INFORMATION TO USERS While the moat advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the m aterial submitted. For example: • M anuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • M anuscripts may not always be complete. In such cases, a note will indicate th a t it is not possible to obtain missing pages. • Copyrighted m aterial may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize m aterials (e.g., maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left-hand com er and continuing from left to right in equal sections w ith small overlaps. Each oversize page is also film ed as one ex p o su re a n d is a v a ila b le , for a n additional charge, as a standard 35mm slide or as a 17”x 23” black and white photographic print. M ost p h o to g ra p h s rep ro d u ce a cce p tab ly on p o sitiv e microfilm or microfiche bu t lack the clarity on xerographic copies made from th e microfilm. For an additional charge, 35mm slides of 6”x 9” black and white photographic prints are available for any photographs or illu stratio n s th a t cannot be reproduced satisfactorily by xerography. O rder N u m b er 8T22859 S u lfate adsorption In M ichigan forest soils M acDonald, Neil William, Ph.D. Michigan State University, 1987 U'M-I 300RZcebRdL Ann Aibor, MI 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this docum ent have been Identified here with a check mark 1. Glossy photographs or p a g es_____ 2. Colored Illustrations, paper or print______ 3. Photographs with dark background_____ 4. illustrations are poor copy______ 5. Pages with black marks, not original copy______ 6. Print shows through a s there is text on both sides of p a g e _______ 7. Indistinct, broken or small print on several pages 8. Print exceeds margin requirem ents______ 9. Tightly bound copy with print lost In spine_______ . if 10. Computer printout pages with Indistinct print______ 11. Page(s)____________lacking when material received, and not available from school or author. 12. Page(s)___________ seem to be missing in numbering only as text follows. 13. Two pages num bered 14. Curling and wrinkled p ag es______ 15. Dissertation contains pages with print at a slant, filmed a s received 16. Other_______________________________________________________________________ . Text follows. f /' University Microfilms International SULFATE ADSORPTION IN MICHIGAN FOREST SOILS by N e i l W i l l i a m M acDonald A DISSERTATION S u b m itted to M ichigan S t a t e U n i v e r s i t y in p a r t i a l f u lf ill m e n t of th e req u irem en ts fo r th e degree of DOCTOR OF PHILOSOPHY D epartm ent o f F o r e s t r y 1987 ABSTRACT SULFATE ADSORPTION IN MICHIGAN FOREST SOILS by N e i l W i l l i a m M a cD o n ald The o c c u r r e n c e of a cid ic atm o sp h eric d e p o sitio n raised c o n c e r n s o v e r a d v e r s e c a t i o n l e a c h i n g e f f e c t B on M ic h ig a n forest so ils w ith low c a t i o n exchange c a p a c i ti e s . L eaching e f f e c t s o f a c i d d e p o s i t i o n d e p e n d on m o b i l i t y o f s u l f a t e the s o i l . L ittle of th ese s o il s stu d y w ere was known, h o w e v e r , c o n c e r n i n g t h e a b i l i t y to adsorb s u l f a te . to d eterm in e M ich igan f o r e s t s o i l s a d so rp tio n to so il to th e The o b j e c t i v e s o f t h i s a b ility adsorb p ro p erties, zone s o i l of su lfa te , and t o p re d ic t s u l f a t e ad so rp tio n in s im ila r F rig id in rep re se n ta tiv e to re la te d evelop su lfa te eq u atio n s to forest so ils. series s t u d i e d w ere G r a y li n g (T ypic (E ntic H aplorthods), K alkaska (T ypic H a p l o r t h o d s ) , and M ontcalm ( E u tr i c G l o s s o b o r a l f s ) . M esic U dipsam m ents), zone s e r i e s O s h te m o Rubicon s t u d i e d were S p in k s (T ypic H a p l u d a l f s ) . e ach s e r i e s were sam p le d . (Psam m entic H a p l u d a l f s ) and S ix random ly l o c a t e d pedons o f S u l f a t e a d s o r p t i o n was d e t e r m i n e d b y s h a k i n g 1 0 g r a m s o i l s a m p l e s f o r 24 h o u r s i n 5 0 mL 0 . 0 1 £1 C aC l2 so lu tio n filtra te s a d so rp tio n c o n ta in in g 10 mg w ere t u r b i d i m e t r i c a l l y was c alcu late d SO4 - S L- 1 . an aly zed from for re d u c tio n so lu tio n SO4 - S a n d in SO 4 - S concent r a tio n . Bw, B s , a n d Bh h o r i z o n s o f f r i g i d zone s o i l s and E and Bt h o rizo n s ad so rb in g o f m esic zone a b ilitie s. b etw een se rie s so ils had No s i g n i f i c a n t in to ta l D i f f e r e n c e s betw een s e r i e s h ig h est d ifferen ces su lfa te in th e w ere a d so rp tiv e lo ca tio n of su lfa te found c ap a city . a d so rp tio n w ith in th e s o i l p r o f i l e su ggested th a t th e flow p a th o f p e rc o la tin g so lu tio n s may b e m o r e to acid d e p o sitio n In m ost ammonium & o il h o rizo n s, c o rre la te d o x a la te an aly ses in d eterm in in g e f f e c t s th an t o t a l subsurface stro n g ly im portant e x tra c ta b le d em o n strated th at be p r e d i c t e d a d so rp tiv e c a p a c itie s. su lfa te w ith ad so rp tio n was d ith io n ite -c itra te and A l. su lfa te using M u ltip le a d so rp tio n stu d ied co u ld d eriv ed fro m com m only m e a s u r e d s o i l re la tiv e ly c o e f f ic ie n ts o f m u ltip le d e te rm in a tio n to 0 .9 4 , p red icto rs d ep en d in g so ils C a lc u la tio n s present le v e ls rete n tio n c a tio n g ro u p in g of re g re ssio n in few the v a ria b le s p ro p erties. (R^) Maximum ranged so ils and so ils fro m 0.85 sp e cific em ployed. Q u an tities fo rest on se n sitiv ity by lo sse s of su lfa te are based re la tiv e ly on to ta l of su lfa te th ese so ils re su ltin g p e rio d s m easured in adsorbed in d icated weak su lfa te ad so rp tiv e from reduce, acid years or decades. M ichig an adsorbers. c a p a c itie s d e p o s itio n su g g ested w ill th at but th at not d e p o sitio n and su lfa te p rev en t, for tim e ACKNOWLEDGMENTS I thank D r. Jam es p ro v id ed a d v ice, guidance, of t h i s stu d y . L. B. H a r t , w h o a s my m a j o r p r o f e s s o r and s u p p o r t t h r o u g h o u t t h e l e n g t h I a l s o t h a n k D r . B o y d G. E l l i s , Mokma, D r . K u r t S. P r e g i t z e r , and D r. C a r l serv in g o n my g u i d a n c e c o m m i t t e e a n d f o r a d v ic e d u rin g a ll phases ap p reciate th e counsel D octoral I e sp e c ia lly on b asis d a ily stu d ies. D r. p h ilo so p h y occasions, a d v ice, co n stru ctiv e stu d y . I g re a tly p r o v i d e d d u r i n g my th ro u g h o u t N g u y e n ’s p ro v id ed D r. Phu assistan ce, th e g en ero sity much n e e d e d len g th of v. N guyen, who and encouragem ent of sp irit my g rad u ate and personal in sp iratio n on n u m e ro u s f o r w h i c h I am d e e p l y g r a t e f u l . thank my fello w F orest S o ils R o b ert C heeney, D ennis M e rk e l, P ad ley , th eir in d iv id u a ls ack n o w led g e p ro v id ed I th ese th is W. Ramm f o r program . u n stin tin g ly a of D r. D e l b e r t for th eir en co u rag em en t, w illin g ly g rad u ate A ndrew B u r t o n , g iv en and c a m a ra d e rie . stu d e n ts, and E u n ic e a ssistan ce , Thanks a lso a d v ic e , go t o B ruce B i r r , U n ited S t a t e s F o r e s t S e r v i c e , f o r h i s a s s i s t a n c e and frien d sh ip . These p e o p le h elp ed m ake t h e D o ctoral program an e n j o y a b l e a s w e l l a s an e d u c a t i o n a l e x p e r i e n c e . I g ra te fu lly ack n o w led g e th e iv assistan ce o f num erous S o il C o n serv atio n D ep artm ent assistan ce of in N atu ral F orest R esources lo catin g to sa m p le s o i l s assistan ce S erv ice, S erv ice, p ersonnel sam p lin g s i t e s in a re a s under t h e i r g re a tly ex p ed ited and M ich ig an who p ro v id ed and g r a n te d p e rm is s io n ju risd ic tio n . T h eir t h e p e r f o r m a n c e and c o m p l e t i o n of th e fie ld w o rk in v o lv e d in t h i s research. I am e s p e c i a l l y i n d e b t e d t o my f a m i l y f o r t h e i r m o r a l su p p o rt th ro u g h o u t th e d u ra tio n S isy p h ean task . encouragem ent sta n d ard s I as need. w ell a g ain st ach iev em en ts. D ouglas, thank I my p a r e n t s as w h ich th an k for a s s is tin g o f w hat a t tim e s seem ed a my for I for se ttin g m easure fath e r, th eir by my o w n G eorge, co n fid en t ex am p le e ffo rts and h ig h and b ro th er, me w i t h f i e l d w o r k a t v a r i o u s t i m e s o f F i n a l l y , I t h a n k my w i f e , D o r e e n , f o r h e r u n f a i l i n g lo v e, assista n ce , and e n c o u ra g e m e n t a t a l l v tim es. TABLE OP CONTENTS Page L I S T OF T A B L E S ............................................................................................... ix L I S T OF F I G O R E S ............................................................................................... x iv C h ap ter I II III INTRODUCTION .......................................................................... 1 CLASSIFICATION OF SOIL SENSITIV ITY . . . 3 OBJECTIVES .......................................................................... 7 LITERATURE REVIEW: ADSORPTION AND RETENTION OF SULFATE BY SOILS ........................... 8 FACTORS INFLUENCING SULFATE RETENTION IN S O I L S ................................................................ 9 MECHANISMS OF SULFATE RETENTION IN S O I L S ........................................................................... 17 APPLICATION TO PRESENT STUDY ........................... 21 PRELIMINARY LABORATORY STUDIES ........................... 22 SOIL SAMPLING AND D E S C R I P T I O N ................. 22 EXPERIMENT 1 - MONTCALM LOAMY SAND . . . 24 M e t h o d s ...................................................................... R e s u lts and D is c u s s io n - 24 E xperim ent 1 . A d so rp tio n Iso th e rm s - E xperim ent 1 . 26 . 35 EXPERIMENT 2 - GRAYLING AND KALKASKA S E R I E S ..................................................................... 38 M e t h o d s ...................................................................... 39 R e s u l ts and D is c u s s io n - E xperim ent 2 . 39 SUMMARY AND CONCLUSIONS .......................................... 45 Vi Chapter IV V Page MATERIALS AND METHODS..................................................... 46 SOIL SERIES S T U D I E D ..................................................... 46 SELECTION OF SAMPLING LOCATIONS ...................... 48 FIELD SAMPLING METHODS 51 ........................................... LABORATORY AND ANALYTICAL METHODS . . . . 56 METHODS OF STATISTICAL ANALYSIS ...................... 62 SULFATE ADSORPTION AND EXTRACTABLE SULFATE I N MICHIGAN FOREST SOILS ..................................... 63 SULFATE ADSORBING HORIZONS VI V II ................................ 65 EXTRACTABLE SULFATE ..................................................... 75 SULFATE ADSORPTION - INTER -S ER IE S COMPARISONS..................................................................... 77 EXTRACTABLE SULFATE - INTER -S ERIES COMPARISONS..................................................................... 81 EXTRACTABLE SULFATE CONTENTS - SOIL P E D O N S ............................................................................... 84 D I S C U S S I O N .......................................................................... 87 SUMMARY AND CONCLUSIONS ........................................... 91 RELATION OF SULFATE ADSORPTION TO SOIL P R O P E R T I E S ............................................................... 93 CORRELATIONS - ALL S E R I E S ..................................... 93 CORRELATIONS - MESIC AND FR IG ID ZONE S O I L S .............................................. 100 SUMMARY AND CONCLUSIONS ........................... 109 PREDICTION OF SULFATE ADSORPTION IN FOREST SOILS ..................................................................... 110 REGRESSION ANALYSIS ..................................................... 110 REGRESSION EQUATIONS ................................................ 113 LINEAR DISCRIMINANT FUNCTIONS ........................... 134 SUMMARY AND CONCLUSIONS ........................................... 138 vii Chapter Page V I I I PREDICTION OF SULFATE ADSORPTION IN MICHIGAN FOREST SOILS USING EXISTING SOIL CHARACTERIZATION D A T A ................................ 140 FRIGID ZONE SO IL S E R I E S ........................................... 14 1 MESIC ZONE SO IL S E R I E S .......................................... 148 COMPARISON OF DATA B A S E S ..................................... 151 SUMMARY AND CONCLUSIONS .......................................... 157 SUMMARY AND CONCLUSIONS.............................................. 159 MICHIGAN SOIL SERIES SENSITIVE TO ACID D E P O S I T I O N .......................................................... 169 PEDON DESCRIPTIONS AND ANALYTICAL DATA FOR SAMPLED S O I L S ..................................................... 176 APPENDIX C DESCRIPTION OF ANALYTICAL BULKSAMPLE * . 219 APPENDIX D ANALYSIS OF VARIANCE TABLES NOT INCLUDED I N T E X T ............................................................................... 220 IX APPENDIX A APPENDIX B LITERATURE C I T E D ............................................................................................... viii 228 L I S T OF TABLES Page A n a l y s i s o f V a r i a n c e R e s u l t s - M ontcalm Loamy S a n d ..................................................................... 26 S o i l pH o f A i r - D r y a n d F i e l d - M o i s t S a m p l e s ............................................................................... 35 E s t im a te d P a r a m e te r s f o r F r e u n d l i c h and L angm uir I s o t h e r m s ................................................ 37 A n a ly sis o f V arian ce R e s u lts - G ray lin g S a n d .................................................................................... 41 A n a ly sis o f V arian ce R e s u lts - K alkaska Loamy S a n d .................................................................... 43 C o r r e l a t i o n s B etw een A i r - D r y and F i e l d - M o i s t S a m p l e s ............................................... 44 S e l e c t e d S o i l C hem ical P r o p e r t i e s b y S e r i e s .......................................................................... 72 A n a ly sis of V arian ce R e s u lts - S u lf a te A d so rp tio n ..................................................................... 80 A n a ly sis of V arian ce R e s u lts - E x tr a c ta b le S u l f a t e ............................................................................... 82 E x t r a c t a b l e S u l f a t e C o n t e n t s t o 1 5 0 cm by S o il S e rie s .......................................................... 86 E x t r a c t a b l e S u l f a t e C o n t e n t s t o 1 5 0 cm by G e o g rap h ic R egion .......................................... 87 C o r r e l a t i o n s B etw een S u l f a t e A d s o r p t i o n and S o i l P r o p e r t ie s . . . ................................ 94 V a ria b le s In clu d ed in F in a l R eg ressio n E q u a t i o n s .......................................................................... 112 Summary o f O u t l i e r s Removed f r o m R e g ressio n E q u atio n s ........................................... 1 14 ix Table Page 7 .3 7 .4 7 .5 7 .6 7 .7 7 .8 7 .9 R e g re ssio n f o r S u b su rfac e H orizons - A ll s e r i e s .................................................................................... R egression fo r A l f is o l S ubsurface H o r i z o n s ..................................................................................... R eg ressio n s fo r E n tic-S p o d ic S ubsurface H o r i z o n s ............................................................................... R e g r e s s i o n s f o r M e s ic Zone S o i l s S u b s u r f a c e H o r i z o n s ........................................................... 116 1 16 118 12 0 R e g r e s s i o n s f o r F r i g i d Zone S o i l s S u b s u r f a c e H o r i z o n s ..................................................... 124 R e g r e s s io n s f o r G r a y lin g and R ubicon S u b s u r f a c e H o r i z o n s ..................................................... 127 R e g re ssio n s f o r K alkaska S u b su rfac e H o r i z o n s ............................................................................... 128 7 . 1 0 R e g r e s s i o n s f o r M ontcalm S u b s u r f a c e H o r i z o n s ..................................................................................... 129 7 .1 1 R e g re s s io n s fo r S pinks S u b s u rfa c e H o r i z o n s ............................................................................... 131 7 . 1 2 R e g r e s s i o n s f o r O shtem o S u b s u r f a c e H o r i z o n s ............................................................................... 132 7 . 1 3 Mean S u l f a t e A d s o r p t i o n i n P e d o n s b y D i s c r i m i n a n t Group ..................................................... 13 5 7 .1 4 S u lf a te A d so rp tio n D isc rim in a n t F u n c tio n s . 137 8 .1 P re d ic te d S u lfa te A d so rp tio n in th e G r a y lin g , C ro s w e ll, R ubicon, and K alk ask a S e r i e s .................................................................................... 143 P re d ic te d S u lf a te A d so rp tio n in th e G r a y c a l m , M o n t c a l m , P e m e n e , a n d Emmet S e r i e s .................................................................................... 14 4 P re d ic te d S u lf a te A d so rp tio n in th e Y a lm e r, M u n i s i n g , and Champion S e r i e s . 147 P r e d i c t e d S u l f a t e A d s o r p tio n i n M esic Z o n e U d i p s a m m e n t s .......................................................... 149 P r e d i c t e d S u l f a t e A d s o r p ti o n i n M esic Z o n e H a p l u d a l f s ............................................................... 150 8 .2 8 .3 8 .4 8 .5 x . Table Page 8.6 C o m p a r i s o n o f D a t a B a s e s f o r F r i g i d Zone S o i l s ............................................................................... 152 8 .7 C om parison o f D ata B ases f o r M e s i c Zone S o i l s .............................................................................. 15 4 A .1 M ichig an S o i l S e r i e s P o t e n t i a l l y S e n s i t i v e t o A d v e rse E f f e c t s from A cid D e p o s i t i o n : P r e l i m i n a r y C l a s s i f i c a t i o n .................................... 170 D e sc rip tio n o f S o il P ro p erty V ariab les 176 B .l . B .2 A n a l y ti c a l D ata - G r a y li n g B lock X . . . . B .3 A n a l y ti c a l D ata - G r a y lin g B lock I I . . . B .4 A n a ly tica l D a ta - G r a y lin g B lock I I I B .5 A n a ly tica l D a t a *- G r a y l i n g B l o c k IV . . . B. 6 A n a ly tica l D ata - G r a y lin g B lock V B ,7 A n a ly tica l D ata - B. 8 A n a ly tica l D a ta - G r a y lin g B lock V II B .9 A n a l y t i c a l D a ta - K a lk a s k a B lock I . . . . 177 . . . G r a y l i n g B l o c k VI . . . B . 10 A n a l y t i c a l D a t a - K a l k a s k a B l o c k I I . . 178 . 179 . 180 . 18 1 . 182 . 183 . . . . . . . B . 11 A n a l y t i c a l D ata - K a lk a sk a B lock I I I B .12 A n a l y t i c a l D a t a - K a l k a s k a B l o c k IV . . . B .13 A n a l y t i c a l D a ta - K a lk a s k a B lock V B .14 A n a l y t i c a l . 186 . 189 . . 189 D a t a - K a l k a s k a B l o c k VI . . . . 190 B .15 A n a l y t i c a l D a ta - M ontcalm B lo ck I . . . . B .16 A n a l y t i c a l D a ta - M ontcalm B lock I I . . . B .17 A n a l y t i c a l D a ta - M ontcalm B lo ck I I I B .18 A n a l y t i c a l D a t a - M o n tcalm B lo c k IV . . . B .19 A n a l y t i c a l D a ta - M ontcalm B lock V . . . . B .20 A n a l y t i c a l D a t a - M o n t c a l m B l o c k VI B .21 A n a l y t i c a l D a ta - M ontcalm B lo ck V II • . . 185 . xi . 184 192 . . . . . . . . . 193 19 4 . 195 19 8 . 1 98 . 1 99 Table Page B .22 A n a l y t i c a l D a t a - O shtem o B lo ck I ....................... 200 B .23 A n a l y t i c a l D a t a - Oshtem o B lo c k I I . . . . 201 B . 24 A n a l y t i c a l D a t a - Oshtem o B lo c k I I I . . . . 20 2 B .25 A n a l y t i c a l D a t a - O shtem o B lo c k IV . . . . 205 B .26 A n a l y t i c a l D a t a - O s h t e m o B l o c k V ....................... 205 B .27 A n a l y t i c a l D a t a - O s h t e m o B l o c k VI . . . . 20 6 B .28 A n a l y t i c a l D ata - R ubicon B lock I ....................... 207 B .29 A n a l y t i c a l D a ta - R ubicon B lock I I . . . . 208 B .30 A n a l y t i c a l D a ta - R ubicon B lock I I I . . . . 209 B .31 A n a l y t i c a l D a t a - R u b i c o n B l o c k IV . . . . 2 10 B .32 A n a l y t i c a l D a t a - R u b i c o n B l o c k V ....................... 211 B .33 A n a l y t i c a l D a t a - R u b i c o n B l o c k VI . . . . 212 B .34 A n a l y t i c a l D ata - S p in k s B lock I . . . . . 213 B . 35 A n a l y t i c a l D a t a - S p i n k s B l o c k I I ..... B .36 A n a l y t i c a l D a ta - S p in k s B lock I I I B . 37 A n a l y t i c a l D a t a - S p i n k s B l o c k I V ..... 216 B .38 A n a l y t i c a l D a ta - S p in k s B lock V ..... 217 B .39 A n a l y t i c a l D a t a - S p i n k s B l o c k V I ..... 218 214 . . . . 215 C .l A n a l y t i c a l Bulk S am ple S t a t i s t i c s ..................... 219 D .l A n a ly s is o f V arian ce R e s u lts : S o il P r e p a r a t i o n x SO^-S C o n c e n t r a t i o n In tera ctio n s .......................................................... 220 A n a ly sis o f V a ria n ce R e s u lts : K alkaska and G r a y li n g P r e l i m i n a r y S tu d y ...................... 222 A n a ly s is o f V arian ce R e s u lts : S u lf a te A d s o r p t i o n w i t h i n S o i l S e r i e s ........................... 223 A n a ly sis o f V arian ce R e s u lts : E x tra c ta b le S u lfa te w ith in S o il S e rie s ................................ 224 D .2 D .3 D .4 xii Table Page D .5 D.6 D*7 A n a ly sis o f V arian ce R e s u lts : I n t e r S e r i e s C om parison o f S u l f a t e A dsorbed i n U p p e r 1 5 0 c m ..................................................................... 226 A n a ly sis o f V arian ce R e s u lts : E x tr a c ta b le S u l f a t e C o n t e n t s t o 1 5 0 cm b y S o i l S e r i e s .......................................................................................... 227 A n a ly sis o f V arian ce R e s u lts : E x tr a c ta b le S u l f a t e C o n t e n t s t o 1 5 0 cm b y G e o g r a p h i c R e g i o n .......................................................................................... 227 xiii L I S T OF FIGURES R e p r e s e n t a t i v e M ichigan S o i l S e r i e s P o t e n t i a l l y S e n s i t i v e t o A cid D e p o s itio n i n R e l a t i o n t o S o i l Taxonomy ........................... S o il P r e p a r a t io n x S o il H orizon I n t e r a c t i o n - M o n t c a l m Loamy S a n d . . 6 . . 28 S o il P re p a ra tio n x S u lfa te C o n cen tratio n I n t e r a c t i o n - M o n t c a l m Loamy S a n d . . . . 29 S o i l H orizon x s u l f a t e C o n c e n tra tio n I n t e r a c t i o n - M o n t c a l m Loamy S a n d . . . . 31 H orizons w ith A ir-D ry x F ie ld -M o is t I n t e r a c t i o n s - M o n t c a l m Loamy S a n d . . . 32 H orizons w ith o u t A ir-D ry x F ie ld -M o is t I n t e r a c t i o n s - M o n t c a l m Loamy S a n d . . . 33 S e r i e s x S o il H orizon I n t e r a c t i o n G ra y lin g and K a lk ask a Pedons ........................... 40 S o i l P r e p a r a t i o n x S o i l H orizon I n t e r a c t i o n - G r a y l i n g S a n d ................................ 42 L o c a ti o n s and B lock A s sig n m e n ts o f ............................................................... Sam pled P e d o n s 52 S A d s o rp tio n and E x tr a c t a b l e S in th e G r a y l i n g S e r i e s ............................................................... 66 S A d s o r p ti o n and E x t r a c t a b l e S i n t h e R ubicon S e r i e s ............................................................... 67 S A d s o rp tio n and E x t r a c t a b l e S in t h e K a l k a s k a S e r i e s ..................... ......................................... 68 S A d s o rp tio n and E x t r a c t a b l e S in t h e M o n t c a l m S e r i e s ............................................................... 69 S A d s o rp tio n and E x t r a c t a b l e S i n th e S p i n k s S e r i e s .................................................................... xiv Figure 5 .6 Page S A d so rp tio n and E x tr a c ta b le S in th e O shtem o S e r i e s ............................................................... 71 5 .7 S A d so rp tio n - 79 5 .8 E x t r a c t a b l e S - S e r i e s x D epth I n t e r a c t i o n ................................................................ 83 S u l f a t e - S u l f u r C o n te n ts o f Pedons to a D e p t h o f 1 50 c m ..................................................... 85 C o r r e l a t i o n o f S A d s o r b e d w i t h Ammonium O x a l a t e E x t r a c t a b l e A1 - A l l S e r i e s , A l l H o r i z o n s ..................................................................... 96 5 .9 6 .1 6 .2 6 .3 S e r i e s x D epth I n t e r a c t i o n . C o r r e l a t i o n o f S A dsorbed w ith % O rg an ic Carbon - A l l S e r i e s , A l l H o riz o n s . . . . 97 C o r r e l a t i o n o f S A d s o r b e d w i t h Ammonium O x a l a t e E x t r a c t a b l e A1 - A l l S e r i e s , S u b s u r f a c e H o r i z o n s ..................................................... 99 6.4 R e l a t i o n o f S A d s o r b e d t o pH -H 2 0 6 .5 C o r r e l a t i o n o f S A d s o r b e d w i t h Ammonium O x a l a t e E x t r a c t a b l e A1 - MeBic Zone S o i l s , S u b su rfa c e H orizons ................................ 103 C o r r e l a t i o n o f S A d s o r b e d w i t h Ammonium O x a l a t e E x t r a c t a b l e A1 - F r i g i d Zone S o i l s , S u b su rfa c e H orizons ................................ 104 7 .1 M esic zone S o i l s - . 12 2 7 .2 F rig id . 125 6.6 ............. R eg ression A R e su lts Zone S o i l s - R e g r e s s i o n A R e s u l t s xv 101 . Chapter I INTRODUCTION The phenomenon of "acid rain " has receiv ed a tte n tio n o n ly during th e l a s t f i f t e e n y e a rs, m ajor but in re a lity a c id d e p o s itio n has d ev elo p ed l a r g e l y u n n o ticed sin c e th e advent of A m erica, in d u stria liz a tio n th e g rea test (C ow ling, in crease in 1974; U nited C o g b ill S ta te s and L ik e n s , e astern 1974). The fo ssil fu els su lfu r a l., range recent In co n tra st from 5 t o 8, th e estim ated p rec ip ita tio n in 1976; p re-in d u strial the n o rth e a ste rn and Borm ann, 1974; N o r to n , 1 9 7 7 ), w ith s i m i l a r P re c ip ita tio n upw ards t o c lo se to 7.5, a pH in 1 9 7 0 's (NADP, M ic h ig a n (B orm ann, 1985a; p resen tly t h e pH o f m o s t p r e c i p i t a t i o n v a lu e of 4.5 (M acD onald, 1986). W h ile n o t a s a c i d i c sta te s, t h e pH o f r a i n as rain s 1983; in 1985b; ranges th e low 1986). 3.5 fa llin g NADP, 1985b; n o rth ea stern in M ic h ig a n i s s u b s t a n t i a l l y fo r u n p o llu te d d e p o sitio n lo w e r p e n i n s u l a o f M ich ig an ra n g e s from 1 Annual lo w er th an t h a t ex p ected in th e ra in fa ll. 1974; from ev en ts pH U nited L ik en s recorded in L ikens e t averaged c u rre n tly th e decrease S ta te s pH v a l u e s a r o u n d pH 4 i n (B orm ann, o f acid -fo rm in g (G allow ay e t a l . , to in th e r e s u l t o f co m b u stio n o f and th e c o n s e q u e n t e m is s io n and n i t r o g e n o x i d e s 1979). Canada N orth a c id ity m ost n o t i c e a b l y and p r e c i p i t a t i o n pH i s p r i m a r i l y t h e In p re c ip ita tio n o ccu rred during th e l a s t f o r t y y e a rs, n o rth eastern 1982). su lfa te 2 0.6 to 0.9 g S m- 2 , b etw een th e > 1 . 0 g S m“ 2 i n th e h e av ily im pacted e a s t e r n s t a t e s a n d t h e < 0 . 3 g S m- 2 lig h tly im pacted w e ste rn s t a t e s {NADP, 1 9 8 5 a ; A cid d e p o sitio n e c o lo g ic a l, (C ow ling a c id ic is a p o litic a l, and and L in th u rst, p re c ip ita tio n co m p lex th e p ro b lem C o w lin g , th e on te rre stria l sources H u tch in so n of a q u atic p o llu tio n and W id esp read and U n ited H avas, d e c lin e 1980; in ecosystem s (D o ch in g er D ra b lo s E uropean and and m ajo r C h ro n ic C anada, and E urope r a i s e d c o n c e rn s o v e r p o s s i b l e im pacts 1986). consequences 1982). n o rth ea stern in th e w ith in te rn a tio n a l 1981; in 1985b; m ost sta te s, reg io n al d istan t S e lig a , 1976; T o lla n , fo re sts from 1980). re la te d to a tm o sp h eric p o l l u t i o n and s i m i l a r b u t u n e x p la in e d f o r e s t d e c lin e s in th e e a ste rn U nited S t a te s recen t years (S c h u tt and C o w lin g , Woodman a n d C o w l i n g , forest d e c lin e has 1987). been d e p o sitio n produces s tr e s s n a tu ra lly (W oodm an im plem ent p o l l u t i o n e v id e n ce d e clin e ; e co lo g ic acid d e p o sitio n ; lo catio n 3) and e x t e n t o f d e p o sitio n ; and 5) econom ic of to of forest unabated p o llu ta n ts; receiv in g th ese r e l a t i o n s h i p e x i s t s b etw een s o i l s 4) acid se n sitiv e e co sy stem s to b u f f e r a d v e rs e a c id d e p o s itio n e f f e c t s . in tim ate to c o n ti n g e n t upon 1 ) ecosystem s of in acid D e cisio n s consequences c a p a c ity because d e p o sitio n sources se n sitiv e in to th o se o ccu rrin g 1987). a cid d ep o sitio n q u an tify m easures a re reg io n al th e of acid in a d d itio n re la tin g and to C o w lin g , co n tro l sc ie n tific 2) and concern 1985; H in ric h s e n , 1986; The r o l e d iffic u lt in te n sified An and th e f o r e s t 3 eco sy stem s th ey in te ra c tio n s su p p o rt; betw een s o i l s necessary to d efin e ecosystem s (Fernandez, A p relim in ary on c r i t e r i a sev en ty u n d e rstan d in g and a c i d and series d e p o sitio n p red ic t e ffe cts b y McFee co v erin g of is from a c id (1980), d e p o sitio n so ils, n e g a tiv e and A dverse may c a u s e of b o th th e w ith in co u ld in p u ts is in resu lt is cause fo r im p acts on alum inum may te rre stria l from c a t i o n so ils. im p ov erishm ent o f eco sy stem s th e s e n s i t i v i t y acid e ffects m o b iliza tio n m o b ilizatio n a g u atic These th e and e c o l o g i c a l i n t e g r i t y o f th e f o r e s t s th e y alu m in u m catio n s of Im pingem ent o f concern su p p o rt. percent ( A p p e n d ix A). on t h e s e s o i l s p ro d u c tiv ity over s u s c e p tib le to o f M ichigan. p o ten tial based th at fo rty c h ro n ic a lly a cid ic p re c ip ita tio n of se n sitiv e in d icated an e s t i m a t e d in c lu d e d th e m ajor f o r e s t s o i l s because th e th erefo re on M ichigan th e la n d a r e a o f M ic h ig a n w ere p o t e n t i a l l y adverse e ffe c ts of 1985). c la ssific a tio n d ev elo p ed so il an cause L each in g so ils b io lo g ic al eco sy stem (R euss, 1983). w ith and o f M ic h ig a n 's f o r e s t s o i l s needed to p red ic t th e of b a sic tim e, w h ile to x ic itie s, in Increased rem oval ad jo in in g know led g e o f to atm o sp h e ric im p acts d e p o s i t i o n and t o d e t e r m i n e management p r a c t i c e s of a cid req u ired to of so ils in a m e lio r a te any r e s u l t i n g a d v e rs e s o i l c o n d itio n s . CLASSIFICATION OF SO IL SENSITIV ITY K lo p atek et a l. (1980) rated se n sitiv ity t h e e a s t e r n U n i t e d S t a t e s u s i n g a v e r a g e v a l u e s o f pH, catio n 4 exchange c a p a c ity , and b a s e s a t u r a t i o n of ty p ic great s o il of co u n ty -sized for reg io n al c a tio n m apping of c a p a c ity , th is stu d y p red ictin g so il se n sitiv ity Because its developm ent base co n sid ered not be on a s e r i e s a P o te n tia l b e tte r im p o rtan t w h ile n u trie n t so il c y clin g in fo rm a tio n a p p lic a tio n forest re a d ily low pH, a p p lie d criteria for on of in se n sitiv ity th an c a tio n S u l f a t e a d s o r p t i o n c a p a c i t y was was p o ten tial im p o rtan t u p tak e su lfa te th ese of d e te rm in in g d ep th and f o r e x c h a n g e a b l e b a s e l o s s was m easure by from root a d so rp tio n se n sitiv ity (1980) e stim ate d exchange c a p a c ity c a tio n slig h tly c a tio n to ex ch a n g ea b le b a s e s , for leach in g th e aspect of sy stem s. Lack of a b ility c rite ria p rev e n ted to M i c h i g a n ’s se n sitiv ity of so ils exchange i n t h e t o p 2 5 cm o f s o i l . se n sitiv e . exchange se n sitiv e . If c a p a c ity , th is c a p a c ity , S o ils w ith c a tio n in p u t th e so ils w ere exceeded so ils in th e b a s e d l a r g e l y on a c i d i n p u t o f 1 0 0 cm o f pH 3 . 7 r a i n p e r y e a r e q u a l l e d th e th e le v e l. e a s te r n U nited S ta te s to a c id p r e c i p i t a t i o n of in so ils. McFee c a tio n and (1980) s u g g e s t e d s e n s i t i v i t y exchange c a p a c ity a lo n e . lo ss, so ils im p a c ts o f a c i d d e p o s i t i o n on f o r e s t p r o d u c t i v i t y and s o i l d e p t h . as of sa tu ra tio n , b a s e d on s u l f a t e a d s o r p t i o n c a p a c i t y , seen of and n e g l e c t c o u ld M ic h ig a n 's f o r e s t s o i l s C ow ell e t a l . ch aracterize u n its. c la ssific a tio n exchange re su lts groups to i n t h e u p p e r 2 0 - 2 5 cm w ere If an 10-25% rate d 25% o f as th e c o n sid ere d exchange c a p a c ity g r e a te r than 1 5 .4 c m o l (+) k g - 1 w e r e r a t e d a s n o n - s e n s i t i v e , c r i t e r i a w ere l i m i t e d , so il se n sitiv ity w h ile these th ey did a llo w t e n t a t i v e e stim a te s o f on a s o i l series lev el f o r M ichigan s o i l s so il se n sitiv ity (A p p en d ix A ). The m ajor facto r affectin g w hich r e q u i r e d f u r t h e r r e s e a r c h was t h e a b i l i t y o f M ic h ig a n f o r e s t so ils to reta in su lfa te . A tm ospheric d e p o s i ti o n S042- has th e p o t e n t i a l a c c e le ra te d leach in g to reduce s o i l forest so ils from acid The s o i l s p ro p erties. The i n i t i a l th ese are A c o n ce p tu a l tax o n o m ic of ty p ic S elected M ichigan are subgroups in d icated . a b ilitie s subgroups so il w ith in are series and p o t e n t i a l l y S o ils sugg ests w ell-d rain ed , and S p o d o s o ls w ith in T y p ic B a p l u d a l f s , and T y p ic H a p lo r th o d s . b e tw ee n p h y sico -ch em ical w h ich to stra tify U d ip sa m m en ts, T hree T y p ic In terg rad es tr a n s itio n a l lo c a te d a lo n g rep re se n ta tiv e se n sitiv e coarse- ( A p p e n d i x A). i s p r e s e n t e d in F i g u r e 1 .1 . groups acid to a d v erse e f f e c ts th eir m o d erately fram ew ork sam p lin g of th e s e s o i l s m ajo r fa c to r to s e n s itiv ity c la ssific a tio n tex tu red E n tiso ls, A lf is o ls , effect. o f c o n c e rn a r e t h o s e M ichigan because w e ll- to or a d s o r p t io n in M ich ig an b e l i e v e d to be s e n s i t i v e d e p o sitio n so ils but a d so rp tio n and th e r e l a t i o n s h i p o f t h i s d ep o sitio n e ffe c ts . through can c o u n te r a c t t h i s The f o c u s o f t h i s s t u d y i s s u l f a t e forest s o ils , fe rtility of b asic c a tio n s, r e t e n t i o n o f s u l f a t e by t h e s o i l o f H+ a n d to of th e axes. taxonom ic acid d e p o sitio n each subgroup sh o u ld have are sim ilar t o a d s o r b s u l f a t e , w h i l e a d s o r p t i v e a b i l i t y may 6 TYPIC UDIPSAHMENTS G ray lin g Omega O ak v ille P la in field SPODIC UDIPSAMMENTS ALFIC UDIPSAMMENTS D eer Park E astp o rt Coloma C h elsea Increase in Spodic D evelopm ent ENTIC HAPLOUTHODS Increase in % C lay PSAMMENTIC HAPLUDALFS R ubicon C rosw ell Spinks A rkport I n c r e a s e in S podic D evelopm ent— I n c r e a s e i n % C l a y ------------- ^ TYPIC HAPLORTHODS ALFIC HAPLORTHODS GLOSSO- 6 EUTROBORALFS K alkaska E a s t Lake B lue Lake M ancelona M ontcalm Emmet TYPIC HAPLUDALFS Oshtem o H illsd ale F ig u re 1.1 R e p r e s e n t a t i v e M ich ig an S o i l S e r i e s P o t e n t i a l l y S e n s i t i v e t o A c id D e p o s i t i o n i n R e l a t i o n t o S o i l Taxonomy 7 d iffer b etw een p ro p erties. a b ilitie s so il In subgroups because m aking an of d ifferen c e s assessm ent of su lfa te in s o i l ad so rp tio n o f M ichigan f o r e s t s o i l s r t h e s e t h r e e g r a d i e n t s o f p ro file ex p erim en tal d ev elo p m en t re su lts p ro v id e a b a sis to p ro je c t to a v a rie ty of fo re s t s o ils . OBJECTIVES The first o b jec tiv e of th is s t u d y was t o d eterm in e th e a b i l i t y o f r e p r e s e n t a t i v e M ich ig an f o r e s t s o i l s t o a d s o rb su lfa te u n d e r l a b o r a t o r y c o n d i t i o n s and t o d e t e r m i n e i n i t i a l le v e ls of e x tra c ta b le s u lfa te p resen t. was t o re la te su lfa te a d so rp tio n to o th e r s o i l p ro p e rtie s com m only u s e d f o r s o i l c l a s s i f i c a t i o n . was t o d e v e l o p The seco n d o b j e c t i v e A fin a l o b je c tiv e r e g r e s s i o n e q u a t i o n s and t o u se e x i s t i n g s o i l c h a ra c te riz a tio n d a ta to p red ic t s i m i l a r M ichigan f o r e s t s o i l s . su lfa te a d so rp tio n in Chapter II LITERATURE REVIEW: ADSORPTION AND RETENTION OP SULFATE BY SOILS S u lfa te affectin g m o b ility forest so il in th e so il A tm ospheric a m a j o r s o u r c e o f b o t h H+ i o n s by acid su lfa te 1979; le ach in g rete n tio n of of su lfa te leach in g (C ronan a l., H2 SO4 p r o v i d e r e p la c e m e n t and forest B ergr is th e (Johnson e t of so ils affected 1978; C ronan and 1980). S in ce th e in p u ts m ust be m o b ile in th e bases by et and w ith a c id in p u ts in to occur/ so il a l.r can a d so rp tio n reduce 1982). If w ill (R euss, 1977? T his Johnson, review p ro p erties d iscu sses prim ary o c c u r when s o i l M orrison, prevent su lfa te lo adin g re la te d p o stu la te d to su lfa te su lfa te lite ra tu re M ichigan f o r e s t so ils. d i s c u s s e d on p a g e 21. th e p re s e n t stu d y is a ls o c ite d 8 fille d and and s o i l b riefly m echanism s. The r e v i e w was t o p r o v i d e of A p p licatio n L itera tu re are facto rs a d so rp tio n re te n tio n fo r subsequent stu d y sites leach in g 1981). exam ines p h y s ic o - c h e m ic a l in te n t of th e fo u n d atio n 1980; ad so rp tio n or or exceeds th e c a p a c ity of th e s o i l to r e ta in s u l f a te , lo sse s facto r leach in g e ffe c ts for c a tio n tran sp o rt M o n ito r asso ciated if catio n catio n p re c ip ita tio n S ch o field , so il for an im p o r t a n t s e n s itiv ity to c atio n o f acid p r e c ip ita tio n . SO4 2 ” a n i o n s is su lfa te to a a d so rp tio n in th e p re se n t stu d y is p e rtin en t to in C h ap ters I I I re su lts to V II. of 9 FACTORS INFLUENCING SULFATE RETENTION IN SOILS S u lfate reten tio n by s o i l s o f s o i l chem ical p r o p e r t i e s . is in flu en ced by a v a r i e t y S u l f a t e a d s o r p t i o n by s o i l s o r s o i l c o n s t i t u e n t s i s h i g h l y pH d e p e n d e n t , w i t h a d s o r p t i o n in creasin g a s pH d e c r e a s e s (Kamprath e t a l., 1956; P a rfitt, 1982). T h e e f f e c t o f pH on s u l f a t e a d s o r p t i o n i s g r e a t e r i n so ils c o n ta in in g e x ch an g eab le allo p h an e in creases so lu tio n h ig h er alu m in u m , (Chao e t a l . , w ith am o u n ts or (K am prath e t a l . , se sq u io x id e s, am orphous m a te ria ls S u lfate a d so rp tio n 1963). in cre asin g of c o n ce n tra tio n of 1956; Chao e t a l . , such as by s o i l s su lfa te in 1962a; R ajan , 1978; R a ja n , 19 7 9 a; C outo e t a l . , 1 9 7 9 ). L en g th o f c o n t a c t b etw een s o i l su lfa te reten tio n . B a r r o w a n d Shaw ( 1 9 7 7 ) , A u stralian so il develo p ed a fte r days of tw o and s o l u t i o n in c o n ta ct late rite w orking w ith residuum , 97% o f a d d e d affects an found t h a t su lfa te c o u ld be d e s o r b e d , b u t a f t e r 1 0 5 d a y s o f c o n t a c t o n l y 64% c o u l d b e desorbed. These r e s u l t s n a tu re of th e lin k suggested t h a t slow changes in th e betw een occurred over tim e. so lu tio n a lso in creased adsorbed w h ile w ith su lfa te ad so rp tio n of tem p era tu re of and t h e so il su lfa te from in cu b a tio n , t e m p e r a t u r e e f f e c t s w ere l e s s m arked f o r s u l f a t e t h a n f o r p h o sp h ate (B a rro w a n d Shaw, 1 9 7 7 ). S u lfa te ad so rp tio n in t h e s u r f a c e h o r i z o n o f a s a n d y lo a m " C a l c i c C a m b i s o l " was fu lly hours, 1975). rev ersib le a fte r an e g u i l i b r a t i o n but n o t a f te r p e rio d s of days p erio d of a few (S a n d ers and T in k e r, S u l f a te in c u b a te d w ith s o i l p r i o r to l e a c h i n g was 10 much l e s s p r o n e t o s u b s e q u e n t m o v em en t t h a n s u l f a t e w ith the leaching The type exchange et al. solution of cation complex (1923) hydroxides found had that least MgSC>4 s o l u t i o n , (1963) affects was (Bolan e t a l . , in present sulfate in 1986a). so lu tio n adsorption. su lfate adsorption K2 S 0 4 s o l u t i o n , resu lts; the or on by Fe and A l interm ediate m agnitude o r d e r CaSO^j > K2 SO4 > ( N I ^ ^ S O ^ > N a 2 S0 4 . also fo llo w ed saturating the cations, in Chao e t a l . of su lfa te a d s o r p t io n from d i f f e r e n t s a l t s o l u t i o n s d e c r e a s e d s u l f a t e a d s o r p t io n by s o i l s the L ichtenw alner a n d g r e a t e s t i n CaSO^ s o l u t i o n . sim ilar added in the The m a g n i t u d e o f s a tu ra te d with d i f f e r e n t c a tio n s order of chem ical v alen cy w i t h A l 3+ > C a 2+ > K+ > Na+ . of the The c a t i o n e f f e c t w a s i n a d d i t i o n t o t h e pH e f f e c t o v e r t h e pH r a n g e o f 4 to over 7. Aluminum s a t u r a t i o n that calcium , that of NaCl the o riginal potassium , the adsorption decreased of the w ith interm ediate soil surface increasing so lu tio n . so il, 0.1 w hile {Chao e t retention satu ratio n adsorption al., 1963), ionic M. N a C l , strength was and of le a st greatest the in below soils supporting 1.0 in w ith S u lfate h o r i z o n s o f t w o New Z e a l a n d A dso rp tio n in su lfate o r sodium d e c r e a s e d o rig in al in increased H, N a C l , 0.01 & N aCl. T h i s r e l a t i o n s h i p w a s c o n s i s t e n t o v e r a s o l u t i o n pH r a n g e from 3.0 to 8.0 (B olan et a l., (1986) n o t e d t h a t t h e i r p r e v i o u s u s i n g Na+ s a l t s 1986b). Johnson et al, anion a d s o rp tio n s tu d ie s gave extrem ely v a ria b le r e s u l ts . S - a d s o r p t i o n s t u d i e s u s i n g C a 2+ s a l t s w e r e l e s s Subsequent v a r i a b l e and IX provided g rea ter d if f e r e n tia tio n There anions a r e marked d i f f e r e n c e s upon s u l f a t e phosphate, reduced al., retention m olybdate, su lfate 1956; sulfate among s o i l s . 1964; adsorption interfering the com petitive by s o i l s . flu o rid e adsorption Chao, the or in th e e f f e c t s in so lu tio n 1954; 1982). was p r o p o r t i o n a l anion. The p r e s e n c e (Ensm inger, P arfitt, to the of phosphate on K am prath (1978) et of concentration sulfate of strongly D epression Metson and Blakemore effects of other of reported adsorption were g r e a t e s t i n s o i l s w ith w eak ly d e v e lo p e d a n i o n - r e t e n t i o n properties. S o ils with h igher l e v e l s the capacity to r e t a i n added s u l f a t e o f a n io n r e t e n t i o n had even in th e presence of a s im ila r c o n c e n tra tio n of phosphate. s ilic a te , and ad so rp tio n S im ilarly, in acetate the addition brown e a r t h soil the p erc o latin g anions pH range did of N itrate, not 4 to ch lo rid e, reduce su lfate (Chao, 6 1964). o f KC1 a n d KNO3 s o l u t i o n s - t o a p o d z o l i c did not im pair solution adsorption (Khanna a n d B e e s e , of sulfate from 1978). S o i l m i n e r a l o g i c f a c t o r s h a v e a m a j o r e f f e c t on s u l f a t e adsorption. kaolinite, S u lfate retention interm ediate in illite , by clay s and was least highest in in bentonite. Aluminum s a t u r a t e d c l a y s r e t a i n e d more s u l f a t e t h a n h y d ro g e n saturated clays (Chao e t a l . , 1962b). A loam s o i l allophane a d s o r b e d a l m o s t f i v e t i m e s m o r e SO4 - S t h a n a s i l t lo am w hich had m i n e r a l o g y d o m in a te d by v e r m i c u l i t e al., 1986a). Chao e t al. (1962a) distinguishing c h a r a c te r is tic s of reported su lfate that high in (Bolan e t the m ajor reten tiv e soils 12 were th eir high exchangeable sulfate lev e ls alum inum . of free In th e adsorbed by s o i l s acid ab ility of factors. a In al. (1969) v ariety most and range, of ( Cha o e t rain fall related the the was e x p l a i n e d and s o i l amount o f r a i n f a l l . sulfate adsorbing amount of so ils ab ility to as a ab ility than to su lfate The c o r r e l a t i o n reflectio n of reactive related from b a s a l t soils pedogenic adsorb pH, p r o p e r t i e s S o ils derived adsorption derived to parent m aterials d e r i v e d from b a s a l t . had less the had a h i g h e r from g r a n i t i c or sedim entary rocks, p o s s ib ly because s o i l s d e riv e d siliceo u s and 1964). su lfate A ustralian so ils, alum inum c o n t e n t s oxides the al., in creased w ith average annual r a i n f a l l . w ith Fe was p r o p o r t i o n a l t o t h e a m o u n t B o f h y d r o u s Fe and A l o x i d e s p r e s e n t Barrow e t Al alum inum th a n The o c c u r r e n c e o f s u l f a t e from so ils adsorbing s o i l s was f a v o r e d by lo w t e m p e r a t u r e , a f a c t o r a s s o c i a t e d with s o i l pH d i f f e r e n c e s . Metson New Z e a l a n d and B la k e m o re soils, found native adsorbed su lfate little capacity to native adsorbed sulfate adsorb a d d itio n a l Ensm inger (1978), th at working w ith so ils (phosphate retain added w ith indicated low extractable sulfate. soils a variety lev els S) Higher w ith had of of very levels of capacities to sulfate. (1954) found that subsurface soil layers u s u a l l y c o n t a i n e d more s u l f a t e and were c a p a b l e o f r e t a i n i n g more s u l f a t e than the surface layers. Sulfate retention in A h o r i z o n s o f a c i d f o r e s t s o i l s was o b s e r v e d t o b e v e r y l o w , 13 but increased s u b s ta n tia lly in the B horizons (Singh, 1980b; Johnson and Todd, 1983; F u l l e r e t a l . , 1985; W eaver e t a l . , 1985). Young so ils developed glaciation generally than s o i l s developed o v er lo n g er tim es Soil have constituents less after related in a b i l i t y to adsorb s u l f a te . iron m inerals adsorbed was i n t e r m e d i a t e A I 2 O3 a d s o r b e d found th at in s u l f a t e the (pseudoboehm ite) retaining an w hile sulfate m ost adsorption sulfate adsorption, w hile Aylm ore oxide w ith an by k aolinite dehydrated al. (1967) alum inum oxide (hem atite) respect adsorption et differ found t h a t sulfate, iron capacity retention amounts o f by recent (Abrahamsen, 1980). E n sm in g e r (1954) ad sorption and reversible. to su lfate. irre v e rsib le co ncentration, largely most su lfate com pletely sm all sulfate the to was a l m o s t eq u ilib riu m k ao lin ite clay s was Aluminum o x i d e s w ere more e f f e c t i v e than iron oxides in a pure state in (Aylmore e t a l . , 1 9 6 7 ) , a n d when b o t h w e r e a d d e d a s c o a t i n g s on s o i l p articles (Chao e t a l . , system exhibited acid ity w hereas Subsequent so ils at increasing the Al decreases pH d issolution adsorption v alu es of sites E x tractable the When a d d e d t o s o i l , adsorption w ith t h e Fe increasing s y s t e m s h o w e d a m a x i m u m a t pB 4 . 0 . in su lfate less than hydrous ( Cha o e t al., sesquioxide chem ical p r o p e r tie s adsorption. 1964). adsorption 4 were A l-oxide by A l - c o a t e d associated and w ith destruction of 1964). fractio n s and associated of s o i l s have been r e la te d to s u l f a t e In e x p e rim e n ts w ith four A u stra lia n coastal 14 p lain so ils, extractable but Barrow Fe wa s (1967) not found th at d ith io n ite-citrate correlated with sulfate d ith io n ite-citrate ex tractab le c o rr e la te d w ith s u l f a te ad so rp tio n . Al was adsorption, p o sitiv e ly T o t a l K j e l d a h l N was n e g a t i v e l y r e l a t e d to s u l f a t e a d s o r p tio n , p o s s i b l y due to its relation surface (r to organic m atter content. horizons = 0.73) 1973). w ith o f e i g h t West I n d i a n NaOH e x t r a c t a b l e Sulfate soils A I 2O3 a d s o r b e d by was c o r r e l a t e d (Haque a n d W a l m s l e y , C o r r e l a t i o n s w i t h pH, o r g a n i c m a t t e r , c l a y , s ilt + c l a y , a n d d i t h i o n i t e - c i t r a t e Fe i n t h e sam e s o i l s w e r e n o t s i g n i f i c a n t , p o s s i b l y b e c a u s e o f t h e s m a l l number o f s a m p l e s studied. Singh 0.73), (1980b) found that d ith io n ite-citrate extractab le adsorption S0 4 ^ “ (r Fe = 0.77) d ith io n ite-citrate (r e were 0.62), and Al (r phosphate- correlated w ith S04^“ i n T y p ic U dipsam m ent, Umbric D y s t r o c h r e p t , and Aquic H a p l o b o r o l l ( n - 1 7 ). so ils soil pH, c l a y c o n t e n t , and o r g a n i c C w ere n o t c o r r e l a t e d w ith S04^“ a d s o r p t i o n these so ils. su b stan tial U dipsam m ent, Removal but amorphous higher c la y Three had in This and in S -adsorption northeastern Fe o x i d e s effect result inorganic Al content in water Al less to have m ajor p o r t io n s present of red u ctio n Umbric D y s t r o c h r e p t . higher = on was resu lted in a in and Fe i n the D ystrochrept the to a T ypic 5 -adsorption related in in an in itially Udipsamment and (Singh, 1984b). Spodosols were found ( 1 6 t o 6 4 mg S k g " * } o f n a t i v e S04^“ United insoluble States (phosphate extractable) form in 15 B s l a n d Bs2 h o r i z o n s . C r y s t a l l i n e Fe ( r = 0 . 4 2 , n - 24 t o r = 0 . 9 6 , n =■ 1 0 ) , d i t h i o n i t e - c i t r a t e A l ( r = 0 . 8 7 , n = 2 4 ) , and ammonium o x a l a t e ex p lain m ost capability. oxalate, of Al the (r <= 0 . 7 3 , n v a ria b ility C orrelations in = 24) appeared SC>4 2 “ ad sorption with d i t h i o n i t e - c i t r a t e , to ammonium a n d s o d i u m p y r o p h o s p h a t e e x t r a c t a b l e Fe r a n g e d f r o m 0.50 t o 0.53 (n = 2 4 ) . not c o rre lated O rganic carbon, w i t h S 0 42 “ a d s o r p t i o n J o h n s o n and Todd (1983) % clay, (Fuller a n d H+ w e r e et al., 1985). observed th a t c r y s t a l l i n e Fe ( d i t h i o n i t e - c i t r a t e Fe m in u s a m m o n i u m - o x a l a t e Fe) was t h e p a ra m e te r most c l o s e l y r e l a t e d su lfate adsorbed Am erican in the B horizons forest so ils. d ith io n ite-citrate ( r = 0 . 6 9 , n = 22} t o t o t a l of a v ariety A com bination and o x a l a t e of p ercen t extractions o f f e r e d promise for predicting sulfate clay, pyrophosphate ex tractab le pH, and inconsistently soils and sulfate related to s u lf a te B horizons of adsorption p ro p e rtie s , Fe v a l u e s w e r e h i g h . This adsorption. had carbon, f o r Fe and Al Fe adsorption. Spodosols o f N orth Percent and Al were Both s u r f a c e relativ ely poor e v e n when d i t h i o n i t e - c i t r a t e l o w a d s o r p t i o n was a t t r i b u t e d to t h e b l o c k i n g o f a d s o r p t i o n s i t e s by o r g a n i c m a t t e r . In young, sulfate a later study, relativ ely than Johnson unw eathered older, highly et al. (1986) Inceptisols weathered found that adsorbed more U ltisols, b e c a u s e o f g r e a t e r amorphous ( o x a l a t e e x t r a c t a b l e ) in the I n c e p t i s o l s , authors suggested apparently Fe and Al In c o n tr a s t to p re v io u s f in d in g s , th e that B oils high in crystalline Fe a n d A l 16 o x id es w i l l have low er anion a d so rp tio n c a p a c i ti e s than less w e a t h e r e d s o i l s w i t h l o w Fe and A l o x i d e c r y s t a l l i n i t y . The effect of organic m atter on anion s i t u a t i o n was s e e n a s p o s i t i v e ad so rp tio n because of i t s in role th is in the m a in te n a n c e o f n o n - c r y s t a l l i n e Fe and A l h y drous o x i d e s . S i n g h (1984b) a T ypic found t h a t Udipsam ment and resu lted in soilB . slig h tly S im ilarly , H apludult) m olecular B tl an Umbric D y s t r o c h r e p t w i t h higher resu lts su lfate suggested organic compounds w eight adsorption from work w i t h horizon adsorption s ite s , soil rem o v a l o f o r g a n i c m a t t e r from lea ch in g experim ents (Evans, a C ecil th at SO^^~ com peted and r e a d i l y d i s p l a c e d in H2 O2 both (Typic and for low sim ilar each o th e r during 1986). A d i f f i c u l t y encountered in applying la b o ra to ry r e s u l t s to behavior retention that al., include so ils of s u lfa te predicted et al., et of 1979a; from under in f i e l d P ossible increasing D.W., et of lim ed a al., co n d itio n s chem ical adsorption 1981). Spodosol reasons fixation (Johnson Haynes soil (1983) sam ple studies 1979; for et tim e, effects so il-w ater al., observed 1979a, that increased the A nother lab o rato ry reason studies is for th at low er su lfate many a d s o r p t i o n D.W., discrepancy of co n tact Johnson, air-drying net negative c h a rg e and d e c r e a s e d s u b s e q u e n t a d s o r p t i o n o f s u l f a t e so il. th at (Johnson Johnson, th is w ith fluctuations, disturbance is is u s u a lly g re a te r than Johnson and H enderson, 1981). and s o i l plots laboratory t e m p e r a t u r e and m o i s t u r e tim e, fie ld by t h e adsorption studies in were 17 performed a t low i o n ic both which would te n d factors strength a s n o t e d by Chao e t a l . and i n to solutions depress sulfate of Na2 S 0 4 , adsorption (1963) and B arro w (1967). MECHANISMS OF SULFATE RETENTION IN SOILS The p r i m a r y m echanism o f s u l f a t e involves sulfate adsorption r e a c tio n w ith hydroxo w ith hydroxy 1978). W hile and h e l d sulfate (OH- ) a n d a g u o and A l oxides or (OH2 ) g r o u p s (Chao e t a l., adsorbed by e l e c t r o s t a t i c forces, anions l i k e also adsorbed bonds w ith 1979b). specific specifically m etal H ingston adsorption of in ligand may b e are most by an a n io n anions chem ical 1979a; Fe retention B oils exchange associated 1965; R ajan, non-specifically p h o s p h a t e and and a p p a r e n t l y atom s su ch a s alum inum et postulated an al. anion (1972) is made p o s s i b l e form (R ajan, by that the p r e s e n c e o f p r o t o n s e i t h e r on t h e o x id e s u r f a c e o r d e r i v e d from t h e d i s s o c i a t i o n o f an a c i d . Rajan t h a t a t low c o n c e n t r a t i o n s , s u l f a t e from p o s i t i v e increasing neu tral sites, displaces aguo groups w hile w ith in c re a sin g c o n c e n tra tio n , proportions sites. (1978) h y p o t h e s i z e d o f hydroxo groups are displaced from Such l i g a n d exch an g e a d s o r p t i o n o f a n io n s s h i f t s t h e p o i n t o f z e r o c h a r g e t o m o r e a c i d pH v a l u e s , w i t h the a l., sesguioxide 1967; ligands of surface R ajan, becom ing more n e g a t i v e 1979b). during adsorption ad so rp tio n , w hile m u ltid en tate ligands is the favors The form ation of thought to a llo w fo rm ation of irrev ersib ility (Hingston e t m onodentate reversibility bridging or (H ingston e t 18 a l., 1974). S ulfate at a a d s o r p t i o n by a C e c i l s o i l concentration solution. exh ib it co n trast, reaction, sim ilar four adsorption 1962a). 