INFORMATION TO USERS This re p ro d u c tio n was made fro m a copy o f a d o cum ent sent to us fo r m ic ro film in g . While the m ost advanced technology has been used to photograph and reproduce this docu m en t, the q u a lity o f the re p ro d u c tio n is heavily dependent upon the q u a lity o f the m aterial subm itted. The fo llo w in g e xplanation o f techniques is provided to help c la rify m arkings or notations w hich may appear on this re p ro d u ctio n . 1.T h e sign or “ ta rg e t” fo r pages apparently lacking fro m the docum ent photographed is “ Missing Page(s)” . I f it was possible to o b ta in the missing page(s) o r section, they are spliced in to the film along w ith adjacent pages. This may have necessitated c u ttin g through an image and d u p lic a tin g adjacent pages to assure com plete c o n tin u ity . 2. When an image on the film is o b lite ra te d w ith a round black m ark, it is an in d ic a tio n o f e ith e r blurre d copy because o f m ovem ent d u rin g exposure, duplicate copy, o r co p yrig hte d m aterials th a t should n o t have been film e d . For blurred pages, a good image o f the page can be fo u n d in the adjacent fram e. I f copyrigh ted materials were deleted, a target note w ill appear listin g the pages in the adjacent frame. 3. When a map, draw ing o r cha rt, etc., is p a rt o f the m aterial being photographed, a d e fin ite m ethod o f “ sectioning” the m aterial has been fo llo w e d . I t is , custom ary to begin film in g at the upper le ft hand corner o f a large sheet and to con tinu e fro m le ft to rig h t in equal sections w ith small overlaps. I f necessary, sectioning is continue d again -b e g in n in g below the firs t ro w and c o n tin u in g on u n til com plete. 4. F o r illu s tra tio n s that cannot be s a tisfa cto rily reproduced by xerographic means, photo g ra p h ic p rin ts can be purchased at a d d itio n a l cost and inserted in to y o u r xerographic copy. These p rin ts are available upon request fro m the D issertations C ustom er Services D epartm ent. 5. Some pages in any docum ent may have in d is tin c t p rin t. In all cases the best available copy has been film e d . Uni International 300 N. Zeeb Road Ann Arbor, Ml 48106 8513951 W e lc h , D e n n is P a u l S T R A W B E R R Y P R O D U C T IO N S Y S T E M M O D E L T O E V A L U A T E T H E E C O N O M IC F E A S IB IL IT Y O F M E C H A N IC A L H A R V E S T IN G A N D P R O C E S S IN G O F S O L ID -S E T C U L T U R E S T R A W B E R R Y P R O D U C T IO N S Y S T E M S IN M IC H IG A N M ic h ig a n S ta te University University Microfilms International 300 N. Z eeb Road, Ann Arbor, Ml 48106 P h.D. 1985 PLEASE NOTE: In all cases this m a te ria l has b een film e d in th e best possible w a y from th e a v a ila b le co py. P ro blem s e n c o u n te re d w ith this d o c u m e n t h a v e been id e n tifie d h ere with a c h e c k m ark V 1. G lossy p h o to g ra p h s or p a g e s ______ 2. C o lo red illu stratio n s, p a p e r o r p r in t________ 3. P h o to g rap h s w ith d a rk b a c k g r o u n d ______ 4. Illustrations a re p o o r c o p y _______ 5. P ag es with b la c k m arks, not o rig in a l c o p y _______ 6. Print show s th ro u g h as th e re is te x t on both sides of p a g e ________ 7. Indistinct, b ro k e n o r small p rin t on several pages 8. P rint exceed s m a rg in re q u ire m e n ts 9. T ig h tly bound c o p y with print lost in s p in e ________ ■ 10. C o m p u te r p rin to u t p ages with in d is tin c t p rin t_______ 11. P a g e ( s )______________ lacking w h e n m ate ria l received, a n d not a v a ila b le from sch o o l o r au th or. 12. P a g e ( s )______________ seem to b e m issing in num berin g o nly as text fo llo w s . 13. T w o pages n u m b e r e d ________ . T e x t follow s. 14. C urling and w rin k le d p a g e s _______ 15. Dissertation c o n ta in s pages w ith print at a slant, film ed a s re c e iv e d ____________ 16. O th e r ______ . ______ University Microfilms International S TRAWB E R R Y P RODUCTION SYSTEM MODEL TO EVALUATE THE ECONOMIC FEASIBILITY OF MECHANICAL HARVESTING AND PROCESSING OF S O L I D - S E T CULTURE STRAWBERRY PRODUCTION SYSTEMS IN MICHIGAN By Denni s Paul Wei ch A DISSERTATION Submitted to Michigan State U n i v e r s i t y i n p a r t i a l f u l f i l l m e n t o f the requirements f o r the degree of DOCTOR OF PHILOSOPHY Department of A g r i c u l t u r a l Engineering 1984 ABSTRACT STRAWBERRY PRODUCTION SYSTEM MODEL TO EVALUATE THE ECONOMIC FEASIBILITY OF MECHANICAL HARVESTING AND PROCESSING OF SOLID-SET CULTURE STRAWBERRY PRODUCTION SYSTEMS IN MICHIGAN By Dennis Paul Welch The Michigan past 20 years. strawberry i n d u s tr y has been on the d e cl in e In an e f f o r t to r e v i t a l i z e the i n d u s t r y , for the the Michigan researchers and growers used the systems approach technique to mechanize the strawberry harvest and processing in d u s tr y in Michigan. The c u l t u r a l , mechanical, and economic fa c t o r s have been examined as they r e l a t e to the s o l i d - s e t strawberry production system in Michigan. The c u r r e n t c u l t u r a l crucial p r a c ti c e s are discussed w ith emphasis placed on the f a c t o r s which r e s u l t in the high recovery r a te by the h a r v es te r . The operational performances f o r the mechanical harv este r and processing equipment are examined. A strawberry production economic f e a s i b i l i t y model o f mechanical se t c u l t u r e strawberry p r odu cti on . has been developed to examine the harvesting and processing o f s o l i d The model uses the t r a d i t i o n a l fi x e d and v a r i a b l e co st a n a ly si s method to e s t a b l i s h the ownership and oper at­ ing co sts. A l l costs in the model are charged e x c l u s i v e l y to the straw­ berry e n t e r p r i s e . The model was v a li d a te d w it h grower documentation to estimate the strawberry production costs and net r e t u r n s . the model i n d i c a t e s a p o t e n t i a l f o r mechanical As a r e s u l t , harvesting and processing o f s o l i d - s e t c u l t u r e strawberry production in Michigan. The model shows t h a t when processing the complete raw f r u i t product as 100 percent puree Dennis Paul Welch w it h a puree value of 30 cents per pound, t h a t the net cash r e tu r n per acre to the strawberry e n t e r p r i s e would increase from $31.32 per acre at 6 acres to $2189.57 per acre a t 40 acres. acreage, machine values, f i n a l the f i n a l product p r ic e The and model is s e n s i t i v e to d istrib u tio n product. APPROVED: Major Professor Major Professor APPROVED: Department Chairman of the ACKNOWLEDGMENTS My sincere a p p r e c i a ti o n to a l l agement, ass ista nce , and I wish to give cre d it of those people who provided encour­ s t i m u l a t i o n throughout and extend a special To Dr. Thomas Burkhardt, co-chairman and my graduate program. thanks to the f o l lo w i n g i ndi vi duals: • academic a d v is o r, f o r his advice and guidance during the course of my academic program and f o r his w i l l i n g n e s s to help c l a r i f y and e d i t t h i s manuscript. • To Dr. Gary Van Ee, co-chairman and research su p e r v is o r, frie n dsh ip , in s ig h ts , and f o r his guidance during the planning, execut­ in g , and w r i t i n g o f t h i s study. • To Dr. Robert Wilkinson and Dr. Harrison Gardner f o r serving on my guidance committee and f o r t h e i r advice in the development and completion o f my academic program. • To Mr. Richard L. Ledebuhr a very special able f r i e n d s h i p and his w i l l i n g n e s s thanks f o r his i n v a l u ­ to share his e x p e r t is e w ith me during the course o f t h i s study. • To Mr. Ke ith Pr ic e f o r his dedicated assistances in c o l l e c t i n g and analyzing the research data. 0 To the Michigan growers, fa m i l i e s of Robert Buskirk f a m i ly and the Grant W i l li a m , Jim, and Joe Grant, f o r t h e i r i n t e r e s t and cooperation in the completion o f t h i s research p r o j e c t . La s t, but pa rents, ce rta inly not Tony and Joyce, least, a special and to my b r o th e r s , thanks qoes to my Rick and Michael. Thank you f o r your encouragement and support throughout my educa­ tional endeavor. TABLE OF CONTENTS Page ACKNOWLEDGMENTS...................................................................................................... ii LIST OF TABLES......................................' ................................................................. v ii LIST OF FIGURES...................................................................................................... ix LIST OF ABBREVIATIONS.......................................................................................... xi Chapter 1. I n t r o d u c t i o n and Problem Statement................................................ 1 1.1 Background....................................................................................... A d d it io n a l Note......................................................................... Problem Statement..................................................................... Research O b j e c t i v e s .................................................................... 1 5 6 6 2. Review o f L i t e r a t u r e ............................................................................. 2.1 Systems Research.......................................................................... D e f i n i t i o n and Approach........................................................ System Model............................................................................... Model S t r u c t u r e ........................................................... Testing and Implementation.................................................. A p p l i c a t i o n o f Systems Research........................................ 2.2 Previous Strawberry S tu d i e s ................................................... 2.3 Summary............................................................................................. 8 8 8 9 9 10 11 14 16 3. Current S o l i d - S e t Production Pr a cti ce s and C ul tu re O p e ra ti on s ......................................................................... 3.1 I n t r o d u c t i o n ................................................................................... 3.2 D e s c ri p ti o n o f Current C u l tu r a l P r a c t i c e s ...................... S i t e S e l e c t i o n ........................................................................... Pr e - P la n t Soil P r e p a r a t i o n .................................................. PI a n t i n g - S p r i ng F i r s t Year.................................................. Post - P la n t Care, F i r s t Year............................................ Post - P la n t Care, Spring of Harvest Year................... Post - Harvest C u l tu r a l P r a c t i c e s .................................... 3.3 Advantages o f S o l i d Set C u l t u r e ........................................... 3.4 Strawberry P l a n t V a r i e t y .......................................................... 3.5 P la n t Density Study.................................................................... Method of Data C o l l e c t i o n .................................................... A n a l y s i s ........................................................................................ 3.6 Summary............................................................................................. 17 17 18 18 19 19 20 20 22 22 23 24 26 26 29 1.2 iv Page Chapter 4. Current State Of The A r t Ha rv e st er ................................................. 4.1 Harvester D e s c r i p t i o n ................................................................. 4.2 Harvester Recovery Rate............................................................. Method o f Data C o l l e c t i o n .................................................... R e s u l t s ......................................................................................... 4.3 Factors A f f e c t i n g the Harvester Recovery Rate................ 4.4 F i e l d C a p a c it y ................................................................................ 4.5 Summary............................................................................................... 30 30 33 33 34 35 37 39 Chapter 5. Current Processing Equipment and Op e ra ti on s .............................. 5.1 I n t r o d u c t i o n .......................................................................... Processing Equipment and Ope ration s.................................. 5.2 D e s c r i p ti o n of the Processing Procedures.......................... 5.3 Processing Equipment E v a l u a t i o n ............................................ Decapper Trash ........................................................................... 5.4 Summary............................................................................................... 40 40 41 41 , 47 52 52 Chapter 6. Model D e s c r i p ti o n and V e r i f i c a t i o n ................................................. 6.1 I n t r o d u c t i o n .................................................................................... 6.2 Subroutine D e s c r i p t i o n ................................ BERRY.............................................................................................. FILLTAB......................................................................................... FIELDPD ............................................................................. CHECKIT and CHEKANS................................................................. MENUCHG......................................................................................... CUSTRAT.......................................................................................... PRINTAB......................................................................................... CHGTAB............................................................................................ SPECEQP......................................................................................... IRRIEQP......................................................................................... PROCEQP.......................................................................................... FPCOST. ..................................................................................... SPECOST.......................................................................................... Repair and Maintenance...................................................... Fuel C os t ................................................................................. Labor Cos t............................................................................... IRRCOST..................... j .................................................................. PROCOST........................................................................ PVCOS.............................................................................................. ECONAN............................................................................................ 6.3 Model V e r i f i c a t i o n andV a l i d a t i o n ........................................... Model V e r f i c a t i o n ..................................................................... Model V a l i d a t i o n ....................................................................... 6.4 S e n s i t i v i t y A n a l y s i s .................................................................. E f f e c t o f the Crop Y i e l d ....................................................... E f f e c t o f Harvest Rate.......................................................... E f f e c t of I n t e r e s t Rates....................................................... E f f e c t o f a Change in the Production Costs on the Break-even Acreage...................................................... 6.5 Summary ......................................................................................... v 53 53 54 54 58 58 61 62 62 64 64 65 68 70 73 73 76 76 77 77 80 82 84 86 86 86 87 88 89 90 91 93 Chapter 7. Results and D is c u s s i o n .......................................................................... 7.1 Economic Eva lu a tio n o f the Production System................. 7.2 Determining the Break-Even Acreage...................................... 7.3 E f f e c t of P r ic e and Y i e ld Levels on the Average Annual Net Cash Returns......................................................... 7.4 Break-Even D i s t r i b u t i o n of the Final Pr o d u c t................. Product D i s t r i b u t i o n R a t i o . . ; ........................... Variance in Processing Equipment Ownership C o s t s . . . 7.5 Summary.............................................................................................. 8. Summary and Conc lus ions ........................................................................ 8.1 Summary............................................... 8.2 Conclusions...................................................................................... Harvester and Processing Equipment.................................. Model.............................................................................................. 8.3 Recommendations f o r Fu rth er Research.................................. Page 94 94 94 95 97 99 100 101 102 102 103 103 104 107 APPENDICES 1. Pl a nt Crown Density Count Used f o r the S t a t i s t i c a l Analysis 2. F i e ld Data Summary................................................................................... 113 3. Fo il age Height and P la nt Density vs Percent Harvester Recovery.................................................................................................. 120 4. Harvesting Speeds and Rate.................................................................. 122 5. Estimated Maximum Acreage per Harvester per P la n t V a r i e t y . 6. Strawberry Production Model User Guide......................................... 127 7. Strawberry Production Computer Model............................................. 137 LIST OF REFERENCES................................................................................................ 166 vi 108 125 LIST OF TABLES Ta bl e 1-1 Page Trends of area harvested, p r odu cti on , and crop values i n the United S t a t e s ............................................................................... 2 Trends of area harvested, y i e l d , p r odu cti on , and percent o f U.S. production o f str aw ber ri es in Michigan......................... 3 One Way Analysis o f Variance Output from the Mini tab Subprogram AOVONEWAY............................................................................... 28 M u l t i p l e Regression Analysis Summary Table on the Variables F o il age Height and Crown D e n s i t y ...................................................... 38 5-1 S in g u l a to r Eva lua tio n Summary............................................................ 49 5-2 Decapper Eva lua tio n Summary................................................................ 50 6-1 F i e l d Production Data Ta b le ................................................................ 61 6-2 1983 Custom H ire Rates f o r the State of Michigan.................... 64 6-3 S p e c ia l ty Equipment Data Ta b le .......................................................... 67 6-4 Processing Equipment Data Table, Processing Option Number One................................................................................................................... 72 Processing Equipment Data Table, Processing Option Number Two................................................................................................................... 73 E f f e c t of Crop Y i e l d on the E n te r p r is e Cost and Final Product Q u a n t i t y ........................................................................................ 88 6-7 E f f e c t of Harvest Rate on the System C os t................................... 89 6-8 E f f e c t of an I n t e r e s t Rate Change f o r the I r r i g a t i o n System Upon the Total System's Cost............................................................... 90 Estimated Average Annual Gross Returns Per Acre, Fixed and V a ria b le Cost Per Acre and Net Returns Per Acre at Designated L e v e l s ...................................................................................... 95 1-2 3-1 4-1 6-5 6-6 7-1 vi i Page Tabl e 7-2 7-3 7-4 7-5 Estimated Net Cash Returns Per Acre f o r Four Y i e l d Levels and Four Final Product P r i c e s ............................................................. 96 D i s t r i b u t i o n o f the Final Product and Net Returns Per Acre (Fi n al product p r i c e s t r u c t u r e o f $.40 per pound f o r fr ee ze r pack and $.20 per pound f o r p u r e e . ) ................................................ 98 D i s t r i b u t i o n of the Final Product and Net Returns per Acre (F in al product p r ic e s t r u c t u r e of $.45 per pound f o r fr e e z e r pack and $.30 per pound f o r p u r e e . ) ................................................ 99 Comparison o f the Annual Processing Equipment Fixed Cost f o r the Two Processing Equipment S e ts ............................................ vi i i 100 LIST OF FIGURES Figure Page 3-1 I d e a li z e d Strawberry Truss o f Mechanical H a r ve st in g .................... 25 4-1 Schematic o f the H a r v e s t e r .................................................................... 31 5-1 Processing Pl a nt Flow C ha r t.................................................................. 42 5-2 Schematic of the S e p e r a t o r .................................................................... 43 5-3 Schematic o f the Decapper...................................................................... 44 5-4 Schematic o f the F r u i t Showing Location of Cut.......................... 45 5-5 Schematic o f the S i z e r ............................................................................ 48 6-1 Conceptual Flowchart o f the Model..................................................... 55 6-2 Subroutine Flowchart as I n i t i a t e d byBERRY.................................... 56 6-3 Flowchart f o r the Program BERRY.......................................................... 57 6-4 Flowchart f o r the Subroutine FILLTAB.............................................. 59 6-5 Flowchart f o r the Subroutine FIELDPD.............................................. 60 6-6 Flowchart f o r the Subroutine CUSTRAT.............................................. 63 6-7 Flowchart f o r the Subroutine SPECEQP.............................................. 66 6-8 Flowchart f o r the Subroutine IRRIEQP.............................................. 69 6-9 Flowchart f o r the Subroutine PROCEQP.............................................. 71 6-10 Flowchart f o r the Subroutine FPCOST................................................ 74 6-11 Flowchart f o r the Subroutine SPECOST..................................... 75 6-12 Flowchart f o r the Subroutine IRRCOST.............................................. 78 6-13 Flowchart f o r the Subroutine PROCOST.............................................. 81 6-14 Flowchart f o r the Subroutine PVCOST................................................ 83 ix Figure Page 6-15 Flowchart f o r the Subroutine ECONAN................................................. 85 6-16 Break-even Acreage Expressed By Changes in the Production Costs ............................................................................. 92 x L i s t o f Abbreviations ac acre bu - bushel cm - ce nti m ete r CRNDSTY - Crown Densi ty cwt - hundredwei ght EFC - E f f e c t i v e F i e l d Capacity FE - Field E fficie n cy FOLHGT - Foil age Height ft - feet ha - hectare hr - hour in - i nch kg - kilogram lb - pound m - meter m^ - square meter PCRALL - Percent Recovery a l l PMHR - Projected M a te ria l Handling Rate t - tonne TFC - The or etic al F i e l d Capacity T.I.S. - Tax, Insurance, and Sh e lt e r USDA - United States Department o f Agrii yr - year fru it xi CHAPTER I INTRODUCTION AND PROBLEM STATEMENT 1.1 Background Even though commercial strawberry hectares i n the United States has been d e c li n in g f o r more than two decades (46% decrease), t i o n has increased by 41 percent. $310,267,000 an total produc­ The n a t i o n ' s crop value f o r 1981 was increase of 71 percent over the 1961 crop value (Table 1- 1 ) . The United States produced 335,658 t (370,000 tons) o f str awberries in 1981 on 14,812 hectares (36,600 a c ). Over 72 percent or 241,674 t (266,400 tons) were sol d on the fre sh market. The remainder of the pro­ d u c t i o n , 92,533 t (102,000 tons) went f o r processing (USDA,1981). P r e s e n t ly , only 13 o f the 50 s ta te s are commercially a c t i v e in the production o f s tr a w b e r r i e s . ta re s (acres) Florida -- The f i v e sta tes leading in strawberry hec­ are; C a l i f o r n i a - - 4 ,411 (10 ,90 0) ; Oregon - - 1,295 (3,2 0 0) ; Washington -- 1,133 2,226 (5,5 00) ; (2 ,8 0 0 ); and Michigan --1 ,093 (2,700) { USDA,1981). Michigan i s ranked second in the n a t i o n ' s production of the spring fr e s h strawberry market and fourth in the nation's processing market (USDA, 1982). In the years from 1961 to 1981, Michigan was producing be­ tween 2.4 and 7.8 percent of the n a t i o n ' s 1 total commercial str awberries 2 Table 1-1 Trends of area harvested, production, and crop values in the United S t a t e s . 1 Year Harvested Hectares Acres 1961 .35,770 88,390 2,301 5,073 88,757 1962 35,576 87,910 2,360 5,204 93,728 1963 32,403 80,070 2,313 5,099 95,529 1964 30,291 74,850 2,490 5,490 109,979 1965 27,494 67,940 1,963 4,328 95,836 1966 26,782 66,180 2,106 4,644 103,068 1967 25,779 63,700 2,150 4,740 97,029 1968 23,755 58,700 2,384 5,256 112,010 1969 21,651 53,500 2,205 4,862 109,771 1970 20,639 51,000 2,251 4,963 106,583 1971 19,660 48,580 2,363 5,209 117,005 1972 17,729 43,810 2,079 4,583 109,765 1973 16,536 40,860 2,165 4,773 131,592 1974 16,042 39,640 2,419 5,332 152,759 1975 15,977 39,480 2,458 5,420 165,046 1976 13,941 34,450 2,634 5,807 191,022 1977 14,427 35,650 3,002 6,619 219,958 1978 15,216 37,600 2,990 6,592 209,257 1979 14,690 36,300 2,895 6,383 246,850 1980 14,427 35,650 3,183 7,017 288,776 1981 14,812 36,600 3,356 7,397 310,267 Total Production (100 t ) (1000 cwt) - lUSDA 1977 and 1982 2Fresh market price and value on f . o . b . basis. Crop Value? 1000 d o l l a r s 3 (Table 1 - 2 ) . In 1981, Michigan produced 2.4 percent of the n a t i o n ' s s tr a w b e r r i e s , 78 percent o f which were sold in the fresh market. Table 1-2 Trends o f area harvested, y i e l d , p r odu cti on , and percent of U.S. produ ctio n o f stra w b er ri e s in Michigan*. Harvested Year Hectares (acres) Yi el d/area kg/ha l b s / a c Total t 1961 3,399 8,400 4,034 3,600 13,712 30,240 5.9 1962 3,278 8,100 4,707 4,200 15,429 34,020 6.5 1963 3,116 7,700 5,043 4,500 15,714 34,650 6.7 1964 2,954 7,300 5,491 4,900 16,220 35,770 6.5 1965 2,995 7,400 5,155 4,600 15,439 34,040 7.8 1966 2,954 7,300 4,146 3,700 12,247 27,010 5.8 1967 2,752 6,800 4,819 4,300 13,262 29,240 6.1 1968 2,631 6,500 4,595 4,100 12,089 26,650 5.1 1969 2,550 6,300 6,190 5,524 15,784 34,800 7.1 1970 2,347 5,800 4,927 4,397 11 ,564 25,500 5.1 1971 2,104' 5,200 5,388 4,808 11 ,336 25,000 4.8 1972 1 ,619 4,000 5,939 5,300 9,615 21 ,200 4.6 1973 1 ,376 3,400 4,944 4,412 6,803 15,000 3.1 1974 1 ,255 3,100 6,399 5,710 8,031 17,700 3.3 1975 1 ,214 3,000 6,163 5,500 7,482 16,500 3.0 1976 1 ,174 2,900 6,724 6,000 7.894 17,400 3.0 1977 1 ,133 2,800 7,844 7,000 8,887 19,600 2.9 1978 1 ,133 2,800 8,405 7,500 9,523 21 ,000 3.2 1979 1 ,133 2,800 7,844 7,000 8,887 19,600 3.0 1980 1 ,093 2,700 7,305 6,519 7,984 17,600 2.5 1981 1 ,093 2,700 7,305 6,519 7,984 17,600 2.4 iuSDA, 1963 -1982 production (1000 l b s ) Percent of U.S. Production 4 The commercial steady de c lin e f o r the y i e l d is strawberry two decades. a re su lt 1978, in Michigan of improved the To technologies pesticides, average y i e l d (7,500 l b s / a c r e ) , hec tare. crop have in Michigan has experienced such and c u l t u r a l per harvested hectares and only a a period a on a This increase in y i e l d as new and improved practices. 68 45 percent of twenty-one percent For example, hectare was 8,405 kilograms which was almost twice the 1968 y i e l d sum up, been Although hectares have beeh reduced, per harvested hectare has increased. strawberry v a r i e t i e s , in hectares years, decrease decrease per harvested in (1961-1981) its in i t s t o t a l strawberry production of strawberries. Several f a c t o r s have c o n t r i b u t e d to the de cl in e of strawberry hec­ ta re s i n the United S ta te s . However, the two fa c t o r s which are the most p r e v a l e n t are 1) lack o f s u f f i c i e n t , r e l i a b l e harvest l a b o r forc e and 2) increased harvest costs (Booster, D. E., 1969; Brown, G. K . , 1980; A s h c r a f t , E., 1980; and Duyck, L . , 1980). The migr an t la b o r fo rc e i s not as stable as i t once was; t h e r e f o r e , growers are never sure o f the amount o f help they w i l l day and y e a r - t o - y e a r . to reduce their This i n s t a b i l i t y o f l a b o r has caused some growers hectares The decrease in the have from day-to- by o n e - h a l f to tw o-thirds (Ashcraft, 1980). ha rvest l a b o r supply was due to the te r m in a t io n of the Pu blic Law (PL)78, commonly c a ll e d the "bracero program", and due to the c o n s t r a i n t s placed upon c h i l d l ab o r by c h i l d l a b o r laws. T r a d i t i o n a l l y , st r a w b e r ri e s have been harvested by hand and f o r a l l practical purposes they are s t i l l h a r v e s t in g . v e s ti n g Brown (1980) i s f r e q u e n t l y well h ig h l y dependent upon hand l ab o r f o r reported the amount of l ab o r needed f o r har­ over 50 percent of the t o t a l ment f o r a s p e c i f i c h o r t i c u l t u r a l crop. l ab o r r e q u i r e ­ 5 F r i d l e y (1973) re p or te d the two operations which r e q u ir e con side r­ able l ab o r are 1) t r a n s p l a n t i n g and 2) h a r v e s t in g . l a b o r hours also are r e qui re d f o r i r r i g a t i o n , runners. Harvesting alone, A l ar g e number of weeding, and c u l t i v a t i n g required more l ab o r hours than all other operations combined. Dennis and Sammet (1961) reported ha rvesting costs from 14 straw­ b erry producing areas in 10 d i f f e r e n t states and found harvest costs to range from 47 to 76 percent o f the production c o s t. (1962), Gobel (1961), and Heater (1967) percent of the t o t a l Alderman et al . reported t h a t approximately 50 expenditure required f o r the crop production goes f o r harvesting costs ( re p o r t e d by Booster e t al . , 1969). The f u t u r e of the Michigan strawberry the development of a successful mechanical reduce the through turned c os t la b o r reduced requirements co s ts . to mechanical increase strawberry ra te har ves ting (Grant, for dependent upon the grower's Michigan growers net income have already as a means to slow down the production 1980, system freezing the is harvesting system, which w i l l increase A few of production s tr a w b er ri e s and industry and has and f o r Ledebuhr, progressed 1982). to jams and j u i c e the Michigan's e x te n t that can be mechanically harvested in a once-over o p e r a ti o n . 1.1.1 Ad d iti o n a l Note Martin, w ritin g in the October, 1982, S c i e n t i f i c American, stated the need f o r mechanization in the f r u i t wide if market. the United Martin said States that is the to and vegetable i n d u s t r y be c o m p et it iv e fru it in and vegetable dependence on the undocumented worker slows the its own domestic industry's pace of nation growing labo r saving 6 tech no log ica l changes needed by the i n d u s t r y if it This inexpensive a l i e n l a b o r b e n e f i t s a g r i c u l t u r e b li n d s the growers to the needed tech nological i s to stay v i a b l e . in the short run but changes which have made the r e s t of the n a t i o n ' s a g r i c u l t u r e a paradigm o f e f f i c i e n c y . Mechanization is one answer to the problems t h r e a te n in g the F r u i t and Vegetable i n d u s t r y i n the United Stat es. U.S. must accept an a l i e n Without mechanization, the dominated l ab o r fo rc e f o r seasonal handwork and e r e c t trade b a r r i e r s to keep out produce grown abroad at even lower wages. 