.

14. Refer to Figure A.14. Left click on the tools tab once again and highlight and
left click on “add port". The pointer now has a boxed “n" around it. Left click
on the via just made. A warning dialog box will pop up. Left click “ok" to close
it. To view the patch geometry in 3-D, left click the 3-D box as shown in the
screen shot below.

15. Refer to Figure A.15. When done viewing the 3-D simulation, left click on the
“x" in the upper right corner. Now left click on the file tab in the upper left
corner and save the geometry file.

16. Refer to Figure A.16. Left click on the project tab in the upper left corner and
highlight and click the analyze tab. A view response dialog box should now
appear and show your |S11| and other parameters. Click on the view response
box to see the |S11| vs Frequency plot.

17. Refer to Figure A.17. Below the final E-patch geometry.
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Figure A.1: New Geometry

Figure A.2: Circuit Unit box
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Figure A.3: Circuit box
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Figure A.4: Dielectric first layer Dielectric selection
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Figure A.5: Dielectric second layer parameter selection
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Figure A.6: Completion of Dielectric selection
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Figure A.7: Analysis Setup
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Figure A.8: Adding a metal rectangle
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Figure A.9: Rectangle dimension selection
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Figure A.10: Rectangle placement
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Figure A.11: Adding a Via
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Figure A.12: Via circle parameter selection

141



Figure A.13: Via placement on a rectangle
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Figure A.14: 3-D view of a patch
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Figure A.15: Save as screen shot
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Figure A.16: Viewed Response Box
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Figure A.17: Finished E-patch topology
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Appendix B: Matlab Code for a two
variable function

close all
clear all

[filename pathname] = uigetfile('*.txt','Choose the OA file from
online or generated code MUST BE ACII Formated!');

OA=dlmread([pathname filename]);

SizeofOA=size(OA);
Element = 2;% input number of Elements to be tested

if SizeofOA(2) == Element

else
newColummnsize=SizeofOA(2)−Element;
for n=1:newColummnsize % reduces the columm size for expriment

OA(:,SizeofOA(2))=[];

SizeofOA=size(OA);
end

end

% Level Design User specifies level
Level=0:2; %Input by user assuming 3 levels
lengthflevel=length(Level);
Max1=10; % Input by User
Min1=0; % Input by User
Max2=10; % Input by User
Min2=0; % Input by User
rr=.9; % Reduction rate used by User
i=0;
diffrentlevels=0:1; % Because not all levels will have the same

range. Specified here is how many are different

Ld1= (Max1 − Min1)/(lengthflevel+1); % first specifed level differnce
first interation
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Ldi1=Ld1*rr^i;

Ld2= (Max2 − Min2)/(lengthflevel+1); % first specifed level differnce
first interation

Ldi2=Ld2*rr^i;

while (Ldi1/Ld1)>.0001;

clear LevelOA2 LevelOA3 LevelOA1
Level=0:2;

clear n b g c

Ld1= (Max1 − Min1)/(lengthflevel+1); % first specifed level differnce
first interation

Ldi1=(1.5*Ld1)*rr^i;

Ld2= (Max2 − Min2)/(lengthflevel+1); % first specifed level differnce
first interation

Ldi2=(1.5*Ld2)*rr^i;

for n=1:SizeofOA(2)

if i==0
switch n

case 1
Level(2)= (Max1−Min1)/2 + Min1;% Middle of range
Level(1)=Level(2)−Ldi1;
Level(3)=Level(2)+Ldi1;

LevelOA1(n)=Level(1);
LevelOA2(n)=Level(2);
LevelOA3(n)=Level(3);

case 2
Level(2)=(Max2−Min2)/2 + Min2; %Middle of range
Level(1)=Level(2)−Ldi2;
Level(3)=Level(2)+Ldi2;

LevelOA1(n)=Level(1);
LevelOA2(n)=Level(2);
LevelOA3(n)=Level(3);

end

else

switch n
case 1
Level(2)= OAr(n);
Level(1)=Level(2)−Ldi1;
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Level(3)=Level(2)+Ldi1;

if Level(1)≤Min1
Level(1)=Min1;
else
end
if Level(3)≥Max1
Level(3)=Max1;
else
end
LevelOA1(n)=Level(1);
LevelOA2(n)=Level(2);
LevelOA3(n)=Level(3);

case 2
Level(2)= OAr(n);
Level(1)=Level(2)−Ldi2;
Level(3)=Level(2)+Ldi2;

if Level(1)≤Min2
Level(1)=Min2;
else
end
if Level(3)≥Max2
Level(3)=Max2;
else
end

LevelOA1(n)=Level(1);
LevelOA2(n)=Level(2);
LevelOA3(n)=Level(3);

end

end

end

countoflevel=0;

clear LevelOA

for n=1:SizeofOA(1) % Filling up a Level based OA

for b=1:SizeofOA(2)

if OA(n,b)==0
LevelOA(n,b)=LevelOA1(b);
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elseif OA(n,b)==1
LevelOA(n,b)=LevelOA2(b);

else
LevelOA(n,b)=LevelOA3(b);

end

end

end

clear FitnessF
for n=1:SizeofOA(1)

%Fitness=Fitness+(LevelOA(n,g))^2−10*cos(2*pi*(LevelOA(n,g)))+10;
%Fitness=1−abs(sin(pi*(LevelOA(n,1)−3))/(pi*(LevelOA(n,1)−3)))*abs

(sin(pi*(LevelOA(n,2)−3))/(pi*(LevelOA(n,2)−3)));
Fitness=exp((LevelOA(n,1)*sin(4*LevelOA(n,1))+1.1*LevelOA(n,2)*sin

(2*LevelOA(n,2))));

FitnessF(n,1)=Fitness;
end

clear StoN

StoN=−20*log10((FitnessF)); % Signal to Noise Ratio
clear FinalResponse
%Build Response table

for n=1:SizeofOA(2)
response=0;
response2=0;
response3=0;
countoflevel=0;

for h=1:SizeofOA(1)

if OA(h,n)==0
response=response+StoN(h);
countoflevel=countoflevel+1;

elseif OA(h,n)==1
response2=response2+StoN(h);

elseif OA(h,n)==2
response3=response3+StoN(h);

end

end
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for c=1:lengthflevel

if c==1
FinalResponse(c,n)=response/countoflevel;

elseif c==2
FinalResponse(c,n)=response2/countoflevel;

elseif c==3
FinalResponse(c,n)=response3/countoflevel;
end

end

end

clear Optparameters

clear OptMat
Optparameters=max(FinalResponse);

for n=1:SizeofOA(2) % Matrix use to single out the good s/n's

for c=1:lengthflevel

if Optparameters(n)==FinalResponse(c,n)
OptMat(c,n)=FinalResponse(c,n);

else
OptMat(c,n)=pi;

end

end
end
clear OAr

for n=1:SizeofOA(2) % matrix used to specify final levels that are
optimal

for c=1:lengthflevel

if OptMat(c,n)==pi;
else

switch c
case 1

OAr(n)=LevelOA1(n);
case 2

OAr(n)=LevelOA2(n);
case 3

OAr(n)=LevelOA3(n);
end

end
end
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end

% The design for this Fitness Function Raguchi for use only for
Taguchi

%FitnessG=1−abs(sin(pi*(OAr(1)−3))/(pi*(OAr(1)−3)))*abs(sin(pi*(OAr
(2)−3))/(pi*(OAr(2)−3)));

FitnessG=(OAr(1)*sin(4*OAr(1))+1.1*OAr(2)*sin(2*OAr(2)));

meck(i+1)=(FitnessG);

% if FitnessG >.9
% break
% else
i=i+1;

Store(i+1)=OAr(1);
Store2(i+1)=OAr(2);

end

x=[0:.01:10];
y=[0:.01:10];

ta=length(x);

for bah=1:ta

for cah=1:ta
meckfitness(cah,bah)=x(bah)*sin(4*x(bah))+1.1*y(cah)*sin(2*y(

cah));

end

end

figure;

mesh(x,y,meckfitness)
xlabel('x values')

ylabel('y values')
title('global minimun')

meck(i+1)=FitnessG;
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plotness=1:length(meck);
figure,plot(plotness,meck);
h = legend('Final Fitness');
set(h,'Interpreter','none')
axis auto
xlabel('Number of Runs of 27 expriements')
ylabel('Fitness')
title('Fitness vs Runs')

figure,plot(plotness,Store);
h = legend('x values');
set(h,'Interpreter','none')
axis auto
xlabel('Number of Runs of 9 expriements')
ylabel('x values')
title('x values')

figure,plot(plotness,Store2);
h = legend('y vaules');
set(h,'Interpreter','none')
axis auto
xlabel('Number of Runs of 9 expriements')
ylabel('y values')
title('y values')
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Appendix C: Start up guide to

K-brick

Contained in this appendix are a start up guide to K-brick and a sample input text

file. Comments indicated by ^^^ should note appear in an actual input file.

K-brick uses the FE-BI equations to solve for the electric and magnetic fields of

a cavity-backed patch antenna. To do this, the cavity is represented using a finite

number of cells. The dimensions and number of cells are determined by the user.

K-brick starts the cell topology in the lower left (LL) corner of the cavity. In the

input file below, the length, width and depth of the cavity are 20 cm x 20 cm x 1.5

cm respectively. The corresponding input line in the text file is 200 200 1. The input

line 200 200 1 means that each cell is 20
200 = .1 cm = 1 mm by 20

200 = .1 cm = 1 mm

by h (h is the dielectric height, ((Layer 1 thickness (cm))of the cavity ). Smaller

cell sizes increase computation time considerably. For most simulations 1 mm x 1 mm

x h cells will yield good results. The layer concept is discussed later in this appendix.

As discussed earlier, K-brick begins constructing the cavity out of the cells starting

in LL corner. Due to cells being used there isn’t a 0 cell, so the cell numbering starts

at 1. This also means that the input into K-brick for cells has to be a whole number.

This is important for when metallic patches are added in the input file. Infinitesimally

thin rectangular patches are created and placed by cell number within the cavity. In

the example text file below, four rectangular patches are added to the top layer of
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the cavity. The numbers for placement of these patches are cell positions, and are

not in x, y, z coordinates. For example, the cell size in the text file below is 1 mm

by 1 mm by 1.5 cm. The patches are each placed by first specifying where they start

to enlarge. Patches enlarge from left to right and down to up. So the first patch’s

LL corner in the text file below is at the 60th cell from the left and 52nd from the

bottom of the cavity; at that cell point the patch enlarges by 10 cells to the right and

96 cells to the top of the cavity. This is repeated 4 times until the proper topology

of the patch is created. The probe is not placed using cell length or position. The

probe is placed relative to the exact middle of the cavity instead of the LL corner of

the cavity like metallic patches, material blocks, or metal bricks are. This means that

probe placement and h dielectric height can be a real integer. In the example below

the probe is placed 3.17 cm to the right, and 0 cm from the middle (center) of the

cavity.

K-brick also has the ability to layer the dielectric in the cavity. Typically this is

done if metal bricks are added to the simulation in the input file. Metal bricks are

perfect electric conductors that are composed of cells (same cell size as initialized in

the input file). Metal blocks are constructed from the bottom of the cavity to one

layer below where the patch antenna resides. Metal blocks are added so that the

probe can rest on top of the metal blocks. The probe is placed on top of the metal

blocks to yield results closer to those of a typical coaxial vertical fed probe. However,

when metal blocks are added in this way, a considerable capacitance is added and this

yields a poor |S11| calculated by the probe. Because of the added capacitance of the

metal bricks, all the simulations done in K-brick did not have metal bricks included.

At each point of resonance in the E-patch simulation, a sign change was noted in

the imaginary portion of the impedance calculated at the probe, indicating a good

simulated result. If one were to use metal bricks, they would be added exactly the

same way a patch is, i.e by cell position and number.
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The rest of the input file is self-explanatory except the convergence tolerance,

minimum iterations, and maximum iterations, which deal how close the numerical

solutions in the FE-BI equations need to get to before K-brick terminates operation

and outputs simulated antenna parameters. The convergence tolerances for the prob-

lems considered in this thesis are 0.01 5 60000, which seem to be sufficient.

