INFORMATION TO USERS

The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the original text directly from the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is available as one exposure on a standard 35 mm slide or as a $17" \times 23"$ black and white photographic print for an additional charge.

Photographs included in the original manuscript have been reproduced xerographically in this copy. 35 mm slides or $6" \times 9"$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

Order Number 8900101

Cherry tree decline in Michigan: Associated pythiaceous species, pathogenicity and control

Smither, Margaret Lydia, Ph.D.

Michigan State University, 1988

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark $\sqrt{}$.

1.	Glossy photographs or pages
2.	Colored illustrations, paper or print
3.	Photographs with dark background
4.	Illustrations are poor copy
5.	Pages with black marks, not original copy
6.	Print shows through as there is text on both sides of page
7.	Indistinct, broken or small print on several pages
8.	Print exceeds margin requirements
9.	Tightly bound copy with print lost in spine
10.	Computer printout pages with indistinct print
11.	Page(s)lacking when material received, and not available from school or author.
12.	Page(s) seem to be missing in numbering only as text follows.
13.	Two pages numbered Text follows.
14.	Curling and wrinkled pages
15.	Dissertation contains pages with print at a slant, filmed as received
16.	Other

U·M·I

CHERRY TREE DECLINE IN MICHIGAN: ASSOCIATED PYTHIACEOUS SPECIES, PATHOGENICITY AND CONTROL

Ву

Margaret Lydia Smither

A Dissertation

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Botany and Plant Pathology

ABSTRACT

CHERRY TREE DECLINE IN MICHIGAN; ASSOCIATED PYTHIACEOUS SPECIES, PATHOGENICITY, AND CONTROL

Ву

Margaret Lydia Smither

Montmorency sour cherry trees in Michigan, especially those planted on heavy soils, exhibit decline symptoms of poor growth and discolored and diminished root systems. The problem is most severe in orchards with trees grafted onto Mahaleb rootstocks.

Isolations for Pythium species were made from roots and soil. Pythium was commonly associated with roots of trees from orchards with heavy clay soils but not with roots of trees from orchards with light sandy soils, and populations in heavy soils were high compared to populations in light soils. P. irregulare was isolated most frequently from discolored and necrotic cherry roots and from cherry orchard soils. Other species isolated included: P. sylvaticum, P. ultimum, P. rostratum, and several infrequently isolated Pythium spp.. In greenhouse trials root discoloration and necrosis and a reduction in root and shoot growth occurred on Mahaleb seedlings inoculated with P. irregulare. Growth reductions and necrosis were greater when seedlings were flooded, but unflooded seedlings exhibited symptoms as well. None of the seedlings inoculated with P. irregulare died after 3 months. P. irregulare may contribute to a

reduction in growth of cherry trees planted on heavy soils.

Orchards and woodlands in Michigan were found to differ in composition of Pythium species. P. irregulare, P. sylvaticum, and P. ultimum were frequently isolated from orchard soils but were not isolated from woodland soils. Pythium group 'HS' was isolated most frequently from woodland soils, followed by Pythium group 'X', P. rostratum, and Pythium group 'Y'. Populations of P. irregulare, P. sylvaticum, and P. ultimum in two orchards sampled over 2 yr and one orchard over 1 year, varied independently.

Seven pythiaceous species associated with the roots of sour cherry in Michigan were tested for their sensitivity to metalaxyl and phosphorous acid in culture. All fungi were inhibited by both fungicides and sensitivity varied between species. Mahaleb seedlings exhibited phytotoxic symptoms at 400 and 800 µg/ml metalaxyl. Metalaxyl was more effective than fosetyl-Al in preventing fungus induced root necrosis and growth reduction to 9-wk-old Mahaleb seedlings growing in soil infested with P. irregulare, Ph. megasperma, and Ph. cactorum.

To my father

ACKNOWLEDGEMENTS

I wish to thank Dr A. L. Jones my major professor for his help and financial support. I am grateful to the members of my guidance committee; Dr J. L. Lockwood, Dr C. T. Stephens, Dr G. Adams, and Dr R. L. Perry for their faith in me, support and encouragment. Especial thanks are due to Dr C. T. Stephens for financial and moral support during the latter part of this project. I wish to thank Dr Ed Klos for financial and other assistance. I also thank Dr A. Bielenin, G. R. Ehret and R. E. Comstock for help and encouragement. I wish to thank my fellow graduate students for their assistance; especially Dr. V. F. Stanis for help in the initial stages of this work, and Reginald Mandego for collaborating in the soil compaction experiment.

I wish to thank Laura Wolf for financial help. I thank my husband Ben for his understanding, encouragement and support.

TABLE OF CONTENTS

LIST OF TABLES

Page

viii

33

LIST OF FIGURES	хì
INTRODUCTION AND GENERAL LITERATURE REVIEW	1
LITERATURE CITED	7
PART I	
PARI I	
PYTHIUM SPECIES ASSOCIATED WITH THE ROOTS OF SOUR CHERRY	ΔΝΤ
THE EFFECT OF P. IRREGULARE ON THE GROWTH OF MAHALEB CHEI	RRY
ABSTRACT	13
INTRODUCTION	14
MATERIALS AND METHODS	15
RESULTS	19
DISCUSSION	30

LITERATURE CITED.....

PART II SPECIES AND POPULATIONS OF <u>PYTHIUM</u> ISOLATED FROM SOUR CHERRY ORCHARD AND WOODLAND SOILS IN MICHIGAN

Page

76

ABSTRACT	36
INTRODUCTION	37
MATERIALS AND METHODS	38
RESULTS	40
DISCUSSION	44
LITERATURE CITED	50
PART III	
EFFECTS OF METALAXYL AND FOSETYL-AL ON GROWTH	OF
PHYTOPHTHORA AND PYTHIUM SPECIES 'IN VITRO' AND ON THE	HEIR
PATHOGENICITY TO MAHALEB CHERRY	
ABSTRACT	53
INTRODUCTION	53
MATERIALS AND METHODS	55
RESULTS	58
DISCUSSION	74

LITERATURE CITED.....

APPENDICES

APPENDIX A

DESCRIPTIONS OF PYTHIUM SPECIES ASSOCIATED WITH MONTMOREN	1CY
SOUR CHERRY IN MICHIGAN	79
APPENDIX B	٠
EFFECT OF PYTHIUM AND PHYTOPHTHORA ISOLATED IN MICHIGAN	ON
GROWTH OF MAHALEB SEEDLINGS	
I	Page
INTRODUCTION	86
MATERIALS AND METHODS	86
RESULTS	88
DISCUSSION	91
LITERATURE CITED	92

APPENDIX C

THE EFFECTS OF INCREASED SOIL COMPACTION LEVELS WITH PYTHIUM

IRREGULARE AND PHYTOPHTHORA MEGASPERMA ON GROWTH OF MAHALEB

SEEDLINGS, AND ETHYLENE LEVELS IN SOIL

	Page
ABSTRACT	94
INTRODUCTION	94
MATERIALS AND METHODS	95
RESULTS	98
DISCUSSION	101
LITERATURE CITED	102
APPENDIX D	
VARIATION IN SUSCEPTIBILITY OF CHERRY ROOTSTOCK CULTIVAL INFECTION BY PHYTOPHTHORA SPECIES AND PYTHIUM IRREGULA	
ABSTRACT	105
INTRODUCTION	106
MATERIALS AND METHODS	107
RESULTS	109
DISCUSSION	114
ו דיים איים איים איים איים איים איים איים	115

LIST OF TABLES

PART I

Page
20
21
23
26
27
31

PART II

	Page
Table 1. Populations of <u>Pythium</u> species as estimated by dilution-plate counts from soil taken from sour cherry orchards planted on two soil types	42
Table 2. Populations of <u>Pythium</u> species as estimated by dilution-plate counts from soil taken from sour cherry orchards and woodlands	43
PART III	
Table 1. ED ₅₀ values for <u>Phytophthora</u> and <u>Pythium</u> species to metalaxyl and phosphorous acid in culture	63
Table 2. Effect of various concentrations of metalaxyl on growth of 1-yr-old Mahaleb seedlings in Phytophthora and Pythium infested soil in the greenhouse.	68
Table 3. Effect of fosetyl-Al and metalaxyl on growth of 1-yr-old Mahaleb seedlings in Phytophthora and Pythium infested soil under lath	71
Table 4. Effect of fungicides metalaxyl and fosetyl-Al on growth of Mahaleb seedlings in soil infested with Phytophthora species and Pythium irregulare	72
APPENDIX B	
Table 1. Virulence of <u>Pythium</u> and <u>Phytophthora</u> species isolated from Michigan sour cherry orchards to Mahaleb seedlings	89

APPENDIX C

Table 1. Effects of soil bulk density and	Page
Pythium irregulare on growth of Mahaleb	
seedlings	99
Table 2. Effects of soil bulk density, <u>Pythium irregulare</u> and <u>Phytophthora megasperma</u> on growth of Mahaleb seedlings	100
APPENDIX D	
Table 1. Relative susceptibility of dormant excised	
shoot tissue of cherry rootstock cultivars to infection by Phytophthora species and Pythium	
irregulare during 1983	111
Table 2. Relative susceptibility of dormant excised	
shoot tissue of cherry rootstock cultivars to infection by Phytophthora species and Pythium	
irregulare during 1984	112
Table 3. Growth of cherry rootstock cultivars	
planted in soil infested with <u>Phytophthora</u> species	110
and Pythium irregulare under lath	113

LIST OF FIGURES

PART I

·	Page
Figure 1. Roots of representative Mahaleb seedlings grown in a growth chamber for 18 wk in a soil/sand/peat mixture infested with Pythium irregulare. Soil in the pots was a) uninfested, or infested with P. irregulare isolated from orchard B, b) root and c) soil; orchard C, d) root and e) soil; orchard J, f) root and g) soil; orchard L, h) root and i) soil; and orchard P, k) soil. The treatments were not	
flooded	24
Figure 2. Shoots (A) and roots (B) of representative Mahaleb seedlings grown in a greenhouse for 3 mo in a soil/sand/peat mixture. Soilin the pots was (a) uninfested and unflooded, (b) uninfested and flooded, or flooded and infested with (c) Pythium irregulare C6, (d)Phytophthora megasperma, avirulent isolate M224, (e) P. irregulare C6/Ph. megasperma, avirulent M224, Ph. megasperma, virulent isolate M333, and P. irregulare C6/Ph. megasperma, virulent M333	28
Figure 3. Shoots (A) and roots (B) of representative Mahaleb seedlings grown in a greenhouse for 3 mo in a soil/sand/peat mixture. Soil in the pots was (a) uninfested and flooded, or flooded and infested with (b) Pythium irregulare C6, (c)Phytophthora cactorum B2, (d)	
P. irregulare C6/Ph. cactorum B2	29

PART II

	Page
Figure 1. Fluctuations in population (propagules per gram of soil) of <u>Pythium</u> species as estimated by dilution-plate counts for soil samples taken from sour cherry orchard J in southwest Michigan during 1984 and 1985. Species identified were <u>P. irregulare</u> , <u>P. sylvaticum</u> , <u>P. ultimum</u> , and <u>Pythium spp.</u>	45
Figure 2. Fluctuations in population (propagules per gram of soil) of <u>Pythium</u> species as estimated by dilution-plate counts for soil samples taken from sour cherry orchard L in southwest Michigan during 1984 and 1985. Species identified were <u>P. irregulare</u> , <u>P. sylvaticum</u> , <u>P. ultimum</u> , and <u>Pythium spp</u>	46
Figure 3. Fluctuations in population (propagules per gram of soil) of <u>Pythium</u> species as estimated by dilution-plate counts for soil samples taken from sour cherry orchard P in southwest Michigan during 1985. Species identified were I) P. irregulare, S) P. sylvaticum, U) P. ultimum, and P) Pythium spp	47
PART III	
Figure 1a. Radial growth of <u>Phytophthora cactorum</u> in culture amended with metalaxyl at rates of 0.0, 0.01, 0.1, 1, 10, and 100 µg/ml	59
Figure 1b. Radial growth of <u>Phytophthora citricola</u> in culture amended with metalaxyl at rates of 0.0, 0.01, 0.1, 1, 10, and 100 µg/ml	59
Figure 1c. Radial growth of <u>Phytophthora drechsleri</u> in culture amended with metalaxyl at rates of 0.0, 0.01, 0.1, 1, 10, and 100 Mg/ml	60
Figure 1d. Radial growth of <u>Phytophthora megasperma</u> in culture amended with metalaxyl at rates of 0.0, 0.01, 0.1, 1, 10, and 100 µg/ml	60

Figure 1e. Radial growth of <u>Pythium irregulare</u> in	Page
culture amended with metalaxyl at rates of 0.0, 0.01, 0.1, 1, 10, and 100 Mg/ml	61
Figure 1f. Radial growth of <u>Pythium sylvaticum</u> in culture amended with metalaxyl at rates of 0.0, 0.01, 0.1, 1, 10, and 100 Mg/ml	61
Figure 1g. Radial growth of <u>Pythium ultimum</u> in culture amended with metalaxyl at rates of 0.0, 0.01, 0.1, 1, 10, and 100 Mg/ml	62
Figure 2a. Radial growth of <u>Phytophthora cactorum</u> in culture amended with phosphorous acid at rates of 0, 10, 25, 50, 75, and 100 µg/ml	64
Figure 2b. Radial growth of <u>Phytophthora citricola</u> in culture amended with phosphorous acid at rates of 0, 10, 25, 50, 75, and 100 Mg/ml	64
Figure 2c. Radial growth of <u>Phytophthora drechsleri</u> in culture amended with phosphorous acid at rates of 0, 10, 25, 50, 75, and 100 Mg/ml	65
Figure 2d. Radial growth of <u>Phytophthora megasperma</u> in culture amended with phosphorous acid at rates of 0, 10, 25, 50, 75, and 100 µg/ml	65
Figure 2e. Radial growth of <u>Pythium irregulare</u> in culture amended with phosphorous acid at rates of 0, 10, 25, 50, 75, and 100 µg/ml	66
Figure 2f. Radial growth of <u>Pythium sylvaticum</u> in culture amended with phosphorous acid at rates of 0, 10, 25, 50, 75, and 100 µg/ml	66
Figure 2g. Radial growth of <u>Pythium ultimum</u> in culture amended with phosphorous acid at rates of 0, 10, 25, 50, 75, and 100 Mg/ml	67
Figure 3. Phytotoxic symptoms caused by metalaxyl at rates of (a) 0, (b) 100, and (c) 400 µg/ml on leaves of Mahaleb cherry	69

Figure 4. Roots of representative Mahaleb seedlings grown in a) uninfested soil, or soil infested with b) Phytophthora cactorum, c) Ph. megasperma and d) Pythium irregulare. Roots in columns were x) untreated, or treated with y) metalaxyl, and z) fosetyl-Al	Page
APPENDIX A	
Figure 1a. Pythium irregulare sporangia	82
Figure 1b. Pythium irregulare irregularly shaped oogonium and aplerotic oospore	82
Figure 2a. Pythium sylvaticum hyphal swelling	83
Figure 2b. Pythium sylvaticum oogonium surrounded by branched antheridial cells	83
Figure 3a. Pythium ultimum oogonium with paragynous antheridium attached close to the oogonial stalk	84
Figure 3b. Pythium ultimum oogonium with paragynous antheridia and an aplerotic oospore	84
APPENDIX B	
Figure 1. Roots of representative Mahaleb seedlings grown in a growth chamber for 18 wk in a soil/sand/peat mixture infested with (A) Phytophthora species and (B) Pythium species. Soil in the pots was (a) uninfested and non-flooded, or flooded and infested with (b) Ph. cactorum, (c) Ph. citricola, (d) Ph. drechsleri, (e) Ph. megasperma, (f) P. irregulare, (g) P. sylvaticum, and (h) P. ultimum.	90

INTRODUCTION AND GENERAL LITERATURE REVIEW

Michigan is the leading state in sour cherry production accounting for about two thirds of the total production in the United States (27). The economic value of the crop for 1981 was set at over 40 million dollars (26). The cherry producing areas are in the west along the shores of Lake Michigan. Concentrations of production occur in the northwest around Traverse City, in the west central region around Hart and Shelby, and in the south west around Benton Harbor. High prices of cherries in the last decade resulted in a 14% increase of land under cherry production with a total of 4.5 million trees planted by 1982 (27). However as cherry production increased so did instances of poor tree vigor and decreased longevity.

Tree decline is a comprehensive term encompassing short life and replant problems (47,55). Tree decline problems have been identified throughout the world and recognised for over two hundred years (42). The main symptom is reduced vigor with a possible reduction in life span. Root systems are weak and poorly developed or necrotic. Cankers may develop on the trunk. Often there is no clearly defined causal agent but rather a combination of several biotic and abiotic factors (22,23,47,55). These may include;

environmental factors such as cold injury, stresses due to drought or oxygen defeciency caused by waterlogging, and injury caused by damaging cultural practices; pathogenic infection by bacteria, fungi, factors of mycoplasma-like-organisms, and nematodes; injury from insect infestation; and physiological factors such as toxicity from plant and spray residues, and biochemical and hormonal imbalances (55). Savory distinguished between specific replant disorders which occurred when one species followed the same or a closely related species nonspecific replant disorders affecting all tree crops (42). This distinction has also been used to classify other types of tree decline problems (47). The literature pertaining to tree decline has been reviewed in several articles (42,47,55).

Stone Fruit Decline was the subject of a conference at Michigan State University in 1982 (46). Areas of research which were selected as most critical included study of pplant pathogenic viruses, root rots, rootstock selection and improvement, mechanical harvesting, and trunk and tree structure. A grant was awarded to study root rot of cherry in Michigan through the Stone Fruit Decline Project.

Root rot of sour cherry in Michigan caused by Armillaria occurs on sandy sites from the Hart/Shelby area north to the Traverse City area. Three species of Armillaria have been isolated from these orchard sites which have been cleared from woodlands of oak and pine on which the Armillaria

species were endemic (39,51). Root rot caused by Phytophthora occurs throughout the cherry production area, although symptoms are most severe on poorly drained soils. The symptoms include extensive lateral root necrosis development of a canker on the lower trunk below the graft union (6). A preliminary survey associated Pythium species with decline only on heavy poorly drained soils. The root rot symptoms include extensive necrosis and eventual absence of lateral branchlet roots. Pythium and Phytophthora are closely related genera (13) and may be expected to be present under similar conditions. Symptoms for the three pathogens are most severe when the trees are planted on Mahaleb (Prunus mahaleb L.) rootstocks although orchards on Mazzard (P. avium L.) rootstocks are also affected.

The genus Pythium contains a large number of species which have a world wide distribution and can be isolated from diverse habitats. Many are soil-bourne plant pathogens and under suitable conditions can cause severe economic losses on a wide range of crops, including beans (1,21,37), wheat (9), strawberry (35,52), and grape (48). Unlike the closely related genus Phytophthora not all species are pathogens. Pythium species survive in soil by saprophytic growth and production of resistant resting structures (13,50). They tend to be more successful under conditions of high soil moisture (29,49), but are poor competitors with a well established soil microflora (4,13,49). Pythium species have the ability to colonise host

tissue (13,28,50), and produce a variety of cellulytic and pectolytic enzymes (10,50). The literature about the genus Pythium has been reviewed (13,50).

The objectives of this study were to isolate, identify and examine the pathogenicity of Pythum species found associated with cherry trees showing poor growth and decline on heavy sites; to investigate the ecology of Pythium species in orchard and woodland soils; and to examine possible control measures of rootstock selection and chemical control. The literature on root and collar rot of cherry and other deciduous fruit tree crops caused by pythiaceous species will be reviewed in the remainder of the introduction.

Environmental conditions particularly soil moisture levels influence the development of disease caused by pythiaceous species. Populations of Pythium species are higher under conditions of high soil moisture (4,29,49). Tree loss due to Phytophthora infection is typically greater in poorly drained areas (25,33). Planting trees on mounds, thus improving drainage, was reported as beneficial for reducing losses caused by Ph. cactorum on apple (25). Subsoiling before planting improved peach tree growth and reduced losses due to peach tree short life (41).Improvement was believed due to greater stability in soil moisture levels. Any practice which reduces stress and improves tree vigor will tend to ameliorate disease caused by Pythium species.

Pythium species isolated from roots of poorly growing cherry trees have been reported as pathogenic to Mahaleb seedlings (12). Pythium species isolated from roots of diseased trees were pathogenic to peach seedlings (14,15,28,38).However, the importance of Pythium species to peach tree decline has been questioned by some research workers, as disease symptoms were not reproduced in pathogenicity tests. Unfortunately the temperatures at which the experiments were run was not reported (20, 29, 30, 36), and pathogenicity of the Pythium species been shown to be dependent on temperature (7). In addition total Pythium populations were not correlated with decline symptoms (29).

Pythium species cause decline and replant problems of apple. Several Pythium species including P. irregulare Buisman and P. sylvaticum Campbell and Hendrix isolated from roots of declining trees or soil from replant sites were pathogenic to roots of apple seedlings and thought to contribute to apple replant problems in New York (16) and Europe (34,43). Pythium species isolated from apple trees with collar rot in New York were pathogenic to apple seedlings (17). Pythium ultimum from apple trees in Poland was found to cause a trunk canker (5). Pythium species also caused a retardation of tree growth in an apple orchard in Australia (45).