1.1 .2 Problem Statement To recommend mechanical strawberry production in Michigan, research must demonstrate t h a t : 1. mechanical ha rvesting and processing o f s tr a w b e r r i e s can compensate f o r the de cl in e in the migrant ha rvest l a b o r fo r c e . 2. t h a t the p o t e n t i a l revenues w i l l 3. income from mechanical strawberry production systems must be s u f f i c i e n t to s ti m u la t e p o t e n t i a l 1.2 be g r e a t e r than c o s ts , and growers' interest. Objectives The purpose o f t h i s d i s s e r t a t i o n i s to examine the economic f e a s i ­ b ility of mechanical ha rvesting and processing of so lid -se t (Section 3.1) c u l t u r e s tr a w b er ri e s in Michigan. The s p e c i f i c o b j e c t i v e s are: 1) to ex p la in pro duction. the current cultural p r a c ti c e s u t i l i z e d in s o l i d - s e t 2) to describe the h a rv est er used in t h i s study and i t s performance. 3) to describe the c u r r e n t processing equipment used in t h i s study and i t s performance. 4) to develop a computer model to simulate the crop p r odu cti on , harvest, and processing costs f o r mechanical ha rvesting and processing o f a s o l i d - s e t strawberry production system. 5) to provide bases for recommending strawberry production in Michigan. or not recommending mechanical CHAPTER I I REVIEW OF LITERATURE 2.1 Systems Research 2.1.1 D e f i n i t i o n and Approach Systems research i s an a n a l y t i c a l a whole by understanding approach to studying a system as i t s subsystems and how th e ir interaction to and/or upon each oth er has an e f f e c t upon the outcome o f the complete system. Therefore, systems research deals s y s t e m a t i c a l l y and r a t i o n a l l y w it h the parameters of the system. In a systems study the re are two major areas o f a c t i v i t i e s : 1) system a n a l y s i s , and 2) system synth es is. separation of the complete system i n t o its System a n a ly si s fundamental elements. is the This' i n vo lv e s a thorough examination of the system s t r u c t u r e to b e t t e r under­ stand i t s nature and to determine i t s esse ntial thesis u t i l i z e s original f e a tu r e s . Systems syn­ the i n f o r m a t io n gained from the a n a l y s i s to modify the system or to design an e n t i r e l y new system. Wright (1970) lis ts the usual sequence of events in a systems research to be: 1) problem s p e c i f i c i a t i o n - - w h i c h leads to a q u a l i t a t i v e o f the r e le v a n t system definitio n 9 2) systems a n a l y s i s - - which attempts to provide a quantitative s p e c i f i c a t i o n o f the system, and 3) systems s y n th e si s- -w h ic h attempts to o rig in al 2 . 1 .2 give a solution to the problem. System Model Systems research r e l i e s the real system. h e a v il y on the use of models to r e p l i c a t e The models are s u b s t i t u t e s f o r the real system and are used as t o o l s to gain f u r t h e r knowledge about the system through analy­ sis and synthesis as the means of conveying i n f o rm a t io n about the system. Models are used in l i e u follow ing reasons (M iles, o f the real 1973): system f o r any or a l l Economy--it may cost less of the to derive knowledge from the model, a v a i l a b i l i t y - - t h e model may represent a system which does not y e t e x i s t , and i n f o r m a t i o n — the model may be a convenient way to c o l l e c t or t r a n s m i t i n f o r m a t i o n . Models form an important p a r t of a v a ila b ility , the systems concept because economy, are a l l 2 . 1 .3 and in fo rm a tio n impo rtan t f a c t o r s in the design and a n a ly s is of a system. Model S t r u c tu r e The three main types of models are; i c o n i c , analogue, and symbolic ( D a l to n , 1982). system. rep res en tat ion s o f the real Analogue models are based on the use of one property to repre­ sent another. tical Ic on ic models are physical symbols. Symbolic models are represented by q u a n t i t a t i v e mathema­ The usual symbols f o r these models are mathematical ones using a lg e b r a ic symbols and numbers. Symbolic models are the ea si e st to 10 manipulate and they the o b je c t i v e s fo rc e the a n a l y s t to of the model. Once be systematic and e x p l i c i t in b u i l t they can be used f o r several purposes i n c l u d in g plann ing, c o n tr o l and f o r e c a s t i n g . Models are also c l a s s i f i e d by behavioral c h a r a c t e r ! s t i e s and degree o f co mp lexi ty. A system may be e i t h e r d e t e r m i n i s t i c or p r o b a b i l i s t i c in nature. Each type simple, complex, or is then classified exceedingly by complex its (Awad, degree o f 1979). co mp lexity ; Deterministic models are p r e d i c ta b l e in t h a t t h e i r outcome i s due to the model design and q u a l i t y and accuracy o f the i n f o r m a t io n fed i n t o the system. b ilis tic Proba­ models are s to c h a s ti c in nature f o r they have varying degrees o f outcome and are described in terms o f chance. pro ba b ilistic would be the tossing of a coin For example, a simple (50 percent chances of heads, and 50 percent chances of t a i l s ) whereas in a very complex proba­ b ilis tic system a wide v a r i e t y of behavior outcomes may e x i s t , i n a weather p r e d i c t i o n model. such as Therefore, i t i s extremely d i f f i c u l t to p r e d i c t w it h any accuracy the actual outcome or re-occurance of any such outcome w it h t h i s type o f a system. 2 .1 .4 Testing and Implementation Before conclusions can be drawn from the r e s u l t s o f the model, i t is necessary to prove t h a t what degree the model model to be v e r i f i e d the model represents (th is the ensures is fu n c t i o n in g real system. that the model co rrectly and to This re q ui re s is the mathematically sound and fu n c t i o n i n g as i t was designed to) and v a li d a te d (comparing of the model's outcome w it h model) . t h a t of r e a l i t y to check the v a l i d i t y o f the 11 Ultim ately the model outcome should be compared w it h r e a l i t y to t e s t the a l t e r n a t i v e s in d ic a te d by the model. times because: it may not be p o ss ibl e to v a l i d a t e a model system may not y e t e x i s t , i n f o r m a t io n available or 2) there may be too l i t t l e about the real that of However, at 1) the new q u antitative system to be used as a basis f o r the comparison. Should e i t h e r the model must of these events e x i s t , incorporate the element then the decision of to accept s u b je c ti v e judgement to balance the o b je c t i v e s o f the study agai ns t the realism and complexity o f the model 2 .1 .5 (Wr ig ht, 1970). A p p l i c a t i o n o f Systems Research The systems approach technique in c o nju nc tio n w it h the computer has become an impo rta nt aid in making economic decisions w i t h i n the farming sector, for it a lterna tive s based on real is to a f a s t and e f f e c t i v e method to evaluate a number of a given situation. world o b s e r va ti o n s, And since the systems models are the circumstance in which the system must operate can be adjusted to determine the "best" or optimum a l t e r ­ n a ti v e f o r t h a t p a r t i c u l a r s i t u a t i o n . In occurs any managerial when the maximized. impo rtan t d e c is io n economic For example, optim ization making performance of in areas the area is the process, the complete thus i t is vita l the farm manager knows how to : management system has been of farm management, one of area management. Machinery costs are one of the few v a r ia b l e s influence, optimum of machinery the t h a t good management can to the success of the farming system t h a t 1) Evaluate machine performance 2) Estimate machine cost 3) Select machine systems. 12 Based on this ph ilos oph y, machinery s e le c t io n models have been developed to a s s i s t in maximizing the economic performance of the machi­ nery set. These models are o f te n based on a l e a s t cost method. Singh (1978) systems based for upon developed a computer model m ulti-crop farms. fie ld sp e cifica tio n s, constraints, work machinery The model ca p a c i ty to design f i e l d machinery designed fie ld rela tio n s, the machinery operation and f i e l d calendar set date work c o n d i t i o n s . I t s p e c if ie d the size and number o f each machinery component, prepared a weekly schedule of f i e l d opera tion s and l a b o r requirements, and ca lcu ­ l a t e d a complete c o s t a n a l y s i s o f the machinery set selected. Wolak (1981) engineering u tiliz e d techniques to a determ inistic model match productivity machine a v a i l a b l e to complete the sequence o f o p er a tio n s . which uses to standard the time The sm alle st machin­ ery compliment which produced a s a t i s f a c t o r y work schedule was selected as the required machinery se t. The machinery sets are ranked on a per hectare annual basis and the average costs (depreciation, interest, r e p a i r s , s h e l t e r , insurance, and fuel cost) f o r each machine were de termi ned. Muhtar machinery (1982) developed requirements for a machinery d iffe re n t s e le c t io n tilla g e model systems. to analyze The model was used to determine the optimum size machinery f o r conservation and con­ ventional tilla g e based upon performance and economic c r i t e r i a . r e s u l t s f o r the d i f f e r e n t crop sequence on d i f f e r e n t that conservation tilla g e farm The sizes showed could provide a lower cost in producing the same crop sequence. Burrows and Siemens (1974) developed a computer model the l e a s t c o s t, to determine number and size o f machines f o r corn-soybean farme-s in 13 the corn be lt. The model was designed as an educational tool for a s s i s t i n g farmers w it h t h e i r machinery purchasing de cis io ns . The model selected c o s t, the machinery set resulting in the minimum t o t a l and l i s t e d the schedule of f i e l d o p er a ti o n s , annual machine use and itemized the machine co sts. Frisb y and Bockhop (1968) system based on e f f e c t i v e The model determined system and to increased. developed a model f i e l d cap acit y and annual cost the acreage y i e l d i n g decide when the They found that it to se le c t a machinery o f ownership. maximum income f o r a given system should be abandoned as acreage is possible to determine the acreage, based on ha rv est-com pletion p r o b a b i l i t y which y i e l d s maximum income and to r e vi s e the machinery system to increase the l i m i t i n g acreage based on the fa ll plowing completion p ro ba b ility to A gricultural economists have u t i l i z e d that required f o r maximum i ncome. the systems research tech­ nique as a means to b e t t e r estimate the machine ownership’ costs due to i n f l a t i o n and changes i n the federal tax p o l i c i e s . Rotz and Black (1981) developed a cash flow model f o r cost anal ys is of agricultural T h e ir model co s t machinery provides method, but which sim ila r provides includes the effects r e s u l t s as the t r a d i t i o n a l better results Smith and O l i v e r f o r eva lu a ti n g in itia l c o s ts . (1974) of the a ca p ita l- to a less c a p i t a l - operating costs. developed a model farm machinery costs. investment in fla tio n . fixed-variable when comparing intense machine or system w ith low operating costs intense a l t e r n a t i v e w i t h higher of machine using an annuity method The annuity approach breaks down to a series They compared the popular s t r a i g h t - l i n e of equal d e pr e ci a tio n the annual and found 14 that th e ir annuity approach a c c u ra te ly described the annual the actually owner occurs w it h l ar g e investments and costs t h a t high interest rates. Bloome, Nelson, and Roush (1975) modeled a cash flo w and present value an al ys is method f o r farm investments. the fixed-variable fl o w a n a ly si s c os t provided a n a l y s i s method. a clearer view of -Comparisons were made with They found that th e ir cash fin a n c in g and income tax e s ti m a ti n g the prospective e f f e c t s on machinery c o s ts . 2.2 Previous Strawberry Studies Growers need economic g u id e li n e s co s t and income to t h e i r e n t e r p r i s e . better evaluate regarding tion their the p o t e n t i a l farm situation for With t h i s in f o r m a t io n growers can and can make better r e tu r n s and establishment c o sts . i n f o r m a t io n o f t h i s decisions Cost evalua­ type has been developed by Kelsey and Johnson (1979) and Kelsey and B e l t e r (1974). Kelsey and B e l t e r (1974) o u t l i n e d a method o f analyzing strawberry production costs in southwestern Michigan. The in f o r m a t io n was or gan iz­ ed to a s s i s t the growers in e st im a ti n g t h e i r production costs and a pro­ j e c t e d income. d iv i d u a l The budgeting i n f o r m a t io n was organized so t h a t the i n ­ growers could a d ju s t the i n f o r m a t io n to be more r e p re s e n ta ti v e to t h e i r farming s i t u a t i o n . This i n f o r m a t io n i s useful a basis f o r f u t u r e d e ci si o n making. the budgeting (1974). in f o r m a t io n and ta b le s to the grower as Kelsey and Johnson (1979) updated developed by Kelsey and B e l t e r 15 Hussen (1979) reported the e f f o r t s to mechanize the strawberry har­ ve s t in Oregon. mechanical He examined the c o n d i ti o n s and circumstances in which har ves ting of st r a w b e r r ie s would be economically feasible. Assumptions about the machine's cost and performance were based on actual observations Machinery as well Limi ted as (CML) potential strawberry Oregon on an experimental ba si s . the which was 1977 Canners operated in Depending on the assumptions regarding and q u a l i t y harvester, Hussen estimated the net savings to the grower f o r mechani­ harvested per acre. d itio n s, the harv este r of the y i e l d c a lly of performance st r a w b e r ri e s strawberries, and the e f f i c i e n c y of the to range from $523 to a net loss of $187 Even though net losses were possible under unfavorable condiin most cases positive r etu rn s to the grower were estimated from mechanical har ves ting o f s tr a w b e r r i e s . Kim e t a l . (1979) hand-picked compared production costs and net revenues f o r versus mechanically harvested s tr a w b e r r i e s . were computed on the assumption of no d i f f i c u l t y hand p ic k i n g . in procuring l ab o r f o r Results i n d i c a te d t h a t in some cases mechanical ing may be p r o f i t a b l e to growers, ap pr o p ria te Even mechanical Net revenues dates. w it h pr ov idi ng re la tiv e ly harvest­ harvesting occurred on the lower strawberry p r ic e s , harvesting was more favo ra bl e than hand har ves ti ng . Holtman e t a l . (1977) teste d a complete system f o r mechanical v e st in g and processing of s tr a w b e r r i e s . analyze the economic v i a b i l i t y The t e s t r e s u l t s were used to of the system. Some of the r e s u l t s were promising but i t was apparent t h a t changes in the c u l t u r a l harvesting system would be needed i f t i v e w it h the conventional har­ p r a c ti c e s and the new system was to be competi­ hand-pick system. F r i d l e y and Adrian (1968) described a method f o r studying the eco­ nomic f e a s i b i l i t y o f developing a mechanical ha rvesting system. A set o f nomograms was developed to a s s i s t in analyzing the f e a s i b i l i t y system. crops The f a c t o r s i n d i c a t i n g using typical economic soundness o f a mechanical f r u i t l o s t (unrecovered) o f mechanization, of a f e a s i b i l i t y were evaluated f o r several values f o r hand h ar ves t. The economic harvesting system depends upon the amount of i n excess o f normal and r a te of harvest. hand harvest l o s s , degree The nomograms can be used f o r modifying the assumptions o f f r u i t l o s s , equipment c o s t , equipment use, and crew si ze . They can also be used to evaluate the e f f e c t o f having a m u l t i p l e row harvester as well as ev alu a tin g a complete harvest system. 2.3 Summary Systems research i s a technique which i nc or po rat es the b e n e f i t s of the computer to thoroughly examine a complete p i n p o i n t the problem areas w i t h i n t h a t system, w it h redesigning the system or a d ju s ti n g more e fficie n t researchers have and have proven agricultural and profitable s u c c e s s f u ll y it systems. to the i n t e n t i o n s to of the system components to cr eate a system. A gricultural employed the be a useful system in an e f f o r t tool systems for engineers research s e le c t in g and technique and ev alua tin g CHAPTER I I I CURRENT SOLID-SET PRODUCTION PRACTICES AND CULTURE OPERATIONS 3.1 Introduction Mechanical harvesting of problem; a problem which growers, horticul tural i s t s , Since the strawberry str aw ber ri es req uir es breeders, is and The s o l i d - s e t c u l t u r a l growers has provided the c u l t u r a l inte rdisciplin ary food a low growing p r a c ti c e s had to be modified to b e t t e r f a c i l i t a t e vester. an the combined e f f o r t s plant plant is of engineers, technologists. plant the cultural the needs of the har­ technique as modified by the Michigan changes needed by the h a rv es te r and at the same time other fa vo ra bl e a t t r i b u t e s were achieved such as increased crop y i e l d s and uniform ri p e n i n g of the f r u i t c l u s t e r s . M ic hi g a n' s concept of solid-set culture R icke tso n's research a t the H o r t i c u l t u r a l Canada. is based on Dr. C. L. Research I n s t i t u t e o f O n ta r io , In s o l i d - s e t c u l t u r e , the strawberry p la n ts are not r e s t r i c t e d or confined to rows but are permitted to develop runners to cover the e n t i r e f i e l d surface. inceased y i e l d s 1968). However, With t h i s technique, Ricketson was able to ob tain over t h a t of the t r a d i t i o n a l in order row p la n t i n g s (R icketson, to e s t a b l i s h and ob tain the b e n e f i t s o f the s o l i d - s e t c u l t u r e , i t re q u ir e s approximatley a 40 to 50 percent increase 17 18 in the stawberry p l a n t d e n si ty The benefits achieved from per acre at this the time of t r a n s p l a n t i n g . technique are: 1) increased y i e l d s , 2) more uniform ri p e n i n g of the f r u i t c l u s t e r s , in the weed management program by l i m i t i n g the so il available f o r weed growth. and 3) a s s i s t s surface and s u n l i g h t The Michigan growers r e fi n e d grow the b e r r i e s on a smoother f i e l d surface. crop the system to This i s accomplished by r o l l i n g the f i e l d s in the spring o f the year to smooth the f i e l d surface and when needed, p r i o r to t r a n s p l a n t i n g , l e v e l i n g the f i e l d w it h a land plane. The s o l i d - s e t pr odu cti on costs due to the increased p la n t de nsity and r o l l i n g tional o f the f i e l d s are o f f - s e t by the e l i m i n a t i o n of the t r a d i ­ f i e l d opera tion s o f f i e l d c u l t i v a t i o n , mulching, mowing and r o to - t i l l i ng. 3.2 D e s c r i p ti o n o f Current C u lt u r a l Pr a cti ce s The f o l l o w i n g by James Grant i n f o r m a t io n i s a summary o f various a r t i c l e s w r i t t e n (1980, Hansen (1983). 1982), Richard Ledebuhr (1982), and Clarence This se c tio n describes Michigan's c u r r e n t c u l t u r a l prac­ t i c e s f o r r a i s i n g s o l i d - s e t c u l t u r e s tr a w b e r r i e s . 3.2.1 S i t e S e le c tio n A p re fe r r e d s i t e c o n s i s t s o f a uniform topography on a w e l l - d r a i n e d sandy loam s o i l . The topography character!- s t i e s to promote uniform r i p e n i n g s e le c t a level ideal. f i e l d w it h a sunny s i t e . This slope w i l l t o prevent s o il throughout the f i e l d . e r o s io n . need to be c o n s is t e n t It i s important to A slope of 2 to 3 percent is a llo w excess water to r u n o f f , y e t is mild enough F i e l d s w it h h i l l s and dips should be avoided, 19 f o r the b e r r i e s on the h i l l c r e s ts w i l l be ov e rri p e before the b e r r i e s i n the dips r i p e n . 3 .2 .2 P re -P la n t Soil Preparation It is beneficial p rio r to p l a n t i n g . liz e r application s o il to begin This r a te s the s o il includes and s o il preparation s o il samples f o r fumi gation for a t l e a s t one year determining fe rti­ nematode c o n t r o l . A b u i l d i n g program o f a green manure plow down crop p r i o r to p la n ti n g I s tr a w b e r ri e s adds organic weeds and grubs. It is matter to the s o il important t h a t the soil and helps is f e r t i l e rocks, weeds, he rb ic id e b u i l d up, and s o il borne diseases. problems w i l l which in to e li m i n a t e and fre e of Any of these reduce the new p l a n t i n g ' s a b i l i t y to grow u n if o r m l y s o l i d , tur n w ill reduce the potential yield and harvester recovery e f f i c i ency. Correct vita l and proper fie ld surface pr eparatio n f o r an e f f i c i e n t harvest recovery. smooth and fre e of i r r e g u l a r i t i e s severe s o il surface 3 .2 .3 such as soil irre g u la ritie s , smoothing and grading the s o il The f i e l d a land and maintenance surface needs to be washes and stones. plane is is e ffe ctive For for surface. Pl a n ti n g - Spring F i r s t Year I f a perennial cover crop i s used, one which i s r e s i s t a n t to w in te r k ill, then a con tact h e r b i c i d e i s used to e l i m i n a t e the f a l l cover crop. For in t h i s tilla g e planter. technology, o p er a ti o n . The the strawberry plants are tr a ns pla nte d as a no Plants are set with a modified mechanical trans­ m o d i f i c a t i o n c o n s is t s o f a 50 cm (20 i n ) r i p p l e d c o u l t e r 20 which i s mounted in f r o n t o f the furrow opener. The c o u l t e r cuts through the roo ts o f the cover crop a ll o w in g the furrow opener to penetrate the u n tille d soil w it h a minimum o f s o il by a c u l t i p a c k e r to l e v e l distu rba nc e. Pl a nt in g i s followed the f i e l d and to f i r m the pla nts in the s o i l . Immediately a f t e r c u l t i p a c k i n g , the f i e l d i s i r r i g a t e d . Irrig a tio n i s necessary in e s t a b l i s h i n g the new p l a n t growth, since each p la n t has to produce a number o f daughter p la n ts if the f i e l d is to be s o l i d l y covered by fal 1. 3 . 2 .4 Post - P l a n t Care, F i r s t Year He rb ic id e s , insecticides and fe rtiliz e r are Hand hoeing and weed p u l l i n g are necessary u n t i l qu ately shade fille d strawberry in enough to out f u t u r e applied as needed. the new crop has ade­ weed development. The p l a n t l e a f canopy along w it h the a p p l i c a t i o n of h e r b ic id e s , c o n t r o l s the weeds s u f f i c i e n t l y to make hand hoeing of those remaining p ra ctical. In s o l i d - s e t c u l t u r e , a c u ltiv a to r is not used to con tro l weeds. C u l t i v a t i o n causes ridge s and prevents a s o l i d uniform f i e l d coverage of new runner p l a n t s . the f i e l d These new runner plants (daughter plan ts) p l a n t p o p u l a ti o n . increase The canopy of these new strawberry p la n t leaves i n h i b i t s new weed growth and provides a natural mulch to minimize the cold damage during the w i n t e r season. 3 .2 .5 Post - P la n t Care, Spring o f Harvest Year In the s p ri n g , vest. p la n ts are given th e ir final preparation for This c o n s is t s o f r o l l i n g the f i e l d s , and applying f e r t i l i z e r s har­ and 21 herbicides. s till These op era tio ns must be completed while the p la n ts are dormant. Rolling i s one o f the most important operations in system of growing s t r a w b e r r i e s . this cultural R o l l in g pushes the f r o s t heaved crowns and stones back i n t o the s o il w it h o u t causing damage to the crowns, pro­ viding it is done w h il e the so il is s till moist and p l a s t i c . R o l l in g improves the harvester recovery by allo win g the c u t t e r bar to be accura­ tely pos it ion ed to the s o il surface w ith o u t concern of jamming the c u t t e r bar w it h crown tops or stones. The operating zone f o r the c u t t e r bar i s 1.3 to 1.6 cm (1 /2 to 5/8 i n ) above the so il Rolling is pipes 2.1 m (7.0 accomplished ft) by p ulling two, 50 cm (20 i n ) long behind a l i g h t t r a c t o r . w it h water and p ulle d i n tandom, so t h a t by each pass across the fie ld . surface. diameter The pipes are f i l l e d the p la n ti n g s are r o l l e d twice Generally one pass i s s u f f i c i e n t pro­ v i d i n g the f i e l d was p r o p e r l y groomed the previous year. Hand hoeing and weed pulling are necessary u n t i l the strawberry p l a n t canopy has adequately f i l l e d in to prevent f u t u r e weed develop­ ment. f o r i t must be completed before the This i s a p r i o r i t y p la n ts form f r u i t buds. a c tiv ity Once the f r u i t buds are formed, no oth er f o o t a c t i v i t y i s permitted w i t h i n the f i e l d . A well-planned heights of fu n g ic id e s systems. fe rtiliz e r program 30 to 45 cm (12 to 18 i n ) havebeen In s e c t i c i d e s s u c c e s s f u ll y and a i r b l a s t sprayer t r a v e l i n g ap art or by a i r c r a f t . is necessary to a t harvest time. applied fun g ic id e s have through also been ob tain p la n t F e r t i l i z e r and the irrig a tio n applied by an in sprayer lanes spaced at 18 meters (59 f t ) 22 3.2 .6 Post - Harvest C u l tu r a l P ra c tic e s For the past three years the p la n t leaves and debris have been raked from the f i e l d a f t e r ha rvest by a side d e l i v e r y hay rake. a lly , raking was f o r pathogens. thought to be b e n e f i c i a l O rigin­ in the removal of a h a b i t a t However, during the 1983 season some of the f o i l age was l e f t in the f i e l d to shade the crowns from the sun, thus all ow ing f o r a more vigorous regrowth. With t h i s in mind, a method of shredding the f o i l age as i t i s discharged from the harv este r should be considered. Regardless of the method o f handling the leaves from the ha rv es te r, it is important to i r r i g a t e the strawberry crowns immediately a f t e r the harvest o p er a ti o n . The crowns need to be i r r i g a t e d f r e q u e n t l y to promote regrowth. Approximately one week a f t e r ha rves t, fe rtiliz e r cides appl ied until are arrives. and irrig a tio n is continued and h e r b i ­ c o o le r weather Hand weeding may be necessary during t h i s period. At the present time growers and researchers do not know the number o f years these f i e l d can be machine harvested. So f a r the f i e l d s have been machine harvested f o r fo u r years and the f i e l d s are s t i l l in very good c o n d i t i o n . 3.3 Advantages of S o l id - S e t Cultu re S o l i d - s e t c u l t u r e has c o n tr i b u te d some very p o s i t i v e f a c t o r s to the present success o f mechanical of th is cultural ha rvesting (Ledebuhr, 1982). technique are: The b e n e f i t s 1) increased crop y i e l d s , 2) more u n i ­ form r ip e n in g o f berry c l u s t e r s , and 3) high harvester f i e l d recovery. An increase in the crop y i e l d allows f o r a g re a t e r p o t e n t i a l per hectare. Since ha rvest costs r etu rn are a fi x e d cost per hectare f o r a 23 given size farm, a high y i e l d i n g crop reduces the co st o f mechanical ha rvesting per kilogram o f b e r r i e s . The strawberry p la n ts grown in t h i s technique have no exposed edges, consequently the berry c l u s t e r s are u n if o r m l y shaded and suspended w i t h i n the p la n t canopy by the surrounding f o i l age. This shaded p l a n t canopy tends to delay r ip e n in g of the primary fl o w e r thus a llo w in g the secondary and t e r t i a r y b e r ri e s to develop and ri pen more u n if o r m l y . The more uniform ripen ing of the berry c l u s t e r s allows f o r a maximum q u a n t i t y of usable f r u i t and less loss due to green no n-rip e or to o v e rr i p e and de­ cayed b e r r i e s . The higher fie ld recovery results from the increased fie ld p la n t f o i l age which supports the f r u i t c l u s t e r s w i t h i n the p l a n t canopy and the smooth f i e l d surface which enables the c u t t e r bar of the harv este r to be a c cu ra te ly po sit ioned recovery. The increase in f o i l a g e he ight decreases the s o il decay by supporting surface. re la tive to the c l u s t e r s the s o il up w i t h i n for a higher soil surface. 3.4 Strawberry P la n t V a r i e t y borne f r u i t the canopy and o f f the soil strawberry plant variety must severs the p l a n t vine from the r ip e n u n if o r m l y w it h o u t o v e r r i p e , y i e l d w e l l , and possess abe rry w it h a convex be rry a pedicel cm. i mportant fie ld This also f a c i l i t a t e s harvesting by a llo w in g the c u t t e r bar to s l i d e under the berry c l u s t e r s before i t The surface length of f o r machine and c l u s t e r 4-6 h a r v e s t in g , characteristics machine processing Theberry system. shape handling, calyx with and c l u s t e r leng th are and processing. The berry complement the working The berry being e fficiencies of the stems must be long enough on the 24 cluster so the berry node (Figure 3 - 1 ) . necessary for and be rry stem can be separated from the c l u s t e r A minimum b e r ry the Michigan stem length of 2.5 cm (1 State University-Canners (MSU-CML) decapper used at the processing p l a n t . firm ly attached in) is Machinery Limited The be rry stem must be to the berry so t h a t the stem does not e a s i l y p u ll separate from the be rry as i t i s picked up by the MSU-CML decapper. or At the present time the re i s only one strawberry p la n t v a r i e t y , the v a r i e t y 'Midway' which possesses the necessary t r a i t s needed f o r t h i s processing technology. However, should the grower-processor choose to process the complete raw f r u i t product as 100 percent puree, then the shape of the be rry c a ly x , c l u s t e r l e n g t h , and the str e n g th of the b e rry attachment to the stem i s not as i m po r ta n t. Plant necesary breeders tra its for need to mechanical develop more v a r i e t i e s which possess the ha rvesting and processing which are capable of growing in the same area w it h concentrated r ip e n in g a t d i f ­ f e r e n t times during the harvest season. This would extend the ha rvest­ ing season, th e r e f o r e a llo w in g the grower to increase the size of t h e i r e n t e r p r i s e thus reducing the machine's f i x e d cost per hectare. 3.5 P la n t Density Study As pa rt of this research, a study was conducted to examine the e f f e c t s of t r a n s p l a n t spacing upon the number of v i a b l e pla nts (mother and daughter) present a t harvest time. The o b j e c t i v e was to determine if a better one of the p la n t crowns than another. parison. spacings provided establishment of new Three p la n t spacings were a v a il a b l e f o r t h i s com­ These p l a n t spacings were: 1) 91 x 61 cm (36 x 24 i n ) , 2) 61 x 61 cm (24 x 24 i n ) and 3) 46 x 61 cm (18 x 24 i n ) . 