1
^^^ 1 = save geo file, 2=read it, 0=do nothing
patch.geo
^^^ filename for geometry
20.0 20.0
^^^ (x,y) cavity dimensions in cm
200 200 1
^^^ x,y,z dimension cells
0
^^^ 0 = cavity, 1=slot
1.50
^^^ Layer 1 thickness (cm)
4
^^^ Number of patches
60 52 1
^^^ Lower left corner of patch + layer
10 96
^^^ Patch dimension in edges
60 52 1
^^^ Lower left corner of patch + layer
81 33
^^^ Patch dimension in edges
60 93 1
^^^ Lower left corner of patch + layer
81 14
^^^ Patch dimension in edges
60 115 1
^^^ Lower left corner of patch + layer
81 33
^^^ Patch dimension in edges
0
^^^ Number of slots
0
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^^^ Number of shorting pins
0
^^^ Number of metal blocks
0
^^^ Number of material blocks
1
^^^ 1 = uniform material fill
0
^^^ 0 = non-dispersive, 1 = dispersive
1.0 -0.00
^^^ Complex epsilon (real, imaginary)
1.0 -0.00
^^^ Complex mu (real, imaginary)
0.01 5 60000
^^^ convergence tolerance, min. iterations, max. iterations
0
^^^ 0 = BiCG, 1 = QMR
0
^^^ 1 = monitor iterations
0
^^^ 0=initial guess, 1=automatic guess
1.227 1.6 .348
^^^ Start, Stop, INCR frequency [GHz]
0 0 1
^^^ Start, Stop, Incr phi angles [deg]
-90.0 90.0 1.0
^^^ Start, Stop, Incr theta angles [deg]
0
^^^ 0 = do not compute far-zone, 1=compute far-zone fields
patchX_test
^^^ Six (6) character file prefix
0
^^^ 0 = driven, 1=S-paramters, 2=bistatic
E_patch_chad_impedance_Opt.zin
^^^ Input impedance file
50.0 0.0
^^^ Reference impedance
1
^^^ Number of feeds
3
^^^ direction of feed (1=x, 2=y, 3=z)
3.17 0.00
^^^ (x,y) location of feed in cm
1
^^^ Layer of feed
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1.0 0.0
^^^ Magnitude and phase of current
0
^^^ Number of loads
0
^^^ 0 = do NOT save interior fields, 1= save surface fields
0
^^^ Number of field probe

Below are the steps taken to get K-brick running on a Unix machine at Michigan

State University.

1. Obtain fortran code from Professor Kempel.

2. Create a folder in the Unix station to house input, output, and fortran files.

3. Once the files have been successfully uploaded, type make in the command line

(you should still be in the same directory where the fortran files are located).

This builds and complies the fortran program K-brick. If the program fails to

compiles, double check the .mak file. Make sure it uses the proper compiler for

the unix station you are using, i.e pgf90, f90, or f77 compilers.

4. Once K-brick has successfully compiled, obtain or create a input text file such

as that given earlier in the appendix.

5. K-brick can output many simulated antenna parameters such as radiation pat-

tern, impedance measured at the probe, and magnitude and phase of the elec-

tric and magnetic fields. Generally you would want have two different types

of input files, one for a frequency sweep of the impedance calculated at the

probe, and a second one for the radiation pattern, electric field, and magnetic

field at a particular frequency. If you did a frequency sweep that had 100

frequencies, the there would be 100 different radiation patterns and 100 dif-

ferent electric and magnetic magnitude and phase field files. K-brick would
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take too long to compute your simulated antenna parameters. Once you have

determined what you would like for an output, modify your input file at the

appropriate line. For impedance frequency sweeps change the Start, Stop,

INCR frequency [GHz] to the range you require. For a test case use 1 2 .01.

This will make K-brick simulate the antenna at 100 frequencies between 1 and

2 GHz. Also change Start, Stop, Incr phi angles [deg] to 0 0 1 and

Start, Stop, Incr theta angles [deg] to -90 90 1. This will prevent K-

brick from computing any E-fields, H-fields, or radiation pattern files because

the angle range is zero. To get the electric field (magnitude and phase), mag-

netic field(magnitude and phase), and radiation pattern files, do the opposite.

Fix the Start, Stop, INCR frequency [GHz] to sweep one frequency (e.g 2,

2, and 1) and vary the Start, Stop, Incr phi angles [deg] and Start,

Stop, Incr theta angles [deg].

6. After the input file has been modified, now is the time to run K-brick. The Unix

command nohup will make K-brick run even if you log out of the Unix machine.

It is a useful command when K-brick takes a long time to run. A typical

run command for K-brick looks like this: nohup k_brick<inputfile.txt >

out.txt &. This will make K-brick run in the back round of the server and

will allow exit of the server while the program still runs. out.txt is an output

file containing basic run logs of the inputs from the input file. It also contains

impedance sweep information.

7. As mentioned earlier K-brick outputs many antenna parameters. For a fre-

quency sweep that contains impedance information at the probe refer to the

.zin file. The 0 above the line, ^^^0 = do not compute far-zone, 1=compute

far-zone fields is what is changed to calculate the radiation pattern. For the

magnitude and phase of the electric and magnetic fields the 0 above the line,
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^^^0 = do NOT save interior fields, 1= save surface fields is what is

changed. Then, specify the component of the fields desired.
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Appendix D: Matlab Imaging Code
for GUI

function varargout = gui(varargin)
% GUI M−file for gui.fig
% GUI, by itself, creates a new GUI or raises the existing
% singleton*.
%
% H = GUI returns the handle to a new GUI or the handle to
% the existing singleton*.
%
% GUI('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in GUI.M with the given input

arguments.
%
% GUI('Property','Value',...) creates a new GUI or raises the
% existing singleton*. Starting from the left, property value

pairs are
% applied to the GUI before gui_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property

application
% stop. All inputs are passed to gui_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows

only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help gui

% Last Modified by GUIDE v2.5 28−Oct−2009 01:13:25

% Begin initialization code − DO NOT EDIT

gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @gui_OpeningFcn, ...
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'gui_OutputFcn', @gui_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);

if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});

end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else
gui_mainfcn(gui_State, varargin{:});

end
% End initialization code − DO NOT EDIT

% −−− Executes just before gui is made visible.
function gui_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to gui (see VARARGIN)

% Choose default command line output for gui
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes gui wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% −−− Outputs from this function are returned to the command line.
function varargout = gui_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text

162



% str2double(get(hObject,'String')) returns contents of edit1
as a double

% −−− Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

function edit2_Callback(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit2 as text
% str2double(get(hObject,'String')) returns contents of edit2

as a double

% −−− Executes during object creation, after setting all properties.
function edit2_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

% −−− Executes on selection change in popupmenu1.
function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu1 contents
as cell array
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% contents{get(hObject,'Value')} returns selected item from
popupmenu1

if isequal(get(hObject,'Value'),1)
set(handles.text2,'Visible','off');
set(handles.edit2,'Visible','off');

else
set(handles.text2,'Visible','on');
set(handles.edit2,'Visible','on');

end

% −−− Executes during object creation, after setting all properties.
function popupmenu1_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called

% Hint: popupmenu controls usually have a white background on
Windows.

% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

function edit3_Callback(hObject, eventdata, handles)
% hObject handle to edit3 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit3 as text
% str2double(get(hObject,'String')) returns contents of edit3

as a double

% −−− Executes during object creation, after setting all properties.
function edit3_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit3 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end
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% −−− Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% −−− Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global results;
sprintf('%10s%10s%10s%10s%10s%10s%10s%10s%10s%10s','1.227 GHz','1.575

GHz','Width','Length ','SlotWidth ','SlotLength','Ps','Probe X',
'Probe Y','Height')

if isequal(get(handles.popupmenu1,'Value'),1)
lmin=str2num(get(handles.edit1,'String'));

% lmin=round(str2num(lmin{1}));
lmax=lmin;

else
lmin=str2num(get(handles.edit1,'String'));

% lmin=round(str2num(lmin{1}));
lmax=str2num(get(handles.edit2,'String'));

% lmax=round(str2num(lmax{1}));
end
if isequal(get(handles.popupmenu2,'Value'),1)

wmin=str2num(get(handles.edit3,'String'));
wmax=wmin;

else
wmin=str2num(get(handles.edit3,'String'));
wmax=str2num(get(handles.edit4,'String'));

end
if isequal(get(handles.popupmenu3,'Value'),1)

slmin=str2num(get(handles.edit5,'String'));
slmax=slmin;

else
slmin=str2num(get(handles.edit5,'String'));
slmax=str2num(get(handles.edit6,'String'));

end
if isequal(get(handles.popupmenu4,'Value'),1)

swmin=str2num(get(handles.edit7,'String'));
swmax=swmin;

else
swmin=str2num(get(handles.edit7,'String'));
swmax=str2num(get(handles.edit8,'String'));

end
if isequal(get(handles.popupmenu5,'Value'),1)

psmin=str2num(get(handles.edit9,'String'));
psmax=psmin;

else
psmin=str2num(get(handles.edit9,'String'));
psmax=str2num(get(handles.edit10,'String'));
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end
if isequal(get(handles.popupmenu6,'Value'),1)

xmin=str2num(get(handles.edit11,'String'));
xmax=xmin;
xstep=.05;

else
xmin=str2num(get(handles.edit11,'String'));
xmax=str2num(get(handles.edit12,'String'));
xstep=str2num(get(handles.edit15,'String'));

end
if isequal(get(handles.popupmenu7,'Value'),1)

hmin=str2num(get(handles.edit13,'String'));
hmax=hmin;
hstep=.05;

else
hmin=str2num(get(handles.edit13,'String'));
hmax=str2num(get(handles.edit14,'String'));
hstep=str2num(get(handles.edit16,'String'));

end

num=1;
% E−patch length
for l=lmin:lmax

% E−patch width (must be even)
for w0=wmin:2:wmax
% slot length
for sl=slmin:slmax
% slot width (must be even)
for sw=swmin:swmax
% Ps (distance from line of symmetry to middle of slot)
for ps=psmin:psmax
% Probe x placement (cm)
for probex=xmin:xstep:xmax
% Dielectric Height
for h=hmin:hstep:hmax

% Define all patches

if not(mod(sw,2)==mod(w0,2))
w=w0+1;

else
w=w0;

end

x1=round((200−l)/2);
l1=l−sl;
y1=round((200−w)/2);
w1=w;
x2=round((200−l)/2);
l2=l;
y2=round((200−w)/2);
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w2=round(w/2−sw/2−ps);
x3=round((200−l)/2);
l3=l;
y3=round(100+sw/2−ps);
w3=2*ps−sw;
x4=round((200−l)/2);
l4=l;
y4=round(100+ps+sw/2);
w4=round(w/2−sw/2−ps);
sw1=y3−y2−w2;
sw2=y4−y3−w3;
probey=mod(w3,2)/20

% figure;
% rectangle('position',[0 0 200 200]);
% hold on;
% fill([x1 x1 x1+l1 x1+l1],[y1 y1+w1 y1+w1 y1],'r');
% fill([x2 x2 x2+l2 x2+l2],[y2 y2+w2 y2+w2 y2],'r');
% fill([x3 x3 x3+l3 x3+l3],[y3 y3+w3 y3+w3 y3],'r');
% fill([x4 x4 x4+l4 x4+l4],[y4 y4+w4 y4+w4 y4],'r');
% plot(probex*10+100,probey*10+100,'−−rs','MarkerFaceColor','g','

