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ABSTRACT

ROBUST SIGNAL PROCESSING METHODS FOR MINIATURE ACOUSTIC SENSING,
SEPARATION, AND RECOGNITION

By

Amin Fazel

One of several emerging areas where micro-scale integration promises significant breakthroughs

is in the field of acoustic sensing. However, separation, localization, and recognition of acoustic

sources using micro-scale microphone arrays poses a significant challenge due to fundamental

limitations imposed by the physics of sound propagation. The smaller the distance between the

recording elements, the more difficult it is to measure localization and separation cues and hence

it is more difficult to recognize the acoustic sources of interest. The objective of this research is

to investigate signal processing and machine learning techniques that can be used for noise-robust

acoustic target recognition using miniature microphone arrays.

The first part of this research focuses on designing “smart” analog-to-digital conversion (ADC)

algorithms that can enhance acoustic cues in sub-wavelength microphone arrays. Many source sep-

aration algorithms fail to deliver robust performance when applied to signals recorded using high-

density sensor arrays where the distance between sensor elements is much less than the wavelength

of the signals. This can be attributed to limited dynamic range (determined by analog-to-digital

conversion) of the sensor which is insufficient to overcome the artifacts due to large cross-channel

redundancy, non-homogeneous mixing and high-dimensionality of the signal space. We propose a

novel framework that overcomes these limitations by integrating statistical learning directly with

the signal measurement (analog-to-digital) process which enables high fidelity separation of linear

instantaneous mixture. At the core of the proposed ADC approach is a min-max optimization of a

regularized objective function that yields a sequence of quantized parameters which asymptotically



tracks the statistics of the input signal. Experiments with synthetic and real recordings demonstrate

consistent performance improvements when the proposed approach is used as the analog-to-digital

front-end to conventional source separation algorithms.

The second part of this research focuses on investigating a novel speech feature extraction algo-

rithm that can recognize auditory targets (keywords and speakers) using noisy recordings. The fea-

tures known as Sparse Auditory Reproducing Kernel (SPARK) coefficients are extracted under the

hypothesis that the noise-robust information in speech signal is embedded in a subspace spanned

by sparse, regularized, over-complete, non-linear, and phase-shifted gammatone basis functions.

The feature extraction algorithm involves computing kernel functions between the speech data and

pre-computed set of phased-shifted gammatone functions, followed by a simple pooling technique

(“MAX” operation). In this work, we present experimental results for a hidden Markov model

(HMM) based speech recognition system whose performance has been evaluated on a standard

AURORA 2 dataset. The results demonstrate that the SPARK features deliver significant and

consistent improvements in recognition accuracy over the standard ETSI STQ WI007 DSR bench-

mark features. We have also verified the noise-robustness of the SPARK features for the task of

speaker verification. Experimental results based on the NIST SRE 2003 dataset show significant

improvements when compared to a standard Mel-frequency cepstral coefficients (MFCCs) based

benchmark.
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Chapter 1

Introduction

One of several emerging areas where micro/nano scale integration promises significant break-

throughs is in the field of acoustic sensing, separation, and recognition. For example, it is envi-

sioned that next generation of intelligent hearing devices will integrate hundreds of micro/nanoscale

microphones, separate speech from noise, track conversations in cluttered environments and thus

provide significant improvements in speech intelligibility for individuals with hearing impairments.

Sensing, separation and recognition of acoustic sources using micro/nano scale microphone arrays,

however, poses significant challenges in the area of robust signal processing. The objective of this

research is to develop theory and algorithm for robust acoustic recognition systems using miniature

microphone arrays and to investigate using of these devices in real world applications.

1.1 Motivations and applications

The acoustic sensing and recognition has been widely used in different applications ranging from

bioacoustics to military devices. In bioacoustics [1, 2, 3, 4], acoustic sensing and recognition

systems have been used by ornithologists to study bird species interaction in their environment.
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The acoustic based technology in bioacoustic is particularly important in places where the vis-

ibility is limited such as rain forest environment. In military applications [5, 6, 7, 8, 9, 10],

acoustic sensing and detection system will detect an acoustic event, such as a sniper’s weapon

firing or a door slamming and then will use that information for further actions. These acoustic

sensing/detection devices are usually mounted on a robotic vehicles which provides commanders

with overall situational awareness. Target detection and tracking systems also partially benefit

from the acoustic sensing technology [11, 12]. The acoustic sensing system has also been used in

electronic textiles (e-textiles) with applications mostly in military equipments [13, 14]. Acoustic

sensing and recognition systems have also been utilized in intelligent transportation technology for

different purposes such as speed monitoring, traffic counting, and vehicle detection and classifica-

tion [15, 16]. Railroad system has also been benefited in using acoustic devices for bearing health

monitoring [17, 18].

Micro/nano-scale acoustic recognition system is one of emerging areas in miniaturization tech-

niques where they have found different applications across disciplines. There are some applica-

tions in which their imposed limitations motivate the use of miniature acoustic recognition systems.

Some of these applications like hearing aids require the source of interest to be far away from the

recording device. In such cases, it is very beneficial to use array of microphones in order to use the

spatial information for environmental noise compensation. However, acoustic sensing in miniature

microphone arrays introduces a key challenge which is the “high fidelity” imaging of the acoustic

events in their surrounding environment. Other challenge comes from the acoustic recognition

system where the objective is to robustly recognize the acoustic events in real environment which

has been attracting a bulk of research in signal processing society. This research addresses these

challenges and is particularly interested in micro/nano scale acoustic source separation and recog-
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Figure 1.1: Motivation: Offline data collection and acoustic recognition (For interpretation of the
references to color in this and all other figures, the reader is referred to the electronic version of
this dissertation)

nition systems where the multiple recording elements are places very close to each other in which

the recording condition can be viewed as far-field.

Fig. 1.1 shows a big picture motivation behind this research. In such systems, an offline data

collection provides the training data for the recognition system. This data is collected using the

miniature microphone array and in an environment where it has as less mismatch as possible with

the on-line recognition situation. This data then will be used to build an acoustic model. In the

on-line acoustic recognition, first the acoustic event will be captured again using the miniature

microphone array and then from the recorded data some appropriate feature will be extracted.

Using the acoustic model generated offline, an acoustic target will be recognized from the extracted

features. Usually the acoustic model in the offline training procedure, is built with the same features

as the on-line recognition system. To motivate even more this research two specific applications of
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miniature acoustic sensing and recognition is presented below.

Biometric systems: One of the technology were miniature microphone array promises break-

through is in the area of speech based biometric systems. Speech based biometric system such as

speaker verification/identification is a popular biometric identification technique used for authenti-

cating and monitoring human subjects using their speech signal [19, 20]. The method is attractive

because it does not require direct contact with the individual, thus avoiding the hurdle of “perceived

invasiveness” inherent in most biometric systems like iris and finger print recognition systems. To

date, most commercial implementations of speaker verification systems have been designed for en-

terprise applications that utilize large scale computing resources and infrastructure [21, 22, 24, 23].

However, with the proliferation of portable devices there has been an increasing demand for small

scale speaker verification systems and therefore these systems demand recognition performance

which is robust to variable background noise and to channel (microphone) conditions. Homeland

security and surveillance applications might require identification/verification of target speakers

in a given environment, in which case the speaker may not be in proximity with the microphone.

The enrollment data corresponding to the target speaker could be limited and could have been

acquired from unconventional sources (video/audio tapes, over the network or from archives). Un-

fortunately, even though most existing speech based recognition systems deliver acceptable accu-

racy under controlled/clean conditions, their performance degrades significantly when subjected to

noise present in practical environments and especially for applications where the speaker is not in

the proximity of the recording elements [25, 26, 27]. This shows that acquisition and recognition

of the speech signal for small scale speech based biometric system needs high resolution signal

and a robust recognition system where this research addresses these problems by employing the

techniques for both super-resolution recording and robust recognition.
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Hearing aids: Typically hearing aid users which were only %20 of all the hearing impaired

in 2004 [28], have difficulty when listening to a speaker in the noisy environment. This difficulty

comes from the fact that the conventional hearing aids amplify all receiving sounds without dis-

criminating between the speaker of the interest and background noises. The ideal hearing aid is

the one with the functionality of binaural hearing system which provides the signals and allows the

patient to listen to one speaker. The ability to record the high quality speech signal using micro-

phone arrays and the lack of success on single microphone hearing aids motivate microphone array

hearing aids [29, 30, 31]. Using the microphone arrays for hearing aids provides the special infor-

mation of the receiving signals which can be used to focus on a specific speaker in the surrounding

environment. The bulk of research concerning the speech array processing has been done [34]. Al-

though the basic principle of speech array processing can be applied for hearing aid applications,

several other problems exist which needs to be answered. One of them is the cosmetic consider-

ation which limits the design of hearing aids to use the miniaturize/compact microphone arrays.

Using miniature/compact microphone arrays makes the spatial aperture much smaller relative to

the wavelength of the speech signal. Other problem is the noisy environment which exists for the

operation of the hearing aid. Although this work does not directly address the specific hearing aids

application needs, but the techniques suggested here can be used in the next generation of “smart”

hearing aids.

System miniaturization is not only limited to the acoustic sensing applications but it has found

applications in other areas as well. For example in the rapidly emerging field of brain machine

interface, it is very common to record from thousands of neurons using micro-electrode sensor

array [79, 80, 81]. The recording signals are then processed to extract useful information for

controlling the movement of a prosthetic device. Another example comes from the area of wireless
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communication where a 16-element transmitter array is used with a sub-wavelength inter-element

spacing between sensors [35].

Figure 1.2: Acoustic recognition system composed of four main sub-systems

1.2 Miniature acoustic recognition system

In a micro/nano scale setting, this research proposes an acoustic recognition system composed of

four main components: (a) “smart” signal acquisition, (b) source separation, (c) feature extraction,

and (d) acoustic recognition where Fig. 1.2 shows a block diagram of the proposed system.

The “smart” signal acquisition unit is used to record the acoustic signals with high fidelity

by using as much dynamic range as possible in analog-to-digital conversion module. This unit

uses a miniature microphone array in order to be able to record signal of interest with high fi-

delity. Note that in many of applications where a miniature acoustic recognition system can be

used, the signal of interest is far away from the recording elements, hence the need for a micro-

phone array. The proposed signal acquisition device performs the spatial sensing of signal along

with analong to digital process where we have formulated the analog-to-digital modulation within

the framework of statistical learning such that the algorithm retrives the spatial manifold which

contains the information for decorrelating the signal wavefront. In the current research, a min-max

optimization approach is used to model the signal de-correlation and analog-to-digital conversion

with a single cost function. In order to optimize the cost function, a stochastic gradient descent
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and ascent algorithms are employed. The stochastic gradient descent is used to minimize the cost

function with respect to the internal state of the system in which it yeilds the analog-to-digital

conversion module. The stochastic gradient ascent maximizes the cost function with respect to the

signal transformation that minimizes the input correlation hence decorrelating the input signals.

The architecture of the “smart” signal acquisition is shown in Fig. 1.3 where the input is a time

varying analog signal x. This system consists of a matrix-vectormultiplier which transforms the

input signal x into Bx where B denotes a linear transformation matrix. This transformed signal is

then processed by an array of analog-to-digital converter to produce a binary data stream d along

with the spatial information Λ and B. An adaptation unit uses the binary output d to update the B

and Λ.

The source separation system is used in order to separate the source of interest from the rest

of acoustic events and to provide a high quality speech signal for the recognition system. The

assumption here is that the input speech signals are statistically independent from each othre,

therefore conventional independent component analysis (ICA) algorithms were applied to separate

the sources. After separating the source of interest from mixutre of different signals, the next step

is to extract the robust features for the recognition.

The feature extraction unit provides speech features that are robust to the environmental

noises. A hierarchical model is used to extract the robust auditory features from the speech signal.

This model is based on the recent finding in auditory neuroscience indicating that there is a hierar-

chical processing in the human auditory cortex where the received signal is first broken down into

basic features and later they are integrated into more complex stimuli. Inspiring from biological

data, the proposed hierarchical model consists of two layers of processing as shown in Fig. 1.4.

In the first level of this computational model, the similarity of sensory auditory world is measured
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Figure 1.3: Architecture of the “smart” signal acquisition device

through a kernel based approach with a set of gammatone basis functions. These simple basis

functions represent the so-called spectro-temporal receptive fields (STRFs) in the auditory cortex.

In order to implement this, we apply the kernel based approach to a reproducing kernel Hilbert

space (RKHS) spanned by gammatone basis functions. The result of incorporating this a-priori

information is that these signitures can be extracted in real-time using pre-computed projection

matrices. Then all the outputs are sent to the higher level where they will be integrated in order

to generate the more complex outputs. In current research, we explored two different idealized

pooling mechanisms of summation (“SUM”) and maximization (“MAX”) operation, both with

nonlinear weights to integrate the outputs of previous level. This weighting function also emulates

the psychoacoustical nonlinear relation between the intensity of sound and its perceived loudness.

The proposed computational model is very close to the HMAX approach introdued in [63] where

it models the visual cortex in a hierarchical fashion for objective recognition task. In order to feed

these features into a back-end acoustic recognition system, discrete cosine transform (DCT) is used

to decorrelate the features.

The acoustic recognition unit is used to recognize the acoustic events. Once the feature vectors
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Figure 1.4: Hierarchical model of auditory feature extraction.

corresponding to the acoustic events have been extracted the associated data also known as training

data is used to build models for the recognition systems in an offline process. During the test phase,

the trained models are used to recognize a sequence of feature vectors extracted from unknown

acoustic events.

Even the proposed miniature acoustic recogniton system is general and can be used for recog-

nition of any type of acoustic events, but in this research we used it for two tasks of speech recog-

nition and speaker verification.
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1.3 Scientific contributions

The conducted research has the following two main scientific contributions:

“Super-resolution” high-density acoustic signal acquisition: In this research a far-field

recording condition on miniature microphone array has been investigated, a research area that

have not been received much attention. First a mathematical model has been developed for the

miniature microphone array. This model shows that speech signals received at the miniature mi-

crophone array can be considered to be in the far-field condition with the instantaneous mixing.

Then a “smart” signal acquisition system is introduced in order to remove the correlation of the

received signal at the analog-to-digital conversion level and increasing the dynamic range of the

acquisition system. This method is based on a min-max optimization of a regularized objective

function which integrates the analog-to-digital conversion with the statistical machine learning.

Hierarchical auditory features: This research also proposes a novel speech feature extraction

method based on a hierarchical fashion to improve the robustness of the acoustic recognition sys-

tem by exploiting properties of a functional regression procedure in a reproducing kernel Hilbert

space (RKHS) [64, 67, 65, 66]. This method is based on the hypothesis that robustness in speech

signal is encoded in temporal and spectral manifolds (represented here by kernels) which remain

intact even in presence of ambient noise. However, under clean recording conditions (laboratory

setting), most learning algorithms like hidden Markov models (HMMs) [104] and support vector

machines (SVMs) [68] exploit only linear dominant features which unfortunately can easily be

corrupted by ambient noise. RKHS regression endows the proposed innovative features with the

following robustness properties:

• The algorithm doesn’t make any prior assumption on noise statistics.

• The algorithm uses kernel methods to extract features that are nonlinear and robust to cor-
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ruption by noise.

• Robust parameter estimation is ensured by imposing smoothness constraints based on regu-

larization principles.

• The proposed signitures can be extracted in real-time using pre-computed projection matri-

ces.

1.4 Dissertation organization

The dissertation is organized as follows: Chapter 2 motivates the “smart” audio signal acquisition

systems as substitutions for conventional Nyquist ADCs for miniature microphone arrays. Then

a mathematical model for signal acquisition in miniature/compact microphone array is presented.

The model shows that the signal recorded from miniature array is near singular and conventional

ways of signal acquisition fail to deliver a robust performance due to limited dynamic range of mi-

crophone which is determined by analog-to-digital conversion. This limitation is coming from the

fact that a large cross-channel redundancy and non-homogeneous mixing is presented in recorded

signal space on miniature microphone array. The proposed “smart” signal acquisition device is

then presented in chapter 3. The core of this technique is based on a min-max optimization frame-

work that can efficiently and adaptively quantize non-redundant analog signal sub-spaces which

leads to significant performance improvement for any DSP based source separation algorithm.

The performance of the proposed signal acquisition device is evaluated using synthetic and real

recordings. Experiments have been shown to demonstrate significant and consistent performance

improvements when the proposed approach is used as the analog-to-digital front-end to conven-

tional source separation algorithms. A detail overview of the acoustic signal recognition system
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is presented in chapter 4. In this chapter a brief introduction to statistical pattern recognition

techniques that are commonly used in acoustic recognition will be provided. This includes an

overview of some of the basic functional units such as speech feature extraction, acoustic model-

ing, and classification. Then this chapter discusses some of the commonly used techniques which

make real-world acoustic recognition systems more robust in noisy environment. Chapter 5 in-

troduces a novel hierarchical model to extract the auditory speech features. This model uses a

regression technique in a reproducing kernel Hilbert space (RKHS) in order to measure the simi-

larity of sensory auditory world. In this chapter, the theory behind these features that are known

as Sparse Auditory Reproducing Kernel (SPARK) is first described. They are extracted under the

hypothesis that the noise-robust information in speech signal is embedded in a subspace spanned

by overcomplete, regularized and normalized gammatone basis functions. In the last part of this

chapter two benchmarks is presented for acoustic recognition systems: the first one is a HMM

based speech recognition system and the second one is an SVM-based speaker verification system.