25 meq S042 - L" 1 in equilibrium W h i l e t h i s may i n d i c a t e t h a t s u l f a t e wa s a d s o r b e d a s an exchange also of a p p r o a c h e d a maximum nor maximum. (Kamprath e t so ils al., did reactions 1956). not In possess 3 1 .2 5 meq S 0 4 2 - L“ ^ (Chao e t Johnson e t a l . (1979b) found t h a t al., w ithin r a n g e o f 0 t o 19 m e q S 0 4 2 " L“ * , n e i t h e r a a tem perate The p recip itatio n reten tiv e maxima up t o the c o n ce n tra tio n tropical maxima su lfate S im ilarly, certain lack of forest soil adsorption reached maxima an in adsorption such soils s u g g e s t s t h a t e i t h e r a n i o n e x c h a n g e was n o t i n v o l v e d o r t h a t o t h e r mechanisms in a d d i t i o n t o an io n exchange were i n v o l v e d in sulfate The retention ( Cha o e t interactions al., among i r o n , 1962a). aluminum, sulfate, a n d pH i n d i c a t e t h a t Fe and A l h y d ro x y s u l f a t e m i n e r a l s a l s o p l a y a role in su lfate so lu tio n and precipitation sulfates are release retention so il an a d d i t i o n a l of su lfa te et increase su lfate al., in as in 1985). A v ariety stu d ies of mechanism soils S oil for the of drying iron would hydroxy and s u l f a t e and 1977; 1981; resu ltan t retention w hile release W olt, and encourage th at retention 1979? cycles pure shown (Adams a n d R a w a j f i h , hydroxy s u l f a t e , dilution have alum inum and W o lt and Adams, content alum inum would produce acid 1978; salt so ils. so lu tio n and d i s s o l u t i o n Adams a n d H a j e k , Weaver in soil (Weaver of w etting et al., 19 1985). Since a d so rp tio n in itiatio n of is a p recip itatio n contended t h a t a continuum, exists between The a necessary reaction, that sulfate in N ordstrom and the (1982) "pure p r e c i p i t a t i o n ." alum inum and su lfate or o th erw ise i n t e r a c t in s o i l only re le v a n t to step ra th e r than a sharp d is tin c tio n , "pure a d so rp tio n " p o ssib ility precip itate often retention, solu tio n but also o f a c i d p r e c i p i t a t i o n on s o l u b i l i t y may to the co­ is not effects o f alum inum in s o i l s . J o f f e a n d Mc L e a n ( 1 9 2 7 ) o b s e r v e d t h a t s u l f a t e suppressed the so lu b ility also affected the solutions, the o f alum inum so ils. precipitation evidently o v erall of short su lfate pH concentration term 5.0 in in the S u lfate aluminum by a c t i n g p recip itatio n S im ilarly , at in as. a c a t a l y s t process reaction 0.01 of M. N a C l supernatant ( De He k to 1978). colum ns In c o n t r a s t , of sandy concentrations of a l l (Adams a n d R a w a j f i h , decreasing th is increase in s o il rates caused Nordstrom alum inum i n c r e a s e d aluminum s u l f a t e from al., 1978). alum ina in to that the less poten tially of than increased o f K2 SO4 a d d e d in creasin g i n c l u d i n g aluminum (1982) concentration suggested that resu lted from com plexing. exposed to heavy s u l f a t e concentration and alum inum E q u i l i b r i u m c a l c u l a t i o n s b a s e d on i o n i c a c t i v i t i e s v a rie ty of s o ils acid accelerate adsorption s o i l s o lu tio n ions, 1977). et resu lted increasing loam to hydrous 0 . 0 1 meg L“ * a s t h e a m o u n t o f s u l f a t e (Rajan, hydroxide m arkedly alum inum in loading so il in a indicated so lu tio n was r e g u l a t e d by t h e s o l u b i l i t y o f aluminum hydroxy 20 su lfates such as ju rb an ite ( A l 4 (OH)1 0 SO4 ) , o r a l u n i t e 1973; W olt, co ntrast, 1981; the (A1(0H)S04), b asalu m in ite (KA13 (OH)6 ( S 0 4 ) 2 ) ( V a n B r e e m a n , N ilsson and B ergkvist, amounts o f d i s s o l v e d 1983). alum inum o b s e r v e d In in s t r e a m s d r a i n i n g S p o d o s o l s o f t h e Hubbard Brook E x p e r i m e n t a l F o r e s t co u ld be e x p la in e d by th e s o l u b i l i t y of a v a r i e t y of m inerals, N. M. , et seems w i t h t h e p o s s i b l e e x c e p t i o n o f A1(0H)S04 ( J o h n s o n , al., 1981). lik ely precipitation that From under inform ation certain importance of t h i s in s o i l s the it co­ a f f e c t s both and s o l u b i l i t y o f alum inum . The in te ra c tio n to acid p re c ip ita tio n e ffe c ts uncertain. Surface soils from four forested w atersheds Coweeta H y d r o l o g i c L a b o r a t o r y were found t o added review ed, co nditions o f aluminum and s u l f a t e the re te n tio n of s u lf a te remains the S 0 4 ^*“ i n t o suggesting that ester su lfate incorporation and of at rap id ly convert carbon-bonded S into the S, non-extractable o r g a n i c f o r m s was a n a d d i t i o n a l mode o f s u l f a t e r e t e n t i o n i n forest ecosystem s (F itzg erald and S trick lan d , 1982). Subsequently, m ic ro b ial tran sfo rm atio n of s u l f a t e to organic f o r m s was f o u n d t o be an im portant influence a c c u m u l a t i o n and m o b i l i t y i n b o t h s u r f a c e on (0,A) h o r i z o n s a n d underlying B horizons in a v a r ie ty of f o r e s t s o i l s a l., 1982; D avid et a l,, 1983; Swank et (David e t a l., S t r i c k l a n d e t a l . , 1986; S c h in d le r e t a l . , 1986). these fin d in g s, S chindler e t a l. su lfate 1984; B a s e d on (1986) s u g g e s t e d t h a t t h e com bined e f f e c t s o f b i o l o g i c a l i n c o r p o r a t i o n and p h y s i c o ­ 21 chem ical su lfate a sse ssin g the loss adsorption need im pact of e le v a te d to be considered su lfate when i n p u t s on c a t i o n from f o r e s t s o i l s . APPLICATION TO PRESENT STUDY The p r e c e d i n g r e v i e w i n d i c a t e d a v a r i e t y o f f a c t o r s and soil properties are related to F actors a ffe c tin g s u lf a te sulfate adsorption in soils. a d s o r p t i o n i n c l u d e d pHr t y p e o f c a t i o n p r e s e n t , p r e s e n c e o f com peting a n i o n s , e x t r a c t a b l e Al a n d Fe f r a c t i o n s , content, extractable and s o i l these ho rizo n type. d iffer in sulfate adsorption a b il i ty . Prelim inary su lfate so il in properties shown selectio n of to the III. affect types adsorption and organic By i n f e r e n c e , s o i l s that should also effects of air-drying M ichigan and su lfa te extractable soils reports of ad so rp tio n m ethods (Chapter differ forest L iteratu re performed in th e p r e s e n t stu d y su lfate clay exam ining in s e le c te d C hapter carbon, properties studies adsorption described su lfate, of IV). so il V. R elationships of so il a d s o r p tio n in Michigan f o r e s t s o i l s VI. Use m ultiple is of selected regression soil soil guided analyses Comparisons o f su lfate eguations properties are addressed properties to predict examined i n C h a p te r s V II and V I I I . as on are w ithin between r e p r e s e n t a t i v e M ichigan s o i l s e r i e s a r e p r e s e n t e d C hapter in to in su lfate in Chapter variab les sulfate and in adsorption Chapter III PRELIMINARY LABORATORY STUDIES A ir-drying of so il d is c r e p a n c y between adsorption. the effect soils, laboratory is a p ossible and f i e l d source studies of of s u lfa te P r e l i m i n a r y s t u d i e s were perform ed t o d e te rm in e of air-drying on s u l f a t e adsorption t o p r o v i d e d a t a on d i f f e r e n c e s between for sam ples soil horizons, s o me o f t h e s o i l and t o in in s u l f a t e develop selected adsorption adsorption isotherm s horizons studied. SOIL SAMPLING AND DESCRIPTION Three K alkaska, pedons were sam pled, and M ontcalm s e r i e s . representing the G rayling, S o i l s were sam pled in August and S e p te m b e r, 1984, in M ontm orency C o u n ty , M ic h ig a n . Two pedons, 34, T32N, G rayling R3E in and Montcalm, a m ixed red and K a l k a s k a p e d o n was l o c a t e d in were located jack pine Section in Section plantation. 2 9 , T31N, R2E, n o r t h e r n hardwoods s ta n d . Samples from each m in e r a l were ta k e n and s e a l e d from s o i l pits in The in a horizon polyethylene bags. One h a l f o f e a c h c o m p o s i t e s a m p l e w a s a i r - d r i e d a t 25 °C a n d p a s s e d t h r o u g h a 2 mm s i e v e . sam ple was stopper, forced through double-bagged refrig erated p rio r to The f i e l d - m o i s t h a l f o f e a c h a in analysis. pedons a re g iv e n below . 22 2 mm s i e v e w ith poly eth y len e a neoprene bags, and D e s c r ip tio n s of th e sam pled 23 GRAYLING ( m i x e d , frigid T y p ic Udipsamments) A / E - 0 t o 4 cm? b l a c k (N 2 / 0 ) (A) a n d l i g h t g r a y ( 10YR 7 / 1 ) (E) s a n d ? w e a k m e d i u m g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; many f i n e r o o t s ; a b r u p t s m o o t h b o u n d a r y . B w l - 4 t o 1 4 c m; s t r o n g b r o w n ( 7 . 5 Y R 4 / 6 ) s a n d ; w e a k medium g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; many f i n e and medium r o o t s ; c l e a r s m o o t h b o u n d a r y . Bw2 - 1 4 t o 33 cm? s t r o n g b r o w n ( 7 . SYR 4 / 6 ) s a n d ; s i n g l e g r a i n ; l o o s e ; common f i n e r o o t s ; 1 % g r a v e l ; g r a d u a l smooth boundary. BC - 3 3 sin g le grain; boundary. t o 65 cm; y e l l o w i s h b r o w n ( 1 0 Y R 5 / 6 ) s a n d ; l o o s e ; few f i n e r o o t s ; 1% g r a v e l ; d i f f u s e wavy C - 6 5 t o 1 6 0 c m; l i g h t b r o w n ( 7 . SYR 6 / 4 ) s a n d ; s i n g l e g r a i n ; l o o s e ; f ew medium a n d f i n e r o o t s ; 1 % g r a v e l . KALKASKA ( s a n d y , m i x e d , f r i g i d Typic Haplorthods) A - 0 t o 4 c m ; b l a c k (N 2 / 0 ) l o a m y s a n d ; w e a k m e d i u m g r a n u l a r s t r u c t u r e , v e r y f r i a b l e ; many f i n e r o o t s ; a b r u p t smooth, d is c o n ti n u o u s boundary. E - 0 t o 7 cm; g r a y i s h b r o w n ( 1 0 YR 5 / 2 ) l o a m y s a n d ; we a k me d i u m g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; many f i n e a n d medium r o o t s ; a b r u p t w a v y b o u n d a r y . Bh - 7 t o 1 9 cm; d a r k r e d d i s h b r o w n (SYR 3 / 3 ) l o a m y s a n d ; m o d e r a t e medium s u b a n g u l a r b l o c k y s t r u c t u r e ; f r i a b l e ; s o me f r a g m e n t s o f c e m e n t e d o r t s t e i n p r e s e n t ; common me d i u m and l a r g e r o o t s ; c l e a r wavy b o u n d a ry . B s l - 19 t o 46 cm; s t r o n g b r o w n ( 7 . SYR 4 / 6 ) l o a m y s a n d ; we a k m e d i u m g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; s ome f r a g m e n t s o f c e m e n t e d o r t s t e i n p r e s e n t ; common m e d i u m a n d l a r g e r o o t s ; c l e a r i r r e g u l a r boundary. B s 2 - 4 6 t o 8 0 cm; d a r k y e l l o w i s h b r o w n ( 1 0 YR 4 / 6 ) lo a m y s a n d ; weak medium g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; few medium r o o t s ; g r a d u a l i r r e g u l a r b o u n d a r y . BC - 8 0 t o 1 2 4 c m; l i g h t b r o w n ( 7 . 5 Y R 6 / 4 ) l o a m y s a n d ; we a k me d i u m s u b a n g u l a r b l o c k y s t r u c t u r e ; v e r y f r i a b l e ; f e w medium r o o t s ; g r a d u a l s m o o t h b o u n d a r y . C - 1 2 4 t o 1 7 4 c m; l i g h t b r o w n ( 7 . 5 Y R 6 / 4 ) l o a m y s a n d ; s i n g l e g r a i n ; l o o s e ; w i t h f e w t h i n ( 0 . 5 t o 1 cm) b a n d s o f y e l l o w i s h r e d ( 5YR 4 / 6 ) B a n d y l o a m ( B t ) ; m o d e r a t e m e d i u m su b an g u lar blocky s tru c tu re ? firm . 24 MONTCALM ( c o a r s e - l o a m y , m i x e d , frigid E u tric G lossoboralfs) A - 0 t o 4 c m; b l a c k (N 2 / 0 } l o a m y s a n d ; w e a k m e d i u m g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; many f i n e a n d medium r o o t s ; c l e a r wavy boundary. E - 4 t o 1 6 cm; l i g h t b r o w n i s h g r a y ( 10 Y R 6 / 2 } l o a m y s a n d ; weak m edium g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; many medium r o o t s ; a b r u p t w a v y b o u n d a r y . B s - 1 6 t o 6 6 cm; s t r o n g b r o w n ( 7 . SYR 4 / 6 ) l o a m y s a n d ; we a k f i n e s u b a n g u l a r b l o c k y s t r u c t u r e ; v e r y f r i a b l e ; common medium an d l a r g e r o o t s ; g r a v e l b and n e a r l o w e r b o u n d a r y ; g r a d u a l smooth bound ary. E ' - 6 6 - 9 0 c m; b r o w n ( 10YR 5 / 3 ) l o a m y s a n d ; m o d e r a t e m e d i u m p l a t y s t r u c t u r e ; f i r m ; f e w me di um r o o t s ; s o me p a t c h y c l a y f i l m s p r e s e n t ; c l e a r wavy b o u n d a ry . E* a n d B t - 9 0 t o 1 5 0 c m; p a l e b r o w n ( 10YR 6 / 3 ) s a n d ( E 1) ; s i n g l e g r a i n ; l o o s e ; i n 2 t o 10 cm t h i c k l a y e r s a n d l e n s e s ; a n d y e l l o w i s h r e d (SYR 4 / 6 } s a n d y c l a y l o a m ( B t ) ; m oderate c o arse su b a n g u la r b lo ck y s t r u c t u r e ; firm ; in 2 to 3 0 cm t h i c k b a n d s a n d l e n s e s ; f e w m e d i u m r o o t s ; clear i r r e g u l a r boundary. 2C - 1 5 0 t o 1 8 0 cm; b r o w n ( 7 . SYR 5 / 4 ) s a n d y c l a y l o a m ; m o d e r a t e medium s u b a n g u l a r b l o c k y s t r u c t u r e ; f r i a b l e ; few f i n e a n d medium r o o t s ; s t r o n g e f f e r v e s c e n c e . EXPERIMENT 1 - MONTCALM LOAMY SAND The M o n tc a lm s e r i e s c o n s i s t s o f d e e p w e l l - d r a i n e d s o i l s formed i n s a n d y and plains for (SCS-USDA). d etailed horizons related that loamy m a t e r i a l s on m o r a i n e s a n d o u t w a s h T h e M o n t c a l m p e d o n s a m p l e d wa s s e l e c t e d study differ because of in p h y s ic a l its com bination of soil and c h e m ic a l p r o p e r t i e s to s u l f a te adsorption. ag fch p d s. T h is p r e l i m i n a r y s tu d y o f s u l f a t e a d s o r p t io n employed a factorial arran gem en t o f t r e a t m e n t s in a randomized c o m p lete 25 block design. preparation The t h r e e (air-d ry , concentration and so il f a c t o r s i n c o r p o r a te d were sam ple (2.5, horizon co ncentration field -m o ist), 5.0, 10.0, (A, E, 25.0, Bs, so lu tio n 50.0, E ', B t, su lfate 1 0 0 . 0 mg S L " 1 ) , 2C). The S04-S r a n g e f r o m 2 . 5 t o 2 5 . 0 mg S L" 1 a p p r o x i m a t e d c o n c e n t r a t i o n s in s o i l s o l u t i o n and g ro un dw ater under f o r e s t so ils in n o r th e r n lo w er M ichigan 5 0 . 0 a n d 1 0 0 . 0 mg S L - 1 su lfate lev els possible day-to-day adsorption sam p les w ith concentrations were allow ed 1986). The fo r exam ination of a d s o rp tio n a t h ig h e r than am bient c o n c e n tr a tio n s . The e x p e r i m e n t was c o n d u c t e d S u lfate (U rie e t a l . , shaken in th ree blocks v ariatio n s in H SO4 - S C aC l2 added 5 0 mL o f co n tain in g as Na2 SC>4 . for t h r o u g h Wha t ma n t 42 f i l t e r p a p e r , account the 24 h o u r s , so il graded Ten-gram and a n a l y z e d for technique. by e q u i l i b r a t i n g solution a u to m ate d BaS04 t u r b i d i m e t r y to lab o rato ry was d e t e r m i n e d 0.01 of in sam ples filtered for (W all e t a l . , 1980). SO4 - S b y S ulfate a d s o r p t i o n , a d j u s t e d t o o v e n - d r y s o i l w e i g h t , wa s c a l c u l a t e d from d is a p p e a r a n c e o f s u l f a t e S tatistical facto rial analysis experim ents by from s o l u t i o n . follow ed S teel procedures and outlined T orrie (1980). for Mean s e p a r a t i o n f o r a n a l y s i s o f v a r i a n c e r e s u l t s wa s a c c o m p l i s h e d u s in g T u key's w p r o c e d u r e high v ariab ility in ( S te e l and T o r r i e , 1980). certain 1 0 0 . 0 mg S L- ^ w e r e e x c l u d e d variance. to a Remaining d a t a n atu ral log (In) horizons, data from 50.0 from an o v e r a l l (mg S k g - 1 scale to soil) Due t o analysis and of were transform ed co n tro l varian ce. Transform ation of p o s itiv e d a ta ln[(m g S kg~*)+l] release) took {S a d s o r p t i o n ) and t r a n s f o r m a t i o n the form took t h e form of negative -[ln (|m g S d ata kg_1 |+ l)]. (S T his m a n i p u l a t i o n g a v e e q u a l v a l u e s on a l o g s c a l e t o p o s i t i v e and n e g a t i v e num bers e q u i d i s t a n t denoting num bers m easurement. below A ddition of zero from z e r o , on one t o the a ll a negative o rig in al absolute scale values to taking logs elim in ated n eg ativ e logs fo r v a lu e s one, and m a in ta in e d a zero p o in t as R e s u l t s and. P i g c w e g j g n R esults 3.1. l n ( 0+l) of prior le s s than = 0. Experiment 1 of the a n a ly s is of variance are given The t h r e e - w a y sign interaction was n o t in T able significant a n d wa s pooled w ith e rro r. S i g n i f i c a n t two-way i n t e r a c t i o n s p r e s e n t between a l l three factors. were Table 3.1 A n a l y s i s o f V a r i a n c e R e s u l t s - M o n t c a l m Loamy S a n d SS MS F 11 DP II Pi II II Source 11 11 S B S B B & K & S S E B S S S & S S t i Block 2 3.3522 1.6761 17.77 0 . 0 0 0 S oil Preparation 1 1.0363 1.0363 10.99 0.005 S o il Horizon 5 395.3932 79.0786 838.31 0 . 0 0 0 SO ^ - S C o n c e n t r a t i o n 3 8.6064 2.9354 31.12 0 . 0 0 0 SP X SH 5 6.9032 1.3806 14.64 0 . 0 0 0 SP X SC 3 1.9357 0.6452 6.84 SH X SC 15 24.2982 1.6199 17.17 109 10.2821 0.0943 Error 0.003 0 . 0 0 0 27 F i g u r e 3.1 show s t h a t A and E h o r i z o n s during e q u ilib r a tio n , sulfate. been w h i l e Bs, E', released sulfate and Bt h o r i z o n s a d so rb e d S i m i l a r p a t t e r n s o f d e s o r p t i o n and a d s o r p t i o n h a v e reported for other acid forest so ils (Singh, 1980b; Johnson and Todd, 1983; F u l l e r e t a l . , 1985; W eaver e t a l . , 1985). The o v e r a l l t r e n d was s i m i l a r f o r b o t h a i r - d r y and f ie ld - m o is t sam ples, w ithin E, Bs, a n d 2C h o r i z o n s . more s u l f a t e , and a i r - d r y than corresponding sam ples but sig n ific a n t differences released A ir-dry Bs h o r i z o n s but adsorbed s u l f a te . D rying effects im portant field-m oist because E horizons A ir-dry 2C h o r i z o n field-m oist on t h e 2C sam ples gave a in organic m atter, a n d pH ( B a r r o w , 1967; Fe and Singh, Al apparently drying e ff e c ts Figure to tally than a i r - content, 1980b; Todd, 1983; F u l l e r e t a l . , 1985; E v an s, 1986). air-drying were D if f e r e n c e s between h o riz o n s a r e l i k e l y due to differences content, sam ples 2C h o r i z o n d i f f e r e n t im pression o f s u l f a t e ad so rp tio n a b i l i t y d ry sam ples. released a d s o r b e d more s u l f a t e f ie l d - m o i s t sam ples. su lfate, existed 3.2 and f i e l d - m o i s t on s o i l differs to and Response to d ifferen tial properties. dem onstrates sam ples according Johnson clay as the divergence sulfate betw een concentration air-dry increases. A ir - d r y and f i e l d - m o i s t sa m p le s w ere n o t d i f f e r e n t a t 2.5, 5 . 0 , a n d 1 0 . 0 mg S L " 3-, b u t w e r e s i g n i f i c a n t l y d i f f e r e n t a t 2 5 . 0 mg S L " 3-. The d i v e r g e n c e reflects lower S r e l e a s e from f i e l d - m o i s t A and E h o r iz o n s as w e ll as in adsorption by f i e l d - m o i s t E', Bt, an increase a n d 2C h o r i z o n s . S S/kg|+1) Lnflmg S Adsorbed -1 Tukey*s w.05 — 0.42 -2 -4 A E D Air-Dry Bs E* Bt Sotl Horizon -l- Field-M oist Figure 3.1 Soil Preparation x Soil Horizon Interaction - Montcalm Loamy Sand 2C 0.6 0.5 S/kg|+1) 0.4 0.3 S Adsorbed Lnflmg 0.2 0.1 0 - 0.1 - 0.2 T u k o / s w.05 — 0.32 -0.3 -0.4 -0.5 5 2.5 O Air-Dry 10 Initial S Concentration (m g S /L ) + Field-M oist Figure 3.2 Soil Preparation x Sulfate Concentration Interaction - Montcalm Loamy Sand 25 30 Figure for in 3.3 shows t h e p a t t e r n o f S a d s o r p t i o n o r r e l e a s e each horizon so lu tio n , in relation su lfate sulfate concentration sulfate release increase in horizons, greater, ma y b e increasing adsorption i n Bsf E', S adsorption rate possibly an was of related to separate artifact of D .l). in teractio n S ignificant horizons was six 3.4), soil fu rth er for E, field-m oist (Figure 3.4). sam ples for Bs, horizon zero (1986b) 3.2), A, or E ', Bt apparent adsorbed Occurrence of sulfate resu lts show ed some s u l f a t e w i t h pH a d j u s t e d to sim ilar adsorption v alues. to 2C 2C between B olan occur and in th e sulfate by Table horizons adsorption presented S 0 4-S prev io u sly . w h ile a ir - d r y sam ples v a rie d although w ith horizon, f i e l d - m o i s t 2C h o r i z o n w a s s u r p r i s i n g b e c a u s e o f i t s (Table was conducting so il described for and ( A p p e n d i x D, present not by each I n t e r a c t i o n wa s e s p e c i a l l y 1 0 . 0 a n d 1 0 0 . 0 mg S Bs o f Na+/ C a ^ + i n c r e a s e d (F ig u re 3.5). where and horizon preparation as were but Bt E 'r from A and E h o r i z o n s concentrations in teractio n s 2C, of 0 . 0 7 8 a t 2 5 . 0 mg S I*"-1- ) . transform ed (Figure the The r a t e Na+ c o n c e n t r a t i o n (meq r a t i o variance sulfate were in release betw een of for w hile higher c la y content of the in v estig ated analyses D ata a n d 2C h o r i z o n s , sim ilar increasing S concentration including a l l Bt, the Increased s u lf a te concentration SO ^ - S c o n c e n t r a t i o n in cre ased w ith s o lu tio n increase f r o m 0 . 0 0 8 a t 2 . 5 mg S L” * t o The in itial i n c r e a s e d f o r A and E h o r i z o n s . w hile Bt h o riz o n . to in around in the h i g h pH et al. so ils C o-precipitation of S /k g j+ t) Lnflmg s Adsorbed -1 -2 -3 -4 2.5 25 P A + E O Initial S Concentration (m g S /L ) Bs A P v « Figure 3.3 Soil Horizon x Sulfate Concentration Interaction - Montcalm Loamy Sand S / k g |+ 1 ) Lnflmg S Adsorbed -1 -2 -3 -4 2.5 5 □ A A-AD P -F M 10 25 50 Initial S C oncentration (m g S /L ) + A-FM O P-A D X 2C-AD V 2C-FM Figure 3.4 Horizons with Air-Dry x Field-Moist Interactions - Montcalm Loamy Sand 100 2.5 5 □ A E-AD Bs-FM 10 25 50 Initial S Concentration (m g S /L ) + E-FM ❖ Bs-AD X Bt-AD V Bt-FM Figure 3.5 Horizons without Air-Dry x Field-Moist Interactions - Montcalm Loamy Sand 100 34 s u l f a t e w i t h CaC03 may b e i n v o l v e d 1962). T h e Bs a d s o r p t i o n c u r v e s ones d e te rm in e d by S ingh ( W illia m s and S t e i n b e r g s , ( F i g u r e 3.5) (1980a) are sim ilar f o r B s a n d Bw h o r i z o n s o f Norwegian Udipsamments and D y s t r o c h r e p t s . The a b r u p t changes evident Bt horizon ad so rp tio n in adsorption curves E' (Figure curves 3.4) are and sim ilar in A and E horizon su lfate mg S L“ 1 s o l u t i o n s w e r e d i l u t e d breaks may interferences In be in A and due to (1977) concentrations. curves E horizons, p o s s i b l y due t o drying. Increased The 50.0 and 100.0 in (1964), W illia m s D avid e t a l . and th e organic m atter air-drying encouraged su lfate m ineralization of organic 5 during release of inorganic s u lfu r from a i r - d r y s o i l a s com pared t o f i e l d - m o i s t s o i l was a l s o (1958), were the a n a ly s is . release, Freney in and Baque p rio r to a n a ly sis red u ctio n 3.5) changes release a p p a r e n t b e t w e e n 2 5 . 0 a n d 5 0 . 0 mg S L- 1 . slope (Figure to found by Jo h n so n and C o le and W a lm s le y (1973) a t c o m p a r a b l e s u l f a t e B reaks to Barrow (1961), (1967), W illiam s and r e p o r t e d by S teinbergs and T a b a ta b a i and Bremner (1972). (1982), found t h a t d ry in g caused in c r e a s e s extractable su lfa te in organic horizon s, but d ecreases m in e r a l h o r i z o n s , o f a T ypic Fragihumod. in in I n t h e M o n t c a l m Bs h o r iz o n , a i r - d r y i n g prom oted s u l f a t e a d s o r p tio n , p o s s i b l y through disintegration of soil aggregates o rg an ic m a tte r-se sq u io x id e bonds, or disruption of making an i n c r e a s e d number of anion a d so rp tio n s i t e s a v a i l a b l e . A ir-d ry in g has a ls o been found to in c r e a s e P a d s o rp tio n in s o i l s (B artlett and 35 James, 1980; O lse n and C o u r t, 1982). Sulfate adsorption at h ig h e r s o l u t i o n s u l f a t e c o n c e n tr a tio n s tended to be low er in air-dry E', Bt, This su g g ests amorphous a n d 2C s a m p l e s in f i e l d - m o i s t sam ples. t h a t d ry in g produced changes hydroxy A1 p o l y m e r s , charge of ad so rp tio n s i t e s capacity than (Baynes, 1983). that in the clay m inerals w ould in h ib it W ithin h o rizo n s, nature or in of the adsorptive differences i n pH betw een a i r - d r y and f i e l d - m o i s t s a m p le s w ere m inor (T a b le 3.2), su ggesting differences in th at sulfate pH changes did not cause the adsorption. Table 3.2 ii 11 n n *0 ca A ir-Dry ii ii ii ii u n It CN I O Field-M oist U r -t A ir-D ry Horizon 11 (Q 11 < J PH - _ » 2° ________ II I 1 it H ii n ii ti ii ii ti S o i l pH o f A i r - D r y a n d F i e l d - M o i s t S a m p l e s Field-M oist 4.05 4.39 3.34 3.57 E 4.39 4.68 3.59 3.66 Bs 5.90 5.96 4.76 4.68 E' 6.25 6.42 4.97 5.02 Bt 6.57 6.99 6.32 6.30 8.48 7.72 7.72 11 11 u ii u ii U 11 C N H A 8.39 PRPR 555 5 5 5 S B 5555BC85S&S55 A dsorption Iso th e rm s - Experiment 1 A dsorption d a ta were f i t t e d from th e Bs, E ', B t, a n d 2C h o r i z o n s to th e F r e u n d l i c h and Langm uir is o t h e r m s , equations commonly UBe d adsorption ch aracteristics to num erically of a so il sum m arize (Singh, 1984a). two the The 36 lin ear B(log form o f th e F r e u n d lic h e q u a tio n C), where equilibrium are su lfate em pirical of the X ® su lfate Langm uir adsorbed concentration coefficients (Singh, equation is is log X = log A + (mg S kg'"1 ) , C = (mg S L- 1 ) , a n d A a n d B 1984a). The linear C/X = C/A + 1 / B A , form where A = a d s o r p t i o n m a x i m u m (mg S k g - * ) , B i s a c o n s t a n t r e l a t e d adsorption energy concentration (P arfitt, (mg S L - 1 ) , 1978), C = equilibrium and X = S a d so rb ed For a d s o r p t io n c u r v e s t h a t conform t o a plot o f C/ X a g a i n s t C g i v e s to sulfate (mg S k g " 1 ) . t h e Langmuir i s o t h e r m , a straight line of slope 1/A, f r o m w h i c h A may b e c a l c u l a t e d a n d t h e c o n s t a n t B o b t a i n e d from th e intercept R esults (P arfitt, of f ittin g 1978). d a t a from t h e Montcalm loamy sand t o t h e F r e u n d l i c h and Langmuir e q u a t i o n s a r e p r e s e n t e d 3.3. A pplication horizon data, tran sfo rm atio n of the F reundlich where of S log(Jm g S kg_ 1 | + l ) , below zero . of the negative equation values adsorption data t o B t a n d 2C existed, to the a minus s i g n d e n o t i n g t h e in Table required form (+,-) l o g o f numbers F o r B t a n d 2C h o r i z o n s , u s e o f t h e l i n e a r f o r m Freundlich equation is necessary to avoid confusion o v e r a p p r o p r i a t e v a l u e s t o a s s i g n n e g a t i v e numbers. Both F r e u n d l ic h describe .959). .996) and Langm uir Bs h o r i z o n a d s o r p t i o n C om parable r 2 v a lu e s and L angm uir equations data adequately for F reundlich ( r 2 = .878 to .996) r e p o r t e d f o r Bs a n d Bw h o r i z o n s o f s i m i l a r (1984a). appeared to ( r 2 = .938 t o ( r 2 = .978 t o eq u atio n s soils w ere by S in g h 37 Table 3.3 E s t im a te d P a r a m e te r s f o r F r e u n d l i c h and Langmuir I s o t h e r m s Freundlich Horizon Slope (B) Intercept (LogA) Bs AD+ 0.3839 0.6820 Bs FNI 0.4987 E' AD E* FM Langmuir Slope (1/A) Intercept ( 1/ BA) 0.951 0.0357 0.3971 0.959 0.3419 0.954 0.0409 0.9145 0.938 0.3717 0.0517 0.671 0.1510 2.4136 0.678 0.7859 -0.3538 0.850 0.0394 3.3720 0.280 B t - AD++ 0.6540 -0.3050 0.720 ------- 0.145 B t - FM 0.9766 -0.6563 0.864 ------- 0.146 0.001 ------- 0.007 0.805 ------- 0.043 2C - AD 2C - FM 0.8079 -0.4757 * AD = a i r - d r y s a m p l e s t FM = f i e l d - m o i s t s a m p l e s f t F r e u n d l i c h i s o t h e r m f o r B t a n d 2C h o r i z o n s , ( + , - ) l o g ( | m g S k g " 1 I +1) The Langm uir i s o t h e r m p r e d i c t e d an e s t i m a t e d a d s o r p t i o n maximum o f 2 8 . 0 mg S k g - * f o r air-dry S kg- * fo r sam ples. Langm uir isotherm sig n ifican t residuals the best Langmuir at field -m oist in worsened the indicated fit to equation Bt data for the Bs s a m p l e s Bs E* h o r i z o n F reundlich and from E' concentrations. to the was not E xam ination equation system atic exhibited and horizons, concentrations Langmuir i s o t h e r m a n d 2 4 . 4 mg A dherence 2C h o r i z o n s . the suffered a t interm ediate s u lf a te in and that low and h ig h s u l f a t e th a t the Bs log(X) of provided w hile the over-estim ation and u n d e r - e s t i m a t i o n Singh sim ilar (1984a) lack found of f i t at 38 c o m p a r a b l e s u l f a t e c o n c e n t r a t i o n s whe n a p p l i e d t o B h o r i z o n s o f Udipsamments. squares, (1984a) F values, su lfate exam ination the F reundlich adsorption in sums o f residuals, Singh e q u a t i o n was b e s t B horizons B ased on r 2 v a l u e s field -m o ist F reundlich B am ples of acid for forest isotherm sam ples had low er equations for than in tercep t being differences m ore adsorption sam ples, sig n ifican t reflect by clo sely air-d ry adsorption Y -intercepts air-d ry (T able 3.3), a d s o r p tio n adhered F reu n d lich equations d e s c r i b i n g These of residual T h is c o n c l u s i o n i s s u p p o rte d by th e r e s u l t s o f th e p resen t study. by and concluded th a t describing so ils. B a se d on c o m p a r i s o n s o f for and differences B t, interactions the sam ples. by f i e l d - m o i s t steeper E 1, to slopes in and than slope and 2C h o r i z o n s . between air-dry and f i e l d - m o i s t sam ples d isc u sse d e a r l i e r . EXPERIMENT 2 - GRAYLING AND KALKASKA SERIES A sam ples are second, series experim ent from th e G ra y lin g w ell- glacial sm aller to ex cessiv ely deposits of was perform ed and K a lk a s k a p e d o n s. drained W isconsinan age so ils Both s e r i e s form ed (SCS-USDA). using in sandy These two re p re s e n t extrem es in sp o d ic develo p m en t, G ray lin g lacking a spodic h o r iz o n and K a lk a s k a p o s s e s s i n g developed spodic horizon high in organic carbon. a strongly 39 tiathofla A facto rial com plete b lo ck K alkaska), horizon and a r r a n g e m e n t was e m p l o y e d design. soil preparation (G rayling: su lfa te experim ent was (5.0, in (G rayling, field-m oist), 25.0 three a random ized series B w l , Bw2, BCj K a l k a s k a : conducted soil Bh, B sl, Bs2), S L- 1 ) . The mg blocks. A dsorption were perfo rm ed as d e s c r i b e d p r e v i o u s l y . were t r a n s fo r m e d t o to (air-dry, co n cen tratio n equilibrations applied F a c to rs were s o i l in ln(|m g S kg“ ^ | + l ) , with a negative Data sign l o g s o f n e g a t i v e numbers. R e s u l t s a n d D i s c u s s i o n - E x p e r i m e n t 2. A n a l y s i s o f v a r i a n c e i n d i c a t e d s i g n i f i c a n t main e f f e c t s and i n t e r a c t i o n s b e tw ee n s e r i e s and s o i l soil p r e p a r a t i o n and s o i l An e x a m i n a t i o n of the horizon S eries h o r i z o n and between ( A p p e n d i x D, T a b l e D . 2 ) . x S oil H orizon in teractio n ( F i g u r e 3 . 6 ) s h o w s t h a t t h e G r a y l i n g Bwl r e l e a s e d s u l f a t e , w h i l e t h e K a l k a s k a Bh h a d s i g n i f i c a n t l y adsorb sulfate. ThiB difference degree of spodic developm ent, greater capacity was a p p a r e n t l y related to to chem ical p r o p e r tie s a s so c ia te d w i t h t h e K a l k a s k a Bh h o r i z o n f a v o r i n g s u l f a t e a d s o r p t i o n . The s e c o n d and t h i r d G r a y l i n g Bs2) horizons displayed tested sim ilar were sulfate ( Bw2 , BC) a n d K a l k a s k a sim ilar m orphologically adsorption abilities. th e S e r ie s x S o i l Horizon i n t e r a c t i o n , o f main e f f e c t s o r i n t e r a c t i o n s m isleading for each and s e p a r a t e series. A nalysis of and Because of further investigation com bining b o th s e r i e s analyses of (B sl, was v a r i a n c e were p erfo rm ed variance resu lts for the 2.2 2 1.8 S /k g |+ 1 ) 1.6 1.4 Lnflmg 1.2 1 Tukey's w.05 — 0.48 S Adsorbed 0.8 0.4 0.2 0 - 0.2 Bw1/Bh BC/Bs2 D Grayling Grayltng/Kalkaska Soil Horizon + Kalkaska Figure 3,6 Series x Soil Horizon Interaction - Grayling and Kalkaska pedons 41 G ray lin g pedon E xception of are the presented S oil in T able P rep aratio n 3.4. x w ith S o il the H orizon i n t e r a c t i o n , tw o-w ay and th r e e - w a y i n t e r a c t i o n s w ere non­ s i g n i f i c a n t and were p o o l e d w i t h e r r o r . Table 3.4 A n a l y s i s o f V a r i a n c e R e s u l t s - G r a y l i n g Sand & S B & & S S B S ! B B B E : e S S S S & Source S ^ » S ; B B B B & DF & e e a s s S 6 B B B C C S & SS MS & K S 5 C = S S S & & S 5 5 F P Block 2 0.4413 0.2206 0 .66 0.434 Soil P reparation 1 0.0307 0.0307 0.12 0.663 S o i l Horizon 2 29.0770 14.5385 56.50 0.0 00 SO^-S C o n c e n t r a t i o n 1 5.3104 5.3104 20.64 0.0 00 SP X SH 2 2.0970 1.0485 4.08 0.030 27 6.9473 0.2573 Error The m ain effect of in creasin g so lu tio n c o n c e n t r a t i o n was s i g n i f i c a n t , w i t h a d s o r p t i o n w ith S co n cen tratio n . preparation and s o i l the G rayling field-m oist Bw2 and horizon Bwl h o r i z o n , sam ples sign ificantly had in is S. higher field -m o ist lower in teractio n air-dry adsorbed BC h o r i z o n s corresponding The increasing betw een shown i n F i g u r e sam ples In sam ples. 3.7. released contrast, su lfate su lfa te S, both For w hile air-dry adsorption Bwl so il sam ples than w ere S a d s o r p t i o n t h a n Bw2 o r BC s a m p l e s . A n a ly s is o f v a ria n c e r e s u l t s f o r th e K alkaska pedon a re presented in Table 3.5. were n o t s i g n i f i c a n t Two - wa y a n d three-w ay and were p o o l e d w i t h e r r o r . interactions A ll three 2.2 2 1.8 S /k g |+ 1 ) 1.6 1.4 1.2 Lnflmg 1 O.B Tukey*s w.05 — 0.90 S Adsorbed 0.6 0. 4 0.2 0 - 0.2 - 0.6 Bw1 Bw2 □ Ail—Dry Grayling Soil Horizons 4* Field—Moist Figure 3.7 Soil Preparation x Soil Horizon Interaction - Grayling sand BC main e f f e c t s were s i g n i f i c a n t . A ir-dry sam ples adsorbed more s u l f a t e t h a n f i e l d - m o i s t , and B u l f a t e a d s o r p t i o n was sign ificantly order Bs2 increasing different < Bsl between h o r i z o n s , < Bh. sulfate S u lfate increasing adsorption in the increased w ith concentration in so lu tio n . Table 3.5 A n a l y s i s o f V a r i a n c e R e s u l t s - K a l k a s k a Loamy S a n d U i Pi 1 1 1 11 11 1 i ^cscrc£ss=?snsKt:&=: DF Source S5 MS F i Block 2 0.0949 0.0474 0.91 0.414 Soil Preparation 1 1.4344 1.4344 27.64 0.00 0 S o il Horizon 2 1.4640 0.7320 14.10 0.0 0 0 SO4- S C o n c e n t r a t i o n 1 4.7558 4.7558 91.63 0.0 0 0 29 1.5048 0.0519 Error Lower s u l f a t e and BC and sim ilar to by a d s o r p t i o n b y f i e l d - m o i s t G r a y l i n g Bw2 K alkaska resu lts Bh, obtained B sl, for and Bs2 horizons t h e M o n t c a l m Bs h o r i z o n . A i r - d r y G r a y l i n g Bwl h o r i z o n s a m p l e s r e l e a s e d f i e l d - m o i s t Bwl s a m p l e s a d s o r b e d s u l f a t e , sulfate The release G rayling com parison T his adsorb Bwl h a d with suggests ab ilities, air-dry other G rayling th at in or adsorption cause and K a lk a s k a further sulfate ab ilities w ith 2C h o r i z o n s . properties soil weak Bs, Bw2, In in horizons. ad so rp tio n reduce th e a b i l i t y release. (Bh, w hile sim ila r to greater adsorption horizons w ill sulfate Montcalm E and we a k s u l f a t e air-d ry in g sulfate stronger by th e was horizons BC), to w ith air-drying 44 w ill increase interm ediate occur w ith adsorption air*-dry field-m oist sulfate su lfa te at ab ilities sam ples low than f i e l d ad so rp tio n . ( E 1, Bt), adsorbing S concentrations horizons interaction more but w ith may su lfate than adsorbing less m oist a t higher c o n ce n tra tio n s. C o r r e l a t i o n s betw een s u l f a t e field-m oist In sam ples a d s o r b e d by a i r - d r y and (paired w ithin experim ental blocks) for combined M ontcalm, G r a y l i n g , and K a lk a s k a u n tra n s fo rm e d d a t a are presented in T able 3,6, S ig n ifican t (P < 0.01) c o r r e l a t i o n s were p r e s e n t betw een a i r - d r y and f i e l d - m o i s t sam ples a t a l l variety of so lu tio n so lu tio n soil su lfate horizons. concentrations H ighest of correlations deteriorated o r wh e n d a t a for a l l concentrations correlations and f o r a existed 2 5 mg S L - ^ a n d b e l o w , at higher sulfate at w hile concentrations c o n c e n t r a t i o n s were grouped t o g e t h e r . Table 3.6 C o r r e l a t i o n s Between A ir - D r y and F i e l d - M o i s t In itial Samples S o l u t i o n SO ^ - S C o n c e n t r a t i o n --------------------------------------- (mg S L” *) ------------------------ 2.5 5.0 10.0 25.0 50.0 100.0 2.5 to 100.0 r 0.98 0.97 0.98 0.97 0.85 0.84 0.82 n 18 36 18 36 18 18 144 45 SUMMARY AND CONCLUSIONS In the sam ples so ils on in v o lv ed exam ined, su lfate and effects adsorption the of a ir-d ry in g depended co n cen tratio n eq u ilib ratin g solution. of (E, B w l , 2C) than from sam ples w ith stro n g e r s u l f a t e B w2 , BC) sam ples adsorbed were adsorption least suggest determ ine soils su lfate air-d ry and c o r r e l a t i o n s so lu tio n should mg S L* 1 t o sulfate reduce the 5 range o f using adsorption at L- 1 ) , the su lfate adsorption using to equation studied best R esults sam ples to of various b e l o w 25 air-drying. studies air-dry (2.5 t o described ad so rp tio n isotherm s in su b su rfa c e h o rizo n s o f th e so ils R esults in v estig ated . B u lfate ad so rp tio n co ncentrations performed using greater reported sam ples Over 1 0 0 . 0 mg su lfate forest su g g est t h a t developm ent of iso th erm s than were highest at c o n c e n t r a t i o n o f 10 mg S L - 1 . concentrations F reundlich ab ilities if su lfate less. air-d ry related than sam ples SO4- S c o n c e n t r a t i o n s sulfate w ith (Bhr Bs, in preparations 2 5 mg S L*"* o r discrepancies results, sulfate the Horizons air-d ry in g field-m o ist in su b seq u e n t c h a p te r s were perform ed and an i n i t i a l in horizons. D ifferences studies be p e rfo rm e d Based on t h e s e after and of lab o rato ry relative su lfa te r e l e a s e d more s u l f a t e same between s o i l concentrations that the field-m oist. betw een horizon adsorption c h a ra c te ris tic s more kept the A i r - d r y sa m p le s from h o riz o n s we a k a d s o r p t i v e a b i l i t i e s field-m oist on of s o i l 25 in clu d in g mg f i e l d - m o i s t sam ples. S L“ * so lu tio n m ight best be Chapter IV MATERIALS AND METHODS T his study, chapter selection methods discusses o f sam pling em ployed. p ro file B rief m orphologies presented. selectio n of so il locations, series and f i e l d sam pling com posite descriptions the series of so il Laboratory a n a l y t i c a l g e n e r a l methods o f s t a t i s t i c a l of the sam pled are methods a r e d e s c r i b e d , analysis are for and introduced. SOIL SERIES STUDIED The o b j e c t i v e s representative group of th is of M ichigan th e ir adsorption a b i l i t i e s as w ell as to properties. of forest adverse the relate effects su lfate soils sam pling a determ ine and e x t r a c t a b l e s u l f a t e contents, considered adsorption for to population from a c i d called forest adsorptive The s o i l soils study ab ilities of to interest p o ten tially deposition. a b ilities An of other s o il wa s t h a t group susceptible to investigation of the over seventy M ichigan s o i l s e r i e s th o u g h t s e n s i t i v e to a c id d e p o s itio n would be p r o h i b i t i v e subset of s o il series i n b o t h t i m e and e x p e n s e . was s e l e c t e d for Therefore, detailed a study using the fo llow ing c r i t e r i a ; 1. The s e r i e s sen sitiv e proposed to acid b y Mc F e e is c la ssifie d d eposition, <1980} follow ing ( A p p e n d i x A). 46 as s e n s itiv e or s l i g h t l y the criteria 47 2. The s e r i e s im portant as a is forest M ichigan, i.e., significant percent (Figure series of its to the lover larg e area 1.1), in in forest w ith unique peninsula ex ten t, cover soil that affect su lfa te selected Udipsamments), Rubicon H aplorthods), M ontcalm and portrayed in Figure 1.1 sam pling was based for (Entic (Typic H a p l u d a l f s ) , relatio n sh ip s. in o f a taxonom ic group of w ith a (SCS-USDA). r e p re s e n ts a d i s c r e t e p o in t in th e s o i l chem ical p r o p e r tie s S oil so il m oderate 3. The B e r i e s continuum rep resen tativ e H aplorthods), Spinks (Typic Kalkaska G lossoboralfs), (Typic Oshtemo (Psammentic H a p l u d a l f s ) . (Chapter I), selection a fram ework The p u r p o s e and adsorption. s tu d y were G r a y lin g (E utric w ithin physical of of As of series so il for taxonom ic stratificatio n over soil ta x o n o m ic g r o u p s was t o p r o v i d e a m e a n i n g f u l s a m p le o f s o i l s w ith w id e ly v a ry in g c h e m ic a l and p h y s i c a l p r o p e r t i e s t h a t affect su lfate adsorption (C hapter R ubicon, and K a lk a s k a s e r i e s gradient of so il developm ent s e s g u i o x i d e s and o r g a n i c horizons. spodic Spinks, and gradient of in content in ty p ified carbon its and K a lk a s k a Oshtemo soil M orphologically, clay represented The G rayling, an e n t i c - s p o d i c by an increase accum ulations in upper in B M o rp h o lo g ically , G rayling has the l e a s t developed character clay II). series developm ent, and the strongest. represented The G r a y l i n g , an characterized expression of the by and O shtem o an a rg illic G rayling is l e a s t developed, B horizons, en tic-alfic is increase horizon. having l i t t l e m ost stro n g ly 48 developed, present having a v e r t i c a l l y in i t s continuous subsurface horizons. and Oshtemo s e r i e s developm ent. arg illic The K a l k a s k a , horizon Montcalm, represent a sp o d ic -a lfic gradient of s o il and alfic w hile alfic d e v e lo p m e n t i s g r e a t e s t and s p o d i c d e v e lo p m e n t least in the Oshtemo and developm ent Spodic least series. are c la s s ifie d soil developm ent in the G rayling, as frig id tem perature Rubicon, 8 °C. t e m p e r a t u r e o f 8 °C o r h i g h e r , sta tistic a l K alkaska, h a v i n g a mean a n n u a l S p in k s and Oshtemo a r e h a v i n g a mean a n n u a l s o i l was betw een incorporated series. v a r i a b i l i t y d e te rm in e d from a v a i l a b l e data (SCS-USDA, (Steel 1980; and T o r r i e , series w ould MTU-FFC, 1980) allo w soil it was e s t i m a t e d pedons of each d etectio n d iffe re n c e s in s o i l chem ical p r o p e r tie s , allow characterization 1982-1984), s ta tis tic a l to Based on s e r i e s th a t sam pling six a d s o r p t io n , betw een s e r i e s . Montcalm b u t l o w e r t h a n 15 ° C. series com parisons series, zone s o i l s , low er than w ithin greatest K alkaska c l a s s i f i e d as m esic zone s o i l s , R eplication is of m ajor and t h u s s u l f a t e The c o m b in a tio n o f s i x s e r i e s a n d s i x p e d o n s p e r s e r i e s g a v e a t a r g e t o f 36 p e d o n s t o b e sam pled. T h i s n u m b er was c o n s i d e r e d given av ailab le the tim e, personnel, a p ractical funding, maximum and other re so u rce s a v a i la b l e to complete th e stu d y . SELECTION OF SAMPLING LOCATIONS A so il map u n i t rep resenting co n sid ered fo r sam pling o n ly i f a selected series was i t was c u r r e n t l y f o r e s t e d 49 and th e e x i s t i n g s t a n d w a s 40 y e a r s o l d o r o l d e r . q u a l i f i c a t i o n was a d o p t e d t o r e d u c e t h e e f f e c t s disturbance forest on s o i l cover allow ed. S tate, type Sam pling chem ical properties. considered locations U niversity, or other ty p ical of recent Inclusion of the lands of any series were r e s t r i c t e d public The a g e was to F e d e ra l, in the low er p e n i n s u l a o f M i c h ig a n w h e re p e r m i s s i o n t o s a m p l e c o u l d be readily obtained. selectio n of T his locations in extensive areas of p u b lic tig h t restrictio n s where p u b l i c placed northern w hich lim ited relatin g base C orrelation individuals and and adsorption regression on w h i c h p a i r s T o rrie, 1980 ; stratificatio n of horizons provided and to regression other a range and S m ith, over soil of X v alu es. that mapped published surveys, analyses sam pling are of made (Steel 1980}. The series and To a s s u r e so il that a sam pling s i t e s were as d e s c r ib e d below . C ounties series sam ples properties. random r a n d o m s a m p l e o f Y v a l u e s wa s o b t a i n e d , selected soil o f m easurements sam pling low er M ichigan wa s t o o b t a i n s o i l require D raper M ichigan where in exten t. co rrelatio n su lfate on b u t imposed f a i r l y on s a m p l i n g i n s o u t h e r n lands are to restrictio n low er lands e x is t, A major purpose o f sam pling on little so il on contained p u b lic surveys, areas lands advance of selected soil w ere id en tified soil sheets, land type (MDNR, 1984). For a n d a M i c h i g a n C o u n t y map a t l a s each s e r ie s , the using s i x c o u n ti e s were random ly and in d e p e n d e n tly 50 selected w ith one pedon to be l o c a t e d county. W ithin each c o n t a i n e d map u n i t s lands were selected county of the identified soil sheet, selected , desired and soil soil random ly map u n i t s which d e te rm in e d th e o r d e r and sa m p le d in e ac h sheets series on p u b l i c ordered. were a s s ig n e d that W ithin a random num bers in w hich th e y were v i s i t e d and e v a lu a te d f o r sam pling. Sam pling confirm th a t: sites were s e l e c t e d 1) t h e location old during field was f o r e s t e d , 2) t h e stand w a s 40 y e a r s cores from one o r more d o m in a n t o r c o -d o m in a n t t h e r e was no e v i d e n c e 4) or o ld e r of bucket auger borings (determ ined re c e n t major s o i l indicated that checks to existing by in c re m e n t trees), 3) disturbance, the soil and p ro file wa s w ith in th e range of m o rp h o lo g ica l c h a r a c t e r i s t i c s fo r the ta rg e t se rie s interpretation made to given sheets in clu d e m orphological or in avoid The n e x t map u n i t in located above. potential soil sheets location and i t s each ex h ib itin g the first and extrem e point a l o c a t i o n would be r e j e c t e d . on t h e same s o i l accep tab ility sam pling locations sheet evaluated on a s o i l as sheet t h e map u n i t s o n s u c c e s s i v e r a n d o m l y s e l e c t e d would be sim ilarly evaluated u ntil a sam pling was a c c e p t e d . A fte r independent s e l e c t i o n for At random o r d e r would th e n be were r e j e c t e d , pedons the d e sc rip tio n No s u b j e c t i v e a t t e m p t was ch aracteristics. wa s n o t s a t i s f i e d , a ll s o il (SCS-USDA). criterion If SCS series, but prior to o f th e s ix county lo c a tio n s in itiatio n of fieldw ork. 51 c o u n t i e s were g ro u p ed g e o g r a p h i c a l l y so t h a t one pedon of each series blocks. would T his design in to be included incorporated fie ld a in each of random ized sam pling (F igure six sam pling com plete 4.1). block G eographic s a m p l i n g b l o c k s a l l o w e d f o r e f f i c i e n t u s e o f t r a v e l t i m e and sam pling e f f o r t , related as w e ll as rem oving from e r r o r any e f f e c t s to season o f sam pling, changes in sam pling technique o v er tim e, regional differences day-to-day laboratory analytical zone pedons and t h e f o u r f r i g i d block in SO4 - S d e p o s i t i o n , variations. zone pedons were s i m i l a r analysis. in term s of The b a s i c tim e of analysis i n t e r - s e r i e s com parisons ta k e s Source the in each (F igure 4.1), sam pling of The two m esic included did not have geographic s i m i l a r i t i e s and variance and but laboratory stru ctu re for f o l l o w i n g form: D e g ree s o f Freedom Block Series Error 5 5 25 T otal 35 FIELD SAMPLING METHODS The p i t s a m p l i n g p r o c e d u r e e m p l o y e d was a d a p t e d f ro m USDA ( 1 9 8 2 ) , W ithin the E llis selected subjectively located areas, tra ils, features skid et al. map (1976), u n it, so il away fro m r o a d s , anim al t h a t m ight c a u se and p it fence burrow s, deviation H eilm an or (1971). lo catio n s rows, other from norm al were windthrow obvious stand or 52 LEGEND R-l G K M 0 R S S oil Series-B lock # North G rayling Kalkaska Montcalm Oshtemo Rubicon Spinks 25 M iles 50 N orthern L o we r M ichigan Frigid Zone Mesic Zone Southern L o we r M ichigan F igure 4.1 L o c a t i o n s and Block A ssig n m en ts o f Sampled Pedons 53 so il conditions. F its were approxim ately 1 by 2 m e te rs a c r o s s a n d e x c a v a t e d t o a t l e a s t 1 6 0 cm d e e p , o r i n t o t h e C h o r i z o n , w h i c h e v e r wa s d e e p e r . fo llo w in g standard thicknesses were measured a lo n g the p i t were f a c e and a v e r a g e d . taken (S oiltest, with so il Soil p ro file s the from 1971) each Sam ples in s o il containers for the were fille d 30 t o replaced to tran sp o rta tio n to the condition. return the T hirty-six site to Bamples volum eter S tarting e a c h h o r i z o n wa s cross in and density 50 cm w i d e , en tire lev eled , t r a n s e c t s on E ley upwards, placed in, an H orizon m oisture cans. Upon c o m p l e t i o n o f d e s c r i p t i o n were vertical w ith and p r o c e e d i n g representing horizon. three horizon sam pled in a v e r t i c a l p a t t e r n sam ples procedures. Two 25 cm^ b u l k and p l a c e d C horizon survey were d e s c r ib e d using section p lastic loose of coated the paper laboratory. and s a m p li n g , to p so il its and soil leaf approxim ate pits litte r o riginal pedons m eeting s e r i e s d e s c r i p t io n s were l o c a t e d and s a m p le d b e tw ee n J u n e and S e p te m b e r o f 1985. Two pedons th a t sp ecificatio n s also sam pled. F ig u re 4.1. w ere after so il L ocations found not to p i t excavation of sam pled m eet d esired ("Block 7") w e r e pedons B rie f com posite d e s c r ip tio n s of are shown each s e r i e s , d e r i v e d from t h e p r o f i l e d e s c r i p t i o n s o f sam pled pedons, presented pedons are below . Soil contained p rofile descriptions i n A p p e n d i x B. in for are individual 54 GRAYLING ( m i x e d , f r i g i d T y p i c O d i p s a m m e n t s ) A/ E Bwl Bw2 0 - 6 cm 6 - 2 3 cm 2 3 - 4 8 cm BC 4 8 - 8 9 cm C 8 9 - 1 6 7 cm B l a c k (N 2 / 0 ) s a n d ( 5 - 7 cm t h i c k ) D a r k b r o w n ( 7 . 5Y R 4 / 4 ) s a n d ( 1 5 - 2 1 cm t h i c k ) S t r o n g b r o w n ( 7 . 5 YR 4 / 6 ) s a n d ( 1 9 - 3 3 cm thick) Y e l l o w i s h b r o w n (10YR 5 / 4 ) s a n d ( 3 0 - 4 9 cm thick) L i g h t y e l l o w i s h b r o w n (10YR 6 / 4 ) s a n d RUBICON ( s a n d y , m i x e d , f r i g i d E n t i c H a p l o r t h o d s ) A 0 - 4 cm E 4 - 1 2 cm Bsl 1 2 - 3 4 cm Bs2 3 4 - 5 8 cm BC C 5 8 - 1 1 1 cm 1 1 1 - 1 7 5 cm B l a c k (10YR 2 / 1 ) s a n d t o l o a m y s a n d ( 3 - 6 cm thick) L i g h t b r o w n i s h g r a y (10YR 6 / 2 ) s a n d t o l o a m y s a n d ( 5 - 1 1 cm t h i c k ) S t r o n g b r o w n ( 7 . SYR 4 / 6 ) s a n d ( 1 6 - 3 0 cm thick) S t r o n g b r o w n ( 7 . SYR 5 / 6 ) s a n d ( 1 8 - 3 3 cm thick) L i g h t y e l l o w i s h b r o w n (10YR 6 / 4 ) s a n d ( 2 8 - 6 9 cm t h i c k ) L i g h t y e l l o w i s h b r o w n (10YR 6 / 4 ) s a n d KALKASKA ( s a n d y , m i x e d , f r i g i d T y p i c H a p l o r t h o d s ) A 0 - 5 cm E 5 - 2 3 cm Bhl 2 3 - 4 1 cm Bh2 4 1 - 6 7 cm Bs 6 7 - 9 6 cm BC 9 6 - 1 4 9 cm C 1 4 9 - 1 8 9 cm B l a c k (10YR 2 / 1 ) s a n d t o l o a m y s a n d ( 0 - 5 cm thick) G r a y i s h b r o w n (10YR 5 / 2 ) s a n d t o l o a m y s a n d ( 1 0 - 2 7 cm t h i c k ) D a r k r e d d i s h b r o w n (SYR 3 / 2 ) s a n d t o l o a m y s a n d ( 1 0 - 2 3 cm t h i c k ) Dark brown (7.5YR 3 / 4 ) s a n d t o loam y s a n d ( 0 - 4 3 cm t h i c k ) S t r o n g b r o w n ( 7 . SYR 4 / 6 ) s a n d t o l o a m y s a n d ( 1 9 - 4 2 cm t h i c k ) Y e l l o w i s h b r o w n (10YR 5 / 4 ) s a n d t o l o a m y s a n d ( 3 2 - 7 1 cm t h i c k ) L i g h t y e l l o w i s h b r o w n (10YR 6 / 4 ) s a n d t o loamy sand 55 MONTCALM ( c o a r s e - l o a m y , m i x e d , f r i g i d A E 0 - 8 cm 8 - 1 9 era Bh 1 9 - 4 6 cm Bs 4 6 - 8 0 cm E1 8 0 - 1 1 3 era E'2 & Bt 1132 21 cm C 2 2 1 - 2 6 1 cm OSHTEMO E utric G lossoboralfs) B l a c k (10YR 2 / 1 ) l o a m y s a n d ( 0 - 1 3 cm t h i c k ) D a r k g r a y i s h b r o w n (10YR 4 / 2 ) l o a m y s a n d ( 0 - 2 0 cm t h i c k ) D a r k b r o w n ( 7 . SYR 3 / 4 ) l o a m y s a n d ( 1 5 - 4 5 cm thick) D a r k b r o w n ( 7 . SYR 4 / 4 ) l o a m y s a n d ( 0 - 5 8 cm thick) Y e l l o w i s h b r o w n (10YR 5 / 4 ) s a n d t o l o a m y s a n d ( 1 3 - 5 3 cm t h i c k ) P a l e b r o w n (10YR 6 / 3 ) s a n d t o l o a m y s a n d ( E T2 ) w i t h b a n d s , l a y e r s a n d l e n s e s o f r e d d i s h b r o w n (SYR 4 / 4 ) s a n d y l o a m t o s a n d y c l a y l o a m (Bt> ( E f 2 0 - 9 6 cm t h i c k , B t 1 8 - 4 9 cm t h i c k ) L i g h t Br own ( 7 . 5 Y R 6 / 4 ) s a n d t o l o a m y s a n d (coarse-loam y, mixed, m esic T ypic H a p lu d a lfs) A 0 - 1 3 cm V e r y d a r k g r a y i s h b r o w n (10YR 3 / 2 ) l o a m y s a n d t o s a n d y l o a m ( 9 - 2 0 cm t h i c k ) E 1 3 - 6 4 cm D a r k y e l l o w i s h b r o w n (10YR 4 / 4 ) l o a m y s a n d t o s a n d y l o a m ( 3 5 - 7 0 cm t h i c k ) B tl 6 4 - 8 6 cm S t r o n g b r o w n ( 7 . SYR 4 / 6 ) s a n d y l o a m ( 1 4 - 3 3 cm thick) Bt2 8 6 - 1 2 4 cm S t r o n g b r o w n ( 7 . SYR 4 / 6 ) s a n d y l o a m ( 2 1 - 5 8 cm thick) BC 1 2 4 - 1 6 4 cm D a r k y e l l o w i s h b r o w n ( 10YR 4 / 4 ) l o a m y s a n d ( 0 - 6 2 cm t h i c k ) 2C 1 6 4 - 2 2 2 cm Y e l l o w i s h b r o w n (10YR 5 / 4 ) s a n d a n d g r a v e l SPINKS ( s a n d y , A El E2 ET & Bt C 0 - 1 1 cm mixed, m esic Psammentic H a p lu d a lfs) V e r y d a r k g r a y i s h b r o w n (10YR 3 / 2 ) l o a m y s a n d ( 4 - 2 0 cm t h i c k ) 1 1 - 4 5 cm Y e l l o w i s h b r o w n (10YR 5 / 6 ) l o a m y s a n d ( 2 6 - 4 0 cm t h i c k ) 4 5 - 7 8 cm Y e l l o w i s h b r o w n (10YR 5 / 4 ) s a n d t o l o a m y B a n d ( 2 0 - 4 5 era t h i c k ) 78Y e l l o w i s h b r o w n (10YR 5 / 4 } s a n d t o l o a m y s a n d 2 2 1 cm ( E *) w i t h b a n d s a n d l a m e l l a e o f d a r k b r o w n ( 7 . SYR 4 / 4 ) s a n d y l o a m ( B t ) ( E 1 4 5 - 1 7 4 cm t h i c k , B t 2 4 - 7 9 cm t h i c k ) 2 2 1 - 2 5 5 cm Y e l l o w i s h b r o w n (10YR 5 / 4 ) s a n d t o l o a m y s a n d 56 LABORATORY AND ANALYTICAL METHODS On r e t u r n to the laboratory, soil sam ples d r i e d a t 2 5 ° C , p a s s e d t h r o u g h a 2 mm s i e v e , plastic coated paper containers p rio r m oisture co n ten t (6 m) o f an e x a c t q u a n t i t y sam ples (target to air- and s t o r e d analysis. was d e t e r m i n e d w e i g h t 1 0 . 0 g) were in A ir-dry by weighing of s o i l to 0.001 g, d r y i n g t h e s a m p l e a t 1 0 5 °C f o r 2 4 h o u r s , a n d r e - w e i g h i n g . 0 m was c a l c u l a t e d w eight. A ll R esulting as a decim al f r a c tio n of oven-dry a n a l y s e s were perform ed u s in g analytical values were air-dry corrected to an soil sam ples. oven-dry w e i g h t b a s i s u s i n g 1 + 0 m; a i r - d r y w e i g h t d i v i d e d b y 1 + 6 m equalling dried at oven-dry w eight. 1 0 5 °C f o r weighed to B ulk d e n s i t y sam p les were o v e n - 24 h o u r s , 0.001 g. cooled B ulk d e n s i t y in a dessicator, and (g c m " 3 ) w a s c a l c u l a t e d b a s e d on o v e n - d r y w e i g h t o f t h e 50 cm3 s a m p l e . B a se d on t h e studies resu lts (Chapter I I I ) , determ ined by of p re lim in a ry a relative eq u ilib ratin g solutions c o n t a i n i n g 10 mg S L " * . em ployed was s e l e c t e d to measure air-d ry conditions. of adsorption so il The s u l f a t e wa s sam ples in concentration reduce d is c re p a n c ie s a ir-d ry in g noted a t h igher s u l f a t e approxim ate s o i l s o l u t io n s u lf a te adsorption related to c o n c e n t r a t i o n s , and to s u l f a te c o n ce n tra tio n s under f i e l d The 10.0 gram s a m p l e s were sh ak en i n 5 0 mL o f 0 . 