25 Peduncle- 1 2 - 1 5 cm. long Long pedicel, 4 - 6 cm., firm ly attached to calyx slightly reflexed calyx slight shoulders T E R T IA R Y BUDS SECONDARY Inconspicuous BUDS achenes P R IM A R Y BUD Roundish or conical shape of medium size 3 - 5 even sized berries per truss Fruit with even truss ripening Figure 3-1. Idealized St ra w be rr y Truss for Mechanical H ar v es ti n g 26 3.5 .1 Method o f Data C o l l e c t i o n At ha rvest time randomly placed in a 0.19 square meter (2.0 square fe e t) the f i e l d . All of frame were counted and recorded fo r all the strawberry pla nts (Appendix 1 ) . frame was w i t h i n the This procedure was used three p l a n t spacings as the method o f data c o l l e c t i o n . A total of 104 p l a n t crown de ns ity samples were recorded. The number of samples in each o f the three p l a n t spacings varied due to the size o f the t e s t p l o t and to the time tio n . Forty-eight samples in the 61 available f o r the sample c o l l e c ­ samples were recorded in the 91 x x 61 cm spacing, 44 61 cm spacing, and 12samples in the 46 x 61 cm spaci ng. 3 .5 .2 Analysi s An aly si s o f onthe Michigan data was done by using the Minitab S t a t i s t i c a l State U n i v e r s i t y ' s Control Data Package Corporation Cyber 750 Computer. The null hypothesis tested using the one way an alysis o f variance technique ( M i n i t a b , Subprogram A0V0NIEWAY) was: H0 : There are no s i g n i f i c a n t d i f f e r e n c e s in the number of straw berry p la n ts per u n i t area among the three p la n t spacing d e n s i t i e s . This hypothesis was r e je c t e d at the .05 level ca nt d i f f e r e n c e was found among the three p l a n t showed a s i g n i f i c a n t d i f f e r e n c e the 95 percent l e v e l . { 95% C . I . ) . spacings. S ig n ifi­ The F - t e s t among the p l a n t spacings ( d e n s i t i e s ) at Examination of the confidence i n t e r v a l i nd ic ate d 27 t h a t Cl and C3 ( p l a n t spacing of 91 x 61 cm and 46 x 61 cm) do not d i f f e r appreciably but t h a t the mean p la n t density o f C2 ( p l a n t spacing of 61 x 61 (Table 3 - 1 ) . cm) is co nsiderably Consequently, g re a t e r C2 provides than the means o f a g re a t e r Cl and C3 p l a n t d e n s it y than e i t h e r of the oth er two t r a n s p l a n t spacings and a t less co s t than t h a t o f C3 which i s the high d e n si ty t r a n s p l a n t spacing. 28 T T ab le 3-1. C2 = C3= COLUMN COLUMN ANALYSIS OF 1 DATA= 2 DATA= 3 DATA= i n d i v i (B A S E D ST. 91 61 46 X 61 X 61 X 61 MS=SS/DF 7 2 5 .5 25.7 1451.1 2598.9 4050.0 N 48 44 12 POOLED OF OF OF SPACING SPACING SPACING ss DF 2 101 103 LEVEL Cl C2 C3 PLANT PLANT PLANT CM CM CM (36 (24 (18 MEAN 18.85 25.75 ST . 16.33 DEV. = IN. ) IN. ) IN. ) F-RATIO 23 . 20 DEV. 5.33 5.24 2.74 5.07 :D U A L 95 P E R C E N T C. I. F O R L E V E L ON POOLED. S T A N D A R D DEVI A TION) J ★★★★T ★ MEANS ★*★T J 1 * * * * ---- 24 X 24 X 24 X VARIANCE D U E TO FACTOR ERROR ^ C T AL Cl C2 C3 One Way A n a ly si s of V a r ia nc e O u t p u t from the Mini tab S u b p r o g r a m AOVONEWAY. ** ★* T ****-********* I ■i 12.0 15.0 1 3 .0 21 . 0 24 . 0 3 0.0 29 3.6 Summary The s o l i d - s e t strawberry produc tion technique has c o n t r i b u t e d g r e a t­ ly to the present success o f the mechanical ha rv est er. This c ultu ral- technique provides f o r an increased crop y i e l d and a more uniform r i p e n ­ ing o f the f r u i t c l u s t e r s . duction The Michigan growers r e fi n e d the f i e l d pro­ system to accommodate the c u t t i n g and pickup mechanism of the h arvester by growing the crop on a smooth f i e l d surface. The r e s u l t s o f the p r e l i m i n a r y t r a n s p l a n t density study shows t h a t there i s viable an optimum t r a n s p l a n t de ns it y strawberry p la n ts The r e s u l t s of this to achieve a maximum number of (mother and daughter) prelim inary a t the time of harvest. study shows t h a t there i s a need f o r f u r t h e r research in t h i s area to determine the optimum t r a n s p l a n t densi­ ty which w i l l provide the grower w it h pla nts a t harvest w it h the l e a s t i n i t i a l the l a r g e s t q u a n t it y investment. of v i ab le CHAPTER IV CURRENT STATE OF THE ART HARVESTER 4.1 Harvester D e s c r i p t i o n The 1983 harv este r model Michigan and included the was b u ilt e a rlie r harvester Michigan State U n i v e r s i t y a g r i c u l t u r a l te ch n ica lly and at Michigan State concepts developed by engineers and oth e rs . complex machine components o f fabricated by Robert Buskirk o f Paw Paw, the University The more harvester were designed and Canners Machinery Limi te d (CML) of O n ta r i o , Canada (Hansen, 1983). The harvester was b u i l t on a 4-wheel d r iv e tru ck chasis and i s pro­ p e ll e d by h yd r au lic motors. The harvester i s powered by a 75 kW (100 hp) engine which d r iv e s h y d r a u l ic pumps and a l i n e sh a ft f o r mechanical d r i v e to the fans (F i g u re 4 - 1 ) . The 122 cm (48 i n ) long c u t t e r bar i s of a double s i c k l e w it h sections on 3.8 cm (1.5 i n ) ce nte rs . a b e ll crank by a cam f o l l o w e r powered by a h yd r au lic motor. and l i f t i n g Each s i c k l e i s driven through in an e c c e n t r ic groove of a f l y An 8 - b ar pick-up reel the crop over the c u t t e r bar. design wheel a s s i s t s in moving Crop l i f t e r s are f i t t e d below the c u t t e r bar which a llo w the pla nts to be cut close to the crown and to a s s i s t in l i f t i n g the crop onto the f i r s t draper. The e n t i r e c u t t e r head i n c l u d in g the f i r s t conveyor i s designed to " f l o a t " to insure uniform c u t t i n g of the crop. 30 on the ground Wire Mesh Sides Belt Conveyer Double Sickle Hedgers Operator Seat V Open Mesh Conveyers HUMETYPE R EEL Conveyer Belt with Flights Cross Conveyer I * ^ [= 1 Cross Flow Fans (all same shape and size) _ Four Wheel Drive Figure 4-1. Schematic of the H ar vester v 2 -C ro p Lifters r Cutter Bar Double Sickle OJ 32 The f i r s t conveyor l i f t s the crop onto a f l i g h t e d elevates the f r u i t and f o i l age i n t o vester. conveyor which the separating chamber of the har­ The separating chamber c o n s is t s o f a t h i r d inclined conveyor and two s p e c i a l l y designed cross fl o w fans, each fan p ro vid ing a v e lo ­ c ity o f 1800 meters fans are located below the d irecting th e ir per minute a ir streams (5,900 f t inclined per minute). conveyors parallel w it h The two f r o n t (one fan the undersides per conveyor) of the con­ veyors and towards the rea r of the ha rv est er. As the crop f a l l s from the second conveyor to the t h i r d conveyor and from the t h i r d conveyor to the open g r i d conveyor, the f r u i t passes through the two a i r streams created by the fans. The l i g h t e r m a t e r i a l , being mostly p l a n t f o i l age i s blown fr e e from the f r u i t and to the rear o f the harvester where i t lands on a b e l t conveyor and discharged from the har ves ter . The f r u i t , the t h i r d being heavier than the p la n t f o i l age, g e n t ly f a l l s co nv eyo r, onto the open g r i d conveyor. made from 0.635 r o l l e r chain. loca ted below the open g r id fa ll ve rtic a lly singulate round rods attached The g r id conveyor i s to 1.58 cm (0.62 in) The upward a i r streams created by the two cross flow fans eases the f r u i t s cluster cm (0.25) from conveyor serves three purposes, firs t it to the g r i d conveyor, second i t o r i e n t s the berry as they pass through the two sets of hedges which the f r u i t lea v in g 2-3 cm ( 3/4 to 1 in ) stem, a n d . t h i r d the a i r streams continue the process o f removing the leaves, stems and other debris. A cross conveyor a t the rea r of the harvester receives the f r u i t from the g r id where the conveyor fru it and c a r r i e s the i s placed in boxes. fru it to the workers platform During the 1983 season the f r u i t 33 was caught in p l a s t i c stackable boxes which hold approximately 14 k i l o ­ grams (30 l b s ) . The stackable boxes were placed on p a l l e t s and lowered to the ground p r e f e r a b l y a t the end of the f i e l d . This reduces the wheel tra ffic on the p la n t crowns w i t h i n the f i e l d . The f r u i t f i l l e d pallets were loaded on tr u ck s and tran sp orte d to the processing p l a n t . For the 1984 season t h i s harvester w i l l boxes in place o f the p l a s t i c stackable boxes. be equipped w it h p a lle t The p a l l e t boxes measure 100 x 100 x 75 cm (40 x 40 x 30 i n ) and hold approximately 136 kg (300 lbs). When f i l l e d , the p a l l e t boxes w i l l be r o l l e d p la tf o rm on a r o l l e r conveyor to the ground. from the loading This system o f bulk handl­ ing has been s u c c e s s f u ll y used by two Michigan growers. 4.2 Harvester Recovery Rate As p a r t of t h i s recovery ra te of research, a study was conducted to determine the the h a rv es te r . This recovery r a te was taken f o r a l l the b e r r i e s present at harvest time. This includes primary, secondary, and t e r t i a r y b e r r i e s . 4 .2 .1 Method of Data C o l l e c t i o n The recovery r a te of the harvester and c r o p - r e l a t e d fa c t o r s which a f f e c t the recovery r a te of the harvester were obtained by random f i e l d samples. These samples were taken the har ves ter . in p a i r s , one before and one a f t e r The f i r s t sample, sample A was taken before h a rv es ti n g . Three items of i n f o r m a t io n were c o l l e c t e d at t h i s sample: b e r r i e s w i t h i n a 0.19 m2 (2.0 f t 2 ) plant de nsity 1) A l l square frame were hand picked. count w i t h i n the frame was taken. of the 2) A 3) The f o i l age height 34 a t t h i s l o c a t i o n was recorded. the same general location The second sample, sample B was made in after the harvester had passed. included two items o f i n f o r m a t i o n : 1) the c o l l e c t i o n of a l l b erry f l e s h missed by the harvester w i t h i n the 0.19 m2 frame and, 2) a second p l a n t (crown) Sample B b e r r i e s and (2.0 f t 2 ) square de nsi ty count was taken at t h i s 1o c a ti o n . A total o f 31 harvest period. color, paired samples were c o l l e c t e d w i t h i n the f i v e day The b e r r i e s in both samples (A and B) were sorted by weighed, and c l a s s i f i e d by visual recorded by calendar date. The f r u i t was c o lo r in s p e c ti o n and placed in one of three c a te g o rie s : 1) n o n - r i p e , 2) r i p e and, 3) o v e r r i p e . The f r u i t in the non-ripe ca te­ gory consisted o f the immature b e r r i e s which were i d e n t i f i e d by ex hi ­ b itin g The r i p e one of the follow ing colors; green, white or pink.. b erry category consisted o f only the f r u i t which were 100 percent red in color whereas the berries signs of f r u i t decay. in the o v e r ri p e category e x h ib i te d visual The percent recovery was recorded f o r each c o lo r category (Appendix 2 ) . 4.2.2 Results The 1983 r e s u l t s i n d i c a t e t h a t the f i e l d recovery efficiency for the harvester described in Section 4.1 ranged from 59 to 95 percent of a ll available berries recovery average f o r (non-ripe, a ll ripe, b e r r i e s was 87 percent. r i p e f r u i t was g re at er than t h a t of a l l fru it and o v e r r i p e ) . The season's The recovery o f red ( t o t a l ) berry recovery. Red r ip e recovery ranged from 81 to 99 percent w it h the season's average being 93 percent. 35 The lower recovery r a te in the a ll l i g h t weight of the green non-ripe b e r r y . green non-ripe be rry ripe be rry The category i s due to the average mass o f a small i s 0.5 gram, whereas the average mass of the red berry i s 8 grams. Since the small green non-ripe be rry mass is le s s than t h a t of most p la n t f o i l age pieces, the small green be rry is expelled from the h a rv est er along w it h the p l a n t f o i l age. In fie ld the case o f data records the sample w it h the recovery r a t e of 59 pe rcent, show t h a t this sample averaged 221 grams o f b e r r i e s less than the other samples recorded f o r t h a t day. cates a g re at er q u a n t i t y of green no n-rip e f r u i t . of the f i e l d data records total This i n d i ­ Furth er i n v e s t i g a t i o n shows t h a t 39 percent o f the f r u i t in this sample was c l a s s i f i e d as green no n-ripe w it h an average mass o f 0.3 gram per green b e r ry . The refore, w it h t h i s l i g h t e r mass per be rry more of t h i s sample's green no n-ripe f r u i t was expel led from the harv este r with the p l a n t f o i l age. The extremely o v e r r i p e b e r r i e s tend to s h a t t e r from t h e i r stems and fa ll to the ground as the pick-up reel f o i l age. ripeness The f i e l d o f the harv ester enters the crop l os s o f these b e r r i e s due to t h e i r degree o f over­ i s o f no harvest value to the grower f o r they would only be sorted out and discarded a t the processing p l a n t . 4.3 Factors A f f e c t i n g the Harvester Recovery Rate The f i e l d recovery rates o f the h ar ves ter are a ff e c t e d by a nation o f f a c t o r s . combi­ These f a c t o r s are: 1) opera tor s k i l l s , 2) f i e l d sur­ face c o n d i t i o n s , and 3) crop c o n d i t i o n s . 36 The s k i l l of the op era tor is important in making and ma intaining the necessary machine adjustments so t h a t the machine i s compatible with the f i e l d and crop c o n d i t i o n s . is free o f s o il The f i e l d surface when pr o pe rl y prepared surface i r r e g u l a r i t i e s . This enables the operator to ac cu ra te ly p o s i t i o n the c u t t e r bar r e l a t i v e to the so il Data from Appendix 2 i m p l i e s recovery r a te s to d ens ity per u n i t area and f o i l age h e ig h t increase. crop and the he ight o f surface. increase as crop The de nsit y o f the the f o i l age a s s i s t s recovery by suspending and supporting the berry c l u s t e r s in the f o i l age. To t e s t the e f f e c t o f p l a n t de nsi ty and f o i l age he ight on the per­ cent recovery by the mechanical h a rv est er a stepwise regression anal ysi s was performed on the data in Appendix 2, Table A2. completed by using the SPSS S t a t i s t i c a l This a n a ly si s was Package on the Michigan State U n i v e r s i t y ' s Control Data Corporation Cyber 750 Computer. H0 : P la nt de nsit y and p l a n t f o i l age he ight do not have an e f f e c t upon the f r u i t recovery r a te by the mechanical h a r ve s te r . The F - t e s t of the model for the two v a r i a b l e s FOLHGT and CRNDSTY when tested independently a t the .05 confidence l e v e l , both r e f l e c t e d to have a n o n - s i g n i f i c a n t ha rv es te r. prediction for the fru it recovery r a te by the In oth er words, the f r u i t recovery ra te by the harvester was not s i g n i f i c a n t l y c o r r e l a t e d soley to e i t h e r FOLHGT or CRNDSTY. f F0LHGT = 2 -734 < f 0.05 = 4 -28 f CRNDSTY = 2.472 < F0<05 = 4.28 However, a stepwise regression a n a ly si s o f the model which included both v a r ia b l e s c o e fficien t of simultaneously was sign ifica nt correlation. As a r e s u l t , and a model reflected u tiliz in g a higher the two 37 independent v a r i a b l e s FOLHGT and CRNDSTY would more a c c u r a t e ly ex plai n the change in the dependent v a r i a b l e PCRALL. Moreover, the r2 change value shows t h a t the percent of ex pla na tio n by the p l a n t f o i l a g e height to be g re at er than t h a t of the p la n t de ns it y (Table 4 - 1 ) . R2F0LHGT + CRNDSTY= 0 - 1 5 1 > r 2F0LHGT=0-106 > r 2 CRNDSTY= 0 - 0 9 7 Appendix 3 g r a p h i c a l l y illu s tra te s the s t a t i s t i c a l r e s u l t s o f the p l a n t f o i l a g e he ight and p l a n t d e n s i t y . 4.4 F i e l d Capacity In 1983, the season's average e f f e c t i v e f i e l d c a p ac it y (EFC) o f the har ves ter was 0.12 hectare per hour (0.30 acre per hour). actual ra te of harv este r performance, expressed in EFC i s the hectares per hour (acres per hour) [Appendix 4 ] . The t h e o r e t i c a l fie ld cap acit y (TFC) of the harvester was ca lcu ­ l a t e d to be 0.24 hectare per hour (0.60 acre per hour). of fie ld coverage performing i t s that would be obtained by the harvester fu n c t i o n speed and always TFC i s the ra te if it were 100 percent o f the time a t the rated operating u tilize d 100 percent o f its rated c u t t e r bar w idth. This maximum cap acit y i s used as a basis f o r ev alu a tin g the performance o f the harvester and i t s o p e r a to r . h arvesting speed by the co nstant of 10 ( 8 . 2 5 ) . cutter bar width and dividing by a This constant o f 10 (8.25) enables the c a l c u l a ­ t i o n to be expressed in jfc rated TFC i s c a lc u l a te d by m u l t i p l y i n g the = hectares per hour (acres per hour). speed x width constant The average f i e l d e f f i c i e n c y (FE) o f the harvester f o r t h i s season was 50 percent. However, next year w it h a bulk handling system f o r the Table 4-1. Mu lt i pl e Regression Analysis Summary Table on the Va r iables Foilage H eight and Crown Density. I O N DEPENDENT VARIABI E . . PCRALL PERCENT RE C O V E R Y FOR AIL S U M M A R Y SIEP 1 F VARIABI£ ENTERED RE MOV ED ENTER TO OR REMOVE 2 CRNDSTY SIGNIFICANCE 47200 VAR IABIE. PCRALL PERCENT .130 RECOVERY FOR R R S QUARE 3 1153 ALL R SQUARE CHANGE .09705 09705 t VARIABLE ENURED RE MOV ED F ENTER VARIABLE. . SIGNIFICANCE 2.73375 f O t 1Hi I DF P F MDFNT TO OR REMOVE PCRALL PERCENT FOR STEP 1 2 VARIABLE ENTERED REMOVED F 01 HOT CRNDSTY ENTER TO OR REMOVE 2 73375 4.46714 SIGNIFICANCE . I 12 .046 - . 3 1 153 OVERALL F 2.47200 SIGNIFICANCE . 130 • R SQUARE R SQUARE CHANGE 10623 . 10623 SIMPLE H -.32593 OVERALL F 2.73375 SIGNIFICANCE . 1 12 BF PRY S U M M A R Y F R 32593 At ; . R T A B L E MULTIPLE .112 RECOVERY • SIMPLE BERRY S U M M A R Y SIEP * T A B L E MULTIPLE O N DEPENDENT • B E R RY T A B L E MUITIPIE R 32593 50701 R SQUARE . 10623 .25706 R SQUARE CHANGE .10623 15005 simple r 32593 - . 3 1 1 51 OVERALL F 2.73375 3.80649 SIGNIFICANCE .112 .038 39 harvested f r u i t , the FE i s expected to increase to approximately 80 per­ ce nt. F i e l d e f f i c i e n c y i s the r a t i o o f the h a r v e s t e r 's EFC to i t s TFC. F i e l d e f f i c i e n c y i s ca lc u l a te d by d i v i d i n g the h a r v e s t e r 's EFC by i t s TFC and expressed as a percent. FE = EFC TFC x 100 Once the operator can i d e n t i f y the production system's i n e f f i c i e n ­ cies and c o r r e c t f o r them, then the f i e l d e f f i c i e n c y and f i e l d capacity o f the harvester can be increased. The f a c t o r s which a f f e c t the harvest­ e r ' s f i e l d e f f i c i e n c y and f i e l d c a p ac ity are: 1) S k i l l , and experience of the Operator. 2) Crop and f i e l d c o n d i t i o n s . 3) Proper operating speeds and adjustments o f harvester components. 4) Ground speed of the machine. 5) Actual width of the header used. 6) Material 4.5 handling system's c a p a c i ty . Summary The mechanical harvester can a l l e v i a t e which fr e q u e n t ly c o n fro nt s the grower during mechanical the l a b o r shortage dilemma the harvest season. harvester in c o n ju n c tio n w it h the proper c u l t u r a l The p r a c ti c e s has been proven to s u c c e s s fu ll y ha rvest the f r u i t w it h an average f r u i t recovery r a te of approximately 93 percent. The mechanical the total industry. systems harvester i s one of the subsystems c o n t r i b u t i n g approach for the mechanization of to the - strawberry A f t e r the f r u i t i s harvested i t i s tra nsported to the process­ ing p la n t where the f r u i t i s mechanically handled and processed i n t o i t s final product. CHAPTER V CURRENT PROCESSING EQUIPMENT AND OPERATIONS 5.1 Introduction Handling only a part of industry. ical mechanically the harvested total fru it in the processing plant is systems approach to mechanize the strawberry In other words, the success o f the crop production and mechan­ ha rvesting system i s dependent upon the a b i l i t y o f the processing p l a n t to handle the mechanically harvested f r u i t . Therefore, the f i n a l step processing equipment in which i s the capable of processing fru it to mechanizing plant product. be considered harvested f r u i t , the industry to develop handling machine harvested f r u i t . has a v i t a l However, i f the was role in Each machine at the completion of the final any one machine i n the processing p l a n t was "key machine" in the success o f handling machine i t would be the decapper. Hansen, (1972) s ta te d : " I t i s q u it e apparent t h a t i f we are to l i f t the sagging strawberry i n d u s t r y in Michigan i t w i l l be necessary to concentrate e f f o r t s on a machine to remove the caps". At the present tim e, a mechanical decapper has been developed which s u c c e s s f u ll y completes t h i s o p e r a ti o n . The e f f i c i e n c y o f the decapper as well as the other processing equipment are discussed w i t h i n t h i s chapter. 40 41 5.1 .1 Processing Equipment and Operations Figure 5-1 shows a fl o w diagram o f the 1983 strawberry processing l i n e a t Underwood's Farm Market in Traverse C i t y , Michigan. This process­ ing p l a n t u t i l i z e d the c u r r e n t Michigan State University-Canners Machinery L im it e d (MSU-CML) str aw ber ry processing equipment. The f r u i t product at t h i s processing c en ter was processed as f r e e z e r pack and puree. 5.2 D e s c r i p t i o n o f the Processing Procedures At the processing f i l l e d w it h water. g rit to s i x bar settle reel plant, the f r u i t i s dumped i n t o a re c e iv in g tank This tank prewashes the f r u i t by a l l owing.the sand and out befo re the f r u i t enters the processing equipment. meters the f r u i t to a f l i g h t e d conveyor which elevates A the f r u i t to the r e c e iv i n g pan o f the s i n g u l a t o r . The singulator separates the be rry c l u s t e r s i n t o i n d i v i d u a l berries w it h stems (F ig ur e 5 - 2 ) . The s i n g u l a t o r c o n s is t s of three staggered layers o f small diameter rods w it h 6.35 cm ( 2- 1/2 i n . ) rod and set a t a downward angle of 20 degrees. clearance between each The s i n g l e ( si ngul a t e d ) f r u i t f a l l s between the rods and the f r u i t c l u s t e r s s l i d e down the rods to the shear bar which cuts the be rry stems from the c l u s t e r node. The catch pan below the s i n g u l a t o r d i r e c t s the f r u i t onto the decapper. The ro lle rs MSU-CML that decapper tr a v e l c o n s is t s up an i n c l i n e caught between the c o u n t e r - r o t a t i n g of rubber (Fi gur e 5 - 3 ) . ro lle rs covered counter-rotating The berry stems are and c a r r i e d to a band k n if e where the usable f r u i t f l e s h i s c u t from the calyx and stem (Figure 5 - 4 ) . 42 IN P L A N T FLOW C H A R T Receiving Water Tanks from Harvester Feed Metering System Singulator Trash Decapper Roll back Roll over Cut Fruit Puree Broker and/or U ltim ate User Sizer Small Fruit Frozen Pack Inspection (W ith or W ithout Sugar) Figure 5-1. Proces si ng Plant F l ow Chart Broker and/or U ltim ate User W ATER M A N IF O L D S T A IN L E S S S T E E L R O D S r 6 .3 5 cm A P A R T F E E D E R PA N F R U IT FROM HARVESTER W ATER M A N IF O L D 3 R O T A R Y SHEARS 2 cm M O V E M E N T 3 SH EAR BARS 77777 777777 TO DECAPPER Figure 5-2. Schematic of the Seperator C O U N T E R R E V O L V IN G R U B B E R -C O V E R E D ROLLERS ROLLOVER F R U IT y~ (N O T C A U G H T B Y r R U B B E R -C O V E R E D RO LLERS) F R U IT G O E S O N DECAPPER H ER E B A N D K N FE BAFFLES R O L L -B A C K S ( F R U IT W IT H O U T S TE M S ) O R B IT IN H O R IZ O N T A L PLANE F R U IT CUT BY K N IF E I I D IS C H A R G E P A N ­ PR O C ESS F R U IT F R A M E BASE TRASH R EM O VA L PA N Figure 5-3. Schematic of the D ecapper CUT -p » Rubber—covered • LTl rollers ► Figure 5-4. Schematic of the F ruit Showing Location of Cut 46 The entire inclined through a 2cm ( 0 .7 5 in ) ro lle r conveyor diameter c i r c l e bed of the decapper in a h o riz on tal orbits plane to enhance the p o s s i b i l i t y f o r the rubber covered r o l l e r s to catch the stems of the f r u i t . The b a f f l e s which are locat ed a t the lower end o f the i n c l i n e d bed prevent the berries counter-rotating from ro llin g ro lle rs the rea r of have a chance to l o c a t e stems between the r o l l e r s kn ife . o ff the bed before and secure the the berry so t h a t the b e r ri e s can be c a r r i e d to the band The band k n i f e which i s mounted below the upper end of the rubber covered r o l l e r conveyor, s l i c e s the usable f r u i t fl e s h from the stem and calyx. This cut fru it fa lls into a water flume and i s c a r r ie d to a sizer. A rev ers ing rubber covered conveyor. rack ro lle rs which is changes the rotational mounted below the r e tu rn d irection of the side of the r o l l e r This rack reverses the r o t a t i o n of the rubber covered r o l l e r s to discharge stems, leav es , calyxe s, p u lle d through the r o l l e r s . This f u n c t i o n permits a continuous operation o f the r o l l e r b e l t . and any be rry fl e s h which has been The debr is i s elevated i n t o a bin f o r d is p o s a l. The f r u i t i s discharged from the decapper by one o f three discharge p o in ts i d e n t i f i e d as: 1) c u t f r u i t , cut fru it are the b e r r i e s 2) r o l l back, and 3) r o l l over. The which were caught and held by the counter- r o t a t i n g rubber covered r o l l s so t h a t the calyxes (caps) could be removed by the band k n i f e . This f r u i t i s then conveyed to the s i z e r and inspec­ t i o n l i n e before i t i s s l i c e d and packaged. The f r u i t not caught by the c o u n t e r - r o t a t i n g r o l l s are i d e n t i f i e d as e i t h e r r o l l - b a c k s or r o l l - o v e r s . Roll-backs are the b e r r i e s which were encouraged by the o r b i t i n g motion o f the decapper to r o l l back down o f f the i n c l i n e d bed of the decapper. These b e r r i e s have very s h o rt stems ( l e s s than 2.5 cm [ lin ]) or no 47 stems a t a l l . R o ll -o v e r s are the b e r r i e s which were trapped or c a r r ie d over the top o f the i n c l i n e d bed by oth er b e r r i e s whose stems were f i r m l y lodged between the rubber covered r o l l e r s . These b e r r i e s can be e i t h e r stemmed or stem!ess. To avoid hand s o r t i n g berries, the and decapping of the r o l l - b a c k and r o l l - o v e r the p la n t management may choose to puree these b e r r i e s . berries from the roll-back and ro ll-o v e r discharge p o in ts If so, of the decapper are conveyed to an in sp e c tio n ta b l e where the undesirable (decay­ ed and r o t t e n ) b e r r i e s are removed. The t o t a l b e lt i n c l u d in g fru it stems are fed into product from t h i s ins p e c tio n a fin ish e r which removes the leaves and stems. The usable cut f r u i t pan of sizer a tapered is finger (decapped f r u i t ) sizer down the tapered f i n g e r s . green non-ripe b e r r i e s f a l l the f i n i s h e r f o r puree. or off (Fi gure 5 - 5 ) . flooded w it h water and v i b r a t e s the f r u i t the end of the i s conveyed The to the r e c e iv in g The r e c e iv i n g c o n s ta n tl y pan of the to a s s i s t in small f r u i t , most of moving which are through the f i n g e r s f i r s t and are conveyed to The remaining f r u i t w i l l fi n g e r s eventually f a l l and onto the i n s p e ct io n b e lt. through The hand s o r t e r s a t the in sp e c tio n b e l t s o r t out the less d e s ir a b le f r u i t all owing only the r i p e f r u i t to enter the s l i c e r where i t is sugared and placed i n t o 14 kg (30 l b . ) t i n s to be frozen. 5.3 Processing Equipment Eval uation Data were c o l l e c t e d at the processing p l a n t f o r each machine to exam­ ine machine capacity and e f f i c i e n c y . Tables 5-1 and 5-2 show the 1983 average d a i l y and season's values f o r the s i n g u l a t o r and decapper. Overhead View of SIZER Slots through which berries drop into Catching Troughs below > Sorting B eit TAPER ^ -F» Vibrating Pan co 0 \ 0 o Sizer 0 O ) 0 > o '* O 0^ 0 O o Small berries Medium berries Large berries 3 /8 " 5 /8 " 7 /8 " - 5/8" Figure 5- - 7/8" Schematic of the Sizer - 1-1/8" 0 Jumbo Berries Q > 1-1/8" T ab le 5 - 1 . Dally Number Single Average Mass 1983 Kg S i n g u la t o r E v a lu a t io n Number Single Weight Stems Before Stems After lbs Singulator Singulator Percent Before Singulator After Singulator Improvement Number of Clusters Number of Clusters Improvement Percent July 3 1236 2725 12 28 57 12 4 67 4 2092 4613 27 40 32 6 2 67 5 2858 6300 24 39 38 7 2 71 6 3406 7509 21 36 42 6 3 50 7 2647 583 5 47 44 6 .8 2 50 8 2290 5049 36 46 21 5 80 11 3096 6826 31 49 37 8 00 2021 4455 17 34 50 11 64 2456 5414 - Season Average 33.5* 6 8 .6* -P> Tabl e 5 - 2 . Decapper E v a l u a t i o n Mass and Percent a t Discharge Points Expressed on a Per Hour Basis Dai ly Average 1983 Quantity to Decapper Roll Back Roll Over Lbs Kg Lbs % July 3 556 1225 141 311 25 J u ly 4 1085 2393 231 509 July 5 1245 2745 289 J u ly 6 1283 2829 J u ly 7 1648 J u ly 8 Trash Lbs % Kg Lbs % Kg Lbs % 82 181 15 206 453 37 127 281 23 21 212 467 20 393 866 36 250 551 23 636 23 258 568 21 470 1035 38 230 506 18 210 462 16 252 555 20 531 1170 41 291 642 23 3634 283 623 17 374 825 23 677 1493 41 315 694 19 1179 2600 254 560 22 245 539 21 451 - 995 38 230 507 19 J u ly 11 1470 3240 272 599 18 327 720 22 515 1134 35 357 00 00 r-~ Kg Cut F r u i t 25 J u ly 12 1255 2768 276 608 22 194 428 15 378 833 30 408 900 33 Season Average 1215 2679 20 Kg 20 37 23 51 The s i n g u l a t o r averaged 2456 kg per hour (5414 l b s / h r ) f o r the season w ith a 38.3 percent improvement in the separation o f s in g le b e r r i e s and a 68.6 percent improvement in the separation o f c l u s t e r s . In t h i s study a c l u s t e r i s defined as 3 or more b e r r i e s connected at a node. For example, on J u l y 3, 1983 p rio r to singulation, there were an average of 12 c l u s t e r s per sample e n te r in g the s i n g u l a t o r and a f t e r passing through the s i n g u l a t o r there were only 4 c l u s t e r s remaining i n t a c t (Table 5 - 1 ) . represents berries. a 67 In percent other improvement words, there in the number were 67 percent of fewer This non-clustered clusters after si n g u l a ti o n . The fu n c t i o n o f the s i n g u l a t o r clusters p r i o r to decapping. decapper reduces the be rry is to decrease the number of berry A flow of s i n g l e stemmed b e r r i e s onto the flesh l os s and assures a more uniform and complete removal of the e n t i r e c a ly x . Table 5-2 lis ts the daily and season's average The decapper averaged 1215 kg per hour (2679 l b s / h r ) for the decapper. f o r the season w it h a discharge ra te of 20% r o l l - b a c k , 20% r o l l - o v e r , 37% c u t f r u i t , and 231- t ra s h material . The ta b l e shows t h a t an e xce ss ive ly high fl o w ra te of m ate ria l the decapper increases the percent o f r o l l - o v e r s . than 2500 pounds per hour tends to increase the A flow r a t e g re at er percent of above t h a t of the seasons average which was 20 percent. over f i l l i n g by the carried onto rollovers This i s due to of the i n c l i n e d bed t h e r e f o r e the excess f r u i t i s not caught ro lle rs but lodged between or on top of the oth er over the top o f the decapper and not allowed to r o l l o f f the i n c l i n e d bed. fru it and back down 52 5.3.1 Decapper Trash The decapper tras h i s a combination o f p la n t stems, leaves, calyxe s, fie ld debris, and be rry f l e s h . t h a t 46 to 60 percent of flesh. the the An a n a l y s i s of the decapper tr a sh found tr a sh removed by the decapper was berry With t h i s evidence, the processing management may choose to route decapped berry caps to the fin is h e r band-k nife blade c l o s e r to the r o l l e r s for puree, and/or adjust the to decrease the be rry f l e s h loss to the tra sh b i n . 