Using these benchmarks, the performance of the proposed system is evaluated and compared to

the conventional acoustic recognition systems. Concluding remarks and the future directions for

the presented work are discussed in chapter 6.
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Chapter 2

Smart Audio Signal Acquisition Devices

2.1 Motivation for smart audio signal acquisition devices

Miniature microphone arrays for sensing the acoustic events are becoming more common for dif-

ferent applications. One of such applications is an acoustic recognition system where the objective

is to identify a person as in a speaker recognition system or convert the speech into text as in a

speech recognition system. However using micro/nano-scale microphone arrays in an acoustic

recognition system poses a key challenge to image acoustic events occurring in its environment

with high fidelity (spatial and temporal) where due to the dispersive nature of the surrounding

media, each element of the sensor array records a mixture of signals generated by the source of

interest and other events (noises) in its environment. In order to recognize the source of interest,

the proposed recognition system takes advantage of a source separator. However several factors

limit the performance of traditional source separation techniques and hence the performance of the

acoustic recognition system when acoustic signal acquired from miniature/compact microphone

arrays:
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• Far-field effects: For miniature arrays, sources are usually located at distances much larger

than the distance between recording elements. As a result, the mixing of signals at the

recording elements is near singular. Recognition of the acoustic source of interest needs

separation of that source from near ill-conditioned mixtures which would require super-

resolution signal processing to reliably identify the parameters of the separation manifold.

• Near-far effects: For miniature sensor arrays, a stronger source that is closer to the array

can mask the signal produced by background sources. Separating the background sources in

presence of the strong masker would again require super-resolution processing of the input

signals.

DSP based source separation algorithms are typically implemented subsequent to a quantization

operation (analog-to-digital conversion) and hence do not consider the detrimental effects of finite

resolution due to the quantizer. In particular, for a high-density sensor array, a naive implemen-

tation of a quantizer that uniformly partitions each dimension (pulse coded modulation) of the

input signal space could lead to a significant loss of information. To understand the effect of

this degradation consider the framework of a conventional source separation algorithm as shown

in Fig. 2.1(a). The “analog” signal x ∈ RM recorded at each of the sensor array is given by

x = As, A ∈ RM ×RM being the mixing matrix and s ∈ RM being the independent sources

of interest. This simplified linear model is applicable to both instantaneous mixing as well as to

convolutive mixing formulation [37]. The recorded signals are first digitized and then processed by

a digital signal processor (DSP) which implements the source separation algorithm. For the sake

of simplicity, assume that the algorithm is able to identify the correct unmixing matrix given by

W = A−1 which is then used to recover the source signals s̃ ∈ RM . The effect of quantization
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in this approach can be captured using a simple additive model as shown in Fig. 2.1(a)

s̃d = W(x+ q) = s+A−1q (2.1)

where q denotes the additive quantization error introduced during the digitization process. The

reconstruction error between the recovered signal s̃d and the source signal s can then be expressed

as

||s̃d − s|| = ||A−1q|| ≤ ||A−1||.||q|| (2.2)

where ||.|| denotes a matrix and vector norm [38]. Equation (2.2) indicates that under ideal recon-

struction conditions, the performance of conventional source separation algorithm is limited by: (a)

quantization error (accuracy of analog-to-digital conversion) and (b) the nature of the mixing oper-

ation determined by A. For high-density sensors, the mixing typically tends to be ill-conditioned

(||A−1|| ≫ 1), as a result the reconstruction error due to equation (2.2) could be large.

Now consider the framework shown in Fig.2.1(b) which is at the core of the proposed resolution

enhancement approach. The signals recorded by the sensor array is first transformed by P (in the

analog domain) before being quantized. In this case, the reconstructed signal s̃m ∈ RM can be

expressed as

s̃m = D(Px+ q). (2.3)

For source separation DP = A−1, for which the reconstructed signal now can be expressed as

s̃m = s+A−1P−1q (2.4)
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Figure 2.1: System architecture where the source separation algorithm is applied (a) after quanti-
zation (b) after analog projection and quantization

which leads to the reconstruction error

||s̃m − s|| = ||A−1P−1q|| ≤ ||A−1P−1||.||q||. (2.5)

Thus, the reconstruction error can now be controlled by the choice of the transform P and is

not completely determined by the mixing transform A. An interesting choice of the matrix P is

the one that satisfies

||A−1P−1|| = 1 (2.6)
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which ensures that the input signals are normalized before processed by the DSP based source

separation algorithm. Equation 2.5 then reduces to

||s̃m − s|| ≤ ||q|| (2.7)

and the expected performance improvement when employing the framework in Fig. 2.1(b) over the

framework in Fig. 2.1(a) is given by

PI = −20 log ||A−1||. (2.8)

Equation (2.8), thus, shows that the for near-singular mixing, ||A−1|| ≫ 1, the performance

improvement based on the resolution enhancement technique shown in Fig. 2.1(b) could be sig-

nificant. However, the performance improvement is valid only if the analog projection P can be

precisely and adaptively determined during the process of quantization (“analog-to-digital” con-

version). This procedure is unlike traditional multi-channel “analog-to-digital” conversion where

each signal channel is uniformly quantized the input signal without taking into consideration the

spatial statistics of the input signal. Since the projection P is also quantized, the precision to which

the condition (2.6) is satisfied is also important. In this regard, oversampling “analog-to-digital”

converters like Σ∆ modulators are attractive since the topology is robust to analog imperfection

and can easily achieve dynamic ranges greater than 120 dB (more than 16 bits or accuracy) [39].

In this research we show that the learning algorithm can efficiently and adaptively quantize non-

redundant analog signal sub-spaces which leads to significant performance improvement for any

DSP based source separation algorithm and hence the proposed acoustic recognition system. This

innovative approach which is called “super-resolution Sigma-delta” will be discussed in chapter 3.
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2.2 Signal acquisition in miniature microphone array

In this section a mathematical model for a miniature microphone array is presented. The model

shows that the recorded signals from the array can be near singular. Then this model will be

used later to show the superior performance of proposed smart signal acquisition process over

the standard ADC. This modeling resort to the far-field wave propagation models that have been

extensively studied within the context of array processing and plenacoustic models [82, 83, 84].

Knowing the plenacoustic function, the actual sound at a desired position in a sound field especially

in a room can be modeled via the convolution of this function with the source signal. For the

modeling purpose, consider a microphone array shown in Fig. 2.2 that consists of two recording

elements. If the inter-element distance is much less than the wavelength of the microphone signal

of interest, the signals recorded at each of the sensor elements can be approximated using far-

field models. For example, for audio signals (100-20,000 Hz), a far-field model can be assumed

for microphone arrays with inter-element distances less than 3.4cm (coherence length). Also,

for miniature microphone array the distance to the sources from the center of the array can be

assumed to be larger than the inter-element distance. We express the signal xj(pj, t) recorded at

jth microphone as a superposition of i independent sources si(t) (i ∈ 1, .., D), each of which are

referenced with respect to the center of the array [83]. This can be written as

xj(pj, t) =
∑
i

ci(pj)si(t− τi(pj)) (2.9)

where ci(pj) and τi(pj) denotes the attenuation and delay, for the source si(t) at the position pj ,

measured relative to the center of the sensor array. pj in equation (2.9) denotes the position vector

of the jth microphone. Equation (2.9) can be approximated using Taylor’s series expansion as
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Figure 2.2: Far-field recording on a miniature microphone arrays.

xj(pj, t) =
∑
i

ci(pj)
∞∑
k=0

(−τi(pj))
k

k!
s
(k)
i (t) (2.10)

Under far-field conditions it can be assumed that ci(pj) ≈ ci is constant across all the sensor

elements. Also, the higher-order terms in the series expansion (2.10) can be ignored and can be

expressed as

xj(pj, t) ≈
∑
i

cisi(t)−
∑
i

ciτi(pj)ṡi(t). (2.11)

The component xc(t) =
∑

i cisi(t) signifies the common-mode signal common to all the record-

ing elements and the second part of the RHS signifies an instantaneous mixture of the derivative of

the source signals. The common-mode component can be canceled using a differential measure-
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ment [85] under which equation (2.11) becomes

∆xj(pj, t) = xj(pj, t)− xc(t) ≈ −
∑
i

ciτi(pj)ṡi(t) (2.12)

and can be expressed in a matrix-vector form as

∆x(t) ≈ −Aṡ(t) (2.13)

where A = {ciτi(pj)} denotes the instantaneous mixing matrix. Under far-field approximation,

the time delays can be expressed as

τi(pj) = uTi pj/v (2.14)

where ui is the unit normal vector of the wavefront of source i and v is the speed of sound (v =

340m/s in air). Thus equations (2.13) and (2.14) show that for miniature recording array, recovery

of the desired sources s or ṡ entails solving a linear source separation problem [86]. However,

equation (2.14) reveals that sources that are located closer to the sensor array can completely mask

the sources located away from the sensor array, resulting in a near-singular mixing A. As shown

in the following description that under near-singular mixing conditions, conventional methods of

signal acquisition and source separation fail to deliver robust performance.

Many source separation and speech feature extraction algorithms fail to deliver robust perfor-

mance when applied to signals recorded using miniature microphone arrays. This can be a result

of limited dynamic range (determined by analog-to-digital conversion) of the microphone which

is insufficient to overcome the artifacts due to large cross-channel correlation, non-homogeneous
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mixing and high-dimensionality of the signal space. In the next chapter a novel framework will

be proposed that overcomes these limitations by integrating statistical learning directly with the

signal measurement (analog-to-digital) process which enables high fidelity separation of linear

instantaneous mixtures which we saw it in this section for miniature microphone array.
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Chapter 3

Sigma-Delta Learning

The underlying principle behind the proposed technique is illustrated using Fig. 3.1 which shows

a two dimensional signal distribution along with the respective signal quantization levels (depicted

using rectangular tick marks). In this example, the signal distribution has been chosen to cover

only a small region of the quantization space which would be the case for near-singular mixing.

Thus, in a traditional implementation where each dimension is quantized independently of the

other there would be a significant information loss due to quantization. This approach towards

estimating P (which was previously introduced in chapter 1) while performing signal quantization

will be to decompose P ∈ RM × RM as a product two simple matrices Λ ∈ RM × RM and

B ∈ RM ×RM such that P = ΛB. The transformation matrix B will first “approximately” align

the data distribution along the orthogonal axes, each axis representing an independent (orthogonal)

component (shown in Fig. 3.1(b)). Based on this alignment, the signal distribution will be scaled

according to a diagonal matrix Λ such that the quantization levels now span a significant region of

the signal space (Fig. 3.1(c)). Our objective will be to compute these transforms B and Λ recur-

sively while performing signal quantization. Even though the proposed procedure bears similarity
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Figure 3.1: Illustration of the two-dimensional signal distribution for: (a) the input signals ; (b)
signals obtained after transformation B and (c) signals obtained after resolution enhancement

to recursive techniques reported in many online “whitening” algorithms [87, 88, 89], the key dif-

ference for the proposed approach is that the adaptation and estimation of the projection matrix P

is coupled with the quantization process. Thus, unlike traditional online “whitening” techniques,

in the proposed approach any imperfections or errors in the quantization process can be corrected

through the adaptation of P . This approach can therefore be visualized as a “smart” analog-to-

digital converter as shown in Fig. 3.2 which not only produces quantized (digitized) representation

of the input signal d but also quantized (digitized) representations of the transforms B and Λ. In

our formulation, the estimation algorithm for P (B and Λ) has been integrated within a Σ∆ mod-

ulation algorithm and hence the name “Σ∆ learning. The choice of Σ∆ modulation is due to its

robustness to hardware level artifacts (mismatch and non-linearity) which makes the modulation

amenable for implementing high-resolution analog-to-digital converters [94]. Before presenting a

generalized formulation for Σ∆ learning, first an optimization framework will be presented that

can model the dynamics of first-order Σ∆ modulation.
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3.1 Stochastic gradient decent and Σ∆ modulators

First, a one dimensional example of Σ∆ will be presented to illustrate how a Σ∆ modulator can

be modeled as an equivalent stochastic gradient descent based optimization problem. Consider an

architecture of a well known first-order Σ∆ modulator [94] as shown in Fig. 3.3(a) which consists

of a single discrete-time integrator in a feedback loop. The loop also consists of a quantizer Q

which produces a sequence of digitized representation d[n], where n = 1, 2, .. denotes a discrete

time-index. Let x[n] ∈ R be the sampled analog input to the modulator and without any loss of

generality let d[n] ∈ {+1,−1} be the output of a single-bit quantizer given by d[n] = sgn(v[n−1])

(Fig. 3.3(b)) where vn ∈ R is the internal state variable or the output of the integrator as shown in

Fig. 3.3(a). Then, the Σ∆ modulator in Fig. 3.3(a) implements the following recursion:

v[n] = v[n− 1] + x[n]− d[n] (3.1)

It can be seen from equation (3.1) that if v[n] is bounded for all n, then

1

N

N∑
n=1

d[n]
N→∞−→ 1

N

N∑
n=1

x[n]. (3.2)

This implies that Σ∆ algorithm given by equation (3.1) produces a binary sequence d[n] whose

temporal average asymptotically converges to the temporal average of the input analog signal.

This statistical dynamics is at the core of most Σ∆ modulators. However, from the perspective of

statistical learning, the Σ∆ recursion in equation (3.1) can be viewed as a stochastic gradient step

of the following optimization problem:

min
v

C(v) = min
v

[|v| − vEx(x)] (3.3)
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Figure 3.2: Architecture of the proposed sigma-delta learning applied to a source separation prob-
lem

where Ex(.) is the ensemble expectation of the random variable x. The optimization function C(v)

is shown in Fig. 3.3(c) for the case |Ex(x)| < 1. The minima under this condition is minv C(v) = 0

which is achieved for v = 0 and thus does not contain any information about the statistical property

of x. The recursion (3.1) ensures that v[n] approaches the minima and then exhibits oscillations

about the minima (shown in Fig. 3.3(c)). Note that unlike conventional stochastic gradient based

optimization techniques [95], recursion (3.1) does not require any learning rate parameters. This

is unique to the proposed optimization framework where the stochastic gradient descent is used to

generate limit-cycles (oscillations) about the minima of the cost function C(v). The only require-

ment in such a framework is that the assumption that the input signal is bounded which ensures that

the limit-cycles are bounded. Under this condition, the statistics of the limit-cycles can asymptot-

ically encode the statistics of the input signal with infinite precision, as shown by equation (3.2).

25



In the later sections, we will exploit this asymptotic property to precisely estimate the transform P

which can then be used for resolving the acute spatial cues in miniature microphone arrays.

Figure 3.3: (a) System architecture of a first order Σ∆ modulator, (b) input-output response of
single bit quantizer, and (c) illustration of “limit-cycle” oscillations about the minima of the cost
function C(v)

Another unique aspect of the proposed optimization framework for modeling Σ∆ modulators

is that the cost function C(v) links “analog-to-digital” conversion through the regularizer |v| whose

derivative leads to a single-bit quantizer (sgn function). The second term in C(v) ensures that the

statistics of the quantized stream d[n] matches the statistics of the input analog signal x[n].

We now extend this optimization framework to a multi-dimensional Σ∆ modulator which uses

a multi-bit quantizer and incorporates transformations B and Λ. Consider the following minimiza-

tion problem

min
v

C(v) (3.4)

where the cost function C(v) is given by

C(v) = Ω(λ−1v)− vT Ex{Bx}. (3.5)

x ∈ RM is now an M dimensional analog input vector and v ∈ RM is an internal state vector.

For the first part of this formulation, λ will be assumed to be a constant scalar and the transform B
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Figure 3.4: One dimensional piece-wise linear regularization functions and the multi-bit quantiza-
tion function as its gradient

will be assumed to be a constant matrix. Ω(.) denotes a piece-wise linear regularization function

that is used for implementing quantization operators. An example of a regularization function Ω(.)

is shown in Fig. 3.4 for 1-dimensional input vector v. Due to the piece-wise nature of the function
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Ω(.) its gradient d = ∇Ω (shown in Fig. 3.4) is equivalent to scalar quantization operators. Without

loss of generality, it will be assumed that the range of the quantization operator is limited between

[−1, 1]. Therefore, for a 2K step quantization function the corresponding regularization function

Ω(.) is given by

Ω(v) =
M∑
j=1

| i

2K
vj |; |vj | ∈ [i− 1, i] (3.6)

for i = 1, .., 2K.

