INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. These are also available as one exposure on a standard 35mm slide or as a 17" x 23" black and white photographic print for an additional charge. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order N u m ber 9012040 A ssociation s am ong glacial landform s, soils, and vegetation in northeastern Lower M ichigan Padley, Eunice Ann, Ph.D. Michigan State University, 1989 C opyright © 1 9 8 9 b y P adley, Eunice A nn. A ll rights reserved. UMI 300 N. Zeeb Rd. Ann Arbor, MI 48106 ASSOCIATIONS AMONG GLACIAL LANDFORMS, SOILS, AND VEGETATION IN NORTHEASTERN LOWER MICHIGAN by E u n i c e Ann P a d l e y A DISSERTATION Submitted to Michigan S t a t e U n iv e rs ity in p a r t i a l f u ll f ill m e n t of the requirem ents for the degree of DOCTOR OF PHILOSOPHY Department of F o r e s try 1989 ABSTRACT ASSOCIATIONS AMONG GLACIAL LANDFORMS, SOILS, AND VEGETATION IN NORTHEASTERN LOWER MICHIGAN By E u n i c e Ann P a d l e y R elationships o n 24 u p l a n d The a mong forested ob j e c t i v e s relatio n sh ip s of ecosystem sites in th is study among components northeastern ecosystem w ere were studied Lower M i c h i g a n . to in v est ig ate com ponents and d iscuss approaches to ecosystem c l a s s i f i c a t i o n of the a re a . S i t e s were g r o u p e d b a s e d on d e p o s i t i o n a l e n v i r o n m e n t a s indicated ( PCA) o f by s o i l soils morphology. data on d e p o s i t i o n a l did not c o n tra d ic t environment, textured till were not consistently groupings Principal deposited by although two separated. comparisons of site sites different groupings based formed loamy glacial PCA p r o d u c e d from l a b o r a t o r y or f i e l d Individual component a n a l y s e s in substages sim ilar site data. variables among depositional e n v i r o n m e n t g r o u p s f o u n d s i g n i f i c a n t d i f f e r e n c e s a mon g s i t e s formed t i l l s . in outwash, outwash The t i l l s only with respect of d iffe re n t are a , and correlated averaging PCA w ith till inclusions, deposition were and loamy different t o a few v a r i a b l e s . F irst-dim ensional reciprocal with of of site ground so ils each data other. ordinations flora were data, a ll D ifferences obtained overstory by basal sig n ifican tly in overstory E u n i c e Ann P a d l e y com position occurred depositions, sim ilar. on soils Nitrogen was c o r r e l a t e d which were different texturally during for sites Compos i t i o n m ineralization of ma y be chem ically anaerobic incubation of flora, different differences related to glacial and th e o r d in a tio n of ground different compos i t i o n . sites m ineralized with significantly on t i l l overstory and historic a nd was nitrogen patterns of disturbance. Weights of ecosystem s. litterfall the Oe forest Production was s i m i l a r region. was Return greatest of and layers to th a t nitrogen mixed and sim ilar quality of reported for other phosphorous, was a s s o c i a t e d for were nutrient Return of potassium, i n autumn l i t t e r f a l l and floor with calcium wa s autumn studies in and magnesium litter oak-northern a mo n g production, hardwood associated s ite s . with species do n o t provide com position. G lacial divisions of ecosystem sufficient m apping. depositional effective l a n d f o r m s mapped detail are these sim ilar potential. ecosystem study s ite s , environment, management. w ith flora, to sites of groups soil as based required. d iv isio n s and area serve separations, depositionally Six the S eparations environments i n making in basis on and a l s o flora properties on are distinguish successional identified based for localized Ground different were a a mo n g the depos i t io n al im portant in land C o p y r i g h t by EUNICE ANN PADLEY 1989 ACKNOWLEDGEMENTS I wish to e x p re ss a p p r e c i a t i o n for B. their efforts. H art, Jr., Jurgensen, support in his D r . Ph u Van N g u y e n , his for his D r. M artin P. D r . H a r t wa s i n s t r u m e n t a l in securing funding of two of several the research. patient D r . Ramm wa s drafts contributed help James and review directing Dr. P regitzer, research. Dr. Cr um, by Kurt this Pregitzer for T h e c o m m i t t e e wa s c h a i r e d a n d i n c l u d e d D r . J a m e s R. C a r l W. Ramm. to t o my g u i d a n c e c o m m i t t e e w ith Dr . suggestions in t h a n k s g o e s t o D r . Nguyen concern, laboratory thorough manuscr i p t . valuable A special encouragement, th is especially Dr. and f r i e n d s h i p , procedures, equipm ent, and and staffing. I Forest of also wish Service, to thank who c o n t r i b u t e d ecosystem s on the initiated developm ent System f o r the area. My f e l l o w Bur t o n , and enjoyable. unpleasant analyses. Mr. graduate Pete W ork-study tasks They to Nat io n a l the made Dr. life students of F orest, Neil in preparation are: Barbara Kinnunen, and NacDonald, who Andy o ff ice more w ith some assisted sample U.S. C lassification the in the my u n d e r s t a n d i n g Ecological students, C outu C leland greatly Huron of Dave and M arshall laboratory W illiam s, M elvin W illiam s, Nahabedian, V i e t Lam, Brian K jaldahl. a field Mike B udzik, C hristine My m o t h e r , sampling t r i p Stabile, V egetation data Robert DeGeus, and by D r. Ron Wayne and a c c o m p a n i e d me o n two w e e k s was c o l l e c t e d Stelpflug, Wooden, Tom K n u d s t r u p , Ellen Padley, during a c h i l l y 1987. Ron Steven in November George Hendrick H ost, during the s ummers o f 1985 a n d 1 9 8 6 . Support Forest for S ervice scholarship this and project by was provided M aclntire-S tennis by the U.S. funding. A r e c ie v e d from funds bequeathed t o th e U n i v e r s i t y b y t h e l a t e Ms. D o r i s G i d d e y wa s v e r y g r e a t l y a p p r e c i a t e d . A final thanks goes to Jon, who h e l p e d me m a i n t a i n s ome r e m n a n t o f a s e n s e o f h u mo r t h r o u g h o u t t h i s p r o g r a m , courageously ma r r i e d me completing a d i s s e r t a t i o n . during the final a n d who m onths of TABLE OF CONTENTS L I S T OF T A B L E S .................................................. vii L I S T OF F I G U R E S ........................................................................................................... x CHAPTER I . INTRODUCTION .................................................................................... S o i l S u r v e y ......................................................................... .................................................................... H a b i t a t Types M u ltifa c to r,or Ecological C la s s if ic a tio n Background, o b j e c t i v e s , and o v e r a l l h y p o t h e s e s o f t h e s t u d y ................................ LITERATURE CITED .......................................................................... II. 1 1 3 5 6 9 ASSOCIATIONS AMONG CHEMICAL AND MORPHOLOGICAL SOIL FEATURES, DEPOSITIONAL ENVIRONMENTS, AND GLACIAL LANDFORMS . ..................................................................... 12 INTRODUCTION ......................................................................... 12 G l a c i a l geology and c lim a te of th e s tu d y a r e a ................................................................................15 R e l a t i o n s h i p s o f s o i l and l a n d s c a p e f e a t u r e s ..................................... . . . . . 18 Numerical a n a ly s is of s o i l s d a ta . . . 19 OBJECTIVES AND HYPOTHESES................................................. 24 ................................................ 26 METHODS AND MATERIALS F i e l d s a m p l i n g d e s i g n .................................................26 ................................................ 27 Laboratory analyses D a t a a n a l y s e s ...........................................................................30 RESULTS AND DISCUSSION ............................................... 38 C o r r e s p o n d e n c e o f mapped g l a c i a l f e a t u r e s w i t h p a r e n t m a t e r i a l s a n d mode o f d e p o s i t i o n ..................................................................... 38 P r i n c i p a l c o m p o n e n t a n a l y s e s ........................... 41 PCA o f s o i l a n d f o r e s t f l o o r l a b o r a t o r y d a t a summed b y h o r i z o n s ............................ 50 PCA o f m i n e r a l s o i l l a b o r a t o r y d a t a summed b y h o r i z o n s ...................................... 59 PCA o f m i n e r a l s o i l l a b o r a t o r y d a t a summed b y d e p t h s ............................................69 PCA o f f i e l d d a t a ........................................................... 78 PCA o f c o m b i n e d f i e l d a n d l a b o r a t o r y d a t a summed b y h o r i z o n s a n d d e p t h s . . 57 III. D i f f e r e n c e s among g r o u p s b a s e d o n d e p o s it io n a l environment. . . . 97 C O N C L U S I O N S ..................................................................... 1 0 0 LITERATURE CITED ............................................................... 1 0 5 ASSOCIATIONS OF S I TE PROPERTIES WITH AN ORDINATION OF GROUND FLORA SPECIES FOR UPLAND FORESTS OF NORTHEASTERN LOWER MICHIGAN . . . . I l l INTRODUCTION .........................................................I l l R elationships of vegetation to other ecosystem components . . . . . . . 1 12 V e g e t a t i o n a n d s o i l ...................................... 1 1 2 V e g e t a t i o n and la n d fo rm ...............................1 1 5 C h a r a c t e r i s t i c s of th e f o r e s t f l o o r and annual l i t t e r f a l l .................................... 1 17 Nitrogen m in e ra liz a tio n in fo re s te d ecosystems . . . . . ................................ 1 2 0 124 OBJECTIVES AND H Y P O T H E S E S .......................... METHODS AND M A T E R I A L S .......................... ..... . . . 1 2 6 F i e l d sam p ling f o r v e g e t a t i o n and nitrogen m ineralization . . . . . . 1 26 Laboratory procedure fo r d eterm ination o f n i t r o g e n m i n e r a l i z a t i o n r a t e s . . 128 N u m e r i c a l a n a l y s e s .......................... . . . . . 12 8 RESULTS AND D I S C U S S I O N .................................... . . 1 3 0 S i t e o r d i n a t i o n by g r o u n d f l o r a a b u n d a n c e ..................... . . . . . . . . 130 S i t e o r d i n a t i o n by g r o u n d f l o r a r a n k e d cover-abundance in r e l a t i o n to d e p o s i t i o n a l e n v i r o n m e n t ....................... 13 5 S i t e o r d i n a t i o n by g r o u n d f l o r a r a n k e d cover-abundance in r e la tio n to s o i l properties . . . . . . . . . . . . 137 S i t e o r d i n a t i o n by g r o u n d f l o r a a b u n d a n c e in re la tio n to overstory species c o m p o s itio n and b a s a l a r e a . . . . 14 0 D ifferen ces in o v e rsto ry com position between t i l l s of d i f f e r e n t d e p o s i t i o n s ....................................................... 1 4 6 N itr o g e n m i n e r a l i z a t i o n and i t s a s s o c ia tio n with o th e r ecosystem c o m p o n e n t s ....................................................... 1 6 5 S i t e o r d i n a t i o n by g r o u n d f l o r a c o v e r abundance in r e l a t i o n to p r o p e r t i e s o f t h e f o r e s t f l o o r . . 17 5 CONCLUSIONS .................................................... ..... . . 1 9 3 LITERATURE CITED ............................................................... 19 8 IV. CONCLUSI ONS...................................................................................... 204 LITERATURE CITED ............................................................... v 218 A P P E N D I C E S ......................... 2 20 Appendix A ....................................................................................................... 2 2 1 Appendix B ....................................................................................................... 2 52 vi LIST OP TABLES Table 2.1. E q u a t i o n s a n d me a n v a l u e s u s e d f o r e s t i m a t i o n b u l k d e n s i t y .........................................................................31 Table 2.2. L a b o r a t o r y d e t e r m i n e d s o i l v a r i a b l e s ........... 32 Table 2.3. F i e l d d e t e r m i n e d s o i l v a r i a b l e s ........................ 34 Table 2.4 D e p o sitio n al environm ent c h a r a c t e r i s t i c s s a m p l e s i t e s . .................................................... . . . . . Table 2.5. Table 2.6. of of 40 Mean s i t e l e v e l v a l u e s o f l a b o r a t o r y d e t e r m i n e d soil variables. . ............................... 42 S ite le v e l values of f ie ld v a r i a b l e s ......................................... determ ined soil 46 Table 2.7. C o r r e l a t i o n s between la b o r a t o r y d e term in e d s o i l v a r i a b l e s and th e f ir s t four p rin c ip a l com ponents, w ith ranks of th e e ig h t highest c o r r e l a t i o n s f o r each PC. D a t a a r e summed by horizon g roups. ........................................................................ 52 Table 2.8. S i m p l e l i n e a r c o r r e l a t i o n s a mong v a r i a b l e s u s e d in p r i n c i p a l component a n a l y s i s o f l a b o r a t o r y determ ined var ia b le s summed by h o r i z o n s , i n c l u d i n g o r g a n i c l a y e r s . . .......................................... 53 Table 2.9. C orrelations between laboratory determ ined m in e ra l s o i l var ia b l e s and th e f i r s t fo u r p r i n c i p a l components, with ranks of the e ig h t h i g h e s t c o r r e l a t i o n s f o r each PC. Data a r e summed by h o r i z o n g r o u p s ......................................... . . 