0 1 £1 C a C l 2 c o n t a i n i n g s u l f a t e for 24 h o u r s a d d e d a s Na2 S 0 4 . S o l u b l e o r g a n i c m a t t e r was r e m o v e d b y s h a k i n g s a m p l e s f o r an ad ditional 30 m i n u t e s w i t h charcoal. S olutions were 0.2 g o f H C l-w a sh e d a c t i v a t e d filtered through Whatman # 42 57 filte r paper and the filtra te a u to m a te d BaS04 t u r b i d i m e t r y adsorbed (mg S kg~*0 of su lfate wa s was analyzed S04-S (W all e t a l , , 1980). calculated from t h e by S ulfate disappearance from s o l u t i o n . In itia l lev els of extractab le SO4 - S d e te r m in e d by s h a k i n g 20.0 g o f s o i l activated charcoal with 50 mg P L - 1 ) f o r 3 0 m i n u t e s filtered for in were an d 0.4 g H C l-w a s h e d mL C a C ^ P O ^ ) 2*H2 ° (E ik, so ils 1980). t h r o u g h What man # 42 f i l t e r S oil solution ( 500 ex tracts were p ap er and a n a ly z e d S O ^ - S b y a u t o m a t e d Ba S O^ t u r b i d i m e t r y (W all e t a l . , for 1980). P r e l i m i n a r y t e s t s showed t h a t a d d i t i o n o f a c t i v a t e d c h a r c o a l t o b o t h SO4 - S a d s o r p t i o n necessary causing f o r A, to overestim ation E, and s o i l interference of SO4- S from ex tracts organic concentrations, was m atter especially and u p p e r B h o riz o n sa m p le s. Separate sodium prevent so lu tio n s d ith io n ite-citrate, pyrophosphate perform ed for USDA ( 19 7 2 ? ex tractio n s for Pe oxalate, and and Al w ere each sam p le f o l lo w in g m ethods d e s c r ib e d 1982) procedures, ammonium 2.0 and O l s o n and E l l i s g so il sam ples (1982). w ere In a l l placed in in three 250 mL p o l y e t h y l e n e b o t t l e s , a m e a s u r e d v o l u m e o f e x t r a c t a n t was added, and t h e s e a l e d b o t t l e s shaker ta b le w e r e s h a k e n on a n o s c i l l a t i n g a t 1 6 0 opm f o r t h e r e c o m m e n d e d t i m e for d ith io n ite -c itra te ammonium o x a l a t e ) . and sodium p y r o p h o s p h a t e , A prelim inary amount o f Fe and A l e x t r a c t e d s h a k e n on o s c i l l a t i n g or study (16 h o u r s 4 hours indicated that for the d id n o t d i f f e r betw een sam ples reciprocating shaker ta b le s. At 58 the end o f t h e s h a k in g p e r i o d , solution Superfloe for d ith io n ite -c itra te ; ( f i v e d r o p s o f 0.2% t e n d r o p s 0.4% s o l u t i o n a m m o n i u m - o x a l a t e a n d Na p y r o p h o s p h a t e ) was added t o s a m p l e s , w h i c h w e r e r e - s h a k e n f o r 30 s e c o n d s a n d a l l o w e d t o for one hour. decanted A fter s e ttlin g , into centrifuged 50 for refrigerated u n til m inutes. centrifuge C entrifuged analyzed settle 4 5 mL o f s u p e r n a t a n t w e r e mL p o l y p r o p y l e n e 15 for for Fe plasm a atom ic em ission sp e ctro m etry . and tubes and sam ples Al by were D- C argon D ithionite-citrate and Na p y r o p h o s p h a t e e x t r a c t s w e r e a n a l y z e d w i t h o u t d i l u t i o n . Amm o n i u m o x a l a t e LiCl s o l u t i o n , L~* to analytical organically c r y s t a l l i n e Fe. and inorganic specific b y 1 / 2 w i t h 0 . 5 8 £1 sen sitiv ity . bound, D ithionite-citrate inorganic am orphous, bound Fe. Fe. Al and more o v e r l a p Sodium p y r o p h o s p h a t e fractio n s ex tracted 1982). horizons 1 U KC1 Sam ple s i z e by by m inutes (B arnhisel w ith prior to spectrom etry. shaking 10.0 d eio n ized analysis less w ater for sam ples B ertsch, Bh, an d Bt S olutions to reduce b y D-C a r g o n p l a s m a 30 m i n u t e s in p a p e r and th e n Exchangeable c a tio n s g sam ples are and w a s 5 . 0 g f o r A, E , Bw, B s , t h r o u g h W hatman # 42 f i l t e r 1/5 concentration em ission 30 a n d 1 0 . 0 g f o r BC, E ' , a n d C h o r i z o n s . were f i l t e r e d d ilu ted for extracts exists. E x c h a n g e a b l e A l 3 * was d e t e r m i n e d b y s h a k i n g 5 0 mL o f and Ammonium o x a l a t e e x t r a c t s o r g a n i c a l l y b o u n d amorphous organically were d i l u t e d t o g i v e a s a m p l e c o n c e n t r a t i o n o f 2 0 0 0 mg L i + enhance ex tracts ex tracts s a lt atom ic were e x t r a c t e d w ith pH 7 . 0 1 H 59 ammonium a c e t a t e were in filtered (USDA, atom ic 1982; Thomasr 19B2). t h r o u g h Wha t ma n # 42 f i l t e r polyethylene analysis 1972; for b o ttles under C a 2 + , Mg2 + , K+ , em ission E xtracts paper and refrig eratio n stored prior to a n d N a + b y D- C a r g o n p l a s m a spectrom etry. E ffective cation exchange c a p a c i t y w a s c a l c u l a t e d a s t h e s u m o f C a 2 + , Mg2 + , K+ , N a + , a n d A l 3+ on t h e the s o i l s reflect basis collected true quantities o f craol in t h i s CECf s in (+) k g " 1 (USDA, study, such c a l c u l a t i o n s horizons containing P was d e t e r m i n e d do n o t sig n ifican t u s i n g a m e t h o d b a s e d on t h a t g i v e n by O l s e n a n d Sommers ( 1 9 8 2 ) . mL B r a y # 1 e x t r a c t i n g were p l a c e d so lu tio n i n 1 5 mL p o l y s t y r e n e c e n t r i f u g e f o r 10 m i n u t e s . autoanalyzer 3 . 0 mL o f shaker, tubes, (T echnicon, 1977). shaken s u p e r n a t a n t were p i p e t t e d analyzed for P by into refrigerated autoanalyzer S o i l s a m p l e s w i t h pH v a l u e s r e - e x t r a c t e d u s i n g 0.5 g s o i l so lu tio n :so il a n d 12 and c e n t r i f u g e d s a m p l e c u p s w hich w ere c ap p e d and co lo rim etrically 6.5 w e re a n d 15 mL e x t r a c t a n t , a higher r a t i o b e in g recommended (Sm ith e t a l . , fo r sam ples c o n ta in in g Percent 2,0 g s o i l ( 0 . 0 3 H NH^F + 0 . 0 2 5 H. HC1) 10 m i n u t e s o n a r e c i p r o c a t i n g u n til For of carbonates. E xtractable for 1972). organic 1957) carbonates. carbon was d eterm ined using the W a l k le y - B l a c k method o f ^ S O ^ - K j C ^ O 7 o x i d a t i o n f o l lo w e d by titratio n N elson w ith 0.5 Som m ers, 1982). horizons, 2.0 g f o r M. F e S 0 ^ . 7 H2 0 Sam ple sizes E, Bh, B s , (USDA, w ere 1972; 0.5 to 1.0 a n d Bw h o r i z o n s , g and for A and 5.0 t o 60 1 0 . 0 g f o r E ' f B t , BC, a n d C h o r i z o n s . Soil pH i n w ater and in 0.01 M C a C l2 was d e t e r m i n e d f o l l o w i n g a m e t h o d g i v e n i n USDA ( 1 9 7 2 ) . m eter equipped w ith s e p a r a te electrodes was u s e d to glass A C o r n i n g 1 2 5 pH pH a n d c a l o m e l reference F o r pH in w a t e r , 2 0 . 0 g s o i l a n d 2 0 mL d e i o n i z e d w a t e r w e r e p l a c e d in a 1 0 0 mL p o l y p r o p y l e n e the next 30 m i n u t e s . m a k e pH m e a s u r e m e n t s . beaker and s t i r r e d in the suspension clear taking and 2 0 mL 0 . 0 2 resulting period, w ithin to settle t h e s e c o n d pH r e a d i n g . pH the p a r tly above H C aC l2 were then i n a 1:2 s o i l : 0.01 H Samples were s t i r r e d allow ed over reference electro d e placed suspension, CaCl2 su s p e n s io n . in terv als, and t h e supernatant. added to th e s o i l tim es A f t e r a 30 m i n u t e s e t t l i n g wa s m e a s u r e d w i t h t h e pH e l e c t r o d e p l a c e d settled three tw ice for 30 Prelim inary at 15 m i n u t e m inutes before laboratory tests c o n f i r m e d t h a t t h i s m e t h o d g a v e C a C l 2 pH r e a d i n g s e q u i v a l e n t t o t h o s e o b t a i n e d u s i n g f r e s h 20.0 g s o i l sa m p le s to which 40 mL o f 0 . 0 1 H C a C l 2 w e r e a d d e d . P a r t i c l e s i z e a n a l y s i s w a s p e r f o r m e d o n E , B t , E ' , BC, and C h o r i z o n s a m p l e s from S p i n k s and Oshtemo s e r i e s The hydrom eter em ployed, w ith m ethod described m odifications by Bouyoucos taken from Day pedons. (1951) (1965). was A s a m p l e s i z e o f 100.0 g was u s e d f o r s a m p l e s c l a s s e d a s s a n d s by f i e l d sands rem ove m ethods, or finer. organic dispersed and 50.0 g f o r s a m p l e s c l a s s e d Sam ples m atter in d i s t i l l e d were pre-treated (USDA, water a f t e r 1982) and w ith as loamy H2 0 2 to m ech an ically t h e a d d i t i o n o f 1 0 0 mL o f 61 a pH 8 . 3 d i s p e r s i n g s o l u t i o n c o n t a i n i n g 4 5 g { N a P 0 3 ) 6 a n d 5 g N a 2 C0 3 L“ * (Day, sedim entation w ater, 1965). cylinders, Sam ples brought to were volume and p la c e d in a w a te r b a th to a l l o w equilibrate readings. so lu tio n transferred with to d istilled tem perature to ( 21 °C) b e f o r e t a k i n g t h e a p p r o p r i a t e h y d r o m e t e r O n e c y l i n d e r c o n t a i n i n g o n l y 1 0 0 mL d i s p e r s i n g and d i s t i l l e d p rov ide blank S o il in each s e t to read in g s to a d ju s t hydrometer readings. an aly ses corresponding w a t e r was i n c l u d e d to the w ere con d ucted sam pling blocks in six described blo ck s, previously. Samples were i n d e p e n d e n t l y random ized w i t h in b l o c k s f o r each an aly tical procedure. W ith the exception of su lfate a d s o r p tio n , e x t r a c t a b l e A l^ +, and p a r t i c l e s i z e a n a l y s e s , e a c h a n a l y t i c a l b l o c k c o n s i s t e d o f 48 s a m p l e s , bulk sam ples, two rep licatio n . blank S u lfate sam ples, ad so rp tio n p e r f o r m e d i n b l o c k s o f 80 s a m p l e s , and inclusion sam ples, and E xchangeable replication of two 10 two b l a n k A l^ + and approxim ately eq u ilib ratio n s mg S L “ * s t a n d a r d s , sam ples ex tractio n s in 80-sam ple l o t s , blank analyses sam ple corrected for ind iv id u al reported were co n d u cted per block. blank pedons are based are w ere on two conducted including in blocks bulk in m athem atical w ithout two s a m p l e b l o c k s , lo t. of 12, of values. presented were (0.01 U C a C l 2) p e r b l o c k . R esults sam ple 15% a l l o w i n g 100% r e p l i c a t i o n one b u l k s a m p l e , and two b l a n k s a m p l e s p e r size i n c l u d i n g two a ll P article i n c l u d i n g one analyses A nalytical A ppendix were data B. calculations for V alues using 62 concentrations d ilu tio n in factors. ex tractan t A bsolute p re c isio n not im plied nor should for analyses bulk sam ple v ariatio n solu tio n s it of (Appendix of rep lica te C). values Precision the A verage sam ples appropriate reported be i n f e r r e d . c a n b e made by e x a m i n i n g data and is estim ates v ariab ility of coefficients of (not p resen ted ) were very s i m i l a r t o th o s e found f o r b u lk sam ples. METHODS OP STATISTICAL ANALYSIS D ata m a n ip u la tio n s performed 1985), using two M icrostat data to variance. was approxim ate lev el 1980). of log arith m ically squares was create of judged transform ed d ata variance E xam ination of results (Steel and a p ro b ab ility were were using packages. homogeneity of at analyses (Hintze, were a p p l i e d w procedure analyses Regression procedures. and T ukey's C orrelation data. NCSS softw are for analysis S ignificance 0.05. untransform ed using and transform ations norm ality Mean s e p a r a t i o n c a l c u l a t i o n s were 1964) sta tistic a l logarithm ic accom plished T orrie, (Ecosoft, m icrocom puter Where a p p r o p r i a t e , to and s t a t i s t i c a l perform ed on perform ed on ordinary residuals least follow ed p r o c e d u r e s and recom m endations d i s c u s s e d i n D ra p er and Smith (1980), Seber C hatterjee and Price M o s t e l l e r and Tukey (1977). follow ed (1976). for procedures Further specific Bim ilar details analyses are (1977), (1977), and L inear d isc rim in a n t a n a ly s is to those by M orrison on m ethods o f s t a t i s t i c a l analysis contained described in subsequent chapters. Chapter V SULFATE ADSORPTION AND EXTRACTABLE SULFATE IN MICHIGAN FOREST SOILS The p r im a r y o b j e c t i v e s of th is p o rtion of the study were t o d e te r m in e th e a b i l i t y o f s e l e c t e d M ich ig an f o r e s t soils to adsorb s u l f a t e determ ine The s i x in itia l soil K alkaska, each lev els series Montcalm, series Spinks, w ill su lfate by h o r i z o n as discuss of grouped for discussed. effects the horizons and a b ilities series classificatio n of C hapter and t o of of Rubicon, and resu lts T his In ter-series extractable region to acid of s u lfa te relativ e IV. and e x t r a c t a b l e studied. geographic series, so il in E xtractable s u lfa te iden tificatio n betw een s o i l G rayling, adsorption series and com parisons conditions, Oshtemo, w i t h s i x p edo ns o f adsorption S ignificance include the described su lfate sulfate by were and a r e p r e s e n t e d and exam ined. pedons laboratory of e x tra c ta b le s u lfa te present. studied sam pled chapter com parisons under sulfate contents of are briefly deposition adsorbing s o i l su lfate adsorption both a sp e c ts p e r tin e n t sen sitiv ity to effects of to acid deposition. D a t a f o r O s h t e m o E l a n d E2 ( 2 p e d o n s ) , O s h t e m o B t 2 a n d Bt3 (1 p e d o n ) , K a l k a s k a B h l a n d Bh2 (3 p e d o n s ) , Bh a n d B s (4 p e d o n s ) using w eighted and Montcalm h o r iz o n s were com bined w i t h in pedons averages for 63 w ith in -series analyses of 64 variance of su lfate P relim in ary subdivided su lfate adsorption analyses horizons to s u lfa te not or ex tractab le statistical differ in d icated th at significantly su lfate. su lfate. in For the either w ithin l o g a r ith m ic tr a n s f o r m a tio n s were a p p li e d adsorption data ex tractab le ex tractab le variance did adsorption s e r i e s com parisons, of and SO^-S data [(+,-) l n ( | m g S k g - * 1+1)] {lnlfm g S kg“ *)+ l]} and t o p rio r to a n a l y s i s to e s t a b l i s h homogeneity o f v a ria n c e . One S p i n k s p e d o n s a m p l e d (Block I , A p p e n d i x B) h a d h i g h l e v e l s o f e x t r a c t a b l e s u l f a t e i n t h e B t ( 1 1 . 6 mg S k g - 1 ) a n d C (29.9 mg S k g - *) h o r i z o n s . h ig h am ounts o f s u l f a t e k g - *) during adsorption w hile w eakly q u antities of su lfa te from Bt sulfate adsorption of analyses adsorbed or urban area (Lansing, su lfate in Bt su lfate deposition tran slo catio n W illiam s and to Bt th is released pedon were of variance, sm all reason, data excluded from and C h o r i z o n d a t a analyses of variance. was s i t u a t e d dow nw ind f ro m a l a r g e M ichigan), C horizons from and from and th is (1962) the high apparently source, accum ulation and S t e i n b e r g s co -p recip itated the was a n o m a l o u s For t h i s were e x c lu d e d from e x t r a c t a b l e s u l f a t e T his Spinks pedon to Bt h o r iz o n s a d so rb e d s u l f a t e , (A ppendix B). and C h o r i z o n s th is released C = 3 6 . 7 mg S Compared Spinks pedons, In o th e r pedons, C horizons also ( B t = 6 . 1 mg S k g - * ; equilibrations. and C h o riz o n s of o th e r behavior. Both h o r iz o n s in found so lu tio n that w ith indicate w ith Bt am ounts of high subsequent and C h o riz o n s . sulfate CaCOj, could and be th at 65 appreciable am ounts of calcareous su b so ils extractable this su lfate su lfate release of be w i t h 0 . 15 % C a C l 2 present S p i n k s p e d o n may b e H igh could in the evidence The h ig h calcareous of lev els of C horizon of such c o - p r e c ip ita tio n . during a d s o r p t i o n e q u i l i b r a t i o n s was r e l a t e d t o t h e e f f e c t s of a ir - release, from from horizons d r y i n g on s u l f a t e su lfa te extracted these a l o n g w i t h e x t r a c t i o n b y t h e 0.01 fil C a C l 2 u s e d a s a s u p p o r t i n g e l e c t r o l y t e . SULFATE ADSORBING HORIZONS S eparate an aly ses of v a ria n ce conducted d iffered The for each in a b i l i t y A horizons lab oratory content series of a ll 5.1) so ils (Ensm inger, 1984b; Evans, indicated that to adsorb s u l f a t e series eq u ilib ratio n , (Table ( A p p e n d i x D , T a b l e D. 3 ) and 1954; 1986). S u lfate S04-S to high o rg an ic anion Johnson horizons ( F i g u r e s 5.1 t o 5 .6 ). released related weak soil retention and Todd, in 1983; during carbon surface Singh, r e l e a s e by s u r f a c e h o riz o n s was e n c o u r a g e d by a i r - d r y i n g o f s a m p l e s and by e q u i l i b r a t i o n in 0.0 1 H C aC l2 f adsorbed su lfate Steinbergs, of from 1962). forest retention w hich so ils acid may be horizons of et the a l., soluble surface so ils conditions, im portant through m ic ro b ia l Swank ex tract Under f i e l d organic S (F itz g e rald 1983; w ill Rubicon w eakly (W illiam s and su rface horizons locations of su lfate im m obilization of s u lf a te and S t r i c k l a n d , 1984; and Schindler (Figure 5.2), as 1982; D avid e t a l . , et al., K alkaska 1986). (Figure E 5.3), 16 14 12 7 10 mg S 0 4 —S /k g 5 6 4 2 / 0 » M -2 Bara without com m on lottera significantly differ a t p — 0.05 -4 a,b,c,d com pare S adsorption m oans -6 - d x,y,z com pare extractable S m eans -8 -1 0 1----------------------- A /E | 7\ S Adsorption Sw1 Bw2 “ I” BC Soil Horizon Extractable S Figure 5.1 S Adsorption and Extractable S in the Grayling Series T* C 16 14 - 12 - 10 - 6 - wx S 0 4 —S /k g 4 mg 6 0 ass* 2 I cd yz d v . T a -j -2 Bara without com m on letters significantly differ a t p — 0.05 -4 a.b.c.d.e com pare S adsorption m eans -6 v,w,x,y,z com pare extractable S m eans -a -10 T Bs1 I X I S Adsorption Bs2 BC Soil Horizon Extractable S Figure 5.2 S Adsorption and Extractable S in the Rubicon Series C 16 14 12 10 B S 0 4 —S /k g 4 mg 6 0 2 L-Ztea o\ CO -2 Bars without com m on totters significantly differ a t p - 0.05 -4 Significance judged on transform ed scale (note Bs extractable S). -6 -_ z l a.b.e.d com pare S adsorption m eans -8 -1 0 x,y,z com pare extractable S m eans I A I /\ S Adsorption i E I Bh Bs BC Soil Horizon [5*53 Extractable S Figure 5.3 S Adsorption and Extractable S in the Kalkaska Series C 16 - 14 - 12 H 10 mg S 0 4 —S /k g 8 v \ 6 *y 4 Z yz 2 ab ab yz yz be jj _^388Sil-_ r 7 W o i 0 c z r^7-»ooo< A -2 Bare without com m on letters significantly differ a t p — 0.05 -4 a.b.c.d.e com pare S adsorption m eans -6 x,y,z com pare extractable S m eans -8 -10 ~r A T E I y 'l S Adsorption B h/w E' “ I” Bt —I£•2 Soil Horizon t&ySil Extractable S Figure 5.4 S Adsorption and Extractable S in the Montcalm Series ~r c 16 14 12 10 mg S 0 4 —S /k g 8 6 yz 4 ab 2 vXv Z A 0 z m sm -J -2 Barv without com m on letters significantly differ a t p •* 0.05 -4 Significance judged on transform ed scale (note Bt extractable S) -6 -8 - 10 A o a,b,c com pare S adsorption m eans x.y.z com pare extractable S m eans T ~l “ E1 A I /\ S Adsorption I Bt T" E2 "T" E* Soil Horizon Extractable S Figure 5.5 S Adsorption and Extractable S in the Spinks Series T c V Bare without com m on letters significantly differ a t p — 0.05 Significance judged on transform ed scale (note 5C extractable S) A a,b»c com pare S adsorption m eans x.y com pare extractable S m ean s 1 A f '/\ S Adsorption 1 E 1 Bt1 1 Bt2 1 BC Soil Horizon Extractable S Figure 5.6 S A d s o r p t i o n a n d E x t r a c t a b l e S i n t h e Os ht e mo S e r i e s 1— 2C 72 Table 5.1 S e l e c t e d S o i l Chem ical P r o p e r t i e s by S e r i e s Bs c n s ; 11 it 11 it H II ----- csbsss Grayling S o i l 1 p h -h 202 Hor. Me a n + SD % O r g . C3 Mean SD % B a s e s 1* Mean SD AO-A l 5 Mean SD DC- F e 6 SD Mean A/ E Bwl Bw2 BC C 3.19 0.49 0.23 0.06 0.03 63.0 38.1 28.8 39.1 74.9 0.8 1.7 1.5 0.7 0.2 2.1 3.0 2.3 1.0 0.7 4.52 5.29 5.28 5.45 6.06 0.36 0.40 0.29 0.35 0.51 0.56 0.11 0.05 0.01 0.01 29.9 27.3 14.8 17.0 28.3 0.2 0.4 0.2 0.2 0.1 0.5 0.5 0.3 0.5 0.2 Rubicon soil Hor. p H- H2° Mean SD % Org. C Mean SD % Bases Mean SD AO- Al Mean SD DC- F e Mean SD A E Bsl Bs2 BC C 4.08 4.30 5.08 5.19 5.34 5.73 2.55 0.56 0.49 0.19 0.05 0.02 62.3 29.3 18.5 24.7 35.1 51.3 0.3 0.2 2.6 1.8 0.8 0.4 1.1 0.9 2.8 1.6 0.9 0.6 0.26 0.23 0.15 0.25 0.30 0.49 0.40 0.30 0.07 0.07 0.03 0.01 21.0 14.8 8.3 15,8 15.4 27.9 0.1 0.1 0.8 0.7 0.3 0.2 0.2 0.4 0.5 0.4 0.4 0.2 Kalkaska Soil Hor. p H- H2 0 Mean SD % Org. C Mean SD % Bases Mean SD AO- A l Mean SD A E Bhl Bh2 BS BC C 4.48 4.48 5.46 5.53 5.56 5.69 5.89 2.49 0.38 0.69 0.46 0.22 0.08 0.04 83.6 41.8 56.7 45.1 46.1 54.4 67.2 0.3 0.2 2.6 2.4 1.6 0.6 0,3 + 1 2 3 4 5 6 0.50 0.31 0.37 0.33 0.41 0.38 0.47 0.13 0.17 0.17 0.06 0.07 0.04 0.02 12.8 12.0 29.4 18.2 24.2 26.4 33.4 0.2 0.1 1.4 0.2 0.9 0.3 0.2 DC- F e Mean SD 1.4 1.0 3.6 2.2 1.6 1.0 0,7 0.3 0.4 0.9 0.3 0.3 0.3 0.1 n = 6 p e d o n s f o r R u b ic o n , K a l k a s k a , S p i n k s , and Oshtemo n = 7 pedons f o r G r a y lin g and Montcalm SD = 1 S t a n d a r d D e v i a t i o n s o i l Horizon pH m e a s u r e d i n H2 0 , - L o g ( H + ) % organic carbon % b a s e s a t u r a t i o n , % o f e f f e c t i v e CEC Ammonium o x a l a t e e x t r a c t a b l e A l , g A l k g " 1 D i t h i o n i t e - c i t r a t e e x t r a c t a b l e F e , g Fe kg-1 73 Table 5,1 (continued) Montcalm S o i l 1 p H - e 2o 2 Hor. Mean+ SD % O r g . C3 Mean SD % Bases4 Mean SD AO- A l 5 Mean SD DC-Fe6 Mean SD A E Bh Bs E' Bt E'2 C 3.14 0.84 0.77 0.43 0.10 0.12 0.03 0.07 96.9 57.2 46.2 33.0 67.5 95.7 94.4 98.7 0.5 0.2 2.0 2.3 0.6 0.9 0.1 0.3 2.3 1.2 3.8 2.5 1.7 4.4 1.1 1.8 5.02 4.41 5.25 5.39 5.85 6.78 6.90 8.34 0.36 0.29 0.29 0.19 0.36 0.90 1.22 0.95 1.38 0.50 0.55 0.26 0.09 0.06 0.02 0.07 3.9 23.7 23.5 15.7 20.5 10.4 7.3 3.5 0.2 0.1 1.5 0.9 0.4 0.4 0.0 0.3 1.4 0.3 1.1 0.5 0.4 1.2 0.5 1.3 Spinks Soil Hor. p H- H20 Mean SD % Org. C Mean SD A El E2 E* Bt C 4.84 4.97 5.38 5.98 6.02 8.27 2.65 0.27 0.09 0.05 0.08 0.05 0.60 0.29 0.45 0.20 0.59 0.89 1.40 0.15 0.06 0.03 0.03 0.04 % Bases Mean SD 69.2 31.3 30,8 17.8 52.4 29.0 91.2 9.9 98.0 1.7 100.0 0.0 AO-A1 Mean SD DC- F e Mean SD 0.9 0.9 0.5 0.3 0.7 0.1 3.8 3.9 3.4 3.4 8.6 2.9 0.3 0.2 0.2 0.1 0.2 0.0 0.5 1.0 1.2 1.2 3.0 1.3 Oshtemo Soil Hor. pH- H2 0 Mean SD % Org. C Mean SD % Bases Mean SD AO- A l Mean SD DC- Fe Mean SD A 2.09 0.91 1.2 0.3 5.28 0.51 82.4 29.4 4.9 0.3 E 0.22 0.08 0.7 5.34 0.33 62.2 21.2 4.6 0.6 0.3 B tl 84.1 26.8 0.10 0.04 0.7 5.68 0.78 8.8 2.2 0.2 Bt2 0.09 0.03 0.6 5.80 0.59 88.7 22.1 0.1 7.6 1.9 BC 0.05 0.02 0.3 6.53 0.96 97.8 3.0 4.1 1.3 0.0 0 . 0 3 0 . 0 2 0 . 1 2C 8.38 0.73 100.0 0.0 2,6 0.7 0.0 SESSS b b e e s s e e b e e e BCSBBRSCSBES5EBSS3ESEESEBESBBBB ESSBEE e e c e e e e e e e + 1 2 3 4 5 6 n » 6 p e d o n s f o r R u b i c o n , K a l k a s k a , S p i n k s , and Oshtemo n « 7 p e d o n s f o r G r a y l i n g and Montcalm SD ** 1 S t a n d a r d D e v i a t i o n S o i l Horizon pH m e a s u r e d i n H20 , - L o g ( H + ) % o rg an ic carbon % b a s e s a t u r a t i o n , % o f e f f e c t i v e CEC Ammonium o x a l a t e e x t r a c t a b l e A l , g A l k g ” 1 D i t h i o n i t e - c i t r a t e e x t r a c t a b l e F e , g Fe k g - 1 74 and Montcalm released 5.5} (Figure su lfate, and Oshtemo abilities. was 5.6). to th eir adsorbed E horizons 5. 6) sulfate of the series higher Al (Table contrast su lfate w hile (Figure contents In series weakly or Spinks (Figure had s t r o n g e r a d s o r p t i o n In c re a s e d s u l f a t e a d s o r p tio n in mesic E h o rizo n s related m atter 5.4) during to Fe and low er organic 5.1). A horizons, lab o rato ry In f r i g id and illu v ial horizons eq u ilib ratio n zone s e r i e s adsorbed (Figures 5.1 to (G ra y lin g , Rubicon, K alk ask a , and M ontcalm ), a d s o r p tio n f o llo w e d a s i m i l a r p a t t e r n w ith u p p e r Bw, B s , a n d Bh h o r i z o n s a d s o r b i n g s i g n i f i c a n t l y m o r e SO^-S t h a n underlying zone s e r i e s highest (Spinks BC, E '2, and C h o r i z o n s . and O shtem o), in E and Bt h o r i z o n s . su lfate In m esic adsorption H orizons w ith was high s u l f a t e a d s o r p t i o n a b i l i t i e s w e r e h i g h i n F e a n d A l , a n d h a d m e a n pH values o f 6 o r below B horizons Singh of forest (1980b), (Table soils Johnson eq u ilib ratio n 1.0 to 3.9 in been (1983), mg S L ~ ^ , su lfate suggesting su lfate horizons Spodosols (Jo h n so n and Todd, in 1983). in reported F uller concentration w i t h Bw, B s , B h , a n d B t s a m p l e s weak plots Todd of su lfate by et al. (1985). so lu tio n relativ ely of A dsorption has p r e v io u s ly and (1 9 8 5 ), and W eaver e t a l . R eductions 5.1). that adsorbers, the theBe as R etention of ranged from horizons reported northeastern during U nited su lfate in are for B S tates field i s u s u a l l y g r e a t e r th a n t h a t p r e d i c t e d from l a b o r a t o r y adsorption studies (Johnson et al., 1979a; Johnson and 75 H enderson, 1979; p r e s e n t Btudy, a relativ e amounts o f index underestim ate under fie ld properties discussed Johnson, of D.W., sulfate al., 1981). ab ility , of th at su lfate co n d itio n s. and could R elatio n sh ip s su lfate In a d s o r b e d by s o i l s adsorption am ounts and et adsorption in provide probably be retained betw een these the so il soils are i n C h a p t e r VI. EXTRACTABLE SULFATE W ithin-series analyses extractable su lfa te extractable data of variance were conducted ( A p p e n d i x D, T a b l e D . 4 ) . SO4 - S c o m p a r a b l e t o those present L evels of in subsurface h o r i z o n s were found in t h e A h o r i z o n s o f K a l k a s k a , S p i n k s , and Oshtem o s e r i e s ex tractab le (Figures S O4 - S 5.1, 5.2) extractable su lfa te d istrib u tio n sim ilar to is that in ( F i g u r e s 5.3 t o 5 .6 ) . A horizons so ils were of ty p ical observed of in and sig n ifican tly acid forest Norwegian 1982; Johnson and Todd, 1983). A a n d E h o r i z o n s may r e p r e s e n t than The l a t t e r SO4 - S soils, forest found in O and E horizons ( 1 9 8 5 ) , may b e s u l f a t e air-d ry in g Steinbergs, 1982), or (Freney, 1964; may be of released 1958; so luble Spodosols 1961; T a b a t a b a i and B rem ner, su lfate w eakly 1972; adsorbed was (Singh, (David e t sulfate in su lfate, as by F u l l e r from o rg a n ic B arrow , and soils E xtractable w ater Rubicon low er 1980b) and i n n o r t h e a s t e r n U n i t e d S t a t e s S p o d o s o l s al., Montcalm, L ev e ls of G rayling i n Bw a n d Bb h o r i z o n s . for et al. form s d u rin g W illiam s and David e t al., to p o sitiv ely 76 charged organic co llo id s (Chao et a l., 1962b). S oluble s u l f a t e w a s l o w ( 2 t o 6 8 mg S k g “ *) i n t h e s u r f a c e of m ost w ell-d rain ed S teinbergs to tal (1962), S. contained Singh, so ils generally The m a j o r i t y in organic 1980b; of forms David e t In f r i g i d exam ined al., z o n e A, A / E , by com prising to tal S in (W illiam s W illiam s less surface and than and E h o r i z o n s , adsorption both m easures of the SO4 - (r = 0.93) equilibration. suggests th a t in surface horizons, S are 1962; extractable during and d e s o rb e d is 1982). w ith correlation 5% o f Steinbergs, (P < 0 . 0 1 , n = 3 7 ) c o r r e l a t e d released and horizons S was s i g n i f i c a n t l y SO4 - S horizons This extractable S same SO4 - S p o o l , C aC l2 b e in g c a p a b l e o f e x t r a c t i n g amounts o f s u l f a t e s i m i l a r to those extracted (W illiam s 0.01) and by S teinbergs, co rrelatio n s desorption 0.79, phosphate were 1962; also in acid 1964). and betw een and in m esic extractable n = 37) in f r ig id suggest that present both extractable adsorption eith er as displacem ent sulfate of w eakly adsorbed su lfa te and E (r = n * 12) horizons, carbon (r = 0.79, These c o r r e l a t i o n s and reflect m in eralizatio n (P < A, A / E , and o r g a n i c eq u ilib ratio n s result of SO4 - S betw een = 0.72, zone s u r f a c e h o r i z o n s . during a A (r so ils S ig n ifican t and o r g a n i c c a rb o n in f r i g i d n *= 3 7 ) surface of su lfate sulfate desorbed SO4 - S released organic S o r by from p r o to n a te d o r g a n i c c o l l o i d s by p h o s p h a t e and c h l o r i d e a n i o n s . E xtractable h o r iz o n s were h ig h su lfate in th o se co n cen tratio n s soil in subsurface horizons w ith high s u l f a t e 77 adsorption (Figures su lfate in B horizons reported by Singh (1982), 5.1 to of (1980b), 5.6). other of forest Singh e t J o h n s o n and Todd (1 9 8 3 ), E xtractable Peaks al. soils have been (1980), D avid e t and F u l l e r S04- S was s i g n i f i c a n t l y ex tractab le et al. (1985). (P < 0 . 0 1 ) c o r r e l a t e d w i t h SO4 - S a d s o r b e d b y B , E ' , a n d C h o r i z o n s o f f r i g i d soils (r = 0.57, m esic zone s o i l s n = 118) and (r - 0.68, comparable c o r r e l a t i o n by E, B, n = 62). (r = 0.77, extractable sulfate am bient l e v e l s th at result S i n g h (1980b) lab o rato ry s u lfa te retention suggests under that, field these adsorption conditions. on a r e g i o n a l retain add itio n al extractable su lfate. found a Since l e v e l s retention co rrelatio n s is related The p o s i t i v e scale, has n o t y e t m arkedly im paired th e of n = 17) b e t w e e n S a d s o r b e d from s u l f a t e of dep o sitio n , zone and C h o rizo n s and P e x t r a c t a b l e S in Norwegian f o r e s t s o i l s . of al. past ab ility sulfate under suggest to s u lf a te correlation deposition of these soils to I n t h e p r e s e n t s t u d y , maximum SO^-S i n B h o r i z o n s o f frigid zone s o i l s ranged f r o m 14 t o 2 3 mg S k g “ ^ , c o m p a r e d t o t h e 1 6 t o 6 4 mg S k g - 1 extracted from F uller et al. northeastern (1985). U nited S tates Spodosols T h is s u g g e s ts M ichigan S p odosols have n o t y e t been as h e a v i l y im p acted by s u l f a t e d e p o s i t i o n sim ilar s o ils adsorption as in the N ortheast. SULFATE ADSORPTION There by were no betw een I NTER-SERI ES COMPARISONS sig n ifican t series differences (A ppendix D, T able in su lfate D.5) when 78 c o m p a r e d on t h e b a s i s of su lfate o f S 0 4- S a d s o r b e d adsorbing horizons (frigid m esic zone A h o r iz o n s e x c lu d e d ). in the u p p e r 1 5 0 cm z o n e A, A / E , E, Mean v a l u e s , ranging and from 9 . 6 g S m- 2 f o r G r a y l i n g t o 1 2 . 8 g S m- 2 f o r S p i n k s , s u g g e s t that these s o ils have r e l a t i v e l y s u l f a t e whe n c o m p a r e d t o the low a b i l i t i e s annual to adsorb S 0 4- S w e t d e p o s i t i o n in M i c h i g a n o f 0 . 6 t o 0 . 9 g S m” 2 (NADP, 1 9 8 5 a ; 1 9 8 5 b ; 1 9 8 6 ) . An a n a l y s i s plo t factor horizons sig n ifican t top upper the 50 largely Al in (T ab le 5.2). sulfate in cm, a difference S-adsorbing between S tatistical d ata, g is S m*'2 . adsorbed more between th e and higher in series th at so ils w ould account (Kamprath e t In than for al., higher 1956; the Oshtem o, R u b i c o n Bs a n d t h e ammoni um o x a l a t e were from th e horizon. S04-S (Table 5.1), The shown i n F i g u r e between adsorbing series analysis 50 cm i n c r e m e n t s m e a s u r e d t h a n t h e Oshtemo E h o r i z o n s Rubicon in as a s p l i t T h e R u b i c o n Bs h o r i z o n s w e r e l o w e r saturation properties cm) adsorption su lfate Rubicon depth interaction untransform ed upperm ost E horizons. base significant when c o m p a r e d of 100-150 S e r i e s x D epth i n t e r a c t i o n D ifferences present a on incorporating 50-100, in th e pedon perform ed 5.7. variance (0-50, revealed and d e p th was of Oshtemo i n pH a n d extractable a com bination of S adsorption Chao e t a l., by 1963; P a r f i t t , 1982; Jo h n s o n and Todd, 1983; F u l l e r e t a l . , 1985; Johnson et al., from G r a y lin g to 1986). A trend Oshtemo i s of evident increasing in the adsorption 5 0 - 1 0 0 cm d e p t h , a l t h o u g h no s i g n i f i c a n t d i f f e r e n c e s w ere p r e s e n t . In the 10 Bars without common letters significantly differ a t p *■ 0.05 9 a,b compa r e 0 - 5 0 c m means; x.y compa r e 1 0 0 - 1 5 0 cm S 0 4 —S Adsorbed, g S /m Z 8 ab 7 7 ] 6 - ' / 5 - 4 - 3 // 2 H * Grayling I X I 0 —50 c m -j ID Rubicon Kalkaska Montcalm Soil Series 5 0 - 1 0 0 cm Spinks 1 0 0 - 1 5 0 cm Figure 5.7 S Adsorption - Series x Depth Interaction Oshtemo 80 100-150 cm d e p t h {Figure 5.7), Spinks h i g h e r SO^-S a d s o r p t i o n t h a n a l l reflectin g in the had four f r ig id solum of th e Spinks s e r i e s , The lower ad so rp tio n (F ig u re 5.4, to in Spinks Bt h o riz o n s higher adsorption S zone s e r i e s , t h e p r e s e n c e o f Bt h o r i z o n s h i g h in c l a y and Fe M ontcalm Bt h o r i z o n s mg sig n ifican tly kg~*), may concentrations resu lt in 3 . 9 mg S k g “ *) a s c o m p a r e d from higher i n M ontcalm Bt h o r i z o n s (F ig u re 5.5, pH and 10.1 low er Fe (T ab le 5.1). T able 5.2 A n aly sis of V ariance R e su lts - s u l f a te Adsorption it D 11 II n ti sss&s?Bsctse& ss Source - MS I» F 5 64.2239 12.8448 1.76 0.16 Series 5 9.0549 1.8110 0.25 0.95 E rrora 25 181.8622 7.2745 2 324.0440 162.0220 74.70 S e r ie s x Depth 10 147.2826 14.7283 6.79 Errors 59*** 127.9743 2.1691 Depth t O * O o i 1 I 1 1 Block 0.00 One d e g r e e o f f r e e d o m s u b t r a c t e d d u e t o d e l e t i o n o f a n o m a lo u s S p i n k s B lo ck I Bt a n d C h o r i z o n d a t a . D if f e r e n c e s betw een s e r i e s w ithin the so il sen sitiv ity to p ro file acid K alkaska, and adsorptive capacity th eir series concentrated (Figure 5.7). lo ca tio n of adsorption im portant deposition. M ontcalm B horizons may b e in The have in the in determ ining G rayling, large p o rtions uppermost S u lfate and R ubicon, 50 of cm o f associated 81 cations in retained n u trien t In t h i s cycling l a y e r c o u l d be r e a d i l y I n c o r p o r a t e d processes. Any s u l f a t e and cations le a c h e d below t h i s zone, e s p e c i a l l y in G ra y lin g , R ubicon, and K a lk a s k a s o i l s , soil because of would be s u b j e c t to the coarse texture c a p a c i t y i n t h e 50 - 0 . 5 0 cm d e p t h s In contrast, capacity Spinks distributed containing adsorption su lfate The retention calcareo u s retention w ell of C horizons M ontcalm , S p in k s, these soils. soil (T able through c o - p r e c ip ita tio n volum e of s o i l lik elih o o d associated 5.1, of cations. A ppendix of s u lfa te B) in M ontcalm , w i t h CaC0 3 , a s re s e rv e s of base c a tio n s w e ll w ith in the ro o tin g zone of f o r e s t v e g e ta tio n . in Sulfate a n d O s h te m o may b e i m p o r t a n t i n s u l f a t e as p ro v id in g la rg e horizons adsorptive profile* increasing and from t h e ad sorption have would h a v e a g r e a t e r thus and low er the w ith which to e q u i l i b r a t e , loss and and Oshtemo s o i l s throughout so lu tio n s in rapid Spinks, and The p r e s e n c e o f Bt Oshtemo so ils may b e i m p o r t a n t i n i m p e d i n g r a p i d downward movem ent o f p e r c o l a t i n g w ater, increasing soilssolution opportunity for percolating w aters p red ictin g solutions, the su lfate tim e adsorption. through u ltim ate these fate The so ils of and i n c r e a s i n g flow is su lfa te path of im portant in in a s s u g g e s t e d by Johnson and Henderson EXTRACTABLE SULFATE An a n a l y s i s p lo t contact facto r was of variance also leaching (1979). I NTER-SERI ES COMPARISONS incorporating u tiliz e d to depth as a s p l i t com pare le v e ls of 82 e x t r a c t a b l e s u l f a t e betw een s e r i e s . resu lts are presen ted in d a ta were s t a t i s t i c a l l y T able A nalysis of variance 5.3. analyzed as E xtractable log su lfate [ ( g S m*~^)+l]. Table 5.3 A n aly sis o f V ariance R e su lts - E x tra c ta b le S u lfa te S B e s s e t s s e & s s e s t : e B B & a e s s B Source DF ss MS F P Block 5 1.1858 0.2372 1.88 0.13 Series 5 2.0987 0,4197 3.33 0.02 E rrora 25 3.1482 0.1259 2 1.5378 0.7689 41.15 0.00 10 1.4069 0.1407 7.53 0.00 60 1.1209 0.0187 Depth S e r i e s x Depth Error^ = = = = = = = = = = = = = = = = = = = The s i g n i f i c a n t F igure 5.8. In Series the x Depth i n t e r a c t i o n upper 50 cm o f su lfate horizons, higher contents of e x tra c ta b le com pared to differences field are adsorption to differences in in D ifferences (F ig u re 5.7). occur w ould have M ontcalm , between s e r i e s conditions. sim ilar so ils K alkaska, the between d e p o sitio n o v er tim e. Rubicon series Rubicon, K a lk ask a , sim ilar adsorbing O shtem o retain these same g e o g r a p h i c received to betw een shown i n SO^-S i n R u b i c o n a s and ab ility is area of suggest SO ^ - S u n d e r and Oshtemo in sulfate and M ontcalm M ichigan am ounts o f a tm o s p h e ric Higher e x t r a c t a b l e s u l f a t e and SO4 - S in Rubicon B o i l s may b e r e l a t e d t o h i g h e r S a d s o r p t i o n d u e t o l o w e r pH, lower organic m atter, and lower base saturation in Rubicon 10 S 0 4 —S C ontents, g S / m 2 Bars without com m on Isttsrs significantly differ a t p — 0.05 9 - 8 - 7 6 7 a,b com pare 0 —50 cm m eans; g.h co m p are 5 0 —100 cm m ean s A x,y com pare 100—150 cm m eans '/ 5 ab 7 \ '/ 4 gh 03 w 3 2 gh 1 0 A Grayling r~7\ h xy 0 - 5 0 cm I ZL r Rubicon Z T Kalkaska V\ T Montcalm Soil Series 5 0 - 1 0 0 cm Spinks 1 0 0 -1 5 0 cm Figure 5.8 Extractable S - Series x Depth Interaction Oshtemo 84 than in K a lk a s k a and Montcalm s o i l s , concentrations low er s u l f a t e were s i m i l a r contents may i n d i c a t e h i g h e r in rates (Table the of m icrobial (D avid e t a l . , The h i g h e x t r a c t a b l e the 5 0 - 1 0 0 cm d e p t h depth (Figure horizons. respect of sulfate depth 1982; and t h e reflect S trickland Spinks s e r i e s the support the in adsorption w ith r e ta in e d below t h i s p o in t. throughout adsorbed i n Bt the pedons lim ited higher from (Figure 5.9). in Montcalm profile, su lfate Spinks at 100-150 cm of the Bt ab ility c o n te n ts w ith that th e major s i t e is in th e upper am ounts o f significant su lfate sulfate amounts is being 1.4 to 30.3 When series. R ubicon g S m" 2 compared series D ifferences apparently retention. and Oshtemo s o i l s but on a in the to s e r ie s variab le in d ividual series ex tractab le than may r e s u l t to a depth of for a mong R u b i c o n , related H igh, SOIL PEDONS calculated T a b l e D.6; T a b l e 5 .4 ) , the M ontcalm a re the In m esic zone s e r i e s , SO4 - S c o n t e n t s , ranged ( A p p e n d i x D, 1986). horizons. E x tractab le cm, in zone s e r i e s EXTRACTABLE SULFATE CONTENTS - 150 e t al„, su lfate contention frigid B horizons, retained i n c o r p o r a t i o n o f SO4 - SO4 - S c o n t e n t o f t h e O s h t e m o s e r i e s adsorption the A ltern ativ ely , t o pH a n d o r g a n i c m a t t e r P a tte rn s in e x tra c ta b le to 5 0 cm o f 5.8) 5.1). K a lk a s k a and M ontcalm s e r i e s S in to organic forms, again r e l a t e d differences e v e n t h o u g h A1 a n d Fe basis SO4 - S w a s K alkaska or K alkaska, and differences in SO4 - S from s e r i e s lev els in differences 85 LEGEND 4.7-R S C ontent-Soil Series (g S m t o 1 5 0 cm) North 0.6 S 0 4- S D e p o s i t i o n (g S m- z y r - 1 ) # Urban A reas 0.6— f G G rayling K Kalkaska 4.7-R H Montcalm 2.8-K O Oshtemo 1.4-M 2.1-M R Rubicon 3.1-M S Spinks 1.7-M 8 . 8- R 4 . 3 - G North 1.7-K C e n t r a l ----• 5-K L o we r 24.5-G \ 12.7-R Michigan 1.5-K \ 4,3-G 6 - 6 —G 14.6-G 18.2-R 2.8-M 1.4-K 12.7-R # 5.6-G 17.8-K 20.2-R 5.4-G 14.4-M 25 M iles Northern L o we r Michigan 1.7-M 18.6-S # 4.0-S * 3.0-0 5.8-0 # 11.4-0 3.8-S #♦### 12.4-S 5.2-0 # ###. 30.3-0 * 23.3-S * i f / Southern —I — L o w e r Michigan 14.8-0 6.7-S F ig u re 5,9 S u l f a t e - S u l f u r C o n ten ts of Pedons t o a D e p t h o f 150 C e n t i m e t e r s 86 in adsorption in com bination sulfate deposition, as sources are present in w ith a greater southern higher number v ariab ility in of urban p o llu tio n low er M ichigan (F ig u re 5.9). Table 5.4 E x t r a c t a b l e s u l f a t e C o n t e n t s t o 1 5 0 cm b y S o i l S e r i e s E xtractable Mean S 0 4-S'*' Standard D eviation --------------------- g S m" 2 --------------------- Soil S eries * G rayling 6 .8 ab 3.9 Kalkaska 4.5 b 6.5 Montcalm 4.2 b 5.0 Oshtemo 1 1 .8 ab 10.1 Rubicon 12.9 a 5.8 Spinks 1 1 .5 ab 8.1 * Means n o t f o l l o w e d by t h e same l e t t e r d i f f e r e n t a t P = 0.05. + D a t a s t a t i s t i c a l l y a n a l y z e d a s l o g ( g S m- ^ Whe n (Figure in pedons 5.9, southern were Table lower 5.5), placed average M ichigan into are s ig n if ic a n tly regional extractable forest soils so il groups SO^-S c o n t e n t s were significantly higher than in n o rth ern low er M ichigan f o r e s t s o i l s , n o rth -cen tral M ichigan interm ediate results are deposition low er SO4 - S contents consistent with forest so ils ( A p p e n d i x D, T a b l e D.7). the of gradient f r o m 0 , 9 g S m~ 2 i n s o u t h e r n annual w ith having These sulfate low er M ichigan to 87 0 . 6 g S ra- 2 1985b). in n o rth e rn low er M ichigan { F ig u re 5.9; R egional com parisons a re t e n t a t i v e caution since regional confounded w ith b lo c k differences and s e r i e s in s o i l NADP, and made w i t h SO4 - S c o n t e n t a r e effects. Table 5.5 E x t r a c t a b l e S u l f a t e C o n t e n t s t o 1 5 0 cm b y G e o g r a p h i c R e g i o n E xtractable Mean SO4- S + Standard D eviation ------— gs m- 2 G eographic Region * N o r t h e r n L o we r M ichigan! 4.5 x 3.4 N orth-C entral Lower M i c h i g a n ! 9 . 7 xy 7.3 S o u t h e r n L o we r M ichigan * t t 11.6 y 8.7 Means n o t f o l l o w e d by t h e same l e t t e r a r e s i g n i f i c a n t l y d i f f e r e n t a t P = 0.05. D a t a s t a t i s t i c a l l y a n a l y z e d a s l o g {g S m“ 3 D a ta f o r B lock 7 p e d o n s n o t i n c l u d e d i n means DISCUSSION Mean v a l u e s series basis horizons, annual for su lfa te for assum ing adsorption upper r a n g e d from 9.6 t o wet s u l f a t e peninsula the of 150 M ichigan capacity suggest cm o f (NADP, 1985a; present M ichigan adsorbing in the 1985b; v alu es lev els forest on a G iven an a v e ra g e o f 0 . 8 g S m- 2 ad so rp tio n at calculated su lfate 1 2 . 8 g S m~2 . deposition calcu lated calculations adsorption, low er 1986), represent of so ils and an depo sition, could retain 88 su lfate and prevent su lfate leaching acid deposition im pacts f o r a p e r i o d o f 12 t o 16 y e a r s . the range of c a lc u la te d ad so rp tio n c a p a c itie s pedons {0.5 to bodies would related 21.1 have g S m~^ t o an a b i l i t y 150 to cm), adsorb to B a s e d on for individual in d iv id u al sulfate soil for periods f r o m l e s s t h a n o n e t o g r e a t e r t h a n 26 y e a r s a t p r e s e n t r a t e s of deposition. T h i s t y p e o f c a l c u l a t i o n i s somewhat f a c i l e in lig h t of the u n c e r ta in tie s in v o lv e d in applying la b o ra to ry field situ atio n s, plant uptake and c y c l i n g (Johnson and Johnson, 1980; laboratory of Johnson, adsorptive laboratory lab o rato ry SO^-S. D.W., adsorption This resu lts Johnson et al., studies suggests be to m icrobial or investigators et a l., 1981) gave than that 1979a; found minimal adsorption greater should for Previous S ulfate consistently results. account 1979; capacity. was not of H enderson, sulfate conditions and does results that indices under field predicted estim ates co n serv ativ e from based as to on the a d s o r p t i v e c a p a c i t y o f M ichigan f o r e s t s o i l s . R elativ e re v e rsib ility of ad so rp tio n was not i n v e s tig a te d , but even tem porary a d s o rp tio n of s u l f a t e the so il p ro file would n u t r i e n t c a t i o n s by f o r e s t for m icrobial perm it vegetation, incorporation and e n c o u r a g e more p e r m a n e n t through slow in itiatin g changes in p recip itatio n re-uptake of SO4 - S retention of Fe or associated enhance o p p o r tu n itie s into organic of s u lfa te su lfate-sesquioxide of in Al S forms, o v e r tim e bonds hydroxy or by su lfate 89 m inerals. serve to resulting These p ro c e ss e s, buffer or com bination, rapid cation leaching from t h e M ichigan s o i l s so il, were su lfate resulting in equivalent already in d eposition equilibrium so th a t su lfate be w ould adsorption s ite s irre v e rsib ly were f i l l e d , and e l e v a t e d u n lik ely , leaching w ith d ep o sited is would T his s i t u a t i o n would be p r e s e n t i f Under a " b e s t c a s e s c e n a r i o , " It losses f o r M ichigan f o r e s t s o i l s outputs balanced. sulfate would i s o n l y t e m p o r a r i l y r e t a i n e d , and r e a d i l y loBBes o f b a s i c c a t i o n s . of in f r o m e x c e s s H+ a n d S O ^ " i n p r e c i p i t a t i o n . be t h a t s u l f a t e lev els or reduce A "worst case sc en a rio " displaced alone inputs all adsorbed a t which p o i n t present and sulfate u n til leaching a ll of l o s s o f b a s e s w o u l d c o mme n c e . however, that a ll would be r e t a in e d by th e s o i l . Indeed, s u l f a t e c o n c e n tra tio n s in s o i l su lfate deposited r e l a t i v e l y h i g h mean so lu tio n ( 1 0 . 8 t o 1 7 . 3 mg S L ~ ^ ) a n d g r o u n d w a t e r ( 1 1 . 6 t o 1 7 . 6 mg S L“ ^) i n a v a r i e t y o f n o r th e r n low er M ichigan f o r e s t s o i l s the case (U rie relativ ely forest et 1986). lim ited s u lfa te soils are capable adverse cation of deposition. acid al., leaching T his indicate th is suggests adsorption a b i l i t i e s of buffering, effects but resulting is not th at the o f M ichigan not preventing, from impingement The l a c k o f s i g n i f i c a n t d i f f e r e n c e s betw een s o i l s e r i e B in overall sulfate adsorptive ab ility and h i g h w ithin s e rie s suggest th a t a c la s s if i c a t io n s e r i e s may n o t b e t h e b e s t variab ility b a s e d on s o i l indicator of su lfa te adsorbing 90 capacity, at least among s o i l s d eposition based pronounced differences determ inations but present be as m ight perform ed high w ith in at series differences certain oth ers low c a t i o n exchange be capacity. evident higher to acid More from a d s o r p t io n sulfate concentrations, r e s u l t s s u g g e s t t h a t v a r i a b i l i t y would p r o b a b l y significant that on considered s e n s itiv e in so il as betw een between pedons su lfate series. series were adsorbing also The masks su b stan tially a b ility , a lack of the fact low er than factor of 40 s e p a r a t i n g t h e p e d o n s w i t h l o w e s t ( 0 . 5 g S m~2 ) a n d h i g h e s t (21,1 g S m~2 ) calculated adsorption capacities. When grouped s o l e l y by a d s o r p tio n c a p a c i t i e s , a to tal the 1 0 . 0 g S m- 2 , 38 p e d o n s s a m p l e d a d s o r b e d adsorbed 11.0 capacities scale, to 15.1 g S less m“ 2 , than and b e t w e e n 1 5 . 9 a n d 2 1 . 1 g S m- 2 . the m ajo rity of th e would be c l a s s i f i e d as M ichigan had 6 o f 20 o f 12 adsorbing On t h i s relativ e forest so ils sam pled low t o m o d erate B u l f a t e a d s o r b e r s . A c t u a l d i f f e r e n c e s b e t w e e n s e r i e s may e x i s t u n d e r f i e l d conditions These of would t h a t were n o t e v i d e n t from l a b o r a t o r y r e s u l t s . include su lfa te in to organic im m obilization by dependent soil on forest subsurface tex tu res tim e of percolating between s e r i e s such as those differences in m icrobial S form s, vegetation, m oisture su lfa te so lu tio n s. uptake w etting-drying regim es, and h o r i z o n s incorporation and on f l o w p a t h Q ualitativ e im portant to sensitivity to related to effects w ater of cycles influence and acid and of retention differences deposition, movement on 91 su lfate retention, would b e s t be d e te r m in e d by f i e l d examining in s i t u s u l f a t e f l u x e s w ith in th e s o i l M eaningful groupings of s o ils a b ilitie s may be p o ssib le categories such as the suborder levels. Soil exchange fam ily, variety capacity. approach incorporating regional differences ecosystem s e n s i t i v i t y p rofile. as to s u lf a te higher subgroup, adsorptive so il taxonom ic great group, or d i f f e r e n c e s m ig h t be more p r o n o u n c e d when c o m p a r i n g a w i d e r cation at studies of s o ils A ltern ativ ely , vegetation, in to beyond t h o s e su lfate an ecosystem landform , deposition low in so il, to and classify a c i d d e p o s i t i o n may b e r e q u i r e d . SUMMARY AND CONCLUSIONS A ll so il adsorbing sulfate Bh h o r i z o n s mesic zone T o tal s e r i e s s t u d i e d had s e v e r a l h o r iz o n s c a p a b l e o f in under frig id soils lab o rato ry conditions. zone s o i l s displayed q u an tities of in so lu tio n adsorption eq u ilib ratio n s we a k s u l f a t e in the n o rth ea stern Bs, and E and B t h o r i z o n s highest su lfate reductions relativ ely the Bw, sulfate adsorbed su lfate adsorbers, that sim ilar and the these to sm all during so ils forest am ounts of United S ta te s . su lfa te adsorbed under calcu lated adsorbing horizons. to a depth This su g g e sts of that 150 cm a soil in lab o rato ry c o n d i t i o n s when c o m p a re d on t h e b a s i s o f a d s o r b e d co n ten ts are soils No s i g n i f i c a n t d i f f e r e n c e s w e r e f o u n d b e t w e e n s e r i e s to ta l in adsorption. co n cen tratio n s suggest and in su lfate su lfate series level 92 classificatio n sen sitiv ity to adsorption may acid not be the deposition ability. in Significant in s u l f a te ad so rp tio n a b i l i t y the upper 50 adsorbing the relativ e the solutions d ifferences The in to ta l consistent su lfa te from solutions low and of o v e r a ll p ro file more and dep osition am ounts of of six (10 series su lfa te location flow in p ath than adsorbed. to adsorb su lfa te between a d s o r p t i o n suggest th a t are of absolute series so ils of determ ining mg S L ” ’1') of ex tractab le su lfa te forest in su lfa te a ll correlations M ichigan in im portant co n cen tratio n sim ilar soil sulfate between cm d e p t h s differences acid ab ility and p o s i t i v e lev els to term s differences of w ere p r e s e n t when c o m p a rin g so il may b e sen sitiv ity indicator 100-150 S eries w ith in percolating series or horizons. ad so rp tio n in itia l cm best and these capable of reta in in g a d d itio n a l q u a n titie s of atm o sp h erically deposited sulfate. suggest E s t i m a t e s b a s e d on c a l c u l a t e d th at resu ltin g w ill so ils elev ated decades. losses from a c id d e p o s i t i o n w i l l be b u f f e r e d , for leaching by s u l f a t e tim e p e rio d s of basic cations n o t be p r e v e n te d , but adsorption ranging adsorptive capacites in M ichigan fro m a few y e a r s to forest a few Chapter VI RELATION OF SULFATE ADSORPTION TO SOIL PROPERTIES T his chapter discusses the relatio n sh ip s s u l f a t e a d s o r p t i o n and s o i l p r o p e r t i e s so ils. Sim ple co rrelatio n s s u lf a te adsorption betw een are presented betw een in M ichigan f o r e s t so il p roperties and and examined. CORRELATIONS - ALL SERIES S im p le c o r r e l a t i o n s betw een s u l f a t e k g "1) and other soil properties adsorption are presented in (mg S Table 6.1. D a ta from Bt and C h o r iz o n s o f th e B lo ck I S p in k s pedon have been excluded adsorption due are q u ite the population variable high for sm all correlation large are sam ples, sm all p ractically , C orrelations fairly e x a c t sam ple s i z e sam ples, this sig n ifican t reason, co rrelatio n s discussion is and chapter near f o r sam ple are w ill lim ited T orrie, b a s e d on n > 50, of data (Table the lik elih o o d o c c u r by c h a n c e . to 1980). 6.1). (21 s o i l p r o p e r t i e s x 4 increases 93 or but (S teel of at r may b e s t a t i s t i c a l l y , depending on grouping h o rizo n com binations) is when In The s i z e o f t h e c o r r e l a t i o n m a t r i x soil coefficients particularly (rho) values during rho > 0.50. sig n ifican t in S04-S confidence b e l t s narrow a t of of correlation coefficient values discussed release Sample For sam ples w ith n > 50, correlations not th eir equilibrations. (r) zero. to co rrelatio n s that For t h i s having 94 Table 6.1 C o r r e l a t i o n s ^ Between S u l f a t e A d s o r p t i o n and S o i l P r o p e r t i e s C o rre la tio n w ith S adsorbed A ll Series A ll Horizons Property^ DC-Fe DC-A1 AO-Fe AO-A1 NP- Fe NP-A1 Exch-Al r P r P M e s i c Zone Subsurface Horizons2 r P F r i g i d Zone subsurfac Horizons r P 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.31 0.82 0.67 0.79 0.56 0.69 0.66 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.50 0.69 0.59 0.69 0.24 0.29 0.58 0.000 0.000 0.000 0.000 0.063 0.021 0.000 0.59 0.89 0.78 0.90 0.65 0.82 0.79 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Cr-Fe pH-H2 0 pH-CaClo Org-C Ext-S Ext-P Clay 0.21 0.002 - 0.02 0.747 -0 .0 5 0.486 - 0 .5 8 0.000 0.36 0.000 0.08 0.233 N . D . :t ----- 0.14 -0.56 -0.53 0.60 0.59 0.17 N. D. 0.060 0.000 0.000 0.000 0.000 0.024 —— 0.45 -0.62 -0.60 0.21 0.68 0.01 0.65 0.000 0.000 0.000 0.094 0.000 0.911 0.000 0.21 -0.52 -0.50 0.70 0.57 0.39 N. D. 0.021 0.000 0.000 0.000 0.000 0.000 ----- Exch-Ca Exch- Mg Exch-K Exch-Na 2 Bases Eff-CEC Base S a t - 0 .2 3 0.000 -0 .1 9 0.003 - 0 .4 5 0.000 -0 .1 4 0.041 -0 .2 4 0.000 -0 .2 3 0.001 - 0 .4 3 0.000 -0.30 - 0.11 0.18 -0.04 -0.29 -0.24 -0.51 0.000 0.130 0.013 0.551 0.000 0.001 0.000 -0.32 0.22 0.63 0.25 -0.29 -0.23 -0.43 0.010 0.083 0.000 0.051 0.022 0.070 0.000 -0.27 - 0.20 0.03 - 0.12 -0.27 -0.23 -0.54 0.003 0.033 0.786 0.186 0.003 0.013 0.000 n e=t==:=^=^p:=s t 1 2 3 4 t 0.28 0.61 0.37 0.63 0.24 0.53 0.19 A ll Series Subsurface Horizons1 (rag S k g - 1 ) i n ----- 229 180 62 SBEEBSE;b b b s s s BBREBBC 118 SBBBBBEiCESEE S p in k s Block 1 Bt and C h o r i z o n d a t a e x c l u d e d due t o h i g h S re le a se during adsorption e q u ilib ra tio n s E x c l u d e s f r i g i d z o n e A, A / E , a n d E h o r i z o n s a n d m e s i c z o n e A a n d Ap h o r i z o n s . S p i n k s a n d O s h t e m o S e r i e s ; e x c l u d e s A a n d Ap h o r i z o n s . G r a y l i n g , R u b ic o n , K a l k a s k a , and Montcalm S e r i e s ; e x c l u d e s A, A / E , a n d E h o r i z o n s ; i n c l u d e s G r a y l i n g a n d Montcalm "Block 7" p e d o n s . U n i t s ; pH i n - L o g ( H ) ; O r g - C , C l a y , B a s e S a t i n %; 2 B a s e s , CEC i n c m o l (+) k g - 1 ; a l l o t h e r s i n mg k g - 1 N. D. - % c l a y n o t d e t e r m i n e d f o r s u r f a c e h o r i z o n s o r f r i g i d zone s u b s u r f a c e h o r iz o n s . 95 th eo retical relatio n sh ip s those p re v io u s ly reported For a ll series and w ith in the soil su lfate adsorption Al A l, su lfate (DC—A l , adsorption horizons combined (T able 6.1), = 0.53). ex ists were d i t h i o n i t e - c i t r a t e at 6.1 sh ow s low er AO - A1 inclusion of surface A ppendix B) th at equilibration. w ith co rrelatio n that degree of concentrations, p artly due ex h ib ited low in su lfa te sulfate ex ists adsorption larg ely (Figure contention adsorption that organic ap p lies C o rrelations are m atter on m islead in g horizons R esults the differ current clu sterin g low er interferes in w ith were not in s u l f a t e com bined because data of organic sulfate retention (C hapter activ e in V) E) a ll horizons su lfate z o n e (A, A / E , strongly for surface i n mode o f study su rfa ce horizons of f r ig id soils (r and s u b s u r f a c e h o r i z o n s . based subsurface (A) correlated T his c o r r e l a t io n su p p o rts to d iffe re n c e s between s u r f a c e h o riz o n s of during (Jo h n so n and Todd, 1983; E v a n s , 1986), b u t o n ly in s o f a r as i t horizons 5.1, s u r f a c e h o r i z o n s , and horizons ( T a b le 5 .1 , A ppendix B). the The n e g a t i v e due to s e p a r a te subsurface to (Table 6.2). r scatter release O r g a n i c c a r b o n wa s n e g a t i v e l y sulfate-adsorbing the AO-A1 (AO- (NP-A1, high horizons a high o rg an ic carbon, s u l f a t e - r e l e a s i n g carbon extractable and N a - p y r o p h o s p h a t e e x t r a c t a b l e A l Figure “ -0.58) correlations r “ 0 . 6 1 ) , ammonium o x a l a t e e x t r a c t a b l e A l r *= 0 . 6 3 ) , to literature. the s o i l p ro p e rtie s w ith th e s tro n g e s t p o s i t i v e with or soil and retention. indicated that and m esic zone physico-chem ical 25 20 + + + + + 15 % + 10 ++ + ' + + + ■ft- + + + + .