Figure 3.5: Limit cycle behavior using bounded gradients

To reiterate, the uniqueness of the proposed approach, compared to other optimization tech-

niques to solve (3.4) is the use of bounded gradients to generate Σ∆ limit-cycles. This is illus-

trated in Fig. 3.5 showing the proposed optimization procedure using a two-dimensional contour.
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Provided the input x and the norm of the linear transformation ||B||∞ are bounded and the regu-

larization function Ω satisfies the Lipschitz condition, the optimal solution to (3.4) is well defined

and bounded from below which is shown in the next lemma:

Lemma 3.1.1. For the bounded matrix ||B||∞ ≤ λ−1, bounded vector ||x||∞ ≤ 1, C as defined

in equation (3.5) is convex and is bounded by below according to C∗ = minv C(v) > 1
2(

1
K − 1).

Proof. A topological property of norms [96] will be used in this proof which states that for two

integers p, q satisfying 1
p + 1

q = 1, the following relationship is valid for vectors v and u

|vTu| ≤ ||v||p||u||q (3.7)

Setting u = Ex{Bx} and applying equation (3.7) the following inequality is obtained:

||v||1||u||∞ ≥ |vTu| ≥ vTu ≥ vT Ex{Bx} (3.8)

It can be easily verified that Ω(v) ≥ ||v||1−
1
2(

1
K − 1) which is shown graphically in Fig. 3.4

for a one dimensional case and hence can be extended element-wise to the multi-dimensional case.

Using the definition of the matrix norm and the given constraints, it can be easily seen ||B||∞ ≥

||Bx||∞ ≥ ||u||∞. Thus, |u||∞ ≤ λ−1. Therefore, the inequality (3.8) leads to

Ω(λ−1v)− vT Ex{Bx} ≥ λ−1||v||1 − 1

2
(
1

K
− 1)− vT Ex{Bx} ≥ 0 (3.9)

which proves that the cost function C(v) is bounded from below by C∗.

�

29



However, for Σ∆ learning the trajectory toward the minima of the cost function (3.5) is of

importance. A stochastic gradient minimization corresponding to the optimization problem (3.5)

leads to

v[n] = v[n− 1] +Bx[n]− λ−1d[n] (3.10)

with n signifying the time steps and d[n] = ∇Ω(v[n − 1]) being the quantized representation

according to functions shown in Fig. 3.4. Note also that formulation (3.10) does not require any

learning rate parameters. As the recursion (3.10) progresses, bounded limit cycles are produced

about the solution v∗ (see Fig. 3.5) .

The following two lemma exploits the property of the first-order modulator to show that the

auxiliary state variable v[n] defined by (3.10) is uniformly bounded if the input random vector x

and matrix B are uniformly bounded.

Lemma 3.1.2. For any bounded input vector sequence satisfying ||x[n]||∞ ≤ 1 and the trans-

formation matrix B satisfying ||B||∞ ≤ λ−1, the internal state vector v[n] defined by equa-

tion (3.10) is always bounded, i.e., ||v[n]||∞ ≤ 2λ−1 for n = 1, 2, ...

Proof. The mathematical induction will be applied to prove this lemma. Without any loss of

generality one can assume ||v[0]||∞ ≤ 2λ−1. Suppose ||v[n − 1]||∞ ≤ 2λ−1, it then follows

that ||v[n−1]−∇Ω(v[n−1])||∞ = ||v[n−1]−d[n]||∞ ≤ λ−1. Because x and B are bounded

and using equation (3.10), the following relationship holds

||v[n]||∞ = ||v[n− 1]− λ−1d[n] +Bx[n]||∞

≤ ||v[n− 1]− λ−1d[n]||∞ + ||B||∞

≤ 2λ−1 (3.11)
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Lemma 3.1.3. For any bounded input vector ||x||∞ ≤ 1 and bounded transformation matrix B,

d[n] asymptotically satisfies estimates En{d[n]}
n→∞−→ λEn{Bx[n]}.

Proof. Following N update steps the recursion given by equation (3.10) yields

Bx[n]− λ−1En{d[n]} =
1

N
(v[N ]− v[0]) (3.12)

which using the bounded property of random vector v asymptotically leads to

En{d[n]}
n→∞−→ λEn{Bx[n]} (3.13)

�

Thus, according to Lemma 3, recursion (3.10) produces a quantized sequence whose mean

asymptotically encodes the scaled transformed input at infinite resolution. It can also be shown

that for a finite I iterations of (3.10) yields a quantized representation that is log2(I) bits accurate.

3.1.1 Σ∆ Learning

In this section, the optimization framework will be extended to include on-line estimation of the

transform B. Here again λ is assumed to be constant. Given an M dimensional random input

vector x ∈ RM and an internal state vector v, the Σ∆ learning algorithm estimates parameters of

a linear transformation matrix B ∈ RM ×RM according to the following optimization function
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max
B∈C

(min
v

C(v,B)) (3.14)

where

C(v,B) = Ω(λ−1v)− vT Ex{Bx}. (3.15)

C denotes a constraint space on the transformation matrix B. The minimization step in equa-

tion (3.14) will ensure that the state vector v is correlated with the transformed input signal Bx

(tracking step) and the maximization step in (3.14) will adapt the matrix B such that it minimizes

the correlation (de-correlation step).

The stochastic gradient descent step corresponding to the minimization yields the recursion

v[n] = v[n− 1] +B[n]x[n]− λ−1d[n]. (3.16)

where B[n] denotes the transform matrix obtained at time instant n. The transform B is then

updated according to a stochastic gradient ascent step given by

B[n] = B[n− 1]− 2−Pv[n− 1]x[n]T ; B[n] ∈ C. (3.17)

P in equation (3.17) is a parameter which determines the resolution of updates the parameter matrix

B. If we assume that locally the matrix B∗ behaves as a positive definite matrix, equation (3.17)

can be rewritten as

B[n] = B[n− 1]− 2−Pv[n− 1](B[n]x[n])T

= B[n− 1]− 2−Pd[n]d[n]T (3.18)
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where we have replaced the transformed input B[n]x[n] by its asymptotic quantized representation

d[n]. Similarly v[n − 1] is replaced by its quantized representation d[n]. The update can be

generalized further by incorporating non-linear quantization function ϕ(.) as

B[n] = B[n− 1]− 2−Pϕ(d[n])d[n]T (3.19)

where ϕ : RM → RM are functions dependent on the transformation B. Here, ϕ(.) = tanh(.)

is assumed and the constraint space C has been chosen to restrict B to be a lower triangular matrix

with all diagonal elements to be unity. One of the ways to ensure that B[n] ∈ C ∀n is to apply

the updates only to lower triangular elements bij ; i > j. The choice of this constraint guarantees

convergence of the Σ∆ learning by ensuring B is bounded.

Lemma 3.1.4. If the transform matrix B is bounded then the quantized sequences di[n] and dj [n]

with i ̸= j are uncorrelated with respect to each other.

Proof. Using equation (3.19) the following relationships are obtained:

−2−Pd[n]ϕ(d[n])T = B[n]−B[n− 1]

−2−P En{d[n]ϕ(d[n])T } = lim
N→∞

B[N ]

N

En{di[n]ϕ(dj [n])} = 0 ∀i ̸= j (3.20)

Since this relationship holds for a generic form of ϕ(.), the sequences di[n] are (non-linearly)

uncorrelated with respect to each other. �

Equation (3.20) also provides a mechanism of reconstructing the input signal using the trans-
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formed output d[n] and the converged estimate of the transformation matrix B[n]
n→∞−→ B∞.

The input signal can be reconstructed using

x̂ = B−1∞ λ−1En{d[n]}. (3.21)

The use of lower-triangular transforms for B greatly simplifies the computation of the inverse B−1∞

through use of back-substitution techniques. Also, due to its lower-triangular form, the inverse of

B∞ always exists and is well defined.

3.1.2 Resolution Enhancement

Once the transform B has been determined such that the output of the Σ∆ learner is “de-correlated”,

we can apply resolution enhancement by “zooming” into the transformed signal space that does

not cover the quantization regions (see Fig. 3.2(b)). This can be achieved using another diagonal

matrix Λ−1 which scales each axes as shown in the illustration 3.2(c). The Σ∆ cost function can

be appropriately transformed to include the diagonal matrix Λ ∈ RM ×RM as

C(v,B,Λ) = Ω(Λ−1v)− vT Ex{Bx}. (3.22)

where the optimization (3.15) is also performed with respect to the parameter matrix Λ such that

the constraint ||B||∞ < ||Λ−1||∞ is satisfied. This constraint is to ensure that C(v,B,Λ) is

always bounded from below. The stochastic gradient step equivalent to recursion (3.16) is given

by

v[n] = v[n− 1] + (B[n− 1]x[n]− Λ−1[n]d[n]) (3.23)
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The asymptotic behavior of update (3.23) for equation (3.22) can be expressed as En{d[n]}
n→∞→

ΛEn{Bnxn}. Thus, reducing the magnitude of diagonal elements of Λ will result in an equiva-

lent amplification of the transformed signal. To satisfy the constraint on the transform B and Λ, a

suitable update for the diagonal matrix Λ and its elements λi are

λi = max |(B[n]x[n])i|;N1 > n > N0 (3.24)

where N0 is the number of iterations required for the matrix B to stabilize and N1 is the maximum

observation period used to determine the parameters λi.

3.2 Acoustic source separation

Advances in acoustic miniaturization are enabling integration of an ever increasing number of mi-

crophones within a single sensor device which makes integration of miniature/compact microphone

arrays possible. By introducing these devices, there have been several attempts in overcoming the

fundamental problems introduced by these devices. A key challenge is to be able to image acousti-

cal events occurring in the environment with high fidelity (spatial and temporal). However, due to

the dispersive nature of the surrounding media, each element of the sensor array records a mixture

of signals and noises generated by independent events in its environment. In order to improve the

accuracy of the acoustic recognition systems, the signals of interest should be separated from the

noises. The recovery of signals of interest from the recorded mixtures lies within the domain of

blind source separation. Blind source separation (BSS) is based on a general class of unsuper-

vised learning which has application in many areas of technologies. BSS task has connection to

human perception where human hearing system has the ability to focus on acoustic sources of in-
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terest even in a very noisy environment. Environmental assumptions about the surrounding of the

microphone array directly influence the complexity of the BSS problem. Blind separation of the

acoustic signals is sometimes referred to as the Cocktail Party Problem [90, 91] where the prob-

lem defined as the separation of voices from a mixture of sources in an uncontrolled environment

like cocktail party. In the real world scenario, each microphone observation is a mixture of all the

acoustic sources in the natural environment in which each of those acoustic sources are affected by

signal reverberation. In order to make the problem more tractable, BSS techniques usually make

some assumptions about the environment. The simplest scenario is termed instantaneous mixing

where acoustic sources receive instantly at the microphones and only considering the intensity of

sources. An extension of the previous assumption where arrival delays between microphones are

also considered is know as the anechoic case. A more realistic assumptions lead to the convolutive

mixing which considers multiple paths between each acoustic source and each microphone in order

to model the signal reverberation. In modeling the BSS problem, assumptions can also be made

about the number and statistical properties of the acoustic sources. It is very common to assume

that sources are independent or at least decorrelated where the solution can be based on the higher

order statistics (HOS) or second order statistics (SOS). This class of approaches are commonly

called independent component analysis (ICA). A series of techniques are motivated by the insight

from the auditory systems and they make strong assumption on acoustic sources such as common

onset, harmonic structure, etc. These techniques are commonly refer to as computational auditory

scene analysis (CASA) where they first detect and classify acoustic sources and then perform a su-

pervised decomposition of the auditory scene. One increasingly popular and powerful assumption

is that the acoustic sources have a sparse representation in some basis. These methods have come

to be known as sparse methods. The advantage of a sparse signal assumption is that the probabil-
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ity of two or more sources being active simultaneously is low. This results in good separability

because most of the energy of the observed signal at any time instant belongs to a single source.

It has also been shown that sparse representation exists in auditory cortex of brain in which firing

pattern of neurons is characterized by long periods of inactivity [92, 93]. Usually it is assumed

that there are at least as many sources as sensors for separation, but under strong assumption of

sparsity it is sometimes possible to relax the conditions on the number of sensors. Some speech

signal properties that can provide assumptions for BSS systems are as follows:

• Speech signals originating from different speakers at different spatial locations in an acoustic

environment can be considered to be statistically independent.

• Speech signals are inherently non-stationary over long periods, but can be considered as

quasi-stationary for small time durations (around 25 ms).

Most of linear BSS models can be expressed in the matrix format as:

X = AS+V (3.25)

where X is the observation matrix X ∈ Rm×N , m and N being the number of observation and

number of samples in each observation, A ∈ Rm×N represents the mixing matrix, S ∈ Rn×N

contains the sources matrix, and X ∈ Rm×N is the noise matrix. Often BSS is performed by find-

ing an n×m, full rank separation matrix W = A†, where A† is some well-defined pseudo-inverse

of A in a way that the output signal Y = WX contains components that have special properties

of interest based on the assumptions which can be measured by Kulllback-Leibler divergence or

other criteria like sparseness, smoothness, etc.
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3.3 Experimental results
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Figure 3.6: Reconstruction of the sources using conventional and proposed Σ∆ with OSR=1024

3.3.1 Numerical evaluation

The achievable improvement predicted by the equations (2.8) for Σ∆ learning was first verified

using numerical evaluation. For this controlled experiment two synthetic signals were chosen.

s1(t) = 480t− ⌊480t⌋

s2(t) = sin(800t+ 6 cos(90t)) (3.26)
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Each of these source signals were mixed using a random ill-conditioned matrix A to obtain the

two-dimensional signals which were then processed by the Σ∆ learner. The outputs of the Σ∆

learner were then used to reconstruct the source signals according to

s̃d = A−1x (3.27)

s̃m = A−1B−1x (3.28)

s̃ḿ = A−1B−1Λ−1x (3.29)

assuming that the un-mixing matrix A−1 can be perfectly determined.
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Figure 3.7: Evaluating the reconstruction of the sources for classical (without), learning (with), and
learning with resolution enhancement (with+) Σ∆ at different OSR for log2(condition number) of
(a) 10 and (b) 12

The equations (3.27)- (3.29) represent the following three cases: (a) s̃d which is the signal
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Figure 3.8: Evaluating the reconstruction of the sources for classical (without), learning (with),
and learning with resolution enhancement (with+) Σ∆ at different condition number for OSR of
(a) 256 and (b) 512

reconstructed using a Σ∆ modulator without any learning (denoted by without); (b) s̃m which

is the signal reconstructed using Σ∆ learning without resolution enhancement (denoted by with);

and (c) s̃ḿ which is the signal reconstructed using Σ∆ learning with resolution enhancement

(denoted by with+). For this experiment, the condition number of the mixing matrix was chosen

to be 1000 and the over-sampling ratio (OSR), which is defined as the sampling frequency/Nyquist

frequency, was chosen to be 1024. For the signal in (3.26) the Nyquist frequency was chosen to

be 10 KHz. Figure 3.6 shows the reconstructed signals obtained with and without the application

of Σ∆ learning. The quantization artifacts can be clearly seen Fig. 3.6(b) which is the signal

recovered using Σ∆ modulator without learning. However, the signals obtained when Σ∆ learning

is applied does not show any such artifacts indicating improvement in resolution. To quantify
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Figure 3.9: Evaluating the reconstruction of sources at different dimension for the learning Σ∆ at
different condition number for OSR of 128

this improvement, we compared the signal-to-error ratio (SER) for the separated signals. SER is

defined as

SER = log2{
||s||2

||s− s̃||2
} (3.30)

where s and s̃ is based on the definition in (3.27)- (3.29). To compute the mean SER and its variance

10 different mixing matrices with a fixed condition number were chosen and the mean/variances

were calculated across different experimental runs. Fig. 3.7(a) compares the SER obtained when

the mixing matrix with condition number 210 was chosen for different values of OSR. Figure 3.7(b)

compares the SER obtained when the mixing matrix with condition number 212 was chosen. It can

be seen in Fig. 3.7(a) and (b) that as the OSR of the Σ∆ modulator increases, the SER increases.

This is consistent with results reported for Σ∆ modulators where OSR is directly related to the

resolution of the “analog-to-digital” conversion. However, it can be seen that for all conditions of
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OSR, Σ∆ learning with resolution enhancement outperforms the other two approaches.

Figure 3.8(a) and (b) compares the performance of Σ∆ learner when the condition number of

the mixing matrix is varied for fixed over-sampling ratios of 256 and 512. The results again show

that Σ∆ learner (with and without resolution enhancement) demonstrates consistent performance

improvement over the traditional Σ∆ modulator. Also, as expected the SER performance for all

the three cases deteriorates with the increasing condition number, which indicates that the mixing

becomes more singular. Figure 3.9 evaluates the SER achieved by Σ∆ learning (with resolution

enhancement) when the dimensionality of the mixing matrix is increased. For this experiment,

the number of source signals are increased by randomly selecting signals which were mutually

independent with respect to each other. It can be seen from Fig. 3.9 that the response of the Σ∆

learning is consistent across different signal dimensions with larger SER when the dimension is

lower.

