INFORMATION TO USERS While the m ost advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the m aterial submitted. For example: • M anuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • M anuscripts may not always be complete. In such cases, a note will indicate th at it is not possible to obtain missing pages. • Copyrighted m aterial may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize m aterials (e.g., maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections w ith small overlaps. Each oversize page is also film ed as one ex p o su re an d is a v a ila b le , for an additional charge, as a standard 35mm slide or as a 17”x 23” black and white photographic print. M ost p h o to g ra p h s rep ro d u ce accep tab ly on p o sitiv e microfilm or microfiche but lack the clarity on xerographic copies made from the microfilm. For an additional charge, 35mm slides of 6”x 9” black and white photographic prints are available for any photographs or illu stratio n s th a t cannot be reproduced satisfactorily by xerography. 8714335 Host, Geo rge Edwa rd SPATIAL PATTERNS OF FOREST COMPOSITION, SUCCESSIONAL PATHWAYS AND BIOMASS PRODUCTION AMONG LANDSCAPE ECOSYSTEMS OF NORTHWESTERN LOWER MICHIGAN Michigan S tate University University Microfilms international 300 N. Zeeb Road, Ann Arbor, Ml 46106 Ph.D. 1987 PLEASE NOTE: In all cases this material has been filmed In the best possible way from the available copy. Problems encountered with this docum ent have been identified herewith a check mark V . 1. Glossy photographs or p a g es_____ 2. Colored illustrations, paper or print 3. Photographs with dark background_____ 4. Illustrations are poor copy______ 5. Pages with black marks, not original copy______ 6. Print shows through as there is text on both sides of p a g e _______ 7. Indistinct, broken or small print on several pages 8. Print exceeds margin requirem ents______ 9. Tightly bound copy with print lost in spine_______ 10. Computer printout pages with indistinct print______ 11. Page{s)____________ lacking when material received, and not available from school or author. 12. Page(s}____________ seem to be missing in numbering only as text follows. 13. Two pages num bered 14. Curling and 15. Dissertation contains pages with print at a slant, filmed a s received 16. Other_________________________________________ „ _______________________ ___ . Text follows. wrinkled p ag es__ iS University Microfilms International SPATIAL PATTERNS OF FOREST COMPOSITION, SUCCESSIONAL PATHWAYS AND BIOMASS PRODUCTION AMONG LANDSCAPE ECOSYSTEMS OF NORTHWESTERN LOWER MICHIGAN by G e o r g e Edward H o s t A DISSERTATION Submitted to Michigan S t a t e U n iv e r s i t y in p a r t i a l f u ll f i l l m e n t of the requirem ents for the degree of DOCTOR OF PHILOSOPHY Department of F o r e s t r y 1987 ABSTRACT SPATIAL PATTERNS OP FOREST COMPOSITION, SUCCESSIONAL PATHWAYS AND BIOMASS PRODUCTION AMONG LANDSCAPE ECOSYSTEMS OF NORTHWESTERN LOWER MICHIGAN By G e o rg e Edward H o s t S patial pathw ays, and landform s T here patterns in w ere biom ass a regional three forest species forest the area of were o b jectiv es: and 2) 3) successional related northw estern study area ecosystem s, com position, com position, production general g e o m o r p h i c map o f upland of bo g l a c i a l Lower 1) to M ichigan. develop a to d e fin e and d e s c r ib e to successional study v ariatio n pattern, and in biom ass p r o d u c t i o n among l a n d f o r m s a n d e c o s y s t e m s . G lacial airphoto E ighty landform s were interpretation , sam ple stands positions using desig n . D etailed overstory, a using field observation, and to p o g ra p h ic p r o f i l e were located landform -based in w ere ground f l o r a and analy sis. upland stratified observations understory, nine ecosystem s mapped landscape random recorded soils of sam pling for each the stand; were i d e n t i f i e d . Com positional p a tte rn s d etected in m u ltiv a ria te a n a ly sis of flo ris tic d a ta were used to form e c o l o g i c a l s p e c i e s g ro u p s and vegetation relate Chi-squared analyses distribution related pattern showed to environm ental significant to landform . patterns The I n t e r l o b a t e factors. of species M oraine, a G e o r g e E. predom inant landform in the n o rth w estern p o rtio n of area, was c h a r a c t e r i z e d by a n o r t h e r n herbaceous annuals, p e re n n ia ls, ground f lo r a . supported ground flo ra is w ith species. Stand co rrelated indirect an im p o rta n t evidence factor P o ten tial seedling overstory com position. reg en eratin g in future Total hardwood canopy, w ith predom inately o rdinatio n w ith that a so il soil 84 t o and pathw ays sapling The any t/ha/yr). aboveground landscape biom ass indicate in biom ass biom ass that oak and by current is th at increm ent not the varied Biomass ran g ed r a n g e d f ro m 1.3 increm ent indicating may be c o n t r o l l e d stu d ied by e c o s y s t e m . and w ith th e ground f lo r a o r d in a tio n , and p ro d u c tio n index, w ith p o sitio n , biom ass in crem en t D ifferences w ere availability w ere d ensities results overstory varies 250 t / h a ; ericaceous tex tu ra l s i g n i f i c a n t l y among l a n d f o r m s a n d e c o s y s t e m s . from landform s scores m oisture the influencing sp ecies com position. su ccessio n al com paring potential study and ep h em erals fo rm in g overstories sig n ific a n tly providing the A ll o th e r m o ra in a l and g l a c i o f l u v i a l oak Bost were that by s i m i l a r t o 3.6 correlated com position environm ental factors. V ariation of upland clo sely to developed. and edaphic pattern in the forests the com position, exhibits geom orphic a production, p a t t e r n w hich surface Under homogeneous c l i m a t i c patterns and p ro c e s s provide in forest an and s t r u c t u r e on w h ic h conditions, corresponds thefo re s ts landform u l t i m a t e c o n s t r a i n t on b o t h ecosystem s. T h i s i s d e d i c a t e d t o my p a r e n t s a n d t o my a u n t s , u n c l e s a n d c o u s i n s who h a v e g i v e n l o v e a n d s u p p o r t o v e r ma n y y e a r s ii ACKNOWLEDGEMENTS I would f i r s t and f o r e m o s t l i k e t o Dr. K u rt F r e g i t z e r in sig h ts into organization. ecology, t o e x p r e s s my g r a t i t u d e for h is guidance, p attern s and He h a s g r e a t l y and f o r s h a r i n g m echanism s influenced I would a l s o like to com m unity my p e r c e p t i o n and h a s been an e x e m p l a r y t e a c h e r research. of in a l l acknow ledge facets for critical like their reviews to assistance of the acknow ledge during m anuscript. Dave L u s c h the In for of and P e te r study and particular, his of my c o m m i t t e e m e m b e r s , D r s , C a r l Ra mm, J a m e s H a r t , D a v i d L u s c h Murphy his their I assistance would in the interpretation of the re g io n a l P le isto c e n e h is to r y and the developm ent of t h e g e o r a o r p h ic map. Dave C l e l a n d o f I would a l s o t h e U.S. F o r e s t S e r v i c e , to thank who p r o v i d e d more i n t e r e s t i n g d i s c u s s i o n s and id e a s th a n I can m en tio n . A great research, number of p e o p le have been in v o lv e d w ith t h i s and i t would be d i f f i c u l t to acknowledge them a l l . Two f i e l d c r e w s w o r k e d f a r b e y o n d t h e c a l l o f d u t y o v e r t h e course M erkel, of field sam pling. E unice Padley, acknow ledged for interm inable field their Do n Z a k , and hard seasons. 3tudy s tu d e n ts a s s i s t e d w ith Steve R obert work DeGeus and Several W estin, are to persistence generations laboratory analyses. iii D ennis of be over work I 1 have been would l i k e worked to express closely a partner in special w ith over field gratitude several work, la b to years* Don Z a k h a s work, and d a ta a n d h a s c o n t r i b u t e d much t i m e an d e n e r g y t o o u r research. He h a s under duress, also lik e to friendship, B ill H iguchi, and been an unsw erving and I look forw ard thank and fo r C ole, Dr. I co llective during research Phu Nguyen for his I would patience, t e a c h i n g me t h e w a y s o f c o m p u t e r s . P ete G reaney, over the e x p r e s s my a p p r e c i a t i o n Finally help analysis, to fu tu re p r o je c ts . Rose P h u a n d Don h a v e p r o v i d e d friendship two p e o p le to would l i k e past much h e l p , several years, M uzika, N iro encouragem ent, and I cannot them a l l . to t h a n k my p a r e n t s and su p p o rt through y e t an o th er degree, been a p a t i e n t and lo v in g M arie their and C onnie, companion th ro u g h iv for it all. love who h a s TABLE OF CONTENTS L I S T OF TABLES. , . . .......................................... . ........................................................ . i x L I S T OF FIGURES . , .. ............................................................. .xii Chapter I. I N T R O D U C T I O N . . . . . ........................................................................... 1 Background ....................................... 1 C om position. ....................................... 3 S u c c e s s i o n ............................... 5 P r o d u c t i o n ...........................................................................................7 P r o j e c t h i s t o r y ....................................... 8 O b j e c t i v e s .................................................... 9 G e n e r a l f i e l d a n d l a b o r a t o r y p r o c e d u r e s ............... 9 S a m p l e d e s i g n a n d p l o t l o c a t i o n s ..................11 O v e r s t o r y s a m p l i n g ...................................................... 11 Ground f l o r a and u n d e r s t o r y s a m p l i n g . . . 1 3 S o i l s a m p l i n g - f i e l d m e t h o d s . . . ..................13 S o i l s a m p l i n g - l a b o r a t o r y m e t h o d s ............ 13 L i t e r a t u r e c i t e d ............................................................14 II. ECOLOGICAL SPECIES GROUPS FOR UPLAND FOREST ECOSYSTEMS OF NORTHWESTERN LOWER MICHIGAN A b s t r a c t ............................................................................................. 18 I n t r o d u c t i o n ......................... .19 M a t e r i a l s a n d m e t h o d s ............................................................21 S a m p l e d e s i g n a n d f i e l d m e t h o d s .................... 21 S t a t i s t i c a l methods .................................... 23 R e s u l t s a n d d i s c u s s i o n .................... 24 E c o l o g i c a l s p e c i e s g r o u p s . . . . . . . . . . . . . . 33 D e s c h a m p s i a g r o u p . .......................................33 Vaccinium g r o u p .................... 33 P t e r i d i u m g r o u p ............................ 34 H a m a m e l i s g r o u p ................................................. 34 T r i e n t a l i s g r o u p ...............................................35 V i b u r n u m g r o u p . . ....................... 35 De s mo d i u m g r o u p ................................................. 35 v II. (cont.) M a i a n t h e m u r a g r o u p ................... 36 O s m o r h i z a g r o u p ................................... 36 S u m m a r y . ................................................................................ . . . . . 3 7 L i t e r a t u r e c i t e d . ........................................................................ 38 III. THE ROLE OP LANDFORM I N THE COMMUNITY ORGANIZATION OP UPLAND FORESTS I N NORTHWESTERN LOWER MICHIGAN A bstract ................................................................................40 I n t r o d u c t i o n ............................................. ......................................42 M a t e r i a l s a n d m e t h o d s .......................................... . . . . 4 5 S t u d y a r e a ............................................................................. 45 G e o m o r p h i c a n a l y s e s . * ................................................46 S a m p l e d e s i g n a n d m e t h o d s ..................................... 47 S t a t i s t i c a l a n a l y s e s ..................................... . . . . . 4 9 R esults ..................................... 50 G e o m o r p h i c a n a l y s i s ...................................................50 V e g e t a t i o n a n a l y s i s ............. .....................................56 D i s c u s s i o n ...........................................................................................7 5 T h e p r o b l e m o f s c a l e .................................................. 7 7 L a n d f o r m - m e d i a t e d f i r e h i s t o r y .......................... 79 A c t u a l v s . p o t e n t i a l c o m p o s i t i o n .................. 80 L i t e r a t u r e c i t e d ............... ..83 IV. UPLAND FOREST ECOSYSTEMS OF NORTHWESTERN LOWER MICHIGAN A b s t r a c t ................................................................ 87 I n t r o d u c t i o n ................................ 88 E c o s y s t e m d e s c r i p t i o n s ................ 89 E c o s y s t e m 1 ............. 89 E c o s y s t e m 2 ....................................................................... . 9 2 E c o s y s t e m 3 ...........................................................................94 E c o s y s t e m 4 ..................................................... 95 E c o s y s t e m 5 ...........................................................................97 E c o s y s t e m 6 .......................................... 99 E c o s y s t e m 7 . . . .......................... 101 E c o s y s t e m 8 ..................................................... 103 E c o s y s t e m 9 ............................................................. . . . . 1 0 5 L i t e r a t u r e c i t e d ..................................... 113 vi V. LANDFORM-MEDIATED DIFFERENCES I N SUCCESSIONAL PATHWAYS AMONG UPLAND FORESTS OF NORTHWESTERN LOWER MICHIGAN A bstract .................................................. 1X4 .................................................... 116 Introduction. M a t e r i a l s a n d m e t h o d s . ................................. 118 R e s u l t s and d i s c u s s i o n . ................................1 2 2 O v e r s t o r y ..................................................................... .122 N a t u r a l r e g e n e r a t i o n on g l a c i o f l u v i a l landform s .......................................... 125 N a t u r a l r e g e n e r a t i o n on m o r a i n a l landform s ............................ 129 P o ten tial successional p attern s a mong e c o s y s t e m s ............................................. 1 3 0 L i t e r a t u r e c i t e d . .............................................................. 137 VI. THE BIOMASS RESPONSE OF GLACIAL LANDFORMS AND LANDSCAPE ECOSYSTEMS I N UPLAND FORESTS OF NORTHWESTERN LOWER MICHIGAN A b s t r a c t ............................................... 140 I n t r o d u c t i o n ..................................... .142 M a t e r i a l s a n d m e t h o d s .......................................................... 1 4 4 S t u d y a r e a a n d s a m p l e d e s i g n .......................... 1 4 4 F ield m e t h o d s ............................................ 1 4 7 E c o s y s t e m c l a s s i f i c a t i o n .................... . 1 4 9 S t a t i s t i c a l m ethods .....................1 5 0 R e s u l t s ............................................................... .153 A n a l y s i s by l a n d f o r m ................ 153 A n a l y s i s b y e c o s y s t e m . ................ 159 Ground f l o r a - o v e r s t o r y r e l a t i o n s h i p s . .1 62 D i s c u s s i o n ........................................................................................1 6 8 Landscape p a t t e r n s of b i o m a s s a c c u m u l a t i o n . ................ .168 Ecosystems as f u n c t io n a l l a n d s c a p e u n i t s . . . . .....................................1 7 1 L i t e r a t u r e c i t e d ..................................................................... * 1 7 4 VII. CONCLUSIONS............................... vii 178 APPENDI CES.................. ..................................................................................... . ....................1 8 1 A p p e n d i x A ............................................. A p p e n d i x B ................................. .182 . ....................................1 8 4 A p p e n d i x C .................. 203 viii LIST OF TABLES Table 1.1. Cover-abundance c l a s s e s used in f i e l d sampling 12 Table 2 .1 . C o v e r - a b u n d a n c e c la s s e s and r a n k s u se d i n f i e l d s a m p l i n g a n d d a t a a n a l y s i s ..............................................2 3 Table 2 .2 . E cological species groups for the upland f o re s t ecosystem s in th e M an istee N a tio n a l F orest. V alues a re cover classes used by TWINSPAN. V ertical d iv isio n s represent c la s se s of stands w ith s im ila r ground f lo r a c o m p o s i t i o n ............................................................................................. 28 Table 3 .1 . F o r e s t c o m p o s i t i o n and s o i l p r o p e r t i e s among glacial la n d f o r m s o f n o r t h w e s t e r n Lower M ic h ig a n ........................................................................................................................57 Table 3 .2 . Standardized r e s id u a ls and c h i-sq u a re d v a lu e s for individual herbaceous and woody s p e c i e s distributed o n n i n e u p l a n d l a n d f o r m s ..................62 Table 3 .3. F actor loadings (eigenvectors) from a p r i n c i p a l component a n a l y s is o f s ta n d a r d iz e d re sid u a ls from the species by lan d fo rm contingency t a b l e s ................... 64 Table 3.4. Th e 20 t e r m i n a l s p e c i e s o n DCA o r d i n a t i o n a x i s 1; E i g e n v a l u e = 0 . 6 5 3 ............................................ 68 Table 4 .1 . S elected o v e rsto ry c h a r a c te r is tic s of upland f o r e s t e c o s y s t e m s i n n o r t h w e s t e r n Lower M ic h ig a n . 10 8 Table 4 .2 . S e l e c t e d u n d e r s t o r y ( s t e m s 1 - 9 cm d b h ) s t e m den sities of upland forest ecosystem s in n o r th w e s t e r n Lower M ich ig an ........ .....109 Table 4.3. Mean r a n k a b u n d a n c e o f g r o u n d f l o r a s p e c i e s i n e c o l o g i c a l s p e c i e s g r o u p s ........................................... 1 1 0 Table 4 .4 . S elected s o il c h a r a c t e r is t i c s of upland f o r e s t e c o s y s t e m s o f n o r t h w e s t e r n Lower M i c h i g a n 112 ix T a b le 5. L . Landform, soil, and v e g e t a t i o n a l p r o p e r t i e s o f fiv e upland forest ecosystem s common in 121 n o r t h w e s t e r n L o w e r M i c h i g a n ..................... T a b le 5. i. O verstory com position of f iv e upland f o r e s t e c o s y s t e m s common i n n o r t h w e s t e r n L o w e r M i c h i g a n . E cosystem s a re o rd e re d a lo n g an in c r e a s i n g m oisture g r a d i e n t , b a s e d on s o i l texture. M orainal landform s tre a te d separately in s ta tis tic a l a n a l y s e s ........................................................ 1 2 3 T a b l e 5 . 3. Mean s e e d l i n g d e n s i t i e s f o r f i v e u p l a n d forest e c o s y s t e m s common i n n o r t h w e s t e r n L o w e r M i c h i g a n . E cosystem s a re o rd e re d alo n g an in c r e a s in g m oisture g r a d i e n t , b a s e d on s o i l texture. M orainal landform s tre a te d s e p a r a t e l y in ......................................... 1 2 6 s ta tis tic a l analyses T a b l e 5 . 1. Mean s a p l i n g d e n s i t i e s f o r f i v e u p l a n d forest e c o s y s t e m s common i n n o r t h w e s t e r n L o w e r M i c h i g a n . E co sy stem s a re o rd e re d a lo n g an in c r e a s in g m oisture g r a d i e n t , b a s e d on s o i l texture. M orainal landform s tre a te d s e p a r a t e l y in s ta tis tic a l a n a l y s e s ................................ ;.127 T a b le 6. L . F o r e s t c o m p o s itio n and s o i l p r o p e r t i e s among glacial landform s of n o rth w e ste rn Lower M i c h i g a n ............................................................................................ 1 4 8 T a b l e 6 . 2. S e le c te d land fo rm , o v e r s to r y , ground f l o r a , and s o i l p r o p e r t i e s of upland f o r e s t e c o sy ste m s in n o r t h w e s t e r n L o w e r M i c h i g a n ..................................... 1 5 1 T a b l e 6 . 3. R egression e q u atio n s used to c a lc u la te above ground dry w eight for upland sp ecies in n o r t h w e s t e r n L o w e r M i c h i g a n ....................................... 1 5 2 T a b l e 6 . 1. T otal aboveground biom ass, mean annual biom ass in crem en t, and s ta n d age s u m m a r i z e d by landform . Means f o l l o w e d by t h e same l e t t e r n o t d i f f e r e n t a t a l p h a = 0 . Q 5 ......................................... 1 5 4 T a b le 6. i * T otal aboveground biom ass, mean annual biomass increm ent, and stand age summarized by ecosystem. Me a n s f o l l o w e d by the same le tte r not sig n ifican tly d ifferen t at a l p h a = 0 . 0 5 ............................................................................................. 160 T a b l e A. L . Legal d e s c rip tio n s of stand lo c a tio n s , USFS R a n g e r D i s t r i c t s , a n d C o m p a r t m e n t s ....................... 1 8 2 T a b l e B. L. Ra n k o r d e r a n d d e t r e n d e d c o r r e s p o n d e n c e a n a l y s i s s c o r e s o f t h e s a m p l e s t a n d s ................................................. 18 4 x T a b l e B. S y n t h e s i s t a b l e f o r a l l woody an d h e r b a c e o u s g r o u n d f l o r a w i t h s t a n d l e v e l f r e q u e n c i e s o f 5% or greater. V a lu e s a r e mean ra n k a b u n d a n c e . S ta n d s and s p e c i e s a r e ra n k e d by d e t r e n d e d c o r r e s p o n d e n c e a n a l y s i s s c o r e s . ............................ 1 8 5 T a b l e C. P h y s i c a l and ch em ical s o i l p r o p e r t i e s , summarized ............................................................................................. 2 0 3 by s t a n d . LIST OF FIGURES Figure 2.1, Stand level frequency d is t r i b u t i o n of 120 ground flo ra s p e c i e s . . . ................................................... 2 7 F ig u re 2.2, D e t r e n d e d c o r r e s p o n d e n c e a n a l y s i s o f 49 g r o u n d flo ra species. V alues r e p r e s e n t e c o l o g i c a l s p e c ie s group m em bership: 1 - D esch am p sia, 2 V accinium , 3 - H am am elis, 4 - P te r id iu m , 5 T r i e n t a l i s , 6 - D esm odium , 7 - V ib u rn u m , 8 M a i a n t h e m u m , 9 - O s m o r h i z a .................................. . . . 3 2 Figure 3.1, Predom inant g l a c i a l landform s o f a f iv e county a r e a of n o r th w e s te r n Lower M ic h ig a n ..... 52 Figure 3.2, N orthw est-southeast topographic p r o f ile s through a s e r i e s o f outw ash t e r r a c e s and m orphosequences i n n o r t h w e s t e r n L o w e r M i c h i g a n . . . . . . . . . ..............5 4 Figure 3.3, Basal areas of m ajor o v e r s to r y sp ecies s u m m a r iz e d by l a n d f o r m . Oak-dominated lan d fo rm s a r e o r d e r e d by s o i l m o i s t u r e a v a i l a b i l i t y ( x e r i c t o m e s ic ), b a se d on s o i l t e x t u r e an d p r e s e n c e o r absence o f te x tu r a l bands. Landform codes a re as follow s: OUT VCM-U KC-U PHU-U VCM-B KC-B PHM-B ILM-U ILM-B Figure 3.4. - Outwash p l a i n s V a lp a r a is o - C h a r lo tte Moraine - unbanded Kame c o m p l e x e s - u n b a n d e d P o r t Huron M o ra in e - u n b a n d e d V a lp a r a is o - C h a r lo tte Moraine - banded Kame c o m p l e x e s - b a n d e d P o r t Huron M oraine - banded I n t e r l o b a t e Moraine - unbanded I n t e r l o b a t e M o r a i n e - b a n d e d . . . . . . . . . 60 S p e c i e s d i s t r i b u t i o n on t h e f i r s t tw o a x e s o f a binary discrim inant an alysis. Sym bols a re sp e c ie s group codes: D - D escham psia, V V accinium , P - P te rid iu m , H - H am am elis, T T r i e n t a l i s , VI - V i b u r n u m , DM - D e s m o d i u m , M M a i a n t h e m u m , 0 - O s m o r h i z a . . . .............................. . . . 6 6 xii Figure 3.5. D etren d ed c o r r e s p o n d e n c e a n a l y s i s o f s t a n d s by gro u n d f l o r a and o v e r s t o r y v e g e t a t i o n : a) o r d i n a t i o n b a s e d on g r o u n d f l o r a / b) o r d i n a t i o n b a s e d on o v e r s t o r y . Values r e p r e s e n t landform codes: 1 2 3 4 5 6 7 8 9 F ig u re 3.6, Outwash p l a i n s Kame c o m p l e x e s - u n b a n d e d P o r t Huron M o ra in e - u n b an d ed V a l p a r a i s o - C h a r l o t t e Moraine - unbanded I n t e r l o b a t e Moraine - unbanded Kame c o m p l e x e s - b a n d e d P o r t Huron M o ra in e - b an d ed V a l p a r a i s o - C h a r l o t t e Moraine - banded I n t e r l o b a t e M o r a i n e - b a n d e d ........................ . 70 S c a t t e r p l o t o f s t a n d s c o r e s f ro m o r d i n a t i o n s by ground f l o r a and o v e r s t o r y . V alues r e p r e s e n t landform codes: 1 2 3 4 5 6 7 8 9 Outwash p l a i n s Kame c o m p l e x e s - u n b a n d e d P o r t Huron M oraine - unbanded V a lp a r a i s o - C h a r l o t t e Moraine - unbanded I n t e r l o b a t e Moraine - unbanded Kame c o m p l e x e s - b a n d e d P o r t Huron M o rain e - banded V a lp a r a is o - C h a r lo tte Moraine - banded I n t e r l o b a t e Moraine - b a n d e d . , 74 F ig u re 5.1. U n d e rsto ry c o m p o s itio n and p a t t e r n s of c o m p o s i t i o n a l c h a n g e r e l a t e d t o l a n d f o r m / SAF cover ty p e (Eyre 1980) and e c o s y s te m . The f ig u re should not be i n t e r p r e t e d as in d i c a t i v e o f l i n e a r and d e t e r m i n i s t i c successional pathways? r a t h e r / i t d e p i c t s e x i s t i n g la n d sc a p e p a t t e r n s ................................................................................................1 33 F ig u re 6.1, Map o f s t u d y a r e a r s h o w i n g landform s ............... F ig u re 6.2, A b o v e g r o u n d b i o m a s s a mo n g l a n d f o r m s s u m m a r i z e d by s p e c i e s . L a n d f o r m s w i t h t h e s a m e l e t t e r do not d i f f e r in t o t a l aboveground biom ass 157 F ig u re 6.3, A b o v e g r o u n d b i o m a s s a mo ng e c o s y s t e m s s u m m a r i z e d by s p e c i e s . E c o s y s t e m s w i t h t h e s a m e l e t t e r do not d i f f e r in t o t a l aboveground biom ass 1 64 xiii predom inant glacial 14 6 Figure 6.4. S c a tte r p lo t of aboveground biom ass in crem en t w ith stan d o rd in a tio n sc o re s. O rdination sco res w ere d eriv ed from a d etren d ed c o r r e s p o n d e n c e a n a l y s i s b a s e d on g r o u n d f l o r a abundance. Numbers r e p r e s e n t la n d f o r m c o d e s : 1 - outw ash p la in s , 2 - I c e - c o n ta c t h i l l s , 3 P o r t Huron M o ra in e , 4 - V a l p a r a i s o - C h a r l o t t e M o r a i n e , 5b - b a n d e d I n t e r l o b a t e m o r a i n e , 5 u u n b a n d e d I n t e r l o b a t e M o r a i n e ................................ 1 6 7 xiv Chapter 1 INTRODUCTION Background The are an present-day expression individual on of species, species forests of northw estern the p o s t- g la c ia l the influence of establishm ent and Lower m igration M ichigan histories of the p h y sic a l environm ent grow th, and the effects of n a t u r a l and man-made d i s t u r b a n c e s o v e r th e p a s t m i l l e n i u m . U nderstanding ecosystem involves d escrib in g com position factors scales. S patial energetic, m oisture, and n u t r i e n t occupied patterns by an resulting v ariatio n plant operating h isto rical vegetation change. The t e m p o r a l a n d s p a t i a l defined before and f o r e s t This upland and la n d mass ranges cycles from to the clim atic interest r e la tio n s h ip s between the p h y s ic a l study considers must be environm ent the com position and dynam ics ecosystem s a c ro ss a f iv e county a r e a w ith in N ational Forest s tu d y was conducted a t at clim atic long-term of the c o m m u n itie s can be s t u d i e d . forest M anistee scales and volum etric global in circadean to from the v a ria tio n ecophysiological e ffe c ts of to of mass c i r c u l a t i o n T em poral response therefore ranges dynamics individual from a i r d is tr ib u tio n s . dynam ics w hich o p e r a t e a t many s p a t i a l tem p o ral space and approxim ately ( MN P ) , M ichigan. the scale of g la c ia l 1:60,000) and 1 local S patially, landform s ecosystem s of the the (mapped (mapped at 2 approxim ately from 1:15,000). 1:50,000 m aterial, pattern, so il to 1:250,000 bedrock 1:1,000,000. - of differences M an istee in occur et the state D istricts, considered in d is tr ic ts based al. 1985). P regitzer The l o c a l hypotheses com position functional of ground - of based The the on regional Newaygo a n d and G rayling w ithin flo ra, and Barnes ecosystem s scale hierarchical physiography. these and 1984, represent to sim p le were that and stru ctu re, processes. so ils Spies units and w hich local field ecosystem s but In p a r t i c u l a r , in p o te n tia l criteria. differ The not only also in I was interested successional ecosystem pathw ays in and biomass p roduction. C urrent view s landscape as (patches), w ith w ithin a three C ad illac site in c h a r a c t e r i s t i c la n d s c a p e p o s i t i o n s and ecosystem v a r ia tio n levels at includes of com pleted a S ubdistricts the can be i d e n t i f i e d a c c o r d in g in and used on p h y s i o g r a p h y , 1982, parent reveal p lan t- Local eco sy stem s were d e f in e d repeatedly major M ichigan study and of q u an tificatio n of and this scales effects (1986) have r e c e n t l y m acroclim ate su b d istricts. d istricts allow al. that and t o p o g r a p h y on v e g e t a t i o n T heir c l a s s i f i c a t i o n Regions, landscape and A lbert et classificatio n Barnes the noted w h ile s c a l e s of 1:10,000 to 1:20,000 potential. (Barnes show lithology, relatio n sh ip s units Damman ( 1 9 7 9 ) h a s a of landscape m osaic transfers and among u n i t s of ecology relativ ely of m a te ria l, (R isser et treat regional homogeneous energy, al. a 1983). units and o r g a n i s m s The m osaic 3 n atu re of a regional landscape is biotic factors, but th e se f a c to r s o p e r a te in a h i e r a r c h i c a l fashion. In his S erengeti grasslands, "...g eo lo g y , study form ation, grazing-w eb clim ate, p ro b ab ilistic in McNaughton ecosystem of and variation com m unity and topography to ecosystem and and be account p rim ary the is used, for com position, which evolution constrained." conclusion can are the that the co ntext w ith in defined M cN aughton's in concludes clim ate development, are sense, organization (1984) that estab lish members im portance of topography, environm ental fa c to rs soil due t o many p h y s i c a l a n d some that The geology, at least of the structure, of in a sp atial and function. Composition V ariab ility fundam ental in s p e c ie s and readily-observed regional landscape. physical environment stochastic source, events etc.). C om position (space), Two s c h o o l s o f C lem ents One s c h o o l , in A m erica phytosociology are real in and Europe, taxonom ic u n its . developed a com m unities. L atin i s one of th e m ost characteristics varies chance of the to the (tim e), and according successional (disturbance, the p ast century regarding com m unities. com position status im m igration, seed thought have developed over the fundam ental n a tu re of p la n t derived the from t h e work o f Z urich-M ontpellier m aintains that plant B raun-B lanquet binom ial system Modern p r o p o n e n t s o f to this Frederick school of com m unities (1932), in id en tify school of fact, plant thought 4 include Daubenmire (1966), who d e v e l o p e d the habitat typing s y ste m used in w e s te rn m ontane r e g io n s , and Coffm ann e t a l. (1983), who developed a sim ilar system portions of M ichigan and W isconsin. for the northern The se c o n d s c h o o l of t h o u g h t , s o m e tim e s r e f e r r e d t o as the "W isconsin individually that "plant school", and independently associations" conceptual abstractions T h i s v ie w was f i r s t "...ev ery species distribution of peculiarities of m aintains no r e a l i t y the mind o f espoused of in is a space m igration and distribution o rd in atio n techniques m ultivariate individually C urtis used data 1959, W hittaker distrib ution s 1960, analysis over both to unto on toward developed when and w ith (Pastor the becomes d i f f i c u l t et al. continuum 1984, are who s t a t e s requirem ents." the a n a ly sis gradients, are 1957, R e c e n t work h as and or to in c o rp o ra te the considered tim e approach, of and analyze in Pastor the individual variation (Peet species Loucks such as n itro g e n and P ost however, to e x tr a p o la te ecosystem a reg io n al landscape, but Bray and C u r t i s B ea ls 1984). space its to species explain and its e lf, environm ental and to model e c o l o g i c a l p r o c e s s e s , m ineralization problem obtained nature, environm ental w ere factors, (1926), depends ( C u r t i s and M cIntosh 1951, gradient 1977), along respond the p h y to so c io lo g is t. law R e s e a r c h i n W i s c o n s i n became o r i e n t e d species in by G l e a s o n plant which species to environm ental have in that 1986). is properties inform ation that A it across into a 5 cartographic utility system , the used Sam pling to species gradient. problem sample g rad ien t alm ost w ith the among perspective" has homogeneous over D aubenm ire 1966, w hich the lead ecologists more schools influence i n v a r i a b l y shows v e g e t a t i o n d ifferences hold view has little is that the the outcome. com position along a prom inent environm ental Sam pling environm ental both landscape ex c lu sio n of "ecotonal" areas S tudies continuum in la n d management. A fundam ental methods i.e. the the variatio n units. C urtis scale either units The the w ith the " o b s e rv e r's debate and and that show s i g n i f i c a n t decades to b io lo g ic a l than entirely-continuous likely several 1966, relate prom ise w ill considerable past Vogl landscape sam ple to change along among plant (G leason 1926, M cIntosh rate of 1966). change of appear to variatio n en tirely -d iscrete or view s o f community o r g a n i z a t i o n . Succession Understanding ecosystem s w ell as are as to to would be o f potential great broader-scale the ac tu a l lacking. A gain, perpetually stu d ies indicate have occurred over successional value to forest environm ental nature of com m unities ever are the are reach a "clim ax" c o n d itio n , in nonequilibrium states. Clear process, divided as 1000 y e a r s as views however, to w hether or if forests P alynological th a t m ajor changes in s p e c ie s the la s t among management, issues. the successional ecologists pathways com position (Swain 1972), and that 6 species are (D avis s till 1983)* m igrating This evidence e q u ilib riu m communities a t At m ore con flictin g flo ristics" site im m ediate m odels models conditions m odels m a in ta in resource scale of (Shugart e t al. com m unities precludes p o ssib ilities tim e the scales, there successional that existing are several process. "Relay species for incom ing species, w hile that existing species inhibit (Connell and model d e v e lo p e d 1973) p r e d i c t s under Slayter for the so il sim ilar found m u l t i p l e "in h ibition" invasion by A large w estern G reat Lakes different different am eliorate 1977). late m oisture successional regim es. e m p iric a l study of e a rly su c c e ssio n a l sta g e s 1984), however, of the m illenium scale. propose preem ption sim ulation in re s p o n s e to c l i m a t i c change An (Abrams e t a l . s u c c e s s i o n a l p a th w a y s on v e r y sites. N o r t h w e s t e r n l o w e r M ic h ig a n was h e a v i l y l o g g e d i n t h e early part present scale of the forests century represent disturbance. as present As such, clim ax forests the ecosystem s that or it pulse the 1983, Whitney response longevity to of late successional second grow th f o r e s t s class distributions of 1986). this tree w ould be i n a p p r o p r i a t e even are size a G iven ty p ic a l of the a re a , these (Mustard The large species to consider forests. The of s im ila r age. species w ithin can be u s e d t o e x a m in e Row e's (1984) h y p o t h e s i s landform e x e r ts a p rim ary c o n tr o l over s h o r t and long term ecosystem development. 7 Production The in final total point of aboveground g lacial landform s interest biom ass and was and forest the nature biom ass of variation increm ent ecosystem s. among B iom ass is i m p o r t a n t b o th from a la n d m anagem ent s t a n d p o i n t and as an ecological have index of p r o d u c tiv ity . focussed (W hittaker et (B otkin al, et U nderstanding is of major on biom ass al. 1979} 1972, the prim ary goal w hether the production, and of from Bormann influence concern to and of forest site 1981) or many o f and applicable 1981, predict over T ritton levels, tree E quations diam eter et regression th e m ajor S tates. (Barnes al. total com piled into estim ates and biom ass an in teractiv e 1981). productivity type and a regardless of (Young e t al. series have based a wide g e o g r a p h ic a r e a a ll available allo m etric on work, (S teele et al. been d e v e lo p e d for north eastern on aboveground and Hornbeck 1982). Peet 1982). s p e c ie s of the are standpoint (Carmean 1975), h abitat equations w hich 1979, factors by-soil F e r w e r d a and Young 1 9 8 1 ) , em pirically m odelling managers is both L ikens site 1981, A llom etric a classificatio n classificatio n ecosystem Many e c o l o g i c a l s t u d i e s U nited both height and dry w eight are (Ker a n d v an R a a l t e To e s t i m a t e total biom ass re g re s s io n e q u a tio n s were m icrocom puter package. were then a n a ly z e d to stu d y v a r i a t i o n The in biom ass i n c r e m e n t among l a n d f o r m s a n d e c o s y s t e m s . 8 Project h istory The study was asso ciatio n w ith C lassification F orest. conducted the System E cological three developm ent (ECS) land German a for the of an and have Barnes 1980)/ r e c e n t l y been in tro d u c e d to American f o r e s t r y 1982/ J o r d a n 1982/ P r e g i t z e r and B a rn e s , Dr. 1985). T h e ECS p r o j e c t J a m e s B. C leland, began D rs. in J. Hart, USFS, B. m odified and to and through several the by the three The classification. not D a v i d T. sam pling was d e v i s e d K. vegetation S. for by P reg itzer sam pling sample d esig n by design. im provement, s t u d y w e r e made by m y s e l f a n d o t h e r in the in use fie ld was MSU p r i n c i p a l so that represent the the w ork. developed The over investigators, classiification revisions, ma y Dr. initiated field strategy Hamm; currently the m yself. herein W. and (Barnes e t a n d Mr . actual sam pling involved system period t h e HMNF w a s 1 9 7 0 ’s ; the o r ig in a l stu d en ts C leland presented C. or a d d itio n a l classification two y e a r and im proved M odifications graduate late The o v e r a l l H art, expediency, the long 1984, S p ie s and M ichigan S ta te U n iv e r s ity in 1983. for N ational system s have of (Spurr in E co lo g ical used Barnes period Huron-M anistee classificatio n forestry year been al. in over system has ecosystem most current a D. gone classes version 9 O bjectives The o b j e c t i v e s o f t h i s s tu d y were to : 1) d e v e l o p a g e o m o r p h i c map o f t h e s t u d y a r e a . 