***- + + ++ + : 5 0 r « 0.63 -5 all series, all horizons 10 •15 •20 +++ + + T T 2000 NH4—Oxalate Extractable Al (mg Al/kg) Figure 6.1 C o r r e l a t i o n o f S A d s o r b e d w i t h Ammonium O x a l a t e E x t r a c t a b l e Al - A l l s e r i e s . A l l H o r i z o n s 4000 25 20 - r - —0.58 15 S / Ug ) 5 - -5 - S Adsorbed (mg all series, all horizons 10 + -f+ + + + ++ % -1 0 - -1 5 - -20 **■ + i,. + + 1 T 2 T 3 Organic Carbon (2.) Figure 6,2 C o r r e l a t i o n o f S Adsorbed w ith % Organic Carbon - A l l S e r i e s , A l l Horizons ++ + + l -----------4 98 adsorption processes. S ulfate retention in s u rfa c e horizons is l a r g e l y a m ic r o b ia lly m ediated p ro c e ss S trickland, increased (Freney, 1982; David e t al., by m i n e r a l i z a t i o n 1958; D avid e t 1983), of al., ( F i t z g e r a l d and w ith s u l f a te organic 1982). S during release air-drying Surface horizons im p o r ta n t b e c a u s e t h e amount o f s u l f a t e reaching are underlying B h o r i z o n s d e p e n d s on S c y c l i n g p a t t e r n s and t r a n s f e r w i t h i n these s o il layers. W hile im p o rta n t to o v e r a l l S cycling, th e s e p ro c e ss e s a re beyond th e scope o f th e p r e s e n t stu d y . Subsequent horizons discussion where w ill adsorption chem ical p r o p e r tie s is C orrelations be restricted related a major betw een to factor su lfate presented in T a b le 6.1. (r = 0.79), 0.66); r values d ata. Figure adsorption to (r shows a n d AO- A1. exclusion = 0.69), increased a fte r 6.3 of the im proved adsorption r = 0.37 t o Fe, sulfate series and DC-A1 surface and retention. and soil combined a r e were w ith (r * 0.82), exchangeable A0 - A1 Al (r = e x clu sio n of su rfa c e horizon co rrelatio n The im prov em en t compared w i t h F i g u r e 6.1. also physical Strongest c o rre la tio n s aluminum f r a c t i o n s , NP-A1 subsurface adsorption in subsurface horizons of a l l extractable soil in properties the to horizon betw een in data the is su lfate relation apparent due when E xclusion of su rface horizon data co rrelatio n s (T able a n d ammoni um o x a l a t e 6.1) betw een extractable Fe su lfate (AO-Fe, from 0 .67) a n d N a - p y r o p h o s p h a t e e x t r a c t a b l e Fe (NP- from r * 0.24 t o N egative 0.56). co rrelatio n s ex isted betw een su lfate 22 20 + 18 + 16 + + 14 12 + + , + + + + 10 ++ + + \ 8 + + r = 0.79 + + $ + *F -ft 6 all series, su b su rface horizons ■H-. 4 - tf * 4 i * + ti- tH . + ; 2 + + ++ + + + + 0 -2 T T 2000 T 4000 NH4—Oxalate Extractable Al (m g Al/kg) Figure 6.3 C o r r e l a t i o n o f S A d s o r b e d w i t h Ammonium O x a l a t e E x t r a c t a b l e Al - A l l s e r i e s , S u b s u r f a c e H o r i z o n s 100 ad so rp tio n a n d pH-H2 0 base s a tu r a tio n of a 1962). w ith tren d of (r su lfa te et 6.4 a l. (1963), sim ila r so ils (r = -0 .5 3 ), th e in s u b s o ils was n e g a tiv e ly a lso and S te in b e r g s , re la tio n sh ip was c u r v i l i n e a r . o f pH -H 2 0 A n e g ativ e a s r e p o r t e d by K am p rath e t a l . and P a r f i t t to cu rv es (1982). rep o rted and a d so rp tio n pH ( W i l l i a m s showB t h a t e x p ec te d , is w ith a d so rp tio n pH -C aC l2 S u lfa te A u stra lia n = -0 .8 2 ) F ig u re effect is Chao (r « -0 .5 1 ). v a rie ty co rrelated (r = -0 .5 6 ), The pH (1956), c u rv ilin e a r by Chao e t a l . (1964) a n d c l o s e l y m a t c h e s t h e pH - s u l f a t e a d s o r p t i o n r e l a t i o n s h i p d e p i c t e d by B arrow e t a l . re la te d to th e effect (1969). of pH T h e c u r v i l i n e a r i t y may b e b ein g g rea ter c o n t a i n i n g h i g h e r am ounts o f s e s q u i o x i d e s , Chao e t a l. (1963). The w ide ra n g e The n e g a t i v e c o r r e l a t i o n t h e pH e f f e c t to fin d in g s re te n tio n , decreased a d d itio n to a d so rp tio n t h e w ide ra n g e w ith b ase s a tu r a tio n t h a t A l^+ s a tu r a tio n of w h ile so il sa tu ra tio n of re te n tio n , t h e pH e f f e c t by in i n h o r i z o n s w i t h t h e s e pH v a l u e s . (pH -H 2 0 : b a s e s a t u r a t i o n su lfa te h o rizo n s as re p o rte d in s u l f a te e v i d e n t b e t w e e n pH 4 . 5 a n d 6 . 0 may r e f l e c t sesq u io x id e c o n ce n tra tio n s in th e re la te d to r - 0 .7 0 ), as w e l l as so il in creased by C a^+, c a tio n (C h ao e t a l . , is su lfa te K+ , effect or b e in g Na+ in 1963). CORRELATIONS - MESIC AND FRIG ID ZONE SOILS R e su lts ad so rp tio n of in te r-se rie s (C hapter V) in d icated c o m p a riso n s th at d ifferen t a d s o r p tio n o c c u r r e d in m esic zone s e r i e s of su lfa te p a ttern s of ( S p i n k s , O shtem o) 22 20 - 1B - % + + 4* 16 - 14 - 12 - 10 ^ S Adsorbed (mg S /k g ) + + . + 4- r = —0.56 + all series, su b su rface horizons + . + ++ + + % + 41 ^ + ■ f+ + ^ 8 H 6 - + # ■ * + + + 4 i 2 - + + * + + . 4 -* # $ . + * #• -N+ 4* + 4 M * H - ++ + + * * "*■+. + + + 1+ -*+ + # * '* * t ------ + + + . + + + +-H-+4:----------- $ ----------- T i p - 4* _2 + 4-] --------------------- 1--------------------- 1--------------------- 1--------------------- 1--------------------- p 6 8 pH—H 20 [ —Log(H4-)] F ig u re 6.4 Relation o£ S Adsorbed to pH-I^O 10 102 th an in frig id M ontcalm ). zone s e r i e s (G ra y lin g , R u b ico n , K alk ask a, S ep arate c o r r e la tio n s fo r su b su rface h o rizo n s o f t h e s e tw o g r o u p s a r e p r e s e n t e d in T a b le 6 .1 . subsurface C ), s u l f a t e h o rizo n s (E, B, E ', In m esic zone a d so rp tio n was p o s i t i v e l y c o r r e l a t e d w i t h d i t h i o n i t e - c i t r a t e e x t r a c t a b l e Fe (D C -Fe, r = 0 . 5 0 ) , D C -A 1 ( r = 0 . 6 9 ) , A O - F e ( r *= 0 . 5 9 ) , AO-A1 (r » 0 .6 9 ), e x c h a n g e a b le Al F e , DC-Fe 6.5 shows A O -Fe, r a 0 .4 5 ) , and % c l a y th at th e rela tio n sh ip A O -A 1 i n m e s i c z o n e s o i l s AO-A1 th e c o n cen tratio n s, effect S u lfa te ( r « 0.5 B ), c r y s t a l l i n e of in n e g ativ e ly c o rre lated a d so rp tio n su lfa te th at m esic o th er w ith a t h ig h er facto rs m odify on a d s o r p t i o n . zone s u b s u rfa c e w ith p H -^ O F ig u re a d so rp tio n AO-A1 c o n c e n t r a t i o n -0 .6 0 ), and b a se s a t u r a t i o n In f r i g id (r a 0*65). e x h ib i t s h ig h s c a t t e r su g g estin g in cre asin g a d so rp tio n of Fe (C r- (r = -0 .6 2 ), h o rizo n s was pH -C aC lj (r = (r a -0 ,4 3 ), zone s u b s u rfa c e h o riz o n s was s t r o n g l y c o r r e l a t e d (B, E ', w i t h D C -A 1 c) , su lfa te (r « 0 .8 9 ), AO-A1 ( r « 0 . 9 0 ) , N P - A 1 ( r = 0 . 8 2 ) , a n d e x c h a n g e a b l e A l ( r = 0 .7 9 ), a ll c o rre la tio n s subsurface a d so rp tio n h o rizo n s. and (r = 0. 21), h o rizo n s 0 .6 5 ). w ere (D C -Fe, The A O -A 1 C o r r e la tio n s w ith a l l h ig h er th an re la tio n sh ip is d e p ic te d th an = 0 .5 9 ; in m esic A O -Fe, r 0 . 0 1 , n ° 118) w i t h o r g a n i c c a r b o n h o rizo n s, p o ssib ly m esic b etw een in zone su lfa te F ig u re zone = 0 .7 8 ; S u l f a t e a d s o r p t i o n was p o s i t i v e l y subsurface in e x t r a c t a b l e Fe f r a c t i o n s , h ig h er r b ein g 6.6. e x c e p t C r-Fe subsurface N P-Fe, r * co rre lated (P < (r = 0 .70) i n f r i g i d zone an a rtifa c t due to 22 20 r « 0.69 18 + + 16 m esic zone soils, su b su rface horizons 4 14 12 10 +4 8 * + ++ + 6 ♦ 4 +" 4 4 + 4 + + +- + 4 —1--------- 1 200 4 + + + 4 0 -2 + 4 2 ++ 1 1 400 1 1 600 1 1 BOO 1 1 1000 1 NH4—Oxalat© Extractable Al (m g A t/kg) F ig u re 6.5 C o r r e l a t i o n o f S A d s o r b e d w i t h Ammonium O x a l a t e E x t r a c t a b l e A l - M e s i c Zone S o i l s , S u b s u r f a c e H o r i z o n s 1 1200 1----14 20 - 18 - 16 - 14 12 - 10 - 8 - + + + + ■ + + + + 6 - 4 - 2 + + \ + + .+•* + + + + + + + + -*4 * r » 0.90 frigid zona soils, su b su rface horizons ++ + ++ - i t + + ++ + - _+ 4-+ £ -2 1 1------------------- 2000 — I— 4000 NH4—Oxalate Extractable Al (m g Al/kg) F ig u re 6.6 C o r r e l a t i o n o f S A d s o r b e d w i t h Ammonium O x a l a t e E x t r a c t a b l e A l - F r i g i d Zone S o i l s , S u b s u r f a c e H o r i z o n s 104 S Adsorbed (mg S/kg) 22 105 c o r r e l a t i o n s b e t w e e n o r g a n i c c a r b o n an d DC-A l (r = 0 .6 9 ), AO-A1 ( r = 0 . 7 6 ) , N P -A 1 ( r = 0 . 9 3 ) , a n d e x c h a n g e a b l e A1 ( r = 0.8 3 ). A lte rn a tiv e ly , carbon co u ld su lfa te i n t o o r g a n i c S formB ( D a v i d e t a l . r 1 9 8 2 ; S t r i c k l a n d et a l., be 1986). p o sitiv e re la te d to c o rre la tio n m ic ro b ia l N eg ativ e (r = -0 .5 2 ), and pH -C aC l2 in c o rp o ra tio n c o rre la tio n s a d so rp tio n e x is te d fo r base s a tu r a tio n (r w ith of su lfa te ( r » - 0 . 5 4 ) , pH-H2 0 = -0 .5 0 ), found f o r m esic zone s u b s u r f a c e w ith o rg a n ic sim ila r to th o se h o rizons. C o m p a r is o n o f F i g u r e s 6.5 a n d 6.6 show s t h a t i n m e s ic zone s o i l s th e rela tio n sh ip A0-A1 d i f f e r e d from t h a t b e in g s t e e p e r and s c a t t e r A1 c o n c e n t r a t i o n s were g e n e r a l l y in frig id g reater su lfa te a d so rp tio n zone s o i l s , and th e slo p e in m esic zone s o i l s . AO- in s u b s u r f a c e h o riz o n s o f m esic zone s o i l s low er th an th o s e in 5 .1 , A p pendix 5 ). stro n g e r betw een frig id zone s o i l s (T able S t r o n g e r n e g a t i v e c o r r e l a t i o n s w i t h pH , p o sitiv e c o rre la tio n w ith C r-F e, p o sitiv e c o r r e l a t i o n w ith % c l a y , and w eaker c o r r e l a t i o n s w ith a l l o t h e r e x t r a c t a b l e A l and Fe f r a c t i o n s in m e sic zone s o i l s suggest th at su lfa te ad so rp tio n in m esic s o i l s is affected by a com plex o f s o i l p r o p e r t i e s . When s e g r e g a t e d from m esic zone d a t a , betw een s u l f a t e ad so rp tio n and so il im proved c o r r e l a t i o n s p ro p erties in frig id zone so ils suggest th at g r o u p i n g d i s s i m i l a r s o i l s , e v e n when s a m p l e d fr o m a s m a l l geo g rap h ic so ils area, are p laced may o b s c u r e re la tio n sh ip s e v id e n t in g ro u p s b a sed on m o r p h o lo g ic , and e c o l o g i c s i m i l a r i t y . when taxonom ic, 106 Lower c o r r e l a t i o n s th e re s u lt of f o u n d f o r m e s i c z o n e s o i l s may b e in flu e n ce s rela te d to d istu rb an ce h isto ry . F o r e s t s t a n d s sam p led in s o u t h e r n lo w e r M ich ig an were o l d e r ( m e a n a g e « 85 y e a r s ) (standard d ev iatio n in n o rth e rn p a ttern s E arly c u ltiv atio n , M ich ig an low er = ± 33 y e a r s ) lo w e r M ichigan d istu rb an ce reg io n s. but w ith g r e a te r fo re sts. M ichig an been se ttle m e n t, In suggesting d ifferen t re su ltin g in in th at th ese lan d tw o c le a rin g , g r e a t l y in f lu e n c e d s o u th e rn low er c o n tra st, fo rests in age th a n f o r e s t s ta n d s sam pled (62 ± 1 2 y e a r s ) , have and g r a z i n g , v a ria b ility larg e ly d istu rb an ce in v o lv ed in logg in g n o rth ern and fire, f o l l o w e d b y r e g r o w t h o f v e g e t a t i o n w i t h a minimum o f f u r t h e r s o il d istu rb an ce. h a d Ap h o r i z o n s grazin g , In (A pp en d ix B ), or sim ila r s o il some c a s e s , otherw ise excess S e v e r a l pedons i n s o u t h e r n lo w e r M ichigan 40 in years pedons to so ils may h a v e abandonment ago. B ased (F ig u re 5 .9 , on at in n o rth ern refo restatio n . been v ario u s e x tra c ta b le T ab le s u l f a t e d e p o s i t i o n h a s b e e n more v a r i a b l e M ichigan th a n of c u ltiv a tio n , d istu rb an ce p rio r to zone amended p r i o r of c o n te n ts m esic in d ic a tiv e 5 .5 ), d e p o sitio n p ro p erties C o n sisten t tim es in su lfa te in so u th ern lo w e r M ichigan. low er These f a c t o r s in n o ted fo r a s p a s t d i s t u r b a n c e and v a r i a b l e s u l f a t e produced th an or a tm o sp h eric c o m b i n a t i o n may e x p l a i n t h e l o w e r c o r r e l a t i o n s m esic zone s o i l s lim ed m ore in f r i g i d d iv erse co m b in atio n s of so il zone s o i l s . c o rre latio n betw een su lfa te ad so rp tio n and e x t r a c t a b l e A l and Fe f r a c t i o n s i s i n a c c o r d w ith t h e v iew 107 th at su lfa te i s ad so rb ed th ro u g h a n io n o r lig a n d exchange r e a c t i o n s i n v o l v i n g h y d r o x y A l a n d Fe o x i d e s (Chao e t a l . , 1965; R ajan , 1978), hydroxy s u l f a t e s a lth o u g h m ight a l s o be i n v o l v e d 1977; Adams a n d H a j e k , 1981; W eaver e t a l., th a n w ith Fe a g re e d et a l. m ore (1964), 1973; th a t c o rre la tio n s fra c tio n s ( r 0 .73 t o 0 .8 7 ) . Todd (1983, 0.42 t o b e tw ee n forest e x tra c ta n ts th an o rg an ic ally a c tiv e in h ig h er su lfa te 0 .7 3 ) so ils (1986), o x id es have a lso a d so rp tio n and F u l l e r e t a l . or found and Fe (r - may b e m o r e bound Al su lfa te are co rre lated w here h i g h e s t s u l f a t e ( r = 0.2 1 H igh c o rre latio n s w ith rem oved by in su lfa te rem oved by N a-p y ro p h o sp h ate, w ith AO-Fe t h a n ad so rp tio n w ith C r-Fe, i n o r g a n i c a m o rp h o u s Fe i s ad so rp tio n . to r = a c tiv e c o rre latio n s sim ila r (1985, in s u b s u rfa c e h o riz o n s of stu d ied . NP-Fe s u g g e s t t h a t re la tio n sh ip s Chao In c o n t r a s t t o o b s e r v a t i o n s by Jo h n so n and th ese or (1954), Fe D C -A 1 a n d A O - A l s u g g e s t t h a t t h e A l f r a c t i o n s DC-Fe, w ith Al Hague and W a lm s le y , 1985) 0 .9 6 ) , C r-F e was n o t s t r o n g l y S im ila rly , W o lt, w ith v a rio u s e x t r a c t a b l e A l f r a c t io n s r = 0.69 t o M ichigan th an 1967; a l., 0 .4 5) w i t h s u l f a t e a d s o r p t i o n the 1979; (1967) t h a t A l o x i d e s w e re su lfa te et Fe (Adams a n d R a w a j f i h , by E nsm inger (B arrow , F u ller or 0.00 t o 0 .62) w e re n o n - s i g n i f i c a n t o r l o w e r th an c o r r e l a t i o n s to re ta in in g 1980b; Al H ig h er c o r r e l a t i o n s fin d in g s au th o rs of W o lt an d Adam s, 1985). w ith in O ther S in g h , 1978; and A ylm ore e t a l . e ffe c tiv e m in erals. p re c ip ita tio n th e W h ile sp e c u la tiv e , re su lts o f Johnson a d s o r p t i o n was found in m ost th ese et a l. so ils 108 h i g h e s t i n ammonium o x a l a t e O ther Johnson lack stu d ies (Haque a n d W a l m s l e y , and Todd, 1983; F u ller et 1973; a l., S ingh, 1985) ad so rp tio n , sig n ific a n t in c o n tra st c o rre la tio n s p ro p erties. of sm all th e w ere In p re v io u s s t u d i e s , resu lt sam ple a o r c la y w ith present found lack size S in g h , 1980b; F u l l e r e t a l . , so ils to 1980b; in d ic a te d o f c o r r e l a t i o n b e t w e e n pH, o r g a n i c c a r b o n , su lfa te the e x t r a c t a b l e A l and Fe. w ith stu d y w here a ll th ree of c o rre la tio n may b e (Haque a n d W a l m s l e y , 1973; 1985), g ro u p in g o f d i s s i m i l a r (H aque and W a lm s le y , 1973; J o h n s o n and T odd, 1 9 8 3 ), in clu sio n 1980b; o f b o th s u r f a c e and s u b s u r f a c e h o r iz o n s Joh n so n and Todd, in so lu b le et a l., adsorbed 1985), p rev io u sly 1983), su lfa te re la tin g (Johnson so il p ro p erties and Todd, 1963; o r d i f f e r e n c e s b etw een p r o p e r t i e s stu d ied and p r o p e r t i e s In th e p re s e n t stu d y , o f M ichigan sig n ific a n t co rre latio n s accepted w ere so il sim ila r on so ils g eo g rap h ic re la tio n sh ip s sam pled w ith reg io n . b etw een rep lica tio n P o sitiv e a d s o r p t i o n and o r g a n ic c a rb o n in f r i g i d a rtifac t of e x tra c ta b le hig h Al c o rre latio n and Fe b etw een fra c tio n s, m icro b ial tran sfo rm a tio n s of s u l f a te Not c o n s id e r e d a d so rp tiv e or F u ller so ils. i n v o l v i n g pH theory, p ro p erties over a f a ir ly c o rre la tio n and in sm all b etw een B U lfa te zone s o i l s may b e a n o rg an ic carbon may b e re la te d and to t o o r g a n ic S form s. i n t h e p r e s e n t s t u d y was a m e a s u re c a p a c ity c a lc u la te d to of s o ils forest and c l a y w ere in a c c o rd w ith g e n e r a l l y based (S in g h , of a s t h e sum o f e x t r a c t a b l e s u l f a t e and s u l f a t e a d s o rb e d u n d e r l a b o r a t o r y c o n d it i o n s . 109 Such a c alcu latio n adsorbed su lfa te e x tra c tio n s su lfa te th e as su m o f th o se based th e w o u ld and b e tw e e n to in P re lim in ary e x tra ctab le re la tio n sh ip s e x tra ctab le present perform ed p resen t. c o m p a riso n s to assum es su lfa te so il, a lso adsorbed s o il w h ile rem ove sta tistic a l su lfa te any so lu b le a n a l y s e s b a s e d on su lfa te se rie s rep resen ts in d icated (C h a p te r so il p ro p erties (C hapter VI) so le ly on s u l f a t e adsorbed under th at V) w ere and sim ila r lab o ra to ry c o n d itio n s* SUMMARY AND CONCLUSIONS S o il p ro p e rtie s c o rre la tio n s w ith w ith su lfa te th e a d so rp tio n h o riz o n s w ere d i t h i o n i t e ~ c i t r a t e o x a la te a fte r e x t r a c t a b l e A l. e x clu sio n d ifferen ces of e x tra c ta b le a lso Fe, p o sitiv e ly surface h o rizo n c o rre lated d a ta , pH -C aC l2 w ere ad so rp tio n in subsurface w ith in creased because of e x t r a c t a b l e Fe w ere su lfa te n e g a tiv e ly h o rizo n s C o r r e l a t i o n s betw een s u l f a t e and d ith io n ite -c itra te o f m esic and f r i g i d in f r ig id se ries r e t e n t i o n b e tw e e n s u r f a c e and E x ch an g ea b le A l, pH-H2 0 a n d w ere s t r o n g e r a ll e x t r a c t a b l e A l a n d ammonium a n d amm onium o x a l a t e su b su rfac e h o rizo n s for p o sitiv e S tren g th of c o r r e la tio n s i n m ode o f s u l f a t e subsurface h o rizo n s. stro n g e st zone s o i l s zone s o i l s . re la te d o f th e ad so rp tio n th an ad so rp tio n in B oth to su lfa te se ries stu d ied . and s o i l p ro p erties in m esic zone s o i l s , p o s s ib ly as a r e s u l t o f p a s t d is tu rb a n c e p ro d u cin g h ig h er v a ria b ility in th e s o i l p r o p e r t i e s o f m esic zone s e r i e s . Chapter VII PREDICTION OF SULFATE ADSORPTION IN FOREST SOILS One of se n sitiv ity th at th e of p ro b lem s M ichigan a sso c iated forest so ils m easu rem en ts o f s u l f a t e been in c lu d e d F a irly in p re v io u s e x te n siv e been used to ch em ical so il 1982-1984). reg ressio n The eq u atio n s so il v a ria b le s. fu n ctio n s c h a ra c te riz a tio n stu d ies. based (SCS-USDA, ch ap ter th a t has on o t h e r 1980; is d isc rim in an t as p re d ic to r reg ressio n are p resen ted d ata e x is ts to so il MTU-FFC, d ev elo p fu n ctio n s for a d s o r p t i o n u s i n g o t h e r com m only p ro p erties S elected is have not th iB lin e ar use in p r e d ic tin g s u l f a t e m easured so il of and d ep o sitio n a b ility p ro p erties o b ject acid a d so rp tio n M ich ig an s o i l s and p h y s i c a l c la ssify in g to ch arac teriza tio n c la ssify w ith and e q u atio n s d isc rim in a n t and d iscrim in an t and d i s c u s s e d . REGRESSION ANALYSIS S u lfa te b o th a d so rp tio n req u ire d c o n tro l d a ta and p r e d i c t o r tran sfo rm a tio n v arian ce, re la tio n sh ip s, and su lfa te to m ain tain ap p ro x im ate or a d so rp tio n im prove d a ta a d ju s t v a lu e s to a p o s itiv e lo g s (M o ste lle r lin e a rity of v a lu e s T ran sform ation t h e c o n s t a n t b e in g added to sc ale a b o v e 1.0 b e f o r e t a k i n g and T ukey, 1977; S t e e l 110 d a ta n o rm ality , in clu d ed b e l o w 1.0 a s w e l l a s a f e w n e g a t i v e n u m b e r s . t o o k t h e f o r m I n [(mg S k g - 1 ) + 2 ] , v a ria b le and T o r r i e , 1980). Ill T r a n s f o r m a t i o n o f p r e d i c t o r v a r i a b l e s o t h e r t h a n pH m e a s u r e s to o k th e form ln (X ), in clu d ed zero in clu d ed in alth o u g h v a lu e s or p re d ic to r o v e ra ll p lo ts p re d ic te d (frequency w ere codes lin e a rity , V a ria b le s are d escrib ed in T a b le 7.1. (e.g . for w ere d istrib u tio n s), se rie s, so il p a ttern s o b se rv atio n s, graphed and (X) v a r i a b l e s , n o n -h o m o g en e ity in flu e n tia l 1.0. R esid u als p re d ic to r exam ined b elo w r e g r e s s i o n te c h n iq u e s w ere u sed to v a ria b le s. Y v a lu e s, d e sc rip tiv e p lo ts v a lu e s re g re ss io n e q u atio n s S tep w ise m u ltip le screen ln{X-i-l} w a s u s e d when r a w d a t a of and for R esid u al d ep artu re v a ria n ce , need a g a in st and v a rio u s h o rizo n ). in d icatin g in from presence e x tra of p re d ic to r v a ria b le s ( C h a t t e r j e e and P r i c e , 1977; S e b e r, 1977; D ra p e r and S m ith , 1980). P red icto r v a ria b le s t h a t c re a te d problem s of n o n -h o m o g en eity o f v a ria n c e , n o n -n o rm ality , m u ltic o llin e a rity , in v o lv e d or re la tio n sh ip s l o c a t i o n o f o n l y a few d a t a p o i n t s reg ressio n e q u atio n s. T o tal m ost in te ra c tio n general p ro p e rtie s. te rm s w ere i n c lu d e d excluded u n a d ju ste d S e q u e n tia l R2 for of H ig h er in sim p lic ity . co efficien ts v a lu e s are on from f i n a l av o id an ce o f m u l t i c o l l i n e a r i t y test in te r-c o rre la tio n s order th e of term s reg re ssio n s, th e y d id n o t im prove p r e d i c t i v e a b i l i t y have been th e so il dependent w ere e x c lu d e d was p r e v e n t e d b e c a u s e o f t h e p r e s e n c e among ex cessiv e but in cre m e n tal in and so th e y R e p o r t e d R2 v a l u e s m u ltip le and are d e te rm in a tio n . v a lu e s of R2 o b ta in e d a s in d e p e n d e n t v a r i a b l e s w ere added t o e q u a tio n s by step w ise reg ressio n procedures. 1X2 Table 7.1 V a ria b le s In clu d ed in F in a l R e g ressio n E qu atio n s Dependent V a ria b le * (A ll R e g re ssio n s) Ln(S-Ads+2) S o il P roperty Base U n its S04- S A d s o r b e d fro m 10 mg S L so lu tio n mg S k g “ -*- P re d ic to r V ariab les* S o il P ro p erty Base U n its L n(AO-Al) Ammonium O x a l a t e E x t r a c t a b l e Al mg A l kg' L n (A O -F e) Ammonium O x a l a t e E x t r a c t a b l e Fe mg Fe k g ' Ln(C r-Fe) C r y s t a l l i n e Fe (DC-Fe - AO-Fe) mg Fe k g ' Ln(DC—A l ) D ith io n ite -c itra te E x t r a c t a b l e Al mg A l k g ' L n (D C -F e ) D ith io n ite-C itrate E x t r a c t a b l e Fe mg Fe k g ' L n(Ex-A l+l) E x changeable Al mg A l k g ' L n(E xt-P) B r a y #1 E x t r a c t a b l e P mg P k g ' L n(E xt-S) P h o s p h a t e E x t r a c t a b l e S04- S mg S k g ' L n ( % C la y ) C lay F r a c t i o n , Ln(Org-C) O rg a n ic C arbon L n (2B ases+ l) Sum o f E x c h a n g e a b l e B a se s (C a,H g,R ,K a) pH -CaCl2 pH m e a s u r e d i n 0 . 0 1 H C a C l 2 -L og(E +) pH-H2 0 pH m e a s u r e d i n H2 0 -Log(H *) * < 0 . 0 0 2 mm « mg C k g “ ^ cmol (+) kg - 1 Ln d e n o t e s n a t u r a l l o g a r i t h m o f b a s e u n i t s + 1 , +2 d e n o t e c o n s t a n t s a d d e d t o b a s e u n i t s b e f o r e tr a n s fo r m a tio n to log s c a l e 113 A robust m u ltip le u s i n g T u k e y 's b i w e i g h t s to id en tify reasons w ere for assig n e d ex clu d ed d e v ia tio n d escrib es o u tlie r s and sum m arizes (H in tze, 1977) in p r e v io u s ly d e v e lo p e d O u tlie rs re g re ssio n program ( M o s t e l l e r and T ukey, o u tlie rs e q u a tio n s. re g re ssio n from co u ld zero be was u s e d reg re ssio n w e ig h ts re g re ssio n 1985) by ro b u st an aly ses id en tifie d . when T ab le 7.2 rem oved from v a r i o u s r e g r e s s i o n e q u a t i o n s reasons for d ep artu re from t y p i c a l b eh av io r. E x a m i n a t i o n o f T a b l e 7.2 r e v e a l s t h a t o u t l i e r s w e re t y p i f i e d by o v e r-p re d ic tio n e q u a tio n s. O u tlie rs lo w er s u l f a t e pedons. P, e x h ib ited sa tu ra tio n , rem oved from e a c h high w ith reg ressio n S o il by re g re ssio n h ig h er s u l f a te S, fac to rs. an aly sis rele ase or s a m p le s from o t h e r n o n -ty p ical e x tra c ta b le of th ese by s a m p le num ber. a d so rp tio n th an s im ila r asso ciated o r a co m b in atio n tex t su lfa te ad so rp tio n F acto rs high b ase of b eh av io r hig h e x tra ctab le S p e c ific are o u tlie rs id en tified ch arac teriza tio n were d ata in th e for a ll s a m p l e s c a n b e f o u n d i n A p p e n d i x B. REGRESSION EQUATIONS Surface a d so rp tio n th at h o rizo n s of a d so rp tio n in d ic a te s in ac tiv e in release C o rrela tio n su lfa te a n aly sis du rin g in d ic ate d rela tio n sh ip s betw een and m ost s o i l p r o p e r t i e s . The body o f th at re la tiv e ly surface p h y sico -ch em ical For th e s e to th e se d a ta obscured e v id en ce V I). found eq u ilib ra tio n s. in clu sio n su lfa te w ere reasons, h o rizo n s a d so rp tio n d a t a from f r i g i d are processes (C hapter z o n e A, A / E , and E 114 T able 7 .2 Summary o f O u t l i e r s Removed f r o m R e g r e s s i o n E q u a t i o n s s&scss: BBBISCSSSBS s s e e s s e s e s B c c : S .N . 1 S eries S .H . 2 S ig n 3 P ro b a b le Cause o f D e v ia tio n ^ M ontcalm Bt S release, high b . s . 4250 Oshtem o BC S release, hig h b . s . 4460 O shtem o C S release, high e x tr . 4520 Oshtem o El Low S a d s . , 4530 Oshtem o E2 S release, 4540 Oshtem o B tl Low S a d s . , high e x t r . P & b.i 4550 Oshtem o B t2 Low S a d s . , high e x tr . P & b. 4560 Oshtem o BC Low S a d s . , high e x t r . P & b.i 6150 S pinks Bt H igh S r e l e a s e , ex tr. S & b .s 6160 Spinks C H igh S r e l e a s e , ex tr. S & b .s 6460 Spinks 1 2 3 4 u II it 1 n u u II 11 II u U a u u 3550 S release, high e x t r . high e x t r . S & b .s P P & b .s high b . s . S a m p l e Number S o i l H orizon S ign o f r e s i d u a l , - « o v e r - p r e d ic t io n o f S a d s o r p tio n S re le a s e = r e le a s e o f s u lf a te durin g a d so rp tio n e q u ilib r a tio n , S ads. = s u lf a te a d so rp tio n , b .s . = base s a t u r a t i o n , e x t r . S * p h o sp h ate e x t r a c t a b l e S, e x t r . F = Bray e x t r a c t a b l e P . 115 h o rizo n s and reg ressio n m esic zone an aly ses. A h o rizo n s A v a rie ty p r e s e n t e d t o show t h e v a rie ty of of a lso d ifferen t d a ta refle cts p red ic to r v a ria b le s but betw een s u l f a t e T ab le re la tin g (C h ap ter are based for g iv en p resen ts su lfa te h o rizo n s o f a l l e q u atio n s on lim ita tio n s in th e o re tic a l p ro p erties. re su lts of com bined. are re la tio n sh ip s reg re ssio n ad so rp tio n to s o i l p ro p e rtie s series are based M o d els p r e s e n t e d a d s o r p t i o n and s o i l 7.3 e q u atio n s and c o m b in a tio n s present V III). on from The number o f e q u a t i o n s need v a ria b le s a v a ila b ility em p iric a l, th e ex clu d ed reg ressio n o f v a r i a b l e s w ith p r e d i c t i v e pow er. p resen ted w ere an aly sis in su b su rfa c e The p o s i t i v e in flu e n ce of A 0 - A 1 a n d DC ~Fe o n s u l f a t e a d s o r p t i o n w a s e x p e c t e d , a s w a s t h e n e g a t i v e e f f e c t o f i n c r e a s i n g pH. 3550, S ize 4250, 4520, of stan d ard ized (0.609) in 4480, was m o st a v a rie ty D C -Fe (0 .2 8 5 ) of re la tio n sh ip s in series, w ith i t s su lfa te 6150, and 6160. s u g g e s t t h a t A 0-A 1 p red ic tin g c o rre la tio n su lfa te ad so rp tio n in f lu e n c e m o d ified by from a b e tw ee n For t h i s a n aly se s v a rie ty and reason, reg ressio n a d so rp tio n reaso n ab le s p l i t of su lfa te d ata in to g ro u p s b a sed on tax o n o m ic, sim ila ritie s 4550, rem oved w ere a n d pH ( - 0 . 3 0 4 ) . d a ta p ro p erties. 4540, param eter e s tim a te s im portant of s o il R e su lts com bining 4530, O u tlie rs w ith in so il se ries a d so rp tio n w ere e q u atio n s th at obscured and so il su c ce ssiv e ly sp lit re g io n a l, th e in d ic a te d and m o rp h o lo g ic d ev elo p ed sep ara te to p red ict groups. a p p ea re d to be in to A l f i s o l s One (M ontcalm , 116 Table 7.3 R e g re ssio n f o r S u b su rfa c e H orizons - A ll S e r ie s cBtt&s?ssBse&s&&s?scscc:&!&&sceE;E£:&SESSPc;&&&sssncc£&&sEScss?spcc: P red icto r P aram eter S tandard t-V alu e P S eq u en tial V ariab le E stim ate E rror (b=0) ( b - 0 ) R2 C onstant -1 .7 6 4 7 Ln(AO-Al) 0.4244 0.0246 17.26 0.0 0 0 0.7465 pH -C aCl2 -0 .2 0 8 1 0.0233 -8 .9 4 0 .0 0 0 0 .7965 Ln(DC-Fe) 0 .2434 0 .0247 9 .8 4 0 .0 0 0 0.8706 F = 379.12 P = 0.0 0 0 R2 = 0 . 8 7 * t S .E .+ = 0.2434 EDFt = 1 6 9 S tandard E rro r o f th e E stim a te E r r o r D e g re e s o f Freedom (Ln u n i t s ) T able 7 .4 R egression f o r A lf is o l P aram eter E stim ate C onstant -0.43 87 Ln(AO-Al) S tandard E rror t-V alu e (b=0 ) P S eq u e n tial (b=0 ) R2 0.3687 0.0599 6 .15 0.000 0.5986 -0 .1 3 2 3 0.0424 -3 .1 2 0.002 0.7386 0 .2218 0.0363 6.12 0.000 0.7596 L n(O rg-C) -0 .2 2 6 8 0.0446 1 Ul . o CD P red icto r V ariab le S u b s u rfa c e H orizons 0.000 0.7847 Ln(AO-Fe) 0 .3026 0.0507 5 .96 0.000 0 .8222 L n(E xt-P ) -0 .1 9 0 7 0 .0 3 3 1 -5 .7 7 0.000 0.6702 pH -C aC l2 L n (E x-A l+1) R2 = 0 . 8 7 S .E .+ « 0.2603 F = 100.53 E D Ft = 90 P = 0.000 eee&&SBseBBBEiB8 & B ? s e B e B S b b b & s t E B s s s s & s c s B E & « e B s s c c s s e s & s : s s E + t Standard Error of the Estimate (Ln units) Error Degrees of Freedom 117 S p i n k s , O shtem o) a n d t h e E n t i c - S p o d i c c o n ti n u u m o f s a n d y , frig id zone s o i l s K alkaska co m p risin g the G ra y lin g , R u b ico n , and series. R e s u lts o f r e g r e s s io n a n a l y s i s f o r th e A l f i s o l group are p resen ted 6150, 6160, in T ab le and 6460. fa c to rs are re la te d P o sitiv e 7 .4 . It O u tlie rs is apparent to s u lf a te of th e th at 4480, a v a rie ty of a d so rp tio n in th e s e s o i l s . i n f l u e n c e s were r e l a t e d and A O -Fe, e v i d e n c e rem oved w ere t o AO-A1, e x c h a n g e a b l e A l , im p o rtan ce o f a n io n o r lig a n d e x c h a n g e r e t e n t i o n o f s u l f a t e on h y d r o u s A l a n d Fe o x i d e s . S o il pH ( C a C l 2 ) e x e r t e d a n e g a t i v e are th e s ig n if ic a n t n eg ativ e and e x tra c ta b le in te rferin g P. effe cts O rg an ic w ith s u l f a t e in flu en ce. in te rest of both o rg a n ic carbon carbon reten tio n Of has been c ite d (Jo h n s o n and Todd, as 1983; E v an s, 1986), w h ile p h o sp h a te s t r o n g l y com petes w ith s u l f a t e for a d so rp tio n 1978; P a rfitt, in clu d ed sites (C hao, 1982). re fle c ts 1964; M etson and The num ber o f p r e d i c t o r th e v a ria b ility in so il B lakem ore, v a ria b le s p ro p erties i n h e r e n t in co m b in in g d a t a from a v a r i e t y o f s o i l s . W h ile t h i s e q u a tio n p r o v i d e s a good d e s c r i p t i v e e x p l a n a t i o n f o r i n f l u e n c e s on s u l f a t e a d s o r p t i o n i n A l f i s o l s , v a lu e is req u ired reduced as v a ria b le s param eter th e th e as by w ell p ro d u cin g num ber of p red ic to r c o rre la tio n in fla tio n of b etw een stan d ard v a ria b le s p red ic to r erro rs of e stim ates. S everal in by i t s p red ic tiv e reg ressio n E n tic-S p o d ic eq u atio n s group (T ab le were d e v e lo p e d 7 .5 ). for Mo o u t l i e r s so ils w ere 118 Table 7.5 R e g re ss io n s f o r E n tic -S p o d ic S u b su rfa c e H orizons E n tic-S p o d ic R egression A P red icto r V ariab le P aram eter E stim ate C onstant -2 .2 7 2 3 Ln(DC—A l ) R2 = 0 . 8 7 0.6560 S .E .+ = 0.2285 Standard E rror t-V alu e (b=*0 ) 0.0287 22 .8 5 EDFt *= 79 S eq u en tial P (b=0) R2 0.000 0.8686 F = 522.35 P = 0 .0 0 0 E n tic-S p o d ic R egression B P red icto r+ V ariab le P aram eter E stim ate C onstant -4 .1 0 4 0 Standard E rror t-V alu e (b=0 ) S eq u en tial P (b=0 ) Ln(AO-Al) 0 .5 1 5 1 0.0 3 3 2 15.52 0.000 0.8293 L n(C r-F e) 0 .3 7 2 1 0.0 5 8 4 6.3 7 0.000 0.8878 F = 308 .4 6 P = 0.0 0 0 R2 - 0 .8 9 S .E .+ = 0.2125 EDFt = 78 E n tic-S p o d ic R eg ressio n C P red icto r V ariab le P aram eter E stim ate C onstant -1 .8 6 8 3 Standard E rror t-V alu e (b -0) P S eq u en tial (b=0 ) Ln(AO-Al) 0.3 41 9 0 .0 4 51 7 .5 8 0.000 0.8293 Ln(DC-Fe) 0.4 07 0 0 .0554 7 .3 5 0.000 0.8981 -0 .3 1 1 9 0 .1 1 09 -2 .8 1 0.0 0 6 0.9076 F ** 2 5 2 . 0 4 P - 0 .0 0 0 pH -CaCl2 0 .9 1 + t S .E . 0 .1 9 4 1 EDFt 77 Standard Error of the Estimate (Ln units) Error Degrees of Freedom 119 d e te cted or p re d ic to r rem oved. One e q u a t i o n v a ria b le , L n(D C -A l), co n tain ed w ith an o n ly r^ of a sin g le 0 .8 7 . The s im p lic ity of t h is eq u atio n r e f l e c t s the b a sic s im il a r it y c h em ical of and p h y sical su lfa te a d so rp tio n on c o n c e n tra tio n . Al c o m b in atio n s of p ro p erties in su b su rface A O -A 1, th ese so ils, h o riz o n s depending O th er e q u a tio n s C r-F e, D C -Fe, in w ith larg e ly in c o rp o ra te d and pH -C aC l2 as p r e d i c t o r s , w i t h s o m e i m p r o v e m e n t i n R^ v a l u e s . S tan d ard erro rs from of a ll e q u atio n s w ere sim ila r, v ary in g e q u i v a l e n t o f 1 . 3 mg S k g ” -1 f o r t h e s i m p l e s t m o d e l t o S k g - 1 f o r th e m ost co m p lex m o d el. e q u a t i o n w o u ld b e b a s e d on s o i l R e su lts g ro u p in g of R eg ressio n p resen ted of c o rre la tio n so ils in to e q u atio n s in T a b le C hoice o f a p r e d i c t i o n an aly ses m esic su g g ested zone and for O u tlie rs frig id m esic e x ch a n g ea b le Al a second zone s o i l s . zone so ils are rem oved from m e sic zone r e g r e s s i o n A w ere 4480, 6150, and 6160. p red ic to rs p o s itiv e ly 1 . 2 mg a n a ly tic a l d ata a v a ila b le . d ev elo p ed 7 .6 . th e In t h i s eq u atio n , r e la te d to s u l f a te a d so rp tio n in clu d ed and A O -Fe. P re d icto rs n e g a tiv e ly in flu en cin g s u lf a te a d s o r p t i o n w ere pB -C aC l2 and e x t r a c t a b l e P. p aram eter S ta n d ard ize d e x ch a n g ea b le im p o rtan t in e x tra c ta b le m o d ify in g Al P (0 .4 6 1 ) and e stim a te s pH -C aC l2 (-0 .4 7 4 ) d e te rm in in g su lfa te (-0 .3 2 7 ) and AO-Fe The re la tio n sh ip in flu e n ce s. ad so rp tio n p re d ic te d by re g re ssio n a d so rp tio n in m esic zone s o i l s in d ic a te d w ere a d so rp tio n , (0.290) w ere th at m ost w h ile im p o rtan t b etw een su lfa te actu al su lfa te A and is p o rtray ed in F i g u r e 7 .1 . 120 T able 7 .6 R e g r e s s i o n s f o r M e s ic Zone S o i l s S u b s u r f a c e H o r i z o n s M e s ic Zone R e g r e s s i o n A P red icto r V ariab le P aram eter E stim ate S tandard E rror t-V alu e (b=0 ) P S eq u en tial (b=»0 ) C onstant 0.4896 L n(E x-A l+l) 0 .2 1 3 8 0 .0467 4 .57 0.000 0 .6311 pH -C aCl2 -0 .2 9 9 7 0 .0671 -4 .4 7 0.000 0 .6 8 18 L n(E xt-P) -0 .2 3 4 1 0.0469 -4 .9 9 0.000 0 .7605 Ln(AO-Fe) 0 .4115 0.0835 4 .93 0.000 0.8330 F = 69 .8 1 P = 0.0 00 R2 = 0 . 8 3 S .E .+ - 0.3096 EDFt = 56 M e s i c Zone R e g r e s s i o n B P aram eter E stim ate P red icto r V ariab le S tandard E rror t-V alu e (b=0 ) S eq u en tial P (b=0 ) C onstant 5 .8 9 9 8 L n(E x-A l+l) 0 .2 0 5 1 0.0576 3 .5 6 0.001 0 .6 4 35 -0 .2 2 0 8 0 .0682 -3 .2 4 0.002 0 .6489 0 .4 8 8 6 0.1049 4 .66 0.000 0 .6 5 0 4 -0 .6 1 9 6 0.1006 -6 .1 6 0.000 0.7887 F = 5 4 .1 1 P ■ 0.000 Ln(O rg-C) Ln(SB ases+1) p H -H 2 0 R2 * 0 . 7 9 + t S .E."^ « 0 . 3 6 8 5 E D Ft “ S tandard E rro r o f th e E stim a te E r r o r D e g re e s o f Freedom 58 (Ln u n i t s ) 121 Table 7.6 (continued) M e s i c Zone R e g r e s s i o n C P red icto r V ariab le C onstant pH-H2 0 Ln(% C lay) R2 = 0 . 6 0 P aram eter E stim ate S tandard E rror t-V alu e (b=0) -0 .3 0 1 3 0 .0484 - 6.22 0.000 0.6775 0.5230 0 .0897 5 .83 0.000 0.8035 F “ 10 8 .3 9 P = 0.0 00 S eq u en tial P (b=0 ) 2 .6 8 2 5 S .E .+ * 0 .3 2 5 5 E D Ft = 53 M e sic Zone R e g r e s s i o n D P red icto r V ariab le P S eq u en tial (b=0 ) S tandard E rror t-V alu e (b=0 ) -0 .2 0 1 6 0.0635 -3 .1 7 0.0 03 0.6775 Ln(% C lay) 0.6013 0.0920 6 .5 4 0.000 0.8035 Ln(Org-C) -0 .1 9 4 3 0.0627 -3 .1 0 0.0 03 0.8221 0.1452 0.0503 2 .89 0.0 06 0.8471 F = 70 .6 4 P = 0.000 C onstant p H -B2 0 L n(Ex-A l+1) P aram eter E stim ate 2.9 05 3 R2 = 0 . 8 5 S .E .+ ?ssssese& s& "I" t 0 .2 9 2 7 EDFt = S tan d ard E rro r o f th e E stim ate E r r o r D e g r e e s o f Freedom 51 (Ln u n i t s ) 3,5 3 -| Ln[(mg S /k g )+ 2 ] - 0.4896 4* 0.2138Ln(Ex-A I4-l) - 0.2997pH -C aC I2 + + 4* + S Adsorbed Ln[(mg S /k g )+ 2 ] - 0.2341 L n(E xt-P) + 0 ,4 1 15Ln (AO-Fe) 2,5 - + R Squared — 0.83 + + 2 . 1.5 H £ + t 4-4- + 1 - 1 . 4 + 0 .5 “ 0.5 H . + + 4- + + + ++ # + . 4* + + 4* + + + 4* + ++ + + ++ 4 „j.+4* + + + + + 4* -1--------1--------1--------1--------1-------- 1--------]-------- 1--------1--------1--------1-------- 1--------1--------[--------[— 0 0 .4 0.8 1.2 1.6 2 2 .4 2.8 Predicted Y Values Ln[(mg S /k g )4-2] F i g u r e 7 .1 M e s i c Zone S o i l s - R e g r e s s i o n A R e s u l t s 123 M esic zone dev elo p ed re g re ssio n s to a llo w ex ch an g eab le A l, bases as 6150, B, Cr e stim atio n o rg an ic p re d ic to rs. re g re ssio n B, w h ile and of D su lfa te 7 .6 ) w ere ad so rp tio n u sing c a r b o n , p B - H 20 , % cla y , O u tlie r was 4480, 4480 4520, 4530, a n d sum o f rem oved 4540, from 4550, 4560, a n d 6 1 6 0 w e r e r e m o v e d f r o m r e g r e s s i o n s C a n d D. R eg ressio n e q u a tio n s d ev elo p ed zone so ils o u tlie r of (T ab le d a ta are was r e m o v e d , DC-A1 and p resen ted 3550. pH -C aC l2 J e x c h a n g e a b l e A l , DC-Fe, in from com bined T ab le E q u atio n s AO -A1, 7 .7 . in v o lv e d pH -C aC l2 , a n d p H -H 2 0 . O nly one co m b in atio n s and E ffects frig id C r-F e; of Al or and Fe f r a c t i o n s w e r e p o s i t i v e a n d t h o s e o f pH n e g a t i v e . R^ v a l u e s (0 .8 6 -0 .8 9 ) e stim a te and (ap p ro x im ately sta n d ard 1.3 mg e rro rs S k g ” *) w ere of th e co m p arab le to th o se o b ta in e d f o r r e g r e s s io n s d e v e lo p e d f o r G r a y lin g , R u b ico n , and K a lk a s k a s e r i e s g ro u p in g a ll a p p ro p ria te . p a tte rn s of sim ila r to com bined frig id zone (T ab le 7 .5 ), s u g g e s tin g so il R e su lts p resen ted su lfa te th o se in C h ap ter a d so rp tio n in o th er se rie s in to g e th e r V a lso M ontcalm frig id zone th at is in d icated so ils so ils. w ere The r e l a t i o n s h i p b etw een p r e d i c t e d s u l f a t e a d s o r p t i o n and a c t u a l su lfa te a d s o rp tio n d e s c rib e d by r e g r e s s io n e q u a tio n A (T able 7.7) i s d e p i c t e d R eg ressio n se ries in F ig u r e 7 .2 . e q u atio n s are p resen ted d ev elo p ed d a ta s e ts for in d iv id u a l i n T a b l e s 7.8 t o 7 .1 2 . t w o " B l o c k 7" p e d o n s w e r e i n c l u d e d se ries for re g re ssio n D ata B o il from th e i n G r a y l i n g and M ontcalm purposes, a lth o u g h th ese 124 T able 7 .7 R eg ressio n s fo r F rig id F rig id Zone S o i l s S u b s u r f a c e H o r i z o n s Zone S o i l s R e g r e s s i o n A S tandard E rror t-V alu e (b=0 ) 0 .5897 0 .0255 23 .16 0.000 0.8470 -0 .1 6 4 7 0.0267 -6 .1 8 0.000 0.8854 F = 4 40.23 P = 0 .0 0 0 C o n stan t -1 .0 8 4 3 S eq u en tial < P aram eter E stim ate 0 a 11 P red icto r V ariab le Ln(DC-Al) pH -C aC ^ R2 = 0 . 8 9 S .E .+ = 0.2219 F rig id P red icto r V ariab le P aram eter E stim ate C onstant -1 .9 3 1 6 Ln(AO-Al) pH -C aCl2 L n(C r-Fe) R2 = 0 . 8 8 ED Ft = 1 14 Zone S o i l s R egression B S tandard E rror t-V alu e (b=0 ) 0.4564 0 .0290 1 5 .7 5 0.000 0.8171 -0 .2 0 4 3 0 .0306 -6 .6 7 0.000 0.8409 0.2 5 1 4 0.0415 6 .06 0.000 0.8799 f - :2 7 5 . 9 5 P = 0.0 00 S .E .+ - 0.2282 F rig id P red icto r V ariab le P aram eter E stim ate C onstant -1 .0 3 9 7 ED Ft = 113 P S eq u en tial (b=0 ) R Z o n e S o i l s :R e g r e s s i o n C S tandard E rror t-V alu e (b=0 ) S eq u en tial P (b=0 ) L n(Ex-A l+1) 0 .1992 0.0357 5 .5 8 0.000 0.7247 Ln(DC-Fe) 0 .4 7 4 2 0 .0 4 6 4 10.23 0.000 0 .8 3 6 8 -0 .1 8 8 8 0 .0449 -4 .2 1 0.000 0.8589 PH-H2 O S .E .+ = 0.2473 R2 *= 0 . 8 6 E D Ft = 113 F - 2 2 9 . 2 5 P = 0.0 00 BBB&BBCSCCB:b b b s &&b &sss&s b b BBBBBBBBISSB&BBBBBB&EBSBBS + t Standard Error of the Estimate (Ln units) Error Degrees of Freedom 3.2 Ln[(mg S /k g )+ 2 ] - - 1 .0 8 4 3 + 0.5897Ln(DC-AI) 3 2.8 - 0 .1 647pH—CaCI2 Ln[(mg S /k g )+ 2 ] 2.6 2 .4 + 2.2 R Squared - 0.89 + , ■F + + -H -+ 2 + + + + 4 * j .+ + £ J + *%+ + + + + 4- + + + + . 4 F * > + + ^ v ++ + 1,8 + 1.6 ++ 4 S Adsorbed 1.4 +* ++ a 1.2 ++ +«■+ + + ++ 4 + . + + + 4 + + + 1 0.8 0.6 + 0 .4 0.2 0 1 0 0 .4 r 0 .8 1.2 1.6 Predicted Y Values 2 Ln[(mg S /k g )+ 2 ] F ig u re 7.2 Frigid Zone Soils - Regression A Results 2 .4 2 .8 3.2 126 pedons d e v ia te d from t y p i c a l se ries ch arac teristics. No o u t l i e r s w ere rem oved fro m G r a y li n g , R u b ic o n , o r K a lk a s k a d a ta s e ts . One o u t l i e r , d a ta . D ata for S pinks se ries 3550, sam p les was 6150 re g re ssio n s, rem o v e d f r o m O shtem o s e r i e s rem oved and from M ontcalm 6160 w ere w h ile sa m p le rem oved 4460 from d a ta w ere reg ressio n s. R e g r e s s io n s f o r G r a y lin g and R u b ico n w ere s i m i l a r th at p re d ic to rs in clu d ed c o m b i n a t i o n w i t h pH -H 20 th ese e q u atio n s not These of su lfa te eq u atio n s be m is c o n s tru e d a d so rp tio n as of (T a b le 7 .8 ). was p o s i t i v e , o v e r-p re d ic tio n v alu es. m easures The e f f e c t pH a p p a r e n t l y ad so rp tio n e v id en ce for from e i t h e r e q u a tio n w ould n o t g r e a t l y S u lfa te a d so rp tio n v alu e, in o f pH i n at enhancem ent D eletio n Al co rrectin g by A l have p r e d ic tiv e b y i n c r e a s i n g pH. th e e q u a tio n s. e x tra c ta b le in for lo w er pH but should of su lfa te o f pH a s a p r e d i c t o r reduce u s e f u ln e s s of in th e K alk ask a s e r i e s w a s p r e d i c t e d b y DC-A1 o r b y c o m b i n a t i o n s o f DC-A1 a n d AO -Fe or AO-A1 and DC-Fe (T ab le 7 .9 ). In clu sio n b a s e d on F e may r e f l e c t t h e i n c r e a s i n g su lfa te a d so rp tio n in of v a ria b le s im p o rta n c e o f Fe in more h i g h l y p o d z o l i z e d so ils such as K alkaska. P r e d i c t i o n o f s u l f a t e a d s o r p t i o n i n t h e M ontcalm s e r i e s r e l i e d o n u s e o f DC-A1 i n c o m b i n a t i o n w i t h p H - C a C l 2 , pH - H 2 0 , or sum se rie s, of pH a n d re fle c tin g su lfa te base th e c atio n s base (T ab le sta tu s in c re a sin g a d so rp tio n in 7 .1 0 ). In in flu e n c e s im p o rtan ce A lfiso ls. of th e w ere M ontcalm n e g a tiv e , pH c o n t r o l R eg ressio n over e q u a tio n s 127 T able 7 .8 R e g r e s s i o n s f o r G r a y lin g and R u b ico n S u b s u r f a c e H o riz o n s G ray lin g P red icto r V ariab le P aram eter E stim ate C o n stan t -1 .3 4 4 0 S tandard E rror t-V alu e (b=0 ) P S eq u en tial (b=0 ) Ln ( E x - A l + 1 ) 0.6127 0.0392 15.62 0.000 0.9183 pH-H2 0 0.3211 0.0960 3 .3 4 0.0 0 3 0.9436 F = :2 0 8 . 9 9 P = 0.0 0 0 R2 = 0 . 9 4 S , E . + = 0 .1593 EDFt = 25 R ubicon P red icto r V ariab le P aram eter E stim ate C onstant -5 .9 2 1 7 S tandard E rror t-V alu e (b=0 ) P S eq u en tial (b=0 ) Ln(DC-Al) 0.8396 0.0496 16.93 0.000 0.8865 pH-H2 0 0.4760 0.1091 4.36 0.000 0.9391 F * 169.74 P = 0.0 00 R2 * 0 . 9 4 * t S .E .+ 0.1693 EDFt S tan d ard E rro r o f th e E stim ate E r r o r D e g re e s o f Freedom 22 (Ln u n i t s ) 128 Table 7.9 R e g re ss io n s f o r K alkaska S u b su rfa c e H orizons K alkaska R e g re ssio n A P red icto r V ariab le P aram eter E stim ate C onstant -1 .9 9 9 0 w to ii o . 00 to Ln(DC-Al) 0 .6016 S .E .+ = 0 .2036 S tandard E rror t-V alue (b=0 ) 0.0417 14 .42 EDFt = 26 S eq u eg tial P (b-0) 0.000 F - 207 .8 1 0.8888 P - 0.00 0 K alkaska R e g re ssio n B P red icto r V ariab le P aram eter E stim ate C onstant -1 .8 7 5 4 Standard E rror t-V alu e (b -0) P S eq u eg tial (b=0 ) Ln(DC-Al) 0 .3363 0.0849 3 .9 6 0.001 0.8888 Ln(AO-Fe) 0.2569 0.0749 3 .43 0.002 0.9244 F “ 1 52.81 P = 0.0 0 0 R2 = 0 . 9 2 S .B .+ = 0 .1712 EDFt = 25 K alkaska R e g re ssio n C P red icto r V ariab le P aram eter E stim ate C o n stan t -3 .5 4 1 4 S tan d ard E rror t-V alu e (b=0 ) P S e q u e g tial (b=0 ) Ln(AO-Al) 0.35 5 4 0 ,0553 6 .4 3 0.000 0 .8656 Ln (DC -Fe) 0.4 1 38 0.0821 5 .04 0.000 0 .9333 175.03 P » 0.000 R2 + t 0 .93 S .E .+ « 0.1 6 0 8 E D Ft * S tandard E rro r o f th e E stim a te E r r o r D e g re e s o f Freedom 25 (Ln u n i t s ) 129 Table 7.10 R e g r e s s i o n s f o r M ontcalm S u b s u r f a c e H o r iz o n s M ontcalm R e g r e s s i o n A S tandard E rror t-V alu e (b=0 ) 0 .5 2 1 3 0.0 4 35 1 1 .9 9 0.000 0.8370 -0 .1 6 5 1 0 .0 3 0 2 -5 .4 6 0.000 0 .9143 F = 176.13 P = 0.0 0 0 P red icto r V ariab le P aram eter E stim ate C onstant -0 .6 8 8 7 Ln(DC-Al) pH -C aC l2 R2 = 0 . 9 1 S .E .+ - 0.2035 EDFt = 33 P S eq u en tial (b=0 ) M ontcalm R e g r e s s i o n B P red icto r V ariab le P aram eter E stim ate C onstant -0 .1 8 0 9 Ln(DC-Al) pH-H2 0 R2 = 0 . 9 2 S tandard E rror t-V alu e (b=0 ) 0 .4867 0 .0463 1 0 .5 1 0.000 0 .8370 -0 .1 8 5 8 0.0330 -5 .6 2 0.000 0 .9167 F = :1 8 1 . 6 6 P « 0.000 S .E .+ = 0.2007 EDFt = 33 P S eq u en tial (b=0 ) M ontcalm R e g r e s s i o n C P red icto r V ariab le P aram eter E stim ate C onstant -1 .8 5 2 7 Ln(DC—A l ) Ln(SBases-t-l) R2 = 0 . 9 2 ^ % S tandard E rror t-V alu e (b=0 ) 0 .5 9 4 0 0 .0 3 7 0 16.06 0.000 0 .8370 -0 .1 9 0 3 0.0334 -5 .7 0 0.000 0.9179 F * 1 8 4.38 P = 0.0 0 0 S .E .+ = 0.1993 EDFt = 33 Standard Error of the Estimate (Ln units) Error Degrees of Freedom S eq u en tial P (b=0 ) 230 d ev elo p ed for th e th o se d ev eloped pH w a s S pinks s e r i e s f o r t h e M ontcalm s e r i e s in clu d ed in a ll e q u atio n s, c o m b i n a t i o n w i t h DC-A1 o r SO4 - S in was a l s o th e c o n d itio n s a d so rp tio n se ries, B erv in g under S u lfa te c o n sisten tly A O -A l, ex h ib ited pH a n d as a p red ic te d and to p o sitiv e p re d ic to r by in a th e past c u ltiv atio n in th e se so ilB . a g ric u ltu ral a d so rp tio n ad so rp tio n under f ie ld for O sh tem o com bination DC-A 1 (T ab le of in flu e n ce s of P 7 .1 2 ). su lfa te se rie s on B u l f a t e ex erted e x tra c ta b le in c e r ta in d istu rb an ce c la y , from Fe w h ile The stro n g H igh e x t r a c t a b l e P in creased so ils may l i k e w i s e and th e O shtem o p e d o n s w e re forest C r- in flu e n c e s. P a rises o r g razin g p roducing S im ila r fc c l a y , a d so rp tio n , n e g a tiv e was e x c h a n g e a b l e A1 A l, c o m p e titio n by P f o r a d s o r p tio n s i t e s . c o n ce n tra tio n s su lfa te re te n tio n in E x tractab le v a r i o u s l y m o d i f i e d b y p H -H20 , e x tra c ta b le effect im p o rtan t (T ab le 7 .1 1 ). su lfa te a d so rp tio n p o sitiv e n e g ativ e past in t h a t a m easure of pH b e i n g re la te d to la b o ra to ry co n d itio n s. and e x t r a c t a b l e P, Fe, % c la y sig n ific a n tly S pinks w ere som ew hat s i m i l a r re la te d le v e ls su b ject have to reduced to of P e a rlie r su lfa te cap a citie s. R2 v a l u e s of in d iv id u a l B e rie s re g re ssio n e q u a tio n s w e r e h i g h e r t h a n R2 v a l u e s o f e q u a t i o n s d e v e l o p e d f o r g r o u p s of se ries. As c o m p a r e d t o frig id z o n e s o i l s , R2 v a l u e s w e r e lo w e r and s ta n d a r d e r r o r s o f th e e s t im a t e h ig h e r f o r m esic zone so ils, re fle c tin g p r o p e r t i e s o f m esic s e r i e s . g re a te r v a ria b ility M a x i m u m R2 v a l u e s in so il for se rie s 131 Table 7.11 R e g re ss io n s f o r Spinks S u b su rfa c e H orizons IBSSBS&S^BnSEBBCBBS^BBBKSSSSSSSSeeSSSSPOBI S pinks R e g re ssio n A P red icto r V ariab le P aram eter E stim ate C onstant -2 .3 6 0 8 Ln(DC-Al) t-V alu e (b=0 ) P S eq u en tial ( b —0 ) 0 .8039 0 .1321 6 .0 8 0 .0 0 0 0.7873 -0 .1 7 0 1 0 .0725 -2 .3 5 0.02 7 0.8257 59.20 P = 0.000 11 EDFt = i S .E .+ = 0.3210 to Ln 1 CD 1 W 1 I li i I o I* i i i w to ■ pH -C aC l2 S tandard E rror Spinks R e g re ssio n B P red icto r V ariab le P aram eter E stim ate Standard E rror t-V alu e (b - 0) P S eq u eg tial (b“ 0 ) C onstant 2.6758 Ln(% C l a y ) 0 .6023 0.1233 4 .8 9 0 .0 0 0 0 .6 1 5 0 -0 .3 1 6 0 0 .0625 -5 ,0 6 0 .0 0 0 0.8097 53.18 P « 0.00 0 pH -H 20 i * r-t 00 o u ns CM S .E .+ = 0.3353 ED Ft = 25 F = i S pinks R e g re ssio n C P aram eter E stim ate S tandard E rror t-V alu e (b=0 ) 2 .3 8 9 2 Ln(% C l a y ) 0 .3886 0.1333 2.91 -0 .2 5 1 1 0.0600 0.2 53 1 0.0905 2 .8 0 pH -H 20 L n ( E x t —S) R2 * 0 . 8 6 t S .E .+ = 0.2972 EDFt = 00 C onstant I * M P red icto r V ariab le 24 F *= Standard Error of the Estimate (Ln units) Error Degrees of Freedom P S eq u en tial (b=0 ) 0.0 08 0.6 1 5 0 0 .0 0 0 0 .8097 0.010 0 .8565 47.73 P * 0.0 0 0 132 Table 7.12 R e g r e s s i o n s f o r O shtem o S u b s u r f a c e H o r i z o n s :SCS&&SBSSSBCOBBSC&&aBSCC£CCCCSi;CCB&S&»SS9&a^SB&e&S?SB = e s e O shtem o R e g r e s s i o n A P red icto r V ariab le C onstant P aram eter E stim ate S tandard E rror t-V alu e (b=0 ) P (b=Q) S eq u en tial 3.4 4 2 1 pH-H2 0 -0 .2 8 0 0 0.0812 -3 .4 5 0.002 0.6 4 52 L n(E xt-P) -0 .2 8 7 8 0.0597 -4 .8 2 0.000 0.7393 0.2779 0.0 5 8 5 4 .7 5 0.000 0.8533 56 .2 5 P « 0.0 00 L n(Ex-A l+1) R2 - 0 , 8 5 S .E .+ = 0.2957 EDFt = 29 F •= O shtem o R e g r e s s i o n B P red icto r V ariab le P aram eter E stim ate Standard E rror t-V alu e (b=0 ) P S eq u en tial (b=0 ) C onstant 0.9 1 8 8 Ln(% C l a y ) 0 .3 7 4 5 0.1081 3 .47 0.002 0.4767 Ln(Ex-A l+1) 0.3507 0 .0434 8 .08 0.000 0 .7 353 -0 .2 8 9 3 0 .0597 -4 .8 5 0.000 0.8538 F = 56 .4 6 P = 0.0 00 L n(E xt-p) R2 = 0 . 8 5 S .E .+ = 0 .2 9 5 2 EDFt « 29 O shtem o R e g r e s s i o n C P red icto r V ariab le P aram eter E stim ate C onstant -2 .0 8 9 2 Standard E rror t-V alu e (b=0 ) P S eq u en tial (b=0 ) L n(E x-A l+l) 0 .3 8 9 6 0.0 3 6 5 10.67 0.000 0.6993 L n(cr-Fe) 0.4098 0.1077 3 .8 0 0.001 0.7938 L n(E xt-P) -0 .2 1 9 0 0.0578 -3 .7 9 0.001 0.8621 F s 60.42 P = 0.000 R2 * 0 . 8 6 S .E .+ - 0 .2867 EDFt = 29 133 Table 7.12 (continued) O shtem o R e g r e s s i o n D P red icto r V ariab le P aram eter E stim ate C onstant -0 .8 2 7 8 Standard E rror t-V alu e (b=0 ) P S eq u en tial (b=0 ) Ln(AO-Al) 0.4256 0.0986 4 .3 2 0 . 0 0 0 0 .4586 Ln(Ex-A l+1) 0.3356 0.0404 8 .3 0 0 . 0 0 0 0 .7 2 2 2 -0 .3 4 7 1 0.0587 -5 .9 2 0 . 0 0 0 0.8742 L n(E xt-P) R2 = 0 . 8 7 S .E .+ = 0 .2739 ED Ft = 29 F = 67.16 P = 0.0 0 0 O shtem o R e g r e s s i o n E P red icto r V ariab le P aram eter E stim ate C onstant -1 .1 8 7 8 S tandard E rror t-V alu e (b=0 ) P S eq u en tial (b=0 ) Ln(DC-Al) 0.4446 0 .1026 4.33 0 . 0 0 0 0 .4852 Ln(Ex-A l+1) 0.3465 0.0389 8 .9 0 0 . 0 0 0 0.7507 -0 .2 9 5 8 0.0553 -5 .3 5 0 . 0 0 0 0.8745 L n(E xt-P) it 11 S tandard E rro r o f th e E stim ate E r r o r D e g re e s o f Freedom it II II II II II * t n u E D Ft = fe S ,E ,+ = 0 .2736 Ol C4 R2 = 0 . 8 7 (Ln u n i t s ) 67.3 4 P = 0.000 134 reg ressio n s r a n g e d fro m 0.94 t o 0.86, su g g estin g an in h e r e n t v a r i a b i l i t y o n t h e o r d e r o f 6 t o 14% i n s u l f a t e a d s o r p t i o n d e te rm in a tio n s. T h is v a ria tio n of ad so rp tio n (A ppendix range b rack ets 10. 1% d e te rm in e d for th e b u lk co efficien t sam p le of su lfa te C). LINEAR DISCRIMINANT FUNCTIONS An a l t e r n a t i v e u sin g reg ressio n to p re d ic tio n e q u atio n s i s d ev elo p ed to ad so rb in g a b i l i t y th e su lfa te ad so rp tio n th e use o f l i n e a r d isc rim in a n t fu n ctio n s to c la s s if y s o ils . w ere of The e x a m p le s p r e s e n t e d c la ssify e n tire pedons as to here su lfa te b a s e d on S a d s o r b e d p e r s q u a r e m e t e r i n u p p e r 1 5 0 cm o f s u l f a t e ad so rb in g h o rizo n s (g S m“ 2 ) . C o n te n t o f S a d s o r b e d on a p e d o n b a s i s was c a l c u l a t e d fro m S adsorbed d e n sity low high are (mg S kg- *), (g cm - * ) . h o rizo n th ic k n ess Pedons w ere th e n d iv id e d (cm ), and b u lk in to groups of ( 4 . 0 t o 9 . 5 g S m- 2 ) , m e d i u m ( 1 1 . 0 t o 1 5 . 1 g S m- 2 ) , a n d (15.9 t o 2 1 . 1 g S m- 2 ) s u l f a t e p resen ted a d so rp tio n . Group means i n T a b l e 7.13. Two p e d o n s th at ch a ra c teristic s, ex h ib ited anom alous s u l f a t e ad so rp tio n S p i n k s B l o c k I a n d o s h t e m o B l o c k V, w e r e e x c lu d e d from d e v e lo p m e n t o f d i s c r i m i n a n t f u n c t i o n s b u t were su b seq u e n tly c la s s if ie d . teste d for use as S o il d iscrim in an t c h em ic al p r o p e r t i e s v a ria b le s w ere to be co n verted to c o n t e n t s i n g m" 2 t o 1 5 0 cm i n s u l f a t e a d s o r b i n g h o r i z o n s i n th e sam e co n v erted way as su lfa te t o meq H+ m~2 , a d so rp tio n d a ta . S o il a s s u m i n g H+ c o n c e n t r a t i o n pH was co u ld be 135 c a l c u l a t e d f r o m pB m e a s u r e d i n s o l u t i o n a n d u s i n g raL H20 g - 1 so il as a d ilu tio n facto r to c alcu late H+ c o n c e n t r a t i o n in so ils. T ab le 7 .1 3 Mean S u l f a t e A d s o r p t i o n i n P e d o n s b y D i s c r i m i n a n t G r o u p S S & e S E 8 ; B B » S B E e B e & S : S & Group S & = S S B B S B S E ; B B C : & n & & S & S & Mean'*' S 7 S B S B C S & S S S S S B C S C : S tandard D e v iatio n -----------------g s m“ 2 — ------ — Low 18 7 .4 1 .5 Me dium 12 1 2 .8 1.2 6 1 8 .5 2 .2 High + Mean b a s e d o n a m o u n t o f S a d s o r b e d c a l c u l a t e d 1 5 0 cm o f s u l f a t e a d s o r b i n g h o r i z o n s S e le c tio n m in im izin g of W ilk 's m u ltiv a ria te c e n tro id s. d isc rim in a n t Lambda, P ratio a criterio n for A v a ria b le te stin g w hich m in im iz e s W il k 's Lam bda, t h u s th e h ig h er th e u n iv a riate (B in tze, 1985). c alcu late d fu n ctio n , for W ilk 's Lambda based d ifferen c e s th e on o v erall among g r o u p F ratio a lso l o w e r t h e W i l k ' s Lambda pow er is p resen t. In e q u iv a le n t to each su lfa te v ecto rs d isc rim in a n t co efficien ts, to g eth er th e co n stan t. a d so rp tio n are m u ltip lie d and th e group. re su lts The unknown c a s e i n t o t h e g ro u p w hose f u n c t i o n g iv es th e For by th e is was each v ecto r are an 1-r^ One s e t o f d i s c r i m i n a n t c o e f f i c i e n t s raw d a t a w ith th e was b a se d on t h e m ax im izes d isc rim in a tin g case, v a ria b le s fo r upper of summed c la ssifie d h ig h est sco re, in 136 e ff e c t assig n in g th e case to high est p ro b ab ility of t h e g ro u p f o r w hich i t m em bership (H intze, 198 5 ) has the given its v ecto r of s o il p ro p e rtie s. R e s u lts o f d is c rim in a n t a n a ly s e s a re p re s e n te d in T able 7 .1 4 . In d is c rim in a n t f u n c t i o n A, s i g n i f i c a n t v a ria b le s i n c l u d e d D C - F e , D C - A 1 , o r g a n i c c a r b o n , a n d H+ { C a C l 2 ) r a l l c a l c u l a t e d on a c o n t e n t b a s i s a s d e s c r i b e d . When a p p l i e d t o pedon d a ta 83 .3% o f p e d o n s w ere used to c o rre ctly categ o ries. d ev elo p th e c la ssifie d A l l pedons in th e fu n ctio n , in to su lfa te a d so rp tio n low s u l f a t e a d s o r p t i o n g ro u p were c o r r e c t l y c l a s s i f i e d . L east accu rate was f o r t h e m edium s u l f a t e a d s o r p t i o n g r o u p w h e r e 5 o f 12 pedons w ere m i s - c l a s s i f i e d in th e su lfa te in th e ad so rp tio n m edium group, su lfa te 1 of low g r o u p . 6 pedons ad so rp tio n c la ssific a tio n In th e h igh was m i s - c l a s s i f i e d group. These re su lts su g g e st t h a t th e d is c r im in a n t f u n c tio n i s c o n s e r v a tiv e in th at it a ctu al ten d s to su lfa te assig n so ils ad so rp tio n to groups w ith a b ilitie s. B oth lo w er pedons in c lu d e d in developm ent o f th e d is c r im in a n t fu n c tio n B lock a I, O s h t e m o B l o c k V) w e r e c l a s s i f i e d c la ssific a tio n su lfa te w hich c o rre ctly than not (Spinks in th e low g ro u p , sum m arized th eir weak rete n tiv e a b ilitie s . I n i t i a l g r o u p in g o f p e d o n s on t h e b a s i s o f g S a d s o r b e d p e r m2 t o 1 5 0 cm d i d n o t f o l l o w s e r i e s g r o u p i n g s . S p in k s, O sh te m o , a n d M o n tc a lm p e d o n s o c c u r r e d i n lo w , m edium , and hig h a d s o r p tio n groups. G ra y lin g , R ubicon, and K a lk a s k a p e d o n s o c c u r r e d i n lo w a n d m edium g r o u p s , w i t h no d e f i n i t e 137 T ab le 7 .1 4 S u lf a te A d so rp tio n D isc rim in a n t F u n c tio n s ssB B B B e c:£:ss& & &ss& se »sB eB B& sa pfiP{;sBB eBsss;s sE cee& & es&t D isc rim in a n t F u n ctio n A V ariab le* - S u l f a t e A d s o r p tio n G roupLow M edium H igh R2 - D e l J F — D iscrim in an t C o e ffic ie n ts — C onstant DC-Fe DC-A1 Org-C H -C aC l2 1.692001 0.000012 -0 .0 0 1 2 2 6 0.0 0 0 2 0 6 -0 .0 0 1 3 8 8 0 .059171 -0 .00 00 37 0 .0 0 0 8 1 6 -0 .0 00 17 1 -0 .00 12 74 O v e r a l l W i l k ' s Lam bda = 0 . 