In the next set of experiments the performance of Σ∆ learning is evaluated for the task of

source separation when the un-mixing matrix is estimated using an ICA algorithm. Speech sam-

ples were obtained from TIMIT database and were synthetically mixed using an ill-conditioned

matrix with different condition number. The instantaneous mixing parameters simulate the “near-

far” scenario where one of the speech sources is assumed to be much closer to the microphone

array than the other. This scenario was emulated by scaling one of the signals by −50dB with

respect to another. The speech mixture is then presented to the Σ∆ learner and its output is then

processed by a second-order blind inference (SOBI) [97] and by an efficient FastICA (EFICA) [98]

algorithms. The performance metrics chosen for this experiment is based on source-to-distortion

ratio (SDR) [99] where the estimated signal ŝj(n) is decomposed into

ŝj(n) = starget(n) + einterf (n) + eartif (n) (3.31)

42



with starget(n) being the original signal, and einterf (n) and eartif (n) denote the interference

and artifacts errors, respectively. The SDR metric is a global performance metric which then

measures both source-to-interference ratio (SIR) - the amount of interferences from non wanted

sources and also other artifacts like quantization and musical noise. The SDR is defined as:

SDR = 10 log
∥starget∥2

∥einterf + eartif∥2
(3.32)
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Figure 3.10: SDR corresponding to with/without Σ∆ learning for the near-far recording conditions
using (a) SOBI and (b) EFICA algorithms.

The speech sources s1 and s2 in this experiment consists of 44200 samples with a sampling

rate of 16KHz which is also the Nyquist rate. In this setup, after mixing, one of the sources is

being completely masked by the other which is consistent with the“near-far” effect. Figure 3.10(a)
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and (b) shows the SDR obtained using the Σ∆ learning when the OSR is varied from 128 to 4096

. Also shown in Fig. 3.10 (a) and (b) are the SDR metrics obtained when a conventional Σ∆

algorithm is used. It can be seen from the Fig. 3.10 that the SDR corresponding to the stronger

source is similar for both cases (with and without Σ∆ learning), where as for the masked source the

SDR obtained using Σ∆ learning is superior. This is consistent with the results published in [100].

However, the approach in [100] is applied after quantization and hence according to formulation

in section I, is limited by the condition number of the mixing matrix. It should also be noted that

the Σ∆ learning only enhances the resolution of the measured signals. The ability to successfully

recover the weak source under “near-far” conditions, however, is mainly determined by the choice

of the ICA algorithm.

3.3.2 Experiments with far-field model

In this section, the mathematical model presented in chapter 2 for miniature microphone model

will be used. This model with the Σ∆ learner will be used to compare the performance of the

algorithm with a traditional source separation technique. Traditional DSP based source separation

algorithms are typically implemented subsequent to a ADC and hence do not consider the detri-

mental effects of finite resolution due to the quantizer. Σ∆ learner smartly quantizes the array

signals with respect to each other and uncorrelates them in order to use as much information as

possible when digitizing the signals.

In this setup, recording conditions consisted of four closely spaced microphones. In this arrange-

ment, three of the microphones were placed along a triangle, whereas the fourth microphone was

placed at the centroid and act as the reference sensor which records the common signal. The set up

is similar to the conditions that have been reported in [86] where the simulation have been shown
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Figure 3.11: Σ∆ performance with and without learning for three speech signals corresponding to
the far-field model

to be consistent with recording in the real-life conditions. The outputs of each microphone along

the triangle were subtracted from the reference microphone to produce three differential outputs.

In these experiments three independent speech signals were used as far-field sources. The differ-

ential outputs of the microphone array were first presented to the proposed Σ∆ learner, and the

outputs of Σ∆ learner array were then used as inputs to the SOBI algorithm. A benchmark used

for comparative study consisted of Σ∆ converters that directly quantized the differential outputs of

the microphones. Figure 3.11(b)-(c) summarizes the performance of source separation (with and

without Σ∆ learning) for different orientation of the acoustic sources. For the three experiments,

only the bearing of the sources were varied but their respective distances to the center of the mi-
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Figure 3.12: Spectrogram of the recorded signals (top row) and recovered signals using Σ∆ with-
out learning (middle row) and with learning (bottom row)

crophone was kept constant. It can be seen that for each of these orientations, source separation

algorithm that uses Σ∆ learning as a front-end “analog-to-digital” converter delivers superior per-

formance compared to the algorithm that does not use Σ∆ learning. Also, from Fig. 3.11(b)-(c)

it can be seen that the improvement in SDR performance significantly increases when the sam-

pling frequency (resolution) decreases showing that Σ∆ learning efficiently utilizes the available

resolution (due to coarse quantization) to capture information necessary for source separation.

3.3.3 Experiments with real microphone recordings

In this set of experiments, Σ∆ learning have been applied to speech data that was recorded using

a prototype miniature microphone array, similar to the set up described in [85]. The four omni-

directional microphones Knowles FG3629 were mounted on a circular array with radius 0.5 cm.
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The differential microphone signals were pre-processed using second-order bandpass filters with

low-frequency cutoff at 130 Hz and high-frequency cutoff at 4.3 kHz. The signals were also ampli-

fied by 26dB. The speech signals were presented through loudspeakers positioned at 1.5 m distance

from the array and the sampling frequency of the National Instruments data acquisition card was

set to 32 KHz. Male and female speakers from TIMIT database were chosen as sound sources

and was replayed through standard computer speakers. The data was recorded from each of the

microphones, archived, and then presented as inputs to the Σ∆ learning and the SOBI algorithm.

Figure 3.12(top row)) shows the spectrogram of the speech signals recorded from the microphone

array. The two spectrograms look similar, thus emulating a “near-far” recording scenario where

a dominant source masks the background weak source. Also it can be seen from the spectrogram

in Fig. 3.12(top row-right) that one of the recordings is more noisy than the other (due to micro-

phone mismatch). Figure 3.12(middle row) show the spectrogram of the separated speech signals

obtained without Σ∆ learning. Figure 3.12(bottom row) show the spectrogram of the separated

speech signals obtained with Σ∆ learning. A visual comparison of the spectrograms show that

separated speech signal (without Σ∆ learning) contain more quantization artifacts which can be

seen as the broadband noise in Fig. 3.12(middle row). The table 3.1 summarizes the SDR per-

formance (for different OSR) for each of the sources in these two cases (with and without Σ∆

learning), showing that Σ∆ learning indeed improves the performance of the source separation

algorithm. Also, from table 3.1, it can be seen that when the OSR increases, the performance dif-

ferences between the two cases becomes insignificant. This artifact is due to the limitations in the

SOBI algorithm for separating sources with high fidelity, noise in the microphones and ambient

recording conditions.

Up to here, It have been argued that the classical approach of signal quantization followed by
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Table 3.1: Performance (SDR (dB) ) of the proposed Σ∆ for the real data for different over-
sampling ratio.

OSR=4 OSR=8 OSR=16 OSR=32 OSR=64

with without with without with without with without with without

S1 1.03 -0.72 1.33 0.41 1.34 0.94 1.3 1.15 1.28 1.21
S2 -12.52 -13.15 -9.77 -10.17 -8.69 -8.88 -8.29 -8.32 -8.12 -8.1

DSP based source separation fails to deliver robust performance when processing signals recorded

using miniature microphone/sensor arrays. We proposed a framework that combined statistical

learning with Σ∆ modulation and can be used for designing “smart” multi-dimensional analog-to-

digital converters that can exploit spatial correlations to resolve acute differences between signals

recorded by miniature microphone array.

48



Chapter 4

Robust Acoustic Recognition

4.1 Fundamental of speech

Speech is produced when air from the lungs passes through the throat, the vocal cords, the mouth

and the nasal tract (see Fig. 4.1(a)). Different position of the lips, tongue and the palate (also

known as the articulators) then create different sound patterns and gives rise to the physiological

and spectral properties of the speech signal like pitch, tone and volume. These properties are

speaker related and they can be used as signitures for speaker recognition systems as they are

modulated by the size and shape of the mouth, vocal and nasal tract along with the size, shape and

tension of the vocal cords of each speaker where It has been shown that even for twins, the chances

for all of these properties to be similar are very low [32, 33].

One of the most commonly used methods for visualizing the spectral and dynamical content of

speech signal is called the spectrogram which displays the frequency of vibration of the vocal cords

(pitch), and amplitude (volume) with respect to time. Examples of the spectrograms for a male and

a female speaker are shown in Fig. 4.1(b) where the horizontal axis represents time and the vertical
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 Figure 4.1: Fundamental of speech: (a) Magnetic resonance image showing the anatomy of speech
production apparatus. The property of the speech signal is determined by shape of the vocal tract,
orientation of the mouth, teeth and nasal passages. (b) Spectrograms corresponding to a sample
utterance “fiftysix thirty-five seventy-two” for a male and female speake.

axis represents frequency. The pitch of the utterance manifests itself as horizontal striations in the

spectrogram as shown in Fig. 4.1(b). For instance, it can be seen from Fig. 4.1(b) that the pitch of

the female speaker is greater than the pitch of the male speaker. Other important spectral param-

eters of speech signal are formants which are defined as the resonant frequencies (denoted by F1,

F2, F3, ...) of the vocal tract, in particular, when vowels are pronounced. They are produced by

restricting air flow through the mouth, tongue, and the jaw. The relative frequency location of the

formats can vary widely from person to person (due to shape of the vocal tracts) and hence can be

used as a biometric feature. Even though multiple resonant frequencies exist in speech signal, only

three of the formats (typically labeled as F1, F2, F3 as shown in Fig. 4.1(b)) are used for speech

and speaker recognition applications. However, reliable estimation of the spectral parameters re-

quires segments of speech signal that are stationary and hence most verification systems use 20-30
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Figure 4.2: Functional architecture of a speaker verification system as a example of acoustic recog-
nition which consists of two main phases: (a) An training/enrollment phase where parameters of a
speaker specific statistical model are determined and (b) a recognition/verification phase where an
unknown speaker authenticated using the models trained during the training phase.

milliseconds segments. Another biometric signature embedded in the speech signal is the stress

patterns also known as prosody which manifests as spectral trajectory and distribution of energy in

the spectrogram. This signature is typically considered as one of the “high-level” features which

can be estimated from observing the dynamics across multiple segments of the speech signals. In

the next section, we will discuss some of the popular approach to extract some of these biometric

features and discuss some of the statistical models which are used to recognize the speaker specific

features.

4.2 Architecture of an acoustic recognition system

Any speech based recognition systems like speaker or speech recognition typically consist of two

distinct phases in general: (a) a training phase where parameters of statistical models are deter-

mined using annotated (pre-labeled) speech data; and (b) a testing phase where an unknown speech
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sample is recognized using the trained statistical models. Fig. 4.2 presents an speaker verification

system where these two phases are shown as enrollment and verification phases. As this figure

shows, in such a system the speech signal is first sampled, digitized, and filtered before a feature

extraction algorithm computes salient acoustic features from the speech signal. The next step in the

training phase uses the extracted features to train a statistical model. During the recognition phase

(as shown in Fig. 4.2), an unknown utterance is authenticated against the trained statistical model

for a specific task. In the following sections, each of these standard modules will be reviewed that

are used during each of these phases.

4.3 Speech acquisition and feature extraction module

The speech acquisition module typically consists of a transducer that is coupled to an amplifier and

a filtering circuitry. Depending on the specifications (size, power and recognition performance) im-

posed on the recognition system, the transducer could be a standard microphone (omni-directional

or directed) or a noise-canceling microphone array where the speech signal is enhanced by sup-

pressing background noise using a spatial filter [34]. The amplifier and the filtering circuitry are

used to maintain a reasonable signal-to-noise ratio (SNR) at the input of an analog-to-digital con-

verter (ADC) which is used to digitize the speech signal. Depending on the topology of the ADC,

the speech signal could be sampled at the Nyquist rate (8KHz) or oversampled using a sigma-delta

modulator. Typically, a high-order sigma-delta modulator is the audio ADC of choice because of

its ability to achieve resolution greater than 16 bits. Once the speech signal is digitized, a feature

extraction module (typically implemented on a digital signal processor) extracts speech informa-

tion from the raw waveform. Depending on the application of the recognition system, different

feature can be extracted, e.g., in speaker recognition system feature extraction module extracts
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speaker specific features where in speech recognition systems, this module extracts type of features

that are more speaker independent. In speaker recognition systems the “high-level” characteristics

which convey behavioral information such as prosody, phonetic, conversational patterns, etc. seem

to be promising than the “low-level” information which conveys the physical structure of the vocal

tract [117, 103]. The “low-level” features have been mostly used in speech recognition systems,

however it has been shown that good performances can be achieved using these features for speaker

recognition systems. The difference between these two features is the relative time-scale required

for extracting and processing the features. While “low-level” features can be effectively computed

using short frames of speech (<30ms), the “high-level” features could require time-scales greater

than few seconds [103]. In the following, we present a short overview of two of the popular classes

of “low-level” features: linear predictive cepstral coefficients (LPCC) and Mel frequency cepstral

coefficients (MFCC).

Linear Predictive Cepstral Coefficients (LPCC): The basic assumption underlying the Lin-

ear Prediction Coding (LPC) [101, 104], which is in the heart of LPCC is that speech signal can be

modeled by a linear source-filter model. This model has two sources of human vocal sounds: the

glottal pulse generator and the random noise generator. The glottal pulse generator creates voiced

sounds. This source generates one of the measurable attributes used in voice analysis: the pitch

period. The random noise generator produces the unvoiced sounds and the vocal tract serves as the

filter of the model that produces intensification at specific formants. In LPC feature extraction, the

filter is typically chosen to be an all-pole filter. The parameters of the all-pole filter are estimated

using an auto-regressive procedure where the signal at each time instant can be determined using
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a certain number of preceding samples. Mathematically, the process can be expressed as

s(t) = −
P∑
i=1

ais(t− i) + e(t)

where s(t is the speech signal at time instant t is determined by p past samples s(t− i) where i rep-

resents the discrete time delay. e(t) is known as the excitation term (random noise or glottal pulse

generator) which also signifies the estimation error for the linear prediction process and ai denotes

the LPC coefficients. During an LPC, a quasi-stationary window of speech (about 20-30ms) is used

to determine the parameters ai and the process is repeated for the entire duration of the utterance.

In most implementations, an overlapping window or a spectral shaping window [104] is chosen to

compensate for spectral degradation due to finite window size. The estimation of the prediction

coefficients is done by minimizing the prediction error e(t) and several efficient algorithms like the

Yule-Walker or Levinson Durbin algorithms exist to compute the features in real-time. The predic-

tion coefficients will be further transformed into Linear Predictive Cepstral Coefficients (LPCC)

using a recursive algorithm [104]. A variant of the LPC analysis is the Perceptual Linear Prediction

(PLP) [60] method. The main idea of this technique is to take advantage of some characteristics

derived from the psychoacoustic properties of the human ear and these characteristics are modeled

by filter-bank.

Mel Frequency Cepstral Coefficients (MFCC): These features have been extensively used in

speech based recognition systems [105, 104]. MFCCs were introduced in early 1980s for speech

recognition applications and since then have also been adopted for speaker recognition applica-

tions. A sample of speech signal is first extracted using a window. Typically two parameters are

important for the windowing procedure: the duration of the window (ranges from 20 - 30 ms) and

the shift between two consecutive windows (ranges from 10-15ms). The values correspond to the
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average duration for which the speech signal can be assumed to be stationary or its statistical and

spectral information does not change significantly. The speech samples are then weighed by a

suitable windowing function, for example, Hamming or Hanning window are extensively used in

acoustic recognition. The weighing reduces the artifacts (side lobe and signal leakage) of choosing

a finite duration window size for analysis. The magnitude spectrum of the speech sample is then

computed using a fast Fourier transform (FFT) and is then processed by a bank of band-pass fil-

ters. The filters that are generally used in MFCC computation are triangular filters, and their center

frequencies are chosen according to a logarithmic frequency scale, also known as Mel-frequency

scale. The filter bank is then used to transform the frequency bins to Mel-scale bins by the follow-

ing equations:

my[b] =
∑
f

wb[f ]|Y [f ]|2

where wb[f ] is the bth Mel-scale filter’s weight for the frequency f and Y [f ] is the FFT of the

windowed speech signal. The rationale for choosing a logarithmic frequency scale conforms to re-

sponse observed in human auditory systems which has been validated through several biophysical

experiments [104]. The Mel-frequency weighted magnitude spectrum is processed by a compres-

sive non-linearity (typically a logarithmic function) which also models the observed response in a

human auditory system. The last step in MFCC computation is a discrete cosine transform (DCT)

which is used to de-correlate the Mel-scale filter outputs. A subset of the DCT coefficients are cho-

sen (typically the first and the last few coefficients are ignored) and represent the MFCC features

used in the training and the test phases.