Phytophthora species have been implicated as the primary causal agents of root and crown rots of fruit trees. Root

and collar rot of sweet cherry on wet sites in California was first shown to be caused by Phytophthora in 1976 (32). The following species have since been found to be pathogenic to Mahaleb; Ph. cambivora (Petri) Buisman (32,54), Ph. cryptogaea Pethyb. and Laff. (6,53,54), Ph. drechsleri Tucker (32,54), and Ph. megasperma Drechsler (6,32,53,54), Ph. cactorum (Leb. and Cohn)Schroet (6,24), and Ph. syringae (Kleb.)Kleb. (19). Ph. cambivora, Ph. cryptogaea, and Ph. megasperma have been isolated from soils in South Australian cherry orchards (8). Mahaleb rootstocks have been reported as more susceptible to Phytophthora infection than Mazzard and other cherry rootstocks (24,33,54).

A root and collar rot of peach was caused by <u>Phytophthora</u> cinnamomi (32), <u>Ph. cactorum</u> (11,28) and <u>Ph. syringae</u> (19,56).

Apple collar and root rot is caused by Ph. cactorum and the disease has a world wide distribution (2,3,8,25,44). Ph. cambivora (18). Ph. citricola (44), Ph. megasperma (17,40), and Ph. syringae (44) have also been reported to cause collar rot of apple.

The role of <u>Phytophthora</u> species in rapid decline of stone fruit trees has recieved more attention than that of <u>Pythium</u> species because of the greater relative virulence of <u>Phytophthora</u>. In stone fruit growing regions with slow tree declines a more thorough investigation of the role of <u>Pythium</u> species should be undertaken.

LITERATURE CITED

- 1. Adegbola, M. O. K., and Hagedorn, D. J. 1969. Symptomatology and epidemiology of Pythium bean blight. Phytopathology 59:1113-1118.
- 2. Aldwinkle, H. S., Polach, F. J., Molin, W. T., and Pearson, R.C. 1975. Pathogenicity of <u>Phytophthora cactorum</u> isolates from New York apple trees and other sources. Phytopathology 65:989-994.
- 3. Baines, R. C. 1935. <u>Phytophthora</u> trunk canker of apple. (Abstr.) Phytopathology 25:5.
- 4. Barton, R. H. 1958. Occurrence and establishment of Pythium in soils. Trans. Brit. Mycol. Soc. 41:207-222.
- 5. Bielenin, A., Borecki, Z., and Millikan, D. F. 1976. Identification of <u>Pythium ultimum</u> in the collar rot complex of apple. Phytopathology 66:127-129.
- 6. Bielenin, A., and Jones, A. L. 1988. Prevalence and pathogenicity of <u>Phytophthora</u> spp. from sour cherry trees in Michigan. Plant Disease 72:473-476.
- 7. Biesbrock, J. A., and Hendrix, F. F., Jr. 1970. Influence of soil water and temperature on root necrosis of peach caused by <u>Pythium spp.</u> Phytopathology 60:880-882.
- 8. Bumbieris, M., Wicks, T. J., and Windle, B. E. 1982. <u>Phytophthora</u> species in apple and cherry orchards in South Australia. Australasian Plant Path. 11:28-29.
- Chamswarng, C. and Cook, R. J. 1985. Identification and comparative pathogenicity of <u>Pythium</u> species from wheat root and wheat-field soils in the Pacific Northwest. Phytopathology 75:821-827.
- 10. Deacon, J. W. 1979. Cellulose decomposition by <u>Pythium</u> and its relevance to substrate-groups of fungi. Trans. Br. mycol. Soc. 72:469-477.
- 11. Dunegan, J. C. 1935. A <u>Phytophthora</u> disease of peach seedlings. Phytopathology 25:800-809.

- 12. Fliegel, P., Parker, K. G., and Mai, W. F. 1963. The fungous flora of nonsuberized roots of poorly growing cherry trees. Phytopathology 53:1368-1369.
- 13. Hendrix, F.F.Jr., and Campbell, W.A. 1973 Pythiums as plant pathogens. Ann. Rev. Phytopathology 11:77-98.
- 14. Hendrix, F. F., Jr., Powell, W. M., and Owen, J. H. 1966. Relation of root necrosis caused by <u>Pythium</u> species to peach tree decline. Phytopathology 56:1229-1232.
- 15. Hine, R. B. 1961. The role of fungi in the peach replant problem. Plant Dis. Rep. 45:462-465.
- 16. Jaffee, B. A., Abawi, G. S., and Mai, W. F. 1982. Fungi associated with roots of apple seedlings grown in soil from an apple replant site. Plant Dis. 66:942-944.
- 17. Jeffers, S. N., Aldwinkle, H. S., Burr, T. J., and Arneson, P. A. 1982. <u>Phytophthora</u> and <u>Pythium</u> species associated with crown rot in New York apple orchards. Phytopathology 72:533-538.
- 18. Julis, A. J., Clayton, C. N., and Sutton, T. B. 1978.
 Detection and distribution of <u>Phytophthora cactorum</u> and <u>P. cambivora</u> on apple rootstocks. Plant Dis. Rep. 62:516-520.
- 19. Kouyeas, H. 1971. On the apoplexy of stone fruit trees caused by <u>Phytophthora</u> spp. Annls. Inst. Phytopathol. Benaki. N.S. 10:163-170.
- 20. Lownsbery, B. F., English, H., Moody, E. H., and Shick, F. J. 1973. <u>Criconemoides xenoplax</u> experimentally associated with a disease of peach. Phytopathology 63:994-997.
- 21. Lumsden, R. D., Ayers, W. A., Adams, P. B., Dow, R. L., Lewis, J. A., Papavizas, G. C., and Kantzes, J. G. 1976. Ecology and epidemiology of <u>Pythium</u> species in field soil. Phytopathology 66:1203-1209.
- 22. Mai, W. F., and Abawi, G. S. 1978. Determining the cause and extent of apple, cherry and pear replant diseases under controlled conditions. Phytopathology 68:1540-1544.
- 23. Mai, W. F., and Abawi, G. S. 1981. Controlling replant diseases of pome and stone fruits in Northeastern United States by preplant fumigation. Plant Dis. 65:859-864.

- 24. McIntosh, D. L. 1953. A trunk and crown rot of sweet cherry in British Columbia. Phytopathology 43:402-403.
- 25. McIntosh, D. L. (Ed.) 1975. Proceedings of the 1974 APDW workshop on crown rot of apple trees. Can. Plant Dis. Surv. 55:109-106.
- 26. Michigan Agricultural Statistics. 1982. Michigan Agricultural Reporting Service, Lansing. 88 pp.
- 27. Michigan Orchard and Vineyard Survey. 1982. Michigan Agricultural Reporting Service, Lansing. 49 pp.
- 28. Miller, C. R., Dowler, W. M., Petersen, D. H., and Ashworth, R. P. 1966. Observations on the mode of infection of <u>Pythium ultimum</u> and <u>Phytophthora cactorum</u> on young roots of peach. Phytopathology 56:46-49.
- 29. Mircetich, S. M. 1971. The role of <u>Pythium</u> in feeder roots of diseased and symptomless peach trees and in orchard soils in peach tree decline. Phytopathology 61:357-360.
- 30. Mircetich, S. M., and Fogle, H. W. 1968. Occurrence and pathogenicity of <u>Pythium</u> in peach orchard soils. (Abstr.) Phytopathology 58:886.
- 31. Mircetich, S. M., and Keil, H. L. 1970. <u>Phytophthora cinnamomi</u> root rot and stem canker of peach trees. Phytopathology 60:1376-1382.
- 32. Mircetich, S. M., and Matheron, M. E. 1976.

 Phytophthora root and crown rot of cherry trees.
 Phytopathology 66:549-558.
- 33. Mircetich, S. M., and Matheron, M. E. 1981.
 Differential resistance of various cherry rootstocks to Phytophthora species. (Abstr.) Phytopathology 71:243.
- 34. Mulder, D. 1969. The pathogenicity of several <u>Pythium</u> species to the rootlets of apple seedlings. Neth. J. Plant Path. 75:178-181.
- 35. Nemec, S., and Sanders, H. 1970. <u>Pythium</u> species associated with strawberry root necrosis in southern Illinois. Plant Dis, Rep. 54:49-51.
- 36. Nyczepir, A. P., and Lewis, S. A. 1984. Incidence of Fusarium and Pythium spp. in peach feeder roots as related to dibromochloropropane application for control of Criconemella xenoplex. Plant Dis. 68:497-499.

- 37. Pieczarka, D. J., and Abawi, G. S. 1978. Populations and biology of <u>Pythium</u> species associated with snap bean roots and soils in New York. Phytopathology 68:409-416.
- 38. Powell, W. M., Owen, J. H. and Campbell, W. A. 1965. Association of phycomycetous fungi with peach tree decline in Georgia. Plant Dis. Rep. 49:279.
- 39. Proffer, T. J., Jones, A. L., and Ehret, G. R. 1987. Biological species of <u>Armillaria mellea</u> isolated from sour cherry orchards in Michigan. Phytopathology 77:941-943.
- 40. Robertson, G. L. and Dance, H. M. 1971. The association of <u>Phytophthora megasperma</u> with crown rot of apple trres. N. Z. J. Agric. Res. 14:509-514.
- 41. Savage, E. F., Hayden, R. A., and Ward, W. E. 1968. The effect of sub-soiling on the growth and yield of peach trees. Ga. Agr. Expt. Sta. Res. Bul. 30.
- 42. Savory, B. M. 1966. Specific replant diseases causing root necrosis and growth depression in perennial fruit and plantation crops. Research Rev. 1. Commonw. Bur. Hort. Plant. Crops. East Malling, Maidstone Kent, England. 64 pp.
- 43. Sewell, G. W. F. 1981. Effects of <u>Pythium</u> species on the growth of apple and their possible causal role in apple replant disease. Ann. Appl. Biol. 97:31-42.
- 44. Sewell, G. W. F., Wilson, J. F., and Dakwa J. T. 1974. Seasonal variations in the activity in soil of Phytophthora cactorum, P. syringae, and P. citricola in relation to collar rot disease of apple. Ann. Appl. Biol. 76:179-186.
- 45. Sitepu, D., and Wallace, H. R. 1974. Diagnoses of retarded growth in an apple orchard. Austral. J. Expt. Agr. and Animal Husb. 14:577-584.
- 46. Stone Fruit Decline Workshop Proceedings. 1982. Michigan State University, E. Lansing. 128 pp.
- 47. Traquair, J. A. 1984. Etiology and control of orchard replant problems: a review. Can. J. Plant Pathol. 6:54-62.
- 48. Utkhede, R. S., and Vielvoye, E. 1984. Cause and control of decline of grapevines in British Columbia. Plant Dis. 68:820-822.

- 49. Van der Plaats-Niterink, A. J. 1975. Species of <u>Pythium</u> in the Netherlands. Neth. J. Pl. Path. 81:22-37.
- 50. Van der Plaats-Niterink, A. J. 1981. Monograph of the genus <u>Pythium</u>. Studies in Mycology No 21 Centraal Bureau voor Schimmelcultures, Baarn. 242 pp.
- 51. Wargo, P. M., and Shaw, C. G. III. 1985. Armillaria root rot: The puzzle is being solved. Plant Dis. 69:826-832.
- 52. Watanabe, T., K. Hashimoto, amd M. Sato. 1977.

 Pythium species associated with strawberry roots in

 Japan and the strawberry stunt disease. Phytopathology

 67:1324-1332.
- 53. Wilcox, W. F., Jeffers, S. N., Hayes, J. E. K., and Aldwinkle, H. S. 1985. Phytophthora species causing root and crown rot of cherry trees in New York. (Abstr.) Phytopathology 75:1347.
- 54. Wilcox, W. F., and Mircetich, S. M. 1985.
 Pathogenicity and relative virulence of seven
 Phytophthora species on Mahaleb and Mazzard cherry.
 Phytopathology 75:221-226.
- 55. Yadava, U. L., and Doud, S. L. 1980. The short life and replant problems of deciduous fruit trees. Pages 1-116 in J. Janick, ed. Horticultural Reviews. Vol 11. AVA publ. Co., Inc., Westport, Conn.
- 56. Young, R. A. and Milbraith, J. A. 1959. A stem canker disease of fruit tree nursery stock caused by Phytophthora. syringae. Phytopathology 49:114-115.

PART I

PYTHIUM SPECIES ASSOCIATED WITH THE ROOTS OF SOUR CHERRY AND THE EFFECT OF P. IRREGULARE ON THE GROWTH OF MAHALEB CHERRY

ABSTRACT

Isolations for Pythium species were made during the early summer of 1984-1985 from 73 sour cherry trees in 12 Michigan orchards, from Mahaleb seedlings in a commercial nursery, and from soil samples from nine orchards. Pythium was commonly associated with roots of trees from orchards with heavy soil but not with roots of trees from orchards with light soil, and populations in heavy soils were high compared to populations in light soils. P. irregulare was isolated most frequently from discolored and necrotic cherry roots and from cherry orchard soils. Other species isolated included: P. sylvaticum, P. ultimum, P. rostratum, several infrequently isolated and Pythium spp.. greenhouse trials, a reduction in root and shoot growth and root discoloration and necrosis were obtained on Mahaleb seedlings inoculated with P. irregulare. Growth reductions and necrosis were greater when seedlings were flooded, but unflooded seedlings exhibited symptoms as well. None of the seedlings inoculated with P. irregulare died after 3 This suggests that P. irregulare is not a primary months. cause in the decline and death of cherry trees in Michigan orchards, but it may contribute to a reduction in growth of cherry trees planted on heavy soils. No interaction between Pythium and Phytophthora was detected on Mahaleb seedlings when P. irregulare was inoculated with Ph. cactorum and Ph. megasperma.

INTRODUCTION

Root rot is an important problem on Montmorency sour cherry trees (Prunus cerasus L.) grafted on Prunus mahaleb L. (Mahaleb) seedling rootstocks in Michigan. Three species of Armillaria reported to be primary causal agents for root rot on sites with light well-drained soils (11). Five species of Phytophthora were reported to be primary causal agents for root rot on sites with heavy poorlydrained soils (1). Populations of Pythium were high in many soils where Phytophthora root and crown rot was identified as the cause of tree death (M. L. Smither. unpublished). Although Pythium has been reported (2) to cause a damping-off of young Mahaleb seedlings grown in naturally infested orchard soils, it is not considered a pathogen of sour cherry trees and the presence of Pythium is usually ignored when making isolations for Phytophthora. Recent reports suggest Pythium may be involved in root rot problems on apple (6,12), particularly in replant sites. The role of Pythium has not been defined and therefore warrants further study.

The overall objective of this study was to determine if Pythium, in addition to Phytophthora, was involved in root rot of sour cherry on sites with poorly drained soils. Subobjectives were to isolate and identify the Pythium species associated with sour cherry trees and orchard soils,

to test the effect of the predominant <u>Pythium</u> species <u>P</u>.

<u>irregulare</u> on the growth of <u>Mahaleb</u> cherry, and to investigate the effect of <u>P</u>. <u>irregulare</u> and two <u>Phytophthora</u> species combined on the growth of <u>Mahaleb</u> cherry.

MATERIALS AND METHODS

Isolation of <u>Pythium</u> from cherry roots. Root pieces were collected from sour cherry trees with reduced growth of terminal shoots. The orchards were located in Berrien, Kent, Mason, Oceana, and Van Buren counties. Four to six trees were sampled per orchard. A total of 73 trees from 12 orchards were sampled during the early summer of 1984 and 1985. In addition, 22 Mahaleb seedlings received by a local nursery from a supplier on the West Coast were sampled prior to planting in Michigan.

The samples were transported to the laboratory in plastic bags in an ice chest, soaked overnight in tap water, then thoroughly washed to remove soil particles, dried on paper towels, and rinsed in sterile distilled water. Rootlet pieces 5 mm in length were pressed into corn meal agar (CMA) (Difco) amended with 10 mg pimaricin (0.4 ml of a 2.5% suspension), 250 mg ampicillin, 10 mg rifampicin, and 50 mg pentachloronitrobenzene (Sigma Chemical Co., Saint Louis, MO)(6). Twenty-40 plates of amended corn meal agar (CMA-PARP), each with 10 root pieces, were prepared from root samples collected from each tree. The plates were incubated at 21 C in darkness and examined regularly with a

binocular microscope for fungal growth. Hyphal tips were transferred from all <u>Pythium</u> colonies to fresh CMA-PARP plates and then to CMA prior to identification.

Isolation of Pythium from orchard soil. The population of Pythium in soil from sour cherry orchards was estimated by surface soil dilution plates (9). Four cores of soil were taken between the drip line and the trunk from each of 10 trees per orchard. The cores were taken to a depth of 15 cm with a Hoffer soil sampler and bulked for each tree plastic bag. Samples were transported to the laboratory in an ice chest and stored at 4 C until processed. samples were air dried and then passed sequentially through 5- and 1.68-mm-mesh sieves. A 1 g subsample was taken from each bulk sample, suspended in 0.2% water agar, and dilution plated at 1:10, 1:50, and 1:100 on fresh CMA-PARP selective Diluted samples (1 ml) were distributed over the medium. surface of the agar with a sterile glass rod. replicate plates were made per dilution. After 42 incubation in darkness, the soil was removed by washing each plate under running tap water and the Pythium colonies counted. Hyphal tips were transferred from the edge of 5 to colonies per sample to CMA-PARP plates and then after incubation for 48 hr at 21 C to CMA.

Identification of <u>Pythium</u> species. Fungal structures were examined after 1-2 wk and identifications were made based on colony morphology, growth rates, and characteristics of sporangia, hyphal swellings, oogonia, antheridia, and

oospores using the key of Van der Plaats-Niterink (13). The identification of the heterothallic species P. sylvaticum Campbell and Hendrix was confirmed by crossing each suspect isolate with strains ATCC 18195 and ATCC 18196 of P. sylvaticum on potato-carrot agar (13).

Effect on the growth of Mahaleb cherry seedlings. The virulence of nine isolates of P. <u>irregulare</u> isolated from roots and soil in five orchards were compared. The test was conducted in a growth chamber with 6-wk-old Mahaleb seedlings. The basic procedure was as described by Mircetich and Matheron (10). Inoculum of P. irregulare was prepared by growing each isolate at 21 C for 8 days on 200 ml vermiculite and 20 g oat kernels moistened with 100 ml V-8 juice solution (200 ml V-8 juice (Campbell Soup Co. Camden, NJ), 2 g $CaCO_3$, and 800 ml distilled water) sterilized in 500 ml Erlenmeyer flasks. The inoculum was washed with distilled water over cheesecloth in a Buchner funnel to remove unassimilated nutrients, then mixed the rate of 20 cc per 1000 cc of sterilized soil/sand/peat (1/1/1 by volume). Seedlings were planted in 4 L plastic with six replicates. The pots controls received vermiculite/oat mixture without fungus. Maximum daytime temperatures were 21 C with 14 hr of light. The nighttime minimum was 18 C. The seedlings were fertilized biweekly (Peters Professional, 20:20:20, Peters Fertilizer Products, W. R. Grace and Co., Fogelsville, PA). The experiment was terminated after 18 wk. Isolations from root tissue were

made on CMA-PARP selective medium. Dry weights of the roots and shoots were recorded. The experiment was repeated. Data were analyzed by an analysis of variance for a completely randomized experimental design.

Interaction of Pythium irregulare and Phytophthora spp.. Four isolates of P. irregulare (isolates B306, C6, J210, and L215) were used in single and combined treatments with Ph. cactorum (B2) and two isolates of Ph. megasperma (M224 and M333). All isolates were from cherry orchards in Michigan. Ph. megasperma M224 was avirulent and M333 was virulent to Mahaleb cherry in a previous pathogenicity test (1). Inoculum of P. irregulare and of Phytophthora spp. prepared as described in the preceding section except oat kernels were omitted from the mixture and the isolates were grown for 5 wk. Inoculum was mixed per 1000 cc of sterilized soil/sand/peat as follows: control treatments, 40 of vermiculite without fungus; single species treatments, 20 cc fungal inoculum + 20 cc vermiculite without fungus; and combined species treatments, 40 cc combined fungal inoculum. The seedlings were planted in 1 L containers and arranged in eight blocks on a greenhouse bench. All treatments in one half of each block were flooded for 48 hr every 2 wk by immersing the pots in water. The experiment was conducted during the winter, temperature was maintained at 21 C, with 16 hr of light. The plants were fertilized as previously described. experiment was terminated after 15 wk. Isolations from

root tissue were made on CMA-PARP selective medium and on a Phytophthora selective medium (3). Ρ. irregulare populations in soil were monitored with a soil assay on CMA-PARP selective medium. Dry weights of the shoots and roots were recorded. The experiment was repeated. Data were analyzed for a 2x8 split-plot factorial design randomized complete blocks. The main factor of flooding versus nonflooding was split across four treatments involving single isolates, three treatments involving one isolate of P. irregulare plus one isolate of Phytophthora, plus an uninoculated control.

RESULTS

Pythium species isolated from roots. P. irregulare, P. sylvaticum, P. ultimum Trow., P. rostratum Butler, and Pythium spp. were isolated from roots of sour cherry trees and from the roots of Mahaleb liners (Table 1). P. irregulare was isolated most frequently. It was isolated from trees in all orchards except N and U. These latter two orchards were located on sites with sandy soil. All other orchards except orchard RW where the trees were declining due to X-disease, were located on sites with heavy soils.