5.4 Summary Mechanically handling and processing the machine harvested f r u i t at the processing p l a n t i s the f i n a l phase to the t o t a l systems approach f o r the mechanization o f the strawberry i n d u s t r y . The three phases or primary subsystems to the t o t a l systems approach f o r the mechanization o f the strawberry i n d u s t r y have been discussed in t h i s and the two previous chapters. The f o l l o w i n g chapter describes the computer model which was developed to examine the economic f e a s i b i l i t y of th is cultural and machine harvested, handling and processing system. CHAPTER VI MODEL DESCRIPTION AND VERIFICATION 6.1 Introduction The strawberry production computer model i n t e r a c t i v e l y w it h the user. was designed to fu n c t i o n A f t e r the user types a command to the com­ puter to s t a r t the program, the program begins immediately, and prompts the user with w it h no model. questions. previous This i n t e r a c t i v e computer Since the model experience to technique enables the user easily use this production was designed to f u n c t i o n i n t e r a c t i v e l y w it h the user, and f o r the u s e r 's convenience, the i n p u t and ou tput data f o r t h i s model are expresed in th e ir common English units, e .g . acres, tons, pounds. The model was designed w it h s p e c i f i c purposes in mind: examine the economic f e a s i b i l i t y of mechanical f o r sol i d - s e t s tr a w b e r r i e s ; for production costs and second, should the firs t, to ha rvesting and processing to be used as a budgeting tool sol i d - s e t strawberry production and mechanical harvesting technique prove to be economically f e a s i b l e . The model was also designed to be f l e x i b l e in t h a t the values could be e a s i l y changed by the user. the model who are to b e n e f i t researchers, extension agents, interested in examining this system. model to change any of the preprogrammed 53 values its parameters so This would allow and growers a l i k e , The f l e x i b i l i t y enables the o f the user to 54 better simulate th e ir present or pro je cte d future enterprise w it h o u t having to r e w r i t e the computer program. The o u tp u t o f the observations can presented three in be model is itemized by operation made regarding the system. parts: 1) fie ld The model's output is production costs, equipment c o s ts , and, 3) economic a n a l y s i s . Figure 6-1 shows a conceptual of the model product d i s t r i b u t i o n , co st to the strawberry e n t e r p r i s e . f l o w c h a r t o f the model and Figure 6-2 shows the subroutine f l o w c h a r t t h a t i s description 2) machine and The economic an al ys is seg­ ment i s a summary o f the complete system's c o s t , and product revenue minus the t o t a l so t h a t cost initia te d and the i n d i v i d u a l by BERRY. An indepth subroutines are explained i n the f o l l o w i n g subsections. 6.2 Subroutine D e s c r i p t i o n The strawberry pro duc ti on model ed of a se ries o f c a l l statements to (BERRY) i s a l i n e a r program compos­ summon the required subroutines which are necessary to complete the economic a n a l y s i s . The model begins by prompting the user w ith general in f o r m a t io n questions needed by the model to complete the economic an al ys is f o r the strawberry produ ctio n system. are d ir e c t e d rates, fuel the f i n a l towards the size The questions asked by BERRY (F ig ur e 6-3) of the strawberry enterprise, interest p r i c e , pro je cte d y i e l d , d i s t r i b u t i o n , and s e l l i n g p r ic e f o r product. A f t e r the user has completed the questions, the model r e - d i s p l a y s the questions w it h the u s e r 's response to This allows the user to checkt h e i r in p u tt e d values w ith change any one o f the values. each an question. op tion The i n f o r m a t io n in t h i s segment of to the 55 START INPUTS: Size of Enterprise Wage Rates Interest Rates Projected Field Yield Harvest Recovery Percent Harvest Rate Irrigation Rate COMPUTE: Field Production Costs Machine Ownership Costs Machine Operational Costs SUMMARY: Economic Analysis yes PERFORM ANOTHER ANALYSIS no END Figure 6-1. Conceptual F l o w c h a r t of the Model 56 START BERRY FILLTA B FIELD PD CUSTRAT SPECEQP IRRIEQ P PROCEQP FPCOST SPECOST IRRCOST PROCOST PVCOS ECONAN yes PERFORM ANOTHER ANALYSIS END F igure 6-2. Su b ro ut i ne F l o w c h a r t as Initiated by BERRY 57 CHECKIT BERRY CHEKANS yes CHANGES no Fi gure 6-2. F l o w c ha r t for the S ub ro u ti ne BERRY 58 model i s then passed to the remaining subroutines where the i s u t i l i z e d by the model 5 .2 .1 i n f o r m a t io n in completing the a n a l y s i s . Subroutine FILLTAB FIL-LTAB (Figure 6-4) file , DATAFL1 model. into a ll reads the preprogrammed values from the data the data ta b le s in the strawberry production The values in FILLTAB are used by the f i v e subroutines FIELDPD, CUSTRAT, SPECEQP, PROCEQP and IRRIEQP i n f i l l i n g out t h e i r data ta b l e s . A f t e r the values have been passed to the s ub rou tin es , FILLTAB r etu rn s to the main program. 6 .2 .2 Subroutine FIELDPD FIELDPD (Fi gur e ma te ria l p r ic e 6-5) values contains and the f i e l d production o p e r a ti o n s . table. Following the the preprogrammed application rates data t a b l e , response i s yes, model. production associated w ith the FIELDPD c a l l s PRINTAB to d is p la y the data FIELDPD prompts the user to they wish to change any o f the values w i t h i n u s e r 's fie ld the data t a b l e . see i f If the then CHECKIT and CHGTAB are c a ll e d f o r by the Between the two subroutines CHECKIT and CHGTAB, they a s s i s t the user in making the desired changes. Once the changes have been complet­ ed, MENUCHG i s c a l l e d to replace the preprogrammed values w ith the new values entered by the user. ca lls PRINTAB to d is p l a y values. Again, the However, if u s e r 's the MENUCHG r e tu r n s the f i e l d user is given response is to FIELDPD where FIELDPD production data ta b le w it h the new the op tion to the values. no, then FIELDPD re tu r n s and the program continues w it h the next segment of the model. change DATAFL1 FIELDPD SPECEQP FILLTAB CUSTRAT Figure 6-4. IRRIEQP PROCEQP F l o w ch a rt for the Subrou ti n e FILLTAB PRINTAB F IE L D P D CHEKANS MENUCHG yes CHANGES CHGTAB CHECKIT no Figure 6-5. Flowchart for the Subroutine FIELDPD 61 Table 6-1 l i s t s the f i e l d production m a t e r i a l s and values contained w ithin this s u b ro u tin e . If no changes are made by the user, then the values in t h i s ta b l e are used by the model in c a l c u l a t i n g the f i e l d pro­ du cti on co st s . Table 6-1. F i e l d Production Data Table. Materi al s C o s t / U n i t ($) Qua ntity/Acre 2.00/bu 2.00 bu/acre F e r t i l i zer 12-12-12 Nitrogen 174.00/ton 136.00/ton 0.25 ton /a cr e 50.00 l b s / a c r e Fumi ga ti on 400.00/acre Custom A p p l i c a t i o n Strawberry Plants 61.00/1000 10890 p l a n t s / a c r e P e s t i c i des Captan Beni ate Ronali n Si nbar Thiodan 1.10/lb 1 1 .0 0 /l b 1 6 .8 0 /l b 1 6 .9 0 /l b 3.85/lb Cover-crop (oats) 6.2.3 5.0 1.0 1.5 0.5 2.0 lb/acre lb/acre lb/acre lb/acre lb/acre Subroutines CHECKIT and CHEKANS These changes device subroutines any o f which are u tiliz e d the values w i t h i n gives the by the the model. model whenever CHECKIT i s the user an insurance user a chance to double check the items which they have selected to e n te r i n t o the model. CHECKIT c a l l s CHEKANS which i n t e r a c t s w it h the user to ensure t h a t the value entered by the user is the value they wish to use. Between the two su broutines, CHECKIT and CHEKANS, they prevent the user from completing the model execution with the wrong in p u tt e d value. 62 6 .2 . 4 Subroutine MENUCHG The s u br out in e, MENUCHG, changes data tab les f o r the model. new e n t r i e s w ill preprogrammed values in the MENUCHG i s c a l l e d by CHGTAB to replace the model's preprogrammed values w ith The the then be the new values entered by the user. used by the model in completing the economic a n a l y s i s . 6 .2 .5 Subroutine CUSTRAT This subroutine contains the custom h i r e rates f o r the custom h ir e operations a v a i l a b l e to the strawberry e n t e r p r i s e . CUSTRAT (Fi gure 6-6) c a l l s PRINTAB to d is p l a y the preprogrammed custom r a te data ta b le to the user and then CUSTRAT prompts the user to see i f they wish to change any o f the values w i t h i n the data t a b l e . model the calls desired completed, CHECKIT and CHGTAB which changes in MENUCHG i s the data c a ll e d I f the response i s yes, then the i n t e r a c t w it h the user in making table. Once the changes have been to replace the preprogrammed values with the new values entered by the user. MENUCHG re tu r n s to CUSTRAT where CUSTRAT c a l l s PRINTAB to d is p la y the custom r a te data table w ith the new va lues . Again, the user i s given the o p p o r tu n i ty to change the values. However, i f the u se r's response would have been no, then CUSTRAT re tur ns and the program continues with the next segment of the model. Custom h ir e rates are used by the model as a means f o r e s t a b l i s h i n g a fa ir ra tes machine cost for University this value subroutine Cooperative The rates in Table 6-2 to the were Extension strawberry obtained enterprise. from the The custom Michigan State Service and are l i s t e d in Table 6-2. are the averages f o r the State o f Michigan as of August 1983 (Schwab, G.D., 1983). PRINTAB CUSTRAT CHEKANS MENUCHG yes CHANGES CHGTAB CHECKIT no Figure 6-6. Flowchart for the Subroutine CUSTRAT 64 Table 6-2. 6 .2 .6 1983 Custom Hire Rates f o r the State o f Michigan. Operation Rate ($ /a cr e ) PI ow Di sk Cultimulch D rillin g Spraying: Ground , r i g Aeri al 11.55 7.85 5.60 5.90 4.00 4.90 Subroutine PRINTAB This subroutine formats a l l is called f o r by the i n d i v i d u a l to the user f o r examination the o utp ut f o r the i n d i v i d u a l 6.2.7 PRINTAB subroutines to d is p la y the data tab les p rio r to the cost c a l c u l a t i o n s as well as subroutine. Subroutine CHGTAB This user the data tab les f o r the model. in s u b ro u tin e , making values w i t h i n the in c o nju nc tio n desired changes the data menu t a b l e s . w ith in CHECKIT, the models interacts with the preprogrammed data CHGTAB prompts the user to enter the new value f o r the item they wish to change and then c a l l s CHECKIT to confirm the new i n p u tt e d value w it h the user. Upon completion o f the u s e r 's i n t e r a c t i o n w it h CHECKIT, CHGTAB then asks the user i f there are any more changes to be made w i t h i n t h a t p a r t i c u l a r menu t a b l e . the u s e r 's repsonse be yes, then the i n t e r a c t i o n Should between the user and CHGTAB co nti nu e s, otherwise CHGTAB re tu r n s to the subroutine which sum­ moned i t to d is p l a y the new menu ta b le values to the user. Again the 65 user i s given the o p p o r t u n i t y to change the values w i t h i n the menu tab le should they wish. 6.2.8 Subroutine SPECEQP The subroutine SPECEQP (Fi gur e 6-7) contains the s p e c i a l t y equip­ ment items l i s t e d by machine value, machine q u a n t i t y , values. th e ir SPECEQP c a l l s values to the PRINTAB to d is p l a y user. Following equipment values. If the MENUCHG and CHECKIT. u se r 's the s p e c ia l t y the d is p la y SPECEQP prompts the user to determine i f of equipment and the data t a b l e , they wish to change any of the response CHGTAB i n t e r a c t s and machine cost is with yes, the desired changes and then r e tu r n s to SPECEQP where then CHGTAB c a l l s user in making PRINTAB i s c a ll e d to r e - d i s p l a y the s p e c i a l t y equipment data ta b le w it h the new values. ever, if the How­ the u se r 's response was no, then SPECEQP r e tu rn s and the pro­ gram continues w it h the next segment o f the model. Table 6-3 l i s t s w i t h i n the model. the specialty equipment machine values contained The machine costs were obtained from the U n i v e r s i t y o f Minnesota, A g r i c u l t u r a l Economic Cost Estimates Extension Service, "Minnesota Farm Machinery for 1984." The machine l i f e and r e p a i r cost values were obtained from Kepner, Bainer, and Barger (1978), P r i n c i p l e s o f Farm Machinery, 3rd E d i t i o n , Page 34 (Table 2 . 1 ) . not l i s t e d in Kepner, Bainer, comparable machines were used. the s e l f - p r o p e l l e d and Barger, the r e p a i r cost values for For example, the r e p a i r cost value f o r combine was used f o r strawberry ha rv ester. For the machines the r e p a i r cost value f o r the PRINTAB SPECEQP CHEKANS MENUCHG yes CHANGES CHGTAB CHECKIT no Figure 6-7. Flowchart for the Subroutine SPECEQP 67 Table 6- 3 . S p e c ia l ty Equipment Data Table ITEM ' In ita l Cost Tractor 15,000.00 • 1 15 .01 .00010 Fork! i f t Attachment 1,300.00 1 15 .01 .00020 T ra n s p la n te r (2 Row) 1,150.00 1 15 .01 .00075 Fi el d Rol l e r 1,000.00 1 10 .01 .00040 70,000.00 1 10 .01 .00025 20.00 80 10 .01 .01000 Harvester P a l l e t Boxes Quanti ty Machine Life (yr) T .I.S .l 1 T . I . S . = Tax, Insurance, and S h e lt e r expressed as a percent of i n i t i a l c o s t. 2 R + M o f I . C . = Repair and Maintenance expressed as a percent of i n i t i a l c o st . R+ M of I.C .2 68 6 .2 .9 Subroutine IRRIEQP IRRIEQP contains the i r r i g a t i o n equipment cost values f o r the model (Figure 6 - 8 ) . Prior IRRIEQP c a l c u l a t e s to p r i n t i n g the i r r i g a t i o n the estimated i n i t i a l equipment data t a b l e , cost f o r the complete i r r i g a ­ t i o n system based on a cost per acre basis f o r the equipment. The e s t i ­ mated c o s t per acre f o r the pump set and the pipes and s p r i n k l e r equip­ ment were obtained from the S p r i n k l e r I r r i g a t i o n Supply Company, Royal Oak, Michigan and Eugene As h c r a ft o f A s h c r a ft Farms, Copemish, Michigan. They determined that on a per acre approximately $450 per acre and t h a t ba sis, the the pipe pump set cost (main and l a t e r a l ) s p r i n k l e r system would be approximately $1,760 per acre. and In t h i s model, based on the above i n f o r m a t i o n , the pump set cost per acre $450 and the pipe and s p r i n k l e r cost complete irrig a tio n system would wasset at per acre was set at $1,760. The cost i s c a lc u la te d by m u l t i p l y i n g the cost per acre f o r each item by the size of the strawberry e n t e r p r i s e acreage. The value ACRES i s passed from BERRY to IRRIEQP f o r t h i s c a l c u l a t i o n . Pump Set i n i t i a l cost = Pipe & S p r i n k l e r i n i t i a l cost 450 * Acres = 1,760 * Acres During the re -e st a bl is hm e n t period f o r the strawberry acreage, the model increases the co st of the pipe and s p r i n k l e r set by 20 percent. The model assumes an annual 20 percent re -e s t a b li s h m e n t acreage to begin the f a l l o f year 4, however, the e x tra i r r i g a t i o n system cap acit y i s not u tiliz e d until year 5. In otherwords, the land area f o r the strawberry e n t e r p r i s e i s held constant f o r the f i r s t fou r years and increases only once by 20 percent during the f a l l o f the f o u r t h yea r. This allows 20 percent o f the starwberry acreage to be r e - e s t a b l i s h e d each yea r, there- PRINTAB IRRIEQP DETERMINES INITIAL COST CHEKANS yes CHANGES CHECKIT no Figure 6-8. Flowchart for the Subroutine IRRIEQP 70 fo r e keeping the producing strawberry acreage the same as the grower o r i g i n a l l y began w i t h . This increased equipment cost to the e n t e r p r i s e i s included in the annual cost to the e n t e r p r i s e s t a r t i n g in the f i f t h year. assumes t h a t the o r i g i n a l The model pump set was adequately sized to handle the 20 percent increase in the acreage. A f t e r the system, model IRRIEQP c a l l s IRRIEQP the PRINTAB to in itia l display then prompts the user to see i f values. I f the CHECKIT fu n c t i o n changes. entered c a lc u l a t e s response is yes, inte ractive ly MENUCHG replaces by the PRINTAB to user. d is p l a y the irrig a tio n original irrig a tio n irrig a tio n data user to values make w it h MENUCHG and the the the u se r 's response is no, then desired new values to IRRIEQP where IRRIEQP c a l l s data ta b l e w it h the new values. Again, the user i s given the option to change the new values. if table. they wish to change any of the the MENUCHG r e tu r n s the the for IRRIEQP c a l l s MENUCHG. w it h the cost IRRIEQP r e tu rn s However, and the computer program continues with the next segment o f the model. 6 .2.10 Subroutine PROCEQP This subroutine contains machine value and quantity of product d i s t r i b u t i o n selected PROCEQP (Fi gure 6-9) ca lls the processing equipment items l i s t e d each machine as determined by the f i n a l by the user in PRINTAB to d i s p l a y , machine costs and q u a n t i t i e s . by the main program BERRY. in a ta b le format, the PROCEQP then prompts the user to see i f the user wishes to change any of the values. If the response i s yes, CHECKIT and CHGTAB are c a ll e d to a s s i s t the user in making the desired changes. Once the changes have been completed, MENUCHG i s c a l l e d - t o PRINTAB PROCEQP CHEKANS MENUCHG yes CHGTAB CHECKIT Figure 6-9. Flowchart for the Subroutine PROCEQP 72 replace the preprogrammed values w it h the new values entered by the user. MENUCHG r e tu r n s to PROCEQP, there PROCEQP c a l l s PR'INTAB to d is p la y the processing equipment data ta b l e w it h the new values. given the op ti on to change the values. However, i f Again, the user is the u s e r' s response i s no, then PROCEQP r e t u r n s and the program continues w it h the next seg­ ment o f the model. Tables 6-4 and 6-5 lis t contained w i t h i n the model. the processing equipment machine values The machine values are based on the 1983-84 prices. Table 6- 4. Processing Equipment Data Table, Processing Option Number One. Item In itia l Cost Quantity Dump Tank 1,000.00 1 Fi ni sher 3,500.00 1 Conveyors 1,300.00 6 Si ngul a t o r 8,000.00 1 20,000.00 2 S izer 3,200.00 1 SI i c e r 2,500.00 1 Decapper 73 Table 6-5. Processing Equipment Data Table, Processing Option Number Two. Item 6.2.11 In itia l Cost Dump Tank 1,000.00 1 F i n is h e r 3,500.00 1 Conveyors 1,300.00 3 Subroutine FPCOST The subroutine FPCOST (F ig ur e 6-10) from the subroutines compute Quanti ty the fie ld FPCOST c a l c u l a t e s BERRY, the data i nfo rm at ion FIELDPD, CUSTRAT, SPECEQP, and IRRIEQP to produ ctio n and d is p l a y s y e a r l y basis f o r 10 years u tiliz e s costs for the strawberry an itemized crop production enterprise. cost on a followed by an average cost f o r the 10-year pe rio d . 6.2.12 Subroutine SPECOST The subroutine SPECOST c a l c u l a t e s the annual s p e c i a l t y equipment. from SPECEQP and SPECOST (Figure 6-11) receives i t s machine values c a l c u l a t e s the machine cost by using the conventional f i x e d - v a r i a b l e cost a n a l y s i s method u t i l i z i n g the c i a t i o n method. cost per year f o r the s tra ig h t-lin e depre­ The f i x e d - v a r i a b l e cost an alysis method r e s u l t s in the annual cost associated w it h an investment based on i t s period of owner- BERRY SPECEQP FIELDPD FPCOST IRRIEQP CUSTRAT Figure 6-10. Flowchart for the Subroutine FPCOST SPECEQP SPECOST m PRINTAB r- ■ ' Figure 6-11. Flo w ch ar t for the Subroutine SPECOST 76 ship. The f i x e d costs (the costs which are independent o f the machine use) include d e p r e c i a t i o n , i n t e r e s t on the investment, the property ta x , insurance, and s h e l t e r . d ire c tly repair r e la t e d to V ar iab le costs are the machine costs which are the and maintenance, amount fuel machine cost i s the sum of a l l The method i s Yearbook procedure described of for machine use. and l u b r i c a t i o n , These costs and la b o r . include The t o t a l the f i x e d and v a r i a b l e costs. calculating the fixed-variable cost i n the American Society o f A g r i c u l t u r a l Standards Management, as well of 1983-84, Section EP391 A gricultural an aly si s Engineers Machinery as in many o f the c u r r e n t farm machinery management books, such as Hunt, 1978; Bowers, 1975; and Kepner, Bainer and Barger, 1978. Upon completion of the co st analysis, SPECOST c a l l s d is p l a y the s p e c i a l t y equipment f i x e d and op eration al PRINTAB to cost t a b l e . The co st anal ysi s f o r each machine i s l i s t e d as a f i x e d cost per y e a r , ’ fi x e d co st per acre, op eration al cost per acre, and t o t a l 6.2 .12 .1 c os t per acre. Repair and Maintenance The r e p a i r and maintenance co st f o r the s p e c i a l t y equipment are ex­ pressed as a percent o f the machines' i n i t i a l obtained from Kepner, e t a l . , 1978. Kepner, e t a l . , a comparable machine', s For cost. the These machine repair and average annual not values were lis te d in maintenance percent was l i s t e d in SPECEQP. 6 .2 .1 2 .2 Fuel Cost The fuel cost estimate as o u t l i n e d was based in on the fuel consumption the 1983-84 A g r i c u l t u r a l Engineers Yearbook of Standards. The average annual fuel consumption was estimated by the f o l l o w i n g formula: Average Diesel Consumption ( g a l / h r ) = 0.043 * max. PTO hp 6 .2 .1 2 .3 Labor Cost The model considers two l a b o r wage rates ra tes are passed by the model labor cost c a l c u l a t i o n s . ( $ / h r ). The l ab o r wage from the subroutine BERRY to SPECOST f o r One wage r a te is used by the model machine opera tor and another f o r the l a b o r e r s . Gen erall y, receives a higher wage r a te due to the technical s k ills the the operator required by the o p e r a to r , and a lower r a te f o r the la b o re rs who provide manual 6.2.13 for serv ices . Subroutine IRRCOST IRRCOST (F ig ur e 6-12) calculates the annual irrig a tio n equipment co s t by using the i r r i g a t i o n equipment values from IRRIEQP and the con­ ve nti ona l inc lud e fixed and depreciation, insurance, and variable cost interest shelter. on a n a ly si s the method. investment, The v a r i a b l e The and fixed costs property ta x , costs c o n s is t s of repair and maintenance and e l e c t r i c i t y f o r the pumping system. The i r r i g a t i o n costs were derived from engineering data and l a s f o r an e l e c t r i c motor pump set w it h a s p r i n k l e r (Turner and Anderson, 1980). calculation irrig a tio n is based formu­ system. The cost on the set i s 15 years w ith a 10 percent salvage f o l l o w i n g assumptions: 1. The l i f e value. of the pump 2. E l e c t r i c motor i s used as the power u n i t . IRRIEQP IRRCOST PRINTAB Figure 6-12. Flowchart for the Subroutine IRRCOST ~~j oo 79 3. The life o f the pipes and s p r i n k l e r s i s 30 years with a 10 percent salvage value. 4. The e l e c t r i c i t y value i s set a t $.10 per KWHR. 5. The tax , insurance and s h e l t e r in itia l 6. ( T . i . S . ) are set a t 1 percent o f the co st. I n t e r e s t ra te i s a user i n p u t value obtained fromthe subroutine BERRY. 7. The r e p a i r and maintenance costs are estimated in itia l Since pump set c o s t . the model by a percent of the Seven percent was used f o r t h i s value. assumes a 20 percent increase in the strawberry e n t e r p r i s e acreage to begin the f a l l of year 4, the value of the pipe and s p r i n k l e r set i s increased by 20 percent during year 5. Consequent­ l y , the re i s a 20 percent increase in the co st of the pipe and s p r i n k l e r system. The pump set i s not t h a t the o r i g i n a l i ncr ea se . increased since the assumption was made pump set was adequately sized to handle the 20 percent Therefore, the average annual and s p r i n k l e r system i s based on for the irrig a tio n cost f o r the pipe a ten year cost average f o r the pipe and s p r i n k l e r system. The e le c tric ity cost irrig a tio n system is based on the amount of water applied per year from an adjacent surface water supply. The q u a n t i t y of water appl ied per year i s dependent upon the so il ra in fa ll control type, during the p a r t i c u l a r growing season, and the number of f r o s t applications r eq uir ed during the growing season. The q u a n t it y o f water applied per year i s an i n p u t value required by the user in the subrou tine BERRY. Upon completion o f the cost a n a l y s i s , IRRCOST c a l l s PRINTAB to d i s ­ play the i r r i g a t i o n equipment f i x e d and operational cost t a b l e . The cost 80 a n a l y s i s f o r i r r i g a t i o n system i s l i s t e d as a f i x e d cost per year, fi x e d co st per acre, o p era ti on al cost per acre, and t o t a l 6.2 .14 cost per acre. Subroutine PR0C0ST This subroutine c a l c u l a t e s the annual processing equipment. fi x e d cost per year f o r the PR0C0ST (F ig ur e 6-13) receive s i t s machine values from PROCEQP and c a l c u l a t e s the machine co st by using the f i x e d a n a l y s i s method w it h the s t r a i g h t - l i n e d e p re c i a ti o n method. co st inc lu des : depreciation, insurance, and s h e l t e r . cost The fix e d i n t e r e s t on the investment, property ta x , Upon completion o f the co st a n a l y s i s , PROCOST c a l l s PRINTAB to d is p l a y the processing fi x e d cost t a b l e . The cost anal­ ysis f o r each machine i s l i s t e d on a co st per year and a cost per acre b a s is . PROCEQP PROCOST PRINTAB Figure 6-13. F lo w ch ar t for the Subroutine PROCOST 82 6.2.15 Subroutine PVCOS This subroutine c a l c u l a t e s the operating costs associated processing equipment opera tion repair expense f o r the and (Figure 6-14). maintenance, The v a r i a b l e labor, and the costs w it h the incl ud e general the operating e l e c t r i c i t y , and the b u i l d i n g and fr e e ze r r e n t . The r e p a i r and maintenance costs are estimated as a percent of the in itia l equipment investment. The r e p a i r and maintenance cost estimate ranges from 3 percent of the i n i t i a l investment f o r simple equipment to 13 percent f o r more complex and c o r r o s i v e systems (Humphreys and K a t e l l , 1981). Based upon t h i s maintenance costs in itia l tional equipment for i n f o r m a t io n , the model assumes the r e p a i r and the processing equipment to be 3 percent o f the investment. The remainder o f the processing opera­ costs are dependent upon the q u a n t it y of the raw product received a t the processing p l a n t and the general operating cost of the processing plant. The general operating cost i s set a t $.05 per pound and includes the items: e le c tric ity , water, one foreman, containers for the f i n a l f r u i t product, and the r e n t f o r the b u i l d i n g and fr e e z e r . is The pr ojected ma terial handling ra te (PMHR) a t the processing p l a n t determined by the f i n a l product op tion selected by the user in the subroutine BERRY. The PMHR i s necessary f o r c a l c u l a t i n g the t o t a l essing labo r cost and the general processing expense. If the selected processing op ti on was number one (Product processed as fr e e z e r pack puree), then the PMHR i s determined the processing system w i t h a decapper. essing and by the number of decappers used in rated capacity of 3000 pounds per hour per With op tion number one, the model assumes the number o f proc­ p la n t employees to be 15. number two proc­ However, i f the selected op tio n was (100% o f the product processed as puree) then the PMHR i s BERRY PVCOS 00 CO r Figure 6-14. Flowchart for the Subroutine PVCOS 84 determined by the number o f f i n i s h e r s used in the processing system w it h the rated ca p ac it y o f 6,000 pounds per hour per f i n i s h e r . number two, the model With option assumes the number of processing p l a n t employees t o be 9. The output f o r PVCOS d is p l a y s the season's r e p a i r and maintenance c o s t , general expense, t o t a l the t o t a l 6.2.16 number o f processing hours, l a b o r c o s t , and processing co st expressed on a per year and per acre ba sis. Subroutine ECONAN This subroutine completes and summarizes the economic a n a ly si s f o r the strawberry e n t e r p r i s e (Fi gur e 6 - 1 5 ) . ECONAN c a l c u l a t e s the economic a n a l y s i s by combining the cost estimates from FPCOST (Based on the 10year crop production average), SPECOST, IRRCOST, PROCOST and PVCOS with the estimated product revenue. The f i n a l product revenue minus the pro­ duction costs are based upon the production costs final product for the model values entered by complete production system by l i s t i n g average, the user. and ECONAN summarizes the the 10 year f i e l d production cost the annual machine f i x e d co sts, har ves ting and processing cost f o r the e n t e r p r i s e , followed by the estimated f i n a l and revenue f o r the e n t e r p r i s e . product d i s t r i b u t i o n FPCOST PROCOST SPECOST ECONAN PVCOS IRRCOST Figure 6-15. Flowchart for the Subroutine ECONAN 86 6.3 Model 6 .3 .1 V erification and V a l i d a t i o n Model V e r i f i c a t i o n The model was v e r i f i e d by comparing the model output w it h t h a t of hand c a l c u l a t i o n s to ensure t h a t the model was mathematically sound and f u n c t i o n i n g as i t was designed. 6 . 3 .2 Model V a l i d a t i o n The model was v a l i d a t e d by performing an economic anal ys is f o r the Michigan growers, based on the 1984 harvest season cost p r ic e s t r u c t u r e . The v a l i d a t i o n f o r the model was performed in the areas: 1) f i e l d pro­ d u ct io n co st s , 2) machine c os t a n a l y s i s , and, 3) ha rvest and processing c o s ts . The f i e l d lished l i t e r a t u r e production v a l i d a t i o n was based l a r g e l y on the pub­ f o r the production m a t e r ia l s and chemical application r a te s along w it h the known i n f o r m a t io n from the researchers and growers o f the present technology. the fie ld production Custom h i r e rate s were used by the model operations machine cost to the e n t e r p r i s e . as a means for of e s t a b l i s h i n g a f a i r This provided an actual cost per acre to the strawberry e n t e r p r i s e and avoided the c o n f l i c t of e s t a b l i s h i n g a co s t per acre f o r the f i e l d machinery based on the size of the t o t a l farm acreage. The ownership irrig a tio n for cost equipment estimates should they are based on physical for the specialty, processing and be the most accurate segment of the model co st an al y si s p rin cip als. Whereas the v a r i a b l e machine co st estimates f o r the harvesting and processing opera­ tions season. were based on the co s t estimates e st ab lis he d during the 1983 87 The v a l i d a t i o n the actual fie ld f o r the harvest and processing costs were based on costs i n c u r r e d by the growers w ith the exception of the raw product t r a n s p o r t c o s t. The raw product t r a n s p o r t cost ($/cwt) was based on the custom h i r e t r a n s p o r t ra te published f o r the State of Michigan (Schwab, G.D., 1983). In the case of the processing v a r i a b l e c o s t, the processing c os t f o r the 1984 season to range pound f o r from predicted 6 to 7 cents per the raw product to be processed as 100 percent puree. processing received the model at d is trib u tio n co st the per pound is processing o f the f i n a l based plant, product. on the quantity the method o f The p r e d i c t i o n of ,the processing, The product and by the model the c o in ­ cided w it h the actual c os t encountered by the growers. In c o n c lu s io n , the f i n a l segment o f the model v i r t u a l l y c a lc u l a te s and summarizes the,economic a n a l y s i s f o r the strawberry e n t e r p r i s e pro­ du cti on system. The model calculates the net cash re tu r n per acre to the strawberry e n t e r p r i s e but t h i s does not include the land value. land cost v a lu e , from the model e i t h e r land ownership or land r e n t costs were omitted due to the g re at f l u c t u a t i o n the s ta te o f Michigan. Th e rfo re , the model in land values throughout was designed to show only the estimated net cash r e t u r n per acre to the e n t e r p r i s e . the user must The s u b tr a c t th e ir land Consequently, ownership costs or land r e n t costs from the model'.s estimated net cash r e t u r n to o b ta in t h e i r pr edicted net cash r e t u r n . 6.4 S e n s i t i v i t y An alysis A se n s itiv ity a n a l y s i s was completed to study the response of the model due to a parameter change w i t h i n the system model. In conducting 88 the s e n s i t i v i t y a n a l y s i s , only one parameter was changed per t e s t . This permitted easy r e c o g n i t i o n o f what happened to the system as a r e s u l t of t h a t p a r t i c u l a r parameter change. 