Dynamic and Energy Features: Even though each feature set (LPC or MFCC) is computed

for a short frame of speech signal (about 20-30ms), it is well known that information embedded in

the temporal dynamics of the features are also useful for recognition [106]. Typically two kinds
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of dynamics have been found useful in speech processing: (a) velocity of the features (known

as ∆ features) which is determined by its average first-order temporal derivative; and (b) accel-

eration of the features (known as ∆∆ features) which is determined by its average second-order

temporal derivative. Other transforms of the features which have also been found useful in recog-

nition include: logarithm of the total energy of the feature (L2 norm) and its first-order temporal

derivative [104].

Auxiliary Features: Even though cepstral features have been widely used speaker recognition

systems, it can be suggested that the features might contain phonemic information that may be un-

related to the speaker recognition task as they convey less speaker specific information. Recently,

new techniques have been reported that can extract speaker-related information from LPCCs and

MFCCs and in the process improve system’s recognition performance. One group of these fea-

tures are sometimes referred to as voice source features. For example, in [107], an inverse filtering

technique has been used to separate the spectra of glottal source and vocal tract. In another ap-

proach, the residual signal obtained from LP analysis has been used in estimating the glottal flow

waveform [108, 109, 110, 111]. An alternative approach to estimating the glottal flow (derivative)

waveform was presented in [112, 113, 114] where a closed-phase covariance analysis technique

was used during the intervals when the vocal folds are closed. Other group of these features in-

cludes prosodic features. Prosody which involves variation in syllable length, intonation, formant

frequencies, pitch, rate and rhythm speech, can vary from speaker to speaker and relies on long-

term information of speech. One of the predominant prosodic features is the fundamental fre-

quency (or F0). Other features include, pitch, energy distribution on a longer frame, speaking rate

and phone duration [115, 116, 117]. The auxiliary features usually have been used in addition

to“low-level” features by fusion technique
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Voice Activity Detector (VAD): Before the features can be used in the recognition systems it

is important to determine whether the features correspond to the ”speech” portion of the signal or

correspond to the silence or background part of the signal. Most speech based recognition systems

use a voice activity detector (VAD) whose function is to locate the speech segments in an audio

signal. For example, a simple VAD could compute instantaneous signal-to-noise ratio (SNR) and

pick segments only when the SNR exceeds a predetermined threshold. However, it is improtant

to know that design of robust VAD could prove challenging since it is expected that the module

works consistently across different environments and noise conditions.

4.4 Speech and speaker modeling

Once the feature vectors corresponding to the speech frames have been extracted the associated

speech data also known as training data is used to build models even for speech or speaker recogni-

tion systems. For speech recognition systems, the models are generated for the speech components

like phonemes, words, etc. and for the speaker recognition systems, speaker models are generated.

During the test phase, the trained model is used to recognize a sequence of feature vectors extracted

from unknown utterances. The focus of this section is on the statistical approaches for construct-

ing the relevant models. The methods can be divided into two distinct categories: generative and

discriminative. Training of generative models typically involve data specific to the target speech

component or speaker with the objective that the model can faithfully capture the statistics of that

component. Training of discriminative models which have been used more in speaker recognition

systems, involves data corresponding to the target and imposter speakers and the objective is to

faithfully capture the manifold which distinguishes the features for the target speakers from the

features for the imposter speakers. An example of a popular generative model used in speaker ver-
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(a)

(b)

Figure 4.3: Example of generative models that have been used for speech/speaker recognition:
(a) HMMs where each state has a GMM which captures the statistics of a stationary segment
of speech. (b) HMMs are trained by aligning the states to the utterance using a trellis diagram.
Each path through the trellis (from start to end) specifies a possible sequence of HMM state that
generated the utterance
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ification is Gaussian Mixture Models (GMMs), and an example of a popular discriminative model

is Support Vector Machines (SVMs). In the following section these classical techniques will briefly

be described. Hidden Markov Models (HMMs) is also a generative model which have been exten-

sively used in speech recognition systems. In the following section these classical techniques will

briefly be described and the readers are referred to appropriate references [104] for details.

4.4.1 Generative Models

Generative models include mainly Gaussian Mixture Models (GMMs) and Hidden Markov Models

(HMMs) capture the empirical probability density function corresponding to the acoustic feature

vectors. GMMs represent a particular case of HMMs and can be viewed as a single-state HMM

where the probability density is defined by a mixture of Gaussians.

GMM-based modeling. GMMs have unique advantages compared to other modeling approaches

because their training is relatively fast and the models can be scaled and updated to add new

speakers with relative ease. A GMM model λ, is composed of a finite mixture of multivariate

Gaussian components and estimates a general probability density function pλ(x) according to:

p(x) =
M∑
i=1

wipi(x)

where M is the number of Gaussian components, wi is the prior probability (mixing weights) of

the ith D-variate Gaussian density function Ni(x) given by

pi(x) =
1

(2π)D/2|Σi|1/2
e
−(1/2)(x−µi)

TΣ−1
i (x−µi)
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The parameters µi and Σi represent the mean vector and covariance matrix of the multi-dimensional

Gaussian distribution and the mixing weights wi are constrained according to
∑M

i=1wi = 1 .

GMM have extensively been used in speaker recognition system. Usually in these systems,

a speaker-independent world model also known as a universal background model (UBM) is first

trained using speech data gathered from a large number of imposter speakers [118]. The training

procedure typically uses an iterative expectation-maximization (EM) algorithm [119] which esti-

mates the parameters µi and Σi using a maximum likelihood criterion [120]. More details on EM

training procedure can be found in numerous references [119, 120, 121]. The background model

obtained after the training thus represents a speaker-independent distribution of the feature vectors.

When enrolling a new speaker to the system, the parameters of the background model are adapted

to the feature vector distribution of the new speaker using the maximum a posteriori (MAP) update

rules. In this way, the model parameters are not required to be estimated from scratch and instead

the previously estimated priors are used for re-training. There are alternative adaptation methods to

MAP, and usually selection of the method depends on the amount of available training data [122].

For very short enrollment utterances (a few seconds), some other methods like Maximum likeli-

hood linear regression (MLLR) [52], have shown to be more effective.

Hidden Markov Models (HMMs). By construction, GMMs are static models that do not take

into account the dynamics inherent in the speech vectors. In this regard, HMMs [104] are statis-

tical models that capture the temporal dynamics of speech production as an equivalent first-order

Markov process. Fig. 4.3 shows an example of a simple HMM which comprises of a sequence of

states with a GMM associated with each state. In this example, each state represents a stationary

unit of the speech signal also known as “tri-phone”. The training procedure for HMMs involves

an EM algorithm, where the feature vectors are first temporally aligned to the states using a dy-
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namic programming procedure and the aligned feature vectors are used to update the parameters

of the state GMM. During the recognition procedure, the most probable sequence of states/phones

are estimated (again using a dynamic programming procedure) for a given utterance. The scores

generated by each state in the most probable sequence are accumulated to obtain the utterance and

speaker specific likelihood. Because the HMMs rely on the phonetic content of the speech signal,

they have been dominantly used in speech recognition systems as well as in text-dependent speaker

verification systems [123].

4.4.2 Discriminative Models

The discriminative models are optimized to minimize the error on a set of genuine and impostor

training samples. They include, among many other approaches, Support Vector Machines (SVMs)

and Artificial Neural Networks (ANNs).

Support Vector Machines. SVMs are an attractive choice for implementing discriminative mod-

els where they provide good performance in speaker recognition systems even with relatively few

data points in the training set and bound on the performance error can be directly estimated from

the training data [68]. This is important because of only limited amount of data is usually avail-

able for the target speaker. The learning ability of the classifier is controlled by a regularizer in

the SVM training, which determines the trade-off between its complexity and its generalization

performance. In addition, the SVM training algorithm finds, under general conditions, a unique

classifier topology that provides the best out-of-sample performance [68]. The key concept be-

hind an SVM based approach is the use of kernel functions which map the feature vectors to a

higher dimensional feature space by using a non-linear transformation Φ(.). Fig. 4.4(c) illustrates

an example of the mapping operation from a two dimensional feature space to a three dimensional
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(a)

(b)

Figure 4.4: Discriminative Models: (a) General structure of an SVM with radial basis functions
as kernel. (b) Structure of a multi-layer ANN consisting of two hidden layers. (c) An example
of a kernel function K(x, y) = (x.y)2, which maps a non-linearly separable classification (left)
problem into a linearly separable problem (right) using a non-linear mapping Φ(.).
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space. In the feature space the data points corresponding to the binary classes (denoted by ”cir-

cles” and ”squares”) are non-linearly separable. In the higher dimensional space the data points

are linearly separable and can be classified correctly by a linear hyper-plane. A binary (two-class)

SVM comprises of a linear hyper-plane constructed in the higher dimensional space and is given

by

f(z) =< w,Φ(z) > +b

where < ., . > defines an inter-product in the higher dimensional space and are the parameters of

the hyper-plane. As with SVMs, the hyper-plane parameters w are obtained as linear expansion

over training features Φ(xn), n = 1, · · · , N as w =
∑

n = 1NanΦ(xn) where an are the ex-

pansion coefficients. Accordingly the inner-products in the expression for f(z) convert into kernel

expansions over the training data xn, n = 1, · · · , N by transforming the data to feature space

according to

f(z) = < w,Φ(z) > +b (4.1)

= w =
∑

n = 1Nan < Φ(xn),Φ(z) > +b (4.2)

= w =
∑

n = 1NanK < x, z > +b (4.3)

(4.4)

where K < ., . > denotes any symmetric positive-definite kernel that satisfies the Mercer con-

dition and is given by K < x, z >=< Φ(x),Φ(z) >, which is an inner-product in the higher

dimensional feature space. For example in Fig. 4.4(c) the kernel function corresponding to Φ(.) is

given by K(x, z) = (< x, z >)2. The use of kernel function avoids the curse of dimensionality

by avoiding direct inner-product computation in higher-dimensional feature space. Some other
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examples of valid kernel functions are radial basis functions K(xi, xj) = exp(−σ(xi − xj)
2)

or polynomial functions K(xi, xj) = [1 + (xi.xj)]
p. Training of the SVM involves estimating

the parameters ai, b that optimizes a quadratic objective function. The exact form of the objec-

tive function depends on the topology of the SVM (soft-margin SVM [124], logistic SVM [125]

or GiniSVM [166]) and there exist open-source software packages implementing these different

algorithms. The following two key steps are the basis for an SVM based recognition:

• Feature reduction and normalization: Due to variability in the duration of utterances, the

objective of this step is to reduce/equalize the size of the feature vectors to a fixed-length

vector. One of the possible approaches could be to use clustering or random selection to

determine a pre-determined number of representative vectors. Another approach could use

the scores obtained from a generative model (GMM or HMM) as the fixed-dimensional input

vector. The features are then scaled and normalized before processed by an SVM.

• Kernel modeling: The reduced and normalized feature vectors are used to model each

speaker using different types of kernel functions like linear, quadratic, or exponential. For

each frame of the feature vector corresponding to the “non-silence” segment of the speech

signal, the SVM generates a score and the scores are integrated over the entire utterance to

obtain the final decision score. It is important to note that since the scores are required to be

integrated it is important that the SVM outputs are properly calibrated. In this regard, logis-

tic SVMs and GiniSVM are useful and have been shown to deliver more robust verification

performance compared to traditional soft-margin SVMs. Fi. 4.5 shows an example of SVM

based speaker verification system.

Artificial neural networks (ANNs). Artificial neural networks [126] have also been used for

acoustic recognition systems and are based on discriminant learning. One such example of ANN
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Figure 4.5: Functional architecture of an SVM-based speaker verification system: (left) the ex-
tracted features are first aligned, reduced and normalized. The speaker specific and speaker non-
specific features are combined to create a dataset used for SVM training. (right) The soft-margin
SVM determines the parameter of a hyperplane that separates the target and non-target dataset with
the maximum margin.

is the Multilayer Perceptron (MLP) which is a feed-forward neural network comprising of multiple

layers and each layer comprising of multiple nodes (as shown in Fig. 4.4(b)). Each node computes

a linear weighted sum over its input connections, where the weights of the summation are the

adjustable parameters. A non-linear transfer function is applied to the result to compute the output

of that node. The weights of the network are estimated by gradient descent based on the back-

propagation algorithm. An MLP for speaker verification would classify speaker and impostor’s

access by scoring each frame of the test utterance. The final utterance score is the mean of the

MLP’s output over all the frames in the utterance. Despite their discriminate power, the MLP

present some disadvantages. The main disadvantage is that their optimal configuration is not easy

to select and a lot of data is needed for the training and the cross-validation steps.

Fusion. Fusion refers to the process of combining information from multiple sources of evi-

dence to improve the performance of the system. The technique has been also applied in acoustic

recognition where a number of different sets of feature are extracted from the speech signal and a
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Figure 4.6: An example of fusion of low-level and high-level features for the speaker verification
system.
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different classifier is trained on each of the feature set. The scores produced by each of the clas-

sifier are then combined to arrive at a decision. Ideally, the information contained in the different

features should be independent of each other so that each classifier focuses on different regions of

the discrimination boundary. Fig. 4.6 shows an example of a fusion technique for speaker verifi-

cation system that combines “low-level” features like cepstrum or pitch with “high-level” features

like prosody or conversational patterns. However, performance gains could also be obtained by

fusion of different low-level spectral features (e.g., MFCCs and LPCCs) as they contain some

independent spectral information.

Authentication. The authentication module in speaker verificaion/recognition systems uses the

integrated likelihood scores to determine if the utterance belongs to the target speaker or belongs

to an imposter. Mathematically, the task is equivalent to hypothesis testing where given a speech

segment X and a claimed identity S the speaker verification system chooses one of the following

hypotheses:

Hs: X is pronounced by S Hs̄: X is pronounced by S̄ The decision between the two hypothe-

ses is usually based on a likelihood ratio given by

Λ(X) = p(X|Hs)p(X|Hs̄

where p(X|Hs) and p(X|Hs̄) are the integrated likelihood scores (probability density functions)

generated by the classifier and Θ is the threshold to accept or reject Hs. Setting the threshold Θ

appropriately for a specific speaker verification application is a challenging task since it depends

on environmental conditions like SNR. The threshold is usually chosen during the development

phase, and is speaker-independent. However, to be more accurate, the threshold parameter should

be chosen to reflect the speaker peculiarities and the inter-speaker variability. Furthermore, if there
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is a mismatch between development and test data, the optimal operating point could be different

from the pre-determined threshold.

4.5 Robust acoustic recognition

The area of acoustic recognition has existed for the last couple of decades but there still exists

a large number of challenges that need to be addressed. For example, in the area of speaker

recognition/verification the amount of speech data available during enrollment is important in order

to have good speaker specific models, especially for generative models like GMMs and HMMs.

However, for forensic applications only limited data could be available due to limited access to

the target speaker. This was confirmed during the NIST-SRE evaluations [127], where it has been

shown that increase in the duration of the utterance improves the recognition performance. Or

another challenge in speaker recognition systems is intra-speaker variability. This challenge is as

a result of the speaker’s voice which could change due to aging, illness, emotions, tiredness and

potentially other cosmetic factors and model trained during the training phased might not represent

all possible states of the speaker. One of the proposed solutions to this problem is an incremental

technique which captures both the short and long-term evolution of a speaker’s voice [128].

In addition to all the open problems in the area of acoustic recognition, mismatch in training

and recognition phases is of more importance as it can limit the application of such systems in

real world scenarios. Mismatch in recording conditions during the training and the test/recognition

phase pose the main challenge for acoustic recognition systems. Differences in the telephone

handset, in the transmission channel and in the recording devices can all introduce variability in

recordings and decrease the accuracy of the system. This decrease of accuracy is mainly due to

the statistical models that capture not only the speaker characteristics but also the environmental
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ones. Hence, the system decision may be biased if the recognition environment is different from

the training. A generic framework that models artifacts in a acoustic recognition system is shown

in Fig. 4.7, where the sources of interference could either arise due to the additive channel noise

or due to the convolutive channel effects. To make speech based recognition systems to be more

robust to channel variations, the state-of-the-art systems either use a noise-robust feature extraction

algorithm or suitably adapt the models. Fig. 4.7(b) summarizes the approaches that have been used.

These approaches in general consist of robust feature extraction techniques and robust modeling.

In the following a review of robust feature extraction techniques will be covered as this research

proposed technique is in this category.

4.5.1 Robust Feature Extraction

Different feature based approaches have been proposed to compensate the cross-channel effects

which include well-known and widely used techniques such as cepstral mean subtraction (CMS) [59],

RASTA filtering [44], and variance normalization [104] as well as recently developed techniques

for speaker recognition systems like feature warping [130], stochastic matching [129], and feature

mapping [131]. Here will present a brief overview of these techniques:

Cepstral mean subtraction. In a Cepstral Mean Subtraction (CMS) method, the mean of cep-

stral coefficients like MFCC or LPCC computed over a frame of speech is removed from each of

the coefficients. The rationale behind CMS is based on the “homomorphic” filtering principles

where it can be shown that slow variations in channel conditions are reflected as offsets in the

MFCC coefficients. However, CMS is not suitable for additive white noise channel. Also, in ad-

dition to mean subtraction sometime the variance of the coefficients is also normalized to improve

the noise robustness of the cepstral features.
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(a)

(b)

Figure 4.7: (a)Equivalent model of additive and channel noise in a acoustic recognition system (b)
Different techniques used for designing robust acoustic recognition systems.
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RASTA filtering. RASTA (RelAtive SpecTrA) is a generalization of CMS method to compen-

sate the cross-channel mismatch. The method was first introduced to enhance the robustness of

speech recognition system and since then it has also been used for speaker recognition systems

as well. In RASTA filtering, the low and high frequency components in cepstral coefficients are

removed using cepstral band-pass filters.