61 Table 2.10. S i m p l e l i n e a r c o r r e l a t i o n s among v a r i a b l e s u s e d in p r i n c i p a l component a n a l y s i s o f l a b o r a t o r y d e t e r m i n e d m i n e r a l s o i l v a r i a b l e s summed b y h o r i z o n s ..................................................................................................62 T ab le 2.11, C orrelations between laboratory determ ined m in e ra l s o i l v a r i a b l e s and th e f i r s t fo u r p r i n c i p a l components, w ith ranks of th e e i g h t h i g h e s t c o r r e l a t i o n s f o r e a c h PC. Data a r e s u mme d b y t h e d e p t h s 0 - 1 0 c m , 1 0 - 3 0 c m , 3 0 - 7 0 cm, a n d 7 0 - 1 5 0 c m.......................................................................... 70 Table 2.12. S i m p l e l i n e a r c o r r e l a t i o n s among v a r i a b l e s u s e d in p r i n c i p a l component a n a l y s i s o f l a b o r a t o r y d e t e r m i n e d m i n e r a l s o i l v a r i a b l e s summed b y d e p t h s .......................................................................................................71 Table 2.13. C o r r e l a t i o n s between f i e l d observ ed v a r i a b l e s and t h e f i r s t fo u r p r i n c i p a l com ponents, w i th r a n k s o f t h e t o p e i g h t c o r r e l a t i o n s f o r e a c h PC. ............................... 79 Table 2.14. S i m p l e l i n e a r c o r r e l a t i o n s among v a r i a b l e s u s e d in p r i n c i p a l component a n a l y s i s of f ie ld data. 80 T a b le 2.15, Correlations of lab o rato ry determined soil v a r i a b l e s summed b y h o r i z o n s a n d b y d e p t h s , a n d f i e l d observed v a ria b le s , with the f i r s t four p rin c ip a l com ponents. Ranks o f th e e i g h t h i g h e s t c o r r e l a t i o n s f o r e a c h PC a r e s h o w n . . 88 Table S i m p l e l i n e a r c o r r e l a t i o n s among v a r i a b l e s u s e d i n p r i n c i p a l component a n a l y s i s o f l a b o r a t o r y d e t e r m i n e d m i n e r a l s o i l v a r i a b l e s summed b y h o r i z o n s a n d by d e p t h s , a n d f i e l d o b s e r v e d v a r i a b l e s ......................... 88 2.16, Table 3.1. C o ver-abundance c l a s s e s and c o r r e s p o n d i n g ra n k s u s e d i n v e g e t a t i o n a n a l y s i s ......................................... 127 Table 3.2. Ranked c o v e r - a b u n d a n c e v a l u e s o f s e l e c t e d g r o u n d .............................. 134 flora species. Table S i t e r a n k s a n d s c o r e s f r o m f i r s t d i m e n s i o n RA o r d in a tio n s of ground f l o r a ranked c o v e ra b u n d a n c e v a l u e s a n d o v e r s t o r y BA b y s p e c i e s , ............................... 1 38 a n d f r o m PCA o f s o i l s d a t a . 3.3 Table 3.4. Mean b a s a l a r e a o f o v e r s t o r y s p e c i e s . . . . 1 43 Table 3.5. Common a n d s c i e n t i f i c Table 3.6. C om parison of a v e ra g e age of dom inant t r e e s p e c i e s on t i l l s i t e s o f P o r t B r u c e a n d P o r t H u r o n d e p o s i t i o n .......................................................................... 1 47 Table 3.7. S o il v a r ia b le comparisons fo r s i t e groups on o v e r s t o r y c o m p o s i t i o n . . . . . . . . . . Table 3.8 . Ammonium n i t r o g e n m i n e r a l i z e d f r o m t h e u p p e r 10 cm o f s o i l d u r i n g a o n e w e e k a n a e r o b i c i n c u b a t i o n ..........................................................................................166 n a me s o f t r e e s p e c i e s . 144 based 1 49 Table 3 .9 . S i m p l e c o r r e l a t i o n s among some f o r e s t f l o o r v a r i a b l e s and o v e r s to r y b a s a l a r e a o f s e l e c t e d s p e c i e s ..................................................................................................1 8 2 Table 3.10. N u trie n t c o n c e n tra tio n s of l i t t e r and f o r e s t flo o r lay e rs a t th re e study s i t e s . . . . . . 186 Table A .I. S o il v a r ia b le comparisons fo r s i t e groups based on d e p o s i t i o n a l e n v i r o n m e n t and s u r f i c i a l d e p o s i t ..................................................................................................221 Table B .l. S o i l s d a t a , s i t e l o c a t i o n s , and d e s c r i p t i o n s o f site physiography. Data a r e o r d e r e d by s i t e . ............................... 252 LIST OF FIGURES Figure 2.1. Figure 2.2. Location of th e Huron N a t i o n a l F o r e s t in n o r t h e a s t e r n low er M ic h ig a n , and g l a c i a l landform f e a t u r e s of th e stu d y a re a (B u rg is 1981) .............................................................. 16 Diagram of sample hypothetical s ite . collection locations at a A = a r e a o f homogenous v e g e t a t i v e c o v e r , a t l e a s t 1 h a i n s i z e , w i t h 50 o r m o r e y e a r s s in c e major d i s t u r b a n c e . S = soil p it. F = f o r e s t f l o o r sample. V = vectors a t random a z i m u t h an d d i s t a n c e t o ........................................................ 28 subplots Figure 2.3. L o c a t i o n o f s t u d y s i t e s among g l a c i a l l a n d f o r m s i d e n t i f i e d by B u r g i s (1 9 7 7 , 1981) . Dotted li n e i n d i c a t e s w e s te r n boundary o f P o r t Huron t i l l . ......................................................................... . . . . . . . 39 Figure 2.4. L o c a t i o n o f s i t e s w i t h r e s p e c t t o PC 1 a n d PC 2 o f l a b o r a t o r y d e t e r m i n e d s o i l v a r i a b l e s summed by h o r i z o n a nd a v e r a g e d w i t h i n a s i t e . . . 55 Figure 2.5. L o c a t i o n o f s i t e s w i t h r e s p e c t t o PC 1 a n d PC 3 o f l a b o r a t o r y d e t e r m i n e d s o i l v a r i a b l e s s ummed by h o r i z o n a n d a v e r a g e d w i t h i n a s i t e . . . 57 Figure 2.6. L o c a t i o n o f s i t e s w i t h r e s p e c t t o PC 1 a n d PC 2 of la b o ra to ry determined m ineral s o i l v a r ia b le s summed b y h o r i z o n a n d a v e r a g e d w i t h i n a s i t e . .................................................................................................................... 64 Figure 2.7. L o c a t i o n o f s i t e s w i t h r e s p e c t t o PC 1 a n d PC 3 of la b o ra to ry determined m ineral s o i l v a r i a b l e s summed b y h o r i z o n a n d a v e r a g e d w i t h i n a s i t e . .................................................................................................................... 67 Figure L o c a t i o n o f s i t e s w i t h r e s p e c t t o PC 1 a n d PC 2 o f l a b o r a t o r y d e t e r m i n e d s o i l v a r i a b l e s summed b y d e p t h s 0 - 1 0 cm, 1 0 - 3 0 cm, 3 0 - 7 0 cm, 7 0 - 1 5 0 cm, and 0 - 1 5 0 cm, a n d a v e r a g e d w i t h i n a s i t e . ....................................................................................................................73 2.8. x Figure 2.9. L o c a t i o n o f s i t e s w i t h r e s p e c t t o PC 1 a n d PC 3 o f l a b o r a t o r y d e t e r m i n e d s o i l v a r i a b l e s summed b y d e p t h s 0 - 1 0 cm, 1 0 - 3 0 cm, 3 0 - 7 0 cm, 7 0 - 1 5 0 cm, and 0 - 1 5 0 cm, a n d a v e r a g e d w i t h i n a s i t e . .............................................................. 76 Figure 2.10. L o c a t i o n o f s i t e s w i t h r e s p e c t t o PC 1 a n d PC 2 of fie ld observed s o il v a ria b le s averaged w i t h i n a s i t e .................................... 82 Figure 2.11. L o c a t i o n o f s i t e s w i t h r e s p e c t t o PC 1 a n d PC 3 of fie ld observed s o il var ia b le s averaged w ithin a s i t e . . ............................... 85 Figure 2.12. L o c a t i o n o f s i t e s w i t h r e s p e c t t o PC 1 a n d PC 2 o f l a b o r a t o r y d e t e r m i n e d s o i l v a r i a b l e s summed by h o r i z o n a n d by d e p t h s , a n d f i e l d d e t e r m i n e d v a r ia b le s , averaged w ithin a s i t e . . . . . . 91 Figure 2.13. L o c a t i o n o f s i t e s w i t h r e s p e c t t o PC 1 a n d PC 3 o f l a b o r a t o r y d e t e r m i n e d s o i l v a r i a b l e s summed by h o r i z o n an d by d e p t h s , a n d f i e l d d e t e r m i n e d v a r i a b l e s , a v e r a g e d w i t h i n a s i t e . ..................... 94 Figure 3.1. C over-abundance of s e le c te d ground f lo r a s p e c i e s f o r s i t e s o r d i n a t e d by r e c i p r o c a l a v e r a g in g of ranked ground f l o r a s p e c i e s c o v e r abundance v a lu e s . . . . . . . . . . . . . . 1 32 Figure 3.2. Overstory basal area of selected species for s i t e s o r d i n a t e d by r e c i p r o c a l a v e r a g i n g o f ranked ground f l o r a s p e c ie s c o v er-ab u n d a n c e values. . . . . . . . . . . . . . . . . . . 1 41 Figure Mean s i l t a n d c l a y p e r c e n t o f t h e u p p e r 15 0 cm o f s o i l f o r s i t e s g r o u p e d by o v e r s t o r y composition. ...........................................................152 Figure 3.3. 3.4. Me a n co arse fragm ent c o n ten t as a volume p e r c e n t a g e o f t h e u p p e r 1 5 0 cm o f s o i l f o r s i t e s g r o u p e d b y o v e r s t o r y c o m p o s i t i o n . . . 1 55 Figure 3.5. Mean t h i c k n e s s o f t h e E a n d B s o i l h o r i z o n s f o r s i t e s g r o u p e d by o v e r s t o r y c o m p o s i t i o n . . . 157 Figure 3.6. Mean Kjeldahl n i t r o g e n and p h o s p h o r o u s , and e x t r a c t a b l e c a l c i u m c o n t e n t o f t h e u p p e r 1 5 0 cm o f s o i l f o r s i t e s g r o u p e d by o v e r s t o r y c o m p o s i t i o n .....................................................................................1 60 Figure 3.7. Mean e x t r a c t a b l e m a g n e s i u m a n d p o t a s s i u m c o n t e n t o f t h e u p p e r 150 cm o f s o i l f o r s i t e s g r o u p e d b y o v e r s t o r y c o m p o s i t i o n .............................. 1 62 Figure t.8. Mean a n a e r o b i c ammonium n i t r o g e n m i n e r a l i z e d d u r i n g a o n e w e e k i n c u b a t i o n o f 1 0 cm s o i l c o r e s , f o r s i t e s o r d i n a t e d by r e c i p r o c a l a v erag in g of ranked ground f l o r a s p e c ie s c o v e rabundance v a lu e s . . . . . . . . ........................... 16 8 Figure 1.9. C o r r e l a t i o n o f s i t e s c o r e s f r o m RA o f g r o u n d f l o r a ranked cover-abundance d a t a w ith amounts o f ammonium n i t r o g e n m i n e r a l i z e d d u r i n g a o n e we e k i n c u b a t i o n o f 10 cm s o i l c o r e s . . . . 170 Figure > . 1 0 . Mean a n a e r o b i c ammonium n i t r o g e n d u r i n g a one week i n c u b a t i o n o f cores, for s ite s grouped by composition. . . . . . . . . . . . . Figure 5.11. Dr y weights of autumn l i t t e r f a l l ( O i ) and p a r t i a l l y decomposed f o r e s t floor layers ( O e ) f o r s i t e s o r d i n a t e d by r e c i p r o c a l averaging of ranked ground f l o r a s p e c ie s c o v er177 a b u n d a n c e v a l u e s ......................................... Figure 5.12. C orrelation of partially decomposed f o r e s t f l o o r l a y e r (Oe) w e i g h t w i t h a v e r a g e a g e o f t h e o v e r s t o r y ..........................................................................................180 Figure 1.13. P h o s p h o r o u s , mag nes ium , an d p o t a s s i u m c o n t e n t o f autumn l i t t e r f a l l for s ite s ordinated by r e c ip r o c a l av erag in g of ranked ground f l o r a s p e c i e s c o v e r - a b u n d a n c e v a l u e s ....................................1 88 Figure 3.14. m ineralized 1 0 cm s o i l over sto ry . . . 173 N itrogen and calcium c o n t e n t o f autumn l i t t e r f a l l for s i t e s o r d i n a t e d by r e c ip r o c a l av erag in g of ranked ground f l o r a s p e c i e s c o v e r - a b u n d a n c e v a l u e s ....................................1 9 0 CHAPTER I INTRODUCTION Land classification systems have on v a r i o u s f e a t u r e s o f t h e e a r t h ' s vegetation, in landform s, com bination. regarding the discussion system s, of relativ e their ecological geology, inherent shortcom ings, classificatio n. a t tem p t s to systems, individually various in leads to the best has or existed system s. these A classification a description E cological in co rp o rate classification either of based including s o i l s , controversy m erit beliefs developed surface, H istorically, the and and been of classification aspects of other and a v o id t h e i r p i t f a l l s . Soil Survey Land m apping responsibility th is century. documented based in the The Soil prim arily m orphological development, classify prim arily U .S . Soil current Taxonomy on soil intended w ithout Th e b a s i s because expressed sim ila rly systern (Soil been to the of system soil the throughout the has 1975) , is belief that regarding soil factors form ing in s o i l morphology. 1 Staff a mapper of prim ary c la ssific a tio n , in and a b i o t i c knowledge for of inform ation enable the Service Survey morphology express a range has Conservation including b io tic soils them. the features Th e s y s t e m wa s formed of in to over tim e . describe processes been and which criticized factors ma y b e F o r e s t m a n a g e rs became d i s s a t i s f i e d land c l a s s i f i c a t i o n by S o i l S u r v e y m e t h o d s b e c a u s e i t applicability to expressed 1963 by the use forest in grow th management of successful". S im ilarly, whether the T his s o i l ma p s i n of greatest Carmean of u n its to felt that introduced b i a s , because it of of w ithin units. mapped variations Mu c h units which definitions. (19 6 9) wa s depends on criteria with the did not the not A dditionally, of modal w rote w ell soil p a rtly that the on ecologically. soil deg ree of m anagem ent". concept the in soil of so ils variability tree and described taxonomic for characteristics variation to "adult depends the express attributed were only uniform problem s were satisfactory proved sufficiently relevance for w i l d l a n d management classification ( 19 7 5 ) mapped Jones lacked sentim ents that criteria wor k h a s ... are uni fo rm i ty coincidence of units The who w r o t e soil advisory of concerns. R ennie, agr ic u ltu ra l "utility s o me y e a r s a g o w i t h in grow th topographic soil features unit used to d e s c r i b e map u n i t s may n o t b e t h o s e f e a t u r e s a s s o c i a t e d w i t h tree grow th. stron g ly, G rigal s t a t ing dissatisfaction because tree and c l i m a t e . field that with growth ( 19 8 4 ) there soil is expressed was surveys affected These f e a t u r e s a r e "w idespread in by the many site sentim ent and forested history, deep areas", landform, c o mmo n l y r e c o g n i z e d in the b u t i n a d e q u a t e l y communicated in S o i l Survey r e p o r t s . A nother forest shortcom ing m a n a g e m e n t was its of traditional reliance on S i t e soil Index surveys (SI) as in a 3 m easure of objection not site wa s to applicable management productivity. the to trees density influences suitable on suppression, sprouting, aged most and t h e stands, 1975). of regionwide sites (Carmean 1968) . finding factors, use and on for or Because the of from d i s e a s e only managers on SI areas variation not to effect or (Jones of genetic w eather, 1969, of SI w ithin productivity considered root uneven Carmean on s u c h a s wood composition 1969, in stand inform ation species (Jones land including than p ro d u ctio n , habitat were were p ro b lem s not provide capability, were which to measure p l a n t a t i o n s , s i m i l a r a v e ra g e s between u n i t s , based the reported useful SI, damage w ildlife data, there growth, deforested wide SI height f o r e s t m a n a g e m e n t issues o t h e r diversity, commonly scale determ ining inability regenerative a A lso, A d d i t i o n a l l y , SI d o e s quality, One Carmean soil and 1975). units and interpretations meaningful by forest (Carmean 1975) . Habitat Types Land classifications designations the use of are known vegetative as based solely habitat indicators on types. is that plant community A rationale potential for plant communities a r e th e e x p re s s io n of an i n t e g r a t i o n of clim ate, physiography, species sp e c ie s groups characteristics resources and so ils, occupy which are so that vegetative d i s c r e t e dependent ( C a j a n d e r 1 9 2 6 , Rowe 1 9 5 6 , on l o c a l i t i e s the P fister or with availability of and Arno 1980) . 