1 5 9 -0 .7 5 1 1 7 1 0.000025 0.000411 -0 .0 0 0 0 3 5 0.0 0 2 6 6 1 0 .1 8 1 3 .3 0.5 1 3 1 5 .8 0.2 2 8 4 .4 0 .3 0 8 6.7 0.049 0.000 0.020 0.004 % M is - c l a s s i f i e d = 16.7 D isc rim in a n t F un ctio n B V ariab le* - S u l f a t e A d s o rp tio n G roupLow Me dium H igh R2- D e l $ P F — D iscrim in an t C o e ffic ie n ts — C onstant AO-Fe AO—A l H+ - C a c i 2 1 .6 2 6 3 7 8 -0 .0 0 0 1 6 5 -0 .0 0 0 3 2 9 -0 .0 0 2 2 1 4 0.042134 -0 .0 0 0 0 6 9 0.000228 -0 .0 0 0 3 9 6 O v e r a l l W i l k ' s Lam bda = 0 . 1 6 7 -0 .6 6 8 5 1 2 0.000233 0.000101 0.002610 0.488 1 4 .8 0 .4 3 9 1 2 .1 0 .3 4 2 8 .0 0.000 0.000 0.002 % Mis - c l a s s i f i e d = 1 9 .4 D isc rim in a n t F u n ctio n C V ariab le* - S u l f a t e A d s o rp tio n G roupLow M edium High R2 - D e l t F P - - D iscrim inant C o e ffic ie n ts — C o n stan t AO -Fe AO-A1 Ex-A l 1.5 25 7 3 6 -0 .0 0 0 2 0 1 -0 .0 0 0 3 1 3 -0 .0 0 2 2 1 5 0.015234 -0 .0 00047 0.000243 -0 .0 0 1 7 4 7 -0.5 4 0 9 7 3 0 .000248 0 .000070 0.003962 0.554 1 9 .3 0.354 8 .5 0.3 2 9 7 .6 0.000 0.001 0.002 O v e r a l l W i l k f s Lam bda *= 0 . 1 7 0 % M i s - c l a s s i f i e d = 19.4 s ? ^ R s c c L e & & » E ;c s e c sB e e ? sB ? C B & B B & ^ B e E ;E ;c B S c e & & S £ & e R & s ;B E C S sss * F e f A l , C i n g m- 2 a n d H+ i n meq m~ 2 t o d e p t h o f 1 5 0 cm t I n c r e a s e i n W i l k ' s Lam bda i f v a r i a b l e w e r e r e m o v e d 138 p a ttern s th a t betw een series d isc ern ib le . c la ssific a tio n of a T his sin g le resu lt pedon is su g g ests not o n ly i n s u f f i c i e n t b u t w ould b e m i s l e a d i n g i f used to c h a r a c t e r i z e an ad so rp tio n e n tire so il se ries C la ssific a tio n e sta b lish of as to su lfa te m u ltip le any p a t t e r n pedons w ould be a b ility . req u ired to or lack th e re o f. D iscrim in an t fu n c tio n s (B, C) w e r e a l s o d e v e l o p e d b a s e d o n A 0 -A 1 a n d AO-Fe c o n t e n t s i n c o m b i n a t i o n w i t h H+ { C a C l 2 ) o r ex ch a n g ea b le Al (T ab le 7 .1 4 ). These fu n ctio n s behaved s i m i l a r l y t o f u n c t i o n A, a l t h o u g h c o r r e c t c l a s s i f i c a t i o n som ew hat lo w er co n serv a tiv e , (8 0 .6 % ). m is-classific a tio n a d so rp tio n groups th an P re lim in a ry d isc rim in an t re la tiv e fu n ctio n s of th e p lac in g was pedons ag ain in to low er actu al. re su lts su lfa te E x p an sio n C la ssific a tio n was in d ic a te to c la ssify th at use of in d iv id u a l a d so rp tio n a b ilitie s d a ta to base th e ho ld s in clu d e lin e a r pedons so m e m ore as to pro m ise. pedons w ith m ediu m a n d h i g h a d s o r p t i v e c a p a c i t i e s w o u l d p r o b a b l y i m p r o v e d isc rim in atin g pow er. p ro b a b ilitie s of F u rth er c la ss refinem ent m em b ersh ip , w ould w hich unknown b u t h a v e b e e n assum ed t o be e q u a l in co rp o ra te are in p resen tly th e ex am p les d iscu ssed . SUMMARY AND CONCLUSIONS R e su lts a d so rp tio n of in reg ressio n an aly ses re p re se n ta tiv e in d icated M ich ig an th at forest su lfa te so ils was p r e d i c t a b l e u s i n g r e l a t i v e l y few p r e d i c t o r v a r i a b l e s d e r i v e d 139 fro m comm only m e a s u re d s o i l R2 v a l u e s so ils ranged p ro p erties. fro m 0.85 t o 0 .9 4, d ep en d in g on g ro u p in g o f and s p e c i f i c p r e d i c t o r s em ployed. co n sisten t p red ic to rs AO-A1) and The s t r o n g e s t , w ere e x t r a c t a b l e e x ch a n g e a b le sig n ific a n t p red icto rs A l. Maximum r e g r e s s i o n Al frac tio n s A d d itio n a l (DC-A1, c o n siste n tly w e re e x t r a c t a b l e Fe f r a c t i o n s (DC-Fe, A O - F e , C r - F e ) , a n d b o t h m e a s u r e s o f pH (H2 0 , C a C l 2 ) . v a ria b le s th a t c o n trib u te d in c lu d e d % c la y , e x tra c ta b le The carbon, reg re ssio n e x tra c ta b le eq u atio n s s im ila r ones t a i l o r e d t o meet s p e c i f i c sh o u ld in prove useful O th er to p r e d ic tio n in c e r ta in c ase s o rg an ic SO^-S. m ost p red ic tin g d ata P, p resen ted , and or a v a ila b ilitie s, su lfa te ad so rp tio n in o th er s im ila r f o re s t s o i l s . L in e a r d isc rim in a n t c la ssific a tio n su lfa te carbon, h o ld h o rizo n s. in H+ ( C a C l 2 ) , i n t h e u p p e r 1 5 0 cm o f s u l f a t e V a r ia b le s w ith d is c r im in a tin g d ith io n ite -c itra te e x tra ctab le ammonium o x a l a t e and e x c h a n g e a b le A l, a ll calcu lated Fe and e x tra ctab le of th e p resen t d a ta base to and h ig h a d s o r p t i v e A l, Fe power o rganic and A l, on a c o n t e n t b a s i s for t h e u p p e r 1 5 0 cm o f s u l f a t e a d s o r b i n g h o r i z o n s . pow er. p ro m ise o f p e d o n s i n t o g ro u p s b a s e d on c a l c u l a t e d ad so rp tiv e c a p a c itie s a d so rb in g included fu n ctio n s E x p an sio n i n c l u d e m o r e p e d o n s w i t h m e d iu m c a p a citie s w ould im prove d i s c r i m i n a t i n g Chapter VIII PREDICTION OP SULFATE ADSORPTION IN MICHIGAN FOREST SOILS USING EXISTING SOIL CHARACTERIZATION DATA T h is c h a p t e r e x am in es th e u se o f r e g r e s s i o n e q u a tio n s p resen ted in C h ap ter V II to p r e d i c t s u l f a t e se le c te d M ic h ig a n c h aracterizatio n S o il fo rest d a ta (SCS-USDA, c h a ra c te riz a tio n rep o rts so il of so il p rio r to 1978 L ab o ra to ries (S C S - U S D A , d a ta an aly ses s u rv e y program . u sin g 1980; w ere o b tain ed perform ed p erform ed in L in co ln , e x istin g MTU-FFC, as p a rt L ab o rato ry a n a ly s e s w ere 1980). so ils a d so rp tio n by for USDA p u b lish ed th e an aly ses for M ichigan so ils sam pled so il S urvey N e b rask a and B e l t s v i l l e , L ab o ra to ry so il 1982-1984). from of in so ils M aryland sam p led from 1978 on w ere p e rfo rm e d by t h e M ic h ig a n T e c h n o l o g i c a l U n iv e rsity F ie ld S o il w ork co o p eratio n S tatio n and S urvey lab o ra to ry w ith th e 1982-1984), (MTU-FFC, an aly ses M ich ig a n (SCS-USDA, 1 9 8 0 ) , (MTU-FFC, L ab o ra to ry w ere so il The re su lts attem p t to p r e d ic t se ries d escrib ed in E x p erim en t M ichigan D epartm ent o f A g r i c u l t u r e and th e S o i l C o n s e r v a tio n S e rv ice, D ata s e l e c t e d s u b s e q u e n tly be r e f e r r e d c h arac teriza tio n co n d u cted A g ricu ltu ral U n ited S t a t e s D epartm ent o f A g r i c u l t u r e . th ese sources w ill 1982-1984). from t o a s SCS/MTU d ata. p resen ted su lfa te here are ad so rp tio n in p u b lis h e d 1 40 so il not in a ll an ex h au stiv e M ichigan s o i l c h a ra c te riz a tio n d a ta 141 rep o rts. w ith in Due t o se ries, h ig h v a ria b ility d isc u sse d attem p ted o n ly fo r s e r i e s m ore pedons. In m et as th ese purposes. forest su lfa te C h ap ter V, w ith a n a l y t i c a l a d d itio n ,, p o te n tia lly se n sitiv e im p o rtan t in in o n ly p re d ic tio n d ata w ere q u a lific a tio n s w ere was th ree or c o n sid ered ( A p p e n d i x A) a n d co n sid ered . and for se rie s to acid d e p o s itio n so ils a d so rp tio n F ifteen used for series p re d ic tiv e Two g r o u p s c o m p o s e d o f c l o s e l y r e l a t e d m e s i c z o n e s e r i e s , A l f i c U dipsam m ents and c o a r s e - l o a m y H a p l u d a l f s , w ere a lso in clu d ed lim ite d . because d a ta on m esic zone se ries w ere P r e d i c t i o n e q u a t io n s w ere a p p l i e d s e p a r a t e l y m e s ic zone and f r i g i d zone s e r ie s . been scale co n v erted to can be used a s th e a re la tiv e of P re d icted o rig in a l v a lu e s have m easurem ent, m easure o f s u l f a t e actu al v a lu e s w hich a d so rp tio n fo r com p arisons w ith p r e d i c te d v a lu e s f o r o t h e r s o i l s , u n d erestim ates to b u t w hich b e c a u se re g re ss io n eq u atio n s w e re b a s e d on l o g a r i t h m i c a l l y t r a n s f o r m e d v a r i a b l e s . FRIGID ZONE SOIL SERIES P redicted frig id su lfa te zone s e r i e s E q u a tio n s is a d so rp tio n p resen ted a p p lic a b le c o n stra in ts of d a ta to in subsurface in T ab les frig id zone a v a ila b ility , 8 .1 , h o rizo n s of 8.2, and 8.3. se rie s, w ith in w ere frig id zone r e g r e s s io n s A and C (T ab le 7 .7 ), e n ti c - s p o d ic re g re ssio n A (T ab le 7 .5 ), fo r G ra y lin g (T ab le 7 .8 ), and s e r i e s - s p e c i f i c R ubicon (T ab le reg re ssio n s 7 .8 ), K alk ask a r e g r e s s i o n A ), and M o n tc a lm ( T a b l e 7 .1 0 , (T ab le 7 .9 , r e g r e s s i o n s B ,C ). 142 P red icted su lfa te a d so rp tio n Udipsanunents and H a p l o r t h o d s h ig h est in upper frig id zone ( T a b l e 8.1) w e r e s i m i l a r , b eing B h o rizo n s a b ilitie s and in d ecreasin g W ith in t h e G r a y li n g and C r o s w e l l s e r i e s , p re d ic te d s im ila r ad so rp tio n . se rie s-s p e c ific su b sta n tia lly a ll d ep th . reg re ssio n s In t h e R ubicon s e r i e s , re g re ssio n h ig h er w ith (T ab le su lfa te 7 .8 ) th e p re d ic te d a d so rp tio n th an o th er r e g r e s s i o n e q u a t i o n s , b e c a u s e o f h i g h e r DC-A1 c o n c e n t r a t i o n s in th e R u b ico n c h a ra c te riz a tio n dev elo p th e s o ils sa m p le d stu d ies eq u atio n . com pared for to In th e K alkaska SC S/M T U th e so ils series, o th er eq u atio n s, a d d itio n al, of th is frig id reg re ssio n s zone and based on A lfic T y p ic E u tro b o ra lfs in flu e n ce of e x ch an g eab le (T ab le 7.10) E u tric (T ab le sim ila r 8 ,2 ), a ll le v e ls of F r i g i d zone r e g r e s s io n c (T ab le 7.7), A l, p re d ic t h ig h er a d so rp tio n . Pemene, ad so rp tio n U d ip sa m m e n ts, o n DC-A1 p r e d i c t e d s u l f a te ad so rp tio n . C th e zone more s t r o n g l y p o d z o l i z e d p e d o n s i n c l u d e d by u s e G lo sso b o ralfs, and due to to eq u atio n . In based e v id e n tly used frig id r e g r e s s i o n C ( T a b l e 7 .7 ) p r e d i c t e d h i g h e r s u l f a t e th an so il w ere a n d Emmet s e r i e s D C -Fe, a n d pH -B2 0 , M ontcalm s e r i e s a lso a p p lied to ten d ed to reg re ssio n s B th e because of m o rp h o lo g ical G ray calm , and s o i l c h e m ic a l s i m i l a r i t i e s betw een s e r i e s . M ontcalm r e g r e s s i o n A (T ab le p B -C aC l2 , 7 .1 0 ), estim ates based on (not p re s e n te d ) r e g r e s s i o n s B a n d C. DC-A1 and sim ilar to th o se P red icted s u lf a te produced calcu lated ad so rp tio n from in a l l 143 T ab le 8.1 P red icted S u lf a te A d so rp tio n G ra y lin g , C rosw ell, in th e R ub ico n , and K a lk ask a S e r ie s Bee8SBSB & & eeesss»K B eB aB B B & seaeesB s«ti^ss& B D 8B s& & K ssB sc£& & G ray lin g (m ixed, f r i g i d T y p ic Udipsanunents) S o il1 — SR-A2 — Me an*1r SD1: n H or. — FZ R-C3 Mean SD Bwl Bw2 BC C 1 3 .5 1 0 .5 4 .4 2.8 1 4.0 10.8 7 .1 0.2 2 .9 3 .8 0.1 — C rosw ell 6 5 2 1 (sa n d y , m ixed, S o i l 1 — FZR-A2 — Mean SD n H or. Bsl B s2 BC 1 5 .5 12.6 6 .4 2.6 8.8 0 .5 R ubicon 1 7.3 1 2.4 6 .4 6.2 2.6 2 .4 0 .5 — K alkaska 3 2 2 Bh Bs BC C 1 3 5 + 15.0 1 7 .6 9 .8 — 15.3 1 1 .8 7 .6 0.1 6 5 2 1 1 7 .2 1 2 .5 6.8 4 .7 :f r i g i d 3 .7 4.3 0.0 1 7 .5 4 .4 14.7 1 0 .0 7 .6 0 .0 1 1 .9 8.1 2 .3 n 4 4 3 1 1 5.2 8 .5 5 .1 3 .0 3 .6 4.2 3 .4 1.1 3 2 2 9 8 8 9 ----- SSR5 Mean SD n 3 2 2 N.A. :E r i g i d E n t i c H a p l o r t h o d s ) n — ESR-A4 Mean SD n ----- SSR5 - — Mean SD n 6 6 5 3 1 9 .8 14.2 7 .6 7 .6 4 4 3 1 2 8 .9 2 1 .0 1 1 .0 14.9 2.4 2 .3 0.0 1 .4 3 .4 3 .4 4 4 3 1 f r i g i d T y p ic H a p lo rth o d s ) — FZ R-C3 — Mean SD n 3 2 4.8 3 1 5 .6 2 9 .1 5 .8 c c = &SSC8E38 3 .6 2 .4 2 .3 3 .5 E n tic H aplorthods) 19.2 8.8 6.6 (s a n d y , m ixed, 1 .9 1.6 2 .5 - 8 7 4 3 — ESR-A4 — Mean SD n — FZ R-C 3 Mean SD S o i l 1 — FZ R-A2 — Mean SD n H or. n ----- SSR5 - — Mean SD n - - FZR-C3 __ Mean SD n (sa n d y , m ixed, S o i l 1 — FZR-A2 Mean SD H or. Bsl Bs2 BC C 4 .2 1 .9 3 .0 1.1 n — ESR-A4 Mean SD 8 8 7 5 — ESR-A4 — Mean SD n ----- SSR5 Mean SD n 3 1 2 .3 1 4 .6 2.7 2 .1 3 3 1 5 .8 1 9 .1 2 .4 1 .8 3 2 1 0 .4 3 .9 8.8 3 .2 2 BCEEEBSBSes:bess OECEEEEEEEE ESS S o i l H orizon 2 F r i g i d Zone R e g r e s s i o n A F r i g i d Zone R e g r e s s i o n C 4 E n tic-S p o d ic R egression A 6 Hot A p p l i c a b l e S e rie s S p e c ific R egression M e a n , t S t a n d a r d D e v i a t i o n i n mg S k g - 1 8.0 5 .3 4 .1 1.6 144 T a b le 8.2 P re d ic te d S u lf a te A d so rp tio n in th e G r a y c a l m , M o n t c a l m , P e m e n e , a n d Emmet S e r i e s !SSBCBSS60eep^BCBtf«;i G raycalm (m ix ed , f r i g i d , S o i l 1 — Pj 5R-A2 — H or. Mean1F SDJ ' n — FZR-C3 SD Mean Bwl Bw2 Bw3 B* E '2 Bt 1 6.4 1 5.6 1 2 .3 6.6 5 .9 7 .2 7 .3 9 .0 6.0 0 .5 0.4 2.7 M ontcalm 4 .9 2.4 3 .7 0.1 0.1 4 .4 1 5.0 9 .0 Pemene 4 .7 3 .1 4 4 4 3 2 1 2 .3 3 .1 2.8 1.6 1.4 — .— n — FZR-C3 Mean SD 3 3 19 .2 1 3 .1 11.6 7 .9 5 .8 8.6 3 .8 4 .0 3 .1 - 2.1 — — n 4 4 1 2 1 — FZ R-C 3 Mean SD 9 .1 8.8 3 .8 4 .8 1 .5 6 .4 4 .7 - 1.8 - 1 S o i l H orizon 3 F r i g i d Zone R e g r e s s i o n C ? M ontcalm R e g r e s s i o n C Mean, t S t a n d a r d D e v i a t i o n — MTR-B4 Mean SD 7 .9 9 .4 6.6 1.3 1.2 3 .0 frig id 4 .4 1.8 3 .5 0.2 0.2 4 .2 — n 4 4 4 3 2 2 — MTR-C5 -— Mean SD n 6 .5 8.2 5 .4 0 .3 0 .3 4 .4 4 .9 2.8 3 .4 0.0 0.0 — 4 4 4 3 2 1 E u tric G lo sso b o ralfs) n — MTR-B4 Mean SD n — MTR-C5 Mean SD n 3 3 1 3 .4 8 .5 4 .1 3 .2 3 3 13.6 8.3 —— 8.0 5 .3 ( c o a r s e - loam y, m ixed, s o i l 1 — FZR-A2 H or. Mean SD Bwl E/B B/E Bt BC n ( c o a r s e -lo a m y , m ixed. S o i l 1 — FZR-A2 Hor. Mean SD Bwl Bw2 4 4 4 3 2 2 —— A l f i c D dipsaram ents) frig id — n 4 4 1 2 1 3 .7 2 .5 3 3 E u tric G losso b oralfs) — MTR-B4 Mean SD 9 .9 7 .2 5 .9 6.8 3 .5 2.6 2 .4 — 0 .9 - _ _ n — MTR-C5 - . — SD n Mean 4 4 1 2 1 10.2 7 .5 5 .6 7 .6 4 .4 3 .7 2 .4 - 0.1 - 4 4 1 2 1 2 F r i g i d Zone R e g r e s s i o n A 4 M ontcalm R e g r e s s i o n B i n mg S k g - 1 145 Table B.2 (continued) Emmet ( c o a r s e - l o a m y , m i x e d , f r i g i d T ypic E u tr o b o r a l f s ) S o i l 1 — FI !R-A2 — H or. M e a n ' h SDJ n - - FZ R-C3 Mean SD n Bwl Bw2 E' E/B Bt BC 1 4 .0 7 .2 9 .2 5 .0 9 .8 1 0 .1 15.9 4 .3 1.6 5 2 2 1 1 1 9 .8 5 .9 3 .3 1 0 .7 8.6 4 .5 2 .3 0.1 4 .8 — - 5 2 2 1 1 1 1 S o i l H orizon 3 F r i g i d Zone R e g r e s s i o n C M ontcalm R e g r e s s i o n C Mean, t S t a n d a r d D e v i a t i o n — MTR-B4 Mean SD 8.9 5 .8 3 .2 9 .7 6 .7 3 .7 2.2 0 .3 4 .2 — — n 5 2 2 1 1 1 — MTR-C5 Mean SD 8 .5 5 .8 3 .0 8 .7 6.6 3 .6 1.7 0.0 4 .0 — — — 2 F r i g i d Zone R e g r e s s i o n A 4 M ontcalm R e g r e s s i o n B i n mg S k g - 1 146 four s e rie s d ep th , was h i g h e s t i n upper B h o rizo n s, and i n c r e a s e d s l i g h t l y In clu sio n su lfa te (T able 6 .3 ) i s an e x t r a p o l a t i o n , not included in s o i l s e q u a tio n s. F ra g io rth o d s in p red ictio n sam pled f o r d e v elo p m e n t o f occur is of im portance. p r o p e r t i e s and s u l f a t e lo w e r p e n in su la F rag io rth o d s have throughout th e zone s o i l s , Al and e x te n siv e ly reg ressio n in a d so rp tio n w hich i s th e zone so ils E n tic H ap lo rth o d s adsorb s u l f a te . th an stro n g est fo r n o rth ern to adsorb th at su lfa te for o th er frig id b a s e d on e x c h a n g e a b l e frig id h ig h er su lfa te z o n e r e g r e s s i o n A, p red ic te d su lfa te su g g ests th at and T y p ic E u tro b o ra lfs (T ab le A lfic U dipsam m ents, ad so rb in g a b i l i t i e s , 8.1} and ad so rp tio n (T ab le m o d erately hav e m o d erate to and F r a g i o r t h o d s adsorb h ig h er su lfa te , le v e ls g re a te r sesq u io x id e c o n c e n tra tio n s of 8.2} w h ile T y p ic dev elo p ed a b ilitie s S t r o n g l y d e v e lo p e d T ypic H a p lo rth o d s a b ility a c id ity , of H ap lo rth o d s, r e g r e s s i o n FZR-C) g rea ter betw een s o i l appears su b sta n tia lly com parison lo w est s u l f a t e U dipsam m ents, 6 .1 , p red ic te d to acid it noted z o n e r e g r e s s i o n C, G lo sso b o ralfs, have th e T y p ic a b ilitie s upper b a s e d o n DC-A1 c o n c e n t r a t i o n . frig id E u tric tru e, As p r e v i o u s l y in F ra g io rth o d s An o v e r a l l for h o ld su b sta n tia l frig id rela tio n sh ip s a d so rp tio n d ev elo p ed so ils solum . D C -Fe, If of a s F r a g i o r t h o d s w ere p e n i n s u l a o f M ichigan and t h e i r r e l a t i v e s e n s i t i v i t y d e p o sitio n w ith in Bt h o riz o n s . of F rag io rth o d s a d so rp tio n decreased ( T a b l e 8.3) a p p aren tly ex ch a n g ea b le to (T able have th e due A l, in upper B h o rizo n s. to and 147 T ab le 8 .3 P re d ic te d S u lf a te A d so rp tio n in th e Y a lm e r r M u n i s i n g , and Champion S e r i e s :sssBCBBSBe&spsBBeea&eBBssB&:&Bees;ssBeBBs:&MBBSCBc: Y alm er S o il1 H or. — f :ZR-A2 — Mean1h SDt n Bh Bs 2E/BX 2B/EX 2Bt 2C 22.1 1 9 .6 8 .7 3 .0 3 3 — — — — — — S o il1 H or. FZR-A2 Mean SD Bh Bs Ex/Bx Bx/Ex Bt C 2 4.0 20.2 8.1 5.0 — — — — FZR-C3 Mean SD FZ R-C3 Mean SD — n 2 1 2 — 0.3 3 2 .0 1 1.7 2 3 .6 2 .9 9 .6 1 .0 8.4 0 .8 16.7 11.0 — n 5 4 3 2 1 1 f r i g id A lfic F rag io rth o d s) , — — — 2 8 .3 2 0 .1 1 2 .0 17.7 1 9 .9 1 3 .2 9 .4 9 .2 3 .2 —— n 3 2 3 1 1 1 1 (coarse- 4 p M O P Champion - ( c o a r s e - l o a m y , m ixed i M unising (sa n d y , m ix ed, f r i g i d A l f i c F r a g i o r t h o d s ) m ixed S o il1 Hor, FZR-A2 Mean SD Bh B sl Bs2 Bs3 2EX 2Bxl 2Bx2 2Bx3 2C 22.9 2 7 .1 2 3 .2 1 8.4 1 7 .8 4.0 2 .4 3 .6 6 .6 — 3 .6 5 .3 8 .7 9 .1 3 .7 6.3 3 .7 4 .8 - 1 S o i l H orizon ^ F r i g i d Zone R e g r e s s i o n C Mean, t S t a n d a r d D e v i a t i o n f r i g i d T y p ic F r a g io r th o d s ) , — n FZR-C3 Mean SD 7 7 4 2 2 3 3 2 1 3 8 .0 1 5 .7 2 6 .0 9 .2 22.8 10.2 1 4 .9 1 1.9 1 6 .2 3 .9 9 .4 2 .9 8 .1 1.2 7 .6 2 .5 6 .8 — 2 F rig id i n mg S k g - 1 — n 7 7 4 2 2 3 3 2 1 Zone R e g r e s s i o n A 148 MESIC ZONE SOIL SERIES In m esic a ll zone O dipsam m ents reg re ssio n s in d ic a te d a d so rp tio n ,- p re d ic te d h o rizo n s and O dipsam m ents Bt h o rizo n s, A lfic slig h t sim ila r w ith p a tte rn s d e p th . in creases to O d ip sam m en ts U dipsam m ents sim ila r th o se (T ab le (T ab le 8 .4 ), in su lfa te 8 .2 ). In low % c l a y C and D (T a b le m esic zone B, reg re ssio n a d so rp tio n , sim ila r h o rizo n s frig id of su lfa te sum to zone based of on T y p ic A lfic a d so rp tio n frig id m esic zone in zone T y p ic 7 .6 ). a d s o r p t i o n by In c o n tr a s t, ex ch a n g ea b le bases, p a tte rn s zone for of s u lfa te zone r e g r e s s io n s and from i n BC a n d C h o r i z o n s m esic carbon of M esic p re d ic te d may h a v e p r o d u c e d u n d e r - p r e d i c t i o n o rg an ic re su lts a d s o rp tio n b ein g h ig h e s t in upper B d ecreasin g had ( T a b le 8*4), A l, p re d ic te d p re d ic te d O dipsam m ents for pH, h ig h er BC a n d (T ab le C 8 .1 ), w here % c l a y i s a l s o low . P redicted (T ab le 8.5} su lfa te was ad so rp tio n ch arac terize d by a d s o r p t i o n i n B t a n d B/E h o r i z o n s . m esic zone s o i l s in su g g ests th a t U d ip sa m m e n ts, in creases in m esic zone H apludalfs n o tic e a b le peaks of An o v e r a l l c o m p a r i s o n o f su lfa te a d so rp tio n slig h tly in is low est P sam m en tic H a p lu d a lf s , and i s h ig h e s t in c o a rs e -lo a m y H a p lu d a lf s and G l o s s o b o r i c H a p l u d a l f s s u c h a s t h e O shtem o, T e k e n in k , and Remus s e r i e s . a d so rp tio n A s im ila r p ro g ressio n of in creased s u lf a te was p r e d i c t e d by e q u a t i o n s b a s e d on e x c h a n g e a b l e A l , o r g a n i c c a r b o n , su m o f b a s e s a n d pH, a n d e q u a t i o n s o n pH a n d % c l a y . based 149 Table 8.4 P r e d i c t e d S u l f a t e A d s o r p t i o n i n H e s i c Zone U d ip sa m m e n ts 6 S & s s B & & is e B & B s e e s s « ;B B e G !s s & s B B c a s & t;B c s B s & e s 6 B e s e s e s E & s ^ B B B e & O ak v ille ( m ix e d , m e s i c T y p i c U dipsam m ents} S o i l 1 — MZR-B2 — Hor. Mean * S D t n Bwl Bw2 BC C 3 .3 4 .1 2.9 1.8 3 .0 3 .9 2.6 1.6 3 3 3 3 P la in field S o i l 1 — MZR-B2 —— SD n H or. Mean Bwl Bw2 BC C 5 .9 5 .4 4 .7 2.1 1.3 1.8 1.8 1.7 4 3 3 3 — MZR-C3 — SD n Mean 3 .4 2 .5 0 .9 0 .9 Bwl Bw2 E* E '2 Bt 2 .5 2 .7 4 .0 1.9 4.5 1.2 2.2 2.8 1.8 3 .7 4 4 2 3 3 3 3 3 2 2 .4 2.2 0.8 0.8 1.1 1.2 1.1 0.2 — SP R-C5 —— Mean SD n 3 3 3 2 £ N.A . 5 (m ixed r m e s ic T y p ic U d ip sa m m e n ts} — MZR-C3 — Mean SD n 3 .5 4 .1 2 .4 0 .7 M ixed r M e s ic A l f i c S o i l 1 — MZR-B2 ■— SD n H or. Mean 1 .3 1.2 1.0 0.4 — MZR-D4 —— SD n Mean 1 .5 1.1 1 .7 0.8 4 3 4 4 3 .4 3 .2 2 .4 0.3 U dipsam m ents — MZR-C3 — SD n Mean 3 .0 1.8 1 .3 1 .5 3 .8 — MZR-D4 __ Mean SD n 1 .4 1.2 1.8 1 .4 3 .0 4 4 3 3 3 1.2 1.2 1 .5 1 .3 — SPR-C5 Mean SD 4 3 3 3 n N .A . 6 (Coloma , C h e l s e a ) — MZR-D4 SD Mean n 1.6 1.8 2 .5 2.1 3 .9 4 4 2 2 3 2 .4 2.0 1.2 1.2 4 .4 — S P R - C 5 —— Mean SD n 3 .0 1 .6 1 .1 1 .4 4 .1 1 .7 1 .4 1 .9 1 .6 3 .5 4 4 3 3 3 t S & S B B B e S S & E ; B C B K & « E ! B S B e B e « e e S O 6 S 3 e » e C B & f S p p & E B B e ? S C B B : B t S S 0 S B B B S 1 S o i l H orizon 2 3 M e s ic Zone R e g r e s s i o n C 4 5 S pinks S e r ie s R e g re ssio n C 6 M e a n , J S t a n d a r d D e v i a t i o n i n mg S H e s i c Zone R e g r e s s i o n B H e s i c Zone R e g r e s s i o n D Not A p p lic a b le k g 1-1 150 Table 8.5 ^ E C B C B O E C S B E i e C S e S S K R S S E B D & Spinks 4.4 2.1 • to 1 Remus 0.6 1 .7 4 .5 2 2 2 (fin e-lo am y , S o i l 1 — MZR-B2 SD Mean H or. 6 .9 3 .2 5 .2 2.1 4.9 7 .1 1 7 .5 1 2.5 6.0 12.1 1.0 1.6 4 .3 2.0 Bwl Bw2 E/BX B/Ex B tl B t2 C S S B e S B C B B S S ^ & — MZR-C3 Mean SD 3 .2 2.8 1.0 6.1 1 .9 1.8 0.9 1 .5 n 4 4 4 4 — MZR-D4 Mean SD 4 .5 3 .3 — B S m n — MZR-C3 Mean SD 3 3 3 3 3 2 2 6.2 6.2 6 .7 1 2 .5 11.8 6.0 3 .8 S o i l 1 — MZR-B2 — Mean H or. SD n 4.3 3 .6 2.6 4.9 2 .5 - 3 3 3 3 3 1 — 0.6 1.6 — 4 .0 n 2 2 2 — SP R-C 5 — Mean SD n 3 .3 2.8 0 .8 6.8 2 .2 2.0 0.9 1.8 4 4 4 4 m ixed, m e sic G l o s s o b o r ic H a p lu d a lf s ) 1.2 2 .4 4 .1 4 .7 2 .5 1.8 0.9 n - - MZR-D4 SD Mean n 3 3 3 3 3 2 3 5 .6 6.1 8 .5 16.9 1 5 .1 4 .6 6.0 3 3 3 3 3 2 2 C o a r s e - L o a m y , M ix e d 1, M e s i c H a p l u d a l f s E 4 .8 E/B 4.2 E /B tl 5 .7 B t2 1 1.7 BC 8.1 1 1 .2 B t3 — C B B C B & (s a n d y , m ix ed , m esic Psam m entic H a p lu d a lf s ) S o i l 1 — MZR -B 2 — H or. M ean 1* S D t n £1 £2 E* Bt i n M e sic Zone H a p l u d a l f s . o i e C M S u lf a te A d so rp tio n a\ P red icted 0 .7 2.8 6.1 8.4 2 .9 0.8 2.2 1 .5 1.8 2 .4 1.0 3 .1 1,8 1.1 4 4 4 4 4 2 3 1 S o i l H orizon 3 M e sic Zone R e g r e s s i o n C S pinks S e r ie s R e g re ssio n C ? M e a n , t S t a n d a r d D e v i a t i o n i n mg 2.2 3 .9 5 .7 11.8 7 .7 9 .4 2 4 6 S N.A . 6 ( T e k e n in k , Oshtem o) — MZR-C3 —— — MZR-D4 — Mean SD n Mean SD n 3 .4 4 .6 4 .6 8.6 5 .6 6.0 1 .5 — SPR-C5 _ — Mean SD n 2.1 2 .3 3 .8 2.6 3 .9 - 3 3 3 3 3 1 - — SP R -C 5 _ _ Mean SD n £ N .A . 6 M esic zone R eg ression B M e sic Zone R egression D Not A p p lic a b le kg-1 151 T en tativ e zone s o i l s have c o m p a riso n s b etw een f r i g i d suggest th at low er a b i l i t i e s zone s o i l s base m esic to zone and m esic zone U dipsam m ents adsorb su lfa te (T able than s im ila r 8 .4 ) frig id ( T a b l e s 8 .1 , 8 .2 ) , r e l a t e d t o d i f f e r e n c e s i n pH, sa tu ra tio n , and A l and Fe c o n c e n t r a t i o n s . m esic zone s o i l s lo w er su lfa te a lso w ere p r e d i c t e d a d so rp tio n to have a b ilitie s th an These sandy su b sta n tia lly frig id zone S p o d o s o ls , A l f i s o l s o r f i n e r t e x t u r e d m esic zone H a p lu d a lf s . T his su g g e sts to acid th a t th e d e p o sitio n lea ch in g are M ichigan in term s lo c a te d in th is 1986). F u rth er h y p o th esis du rin g of so ils lo ad in g lo w er be of su lfa te M ich ig an is h ig h est research w ill a s m esic m ost s e n s i t i v e consequences so u th ern s u l f a t e d e p o s i t i o n and a c i d 1985b; forest w here (NADP, 1 9 8 5 a ; req u ired to zone U dipsam m ents w ere n o t te st sam pled th e p re s e n t study. COMPARISON OF DATA BASES A co m p ariso n of an aly sis of th e s o i l s se le c te d from t h e th e d a ta sam pled e x istin g d ev elo p ed for th is from la b o ra to ry stu d y w ith th e SC S/M TU s o i l d ata c h a ra c te riz a tio n d a t a b a s e w a s m ade t o d e t e r m i n e t h e n e e d f o r a d d i t i o n a l d a t a to im prove p r e d i c t i o n forest so ils. of For f r i g id su lfa te a d so rp tio n zone s o i l s in (T a b le 8. 6) , M ic h ig a n r a n g e s and d i s t r i b u t i o n s o f d a t a w e r e s i m i l a r f o r b u l k d e n s i t y , PH-H2 O, and p H -C aC l2 * d istrib u tio n N o tice ab le d ifferen c e s w ere p r e s e n t f o r o r g a n i c ex ch an g eab le A l, a n d su m o f b a s e s . carbon, T h is in range DC-Fe, and DC-A1, is not su rp risin g , 152 Table 8.6 Com parison o f D ata B ases f o r F r i g i d Z o ne S o i l s BSBSBBCSBS BBCBSBSB s c s o e c s s EEBBEGGC SBBBEEE& P ro p erty M in. 1 M e d. 3 9 0 %3 Max. 4 % A n a l y z e d 6 S o u r c e 6 g cm 1 .0 6 1 .1 9 1 .5 6 1 .5 7 1.86 1.66 2.02 2.01 5 0 .6 100.0 SCS/MTU MSU % O rg an ic Carbon 0.00 0.01 0 ,19 0.11 1.34 0.5 9 3 .7 0 1 .7 6 84.8 100.0 SCS/MTU MSU DC-Fe mg k g - 1 <5 00 4 10 4 00 0 1800 9000 3970 24000 5930 68.0 100.0 SCS/MTU MSU DC-A1 mg k g - 1 <500 110 2000 5 90 5000 1760 11000 3670 4 2 .5 100.0 SCS/MTU MSU Exch Al mg k g ™1 0.0 0.0 2 7 .0 11.6 161.9 5 2 .6 611 .6 110 .3 9 8 .8 100.0 SCS/MTU MSU -LogXH ) 3 .5 4 .8 5 .4 5 .5 6.4 6.6 8.6 8.9 9 9.7 100.0 SCS/MTU MSU pH -C aC l9 -Log(H *T 3 .3 4 .2 4 .8 4 .7 6.2 5 .8 7 .8 8.0 7 4 .2 100.0 SCS/MTU MSU , 0.0 2 Bases c m o l ( + ) kg' - 1 0 . 0 0.5 0.2 4 ,7 3 .0 77.5 27.3 9 4 .7 100.0 SCS/MTU MSU CCEEGCOEEaiSBEESOES 1 2 3 4 5 EEEEGESE SBSSBSBCBBI Minimum M edian 90th p e r c e n t i l e Maximum % o f t o t a l sam ples a n a ly z e d f o r s o i l p r o p e r ty SCS/MTU n * 3 2 2 MSU n » 11 8 6 Source o f D ata SCS/MTU S o i l C o n s e r v a t i o n S e r v i c e / M i c h i g a n T e c h n o l o g i c a l U n i v e r s i t y (SCS-USDA, 1 9 8 0 ? MTU-FFC, 1 9 8 2 - 1 9 8 4 ) MSU M i c h i g a n S t a t e U n i v e r s i t y , D e p a r t m e n t o f F o r e s t r y t B ulk D e n s i t y 153 as a w id er range o f s o i l s c h a ra c te riz a tio n stu d y . d a ta D ifferen ces p a r t l y due t o th an in w ere D C -Fe restric tio n t h e SCS/MTU d a t a , was s e l e c t e d sam p led and in th e esp ec ially o f an aly ses b u t may a l s o f r o m SC S/MTU s o i l present D C -A 1 w ere to upper B h o riz o n s in refle ct reg io n al d ifferen c e s i n s o i l p r o p e r t i e s s i n c e SCS/MTU d a t a i n c l u d e d s o i l s s a m p l e d in th e upper p e n in su la o f M ichigan. D i s c r e p a n c i e s may a l s o e x i s t due t o m ethods o f s e l e c t i o n o f p edo n s f o r s a m p lin g , so ils w ere ran d o m ly sa m p le d f o r su b je c tiv e ly se le c te d c h a ra c te riz a tio n because average of h o rizo n s th an stu d ies. m ethods horizon of sa m p lin g h o rizo n sam e i f p resen t, sam p led so il m ay e x i s t sa m p lin g ; in upper B th e p re s e n t study for A n a ly tic a l SC S/M TU s o i l d i f f e r e n c e s b etw een a r e e x p e c te d t o b e m in o r. A co m parison o f d a t a b a s e s B.7) r e v e a l e d t h a t and be g r e a te r sam pled f o r b u t were SC S/M TU d e lin e a tio n tended to se ries stu d ies. for So m e d i s c r e p a n c i e s zone s o i l s th e c h ara c te riz a tio n la b o ra to rie s, of th ic k n esse s of frig id th o se for th e p re s e n t stu d y , as f o r m esic zone s o i l s ran g e and d i s t r i b u t i o n o f b u lk (T able d e n sity a n d b o t h pH m e a s u r e s w e r e s i m i l a r , w h i l e r e l a t i v e l y m i n o r d i f f e r e n c e s e x i s t e d f o r % c l a y , o r g a n i c c a r b o n , D C - F e , DC A l, ex ch a n g ea b le A l, and sum o f bases. D ifferen ces l a r g e l y a t t r i b u t a b l e to th e w id er ran g e o f s o i l s from t h e se le c te d SCS/MTU d a t a b a s e . The p u b lish ed 1980; are e x te n t so il M T U -F F C , of in fo rm a tio n and c h a ra c te riz a tio n 1982-1984) was d a ta d a ta c o n ta in e d rep o rts e x tre m e ly in th e ( S C S -U S D A , im p re ssiv e and 154 Table 8.7 C o m p a r i s o n o f D a t a B a s e s f o r M e s i c Z on e S o i l s e B ec E e e e e & e iSBBSSSBSCBBBSB&B iBSSBBBCMIBBBBBBCBEB! P roperty M in. 1 Med. 2 90 %3 Max. 4 % A n a l y z e d 6 S o u r c e 6 B .D .+ g cm_ J 1.23 1.29 1.58 1.56 1.73 1.65 1 .83 1.86 5 5.6 100.0 SCS/MTU MSU 0.0 1 .4 3.6 6.0 1 3.7 11.6 2 5.8 1 6.1 100.0 100.0 SCS/MTU MSU % O rganic Carbon 0.00 0.01 0.10 0.08 0.4 0 0.23 1 .30 0 .45 9 1.3 100.0 SCS/MTU MSU DC-Fe mg k g ” 1 <500 1430 3000 4580 4000 10330 6 00 0 12 1 1 0 23.8 100.0 SCS/MTU MSU DC-A1 mg k g *"1 1000 90 1000 570 2000 1040 2000 1330 18.3 100.0 SCS/MTU MSU Exch Al mg k g - 1 0.0 0.0 18.0 7.3 116.9 60.5 341.8 227.9 8 4.1 100.0 SCS/MTU MSU pH-H90 , —L ogfH ) 4.5 4.6 5.7 5.8 7 .0 8 .4 8.2 9 .0 100.0 100.0 SCS/MTU MSU pH-CaCl2 -Log(H 7 3 .9 3 .9 4.9 4.8 6 .5 7 .7 7 .6 7.9 94.4 100.0 SCS/MTU MSU C lay « 2 Bases _ 0.0 cm ol(+) kg” 1 0 . 1 e a e p B c s s B E B DECSBSS& 1 2 3 4 5 0.7 1.3 5 .6 11.2 ccccccct 3 2.2 1 9.3 9 8 .4 SCS/MTU 100.0 MSU SBCECEESEBBCSCSeSB Minimum Median 90th p e r c e n t i l e Maximum % o f t o t a l sam ples a n a ly z e d f o r s o i l p r o p e r t y SCS/MTU n * 1 2 6 MSU n = 64 6 Source o f D ata SCS/MTU S o i l C o n s e r v a t i o n S e r v i c e / M i c h i g a n T e c h n o l o g i c a l U n i v e r s i t y (SCS-USDA, 1 9 8 0 ; MTU-FFC, 1 9 8 2 - 1 9 8 4 ) MSU M i c h i g a n S t a t e U n i v e r s i t y , D e p a r t m e n t o f F o r e s t r y t Bulk D e n s i t y 155 re p re se n ts an im m ense e f f o r t p a in sta k in g sam p led lab o ra to ry pedons, and The f o l l o w i n g in term s a n aly sis, e d ito ria l ex p o s t f a c t o of p h y sical lab o r, tax o n o m ic c o r r e l a t i o n of p rep aratio n d isc u ssio n for p u b licatio n . of lim ita tio n s of t h e s e d a t a s h o u l d i n no way b e t a k e n a s a n e g a t i v e c r i t i c i s m of th at e ffo rt, in te re ste d p red ic tin g One in but u sin g su lfa te pedons for a th e for sp e cific in an aly ses for c e rta in of s u lfa te c h ara c te riz a tio n e x tra c tio n d a ta , so il M ic h ig a n a severe purpose e x istin g ad so rp tio n p ro p erties of so il was t h e in many T h is was e s p e c i a l l y v a ria b le s a d so rp tio n . re stric tio n m ost of su lfa te forest th o se im portant SC S/M T U for s o il r e p o r t s d i d n o t c o n t a i n amm onium o x a l a t e p ro p erties p re d ic tiv e b oth for d escrib ed . u sin g p red ict su lfa te DC -P e a n d D C -A 1 , p re d ic tio n caveat in th e s o i l s in h e re n t to as (T a b le s 8. 6 , 8 .7 , % A n a ly z e d ). apparent th e ad so rp tio n d a ta o f co m p lete o n ly th e d a ta lim ita tio n c h arac teriza tio n lack serves stro n g ly a d so rp tio n so ils. B u lk s i n c e A0-A 1 w a s o n e o f a sso ciated a b ility d e n sity w ith in a v a rie ty d a ta was and of som ew hat i n c o m p l e t e i n SC S/MTU s o i l c h a r a c t e r i z a t i o n d a t a , a m i n o r draw back s i n c e b u l k B ize a n a l y s i s v a ria b le s can be p r e d ic te d and o r g a n ic m a tte r c o n te n t w ell d a ta . Lack d a ta , how ever, lin e ar d e n sity of docum ented co m p lete p rev en ted d iscrim in an t a d so rp tio n a b i l i t i e s in any fu n ctio n s (R aw ls, SCS/MTU s o i l D C -Fe, D C-A 1, c la ssify o f M ichigan s o i l s 1983), b o th ch arac teriza tio n and b u lk m ea n in g fu l to using p a r t i c l e d e n sity a p p lic a tio n rela tiv e a t th is p o in t. of su lfa te O ther 156 lim ita tio n s su lfa te in u sin g a d so rp tio n e x istin g w ere t h e f o r DC-Pe a n d DC-Al SCS/MTU to p red ict few s i g n i f i c a n t d i g i t s reported c o n cen tratio n s, DC-A l c o n c e n t r a t i o n s d a ta and r e p o r t in g < 0.05% a s t r a c e DC-F e a n d (TR) a m o u n t s . These t w o v a r i a b l e s w e r e r e p o r t e d i n i n c r e m e n t s o f 0 . 1 % ( 1 0 0 0 mg k g " 1) , p roducing affect reg ressio n an in te rv al scale th at c o u ld a rtific ia lly estim ate s. SC S/M T U e x c h a n g e a b l e A1 d a t a w e r e c o m p l e t e pedons, but th eir use to p red ic t su lfa te f o r m ost a d so rp tio n was l i m i t e d by la c k o f s u l f a t e a d s o r p t i o n d a t a f o r s o i l s h ig h in e x ch an g eab le based on ad so rp tio n A l. The te n d e n c y e x c h a n g e a b le th an th o se su g g ests th a t th e to based reg re ssio n p re d ic t on DC-A l e stim ate s h ig h er (T ab les su lfa te 8 .2 , 8.3) r e l a t i o n s h i p of a d s o rp tio n to ex ch an g eab le A l o r D C -A l d e p a r t s co n cen tratio n s Al for from lin e a rity h ig h er th an th o se for used to one o r b o th develop a t Al reg ressio n e q u atio n s. C om parison su lfa te of ad so rp tio n carbon, D C -Fe, d a ta d ata D C -A l, se ts to in d ic a te s in clu d e so ils ex ch a n g ea b le th at ex p an sio n h ig h er A l, and in org an ic % c la y req u ired fo r p re d ic tio n o f s u lf a te ad so rp tio n a b i l i t i e s a w ide ra n g e o f s o i l s . on a d d i t i o n a l so ils, The need f o r s u l f a t e of is over ad so rp tio n d ata e s p e c i a l l y m e s ic zo n e U d ip sam m en ts, h i g h l y p o d z o l i z e d H a p l o r t h o d s , an d F r a g i o r t h o d s , was a l s o in d ic ate d . stu d y to pro p erties E x p an sio n o f th e d a ta b a se d e v e lo p e d in clu d e co u ld be a d d itio n a l accom plished so ils by and range in co rp o ra tin g for th is of so il se lec te d 157 p ed o n s from t h o s e sam p led f o r S y stem (ECS) p r o j e c t (H o st, the E co lo g ic al 1987) as w ell s a m p le s from p e d o n s p r e v i o u s l y C la ssific a tio n as by o b ta in in g an aly zed fo r ch ara c te riz a tio n stu d ie s, if a v a ila b le . SC S/MTU s o i l In co rp o ra tio n of SCS/MTU s o i l c h a r a c t e r i z a t i o n s a m p l e s w o u l d b e a t t r a c t i v e a s o n ly a few a d d itio n a l an aly ses (e.g . e x tra ctio n s) and s u l f a t e a d so rp tio n d eterm in atio n s req u ired . e x te n siv e su lfa te In clu sio n so il ECS s a m p l e s an aly ses, a d so rp tio n c la ssific a tio n of but a b ilitie s w ould amm onium o x a la te w ould be w ould req u ire a llo w e stim ate s b a s e d on e x i s t i n g m ore of eco sy stem u n its. SUMMARY AND CONCLUSIONS E x istin g S o il C o n serv atio n S e rv ice amd M ic h ig a n T e c h n o l o g i c a l U n i v e r s i t y (SCS/MTU) s o i l c h a r a c t e r i z a t o n d a t a and r e g r e s s i o n e q u a t i o n s d e v e l o p e d in t h e p r e s e n t s t u d y were used to forest p red ic t so ils. su lfa te a d so rp tio n R e su lts su g g ested U d ip sam m en ts had th e lo w est O th er m esic and frig id U dipsam m ents, and frig id have m oderate a b ilitie s a d so rp tio n was ex trap o lated reg ressio n th e present in th at a b ility zone se le c te d m esic to M ich ig an zone re ta in H a p lu d alfs, T y p ic su lfa te . frig id zone zone H a p lo rth o d s w ere p r e d i c t e d to p re d ic te d adsorb s u l f a te . for H ighest s u l f a t e F ra g io rth o d s, e stim ate s to for so ils subset of not based on sam pled in study. Com parison c h arac teriza tio n of th e d ata se lec te d base w ith th e d a ta th e SCS/MTU s o i l o b tain ed from th e 158 present stu d y d istrib u tio n In d ic a te d of d ata w ere a t t r i b u t e d from SC S/M TU d ifferen ces betw een d a t a so il use o f e x is tin g su lfa te d a ta , d ith io n ite -c itra te few s i g n i f i c a n t su lfa te to % c la y se n sitiv e to of e x tractab le Fe and A l , for d a ta in clu d e and so ils req u ired d a ta b u lk d ev elo p m en t h ig h er Fe to in and of E x p an sio n of of reg re ssio n carbon, ex ch an g eab le su lfa te ran g e o f M ich ig a n f o r e s t s o i l s acid d e p o sitio n . o x a la te rep o rtin g o rg an ic and A l , p red ict to p re d ic t d e n sity and d a ta . w ith L im itatio n s ammonium for Fe a n d A l e x tra ctab le w ould b e in th e e n t i r e lack d a ta d ig its d ith io n ite -c itra te and in clu d ed se le c te d a lo n g f o r sam p lin g . c h ara c te riz a tio n and d ifferen ces d a ta , in co m p lete a d so rp tio n e q u atio n s These c h a ra c te riz a tio n so il a d so rp tio n e x tra ctio n range l a r g e l y to th e w ider range o f s o i l s d ifferen c e s in s e le c tio n of s o ils in sets. in A l, ad so rp tio n th o u g h t to be Chapter IX SUMMARY AND CONCLUSIONS T h is c h a p te r b r i e f l y su m m arizes r e s e a r c h r e s u l t s and p r e s e n t s m ajor c o n c lu s io n s / d e r i v e d l a r g e l y from s e c t i o n s a t th e ends of p reced in g d e ta ile d in v ite d th e d iscu ssio n ch ap ters. of sp ecific A b rief n eed s and d i r e c t i o n s The occurrence a n th ro p o g en ic o rig in included of a c id ic raised or re su lts in d icated t h a t o v e r 70 s o i l of th e su sc e p tib le to M ichigan. lan d area adverse P o ssib le adverse e ffe c ts c atio n s lead in g to A m ajo r f a c t o r a f f e c t i n g resu ltin g or leach in g of fu tu re are research a t t h e end o f t h i s a tm o sp h e ric A p relim in ary se ries of co v erin g M ic h ig a n e ffe c ts from in clu d e lo ss of so il effects a n e s t i m a t e d 40 w ere p o te n tia lly a cid d e p o sitio n . lea ch in g fe rtility se n sitiv ity to of over tim e. c atio n lo ss from a c i d d e p o s i t i o n i s t h e a b i l i t y o f t h e B o il t o re ta in lo sses a tm o sp h e ric a lly d e p o site d of are acco m p an ied A problem in p re d ic tin g su lfa te e q u iv a le n ts o f c atio n s. su lfa te , by known c o n c e r n i n g t h e r e l a t i v e a b i l i t i e s su lfa te . 159 as charge e ffects a c i d d e p o s i t i o n on M i c h i g a n f o r e s t s o i l s was t h a t l i t t l e adsorb of c la ssific a tio n a c c e le ra te d so il ch ap ter. d e p o sitio n concerns o v e r p o te n t ia l so ils p ercent in trea tm e n t is on f o r e s t adsorb m ethods i n a more t o ex am in e th e a p p r o p r i a t e c h a p t e r s i n th e body o f d isse rta tio n . b asic Those i n t e r e s t e d of th ese s o i l s of was to 160 The f i r s t o b jec tiv e of th is s t u d y was t o d e t e r m i n e th e a b ility o f r e p r e s e n t a t i v e M ic h ig a n f o r e s t s o i l s su lfa te u n d er l a b o r a t o r y c o n d i t i o n s and t o d e te rm in e i n i t i a l le v e ls of e x tra c ta b le s u lf a te p resen t. was t o r e l a t e su lfa te a d so rp tio n com m only m e a s u re d and u s e d f o r to adsorb The s e c o n d o b j e c t i v e to o th e r s o i l p r o p e r tie s so il c la ssific a tio n . The f i n a l o b j e c t i v e was t o d e v e l o p m eth o d s t o p r e d i c t s u l f a t e a d so rp tio n w hich se n sitiv ity d e p o sitio n of be M ic h ig an re la te d co n d u cted to sam p le m eth o d o lo g y , used to forest fu rth er so ils su lfa te i n tw o s t a g e s , a p p ro p ria te sta te d c o u ld to e ffe cts lea ch in g . stu d y acid was p rep a ratio n tec h n iq u e s stu d y d esig n ed and to to address te st th e o b jec tiv e s. su lfa te of th e a d so rp tio n p relim in a ry by s o i l s under stu d y d em o n stra te d la b o ra to ry i n f l u e n c e d by m ethod o f s a m p le p r e p a r a t i o n . from s o i l h o r i z o n s w i t h weak a d s o r p t i v e su lfa te field -m o ist d u rin g sam p les w ith s tro n g e r m ore s u l f a t e field -m o ist. dry The of th e a p r e lim in a r y stu d y to d ete rm in e and a p rim a ry R e su lts m ore c la ssify from t h e su lfa te afte r same a ir-d ry in g sam p les w ere c ap a citie s h o rizo n s. released th an S o il d id horizons c h a r a c t e r i s t i c s adsorbed th an in s u l f a t e was A ir-d ry sam p les e q u ilib ra tio n s a d so rp tio n D ifferen ces and f i e l d - m o i s t betw een s o i l a d so rp tio n c o n d itio n s th at if sam p les w ere kept a d s o r p t i o n betw een a i r lea st and c o rre la tio n s p re p a ra tio n s h ig h est a t s o lu tio n co n cen tratio n s o f 2 5 mg S L" 1 o r l e s s , it was c o n c l u d e d th at la b o ra to ry s t u d i e s u s in g a i r - d r y s a m p le s t o ex am in e r e l a t i v e su lfa te 16 1 ad so rp tio n a b i l i t i e s SO4 - S o f v a rio u s s o i l s sh o u ld be perform ed a t c o n c e n tra tio n s d iscrep an cies A subset b e lo w 25 mg S L- 1 to reduce rep resen tin g B everal caused by a ir - d r y in g . of M ichigan s o i l se ries g r a d i e n t s i n s o i l p h y s i c a l and c h e m ic a l p r o p e r t i e s su lfa te r e t e n t i o n was s e l e c t e d a d so rp tio n . The p o te n tia lly su sc e p tib le d e p o sitio n due to rep re se n ta tiv e so ils in se ries th e se le c te d to low c a t i o n of s o il for d e ta ile d w ere low er p e n in s u la f o r s t u d y w ere G r a y li n g stu d y of s u l f a t e co n sid ered adverse e ffe cts exchange c a p a c ity , taxonom ic g ro u p s of affectin g from S eries (T y p ic U dipsam m ents), be acid and w ere im p o rtan t as M ichigan. to forest se lec te d R ubicon (E n tic H a p lo rth o d s), K alkaska {T ypic H a p l o r t h o d s ) , M o n tc a lm ( E u t r i c G lo sso b o ralfs), (Psam m entic H a p l u d a l f s ) , (T ypic ran d o m ly l o c a t e d p e d o n s o f e a c h s e r i e s w ere sam p led allo w sta tistic a l com parisons l o c a t i o n s w ere r e s t r i c t e d 40 y e a r s range o ld or o ld er th at of c h a ra c te ris tic s and i n c l u d i n g sam p les had for th e series. S am p lin g la n d s w ith f o r e s t sta n d s so il p ro file s ta rg e t w ith in se ries. each m in e ral s o i l and m easure o f s u l f a t e siev ed p rio r a d so rp tio n to h o r i z o n down mg S L ~ * . filte re d . S am p les w ere shaken for S o il a n aly sis. A was d e t e r m i n e d b y s h a k i n g a i r - d r y s a m p l e s i n 0 . 0 1 H. C a C l j s o l u t i o n s 10 th e S am p les t h e u p p e rm o s t C h o r i z o n was s a m p le d . w ere a i r - d r i e d re la tiv e betw een to p u b lic w ere o b t a i n e d from s o i l p i t s ; to an d Oshtem o H ap lu d alfs). Six to S pinks 24 h o u r s S o l u t i o n f i l t r a t e s w ere a n a ly z e d co n tain in g and th en f o r SO4 - S a n d 162 su lfa te a d s o r p t i o n was c a l c u l a t e d su lfa te from s o l u t i o n . A ll so il from th e d is a p p e a ra n c e of s a m p le s w ere a l s o a n a ly z e d f o r e x t r a c t a b l e SO ^-S; e x t r a c t a b l e P; d i t h i o n i t e - c i t r a t e , ammonium o x a l a t e , a n d s o d i u m p y r o p h o s p h a t e e x t r a c t a b l e F e and A l; KC1 e x c h a n g e a b l e A l ; ammonium a c e t a t e C a , M g, K , a n d N a ; o r g a n i c c a r b o n ; a n d s o i l b o th w ater and perform ed on so u th ern 0.01 H C a C l2. sam p les from P a rtic le th e ex ch an g eab le pH m e a s u r e d i n siz e a n aly sis subsurface h o rizo n s l o w e r M i c h ig a n S p i n k s and O shtem o p e d o n s . was of S tandard s o i l a n a l y s i s m ethods w ere f o l lo w e d i n a l l p r o c e d u r e s . A l l s o i l s e r i e s s t u d i e d had s e v e r a l h o r i z o n s c a p a b l e o f ad sorbing su lfa te Bh h o r i z o n s m esic zone in f r ig id so ils su lfa te . T o ta l re d u c tio n s a d so rp tio n under la b o ra to ry in zone s o i l s d isp lay ed th e q u a n titie s so lu tio n stu d ies co n d itio n s. Bs, and E and Bt h o r iz o n s h ig h est of su lfa te su lfa te su g g ested Bw, a b ilitie s to in adsorb ad so rb ed and s m a ll c o n ce n tra tio n s th a t th e and so ils d u rin g in v e stig a te d w e re r e l a t i v e l y weak s u l f a t e a d s o r b e r s , s i m i l a r t o f o r e s t so ils in th e n o rth e a s te rn U nited S ta te s. No s i g n i f i c a n t d i f f e r e n c e s w e r e f o u n d b e t w e e n s e r i e s to ta l am o u n ts of su lfa te adsorbed under in la b o ra to ry c o n d i t i o n s when c o m p a re d on t h e b a s i s o f a d s o r b e d s u l f a t e c o n te n ts c alc u la te d adsorbing horizons. to a d e p th of 150 S ig n ific an t d ifferen ces cm in su lfa te betw een s e r i e s i n s u l f a t e a d s o r b i n g a b i l i t y w e r e p r e s e n t w hen c o m p a r i n g t h e u p p e r 5 0 cm o r t h e h o rizo n s. In 100-150 g e n eral, cm d e p t h s frig id zone in s u l f a t e se rie s ad so rb in g (G ra y lin g , 163 R u b ico n , K alk ask a, a d so rp tio n M ontcalm ) c a p a c itie s co n ce n trated B h orizon. In c o n tr a s t , zone s e r i e s (S pinks, su lfa te O s h te m o ) a d so rp tiv e cap acity (G ray lin g , su sc e p tib le su lfa te These of to re su lts p erco latin g re la tiv e rap id frig id from w ith in th ese th e so lu tio n s in t o t a l D iffere n ce s zone in m esic be d is trib u te d more F r i g i d zone s o i l s w ith lim ite d lo sses of to were th o u g h t t o c a tio n s d e p th s series so il acid in b e more a sso c iated th e so il d ifferen ces p ro file may b e m o r e se n sitiv ity d ifferen ces to K alkaska) su g g ested th a t ad so rp tio n ad so rb in g c a p a c ity in c o a r s e - t e x t u r e d h o riz o n s in t h e low er R ubicon, leach in g of th e ir i n t h e u p p e r 50 cm o f t h e ten d ed e v e n l y th ro u g h o u t t h e solum . solum had m ajo r p o r t i o n s and d e p o sitio n p ro file . in lo catio n flo w im p o rtan t in w ith p a th d eterm in in g th an a b so lu te a d so rp tiv e cap acity . in e x tra c ta b le se rie s su lfa te su g g e ste d th at i n a m o u n t o r mode o f s u l f a t e under f ie ld c o n d itio n s. S p e c ific a lly , c o n te n ts m ore d iffe re n c e s among pronounced re te n tio n e x ists lo w er e x tr a c t a b l e s u l f a t e c o n t e n t s in t h e M ontcalm and K a lk a s k a s e r i e s th a n the R ubicon was h i g h e r series in su g g ested th e reten tio n d iffe re d S p in k s le v e ls su lfa te of and su lfa te o r t h e mode o f in c o rp o ra tio n su lfa te d e p o sitio n in to w ith o rg an ic H igh b u t v a r i a b l e l e v e l s o f s u l f a t e i n O shtem o su lfa te o f SO 4 - S in ad so rp tio n i n t h e M ontcalm and K a lk a s k a S e r i e s , m ic r o b ia l ly m ed iated th e th at e ith e r R ubicon s e r i e s , form s p re d o m in a tin g . of se ries a d so rp tio n , in so u th ern w ere re la te d h ig h er lo w er but to v a ria b le m ore v a ria b le M ich ig an , or to a 164 co m bination o f th e s e The co n sisten t su lfa te from so lu tio n s in itia l se ries facto rs. and a b ility low a ll c o n c e n tra tio n p o sitiv e le v e ls of six (10 c o rre latio n s M ich ig an betw een foreB t to mg S L - 1 ) of e x tra c ta b le s u lfa te and s i m i l a r se ries adsorb su lfa te ad so rp tio n suggest so ils th at are and th ese cap a b le of re ta in in g a d d itio n a l q u a n titie s o f a tm o sp h e ric a lly d ep o sited su lfa te . B ased on th e range of calcu late d a d so rp tio n c a p a c i t i e s o f i n d i v i d u a l p e d o n s ( 0 , 5 t o 2 1 . 1 g S m~ 2 t o 1 5 0 cm)/ in d iv id u al su lfa te so il b o d ie s w ould h a v e an a b i l i t y f o r p e r i o d s from l e s s years a t p re se n t average yr be ). T h is c a l c u l a t i o n irrev e rsib ly le v e ls and n o rth ern lo w er but g ro u n d w ater M ic h ig a n su lfa te fo re sts ad so rp tio n rete n tio n of w ould b u f f e r was not su lfa te leach in g ad so rp tio n a d so rp tio n and c o rre latio n s a v a rie ty was c o n s i s t e n t l y of so il S tro n g est p o s itiv e c o rre la tio n s c itra te Al th at even th e to ta l years present so il p ro file or decades. betw een p ro p erties. in tem p o rary from im pingem ent o f and p o s i t i v e l y e x t r a c t a b l e Fe and A l c o n c e n t r a t i o n s e x tra ctab le but in resu ltin g w ere under R e la tiv e r e v e r s ib ility a c id d e p o s i ti o n f o r p e r io d s m easured i n S ig n ifican t o n known s o i l in d ic ate d a d so rp tio n effects based c o n c e n tra tio n s in v e stig a te d , v ia ( 0 . 8 g S m~ 2 s u l f a t e d e p o s i t e d w ould ev id en ce r e te n tio n of s u l f a t e does not occur. of g r e a t e r t h a n 26 of d e p o sitio n assum es a l l adsorbed, so lu tio n th a n one to to adsorb S u lfa te co rrelated a v a rie ty e x iste d su lfa te w ith of s o ils . w ith d i t h i o n i t e - a n d ammonium o x a l a t e e x tractab le Al 165 in s u b s u r f a c e h o riz o n s o f b o th m esic and f r i g i d S u lfa te a d s o r p t i o n was n e g a t i v e l y sa tu ra tio n in a l l e x tra c ta b le su g g ested so ils su lfa te th at stu d ied . in re te n tio n frig id zone under so ils, h o rizo n s su lfa te field t o pH a n d b a s e P o s i t i v e c o r r e l a t i o n s w ith subsurface la b o ra to ry su lfa te re la te d zone s e r i e s . a d so rp tio n c o n d itio n s p o sitiv e of a l l w ere so ils and past re la te d . c o rre la tio n of In su lfa te a d s o r p t i o n w i t h o r g a n i c c a r b o n i n s u b s u r f a c e h o r i z o n s was re la te d t o h ig h c o r r e l a t i o n b etw een o r g a n i c c a rb o n and A l and fra c tio n s, Fe reten tio n so il R esu lts a d so rp tio n have of ty p ic a l M ich ig an so il v a lu es of so ils few in d ic ate d forest A l, e x ch a n g ea b le to in su lfa te subsurface p ro p erties. ranged fro m 0.85 and s p e c i f i c A l* A d d itio n a l to 0 .94, co u ld be from m u ltip le depending em ployed. on The w e r e ammonium o x a l a t e e x tra c ta b le c o n sisten tly w ere d i t h i o n i t e - c i t r a t e su lfa te d eriv ed M a x im u m p re d ic to rs d ith io n ite -c itra te th at so ils v a ria b le s m ost c o n s i s t e n t p r e d i c t o r s e x tra c ta b le p red icto rs an aly ses re la tiv e ly m easured stro n g est, re la te d S tran sfo rm atio n s reg ressio n u sin g reg ressio n been high in o rg a n ic carb o n . in p re d ic te d g ro u p in g may through m ic ro b ia l h o rizo n s com m only or ex tra ctab le A l, and sig n ific a n t Fe, ammonium o x a l a t e e x t r a c t a b l e F e , a n d b o t h p H -H 2 0 a n d p H - C a C l 2 * O ther v a ria b le s th a t c o n trib u te d to p re d ic tio n in c e rta in cases in clu d ed % c la y , e x tra c ta b le A l, Fe, S 0 4- S . o rg an ic o rg an ic L in ear carbon, carbon, e x tra c ta b le d iscrim in an t a n d H+ c o n t e n t s fu n ctio n s h o ld P, based p ro m ise and on for 166 p re d ic tin g b asis. r e l a ti v e s u lf a te ad so rp tio n a b i l i t y E x p an sio n o f th e d a ta b a se to w i t h m edium an d h i g h s u l f a t e a llo w developm ent c la ssific a tio n of in clu d e ad so rp tio n d iscrim in an t on a p e d o n m ore p e d o n s c a p a c itie s fu n ctio n s w ith w ould im proved accuracy. E x istin g S o il C o n se rv atio n T e c h n o lo g ic a l U n iv e rs ity S e rv ice (SCS/M T U) s o i l and M ich ig an c h a ra c te riz a tio n d a ta and r e g r e s s io n e q u a tio n s d e v e lo p e d in th e p r e s e n t s tu d y w ere used to te n ta tiv e ly p red ic t su lfa te s e l e c t e d g ro u p s o f M ichigan f o r e s t s o i l s . th at co arse -te x tu red lo w est p re d ic te d m esic a b ility be m ost s u s c e p t i b l e from acid M ichigan and d ep o sitio n . w here frig id frig id to These su lfa te p re s e n t stu d y . so ils d ep o sitio n H ap lo rth o d s a b ilitie s adsorb to frig id w ere adsorb H ighest s u l f a t e p e n in su la su lfa te , F ra g io rth o d s, re g re ssio n e stim a te s fo r s o i l s occur is had and w ould leach in g in th u s low er O ther m esic U d ip sam m en ts, p red ic te d to have su lfa te , as found a d so rp tio n the e ffe cts so u th ern h ig h est. zone in R e su lts in d icated udipsam m ents adverse n u trie n t zone A l f i s o l s , zone m o d erate upper to zone T y p ic a d so rp tio n and sim ila r in th e was p r e d i c t e d an e x t r a p o l a t i o n for based on n o t sam p led in th e p r e s e n t stu d y . C om parison th e d a ta g a th e re d d ifferen ces p ro p erties of in SCS/MTU s o i l d u rin g range b etw een la rg e ly a ttrib u ta b le and d a ta th e ch arac teriza tio n present d istrib u tio n se ts. These stu d y of d ata w ith in d ic a te d c ertain so il d ifferen c e s w ere to th e w id er range o f s o i l s s e l e c t e d 167 from th e SCS/M TU D iscrep an cies may so il a lso c h a ra c te riz a tio n e x ist because of m ethods o f s e l e c t i n g B i t e s f o r s a m p lin g . process was u s e d in c h a ra c te riz a tio n d a ta base. d ifferen ces in A random s e l e c t i o n t h e c u r r e n t s t u d y w h i l e SCS/MTU B o i l stu d ies em ployed su b je ctiv e se le c tio n . L im ita tio n s in use o f e x is tin g s o i l c h a r a c te r iz a tio n d a ta to p r e d i c t s u l f a t e a d s o r p t i o n i n c l u d e d l a c k o f ammonium o x a l a t e e x tra ctio n d a ta , d ith io n ite -c itra te few s i g n i f i c a n t su lfa te in co m p lete d a ta e x tra ctab le Fe and A l , d ig its a d so rp tio n e q u atio n s to b u lk d a ta and so ils ex tra ctab le Fe in rep o rtin g carbon, exchangeable and % c l a y w o uld be r e q u i r e d t o p r e d i c t r e l a t i v e a d so rp tio n a b ilitie s forest so ils over th e e n tire of of- r e g r e s s i o n o rg an ic and A l , and E x p an sio n o f d ev elo p m en t h ig h er d e n sity and f o r Fe and A l d a t a . in clu d e d ith io n ite -c itra te for range of A l, su lfa te M ich ig an th o u g h t t o be s e n s i t i v e to a c id d e p o s itio n . The p r e s e n t for fu rth er stu d y o f s u l f a t e a d s o rp tio n p ro c e s s e s in r e l a t i o n to acid d e p o sitio n stu d y effects p ro v id es a firm on M i c h ig a n f o r e s t eco sy stem s th e y s u p p o rt. base so ils and t h e R e la ti v e m ag n itu d es of s u l f a t e a d s o rp tio n , s o i l h o riz o n s im p o rta n t in s u l f a t e and re te n tio n , and so il p ro p erties a d so rp tio n have been e s ta b lis h e d so ils sam p led fram ew ork. ad so rp tio n w ith In in re p lic a tio n a d d itio n , th e forest m easured s o i l p r o p e r t i e s forest re la te d to fo r a reg io n al w ith in a so il p re d ic ta b ility so ils a d so rp tio n sam p led was d e m o n s t r a t e d . su lfa te group of taxonom ic of su lfa te u sin g com m only 168 F u tu re research needs and e x p a n d in g d a t a and p r e d i c t i v e w ith m ore ex trem e ad so rp tio n ranges a b ilitie s, d ire c tio n s In clu d e: 1) re la tio n s h ip s to in clu d e s o i l s in 2) so il p ro p erties in v e stig a tin g and su lfa te so u th ern lo w er M ic h ig a n T y p ic U dipsam m ents and a s s o c i a t e d f o r e s t e c o s y s te m s h y p o th esized to be e s p e c i a l l y effects because of h ig h v u ln e ra b le to rate s of acid d e p o sitio n a tm o sp h e ric d e p o s i t i o n co m bined w i t h lo w p r e d i c t e d s u l f a t e a b ility , 3) refin in g forest so ils in term s o f s u l f a t e so il taxonom ic ro le of m icro b ia l in su lfa te h o rizo n s, se n sitiv ity or ecosystem 5) in p erfo rm in g in flu e n ce of d iffe re n t s o il re te n tio n and c a t io n m o istu re approaches, surface a d so rp tio n o f M ichigan a d so rp tio n c a p a c itie s S tran sfo rm a tio n s reten tio n and c la ssific a tio n su lfa te and field 4) using research in g and o r g a n ic subsurface th e S frac tio n s forest in v e stig a tio n s on so il th e p r o f i l e m o r p h o l o g i e s on s u l f a t e le a c h in g p a tte rn s d e p e n d e n t on s o i l re g im e s and f lo w p a t h s o f s o i l w a te r s o l u t i o n s . APPENDIX A APPENDIX A MICHIGAN SOIL SERIES SENSITIVE TO ACID DEPOSITION The fo llo w in g p o te n tia lly fo llo w in g ta b le se n sitiv e c rite ria c la ssific a tio n is listin g to acid d e p o sitio n d e v elo p ed based M ic h ig a n by la rg e ly was M cFee on th e so il d ev elo p ed (1980). c a tio n c a p a c i t y and p r e s e n c e o r a b s e n c e o f c a r b o n a t e s cm o f s o i l r exchange and p r e s e n c e o r a b se n c e o f f l o o d i n g . If c a tio n se n sitiv e . exchange se n sitiv e . so ils th is c a p a c ity , S o ils cm, s o i l s If in p u t th e e x p erien c in g 25% o f t h e c o n sid ered frequent a ll u v i a l d e p o sitio n , w ith c a tio n exchange c a p a c i ti e s g r e a t e r th an lim ite d , th ey se n sitiv ity on In fo rm a tio n sp e cific stu d ies se ries c o n tain ed a llo w se rie s d a ta was co n d u cted le v e l used to o b tain ed by th e S o i l M cFee in d ic a te s th a t percent of (1980). th e lan d of s o il M ic h ig a n so ils. c la ssify so il se n sitiv ity to adverse e ffe c ts of S erv ice su p p lem en ted T h is p r e lim in a r y area c o v erin g by (SCS- ratin g s c la ssific a tio n an e s tim a te d M ichigan a r e p o t e n t i a l l y from a c i d p r e c i p i t a t i o n . 