Pythium species isolated from soil. The six sour cherry orchards on clay soils had Pythium populations estimated at 54.3 to 746.4 propagules per gram of soil (Table 2). The

Table 1. Species of Pythium isolated from the roots of sour cherry trees with reduced terminal growth or from the roots of Mahaleb seedlings

Year		P. irregu	lare	P. sylvat	cum	P. ultimum	j	P. rostrat	um	Pythium spp. C	
	Orchard code	Fraction of trees	% b	Fraction of trees	*	Fraction of trees	*	Fraction of trees	*	Fraction of trees	*
1984	В	3/4	13	1/4	1	0/4	0	1/4	1	0/4	0
1984	E	4/5		0/5	_	0/5	-	0/5	-	1/5	-
	J	3/4	13	2/4	4	0/4	0	0/4	0	2/4	1
	L	6/6	22	2/6	4	1/6	1	1/6	2	0/6	0
	N_	5/5		1/5	-	2/5	-	1/5	-	0/5	-
	Nq Nq	0/5		0/5	_	0/5	-	0/5	-	0/5	-
	n _o	0/5		0/5	-	0/5		0/5	-	0/5	-
1985	В	6/6	38	0/6	0	0/6	0	1/6	2	2/6	2
1985	Ð	5/5	24	0/5	0	0/5	0	0/5	0	0/5	0
	P	4/5	20	2/5	9	1/5	7	0/5	0	1/5	0
	J	3/4	15	4/4	8	2/4	10	0/4	0	0/4	0
	JC	5/5	19	2/5	7	0/5	0	2/5	2	4/5	3
	L	5/5	72	2/5	19	2/5	7	0/5	0	0/5	0
	Ρ,	4/4	79	0/4	0	1/4	15	1/4	2	1/4	2
	RW ^d	4/5	19	0/5	0	0/5	0	0/5	0	0/5	0
	Хe	11/12	-	10/12	-	11/12	-	0/12	-	2/12	-
	Уe	10/10	-	8/10	-	0/10	-	2/10	-	0/10	-
	Totals	78/95		34/95		20/95		10/95		13/95	

^aSamples were collected in early summer. Twenty to 40 plates of CMA-PARP medium (6) containing ten rootlet or bark pieces were prepared from each tree. Two or more

fungal species were often isolated from the same tree.

bValues for Pythium incidence are expressed as a percentage of the total number of plated tissue pieces.

CCombined total of remaining Pythium spp.

dOrchards were located on sites with sandy soil.

elsolations were from Mahaleb liners from the West Coast.

Table 2. Populations of <u>Pythium</u> species as estimated by dilution-plate counts from soil taken from sour cherry orchards

	<u>P</u> y	thium	popula	tion h	oy spec	ies (p	ropagu	les per	gram (ppg)) ^a	ì
Year:	-			1984					198	5	
Orchard code:	В	E	J	L	N	Ир	n p	J	L	P	RW b
P. <u>irregulare</u>	52.5	56.0	52.5	32.6	74.3	1.0	0.0	52.1	279.2	64.0	1.5
P. sylvaticum	6.1	5.4	122.6	12.5	157.4	0.0	1.0	25.2	17.2	0.0	0.0
P. ultimum	9.9	6.9	19.8	3.2	52.0	0.0	0.0	23.1	259.2	11.3	1.8
P. rostratum	6.8	2.3	13.1	6.0	52.4	0.3	1.0	1.9	18.0	4.2	0.3
Pythium spp.c	0.8	6.1	10.9	0.0	100.5	1.7	0.6	16.1	0.0	0.0	0.0
Total	76.1	76.4	219.0	54.3	437.0	3.0	2.6	119.3	746.4	79.5	3.5

^aSamples were collected once in early summer. Each value is the mean of ten soil samples per orchard. Each soil sample is the composite of four sub samples collected around one tree.

bOrchards were located on sites with sandy soil.

Combined total of remaining Pythium spp.

three orchards on sandy soil (orchards N, U, and RW) had very low Pythium populations estimated at 2.6 to 3.5 propagules per gram of soil. P. irregulare was the Pythium species isolated most consistently (50% of all propagules) from clay soils in both years, followed by P. sylvaticum (19%) and by P. ultimum (15%). Estimates for P. sylvaticum were high in soils from orchards J and N in 1984, and for P. ultimum in soils from orchard N in 1984 and orchard L in 1985. P. rostratum (6%) was found primarily in orchard N in 1984.

Effect of Pythium irregulare on growth of Mahaleb seedlings. The dry weights of shoots and roots of Mahaleb seedlings in soil inoculated with P. irregulare were significantly (P=0.05) reduced over the dry weights of the noninoculated seedlings (Table 3, Figure 1). Similar results were obtained in both experiments, although dry weights were lower for all plants in experiment 2. Seedlings inoculated with P. irregulare exhibited many discolored rootlets and diminished root systems while noninoculated seedlings exhibited healthy roots and a greater density of rootlets. Although root and shoot growth were reduced, none of the seedlings were killed. There was no consistent difference virulence between isolates. in Ρ. irregulare was reisolated from the roots of plants grown in infested soil but not from roots of plants grown in noninfested soil. Interaction of <u>Pythium irregulare</u> and <u>Phytophthora</u>. initial analysis of variance, no significant differences

Table 3. Effect of nine isolates of Pythium irregulare on the growth of Mahaleb seedlings growing in unflooded soil

		Expe	riment 1		Experiment 2						
	SI	hoots ^a	R	oots ^a	Sho	ots ^a	Roots ^a				
Isolate number ^b	Dry weight (g)	Relative growth (%)	Dry weight (g)	Relative growth (%)	Dry weight (g)	Relative growth (%)	Dry weight (g)	Relative growth (%)			
B17	10.4 ab ^C	82	3.0 bo	73	2.7 b	45	1.4 b	48			
B306	9.0 bc	71	2.9 bo	71	2.6 b	43	1.5 b	52			
C6	6.1 c	48	2.6 bo	63	2.5 b	42	1.4 b	48			
C304	6.1 c	48	2.7 bo	66	3.3 ъ	55	1.6 b	56			
J210	6.0 c	47	2.6 bo	63	2.7 b	45	1.2 b	41			
J301	6.0 c	47	2.2 c	54	2.3 b	39	1.5 b	52			
L215	7.8 bc	61	2.7 bo	66	2.6 b	43	1.2 b	41			
L304	8.3 bc	65	2.9 bo	71	4.9 ab	82	2.3 ab	79			
P309	8.5 bc	67	3.5 at	85	3.8 ab	63	1.9 ab	66			
Control	12.7 a	100	4.1 a	100	6.0 a	100	2.9 a	100			

aSix-wk-old Mahaleb s∈edlings were transplanted into soil infested with 20 cc of inoculum per 1000 cc of soil. The experiment was conducted in a growth chamber for 3 mo.

There were six replicates.

bThe letter preceding each isolate number codes for the orchard of origin.

CValues followed by the same letter do not differ significantly (\underline{P} =0.05) using Duncan's multiple range test.

Figure 1. Roots of representative Mahaleb seedlings grown in a growth chamber for 18 wk in a soil/sand/peat mixture artificially infested with <u>Pythium irregulare</u>. Soil in the pots was (a) uninfested; or infested with <u>P. irregulare</u> isolated from orchard B, (b) root and (c) soil; orchard C, (d) root and (e) soil; orchard J, (f) root and (g) soil; orchard L, (h) root and (i) soil; and orchard P, (k) soil. The treatments were not flooded.

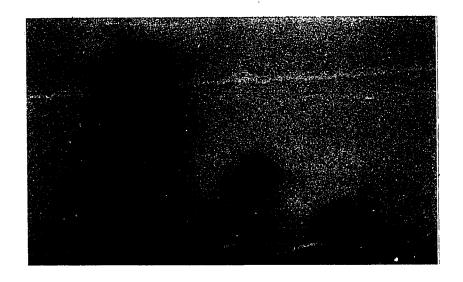
were detected in the dry weights of Mahaleb seedlings inoculated with the four isolates of P.irregulare. Therefore, only the results obtained with isolate C6 of P. irregulare were presented in Tables 4-5 to illustrate the results obtained with all Pythium isolates.

Dry weights of Mahaleb seedlings were significantly (P=0.01) reduced in both experiments by flooding for 48 hr every 2 wk (Table 4). In the uninoculated controls flooding reduced shoot dry weights by 43.1-46.7% and root dry weights by 20.7-40.7% (Table 5, Figure 2). Significant differences (P=0.01) in dry weights among the inoculation treatments were detected in both experiments, but no significant interaction between any of the inoculation treatments and the flooding treatments was detected by the analysis of variance (Table 4). P. <u>irregulare</u>, Ph. megasperma, and Ph. cactorum significantly reduced shoot and root dry weights under flooded and unflooded conditions. Dry weights of Mahaleb seedlings inoculated with P. irregulare and a Phytophthora sp. were not significantly different from the dry weights of seedlings inoculated with either fungus alone, except Ph. megasperma M224 in experiment 1 did not reduce the dry weights of shoots as much as the other treatments and it failed to reduce root dry weights significantly from the control (Table 5). The reduced growth from roots and shoots from inoculation is evident in Figures 2-3. No seedlings inoculated with P. irregulare were killed (Table 5). In inoculation treatments involving

Table 4. Analysis of variance for shoot and root dry weights of Mahaleb seedlings growing in soil infested with Pythium irregulare and two Phytophthora species in single and combined treatments under flooded and unflooded conditions

		Shoot d	lry weight	Root di	Root dry weight		
Source of variation	Degrees of freedom	Mean square	F value	Mean square	F value		
Experiment 1							
Replication	7	1.424	0.83	0.432	0.79		
Flooding	1	131.828	76.95** ^a	77.969	142.95**		
Error	7	1.713		0.545			
Treatments	7	14.933	15.97**	2.244	11.16**		
Treatment x flooding	7	0.798	0.85	0.411	2.04		
Error	98	0.935		0.201			
Experiment 2							
Replication	7	3.526	1.28	1.443	2.15		
Flooding	1	124.228	45.04**	37.303	55.50**		
Error	7	2.758		0.672			
Treatments	7	10.735	9.51**	1.940	3.70**		
Treatment x flooding	7	1.196	1.06	0.362	0.69		
Error	98	1.129		0.524			

 a_{**} indicates that values were significant (P=0.01).


Table 5. Effect of Pythium irregulare (P.) and two Phytophthora (Ph.) species on the growth of Mahaleb seedlings in single and combined treatments under flooded and unflooded conditions

			Shoots				Roots				
	Unfl	ooded	Flooded			Unflooded		Flo	oded		
Fungus and isolate number	Dry weight (g)	Relative growth ^b (%)	Dry weight (g)	Relative growth (%)	e Mean D dry weight	Dry weight (g)	Relative growth ^b (%)	Dry weight (g)	Relative growth ^b (%)	Mean dry weight	Dead
Experiment 1											
P. irregulare C6	3.8	65	1.4	42	2.5 c ^C	2.1	77	1.1	33	1.4 b ^C	0
Ph. megasperma M224	4.6	79	2.8	85	3.7 b	2.7	101	1.3	81	2.0 a	0
Isolates C6 + M224	3.0	52	1.3	39	2.1 C	2.1	93	0.6	37	1.3 b	0
Ph. megasperma M333	3.0	. 52	1.2	36	2.1 c	2.3	85	0.4	25	1.4 b	1
Isolates C6 + M333	3.5	60	1.0	30	2.2 C	2.5	92	0.3	19	1.4 b	3
Ph. cactorum B2	2.8	48	1.2	36	1.9 €	1.9	70	0.5	31	1.1 b	1
Isolates C6 + B2	2.7	47	1.0	30	1.8 c	2.0	71	0.4	25	1.2 b	2
Control	5.8	100	3.3	100	4.5 a	2.7	100	1.6	100	2.2 a	0
Flooded means	3.6		1.6			2.3		0.7			
Experiment 2											
P. irregulare C6	3.3	53	1.4	42	2.4 b	2.5	86	1.1	48	1.8 b	0
Ph. megasperma M224	2.9	47	1.8	54	2.4 b	2.0	69	1.4	61	1.7 b	0
Isolates C6 + M224	3.4	55	1.8	54	2.6 b	2.3	79	1.1	48	1.7 b	0
Ph. megasperma M333	3.7	60	1.7	51	2.7 b	2.4	83	1.2	52	1.8 b	3
Isolates C6 + M333	3.0	48	1.1	33	2.1 b	1.9	65	0.9	39	1.4 b	1
Ph. cactorum B2	3.9	63	1.8	54	2.8 b	2.3	79	1.1	48	1.7 b	2 .
Isolates C6 + B2	3.7	60	1.3	39	2.5 b	2.2	76	1.0	43	1.6 b	1
Control	6.2	100	3.3	100	4.7 a	2.9	100	2.3	100	2.6 a	0
Flooded means	3.8		1.8			2.3		1.2			

aSix-wk-old Mahaleb seedlings were transplanted in soil infested with 20 cc of inoculum per 1000 cc of soil, flooding was for 48 hr every 2 wk. The experiment was conducted in a greenhouse for 15 wk. There were eight replicates. bValues are expressed as a percentage of control.
CValues followed by the same letter do not differ significantly (P=0.05) using Duncans Multiple Range test.

Figure 2. Shoots (A) and roots (B) of representative Mahaleb seedlings grown in a greenhouse for 3 mo in a soil/sand/peat mixture. Soil in the pots was (a) uninfested and non-flooded, (b) uninfested and flooded, or flooded and infested with (c) Pythium. irregulare C6, (d) Phytophthora. megasperma, avirulent isolate M224, (e) P. irregulare C6/Ph. megasperma, virulent M333 (g) P. irregulare C6/Ph. megasperma, virulent M333

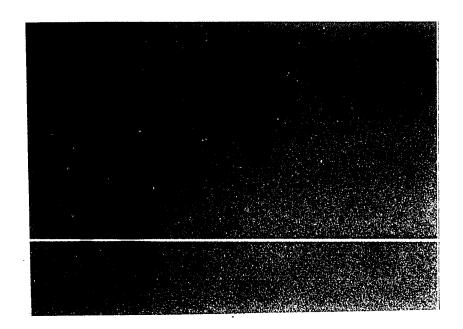


Figure 3. Shoots (A) and roots (B) of representative Mahaleb seedlings grown in a greenhouse for 3 mo in a soil/sand/peat mixture. Soil in the pots was (a) uninfested and flooded, or flooded and infested with (b) Pythium. irregulare C6, (c) Phytophthora. cactorum B2, (d) P. irregulare C6/Ph. cactorum B2.

a <u>Phytophthora</u> sp., 1-3 seedlings were dead at the end of the experiment, except no seedlings were killed in treatments involving Ph. megasperma M224 (Table 5).

Soil populations of P. <u>irregulare</u> J210 averaged 250 propagules per gram of soil for the unflooded treatment and 270 propagules per gram of soil for the flooded treatment.

P. <u>irregulare</u> was not reisolated from soil taken from the uninoculated treatment, but P. <u>irregulare</u>, Ph. megasperma, and Ph. <u>cactorum</u> were reisolated from the single and combined treatments (Table 6).

DISCUSSION

There was an universal association of Pythium species and particularly of P. irregulare with sour cherry trees located on heavy soils but not with trees located on sandy soils, and Pythium populations in heavy soils were high compared to populations in sandy soils. Pythium species have been associated with peach tree decline in the southern United States (4,8). One study correlated Pythium populations with decline symptoms (4), while another using total Pythium found no relationship (8). P. irregulare failed to kill Mahaleb cherry seedlings in greenhouse and growth chamber trials suggesting that Pythium is not the primary cause of death of cherry trees in Michigan. However P. irregulare consistently caused reductions in shoot and root growth in these trials indicating that P. irregulare is a pathogen of cherry and may contribute to the reduction in growth of

Table 6. Reisolation of <u>Pythium irregulare</u> and two <u>Phytophthora</u> species from Mahaleb seedlings (experiment 2) grown for 15 weeks with periodic flooding

		Reisol	ations ^a
Fungus and iso	late	P. irregulareb	Phytophthora ^C
P. <u>irregulare</u>	J210	8/8	0/8
Ph. megasperma	M224	0/8	5/8
Ph. megasperma P. irregulare	M224/ J210	7/7	3/7
Ph. megasperma	мззз	0/5	5/5
Ph. megasperma P. irregulare	M333/ J210	6/6	4/6
Ph. cactorum	B2	0/6	6/6
Ph. cactorum P. irregulare	B2/ J210	6/6	6/6
Control		1/8	0/8

^aFraction of Mahaleb seedlings from which <u>P</u>.

irregulars or Phytophthora were reisolated

irregulare or Phytophthora were reisolated.

bReisolations were made on CMA-PARP selective medium.

^CReisolations were made on <u>Phytophthora</u> selective medium.

cherry trees.

Jones (1) Recently Bielenin and identified Ph. megasperma, Ph. cactorum, Ph. cambivora (Petri) Busiman, Ph. cryptogea Pethyb. and Laff., and Ph. syringae (Kleb.) Kleb. as causal agents in the decline and death of sour cherry trees in Michigan located on sites with poorly drained In the present study, infection by P. irregulare in soils. combination with Ph. megasperma and Ph. cactorum did not increase the death of seedlings over Phytophthora alone. In single and combined treatments reductions in dry weight were similar for P. irregulare and Phytophthora indicating that competition for infection sites may have occurred between the genera in the combined treatments. In mature trees P. irregulare appears to be confined to the lateral roots (7), while Ph. cactorum is associated with the crown (1,14) and Ph. megasperma with the lateral and main roots (1,11,14).

Pythium has been implicated in the apple replant disease (5,12) and has been repeatedly shown to cause discoloration and necrosis of lateral roots, and inhibition of root development of apple seedlings in greenhouse inoculation trials. In the present study, necrosis of roots and a statistically significant reduction in growth were demonstrated in inoculation trials with Mahaleb cherry. Root necrosis and reduced weights were obtained even when seedlings were inoculated but not flooded, although the reduction in growth and deterioration of young roots were

greater with flooding. However, there was no indication of a replant problem in the orchards studied here, as growth of the young trees was good for the first few years. Stunting, decline and death of the trees developed when the trees came into bearing.

LITERATURE CITED

- 1. Bielenin, A., and Jones A. L. 1988. Prevalence and pathogenicity of <u>Phytophthora</u> spp. from sour cherry trees in Michigan. Plant Dis. 72:473-476.
- 2. Fliegel, P., Parker, K. G., and Mai, W. F. 1963. The fungous flora of nonsuberized roots of poorly growing cherry trees. Phytopathology 53:1368-1369.
- 3. Harris, D. C., and Bielenin, A. 1986. Evaluation of selective media and bait methods for estimating Phytophthora cactorum in apple orchard soils. Plant Pathol. 35:365-374.
- 4. Hendrix, F. F., Jr., Powell, W. M., and Owen, J. H. 1966. Relation of root necrosis caused by <u>Pythium</u> species to peach tree decline. Phytopathology 56:1229-1232.
- 5. Jaffee, B. A., Abawi, G. S., and Mai, W. F. 1982. Fungi associated with roots of apple seedlings grown in soil from an apple replant site. Plant Dis. 66:942-944.
- 6. Jeffers, S. N., and Martin, S. B. 1986. Comparison of two media selective for <u>Phytophthora</u> and <u>Pythium</u> species. Plant Dis. 70:1038-1043.
- 7. Miller, C. R., Dowler, W. M., Petersen, D. H., and Ashworth, R. P. 1966. Observations on the mode of infection of <u>Pythium ultimum</u> and <u>Phytophthora cactorum</u> on young roots of peach. Phytopathology 61:357-360.
- 8. Mircetich, S. M. 1971. The role of <u>Pythium</u> in feeder roots of diseased and symptomless peach trees and in orchard soils in peach tree decline. Phytopathology 61:357-360.

- 9. Mircetich, S. M., and Kraft, J. M. 1973. Efficiency of various selective media in determining <u>Pythium</u> populations in soil. Mycopathol. Mycol. Appl. 50:151-161.
- 10. Mircetich, S. M., and Matheron, M. E. 1976.

 <u>Phytophthora</u> root and crown rot of cherry trees.

 Phytopathology 66:549-558.
- 11. Proffer, T. J., Jones, A. L., and Ehret, G. R. 1987. Biological species of <u>Armillaria</u> isolated from sour cherry orchards in Michigan. Phytopathology 77:941-943.
- 12. Sewell, G. W. F. 1981. Effects of <u>Pythium</u> species on the growth of apple and their possible causal role in apple replant disease. Ann. Appl. Biol. 97:31-42.
- 13. Van der Plaats-Niterink, A. J. 1981. Monograph of the genus <u>Pythium</u>. Studies in Mycology No 21 Centraal Bureau voor Schimmelcultures, Baarn. 242 pp.
- 14. Wilcox, W. F., and Mircetich, S. M. 1985.
 Pathogenicity and relative virulence of seven
 Phytophthora species on Mahaleb and Mazzard cherry.
 Phytopathology 75:221-226.

PART II

SPECIES AND POPULATIONS OF <u>PYTHIUM</u> ISOLATED FROM SOUR CHERRY ORCHARD AND WOODLAND SOILS IN MICHIGAN

ABSTRACT

Pythium populations were high (54.3 to 746.4 viable propagules per gram of soil) in eight orchards on clay soil and low (1.2 to 3.5 propagules per gram of soil) in four orchards on sandy soil sampled in western Michigan in 1984-1985. Populations were also high in two woodlands adjacent to orchards in 1986, and in six woodlands in western and central Michigan in 1987. Orchards and woodlands in Michigan were found to differ in composition of Pythium species. In soil from orchards, P. irregulare was isolated most frequently (47% of Pythium propagules), followed by P. sylvaticum (26%), P. ultimum (13%), P. rostratum (6%), and Pythium group 'HS' (8%). In soil from woodlands, Pythium group 'HS' was isolated most frequently (60%) followed by Pythium group 'X' (29%), P. rostratum (2%), and Pythium group 'Y' (9%). The first two species were isolated from soils of all woodlands, while the latter two species were isolated from two woodland sites. No P. irregulare, P. sylvaticum, or P. ultimum were isolated from woodland soils. Populations of P. irregulare, P. sylvaticum, and P. ultimum in two orchards sampled over 2 yr and one orchard over 1 yr, varied independently.