2) d efin e e c o lo g ic a l s p e c ie s groups fo r upland f o r e s t s of th e a r e a and d e s c r i b e their e c o lo g ic a l a m p litu d e s and a s s o c ia tio n s w ith p a r tic u la r geologic featu res. 3) d e f i n e and d e s c r i b e u p la n d f o r e s t e c o s y s t e m s b a s e d on c o m b i n a t i o n s o f p h y s i o g r a p h y / s o i l s and ground f l o r a v e g e t a t i o n . 4) q u a n tify v a r ia tio n in s p e c ie s co m p o sitio n / p o t e n t i a l s u c c e s s i o n a l p a th w a y s , and biomass p r o d u c t i o n among g l a c i a l l a n d f o r m s an d u p l a n d f o re s t ecosystems. Th e s p e c i f i c h y p o t h e s e s t o b e t e s t e d w e r e : 1) Ground flo ra species bear sig n ifican t a s so c ia tio n s with s p e c if ic g la c ia l landform s. 2) The s p a t i a l distribution of ground f l o r a s p e c i e s and o v e r s t o r y s p e c i e s c a n be r e l a t e d t o an u n d e r l y i n g e n v i r o n m e n t a l g r a d i e n t . 3) Ecosystem s e x h ib it d i f f e r e n t regeneration p o ten tials, based on t h e presence and abundance of s p e c ie s in d i f f e r e n t d ia m e te r classes. 4) E c o s y s t e m s show to tal biom ass increm ent. s i g n i f i c a n t d i f f e r e n c e s in and mean a n n u a l biom ass GENERAL FIELD PROCEDURES Sample d e s i g n and p l o t Landform was locations used as a basis sam pling of o v e rs to ry , ground f l o r a , forest stands Michigan. for stratified random a n d s o i l s o f 80 u p l a n d in the M anistee N ational F o re st, n o r t h e r n Lower L a n d f o r m s w e r e i d e n t i f i e d u s i n g e x i s t i n g USFS L a n d 10 T y p e A s s o c i a t i o n (LTA) m a p s , 1 : 1 5 , 0 0 0 c o l o r i n f r a r e d a e r i a l photography, and field reconnaissance. s t a n d s w ere ch o sen from s ta n d s s e l e c t e d base or by field random ly from according to the follow ing c r i t e r i a : t h e THIS d a t a Stands of p o te n tia l were stands evaluated 2} the s t a n d m ust be n o r m a l l y s t o c k e d , i.e. the cano py s h o u l d be c l o s e d t o t h e e x t e n t p e r m i t t e d by s i t e conditions. 3) s t o c k i n g m ust be u n if o r m t h r o u g h o u t t h e s t a n d ; e x t e n s i v e open a r e a s or d i v e r s e age d i s t r i b u t i o n s are cause for re je c tio n . 4) the topography conditions. 5} t h e s o i l s m u s t be w e l l - d r a i n e d : m o t t l i n g u p p e r 60 cm i s c a u s e f o r r e j e c t i o n . 6) a s p e n ( F o p u l u s q r a n d i d e n t a t a a n d P^_ t r e m u l o i d e s ) m a y n o t c o n s t i t u t e m o r e t h a n 7 m2 / h a o f b a s a l a r e a . 7) t h e s t a n d m u s t h a v e n o m o r e t h a n 30% o f t h e dom inant o v e r s to r y in m u ltip le stem s (i.e . stum p sprouts). 8) t h e s t a n d m ust n o t show e v i d e n c e th in n in g in th e p a s t f o r t y y ears. 9) t h e s t a n d must not have been u n d e r p l a n t e d t o p i n e . must stand c o m p o sitio n random s a m p le s p o i n t was l o c a t e d a t the distances rem aining three least and selected t h e o v e r s t o r y must be a t Four and pool from sam ple 1) 10) first the reconnaissance. P otential be 40 y e a r s o l d . representative of least located points were in the or uniform . in each 60 m f r o m t h e upland cutting m u s t be r e l a t i v e l y were of stand. The nearest road, located at random ( n o t e x c e e d i n g 1 0 0 m) a n d a z i m u t h s f r o m t h e f i r s t IX point. A ll bar. sample p o in ts Sam ple s ta n d topographic were marked w ith s t e e l locations were m ark ed on reinforcing 1:62,500 CJSGS quadrangles. O v ersto ry sampling T h e o v e r s t o r y w a s s a m p l e d u s i n g a 10 BAF ( E n g l i s h ) prism , The w ith the species, top), steel dbh, crown c la s s , reinforcing height, m erchantable and l i v e crown l i v e t a l l y t r e e s > 9 cm d b h . two d o m in an t at breast species ratio height were (to center. a 1 0 cm recorded fo r In crem en t c o re s were tak en from each point to determ ine average and u n d e r s to r y understory sample for a l l and points. moss, a m odified ground flora The p e r c e n t herbaceous, vegetation B raun-B lanquet 1974); m idpoints, in as shown abundance s c a le s , were were com pile a sp ecies the not list T able 1.1. sampled (Gauch 1 982). list, and the and a s s i g n i n g in or plot using (M uellercover class logrithm ic scale, have been percentage sc a le s Cover-abundance several abundance T his method e n su red aided scale O ctave the determ ined the p lo t represent than s tr a i g h t by t r a n s v e r s i n g was com plete. overlooked, the values was in such as th e Braun-Blanquet sam pling determ ined cover cover-abundance show n t o be more e f f i c i e n t ecological ground a n d woody s p e c i e s Dombois and E l l e n b e r g for age sampling u s i n g a 5 x 30 m r e c t a n g u l a r p l o t c e n t e r e d o v e r e a c h o f four all h e i g h t ( 1 . 3 7 m). Ground f l o r a The at bar serving as p lo t wedge values tim es values to after th a t s p e c ie s were determ ining the coverage 12 estim ates. were R elative determ ined w ithin along six the by frequencies recording 1 m2 f r e q u e n c y long a x is of the the fram es plot. fo r ground flo ra species coverage species located of at all 5 m in terv als Subsequent a n a ly se s showed t h a t c o v e r a g e v a l u e s i n t h e 1 m2 f r a m e s g a v e p o o r e s t i m a t e s of to tal binary plot coverage, and (presence/absence) Table l . l these were later C lass m idpoint Trace 0.1 1 2 15 33 66 tree field sam pling. Range o f c o v e r r + 2 10 25 50 80 of to data. Cover-abundance c la s s e s used in D en sities converted - reproduction 0.1 1.0 2 15 33 66 100 < 1.3 cm dbh w ere re c o rd e d in a s u b se t o f th e sam ple s ta n d s u sin g stem counts w ithin was tallied the frequency frames. This reproduction b y t w o s i z e c l a s s e s : s t e m s < 30 c m i n h e i g h t a n d s t e m s > 3 0 c m in height but cm d b h w e r e counts in < 1 , 3 cm d b h . tallied by D ensities o f woody s t e m s 1.3 t o 2.5 cm d i a m e t e r t h e 5 x 30 m p l o t . classes using 9 stem 13 Soil sampling S oil using profiles standard 1975). for each descriptive the auger so il m ineral surface (S oil Survey to 1 m S taff textural horizon changes in were tak en a t a n d pH a n a l y s i s . were e x t r a c t e d so il texture. 20-30, 45-55, Six c o re s o f the t o a d e p t h o f 1 0 cm w i t h i n t h e f r e q u e n c y f r a m e s a n d u s e d t o d e t e r m i n e pH a n d po sitio n , topography a Corning The p e r c e n t s l o p e , l a b o r a t o r y methods pH w a s d e t e r m i n e d i n a 1 : 1 s o i l - w a t e r m i x t u r e u s i n g 1 . 5 pH m e t e r . fractions sieving; sodium and l o c a l was d e s c r i b e d . O r g a n i c c a r b o n was the W alkley-Black t i t r a t i o n Sand s i z e s lo p e shape and and a s p e c t were re c o rd e d f o r each p l o t , sampling Soil wet were d e s c rib e d procedures sam ples o rg an ic carbon content. Soil subplot to d e te rm in e p its, a n d 9 5 - 1 0 5 cm f o r from methods The s u b p l o t s w e r e a l s o e v a l u a t e d t o a d e p t h o f 4.5 m using a bucket W ithin field were using m ethod (H elson and Sommers 1965). and s i l t + c l a y sam ples determ ined content shaken hexam etaphosphate s o lu tio n for prior were d e te rm in e d two to hours sieving. in a by 5% 14 LITERATURE CITED A b r a m s , M. D . f D. G. S p r u g e l , a n d D. I . D i c k m a n n . 1985. M u l t i p l e s u c c e s s i o n a l p a th w a y s on r e c e n t l y d i s t u r b e d jack pine s i t e s in M ichigan. F o r . E c o l. an d Mgt. 10:31-48. A lbert, D.A., S.R. D enton, a n d B.V. B arnes. 1986. Regional landscape ecosystem s of M ichigan. School of N a t u r a l R e s o u r c e s , U n i v e r s i t y o f M i c h i g a n , An n Arbor. 32 p . B a r n e s , B. V. , K. S . P r e g i t z e r , T . A. S p i e s , a n d V. H. Spooner. 1982. E c o l o g i c a l f o r e s t s i t e c l a s s i f i c a t i o n . J, of For. 80:493-498. B e a l s , E. W. 1984. B r a y - C u r tis o r d i n a t i o n : an e f f e c t i v e s tr a t e g y for a n a ly s is of m u ltiv a r ia te d a ta . Adv. i n E co l. Res. 14:1-55. B o r m a n n , F . H. a n d G. E . L i k e n s . d i s t u r b a n c e and t h e s t e a d y s t a t e forests. Am. S c i . 6 6 0 - 6 6 9 . 1979. C atastrophic in n o rth ern hardwoods B otkin, D. B. 1976. A g r a n d f a t h e r c l o c k down t h e staircase: S t a b i l i t y and d i s t u r b a n c e in n a t u r a l ecosystem s. pp. 1-10. In (R. H. W aring, ed.) F o rests: Fresh p e rsp e c tiv e s from e c o sy ste m a n a l y s i s . P ro c e e d in g s of the 40th Annual B iology C o llo q u iu m . O regon S t a t e Univ. P r e s s . 198 p p . B raun-B lanquet, J. 1932. P lan t Sociology: the study of P lant C om m unities (au th o rized E nglish translation of P fla n z e n s o z io lo g ie , translated , r e v i s e d , a n d e d i t e d b y G. D. F u l l e r a n d H. S . C o n r a d ) . M c G r a w - H i l l B o o k Co. N.Y. 4 3 9 p p . Bray, J . R. upland Mono. a n d J . T. C u r t i s . f o r e s t communities 50:131-151. Carmean, W.H. 1975. the United S ta te s . 1957. An o r d i n a t i o n o f t h e of southern W isconsin. Ecol. Forest s ite q u ality evaluation in A d v a n c e s i n Agronomy. 27:209-269. Coffman, M. S . , E. A l y a n a k , a n d R. R e s o v s k y . 1980. Field guide h a b ita t classificatio n sy stem f o r th e Upper P eninsula of M ichigan and n o r t h e a s t W isc o n sin . C o o p e r a t i v e R e s e a r c h on F o r e s t S oils, M ichigan T e c h n o l o g i c a l U n i v . , MI. 15 C o n n e l l , J . H. a n d R. 0 , S l a y f c e r . 1977. M echanism s o f s u c c e ss io n in n a tu r a l com m unities and t h e i r r o le in com m unity s t a b i l i t y and o r g a n iz a tio n . Am. N a t . 111:1119-1144. C o t t a m , G. a n d R. P. M c I n t o s h . 1966. (1966). S cience 152:546-547. R eply to D aubenm ire C u r t i s , J . T . a n d R. P . M c I n t o s h . 1951. An u p l a n d f o r e s t continuum of the p r a i r i e - f o r e s t b o rd er re g io n of W isconsin. Ecology 32:476-496. C u r t i s , J . T. 1959. The v e g e t a t i o n o f o rd in a tio n of p la n t com m unities. W i s c o n s i n P r e s s , M a d i s o n , WI. 657 p p . Damman, A. w. H. 1979. land c l a s s i f ic a t io n . W isconsin: U niversity The r o l e o f v e g e t a t i o n a n a l y s i s For. Chron, 55:175-182. an of in D a v i s , M. B. 1983. H olocene v e g e t a t i o n a l h i s t o r y o f th e e a s te rn U nited S ta te s . In: (H. E. W right, ed.) L ate-Q u atern ary environm ents of the U nited S ta te s , Vol 2. pp. 166-181, U niv. of M inn. P ress. M i n n e a p o l i s , Minn. 277 p p. D a u b e n m i r e , R. R. 1966. ty p a l com m unities. V egetation: the id e n t i f i c a t i o n S cience 151:291-298. of F e r w e r d a , J , A. a n d H. E. Y o u n g . 1981. The r e l a t i o n s h i p b etw een s p ru c e and f i r biom ass p r o d u c t io n and f o u r s o i l s e r i e s o f a m ajor s o i l c a te n a in M aine. In: ( H. E. Young Ed.) K y oto B io m a s s S t u d i e s . C om plete T ree I n s t i t u t e of th e School of F o re s t R eso u rces. U niv. o f M aine, Orono. 171 pp. Gauch, H. G. 1982. M u lt i v a r i a t e a n a l y s is in com m unity e c o lo g y , Cambridge U n i v e r s i t y P r e s s . Cambridge. 298 p p . G l e a s o n , H. A. 1926. plant association. 26. The i n d i v i d u a l i s t i c c o n c e p t o f t h e B u ll, of th e T o rr. Bot. Club. 53:7- J o r d a n , J . K. 1982. A pplication of an in tegrated land c la s s i f i c a t i o n . p p . 6 5 - 8 2 . I n ( G. D. M r o z , e d . ) A r tif ic i a l regeneration of c o n ife rs in th e upper G reat Lakes region. M ichigan T e c h n o lo g ic a l U n i v e r s i t y , H oughton, M ichigan. 435 p. Ker, M. F. a n d G. D. v a n R a a l t e . 1981. Tree biom ass equations for A bies balsam ea and P ic e a q la u c a in northw estern New B r u n s w i c k . Can. Tl oT F o r. R es. 11:13-17. 16 L e v e r e t t , F. a n d F. B. T a y l o r . 1915. and M ichigan and th e h i s t o r y of G e o l o g i c a l S u r v e y , M o n ograph 53. P leisto cen e of Indiana the G reat Lakes. U.S. 529 pp. McNaughton, S. J. 19B3. S erengeti g ra ssla n d ecology: the ro le of com posite en v iron m en tal facto rs and contingency in com m unity o r g a n i z a t i o n . E c o l . Mono. 53:291-320. M u e lle r - Dom bois, D., a n d H. E l l e n b e r g . 1 9 7 4 . A i m s a n d Methods o f V e g e t a t i o n Ecology. J o h n W i l e y a n d S o n s . New Y o r k , N. Y. 5 4 7 p . M u s t a r d , T. S. 1983. The v e g e t a t i o n o f th e M a n i s t e e N a t i o n a l F o r e s t , O ceana a n d Mason c o u n t i e s , M i c h i g a n . I. P h y s i c a l , h i s t o r i c a l , and e c o l o g i c a l a s p e c t s . Mich. Bot. 2 2 :1 1 1 -1 2 2 . N elson, D, W. a n d L. E. S o m m e r s . 1965. T otal carbon, organic carbon, and organic m atter. I n : A. L . P a g e ( e d . ) M e t h o d s o f S o i l A n a l y s i s P a r t 2. Agronomy 9 :5 3 9 577. P astor, J., J . D. A b e r , C. A. M c C l a u g h e r t y , a n d J . M. M e l i l l o . 1984, Aboveground p ro d u c tio n and N and P c y c lin g along a nitrogen m ineralization gradient on B lackhaw kIsland, W isconsin. Ecology 65:256-268. P a s t o r , J . a n d W. M. P o s t . 1986. Influence of c lim a te , s o il m o i s t u r e , and s u c c e s s i o n on f o r e s t c a r b o n and n i t r o g e n cycles. B iogeochem istry 2:3-27. Peet, R. K. a n d O. L, L o u c k s . 1977. A gradient an aly sis so u th ern W isconsin f o r e s t s . Ecology 58:485-499. Peet, R. K. 1981. Changes in b io m a ss and p r o d u c t io n d u r in g secondary succession. I n : D. C. W e s t , H. H. S h u g a r t , a n d D. B. B o t k i n ( e d s . ) . F o re s t S u c c e ssio n : C oncepts and A p p lic a tio n s . S p r i n g e r - V e r l a g , New Y o r k . 517 p p. P r e g i t z e r , K. S . com parison th e Cyrus M ichigan. of a n d B. V. B a r n e s . 1984. C l a s s i f i c a t i o n and o f upland hardwood and c o n i f e r e c o s y s te m s o f H. M c C o r m i c k E x p e r i m e n t a l F o r e s t , Upper Can. J . o f F o r . R es. 1 4 : 3 6 2 - 3 7 5 . R isser, P G., J. A. K a r r a n d R. Landscape Ecology: D ir e c tio n s and P u b l . No. 2 . 1 1 1 . N a t . H i s t . S u r v . T. F o r m a n . 1983. Approaches. Special 16 p p . 17 Rowe# J . S. 1984. Forestland c la s s ific a tio n : lim ita tio n s of the use of v eg etatio n . In J. Bockheim e d . F o re st land c l a s s i f i c a t i o n : e x p e r ie n c e s , problem s# p e r s p e c t i v e s . P r o c e e d in g s of a sym posium h e ld a t th e U n i v e r s i t y of W i s c o n s i n o n M ar ch 1 8 - 2 0 , 19 8 4. 276 p p . Shugart, H. H. 1984. A theory of forest the eco lo g ical im plications of forest m o d e l s . S p r i n g e r - V e r l a g . New Y o r k . 2 7 8 Soil Survey S ta f f . 1975, S o i l Taxonomy. C o n s.S e rv .W a sh ingtonD .C . dynam ics: succession pp. A H - 4 3 6 USDA S o i l Spies# T , A, a n d B. V. B a r n e s . 1 9 8 5 . A m u ltifacto r c l a s s i f i c a t i o n of n o r th e rn hardw ood and c o n if e r ecosystem s o f t h e S y l v a n i a R e c r e a t i o n Area# Upper P en in su la# M ichigan. Can. J . o f F o r, R es. 1 5 :9 4 9 - 9 6 0 . Spurr, S . H. a n d B. V. B a r n e s . 1980. F o r e s t Ecology# T h ir d E d . J o h n W i l e y a n d S o n s . New Y o r k . 687 p p . S teele# R. # R. D. P fister# R. A. R y k e r # a n d K ittam s. 1981. F o r e s t h a b ita t types of C en tral USDAGTRINT-114. 1 3 8 p p . J . A. Idaho. Sw ain, A, M. 1972. A f i r e h i s t o r y of th e Boundary W aters canoe area as r e c o r d e d i n "Lake S e d im e n t N aturalist." J. N at. H i s t. Soc. (M in n e so ta ) 2 3 :2 4 -3 1 . T r i t t o n # L. M. a n d J . W. H o r n b e c k . 1982. Biom ass e q u a tio n s fo r m ajor t r e e s p e c ie s of th e N o rth e a s t. USDA F o r e s t S e r v i c e Gen. T e c h . Rep. N E-69, 46 pp . Vogl# R. J . 1966. 152:546. Reply to D aubenm ire (1966). Science W h i t n e y # G. G. 1986. R e la tio n of M ich ig an 's p r e s e t t l e m e n t p in e f o r e s t s to s u b s t r a te and d is tu r b a n c e h i s t o r y . E c o lo g y 67:1548-1559. W hittaker# R. Mountains# 338. H. 1960. V eg etatio n of Oregon and C a l i f o r n i a . Ecol. the S isk iy o u Mono. 30:279- W h i t t a k e r , R. H.# F . H. B o r m a n n # G. E. L i k e n s # a n d T . G. Siccam a. 1974. The H u b b a rd B rook e c o s y s t e m s t u d y : f o r e s t biom ass and p r o d u c tio n . E c o l . Mono. 4 4 : 2 3 3 - 2 5 2 . Young# H. E. 1981. The r e l a t i o n s h i p b e t w e e n f o r e s t b i o m a s s p r o d u c t i v i t y a n d SCS d r a i n a g e c l a s s e s i n n o r t h e r n M a i n e . I n : (H. E. Y o u n g E d . ) K y o t o B i o m a s s S t u d i e s . C om plete Tree I n s t i t u t e of the School of F o re st R esources. Univ. o f M aine, Orono, 171 pp . Chapter 2 ECOLOGICAL SPECIES GROUPS FOR UPLAND FOREST ECOSYSTEMS OF NORTHWESTERN LOWER MICHIGAN ABSTRACT E cological forest data ecosystems were landform . analysis. The of com position groups for w ith w ere upland F loristic stands using a stratificatio n form ed using based d ivisive o rd in a tio n space p a r t i t i o n i n g , and ta b u la r the and in The annuals while the to prim ary stands s e d g e s and g r a s s e s species The related separated by h e r b a c e o u s hardwood s i t e s , analyses. were landform . species, com prised the groups classification ericaceous group in e ig h ty upland f o r e s t included am plitudes prim arily developed N i n e s p e c i e s g r o u p s w e r e f o r m e d u s i n g 47 o f t h e species divisive were random s a m p l in g d e s i g n , classificatio n , 93 groups o f n o r t h w e s t e r n Lower M ich ig an . collected stratified on species and both overstory division dom inated from s t a n d s perennials. ch aracteristic former ecological of in by the woody dominated The latter m esic northern com prised s p e c ie s commonly a s s o c i a t e d w i t h o a k - d o m i n a t e d s t a n d s on x e r i c o r d r y - m e s i c sites. Subsequent differences related ch aracteristic study area, factors, divisions segregated to s o i l m o istu re . landscape p o sitio n s a n d may b e u s e f u l stands based on The g r o u p s o c c u r in th ro u g h o u t the reg io n al indicators of selected such as m o istu re or n u t r i e n t a v a i l a b i l i t y . 16 site 19 INTRODUCTION Ground ecosystem et al. flora classification 1982, P regitzer 1985). Ecosystem of landscape the com position vegetation, (Rowe 1 9 8 4 ) . use of groups absence of and study for was 1982, seeks to physiography allow s for species of constancy individual of inform ation develop and due t o Barnes et portions respect al. to 1982). of alone by t h e species across 1974). a of w ith regional The u s e of the chance presence or species, and by u s i n g community. describe and facilitated groups available Spies or v e g e ta tio n Ellenberg indicator Jordan interpretations and f i d e l i t y and the e x istin g to groups: 1982, w ith is of al. (Barnes stronger component identify homogeneous avoids problems ecological proportion Barnes are (Mueller-Dombois species the (Barnes e t Ecosystem c l a s s i f i c a t i o n patterns landscape and fundamental t h a n d o e s m a p p i n g by s o i l ecological sim ilar system s which so ils, potential a classification M a p p in g by e c o s y s t e m s site is capitalizes a significant The o b j e c t i v e ecological on of species this groups upland f o r e s t ecosystem s of the M anistee N atio n al F o re st. T h i s s p e c i f i c wo rk was p a r t o f a d e v e l o p m e n t o f a n e c o s y s t e m classification system for the M anistee N atio n al F o rest. S pecies groups fo r ecosystem c l a s s i f i c a t i o n formed n u m eric ally using agglom erative (Pregitzer and arrangem ent S p ie s 1985b). Barnes m ethods 1984) and clustering subjectively (M ueller-D om bois have been techniques using and E l l e n b e r g tabular 1974, Both t e c h n i q u e s have b een u s e d s u c c e s s f u l l y . 20 but each have m ethod requires inherently tend of inherent a problem s. good subjective. The t a b u l a r understanding Agglom erative o£ S pies if (1985b) unsuccessful Recreation sp ecies atypical found for Area, construct species and s u g g e s t e d ordered (H ill a b a s e d on d i f f e r e n t i a l Synthesis tables are im p o rtan t to in indicator identify ground d iscrim in atin g divisive designed indicator species. equivalent (1985b). flora to ( a l s o known as a m athem atically-derived t h e v e g e t a t i o n t a b l e s u s e d by S p i e s used or be two-way tables tables) be of to Sylvania TWINSPAN i s species-by-sam ple 1984). the polythetic 1979). stages (Pielou for is methods clustering groups synthesis also and in itial present the use (TWINSPAN), method are ag g lom erative form ing an aly sis classification samples site classification t o be s e n s i t i v e t o "bad" f u s i o n s i n t h e clustering arrangem ent of TWINSPAN m a y species d iffe re n t which are lev els of classification. A second approach to num erical developm ent of s p e c ie s groups is O rdination o rd in atio n space space p a r titio n in g p artitio n in g is performed (Gauch 1982). by c o n s t r u c t i n g a two d i m e n s i o n a l o r d i n a t i o n o f s p e c i e s and d r a w in g p a r t i t i o n s through sparse ordination ( DCA) , effect" a is regions of based technique and component axis D etrended which avoids com pression analysis nonlinear data on the cloud of sam ple p o ints* (H ill or A nalysis the problem s of which reciprocal 1979). Correspondence occur averaging The c l u s t e r s when are The the "arch p rin cip le used of species w ith enclosed 21 w ithin the partitio n s species derived W hile the coefficients, num erical choice and of techniques techniques, the d e le tio n of su b jec tiv e decisions. en tirely objective, at constancy, are and are detecting fid elity , therefore ecological to the groups of the rare or in use them selves of "noisy" w eighting species are therefore not n o t m ean t to be u se d b l i n d l y a s They a r e , h o w e v e r, patterns of and abundance im portant species are N um erical m ethods a re group-generating algorithm s. valuable correspond b y TWINSPAN. these objective, should extrem ely association in v e g e t a t i o n techniques for based data, on and the c o n s tr u c tio n of groups. MATERIALS AND METHODS Sample d e s ig n and f i e l d methods Landform was used as a basis sam pling of o v e rs to ry , ground f lo r a , forest stands M ichigan. in and S e r v ic e Timber stands field 1:15,000 c o lo r reconnaissance. w ere ch o sen from s ta n d s by field at m inim al and s o i l s of Management Inform ation reconnaissance. least 40 y e a r s o l d , evidence of selected recent USFS L a n d P otential System sam ple t h e U. S. F o r e s t ( TMI S) d a t a b a s e norm ally 1 ha o r g r e a t e r disturbance, 80 u p l a n d infrared a e ria l from We s a m p l e d random n o r t h e r n Lower Landforms were i d e n t i f i e d u sin g e x i s t i n g photography, and stratified the M anistee N atio n al F o re s t, T y p e A s s o c i a t i o n 9 cm d b h . P. w hite pine disturbance served live or for the The ratio height were overstory (to point to of was The s p e c i e s , a 10 recorded for Increm ent co res were each w ith in each sam pling a 1 0 BAF ( E n g l i s h ) w e d g e p r i s m . and 7 m2 / h a logged insure by than were randomly e s t a b l i s h e d flo ra, height, crown from (M ustard the tu rn of points sam pled using dbh, turn was Four sam ple p o in ts stand; greater grandidentata were excluded f o l l o w e d by f i r e selection w ere fP o p u l u s w ith M ic h ig a n was h e a v i l y stro b u s) at logging the aspen Stands taken determ ine cm top), all live from two average age b r e a s t h e i g h t ( 1 . 3 7 m) . Ground f l o r a was s a m p le d u s in g a 5 x 30 m r e c t a n g u l a r p lo t c e n te re d over each of the fo u r sam ple p o in ts . percent g r o u n d c o v e r was d e t e r m i n e d f o r a l l a n d woody s p e c i e s scale T able Abundance transversing present, and the herbaceous, in the p lo t using a m odified B raun-B languet cover-abundance 2.1). moss, A verage plot then (M ueller-D om bois values several assigning tim es and Ellenberg w ere to abundance 1974; d eterm ined record values the by species after the 23 species flo ra list was com piled. species w ere presence/absence intervals along vascular plants bryophytes S oil using in follow s by recording species axis of each plot. each (1952); in were describedto (S oil Survey soil texture. and a s p e c t were each p lo t, and l o c a l S taff Table C over-abundance c l a s s e s and ran k s used sa m p lin g and d a ta a n a l y s i s . Percent recorded for t o p o g r a p h y was d e s c r i b e d . C lass midpoint Trace 0.1 1 2 15 33 66 in field Rank Range o f c o v e r r + 2 10 25 50 80 1 2 3 4 5 6 7 - 0.1 - 1.0 - 2 - 1 5 - 33 - 66 - 100 S t a t i s t i c a l Methods Ground f l o r a were 1979). classified species using the TWINSPAN d i v i d e s dichotom ization, and f r o m 80 u p l a n d fo re s t ecosystem s FORTRAN p r o g r a m sam ples identifies the for for t o a d e p t h o f 4.5 m u s i n g a changes m (1981). procedures were e v a lu a te d 5 Nom enclature nom enclature subplot s lo p e shape and p o s i t i o n , 2.1 ground fram es lo cated a t G leason to determ ine for frequency Cr um a n d A n d e r s o n for frequencies 1 m^ descriptive Subsoils bucket auger slope, six profiles standard 1975). determ ined th e long follow s R elative into TWI NSPAN groups m ajor by indicator (H ill repeated species 1 m 24 at each level reciprocal analysis of averaging, which The a n a l y s i s The div isio n s a v ariation sim ultaneously values of 93 Species w ith le ss 1 p lo t/sta n d also stands based on component and woody 5% f r e q u e n c y a t In a d d itio n , t h a n 0.1% c o v e r a g e ) w ere prin cip le herbaceous, than are species. th e s t a n d l e v e l mean ra n k l e v e l w ere excluded from a n a l y s i s . {species w ith le s s of ordinates was p e r f o r m e d u s i n g cover-abundance species. divisio n . and moss the stan d rare species which o c c u r r e d on o n ly excluded. D eletio n of characteristically r a r e s p e c i e s h a s been shown t o remove v e r y little from inform ation Species were also program DECORANA { H i l l (DCASP; Gauch 1982) and c o rro b o ra te species 1979). was used sp ecies to (Gauch 1982). to DCA u s i n g space identify clusters Tree w ere and seedlings by a few s p o r a d i c o c c u r r e n c e s FORTRAN partitioning of species f r o m TWINSPAN. groups b y TWINSPAN, by DCASP. the O rdination o f t h e TWINSPAN s y n t h e s i s identified identified subjected the groups derived E co lo g ical interpretation the data s e t derived table, the from the indicator species clusters and s p e c i e s represented were not used as s p e c ie s group members. RESULTS AND DISCUSSION S e v e n t y - s e v e n o f t h e 80 s a m p l e s t a n d s w e r e u s e d i n m u ltiv a ria te analyses; the th re e sta n d s were c o n s id e re d o u t l i e r s ; t h e s e had a t y p i c a l o v e r s t o r i e s or were not representative of 25 typical upland species were forest. One recorded in s p e c ie s had sta n d le v e l had s u f f i c i e n t included in approxim ated (Figure 2.1) The a level in from northern of Of flo ra these, in was (Table ch aracteristic of of stands the ground dom inated be data pattern (1948). com position general, to frequency d istrib u tio n 120 a n d 93 stands TWINSPAN w a s ch aracteristic stands ground w ithin S pecies division hardw oods. dom inated frequency by P r e s t o n species those stands. log-norm al overstory d iv isio n separated stands 77 an aly sis. described first d ifferences and truncated as the ninety f r e q u e n c i e s o f 5% o r h i g h e r , coverage the hundred by related 2.2). T his oak-dom inated dom inated flo ra woody of by oak- ericaceous species, such as procum bens, w h i l e n o r t h e r n hardwood s t a n d s w e re d o m in a te d by herbaceous canadense. Vaccinium a n q u s tif o l iu m to species, and G a u lth e r ia s u c h a s O s mo r h i z a c l a y t o n i i I t was n o te d d u r in g f ie ld sam pling and V iola t h a t many o f th e n o r th e r n hardwood s ta n d s a l s o s u p p o rt a d i v e r s e ephemeral flora, whereas oak-dom inated stands. to spring ephem erals were absent S u b s e q u e n t TWINSPAN d i v i s i o n s be r e l a t e d p r i m a r i l y t o m o i s t u r e a v a i l a b i l i t y . forests, the ch aracteristic such as from m ajor next of TWINSPAN extrem ely D e s c h a mp s i a those found division in f lexuosa more w ithin the division w ell g lacial and A rc to s ta p h y lo s m esic landscape northern appeared species outw ash, uva-ursi, p ositions. hardwood from W ith in oak separated drained spring forests The also 26 Figure 2.1 Stand le v e l frequency d i s t r i b u t i o n flo ra species. o f 120 ground 80 70 NUMBER OF SPECIES 60 SO 40 30 20 10 0 I 4 I a I I I ° Y^ 12 16 20 24 ^ 'V 1 28 32 36 40 44 48 52 56 60 64 NUMBER OF INDMDUALS/SPECIES (by frsquoncy c la s s) 68 72 76 80 Table 2.2 Zoological sp ecies groupe fo r th e upland fo re st eoosystgns in tlte Manistee N ational F o re st. Values a r e cover c la sse s used by TWINSPAN.3 V e rtic a l d iv isio n s se p a ra te c la s s e s of stan d s w ith sim ila r ground flo ra c tn p o s itio n . STAItiS (coded by stand ntnber) Oaks I_______ 1 HDbOGlCAL SPECILS GFOJPS D cschanfsia group D eachansia flexuosa Andropogon g e ra rd ii A rctostaphylos uva-ursi P leuroziun sctieberi Comptonia peregrina Cladina ra n g ife tin a Vacciniun group Dicranun poly so tun Helanfyriin lin e a re G aylussacia baccata Epigaea repens Vacciniun august i f ol iun G ault he r ia procuttcns Loucobryun glaucun T rie n ta lis group ■'’r f e n te l ls boreal i s A ster inacrophyllun IX'SRiodjun group Desnodiun s[jp. Viola (ubescens Cornua f lo rid a I_________________________ I___ I I i I 545SS4S56 6271672673 233 1113447 355667 7667011124 5B0399145 6B907S931819B34812595663O281B3 7290036707 33543-1-1 121—11— - 1 1111 -11-11-11-1—111- -233311-1 1--- 11— -1- to GO - 1 ---------- 1 — 2 1 1 1 1 1 1 1 - 1 1 1 1 - 1 1 1 1 — 1 1 1 2 1 1 1 - 1- - 1 332-1-131-1-3331-131-13111—22 11 — 11 - 22 - 11211111111 - 11 - 1 - 1 - — 111------ 424343252 1 1 121 ------- I 35334724522 2222433 717250451613 64672367 -11— -1- 2— 121111 1— 1167 46 40024544 I. -1— 1- -13112-11 ilamaoieliB group llam m elis v irg in ian a S assafras albidisn P terid iu n group P terid iu n acjuiliniun ta e la n c h ie r spp. Carex pensylv&nlca I Nortliern Hardwoods 1- 1-112 111 — -1-1—1— 1-11 ---------------- - 2 - 1- -1---- 1— - 33-133434233323212333433334444 1—1112212121111122221-11-3121 4312212122 1112- 1 -2 -212212111 1122 - 1-1 222-31-211-121—32222231333 -2 —3313331333233123-332-43332 1-341-1221 43232-2123 22222314 112-1233 -1 1--- 1— 11— 1------- — 1------- 122342312 421446566233433232223224433443 5245414212 12333422 3— 111—11- 1 - 12211-1 21122211111111- 211122111211-32 3233211111 1-321112 11—111---------------- 566666666 55S666666545&53232323323434343 5343511312 1224-123 11-3—32—U - 11— 1- 1—11--------------------1- 1- — 1------------------ 1- 1- - 1— 11- 1- 11111— 1- 4-1-1- — 1- 1- - 1— 1211- 112111— 1111— 11 - -1-11243 11- 211 — — 36165 11 - 1- 1— Table 2,2 - continued page 2 STAiCS (coded by stand mxbei) Oaks ______________I___________ ________ I_______ I___ I I I I Hurt Item Hardwoods I I I____ 1 1 KDIOGICM, SPECinS CSOUPS 545554556 6771672673 233 1113447 355667 7667611124 1167 46 35334724522 2222433 580399145 689875931619834612595663028183 7290036707 40024544 717250451613 64672367 Viburnua group Vrburrua acerifo liu n Aral la nudicaulis Hedeola virglniana M itchella repots ------------ — 111-------------11111111-121-2 3332212-11 4U42334 -2 2 2 -2 — 1- -2-11— ■ — 1- 21211 1 2111-1-1 ----- 1— 111- 12-1211------------ ----------------------------------------- - -------------- 1—1----1--------------— --------1----------------1 - 1 - -211— 1 — 1-111— 1 ftuanttesuii group Maianthenun canolense Epifagus virglniana tolygonatun b iflo ru a Lyccpodiua lu c id u lw ----------------------Carer deweyarta — ■■■■— Lycopcdiuh cbscurm------------ -----------Carer pedunculata -----------Solidago caesia-----------------------------Dryopteris splnulosa Ossurtiisa group Osmrliiza claytunii -----------M lantern pedatun 1 Hite l la diphylla T ta re lla oordifolia ■— A lim a tricoccuo -----------Itepatica acutilcba ■ ■■■■-— LVularia p erfo lia ta------------ -----------Actaea alba BatrychiLO virginianua ------Caulopliyllrm tta lic tr o id e s -----------Carer plantaginea -----------Viola canadense 1----------- 1- 111-11111- 11221— 112111111211 22111222 1-1-- ----------1----11 1— 11— 1-211-111— 11—2111 ------------------------------------------ -------------- ----------- --------- 1—11 -----------. . . . -----■■■■■ ■ - -11—1—11— 1------11------------------------------------------ -------------- —1--------1-211------------------------------------------------------- -------------- ----------- 1-11-1-111— 1-------------------------------------------------- 1-------- 1 ---------------121—1---------- — '21— ——.-------- — j -1 — i —J l ------------------------------------------ ■■ ■ -------------- -1— — 1— 1— 32143114 ------------------------------------------------11---------- 1 —— 11-221— ■■■■—— — --------------------- — ------------------- 12-11— ------------------------------------------ -------------- ----------- — 1----------- 32-121— ■ ■■- -------------- ----------- — 1----------- -1—I— ------------------------------------------ ------------------------------------------------ — 121-2 ■ ------------1 — — — —■ -------- 11-111— 12-111-1 ------- ----------------------------- —— -------------- ---------- - —11 1- 111 1 1 1 1- - l - l ----------- 12121-11 a Cover c la s s values: 1 - <21, 2 - 1-21, 3 - 2-151, 4 - 15-331, 5 - 33-661, 6 - 66-1001. 30 appeared to be related to so il m oisture/ h e rb a c e o u s ground f l o r a community o c c u r r in g landscape The and w ith in differences in ground hardwood stands flora were also species common first hardwood in axis scores, stands accounted oak-dom inated w hile received for 70% o f high the th e second a x is accounted for ordin atio n space d e r i v e d b y TWI NSPAN. classification, com position changes This in the th is common of P e e t and Loucks axis first ( F ig u re 2.2); negative in scores. or northern The f i r s t 15%. The s p e c i e s c l u s t e r s summed e i g e n v a l u e s ; clo sely w ith the in groups w i t h TWINSPAN's d i v i s i v e ordination shows that ecological than com positional W isconsin 1977). the four rather of in first un d erly in g pattern stu d ies species In c o n t r a s t continuous, continuous evident 1959, in a received corresponded however, along stands first b e tw e e n oak evident the detrended correspondence a n a ly s is the the most m esic com position axis of axis diverse positions. northern low a forests grad ien t d iscrete change (Bray species fashion. was and also C urtis 31 Figure 2.2 D e t r e n d e d c o r r e s p o n d e n c e a n a l y s i s o f 49 g r o u n d flo ra species. V alues r e p r e s e n t e c o l o g i c a l s p e c i e s group m em bership: 1 - D escham psia, 2 V accinium , 3 - H am am elis, 4 - P te r id iu m , 5 T r i e n t a l i s , 6 - Desmodium, 7 - V ib u rn u m , 8 Maianthemum, 9 - Osm orhiza. 400 300 100 OCA AXIS 2 200 -1 0 0 -2 0 0 -3 0 0 -2 0 0 0 200 DCA AXIS 1 400 33 ECOLOGICAL SPECIES GROUPS Nine e c o l o g i c a l the 93 species species included groups rem aining species were two groups forests. relationship 2. 2 a n d d e s c r i b e d in the analysis. associated w ith were a s s o c ia te d Th e s p e c i e s and t h e i r groups were produced u s in g groups, with their Seven oak 48 o f of fo rests; northern ecological the the hardwood am plitudes, to o th er groups a re p re s e n te d in Table below. Deschampsia group The Descham psia group is characteristic of xeric, e x tre m e ly w e ll- d r a in e d sandy outwash p l a i n s under open upland pin oak-black D e s c h a mp s i a oak flexuosa canopies. are very Ca r e x pensylvan!ca and abundant (generally 60% > ground c o v e ra g e ) and form a d en se c o n tin u o u s mat a c r o s s th e forest and floor. Chimaphila Comptonia peregrina, um bellata occur in A rctostaphylos scattered clonal The D esch am p sia g ro u p i s a l m o s t a lw a y s a s s o c i a t e d P teridium and extrem ely xeric V accinium groups, but is uva-ursi patches. w ith the restricted to sand p la in s . Vaccinium group The V accin iu m g ro u p i s drained sand overstories. Va c c i ^ n i ^ um plains Canopy and w idely d is t r i b u t e d a c ro ss w ell hills closure a n g u s t i f o l i um, under is w hite com plete Gaul t h e r i a oak-black but not dense, £focum bens, G a y l u s s a c i a b a c c a t a have th e h i g h e s t abundance. oak and Seedlings of 34 Q uercus velutina repens, Dicranum and alba polysetuta, are groups, associated but is with not as abundant. and Melampyrum a b u n d a n t and o ccu r as s c a t t e r e d commonly also both w idely lineare individuals. the Pteridium distributed E piqaea are less T his group is and as Deschampsia the P teridium group. P te rid iu m group The Pteridium distributed upland with group in typically occurs conditions. species, species which Pteridium stands w ith as aq u ilin iu m is open can o p ies. a low shrub under found the in high A m elanchier spp. a variety in o v er 85% o f the sam ple greatest co v erag e o f Carex p e n s y lv a n ic a o c c u rs canopies on x e r i c o u t w a s h p l a i n s , forest widely of canopy Ca r e x p e n s y l v a n i c a i s o n e o f t h e m o s t f r e q u e n t occurring law n -lik e are r e l a t i v e l y high frequency a c ro s s most of landscape. abundance com prises mat ( t y p i c a l l y where i t > 60% c o v e r a g e ) stands. The under open oak form s an e x t e n s iv e over most o f the floor. H a m a m e lis Group The and Hamamelis plains closure is associated typically is under group occurs w hite and red on w e l l oak drained sand overstories. hills Canopy com plete but not dense. T h is g ro u p i s com m only w ith Pteridium the absent V accinium from x e r i c and outwash p l a i n s . groups, but 35 T rientalis group The T r i e n t a l i s drained under to m oderately closed w ith group i s w idely distributed w ell-drained ice contact r e d o a k - w h i t e oak c a n o p i e s . th e V accinium and viburnum g r o u p s, occupies an interm ediate On h i l l y landform s, these position on species are across w ell- landform s Commonly a s s o c i a t e d the T r i e n t a l i s the m oisture more group gradient. frequent on u p p e r s lo p e p o s i t i o n s a lo n g w ith members of th e V accin iu m g ro u p , w hile the V iburnum group is more frequent on low er slope p ositions. Viburnum group The Viburnum drained under to group m oderately closed red A ster clones. as w ell a low are associated w ith d istributed drained oak ice across contact f < 30 cm b o re a lis , A ralia common. The w ell landform s canopies. shrub T rientalis ma c r o p h y l l u m typically w idely oak-w hite a c e r if o liu m occurs scattered is Vi b u r num in height) nudicaulis V iburnum in and group is th e V accinium and P t e r i d i u m g ro u p s, b u t i n d i c a t i v e o f somewhat more m esic s o i l conditions. Desmodium g r o u p The Desmodium g r o u p i s c h a r a c t e r i s t i c o f w e l l d r a i n e d t o m oderately w ell d rained m oraines, lacustrine Cornus deposits flo rid a abundance, acerifolium under and generally ground m o ra in e s closed red D esm odium spp. greater occurs as a t a l l than oak-red are m aple found in glacio- canopies. w ith 25% c o v e r a g e . s h r u b { 4 0 - 6 0 cm) or high V iburnum large clonal 36 patches. sites The Desmodium group ap p ears h a v in g loam y s u r f a c e h o r iz o n s or to be restricted loam -textured to bands w i t h i n 4 . 