MarkerSize',5);
%

% output kbrick input file
fid=fopen(['text.txt'],'w');
fprintf(fid,'1\n^^^ 1 = save geo file, 2=read it, 0=do nothing\

npatch.geo\n^^^ filename for geometry\n20.0 20.0\n^^^ (x,y)
cavity dimensions in cm\n200 200 1\n^^^ x,y,z dimension cells\
n0\n^^^ 0 = cavity, 1=slot\n');

fprintf(fid,'%.2f\n^^^ Layer 1 thickness (cm)\n',h);
fprintf(fid,'4\n^^^ Number of patches\n');
fprintf(fid,'%d %d 1\n^^^ Lower left corner of patch + layer\n',[

x1; y1]);
fprintf(fid,'%d %d\n^^^ Patch dimension in edges\n',[l1; w1]);
fprintf(fid,'%d %d 1\n^^^ Lower left corner of patch + layer\n',[

x2; y2]);
fprintf(fid,'%d %d\n^^^ Patch dimension in edges\n',[l2; w2]);
fprintf(fid,'%d %d 1\n^^^ Lower left corner of patch + layer\n',[

x3; y3]);
fprintf(fid,'%d %d\n^^^ Patch dimension in edges\n',[l3; w3]);
fprintf(fid,'%d %d 1\n^^^ Lower left corner of patch + layer\n',[

x4; y4]);
fprintf(fid,'%d %d\n^^^ Patch dimension in edges\n',[l4; w4]);
fprintf(fid,'0\n^^^ Number of slots\n0\n^^^ Number of shorting

pins\n0\n^^^ Number of metal blocks\n0\n^^^ Number of material
blocks\n1\n^^^ 1 = uniform material fill\n0\n^^^ 0 = non−

dispersive, 1 = dispersive\n1.0 −0.00\n^^^ Complex epsilon (
real, imaginary)\n1.0 −0.00\n^^^ Complex mu (real, imaginary)\
n');
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fprintf(fid,'0.01 5 60000\n^^^ convergence tolerance, min.
iterations, max. iterations\n0\n^^^ 0 = BiCG, 1 = QMR\n0\n^^^
1 = monitor iterations\n0\n^^^ 0=initial guess, 1=automatic
guess\n1.227 1.6 .348\n^^^ Start, Stop, INCR frequency [GHz]\
n0 0 1\n^^^ Start, Stop, Incr phi angles [deg]\n−90.0 90.0 1.0
\n^^^ Start, Stop, Incr theta angles [deg]\n0\n^^^ 0 = do not
compute far−zone, 1=compute far−zone fields\npatchX_test\n^^^
Six (6) character file prefix\n0\n^^^ 0 = driven, 1=S−
paramters, 2=bistatic\nE_patch_chad_impedance_Opt.zin\n^^^
Input impedance file\n');

fprintf(fid,'50.0 0.0\n^^^ Reference impedance\n1\n^^^ Number of
feeds\n3\n^^^ direction of feed (1=x, 2=y, 3=z)\n');

fprintf(fid,'%.2f %.2f\n^^^ (x,y) location of feed in cm\n',[
probex; probey]);

fprintf(fid,'1\n^^^ Layer of feed\n1.0 0.0\n^^^ Magnitude and
phase of current\n0\n^^^ Number of loads\n0\n^^^ 0 = do NOT
save interior fields, 1= save surface fields\n0\n^^^ Number of
field probe\n');

fclose(fid);

%run kbrick
!kbrick<text.txt >out.txt

%input db's from kbrick output file
fid=fopen('out.txt','rt');

while feof(fid) == 0
clear tline;
tline = fgetl(fid);
if length(tline)>6
if tline(1:7)==' 1.2270'

db1=str2num(tline(length(tline)−5:length(tline)));
end
if tline(1:7)==' 1.5750'

db2=str2num(tline(length(tline)−5:length(tline)));
end
end

end
fclose(fid);

%save results
results(num,1)=db1;
results(num,2)=db2;
results(num,3)=w;
results(num,4)=l;
results(num,5)=sw;
results(num,6)=sl;
results(num,7)=ps;
results(num,8)=probex;
results(num,9)=probey;
results(num,10)=h;
disp(results(num,:))
num=num+1;
% !rm out.txt
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end
end
end
end
end
end
end
fid=fopen(['results.txt'],'w');
fprintf(fid,'%10s%10s%10s%10s%10s%10s%10s%10s%10s%10s\n','1.227 GHz',

'1.575 GHz','Width','Length ','SlotWidth ','SlotLength','Ps','
Probe X','Probe Y','Height');

for i=1:num−1
fprintf(fid,'%10g%10g%10g%10g%10g%10g%10g%10g%10g%10g\n',results(i,:)

);
end
fclose(fid);

% −−− Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

function edit4_Callback(hObject, eventdata, handles)
% hObject handle to edit4 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit4 as text
% str2double(get(hObject,'String')) returns contents of edit4

as a double

% −−− Executes during object creation, after setting all properties.
function edit4_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit4 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end
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% −−− Executes on selection change in popupmenu2.
function popupmenu2_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu2 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu2 contents
as cell array

% contents{get(hObject,'Value')} returns selected item from
popupmenu2

if isequal(get(hObject,'Value'),1)
set(handles.text4,'Visible','off');
set(handles.edit4,'Visible','off');

else
set(handles.text4,'Visible','on');
set(handles.edit4,'Visible','on');

end

% −−− Executes during object creation, after setting all properties.
function popupmenu2_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu2 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called

% Hint: popupmenu controls usually have a white background on
Windows.

% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

function edit5_Callback(hObject, eventdata, handles)
% hObject handle to edit5 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit5 as text
% str2double(get(hObject,'String')) returns contents of edit5

as a double

% −−− Executes during object creation, after setting all properties.
function edit5_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit5 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called
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% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

function edit6_Callback(hObject, eventdata, handles)
% hObject handle to edit6 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit6 as text
% str2double(get(hObject,'String')) returns contents of edit6

as a double

% −−− Executes during object creation, after setting all properties.
function edit6_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit6 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

% −−− Executes on selection change in popupmenu3.
function popupmenu3_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu3 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu3 contents
as cell array

% contents{get(hObject,'Value')} returns selected item from
popupmenu3

if isequal(get(hObject,'Value'),1)
set(handles.text6,'Visible','off');
set(handles.edit6,'Visible','off');

else
set(handles.text6,'Visible','on');
set(handles.edit6,'Visible','on');

end

% −−− Executes during object creation, after setting all properties.
function popupmenu3_CreateFcn(hObject, eventdata, handles)
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% hObject handle to popupmenu3 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called

% Hint: popupmenu controls usually have a white background on
Windows.

% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

function edit7_Callback(hObject, eventdata, handles)
% hObject handle to edit7 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit7 as text
% str2double(get(hObject,'String')) returns contents of edit7

as a double

% −−− Executes during object creation, after setting all properties.
function edit7_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit7 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

function edit8_Callback(hObject, eventdata, handles)
% hObject handle to edit8 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit8 as text
% str2double(get(hObject,'String')) returns contents of edit8

as a double

% −−− Executes during object creation, after setting all properties.
function edit8_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit8 (see GCBO)
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% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

% −−− Executes on selection change in popupmenu4.
function popupmenu4_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu4 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu4 contents
as cell array

% contents{get(hObject,'Value')} returns selected item from
popupmenu4

if isequal(get(hObject,'Value'),1)
set(handles.text8,'Visible','off');
set(handles.edit8,'Visible','off');

else
set(handles.text8,'Visible','on');
set(handles.edit8,'Visible','on');

end

% −−− Executes during object creation, after setting all properties.
function popupmenu4_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu4 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called

% Hint: popupmenu controls usually have a white background on
Windows.

% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

function edit9_Callback(hObject, eventdata, handles)
% hObject handle to edit9 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit9 as text
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% str2double(get(hObject,'String')) returns contents of edit9
as a double

% −−− Executes during object creation, after setting all properties.
function edit9_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit9 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

function edit10_Callback(hObject, eventdata, handles)
% hObject handle to edit10 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit10 as text
% str2double(get(hObject,'String')) returns contents of edit10

as a double

% −−− Executes during object creation, after setting all properties.
function edit10_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit10 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

% −−− Executes on selection change in popupmenu5.
function popupmenu5_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu5 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu5 contents
as cell array
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% contents{get(hObject,'Value')} returns selected item from
popupmenu5

if isequal(get(hObject,'Value'),1)
set(handles.text10,'Visible','off');
set(handles.edit10,'Visible','off');

else
set(handles.text10,'Visible','on');
set(handles.edit10,'Visible','on');

end

% −−− Executes during object creation, after setting all properties.
function popupmenu5_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu5 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called

% Hint: popupmenu controls usually have a white background on
Windows.

% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

function edit11_Callback(hObject, eventdata, handles)
% hObject handle to edit11 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit11 as text
% str2double(get(hObject,'String')) returns contents of edit11

as a double

% −−− Executes during object creation, after setting all properties.
function edit11_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit11 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

function edit12_Callback(hObject, eventdata, handles)
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% hObject handle to edit12 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit12 as text
% str2double(get(hObject,'String')) returns contents of edit12

as a double

% −−− Executes during object creation, after setting all properties.
function edit12_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit12 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

% −−− Executes on selection change in popupmenu6.
function popupmenu6_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu6 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu6 contents
as cell array

% contents{get(hObject,'Value')} returns selected item from
popupmenu6

if isequal(get(hObject,'Value'),1)
set(handles.text12,'Visible','off');
set(handles.edit12,'Visible','off');
set(handles.text15,'Visible','off');
set(handles.edit15,'Visible','off');

else
set(handles.text12,'Visible','on');
set(handles.edit12,'Visible','on');
set(handles.text15,'Visible','on');
set(handles.edit15,'Visible','on');

end

% −−− Executes during object creation, after setting all properties.
function popupmenu6_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu6 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called
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% Hint: popupmenu controls usually have a white background on
Windows.

% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

function edit13_Callback(hObject, eventdata, handles)
% hObject handle to edit13 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit13 as text
% str2double(get(hObject,'String')) returns contents of edit13

as a double

% −−− Executes during object creation, after setting all properties.
function edit13_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit13 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

function edit14_Callback(hObject, eventdata, handles)
% hObject handle to edit14 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit14 as text
% str2double(get(hObject,'String')) returns contents of edit14

as a double

% −−− Executes during object creation, after setting all properties.
function edit14_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit14 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
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% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

% −−− Executes on selection change in popupmenu7.
function popupmenu7_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu7 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu7 contents
as cell array

% contents{get(hObject,'Value')} returns selected item from
popupmenu7

if isequal(get(hObject,'Value'),1)
set(handles.text14,'Visible','off');
set(handles.edit14,'Visible','off');
set(handles.text16,'Visible','off');
set(handles.edit16,'Visible','off');

else
set(handles.text14,'Visible','on');
set(handles.edit14,'Visible','on');
set(handles.text16,'Visible','on');
set(handles.edit16,'Visible','on');

end

% −−− Executes during object creation, after setting all properties.
function popupmenu7_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu7 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called

% Hint: popupmenu controls usually have a white background on
Windows.

% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

function edit15_Callback(hObject, eventdata, handles)
% hObject handle to edit15 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit15 as text
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% str2double(get(hObject,'String')) returns contents of edit15
as a double

% −−− Executes during object creation, after setting all properties.
function edit15_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit15 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

function edit16_Callback(hObject, eventdata, handles)
% hObject handle to edit16 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit16 as text
% str2double(get(hObject,'String')) returns contents of edit16

as a double

% −−− Executes during object creation, after setting all properties.
function edit16_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit16 (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end
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Appendix E: Matlab Imaging Code
for Taguchi-K-brick-Epatch

close all
clear all
format short

db1=0;
db2=0;
% 1 Epatch Width
% 2 Epatch Lenght
% 3 Slot Length
% 4 Slot Width
% 5 Ps
% 6 Dielectric Height
% 7 Probe placement x direction

[filename pathname] = uigetfile('*.txt','Choose the OA file from
online or generated code MUST BE ACII Formated!');

OA=dlmread([pathname filename]);

SizeofOA=size(OA);
Element = 7;% input number of Elements to be tested

if SizeofOA(2) == Element

else
newColummnsize=SizeofOA(2)−Element;
for n=1:newColummnsize % reduces the columm size for expriment

OA(:,SizeofOA(2))=[];

SizeofOA=size(OA);
end

end
A=1; % factor for db1
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B=1; % factor for db2

% Level Design User specifies level
Level=0:2; %Input by user assuming 3 levels
lengthflevel=length(Level);
Max1=110; % Input by User patch width in mm
Min1=60; % Input by User patch width in mm

Max2=110; % Input by User patch lenght in mm
Min2=60; % Input by User patch lenght in mm

Max3=95; % Input by User slot lenght in mm
Min3=50; % Input by User slot lenght in mm

Max4=10; % Input by User slot width in mm
Min4=1; % Input by User slot width in mm

Max5=25; % Input by User Ps in mm
Min5=5; % Input by User Ps in mm

Max6=1.5; % Input by User dielectric hight in cm
Min6=.1; % Input by User dielctric height in cm

Max7=7; % Input by User probe placment x in cm
Min7=0; % Input by User probe placement x in cm

rr=.9; % Reduction rate used by User
i=0;
diffrentlevels=0:1; % Because not all levels will have the same

range. Specified here is how many are different
LDtime=1.5;

Ld1= LDtime*(Max1 − Min1)/(lengthflevel+1); % first specifed level
differnce first interation

Ld2= LDtime*(Max2 − Min2)/(lengthflevel+1); % first specifed level
differnce first interation

Ld3= LDtime*(Max3 − Min3)/(lengthflevel+1); % first specifed level
differnce first interation

Ld4= LDtime*(Max4 − Min4)/(lengthflevel+1); % first specifed level
differnce first interation

Ld5=LDtime*(Max5 − Min5)/(lengthflevel+1); % first specifed level
differnce first interation

Ld6= LDtime*(Max6 − Min6)/(lengthflevel+1); % first specifed level
differnce first interation
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Ld7=LDtime*(Max7 − Min7)/(lengthflevel+1); % first specifed level
differnce first interation

Ldi1=round(Ld1*rr^i);

Ldi2=round(Ld2*rr^i);

Ldi3=round(Ld3*rr^i);

Ldi4=round(Ld4*rr^i);

Ldi5=round(Ld5*rr^i);

Ldi6=(Ld6*rr^i);

Ldi7=(Ld7*rr^i);

while (Ldi1/Ld1)>.0001;

clear Level LevelOA2 LevelOA3 LevelOA1 db1 db2
Level=0:2;

clear n b g c

Ldi1=round(Ld1*rr^i);

Ldi2=round(Ld2*rr^i);

Ldi3=round(Ld3*rr^i);

Ldi4=round(Ld4*rr^i);

Ldi5=round(Ld5*rr^i);

Ldi6=(Ld6*rr^i);

Ldi7=(Ld7*rr^i);

for n=1:SizeofOA(2)
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if i==0
switch n

case 1
Level(2)= (Max1−Min1)/2 + Min1;% Middle of range
Level(1)=Level(2)−Ldi1;
Level(3)=Level(2)+Ldi1;

case 2
Level(2)= (Max2−Min2)/2 + Min2;% Middle of range

Level(1)=Level(2)−Ldi2;
Level(3)=Level(2)+Ldi2;

case 3
Level(2)= (Max3−Min3)/2 + Min3;% Middle of range

Level(1)=Level(2)−Ldi3;
Level(3)=Level(2)+Ldi3;

case 4
Level(2)= (Max4−Min4)/2 + Min4;% Middle of range

Level(1)=Level(2)−Ldi4;
Level(3)=Level(2)+Ldi4;

case 5
Level(2)= (Max5−Min5)/2 + Min5;% Middle of range

Level(1)=Level(2)−Ldi5;
Level(3)=Level(2)+Ldi5;

case 6
Level(2)= (Max6−Min6)/2 + Min6;% Middle of range

Level(1)=Level(2)−Ldi6;
Level(3)=Level(2)+Ldi6;

case 7
Level(2)= (Max7−Min7)/2 + Min7;% Middle of range

Level(1)=Level(2)−Ldi7;
Level(3)=Level(2)+Ldi7;

end

LevelOA1(n)=Level(1);
LevelOA2(n)=Level(2);
LevelOA3(n)=Level(3);

else

switch n
case 1
Level(2)= OAr(n);
Level(1)=Level(2)−Ldi1;
Level(3)=Level(2)+Ldi1;

if Level(1)≤Min1
Level(1)=Min1;
else
end
if Level(3)≥Max1
Level(3)=Max1;
else
end
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LevelOA1(n)=Level(1);
LevelOA2(n)=Level(2);
LevelOA3(n)=Level(3);

case 2
Level(2)= OAr(n);
Level(1)=Level(2)−Ldi2;
Level(3)=Level(2)+Ldi2;

if Level(1)≤Min2
Level(1)=Min2;
else
end
if Level(3)≥Max2
Level(3)=Max2;
else
end
LevelOA1(n)=Level(1);
LevelOA2(n)=Level(2);
LevelOA3(n)=Level(3);

case 3
Level(2)= OAr(n);
Level(1)=Level(2)−Ldi3;
Level(3)=Level(2)+Ldi3;

if Level(1)≤Min3
Level(1)=Min3;
else
end
if Level(3)≥Max3
Level(3)=Max3;
else
end
LevelOA1(n)=Level(1);
LevelOA2(n)=Level(2);
LevelOA3(n)=Level(3);

case 4
Level(2)= OAr(n);
Level(1)=Level(2)−Ldi4;
Level(3)=Level(2)+Ldi4;

if Level(1)≤Min4
Level(1)=Min4;
else
end
if Level(3)≥Max4
Level(3)=Max4;
else
end
LevelOA1(n)=Level(1);
LevelOA2(n)=Level(2);
LevelOA3(n)=Level(3);

case 5
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Level(2)= OAr(n);
Level(1)=Level(2)−Ldi5;
Level(3)=Level(2)+Ldi5;

if Level(1)≤Min5
Level(1)=Min5;
else
end
if Level(3)≥Max5
Level(3)=Max5;
else
end
LevelOA1(n)=Level(1);
LevelOA2(n)=Level(2);
LevelOA3(n)=Level(3);

case 6
Level(2)= OAr(n);
Level(1)=Level(2)−Ldi6;
Level(3)=Level(2)+Ldi6;

if Level(1)≤Min6
Level(1)=Min6;
else
end
if Level(3)≥Max6
Level(3)=Max6;
else
end
LevelOA1(n)=Level(1);
LevelOA2(n)=Level(2);
LevelOA3(n)=Level(3);

case 7
Level(2)= OAr(n);
Level(1)=Level(2)−Ldi7;
Level(3)=Level(2)+Ldi7;

if Level(1)≤Min7
Level(1)=Min7;
else
end
if Level(3)≥Max7
Level(3)=Max7;
else
end
LevelOA1(n)=Level(1);
LevelOA2(n)=Level(2);
LevelOA3(n)=Level(3);

end
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end

end

countoflevel=0;

clear LevelOA

for n=1:SizeofOA(1) % Filling up a Level based OA

for b=1:SizeofOA(2)

if OA(n,b)==0
LevelOA(n,b)=LevelOA1(b);

elseif OA(n,b)==1
LevelOA(n,b)=LevelOA2(b);

else
LevelOA(n,b)=LevelOA3(b);

end

if b==7
if LevelOA(n,1)≤LevelOA(n,3)

LevelOA(n,3)=Min1−5;
else

end
if (LevelOA(n,1)/20)≤LevelOA(n,7)

LevelOA(n,7)=(LevelOA(n,1)/20)−.2;
else

end
else
end

end

LevelOATrack(n,b,(i+1))=LevelOA(n,b);

end
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clear FitnessF
clear F1 F2 F3
% 1 Epatch Width
% 2 Epatch Lenght
% 3 Slot Length
% 4 Slot Width
% 5 Ps
% 6 Dielectric Height
% 7 Probe placement x direction
FirstT=clock;
for n=1:SizeofOA(1)
tic;

if n==1
else
!rm out.txt
end

if not(mod(LevelOA(n,4),2)==mod(LevelOA(n,2),2))
w=LevelOA(n,2)+1;

else
w=LevelOA(n,2);

end

l=LevelOA(n,1);

sl=LevelOA(n,3);
sw=LevelOA(n,4);

ps=LevelOA(n,5);
h=LevelOA(n,6);
probex=LevelOA(n,7);

x1=round((200−l)/2); % probe placement x direction piece 1
l1=(l−sl); % slot length of the first piece
y1=round((200−w)/2); % probde placement y direction piece 1
w1=(w); % width of E−patch
x2=round((200−l)/2); % probe placement x direction piece 2
l2=(l); % lenght of E−patch
y2=round((200−w)/2); % probe placement y dircetion piece 2
w2=round(w/2−sw/2−ps); %with of piece 2 based on how wide slot needs

to be
x3=round((200−l)/2); % probe placement x direction piece 3
l3=(l); % lenght of piece 3
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y3=round(100+sw/2−ps); % probe placement y direction of piece 3 based
on PS

w3=(2*ps−sw); % width of piece 3 based on PS
x4=round((200−l)/2); % probe placement piece 4 x
l4=(l); % lenght of piece 4
y4=round(100+ps+sw/2); % probe placem piece 4 in y
w4=round(w/2−sw/2−ps); % width of piece 4

probey=mod(w3,2)/20; % probe placement in y direction always in the
symetric center

fid=fopen(['text.txt'],'w');
fprintf(fid,'1\n^^^ 1 = save geo file, 2=read it, 0=do nothing\

npatch.geo\n^^^ filename for geometry\n20.0 20.0\n^^^ (x,y)
cavity dimensions in cm\n200 200 1\n^^^ x,y,z dimension cells\
n0\n^^^ 0 = cavity, 1=slot\n');

fprintf(fid,'%.2f\n^^^ Layer 1 thickness (cm)\n',h);
fprintf(fid,'4\n^^^ Number of patches\n');
fprintf(fid,'%.0f %.0f 1\n^^^ Lower left corner of patch + layer\

n',[x1; y1]);
fprintf(fid,'%.0f %.0f \n^^^ Patch dimension in edges\n',[l1; w1

]);
fprintf(fid,'%.0f %.0f 1\n^^^ Lower left corner of patch + layer\

n',[x2; y2]);
fprintf(fid,'%.0f %.0f \n^^^ Patch dimension in edges\n',[l2 ; w2

]);
fprintf(fid,'%.0f %.0f 1\n^^^ Lower left corner of patch + layer\

n',[x3; y3]);
fprintf(fid,'%.0f %.0f \n^^^ Patch dimension in edges\n',[l3; w3

]);
fprintf(fid,'%.0f %.0f 1\n^^^ Lower left corner of patch + layer\

n',[x4; y4]);
fprintf(fid,'%.0f %.0f \n^^^ Patch dimension in edges\n',[l4; w4

]);
fprintf(fid,'0\n^^^ Number of slots\n0\n^^^ Number of shorting

pins\n0\n^^^ Number of metal blocks\n0\n^^^ Number of material
blocks\n1\n^^^ 1 = uniform material fill\n0\n^^^ 0 = non−

dispersive, 1 = dispersive\n1.0 −0.00\n^^^ Complex epsilon (
real, imaginary)\n1.0 −0.00\n^^^ Complex mu (real, imaginary)\
n');

fprintf(fid,'0.01 5 60000\n^^^ convergence tolerance, min.
iterations, max. iterations\n0\n^^^ 0 = BiCG, 1 = QMR\n0\n^^^
1 = monitor iterations\n0\n^^^ 0=initial guess, 1=automatic
guess\n1.227 1.6 .348\n^^^ Start, Stop, INCR frequency [GHz]\
n0 0 1\n^^^ Start, Stop, Incr phi angles [deg]\n−90.0 90.0 1.0
\n^^^ Start, Stop, Incr theta angles [deg]\n0\n^^^ 0 = do not
compute far−zone, 1=compute far−zone fields\npatchX_test\n^^^
Six (6) character file prefix\n0\n^^^ 0 = driven, 1=S−
paramters, 2=bistatic\nE_patch_chad_impedance_Opt.zin\n^^^
Input impedance file\n');

fprintf(fid,'50.0 0.0\n^^^ Reference impedance\n1\n^^^ Number of
feeds\n3\n^^^ direction of feed (1=x, 2=y, 3=z)\n');
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fprintf(fid,'%.2f %.2f\n^^^ (x,y) location of feed in cm\n',[
probex; probey]);

fprintf(fid,'1\n^^^ Layer of feed\n1.0 0.0\n^^^ Magnitude and
phase of current\n0\n^^^ Number of loads\n0\n^^^ 0 = do NOT
save interior fields, 1= save surface fields\n0\n^^^ Number of
field probe\n');

fclose(fid);