INTRODUCTION

Sour cherry (Prunus cerasus L. Montmorency) orchards in southwestern Michigan are planted on sites that formerly It was observed that trees in were beech-maple woodlands. orchards planted on heavy clay soils frequently exhibited decline symptoms of poor growth and decreased longevity and had root systems that exhibited extensive discoloration and decay of lateral roots. Trees in orchards on sandy soils grew well and had root systems with little discoloration of lateral roots. Pythium irregulare (Buisman) was frequently isolated from roots of trees with discolored and necrotic lateral roots, and isolates of P. irregulare reduced the Mahaleb seedlings in pathogenicity of growth trials conducted in the greenhouse and growth chamber (17).Seedlings of Prunus mahaleb L. are the most common rootstock used for propagation of cherry trees.

Although Pythium species are soilborne pathogens of wide range of crops (6,19), they are poor competitors among an established soil microflora (2,6). Species common cultivated soils are infrequently present in soils from undisturbed sites (18). Pythium species have been associated with peach tree decline (7,12). One study correlated Pythium populations with decline symptoms (7), while another using total Pythium found no relationship (11). Pythium species isolated from peach decline orchards in Georgia were also isolated from forest soils in the southeastern United States (4). There have been no reports of studies on the composition of populations of <u>Pythium</u> species in cherry orchard soils, nor have there been reports of comparisons in <u>Pythium</u> populations between cherry orchard soils and woodland soils.

The objectives of this study were to investigate the species and populations of <u>Pythium</u> in clay and sandy soils from cherry orchard sites and in soil from woodlands adjacent to orchards.

MATERIALS AND METHODS

Sampling sites. Eight commercial sour cherry orchards on clay soil exhibiting poor growth and two on sandy soil with healthy trees were sampled in 1984 and four orchards on clay soil and two on sandy soil were sampled in 1985. Each orchard was sampled once in early summer. In addition, two of the orchards on clay soil (orchards J and L) were sampled four times both in 1984 and in 1985, and a third orchard on clay soil (orchard P) was sampled four times in 1985. Two sour cherry orchards and adjacent woodlands were sampled once in early summer in 1986 and six woodlands were sampled once in October in 1987. The woodlands were composed primarily of beech (Fagus grandifolia Ehrh)., red maple (Acer rubrum L.), silver maple (A. saccharinum L.) and hard maple (A. saccharum Marsh). All sites were in Berrien and Van Buren counties of western Michigan except woodland sites

MSU F and MSU G were located in East Lansing (Ingham county) in central Michigan.

Isolation of Pythium species from soil. The populations of Pythium species were estimated by surface soil dilution plates (13). The isolation medium used was corn meal agar (CMA) (Difco) amended with 10 mg pimaricin, ampicillin, 10 rifampicin, and 50 mg mg pentachloronitrobenzene (CMA-PARP) per liter (9). cores of soil were taken between the drip line and the trunk from each of 10 trees per orchard. Woodland sites were sampled like orchard sites, except 5 rather than 10 trees per site were sampled in 1987. The cores were taken to a depth of 15 cm with a Hoffer soil sampler and mixed for each tree in a plastic bag. The samples were transported to the laboratory in an ice chest and stored at 4 C until processed. Soil samples were air dried and then passed sequentially through 5- and 1.68-mm-mesh sieves. A 1 g subsample from each bulk sample was suspended in 0.2% water agar and dilution plated at 1:10, 1:50, and 1:100 on fresh CMA-PARP selective medium. Diluted samples (1 ml) were distributed over the surface with a sterile glass rod. Three replicate plates were made per subsample and per dilution (nine plates per tree). After 42 hr incubation in darkness at 21 C, the soil was removed by washing each plate under running tap water and the number of Pythium colonies counted.

Identification of <u>Pythium</u> species. Hyphal tips from 5 to 15 colonies per sample were transferred to CMA-PARP plates and then, after incubation for 48 hr at 21 C, to CMA. Growth rates were recorded after 24 hr incubation on CMA at 25 C. Fungal structures were examined after the cultures had grown for 1-2 wk. Identifications of the various <u>Pythium</u> species were made with the aid of the key of Van der Plaats-Niterink (19). Identification of the heterothallic species <u>P. sylvaticum</u> was confirmed by crossing each suspect isolate with strains ATCC 18195 and ATCC 18196 of <u>P. sylvaticum</u> on potato-carrot agar (19).

RESULTS

Pythium species identified. Identifications were based on colony morphology, growth rates, and charachteristics of sporangia, hyphal swellings, oogonia, antheridia, and oospores. P. irregulare, P. sylvaticum Campbell and Hendrix, P. ultimum Trow., P. rostratum Butler, and Pythium group 'HS' were as described by Van der Plaats-Niterink (19). Two groups of Pythium isolates could not be identified, as oogonia were not produced, even when crosses were made on potato-carrot agar. These were designated Pythium group 'X' and Pythium group 'Y'. Colony morphology was radiate on CMA although Pythium group 'X' had a variable rosette pattern. Growth rates of Pythium group 'X' and Pythium group 'Y' were 20 and 13 mm, respectively, in 24 hr at 25 C on CMA. Pythium group 'X' produced numerous

terminal and intercalary hyphal swellings 20-25 m in diameter on CMA and in water. Pythium group 'Y' produced sparse, ovoid intercalary hyphal swellings on CMA.

Pythium populations in soil. Samples of soil from eight sour cherry orchards on clay soils had Pythium populations estimated at 54.3 to 746.4 propagules per gram of soil (Table 1). Samples from four orchards on sandy soil had very low Pythium populations estimated at 1.2 to 3.5 propagules per gram of soil. P. irregulare was isolated most consistently (47% of all propagules) from clay soils in both years, followed by P. sylvaticum (26%) and P. ultimum (13%). Estimates for these latter species were high in soils of some orchards but not in both years. P. rostratum (6%) and Pythium group 'HS' (8%) were found primarily in orchard N in 1984, and in orchard C in 1985.

The seven woodland sites had <u>Pythium</u> populations estimated at 180 to 1153 propagules per gram of soil (Table 2). <u>Pythium</u> group 'HS' and <u>Pythium</u> group 'X' were isolated from soil taken from each of the sites. <u>Pythium</u> group 'HS' was isolated most frequently (60%), followed by <u>Pythium</u> group 'X' (29%); <u>P. rostratum</u> (2%) was isolated from woodland J in 1986 and MSU F in 1987; and <u>Pythium</u> group 'Y' (9%) was isolated from woodland sites C and J in 1986 and site B in 1987.

Sequential isolations from soil taken from two orchards over two growing seasons and one orchard over one growing season showed that populations of Pythium species varied

Table 1. Populations of <u>Pythium</u> species as estimated by dilution-plate counts from soil taken from sour cherry orchards planted on two soil types

			Pythium po	opulation by	y species	s (propagul	es per	gram (ppg)) ^a
Orcha code			P. irregulare	P. sylvaticum	P. ultimum	P. rostratum	, P. , HS	P.	Total (ppg)
1984	gro	ving	season						•
В	(Clay	52.5	6.1	9.9	6.8	0.0	0.8	76.1
C	C	Clay	26.2	26.7	0.0	0.0	2.8	0.0	55.7
G	(Clay	56.0	5.4	6.9	2.3	6.1	0.0	76.4
H	C	Clay	52.3	17.4	26.2	5.0	23.7	0.0	124.6
J	C	Clay	52.5	122.6	19.8	13.1	10.9	0.0	219.0
L	C	Clay	32.6	12.5	3.2	6.0	0.0	0.0	54.3
P	C	Clay	47.8	0.8	16.4	8.2	0.0	1.5	74.7
N	C	Clay	74.3	157.4	52.4	52.4	100.5	0.0	437.0
N	\$	Sand	1.0	0.0	0.0	0.3	1.7	0.0	3.0
U	2	Sand	0.0	1.0	0.0	1.0	0.6	0.0	2.6
1985	grow	ing	season						
J	c	lay	52.1	25.2	23.1	1.9	16.1	0.0	119.3
L	C	lay	279.2	17.2	259.2	18.0	0.0	0.0	746.4
P	C	Clay	64.0	0.0	11.3	4.2	0.0	0.0	79.5
C	C	lay	67.1	189.5	0.0	28.1	160.5	0.0	443.2
C	9	and	0.6	0.6	0.0	0.0	0.0	0.0	1.2
RW	9	and	1.5	0.0	1.8	0.3	0.0	0.0	3.5

^aEach value is the mean of ten soil samples per orchard. Each soil sample is the composite of four sub-samples collected around one tree. Sites were sampled on one occasion.

Table 2. Populations of Pythium species as estimated by dilution-plate counts from soil taken from sour cherry orchards and woodlands

	Pyt	hium po	opulation by	y species	s (propagul	es per	gram (ppg)) ^a	
Site Soi typ	-	gulare	P. sylvaticum	P. ultimum	P. rostratum	P. 'Hs'	<u>Р</u> .	<u>P</u> .	Total (ppg)
May 1986									
C orchard Cla	y ·	46	50	0	11	123	0	0	240
C woodland Cla	Ŋ	0	0	0	0	768	238	147	1153
J orchard Cla		72	47	30	0	26	0	6	181
J woodland Cla	ıy	0	0	0	51	426	165	258	900
October 1987 W	loodlan	d site:	5						
B ^b Sand C ^b Clay H ^b Sand		0	0	0	0	204	34	102	340
C ^b Clay		0	0	0	0	262	168	0	420
H ^D Sand		0	0	0	0	130	130	0	260
L ^C Clay		0	0	0	0	88	132	0	260
MSU Fb Sandy I	oam	0	0	0	18	126	36	0	180
MSU G ^b Sandy 1	oam	0	0	0	0	504	56	0	560

^aEach value is the mean of ten soil samples taken in 1986 and five soil samples in 1987. Each soil sample is the composite of four subsamples collected around one tree.

bSites were adjacent to sour cherry orchards.

CSite was not close to a cherry orchard.

independently of each other (Figure 1-3). Estimates of total Pythium populations in soil from orchard J fluctuated from a low of 107.0 propagules per gram in July 1984 to a high of 313.2 propagules per gram in October 1985 (Figure 1); from orchard L, from 54.3 propagules per gram in May 1984 to 1009.0 propagules per gram in October 1985 (Figure 2); and from orchard P, from 79.5 propagules per gram in May 1985 to 351.1 propagules per gram in August 1985 (Figure 3).

DISCUSSION

Soils from orchards and from woodlands in Michigan were found to differ in their composition of Pythium species. P. rostratum and Pythium group 'HS' were isolated from both habitats, indicating that these species were competitive in both cultivated and woodland soils. Pythium group 'HS' was the most frequent isolate from woodland, parkland, and farmland soils in England (1,5), however its pathogenicity to crop plants has not been investigated. P. rostratum has been isolated from a variety of habitats (1,5,18), has a worldwide distribution, and has been found to be nonpathogenic or weakly pathogenic on a wide variety of hosts (19). P. irregulare, P. sylvaticum, and P. ultimum were isolated from soil from orchards but were not detected in soil from woodlands. All three species have worldwide distributions and have been isolated from a wide variety of

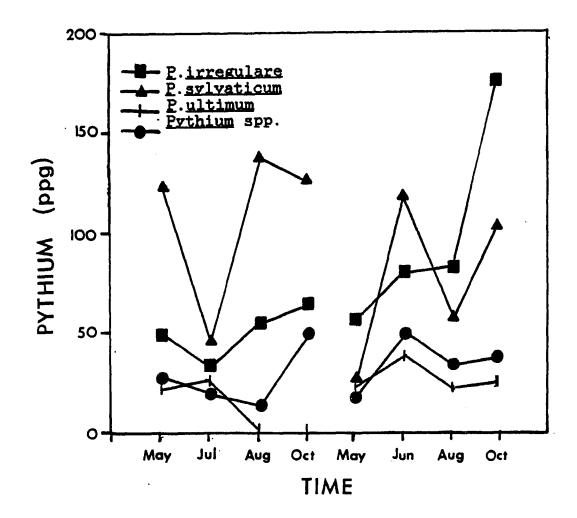


Figure 1. Fluctuations in population (propagules per gram of soil) of <u>Pythium</u> species as estimated by <u>dilution-plate</u> counts for soil samples taken from sour cherry orchard J in southwest Michigan during 1984 and 1985. Species identified were P. <u>irregulare</u>, P. <u>sylvaticum</u>, P. <u>ultimum</u>, and <u>Pythium spp.</u>.

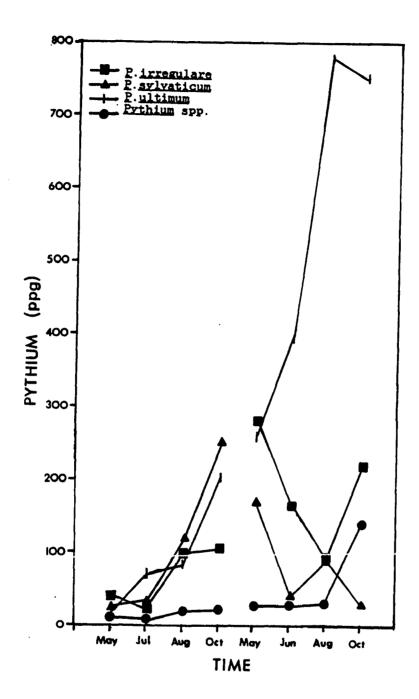


Figure 2. Fluctuations in population (propagules per gram of soil) of <u>Pythium</u> species as estimated by dilution-plate counts for soil samples taken from sour cherry orchard L in southwest Michigan during 1984 and 1985. Species identified were <u>P. irregulare</u>, <u>P. sylvaticum</u>, <u>P. ultimum</u>, and <u>Pythium spp.</u>.

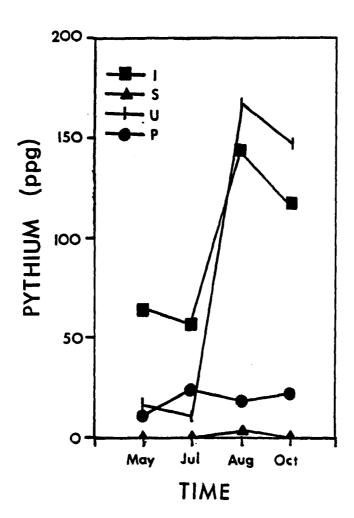


Figure 3. Fluctuations in population (propagules per gram of soil) of <u>Pythium</u> species as estimated by dilution-plate counts for soil samples taken from sour cherry orchard P in southwest Michigan during 1985. Species identified were I) P. irregulare, S) P. sylvaticum, U) P. ultimum, and P) Pythium spp..

hosts (19). Among deciduous orchard crops, P. irregulare is reported as pathogenic to apple (8,16), to peach (7,12), and to cherry (17); P. sylvaticum to apple (16); and P. ultimum to apple (3) and to peach (7,12).

The Pythium species found in soils from seven woodland sites were similar regardless of soil type, proximity to orchard sites, and location in Michigan. The predominant species of trees in all woodland sites were beech and maple, indicating that the areas had previously belonged to the beech-maple climax community, which was common over southern Michigan. The trees in the sites had obviously previously been clean cut or selectively felled, and the sites showed varying degrees of disturbance, but had never been used as orchard sites. There appears to be a stable association between the isolated Pythium species and the beech/maple community as indicated by the similarity between the Pythium species isolated from diverse counties in Michigan.

Populations of <u>Pvthium</u> species in soils taken from sour cherry orchards were high in clay soils and low in sandy soils. The physical and chemical properties of soil affect <u>Pvthium</u> populations. Pythium populations were reported to be higher under conditions of high soil moisture (1, 11, 18) and high soil organic content (10), and lower under acid conditions (5). Clay soils favor retention of moisture, and soil organic matter in the soils of orchards was increased due to mechanical cultivation.

Populations of Pythium species from orchards on clay

soils varied over time. Populations of <u>Pythium</u> species in bean field soils were reported to vary independently in response to temperature (10,14), and incorporation of organic matter (10). The predominant species in woodland, parkland, and farmland soils in England were reported to show seasonal fluctuations in population (1).

This study has practical implications because Ρ. irregulare was found to reduce the growth of Mahaleb seedlings in greenhouse and growth chamber studies. irregulare appears at 10 fold greater population densities in soil from orchards on clay soils than on sandy soils It may limit the growth of cherry trees planted on (17).sites with clay soil. One method for avoiding this possibility would be to establish new cherry orchards on sandy, well drained sites. Additionally the pathogenic Pythium species were not detected in woodland soils even on clay soils, so on newly cleared sites on clay soils it may be possible to prevent the introduction of these Pythium However it is possible that these species are species. present in woodlands at undetectable levels and could increase under cultivation. This is in contrast to root rot caused by Armillaria species which are endemic on pine and oak and cause disease in orchards planted on sites cleared from these woodlands in Michigan (12).

LITERATURE CITED

- Ali-shtayeh, M. S., Lim-ho, C. L., and Dick, M. W. 1986. The phenology of <u>Pythium</u> (Peronosporomycetidae) in soil. Journal of Ecology 74:823-840.
- 2. Barton, R. H. 1958. Occurrence and establishment of Pythium in soils. Trans. Brit. mycol. Soc. 41:207-222.
- 3. Bielenin, A., Borecki, Z., and Millikan, D. F. 1976. Identification of <u>Pythium ultimum</u> in the collar rot complex of apple. Phytopathology 66:127-129.
- 4. Campbell, W. A. and Hendrix, F. F. 1967. <u>Pythium</u> and <u>Phytophthora</u> species in forest soils in the southeastern United States. Plant Dis. Rep. 51:929-932.
- 5. Dick, M. W., and Ali-shtayeh, M. S. 1986. Distribution and frequency of <u>Pythium</u> species in parkland and farmland soils. Trans. Br. mycol. Soc. 86:49-62.
- 6. Hendrix, F.F.Jr., and Campbell, W.A. 1973 Pythiums as plant pathogens. Ann. Rev. Phytopathology 11:77-98.
- 7. Hendrix, F. F., Jr., Powell, W. M., and Owen, J. H. 1966. Relation of root necrosis caused by <u>Pythium</u> species to peach tree decline. Phytopathology 56:1229-1232.
- 8. Jaffee, B. A., Abawi, G. S., and Mai, W. F. 1982. Fungi associated with roots of apple seedlings grown in soil from an apple replant site. Plant Dis. 66:942-944.
- 9. Jeffers, S. N., and Martin, S. B. 1986. Comparison of two media selective for <u>Phytophthora</u> and <u>Pythium</u> species. Plant Dis. 70:1038-1043.
- 10. Lumsden, R. D., Ayers, W. A., Adams, P. B., Dow, R. L., Lewis, J. A., Papavizas, G. C., and Kantzes, J. G. 1976. Ecology and epidemiology of Pythium species in field soil. Phytopathology 66:1203-1209.
- 11. Mircetich, S. M. 1971. The role of <u>Pythium</u> in feeder roots of diseased and symptomless peach trees and in orchard soils in peach tree decline. Phytopathology 61:357-360.

- 12. Mircetich, S. M., and Fogle, H. W. 1969. Role of Pythium in damping-off of peach. Phytopathology 59:356-358.
- 13. Mircetich, S. M., and Kraft, J. M. 1973. Efficiency of various selective media in determining Pythium populations in soil. Mycopathol. Mycol. Appl. 50:151-161.
- 14. Piekzarka, D. J., and Abawi, G. S. 1978. Influence of soil water potential and temperature on severity of Pythium root rot of snap beans. Phytopathology 68:766-772.
- 15. Proffer, T. J., Jones, A. L. and Ehret, G. R. 1987. Biological species of <u>Armillaria mellea</u> isolated from sour cherry orchards in Michigan. Phytopathology 77:941-943.
- 16. Sewell, G. W. F. 1981. Effects of <u>Pythium</u> species on the growth of apple and their possible causal role in apple replant disease. Ann. Appl. Biol. 97:31-42.
- 17. Smither, M. L., 1988. Cherry tree decline: associated Pythiaceous species, pathogenicity and control. Ph.D. Thesis, Michigan State University.
- 18. Van der Plaats-Niterink, A. J. 1975. Species of <u>Pythium</u> in the Netherlands. Neth. J. Pl. Path. 81:22-37.
- 19. Van der Plaats-Niterink, A. J. 1981. Monograph of the genus <u>Pythium</u>. Studies in Mycology No 21 Centraal Bureau voor Schimmelcultures, Baarn. 242 pp.

PART III

EFFECTS OF METALAXYL AND FOSETYL-AL ON GROWTH OF

PHYTOPHTHORA AND PYTHIUM SPECIES 'IN VITRO' AND ON THEIR

PATHOGENICITY TO MAHALEB CHERRY

ABSTRACT

Seven pythiaceous species associated with roots of sour cherry in Michigan were tested for their sensitivity to metalaxyl and phosphorus acid in culture. All fungi were inhibited by both fungicides and sensitivity varied between The ED₅₀ values for metalaxyl and phosphorus acid, respectively were: Phytophthora cactorum, 0.06 and 7.5; Ph. citricola, 0.17 and <7.5; Ph. drechsleri, 0.26 and 27.0; Ph. megasperma, 1.52 and 49.5; Pythium irregulare, 0.49 and 80.0; P. sylvaticum, 0.5 and 78.1; and P. ultimum 0.06 and 78.7 Mg/ml. Phytotoxic symptoms were observed on 1-yr-old Mahaleb seedlings at 400 and 800 Mg/ml metalaxyl. Significant (P=0.05) reductions in shoot and root dry weight occurred with 9-wk-old Mahaleb seedlings growing in soil infested with P. irregulare, Ph.megasperma, and Ph. cactorum in a growth chamber. Metalaxyl was more effective than fosetyl-Al in preventing fungus induced necrosis and growth reduction.