5 m. Maianthemum g ro u p The M aianthem um g ro u p o c c u r s under dense sugar m aple- b e e c h - r e d oak c a n o p ie s and i s characterized sparse forest flo o r (generally le ss forest floor total coverage of coverage). heavy l i t t e r and th e clonal the Most o f the la y e r of hardwood le a v e s . by h a v i n g is This group is t h a n 5% covered w ith a Maianthemum c a n a d e n s e two s p e c i e s o f Lycopodium g e n e r a l l y patches. very associated occur w ith the in large Osmorhiza and Viburnum g ro u p s. Osmorhiza group The having Osmorhiza thick contents. group occurs A horizons The so ils w ith are w ith high generally high fid elity pH a n d w ell organic drained lo a m y s a n d s u n d e r l a i n by n o n p e d o g e n ic s a n d y c l a y loam sugar spp. w hile bands. The group m aple-basswood are typically canopy: dom inant members o f O sm orhiza p la n ta g in e a are of the common a s s o c i a t e . Allium abundant forest found V iola later high floor. sands under tricoccum canadense, carbon a and closed D icentra community, and in the grow ing seaso n . species diversity to loam t o c l a y the sp rin g ephem eral claytoni i , Osmorhiza group e x h ib its coverage is on s o i l s and Carex The com plete The M aianthem um g ro u p is a 37 SUMMARY Nine e c o lo g ic a l s p e c ie s groups have been upland are a s of indicator to be the M anistee N atio n al F o rest u sin g species D ifferences and detrended correspondence in the e c o lo g ic a l am p litu d es related prim arily to current hardwood f o r e s t s , oak o v e r s t o r i e s . most w hereas the Viburnum w ell-drained w hich have useful lim ited the in rolling relativ ely site groups landscape, appear but physiographic w ell w ill to occur drained occurs contact narrow to likely boundaries. on or in and to hills. across w ith changes may be indicate th is in plains, Groups am plitudes they is m oderately The i n d i c a t o r consisten t shift example, outwash w ell as characteristic for m orainal work, conditions. be seem com position level ecological classificatio n range of s i t e analyses. Two g r o u p s a r e c o m m o n t o tend group ice tw o way th ese groups The D e s c h a m p s i a g r o u p , common on e x t r e m e l y for w hile seven are a s so c ia te d w ith The g r o u p s landscape p o sitio n s. of overstory s o il m oisture holding a v a ila b ility . n orthern identified values a of regional clim atic or 38 LITERATURE CITED Barnes, B. V. / K. S. P r e g i t z e r , T. A. S p i e s , a n d S pooner. 1982. E c o lo g ic a l F o re s t C lassification. J. of For. 80:493-498. V. H. S ite Bray, J. R. and J. T. C urtis. 1957. An o r d i n a t i o n o f the upland forest com m unities of southern W isconsin. E c o l . Mono. 50:131-151. Crum, H. A. a n d L. E. A n d e r s o n . 1981. M osses of e a s t e r n N orth A m erica. C o lu m b ia Univ. P r e s s . New Y o r k . 2 vols. Gauch, H. G. ecology. pp. 1982. M u lt i v a r i a t e a n a l y s is in com m unity Cambridge U n iv e r s ity P re ss . Cambridge. 298 G l e a s o n , H. A. 1952. The new B r i t t o n a n d Bro wn i l l u s t r a t e d f l o r a of th e n o r th e a s te r n U nited S ta te s and a d ja c e n t Canada. Hafner P ress. New Y o r k . 3 vols. H ill, M. 0. 1979. DECORANA - a FORTRAN p r o g r a m f o r d e tre n d e d co rresp o n d en ce a n a ly s is and r e c ip r o c a l averaging. S e c tio n of E cology and S y s te m a tic s , C o r n e l l U n i v e r s i t y , I t h a c a , New Y o r k , USA. H ill, M. 0. 1979. TWINSPAN - a FORTRAN p r o g r a m f o r arranging m u ltiv a ria te data in an ordered twoway table by c l a s s i f i c a t i o n o f t h e i n d i v i d u a l s an d attributes. S ection of Ecology and S y s t e m a t i c s , C o r n e l l U n i v e r s i t y , I t h a c a , New Y o r k , USA. J o r d a n , J . K. 1982. A pplication of an in teg rated land c l a s s i f ic a t io n . p p . 6 5 - 8 2 . I n ( G. D. M r o z , e d . ) A r t if i c i a l regeneration of c o n ife rs in the upper G reat Lakes region. M ichigan T e c h n o lo g ic a l U n iv e r s ity , Houghton, M ichigan. 435 p. M u e ll e r - Dom bois, D., a n d H. E l l e n b e r g . 1 9 7 4 . A i m s Methods o f V e g e t a t i o n Ecology. John W iley and Sons. Y o r k , N. Y. 5 4 7 p . and New M u s t a r d , T. S. 1983. The v e g e t a t i o n o f th e M a n i s t e e N a t i o n a l F o r e s t , O ceana an d Mason c o u n t i e s , M ic h i g a n . I. P h y s ic a l, h i s t o r i c a l , and e c o lo g ic a l a s p e c ts . Mich. Bot. 2 2 : 1 1 1 - 1 2 2 . Peet, R. K. and 0. L. Loucks. 1977. A grad ien t a n a ly s is of southern W isconsin f o r e s ts . Ecology 58:485499. 39 P regitzer, K. S. a n d B. V. Barnes. 1982. The u s e o f ground f lo r a to in d ic a te edaphic f a c t o r s in upland e c o s y s t e m s o f t h e McCormick E x p e r i m e n t a l F o r e s t , Upper M ichigan. Can. J . o f F o r . R es. 1 2 : 6 6 1 - 6 7 2 , P r e s t o n , F . w. 1948, The commonness and r a r i t y o f s p e c i e s . Ecology 2 9 :2 5 4 -2 8 3 . P i e l o u , E. C. 1 9 8 4 . T h e i n t e r p r e t a t i o n o f e c o l o g i c a l d a t a : a p r i m e r on c l a s s i f i c a t i o n a n d o r d i n a t i o n . John Wiley a n d S o n s , New Y o r k . 263 p p . Rowe, J. s. 1984. F orestland c la s s if ic a tio n : L im itatio n s of th e use of v e g e ta tio n . pp. pl32-147. In (J.G. B ockheim , ed.) Forest land classific atio n : Experiences, Problems, P e rsp e c tiv e s , March 1820, U niversity of W isc o n sin , Madison. 276 p. Soil Survey S ta ff. 1975. S o i l Taxonomy. H a n d b o o k No. 4 3 6. USDA S o i l C o n s e r v a t i o n P* A griculture Service. 754 S pies, T. A. and B. V. B arnes. 1985a. A m ultifactor c la ssific a tio n of n o r th e rn hardwood and conifer ecosystem s of the S y lv an ia R e c re a tio n Area, U pp er P e n i n s u l a , M i c h i g a n . Can. J . o f F o r . R e s . 1 5 : 9 4 9 960. Spies, T. A. a n d B. V. Barnes. 1985b. E cological s p e c ie s groups of upland n o rth e rn hardw ood-hem lock f o r e s t ecosystem s of the Sylvania R e c re a tio n Area, Upper P e n i n s u l a , M ic h ig a n . Can. J . o f F o r. R e s . 1 5 : 9 6 1 972. Chapter 3 THE ROLE OP LANDFORM IN THE COMMUNITY ORGANIZATION OF UPLAND FORESTS I N NORTHWESTERN LOWER MICHIGAN ABSTRACT The forest five ground stands county landform s flora, were area were of m aterials mapped and of tests distribution a northern form ing glacio flu v ial ericaceous w ith id en tified photo analysis; nine on parent Binary d is c r im in a n t used patterns to study w ith and the landform . patterns t o be s i g n i f i c a n t l y related to landform . of a the predom inant study the ground had high area, prim arily herbaceous ground f lo r a ( 9 . 3 a n d B.4 t / h a , G lacial air based w ere a showed landform s landform s, upland association hardwood canopy, oak, ephem erals xeric observation, distribution M oraine, northw estern portion 80 M ichigan. profile analyses of of geom orphology o f Lower field were so ils glacial topographic species In terlo b ate red using correspondence C hi-squared and the northw estern landform s relationship The to and and s u r f a c e c o n f i g u r a t i o n . detrended species related in in terp retatio n , classes overstory, had oak species. basal respectively) maple, of high black by and m o ra in a l and w ith O utwash p l a i n s , and the basswood, perennials, overstories p e n s y lv a n ic a and Deschampsia f le x u o s a . 40 sugar A ll o th er areas in was c h a r a c t e r i z e d annuals, flora. landform of woody the m ost and w h i t e oak coverages of Carex More m e s i c l a n d f o r m s 41 had h ig h e r p r o p o r t i o n s o f red oak and a c o n c o m i t a n t c h a n g e in ground f lo r a composition. M oisture a v a ila b ility / the presence of sig n ifican tly both availability history, species to textural flo ra a function of landform provides is com position, discontinuities/ was at species. Since depositional least and a means o f m oisture post-glacial p redicting in a p r o b a b i l i s t i c sense* the occurrence of s p e c i f i c assem blages of o v e r s to r y ground p o sitio n s flo ra species should allow ecosystem s, homogeneous i.e. in ch aracteristic id en tificatio n sp atial units w hich in c o m p o sitio n and s t r u c t u r e . lan dscape ecosystem s vary in p ro cess, dynam ics and pattern. Maps o f functional areas. t e x t u r e s and the co m p o sitio n and abundance of and ground glacial Moreover, and subsurface related overstory a s e v i d e n c e d by s o i l biom ass production, as landscape ecosystems processes to be landscape of are It is landscape relativ ely likely that such as s u c c e s s io n a l w ell as in spatial would t h e r e f o r e extrapolated across allow regional 42 INTRODUCTION S tudies of forest com position ecological Bray th e Lake S t a t e s and C u rtis gradients C urtis and varies (Cottam 1957). change, environm ental effects. complex 1949, Curtis did Peet m oisture-nutrient in tem poral successional species v aried as com position a geology. to gradient, More r e c e n t l y , computer s im u la tio n Pastor under response m ineralization gradients a as the and showed in association history has long been few so il turn and was Post conditions tex tu re-N related local (1986) p r o d u c e d a mod el d r i v e n by m o i s t u r e a n d t e m p e r a t u r e general have been from (1982) show ed clim atic com plex which P astor et al. fixed to p r e d i c t p ro d u c tio n and s p e c ie s there of s e q u e n c e s became l o n g e r and more co m plex a s c o n d i t i o n s became more m e s ic . that by identified predom inant fa c to rs e x p lain in g f o r e s t com position, that 1951, W isconsin (1977) successional com plex p a tte rn s separate and Loucks that McIntosh d escrib ed not and along and studies (1951) but have re p o rte d continuously In itial M cIntosh com positional forests of com position. W hile species com position to recognized (Jenny 1941, M ajor quantitative studies the geologic 1955), of re la tio n sh ip s betw een s p e c ie s d i s t r i b u t i o n p a t t e r n s and s p e c i f i c geom orphic features study was regional study of th e Lake S t a t e s f o r e s t s . to identify landscape and The o b j e c t i v e o f t h i s map g l a c i a l landform s across in n o r t h w e s t e r n Lower M ic h ig a n , the re la tio n s h ip of vegetation p a tte rn to a and to landform . 43 In a s tu d y o f com m unity o r g a n i z a t i o n grasslands, topography, w hich M cNaughton define and th at geology, landscape constrain soil form ation and ecosystem W i th in a r e l a t i v e l y homogeneous c l i m a t i c r e g i o n northw estern Lower M ic h ig a n , pattern geomorphic events the variation has stated parent concluded and c lim a te a re th e p rim ary en v iro n m e n ta l f a c t o r s development. in (1984) in the S e re n g e ti by was glacial expected and should e x p la in a s i g n i f i c a n t in that im parted it species distribution landform , m aterials, defined provides the as stable that the p ost-glacial proportion patterns. Rowe surficial of (1984) topography m orphologic + b ase upon w hich s o i l f o r m a tio n and e c o sy stem d ev e lo p m en t ta k e p l a c e . The nature of developm ent, soils, which com position P regitzer geologic m oisture-holding in turn et al. 1983, 1985, topography controls a stong extent. and affects and influence patterns influence Gr i mm of the ra te (1984) 1985a). insolation has of 1982, Hupp a n d S u rficial and w ildfire attributed drainage. spread understanding m aterials history of fires how l a n d f o r m s v a r y i n across a regional landscape, in that area. topography it highly disturbed regions. the By and p a r e n t s h o u ld be p o s s i b l e t o p r e d i c t some o f t h e p a t t e r n o f c o m m u n i t y c o m p o s i t i o n , in and the cu rren t o v e r s t o r y c o m p o s i t i o n o f t h e B i g Woods o f M i n n e s o t a t o landform -m ediated of on s p e c i e s P r e g i t z e r and B arn es Barnes the fe rtility P r e g i t z e r and Barnes 1984, S pies Topographic breaks areal exerts m aterials capacity ( P e e t and Loucks 1977, O sterkam p their parent even 44 Significant patterns obfuscated by U npatterned variation in sp e c ie s d i s t r i b u t i o n unpatterned is variatio n a result and e s ta b lis h m e n t of and heterogeneity environm ental individuals, sam ple area derived to m inim ize u n p attern ed is use the species (Gauch of w ith species sim ilar of 1974). to be facto rs, R elationships landform or (S trah ler as type, table Hupp analysis to f lu v ia l BDA a n d d e t r e n d e d to of the landform s fid elity ecological the existing chance presence (S pies w ith drainage and a specific or categorical ( BDA) , reaction. units, tw o s t a g e using component a n a ly s e s (1985) in V irg in ia . correspondence a n a ly s is as technique used the d is tr ib u tio n e v a lu a te s p a t i a l p a t t e r n s of ground f l o r a such statistically O sterkam p relate of (1982) h av e shown s e l e c t and p r i n c i p a l and been inform ation species be e v a l u a t e d an aly sis contingency 1976). can and of of associated so il between s p e c ie s soil discrim inant and B arnes the groups and The u s e indicator have i.e. ecological effects strongly such discrim inant com bining the of On e s u c h a p p r o a c h constancy the that techniques groups, of m atrix. disturbances, below variation. on individual P regitzer groups edaphic species local scales species capitalizes an 1985b). species binary at data can be chance d i s t r i b u t i o n random patterns and m inim izes absence Barnes the V arious Ellenberg the in u sin g a s i g n i f i c a n t p ro p o rtio n community, or and groups obtained 1982). ecological (M ueller-Dombois of in data This (DCA; of study H ill species, BDA woody uses 1979) to ecological 45 species groups, landform s in and o v e r s t o r y s p e c i e s a five county area in relation of to glacial northw estern Lower M ichigan. MATERIALS AND METHODS Study area S a m p l e s t a n d s w e r e l o c a t e d on u p l a n d s i t e s the M anistee N atio n al F o rest L a k e, and Newaygo c o u n t i e s in M anistee, zone betw een {P otzger 1946). and M anistee S ubdistricts clim atic W exford, n o rth of th e " te n s io n zone"; b o r e a l and tem perate of the and recently classificatio n of the C adillac com pleted M ichigan th e Newaygo and G rayling physiographic (A lbert et al. The g r o w i n g s e a s o n r a n g e s f r o m 126 d a y s i n w e s t e r n the study clim atic area to patterns 115 in days this in the region east, are the com m unities The a r e a o c c u p i e s p o r t i o n s o f D istricts Mason, in n o r t h w e s t e r n Lower M ic h ig a n . The s t u d y a r e a was g e n e r a l l y transition throughout extrem ely 1986). part although and of actual variable (A lb e rt e t a l . 1986). G eologically, W isconsinan-age top of n o r t h w e s t e r n Lower M i c h i g a n glacial Paleozoic drift, sedim ents which lies is c o v e r e d by unconformably (Dorr and Eschmann 1970). on The s u r f i c i a l g e o l o g y o f M ic h ig a n h a s b e e n mapped by L e v e r e t t and T aylor (1984), th is (1915), M artin (1955), and more r e c e n t l y by F a r r a n d Four m ajor m o r a in a l sy stem s have been part of the state. The m a s s iv e identified Interlobate in M oraine 46 occupies form ed the in Saginaw northeastern the Lobes reentrant of the p o rtion angle of the betw een L aurentide study the glacier. area/ and M ichigan and The V a l p a r a i s o - C h a r l o t t e M o r a i n a l s y s t e m was d e p o s i t e d p e n e c o n t e m p o r a n e o u s l y w ith the Interlobate M oraine (approx. 14,500 e x te n d s sou th w ard in to s o u th w e s te rn M ichigan. ybp.) and The y o u n g e r Lake Border M oraine co m p rises a d is c o n tin u o u s s e r i e s o f h i l l s occurring The to the w est of the V a lp a r a is o - C h a r lo tte Port Huron M oraine, p ortion of the study landform in the vicinity m orainal system s plains composed are of extending area, is the (approx surrounded w ell-sorted into most 13,000; by the relatively sands. northw estern recent Lusch M oraine. m orainal 1982). level The o u t w a s h These outwash surfaces r a n g e i n e l e v a t i o n f r o m 207 t o 290 m e t e r s a b o v e s e a l e v e l a n d occupy e x te n s iv e p o r tio n s of the forest, p articularly in Lake a n d Newaygo c o u n t i e s . Geomorphic a n a l y s i s The s u r f i c i a l field geology of observation an aly sis, and and so il airp h o to t h e s t u d y a r e a was mapped u s i n g sam pling, topographic in terp retatio n . The h y p o t h e s e s d u r i n g d e v e l o p m e n t o f t h e map w e r e t h a t local Late north in to W isconsinan ice m argin retreated the Lake M ichigan b a s in , (1) the west and w ith gen eral m eltw ater to C hicago, a n d (2) t h a t i c e - m a r g i n a l r e t r e a t d i d n o t p r o g r e s s but s o u th and w est the w orking drainage uniform ly, the to profile was into characterized an e a r l y by a s e r i e s stage o f Lake of advances. 47 re treats, trending to the These and readvances. topographic profiles hypothesized profiles elevations intepretation the of p a rallel constructed of the visualization discrete of were orientation allow of A series perpendicular retreating of the landform s form and NW-SE ice and front. relative fa c ilita te mode a n d d e v e l o p m e n t a l sequence the of the landform assemblage. Sample d e s i g n and methods Landform sam pling stands. of was the Stands w ell-stocked disturbance into a w ith vegetation upland forest 1983 a n d 1 9 8 5 , Only evidence firew ood c u ttin g , qrandidentata 1-9 < 1 cm d b h , served 80 random etc.) of recent were s e l e c t e d S t a n d s w i t h g r e a t e r t h a n 7 m2 b a s a l a r e a / h a (stem s sam ple p o in ts stratified of m inim al M ichx. were excluded from sam pling. understory were cm herbaceous trem uloides Vegetation and was d i v i d e d ( s t e m s > 9 cm d b h ) , ground flo ra (woody s p e c ie s and m osses). located in in each stand; Four these fo r sampling of s o i l and v e g e ta tio n . the ( E n g l i s h ) wedge p r i s m . and overstory dbh), random ly as lo c i At each p o i n t , height for and s o i l s three stru c tu ra l layers: points basis were sam pled betw een (windthrow, fPopulus Michx.) as vegetation stands fo r sampling. aspen used overstory Th e s p e c i e s , ( t o a 10 cm t o p ) , was s a m p l e d u s i n g dbh, crown c l a s s , height, a 10 BAF m erchantable and l i v e w e r e r e c o r d e d f o r a l l l i v e t a l l y t r e e s > 9 cm d b h . crown ratio Increm ent 48 cores were taken from two dom inant d e te rm in e av erag e age a t The g r o u n d f l o r a rectangular plot species breast height vegetation centered at each p o in t to ( 1 . 3 7 m). w a s s a m p l e d u s i n g a 5 x 30 m over each of the four sam ple p o i n t s . The a v e r a g e p e r c e n t g r o u n d c o v e r was d e t e r m i n e d u s i n g a m odified Braun-B lanquet cover-abundance scale Oombois frequencies and E llenberg ground f lo r a species presence/absence i n t e r v a ls along 1974). w e r e d e t e r m i n e d by r e c o r d i n g in six 1 m2 f r e q u e n c y f r a m e s the long a x i s Soil p ro file s R elative (M ueller- of species located a t 5 m the p lo t. fo r each su b p lo t were d e s c rib e d of 1 m using stan d a rd procedures A d d itio n a lly , each su b p lo t for (Soil Survey to a depth S taff 1975). was s a m p l e d t o a d e p t h o f 4.5 m u sin g a bucket auger to record changes in s u b s o il te x tu r e s . W ithin sam ples were tak en a t the s o i l pits, for p a r tic le size an aly sis. and p o s itio n , local silt+ clay determ ined shaken for to determ ined recorded described. from the two solution prior w ere was content in The p e r c e n t s l o p e , and a s p e c t w ere topography 50 a n d 1 0 0 cm the 50 for Sand and each size 100 cm l a b o r a t o r y by w et s i e v i n g ; hours in sieving. a 5% s o d i u m slope shape plot, and fractions and sam ples sam ples were hexam etaphosphate Mean w e i g h t e d p a r t i c l e according to H illel were (1982). diam eters The mean w eig h ted p a r t i c l e d ia m e te r s and p re se n c e o f t e x t u r a l bands ( d e f i n e d h e r e a s > 1 5 cm c u m u l a t i v e t h i c k n e s s o f s a n d y c l a y loam or derive finer an textures index of so il betw een 1 and m oisture 4.5 holding m) were used capacity. to This 49 index has greater an im plicit assum ption m oisture a v a ila b ility adding these diam eter. Lo w i n d i c e s availability. availability S tatistical This for have ground been landform flora an aly sis for analysis w ith as 1, p article high m oisture by m o i s t u r e tests. used to form region com bination, sig n ifican t of the standardized or negative (C hapter of unit. test or species preference or avoidance included in techniques species groups 2). Ground f l o r a analysis BDA i s (Haberm an residuals a ( BDA) r tw o-step fo r each species 1973), and m a tr ix by p r i n c i p a l The m a g n i t u d e s a n d s i g n s indicate the degree of p o s it i v e or landform s. the and c a lc u la tio n of standardized groups according of using 1979) of a sso c ia tio n component a n a l y s i s species H ill These ecological 1978). residuals association were not (TWINSPAN; species (S trahler Principal classified to binary d isc rim in a n t a categorical component a n a ly s is were (Gauch 1 9 8 2 ) . of the s ta n d a rd iz e d landform s. The i n d e x w eighted rank s ta n d s species involving a chi-squared residuals stands so ils of th is as species-landform the represent space p a rtitio n in g were su b je c te d process, mean species fo r upland f o r e s ts using the have unbanded s o i l s nonparam etric s t a t i s t i c a l and previously species to a s 0, in d e x was u s e d t o indicator ordination so ils analyses Stands two-way values banded than unbanded s o i l s . was c r e a t e d by co d in g banded s o i l s and that analysis species groups w ith was u s e d to to patterns their Landform s (O stle ordinate w ith 1977). of < 4 50 Ground to flora detrended (H ill the DCA i s scale overstory correspondence 1979). principle and and analysis o f b o t h DCA a n d BDA a l l o w s factor loadings, resu lts basal data overstory ground f lo r a s p e c ie s. the sam ple stan d s dow nw eighted. ground flora analysis. "arch" also subjected using DECORANA which effects and Gauch a validation 1980). in The u s e ord in atio n s of and techniques 1985). DCA w a s species and abundance d a ta and perform ed on for S p e c i e s w h i c h o c c u r r e d i n < 10% o f w ere The deleted stand and scores DCA o r d i n a t i o n s index m inim izes inherent were rare from the compared species using S p earm an 's rank w ere overstory using Stand o r d in a tio n s c o re s were r e l a t e d m oisture (Conover (DCA) a com parison of and p r o v id e s for were technique (H ill (Hupp a n d O s t e r k a m p area an alysis an o r d i n a t i o n com pression component species order and regression to th e s o i l correlation 1971). RESULTS Geomorphic a n a l y s i s Three main the study area: m oraines or com plexes, strong no of 3.1). Outwash were recognized top o g rap h ic re lie f w ithin kame c o m p l e x e s , plains were o f w e l l - s o r t e d medium an d c o a r s e areally-com pact, relief, landform s le v e l outw ash p la i n s , (F igure extensive areas l i t t l e classes (F igure and defined sands 3.2b). as w ith Kame c o a r s e - d r if t a re a s of m oderate to in c lu d e h e a d s -o f-o u tw a s h and h e a v ily p i t t e d 51 Figure 3.1. Predom inant g l a c i a l landform s of a f iv e a r e a o f n o r t h w e s t e r n Lower M ic h ig a n . PHM - P o r t H u r o n M o r a i n e ILM - I n t e r l o b a t e M o r a i n e VCM - V a l p a r a i s o - C h a l o t t e M o r a i n e county 52 PHM Lake Michigan i k 5S.* * 44010 * * h A v * * • _ • * » % 1 . • r t * ■ ■! _ * 85°30’ J 43030- {U±: Moraines ;§§ Ice-Contact Topography .'ZZ' Outwash Plains Alluvial Plains Erosional Scarps «** Heads-of-Outwash 43030 ' 53 Figure 3.2 NW-SE t r e n d i n g t o p o g r a p h i c p r o f i l e s { l o c a t i o n s shown in in s e t) d e p ic tin g outw ash p la i n s , raorphosequences, and m oraines in the study area. V e r t i c a l e x a g g e r a t i o n i s 20x. 2 mi Interlobate M oraine 400 - Port Huron M oraine 300 400 - o u tw a sh p lain s 300 * h e a d s of ou tw a sh 55 outw ash. The In terlo b ate, C h a r lo tte m oraines were a l l topography: extensive (Figure with In 3.2a) contrast, w orkers some o f and ice-co n tact grades to T aylor features were V alparaiao- m oderate 1915, to high relief drainage system s. h ills which previous M artin 1955, Farrand th e Lake B order M o rain e e x h i b i t e d form . bluffs the e a s t m aterials of discontinuous non-m orainic steep, on t h e s e and c h a r a c t e r i z e d by t y p i c a l m o r a i n a l areas the have mapped as d istin ctly Huron, w ell-developed d e n d ritic (L everett 1984) Port These facing had w ith gentle (F ig u re 3.2c). Auger sa m p le s from stands composed that of the typically w est, revealed to h ills a the upper stratified These a sy m m e tric a l landform s c lo s e ly morphosequence p r o f i l e s 4.5 m o f s u r f a c e sands and resem ble d e s c r ib e d by K o te ff gravel. the outw ash and P e s s l (1981). The com bined t e x t u r a l and to p o g r a p h ic d a ta s u g g e s t t h a t a t least parts of the m orphosequences, level outwash on f e a t u r e s considered outw ash Lake w ith h illy plains west of (Figure M oraine are actually rather of outw ash heads-of-outw ash grading 3.2c). For this reason, the V a lp a ra is o -C h a rlo tte representative plains Border hilly than ice-contact m oraines. e le v a ti o n s of outwash system s d ecreased to In the in a c c o r d w ith F a r ra n d and Eschmann (1974), M ichigan through basin. W exford and Lake c o u n t i e s stands M oraine were topography general, south; or the this is who p o s t u l a t e d m e l t w a t e r d r a i n a g e f r o m t h e F o r t Huron maximum f l o w i n g southw est into into south- the Lake 56 The i c e - c o n t a c t and m o r a i n a l layers to of clay) nonpedogenic, w ithin bands and s i t e productivity 1970). The inclu d ed has an as a or of in the banding id e n tifie d for the predom inant soils on were of solum the deep sands BDA. as the 3.1). were g e n e r a lly Soils w ith associated was (T able and on textures underlain banded sites three s y s t e m s a n d t h e kame c o m p l e x e s w e r e v e r y s i m i l a r developm ent landform s Average w i t h d e e p s a n d s on t h e The on t h e o u t w a s h on s i t e s the were 3.1). m orainal whereas s o i l s and topography landform s Udipsamments. so ils therefore landform s nine map fine- com position surficial criteria, coarser these loam Hannah and Zahner bands Using ice-contact Typic (sandy species 1984, of geom orphic prim arily com pared both id en tify in g were E n tic or Typic H aplorthods, plains on absence in sedim ents The p r e s e n c e o f (Cleland e t a l. c rite rio n stands presence 4 . 5 m. influence presence categorizing and fine-textured the upper textured la n d fo rm s f r e q u e n t l y had by (Table m orainal in degree of and t e x t u r e . V egetation a n a ly sis The greatest difference in forest com position betw een the I n t e r l o b a t e M oraine and th e o t h e r Interlobate M oraine was hardw oods, w hereas a l l two s ta n d s (T able however, consistently other stands, on t h e F o r t Huron M o r a i n e , 3.1). W ithin patterned these variation tw o in landform s. dom inated w ith occurred by The northern the e x cep tio n of w e r e d o m i n a t e d by oak m ajor species o v erstory types, com position related Table 3 .1 . Forest com position and s o il p ro p erties among gla c ia l landforms oE northwestern Lower Michigan. Landform KAME COMPLEXES pour huroh MORAINE UIUAICED u tfy u u ro In = 22) (n = 12) in = 6) D ensity (stem s/ha) 659 (39.4) 657 (66.8) 731 (116.9) T o ta l b a sa l a re a (sq m/ha) 19.7 (0.7) 22.1 (0.8) 22.3 (1.3) om w istt VALPARAISOCI1ARLOTTE MOftAItC UNBAtCED INTEHLOBATE MORAINE (n = 3) KAME COMPLEXES IOKT HURON MORAINE INTEH106ATE MORAINE (n = 8) BAfttD BAMJED VALPAI1AIS0CHARLDTTE MORAINE BAfCfD (n = 8) (n = 10) (n = 4) (n « 3) 719 (72.8) 789 (78.8) 543 (80.1) 651 (133. B) 728 (54.3) 741 (53.1) 24.6 (1.2) 26 (2.6) 2 6.0 (1.1) 27.1 (0.8) 2 7 .B (1.8) 28.9 (0,7) UfEAlDED BAH)ED O verstory S p e c ie s b a s a l a re a (sq m/ha) Quercus v e lu tin a ttie rc u s a lb a Quercus rubra Acer rubrum Acer saccliarum Fagus g r a n d if o lia F rax in u s araericana Prunus s e r o tin a T i l i a am ericana 9 .3 B.4 1.1 0 .3 (1.2) (0.9) (0.7) (0.2) - 7 .8 6 .3 7 .3 1 .2 - - (1.5) (0.9) (2.0) (0.5) - 2 .5 9 .7 11.2 1 .8 (0.5) (1.0) (2.3) (1.0) - 9 .0 6 .7 4 .1 3 .4 (4.7) (1.9) (1.8) (1.7) 0 .6 (0.6) - - 6 2 7 3 3 3 2 (3.1) (1.1) (2.1) (0.9) (1.1) (2.0) (0.7) 1 .5 5.4 17.0 4 .2 (1.3) (1.6) (2.6) (1.5) - 0 .1 (0.1) 0 .2 (0.1) - - 0 .9 15.6 3.4 3 .5 1.7 0 .3 (0.7) (3.5) (1.3) (2.9) (1.7) (0.3) - 0,2 2 .8 17.1 3.7 1.2 1 .5 (0.2) (1.3) (2.5) (1.0) (0.6) (1,5) - - 4 .7 0 .1 11.6 1 .9 2 .3 1.4 5 .6 (2.6) (0.1) (l.B ) (1.0) (1.3) (0.6) (1.7) S o ils Mean w eighted p a r t i c l e diam eter (itm) (100 cm depth) % c s +iig (100 cm depth) % s i+ c l (100 era depth) 0.37 (0.01) 0.34 (0.01) 0.34 (0.01) 0.34 (0.03) 76 (3) 2 (0.4) 69 (2) 3 (1) 66 (2) 3 (0.5) 69 (2) 4 (1) Note; V alues re p re se n t means (sta n d a rd e r r o r ) . 0 .3 2 (0.02) 65 (6) 2 (0.5) 0.2 7 (0.03) 0.3 0 (0.01) 0.29 (0.02) 0.29 (0.02) 47 (7) 19 (4) 46 (7) 9 (3) 57 (10) 12 (6) 51 (8) 10 (3) 58 t o l a n d f o r m was o b s e rv e d . ranked along textures a and exhibited so il the When o a k - d o m i n a t e d l a n d f o r m s w e r e m oisture presence b ell-shaped, distribution by C u r t i s patterns (1959). of gradient (based banding), J-shaped (F igure 3.3), Sugar maple or overstory reversed sim ilar to At the sites opposite were d o m in a te d by s u g a r extreme, black species J-shaped those reported maple and and w h i t e M esic banded s i t e s high b a s a l a re a s were of s i m i l a r activities of Ground t h a t was oaks red oak. dom inated the these h i l l s , ( > 1 5 m2 / h a ) of red oak. age and h i s t o r y , the early flora the (Figure however, had Sam ple s ta n d s developing a f t e r the logging 1900s. composition related The i n i t i a l w ithin the w h ile unbanded o u t w a s h p l a i n s and d ry i c e - c o n t a c t and m o r a i n a l h i l l s 3.3). solum and bassw ood d o m in a te d banded m e s i c s i t e s on t h e I n t e r l o b a t e M o rain e, Interlobate on exhibited patterned variation t o b o th o v e r s t o r y c o m p o s i t i o n and l a n d f o r m . TWINSPAN d i v i s i o n s e p a r a t e d s p e c i e s a n d s t a n d s o f Interlobate landform s. M oraine from th o s e Using the TWINSPAN sim ilar p a t t e r n s of abundance, sam ple classificatio n G eologically, divisions found on o a k - d o m in a te d algorithm , constancy, u n its w ere species and f i d e l i t y clu stered b a s e d on g r o u n d f l o r a w ith to the together. com position s e p a r a t e d s t a n d s by r e l i e f and p r e s e n c e o r a b s e n c e o f f i n e textured m aterials in the subsurface horizons. The c h i - s q u a r e d t e s t o f a s s o c i a t i o n , phase of the binary discrim inant of th e i n d iv i d u a l ground f l o r a w hich was t h e f i r s t analysis, showed species used in that most the e co lo g ical 59 F ig u re 3.3 B asal a re a s of major o v e r s to r y s p e c ie s by la n d f o rm . Oak-dominated lan d fo rm s by s o i l m o i s t u r e a v a i l a b i l i t y ( x e r i c b a s e d on s o i l t e x t u r e and p r e s e n c e o r t e x t u r a l bands. Landform codes a r e a s OUT VCM-U KC-U PHU-U VCM-B KC-B PHM-B ILM-U ILM-B - summarized are ordered to m esic), absence of follow s: Outwash p l a i n s V a l p a r a i s o - C h a r l o t t e Moraine - unbanded Kame c o m p l e x e s - u n b a n d e d P o r t Huron M oraine - unbanded V a l p a r a i s o - C h a r l o t t e Moraine - banded Kame c o m p l e x e s - b a n d e d P o r t Huron M oraine - banded I n t e r l o b a t e Moraine - unbanded I n t e r l o b a t e Moraine - banded 13 AREA («q m /h a ) 18 cn o \7 \ OUT § VCM-U Qimtcus vafutlna Q u arcu s ru b ra XERIC < K C -U PHM—U VCM-B K C -B PHM -B GLACIAL LANDFORMS Q uarcus alba A ear sa c c h a n im > MESIC 1LU—U JLM-B 61 species groups bore w ith landform w ere correlated, (T ab le 3.2). com position. Hamamelis, w ith the in The and sizes the banded more The The dom inated in itial plains, but Desmodium ice-co n tact strongly relief. on o u t w a s h by n o r t h e r n w ith landform s dichotom y, how ever, association were associated w ith plains b u t was a b s e n t and positions; present group was landform s. were strongly were from banded w ith stro n g ly The O s m o r h i z a g r o u p banding. The M a i a n t h e m u m g r o u p w a s m o s t common on d e e p s a n d s , but also so il on banded sites. m o istu re holding m ajor f a c to r s species. sites and associated groups w ith groups absent sandy ice- textural occurred with sandy T rientalis on b o th Two and from s i t e s they the I n t e r l o b a t e M oraine. associated associated The V a c c in iu m g r o u p h ad a H am am elis interm ediate P teridium , a b u n d a n t on l a n d f o r m s w i t h f i n e r and m o rain es, a sso c ia te d w ith was is flora/landform occurring banding. outw ash h ills. ground overstory negatively associated this and g r e a t e r contact h ills occupied of were landform in V accinium , (which and was l e s s am plitude, tex tu ral Moraine w ith differences The D e s c h a m p s i a g r o u p was s t r o n g l y outwash p la in s , particle groups W ithin patterns observed. w ith p o sitiv ely d o m in a te d by oak. distinct The a s s o c i a t i o n s part, T rientalis and s ig n ific a n t associations D escham psia, Interlobate hardw oods), w ider statistically Under having sim ilar canopy c a p a c ity and r e l i e f influencing the d i s t r i b u t i o n appear conditions, to be the of ground f l o r a 62 Table 3.2. standardized resid u als and chi-squared values Cor individual hetbacecus and woody species d istrib u te d on nine upland landforms. Landform* Species CUT KC-U PKH-U VFH-U m m KC-B PHH-B VFM-B nx-B Chi-squared DESOUMPSIA GPCUT Deschaspaia flexuosa Arctcetapbylcs uva-ursi Conptonia peregrins Cladina rangiferlna Pleuroziua schreberi Andropogon g e ra rd li 3.88^ 0.64 -0.12 -0.84 4,35 -1.20 -0,81 -0,56 0.37 -0.69 -1,13 5.93 3.14 0.95 0.06 -0.77 3.83 -0.77 1.23 -0.77 4.00 -1.11 -0.75 -0.52 -1.42 -0,95 -1.91 -1.29 -1.29 -0.88 -1.61 -1.08 -2.17 -1.47 -1.47 -0.99 -0.98 -0.65 -1,31 -0.89 -0,89 -0.60 -0.84 -0.56 -1.13 -0.77 -0.77 -0.52 -1.42 -0.95 -1.91 -1.29 -1.29 -0.88 16.64 16.97 35,83 12.45 16.72 14.32 *c * * VWXDOIK GROUP Vaccinium angustifoliim G aultheria procurbens G ayluuacia baccata Welarpyrua lin ear* Die comm polyw tua Leucobiyua glaucim Epigaas repens 2.87 1.35 1.52 3.54 3.33 0.65 0.19 2.33 2.72 2.99 1,89 2.09 0.24 1.62 1.58 1.84 1.58 2.55 2,69 2.71 3.87 -4.84 -4.15 -2.28 -2.99 -2.09 -1.61 -1.16 1.34 1.73 -1.89 -3.39 -3,22 -0.19 -1.50 -1,03 -0,68 -1.57 -1.03 -0.92 0,13 0.8 8 -0.23 -4.84 0.03 -4.15 -1.35 -2.28 -0.59 -2.99 -1.6B -2.84 0.47 -1.61 -1.16 -1.97 56.01 44.42 26.52 44.89 39.02 11.60 22.12 * • • • • prtnuD nn GROUP Pteridium aquiliniun Amelanchier spp. Care* pensylvanlca 2.53 2.29 2.17 1.71 1.55 1.47 1.16 1,05 0,99 0.30 -3.60 0.73 -3.02 0.69 -6.58 1.56 0.43 1.32 HAMAMU5 QCUP Kmsanelis V irginians Sassafras o lb ld ia -2.12 -0.89 2.76 2.58 2.30 2.18 1.59 1.51 -3.32 -3.51 3.05 2.21 -0.22 -0.33 0,41 0.31 -3.32 -3.51 41.88 36.29 TRUHEMJS QtJCP T rie n ta lis b o rea lis A ster macroptiyllira -2.75 -1.91 -0.83 -0,47 4.27 1.42 -1.06 -0.22 -0.94 -0.89 2.60 3.51 2.27 0.44 0.28 2.19 -1.79 -2.41 36.39 27.75 VEBUBMH GFOUP Viburnum a c srifo liu a A ralla nudlcaulis K itc h slls repens Hedsols V irginians -4.82 -4.10 -2,99 -1.48 1.12 -1.85 -2.03 -1.00 2.06 1.34 0.67 -0.68 1.43 -0.27 -0.95 -0.47 -2.17 1.32 2.88 0.71 2.74 2.71 3.83 1.84 1.66 1.43 1.36 3.60 1.43 2.13 -0.95 -0.47 0.12 0,56 -0.71 -0.79 33.67 27.04 30.93 17.61 1.09 0.03 2.31 1.77 0.68 -0.95 -1.16 0.93 0.85 -0.72 0.B0 -6.58 0.73 -5.14 0.69 -1.05 ' * * 57,60 • 36.78 * 44.48 * 63 Table 3*2. -continued page 2 species our KC-U FHM-U VFW-U ILtt-U DE3C0HM GROUP Deemed inn app. Cornua flo rtd a Viola pubescens -0.26 -1.29 -2.4 L 0.09 -1.63 - L . l l -Q.8B -1.11 -0.75 -0.61 -0.77 -0.52 MAIAMIHQM4 GFCUP Maianthenun canndenee Polygonaton b iflo n jn DrYopteria spinuloaa Solidago ca esia Epifagus V irginians Lycopcdiua luciduluo Lyccjndiuni obscurun Cares deveyana Cares pedunculata -4.55 -3*90 -2.04 - l .a s -1.63 -1.63 -1.77 -1.63 -1.91 -2.52 -1.97 - i . 3a - o .s a - i.ii - i.ii -1.2 0 -1.11 -1.29 0.00 -o .a a -0.94 -1,16 -0.75 -0.75 -0.81 -0.75 -0.8B -2.41 - 2 .29 -1,31 -1.4B -1.77 -1,77 -1.63 -1,63 -1.63 -1,77 -2.53 -1.4B -1.63 -1,55 -O.B9 -1.0 0 -1.2 0 -1.20 -1.11 -1.1 1 -1.11 -1.2 0 -1.7 1 -1.0 0 -1.11 -1.05 —0.60 -o .a a -0,81 -0,81 -0.75 -0.75 -0.75 -0.81 -1.16 -0 .6 8 03CBHIIA GROUP Oamorhiza c la y to n li Cares plantaglnea Adianttan pedatun U vularla p e rf o lia te B otrlchiun virglnianw a Caulcpbyllum th a l l e t ro ides H ita lla dip h y lla A lliun trlcoccun T ia r e lla c o rd ifo lia V iola canadensis Bepetlca ac u tllcb a -1.03 -0,27 -0.08 KC-B PHM-B VFH-B ILM-fl 2.15 3.18 4.04 -0.70 -0.B9 1.30 5.15 -0.77 -0.52 -1,03 2.81 0.51 10,93 20.42 * 10.64 • -1.77 -1.24 -0.65 -0.00 -0.52 -0.52 -0.56 -0.52 -0.61 2.99 2.04 4.27 -0 .2 1 3.53 -0 .1 9 0.63 2.96 3.28 -0.99 1.90 -0 .9 9 0.09 2.93 6.06 -0.99 5.06 -1.16 2.05 1.84 -0.75 0.43 1.30 3.21 1.12 -0.60 -0.70 1.77 1.27 -0.65 2.33 -0.52 -0.52 -0,56 -0,52 -0.61 2,99 3.48 3.53 -0.37 1.90 1.90 1.63 0.51 2.63 43.66 45.18 26,27 13,40 17.36 18.96 14.17 34.91 32.95 * * * • * * * • • -0.77 -0.73 -0.42 -0.47 -0.56 -0.56 -0.52 -0.52 -0.52 -0.56 -0.80 -0.47 0.76 -0.5* 3.02 -1.40 -0.70 -0.00 2.22 -0.90 0.34 —l.OB 1.63 - i.o a 1,90 -0.99 0.51 -0.99 0.51 -0 .9 9 1.27 0.34 1.62 1.16 2.22 -0 .9 0 -0,09 0.61 -0.48 -0.55 -0,65 -0.65 -0.60 -0 .6 0 -0.60 -0.65 -0.93 -0.55 0.B5 -0.73 -0.42 -0.47 -0,56 -0,56 -0.52 -0.52 -0.52 -0.56 -0.30 -0.47 6.91 5,14 5.99 3.73 6,80 5,51 4.67 6.06 6.06 4.22 5,59 3.73 51.80 37.91 32.03 18.11 43.61 32.50 25.34 34.91 34.91 20.28 37.92 19.11 * * • • * * * * * * • • land for# a tb re v la t icc* a re t CUT, oufcsesh p la in s , rC-C, Itana carp lex es - unbanded, Fftt-U, Port Eiuron Moraine - unbended, VPSt-U, V alparaiso-C harlotte Moraine - unbanded, UM-U, In te rlo b a te Moraine - unbended, KC-B, kame ccrplexes - banded, PHM-B, port Huron Moraine - banded, vm -fl, V alparaiso-C harlotte Moraine - banded, ILH-B, In te rlo b a te Moraine - banded. A p o sitiv e resid u a l in d ic a te s frequent occurrence on a p a rtic u la r landfona; negative re sid u a ls in d ic a te th a t the group i s ra re ly found th e re . c * s ig n ific a n t a t p<0,05 Chl-squa 64 In the p rin cip al variation On t h e of second component in factor In terlo b ate 3.3). the axes principal contact p o sitiv e of BDA, residuals component a x i s , h ills and outw ash loadings, w hereas O rd in atio n of sp ecies on grouped sp e c ie s strong arch effect (i.e. q u a d ra tic axis on t h e first) was m a n i f e s t 3.4). A rctostaphylos outw ash 44 and m atrix, and second 24% of respectively. ch aracteristic plains received species uva-ursi, plains, the common f ir s t by p r e f e r e n c e was in to the landform , to characteristic of m esic m orainal p o s itio n s . close of but a second the the m ost tw o p e d a t u rn, For t h i s of sp ecies-lan d fo rm axes (F igure in Ad i a n t u rn the (Table PC second axis relativ ely high on dependence of the o rd in atio n interp retatio n s tw o ch aracteristic space the species dim ensional further first M oraine r e c e iv e d h igh n e g a tiv e lo a d in g s effectively xeric the explained the sta n d a rd ized first ice phase reason, relatio n sh ip s w e r e made u s i n g d e t r e n d e d c o r r e s p o n d e n c e a n a l y s e s . Table 3.3 . F a c to r lo a d in g s ( e ig e n v e c to rs ) from a p r i n c i p a l component a n a l y s i s of s ta n d a r d iz e d r e s i d u a l s from the s p e c i e s by l a n d f o r m c o n t i n g e n c y t a b l e s . Landform Outwash p l a i n s Kame c o m p l e x e s - u n b a n d e d P o r t Huron M oraine - unbanded V a l p a r a i s o - C h a r l o t t e Moraine - unbanded I n t e r l o b a t e Moraine - unbanded Kame c o m p l e x e s - b a n d e d P o r t Huron M o rain e - banded V a l p a r a i s o - C h a r l o t t e Moraine - banded I n t e r l o b a t e Moraine - banded Eigenvector 0.34 0.47 0,35 0.37 -0.44 -0.03 -0.17 -0.05 -0.40 1 65 Figure 3.4 S p e c i e s d i s t r i b u t i o n on t h e f i r s t t w o a x e s binary d isc rim in a n t a n a ly sis. Sym bols s p e c ie s group codes: D - D escham psia, V accinium , p - P te rid iu m , H - H am am elis, T r i e n t a l i s , V I - V i b u r n u m , DM - D e s m o d i u m , Maianthemum, 0 - O s m o rh iz a . of a are V T M - DM pH BDA AXIS 2 DM DU -1 u q?