4 C lassifications first of developed forested by lands Cajander su b se q u e n tly used in Europe, U .S. C lassificatio n s successful in northern organized s i mp1 y , associations. (1926) on regions, In a r e a s on in vegetation Finland, were and were Canada, and in th e n o r t h w e s t e r n based with based vegetation w ere more where p l a n t co m m u nities were re la tiv e ly further few sp ecies so u th , the and com plexity u n d e r s t o r y f l o r a ma d e c l a s s i f i c a t i o n m o r e d i f f i c u l t of (Carmean 1975). V egetative grad ients to gradients nutrient of M ajor 1964). overstory studies In is not conditions in (1984) noted has necessarily all the (1984) have ranges as cases that cases, a difficulty in and herbaceous soil ( Dunn and site Stearns components, useful abundance areas sim ilar type, geographic w ith patterns the of o n l y when i n f o r m a t i o n Waring and vegetation and that of it appears environm ental 1970). and P r e g i t z e r specificity Barnes are not a n d Ramm of species indicator plants. vegetation about O ther w ith vegetation use of is than 1987) . a n d A r n e ma n of of of vegetation indicator (Grigal texture, ch aracteristics relationships s a me e c o s y s t e m m entioned variation valuable a (BA), P l u t h a n d A r n e ma n 1 9 6 3 , found poor and p h y s i o g r a p h i c m oisture, so il area d ifferen t vegetation have soil basal some w ith vegetation The SI, (Rowe 1 9 5 6 , associated soil topography, supply, regeneration in v a rio u s a r e a s have been r e l a t e d its makes its relationship use to o th e r e n v iro n m e n ta l components i s known. Multifactor, or Ecological, Classification Carmean "should so il, not and (1975) suggested that continue segregated along ecological lin es, land strict but site q uality integrated The basic ecosystem vegetative structure, consistent internal each s o ils , other and by functions components (Barnes e t a l . Landform s, topography, are s o il, At this to 1987). moisture believed level, and nutrient trends of succession, area of uniform topography, with associations can be d i s t i n g u i s h e d in physiography, com ponents the classify as lo cal and th e ir ecosystem . a n d map t h e su rfic ia l of the ecosystem substance t o be a m e a n in g fu l at landforms local supplies, partly a plus delineation regional direct clim ate Landforms, through t h e i r and an 1982). defined vegetation, system. systems use c h a r a c t e r i s t i c s th e study of ecosystem p ro cesses level. a differences these or such external characterize Ecological c la s s if ic a t io n units and inventories is and Ecosystem u n i t s v egetat io n ; m ajor as geology, observable in ter relationships three defined soil, (L eefers e t a l . 1987). from is have E cological, classification, unit should landscape classificatio n s" . m ultifactor m ensurational, instead i n t e g r a t e d and c o o r d i n a t e d methods f o r and classification the ( Rowe for hierarchical expression 19 8 4 , of B ailey e f f e c t s on c l i m a t e a n d s o i l also control the temporal t h r o u g h i n f l u e n c e s on f r e q u e n c y and degree of disturbance Leefers et a l. 1986, Host et al. 1987, 1987). C lassification ecosystem (Whitney systems com ponents which to incorporate aid in a variety id e n tif ic a tio n of of e c o l o g i c a l l y e q u iv a l e n t a r e a s have been implemented in p a r t s of Canada (Barnes and in 1984, Europe Jones throughout 1984, Moon most 1984). i n t r o d u c e d t o t h e U .S . more r e c e n t l y . land classificatio n components to combinations provided of better (P r e g itz e r R ecently, and there of classifications than 19 8 4 , been it any Spies suggestions e c o l o g i c a l s u r v e y s h o u l d be i n i t i a t e d component o f and t h e e n v iro n m en t and t h e been integrated use of com ponents, soil, have the century have Studies of physiographic, Barnes this They s y s te m s , com paring com binations of single showed that vegetation data single and component Barnes that a nationw ide to describe processes 1985 ) . the b io tic which formed (Roughgarden 1989). Background, objectives, and overall hypotheses of the study The U .S . Forest Service initiated E c o l o g i c a l C l a s s i f i c a t i o n System N ational Forests M anistee, study and uses in data in 1980. 1985 on collected on work b e g a n Huron the in National Huron N ational d e s c r i b e e c o l o g i c a l u n i t s and r e l a t i o n s h i p s small data set was u s e d for 1983 this on Forest. d u r i n g 1985 and 1986 , a n d emp loys q u a n t i t a t i v e relatively of an (ECS) o n t h e H u r o n - M a n i s t e e Field the developm ent the This Forest techniques for the area. study, so to A that other ecological units may e x i s t in the area in addition to those described herein. The general whether s i t e s units. components are Site relationships reasons. sites into the is groups based to of on sm allest determ ine ecologically separate site equivalent unit be used by known components inferences observe or to species indicator to of a which ecological to the plant several growth physiography; these may a the forest produce unit. species; Local soil and must Inform ation ma y b e used to be absent because of on make c o m p o n e n t s w h i c h may b e d i f f i c u l t ma y in inform ation variations map new a r e a s . ecosystem of soil variation the these response. sim ilar combination a m p l i t u d e ma y a l t e r landscape about other alter also of for when p r e d i c t i n g instances define can and processes cor re c tly Knowledge o f t h e s e managers soil are knowledge components history recognized such com ponents re q u ire s site forming in flora provided be site ecosystem sim ilar soil must ground and must m orphologies; flora ECS betw een w ith D ifferent on and among An Climate influences of study eventually derived. in v e s t i g a t e d . be my ordinations developed, R elatio n sh ip s on of may b e c l a s s i f i e d equivalent is objective to disturbance. r e l a t i o n s h i p s w i l l a llo w a c c u r a t e mapping un its, predict silv ic u ltu ra l management p r a c t i c e s . the w hich in turn influences treatm ents of and w ill site other allow forest characteristics m ultiple-use 8 The stated overall as altern ativ e h y p o th e se s), a r e : 1) be c l a s s i f i e d forest hypotheses m anagem ent; soils data, the ground sites site (as are by into which a r e not of the to null and can utility same, flora a n d 3) study, which s i t e s separately data, this opposed ordinations, significantly different, individual tested groups landscape all or be hypotheses there are across classifications, to in 2) site derived from overstory data are t h e r e a r e a s s o c i a t i o n s among characteristics believed im portant to growth. D etailed reviews of and hypotheses, literature and methodologies the presented in C hapters sum m arization lab o rato ry site objectives and and 2 and analysis field 3. Chapter of w ork, soils and an ordination of sites species cover-abundance 2 discusses the collected relates v a lu e s, r e l a t i o n s h i p w ith s o i l s , geology, ordination based on soils based on overstory ordinations based on soil forest developed floor from conclusions is presented and flora are data to Chapter ground 3 flora d iscu sses basal is area properties. properties overstory ranked from its and o v e r s t o r y c o m p o sitio n . ground ordinations and are data using w ith employed, g r o u p i n g s b a s e d on d e p o s i t i o n a l e n v i r o n m e n t . presents The together in Chapter 4, by w ith species, and A dditionally, compared composition. compared among site A s u mma r y and of soil groups study im plications d e f in itio n of e co lo g ica l u n its are d iscussed. for 9 LITERATURE CITED B a i l e y , R.G. 1987. Suggested h ie ra rc h y of c r i t e r i a fo r m u l t i - s c a l e ecosystem mapping. Landscape Urban P l a n n . 14: 313-319. B a r n e s , B . V . , K .S. P r e g i t z e r , T.A. S p i e s , a nd V.H. S p o o n e r . 1982 . E cological fo re s t s i t e c l a s s i f i c a t i o n . J . F o r e s t r y 80: 4 9 3 -4 9 8 . B a rn e s , B.V. 1984. F o r e s t ecosystem c l a s s i f i c a t i o n and m a p p i n g i n B a d e n - W u r t t e m b e r g , We s t G e r m a n y . p 49-65. I n J . G. B o c k h e im , e d . F o r e s t Land C l a s s i f i c a t i o n : E x p erien ces, Problems, P e rs p e c tiv e s . Proceedings of t h e symposium. M a d is o n , W i s c o n s i n , March 1 8 - 2 0 , 1 9 8 4 . 276 p p . C a j a n d e r , A . K. 1926. The t h e o r y F o r e s t . Fe nn. 29: 1 - 1 0 8 . of forest types . Acta C a r m e a n , W. H . 1968 . Tree h e ig h t-g ro w th p a t t e r n s in r e l a t i o n to s o i l and s i t e . p. 499-512 . In C .T . Youngberg and C.B. D avey, e d s . Proceedings of the T h i r d N orth American F o r e s t S o i l s C o n fe re n c e . Raleigh, N o rth C a r o l i n a , A ugust, 1968. C a r m e a n , W.H. 1975. Forest s ite quality evaluation United S ta te s . Adv. A g r o n . 27: 2 0 9 - 2 6 9 . in the D unn, C . P . , and F. S t e a r n s . 1987. R e la tio n sh ip of v e g e ta tio n la y e rs to s o i l s in S o u th eastern W isconsin forested w etlands. Amer. M idland N a t u r a l i s t 118: 3 6 6 374. G r i g a l , D.F. 1984. Shortcomings of s o i l surveys fo r f o r e s t management. p 148-166. In J .G . Bockheim, e d . Forest Land C la ssific a tio n : Exper ie n c e s , P roblem s, Perspectives. P r o c e e d in g s o f t h e symposium. Madison, W i s c o n s i n , March 1 8 - 2 0 , 1 9 8 4 . 276 p p . G r i g a l , D . F . , and H.F. A rnem an. 197 0 . Q uantitative r e l a t i o n s h i p s among v e g e t a t i o n a n d s o i l c l a s s i f i c a t i o n s from n o r t h e a s t e r n M in n eso ta . Can. J . B o t . 48: 5 5 5 - 5 6 6 . H o s t , G . E . , K . S . P r e g i t z e r , C.W. Ramm, J . B . H a r t , a n d D . T . C leland. 1987. Landform -m ediated d i f f e r e n c e s in s u c c e s s i o n a l p a t h w a y s among u p l a n d f o r e s t e c o s y s t e m s i n n o r t h w e s t e r n lower M ichigan. F o r e s t S c i . 33: 4 4 5 - 4 5 7 . 10 Jones, J.R. 1969. Review and c o m p a r is o n o f s i t e e v a l u a t i o n m ethods. U .S .D .A . F o r e s t S e rv . R es. P a p e r RM-51. Rocky Mtn. F o r e s t a n d Range E x p t . S t a . , F o r t C o l l i n s , Colorado. 27 p p . J o n e s , R.K. 1984. S ite c l a s s i f i c a t i o n in O ntario. p 8299. I n J . G . Bockheim, ed . F o r e s t Land C l a s s i f i c a t i o n : E xperiences, Problems, P e r s p e c tiv e s . Proceedings of t h e symposium. M a d i s o n , W i s c o n s i n , March 1 8 - 2 0 , 1 9 8 4 . 276 p p . L e e f e r s , L . A . , D .T. C l e l a n d , and J . B . H a r t . 19 8 7 . E c o lo g ic a l C l a s s i f i c a t i o n System : in fo r m a tio n and econom ics. In S i x t h C e n t r a l Hardwoods C o n f e r e n c e . P r o c e e d in g s o f th e symposium. K noxville, Tennesee, F e b ru a ry 2 4-26, 1987. Moon, D.E. 1984. F o re st land B r i t i s h C olum bia. p. 66-81. F o r e s t Land C l a s s i f i c a t i o n : Perspectives. Proceedings of W i s c o n s i n , March 1 8 - 2 0 , 19 84 . re so u rce s in v e n to ry in In J .G . Bockheim, e d . E xperiences, Problem s, t h e symposium. Madison, 276 p p . P f i s t e r , R. D. , and S .F . A rno. 1980 . h a b i t a t t y p e s b a s e d on p o t e n t i a l Forest S c i. 26: 5 2 - 7 0 . C lassifying fo rest clim ax v e g e t a t i o n . P l u t h , D . J . , a n d H . F . Arneman. 1963. F o r e s t s o i l and t r e e growth c h a r a c te r i s t i c s re la te d to a synecological c o o rd in a te system, p 331-352. In Youngberg, C . T . , ed . Fo r e s t - s o i l relatio n sh ip s in North Ame r i c a . P ro c e e d in g s of th e symposium. C o r v a llis , O regon, August 26-31, 1963. 532 p p . P r e g i t z e r , K . S . , an d B.V. B a r n e s . 1984. C l a s s i f i c a t i o n and c o m parison o f u p la n d hardwood and c o n i f e r e c o s y s te m s o f t h e C y r u s H. McCormick E x p e r i m e n t a l F o r e s t , u p p e r Michigan. Can. J . F o r . R es. 14: 3 6 2 -3 7 5 . P r e g i t z e r , K . S . a n d C . W. Ramm. 1984 . C la s s ific a tio n of f o r e s t ecosystem s in M ichigan. p 114-131. In J.G. Bockheim, ed. F o r e s t Land C l a s s i f i c a t i o n : E x p e r i e n c e s , Problem s, P e rsp e ctiv e s. P r o c e e d in g s o f t h e symposium. M a d i s o n , W i s c o n s i n , Ma r c h 1 8 - 2 0 , 1 9 8 4 . 276 p p . R ennie, P .J . 1963 . Methods of a s s e s s i n g C o mmo n w e a l t h F o r e s t . R e v . 4 2 : 3 0 6 - 3 1 7 . site Roughgarden, J . 1989. Viewpoint: Th e U n i t e d an e c o lo g ic a l survey. B i o s c i e n c e 39: 5. Rowe, J . S . 