6 .4 .1 E f f e c t of the Crop Y i el d In t h i s t e s t , the pr ojected f i e l d y i e l d (YPA) was changed to exam­ ine the e f f e c t o f the raw product y i e l d upon the costs and net r e tu r n per acre to the e n t e r p r i s e . The cost a n a ly si s f o r t h i s t e s t was based on the e n t e r p r i s e size of 20 acres w it h a harvest ra te o f 0.29 acres per hour (3.5 h r s /a c r e ) tons per acre. f o r the f o l l o w i n g y i e l d l e v e l s of 7 .5 , 10, and The raw product was processed as puree w ith a f i n a l 12.5 pro­ duct value of $.30 per pound. As expected, the model c o s t due to the change processing c os t Table 6-6. r e f l e c t e d a change in the harvest v a r ia b l e in the t r a n s p o r t cost as well as a change in the and the q u a n t it y of the f i n a l product (Table 6 - 6 ) . E f f e c t of Crop Y i e ld on the E n te r p r is e Cost and Final Product Q u a n ti ty . Yi el d Level Per Acre 7.5 Tons 10.0 Tons 12.5 Tons Harvest cost 268.34 293.34 318.34 Processing cost 875.10 1,162.60 1,450.10 6.75 9.00 11.25 Final product q u a n t i t y (tons) 89 6 .4 .2 E f f e c t of Harvest Rate In t h i s t e s t , thre e o f the harvest ra te on the ha rvest rates were used to examine the e f f e c t system c o st . As expected, a change in the harvest ra te was r e f l e c t e d only in the harvest c o s t , s p e c i f i c a l l y in the har ves ter and f o r k l i f t v a r i a b l e costs (Table 6 - 7 ) . Table 6-7. E f f e c t o f Harvest Rate on the System Cost. 3.0 Harvest Rate ( h r s /a c r e ) 3.5 4.0 V a r ia b le Cost per Acre Harvester Forkli f t Total Harvest Cost 119.59 140.21 162.64 34.78 40.77 47.30 154.37 180.98 209.94 Table 6-7 shows t h a t an increase in the harvest r a t e o r , in other words, an increase in the e f f e c t i v e f i e l d ca pac ity (EFC) of the harvest­ er, results in a decrease in harves ter and the f o r k l i f t . the v a r i a b l e cost per acre f o r both the The f l u c t u a t i o n in the harvest cost i s due to the change in the fuel and l a b o r expense. As mentioned e a r l i e r , to equal the EFC f o r the f o r k l i f t i s set by the model t h a t of the h a r v e s t e r . This i s because the f o r k l i f t operation cannot be completed any sooner than t h a t of the h a rv est er f o r the f o r k lift i s needed to load and unload the t r a n s p o r t v e h i c l e . 90 6 . 4 .3 E f f e c t of I n t e r e s t Rates on the System A s e n s itiv ity t e s t was done to study the e f f e c t o f an increase in the i n t e r e s t r a te on one o f the three equipment subsystems w i t h i n the strawberry rate s production system. held a t 14 pe rce nt, With the remaining equipment's i n t e r e s t the i n t e r e s t r a te f o r the i r r i g a t i o n was increased by 2 percent from 14 to 16 perc ent. system Table 6-8 was con­ s t r u c te d to show the e f f e c t o f the 2 percent i n t e r e s t r a te change on the annual f i x e d cost f o r a 20 acre i r r i g a t i o n system. Table 6-8. E f f e c t of an I n t e r e s t Rate Change f o r the I r r i g a t i o n System Upon the Total System's Cost. I r r i g a t i o n equipment f i x e d cost based on a loan i n t e r e s t r a te of 14 percent. Item Fixed Cost Per Year Pump Set 1,323.00 Pipe and S p r i n k l e r 4,612.61 Total Fixed Cost 5,935.61 I r r i g a t i o n equipment f i x e d co s t based on a loan i n t e r e s t ra te of 16 percent. Item Fixed Cost Per Year Pump Set 1,422.00 Pipe and S p r i n k l e r 5,046.27 Total Fixed Cost 6,468.27 91 6 .4 .4 E f f e c t of a Change in the Production Costs on the Break-even Acreage In t h i s test, the production costs ( cr op, ha rves t, and processing) f o r the strawberry e n t e r p r i s e were increased and decreased by 10 and 20 percent above and below the 1983-84 costs this would have upon the break-even prise. The only v a r i a b l e s harvest ra te and the f i n a l to examine the e f f e c t acreage to the strawberry that e n te r ­ held constant during these t e s t s were the product puree value. set at 0.29 acres per hour (3.5 hours per acre) The harvest ra te was and the f i n a l product was processed as 100 percent puree w it h a puree value o f $.30 per pound. Figure 6-16 shows t h a t based on the 1983-84 pro duc tio n co s ts , the break-even acreage f o r the strawberry e n te r p r i s e would be approximately s i x acres. A 10 percent decrease in the system's cost would reduce the break-even acreage to approximately f i v e acres and to fou r acres should the costs f a l l 20 percent below t h a t o f the 1983-84 c o s ts . Whereas a 10 and 20 percent increase in the 1983-84 product co st would increase the break-even acreage to approximately 7.25 and 8.75 acres, r e s p e c t i v e l y . A potential r e d u c t io n i n the system's production co s ts , s p e c i f i c a l l y the harvester c os t i s not an u n r e a l i s t i c p o s s i b i l i t y f o r the a g r i c u l t u r ­ al engineers at t r a c t o r mounted w ill Michigan strawberry State University h a rv e s t e r . are This cu rrently designing a t r a c t o r mounted harvester reduce the co st o f the ha rv es te r. The red uc tio n in the cost o f the harvester i s only one of the poten­ tia l areas inwhich the system's costs can be reduced. tic a lly new strawberry plant v a rie tie s , pesticides, With time, gene­ and fe rtiliz e rs could be developed which could reduce the crop production costs to the e n t e r p r i se. BREAK EVEN ACREAGE EXPRESSED BY CHANGES IN PRODUCTION COSTS •ZhJbQTLUI— 3 < r Z 2000 _ 1000 _ 0 0.1 UQZ ro CCUQCUJ ( ♦ ) -1000 _ A— A 207. BELOH 1 9 8 3 - 8 4 PRODUCTION B — B I O y. BELOH 1 9 8 3 - 8 4 PRODUCTION 1 9 8 3 - 8 4 PRODUCTION COSTS ® ® 10*/. ABOVE 1 9 8 3 - 8 4 PRODUCTION * " * 20*/. ABOVE 1 9 8 3 - 8 4 PRODUCTION -2000 J COSTS COSTS COSTS COSTS / -3 0 00 j L T 5 T 6 T 8 _ r 10 ~ T 11 ACRES Figure 6-16. Break Even Acrea ge Expressed by Changes 1n Production Costs 12 93 6.5 Summary A computer model was designed, b u i l t , the outcome o f the model tio ned in Chapter I I , and implemented to examine to t h a t o f the real world s i t u a t i o n . Section 2 . 1 . 4 , it As men­ i s not always possible to com­ p l e t e l y v a l i d a t e a model due to a lack o f s u f f i c i e n t in f o rm a t io n or per­ haps the new system may not y e t e x i s t in which to ob ta in t h i s informa­ t i o n . However, in the case o f the strawberry production model, the model was v a l i d a t e d actual by comparing c os t i n f o r m a t io n t h i s technology. the r e s u l t s available of the model w it h t h a t of the from the growers p r e se n tl y u t i l i z i n g As a r e s u l t , the model was proven to be mathematically sound and r e a l i s t i c a l l y pre di cte d the production costs and the p o te n ti a l net cash r e t u r n to the strawberry e n t e r p r i s e . CHAPTER V II RESULTS AND DISCUSSION 7.1 Economic Eva lua ti on o f the Production System The focus o f t h i s chapter i s on the e va lu a ti o n o f p r o f i t a b i l i t y of mechanical harvesting du ction system. the f i n a l and processing f o r the s o l i d set strawberry pro­ The a n a l y s i s was conducted based on the d i s t r i b u t i o n of product to determine the break-even acreage and the break-even y i e l d f o r the production system. 7.2 Determining the Break-Even Acreage Ana lysis was performed would result from using to the determine required the break-even acreage which fie ld equipment set deemed necessary f o r the s o l i d system. The c u l t u r a l practices, machinery and processing set strawberry production such as the strawberry p l a n t d e n s i ty , and the f e r t i l i z e r and p e s t i c i d e a p p l i c a t i o n r a te s were pr ojected to be r e p re s e n ta ti v e of a t y p i c a l Table 7-1 l i s t s s o l i d set production system. the t o t a l ' annual fi x e d and v a r i a b l e costs on a per acre basis f o r a strawberry production equipment set f o r processing the final product as 100 percent puree. The ta b l e shows the annual fi xe d costs per acre to d e c li n e from $3,881.47 a t 6.0 acres to $1,761.19 a t 40 acres. The ta b l e also shows t h a t , assuming a constant average gross cash r e t u r n per acre, the net cash r e t u r n per acre would increase from $31.32 a t 6.0 acres to $2,189.57 at 40 acres. 94 95 Table 7-1. Estimated Average Annual Gross Returns Per Acre, Fixed and V a r ia b l e Cost Per Acre and Net Returns Per Acre at Designated Acreage Levels Fixed Cost Per Acre V a r ia b le Cost Per Acre Met Return Per Acre Acreage Gross Return Per Acre 6 $5,400.00 $3,881.47 $1,487.21 10 5,400.00 2,782.98 1,469.34 1,147.68 20 5,400.00 2,017.86 1,455.94 1,926.20 30 5,400.00 1,818.77 1,451.48 2,129.75 40 5,400.00 1,761.19 1,449.24 2,189.57 $ 31.32 Based on a harvest y i e l d o f 10 tons per acre w it h a harvest r a te of 3.5 hours per acre and the f i n a l product (100 percent puree) p r i c e o f 30 cents per pound. The f l u c t u a t i o n i n the v a r i a b l e co st per acre i s due to expressing the annual r e p a i r and maintenance cost f o r the processing equipment on a per acre ba sis. 7.3 E f f e c t of Pri ce and Y i e ld Levels on the Average Annual Net Cash Returns The e f f e c t of fo u r y i e l d l e v e l s and fo u r f i n a l product p r ic e values were used to show the approximated break-even y i e l d lev e l age annual and the aver­ net r e tu rn s to the e n t e r p r i s e . For t h i s a n a l y s i s , the harvest r a te was set at 3.5 hours per acre and the e n t e r p r i s e acreage was a t 20 acres. This would hold constant the f i x e d costs v a r i a b l e costs per acre would vary to compensate f o r harvest and processing c o s t. per acre. fix e d The the changes in the Therefore, changes in the crop y i e l d s and the sale p r ic e f o r the the f i n a l product processed as 100 percent puree 96 would show var ianc e in the r e tu rn s to the e n t e r p r i s e . o f i l l u s t r a t i o n , the f o u r harvest recovery y i e l d s 12.5 tons per acre were chosen and the final the puree were 15, 20, 25, and 30 cents per r e t u r n f o r the above crop y i e l d and f i n a l For the purpose o f 5, 7.5, 10, and product p r ic e values f o r pound. product The estimated cash p ric es are shown in Table 7-2. Table 7-2. Estimated Net Cash Returns Per Acre f o r Four Y i e l d Levels and Four Final Product P ri c e s * Price Per Pound Average Y i e ld ( to n s /a cr e ) $0.15 $0.20 $0.30 $0.25 5.0 -1,498.80 -1,048.80 7.5 -1,136.30 - - 598.80 461.30 213.70 - 148.80 888.70 10.0 - 773.80 126.20 1,026.20 1,926.20 12.5 - 411.30 713.70 1,838.70 2,963.70 *0wnership costs are based on a 20-acre e n t e r p r i s e . The r e s u l t s i n d i c a t e a negative cash r e tu rn would occur a t a l l y i e l d l e v e l s a t $.15 per pound as well low y i e l d lev e l tive of 5 tons per acre a t a l l as a negative cash r e t u r n f o r the p r ic e l e v e l s i n c l u d in g a nega­ r e t u r n f o r the y i e l d lev e l o f 7.5 tons per acre f o r the f i n a l duct value of $.20 per a t $.20 per pound f o r the tons per acre. pound. designated crop y i e l d s of 10 and 12.5 r e tu rn s were also r e a li z e d f o r the y i e l d s o f 7 .5 , 10, and 12.5 tons per acre f o r and $.30 per pound. pro­ P o s i t i v e cash r e tu rn s would be achieved larger P o s i t i v e cash four the f i n a l product values of $.25 97 The f o l l o w i n g formula can be used even y i e l d lev el to determine f o r ' a known e n t e r p r i s e system cost and the actual break­ a final product p r ic e value. Net Y i e l d = Total Fixed and V a r ia b le Cost per Acre Pr ic e Per Found o f Final Product For example, based on the p r i o r assumptions f o r system cost w it h a f i n a l a 20 acre enterprise product value o f $.20 per pound, the break-even net y i e l d would be 8.68 tons per acre. 7.4 Break-Even D i s t r i b u t i o n of the Final Product Table gives the costs and r e tu rn s of the f i n a l 7-3 various d i s t r i b u t i o n s o f the f i n a l product p r o po rti o n s of f r e e z e r pack and puree. when product processed as f o r the varying The costs per acre in t h i s ta bl e are based on an e n t e r p r i s e size o f 20 acres w it h a harvest r a te hours per acre acre. w it h an actual harvest recovery y i e l d o f 10 tons The p r i c e s t r u c t u r e es ta b lis h e d f o r the a n a ly si s was $.40 per pound f o r fr e e z e r pack puree. of 3.5 final and $.20 product per per for this pound for 98 Table 7 -3 . D i s t r i b u t i o n o f the Final Product and Net Return Per Acre Final Product D i s t r i b u t i o n Freezer Pack Puree % Net Return Per Acre % 80 20 2,267.02 70 30 1,907.02 60 40 1,547.02 50 50 1,187.02 40 60 827.02 30 70 467.02 20 80 107.02 10 90 -252.98 0 100 126.20 P ric e s tr u c tu r e based on $0.40 per pound f o r fre e z e r pack and $0.20 per pound f o r puree. System costs are based on a 20-acre e n te r p r is e , harvest r a te o f 3.5 hours per acre w ith a harvest y i e l d o f 10 tons per acre. *The ownership c o s t is l i m i t e d to only the processing to process the f r u i t product in t o puree Based on equipment needed t h i s p r ic e s t r u c t u r e , Table 7-3 shows t h a t to o b ta in the economic advantage o f purchasing the re q u ire d processing equipment need­ ed to process the f i n a l product as fre e z e r pack and product d i s t r i b u t i o n would need to be a t l e a s t 21 and 79 percent puree when compared to th a t of puree, the fin a l percent fre e z e r pack processing the e n t ir e f i e l d product as 100 percen t puree w ith a puree value o f $.20 per pound. However, when the p r ic e s tr u c tu r e f o r the f i n a l ed to $.45 per pound f o r fre e z e r pack and product is in c re a s ­ $.30 per pound f o r puree, the break-even r a t i o between processing the f i n a l product as 100 percent 99 puree fin a l w ith a puree value o f $.30 per pound to th a t o f processing the product as fre e z e r pack and puree, would be increased to 27.5 per­ ce n t fre e z e r pack and 72.5 percent puree (Table 7 - 4 ) . Table 7-4. D i s t r i b u t i o n o f the Final Product and Net Return per Acre Final Product D i s t r i b u t i o n Freezer Pack Puree X % Net Return Per Acre 80 20 3,347.02 70 30 3,077.02 60 40 2,807.02 50 50 2,537.02 40 60 2,267.02 30 70 1,997.02 20 80 1,727.02 10 90 1,457.02 0 100 1,926.20* P ric e s tr u c tu r e is based on $.45 per pound f o r fre e z e r pack and $.30 per pound f o r puree System costs are based on a 20 acre e n te r p r is e , harv e s t r a te o f 3.5 hours per acre w ith a harvest y i e l d of 10 tons per acre. *The ownership co st is l im i t e d to on ly the to process the f r u i t product in t o puree. 7 .4 .1 processing equipment needed Product D i s t r i b u t i o n Ratio The l i m i t i n g f a c t o r in determ ining the percent product to be processed rip e n in g o f the f i e l d crop. as of the raw fru it fre e z e r pack is dependent on the uniform R e a l i s t i c a l l y , based on the present straw­ 100 b e rry p la n t v a r ie t y used in t h i s c u lt u r a l te chnique, the maximum percent o f the f i e l d product acceptable f o r processing as fre e z e r pack is not l i k e l y to be g re a te r than 50 percent f o r the season's average. 7 .4 .2 Variance in Processing Equipment Ownership Costs Table 7-5 was co n stru cte d to compare the annual fix e d costs f o r the two processing equipment sets re q u ire d to process the raw f r u i t product i n t o the desired f i n a l ment cost to product as puree p ro d u c t. The ta b le shows the annual fix e d equip­ be $1,565.55 f o r the equipment needed to process the raw and $12,621.00 per year f o r the equipment needed to process the raw product as fre e z e r pack and puree. The annual fix e d cost d iffe r e n c e between the two processing methods is $11,055.45. Table 7-5. Comparison o f the Annual Processing Equipment Fixed Cost f o r the Two Processing Equipment Sets. Item 100% Puree Dump Tank $ 177.00 S p l i t Final Product $ 177.00 Fi ni shers 698.25 698.25 A ll Conveyors 690.30 1,380.60 Si n g u la to r 1,416.00 Decappers 7,980.00 Si zer 470.40 SI ic e r 498.75 Total Annual Fixed Cost $1,565.55 $12,621.00 101 T h e re fo re, i t is f o r t h i s reason t h a t f o r the f i n a l p ro du ct, when processing the raw p roduct as fre e z e r pack and puree, the percent o f raw product processed as fre e z e r pack be la rg e enough to o f f s e t the in c re a s ­ ed equipment ownership co sts . 7.5 Summary The s e n s i t i v i t y be used as a f a s t manager to and e f f e c t i v e examine the e f f i c i e n c y p ro d u c tio n system. equipment a n a ly s is f o r the model costs under which and showed t h a t the model means f o r the straw berry could e n te r p ris e and c o m p a t ib i li t y o f the straw berry The manager can change the f i e l d produ ctio n co s ts , the circumstances fin a l product d is trib u tio n the e n te r p r is e is ra tio capable o f g r e a te s t cash re tu r n to the straw berry p ro d u ctio n system. to observe p ro v id in g the CHAPTER V I I I SUMMARY AND CONCLUSIONS 8.1 Summary A computer model b ility of has been developed to examine the economic f e a s i ­ mechanical h a rv e s tin g s tra w b e rry p ro d u ctio n the in Michigan. s o l i d - s e t stra w b erry placed on the c r u c ia l and p ro d u c tio n f a c to r s A physical which processing of s o lid -s e t The c u r r e n t c u lt u r a l c u lt u r e p ra c tic e s f o r have been discussed w ith emphasis r e s u l t in a high- recovery ra te by the h a rv e s te r. d e s c r ip tio n and the o p e ra tio n a l performances fo r the mechanical h a rv e s te r and the processing equipment were also d is ­ cussed. The model uses the tra d itio n a l fix e d and v a r ia b le method to e s ta b lis h the equipment ownership and o p era tin g e ve r, whenever p o s s ib le custom h ir e means fo r a fa ir e s ta b lis h in g ra te s machine co st a n a ly sis c o s ts . are used by the model c o st value to the How­ as a straw berry e n t e r p r is e . A ll costs in the model are charged e x c lu s iv e ly to the straw­ b e rry e n te r p r is e and not spread out over the complete farming system which may in c o rp o ra te o th e r farm e n te r p ris e s . The model c a lc u la te s the net cash r e tu r n per acre to the straw berry e n te r p r is e va lu e , but e it h e r th is land does not in c lu d e the land valu e . The land cost ownership or land re n t costs were om itted from the 102 103 model due to the g re a t f l u c t u a t i o n in land values throughout o f Michigan. T herefore the model was designed to show on ly the s ta te the e s t i ­ mated net cash r e tu r n per acre to the e n te r p r is e . Consequently, the user must s u b tr a c t m odel's th e ir estimated land net ownership cash co s t or land r e n t c o st from the r e tu r n to o b ta in t h e i r p re d ic te d net cash r e tu r n . The model can be used as a budgeting to o l to e stim ate the e s t a b lis h ­ ment and produ ctio n costs f o r a s o l i d - s e t c u lt u r e system. Even though the model has g u id e lin e s f o r the use r. been stra w b erry produ ctio n v a lid a te d , it the model provides The users may need to a d ju s t the values w it h in the model to more a c c u ra te ly sim ula te t h e i r in d iv id u a l Since on ly was e n te r p r is e . designed to fu n c tio n i n t e r a c t i v e l y w ith the u s e r, and f o r the u s e r 's convenience, the in p u t and o u tp u t data f o r t h i s model are expressed in t h e i r common E nglish u n it s , i . e . , a cres, to n s, pounds. 8.2 Cone!usions 8 .2 .1 . H arvester and Processing H arvester and processing equipment data were c o lle c te d d uring the 1983 h a rvest season f o r the purpose and e f f i c i e n c i e s . o f examining the machine c a p a c itie s Based on t h a t season'.s data the fo llo w in g conclusions were made: 1. Results showed the mechanical recovery range from h a rve ste r to have a harvest 85 to 98 percent w ith the season's average recovery ra te being 92 p ercent. 2. The e f f e c t i v e f i e l d hours per acre c a p a city (EFC) (8.65 hours f o r the h a rv e s te r was per ha) 3.5 w ith a p ro je c te d harvest 104 r a te p o te n tia l o f 3 hours per acre (7 .4 hours per ha) when equipped w it h the bulk m a te ria l handling system. 3. The s in g u la t o r averaged 5414 lb s per hour (2456 kg per hour) f o r the season w ith a 35 percent improvement in the separation o f s in g le b e r r ie s and a 68 percent improvement in the separa­ t io n o f b e rry c l u s t e r s . 4. The MSU-CML s tra w b e rry decapper averaged 2679 lb s per (1215 kg per hour) f o r the season w ith a discharge ra te o f ro ll backs, r o l l overs, 20% 37% c u t fru it, and hour 20% 23% tra s h m a te r ia l. 5. A n a ly s is tra s h decapper tra s h showed t h a t 46 to 60% o f the m a te ria l was b e rry f l e s h . To decrease t h i s b e rry fle s h waste, caps of the the management may choose to ro u te the decapped b e rry to the the k n if e fin is h e r blade c lo s e r fo r to processing the r o lle rs as to puree and/or decrease a d ju s t the b e rry f le s h lo s s to the tra s h b in . 8 .2 .2 Model A systems approach was used to evaluate the economic f e a s i b i l i t y o f mechanical h a rv e s tin g p ro d u c tio n . and processing o f s o l i d - s e t c u lt u r e straw berry The computer model was v a lid a te d w ith grower documentation to e stim ate the s tra w b e rry produ ctio n system costs and net r e tu r n s . a r e s u l t , the model processing o f in d ic a te s ap o te n tia l f o r mechanical h a rvestin g s o l i d - s e t c u lt u r e straw berry p roduction in Michigan. As and The f o llo w in g co n clusions were made: 1. Using the re q u ire d f i e l d machinery and processing equipment set necessary f o r processing the complete f r u i t product as puree, 105 valued a t 30 cents per pound, the break even acreage was e s t i ­ mated to annual be approxim ately 6.0 acres (2 .4 ha ). The average net p r o f i t s would increase from $31.32 per acre a t 6.0 acres (2 .4 ha) to $2189.57 per acre a t 40 acres (16.2 ha). 2. Y ie ld s and the p ric e s tr u c tu r e d i r e c t e f f e c t on the equal v e s tin g fo r the fin a l product has c o s t acres f o r the mechanical and processing system. a har­ Based on the p roduction costs f o r a 20 acre (8.1 ha) stra w b erry e n te r p r is e , the r e s u lt s show a negative cash re tu rn would occur a t y i e l d 12.5 tons per acre (11.3 le v e ls le s s tonne per ha) f o r the f i n a l than product puree value o f 15 cents per pound (0.454 kg) as well as a nega­ tiv e cash r e tu r n fo r the y i e l d le v e l o f 5 tons per acre (4.5 tonne per ha) up to 30 cents per pound (kg) f o r the f i n a l pro­ duct puree va lu e . 3. Y ie ld changes have a d i r e c t e f f e c t on the equal (h e c ta re ) f o r the mechanical The approximate equal c o s t acreage h a rvestin g and processing system. c o s t acreage f o r a y i e l d o f 7 tons (6 .3 tonne) was 19 acres (7.7 ha), which increases to 27 acres (10.9 ha) when the y i e l d s acres (2 .4 ha) i f are 5 tons (4 .5 tonne) but d e c lin e s to 6 the y ie ld s go to 10 tons (9.1 to n n e ), and to 4.7 acres (1 .9 ha) i f y ie ld s are 12 tons (10.9 to n n e ). 4. To o b ta in the processing economic equipment advantage needed to fre e z e r pack and puree, the f i n a l of purchasing process the the fin a l required product as product d i s t r i b u t i o n would be 21 percent fre e z e r pack and 79 percent puree when compared to th a t of processing puree f o r a f i n a l the e n tire fie ld product as 100 p ercent product p ric e s tr u c tu r e o f 40 cents per pound 106 (0.454 kg) fo r f o r fre e z e r pack and 20 cents per pound (0.454 kg) puree. However, when the fin a l product p ric e s tr u c tu r e increases to 45 cents and 30 cents per pound (kg) f o r fre e z e r pack and puree r e s p e c t iv e ly , the break even ra tio would be increased to 27.5 percent fre e z e r pack and 72.5 percent puree. 5. E lim in a tio n of the s p e c ia lty equipment ownership c o s t to the growers. The g re a te s t annual c o st to th is p ro du ctio n system is the ownership , c o st f o r the h a rve s te r and the processing equipment. However, should the grower be able to lease h is machine out to o th e r growers increased as a custom revenue to the h ir e s e r v ic e , machine owner ownership co s t per u n i t o f land area. th is and would provide decrease the The custom s e rv ic e would b e n e f it both the machine owner-operator as well as the grower employing the custom h ir e s e rv ic e . Another p o s s i b i l i t y to e lim in a te the s p e c ia lty equipment owner­ ship co st to the growers would be t h a t since the h a rve ste r and the processing equipment are s p e c ia lty tia l inve stm en t, p o s s ib ly purchasers o f the f i n a l v e s te r and the equipment o f g re a t i n i ­ the equipment manufacturers or the product could own and operate the har­ processing equipment growers to grow the stra w b erry crop. and c o n tr a c t w ith the This would decrease the equipment ownership costs f o r the growers and a t the same time decrease the equipment ownership co st per ton (tonne) o f prod­ u c t harvested and processed as w ell the d esired q u a n t it y q u a lity the of (d is trib u tio n fin a l as in s u rin g themselves o f of f r u i t p roduct. the fin a l product) and This would decrease the 107 storage co st o f unneeded f r u i t product and in s u re a smooth and even flo w o f the straw berry product onto the market thus avoid­ ing a la rg e surge (g lu t) of the stra w b erry product onto the market. 8.3 Recommendations f o r F u rth e r Research 1. There is a need to determine d e n s ity f o r t h i s c u lt u r a l 2. F u rth e r development in the optimum stra w b erry tr a n s p la n t p r a c tic e . stra w b erry p la n t v a rie tie s which are fa v o ra b le f o r mechanical h a rv e s tin g and processing w ith empha­ s is in the f o llo w in g areas: a) v a r i e t i e s w ith d i f f e r e n t crop rip e n in g dates (degree days) b) u niform rip e n in g o f the b e rry c l u s t e r s . 3. Design a p la n t growth model to p r e d ic t the harvest date. 4. To develop a mechanical - e le c t r o n ic f r u i t c o lo r s o r te r to com­ pensate f o r the la b o r shortage and to a lle v ia te the tedious hand s o r tin g o f the le s s d e s ira b le b e r r ie s . 5. To in c o rp o ra te in t o the model the o p tio n o f using the cash flo w cost a n a ly s is sequence. method to examine the system's cash flo w A P P E N D I C E S APPENDIX 1 The data in t h i s Appendix were used f o r the s t a t i s t i c a l the p la n t crown d e n s ity co u nt. The method o f data a n a ly s is o f c o lle c tio n is described in s e c tio n 3 .5 .1 and the data a n a ly s is is discussed in Section 3 .5 .2 . Columns C l, C2 and C3 re p re se n t the tra n s p la n t spacing o f the t e s t p l o t in which the data were c o lle c te d from , 91 x 51 cm, 61 x 61 cm, and 46 x c o lle c te d 61 cm r e s p e c t iv e l y . d uring t h i s A to ta l of 104 f i e l d samples were h a rv e s t season, 48 samples in C l, 44 samples in C2, and 12 samples in C3. Also included in th is appendix i s each o f the t r a n s p la n t spacings. a histogram o f the samples f o r The histogram g r a p h ic a lly i l l u s t r a t e s the range and the number o f stra w b erry p la n ts counted per each u n i t area sample. 108 109 Table 1. F ie ld data recorded by sample number f o r each o f the three t r a n s p la n t spacings. Each number represents the number o f p la n ts found in 0.19 m2 (2 .0 f t 2 ) . Cl= COLUMN C2= COLUMN C3= COLUMN 1DATA= PLANT SPACING OF 91 x 61 CM (36 x 24 IN ). 2 DATA= PLANT SPACING OF 61 x 61 CM (24 x 24 IN ). 3 DATA= PLANT SPACING OF 46 x 61 CM (18 x 24 IN ). >LE NUMBER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Cl C2 C3 13. 18. 24. 25. 17. 20. 26. 25. 16. 25. 18. 11. 24. 14. 24. 25. 21. 23. 25. 19. 18. 23. 29. 21. 29. 24. 23. 24. 16. 23. 18. 16. 13. 13. 14. 15. 14. 20. 17. 18. 25. 31 . 28. 24. 24. 21. 19. 21. 21. 22. 31. 22. 22. 20. 34. 26. 37. 35. 30. 23. 33. 18. 28. 29. 23. 25. 26. 27. 24. 22. 29. 18. 20. 25. 23. 26. 31. 32. 32. 27. 15. 15. 15. 19. 20. 19. 18. 12. 17. 15. 12. 19. 110 T a b le 1. SAMPLE NUMBER 41 42 43 44 45 46 47 48 (c o n tin u e d ) Cl C2 20. 9. 16. 7. 14. 11. 13. 14. 25 30 32 12 C3 Ill Table 2. Number o f crown d e n s ity observations in each o f the tr a n s p la n t spacings. P la n t spacing o f 91 x 61 cm (36 x 24 i n ) . MIDDLE OF INTERVAL! 6. 8. 10. 12. 14. 16. 18. 20. 22. 24. 26. 28. 30. NUMBER OF OBSERVATIONS 0 1 1 2 9 5 7 4 2 9 6 0 2 * ★ ** ********* ***** ******* **** ** ********* ****** ** P la n t spacing o f 61 x 61 cm (36 x 24 i n ) . MIDDLE OF INTERVAL! 12. 14. 16. 18. 20. 22. 24. 26. 28. 30. 32. 34. 36. 38. NUMBER OF OBSERVATIONS 1 0 0 2 3 7 6 7 4 4 6 2 1 1 * . ** *** ******* ****** ******* **** **** ****** ** * * 112 T a b le 2 . (c o n tin u e d ) P la n t spacing o f 46 x 61 cm (18 x 24 i n ) . MIDDLE OF INTERVAL! 12. 13. 14. 15. 16. 17. 18. 19. 