* -2 -3 —4 -2 0 BDA AXIS 1 2 4 67 The f i r s t (Q-type DCA a x i s analysis) from x e r i c - s i t e landform s; axis also an o r d i n a t i o n represented species a of ground com positional presented to in T able landform s relatio n sh ip s 3.4. using The the DCA was Osmorhiza s p e c ie s Maianthemum was most group, group received on Species received negative scores occured under plains of and Viburnum groups gradient, occurring m esic (banded calculates present single the axis. be o b ta in e d relative U sing the to this dry on t h e black under the A relative estim ate by c a l c u l a t i n g s um o f m ethod, the summed e i g e n v a l u e s . axes, v ariatio n of groups groups canopies positions is group In terlo b ate Since on and on oak c a n o p i e s it the T rientalis landform s. of this These oak The red oak-w hite proportion associated Members o f axis. h ills. four members and V accin iu m interm ediate first from the oak-w hite sandy residuals scores; on first finer-textured) exact the sites of the strongly lower th e D escham psia occupied or only slightly unbanded M oraine. outw ash is first to were a l l on t h e I n t e r l o b a t e M o ra in e . frequent typically which the sim ilar e x p r e s s e d by t h e s t a n d a r d i z e d w ith banded s i t e s gradient relationship t h e BDA. S p e c i e s w i t h t h e h i g h e s t DCA s c o r e s of flo ra to s p e c ie s c h a r a c t e r i s t i c of m esic t h e 20 m o s t h e a v i l y w e i g h t e d s p e c i e s f o r are species from the on more DECORANA not possible explained variation to by explained a can th e p e r c e n ta g e of an e i g e n v a l u e first four first The eigenvalues DCA a x i s second (Boerner accounted fo r DCA a x i s 1985). 70% o f accounted for 14% o f t h e s u m m e d e i g e n v a l u e s , a n d a p p e a r e d t o s e p a r a t e the 68 D escham p sia and Vaccinium g ro u p s. in this ordination. Table 3.4. T h e 20 t e r m i n a l s p e c i e s o n DCA o r d i n a t i o n a x i s Eigenvalue = 0.653. Highest scores A tw o-dim ensional vegetation (R -type clearly separated A ll the received Pinus banksiana A rctostaphylos u va-ursi Cladina ra n g ife rin a Lycopodium t r i s t a c h y u m Comptonia p e r e g r i n a Rubus h i s p i d u s Deschampsia f le x u o s a Lupinus p e r e n n is Quercus e l l i p s o i d a l i s Cladonia c r i s t a - t e l l a Polytrichum p ilife ru m Galium c i r c a e z a n s Polytrichum juniperinum Pleurozium s h r e b e r i Dicranum p o ly s e tu m H i e r a c i u m venosum Mel a mp y r u m l i n e a r e Comandra u m b e l l a t a Gaylussacia baccata Quercus v e l u t i n a p o rtio n of ordination analysis) by g r o u n d stands first 1; Lowest s c o r e s D icentra canadensis CJvularia p e r f o l i a t a T iarella cordifolia M itella diphylla Adiantum pedatum Allium tricoccum Caulophyllum t h a l i c t r o i d e s Botrychium virg in ian u m Osmorhiza c l a y t o n i i Hepatica a c u tilo b a Carex p la n ta g in e a T i l i a americana T rilliu m grandiflorum D ryopteris spinulosa Epipactis helleborine Carex deweyana Actaea alb a Viola canadensis Acer saccharum Galium b o r e a l e of No a r c h e f f e c t w a s e v i d e n t axis scores showed flora occurring of of on stands by g r o u n d flora that landform s were com position the 200 o r (Figure Interlobate higher. M oraine The t h e g r a d i e n t (DCA A x i s 1 s c o r e s 1 0 0 - 2 0 0 ) 3.5a). central com prised s ta n d s w ith h igh p r o p o r t i o n s o f the T r i e n t a l i s , Viburnum, Desmodium g r o u p s . These s t a n d s o c c u r r e d on and ic e -c o n ta c t or 69 Figure 3.5 D e t r e n d e d c o r r e s p o n d e n c e a n a l y s i s o f s t a n d s by ground f l o r a and o v e r s to r y v e g e ta tio n : a) o r d i n a t i o n b a s e d on g r o u n d f l o r a , b) o r d i n a t i o n b ased on o v e r s to r y . V alues re p re s e n t landform codes: 1 2 3 4 5 6 7 8 9 - Outwash p l a i n s Kame c o m p l e x e s - u n b a n d e d P o r t Huron M oraine - unbanded V a lp a r a is o - C h a r lo tte Moraine - unbanded I n t e r l o b a t e M oraine - unbanded Kame c o m p l e x e s - b a n d e d P o r t Huron M o ra in e - banded V a lp a r a is o - C h a r lo tte Moraine - banded I n t e r l o b a t e Moraine - banded GROUND FLORA OCA AXIS 2 OVERSTORY OCA AXIS 2 QJ cr o o o o N —A u 8 o M o GROUND 8 Ol FLORA OCA AXIS DCA AXIS K > O o I 1 40 IO § u ID lO s 190 190 ossssssagssisgigsii 71 m orainal plains, h ills unbanded received first p ro p ortion s textural m oraines axis of D iscrim ination h ills w ith or scores the among banding. unbanded < 100; D escham psia the unbanded by g ro u n d f l o r a was p o o r. very sim ilar in relief, Stands soil kame these and com plexes stands m orainal and texture, of d i f f e r e n t ages and d e p o s i t i o n a l sim ilar lik ely in th e ir high ice-contact degree features are fu n ctio n ally is and all groups. These dry sandy h i l l s (Table 3,1), and i t are had V accinium developm ent they on o u t w a s h that, of w hile were so il these environm ents, effects on s p e c i e s com position. The tw o-dim ensional overstory 3 .5 b ). data The f i r s t com positional stands along high also separated stands o v ersto ry DCA gradient dom inated o rdination from by s u g a r jack stands by landform ax is of red variance the was n e a r l y ground explained Again, first oak identical to on t h e scores contact h ills to ordination; 71 a n d 14% o f stands axis flora stands Interlobate occupied on (F igure w ith stands a to O rdination from stands a w ith sig n ifican t The p a r t i t i o n i n g of the p a r titio n in g of v arian ce the first two o v e r s t o r y t h e summed e i g e n v a l u e s , ( > 250), oak m aple and bassw ood. the second a x is produced a g ra d ie n t proportions based re p resen ted pine-black com ponent o f red m aple or w h ite p in e . in of Moraine respectively. received the h ig h e st s t a n d s on banded m o r a i n a l o r the c e n tr a l p o r tio n of axes the ice- gradient ( 2 0 0 - 2 5 0 ) , and s t a n d s on o u t w a s h p l a i n s r e c e i v e d t h e l o w e s t scores (< 1 0 0 ) . 72 The w ith overstory ordination scores were highly correlated th e o r d in a tio n sc o re s d e riv e d using ground f l o r a ( r 2=0.89; p < 0.05). Species turnover w ith in oak-dom inated and su g ar m ap le-d o m in ated f o r e s t s was g r a d u a l overstory (Figure and ground f l o r a the continuous forests layers p a t t e r n of change on th e o r d i n a t i o n s in 3.6), characteristic ( C u r ti s 1957, P eet and Loucks 1977). landform data shows t h a t both the reflecting of W isconsin Superim posing the assem blages of o v e r s t o r y and ground f l o r a co v ary as a f u n c t i o n of la n d fo rm (Figure 3.6). assem blages Partitioning identified the three d is tin c t o u tw a s h p l a i n s and d ry sand h i l l s loamy surface textures ordination or classes m oisture-holding capacity; of 2) h i l l s index T h e re was l i t t l e were with Moraine (upper related to first 3) two c l a s s e s differences in so il Spearman's rank o r d e r c o r r e l a t i o n s t h e g r o u n d f l o r a a n d o v e r s t o r y DCA s c o r e s a g a i n s t m oisture 1) Interlobate C o m p o s i t i o n a l d i f f e r e n c e s among t h e clearly landform and right). were species (center) and landform s the by banding banded of of of (lower l e f t ) , subsurface unbanded h i l l s space both difference highly in significant species (p the s o i l < 0.01). c o m p o s i t i o n among t h e ice contact h il l s and t h e P o r t Huron and V a l p a r a i s o - C h a r l o t t e m oraines, on b a n d e d W ithin age and the either study a re a , geographic these extent, or unbanded s i t e s (Figure 3.6). l a n d f o r m s d i f f e r e d p r i m a r i l y by rather than by g laciated landscape, topography parent m aterials. In t h i s it is landforms per se, but the a b i l i t y of the landform s to not or the retain 73 Figure 3.6 S c a t t e r p l o t o f s t a n d s c o r e s f r o m o r d i n a t i o n s by ground f l o r a and o v e r s t o r y . Values re p re s e n t landform codes: 1 2 3 4 5 6 7 8 9 - Outwash p l a i n s Kame c o m p l e x e s - u n b a n d e d P o r t Huron M o rain e - unbanded V a lp a r a is o - C h a r lo tte M oraine - unbanded I n t e r l o b a t e Moraine - unbanded Kame c o m p l e x e s - b a n d e d P o r t Huron M oraine - banded V a lp a r a is o - C h a r lo tte Moraine - banded I n t e r l o b a t e M oraine - banded 400 350 ’9 5 300 250 200 56 150 T T 100 3 2 ,1 ,1 1 1 2 2 41 50 0 2 3 2 - 1 21 1 ~ 1--100 200 “ 1— i 300 400 OVERSTORY DCA AXIS 1 5C 75 m oisture and n u tr ie n ts influencing forest th a t ap p ears to be a p rim a ry factor com position. DISCUSSION The p a t t e r n result the of its glacial histo rical and com m unities. recent appears existing to w hich be the noted the sand co n te n t of an index of so il of results m oisture as prim ary of Peet the has so ils th is as a directed and related produced v eg etatio n w ith landscape history av ailab ility , consistent that regional developm ent upland the this post-glacial environm ents configuration, the to and M oisture d ep o sitio n al for im parted plant to the landscape factor responsible p attern . T his and Loucks horizon availability) (1977), (interpreted was most is who as closely correlated w i t h an o v e r s t o r y o r d i n a t i o n o f W isc o n sin f o r e s t s . Sim ilarly, in a canonical an a ly sis variables against Peninsula of ecological M ichigan, relative proportions m ottling be h i g h l y of sorted, capacity. soil and p h y s io g ra p h ic groups and B arnes in (1985a) c o a r s e and medium s a n d s correlated w ith the first the and d e p th w ith low the to canonical axis. by l o w - g r a d i e n t b r a i d e d s t r e a m s , so ils Upper found th e e x te n s iv e outwash p l a i n s , coarse-textured formed have w e ll- m oisture holding M o ra in a l and i c e c o n t a c t la n d f o rm s te n d to be more poorly sorted, m oisture species Spies In our study a re a , predom inately of w ith somewhat f i n e r - t e x t u r e d s o i l s and g r e a t e r a v a ila b ility . F inally, landform s in w hich 76 sedim entation, resulted further flow till, or other in d e p o s itio n of su b su rfa c e enhanced m oisture supply. in s o i l m o is tu re were r e f l e c t e d c o rre la tio n of scores. the s o il O utw ash ch aracteristic overstories, as w ith the A ll plains the support D escham psia ch aracteristic oak and red m aple and ground R elating environm ent from gradient ability to describe environm ents, m oisture allow s to a landforms and make and n u t r i e n t the o r d in a tio n com m unities and w hite V accinium flora. w ith occur. us to regional in term s subsequent status, M oraine For exam ple, w hich probability w ith of m em bers predom inant have ground of to supporting of the ground m inim ally sugar apply our flo ra. red oak and ground flora Banded tend of landscape. their disturbed - red about their where is in lik ely In terlo b ate have oak species The depositional w ith in the a high overstories group ice-co ntact to support the fin din gs one to p r e d i c t maple M aianthem um n o r t h w e s t e r n Lower M ic h ig a n of flo ra d ep o sitio n al inferences allow s sandy s i t e s been m esic requirem ents: th e lan d scap e a given sp e c ie s or group of s p e c ie s to oak species More m oisture a v a ila b ility landform ) analysis i n t h e BDA a n d t h e or Viburnum g ro u p s. m oisture (or differences com position of black o v ersto ries, d o m i n a t e d by t h e T r i e n t a l i s bands have a p lan t environm ents: processes these index w ith landform s support species with g re a te r red of as evident m oisture of x eric textural in the sp ecies th e o v e r s to r y and u n d e rs to ry , groups geom orphic as h ills the in high b a sa l a re a s Viburnum or D esm odium 77 sp e c ie s groups. nature apply W hile th e s e r e l a t i o n s h i p s {C leland to et stands al. which a r e u s t o map p o t e n t i a l shown that not successional Landform is 1985, Spies and relatively Barnes pathw ays among a major s e l e c t i v e but also landform s force they and allow potential (C hapter 5). in determ ining p o t e n tia l s p e c i e s c o m p o s i t i o n i n s p e c i f i c and d e f i n a b l e p o r t i o n s o f landscape. Th e a b i l i t y by l a n d f o r m has especially for in A r e la te d study has composition, vary 1985a), undisturbed, species com position. only present are regional the t o map p o t e n t i a l s p e c i e s c o m p o s i t i o n im portant ram ifications for land management, s i l v i c u l t u r e and w i l d l i f e . The p r o b l e m o f s c a l e The nature vegetation (Damman pattern 1979); at disturbance are relief of vegetation The sm all w ith scales, the factors scale aspect, w hile at larg e north w estern pattern ex ists Lower at co n tro llin g of observation slope, scales, and local regional in the g la c ia te d M ichigan, sig n ifican t the s c a le of landform ; in our t h e g e o m o r p h i c maps w e r e made a t a s c a l e o f 1 : 6 2 , 5 0 0 . understood, in varies im portant, subsurface scale environm ental and c lim a te a r e dom inant f a c t o r s , terrain case, of of but banded 1:15,000. com m unity scales configuration and can 1:1 0 ,0 0 0 its textural series W ithin t h i s com position betw een availability, so il of have been regional concom itant be is poorly mapped landscape, therefore and bands at variation quantified 1 :1 0 0 ,0 0 0 . influence a at M o istu re on nitrogen 78 availability al. 1984/ and o th e r P astor environm ental nutrient and Post cycling 1986), fu n ctio n of overstory scale. occurrence of layers, 1966) in and th ere occur U nited among and (i.e. other layers. may among occur com m unities, specifically, of the At this low as a resu lts S tates: e f f e c t s . Hence, on from McCune and stru ctu ral preclude w ith com m unities close how ever, longer that ecological higher in beta- range of which A bies beta-diversity, correlations to intraspecific note, along of co­ response w ith factors level the p a rtic u la r s t u d y was b a s e d on a r e s t r i c t e d those also a species i n f l u e n c e o f t h e p h y s i c a l e n v iro n m e n t was s e c o n d a r y and s to c h a s t i c is repeated are history, stands key betw een among f o r e s t They a l s o sets T heir occurs. stand the (plant a sso c ia tio n s contrasts w estern diversity). grandis w hich that variation, correlations gradients th at T his the concluded correlations higher layers co rrelatio n found a poor c o r r e l a t i o n and genotypic structural ordinations, im plies factors. forests (1982) be et range of s c a le s . of ground f l o r a and o v e r s t o r y environm ental Antos this to (Pastor s p e c i f i c o v e r s t o r y and ground f l o r a D aubenm ire m ontane high flora landform s assem blages s ensu The and ground sim ilar appears factor operating w ithin The c o r r e l a t i o n among f o r e s t processes the to canopy among l a y e r s were low. D elH oral larger scale and (i.e. Watson (1978) sampled along a longer montane com positional forests gradient) at a and 79 reported a herbaceous high correlation layers h ypothesize under th at, com position is closed ( H i l l 1979). relatively scores flo ra w hile under respond to was s i m i l a r to a com plete tu rn o v er in in our Canopy c l o s u r e c a n o p i e s on m o r a i n a l h i l l s . canopy, and They ground and o v e r 3 t o r y representing open can o p ies of condition s. by t h e Beta d i v e r s i t y overstory canopies, ground f l o r a d e lM o ra l and W atso n 's, the fo rest largely controlled t h e same f a c t o r s . the dry under open canopy c o n d itio n s , species betw een study in our study the outwash ranged plains to from closed T h e r e was n o a p p a r e n t s c a t t e r of w ith in th e c lo se d canopy p o r tio n of th e g r a d ie n t, as we w o u l d e x p e c t under close asso ciatio n D elM oral and W a ts o n 's h y p o t h e s i s . The we o b s e r v e d b e t w e e n o v e r s t o r y a n d g r o u n d f lo r a s p e c ie s appears to be c lo s e ly r e la te d to lan d fo rm , illu strated regional by F i g u r e 3.6. landscape, plant In M ichigan, a t th e s c a le of the asso ciatio n s occurred predictable landscape p o sitio n s. com position which scale appears A major the northern dichotom y and structure at appear to are d iffer, at one another. history in species com position e x is ts hardwood-dom inated sim ilar in in s p e c ie s unpatterned Interlobate oak-dom inated m o rain al or g l a c i o f lu v i a l features repeatedly The v a r i a t i o n continuous may e x h i b i t g r a d i e n t - r e l a t e d Landform-mediated f i r e as in so il however, texture in their and fire M oraine between and landform s. the These topography; they h isto ries. The e x t e n s i v e o u tw ash p l a i n s and i c e - c o n t a c t h i l l s w ithin them 80 occupy fire-prone landscape if fires a r e d r i v e n i n l a n d by w e s t e r l y w i n d s f r o m Lake M i c h i g a n . The I n t e r l o b a t e Moraine, o f two m ajor to fires river systems, from the com positional m ediated d iffe re n c e s to w ith in f i r e qualitatively presence of identical M oraine, fire stable betw een fire potential com position n orth ern probability noted characteristics vegetative sites supported communities. Bhs h o r i z o n w ith encountered The in so ils of the m ore p o o rly elsew here, is the an a l l o w i n g a Bhs h o r i z o n t o d e v e l o p . of a history, species site is and la n d f o rm composition. a function act The of to d e fin e actual many as factors sto ch astic disturbance. flo ra such Th e c l o s e is species but to to the frequency association not due s o le y individual as to between independent and interactions w ithin and among type responses life and as w ell overstory predom inant en v iro n m e n ta l and species biotic such as seed so u rce and c o m p e titio n , also that, patterns, ab io tic factors, ground has p o t e n t i a l composition C lim ate, constrain (1984) t h a t t h e I n t e r l o b a t e may h a v e b e e n h i s t o r i c a l l y p r o t e c t e d from f i r e , Actual vs. firebreaks He f u r t h e r contrasted d e v e l o p e d Bs a n d Bw h o r i z o n s indication Grimm northeast in M innesota to landform - history. a w ell-developed In terlo b ate natural w est. physical different, situated differences landform -controlled virtually is which p r o v id e h a r d w o o d a n d oak d o m i n a t e d f o r e s t s due particularly on t h e o t h e r h a n d , advancing attributed positions, of and of factors, form s. 81 O veratory species, com p o sitio n of by shading, l i t t e r , and allelopathy, o ther environm ental conditions which s e l e c t ground species. Zak flora differences in litte r et al. quality ra te s of nitrogen m in era liza tio n , ground affect flo ra com position. establishm ent fa c to rs, for have a strong factor species com position, establishm ent proxim al, species. C onversely, so ground of Post com position of in on species a site. actual species rather 1986). this on capable O ther, of more d istribution of (McNaughton m ust d eterm in istic N onetheless, regional i s an potential com position than may through itself act p ro b ab ilistically m odels and for the be p r o b a b i l i s t i c (Pastor species determ ine that flo ra species constraints selecting factors that necessarily im poses persistance factors These 1984), nature and shown of w h i c h i n t u r n may i n f l u e n c e and g r o w th of o v e r s t o r y which sets influence c o m p e t it i v e or a l l e l o p a t h i c e f f e c t s . Landform ultim ate create particular (1986) have chem ical the landscape, in actual w h ic h was h ig h ly d is tu r b e d a t th e tu rn of the c e n tu ry (M ustard 1983), is the strongly face of related this Landform is to the geological processes that p o rtio n of earth . the most stable m orphological component landscape ecosystem s, c e r t a i n l y more s t a b l e t h a n e i t h e r or 1964). vegetation northw estern d irectly determ ining (Rowe Lower M ic h i g a n , and the formed in d irectly spatial In I the glaciated have shown t h a t played an distributions plant soils terrain of landform has im portant of of ro le in communities. 82 Functional such be as ecosystem biom ass ultim ately processes production related to landform s should stru ctu re and landform . dim ensional structure allow fu n ctio n dim ensional g rad ients of to species and n u t r i e n t atte m p ts to q u a n tify v a r ia tio n among tied in in turnover, F urther these processes us the to understand context the landscape ra th e r or a t com position, single points. of must also work w hich w ithin and ecosystem the than along three two- 83 LITERATURE CITED A lbert, D.A., S.R. D enton, a n d B.V. B arnes. 1986. Regional landscape ecosystem s of M ichigan. School of N a t u r a l R e s o u r c e s , U n i v e r s i t y o f M i c h i g a n , Ann Arbor. 32 p . Barnes, B. V., K. H. Spooner, classification. S. P regitzer, T. A. Spies, and V. 1982. E cological fo rest site J o u rn a l of F o r e s tr y . 80:493-498. B raun-B languet, J. 1932. P lan t Sociology: the P lan t C om m unities (au th o rized translation of P flan zen so zio lo g ie, tran r e v i s e d , a n d e d i t e d b y G. D. F u l l e r a n d H. S. M c G r a w - H i l l B o o k Co. N.Y. 4 3 9 p p . study of E nglish slated , Conrad). B o e r n e r R. E. 1985. A l t e r n a t e p a t h w a y s o f s u c c e s s i o n on t h e Lake E r i e I s l a n d s . V e g e ta tio 63:35-44. Bray, J . R. a n d J . T. C u r t i s . upland f o r e s t communities Mono. 2 7 : 3 2 5 - 3 4 9 . 1957. An o r d i n a t i o n o f t h e of sou th ern W isconsin. Ecol. C leland, D.T., J . B . H a r t , K. S. P r e g i t z e r , a n d C.W. Ra mm. 1985. C l a s s i f y i n g oak e c o s y s t e m s f o r m an ag em en t, pp. 120-134. In (J.E . Johnson, ed.) Proceedings of Challenges i n Oak M a n a g e m e n t a n d U t i l i z a t i o n , March 28-29, U niversity o f W isc o n sin , Madison. 152 p. C o n o v e r , W. J . 1971. P ra c tic a l nonparam etric s t a t i s t i c s . John W iley and Sons, In c . New Y o r k . 462 pp . C o t t a m , G. 1949. The p h y t o s o c i o l o g y o f an oak so u th w e ste rn W isconsin. Ecology 30:271-287. C u r t i s , J . T. 1959. The v e g e t a t i o n Wise. P r e s s , Madison. 657 p p . of woods W isconsin. in Univ. C u r t i s , J . T. a n d R. p . M c I n t o s h . 1951. An u p l a n d f o r e s t c o n tin u u m in th e p r a i r i e - f o r e s t b o rd e r r e g io n o f W isconsin. Ecology 32:476-496, Damman, A.W.H. 1979. The r o l e o f v e g e t a t i o n a n a l y s i s i n land c la s s if ic a tio n . The F o r e s t r y C h r o n i c l e . 55:175182. D e l M o r a l , R. a n d A. F . W a t s o n . 1 9 7 8 . G radient s tr u c tu r e of f o r e s t v e g e ta tio n in th e c e n t r a l W ashington C ascades. V e g e t a t i o 38:29-48. 84 Dorr, J . A. a n d D. P . E s c h m a n n . 1 9 7 0 . G eology o f M ich ig an . U n i v e r s i t y o f M ichigan P r e s s . Ann A r b o r . 476 p p . D a u b e n m i r e , R. R. 1966. V eg etation: the i d e n t i f i c a t i o n ty p a l com m unities. Science 151:291-298. G a u c h , H. G. ecology. pp. of 1982. M u l t i v a r i a t e a n a l y s i s in com m unity C am bridge U n i v e r s i t y P re s s . C am bridge. 298 G r i m m , E. C. 1984. F i r e and o t h e r f a c t o r s c o n t r o l l i n g t h e b ig woods v e g e t a t i o n o f M in n eso ta in th e m i d - n i n e t e e n t h c e n t u r y . E c o l o g i c a l Monographs 54:291-311. Farrand, W. R. M ich ig an : 1:500,000. H a b e r m a n , S. J . classified 1984. Q u atern ary geology of S outhern M ichigan G e o lo g ic a l S urvey D iv is io n , 1973. tables. The a n a l y s i s o f r e s i d u a l s B io m e tric s 29:205-220. in c r o s s ­ H a n n a h P. R. a n d R. Z a h n e r 1970. N onpedogenetic te x tu re bands in outw ash sands o f M ichigan: t h e i r o r i g i n , and i n f l u e n c e on t r e e g r o w t h . S o i l . S c i . S o c . Am. P r o c . 34:134-136. H ill, M. O. 1979. DECORANA - a FORTRAN program for d e tre n d e d co rresp o n d en ce a n a ly s is and r e c ip r o c a l averaging. S e c tio n o f Ecology and S y s t e m a t i c a , C o r n e ll U n i v e r s i t y , I t h a c a , New Y o r k , USA. H ill, M. O, 1979. T W I N S P A N - a FORTRAN p r o g r a m for a r r a n g i n g m u l t i v a r i a t e d a t a i n an o r d e r e d tw o-w ay t a b l e by c l a s s i f i c a t i o n o f t h e i n d i v i d u a l s a n d a t t r i b u t e s . S e c t i o n o f Ecology and S y s t e m a t i c s , C o r n e l l U n i v e r s i t y , I t h a c a , New Y o r k , USA. H ill, M. O . a n d H. G. G a u c h , Jr. 1980. correspondence an a ly sis: an im p ro v ed technique. V e g e ta tio 42:47-58. H i l l e l , D. Press. Hupp, 1982. Introduction Ne w Y o r k . 364 p p . to so il D etrended o rd in atio n physics. A cadem ic C. R. a n d W. R. O s t e r k a m p . 1985. B ottom land v e g e ta tio n d i s t r i b u t i o n along Passage Creek, V ir g in ia , in r e l a tio n to f lu v i a l landform s. Ecology 66:670-681. J e n n y , H. 1941. quantitative 281 p p . Factors of pedology. s o il form ation: a system of M cG raw -H ill, Inc. New Y o r k . 85 K o t e f f , C. a n d F. P e s s l . 1981. S y ste m a tic ice r e t r e a t in New E n g l a n d . G e o l o g i c a l Survey P r o f e s s i o n a l P ap er 1179. U.S. G o v e r n m e n t P r i n t i n g O f f i c e . W a s h i n g t o n , D. C. 2 0 pp. L e v e r e t t , F. a n d F. B. T a y l o r . 1915. and M ichigan and th e h i s t o r y of G e o l o g i c a l S u r v e y , M o n o g r a p h 53 . P leisto cen e of Indiana the G reat Lakes. U.S. 529 p p . Lusch, D. P. 1982. The o r i g i n and m orphogenetic s i g n i f i c a n c e o f p a t t e r n e d ground in th e Saginaw Lowland o f Michigan. U n p u b l i s h e d Ph.D. d i s s e r t a t i o n . M ichigan S tate University. 152 p p . M ajor, J. 1951. A f u n c t i o n a l , f a c t o r i a l approach ecology. Ecology 32:392-412. to p la n t M a r t i n , H. M. 1955. Map o f t h e s u r f a c e f o r m a t i o n s o f t h e s o u th e r n p e n in s u la o f Michigan. Michigan D epartm ent of C o n s e r v a t i o n , G e o l o g i c a l S u r v e y D i v i s i o n P u b l . 49. M cC une, B., a n d J . fo rest layers 62:1196-1204. A. A n t o s . 1981. C orrelations i n t h e Swan V a l l e y , M o n ta n a . betw een E cology M c N a u g h t o n , S. J . 1984. S e re n g e ti g ra s s la n d ecology: the r o l e o f com posite e n v iro n m e n ta l f a c t o r s and c o n tin g e n c y i n community o r g a n iz a tio n . E c o l . Mono. 5 3 : 2 9 1 - 3 2 0 . M u e lle r - Dombois, D. , a n d H. E l l e n b e r g . 1 9 7 4 . A i m s Methods o f V e g e t a t i o n Ecology. John Wiley and Sons. Y o r k , N. Y. 5 4 7 p . O s t l e , B. 1972. S t a t i s t i c s in P r e s s , Ames , I o w a . 522 p p . research. IowaS t a t e and New Univ. P astor, J., J . D. A b e r , C. A. M c C l a u g h e r t y a n d J . M. M elillo. 1984. Aboveground production and N and P c y c lin g along a nitrogen m ineralization gradient on Blackhawk I s la n d W isconsin. Ecology 65:256-268. P astor, J. a n d W. M. P o s t . 1986. Influence of c lim a te , s o il m oisture, and succession on f o r e s t carbon and n itro g en cycles. B iogeochem istry 2:3-27. Peet, R. K. a n d 0 . L. L o u c k s . 1977. A gradient an aly sis s o u th ern W isconsin f o r e s t s . Ecology 58:485-499. P i e l o u , E. C. 1984. In te rp retatio n of ecological John Wiley and Sons. New Y o r k . 263 p p . of data. 86 Fotzger, J . E. 1948. Lower M ichigan. 8:161-177. A p o lle n study in th e te n s io n zone of B utler U niversity B otanical S tudies P r e g i t z e r , K. s . a n d B. V. B a r n e s . 1982. The u s e o f g ro u n d f l o r a to in d ic a te edaphic f a c to r s in upland ecosystem s o f t h e McCormick E x p e r i m e n t a l F o r e s t , U pper M ic h i g a n . Can. J . o f F o r, Res. 12:661-672. P reg itzer, K. S., B. V. Barnes, and G. D. Lemme. 1983. R elationship of to p o g rap h y to s o i l s and vegetation in an Upper M ic h ig a n e c o s y s t e m . S o il Sci. S o c . Am. J . 4 7 : 1 1 7 - 1 2 3 . P r e g i t z e r , K. S. a n d B. V. B a r n e s . 1984. C l a s s i f i c a t i o n and c o m p ariso n of upland hardwood and c o n i f e r e c o s y ste m s o f t h e C y r u s H. M c C o r m i c k E x p e r i m e n t a l F o r e s t , Upper M ic h ig a n . Can. J , o f For. Res. 1 4 :3 6 2 -3 7 5 . Rowe, J . S. 1984. F o r e s t l a n d c l a s s i f i c a t i o n : l i m i t a t i o n s o f th e use of v e g e ta tio n . pp. 1 3 2-1 4 7. In (J. G. B o c k h e i m Ed. ) P r o c e e d i n g s o f t h e symposium f o r f o r e s t land classificatio n : E xperience, problem s, and p e r s p e c t i v e s . M arch 1 8 -2 0 ,1 9 8 4 . D ept, o f S o i l S c i e n c e , U n i v e r s i t y o f W isc o n sin . Madison, W isc o n sin . S pies, T . A. a n d B. V. B a r n e s . 1 9 8 5 a . A m u ltifacto r c l a s s i f i c a t i o n o f n o r th e rn hardw ood and c o n i f e r eco sy ste m s of the S y lv an ia R e c re a tio n Area, Upper P e n i n s u l a , M ic h ig a n . Can. J. o f For. Res. 1 5 :9 4 9 -9 6 0 . S p i e s , T . A. a n d B. V. B a r n e s . 1985b. E cological sp ecies groups o f upland n o rth e rn hardw ood-hem lock forest eco sy stem s of the S y lv an ia R e c re a tio n Area, Upper P e n in s u la , M ichigan. Can. J . o f F o r . R es. 1 5 : 9 6 1 - 9 7 2 . S t r a h l e r , A. H. 1978. B i n a r y d i s c r i m i n a n t a n a l y s i s : a new m ethod for in v e stig a tin g sp ecies-en v iro n m en t relationships. Ecology 59:578-580. Zak, D. R., K. S . P r e g i t 2 e r , a n d G. E . H o s t . 1986. Landscape v a r i a t io n in n itro g e n m i n e r a li z a ti o n and n itrific a tio n . In P r e s s. Can. J. of For. Res. (December issue). Chapter 4 UPLAND FOREST ECOSYSTEMS OF NORTHWESTERN LOWER MICHIGAN ABSTRACT Nine upland com binations L andform , forest of ecosystem s physiography, d efin ed configuration, as provided were ground parent the identified flo ra, and m a te ria ls in itial based + on so ils. su rface stratificatio n of the landscape. E ig h ty sam ple s ta n d s were randomly lo c a t e d w i t h i n landform s, and collected tab u lar at analyses landform s, used so il to define ground flora Sam ple stands were divisive using and as tabularizes by algorithm . groups the ecosystem p r o p e rtie s . sim ilar com position to flo ra were properties. and species facilitate classificatio n . ground were i n t e g r a t e d 87 the Soils were W ithin Ground f l o r a species This paper d e s c rib e s salient p ro p erties. a component of solum and deep s o i l w ith and ground f l o r a clustered data M ultivariate stands upland ecosystem s. and p h y sio g ra p h ic d ata ecosystem s. overstory cluster flo ris tic in s o i l s classificatio n both to into ecological of and w ith in each stand. were used variatio n were a g g reg ated use flo ristic, four p o in ts p h y sio grap hic were so il, using a characterized Soil, flo ristic, to d e f in e la n d sc a p e nine ecosystem s and 88 INTRODUCTION In tellig en t understanding structure, the of the potential optim al specific forest management land base: productivity, silv icu ltu ral management requires thorough forest com position and physical lim itations, and prescription objectives. a An for a site effective given means c a te g o riz in g or c la s s if y in g a heterogeneous lan dscap e prerequisite Many classificatio n purpose: a few. and to developing system s cover types, has S tates et (Barnes ecosystem Bockheim European recently al. integrating E cosystem ecosystem units, relatively homogeneous characteristic of ecological (1985): so il and ecosystem or to are the U nited and p r o b le m s review ed classific atio n soils, ecosystem s. com position and v e g e t a t i o n E cosystem s and landscape p o sitio n s. land are structure in involves to define units that of occur A working h y p o th e sis l a n d c l a s s i f i c a t i o n h a s b een s t a t e d by S p i e s "...th at strong vegetation units com binations of introduced system s this proponents ecological The a d v a n t a g e s classificatio n physiography, of for surveys a re but and w eak n esses, been 1982). (1984). and s o i l system is a management s t r a t e g y . been d eveloped h a b ita t types, The classificatio n in have Each s y s t e m h a s s t r e n g t h s c ritic s. w ith an e f f e c t i v e of (site relatio nships exist, units) enabling w hich th e s e components." among p h y s i o g r a p h y , the are recognition of ch aracteristic eg The fo llo w in g c la ssific a tio n northw estern stu d y of the Lower d e sc rib e s M an istee M ichigan. S tate U niversity. r e p r e s e n t one o f the classificatio n , project w ill The study sim ple field com positional, phases be u nits landscape Forest developed Forest in as S ervice The e c o s y s te m s d e s c r i b e d in the refined ecosystem s w hich occur positions. They as defined be criteria, and possess stru c tu ra l, and fu n ctio n al and the the here rep eated ly may a here the developm ent of successively N onetheless, sp atial characteristic using and continues. represent initial e c o lo g ic a l N ational c o o p e r a t i v e a g r e e m e n t b e t w e e n t h e U. 5 . M ichigan an in identified ch aracteristic ecosystem properties. N ine upland ch aracteristic flo ra of each forest ecosystem s physiography, ecosystem follow ing sections; {beginning page and are were iden tified. overstory, described tabularized so ils and ground narratively in T ables The 4.1 in the to 4.4 108). ECOSYSTEM DESCRIPTIONS Ecosystem 1 - Pin oak-black oak/Descham psia The p i n o a k - b l a c k o a k / D e s c h a m p s i a e c o s y s t e m o c c u r s on outwash p la in s . although Slopes drained; Physiography is kettleholes are g enerally and low < 5%. level to s lig h tly inland The sand so ils dunes are c o a r s e and medium s a n d s a c c o u n t f o r undulating, may o c c u r . ex cessiv ely 70% o f t h e total 90 particle w eight a t A-Bw-C. Because of litte r are h orizon are grasses The S oil The t y p i c a l low o v e r s t o r y low. thickness. profusion 50 cm. pH organic low , a v e ra g in g of is fine a roots prim ary horizons are absent. basal areas, A horizons and horizon sequence range net from carbon very horizon pale is textural typical about of levels Carex p e n s y lv a n ic a cause of coarse 60-65 A horizon so il series is and cm. stratificatio n or inputs of cm in in the 4 . 0 a n d 2%, r e s p e c t i v e l y . B horizons are brown O- 5-10 medium The s a n d s banding G rayling in sand, various developm ent. yellow ish A The and E brown t o brown c o a r s e a n d m e d i u m s a n d s a b o u t 50 cm i n t h i c k n e s s . are is C horizons sands; show no the top a sandy, depth to evidence 4.5 m. mixed, C of The frigid T ypic Udipsamment. The overstory is d o m i n a t e d by u p l a n d p i n having a combined av erage b a s a l a r e a o f contributes approxim ately 7 . 7 m2 / h a . uncommon i n t h e o v e r s t o r y . presum ably because of Stocking the x e ric and b lack 8 . 9 m2/ h a . Re d m a p l e W hite oak is extrem ely i s low on t h e s e s i t e s , conditions. A fter fire, ecosystem i s c o m m o n l y d o m i n a t e d by j a c k p i n e . basal area in pin oak-black oak/Deschampsia ecosystem m2/ h a , the annual increm ent increm ent black average is oaks a re w h ite oak i s are 1.3 the standing is 1.6 m ^/ha/yr; t/ha/yr. 48 a n d 5 1 , 44. The s i t e low est of a l l volum e The is 105 mean site respectively. is m2/ h a . annual indices this The a v e r a g e The s i t e 17.5 Mean biom ass for i n d i c e s and mean a n n u a l ecosystem s. oak, red and index for increm ent 91 Stem d ensities averaging common occur, natural Jack this cm and size size w hite class, classes pines are averaging are low , the most 11 and 12 Black c h e r r y and w h ite oak f r e q u e n t l y (D ijaotr^on m o r_bo £3u m ) , in a s t a t e of decline. in fe c te d w ith black knot and the There w hite is oaks little are vigorous reproduction. The ground flora pe n s y lv a n ic a pensylvanica consists and its oak/D escham psia floor, of a near-continuous Descham psia can be found in a l l a tta in s forest 2-9 but black ch erry is u su ally typically but in respectively. disease Ca r e x the 61 s t e m s / h a . species stem s/ha in maxim um of where A rctostaphylos f 1exuos a . Ca r ex the ecosystem s d e scrib ed , coverage ecosystem , mat of it in pin covers uva-ursi, oak-black 50-100% o f Comptonia the pereqrina a n d A n d r o p o q o n q e r a r d i i a r e c o mmo n . G a u l t h e r i a p r o c u m b e n s a n d Vaccinium ecosystem s flo ra anqustifolium as w ell. are also common, The p r e d o m i n a n t but feature occur of i s th e den se sedge and g r a s s mat c a r p e t i n g in the other ground the f o r e s t floor. The p i n o a k - b l a c k the black oak-w hite oak/Descham psia p la in s oak/V accinium plains, h av in g a more open canopy, a l a w n - l i k e the presence of Comptonia peregrina u r s i , an d t h e l a c k o f an E h o r i z o n . are sim ilar to but differ by sedge and g r a s s and A rctostaphylos layer, uva- 92 Ecosystem 2 The Black o a k -w h ite oak/V accinium p l a i n s black oak-w hite outw ash sands. although S lopes drained; total is Physiography is kettleholes are and generally coarse particle low and The respectively. may o c c u r . or banding R ubicon sands (sandy, typical soil Black 9.7 and 26 cm i n m2/ h a absent m 2/ h a the to tal floor. standing m3/ h a / y r ; site 46, in the m ixed, basal from com pletely closed, forest S o i l pH low, a v e r a g in g 0 - 5 cm i n usually thickness. thickness. C horizons frigid is evidence of te x tu r a l t o p 4 . 