1956 . Uses of u n d e rg ro w th forestry. E c o lo g y 37: 4 6 1 - 4 7 3 . plant capaci ty . States needs species in 11 Ro we , J.S. 1984. Forestland c la s s ific a tio n : lim itations of th e use of v e g e ta tio n , p 132-147. I n J . G . Bockheim, ed. F o r e s t Land C l a s s i f i c a t i o n : E x p e r i e n c e s , P r o b l e m s , Perspectives. P r o c e e d in g s o f t h e symposium. Madison, W i s c o n s i n , March 1 8 - 2 0 , 1984 . 276 p p . S o i l Survey S t a f f . 1975. S o i l T a x o n o my . AH-436. S o i l C o n s e r v a t i o n S e r v i c e , W a s h i n g t o n , D.C. U.S.D.A. S p i e s , T . A . , and B a r n e s , B.V. 1985. A multifactor e c o l o g i c a l c l a s s i f i c a t i o n of th e n o r t h e r n hardwood and c o n i f e r e c o s y s t e m s o f S y l v a n i a R e c r e a t i o n A r e a , Upper P e n in s u la , Michigan. Can. J . F o r . R e s . 15: 9 4 9 - 9 6 0 . W aring, R .H ., and J . M ajor. 1964. Some v e g e t a t i o n o f t h e C a l i f o r n i a c o a s t a l redw ood r e g i o n in r e l a t i o n t o g r a d i e n t s of m o is tu r e , n u trie n ts, lig h t, and tem perature. E c o l . Monographs 34: 1 6 7 -2 1 5 . W h i t n e y , G.G. 1986. R elatio n of M ichigan's p re s e ttle m e n t p in e f o r e s t s to s u b s t r a t e and d i s t u r b a n c e h i s t o r y . Ecology 67: 1548-1559. CHAPTER I I ASSOCIATIONS AMONG CHEMICAL AND MORPHOLOGICAL SOIL FEATURES, DEPOSITIONAL ENVIRONMENTS, AND GLACIAL LANDFORMS INTRODUCTION S o ils landform " are in landform s, facto rs 1984). to not "sep arate w hich and they a w ith independen t rath er, they d esig n ated so ils q u an tify m ost m acro clim atic to pography, c lim a te , c h aracteristics (Barnes et th e w ith in environm ental area. and (G rig al al. in p a rt tim e a l l o f w hich c an be d i r e c t l y o r i n d i r e c t l y landform of occur S o i l p r o p e r t i e s a r e known t o b e a t t r i b u t a b l e parent m a te ria l, 1941), occur; to g eth er w ith in from and (Jenny asso ciated 1982, G rigal 1 9 8 4 , Rowe 1 9 8 4 , B a i l e y 1 9 8 7 ) . L andform s p a tte rn s by in flu en c e m o d ify in g supplying p la n t al. n u trien ts th e d ev elo p m en t re g io n a l of c lim a tic e co sy stem c o n d itio n s, from g e o l o g i c m a t e r i a l (B arnes 1 9 8 2 , Rowe 1 9 8 4 , B a i l e y 1 9 8 7 ) , a n d i n f l u e n c i n g freq u en cies of d istu rb an ce 1987, H ost e t a l . for ecosystem u n its p recisely what elu siv e. 1986, ty p e s and H ost et a l. 1988) . The l a n d f o r m , d e lin e atio n ( Zak e t a l . et th erefo re, th e stu d y (Rowe 1 9 8 4 , land area P reg itze r and is b eliev ed and m apping B ailey com prises Ramm 12 1987). a to be a m e a n in g fu l of b o th and A d efin itio n landform (1984) so il have can be stated of more th a t 13 lan d fo rm , b ro ad ly geom orphology, d e fin e d , te rra in , of th a t the is land rep eats surface, d is tin c tiv e sig n ific a n t for in lan d vario u s landform as of because use or of to lan d scap es" th e E arth ' s p lu s rep resen tin g of "th e la n d sc a p e its th ree-d im en sio n al Soc. shape is sim ply (P itty 1984) . "s u rfic ia l to p o g ra p h y ", m o rp h o lo g ical-stru ctu ral eco sy stem s" . He th a t 1987), as or is Am. landform (1984) rock th a t g e n esis, re lie f" b y Rowe or shape, S ci. of S cience sedim ent, its (S o il su rface stab le "a lan d scap e surface Landform h as been d e s c r ib e d subs ta n ce The S o i l form ed o f s o i l , w h ile a g eo m o rp h o lo g ic d e s c r i p t i o n "p o rtio n s "p h y sio g rap h y , and to p o g ra p h y ". S o c i e t y o f A m erica d e f i n e s part in clu d es fu rth e r component s ta te s th a t "re p e titiv e p attern s i n v e g e t a t i o n can be t r a c e d d i r e c t l y re p etitiv e of kinds of p attern s su rficial topography m aterials", of v eg etatio n p a tte rn s im p lies th a t to p o g rap h ic dep o sit, so th at the and s o i l p a t t e r n s a landform m ass asso ciated w ith as d efin ed a is w ith "best sp ecific co rrelate landform ". b y Rowe c o n s i s t s relativ ely homogenous w hich seems a r e a s o n a b l e d e f i n i t i o n to T his of a su rfic ia l fo r purposes of s o i l and e c o s y s te m m apping. D e f i n i t i o n s o f l a n d f o r m g e n e r a l l y d e p e n d on t h e s p a t i a l scale of in te re s t w h eth er it surfaces, scales and th e t e r r a i n o f th e r e g io n in q u e s t i o n , be g l a c i a l or o th ers. w hich a r e The m a c r o s c a l e is of d rift, B ailey in te re st larg ely aeo lian (1984) in d e p o sits , ero sio n al describes eco lo g ical co n tro lled by three land clim ate, sp atial m ap p in g . w hile the 14 m esoscale due to is ch aracterized geologic m icroscale is su b strate, related of th e (1977) w ould ro u g h ly fe a tu re s outw ash d efined of landform s as till ch an n els, d elta s, beach lan d fo rm s, m asses, in and th is and area d ep o sit d ep o sitio n al g lacial The In her M ichigan, featu res, p la in s, o u tw ash com plexes, bedrock in d ic a te ow ing en v iro n m en t. to w hich These p la in s, lak e p la in s, to p o g rap h y . th at some The lo calized lan d fo rm d e te rm in in g ecosystem b o u n d a rie s fo r My s t u d y p r o v i d e s featu res F ield of th ese The developm ent an of ecosystem types var ia tio n s u n it to as in d efin ed be u s e f u l in th is area. i n f o r m a t i o n on a s s o c i a t i o n s o f mapped w ith p ro p e rtie s. th e relief. low er g e o m o r p h o l o g i c a l l y may b e t o o h e t e r o g e n e o u s of clim ate no tab ly m o rain es, co n tain s e v e ra l d i f f e r e n t surf ic ia l g la cial of B a ile y ' s m eso scale. m o rain es, o b s e r v a t io n s shape, north eastern c o rre sp o n d w ith kam ic co n tro l s e r i e s and p l a n t a s s o c i a t i o n . in clu d e isla n d s, of surface geom orphology B u rg is landform to l o c a l s lo p e and a s p e c t d i f f e r e n c e s , and has a uniform s o i l stud y by surf ic ia l in fo rm atio n ecosystem processes in d e p o sits, w ill be c lassificatio n the area. and w ith v ita l and for so il to th e stu d ies An u n d e r s t a n d i n g of e c o l o g i c a l meaning o f c o i n c i d e n t l a n d s c a p e f e a t u r e s w i l l in crease th e inform ation lan d fo rm u sefu ln ess system s. U ltim ately , relatio n sh ip s en viro n m en tal system s. of d ata o b tain ed from g e o g r a p h ic know ledge r e g a r d i n g ma y p r o v i d e in p u ts so il- to m od elin g of 15 Glacial geology and climate of the study area The study was n o rth eastern g eo lo g y o f g lacial during low er th e L ate the Huron N ational (F ig u re 2 .1 ). has been e x te n s iv e ly mapped by B u r g i s recen tly th e in M ichigan area featu res was m o st lo cated g la ciate d W isconsinan (1977, by th e Forest The Several and its The region Ice Sheet L au ren tid e p erio d . g la cial stu d ied 1981). in readvances of t h e Huron Lobe o c c u r r e d d u r i n g t h e P o r t B ru c e a n d P o r t H uron su b stag es su rficial of Port an the a re a . before ice. present An a r e a ic e -d isin teg ratio n The (B .P .) designated featu re kam es, w hich are by w a t e r This a re a in stead e x h ib its of re tre a t. the form th e m orainal dep o sitio n stran d ed Th e northw est G lennie sublobe of of the as the form ed th e at M altby at about re tre a t th e form ed Karnes of is so u th w est in co arse-tex tu red b lo ck s m oraine d u rin g h ills a k ettle ic e w as T h e M a l t b y Karnes a r e co n ical d rain ag es m e ltin g to tw o l a r g e s t lo cated m a r g i n o f t h e West B ra n c h m o r a i n e . tru ly p erio d The West B ra n ch m o r a i n e years B ruce W isco n sin an t h e West B r a n c h m o r a i n e a n d t h e G l e n n i e m o r a i n e 2 .1 ). 1 3 ,8 0 0 L ate topography o f fe a tu re s are (F igure th e not g la cial m aterials. top o g rap h y i n d i c a t i v e o f subsequent form ed after Huron L ob e, a to g la cia l readvance w hich reached of its maximum s o u t h w e s t e x t e n t a t a p p r o x i m a t e l y 1 2 , 5 0 0 y e a r s B . P . , and is th e West featu res believ ed to have Branch m oraine lo cated at the o v errid d en (B urgis the 1977, w esternm ost eastern 1981). edge o f p o rtio n The the of sm aller study area 16 OUTWASH U eC O U U M UO R A IN IC LIN CO LN RED OAK KAUC ACUNA NT KA M E5 AIDGC8 tUC888 / - C 9 8 IC / , CMAMSV J / .... G LEN NIE W E ST M ORAINE HELEN PLAIN lLAKS 3 0 ra8&®9 knqu^J i HURON n o r t h e a s t e r n low er chiqan and o f th e stu d y a re a (B u rg is 1981). H u r o .n N a t i o n a l F o r e s t i n g l a c i a l iandform f e a t u r e s 17 are t h e E l d o r a d o Ka m ic R i d g e s . d ep o sited at th e same tim e These as th e rem nant W est featu res B ranch w ere m o rain e, d u r i n g P o r t B ruce tim e a t a b o u t 13,800 y e a r s B .P. M oraines in th e study b row n loam y t e x t u r e d area are com prised t i l l , rew orked of in p la c e s a red d ish by lo c a lly p o n d e d w a t e r , o r o v e r r i d d e n by l o c a l i z e d o u t w a s h . fo rm atio n s rew orking p a rts are follow in g of b o th in d ic a tin g A ssociated and co m m on a t o p th e w ith the g la cial W est K ettles B ranch m oraines featu res, sandy m a t e r i a l s . v a ria b le g laciatio n . and ic e -d is in te g ra tio n outw ash M ich ig an th e m o ra in e s, so il la rg e ly Thus, e x h ib its in the parent advances m a terials and th e se of of a p o stg la cia l common i n m o rain es, are drain ag e co arse-tex tu red n o rth eastern uneven as w ind lo c a t io n s . landscape lan d scap e of also G len n ie com prised a p a tte rn in d ic a tin g are a t the D u n e-lik e low er to p o g ra p h y resu lt of rew o rk in g and rep eated of surface m a t e r i a l s by w ind and w a t e r . The c l i m a t e of the area is c o o l and m o is t, an n u al te m p e ra tu re of 6.7 d e g re es C e n tig ra d e . is m oderated from 7.2 6 .1 near near degrees the at lak e. ranging from 6 8 .6 to cm a t 7 3 .7 averages th e 11 5 d a y s , 140 d a y s a t Lake H u ro n , so t h a t the the w estern Mean a n n u a l cm i n the of the part edge. of the range area 71.1 study The g r o w in g Growing s e a s o n W inter study averages r a n g i n g f r o m 100 d a y s a t tem p o rally . Local clim ate tem p eratu res ra in fall cen tral so u th eastern e a st edge. extrem ely v a r ia b le edge w i t h a m e an to cm, area season th e w est edge to len g th s snow fall are also ranges from 18 114 cm o n th e V ariatio n and in lo cal snow fall is -29 A g ricu ltu re reg io n al most o f II. is to p o g rap h y . tem p eratu re of so u th east T his to The mean degrees d istrict is on et map and d irectio n s extrem e (M ichigan a l. of n o rth w est. w ind annual m inim um D epartm ent (1986) , M ichigan, th e H ig h p lain s large th e p rev ailin g A lb ert in cm C entigrade ecosystem th e study s i t e 228 due 1974). landscape to in th e ir have D istrict c lim atically placed of R egion d iv erse, but v ariatio n in re c o rd ed w eather d a ta p re c lu d e d d i v i s i o n o f th e area homogeneous s u b d i s t r i c t s . in to c lim a te appeared m asses s e t t l i n g to be related to The l o c a l topography, v ariatio n w ith cold in air in lo w - ly i n g outw ash p l a i n s . R e la tio n s h ip s o f s o i l and lan d scape f e a tu r e s D evelopm ent o f s o i l s at b o th th e m ic ro sca le calcareo u s till h o riz o n , p resen ce so il d ecalcificatio n p o sitio n F lo rid a and w ere (D alsg aard related p ercen tag e, observed g lacial d rift G eo lo g ic of an all et me s o s c a 1 e D enm ark, th e a l. organic of to th e to (O v alles and on an area i n Iowa (W a lk e r e t a l . m a te ria l has been of th e depth sum m it, in sand sh o u ld er, C o llin s related m ixed and stu d y c o lo r, B of in clin atio n A h o rizo n , C co ntent On a of A sim ilar and a s p e c t were s t r o n g l y p ro p erties and slope 1981). le v e ls . th ick n ess E h o riz o n , related p o sitio n s slope, so il in and th ic k n e ss pH a n d b ack slo p e E lev atio n , has been a s s o c i a t e d w ith la n d fo rm s 19 8 6 ) . to lo ess field and 1968). a sso c iate d w ith so il 19 featu res g rain in a size number stu d ies. d istrib u tio n s found to be r e l a t e d till of in a so il catena d e p o s i t , two c o l l u v i a l d e p o s i t s , sam ples of till classified used in to tex tu re, taxonom ic groups parent four coarse le v el. based m aterials h o rizo n tal A lb erta fragm ent, w ere and related so ils in clu d in g a in (1986) found t h a t M in n eso ta to be w hich v alu es. S o il till from co u ld functions carbo nate an aly sis d e riv e d w ere and an a e o l i a n d e p o s i t by d i s c r i m i n a n t D iscrim in an t on in Crum a n d R u s t groups d ifferen ces fam ily and to f o u r geom orphic e p i s o d e s , (Pennock and V reeken 1 9 8 6 ). th e V ertical com position was ap p lied seven at to d iffe re n t s e d i m e n t a r y r o c k f o r m a t i o n s i n V i r g i n i a b a s e d o n r a n k s o f 34 fie ld and L entner lab o rato ry 1987). developed for the oth er so il th e m easured d iffer in d eterm in ed D iscrim inant so il groups could p ro p e rtie s. two types W isco n sin , one of and H ole fu n ctio n s g r o u p s f r o m tw o o f betw een (P avlik p ro p e rtie s w ere the S o il seven of p ro p erties sim ilarly featu red S o ils on th e aged fo rm atio n s; w ere by a n y of found to ground d ru m lin drum lin and su ccessfu lly n o t be d i s c r i m i n a t e d w hich 1977) . ( Edmonds m oraines topography terrain had d e e p e r p r o f i l e s , w ith g r e a t e r developm ent o f B h o r i z o n s . Numerical analysis of soils data S tu d ies so il d ata have used g roupings rep o rted in w hich d ep th is th at w ere th e l i t e r a t u r e have most o f t e n u sed summed sum s. The by h orizons, ratio n ale but for some u sin g c o m p a r i s o n s a r e made among s o i l stu d ies h o rizo n lay ers on 20 w h ich sim ila r p e d o g en e tic have occurred. been c ritic iz ed b e c a u s e th e y u se v a ry in g d e p th s and t h i c k n e s s e s , and r e f l e c t a determ in in g A lte rn a tiv e ly , su b jectiv e th e h o rizo n d ecision lo c a tio n of sum m aries by the hor izo n c o n s i d e r e d more o b j e c t i v e N um erical d ifferen ces sin g le p o in ts, has ( PCA) has tech n iq u e does te st, but d ata allo w a v isu al am ong p o i n t s . id e n tify fin d in g carbon th at it so ils isarith m so u th map o f com pared num erical the changes so il o b serv atio n s been useful in not p ro v id e a c en tral respect N o rris data d ata to (1971) the to sets of w ell w ith so ils number of sta tistic a l of a re la tio n sh ip s in F lo rid a so ils, to te x t u r e and o rg a n ic (1972) follow ed by up creating component (PC ). a an They p ro p erties id en tified by tra d itio n a l so il map a n d two d eterm in e corresponded for first a u s e d PCA s i m p l y t o E ngland p rin cip al procedure w ith a of at P rin cip al dim en sio n ality (1988) Burrough fo u n d good ag reem en t g e n e r a l l y . w ith the v a ria b ility so il d em o n strate o b serv atio n s. ex am in atio n and first in are among reduce of W ebster in sum s to w as r e l a t e d p r i m a r i l y co n ten t. PCA o f can sources D ep th used O v a lle s and C o llin s m ajor in been a n d among g r o u p s o f The to d escrib er ( G r i g a l a n d Arneman 1 9 6 9 ) . sig n ifican ce set so il sim ila ritie s com ponent a n a ly s is stu d ie s. have boundar i e s . an aly sis and processes P lo ts survey of s ite PCA d i m e n s i o n s th at g ro u p in g s groupings from based Australia th e lo c atio n s w ere used b a se d on by fie ld on lab o rato ry and England. 