%run kbrick
!k_brick <text.txt > out.txt

%input db's from kbrick output file
fid=fopen('out.txt','rt');

while feof(fid) == 0
clear tline;
tline = fgetl(fid);
if length(tline)>6
if tline(1:7)==' 1.2270'

db1=str2num(tline(length(tline)−5:length(tline)));
end
if tline(1:7)==' 1.5750'

db2=str2num(tline(length(tline)−5:length(tline)));
end
end

end
fclose(fid);
% build fitness function

% FitnessF(1,n) =int((db1+15),x,1.177,1.277)+int((db2+15),x,1.525,1
.625);

FitnessF(1,n)=abs(A*(db1+40))+abs((db2+40));
disp('FITNESS for Experiment');disp(n);disp('Iteration');disp(i)
disp(FitnessF(1,n));

end
Time2=clock;
TimeF=Time2−FirstT;
disp('Time for one whole set of 27 expriments');disp(TimeF)

disp(' LevelOA for Iteration');disp((i+1))
disp(LevelOATrack(:,:,(i+1)));

clear StoN

StoN=−20*log10((FitnessF)); % Signal to Noise Ratio
clear FinalResponse
%Build Response table

for n=1:SizeofOA(2)
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response=0;
response2=0;
response3=0;
countoflevel=0;

for h=1:SizeofOA(1)

if OA(h,n)==0
response=response+StoN(h);
countoflevel=countoflevel+1;

elseif OA(h,n)==1
response2=response2+StoN(h);

elseif OA(h,n)==2
response3=response3+StoN(h);

end

end

for c=1:lengthflevel

if c==1
FinalResponse(c,n)=response/countoflevel;

elseif c==2
FinalResponse(c,n)=response2/countoflevel;

elseif c==3
FinalResponse(c,n)=response3/countoflevel;
end

end

end

clear Optparameters

disp('Final Response table for iteration');disp(i)
disp(FinalResponse)
clear OptMat

Optparameters=max(FinalResponse);

for n=1:SizeofOA(2) % Matrix use to single out the good s/n's

for c=1:lengthflevel

if Optparameters(n)==FinalResponse(c,n)
OptMat(c,n)=FinalResponse(c,n);

else
OptMat(c,n)=pi;

end

end
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end
clear OAr

for n=1:SizeofOA(2) % matrix used to specify final levels that are
optimal

for c=1:lengthflevel

if OptMat(c,n)==pi;
else

switch c
case 1

OAr(n)=LevelOA1(n);
case 2

OAr(n)=LevelOA2(n);
case 3

OAr(n)=LevelOA3(n);
end

end
end

end

% The design for this Fitness Function for use only for Taguchi

!rm text.txt
!rm out.txt

if OAr(1)≤OAr(3) % redundent check of slotlenght and patch width
OAr(3)=Min1−5;

else
end

if (OAr(1)/20)≤OAr(7)%make sure probe is on patch
OAr(7)=(OAr(1)/20)−.2;

else
end

if not(mod(OAr(4),2)==mod(OAr(2),2))
w=OAr(2)+1;

else
w=OAr(2);

end

l=OAr(1);

sl=OAr(3);
sw=OAr(4);
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ps=OAr(5);
h=OAr(6);
probex=OAr(7);

x1=round((200−l)/2); % probe placement x direction piece 1
l1=(l−sl); % slot length width of the first piece
y1=round((200−w)/2); % probde placement y direction piece 1
w1=(w); % width of E−patch
x2=round((200−l)/2); % probe placement x direction piece 2
l2=(l); % lenght of E−patch
y2=round((200−w)/2); % probe placement y dircetion piece 2
w2=round(w/2−sw/2−ps); %with of piece 2 based on how wide slot needs

to be
x3=round((200−l)/2); % probe placement x direction piece 3
l3=(l); % lenght of piece 3
y3=round(100+sw/2−ps); % probe placement y direction of piece 3 based

on PS
w3=(2*ps−sw); % width of piece 3 based on PS
x4=round((200−l)/2); % probe placement piece 4 x
l4=(l); % lenght of piece 4
y4=round(100+ps+sw/2); % probe placem piece 4 in y
w4=round(w/2−sw/2−ps); % width of piece 4

probey=mod(w3,2)/20; % probe placement in y direction always in the
symetric center

fid=fopen(['text.txt'],'w');
fprintf(fid,'1\n^^^ 1 = save geo file, 2=read it, 0=do nothing\

npatch.geo\n^^^ filename for geometry\n20.0 20.0\n^^^ (x,y)
cavity dimensions in cm\n200 200 1\n^^^ x,y,z dimension cells\
n0\n^^^ 0 = cavity, 1=slot\n');

fprintf(fid,'%.2f\n^^^ Layer 1 thickness (cm)\n',h);
fprintf(fid,'4\n^^^ Number of patches\n');
fprintf(fid,'%.0f %.0f 1\n^^^ Lower left corner of patch + layer\

n',[x1; y1]);
fprintf(fid,'%.0f %.0f \n^^^ Patch dimension in edges\n',[l1; w1

]);
fprintf(fid,'%.0f %.0f 1\n^^^ Lower left corner of patch + layer\

n',[x2; y2]);
fprintf(fid,'%.0f %.0f \n^^^ Patch dimension in edges\n',[l2 ; w2

]);
fprintf(fid,'%.0f %.0f 1\n^^^ Lower left corner of patch + layer\

n',[x3; y3]);
fprintf(fid,'%.0f %.0f \n^^^ Patch dimension in edges\n',[l3; w3

]);
fprintf(fid,'%.0f %.0f 1\n^^^ Lower left corner of patch + layer\

n',[x4; y4]);
fprintf(fid,'%.0f %.0f \n^^^ Patch dimension in edges\n',[l4; w4

]);
fprintf(fid,'0\n^^^ Number of slots\n0\n^^^ Number of shorting

pins\n0\n^^^ Number of metal blocks\n0\n^^^ Number of material
blocks\n1\n^^^ 1 = uniform material fill\n0\n^^^ 0 = non−

dispersive, 1 = dispersive\n1.0 −0.00\n^^^ Complex epsilon (
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real, imaginary)\n1.0 −0.00\n^^^ Complex mu (real, imaginary)\
n');

fprintf(fid,'0.01 5 60000\n^^^ convergence tolerance, min.
iterations, max. iterations\n0\n^^^ 0 = BiCG, 1 = QMR\n0\n^^^
1 = monitor iterations\n0\n^^^ 0=initial guess, 1=automatic
guess\n1.227 1.6 .348\n^^^ Start, Stop, INCR frequency [GHz]\
n0 0 1\n^^^ Start, Stop, Incr phi angles [deg]\n−90.0 90.0 1.0
\n^^^ Start, Stop, Incr theta angles [deg]\n0\n^^^ 0 = do not
compute far−zone, 1=compute far−zone fields\npatchX_test\n^^^
Six (6) character file prefix\n0\n^^^ 0 = driven, 1=S−
paramters, 2=bistatic\nE_patch_chad_impedance_Opt.zin\n^^^
Input impedance file\n');

fprintf(fid,'50.0 0.0\n^^^ Reference impedance\n1\n^^^ Number of
feeds\n3\n^^^ direction of feed (1=x, 2=y, 3=z)\n');

fprintf(fid,'%.2f %.2f\n^^^ (x,y) location of feed in cm\n',[
probex; probey]);

fprintf(fid,'1\n^^^ Layer of feed\n1.0 0.0\n^^^ Magnitude and
phase of current\n0\n^^^ Number of loads\n0\n^^^ 0 = do NOT
save interior fields, 1= save surface fields\n0\n^^^ Number of
field probe\n');

fclose(fid);

%run kbrick
!k_brick <text.txt >out.txt

%input db's from kbrick output file
fid=fopen('out.txt','rt');

while feof(fid) == 0
clear tline;
tline = fgetl(fid);
if length(tline)>6
if tline(1:7)==' 1.2270'

db1=str2num(tline(length(tline)−5:length(tline)));
end
if tline(1:7)==' 1.5750'

db2=str2num(tline(length(tline)−5:length(tline)));
end
end

end
fclose(fid);
% build fitness function

% FitnessG=int((db1+15),x,1.177,1.277)+int((db2+15),x,1.525,1.625);

FitnessG=abs(A*(db1+40))+abs((db2+40));
disp('This is the Fitness of the "bestfit" function for iteration');

disp(i);
disp(FitnessG);
meck(i+1)=FitnessG;

for n=1:Element
FinalDs(i+1,n)=OAr(n);
end
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disp('Values for E−patch for iteration');disp(i);
disp(OAr);

!rm out.txt
i=i+1;

Store_db1(i+1)=(db1)
Store2_db2(i+1)=(db2)

%Write and update a output file
fid=fopen(['Taguchi_Epatch_heightrange_5.txt'],'w+');
fprintf(fid,'Max1 Min1 Max2 Min2 Max3 Min3

Max4 Min4 Max5 Min5 Max6 Min6 Max7
Min7 \n')

fprintf(fid,' %.2f %.2f %.2f %.2f %.2f %
.2f %.2f %.2f %.2f %.2f %.2f %.2f

%.2f %.2f ', [ Max1; Min1; Max2; Min2; Max3; Min3;
Max4; Min4; Max5; Min5; Max6; Min6; Max7; Min7])

fprintf(fid,'\n Iteration Epatch Width Epatch Length Sloth
Lenght Slot Width Ps Dielectric Height Probe X 1
.227 1.575')

for j=1:i

for n=1:Element

if n==1
fprintf(fid,'\n %.2f %.2f ', [j; FinalDs(j,n)]);
else

fprintf(fid,' %.2f ',FinalDs(j,n));
end
if n==Element

fprintf(fid,' %.2f %.2f ' , [Store_db1(j+1); Store2_db2(j+1)
]);

else
end

end

end

fclose(fid);
end

meck(i+1)=FitnessG;
plotness=1:length(meck);

figure,plot(plotness,meck);
h = legend('Final Fitness');
set(h,'Interpreter','none')
axis auto
xlabel('Number of Runs of 27 expriements')
ylabel('Fitness')
title('Fitness vs Runs')
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figure,plot(plotness,Store_db1);
h = legend('db1');
set(h,'Interpreter','none')
axis auto
xlabel('Number of Runs of 27 expriements')
ylabel('db1 values')
title('db1 values')

figure,plot(plotness,Store2_db2);
h = legend('db2');
set(h,'Interpreter','none')
axis auto
xlabel('Number of Runs of 27 expriements')
ylabel('db2 values')
title('db2 values')
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Appendix F: Matlab Imaging Code
for Taguchi-K-brick-Rectangular
Patch

This attached code is for a Taguchi optimizer for a rectangular-cavity-backed patch
antenna, simulated in K-brick. Figure F.1 shows the iteration of Taguchi-K-brick
optimization vs |S11| in dB of the simulated patch antenna. For both frequencies a
return loss of at least 35 dB was found. After 27 iterations |S11| was -36.23 dB for
1.5 GHz and -37.27 dB after 24 iteration for 1.2 GHz.

close all
clear all
format short

db1=0;
db2=0;
% 1 Epatch Width
% 2 Epatch Lenght
% 3 Slot Length
% 4 Slot Width
% 5 Ps
% 6 Dielectric Height
% 7 Probe placement x direction

[filename pathname] = uigetfile('*.txt','Choose the OA file from
online or generated code MUST BE ACII Formated!');

OA=dlmread([pathname filename]);

SizeofOA=size(OA);
Element = 4;% input number of Elements to be tested

if SizeofOA(2) == Element

else
newColummnsize=SizeofOA(2)−Element;
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for n=1:newColummnsize % reduces the columm size for expriment