5 m. The G r a y l i n g and E n tic H aplorthods) are is area, the o v e r s to r y , respectively. the overstory. basal area. Red m aple Red o a k c o n t r i b u t e s The basal 1 2 9 m3 / h a . area is forest for red, black, 21.6 Mean a n n u a l mean a n n u a l b i o m a s s i n c r e m e n t respectively. averaging canopy is allo w in g m oderate l i g h t p e n e t r a t i o n to Average volume indices thickness. series. typically to little the sequence depth to the C h o riz o n and w h ite oak d o m in a te 9.0 70% o f L ight gray E h o rizo n s a re exhibit stratificatio n for the A horizon are average The s o i l s ex cessiv ely The t y p i c a l h o r i z o n a r e v e r y p a l e brow n medium s a n d s ; 6 0 - 7 0 cm. are account p r e s e n t b u t d i s c o n t i n u o u s and range from T h e b r o w n Bs h o r i z o n s on sand dunes A h o r i z o n s a v e r a g e 5 cm i n in occur undulating, so ils sands 50 cm. plains to s li g h t l y inland medium and o rg a n ic carbon le v e ls a n d 2%, level < 3%. w eight a t O-A-E-Bs-C. 4.1 oak/V accinium is m2/ h a ; is 1.7 t / h a / y r . 53, 2.0 not the average increm ent and w h ite oaks a r e is 54, 1. 7 The and 93 The b l a c k understory frequent m aple averaging species, average occurred in ecosystem due oak-w hite to common t a l l The averaging 50% o f xeric 100 s t e m s / h a . 24 a n d rarely oak/V accinium 20 the shrub, 16 s t e m s / h a . stem s/ha, oak is the respectively, only th is in overstory, however, averaging m ost but Red m a p l e i n the an W hite p in e and red stands. conditions. V accinium W hite supports sam ple occurs site plains H am am elis possibly virginiana is a 20 s t e m s / h a * group ty p ifie s th is ecosystem . P redom inant s p e c ie s a r e Vaccinium an g u stifo liu m , G aylussacia b accata, G aultheria procum bens, Me l a mp y r u m l i n e a r e , D icranum p o l y s e t u m. T rientalis can ad en se a r e u s u a ll y a b s e n t from flo ra is sim ilar A rctostaphylos absent, and black red m aple h ills oak/V accinium p lains oak/D escham psia in the Ecosystem seedlings are oak/V accinium of the soil and ecosystem s. d iffer ecosystem th e V accinium group, horizon ecosystem . 1, and Descham psia oak/D escham psia oak/V accinium cover Ma i a n t h e m u m The g ro u n d except that flexuosa present. are less Sassafras from E c o sy s te m 1, o c c u r s h e r e . oak-w hite oak-black decreased of this and u v a - u r s i and Comptonia p e r e q r i n a a r e t y p i c a l l y , absent The Pin that Carex p e n s y lv a n ic a abundant, albidutn to borealis and from plains is sim ilar the black oak-w hite The black oak -w h ite pin oak-black the by h a v i n g a m o r e c l o s e d Deschampsia group, increased canopy, cover and the p re s e n c e of a d is c o n tin u o u s profile. to of E 94 Ecosystem 3 - Black o a k - w h ite oak/V accinium h i l l s Th e b l a c k o a k - w h i t e o a k / V a c c i n i u m h i l l s e c o s y s t e m o c c u r s on both ice variable, contact ranging topography; hills and m oraines. from l o c a l l y slopes range from level Physiography is to s te e p k a m e - k e ttle 2-30%. The s o i l s are w ell- drained sands; c o a r s e a n d m e d i u m s a n d s a c c o u n t f o r 70% o f t h e total weight. p article E-Bs-C. Th e t y p i c a l horizon sequence A h o r i z o n s a v e r a g e 5 cm i n t h i c k n e s s . 2%, respectively. averaging Light grey E h o riz o n s p r e s e n t a n d r a n g e f r o m 2 - 1 1 cm i n t h i c k n e s s . horizons may be Average depth to series is present and average the C horizon is 22 are in and The typical 6 . B m2 / h a w ith Ecosystem basal 2, area, averaging not com pletely closed, forest floor. s ta n d in g volume m3 / h a / y r ; site 47, so il Rubicon sand. u n c o mmo n i n t h e o v e r s t o r y . the usually thickness. B la c k and w h i t e oak d o m in a te th e o v e r s t o r y , 7.9 3.9 Brown s p o d i c cm 66 c m . 0-A- S o i l pH a n d o r g a n ic carbon l e v e l s of the A h o riz o n a r e low, and is respectively. 5. 1 m2/ h a . Th e f o r e s t 156 m3 / h a . for red, is canopy is a llo w in g moderate l i g h t p e n e tr a tio n to is 21.6 Mean a n n u a l mean a n n u a l b i o m a s s i n c r e m e n t i s indices Red m a p l e Red o a k i s m o r e a b u n d a n t c o m p a r e d Average b a s a l a r e a is averaging m2/ h a ; average increm ent is 1. 7 t / h a / y r . b lack , and w hite oaks a re 61, 2.0 The 56, and respectively. Re d m a p l e i s averaging the 60 s t e m s / h a . m o s t common s p e c i e s in the understory, Hamamelis v i r q i n i a n a is a c o mmo n {16 95 stem s/ha). White p in e is uncommon, with an a v e r a g e density o£ 9 s t e m s / h a . The ground Pteridium flora is and Ham am elis usu ally absent. ch aracterized groups. Va c c i n i um by the V accinium , The T r i e n t a l i 3 a n q u s t i f o l i um, group is P terid iu m a q u i l i n i u m , S a s s a f r a s a l b i d u m , and Carex p e n s y l v a n i c a a r e the most conspicuous ground f l o r a elem en ts. C om position of a l l s t r u c t u r a l la y e rs in the black o ak w hite oak/Vaccinium hills is virtually o a k -w h ite oak/V accinium p la in s ; The differ red oak-w hite o a k /T rie n ta lis absence of the w ith black differences are p rim arily physiographic. from black identical oak-w hite r e d oak and t h e T r i e n t a l i s oak/V accinium h ills ecosystem by s p e c ie s group. E c o s y s t e m 4 - Red o a k - w h i t e o a k / T r i e n t a l i s The red o ak -w h ite o a k /T r ie n ta l is ecosystem weakly banded sands of both ic e c o n ta c t h i l l s Physiography is undulating kam e-kettle 12%. to The s o i l s sands account typical cm i n variable, are for ranging from topography. w ell drained 66% o f t h e sands; total thickness* to stro n g ly range from 0- c o a r s e and medium p article h o r i z o n seq u e n c e i s O-A-E-Bs-C. on and m o ra in e s. level Slopes occurs w eight. The A horizons average 4 S o i l pH a n d o r g a n i c c a r b o n l e v e l s of h o r i z o n a r e l o w , a v e r a g i n g 4 . 0 a n d 2%, r e s p e c t i v e l y . the A Light g r e y E h o r i z o n s a r e u s u a l l y p r e s e n t a n d r a n g e f r o m 2 - 1 2 cm i n thickness. Brown s p o d i c h o r i z o n s may b e p r e s e n t and r a n g e f r o m 3 - 6 7 cm i n thickness. Average depth to th e C h o riz o n is 96 66 era. The red ch aracterized sandy clay. mixed, by s u b s o i l The frigid, The oaks, overstory averaging even and 3), though it average basal 49, is is by and in red, 5.2 the absent found to a sandy, in this w hite, m2/ h a and area, w ith a mean overstory ecosystem s sm aller size ecosystem is black basal (Ecosystems a s an o v e r s t o r y 2 3 . 4 m2 / h a . species, classes. 161 Me a n a n n u a l The m3 / h a ; the increm ent is mean a n n u a l b i o m a s s i n c r e m e n t i s 2.0 t / h a / y r . for black, m aple and red, layer is This common. of 7-14 stem s, and w h ite oaks a re of b o r e a lis , A ralia are in from V accinium group dom inate species this forms large, 3-5 m t a l l . 62, 60, the also advance respectively. A ( 32 s t e m s / h a ) spreading clumps There is v i r t u a l l y no ecosystem . nudicaulis in the of Hamamelis v i r g i n i a n a the T r i e n t a l i s group, common ecosystem pine 63 a n d 25 s t e m s / h a , typically reproduction S pecies w hite averaging strong understory pine Rubicon, is respectively. regeneration, oak is In th e d r i e r volume o f indices Red also 7.8, m aple area m3/ h a / y r ; and series dom inated may b e standing The s i t e is 10.6, red ecosystem Haplorthod. 2 . 4 m2/ h a . average 2.2 so il Re d m a p l e o c c u r s basal area of 2, o ak/T rientaiis t e x t u r a l b an d in g of sandy loam typical Entic respectively. 1, oak-w hite including T r ie n ta iis , Viburnum a c e r i f o l i u m , and w h i t e th is ecosystem , d rier occur and ecosystem s. in th is separate M embers ecosystem , of as th is the does 97 Maianthemum canadense. Red m a p l e a n d r e d o a k s e e d l i n g s a r e abundant. the The r e d o a k - w h i t e o a k / T r i e n t a l i s e c o s y s t e m i s sim ilar black oak-w hite oak-w hite oak/V iburnum oak/V accinium ecosystem s. This and ecosystem from the by t h e p r e s e n c e o f the b lack o ak -w h ite oak/V accinium h ills T rientalis canadense, strongly group, Maianthemum developed eluvial (E) a n d red differs to and by h a v i n g more spodic (Bs) so il horizons. Both o f t h e s e s y s t e m s ma y h a v e H a m a m e l i s v i r q i n i a n a a s a t a l l shrub. Red m a p l e is present w hite oak/T rientalis w hite oak/Vaccinium in the o v e rsto ry of ecosystem hills. ecosystem has stronger Vi b u r num acerifolium but The absent red banding to the ecosystem . Ecosystem 5 - Red o a k - w h i t e o a k / V i b u r n u m red oak-w hite banded ice-co n tact or ranges from from 0-20%. level The s o i l s drained sands, account for horizon horizon are grey E Soil low, horizons m orainal highly are the is O-A-E-Bs-C. averaging are cover h ills, to occurs and on slopes range m oderately w ell- s ilt w eight. carbon 4 . 1 a n d 2%, of oak-w hite and The A horizons average organic present oak/Viburnum red sands; p article oak- Local physiography w ell-drained total pH a n d hills. loam y black ecosystem dissected occasionally 8% o f sequence thickness. to oak/V iburnum red oak- increased oak/T rientalis The the oak-w hite and an com pared in the levels ty p ical 3 . 5 cm i n of respectively. range from clay 5-14 the A Light cm in 98 thickness. B r o w n s p o d i c h o r i z o n s a v e r a g e 34 cm i n th e dom inant to the sandy te x tu re of the B horizon C horizon clay or is sandy have a cu m u lativ e surface. mixed, frigid, tim ber of oaks bands by ty p ically 4.5 m o f the of this is and ecosystem , Re d m a p l e a n d w h i t e o a k a r e 3 . 4 a n d 3 . 9 m2 / h a , ecosystem 35.2 increm ent is respectively. supports m3/ h a . 3.0 one of Average is the basal 3 . 1 m3/ h a / y r ; t/ha/yr. The site respectively. th e most s i g n i f i c a n t advanced r e g e n e r a ti o n , Hamamelis understory. underlain is Rubicon s a n d r a sandy, overstory volumes, a v e r a g i n g 47 s t e m s / h a . w hite The r e d a n d w h i t e o a k s a r e 75 a n d 6 0 , Red m a p l e densities are Mean a n n u a l i n c r e m e n t biom ass for Average d ep th 15 cm w i t h i n series oak/Viburnum i s 214 m2/ h a . indices over the averaging average annual so ils bands. 1 7 . 4 m2/ h a b a s a l a r e a . The r e d o a k - w h i t e mean loam thickness dom inates im portant, area Surface sand. G ntic Haplorthod. oak averaging highest clay The t y p i c a l s o i l Red also 72 cm. is thickness; w hite Beech and The u n d e r s t o r y a l s o virqiniana pine are sugar (40 su p p o rts a high stem s/ha). v irtu ally Red absent maple o c c a s i o n a l l y and from the occur in the component of the understory. Viburnum ground in flora. height) acerifo liu m less acerifolium It is abundant also and an im portant found as a m edium -sized form ing is is larg e found clonal in ty p ically patches. Ecosystem < 15 shrub cm 4, but ta ll. (40-60 cm Vi b u r n u m it is much Tr i e n t a l i s 99 borealis , Ma i a n t h e m u m c a n a d e n s e a n d A r a l i a n u d i c a u l i s a r e common, as are elem ents of and beech The the seedlings red oak-w hite red ecosystem ecosystem s. oak/T rientalis ecosystem acerifolium . ecosystem also red red o ak/T rientalis ecosystem . ecosystem sandy maple the sim ilar red oak-w hite supports oak-w hite than oak/Viburnum red oakclones horizons, red as red o a k -re d of oak/V iburnum T rientalis the to o ak-red large The re d o a k - w h i t e subsurface loamy s u b s u r f a c e h o r iz o n s o f and frequency of n d i . f . 1^0 r u m is banding than th e and The has a higher Tt illiu m has The substratum V iburnum and ecosystem o a k /T rie n ta lis has heavier Sugar o c c a sio n a lly observed. oak/Viburnum o ak -w h ite maple/Desmodium w hite are th e Vaccinium group. borealis o ak -w h ite oak/V iburnum opposed to the maple/Desmodium ecosystem . E c o s y s t e m 6 - Red o a k The red oak-red m oraines and ice very stee p , drained the to tal sequence thickness. are sands p article is m aple/D esm odium contact slopes fine red maple/Desmodium features. Physiography r a n g i n g fro m 0-55%. to loams; silt w eight a t O-A-E-Bs-C. ecosystem The s o i l s and c l a y a c c o u n t 50 c m . The The A h o r iz o n s f r o m 6 - 6 2 cm i n thickness. level to are w ell- for 25% o f horizon average 4 cm i n 4 . 3 a n d 2%, r e s p e c t i v e l y . r a n g e f r o m 3 - 7 cm i n t h i c k n e s s . is on typical S o i l pH a n d o r g a n i c c a r b o n l e v e l s low , a v e ra g in g occurs of the A horizon E horizons D a r k b r o w n Bs h o r i z o n s Bh s h o r i z o n s a r e a b s e n t . range Average 100 depth t o t h e C h o r i z o n i s 93 cm* bands of sandy c lay thickness series of are Rosseau 15 cm Blue M ontcalm loam in Lake to The {sandy, is area. averaging 5.5 overstory, supports stands basal the an m3/ h a / y r ; is 26.2 mean ind ices E utric The and 1 6 . 3 m2 / h a to the of red m aple is W hite oak is of 5.3 higher also common m2/ h a . T his hardwood volumes o verstory w ill is the in the The a v e r a g e is 3.4 i s 3.1 t / h a / y r . oaks are serai lik ely in found 245 m3/ h a . w hite here, ecosystem Mean a n n u a l i n c r e m e n t and com m unity H aplorthod), H aplorthod). averaging red A lfic so il G l o s s o b o r a l f ), annual biomass in crem en t resp ectiv ely . su ccessio n al frigid T ypical w ith red oak a v e ra g in g m2/ h a . for a cum ulative 4 . 5 m. sim ilar standing sam pled to d a te , w ith t y p i f i e d by oak-w hite average greatest is red area m2/ h a . w ith area s ite Basal 1 to Entic quite oak/V iburnum eco sy stem , basal clay, mixed m ixed mixed f r i g i d overstory sandy the upper (coarse-loam y (sandy, The s u b s o i l 85 and co m prise The and 67, the late n o rth ern hardwoods. This ecosystem Cornua f l o r i d a ta ll shrubs understory. has form Tree a d istinctive regeneration components understory These structural is sparse, layer of spreading layer in the d o m i n a t e d by r e d S u g a r m a p l e a n d b e e c h may b e p r e s e n t {< 10 s t e m s / h a ) . D esm odium sp p . a r e flo ra. prom inent and H am am elis v i r q i n i a n a . m a p l e a t 17 s t e m s / h a . as m inor a Cornus f l o r l d a the dom inant s p e c ie s is im p o rtan t as both of the ground a ground flo ra 101 and of understory both species. sugar seedlings, The g r o u n d f l o r a m aple and oak contains ecosystem s: elem ents sugar m aple M aianthemum c a n a d e n s e , V i o l a p u b e s c e n a , T r i e n t a l i s bo re a lis , and rep resents Gaul t h e r i a a p ro c um bens. su ccessio n al sere of T his com m unity oak ecosystem an p r o g r e s s i n g tow ard a n o r th e r n hardwood clim a x community. The the red red o a k - re d maple/Desmodium eco sy stem oak-w hite ecosystem florida has a d is tin c tiv e and ecosystem subsoil Desmodium tex tu res of The slopes form ed Slopes range red oak-red textures, form er maple/Desmodium as opposed to the sandy m aple-red oak/M aianthemum in ecosystem s system Wexford occurs Co. The a m osaic o f d en d ritic 0-17%. soils from sands. in this The The typical are horizon o f a Bhs h o r i z o n of the Interlobate plains. In the prim arily on the average organic carbon le v e ls of 6 cm i n of to m oderately drainage w ell sequence is is The thickness. the A horizon are low, steep medium O-A-E-Bhs- diagnostic m oraine. this patterns. drained o f a h e av y l a y e r o f oak and b e e c h l i t t e r . A horizons ecosystem topography c h a r a c t e r i z e d by l e v e l The p r e s e n c e consists brown sugar Moraine i s complex, loamy the red o a k -w h ite oak/Viburnum ecosystem . N ational Forest system upland The on unbanded m o ra in e s and sandy t i l l Interlobate Bs-C. but to Unbanded s u g a r m a p l e - r e d o a k /M a ia n th e m u m unbanded M anistee and the ecosystem , sim ilar ground f l o r a c o n ta in in g Cornua spp. h as loamy s u b s o i l Ecosystem 7 - occurs oak/V iburnum is for all 0 horizon Very d a rk Soil pH a n d averaging 4.3 102 a n d 3%, respectively. 17 cm i n cm. thickness. T extures of Average depth to banding is ecosystem frigid, is The are is sands or 75 cm. ty p ical range from loam y S ubsoil so il 2-23 sands. textural series for th is K alkaska sand, unbanded p h ase, a sandy, m ixed, m2/ h a ash, basal each canopy of this ecosystem s, dom inant 1.2 ecosystem volum e 1 9 0 m3 / h a . m2/ h a is Red basal closed, sugar m aple, m aple w ith 1.9, and area. forest little light three the northern is 2.7 t / h a / y r . and b lack of this The s i t e 76, the hardwood ecosystem 3.0 m3/ h a / y r ; cherry are and The of is the black The e c o s y s t e m c a r r i e s Average b a s a l a re a increm ent 3.3, floor. Mean a n n u a l i n c r e m e n t biom ass members o f a p p r o x i m a t e l y 7 . 2 m2/ h a b a s a l respectively. to the f o r e s t 2 3 . 9 m2/ h a . are beech and basswood c o n t r i b u t e area, standing red oak, red oak co n tribute penetration low est and both c o n tr ib u tin g White annual B horizons the C h o rizo n m aple, cherry is the range from 12- Typic H aplorthod. o verstory, 1.7 Dark b r o w n Bhs h o r i z o n s absent. Sugar area. Light gray E h o rizo n s mean indices 65, and for 69, respectively. This (153 ecosystem stem s/ha). reproduction understory, alm ost a l l has the V irtu ally (131 s t e m s / h a ) . averaging stands 14 in th is highest all of Beech stem s/ha. ecosystem. understory this is was also Red o a k stem density sugar present m aple in was a b s e n t the from 103 The has a unbanded depauperate abundance ground ground is of flo ra, In the ecosystem . Lycopodium dewe^ana. S pecies of claytonii, may o c c u r infrequently. flo o r The lacks is unbanded its occurs on N ational M oraine banded Forest in com plex, m aple-red characterized sands. the 0 - 1 5 %. to including plantaqinea, canopy spring in closure, ephem erals virginiana. P terid iu m in the fo re s t. ecosystem the banded sugar m apleis otherw ise sim ilar in system The red oak/M aianthemum oak/M aianthem um ecosystem , po sitio n s. occurs topography by l e v e l form ed in a m osaic of d e n d r itic range from belong and C arex oak/M aianthemum but m aple-red Co . the and s o i l p r o p e r t i e s . m orainal W exford present and Carex and C la y to n ia this of a distinguishing group, prior w ith ecosystem , sugar species nature lucidulum , canadense, Banded s u g a r m ap le - banded is O sm orhiza carpeted ground f lo r a Ecosystem 8 The the s u b s u rfa c e banding found oak/M aianthemum of it which a r e In s p rin g , sugar both sparse that o ccu p ies open or gap a re a s the term s the of ecosystem Maianthemum c a n a d e n s e , P o l y g o n a tu m Viola E rythronium americanum aquilinium fact, term s o b scu ru m and Osmorhiza forest in Species t h e M aianthemum g ro u p : the oak/M aianthemum so c h a r a c t e r is t i c biflorurn, red m aple-red and coverage. flora feature to sugar In on of the the M anistee Interlobate th is system is to m oderately s te e p slo p es drainage p a tte rn s . S lopes The s o i l s a r e w e l l - d r a i n e d medium and f i n e The t y p i c a l h o r iz o n s e q u e n c e i s O -A -E -B hs-B s-C . The 104 presence of ecosystem s cm i n a of Bhs the thickness. ho rizo n are Average 24 c m; from horizon Interlobate low , thickness 5 - 8 cm. m). The averaging of the a typical sandy, overstory, light and average of is forest floo r. banded sites E cosystem is on ranges ecosystem , the is from 7- ranges 79 cm . section K alkaska dom inant and The (depths sand, > banded w ith little volum e the average 28.2 m2/ h a . red oak, 8.0 members m2 / h a of basal is sim ilar volum e The f o r e s t area, light canopy of penetration su bstantially but is unbanded 250 sites of m3 / h a . A verage 3.6 t / h a / y r . and b la c k the on increm ent maple, this higher increm ent is Red to Mean a n n u a l sugar the 3 . 8 m2 / h a b a s a l a r e a . uncommon. the for 72 a n d 7 8 , Like is are 12.8 mean a n n u a l b i o m a s s indices control series for ash are than the A resp ectiv ely . E horizon the m aple Standing 7; area m3/ h a / y r ; sugar closed, 7 t h e p r e s e n c e o f sandy loam Beech c o n t r i b u t e s w hite ecosystem is cherry 3.7 The are respectively. unbanded the oak/M aianthem um beech. 3 %, upland f r i g i d Typic H aplorthod. accounting m aple and 86, and gray factor is so il mixed, respectively. site 4.1 loam bands b elow Red oak basal a ll A horizons Average d ep th to th e C h o riz o n clay phase, M oraine. for a v e r a g e t h i c k n e s s o f t h e d a r k b r o w n Bhs h o r i z o n sandy 1.2 diagnostic S o i l pH a n d o r g a n i c c a r b o n l e v e l s im portant d iscrim in atin g to is sugar understory ecosystem of m aple-red the banded oak/M aianthem um sugar m aple-red i s d o m i n a t e d by s u g a r m a p l e a n d Stem d e n s i t i e s o f t h e s e s p e c i e s a r e low er, how ever, 105 49 a n d 26 s t e m s / h a , the understory; The red oak, ground sparse, w hite flo ra oak/M aianthem um quite respectively. of and t y p i f i e d ash the ecosystem , Red m a p l e i s uncom m on i n as and basswood banded in the are sugar absent. m aple-red unbanded phase, is by t h e Maianthemum g r o u p . The banded s u g a r m a p l e - r e d o ak /M a ia n th e m u m e c o s y s t e m , sim ilar to ecosystem , sandy the but clay unbanded is loam sugar m aple-red separated by t h e bands depths at presence > 1 is oak/M aianthem um of m. sandy The loam banded to and u n b an d ed s u g a r m a p l e - r e d o ak/M a ia nthe m um e c o s y s t e m s c a n n o t be distinguished features presence on t h e b a s i s must of be used of ground f l o r a . to th e Osmorhiza separate species basswood/Osmorhiza ecosystem both the Subsoil these group separates in textural ecosystem s. the th is sugar The m aple- ecosystem from banded and unbanded s u g a r m a p l e - r e d oak/M aianthem um ecosystem s. Ecosystem 9 The deep sugar banded Forest system Co* The characterized basswood/Osmorhiza maple-basswood/Osm orhiza sites th is W exford Sugar maple - on m oraines. occurs on to are w ell-drained clay account for The t y p i c a l the M anistee X nterlobate this slopes system formed in occurs M oraine is to sandy cla y total p article sequence is in com plex, a m osaic of loam s; s ilt w eight a t O-A-E-Bhs-Bs-C. on N ational S l o p e s r a n g e f ro m 0-33%. sands 10% o f t h e horizon of steep d e n d ritic drainage p a tte rn s. so ils the topography by l e v e l In ecosystem The and 50 cm . The p r e s e n c e 106 o f a Bhs h o r i z o n the Interlobate is diagnostic M oraine. ecosystem has averaging 9 cm i n horizon is 9 to lev els averaging thick sugar very dark thickness. cm; Average d epth carbon a The for a l l upland ecosystem s of average greyish brown thickness of the Bhs h o r i z o n thickness is 5 cm. is relativ e ly 79 cm. high th is frigid, Typic ash and 11.9 red contribute high. volum e of m3/ h a . co n tribute basal black are cherry stem s/ha. 3.4 area, and 2.9 carries area 86, 75, 28.4 mean a n n u a l and 81, maple d o m in a te s O strya is indices for m2 / h a basal O verstory d iv e r s ity the highest is m2 / h a . biom ass red oak, is standing averaging Mean 264 annual increm ent sugar m aple, is and respectively. the advance virqiniana a v e r a g e o f 10 s t e m s / h a . stem s/ha). also 4.2 m ^ / h a / y r ; The s i t e basswood, White the n o rth e rn hardwoods e co sy stem s, is m ixed, b la c k c h e r r y and red m aple c o l l e c t i v e l y ecosystem 4*2 t / h a / y r . Sugar a sandy, basal area, respectively. 1 . 9 m2 / h a b a s a l a r e a . Average increm ent The t y p i c a l d o m i n a t e d by s u g a r m a p le and 6 . 5 m2/ h a Beech, about T his is and oak respectively. banded phase, loam Haplorthod. The o v e r s t o r y averaging ecosystem , Thick sandy c la y t o c l a y l o a m b a n d s a r e p r e s e n t a t d e p t h s > 1 m. is K alkaska sand, E S o i l pH a n d o r g a n i c in 5 . 4 a n d 4%, r e s p e c t i v e l y . so il series A horizon, Average the C horizon are m aple-bassw ood/O sm orhiza regeneration, usually Beech o c c u rs at present, w ith 83 w ith an low d e n s i t i e s (10 107 The sugar m aple-bassw ood/O sm orhiza ecosystem c h a r a c t e r i z e d by a d i v e r s e and a b u n d a n t g r o u n d f l o r a * of the species are sp e c ific outside it. The O s m o rh iz a to the ecosystem species clay to n ii, V iola canadense , claytonii uniform forest is Picentra is spp., more throughout the stand. a near-continuous Erythronium w ildflow er species. the Of t h e s e s p e c i e s , the c a rp e t o f Allium americanum, The g r o u n d f l o r a r e a d i l y - i d e n t i f i e d groups banded ecosystem s, and unbanded in sugar characteristic of this spring is uniq u e, and one of the forest. A thick is sim ilar oak/M aianthemum ground f lo r a ecosystem . the tricoccum , and many o t h e r m aple-red but has a d is tin c tiv e s p e c i e s of th e O sm orhiza group. also Osmorhiza In s p rin g , The s u g a r m a p l e - b a s s w o o d / O s m o r h i z a e c o s y s t e m to Mi t e l l a th e most p ro m in e n t, having a h ig h co v erag e and d istribution floor group in c lu d in g Osmorhiza A l l i u m t r i c o c c u m, d i p h y l l a , and Carex p l a n t a g i n e a . Many and r a r e l y occur com prises a d iv e rs e o f ep h em ero id s and h e rb a c e o u s p e r e n n i a l s , is typified by (9 cm) A h o r i z o n i s Table 4 .1 S elected overstory c h a r a c te r istic s o f upland fo r e st ecosystems in northwestern lower Michigan. Ecosystem V ariab le Age Basal a re a (sq n/lta) 1 tr e e s /h a V olm e (cu m/lta) HAI (cu m /ha/yr) Biomass (t/lia) HABI ( t/h a /y r) 1 (n - 10) 69 17.5 100 105 1.6 85 1.3 (2) (3.1) (27) (25) (0.3) (6) (0.1) S pecies basal area (stj m/ha) Ouercus v e lu tin a 8 .9 (1.5) 0 . a lia 7 .7 (1.7) Q. rubra Acer rutirun A. saccharin T i l i a americana F raxinus americana S ite in d ic e s Ouercus v e lu tin a Q. a lb a Q. rubra Acer sacchartsn 51 (6) 44 (6) 2 (n = 12) 3 (n = 10) 4 (n = 11) 5 (n = 7) 6 (n = 7) 7 (n = 7) 8 (n -= 6) 9 (n = 6) 77 21.6 114 129 1.7 122 1.7 79 2 1.6 98 156 2 133 1 .7 (3) (2.9) (26) (25) (0.4) (9) (0.2) 75 23.4 125 161 2 .2 151 2 (3) (2.4) (40) (40) (0.4) (8) (0.1) 70 26.4 104 214 3.1 208 3 73 26.2 82 245 3.4 225 3.1 63 23.9 126 190 3 172 2 .7 (2) (4.5) (35) (35) (0.4) (14) (0.2) 69 2B.2 117 250 3.7 249 3.6 64 28.4 115 264 4 .2 210 3 .3 7 .9 (2.0) 6 .8 (1.3) 5.1 (2.3) 5 .2 7 .8 10.6 2 .4 (1.3) (0.9) (1.8) (0.7) 3 .9 (0.8) 17.4 (2.2) 3 .4 (0.7) 7 .2 1.2 7.1 1.7 3.3 (3.5) (0.6) (2.4) (0.8) (1.1) 12.8 (3.8) (3) (2.4) (30) (38) (0.6) (7) (0.1) 9.7 (1.8) 9 (0.9) 54 (5) 46 (5) 53 (4) 56 (5) 47 (8) 61 (7) Mate: A ll v alu es a r e means (standard e rro r) * S i t e in d ic es may be overestim ated due to stump sp ro u tin g . 62 (8) 49 (7) 60 (6) (2) (3.4) (33) (39) (0.6) (8) (0.2) 60 (8) 75 (8) (3) (2.6) (33) (51) (0.5) (13) (0.1) 5.3 (2.3) 16.3 (3.3) 5.5 (0.9) 67 (B) 65 (7)* 76 (4)* 65 (6) (3) (2) (36) (33) (0.6) (7) (0.2) (3) (2.5) (19) (40) (0.6) (11) (0.2) 8 .0 (2.7) 1.1 (0.9) 0.2 (0.2) 11.9 0 . 6 ) 6 .5 (2.0) 3.4 (1.5) 86 (8)* 72 (1) 86 (7)* 75 (6) T able 4 .2 S e le c te d u n d ersto ry (stem s 1-9 an dbh) stem d e n s itie s o f upland f o r e s t ecosystem s in n o rth w estern Id v e r H ichigan. Ecosystem V a ria b le T o ta l 1 s te n s /h a 2 1 3 (n - IOJi (n - 12) (n = 10) 61 (9) t s ta r e /h a by s p e c ie s A cer rubroo 2 A. sa c c h a rin Amelanchier spp. 3 Com us f lo r i d a Fagus g ta n d if o lia Hamanelis v irg in ia n a 1 O strya v irg in ia n a P intis barfcsiana 11 12 P. E trcb u s Prunus s e r o tin a 11 14 Quercus a lb a Q. e l l i p s o i d a l i s 3 Q. ru b ra Q. v e lu tin a 2 S ic c a fra o albidum T i l i a am ericana (1) (4) (11) (2) (5) (1) (1) 5 (n - 7) 6 (n - 7) 7 (n - 7) 8 (n1 *■ 6) 9 (n - 6) 94 (17) 111 (19) 138 (19) 111 (24) 102 (20) 153 (35) 82 (17) 109 (33) 20 (10) 59 (17) 63 (11) 17 (4) 1 (1) 131 (40) 3 (2) 49 (14) 1 (1) 83 (24) 1 (0) 4 (2) 47 (11) 1 (1) 9 (4) 1 (1) 16 (4) 14 (5) 26 (10) 7 (3) 32 (10) 3 (1) 5 (5) 13 (5) (2) (1) 4 (n - 11) 20 (9) 24 5 16 1 1 2 4 (11) (2) (4) (1) (0) (1) (2) N ote: A ll v a lu e s a r e means (stan d a rd e r r o r ) 9 (6) 7 (3) 2 (1) 4 (2) 7 (3) 39 (23) 4 (4) 25 (16) 1 (1) 3 (2) 2 (1) 5 (4) 1 (1) 5 (3) 4 (2) 1 11 2 38 1 (1) (5) (1) (12) (0) 22 (17) 4 (4) 3 (3) 1 (1) 1 (1) Table 4.3 Mean tar* abundance of ground flora species in ecological species groups. Ecosystem Species Deschaupeia group DeschitipGia flexuosa Arctostapltylos uva-ursi Androtogon y era rd ii Cmptonia peregrins Cladina rangiferina Dicranun polysetmi (n =» 10) (n =: 12) (n =■ 10) (n *■ 11) (n =' 7) 1.0 0,6 1.9 0.2 1.2 0.2 (0.1) 0.4 (0.1) 0.2 (0.1) o .e (0.2) 0.3 (0.1) 0.3 (0.1) 0.6 (0.2) 0.1 (0.1) 0.6 (0.2) 0.1 (0.1) (0.4) {0.2) 10.4) (0.1) (0.3) (n = 7) - — (n =■ 7) (n = 6) *■ - (n = 6) *■ ' Vaceiniun group Melanpyrun lin e a re Gaylussacia to ccata Epigaca repens Vaccininn an y u stifo lin n Gault lie t i a procu&ens Leuootiryua glaucun 0.9 0.6 0,3 3.7 0.9 (0.2) (0.4) (0.2) (0.3) (0.3) “ 1.0 1.0 0.1 3.1 1.2 0.2 (0.2) (0.4) (0.0) (0.3) 10.3) (0.1) 0.7 1.7 0.3 2.9 1.1 0,1 (0.2) (0.5) (0.1) (0.3) (0.2) (0.1) 0.6 1.2 0.6 3.6 l.B 0,1 (0.1) (0.4) (0.2) (0.2) (0.3) (0.1) 0.1 0.3 0.1 2.2 1.3 0.1 (0.1) (0.3) (0.1) (0.4) (0.3) (0.1) 0.1 (0.1) 1.1 (0.4) 1.0 (0.3) 0.1 (0.0) _ 0.1 (0.1) - — * *- " Itamvuelis group llananelis virginiana S assafras albidum 0.2 (0.2) ” 1.2 (0.4) 2.2 (0.4) 1.6 (0.3) 2.5 (0.4) 2.3 (0.4) 3.3 (0.1) 1.9 (0.4) 2.5 (0.3) 2.7 (0.3) 2.1 (0.4) “ 0.1 (0.1) “ 0.4 (0.2) 0 .3 (0.1) 1.3 (0.4) 0.2 (0.2) 0.7 (0.4) 0.3 (0.3) 0.1 (0.1) 0.1 (0.1) _ _ ■ P teiid ilm grout) PteridiLtn ayuiliniim M elan d iier spp. Carex pensylvanica 2.9 (0.4) 1.4 (0.3) 6.1 (0.2) T rren tal in group f r i e n t a l i s b o re a lis A ster macroptiylltmi Desnodiua group Desmodiin spp. Viola luhesoera Cornus flo rid a Vitxirnun qroup Viburnum a c e tifo liu n A ralia nudicaulis Mcdeola virginiana H itcliella re |c n s __ - — 3.9 (0.5) 1.3 (0.1) 5.6 (0,3) 3.5 (0.2) 1.5 (0.2) 4.2 (0.5) 3.4 (0.3) 2.0 (0.3) 3.3 (0.2) 3.6 (0.6) 2.4 (0.3) 3.3 (0.7) 2.9 (0.3) 1.3 (0,3) 2.2 (0.5) 0.7 (0.5) 0.4 (0.2) 0.1 (0.1) _ 0.2 (0.1) 0.1 (0.1) 0.6 (0.2) 0.4 (0.1) 0.9 (0.4) 0.8 (0.2) 0.6 (0.2) 0.7 (0.2) 0.1 (0.1) 0.1 (0.1) - 0.1 (0.1) 0.1 (0.1) _ “ 0.9 (0.7) - 1.4 (0.5) o .e (0.3) 3.2 (1.1) 0.9 (0.2) 0.1 (0,1) 1.6 (0.3) 0.3 (0.1) - *" _ 0.1 (0.0) - - - - - - — 2.5 (0.6) 1.0 (0.4) - 0.2 (0.1) 3.3 0.9 0.4 0,6 (0.4) (0.3) (0.2) (0.3) — _ 0.1 (0.1) - - 0.3 (0.3) 0.5 (0.2) 0.3 (0.1) 1.1 0.2 0.1 0.3 (0.5) (0.1) (0.1) (0.1) Hute: A ll v alu es are m ans (standard erro r). Ranks < 2.0 represent tra c e percent coverage ( < lt). . Ranks 2 2.0 can be converted to percent coverage by th e formula: t coverage - {rank*(-19.0)M (rank ^*3,9) r 24. _ 0.4 (0.2) 0.4 (0.2) o .e £0.3) 1.3 (0.3) - 0.1 |0.1) Table 4 .3 - continued page 2 Eoosystau S pecies KaianUtonun group Kaiantlitxun canadense Epifagus v irg in ia n a Polygoratirn b i f lo r i n Lycopcdium lu cid u lu n ta te x deweyana Lycopodiun otectirimi Carex pedunculata Solidago c a e s ia Pry opt e r is sp in u lcsa O m orliiza uroup Ocmoihiza c la y to n ii A diant ud pedatun. Hi t e l l a d ip b y lla T ia r e lla c o r d jf o lia A lliu n tric o ccu n D epatica a c u tilo b a U vularia p e r f o lia ta Actaea a lb a Botryctiiun v irg in ia n a Caul ophyll un th a l ic tr o id e s Carex p la n ta g ire a v io la canadense = 10) (n = 12) (n = 10) (n - 11) (n ’* 7) (n == 7) (n i = 7) (n -= 6) (n = 6) ** “ * C.3 (0.1) 0.1 (0.1) * 1.2 (0.2) *0.1 (0.1) 0.1 (0.1) 0.1 10.1) — 0.9 (0.41 0.4 (0.2) 0.1 (0.0) 0.1 (0.1) 1.7 (0.3) 0.1 (0.1) 1 .0 (0.3) 0.5 (0.2) 0 .3 (0.3) 0.5 (0.2) 0.4 10.3) 0.3 (0.2) 1.2 0.2 0.7 0.3 1.6 (0.3) 0.9 (0.3) 0.6 (0.4) 0.4 (0.2) - • - _ * - - - — — • 0.1 (0.1) 0.1 (0.0) 0.2 (0.1) 0.3 (0.2) 0,2 (0.1) 0.1 (0.1) 0.2 (0.1) 0.1 (0.1) 0.1 (0.1) 0.3 (0.1) 0.1 (0.1) 0.4 (0.2) 0.2 (0.1) 0 .2 (0.1) — — 0.4 0.1 0.2 0.1 (0.2) (0.1) (0,3) (0.1) (0.2) (0.1) (0.1) (0.1) Mote: A ll v a lu e s a r e means (standard e rro r} . Cants < 2.0 re p re se n t tr a c e p ercen t coverage { < lt) . Ranks > 2.0 can be co n v erted t o p ercen t coverage by th e form ula: I coverage = (rank*(-19.0)) +(rank *3-9) +24. 3,0 0 .6 1 .0 0.9 1.4 0.4 1.1 0.4 o .e 0.9 1.2 1.3 (0.6) (0.2) (0.4) (0.3) (0.6) (0.2) (0.4) (0.2) (0.2) (0.3) (0.3) (0.3) Tabic 4.4 S elected s o i l c h a r a c te r istic s o f upland fo rest ecosystans in northwestern lower H ich i^ n . Ecosystem 4 (n = 11) 3 s 2 (n = 12) 5 (n = 7) 6 (n *= 7) in = 7) 8 (n = 6) 9 (n = 6) 4 7 0 34 4 5 0 28 6 14 10 42 7 13 5 49 9 9 5 28 7 1 1 (n = 10) U *— V ariable iriz o n th ic k n e ss (cm) Al E Hi'S Bs 7 0 0 14 aboratory an a ly ses % Organic carbon (0-10 cm) 2.1 4 .0 pH (0 - 10 cm) 72 I c s + ms (45 - 55 an) 5 t s i + c l (45 - 55 an) Mean w eighted diam eter (im>) 0.37 (45 - 55 cm) (2) (0) (0) (5) 5 3 0 26 l.B (0.1) (0.1) 4.1 (5) 70 (0.5) 6 (0.02) 0.35 Mote; A ll v alues a r e means [standard e rro r) (2) (1) (0) (0) (0.2) (0.1) (2) (0.5) (0.1) 5 6 0 23 1.8 3.9 67 4 0.34 (2) (2) (0) (S) (0.1) (0.1) (3) (0.5) (0.1) 4 6 0 26 2.1 4 .0 63 5 0.32 (1) (2) (0) (8) (0.2) 1.7 4 .2 (0) 55 (2) (0.5) 9 (0.01) 0.31 (1) (3) (0) (14) (0.2) 2.4 4 .3 (0.1) (7) 41 24 (2) (0.03) 0.24 (2) (2) (0) (11) (0.2) 2 .6 (0.1) 4 .2 (6) 61 (6) 8 (0.03) 0.31 (2) (6) (4) (17) (0.3) l.B 4 .2 (0.1) 56 (6) (2) 6 (0.02) 0.30 (3) (6) (2) (22) (0.2) 4.1 (0.2) 5.4 55 (3) 9 (1) (0.01) 0.30 (4) (4) (2) (13) (0.6) (0.1) (6) (1.5) (0.01) 113 LITERATURE CITED B a r n e s , B. V . , K. S. P r e g i t z e r , T. A. S p i e s , a n d V. H, Spooner. 1982. E c o lo g i c a l f o r e s t s i t e c l a s s i f i c a t i o n . J. of For. 80:493-498. B ockheim , J. 1984. Forest land classificatio n : e x p erien ces, problem s, p e rs p e c tiv e s . P roceedings of a symposium h e l d a t t h e U n i v e r s i t y o f W i s c o n s i n on March 1 8 - 2 0 , 1984. 276 pp. S pies, T. A. a n d B, V. B a r n e s . 1 9 8 5 . A m u ltifacto r c l a s s i f i c a t i o n of n o r th e rn hardw ood and c o n i f e r eco sy stem s of the S ylvania R e c re a tio n Area, Upper P e n in s u la , M ichigan. Can. J . o f F o r . R e s . 1 5 : 9 4 9 - 9 6 0 . Chapter 5 LANDFORM-MEDIATED DIFFERENCES I N SUCCESSIONAL PATHWAYS AMONG UPLAND FOREST ECOSYSTEMS I N NORTHWESTERN LOWER MICHIGAN ABSTRACT Seedling current and overstory sapling d en sities com position northw estern lower M ichigan pathw ays. The patterns strongly related glacial landform s. dom inated by seedlings (4913 layer to oak, of m aple red upland study of forest potential sapling typically have relativ ely that apparent state d rift landform s, high seldom exhibited (48 currently den sities move into relatively stem s/ha). recruitm ent ecosystem s or regeneration of of of oak saplings the high M orainal diverse n o rth ern of D ifferences into effects sapling of any species exhibited m aple was an the p o t e n t i a l for among in f i r e history of relatively showed than these ab ilitie s supporting other densities usually com petitive o v ersto ries, 114 red overstory currently hardw ood recruitm ent the ice- in to d iffe re n c e s on landform s, the were in oak O ak-dom inated any s p e c i e s ; sap lin g s may b e a t t r i b u t a b l e species. potential and decline. site-dependent in w ere O a k - d o m in a te d e c o s y s t e m s on h i l l y sap lin g s absent, stands change e c o s y s t e m s on e x t r e m e l y w e l l d r a i n e d o u t w a s h p l a i n s sparse w ith successional com positional G lacio flu v ial (10 3 t e m s / h a ) . stratified to 30 com pared t o p o g r a p h i c a n d e d a p h i c d i f f e r e n c e s among stem s/ha) contact in were sugar l i t t l e maple. 115 G lacial landform s com positional nutrient in change availability, and sp e c ie s northw estern by Lower influencing M ichigan so il and h i s t o r i c a l p a t t e r n s establishm ent. direct m oisture and of disturbance INTRODUCTION Many oak developing other forests of understories shade-tolerant in com position result of decreased species (Lorim er however, of explained is com position. forests to more across a ll or parent We red site a this m aple as a site-d ep en d en t relatio n sh ip s lack in and clear among these understanding, characteristics were p o i n t - s p e c i f i c : follow ed in example, tolerant play M cNaughton over the the or fire factors form ation ecosystem patterns of at p artially , (1985) com position tim e. sp atial is S till pattern s conversion com m unities community a role (1984) topography, and and 1984, (1 9 8 4 ) a n d McCune a n d C o t t a m environm ental least Lorim er and w hich Rowe define developm ent. dynamics to th e should fo rest oak - topography com positional are and be everywhere in (1984) clim ate of to existing im pending in d i r e c t in g and of of oak c o v e r t y p e s ? Or d o e s v a r i a t i o n geolog y, L.) to document change in c o m p o sitio n over was m aterial change? frequency v ariatio n For 1976, are to p a tte r n s of com positional change a c ro ss studies stands S tates rubrum dom inance of com petitive Lorim er individual (A c e r (Johnson include fire term d a ta Their U nited Hypotheses proposed to e x p la in 1984). relate the landscape. used long m aple how d i f f e r e n c e s frequencies tim e. the red species change in eastern of HcCune and C o tta m 1985). differences the contend the p rim ary constrain If therefore that so il so, sp atial be related, dom inant e n v iro n m e n ta l factors 117 acting as selectiv e landscape fe a tu re s change in forces. to upland Our objective the apparent d ire c tio n oak ecosystem s of was to relate of com positional northw estern Lower M ichigan. Landform , topography, patterns strong plays of influence 1984). hilly topography), parent critical role in and su rficial co n tro llin g and thereby developm ent and s p e c ie s local exerts a com position In the u p lan d la n d s c a p e of n o r th w e s te r n the predom inant ice-contact and m aterials and d ra in a g e , on s o i l M ichigan, plains, a as insolation (Rowe 1 9 6 9 , Lower defined landform s stratified m oraines. are d rift level (kame O utwash p l a i n s outwash and are kettle ty p ically f o r m e d o f h i g h l y - s o r t e d medium s a n d w i t h low m o i s t u r e - h o l d i n g capacity* The pro po rtion s ice-contact of fin e sands, developed so il profiles, capacity. These hills fin er-tex tu red glaciofluvial from soil grow th. occur surface. of deep V ariation topography - may influence 1984). and either exert a patterns clay, have highly m oisture flo w till higher m ore underlain holding b y " b a n d s 11 o f (F lint 1971) or the v e lo c ity of m e ltw a te r varying nonpedogenic parent h ills greater Hannah and in and som etim es w ith thickness Zahner tex tu ral m aterial significant e s t a b l i s h m e n t and g row th. also s ilt sedim ent dep osited as The b an d s im portance are sedim ent varied. the and m o ra in a l (1970) bands and depth discuss to forest com position influence on the and species P a r e n t m a t e r i a l a n d t o p o g r a p h y may of disturbance, such as fire (Grimm 118 It was expected successional individual so ils may further identifying of understory P regitzer U sing th is and variation in sapling d en sities landform and e c o s y ste m be used to better and d ir e c tio n trees the of to im portant 1984, approach, we levels, understand By "landscape (Barnes e t Barnes able that sig n ifican tly this to al. further across seedling and at the both variation recruitm ent change a c ro ss by 1985a). and c o m p o s itio n potential so il, u n its derived and and t h a t of com positional oversto ry. landform , were structure vary the factors Spies and and define We h y p o t h e s i z e d w ould w ithin com position to able and in physiography land c l a s s i f i c a t i o n forest landscape. forest w ere Barnes ecological landform s* com binations ecologically 1982, upland we among com position variation influence ( Rowe 1 9 6 9 ) : in teg ratin g an however, flo ra, ecosystem s" o verstory vary ch aracteristic ground explain w ould landform s, recruitm ent and trends th at could patterns northw estern Lower M ichigan. MATERIALS AND METHODS S tratified overstory, understory, distributed in N ational F orest, included ranged random 30 was ground f lo r a upland forest used to and s o i l s stands in n o r t h w e s t e r n Lower M i c h ig a n . M anistee, from sam pling sam ple o f 120 p l o t s the M anistee The s t u d y W exford, Lake and Newaygo c o u n t i e s , 44°22'N , 86°15'W to 43°30'N , the 85°30'W . area and The 119 sam ple s tra tific a tio n was based on upland landform s ( l a n d f o r m s n o t i n f l u e n c e d by a p e r m a n e n t o r s e a s o n a l w a t e r t a b l e ) , and in c lu d e d outw ash p l a i n s , i c e - c o n t a c t h i l l s , m oraines. and Only w e l l - s t o c k e d s t a n d s , w ith at least m inim al evidence of thinning, firew ood cutting, w indthrow ) sam pling. Stands aspen (Populus Michx.) w ith greater grandidentata recent than was (M ustard 1983), Stands were logged M ichx. and m ost a n d some a f t e r allowed near and sta n d ages even-aged clearcutting we u s e d heavily us to (i.e. selected for 7 m2 b a s a l a r e a / h a were ex clu d ed from sam pling. M ichigan 1 ha in a r e a disturbance were and the and trem uloides Most o f this part turn the century of r a n g e d f r o m 60 t o probably burning. recruitm ent of 90 y e a r s . orig in ated The s e l e c t i o n study p o t e n t i a l in after criteria in stands w i t h s i m i l a r h i s t o r i e s and a g e s d i s t r i b u t e d a c r o s s a r e g i o n a l landscape. In each for stand, overstory, sampling. four 5 x 30 m p l o t s sapling, were randomly l o c a t e d seedling/ground flo ra, and so il S e e d l i n g a b u n d a n c e was d e t e r m i n e d by s t e m c o u n t s i n s i x 1 m2 f r a m e s s y s t e m a t i c a l l y l o c a t e d a l o n g t h e l o n g a x i s of each into plot two height size but 9 . 