INTRODUCTION

Root rot of sour cherry trees occurs in orchards planted on poorly drained soils in Michigan. Phytophthora species are considered to be the primary causal agents of cherry root and crown rot in Michigan (2), California (22), and New York (29). Pythium species, and P. irregulare in

particular, were found to be associated with lateral root necrosis of cherry trees, and caused reductions in growth of Mahaleb seedlings in greenhouse trials (M. L. Smither, unpublished).

Metalaxyl is an acylalanine fungicide and it has been used commercially and experimentally to control diseases induced by Phytophthora (1,5,11,13,15,28) and damping-off and blight induced by Pythium (23,26). Variations in sensitivity to metalaxyl occur between species (6,8,17,21), and thus variations in the degree of control exerted by metalaxyl can be expected on the Phytophthora and Pythium species associated with cherry decline. The development of resistance to metalaxyl has occurred (4,10).

Fosetyl-Al (aluminium tris(O-ethyl phosphonate)) has been used effectively to control diseases induced by Phytophthora (11,13,16,24). High concentrations of fosetyl-Al are required to inhibit Phytophthora 'in vitro'. Fenn and Coffey convincingly demonstrated that the effective fungicidal agent is the breakdown product phosphorous acid (18,19). As with metalaxyl variations in sensitivity occur between species (7,8,18). The development of resistance to phosphorus acid has been demonstrated experimentally (3).

The objectives of this study were to test the sensitivity of pythiaceous species isolated from the roots of cherry to metalaxyl and phosphorus acid in culture, and to determine the effectiveness of metalaxyl and fosetyl-Al for the control of root rot of Mahaleb cherry seedlings caused by

various pythiaceous species.

MATERIALS AND METHODS

Sensitivity of species to metalaxyl and fosetyl-Al in Single isolates of Phytophthora cactorum (B1) (Leb. & Cohn) Schroet., Ph. citricola (H1) Sawada, Ph. drechsleri (B1) Tucker, Ph. megasperma (B1) Drechsler, Pythium irregulare (L215) Buisman, P. sylvaticum (C201) Campbell and Hendrix, and P. ultimum (B302) Trow. isolated from cherry orchards in Michigan were tested for their sensitivity to phosphorous acid and metalaxyl in culture. The fungal isolates were grown for 5 days on corn meal agar (CMA). Disks 5 mm in diameter were taken from the colony margin and placed in the center of six replicate plates with metalaxyl or phosphorous acid. Concentrations of metalaxyl were 0, 0.01, 0.1, 1, 10, and 100 µg/ml. The experiment was repeated. Concentrations of phosphorous acid were 0, 10, 50, 100, 250, and 500 µg/ml in an initial experiment. The experiment was repeated twice at rates of 0, 10, 25, 50, 75, and 100 μ g/ml. plates were stored in darkness at 21 C and radial colony growth was measured daily for 7 days. ED₅₀ values were calculated from linear regression lines obtained by plotting the mean percent inhibition of mycelial growth against the concentration of metalaxyl and phosphorus acid.

Fungicide trials. Fungal inoculum for the three

fungicide trials was prepared by growing the isolates at 21 C for 5 wk on 200 cc vermiculite moistened with 100 ml V-8 juice solution (200 ml V-8 juice, 2 g CaCO₃, and 800 ml distilled water) sterilized in 500 ml Erlenmeyer flasks (22). The inoculum was washed with distilled water over cheesecloth in a Buchner funnel to remove unassimilated nutrients and mixed at the rate of 10 cc/1000 cc with sterilized soil/sand/peat (1/1/1). Controls recieved the vermiculite mixture but no fungus.

Experiment one was conducted in a greenhouse with dormant 1-yr-old Mahaleb seedlings planted directly into soil infested with isolates of Ph. cactorum (B1), Ph.citricola (H1), Ph. megasperma (CA), P. irregulare (C6), and P. ultimum (G7). The experimental units consisted of three seedlings in 4 L containers, which were arranged as randomised complete blocks with six replications. The maximum daytime temperatures were 24 C, nighttime minimum was 18 C, with 14 hr of light. Fungicide solutions were applied to the soil after 8 days at rates of 0, 10, 25, 100, 400, and 800 Mg/ml metalaxyl in 250 ml distilled water. The experiment was terminated after 3 mo. Dry weights of roots and shoots were recorded.

Experiment two was conducted outside, shaded by lath, with dormant 1-yr-old Mahaleb seedlings planted directly into soil infested with isolates of Ph. cactorum (B1), Ph.citricola (H1), Ph. megasperma (CA), P. irregulare (L215), and P. sylvaticum (C201). The experiment was set

up as for experiment one. Fungicide treatments were applied 6 wk after planting. Metalaxyl was applied at 100μg/ml in 250 ml distilled water as a soil drench. Fosetyl-Al was sprayed onto the foliage to run-off with a hand sprayer, at rates of 1.5 and 3.0 g a.i. L. The experiment was terminated after 3 mo. Dry weights of roots and shoots were recorded.

Experiment three was conducted in a growth chamber using 9-wk-old Mahaleb seedlings, and isolates of P. irregulare (C6), Ph. cactorum (B2) and Ph. megasperma (B1). Combined Phytophthora and P. irregulare treatments used 10 cc of fungal inoculum from each isolate. Seedlings were planted in 1 L pots with eight replicates. Metalaxyl was applied at the rate of 70 Ag a.i./ml in 50 ml distilled water, as a soil drench after the seedlings had been transplanted. Fosetyl-Al was sprayed onto the foliage to run-off with a hand sprayer at a rate of 4 g a.i./L. Fungicides were reapplied at monthly intervals. Maximum daytime temperatures were 21 C with 14 hr of light. The nighttime minimum was 18 C. The seedlings were flooded for 48 hr every 2 wk and fertilized biweekly. Dry weights of the roots and shoots were recorded after 10 wk. This experiment was repeated in a greenhouse.

RESULTS

Sensitivity of species to metalaxyl and phosphorous acid in culture. Rates of fungal growth were reduced with increasing metalaxyl concentration (Figure 1). Growth of Ph. cactorum and P. ultimum was completely inhibited above 1 Mg/ml. Growth of P. irregulare and P. sylvaticum at 10 and 100 Mg/ml only occurred during the initial 24 hours. Slow growth of Ph. drechsleri and Ph. megasperma continued at 100 Mg/ml. The ED₅₀ values were lowest, 0.06 Mg/ml, for Ph. cactorum and P. ultimum (Table 1). Ph. megasperma had the highest ED₅₀ value, 1.52 Mg/ml, of the fungi tested.

Rates of fungal growth were reduced with increasing phosphorous acid concentration (Figure 2) Growth of all isolates was prevented with 500 µg/ml. Ph. citricola was the most sensitive of the species tested, with an ED₅₀ of <10 µg/ml. Ph. megasperma had the highest ED₅₀ value, 49.5 µg/ml of the Phytophthora species tested. The three Pythium species were least sensitive with ED₅₀ values between 78.1 and 80 µg/ml (Table 1). The experiments were repeated with similar results.

Fungicide trials. In experiment one, dry weights of Mahaleb seedlings for all fungal treatments were highest with metalaxyl concentrations from 10-100 μ g/ml (Table 2). Phytotoxic symptoms of leaf margin necrosis occured at 400 and 800 μ g/ml (Figure 3). A factorial analysis showed that

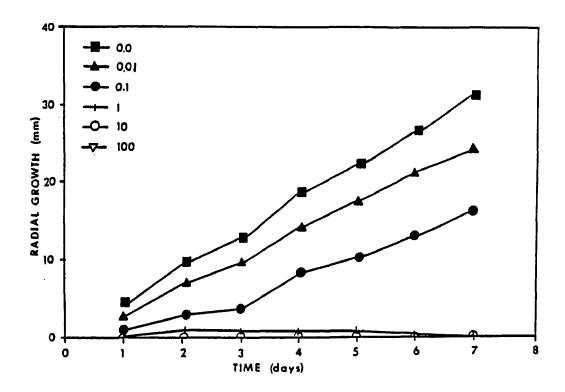


Figure 1a. Radial growth of <u>Phytophthora</u> cactorum in culture amended with metalaxyl at rates of 0.0, 0.01, 0.1, 1, 10, and 100 //g/ml.

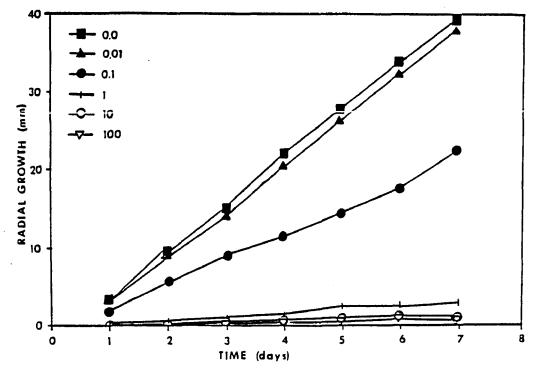


Figure 1b. Radial growth of <u>Phytophthora citricola</u> in culture amended with metalaxyl at rates of 0.0, 0.01, 0.1, 1, 10, and 100 μ g/ml.

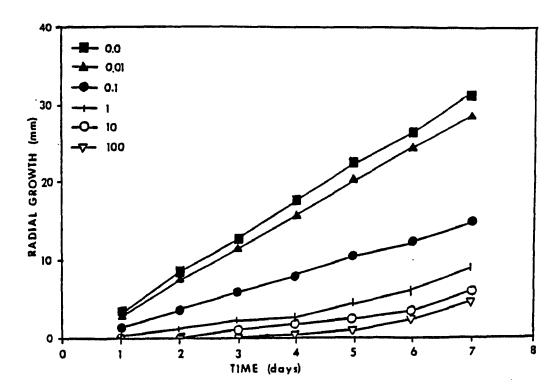


Figure 1c. Radial growth of <u>Phytophthora drechsleri</u> in culture amended with metalaxyl at rates of 0.0, 0.01, 0.1, 1, 10, and 100 μ g/ml.

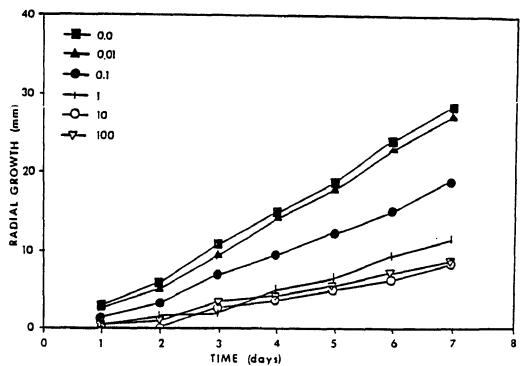


Figure 1d. Radial growth of Phytophthora megasperma in culture amended with metalaxyl at rates of 0.0, 0.01, 0.1, 1, 10, and 100 µg/ml.

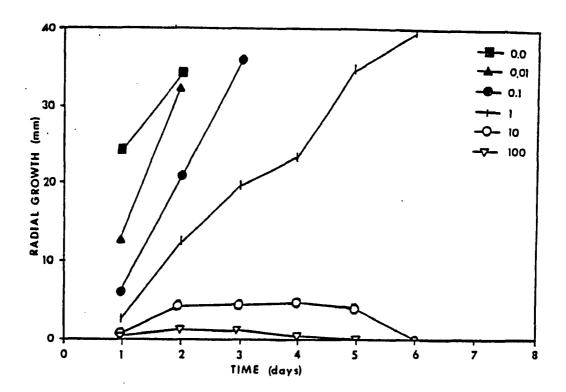


Figure 1e. Radial growth of <u>Pythium irregulare</u> in culture amended with metalaxyl at rates of 0.0, 0.01, 0.1, 1, 10, and 100 μ g/ml.

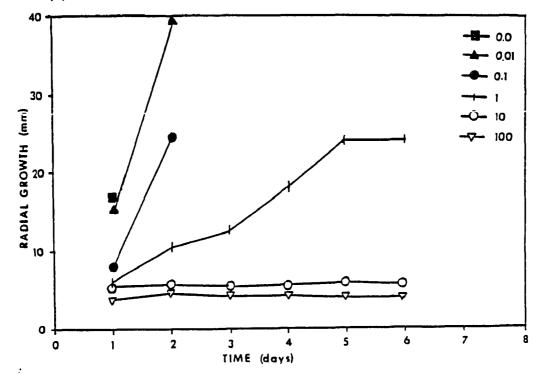


Figure 1f. Radial growth of <u>Pythium sylvaticum</u> in culture amended with metalaxyl at rates of 0.0, 0.01, 0.1, 1, 10, and 100 μ g/ml.

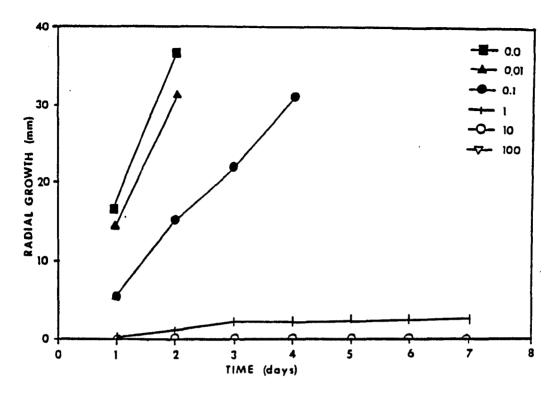


Figure 1g. Radial growth of <u>Pythium ultimum</u> in culture amended with metalaxyl at rates of 0.0, 0.01, 0.1, 1, 10, and 100 µg/ml.

Table 1. ED₅₀ values for <u>Phytophthora</u> (<u>Ph.</u>) and Pythium (P.) species to metalaxyl and phosphorus acid in culture

	ED ₅₀ values						
Fungus	Metalaxyl µg/ml	Phosphorus acid Mg/ml					
Ph. cactorum	0.06 ^x	7.5					
Ph. citricola	0.17	<10 ^y					
Ph. drechsleri	0.26	27.0					
Ph. megasperma	1.52	49.5					
P. irregulare	0.49	80.0					
P. sylvaticum	0.50	78.1					
P. ultimum	0.06	78.7					

 $^{^{\}mathbf{X}}$ Values were calculated from means of six replicate plates. The experiment was repeated with similar results.

y The value was too low to be calculated by this

concentration range.

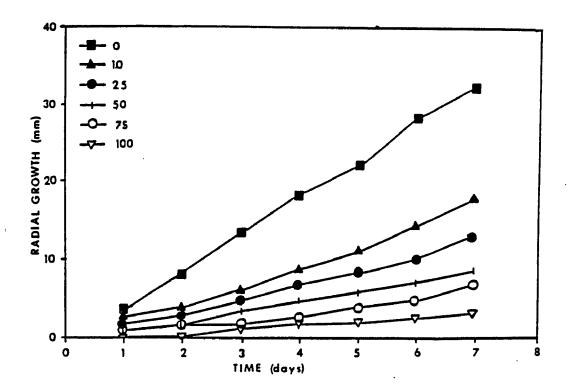


Figure 2a. Radial growth of <u>Phytophthora cactorum</u> in culture amended with phosphorous acid at rates of 0, 10, 25, 50, 75, and 100 μ g/ml.

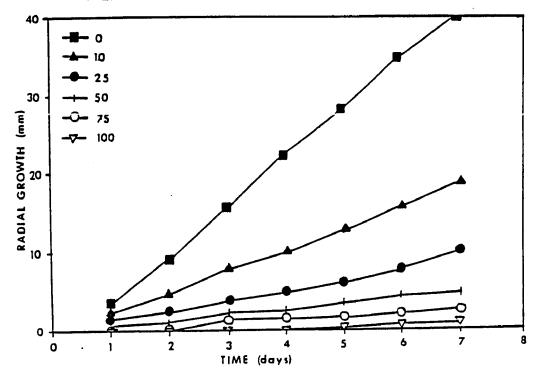


Figure 2b. Radial growth of <u>Phytophthora citricola</u> in culture amended with phosphorous acid at rates of 0, 10, 25, 50, 75, and 100 µg/ml.

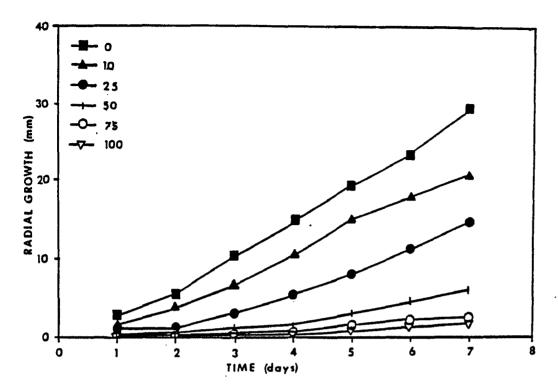


Figure 2c. Radial growth of <u>Phytophthora drechsleri</u> in culture amended with phosphorous acid at rates of 0, 10, 25, 50, 75, and 100 µg/ml.

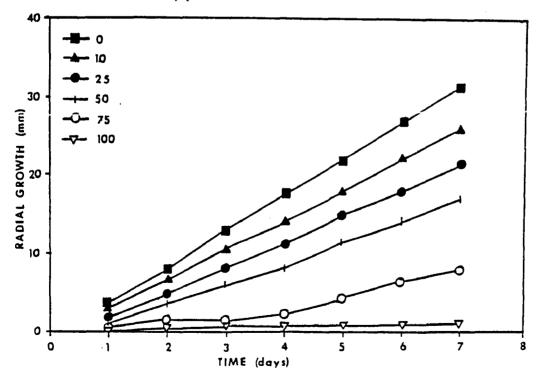


Figure 2d. Radial growth of <u>Phytophthora megasperma</u> in culture amended with phosphorous acid at rates of 0, 10, 25, 50, 75, and 100 µg/ml.

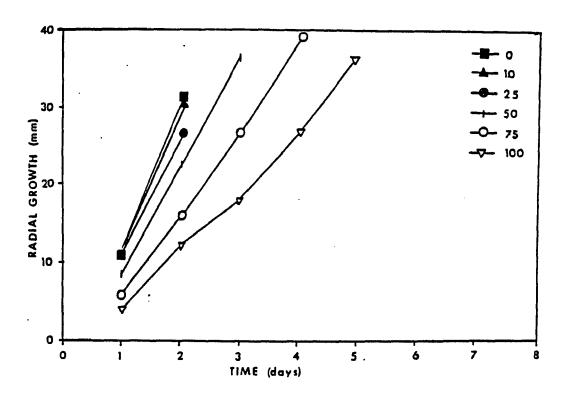


Figure 2e. Radial growth of <u>Pythium irregulare</u> in culture amended with phosphorous acid at rates of 0, 10, 25, 50, 75, and 100 µg/ml.

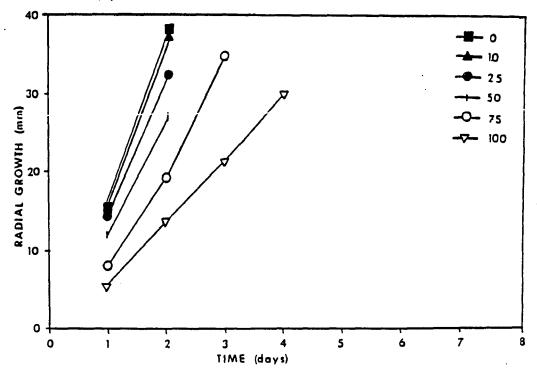


Figure 2f. Radial growth of Pythium sylvaticum in culture amended with phosphorous acid at rates of 0, 10, 25, 50, 75, and 100 μ g/ml.

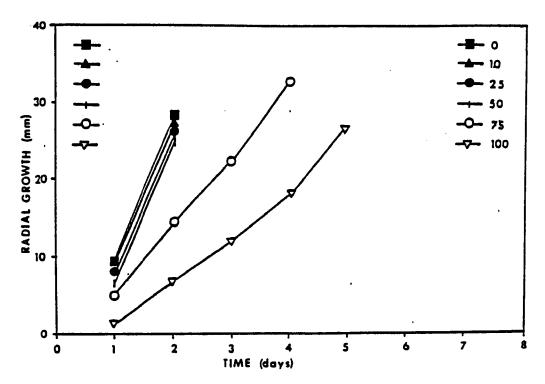


Figure 2g. Radial growth of Pythium ultimum in culture amended with phosphorous acid at rates of 0, 10, 25, 50, 75, and 100 $\rm Mg/ml$.