21 N o rtc liff p attern s (1978) at used d ifferen t of v arian ce at w hich c e r t a i n PCA to areal ( ANOVA) t o exam ine scales, so il and also v a ria b ility used id en tify the p a rticu lar com ponents o f th e v aria b ility an aly sis areal scale w ere m ost im p o rtan t. C l u s t e r i n g m e th o d s w e re c o m p ared by C u a n a lo a n d W e b s te r (197 0 ) , th ere wh o f o u n d was good th at for agreem ent num erical c l a s s i f i c a t i o n s c lassific atio n . b etw een c lu sterin g in tu itiv e are For E arth and a p r i o r G ley so ils, m eth o d s, or to th ere betw een c lassify and in was no agreem ent c lu sters concluded eith er gave and th at th e G leys by n u m e r i c a l or from each In M innesota, a w e ig h te d - p a ir group c l u s t e r a n a l y s i s c lassificatio n s low er th e bio p h y sical i n t u i t i v e m ethods b e c a u s e th e y a r e q u i t e d i f f e r e n t o th er. E ngland betw een in tu itiv e The a u t h o r s d ifficu lt so ils among m e t h o d s , c lassificatio n . in h eren tly Brown lev els of w hich th e h ie ra rc h y N um erical c l a s s i f i c a t i o n s n u m erical w ere did c lassific atio n s su b jectiv ely (G rig a l not accu rate an d A rnem an 1969). correspond w ell w ith except when v ariab les non- in th e num erical c l a s s i f i c a t i o n w ere l i m i t e d t h i c k n e s s , and v a r i a b l e s in th e non-num erical c l a s s i f i c a t i o n was lim ited to o b serv atio n tax o n o m ic m apping found scores and u n its that fam ily d eriv ed n u m erical in V irg in ia cluster classificatio n s tex tu ral by c lass. from C luster PCA w a s used c lassific atio n s ( Edmonds groupings S o il to horizo n at Ta xonomy did et a l. not (S o il of t e x t u r e and an aly sis to com pare th ree 1985) . cor respond Survey S taff of so il They with 1975), 22 in d icatin g th at so il v ariab ility w ith in 7 m was too f o r e f f e c t i v e d e s c r i p t i o n by t h e ta x o n o m ic u n i t s . of PCA s c o r e s because th ere weights in in clu ster were a l a r g e a PC, so asso ciated with m ethod em ployed was an aly sis th e w as number o f that no D enton be w ith var ia b le a l. and The u s e to v ariab les single PC ( E d m o n d s e t by thought useful sim ilar could 1985) . B arnes great be A sim ilar (1988), w here c l i m a t i c d a t a w a s s u m m a r i z e d i n t o a f e w v a r i a b l e s u s i n g PCA, and th ese variables com bination w ith were o rig in al used in cluster v ariab les approach was of analysis g reater sig n ific a n ce . T his in ten d ed c lassificatio n s l e s s d e p e n d e n t on c h a r a c t e r i s t i c s in b io lo g ical also to make of c lu s te r a n a ly s e s m ethods. D i s c r i m i n a n t a n a l y s i s w as a p p l i e d t o som e g l e y s o i l s S co tlan d to determ ine used classify to 1980). four T h e r e was taxonom ic w hether num erical taxonom ic good u n its agreem ent p artly rock from and th e Ragg num erical and c la ssific a tio n s so il in format io n s , but the produced at v ariab les classify in g m ore a c c u r a t e classific atio n sy stem were found t o be D iscrim in an t ranked successful p ro v id ed (H enderson be ( n o n - n u m e r i c a l ) c l a s s i f i c a t i o n s , b u t so me c r i t e r i a d iscrim in a to rs. developed could betw een u sed in th e taxonom ic c l a s s i f i c a t i o n poor tech n iq u es in th e by in so ils authors th e estim atio n s series a n aly sis lev el V irg in ia into fu n ctio n s w ere their of parent coneluded d is c r im in an t so il and that an aly sis response ( Edmonds only th an L en tn er 23 1987). G la cia lly lacu strin e o th er u sin g (N orton and v ariab les of silt w ere Zr, H all w ere and O ther effectiv e in g en erally v ariab les, in d iv id u a ls. c lassific atio n s response, silt and w ith For Two t y p e s fu n ctio n s p a rtic u la rly and one using stru ctu re, 29 and ( P a v l i k and H ole 1 9 7 7 ). and c l u s t e r d eriv ed groups from c r ite r ia , these w ere each fraction drum lins tex tu re, and m in eralo g ical an aly sis were sim ilar so il of n u m erical to co rrespond w ith c l a s s i f i c a t i o n s taxonomic v a r ia b ility . one id en tify in g G roupings som etim es f a i l e d subjective in th e from d iscrim in atio n . inclu d in g component a n a l y s i s effectiv e of by d i s c r i m i n a n t th ic k n e ss of s o i l horizons P rin cip al in resid u a, d iscrim in ated tex tu ral W isconsin, describ ed field -o b serv ed siltsto n e K co n ten ts 1985). m oraine lo e ss, su ccessfu lly T i, w ere l e s s ground w ith o u t, d eriv ed si tuat ions , deemed at largely b e tte r th e lo cal due the b a s e d on to soil numerical p re d ic to rs le v el, an aly sis of because so il th e n u m e r i c a l c l a s s i f i c a t i o n w as d e r i v e d f r o m a l a r g e r n u m b e r o f o b j e c t i v e l y d eterm ined v a r ia b le s . 24 OBJECTIVES AM) HYPOTHESES The o b je c tiv e a sso ciatio n s and of among s o i l m apped g lacial th is c h ap te r featu res, lan d fo rm s or relatio n sh ip s co m p o n en ts will in reg io n , developed g la cial g rad ien t for if o b tain ed site from d esig n atio n s n o t, i n loamy t i l l 5) d ata site an so il are: ecosystem ecological 1) th ese classific atio n system c h aracteristics o r d i n a t io n s and sh o u ld h o m o g e n o u s a mo ng there site s d ifferen ces be data the to with in ages of o rd in ated by represent o rd in atio n cor respond and g la cial enough from d i f f e r e n t soils does are homogenous are datin g u s e d by B u r g i s d e p o s itio n a l environm ents, d eterm ined 3) using q u ality , so ils as can 4) tech n iq u es of of (1981) an e c o l o g i c a l and d ep o sitio n , num erical reg io n s. th ese 2) a r e s o i l c h a r a c t e r i s t i c s sam pled s i t e s , so ils addressed a s mapped by B u r g i s serve as a b asis the environm ent, sy stem f o r n o r t h e a s t e r n low er M ich ig an . landform u n i t s in th is among d ev elo p m en t The g e n e r a l q u e s t i o n s to examine p h y sio g rap h ic regarding classific atio n to d ep o sitio n al Inform ation aid is of sites lan d fo rm unit (1981), or w hich field or lab o rato ry im portant in d eveloping 6) are be with a em phas i zed lo c alize d in future sam pling? The a s s u m p t i o n s t o be e v a l u a t e d land a r e a s , or g l a c i a l eq u iv alen t to 1) p hysiographic f e a t u r e s mapped by B u r g i s parent site m ater i a l / d e p o s i t i o n a l designations, 2) lab o rato ry summed b y h o r i z o n s data are: ordinations or obtained by d e p t h (1981), are e n v i ronm ent from soil categ o ries. 25 or fie ld from d ata, soils are eq u iv alen t, data environm ents reflect ranging from a 3) s i t e gradient outw ash to some s o i l v a r i a b l e s a r e o f g r e a t e r d i s t i n g u i s h i n g among s i t e s , o rd in a tio n s o btained of depositional ground m o raines, 5) im portance th an o t h e r s a n d 6) t i m e o f t i l l in d e p o sit does not in flu en ce s o il c h a r a c te r is tic s . E v a lu a tin g th e assum ptions w ill e n tail; t h e mode o f d e p o s i t i o n o f p a r e n t m a t e r i a l p h y sio g rap h ic environm ent com parison d escrip tio n s, d esig n atio n s of environm ent so il w ith and 3) mapped d ata, sam e p o sitio n o rd inatio n s environm ent which with types, c o n tain d istin g u ish in g ty p es. th e o rd in atio n each and a ordination, other 6) of betw een site s of d ep o sitio n al PCA d e p t h summed d a t a , and 5) and amo u n t 2) by of site s site s occupy th e co m p ariso n with id en tificatio n la rg e featu res, the 4) d e t e r m i n a t i o n o f w h e t h e r a l l on d ep o sitio n al g lacial among u s i n g l a b o r a t o r y h o r i z o n summed d a t a , field from s o i l and s i t e com paring ch aracteristics d esig n atio n s, 1) d e t e r m i n i n g of of d ep o sitio n al so il v ariab les in fo rm a tio n different th e for d ep o sitio n al 26 METHODS AND MATERIALS The a p p r o a c h t o the s t u d y was t o sam ple m atu re second- g ro w th f o r e s t e d s i t e s w hich w ere r e p r e s e n t a t i v e o f t h e of u p lan d ecosy stem m orphology co llected flo o r was for ty p es d escrib ed lab o rato ry nutrients. found in th e an aly ses, were regarding eco lo g ical th e stu d y field analyses L ab o rato ry num erical in of and m ajor perform ed to area. S o il sam ples w ere so il an aly ses, and and w ithin for w ere forest subsequent address relatio n sh ip s range and hypotheses among th ese site s. F i e l d sam pling d e sig n S ites selected sam pling req u ired to have h o m o g e n o u s v e g e t a t i v e c o v e r a n d a minimum s i z e o f 1 h a . sites also ev id en ce had of to recent s u b p l o t w as l o c a t e d the approxim ate were lo c a te d d ista n ce s and be at le a st 50 d istu rb a n ce . years in At each by t h r o w i n g a n o b j e c t center around of the azim u th s. the site. central S o il age, site, w hile Three p its at with stan d in g of in su b p lo ts using each no a c en tral o th er subplot The random th e four s u b p l o t s w e re d e s c r i b e d an d s a m p le d by h o r i z o n t o a d e p t h o f 45 0 cm o r or u n til heav ier d escrib ed a lay er tex tu red and 60 cm o r so il sam pled to w as at i n c lu d e d most r o o t i n g a c t i v i t y Forest weeks flo o r im m ed iately sam ples of encountered. least 150 cm, sandy c la y loam A ll were so ils a d ep th i n t h e s e loamy t i l l w ere fo llo w in g th ick er co lle cte d autum n during litterfall w hich so ils. th e in tw o early 27 November o f p its and each of forest th e o b tain ed Three four the 1987. F igure flo o r 2 .2 shows t h e a r r a n g e m e n t sam ples 24 s t u d y site s, on so il w ere p its. rem ainder o f d ifferen ces the site . At w ere a 0 . 2 5 m^ t e m p l a t e . litte r flo o r so il sam ples random ly a ro u n d year's forest flo o r in sid e lo cated C urrent h y p o th etical 12 f o r e s t by re m o v in g m a t e r i a l tem p lates a of w as m aterial each of sep arated th e from b a s e d on o b v i o u s in degree o f decom position. Laboratory a n a l y s e s Sam ples were analyzed D epartm ent o f F o r e s tr y w ere air d ried , mm o p e n i n g s . and pH 7 . 0 0 phosphorous a m o d ificatio n flo o r o b tain ed . U n iv ersity . and p a sse d through a K extracted 1972), d eterm in atio n s ex tractab le for w ere oven sam ples so t h a t Old f o r e s t o f woody l i t t e r , in K jeldahl w ith less ( S m ith e t d ried at o b tain ed than 0.0 1 M n itro g en 1977), and each (N) and 1945) a l. 80°C, near 2 1 N N H ^O A c (T echnicon so ils the S o ils siev e P (Bray and K u rtz calcareo u s The t h r e e of i n c l u d e d pH i n w a t e r a n d i n w ith 1957) . w eights so il p it t h e r e w ere f o u r c o m p o s ite s a m p le s p e r C urrent y e a r ' s l i t t e r W iley m i l l . p artly S tate (U .S.D .A . sam ples w ere com bined, site . a t M ichigan Mg, a n d (P) B r a y ' s #1 s o l u t i o n Forest L aboratory A nalyses C a C l2 s o l u t i o n , Ca, at S o ils S o i l a n a l y s e s w ere p e rfo rm e d on t h e 2 mm f r a c t i o n . so lu tio n the crushed, in w as g r o u n d i n a s t a i n l e s s flo o r m a te ria l, w as c o a r s e l y steel w h ic h was c o m p r i s e d ground in a h a m m e r m i 11 and f i n e l y hom ogenized i n a M e li ta c o f f e e g r i n d e r ( M o d e l No. 28 F ig u re 2.2. D iagram o f h y p o th etical s ite . sam ple c o l l e c t i o n lo catio n s at a A = a r e a o f homogenous v e g e t a t i v e c o v e r , a t l e a s t 1 ha i n s i z e , w i t h 50 o r m o r e y e a r s s i n c e m a j o r d i s t u r b a n c e . S = so il p it. F = forest f l o o r sam ple. V = v ectors a t random a z i m u t h and d i s t a n c e to su b p lo ts. 29 C G -1). and Forest P (Technicon subsequent Ca, Mg, Isaac ashing for sam ples Cu, at forest (Lea et analyzed were (Likens sam ples la rg e al. M elillo th rough et an aly sis o f s ta n d a r d s o i l and t i s s u e C a l c u l a t i o n s w ere p e rfo rm e d depth fragm ent sam ples Survey L a b o ra to ry and T r e t t i n a l. B ulk 1984c, Post 1982, et a l. T rettin by th ese the w ere den sity o rg an ic c h arco al, and 1982). so il th ick n ess w ere ratio co llected S o il in 1984a, et a l. used has in been et clod pred icted dry for to A lexander R eigner 1980, and R aw ls coarse oven a l. oth er P h illip s 1964, 1983). In dry from a s e t 1983, 1984b, d en sities (S o il P adley P adley had (U .S.D .A . my p r e d i c t i o n in on 1983b, L eM asters e t a l m ethod c a r b o n , t e x t u r e , and d ep th 1964, and horizon n o r t h e r n M ichigan Bulk developing woody Q u ality the corrected of a ir 1984). Saran-coated 24 and n u trien ts of Survey L a b o ra to ry Padley as re p licatio n p lace 1983a, P a d le y and T r e t t i n Padley m easured and al. for sam ples. to the much litter sam ple V alues th e as of 1970, req u ired B ulk d e n s i t i e s w ere e s t i m a t e d u s i n g d a t a 200 s o i l 1984, for used. volum e and f o r w eig h t. of in k g /h a , increm ent to c o n tain in g was or up N for an aly sis Borm ann tim e am ounts o f oak 1980, m ain tain ed K jeld ah l dry-ashed and of 4 8 0 ° C w as e x t e n d e d co n tro l a co n ten t b a s is , also The l e n g t h flo o r for spectro p h o to m etric a n d Mn 1971). co n tain in g m aterial and plasm a Zn, and K erber sam p les w ere 1977), DC a r g o n K, A l , com plete hours flo o r 1972), from so il (Curtis Dawud a n d G r a y my s t u d y , been eq u atio n s. stu d ies v ariab les et frag ip an and 1979, and 30 dense till d en sities lay ers of o th er reg ressio n T able w ere a s s ig n e d 2.1 so il eq u atio n s p resen ts th e v a rio u s depth, lay ers g r o u p mean v a l u e s . were p r e d i c t e d w h i c h u s e d TKN, the equations tex tu re, w ith m u ltip le texture, and m e an B ulk and d e p th . v alues used for reduce the and h o riz o n g ro u p s. Data analyses P rin cip al component dimensionality d im en s i o n a l C h atfield sets of plots of and C o llin s 2.2, soil v ariab les 2.3) soils site p rio r to field w ere used. corresponded with to display S o il sand, v alu e for 1976, and com bined so ils v alu es and from numerical w ere th at d ata v a riab les to tex tu res s i l t , tw o - (M orrison converted assig n ed clay so il which textural P h y s io g ra p h ic d e s i g n a t i o n s and s o i l d r a in a g e c l a s s e s w ere a s s i g n e d o r d i n a l n u m e ric a l v a lu e s R esu lts o f PCA u s i n g th an th e c o v a ria n c e m a trix , te c h n iq u e s m easured w ere tried. on d i f f e r e n t v ariab les co v arian ce 1980). to N o n -n u m erical were a c en tral and d eterm in ed an aly sis. for data used S ep arate and values w ere locations 1980) . descriptions pe r c e n t a g e class. the la b o ra to ry (T ab les field of analy ses with larg er matrix Use o f the (T able 2 . 