169 of c h a ra c te riz a tio n C o n serv atio n over sev en ty s e r ie s 15.4 cm o l e stim ate s for from and W hile t h e s e c r i t e r i a ten tativ e MTU-PPC, 1 9 8 2 - 1 9 8 4 ) , in su sce p tib le d id a and USDA, 1 9 8 0 ; fo rty are are rate d w i t h c a r b o n a t e s p r e s e n t i n t h e u p p e r 25 (+) k g - 1 a r e c o n s i d e r e d n o n - s e n s i t i v e . are exceeds so ils an a c i d 10-2 5% o f t h e c a t i o n e x c h a n g e c a p a c i t y i n t h e t o p 25 cm, s o i l s slig h tly T h is i n t h e t o p 25 i n p u t o f 100 cm o f pH 3 . 7 r a i n p e r y e a r e q u a l s as se ries 170 Table A.l M ichigan S o i l S e r i e s P o t e n t i a l l y S e n s i t i v e E f f e c t s from A cid D e p o s i t io n : to A dverse P relim in ary C la s s if ic a tio n s & e e e e & B B E s s B s e B B c ;B c s c e E ;B & s & ^ s P B S & B e & s e s & & s $ s s s B S B 6 C B a s & s s e i O rder S eries T ext* Region^ % E xtent^ pH* CEC^ Rtg 6 ALFISOLS C oarse-L oam y, M ixed, F r i g i d , T y p ic E u t r o b o r a l f s Emmet Omena SL SL UP,nLP nLP C o arse-L o am y , M ixed, F r i g i d , Hodenpyl M ontcalm Pemene SL LS LfS nLP nLP DP .6 0 m od . 6 .1 -6 .5 6 . 1 - 7 .8 10-24 s s - n s E u tric G lo sso b o ralfs sm. .82 m od. 4 .5 -5 .5 5 .1 -6 .5 4 .5 -5 .5 mod. 5 .0 - 6 .6 9 .7 SS H ap lu d alfs Loamy, M ix e d , M e s i c , A r e n i c Okee LfS swLP 3 .2 -7 .5 s-ss 5 .2 -6 .9 s-ss 5 .5 -7 .3 s-ss C oarse-L oam y, M ixed, M e sic , G l o s s o b o r ic T ekenink LfS cLP mod. 4 .7 -7 .3 F in e-L o am y , M ixed, M e sic , G lo s s o b o r ic Remus SL cLP m od . 4 .9 -7 .0 F i n e , M ixed, M e sic , G lo s s o b o r ic P e rrin to n L sLP mod. 4 .6 -7 .0 10-17 s s - n s 5 .1 -7 .3 6-14 S andy, M ixed, M e sic , Psam m entic Spinks LS sLP .5 1 C oarse-L oam y, M ixed, M e sic , Psam m entic A rkport LfS sLP m o d. 4 .5 -7 .3 s-ss 171 Table A.l (continued) O rder S eries T ext^ R egion^ % E xtent^ pH^ CEC® Rtg® ALFISOLS H apludalfs C o a r s e - L o a m y , M ixed , M e s i c , T y p ic Boyer D ryden E lm dale H illsd ale Lapeer O shtem o P errin SLP sLP SLP SLP LP sLP sLP LS SL SL SL SL SL LS .75 .30 .10 .7 5 .7 5 1 .4 5 m od. 5 .6 -7 .3 5 .6 -7 .3 5 .1 -7 .3 5 .1 -7 .3 5 . 6- 6 .5 5 .1 -6 .5 5 .6 -7 .3 5 .1 -7 .1 6 .3 SS F i n e - L o a m y o v e r S a n d y / S a n d y S k e l e t a l ., M i x e d , M e s i c , 1 Fox Io n ia SLP SLP 1.39 .60 5 .6 -6 ,5 4 .5 -6 .5 .70 4 .1 -5 .0 5 .4 -1 1 s - s s sU P ,n w L P . 6 0 eU F,nLP .60 5 .1 -6 .5 5 . 6 - 7 ,8 SS 4 .9 s-SS S il SL 1 4 .2 SS ENTISOLS U dipsam m ents M ixed, F r i g i d , A l f i c G raycalm M ixed, F r i g i d , Deer Park E astp o rt S eU P,nLP Spodic fS S M ixed, F r i g i d , T y p ic G ray lin g Omega S LS UP,nLP. UP 1 .4 9 1 .0 0 4 . 5 - 5 .8 2 .8 -1 2 .4 s-SS 4 .5 -5 .5 3 .6 - 9 .7 s-SS sLP sLP .7 0 m od . 5 .1 -6 .0 5 .1 -7 .3 M ixed, M e sic , A l f i c Coloma C helsea LS LfS 1 2 .2 SS 6 .1 -6 .5 4 .7 -7 .3 8 .1 4 .4 -7 .3 4 .4 -1 0 .4 ss S-ss M ixed, M e sic , T y p ic A bscota O ak v ille P la in field LS S LS sLP sLP sL P .08 .78 1 .99 172 T able A .l O rder S eries T ex t1 (continued) R egion2 % E xtent3 pH4 CEC5 R tg6 ENTISOLS Q u artzipsam m ents F rig id , U n c o ate d , T ypic S h elld rak e S OP .1 0 4 .5 -6 .0 sm. 5 .0 -7 .0 SS udo rth en ts S a n d y - s k e l e t a l , M ixed, M esic M ecosta S scLP 1 . 3 - 2 .8 s MOLLISOLS S a n d y - S k e l e t a l , M ixed, U d o r t h e n t i c H a p l o b o r o l l s A lpena grSL eU P,nLP .20 6 . 6 - 7 .8 mod. 4 .6 -6 .0 SS SPODOSOLS F ra g io rth o d s S andy, M ixed, F r i g i d , A l f i c Y alm er S nUP 9 .9 S B ir s e - L o a m y , Mixed , F r i g i d , A l f i c B araga G ogebic Iro n R iver K allio M cBride M unising S teuben W ak efield S iL fSL SiL SiL SL SL fSL SiL WUP WUP WCUP wUP LP nUP ncOP WUP sm . 1 .6 0 .5 0 sm . .86 1 .6 0 m od. .07 2 1 .4 SS-ns 3 .6 -6 .0 4 .5 -6 .0 4 .5 -6 .0 4 .5 -5 .5 4 .5 -6 .0 4 .5 -6 .0 4 .5 -6 .0 5 .1 -6 .5 28.3 30.8 9 .8 9 .6 ns ns ss SS 3 .6 -6 .0 29.4 SS-ns C oarse-L oam y, M ixed, F r i g i d , T y p ic Champion SiL wcUP .50 173 Table A.l (continued) O rder S eries T ext1 Region^ % E xtent3 pH4 C EO5 Rtg6 2 .3 -2 9 SS s -ns SPODOSOLS H ap lo rth o d s, A lfic S a n d y , M ixed, F r i g i d B lu e Lake Keeweenaw L eelan au M ancelona M elita LS LS LS LS S O P ,n L P .7 5 .4 4 UP U P ,n L P .75 nL P 1.02 eUP,nLP .10 5 .1 -6 .5 4 .5 -6 .5 5 .6 -7 .3 5 .6 -7 .3 5 .1 -7 .3 10.4 ss 7 .3 SS S a n d y o v e r L o am y , M i x e d , F r i g i d M e n o m in e e LS U P ,n L P .1 8 4 . 6- 6 .5 Sandy o v e r C la y e y , M ixed, F r i g i d M anistee LS UP,nLP .10 5 .1 -7 .3 .01 .90 .12 5 .1 -7 .3 5 .1 -6 .5 5 • 6 —6 . 5 C oarse-L oam y, M ixed, F r i g i d A lcona T renary U bly SL fSL SL U P ,n L P UP nLP C o a r s e - S i l t y o v e r S a n d y o r iS a n d y - S k e l e t a l , Stam baugh SiL F in e -L o a m y , M ixed, Bohem ian Isab ella Ona wa y wUP 1 1 - 1 6 ss-- n s ss M ixed, F r i g i d .12 4 .5 -6 .0 SS .1 3 .4 6 .4 6 5 .1 -6 .5 5 .1 -6 .5 5 .1 -7 .3 ss ss F rig id SiL L f SL UP ,n LP nLP S U P ,n L P 9 . 4 - 2 3 s s - -NS Fine-Loam y o v e r Sandy o r Sandy S k e l e t a l , M ixed, F r i g i d New aygo SL .6 0 5 . 6- 6 . 5 UP,nLP 2 .75 UP sm . s e U P , n L P .0 1 eUP,nLP .7 0 WUP sm . 4 .5 -6 .0 3 .6 -6 .0 5 .1 -6 .5 5 .6 -7 .3 4 .5 -6 .0 ncLP H ap lo rth o d s, E n tic S andy, M ixed, F r i g i d C ro sw ell D eerton Duel E a s t Lake Ish pem in g s s LS S s 2 .3 -9 .3 9 .7 ss T able A .l O rder S eries T ext* (continued) R egion^ % E xtent^ pH^ CEC5 Rtg® SPODOSOLS H ap lortho ds/ E n tic S andy, M ixed, F r i g i d K arlin K iva Rousseau R ubicon V ilas LfS SL fS s LS U P ,n L P nLP U P ,n L P U P ,n L P UP .40 .40 .81 2 .25 2.00 4 .5 -6 .5 6 . 1 - 7 .8 4 .3 -7 .0 5 .1 -6 .0 4 .5 -6 .0 2 .7 -1 0 .4 4 .5 -6 .5 sL P SLP .70 larg e 4 .3 -7 .3 4 .5 -6 .5 9 .9 7 .7 .34 .20 5 .6 -7 .3 4 .5 -6 .5 3 5 .6 s-ss S-ss ss Sandy, M ixed, M esic C overt G rattan LS s ss ss C o a r s e - L o a m y , M ixed , F r i g i d L o n g rie L M i c h ig a m m e f SL U P ,n L P wUP C oarse-Loam y o v e r Sandy o r S a n d y - S k e l e t a l , A m asa v f S L wUP .12 5 .1 -6 .0 ss ns M ixed, F r i g i d 2 0 .7 SS-ns H a p lo rth o d s , T y p ic S a n d y , M ixed, K alkaska G ilch rist W allace F rig id S S S U P ,n L P eUP,nLP U P ,n L P 2 .7 5 4 .4 -6 .0 1 .1 -1 6 .4 s -n s .10 5 . 1 - 7 .8 1 2 .1 .20 4 .5 -5 .5 SS SS S a n d y - S k e l e t a l , M ixed, F r i g i d W aiska Coarse-L oam y, Chatham O nota SL nUP .05 4 .5 -6 .0 sm. .10 6.1 - 7 .8 5 .1 -6 .5 M ixed, F r i g i d fSL SL eUP nwUP SS SS L o a m y -S k e le ta l o v e r S an d y , M ixed, F r i g i d A llouez g r S L wUP .16 4 .5 -6 .0 1 7 .3 SS-ns 175 Table A.l (continued) O rder S eries 1 T exture fS fSL grSL L LfS T ext1 R egion 2 % E xtent3 pH4 CEC5 R tg6 ( f r o m SCS-USDA; MTU-FFC, 1982-- 1 9 8 4 ) f i n e sand LS l o a m y B and f i n e sa n d y loam sand S g r a v e l l y san d y loam SiL s i l t loam loam SL sa n d y loam loam y f i n e san d V f SL v e ry f i n e sandy 2 R e g i o n o f O c c u r r e n c e ( f r o m SCS--USDA) upper p e n in su la UP low er p e n in s u la LP m o d ifiers: n, n o rth e rn ; s , so u th ern ; e, e a s te rn ; w, w e s t e r n ; c , c e n t r a l ; a n d c o m b i n a t i o n s o f a b o v e . 3 % E x te n t; e s tim a te d % o f t o t a l M ichigan la n d a r e a o c c u p ie d b y s e r i e s ( f r o m L u m b e r t , 1981; SCS-USDA). s m . < . 1 %, m o d . . 1 - . 6 %, l a r g e > . 6 %. 4 pH, r a n g e , u p p e r s o l u m ( f r o m SCS-USDA; MTU-FFC, 1982-1984) 5 CEC, c m o l {+) k g - 1 ( f r o m M c F e e , I 9 6 0 ; SCS-OSDA, 1980; MTU-FFC, 1 9 8 2 - 1 9 8 4 ) . A v e r a g e f o r u p p e r 25 cm o f s o l u m . 6 S e n s i t i v i t y R atin g (fro m McFee, 1980) S e n s i t i v e , CEC < 6.2 S l i g h t l y S e n s i t i v e , CEC > 6.2 b u t < 15.4 N o t S e n s i t i v e , CEC > 1 5 .4 , o r c a r b o n a t e s p r e s e n t , o r s o i l f l o o d s and r e c e i v e s a l l u v i a l d e p o s i t i o n . S , S S , NS - u p p e r c a s e , d i r e c t l y f r o m M c F e e , 1980. s , s s , n s - l o w e r c a s e , a s s i g n e d b a s e d on o t h e r s o u r c e s , b u t f o l l o w i n g M cFee's r a t i n g sc h em e . S SS MS APPENDIX B APPENDIX B PEDON DESCRIPTIONS AND ANALYTICAL DATA FOR SAMPLED SOILS T h is a p p e n d ix c o n t a i n s s o i l p r o f i l e d e s c r i p t i o n s and a n a l y t i c a l d a t a f o r t h e 38 p e d o n s s a m p l e d f o r t h i s s t u d y . D a ta f o r s o i l p r o p e r t i e s t h a t c a n be c a l c u l a t e d from t h e p r e s e n t e d a n a l y t i c a l d a t a ( e . g . sum o f b a s e s , e f f e c t i v e CEC, % b a s e s a t u r a t i o n , c r y s t a l l i n e Fe) h a v e b e e n o m it t e d f o r b rev ity . P edon d e s c r i p t i o n s a r e g ro u p e d a l p h a b e t i c a l l y by s e r i e s , o rd e r w ith in s e r ie s fo llo w in g th a t o f assig n ed sa m p lin g b lo c k s . N um bers i n p a r e n t h e s e s f o l l o w i n g s o i l h o riz o n d e s c r i p t i o n s a re l a b o r a t o r y sa m p le num bers. D e sc rip tio n s of s o i l p ro p e rty v a ria b le s l is te d fo llo w in g pedon d e s c r i p t i o n s a r e g iv e n in T a b le B .l. See p a g e s 61-62 fo r d iscu ssio n of p re c isio n of a n a ly tic a l d a ta . T able B .l D e sc rip tio n o f S o il P ro p e rty V ariab les S o il P ro p erty SN+ HT BD SADS EXTS DCFE DCAL AOFE AOAL NPFE NPAL PH20 PHCA %ORGC EXTP EXMG EXNA EXCA EXK EXAL CLAY L a b o r a to r y sam p le number A verage h o riz o n t h ic k n e s s B ulk d e n s i t y S O ^ - S a d s o r b e d f r o m 10 mg S L" 1 P h o s p h a t e e x t r a c t a b l e SO4- S D i t h i o n i t e - c i t r a t e e x t r a c t a b l e Fe D i t h io n i t e - c it r a t e e x tra c ta b le Al Ammonium o x a l a t e e x t r a c t a b l e Fe Ammonium o x a l a t e e x t r a c t a b l e A l Sodium p y r o p h o s p h a t e e x t r a c t a b l e Fe Sodium p y r o p h o s p h a t e e x t r a c t a b l e Al pH m e a s u r e d i n 1 : 1 B o i l : H 20 pH m e a s u r e d i n 1 : 2 s o i l : 0 . 0 1 H C a C l 2 O rganic carb o n B r a y #1 e x t r a c t a b l e p E x c h a n g e a b l e Mg E x c h a n g e a b l e Na E x c h a n g e a b l e Ca E x changeable K E x changeable Al C l a y , < 0 . 0 0 2 mm u ii u 11 u ia *H D escrip tio n - U -P V ariab le ^ » S S B D B B & B B E S B t : t t a e e S B 6 6 B I S B e C B a B B e S S a & e e e 8 B B C B M It s « a e ? S S S B B B B C B E :B & & S t!S e ? S e S B S S B B C S C S S S & S S ; 11 s e & 1 c II D s s e c & cm g cra- J mg S k g ~ | mg S k g " 1 mg F e k g ” mg A l k g " mg F e k g " mg A l k g " mg F e k g " mg A l k g " -Log(H +) -L og(H ) % , mg P k g x mg Mg k g " mg Na k g " mg Ca k g " mg K k g " 1 mg A l k g " B B 6 C n C S £ ] C S B B C : a + L a b o r a to r y sam p le number composed o f d e s c r i p t o r c o d e s : F i r s t D i g i t = s e r i e s code; 1 = G ra y lin g , 2 = K alkaska 3 ** M o n t c a l m , 4 *= O s h t e m o , 5 = R u b i c o n , 6 = S p i n k s S e c o n d D i g i t = B l o c k N u m b e r ; T h i r d D i g i t ■ H o r i z o n Number 176 177 S e r ie s : G ray lin g B lock: I D a t e S a m p le d : J u l y 8 , 1965 L o c a t i o n : S e c t i o n 1 3 , T31N R 1 E , M o n t m o r e n c y C o u n t y , M i c h i g a n 2980* n o r t h and 1 3 3 0 ' e a s t o f s o u t h w e s t s e c t i o n c o r n e r F o r e s t C o v e r : M ixed r e d an d j a c k p i n e p l a n t a t i o n S t a n d Age ( y e a r s ) : 44 B a s a l A r e a a t P i t ( f t 2 a c r e - 1 ) : 100 S a m p l e d B y : N e i l W. M a c D o n a l d Pedon D e s c r i p t i o n - G r a y lin g B lock I A/E - 0 t o 5 cm; N 2/0 sand; w e ak fin e g ran u lar stru c tu re ; very friab le; man y f i n e r o o t s ; abrupt sm ooth boundary (1110). Bwl - 5 t o 2 2 cm; 7 . SYR 4 / 4 s a n d ; w e ak m e d i u m g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; man y f i n e , m e d i u m , a n d l a r g e r o o t s ; 1-3% g r a v e l ; g r a d u a l s m o o t h b o u n d a r y ( 1 1 2 0 ) • Bw2 - 2 2 t o 42 cm; 7 . SYR 4 / 6 s a n d ; weak f i n e g r a n u l a r stru c tu re ; v e r y f r i a b l e ; common m e d i u m a n d f e w l a r g e r o o t s ; 3-5% g r a v e l ; c l e a r s m o o t h b o u n d a r y ( 1 1 3 0 ) . BC - 42 to 85 cm; 7.5Y R 5 / 8 sand; w e ak m e d iu m subangular b lo ck y s t r u c t u r e ; very f r i a b l e ; f e w m ed iu m a n d larg e ro o ts; 5-7% g r a v e l a n d c o b b l e s ; c l e a r wavy b o u n d a r y (1140). C l - 85 t o 1 6 6 cm; 7 . SYR 6 / 4 s a n d ; s i n g l e g r a i n ; l o o s e ; few m e d i u m a n d l a r g e r o o t s ; 3-5% g r a v e l ; few t h i n fain t c o lo r bands p re s e n t (1150). C2 - 1 6 6 t o 2 5 0 cm; a u g e r sam ple i n d i c a t e d m o d e r a te ly e f f e r v e s c e n t c o a r s e s a n d a t 2 5 0 cm ( n o t s a m p l e d ) . T a b l e B .2 A n a l y ti c a l D ata s c s s e :C fiC E C t c c c c & c SN 1110 1120 1130 1140 1150 HT 4 .8 1 6.5 2 0 .0 4 2.5 8 1.2 BD 1.1 9 8 1.3 4 0 1.4 8 1 1 .5 5 8 1 .5 6 5 SN 1110 1120 1130 1140 1150 PH20 4 .62 5 .05 5 .27 5 .5 3 6 .1 1 PHCA 3.77 4.3 8 4 .54 4 .8 7 5 .0 5 B Q C C E B D D C B & G r a y lin g B lock I p b b s s s DCFE DCAL 1674 8 21 2 6 4 3 11 5 3 2422 1116 967 382 709 1 63 SADS EXTS 1 .6 -4 .9 4 .2 1 0 .7 6 .5 1 2 .4 2 .8 1 .7 .9 .2 %ORGC 3.4 8 0 .465 .258 .058 .042 B B S B B 8 ! EXTP 7. 2 9. 8 11. 4 12. 1 5. 6 EXMG EXNA 2 3 .4 6 .4 2 .0 .9 .8 1 .9 .3 4 .1 1 .2 .6 S E B B B 8 S B B B B B I AOFE AOAL 733 942 1213 1453 764 1568 163 506 117 209 EXCA 444.7 3 3 .2 1 3 .9 6.0 1 5.7 ;E S S & B S NPFE NPAL 754 966 1136 1626 6 69 1 4 2 1 1 42 445 98 225 EXK ;3 8 . 5 8 .3 6 .2 2 .5 2 .9 EXAL :1 0 1 . 5 5 0 .5 3 0 .2 5 .6 1 .8 B B B B SB IBB& & B 178 S e r ie s : G ray lin g B lock: I I D a te Sam pled: A u g u st 2 2 , 1985 L o c a t i o n : S e c t i o n 4 , T24N R9W, W e x f o r d C o u n t y , M i c h i g a n 480* s o u t h a n d 1 6 7 0 * e a s t o f n o r t h w e s t s e c t i o n c o r n e r F o r e s t C o v e r: ja c k p i n e , b l a c k o a k , and u p la n d p i n oak S t a n d Age ( y e a r s ) : 58 B a s a l A r e a a t P i t ( f t 2 a c r e - 1 ) : 60 S a m p l e d B y: N e i l W. M a c D o n a l d Pedon D e s c r ip tio n - G r a y lin g B lock I I A/E - 0 t o 7 cm; N 2/0 s a n d ; w e ak fin e g ran u lar stru c tu re ; very f r i a b l e ; m an y f i n e a n d mediumr o o t s ; s m a l l th in areas of E horizon p re s e n t in sp o ts; c le ar wavy boundary (12 10 ). Bwl 7 t o 27 cm; 10YR 4 / 4 s a n d ; w e ak c o a r s e g r a n u l a r stru c tu re ; v e r y f r i a b l e ; common f i n e , m e d i u m , a n d f e w l a r g e ro o ts; sm all th in areas o f 7 . SYR 3 / 4 a s s o c i a t e d w ith E h o r i z o n , <1% g r a v e l ; c l e a r w a v y b o u n d a r y ( 1 2 2 0 ) . Bw2 - 27 t o 46 cm; 7 . SYR 4 / 6 s a n d ; w e ak c o a r s e g r a n u l a r stru c tu re ; very f r i a b l e ; common f i n e a n d m e d i u m r o o t s ; <1% g r a v e l ; c l e a r sm ooth b o u n d a ry (1 2 3 0 ). BC - 46 t o 81 cm; 10YR 5 / 4 s a n d ; weak c o a r s e g r a n u l a r stru c tu re ; very f r i a b l e ; few f i n e an d medium ro o ts; <1% g rav el; s a n d becomes l e s s c o a r s e w ith d e p th ; c le ar sm ooth boundary (1 24 0). C l - 81 t o 1 6 0 cm; 10YR 7 / 4 s a n d ; s i n g l e g r a i n ? l o o s e ; f e w m ed ium r o o t s ; f e w f a i n t o r g a n i c o r c l a y s t a i n s ( 1 2 5 0 ) . C2 - 1 6 0 t o 3 2 5 cm; a u g e r sa m p le i n d i c a t e d few f a i n t 10YR 6 / 4 m o t t l e s b e l o w 1 6 5 cm; very s l i g h t e ffe rv e s c e n c e a t 230 cm; common f a i n t 10YR 6 / 4 m o t t l e s a t 3 1 0 cm; ro o ts in m o t t l e d s a n d a t 3 2 5 cm ( n o t s a m p l e d ) . T a b l e B .3 A n a l y t i c a l D a ta - G r a y lin g B lock I I SN 1210 1220 1230 1240 1250 HT 6 .7 1 9 .5 1 9.3 3 5.2 7 9 .3 BD 1.1 1 5 1.37 9 1.4 6 8 1.56 9 1 .5 8 2 SADS EXTS -.9 2 .4 1 1 .9 1 4 .2 8 .4 1 8.6 2 .9 6.2 1.1 1 . 7 PH20 PHCA 40RGC 3.8 0 3.17 2 .7 5 0 4.38 .559 4.8 4 4 .56 4 .8 8 .278 4 .7 6 5.00 .059 5 .1 2 4 .9 1 .032 DBBCSS &ASSESS C S B B & B SN 1210 1220 1230 1240 1250 EXTP 6 .1 1 6 .3 1 5 .2 1 9 .7 1 8 .4 DCFE DCAL 1424 685 2433 1670 1868 1133 728 434 602 196 AOFE AOAL 568 899 1263 2530 601 1774 165 8 92 104 368 EXMG EXNA 1 0 .2 2 .7 .8 1 .7 1 .4 .4 1 .1 .1 .5 .1 B B C B B iSSSSBSSS EXCA 4 7.5 3 .2 1 .6 1 .0 .6 NPFE NPAL 592 788 892 1813 361 1204 73 395 37 266 EXK 2 3 .6 6 .7 4 .2 2 .4 1 .5 EXAL 18 2 .3 5 2.2 2 4.9 6 .5 3 .1 SSB B B B C 8B B B B 179 S e r ie s : G ray lin g B l o c k : 111 D a t e S a m p l e d : J u l y 2 5 , 1 9 6 5 L o c a t i o n : S e c t i o n 3 2 , T25N R 7E , A l c o n a C o u n t y , M i c h i g a n 2 1 0 0 * n o r t h a n d 800* e a s t o f s o u t h w e s t s e c t i o n c o r n e r F o r e s t C over: b la c k oak and ja c k p i n e S t a n d Age ( y e a r s ) : 69 B a s a l A r e a a t P i t ( f t 2 a c r e - 1 ) : 70 S a m p l e d B y : N e i l W. M a c D o n a l d Pedon D e s c r i p t i o n - G r a y lin g B lock I I I A / E - 0 t o 6 cm; N2 / 0 s a n d ; w e ak m e d i u m g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; common f i n e a n d m e d i u m r o o t s ; c l e a r sm ooth b o u n d a ry (1 3 1 0 ) . Bwl - 6 t o 2 1 cm; 7 . SYR 4 / 4 s a n d ; w e ak m e d i u m t o c o a r s e g ran u lar s tru c tu re ; very f r ia b le ; common f i n e , m e d i u m , a n d l a r g e r o o t s ; 1-3% g r a v e l ; c l e a r s m o o t h b o u n d a r y ( 1 3 2 0 ) . Bw2 - 2 1 t o 50 cm; 10YR 4 / 4 s a n d ; w e ak m e d i u m g r a n u l a r stru c tu re ; very f r i a b l e ; common f i n e r o o t s ; 7-10% g r a v e l , l a r g e l y i n a s t o n e l i n e ; c l e a r sm ooth b o u n d a ry ( 1 3 3 0 ). BC - 50 t o 80 cm; 10YR 5 / 4 s a n d ; w e ak m e d i u m g r a n u l a r stru c tu re ; very friab le; few f i n e an d medium r o o t s ; 1% g rav el; c o a r s e s a n d i n u p p e r p a r t o f h o r i z o n u n d e r l y i n g Bw2 g r a v e l ; g r a d u a l wavy b o u n d a r y ( 1 3 4 0 ) . C l - 80 t o 1 8 2 cm; 10YR 7 / 3 s a n d ; s i n g l e g r a i n ; l o o s e ; few m e d i u m r o o t s ; 1% g r a v e l ; f e w f a i n t 10YR 5/4 sta in s; l e n s e s o f c o a r s e s a n d ; a b r u p t sm o o th b o u n d a ry (1350) . C2 - 1 8 2 t o 2 0 0 cm; 10YR 6 / 3 s a n d a n d g r a v e l ; sin g le g r a i n ; lo o s e ; dark and l i g h t m in e ra ls in te rm ix e d ; m o d e ra te ly e ffe rv e s c e n t (not sam p led ). T a b l e B .4 A n a l y t i c a l D a ta - G r a y lin g B lock I I I SN HT 1310 5 .8 1320 1 4 .8 1330 2 8 .5 1340 3 0 .2 1350 1 0 1 .7 SN 1310 1320 1330 1340 1350 SBBGES PH20 4 .8 8 5.07 5.00 5.21 6.65 BD 1.020 1.407 1.513 1.604 1.5 99 PHCA 4.19 4.29 4.38 4.72 5 .7 9 BBSOD D SADS EXTS -7 .6 3 .7 12.3 5 .5 9 .3 8 .7 2 .3 2.1 -.3 .4 %ORGC 3 .3 9 1 .5 3 6 .2 1 2 .057 .025 DCFE DCAL 2168 666 3462 1424 2469 1052 902 356 971 167 EXMG EXNA 3 .5 3 4 .3 3 .2 2 .1 2 .2 1 .5 .3 1 .1 1.7 7 .4 EXTP 8 .8 8 .2 1 7 .3 1 7 .8 7 .3 b c b b c AOFE AOAL 8 35 691 968 1761 435 1394 140 470 209 18 3 : CBBBB NPFE NPAL 724 689 1054 1757 636 1451 156 436 103 189 EXAL 3 3 .6 66.2 3 6 .5 6.9 .1 B B 8S G S B BBBBSBB s e e s f i EXCA 641.9 25.0 9 .0 2 .6 7 0 .0 EXK 5 3 ,5 10.8 7 .2 2 .6 4 .2 180 S e r ie s : G rayling B l o c k : IV D a t e S a m p le d : A u g u s t 1 5 , 1985 L o c a t i o n : S e c t i o n 1 1 , T26N R 1E , O s c o d a C o u n t y , M i c h i g a n 1 4 3 0 ' s o u t h a n d 250* e a s t o£ n o r t h w e s t s e c t i o n c o r n e r F o r e s t C o v e r: j a c k p i n e and b l a c k o a k , clum p o f o l d e r t r e e s s u r r o u n d e d b y j a c k a n d r e d p i n e 20 t o 30 y e a r s o l d S t a n d Age ( y e a r s ) : 54 B a s a l A r e a a t P i t ( f t 2 a c r e - 1 ) : 80 S a m p l e d B y : N e i l W. M a c D o n a l d Fedon D e s c r ip tio n - G r a y l i n g B l o c k IV A / E - 0 t o 5 cm; N 2 / 0 s a n d ; u n c o a t e d s a n d g r a i n s m i x e d th ro u g h o u t; weak medium g r a n u l a r s t r u c t u r e ; very f r ia b le ; common f i n e a n d m e d i u m r o o t s ; a b r u p t s m o o t h b o u n d a r y ( 1 4 1 0 ) . Bwl - 5 t o 20 cm; 7 . SYR 3 / 4 s a n d ; w eak c o a r s e g r a n u l a r stru c tu re ; very f r ia b le ; common m e d i u m a n d f i n e r o o t s ; 5% g r a v e l ; g r a d u a l sm ooth b o u n d a ry (1 4 2 0 )• Bw2 - 20 t o 41 cm; 7 . SYR 4 / 6 s a n d ; w e ak m e d i u m g r a n u l a r stru c tu re ; v e r y f r i a b l e ; common f i n e r o o t s ? 5-7% g r a v e l a n d c o b b le s e n d in g a t c l e a r sm ooth b o u n d a ry (1 4 3 0 ). BC - 41 t o 85 cm; 10YR 6 / 4 s a n d ; s in g le g rain ; loose; few f i n e ro o ts in upper p a r t; <1% g r a v e l ; c le ar sm ooth boundary (1440). C l - 85 t o 1 6 0 cm; 10YR 6 / 3 s a n d ; s i n g l e g r a i n ; l o o s e ; gravel band f r o m 1 2 7 t o 1 3 7 cm w i t h a s s o c i a t e d 7 , SYR 4 / 6 c o l o r , common f i n e r o o t s i n g r a v e l b a n d ( 1 4 5 0 ) . C2 - 1 6 0 t o 2 5 5 cm; a u g e r sam ple i n d i c a t e d lay er of s t r o n g l y e f f e r v e s c e n t s a n d b e t w e e n 1 9 0 a n d 2 0 0 cm; slig h tly effervescent c o a r s e s a n d b e t w e e n 2 0 0 a n d 2 5 5 cm; stro n g ly e f f e r v e s c e n t s a n d a n d g r a v e l a t 2 5 5 cm ( n o t s a m p l e d ) . T a b le B .5 A n a l y ti c a l D ata SN 1410 1420 1430 1440 1450 HT 5 .2 15.3 20.8 43 .7 7 5.0 BD 1.2 53 1.443 1.5 7 6 1.6 0 4 1.6 0 5 SN 1410 1420 1430 1440 1450 PH20 4 .77 5 .4 5 5 .6 2 5.94 6.10 PHCA 3.93 4 .5 8 4.69 5.02 5.08 SADS EXTS -3 .0 2 .4 9 .6 6 .2 7 .6 4 .4 1 .3 3 .3 1 .6 .4 %0RGC 3.1 5 7 .510 .230 .054 .025 IB 6 S C B E e e c M EXTP 5. 0 15. 3 24. 9 16. 9 8. 9 G r a y l i n g B l o c k IV DCFE DCAL 2580 744 3778 1509 2434 1031 757 358 649 177 AOFE AOAL 1013 658 1272 1594 633 1342 148 58 3 109 25 7 EXMG EXNA 2 0 .2 1.9 7 .0 .9 3 .6 .8 .9 .5 1 .0 .2 EXCA 2 1 7 .1 8 1 .0 4 3 .4 1 0 .5 1 1 .4 NPFE 927 964 511 132 73 EXK J5 2 . 3 :1 8 . 5 8.9 3.4 2.0 NPAL 1000 1555 1088 468 231 EXAL 7 4 .0 3 7 .8 2 0 .3 3 .5 1 .4 t s i e s c c c B B B B e & B B B S B B : BC SSSS^SS^SSSIB B B B E E C ; s c s c 181 S e r ie s : G ray lin g B l o c k : V D a t e S a m p le d : S e p te m b e r 6 , 1985 L o c a t i o n : S e c t i o n 2 1 , T20N R5W, C l a r e C o u n t y , M i c h i g a n 1 59 5 * s o u t h a n d 17 3 0 * e a s t o f n o r t h w e s t s e c t i o n c o r n e r F o r e s t C o v e r: b l a c k oak an d j a c k p i n e S t a n d Age ( y e a r s ) : 6 3 B a s a l A r e a a t F i t { f t 2 a c r e - 1 } : 80 S a m p l e d B y : N e i l W. M a c D o n a l d Pedon D e s c r ip t i o n - G ra y lin g B lock V A/E - 0 t o 5 cm: N 2 /0 loam y s a n d ; p a le sand g ra in s m ixed th ro u g h o u t; w e ak fin e g ran u lar stru c tu re ; very friab le; man y f i n e a n d m e d i u m r o o t s ; c l e a r sm ooth b o u n d ary (1510) . Bwl - 5 t o 2 6 cm; 7 . SYR 4 / 4 s a n d w i t h t h i n p a t c h e s of 10YR 3 / 3 s a n d b e n e a t h A /E i n s p o t s ; weak medium g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; common f i n e a n d m e d i u m r o o t s ; c l e a r sm ooth b o u n d a ry (1 5 2 0 ). Bw2 - 26 t o 53 cm; 7 . SYR 4 / 6 s a n d ; w e ak c o a r s e g r a n u l a r stru c tu re ; very f r ia b le ; many m e d i u m a n d l a r g e r o o t s ; 3-5% g r a v e l and s m a ll c o b b l e s ; c l e a r sm ooth b o u n d a ry (1 5 3 0 ). BC - 53 t o 1 0 2 cm; 10YR 5 / 6 s a n d ; very w e ak coarse g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; f e w f i n e a n d m ed iu m r o o t s ; 2-3% g r a v e l w i t h s t o n e l i n e a t c l e a r s m o o t h b o u n d a r y ( 1 5 4 0 ) . C l - 1 0 2 t o 165- cm; 10YR 6 / 4 s a n d ; s i n g l e g r a i n ; l o o s e ; common f a i n t 10YR 5 / 4 b l o t c h e s a n d s t a i n s ( 1 5 5 0 ) . C2 - 1 6 5 t o 330 cm; a u g e r sa m p le i n d i c a t e d sa n d became fin er w ith dep th ; no g r a v e l belo w 165 cm; very slig h t effervescence a t 2 3 5 cm; f e w f a i n t 10YR 6 / 6 m o t t l e s a t 24 5 cm; no e f f e r v e s c e n c e ev id en t fro m 255 to 330 cm (not sam p led ). T a b l e B .6 A n a ly tic a l D ata SN 1510 1520 1530 1540 1550 BT 5 .3 2 0 .7 2 7 .2 49 .0 6 2 .8 BD SADS EXTS 1.033 - 1 0 .5 4 .6 1.511 1 3 .3 3 .8 1.609 1 1 .6 5 .4 1.6 2 9 4 .3 2 .0 1.587 .7 .3 SN 1510 1520 1530 1540 1550 PH20 4 .68 5 .35 5 .44 5 .85 6 .52 PBCA 4 .36 4 .46 4 .5 4 4 .86 5 .42 %0RGC 4.2 0 0 .329 .125 .070 .015 EXTP 1 2.9 18.4 3 6 .6 2 3 .8 7 .5 8 8 8 8 8 SSSSBSSS s s s e e s e 8 8 8 8 8 8 8 s s e s s s : G r a y lin g B lock v DCFE DCAL 2838 962 3281 1000 2832 1008 2008 558 1134 133 AOFE AOAL 1135 816 1198 1257 790 1475 410 7 44 253 207 NPFE NPAL 770 928 987 1431 564 1197 286 668 1 10 167 EXK EXMG EXNA EXAL EXCA 3 .0 1 0 14 .4 8 3.2 5 6 .6 1 8.5 8.9 8 .3 4 3.8 1 .1 6 1.4 3 .7 6 . 3 2 5.8 1 .3 2 1.9 2 .5 3 .9 7 .8 1 .1 1 4.9 2 .9 .7 4.7 .5 3 0.7 s a e e e s s e e e e 18888888 K P C S C SBCBBB 182 S e r ie s : G ray lin g B l o c k : VI D a t e S a m p l e d : S e p t e m b e r 5 , 1 9 8 5 L o c a t i o n : S e c t i o n 2 , T17N R14W, L a k e C o u n t y , M i c h i g a n 300* n o r t h a n d 2 9 6 0 1 e a s t o f s o u t h w e s t s e c t i o n c o r n e r F o r e s t C over: b la c k oak and ja c k p i n e S t a n d A g e ( y e a r s ) : 61 B a s a l A r e a a t B i t ( f t 2 a c r e " 1 ) : 100 S a m p l e d B y: N e i l W. M a c D o n a l d P e d o n D e s c r i p t i o n - G r a y l i n g B l o c k VI A / E - 0 t o 7 cm; 10YR 2 / 1 s a n d ; p a l e s a n d g r a i n s m i x e d t h r o u g h o u t ; w e a k f i n e g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; many f i n e a n d medium r o o t s ; c l e a r s m o o th b o u n d a r y ( 1 6 1 0 ) . Bwl - 7 t o 22 cm; 7 . SYR 3 / 4 s a n d ; w e a k c o a r s e g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; man y f i n e , m e d i u m , a n d l a r g e r o o t s ; c l e a r sm ooth b o u n d a ry (1 6 2 0 ). Bw2 - 2 2 t o 55 cm; 7 . 5 Y R 4 / 4 s a n d ; w e a k c o a r s e g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; many f i n e , m e d i u m , a n d l a r g e r o o t s ; <1% g r a v e l ; c l e a r s m o o t h b o u n d a r y ( 1 6 3 0 ) . BC - 55 t o 98 cm; 10YR 5 / 4 s a n d ; s i n g l e g r a i n ; l o o s e ; few fin e a n d medium r o o t s ; 1% f i n e g r a v e l ; c le a r w a vy boundary (1640). C - 98 t o 1 6 5 c m ; 10YR 6 / 4 s a n d ; s i n g l e g r a i n ; l o o s e ; few fin e ro o ts; 1% f i n e gravel (1650). Auger sam ple in d ic ate d n o n o t i c e a b l e e f f e r v e s c e n c e f r o m 165 t o 330 cm (not sam p led ). T a b l e B .7 A n a l y t i c a l D a t a - G r a y l i n g B l o c k VI B 6L B & :b s b s b b SN 1610 1620 1630 1640 1650 HT 7 .3 1 4 .7 3 3 .2 4 2 .8 6 7.0 BD 1 .1 9 2 1 .4 7 2 1 .5 2 0 1 .6 5 8 1 .6 0 4 SN 1610 1620 1630 1640 1650 PH20 4 .3 3 5 .2 2 5 .5 9 5 .4 4 5 .7 7 PHCA 3 .6 0 4 .5 5 4 .7 3 4 .88 4 .98 B B B C B B lE & K B S S S E E S S S B B iS B B B C C B S B B B C C e e B ^ B C B B C B S E S C B !E S S E S SADS EXTS 2 .5 -4 .3 1 2.9 5 .4 1 0.6 4 .3 2 .8 1 .7 .8 1 .1 %0RGC 2 .8 2 2 .6 6 2 .273 .051 .024 EXTP 6. 1 23. 8 63. 6 38. 7 14. 8 DCFE DCAL 2252 747 2523 1533 1963 1264 743 416 483 171 AOFE 1233 1175 669 156 74 EXMG EXNA 1 2 .7 2 .5 2 .2 1 .0 1 .5 .7 .2 .4 .6 .7 AOAL 1023 1879 1609 703 255 EXCA NPFE 1067 1063 455 141 82 EXK n o .i :2 7 . 1 2 2 .5 1 6 .7 2 .7 3 .4 8 .8 4 .5 1 .5 1 .9 NFAL 1006 1954 1141 444 239 EXAL :1 5 4 . 9 4 7.5 1 8.9 4.3 2 .6 □ □ C O B B eE B B B B tS S C B E ; B B B B B B B B B 3 B B B B B B 1B B B B B S e r ie s : G rayling B lock: V II D a te S a m p le d : J u l y 1 5 , 1985 L o c a t i o n : S e c t i o n 2 6 , T27N RBW, K a l k a s k a C o u n t y , M i c h i g a n 3 0 0 ' s o u th and 3 0 0 ' w est o f n o r t h e a s t s e c t i o n c o rn e r F o r e s t C over: ja c k p in e S t a n d Age ( y e a r s ) : 46 B a s a l A r e a a t P i t ( f t 2 a c r e - 1 } : 100 S a m p l e d B y: N e i l W. M a c D o n a l d a n d D o r e e n C . M a c D o n a l d Pedon D e s c r i p t i o n - G r a y lin g B lock V II A /E - 0 t o 3 cm; 10YR 2 / 1 sand; m oderate m e d iu m g ran u lar stru c tu re ; very friab le; many f i n e and m e d iu m r o o t s ; a b r u p t sm ooth b o u n d a ry (1 7 1 0 ). Bwl - 3 t o 1 8 cm; 10YR 3 / 3 s a n d ; w e ak m e d i u m g r a n u l a r stru c tu re ; very friab le; man y f i n e a n d m e d i u m ro o ts; 1% g r a v e l ; c l e a r wavy b o u n d a r y ( 1 7 2 0 ) . Bw2 - 1 8 t o 49 cm; 7 . 5 Y R 4 / 6 s a n d ; w e ak c o a r s e g r a n u l a r stru c tu re ; very f r i a b l e ; common f i n e a n d m e d i u m r o o t s ; 1% g r a v e l ; c l e a r wavy b o u n d a r y ( 1 7 3 0 ) . BC - 49 t o 1 3 0 cm; 10YR 5 / 6 s a n d ; w e ak m e d i u m g r a n u l a r stru c tu re ; very f r i a b l e ; common f i n e r o o t s ; 1-3% g rav el; c l e a r wavy b o u n d a r y ( 1 7 4 0 ) . C - 130 t o 175 cm; 10YR 7 / 4 s a n d ; s i n g l e g r a i n ; l o o s e ; f e w m ed ium a n d l a r g e r o o t s ; f e w f a i n t 7 , SYR 5 / 4 s t a i n s ; 1-3% g ra v e l (1750). A u g e r s a m p l e f o u n d n o e f f e r v e s c e n c e f r o m 175 t o 340 cm ( n o t s a m p l e d ) . N ote: what ap p aren tly was a d e g r a d e d E h o r i z o n was e v id e n t in p a r t s o f Bwl h o r i z o n ( n o t sam p led ); d ep th of so lu m was g r e a t e r t h a n t y p i c a l f o r t h e G r a y l i n g s e r i e s . T a b le B .8 A n a l y ti c a l D ata SN 1710 1720 1730 1740 1750 HT 3 .3 1 4 .8 3 0 .5 81.0 4 5 .3 BD 1.2 02 1 .3 2 2 1 .4 4 2 1 .5 3 2 1.5 9 8 SN 1710 1720 1730 1740 1750 PH20 4 .5 3 6 .0 7 5 .1 7 5 .2 1 6.17 PHCA 3 .82 5 .1 7 4 .6 6 4 .7 5 5 .0 4 SAD5 EXTS -5 .9 2 .9 6 .5 3 .0 5 .2 2 8.2 2 .6 9 .1 2 .0 .4 %ORGC 2.5 4 6 .406 .226 .083 .026 EXTP 9 .6 37.3 17.2 1 6 .6 4 .5 G r a y lin g B lock V II DCFE DCAL 1877 441 2616 1290 2215 985 1173 455 665 112 AOFE AOAL 727 4 13 1083 1625 693 1 0 8 5 263 81 8 135 136 EXMG EXNA 26 .4 2 .8 5 .9 1 .0 .9 1 .5 .4 .4 3 .2 1 .9 EXCA 237.7 1 2 6 .1 9 .2 4 .2 1 5 .7 NPFE NPAL 584 515 717 1341 437 1046 202 698 80 1 6 3 EXK 55.7 11.0 4 .1 2 .4 3 .6 EXAL 4 5 .1 8 .4 1 7 .4 6 .5 1 .3 184 S e r i e s : K alkaska B lock: I D a t e S a m p le d : J u l y 1 1 , 1985 L o c a t i o n : S e c t i o n 2 3 , T35N R l w , C h e b o y g a n C o u n t y , M i c h i g a n 2530* n o r t h a n d 100* e a s t o f s o u t h w e s t B e c t i o n c o r n e r F o r e s t C o v e r: r e d o a k , r e d m a p le , m ixed n o r t h e r n h ard w o o d s S t a n d Age ( y e a r s ) : 6 5 B a s a l A r e a a t P i t ( f t 2 a c r e " 1 ) : 110 S a m p l e d B y: N e i l W. M a c D o n a l d Pedon D e s c r i p t i o n - K a lk a sk a B lock I A - 0 to 5 cm; N 2 / 0 loam y s a n d ; m o d e r a t e medium g ran u lar stru c tu re ; very friab le; m any f i n e a n d medium r o o t s ; a b r u p t wavy b o u n d a r y ( 2 1 1 0 ) . E - 5 t o 32 cm; 7 . SYR 7 / 2 l o a m y s a n d ; w e ak m e d iu m gran u lar s tru c tu re ; very f r ia b le ; man y f i n e , m edium , and common l a r g e r o o t s ; a b r u p t i r r e g u l a r b o u n d a r y ( 2 1 2 0 ) . B h l - 3 2 t o 43 cm; SYR 2 . 5 / 2 loam y sand; m oderate medium s u b a n g u l a r b l o c k y s t r u c t u r e ; f i r m ; 30% o r t s t e i n ; f e w r o o ts ; c le a r i r r e g u l a r boundary (2130). Bh2 - 43 t o 86 cm; 7 . SYR 3 / 4 s a n d ; m o d e r a t e m e d iu m su b an g u lar blocky s tr u c tu r e ; f i r m ; 30% o r t s t e i n ; f e w m e d iu m r o o ts ; g ra d u a l i r r e g u l a r boundary (2 14 0). Bs - 86 to 115 cm; 7.5YR 4 / 6 sand; w e ak m e d iu m subangular b lo ck y s t r u c t u r e ; friab le; 15% o r t s t e i n ; few medium r o o t s ; c l e a r i r r e g u l a r b o u n d a r y ( 2 1 5 0 ) . BC - 1 1 5 t o 1 5 2 cm; 10YR 6 / 3 s a n d ; w e ak m e d i u m g r a n u l a r s t r u c t u r e ; f r i a b l e ; few r o o t s ; c l e a r wavy b o u n d a r y ( 2 1 6 0 ) . C - 1 5 2 t o 1 6 7 cm; 10YR 6 / 3 s a n d ; s i n g l e g r a i n ; l o o s e ; few ro o ts (2170). A uger sam ple in d icated slig h tly e f f e r v e s c e n t s a n d a t 3 0 5 cm ( n o t s a m p l e d ) . T a b le B .9 A n a l y t i c a l D a ta - K alkaB ka B lock I ssssesss BT 5.3 2 6 .7 1 1 .0 4 2 .7 29 .3 37.0 15.0 BD 1 .1 4 6 1 .5 1 1 1 .4 9 6 1 .5 0 5 1 .5 3 9 1 .6 0 6 1 .5 6 4 SN 2110 2120 2130 2140 2150 2160 2170 PH20 4 .1 1 4 .4 0 5 .80 5 .6 2 5 .66 5 .95 6 .12 PHCA 3 .3 5 3 .7 0 4 .80 4 .6 6 4 .6 8 4 .8 3 5 .0 1 s e s s s iB B B C C B B B C S S S •S m S B B S SN 2110 2120 2130 2140 2150 2160 2170 IB E ie C C B SADS EXTS -3 .5 2 .4 .8 .1 5 .0 .7 2 .5 1 0.3 1 .8 7 .6 .2 2 .1 .6 .1 %ORGC 2 .3 3 6 .086 .666 .449 .206 .083 .036 EXTP 11. 7 1 . 1 13. 1 12. 5 15. 7 8. 5 6. 8 = B C B B DCFE DCAL 1016 231 547 56 2636 1511 1965 1429 1600 901 680 308 520 2 03 AOFE 227 22 1903 1230 738 154 103 EXMG EXNA 3 8 .7 5 .8 2 .5 2 .4 2 6 .0 1 .3 5 .4 1 .0 3 .3 1 .9 2 .3 .8 2 .0 2 .1 AOAL 191 79 1903 2661 1408 342 355 EXCA 2 0 1 .5 2 0 .3 2 7 2 .9 5 5.6 2 8 .9 2 4 .4 2 9 .2 B c s e c c s s s i NPFE NPAL 246 232 22 56 1858 2146 764 1533 502 986 179 434 124 351 EXK i6 0 . 2 3 .6 !1 1 . 1 8 .6 7 .8 4 .8 4 .3 EXAL 4 0 .8 2 3 .6 21.9 3 2 .1 2 0 .5 6 .5 4 .2 :sss& ? 185 S e r i e s : K alkaska B lock: I I D a t e S a m p l e d : J u l y 1 7 , 1 9 85 L o c a t i o n : S e c t i o n 2 0 , T25N R9W, G r a n d T r a v e r s e C o u n t y , MI. 2 5 0 1 s o u t h and 4 0 0 1 w e s t o f n o r t h e a s t s e c t i o n c o r n e r F o r e s t C o v er: w h ite p i n e , r e d o a k , r e d m ap le, s u g a r m aple S t a n d Age ( y e a r s ) : 6 5 + B a s a l A r e a a t P i t ( f t 2 a c r e - 1 ) : 130 S a m p l e d By: N e i l W. M a c D o n a ld a n d D o r e e n C. M a c D o n a l d Pedon D e s c r i p t i o n - K a lk a sk a Block I I E - 0 to 10 cm; 10YR 4 / 2 l o a m y sand; weak medium gran u lar s tru c tu re ; friab le; many f i n e , medium, and l a r g e r o o t s ; c l e a r wavy b o u n d a r y ( 2 2 1 0 ) . Bh - 10 t o 29 cm; 7 .5 Y R 3 / 4 l o a m y s a n d ; weak c o a r s e g ran u lar s tru c tu re ; very f r i a b l e ; 10% o r t s t e i n ; many f i n e a n d medium r o o t s ; 5% g r a v e l a n d c o b b l e s ; c l e a r wavy b o u n d a r y (2220) . Bs - 29 t o 67 cm; 7 . SYR 5 / 4 l o a m y s a n d ; m o d e r a t e medium su b an g u lar blocky s t r u c t u r e ; friab le; 10% o r t s t e i n ; common fin e a n d m edium r o o t s ; 5% g r a v e l a n d c o b b l e s ; c l e a r wavy boundary (2230)• BC - 67 t o 137 cm; 10YR 4 / 4 l o a m y s a n d ; weak c o a r s e g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; f e w f i n e r o o t s ; 5% g r a v e l ; few t h i n 7 .5 Y R 4 / 4 s a n d y loam l a m e l l a e ; clear sm ooth boundary (2240). C - 137 t o 17 8 cm; 10YR 6 / 3 l o a m y s a n d ; sin g le grain ; loose; f e w medium r o o t s ; t h i n 7 .5 Y R 4 / 4 s a n d y l o a m l a m e l l a e at ap proxim ately 10 cm i n t e r v a l s (2250). A uger sam ple i n d i c a t e d no e f f e r v e s c e n c e t o 3 45 cm ( n o t s a m p l e d ) , T a b l e B . 10 A n a l y t i c a l D a ta - K a lk a s k a Block I I B s e G ;c B & & & & s & s s s i;s c c s s s s s is e E c c :c c c tic B c e B S B & e 5 « s e p s c B B e e s s !B s & M SN 2210 2 22 0 2 23 0 2 24 0 2 25 0 HT 10.3 1 9.2 3 7.8 6 9.5 41.2 BD 1.358 1.194 1.4 8 5 1.6 0 8 1.5 8 5 SN 221 0 222 0 2230 2240 225 0 PB20 4.75 5.7 5 6.1 2 6.11 6.44 PHCA 3.8 0 4.8 4 5.02 4.93 5.27 ssESscrs BBBBBtS SADS :EXTS .8 .6 14.2 2 .3 5.3 .8 2 .5 .3 .3 .9 %0RGC .480 .779 .150 .030 .028 EXTP 7. 1 24. 3 10. 7 5. 9 4. 0 S7S2SS5C3B1BBBBB DCFE DCAL 1 51 7 198 4 64 6 2 4 2 0 2 1 2 1 74 0 1 4 06 2 75 7 7 9 117 ,AOFE AOAL 3 83 26 4 34 3 7 3 8 8 5 502 1046 267 390 1 4 8 133 EXMG EXNA 10.4 1 .7 24.0 2 .6 13.3 2.0 11.1 1.9 8 .2 .9 EXCA 9 7.4 228.6 85.1 46.8 37.7 NPFE NPAL 343 3 25 2 0 6 8 2215 453 10 29 3 18 555 169 249 EXK 1 0.0 25.4 12.9 6 .4 4 .2 EXAL 61.0 32.4 12.4 4.4 .5 186 S e r i e s : K alkaska B lock: I I I D a te S am pled: J u l y 2 4 , 1985 L o c a t i o n : S e c t i o n 2 9 , T31N R 2E , M o n t m o r e n c y C o u n t y , M i c h i g a n 3 7 0 0 ' n o r t h and 3 2 0 0 ' w e st o f s o u t h e a s t s e c t i o n c o r n e r F o r e s t C o v e r: r e d m a p le , s u g a r m a p le , and b l a c k oak S t a n d Age ( y e a r s ) : 63 B asal A rea a t P i t ( f t 2 a c r e " 1 ) : 50 S a m p l e d B y : N e i l w. M a c D o n a l d Pedon D e s c r i p t i o n - K a lk a s k a B lock I I I E - 0 to 2 5 cm; 10YR 6 / 2 l o a m y s a n d ; weak medium g ran u lar s tru c tu re ; very f r ia b le ; man y f i n e , m edium , and l a r g e r o o t s ; 1-3% g r a v e l ; c l e a r i r r e g u l a r b o u n d a r y ( 2 3 1 0 ) . Bh - 25 t o 48 cm; SYR 3 / 3 t o 7 . SYR 3 / 4 l o a m y sand; m oderate medium s u b a n g u l a r b l o c k y s t r u c t u r e ; firm ; 2 0 -3 0% o rtstein ; common f i n e a n d medium r o o t s ; c le ar irreg u lar boundary (2 32 0). Bs - 48 t o 7 6 cm; 7 . SYR 4 / 6 l o a m y s a n d ? m o d e r a t e m e d iu m subangular b lo ck y s t r u c t u r e ; very firm ; 15-20 % o rtstein ? common f i n e a n d medium r o o t s ; 1-3% g r a v e l ; gradual w a vy boundary (2330). BC - 76 t o 1 5 4 cm; 10YR 5 / 4 l o a m y s a n d ; weak coarse g ran u lar stru c tu re ; very f r i a b l e ; f e w m ediu m r o o t s ; c l e a r sm ooth b o u n d a ry ( 2 3 4 0 ) . B t - c u m u l a t i v e 7 cm t h i c k n e s s , f a i n t t o 6 cm t h i c k 5YR 4 / 6 Bandy loam l a m e l l a e p r e s e n t i n BC h o r i z o n ; w eak m ediu m s u b a n g u l a r blo ck y stru c tu re ; firm ; c le ar sm ooth d is c o n tin u o u s boundary (2350)• C - 1 5 4 t o 1 8 0 cm; 7.5YR 6 / 4 lo am y sand; sin g le g rain ; lo o se; few medium r o o t s ; fe w t h i n b a n d s o f Bt m a te ria l t h a t d isap p ear w ith d ep th (2360). A u g e r s a m p l e i n d i c a t e d 7 . SYR 6 / 4 c a l c a r e o u s l o a m y s a n d a t 3 3 0 cm ( n o t s a m p l e d ) . T able B . l l A n a l y t i c a l D a ta - K a lk a s k a B lock I I I b e ic & e S C B B B S B C B B B SN 2310 2320 2330 2340 2350 2360 HT 2 4 .7 2 3 .3 2 7.7 7 1 .0 7 .0 26.3 BD 1.4 8 5 1.326 1 .5 3 2 1 .6 5 9 1 .7 8 5 1,6 5 7 SN 2310 2320 2330 2340 2350 2360 PH20 4.31 5.43 5 .5 0 5.79 5.48 6.02 PHCA 3 .5 4 4.41 4 .5 0 4.61 4.53 4.82 SADS .EXTS .4 .4 9 .7 1 .4 6 .4 1.6 2.1 .4 6 .9 .3 1 .3 .2 %0RGC .252 .440 .120 .049 .078 .031 EXTP 3 .3 2 9 .7 6 .4 6 .4 7 .0 6 .4 DCFE DCAL 761 67 3271 1291 1432 66 7 746 286 2089 40 5 696 186 EXMG EXNA 6 .5 1 .4 1 1 .7 1 .4 3 .9 1 .3 3 .8 .7 6 0.9 3 .4 9 .5 1 .5 AOFE AOAL 1 24 104 1970 1445 917 1117 285 577 658 646 176 233 EXCA 3 1 .1 99.9 33.0 28.7 2 7 7 .1 5 3 .7 5 B S C C C C C B B C i B C B S B S B S f f S S S S i E C ] R B R B B C c b & b b b b b c b b :e c c s s s c s e ; NPFE NPAL 60 77 1910 1737 715 85 9 2 71 499 223 263 1 53 295 EXK 1 3 .2 21.0 9 .2 7 .2 4 6.9 10.6 EXAL 2 9 .4 5 2 .2 2 3 .4 1 2 .3 2 6 .6 5 .3 187 S e c ie s : K alkaska B l o c k : IV D a t e S a m p le d : A u g u s t 1 6 , 1985 L o c a t i o n : S e c t i o n 1 , T27N R4W, C r a w f o r d C o u n t y , M i c h i g a n 1 5 0 0 * s o u t h a n d 170* e a s t o f n o r t h w e s t s e c t i o n c o r n e r F o r e s t C over: s u g a r m aple, b e e c h , and w h ite b i r c h S t a n d Age ( y e a r s ) : 7 0 B a s a l A r e a a t P i t ( f t 2 a c r e - 1 ) : 110 S a m p l e d B y: N e i l W» M a c D o n a l d P e d o n D e s c r i p t i o n - K a l k a s k a B lo c k IV A - 0 t o 4 cm; 10YR 2 / 1 l o a m y s a n d ; w e ak f i n e g r a n u l a r stru ctu re; very f r ia b le ; man y f i n e a n d m e d i u m r o o t s ; c l e a r wavy b o u n d a r y ( 2 4 1 0 ) . E - 4 t o 1 8 cm; 10YR 5 / 2 l o a m y s a n d ; w eak f i n e g r a n u l a r stru c tu re ; very f r i a b l e ; man y f i n e , m edium , and few l a r g e r o o t s ; 3% g r a v e l ; c l e a r w a v y b o u n d a r y ( 2 4 2 0 ) . B h l - 18 t o 38 cm; SYR 3 / 3 l o a m y s a n d ; m o d e r a t e m edium su b a n g u lar b lo ck y s t r u c t u r e ; f r i a b l e to firm ; frag m en ts of o rtstein in low er p a r t ; man y f i n e a n d m e d i u m ro o ts; 3-5% g r a v e l and c o b b le s ; g r a d u a l i r r e g u l a r b o u n d a ry (2 4 3 0 ). Bh2 - 38 t o 53 cm; 7.5YR 3 / 2 s a n d ; m oderate m e d iu m su b a n g u lar b lo ck y s t r u c t u r e ; f r ia b le to firm ; l a r g e chunks o f o r t s t e i n i n Bh2 t o n g u e s ; common f i n e a n d m e d i u m r o o t s ; 3 5% g r a v e l ; c l e a r i r r e g u l a r b o u n d a r y ( 2 4 4 0 ) . Bs - 53 t o 95 cm; 7 . 5 Y R 4 / 4 s a n d ; w e ak c o a r s e g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; few f r a g m e n t s o f o r t s t e i n ; few f i n e a n d m e d i u m r o o t s ; 3-5% g r a v e l ; c l e a r wavy b o u n d a r y ( 2 4 5 0 ) . BC - 9 5 t o 153 cm; 10YR 4 / 4 s a n d ; w e ak c o a r s e g r a n u l a r stru c tu re ; very friab le; fe w f i n e an d medium r o o t s ; 3% g r a v e l ; c l e a r wavy b o u n d a r y ( 2 4 6 0 ) . C - 1 5 3 t o 1 8 0 cm; 10YR 5 / 4 s a n d ; s i n g l e g r a i n ; l o o s e ; few medium r o o t s ; 1-3% f i n e g r a v e l ( 2 4 7 0 ) . Auger sam ple i n d i c a t e d n o n - e f f e r v e s c e n t s a n d t o 340 cm ( n o t s a m p l e d ) . Analytical Data - See Table B.12, page 189. 18B S e r ie s : K alkaska B l o c k : V D a t e S a m p le d : A u g u s t 1 9 , 1985 L o c a t i o n : S e c t i o n 3 4 , T24N R7W, M i s s a u k e e C o u n t y , M i c h i g a n 2900' n o r t h and 1150' e a s t o f so u th w e st s e c t i o n c o rn e r F o r e s t C o v e r: s u g a r m aple and re d m aple S t a n d Age ( y e a r s ) : 61 B a s a l A r e a a t P i t ( f t 2 a c r e - 1 ) : 1 00 S a m p l e d B y: N e i l W. M a c D o n a l d Pedon D e s c r i p t i o n - K a lk a sk a B lock v A - 0 t o 5 cm; 10YR 2 / 1 sand; weak fin e g ran u lar stru c tu re ; very f r ia b le ; man y f i n e a n d m e d i u m r o o t s ; some m i x i n g w i t h E a p p a r e n t ; c l e a r wavy b o u n d a r y ( 2 5 1 0 ) . E - 5 t o 26 cm; 5YR 5 / 2 t o 7 . SYR 5 / 2 s a n d ; w e ak m e d iu m g ran u lar stru c tu re ; very friab le; man y f i n e and m e d iu m r o o t s ; 1% g r a v e l ; a b r u p t i r r e g u l a r b o u n d a r y ( 2 5 2 0 ) . B h l - 26 t o 37 cm; 5YR 3 / 2 s a n d ; w e ak m e d i u m s u b a n g u l a r b lo ck y stru c tu re ; friab le; 15-20 % o r ts te in o ccu rrin g in t o n g u e s ; 1-2% g r a v e l ; c l e a r i r r e g u l a r b o u n d a r y ( 2 5 3 0 ) . Bh2 - 37 t o 56 cm; 7 . SYR 3 / 4 s a n d ; w e ak c o a r s e g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; some o r t s t e i n p r e s e n t ; 1- 2 % g r a v e l ; c le a r i r r e g u l a r boundary (2540). Bs - 56 t o 76 cm; 7 . 5 Y R 4 / 4 s a n d ; w e ak c o a r s e g r a n u l a r stru c tu re ; v e r y f r i a b l e ; common f i n e a n d m e d i u m r o o t s ; 1 - 2 % g rav el; Bs p r e s e n t larg e ly betw een Bh t o n g u e s ; c le ar i r r e g u l a r boundary (2 5 5 0 ). BC - 76 t o 1 2 9 cm; 10YR 5 / 4 s a n d ; v e r y w e ak m e d iu m g r a n u l a r s t r u c t u r e ; v e ry f r i a b l e ; t h i n g r a v e l bands in low er p art; common f i n e a n d few medium r o o t s i n gravel bands; c l e a r sm ooth b o u n d a ry (2 5 6 0 ), C - 1 2 9 t o 18 7 cm; 10YR 7 / 4 s a n d ; s i n g l e g r a i n ; l o o s e ; few f i n e a n d medium r o o t s ( 2 5 7 0 ) . A uger sam ple in d icated s l i g h t l y e f f e r v e s c e n t s a n d a t 2 7 5 cm; n o n - e f f e r v e s c e n t sand b e l o w t o 3 4 5 cm ( n o t s a m p l e d ) . Analytical Data - See Table B.13, page 189. 189 T a b le B .12 A n a l y t i c a l D a t a - K a l k a s k a B lo ck IV B&SMIBBSCBBSeaSBB: BBBBBBBBB CEBSfiCfi iEXTS DCFE DCAL AOPE AOAL NPFE NPAL 489 4 .3 526 1772 432 552 447 423 310 278 379 1335 259 .4 2316 2432 4211 2081 :1 9 04 2 4 6 8 1.2 2524 1715 1045 2072 1.6 888 2443 493 1 3 6 9 1433 870 314 1198 .6 921 373 1196 4 27 237 575 .2 2 30 1 2 0 7 4 6 13 0 1 1 3 1 3 3 .2 BSBSBBB! SN 2410 2420 2430 2440 2450 2460 2470 HT 3 .8 1 4 .2 2 0.3 1 4 .8 41.8 58.3 26.7 BD 1.0 9 9 1.4 3 9 1.3 8 3 1.5 1 9 1 .5 8 5 1.5 9 5 1.6 1 1 SN 2410 2420 2430 2440 2450 2460 2470 PH20 5 .2 2 4.9 3 5 .74 5 .80 5.87 5.78 6.12 PHCA 4 .6 0 4.00 4.70 4.67 4 .7 0 4 .6 6 4 .9 5 ssscec e cc cc c SADS -8 .7 .8 1 1 .3 8 .9 4 .9 2.6 .6 %ORGC 2.6 5 7 .530 .786 .414 .248 .077 .033 EXTP 11. 6 3. 2 13. 6 12. 8 8 . 9 5. 4 2 .3 EXMG EXNA 5 5 .5 1 .7 7 .9 1 .1 12.1 1.8 5 .5 1 .5 4 .4 .5 3 .0 1 .6 2 .3 .7 EXCA 656 .5 112 .4 22 1 .9 108 .8 8 0 .0 4 6 .6 3 1 .8 EXK 5 0 .1 7 .7 12.8 1 1 .9 1 3.8 9 .0 3 .9 EXAL 4 .9 39.1 35 .5 36 .2 24.5 13.3 2,1 SSSSSSCSS!SB S S B a S B B B B S S B B B n iB& & SeB BB B & B B BnSBSBB & T a b l e B .13 A n a l y t i c a l D a ta - K a lk a s k a B lock V rBBBBBC asasBBEE;BSBBEB BB S& SSS! sss& a SN 2510 2520 2530 2540 2550 2560 2570 HT 4 .8 20.8 10.5 19.2 19.5 52.7 5 7 .5 BD 1.2 1 5 1.4 99 1.4 78 1.4 7 4 1.5 2 5 1 .6 3 7 1.5 9 9 SN 2510 2520 2530 2540 2550 2560 2570 PH20 4.3 5 4.39 5,05 5.16 5.14 5 .4 2 5 .5 2 PHCA 3 .5 9 3 .7 2 4.22 4.44 4.46 4 .6 5 4 .6 5 b s c &s s SADS :EXTS 3 .0 -5 .6 .7 -.4 1.2 7 .1 1 .3 9 .1 .5 5.2 2 .5 .3 1 .3 .2 %ORGC 2.4 9 1 .4 5 6 .5 7 7 .5 2 8 .2 8 0 .089 .070 EXTP 9 .5 3 .4 1 3 .4 1 8 .7 1 8 .3 12.1 7 .4 BSBBBB9easts sseb DCFE DCAL 1319 183 9 66 155 2598 1174 2113 1908 964 1264 441 1034 273 556 BBBBCSE&&:S S 5 5 B B !SBBSB AOFE 271 225 1447 1088 491 205 134 EXMG EXNA 28 . 6 2.2 8 5 .0 4 .6 1. 3 2 .4 1. 3 1.2 1.1 .4 3 .4 7 B 8B S B E AOAL 157 205 1269 2201 1101 659 5 14 EXCA 25 8 .3 3 8 .4 49.2 2 3 .6 12.0 6.1 5 .8 NPFE 240 211 1708 1210 5 18 153 88 EXK 4 9 .3 10.8 8.9 6.2 4 .0 2.6 3 .2 NPAL 105 179 1615 2192 1105 516 322 EXAL 1 8 .0 3 3 .5 6 4 .9 4 2 .7 25 .6 11.0 8 .7 G SC 2SSts as&CSESSJessas&sssjBBBB& 190 S e r ie s : K alkaska B l o c k : VI D a t e S a m p l e d : S e p t e m b e r 4 , 1 9 6 5 L o c a t i o n : S e c t i o n 5 , T20N R11W, L a k e C o u n t y , M i c h i g a n 880' s o u th and 4 8 0 ' e a s t o f n o rth w e s t B e c tio n c o rn e r F o r e s t C over: re d p in e p l a n t a t i o n S t a n d Age ( y e a r B ) : 4 0 B a s a l A r e a a t P i t ( f t 2 a c r e - 1 ) : 140 S a m p l e d B y: N e i l W. M a c D o n a l d P e d o n D e s c r i p t i o n - K a l k a s k a B l o c k VI A - 0 t o 5 cm; N 2 / 0 loam y s a n d ; w e ak f i n e g ran u lar stru c tu re ; v e r y f r i a b l e ; common f i n e a n d m e d i u m r o o t s ; so m e charcoal present a t O/A i n t e r f a c e ; so m e d i s r u p t i o n of A ho rizo n due to furrow ing f o r tree p lan tin g ; c le ar wavy boundary (2610). E - 5 t o 17 cm; 10YR 5 / 2 s a n d ; w e ak m e d i u m g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; common f i n e a n d m ed iu m r o o t s ; l a r g e dead ro o ts present i n som e p a r t s o f E; c le ar irreg u lar boundary (2620). Bh - 17 t o 40 cm; 5YR 2 . 5 / 2 t o 7 . 5 Y R 3 / 4 sand; weak m e d i u m g r a n u l a r s t r u c t u r e ; f r i a b l e ; 5% o r t s t e i n o c c u r r i n g i n c h u n k s i n l o w e r Bh; c l e a r wavy b o u n d a r y ( 2 6 3 0 ) . Bs - 40 t o 59 cm; 7.5YR 4 / 6 sand; w e a k m e d iu m su b an g u lar b lo ck y stru c tu re ; friab le; 5% o r t s t e i n ; few medium r o o t s ; c l e a r i r r e g u l a r b o u n d a r y ( 2 6 4 0 ) . BC - 59 t o 9 1 cm; 10YR 5 / 4 s a n d ; w e ak c o a r s e s u b a n g u l a r blo ck y s t r u c t u r e ; very f r i a b l e ; fe w medium r o o t s ; gradual i r r e g u l a r boundary (2650). C - 9 1 t o 1 6 5 cm; 10YR 6 / 4 s a n d ; sin g le g ra in ; loose; few f a i n t b l o t c h e s , sta in s, and l i n e s o f d a r k e r c o l o r ; few m ediu m a n d larg e ro o ts (2660). Auger sam ple in d ic ate d f a i n t l y e f f e r v e s c e n t s a n d f r o m 2 5 5 t o 3 2 5 cm ( n o t s a m p l e d ) • T a b l e B .14 A n a l y t i c a l D a t a ~ K a l k a s k a B l o c k VI QG3CSS SN 2610 2620 2630 2640 2650 2660 HT 4 .8 12.3 22.5 1 9.2 3 2 .0 7 4 .2 •BBEEBBB&CEEE BD SADS EXTS 1 .2 7 5 1.2 - 8.1 1.4 9 7 .5 .3 20.0 1 7 .8 1.3 2 9 1.4 78 1 2 .8 2 3 .0 1 .6 1 5 5 .7 4 .3 1.6 2 4 2 .9 1 .5 SN PH20 PHCA %0RGC EXTP 2610 4 .2 5 2 .4 6 0 3 .8 0 11.6 2620 4 .08 .460 3 .5 5 2.2 2630 4 .4 0 4 .98 .908 20.8 5 .0 8 .295 2640 4 .6 6 20.8 2650 4 .6 8 5 .07 .153 35.7 5 .14 2660 4 .7 8 2 0 .5 .027 BBS&SSBBBBSis s e ^ M s BBSBSB p e e s E C BBBBBSEBSBBBBBBBBBBB!B&BBSE!SSBSB DCFE DCAL AOFE AOAL NPFE NPAL 1623 474 561 51 1 528 465 868 17 2 178 318 1 47 223 4125 3674 2828 4863 1429 2674 1955 1810 1066 3431 2 18 1 0 5 3 878 5 84 296 1090 10 7 468 663 368 150 5 88 63 338 EXMG EXNA 2 4 .6 1 .3 2 .7 .9 1 .7 1 .0 .6 .6 .3 .4 .1 .5 EXCA 287.9 3 4 .3 22.0 6 .7 4 .0 1 .4 EXK EXAL 15 1 . 5 6 9 .2 7 .5 6 2 .1 8.8 8 1 .1 5 .3 2 5.4 1 0.9 2 .4 6.1 2 .3 EBBBBB1SBBS B 191 S e r i e s : M ontcalm B lock: I D a t e S am p led : J u l y 2 3 , 1985 L o c a t i o n : S e c t i o n 3 5 , T33N R1W, C h e b o y g a n C o u n t y , M i c h i g a n 1 0 0 0 1 s o u th and 2 0 0 ' e a s t o f n o r th w e s t s e c t i o n c o r n e r F o r e s t C ov er: s u g a r m aple and b e ec h S t a n d Age ( y e a r s ) : 7 0 B a s a l A r e a a t P i t ( f t 2 a c r e - 1 ) : 80 S a m p l e d B y : N e i l W. M a c D o n a l d Pedon D e s c r i p t i o n - M ontcalm B lo ck I E - 0 to 12 cm; 10YR 4 / 2 l o a m y s a n d ; w e ak m ed iu m g ran u lar s tru c tu re ; very f r ia b le ; many f i n e , m edium , and l a r g e r o o t s ; c l e a r wavy b o u n d a r y ( 3 1 1 0 ) . Bh - 12 t o 29 cm; SYR 3 / 3 l o a m y s a n d ; m o d erate c o a rs e su b a n g u lar b lo ck y s t r u c t u r e ; f r ia b le to very firm ; 10-25% c e m e n t e d o r t s t e i n ; common f i n e , m e d i u m , a n d f e w l a r g e r o o t s ; c l e a r wavy b o u n d a r y ( 3 1 2 0 ) . Bs - 29 t o 46 cm; 7 . SYR 4 / 4 l o a m y s a n d ; m o d e r a t e m edium su b a n g u lar b lo ck y s t r u c t u r e ; friab le; 10-2 5 % o r t s t e i n ; f e w f i n e a n d m ediu m r o o t s ; c l e a r w a v y b o u n d a r y ( 3 1 3 0 ) . E* - 46 t o 59 cm; 7 -SYR 5 / 4 l o a m y s a n d ; m o d e r a t e m edium subangular b lo ck y s t r u c t u r e ; firm ; few f i n e r o o t s ; c le ar wavy d i s c o n t i n u o u s b o u n d a r y ( 3 1 4 0 ) . B t - 59 t o 7 5 cm; 5YR 4 / 4 s a n d y loam ; weak m edium su b a n g u lar b lo ck y s t r u c t u r e ; f r i a b l e ; few f i n e r o o t s ; c l e a r w avy d i s c o n t i n u o u s b o u n d a r y ( 3 1 5 0 ) . E 1 6 B t - 7 5 t o 1 4 5 cm; 7 -SYR 6 / 4 l o a m y s a n d ; sin g le g rain ; lo o se (E ’); f e w t h i n b a n d s o f B t (3 cm t o t a l ) ; few f i n e a n d medium r o o t s ; a b r u p t s m o o th b o u n d a r y ( 3 1 6 0 ) . C - 1 4 5 t o 180 cm; 7 . SYR 7 / 4 s a n d t o l o a m y s a n d ; s i n g l e g rain ; lo o se; few f i n e a n d m ediu m ro o ts (3170). Auger s a m p l e i n d i c a t e d 10 cm t h i c k B t a t 2 3 0 cm; calcareo u s sand fro m 240 to 2 8 0 cm; c a l c a r e o u s c l a y below 280 cm (not sam p led )Analytical Data - See Table B.15, page 192. 192 T a b l e B .15 A n a l y t i c a l D a ta - M ontcalm B lo ck I CCCQS22SB BBCs e s s s b s e c s s s c ! BESSES s s s s s e e s b e s :E SSESSEES s e e e e e :SSSSE HT SADS :EXTS DCFE DCAL AOFE AOAL NPFE NPAL BD SN 1139 109 205 .8 177 1 15 1 07 1 2 .3 1 .4 7 5 - 2.6 3110 3 3 04 2 8 9 0 2 6 4 6 3 2 4 9 1 . 8 4 4 3 0 2 6 7 8 8 . 0 1 7 .3 1.406 3120 2 0 4 4 9 50 2 2 8 4 1 8 8 5 9 6 0 2 0 8 2 1.0 5 .7 3130 1 6 .8 1 .5 6 9 4 06 1 2 3 8 374 1302 1 3 .0 1 .5 6 6 3 .4 .5 1577 947 3140 526 1380 686 1.0 3051 899 3 77 5 .6 3150 1 9 .2 1 .6 2 1 234 545 166 111 172 1 16 .5 6 7 .3 1 .5 5 1 .1 3160 103 1 59 .2 585 130 94 2 0 7 .3 3 4 .0 1 .5 7 3 3170 SN 3110 3120 3130 3140 3150 3160 3170 esess EXCA EXAL EXK PH20 PHCA %0RGC EXTP EXMG EXNA 1 4.5 1 5 . 4 1 9 . 8 1 . 5 2 0 8 . 4 . 7 2 1 3 . 9 4 .6 3 3 .7 8 6 7.7 1 1 . 4 2 0 . 2 2 . 9 3 9 6 . 9 4 .49 1 3 .8 1.7 65 5 .3 8 6 0.7 5 .5 4 .3 1 .9 140.8 5 .4 6 1 7.5 .763 4 .47 2 9 .5 5 .0 2.2 .6 7 2 .3 7 .3 5 .6 0 .268 4.59 4 6.4 15.7 1 3 .8 3 .0 23 5 .0 .178 5 .1 4.54 5 .49 2 .4 1 .5 3 5 .2 3 .6 3 .4 2 .7 .044 4.95 6.10 1 .5 .4 33.3 1 .7 1 .9 .050 5.10 3 .9 6.25 e s s e s e ESEEEES 2 S S 2 2 S I BBSSSB EE SEE BESSES!BESSSSSSE S S S S S S I KZCSE 193 S e r i e s : M ontcalm B lock: I I D a te S a m p le d : J u l y 1 6 , 1985 L o c a t i o n : S e c t i o n 2 0 , T31N R5W, A n t r i m C o u n t y , M i c h i g a n 2 5 8 0 ' n o r t h a n d 2450* w e s t o f s o u t h e a s t s e c t i o n c o r n e r F o r e s t C over: s u g a r m ap le, b e e c h , and bassw ood S t a n d A ge ( y e a r s ) : 7 0 + B a s a l A r e a a t P i t ( f t 2 a c r e " 1 ) : 1 30 S a m p l e d B y: N e i l W. M a c D o n a l d a n d D o r e e n C . M a c D o n a l d Pedon D e s c r i p t i o n - M ontcalm B lo ck I I A - 0 to 5 cm; 10YR 2 / 1 loam y s a n d ; w eak m e d iu m g ran u lar stru c tu re ; friab le; m an y f i n e a n d m ediu m r o o t s ; c l e a r sm ooth b o u n d a ry (3 2 1 0 ). E - 5 to 25 cm; 10YR 4 / 2 loam y s a n d ; w eak coarse g ran u lar s tru c tu re ; f r i a b l e ; common f i n e , m e d i u m , a n d l a r g e r o o t s ; <1% g r a v e l ; a b r u p t w a v y b o u n d a r y ( 3 2 2 0 ) . Bh - 25 t o 44 cm; SYR 3 / 2 l o a m y s a n d ; m o d e r a t e m ed ium su b a n g u lar b lo ck y s t r u c t u r e ; f i r m ; common f i n e , m e d i u m , a n d l a r g e r o o t s ; c l e a r wavy b o u n d a r y ( 3 2 3 0 ) . Bs - 4 4 t o 83 cm; 7.5Y R 4 / 4 lo am y s a n d ; weak coarse su b a n g u lar b lo ck y s t r u c t u r e ; f r i a b l e ; few f i n e r o o t s ; c l e a r sm ooth b o u n d a ry (3 2 4 0 )• E' & B t - 83 t o 1 3 6 cm; 10YR 5 / 4 l o a m y s a n d ( E f ) and 7.5YR 5 / 4 s a n d y lo a m ( B t ) ; Bt in th in bands and p o ck ets; w e ak m ed ium s u b a n g u l a r b l o c k y s t r u c t u r e ; firm ; few fin e r o o t s ; c l e a r sm ooth b o u n d a ry (3 2 5 0 ). B t - 1 3 6 t o 157 cm; 7 . SYR 5 / 4 sandy loam ; m assive; f r i a b l e ; few f i n e r o o t s ; c l e a r sm o o th b o u n d a ry (3 2 6 0 ) . 2C - 157 t o 16 4 cm; 10YR 6 / 4 s i l t y c l a y l o a m ; m a s s i v e ; firm ; s tr o n g ly e ff e r v e s c e n t (3270). T a b l e B.16 A n a l y t i c a l D a ta - M ontcalm B lo ck I I OCCSE n c c o c c ic s e s & ta SN 3210 3220 3230 3240 3250 3260 3270 HT 5 .0 1 9 .7 1 8 .5 3 8 .7 5 2 .8 21.0 6.8 SN 3210 3220 3230 3240 3250 3260 3270 PH20 4 .79 4 .69 5 .17 5 .56 5 .5 4 6.5 0 8.21 AStSBS SBECCC —S e e e ICCCCCEBCCSCiBBBBEBBCBEBBBEEB!e s e s & BD SADS EXTS .976 - 1 0 . 2 5 .1 1 .3 8 8 1.1 .5 1 .3 0 4 1 5 .9 1 .5 1.5 13 12.1 1.1 1.6 70 5 .2 .3 1.6 99 3 .9 .3 1.4 8 5 1 .4 1.8 PHCA 4 .00 3 .79 4 .24 4.54 4.38 5 .7 2 7 .7 3 %ORGC 4.000 .353 1.2 0 7 .529 .094 .061 .236 DCFE DCAL 975 207 822 88 3997 2921 2007 2176 1854 52 5 4180 57 3 4489 633 AOFE AOAL 254 230 148 121 3393 4353 1049 3619 352 747 1137 720 1034 941 NPFE NPAL 169 110 152 129 3026 3256 605 1933 487 925 422 3 62 73 94 EXTP EXMG EXNA EXCA EXK 17. 