20. NUMBER OF OBSERVATIONS 2 0 0 4 0 1 1 3 1 ** **** * * *** * 1 I s the m id p o in t f o r each i n t e r v a l o b serva tio n s! f a l l . range in which the '.number o f A P P E N D I X 2 FIELD DATA SUMMARY This appendix is a summary o f the f i e l d data samples. This i n f o r ­ mation was used f o r de te rm in ing the h a rv e s te r recovery r a te and f o r the p la n t d e n s ity count. The in fo rm a tio n sample number, and by the o r ig i n a l Table Al lis ts is recorded by calendar date, tr a n s p la n t spacing. the h arvest data f o r the h a rve ste r described in Chapter IV . the harvester which preceded Tables A2 and A3 l i s t the har­ v e s t data f o r the h a rv e s te r described in Chapter IV. These h a rv e s te r. samples were taken The f i r s t in p a ir s , sample c o l l e c t i o n one before and one a f t e r the was taken p r i o r to h a rv e s tin g . Three items o f in fo r m a tio n were c o lle c te d by t h i s sample and recorded in columns A, B, and C. o f a ll Column A c o n ta in s the mass per u n i t area in grams the b e r r ie s hand picked w it h in the 0.19 m^ (2 f t ^ ) square frame. The number on the l e f t in th is column i s the mass o f a l l the b e rrie s (green n o n -rip e , r i p e , and o v e rrip e ) in the sample and the number on the rig h t is the mass of o nly the red r ip e b e r rie s w it h in the sample. Column B c o n ta in s the p la n t d e n s ity count per u n it area f o r each o f the samples. Column C c o n ta in s the p la n t f o i l age h e ig h t a t the lo c a t io n of the sample c o l l e c t i o n . The passed. second sample c o lle c tio n was taken a fte r the h a rvester had This sample was taken in approxim ately the same lo c a t io n as the 113 114 f i r s t sample but not the exact same lo c a t io n . Two items o f in fo rm a tio n were c o lle c te d a t t h i s sample and recorded in columns D and E. Column D co n ta in s the mass per u n i t area in grams o f a l l the b e r r ie s and berry fle s h missed by the h a rv e s te r w it h in the 0.19 m2 (2 f t 2 ) square frame. The number on the l e f t in t h i s column i s the mass o f a l l the b e r r ie s b e rry fle s h missed by the h a rve ste r and the number on the and r i g h t is the mass of on ly the red b e r r ie s and red b e rry fle s h missed by the h a rv e s t­ e r. Column E c o n ta in s a second p la n t d e n s ity count. The l a s t column, Column F, l i s t s v e s te r fo r each o f the samples. the percent recovery by the har­ Once ag ain , the numberon the l e f t corresponds to the a l l f r u i t category and the number red r ip e f r u i t ca te g o ry. on the r i g h t to the Table A1. F i e l d Data Summary P l a n t Spacing 91 x 61 cm (36 x 24 inches) D Hand Picked Mass/Area (g) Machine Loss Mass/Area (g) A ll Red Crown Density 101 757 324 18 22.9 102 699 280 13 103 623 338 104 624 105 Foilage H t. cm in . Crown Densi ty A ll Red 9 69 16 16 95 25.4 10 142 38 13 86 14 27.9 11 191 109 15 68 131 14 22.9 9 154 73 20 44 720 282 17 25.4 10 254 115 18 59 106 512 198 20 25.4 10 69 29 9 85 107 828 404 16 20.3 8 84 36 7 91 108 742 524 14 15.2 6 103 59 11 89 109 652 440 13 17.9 7 331 185 14 58 110 810 493 13 17.9 7 95 50 18 90 111 833 488 24 35.6 14 109 21 25 95 112 999 658 17 25.4 10 143 63 20 90 113 861 592 26 25.4 10 71 61 25 89 Red Table A1 (c o n tin u e d ) C D E Machine Loss Mass/Area (g) Hand Picked Mass/Area (g) F o il age H t. cm in . A ll Red 16 27.9 11 174 102 515 18 25.4 10 125 1147 451 24 30.5 12 117 1164 622 24 30.5 J u ly 10 118 888 567 21 J u ly 10 119 816 653 J u ly 10 120 698 J u ly 10 121 J u ly 10 Date 1983 Sample Number A ll Red Crown Density J u ly 7 114 971 537 J u ly 7 115 1072 J u ly 7 116 J u ly 7 F Percent Recovery Crown Density A ll Red 25 82 81 63 11 88 88 115 110 14 90 75 12 162 81 25 86 87 30.5 12 74 39 23 91 93 25 20.3 8 96 77 19 88 88 607 18 20.3 8 150 138 23 78 77 982 702 29 33.0 13 134 92 21 86 87 122 885 718 29 30.5 12 237 98 24 73 86 J u ly 10 123 727 543 23 25.4 10 116 71 24 84 87 J u ly 12 124 790 602 16 30.5 12 137 113 23 83 81 Table A2. F i e l d Data Summary P la n t Spacing 61 x 61 cm (24 x 24 inches) C D Hand Picked Mass/Area (g) Date 1933 E Machine Loss Mass/Area (g) Foilage H t. cm in . Sample Number A ll Red Crown Density June 24 1 613 402 25 20.3 June 24 2 863 690 31 June 25 3 809 629 June 25 4 585 June 25 5 June 26 A11 Red 8 94 42 20.3 8 102 28 35.6 14 373 24 38.1 875 553 24 6 834 685 June 26 7 754 June 26 8 June 26 F Percent Recovery Crown Density A11 Red 28 85 90 47 29 88 93 159 51 23 80 92 15 83 10 25 86 97 35.6 14 177 83 26 80 85 21 38.1 15 73 41 27 91 94 520 19 35.6 14 39 15 24 95 97 635 468 21 15.2 6 44 25 22 93 95 9 671 535 21 17.9 7 96 39 29 86 93 June 27 10 756 642 22 15.2 6 52 36 18 93 94 June 27 17 1230 1051 31 15.2 6 127 68 20 88 93 June 27 13 333 140 22 35.6 14 35 11 25 89 92 T able A2 (c o n tin u e d ) A B C D Hand Picked Mass/Area (g) Date 1983 Sample. Number E Machine Loss Mass/Area (g) A11 Red Crown Density F o il age Ht. cm in . A11 Red F Percent Recovery Crown Density A11 Red June 27 19 894 563 22 35.6 14 137 19 23 85 96 June 27 20 702 320 20 35.6 14 103 11 26 85 96 June 27 21 1142 993 34 22.9 9 142 28 31 88 97 June 27 22 1133 890 26 22.9 9 67 9 32 94 99 June 29 23 1054 490 37 33.0 13 254 60 32 76 88 June 29 24 1019 496 35 30.5 12 86 25 27 92 95 June 29 25 838 535 30 35.6 14 346 101 25 59 81 June 29 26 1202 521 23 38.1 15 160 41 30 87 92 June 29 27 968 453 33 33.0 13 185 52 32 81 88 June 29 28 1043 486 18 38.1 15 191 41 12 82 92 June 30 29 1134 672 21 38.1 15 206 61 20 82 91 June 30 30 1311 660 21 38.1 15 103 27 18 92 96 J u ly 1 31 1130 469 24 27.9 11 61 14 29 95 97 Table A3. F i e l d Data Summary P l a n t Spacing 46 x 61 cm (18 x 24 inches) B A C D Hand Picked Mass/Area (g) Date 1983 E Machine Loss Mass/Area (g) Sample Number A11 Red Crown Density June 26 11 860 580 June 26 12 983 June 26 13 June 26 F o il age H t. cm in . A11 Red 15 30.5 12 123 57 664 15 25.4 10 101 910 641 15 35.6 14 14 790 551 19 35.6 June 26 15 680 408 20 June 26 16 539 329 19 F Percent Recovery Crown Density A11 Red 18 86 90 55 12 90 92 240 96 17 74 85 14 155 46 15 80 92 43.2 17 150 40 12 78 90 43.2 17 132 50 19 76 ‘ 85 A P P E N D I X 3 The fo llo w in g f i g u r e shows the negative r e la t io n s h ip between p la n t d e n s ity and p la n t h a rv e s te r. In f o i l age h e ig h t to o th e r words, as the p la n t percent recovery ra te by the d e n s ity increases the f o i l age h e ig h t tends to decrease. This is a normal a dense p la n t p o p u la tio n . This i s due to the p la n t co m p e titio n f o r the s o il n u t r i e n t s , water and a v a ila b le environment. to g e th e r , the fu n c tio n o f p la n t growth in sun l i g h t to each p la n t in a dense However, as the p la n t d e n s ity and f o i l age h e ig h t increase percent recovery r a te by the h a rv e s te r also increases because the d e n s ity o f the crop and the h e ig h t o f the f o i l age a s s is ts the h a rv e s te r recovery by suspending and supporting the f r u i t c lu s t e r s up w it h in the p la n t canopy. the c u t t e r bar to s lid e p la n t vine from the s o il This f a c i l i t a t e s the h a rv e s te r by a llo w in g under the b e rry c lu s t e r s before i t su rfa c e . 120 severs the FOILAGE HEIGHT 4 PLANT DENSITY VS PERCENT RECOVERY PLANT SPACING 61 X 61 CM (2 4 X 24 INCH) 40 30 nr 25 60 65 70 FOILAGE HEIGHT (INCH) PLANT DENSITY / U N I T AREA 75 80 PERCENT RECOVERY 05 90 95 A P P E N D I X 4 This appendix l i s t s the recorded h a rv e s tin g speeds d uring the 1983 season f o r the h a rv e s te r described in S ection 4 .1 . used to determine the t h e o r e t ic a l fie ld This in fo rm a tio n was c a p a c ity (TFC) and the f i e l d e f f i c i e n c y (FE) o f the h a rv e s te r. The h a rve stin g speeds increased as the o p e ra to r became b e tte r acquainted w ith the machine and i t s c o n t r o ls . General Comment 1 m ile per hour = 88 f e e t per minute 88 f e e t per minute = 1.46 f e e t per second H arvesting Speed ; t Number D istance ( f t ) Time (sec) M iles per 1 372 360 0.71 2 30 15 1.37 3 30 18 1.14 4 30 16 1.28 5 372 345 0.74 6 60 30 1.37 7 60 31 1.32 8 60 29 1.42 9 60 28 1.47 10 30 13 1 .58 122 123 T h e o re tic a l F ie ld Capacity The t h e o r e t ic a l f i e l d ca p a c ity i s the r a te o f f i e l d coverage th a t would be obtained by the h a rve ste r if i t were performing i t s fu n c tio n 100 percent o f the time a t the rated o p e ra tin g speed and always u t i l i z ­ ing 100 percent o f the time a t the rated o p e ra tin g speed and always u t i ­ l i z i n g 100 p ercent o f i t s rated c u t t e r bar w id th . This maximum c a p a c ity i s used as a basis f o r e v a lu a tin g the performance of i t s o p e ra to r. the h a rve s te r and TFC i s c a lc u la te d by m u lt ip l y in g the h a rvesting speed by the rated c u t t e r bar w id th and d iv id in g by a co n sta n t o f 10 ( 8 .2 5 ) . This co n s ta n t o f 10(8.25) enables the c a lc u la t io n to be expressed in hectares per hour (acres per h o u r). TFC = Speed x Width Constant Based on the season hour, the t h e o r e t ic a l average h a rv e s tin g speed o f 1.24 m ile s per f i e l d c a p a c ity (TFC) was c a lc u la te d acre per hour (0.24 hectares per h o ur). TFC = Speed (mph) x w id th ( f t ) Constant so, 0.60 acre per hour = 1.24 mph x 4 f t 8.25 to be 0.6 124 E f f e c t iv e F ie ld Capacity In 1983, the season's average e f f e c t i v e f i e l d c a p a c ity (EFC) o f the h a rvester was 0.30 acre per hour (0.12 hectare per h o u r). actual ra te of h a rve ste r performance, expressed in EFC is the acres per hour ( hectares per h o u r ) . F ie ld E f f ic ie n c y The average f i e l d e f f i c i e n c y (FE) o f the h a rve ste r f o r t h i s was 50 p ercent. season However, next year w ith a bulk handling system f o r the harvested fru it, FE is expected to increase to approxim ately 80 p e rcen t. F ie ld e f f i c i e n c y is the r a t i o o f the h a r v e s te r 's EFC to i t s TFC. the F ie ld e f f i c i e n c y i s c a lc u la te d by d iv id in g the h a r v e s te r 's EFC by i t s TFC and expressed as a p ercent. FE = _ _ E.FiL - TFC x 100 Once the o p e ra to r can i d e n t i f y the p ro du ctio n system's i n e f f i c i e n ­ c ie s and c o r r e c t f o r them, then the f i e l d e f f i c i e n c y and f i e l d c a p a city o f the h a rv e s te r can be increased. The fa c to r s which a f f e c t the h a rve s t­ e r 's f i e l d e f f i c i e n c y and f i e l d c a p a c ity are: 1) S k i l l and experience o f the o p e ra to r. 2) Crop and f i e l d c o n d itio n s . 3) Proper o p e ra tin g speeds and adjustments o f h a rve ste r components. 4) Ground speed o f the machine. 5) Actual w id th o f the header used. 6) M a te ria l handling system's c a p a c ity . A P P E N D I X 5 ESTIMATED MAXIMUM ACREAGE PER HARVESTER PER PLANT VARIETY PER HARVEST SEASON The maximum size o f the stra w b erry e n te rp r is e in acreage is e s ti­ mated by d eterm ining the e f f e c t i v e f i e l d c a p a c ity (EFC) o f the h a rv e s te r, the le n g th day. of the h a rvest season and the number of harvest hours per Based on the 1983 f i e l d data (Appendix 4) the season's average EFC f o r the h a rvester described in Section 4 .1 , th e EFC was determined to be 0.30 acres per hour or in o th e r words 3.5 hours per acre. fo r the purpose o f i l l u s t r a t i o n T h e re fo re , th re e EFC's were used to estim ate the maximum acreage ( 0 .2 5 , 0 .3 0 , and 0.34) w ith the assumption t h a t the har­ v e s te r would operate 12 hours per day and t h a t w ith a moderate growing season the harvest season would l a s t approxim ately e ig h t days. The assumption t h a t the h a rve ste r would operate 12 hours per day is a r e a lis tic b e r r ie s . value fo r a s h o rt term time v a r ia n t crop such as straw­ Also from the experience o f the 1983 season the ambient fo lia g e m oisture did not h in d e r the c u t t i n g and clea n ing process o f the raw f r u i t product by the h a rv e s te r. T h e re fo re , based on the above assumptions the maximum size o f the straw berry e n te rp r is e based on the three EFC's o f 0 .2 5 , 0 .3 0 , and 0.34 acres per hour i s estim ated to be 2 4 .0 , 2 8 .8 , and 32.6 acres per year per harvester per s tra w b e rry p la n t v a r i e t y , r e s p e c t iv e ly . 125 These acreage values are on ly estim ates which can be used to a s s is t the p o t e n t i a l l y new and in te r e s te d grower in e s tim a tin g the size o f a stra w b erry e n te r p r is e based on the 1983 h a rvest season date f o r the har­ v e s te r described in S ection 4 .1 . A P P E N D I X 6 STRAWBERRY PRODUCTION MODEL User Guide I N T R O D U C T I O N The s tra w b e rry rese arch e rs, p ro d u c tio n extension computer model is designed to a s s is t agents, and growers a l i k e who are in te r e s te d examining the s o li d se t c u lt u r e s tra w b erry p ro du ctio n system. was designed to be f l e x i b l e in i t s be e a s ily changed by the user. in The model parameters so t h a t the values could The f l e x i b i l i t y o f the model to change any o f the preprogrammed values enables users to b e t t e r sim ula te t h e i r present or p ro je c te d f u tu r e e n te r p r is e system w ith o u t having to r e w r ite the computer program. The o u tp u t of the model is item ized by o p e ra tio n o bserva tio n s can be made regarding the system. i s presented in three p a r ts : 1) f i e l d so t h a t cost The o u tp u t o f the model produ ctio n c o s ts , 2) machine and equipment c o s ts , and 3) economic a n a ly s is . The economic a n a ly s is segment is a summary o f the complete system's c o s t, product d i s t r i b u t i o n , and product revenue minus the t o t a l c o s t to the stra w b erry e n te r p r is e . How to Use the Model The s tra w b erry p ro d u c tio n model t i v e l y w ith the user. computer to s t a r t the That i s , program, was designed to fu n c tio n in t e r a c ­ the user simply types a command to the immediately 127 the program begins, and 128 prompts the user w ith q u e stio n s. This i n t e r a c t i v e technique enables the user w ith no previous computer experience to e a s ily use t h i s p roduction model. user, th is Since the model was designed to fu n c tio n i n t e r a c t i v e l y w ith the and f o r model the u s e r's are expressed convenience, in th e ir the in p u t and o u tp u t u n it s common E n g lis h u n it s , e .g ., fo r acres, to n s , pounds. Once the program b e gin s, i t w i l l d u ctory q u e stio n s. F o llo w in g questions the model d u c tio n m a te ria l ta b le w ill the u s e r's response to the in t r o d u c to r y d is p la y in a menu ta b le form at the f i e l d pro­ p ric e s and the a p p lic a t io n ra te s fo llo w e d by the menu f o r the s p e c ia lty equipment, essing equipment. change any o f ask the user a t o t a l o f 12 i n t r o ­ ir r ig a tio n equipment, and the proc­ A f t e r each menu ta b le the user i s given the chance to the values in the menu ta b le to b e tte r sim ulate th e ir in d iv id u a l e n te r p r is e . To f a m i l i a r i z e menu ta b le s the user w ith the d isp la yed by the model, in t r o d u c to r y questions a sample copy o f the model has been a ttached. I n i t i a l Commands Needed to S t a r t the Program ( lo g in ) ATTACH, TAPE7, DATAFL1. ( r e tu r n ) ATTACH, EWFILE, BERRY1. ( r e tu r n ) HAL, L IB , UNSUP. ( r e tu r n ) XFTN5. ( r e tu r n ) LGO. ( r e tu r n ) and the o u tp u t 129 FOR THE FOLLOWING QUESTIONS - ENTER THE NUMERICALVALUE ONLY. WHAT IS WHAT IS WHAT IS THESIZE OF THE STRAWBERRY ENTERPRISE INACRES ?10 THEWAGE RATE FOR THE OPERATOR ($/HR) ?8 THEWAGE RATE FOR THE LABORERS ($/HR) ?5 WHAT IS THE INTEREST RATE AS A PERCENT FOR THE: FIELD MACHINERY 714 PROCESSING EQUIPMENT 714 IRRIGATION EQUIPMENT 71H WHAT IS THE DIESEL FUEL PRICE ($/GAL) 71.20 WHAT IS THE PROJECTED FIELD YIELD PER ACRE (LBS/ACRE) 720000 WHAT IS THE PROJECTED HARVESTER RECOVERY RATE (ENTER AS A PERCENT)792 WHAT IS THE PROJECTED HARVEST RATE (ACRES/HR) 7.29 WHAT IS THE EXPECTED IRRIGATION RATE, EXPRESSED AS ACRE INCHESPERYEAR 76 WHICH VERSION OF THE MODEL OUTPUT DO YOU WISH TO RECEIVE 7 1 FOR THE CONDENSED VERSION 2 FOR THE COMPLFTE VERSION ENTER THE SELECTION NUMBER :1 THE FOLLOWING VALUES HAVE BEEN ENTERED. IF ANY OF THE VALUES ARE INCORRECT ENTER THE CORRESPONDING SELECTION NUMBER. IF THEY ARE ALL CORRECT, ENTER SELECTION NUMBER 13. 1. ACRE S I Z E OF STRAWBERRY ENTERPRISE: 2. 3. U. 5. 6. 7. 8. 9. 10. 11. 12. 13. OPERATOR WAGE RATE: LABORER WAGE RATE: SPE C IA L T Y EQUIPMENT INT EREST RATE: PROCESSING E Q U IP . INTEREST RATE: IR R IG A T IO N E Q U IP . INTEREST RATE: 10. 8.00 5.00 m .o o 1H.00 1U.00 1.20 20000.00 92.00 .29 6.00 D IE S E L FUEL PRICE PER GALLON: PROJECTED YIELD PER ACRE: PROJECTED HARVEST RECOVERY: PROJECTED HARVEST RATE: ACRE INCHES APPLIED PER YEAR: MODEL OUTPUT: THE CONDENSED VERSION ALL VALUES CORRECT - NO CHANGES ENTER THE SELECTION NUMBER : 13 THE VALUE YOU HAVE ENTERED IS : 13. IS IT CORRECT ? (Y OR N)y THIS FOLLOWING QUESTION CONCERNS THE DISTRIBUTION OF THE FINAL PRODUCT - ENTER THE NUMERICAL VALUES ONLY. CHOOSE ONE OF THE FOLLOWING OPTIONS. 1. DIVIDE THE PRODUCT BETWEEN FREEZER PACK AND PUREE 2. SELL ALL (100) OF THE FINAL PRODUCT AS PUREE ENTER THE NUMBER OF YOUR SELECTION :2 THE VALUE YOU HAVE ENTERED IS : 2. IS IT CORRECT ? (Y OR N)y ENTER THE SELLING PRICE FOR PUREE ( $ /L B ) : .3 0 THE VALUE YOU HAVE ENTERED IS : .3 IS IT CORRECT ? (Y OR N)y FIELD' PRODUCTION MATERIAL DATA TABLE MATERIALS COST/UNIT QUANTITY/ACRE • f t f t V l l l l l l l f t l f t l l l l l l l • » • • • • • • • • • • • • • • • • • • • • • • • • • • ••••ftftftftft OATS 2 .0 0 / BU 2.00 BU/ACR *#«*«*««««««*«#«««»*« • ftftftftftftftftftftttftftftftftftffftftftftftftft • • • • • • • • • FERTILIZER(1 2 -1 2 -1 2 ) 7M.OO / TON .25 «• ftftftftftftftftttfttftftftftftftftftftftftftftftft NITROGEN 36.00 / TON 50.00 *• • • • • • • • • • • • • • • • • • • • • • • • • • • FUMIGATION MOO.00 / CUSAPP .00 «»««« «•«#««***«««««*• • a ••ftftffftftftftftftftftftftftftftftftftftftftftft 61.00 / 1000 10890.00 STRAWBERRY PLANTS • • • • • • • • • • • • • § • « • • • • • • ft •••ftftftftftftftftftftftftftftftftftftftftftftft DO YOU W IS H TO CHANGE ANY OF THESE VALUES ? (Y TON/AC fttftftftftftftft LBS/AC ftftftttftftftftft PUNTS ••••••••• OR N )n 131 FIELD PRODUCTION CHEMICAL DATA TABLE CHEMICALS COST/UNIT QUANTITY/ACRE l l t f l f l l t t t l l t t f f t l f t f t t f t i f t f t f t i i k i i f t i i i f t c i i i t i i i t i i f t i f t * !««•••««« LBS/AC • 1.10 / LB 5,00 CAPTAN ik t if t f t f t ik iiiiik iik it c k k iiiiiiii ftlfttlk lli LBS/AC • 11,00 / LB 1.00 BENLATE f t * * * * * * * * * * * * * * * * ! * f tiiifk k v ik f f iik f t k H iif f ik ik t f t k k f k k * 16.80 / LB 1.50 LBS/AC RCNALIN k f i i i k v i i i k i k k i i i i i i i i k i i f t k k k i v #«**«*««« « 16.90 / LB .50 LBS/AC SINBAR ik if t i f t i f t ii t k f t f t it t if t i i i f t k t i f t k i i k i k i i i k i k i k i k k i i i t f l k i «««»««»«» LBS/AC THIODAN * 3.85 / LB 2.00 DO YOU WISH TO CHANGE ANY OF THESE VALUES ? (Y OR N)n CUSTOM RATES DATA TABLE IlitttllittlK tttttfltK lilltflllillll* OPERATION RATE ($/ACRE) PLOW • 11.55 DISK • 7.85 CULTIMULCH • 5.60 •K tllllitlttlllK M IitlflK lltlll DRILLING • 5.90 SPRAYING GROUND RIG AERIAL DO YOU W IS H * H.00 * A*. 90 TO CHANGE ANY OF THESE VALUES ? ( Y OR N )n SPECIALTY EQUIPMENT DATA TABLE ITEM • IN IT IA L COST QUANTITY MACHINE LIFE INTEREST RATE T .I.S . RAM OF I.C 15000.00 1.00 15.00 in . 00 . 01 .00010 FORKLIFT ATTACHMENT 1300.00 1.00 15.00 1A. 0 0 . 01 .00020 TRANSPLANTER (2 ROW) 1150.00 1.00 15.00 m.oo .01 .00075 FIELD ROLLER 1000.00 1.00 10.00 1n. oo .01 . ooono 70000.00 1.00 10.00 in . 00 .01 .00025 20.00 80.00 10.00 m.oo . 01 .01000 TRACTOR HARVESTER PALLET.BOXES DO YOU WISH TO CHANGE ANY OF THESE VALUES ? (Y OR N)n IRRIGATION EQUIPMENT DATA TABLE ITEM IN ITIA L COST n5 0 0 . 0 0 PUMP PIPES & SPRINKLER •••••••*•••••••••••• DO YOU W IS H 17600.00 •••••••••# TO CHANGE ANY OF THESE VALUES ? ( Y OR N )n 133 PROCESSING EQUIPMENT DATA TABLE IN ITIA L COST ITEM DUMP TANK iltilitiltK IIIIIX I FINISHERS ALL CONVEYORS IttllttK tttltltltK 1000.00 QUANTITY 1.00 •••■ •••#••••••••••• 3500.00 1.00 (ItH tH ililtillK I 1300.00 3.00 •••••••••••••••••*• DO YOU WISH TO CHANGE ANY OF THESE VALUES ? (Y OR N)n SPECIALITY EQUIPMENT FIXED AND OPERATIONAL COST TABLE ITEM TRACTOR iitiim ititiiitittt FORKLIFT ATTACHMENT FIXED COST/YEAR 2205.00 FIXED OPERATING TOTAL COST/ACR COST/ACRE CCST/ACRE . 2 2 0 50 11 .56 « ••« •••••••••• •««••••• 232.06 «•••••• ••*•••••••••*•« ••••• HO . 7 7 191.10 19 . 11 ••••••••«••«•• • t lllt t l • m TRANSPLANTER (2 ROW) lltlllttltlttlltltK •••••••••••••• •••••••• • I I I ! • • • • • • • FIELD ROLLER HARVESTER lllliilttlltllliltll PALLET BOXES 169.05 177.00 16. 91 6H .85 5 9 .8 8 i ••••••• 81.76 17. 7 0 3 .6 3 2 1 .3 3 • ••• • • • • • •••« t l t t t l l 1H0 .21 1379.21 2390.00 1239. 00 m t i i i t t i i i i t i i i t i m m u ••••••• .60 283.20 29.92 28.32 •••••••••••••••••••••••• mu•i i i i i i 134 IRRIGATION EQUIPMENT FIXED AND OPERATIONAL COST TABLE FIXED COST/YEAR ITEM PUMP FIXED OPERATING TOTAL COST/ACR COST/ACRE COST/ACRE 661.50 66. 15 11 1 . 1 7 7 . 5 8 ••••••••••••••••••it ••••••••••••••••••••••••••••••••••••a 2306.30 PIPES A SPRINKLER 205.92 .0 0 205.92 PROCESSING EQUIPMENT FIXED COST TABLE ITEM * • FIXED COST/YEAR FIXED COST/ACRE « •••••••••••••••••« ••*•••••••••••••••••• DUMP TANK * 177.00 17.70 Itllltlttttiitltlittlllltlttllllltlllltl FINISHERS • 698.25 69.83 tlllllH lliilliK IIIK tlK lllllitlllH II ALL CONVEYORS * 690.30 69.03 X illtlittd ltlttilltiltlK illltltH K II PROCESSING PLANT VARIABLE COST iim itH ittitiitiiiititiiiittiiK iiiiiiftitH iiia tfi REPAIR AND MAINTENANCE 252.00 GENERAL EXPENSE 9200.00 PROCESS HOURS LABOR COST 30.7 1380.00 PROCESSING VARIABLE COST PER ACRE 1083.20 COST PER YEAR 10832.00 $ PER LB .06 135 SUMMARY TABLE FIELD PRODUCTION COST FALL YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR 1 2 3 *4 5 6 7 8 9 TEN YEAR AVERAGE S/YEAR $/ACRE H7814.00 11199.72 3 888.5« 3888.514 48145. 3^ 1601*5.06 160*45. 06 160H5.06 160*45.06 160*45.06 1*78. HO 1119.97 388.85 388.85 H03.78 1337.09 1337.09 1337.09 1337.09 1337.09 9278.6*4 812.82 ECONOMIC ANALYSIS — PRODUCTION, MACHINE HARVEST AND PROCESS — FIELD PRODUCTION COST PER ACRE FIXED FIELD & IRR. EQUIP. COST PER ACRE 812.82 1813.61 136 HARVEST COST PER ACRE 286.14 FIXED PROCESSING COST PER ACRE 156.56 TOTAL AVAILABLE RAW PRODUCT PER ACRE (#/ACRE) HARVESTER RECOVERY EFFICIENCY 20000.0 92. WOO. 0 QUANTITY DELIVERED TO PROCESSING PLANT, LB/ACRE PROCESSING COST PER ACRE ( .059/LB) 1083.20 TOTAL COST PER ACRE 4152.32 REVENUE ($/ACRE) FOR MACHINE HARVEST AND PROCESS TOTAL PRODUCT FOR PROCESSING 18400. LB. USABLE PRODUCT FOR PROCESSING 16560. LB. DISTRIBUTION OF PRODUCT FREEZER PACK = 0. FREEZER PACK REVENUE PUREE = $ 100. .00 4968.00 PUREE REVENUE 4968.00 TOTAL REVENUE ($/ACRE) REVENUE MINUS COSTS ($/ACRE) $ 815.68 A P P E N D I X 7 ST AW BE R RY P RO DU CT I ON C O M P U T E R MODEL This appendix co n ta in s the computer model data file (DATAFL1) on page 165. 1983-84 produ ctio n c o s ts , (BERRY1) The data f i l e m a te ria l fo llo w e d by the 'DATAFLl' c o n ta in s the a p p lic a t io n r a te s , and the number of each machine and i t s purchase valu e . 137 138 BERRY 1 1 PROGRAM -TAPE? ) INTEGER REAL REAL r eal BERRV1 ( IN P U T , OUTPUT. TA PE 5=IN P U T, TAPE5«0UTPUT, 100 1 10 120 130 140 150 160 170 180 TH IS SECTION 190 200 C'C N U M E R I C A L VA w 2 2 C 220 2 4Q NSELECT.OPTION,OUTPUT ACRES . A C R I N , FPPRICE. FREEZE. FUEL. HRVREC L AB WA GE , N E W V A L , Q PW AGE . PPRICE, P U R E E , YPA i r r i n t . p r o c in t . s p e c in t C H A R A C T E R * 1 ANS MODEL GENERAL INFORMATION WRITE ( 6 . ' ( / / / ) ' ) W R I T E ( 6 . - I ' F O R THE UE O N L Y . ' (6 ,- ) WRITE (6 . - ) C -) > QUESTIONS FOLLOWING A RE ASKED QUESTIONS - F OR E N T ER IN T HE WRITE 250 'WHAT IS The SIZ E OF ~h £ S T R A W B E R R ’- ENTERPRISE ACR £:?x READ ( 5 • ? ACRES W R I T E ( 6 , - ) ' W H A T I S T H E WAGE R A T E F OR R E A D ( 5 - ) OPWAGE W R I T E < 6 . * ) ' W H A T I S T H E WAGE R A T E F OR READ ( 5 , • ) L A B WA G E WRITE(6 . ' f / > ' ) WR I TE < 6 . - ) 'WHAT I S THE I N T E R E S T RATE W R I T E ( 6 , « ) ' c I ELD M A CH I NE R Y ? REAC ( 5 - ) SPECINT WRITE ( 6 . - ) 'PROCESSING PROCINT READ ( 5 . WRITE ( 6 . » ) 'I R R I G A T I O N READ ( 5 . - ) I R R I N T EQUIPMEN' ? EQUIPMENT ? THE OPERATOR ($/HR) THE LABORERS ( AS A PERCENT $ / h R F OR W RITE( 6 , ' ( / >' > W R I T E ( 6 . - ) ' WH AT I S THE O I E S E L F U E L P R I C E (S/GAL) ? READ ( 5 . ■ ) FUEL WRITE( 6 . • ) ' WH A T I S T H E P R O J E C T E D F I E L D Y I E L D PER ACRE ? IN 7 ) ? THE:' (LBS,ACRE) ' 2 eo 290 300 310 320 330 34C 350 36C 3~0 320 390 40C 4 10 420 430 440 450 460 470 R E A D ( 5 . - ) YPA W R I T E ( 6 . - ) ' WH AT I S THE P RO J E C T E D H A R V E S T E R RECOVERY RATE ( E N T E R AS A P E R C E N T ) ? 480 READ ( 5 . - ) HRVREC 490 W R I T E ( 6 , - ) ' WH AT I S THE P RO JE C TE D HA RV ES T RATE ( A C R E S / H R ) ? 500 HRVRAT REAO < 5 . - 1 5 10 W R I T E ( 6 . * ) 'WHAT I S THE EXP ECTE D I R R I G A T I O N R A T E . E X P R E S S E D AS A C 5 2 C RE I N C H E S P E R Y E A R •? 530 ACRIN READ ( 5 , ■ ) 540 W R I T E ( 6 , * ) ' W H I C H V E R S I O N OF T H E M O D E L O U T P U T DO Y OU W I S H T O R E C E I V 5 5 0 E ? ' 560 W RIT E ( 6 , - ) 1 F OR THE CONDENSED V E R S I O N ' 5-0 W RITE( 6 , - ) 2 F OR THE C OMPL ET E V E R S I O N ' 580 W RI T E ( 6 , • ) 'ENTER THE S E L E C T I O N NUMBER : 590 R E A D ( 5 . • ) OUTPUT 600 I TE(6 , ' ( WRITE ( 6 . WRITE ( 6 , » WRITE ( 6 . WRITE ( 6 . WR / / ) ) ) ) ) ' ) ' T H E F O L L O W I N G V AL UE S HAVE B EE N ' T H E V A L U E S ARE I N C O R R E C T E N T E R ' S E L E C T I O N NUMBER. I F T H E Y ARE ' S E L E C T I O N NUMBER 1 3 . ' ENTERED. I F ANY O F ' THE C O R R E S P O N D I N G ' ALL CORRECT. ENTER' 6 10 620 630 640 650 660 670 139 10 20 30 40 50 60 70 80 90 100 110 120 130 WRITE WRITE FORMAT WRITE FORMAT ( 6 . - ) (6 .10 ) ACRES (' 1 . A C R E S I Z E OF S T R A W B E R R Y ( 6 , 2 0 ) OPWA GE (' 2 . O P E R A T O R WAGE R A T E ; ENTERPRISE: 680 690 TOO 710 720 '.F 3 .0 ) ' . F 5 .2 ) WRITE ( 6 . 3 0 ) L ABWAGE FORMAT (' 3 . L A B O R E R WAGE R A T E : '.F 5 .2 ) WRITE ( 6 . 4 0 ) SPECINT FORMAT (' 4 . S P E C I A L T Y EQU IP ME NT I N T E R E S T R A T E : ' ,FT.2 ) WRITE ( 6 . 5 0 ) PROCINT FORMAT (' 5 . PROCESSING E Q U IP . INTEREST RATE: ' , F 7 .2 ) WRITE ( 6 , 6 0 ) IRRINT FORMAT (' 6. IR R IG A T IO N EQUIP. INTEREST RATE: '. F 7 .2 ) WRITE ( 6 . 7 0 ) FUEL FORMAT (' 7 . D I E S E L F U E L P R I C E PER G A L L O N : '.F 5 .2 ) WRITE ( 6 , 8 0 ) YPA FORMAT ( ' 8. P R O J E C T E D Y I E L D P ER A C R E . '.F 9 .2 ) WR ITE ( 6 . 9 0 ) HRVREC FORMAT ( ' 9. P R O JE C T E D H ARVEST RECOVERY '.F 6 .2 ) WRITE ( 6 . 1 0 0 ) HRVRAT FORMAT (' 1 0. P RO JEC TED HA RV EST R AT E: '.F 5 .2 ) W R IT E '( 6 . 1 1 0 ) ACRIN FORMAT (' 1 1 . ACRE I N C H E S A P P L I E D PER Y E A R : '.F 5 .2 ) IF ( O U T P U T . E Q . 1 ) THEN W RITE(6 .» ) '1 2 . MODEL O U T P U T : THE CONDENSED VERS I O N . ' ELSE W RITE(6 . • ) ' 1 2 . MODEL O U T P U T THE COMPLETE V E R S I O N . ' ENDIF WRITE ( 6 . 1 2 0 ) FORMAT ( ' 1 3 . A L L V A L U E S C O R R E C T - NO C H A N G E S ' ) WRITE ( 6 . * ) WRITE ( 6 . - ) WRITE ( 6 . * ) WRITE ( 6 . - ) ' E N T E R THE S E L E C T I O N NUMBER ' READ ( 5 . » ) N S E L E C T VAL*REAL(NSELECT) CALL C H E C K IT (V A L ) NSELECT*INT(VAL) I F ( ( N S E L E C T . L T . 13 ) . A N D . ( N S E L E C T . G T . 0 ) ) T H E N IF (NSELECT . L E . 6 ) THEN IF ( N S E L E C T . E C . i ) THEN W R I T E ( 6 . * ) ' I N P U T T H E NEW A C R E S I Z E OF T H E S T R A W B E R R Y ELSE I F ( N S E L E C T . E C . 2 ) W R I T E ( 6 . » ) ' I N P U T THE ELSE I F {N SELEC T.EC.3) W R I T E ( 6 , * ) ' I N P U T THE ELSE I F (N SELECT.EQ.4) W R I T E ( 6 . ■ ) ' I N P U T THE ELSEIF (N SELECT.EQ.5) W R I T E ( 6 . » ) ' I N P U T THE THEN NEW THEN NEW THEN NEW THEN NEW OPERATOR LABOR WAGE WAGE SPECIALTY PROCESSING RATE: RATE: ENTERPRISE ' ' EQUIPMENT EQUIPMENT INTEREST RATE INTE RE ST RATE: ELSE WRITE( 6 . * ) ' I N P U T T H E NEW I R R I G A T I O N E Q U I P M E N T I N T E R E S T R A T E : ENDIF ELSEIF (N S E L E C T .E Q .7 ) THEN W R I T E ( 6 , » ) ' I N P U T THE NEW D I E S E L F U E L P R I C E P E R G A L L O N : ' ELSEIF (N SELECT.EQ.8) THEN WR I T E ( 6 . ■ ) ' I N P U T THE NEW P R O J E C T E D F I E L D Y I E L D P E R A C R E : ' ' ' ' 730 740 750 760 770 780 790 800 810 820 830 84CS EC 860 S~C 880 890 900 910 920 930 940 95C 960 970 980 990 1000 1010 1020 1030 1040 1050 1060 1070 1080 : 1090 MOO M 10 M2C 1130 1140 1 15 0 M 60 1170 1180 1190 1200 1210 1220 1230 124C 1250 140 ELSEIF ( NSELECT. EC.9) W R I T E ( 6 . ■ > ' I N P U T THE W R I T E ( 6 . * ) ' ( E N T E R AS ELSEIF (N S W RITE( 6 . ■ ) ELSEIF (NS W RITE( 6 . * ) W RITE( 6 , ■ ) ELSE W RITE( 6 . * ) W RITE( 6 , * ) ENDIF READ ( 5 . - ) THEN NEW P R O J E C T E D A PERCENT) ' HARVESTER RECOVERY E L E C T . E O . 1 0 . ) THEN ' I N P U T T H E NEW P R O J E C T E D H A R V E S T R A T E : E L E C T . E O . 1 1 . ) THEN ' I N P U T THE E X P E C T E D I R R I G A T I O N R A T E ' ' ( E X P R E S S E D AS A C R E I N C H E S P E R Y E A R ) : ' ' ENTER: ENTER: 1 2 - FOR F OR THE THE RATE: (ACRES/HR) 1260 1270 ' : 1280 1290 1300 1310 1320 1330 1340 1350 1360 1370 ' ' CONDENSED OUTPUT ' COMPLETE OUTPUT ' NEWVAL 1380 1390 14C0 * 4 10 C A L L C HE C K I * " ( NE WV AL) IF (NSELECT .LS. 6! THEN : c ( N S E L E C T . E C . 1) THEN E-SEIF ACRES«NEWVAL ( N S E u E C T . E Q .2 ) ThEN ELSEIF OPWAGE=NEWVAl ( N S E L E C T . E O . 3 ) THEN ELSEIF LABWAGE'NEWVAL ( N S E L E C T . E O . 4 ) THEN ELSEIF SPECINT«NEWVAL ( N S E L E C T . E C . 5 ) THEN 14 2 0 1430 14 4 Q 1450 1460 14T0 1480 1490 150C 15 1 0 PROCINT=NEWVAL ELSE I R R I N T * NEWVA L ENDIF ELSEIF (NSELECT.EO.T ) ELSEIF F U E l =NEWVAL ( N S E L E C T , E C . 8 ) THEN ELSEIF ELSEIF ELSEIF 15 2 0 •'530 15 4 0 1550 1560 1570 1580 1590 1600 1 6 10 THEN YPA*NEWVAL ( N S E L E C T . E O . 9 ) THEN HRV RE C* NE WV AL ( N S E L E C T , E O . 1 0 . ) THEN H RVRAT s NEWVAL ( N S E l E C T . E O . 1 1 . ) THEN ACRIN*NEWVAL E LSE CUTPUT-INKNEWVAL ENDIF 1620 1630 1640 1650 1660 1670 1680 1690 17 0 0 ) WRITE ( 6 . - ) ' A R E THERE CHEKANS(NFLAG ) IF ( N F L A G . E Q . 1 ) THEN GOTO 1 3 0 ELSE GOTO 5 ENDIF ENDIF A NY OTHER CHANGES TO BE MA DE (Y OR N ) ? ' C A l L U WRITE WRITE WRITE ( 6 . - ) ( 6 . » ) (6, • ) ■ ljI K 1 b U 11 UN U r r iN A f c . rK U U U L I » » » » i 17*0 i-*20 1730 1740 1750 1760 1770 1780 1790 1800 18 10 1820 1830 141 SERR> 1 4 ( 6 . • ) ' T H I S F O L L O W I N G Q U E S T I O N CONCERNS THE D I S T R I B U T I O N O F ' 1 8 4 0 ( 6 . • ) ' T H E F I N A L PRODUCT - ENTER THE N U M E R I C A L V AL UE S O N _ r . ' 1 8 5 0 18 6 0 W R I T E ( 6 . - ) ' C H O O S E ONE OF T H E F O L L O W I N G O P T I O N S . ' D I V I D E T H E P R O D U C T B E T W E E N F R E E Z E R P A C K A ND P U R E E ' 1 8 7 0 WRITE ( 6 . - ) ' 1 . 1880 '2 . S E L L A L L ( 1 0 0 ) OF T H E F I N A L P R O D U C T A S P U R E E WRITE ( 6 . * ) 1890 WRITE ( 6 , • ) WRITE( 6 , ■ ) ' E N T E R T H E N U M B E R OF Y OUR S E L E C T I O N 1900 READ ( 5 , - ) OPTION 1910 VAL*REAL (OPTION ) 1920 CALL C H E C K IT (V A L ) 1930 O P T I O N * I N T ( VA L ) 1940 WRITE WRITE IF IF { ( O P T I O N . L E . 2 ) . A N D . ( O P T I O N . G E . 1 ) ) THEN ( O P T I O N . E O . 1 ) THEN WRITE (6 .-) ' E N T E R T ME P E R C E N T OF T H E P R C D U C T ’ 0 ♦ E E Z E R PACK ( T H E R E M A I N D E R W I L L GO TO P U R E E ) ' READ ( 5 . ■ ) F R E E Z E , C A _ CHECKIT(FREEZE' PUREE * 100 - FREEZE WR I T E ( 6 . * ) ' E N T E R T H E S E L L I N G P R I C E F OR F R E E Z E R ♦ ' CALL ELSE * FREEZE * FPRICE* ENDIF PROCESS THE * CALL PACK ( $ , ' L S ) 100 0 0 1950 49 6 0 FR«970 -980 19 9 C 2 C0C IC 'C : 2020 2C3C 2080 2090 2100 INFORMATION A ND PRICE DISPLAY FOR PUREE (S /LB ): TABLES I N I T I A L I Z E THE D A T A T A B L E S CALL FILLTAB CALL FIELDPD CALL CUSTRAT CALL SPECE0P1SPECINT) CALL IRRIEQP (ACRES . I R R I N T ) CALL PROCE QP ( OPT I O N . P R O C I N T ) CALL SPE CO S T( ACRES. O PWAGE. F U E L . H R V R A T . LA6WAGE ) CALL IRRCOST ( A C R E S .A C R I N ) CALL PROCOST ( A C R E S . O P T I O N ) CALL PVCOS( ACRES. HRVREC. LABWAGE. Y P A . OPTION ) CALL FPCOST ( A CR E S . LABWAGE. OUTPUT ) ♦ AS 204C 2050 2060 20^0 WRITE ( 6 . - ) ' E N T E R THE S E L L I N G READ ( 5 .* ) P P R I C E CALL CHE C K IT(P P R IC E ) ELSE WRITE ( € . - ) 'ERROR I N I N P U T ' GO T O 140 ENDIF C SC-D READ ( 5 . • ) F P R I C E CHECKIT(FPRICE) PUREE C C C C BE ' 2 4 iC 2 12C 2130 2 14 C 2i5C 2 160 2 17C 2180 2190 2200 2210 2220 2230 2240 2250 226C 227C 2280 2290 2300 2310 2320 2330 ECONAN(Y PA. HRVRAT. HRVREC.FREEZE. F P R I C E . PUREE. 2340 PPRICE,OPTION) 2350 WR I T E f 6 , ' ( / / / / ) ' ) 2360 W R I T E ( 6 . ■ ) ' WOUL D Y OU L I K E T O C A L C U L A T E A NOTHER E CONOMI CA N A L Y S I S ' 2 3 7 0 W R I T E ( 6 , * ) ' ( Y OR N ) ? ' 2380 CALL CHEKANS(NFLAG) 2390 IF ( N F L A G . E 0 . 1 ) GOTO 1 2400 STOP 2410 142 C E ND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2420 24 30 c c . . . . . . . . . . . SUBROUTINE CHECKIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2440 2450 SUBROUTINE CHECKIT { INDA TA ) REAL IN DA TA WRITE ( 6 . - ) ' T H E V A L U E Y OU H A V E E N T E R E D I S : WRITE ( 6 . - ) 'IS I T C O R R E C T 7 ( Y OR N ) ' C A L L C H E K A N S ( NF L A G ) IF ( N F L A G . E Q . O ) THEN WRITE ( 6 . * ) ' E N T E R THE CORRECT ’ V AL U E : ' READ ( 5 , - ) INDATA GO T O 1 0 ENDIF 2460 2470 2480 2490 2500 2510 2520 2530 2540 2550 10 C '.IN D A TA RETURN 2560 E ND 25~C ' . . . . . . . . . . . . SUBROUTINE ME N U CHANGE . . . . . . . . . . . . C 5 10 12 15 , S U B R O U T I N E MENUCHG ( A R Y . S Z . C H G F L G , S E L ) INTEGER S E L .S Z .C H G F LG CHARACTER-20 A R Y (-) WRITE ( 6 . - ) ' W H I C H I T E M DO Y OU W I S H TO C H A N G E ? ' LIM IT *SZ-2 INDEX « 1 DC 1 0 I ■ 1 , L I M I T . 2 LEN1 * LNB( ARY( I ) ) WRITE (6 ,5 ) I N D E X . A R Y ( I M ; LEN1 ) . ARY( I - < ) FORMAT ( 1 2 , ' . '. A . ' '.A ) INDEX * INDEX 1 CONTINUE ‘ IF I C H G F L G . E C . 1) THEN WRITE ( 6 . - ) IN D E X ,'. NO C H A N G E S OR DISPLAY T A B L E . ' ENDIF CHGFLG-0 WRITE ( 6 . - ) WRITE ( 6 . - ) WRITE ( 6 . - ) ' E N T E R THE S E L E C T I O N NUMBER ' READ ( 5 . - ) SEL IF ( ( S E L . LT . 1 ) . OR. ( S E L . G T . I N D E X ) )T H E N WRITE GC T O ( 6 , - ) 12 ' INVALID WRITE (6 .- ) ' THE * ' . SEL WRITE (6 .- ) ' IS INPUT ' • ELSE 20 CALL IF 30 IF ENDIF RETURN S E L E C T I O N NUMBER IT CORRECT ? ( v OR YOU N) HAVE ' CHEKANS(NFLAG) ( N F L A G . E O . 