3 ) . th e co rrelatio n are rep o rted h ere, M an y o f th e s c a le s , with v arian ces so il th e matrix, 1976 , co v arian ce m atrix a lth o u g h both v ariab les resu lt d om inate (M orrison th a t P C A 's C h atfield in rath er PCA i s and w ere th o se of th e C o llin s recommended 31 T able 2 .1 E q u a t i o n s a n d m e an v a l u e s u s e d bulk d e n s i t y . for estim atio n of S o il c h a r a c te r is tic R e g r e s s i o n e q u a t i o n -1- Bs h o r i z o n s w i t h 40-7 0% s a n d . - 0 . 4 2 2 + ( 0 . 00715SAND) + ( 0 . 058 9P H) + ( 0 . 8 9 8TRANSTKN) S t d . e r r o r 0 . 0 7 8 4 a t mean 1 . 3 9 4 Bs h o r i z o n s w i t h g r e a t e r t h a n 70% sand. 1 . 7 4 8 + ( - 0 . 0 0 0 3 1 5TKN) + ( 0 . 0 0 2 1 6 M I D ) + ( - 0 . 00394SAND)+ ( 0 . 0204CLAY) S t d . e r r o r 0 . 0 9 4 1 a t mean 1 . 4 3 4 L e s s t h a n 40% s a n d 1 . 5 8 2 + ( - 0 . 000185*TKN)+ ( - 0 . 000696MTD)+ ( - 0 . 00421*CLAY) S t d . e r r o r 0 . 1 0 5 a t m e an 1 . 5 4 9 G r e a t e r t h a n 40% s a n d , d e p t h b e t w e e n 60 a n d 1 5 0 cm. - 3 . 5 5 8 + ( 0 . 00402*TKN)+ ( - 0 . 0141M ID)+ ( 0 . 0194TRANSTKN)+ ( 3 . 260*LOGMID) S t d . e r r o r 0 . 0 9 3 9 a t mean 1 . 5 7 8 O thers^ lnB D =0.380 6 1 + (-0.05964*lnO C % )+ (-0.058147*00% ) S o il horizon Mean v a l u e B t, or com bination of E and B t. 1.618 S td. dev. 0.0945 Bx, Ex, o r c o m b i n a t i o n . 1.816 S td. dev. 0.0706 Bm, Em, o r c o m b i n a t i o n . 1.70 (assig n ed value) V a ria b le codes re p re se n t the fo llow ing v a lu e s: T K N = T o t a l K j e l d a h l n i t r o g e n , c o n c e n t r a t i o n %. TRANSTKN=( 1 0 0 / T K N ) + 1 . M I D = H o r i z o n m i d p o i n t , cm. LO G M ID =L oga rit hm o f h o r i z o n m i d p o i n t , cm. CLAY=Clay %. SAND=Sand %. PH=pH m e a s u r e d i n C a C l g s o l u t i o n . BD=Bulk d e n s i t y , g cm- 3 . O C = O r g a n i c c a r b o n %, h e r e e s t i m a t e d b y 0 . 0 3 5 3 5 + 1 7 . 4627TKN. * M .R . G a l e , p e r s o n a l c o m m u n i c a t i o n . 32 Table 2.2. Laboratory determined soil variables. L ab o ra to ry d eterm ined v a r ia b le s ------------------------- O r g a n i c l a y e r s -----------------------------------OITKN OITKP OIZN OIMN OICU OIAL OIMG OICA OIK OETKN OETKP OEZN OEMN OECU OEAL OEMG OECA OEK K jeld ah l n itro g e n c o n ten t of the O i, kg/ha. K je ld a h l phosphorous c o n te n t o f th e O i, k g /h a . Z i n c ( Zn) c o n t e n t o f t h e O i , k g / h a . M a n g a n e s e (Mn) c o n t e n t o f t h e O i , k g / h a . C o p p e r (Cu) c o n t e n t o f t h e O i , k g / h a . A lu m in u m ( A l ) c o n t e n t o f t h e O i , k g / h a . M a g n e s i u m (Mg) c o n t e n t o f t h e O i , k g / h a . C a l c i u m (Ca) c o n t e n t o f t h e O i , k g / h a . P o t a s s i u m (K) c o n t e n t o f t h e O i , k g / h a . K j e l d a h l n i t r o g e n c o n t e n t o f t h e Oe, k g / h a . K j e l d a h l p h o s p h o ro u s c o n t e n t o f t h e Oe, k g / h a . Z i n c c o n t e n t o f t h e Oe, k g / h a . M anganese c o n t e n t o f t h e Oe, k g / h a . C opper c o n t e n t o f t h e Oe, k g / h a . A lu m in u m c o n t e n t o f t h e O e , k g / h a . M agnesium c o n t e n t o f t h e Oe, k g / h a . C a lc iu m c o n t e n t o f t h e Oe, k g / h a . P o t a s s i u m c o n t e n t o f t h e Oe, k g / h a . ----------------------------- ATKN ATKP AMG ACA AK ABRAYP AHBUF ah o r i z o n s — ------------------- K j e l d a h l n i t r o g e n c o n t e n t o f t h e A, k g / h a . K j e l d a h l p h o s p h o r o u s c o n t e n t o f t h e A, k g / h a . M a g n e s i u m c o n t e n t o f t h e A, k g / h a . C a l c i u m c o n t e n t o f t h e A, k g / h a . P o t a s s i u m c o n t e n t o f t h e A, k g / h a . B r a y ' s P c o n t e n t o f t h e A, k g / h a . H y d r o g e n c o n t e n t o f t h e A, k g / h a , m easured in 0 .0 1 M C aC l2 s o l u t i o n . ----------------------------------- B h o r i z o n s -----------------------------------BTKN BTKP BMG BCA BK BBRAYP BHBCJF K j e l d a h l n i t r o g e n c o n t e n t o f t h e B, k g / h a . K j e l d a h l p h o s p h o r o u s c o n t e n t o f t h e B, k g / h a . M a g n e s i u m c o n t e n t o f t h e B, k g / h a . C a l c i u m c o n t e n t o f t h e B, k g / h a . P o t a s s i u m c o n t e n t o f t h e B, k g / h a . B r a y ' s P c o n t e n t o f t h e B, k g / h a . H y d r o g e n c o n t e n t o f t h e B, k g / h a , m easured in 0 .0 1 M C aC l2 s o l u t i o n . 33 Table 2.2. (continued). ---------------------------------- C h o r i z o n s --------------------------------------- CTKN K j e l d a h l n i t r o g e n c o n t e n t o f t h e C, k g / h a . CTKP K j e l d a h l p h o s p h o r o u s c o n t e n t o f t h e C, k g / h a . CMG M a g n e s i u m c o n t e n t o f t h e C, k g / h a . CCA C a l c i u m c o n t e n t o f t h e C, k g / h a . CK P o t a s s i u m c o n t e n t o f t h e C, k g / h a . CBRAYP B r a y ' s P c o n t e n t o f t h e C, k g / h a . CHBUF H y d r o g e n c o n t e n t o f t h e C, k g / h a , m e a s u r e d i n 0 .0 1 M C aC l2 s o l u t i o n . -------------- ------ ------------- D e p t h s u m s ----------------------------------------TKN10 TKN30 TKN70 TKN150 TKP10 TKP30 TKP70 TKP150 K j e l d a h l n i t r o g e n c o n t e n t o f 0 - 1 0 cm d e p t h , k g / h a . K j e l d a h l n i t r o g e n c o n t e n t o f 1 0 - 3 0 cm d e p t h , k g / h a . K j e l d a h l n i t r o g e n c o n t e n t o f 3 0 - 7 0 cm d e p t h , k g / h a . K j e l d a h l n i t r o g e n c o n t e n t o f 7 0 - 1 5 0 cm d e p t h , k g / h a . K j e l d a h l p h o s p h o r o u s c o n t e n t o f 0 - 1 0 cm d e p t h , k g / h a . K j e l d a h l p h o s p h o r o u s c o n t e n t o f 1 0 - 3 0 cm d e p t h , k g / h a . K j e l d a h l p h o s p h o r o u s c o n t e n t o f 3 0 - 7 0 cm d e p t h , k g / h a . K j e l d a h l p h o s p h o r o u s c o n t e n t o f 7 0 - 1 5 0 cm d e p t h , k g /h a. CA10 C a l c i u m c o n t e n t o f 0 - 1 0 cm d e p t h , k g / h a . CA30 C a l c i u m c o n t e n t o f 1 0 - 3 0 cm d e p t h , k g / h a . CA70 C a l c i u m c o n t e n t o f 3 0 - 7 0 cm d e p t h , k g / h a . CA150 C a l c i u m c o n t e n t o f 7 0 - 1 5 0 cm d e p t h , k g / h a . MG10 M a g n e s i u m c o n t e n t o f 0 - 1 0 cm d e p t h , k g / h a . MG30 M a g n e s i u m c o n t e n t o f 1 0 - 3 0 cm d e p t h , k g / h a . MG70 M a g n e s i u m c o n t e n t o f 3 0 - 7 0 cm d e p t h , k g / h a . MG150 M a g n e s i u m c o n t e n t o f 7 0 - 1 5 0 cm d e p t h , k g / h a . K10 P o t a s s i u m c o n t e n t o f 0 - 1 0 cm d e p t h , k g / h a . K30 P o t a s s i u m c o n t e n t o f 1 0 - 3 0 cm d e p t h , k g / h a . K70 P o t a s s i u m c o n t e n t o f 3 0 - 7 0 cm d e p t h , k g / h a . K150 P o t a s s i u m c o n t e n t o f 7 0 - 1 5 0 cm d e p t h , k g / h a . TKNSUM K j e l d a h l n i t r o g e n c o n t e n t o f 0 - 1 5 0 cm d e p t h , k g / h a . TKPSUM K j e l d a h l p h o s p h o r o u s c o n t e n t o f 0 - 1 5 0 cm d e p t h , kg/ha. CASUM C a l c i u m c o n t e n t o f 7 0 - 1 5 0 cm d e p t h , k g / h a . MGSUM M a g n e s i u m c o n t e n t o f 0 - 1 5 0 cm d e p t h , k g / h a . KSUM P o t a s s i u m c o n t e n t o f 0 - 1 5 0 cm d e p t h , k g / h a . NMIN Ammonium-N m i n e r a l i z e d f r o m 0 - 1 0 cm d e p t h d u r i n g a 1 week i n c u b a t i o n , g / k g . 34 Table 2.3. Field determined soil variables. F ie ld determ ined v a r ia b le s T ex tu ral v a ria b le s ASAND ASILT ACLAY BSAND BSI LT BCLAY CSAND CSILT CCLAY ACSFR BCSFR CCSFR CSFRSUM SAND30 SILT30 CLAY30 SLT150 SILT150 CLT150 SGT150 SIGT150 CGT150 SAND450 SILT450 CLAY450 HEAVS HEAVSI HEAVC DEPVFS DEPLS DEPSL DEPSCL DEPTEX TEXS TEXSI TEXC BIC from f i e l d estim ates Sand %i n A h o r i z o n . S ilt %i n A h o r i z o n . C lay %i n A h o r i z o n . Sand %i n B h o r i z o n . S ilt %i n B h o r i z o n . C lay %i n B h o r i z o n . Sand %i n C h o r i z o n a b o v e 150 cm. S ilt %i n C h o r i z o n a b o v e 150 cm. C lay %i n C h o r i z o n a b o v e 150 cm. C o a r s e f r a g m e n t volum e % o f A h o r i z o n . C o a r s e f r a g m e n t volum e % o f B h o r i z o n . C o a r s e f r a g m e n t v o l u m e % o f C h o r i z o n a b o v e 15 0 cm. C o a r s e f r a g m e n t v o l u m e % o f u p p e r 1 5 0 cmd e p t h . S a n d %o f 0 - 3 0 cm d e p t h . S i l t %o f 0 - 3 0 cm d e p t h . C l a y %o f 0 - 3 0 cm d e p t h . S a n d %o f 0 - 1 5 0 cm d e p t h . S i l t %o f 0 - 1 5 0 cm d e p t h . C l a y %o f 0 - 1 5 0 cm d e p t h . S a n d %o f 1 5 0 - 4 5 0 cm d e p t h . S i l t %o f 1 5 0 - 4 5 0 cm d e p t h . C l a y %o f 1 5 0 - 4 5 0 cm d e p t h . S a n d %o f 0 - 4 5 0 cm d e p t h . S i l t %o f 0 - 4 5 0 cm d e p t h . C l a y %o f 0 - 4 5 0 cm d e p t h . S a n d %o f h e a v i e s t t e x t u r a l l a y e r . S i l t %o f h e a v i e s t t e x t u r a l l a y e r . C l a y %o f h e a v i e s t t e x t u r a l l a y e r . A D e p t h t o v f s a c c u m u l a t i o n s 15 cm t h i c k , cm^ D e p t h t o I s a c c u m u l a t i o n s 15 cm t h i c k , c m . ^ D e p t h t o s i a c c u m u l a t i o n s 15 cm t h i c k , cm. D epth t o s c l o r h e a v i e r t e x t u r a l a c c u m u la tio n s 15 cm t h i c k , cm. D e p t h t o u p p e r m o s t h e a v y t e x t u r a l l a y e r , cm. Sand % o f u p p e rm o st heavy t e x t u r a l l a y e r . S i l t % o f upperm ost heavy t e x t u r a l l a y e r . C lay % o f upperm ost heavy t e x t u r a l l a y e r . T e x t u r a l b a n d in g i n t e n s i t y c o d e, 0 t o 5 b a se d on t h i c k n e s s and t e x t u r e o f heavy s o i l l a y e r s . * V alue o f '500' entered if none p r e s e n t . 35 Table 2.3. (continued). H orizon v a r i a b l e s OIWT OEWT ATHICK ETHICK BTHICK BSTHICK BTTHICK AVALUE BVALUE EDC W eight o f O i , k g /h a . W eig h t o f Oe, k g / h a . T h i c k n e s s o f A, cm. T h i c k n e s s o f E , cm. T h i c k n e s s o f B , cm. T h i c k n e s s o f B s , cm. T h i c k n e s s o f B t , cm. M u n s e l l c o l o r v a l u e o f A. M u n s e l l c o l o r v a l u e o f B. E h o r i z o n d e v e lo p m e n t c o d e , b a s e d on c o l o r t h i c k n e s s , and c o n t i n u i t y . R eaction, DEPPH7 DEPC03 ROOTDEP SLOPE ASPECT ELEV PHYSFORM DRCLASS MOTTDEP drain ag e, and p h y s io g r a p h ic v a r i a b l e s ------- D e p t h t o s o i l o f pH 7 , cm. D e p t h t o c a r b o n a t e s , cm. R o o t i n g d e p t h o f m a j o r r o o t s y s t e m , cm. S l o p e i n %. A sp e c t in d e g r e e s from t r u e n o r t h . E lev atio n in m e te rs . P h y s i o g r a p h i c d e s i g n a t i o n : l= lo w f l a t , 2=low er s lo p e , 3 = m id -lev el f l a t , 4 = m id-slope, 5=bench, 6=upper s l o p e , 7=high f l a t , 8 = r i d g e . D r a in a g e c l a s s : l = e x c e s s i v e l y d r a i n e d , 2=somewhat e x c e s s i v e l y d r a i n e d , 3=w ell d r a i n e d , 4 = m o d e ra te ly w e l l d r a i n e d , 5=somewhat p o o r l y d r a i n e d , 6 = p o o r l y d r a in e d , 7=very p o o r ly ^ d r a in e d . D e p t h t o m o t t l i n g , cm. * V alue o f *500’ e n te r e d if none p r e s e n t . 36 whenever p o ssib le because PC' s variances In of problem m atrix are of is of C o llin s to be explain the th e alth o u g h it stan d ard ized satisfacto ry 1980). Not a l l d ifficu lt the to p re d ic t th eir PCA, a n d t h e u t i l i t y of v ariab les th e important, tran sfo rm ed sm all. p o ssib le so choice in lessen ed used m ore so lv in g th e co rrelatio n v ariab les used C h atfield and th is stu d y appear however, to if and it is p erform ing th e a im portance PCA o f t h e c o v a r i a n c e m a t r i x even th e the if variables differences correlation for 1976, set a rtific ia l. the the and v a r ia b le s w ith th e l a r g e s t v a ria n c e as th at T hus, th e th an im portance p r i o r i s a l r e a d y known. id en tifies a ll used data been importance? o f a PCA i s in ev itab ly m ost sam e has Use o f if com plex, a ra th e r (Morrison v ariab les less somewhat matrix v arian ces. im p o rtan ce exactly are av o id s sim ilar is within scores co rrelatio n considered of theory variance stan d ard ized p ra c tice , frequently, because th ese data matrix are log- in v arian ce are very was d eem ed th e only analy ses d esp ite th e chance of spurious c o r r e la tio n s . PCA's w e re p e r f o r m e d on s i t e - l e v e l d a t a from th e fo u r pedons a t each s i t e w ere removed fro m a n a l y s i s stru ctu re w ere of th e identified co rrelatio n s of data by the A K ru sk al-W allis set. their if were a v e r a g e d . they c o n tr ib u te d V ariables low v ariab les test in w hich v a l u e s of of w ith the id en tical little lesse r com m unality V ariab les to the im portance e stim ate s, or PC' s . d istrib u tio n s was u s e d f o r c om paring g ro u p s b a s e d on d e p o s i t i o n a l e n v i r o n m e n t . 