Table 2. Effect of various concentrations of metalaxyl on growth of 1-yr-old Mahaleb seedlings in <u>Phytophthora</u> and <u>Pythium</u> infested soil in the greenhouse

Concentration	Shoot dry weight (g) ^a						Root dry weight (g) ^a					
of metalaxyl ^b		<u>Ph.</u> cactorum	Ph. citricola	Ph. megaspenna	<u>ρ.</u> irregulare	P. ultinum	Control ca	Ph. octorum	<u>Ph.</u> citricola	<u>Ph.</u> regasperna	<u>ρ.</u> irregulare	<u>P.</u> ultimm
0	9.7 ab	7.2 ab	6.8 b	13.2 a	7.7 ab	12.9 a	2.9 abc	1.3 с	2.1 a	3.4 ab	2.6 ab	3.8 a
10	11.0 ab	10.5 a	10.9 ab	11.9 a	9.8 ab	13.1 a	3.3 abc	3.1 ab	2.5 a	4.1 a	2.6 ab	3.8 ab
25	13.9 a	11.6 a	13.7 č	9.9 a	12.0 a	12.4 a	3.5 ab	3.7 a	3.3 a	2.0 a	3.6 ab	3.6 abo
100	13.9 a	8.9 a	10.7 eb	11.5 a	11.7 a	9.7 a	4.9 a	2.2 bc	2.1 a	3.0 a	4.1 a	2.2 abo
400	9.8 ab	8.8 a	ds 6.9	12.6 a	8.6 ab	8.9 b	2.3 bc	1.4 c	1.6 a	2.7 a	2.7 ab	1.6 c
800	8.0 b	7.9 a	7.1 t	9.7 a	6.4 a	8.7 at	1.4 c	1.2 c	1.5 a	2.4 a	1.6 b	1.7 bc

^aDormant 1-yr-old Mahaleb seedlings were transplanted in soil infested with 10 cc of inoculum per 1000 cc of soil. The experiment was conducted in a greenhouse for 3mo. There were six replicates.

bMetalaxyl(250 ml per container) was applied as a soil drench

CValues in columns followed by the same letter do not differ significantly according to Duncan'smultiple range test (P=0.05).

Figure 3. Phytotoxic symptoms caused by metalaxyl at rates of (a) 0, (b) 100, and (c) $400 \, \mu \text{g/ml}$ on leaves of Mahaleb cherry.

there were no significant variations in shoot and root dry weights due to soil infesting fungi or metalaxyl, as there was a high degree of variability between experimental units. Analyses of variance calculated separately for each of the soil infesting fungi indicated that metalaxyl significantly (P=0.05) increased root dry weight of Mahaleb seedlings planted in soil infested with Ph. cactorum.

In experiment two, shoot and root dry weights of Mahaleb seedlings tended to be lower when grown in infested soil or treated with fosetyl-Al (Table 3). There were no significant variations in dry weight due to soil infesting fungi or the fungicides metalaxyl and fosetyl-Al as estimated by a factorial analysis.

In experiment three, Ph. cactorum, Ph. megasperma, and Ρ, irregulare, alone or in combination all significant reductions in shoot and root dry weights (Table 4, Figure 4) A factorial analysis also found significant $(\underline{P}=0.05)$ differences between fungicide treatments. no significant interaction effects. were Metalaxyl controlled the soil infesting fungi as shoot and root dry weights of metalaxyl treated seedlings grown in infested soil were not significantly reduced from the metalaxyl treated control. Fosetyl-Al reduced shoot and root dry weights of seedlings growing in uninfested soil. Dry weights of fosetyl-Al treated seedlings grown in infested soil were not significantly different from the treated control. The experiment was repeated with similar results.

Table 3. Effect of fosetyl-Al and metalaxyl on growth of 1-yr-old Mahaleb seedlings in Phytophthora and Pythium infested soil under lath

•	,	Shoot dry weight (g) ^a						Root dry weight (g) ^a					
Treatment and rate	Control	Ph. cactorum	Ph.	Ph. megasperma	<u>P.</u> irregulare	P. sylvaticum	Control	Ph. cactorum	Ph. citricola	Ph. negasperma	<u>ρ.</u> irregulare	<u>ρ.</u> sylvaticum	
Control	7.1 ^b	5.2	4.5	5.4	6.7	6.4	3.0	1.8	2.5	2.0	2.5	2.4	
Fosetyl-Al ^C 1.5 g a.i./L		2.5	3.9	4.1	4.7	4.2	2.8	0.5	1.4	1.7	2.2	2.8	
Fosetyl-Al ^C 3.0 g a.i./L		2.7	4.5	4.1	4.8	4.8	3.0	1.0	1.7	2.1	2.3	1.8	
Metalaxyl ^d 100 wg/ml	6.6	5.1	2.9	4.1	5.6	5.5	2.6	2.0	1.0	1.6	3.0	2.6	

aDormant 1-yr-old Mahaleb seedlings were transplanted in soil infested with 10 cc of inoculum per 1000 cc of soil. The experiment was conducted outside, shaded by lath, for 3mo. There were six replicates.

bValues in columns followed by the same letter do not differ significantly according to Duncan's multiple range test (P=0.05).

^CFosetyl-Al was sprayed onto the foliage to run-off with a hand sprayer at a ^dMetalaxyl(250 ml per container) was applied as a soil drench.

Table 4. Effect of fungicides metalaxyl and fosetyl-Al on growth of Mahaleb seedlings growing in soil infested with <u>Phytophthora</u> species and <u>Pythium irregulare</u>

Fungicides Treatment ^a	Dry weight (g)								
	Cont	rol	Metala	жу1ь	Fosetyl-Alc				
	Shoot	Root	Shoot	Root	Shoot	Root			
Control	2.7 a x	d 1.4 a X	2.6 a x	1.2 a X	2.0 a x	1.0 a 3			
Ph. cactorum	1.0 b x	0.4 b X	1.7 a x	1.0 a X	1.3 а ж	0.6 a 3			
Ph. megasperma	1.5 b x	0.8 b XY	1.7 a x	1.2 a X	0.8 а ж	0.3 a 1			
P. <u>irregulare</u>	1.0 b y	0.4 b Y	2.2 a x	1.2 a X	1.4 a y	0.7 a 1			
Ph. cactorum/ P. irregulare	1.1 b y	0.5 b Y	2.8 a x	1.4 a X	1.3 a y	0.7 a 1			
h. megasperma/ . irregulare	1.1 b у	0.3 Ъ Ч	2.6 a x	1.6 a X	1.3 a y	0.5 a 1			

asix-wk-old Mahaleb seedlings were transplanted in soil infested with 20 cc of inoculum per 1000 cc of soil. The experiment was conducted in a greenhouse for 2 mo. There were eight replicates. Plants were flooded for 48 hr every 2 wk. Metalaxyl was applied at the rate of 70 Ag a.i./ml in 50 ml distilled water, as a soil drench after the seedlings had been transplanted.

CFosetyl-Al was sprayed onto the foliage to run-off with a hand sprayer at a

rate of 4 g a.i./L.

dValues in columns (a,b) and rows (x,y and X,Y) followed by the same letter do
not differ significantly according to Duncan's multiple range test (P=0.05). There
was no interaction between the main effects according to a factorial analysis.

Figure 4. Roots of representative Mahaleb seedlings grown in a) uninfested soil, or soil infested with b) Phytophthora cactorum, c) Ph. megasperma and d) Pythium irregulare. Roots in columns were x) untreated, or treated with y) metalaxyl, and z) fosetyl-Al.

DISCUSSION

The fungal species associated with root rot of sour cherries in Michigan differed in their sensitivity to metalaxyl and phosphorous acid in culture. Of the fungitested Ph. eactorum was the most sensitive to both fungicides. The high sensitivity of Ph. citricola to phosphorous acid confirms another report (7). The three Pythium species showed a similar low sensitivity to phosphorous acid. P. ultimum had a high sensitivity to metalaxyl, while P. irregulare and P. sylvaticum were less sensitive.

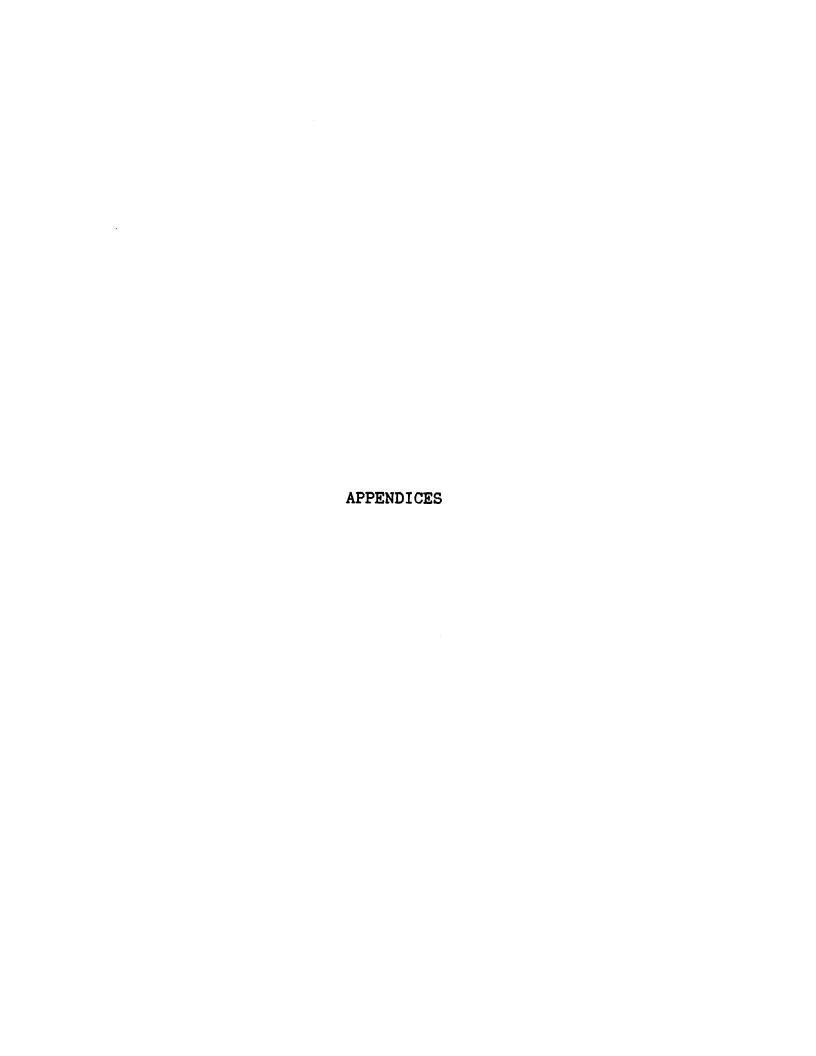
The fungicide trials showed that metalaxyl was more effective than fosetyl-Al in increasing shoot and root dry weights of plants growing in soil infested with Phytophthora species and P. irregulare. However at high concentrations of metalaxyl phytotoxic symptoms occurred with reduced growth. Reductions of dry weights of plants growing in uninfested soil when treated with fosetyl-Al was probably due to stress caused by the chemical. The inconclusive results obtained from the first two experiments were probably due to uncontrolled temperatures during the course of the experiments, and previous contamination of the 1-yr-old Mahaleb seedlings with Phytophthora and Pythium species.

Effective disease control requires that a fungicide is present at the site of infection at a high enough

concentration to inhibit or kill the invading organism. Diseases successfully controlled by metalaxyl include collar rot of apple (15) and foot rot of citrus (13,16,28,), where a canker is produced on the trunk and control is effected by concentration of the fungicide at the infection site. Metalaxyl has controlled root rot of woody plants when applied as a soil drench with nursery or container grown plants (1,5).

Control of the lateral root necrosis associated with cherry decline requires that the fungicide is present at an inhibitory concentration in the roots. Metalaxyl is strongly adsorbed to soil organic matter and in loam soils was found to stay in the top 7.5 cm (27). Metalaxyl is applied as a soil drench as no basipetal translocation occurs (14,30), and it is questionable if on the heavy soils of symptomatic orchards metalaxyl would reach all the feeder roots. Fosetyl-Al is applied as a foliar spray as basipetal translocation occurs (14,24), however it is not known if the concentrations reaching the feeder roots are high enough to prevent infection.

The longterm prospects for control of pythiaceous species with these chemicals are not good as there are several reasons for doubting the long term effectiveness of these chemicals. Species differ in their sensitivity to the fungicides, and as more than one species are commonly found together selection of the more tolerant species will occur. Resistance to metalaxyl has already occured, particularly


with foliar pathogens (4,10), and resistance to fosetyl-Al has been demonstrated experimentally (3). There are reports of the failure of metalaxyl to control diseases induced by Ph. megasperma and Ph. drechsleri (20), and Pythium species (12,25).

LITERATURE CITED

- 1. Benson, D. M. 1979. Efficacy and in vitro activity of two systemic acylalanines and ethazole for control of Phytophthora cinnamomi root rot of azealea. Phytopathology 69:174-178.
- 2. Bielenin, A., and Jones, A. L. 1988. Prevalence and pathogenicity of <u>Phytophthora</u> spp. from sour cherry trees in Michigan. Plant Dis. 72:473-476.
- 3. Bower, L. A., and Coffey, M. D. 1984. Development of resistance to phosphorus acid in <u>Phytophthora capsici</u>. Phytopathology 74:811.
- 4. Bruin, G. C. A. and Edgington, L. V. 1981. Adaptive resistance in Peronosporales to metalaxyl. Can. J. Plant Path. 3:201-206.
- 5. Bruck, R. I. and Kenerley, C. M. 1983. Effects of metalaxyl on <u>Phytophthora cinnamomi</u> root rot of <u>Abies fraseri</u>. Plant Dis. 67:688-690.
- 6. Coffey, M. D., and Bower, L. A. 1984. In vitro variability among isolates of six <u>Phytophthora</u> species in response to metalaxyl. Phytopathology 74:502-506.
- 7. Coffey, M. D., and Bower, L. A. 1984. In vitro variability among isolates of eight <u>Phytophthora</u> species in reponse to Phosphorous acid. Phytopathology 74:738-742.
- 8. Coffey, M. D., and Joseph, M. C. 1985. Effects of phosphorus acid and fosetyl-Al on the life cycle of Phytophthora cinnamomi and Ph. citricola. Phytopathology 75:1042-1046.
- 9. Coffey, M. D., Klure, L. J., and Bower, L. A. 1984. Variability in sensitivity to metalaxyl of isolates of Phytophthora.citricola. Phytopathology 74:417-422.

- 10. Coffey, M. D., and Young, L.H. 1984. Responses to metalaxyl of sensitive and resistant isolates of Phytophthora infestans. Phytopathology 74:615-620.
- 11. Cohn, Y. and Coffey, M. D. 1986. Systemic fungicides and the control of comycetes. Annu. Rev. Phytopathol. 24:311-338.
- 12. Cook, R. J., Zhang, B. X., and Doerr, A. 1983. Failure of metalaxyl to control all of the <u>Pythium</u> population pathogenic on roots of Pacific Northwest wheat. Phytopathology 73:957.
- 13. Davis, R. M. 1982. Control of Phytophthora root and foot rot of citrus with systemic fungicides metalaxyl and Phosethyl Aluminium. Plant Dis. 66:218-220.
- 14. Edgington, L. V. 1981. Structural requirements of systemic fungicides. Ann. Rev. Phytopathol. 19:107-124.
- 15. Ellis, M. A., Grove, G. C., and Ferree, D. C. 1982. Effects of metalaxyl on <u>Phytophthora cactorum</u> and collar rot of apple. Phytopathology 72:1431-1434.
- 16. Farih, A., Menge, J. A., Tsao, P. H., and Ohr, H. D. 1981. Metalaxyl and efosite aluminium for control of Phytophthora gummosis and root rot on citrus. Plant Dis. 65:654-657.
- 17. Farih, A., Tsao, P. H., and Menge, J. A. 1981. In vitro effects of metalaxyl on growth, sporulation and germination of Phytophthora parasitica and P. citrophthora. Plant Dis. 65:651-654.
- 18. Fenn, M. E., and Coffey, M. D. 1984. Studies on the in vitro and in vivo antifungal activity of fosetyl-Al and phosphorous acid. Phytopathology 74:606-611.
- 19. Fenn, M. E., and Coffey, M. D. 1985. Further evidence for the direct mode of action of fosetyl-Al and phosphorus acid. Phytopathology 75:1064-1068.
- 20. Hamm, P. B., Cooley, S. J., and Hansen, E. M. 1984. Response of <u>Phytophthora</u> spp. to metalaxyl in forest tree nurseries in the Pacific Northwest. Plant Dis. 68:671-673.
- 21. Hunger, R. M., and Hamm, P. B., Horner, C. E. and Hansen, E. M. 1982. Tolerance of <u>Phytophthora</u> megasperma isolates to metalaxyl. Plant Dis. 66:645-649.

- 22. Mircetich, S. M., and Matheron, M. E. 1976. Phytophthora root and crown rot of cherry trees. Phytopathology. 66:549-558
- 23. Morton, H.V., Kern, C.L., and Taylor, T. D. 1982. Control of Pythium damping off and Phytophthora root rot of soybeans with metalaxyl. (Abstr.) Phytopathology 72:971.
- 24. Munnecke, D. E. 1982. Apparent movement of Aliette and Ridomil in <u>Persea indica</u> and its effect on root rot. Phytopathology 72:971.
- 25. Sanders, P. L. 1984. Failure of metalaxyl to control Pythium blight on turfgrass in Pennsylvania. Plant Dis. 68:776-777.
- 26. Sanders, P. L., Burpee, L. L., Cole, H., Jr., and Duich, J. M. 1978. Control of Pythium blight of turf grass with CGA-48988. Plant Dis. Rep. 62:663-667.
- 27. Sharom, M. S., and Edgington, L. V. 1982. The adsorbtion, mobility, and persistance of metalaxyl in soil and aqueous systems. Can. J. Plant Pathol. 4:334-340.
- 28. Timmer, L. W., and Castle, W. S. 1985. Effectiveness of metalaxyl and fosetyl-Al against <u>Phytophthora</u> parasitica on sweet orange. Plant Dis. 69:741-743.
- 29. Wilcox, W. F., Jeffers, S. N., Hayes, J. E. K., and Aldwinkle, H. S. 1985. Phytophthora species causing root and crown rot of cherry trees in New York. (Abstr.) Phytopathology 75:1347.
- 30. Zaki, A. L., Zentmeyer, G. A., and LeBaron, H. M. 1981. Systemic translocation of C-labeled metalaxyl in tomato, avocado, and <u>Persea indica</u>. Phytopathology 71:509-514.

APPENDIX A

DESCRIPTIONS OF PYTHIUM SPECIES ASSOCIATED WITH CHERRY TREES

Colony morphology and growth rate. Colonies of Pythium irregulare Buisman, P. sylvaticum Campbell and P. ultimum Trow. were radiate on CMA and produced aerial mycelium. P. irregulare had a finer growth pattern with a maximum hyphal diameter of 6 km. P. sylvaticum and P. ultimum had a maximum hyphal diameter of 11 km. Growth rates on CMA at 21 C for P. irregulare, P. sylvaticum, and P. ultimum were 17, 20, and 18 mm in 24 hr, respectively. Colonies of P. rostratum Butler lacked aerial mycelium and grew in a chrysanthemum pattern at a rate of 8 mm in 24 hr. Colonies of Pythium group 'HS' were fine and radiate with no aerial mycelium and grew 12 mm in 24 hr.

Sporangia and hyphal swellings. The structures described here were produced on solid media and/or in a 1:1 mixture of sterile pond and distilled water. Observations measurements were made on structures stained with cotton blue in lactophenol. Sporangia of P. irregulare were produced terminally or intercalary, varied in size from 12-25 um in diameter, and were globose to ellipsoid, limoniform to barrel shaped (Figure 1a). Hyphal swellings of P. sylvaticum less than 30 4m in diameter, and intercalary (Figure 2a). Hyphal swellings of P. ultimum were globose, intercalery and less than 30 \(\alpha m \) in diameter. Sporangia of P. rostratum were produced only in water and were intercalary. Hyphal swellings of Pythium group 'HS' were intercalary, numerous on CMA, and less than 30 Mm

diameter. All structures germinated directly with one or more germ tubes or produced zoospores.

Characteristics of oogonia, antheridia, and oospores. Ρ. irregulare, P. ultimum, and P. rostratum were homothallic. P. sylvaticum was heterothallic although some strains were self-compatible. Pythium group 'HS' produced no oogonia. Oogonia of P. irregulare were irregular with a variable number of blunt conical projections (Figure 1b). Oogonia of P. sylvaticum and P. ultimum were globose (Figure 2a, 3a, The number of antheridia per oogonium for P. 3b). irregulare, P. sylvaticum, and P. ultimum were 1-2, 2-4, and 1-3, respectively, and all were paragynous. Antheridia of P. sylvaticum were branched while those of P. ultimum were typically attached close to the oogonial Antheridia of P. rostratum were hypogynous and paragynous 1-2 antheridia per oogonium. with Oospores of ₽. irregulare, P. sylvaticum, and P. ultimum were aplerotic. Oospores of P. rostratum were plerotic.

Figure 1a. Pythium irregulare sporangia.

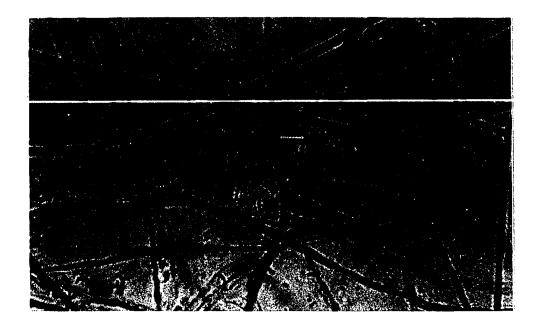


Figure 1b. Pythium irregulare irregularly shaped oogonium with aplerotic oospore.

Figure 2a. Pythium sylvaticum hyphal swelling.

Figure 2b. <u>Pythium sylvaticum</u> oogonium surrounded by branched antheridial cells.

Figure 3a. <u>Pythium ultimum</u> oogonium with paragynous antheridium attached close to the oogonial stalk.