0 cm d b h , plot ( 2 4 m2 p e r classes: < 1 . 2 cm d b h . recommended f o r Seedlings < 30 cm i n S aplings, were sam pled u sin g ( 6 0 0 m2 p e r s t a n d ) . the area stand). height, defined stem c o u n ts This sample area evaluating were and separated > 30 as stem s in the cm i n 1.2 - 5 x 30 m is c o n s is te n t with oak a d v a n c e reproduction 120 suggested by Sander e t a l . calculated by s p e c i e s a s species occurred ecosystem . R elative frequency the percentage of stands relative The (1984). to the t o t a l overstory was in which a number o f s t a n d s i n an sam pled using a 10 {E nglish) p o in t sam ple a t th e c e n te r of each p l o t . total and m e rc h a n ta b le h e ig h t recorded for calculated types each tally according (Eyre to Beers and M ille r 1980) w ere Nomenclature fo llo w s L ittle because of velutina H ill) sim ilarities properties plot recorded sam ples Survey stands com binations of and 1984; Barnes black S taff to the USFS c o v e r each stand. exception black oak that, (Q u e r c u s (Q^ e l l i p s o i d a l i s oak. S oil pits 1975). For b r e v i t y , overstory dug to 150 cm o n e a c h In a d d itio n , 4 5 0 cm t o E. J . m orphological bucket record the auger depth Spies soil, and into and ecosystem s ground B arnes flora 1985a). and based ch aracteristic and Barnes was 1982; from w ritten ecological S pies those and of the c l a s s i f i c a t i o n in and Chapter subm itted on (Pregitzer D iag no stic of each ecosystem a re p re s e n te d names d i f f e r m anuscript classified in Table t h e f i v e e c o s y s t e m s a r e named f o r t h e i r and (P regitzer were landform , characteristics Ecosystem p i n oak for was bands. Sample version as were ex cav ated of with in appearance, were d e sc rib e d in s o i l (S oil texture (1979), were volum e (1966). determ in ed Lam.) a n d n o r t h e r n w ere M erchantable BAP Dbh a n d ( t o a 10 cm t o p d i a m e t e r ) tree. was existing species Barnes group 1985b). 4 because during (F eb ru ary 1986). an 5.1. this earlier A lso s in c e T able 5.1. Landform, s o i l , and v e g e ta tio n a l p ro p erties o f f i v e upland fo r e s t ecosystem s ccrrron in northwestern Lower Michigan. Overstory/ Species Group n (plots) Black oak-white oak/ VacciniUD 32 Mixed oak/ Trientalis 32 Mixed oak/ Viburnun Characteristic Ground Flora Landform Vacciniao aiwusti folium Gaultheria procunbens Carex Densvlvanica level outwash plains slopes < 5% Texture --------Soil------------------------Drainage Banding3 mediumsand ext rarely well - Trientalis borealis M£E fnacrophYilmi ice-contact drift slopes 5 - 30% medium sand to loamy fine sand well 24 viburnumacerifolium Aralia nudicaulis Cornus florida ice-contact drift slopes 5 - 15% medium sand to sandy loam well +/- Sugar maple-red oak/ Maianthowm 16 Maianthemum canadense Polvqonatum biflorum Lvcooodium lucidulum moraines slopes 5 - 20% medium sand well +/- Sugar maple-basswood/ pgiwrtuw 16 Osmorhiza clavtonii Viola canadense Mliuffi triflsssqm moraines slopes 5 - 35% mediumsand to sandy loam well 4 - no textural strata have textures finer than fine sand. 4 textural strata of sandy loam or finer present in the upper 450 an. +/- textural strata of sandy loam or finer nay be present or absent. - 122 this study counts, vary used summary a subset of the BO s t a n d s statistics for overstory for and understory and characteristics tests or sap lin g d e n s itie s were an aly zed a t analysis landform s of (outwash plains Ecosystem s and hilly landform s. Because ice o v e rsto ry level on contact in sp e c ie s seedlings t h e 1 m2 s a m p l e f r a m e , in drift) were com position between the second size class encountered th e two s i z e c l a s s e s o f s e e d l i n g s w ere combined in a l l were using a p ro te c te d F is h e r's T orrie t- g laciofluvial ( > 3 0 c m i n h e i g h t b u t < 1 . 2 cm d b h ) w e r e r a r e l y compared using e c o s y s t e m s on m o r a i n a l l a n d f o r m s because of extrem e d if f e r e n c e s these and the ecosystem variance. a n a ly z e d in d e p e n d e n tly from and ma y slig h tly . S eed lin g in seedling statistical analyses. Mon-zero LSD p r o c e d u r e means (Steel 1980). RESULTS AMD DISCUSSION O verstory The t h r e e contact would or be ecosystem s landform s red w hite oak-black considerable species (Q u e r c u s currently classified N orthern as oak alba occurred support White cover types 5.2). L.) in were the o verstories, oak-northern (Eyre 1980). red oak co v er relative On o u t w a s h on o u t w a s h a n d oak oak-black oak-northern variation (Table that type, iceand red oak W ithin the there was d o m i n a n c e among o v e r s t o r y plains, dom inant black and species, w hite and red oaks oak T able 5 .2 . O verstory com position o f f iv e upland f o r e s t e c o sy sta rs cannon in northw estern bower Michigan. E co sy stin s a r e ordered along an in c re a sin g m oisture g ra d ie n t, based on s o i l te x tu r e . M orainal la n d fo n rs tr e a te d s e p a r a te ly in s t a t i s t i c a l an a ly se s. Ecosystem 1. Mean age Mean b asal area (mVha) Mean dbh (cm) Mean m erchantable volume9 (nr/ha) —Basal a re a (m2/h a ) by sp e c ie s Black White oak oak Red oak Red n ap le Sugar maple Bass­ White wood a sh Beech G la c io flu v ia l landforms^ Rlack oak-w hite oak/VacCiniUn Mixed o a k /T rie n ta lis Mixed oak/Vibumun 75 a 71 a 73 a 21.1 a 23.0 ab 25.7 b 20 a 19 a 24 a 106.2 a 136.4 ab 161.2 b 11.2 a 4.6 b 3.4 b 7 .6 a 6 .0 a 6 .9 a 65 y 64 y 25.5 y 29.6 z 20 y 22 y 202.6 y 265.9 z 0 0 0 0 0 .5 a 9 .6 b 11.9 b 0 .5 a 1.6 a 3 .0 b 11.5 y 3.2 y 0 .9 0 0 0 0 0 0 0 8 .0 y 10.1 y 0.7 y 9.4 z 1.4 y 0 0 0 0 0.7 I I . Morainal landform s6 Sugar m aple-red oak/Mai ant henxm Sugar nuple-basswcod/Osmor h i za volume to a 10.2 an to p . Co lim n means follow ed by a d if f e r e n t l e t t e r {a,b) s ig n i f ic a n t ly d if f e r e n t (alpha=CL05). Col urn means fo llo w ed by a d if f e r e n t l e t t e r (y,z) s ig n i f ic a n t ly d if f e r e n t (alpha=0.Q5). 0 i*e y 1.4 y 1.4 y 124 ( Q u e r c u s r u b r a L.) a n d r e d m a p l e w e r e r a r e . proportions proportions more of red oak and red m aple o f b l a c k oak d e c r e a s e d a s m esic. C urtis (1959) The site reported relativ e in creased conditions sim ilar and became patterns of s p e c ie s rep lacem en t along m o istu re g r a d ie n ts in W isconsin. Red oak dom inated the o a k / Viburnum ecosystems ( T a b le 5.2). Total and total basal m ixed which oak/T r i e n t a l i s occurred basal area, area of o a k / Viburnum e c o s y s te m , on and m ixed ice-contact standing m erchantable red oak w ere h i g h e s t w h i c h o c c u r s on f i n e r in hills volume, th e m ixed textured or deep banded s o i l s . The s u g a r m a p l e - r e d o a k /H a i a n t h e m u m and s u g a r m a p l e b a s s w o o d / O sm orhiza e c o s y s t e m s t h a t o c c u r r e d on m o r a in e s would be classified as m aple-bassw ood N orthern cover red types oak, (Eyre Sugar 1980). m aple The or sugar Sugar m aple- b a s s wood/Osn^orJii^a e c o s y s t e m o c c u r r e d e x c l u s i v e l y on s i t e s w ith bands nonpedogenic generally tex tu ral b e l o w 1 5 0 cm. of sandy and deep sa n d s; in s t u d y o n l y s u g a r m a p l e - r e d o ak/M a i a n t h e m u m s t a n d s on unbanded sites w ere b a s s wood/Os_mo£hiza proportion nitrogen 1986). considered. ecosystem o f basswood in volum e (T able 5.2). al. loam , Th e s u g a r m a p l e - r e d o a k / M a i a n t h e m u m e c o s y s t e m o c c u r r e d on b o t h b a n d e d s i t e s this clay had a the overstory The sugar sig n ifican tly and g r e a t e r m aplehigher standing A r e l a t e d stu d y h as shown t h a t r a t e s of t u r n o v e r a r e more r a p id in t h i s ecosystem (Zak e t 125 N a t u r a l R e g e n e r a t i o n on G l a c i o f l u v i a l L a n d fo rm s W ithin ecosystem s num bers of differed number found on g l a c i o f l u v i a l seedlings of black sig n ifican tly corresponded in d irec t index (Table to of oak, red 5.3). available so il oak The differences landform s, in and red oak and re d m a p le s e e d l i n g s became more m esic. sprouts from system s. the Most o f so il oaks d e s c r i b e d by C o tta m oak openings of Numbers o f differ among significantly m ost (1949), the years. may landform s. higher stan d s, the approached or oak P rairie seedlings Red oak were a c t u a l l y w ell-established to the which were a b le w h i t e oak B lack w h ile numbers "seedlings" analogous W isconsin an increased as co n d itio n s th e oak be in texture, m o istu re. root c o lla rs of older, These m aple differences s e e d l i n g s were most numerous on o u tw a s h p l a i n s , of red the oak did "grubs" to p e r s is t P eninsula not seed lin g root in for the many sig n ifican tly d ensities were in th e mixed o a k /Viburnum e c o s y s te m . d en sities of exceeded a r t i f i c i a l natural oak In seed lin g s planting d e n sitie s (Johnson 1984) . Mean d e n s i t i e s low . the On o u t w a s h p l a i n s , overstory, 5.4). W hite averaging old of oak s a p lin g s , and cherry infected 16 in oak represented was one stem s/ha, an a p p a r e n t (P runus b lack oak, but knot of of m ost saplings abundant individuals decline. E h rl.) (D i b o t r y o n were ex trem ely the dom inant s p e c ie s 5% o f a l l the these state s erot ina w ith black only however, sap lin g s were (Table saplings, typically L ikew ise, w ere in black severely morbosum) and a p p a r e n t l y T able 5 .3 . Mean se e d lin g d e n s itie s foe f iv e upland f o re s t ecosystems coinon in n o rtliw estem Lower Michigan. Ecosystems a t e ordered along an in c reasin g cnoisture g ra d ie n t, based on s o i l te x tu re . M orainal landform s tr e a te d s e p a r a te ly in s t a t i s t i c a l a n a ly se s. Ecosystem I. Black oak White oak Red oak Red maple Sugar n ep le Beech White ash 0 0 476 0 21 0 0 0 253 2045 a 1539 a 447 a 260 a 625 a 468 a 9315 y 9161 y 461 y 546 y 1979 y 20976 z 1365 y 1194 y 0 0 Black cherry White pm e G la c io flu v ia l landfo rn ea Black oak-w hite oak/Vacciniw i Mixed o a k /T rie n ta lis Hixed oak/Viburrnri 5217 a 1159 b 309 b 2B20 a 1476 a 1696 a 274 a 4911 a 506 a ■1043B a 1293 b 29650 b I I . Morainal landforms13 Sugar nfiple-red oak/Maianthemum Sugar maple-basswood/Qsnorhiza 0 0 0 0 153 y 170 y 1535 0 a C olum means follow ed by a d if f e r e n t l e t t e r (a,b) s ig n i f ic a n t ly d if f e r e n t (alpiia-0.05; red oak alpti£i=0.1). b Coluan aeans follow ed by a d if f e r e n t l e t t e r (y,z) s ig n i f ic a n t ly d if f e r e n t (alpha-0.05). T able 5 .4 . Mean s a p lin g d e n s itie s fo r f iv e upland f o r e s t ecosystems conron in n o rtliu e ste m Ixjuer M ichigan. Ecosystems a r e ordered alo n g an in c re asin g m o istu re g ra d ie n t, based on s o i l te x tu r e . M orainal landform s tr e a te d s e p a r a te ly in s t a t i s t i c a l a n a ly se s. —mmtier o f stem s/ha Ecooystun 1. Black White oak oak Bed Bed oak maple Sugar n ap le Beech W hite ash w h ite p in e Bass­ wood Iro n - Wit cltwood liazel G la c io flu v ia l la n d fo m sa Black oak-w hite oak/Vaccinium Mixed o a k /fr r e n ta l is Mixed oak/Viburnum 4 0 0 16 a 4 b 1 b 0 0 0 0 1 a 3 a 1 a 14 a 66 b 31 ab 0 0 3 2 y 3 y 110 y 9fi y 0 0 11 0 0 0 16 a 26 a 5 a 0 0 0 15 y 4 y 0 0 0 0 1 0 0 0 4 13 a 25 a 16 a 11. Morainal landforms^ cr p Suaar n a p le -re d oak/Mai apt htntm Suaar maole-bosswood/Osmorhiza 4 0 Col urn means follo w ed by a d if f e r e n t l e t t e r (a,b) s ig n i f i c a n t l y d if f e r e n t (a lp h a s0.05). C olum means follo w ed by a d if f e r e n t l e t t e r (y,z) s ig n i f i c a n t l y d if f e r e n t ialpha=0.Q5). 1 y U y 0 7 128 incapable of seedling ( 25% reaching layer, t h e o v e r s t o r y . Red m a p l e , common i n was relativ e typically frequency). absent H alf from of the the sapling sam ple stro b u s layer stands outw ash plains had w hite pine (P i n u s sapling layer; the w hite pine were general, t h e a d v a n c e r e p r o d u c t i o n on o u t w a s h p l a i n s 20-30 the L.) years on in the old. In was q u i t e sparse. Higher o b s e rv e d on In the the relatively to tal of only number 25%. seed stan d s, (S a s s a fra s than and it accounted the 5% o f the and saplings. is the is likely that or in to in patchy the lack of tree L.), layer sassafras (A m e l a n c h i e r density. W hite accounted for and less m ixed o a k / T r i e n t a l i s shift shade-tolerant 26 frequency the shrub/sm all the 50% o f overstory th at related species, t h e s t a n d s on t h e s e g l a c i o f l u v i a l it the virginiana L o r i m e r ( 1 9 8 4 ) a n d McCune a n d C o t t a m ages, in was th e averaged serviceberry com positional other is 45% r e l a t i v e is pine lik ely tall and It m aple b u t had a r e l a t i v e dominant o v e rs to ry that m aple W hite (H a m a m e l i s for red were landform s. 66 s t e m s / h a was n o t fo u n d a l b i d u m N ees.), ecosystem red density), A w ell-developed M edic.) red oaks, averaging saplings. w itch-hazel ice-contact ecosystem , of w hite pine sa p lin g s sources. composed o f spp. of W hite p in e distribution more m e s ic species, (21% r e l a t i v e sam ple and g r e a t e r s p e c i e s d i v e r s i t y oak/T rie n ta lis understory stem s/ha any densities m ixed dom inant the stem toward species (1985) is dominance by reported by evident. As landform s a re o f s im ila r red m aple s a p li n g s and l a r g e r stem s 129 are excluded m oisture, or the outwash p l a i n s fire inadequate soil more frequency. productive fin er-tex tu red densities (3222 saplings (Table sapling due t o i n c r e a s e d c o m p e t i t i o n from more x e r o p h i l i c s p e c i e s , increased The on from in banded trees/ha; the grandifolia or 5.4). mixed so ils Table ironwood had 5.3), Red m a p l e understory E hrl.), o a k / Viburnum high but oak the stem s/ha). found seedling essentially was a g a i n (31 ecosystem no oak most common Beech (Fagus (O s t r y a v i r q i n i a n a K, Koch), and s u g a r m a p l e (A c e r s a c c h a r u m M a r s h . ) w e r e p r e s e n t a s s e e d l i n g s and o c c a s i o n a l l y as sapling layer, that in forests the saplings. While red maple d o m in ated the th e p r e s e n c e of beech and su g ar m aple s u g g e s t s absence of disturbance, m ixed o a k /V iburnum may e v e n t u a l l y s u p p o r t n o r t h e r n h a r d w o o d s . N a t u r a l R e g e n e r a t i o n on M o r a i n a l L a n d f o r m s On t h e m orainal landform s, the ecosystems on banded s i t e s had s i g n i f i c a n t l y due to the high numbers o f a m e r i c a n a L.) s e e d l i n g s occurred h ig h e r numbers of s e e d l i n g s first-y ear (Table that 5.3). w hite ash Red m a p l e (F r a x i n u s was a b s e n t fro m t h e s e e d l i n g l a y e r i n t h e s u g a r m a p l e - b a s s w o o d / O sm orhi za ecosystem, but was a b u n d a n t oak/M a ia n th e m u m ecosystem . in the This unbanded su g ar may be m aple-red related to seed s o u r c e , a s r e d m a p le was a m in o r c o m p o n e n t o f t h e o v e r s t o r y of the from 5.2). sugar m aple-red the sugar o a k / Maianthemum e c o s y s t e m m aple-bassw ood/Osm orhiza but absent ecosystem (Table C o m p e t i t i o n and low l i g h t l e v e l s a t t h e f o r e s t f l o o r 130 may a l s o exclude red m aple from b a s s w ood/Osm oirhiza seedlings {Table were the ecosystem . very abundant more m e s ic F irst-year in both sugar sugar m aple- sugar m aple maple ecosystem s 5.3). Sapling d e n s itie s w e r e mu c h h i g h e r o n m o r a i n a l l a n d f o r m s in com parison to g l a c i o f l u v i a l lan d fo rm s, w ith su g ar m aple predom inating (80% Beech, ironw ood, w itch-hazel and understory; relativ e d ensity). were m inor sap lin g layer. Basswood o v e r s to r y component of ecosystem , com ponents r e d m a p l e was uncommon { T a b l e 5 . 4 ). m ajor component of the s e e d lin g la y e r , (T i1ia layers. numbers of of the W hite a s h , was n o t fo u n d i n am ericana L .), a a the m ajor a b s e n t from b o th th e s e e d lin g and The t o t a l species oak, the sugar m ap le-b assw o o d /O sm orhiza was v i r t u a l l y sapling red did numbers o f s a p l i n g s and i n d i v i d u a l not differ significantly between the two sugar maple ecosystem s. P o t e n t i a l S u c c e s s i o n a l P a t t e r n s Among E c o s y s t e m s D ifferences in stem have been used to of com positional w indthrow , the study grow th sap lin g layer com position. com positional studied. {Peet and Loucks into expresses Several change classes 1977). and o th e r s t o c h a s t i c f a c t o r s saplings A schem atic among d i a m e t e r r a t e s of s u c c e s s io n and th e d i r e c t i o n change disease, of d en sities the the overstory, p o ten tial diagram present of these among influence the existing fu tu re landform -m ediated were W hile p attern s the patterns stan d of ecosystem s is presented 131 in Figure 5.1. cu rrently support ecosystem , but d o n o t know i f decline, The e x t r e m e l y the exhibit w ell-drained black little oak-w hite outw ash p la in s oak/V accin iu m p o t e n t i a l oak r e c r u i t m e n t . w h i t e oak s a p l i n g s , common b u t a p p a r e n t l y w i l l p e r s i s t on t h e s e s i t e s . L ikew ise, We in we d o n o t u n d e r s t a n d w hat f a c t o r s p r e c l u d e oak s e e d l i n g s fro m m oving into larger size classes. com position of fo re s ts Some stands dominant appear species of in th is to be the reverting C ottam Here, layer. sand was has forest pine, {Mustard the 1983). and in th e c o m p o sitio n a l change by L o r i m e r on hilly (1984) a n d McCun e a n d ice-contact species red maple abundance ice-contact h ills is fire the a b s e n t f r o m 75% o f landform. in f r e q u e n c y among shown t h a t variation and th e p re s e n c e of f i r e b r e a k s history, unclear. w hite dom inant The d i f f e r e n c e differences (1984) occurred m aple plains is such a s t h o s e d e s c r i b e d by Abrams maple d e s c rib e d (1985) red to Red m a p le s a p l i n g s w ere s a m p l e d on t h i s red fu ture landscape p o s itio n I n n o r t h w e s t e r n Lower M i c h i g a n , toward the t h e s e may b e c o m e m e a d o w s o r s a v a n n a s d o m i n a t e d (1985). the stands resu lt, o r no p o t e n t i a l r e c r u i t m e n t i n t h e b y C a r e x p e n s y l v a n i c a La m. , et al. a presettlem ent O ther sta n d s have l i t t l e sapling layer; As in of the level result soil of Grimm texture, in f l u e n c e on f i r e and t h e r e f o r e on s p e c i e s c o m p o s itio n . h a s a l s o been shown t o a landform s. topography, has a s tro n g sapling between perhaps these landform s. Topography i n f lu e n c e both r a t e s of s u c c e s s io n and 132 Figure 5.1. U n d ersto ry co m p o sitio n and p a t t e r n s of c o m p o s i t i o n a l c h a n g e r e l a t e d t o l a n d f o r m r SAF co v er ty p e (Eyre 1980) and e c o sy ste m . The f i g u r e sh o u ld not be i n t e r p r e t e d as i n d i c a t i v e of lin ear and d e t e r m in i s t i c succession al pathways; r a th e r , i t d e p ic ts e x is tin g landscape patterns. Surface Cautlpuratlaa level t i Beatty ______ UaOalatlsp (Oatwash Plains) Hilly (Stratified lea-Cm tact ■ Drift) Parent Materials Seclsty at JUterlcea Ferestars C m r Type Median S aal „Wlth Clay Is a n Subsurface Textural B aals White Oak■lack OakNerthera Red Oak Mixed Oak/. Trleatalfs T Apparent Fulura Cenpesilleaal Ckaapts White Pina- .le s s ol Oaks In Overstcry Ceevcrslne ta White Plea White Oak__ (Suppressed) .Persistence el While Oak Ferautlen at Oak-SaPpe Savenen Hal Maple - le ss el Daks la Dverstery Ceeverslea ta Ral Maple Nartkara Ral Oak MLxal Oak/. Vikurnun T Suyar_____ Maple ■Flat ar Learny S aalsHilly (Msrsisasj E cssysltn Black OakWhitt Oak/ Vacclalan Wall-Sartsl M alian Sand Wall-Sartal M alian Said 3 1 th laan y < Subsurface Taxtaral B aals Currant Oaailaaal Ualarstary Supar Maple■ •I Oak/ — M alaathenun ■Hal Maple — — Supar M a p le -- lo ss el Oaks la Dverstery Ceavsrslae te R sl Maple ar Herlhare Harlweeds less el R al Oak In Overstery Raplacenaal by Supar Maple ar Supar Maple ami Beach _ L Fias ar U a n y S aals Milk S aaly Clay la a n Subsurface Taxtural B u is -L T Suyar Maple- lasiWMd 1 Supar M sple-Basswetl/ Oanarhlza 1021 Basswaa|l I" Overstery s “*I r Maple-------Reptacaneat ky Suyar Maple er Supar Maple s a l Beech 134 fire frequency Knight i n Rocky M o u n ta in s u b a l p i n e f o r e s t s 1981)* The o u t w a s h p l a i n s h istorically uplands, burned more resu ltin g recruitm ent. It is in in the frequently than d ifferen t also possible study the red maple may b e a p o o r c o m p e t i t o r outw ash p la in s . not have the If th is is p o tential true, to may h a v e surrounding of species differences m a p l e d i s t r i b u t i o n may b e d u e t o d i f f e r e n c e s status; area pattern s that (Romme a n d in s it e in red m oisture on t h e more x e r i c t h e n r e d m a p l e may s i m p l y reach the overstory on xeric landform s. The m ixed o a k / V iburnum e c o s y ste m landform s w ith developed red recruitm ent species subsurface textural discontinuities m aple u n d e r s t o r i e s , of sugar m aple, characteristic of fo u n d on i c e - c o n t a c t but also beech, northern in this w ell- exhibited ironw ood, hardwoods. some and other is likely It t h a t n o rth e rn hardwoods a re th e dom inant l a t e species had successional landscape p o sitio n . The m o r a i n a l l a n d f o r m s w h ic h s u p p o r t t h e s u g a r m a p l e - r e d oak/M a ia n th e m u m ecosystem component of the overstory, prim ary replacem ent greatest basal these area forests. (11.5 the overstory and sugar Red m2/ h a ) A sim ilar to be l o s i n g w ith species. m aple-basswood/Osm orhiza from appear of trend any is ecosystem s, probable oak m aple overstory evident w ith replacem ent to be serai responses to has species in loss red being currently the of the oak the the in sugar basswood by s u g a r On m o r a i n a l l a n d f o r m s i n n o r t h e r n L o w e r M i c h i g a n , basswood appear the m aple. re d oak and cutting and 135 burning being of the early replaced by 1900s. sugar classical successional replacing less com position of cover northern red com ponents forests seem be plant some tren d in g again the related in factors, such as f i r e suppression of fire , explained Lower in in oak- significant depending sugar ex istin g type. on types m aple and s o il recruitm ent L andform , s o i l and in a c c o u n tin g among related the upland C ertainly to for oak other the p a tte rn s of field. successional disturbance regim es, successional by u n d e r s t a n d i n g questions theory and chance e v e n ts . c la ssical in p a rt the or M ichigan. are vary red oak co v er (1985) h ave r a i s e d of c lassical natural in recruitm ent landform variatio n history, Mc Cu n e a n d C o t t a m d ev iatio n s sim ilar. w ith m aple on overstory pathw ays m aple im portant fa c to rs northw estern in red to ecosystem recru itm ent observable red a species oak-black forests N orthern D ifferences forests changes fo llo w in g fu tu re W hite or depending successional applicability The may b e c o m e type. currently shade-tolerant 5.1). tow ard i n d ic a to r s w ere of beech, successional w hite pine and ecosystem ch aracteristics. that (Figure of eith e r p attern s are of species. suggest types oak dom inance, and are in c o m p o s itio n and p o t e n t i a l landform to pattern species t h e s e t w o e c o s y s t e m s ma y b e q u i t e ecosystem s w ithin m aple tolerant The d i f f e r e n c e s among These as to in the such face as the of the We h a v e s h o w n t h a t p attern s landscape factors can be w hich 136 co n tro l the p articu lar influence fire grow th and im portance are m oisture history. d istrib u tio n landform of and s o i l and n u tr ie n t a v a i l a b i l i t y Future work on landform and species. factors Of w hich and p o s s ib ly so il-m ed iated p a t t e r n s o f d i s t u r b a n c e a n d s u c c e s s i o n may h e l p u n d e r s t a n d im pending w id e - s p r e a d changes in community c o m p o s itio n i n Lake States. the 137 LITERATURE CITED A b r a m s , M. D . , D. G. S p r u g e l , a n d D. I , D i c k m a n n . 1985. M u l t i p l e s u c c e s s i o n a l p a th w a y s on r e c e n t l y d i s t u r b e d jack p in e s i t e s in M ichigan. F o r. E c o l. and Mgt, 1 0 : 3 1 48. B a r n e s , B. V . , K. S . P r e g i t z e r , T . A. S p i e s , a n d V. H. Spooner. 1982. E c o lo g i c a l f o r e s t s i t e c l a s s i f i c a t i o n . J . o f For. 80:493-498. B e e r s , T . W. a n d C. I . M i l l e r . 1966. H orizontal p o in t sam pling ta b le s . P u r d u e U n i v . Ag. E x p t . S t n . R e s . B u l l . 808. L a f a y e t t e , IN. C o t t a m , G, 1949. The p h y t o s o c i o l o g y o f an oak s o u th w e ste rn W isconsin. Ecology 30:271-287. C u r t i s , J . T. 1959. The v e g e t a t i o n o f W is c o n s in P r e s s , M adison. 657 pp. Eyre, woods W isconsin. in Univ. F . H. 1980. F o rest cover types of the U nited S ta te s and Canada. S o c . Am. F o r . P u b l . W a s h i n g t o n . 1 4 8 p p . F lint, 1971. and Sons. G la c ia l and Q u a te rn a ry G eology. New Y o r k . 892 p p . John W iley G r i m m , E, C. 1984. F i r e and o th e r f a c t o r s c o n t r o l l i n g th e b i g woods v e g e t a t i o n o f M in n e s o t a i n t h e m i d - n i n e t e e n t h century. E c o l . Mono, 5 4 : 2 9 1 - 3 1 1 . H a n n a h P. R. a n d R. Z a h n e r . 1970. N onpedogenetic te x tu r e bands in outw ash sands of M ichigan: t h e i r o r i g i n , and i n f l u e n c e on t r e e g r o w t h . S o i l . S c i . S o c . Am. P r o c . 34:134-136. J o h n s o n , P . S. 1976. Modal d e v e lo p m e n t o f r e g e n e r a t i o n in c l e a r c u t r e d oak s ta n d s i n t h e d r i f t l e s s a r e a . In Proc. C e n t r a l H a r d w o o d F o r e s t C o n f . I . ( J . S. F r a l i s h , G. T . W e a v e r , R. C. S c h l e s i n g e r , e d s ) , p 4 5 5 - 4 7 5 . South 111. U n i v . , C a r b o n d a l e , 111. J o h n s o n , p . S. 1984. R esponses o f p l a n t e d n o r t h e r n re d oak to th re e o v e rsto ry tre a tm e n ts. Can. J . o f F o r . R e s . 14:536-542. L ittle, E. L. 1979. C h e c k list of U nited S ta te s tr e e s ( n a t i v e a n d n a t u r a l i z e d ) . USDA F o r . S e r v . A g r . H a n d b o o k No . 5 4 1 . W a s h i n g t o n D. C. 3 7 5 p p . 138 L o r i m e r , C. R. 1984. The d e v e l o p m e n t o f t h e u n d e r s t o r y on n o r t h e a s t e r n oak f o r e s t s . For. 22. red m aple Sci. 30:3- M c C u n e , B. a n d G. C o t t a m . 1985. The s u c c e s s i o n a l s t a t u s o f a s o u t h e r n oak W i s c o n s i n woods. Ecology 6€:1270-1278. M c N a u g h t o n , S. J . 1984. S eren g eti g ra ssla n d ecology: the r o l e o f com posite e n v iro n m e n ta l f a c t o r s and c o n tin g e n c y in community o r g a n iz a tio n . E c o l . Mono. 5 3 : 2 9 1 - 3 2 0 . M u s t a r d , T. S . 1983. The v e g e t a t i o n o f t h e M a n i s t e e N a t i o n a l F o r e s t , O c e a n a a n d Mason c o u n t i e s , M i c h i g a n . 1. P h y s ic a l, h i s t o r i c a l , and e c o l o g i c a l a s p e c ts . Mich. Bot. 22:111-122. Peet, R. K. a n d 0 . L. L o u c k s . 1977. A gradient an aly sis so u th ern Wisconsin f o r e s t s . Ecology 58:485-499. of P r e g i t z e r , K. s . a n d B. V. B a r n e s * 1982. The u s e o f g r o u n d f lo r a to in d ic a te edaphic f a c to r s in upland ecosystem s o f t h e McCormick E x p e r i m e n t a l F o r e s t , Upper M ic h i g a n . Can. J . o f F o r . Res. 12:661-672. P r e g i t z e r , K. S. comparison th e Cyrus M ichigan. a n d B. V. B a r n e s . 1984. C l a s s i f i c a t i o n and of u pland hardwood and c o n i f e r e c o s y s te m s o f H. M c C o r m i c k E x p e r i m e n t a l F o r e s t , Upper Can. J . o f F o r . R es. 1 4 : 3 6 2 - 3 7 5 . R o m m e , W. R. a n d D. H. K n i g h t . 1981. F ir e fre q u e n c y and s u b alp in e f o r e s t succession along a topographic g r a d ie n t i n Wy omi n g. Ecology 62:319-326. Rowe , J . S . 1969. P la n t com m unity as a la n d s c a p e f e a t u r e . I n : E ssays in p l a n t geography and e c o lo g y , pp. 63-81, Symposium i n t e r r e s t r i a l p l a n t e c o l o g y , F r a n c i s X a v i e r U n i v e r s i t y , O ct. 1966. N o v a S c o t i a M u s e u m , H a l i f a x , N. S. Ro we , J . 5. 1984. Forestland c la s s if ic a tio n : l i m ita tio n s of the use of v eg etatio n . In J. Bockheim ed. F orest land c l a s s i f i c a t i o n : ex p erien ces, problem s, p e r s p e c tiv e s . P r o c e e d in g s o f a symposium h e ld a t th e U n i v e r s i t y o f W i s c o n s i n on Marc h 1 8 - 2 0 , 198 4. 276 p p . S a n d e r , I v a n , L., P. S. J o h n s o n , a n d R o b e r t R o g e r s . 1984, E v a lu a ti n g oak advance r e p r o d u c t i o n in th e M is s o u r i Ozarks. R e s . P a p . N C - 2 5 1 , USDA F o r . S e r v . N o r t h C e n t r a l F o r. Exp. S tn . 16 pp. S oil Survey S ta ff . 1975. S o i l Taxonomy. Cons. S erv. W a s h i n g t o n D.C. A H - 4 3 6 USDA S o i l 139 S pies, T . A. a n d B. V. B a r n e s . 1 9 8 5 a . A m u ltifacto r c l a s s i f i c a t i o n of n o rth e rn hardw ood and c o n if e r e co sy stem s of the S y lv an ia R e c re a tio n Area, Upper P e n in s u la , M ichigan. Can. J . o f F o r. R es. 1 5 :9 4 9 - 9 6 0 , S p i e 3 , T. A. a n d B. V. B a r n e s . 1985b. E cological species groups of upland n o rth e rn hardw ood-hem lock forest eco sy stem s of the S y lv an ia R e c re a tio n Area, Upper P e n in s u la , M ichigan. Can. J . o f F o r , Res. 1 5 :9 6 1 - 9 7 2 . S t e e l e , R . G. a n d J . H. T o r r i e . 1980. P r in c ip le s and procedures of statistics: a biom etrical approach. McGr aw H i l l . New Y o r k . 633 pp. Zak, D. R . , K. S . P r e g i t z e r , a n d G. E. H o s t . 1986. L andscape v a r i a t i o n in n itr o g e n m i n e r a l i z a t i o n and nitrification. I n P r e s s Can. J . o f F o r . R e s . (December issue). Chapter 6 THE BIOMASS RESPONSE OF GLACIAL LANDFORMS AND LANDSCAPE ECOSYSTEMS I N UPLAND FORESTS OF NORTHWESTERN LOWER MICHIGAN ABSTRACT T otal aboveground increm ent (MABI) were biom ass estim ated i n n o r th w e s t e r n lo w e r M ichigan. on allo m etric diam eter. regressions Ground f l o r a , develop eco lo g ical A nalysis of ecosystem s. w ith of for the (MABI=1.3 alm ost t/ha in related availab le in s o il textural Ground f l o r a so il landform un its study were m oisture on t/h a/y r) biom ass so il texture to to tal landform s and correlated for 40% o f the classificatio n approxim ately from as and th e p re s e n c e to 84 t/h a plains m esic appeared m oisture, of outw ash in and were used strnngly ranged xeric h eight patterns The e c o s y s t e m stands in stands (ecosystem s). accounted biom ass (M ABI=3.6 V ariation deep-lying to biom ass T otal p o sitio n s. differences using and p h y s io g r a p h y used in biom ass forest a higher proportion of v a ria tio n , t/ha/yr) to upland equations in biom ass. to tal. 250 75 annual in c r e m e n t among g l a c i a l D ifferences v ariatio n accounted 60% was mean Biomass e s t i m a t e s w ere based soils landscape p o sitio n : to tal for c la ssific a tio n variance b io m a s s and b io m a ss and to m o rain al be stro n g ly evidenced by or absence of bands. exhibited pattern ed v a ria tio n availability. 140 D etrended related to correspondence 141 analy sis was o rd in atio n availability* to ta l used to being an ground in d irect and exist p ro d u ctiv ity . MABI were determ ine species, of the m oisture regressed against if p red ictiv e between ground f l o r a c o m p o s itio n and s i t e The regression v ariatio n in biom ass ecosystem c lassific atio n . landscape, ground th e same f a c t o r s to flo ra reflectio n Stand o r d in a tio n s c o re s biom ass relationships ord in ate accounted ( r 2 =0.76) flora than e i t h e r In th is site more the to of landform reg io n al com position appears which c o n t r o l for be productivity. the or g laciated related to 142 INTRODUCTION Recent treat the patches d efine process-oriented lan d scap e as a m osaic (R isser that equilibrium even al. 1984). of of landscape relativ ely P atch dynam ics dynam ics. northern Borm ann and hardwood f o r e s t s behavior homogeneous collectively L ikens reach (1979) a steady in t o t a l aboveground biom ass a t a re g io n a l though the successional disturbance overshoot, value. et landscape proposed m odels component states at a th eo retically and eventually Shugart accum ulation (1984) using patches given may tim e. biom ass settle to observed in scale, various R egio n al-scale causes a be state to rise to an qu asi-eq u ilib riu m a sim ilar pattern gap m odels of a m o n o sp e c ie s of biom ass forest in a homogeneous environm ent. To m o d e l a scale at tem poral dynamics of a f o r e s t , which to o b s e rv e and d e s c r i b e te m p o ra l models of biom ass e q u ilib r iu m , related to sm aller i n an a r e a than the in a re a s question v ariatio n in the by f i r e patch of is In closely or gaps a re disturbed (Shugart developm ent behavior. patch s iz e patches characteristically disturbed arises landscapes: q uantify scale of disturbance: one m ust c h o o se much by w i n d t h r o w 1984). sp atial A sim ilar m odels of what s c a le of o b s e rv a tio n w i l l m ost a c c u r a t e l y the variable of in regional clim ate m icroclim ate and interest? physiography, p r o p e r tie s a t the s i t e level. and and in Landscapes exhibit hydrology, in edaphic flo ristic and local The s p a t i a l b i o m a s s r e s p o n s e 143 of landscapes disturbance, objective is fu rth er which o p e r a te s was to examine biom ass increm ent forests w ithin confounded stocastically spatial among upland a regional at by h isto ric a l all scales. differences oak and landscape of in Our biom ass northern and hardwood northw estern low er M ichigan. N orthw estern l o w e r M ic h ig a n was h e a v i l y l o g g e d a t tu rn of the century; fire. The o l d e s t Present-day scale in most a r e a s , forests forests represent a pulse should e x h ib it p a tte rn e d variation d o n o t e x c e e d 90 y e a r s . response We b e l i e v e to that sp a tia l variation; this th is large- response specifically that in b io m ass a c c u m u la tio n s h o u ld be r e l a t e d p r i m a r i l y to landform , factors l o g g i n g was f o l l o w e d by generally regional disturbance. the and s e c o n d a r i l y w ithin to v a r i a t io n in en vironm ental landform s. We s t u d i e d the landscape at two scales:the scale of g l a c i a l la n d f o r m s , w hich can be r e a d i l y mapped a t 1 :6 0 ,0 0 0 , and a t the 1:15,000 glacial scale to of local 1:20,000. ecosystem s, This study typically entailed mapped a t m apping the la n d f o r m s o f th e a r e a and d e v e l o p i n g an e c o l o g i c a l classificatio n system The w hich degree to v a ria b ility resolution in to d e fin e land c l a s s i f i c a t i o n the biom ass required biom ass accum ulation. to two classificatio n s should develop in d icate sp atially units. account the explicit for scale of m odels of 144 MATERIALS AND METHODS S tu d y a r e a and sam p le d e s ig n Eighty upland developm ent forest of an ecosystem Huron-M anistee N ational upland site s (44°22'N , M ason, Lake, and the random basis landform s occur an e x t e n s i v e occur as for terraces, g lacial contact hills, Ice contact N ational was u s e d , study Three area. w ith m ajor were ablation. resulted Outwash ranging topography deposited The s e c o n d from is the for the generally the presence of closed depressions, hilly, 6.1). landform the form 290 m extrem ely stream s landform , of ice- stagnant characterized plains. M oraines, geographically ex ten siv e features d e n d r itic drain ag e system s. w ithin the study area; the and P o r t Huron m o r a in e s . C harlotte m oraines were the ice. by and g e n e r a l l y has a f i n e r te x tu r e and h ig h e r degree of s o il developm ent than s o i l s outw ash of plains 207 t o by b r a i d e d disintegration W exford, plains from m ajor Forest types the stu d y a re a ; elevations and of (F igure They a r e composed o f w e l l - s o r t e d , sands during design throughout w ith system M ichigan stratificatio n . netw ork w ell-drained M anistee counties, the as p a rt 85°30'W ) i n M a n i s t e e , sam pling w ithin above sea le v e l. sampled S am ple s t a n d s w e r e l o c a t e d on the 43°30N, Newaygo were classificatio n Forest. throughout 86°15'W to A stratified as stands third m ajor landform , characterized of are by c o m p le x Three m o rain al sy stem s occur Interlobate, V alparaiso-C harlotte, The I n t e r l o b a t e a n d V a l p a r a i s o deposited penecontem poraneously, 145 F i g u r e 6*1* Hap o f s t u d y a r e a # landform s. showing p r e d o m i n a n t PHM - P o r t H u r o n M o r a i n e ILM - I n t e r l o b a t e M o r a i n e VCM - V a l p a r a i s o - C h a l o t t e M o r a i n e glacial 146 PHM Lake Michigan » i «■•* im f- iv & £=>, ‘O °V 3 a a J * A qQ ‘.ci 3 ‘ m £ I 25 km o 53; Moraines ;g§ Ice-Contact Topography SB: Outwash Plains Alluvial Plains Erosional Scarps Heads-of-Outwash 147 a p p r o x i m a t e l y 14,500 ybp, w h i l e th e P o r t Huron M o ra in e was deposited textures approxim ately 13,000 ybp (Lusch 1982). and d e g re e o f d ev elo p m en t a r e s i m i l a r ice-contact M oraine. topography, The development w ith the exception of the Interlo b ate and finest has texture the of highest the to those of Interlobate degree landforms E a c h m o r a i n e wa s c o n s i d e r e d a s e p a r a t e l a n d f o r m , Soil we of sampled. resulting fiv e c la s s e s of landform in the s t a t i s t i c a l a n a ly s is . im portant summarized d istinctive in Table ch aracteristics soil in The of each landform a re 6.1. Only w e l l - s t o c k e d s t a n d s w ith m in im a l e v id e n c e o f r e c e n t disturbance (windthrow, fo r sampling. aspen firewood c u ttin g , Stands w ith g r e a te r (P o p u l u s grandidentata etc.) were s e l e c t e d t h a n 7 m2 b a s a l a r e a / h a i n M ichx. M ichx.) w ere e x c lu d e d from s a m p lin g . and P;_ trem uloides Four sam ple p o in ts were random ly lo c a te d in each sta n d ; th e se p o in ts se rv e d as loci for sampling the overstory, s o i l and v e g e t a t i o n . F i e l d methods At e a c h p o i n t , (English) the o v ersto ry wedge p r is m . m erchantable height The s p e c i e s , ( t o a 10 cm t o p ) , l i v e t a l l y t r e e s > 9 cm d b h . two dominant species a t b re a st height follow L ittle at ( 1 . 