OA(:,SizeofOA(2))=[];

SizeofOA=size(OA);
end

end
A=1; % factor for db1
B=1; % factor for db2

% Level Design User specifies level
Level=0:2; %Input by user assuming 3 levels
lengthflevel=length(Level);

Max1=130; % Input by User patch width in mm
Min1=60; % Input by User patch width in mm

Max2=130; % Input by User patch lenght in mm
Min2=60; % Input by User patch lenght in mm

Max3=6.5; % Input by User probe in x in cm
Min3=0; % Input by User probe in x in cm

Max4=1.5; % Input by User dielectric h in cm
Min4=.5; % Input by User tric hdielec in cm

rr=.9; % Reduction rate used by User
i=0;
diffrentlevels=0:1; % Because not all levels will have the same

range. Specified here is how many are different
LDtime=1.5;

Ld1= LDtime*(Max1 − Min1)/(lengthflevel+1); % first specifed level
differnce first interation

Ld2= LDtime*(Max2 − Min2)/(lengthflevel+1); % first specifed level
differnce first interation

Ld3= LDtime*(Max3 − Min3)/(lengthflevel+1); % first specifed level
differnce first interation

Ld4=LDtime*(Max4 − Min4)/(lengthflevel+1); % first specifed level
differnce first interation

Ldi1=round(Ld1*rr^i);

Ldi2=round(Ld2*rr^i);
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Ldi3=(Ld3*rr^i);

Ldi4=(Ld4*rr^i);

while (Ldi1/Ld1)>.0001;

clear Level LevelOA2 LevelOA3 LevelOA1 db1 db2
Level=0:2;

clear n b g c

Ldi1=round(Ld1*rr^i);

Ldi2=round(Ld2*rr^i);

Ldi3=(Ld3*rr^i);

Ldi4=(Ld4*rr^i);

for n=1:SizeofOA(2)

if i==0
switch n

case 1
Level(2)= (Max1−Min1)/2 + Min1;% Middle of range
Level(1)=Level(2)−Ldi1;
Level(3)=Level(2)+Ldi1;

case 2
Level(2)= (Max2−Min2)/2 + Min2;% Middle of range

Level(1)=Level(2)−Ldi2;
Level(3)=Level(2)+Ldi2;

case 3
Level(2)= (Max3−Min3)/2 + Min3;% Middle of range

Level(1)=Level(2)−Ldi3;
Level(3)=Level(2)+Ldi3;

case 4
Level(2)= (Max4−Min4)/2 + Min4;% Middle of range

Level(1)=Level(2)−Ldi4;
Level(3)=Level(2)+Ldi4;

case 5
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end
LevelOA1(n)=Level(1);
LevelOA2(n)=Level(2);
LevelOA3(n)=Level(3);

else

switch n
case 1
Level(2)= OAr(n);
Level(1)=Level(2)−Ldi1;
Level(3)=Level(2)+Ldi1;

if Level(1)≤Min1
Level(1)=Min1;
else
end
if Level(3)≥Max1
Level(3)=Max1;
else
end
LevelOA1(n)=Level(1);
LevelOA2(n)=Level(2);
LevelOA3(n)=Level(3);

case 2
Level(2)= OAr(n);
Level(1)=Level(2)−Ldi2;
Level(3)=Level(2)+Ldi2;

if Level(1)≤Min2
Level(1)=Min2;
else
end
if Level(3)≥Max2
Level(3)=Max2;
else
end
LevelOA1(n)=Level(1);
LevelOA2(n)=Level(2);
LevelOA3(n)=Level(3);

case 3
Level(2)= OAr(n);
Level(1)=Level(2)−Ldi3;
Level(3)=Level(2)+Ldi3;

if Level(1)≤Min3
Level(1)=Min3;
else
end
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if Level(3)≥Max3
Level(3)=Max3;
else
end
LevelOA1(n)=Level(1);
LevelOA2(n)=Level(2);
LevelOA3(n)=Level(3);

case 4
Level(2)= OAr(n);
Level(1)=Level(2)−Ldi4;
Level(3)=Level(2)+Ldi4;

if Level(1)≤Min4
Level(1)=Min4;
else
end
if Level(3)≥Max4
Level(3)=Max4;
else
end
LevelOA1(n)=Level(1);
LevelOA2(n)=Level(2);
LevelOA3(n)=Level(3);

end

end
end

countoflevel=0;

clear LevelOA

for n=1:SizeofOA(1) % Filling up a Level based OA

for b=1:SizeofOA(2)

if OA(n,b)==0
LevelOA(n,b)=LevelOA1(b);

elseif OA(n,b)==1
LevelOA(n,b)=LevelOA2(b);

else
LevelOA(n,b)=LevelOA3(b);

end
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if b==4 % check for probe is on patch
if (LevelOA(n,1)/20)≤LevelOA(n,3)

LevelOA(n,3)=(LevelOA(n,1)/20)−.2;
else
end

end

LevelOATrack(n,b,(i+1))=LevelOA(n,b);

end

end

clear FitnessF
clear F1 F2 F3
% 1 Epatch Width
% 2 Epatch Lenght
% 3 Slot Length
% 4 Slot Width
% 5 Ps
% 6 Dielectric Height
% 7 Probe placement x direction
FirstT=clock;
for n=1:SizeofOA(1)
tic;

if n==1
else
!rm out.txt
end

w=LevelOA(n,2);
l=LevelOA(n,1);

h=LevelOA(n,4);
probex=LevelOA(n,3);
BlocksX=floor(probex*10+99);
BlocksY=99;

x1=round((200−l)/2); % probe placement x direction piece 1
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l1=round(l); % patch width of the first piece
y1=round((200−w)/2); % probde placement y direction piece 1
w1=round(w); % lenght of patch

probey=mod(w,2)/20; % probe placement in y direction always in the
symetric center

fid=fopen(['text_normal.txt'],'w');
fprintf(fid,'1\n^^^ 1 = save geo file, 2=read it, 0=do nothing\

npatch.geo\n^^^ filename for geometry\n20.0 20.0\n^^^ (x,y)
cavity dimensions in cm\n200 200 1\n^^^ x,y,z dimension cells\
n0\n^^^ 0 = cavity, 1=slot\n');

fprintf(fid,'%.3f\n^^^ Layer 1 thickness (cm)\n',h);
fprintf(fid,'1\n^^^ Number of patches\n');
fprintf(fid,'%.0f %.0f 1\n^^^ Lower left corner of patch + layer\

n',[x1; y1]);
fprintf(fid,'%.0f %.0f \n^^^ Patch dimension in edges\n',[l1; w1

]);
fprintf(fid,'0\n^^^ Number of slots\n0\n^^^ Number of shorting

pins\n0\n^^^ Number of metal blocks\n0\n^^^ Number of material
blocks\n1\n^^^ 1 = uniform material fill\n0\n^^^ 0 = non−

dispersive, 1 = dispersive\n1.0 −0.00\n^^^ Complex epsilon (
real, imaginary)\n1.0 −0.00\n^^^ Complex mu (real, imaginary)\
n');

fprintf(fid,'0.01 5 60000\n^^^ convergence tolerance, min.
iterations, max. iterations\n0\n^^^ 0 = BiCG, 1 = QMR\n0\n^^^
1 = monitor iterations\n0\n^^^ 0=initial guess, 1=automatic
guess\n1.2 1.6 .448\n^^^ Start, Stop, INCR frequency [GHz]\n0
0 1\n^^^ Start, Stop, Incr phi angles [deg]\n−90.0 90.0 1.0\n
^^^ Start, Stop, Incr theta angles [deg]\n0\n^^^ 0 = do not
compute far−zone, 1=compute far−zone fields\npatchX_test\n^^^
Six (6) character file prefix\n0\n^^^ 0 = driven, 1=S−
paramters, 2=bistatic\nE_patch_chad_impedance_Opt.zin\n^^^
Input impedance file\n');

fprintf(fid,'50.0 0.0\n^^^ Reference impedance\n1\n^^^ Number of
feeds\n3\n^^^ direction of feed (1=x, 2=y, 3=z)\n');

fprintf(fid,'%.3f %.3f\n^^^ (x,y) location of feed in cm\n',[
probex; probey]);

fprintf(fid,'1\n^^^ Layer of feed\n1.0 0.0\n^^^ Magnitude and
phase of current\n0\n^^^ Number of loads\n0\n^^^ 0 = do NOT
save interior fields, 1= save surface fields\n0\n^^^ Number of
field probe\n');

fclose(fid);
!k_brick <text_normal.txt >out.txt

fid=fopen('out.txt','rt');
while feof(fid) == 0

clear tline;
tline = fgetl(fid);
if length(tline)>6
if tline(1:7)==' 1.2000'

db1=str2num(tline(length(tline)−5:length(tline)));
end
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end
end
fclose(fid);
% build fitness function

% FitnessF(1,n) =int((db1+15),x,1.177,1.277)+int((db2+15),x,1.525,1
.625);

FitnessF(1,n)=abs(A*(db1+50));
disp('FITNESS for Experiment');disp(n);disp('Iteration');disp(i)
disp(FitnessF(1,n));

end
Time2=clock;
TimeF=Time2−FirstT;
disp('Time for one whole set of 27 expriments');disp(TimeF)

disp(' LevelOA for Iteration');disp((i+1))
disp(LevelOATrack(:,:,(i+1)));

clear StoN

StoN=−20*log10((FitnessF)); % Signal to Noise Ratio
clear FinalResponse
%Build Response table

for n=1:SizeofOA(2)
response=0;
response2=0;
response3=0;
countoflevel=0;

for h=1:SizeofOA(1)

if OA(h,n)==0
response=response+StoN(h);
countoflevel=countoflevel+1;

elseif OA(h,n)==1
response2=response2+StoN(h);

elseif OA(h,n)==2
response3=response3+StoN(h);

end

end

for c=1:lengthflevel
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if c==1
FinalResponse(c,n)=response/countoflevel;

elseif c==2
FinalResponse(c,n)=response2/countoflevel;

elseif c==3
FinalResponse(c,n)=response3/countoflevel;
end

end

end

clear Optparameters

disp('Final Response table for iteration');disp(i)
disp(FinalResponse)
clear OptMat

Optparameters=max(FinalResponse);

for n=1:SizeofOA(2) % Matrix use to single out the good s/n's

for c=1:lengthflevel

if Optparameters(n)==FinalResponse(c,n)
OptMat(c,n)=FinalResponse(c,n);

else
OptMat(c,n)=pi;

end

end
end
clear OAr

for n=1:SizeofOA(2) % matrix used to specify final levels that are
optimal

for c=1:lengthflevel

if OptMat(c,n)==pi;
else

switch c
case 1

OAr(n)=LevelOA1(n);
case 2

OAr(n)=LevelOA2(n);
case 3

OAr(n)=LevelOA3(n);
end

end
end

end
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% The design for this Fitness Function for use only for Taguchi