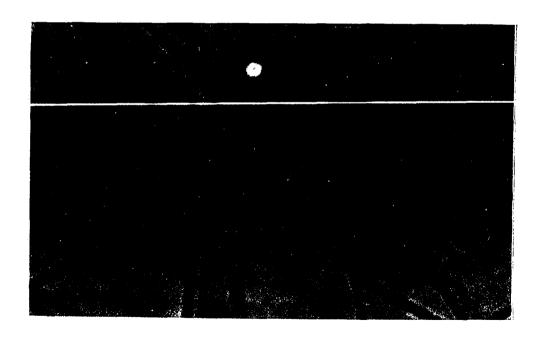


Figure 3b. Pythium ultimum oogonium with paragynous antheridia and an aplerotic oospore.

APPENDIX B

EFFECT OF <u>PYTHIUM</u> AND <u>PHYTOPHTHORA</u> ISOLATED IN MICHIGAN ON GROWTH OF MAHALEB CHERRY SEEDLINGS

INTRODUCTION

Root rot of sour cherry trees (<u>Prunus cerasus</u> L.) occurs in orchards planted on poorly-drained soils in Michigan. <u>Phytophthora</u> species are considered to be primary causal agents of cherry root rot in California (5,9), and New York (8). Recently, Bielenin and Jones reported isolation of <u>Ph. megasperma</u> Drechsler, <u>Ph. cactorum</u> (Leb. & Cohn) Schroet., <u>Ph. cryptogea</u> Pethyb. & Laff., <u>Ph. syringae</u> (Kleb.) Kleb., and <u>Ph. cambivora</u> (Petri) Buisman from cherry orchards in Michigan (1). <u>Pythium</u> species, particularly <u>P. irregulare</u> Buisman, were found to be associated with lateral necrosis of cherry trees, and were pathogenic to Mahaleb cherry (M. L. Smither, unpublished).

The objective of this study was to determine the effect of <u>Pythium</u> and <u>Phytophthora</u> species isolated in Michigan on the growth of Mahaleb cherry seedlings.

MATERIALS AND METHODS

Isolation and identification of species P. irregulare was isolated from roots, and P. sylvaticum Campbell and Hendrix, and P. ultimum Trow. from soil as previously described (M. L. Smither, unpublished). Ph. cactorum and Ph. citricola Sawada were isolated from soil using apple cotyledons as bait (4). Soil samples were sieved through 5 and 2 mm mesh sieves, and a 30 ml sub-sample was placed in a 250 ml

beaker to air dry. After 3 days the soil in each beaker was moistened by adding 5 ml of sterile distilled water. The top of each beaker was covered with clear plastic held in place with a rubber band. After 3 days in a growth chamber at 21 C, the soil in each beaker was flooded with distilled water to a depth of 2 cm above the soil surface. Apple cotyledons (variety McIntosh) were floated on the surface of the water. Starting daily after the third day, any plant tissue with necrosis was removed and examined with a binocular microscope for Phytophthora. Isolations were made from infected tissue using CMA-PARP selective medium (3). Identifications were made based on the keys of Ribeiro (6), and Waterhouse (7). Isolates of megasperma, and Ph. drechsleri Tucker from cherry roots were supplied by G. C. Adams.

Pathogenicity test. The test was conducted in a growth chamber using 6-wk-old Mahaleb seedlings. The basic procedure was as described by Mircetich and Matheron (5). Inoculum of Pythium and Phytophthora species was prepared by growing each isolate at 21 C for 5 wk on 200 cc vermiculite and 20 g oat kernels moistened with 100 ml V-8 juice solution (200 ml V-8 juice, 2 g CaCO₃, and 800 ml distilled water) sterilized in 500 ml Erlenmeyer flasks. The inoculum was washed with distilled water over cheesecloth in a Buchner funnel to remove unassimilated nutrients, then mixed at the rate of 20 cc per 1000 cc of sterilized soil/sand/peat (1/1/1 by volume). Seedlings were planted

in 4 L plastic pots with six replicates. The controls received vermiculite/oat mixture but no fungus. Maximum daytime temperatures were 21 C with 14 hr of light. The nighttime minimum was 18 C. The seedlings, apart from one control treatment, were flooded for 48 hr every 2 wk. All were fertilized biweekly. Dry weights of the roots and shoots were recorded after 18 wk. Reisolations were made on CMA-PARP selective medium. This experiment was repeated twice in the greenhouse and twice in the growth chamber with other isolates of these fungi.

RESULTS

Pathogenicity test. Ρ. irregulare, Ρ. ultimum. cactorum, Ph. citricola, Ph. megasperma and one isolate of Ph. drechsleri significantly reduced dry weights of roots and shoots of Mahaleb seedlings grown in a growth chamber (Table 1, Figure 1). P. irregulare, Ph. cactorum, and Ph. citricola caused the greatest reduction and P. sylvaticum the least reduction in shoot and root dry weights. isolate of Ph. drechsleri, and P. sylvaticum isolated from soil did not significantly reduce dry weights of roots and shoots. All flooded treatments had significantly reduced growth as compared to the non-flooded control. Infections by P. irregulare resulted in extensive root discoloration and decay, similar to symptoms observed in the orchards. Phytophthora infections caused cankers on the collar region and main tap root. Pythium and Phytophthora species were

Table 1. Virulence of <u>Pythium</u> and <u>Phytophthora</u> species isolated from Michigan sour cherry orchards to Mahaleb seedlings

	Sho	oots ^X	Roots ^X		
Fungus and isolate number	Dry weight (g)	Relative growth Y (%)	Dry weight (g)	Relative growth ⁵ (%)	
Pythium irregulare L215	2.0 cd ²	41	1.0 de	42	
Pythium sylvaticum J310	3.2 bc	65	1.9 bc	79	
Pythium ultimum B302	2.0 cd	41	1.4 cde	58	
Phytophthora cactorum B1	0.7 d	14	0.6 e	25	
Phytophthora citricola H2	1.5 cd	31	0.6 e	25	
Phytophthora drechsleri B1 JC16	3.3 bc 2.6 cd	67 53	1.6 cd 1.2 cde	66 50	
Phytophthora megasperma B1	2.4 cd	49	1.3 cde	54	
Control noninoculated flooded noninoculated nonflooded	4.9 b 7.3 a	100 149	2.4 ab 2.8 a	100 116	

^{*}Six-wk-old Mahaleb seedlings were transplanted in soil infested with 20 cc of inoculum per 1000 cc of soil. The seedlings apart from the non-flooded control were flooded for 48 hr every 2 wk. The experiment was conducted in a growth chamber for 3 mo. There were six replicates.

YValues are expressed as a percentage of flooded control.

²Values followed by the same letter do not differ significantly (P=0.05) using Duncans Multiple Range test.



Figure 1. Roots of representative Mahaleb seedlings grown in a growth chamber for 18 wk in a soil/sand/peat mixture infested with (A) Phytophthora species and (B) Pythium species. Soil in the pots was (a) uninfested and nonflooded, or flooded and infested with (b) Ph. cactorum, (c) Ph. citricola, (d) Ph. drechsleri, (e) Ph. megasperma, (f) P. irregulare, (g) P. sylvaticum, and (h) P. ultimum.

routinely reisolated from seedlings growing in infested soil but not from control plants. These results were similar to those from two experiments conducted in a greenhouse and two experiments conducted in a growth chamber.

DISCUSSION

All the species tested caused reductions in dry weight of Mahaleb seedlings. Although Phytophthora species are considered to be the primary causal agents of cherry root and crown rot (1,5,8,9), the consistent results obtained with Pythium species, over a series of experiments, indicates that these fungi should also be considered pathogens of cherry.

The large number of Phytophthora and Pythium species isolated from cherry orchards in Michigan may retard the development of a suitable control stratagy using fungicides or host resistance. A suitable method of control must be active against all the species which may be present. Phytophthora root and crown rot is associated with poorly-drained soils, and is intensified by flooding (10). Pythium species are also associated with poorly-drained soils (M. L. Smither, unpublished). Therefore the most effective means of control maybe to improve soil conditions by selecting sites with well-drained soils, and using drainage systems.

LITERATURE CITED

- 1. Bielenin, A., and Jones A. L. 1988. Prevalence and pathogenicity of <u>Phytophthora</u> spp. from sour cherry trees in Michigan. Plant Dis. 72:473-476.
- 2. Fliegel, P., Parker, K. G., and Mai, W. F. 1963. The fungous flora of nonsuberized roots of poorly growing cherry trees. Phytopathology 53:1368-1369.
- 3. Jeffers, S. N., and Martin, S. B. 1986. Comparison of two media selective for <u>Phytophthora</u> and <u>Pythium</u> species. Plant Dis. 70:1038-1043.
- 4. Jeffers, S. N., and Aldwinkle, H. S. 1987. Enhancing detection of <u>Phytophthora cactorum</u> in naturally infested soil. Phytopathology 77:1475-1482.
- 5. Mircetich, S. M., and Matheron, M. E. 1976.

 Phytophthora root and crown rot of cherry trees.
 Phytopathology 66:549-558.
- 6. Ribeiro, O. K. 1978. A source book of the genus Phytophthora. J. Cramer, Lehre, Germany. 420 pp.
- 7. Waterhouse, G. M. 1970. The genus <u>Phytophthora</u> de Bary. Diagnosis (or descriptions and figures) of the original papers. Commonw. Mycol. Inst., Mycol. Pap. 122. 59 pp.
- 8. Wilcox, W. F., Jeffers, S. N., Hayes, J. E. K., and Aldwinkle, H. S. 1985. <u>Phytophthora</u> species causing root and crown rot of cherry trees in New York. (Abstr.) Phytopathology 75:1347.
- 9. Wilcox, W. F., and Mircetich, S. M. 1985.
 Pathogenicity and relative virulence of seven
 Phytophthora species on Mahaleb and Mazzard cherry.
 Phytopathology 75:221-226.
- 10. Wilcox, W. F., and Mircetich, S. M. 1985. Effects of flooding duration on the development of root and crown rot of cherry. Phytopathology 77:1132-1137.

APPENDIX C

THE EFFECTS OF INCREASED SOIL COMPACTION LEVELS WITH PYTHIUM

IRREGULARE AND PHYTOPHTHORA MEGASPERMA ON GROWTH OF MAHALEB

SEEDLINGS AND ETHYLENE LEVELS IN SOIL

ABSTRACT

Sectioned pipes were used to study the effects of soil levels of 1.0, 1.3, and 1.7 g/cc, and compaction Phytophthora megasperma and Pythium irregulare on growth of Mahaleb seedlings. There were significant reductions (P=0.05)in dry weights of Mahaleb seedlings with increased bulk density levels. P. irregulare caused significant reductions in dry weight in one of two experiments. irregulare populations were an average of 104.3 (propagules per gram) ppg with no Mahaleb seedlings and 248.7 ppg with Mahaleb seedlings. P. irregulare populations were higher with increasing bulk densities. Ethylene levels in the basal sections of the pipe was measured using a Varian aerograph 1400 gas chromatograph. Ethylene levels over 1 ppm were detected in treatments with Mahaleb seedlings at 1.7 g/cc soil bulk density.

INTRODUCTION

Cherry trees planted on clay soils in Michigan tend to exhibit poor growth and survival. Phytophthora species pathogenic to cherry have been isolated from trees and soil (3,12). Pythium irregulare has been found to be pathogenic to cherry, and high populations of Pythium species are associated with heavy clay soils (M. L. Smither, unpublished).

Soil compaction occurs frequently on clay soils. The compacted zones impede root growth resulting in a shallow, restricted root system (5). Reduced diffusion of gases and reduced water movement cause waterlogging and sites of anaerobiosis which may predispose trees to infection (17). Phytophthora species which infect by motile zoospores and Pythium species which infect by zoospores or directly germinating sporangia are stimulated by fluctuations in matric potentials which occur near the surface (6).

Ethylene is a growth regulator produced by plants and microorganisms including fungi (8,18). Ethylene concentrations increase in soils under anaerobic conditions (9,15), and may directly affect plants causing reductions in root extension (16) and leaf chlorosis and premature senescence (7). It is not known if ethylene predisposes the host to infection (1,2,13,14), although increased ethylene concentrations often occur after infection (1.4).

The objectives were to study the effects of soil compaction levels and the pathogens, Phytophthora megasperma and Pythium irregulare, on growth of Mahaleb seedlings, and to investigate variations in soil ethylene concentrations caused by these factors.

MATERIALS AND METHODS

Pasteurized sandy loam orchard soil was sieved through 10 and 30 mesh sieves to retain soil particles between 0.05 and

2 mm in diameter. PVC pipe of 7.5 cm diameter was cut into 2.5, 5.0, and 7.5 cm sections. A 5 mm hole drilled 4.0 cm from the base of the 7.5 cm section was closed with a rubber septum. The 7.5 cm sections were covered at the base with a piece of Whatman No 1 filter paper under two layers of cheesecloth held in place with a rubber band. The sections were filled with soil and placed in aluminum trays which were half filled with water. More soil was added to maintain the level with the top of the sections as the soil subsided upon wetting. Soil densities of 1.0, 1.3 and 1.7 g/cc were obtained by placing 135.5, 176.2, and 230.4 g of soil at 18% moisture in the 2.5 cm section and compressing the higher densities with a flat weight. The 2.5 cm section was taped over the saturated soil, and the 5.0 cm section was taped in place over the compressed section and filled to the surface with soil. The completed cores were left until water had risen to the surface through the compacted layer.

Roots of four-wk-old Mahaleb seedlings were washed free from soil and cut back to 1.5 cm before planting in the top section.

Inoculum of <u>Pythium</u> and <u>Phytophthora</u> species was prepared by growing each isolate at 21 C for 5 wk on 200 cc vermiculite moistened with 100 ml V-8 juice solution (200 ml V-8 juice, 2 g CaCO₃, and 800 ml distilled water) sterilized in 500 ml Erlenmeyer flasks (12). The inoculum was washed with distilled water over cheesecloth in a

Buchner funnel to remove unassimilated nutrients. Inoculum (2cc) was placed in a 1 cm furrow in the soil around the periphery of the core.

The cores were placed in individual aluminum foil pie pans and kept in a growth chamber at 65 C with 14 hr of light. The cores were watered by applying 50 ml of distilled water to the top of the cores as required.

Ethylene samples (1 cc) were taken each week from the basal portion of the cores through the rubber septum. The samples were tested for ethylene concentration (ppm) with a Varian aerograph 1400 gas chromatograph.

After 8 wk the experiment was terminated. Measurements were made of root and shoot dry weights. The population of Pythium propagules in soil was determined with a surface soil dilution plate assay (11). Samples were collected with a 5 mm diameter cork borer. Three sub samples were taken from the top and bottom sections of each core. From each soil sample, dilutions of 1:10, 1:50, and 1:100 were prepared in molten sterile 0.2% water agar in test tubes. Diluted samples (1 ml) were distributed over the surface of fresh corn meal agar (Difco) amended with 10 mg pimaricin (0.4 ml of a 2.5% suspension), 250 mg ampicillin, rifampicin, and 50 mg pentachloronitrobenzene, (Sigma Chemical Co., Saint Louis, MO) (CMA-PARP) (10) with a sterile glass rod. There were three replicate plates for each dilution. The plates were incubated inverted in plastic bags in the dark at 21 C. After 42 hr, the soil

was removed by washing each plate under running tap water.

A colony count was made and the number of propagules per gram of dried soil was determined.

An initial experiment was set up as a 3x2x2 factorial with 3 levels of compacted soil; no plant or 3-wk-old Mahaleb seedlings; and no fungus or Pythium irregulare. There were five replications for each treatment. A second experiment was conducted as a 3x2x3 factorial with Phytophthora megasperma as the additional treatment. The procedures followed were those previously described.

RESULTS

Increasing bulk density caused significant reductions (P=0.05)in root dry weight of Mahaleb seedlings in the initial experiment (Table 1). P. irregulare caused significant reductions in dry weight. Interaction effects were not significant. P. irregulare populations in the top sections at 1.0, 1.3, and 1.7 g/cc bulk density were 93, 250 and 217 ppg respectively. The population was 3 ppg in the basal section at 1.0 g/cc but P. irregulare was not detected in the basal sections from higher bulk densities. Populations were not determined in treatments with Mahaleb seedlings.

Increasing bulk density caused significant reductions in dry weight of Mahaleb seedlings in the second experiment (Table 2). In this experiment neither Ph. megasperma nor P. irregulare caused reductions significantly greater than

Table 1. Effects of soil bulk density and <u>Pythium irregulare</u> on growth of Mahaleb seedlings

Treatment	Bulk density	Sho	oot ^X	Root		
	(g/cc)		Ory weight reduction (%)		Dry weight reduction (%)	
	1.0	0.31 ^Z		0.51		
Control	1.3	0.24	23	0.38	25	
	1.7	0.22	29	0.20	61	
	Mean	0.26		0.36		
	1.0	0.22	29	0.39	24	
P.irregular	<u>e</u> Y 1.3	0.23	25	0.28	45	
	1.7	0.18	42	0.19	63	
	Mean	0.21		0.29		
	1.0	0.26		0.45		
Mean	1.3	0.24		0.36		
	1.7	0.20		0.20		
:	LSD (<u>P</u> =0.05)	0.06		0.02		

^{*}Four-wk-old Mahaleb seedlings were transplanted into pasteurized soil in 7.5 cm diameter PVC pipe. The experiment was conducted in a growth chamber for 8 weeks at 21 C.

YInoculum of P. <u>irregulare</u> was applied in a 1 cm furrow around the periphery of the core.

ZA factorial analysis showed significant differences (P=0.05) between the main effects and no significant interaction.

Table 2. Effects of soil bulk density, <u>Pythium irregulare</u> and Phytophthora megasperma on growth of Mahaleb seedlings

Treatment B	ulk density	Sh	oot ^X	Root		
	(g/cc)		Dry weight reduction (%)	Dry weight (g)	Dry weight reduction (%)	
	1.0	1.5 ²		1.0		
Control	1.3	1.2	20	0.7	30	
	1.7	1.3	13	0.3	70	
	Mean	1.3		0.7		
	1.0	1.5	0	0.8	20	
P.irregulare	y 1.3	1.2	20	0.6	40	
	1.7	1.2	20	0.3	70	
	Mean	1.3		0.6		
	1.0	1.2	20	0.7	30	
Ph.megasperm	<u>a</u> Y 1.3	0.8	47	0.7	30	
	1.7	1.1	27	0.4	60	
	Mean	1.0		0.6		
	1.0	1.4		8.0		
Mean	1.3	1.1		0.7		
	1.7	1.0		0.3		
Ĺ	SD (<u>P</u> =0.05)	0.3	٠.	0.2		

^{*}Four-wk-old Mahaleb seedlings were transplanted into pasteurized soil in 7.5 cm diameter PVC pipe. The experiment was conducted in a growth chamber for 8 weeks at 21 C.

there interaction effects.

YInoculum of P. irregulare and Ph.megasperma were applied in a 1 cm furrow around the periphery of the core.

ZA factorial analysis showed significant differences (P=0.05) with bulk density for both shoot and root dry weights. Fungus treatments did not cause significant differences, nor were

those without the pathogens. There were no interaction effects. P. irregulare populations in the top sections at 1.0, 1.3, and 1.7 g/cc with no Mahaleb seedlings were 100, 87, and 126 ppg; and with Mahaleb seedlings were 183, 196, and 367 ppg. P. irregulare at 26 ppg was detected in the basal section of the non-seedling treatment at 1.0 g/cc. P. irregulare was not detected in the other treatments.

Ethylene was not detected at 1.0 g/cc bulk density; concentrations were <0.01 ppm in the Mahaleb seedling treatments at 1.3 g/cc bulk density; and at 1.7 g/cc bulk density were <0.01 ppm, control; 0.04 ppm, Pythium control; 2.02 ppm, Mahaleb control; 1.13 ppm, Mahaleb and Pythium; and 1.1 ppm Mahaleb and Phytophthora.

DISCUSSION

Increased soil compaction levels were shown to reduce dry weights of Mahaleb seedlings. There was no interaction effect between soil compaction and reduction in dry weight caused by P. irregulare. Populations of P. irregulare increased with soil compaction levels. P. irregulare significantly reduced dry weights in the first experiment, but neither P. irregulare nor Ph. megasperma caused significant reductions in dry weight in the second experiment. The reason for this is not clear, although Ph. megasperma requires periodic flooding for pathogenicity (19), and none of the seedlings grew well.

These findings can be correlated with instances of poor growth in orchards with high soil compaction levels. Several factors may be involved in the poor root growth which occurs under such conditions. Root penetrance is reduced through zones of compacted soil (5). Anaerobiosis may predispose plants to infection (17,19). Root growth is decreased upon exposure to increased ethylene concentrations (7,16). However there is no clear evidence that increased ethylene concentrations predispose plants to infection (1,2,13,14).

LITERATURE CITED

- 1. Abbatista, G. I., and Matta, A. 1975. Production of and some effects of ethylene in relation to <u>Fusarium</u> wilt of tomato. Physiol. Plant Pathol. 5:27-35.
- 2. Archer, S. A., and Hislop, E. C. 1975. Ethylene in host-pathogen relationships. Ann. Appl. Bio. 81:95-126.
- 3. Bielenin, A., and Jones, A. L. 1988. Prevalence and pathogenicity of <u>Phytophthora</u> spp. from sour cherry trees in Michigan. Plant Disease 72:473-476.
- 4. Cohn, R., Riov, J., Lisker, N., and Katen, J. 1986. Involvement of ethylene in herbicide-induced resistance to <u>Fusarium oxysporum</u> f. sp. <u>melonis</u>. Phytopathology 76:1281-1285.
- 5. Drew, M. C., and Lynch, J. M. 1980. Soil anaerobiosis, microorganisms and root function. Ann. Rev. Phytopathol. 18:37-66
- 6. Duniway, J. M. 1975. Limiting influence of low water potential on the formation of sporangia by <u>Phytophthora drechsleri</u> in soil. Phytopathology 65:1089-1093,
- 7. El-Beltagy, A. S., and Hall, M. A. 1974. Effect of water stress upon endogenous ethylene levels in <u>Vicia faba</u>. New Pytol. 73:47-60.