3 7 m). (1979). w a s s a m p l e d u s i n g a 10 BAF dbh, total height and were re co rd ed fo r a l l In c re m e n t c o re s w ere ta k e n from each p o in t to determ ine average Common n a m e s o f o v e r s t o r y age species Table 6 .1 . Forest ca rp osition and s o i l p rop erties amooy g la c ia l landfonns o f nortliwestem buur-r Michigan. Landform Outwash P la in s Ore r sto ry D ensity (s tta ts /la ) T o ta l b a sa l a re a (sq n/ha) S pecies b a sa l a re a (sq in/ha) Quetcus v e lu tin a Quercus a lb a Quercus rilira Acer tubrian Acer sa c c h a rin T i l i a americana F tax in n s an e rica n a Prunus s c ro tin a Fagus g r a n d if o lia Ic e -c o n ta c t H ills P o rt Huron Moraine V alp d taiso C tm rlo tte Moraine I n te rlo b a te Moraine (n = 22) (n = 22) In = 10) (n = 6) (n - 16) 669 (19) 606 (62) 699 (84) 723 (41) 764 (46) 19.7 (0.7) 2 3.9 (0.B) 24.3 (1.1) 26.2 ( 1. 2) 27.4 11.3) 4 .9 5 .9 11.7 2.6 0 .0 0 .0 0 .0 0 .0 0 .0 1.5 6 .2 13.0 2.5 1.4 0 .0 0.1 0 .0 0.7 4 .6 4 .8 10.6 3 .6 0 .6 0 .0 0 .0 0 .0 1.1 9 .3 8 .4 1.1 0 .3 0 .0 0 .0 0 .0 0 .0 0 .0 (1.2) (0.9) (0.7) (0.2) (0. 0) (0. 0) (0. 0) (0 . 0) (0. 0) (1.2) (0.8) (1.9) (0. 8) (0. 0) (0. 0) (0. 0) (0. 0) (0. 0) (0.5) (1. 6) (2.0) (0. 8) (1.2) (0 . 0) (0. 1) (0. 0) (0.7) (2,9) (1.4) (3.2) (0.9) (0.4) (0. 0) (0 . 0) (0. 0) (0. 8) 0 .0 0 .0 5 .5 1.1 9 .2 3.6 2 .6 2.2 2.3 (0. 0) (0. 0) (2.0) (0. 6) (1.5) ( 1. 0) (0. 8) ( 1. 0) (0.6) S o ils bean w eighted p a r t i c l e diam eter (ran) (100 on depth) % cs+ne (100 an depth) 1 si-tc l (100 an depth) 0.366 (0. 01) 76 (2.9) 2 (0.37) Note: A ll valu es a r e means (stan d ard e rro r) 0.307 (0.018) 0.309 (0.014) 0.315 (0.021) 68 (4.6) 57 (4.7) 63 (5.4) 56 (4.8) 10 (2. 6) 5 (1.4) 8 (3.3) 7 11-8) 0.300 (0.015) 149 Ground flo ra rectangular vegetation p lot centered was sam pled over each using of the a 5 x four 30 m sam ple p o i n t s . The a v e r a g e p e r c e n t g ro u n d c o v e r w as d e t e r m i n e d u s i n g a m odified Dombois ground B raun-B lanquet and E llenberg flo ra species presence/absencu intervals along S oil using using p rofiles W ithin the of for subplot pits, content determ ined shaken solution was in for the two prior to fram es were described (S oil were changes recorded 50 laboratory hours in in so il 1 m S taff Sand and for 100 5% sodium slope shape each size texture. 50 a n d 1 0 0 c m p lot, and fractions and cm by w e t s i e v i n g ; a 5 m to Survey The p e r c e n t s l o p e , the species e v a l u a t e d t o a d e p t h o f 4.5 m described. from for located a t sam ples were tak en a t and a s p e c t topography frequencies the p lo t. record size analy sis. and p o s itio n , silt+ clay to (M ueller- recording procedures were a ls o auger so il for p a rtic le local long a x is descriptive bucket by 1 m2 f r e q u e n c y each scale R elative were d e te rm in e d The s u b p l o t s a 1974). six the standard 1975). in cover-abundance sam ples sam ples were were hexam etaphosphate sieving. Ecosystem c l a s s i f i c a t i o n E cosystem s w ere physiography, so ils P reg itzer Barnes independent the and based on and ground f l o r a assignm ent ecosystem defined analysis 1984, of was Spies stands not to com binations (Barnes e t and Barnes ecosystem s m erely a further al. of 1982, 1985a). The insured that division of 150 the o rig in al landform units. Im portant each eco sy stem a re p re s e n te d in T able the classificatio n , The s o i l s of a ll sandy, generally 6.1). The som etim es however, landform s w ith m oraines generally and layers sandy c la y has b e e n shown grow th and C leland et factor in species al., deep-lying to the Ground ecological bands ecosystem flora are u su ally aggregated (Barnes et al. 3). study are and on Zahner a fundam ental 5 tree 1977, absence tabular and component Individual Barnes ground species 1984, or n u m eric al m ethods. of work (S pies elsew here (Chapter and groups S pies and E cological B arnes groups of flora than in d iv id u a l s p e c ie s the e c o lo g ic a l s p e c ie s presented 4 or influence into ecological P regitzer c la ssific a tio n D e scrip tio n s of w ithin The p r e s e n c e o r is s p e c i e s g ro u p s a r e more e f f e c t i v e fie ld finer, (Hannah system s. species using fin e-tex tu red classification. classification B a rn e s 1985b) of however, was an i m p o r t a n t d i s c r i m i n a t i n g com position 1982, features, have a s i g n i f i c a n t Chapter textural extrem ely The p r e s e n c e o f t h e s e t e x t u r a l com position 1985, w ere 90% o r m o r e ( T a b l e bands loam o r of consideration. we s a m p l e d or of Some a s p e c t s special ice-contact m e te rs of the s o i l s u rfa c e . bands 6.2. a sand co n ten t of co ntained m aterials, require ch aracteristics for 1985a). used in this 2). S t a t i s t i c a l methods Stand, landform , were o b tain ed using and ecosystem -level species-specific biom ass estim ates biom ass eq u a tio n s (Table Table € .2 . Selected landform, overstory, ground flora and s o il properties o f upland forest ecosystems in northwestern Lower Michigan. Dominant overstoiy Ecosystem n Dominant (plots) landform Species Basal area (sg m/ha) EE Dominant Dominant soils species group SiAgroup Drainage Banding Deschanpsia Typic Udipsaroents Extready well absent 1 40 Outwash plains Quercus velutina Quercus alba 8.9 7.7 2 52 Outwash plains Quercus velutina Quercus alba 9.7 (1.8) 9 (0.9) Vacclniim Typic odipsaments Extremely well absent 3 40 tooe ocBfdgcps and moraines Quercus velutina Quercus alba Quercus niira 7.9 (2.0) 6.8 (1.3) 5.1 (2-3) Vacciniun Bitic Hapiorthods Hell absent 4 44 tone cocplexes and moraines Quercus rrbra Quercus alba Quercus velutina 10.6 (1.8) 7.8 (0.9) 5.2 (1.3) Trientalis Entic Hapiorthods Hell present 5 28 Kane complexes and moraines Quercus rubra Quercus alba 17.4 (2.2) 3.9 (0.8) Viburnum Bitic Baplorthodo Hell present e 32 tone cccplexeB and moraines Quercus rubra Acer rubrun 16.3 (3.3) 5.5 (0.9) Desaodium Alfic Hapiorthods 7 30 Interlobate Moraine Acer saccharin Quercus nttra 7.1 (2.3) 7.2 (3.5) Haianthenun typic Hapiorthods Hell absent 8 24 Interlobate Moraine Acer saccharin Quercus rubra 8 (2.7) 12.8 (3.8) M alanthanum Typic Hapiorthods Hell present 9 28 Interlobate Moraine Acer saccharin 11.9 (1.6) Tilla anericana 6.5 (2.0) Fraxinus anericana 3.4 (1.5) Qsaorhita Typic Hapiorthods Hell present (1.5) (1.7) present Table 6.3. Regression equations used to c a lc u la te above ground dry weight for upland sp ecies in northwestern bower Kichigan. Species U nits (Y-D-H) Source Lake S ts . kg-an-m Green and G rigal 1978 W HI HI 19- a n a Alban and La id ly 1982 HY kgnm-re H onteith k Jacobs 1979 2.5 - 55 an NY Jcg-nimE H onteith 1 Jacobs 1979 Lake S ts . i b - in - f t Crow a n l Errhnann 1983 Regression equation r2 Range (dbh) Pinus banksiana Y - .0726*D‘2.091*H\435 .99 2.8 - 32.8 an Pinus resin o sa Y - .03S56*D*1.6B69*ir.B693 .99 10.4- 27.2 an Pinus strobus Y = .S209+.a7434*I>-.5439*H .98 2 .5 - 55 an .99 L o ca lity +.0001516*D*2*H Tsuga canadensis Y = 1.4081+.1824*D+1.4563*H+ .0001842*D~2*H Acer rubrun In Y = -1.545+.923*In D‘ 2*H .97 10 - 52.2 an T i l i a anericana Y = 1.4416*0*2.5320 .96 5 - 50 an wv kg-an Brennoian e t a l . 1978 Acer saccharin Y = .06116+.1752*D-.B9B8*H+ ,00Q2761*D*2*H .99 2 .5 - 55 an NY kg-cm-m H onteith k Jaoobe 1979 F raxinus americatvi Y = -4.17764+.21947*D-.44212*H+ .000204*D‘ 2*H .99 2 .5 - 55 an NY kg-niinu Monteith k Jacobs 1979 Cuereus alb a Y = .08782* (D"2*H) ‘ 1.0206 .99 5 - 40 an WV I b - in - f t Wiant e t a l . 1979 Quercus rubra Y = 9 .60288+.42137*D-4.16579*11+ .000265*D"2*H .99 2 .5 - 55 an NY kg-mn-m H onteith k Jacobs 1979 Quercus v e lu tin a Y = .14206* <0*2‘H) *.97260 .99 5 - 40 an WV i b - in - f t Wiant e t a l . 1979 Pruius se ro tin a Y * .12968*(D‘ 2*H)~.9702B .99 5 - 40 an wv lb -in -ft Wiant e t a l . 1979 F opilus trem uloidea log Y ■ -.665+2.249*log D .99 1 4 .7 - 39.7 an HI kg-cn te s te r 6 Bockhein 1981 Fagus g ra n d ifo lia Y = .7B331+.08B99 *D- .529705*H+ .0002996*D*2*H .97 2 .5 - 55 an NY kg-wn-m tb n te ith t Jacobe 1979 General harcWoodo Y - ,31666+.04666*D-. 2082455*11+ .0002549 *D*2*H .96 2 .5 - 55 an NY kg-unrrn H onteith k Jacobs 1979 General softwoods Y - 1.S7734+.13039*0-1.21916*11+ .0001774*D'2*H .90 2.5 - 55 cm NY kg-nnroi H onteith k Jacobs 1979 Y = oven-dry mass, b » diam eter a t b re a s t h eig h t, H ■= to ta l h e ig h t. 153 6.3*} The equations w eights of a l l these values were taken Lake S tates account live predicted tally trees w ere expanded from published area, for and Mean a n n u a l b i o m a s s recorded literature both in s i t e among LSD ( S t e e l e a n d T o r r i e were data of subjected herbaceous detrended ord in atio n technique ord in atio n scores increm ent using of variance K ruskal-W allis The e q u a t i o n s studies height and done in the diam eter van R a a lte of to 1981). ecosystem s and woody g r o u n d correspondence H ill related regression Non-normal d a ta transform ations. (DECORANA; were test levels 1960). regression analysis. and of sample; and using a n a ly s is o f v a ria n c e and F i s h e r 's lo g arith m ic to basis. (Ker a n d biomass P rotected abundance tested the were using the p o in t age. landform s norm alized in oven-dry i n c r e m e n t was c a l c u l a t e d a s t o t a l p l o t b i o m a s s d i v i d e d by p l o t D ifferences aboveground t o an a r e a l used differences to tal were and S pearm an's to C over- flora species an aly sis, 1979). mean were an S tand-level annual R esults of biom ass the an aly ses corroborated using the rank o rd e r c o r r e l a t i o n , respectively. RESULTS A n a l y s i s by L andform Biom ass landform s levels (T ab le 6.4). showed There sig n ifican t v ariatio n was a l m o s t a t w o f o l d among difference in s ta n d in g aboveground biom ass betw een th e outw ash p l a i n s Tabl e 6 . 4 . T o t a l aboveground b i a n a s s , mean annual biomass i ncr ement , and s t a n d age sunmarized by landform. Means followed by t h e same l e t t e r n o t d i f f e r e n t a t al pha=0. 05. Landform Outwash p l a i n s Ice-contact h i l l s P o r t Huron Moraine Valparaiso-Charlotte Moraine I n t e r l o b a t e Moraine Mean T o t a l Aboveground Bianass (t/ha) (SE) Mean Annual Bi anass Increment ( t / h a / y r ) (SE) a b b b (6.0) (10.6) (16.2) (18.0) 1. 5 2.4 2.5 2.6 206.3 b (12.3) 3.2 c 105.2 172.6 180.8 190.4 a b b be Mean St and Age (years) (SE) (0.1) (0.2) (0.3) (0.3) 74 75 75 73 a a a a (2) (2) (4) (3) (0.2) 68 b (1) 155 (105 t / h a ) t/ha), and deep banded kam lc or m o ra in a l h i l l s e v e n th o u g h s t a n d s on m o r a i n a l younger* These e s tim a te s com parable w ith n orth eastern 33 t/ha, estim ates U nited Outwash p l a i n s of to tal from S tates 6.2). w hite ash Red oak In terlo b ate other aboveground biom ass forest (T ritton and types w hile the Hornbeck (18 t / h a ) , occurred M oraine, in and Interlobate sugar maple was the the 1982). a n d 100 t / h a . dom inant The i c e - c o n t a c t h i l l s (56 a n d M oraine ( 17 t / h a ; sam ple ic e -c o n ta c t or m orainal landform s, the was (73 t / h a ) f b e e c h and basswood half are in w e r e d o m i n a t e d by b l a c k a n d w h i t e o a k respectively), t/ha), landform s w ere o fte n other d o m i n a t e d by n o r t h e r n h a rd w o o d s : (19 (173-206 Figure stands on species the on a l l a v e r a g i n g b e t w e e n 88 and th e P o r t Huron and V a lp a r a is o - C h a r l o t te m oraines were d o m in ated p r i m a r i l y red, w hite and b la c k oak; these landform s did not ex h ib it s i g n i f i c a n t d if f e r e n c e s in t o t a l biom ass le v e ls . accounted for 40% o f the landform v a ria b ility , accounting for The sim ilar alm ost mean variance how ever, 30% o f annual pattern. total There was the to ta l biom ass was in Landform biom ass. also by W ithin- sig n ific a n t, variability. increm ent a tw ofold ( MABI ) showed difference in a MABI b etw een th e outw ash p l a i n s and th e kam ic or m o ra in a l h i l l s (Table MABI, an 6.4). The 1.5 t / h a / y r , average increm ent of were biom ass le v e ls ; 3.2 outw ash w hile landform s the t/ha/yr. Interlobate The more p ro n o u n c e d stands w ith exhibited M oraine differences than the low est accum ulated in differences biom ass in to tal low t o t a l b i o m a s s w e re i n many 156 Figure 6.2 A b o v e g r o u n d b i o m a s s among l a n d f o r m s s u m m a r i z e d by s p e c i e s . L a n d fo rm s w i t h t h e sam e l e t t e r do not d i f f e r in t o t a l aboveground biom ass. 260 240 B 220 200 a B 160 160 B € 140 120 100 80 60 40 20 0 OUTWASH velutlna urn ICE-CONTACT PORT HURON LANDFORM Q uercua alb a A cer s a c c h a ru m VALPARAISO INTERLOBATE Q uercua ru b ra O th er 158 cases sig n ifican tly lev els. years, w h i l e s t a n d s on t h e D ifferences cutting history, logged e a r l i e r An variation with was in the that and total also levels, higher biom ass be located in due to landform s w hich textures biom ass or stands MABI. in species appears the to landform s be of im m ediate f a c to r s Of furth er exhibited study betw een influencing outwash m esic associations occur in that the variation and the (Table 6.1); to tal (Table there for example, sands, w hile p o rtio n s of com pared hills they biom ass 6.4). to that ground the flo ra among a n d w i t h i n and the are The more landform Viburnum banded group h ills. landscape approach may 3). was provide on restricted fact species is The exclusively The positions a associations (C hapter occurs alm ost also landform s; significant of o v e r s to r y and ground f l o r a ecosystem sig n ifican t ice-contact com position, is flo ra characteristic local t r e e growth. im portance Deschampsia group, in S ta n d s on t h e P o r t Huron consequence showed t h a t ground biom ass them selves are of very d i f f e r e n t ages little patterned and show in p h y sio g rap h y and s o i l s sim ilar in having been w ere s i m i l a r not 68 terrain. biom ass did m oraines differences in stee p er both w a s 74 M oraine a v erag ed a n d mean a n n u a l b i o m a s s i n c r e m e n t that related may pattern so il were very s im ila r deep w ith more a c c e s s i b l e V alparaiso-C harlotte fact sites Interlo b ate age than stan d s physiography to in interesting increm ent were than The a v e r a g e a g e o f s t a n d s on o u t w a s h p l a i n s years. and older an more that repeatedly indication accurate 159 estim ates single of site factors, p ro d uctivity than such as landform , estim ates soils, or based vegetation on alone. A n a l y s i s by E c o s y s te m A nalysis to tal The by e c o s y s t e m e x p l a i n e d m o r e o f t h e v a r i a t i o n biom ass, ecosystem landform analysis variation, inclusion site accounting of units flora tended to m oisture availability so il of the w ithin 6, higher t o be landform s, (T able 6.5). related but in classificatio n purposes, sim ilar in forests they the term s to to rather of the Port or was not topography, type. When due to such as in a n d MABI w e r e biom ass kamic or m o ra in a l o r i g i n related to site level For s ite a v a ila b ility . these but did enhanced levels of Huron and hills of banding, were m o isture the D iffe re n c e s in the The landform s com position and are fu nctionally structure of the support. ecosystem average landform s 8%. u nits, same e c o s y s te m 8, and 9, b io m a s s appear resolution the 4, 5, landform on w ithin- identification texture the p re se n c e d iffe re n c e s The in the 28% t o ice-contact in s o il v ariatio n . of from the stands or sig n ifican tly not included in some and to tal much textures E cosystem s did subdivide overall d ifferences therefore the value and s o i l s m oraines and were finer this I n many c a s e s , V alparaiso-C harlotte exhibit 59% o f incorporated reducing ground combine o th e r s . for in classification account for variation biom ass for a ll provided in outw ash a finer biom ass. plains For was scale of exam ple, 105 t/ha Ta b l e 6 . 5 . T o t a l aboveground b i a n a s s , mean annual b i a n a s s i n c r e n e n t , and s t a n d age surma r i z e d by ecosyst em. Means f oll owed by t h e same l e t t e r n ot s i g n i f i c a n t l y d i f f e r e n t a t a l p h a = 0 . 0 5 . 1 2 3 4 5 6 7 8 9 84. 7 122. 2 132. 8 151. 3 207. 9 225. 1 172. 2 248. 6 210.1 a b b be d de c e d (6.2) (6.6) (8.7) (7.9) (8.4) (13.2) (14.5) (7.9) (11.3) Mean Annual Biomass Increment ( t / h a / y r ) (SE) 1. 3 1. 7 1. 7 2.0 3.0 3.1 2. 7 3. 6 3.3 a b b b cd cd c d d (0.1) (0.1) (0.2) (0.1) (0.2) (0.1) (0.2) (0.2) (0.2) Mean Stand Age (years) (SE) 69 77 79 75 70 73 63 69 64 (2) (3) (3) (3) (2) (3) (2) (3) (3) abc cd d cd abed bed a abc ab 160 Ecosystem Mean T o t a l Aboveground Biomass (t/ha) (SE) 161 (Table 6.4). d istin ct The ecological V accinium groups. classified using D escham psia t/ha/yr), 122 sta tistic a lly and those d ifferences flo ra, group in site groups on the association with these in the 6.5), on the both banded inclusion unbanded sig n ifican tly different in characterized the O sm orhiza group av erag ed sig n ifican t productivity. sites ground of and M oraine; t/ha/yr), the w ith th e M aianthem um unbanded differen t averaging site s Both in total betw een th e less E cosystem than 180 a n d MABI w e r e b etw een th e tw o banded s i t e s ; by t h e t/ha, inclusion of were association T o tal biom ass le v e ls 249 the group ch aracterizatio n (Ecosystem s 8 and 9 vs. also Thus, species m a p l e - r e d oak o v e r s t o r i e s . ( MABI=2. 7 t / h a / y r ) . (MABI=3.6 (MABI = 1 . 3 differences In terlo b ate on b a n d e d s i t e s t/ha banded s i t e s the Two u n i q u e e c o l o g i c a l sugar the w ere p ro d uctivity. banded and unbanded s i t e s T able t/h a the Vaccinium b i o m a s s a n d MABI w e r e s i g n i f i c a n t l y 7; plains supporting 85 a sugar m aple-bassw ood o v e rs to ry , w hereas on and brought out s ig n if ic a n t occurred occurred D escham psia M oraine Osmorhiza group o ccu rred group tw o outw ash L ikew ise, properties support stands t/ha/yr); sig n ifican t. the averaged supporting Interlobate how ever, groups: stands ( MABI=1. 7 deep s o il s t a n d s on t h e species When ground t/ha plains, species species w hile averaged flo ra outw ash Maianthemum g r o u p a v e r a g e d w hile those 210 t / h a , ch aracterized (MABI=3.3 by t/h a/y r). of ground f l o r a and s o i l s a c c o u n te d fo r proportions of w ithin-landform v ariatio n in 162 The d istrib u tio n sig n ifican t p atterns was predom inant among among ecosystem s/ component of red oak Ecosystem s w ith w ere greater surface a (F igure p ro d u ctiv e respectively). loam y currently so il m oisture textures or Ecosystem outw ash that these (Chapter 5). oak in Ground f l o r a ecological related 1982). can im portant and 3.1 t/h a /y r, landscape th is p o sitio n s ecosystem is regeneratio n succeed 9 was ecosystem s had to northern dom inated prim arily may be a The resu lt of n o rth e rn hardwoods. - O verstory R elatio n sh ip s C ertain were either r e d o ak w as uncommon* c o m p e t i t i v e e x c lu s io n from o th e r al. in may Ecosystem these v ariation. w h ic h w e r e among t h e w hile stands red strongly of d o m i n a t e d by r e d o a k a n d r e d m a p l e , lack of D ifferences availability, (M ABI=3.0 h o rizon s; m aple and bassw ood; and the the presence of banding, 6 occurs by s u g a r groups the B lack oak Red m a p l e w as a n ecosystem s surface suggest hardwoods et on source b i o m a s s c o m p o n e n t i n e c o s y s t e m s 5 and 6, data 6.3). biom ass prim ary h ig h e r p r o p o r t i o n s o f re d oak. w ith showed p arallelin g c o n d i t i o n s became more m e s i c . biom ass due to f i n e r m ost sp ecies ( E c o s y s t e m s 1 a n d 2 ) , b u t was p r o g r e s s i v e l y r e p l a c e d by re d oak as s i t e in biom ass o b s e r v e d among l a n d f o r m s the plains v ariation of to In species particular this study, characteristic th erefo re be of groups have edaphic the shown conditions Desm odium banded or co n sid ered been be (Pregitzer and Viburnum fine-textured in d icato rs to of soils, highly 163 Figure 6.3. A b o v e g r o u n d b i o m a s s among e c o s y s t e m s s u m m a r i z e d by s p e c i e s . E c o s y s te m s w i t h t h e sam e l e t t e r do not d i f f e r in t o t a l aboveground biom ass. (t/h a ) BIOMASS ABOVEGROUND W V A .' \V .\V , Q uercua velutlna A cer rubrum ECOSYSTEM Q uercua alb a A cer e a c c h a ru m Q uercua ru b ra O ther 165 productive to ground w hich sites. flo ra affect V ariation com position/ biom ass distrib u tio n patterns. further ordination of using ground in biom ass because pro d u ctio n These strongly many o f also factors on a species w ere which a llo w relationships related the a ffe c t relatio n sh ip s techniques/ flora-overstory is studied com parison stand-by-stand basis. The rank ordination stands gradient. the stands predom inantly Species first of axis by ground flo ra along an large positive receiving underlying Mi t e l l a diphylla. These n o r th e r n hardwood s ta n d s underlying species were on r e l a t i v e l y textural Species members o f the receiving f o u n d on t h e e x t r e m e l y w e l l - d r a i n e d s o i l s Descham psia S in ce s o i l m o is tu re a p p ears to have a s tr o n g stand o rd in atio n vegetation oak gradient, site s dom inated F igure to by 6.4 relationship biom ass oak northern increm ent site s, hardwoods been between find s c o r e s and b io m ass m esic have to coded by ground f l o r a but a high of outwash Comptonia p e r e g r i n a , and A r c to s ta p h y lo s we e x p e c t e d of Deschampsia group/ members a r e Andropoqon g e r a r d i i / on p r o d u c t i v i t y , and fine-textured s o ils which is the on ch aracteristic coefficients example were bands. pedatum negative flexuosa, m oisture w ere s p e c i e s o f t h e Maianthemum and O sm o rh iz a such as O sm orhiza c l a y t o n i i / A diantum plains; to coefficients groups/ w ith appeared uva-ursi. influence correlation increm ent. between Along t h e increased from xeric decreased in s ite s (Figure 6.4). landform to Stands show in the com position and landform . 166 Figure 6.4. S c a tte r p lo t of aboveground biom ass in crem en t w ith stan d o rd in a tio n sc o re s. O rdination sco res w ere deriv ed from a d etren ded c o r r e s p o n d e n c e a n a l y s i s b a s e d on g r o u n d f l o r a abundance. Numbers r e p r e s e n t la n d f o rm c o d e s : 1 - O utw ash p l a i n s , 2 - I c e - c o n t a c t h i l l s , 3 P o r t Huron M o ra in e , 4 - V a l p a r a i s o - C h a r l o t t e M o r a i n e , 5b - b a n d e d I n t e r l o b a t e M o r a i n e , 5u unbanded I n t e r l o b a t e Moraine. MEAN ANNUAL 4 9u 5u 3 5u 5u 5u 5u 167 BIOMASS INCREMENT (t/h a /y r) 5 5u 2 1 0 0 100 200 GROUND FLORA DCA AXIS 1 300 400 168 The relationship between ground b io m a s s in c r e m e n t was b e s t the r 2 of 0.76 biom ass hardwoods stands grow and scores to be a polynom ial; (F igure observed in and 6.4). The the n o rth ern of overstory function the s h a d e - to le r a n t n o rth e rn hardwoods tend more s lo w ly Barnes a t p=0.05 increm ent appeared ordination by a s e c o n d - o r d e r was s i g n i f i c a n t decreased com position; fit flora than 1980). the le s s Figure 6.4 t o l e r a n t oak s p e c i e s also shows that to (Spurr stands on banded s i t e s on th e I n t e r l o b a t e M oraine tend to have h ig h e r b io m a s s i n c r e m e n t s compared w i t h th o s e on unbanded s i t e s . DISCUSSION Landscape p a t t e r n s The shows of biom ass accum ulation glaciated patterned These p a t t e r n s landscape sp atial are of northw estern variatio n fundam entally in Lower biom ass related M ichigan production. to geologic h isto ry : d e p o s i t i o n a l e n v iro n m e n ts which produce e x tr e m e ly w e l l - s o r t e d and w ell-drained sandy developm ent of D ep ositional environm ents finely-textured so il developm ent the parent so il parent profile and resulting m aterials and a m aterials in exhibit concom itant low show m inim al p ro d u ctiv ity . less-sorted, a greater increase degree r e l a t i o n s h i p between th e of long-term and landform s vegetation. and the The p r o x i m a l reasons developm ent for of in p ro d u c tiv ity . Ro w e ( 1 9 6 4 ) d e s c r i b e s a c l o s e glacial more these of nature soils differences in p r o d u c t i v i t y ap p ear to be m ost r e l a t e d to d i f f e r e n c e s in 169 soil texture, capacity. Young an index of Biomass s t u d i e s 1981) significant Loucks indirect showed (1977) m oisture forest to soil observed p ro d u ctiv ity drainage that The the in differences m oisture in gradient differences productive stands F igure Peet in a and sp ecies related to th e sand co n ten t of the A horizon. differences observed bore classes. c o m p o s i t i o n i n W i s c o n s i n oak f o r e s t s w e r e s t r o n g l y variation holding i n M a i n e ( F e r w e r d a a n d Young 1 9 8 1 , that relationship so il 6.3). overstory species may have in also biom ass contributed increm ent. had l a r g e com ponents o f Red o a k , which com position norm ally along to the The most r e d oak ( T a b le 6.2; acts as a gap phase member o f n o r t h e r n hardw ood c o m m u n itie s (S purr and B arnes 1980), m esic may have p ro liferated in m ore landscape p o s i t i o n s b e c a u s e o f l o g g i n g and s u b s e q u e n t f i r e s of the century. Horn (1971, ch aracteristic efficien t at of early m axim izing su ccessio n al species. also suggest more effecient 1985). that 1974) h a s s u g g e s t e d successional the that stag es photosynthesis turn species are compared m ore to late R a tio s of sapwood per u n i t l e a f a r e a relatively at at producing intolerant wood species (W aring and are often S leschinger Red o a k i s a b s e n t f r o m t h e e x t r e m e l y x e r i c e n d o f gradient, as hardw oods w ell stands; environm ental com position. function of as from site lim itation s The o b s e r v e d both sp atial some of the conditions, or m esic n orthern eith er through c o m p e titiv e exclusion, biomas3 (effects increm ent of the site) is affect therefore and a tem poral 170 {site-m ediated these fa c to rs responses interact, to disturbance) it is d iff ic u lt o u t s p a t i a l and te m p o r a l e f f e c t s . factors. to p r e c is e ly f a c to r N onetheless, sp atially - e x p l i c i t p a t t e r n s o f biomass p ro d u c tio n were e v id e n t of the Since in s p it e c o n f o u n d in g t e m p o r a l and s t o c h a s t i c e v e n t s . A previous s tu d y has shown t h a t the patterned variation o b s e r v e d i n g r o u n d f l o r a c o m p o s i t i o n was p r i m a r i l y r e l a t e d t o s o il m oisture a v a ila b ility , soil texture (Chapter responding expect the to same If ground flora environm ental and overstory gradient, ordination somewhat scores. although by these temporal increasing S ignificant we w o u l d co rrelatio n s relationships effects. ordination Biomass scores were the and w ere confounded increm ent in in are to fin d a high c o r r e l a t i o n betw een p r o d u c t iv i t y observed, w ith the 3). a s e v i d e n c e d by d i f f e r e n c e s increased oak-dom inated e c o s y s t e m s , b u t s t a n d s d o m i n a t e d by n o r t h e r n h a r d w o o d s h a d h i g h o r d i n a t i o n s c o r e s and re d u c e d b io m a s s i n c r e m e n t s ( F i g u r e 6.4). W hile site conditions betw een the n o r t h e r n hardwood eco sy stem s were s i m i l a r , successional influence that species biomass rates in the latter increm ent. m esic closely and dom inance by l a t e ecosystem This again p o in ts of production are oak related to appeared to the to fact successional s t a t u s as w ell as environm ental fa c to rs . Red o ak ecosystem s succeeding is we to currently studied; red maple not these and regenerating ecosystem s other in any appear shade-tolerant of to the be species 171 (C hapter 5). This p a tte r n has been observ ed oak f o r e s t s 1984, oak throughout the e a s te rn U nited S ta te s Mc Cu ne a n d C o t t a m 1 9 8 5 ) . in m esic response stand landscape (60 response. to 90 p o sitio n s be d en sities an years) attem pt w hich disturbance is are to not regim es. Bormann and predicts a drop in p r o d u c tiv ity ch aracter successional due to productivity follow ing and more As d isturbance levels W hile g l a c i a l for biom ass, species T his w ill not of pulse this for landform s and in example, oak stocking under at "norm al*1 model of disturbance lose sh ifts their even- tow ard la te com position changes and p a tc h synchrony sto ch astic to is m o rtality , decline. mapped a t significant v ariatio n biom ass as physiography by red landscape u n its unexpected, delim ited M oraine, and w ithin-landform heterogeneity areas evidence as stands species likely statistically com position is range of narrow catastrophic species tolerant Ecosystem s as f u n c tio n a l in the L i k e n s 1 (1979) com position species. growing, accounted a c h a ra c te ristic aggradation lo st represent further m aintain biom ass slow er may The c u r r e n t p r o b l e m s w i t h o ak r e g e n e r a t i o n may actually aged (Lorim er The p r e s e n t d o m in a n c e o£ r e d to a reg io n al-scale disturbance; ages i n many o f t h e landform a s c a l e of 1:60,000 portions of v a ria tio n in production th ere and is so ils boundaries. occupies about so il p roperties, was substantial. c o n sid e ra b le w ithin the broad The Interlo bate 5 6 0 km2 o f northw estern 172 Lower M ichigan. use of landform , p artitio n s occur The e c o s y s t e m a p p r o a c h , this so il in on surveys (S o il same vegetation categorizing degree on of ecosystem is but and use w idely w ith on p r o c e s s is an planning. across the in types these as w ell means of but among offers volum etric it these a high of which only on are functional patterns; land related of map patterns ecosystem biom ass increm ent management req u ires pattern, The spatial of landscape An e c o s y s t e m - b a s e d not as segm ents regional processes tool regional landform , q u an tificatio n The effective rates of based such as biom ass p ro d u c tio n . patterns. S ince use are different the b u t a l s o on t h e exam ple. ecosystem s land ecosystem soil, a 1980), relatio n sh ip s ( Ro we 1 9 8 4 ) . inform ation associated inform ation of in provides one The such as homogeneous u n i t s , three-dim ensional distribution of vegetation w hich h ab itat classificatio n resolution landscape ecosystem processes units positions. 1975), com bined into functional processes, variation therefore landscape represents ecological sp atial regional exhibits identifying S taff The sim ply the Ecosystem s a re the e sse n tia lly (Spurr and Barnes landscape As s u c h , ecosystem so ils, S te e le e t a l . 1981, Coffm ann e t a l . 1982), soils the cap italizes to Survey p rinciples. and factors. by ch aracteristic many E u r o p e a n s y s t e m s the and th e com bined n o t new; s e v e r a l o t h e r m a p p in g s y s t e m s , (D aubenm ire 1952, and flo ra, heterogeneity repeatedly approach is ground i.e. for delineation in terp retatio n biom ass landscape. the production By c o n s i d e r i n g and vary the 173 regional in la n d s c a p e a s an eco sy stem productivity portions of can be related the landscape. to mosaic, discrete these d ifferen ces and identifiable 174 LITERATURE CITED A l b a n , D. H. a n d P. R. L a i d l y . 1982. G e n e r a l i z e d b io m a s s e q u a t i o n s f o r j a c k an d r e d p i n e i n t h e Lake S t a t e s . Can. J . For. Res. 12:913-921. B a r n e s , B. V. , K. S . P r e g i t z e r , T . A. S p i e s , a n d V. H. Spooner. 1962. E c o lo g ic a l f o r e s t s i t e c l a s s i f i c a t i o n . J. o f For. 80:493-498. B o r m a n n , F . H. a n d G. E. L i k e n s . d i s t u r b a n c e and th e s te a d y s t a t e forests. Am. S c i . 6 7 : 6 6 0 - 6 6 9 . 1979. C atastro p h ic in n o r th e rn hardwoods B r e n n e m a n , B. B . , D. J . F r e d e r i c k , H. E , G a r d n e r , L . H. S c h o e n h o f e n , a n d P. L. M a r s h . 1978. Biomass of s p e c ie s a n d s t a n d s o f W e s t V i r g i n i a h a r d w o o d s . I n : P o p e P. E . , ed. P r o c e e d i n g s C e n t r a l Hardwood F o r e s t C o n f e r e n c e I I . W e s t L a F a y e t t e , I N: P u r d u e U n i v . p . 1 5 9 - 1 7 8 . C l e l a n d , D. T . , J . B. H a r t , K. S . P r e g i t z e r , a n d C. W. R a m m . 1985. C l a s s i f y i n g oak e c o s y s t e m s f o r m an a g e m e n t, pp. 120-134. I n : ( J . E. J o h n s o n , e d . ) P ro c e e d in g s of c h a l l e n g e s i n oak m a n a g e m e n t. and u t i l i z a t i o n , March 2 8 29, U n i v e r s i t y of W isc o n sin , M adison. 152 pp. C o f f m a n , M. S . , E. A l y a n a k , a n d R. R e s o v s k y . 1980. Field guide h a b i t a t c l a s s i f i c a t i o n s y s te m f o r t h e Upper P eninsula of M ichigan and n o rth east W isconsin. C ooperative R e s e a r c h on F o r e s t S oils, M ichigan T echnological U n iv ersity , Houghton, M ichigan. Crow, T . R. a n d G. G. E r d m a n n . 1983. W eight and volum e e q u a tio n s and t a b l e s fo r red m aple in th e Lake S t a t e s . USDA F o r . S e r v , R e s . P a p . N C - 2 4 2 . D a u b e n m i r e , R. 1952. F o re s t v e g e ta tio n of n o rth e rn Idaho and a d j a c e n t W ashington, and i t s b e a r in g on c o n c e p ts of vegetation c la ssific a tio n . E c o l . Mono. 2 2 : 3 0 1 - 3 3 0 . F e r w e r d a , J , A. a n d H. E. Y o u n g . 1981. The r e l a t i o n s h i p betw een s p ru c e and f i r biom ass p r o d u c tio n and f o u r s o i l s e r i e s o f a m ajor s o i l c a t e n a in M aine. I n : ( H. E . Young Ed.) K yo to B io m a s s S t u d i e s . C om plete T ree I n s t i t u t e of the School of F o re st R esources. Univ. o f M aine, Orono. 171 p p. G r e e n , D. C. a n d D. F . G r i g a l . 1978. G e n e r a l i z e d b io m a s s e s t i m a t i o n e q u a t i o n s f o r j a c k p i n e (P in u s b a n k s i a n a L a m b . ) . M i n n e s o t a F o r e s t r y R e s e a r c h N o t e s , No. 2 6 6 . 175 H a n n a h , P . R. a n d R. Z a h n e r . 1970. Nonpedogenic t e x t u r e b a n d s i n o u t w a s h s a n d s o£ M ic h ig a n : t h e i r o r i g i n , and i n f l u e n c e on t r e e g r o w t h . S o i l . S c i . S o c . Am. P r o c . 34:134-136. H ill, M. O. 1979. DECORANA - a FORTRAN p r o g r a m f o r d e tre n d e d c o rresp o n d en ce a n a ly s is and r e c ip r o c a l averaging. S e c t i o n o f Ecology and S y s t e m a t i c s , C o r n e l l U n i v e r s i t y , I t h a c a , New Y o r k , USA. H o r n , H. S . 1971. The a d a p t i v e g e o m e tr y o f t r e e s . Monogr, P o p . B i o l . 3 . P r i n c e t o n U n i v . P r e s s , P r i n c e t o n , New Jersey. 144 pp . Horn, H. S . 1974. The e c o l o g y o f Ann. Rev. E c o l . S y s t . 5:25-37. Ker, M. F . a n d G. D. v a n R a a l t e . e q u a t i o n s f o r Ab i e s b a l s a m e a n o r t h w e s t e r n Ne w B r u n s w i c k . 11:13-17. secondary succession. 1981. Tree biom ass and P ic e a g la u c a in Can. J. o f F o r. R es. L ittle, E. L. 1979. C h e c k list of U nited S ta te s tr e e s ( n a t i v e a n d n a t u r a l i z e d ) . USDA F o r . S e r v . A g r . H a n d b o o k No. 5 4 1 . W a s h i n g t o n D.C. 3 7 5 p p . L o r i m e r , C. R. 1964. The d e v e l o p m e n t o f u n d e r s t o r y on n o r t h e a s t e r n oak f o r e s t s . 22. th e re d m aple For. Sci. 30:3- Lusch, D. P. 1982. The o r i g i n and m orphogenetic s i g n i f i c a n c e o f p a t t e r n e d ground i n th e Saginaw Lowland of M ichigan. U n p u b l i s h e d Ph.D. d i s s e r t a t i o n . M ichigan S tate U niversity. 152 pp. M c C u n e , B. a n d G. C o t t a m . 1985. The s u c c e s s i o n a l s t a t u s o f a s o u t h e r n oak W i s c o n s i n woods. Ecology 66:1270-1278. M o n t e i t h , D. B. a n d M. J a c o b s . 1979. B iom ass w e ig h t t a b l e s f o r New Y o r k m e t h o d s , p ro c e d u re s and r e s u l t s . In: P r o c e e d i n g s o f F o r e s t R eso u rce I n v e n t o r i e s Workshop; F t . C o l l i n s , Colorado S t a t e U n iv e r s ity , Colorado. 665-676. K ueller-D om bois, D., a n d H. E l l e n b e r g . 1 9 7 4 . A i m s a n d Methods o f V e g e t a t i o n Ecology. J o h n W i l e y a n d S o n s . New Y o r k , N. Y. 5 4 7 p . P a s t o r , J . a n d J . G. B o c k h e i m . 1981. Biomass and p r o d u c t i o n of an asp en -m ix ed h a rd w o o d -sp o d o so l e c o sy ste m in n o rth e rn W isconsin. Can. J . F o r . R e s . 11:132-136. 176 P a s t o r , J . , J . D. A b e r , a n d J . M. M e l i l l o . p r e d ic tio n using g en eralize d a llo m e tr ic some n o r t h e a s t t r e e s p e c i e s . Forest 7:265-274. Peet, 1984. B iom ass reg ressio n s for E col. and H gt. R. K. a n d 0 . L. L o u c k s . 1977. A gradient an aly sis so u th e rn W isconsin f o r e s t s . Ecology 58:485-499. of P r e g i t z e r , K. S . a n d B. V. B a r n e s . 1982. The u s e o f g ro u n d f lo r a to in d ic a te edaphic f a c to r s in upland ecosystem s o f t h e McCormick E x p e r i m e n t a l F o r e s t , U pper M ic h ig a n . Can. J . o f F o r . R es. 12:661-672. P r e g i t z e r , K. S. com parison th e Cyrus M ichigan. a n d B. V. B a r n e s . 1984. C l a s s i f i c a t i o n and o f upland hardwood and c o n i f e r e co sy ste m s o f H. M c C o r m i c k E x p e r i m e n t a l F o r e s t , upper Can. J . o f F or. Res. 1 4 :3 6 2 -3 7 5 . R i s s e r , P . G . , J . A. K a r r , a n d R. T . T . F o r m a n n . Landscape ecology: d i r e c t io n s and ap p ro ach es. P u b l . No . 2 . 111. N at. H i s t . S u rv . 16 pp . 1984. Spec. Rowe, J . S. 1984. Forestland c la s s if ic a tio n : lim ita tio n s of th e use of v eg etatio n . In J . Bockheim ed. F orest land c l a s s i f i c a t i o n : ex p erien ces, problem s, p e r s p e c tiv e s . P r o c e e d in g s o f a sym posium h e ld a t th e U n i v e r s i t y o f W i s c o n s i n on M arc h 1 8 - 2 0 , 19 84 . 276 p p . Soil Survey S ta f f . 1975. S o il Taxonomy. Cons. S erv . W a s h i n g t o n D.C. A H - 4 3 6 USDA S o i l S h u g a r t , H. H. 1984. A th e o ry of f o r e s t dynam ics: the e c o lo g ic a l im p lic a tio n s of f o r e s t s u c c e ss io n m odels. S pringer-V erlag. New Y o r k . 278 p p . S pies, T . A. a n d B. V. B a r n e s . 1 9 8 5 a . A m u ltifacto r c la ssific a tio n of n o rth e rn hardw ood and c o n if e r ecosy stem s of the S y lvania R e c re a tio n A rea, Upper P e n in s u la , M ichigan. Can. J . o f F o r . R e s . 1 5 : 9 4 9 - 9 6 0 . S p i e s , T . A. a n d B. V. B a r n e s . 1985b. E cological sp ecies groups of upland n o rth e rn hardw ood-hem lock forest eco sy stem s of the S y lv an ia R e c re a tio n A rea, Upper P e n in s u la , M ichigan. Can. J . o f F or. R es. 1 5 :9 6 1 - 9 7 2 . S p u r r , S . H. a n d B. V. B a r n e s . 1980. F o r e s t E cology, Ed. J o h n W i l e y a n d S o n s . New Y o r k . 