37 The K ru sk al-W allis te st d ifferen t d istrib u tio n s groups or variab les W allis test degrees compared differ. used to d eterm in e th a t but does not estab lish w hich reason, the w as f o l l o w e d b y i n d i v i d u a l t-tests w ith of ranks ex ist, be th is freedom sig n ifican tly S ite ma y for d ifferen t in using the For comparisons variances first S p e a rm a n 's ( S te e l and T o r r ie 1980). (S teel dim ension of S ite scores of groups and T o rrie rank S tatistical A nalysis 1985) was u s e d f o r a l l System (SAS) (SAS s o il d ata a n a ly se s. with 1980). PC A 's w ere co rrelatio n in th e f i r s t o f t h e PCA’ s w e r e c o m p a r e d u s i n g s i m p l e l i n e a r The reduced of d ifferen t co efficien t K ruskal- dim ension co rrelatio n s. In stitu te Inc. 38 RESULTS AND DISCUSSION Correspondence of mapped glacial features with parent materials and mode of deposition G lacial landform th e sca le in S ites sam pled as p a r t b oundaries stu d y featu res of areas area by w hich G len n ie F letch er M o rain es, Pond B urgis (1981) are and A uSable River based on stra tific a tio n , each site. addi tio n a lly Figure lo c atio n B ruce within tills . of and on d e s c r i p t i o n s with sep arated th e Table loam y into tw o 2.4 d e s c r ib e s of th e shows th e the s o ils in th e the solum based Port types there within is a definite the B u rg is' on of lack boundaries moraines. The G l e n n i e on sand, outw ash and t i l l . outw ash of of of were their H uron o r Port d ep o sitio n al used in t h i s p rev io u sly and physiography the groups of each te x tu r e s the t i l l bo u n d aries of compared w ith as and When t h e d e p o s i t i o n a l e n v i r o n m e n t d e s i g n a t i o n s are th e d esig n ated 2.3 s o il e n v i r o n m e n t s w h i c h f o r m e d t h e 24 s i t e s 2.4 2.1). among t h e B u r g i s l a n d f o r m s . d e s c r ip tio n s Soils lo cal within v a lle y , Mode o f d e p o s i t i o n w as d e t e r m i n e d f o r s i t e a (Figure lo cated mapped U p lan d s. l o c a t i o n s o f sam pled s i t e s at t h e M a l t b y Karnes, t h e W e s t B r a n c h th e C hanneled b e e n mapped Burgis o f my s t u d y t h e E l d o r a d o Ka mic R i d g e s , and have mapped stu d y . in T able lan d fo rm s, correspondence, p a r t i c u l a r l y the Glennie m oraine sand co n tain s w ith and West sites ice-ra fte d The W est B ra n c h m o r a i n e , i n c l u d i n g Branch occurring in clu sio n s, th e M altby ] i Re N* K®1 'fOtt Ue S* L# k a m i c \ * I DG E 5 He ,Ge F igure 2.3. L o c a t i o n o f s t u d y s i t e s among g l a c i a l (1977, 1 9 8 1 ) . 1 landform s i d e n t i f i e d by B u r g i s D o t t e d l i n e i n d i c a t e s w e s t e r n b o u n d a r y o f P o r t Huron t i l l . 40 T ab le 2 .4 D ep o sitio n al sam ple s i t e s . enviro n m en t c h a ra c te ristic s of O utw ash s a n d : A re a s o f s m a ll u n d u l a t i n g h i l l s w i t h s a n d t e x t u r e s t o a d e p t h o f 450 cm; m i n i m a l s t r a t i f i c a t i o n o f g r a v e l a n d t h i n loamy s a n d l a y e r s i n s u b s t r a t u m . S i t e s H, L, T. O u tw a sh s a n d w i t h i c e - r a f t e d loam y i n c l u s i o n s : Sand o r loam y s a n d s u r f a c e t e x t u r e s ; g r a v e l an d loam y t e x t u r a l p o c k e t s o c c u r r i n g b e l o w a d e p t h o f 1 0 0 cm. S i t e s K, M, P , Q, R , V, W, X. P o r t B ruce t i l l s Loamy s a n d o r s a n d y l o a m s u r f a c e t e x t u r e s ; l o a m y t i l l l a y e r p r e s e n t a b o v e 100 cm. P o r t B ru c e t i l l was d e p o s i t e d a t more t h a n 1 3 ,0 0 0 y e a r s B .P . S i t e s A, B, D, E , P , G. P o r t Huron t i l l : Loamy s a n d o r s a n d y l o a m s u r f a c e t e x t u r e ; l o a m y t i l l l a y e r p r e s e n t a b o v e 100 cm. P o r t H u r o n t i l l w as d e p o s i t e d a t a b o u t 12,000 y e a r s B .P. S i t e s I , J , N, 0 , S . L acustrine: S i l t s and f i n e sands in th in p red om inating throughout th e pedon. S i t e s C, U. Kar nes , co n tain s in clu sio n s, outw ash sand, lacu strin e, and till and P o r t B ruce d e p o s i t i o n . in ten siv ely w ere a l l sam pled. outw ash Sites on t h e sand w ith and th e one s i t e on t h e F letch er formed Huron t i l l , Port sites O ther B u rg is form ed in outw ash in sand of w ith both ice-ra fte d Port landform s E ldorado s tr a ta Huron w ere not K am ic R i d g e s ice-rafted in clu sio n s, Pond C h a n n e le d U p la n d s although it ma y was have been (1977, 1981) su b seq u en tly eroded. Landform s i d e n t i f i e d are with relativ ely lo c alize d large a n d mapped by B u r g i s areas, and th e y do n o t d ep o sitio n al shown l a t e r , w i t h o t h e r en v iro n m en ts correspond o r, ecosystem c h a r a c t e r i s t i c s as w ell will be on a s c a l e 41 u sefu l to th e f o r e s t m anagem ent. landforms eco sy stem are is classification, h ie ra rc h ic a l d eterm in in g m asses. m apped clim atic F o r my s t u d y , "su rficial to o w ith provide a b a sis at they influences of to be h ig h er may of use lev els be larg e in of useful a in phy sio g rap h ic d e p o s it io n a l environm ent d e s i g n a ti o n s Rowe' s sub stance th e s c a l e a t w hich small alth o u g h c la s s ific a tio n the corresponding In e sse n c e , (1984) plu s its d efin itio n surface of shape" landform were used as to f o r developm ent o f eco sy stem g r o u p s . P r i n c i p a l component a n a ly s e s A larg e field d escrip tio n mean v a l u e s and 2. 6. for number of of and these P rin cip al exploratory v ariab les lab o rato ry v ariab les data are or of com b in atio n s set PCA may also lo catio n s w ith to other lo catio n s id en tified an aly ses d epths, each from so ils. in is which be a co n trad ict d ep o sitio n al w ere d esig n ed or m orphological sep aratin g sites perform ed to d eterm in e groupings environm ents. to identify featu res used co n tain to axes based p lo t of on nutrients, or th e site maximum of site p rev io u sly A d d itio n ally , alo n g an e c o l o g i c a l g r a d i e n t . the v ariab les w hich w ere m ost w hether d e p th 2 .5 technique PCA w as u s e d t o d e t e r m i n e w h e t h e r p l o t s would S ite r educes w hich along th e T ables id en tifies v ariab les variation. v ariatio n . (PCA) and g reatest respect of p resen ted analysis data o b tain ed analyses component a n a l y s i s d im en sio n ality of a la rg e linear w ere th ese horizons, useful in PCA w a s a l s o horizon sums of Table 2.5. SITE Mean site level values of laboratory determined soil variables. OITKN OITKP OIZN OIMN 0 1 CU 0 1 AL OlfclG OICA OIK 0ET1IN OETKP OEZN OEMN OECU OEAL OEMG OECA OEK Kg<' h a A 2 5 .2 2 .9 0.0 7 2 1.99 0 .0 1 8 0 .7 3 5 6 .0 8 6 .9 6 .4 102 1 8 .6 0 .5 3 3 9 58 0 .0 8 9 16.48 13.6 3 7 0 .4 11 . 9 B 26. 1 3 .0 0 . 143 0.0 7 0.021 0 .2 6 8 5 .4 74. 1 6 .6 153 2 12.0 0 .9 3 3 6 73 0.1 3 8 18.04 1 9.8 239.3 1 7.5 C 3 5 .9 4 .3 0 . 192 1 .5 5 0.0 2 2 0.2 0 5 5 .9 8 6 .5 7 .9 282 2 20 .9 1 .585 21 30 0.2 2 6 15.22 2 5 .6 451 .3 2 2 .2 0 24. 1 2 .5 0 . 146 1 .3 0 0 .0 1 5 0 .2 5 8 4. 1 6 9 .2 4 .5 133 1 11.1 1 .055 10 27 0 . 125 20 .0 0 14.0 2 4 0 .7 12.9 E 2 7 .0 3 .2 0 . 132 1 .4 2 0 .0 2 0 0 .2 6 8 5 .6 75 .7 6 .8 138 5 1 0.7 0 .7 8 5 S 79 0 . 1 19 14.88 13.9 2 1 9 .4 13.4 F 2 7 .6 2 .9 0.091 1 39 0 .0 1 9 0 .2 9 5 4 .9 7 7 .7 6 .1 214 7 15.6 0 .9 5 5 14 43 0 . 171 17.39 21 . 5 3 0 8 .9 19.0 11.9 G 2 9 .6 3 .3 0 . 170 1.65 0 .0 1 8 0 .3 0 0 4 .7 8 6 .6 6 .9 121 4 9 .7 0 .8 2 3 9 35 0 . 107 1 1 .3 6 11.2 204.6 H 2 1 .8 2 .2 0 .0 9 7 13.90 0 .0 1 3 0 .3 2 8 3 .9 3 1 .6 5 .1 151 5 10. 1 0 .6 7 0 59 9 0 0 . 107 11.95 8 .6 106.6 12.2 I 3 5 .2 5 .3 0 .2 2 4 3 . 11 0.021 0 . 288 6. 1 7 7 .0 12.2 202 7 15.8 1.210 23 33 0 . 157 2 0 .8 6 2 0 .0 258.4 2 1 .2 J K 26 .2 3 .7 0 . 155 2 .7 0 0 .0 1 6 0 .2 9 3 5 .9 64.1 8 .9 90 6 7 .5 0 .5 9 3 10 09 0 .0 7 1 13.33 10.0 129.6 10.5 21 .4 3 .4 0 .1 5 6 5 .0 5 0.0 1 4 0 . 153 5 .1 44. 1 9 .2 154 3 11.7 1 .058 29 62 0 .1 1 5 10.60 1 3 .1 191 . 0 16.3 L 23 .6 2.3 0.111 12.73 0 .0 1 3 0 .2 7 5 3 .6 2 9 .3 4 .5 143 0 9 .3 0.58S 48 93 0.1 3 0 9 .5 5 8 .8 123.7 12.9 M 2 5 .2 2 .4 0 . 126 8 .6 9 0.0 1 8 0 .2 1 0 5 .5 4 6 .5 6 .7 251 8 1 6 .0 1.288 60 13 0.3 2 8 2 0 .8 9 17.8 21 7 .6 20. 1 N 3 6 .0 4 .5 0 . 175 2.2 9 0 .0 2 6 0 .2 8 3 7 .8 8 4 .9 10.8 2 1 .5 1.508 19 85 0.2 6 9 18.35 3 3 .2 46 4 .0 26. 1 0 31 .2 4 .9 0 . 190 1 .5 8 0.0 2 6 0 .3 0 5 6 .4 8 3 .7 9 .2 307 5 199 4 15.3 0 .9 6 0 10 20 0.1 7 7 14. 19 2 3 .4 2 7 3 .3 19.8 P 3 2 .2 3 .6 0.1 2 1 7 . 16 0 .0 1 9 0 .2 6 0 6 .8 6 8 .2 10.6 183 0 12.0 0 .6 3 5 26 75 0 .1 1 3 7 .8 4 14.4 243.3 1 6.5 Q 25. 1 2.7 0 . 168 7.0 5 0.0 2 5 0 .3 1 0 4 .4 5 0 .0 6 .6 174 9 12.7 1.038 40 95 0.1 3 2 10.45 12.8 2 0 3 .0 17.9 119 3 8 .1 0 .5 6 8 32 22 0 .0 9 7 10 .4 2 12.0 125.0 12. 1 4 .5 0 .2 8 5 2 21 0 .0 4 7 5 .6 4 6 .3 79. 1 7 .8 143 0 8 .9 0 .6 9 0 41 41 0.0 9 4 10.30 7 .3 101 .3 10.9 R 2 1 .8 2.5 0 . 1 13 8 .3 8 0 .0 1 2 0 .2 3 3 4 .5 3 3 .8 5 .3 S 22 .3 2.8 0.1 1 1 1 .0 4 0 .0 1 7 0 .4 2 8 4 .9 5 4 .2 6 .9 T 18. 1 1.5 0 . 103 1 0 .5 1 0.0 0 9 0 .2 2 8 3 .3 23 .3 3. 1 U 32 .4 2 .9 0 . 119 1 .41 0.0 1 6 0.4 4 5 5 .4 6 6 .5 7 .0 207 1 14.3 1. 105 16 4 9 0 . 161 18.33 2 1 .0 35 1 .0 1 8 .1 V 2 2 .3 2 .2 0 . 126 1 1 .4 6 0 .0 1 5 0 .2 7 8 3 .2 3 4 .8 5 .3 230 9 16.8 1. 103 75 57 0.1 6 6 2 0 .4 2 11.9 147.4 2 1 .2 w 2 2 .6 2 .4 0 . 107 10.27 0.0 1 4 0 .2 5 5 3 .7 3 5 .8 5 .3 224 1 15.3 0 .9 5 8 68 4 6 0.1 4 2 18.45 13.4 183.2 19. 1 X 2 3 .3 2 .3 0.0 8 7 9 .2 3 0.0 3 4 0 .2 7 0 3 .7 3 3 .7 4 .6 225 2 16.2 0 .8 5 0 72 26 0 . 142 16.24 13.8 201 . 3 2 0 .7 46 @ Mean 2 6 .5 3. 1 0.1 3 5 5 .2 8 0 .0 1 8 0 .2 9 9 5 .0 59. 1 6 .9 175 0 12.7 0 .9 0 7 29 9 5 0 . 143 14.63 1 5 .3 2 2 6 .4 16.3 S .D . 5 .0 0 .9 0 .0 3 8 4 .3 4 0 .0 0 5 0 . 112 1 .2 21 . 7 2 .3 62 0 4 .2 0 .3 1 3 23 03 0.0 6 2 4.4 3 6 .4 103.6 4 .6 Table 2.5- (continued). SITE ATKN ATKP AMG A 2 6 03.5 3 3 5 .3 101 .8 B 1426.2 14 0 .7 6 5 .0 ACA AHBUF BTKN 6 6 .9 1 .03E -6 4 562.2 2684.8 7 .5 2 . 10E -6 6461.1 3921. 1 AK ABRAVP 2 5 65.4 5 4 .2 8 0 5 .9 3 4 .5 BTKP BMG BCA BK BBRAYP BHB11F CTKN CTKP 8 9 4 .2 17264 0 503 4 139 1 1 . 46E -5 4 4 4 .2 5 0 7 .2 3898.7 2 305 8 6 1283 4 133 3 3 . 16E -4 2 9 51.7 2569.5 1155.6 C 9 1 4 .B 7 4 .6 3 4 .8 5 7 9 .2 31 . 9 4 .9 1 . 75E-7 3 987.4 3806.4 9 7 7 .2 6990 7 600 0 640 8 7 .0 4 E -5 8 9 3 .5 D 1887.0 2 4 5 .2 103.7 1508.8 5 2 .1 1 9 .1 7.25E -7 4843.9 2 6 5 8 .5 1208.0 16830 0 463 0 165 5 3 . 39E -5 105.3 5 7 3 .2 E 1754.8 175.9 8 8 .3 1508.8 4 3 .0 9 .3 2 .7 5 E -7 5112.3 2 424.6 1209.2 10820 4 45 7 6 106 4 1 .02E -4 9 6 0 .7 9 9 4 .6 F 2 4 25.4 506.5 10 5 .2 16 0 7 .1 5 8 .9 2 0 .8 1 .48E -6 5 460.2 3865.1 3 258.6 32528 1 1000 0 167 5 1 .7 4 E -4 65 5 .8 84 8 .7 G 1802.9 2 4 2 .2 7 2 .0 1312.3 4 9 .9 1 2.8 2 . 13E -6 5271 . 3 5 461.2 2777.2 30081 2 1259 9 745 3 2 .6 4 E -4 5 5 1 .4 5 9 7 .3 H 859. 1 8 5 .0 21 .9 145.3 3 3 .5 6 .2 2.2 0 E -4 1615.5 948.1 18.9 71 3 54 3 264 8 4 .0 3 E -4 69 2 .6 679. 1 I 1 18 3 .5 182.6 70 .0 8 1 7 .6 4 6 .6 5 .0 3 E -6 5413.1 5 580.8 4084.9 18688 4 1311 6 713 9 6 .77E -5 1669.0 2170.8 J 1 54 9 .1 193.6 8 1 .8 90 0 .8 4 8 .5 13.9 1 2.7 4 .08E -6 3 769.8 2 5 1 8 .0 2 820.6 12938 3 1218 1 217 0 8 .8 1 E -5 1 855.9 1963.2 K 1463.4 101.4 7 3 .0 6 6 6 .2 9 1 .5 13.3 5 .83E -6 3892.5 2913.8 3377.3 13493 5 1233 a 422 6 2 . 1 1E-4 1123.5 1168.2 L 93 2 .0 1 1 0 .7 15.4 86.1 2 6.7 4 .2 1 .4 1 E-4 1169.7 8 2 3 .5 100.3 472 6 76 0 223 7 3 .04E -4 5 4 8 .7 691 . 4 M 1230.8 8 7 .5 4 5 .0 255. 1 2 5 .6 7 .8 1 .2 2 E -4 2 882.3 100 1 .8 8 4 9 .3 4545 8 248 4 227 6 2 .7 0 E -4 2196.9 1794.5 4082.2 N 1757.9 151 .8 177.0 13 8 9 .1 8 3 .5 9 .7 1 .58E -5 3850.3 173 4 .8 2 780.3 11856 4 892 5 75 8 2 .5 9 E -5 5025.6 0 1 95 6 .1 167.0 2 4 0 .2 2 6 22.2 134.8 19.9 9 .50E -7 4334.0 2 5 1 8 .2 254 2 .8 13494 2 629 6 175 8 1 . 25E -4 1268.5 1178.8 P 200 5 .7 107.2 132.3 1414.2 7 8 .7 12.9 3 .7 7 E -5 2 323.1 725.8 187.2 2307 5 81 0 106 4 2.93E -4 1732.3 1 0 5 0 .1 Q 6 3 6 .4 5 0 .6 26.5 15 4 .3 3 2 .5 4 .9 1.7 5 E -4 1139.0 6 1 7 .7 4 5 .7 205 2 116 0 182 1 3 .5 3 E -4 1531.2 1768.9 R 6 2 8 .2 7 3 .3 23.0 191.9 1 5.7 6 .5 1 . 37E-4 1218. 1 7 4 7 .7 5 7 .3 311 7 60 4 206 4 1.90E -4 1356.3 1538.4 1839.2 S 2 512.9 264.3 182.8 2011.6 7 6 .3 1 7.7 1 .41E -5 4 4 3 3 .6 3 290.8 4 2 2 7 .4 32857 4 1136 3 45 2 9 . 0 IE -5 1089.2 T 711 .7 4 8 .5 13.6 40. 1 2 4 .8 3 ,6 1 .4 7 E -4 1356.5 61 5 .8 16.2 63 3 58 1 159 0 2 . 1 9 E -4 5 0 4 .7 7 0 1 .5 U 9 0 4 .1 7 9 .0 7 0 .5 9 0 4 .3 3 9 .8 6. 1 9 .5 5 E -6 3 195.4 1 1 2 2 .1 1704.0 6756 6 5987 0 30 5 1 . 25E-4 3673.2 3 4 4 4 .6 V 4 8 0 .8 3 7 .6 18.6 7 0 .3 3 3 .2 5 .9 1 . 0 1 E-4 1529.4 96 7 .5 9 3 .7 345 8 115 5 242 2 2 .82E -4 746. 1 8 7 6 .5 w 800.1 5 4 .7 3 0 .9 146.3 3 8 .9 6 .2 2 . 3 1 E -4 1104.8 334.1 4 0 .5 155 4 63 9 40 6 2 .24E -4 1078.5 6 8 0 .4 5 3 6 .9 4 4 .4 1 7.5 111.7 20. 1 3 .1 1 . 24E-4 2 547.5 1 30 4 .2 4 9 5 .2 32 37 4 335 4 264 6 5 . 1 5E -4 4 5 4 .2 5 8 6 .4 Mean X 1373.5 148.3 75 .5 9 0 8 .9 4 9 .0 12.3 6 .25E -5 3394.7 2191.1 1569.4 10807 2 574 6 237 3 1 .98E -4 1379.5 1402.52 S .D . 651 . 0 110.2 5 9 .6 79 0 .8 2 7 .3 12.8 7 .8 4 E -5 1662.6 1534.4 1491.2 10678 0 472 6 198 7 1 . 3QE-4 1136.6 9 2 6 .7 Table 2.5 (continued). SITE CMG CCA CK CBRAVP CHBUF TKN10 TKN30 TKN70 TKN150 TKP10 TKP30 TKP70 TKP150 CA10 CA30 k fl/h s A 178.3 4 4 .8 1 0.3 3.03E -7 2 65 4 .5 8 7 3 .5 1704.3 1794.3 3 6 3 .0 4 8 2 .6 9 3 0 .6 1317.6 2 663.4 1778.2 5 339 5 .8 33695. 1 6907.1 750.2 31 .0 1 . 46E -5 2136.0 1481.3 2 780.1 4441.5 463.1 6 8 6 .0 1 7 2 5 .1 3 757.0 1347. 1 2 0 13.7 C 824.4 6 148.6 34 8 .9 D 1 5 1 .2 571 1 . 6 6 4 .0 1 .4 0 E -5 1601.6 1063.6 1354.0 1790.3 39 3 .6 1057.8 1182.9 2 4 05.3 1130.3 1011.3 22. 1 3 .0 1 .5 5 E -7 256 6 .9 1766.0 1145.3 1 3 2 8 .1 50 9 .6 91 4 .0 610.0 1416.3 2134.9 332 1 .8 711.0 8 0 7 .8 1711.5 2 107.3 1718.7 2019.7 1004.8 t 488.2 9414.5 183. 1 2 6 .6 3.4 7 E -6 262 9 .2 1 5 80. 1 1505.4 2 154.0 3 7 4 .3 F 8 9 2 .9 16775.2 201 .3 5 .9 2 .2 3 E -7 2199.1 1764.7 1819.4 2762.9 434. 