- 8. Ilag, L., and Curtis, R.W. 1968. Production of ethylene by fungi. Science 159:1357-1358.
- 9. Jackson, M. B., Gales, K., and Campbell, D. J. 1978. Effect of waterlogged soil conditions on the production of ethylene and on water relationships in tomato plants, J. Exp. Bot. 29:183-189.
- 10. Jeffers, S. N., and Martin, S. B. 1986. Comparison of two media selective for <u>Phytophthora</u> and <u>Pythium</u> species. Plant Disease 70:1038-1043.
- 11. Mircetich, S. M., and Kraft, J. M. 1973. Efficiency of various selective media in determining Pythium populations in soil. Mycopathol. Mycol. Appl. 50:151-161.
- 12. Mircetich, S. M., and Matheron, M. E. 1976.

 Phytophthora root and crown rot of cherry trees.

 Phytopathology 66:549-558.
- 13. Pegg, G. F. 1976. The response of ethylene-treated tomato plants to infection by <u>Verticillium albo-atrum</u>. Physiol. Plant Pathol. 9:215-226
- 14. Pegg, G. F., and Cronshaw, D. K. 1976. Ethylene production in tomato plants infected with <u>Verticillium albo-atrum</u>. Physiol. Plant Pathol. 8:279-295.
- 15. Smith, A. M., and Cook, R. J. 1974. Implications of ethylene production for biological balance of soil. Nature 252:703-705.
- 16. Smith, K. A., and Robertson, P. D. 1971. Effect of ethylene on root extension in cereals. Nature 234:148-149.
- 17. Stolzy, L. H., Zentmyer, G. A., Klotz, L. J., and Labanauskas, C. K. 1965. Water and aeration as factors in root decay of <u>Citrus sinensis</u>. Phytopathology 55:270-275.
- 18. Walther, H. F., Hoffman, H. F., and Elstner, E. F. 1981. Ethylene formation by germinating <u>Drechslera graminea</u>-infected barley (<u>Hordeum sativum</u>) grains: A simple test for fungicides. Planta 151:251-255.
- 19. Wilcox, W. F., and Mircetich, S. M. 1985. Effects of flooding duration on the development of Phytophthora root and crown rots of cherry. Phytopathology 75:1451-1455.
- 20. Yang, S. F., and Hoffman, N. E. 1984. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35:155-189.

APPENDIX D

VARIATION IN SUSCEPTIBILITY OF CHERRY ROOTSTOCK CULTIVARS TO INFECTION BY PHYTOPHTHORA SPECIES AND PYTHIUM IRREGULARE

ABSTRACT

A dormant excised twig assay was used to determine the resistance of cherry rootstock cultivars relative infection by Phytophthora species and Pythium irregulare. Twigs were placed base down in previously inoculated agar. The resulting necrosis above the agar surface was recorded after 10 days. During 1983 dormant shoots of Mahaleb clones 163091, 193688, 193693, 194096, Mazzard, MxM #2, MxM #14, MxM #39, MxM #60, MxM #97, Meteor, and Vladimir were tested with Ph. cactorum, Ph. drechsleri, Ph. megasperma and P. irregulare. During 1984 dormant shoots of Mahaleb seedlings and clone 163091, Mazzard, MxM #2, MxM #14, MxM #39, MxM #60, MxM #97, Vladimir, and Colt were tested with Ph. cactorum, Ph. citricola, Ph. drechsleri, Ph. megasperma and P. irregulare. The assays showed that rootstocks differed in relative resistance to infection by Phytophthora species and P. irregulare. Dry weights of Mahaleb and MxM #60 were significantly reduced when grown in soil infested with Ph. cactorum, Ph. drechsleri, Ph. megasperma and P. irregulare, but dry weights of MxM #2, MxM #39, and MxM #46 were not significantly reduced. There were significant (P=0.05) correlations of 0.463 and 0.521 between the rootsock trial and twigs assays of 1983 and 1984.

INTRODUCTION

Sour cherry production is of major economic importance to Michigan. In orchards planted on heavy soils losses from root and collar rot are often severe. Phytophthora species cause root and collar rot of cherry in Michigan (4), California (10,17), and New York (16). Pythium irregulare Buisman has been associated with poorly growing cherry trees in Michigan (M. L. Smither, unpublished).

Mahaleb (Prunus mahaleb L.) is the rootstock most frequently used with Montmorency sour cherry (P. cerasus L.). Mahaleb is preferred to Mazzard (P. avium L.) as it is more resistant to crown gall and root lesion nematodes (7,12).However Mahaleb grows poorly on heavy soils (7), and is more susceptible than Mazzard to diseases induced by Phytophthora species (10,11,17). Mahaleb and Mazzard are both seedling rootstocks and therefore differences in resistance to infection can be expected between individuals. Several other rootstocks have been developed and their resistance to diseases induced by Phytophthora and Pythium needs to be evaluated.

Excised twig assays have been used as a rapid method to examine variations in pathogenicity and virulence of fungal isolates (2,9,13), to investigate variations in resistance to infection associated with host genotype (1,14), and seasonal differences (3). In one assay bark discs were

removed from the mid-way point of excised twigs, fungal inoculum was applied, and the resulting necrotic area was measured after several days (6). A second assay method placed twigs with the bark stripped from the base in agar inoculated with a fungal pathogen. The resulting necrosis length above the agar was measured after several days (8). The second assay method was used in this work.

The objectives were to examine the relative resistance of cherry rootstock cultivars to <u>Phytophthora</u> species and <u>P</u>.

<u>irregulare</u> infection with an excised twig assay and rootstock trial.

MATERIALS AND METHODS

Excised dormant twig assay Dormant shoots of cherry rootstock cultivars were tested for relative resistance to infection by Pythophthora species and P. irregulare using an excised twig assay (8). Fungi were grown on 30 ml corn meal agar (CMA) plus agar (17 g CMA, 5 g Bacto agar, and 1 L distilled water amended with 10 mg pimaricin [Sigma Chemical Co., Saint Louis, MO]) in sterilized 250 ml beakers. Control beakers contained no fungus. The beakers were covered with Parafilm (American Can Co., Greenwich, Ct 06830) over aluminum foil and maintained at 21 C in darkness for 7 days. Dormant cherry rootstock shoots from 6-10 mm in diameter were cut into 7 cm segments, disinfested in 0.6% NaOCl for 5 min, rinsed three times in distilled water and dried on paper towels. Five mm of the

base of each twig was removed with disinfested pruning shears and a cut 1 cm in length by 2 mm in depth was made in each side at the base to expose the cambium. Single twigs from each cultivar were placed base down into the medium at the edge of the fungal colony, so that the cambium was exposed to the fungus. There were fifteen replicate beakers. The beakers were covered again and maintained as before. After 10 days the twigs were stripped of bark and the length of necrosis in the periderm above the agar level was recorded.

Rootstock material was obtained from Hilltop Nurseries (Route # 2, Hartford, MI) in February of 1983 and 1984. During 1983 dormant shoots of Mahaleb clones 163091, 193688, 193693, 194096, Mazzard, MxM #2, MxM #14, MxM #39, MxM #60, MxM #97, Meteor, and Vladimir were assayed for relative resistance to infection by Ph. cactorum (Leb & Cohn) Schroet., Ph. drechsleri Tucker, Ph. megasperma Drechsler and P. irregulare. During 1984 dormant shoots of Mahaleb seedlings and clone 163091, Mazzard, MxM #2, MxM #14, MxM #39, MxM #60, MxM #97, Vladimir, and Colt (provided by R. L. Perry, Horticulture) were assayed for relative resistance to infection by Ph. cactorum, Ph. citricola Sawada, Ph. drechsleri, Ph. megasperma and P. irregulare.

Rootstock trial The experiments were conducted under lath with rootstock cultivars planted in uninfested and infested soil. The basic proceedure was as described by Mircetich and Matheron (10). Inoculum of Phytophthora and Pythium

species was prepared by growing each isolate at 21 C for 5 wk on 200 cc vermiculite moistened with 100 ml V-8 juice solution (200 ml V-8 juice, 2 g $CaCO_3$, and 800 ml distilled water) in 500 ml Erlenmeyer flasks. The inoculum was washed with distilled water over cheesecloth in a Buchner funnel to remove unassimilated nutrients, then mixed at the rate of 10 cc per 1000 cc of sterilized soil/sand/peat (1/1/1 by volume). Rootstocks were planted in 4 L plastic pots with six replicates. The controls received vermiculite mixture but no fungus. The rootstocks were flooded for 48 hr every 2 wk and fertilized biweekly. weights of the roots and shoots were recorded after 15 wk. In an initial experiment dormant 1-yr-old seedlings of Mahaleb and Mazzard and dormant rooted cuttings of MxM #2, MxM #14, MxM #39, MxM #60, MxM #97, and Meteor were planted in uninfested soil and soil infested with Ph. cactorum, Ph. citricola, Ph. megasperma, P. irregulare, and P. sylvaticum. A second experiment used actively growing 1-yr-old seedlings of Mahaleb and Mazzard, and rooted cuttings of MxM #2, MxM #39, MxM #39, MxM #46, and MxM #60 which were planted in uninfested soil and soil infested with Ph. cactorum, Ph. drechsleri, Ph. megasperma, and P. irregulare.

RESULTS

Excised twig assay. Necrosis developed on twigs of all rootstock cultivars inoculated with Phytophthora species and

P. irregulare. No necrosis developed on uninoculated rootstock cultivars. The length of necrosis produced differed significantly between cultivars (Table 1-2). results varied between the two years, but a correlation coefficient of 0.396 gave a significant (P=0.05) correlation between the two assays. Necrosis length was generally greater during 1984 than 1983. During 1983 the longest necrotic area was produced on Mahaleb 193688 by Ph. cactorum, Ph. drechsleri, and Ph. megasperma, and on Mahaleb 194096 by P. irregulare. A significantly longer necrotic area was produced by the Phytophthora species on MxM #2 and MxM #60 than on the other MxM cultivars. The shortest necrotic area was produced on Vladimir by Ph. drechsleri and Ph. megasperma. During 1984, the longest necrotic area was produced on MxM #2 by Ph. cactorum and Ph. citricola, and on Mahaleb 163091 by Ph. drechsleri, Ph. megasperma, and P. The shortest necrotic area was produced on irregulare. Colt by Ph. cactorum and Ph. citricola, on Mazzard by Ph. drechsleri and P. irregulare, and on Vladimir by Ph. megasperma.

Rootstock trial Results from the initial experiment were not significant due to poor establishment of the rootstocks. In the second experiment shoot dry weights of Mahaleb were reduced in soil infested with Ph. cactorum, Ph. drechsleri, Ph. megasperma, and P. irregulare, and root dry weights in soil infested with Ph. cactorum, and Ph. megasperma (Table 3). Shoot dry weights of Mazzard were not significantly

Table 1. Relative susceptibility of dormant excised shoot tissue of cherry rootstock cultivars to infection by <u>Phytophthora</u> species and Pythium irregulare during 1983

		Necrosis len	length on shoot (mm) ^y			
Cultivar	Ph. cactorum	Ph. drechsleri	Ph. megasperma	P. irregulare		
Mahaleb				·		
163091	11.2 c ^Z	11.1 e	12.5 bc	8.2 bc		
193688	23.8 a	24.6 a	19.2 a	11.6 b		
193693	11.0 c	7.9 e	7.3 d	10.6 b		
194096	16.0 b	18.1 bc	17.2 ab	18.8 a		
Mazzard	18.5 b	9.6 e	7.1 d	4.6 C		
MxM #2	16.5 b	18.9 b	15.6 ab	4.1 c		
MxM #14	1.1 đ	10.3 e	4.5 de	4.0 c		
MxM #39	9.2 c	8.1 e	6.2 d	3.6 c		
MxM #60	19.6 ab	13.8 cd	16.9 ab	3.5 c		
MxM #97	6.4 c		7.9 cd			
Meteor	1.3 đ	6.8 e	3.2 e .	2.9 c		
Vladimir	7.5 c	1.6 f	0.1 e	7.8 bc		

YMean length of necrosis above agar level from 15 replicate shoot pieces.

²Values followed by the same letter are not significantly different using Duncan's multiple range test (P=0.05).

Table 2. Relative susceptibility of dormant excised shoot tissue of cherry rootstock cultivars to infection by <u>Phytophthora</u> species and <u>Pythium irregulare</u> during 1984

Necrosis length on shoot (mm) Y							
Cultivar	Ph. cactorum Ph	. <u>citricola</u>	Ph. drechsleri	Ph. megasperma	Py. irregulare		
Mahaleb	26.9 ab ^Z	25.3 ab	16.5 a	16.4 a	12.1 bc		
163091	22.3 bc	25.9 ab	15.5 a	16.1 a	17.7 a		
Mazzard	17.3 cd	18.3 c	3.5 d	9.5 b	5.2 d		
MxM #2	29.0 a	30.1 a	12.1 abc	11.8 ab	17.3 ab		
MxM #14	14.8 d	24.9 ab	7.7 ∞1	9.5 b	11.9 bc		
MxM #39	17.3 cd	21.9 bc	9.2 bc	11.7 ab	11.3 c		
MxM #60	24.4 ab	28.7 a	13.5 ab	11.7 ab	14.3 abc		
MxM #97	17.7 cd	22.1 bc	11.3 abc	12.9 ab	13.3 abc		
Vladimir	17.7 cd	27.9 a		9.0 d	9.7 cd		
Colt	9.3 e	17.0 c	11.8 abc	11.4 ab	13.4 abc		

YMean length of necrosis above agar level from 15 replicate shoot pieces Z Values followed by the same letter are not significantly different Duncan's multiple range test (\underline{P} =0.05).

Table 3. Growth of cherry rootstock cultivars planted in soil infested with Phytophthora species and Pythium <u>irregulare</u> under lath

Cultivar	Shoot dry weight (g) ^y				Root dry weight (g)					
	Control	Ph. cactorum	<u>Ph</u> . <u>drechsleri</u>	<u>Ph</u> . megasperma	<u>P</u> . irregulare	Control	Ph. cactorum	<u>Ph</u> . drechsleri	<u>Ph</u> . megasperma	<u>P</u> . irregulare
Mahaleb	17.2 a ²	9.8 b	14.0 bc	14.0 bc	12.3 bc	8.9 a	4.0 b	7.4 a	5.0 b	8.0 a
Mazzard	13.8 b	13.5 b	17.0 a	13.1 b	14.3 ab	9.9 a	3.7 b	11.7 a	4.5 b	12.3 a
MxM #2	5.1 a	4.6 a	4.6 a	6.4 a	4.7 a	3.8 a	3.0 a	3.9 a	4.7 a	3.6 a
MxM #39	4.3 a	3.3 a	4.9 a	5.3 a	4.7 a	4.5 a	2.7 a	4.5 a	4.3 a	3.4 a
MxM #46	7.7 a	4.8 a	6.7 a	5.3 a	7.2 a	6.3 a	4.3 a	4.7 a	5.1 a	6.2 a
MM #60	6.4 a	3.7 b	3.1 b	3.6 b	7.9 a	5.6 a	3.0 b	2.6 b	3.5 ab	5.5 a

YActively growing rootstocks were transplanted in soil infested with 10 cc of inoculum per 1000 cc of soil. The experiment was conducted under lath. There were six replicates.

ZValues across rows followed by the same letter are not significantly different using Duncan's multiple range

test (P=0.05).

reduced by soil infested by any isolate, although root dry weights were reduced with Ph. cactorum, and Ph. megasperma. Shoot and root dry weights of MxM #60 were reduced in soil infested with Ph. cactorum, Ph. drechsleri, and Ph. megasperma. Shoot and root dry weights of MxM #2, MxM #39, and MxM #46 were not significantly reduced in infested soil.

Correlation coefficients were calculated to compare results from the rootstock trial with those from the 1983 and 1984 twig assays. Results from the rootstock trial were expressed as percent loss in dry weight as compared to the control. Correlation coefficients were 0.463 for 1983, and 0.521 for 1984; both figures show significant correlation (P=0.05).

DISCUSSION

Cherry rootstock cultivars in the twig assay differed in relative resistance to Phytophthora species Ρ. As the resistance of the host tissue irregulare. colonization is only one of several components of resistance, rootstock trials are required for complete evaluation. Mahaleb clones varied in resistance to infection in the twig assay, but overall Mazzard was more resistant than Mahaleb. Dry weights of Mahaleb seedlings were significantly reduced in the rootstock trial, those of Mazzard were less effected. Mahaleb has been reported to be more susceptible than Mazzard to Phytophthora infection (10,11,17). The vertically oriented root system of Mahaleb is believed to predispose it to 'wet feet' problems on heavy soils (7). Dry weights of MxM #2, MxM #39, and MxM 46 were not reduced by growth in infested soil, while dry weights of MxM #60 were significantly reduced.

The variation in results for the twig assays between 1983 and 1984 is believed to be due to variations in environmental conditions. An extremely cold period occured during February of 1984, and extreme environmental conditions, including low temeratures, predispose plants to infection (15).

P. irregulare produced necrosis on rootstock cultivars in the twig assay although to a lesser extent than Phytophthora species. In the rootstock trial P. irregulare caused a significant reduction in shoot dry weight with Mahaleb but not the other cultivars. P. irregulare has been shown to be most pathogenic at temperatures below 21 C (5). The rootstock trial was conducted outside under shade produced by lath during the summer with no regulation of temperatures.

LITERATURE CITED

- Alston, F. H. 1970. Resistance to collar rot, <u>Phytophthora cactorum</u> (Leb and Cohn) Schroet., in apple. Pages 143-145 in: East Malling Res. Stn. Rep. for 1969.
- 2. Bielenin, A. 1977. Collar rot of apple trees. I Pathogenicity of isolates of Phytophthora cactorum (Leb and Cohn) Schroet. Fruit Sci. Rep. 4:15-26.

- 3. Bielenin, A. 1977. Collar rot of apple trees. II Seasonal fluctuations in susceptibility of apple trees to <u>Phytophthora cactorum</u> (Leb and Cohn) Schroet. Fruit Sci. Rep. 4:27-39.
- 4. Bielenin, A., and Jones, A. L. 1988. Prevalence and pathogenicity of <u>Phytophthora</u> spp. from sour cherry trees in Michigan. Plant Dis. 72:473-476.
- 5. Biesbrock, J. A., and Hendrix, F. F., Jr. 1970. Influence of soil water and temperature on root necrosis of peach caused by <u>Pythium spp.</u> Phytopathology 60:880-882.
- 6. Borecki, Z., and Millikan, D. F. 1969. A rapid method for determining the pathogenicity and factors associated with the pathogenicity of <u>Phytophthora cactorum</u>. Phytopathology 59:247-248.
- 7. Cummins, J. N. 1979. Interspecific hybrids as rootstocks for cherries. Fruit Var. J. 33:85-89.
- 8. Jeffers, S. N., and Aldwinkle, H. S. 1986. Seasonal variation in extent of colonization of two apple rootstocks by five species of <u>Phytophthora</u>. Plant Disease 70:941-945.
- 9. Jeffers, S. N., Aldwinkle, H. S., Burr, T. J., and Arneson, P. A. 1981. Excised twig assay for the study of apple tree crown rot pathogens in vitro. Plant Dis. 65:823-825.
- 10. Jeffers, S. N., Aldwinkle, H. S., Burr, T. J., and Arneson, P. A. 1982. Phytophthora and Pythium species associated with crown rot in New York apple orchards. Phytopathology 72:533-538.
- 11. Mircetich, S. M., and Matheron, M. E. 1976.

 Phytophthora root and crown rot of cherry trees.

 Phytopathology 66:549-558.
- 12. Mircetich, S. M., and Matheron, M. E. 1981.
 Differential resistance of various cherry rootstocks to Phytophthora species. (Abstr.) Phytopathology 71:243.
- 13. Perry, R. L. 1986. A simple method for field identification of Mahaleb (Prunus mahaleb L.) cherry rootstock. Fruit Var. J. 40:68-70.
- 14. Robertson, G. L. and Dance, H. M. 1971. The association of <u>Phytophthora megasperma</u> with crown rot of apple trres. N. Z. J. Agric. Res. 14:509-514.

- 15. Sewell, G. W. F., and Wilson, J. F. 1959. Resistance trials of some apple rootstock varieties to Phytophthoracactorum (Leb and Cohn) Schroet. J. Hortic. Sci. 34:51-58.
- 16. Schoenweiss, D. F. 1975. Predisposition, stress, and plant disease. Ann. Rev. Plant Pathol. 13:193-211.
- 17. Wilcox, W. F., Jeffers, S. N., Hayes, J. E. K., and Aldwinkle, H. S. 1985. Phytophthora species causing root and crown rot of cherry trees in New York. (Abstr.) Phytopathology 75:1347.
- 18. Wilcox, W. F., and Mircetich, S. M. 1985. Pathogenicity and relative virulence of seven <u>Phytophthora</u> species on Mahaleb and Mazzard cherry. Phytopathology 75:221-226.