Feature warping. Feature warping was deigned for speaker recognition systems aiming to con-

struct more robust cepstral feature distribution by whitening and hence generating an equivalent

normal distribution over each frame of speech. This method delivers a more robust performance

than the mean and variance normalization technique, however, the approach is more computation-

ally intensive.

Feature mapping. Feature mapping is also designed specifically for speaker recognition sys-

tems. The approach is a supervised normalization technique which transforms the channel specific

features to a channel independent feature space such that the channel variability is reduced. This

is achieved with a set of channel dependent GMMs which are adapted from a channel-independent

root model. During the recognition phase, the most likely channel (highest GMM likelihood) is

detected, and the relationship between the root model and the channel-dependent model is used for

mapping the vectors into channel-independent space.

While the spectral features (MFCC and LPC) accurately extract linear information of speech

signals, by construction they do not capture information about nonlinear or higher-order statisti-

cal characteristics of the signals, which have been shown to be not insignificant [132, 133]. One

of the hypotheses is that many of the non-linear features in speech remain in tact even when the

speech signal is corrupted by channel noise. Previous studies in this area have approximated audi-

tory time-series by a low-dimensional non-linear dynamical model. In [133], it was demonstrated

71



that sustained vowels from different speakers exhibit a nonlinear, non-chaotic behavior that can be

embedded in a low dimension manifold of order less than four. Other non-linear speech feature

extraction approaches include non-linear transformation/mapping [134, 135], non-linear Maxi-

mum Likelihood Feature Transformation [136], kernel based time-series features [137, 138, 139],

non-linear discriminant techniques [140], neural predictive coding [141] and other auxiliary meth-

ods [142, 143]. we will propose a novel feature extraction technique in which it can extract robust

non-linear manifolds embedded in speech signal. The method uses non-linear filtering properties

of a functional regression procedure in a reproducing kernel Hilbert space (RKHS). The procedure

is semi-parametric and does not make any assumptions on the channel statistics. The hypothesis

is that robustness in speech signal is encoded in high-dimensional temporal and spectral manifold

which remains intact even in presence of ambient noise. In the following section we will introduce

a benchmark setup in order to evaluate our features.

4.6 Robust speaker modeling

Several session compensation techniques have been recently developed for both GMM and SVM-

based speaker models. Factor analysis (FA) techniques [144] were designed for the GMM-based

recognizer and take explicit use of the stochastic properties of the GMM, whereas the methods

developed for SVM-based models are often based on linear transformations. One such linear trans-

form based approach uses Maximum Likelihood Linear Regression (MLLR) approach to transform

the input parameter of the SVM. MLLR transforms the mean vectors of a speaker-independent

model as µ́k = Aµk + b, where µ́k is the adapted mean vector, µk is the world model mean

vector and the parameters A and b are parameters of the linear transform. A and b are estimated

by maximizing the likelihood of the training data with a modified EM algorithm. Other normal-
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ization techniques for SVMs have also been reported which include nuisance attribute project

(NAP) [145, 146] which uses the concept of eigenchannels and withinclass covariance normaliza-

tion (WCCN) [147, 148] that reweighs each dimension based on different techniques like principal

component analysis (PCA). The Nuisance attribute project (NAP) uses an appropriate projection

matrix, P in the feature space to remove subspaces that contain unwanted channel or session vari-

ability from the GMM supervectors. The projection matrix filters out the nuisance attributes (e.g.

session/channel variability) in the feature space by P = I −UUT , where U is the eigenchannel

matrix. NAP requires a corpus labeled with speaker and/or session information.

The underlying principle behind factor analysis (FA) when applied to GMMs is the follow-

ing: When speech samples are recorded from different handsets, the super-vectors or the means

of the GMMs could vary and hence require some sort of channel compensation and calibration

before they can be compared. For channel compensation to be possible, the channel variability

has to be modeled explicitly and the technique that has been used is called joint factor analy-

sis (JFA) [144, 149]. The JFA model considers the variability of a Gaussian supervector as a

linear combination of the speaker and channel components. Given a training sample, the speak-

erdependent and channel (session) dependent supervector M is decomposed into two statistically

independent components as M = s + c, where s and c are referred to as the speaker and channel

(session) supervectors, respectively. The channel variability is explicitly modeled by the channel

model of the form c = Ux where U and x are the channel factors estimated from a given speech

utterance and the columns of the matrix U are the eigen-channels estimated for a given dataset.

During enrollment, the channel factors x are to be estimated jointly with the speaker factors y of

the speaker model of the form s = m + Vy + Dz , where m is the UBM supervector, V is a

rectangular matrix with each of its columns referred to as the eigenvoices and D is a parameter
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matrix of JFA and z is a latent variable vector for JFA. In this formulation, JFA can be viewed as a

two-step generative model which models different speakers under different sessions. The core JFA

algorithm comprises the first level and the second or the output level is the GMM generated using

the first level. If we consider all the parameters that affect the mean of each component in output

GMM, the mean of the session dependent GMM can be expressed as

Mki = mk +Ukxi +Vkys(i) +Dkzks(i)

with the indices k correspond to different GMM components, i corresponds to session, and s(i)

for the speaker in session i. The system parameters are mk, Uk , Vk, and Dk where xi, ys(i),

and zks(i) are hidden speaker and session variables.

In other approaches the GMM and the SVM principles can be combined to achieve robustness.

In [150], the generative GMM-UBM model was used for creating “feature vectors” for the discrim-

inative SVM speaker modeling. For example the mean and the variance of the GMM-UBM states

could be used as feature vector for SVM training. When the means of the GMMs are normalized

by their variance, the resulting feature vectors are known as supervectors, which have been used

in SVM training. The SVM kernel function could be also appropriately chosen that reflects the

distance between the pdfs generated by the GMMs. One such measure is the Kullback-Leibler

(KL) divergence measure between GMMs. Another extension is the GMM-UBM mean interval

(GUMI) kernel which uses a bounded Bhattacharyya distance [151]. The GUMI kernel exploits

the speakers information conveyed by the mean of GMM as well as those by the covariance ma-

trices in an effective manner. Another alternative kernel known as probabilistic sequence kernel

(PSK) [152] uses output values of the Gaussian functions rather than the Gaussian means to create

supervectors. Other SVM approach based on Fisher kernels [125] and probabilistic distance ker-
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nels [153] have also been introduced where they use generative sequence models for SVM speaker

modeling. Similar hybrid methods have been used for HMMs and SVMs but for applications in

speech recognition.

4.7 Score normalization

As the name suggests, the score normalization techniques aim to reduce the score variabilities

across different channel conditions. The process is equivalent to adapting the speaker-dependent

threshold which was briefly discussed in Section 2.3. Most of the normalization techniques used

in speaker verification are based on the assumption that the impostors scores follow a Gaussian

distribution where the mean and the standard deviation depend on the speaker model and/or test

utterance. Different score based normalization techniques have been proposed which includes

Znorm [154], Hnorm [155], Tnorm [156], and Dnorm [157]. We describe some of these scores in

this section.

ZNorm. In zero normalization (ZNorm) technique, a speaker model is first tested against a set

of speech signals produced by an imposter, resulting in an imposter similarity score distribution.

Speaker-dependent mean and variance normalization parameters are estimated from this distribu-

tion. One of the advantages of Znorm is that the estimation of the normalization parameters can be

performed offline during the enrollment phase. TNorm. TNorm The test normalization (TNorm)

is another score normalization technique in which the mean and the standard deviation parameters

are estimated using a test utterance. The TNorm is known to improve the performances partic-

ularly in the region of low false alarm. However, TNorm has to be performed online while the

system is being evaluated. There are several variants of the ZNorm and TNorm that aim to reduce

the microphone and transmission channels effects. Among the variants of ZNorm, are the Handset
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Normalization (HNorm and the Channel Normalization (CNorm). In the last approach, handset or

channel-dependent normalization parameters are estimated by testing each speaker model against

a handset or channel-dependent set of imposters. During testing, the type of handset or channel

related to the test utterance is first detected and then the corresponding sets of parameters are used

for score normalization. The HTNorm, a variant of TNorm, uses basically the same idea as the

HNorm. Here, handset-dependent normalization parameters are estimated by testing each test ut-

terance against handset-dependent imposter models. DNorm. Both TNorm and ZNorm procedure

rely on availability of imposter data. However, when the imposter data is not available an alternate

normalization called DNorm can be applied [157] where the pseudo-imposter data are generated

from the trained background model using Monte-Carlo techniques.

In the next chapter a novel robust speech feature extraction method will be presented. Both

speaker verification and speech recognition results will also be shown in order to present the con-

sistant performance improvement of this new features compared to the conventional methods.
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Chapter 5

Hierarchical Kernel Auditory Features

This chapter introduces a novel speech feature extraction algorithm using a hierarchical model.

This hierarchical model consists of two levels where in the first level the similarity of auditory

sensory world is measured with regularized kernel regression technique in a reproducing kernel

Hilbert space (RKHS). Then in the second level, the nose-robust features is choosen using a pool-

ing function. The features known as Sparse Auditory Reproducing Kernel (SPARK) are extracted

under the hypothesis that the noise-robust information in speech signal is embedded in a sub-

space spanned by overcomplete and regularized set of gammatone basis functions. Computing the

SPARK features involves correlating the speech signal with a pre-computed matrix, thus making

the algorithm amenable to DSP based implementation.

5.1 Motivation for hierarchical kernel auditory features

Unlike human audition, the performance of speech based recognition systems degrades signifi-

cantly in the presence of noise and background interference [25, 40]. This can be attributed to

inherent mismatch between training and deployment conditions, especially when the characteris-
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tics of all possible noise sources are not known in advance. Therefore in literature several strategies

have been presented to mitigate this mismatch which can be broadly categorized into three main

groups. The first strategy is to improve speech recognition robustness by enhancing the speech

signal before feature extraction. Speech enhancement techniques have been designed to improve

the perception of speech by objective listeners in noisy conditions or to improve the performance

of speech recognition systems. Spectral subtraction (SS) is widely used due to its simpleness

which suppress the additive noise in the spectral domain [41]. The second strategy is to make

the front-end feature extraction more robust in different conditions. Most of the methods in this

group modify the well established technique in order to make them robust. Cepstral mean nor-

malization (CMN) [42] and cepstral variance normalization [43] improve the speech recognition

performances by adjusting the feature mean and variance in cepstral domain in order to reduce the

convolutive channel distortion. Relative spectra (RASTA) [44] suppress the acoustic noise by high-

pass (or band-pass) filtering applied to a log-spectral representation of speech. In recent years, new

methods have been proposed to make the exiting features robust by using more advanced signal

processing techniques. Examples include feature space nonlinear transformation techniques [45],

the ETSI advanced front end (AFE) [46, 162], stereo-based piecewise linear compensation for en-

vironments (SPLICE) [47], and power-normalized cepstral coefficients (PNCC) [49]. AFE, for

example, integrates several methods to remove both additive and convolutive noises. A two-stage

Mel-warped Wiener filtering combined with a SNR-dependent waveform processing is used to re-

duce the additive noise and a blind equalization is used to mitigate the channel effects. There are

some methods in this group which are designed to be inherently robust to mismatched conditions

inspiring from human hearing [48]. Recently . The third strategy aims at making the classifier

more robust by adjusting or adapting the parameters of the speech models including stochastic

78



pattern matching methods [50], maximum likelihood estimation (MLE) based signal bias removal

method [51], Maximum likelihood linear regression (MLLR) method [52], parallel model com-

bination (PMC) method [53, 54], and joint compensation of additive and convolutive distortions

(JAC) based methods [55, 56, 57]. Even though significant improvements in recognition perfor-

mance can be expected by the application of the third approach, the overall system performance is

still limited by the quality of speech features extracted using the second method. Therefore, in this

research we focuse on extraction of speech features that are robust to mismatch between training

and testing conditions.

Traditionally, speech features used in most of the state-of-the-art speech recognition systems

have relied on spectral-based techniques which include Mel-frequency cepstral coefficients (MFCCs)

[104], linear predictive coefficients (LPCs) [104, 58, 106], and perceptual linear prediction (PLP)

[60]. Noise-robustness is then achieved by modifying these well established techniques to com-

pensate for channel variability. For example, cepstral mean normalization (CMN) [42] and cepstral

variance normalization [43] adjust the mean and variance of the speech features in the cepstral do-

main and in the process reduce the effect of convolutive channel distortion. Another example is

the Relative spectra (RASTA) [44] technique which suppresses the acoustic noise by high-pass (or

band-pass) filtering of the log-spectral representation of speech. More recently advanced signal

processing techniques to improve noise-robustness. These include feature-space non-linear trans-

formation techniques [45], the ETSI advanced front end (AFE) [46, 162], stereo-based piecewise

linear compensation for environments (SPLICE) [47] and power-normalized cepstral coefficients

(PNCC) [163]. AFE approach, for example, integrates several methods to remove the effects of

both additive and convolutive noises. A two-stage Mel-warped Wiener filtering, combined with

an SNR-dependent waveform processing is used to reduce the effect of additive noise and a blind
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equalization technique is used to mitigate the channel effects. Other attempts in this group has

been made to use the auditory models in order to extract features for speech recognition systems.

For example, ensemble interval histogram (EIH), an auditory model proposed by [48], has been

used as a front-end for speech recognition systems. The EIH is composed of a cochlear filtebank

where the output of each filter is attached to a level-crossing detector.

An alternate and more promising approach towards extracting noise-robust speech features

is to use data-driven statistical learning techniques that do not make strict assumptions on the

spectral properties of the speech signal. Examples include kernel based techniques [166, 167]

which operate under the premise that robustness in speech signal is encoded in high-dimensional

temporal and spectral manifolds which remain intact even in the presence of ambient noise.

In [167], we had presented a reproducing kernel Hilbert space (RKHS) based regression to

extract high-dimensional and noise robust speech features. The procedure required solving a

quadratic optimization problem for each frame of speech, thus making the data-driven approach

highly computationally intensive. Also, due to its semi-parametric nature, the methods proposed

in [166, 167] did not incorporate any a-priori information available from neurobiological or psy-

choacoustical studies. But, it has been recently demonstrated that cortical neurons use highly

efficient and sparse encoding of visual and auditory signals [168, 61, 62]. The study [62] showed

that auditory signals can be represented by a group of basis functions which are functionally sim-

ilar to gammatone functions. Gammatone functions are equivalent to time-domain representa-

tions of human cochlear filters and have also been used in psychoacoustical studies [169, 170].

Other studies by a number of auditory neurophysiologists [174, 175, 176] indicates that there is

a hierarchical processing in the human auditory cortex where the received signal is first broken

down into basic features and later they are integrated into more complex stimuli. These stud-
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ies [177, 178] also indicate that the so-called spectro-temporal receptive fields (STRFs) in auditory

cortex (AI) can capture different frequencies, spectral scales, and temproral rates. Several re-

searchers have begun to apply these recent developments in neuroscience to speech recognition

systems [179, 180, 181, 182, 183]. For example authors in [181] have filtered spectrograms of

speech sgnals with spectro-temporal kernels derived from recordings in primary auditory cortex of

the ferret. The study [182] presents a model to extract the patch-based features for a word spotting

system where a set of patches randomly extracted from the spectrum of training data and in the

testing phase a fixed amount of time-frequency flexibility is given to the extracted patches in order

to match with the ones from a potential target. The motivation in this research is to apply the kernel

based approach [166, 167] to a reproducing kernel Hilbert space (RKHS) spanned by gammatone

basis functions and extract sparse, noise-robust, discriminative speech features. The result of in-

corporating this a-priori information is that SPARK features can be extracted in real-time using

pre-computed projection matrices and at the same time demonstrating superior noise-robustness

compared to the state-of-the-art features.