1) THEN GO T O 3 0 ELSE GO T O 1 5 ENDIF (SEL.LT.IN D EX ) IS 2820 2830 2840 285C 2860 2870 2880 289C 2900 2910 2920 2930 2940 2950 2960 CHGF L G» 1 E ND 2970 2980 C c ENTERED 259C 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 2” 00 2^10 2720 2 m3 Q 2^40 2T50 2"6C 2T” 0 2780 2^90 280C 2810 . . . . . . . . . . SUBROUTINE CHANGE TAELE 299C O O O O O *■ n O O O O O O O O O O O n ^ u k o r ~ co c n O ^ O O O O O O O ”* O O cn n O O o O O O O O O O O O O O O ( ii r m a> O « n ' i in ip r - m *• ’ '• N IN M M P i n « N ki ’ o r e o m o n n o o n c n m n r i n c M o r j c i o n n D n o n r i r o o o CT> (N r> o O o n r> o> n o IN n n o O r> n m n r> O in 0) n o o 10 r oi n CO n o 00 CO r> o 0) n m o O O OJ O <3 <3 n o> CO o n o O O O *3 i n 10 t - d r> n O O Q O CD a» o in in n oi o> m o i r j d o c* in 01 o r> in n O •j in 01 o in in r> o CO in 01 o t in O) rz a UJ u in z < a 1— • _i ■ CD • < ■ »* • • ■ i • ■ • ■ • ■ ■ l 1 * ■ * ro a UJ X 2 ID h in h►-» Z 3 5 < Z 2 UJ t~ -—• 3 O o O IU X z 13 H n » 3 ■ O ■ a 3 o a Q 3 O I — 4 3 4 «* ■ 3 > <3 3 • O • oc 3 UJ w ■ z U. Z z ■ •—• O < I z ■ CD o o z OJ UJ • < ■ h- 3 H ■ a O 3 • i o o • u or o Cl 3 • UJ o » Z a 3 a CD UJ ■ H DC. < I - « • 3 UJ f - o C9 • O 13 < 3 * a U l 3 oc U ■ m t - < < C3 ■ 3 Z UJ r I » i n *-* a u a DC DC CD a UJ > UJ 3 O I z o H O 3 Q O a a a Ul h- a < _i u UJ ►-* 4—4 o u z OC u O u C3 Z o < 3 U_ in Z in UJ UJ Z H o < U 3 o O z OC h* in 3 3 O < o 3 o a Z (3 Z 3 o tn a in z UJ w o w a OC u a < z ID 3 Ul 13 Z < -— I ) I u z hUJ X Ct H UJ 1—- < — 3 *a o UJ u Z UJ 3 3 O 3 a <1 z > w 3 o O z a < 3 — < 3 z o oc (3 UJ a z o ._ H a o UJ 3 aj < o z < DC o UJ 3 CD < H u K o z •-I (3 -j u a X <_> (3 3 u 13 I U s 3 o o z <3 z 5 Ul H CC OC O O UJ I h- 3 O Ul a > o _ i < in o i X O z o a 1— (J UJ a o u 3 O a < iz UJ u a ID a UJ O < z a U) u in z «t a h- UJ a) o h- < > < _l a in 3 O a l I « 1 ■ 1 ■ a ■ a o in Z a 3 O a Z iUJ in UJ 3 a o u »-4 a Z DC U l a T U 3 z X p— *o UJ 13 _j u. a IU ( 3 z X 13 O 3 3 a _1 <3 < I O o Q UJ I Z UJ H O UJ X z UJ H 3 3 < o a o u Z ID 3 ■— — a H z < 13 I U D Z UJ Z < z 1- y- UJ H CJ OJ »-4 __• a u CD X X z o Q 3 z z •-4 M z a o ID *-* *-* 3 «— /— ___ (N — a U 4-H —■ X .— Q z O Z < 4—4 4—4 z wz o a ID ID 4—4 X I z z UJ UJ -— 1- 1- o 1-4 4-4 T__ __ CD CD ID Z Z 3 3 ID z Ul 3 3 .—. < > 3 n z Z ID 3 ID X •_ 1 —Ct a UJ u hX Z n z UJ H a 3 O ID U X a Q ID »- Z I < s z UJ a a *-* u »■* tn ID 13 z < I U a ■ 3 in Z < • a ■ » SC ■ IU 3 CD < »- UJ a o z 3 > •4 z > < 3 UJ .— Z a 3 ID < I 1— > 3 3 — Z X a 3 Q < ID z z »—• a u X UJ o to in I Z u UJ Q 3 3 1< 3 CD UJ < < a a o V- 3 * l l « ■ 1 a a a a o u UJ 3 3 < > Ul » I o ■ * id Z a « h3 O a CD 3 in ■ * » ■ ■ * a a a ■ a a ■ a ■ a a a a a a a a a i a ■ a a 3 < z o .— (3 o < o -J u. Z a a o 3 o O »- a Cl 3 3 O O a I in o z UJ 13 UJ < 3 I u LL z -J 3 < u. U 4-4 o U 4-4 Q Z ID H ID in 3 UJ O a a z a 3 H a i », • 3 o a a z ID . C U N I T ( 5 . 2 I c h a ra c te r-20 m ite m m o ) . c : t e m u g j. h e a d : n g '4 ) COMMON / F P D T / M A T C C , CHEMCC 4 3 ’C 4320 432c 4340 DATA M U N I T / ' B U ' . 'T O N ' . ' T O N ' , 'CUSA PP ' , ' 1 0 0 C ' . 'EU/'ACRE ' . ♦ 'TON/ACRE' . ' LBS/ACRE' , ' ' , 'P LA N TS /A C R E ' / DATA C U N I T / 5 - ' L B 5 - ' L B S / A C R E ' / D A T A ( M I T E M ( I ) , I * 1 . 1 0 , 2 ) / ' O A T S ' . ' F E R T I L I 2 E R { 12 - 1 2 - 12 ) ' . ' N I T R O G E N ' ♦ ' FUMIGATION' STRAWBERRY P L A N T S ' / D A T A ( C I T E M { I ) , I = 1, 1 0 . 2 ) / ' C A P T A N ' . ' B E N L A T E ' . ' R O N A L I N ' . ' S I N B A R ' . ■* ' T H I Q D A N ' / DATA H E A D I N G / ' C O S T /U N IT '.' QUANTITY/ A C R E ' ' / CN0=5 MN0*5 C C FILL ARRAY WITH BLANK ENTERIES C DO 3 44^0 4480 4490 4500 3 1 * 2 , MNO* 2 . 2 MITEMf I ) =' ' • C IT E M (Ils' ' C C - .................. - ................ DISPLAY PRODUCTION TABLE 4510 4520 ( 4530 454C 4550 C WRITE W 5 10 ( 6 , ' ( / / ) ' ) R 4350 4 360 4370 ,4380 4290 4400 4 4 10 4420 4430 4440 4 4 5C 4460 I T E 6 WRIT E f 6 . ■ ) ' FIELD PRODUCTION' WRIT E ( 6 . * ) ' M A T E R I A L DATA T A B L E ' W R ITE 16.• ) ' ............................................................... ... WRITE ( 6 . 1 0 ) F O R M A T ( ' 1M A T E R I A l S ' . T 2 9 .' C O S T / U N I T ' . T 4 4 . ' Q U A N T I T Y / A C R E ' ) ................ WRITE ( 6 , • ) , 456C 457C 4 580 4590 4600 . . . . . 4 6 i o 4 6 2c 50 100 C C DO 1 0 0 1 * 1 . MNO W R IT E ( 6 , 5 0 ) M I T E M { 2 * I - 1 ) . M A TCQ (1 . 1 ) . M U N I T ( 1 , 1 ) . MATCQ( 1 . 2 ) . ♦ M U N I T ( I .2 ) FORMAT ( ' '.A 2 0 .T 2 2 ,' -' . F 7 . 2 . ' / ' . A ‘6 . ' '. F 8 .2 . ' '.A ) WRITE( 6 . - ) ' + . . . . . . . CONTINUE . . . . . . . . . . . . C WRITE(6 . ' ( / / ) ' ) CHECK F OR CHANGES - - - - ............................... 4630 4640 4650 4660 . . . . . . . . 4 6 7 0 4680 4690 4700 4 " 10 4-20 4-30 O O O O CN cn O o o o o in m in in -N ( O O CD 0» o» o> o> in cn cn o i cn 't N O O •<* i n ID r m t n O r o o o o o o *■- T~ i n t n tn i n i n i n i n i n z a a ■ a o oc o a a > > - z rr to <» i 'i/> m 3 _J < > e '­ ■ a ■ bin _i < u in I b~ u O uj <3 z 13 Z < I U a < UJ X z o 1—« »o 3 Q a oc a -—. •- bZ Z < VO (J O 0 o o o o o o o o O C) o o a) in i n ID f CD o i o »- CN n r~ r-- 00 CO co CD CO CD CO CO 00 CD 'J n a o o O i n ID h r r«» *■» 0 o I' O 'J z 3 U h*< z t- 3 o o 2 O »- 2 UJ b*-•« 2 X l/l 3 C-i 3 O > Z O a UJ Z < I 2 3 tu. o o i/1 Z < * llJ 10 I o Ul h_i oc < 3 o » UJ '—■ ' X \ w m U >—• O o z 13 UJ o H > - in in •» ID — ID ,10 10 (0 ID — ■ — — JUJ LU UJ UJ UJ UJ < H »- b - b- h f - 2 ID _ UJ » or oc a 3 3 QC OC oc oc o 3 3 3 3 u cr 3 2 LU b~ in Z 3 O O Z to o i n —. T(N . 10 »-« __. « __ ID o UJ O •___ o b - u UJ CN ►i 2 h oc U l O 3 I 0c Q U 3 + + o < UJ X o 1- i ■ i • a a a a ■ a a a 2 t—< tu 1- b o (3 Z UJ o z < X o X —CN U CD O < UJ » (3 a I < (J _l U _l •—- _J u. < *-• O > z ll. in .j in UJ (3 Z < I o t-4 ■*. b l/l o o 3 ■ a a a ■ a t—* _ t- 3 en tu 3 O > — » o .—. o o o o < u O uj Z X O 1*- in Z ro .__ — < o < IU b (3 ID ID I (3 X -__ u < O UJ 3 * - b- 3 U 3 3 ____ 3 OL oc < u < 3 3 U O 1Z o o cn C'J z 3 3 Z O O O u cn in z o u cc »3 o JO Z Ul ( 3 UJ oc a a a a a a a a a a a a l a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ■ a a a a a a n a z » UJ a o a a a a a a a S I I -J I j Z H ' b~ z Ul 2 Q. *a 3 O a < ' o I > ' U. - H »3 < (3 z —■ UJ z b3 o a ca 3 in a a a a • a a o ♦u < oc b% o a O Ul a in o UJ 0. in — Q. O UJ U UJ a in 3 o u (D 3 O ID OC _. 13 CP < < UJ 3 h z U. o CO o CN < CN »- b a o UJ CD UJ Z Z a in I o o < < UJ * 2 I o UJ a Z in UJ UJ o a CD 3 in h- 3 1/1 UJ O CN — - t-t U U UJ — » JLU CN < z »- •> > a -— - 3 T 3 < X u a O »-« a ♦< 2 — - CN z in n UJ \ _ UJ cc N . UJ Z UJ 13 a »-< b - Z in X Z H o < o \ < 3 < a bu j in o in Z (3 < z o UJ 3 a UJ 2 H < < 2 2 Z UJ I O *-• a o Q o IU 3 CD < b- Z b~ z IN 2 Z o 2 a 3 O oc v- z f-4 - UJ *. in I UJ a z < < < 2 b - cc O < b— < u a •> a ♦ u_ (D ■ 3 O UJ a in CN O b- a 3 O in -— • o < UJ I Z M 3 3 3 O o •• oc a H 3 O N. U ♦ 3 ■ ft □ CC O' M IN w V- 3 ft ft UJ 3 m < Z m o « uih N 3 O O oc o I o < o 2 O U UJ a in UJ 1< a »- cn UJ oc UJ bZ 3 3 M a o o o O O oj m L I 10 to in in in tn in Cl c i to n O O n in O O O O O o O a O o o i ) o O Oi n CD i n u> r CD u> O O n tn ■<» M ** '4 n i n i n i n i n in i n i n i n i n U l U l U l u> m U l U l O Oi U) in O o O O O m tn (0 ri n i n i n in U) u> i n U) U ) U) — Z ct o cl UJ > o a < UJ I 10 in Ui I H z 1Z UJ Z Q. ►-* D O 10 UJ Z *-• X U < UJ _} to < f- z >- < 1- H < < Q p^ . *3- _J o o U UJ a. i/i 3 a a 3 O ct \ -—• -—V —’ » 10 10 i o w •— U l UJ UJ 1- H or t t a 3 3 3 10 w UJ hM a 3 10 UJ H ►-» O' 3 o u m <0 to in in o Ul to ui o 10 10 Ul o r «0 U) o z ► i/i m tn o Q a a id z *-• Q < UJ I >- z < UJ O z Z *-» I o < < I o o H z X tn ►H 3 o Cl 3 a UJ c t CD I < h- 3 a u •—• a *in CD X < *■>>> *• Z o to h - •— • —- < i i i < ¥ hZ UJ CD cd a 10 to I < I a a o u UJ UJ w •J v- H _i _j < ct a < u < u 3 3 u o in a 10 I in :_> i: i m Ul z 1 .) o Ct CO ID in z O (O 10 in O 01 U) in O O O oi O t- l • IU l U l Ul o n f' Ul o «* I' Ul O Ul rU) O (0 r~ Ul O o o r - co o i » i"- f ' in in U l o O O 00 CO Ul Ul UJ Z z U CK « > U «• •-4 *-♦ -J » ¥ Z in — —• < < f■«» lD O Z ID a a UJ u Z «-« o D rx a iQ O a _» < in in --V. - o Q UJ 10 Cl z U I n ro 3 a l - Q 1? <0 10 ya a < UJ a _ o ta »- < < CJ UJ U _• < Z o I u *-< a _i UJ a u o u I a < a ui *-« CJ Z < '-v. N . H i n --o o ct i - i n 10 a a h- o a UJ o ID a Ci o i- Z UJ o a o X < a CL u _ i Q UJ a < D < I - CL H X CD U l n UJ O Z Z I >-« o ID < o o a IU CL UJ z z zz zz o a UJ D _l O CO UJ < VCD Z < 1in < in a UJ u o a a in UJ z Z O u a »- M D D 1- o O Z U» Z id UJ a t UJ z z z z O oi 1Z UJ I U < z z a » ■» — -—• -— o Oi to Ul -J -I UJ a -—■ i/i - o Ci o O m to in U l o u o- CD O 17> in U) z > l/l UJ D _J < > o co in U) U tn OI CD < tO O a a Cl cn 3 O a Z 10 in _J UJ CO < H U o a a i 3 o a z u ►-* o Z UJ Oi 1 3 O a Z . Oi a •-* . ' N »-i <— UJ Z o ~ *- X o o <* oz UJ t— < a itn UJ a UJ iZ _i _j M u O Oi 00 in ■ ■ a a a a a a a a a a a a a a a a a a a ■ a a a a a a a a a a a a a a ■ a a a a ■ a a a a a a a .. .—. a — •» — __ X CQ \ < _. — T- fr- s. a CJ >-4 o 10 10 10 10 10 a ._ i n a UJ UJ 10 UJ 10 »H hf- l3 O a Z o o a 3 a 3 a 3 a 3 CL 3 O o n 00 00 in U l O Ul 00 Ul O <0 CO Ul o r00 Ul O CO 00 Ul o CJI co in zo D - i u a OO Xz > < H- —' _» o u. — m ' O -w ■*- < - ' ( /) - h O Z O O (N < li) I a * •o - * UJ 13 O ) tO K J h 148 C C C ENDIF RETURN END • * « » ...............• « .................... . . . . . . . SUBROUTINE I R R I G A T I O N EQUIPMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SUBROUTINE IR R IE O P ( ACRES . IRRINT) INTEGER FL AG ,CHG FLG ,R O W .CO L,INDX R R E AL I R R T A B ( 2 . 6 ) , ACRES , N E W V A L , I R R I N T COMMON / IEDT / IRRTAB CHARACTER-20 IT E M (4 ) ,H EAD IN G(2) OATA I T E M / ' P U M P ' . ’ ', 'PIPES & S P R IN K L E R '.' DATA H E A D I N G / ' I N I T I A L ' C O S T ' / C C C ..................... IRRTABt 1 CALCULATE ’ )=ACRES • I R R T A B ! 2 . 1 )j sACRES * R OW* 2 COL* 1 C C C FILL INTEREST COS“ 5960 5970 5980 5990 6000 60-0 6020 5030 6040 6C5C SCSO ..................... 450. 1T60. RATES IN TABLE . 1 * 1 . ROW IRRTAB( I ,4 )« IR R IN T WRITE( 6 , ' ( / / ) ' ) w R I T E f 6 . ....................................................................................................................... ........................................................ .. WRITE(6 . ■ ) ' IR R IG A T IO N EQUIPMENT' WR I T E ( 6 . • ) ' DATA T A B L E ' ....................................................................................................................................... W R ITE!6 . - ) ' DO 15 20 IN IN ITIAL 15 CALL PR I N T A B ( I R R T A B . R O W . R O W . C O L . I T E M , H E A C I N G > W RITE(6 , ' ( / / ) ' ) 30 W R I T E { 6 , ■ ) ' DO YOU W I S H T O C H A N G E A N Y OF CALL CHEKANS!FLAG } IF ( F L A G . EO. 1 ) T H E N CHGFLG*1 CALL MENUCHG(ITEM.ROW,CHGFLG.INDXR ) IF ( C H G F L G . E Q . 1) THEN WRITE ( 6 , 3 0 ) ITEM (INDXR-2- 1 ) FORMAT ( ' E N T E R T H E NEW I N I T I A L C C C TO VALUES VALUE F OR ? THE: M OR N ) '.A ) ^ 20 . . . . . . . . . S P E C I A L I T Y E Q U I PM E N T COST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SUBROUTINE SPECOST 6C7C 60SC 6090 6100 61 10 6120 6130 6140 6150 6 16 0 6 '"C 618C 6 19 0 6200 6210 THESE READ ( 5 ,• ) NEWVAL CALL CHECKIT (NEWVAL) I RR T A 6 ( I NC X R. 1 )«NEWVAL ENDIF GO ENDIF RETURN END 5900 5910 5920 5930 594O 5950 ( A C R E S . OPWAGE. F U E L , H R V R A T , LAB WAGE) CHARACTER-20 ITE M , HEADING( 8 ) INTEGER ROW.OPNO.COL COMMON / S P E C / I T E M ( 1 2 ) COMMON/CSTHEAD/HEADING REAL S V , S P E C T A B ( 6 . 6 ) .O PWAGE. L A B R . LABWAG E. C S T ( 6 . 4 ) . R M C S * ( 6 ) C OMMON / SECT / CST '6 22 0 6230 6240 6250 626C 62~0 6280 6290 6300 , 631C 6320 6330 634C 6350 6360 6370 6380 639c 54Q0 6410 642C 6430 6440 64 50 64 60 6470 II) m XJ X) n > a o a o to o H n *-< U) X o •— o o -4 K> -« U ► H O (3 t/i X) -t o c I* n X) m 4 -4 O n to o -4 TJ m *-< XI t* CJ H z o n o m -4 > o XJ m n > r n c t~ > -4 m H O H > r o O t/i -4 \ > O X) m o tn H — »- o o u — N o (/) -4 — »-• M u {/) X) m n -4 > CD -—• to u O * XI o c > o c_ c (/) -4 < > X) v-« > 03 Im O O t/) -4 —1 O XI m -n i— m n H H I m n t> 03 X3 n O 13 C N > •o O m X3 O 4 2 o A -4 M o t/> -4 — O) o -n to c -4 fT) —■r ID n 1/1 CJ H (J — XJ z o to 0) ■ —. \ > o X) m O X z m t/i CJ _. — XI 2 o m -4 in O 4 o > o c It> H m < Z c •Z 03 m X) o CO -4 o T) o X) 13 > x~ r* rn -4 CO o X m 4 r~ > ro XI 4 -n C m r* o t/i -4 X XI < XI > -4 r~ CJ > 03 C > T) CD C m m — r" fl) o > iO c r t> -4 m < 4 n tn -4 U w \ Ia> CJ CD o > r n c r~ t» H fti < O O ■n a X) D o X? X > X) < m CO H m X) C /1 o rcn j> —4 00 73 U ■ • ^ CJ 1 N •— t~ > x i cn 2 £ O > m o h m n m -4 — M CJ M C.) — X) 2 n m -4 4 r~ t» 03 X) ♦ o in -4 u •__. w \ O ID T) t-» rn r~ V XI o f~ r*. m XI O > r o c r~ -4 m J o> o io io io io io io ic n o io i o t/i H —> —A 0) o > r~ n c r* > -) -n C m r n m -4 A-« ►A _ || II in ■ U 33 in o o *: 4 > 0) •— 4 1“ > .A T) c m r~ o XJ o 2 O o IA to 4O .4 CJ M O > io c r > -i | in D m <) -1 t» DJ — 1 1 1 o > ro c: -* r~ t» —4 m D > < r* t> O XJ c •-* f- > > ro h r* m m I rn < X3 < < O t> O o D o XI ■n O XI n O XI X) H 73 > Z l/l 13 f~ l> —I rn 73 T) o 73 X r• ►« -n -4 -4 XI > 2 • r> i o Z 0)0)0)010)0)0)0)0) J J I U 1 X » . C J f J - » O ' O 0 0 ICJ1 U1 { i U M -* o ID ID I o o o o o o o o o OQOOOOOOOO o o o n o n o o o o -i j - j ' ) « j - 4 0 i o i o i ( n O O O O O O I O I D I D I O l Ol DUDl Oi Ot OCOCDCDOD 03 00 CD CD m 00 •n c~ C t> m 03 r_ XJ o u t/i _A (J —4 • M X3 o o 2 t. 13 O U) C in > H o —. m -A _ O O m —i —• o 03 XI < -4 O XJ O) XJ in u > O O m -4 cn i H m Z • i i i > i Z • O 1 ID I r> • 4 m o o m XJ o O o X) o < a > O m z £ t~ 2 _A H O o 2 »-< -4 c O o o r* z z o o -4 > -4 a c I/) i/i -4 03 XJ a> m -4 H *--4 —» z -4 \ m m m H M m m XJ ■n O M -4 XJ o O .__. __. in m c X m XJ O o O --o m O m H XJ IA O o o > - i CD -4 u o rn t * .—. o O t— i 4 m t-i CO l/l -4 .—. -4 > V _A -4 m _4. CD .____o XJ -A X Z -4 m XI > .-4 > to O 03 4 XI -< XJ 4 .—. I/) m m XJ n m m IA H *» —4 o > 73 H _A . _. -4 00 cn > — w CD IA XJ m o -4 > CD »-< Kl a-< _» .___ in < 1/1 o < o X X o in o u m o X H K) > CD .. — H CJ < 7 ) 0 ) 0 ) 0 ) 0 ) 0 ) 0 ) 0 1 0 ) 0 ) 0 ) 0 ) « n o ) 0 ) 0 ) 0 ) 0 > 0 ) 0 ) 0) 010) 0) 0) 0) 0) 0) 0) - 1 4 I - I -I -1 ' J (J) fll O) O) O) o> o> 0) d ) O) i d o i i n u i i n u i c n u i u i u i t » n O) ID t* (J I J O <0 CD -J O) U1 f» (J W -• (J Ifl OD v) 0 ) U 1 t t ( J K > - * O < 0 C D O O O O O O O O O O o f > o r> o o o o o o O O O O O O O O O 4 150 C ........................................ DISPLAY SPECIALITY EQUIPMENT COST - - - - - - t a b l e C DATA H E A D I N G / ' + ' OPER ATIN G '.' RO W- 6 COL-4 F IX E D '.' COST/YEAR ' . ' F I X E D ' . 'C O S T / A C R E ' . CO ST/AC R E'.' T O T A L '.' COST/ACRE'/ W R ITE (6,' ( / / ) ' ) W R I T E 1 WRIT E ( 6 . ■ ) ' S P E C IA L IT Y EQUIPMENT' W R ITE 16.-)' F I X E D AND O P E R A T I O N A L CO S T W R I T E ( 6 . CALL P R IN T A B (C S T ,R O W .R O W .C O L .IT E M .H E A D IN G ) RETURN END 6 , TABLE' C C 7060 7070 7080 7090 7100 7110 7120 7 130 7140 7150 7160 7170 7 180 7 190 ” 200 . . . . . . . . . SUBROUTINE IRRIGATION COST ” 21C SUBROUTINE IRRCCST ( A C R E S . A C R I N ) CHARACTER-20 IT E M t4 ) , HEADING (8 ) I N T E G E R ROW. COL REAL S V . I R R T A B ( 2 . 6 ) . C S T ( 2 . 4 ) .KWHRACR.KWHR COMMON / I E C T / CST COMMON / I E D T / I R R T A B COMMON/CSTHEAD/HEADING DATA I T E M / ' P U M P ' , ' '.'P IP E S & S P R IN KLE R '.' 7230 7240 7250 7260 7270 7280 7290 7300 ' / C CC A L C U L A T E F I X E D C O S T P E R Y E A R A N D P E R A C R E C ROW-2 SV-10. DO 1 0 1 * 1 . ROW DP* f IRRTAB( I .1 ) - IRRT A B ( I . 1 ) - S V / 100. ) / I R R T A 6 ( 1 . 3 ) T I N T - { I R R T A B ( I . 1 ) + I R R T A B ( I . 1 ) - S V / 1 0 0 . ) / 2 .» I R R T A B ( I . 4 ) / 1 0 0 . Tt i s -0 .0 1 I R R T A B ( I .1 ) CS T( I . 1 I*DP ♦ TINT + TTIS CS T( I .2 ) - C S T ( I . 1 ) /ACRES 7310 7320 7330 7340 7350 "36C 7370 738C 7390 7400 7 4 10 10 C C C C 7420 7430 7440 7450 7460 7470 7480 7490 *’ 5 0 0 CONTINUE C A L C U L A T E S THE 1 0 Y E A R A V E R A G E F I X E D THE I N C R E A S E I N THE P I P E & S P R I N K L E R TEMP-CST( 2 , 1 ) TEMPi-TEMP • 10. TE M P 2 * TEMP ■ . 2 C S T 1 2 . 1 >■ t T E M P 1 C C C C CALCULATE C O S T F OR SYSTEM. * 6 . *■T E M P 2 ) / 1 0 . VARIABLE COST PER ACRE AND APPRATE*.28 KWHRACR-0.0 KWHRACR*( 0 . 7 4 6 • 5) • ACRES KW H R -0.1 CST{ 1 . 3 ) * ( ACRIN/APPRATE"KWHRACR-KWHR + 1 R R T A B ( 1 . 1 ) / ACRES ) CST( 1 , 4 ) * C S T ( 1 , 2 ) + C S T ( 1 , 3 ) CST{ 2 . 3 ) - 0 CST(2 .4 )*C S T (2 .2 ) TOTAL ) COST PER + ( IRRTAB( 1 . 6 ) ACRE • 7510 752C 7530 7540 7550 7560 75~0 7580 7590 7600 7610 7620 763C in c CD 73 a 73 c 73 - I o *-* o z -I m > CD TJ — < 4 O • O t n tn m xj Z m O -4 c 73 Z XJ m *> r~ r > CD £ t> CD m 73 < O u > o 13 ■0 U -4 TJ XJ 2 O > n X3 tn tn 13 73 2 o 73 t* O 73 -t I 73 < 73 m o n > CD c > c» m < 73 > O z tn c CD XJ o c -t z m XJ X3 O o m tn in z o < J> X3 > CD r m o £ > XJ r - •~4 r -4 m TJ XJ 0 ) »-t Z -4 -_t> CD £ XJ •H -4 m —O) £ XJ •—i -4 m ■ —• 0) £ 73 K-4 -4 m — 01 ._- ._- _ *• v v £ XJ n H O a r* N fO 0) ' -—_. O in H _. Z XJ o c 73 O £ n O r~ -i m 2 I m > O ►H z o O »-t in TJ r > -< -o XJ -n o o X m m tn a in n Z o CD in -4 m O H c > CD TJ r 2 m in - Z H o o tn -4 XJ XJ o o m in in >-4 Z CD rn O c. ■D z m Z H ~n ►-4 X rn O r> o tn -4 n o z -i o in z ■A c m »-< o o -1 H -4 o O in TJ -4 Z it —V i n -4 -— ►-» H TJ — XJ O KJ TJ o w •_ O XJ o O -4 —« . o n > t n O 13 -4 CD H XJ XJ - * J» 4- O O 03 -4 n o — -4 Z > -4 CD TJ > H 4- 73 n -4 O O 4 _» XJ 4— X) n m in _ o 4 in o J> -4 CO 13 > — XJ CD >-4 —• o M o _ -4 a > aj tn N R < 4-4 tn < _* -- o o _» O O o — ni r in H Z m rt XJ o o *-• £ -* z XJ o £ m Z a XJ o £ K4 i n ■n XJ O o □ £ 4 Z — 2 O XJ O O -4 o D O z > N £ r o c> o o in Z c -4 i" X m > m o m U < O o O o O O M XJ m z -4 m O in m < XJ o in J C t> i d XJ XJ t> o o o n cr. z z -1 4 m 13 T J XJ XJ Z m 13 XJ O m a m O £ M -4 O 1‘1 O 73 -» C l 73 > o » a zzzz> zzZ r H> o z \ 13 XJ o o m tn tn -4 « i « • * » ■ i • ■ * » * • m xj r z rn » O H ■ C 1 XJ ■ z ■ R 1 R R • R i n £ £ £ £ £ o > XJ XJ XJ XJ XJ o «~4 t-4 r~ r~ -1 -4 -4 H N mm m m m * .—. 73 73 0) 01 01 0 10 1 1-4 4-4 H z H > 03 w » V .—. X\ N. O 1 1 1 1 o tn u r* j> •X > —io n j< i n in • :-m u ) i ? I O I 01 XJ I a > rn CJ in oo Z *3 o > 73 - » m m TJ XJ o o -4 O > XJ CD a o *“ * M 4 *> CD f~ in r> U tn — & CD CD CO CD CD CD 00 CO CO CO CD CD CU CD CO tn CD CD CD CD CD CO -J J -4 J -4 1 J J -J -J -J ~4 ~4 4 j j M t> - » - . O O O O O O O O O O l O «D U ) l O l O U ) t O « D t D l O a i C D C O C O ( D C D < D ( D CO CD • 0 ( p W ' J f f i o » f t U M - O i p f f l ' i f l i ( n f c W M - * o i u a j ' i a t q t b ( j u - * o i i ) c o -J tn t. u m * o »d c d 01 'J -1 - 4 - 4 --I - 4 - 4 -J - g -v| - g -4 - 1 --4 ~v! -4 -4 m CD O) 01 tn u w -.1 - j -q cn 01 a> o to oo~j 01 tn t» O O O O O O O O O GOO CO O O O O O O O O O O O O O O O O O O O O O O O O O O C J O O O O O O O O O O O O O O O O O 152 INTEGER OPTION CO MM ON / P E D T / PROCTAB COMMON / TPVCST / P V C P A . D P P P C C C C C C C C C C C C C C C C C C C C 8220 8230 824Q R & M c o s t F OR T H E P R O C E S S I N G E Q U I P M E N T I S E S T I M A T E D A P E R C E N T OF T H E I N I T I A L C O S T OF THE E Q U I P M E N T . { 3 P E R C E N T I S U S E D FOR T H I S V A L U E . -PRMP ) the G EN ER AL COST FREEZER RENT OF T H E T O T A L ($0.05 PER -SUCH A N D ONE PRODUCT LB IS 8290 8300 8210 e32C AS E L E C T R I C I T Y , W A T E R . B U I L D I N G AND F O R E M A N A RE B A S E D ON A C O S T P E R L B R E C E I V E D AT THE P R O C E S S I N G P L A N T . USED F OR THIS VALUE.) --823C 83*30 S350 8360 83"C 8380 £ 3 9C 8*300 P R O J E C T E D M A T E R I A L H A N D L I N G R A T E ( P MH R ) A T T ^ E P R O C E S S I N G P L A N T I S B A S E D ON T H E N U M B E R OF D E C A P P E R S . MOOE. A SS JM C TION - 3 0 0 0 L E S P E R h C'JR P E R OECAPPER. 6 0 0 0 - 5 S 3 E R -iR PER S I N G U L A T C R , 6 0 0 0 ^ 5 5 P E R HP P E R F I N I S H E R . MODEL (LESS IF ASSUMPTION - ONE F O R E M A N ) : N U M E E R OF P R O C E S S I N G P L A N T E M P L O Y E E S 15 E M P L O Y E E S FOR O P T I O N * 1 9 E M P L O Y E E S F OR O P T I O N * 2 ( O P T I O N . E C . 1) THEN PMHR*PROCTAB(5 . 2 ) NPPE * 15 ELSE PMHR*PROCTAB(2 , 2 ) NPPE * 9 E ND I F - 8480 8490 85CO 35 " 0 6000 P E R M - P R O C E S S I N G E Q U I P M E N T R& M C O S T T P R M C - T O T A L P R O C E S S I N G R& M C O S T P R M C P A - P R C C E S S I N G R& M C O S T P E R A C R E C C C C G E * G E N E R A L EXPENSE P H * P R O C E S 5 1 NG H O U R S P P L C * P R 0 C E S 3 I N G D L A N T L A B O R COS ' " T O T P C P v * T O T A L P R O C E S S I N G COST P £R C C C C D P P P * D O L L A R S PER L B P R O C E S S E D G C - G E N E R A L COST P Q * P R O J E C T E D Q U A N I T I Y PER YEAR P R M P * P R O C E S S I N G R& M P E R C E N T C C PVCPA»PROCESSING PRMP*3 IF ( O P T I O N . E Q . 1) LIM IT * 7 ELSE LIM IT ENDIF « 8*310 8*20 8*30 8440 8450 8460 84TQ 3000 C C C C 7 8250 8260 8270 82B0 ON VARIABLE COST 8520 8530 8540 e=50 YEAR * PER 8560 8570 8590 8590 * ACRE THEN 3 PERM-0 DO 7 I - 1 . L I M I T PERM-PERM + P R O C T A B d . 1 ) - P R 0C TAB(I.2) TPRMC-PERM - ( P R M P / 1 0 0 . ) PRMCPA-TPRMC/ACRES P Q * Y P A - ACRES * ( H R V R E C / 1 0 0 . ) GC * 0 . 0 5 GE a GC * P O 8600 8610 B620 8630 8640 865C 8660 96^0 8680 8690 8700 8-10 8720 8730 8740 S75C S'SO 8— 0 8-90 8790 153 B ERRY1 16 PH-P Q/PMHR PPLC*NPPE • L ABWAGE • PH T O T P C P Y * T P R M C + GE * P P L C DPPPaTOTPCPY/PQ 8800 8810 8820 8830 PVCPA*TOTPCPY/ACRES 8840 8850 8860 8870 ' 8880 8890 8900 C C 10 W RITE( 6 . ' ( / ) ' ) W RITE(6 . - ) W RITE(6 , 10) FORMAT( 12X.'PROCESSING 20 W RITE( 6 , 2 0 ) FORMAT ( 30 40 50 60 C c C C C C C PLANT VARIABLE CO ST') ........................................................................................ ) W RITE( 6 . ' ( / / ) ' > WRIr E( 6 . 3 0 ! F O R M A T !' REPAIR AND' . 6 X G E N E R A L ' . 6 X . ' P R O C E S S 5 X . - ' L A B O R ' . 5 * . 'COST® E R ' , 8 X . ' $ PER ') W RITE( 6 . 4 0 ) FORMAT!' MAINTENANCE' , 5 X . ' EXPENSE' , 7 X , ' H O U R S 6 X . ♦ 'C O S T ',8 X , 'Y E A R '. 1 2 X . 'L E ') 8930 £940 8950 2960 89"3 89eC 8990 W R : T E ( 6 . 5 0 ) TPRMC, G E , P H .P P L C ,T O T P C P Y .D P P P FORMAT! ' I ' . F l l ^ ^ X . F U . I . A X . F T . I . G X . F S ^ . S X . F ^ ^ . e X . F e ^ ) W R I T E ! 6 . 6 0 JPVCPA FORMAT! ' 1 ' . ' P R O C E S S I N G V A R I A B L E COST PER ACRE ' . 3 X . F 12 . 2 ) RETURN E ND ............................................................................................................................................................................................................. ... 90^0 9080 SUBROUTINE 9090 9100 E CONA N( Y P A , H R V R A T . H R V R E C . F R E E 2 E , F P R I C E , PUREE. P P R IC E , OPTION ) ECONOMIC A N A L Y S I S AND P R O C E S S . -- PRODUCTION, MACHINE 9 110 9120 913C 9140 9 150 9 160 9170 9180 HA RV EST T S I F C . T C . T H V C S T , R P T P , Y P A .HRV RE C.HRV RA T, FPC T O T C P A . T Y A A . T P r - C , P V C P A . T R P , U S A E L E . RMC . P ®Q TOTR. FP R ,F R E E Z E ,F P R IC E ,P R .P U R E E . PPRICE.DPPP IR R C S T !2 .4 ) . PROCST!7 , 4 ) . SPECST!6 . 4 ) INTEGER COMMON COMMON COMMON COMMON COMMON / / / / / ROW.OPTION P ECT/ PROCST S ECT/ S PECST IECT/ IRRCST TDVCST / P V C P A . D P P P FPCST / TYAA 9190 3200 9 2 10 9220 9230 9240 9250 9260 9270 928C 9290 9300 9310 C W RITE( 6 , ' ( / / / / ) ' ) IF ( O P T I O N . E O . 2 ) THEN R0W*3 ELSE R0W*7 ENDIF 3 C 9000 9010 9020 9030 9040 9050 9060 . . . . . . . . . . S U B R O U T I N E ECONOMI C A N A L Y S I S .................................. ............................................................................................................................................................. REAL RE ' A L REAL REAL C *9 1 0 3920 TPFC-0 TSIFC*0 T S I F C * T O T A L S P E C I A L T Y AND DO 3 1 * 1 , ROW TDFC*T®FC - PROCST( 1 , 2 ) IRRIGATION FIXED COST PER • ACRE 9320 9330 9340 9350 9360 9370 154 15 13 C C C C C C C C C C RO W- 6 DO 1 5 1 - 1 ' , ROW TSIFC-TSIFC ROW-2 DO 1 3 1 - 1 , ROW TS IFO TSIFC + SPECST(I.2) + IRRCST ( 1 , 2 ) R P T P - R A W P R O D U C T TO P R O C E S S I N G RPTP-YPA * { H R V R E C /1 0 0 . ) 9380 9390 9400 9410 9420 9430 9440 9450 9460 PLANT T C * ( 0 . 5 0 ' 1 00 . ) ■ RPTP T H V C S T - T O T A L H A R V E S T V A R I A B L E COST PER ACRE THVCST*SPECST( 1 .3 )-S P E C S T ( 2 . 3 ) - S P E C S T { 5 , 3 ) - S P E C S 7 ( G , 3 i - T C T O T C P A « T O T A L COST PER ACRE TOTCPA - TY AA - THVCST - T S I F C - TP FC - PVCPA 94 70 9480 9490 9500 9 5 40 9520 9E3C 954C 3550 956C1 9570 95B0 9590 C C C C C C C REVENUE ( S / A C R E ) F OR M A C H I N E H A R V E S T A N D P R O C E S S TOTAL SALES (S 'A C R E ) I S B A S E D ON T H E D I S T R I B U T I O N OF T H E F I N A L P R O D U C T . F I N A L P R O D U C T I S V A L U E D ON T H E P E R C E N T D I S T R I B U T I O N OF P R O D U C T T O F R E E Z E R PACK OR PUREE. 9600 9 6 10 9620 9630 9640 9650 9660 C C USABLE 9670 9680 C C C C C T H E T O T A L H A R V E S T V A R I A B L E CO S T S PER A CRE AREA DDE D T O G E T H E R H E R E FOR T H E E C O N O M I C - A N A L Y S I S T C * T R A N S P O R T C O S T F OR T H E RAW P R O D U C T PROM T H E F I E L D TO T H E P R O C E S S I N G PLANT. A CUSTOM RATE I S USED "OR THIS CALCULATION. (S O .50 P E R CWT - DISTANCE 75 M I L E S PER L O A D ) » OUANTITy OF RAW PROCESSING TRP a TRA S H TRP-10 PERCENT PRODUCT PLANT ( TRP IS DELIVERED LESS SET THE AT C USABLE C C C C ■ RPTP - (1- ( T R P /1001) RMC « R E V E N U E M I N U S C O S T S TOTR » T O T A L REVENUE IF ( O P T I O N . E O . 1) THEN FPO -USABLE«(FR EEZE/100. ) FPR-FPO-FPRICE PPO-USABLE - FPQ PR-PPQ-PPRICE T O T R - F PR - PR ELSE P R -U S A B LE • PPRICE FPR-0 T O T R - F P R ♦ PR ENDIF RMC-TOTR-TOTCPA C C W RITE( 6 . ' < / / ) ' ) WRITE( 6 . 2 7 ) WRIT E ( 6 . 2 0 ) * ’ TO T h E TRASH. 10 TRASH) 969C 9700 9~10 9 "2 C 9730 9740 9750 9760 97-Q 9^B0 9790 9800 9810 9820 9830 9840 9850 9B6C 98"0 9880 9890 9900 9910 9920 9930 9940 9950 O O O O O O ( O t - D O i f l i O i O i o i 0 O O O O O O O O ’' M n < n n i f co O O O O O O ' O ' O “ O O O O O O O O *" 00 01 o o c o> o • O ~ t ’ *0 * n ' • O O O O O 0 0 0 0 0 0 0 0 OOC O O O O O O O ^ ui id rO' O n in m r - r n O •• ■ r- r- ^ r ( ^ (< (( « ( j ri o r j n n n O O O O O O O O O O O O U O O O O O *' *■ ’ ■ O O O O O O O O O O O O O O O O n n >: u i t o t ' a ) cri o •- « n i n ifl r ri n n n n n n n 1 n m v 1 1 'i O O O O O O O O O O O O O O O O O O O O O O a ) o> O ’ • u n ^ ' i hi i/) ui in O O O O O O *“ II II H —CJ — ( il nr i) < X O CJ ca _» CJ 11 X -4 CJ CJ (I — UJ ft o < 4 CJ 4a X n n » LO ID UJ a u < a t ii Q UJ a u < hiSi a UJ a (J o o u :j a o it a 5 < Ct z o tn to UJ u u o iin a UJ a a a .J ca < 1 vi > H t/1 UJ o < . > O UJ a U_ X h< a. K Q O I h- u >• J- ' ' ui >< f-'- CJ CJ o CJ l - S M a a o J u . l - J ' H M a o i M a o — a j u . i i . 3 ' H 11 N H H H M II H H n H U N M a H R II N H n n ii u ii UJ a u < o in Li. X in >■ u z UJ •~i O 1-4 u U_ UJ >DC UJ > O U UJ ct n a z t -1 tn in UJ o in u CJ 4 — to 4— u. UJ a O < X CJ m o or a o a Ul a O Ul a > 1-4 _J UJ O a U) Q o u a a a o ' in in O O O T tr , — i n *- i n 4- —*- t o f»4 4' •> — ID --- (D _ U) —• ID —to H •—• L — » - CJ 1h- CJ < UJ < UJ «1 4- UJ < UJ < 4“ UJ S h S f - S u h i f - s u f a n n r i < a a ►* a - n u a o a o x a o a o x a o u . 5 t i 3 u ' J 3 u . 3 u M 3 1 o Z 1-4 in in UJ CJ o a a C* in o u < a U HD h- ' »- in tn Ul U O a a n n a H It N II H || H H H II II .— II v H N n N H II UJ a o < jin a O z ii i- CL >UJ »h 1-4 {) tn UJ UJ ♦a > a z > ft t - < a a a x o < a a a CJ UJ a a a a a ' i n 4* O 00 4- i d 4 ■ --- t o -- t o ---• O a a UJ a a D a ' 3 Z a > a a < H O »a io X t- O CJ 10 4“ O 4 4 --- t o ——- ►h- ■ < a < £ 1- £ a a o a o u. 3 a o cn • • to — — 1< ■ to a H «-* a 3 £ a o a in D Z £ a o z a > a a 4 X O CJ o i4- ' h 1 «T» • 1 -— < ■ a £ ■ 1- a o > a a ■ 3 ♦ O O tn OJ tn o> 4- — Z uj a f - r> H h Q U Ml Z 3 DT u i 156 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SUBROUTINE FPCOST ( ACRES, LA3WAGE, O UTPUT) C REAL REAL REAL REAL REAL REAL REAL REAL T C P , T C D , T C C . T F C . T D C . T F U M G . T F E C . T F A C . C H E M C H , CHEMCHE C H E M C I.C H E M C IE . CHEMCF.CHEMCFE. TTRANC,IRROC BFCE.N FCE.HW.TECY1.TACY1.TFRC TEC Y2 . T A C Y 2 , R E T C P . R E T C D . R E T C C . R E T D C . RETFC R E F U M G , R E A C , T R E C . T R E C A . T F P C Y . I RVC LABWAGE.ACRES.TYAA M A C H ( 6 . 1 ) . M A T ( 5 . 2 ) . CHEM(5 . 2 ) S PE C O S H 6 . 4 ) . IRRCOST(2 . 4 ) INTEGER O UTPUT 10650 10660 10670 10680 1069C ’COC 1 0 " 10 C COMMON COMMON COMMON COMMON COMMON C C C C / i / i / + MA C H MAT.CHEM SPECCS" IRRCCS7 / TYAA TCP-MACH( 1 , 1 ) * ACRES TCO-MACH(2 . 1 ) - ACRES TCC*MACH(3 . 1 ) - ACRES TFC"MAT( 2 . 2 ) - M A T{ 2 . 1) • ACRES T D C * ( MACH( 4 . 1 ) f M A T ( 1 . 2 ) - M A T ( 1 , 1 ) ) - A C R E S TFUMG-MAT( 4 . 1 ) » ACRES TFEC-TCP+TCD+TCC+TDC+TFC+TFUMG 10720 10730 10740 10750 10760 10770 10780 10"90 10E0C 108 TFAC«TF£C/ACRES C A L C U L A T E S THE F I R S T 10 8 2 C 10830 - - CALCULATES -- C R D T •' FP07 / SECT IECT FPCST THE FALL OPERATION v £A r COST TRANSPLANT COST CHEMC H* CHE M( 1 . 1 ) »CHEM( 1 . 2 ) * Ch £ M ( 2 . 2 ) - C H E M ( 2 . 1 ) CHEM( 3 , 2 ) CHEMCHE*(CHEMCH + M A C H ( S . M ) ACRES - 2 ♦ C H E M ( 3 . 1 ) - 1084C 10850 10860 T F R C * S P E C 0 S T ( 4 . 3 ) • ACRES T E C Y 2 - T F R C + B F C E + N F C E + C H E M C H 6 + C H E MC I E + C H E M C F E - I R R O C + HW TACY2-TECY2/'A CRES C A L C U L A T I O N S F OR T H E R E - E S T A B L I S H M E N T P E R I O D - R E T C P - ( A C R E S - .2 )-MACH( 1 . 1 ) R E T C D -(A C R E S -.2 ) -MACH{2 . 1 ) RETCC-(ACRES-. 2 )*MACH(3 , 1 } RETD C -(AC R ES-.2)-(M AT{1,2 )-M A T (1,1) ♦ M ACH(4.1)) 10870 10880 1089C 10900 1C910 10920 10930 1094C 10950 1C 9 6 0 10970 10980 10990 11000 H01C 1 1020 11030 11040 1 1050 11060 11070 11080 RETFC-( ACRES-.2 ) -M AT( 2 . 2 ) -MAT(2 . 1 ) REp U M G - (A C R E S -. 2 ) - M A T ( 4 . 1 ) 1 109C 11100 REA C-A CRE S -.2 1n CHEMCI*CHEM(4 . 1 > -CHEM( 4 , 2 ) C H E MC I E a ( C H £ M C I «■ M A C H < 6 . 1 ) ) - ACRES • 2 . CHEMCF»CHEM(5 , 1 ) • CHEM(5,2) CHE M CF E- C HE M CF - ACRES - 2 T T R A N C - ( SPECOST ( 3 . 3 ) (M AT(5.1) * MA T { 5 , 2 ) / 1 0 0 0 ) ) »A C R E S IR V C -IR R C O S T ( 1 . 3 ) + 1RRCOST( 2 . 3 ) I R R O C * I R V C - ACRES B F C E - M A T ( 2 . 1 ) - M A T ( 2 . 2 ) - ACRES N F C E - ( MAT ( 3 . 1 ) / 2 0 C 0 • M A T O . 2 ) ) • ACRES • 2 HW- LAB WA GE 18 - A CRE S TECY 1 » TTRANC-* -TCC^ IRROC+BFCE- *-NFCE* CHEMCHE + C H E M C I E * C H E M C F E ^ H W T A C Y 1 - T E C Y 1 / ACRES C C -- 10540 10550 10 5 6 C 10570 10580 10590 10600 10610 10620 10630 10640 1C O O O O O O O O Q O O O O O O O O U U O O O O O O O O O Q O O O O O O O O O O O O O O O O O O O O O O O O O O O O O M n ^ c n u ) h < a < n O ’- r < n ^ i f t « ) r ( D < j » 0 ' C 4 n i i n u ) t ' C D { n o * - « n ' i i n i f l » - c o ^ O ' - r < n ^ u ) i f l r a ) ( j ) 0 - r i n ' i i n ( p h a a ( j t >- a o u a in o o rID bz UJ z X in _i m 4 t— i/i lO > UJ or _j 4 *o 1■ 4 UJ or h- 13 Z 3 u UJ or ♦ u u. IUJ or ♦ o n tUJ or ♦ u u 1UJ a. + o u H UJ or ♦ a o bUJ or • o UJ or fr­ 03 4 b01 lU 1 UJ ar ►z < _j a in Z 4 at j- , in UJ or O 4 or Q. in O O O CJ CJ CJ et ♦ o cj O cj « cj z 4 Or frb* m Z 4 a tN O • CJ u Q fl or oc U —* cj • f— u * o o or o Of frM N i o o CJ CJ UJ I O # 1 Z UJ UJ UJ I o u u u. u. ■ 03 Z u j ■ • I UJ UJ s u o UJ u. u . I 03 Z CJ N N N ■ UJ l- l CJ Z UJ X CJ ■ UJ >-> • UJ U. u Z u> X O ■ UJ u z to UJ I I o u h i CJ z O CJ » 3 X S 3 X b4 CJ a or or U l 4 a UJ i in a C) UJ o a z fr- a i/i a yCJ 4 » z o o nr »-f fr- a . > u u or or CJ c> i - »- •—■ o CJ 13 Z Ul I CJ b U> >UJ U a or o U fr- u_ 4 -fr in -V. z O o o UJ UJ M or or frb- i - 4 § ■ _J < >- 3 u o O uj a _l or u . 4 ►- fr- u 4 Qr i/i UJ or u 4 w \ > o a. u frB * u a u < b- H o •—S — O CJ i • or < UJ UJ O >< ar or UJ > a < , in UJ u ar UJ u or <4 b♦ fr in UJ oc (J 4 or < UJ V z UJ b- a < UJ UJ > I »z UJ UJ H b< B 3 CJ > -J < > o b- ♦ \ T>U UJ fr■ > U a. tj b- a < rx UJ > < >. o ar o b■ V CJ a CJ < b- UJ a u 4 CJ O - or 4 UJ > Z Ul *- o w < < b- o o o ^ aH O t3 u or z — u or \ • cj * in X O X O - O O z « • O ' *“ »- |f» •- 4 *- *» •- * - cj ’ © lo ^ -io «— w > l L U J U J 4 l U ..............................' O r n - — ( £ ) -( O w (D ^ (o _ a « ) ft- _ i- _ — i - or — J < I U < U I < l U < l l l J < U i U J U U CJ o — i~ < •~» » -» -z» -zt-s> ~ zi“ i h - z i - h - z QHMaHaHa«ttHaMa2«a Zcraoaroocooroaououiao u U in — »- ■ 4 rj O v O X o r » u u n u »j- CJ UJ O < or UJ > 4 B u . b4 X z n n CJ CJ >V u . CJ X CJ CJ c u . 