1 6 3 .3 3 . 4 630.4 6 4 .7 1.6 6 .4 1. 3 5 6 .2 1 0 .2 4. 1 11.8 2.6 9 0 .4 1 8 .6 8.8 4 .0 1.8 4 4 .2 7 .7 4. 8 1 1 .9 2. 3 8 3 .2 10 .0 2 , 9 137,0 5 . 1 496.5 3 1 .4 5. 3 5 1 0 .0 16. 7 4568.8 10 2 .7 EXAL 5 .2 23.4 1 1 0 .3 43.0 54.6 .9 .0 CCBOnCCCOEB B c c c B B B e s s s e s s & c c s e e c S e r i e s : M ontcalm B lock: I I I D a t e S a m p le d : J u l y 2 2 , 1965 L o c a t i o n : S e c t i o n 2 6 , T32N R 2 E , M o n t m o r e n c y C o u n t y , M i c h i g a n 1570' n o r th and 30201 w est o f s o u th e a s t s e c tio n c o rn e r F o r e s t C over: b la c k o a k , red m ap le, and b i g t o o t h aspen S t a n d Age ( y e a r s ) : 6 B B a s a l A r e a a t P i t ( f t 2 acre**1 ) : 100 S a m p l e d B y: N e i l W. M a c D o n a l d Pedon D e s c r i p t i o n - M ontcalm B lock I I I E - 0 to 8 cm; 1QYR 4 / 2 loam y s a n d ; weak medium gran u lar stru c tu re ; very friab le; m any f i n e and m e d iu m r o o t s ; a b r u p t w avy b o u n d a r y ( 3 3 1 0 ) . Bw - 8 t o 47 cm; 10YR 4 / 4 l o a m y sand; w e a k m e d iu m s u b a n g u l a r b l o c k y s t r u c t u r e ; f r i a b l e ; common f i n e a n d m e d iu m ro o ts; 5-7% g r a v e l a n d c o b b l e s ; c le a r irre g u la r boundary (3320), E' - 47 t o 83 cm; 7.5Y R 6 / 4 lo am y s a n d ; w e ak coarse su b an g u lar b lo ck y stru c tu re ; friab le; 3-5% g r a v e l and c o b b l e s ; fe w medium r o o t s ; a b r u p t i r r e g u l a r b o u n d a r y ( 3 3 3 0 ) . B t - 83 t o 1 1 8 cm; SYR 4 / 4 s a n d y l o a m ; w eak m e d iu m su b a n g u lar b lo ck y s t r u c t u r e ; firm ; few medium r o o t s ; 5-7% g r a v e l and c o b b l e s ; c l e a r wavy b o u n d a r y ( 3 3 4 0 ) . C - 1 1 8 t o 1 6 6 cm; SYR 6 / 3 l o a m y s a n d t o s a n d y loam ; weak c o a r s e s u b a n g u l a r b l o c k y s t r u c t u r e ; friab le; few f i n e ro o ts; 5-7% gravel and co b b les; stro n g ly effervescent (3350) . T a b le B .17 A n a l y t i c a l D a ta - M ontcalm B lo ck I I I b s s s c : SB B B B SIBBSBS SN 3310 3320 3330 3340 3350 HT BD 7 .7 1 .1 7 2 39.3 1 .5 0 3 3 6 .2 1.5 56 3 5 .3 1.5 69 5 0 .0 1.6 64 SADS EXTS 2 .4 -3 .6 1 .8 4 .0 .6 1.1 2.2 3 .8 .5 -.3 SN 3310 3320 3330 3340 3350 PH20 4 .2 6 5 .1 0 6 .4 5 6 .8 0 8 .8 7 %ORGC 1.6 4 2 .333 .019 .112 .060 PHCA 3 .5 4 4 .2 8 5 .2 9 6 .2 6 7 .8 6 EXTP 6 .9 1 7 .1 9 .1 6.0 3 .0 S B B SB S SSSB&&15BBBCC sssss& s:BBB&B DCFE DCAL 1180 261 1734 630 1074 1 72 6 78 3943 938 201 AOFE AOAL 460 32 7 634 55 4 2 13 2 45 735 1052 209 157 EXCA EXMG EXNA 1 .9 17.4 16 9 .2 1 .4 4 .7 3 2.0 11.8 1 .3 8 8.3 9 4 .0 6.0 95 8 .7 3 .7 3 9 9 1 .1 7 9 .3 NPFE NPAL 487 324 7 52 964 182 286 255 445 81 167 EXK 3 3 .2 1 4 .4 12.8 64.6 2 3 .0 EXAL 4 8 .2 48.0 2 .7 .0 .0 195 S e r i e s : M ontcalm B l o c k : I V D a t e S a m p l e d : A u g u s t 1 3 , 1 98 5 L o c a t i o n : S e c t i o n 2 1 , T20N R2W, G l a d w i n C o u n t y , M i c h i g a n 1 6 5 0 ' n o r t h and 62 0 ' w e st o f s o u t h e a s t s e c t i o n c o r n e r F o r e s t C o v e r: W hite b i r c h , re d o a k , and r e d m aple S t a n d Age ( y e a r s ) : 56 B a s a l A r e a a t P i t ( f t 2 a c r e - 1 ) : 110 S a m p l e d By: N e i l W. M a c D o n a l d P e d o n D e s c r i p t i o n - M o n t c a l m B l o c k IV A/E - 0 t o 7 cm; 10YR 2 / 1 l o a m y s a n d ; m o d e r a t e medium gran u lar stru c tu re ; very friab le; many f i n e a n d medium r o o t s ; c l e a r sm ooth b o u n d a ry (3 4 1 0 ). Bw - 7 t o 52 cm; 7 . SYR 4 / 6 l o a m y s a n d ; weak m edium subangular blocky s t r u c t u r e ; friab le; common f i n e , m e d i u m , a n d l a r g e r o o t s ; 3-5% g r a v e l ; l i n e o f f i n e g r a v e l a t g r a d u a l sm ooth b o u n d a ry ( 3 4 2 0 ) . E1 - 5 2 t o 92 cm; 10YR 5 / 4 l o a m y s a n d ; weak medium subangular blocky s t r u c tu r e ; very f r i a b l e ; few f i n e and medium r o o t s ; <1% g r a v e l ; a b r u p t wavy b o u n d a r y ( 3 4 3 0 ) . E' 6 B t - 92 t o 190 cm; 10YR 6 / 3 s a n d ( E 1) ; sin g le g r a i n ; l o o s e ; f e w m edium r o o t s ; c l e a r wavy b o u n d a r y ; a n d 5YR 4 /4 loamy s a n d t o s a n d y loam ( B t ) ; cum ulative th ic k n e s s 18 cm i n l a m e l l a e 2 - 3 cm t h i c k ; m assive; firm ; few f i n e and medium r o o t s ; c l e a r i r r e g u l a r b o u n d a r y w i t h C ( B t = 3 4 4 0 , E 1 = 3450). C - 190 t o 2 1 5 cm; 10YR 6 / 3 s a n d t o l o a m y s a n d ; s i n g l e g rain ; loose; f e w m ed iu m r o o t s ; stro n g ly effervescent (3460). T a b le B .18 A n a l y t i c a l D a t a - M o n t c a l m B l o c k IV i B B C B B S e s b s s b s s s e ;:B C B & S SN 3 41 0 3 42 0 3430 3440 3450 346 0 HT 7.2 4 4.7 4 0.0 1 8.0 8 0.3 2 4.8 BD 1.036 1.6 1 0 1 .6 0 2 1.629 1.569 1.562 SN 3410 3 42 0 3430 3440 3450 346 0 PB20 5.56 5.79 6.19 6.29 6.43 8.86 PHCA 4.90 4.72 5.0 2 5.2 2 5.2 4 7.7 8 sads -7 .8 6.0 1 .3 5.3 1.4 .4 %ORGC 2.8 81 .162 .020 .104 .042 .042 :EXTS 4 .5 1.2 .4 .7 .2 .2 :C S S S C & £ B & B B B B B B B S & & & & S B B B C B DCFE DCAL 4 02 0 7 13 666 4 12 6 2 32 1717 59 33 778 16 69 168 14 53 162 AOFE ,AOAL 1316 581 6 44 6 3 8 2 5 1 137 108 5 655 335 1 3 7 375 99 EXTP EXMG EXNA EXCA 910 . 9 27. 8 132. 4 2 .5 24. 7 88 . 1 9 . 9 1 .5 4. 5 4. 2 1.0 65 . 7 4. 1 56. 1 3 .1 427 . 2 86 . 2 2.7 6 . 5 1 .1 3 . 3 2 8 . 9 2 . 1 205 9 , 1 NPFE NPAL 631 481 640 9 16 297 335 623 489 19 4 2 0 0 1 61 2 24 EXK 96.8 8.5 4.0 26.0 4 .5 5.9 EXAL 2.1 16.5 1.6 2.8 .5 .0 e t S B S B C C & S B B i B B B B B C B S B S S E S C E ) B B B B S l E E R E B f i I B B B B S B : B B 5 B B . B B B B B & B & & B 8 :b b b c 196 S e r i e s : M ontcalm B l o c k : V D a t e S a m p le d : A u g u s t 2 1 , 1985 L o c a t i o n : S e c t i o n l r T22N R l l w , W e x f o r d C o u n t y , M i c h i g a n 610* s o u t h a n d 1 1 2 0 * e a s t o f n o r t h w e s t s e c t i o n c o r n e r F o r e s t C over: s u g a r m ap le, hem lock, b la c k c h e r r y , w h ite a sh S t a n d A ge ( y e a r s ) : 6 0 + B a s a l A r e a a t P i t ( f t 2 a c r e - 1 ) : 120 S a m p l e d B y : N e i l W, M a c D o n a l d Pedon D e s c r i p t i o n - M ontcalm B lo ck v A / E - 0 t o 1 3 cm; 10YR 2 / 1 l o a m y s a n d ; w e a k m e d iu m g ran u lar stru c tu re ; very friab le; m an y f i n e a n d m e d iu m ro o ts; sm all p o ck ets of E horizon m aterial present in p l a c e s ; c l e a r wavy b o u n d a r y ( 3 5 1 0 ) . Bwl - 13 t o 2 8 cm; 10YR 3 / 3 l o a m y s a n d ; w e ak coarse gran u lar s tru c tu re ; f r i a b l e ; m an y f i n e a n d m e d i u m r o o t s ; 1 2% g r a v e l ; c l e a r i r r e g u l a r b o u n d a r y ( 3 5 2 0 ) . Bw2 - 2 8 t o 86 cm; 7.5Y R 4 / 6 lo a m y s a n d ; w e ak m e d i u m s u b a n g u l a r b l o c k y s t r u c t u r e ; f r i a b l e ; common f i n e a n d m e d i u m r o o t s ; 3-5% g r a v e l ; c l e a r s m o o t h b o u n d a r y ( 3 5 3 0 ) . E 'x & B t - 86 t o 146 cm; 10YR 5 / 3 l o a m y s a n d (E fx ) ; w e ak medium s u b a n g u l a r b l o c k y s t r u c t u r e ; firm (dense and b rittle ); f e w f i n e r o o t s ; a n d SYR 5 / 4 s a n d y c l a y l o a m ( B t ) ; m a s s i v e ; f i r m ; t o t a l 33 cm i n b a n d s a n d p o c k e t s i n t e r m i n g l e d i n E ' ; c l e a r i r r e g u l a r b o u n d a r y ( E ' = 3 5 4 0 , B t ** 3 5 5 0 ) . Cl - 146 t o 1 6 1 cm; 7 . SYR 5 / 4 sandy loam ; m assive; f r i a b l e ; v i o l e n t l y e f f e r v e s c e n t ; a b r u p t sm ooth d i s c o n t i n u o u s boundary (3 5 6 0 ). 2E*& B t - 1 6 1 t o 2 5 8 cm; 10YR 6 / 3 s a n d E ' ; and 7.5YR 5/6 loam y sand B t; sin g le g rain ; lo o se; pockets of c a l c a r e o u s s a n d ; a u g e r s a m p l e f r o m 1 9 5 t o 2 5 8 cm ( 3 5 7 0 ) . 2C2 - 2 5 8 t o 3 3 3 cm; 7.5Y R 5 / 4 loam y s a n d and g rav el; m o d e r a te ly e f f e r v e s c e n t ; a u g e r sam ple (3 5 8 0 ). Analytical Data - See Table B.19, page 198. 197 S e r i e s : M o n t c a l m B l o c k : VI D a t e S a m p l e d : S e p t e m b e r 3 , 1 9 8 5 L o c a t i o n : S e c t i o n 8 , T18N R8W, O s c e o l a C o u n t y , M i c h i g a n 180* s o u t h a n d 550* w e s t o f n o r t h e a s t s e c t i o n c o r n e r F o r e s t C over: red o ak , red m aple, and b i g t o o t h asp en S t a n d Age ( y e a r s ) : 7 8 B a s a l A r e a a t P i t ( f t 2 a c r e " 1 ) : 14 0 S a m p l e d B y : N e i l W. M a c D o n a l d P e d o n D e s c r i p t i o n - M o n t c a l m B l o c k VI E - 0 t o 6 cm; 10YR 5 / 2 l o a m y s a n d ; w e ak f i n e g r a n u l a r stru ctu re; v e r y f r i a b l e ; man y f i n e a n d m e d i u m r o o t s ; 1 0 -15 % g r a v e l and c o b b l e s ; c l e a r sm ooth b o u n d a ry (3 6 1 0 ). Bwl - 6 t o 33 cm; 7 . SYR 3 / 4 l o a m y s a n d ; w e ak c o a r s e g ran u lar s tru c tu re ; very f r ia b le ; m any f i n e , m edium, and larg e ro o ts; 10-1 5% g r a v e l and co b b les; gradual sm ooth boundary (3 6 2 0 ). Bw2 - 33 t o 57 cm; 10YR 4 / 4 l o a m y s a n d ; weak m e d iu m subangular blocky s t r u c t u r e ; friab le; common f i n e , m e d i u m , and larg e ro o ts; 5-7% gravel and co b b les; c le ar wavy boundary (3 63 0 ). E' - 57 t o 88 cm; 10YR 5 / 3 s a n d t o l o a m y sand; w eak medium s u b a n g u l a r b l o c k y s t r u c t u r e ; friab le; few f i n e and m ediu m ro o ts; 3-5% g r a v e l a n d co b b les; c le ar irreg u lar boundary (3640). E* & B t - 88 t o 1 9 9 cm; 10YR 6 / 2 s a n d t o loam y sand ( E T) ; sin g le g rain ; l o o s e ; f e w f i n e a n d m e d i u m r o o t s ; 2-3% g r a v e l and c o b b le s ; a b r u p t w a v y b o u n d a r y ; a n d 5YR 4 / 4 s a n d y loam (B t); m assive; firm ; c u m u l a t i v e t h i c k n e s s 49 cm i n b a n d s 0 . 5 t o 10 cm t h i c k ; few f i n e a n d medium r o o t s ; a b r u p t wavy b o u n d a r y (B t = 3 6 5 0 , E ' = 3 6 6 0 ) . C - 1 9 9 t o 2 1 6 cm; 7.5Y R 5 / 4 lo am y s a n d ; w e a k m ed iu m su b an g u lar b lo ck y stru c tu re ; friab le; 2-3% g r a v e l and c o b b le s; v i o le n t ly e ff e r v e s c e n t (3670). Analytical Data - See Table B.20, page 198 198 T a b l e B .19 A n a l y t i c a l D a ta - M ontcalm B lo ck V B K C SO B IB B B B B e s s s s SN 3510 3520 3530 3540 3550 3560 3570 3580 HT 1 3 .2 15.2 5 8 .2 2 7 .0 3 3 .2 1 4 .8 9 6 .5 7 5 .0 BD 1 .3 3 6 1 .5 3 8 1 .6 0 4 1.7 42 1.8 39 2.0 1 4 1.6 24 1.6 5 9 SN 3510 3520 3530 3540 3550 3560 3570 3580 PH20 4 .8 6 5.2 4 5 .4 1 5 .8 7 8.10 8 .65 8 .7 2 8 .8 5 PHCA 4 .32 4 .3 1 4 .4 7 4 .5 7 7 .4 5 7.86 7.70 7 .9 1 SADS :EXTS -3 .4 2 .9 1 0 .4 1.0 8 .4 1 .5 4 .2 .2 -.5 .8 .4 1.1 .4 -.2 .3 .1 %0RGC 1.3 09 .611 .2 1 8 .102 .101 .046 .011 .027 iBBBBBSBBBBSCB8 S3as8 8 8 = 8 !B B B B B B B B B B S DCFE DCAL ,AOFE AOAL NPFE NPAL 4 74 1193 617 742 2984 5 11 1984 1704 1653 1060 3787 1147 751 1288 760 1482 3062 1072 547 364 44 7 304 2288 446 373 567 527 285 3211 46 2 385 308 1 70 114 2312 290 1 84 763 120 143 98 126 2 81 201 115 195 1064 157 EXCA EXTP EXMG EXNA 1 .6 377.3 6 . 1 4 1 .1 119.2 5. 0 1 0 .7 1 .3 1 .9 .9 25.7 14. 0 115 .6 3. 6 1 4 .2 1 .8 4. 5 187.0 4 .4 1064.7 4.2 3565.6 2 . 6 128.0 48 5 .6 1 .0 2 . 2 2 6 .3 2 .4 1394.7 2 . 1 3 6 .0 IB B B B B S E B B B B B ; s c e e e bssbssbs EXAL 20.3 6 5 .5 4 2 .6 2 6 .6 .0 .0 .0 .0 EXK 3 5 .3 1 7 .1 5 .9 9.3 2 5 .4 23 .5 4 .4 7 .0 c s n c c c i S E E 8 E T a b l e B .20 A n a l y t i c a l D a t a - M o n t c a l m B l o c k VI B B B B B B B B 8B E B & B B C & SN 3610 3620 3630 3640 3650 3660 3670 HT 5 .8 26.7 2 4 .3 3 0.7 4 8.7 6 2.0 1 6 .8 BD 1 .3 7 8 1 .2 3 1 1 .5 4 5 1.6 69 1.7 29 1.666 1.7 8 8 SN 3610 3620 3630 3640 3650 3660 3670 PH20 3 .98 4 .84 5 .12 5.8 2 6 .4 8 6 .3 4 8 .8 1 PHCA 3 .3 3 4.30 4 .5 6 4 .7 8 5 .50 5 .09 7 .9 8 & B B B B SADS -.9 1 8.6 1 1.7 4 .2 4 .9 1.1 .8 «0RGC .933 .796 .226 .039 .042 .013 .019 E E E 8 E 8 ;S Bss&saE S S E & E B 8 B S 8 8 8 ! EXTS DCFE DCAL AOFE AOAL NPFE 455 1730 23 7 1 .5 472 3 59 5229 3016 1 9 .6 3335 3538 2463 505 2687 1313 13 .9 953 2075 2 54 1 4 7 8 4 23 3 .2 326 741 244 4416 601 1.2 803 57 3 1297 1 85 .7 257 191 184 1888 207 .6 348 195 195 EXCA EXTP EXMG EXNA 3 9 .8 14. 7 1 3 .1 2 .4 11.8 50. 5 2 .7 .6 7 .6 1 .4 1 .2 28. 8 6 .9 1 .3 2 3.6 13. 7 4. 6 1 3 4 .5 3 .0 41 7 .4 4 9.2 4. 5 1 6 .6 1 .3 3. 1 7 5 .5 2 .9 36 06 .1 :8 S 6 B B B B S S B B S :B & SB B :8 8 S S S E B 8 8 B B 8 1 EXK 2 8 .6 1 9.9 10.0 8.2 39.7 7 .6 1 7 .4 8 E B 8 NPAL 291 2917 1122 544 160 260 282 EXAL 108.0 103.4 36.3 11.8 2.0 2.0 .0 B S S E S S 1 B & B S& 199 S e r i e s : M ontcalm B lo c k : V I I D a t e S a m p le d : J u l y 9 , 1985 L o c a t i o n : S e c t i o n 3 6 , T33N R 2 E , P r e s q u e I s l e C o u n t y , M I. 4 3 7 0 ' n o r t h and 1 6 2 0 ' w e s t o f s o u t h e a s t s e c t i o n c o r n e r F o r e s t C over: red o a k , w h ite o ak , and b i g t o o t h a sp en S t a n d Age ( y e a r s ) : 48 B a s a l A r e a a t P i t ( f t 2 a c r e ” 1 ) : 80 S a m p l e d B y : N e i l W. M a c D o n a l d Pedon D e s c r i p t i o n - M ontcalm B lo ck V II A - 0 t o 3 cm; N 2 / 0 l o a m y s a n d ; m o d e r a t e f i n e g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; common f i n e a n d m e d i u m r o o t s ; c l e a r sm ooth b o u n d a ry (3 7 1 0 ). E - 3 to 8 cm; 10YR 5 / 2 loam y s a n d ; w e ak m e d iu m g ran u lar stru ctu re; very f r i a b l e ; common f i n e a n d m e d iu m ro o ts; 5-7% g r a v e l and c o b b le s ; abrupt sm ooth b o u n d a ry (3720). Bs - 8 t o 33 cm; 7 . 5 Y R 4 / 6 l o a m y s a n d ; w e ak c o a r s e g ran u lar s tru c tu re ; friab le; common f i n e , m e d i u m a n d l a r g e r o o t s ; 5-10% g r a v e l a n d c o b b l e s ; c l e a r w avy b o u n d a r y ( 3 7 3 0 ) . E* - 33 t o 51 cm; 7 . SYR 5 / 4 l o a m y s a n d ; w e ak m ed iu m su b a n g u lar b lo ck y s t r u c t u r e ; firm ; common m e d i u m r o o t s ; 5 1 0 % g r a v e l a n d c o b b l e s ; a b r u p t wavy b o u n d a r y ( 3 7 4 0 ) . 2 B t - 51 t o 64 cm; SYR 3 / 4 s a n d y c l a y l o a m ; w e a k m e d iu m su b a n g u lar b lo ck y s t r u c t u r e ; very firm ; few medium r o o t s ; 1 5-2 0 % g r a v e l a n d c o b b l e s ; a b r u p t i r r e g u l a r b o u n d a r y ( 3 7 5 0 ) . 2C - 64 t o 1 1 2 cm; SYR 4 / 4 s a n d y c l a y l o a m ; w e ak m ediu m B u b a n g u l a r b l o c k y s t r u c t u r e ; f i r m ; f e w f i n e r o o t s ; so m e r o o t ch an n els w ith Bt m a te ria l; 1 5-2 0 % gravel and co b b les; m o d erately e f f e r v e s c e n t (3760). N ote: T h e 2 B t a n d 2C h o r i z o n s w e r e t o o h i g h i n c l a y t o f a l l w i t h i n t h e M ontcalm B e r i e s r a n g e o f c h a r a c t e r i s t i c s . T a b l e B .21 A n a l y t i c a l D a ta - M ontcalm B lo ck V II BESES s s s e & s SN 3710 3720 3730 3740 3750 3760 HT 2 .7 4 .7 2 5 .0 1 7 .5 1 2 .5 4 7 .7 SN 3710 3720 3730 374 0 3750 3760 PH20 4 .8 5 4 .50 5.25 5.50 7.78 8.52 ESEEEB iE S E E E E E S E E E B C E S B S K E E C E ! EEEE! e s c &s BD SADS EXTS 6 .9 1.036 - 1 8 .2 -.8 .4 1 .2 8 4 8.0 2.2 1.5 0 2 5 .1 1.6 3 4 1.1 3 .1 1.2 1.8 9 3 .8 1 .7 8 8 .3 PHCA 4 .1 6 3.66 4.44 4.49 7 .0 5 7.69 %ORGC 4.3 81 .542 .516 .135 .212 .049 DCFE DCAL 1260 310 989 137 2964 1362 1791 523 5832 934 2518 379 AOFE AOAL 480 3 81 309 1 69 1940 1549 541 7 90 1071 1594 4 47 522 NPFE NPAL 39 6 3 00 29 2 202 1740 1916 710 4 57 2 16 338 111 2 27 EXTP EXMG EXNA EXCA EXK 25. 1 88.6 7 8 7 .7 124 .2 3 .3 8.5 4 2 .7 18 . 7 9 .8 2 .3 73. 7 1 1 .1 .8 8 5 .4 21 .7 3 1 .1 13 . 3 9 .0 2 .1 13. 8 6 . 8 17 2 .1 7 .3 15 61 .9 71 . 8 5 .0 41 61 .6 2 . 2 1 1 3 .5 40 . 6 ESB SB C iCESBBBEEE B EB SIB SB ES B E E E B BBEB EE:e s e e i EXAL 5 .7 3 4 .7 5 3 .1 2 6 .0 .0 .0 200 S e r i e s ; O shtem o B l o c k : I D a t e S a m p l e d : J u l y 2* 1 9 8 5 L o c a t i o n : S e c t i o n 1 4 , T3N R 7E , O a k l a n d C o u n t y , M i c h i g a n 2 2 8 0 ' n o r t h and 1 0 5 5 ' e a s t o f s o u th w e s t s e c t i o n c o r n e r F o r e s t C o v e r: w h ite oak and b l a c k oak S t a n d Age ( y e a r s ) : 51 BaBal A rea a t P i t ( f t 2 a c r e - 1 ) : S a m p l e d B y : N e i l W. M a c D o n a l d a n d D o r e e n C . M a c D o n a l d 90 P e d o n D e s c r i p t i o n - O shtem o B lo c k X A - 0 t o 10 cm; 1 0 YR 3 / 2 l o a m y s a n d ; m o d e r a t e m e d iu m g ran u lar s tru c tu re ; f r i a b l e ; man y f i n e a n d m e d i u m r o o t s ; 1 % g r a v e l; c l e a r i r r e g u l a r boundary (4110). El 10 t o 6 4 cm; 10YR 5 / 6 l o a m y s a n d ; w e ak fin e su b an g u larblocky stru c tu re ;fria b le ; common m e d i u m a n d l a r g e r o o t s ; 3-5% g r a v e l ; c l e a r w a v y b o u n d a r y ( 4 1 2 0 ) . E2 64 t o 80 cm; 7 . SYR 5 / 6 s a n d y l o a m ; weak medium su b an g u lar b lo ck y s t r u c t u r e ; friab le; f e w f i n e a n d m e d iu m r o o t s ; 3% g r a v e l ; c l e a r w a v y b o u n d a r y ( 4 1 3 0 ) . B tl - 80 t o 9 4 cm; 7 . SYR 4 / 6 sa n d y loam ; m o d erate c o a r s e s u b a n g u l a r b l o c k y s t r u c t u r e ; f r i a b l e ; common f i n e a n d m ediu m r o o t s ; 3% g r a v e l ; g r a d u a l w a v y b o u n d a r y ( 4 1 4 0 ) . B t2 - 9 4 t o 1 5 2 cm; 7.5YR 4 / 6 s a n d y loam ; m o d erate m e d i u m s u b a n g u l a r b l o c k y s t r u c t u r e ; f r i a b l e ; common f i n e a n d medium r o o t s ; 10-15% g rav el; abrupt irreg u lar boundary (4150). 2C - 1 5 2 t o 1 9 8 cm; 10YR 5 / 3 s a n d a n d g rav el; sin g le g rain ; lo o se; few fin e ro o ts; 10-15% g r a v e l ; m o d erately e f f e r v e s c e n t (4160). T a b l e B .22 A n a l y t i c a l D a t a - O shtem o B lo c k I SN 4110 4120 4130 4140 4150 4160 £=» HT 9 .8 5 4 .0 1 6 .3 1 4 .3 5 7 .7 4 5 .8 BD SADS EXTS 5 .9 1 .0 6 5 - 1 0 .9 1.5 3 0 2.1 5 .4 1 .4 1.5 8 1 5 .0 1.585 7 .9 3 .3 2 .9 1.4 5 2 6 .4 .4 1.5 6 3 -.1 SN 4110 4120 4130 4140 4150 4160 PH20 5 .5 7 5 .2 2 5 .6 3 5 .8 3 5 .8 4 8 .8 2 PHCA %ORGC 5 .0 1 3 .051 4.35 .1 6 3 .0 5 4 4 .6 7 4 .8 3 .062 4 .9 8 .129 7 .8 1 .027 — — = n a n c e BCSBBBBBSS&&S esccbcb DCFE DCAL 4392 763 3923 511 5251 523 7 38 7813 6 89 7248 1 53 2548 : SBBBB AOFE AOAL 899 1910 427 7 57 387 749 1442 741 535 1452 623 109 EXTP EXMG EXNA EXCA 4 .7 19 .8 120.2 87 9 .6 2.6 6 2 .0 15.3 21.1 3 .5 12.8 6 3 .5 15 7 .4 1 6 .2 10 8 .4 5 .2 3 2 3 .9 6 .5 1 0 .7 9 8 .3 438.7 3 .4 2507.1 2.6 4 8 .6 BSB B BSEB B S& i s e s s & B :& 68BB BBBB&SBI NPFE NPAL 1079 593 379 5 15 4 22 343 513 6 26 182 159 75 74 EXK EXAL CLAY 7 7 .8 3 .2 9 .2 3 4 .5 5 .5 12 .8 1 1 .5 5 .5 7 .6 2 1 .4 9 .0 6 .5 9 .6 1 9 .1 .0 5 .7 2 .5 SB SSB E:&e b b 201 S e r i e s : O shtem o B l o c k : I I D a te S am pled: J u l y 3 0 , 1985 L o c a t i o n : S e c t i o n 3 5 , T2N R l E r I n g h a m C o u n t y , M i c h i g a n 2810* n o r t h and 1 0 2 0 ’ e a s t o f s o u t h w e s t s e c t i o n c o r n e r F o r e s t C over: re d p in e p l a n t a t i o n S t a n d Age ( y e a r s ) : 3 9 B a s a l A r e a a t P i t ( f t 2 acre**1 ) ; S a m p l e d B y: N e i l W. M a c D o n a l d a n d D o r e e n C . M a c D o n a l d 190 F e d o n D e s c r i p t i o n - O shtem o B lo c k I I Ap - 0 t o 2 0 cm; 10YR 3 / 3 s a n d y l o a m ; m oderate c o a rs e g ran u lar s tru c tu re ; friab le; common f i n e a n d m e d i u m r o o t s ; 3-5% g r a v e l ; a b r u p t s m o o t h b o u n d a r y ( 4 2 1 0 ) . E - 2 0 t o 55 cm; 10YR 4 / 4 s a n d y l o a m ; m oderate c o a r s e su b a n g u lar blocky s t r u c t u r e ; friab le; few f i n e and common m e d i u m r o o t s ; 3-5% g r a v e l ; c l e a r w a v y b o u n d a r y ( 4 2 2 0 ) . B tl - 55 t o 7 4 cm; 7 . SYR 4 / 6 sandy loam ; m oderate medium s u b a n g u l a r b l o c k y s t r u c t u r e ; friab le; few f i n e a n d m e d i u m r o o t s ; 3-5% g r a v e l ; a b r u p t s m o o t h b o u n d a r y ( 4 2 3 0 } . B t2 - 7 4 t o 1 0 5 cm; 7.5YR 4 / 4 sandy loam ; m o d erate m ediu m s u b a n g u l a r blocky s tr u c tu r e ; firm ; few f i n e and m e d i u m r o o t s ; <1% g r a v e l ; c l e a r w a v y b o u n d a r y ( 4 2 4 0 ) . BC - 1 0 5 t o 1 5 6 cm; 10YR 4 / 4 l o a m y s a n d ; w eak m e d i u m su b an g u lar b locky s t r u c tu r e ; friab le; few f i n e and m e d iu m ro o ts; <1 % g r a v e l w i t h t h i n b a n d o f c o a r s e s a n d a n d g r a v e l a t 1 5 5 cm; c l e a r s m o o t h b o u n d a r y ( 4 2 5 0 ) . 2C - 1 5 6 t o 2 1 1 cm; 10YR 5 / 3 s a n d ; s i n g l e g r a i n ; l o o s e ; f e w f i n e r o o t s ; w i t h f e w f i n e b a n d s o f 7 . SYR 4 / 6 s a n d y l o a m ; m assive; firm (4260). Auger sam ple in d ic ate d noneffervescent c o a r s e s a n d fro m 211 t o 265 cm; effervescent c o a r s e s a n d a t 2 6 5 cm ( n o t s a m p l e d ) . T a b le B .23 A n a l y t i c a l D a t a - O shtem o B lo c k I I E S S S S EEEEE9EECCSB: BSSEEtS s c c B S c e a e s s E h EECS!E B E E E SEEEC!ES&BB SN 4210 4220 4230 4240 4250 4260 HT 20.0 3 4 .7 1 8 .5 3 1.0 5 1 .2 5 4 .7 BD 1.4 9 9 1 .5 2 8 1.5 33 1.5 9 9 1.5 4 9 1 .4 9 2 SN 4210 4220 4230 4240 4250 4260 PH20 4 .68 5 .29 5 .86 5.93 6.88 7 .2 3 PHCA ifeORGC .512 3 .9 5 .174 4 .3 2 .071 4 .9 2 .075 5 .0 5 .065 6 .1 5 6 .1 6 .032 SADS EXTS 3 .2 6.6 7 .6 6.6 5 .6 6.1 5 .0 6.2 -.4 1.8 .7 .8 EXTP 8.8 8 .9 3 .0 3 .6 6 .3 4 .5 DCFE DCAL 5044 818 5 79 5413 8160 6 73 7463 6 43 4977 3 33 223 3772 AOFE AOAL 918 1633 760 911 501 1041 45 9 1213 1226 267 130 715 EXMG EXNA 6.6 2 .7 1 5 .5 6 .9 2 7 .1 5 .5 3 4 .4 9 .5 3 .3 3 1 .8 2 .5 21.1 EXCA EXK EXAL CLAY — 49.7 1 5 .0 8 9 .7 7 4 .5 7 .8 7 .2 3 7 .7 34 8 .9 14.7 7 .7 6 .3 3 4 4 .0 1 6 .0 6 .7 3 .3 1 7 7 .4 2 .9 .0 7 .1 1 0 4 .7 .0 4 .1 1.8 NPFE NPAL 710 1004 604 409 441 367 507 647 253 3 06 165 132 BOBSS E E SE E E S B E E C E E E IS E 6 C B S B E E B E E BBBBSSSEBBBBB B B EEEEIECBEEi9BBBBBBBBB 202 S e r i e s : O s h te m o B l o c k : I I I D a te S am p led : A u g u s t 3 , 1985 L o c a t i o n : S e c t i o n 8 r TIN R4E , L i v i n g s t o n C o u n t y , M i c h i g a n 3196* n o r t h a n d 1 8 34 * w e s t o f s o u t h e a s t s e c t i o n c o r n e r F o r e s t C o ver: red o a k , w h ite o a k r and s h a g b a r k ^ h ic k o ry S t a n d Age ( y e a r s ) : 70 B a s a l A r e a a t P i t ( f t 2 a c r e - 1 ) : 120 S a m p l e d By: N e i l W. M a c D o n a l d P ed o n D e s c r i p t i o n - Oshtemo B lo c k I I I A - 0 to 9 cm; 10YR 2 / 2 l o a m y s a n d ; weak coarse granular stru ctu re; very f r i a b l e ; common f i n e a n d medium r o o t s ; 1% g r a v e l ; c l e a r s m o o t h b o u n d a r y ( 4 3 1 0 ) • E - 9 to 66 cm; 10YR 4 / 4 l o a m y s a n d ; weak medium su b an g u lar blocky s t r u c t u r e ; friab le; common f i n e , m ediu m , and l a r g e r o o t s ; 15-20% g r a v e l , co b b les, and b o u l d e r s ; g r a d u a l sm ooth b o u n d a ry (4 3 2 0 ). B t l - 66 t o 95 cm; 7 . SYR 4 / 6 g r a v e l l y s a n d y loam ; m o d e r a t e medium s u b a n g u l a r b l o c k y s t r u c t u r e ; firm ; common f i n e r o o t s ; 10-15% g r a v e l ; c l e a r w avy b o u n d a r y ( 4 3 3 0 ) , B t 2 - 95 t o 116 cm; SYR 4 / 6 g rav e lly sandy loam ; m o d erate c o a rs e s u b a n g u la r b lo c k y s t r u c t u r e ; f i r m ; few f i n e a n d medium r o o t s ; 10-15% f i n e g r a v e l ; c l e a r wavy b o u n d a r y (4340). BC - 116 t o 13 9 cm; 10YR 4 / 4 l o a m y s a n d ; s i n g l e g r a i n ; lo o se; few f i n e ro o ts; d isco n tin u o u s ir r e g u la r boundary (4350). 2C - 139 t o 18 7 cm; 10YR 5 / 3 s a n d a n d g r a v e l ; sin g le g rain ; loose; f e w m ed iu m r o o t s ; stro n g ly effervescent (4360). T a b l e B.24 A n a l y t i c a l D a t a - O s h te m o B l o c k I I I s t s s e s S e « S S B B i S t » “ S P M I BN 4 3 10 432 0 4330 4340 43 50 43 60 HT 9.0 57.2 28.5 20 .8 2 3.3 4 8 .2 BD 1.303 1.499 1.5 4 5 1.603 1.510 1.541 SN 4310 4320 4330 4340 4350 4360 PH20 4.8 4 5.8 1 5.3 8 6 .3 5 6 .56 8 .96 PHCA %ORGC 4 .1 1 1 .594 .126 4.78 .098 4.52 .115 5.84 5 .6 5 .0 62 7 .7 8 .049 css e s s :? m cB C C ca B = & SADS EXTS -5 .1 4.7 2.5 1 .1 9.7 2 .9 2.0 5 .5 1 .8 1 .6 .0 .1 DCFE DCAL 898 4837 4 2 0 1 490 8326 9 4 4 9312 1104 3726 383 2413 1 60 C C B B & Is m c a c s c a n c AOFE ,AOAL 2189 1068 441 1033 599 1139 1294 811 7 28 3 1 2 428 1 1 2 EXTP EXMG EXNA EXCA 270.0 3 1 .9 2.6 4 4.2 4 7.3 1 5 .5 2 .0 130.7 8 8 . 5 366.4 1 1 .5 5.6 5 .7 134.8 7 .9 753.1 4.2 2 .8 3 2.9 212.7 1 .2 3 .1 3020.1 50.2 NPFE NPAL 1 1 6 1 841 472 397 2 6 8 2 22 1 4 8 165 2 28 277 95 118 EXK EXAL CLAY — 3 4 .2 58 .4 9 .8 1 1.3 4 .7 2 4 .4 20.4 9 .0 3 5.8 1 .1 10.0 8.8 .2 3.0 5 .8 1.7 .1 BBBS& & !S S S S 203 S e r i e s : O shtem o B l o c k : IV D a t e S a m p le d : A u g u s t 7 , 1985 L o c a t i o n : S e c t i o n 1 6 , T 1S R3E , W a s h t e n a w C o u n t y , M i c h i g a n 2 0 3 0 ' n o r t h an d 1950* w e s t o f s o u t h e a s t s e c t i o n c o r n e r F o r e s t C o v e r : b u r o a k , b l a c k o a k , and r e d oak S t a n d Age ( y e a r s ) : 9 1 B a s a l A r e a a t P i t ( f t 2 a c r e - i ) : 110 S a m p l e d B y : N e i l W. M a c D o n a l d a n d D o r e e n C . M a c D o n a l d F e d o n D e s c r i p t i o n - O shtem o B lo c k IV Ap - 0 t o 16 cm; 10YR 2 / 2 s a n d y l o a m ; m oderate c o a rs e g ran u lar s tru c tu re ; friab le; man y f i n e , m edium , and l a r g e r o o t s ; a b r u p t sm ooth b o u n d a ry (4 4 1 0 ). E - 1 6 t o 60 cm; 10YR 4 / 3 s a n d y l o a m ; m o d e r a t e m e d iu m su b a n g u la r b lo ck y s t r u c t u r e ; friab le; common f i n e , m e d i u m , and l a r g e r o o t s ; 5-7% g r a v e l a n d c o b b l e s ; c le ar irreg u lar boundary (4 4 2 0 ). B tl - 60 t o 93 cm; 7 . SYR 4 / 6 sandy loam ; m o d erate c o a rs e su b a n g u lar blo ck y s t r u c t u r e ; very firm ; f e w m e d iu m r o o t s ; 5-7% g r a v e l ; g r a d u a l s m o o t h b o u n d a r y ( 4 4 3 0 ) . B t2 - 93 t o 1 2 8 cm; 7 . SYR 4 / 6 sa n d y loam ; m o d erate m ediu m s u b a n g u l a r b l o c k y s t r u c t u r e ; f i r m ; few medium r o o t s ; 3-5% g r a v e l ; c l e a r s m o o t h b o u n d a r y ( 4 4 4 0 ) . BC1 - 1 2 8 t o 1 5 5 cm; 10YR 4 / 4 s a n d y l o a m ; w e ak m e d iu m s u b a n g u l a r b l o c k y s t r u c t u r e ; f r i a b l e ; f e w m e d i u m r o o t s ; 3-5% g ra v e l (4450). C o m p o s i t e b u c k e t a u g e r s a m p l e s t a k e n 1 - 1 9 - 8 6 : BC2 - 1 5 5 t o 1 6 5 cm; 10YR 4 / 4 s a n d y l o a m ( 4 4 6 0 ) . BC3 - 1 6 5 t o 190 cm; 10YR 4 / 4 s a n d y l o a m ( 4 4 7 0 ) . C - 190 t o 2 1 8 cm; 10YR 5 / 4 sandy loam (4480). BC2, BC3, and C sa m p le s were taken a d ja ce n t to th e p i t s i t e ; c o b b l e s a n d b o u l d e r s b e l o w 2 2 5 cm p rev en ted in v e s tig a tio n of deeper m a te ria l.* Analytical Data - See Table B.25, page 205. 204 S e r i e s : Oshtem o B l o c k : V D a t e S a m p le d ; A u g u s t L o c a t i o n : S e c t i o n 2 7 , T1S R9W, K a l a m a z o o C o u n t y , 1 2 3 0 ' n o r th and 1390' w est o f s o u t h e a s t s e c t i o n F o r e s t C o v e r: r e d o a k , b l a c k o a k , and w h i t e oak S t a n d Age ( y e a r s ) : 7 1 B a sa l A rea a t P i t ( f t 2 S a m p le d By: N e i l tf. M acD onald 2 6 , 1985 M ichigan corner a c r e " * 1 ) : 90 P e d o n D e s c r i p t i o n - O shtem o B lo c k V Ap - 0 t o 13 cm? 10YR 2 / 1 s a n d y loam ; w e ak m ediu m g ran u lar s tru c tu re ; f r i a b l e ; man y f i n e a n d m e d i u m r o o t s ; 1 3% g r a v e l ; c l e a r s m o o t h b o u n d a r y ( 4 5 1 0 ) . El - 13 t o 45 cm; 10YR 4 / 4 loam y sand; weak fin e su b a n g u lar blocky s t r u c t u r e ; friab le; common f i n e , m e d i u m , and larg e ro o ts; 3-5% g r a v e l a n d c o b b l e s ; gradual sm ooth boundary (4520). E2 - 45 t o 77 cm; 7 . SYR 5 / 4 l o a m y s a n d ; m o d e r a t e m ed ium subangular b lo ck y s t r u c t u r e ; friab le; f e w f i n e a n d m ed iu m r o o t s ; 7-10% g r a v e l a n d c o b b l e s ; c l e a r w a v y b o u n d a r y ( 4 5 3 0 ) . B tl - 77 to 91 cm; 7 . SYR 4 / 4 g r a v e l l y sa n d y loam ; m o d e r a t e medium s u b a n g u l a r b l o c k y stru c tu re ; firm ; common fin e and medium r o o t s ; 7-10% g r a v e l ; c l e a r wavy b o u n d a r y (4540)■ Bt2 & BC - 9 1 t o 1 3 0 cm; 7 . SYR 4 / 6 s a n d y l o a m (B t2); w e a k m edium s u b a n g u l a r b l o c k y stru c tu re ; friab le; common fin e and medium r o o t s ; 3-5% g r a v e l and c o b b le s ; c le ar i r r e g u l a r b o u n d a r y ( 4 5 5 0 ) ; a n d 7 . 5 Y R 5 / 6 l o a m y s a n d ( B C ) ; 10 cm t o t a l o ccu rrin g as pockets and bands; sin g le g rain ; l o o s e ; few f i n e and medium r o o t s ( 4 5 6 0 ) . 2C - 1 3 0 t o 166 cm; 10YR 6 / 4 s a n d a n d g r a v e l ; sin g le g rain ; loose; few medium r o o t s ; stro n g ly efferv escen t (4570) . Analytical Data - See Table B.26, page 205. 205 T a b l e B .25 A n a l y t i c a l D a t a - O shtem o B lo c k IV BDBBSiBBECEBS! eBK&B&BB&B&SCBB&BB&BBB SN 4410 4420 4430 4440 4450 4460 4470 4480 HT 1 6 .0 4 4 .0 3 3 .3 3 4 .5 2 7 .2 1 0.0 2 5 .0 2 7 .5 BD 1 .1 3 5 1.5 57 1.8 59 1 .6 1 1 1 .5 6 4 1.5 6 4 1.6 1 2 1.5 3 0 SN 4410 4420 4430 4440 4450 4460 4470 4480 PH20 5.20 5.09 5.23 5.33 5.60 5.45 5 .4 3 5 .6 3 PHCA %ORGC 4 .6 6 2 .622 .328 4 .2 5 4 .3 6 .089 .089 4.5 3 4.6 0 .080 .106 4.6 4 4 .6 8 .104 4 .7 9 .108 SC B 8S SADS -7 .8 3 .8 1 2 .4 7 .9 3 .2 3 .4 3 .8 -1 .0 c c & e s : EBEEBB&BEB EXTS DCFE DCAL 5270 1324 8 .5 2 .6 619 5142 2 1 .5 12114 1333 1 9 .0 10328 999 5799 4 .4 490 7899 1 0 .4 767 1 3 .2 10595 951 9000 8 .9 817 AOFE .AOAL 2316 1496 6 44 1351 2107 8 77 1650 661 845 270 1202 413 6 47 1517 6 12 1586 EXTP EXMG EXNA 2 4 .2 10 4 .0 3 .4 2 4 .0 2 .1 1 7 .5 4 .4 1 2 2 .5 3 .7 5 .2 3 .8 8 4 .7 8 .9 2 .1 3 5 .9 8 .6 6 5 .3 6 .1 8 8 .8 8 .2 4 .6 92 .5 6 .8 5 .1 EXCA 75 1 .8 84 .0 359.0 284.9 146.5 2 7 2 .4 3 8 4 .1 4 0 4 .8 EXK 6 6.4 1 5.7 4 8.4 31.9 11.4 2 2 .2 2 4.0 17,6 B E S S t ie :BSSCSE5£2i& SBSSEIB EC SS tSBSSSBS! NPFE NPAL 1472 1189 631 738 368 323 244 310 439 406 3 48 255 46 6 249 458 285 EXAL 1 5 .6 44 .7 31.3 15.9 6.5 9.7 1 1.9 6.7 CLAY - 7.8 1 6.1 1 0.8 5.3 8.6 10.8 1 1.6 SBSSS& T a b l e B . 26 A n a l y ti c a l D ata - O shtem o B lo c k V BBS&BiSSBEBBSSBSE PB C I ESSeBBBESS&BEESESfiCeeE&B K B B B S&SBB4SS3ESC BEBB SN 4510 4520 4530 4540 4550 4560 4570 HT 1 2 .5 31,7 32.2 1 4 .0 2 8 .7 10 .0 3 6 .0 BD 1 .1 9 8 1.5 3 5 1.5 4 2 1.635 1.6 1 1 1.590 1.5 9 0 SN 4510 4520 4530 4540 4 55 0 4560 4570 PH20 5.27 5 .67 5 .99 7 .0 2 6 .4 3 7 .9 2 8.8 3 PHCA %0RGC EXTP EXMG EXNA EXCA 79 8 .0 5 3 .7 11 1 .8 2 .6 4 .9 2 2 .429 2 6 .9 .227 1 0 8 .3 1 .5 4.67 138.8 . 0 9 3 2 6 . 4 5 4 .7 1 .4 5.06 15 4 .7 3 5 .8 2 2 1 .5 4 .5 1012.3 6.56 .167 .070 2 2 .6 2 .5 5 .7 7 9 7 .7 425.5 .035 1 7 .7 7 .03 1 .4 6 4 .0 465.4 6 .4 2 .6 2175.2 7 .74 .017 4 2 .6 SADS EXTS DCFE DCAL -7 .4 4839 1117 5 .3 1 .2 4422 1 .3 718 -.3 4142 .9 449 .0 2 . 1 10675 1040 1 .3 609 .6 5961 .2 .5 3020 295 -.5 2330 .2 145 AOFE AOAL 1923 1132 1282 1082 630 3 12 2265 8 34 5 61 1485 270 724 450 78 NPFE NPAL 1 14 7 1 0 5 4 7 93 612 402 510 194 206 141 128 2 88 403 159 137 EXK EXAL CLAY 92.7 4.3 2 4 .6 2 0 .1 7 .2 19.3 5 .5 5.7 .0 1 3 .7 5 7.7 .0 29.3 6 .5 .0 14.3 3 .4 .4 4.6 2.2 &EBStS8KBBB&&BBBBS Bests SBSSISBEBBEBBE&BEl e e B e e a e e e e s : ECEEB! BCEEtSSEECE 206 S e r i e s : O s h te m o B l o c k : VI D a t e S a m p l e d : A u g u s t 2 8 , 1 98 5 L o c a t i o n : S e c t i o n 6 , T7S R12W, S t . J o s e p h C o u n t y , M i c h i g a n 2 45 0 ' n o r t h and 4 4 0 ' w e st o f s o u t h e a s t s e c t i o n c o r n e r F o r e s t C over: re d o a k , w h ite o a k , and p i g n u t h i c k o r y S t a n d Age ( y e a r s ) : 130 B a s a l A r e a a t P i t ( f t 2 a c r e - *1’) : 120 S a m p l e d By: N e i l W. M a c D o n a ld F e d o n D e s c r i p t i o n - O s h t e m o B l o c k VI A - 0 t o 11 cm; 10YR 3 / 1 sa n d y loam ; weak medium g ran u lar stru c tu re ; very f r i a b l e ; common f i n e a n d medium r o o t s ; 1% g r a v e l ; c l e a r s m o o t h b o u n d a r y ( 4 6 1 0 ) . E - 11 t o 47 cm; 10YR 5 / 4 sandy loam ; weak fin e su b an g u lar blocky s t r u c tu r e ; friab le; common f i n e , m e d i u m , a n d l a r g e r o o t s ; 2-3% g r a v e l ; c l e a r wavy b o u n d a r y ( 4 6 2 0 ) . B tl - 47 t o 70 cm; 7 .5 Y R 4 / 4 sa n d y loam ; m oderate c o a rse su b an g u lar blocky s t r u c tu r e ; very firm ; common f i n e a n d m edium r o o t s , 2-3% g r a v e l ; c l e a r s m o o t h b o u n d a r y ( 4 6 3 0 ) . B t2 - 7 0 t o 95 cm; 7 .5 Y R 4 / 6 s a n d y l o a m ; weak m edium s u b a n g u l a r b l o c k y s t r u c t u r e ; f r i a b l e ; common f i n e a n d medium r o o t s ; common g r a v e l b a n d s ; c l e a r s m o o t h b o u n d a r y ( 4 6 4 0 ) . Bt3 6 BC - 9 5 t o 18 7 cm; 7 . SYR 4 / 6 s a n d y l o a m (B t3); weak medium s u b a n g u l a r b l o c k y stru ctu re; friab le; 41 cm to ta l in bands and l a y e r s (4 6 5 0 ); a n d 10YR 5 / 6 l o a m y s a n d (BC); s i n g l e g r a i n ; l o o s e ; f e w f i n e a n d medium r o o t s ; t h i n l a y e r s o f c a l c a r e o u s g r a v e l ; c l e a r sm ooth b o u n d a ry (4 6 6 0 ). 2C - 18 7 t o 3 2 5 cm; 10YR 6 / 4 s a n d ; s i n g l e g r a i n ; l o o s e ; a u g e r sam ple (4670). S trongly efferv escen t, fain tly m o t t l e d c o a r s e s a n d b e l o w 3 2 5 cm ( n o t s a m p l e d ) . T a b le B.27 A n a l y t i c a l D a t a - O s h t e m o B l o c k VI sea s s : SSBB B EE e e & e e e e e e D C D e e e c e e e e e e E E S S S ]SBECCC B c e e e i s e s & s HT SN 4610 1 1.3 46 20 3 6 . 0 4630 2 3 . 3 4640 2 5 . 0 4650 4 0 . 7 4660 5 1 .0 4670 1 3 7 . 7 SN 4 61 0 4 62 0 4630 464 0 465 0 4660 467 0 PB20 6.10 4.99 4 .74 4.91 5.21 5.67 8 .08 BD 1.2 3 6 1.504 1.6 1 2 1.6 1 1 1.648 1.596 1.556 SADS EXTS -3 .4 3.6 6.1 3.7 1 5.2 9 .0 1 5 .2 1 0.3 9.5 7.9 3.4 1.7 -.1 1.0 DCFE DCAL 510 7 14 63 4424 920 5978 963 5 5 3 2 7 84 5 0 7 8 59 1 2 87 2 282 2 08 9 186 AOFE AOAL 1 8 0 8 15 90 1312 1 1 1 3 1311 905 1 1 8 3 770 1 2 1 8 573 5 16 2 13 4 98 1 21 NPFE NPAL 1023 1309 7 18 6 9 2 2 97 4 8 2 185 3 4 1 1 13 2 0 0 2 65 433 1 87 2 6 8 EXK EXAL CLAY PHCA %ORGC EXTP EXMG EXNA EXCA 5.59 2.3 2 5 7 3 .3 146.1 2 .2 1257.7 1 36 .6 1 .1 4.10 14.7 1.7 .292 9 4 .1 73 .2 2 7 . 5 1 1 1 .0 1 0 .6 .0 88 1 8 .8 106.0 3.8 8 53.0 2 .0 41 .5 22 7 .9 11 .6 .0 66 1 4 .4 4.0 0 72 .9 1 .9 44 .8 15 4 .2 125.1 9 .6 .0 31 1 4 .5 33.2 4.2 9 199.2 51.9 83.3 2 .2 6.9 3 .4 .0 21 9 .2 35 .1 1.3 105.8 1 7.6 4.7 4 2 .6 .0 05 8.0 7 .4 7 .0 8 32 .4 1.3 .0 1 .4 180.2 BSC&SSSSSSBSBSSeSICtSBBSESSBBSBESESSSSSSSSB BEBBBBBr e & e & e 207 S e r i e s : R ubicon B lock: I D a t e S a m p l e d : J u l y 1 0 , 1 98 5 L o c a t i o n : S e c t i o n 2 1 , T35N R1E, C h e b o y g a n C o u n t y , M i c h i g a n 3 0 0 ' s o u t h a n d 260* v e s t o f n o r t h e a s t s e c t i o n c o r n e r F o r e s t C over: red p i n e , b la c k o a k , and ja c k p in e S t a n d Age ( y e a r s ) : 44 B a s a l A r e a a t F i t ( f t 2 a c r e - 1 ) : 60 S a m p l e d By; N e i l W. M a c D o n a l d Pedon D e s c r i p t i o n - R ubicon Block I A - 0 to 4 cm; N 2/0 sand; weak medium g r a n u l a r stru ctu re; very f r i a b l e ; many f i n e r o o t s ; a b r u p t sm ooth boundary (5110). E - 4 t o 9 cm; 10YR 4 / 2 s a n d ; w eak m edium g r a n u l a r stru c tu re ; very f r i a b l e ; common f i n e a n d medium r o o t s ; a b r u p t sm ooth b o u n d a ry ( 5 1 2 0 ) . B s l - 9 t o 27 cm; 7 .5 Y R 3 / 4 s a n d ; weak m edium g r a n u l a r stru ctu re; very f r i a b l e ; common f i n e , medium, and larg e r o o t s ; <1% g r a v e l ; c l e a r s m o o t h b o u n d a r y ( 5 1 3 0 ) . Bs2 - 27 t o 48 cm; 7 .5 Y R 5 / 6 s a n d ; weak c o a r s e g r a n u l a r stru ctu re; very f r i a b l e ; common f i n e a n d m edium r o o t s ; <1% g r a v e l ; c l e a r sm ooth b o u n d a ry ( 5 1 4 0 ) . BC - 48 t o 106 cm; 7 . 5 Y R 6 / 4 s a n d ; weak m ed iu m g r a n u l a r stru c tu re ; very f r i a b l e ; few f i n e roots; c l e a r sm ooth boundary (5 1 5 0 ). C - 10 6 t o 1 6 6 cm; 7 .5 Y R 6 / 4 B a n d ; s i n g l e g r a i n ; l o o s e ; th in , f a i n t c o l o r b a n d s a t 6 - 1 0 cm i n t e r v a l s ( 5 1 6 0 ) . Auger sam ple in d icated s i m i l a r n o n - e f f e r v e s c e n t sand to 330 cm (not sam p led ). T a b l e B .28 A n a l y t i c a l D a ta - R u b ico n Block I iS S R C C E S S E S ] SN 5110 51 20 5130 5140 5150 5 16 0 HT 3 .5 4.8 1 7.7 2 1 .2 58.0 5 9.8 SN 5 11 0 5120 5130 5 14 0 5150 5 16 0 PH20 4 .40 4.54 5.06 5.16 5.43 5 .93 S S B B B C •B B S & & BD SADS EXTS 1.193 - 1 6 .2 6.3 1.376 -.6 .8 9 .5 1.3 9 9 5.0 4 .6 1.5 7 9 3.9 1.5 9 0 2 .3 1.5 1 .5 5 1 1.6 .6 PHCA 3 .89 3.72 4 .39 4.66 4 .90 5 .07 %ORGC 3 .1 3 7 .564 .4 75 .0 95 .017 .0 28 EXTP 15.9 2 .9 9 .9 12.4 17.5 16.2 S S B B S S SB & B & IS C C S S E E E E C S B E E S S DCFE DCAL 116 1 37 4 823 173 2 5 3 4 15 69 920 421 4 49 2 2 1 408 1 60 AOFE AOAL 3 85 3 3 6 2 84 209 9 54 1717 2 35 1 1 0 6 1 0 4 5 14 78 283 EXMG EXNA 5.6 28.5 6.3 1 .1 1 .8 2 .1 .5 .4 .9 .3 .5 .5 EXCA 338.9 66.0 17.9 4.0 2 .1 3.5 NPFE NPAL 42 8 412 28 8 2 94 7 47 14 53 170 633 57 2 80 44 2 0 8 EXK 3 7 .2 9 .2 11 .7 2 .9 2 .6 2 .3 EXAL 2 8.4 5 0.4 47.9 10 .9 3 .4 2.8 B S E O B B B S C B B B B E E B E B C b b s b e e E E B S B S SBBBC S B E B E E B E B S S C E E & SC B B C 208 S e r i e s : R ubicon B lock: I I D a te S a m p le d : J u l y 1 2 , 1985 L o c a t i o n : S e c t i o n 4 , T29N R2W, O t s e g o C o u n t y , M i c h i g a n 3 4 3 0 * n o r t h a n d 290 * w e s t o f s o u t h e a s t s e c t i o n c o r n e r F o r e s t C over: b la c k o a k , red m ap le, and b i g t o o t h a sp en S t a n d Age ( y e a r s ) : 63 B a s a l A r e a a t P i t ( f t 2 a c r e - 1 ) : 30 S a m p l e d B y: N e i l W. M a c D o n a l d Fedon D e s c r i p t i o n - R u b ico n B lock I I A - 0 to 3 cm; 10YR 2 / 1 loam y s a n d ; weak m e d iu m g ran u lar s tru c tu re ; very f r i a b l e ; man y f i n e r o o t s ; abrupt sm ooth b o u n d a ry (5 2 1 0 )• E - 3 t o 9 cm; 10YR 6 / 2 B a n d ; w e ak m e d i u m g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; common f i n e a n d m e d i u m r o o t s ; c l e a r wavy b o u n d a r y ( 5 2 2 0 ) . Bsl - 9 to 39 cm; 7 . SYR 4 / 6 sand; weak coarse s u b a n g u l a r b l o c k y s t r u c t u r e ; f r i a b l e ; 5-10% o r t s t e i n ; common fin e, m edium , a n d l a r g e r o o t s ; 1-3% g r a v e l ; g r a d u a l s m o o t h boundary (52 30 ). B s 2 - 39 t o 6 2 c m ; 7 . SYR 5 / 6 s a n d ; w e ak c o a r s e g r a n u l a r stru c tu re ; very friab le; common f i n e , medium a n d larg e r o o t s ; 1-3% g r a v e l ; c l e a r w a v y b o u n d a r y ( 5 2 4 0 ) . BC - 62 t o 1 3 1 cm; 10YR 6 / 6 s a n d ; s i n g l e g r a i n ; l o o s e ; few f i n e r o o t s ; 5-10% g r a v e l ; 10YR 5 / 4 c o l o r b a n d a t c l e a r wavy b o u n d a r y ( 5 2 5 0 ) . C - 1 3 1 t o 1 8 7 cm; 10YR 6 / 4 s a n d ; s i n g l e g r a i n ; l o o s e ; few medium and l a r g e r o o t s ( 5 2 6 0 ) . Auger sam ple i n d i c a t e d t h i n 7 . SYR 4 / 6 l o a m y s a n d b a n d B a t 1 0 - 1 5 cm i n t e r v a l s from 187 t o 3 0 5 cm; n o n - c a l c a r e o u s g r a v e l l y s a n d a t 3 0 5 cm ( n o t sam p led ). T a b l e B .29 A n a l y t i c a l D a ta - R u b ico n B lock I I eecee iBBBcee SN 5210 5220 5230 5240 5250 5260 HT 2 .8 5 .5 2 9 .7 22 .5 6 8 .7 5 5 .8 BD 1 .0 9 8 1.4 34 1 .3 6 9 1 .4 2 4 1 .6 0 0 1.576 SN 5210 5220 5230 5240 5250 5260 PH20 4 .1 0 4 .5 4 5 .2 0 5 .1 1 5 .5 6 6 .3 6 PHCA 3 .3 6 3 .7 2 4 .4 6 4 .5 4 4 .7 2 5.09 S S S S E IB SB B & B B B 88B B S&&&BBBSBBSCBB&I5BBBB SADS EXTS -4 .0 2 .8 1 .2 1 .7 8 .4 1 5 .6 9 ,8 1 1 .9 1 .8 3 .0 .2 1 .7 %ORGC 2.4 9 9 .926 .4 8 2 .2 1 8 .020 .0 1 4 EXTP 11. 3 6. 4 16. 8 19. 8 11. 0 4. 3 DCFE DCAL 1225 272 1446 385 2889 1692 1882 1049 1418 367 837 143 EXMG EXNA 4 2 .0 4 .3 9 .0 2 .2 3 .2 1 .4 1 .0 1 .9 1 .0 1 .0 4 .7 1 .2 S B 8 C B cre:ess«sss:&8Bsea B S& SBSIB^^E=C=EB SB B B tSB SSBB I AOFE AOAL 339 282 488 351 1332 2365 639 1936 209 494 124 148 EXCA 23 9 .0 5 6 .6 1 7 .4 4 .5 7 .7 2 9 .9 NPFE NPAL 220 338 566 493 925 1740 411 1129 206 5 10 280 157 EXK 7 3 .4 1 5 .1 7 .5 5 .1 2 .6 3 .7 EXAL 55.3 7 8 .6 4 8 .5 2 9.6 7 .5 1 .3 SBCSB 209 S e r i e s : R ubicon B lock: I I I D a te Sam pled: J u l y 2 6 , 1985 L o c a t i o n : S e c t i o n 1 5 , T26N R2E, O s c o d a C o u n t y , M i c h i g a n 3 4 3 0 1 n o r t h and 2600' w e st o f s o u t h e a s t s e c t i o n c o r n e r F o r e s t Cover: red m aple, b la c k o ak, b i g to o t h a sp e n , red p in e S t a n d Age ( y e a r s ) : 65 B a s a l A r e a a t P i t ( f t 2 a c r e - 1 ) : 90 S a m p l e d By: N e i l W. M a c D o n a l d Pedon D e s c r i p t i o n - R ubicon Block I I I A - 0 t o 4 cm; N 2/0 loam y s a n d ; m o d e r a t e m edium gran u lar s tr u c tu r e ; very friab le; many f i n e a n d m edium r o o t s ; a b r u p t sm ooth b o u n d a ry ( 5 3 1 0 ) . E - 4 t o 14 cm; 7 . SYR 6 / 2 s a n d ; weak m edium g r a n u l a r stru ctu re; very f r i a b l e ; common f i n e , m ed iu m , and larg e r o o t s ; c l e a r sm ooth b o u n d a ry (5320) . B s l - 14 t o 34 cm; 7 .5 Y R 4 / 6 s a n d ; weak m ediu m g r a n u l a r stru ctu re; very f r i a b l e ; common m edium a n d l a r g e ro o ts; c l e a r sm ooth b o u n d a ry (5 3 3 0 ). Bs2 - 34 t o 52 cm; 10YR 4 / 6 sand; w eak medium subangular blocky s t r u c tu r e ; friab le; 5% o r t s t e i n i n l o w e r p a r t ; f e w m edium r o o t s ; c l e a r s m o o t h b o u n d a r y ( 5 3 4 0 ) . BC - 52 t o 107 cm; 10YR 6 / 4 san d ; m oderate c o a rs e su b an g u lar blocky s t r u c t u r e ; friab le; 15-20% o r t s t e i n in s t r o n g ly cem ented, m assive, c h u n k s a t 5 5 - 7 0 cm; f e w medium r o o t s ; g r a d u a l wavy b o u n d a r y ( 5 3 5 0 ) . C - 107 t o 175 cm; 10YR 7 / 4 s a n d ; s i n g l e g r a i n ; l o o s e ; f e w medium r o o t s ( 5 3 6 0 ) . Auger sam ple i n d i c a t e d few , f i n e , d i s t i n c t 10YR 6 / 8 m o t t l e s o r s t a i n s b e t w e e n 1 6 0 a n d 335 cm; C h o r i z o n n o n - c a l c a r e o u s t o 3 3 5 cm ( n o t s a m p l e d ) . T a b l e B.30 A n a l y t i c a l D a ta - R ubicon Block I I I SN 5310 5320 53 30 53 40 53 50 53 60 HT 4 .2 1 0 .3 20.2 17.8 54.8 67 .7 SN 5310 5320 53 30 53 40 53 50 53 60 PH20 4 .33 4 .26 5 .25 5 .49 5 .27 5 .97 SADS EXTS BD 6.6 1.197 - 1 2 .8 1.423 -1 .5 1.2 18.4 9 .9 1.444 1 2 .4 13.1 1 .4 8 8 1.6 3 3 2 .6 6 .4 1.8 .1 1.5 8 8 PHCA 3.51 3.55 4 .49 4 .79 4 .73 4 .94 %ORGC 2.3 9 8 .315 .5 02 .2 19 .0 84 .033 DCFE DCAL 805 216 554 82 3 4 4 2 2089 1760 1205 746 474 783 257 EXTP 8.4 2.2 8.4 1 2.2 1 8.7 1 0.9 s c s & s s BBBBCB SD B C BB e escea&&; AOFE 343 59 2322 929 3 12 1 76 AOAL 389 77 3817 29 83 1039 508 NPFE NPAL 297 217 89 1 1 3 9 08 1 4 4 5 331 981 174 522 76 26 0 EXCA EXMG EXNA EXK 3 2.7 269.8 82.6 2 .9 4 .8 36.7 12 .5 1 .8 33.2 13.7 3 .1 .7 19 .7 1.9 1.2 5 .0 .8 .6 7 .9 2.7 1.2 10.0 3.7 .9 :s s s s e ::SSSBSBB s c c B e e EXAL 3 7.2 29.5 4 5.1 11.5 6 .8 3.9 210 S e r i e s : R ubicon B lo c k : IV D a te S a m p le d : A u g u s t 1 4 , 1985 L o c a t i o n : S e c t i o n 2 8 , T24N R 2 E , Ogemaw C o u n t y , M i c h i g a n 2 8 8 0 * n o r t h a n d 4 4 0* w e s t o f s o u t h e a s t s e c t i o n c o r n e r F o r e s t C o v e r: re d m a p le , r e d o a k , b i g t o o t h a s p e n , b l a c k oak S t a n d A g e ( y e a r s ) : 59 B a s a l A r e a a t P i t ( f t 2 a c r e - 1 ) : 90 S a m p l e d By: N e i l W. M a c D o n a l d P e d o n D e s c r i p t i o n - R u b ic o n B lo c k IV A - 0 to 6 c m ; N 2 / 0 loamy Band; weak fine granular structure; very friable; m an y fine and medium rootB; a b r u p t wavy boundary ( 5 4 1 0 ) . BE - 6 t o 1 3 cm; 10YR 4 / 3 l o a m y s a n d ; w e ak m e d i u m g ran u lar stru c tu re ; very friab le; man y f i n e a n d m e d iu m r o o t s ; c l e a r sm ooth b o u n d a ry (5 4 2 0 ). B e l - 1 3 t o 3 7 cm; 7 . 5 Y R 4 / 4 s a n d ; w e ak c o a r s e g r a n u l a r stru c tu re ; f r i a b l e ; many f i n e , m edium , a n d fe w l a r g e r o o t s ; 2% g r a v e l ; g r a d u a l s m o o t h b o u n d a r y ( 5 4 3 0 ) • Bs2 - 37 t o 70 cm; 7 . SYR 4 / 6 sand; w e ak m e d iu m s u b a n g u l a r b l o c k y s t r u c t u r e ; f r i a b l e ; common f i n e a n d m e d iu m r o o t s ; 1-2% g r a v e l ; c l e a r s m o o t h b o u n d a r y ( 5 4 4 0 ) . BC - 70 t o 1 3 3 cm; 10YR 5 / 6 s a n d ; weak c o a r s e g r a n u l a r stru c tu re ; v e r y f r i a b l e ; fe w medium r o o t s ; f a i n t lo am y s a n d band a t c l e a r sm ooth b o u n d a ry ( 5 4 5 0 ). C - 1 3 3 t o 1 9 0 cm; 10YR 6 / 6 s a n d ; s i n g l e g r a i n ; l o o s e ; f e w m ediu m r o o t s ( 5 4 6 0 ) . A uger sam ple i n d i c a t e d g rav e lly s a n d a t 2 8 5 cm ( n o t s a m p l e d ) . T a b l e B .31 A n a l y t i c a l D a t a - R u b i c o n B l o c k IV ECCCL:b c c c &s &&=e s ; s b b b b s b b c b s c s b s SN 5410 5420 5430 5440 5450 5460 HT 5 .8 7 .3 2 3 .7 3 3 .0 6 2 .7 5 6 .8 BD 1.1 23 1.3 60 1 .4 4 9 1 .5 2 2 1 .5 9 0 1 .6 2 5 SN 5410 5420 5430 5440 5450 5460 PH20 4.0 6 4.8 4 5 .1 4 5 .4 6 5 .7 4 5 .8 3 PHCA 3 .3 0 4 .2 2 4 .5 2 4 .7 4 4 .96 5 .0 1 c c c = c ECBCBC SADS EXTS -4 .6 2.7 6.2 3.9 1 3 .7 1 2.7 8.2 6.9 4.0 5 .2 2.2 1.1 %0RGC 2 .7 8 6 .672 .414 .201 .054 .027 EXTP 8.2 10. 7 27. 9 33. 2 18. 5 19. 2 DCFE DCAL 1343 444 2122 956 2472 1634 1517 823 1110 451 895 285 AOFE 603 1260 1454 580 321 139 EXMG EXNA 2 9 .1 3 .1 2 .4 1 .2 1 .4 .5 1 .4 .8 1 .4 .9 1.1 1.1 S5S5S5S5EE!cseesb b b b e b s e b b b b AOAL NPFE NPAL 498 492 5 68 1278 1054 1351 2299 6 61 1372 1516 660 1 79 7 74 89 4 19 5 20 3 79 88 EXCA 17 5 .5 12.0 11.1 10.1 8 .0 5 .8 EXK 40.4 10.2 6.3 4.9 3 .8 3 .6 EXAL 12 1 .3 68.2 3 2.4 12.1 4 .7 3 .0 B C S K B B ESC B 211 S e r i e s : R ubicon B l o c k : V D a t e S a m p l e d : A u g u s t 2 0 , 19B5 L o c a t i o n : S e c t i o n 2 , T24N R8W, M i s s a u k e e C o u n t y , M i c h i g a n 35 0 ' n o r t h and 2 3 8 0 ' w e st o f s o u t h e a s t s e c t i o n c o r n e r F o r e s t C over: w h ite o a k , re d o a k , and b i g t o o t h a sp e n S t a n d Age ( y e a r s ) : 88 B a s a l A re a a t P i t ( f t 2 a c r e - 1 ) : 120 S a m p l e d B y : N e i l W. M a c D o n a l d Pedon D e s c r ip t i o n - R ubicon B lock V A - 0 t o 7 cm; 10YR 2 / 1 s a n d ; w e ak medium g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; common f i n e a n d m e d i u m r o o t s ; c l e a r sm ooth b o u n d a ry (5 5 1 0 ). E - 7 t o 1 8 cm; 1 0 YR 6 / 2 t o 1 0 YR 5 / 3 s a n d ; w e a k m e d iu m g ran u lar stru c tu re ; very f r ia b le ; common f i n e a n d m ed iu m ro o ts; some m i x i n g w ith A and B sl ev id en t; c le ar wavy boundary (5 5 2 0 ). B s l - 18 t o 34 cm; 7 . 5 Y R 4 / 4 s a n d ; w eak m e d i u m g r a n u l a r stru c tu re ; very f r ia b le ; common f i n e , m edium , and larg e r o o t s ; <1% g r a v e l ; c l e a r s m o o t h b o u n d a r y ( 5 5 3 0 ) . B s2 - 34 to 54 cm; 7.5Y R 4 / 6 sand; w e ak m ed iu m su b a n g u lar b lo ck y s t r u c t u r e ; friab le; common f i n e , m e d i u m , and l a r g e r o o t s ; <1% g r a v e l ; 5-10% o r t s t e i n i n l o w e r p a r t ; c l e a r i r r e g u l a r boundary (5 5 4 0 ). BC - 54 t o 1 0 0 cm; 10YR 6 / 4 sand; m oderate coarse subangular b lo ck y stru c tu re ; friab le to firm ; 10- 2 0 % o rtstein occu rrin g in chunks in upper p a r t ; few f i n e and m ediu m r o o t s ; c l e a r s m o o t h b o u n d a r y ( 5 5 5 0 ) . C - 1 0 0 t o 1 6 6 cm; 10YR 7 / 3 s a n d ; s i n g l e g r a i n ; l o o s e ; f e w f i n e a n d m e d i u m r o o t s ; <1 % g r a v e l ; f e w f a i n t c o l o r b a n d s at 1 3 0 a n d 1 65 cm ( 5 5 6 0 ) . Auger sam ple i n d i c a t e d sim ilar n o n - e f f e r v e s c e n t s a n d t o 3 3 0 cm ( n o t s a m p l e d ) . T a b le B .32 A n a l y t i c a l D a ta - R ubicon B lock V BCBBBS& SN 5510 5520 5530 5540 5550 5560 HT 6 .5 11.0 1 5 .7 20.2 45 .7 66.0 BD 1 .2 0 3 1 .4 6 9 1 .4 5 8 1 .5 1 5 1 .6 3 4 1.6 4 9 SN 5510 5520 5530 5540 5550 5560 PH20 3 .7 1 4 .0 7 4 .9 4 5 .0 6 5 .0 8 5.1 7 PHCA 3 .0 6 3 .6 0 4 .4 4 4 .6 7 4 .8 8 4 .8 1 c s c e e b b SADS EXTS - 2.0 1 .7 .2 .2 1 7 .7 17.7 11.0 1 9 .8 3 .4 8.8 1 .4 1.6 %ORGC 2 .5 3 5 .212 .616 .289 .084 .015 BBSSBBC CCCBCB B S EXTP 6 .4 2 .3 1 3 .6 1 3 .1 1 6.3 1 3.9 &b b b b b b c c c b &b b s b b b :BBSS&B :DCFE DCAL 957 184 620 90 3318 2325 1811 1176 722 421 496 225 AOFE 248 80 1883 814 187 73 EXMG EXNA 1 8 .2 2 .5 1 .7 .9 1 .5 .6 r .8 .2 .4 .1 .£; AOAL 185 49 3362 2241 1105 426 EXCA 4 7 .6 4 .1 6 .0 2 .9 .9 , i NPFE NPAL 249 1 79 111 132 910 1883 271 1009 360 29 43 25 6 EXK 4 9.3 5 .0 ;1 3 . 1 7 .3 3 .1 2 .5 EXAL 5 1 .8 3 6 .8 5 8 .0 20.2 6.6 5 .0 BBBBBBBBEBBBBBBBBBBB!BES&&BCMtSSEC 212 S e r i e s : R ubicon B l o c k : VI D a t e S a m p l e d : A u g u s t 3 1 , 1 9 8 5 L o c a t i o n : S e c t i o n 1 4 , T20N R12W, L a k e C o u n t y , M i c h i g a n 2 490' n o r t h and 2420' e a s t o f s o u th w e s t s e c t i o n c o r n e r F o r e s t C o v e r: w h i t e oak and b l a c k oak . S t a n d Age ( y e a r s ) : 88 B a s a l A r e a a t P i t ( f t 2 a c r e - 1 ) : 1 20 S a m p l e d B y : N e i l W. M a c D o n a l d , G e o r g e M. M a c D o n a l d , a n d D o u g l a s R. M a c D o n a l d Pedon D e s c r i p t i o n - R ubicon B lock VI A - 0 t o 4 cm; 10YR 3 / 1 sand; weak fin e g ran u lar s t r u c t u r e ; v e r y f r i a b l e ; common f i n e a n d m e d i u m r o o t s ; c l e a r sm ooth b o u n d a ry ( 5 6 1 0 ) . B - 4 t o 11 cm; 10YR 4 / 2 s a n d ; weak c o a r s e g ran u lar stru c tu re ; very f r i a b l e ; man y f i n e a n d m e d i u m r o o t s ; c l e a r w avy b o u n d a r y ( 5 6 2 0 ) . B s l - 11 t o 35 cm; 7 . SYR 4 / 6 s a n d ; w e ak c o a r s e g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; many f i n e a n d m e d i u m r o o t s ; g r a d u a l sm ooth b o u n d a ry (5 6 3 0 ). Bs2 - 35 t o 61 cm; 7 . SYR 5 / 6 s a n d ; w e ak m e d i u m g r a n u l a r stru c tu re ; very f r i a b l e ; man y f i n e a n d m e d i u m r o o t s ; c l e a r sm ooth b o u n d a ry ( 5 6 4 0 ). BC - 61 to 9 0 cm; 7 . SYR 6 / 6 sand; w e ak medium su b an g u lar b lo ck y s t r u c t u r e ; friab le; few f i n e a n d medium ro o ts; 5% w e a k l y c e m e n t e d o r t s t e i n ; c le ar wavy b o u n d a ry (5650). C - 90 t o 1 6 5 cm; 10YR 7 / 4 s a n d ; s in g le g ra in ; lo o se; few f i n e an d medium r o o t s (5 6 6 0 ) » Auger sam ple in d icated few f a i n t 10YR 7 / 6 m o t t l e s a t 2 4 5 cm; B lig h t e ffe rv e sc e n c e at 2 6 5 cm; s t r o n g l y e f f e r v e s c e n t s a n d f r o m 295 t o 330 cm (not sam p led ). T a b le B .33 A n a l y ti c a l D ata - R u b i c o n B l o c k VI r c BBBBBCBOC:ES8SSCS1 BBS ESSBBBBESISBBBBBB S S S S 8 B B B 8 B B 8 SN 5610 5620 5630 5640 5650 5660 HT 3 .5 7 .2 2 4 .2 2 6 .3 2 8 .5 7 5 .3 BD 1 .1 3 4 1 .4 3 0 1 .4 5 2 1 .5 6 6 1 .5 9 9 1 .5 9 9 SN 5610 5620 5630 5640 5650 5660 PH20 3 .9 1 4 .0 9 4 .8 6 4 .8 5 4 .9 4 5 .1 1 PHCA 3 .2 6 3 .5 2 4 .4 8 4 .5 1 4 .7 6 4 .8 7 BB8SBSISBSBBBB SADS EXTS -6 .3 3 .7 - 2.2 1.8 9 .7 22.6 4 .8 1 4 .6 1 .3 8.6 .1 2.1 %ORGC 1.9 2 6 .758 .436 .142 .037 .0 09 EXTP 11.6 8.2 2 8.1 2 3.7 2 5.2 1 6.0 DCFE DCAL 1034 200 911 176 2375 1543 1504 817 704 423 455 176 AOFE AOAL 343 220 312 237 1276 1972 547 1 1 9 1 229 944 63 241 EXMG EXNA 1 2 .5 2. 4 4 .6 1. 3 .8 8 .5 6 2 .2 .2 5 EXCA 3 1 .7 10.2 2 .3 1 .9 1.1 .2 NPFE NPAL 2 29 329 2 63 282 9 1 0 17 3 9 494 1150 74 37 3 44 1 98 EXK 5 0 .0 1 9 .9 9 .0 5 ,4 2 .7 2 .3 EXAL 62.8 62.1 4 4.9 2 4 .9 7 .1 2.7 BSBSCiS BBB C & B & eBS ;s:BBCBBBBBE;CBB&BBIS8SSSS S e r i e s : S pinks B lock: I D a t e S a m p le d : J u n e 2 7 , 1985 L o c a t i o n : S e c t i o n 2 1 , T5N R 1 E , S h i a w a s s e e C o u n t y , M i c h i g a n 2 1 6 5 ' n o r t h a n d 61 0* e a s t o £ s o u t h w e s t s e c t i o n c o r n e r F o r e s t C o v e r: b la c k o a k , w h ite o a k , and re d m aple S t a n d A g e ( y e a r s ) : 53 B a s a l A r e a a t P i t ( f t 2 a c r e - 1 ) : 1 40 S a m p l e d B y : N e i l W. M a c D o n a l d a n d D o r e e n C . M a c D o n a l d Pedon D e s c r ip ti o n - S p in k s B lock I A - 0 t o 13 cm; 10YR 3 / 1 l o a m y f i n e s a n d f w e ak m e d iu m g ran u lar stru c tu re ! very friab le; man y f i n e a n d m e d iu m r o o t s ; c l e a r wavy b o u n d a r y ( 6 1 1 0 ) . El — 13 t o 4 5 cm; 10YR 4 / 6 l o a m y f i n e sand; m oderate fin e su b an g u lar blocky s tr u c tu r e ; friab le; common f i n e , m edium , and few l a r g e ro o ts; 2% g r a v e l; gradual w a vy boundary (6 12 0). E2 - 45 t o 65 cm; 10YR 5 / 4 l o a m y f i n e sand; m o d erate medium s u b a n g u l a r b l o c k y s t r u c t u r e ; friab le; few f i n e and common m e d i u m r o o t s ; 2% g r a v e l ; c l e a r w a v y b o u n d a r y ( 6 1 3 0 ) . E* & B t - 6 5 t o 1 3 6 cm; 10YR 5 / 4 l o a m y f i n e s a n d ( E ' j ; m o d e r a t e medium s u b a n g u l a r b l o c k y s t r u c t u r e ; f i r m ; few f i n e and m ediu m r o o t s ; 2% g r a v e l ; a b r u p t wavy b o u n d a r y ( 6 1 4 0 ) ; and 7.5YR 4 / 4 fin e s a n d y loam (B t); m o d erate medium s u b a n g u l a r b l o c k y s t r u c t u r e ; f i r m ; t o t a l 2 4 cm i n b a n d s ; f e w f i n e a n d medium r o o t s ; a b r u p t sm ooth b o u n d a ry (6 1 5 0 ). C - 1 3 6 t o 1 5 9 cm; 10YR 5 / 4 f i n e s a n d y l o a m ; m oderate c o a rse su b a n g u la r b lo ck y s t r u c t u r e ; f i r m ; fe w medium r o o t s ; B tro n g ly e ff e r v e s c e n t (6160). T a b l e B .34 A n a l y ti c a l D ata - S p in k s B lock 1 c c c c c e c c n c i b b d scsse : s e s s c s BCBSSC: c s c = SN 6110 6120 6130 6140 6150 6160 HT 1 2.5 3 1.8 1 9.5 4 7 .3 24.3 23.3 BD SADS EXTS DCFE DCAL 1 .0 6 5 -1 0 .4 7 .3 4293 929 1.2 8 8 10.1 8.6 4565 1203 1.4 2 3 6 .3 4.9 3461 686 1.4 4 0 2 .7 2.1 3235 382 1.6 5 7 - 6 . 1 1 1 . 6 11026 1224 1 .5 3 4 - 3 6 .7 2 9 .9 4600 353 SN 6110 6120 6130 6140 6150 6160 PH20 5.31 4.89 5 .0 1 5.72 7 .0 7 8.35 PHCA %ORGC EXTP EXMG EXNA EXCA 4 .7 6 3 .6 6 8 20.6 1 3 0 .4 1.0 9 1 1 .0 4 .2 6 .450 1 2 .7 5 .4 2.0 2 8.9 4 .3 5 .145 5 .3 4 .7 1 .5 1 6 .5 4 .6 6 .066 3 .7 2 0 .3 2.2 4 1.7 6 .5 4 .134 2 .5 22 1 .9 1 5 .0 67 7 .3 7 .9 2 .089 2 .5 21 0 .5 1 3 .2 3 5 0 5 .1 AOFE AOAL 1901 824 1147 1206 548 6 86 497 402 1394 638 906 201 EXK 68.8 1 1.7 9 .2 7 .5 2 5 .9 12.2 NPFE NPAL 1 5 37 907 1023 1293 540 8 53 317 403 1 39 113 2 09 202 EXAL CLAY 8.7 7 .6 7 1 .7 7 .5 4 4 .1 12.5 3 .5 .2 1 3 .2 .0 8 .5 214 S e r ie s : Spinks B lock: I I D a te S am p led : A u g u st 1 , 1985 L o c a t i o n : S e c t i o n 3 r T IN R1E, I n g h a m C o u n t y , M i c h i g a n 1340' s o u th and 2 6 0 1 e a s t o f n o rth w e s t s e c t i o n c o rn e r F o r e s t C o v e r: w h i t e o a k , b l a c k o a k , r e d m aple* b l a c k c h e r r y S t a n d Age ( y e a r s ) : 109 B a s a l A r e a a t F i t ( f t 2 a c r e " 1 ) : 1 10 S a m p l e d B y: N e i l W. M a c D o n a l d a n d D o r e e n C . M a cD o n ald Pedon D e s c r i p t i o n - S p in k s Block I I A - 0 t o 4 cm; 10YR 3 / 2 l o a m y f i n e sand; m o derate coarse g ran u lar s tru c tu re ; friab le; many f i n e a n d medium r o o t s ; c l e a r sm ooth b o u n d a ry ( 6 2 1 0 ). El - 4 t o 4 1 cm; 10YR 5 / 6 l o a m y s a n d ; weak medium su b a n g u lar blocky stru c tu re ; very f r i a b l e ; common f i n e , m ed iu m , and l a r g e r o o t s ; 1- 2% g r a v e l ; c l e a r wavy b o u n d a r y (6220). E2 - 41 t o 7 0 cm; 10YR 5 / 4 l o a m y s a n d ; weak medium su b an g u lar blocky s t r u c t u r e ; friab le; f e w f i n e a n d medium r o o t s ; 1% g r a v e l ; a b r u p t wavy b o u n d a r y ( 6 2 3 0 ) . E ' & B t - 70 t o 210 cm; 10YR 5 / 4 l o a m y s a n d ( E ' ) f weak medium s u b a n g u l a r b l o c k y s t r u c t u r e ; friab le; f e w medium r o o t s ; a b r u p t wavy b o u n d a r y ( 6 2 4 0 ) ; a n d 7 . 5 Y R 4 / 6 s a n d y l o a m ( B t ) ; w eak m edium s u b a n g u l a r b l o c k y s t r u c t u r e ; f i r m ; 45 cm t o t a l i n b a n d s and l a m e l l a e ; f e w m ed iu m r o o t s ; a b r u p t wavy boundary (6250). C - 210 to 232 cm; 10YR 5 / 3 loamy sand; massive; friable; few medium roots; faint depoBitional strata; strongly effervescent ( 6 2 6 0 ) . T a b l e B.35 A n a l y t i c a l D a t a - S p i n k s B l o c k IX SN 6210 62 20 62 30 62 40 6250 62 60 HT 3 .8 36.7 28.8 95.3 45.3 21.5 BD 1.173 1.505 1.5 4 1 1.4 3 2 1.7 3 7 1.5 5 6 SADS EXTS DCFE DCAL - 6.6 7.6 4 1 3 8 646 5301 9 .8 7.5 846 5140 465 7 .2 4.8 5644 442 2.6 1.2 1 8 . 2 1 0 . 