687 pp. T hird S t e e l e , R, R. D. P f i s t e r , R. A. R y k e r , a m d J . A. K i t t a m s . 1981. F o rest h a b ita t types of c e n tr a l Idaho. U.S.D.A. F o r. S erv . I n t e r m o u n t a i n F o r e s t and Range Exp. S tn . Gen. T e c h . R e p o r t IN T -1 1 4 . 138 p p . 177 S t e e l e , R. G. a n d J * H. T o r r i e . 19S0. P r i n c i p l e s and procedures of s t a t i s t i c s : a biom etrical approach. Mc Gr a w H i l l . New Y o r k . 633 p p. T r i t t o n , L . M. a n d J . W. H o r n b e c k . 1982. Biom ass e q u a tio n s fo r m ajor tr e e s p e c ie s o f th e N o rth e a st. USDA F o r e s t S e r v i c e Gen. T e c h . Rep. NE-69. 46 p p . H aring, R. H . , a n d W. H. S c h l e s i n g e r . E c o s y s te m s ; C o n c e p ts and M anagem ent. Inc. O rlando. 340 p p . 1985. Forest A cadem ic P r e s s , W i a n t , H . V . , J r . , F . C a s t a n e d a , C. E. S h e e t z , A. C o l a n i n n o , a n d J . C. D e M o s s . 1 9 7 9 . E quations fo r p r e d ic tin g w e i g h t s o f s o m e A p p a l a c h i a n h a r d w o o d s . H. Va. U n i v . A g r . a n d F o r , Exp. S t a . B u l l . 659-T 1 - 3 6 . Y o u n g , H. E. 1981. The r e l a t i o n s h i p b e tw e e n f o r e s t b i o m a s s p r o d u c t i v i t y a n d SCS d r a i n a g e c l a s s e s i n n o r t h e r n M a i n e . I n : ( H. E. Y o u n g E d . ) K y o t o B i o m a s s S t u d i e s . C om plete Tree I n s t i t u t e of the School o f F o re st R esources. Univ. o f M aine, Orono. 171 pp . Chapter 7 CONCLUSIONS 1) N i n e e c o l o g i c a l s p e c i e s g r o u p s w e r e f o r m e d , u s i n g 48 o f t h e 192 g r o u n d f l o r a s p e c i e s e n c o u n t e r e d i n t h e s t u d y . Species in the groups bore s i g n i f i c a n t a s s o c ia tio n s w ith s p e c ific geologic featu res. The g r o u p s c a n t h e r e f o r e b e used as i n d ic a to r s of s i t e c o n d itio n s , and as a u s e f u l p a r t of an e c o lo g ic a l land c l a s s i f i c a t i o n system . 2) A g e o m o r p h i c map was c r e a t e d f o r t h e s t u d y a r e a . Of p a r t i c u l a r i n t e r e s t were s e v e r a l la n d fo rm s p r e v io u s ly mapped as m o ra in e s ( L e v e r e tt and T a y lo r 1913, M a r tin 1955, F a r r a n d 1984) t h a t h a v e s u r f a c e c o n f i g u r a t i o n s a n d parent m aterials c h a ra c te ristic of the outw ash m o r p h o s e q u e n c e s d e s c r i b e d i n New E n g l a n d ( K o t e f f a n d P e s s l 1982). W hile t h i s p a r t i c u l a r g e n e t i c a s p e c t does not appear to in flu en ce fo re s t com position, structure, o r p r o d u c t i v i t y p e r s e , i t may be o f i n t e r e s t i n t h e reco n stru c tio n of the P leisto cen e h is to ry of t h is area. 3) O verstory com position e x h ib ite d p a tte rn e d v a r ia tio n r e l a t e d to g l a c i a l landform . C om positional v a r ia tio n was s t r o n g l y r e l a t e d t o s o i l m o i s t u r e a v a i l a b i l i t y , a s e v i d e n c e d by d i f f e r e n c e s i n s o lu m t e x t u r e s and t h e p resen ce o f su b su rfa c e banding. 4) Ground f l o r a c o m p o s i t i o n e x h i b i t e d p a t t e r n e d v a r i a t i o n r e l a t e d to both o v e r s to r y co m p o sitio n and landform . The c lo s e c o r r e l a t i o n s of o v e rs to ry and ground f l o r a w ith solum t e x t u r e s and deep s o i l p r o p e r t i e s , c o u p le d w ith the r e l a t io n s h i p s of s o i l p r o p e r t i e s to P le is to c e n e and recent d ep o sitio n al-ero sio n al ev e n ts, a llo w s the d e l i n e a t i o n of r e l a t i v e l y homogenous p l a n t - s o i l u n i t s w hich re c u r in c h a r a c t e r i s t i c la n d sc a p e p o s i t i o n s . These u n its , or eco sy stem s, p ro v id e th e b a s is fo r an ecosystem c l a s s i f i c a t i o n of the re g io n a l landscape. 5) Nine la n d sc a p e eco sy stem s were d e f in e d f o r u p lan d a r e a s o f n o r t h w e s t e r n Lower M ichigan. The e c o s y s t e m s d i f f e r in p h y sio g ra p h y , s o i l s , ground f l o r a , and o v e r s to r y . They can be i d e n t i f i e d in th e f i e l d u s in g s im p le f l o r i s t i c and e d a p h ic c r i t e r i a , and p r o v id e a m eans to e x t r a p o l a t e p r o c e s s e s s t u d i e d on a p o i n t - s p e c i f i c b a s i s to the reg io n al landscape. 178 179 6) A d v a n c e r e g e n e r a t i o n v a r i e s among l a n d s c a p e e c o s y s t e m s . Red m a p l e i s uncommon o r a b s e n t f r o m t h e x e r i c o u t w a s h p l a i n e r b u t i s a b u n d a n t in th e more m e s ic e c o s y s t e m s . O a k s, c u r r e n t l y o v e r s t o r y d o m i n a n t s on e ig h t of the nine ecosystem s, are very poorly re p re s e n te d in the sm aller diam eter cla sse s. Red m a p l e a n d w h i t e p i n e a p p e a r to be r e p l a c i n g oak in d r y - m e s i c l a n d s c a p e p o s i t i o n s , w h i l e r e d oak i s b e i n g r e p l a c e d by s u g a r m a p le i n e c o s y s t e m s c u r r e n t l y d o m i n a t e d by n o r t h e r n hardwoods. 7) T o t a l b i o m a s s an d mean a n n u a l b i o m a s s i n c r e m e n t v a r y among la n d f o r m s and la n d sc a p e e c o s y s te m s . The e c o s y s te m c l a s s i f i c a t i o n a c c o u n te d f o r more o f th e v a r i a t io n in biom ass than the landform c l a s s i f i c a t i o n . V a r i a t i o n i n b io m a s s p r o d u c t i o n was c l o s e l y re la te d to s o i l m o i s t u r e a v a i l a b i l i t y , w i t h more m e s i c s i t e s b e in g g e n e r a l l y more p r o d u c t i v e th a n x e r i c s i t e s . V ariation was a l s o r e l a t e d to s p e c i e s c o m p o s itio n : s t a n d s w ith hig h b a s a l a r e a s of red oak had hig h t o t a l b io m a ss l e v e l s , as w ell as h igh biom ass in c re m e n ts. T his is s i g n i f i c a n t f o r two re a so n s : a) Red o a k i s a r e l a t i v e l y f a s t - g r o w i n g g a p p h a s e species. I t s g r o w t h i s p a r t i c u l a r l y h i g h on s i t e s w ith r e la tiv e ly la rg e q u a n titie s of a v a ila b le m oisture. E cosystem s w ith h ig h p r o p o r t i o n s o f red oak and good m o i s t u r e s t a t u s a re th e most p ro d u c tiv e e c o sy ste m s observed. b) Red o ak d o e s n o t sh ow s i g n i f i c a n t a d v a n c e r e g e n e r a t i o n in any p o r t i o n o f t h e la n d s c a p e . I t i s b e in g r e p l a c e d by more s h a d e t o l e r a n t s p e c i e s : r e d m a p le on d r y s i t e s , and s u g a r m a p l e on more m e s i c s i t e s . Because o f s p e c ie s replacem ent, the c u rre n t high le v e ls of p ro d u c tiv ity are not lik e ly to carry in to the next ro ta tio n . S i l v i c u l t u r a l p r a c t i c e s which p ro m o te red oak r e g e n e r a tio n or c o p p ic e management c o u ld c o u n t e r a c t t h i s t r e n d . These c o n c lu s io n s a re s i g n i f i c a n t , not o n ly from th e f o r e s t management s ta n d p o in t, but a lso for the developm ent of tem poral biom ass acc u m u la tio n m odels. Most o f th e c u r r e n t m odels use l o g i s t i c la g g e d f u n c t i o n s t o s i m u l a t e biom ass a c c u m u la tio n over tim e (F eet 1981). A fter a large scale d isturbance, such as the e a r ly lo g g in g h i s t o r y of M ichigan, the m odels p r e d i c t a b i o m a s s o v e r s h o o t f o l l o w e d by a d e c l i n e t o a q u a s i ­ equilibrium sta te . The r a t i o n a l f o r t h e o v e r s h o o t i s th a t lan d scap e p a tc h e s a re sy n ch ro n ized , and biom ass accum ulation of patches occurs in a "lockstep" fashion. 180 Over t i m e , s t o c h a s t i c d i s t u r b a n c e and m o r t a l i t y disrupt p a tc h synchrony. T h is s tu d y shows t h a t c o m p o s i t i o n a l c h a n g e t o more s l o w l y g r o w in g , s h a d e t o l e r a n t s p e c i e s may b e a n o t h e r f a c t o r w h i c h c o n t r i b u t e s t o a d e c r e a s e i n biom ass p ro d u ctio n fo llo w in g the o v e rsh o o t. The inclusion of landscape sp atial v ariatio n and s u c c e s s i o n a l s t a t u s o f c o m p o n e n t s p e c i e s may i n c r e a s e th e p r e c i s i o n of biomass accum ulation models. LITERATURE CITED F a r r a n d , W. R. M ichigan: 1:500,000. 1984. Q uaternary geology of S outhern M ichigan G e o lo g ic a l S u rv ey D iv is io n , L e v e r e t t , F. a n d F, B. T a y l o r . 1915. P leisto cen e of Indiana and M ichigan and the h i s t o r y of the G reat Lakes. U.S. G e o l o g i c a l S u r v e y , Monograph 53. 529 p p . K o t e f f , C. a n d F . P e s s l . 1961. System atic ic e r e tr e a t in Mew E n g l a n d . G e o l o g i c a l Survey P r o f e s s i o n a l P a p e r 1179. U. S . G o v e r n m e n t P r i n t i n g O f f i c e . W a s h i n g t o n , D. C. 20 pp. M a r t i n , H. M. 1955. Map o f t h e s u r f a c e f o r m a t i o n s o f t h e s o u th e r n p e n i n s u l a of Michigan. M ichigan D epartm ent of C o n s e r v a t i o n , G e o l o g i c a l S u r v e y D i v i s i o n P u b l . 49. Peet, R. K. 1 9 8 1 . Changes in b io m a ss and p r o d u c t i o n d u r i n g secondary succession. I n : D. C. W e s t , H. H. S h u g a r t , a n d D. B. B o t k i n ( e d s . ) . F o re st S u ccessio n : C oncepts and A p p lic a t i o n s . S p r i n g e r - V e r l a g , New Y o r k . 517 p p . APPENDICES 182 APPENDU A Table A .l, Stand Nuaber I J 4 5 6 7 a 9 10 11 12 13 14 15 1& 17 18 19 20 21 22 23 24 25 26 27 29 29 30 31 32 33 34 35 L e g a l d e s c r i p t i o n s o f s t a n d l o c a t i o n s , tlSFS R a n g e r D i s t r i c t s a n d C c a p a r t a e n t s . Tow nship Range section 22N 22H 22N 17H 17H 21N 21N 229 22N 21N 20 N 22N 20 H 22 N 22K 229 179 17N 189 219 23 H 239 229 219 219 219 219 199 179 229 229 169 209 219 239 149 149 159 159 159 119 119 139 149 159 159 139 189 159 139 139 159 159 159 159 159 129 119 129 129 119 129 159 159 149 149 169 159 159 139 50 10 31 18 18 17 29 28 11 27 18 16 35 10 16 3 19 28 25 23 24 24 34 10 4 29 2 25 1 16 26 4 17 27 32 Stand lo c a tio n S NE NE SE 5E NE N N S£ NE NE N9 59 59 NE E 5 NE N NE 59 5E N9 59 NE 59 1 / 2 , N9 1 / 4 1 /4 , N9 1/4 1 /4 , SE 1/4 1 /4 , 59 1/4 1 /4 , N9 |/ 4 1 / 4 , N9 1 / 4 1 / 2 , N9 1 /4 1 /2 , N9 1/4 1 /4 , S9 1/4 1 /4 , SE 1/4 1 /4 , 59 1/4 1 / 4 , NE 1 / 4 1 /4 , SE 1/4 1 /4 , SE 1/4 1 / 4 , N9 1 /4 1 / 2 , NE 1 / 4 1 /2 , S 1/2 1 /4 , N9 1/4 1 /2 , N9 1/4 1 /4 , N9 1/4 1 /4 , N9 1/4 1 /4 , 59 1/4 1 /4 , 59 1/4 1 /4 , SE 1 /4 1 / 4 , NE 1 /4 1 / 4 , N9 1 /4 H 1/2 NE 1 / 4 , 5 9 1 / 4 9 1 /2 , N9 1/4 N9 1 / 4 , 5 E 1 / 4 , N9 1 /4 59 1 /4 , N9 1/4 59 1 /4 , N9 1/4 SE 1 / 4 , N9 1 /4 K 1 / 2 , N9 1 /4 C enter of se ctio n Ranger D istrict USFS Stand Nuaber USFS C aipartsm Nuaber M ANISTEE M ANISTEE MANISTEE BALDWIN 9ALD9IN CADILLAC CADILLAC M ANISTEE MANISTEE M ANISTEE M ANISTEE MANI5TEE MANISTEE MANISTEE M ANISTEE MANISTEE BALDWIN BALDWIN BALDWIN M ANISTEE M ANISTEE CADILLAC CADILLAC CADILLAC CADILLAC CADILLAC CADILLAC BALDWIN BALDWIN M ANISTEE M ANISTEE BALDWIN M ANISTEE MANISTEE M ANISTEE 60/599 6/846 1/536 3/596 3/594 S/816 1/M6 19/599 9/546 2Q/H9 38/546 35/599 17/816 18/896 5/596 31/596 48/596 14/599 26/599 1B/K6 27/896 123/826 1/816 1/M6 33/816 i/559 21/829 10/596 21/L i na 27/559 39/819 12/546 I8/K 6 27/559 118 119 127 95 95 83 99 104 119 87 32 110 57 108 110 108 96 97 47 86 60 54 84 15 28 98 16 152 95 120 114 145 32 87 112 193 Table A.l Stand N uiber sa 39 40 41 42 43 44 45 41. 47 49 49 30 51 52 53 54 35 56 37 53 59 60 61 62 63 64 65 66 67 69 69 70 71 72 73 74 75 74 77 79 79 90 (c o n t in u e d page 2) TcH nsbip Range S ection Stand lo ca tio n 22N 22H 23N 23N 23N 23N 1711 17N 190 1BN 21H 21N 21N 19N 20N 19N 17N 1BN 22N 21N 22(1 : ih 21M 1BH 22N 15N 16(1 16N 1311 UN 16N 14N 15H 16H 16N 1511 16H 1611 1411 13N 1311 12N 14K 1SU 13U 10W It'd 10U UN 15N 15N MU 14N t;u 13U 16U 14H *t H 'C ?J dr 22 29 13 29 33 4 30 7 14 13 20 9 4 29 25 1 16 1 19 2 12 27 1 9 28 15 6 13 17 36 24 24 21 11 11 31 32 26 29 311 1 / 4 , S U 1 / 4 NE 1 / 4 , S E 1 / 4 , N E 1 / 4 SN t / 4 , 3 U 1 / 4 NE 1 / 4 , S E 1 / 4 NU 1 / 4 , SN 1 / 4 S 1/2 N 1 / 2 , SE 1 /4 NU 1 / 4 , NU 1 / 4 (IN 1 / 4 , NU 1 / 4 4 1 / 2 , NE 1 / 4 , 5 E 1 / 4 NU 1 / 4 , S U 1 / 4 NU 1 / 4 , N U 1 / 4 E 1 / 2 , NU 1 / 4 NU 1 / 4 , N E 1 / 4 SE 1 /4 SU 1 / 4 , SE 1 / 4 N U 1 / 4 , NU 1 / 4 NU 1 / 4 , S U 1 / 4 N U 1 / 4 , NE 1 / 4 SU 1 / 4 N E 1 / 4 , NU 1 / 4 SE 1 / 4 , SU 1 / 4 S E 1 / 4 , NE 1 / 4 NE 1 / 4 , SE 1 / 4 N 1 / 2 , SU 1 / 4 SU 1 / 4 , 5E 1 / 4 N E 1 / 4 , NU 1 / 4 SU 1 /4 , SE 1 /4 N 1 / 2 , SU 1 / 4 U 1 / 2 , SU 1 / 4 NE 1 / 4 , NE 1 /4 E 1 /2 , SE 1 /4 S 1 / 2 , NU 1 / 4 SU 1 / 4 NE 1 / 4 NU 1 / 4 SU 1 / 4 , NU 1 / 4 NU 1 / 4 , N E 1 / 4 S E 1 / 4 , NU 1 / 4 NE 1 /4 N U 1 / 4 , NU 1 / 4 E 1 / 2 , SU 1 / 4 NE 1 /4 t:u 13U 15U 13N 12U 12N 13U 14N 12U 14N 14U 13H 14U 14U ION 13H 14U 12U UN 13U 13« 11H UN 14H UN 12N 12U 12H UN Ranger D istrict USFS Stand N uiber U5FS C acpartoent Nuaber HANISTEE MANISTEE CADILLAC CADILLAC CADILLAC CADILLAC BAL9UEN BALDUIN BALDUIN BALDUIN CADILLAC M ANISTEE NANISTEE BALDUIN NANISTEE BALDUIN BALDUIN BALDUIN CADILLAC CADILLAC NANISTEE NANISTEE CADILLAC BALDUIN NANISTEE WHITE CLOUD BALDUIN BALDUIN U N IT E CLOUD W HITE CLOUD BALDUIN WHITE CLOUD U N IT E CLOUD BALDUIN BALDUIN U H IT E CLOUD BALDUIN BALDUIN UH ITE CLOUD UNITE CLOUD U H ITE CLOUD U H ITE CLOUD U H IT E CLOUD 1/536 IB /536 24/816 1/916 7/816 1/926 3/596 55/596 13/596 54/546 14/596 11/536 t/536 10/536 39/596 54/535 1/596 3/4B 6 24/916 33/556 33/596 14/536 2/06 25/536 9/556 6/596 76/996 17/556 3/596 47/599 1/599 3/559 2/556 27/K 6 5/556 10/596 79/896 13/K6 11/K b 16/595 14/595 10/539 11/596 90 103 142 69 LEO 59 95 96 19 19 1 130 99 10 4 1 93 49 31 91 110 76 11 29 115 97 76 126 188 01 127 131 146 111 109 150 155 110 156 112 112 117 165 194 AFPEND II B T able 8.1, Rank o rd e r and d e tre n d e d c o rre s p o n d e n c e a n a ly s is sco res used to c re a te sy n th e sis ta b le (T able 0 .2 ). key to s y n th e s is ta b le p a g e fo ra a t shown below . R a n k BOA O rder S ccre Stand 27 73 12 74 29 11 29 78 30 90 61 31 91 75 32 91 76 33 95 39 34 99 45 35 39 69 36 90 . 73 37 9 5 15 38 100 19 39 101 70 40 109 9 41 113 67 42 114 62 43 120 16 44 126 47 45 130 77 46 132 90 47 139 20 4 9 141 17 49 141 13 5 0 144 64 1 6 4 14 51 5 2 177 69 53 193 72 R a n k OCA Crrier S c o r e S ta n d 1t 0 49 8 59 5 U 55 4 13 51 t» c« •¥TT 5 u 17 54 7 *» * 1 9 •'0 2 1 34 9 7 9 ? 28 10 33 39 11 j J 65 35 48 12 13 38 28 14 39 50 39 53 IS 47 71 18 17 49 79 19 53 46 1 1? 56 9 20 57 59 66 21 80 30 22 19 23 63 64 63 24 25 87 52 28 70 59 R a n k DCA O rder S co re Stand 54 194 44 55 199 5 56 192 60 197 10 57 197 4 59 59 206 74 7 60 222 61 234 2 2 4 4 2 1 62 63 245 35 64 249 31 6 5 2 6 5 41 66 292 40 67 292 56 69 294 57 69 295 23 70 295 32 71 295 26 72 297 42 73 305 25 74 321 6 75 321 36 76 329 24 77 335 27 73 336 43 79 347 ** 90 365 37 S ynthesis tab le page fcra a t; values are page tim bers. <------------------------------ S ta n d s ---------------------------------> 193 : 196 : 199 1 192 : 195 1 199 i S 194 : 197 1 190 ; 193 1 196 ! 199 i ! ! 199 : 191 1 194 1 197 1 200 ! ! S pecies 185 105 APPENDIX B Table 9 .2 . S y n th e sis ta b le lo r a ll woody and herb aceo u s ground H e r a w ith sta n d lev el fre q u e n c ie s of 51 o r g r e a te r , S ta n d s and s p e c ie s are ra n te d by d e tre n d e d c o rre sp o n d e n ce a n a ly s is sc o re s. V alues are aean rank abundance. Ranks t 2 ,0 re p re se n t tra c e coverage ttlX ); r a n k s t 2 . 0 c g n v e r t s i t o X c o v e r a g e b y : < r a n k * ( - i 9 . 9 7 l + ( r 3 n k 'l2 * 3 - 3 i ) + 2 ^ . I l l . Rank o rd er DCA s c o r e 1 0 3 U 4 i: 5 15 6 17 S pecies Andropogan g e ra rd ii Pinus banksiana A rctostaphylos uva-ursi Lycopodiue tris ta c h y u a C ladina spp. Q uercus e llip s o id a lis Rubus h isp id u s R udbeckia spp. C ladonia spp. L upinus p e re n n is C rataegus spp. C otptonia p ereg rin e P leuroiiui schreben P olytrichua juniperinua Coaandra u a b e lla ta D eschaapsia flex u o sa H ieraciu a venDsua G aliua circaezan s F olytrictiui p ilife ru a C hiaaphila u ab ellata H eU apyrua lire are D icranua p o lysetua Pinus resin o sa G aylussacia baccata T huidiua reco g n itu a D icranua sccp ariu a Quercus v e lu tin a C ypripediua acaule Rosa spp. Pinus strobus Leucobryua glaucua V acciniua a n g u s tifo liu a Q uercus alb a P o te n tilla staple* 7 19 3 21 9 2i 10 33 11 33 12 35 13 3i 14 39 15 39 30 S5 40 20 50 53 - 0.5 0.3 0.5 - 2.9 0.0 0.0 - 0.3 1.5 0 .3 0 .0 0.5 0 .3 0.5 - 0 .5 0.5 0.5 0.3 2.0 2 .3 1.5 - 0.9 0.3 1.5 3.0 0.0 0.3 0.5 1.0 0 .5 0.5 2.3 2.9 4.3 3 .0 - 0.3 2 .0 1.0 1.3 1.3 0.8 2.0 0.5 0.3 0 .3 0.8 2.0 2.5 3.0 - 0.3 0.5 4.3 1.0 1.0 0.3 0.8 1.8 0.3 3.0 0.3 2.9 3.8 3.0 - 49 39 55 51 33 54 ■Stand 29 34 79 0.5 0.5 2.0 0.9 3.0 0 .5 0.5 1.3 0.5 3.5 0.3 0.5 0.5 1.3 1.5 0.5 0,0 3.0 3.5 - 0.5 0.3 0.3 0.5 3,0 0.5 0.5 3.0 0.3 0.5 0.3 1.0 2.3 0.3 2.5 0.3 4.0 3.8 - 1.5 2.3 0.3 0.5 1.3 1.0 0.3 0.3 0.0 0.3 * 0.0 0 .8 2,0 0.3 0.3 5,0 0.5 4.0 3.8 - 0.5 0.3 1.3 0.3 0.3 0 .3 0.3 1.3 0.5 0 .3 0.5 0.3 1.0 0.3 1.5 1.0 0.3 1.3 0.5 2.5 4.3 1.0 1.0 0.0 0.5 0.3 0.5 0.5 0.5 0.3 0.3 2.0 1.5 1.0 3.0 0.3 2.0 2.5 0.3 2.0 3.5 - 0.3 0.0 1.0 2.5 1.0 0.8 0.3 1.0 1.5 0.5 2.8 1.0 5.0 3.9 - 0.3 0.3 0.5 0.3 0.3 0.3 0.3 0.5 0.3 0.3 0.3 1.5 1.0 0.5 0.3 2.0 0.5 0.3 4.3 2.3 - 1.0 0.5 1.0 0.9 1.0 1.3 3.3 0.5 2.0 1.9 0.9 3.0 1.0 - 1.3 0.9 0.5 i.O 1.3 2.3 1.9 3.3 2.9 1.0 1.3 1.0 3 .9 1.3 - 2.5 1.0 0.0 0.5 0 .3 1.0 * 1.3 1.3 3.3 3 .5 - 0.3 - 0.9 - 0.3 2 .3 1.0 1.3 3.3 0.3 - 0.3 4.5 3.5 2.8 3 .9 1.5 1 .3 186 Table 8 . 2 . (cant.) Rank o rd er OCA s c a r e J 11 4 1k ^J 35 51 1.2 3.3 - a 3 5 15 6 17 tt 19 9 21 9 26 13 33 it 33 12 35 13 56 14 39 15 3? 54 'S tand 29 34 79 3B 65 49 29 30 e? 2.0 0.3 - - 0.5 - 1.0 0.5 - 1.3 0.G 2* 3 31.5 - - - - - - - Species E urhynchiu* h ian s G a u lth e ria procuaberts Epigaea repens P e d icu lari; canadensis S a ssa fra s aE bidua P te rid im aquiliniua H onotropa h y p o p ith y s H ataielis virginiana C a llic la d iu t h aldanianui S iilicina stellate A ielan ch ier spp. P olytricbua c o n u n e V itis a estiv alis Car ex p e n s y N a n ic a P yrola ro tu rtd ifo lia Acer ru b ru e C e sto d iw spp. P opultis g r a n d id e n ta ta Apocynui an d ro saeiefo liu * Sailacina racesosa A ster aacro p h y llu i T rien talis b orealis D esaodiui n u d iflo ru i K onotropa uni flo ra Q ryjopsis a s p e rifo lia Ruhus a lle g h e n ie n sis Rubus idaeus Polygala p a u c ifo lia Prunus se ro tin a V iburnui a te r if o liu i Panicut la tifo liu a C onopholis a seric an a Suercus rubra Populus tre m j]a id e s L onicera canadense K niua spp. P ren anth es alba G eraniuo a a c u la tu a tfystrix p a tu la A ralia nudicaulis S alidago caesia 49 5? - - - 1.5 a.; - - - - 0.o - - - - 1.0 1.8 - 2,3 - 1.0 - * - - - - - - 5,3 m. " 4 .5 1.3 3 ,3 3 .5 - 0.3 - 1.8 0 .5 0.3 0 .3 c 1.3 3.5 1.5 1.3 7 . 0 6.0 5 . 3 6 . 5 5 . 5 * 3 . 3 0.3 1 . 5 i. j? 8 . 3 0.8 0 . 3 3 . 3 0 . 5 a. 3 0. 3 - 0.3 0.5 - - - - - - - - 0.3 - - - - - L* V ’ ’ ' - - - - - 0.3 6.3 3.5 0.3 0.3 1.0 6.3 1.5 3.5 3.3 - - - - - - - - - - 3.8 - 2.3 7 c wt J - - - - - - - - - 0.8 - 0.3 - 1.0 - 0.3 - - 1.8 5.3 1.0 - - - 0.9 - - n k| V - - 1.0 0 . 5 - v 3 2.3 , - - 0.5 - 3.5 - - - - - 0,3 - 2.8 3.0 1.5 0.5 3.0 1.0 2 . 3 1.3 3.0 2.3 - - - 3.3 2.0 t.a - 0.5 0.3 0.3 0 , 3 0.8 1 . 0 1 . 3 0 . 3 1 . 3 - 0.3 - 0.9 k-i j 5 . 3 5 . 0 6.8 7 . 0 5 . 3 1.8 0 .5 2.3 1.5 - 8.5 0 . 5 - 3 .5 0,5 - 3.3 - 0.8 ’ 1.0 - - - - - - - - - - - - 1.5 6.0 0.3 8.5 1.3 0.3 - 2.0 6.0 1.8 0.3 0.3 - - - - - - - - - - - - - - 2.5 2.3 2.0 3.9 - -»j . >., - - - - 2.5 - - - - - 0 .: 3.0 1.5 1 7 1 . •> - - 9.3 1.0 - 4,0 3.5 - - - - - - - - 0.8 - 3,5 0.3 - 0.5 0.3 - - 8 .3 - 1.5 0.3 - - - - - - - - - - - - - - 187 Table B.2. (cotit,) Rank o r d e r DCS s c o r e 1 3 2 : 3 11 4 IT 5 15 i 1' 35 51 33 54 Species (9 !’ 7 19 3 21 ? 2i 10 33 11 33 12 35 13 3i 14 39 15 I? S t a n d ........................ - ........ - ............................ 29 34 79 33 i5 40 23 50 53 F a g u s g r a n d i f o l i a ..................................................................................................................................... V iola pubescens litcfiella repens tlaiantheaue canadense ................................. Pam cue la tifo lia ......................................... - 0.5 - 8.3 C orrus flo rid a V iola so ro ria Jledeola v i r g i n i a n a ......................................................... C aipand a ro tu n d ifalia 0 . 5 ...................................... 0.5 0.5 ......................................................... F m ir m s aeericana Pol yg o n at'ti b i f l o r u n .................................................................................................. Saliua boreal e ................................................................. ........................................ EpH agus /jrg in ian a ......................................... Lycopodiufl lu c id u lu * ................................................. O strya v irg in ia n a ................................................................. ................................. S aliua triflo ru a -............................... ................................. ........................................ L /copodiui obscurui . . . _ Acer saccharu* C arpinus c a ro lin ia n a ................................. T r i 11 i u « g r a n d t f l o r u a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Saab jc js pubens ......................................... V iola canadense C a m pedunculate -................................................................................................................ R ibes cy n asb att ................................. flctaea a lb a ................................. O saorhiza c la y to n ti ......................................... - Care* deneyana H e p a tic a a c u t i l o b a .................................................. ................................. D ryopteris spinulosa ................................. ................................. T ilia aierican a ......................................................................................... E aipdC tis h e lle b c rin e Care* p ia n ta g in e a - ................................................. A diantu* p ed a tu a ......................................... tk u laria perfoiiata ................................. B otrychiu« v irg in ia n u a C aulophyllm th a lic tro id e s flitella diphylla ................................................................. ................................. A lliu i tricoccua ................................................. Di c e n t r a c a n a d e n s i s T iarella cordifolia - 183 Table 3 . 2 . leant.) Ranlc o r d e r DCA s c a r e 16 +7 (7 48 18 53 19 56 28 5? 21 5? 71 70 46 1 9 66 1.0 2.3 - * 1.2 0.2 - - - - 0.3 0.3 - 0.3 - 0 .3 3.8 - - - - - - - Species R ndropagan q e ra rd i: P in as banksiana flrctcstaphvlcs uva-ursi Ivcapodiua trista c h y u i C ladina spp. Quercus e llip s a id a lis Rubus h isp id u s R udbeckia spp. C ladonia spp. Luninus p eren n is C rataegus spp. C oeptom a p ersg rin a P leuroziue schreberi P olytrictiu* ju n ip e rin u i C ceandra u e b e lla ta D eschacpsia flex u o sa H ieraciu t venosu* S aliua circaezans P alytrkhuit p ilife ru i C tiieipbila u a b e lla ta H elatpyrue lin e a re D icranua p o ly setu a Pinus re siro sa S aylassacia baccata T huidiua rec o g n itu e D icranua s e n p a n u a Q uercus v e lu tin a C ypripediua acaule Rosa spp. Pinus strobus Leuccbryu* glaucua V accim ua an g u stiisliu a Q uercus alba P o te n tilla sisplex E urhynchiui luans Saul t h e n a procuabens E pigaea rep en s P ed icu laris canadensis S assafras albidua P teridiua aquiliniua M onotropa h y p o p ith y s - a. j a.: a.a 0.3 i - - 1.3 - 0.5 - 0.5 0.5 - 1.3 1.0 0.5 - - - - - - - - - - 0.5 8.5 - - 0 .8 0 .5 0.8 1.0 1.5 - - - - a*. fl.3 8.8 0.8 0.3 1.3 2.0 - - 22 60 'S ta n d 50 0.5 a .3 a.5 a.s 0.5 0.8 1.0 - [.: 0.3 - - 14 7v 63 21 64 25 67 26 70 27 73 28 74 29 79 '0 20 19 63 52 53 12 11 3 61 1,0 8.5 8.5 0.9 - - - - - - 0.8 0.3 0.3 - 0,3 0.3 0.5 0.3 9.5 - - - 0.5 0 .3 - 0.8 - 0.5 0.3 - - - - - - 1.8 1.0 - - 0.3 i.a 0 .9 1.8 a.5 0.5 0.5 0.5 0,3 1.2 - - - - - - - 0.8 - 0.5 - 0.3 2.8 8.3 - - - - - 0.3 - - - 0.5 0.5 1.9 0.3 - - 1.0 1.5 - - - 2.3 0,2 3 .0 - » i »J 0.3 2.0 1.3 2.0 2.3 3.5 4.0 - - - - - - 0.3 - 2.5 0.6 1.0 - 0.5 3.8 1.5 - 2.0 0.3 4.0 2.8 8.3 0.5 0.3 - - - 3.0 6.0 2.0 2.0 1.8 0.3 3,8 3.7 0.5 0.5 3.8 - - 0.5 * 3.8 0.5 J. o 2.8 0.5 8.7 - - 3.8 - - - - - 8.7 0.2 0.2 0.2 - 0.3 a.3 0.8 0.3 0.5 0.5 1.3 - - - - - j. j 1.9 - - - - - - - - 0* j 1.0 0.3 1.0 0.5 0.8 0.3 1.5 0.3 1.0 - - - - 0.5 0.2 - - - - 0,5 0 .5 2.5 - - - - 1.5 1.3 - 3.5 2.3 0.3 1.0 - - - 4.3 0.3 4.3 4.0 2.0 0.5 0.5 0.3 0.3 4.5 3.3 2.5 9.3 2.3 5.8 6 .0 - - - 3.8 2.0 0 ,3 8 .5 4 .0 3.3 0 .3 V 7 -j* -J 3 . 8 - - 0.5 3.3 i.a 3.8 2.3 0.3 3 .5 3.3 i - 2.3 0.3 4.3 3.3 j a3 0.5 3.5 3.3 - - - - - i.a * 2.5 2.0 2.0 1.6 1.5 2.8 1.3 1.5 1.5 5.0 3.5 3.7 3 .0 1.7 9.2 2.5 4.2 4.5 ki 1 Ua * 0,9 1.3 3 .9 4.3 - - - - JB9 Table S.Z. (cont.l Rank o rd e r DCA s c o r e 11) 47 17 4S 13 J) 19 56 20 57 21 59 "in - 1 60 23 63 24 64 25 s7 26 70 27 Ti ^- 2a 74 29 78 30 30 71 73 46 1 9 66 -Stand 58 19 63 52 53 12 11 3 61 . aJ - :.i - 0.3 »; • o■* 1 . 5 i . a 3.3 - 0.3 6.3 5.0 j . 3 s.: 2 .5 1.0 2 .0 3.9 0 . j 3.5 Q . 5 0 . 3 a. a - 0.3 3.3 1.3 - 0.3 2 .9 1.0 0 .5 - 0 .3 1.5 9.3 1.3 ~ - 0.5 - "i e 0,3 1.9 9.3 4.3 1.2 0.2 0.2 0.2 0,5 0.2 - 1.0 1.0 1.5 f.a 1.5 0.3 0.3 1.3 ’ 1.0 0.3 • * - 3.5 3. B 2 .0 0.3 - 3.3 0.3 2.9 0.3 0.3 0.8 2.2 0.5 ■* ^ J* J - - 0.3 S peciC 5 R aeatelis .irgtniana C a llitla d iu e haldanianu* S iilicin a stellata A e e U n ch ie r spp. P o ly trich ia coiiune V itis aestiv alis C a r e . 1: p e n s y l v a n i c a P yrola ra tu n d ifo lia Acer rubrua Q esiodiun spp. Pcpulus g ran d id en tsta Apacynun a n d ro sa e a e la liu a E ailacina raceaosa A ster aacro p h y llu i T rien talis borealis D esaodiua n u d iflo ru * K onotropa u n iftc ra O ryiopsis a sp e rifo lia Rub u s a l l e g h e n i e n s i s Rubus idaeus P olygala p a u c ifo lia 3rum js se ro tin a V iburntii a c e n f o l i u e Panicua la tifo liu a C onopholis a te ric a n a Q uercus ru b ra Populus tre a u lo id e s L onicera canadense N niua sp p . Prenantbes alba G eraniui aacu latu a H ystrix patu la A raljd nu d icau lis S oli dago c a e sia Fagus g ran d ifo lia V iola pubescens flitch elU repens H aiantheaua canadense Panicua la tif o lia Cornus flo rid a V iola so ro ria 3.5 - 2.3 2.0 0.5 2.3 - - - - - 5. a 4.0 - - - 5.3 6.5 - - - 1.0 3.0 1.5 1.3 1.0 9.3 1.3 - - - - 1.3 0.7 - - - - 4.5 2.5 3,3 3.0 1.5 3.0 - •r n J p «i - - - - - - - - - 2.8 2.8 1.3 2,5 2.5 2.3 1.5 1,5 1.2 1.5 - - - - - - - - - - - e.a - 0.5 - 0.3 1.0 9.8 0.5 0.5 1.5 1.3 - 1.3 0.8 0.5 i.a 2.3 - 0.5 0.3 0.5 1.0 - 1.0 0.3 3.5 0.3 2,3 - 0 .3 0.3 3.5 0.3 1,3 - 1.3 8.3 1.0 0.8 - 0.2 0.5 8.3 0.2 0.8 1.2 - 0.8 0.3 0.3 1.8 9.8 - - - - - - - - - 1.0 - 0.5 a.a u. 3 2.9 0.3 0.5 - - - 2.3 - 0.5 - i.a - 2.8 - 2.0 - 3.3 - 0.8 - - - - 3.3 - - - - - - - - - - - - - - - - 0.3 - 1.0 8.3 0.3 - 0.3 - - 0.3 - 0.5 0.5 - 0.5 8.3 - 0.2 0.3 9. j - - _ _ _ _ _ _ - _ 190 Table B .2. (cant.) Rank o rd er DCfl s c a r e !i 47 17 43 13 33 71 73 46 Species H edeola tir g in ia n a C am panula r a tu n d i-fo J ia F ra n n u s atericana Falygonatut b iH a ru i B aliui bcreale Spiiagus n rg in ia n a L ycspodiui lu c id u lu t D strya /irg tn ia n a Salm a tn flo ru i Lvcopadiua obscurua Acer sacch arin C arpinus c a ro lin ta n a T rtlliu a grandiflorua Satbucus pubens V iola canadense C aret pedunculata R ibes cyncsbati A ctaea alba O saorhija c U y tc n ii C aret deteyana H epatica acu tilo b a U ryopteris spinulosa T ;!ia atericana E p ip a c tis h e l 1e b o rin e Caret plantaginea A diantua p e d a tu i U vularia p e rfo lia te B otryctiiua v irg in ia n u t C aulcphyllua th a lic tro id e s flitella diphylla A lliui tricoccui D icentra canadensis T ia re lU cordifolia 19 56 20 57 21 5? - ............... I 9 66 22 60 23 63 24 64 25 67 26 70 27 73 23 74 2? 73 30 30 S t a n d ................. ...... .................... . ........... ...... 30 19 63 52 50 12 11 3 61 191 Table B.2. Icont.) Rank o rd e r DCfl s c o r e Species A ndropogon q e ra rd ii P in u s banfcsiana A rctostaphylns uva-ursi lycopodiuB tris ta c h y tii C U d in a spp. Quercus e llip s o id a l! ; Rubus h isp id u s Rudbeclcia spp. C ladonia spp. L upinus p e re n n i; C rataegus spp. C oeptonia p e re g rin s P letiroiiua schrebert P olytrichu* juniperinu* C oiandra u a b e lla ta O esehaapsia flex u o sa H ieraciua venosua S aliua circaeians P olytrufiua p ilife ru * C hiiaphiU uabellata H elaapyrui tin eare O icranua polysetu* Pinus resin o sa G aylussacia baccata T huidiua rec o g n itu a O icranua scopariua Q uercus v e lu tin a C ypripediua acaule Rosa spp. Pinus stro b u s Leucubryua glaucua V acciniua a n g u s tifo liu a Q uercus alba P o t e n ti 1 1a s ta p le * E u rh y n c fu u i hiarts G au lth eria procuabens E pigaea repens P ed icu iaris canadensis S assafras albidua P terid iu i aquiliniua honotropa hypopithys 'j . . 31 yk 21 tV?J 35 Zi 33 35 33 36 90 37 95 39 100 39 101 40 189 41 113 42 114 43 129 44 126 i5 130 ■.r 76 39 *5 33 73 15 19 70 9 97 62 16 47 77 * 0.5 - 1.0 3.3 - 0.3 - 0.5 3 ,3 i.i 0.3 - 0, „ - - 0.5 - - - - - 0.5 3.3 2.5 0.3 0.0 2.0 1.3 1.0 * 3,3 - 0.5 8.8 - - - - 1.3 0.5 - * * ■ 9.3 0.8 1.3 - - - - 1.0 0.8 0.5 0.3 * 0.5 0.3 0.3 0.8 l.S - - 0.3 3.3 0.5 1.0 - - :.e 3.5 3.3 3.5 3.3 1.3 - I.S - 3,5 2.0 3.3 m * 3.5 3.3 1.5 3.5 6.3 - 0.5 1.0 1 . 3 3 .3 1.3 0 .5 0.0 0 .5 0.5 2 ,0 0 .5 2.5 - - 2.3 - - - 2.0 3.5 - - 3.9 2.5 3,3 0.5 3.5 2.3 - - 3,3 2.5 - 3.3 Lt 'r J - 0.0 2.5 2 .3 2.0 0 . 3 3.5 2.3 3.5 - 4.3 5.0 0.3 2.5 0.3 0.5 3.0 4.5 - 2.3 0.5 0.5 3.5 0.5 4 .0 3.3 ■j. 0 1 . 3 ' 0.5 0.5 0.3 9 .3 0.3 0 .3 1.3 0 .3 0 .5 - 0 .5 - 0.3 - - - - 0.B 2.3 3.3 0.3 2.3 0.8 2.8 2.5 - 1.9 1.9 - - 0.3 0.3 - - 0.3 - 2. a 2 . 9 — n - 1.0 2 .0 8.3 3,5 4.5 5 .3 - 1.5 - 1.5 0.5 3.3 2.5 - - 1.0 - 5.0 2.3 0,3 1.3 3.3 4.3 - - - 0,5 0.5 9.3 - - - 0.3 3.5 T T h'« J 2.5 0.5 B . 6 - - - - 0.3 - I.B - - l.S 0.3 - 0.5 - 0,3 5.3 5.0 B.3 0.3 2.0 2.3 3.0 2.0 2.3 0.5 1.3 0.3 2.5 0.5 2.0 0.9 0.5 1.9 0.9 - I.B - - - Species 'i H edeola v irg in ia n a C am panula r o t w i d i f a l i a F raxinus aaerican a Polygonatua b ifto ru * G aliua bo realp Epifagus v irg in ian a Lycopodiu* lu c id u lu i O strya v irg in ia n a G aliua triflo ru a Lycopodiu* obscuru* Acer saccharu* C arpinus carol ini ana T rilliu * grandifloru* Saabucus pubens V iola canadense C arex p ed u n cu lata R ibes cynosbati A ctaea alb a O saorhira c la y to n ii C arex deueyana H epatica a c u tilo b a D rycpteris spinulosa T ilia aaericana E pipactis helleborine C arex p la n ta g in e a A diantua pedatua U vuU ria p erfo liata B otrychiua v irg in ian u a C aulophyllua th a lic tro id e s flitella diphylla A lliua tricoccua D icentra canadensis T iarella cordifolia - 3.5 i.a a.3 a.: 0.5 2 . 7 a.5 - a.5 I . : 2.5 a.: 1.2 0.5 1.2 0 .3 e.3 e.3 - 0.5 i.e 1.3 3.3 - i.: 3.2 3.5 t.S 1.9 1 . 3 e.3 0 . 5 e.3 - 0 .3 2 . 3 1.5 2 . 5 2 . 5 I.B 3 . 5 a,3 - I.B - 0.9 e .3 - 3.3 3.3 - e.3 - e.3 - 0.5 - 2.3 0.3 0.5 - * B.3 1.5 e.a 1 . 0 - 0.3 - 0.5 ~ - - 1.9 3.0 0.5 0.5 1.0 1.5 3.5 - 5.B 0 .3 - 2 .5 1.3 0 .3 B.3 1.5 - 0.3 0.5 * 0.5 0 ,3 - 0 .3 1.3 * 0 ,3 0.5 ’ 0.5 - 0.9 1.5 0.5 0.5 1.5 - 0.3 - 0.3 - 3, 3 - 8.5 - - 1.5 0.5 - 2.3 1.3 B.5 0.5 1.3 2.9 - - 0.5 0 .5 0.9 0.3 0.0 1.5 0 .3 B .5 - 0.3 0.5 B .9 2.5 - 0.3 0.5 2.0 0.3 0.5 3.5 - - - - 3.3 1.7 1.2 1.0 1.5 - - 1.9 0 .9 I.B - 3.5 1.2 2 .0 1.3 2.0 0.3 3. B 1.3 1.7 0.5 - - 5,0 0.5 0.3 0.5 B .5 0.3 B .5 0.5 0.3 0.9 0.3 1.9 0.9 0.3 0.3 0.3 0 . 3 I.B - 1.2 0 .3 - 0.7 0.3 - 3.3 e.3 - 0.7 - Table 9 ,2. (c e n t . ) Rant order DCA s c o r e 74 77 32? 335 Species 24 A ndropogon g e ra rd ii Pinus banksiana A rctostaphylos uva-ursi Lycopodiu* trista c tiy u a C ladina spp. Q uercus e llip s o id a lis Rubus M sp id u s R udbeckia spp. C ladonia spp. L upinus p eren n is C rataegus spp. C oaptonia p e re g rin s P leuroiiu* schreberi P olytrictiui ju n ip erin u a Coaandra u ib e lla ta D eschaapsia TLenuosa Hi e r a c i n i v e n o s u i S a lim circaezans P nlytrichu* p ilife ru a C hisaphiia u a b e lla ta K elaapyrua lin e a re D icranua p o ly setu a Pinus resin o sa G ayjussacia baccata T htiidiua rec o g n ittia D icranua scopariua Q uercus v e lu tin a C ypripediua acaule Rosa spp, Pinus strobus leucobryu* glaucua V acciniua a n g u s tifa liu a Q uercus alba P o te n tilla siaple* E urhynchiua h ian s Saul tfieri a p ro cu ib en s Fpigaea repens P ed icu laris canadensis S assafras albidua P teridiu* aq u ilin iu a N onotropa h ypopithys 70 7 ? SB 334 347 345 Stand----------27 43 22 37 281 Table 8 . 2 . ( c o n t .) Sant order DCA s c o r e 7i 327 S pecies 77 335 78 ;3e 79 347 30 365 ■Stand' I TJ 4 3 22 37 0.3 2.0 * 1.5 0.B 8.3 8.5 2.0 2.5 1.0 8.5 - ' 1.0 ' 1.5 0.3 * 2.8 0.5 - « H aaaielis v irg in ian a C a llic la d iu a tialdaniantii S ailicini ste lU ta A ielan ch ier spp. P olytnchui co«une V itis aestiv alis Carex p sn sy lv an ica P yrola ro tu n d ifo lia Acer rubrua D esaodiua spp. P opulus g ran d id e n ta ta Apocynua a n d ro sa e ie fo liu i Sailacina raceiosa A ster aacrophyllua T rien talis b orealis D esaodiua n u d iflo ru i M onotropa u n i f l o r a O ryiopsis a sp e rifo lia Rubus a lleg h en ien sis Rubus idaeus Polygala p a u c ifo lia Prunus sero tin a V iburnua a c e rtfo liu a Panicua U tif o liu a C onopholis a a e ric an a Quercus rubra Populus tre a u lo id e s Lonicera canadense H niua spp. P ren an th es alba G eraniua a acu latu a H ystrix patula A ralia nudicaulis S oli dago caesia Fagus g ran d ifo lia V iola pubescens H itch ella repens N aiantheaua canadense Panicua la tilo lia Cornus flo rid a V iola sa ro ria :.a 8.3 8.3 2.8 2.8 E.5 * 1.8 1.5 8.3 8.5 2.8 8.3 2.8 8.5 - 1.5 8.3 8.5 * 2.5 a.5 a.B 2.0 a.B 1.8 8.5 1.8 1.8 - 8 ,3 1.3 1.5 0.5 2.5 0.3 0.3 8.3 8.S 0.3 0.3 2.3 2.3 0.3 - 302 T able B.2. tcont.) Rank o rd e r OCR s c o r e 76 32? 77 73 7? 335 334 347 Stand S pecies 27 N edenta v irg in ia n a C atpanula ro tu n d ifo lia F raxinus aaericana P olygonatua b iflo ru t S aliua boreale E pifagus v irg in ian a lycopodiua lu cid u lu a □ strya v irg in ian a G aliua triflo r u a Lycopodiua obscurua Acer saccharua C arpinus c a ro lin ia n a T rilliu a grandillorua Saibucus pubens V iola canadense Carex p ed u n cu lata R ibes cyn o sb ati A ctaea alba Q siorhiza d a y to n ii Carex dexeyana H epatica a c u tilo b a D rynpteris spinulosa T ilia aaericana E pipactis beltebnrine C arex p lan ta g in e a A diantua pedatua U vularia p e rlo lia ta B otrychiua v irg in ia n u t C aulophyllua tb a lic tr a id e s fiitella diphylla A lliua tricoccua B icentra canadensis T iarella cardiF olia 30 365 - - 8.3 ■*J a *J 2 . 5 a .s 0.3 1 .3 0 . 3 - - i.0 2.3 3.8 - t.S - 43 22 37 - - - 3 .3 2 .0 1.5 - B.a 2.5 2.0 1 .5 - 0.3 1.5 0.9 - 2.5 1 .0 3.0 1.8 8.3 0.5 - - - 3.5 3.3 3.3 4.0 6.3 0.3 2.0 0.5 1 .3 1 .0 - - 0.3 1.3 0.3 - - 0.S 1.3 1.3 - 2.3 0.3 1 .5 i . a 0 . 5 - 0.3 0.3 2 . 3 4 . 3 1.5 - 1.6 1 .3 0 . 3 2.0 0.3 0.3 0.3 1 .3 1.3 1.0 2 .0 1.5 2 .5 0.5 2.8 1 .3 1 .0 1 .3 1 .5 1 .3 0.5 2.0 0.5 1 .0 1.5 0.3 0.5 0.3 0.G - - 1 .0 0.3 0.3 0.5 4.0 0.3 3.0 0.3 8.5 - - 1 .0 0.8 0.3 0.B - 1.3 0.3 - 8.3 9 . 5 1 .0 2 . 8 2 . 0 1 .0 8 . 3 0 . 3 0 . 5 1.3 9 . 5 1.0 2 . 0 0.5 2.0 0.3 0 . 3 8 . 3 1 .5 0 . 3 1 .3 0 . 3 283 APPENDIX C T able C .i. P h y sica l and c h e iie a l s o il p r o p e r tie s , s m i a r i z e d by sta n d . a ~ 10 c i X O rganic STAND C a r b o n 1 2 J 4 5 6 7 B 9 10 11 t: 13 14 15 16 17 IB 19 20 21 22 23 24 15 76 27 73 19 30 31 32 33 1.89 2,90 2 .4i 2.69 2.29 2.6B 2.73 1.76 2.79 2.93 2.15 1.76 2.04 2.23 2.39 2.26 1.93 2,35 2.34 2.41 1.62 6.41 1.69 4.12 2,49 2.05 3.24 1.90 2,00 2.26 2.91 1.36 45 - 55 c i d ep th pH 4.00 4.36 3.93 4,13 4.17 5.53 4.10 3.37 3.34 4.46 4.00 3.93 4.42 3.39 3.92 4.20 4.13 3.76 4.07 4.18 5.76 3.33 5.48 4.15 4.56 5 . SB 3,74 4.14 4.12 4.53 4.59 3.57 I coarse and tediua sand X very lin e and fine sand 55.1 73.4 29.0 4 0.7 42.4 56.0 5 7.7 79.4 15.0 56.1 5 9.9 60.6 50.4 72.5 54.3 19.6 4.1 33,5 22.2 13.7 6 .0 6.9 6.4 61.2 2.0 6.2 6.3 9.9 5.7 19.7 14,7 3.6 26.7 IB .! 13.3 4.9 4,9 6.1 51.9 1.0 5 .5 5 .6 7.0 5.2 16,2 0.279 0.343 0.203 0.273 0.251 0.280 0,303 0.366 0.127 0.28? 0.319 0.299 B.2SB 0.361 0,294 73.5 77.4 33.1 53.1 73.9 57.3 3 3.3 4 5,7 4B .4 62.3 75.7 50.5 07.3 5 2.4 4.1 4.0 3.3 5.3 6.9 2.7 16.2 3 .2 10.2 3.2 5 .3 10.3 3.6 17.0 3.9 3.7 3.6 4.2 6.3 1.2 6. B 4.3 7.2 6.6 5.1 7.4 3.5 S.B 0.390 0.3B 9 0.474 0.311 0.381 0.292 0.234 0.272 0.277 0.319 0.399 0.235 0.403 0,273 65.2 2.4 1.0 0.312 X iean s i l t w eighted + particle clay d iaa e ter 95 - 125 c i depth X coarse I and very lin e ■ediui and sand fin e sand X lean s i l t w eighted ♦ p article clay d ia ie te r 13.0 71.1 54.0 34.4 22.5 63.2 41.0 6.7 14.0 42.1 23.3 2.0 28.7 6.4 12.5 37.2 15.1 1.4 0.158 0.332 0.309 0.201 0.19? 0.304 30.4 23.7 73.1 57.0 59.1 56.8 79.7 41.3 24.5 67.2 76.2 33.3 28.5 76.3 02.2 23.3 26.7 63.4 53.3 90.6 63.1 90.8 54.7 55,6 52.2 0.2 41.3 0.7 5.6 4.6 5.1 1.4 30.1 4 2.2 5.3 2.9 3.3 14.5 1.9 0.8 13.5 B .l 3.8 25.6 2 .3 4.3 1.1 18.3 9.6 3.6 8.1 24.7 0.6 4.3 2.3 3.4 1.3 15.7 24.7 4.4 2.8 3.0 5.5 3.7 0.3 9.1 3.9 2.3 24.4 2.3 4.2 1.8 7.1 5.1 2.0 0.352 0.132 0.337 8.313 0.313 0.306 0.367 0.253 8.134 0.359 0.363 0.477 0.226 0.375 0.3B 9 0.225 0.223 0.334 3.256 0.439 0.352 0,378 0.306 0.316 0.233 204 Table C . 1. (cant.) 45 - 55 ca depth 0 - 10 c e X O rganic STAND C a r b o n 34 35 36 37 33 3? 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 6B 69 70 71 1.55 1.93 1.38 5.06 2.16 2.67 2.25 2.19 2.52 4.54 2.70 2.21 1.67 2.66 i . ea 2.11 2.09 2.00 2.70 2,02 1.91 2.16 2.54 2.32 2.47 2.29 1.35 2.41 1.45 1.60 1.56 2.17 2 .33 1.04 1.72 1.13 1.42 1.04 pH 3.95 4.29 4.48 5.38 4.00 3.99 4 .27 3.93 3.37 4.23 4.27 4.08 3,97 4.07 4.29 3.94 4.33 4.20 3 .99 3.82 3 .63 4.07 4 .04 4.21 3.91 3.98 4.09 4.17 4,19 4.26 4,55 4.00 4.19 4.10 4.43 4.19 4.46 I coarse I v e r y and fine aediua and sand fin e sand I aean s i l t w eighted t particle clay d iae e ter 9 5 - IBS c a d e p t h I coarse and tediue sand mJ. very fine and fin e sand aean t w e i g hted silt f particle c la y cfiaaeter 70.1 62.3 73.5 55.7 7B .4 66.4 6.0 12.8 6.4 13.3 3.2 3.9 4.3 10.3 5.8 9.8 a. 0 3.3 0.34B 0.324 0.346 0.303 0.374 0.348 78.9 56.4 69.9 51.6 81.1 59.5 1.6 12.3 2.5 20.1 1.0 4.2 1.6 9,6 1.9 16.6 0 .9 3.2 0.373 0.385 8.353 0.289 0.387 0.325 92.5 2.2 2.0 0.332 70.3 1 .3 1.1 0.332 39.4 57.7 67,4 62.7 65.2 53.3 34.6 46.5 64.5 90.8 30.3 37.1 77.5 37.8 65.6 64.0 61.6 71.9 58.5 70,3 65,3 22.3 3.7 3.4 5.6 7.1 4,5 2.5 9.4 1.6 5.6 6 .3 2.2 2.0 25,8 5.1 4.0 7.8 6.4 11.3 9.1 10.7 14.7 2. a 2.5 4.0 4.3 3.5 2.4 a.3 1 .3 5.4 6.2 2.2 1 .7 18.0 4.2 3.5 6 .2 5 .9 3 .9 7.2 B .7 0.234 0.297 0,342 0.319 0.345 0.380 0.407 0.270 0.316 0.46? 0.407 0,412 0.386 0.236 0.335 0.332 0.321 0.349 0.30? 0.352 0.341 3.7 55.3 59,7 76.1 57.5 52.7 93.1 45.0 45.4 93.5 3 2.4 36.9 61.6 53.6 6 5.4 60.7 53.5 77.4 68.2 74.0 52.4 59.0 3.5 4.5 1 .8 3.2 2.5 0.9 7.7 15.2 1.5 3.1 1.0 2.5 7.2 6.3 2.0 10.7 1.9 4.3 2.1 20.1 2 9.9 1,7 2.5 0.2 2.7 I.B 0.9 6.3 13.1 1.4 2.8 1.0 2.1 4.5 4.9 1.8 6.5 1.5 2.8 l.B 16.7 0.126 0 .289 0.323 0.341 0 .309 3.293 0.416 0.276 0.266 0.439 8.443 0.394 0.314 0.301 0.333 0.311 0.295 0.372 0.351 0,357 0.279 72.3 65.2 3.1 10.2 6 .9 7.7 0.343 0.335 48,4 57.0 6 4.8 17.9 10.3 6.0 15.8 7.0 4.0 0 .266 0.305 0.318 80.0 81.7 66.3 51.8 68.2 92.1 2.2 5.4 0.4 26.4 9.2 2 .7 1.5 4.S 4.8 23.1 6.4 2.2 0.373 0.398 0.309 0.253 0.331 0.375 205 Table C . I . ( c ent.I 45 - 55 ca depth 0 - 10 c a X O rganic STAND C a r b o n 72 73 74 75 74 77 7B 79 30 2.22 1.33 1.24 1.43 1.B 4 1.17 1. 0 ? 1.69 1.37 pH 4.13 4.07 4.43 4.41 3.94 4.45 4.09 4.24 4.15 Vj* I coarse and ,e ry f in e aediua and sand fine sand 36.5 49.0 62.3 65.6 77.5 41.3 61.2 70.1 37.9 47.1 7.3 9.1 3.4 5.0 7.8 B .B 7.7 ie.3 X aean s i l t w eighted + particle clay d ia ie te r 42.6 6.3 6.6 7.2 4.7 4.7 7.4 7.0 10.0 0.207 a.2B9 0.330 0.34B 0.374 0.255 0.305 0.367 0.250 95 - 105 ca depth X X coarse and v e ry f in e and aediua sand fin e sand 63.0 65.3 75.0 32.9 74.0 55.3 67.3 35.1 42.4 31.5 4.4 3.1 4.3 3.1 8 .7 2.1 2.2 IB .3 X lean s i l t w eighted + particle clay d ia ie te r 31.4 2.4 2,1 4.0 2.4 6.3 0,7 2.1 9.5 0.321 0.343 0.360 0.426 0.354 0.235 0.329 0.424 0.24B