!rm text.txt
!rm out.txt

w=OAr(2);
l=OAr(1);

if (OAr(1)/20)≤OAr(3)
OAr(3)=(OAr(1)/20)−.2;

else
end

h=OAr(4);
probex=OAr(3);
BlocksX=floor(probex*10+99);
BlocksY=99;

x1=round((200−l)/2); % probe placement x direction piece 1
l1=round(l); % patch width of the first piece
y1=round((200−w)/2); % probde placement y direction piece 1
w1=round(w); % lenght width of E−patch

probey=mod(w,2)/20; % probe placement in y direction always in the
symetric center

fid=fopen(['text_normal.txt'],'w');
fprintf(fid,'1\n^^^ 1 = save geo file, 2=read it, 0=do nothing\

npatch.geo\n^^^ filename for geometry\n20.0 20.0\n^^^ (x,y)
cavity dimensions in cm\n200 200 1\n^^^ x,y,z dimension cells\
n0\n^^^ 0 = cavity, 1=slot\n');

fprintf(fid,'%.3f\n^^^ Layer 1 thickness (cm)\n',h);
fprintf(fid,'1\n^^^ Number of patches\n');
fprintf(fid,'%.0f %.0f 1\n^^^ Lower left corner of patch + layer\

n',[x1; y1]);
fprintf(fid,'%.0f %.0f \n^^^ Patch dimension in edges\n',[l1; w1

]);
fprintf(fid,'0\n^^^ Number of slots\n0\n^^^ Number of shorting

pins\n0\n^^^ Number of metal blocks\n0\n^^^ Number of material
blocks\n1\n^^^ 1 = uniform material fill\n0\n^^^ 0 = non−

dispersive, 1 = dispersive\n1.0 −0.00\n^^^ Complex epsilon (
real, imaginary)\n1.0 −0.00\n^^^ Complex mu (real, imaginary)\
n');
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fprintf(fid,'0.01 5 60000\n^^^ convergence tolerance, min.
iterations, max. iterations\n0\n^^^ 0 = BiCG, 1 = QMR\n0\n^^^
1 = monitor iterations\n0\n^^^ 0=initial guess, 1=automatic
guess\n1.2 1.6 .448\n^^^ Start, Stop, INCR frequency [GHz]\n0
0 1\n^^^ Start, Stop, Incr phi angles [deg]\n−90.0 90.0 1.0\n
^^^ Start, Stop, Incr theta angles [deg]\n0\n^^^ 0 = do not
compute far−zone, 1=compute far−zone fields\npatchX_test\n^^^
Six (6) character file prefix\n0\n^^^ 0 = driven, 1=S−
paramters, 2=bistatic\nE_patch_chad_impedance_Opt.zin\n^^^
Input impedance file\n');

fprintf(fid,'50.0 0.0\n^^^ Reference impedance\n1\n^^^ Number of
feeds\n3\n^^^ direction of feed (1=x, 2=y, 3=z)\n');

fprintf(fid,'%.3f %.3f\n^^^ (x,y) location of feed in cm\n',[
probex; probey]);

fprintf(fid,'1\n^^^ Layer of feed\n1.0 0.0\n^^^ Magnitude and
phase of current\n0\n^^^ Number of loads\n0\n^^^ 0 = do NOT
save interior fields, 1= save surface fields\n0\n^^^ Number of
field probe\n');

fclose(fid);
!k_brick <text_normal.txt >out.txt

%run kbrick

%input db's from kbrick output file
fid=fopen('out.txt','rt');

while feof(fid) == 0
clear tline;
tline = fgetl(fid);
if length(tline)>6
if tline(1:7)==' 1.2000'

db1=str2num(tline(length(tline)−5:length(tline)));
end
end

end
fclose(fid);

FitnessG=abs(A*(db1+50));
disp('This is the Fitness of the "bestfit" function for iteration');

disp(i);
disp(FitnessG);
meck(i+1)=FitnessG;

for n=1:Element
FinalDs(i+1,n)=OAr(n);
end

disp('Values for E−patch for iteration');disp(i);
disp(OAr);

!rm out.txt
i=i+1;
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Store_db1(i+1)=(db1)

%Write and update a output file
fid=fopen(['Rectangular_patch_values_1.2_freq_LD_1_5.txt'],'w+');
fprintf(fid,'Max1 Min1 Max2 Min2 Max3 Min3

Max4 Min4 \n')
fprintf(fid,' %.2f %.2f %.2f %.2f %.2f %

.3f %.3f %.3f ', [ Max1; Min1; Max2; Min2; Max3;
Min3; Max4; Min4;])

fprintf(fid,'\n Iteration patch Width patch Length Probe X
dielectric height 1.2')

for j=1:i

for n=1:Element

if n==1
fprintf(fid,'\n %.3f %.3f ', [j; FinalDs(j,n)]);
else

fprintf(fid,' %.3f ',FinalDs(j,n));
end
if n==Element

fprintf(fid,' %.3f ' , [Store_db1(j+1)]);
else
end

end

end

fclose(fid);

end

meck(i+1)=FitnessG;
plotness=1:length(meck);

figure,plot(plotness,meck);
h = legend('Final Fitness');
set(h,'Interpreter','none')
axis auto
xlabel('Number of Runs of 9 expriements')
ylabel('Fitness')
title('Fitness vs Runs')

figure,plot(plotness,Store_db1);
h = legend('db1');
set(h,'Interpreter','none')
axis auto
xlabel('Number of Runs of 9 expriements')
ylabel('db1 values')
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title('db1 values')
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Figure F.1: |S11| as a function of Taguchi iteration number for rectangular patches
optimizing at 1.5 and 1.2 GHz.
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Appendix G: Matlab code for
Rosenbrock Taguchi optimization

close all
clear all

[filename pathname] = uigetfile('*.txt','Choose the OA file from
online or generated code MUST BE ACII Formated!');

OA=dlmread([pathname filename]);

SizeofOA=size(OA);
Element = 2;% input number of Elements to be tested

if SizeofOA(2) == Element

else
newColummnsize=SizeofOA(2)−Element;
for n=1:newColummnsize % reduces the columm size for expriment

OA(:,SizeofOA(2))=[];

SizeofOA=size(OA);
end

end

% Level Design User specifies level
Level=0:2; %Input by user assuming 3 levels
lengthflevel=length(Level);
Max1=10; % Input by User
Min1=0; % Input by User
Max2=10; % Input by User
Min2=0; % Input by User
rr=.99; % Reduction rate used by User
i=0;
diffrentlevels=0:1; % Because not all levels will have the same

range. Specified here is how many are different

A=2; %changes the level times
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Ld1= (Max1 − Min1)/(lengthflevel+1); % first specifed level differnce
first interation

Ldi1=Ld1*rr^i;

Ld2= (Max2 − Min2)/(lengthflevel+1); % first specifed level differnce
first interation

Ldi2=Ld2*rr^i;

while (Ldi1/Ld1)>.01;

clear LevelOA2 LevelOA3 LevelOA1
Level=0:2;

clear n b g c

Ld1= (Max1 − Min1)/(lengthflevel+1); % first specifed level differnce
first interation

Ldi1=(Ld1*A)*rr^i;

Ld2= (Max2 − Min2)/(lengthflevel+1); % first specifed level differnce
first interation

Ldi2=(Ld2*A)*rr^i;

for n=1:SizeofOA(2)

if i==0
switch n

case 1
Level(2)= (Max1−Min1)/2 + Min1;% Middle of range
Level(1)=Level(2)−Ldi1;
Level(3)=Level(2)+Ldi1;

LevelOA1(n)=Level(1);
LevelOA2(n)=Level(2);
LevelOA3(n)=Level(3);

case 2
Level(2)=(Max2−Min2)/2 + Min2; %Middle of range
Level(1)=Level(2)−Ldi2;
Level(3)=Level(2)+Ldi2;

LevelOA1(n)=Level(1);
LevelOA2(n)=Level(2);
LevelOA3(n)=Level(3);

end

else

switch n
case 1
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Level(2)= OAr(n);
Level(1)=Level(2)−Ldi1;
Level(3)=Level(2)+Ldi1;

if Level(1)≤Min1
Level(1)=Min1;
else
end
if Level(3)≥Max1
Level(3)=Max1;
else
end
LevelOA1(n)=Level(1);
LevelOA2(n)=Level(2);
LevelOA3(n)=Level(3);

case 2
Level(2)= OAr(n);
Level(1)=Level(2)−Ldi2;
Level(3)=Level(2)+Ldi2;

if Level(1)≤Min2
Level(1)=Min2;
else
end
if Level(3)≥Max2
Level(3)=Max2;
else
end

LevelOA1(n)=Level(1);
LevelOA2(n)=Level(2);
LevelOA3(n)=Level(3);

end

end

end

countoflevel=0;

clear LevelOA

for n=1:SizeofOA(1) % Filling up a Level based OA

for b=1:SizeofOA(2)
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if OA(n,b)==0
LevelOA(n,b)=LevelOA1(b);

elseif OA(n,b)==1
LevelOA(n,b)=LevelOA2(b);

else
LevelOA(n,b)=LevelOA3(b);

end

end

end

clear FitnessF
for n=1:SizeofOA(1)

%Fitness=Fitness+(LevelOA(n,g))^2−10*cos(2*pi*(LevelOA(n,g)))+10;
%Fitness=1−abs(sin(pi*(LevelOA(n,1)−3))/(pi*(LevelOA(n,1)−3)))*abs

(sin(pi*(LevelOA(n,2)−3))/(pi*(LevelOA(n,2)−3)));
%Fitness=exp((LevelOA(n,1)*sin(4*LevelOA(n,1))+1.1*LevelOA(n,2)*

sin(2*LevelOA(n,2))));
% Fitness=20+((LevelOA(n,1)*sin(4*LevelOA(n,1))+1.1*LevelOA(n,2)*

sin(2*LevelOA(n,2))));
%Fitness=exp((1−LevelOA(n,1))^2+100*(LevelOA(n,2)−(LevelOA(n,1))^2)^2

_;

FitnessG=(1−LevelOA(n,1))^2+100*(LevelOA(n,2)−(LevelOA(n,1))^2)^2;
FitnessF(n,1)=FitnessG;
end

clear StoN

StoN=−20*log10((FitnessF)); % Signal to Noise Ratio
clear FinalResponse
%Build Response table

for n=1:SizeofOA(2)
response=0;
response2=0;
response3=0;
countoflevel=0;

for h=1:SizeofOA(1)

if OA(h,n)==0
response=response+StoN(h);
countoflevel=countoflevel+1;
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elseif OA(h,n)==1
response2=response2+StoN(h);

elseif OA(h,n)==2
response3=response3+StoN(h);

end

end

for c=1:lengthflevel

if c==1
FinalResponse(c,n)=response/countoflevel;

elseif c==2
FinalResponse(c,n)=response2/countoflevel;

elseif c==3
FinalResponse(c,n)=response3/countoflevel;
end

end

end

clear Optparameters

clear OptMat
Optparameters=max(FinalResponse);

for n=1:SizeofOA(2) % Matrix use to single out the good s/n's

for c=1:lengthflevel

if Optparameters(n)==FinalResponse(c,n)
OptMat(c,n)=FinalResponse(c,n);

else
OptMat(c,n)=pi;

end

end
end
clear OAr

for n=1:SizeofOA(2) % matrix used to specify final levels that are
optimal

for c=1:lengthflevel

if OptMat(c,n)==pi;
else

switch c
case 1
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OAr(n)=LevelOA1(n);
case 2

OAr(n)=LevelOA2(n);
case 3

OAr(n)=LevelOA3(n);
end

end
end

end

% The design for this Fitness Function Raguchi for use only for
Taguchi

%FitnessG=1−abs(sin(pi*(OAr(1)−3))/(pi*(OAr(1)−3)))*abs(sin(pi*(OAr
(2)−3))/(pi*(OAr(2)−3)));

FitnessG=(1−OAr(1))^2+100*(OAr(2)−(OAr(1))^2)^2;

meck(i+1)=(FitnessG);

if FitnessG == 0
Store(i+1)=OAr(1);

Store2(i+1)=OAr(2);
break

else
i=i+1;

Store(i+1)=OAr(1);
Store2(i+1)=OAr(2);

end
end

x=[0:.01:10];
y=[0:.01:10];

ta=length(x);

%
%
% for bah=1:ta
%
% for cah=1:ta
% meckfitness(cah,bah)=x(bah)*sin(4*x(bah))+1.1*y(cah)*sin(2*

y(cah));
%
% end
%
% end

fid=fopen(['Taguchi_Opt_varibles_LD_2_Rosenbrock.txt'],'w+');
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for j=1:i

fprintf(fid,' %.9f %.9f %.9f \n
', [meck(j); Store(j); Store2(j)]);

end

fclose(fid);