8 1 1 3 6 9 1134 3930 213 .5 1.4 AOFE AOAL 5 35 1588 1916 1 08 0 556 11 39 312 12 42 3699 950 121 730 NPFE NPAL 1497 5 48 1258 1404 455 383 251 2 26 2 92 334 81 88 SN PH2 0 PHCA %ORGC EXTP EXMG EXNA EXCA EXK EXAL CLAY 6210 3 .9 2 3 .3 0 3 .694 2 0 .4 4 0.6 4.6 95.6 66.6 151.3 6220 4.7 0 4 .1 2 6.4 .306 2 9 .1 4.3 94.3 7 .8 10.3 2 0.4 6 23 0 5.25 4 .33 20.0 6.6 .088 1 3 .0 2 8.9 3.7 3 2 .2 1 4.0 6240 6.11 5.01 22.0 .096 1 0 .3 9 .6 1.3 2.6 181.0 3.7 6250 5 .4 9 4 . 7 6 .076 6 . 8 113.6 11.9 1 3 .9 7 .0 683.7 6 1 .3 6260 .092 1 .8 7 ,4 .0 8 .74 7 .8 2 6 5.7 4 .0 3043.1 2.6 B e e e e s !BBCBBECCCne SeeeBBBSBSSBBBBBBBBBBI9BSEB&&BSSBSi&e&SBSBCBB 215 S e r ie s : S pinks B l o c k : 111 D a t e S a m p le d : A u g u s t 2 , 1985 L o c a t i o n : S e c t i o n 1 0 , T IN R 5 E , L i v i n g s t o n C o u n t y , M i c h i g a n 2 4 9 0 ’ n o r t h and 1 3 9 0 1 w e st o f s o u t h e a s t s e c t i o n c o r n e r F o r e s t C over: b la c k o a k , w h ite o a k r and sh ag b ark h ic k o ry S t a n d Age ( y e a r s ) : 1 1 2 B a s a l A r e a a t P i t ( f t 2 a c r e - 1 ) : 1 1 0 S a m p l e d B y : N e i l W. M a c D o n a l d Pedon D e s c r i p t i o n - S p in k s B lock I I I A - 0 t o 1 1 cm; 10YR 3 / 2 l o a m y s a n d ; m o d e r a t e m e d iu m g ran u lar stru c tu re ; very friab le; man y f i n e a n d m e d iu m r o o t s ; c l e a r sm ooth b o u n d a ry (6 3 1 0 ) . El - 11 t o 44 cm; 10YR 5 / 6 l o a m y s a n d ; w e ak coarse g ran u lar stru c tu re ; very f r i a b l e ; common m e d i u m a n d l a r g e ro o ts; common worm c h a n n e l s f i l l e d w i t h A h o r i z o n m a t e r i a l ; g r a d u a l sm ooth b o u n d a ry (6 3 2 0 ). E2 - 44 t o 7 5 cm; 10YR 5 / 4 l o a m y s a n d ; w e ak coarse su b a n g u lar b lo ck y s t r u c t u r e ; friab le; common m e d i u m r o o t s ; f e w worm c h a n n e l s ; a b r u p t w a v y b o u n d a r y ( 6 3 3 0 ) . E ' & B t - 7 5 t o 2 2 3 cm; 10YR 5 / 4 s a n d ( E ' ) j w e ak m ed iu m su b a n g u lar b lo ck y s t r u c t u r e ; friab le; f e w medium r o o t s ; 1 % f i n e g r a v e l ; a b r u p t i r r e g u l a r b o u n d a r y ( 6 3 4 0 ) ; an d 7.5Y R 4 / 4 sandy loam ( B t ) ; weak medium s u b a n g u l a r b l o c k y stru c tu re ; firm ; 45 cm t o t a l i n b a n d s a n d l a m e l l a e 0 . 5 t o 10 cm t h i c k ; fe w medium r o o t s ; a b r u p t i r r e g u l a r b o u n d a r y ( 6 3 5 0 ) . 2C - 2 2 3 t o 2 4 1 cm; 10YR 5 / 4 s a n d ; sin g le g ra in ; loose; few larg e ro o ts; 10-15% g r a v e l ; m o d erately effervescent (6360). T a b l e B .36 A n a ly tic a l D ata b s b s s S p in k s B lock I I I :Bc c c e j B E B B C S e &&BBBBEDEOIEEEEEE!s e & B E i SN 6310 6320 6330 6340 6350 6360 BT 1 0 .7 3 3 .2 3 0 .8 103.3 4 5.3 1 7 .7 SN 6310 6 32 0 6330 6340 6350 6360 PH20 5 .4 1 5 .2 5 5.87 6.15 6.13 8.79 BD SADS EXTS 1 .1 7 4 - 1 5 .1 1 0 .0 1.493 3 .0 1 .7 1.496 1 .3 .6 1.555 .6 .6 1 .7 3 5 3 .0 2 .4 1 .5 8 8 .0 .6 PHCA %ORGC EXTP 5 .0 2 1 .939 1 8 .3 4.37 .118 2 9 .8 4 .73 .062 2 7 .1 4.97 .043 1 2 .9 5 .2 3 .0 9 0 1 2 .1 7 .8 5 .097 1 .3 SffPBBB SBBSB1b e e c s AOFE AOAL 706 1691 690 1054 559 322 575 2 03 6 20 1479 510 1 17 NPFE NPAL 987 616 595 662 3 09 366 2 19 208 211 1 62 1 93 273 EXMG EXNA EXCA EXK 3 .0 8 9 .5 7 8 2 .7 82.1 1 .5 6 4 .5 11.2 9 .7 7 9 .6 1 8.2 1 .3 8.4 2 .3 1 8.3 11 7 .5 7 .3 4 .9 88.1 525.2 3 4 .0 73.3 4 . 9 :3 4 3 8 . 5 1 4 . 0 EXAL CLAY 3 .8 2 9 .4 4 .1 7 .4 3 .7 2.6 1 .7 1 .9 9 .4 .2 4 .1 DCFE 3339 3066 2632 2896 7373 2764 DCAL 634 513 299 256 772 213 B E 8 8 S S S B B S t3 S B B S E B BSBBBBBBSSB1ff&EEE&lB B E E E E E B E C B E E E E E E E E E E E ! S e r ie s : S pinks B lo c k : IV D a te S am p le d : A u g u s t 6 , 1985 L o c a t i o n : S e c t i o n 2 0 , T1S R 3 E , W a s h t e n a w C o u n t y , M i c h i g a n 1 6 7 0 ' n o r t h a n d 12 7 0* w e s t o f s o u t h e a s t s e c t i o n c o r n e r F o r e s t C o v e r: b u r oak and r e d oak S t a n d Age ( y e a r s ) : 1 2 1 B a s a l A r e a a t F i t ( f t 2 a c r e - 1 } : 1 20 S a m p l e d B y : N e i l W. M a c D o n a l d P ed o n D e s c r i p t i o n - S p i n k s B lo ck IV A - 0 t o 6 cm; 10YR 4 / 3 l o a m y f i n e sand; m oderate medium g r a n u l a r s t r u c t u r e ; friab le; common f i n e a n d m e d iu m r o o t s ; c l e a r sm ooth b o u n d a ry (6410)* E l - 6 t o 33 cm; 10YR 5 / 6 l o a m y f i n e s a n d ; w e ak m e d iu m su b an g u lar b locky s t r u c t u r e ; friab le; common m e d i u m a n d l a r g e r o o t s ; 1% g r a v e l ; g r a d u a l s m o o t h b o u n d a r y ( 6 4 2 0 ) . E2 - 33 t o 7 8 cm; 10YR 5 / 4 l o a m y s a n d ; w e ak coarse su b a n g u lar b lo ck y s t r u c t u r e ; friab le; common m e d i u m r o o t s ; 7 -1 0% gravel and l a r g e co b b les; abrupt sm ooth b o u n d a ry (6430) . E* & B t - 7 8 t o 2 0 2 cm; 10YR 5 / 4 s a n d ( E f ) ; w e ak m e d iu m su b an g u lar b lock y s t r u c tu r e ; f r i a b l e ; f e w m e d i u m r o o t s ; <1 % g rav el; abrupt sm ooth d i s c o n t i n u o u s b o u n d a ry (6440); and 7.5Y R 4 / 4 s a n d y lo am ( B t ) ; m o d e r a t e c o a r s e s u b a n g u l a r b l o c k y stru c tu re ; firm ; 79 cm t o t a l , upper p a rt o f Bt alm o st c o n tin u o u s, g r a d i n g i n t o t h i n b a n d s a n d l a m e l l a e ; 5% g r a v e l and c o b b l e s ; c l e a r wavy b o u n d a r y ( 6 4 5 0 ) . C - 2 0 2 t o 2 7 6 cm; 10YR 4 / 4 l o a m y s a n d ; w e ak coarse su b a n g u lar b lo ck y s t r u c t u r e ; f r i a b l e ; f e w medium r o o t s ; few v ery f a i n t bands or s t a in s (6460). Auger sam ple in d icated s t r o n g l y e f f e r v e s c e n t s a n d b e l o w 2 7 6 cm ( n o t s a m p l e d ) . T a b le B .37 A n a l y t i c a l D a t a - S p i n k s B lo c k IV B sece SCSCBSS BS*SC*BC1BC&BBIBBC8SBI AOFE AOAL 2079 738 1552 784 898 62 4 927 19 9 2095 956 1027 149 SCBBB SN 6410 6420 6430 6440 6450 6460 HT 5 .7 2 6 .5 4 5.2 4 5 .0 7 8 .7 7 4 .0 BD SADS EXTS DCFE DCAL .990 - 1 0 . 5 8 .1 4303 753 1 .4 1 6 5 .1 7 .4 4628 86 4 1.5 1 0 4 .6 6 .2 4297 622 1.5 3 1 2 .3 2 .6 3978 337 1.793 1 6 .9 1 7 .9 11416 1125 1 .4 7 3 - 1.0 1.6 3316 226 SN 6410 6420 6430 6440 6450 6460 PH2 0 4 .3 0 4 .63 4.76 6.16 5 .4 2 8 .3 6 PHCA %ORGC EXTP EXMG EXNA EXCA EXK EXAL CLAY 3 .6 7 4 .073 1 2 .4 3 4 .7 4 .7 2 8 2 .5 6 0 .5 10 8 .0 4.01 .384 3 3 .9 3 .7 2.1 1 6.1 9 .2 9 2 .8 7 .4 4.09 3 .5 .197 2 3 .7 2 .4 1 5.6 8 .5 60.5 7 .6 5 .1 1 .046 9 .6 3 1 .1 2 .5 12 4 .3 6 .4 .8 3 .3 4.55 .062 4 . 0 :L 6 7 . 6 4 .9 47 9 .1 5 3 .4 17.3 1 4 .0 7 .5 8 .017 8.0 4 4 .9 2 .7 1259.5 4 .5 .0 1.6 NPFE NPAL 1577 77 0 1074 1240 604 893 3 35 3 09 11 9 19 2 25 7 1 97 217 S e r ie s : Spinks B l o c k : V D a t e S a m p l e d : A u g u s t 2 7 , 19 8 5 L o c a t i o n : S e c t i o n 2 2 , T1S R9W, K a l a m a z o o C o u n t y , M i c h i g a n 1 8 8 0 1 n o r t h a n d 3070* w e s t o f s o u t h e a s t s e c t i o n c o r n e r F o r e s t C over: b la c k o a k , w h ite o a k , and p i g n u t h ic k o r y S t a n d Age ( y e a r s ) : 1 25 B a s a l A r e a a t P i t ( f t 2 a c r e - 1 ) : 1 2 0 S a m p l e d By: N e i l W. M a cD o n ald Pedon D e s c r i p t i o n - S p in k s Block V A - 0 to 17 cm; 10YR 3 / 2 l o a m y s a n d ; weak medium g ran u lar stru ctu re; very friab le; many f i n e a n d medium r o o t s ; 1% g r a v e l ; c l e a r s m o o t h b o u n d a r y ( 6 5 1 0 ) . E l - 17 t o 57 cm; 10YR 5 / 4 l o a m y s a n d ; weak medium s u b a n g u l a r b l o c k y s t r u c t u r e ; v e r y f r i a b l e ; common m edium a n d fin e ro o ts; 1-2% g r a v e l ; f e w worm c h a n n e l s f i l l e d w i t h A h o r i z o n m a t e r i a l ; c l e a r wavy b o u n d a r y ( 6 5 2 0 ) . E2 - 5 7 t o 88 cm; 10YR 6 / 4 s a n d ; weak m edium s u b a n g u l a r blocky s tr u c tu r e ; friab le; f e w f i n e a n d medium r o o t s ; 2-3% g r a v e l ; few f a i n t loam y s a n d b a n d s ; a b r u p t wavy b o u n d a r y (6530). E* & B t - 88 t o 256 cm; 10YR 6 / 4 s a n d (E *); sin g le g rain ; loose; common f i n e a n d medium r o o t s ; 2-3% g r a v e l , o c c u r r i n g i n t h i n b a n d s i n some s p o t s ; a b r u p t wavy b o u n d a r y (6 5 4 0 ); and 7.5YR 4 / 4 loam y s a n d t o s a n d y lo am ( B t ) ; weak f i n e s u b a n g u l a r b l o c k y s t r u c t u r e ; f r i a b l e ; 2 8 cm t o t a l i n 1 2 cm t h i c k b a n d s a n d l a m e l l a e ; c l e a r wavy b o u n d a r y ( 6 5 5 0 ) . C - 256 t o 276 cm; 10YR 6 / 4 s a n d ; s i n g l e g r a i n ; l o o s e ; 2-3% g r a v e l ; stro n g ly efferv escen t; bucket auger sam ple (6560). T a b le B.38 A n a l y t i c a l D a ta - S p in k s Block V 56BEEBIEeSBB&B S B B S B B B e S S J SN HT 6510 16 .7 6520 39.5 6530 3 1 . 2 6540 1 4 0 . 2 65 50 2 7 . 5 6560 20.0 BD 1.189 1.492 1.598 1.600 1.616 1.5 7 1 SN 65 10 6520 65 30 65 40 65 50 65 60 PHCA %ORGC EXTP 4 .6 5 2 .060 9 5 .3 .273 9 4 .2 4.27 4 .66 .047 4 6 .9 4 .89 .046 1 9 .4 5 .14 .068 2 5 .4 7 .8 5 .011 2.2 PH20 5.08 5.02 5.83 5.95 6.06 8.89 SADS EXTS -6 .3 5.8 5 .2 2.7 2.0 .8 1 .3 .7 4 .8 1.5 -.9 .5 BEEEEI DCFE DCAL 3 48 0 1334 2 83 1 7 03 2 1 6 4 299 2 7 1 1 2 88 545 9 647 1 42 9 91 BESECS AOFE AOAL 1206 1113 858 753 312 20 3 537 30 0 1133 416 341 82 EXCA EXMG EXNA 2.3 60 .9 418.5 1.4 7 .1 5 2.3 1.7 13.6 7 5 .8 1.4 19.7 119.4 3.0 52.8 408.3 43.1 2 .8 2264.8 EXK 69 .6 12.0 1 0.4 11 .3 30 .1 6.0 EBBBB NPFE NPAL 9 62 1 4 0 8 9 62 589 2 42 4 52 290 3 6 6 198 190 114 145 EXAL CLAY 26.0 5.4 49.3 2.9 10.3 4.9 2.6 2.8 7 .1 .0 2.0 c c n R c s e c & e B B B B e e e B s e & e e e B B B e B B S & e e B c e e s s s i& fe b s s B B D e e ts e s e s c G ic e 218 S e r i e s : S pinks B l o c k ; VI D a t e S a m p l e d : A u g u s t 3 0 , 1 9 8 5 L o c a t i o n : S e c t i o n 1 8 , T 7S R12W, S t . J o s e p h C o u n t y , M i c h i g a n 9 35 * s o u t h a n d 1 6 0 0 * w e s t o f n o r t h e a s t s e c t i o n c o r n e r F o r e s t C o v e r: b l a c k oak and s a s s a f r a s S t a n d A g e ( y e a r s ) : 53 B a s a l A r e a a t P i t ( f t 2 a c r e " 1 ) : 70 S a m p l e d By: N e i l W. M a c D o n a l d a n d G e o r g e M. M a c D o n a l d Pedon D e s c r ip ti o n - S p i n k s B lo c k VI Ap - 0 t o 2 0 c m ; 10YR 4 / 3 l o a m y s a n d ; w e a k m e d i u m g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; m any f i n e a n d m edium r o o t s ; a b r u p t sm ooth b o u n d a ry (6 6 1 0 ) . E l - 2 0 t o 5 6 cm; 1 0YR 4 / 4 l o a m y s a n d ; w e a k m e d i u m s u b a n g u l a r b l o c k y s t r u c t u r e ; f r i a b l e ; common f i n e , m e d i u m , and l a r g e r o o t s ; g r a d u a l sm ooth b o u n d a ry (6 6 2 0 ) . E2 - 5 6 t o 9 8 c m ; 1 0 Y R 5 / 4 l o a m y s a n d ; w e a k c o a r s e s u b a n g u l a r b l o c k y s t r u c t u r e ; v e r y f r i a b l e ; c om m on f i n e , m edium , and l a r g e r o o t s ; c l e a r wavy b o u n d a r y ( 6 6 3 0 ) . E* & B t - 9 8 t o 3 0 1 c m ; 10YR 6 / 4 s a n d ( E 1) ; w e a k c o a r s e g r a n u l a r s t r u c t u r e ; v e r y f r i a b l e ; few f i n e a n d medium r o o t s (6640); a n d 7.5Y R 4 / 4 s a n d y l o a m (B t); w eak m edium s u b a n g u l a r b l o c k y s t r u c t u r e ; f r i a b l e ; 2 9 cm t o t a l i n b a n d s 0 . 5 t o 3 . 0 cm t h i c k , a p p r o x i m a t e l y 1 0 cm b e t w e e n b a n d s ; a b r u p t sm ooth b o u n d a ry (6650). A u g e r s a m p l e b e l o w 1 8 5 cm. C - 3 0 1 t o 3 5 1 c m ; 10YR 6 / 4 s a n d ; a u g e r s a m p l e ( 6 6 6 0 ) . T a b l e B . 39 A n a ly tic a l D ata ;C SSS!EC & BSSBBb HT SN BD 6610 19.5 1.415 6620 35.5 1.528 6630 42.0 1 .5 4 4 6640 173.7 1.566 29.3 1.652 6650 6660 5 0 .0 1 . 4 9 2 SN 6610 6620 6630 6640 6650 6660 PH20 5.02 5.34 5.54 5.77 5 .9 5 6.51 c e b c s SADS: EXTS 5.5 5.9 4.2 8.3 6.8 2.8 2.8 1.1 2.7 7.7 2 .2 1.1 PHCA %ORGC EXTP 4.2 3 .4 7 2 96 .2 4.3 9 .0 6 2 7 9 .4 4.4 5 .029 4 9 .3 .0 21 1 4 .2 4.6 2 5.2 0 .0 6 5 14.8 .0 0 9 5 .5 0 8.2 B B SSBBSSSS2SSSEBSBBISOBBB:E E EESEC C B B B & fi S p i n k s B l o c k VI i& E E E E B B B S B B I S S E S S E E E S S C DCFE DCAL 3341 1143 3133 719 5 10 2560 225 2114 557 5156 168 1465 EXMG EXNA 8.7 1.0 8.1 .6 9.9 1.0 9.8 1.5 8 7.4 4.9 10.8 1.4 AOFE AOAL 1496 1291 1014 963 587 653 350 201 660 1692 131 4 46 NPFE NPAL 916 1462 716 1342 998 474 378 202 203 1 91 1 56 221 EXCA EXK 4 0 .2 2 4 .6 2 7 .5 1 7 .1 41.8 8.8 78.3 6.2 3 9 8 .1 2 8.1 5.9 68.8 EXAL CLAY 7 4 .4 4.5 3 4.7 3.0 29.0 2.0 8.5 7.2 8.4 .0 1.4 B B B S B B B E E B B B E E E EB E BStSBSSBSE S SSBBBS APPENDIX C APPENDIX C DESCRIPTION OP ANALYTICAL BULK SAMPLE As a n i n t e r n a l q u a l i t y c o n t r o l c h e c k , a b u l k s o i l s a m p l e was i n c l u d e d i n a n a l y s e s a s d e s c r i b e d i n C h a p t e r I V , M a t e r i a l s and M eth o d s. T h e b u l k s a m p l e u s e d was a c o m p o s i t e s a m p l e f r o m t h e Bwl h o r i z o n o f a G r a y c a l m - M o n t c a l m s o i l c o m p lex s u p p o r t i n g a 7 0 - y e a r - o l d m ixed r e d , w h i t e , and b l a c k o a k s t a n d l o c a t e d i n S e c t i o n 2 6 , T 32 N R 2 E , M o n t m o r e n c y C ounty, M ich ig an . S o i l sa m p le s w ere o b ta in e d w ith s o i l s a m p l i n g p r o b e s f r o m 90 r a n d o m l y l o c a t e d p o i n t s w i t h i n a 13.6 h e c t a r e a r e a a s p a r t o f a s e p a r a t e r e s e a r c h p r o j e c t . S o i l w a s a i r - d r i e d , p a s s e d t h r o u g h a 1 mm s i e v e , a n d t h o r o u g h l y mixed p r i o r t o a n a l y s i s . T able C .l A n a l y t i c a l Bulk Sam ple S t a t i s t i c s s e s c & s a s s s is s B B S P roperty^ SOa- S A d s o r b e d E x tractab le S E x tractab le P DC-Fe DC-A1 AO-Fe AO-A1 N P -F e NP-A1 E x c h A1 E x c h Ca E x c h Mg Exch K E x c h Na O rg an ic Carbon pH-H2 0 pH-CaCl2 BBBSBB U nits mg mg mg mg mg mg mg mg mg mg mg mg mg mg kg- * kg” | kg- ” kg~J k g ’"!" kg- * kg“ J k g - :}' kg- ” kg- * kg- * kg- * k g - !1 k g -A % , - L o g CH**”) -Log(H ) Mean S .D .i Range 3.5 6.8 3 2.2 2262 888 12 4 3 1 24 0 902 1155 36.5 5 4.6 7 .3 15.8 22.1 0.40 4.99 4.4 2 0.4 0.3 2.3 115 37 85 133 57 64 3.6 1.4 0.4 0.9 1.8 0.05 0.01 0.02 3 .1 -4 .2 6 .5 -7 .3 2 8 .3 -3 4 .4 2034-2443 820-935 1107-1364 1063-1415 789-1008 992-1273 3 2 .4 -3 9 .0 5 2 .6 -5 7 .5 6 .7 -7 .9 1 4 .2 -1 8 .0 1 9 .1 -2 5 .5 0 .3 2 -0 .5 0 4 .9 7 -5 .0 1 4 .3 9 -4 .4 4 C .V .++ n 1 0 . 1 % 12 4.3% 8 7.1% 12 11 5.1% 12 4.2% 6 . 6 % 12 12 10 .7 % 6.3% 12 5.5% 12 9.9% 3 2 . 6 % 12 12 5.2% 12 5.4% 8 . 1 % 12 12.9% 14 0.25% 12 0.35% 12 s & & e p s c n e s s & & s s BBBSBEE3&S&C BBBSBB BBBBBS!SBBBBSCBBBBB BBB&BSS bssss + t S o il P ro p erty DC = D i t h i o n i t e - C i t r a t e E x t r a c t i o n AO *= Ammonium O x a l a t e E x t r a c t i o n NF *= S o d i u m P y r o p h o s p h a t e E x t r a c t i o n Exch « E x c h a n g e a b le S .D . = S ta n d a rd D e v i a t io n ■*"** C . V . = C o e f f i c i e n t o f V a r i a t i o n , c a l c u l a t e d f r o m u n r o u n d e d mean a n d s t a n d a r d d e v i a t i o n v a l u e s . 219 APPENDIX D APPENDIX D ANALYSIS OF VARIANCE TABLES NOT INCLUDED IN TEXT T able D .l A n a ly s is o f V arian ce R e s u lts : S o i l P r e p a r a t i o n x SO4 - S C o n c e n t r a t i o n I n t e r a c t ions"** : c ± ^ s E B S c c D n c = s s = e = c s c c B c s = B = S E S E E C B O c i:c := = B = n c o E E :e : = s = ; A H o r i z o n - M o n t c a l m Loamy S a n d Source DF SS MS F P B lock 2 0 .1905 0 .0 9 5 2 3 .2 5 0.059 S o il P rep aratio n 1 2.9 1 6 5 2.9165 99.6 2 0 .0 0 0 SO4 - S C o n c e n t r a t i o n 5 5.5049 1.1010 37.6 1 0 .0 0 0 SP x SC 5 2.8949 0.5790 19.78 0 .0 0 0 2i t 0.6148 0 .0293 E rror E H o r i z o n - M o n t c a l m Loamy S a n d Source DF SS MS F P B lock 2 0.2166 0.1083 1.28 0.2 98 S o il P rep aratio n 1 3.0759 3.0759 36.3 7 0 .0 0 0 SO4 - S C o n c e n t r a t i o n 5 6 .5 5 34 1 .3107 15.50 0 .0 0 0 SP x SC 5 0 .4 8 04 0 .0961 1 .1 4 0.369 22 1.8605 0 .0 8 4 6 E rror + One d e g r e e o f f r e e d o m s u b t r a c t e d d u e t o d e l e t i o n o f a n o m a l o u s B l o c k 3 , f i e l d - m o i s t , 1 0 0 mg S L_ i d a t u m . 220 221 Table D.l (continued) Bs H o r i z o n - M o n t c a l m Loamy S a n d Source DF SS MS F P B lock 2 0.0569 0.0285 2 .9 3 0.0 74 S o il P rep aratio n 1 1.3205 1 .3 2 05 135.96 0.000 S04-S C o n c e n tr a tio n 5 11.0338 2 .2068 227.21 0.000 SP X SC 5 0 .0799 0 .0160 1.65 0 .1 8 9 22 0 .2137 0.0097 E rror E* H o r i z o n - M o n t c a l m Loamy S a n d Source DF SS MS F P B lock 2 0 .0783 0 .0392 0.43 0 .6 5 6 S o il P re p ara tio n 1 0 .4343 0.4343 4.82 0.039 S 0 4- S C o n c e n t r a t i o n 5 11.5394 2 .3079 2 5 .6 2 0.000 SP x SC 5 1 .5570 0.3114 3 .46 0.019 22 1 .9822 0.0901 E rror B t H o r i z o n - M o n t c a l m Loamy S a n d Source DF SS MS F P B lock 2 1 .2242 0.6121 3 .5 0 0.0 48 S o il P rep aratio n 1 0.0690 0.0690 0 .3 9 0.5 39 SO4 - S C o n c e n t r a t i o n 5 41.6539 8 .3 3 0 8 4 7 .6 0 0,000 SP x SC 5 1.4580 0 .2916 1 .67 0.1 84 22 3 .8 4 9 8 0 .1750 E rror 222 Table D.l (continued) C H o r i z o n - M o n t c a l m Loamy S a n d Source DF SS MS F P B lock 2 1.7879 0 .8939 1 .4 2 0 .2 6 3 S o il P re p ara tio n 1 19.5502 1 9 .5502 3 1 .1 3 0.000 SO^-S C o n c e n t r a t i o n 5 10.2073 2.0 41 5 3 .2 5 0 .0 2 4 SP X SC 5 11.1971 2 .2394 3 .5 7 0.0 16 22 13.8165 0 .6280 E rror s s c c n c c c & s e s s s s s s s c c c s s e & s & s f D ata s t a t i s t i c a l l y a n a ly z e d as (+ ,- ) ln (|m g S kg_1 J + l) , a n e g a t i v e s i g n d e n o t i n g n u m b ers b e lo w z e r o on t h e o r i g i n a l s c a l e o f m easurem ent. T a b l e D.2 A n a ly sis o f V arian ce R e s u lts : K a lk a s k a and G r a y li n g P r e l i m i n a r y S tudy+ Source DF SS MS P F B lock 2 0,4 28 6 0.2143 1 .37 0 .2 6 3 S eries S o il P rep aratio n S o il H orizon SO^-S C o n c e n t r a t i o n 1 1 2 1 8.4201 0 .9422 9 .5 9 99 1 0.0586 8.4201 0.9422 4 .7999 1 0.0586 5 3 .9 2 6 .0 3 30 .74 64 .4 1 0.000 0.0 1 6 0.000 0.000 S x SP S X SH S x SC SP x SH SP x SC SH x SC 1 2 1 2 1 2 0.5 22 8 20 .9 4 1 1 0.0076 1 .3 6 7 0 0.5833 0.1172 0 .5 2 2 8 10.4706 0.0076 0.6835 0 .5 8 3 3 0 .0 5 8 6 3 .3 5 67 .05 0 .05 4 .38 3 .7 4 0.3 8 0.0 6 9 0.000 0.7 87 0.017 0.055 0.686 8 .5 8 9 2 0 .1562 E rrort e S & & ^ S & 9 R P S K S S B C B B & 55 a & & P S S B B B B a C B B e B C S e & A S B & & e 5 S C B S B C C B S S D C t D a t a s t a t i s t i c a l l y a n a l y z e d a s ( + , - ) l n ( | m g S kg*"1 1 + 1 ) , a n e g a t i v e s i g n d e n o t i n g n u m b ers b e lo w z e r o on t h e o r i g i n a l s c a l e o f m easurem ent. t T h r e e a n d f o u r way i n t e r a c t i o n s w ere p o o le d w ith e r r o r . w ere n o n - s i g n i f i c a n t and 223 Table D.3 A n a ly sis o f V ariance R e s u lts : S u lf a te A d sorption w ith in S o il s e r i e s * :S C & & & & B S S S S B S B S S E & S ? S C !C n C S C B S E ? S S C C C C S £ i G ray lin g S e r ie s Source DP SS MS Block 5 0.7279 0.1 4 5 6 1.17 0 .36 S o il H orizon 4 70.8361 17.7090 141.94 0.00 20 2.4953 0.1248 E rror F P R ubicon S e r i e s Source DF SS MS F P Block 5 5.3336 1.0667 4.10 0.01 S o il H orizon 5 84.3859 16.8772 64.91 0.00 25 6.5006 0.2600 E rror K alkaska S e r ie s Source DF SS MS F p Block 5 0.5797 0.1159 1 .48 0.23 S o i l H orizon 5 59.2259 11.8452 151.08 0.00 23 1.8033 0.0784 E rror M ontcalm S e r i e s Source DF SS MS F P Block 5 3.4 3 6 0 0.6872 2.33 0.07 S o i l H orizon 6 50.6777 8.4463 28.65 0.00 23 6.7806 0.2948 E rror 224 Table D.3 (continued) Spinks S e r ie s ? DF Source SS MS F P Block 5 8.7333 1.7467 3 .04 0.03 S o i l H orizon 5 62.1340 12.4268 21.61 0.00 23 13.2253 0.5750 E rror Oshtemo s e r i e s Source DF SS MS F P Block 5 8.0984 1.6197 2.50 0 .06 S o i l H orizon 5 51.2671 10.2534 15.85 0.00 24 15.5248 0.6469 E rror S S a & E 6 C S C & S & S S S S E B B B S e s p p p ? S C £ S « & S S S B B & & 5 S S C & & S S S C e s : S & s r S C 5 + D ata s t a t i s t i c a l l y a n a ly z e d a s (+ r - ) l n ( |m g S kg” 1 1+1), a n e g a t i v e s i g n d e n o t i n g n u m b e r s b e l o w z e r o on t h e o r i g i n a l B eale o f m easurem ent. t S p in k s B lock I Bt and C h o r i z o n d a t a e x c l u d e d from an aly sis. T a b l e D .4 A n a ly sis o f V ariance R e s u lts : E x tra c ta b le S u lfa te w ith in S o il S e rie s^ G rayling S e rie s Source DF SS MS F P Block 5 2.2717 0.4543 6 .32 0.00 S o i l H orizon 4 10.2841 2.5710 35.75 0.00 20 1.4 3 8 3 0.0719 E rror 225 Table D.4 (continued) R ubicon S e r i e s Source DP SS MS F P B lock 5 2.3 03 8 0.4 6 0 8 2 .3 6 0.07 S o i l H orizon 5 1 8.7310 3 .7 4 6 2 19 .18 0.00 25 4 .8 8 3 6 0 .1953 E rror K alkaska S e rie s Source DF SS MS F P B lock 5 6.4487 1 .2897 4 .69 0.00 S o i l H orizon 5 5 .6 5 5 2 1.1 31 0 4.11 0.01 23 6.3236 0.2749 E rror M ontcalm S e r i e s Source DP SS MS F P Block 5 2 .4477 0 .4 8 9 5 3 .1 5 0.03 S o i l H orizon 6 5.3 67 3 0.8945 5 .76 0.00 23 3 .5705 0 .1 5 5 2 E rror S pinks S e r ie s ^ source DF SS MS F P B lock 5 5.1970 1.0394 8 .50 0.00 S o i l H orizon 5 9 .0 8 8 4 1 .8177 14 .8 6 0.00 24 2.9364 0.1224 E rror 226 Table D.4 (continued) O shtem o S e r i e s Source DF ss MS B lock 5 8 .8287 1.7657 10.76 0.00 S o i l H orizon 5 7.3912 1.4782 9 .0 0 0 .0 0 24 3 .9402 0.1642 E rror + D ata s t a t i s t i c a l l y t F P an alyzed as ln (lm g S kg“^ |+ l ) . S p in k s Block I C h o r i z o n d a t a e x c lu d e d from a n a l y s i s . T a b le D .5 A n a ly sis o f V arian ce R e s u lts ; I n t e r - S e r i e s C o m p a r i s o n o f S u l f a t e A d s o r b e d i n U p p e r 1 5 0 cm+ Source DF SS MS F P B lock 5 191.2659 3 8 .2 5 3 2 1 .6 9 0 .18 S o il S eries 5 27,5354 5 .5 0 7 1 0 .2 4 0.94 24 543 .4 8 4 4 E rrort t D a t a a n a l y z e d a s g S*m” 2 t o h o r i z o n s (g S 1 . 5 m“ 3 ) . t 2 2 .6 4 5 2 150 cm i n s u l f a t e - a d s o r b i n g S p in k s B lock I d a t a e x c lu d e d from a n a l y s i s . 227 Table D . 6 A n a ly s is of V arian ce R e s u lts : E x t r a c t a b l e S u l f a t e C o n t e n t s t o 1 5 0 era b y S o i l S e r i e s ^ Source DF SS MS F P B lock 5 0-8791 0 .1758 1 .8 3 0.14 S o il S e rie s 5 2 .3 0 9 6 0 .4 6 1 9 4 .8 0 0.00 25 2 .4 0 7 2 E rror S S B B S B I S S S S S t i S e e b S S B S l S S S S B S S S S S S B S 0.0 9 6 3 B S E : S = S C S t= S S = S S U S S E S E B B B B C S S S S f D a t a a n a l y z e d a s l o g ( g S m- 2 ) , c a l c u l a t e d from to p o f A h o r i z o n . t o 1 5 0 cm T ab le D.7 A n a ly sis o f V arian ce R e s u lts : E x t r a c t a b l e S u l f a t e C o n t e n t s t o 1 5 0 cm b y G e o g r a p h i c R e g io n'* Source G e o g rap h ic R egion E rror DF SS MS 2 1.0202 0 .5 1 0 1 33 4.5756 0 .1387 f D a t a a n a l y z e d a s l o g t g S m" 2 ) , from to p o f A h o r i z o n . calcu lated F 3 .6 8 to 1 5 0 cm P 0 .0 4 LITERATURE CITED LITERATURE CITED A b r a h a m s e n , G. 1980. A cid p r e c i p i t a t i o n , p l a n t n u t r i e n t s , and f o r e s t g row th. I n . D. D r a b l o s a n d A. T o l l a n , e d s . P r o c e e d i n g s I n t e r n a t i o n a l C o n f e r e n c e on t h e E c o l o g i c a l Im p a c t o f A c id P r e c i p i t a t i o n , S a n d e f j o r d , Norway, p 5 8 -6 3 . A d am s, F . a n d B .F. H a j e k . 1978. E f fe c ts o f s o lu tio n s u l f a t e , h y d r o x i d e , a n d p o t a s s i u m c o n c e n t r a t i o n s on t h e c r y s t a l l i z a t i o n o f a l u n i t e , b a s a l u m i n i t e , and g i b b s i t e from d i l u t e alum inum s o l u t i o n s . S o i l S c ie n c e , 126: 1 6 9 -173. A d a m s, F . a n d Z. R a w a j f i h . 1977. B a s a l u m i n i t e and a l u n i t e : a p o s s i b l e c a u s e o f s u l f a t e r e t e n t i o n by a c i d s o i l s . S o il S c i e n c e S o c i e t y A m e ric a J o u r n a l , 41: 6 8 6 -6 9 2 . A y l m o r e , L . A . G . , M. K a r i m , a n d J . p . Q u i r k . 1967. A d s o r p ti o n and d e s o r p t i o n o f s u l f a t e i o n s by s o i l co n stitu en ts. S o i l S c ie n c e , 103: 10-15. B a r n h i s e l , R. a n d P.M. B e r t s c h . 1982. Alum inum . C h ap ter 16 X u A.L. P a g e , e d . M ethods o f S o i l A n a l y s i s , P a r t 2, C h e m ic a l a n d M i c r o b i o l o g i c a l P r o p e r t i e s , 2nd E d i t i o n . Agronomy M o n o g ra p h 9 ( 2 ) , A m e r i c a n S o c i e t y o f A gronom y, S o i l S c ie n c e S o c i e t y o f A m erica, M adison, W is c o n s in , p 275-300. B a rro w , N .J. 1961. S t u d i e s on m i n e r a l i z a t i o n o f s u l p h u r from s o i l o r g a n i c m a t t e r . A u stra lia n Journal of A g r i c u l t u r a l R e se a rc h , 12: 306-319. Barrow , so ils. N .J. S o il 1967, s t u d i e s on th e a d s o r p tio n S c ie n c e , 104: 342-349. of su lfa te by B a r r o w , N . J . a n d T.C. Sh aw. 1977. The s l o w r e a c t i o n s b e tw ee n s o i l and a n i o n s : 7. E f f e c t o f tim e and t e m p e r a t u r e o f c o n t a c t betw een an a d s o r b in g s o i l and s u l f a t e . S o il S c ie n c e , 124: 347-354. B a r r o w , N . J . , K. S p e n c e r , a n d W.M. M c A r t h u r . 1969. E f fe c ts o f r a i n f a l l and p a r e n t m a t e r i a l on t h e a b i l i t y o f s o i l s t o adsorb s u l f a t e . S o i l S c ie n c e , 108: 120-126. B a r t l e t t , R. a n d B. J a m e s . 1980. Studying d r ie d , s to r e d s o i l s a m p l e s - some p i t f a l l s . S o il S cience S o c ie ty of A m erica J o u r n a l , 44: 7 2 1 -7 2 4 . 228 229 B o l a n , N . S . , D . R . S c o t t e r , J . K . S y e r s , a n d R.w. T i l l m a n . 1986a. E f f e c t o f a d s o r p t i o n on s u l f a t e l e a c h i n g . S o il S c ie n c e S o c i e t y A m erica J o u r n a l , 50: 1419-1424. B o l a n , N . S . , J . K . S y e r s , a n d R.W. T i l l m a n . 1986b. Io n ic s t r e n g t h e f f e c t s on s u r f a c e c h a r g e a n d a d s o r p t i o n o f p h o sp h a te and s u l p h a t e by s o i l s . J o u rn a l of S o il S cien ce, 37: 379-388. B o r m a n n , F.H. 1974. A cid r a i n and t h e e n v ir o n m e n ta l fu tu re. E n v iro n m e n ta l C o n s e r v a tio n , 1(4): 270. B o u y o u c o s, G .J. 1951. A r e c a l i b r a t i o n o f th e hydrom eter m ethod f o r m aking m e c h a n i c a l a n a l y s i s o f s o i l s . Agronomy J o u r n a l , 43: 4 3 4 -4 3 8 . C h a o , T .T . 1964. A n i o n i c e f f e c t s on s u l f a t e a d s o r p t i o n b y so ils. S o i l S c i e n c e S o c i e t y o f A m erica P r o c e e d i n g s , 28: 581-583. C h a o , T . T . , M.E. H a r v a r d , a n d S . C . P a n g . 1962a. A d so rp tio n and d e s o r p t i o n phenomena o f s u l f a t e io n s in B o i l s . S o il S c ie n c e S o c i e t y A m erica P r o c e e d in g s , 26: 234-237. C h a o , T . T . , M.E. H a r v a r d , a n d S . C . F a n g . 1962b. S o il c o n s t i t u e n t s and p r o p e r t i e s in th e a d s o r p tio n o f s u l f a t e ions. S o i l S c ie n c e , 94: 276-283. C hao, T .T ., M.E. H a r w a r d , a n d S . C . F a n g . 1 9 6 3 . C atio n ic e f f e c t s on s u l f a t e a d s o r p t i o n by s o i l s , s o i l Science S o c i e t y A m erica P r o c e e d in g s , 27: 35 -3 8. C hao, T .T ., M.E. H a r v a r d , a n d S . C . F a n g . 1 9 6 4 . Iron or alum inum c o a t i n g s i n r e l a t i o n t o s u l f a t e a d s o r p t i o n c h arac terisitic s of so ils, s o i l S c ie n c e s o c i e t y A m erica P r o c e e d i n g s , 28: 6 3 2 -6 3 5 . C hao, T .T ., M.E. H a r v a r d , a n d S . C . F a n g . 1 9 6 5 . Exchange r e a c t i o n s b etw een h y d ro x y l and s u l f a t e io n s i n s o i l s . S o il S c ie n c e , 99: 104-108. C h a t t e r j e e , S. a n d B. P r i c e . 1977. R egression A n a ly sis E xam ple. J o h n W i l e y a n d S o n s , New Y o r k . C o g b i l l , C.V. a n d G.E. L i k e n s . th e n o r th e a s te r n U nited S t a te s . 1 0 (6 ): 1133-1137. by 1974. A cid p r e c i p i t a t i o n in W ater R e so u rc e s R e s e a rc h , C o u t o , W., D . J , L a t h w e l l , a n d D .R . B o u l d i n . 1979. S u lfa te s o r p t i o n b y tw o o x i s o l s and an a l f i s o l o f t h e t r o p i c s . S o il S c ie n c e , 127: 1 0 8 -116. 230 C o w e l l , D.W ., A . E . L u c a s , a n d C .D .A . R u b e c , 1 9 8 0 . The D ev elo p m en t o f an E c o l o g i c a l S e n s i t i v i t y R a tin g f o r A cid P r e c i p i t a t i o n Im pact A ssessm en t. W o r k i n g P a p e r No. 1 0 , Lands D i r e c t o r a t e , E n v iro n m en t Canada. C o w l i n g , E.B. p ersp ectiv e. 110A-123A. 1982. A cid p r e c i p i t a t i o n i n h i s t o r i c a l E n v ir o n m e n t a l S c i e n c e and T e c h n o lo g y , 16: C o w l i n g , E .B ., a n d R.A. L i n t h u r s t . 1981. The a c id p r e c i p i t a t i o n phenomenon and i t s e c o l o g i c a l c o n s e g u e n c e s . B io sc ie n ce 31: 649-654. C r o n a n , C . S . , W.A. R e i n e r s , R .C . R e y n o l d s , a n d G . E . L a n g . 1978. F o r e s t f l o o r l e a c h i n g : c o n t r i b u t i o n s from m i n e r a l , o r g a n i c , a n d c a r b o n i c a c i d s i n New H a m p s h i r e f o r e s t s . S c ie n c e , 200: 309-311. C r o n a n , C.S. a n d C.L. S c h o f i e l d . 1979. A lum inum l e a c h i n g r e s p o n s e t o a c i d p r e c i p i t a t i o n : e f f e c t s on h i g h e l e v a t i o n w atersh ed s in th e n o r th e a s t. S c ie n c e , 204: 304-305. D a v i d , M .B., M .J . M i t c h e l l , a n d J . P . N a k a s . 1982. O rg an ic and i n o r g a n i c s u l f u r c o n s t i t u e n t s o f a f o r e s t s o i l and t h e i r r e la tio n s h ip to m ic ro b ia l a c tiv it y . S o il S cience S o c ie ty of A m erica J o u r n a l , 46: 8 4 7 -8 5 2 . D a v i d , M .B . , S . C . S c h i n d l e r , M . J . M i t c h e l l , a n d J . E . S t r i c k . 1963. I m p o r ta n c e o f o r g a n i c and i n o r g a n i c s u l f u r t o m in e ra liz a tio n p ro ce sses in a f o r e s t s o i l . S o i l B io lo g y and B io c h e m is tr y , 15: 671-677. D a y , P.R . an aly sis. A n aly sis, S o ciety o f 1965. P a r t i c l e f r a c t i o n a t i o n and p a r t i c l e s i z e C h a p t e r 43 l a C.A. B l a c k , e d . M ethods o f S o i l P a rt I. Agronomy M o n o g ra p h s 9 ( 1 ) , A m e ric a n Agronomy, M a d is o n , W i s c o n s i n , p 5 4 5 -5 6 7 . D e H e k , H ., R . J . S t o l , a n d P .L . D e B r u y n . 1978. H y d ro ly sis p r e c i p i t a t i o n s t u d i e s o f alu m in u m (III) s o l u t i o n s . Journal o f C o l l o i d and I n t e r f a c e S c i e n c e , 64: 7 2 -8 9 . D o c h i n g e r , L . S . a n d T.A. S e l i g a , e d s . 1976. P roceedings F i r s t I n t e r n a t i o n a l Sym posium o n A c i d P r e c i p i t a t i o n a n d t h e F o r e s t E cosystem . USDA F o r e s t S e r v i c e T e c h n i c a l R e p o r t NE23. D r a b l o s , D. a n d A. T o l l a n , e d s . 1980. P ro ceedings I n t e r n a t i o n a l C o n f e r e n c e on t h e E c o l o g i c a l I m p a c t o f A c id P r e c i p i t a t i o n , S a n d e f j o r d , Norway. D r a p e r , N.R. a n d B. S m i t h . 1980. A p p lied R eg ressio n A n a l y s i s , 2nd. E d it i o n . J o h n W i l e y a n d S o n s , New Y o r k . 231 E co so ft. 1984, M i c r o s t a t , an I n t e r a c t i v e G e n e r a l- P u r p o s e S t a t i s t i c s P a c k a g e , R e l e a s e 4.1. D e v e lo p e d by E c o s o f t , In c ., I n d ia n a p o lis , In d ian a. E i k , K. 1980. R e co m m e n d e d s u l f a t e - s u l f u r t e s t . C h a p t e r 10 XU Re com m e n de d C h e m i c a l S o i l T e s t P r o c e d u r e s f o r t h e N o r t h C e n t r a l R e g i o n , NCR P u b l i c a t i o n No. 2 2 1 ( r e v i s e d ) , p 2 5 - 2 8 . E l l i s , R . , J . J . H a n w a y , G. H o l m g r e n , a n d D .R . K e e n e y . 1976. S a m p lin g and A n a l y s i s o f S o i l s , P l a n t s , W aste W a te rs , and S ludge. S u g g e ste d S t a n d a r d i z a t i o n and M ethodology. N orth C e n tr a l R e g io n a l P u b l i c a t i o n 230, Kansas S t a t e U n i v e r s i ty , M anhattan, K ansas. E n s m i n g e r , L.E. 1954. Some f a c t o r s a f f e c t i n g t h e a d s o r p t i o n o f s u l f a t e by A labam a s o i l s . S o il S cience S o c i e t y A m erica P r o c e e d i n g s , 18: 2 59-264. E v a n s , A., J r . 1986. E f f e c ts o f d is s o lv e d o rg a n ic carbon and s u l f a t e on alum inum m o b i l i z a t i o n i n f o r e s t s o i l c o lu m n s. S o i l S c ie n c e S o c i e t y A m erica J o u r n a l , 50: 1576-1578. Fernandez, I .J . 1985. P o t e n ti a l e f f e c t s o f atm o sp h eric d e p o s i t i o n on f o r e s t s o i l s . I n P r o c e e d i n g s Sym posium on A i r P o l l u t a n t s E f f e c t s on F o r e s t E c o s y s t e m s . T he A c id R a in F o u n d a tio n , I n c . , S t. P aul M in n eso ta, p 238-250. F i t z g e r a l d , J.W. a n d T.C. S t r i c k l a n d . 1982. M etab o lic f a te o f i n o r g a n i c s u l p h a t e i n s o i l s a m p le s from u n d i s t u r b e d and m anaged f o r e s t e c o s y s t e m s . S o i l B io lo g y and B io c h e m is try , 14: 529-536. F r e n e y , J.R . 1958. D eterm in atio n o f w a te r - s o lu b le s u l f a t e in s o ils . S o il S c ien c e, 86: 241-244. F u l l e r , R.D., M.B. D a v i d , a n d C.T. D r i s c o l l . 1985. S u lfa te a d so rp tio n r e la tio n s h ip s in fo re s te d sp o d o so ls of th e n o r t h e a s t e r n USA. S o i l S c ie n c e S o c i e t y A m erica J o u r n a l , 49: 1034-1040. G a l l o w a y , J . N . , G.E. L i k e n s , a n d E .S . E d g e r t o n . p r e c i p i t a t i o n in th e n o r th e a s te r n U nited S ta te s : a cid ity . S c ie n c e , 194: 722-724. 1976. A cid pH a n d H a g u e , I . a n d D. W a l m B l e y . 1973. A d s o rp tio n and d e s o r p tio n o f s u l p h a t e i n some s o i l s o f t h e W est I n d i e s . G eo d erm a, 9: 269-278. H ay n es, R .J. 1983. E f f e c t o f lim e and p h o s p h a t e a p p l i c a t i o n s on t h e a d s o r p t i o n o f p h o s p h a t e , s u l f a t e , and m o ly b d a te by a s p o d o s o l. S o i l S c ie n c e , 135: 2 2 1 -227. 232 H e ilm a n , P. 1971. S am pling P ro c e d u re s f o r D e te rm in in g F o rest N u trien t s ta tu s . C o o p e ra tiv e E x ten sio n , C o lle g e of A g r i c u l t u r e , W ashington S t a t e U n i v e r s i t y , P u llm a n , W ash in g to n , E x te n s i o n B u l l e t i n 0915. H i n g s t o n , F . J . , R . J . A t k i n s o n , A.M. F o s n e r , a n d J . P . Q u i r k . 1967. S p e c ific a d s o rp tio n o f anio n s. N a tu re , 215: 14591461. H i n g s t o n , F . J . , A.M. P o B n e r , a n d J . P . Q u i r k . 1972. A nion a d s o r p tio n by g o e t h i t e and g i b b s i t e I . The r o l e o f t h e p ro to n in d eterm in in g a d so rp tio n en v elo p es. Journal of S o il S c ie n c e , 23: 177-192. H i n g s t o n , F . J . , A.M. F o s n e r , a n d J . P . Q u i r k . 1 9 7 4 . A nion a d s o r p t i o n by g o e t h i t e and g i b b s i t e ZI. D esorption of a n io n s from hy d rou s o x id e s u r f a c e s . Journal of S o il S c ie n c e , 25: 1 6 -2 6 . H i n r i c h s e n , D. 1 9 8 6 . M u l t i p l e p o l l u t a n t s and f o r e s t d e clin e . Ambio, 1 5 : 2 5 8 - 2 6 5 . H in tz e , J.L . 1985. NCSS: Number C r u n c h e r S t a t i s t i c a l S y stem , V e r s i o n 4.2. P u b l i s h e d by: Dr. J.L . H i n t z e , K a y s v i l l e , U tah. H o s t , G.E. 1987. S p a t i a l P a t t e r n s o f F o r e s t C om position, S u c c e s s i o n a l P a t h w a y s a n d B i o m a s s P r o d u c t i o n Among L a n d s c a p e E c o s y s te m s o f N o r t h w e s t e r n Lower M ic h ig a n . Ph.D . D i s s e r t a t i o n , M ichigan S t a t e U n i v e r s i t y , D epartm ent o f F o restry . H u t c h i n s o n , T.C. a n d M. H a v a s , e d s . 1980. E f f e c t s o f A cid P r e c i p i t a t i o n on T e r r e s t r i a l E c o s y s t e m s . New Y o r k : P l e n u m P ress. J o f f e , J . S . a n d H.C. M c L e a n . 1927. P ro b ab le in flu e n c e of a n i o n s on a lu m in u m s o l u b i l i t y i n s o i l s . P r o c e e d i n g s and P a p e r s o f t h e F i r s t I n t e r n a t i o n a l C o n g r e s s on s o i l S c i e n c e , I I : 230-255. J o h n s o n , D.W. 1980. S i t e s u s c e p t i b i l i t y to le a c h in g by H9 SO4 i n a c i d r a i n f a l l . I n T.C. H u t c h i n s o n a n d M. H a v a s , eas. E f f e c t s o f A c id P r e c i p i t a t i o n on T e r r e s t r i a l E cosystem s. New Y o r k : P l e n u m P r e s s , p 5 2 5 - 5 3 5 . J o h n s o n , D.W. a n d D.W. C o l e . 1977. outw ash s o i l i n w e s te rn W ashington. P o l l u t i o n , 7: 489-495. S u l f a t e m o b i l i t y i n an W ater, A ir , and S o i l J o h n s o n , D.W. a n d G.S. H e n d e r s o n . 1979. S u lfa te ad so rp tio n and s u l f u r f r a c t i o n s i n a h i g h l y w e a th e re d s o i l u n d er a m ixed d e c i d u o u s f o r e s t . S o i l S c ie n c e , 128: 34-40. 233 J o h n s o n , D.W. a n d D.E. T o d d . 1963. R e l a t i o n s h i p s among i r o n , alum inum , c a r b o n , and s u l f a t e i n a v a r i e t y o f f o r e s t so ils. S o i l S c ie n c e S o c i e t y A m erica J o u r n a l , 47: 7 9 2 -8 0 0 . J o h n s o n , D.W., D.W. B r e u e r , a n d D.W. C o l e . 1979a. The i n f l u e n c e o f a n i o n m o b i l i t y on i o n i c r e t e n t i o n i n w a s t e w a ter-irrig a te d s o ils . J o u rn a l o f E n v iro n m en tal Q u a lity , 246-250. 8: J o h n s o n , D.W ., D.W. C o l e , a n d S . P . G e s s e l . 1979b. A cid p r e c i p i t a t i o n and s o i l s u l f a t e a d s o r p t io n p r o p e r t i e s i n a t r o p i c a l and in a te m p e r a te f o r e s t s o i l . B i o t r o p i c a , 11: 38-42. J o h n s o n , D.W ., G . S . H e n d e r s o n , a n d D . E . T o d d . 1981. E v id e n c e o f m odern a c c u m u l a t i o n s o f a d s o r b e d s u l f a t e i n an e a s t Tennessee fo re s te d u l t i s o l . S o i l S c ie n c e , 132: 422426. J o h n s o n , D.W., J . T u r n e r , a n d J . M . K e l l y . 1982. The e f f e c t s o f a c i d r a i n on f o r e s t n u t r i e n t s t a t u s . W ater R e so u rc e s R e s e a rc h , 18: 449-461. J o h n s o n , D.W., D.W. C o l e , H. V a n M i e g r o e t , a n d F.W. H o r n g . 1986. F a c t o r s a f f e c t i n g a n io n movement and r e t e n t i o n i n four fo re s t s o ils . S o i l S c ie n c e S o c i e t y A m erica J o u r n a l , 50: 7 7 6 -7 8 3 . J o h n s o n , N .M ., C . T . D r i s c o l l , J . S . W.H. M c D o w e l l . 1981. 'A c id r a i n , ' c h e m ic a l w e a t h e r i n g a t t h e Hubbard F o r e s t , New H a m p s h i r e . G eochim ica 1421-1437. E a t o n , G.E. L i k e n s , a n d d i s s o l v e d alum inum and Brook E x p e r i m e n t a l e t C o sm o c h im ica A c t a , 45: K a m p r a t h , E . J . , W.L. N e l s o n , a n d J. W . F i t t s . 1956. The e f f e c t o f pH, s u l f a t e , a n d p h o s p h a t e c o n c e n t r a t i o n s o n t h e a d s o r p t i o n o f s u l f a t e by s o i l s . S o il S cience S o c ie ty A m erica P r o c e e d in g s , 20: 463-466. K h a n n a , P.K. a n d F . B e e s e . 1978. The b e h a v i o r o f s u l f a t e on s a l t i n p u t i n p o d z o l i c brown e a r t h . S o i l s c i e n c e , 125: 16-22. K l o p a t e k , J . M . , W.F. H a r r i s , a n d r . j . O l s o n . 1980. A r e g io n a l e c o lo g ic a l assessm en t approach to a tm o sp h eric d e p o s i t i o n : e f f e c t s on s o i l s y s te m s . C h a p t e r 52 I n D.S. S h r i n e r , C.R, R i c h m o n d , a n d S . E . L i n d b e r g , e d s . A tm o sp h eric S u l f u r D e p o s i t i o n , Ann A r b o r S c i e n c e P u b l i s h e r s , i n c . , Ann A rb o r, M ich ig an , p 539-553. L i c h t e n w a l n e r , D .C ., A .L . F l e n n e r , a n d N.E. G o r d o n . 1923. A d s o r p ti o n and r e p l a c e m e n t o f p l a n t fo o d i n c o l l o i d a l o x i d e s o f i r o n and alum inum . S o i l S c ie n c e , 15: 1 5 7 -165. 234 L i k e n s , G.E. a n d F .H . B o r m a n n . 1 9 7 4 . A c i d r a i n : a s e r i o u s r e g io n a l e n v iro n m e n ta l problem . S c ie n c e , 184: 1176-1179. L i k e n s , G .E ., R .F. W r i g h t , J .N . G a l l o w a y , a n d T . J . B u t l e r . 1979. A cid r a i n . S c i e n t i f i c A m erican, 241(4): 43-51. L um bert, P .J . 1981. Use o f t h e C o n s e r v a t i o n N eeds I n v e n t o r y and s o i l M anagement G roups and U n i t s t o E v a l u a t e Some S o i l - L a n d U s e R e l a t i o n s h i p s i n M i c h i g a n ' s L a n d R e s o u r c e A reas. M.S. T h e s i s , M i c h i g a n S t a t e U n i v e r s i t y , D e p a r t m e n t o f C rop and S o i l S c ie n c e . M a c D o n a l d , N.W. 1983. The E f f e c t s o f S i m u l a t e d A c id P r e c i p i t a t i o n on R e g e n e r a t io n and s o i l s i n t h e J a c k F in e G r a y lin g sand E cosystem . M.S. T h e s i s , M i c h i g a n S t a t e U n i v e r s i ty , D epartm ent o f F o r e s tr y . M c F e e , W.W. 1980. S e n s i t i v i t y o f s o i l R e g io n s t o A cid P re cip ita tio n . EPA R e p o r t No. E P A - 6 0 0 / 3 - 8 0 - 0 1 3 , C o r v a l l i B E n v ir o n m e n ta l R e s e a r c h Lab, C o r v a l l i s , Oregon. MDNR. 1984. M apb o ok o f M i c h i g a n C o u n t i e s . M ich igan N a tu r a l R eso u rces M agazine, M ich ig an D epartm ent o f N a tu ra l R e so u rc e s, L a n sin g , M ich ig an . M e t s o n , A . J , a n d L.C. B l a k e m o r e . 1978. S u lp h ate re te n tio n b y New Z e a l a n d s o i l s i n r e l a t i o n t o t h e c o m p e t i t i v e e f f e c t of phosphate. New Z e a l a n d J o u r n a l o f A g r i c u l t u r a l R e s e a r c h , 21: 243-253. M o n i t o r , A.V. a n d K.R. B e r g . 1980. E ffe c ts of acid p r e c i p i t a t i o n on f o r e s t s o i l s . XD A c t u a l a n d P o t e n t i a l E f f e c t s o f A c id P r e c i p i t a t i o n on a F o r e s t E c o s y te m i n t h e A dirondack M o untains. NYSERDA R e p o r t 8 0 - 2 8 , p 3 - 1 t o 3 - 8 0 . M o r r i s o n , D.F. 1976. M u ltiv a riate S ta tis tic a l E d itio n . M c G r a w - H i l l Book C o m p a n y , New Y o r k . M e th o d s , 2nd M o r r i s o n , I.K . 1981. E ffe c t of sim u la ted acid p r e c i p i t a t i o n on c o m p o s i t i o n o f p e r c o l a t e fro m r e c o n s t r u c t e d p r o f i l e s o f two n o r t h e r n O n t a r i o f o r e s t s o i l s . C anadian F o r e s t r y S e r v i c e R e se a rc h N o te s , 1 (2); 6- 8. M o s t e l l e r , F . a n d J.W. T u k e y . 1977. D a ta A n a l y s i s and R e g re s s io n , A Second C ourse in S t a t i s t i c s . A ddison-W esley P u b l i s h i n g Company, R e a d i n g , M a s s a c h u s e t t s . 235 MTU-FFC, 1 9 8 2 - 1 9 8 4 . R e se a rc h N o tes 31, 32, 34, 35, 36, 37, 38, and 39. C h a r a c t e r i z a t i o n D ata f o r S e le c te d S o i l s o f M e c o s ta , K e n t, I s a b e l l a , Lake and W ex fo rd , M enom inee, B a ra g a , M is s a u k e e , and D ic k in s o n C o u n t ie s M ic h ig a n . E.A. P a d l e y , C.C. T r e t t i n , G.S. L e m a s t e r s , C .F . S c h w e n n e r , a n d W.E. F r e d e r i c k , e d s . s o i l S u rv e y L a b o r a to r y , M ichigan T e c h n o l o g i c a l U n i v e r s i t y , F o r d F o r e s t r y C e n t e r , L 'A n se, M ichigan. NADP. 1985a. N a t i o n a l A t m o s p h e r i c D e p o s i t i o n P r o g r a m , NADP A n n u a l Su m m ary , P r e c i p i t a t i o n C h e m i s t r y i n t h e U n i t e d S t a t e s , 1982. N a tu ra l R esource E cology L a b o ra to ry , C o lo rad o S ta te U n iv e rs ity , F o rt C o l l i n s , C olorado. NADP. 1985b. N a tio n a l A tm o sp h eric D e p o s itio n Program , NADP/NTN A n n u a l S u m m a r y , P r e c i p i t a t i o n C h e m i s t r y i n t h e U n ited S t a t e s , 1983. N a tu ra l R esource E cology L ab o ra to ry , C olorado S ta te U n iv e rs ity , F o rt C o l l i n s , C olorado. NADP. 1986. N a tio n a l A tm o sp h eric D e p o s itio n Program , NADP/NTN A n n u a l s u m m a r y , P r e c i p i t a t i o n C h e m i s t r y i n t h e U n ited S t a t e s , 1984. N a tu ra l R esource E cology L a b o ra to ry , C olorado S ta te U n iv e rs ity , F o rt C o l l i n s , C olorado. N e l s o n , D.W. a n d L.E . S o m m e r s . 1982. T o ta l carbon, org anic c a r b o n , a n d o r g a n i c m a t t e r . C h a p t e r 29 Xu A.L. P a g e , e d . M ethods o f S o i l A n a l y s i s , P a r t 2 , C h e m ic a l and M i c r o b i o l o g i c a l p r o p e r t i e s , 2nd E d i t i o n . Agronomy M o n o g ra p h 9 ( 2 ) , A m e ric a n S o c i e t y o f Agronomy, S o i l S c i e n c e S o c i e t y o f A m erica, M adison, W is c o n s in , p 539-580, N i l s s o n , S . I . a n d B. B e r g k v i s t . 1983. A lum inum c h e m i s t r y and a c i d i f i c a t i o n p r o c e s s e s i n a s h a l l o w p o d z o l on t h e Sw edish w e s t c o a s t . W a te r, A i r , and S o i l P o l l u t i o n , 20: 3 1 1 329. N o r d s t r o m , D.K. 1982. The e f f e c t o f s u l f a t e on a lu m in u m c o n c e n t r a t i o n s i n n a t u r a l w a t e r s : so m e s t a b i l i t y r e l a t i o n s i n t h e s y s t e m A I 2 O3 - S O 3 - H 5 O a t 2 9 8 K. G eochim ica e t C osm ochim ica A c t a , 46: 6 8 1 -6 9 2 . N o r t o n , S.A. 1977. Changes in c h e m ic a l p r o c e s s e s in s o i l s caused by a c id p r e c i p i t a t i o n . W ater, A i r , and S o i l P o l l u t i o n , 7* 3 8 9 - 4 0 0 . O l s e n , R.G. a n d M.N. C o u r t . 1982. E f f e c t o f w e ttin g and d r y i n g o f s o i l s on p h o s p h a t e a d s o r p t i o n and r e s i n e x t r a c t i o n of s o i l p h o sp h ate. Jo u rn a l o f S o il S c ien c e, 33: 709-717. O l s e n , S.R . a n d L.E. S o m m e r s . 1982. Phosphorus. C h ap ter 24 I n A.L. P a g e , e d . M ethods o f s o i l A n a l y s i s , P a r t 2, C h e m ic a l and M i c r o b i o l o g i c a l P r o p e r t i e s , 2nd E d i t i o n . Agronomy M o n o g ra p h 9 ( 2 ) , A m e r i c a n S o c i e t y o f A g ronom y, S o i l S c ie n c e S o c i e t y o f A m erica, M adison, W is c o n s in , p 403-430. 236 O l s o n , R . V . a n d R. E l l i s , J r . 1982. Iron. C h a p t e r 17 l a A.L. P a g e , e d . M ethods o f S o i l A n a l y s i s , P a r t 2 , C h e m ica l and M i c r o b i o l o g i c a l P r o p e r t i e s , 2nd E d i t i o n . Agronomy M onograph 9 ( 2 ) , A m e ric a n S o c i e t y o f Agronomy, S o i l S c i e n c e S o c ie ty o f A m erica, M adison, W isc o n sin , p 301-312. P a r f i t t , R.L. 1978. A nion a d s o r p t i o n by s o i l s m ateria ls. A d v a n c e s i n Agronom y, 30 : 1 - 5 0 . P a r f i t t , R.L. 1982. C o m p etitiv e a d so rp tio n a n d s u l p h a t e o n g o e t h i t e (o<-FeO OH): a n o t e . J o u r n a l o f S c ie n c e , 25: 1 4 7 -148. and s o i l o f phosphate New Z e a l a n d R a j a n , S.S.S. 1978. S u l f a t e a d so rb e d on h y d ro u s l ig a n d s d i s p l a c e d , and changes i n s u r f a c e c h a rg e . S c ie n c e S o c i e t y A m erica J o u r n a l , 42: 3 9 -4 4 . alu m in a, S o il R a j a n , S.S.S. 1979a. A d s o r p tio n and d e s o r p t i o n o f s u l f a t e and c h a r g e r e l a t i o n s h i p s i n a l l o p h a n i c c l a y s . S o il Science S o c i e t y A m e ric a J o u r n a l , 43: 6 5 -6 9 . R a j a n , S.S.S. 1979b. A d so rp tio n and s u l p h a t e on h y d ro u s a lu m in a . 30: 7 0 9 -718. o f s e l e n i t e , phosphate, J o u rn a l o f S o il S cience, R a w l s , W.J. 1983. E s t i m a t i n g s o i l b u l k d e n s i t y from p a r t i c l e s i z e a n a l y s i s and o rg a n ic m a tte r c o n te n t. S o il S c ie n c e , 135: 1 2 3 -125. R e u s s , J.O . 1977. C hem ical and b i o l o g i c a l r e l a t i o n s h i p s r e l e v a n t t o t h e e f f e c t o f a c i d r a i n f a l l on t h e s o i l - p l a n t system . W a te r, A i r , and S o i l P o l u t i o n , 7: 4 6 1 - 478. R e u s s , J.O . 1983. I m p lic a tio n s o f th e calcium -alum inum e x c h a n g e s y s t e m f o r t h e e f f e c t o f a c i d p r e c i p i t a t i o n on so ils. J o u r n a l o f E n v ir o n m e n ta l Q u a l i t y , 12: 591-595. S a n d e r s , F .E . a n d P.B .H . T i n k e r . 1975. A d so rp tio n o f s u l p h a t e by a sa n d y loam s o i l ( C a l c i c C a m b is o l). Geoderm a, 13: 317-324. S c h i n d l e r , S . C , , M . J . M i t c h e l l , T . J . S c o t J : , R.D. F u l l e r , a n d C.T. D r i s c o l l . 1986. In c o rp o ra tio n o f 35S - s u lf a t e in to i n o r g a n i c and o r g a n i c c o n s t i t u e n t s o f tw o f o r e s t s o i l s . S o i l S c i e n c e S o c i e t y A m erica J o u r n a l , 50: 4 5 7 -4 6 2 . S c h u t t , P. a n d E.6 . C o w l i n g . 1985. W aldsterben, a g e n e ra l d e c l i n e o f f o r e s t s i n c e n t r a l E u r o p e : B y m p to m s , d e v e l o p m e n t , and p o s s i b l e c a u s e s . P l a n t D is e a s e , 69: 548-558. SCS-USDA. S o i l s e r i e s d e s c r i p t i o n and i n t e r p r e t a t i o n s h e e t s , by s e r i e s . V a rio u s d a te s and a u th o r s . N atio n al C o o p e r a t i v e S o i l S u r v e y , U .S .A ., S o i l C o n s e r v a t i o n S e r v i c e , U n ited S t a t e s D epartm ent o f A g r i c u l t u r e . 237 5CS-USDA, 1 9 8 0 . S o il Survey L ab o rato ry D e s c rip tio n s fo r Some S o i l s o f M i c h i g a n . S o il S urvey I n v e s t i g a t i o n s R eport Ho. 3 6 , S o i l C o n s e r v a t i o n S e r v i c e , U n i t e d S t a t e s D e p a r t m e n t o f A g r i c u l t u r e and M ic h ig a n A g r i c u l t u r a l E x p e rim e n t s t a t i o n . S e b e r , G.A.F. 1977. L in ear R eg ressio n A n a ly sis. W i l e y a n d S o n s , New Y o r k . John S i n g h , B.R. 1980a. E f f e c t s o f a c i d p r e c i p i t a t i o n on s o i l and f o r e s t 3. S u l f a t e s o r p t i o n by a c i d f o r e s t s o i l s . In D. D r a b l o s a n d A. T o l l a n , e d s . P ro ceed in g s I n t e r n a t i o n a l C o n fe re n c e on t h e E c o l o g i c a l Im p a c ts o f A cid P r e c i p i t a t i o n , S a n d e f j o r d , Norw ay, p 1 9 4 -1 9 5 . S i n g h , B.R. 1980b^ D i s t r i b u t i o n o f t o t a l and e x t r a c t a b l e S a n d a d s o r b e d 3 5 S0 ^ 2 " i n s o m e a c i d f o r e s t s o i l p r o f i l e s o f s o u t h e r n Norway. A c t a A g r i c u l t u r a e S c a n d i n a v i c a , 30: 3 5 7 363. S i n g h , B.R. 1984a. s u l f a t e s o r p t i o n by a c i d f o r e s t s o i l s : 1. S u l f a t e a d s o r p t i o n i s o t h e r m s and c o m p a ris o n o f d i f f e r e n t a d so rp tio n eq u atio n s in d e sc rib in g s u l f a t e a d so rp tio n . S o il S c ie n c e , 138: 189-197. S i n g h , B.R. 1984b. S u l f a te s o r p tio n by a cid f o r e s t s o i l s : 2. S u l f a t e a d s o r p t i o n is o th e r m s w ith and w i t h o u t o r g a n i c m a t t e r and o x id e s o f alum inum and i r o n . S o i l S c i e n c e , 138: 294-297. S i n g h , B . R . , G. A b r a h a m s e n , a n d A. S t u a n e s . 1980. E f f e c ts o f s i m u l a t e d a c i d r a i n on s u l f a t e movement i n a c i d f o r e s t so ils. S o i l S c ie n c e S o c i e t y A m erica J o u r n a l , 44: 75-80. S m i t h , F . W . , B.G. E l l i s , a n d J . G r a v a . 1957. Use o f a c i d f lu o r ld e s o lu tio n s fo r th e e x tra c tio n of a v a ila b le p h o s p h o ru s i n c a l c a r e o u s s o i l s and i n s o i l s t o w hich rock phosp h ate has been added. S o i l S c ie n c e S o c i e t y A m erica P r o c e e d i n g s , 21: 4 0 0 -4 0 4 . S o iltest. 1971. O p eratin g in s tr u c ti o n s fo r th e E ley v o lu m eter. S o i l t e s t , In c ., E v an sto n , I l l i n o i s . S t e e l , R.G.D. a n d J . H . T o r r i e . 1980. P r i n c i p l e s and P r o c e d u r e s o f S t a t i s t i c s , 2nd E d i t i o n . M c G r a w - H i l l Book C o m p a n y , New Y o r k . S t r i c k l a n d , T . C . , J.W . F i t z g e r a l d , a n d W.T. S w a n k . 1986. In s i t u m easurem ents o f s u l f a t e i n c o r p o r a t i o n i n t o f o r e s t f l o o r and s o i l o r g a n ic m a tte r . C anadian J o u r n a l o f F o r e s t R esearch , 16: 549-553. S w a n k , W .T., J.W . F i t z g e r a l d , a n d J . T . A s h . 1984. M icro b ia l tra n sfo rm a tio n of s u l f a t e in f o r e s t s o i l s . S c ie n c e , 223: 182-184. 238 T a b a t a b a i , M.A. a n d J . M . B r e r a n e r . 1972. D istrib u tio n t o t a l and a v a i l a b l e s u l f u r i n s e l e c t e d s o i l s and s o i l p ro file s. Agronomy J o u r n a l , 64: 4 0 - 4 4 . of T echnicon. 1977. In d iv id u a l/S im u lta n e o u s D eterm in atio n of N i t r o g e n a n d / o r P h o s p h o r u s i n BD A c i d D i g e s t s . T e c h n i c o n I n d u s t r i a l M ethod 344-74W /B. T e c h n i c o n I n d u s t r i a l B y s te m s , T a r r y t o w n , New Y o r k . T h o m a s , G.W. 1982. E x chang eable c a t i o n s . C h ap ter 9 l a A.L. P a g e , e d . M ethods o f S o i l A n a l y s i s , P a r t 2 , C h e m ic a l a n d M i c r o b i o l o g i c a l P r o p e r t i e s , 2nd E d i t i o n . Agronomy M onograph 9 ( 2 ) , A m e ric a n S o c i e t y o f Agronom y, S o i l S c i e n c e S o c ie ty o f A m erica, M adison, W isc o n sin , p 159-166. D r i e , D .H ., A . J . B u r t o n , J . B . B a r t , a n d P .V . N g u y e n . 1986. H y d r o lo g ic and W ater Q u a l i t y E f f e c t s from S lu d g e A p p l i c a t i o n t o F o r e s t s i n N o r t h e r n Lower M i c h ig a n . F i n a l R e p o r t , EPA R e g i o n V, C l e a n W a t e r A c t S e c t i o n 1 0 8 , G r a n t S 0 0 5 5 5 1 . M ichigan S t a t e U n i v e r s i t y , D epartm ent o f F o r e s t r y , E a s t L a n s in g , M ich ig an . USDA. 1972. S o i l S u rv e y L a b o r a to r y M ethods and P r o c e d u r e s f o r C o l l e c t i n g S o i l S am ples. S o il Survey I n v e s tig a tio n s R e p o r t No. 1 , S o i l C o n s e r v a t i o n S e r v i c e , U.S. D e p a r t m e n t o f A g r i c u l t u r e , W a s h i n g t o n , D.C. USDA. 1 9 8 2 . Procedures fo r M ethods o f A n a l y s i s f o r S o i l I n v e s t i g a t i o n s R e p o r t No. 1 S e r v i c e , U.S. D e p a r t m e n t o f C o l l e c t i n g S o i l s a m p le s and Survey. S o il survey (re v ise d ), S o il C onserv atio n A g r i c u l t u r e , W a s h i n g t o n , D.C. Va n B r e e m a n , N. 1 9 7 3 . D i s s o l v e d a l u m i n u m i n a c i d s u l f a t e s o i l s and i n a c i d m ine w a t e r s . S o i l s c i e n c e S o c i e t y A m erica P r o c e e d in g s , 37: 694-697. W a l l , L . L . , C.W. G e h r k e , a n d J . S u z u k i . 1980. An a u t o m a t e d t u r b i d i m e t r i c m ethod f o r t o t a l s u l f u r i n p l a n t t i s s u e and s u lf a te s u lf u r in s o i l s . C om m u n icatio n s i n S o i l S c ie n c e and P l a n t A n a l y s i s , 11(11): 1087-1103. W e a v e r , G .T ., P.K . K h a n n a , a n d F. B e e s e . 1985. R e te n tio n and t r a n s p o r t o f s u l f a t e in a s l i g h t l y a c id f o r e s t s o i l . S o i l S c ie n c e S o c ie ty A m erica J o u r n a l , 49: 746-750. W i l l i a m s , C.H. 1967. Some f a c t o r s a f f e c t i n g t h e m in e ra liz a tio n o f o rg an ic su lp h u r in s o i l s . P l a n t and S o i l , 26: 205-223. W i l l i a m s , C.H. a n d A. S t e i n b e r g s . 1962. The e v a l u a t i o n o f p l a n t - a v a i l a b l e s u l p h u r i n s o i l s . I . The c h e m i c a l n a t u r e o f s u l p h a t e i n so m e A u s t r a l i a n s o i l s . P l a n t and S o i l , 17; 2 7 9 294. 239 W i l l i a m s , C.H. a n d A, S t e i n b e r g s . p la n t- a v a ila b le su lp h u r in s o i l s . a d so rb e d and i n s o l u b l e s u l p h a t e s . 62, 1964. The e v a l u a t i o n o f I I . The a v a i l a b i l i t y o f P l a n t and S o i l , 21: 5 0 - W o l t , J.D . 1981. S u l f a t e r e t e n t i o n by a c id s u l f a t e p o llu te d s o i l s in th e copper b a sin a re a o f Tennessee. S c ie n c e S o c i e t y A m erica J o u r n a l , 45: 2 8 3 -287. S o il W o l t , J . D . a n d F . A dam s. 1979. The r e l e a s e o f s u l f a t e from s o i l - a p p l i e d b a s a lu m in ite and a l u n i t e . S o il S cience S o c ie ty A m erica J o u r n a l , 43: 118-121. Woodman, J . N . a n d E.B. C o w l i n g . 1987. A irb o rn e ch em icals and f o r e s t h e a l t h . E n v ir o n m e n t a l S c i e n c e and T e c h n o lo g y , 2 1 : 120-126.