5.2 Hierarchical architecture

In this section we present two main units of proposed hierarchical architecture in order to generate

the speech features. For the analysis presented in this section, we will assume that a window of

speech signal is first extracted and the following regression technique is applied on the overlapping

windows.
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(a)

Figure 5.1: A set of 25 gammatone kernel basis functions with center frequencies spanning 100Hz
to 4KHz in the ERB space

5.2.1 Regularized kernel optimization

Given a stationary, discrete-time speech signal x[n] ∈ R, where n = 1, .., N denotes the time

indices, the objective of the regression is to estimate the parameters of a manifold f : RP → R

that captures the information embedded in x[n]. The function f is assumed to be formed using

linear superposition of time-shiftable basis functions ϕm, m = 1, ..,M according to

f [n] =
M∑

m=1

K∑
i=1

bi.mϕm[n− τi.m] (5.1)

τi.m indicates the temporal position of the ith instance of gammatone function, and bi.m denotes

a scaling factor. In this model, all the basis functions and their time-variants are zero padded to
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(a)

Figure 5.2: Acyclic convolution matrix Φi for gammatone basis function ϕi.

have a length of K. Note that it has been shown that [61, 62] this shift-invariant mathematical

representation can derive the efficient auditory codes through an unsupervised sparse learning. For

the purpose of this research we chose the gammatone basis with some fixed parameters as they

will be explained later in this section. The reason to choose these basis functions is based on

the physiological data in which cochlea exhebits the following characteristics: (a) non-uniform

filter bandwidths where each of the frequency resolution is higher at the lower frequency than

at the higher frequency, (b) peak gain of the filter centered at fc decreases as the level of the

input increase, and (c) the cochlear filters are spaced more closely at lower frequencies than at

higher frequencies. Other reason to choose the gammatone basis functions is that the authors

of [61, 62] showed that unsupervised sparse learning over a dataset of natural sounds converges to
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the gammatone-shape basis function when the shift-invarient model of (5.1) used to represent the

audio signal. Based on the above we chose the gammatone basis functions over the uniform short

time Fourier transform (STFT). The gammatone basis functions can be mathematically expressed

as cochlear filters given by:

ϕm[n] = amnk−1cos(2πfmn)e−2πbERB(fm)n (5.2)

where fm is the center frequency parameter (Note: gammatone functions are time-domain rep-

resentation of band-pass cochlear filters), am is the amplitude normalization parameter and k is

the order of the gammatone basis. The center frequencies are uniformly spaced according to an

equivalent rectangular bandwidth (ERB) scale [171]. The parameter b controls the damping ratio

of the gammatone basis and is proportional to the ERB of center frequencies. In this research, we

have chosen the order k and parameter b to be 4 and 1.019 respectively [172] and the following

equation for the ERB(fm) (suggested by Glasberg and Moore [173]):

ERB(fm) = 0.108fm + 24.7. (5.3)

A set of 25 gammatone kernel basis functions with the above parameters are shown in Fig. 5.1.

Note that in equation (5.1) a single gammatone basis could occur at multiple times during the

speech signal, and hence the model is sufficiently rich to different time-frequency variations.

Equation (5.1) can be expressed in a matrix form as

f = Φb (5.4)

84



and the basis matrix Φ is defined as

Φ = [Φ1Φ2 · · ·ΦM ] (5.5)

where Φi is an N × K acyclic convolution matrix, one for each basis function (see Fig. 5.2).

Hence, the matrix Φ has dimensions N × MK and the regression procedure, presented next

estimates the parameters bi.m. To solve the function regression problem, We first assume that f

is an element of a Hilbert space f ∈ H, where inner-product between two functional elements

f, g ∈ H will be represented as ⟨f, g⟩H. Note that it can be proved [72] that to every RKHS

H there is a unique positive definite function K called the reproducing kernel of H that has the

reproducing property: f [n] =< f [l], K[l, n] >. The function K behaves in H as the Kronecker’s

delta function does in L2 [72, 73].

For the purpose of this paper, we take the Hilbert space to be the set of functions of the form

defined in equation (5.1) and define the scalar product in this space to be:

⟨
M∑

m=1

K∑
i=1

bi.mϕm[n− τi.m],
M∑

m=1

K∑
i=1

ci.mϕm[n− τi.m]⟩H

≡
M∑

m=1

K∑
i=1

bi.mci.m.

Equation (5.6) shows that the norm of the RKHS has the form:

||f ||2HK
=

M∑
m=1

K∑
i=1

b2i.m, (5.6)
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The regression involves minimizing the following cost function with respect to f

min
f∈H

C(f) =
N∑
n=1

L(x[n], f [n]) (5.7)

where L(., .) is a loss function. While numerous choices of loss functions are possible like the L1

loss function or Vapnik’s ϵ-insensitive (Lϵ) loss function [68], in this paper we have chosen the L2

loss function given by

L(x[n], f [n]) = ||x[n]− f [n]||22 (5.8)

In the cost function (5.8), we introduce a stabilizer or a regularizer Ω(f) to ensure the solution

is more robust. The regularized cost function is given by

min
f∈H

H(f) =
N∑
n=1

L(x[n], f [n]) + λΩ(f) (5.9)

where Ω(f), in this paper, is chosen as

Ω(f) = ||f ||2HK
(5.10)

which is a norm in the Hilbert space H defined by the positive definite function K. ||f ||2HK

determines the smoothness of f based on the regularization parameter λ (see the seminal work

of [72]). In fact, in [66, 73] it has been shown that when H is an RKHS defined by specific types

of kernels, the use of the regularizer is equivalent to low-pass filtering with cut-off determined by

the hyper-parameter λ.
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Cost function (5.9) can be written as

J(bi.m) =
N∑
n=1

(x[n]−
M∑

m=1

K∑
i=1

bi.mϕm[n− τi.m])2 + λ
M∑

m=1

K∑
i=1

b2i.m. (5.11)

Taking the derivative of (5.11) with respect to parameter bi.m and equating to zero, the following

is obtained:

∂J

∂bi.m
= 2λbi.m −

N∑
n=1

2α[n]ϕm[n− τi.m] = 0 (5.12)

where α[n] is the reconstruction error for speech sample at time instant n = 1, ..., N , given by

α[n] = x[n]−
M∑

m=1

K∑
i=1

bi.mϕm[n− τi.m]

= x[n]− f [n] (5.13)

This leads to the minimizer of (5.11) given by

bi.m =
1

λ

N∑
n=1

α[n]ϕm[n− τi.m]. (5.14)

or in a matrix format as

b∗ =
1

λ
ΦTα. (5.15)

Now f can be written in terms of α as

f =
1

λ
ΦΦTα. (5.16)
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Using equations (5.13) and (5.16), (5.11) reduces to

min
α

(x− 1

λ
ΦΦTα)T (x− 1

λ
ΦΦTα) +

1

λ
αTΦΦTα (5.17)

with the optimum solution written in a matrix format as

α∗ = λ(ΦΦT + λI)−1x. (5.18)

Using equation (5.18), the optimal b∗ also can be calculated as

b∗ = ΦT (ΦΦT + λI)−1x

= (ΦTΦ+ λI)−1ΦTx. (5.19)

By applying the kernel trick equation (5.19) can be written as

b∗ = (K(Φ,Φ) + λI)−1K(Φ,x) (5.20)

The optimal vector b∗ shows the similarity of the input speech signal with each of the basis

functions and these parameters will be sent to the second level of this computational model for

more complex oparations.

5.2.2 Pooling mechanism

An important consequence of projecting the speech signal onto a normalized gammatone func-

tion space (representing the STRFs) as shown in equation (5.20) is that the high-energy elements
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(a)

Figure 5.3: Signal flow of the SPARK feature extraction

( in ||.||2 sense) of the parameter vector b will capture the salient and the noise-robust aspects

of the speech signal in terms of spectral scales, frequencies, and temroral rates. On the other

hand, the low-energy components of b are more susceptible to corruption by noise and they can

be eliminated. We therefore apply a weighting function ζ(.) on elements of |b| to obtain a more

noise-robust representation of the speech signal. This weighting function also emulates the psy-

choacoustical nonlinear relation between the intensity of sound and its perceived loudness. After

nonlinear weighting, a pooling function will choose the winner based on even summation (“SUM”)

or maximum operation (“MAX”). Note that this pooling mechanism is local and chooses the win-

ner from a set of gammatone function where all of them have a same central frequency. The

pooling mechanism we used are:

Ψm(bi.m) = ζ

 K∑
i=1

|bi.m|

 , (5.21)

Ψm(bi.m) =
K∑
i=1

ζ(|bi.m|), (5.22)
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and

Ψm(bi.m) =
K
max
i=1

ζ(|bi.m|). (5.23)
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Figure 5.4: Colormaps depicting b vectors (left column) and IDCT of SPARK feature vectors
(right column) obtained for utterances of digit “1” and “9” respectively
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5.3 Sparse auditory reproducing kernel coefficients

The flow-chart describing the SPARK feature extraction procedure is summarized in Fig. 5.3. The

input speech signal is processed by a pre-emphasis filter of the form xpre(t) = x(t) − 0.97x(t −

1) after which a 25ms speech segment is extracted using a Hamming window. The parameter

vector b∗ is obtained using the kernel regression procedure described in section 5.2.1. A pooling

mechanism chooses the parameters that are more robust to noisy conditions. Note that this pooling

system also uses a nonlinear weighting function to emulate the psychoacoustical non-linear relation

between the intensity of sound and its perceived loudness. Then, a Discrete Cosine Transform

(DCT) is applied to de-correlate the features. Like the MFCC based feature extraction, only the first

13 coefficients are used as features. We further apply the mean normalization (MN) to the feature

vectors and append the velocity ∆ and acceleration ∆∆ parameters to extract a 39 dimension

feature vectors for each speech frame. Fig. 5.4 (top row) shows the regression vectors (b) for

three different utterances “1” and “9” and bottom row shows the inverse DCT transformation of

HKC features. The figures visually depict discriminatory SPARK features for these two different

utterances.

5.4 Experiments and performance evaluation

In this section two setups is presented for the evaluation of the proposed SPARK features, one for

speech recognition system and the other for speaker verification system.
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5.4.1 Speech recognition setup

In order to compare the speech recognition results with state-of-the-art system reported in liter-

ature, we have set up a benchmark system based on the standard Aurora 2 speech recognition

task [158].

The setup includes a hidden Markov model (HMM)-based speech recognition architecture,

where the speech recognition system is implemented using the hidden Markov toolkit (HTK) pack-

age [159]. By the end of the training phase, we have whole word HMM for each digit with 16-state

per HMM with three diagonal Gaussian mixture components per state in addition to “sil” and “sp”

models.

Aurora 2 database [158] consists of recognizing English digits in the presence of additive

noise and linear convolutional distortion. All the speech data in this database are derived from the

TIDigits database at the sampling rate of 8 Khz. The original TIDigits database contains the digit

sequences which was originally designed and collected at Texas Instruments Inc. (TI) in 1982.

There are 326 speakers in this database with 111 men, 114 women, 50 boys, and 51 girls each

pronouncing 77 digit sequences where each speaker group spillited into test and training subsets.

The corpus was collected in a quit acoustic environment using an Electro-Voice RE-16 Dynamic

Cardiod microphone, digitized at 20 kHz.

In the AURORA 2 database, there are two training mods: training on clean data and mul-

ticonditional training on noisy data. The “clean training” corresponds to TIDigits training data

downsampled to 8 kHz and filtered with a G712 characteristics. The “multiconditional training”

corresponds to TIDigits training data downsampled to 8 kHz and filtered with a G712 characteris-

tics with four different noises added artificially to the data at several SNRs (20 dB, 15 dB, 10 dB,

5 dB, and clean where no noise added), therefore 20 different conditions are taken as input for this
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mode.

Three testing sets are provided for the evaluation of the Aurora-2 task. The first testing set

(set A) contains 4 subsets of 1001 utterances corrupted by subway, babble, car, and exhibition hall

noises, respectively, at different SNR levels (20 dB, 15 dB, 10 dB, 5 dB, 0 dB, -5 dB, and clean

where no noise added). The second set (set B) contains 4 subsets of 1001 utterances corrupted

by restaurant, street, airport, and train station noises at different SNR levels. These distortions

have been synthetically introduced to clean (TIDigits) data. The test set C contains 2 subsets of

1001 sentences, corrupted by subway and street noises. The data set C was filtered with the MIRS

filter [161] before the addition of noise in order to evaluate the robustness of the speech recognition

systems under convolutional distortion mismatch.

The above back-end HMM-based speech recognition system is used with three different feature

extraction algorithms for the comparison purpose.

(a)

Figure 5.5: Signal flow of the MFCC feature extraction

The basic ETSI front-end [158, 160] is based on Mel Frequency Cepstral Coefficients (MFCCs)

which has been widely used in speech based recognition/identification systems [104]. The signal

flow of MFCC based feature extraction is shown in Fig. 5.5. The ETSI basic front-end generates

the MFCCs with the following parameters. Speech, sampled at 8 kHz, is windowed into frames of
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size 200 samples with 80 samples between frames. A logarithmic frame energy measure is calcu-

lated for each frame before any processing takes place. Then each frame undergoes pre-emphasis

using a filter coefficient equal to 0.97. A Hamming window is then used prior to taking an FFT.

Then a magnitude spectrum estimate is used before the filter bank. The basic front-end generates a

feature vector consisting of 13 coefficients made up of the frame log-energy measure and cepstral

coefficients C1 to C12. In the recognition experiments, velocity and acceleration coefficients are

appended to the 13 static features above, to give a total of 39 elements in each feature vector.

Table 5.1: AURORA 2 clean training word accuracy results when ETSI FE is used.

Set A Set B Set C

Sub Bab Car Exh Res Str Air Stat Sub Str

Clean 99.11 98.85 98.81 99.20 99.11 98.85 98.81 99.20 99.23 98.97
20dB 97.11 93.65 97.55 97.04 92.45 96.37 96.00 97.35 95.58 96.13
15dB 91.34 79.26 93.08 91.05 80.44 89.96 87.92 91.45 87.96 90.45
10dB 74.64 54.63 74.20 73.09 59.29 67.26 66.57 70.81 70.62 72.70
5dB 45.47 26.96 35.55 40.64 32.05 37.03 34.92 32.09 41.76 44.32
0dB 17.44 8.92 11.69 14.69 12.28 16.63 14.97 10.64 15.54 19.62
-5dB 8.50 2.78 8.65 8.89 4.88 8.95 8.35 7.96 8.75 9.95
Avg 61.94 52.15 59.93 60.66 54.36 59.29 58.22 58.50 59.92 61.73

Table 5.1 shows the accuracy results of the benchmark speech recognition system on AURORA

2 dataset when ETSI basic front-end (FE) is used. Using this front-end, the avarage word accura-

cies are %58.67, %57.59, and %60.83 for set a, set b, and set c respectively.

Conventional gammatone filterbank uses the auditory gammatone filterbank in order to ex-

tract more robust features as shown in Fig. 5.6. In this settings, first a preemphasis of the form

xpre(t) = x(t)− 0.97x(t− 1) is applied. Then the short-time Fourier transform is performed us-

ing Hamming windows of duration 25 ms, with 10 ms between frames, and we used 26 gammatone

filters (with the exact gammatone parameters we used in extracting SPARK features). After that,

log compression is performed and each speech signal is parameterized with a DCT transformation
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Figure 5.6: Signal flow for the conventional Gammatone filterbank features, note that this figure
shows each frame of speech after two steps of pre-emphasis and windowing.

of order 13. The parameters were normalized to have zero mean complemented by their first and

second derivatives for a total of 39 coefficients. The results are shown in Fig. 5.6 with the avarage

word accuracy of %64.53, %67.49, and %65.46 on set a, set b, and set c respectively.

Table 5.2: AURORA 2 word recognition results when conventional Gammatone filter-bank (GT)
is used.

Set A Set B Set C

Sub Bab Car Exh Res Str Air Stat Sub Str

Clean 99.23 99.33 98.96 99.26 99.23 99.33 98.96 99.26 99.14 99.37
20dB 96.62 97.94 96.99 96.67 97.97 97.58 97.67 97.81 96.90 97.49
15dB 92.60 94.71 93.47 91.89 95.33 93.65 95.23 94.97 92.88 93.38
10dB 79.61 83.40 78.20 77.75 85.69 82.44 86.85 83.52 80.04 81.08
5dB 50.26 53.08 41.57 46.37 60.12 53.02 59.23 52.92 50.60 52.09
0dB 23.55 22.43 19.83 20.67 27.30 23.61 28.93 24.28 23.55 22.70
-5dB 14.86 12.76 12.47 12.22 12.96 12.85 15.00 13.92 14.55 12.73
Avg 65.25 66.24 63.07 63.55 68.37 66.07 68.84 66.67 65.38 65.55
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ETSI advanced front-end is the most recent ETSI standard front-end feature extraction [46,

162]. ETSI advanced front-end (AFE) integrates several methods to remove both additive and

convolutive noises. A two-stage Mel-warped Wiener filtering combined with a SNR-dependent

waveform processing is used to reduce the additive noise and a blind equalization is used to miti-

gate the channel effects. The word accuracy results using AFE on the AURORA 2 dataset is shown

in Table 5.3.

Table 5.3: AURORA 2 clean training word accuracy results when ETSI AFE is used.