%figure;
%
% mesh(x,y,meckfitness)
% xlabel('x values')
% ylabel('y values')
% title('global minimun')

meck(i+1)=FitnessG;
plotness=1:length(meck);

figure,plot(plotness,meck);
h = legend('Final Fitness');
set(h,'Interpreter','none')
axis auto
xlabel('Number of Runs of 9 expriements')
ylabel('Fitness')
title('Fitness vs Runs')

figure,plot(plotness,Store);
h = legend('x values');
set(h,'Interpreter','none')
axis auto
xlabel('Number of Runs of 9 expriements')
ylabel('x values')
title('x values')

figure,plot(plotness,Store2);
h = legend('y vaules');
set(h,'Interpreter','none')
axis auto
xlabel('Number of Runs of 9 expriements')
ylabel('y values')
title('y values')
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Appendix H: Matlab code for gain
measurements at MSU engineering
building

clear all
close all
%converter for radtion plots
R=1.90500; %seperation distance in meters from antennas
c=3e8; %constant speed of light
f=1300E6; %frequency of operation
lambda=c/f; %wavelenght
%Pr= ; %recieved power
%Pt= ; %transmitted power
S21_antenna= −22.367187500 ; %magnatidue of s21 in dB of antenna
S21_cable= .0340366; %magnatidude of s21 in dB of cable

Gt_1300=1/2*(S21_antenna−S21_cable)+ 10*log10((4*pi*R)/lambda);
Gt_1300_lol=1/2*(S21_antenna−S21_cable+ 20*log10((4*pi*R)/lambda));

R=1.90500; %seperation distance in meters from antennas
c=3e8; %constant speed of light
f=1227.5E6; %frequency of operation
lambda=c/f; %wavelenght
%Pr= ; %recieved power
%Pt= ; %transmitted power
S21_antenna= −22.298828125; %magnatidue of s21 in dB of antenna
S21_cable= .029809952; %magnatidude of s21 in dB of cable

Gt_1227=1/2*(S21_antenna−S21_cable)+ 10*log10((4*pi*R)/lambda);

R=1.90500; %seperation distance in meters from antennas
c=3e8; %constant speed of light
f=1575E6; %frequency of operation
lambda=c/f; %wavelenght
%Pr= ; %recieved power
%Pt= ; %transmitted power
S21_antenna= −25.266601562; %magnatidue of s21 in dB of antenna
S21_cable= .040971756; %magnatidude of s21 in dB of cable

Gt_1575=1/2*(S21_antenna−S21_cable)+ 10*log10((4*pi*R)/lambda);
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R=1.90500; %seperation distance in meters from antennas
c=3e8; %constant speed of light
f=1640E6; %frequency of operation
lambda=c/f; %wavelenght
%Pr= ; %recieved power
%Pt= ; %transmitted power
S21_antenna= −25.250976562; %magnatidue of s21 in dB of antenna
S21_cable= .046300888; %magnatidude of s21 in dB of cable

Gt_1640=1/2*(S21_antenna−S21_cable)+ 10*log10((4*pi*R)/lambda);

Horn_gain_upstairs=[.11 .01 .022 .023; .037 .01 .009 .007; .04 .004
.009 .005; .015 .008 .0032 .002];

% Horn_gain_upstairs_1300=
% Horn_gain_upstairs_1575=
% Horn_gain_upstairs_1640=
%
% Z_X_cross_plane_1227_cylinder.txt
% Z_Y_cross_plane_1227_cylinder.txt
%
% Z_X_cross_plane_1575_cylinder.txt
% Z_Y_cross_plane_1575_cylinder.txt
%
% Z_X_plane_1227_cylinder.txt
% Z_Y_co_plane_1227_cylinder.txt
%
% Z_X_plane_1575_cylinder.txt
% Z_Y_co_plane_1575_cylinder.txt

%converter for radtion plots

[degree,gain]= textread(['Z_X_co_polar_1300.txt'], '%f%f');

l=length(degree);
j=1;
n=0;
fid=fopen(['Z_X_co_ploar_1300_cylinder_FINAL.txt'],'w+');

for n=1:100
y=101−n;

fprintf(fid,' \n %f %f ', [−degree(y); (10*log10(gain(n+90)
))]);

j=j+1;

end

for n=1:100
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fprintf(fid,' \n %f %f ', [degree(n); (10*log10(gain(n)))])
;

j=j+1;

end

fclose(fid);

[degree,gain]= textread(['Z_X_co_ploar_1300_cylinder_FINAL.txt'], '%f
%f');

l=length(degree);
j=1;
n=0;
fid=fopen(['Z_X_co_ploar_1300_cylinder_FINAL_102610.txt'],'w+');

for n=1:200
y=92−n;

fprintf(fid,' \n %f %f ', [degree(n); 10*log10((10^(Gt_1300
/10))*(10^(gain(n)/10))/(Horn_gain_upstairs(2,1)))]);

j=j+1;

end
fclose(fid);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[degree,gain]= textread(['Z_Y_co_polar_1300.txt'], '%f%f');

l=length(degree);
j=1;
n=0;
fid=fopen(['Z_Y_co_ploar_1300_cylinder_FINAL.txt'],'w+');

for n=1:100
y=101−n;

fprintf(fid,' \n %f %f ', [−degree(y); (10*log10(gain(n+90)
))]);

j=j+1;

end

for n=1:100
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fprintf(fid,' \n %f %f ', [degree(n); (10*log10(gain(n)))])
;

j=j+1;

end

fclose(fid);

[degree,gain]= textread(['Z_Y_co_ploar_1300_cylinder_FINAL.txt'], '%f
%f');

l=length(degree);
j=1;
n=0;
fid=fopen(['Z_Y_co_ploar_1300_cylinder_FINAL_102610.txt'],'w+');

for n=1:200
y=92−n;

fprintf(fid,' \n %f %f ', [degree(n); 10*log10((10^(Gt_1300
/10))*(10^(gain(n)/10))/(Horn_gain_upstairs(2,1)))]);

j=j+1;

end
fclose(fid);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[degree,gain]= textread(['Z_Y_co_polar_1640.txt'], '%f%f');

l=length(degree);
j=1;
n=0;
fid=fopen(['Z_Y_co_ploar_1640_cylinder_FINAL.txt'],'w+');

for n=1:100
y=101−n;

fprintf(fid,' \n %f %f ', [−degree(y); (10*log10(gain(n+90)
))]);

j=j+1;

end

for n=1:100
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fprintf(fid,' \n %f %f ', [degree(n); (10*log10(gain(n)))])
;

j=j+1;

end

fclose(fid);

[degree,gain]= textread(['Z_Y_co_ploar_1640_cylinder_FINAL.txt'], '%f
%f');

l=length(degree);
j=1;
n=0;
fid=fopen(['Z_Y_co_ploar_1640_cylinder_FINAL_102610.txt'],'w+');

for n=1:200
y=92−n;

fprintf(fid,' \n %f %f ', [degree(n); 10*log10((10^(Gt_1640
/10))*(10^(gain(n)/10))/(Horn_gain_upstairs(4,1)))]);

j=j+1;

end
fclose(fid);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[degree,gain]= textread(['Z_X_co_polar_1640.txt'], '%f%f');

l=length(degree);
j=1;
n=0;
fid=fopen(['Z_X_co_ploar_1640_cylinder_FINAL.txt'],'w+');

for n=1:100
y=101−n;

fprintf(fid,' \n %f %f ', [−degree(y); (10*log10(gain(n+90)
))]);

j=j+1;
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end

for n=1:100

fprintf(fid,' \n %f %f ', [degree(n); (10*log10(gain(n)))])
;

j=j+1;

end

fclose(fid);

[degree,gain]= textread(['Z_X_co_ploar_1640_cylinder_FINAL.txt'], '%f
%f');

l=length(degree);
j=1;
n=0;
fid=fopen(['Z_X_co_ploar_1640_cylinder_FINAL_102610.txt'],'w+');

for n=1:200
y=92−n;

fprintf(fid,' \n %f %f ', [degree(n); 10*log10((10^(Gt_1640
/10))*(10^(gain(n)/10))/(Horn_gain_upstairs(4,1)))]);

j=j+1;

end
fclose(fid);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[degree,gain]= textread(['Z_X_cross_polar_1300.txt'], '%f%f');

l=length(degree);
j=1;
n=0;
fid=fopen(['Z_X_cross_ploar_1300_cylinder_FINAL.txt'],'w+');

for n=1:100
y=101−n;
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fprintf(fid,' \n %f %f ', [−degree(y); (10*log10(gain(n+90)
))]);

j=j+1;

end

for n=1:100

fprintf(fid,' \n %f %f ', [degree(n); (10*log10(gain(n)))])
;

j=j+1;

end

fclose(fid);

[degree,gain]= textread(['Z_X_cross_ploar_1300_cylinder_FINAL.txt'],
'%f%f');

l=length(degree);
j=1;
n=0;
fid=fopen(['Z_X_cross_ploar_1300_cylinder_FINAL_102610.txt'],'w+');

for n=1:200
y=92−n;

fprintf(fid,' \n %f %f ', [degree(n); 10*log10((10^(Gt_1300
/10))*(10^(gain(n)/10))/(Horn_gain_upstairs(2,1)))]);

j=j+1;

end
fclose(fid);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[degree,gain]= textread(['Z_Y_cross_polar_1300.txt'], '%f%f');
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l=length(degree);
j=1;
n=0;
fid=fopen(['Z_Y_cross_ploar_1300_cylinder_FINAL.txt'],'w+');

for n=1:100
y=101−n;

fprintf(fid,' \n %f %f ', [−degree(y); (10*log10(gain(n+90)
))]);

j=j+1;

end

for n=1:100

fprintf(fid,' \n %f %f ', [degree(n); (10*log10(gain(n)))])
;

j=j+1;

end

fclose(fid);

[degree,gain]= textread(['Z_Y_cross_ploar_1300_cylinder_FINAL.txt'],
'%f%f');

l=length(degree);
j=1;
n=0;
fid=fopen(['Z_Y_cross_ploar_1300_cylinder_FINAL_102610.txt'],'w+');

for n=1:200
y=92−n;

fprintf(fid,' \n %f %f ', [degree(n); 10*log10((10^(Gt_1300
/10))*(10^(gain(n)/10))/(Horn_gain_upstairs(2,1)))]);

j=j+1;

end
fclose(fid);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[degree,gain]= textread(['Z_X_cross_polar_1640.txt'], '%f%f');

l=length(degree);
j=1;
n=0;
fid=fopen(['Z_X_cross_ploar_1640_cylinder_FINAL.txt'],'w+');

for n=1:100
y=101−n;

fprintf(fid,' \n %f %f ', [−degree(y); (10*log10(gain(n+90)
))]);

j=j+1;

end

for n=1:100

fprintf(fid,' \n %f %f ', [degree(n); (10*log10(gain(n)))])
;

j=j+1;

end

fclose(fid);

[degree,gain]= textread(['Z_X_cross_ploar_1640_cylinder_FINAL.txt'],
'%f%f');

l=length(degree);
j=1;
n=0;
fid=fopen(['Z_X_cross_ploar_1640_cylinder_FINAL_102610.txt'],'w+');

for n=1:200
y=92−n;

fprintf(fid,' \n %f %f ', [degree(n); 10*log10((10^(Gt_1640
/10))*(10^(gain(n)/10))/(Horn_gain_upstairs(4,1)))]);
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j=j+1;

end
fclose(fid);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[degree,gain]= textread(['Z_Y_cross_polar_1640.txt'], '%f%f');

l=length(degree);
j=1;
n=0;
fid=fopen(['Z_Y_cross_ploar_1640_cylinder_FINAL.txt'],'w+');

for n=1:100
y=101−n;

fprintf(fid,' \n %f %f ', [−degree(y); (10*log10(gain(n+90)
))]);

j=j+1;

end

for n=1:100

fprintf(fid,' \n %f %f ', [degree(n); (10*log10(gain(n)))])
;

j=j+1;

end

fclose(fid);

[degree,gain]= textread(['Z_Y_cross_ploar_1640_cylinder_FINAL.txt'],
'%f%f');

l=length(degree);
j=1;
n=0;
fid=fopen(['Z_Y_cross_ploar_1640_cylinder_FINAL_102610.txt'],'w+');
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for n=1:200
y=92−n;

fprintf(fid,' \n %f %f ', [degree(n); 10*log10((10^(Gt_1640
/10))*(10^(gain(n)/10))/(Horn_gain_upstairs(4,1)))]);

j=j+1;

end
fclose(fid);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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