14 X Z u. 3 ra) X •s »- r * w•“ O u. I CJ . r > o 4 X _i X I n I 3 I O •- u z o Z cj • 4 < 4 3 lO Z » Z H IL »“ • in tn M o 3 m or Cl > TJ -4 < n ► O o z M XJ o X) TJ o X m o *n 70 -A > H o z Cl 43 n a Ul -< + ti c 70 N , > -4 n m XJ — m 0) n CJ I 01 m - o 2 T| c u» z n o I »-« m -n o 2 Ul O o *n k> m - o I C Jm > X 2 O o » *n fO m H — k> X X o I m 2 T) m 73 > O J3 m - O O m •» -A. X K> X O -» k> X o c Ul C J > o z Tl c o XJ > XJ O 2 H XJ t> m -4 cn o M X X CJ m CJ! - o 2 I U» m * XJ 2 PJ r» T l ►-» n Ul o I O l k> o u i m _ • •w .X s_ > C J o O X n I I m m 2 * k) 2 n X X n I Tl _» n o i o X I m m 2 k> 2 O o n »-» c X m Ul m H CJ u O Tl C O xj XJ 2 H t> m H .—■ 01 •» CJ ik -1 2 I I XJ m Vi -T1 cn C J X Ul - Tl CJ CJ Ul ♦ CJ CJ K> CJ CJ o u ID O cj M Ul K) CD Ul ♦ Tl X O XJ Tl 2 *k > H o »— ro CJ k> x o X » Ul I z r2 CD H O XJ > > o fn Cl m U1 Z •» — X o Tl X -j o fo X •__ n c a XJ XJ 2 H ni — -4 ■ cn c XJ -1 H a rn z .— cn XJ > CJ - 4 Ck m o "Tl o XJ 2 > H -—. M X c XJ o XJ H 2 m 1> H 01 —. CJ CJ - Ul CD _» XJ 2 X o 2 > > J> -1 Tl o - I tk n CJ > M Ul » H _ • w__ X _» 2 2 > X > H H H —- a M CJ Z X X M> M n tk M X Z X Tl T) Cl X ci m n rn Tl c Ul Tl -A Ul O K> 2 o I ro £k Tl t XJ o XJ H 2 m > .—. -4 cn - l~ ro c Tl XJ o XJ 2 T> C XJ - *n £ - n £ - ' O D O X J H t iD h n mo ; —4 m 2 H t> m 01 —. O) — o> ' • H -C — CJ O) i i CJ XJ w u W r n o n CP XJ r* H rUl f~ T l TJ t—A »-« r n m O NI CJ XJ CJ U1 ~4 — w cn X Ul -ti a> -4 K J Tl X J CJ o cn X cj o 2 XJ m <0 CJ tk Ul o -4 - M k> M k> M CD ID t n t o tk ( J f j _» < 1 U O o O O CJ tk ♦ 43 >< M (D ( II m - f •—» ■ —■ 0 ) k> X CJ tn * Ul »-< z Ul 2 ni > O o H I t-i o CJ Ul o (J Ul Ul H 2 H -4 • > m > ) ----------c —■ r~ - — Oi Oi - u u Ou ft k) X -» XJ O • Ul - • 2 -I - : l> in < ) —4 — r n ' XJ U t/i O U l k) t n m tj o O - c Tl £ Tl £ XJ o XJ o XJ XJ XJ -4 2 H 2 H m t> m > r n — • H — • H ■ —0 Oi ■ 1 —• O! » k) K) -4 CO - CD \ D Ul • » H > H r~ H O - I . _ > -4 m - n o > o — r * -< U l -* m —i Z TJ H m XJ XJ TJ > XJ n XJ Ul m m o a < k) CD O k) -J Ul ki O + + Tl £ C J T| £ J Tl £ T a XJ X O XJ U l O XJ XJ XJ XJ 2 ~4 - 2 H k ) 2 -4 > m m > m o o -4 4 H • —0 ■ — .0 .— . cn 1 1 Ul > kJ I CD K> XJ n X hi X CD \ X --J N . o > > Ul o z U l Tl M o X c « r~ z n N U l £ > Tl o I m ■ X m ■ rn £ O o 2 Tl D > II O II CD k> a Tl H o Z m _ «. o R o II k) X I H CO m £ H k) X 2 *. X n _ . • Tl ro i n (A X o ro - -m Tl _» o KJ XJ m Ul X J 1 M M M M M J J ■J (0 CD Ol Ul o ( J ( J o CJ M M n M • 1 1 ■i 1 t> (.) M ( J o CJ f J H -I o o M cn m CJ r» Tl M M m ai rn -j O CJ U W o» u> W W M U I J W I.) r o 43 M M K ) f J U K ) K ) M M h i M k> M H K) n M M M M WM M WM M M cn o> o» t > b ( i ( J U U U ( J U U ( J U U M K ) - o id cd 0 1 (Ii I. Cl M -* O ID C D'I 0 1 Ul b (J M -* O IDC D 0O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m t* u u ifliuifcuu-*oiow-i O O O O O O O O O O o o o o o o o o o cn co CO rn X J XJ ro O U l o U l O ro c r~ o z o ~ 4 X r~ * -t tk X X J > -» m "1 X X J m t> X Jn rn a T J m X I tk H m i/i -1 > CD n O U l z X Ul > ■ u m X J - XJ m UJ X c/i I 2 m Z H X n — Tl > r CJ 10 ro O o + ♦ ■ n£ -n £ -n £ T >£ n£ £ £ ■ X I mO X J- i o X J o xi a X I OX JO X J I I z X o X J0 X J X J X J H -1 2 -1 — i 2 -4 2 H 2 H 2 H 2 - 4 m m > m > > m > m ►m > m x> ■ — • X3 — — . -4 >H i r* - 4 -» v -i — .O O l 13 —01 0 1 O l —cn .— l O l ■ » XI > t j tk *-* m tk tk tk tk tk 0X ( J cn cn 4 I -n ro X O O O rn O U l ' > O U l Ul o o l- C c U l t 1 • • I 1 1 f -» T l -k O X XJ 2 -n -k ►J ■— » 40 H O H > XJ rn i m Ul -i > 0J r~ Ul I 2 m ’ z T) m XJ o o Ul 03 m Ci Z Ul cj O UU U U li m -■» o fJ O O U U U (J (J U U U b) U (,) U t£> cd -j m ui i i O O O O O O Cd U u O U U t J ( J I J (O I.) t o U l.> U M M H f J U u * O 10 to i oi i n O O C) Q o o o o + £ Tl X I wk ro H m ro •—• Ol CJ U) ro —r > n n o < U l ro -4 Tl m XJ t> o XI m •n a XJ 2 t> H — ' •» H O -1 > r fi O Ul -4 H O -4 I H O Ul -4 o T) X Ul TJ O U t» CJ UJ o z z CJ CD CD £ £ £ £ £ £ £ £ £ £ C £ £ £ £ £ £ £ ■n £ XJ XI XI XJ XJ XJ XJ XJ XJ XJ XJ XJ XJ XJ XJ XJ XJ XJ O XJ > XJ XJ 4 -4 -4 H -4 -4 H - 4 H -4 H -4 H -4 H -4 H - « r n 2 -4 m m m rn in m rn m m m m m m m in in rn •—■ —» —• —• -—■ -—.—- ■ —. — — —- ■ -4 01 O l Ol O l o> Ol O l Ol 01 01 01 O l O l Ol 01 01 O l Oi l / l — m 4 u ( J ( J CJ ( j CJ ( J CJ u CJ CJ CJ u u CJ CJ CJ CJ £> CJ 10 -O -4 O) Ol U l U l tk tk tk CJ CJ CJ r o r o O U l u i CO O u i O u i O u i O - l U l O U I M O U l O U l O l D f ' O co —• XJ Ul H r~ n 2 2 Ul 2 2 I z tk *» > XJ I > t» TJ 2 O Cl OJ < r n o O m —4 -4 m < —« • £ Cl 2 I X O Z ro > O CJ r o O -4 O ►-4 ■n O l U l Ul < m X J H rn XJ n t> tk I a X XJ £ o m 2 2 t> > tk 2 Cl o (J o I -4 -4 I ■ — —. *n r n r n Ek m 2 2 CO -4 X) C l Cl ■n tk XJ I ro ro _ _o 1 _ > o Cl I X z CD X J m m ■n *n < in 2 2 O n Cl n rn m Ul «-T X 4 rn rn O Cl o £ XJ XJ £ m XJ -4 rn —. Ol m Ul -4 > CD r~ —■ N __ __ O -4 rn Ul > Z a Ul I 2 rn z n a XJ 2 tk —4 TJ U l rn XJ -4 I O m a TJ CD XJ m a Cl o z Ul c UJ 00 Ul CJ CO O CJ ~o Ul CJ -4 O T» £ O XJ XJ 2 H > -4 Ol ■n a XJ 2 > -4 £ •n £ X I o XI XJ H 2 m t» m -4 Ol 01 Ul ( j *0 CJ CD X - o Ul o tk T l £ X O XJ XJ 2 H m CD - 4 .—. Ol I XI CJ X -0 t» > o o z o r~ tk £ > X m CD m £ ■n CJ > o o z m CJ K) X £ ro X + CJ -4 CD a Ul -4 > -1 r~ -4 a H > H m tk C) o o o < r~ < N U l ro ro m -4 Z -4 TJ a m m XJ XI TJ V > XJ >_t _• n 73 Ul m m m Cl -4 O z CJ O Ul H in u (J (J t.) t.) U (•} U U (J IJ U (J I.J ( J U U U U U U U (J ( J (J M O l o U K) M f.) f ; [ ) ► ) - ■ * • > - * » -• -• * - ^ O O O O O O f H ) O O ( D H ) i 0 ( 0 l D t I ) l f l < 0 i . c j u ^ o (O « - i oi ui m o m -• o to (D - i oi m t . i.i u . o i d od - j oi tn o o o o o O O O O O O O O O OO O O O O O O () n o o o o o o TJ m XJ -c m > XJ n o Ul —4 Tl tk rj TJ m XJ X -< - K) M M (0(0C tk c j k> o o o f j M KJ IO |o (O 0(DC0(D -* o UJ co - i cn o o o o o o cr* o a> m TJ TJ a> at tn O at O tn n at o o o ti o £x CD tn tx CD O • £c £ccc H H -«- 1 m m m rn -4 -1 -4 m m m m ro m m m m ccc € £ £ £ TJ T3 Tl TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ HH H H HH cn ai at at at a> at a> at at cn 0) at \ ro ro ro ro ro ro ro ro ro ro ro ro X _» O Ul Ut tx *x |x ( 0 0 ) M ro — t n O tn kj O tn O tn O O t O U 1 N z > H Z > H (J ro _» _» Z > H — U) z t> -4 •—. ro ro ro Z TJ > c/t U n m X O — O h4 to on Z M CD ■n n o m m Tl e n TJ O TJ -H z ro > .— -4 at ro ro O at o X X in (/! w -4 TJ _* TJ «_ CO O n N CO -4 n n z > —t M z + £ £ ro n TJ TJ X O T> V z -4 H m rn n > •—• — t> H a t a t t~ •• r -» at -» •—■ TJ m o —«• — - tn TJ TJ Z o m tn -4 > 03 r H TJ t» Z on TJ tn I Z m Z -4 H TJ *» Z Ul n r~ > z -1 TJ < n tn N w Tl a TJ z > H > z -4 o TJ m TJ > —4 O z tn —• z o TJ TJ m X > TJ < Ul -4 O TJ m TJ > H c: T) O X H ni ■ — < Oi ni > a t TJ O cn tn tn ■n O TJ Z t> H e £ TJ TJ H m — at at O .—. m O > TJ H Ul ■ —• CJ N tn o H o £ TJ -« -t m Ul Xj a -1 > -i M O z -n o TJ z > H Ul > z o -1 -n I O rn TJ a < TJ m o > o TJ C ui n H in ► h o z I 30 O o o C Ul O H X n _ o O T) O o o Z 13 r* tn H m TJ O -i > H -1 I m 4 -J ■n £ X O TJ TJ Tl Z -♦ J> m ro -1 .—. at ro -_ tx H CD O Ul -i > r~ H > Tl Tl M TJ m n r o r Tl T l o ro TJ z ro *> H TJ TJ O O C O H » -< O z o o Ul H TJ m TJ > n T3 m Tl t-t O O Z TJ O z r* tn ~t nt O z 13 tx tx to to to o o to to to o to CD -0 a o o o o H m — at TJ TJ O O C O -t *-* o z to to to CO to to to to (0 CO to to CO to CO to to to t o C) to (O <0 to <0 (0 UJ to (0 CD CD cn CD CD CD CD CD CD CD 4 'J 1 -1 •J i at tn tx to ro J ro D -J a> tn tx O to CD -j at cn tx C o to C o O o O o O o o o a o o o O O o o co o o O o o V > H a H > r~ Tl »-« m r D TJ TJ O O C O H O z o o 1/1 -t -n O TJ H I m o TJ ~i X m -< m > TJ £ TJ n ■H m tx -o tn tx -4 o Tl o TJ z > -4 £ Tl TJ o TJ H z m t> H at «. «x "j N tn N -4 H o TJ H rn > n > T3 m O) tx C OH O O -4 > —1 r * Tl tJ TJ o m -< m ut H > 03 r~ tn I z m z H O a ut H TJ m TJ (■ J CO t o to -4 J -1 ai ro O to O o a o _* Ul I z m z H n o ut H £ Tl £ TJ o TJ TJ H z -i ni > m -4 — Ol at tn tx CD u X cn ui O -V tx Ol O n u O m TJ TJ Z > J» H n TJ «n •n C 2 £ TJ • T it H m I Z H ^ Z H Z H Z H Z H H TJ m n ITJ^roJO ^TJ^X J^TJ ' * » i n t > t > m > m > m > m • H — O HH ai — a iT J - 'U ) «x at O X a z t- t> -i O o z tx 44 M X __ ••-n c -n C 'n C 'n t • OTJI-OTJOTJOTJOT) TJ m Tl o c c z U l 171 -4 O z 1 ' > -< TJ O C 1 *n j h z ai r S »-* r~ > • t> i > - *» • > • *-• - i t o z o Z n o o : N - - , 0 I C I tx i tx i fT l4 0 _• »— ' f—■ x —x — i - to • -» X - tx n . . - x ■ T) . n . -0 -» -4 -* - - o > \ X w K4 40 : co • ~-j TJ * TJ • c -n x TJ • m co m t o m I '•-!> H T| H ( J - » u H » K) KJ "J n x n x o X - • n • o *• KJ KJ - ti X K). z -* ( O > TJ TJ 1— H — Ol — 0 > -~ i w o a i n i h ~ CO '* to I • o s x I ro t» t» i --------1 - t -n n -4 > n TJ m •» ro to X •n „ ro O X Tl ro Tl at ro < m ut H > CO r* tx at tn a z u» ro ._. ro X CO to CO CO CO CO t o t o to (O to ( 0 CO ( 0 CO t o CO t o to to ( 0 to U CO t o CJI ai 0 ) o> a> (Tl 01 a> a> 0 CD -0 01 i n tx t o r o D-0 a> t n tx o to C o O o O o o tl o o O O o o O O o o o o o o o o o O o o o o O O (J c» o T- CN (0 r T” TJ TJ Tj Tj TJ TJ TJ *j ui I Z UJ X uj *-• z UJ X — l/l Z O O U IN fs| CVJ o O o o o o o o o o O o o o o a) 0> o T- i n ( 0 u . C3 a < — — u < I I Z 3 > - i >- a T o o uj co • ( X U U ' UJ *— i p i - t ~ 00 IN ' M t - —- co> X — (N IN CN CN - <0 - to1 o ' • CN 1 0 ( 0 ( 0 ( 0 1 0 ( 0 1 0 - 10 — (O (0 (0 tNcnto - J - — • J— J< U l < ^O f— UJ (_) U u ll. CO Z (J a u. hCO N CN CN CN CO — •—■ 1- h< < z z «- l(/> o a CN CO -—• — CL cn Z 3 < t-< UJ I u 3 UJ I o UJ *-* u z Ul X (J I u z UJ I (J o z Ul I u IU u u Z UJ O 3 •— — I O X T- »- o a a UJ -» O tn (0 u ► «_ u < I X Z u 3 o u UJ > m <* X a < _» z z O < a o o O C) CO TJ in (0 cCO CO CO CO 10 Tj Tj TJ N TJ o o o a) cn o CO CO o T| TJ Tj o TTJ TJ o CN TJ TJ o co •j Tj o TJ TJ Tj o U) TJ Tj o (0 TJ TJ o rTJ Tj O o CO cn TJ TJ Tj Tj UJ a o CN CN > > CO O UJ < h- — u V- U< H z UJ a Q. O bUJ a —. TT__ a .j < _j — UJ < a u i n O m O i n O c N i n O i n r - o i n O i n O uo O tn -- . O Cl CN CO CO CO Tj TJ TJ in i n (0 (0 r- r-- GO cn ._- in X •_o CO CO CO CO fo Co CO CO CO CO CO CO CO CO CO co CO CO CO (0 O CN 10 (0 10 10 (0 (0 (0 (0 (0 (0 COcoco (0 (0 r n m 10 co (0 (0 —-10 o o o o o i n (0 r- as cn i n in in' in in TJ TJ TJ TJ TJ __ tz UJ z I in _i to < »in UJ 1 UJ a o o o o o CN CO Tj o i n in i n i n i n TJ TJ TJ TJ TJ X u < z CN CN U ♦O o __ CN z __ 3 H UJ r- cO O TJ TJ TJ TJ TJ TJ TJ TJ T* T j TJ TJ T| Tj TJ TJ > O a o N < »- j - ' ^ > O a o U O UJ UJ a a s \ __ . o i n -- ^ GO 00 __ T| *- (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 co (0 (0 (0 (0 10 (0 (0 <010 t- < t~ t- t- UJ UJ1< UJ UJ UJ UJ UJ UJ UJ UJ UJ Uf UJ UJ UJ UJ UJ UJ UJ UJ Ul UJ liJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ Ul uj UJ UJ UJ UJ UJ UJ UJ - h H l - 1- H H J— I— h- b-*-»- h-b- 1-K H Z ■ Z H Z H I— z »- H » »-H 1- H b- b~ b-1- »~ »t- l- 1- h-h- H • a n a >a a a a a a a a : o a o o a a a a a aaa aaa a aaaao aaaaaaaaaaaa aa aaa aaaa ! U 3 U. u 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 IL 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 t- 163 BERRY 1 26 C -- WRITES AND FORMATS THE 10 YEAR F I E L D PROD. COST SUMMARY TABLE C TOO 705 708 W RITE( 6 . 7 0 0 ) F O R M A T ! 2 5 X . ' S U MMA R Y TA BLE ') WRIT E ( 6 . 7 0 5 ) F 0 R M A T ( 2 1 X , ' F I E L D PRODUCTION C O S T ' ) WRIT E ( 6 . 7 0 8 ) F O R M A T ! * . . . a a . . . . . . . ••) 715 720 ■’ 2 5 7 3C "35 740 745 750 50 750 W R I T E ( 6 , 7 15 ) FORMAT! ' 1 ' . 2 7 X . ' $ / Y E A R ' , 1 0 X , ' S / A C R E ' ) WRITE( 6 . 7 2 0 ) F O R M A T ( 2 8 X . ' .................. ' . 1 0 X . ' .................... ' ) W R ITE(6.725) TF£C,~FAC FORMAT! 8 X . ' F A L L ' , 1 2 X . F 1 0 . 2 . 6 X , F 1 0 . 2 ) W R :T E ( 6 . 7 3 0 ) TECY1.TACY1 FORM AT!SXYEAR 1 ' . 1 O X , F 1Q . 2 . 6 X , p 1 0 . 2 W R IT E l6 ,"*3 5 ) TECY2.TACY2 F 0R M A T(8X . 'YEAR 2 ' . 1 0 X , F 1 0 . 2 W R ITE !6.740) TECY2.TACY2 F 0 R M A T ( 8 X . ' Y E A R 3 ' . 10 X . F 1 0 . 2 W R IT E (6 ,7 4 5 ) TFPCY.TAFPC4 F 0 R M A T !8X . 'YEAR 4 ' , 1 0 X , F 1 0 . 2 DO 5 0 1 * 5 . 9 W RITE( 6 . 7 5 0 ) I . T C R C Y . TACRCY F O R M A T ! 8 X . ' Y E A R ' , 1 X , I 1 . 10 X . F CONTINUE W R IT E 'S , 7 6 0 ) TYAY.TYAA F O R M A T ! ' 1 ' , 2 X , ' T E N YEAR W R ITE!6 . ' ( / ' / / ) ' ) . 6 X . F 10.2 14690 14 7 0 0 14710 14720 14~30 14-40 14"5C 14 ~ 5 C ) 14770 14760 14790 14800 14810 14820 14830 14840 14850 14860 148-0 i .6 X . F 10.2) .6X , F 10.2) 1 0 .2 .6X . F 10.2) A V E R A G E ',3 X .F i2 .2 . 4 X . P12.2> 14880 14890 1<90C 14910 14920 14930 C C c c RETURN . END ................................................................................................................................ ... . . . . . . . . SUBROUTINE F I L L ' A E ........................... 1 4 9 4 0 ............................................................................................................................................................................. SUBROUTINE 14 9 5 0 FILLTAB 14960 14970 C C REAL R A T E T A B ( 6 . 1 ) . M A T C 0 ( 5 . 2 ) . C H E M C 0 ( 5 . 2 ) REAL S P E C T A B ! 6 . 6 ) . O R O C T A B ! 7 , 6 ) . I R R T A B ! 2 , 6 ) CHARACTER-35 S KIP ' COMMON / C R D T / R A T E T A B COMMON / FPDT / MA TCO. CHE MC O CO MM ON / S E D T / S P E C T A B CO MM ON / P E D T / P R O C T A B CO MM ON / IEDT / IRRTAB C C 5 C C C C REWI NO 7 READ I N I T I A L CUSTOM RATE DO 5 1 * 1 . 6 READ( 7 , - ) R A T E T A B ! I , 1 ) S K I P ONE S E P A R A T I N G R E C O R D R E A D !7, ' (A1 ) ' ) S KIP 14600 14610 14620 14630 14640 14650 14660 - - - - 14670 14680 VALUES INTOTABLE READ I N I T I A L F I E L D PRODUCTION M A T E R IA L S COS TS AND Q U A N T I T I E S I N T O T A B L E DO 1 0 1 * 1 . 5 . 14980 14990 15000 15010 15C2C 1503C 15040 15050 15060 15070 15080 15090 15100 15110 15120 15130 15140 15150 15160 15 1 - 0 164 3ERRY1 27 READ( 7 . » ) ( M A T C Q ( I , J ) . J * 1 . 2 ) 10 C S K I P ONE S E P A R A T I N G R E C O R D RE A D ( 7 . ' (, A 1 ) ' ) S K I P C c READ I N I T I A L F IE L D PRODUCTION CHEMICALS c COSTS AND Q U A N T I T I E S I N T O T A BL E DO 2 0 1 * 1 , 5 20 READ{7 , • ) ( C H E M C O ( I . J ) , J « 1 ,2 ) C S K I P ONE S E P A R A T I N G R E C O R D . RE A D ( 7 , ' ( A1 ) ' ) S K I P c c c 30 c READ I N I T I A L S P E C I A L T Y E Q U I P M E N T INTO TABLE DO 3 0 1 * 1 . 6 R E A DC7 . - ) ’ ( SPECTAB( I . J ) . J * 1 . 6 ) S K I P ONE S E P A R A T I N G R E C O R D . R E A D ( 7 . ' ( A i ) ' I SKId VALUES c c c 40 c READ INTO DO 4 0 READ( SKIP READ I N I T I A L PROCESSING EQUIPMENT TABLE 1*1,7 7 .- ) (P R O C TA B (I,J).J*1,6) ONE S E P A R A T I N G R E C O R D . (7 , ' ( A 1 ) ' ) SKIP VALUES READ I N I T I A L IR R IG A T IO N EQUIPMENT INTO TABLE DO 5 0 1 * 1 . 2 READ{ ? ) ( IRRTAB( I . J ) . J * 1 .6 ) VALUES c 50 c c • ecsoo RETURN RETURN END TO BERRV 15 3 5 0 15 3 6 0 1537Q 15380 15390 15400 15410 c c 15180 15190 15200 1 5 2 10 15220 15230 15240 15250 15260 15270 15280 15290 15300 15 3 10 15 3 2 C 15 3 3 C 15340 15420 15430 15440 15450 15460 154-C 1548C 1549C 15500 165 The following data f i l e the model. ( DATAFL1 ) l i s t s the data f i l e values The values in t h i s data f i l e used by are based on the 198 3 -8 4 produc­ t i o n cost values. ' OC 11 53 7 s . ■iQ 86 1 20 1 30 ■40 '50 '60 6C 5 90 4 ,00 4 90 2 . 00 . 174.00 136.00 4C0.00 6 1 . 00 1.1 ' 1.0 16.3 16.9 3.85 0 170 18C 0 . 25 50.0 0.0 10890.0 '90 20C 2i0 220 230 24C 250 250 5.0 1.0 1.5 0.5 2.0 270 1500C.0 '300.0 1150.0 1000 0 70000.0 20.0 1,0 i .0 1.0 i.o 1.0 80.0 15.0 15.0 15.0 10.0 10.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 .01 . 01 .01 .01 .01 .01 .0001 .0002 .00075 . 0004 .00025 .Ol 1000.0 3500.0 13 0 C . 0 8000.0 20000.0 320C-. 0 2500.0 1.0 1.0 6.0 1 .0 2.0 1 .0 1.0 10.0 8.0 10.0 '0 .0 8.0 15.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 .00 . 02 . 02 . 02 .05 .01 . 02 0.0 0.0 0. 0 0. 0 15 . 0 30 0 0, 0 0. 0 0 . 01 0 . 01 0 . 07 0..0 9 9 .9 9 9 9 9 9 9 9 9 9 230 290 3 CO 3 1C 320 3 30 340 350 360 370 38C 39C 4 C0 4 1C 420 430 44C 45C 46C 4 70 L IS T OF R EF E RE NC E S LIS T OF REFERENCES A g u i l a r , Rodolfo, J . , 1973. Systems Analysis H a l l , I n c . , Englewood C l i f f s , New Jersey. and Design. P r e n ti c e - American Society of A g r i c u l t u r a l Engineers, 1983. A g r i c u l t u r a l Machin­ ery Management Data. 1983-1984 Engineers Yearbook. American Society o f A g r i c u l t u r a l Engineers. P.O. Box 410, St. Joseph, Michigan 49085. A s h c r a f t , Eugene, 1984. Communications. A s h c r a f t Farms, Copemish, MI. Athey, Thomas, H., 1982. Systematic Systems Approach. I n c . , Englewood C l i f f s , New Jersey. Awad, E l i a s , M., 1979. Systems Analys is and Design. I n c . , Homewood, I l l i n o i s . 49625. Personal P re n tice-H a ll, Richard D. I r w i n , Benson, F. J . and M i t t e l s t a d t , Lona., 1984. Minnesota farm machinery economic cost estimates f o r 1984. A gricultural Extension Se rvice, AG-F0-2308. U n i v e r s i t y o f Minnesota, Minneapolis, MN. Bloome, P.D., Nelson, T . R . , and Rousch, C.E., 1975. Engineering econom­ i c s i n c o n ti n u i n g education--cash flow and present value an aly si s o f farm investments. Transactions o f the ASAE. American Society o f A g r i c u l t u r a l Engineers, P.O. Box 410, St. Joseph, MI 49085, pp. 770-776. Booster, D. E ., K i r k , D. E ., Baker, E. B . , Varseveld, G.W., M a r ti n , L.W., and Lawrence, F . J . , 1983. Strawberry mechanical har ves ting and processing (AES P r o j e c t 525) A g r i c . Exp. S t a t i o n , Oregon State U n i v e r s i t y , C o r v a l l i s , Oregon. Booster, D.E ., K i r k , D .E ., and Nelson, G.S., 1969. State of the a r t and f u t u r e outlook f o r mechanical strawberry h a rv e s t in g , p. 435-467. In: B.F. C a r g i l l and G.E. Ros sm iller (e d .) F r u i t and Vegetable Harvest Mechanization Technological Im plications. RMC Report Number 16. Rural Manpower Center, Michigan State U n i v e r s i t y , East Lansing, MI. Bowers, Wendell, 1975. Fundamentals of Machine Operation - - Machinery Management. John Deere Service P u b l i c a t i o n s , Moline, I l l i n o i s . 166 LIST OF REFERENCES A g u i l a r , Rodolfo, J . , 1973. Systems Analysis H a l l , I n c . , Englewood C l i f f s , New Jersey. and Design. P re n ti c e - American Society of A g r i c u l t u r a l Engineers, 1983. A g r i c u l t u r a l Machin­ ery Management Data. 1983-1984 Engineers Yearbook. American Society o f A g r i c u l t u r a l Engineers. P.O. Box 410, St. Joseph, Michigan 49085. A s h c r a f t , Eugene, 1984. Communications. A s h c r a f t Farms, Copemish, MI. Athey, Thomas, H., 1982. Systematic Systems Approach. I n c . , Englewood C l i f f s , New Jersey. Awad, E l i a s , M., 1979. Systems An aly si s and Design. I n c . , Homewood, I l l i n o i s . 49625. Personal P rentice-H all, Richard D. I r w i n , Benson, F. J . and M i t t e l s t a d t , Lona., 1984. Minnesota farm machinery economic cost estimates f o r 1984. Agricultural Extension Service, AG-F0-2308. U n i v e r s i t y o f Minnesota, Minneapolis, MN. Bloome, P.D., Nelson, T . R . , and Rousch, C.E., 1975. Engineering econom­ i c s in c o n ti n u i n g education--cash flow and present value an alysis o f farm investments. Transactions of the ASAE. American Society o f A g r i c u l t u r a l Engineers, P.O. Box 410, St. Joseph, MI 49085, pp. 770-776. Booster, D. E ., K i r k , D. E., Baker, E. B. , Varseveld, G.W., M a r ti n , L.W., and Lawrence, F . J . , 1983. Strawberry mechanical ha rvesting and processing (AES P r o j e c t 525) A g r i c . Exp. S t a t i o n , Oregon State U n i v e r s i t y , C o r v a l l i s , Oregon. Booster, D. E., K i r k , D .E ., and Nelson, G.S., 1969. State o f the a r t and f u t u r e outlook f o r mechanical strawberry h a r v es ti n g , p. 435-467. In: B.F. C a r g i l l and G.E. Ros smi ller (e d .) F r u i t and Vegetable Harvest Mechanization Technological Im plications. RMC Report Number 16. Rural Manpower Center, Michigan State U n i v e r s i t y , East Lansing, MI. Bowers, Wendell, 1975. Fundamentals of Machine Operation - - Machinery Management. John Deere Service P u b l i c a t i o n s , Moline, I l l i n o i s . 166 167 Bradford, L a r r y , J . , 1979. Status of mechanical berry harvest. 109th Annual Report, State H o r t i c u l t u r a l Society o f Michigan, pp. 132-134. Bradford, L . J . , Ledebuhr, R .L . , and Hansen, C.M., 1980. C ul tu ra l systems f o r mechanical har ves ting in Michigan Strawberry Mechanization Sta­ t i o n B u l l e t i n 645, A g r ic . Exp. S t a t i o n , Oregon State U n i v e r s i t y , C o r v a l l i s , Oregon, pp. 1-3. Brown, G.K., 1980. Harvest mechanization s ta tu s f o r h o r t i c u l t u r a l ASAE Paper Number 80-1532, American Society of A g r i c u l t u r a l neers, P.O. Box 410, St. Joseph, MI 49085. crops. Engi­ Burrows, W.C. and Siemens, J . C . , 1974. Determination o f optimum machin­ ery f o r corn-soybean farms. Transactions of the ASAE. American Society of A g r i c u l t u r a l Engineers, P.O. Box 410, St. Joseph, MI 49085. Cooper, Charles, L . , 1978. 110th Annual Report, pp. 128-130. Successful strawberry c u l t u r a l practices. State H o r t i c u l t u r a l Society o f Michigan, Dalton, G.E., 1982. Managing A g r i c u l t u r a l P u b lis h e rs , New York, N.Y. Systems. Applied Science Denisen, E.L. and Buchele, W.F., 1967. Mechanical Harvesting o f Straw­ b e r r i e s . American Society f o r H o r t i c u l t u r a l Science, Volume 91. pp. 267-273. Deutsch, Ralph, 1969. Systems Analys is Techniques. Englewood C l i f f s , New Jersey. P r e n t i c e - H a l 1, Inc. Duyck, L. A s h c r a f t , E., F u j i i , J . and Brooks, J . , 1980. Grower evalua­ t i o n o f strawberry mechanization, S ta t io n B u l l e t i n 645, A g r i c u l t u r ­ al Experiment S t a t i o n , Oregon State U n i v e r s i t y , C o r v a l l i s , Oregon, pp. 222-228, August. F r i d l e y , R.B., 1973. Simulation of strawberry production in C a l i f o r n i a to evaluate socio - economic i m p l i c a t i o n s o f a l t e r n a t e harvest systems. Ph.D. Thesis, Michigan State U n i v e r s i t y , East Lansing, MI. F r i d l e y , R.B., and Ad ria n , P . A . , 1968. Evaluating the f e a s i b i l i t y of mechanizing crop h ar ves t. ASAE Transaction Vol. 11, pp. 350-352. American Society o f A g r i c u l t u r a l Engineers, P.O. Box 410, St. Joseph, MI 49085. F r i d l e y , R.B., and Holtman, J . B . , 1973. Simulation of strawberry produc­ t i o n in C a l i f o r n i a to evaluate a l t e r n a t i v e harvest systems. ASAE Paper Number 73-5526. American Society of A g r i c u l t u r a l Engineers, P.O. Box 410, St. Joseph, MI 49085. 168 F r i s b y , J.C . and Backhop, C.W., 1968. Weather and economics determine c o r n -p r o d u ct io n machinery systems. Transactions o f the ASAE. American Society o f A g r i c u l t u r a l Engineers, P.O. Box 410, St. Joseph, MI 49085. pp. 61-64. Grant, James, 1980. "Our experience w it h mechanical harvesting of straw­ berries." 110th Annual Report, State H o r t i c u l t u r a l Society of Michigan, pp. 128-132. Grant, James, 1982."How we grow s tr a w b e r r ie s f o r mechanical h a r v e s t in g . " 112th Annual Report. State H o r t i c u l t u r a l Society o f Michigan, pp. 110-116. Grant, W i l li a m . 1984. Lake Leelanau, MI. Personal Communciations. Gray, V . P . , Fries en, 0 . , Bannerman, B ., Posthumas, S., and Fedorkow, E., 1982. Report of the processing se ctio n o f the Processing Straw­ be rry Research C or p o r a tio n , 1982 Processing Season. H o r t i c u l t u r a l Research I n s t i t u t e o f O n ta r io . Hansen, C.M., 1972. "Strawberry Mechanization--The Pieces Begin to F i t . " American F r u i t Grower, Volume 92, p. 17. Hansen, C.M. and Ledebuhr, R .L ., 1980. Mechanical harvesting o f straw­ b e r r i e s in Michigan. Strawberry Mechanization S t a t io n B u l l e t i n 645. A g r i c . Exp. S t a t i o n , Oregon State U n i v e r s i t y , C o r v a l l i s , Oregon, pp. 54-62. Hansen, C., Ledebuhr, R. L . , VanEe, G., Fri esen, 0 . , 1983. Systems approach to strawberry harvest mechaniztion. Department o f A g r i c u l ­ t u r a l Engineering, Michigan State U n i v e r s i t y , East Lansing, MI. Holtman, J . B . , Hansen, C.M., Ledebuhr, R . L . , C la ry , C.D., and Pierson, L . J . , 1977. Michigan mechanical strawberry harvest f e a s i b i l i t y s t u d i e s . ASAE Paper Number 77-1030. American Society o f A g r i c u l ­ t u r a l Engineers, P.O. Box 410, St. Joseph, MI 49085. Holtman, J . B„, P i c k e t t , L . K . , Armstrong, D.L. and Connor, L . J . , 1973. A systematic approach to s i m u l a ti n g corn production systems. Trans­ a ctio ns of the ASAE. American Society of A g r i c u l t u r a l Engineers, P.O. Box 410, St. Joseph, MI 49085. pp. 19-23. Humphreys, Kenneth, K. and K a t e l l , Si dney., 1981. Basic Cost Engineer­ in g . Marcel D e k k e r . I n c . , 270 Madison Avenue, New York, N.Y. 10016. Hunt, Donnell, R., 1963. E f f i c i e n t f i e l d machinery s e l e c t i o n . A gricul­ t u r a l Engineering. American Society of A g r i c u l t u r a l Engineers, P.O. Box 410, St. Joseph, MI 49085. pp. 78-88. Hunt, Donnell, 1979. Farm Power and Machinery Management, Seventh Edition. Iowa State U n i v e r s i t y Press, Ames, Iowa. 169 Hussen, Ahmed, H . , Brown, W.B., Booster, D. E., Lawrence, F . J . , M a r ti n , L.W., and Varseveld, G.W., 1979. Estimated costs and re tur ns from mechanical strawberry harvest in Oregon: A Progress Report, Special Report 556. Oregon Experiment S t a t i o n , C o r v a l l i s , Oregon. J e le n , F r e d e r ic , C. and Black, James, H., 1983. Cost Engineering. McGraw-Hill, I n c . , New York, N.Y. and Op ti m iz a ti on Kepner, R.A., Bainer, R., and Barger, E . L . , 1980. P r i n c i p l e s of Farm Machinery, Th ir d E d i t i o n . AVI Pu blishing Company, I n c . , Westport, Connecticut. Kelsey, M. and Johnson, A ., 1979. Costs o f strawberry production in southwestern Michigan. Extension B u l l e t i n E-1114, Cooperative Extension Se rv ic e , Michigan State U n i v e r s i t y , East Lansing, MI. Kelsey, M. and B e l t e r , H., 1974. Economics o f strawberry production in southwestern Michigan. Report Number 276. Department of A g r i c u l ­ t u r a l Economics, Michigan State U n i v e r s i t y , East Lansing, Michigan. Kim, C.S., Brown, W.G., and Langmo, R.D., 1980. Economic f e a s i b i l i t y to Oregon growers of mechanically harvested s t r a w b e r r i e s . Strawberry Mechanization S ta t io n B u l l e t i n 645, A g r i c u l t u r a l Experiment S t a t i o n , Oregon Stat e U n i v e r s i t y , C o r v a l l i s , Oregon, pp. 175-199. Ledebuhr, R.L. and Hansen, C.M., 1980. I n - p l a n t handling o f mechanical harvested s tr a w b e r r i e s . Strawberry Mechanization B u l l e t i n 645, A gricultural Experiment S tation, Oregon State University, C o r v a l l i s , Oregon, pp. 54-62. Ledebuhr, R. L . , 1981. Status o f mechanical strawberry ha rve s tin g . Department o f A g r i c u l t u r a l Engineering, Michigan State U n i v e r s i t y , East Lansing, Michigan. Ledebuhr, Richard, L . , 1982. Mechanical strawberry ha rvesting o f s o l i d set c u l t u r e . 112th Annual Report, State H o r t i c u l t u r a l Society of Michigan, pp. 116-119. M a r t i n , P h i l i p , M., 1983. American, pp. 54-59. "Labor - i n t e n s i v e A g r i c u l t u r e . " S c i e n t i f i c October, 1983. Volume 249, Number T"! Mechanical T ra n s p la n te r Company. 1984. 1150 Michigan 49423. Personal Communication. South C e n t r a l , Holland, M i l l e r , A u s t i n . , 1984. S p r i n k l e r I r r i g a t i o n Supply Company. 1316 N. Campbell Road, Royal Oak, Michigan 48067. Personal Communication. Michigan Crop Reporting Service. 1960 - 1982. Michigan A g r i c u l t u r a l S ta tis tic s . Department of A g r i c u l t u r e , State of Michigan, Lansing, Michigan. M i l e s , Ralph, F . , J r . , 1973. York, NY. Systems Concepts, John Wiley and Sons, New 170 M in ita b I n t e r a c t i v e S t a t i s t i c s on the CDC System. 1981. From Penn. State U n i v e r s i t y . On the Michigan State U n i v e r s i t y Computer Labor­ a to ry System. M o r r is , J . R., Ka tt an , A. A ., Nelson, G. S., and Cawthon, D. L . , 1978. Developing a mechanized system f o r p r odu cti on , harvesting and hand­ l i n g o f s tr a w b e r r i e s . H o r t i c u l t u r a l Science, Volume 1 3 ( 4 ) , pp. 413422. Muhtar, H.A., 1982. An economic comparison o f conventional and conser­ v a t i o n t i l l a g e systems i n the southeast Saginaw Bay coastal d r a i n ­ age basin. Ph.D. D i s s e r t a t i o n , Department o f A g r i c u l t u r a l Engineer­ in g , Michigan Stat e U n i v e r s i t y , East Lansing, Michigan. Neter, J . and Wasserman, W., 1974. Applied L ine ar S t a t i s t i c a l Models. Richard D. I r w i n , I n c . , Homewood, I l l i n o i s . Nie, N.H., H u l l , C.H., Je n k in s , J . G . , S te in br e n n e r , K ., and Bent, D.H., 1975. S t a t i s t i c a l package f o r the social sciences. 2nd Ed. McGrawH i l l Book Company, New York, NY. Peters, M. S. and Timmhaus K ., 1968. Pl a nt Design and Economics f o r Chemical Engineers. McGraw-Hill Book Company. New York, N.Y. 10016. Ricketson, C .L ., 1968. P la n t spacing in so lid -b ed strawberry p l a n t i n g s . Report H o r t i c u l t u r a l Research I n s t i t u t e of O n ta ri o , pp. 56-67. R o t t h o f f , Walter, 1981. Challenging strawberry production p r a c t i c e s . 111th Annual Report, State H o r t i c u l t u r a l Society of Michigan, pp. 138-142. Rotz, C.A., Black, J . R . , Savoie, P . , 1981. A machinery cost model which deals with i n f l a t i o n . ASAE Paper Number 81-1513. American Society o f A g r i c u l t u r a l Engineers, P.O. Box 410, St. Joseph, MI 49085. Rountree, J . H . , 1977. Systems thinking--Some fundamental Aspects. A g r i ­ cultural Systems. Applied Science Publishers L t d . , England, pp. 247-254. Ryan, Thomas, A ., J r . , J o i n e r , B. L. and Ryan, B. F . , 1976, Minitab Student Handbook. Duxbury Press, North S c i t u a t e , MA. Sammet, L. L . , 1959. Systems engineering in A g r i c u l t u r e . A g r i c u l t u r a l Engineering, Volume 40, Number 11. American Society of A g r i c u l t u r ­ al Engineers. P.O. Box 410, St. Jospeh, MI 49085. pp. 663-687. Schwab, G.D., 1983. sion Se rv ice , East Lansing, Custom work rates in Michigan. Cooperative Exten­ Extension B u l l e t i n E-458. Michigan State U n i v e r s i t y , Michigan. (August). 171 Siemens, J . , 1980. Se lec t machinery to complete job in optimum time p er iod. In: Farming w i t h Amoco, 1980, Number 4. Products and P r i c i n g Department, Amoco Oil Company, 200 East Randolph D r iv e , Chicago, I l l i n o i s 60601. Singh, Devinder, 1978. F i e l d machinery systems modeling and r e q u i r e ­ ments f o r selected Michigan cash crop production systems. Ph.D. D issertation, A gricu ltu ra l Engineering Department, Michigan State U n i v e r s i t y , East Lansing, Michigan. Smith, E.S. and O l i v e r J . D . , 1974. Annuity approach to machinery costs. Transactions of the ASAE. American Society of A g r i c u l t u r a l Engi­ neers, P.O. Box 410, St. Joseph, MI 49085. pp. 796-797. Spence, J . T . , Cotton, J . W., Underwood, B. J . and Duncan, C. P ., 1976. Elementary S t a t i s t i c s . P r e n t i c e - H a l l , I n c . , Englewood C l i f f s , N.J. S t a t i s t i c a l Algorithums Package. (SPSS). 1975. On the Michigan State U n i v e r s i t y Computer Laboratory System. East Lansing, MI 48824. Turner, J . H . , 1980. Planning f o r an I r r i g a t i o n System. (2nd E d .) , American As s o c ia t io n f o r Vocational I n s t r u c t i o n a l M a t e r i a l s , AAVIM, 120 Engineering Center, Athens, Georgia 30602. United States Department of A g r i c u l t u r e 1963-1982. A g r i c u l t u r a l S t a t i s ­ t i c s 1963-1982. Superintendent o f Documents, Washington, D.C. 20402. United States Department o f A g r i c u l t u r e . 1965. Termination o f the Bracero Program. A g r i c u l t u r a l Economic Report Number 77, Economic Research Se rv ic e , Washington, D.C. 20250. Wolak, F. J . , 1981. Development o f a f i e l d machinery s e le c t io n model. Ph. D. D issertation, Department of A g r i c u l t u r a l Engineering, Michigan State U n i v e r s i t y , East Lansing, Michigan. Wri ght , A . , 1970. "Farming Systems Models and S i m u l a t i o n . " In : J . B. Dent and J . R. Anderson, Systems Analys is in A g r i c u l t u r a l Manage­ ment. John Wiley and Sons. Sydney.