Set A Set B Set C

Sub Bab Car Exh Res Str Air Stat Sub Str

Clean 99.08 99.00 99.05 99.23 99.08 99.00 99.05 99.23 99.08 99.03
20dB 97.91 98.31 98.48 97.90 97.97 97.64 98.39 98.36 97.36 97.70
15dB 96.41 96.89 97.58 96.82 95.33 96.74 97.11 96.73 95.33 95.77
10dB 92.23 92.35 95.29 92.78 90.08 92.78 93.47 93.77 90.24 90.69
5dB 83.82 81.08 88.49 84.05 76.27 83.28 84.07 84.57 79.03 78.17
0dB 61.93 51.90 66.42 63.28 51.09 60.07 60.99 62.57 51.73 52.09
-5dB 30.86 19.71 30.84 32.86 18.67 29.87 28.54 29.96 24.62 25.57
Avg 80.32 77.03 82.31 80.99 75.50 79.91 80.23 80.74 76.77 77.00

SPARK front-end We extracted the SPARK features for speech recognition experiments using

the procedure described in section 5.3. A 25-ms window with a 10-ms shift has been used and

the vector b has been extracted using 26 kernel gammatone basis functions. In the following

experiments the effect of changing different parameters of SPARK features on the performance

of the speech recognition system is demonstrated and then a full comparison with the benchmark

described above is presented.

In order to reduce the computational complexity of the algorithm, we reduced the size of matrix

Φ by taking to account different of time-shifts of gammatone basis function.

In order to see the effect of using different kernel functions, we changed the K in equa-

tion (5.20). The results presented in Table 5.5 where we used different kernel functions of linear
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Table 5.4: The effect of different time-shifts on the SPARK features.

Set A Set B Set C

SPARK, Shift=3.125 ms 72.33 73.02 71.57
SPARK, Shift=4.375 ms 71.79 72.48 70.97
SPARK, Shift=7.375 ms 70.60 70.63 69.74
SPARK, Shift=11.875 ms 64.58 64.37 63.28

K(x,y) = xyT , exponential K(x,y) = exp(cxyT ), sigmoid K(x,y) = tanh(axyT + c), and

polynomial K(x,y) = (xyT )d.

Table 5.5: The effect of different kernel functions on the SPARK features.

Set A Set B Set C

SPARK, Exponential kernel, c = 0.01 69.83 71.45 69.52
SPARK, Exponential kernel, c = 1.0 69.22 71.16 68.24
SPARK, Sigmoid kernel, a = 0.01, c = 0 68.35 70.60 68.89
SPARK, Sigmoid kernel, a = 0.01, c = −0.01 69.84 71.48 69.54
SPARK, Linear kernel 67.80 69.65 68.30
SPARK, Polynomial kernel, d = 2 70.77 71.14 71.07
SPARK, Polynomial kernel, d = 4 67.89 68.24 68.05

In order to investigate the effect of different pooling mechanisms, we compared the proposed

features with different pooling mechanism. First we fixed the pooling function to be Ψm(bi.m) =

ζ
(∑K

i=1 |bi.m|
)

, and changed the nonlinear weighting function ζ(.) where the results are pre-

sented in Table 5.6 for the polynomial kernel of degree 4 and λ = 0.01. The results presented in

this table clearly show that the non-linear weighting function has a huge effect on the performance

of the recognition system.

We ran the same experiments with different pooling function and different kernel function

where the results are presented in Tables 5.7 and 5.8. These experiments also show the importance

of the non-linear weighting function in extracting SPARK features.

Parameter λ controls the smoothness of the regularized regression network presented in sec-
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Table 5.6: The effect of different pooling mechanisms (different ζ) when Ψ = max ζ(|b|) and
K(x,y) = tanh(0.01xyT − 0.01).

Set A Set B Set C

SPARK, ζ(.) = (.)1/3 64.91 65.60 62.60
SPARK, ζ(.) = (.)1/11 70.91 72.32 70.19
SPARK, ζ(.) = (.)1/13 70.27 71.96 69.68
SPARK, ζ(.) = (.)1/15 69.83 71.24 68.88
SPARK, ζ(.) = (.)1/17 68.83 70.75 68.44
SPARK, ζ(.) = (.)1/19 68.35 70.36 68.10

Table 5.7: The effect of different pooling mechanisms (different ζ) when Ψ = ζ(
∑

|b|) and
K(x,y) = tanh(0.01xyT − 0.01).

Set A Set B Set C

SPARK, ζ(.) = (.)1/3 66.39 66.50 65.59
SPARK, ζ(.) = (.)1/11 71.26 72.32 70.90
SPARK, ζ(.) = (.)1/13 70.62 72.00 70.25
SPARK, ζ(.) = (.)1/15 69.84 71.48 69.54

Table 5.8: The effect of different pooling mechanisms (different ζ) when Ψ = ζ(
∑

|b|) and
K(x,y) = (xyT )4.

Set A Set B Set C

SPARK, ζ(.) = (.)1/13 67.11 67.71 66.90
SPARK, ζ(.) = (.)1/15 67.89 68.24 68.05
SPARK, ζ(.) = (.)1/17 69.06 69.01 69.34
SPARK, ζ(.) = (.)1/19 69.59 69.44 69.74
SPARK, ζ(.) = (.)1/25 70.80 70.79 70.96
SPARK, ζ(.) = (.)1/35 70.90 71.87 70.50

tion 5.2.1. In order to see the effect of this parameter on the speech recohnition performance we

ran experiments where we fixed all the parameters except λ. The results are presented in Table 5.9.

As the results show the regularization made the features more robust to the noise in general.

We also compared the SPARK features with the ETSI basic fron-end. Fig. 5.7, 5.8, 5.9, 5.10,
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Table 5.9: The effect of λ on extracting the SPARK features.

Set A Set B Set C

SPARK, λ = 0.01 72.33 73.02 71.57
SPARK, λ = 0.0001 71.41 72.35 70.25
SPARK, λ = 0.00001 69.18 69.73 67.99
SPARK, λ = 0.000001 64.12 64.79 62.68

and 5.11 compare the word error-rate obtained by SPARK (with λ = 0.001) and basic ETSI frond-

end based recognizers. The experimental results demonstrate a reduction in the word-error-rate

(WER) by 31%, 36%, and 27% for set A, set B, and set C.
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Figure 5.7: Speech recognition accuracy obtained in additive noisy (subway and bable) environ-
ments on AURORA 2 database.

We ran another set of experiments to compare the SPARK features to the state-of-the-art ETSI

AFE front-end. ETSI AFE uses noise estimation, two-pass Wiener filter-based noise suppression,

and blind feature equalization techniques. To incorporate an equivalent noise-compensation to the

SPARK features, we used the power bias subtraction (PBS) [163] method. PBS method resembles

in some ways to the conventional spectral subtraction (SS), but instead of estimating noise from

non-speech parts which usually needs a very accurate voice activity detector (VAD), PBS simply

subtracts a bias where the bias is adaptively computed based on the level of the background noise.
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Figure 5.8: Speech recognition accuracy obtained in additive noisy (car and exhibition) environ-
ments on AURORA 2 database.
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Figure 5.9: Speech recognition accuracy obtained in additive noisy (restaurant and street) environ-
ments on AURORA 2 database.

Table 5.10 shows the performance of SPARK+PBS recognition system under different types of

noise. These results can be compared to Table 5.3 where they show that SPARK+PBS system

consistently performs better than the ETSI AFE all noise types except subway and exhibition noise

at low SNR. In fact, SPARK shows an overall relative improvements of 4.69% with respect to the

ETSI AFE.

Table 5.11 shows a comparative performance of SPARK+PBS features against other baseline
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Figure 5.10: Speech recognition accuracy obtained in additive noisy (airport and station) environ-
ments on AURORA 2 database.
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Figure 5.11: Speech recognition accuracy obtained in different convolutive noisy environments on
AURORA 2 database.

systems. The results clearly show that the SPARK+PBS demonstrates improvement over the base-

line systems even in clesn condition but the advantage of SPARK+PBS features become more

apparent under noisy conditions.
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Table 5.10: AURORA 2 word recognition results when SPARK and PBS were used together.

Set A Set B Set C

Sub Bab Car Exh Res Str Air Stat Sub Str

Clean 99.36 99.12 99.19 99.38 99.36 99.12 99.19 99.38 99.32 99.09
20dB 98.10 98.70 98.69 98.15 98.83 98.37 98.90 98.58 97.82 98.04
15dB 96.41 97.64 98.03 96.64 97.51 97.58 98.30 97.59 96.41 96.80
10dB 92.94 95.37 95.47 92.69 94.32 94.04 96.60 95.06 92.05 93.59
5dB 82.87 86.61 88.76 81.67 82.99 84.22 89.41 86.76 80.60 82.98
0dB 59.26 58.19 71.28 56.77 56.77 60.85 69.52 66.52 54.81 57.13
-5dB 27.97 21.58 34.54 25.24 21.95 27.48 32.03 33.35 25.02 25.57
Avg 79.56 79.60 83.71 78.65 78.82 80.24 83.42 82.46 78.00 79.03

Table 5.11: AURORA 2 clean training word accuracy results.

Set A Set B Set C

ETSI FE WI007 58.67 57.59 60.83
ETSI AFE WI008 80.16 79.10 76.89
Conventional GT 64.53 67.49 65.46
SPARK + PBS 80.38 81.24 78.52

5.4.2 Speaker verification setup

For this setup we used a support vector machine (SVM) based speaker verification system in order

to discriminate the target speaker from the imposters. This system is based on an open source ma-

chine learning software library (Torch [164, 165]). In this system, we used the GMM supervector

linear kernel (GSLK) prposed by [150] to measure the dissimilarity between two GMMs, where

each GMM obtained by adapting the world model. We used 200 Gussian mixtures for the world

model.

NIST database Since 1996, the speech group of the National Institute of Standards and Tech-

nology (NIST) has been organizing evaluations of text-independent speaker recognition/verification

technologies. During the evaluation, a unique data-set and an evaluation protocol are provided to

each of the participating research group. The objective is to provide a fair comparison between dif-
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ferent speaker verification systems even though the identity of the systems is not publicly revealed.

The effectiveness of the proposed features is evaluated on the NIST 2003 Speaker Recognition

Evaluations (SRE) corpus. For the purpose of this work we used the one speaker cellular detection

task in NIS SRE 2003 as the evaluation set while for training of the world model (Universal Back-

ground Model (UBM)) we used 457 examples from NIST SRE 2000. For evaluation speakers,

there were about 2 minutes of speech for training the target speaker models and each test attempt

was 15 to 45 seconds long. We only used the male speakers. The evaluation set consists of 149

target speakers. The total number of attempts in the evaluation 17,772 with 10% of true target

attempts.

Evaluation metric Typically the performance of a speaker verification system is determined

by the errors generated by the recognition. There are two types of errors that can occur during a

verification task: (a) false acceptance when the system accepts an imposter speaker; and (b) false

rejection when the system rejects a valid speaker. Both types of errors are a function of the decision

threshold. Choosing a high threshold of acceptance will result in a secure system that will accept

only a few trusted speakers, however, at the expense of high false rejection rate (FRR). Similarly

choosing a low threshold would make the system more user friendly by reducing false rejection rate

but at the expense of high false acceptance rate (FAR). This trade-off is typically depicted using a

decision-error trade-off (DET) curve whose example is shown in Fig. 5.12. The FAR and FRR of

a verification system defines different operating points on the DET curve. These operating points

(shown in Fig. 5.12) vary according to their definition and are considered different performance

metrics of the speaker verification system. We describe the commonly used ones below:

Detection Cost Function (DCF): The DCF is a weighted sum of the two error rates and com-
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Figure 5.12: An example of DET curve which plots the FRR with respect to FAR.

puted as follows:

DCF = (CFRR × FRR× PTarg) + (CFAR × FAR× (1− PTarg)) (5.24)

where CFAR and CFRR denote the cost of false acceptance and cost of false rejection; and
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PTarg denotes the prior probability that the utterance belongs to the target speaker. For instance, in

evaluations conducted by National Institute of Standards and Technology (NIST), CFAR, CFRR

,and PTarg are assumed to be 10, 1, 0.01. Minimum DCF (min. DCF ) which is the performance

metric of the verification system is defined as the smallest value of (5.24) computed over the

cross-validation set when the decision threshold is varied. Another related metric is the actual

DCF which is the minimum value of (5.24) computed over the test set for the entire range of the

decision threshold. An example of the min DCF and actual DCF metric is shown on the DET curve

in Fig. 5.12.

Equal Error Rate (EER): An alternative performance measure for speaker verification is the

EER which is defined as the FAR which is equal to FRR (see 5.12). Thus, smaller the EER of the

system, the superior is the verification system.

As a benchmark system, the verification system described above was developed using MFCC

features. MFCCs were extracted for each window of 20ms with 10ms overlap between the adja-

cent windows. To extract the benchmark features, we used 24 band-pass filters between 300 and

3400HZ. Then each speech signal is parameterized with a DCT transformation of order 16, com-

plemented by the log-energy and their first and second derivatives for a total of 51 coefficients,

then all the frames were normalized in order to have a zero mean.

For speaker verification task, we extracted the SPARK features using the procedure described

in section 5.3. A 25-ms window with a 10-ms shift has been used and the vector b has been

extracted using 26 kernel gammatone basis functions. Here we kept the first 16 coefficients after

the DCT complemented by the first and second derivatives of SPARK features to create a feature

vector of 51 coefficients. Fig. 5.13 shows the DET curve comparing the MFCC-CMN features

with SPARK features where it clearly demonstrate the effectiveness of the proposed features.
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Figure 5.13: DET curve comparing MFCC-CMN and SPARK features.
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Chapter 6

Concluding Remarks and Future Directions

6.1 Summery and concluding remarks

In this work, a miniature acoustic recognition system introduced where the recoding elements

are placed in micro/nano scale distance from each other. The mathematical model presented in

chapter 2 shows that recording on a miniature microphone array can be approximated with an in-

stantaneous linear mixing model. In chapter 3, a “smart” acquisition system is introduced. At the

core of the proposed acquisition system is a min-max optimization of a regularized objective func-

tion that yields a sequence of quantized parameters which asymptotically tracks the statistics of

the input signals and at the same time removes the cross-correlation of the input space. Therefore,

the proposed acquisition system achieves the signal de-correlation along with data conversion at

lower digital data bandwidth unlike the conventional data acquisition approach of analog-to-digital

conversion followed by data de-correlation process. The performance of this acquisition system

is evaluated using synthetic and real recordings and the experiments using the miniature/compact

microphone arrays showed a consistent improvement against a standard analog-to-digital converter
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for any DSP based source separation algorithms. One of the limitations that prevent a miniature

acoustic recognition system to be used in real world applications is its robustness to noisy condi-

tions. It was argued that this issue can be addressed with two general approaches of robust feature

extraction techniques and robust modeling. This work also proposed a hierarchical model for ro-

bust feature extraction in order to make the miniature acoustic recognition system robust to noisy

conditions. The proposed auditory features are extracted in two levels where in the first level of

this computational model, the similarity of sensory auditory world is measured through a kernel

based approach with a set of gammatone basis functions. The result of incorporating this a-priori

information is that these signitures can be extracted in real-time using pre-computed projection

matrices. In the second level of this model, the feature are extracted using a pooling mechanism

in order to feed into the acoustic recognition unit. The beauty of this approach is its robustness

to different noisy conditions and its simplicity in which it can be implemented in real-time us-

ing pre-computed matrices therefore it is suitable for the proposed miniature acoustic recognition

system.

6.2 Future directions

The future work in enhancing the proposed Σ∆ learning for “Smart” acquisition system includes:

• Exploring higher-order noise-shaping Σ∆ modulators for improving the performance of res-

olution enhancement.

• Extending Σ∆ learning to non-linear signal transforms by embedding kernels into the opti-

mization framework. Incorporating the kernels in signal transformation can capture interest-

ing non-linear information from higher-order statistics of the signal.
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• Extending Σ∆ learning to integrate a source separation technique with signal quantization

in which the ADC module not only provides the digital representation of the signal but also

separates the signal of the interest from other interferences.

In this research framework, Σ∆ learning has been demonstrated to improve the performance of

speech based source separation algorithms, but the proposed technique is general and can be ap-

plied to any sensor arrays. The potential applications include microphone array hearing aids, mi-

croelectrode array in neuroprosthetic devices, miniature radio-frequency antenna arrays and for

radar applications.

The future work in extending the proposed hierarchical kernel coefficients includes:

• Learning the basis functions from a speech dataset or updating the gammatone parameters

in order to be able to extract more information from the speech signal.

• Exploring other type of basis functions like gammachirp instead of gammatone basis func-

tions.

• Even we introduced a hierarchical just model for the feature extraction module, but this work

can be extended to have a hierarchical recognition module as well.

• Exploring the use of hierarchical model for speech and audio coding.

For the speaker verification system, in addition to the features used by the proposed system,

there are many other sources of speaker information in the speech signal that can be used. These

include idiolect (word usage), prosodic measures and other long-term signal measures. This work

will be aided by the increasing use of reliable speech recognition systems for speaker verification

research. These high-level features not only offer the potential to improve accuracy, they may also
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help improve robustness since they should be less susceptible to channel effects and recent research

in this regards show very promising results.
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