1 77 3 .6 1218.8 2 7 97.5 1281.4 G 4 9 4 .3 5 5 36.8 1 3 2 .8 1 4.3 1 .2 8 E -5 231 0 .3 1193.2 1438.6 2429.6 48 2 .5 1 0 7 6 .1 1558.8 2 8 28.7 1734.5 H 107.9 6 5 9 .2 71 .4 21 5 .5 1.6 7 E -4 1054.9 76 6 .2 85 5 .5 4 9 0 .6 156.3 3 5 7 .6 6 6 0 .0 5 3 8 .4 153. 1 3 0 .5 I 274 6 .8 20796.5 6 7 5 .5 3 6 .4 2.8 5 E -6 1767.9 1522.4 231 9 .8 2655.5 5 4 6 .8 1511.3 255 6 .2 3319.8 1578.4 2802.0 J 3 741.9 16811 .8 532.3 4 5 .0 1.8 8 E -5 1954.4 1053.9 1901.7 2 273.9 3 6 8 .5 6 5 2 .3 1300.2 2 3 56.8 1202.8 1615.6 K 1174.7 15212.7 361 .3 49 .7 4 .05E -5 1771 . 0 8 7 5 .8 1391.5 1603.6 2 1 2 .9 6 2 5 .4 9 6 0 .3 1612.0 838.1 8 8 4 .2 L 4 1 8 .6 8 482.5 122.3 141 .5 7 .2 0 E -5 1144.0 542. 1 5 9 9 .0 3 6 7 .9 2 1 1 .2 40 1 .8 5 1 2 .2 5 0 0 .7 106.4 6 5 .9 M 2 282.0 2 1 5 9 0 .6 526.8 28.0 1 .8 1 E -5 1590.8 97 4 .0 1 32 9 .1 2 422.2 152.6 310.8 565.5 1855.6 3 1 2 .0 432.1 N 4 031.0 37242.0 950.5 5 8 .6 1 . 40E-5 2128.6 1259.9 2 2 22.6 5007.4 293.8 4 5 2 .5 1190.7 4 030.9 1873.7 2 4 78.2 0 1392.5 14348.9 223.7 2 8.7 3.4 3 E -6 2 281.3 1104.6 2010.6 2142.2 3 0 8 .0 679. 1 1152.9 1723.8 2 944.8 1872.7 P 662.7 6 601.4 186. 1 9 3 .9 1 .9 3 E -5 2008.1 958. 1 1610.3 1474.5 143.9 2 4 2 .9 544.1 95 1 .9 1443.8 9 7 5 .2 0 2496.1 2 9 429.2 5 5 0 .6 92. 1 8.3 7 E -5 7 8 8 .7 51 9 .9 654.2 1343.7 1 0 3 .1 24 8 .5 5 1 3 .8 1571.8 166.2 89.1 R 19 3 5 .1 10145.3 35 0 .0 196.4 9 .25E -5 773. 1 550.8 7 5 9 .6 1119. 1 146.6 311 . 0 5 9 0 .9 1310.8 23 9 .5 136.8 2 107.7 S 1800.2 29119.7 469.9 0 2.2 8 E -7 230 2 .7 1284.0 1785.6 2663.4 2 3 0 .3 4 0 4 .3 1282.0 3 477.7 1823.5 T 301 . 0 7990.6 73.0 188.7 8 .42E -5 98 2 .6 6 2 6 .2 61 1 .6 35 2 .4 10 9 .4 2 6 8 .6 4 4 3 .5 5 4 4 .3 51 .7 2 9 .4 U 3808.3 25843.7 551 . 5 2 6 .2 1 . 60E -5 136 3 .4 1241.6 2 116.5 3 051.2 2 1 0 .4 3 3 9 .5 1073.5 3 022.4 1381.8 2198.6 V 655.7 5594.3 2 5 5 .6 105.0 1 .4 9 E -4 85 6 .0 718.4 5 9 7 .5 5 8 4 .4 1 6 3 .6 5 1 4 .6 5 2 3 .9 6 7 9 .4 112.5 100.2 145.5 w 5 6 0 .9 4545.9 190.0 148.9 1 . 04E-4 1084.4 762.8 6 7 7 .8 4 5 8 .4 126.7 278.2 392.7 471 . 6 1 7 6 .1 X 525.8 7 0 6 3 .6 301 .5 1 1 8.9 5 . 10E -5 90 8 .7 1017.3 1044.5 568. 1 175.0 5 1 2 .6 581.7 6 6 5 .7 184.7 17B.5 Mean 1 4 6 1 .1 14402.8 336.5 7 2 .0 4.0 9 E -5 1702.4 1062.5 1426.5 1886.6 2 7 8 .3 5 7 5 .5 95 3 .3 1869.5 1124.5 1208.8 S.D . 1286.9 10316.2 243.7 6 5 .4 4 .B 9E -5 631 . 6 372.2 6 2 2 .5 1215.8 14 0 .3 3 1 6 .0 508.7 1116.0 8 8 2 .8 1 0 1 4 .1 Table 2.5 (continued). SITE CA70 CA150 MG 10 MG30 MG70 MG150 K10 K30 K70 K150 TKNSUM TKPSUM CASUM MGSUM KSUM A 5975.0 13585.8 105.0 61 . 0 273.5 659.7 57 .2 6 0 .3 153.3 228. 1 7609 8 3527.3 2 6736.4 1174.3 6 0 2 .3 6 10842.0 43356.8 1 1 9 .8 3 3 2 .7 1 891.3 5 0 1 5 .7 76 .3 190.3 6 6 0 .2 1141 . 5 10838 9 6 631.2 5 7 5 5 9 .6 7359.4 2068.2 C 1868. 1 9 7 1 7 .7 78 .3 77.7 211.1 1469.9 7 0 .8 96. 1 171 . 0 6 4 3 .3 57 95 7 5036.5 13 7 18.5 1836.4 9 8 0 .7 D 4 165.8 14144.2 13 9 .9 13 6 .0 269.6 89 3 .8 70 .3 7 1 .5 153.2 235.7 6836 2 3476.9 2 4 0 5 0 .4 1462.9 537.2 E 230 2 .9 1 5644.0 136.0 103.7 1 59. 1 1 38 9 .1 64 .7 6 6 .8 114.0 439.1 3595.0 2 1 7 4 3 .6 1785.7 6 8 3 .7 F 9 302.0 3 8 3 2 9 .6 9 4 .3 2 6 4 .4 1150.5 274 7 .7 6 2 .3 119.2 3 8 7 .0 69 1 .9 7827 8 8541 4 5 220.2 50910.4 4 2 5 6 .6 1 2 6 0 .1 G 2326.7 2 6 3 44.3 9 6 .6 8 6 .0 499. 1 2 3 66.8 6 7 .7 7 7 .2 3 3 4 .5 83 5 .9 7625 6 6 300.7 3 6 9 3 0 .3 3343.5 1442.7 H 5 9 .0 6 3 3 .2 2 4 .4 8 .2 12.5 103.7 3 9 .9 2 4 .0 3 2 .8 6 2 .5 3167 1 1712.3 87 5 .8 148.7 159.2 I 749 2 .7 2 8429.4 155.0 3 9 0 .8 1687.6 4 6 6 6 .4 110.7 285.2 6 2 0 .7 1 0 1 7 .1 8265 6 7 934.2 4 0 3 02.5 6 9 0 1 .7 2033.7 J 7927.3 19910.6 126.6 3 0 6 .2 1 8 7 2 .1 4 340.2 84.1 181 .7 7 5 2 .9 78 0 .9 7174 9 4 6 7 4 .7 30650.8 6 644.2 1798.9 K 5325.1 16970.4 104.5 136.6 1168.5 1665.2 11 6 .8 10 7 .7 39 9 .4 57 3 .9 6479 9 4183.3 2 9 3 7 2 .5 4 6 2 5 .0 1686.5 L 749.7 8 119.5 19.8 13.7 137.5 3 6 3 .4 36 .6 30 .7 5 9 .3 9 8 .5 265 0 3 162 5 .6 90 4 1 .2 5 3 4 .4 2 2 5 .0 M 2 7 24.4 22923.5 5 9 .0 7 8 .5 4 9 7 .4 2 5 4 1 .4 36 .5 4 5 .8 135.9 5 8 2 .7 6310 0 2883.9 2 6 3 91.6 3 176.3 80 0 .8 N 9 827.0 3 6 2 8 3 .9 261 . 3 466. 1 2216.4 4042.2 11 6 .2 19 6 .3 6 7 1 .2 9 4 1 .5 10633 a 5968.8 5 0 4 8 7 .4 6989.1 1926.4 0 8 872.7 16740.5 28 9 .7 32 3 .7 1550.8 2009.0 152.9 107.4 3 8 3 .8 3 4 1 .7 7558 6 3 864.0 3 0 4 65.4 4 1 7 5 .6 988.1 P 1635.3 6265.4 13 7 .9 88. 1 114.6 641 . 2 8 1 .6 3 0 .7 5 9 .6 173.4 6061 1 1883.1 1 0 3 2 3 .1 9 8 2 .2 34 5 .8 Q 1290.2 28243.3 30 .5 18.6 145.8 237 3 .5 4 2 .0 4 4 .6 107.6 5 0 4 .8 3306 6 2 437.2 2 9 7 8 8 .7 2 5 6 8 .3 699.1 R 3 8 9 .3 9883.3 31 .2 25 .7 5 4 .0 1904.5 2 4 .7 2 8 .3 4 3 .7 32 9 .4 32 02 6 235 9 .3 10648.9 2015.4 426.1 1682.4 S 12145.7 47911.8 164.5 28 9 .8 1661.3 4 095.0 6 8 .0 136.3 47 6 .0 1002.2 8035 7 5 394.3 63988.7 62 1 0 .5 T 2 8 8 .8 7724.1 17.5 7 .2 18.5 2 8 7 .6 3 4 .9 2 6 .6 3 5 .7 5 8 .7 25 72 8 1365.7 8 0 9 4 .0 3 3 0 .8 155.8 U 5721.1 2 4203.2 135.7 4 6 7 .8 1690.2 3289.2 7 2 .3 208.1 4 3 7 .0 471 . 9 7772 7 4 6 4 5 .8 33504.6 5582.9 11 B 9 .3 40 4 .3 V 4 4 8 .6 5 349.1 31 .2 2 6 .8 119.3 5 9 0 .6 5 3 .9 4 6.1 9 0 .6 213.8 27 56 3 1881.6 6 0 1 0 .4 7 6 7 .9 w 704.0 3 821.9 3 8 .5 3 3 .9 161 . 9 3 9 7 .9 53.1 4 4 .0 8 0 .2 115.5 29 83 4 1269.2 48 4 7 .6 6 3 2 .2 2 9 2 .8 X 1042.3 9 0 0 7 .2 2 9 .4 3 3 .8 2 4 0 .6 7 3 4 .7 4 0 .0 6 1 .5 182.2 3 7 3 .2 353 8 6 1935.0 10412.8 1038.4 6 5 6 .9 Mean 4 309.4 18897.6 101 . 1 157.4 741.8 2 024.6 68. 1 9 5 .3 2 7 2 .6 4 9 4 .0 6147 7 3 7 4 1 .9 2 6 1 1 9 .0 3105.9 9 6 0 .3 S .D . 3 861.0 12983.5 7 2 .3 153.3 75 8 .0 153 2 .6 31 .0 70 .6 230.3 3 2 9 .0 2 540 5 1876.0 17558.5 2 4 2 6 .3 63 4 .4 Table 2.6. SITE i SUe level values of field determined soil variables. ASAND ASILT <—_____ ACLAV BSAND BSILT BCLAY CSAND CSILT CCLAY ACSFR BCSFR CCSFR SAND30 SIL T 30 CLAY30 SLT150 65 A 6 3 .3 2 5 .8 11.0 6 9 .0 19.4 11 . 6 6 7 .2 3 .8 4. 1 4 .4 20 .7 15.9 83 12 5 B 5 3 .0 3 2 .8 14.3 3 8 .3 3 7 .5 2 4 .3 4 4 .8 18.4 3 6 .8 1 .6 1.5 0 .9 63 26 11 10 C 7 2 .B 19.0 8 .3 8 0 .2 11.6 8 .2 4 0 .0 23 .7 3 6 .3 0 .5 1 .7 1 .1 83 12 5 83 0 59 .3 2 8 .8 12.0 6 8 .6 2 1 .2 10.3 6 7 .5 3 .8 3 .8 0 .5 17 .1 8 .2 65 25 10 57 E 5 9 .3 2 8 .8 12.0 72. 1 16. 1 75 .3 7 .6 17.0 2 .5 9 .8 8 .7 65 25 10 57 F 6 3 .8 2 5 .8 1 0.5 5 6 .7 21 .0 11.9 22 .4 7 2 .6 16.8 1 0 .6 2 .2 1.9 1.6 65 25 10 57 G 6 4 .5 2 5 .3 10.3 6 3 .4 21 . 6 1 5.1 2 2 .6 1 0 .6 1 6 .B 2 .3 1 .8 0 .2 65 25 10 57 H 8 3 .0 12.0 5 .0 9 0 .0 5 .0 5 .0 9 0 .0 5 .0 5 .0 0 .4 2 .0 0. 1 90 5 5 90 I 6 8 .3 2 2 .3 9 .5 4 3 .0 3 4 .4 2 2 .6 49. 1 21 . 2 29 .7 0 .7 2 .9 5 .6 42 40 18 57 J 6 8 .3 2 2 .3 9 .5 5 4 .2 27. 1 18.8 61 . 9 1 4.8 23 .3 1.8 6 .3 2. 1 65 25 10 42 K 4 6 .3 1 9 .0 7 .8 6 8 .0 18.6 13.5 5 9 .0 8 .2 7 .8 0 .0 2 .4 0 .0 65 25 10 65 L 90 .0 5 .0 5 .0 89 .0 6 .0 5 .0 9 0 .0 5 .0 5 .0 0 .2 1 .6 0.1 90 5 5 90 57 M 90 .0 5 .0 5 .0 7 8 .0 13.5 8 .6 5 9 .5 16.3 24 .2 0 .2 2.2 0 .3 90 5 5 N 41 .8 2 3 .0 10.3 4 0 .8 3 9 .2 2 0 .0 3 2 .4 22 .7 4 4 .9 0 .6 2. 1 0 .1 42 40 18 10 0 4 8 .3 19.0 7 .8 5 7 .8 2 1 .6 20 .7 5 9 .9 15.6 24 .5 0 .2 1 .6 4 .6 65 25 10 57 P 2 0 .8 3 .0 1.3 8 6 .5 8 .6 5 .0 8 8 .3 5 .3 6 .5 0 .3 0 .4 0 .1 83 12 5 90 0 9 0 .0 5 .0 5 .0 9 0 .0 5 .0 5 .0 6 6 .2 8 .5 2 5 .3 0 .0 4 .9 0 .3 90 5 5 90 R 9 0 .0 5 .0 5 .0 9 0 .0 5 .0 5 .0 8 9 .5 5 .3 5 .3 0 .1 6 .4 1 .0 90 5 5 90 S 7 5 .3 17.0 7 .8 6 2 .9 16 .1 21 . 0 10.0 3 5 .0 5 5 .0 1 .0 0 .8 1 .0 65 25 10 57 T 9 0 .0 5 .0 5 .0 9 0 .0 5 .0 5 .0 9 0 .0 5 .0 5 .0 0 .0 2 .9 0 .3 90 5 5 90 U 5 6 .0 3 2 .8 1 1 .3 5 4 .4 2 9 .0 16.7 7 3 .2 8 .9 18.0 1 .2 2 .3 0.1 65 25 10 10 V 9 0 .0 5 .0 5 .0 8 7 .2 7 .9 5 .0 89.1 5 .0 5 .9 0 .6 10.5 2 .0 90 5 5 83 w 8 6 .5 8 .5 5 .0 85. 1 10.0 5 .0 8 7 .5 5 .0 7 .5 0 .4 9. 1 2 .5 83 12 5 90 X 9 0 .0 5 .0 5 .0 83.1 10.0 6 .9 8 5 .5 5 .0 9 .5 0 .4 7 .6 1.8 83 11 5 57 Mean 6 9 .3 16.7 7 .8 70 .7 17 .1 12.2 6 5 .5 11 . 5 17.8 0 .9 5 .0 2 .4 7 4 .0 17.8 8 .2 6 3 .0 S .D . 19.0 10.2 3 .2 16.9 10.5 7 .0 22 .9 8 .2 14.4 1.1 5 .2 3 .8 14.9 1 1 .1 3 .9 2 5 .6 Table 2.6. SITE (continued). S IL T 150 CLT150 SGT15CI CGT150 CGT15C1 SAND450 SIL T 450 CLAV450 HEAVS; HEAVSI < —————----- HEAVC DEPVFS DEPLS DEPSL DEPSCL DEPTE cm A 25 10 57 15 28 57 15 28 57 15 28 500 15 70 50 45 B 55 35 10 55 35 10 55 35 57 15 28 500 15 25 49 43 179 C 12 5 20 65 15 57 15 28 57 15 28 500 15 142 185 0 15 28 57 15 28 57 15 28 57 15 28 500 500 15 98 15 E 15 28 57 15 28 57 15 28 57 15 28 500 500 17 137 105 F 15 28 57 15 28 57 15 28 57 15 28 500 500 18 57 52 G 15 28 57 15 28 57 15 28 57 15 28 500 500 30 93 88 H 5 5 90 5 5 90 5 5 90 5 5 500 500 500 500 500 I 15 28 33 35 32 33 35 32 33 35 32 500 15 33 64 49 J 40 16 57 15 28 57 15 28 57 15 28 500 47 18 43 39 K 25 10 57 15 28 57 15 28 57 15 28 307 63 52 173 135 L 5 5 90 5 5 90 5 5 83 12 5 500 220 50 0 500 50 0 M 15 28 10 55 35 10 55 35 10 55 35 500 83 48 115 100 N 55 35 10 55 35 10 55 35 10 55 35 500 37 9 22 60 48 0 15 28 57 15 28 57 15 28 57 15 28 500 500 18 59 40 P 5 5 65 25 10 65 25 10 33 35 32 177 49 198 244 125 Q R 5 5 33 35 32 33 35 32 33 35 32 167 198 154 205 87 5 5 20 65 15 20 65 15 20 65 15 299 500 274 500 259 S 15 28 10 55 35 10 55 35 10 55 35 50 0 15 20 58 43 T 5 5 83 12 5 83 12 5 83 12 5 500 500 500 500 500 U 55 35 10 55 35 10 55 35 33 35 32 146 106 110 40 21 V 12 5 65 25 10 65 25 10 65 25 10 500 134 335 500 183 24 4 w 5 5 65 25 10 65 25 10 65 25 10 500 24 500 500 X 15 28 57 15 28 57 15 28 57 15 28 500 72 185 52 Mean 1 8.7 18.3 47. 0 29. 5 23. 6 4 8 .5 27 .4 2 4.1 49. 8 2 5 .6 2 4 .6 441 . 5 227.1 15 7 .7 199.3 143, S .D . 1 6 .2 12.2 26 . 0 20. 1 10. 8 25 .4 18.8 10.7 22. 5 1 6.8 10 .1 120.9 2 1 3 .2 178.8 1 8 5 .6 153. 37 Table 2.6. SITE TEXS (continued). TEXSI TEXC _ _ (» / ___ ——- BIC OIWT > ------------p v y / OEWT ii d ATHICK ETHICK BTHICK " BSTHICK BTTHICK AVALUE BVALUE EDC DEPPH7 depco: cn1 > ■ c m ----- ---------------- • A 57 15 28 4 .2 5 3028.7 10400.0 9 .0 0 .0 9 7 .8 1 8.0 0 .0 2 .0 4 .0 0 .0 51 B 10 55 35 5 .0 0 2 5 62.7 10396.3 3 .3 3 .3 8 9 .0 13.3 0 .0 2 .0 3 .8 1.8 67 67 C 57 15 28 5 .0 0 3 0 4 8 .3 14921.3 2 .3 4 .3 123.5 4 0 .8 0 .0 2 .3 3 .8 2 .3 121 35 8 D 65 25 10 4 .5 0 2 3 61.3 11550.0 4 .8 2 .5 122.3 2 9 .8 0 .0 2 .0 4 .0 1 .3 64 114 E 57 15 28 5 .0 0 2 8 56.7 10605.0 4 .5 4 .0 104.8 2 8 .6 0 .0 3 .0 4 .0 0 .5 107 107 F 57 15 28 5 .0 0 2844.3 13685.7 7 .8 5 .1 104.3 11.0 0 .0 2 .0 4 .5 1.0 68 68 G 57 15 28 5 .0 0 2 9 43.7 9375.0 5 .5 2 .8 140.3 43 .5 0 .0 2 .3 4 .3 0 .8 99 99 H 90 5 5 1.00 2786.3 11226.3 5 .5 5 .5 4 9 .0 4 6 .3 0 .0 2 .8 4 .5 1.8 237 328 I 33 35 32 5 .0 0 3531.3 11608.0 3 .3 1 .8 9 5 .5 13.5 5 5 .5 2.3 4 .0 1 .0 73 112 J 57 15 2B 4 .5 0 3067.3 7 326.0 4 .0 1.3 7 0 .3 10.5 3 3 .0 2 .0 3 .8 1 .0 77 85 K 60 2B 12 4 .7 5 2808.3 11412.0 3 .3 5 .5 114.3 2 5 .8 0 .0 2 .0 4 .0 3 .5 107 127 L 90 5 5 0 .7 5 2 6 82.7 11632.0 4 .0 1 .0 4 3 .0 3 4 .3 0 .0 2 .5 4 .8 0 .5 92 170 M 10 55 35 3 .7 5 3170.7 15722.3 4 .3 5 .5 6 5 .8 3 7 .3 0 .0 2 .0 3 .8 1 .0 98 112 103 N 10 55 35 5 .0 0 3516.3 16247.3 4 .3 8 .5 6 5 .0 0 .0 2 4 .3 2 .3 4 .3 2 .5 44 69 0 57 15 28 5 .0 0 2 989.7 11404.0 5 .3 3 .3 7 7 .3 0 .0 2 9 .8 2 .0 4 .5 1.3 61 103 P 65 25 10 4 .0 0 3745.0 12270.3 6 .0 9 .8 5 4 .8 4 3 .8 0 .0 2 .0 3 .3 3 .5 112 218 Q R 65 25 10 3 .2 5 3 251.0 12060.0 5 .0 4 .8 5 0 .0 47 .8 0 .0 2 .0 4 .3 3 .8 74 114 20 65 15 1 .5 0 2640.3 8712.7 5 .0 6 .3 4 5 .3 3 9 .5 0 .0 2 .8 4 .8 2 .3 201 253 S 57 15 28 5 .0 0 2 5 84.7 5691 . 0 1 0.8 3 .3 9 4 .0 0 .0 4 7 .3 2 .8 4 .5 1 .3 48 55 T 90 5 5 0 .2 5 2174.7 10152.3 4 .0 1 .0 4 5 .3 4 5 .3 0 .0 3 .0 4 .3 2 .0 123 123 U 10 55 35 4 .5 0 2540.0 12490.3 3 .5 6 .5 5 2 .0 16.8 31 . 0 2 .5 4 .0 2 .0 101 109 V 65 25 10 2 .2 5 2815.3 14685.0 1.8 4 .3 4 7 .5 3 3 .8 0 .0 2 .0 4 .8 4 .0 199 298 w 65 25 10 1.25 2805.0 13903.3 3 .8 4 .5 2 8 .8 4 0 .5 0 .0 2 .0 5 .0 2 .5 143 143 X 57 15 28 2.5 0 252 0 .7 14457.7 2 .3 3 .5 8 0 .5 3 5 .3 14.3 2 .0 3 .8 4 .0 187 202 Mean 52 .5 26 .0 21 .5 3 . 6 7 2 8 86.5 11747.3 4 .7 4. 1 7 7 .5 2 7 .3 9 .8 2 .3 4 .2 1 .9 106.3 147 S .D . 2 4 .6 17.9 11.1 2558.5 2. 1 2 .3 3 0 .7 15.9 17. 1 0 .4 0 .4 1.2 52 .6 84 1 .6 3 37 4 .2 Table 2.6. SITE (continued). ROOTDEP SLOPE ASPECT o ELEV _ PHYSFORM DRCLASS MOTTDEP A 127 1 8 .5 190 372 4 3 B 84 17.8 8 375 4 4 24 4 94 500 C 93 2 .3 0 408 7 D 127 4 .3 0 387 7 4 36 E 133 11.3 28 6 396 4 3 168 F 121 7 .8 285 37 8 4 4 23 G 118 7 .3 40 378 5 4 45 H 151 12.8 146 408 4 3 29 0 I 141 4 .0 45 366 7 5 30 J 125 5 .0 90 341 5 5 129 K 148 7 .5 337 280 7 5 3 7 .5 500 L 127 10.0 280 3 35 4 2 M 98 3 .7 0 323 5 4 90 N 156 9 .0 270 31 7 1 3 111 0 128 15.0 140 347 4 3 500 P 122 14.5 108 323 4 3 135 Q R 103 15.0 111 335 4 1 175 233 16.3 358 335 4 1 29 0 S 115 2 .0 0 256 7 5 29 T 185 9 .5 195 36 9 8 1 500 U 83 4 .8 0 335 7 3 37 4 V 135 6 .5 20 390 4 3 500 500 w 122 0 .8 0 387 3 3 X 137 4 .8 205 372 7 3 Mean 129.7 8 .8 129.8 355 5 .0 3 .3 214 S.D . 31 .8 5 .3 122.5 38 1.7 1 .2 191 59. VC 50 so il n u trien t P C A 1s w ere m aster co n ten ts perform ed h o rizo n o rgan ic on groups h orizon s, A sep a ra te g a v e m ore PCA w a s lab o rato ry w ith and in te rp re ta b le on and d ata p e r form ed sets w ith o u t lab o rato ry th e data on summed by in clu sio n of summed b y d e p t h s . fie ld c o m b in a tio n o f l a b o r a t o r y and f i e l d re su lts. d a ta, and on a d ata. PCA of soil and forest floor laboratory data summed by horizons PCA w a s p e r f o r m e d forest flo o r v ariab les on l a b o r a t o r y d eterm in ed so il w h i c h h a d b e e n summed b y t h e and h orizon g r o u p s O i , O e , A, B, a n d C a b o v e a 15 0 cm d e p t h (T able 2 .5 ) . Because th e r e of used in PCA w a s reg ressio n use th e w e r e 24 o b s e r v a t i o n s , co efficien ts first because lim ited in four m ost of PC' s of to th e 23. the for the number T ab le s v ariab les w ith c o n siste n cy ; an aly se s v ariab les p r e s e n t in g the four PC' s w ere p re sen te d th ey m e a n in g fu l i n t e r p r e t a t i o n s and e ig e n v a lu e s g r e a t e r w hereas the the eig h t fifth and h ig h e r PC' s u s u a l l y co efficien ts w ith the h ighest all used have than 1 .0 , do n o t . Ranks of ab so lu te values in e a c h PC h a v e b e e n i n c l u d e d i n t h e t a b l e s f o r e ase o f view ing and to in te rp re ta tio n ; eig h t of th e v a r ia b le s used in w ere the a n a ly s e s , w ith low er ra n k s a r e l e s s the PC. E ight selected used few er th an 23 v ariab les. P lo ts of th ird in terp retatio n to m ain tain i n t h o s e t a b l e s w hich p r e s e n t r e s u l t s a and b e c a u se v a r i a b l e s im portant to th e ra n k s were a l s o include of co n sisten cy o f a n a l y s e s w hich u sed site lo catio n s w ith 51 respect to the first th ree PC a x e s th e fo u rth a x is c o n trib u te d little are p resen ted ; p ertin en t p lo ts of in fo rm a tio n and a re not in clu d ed . R e g re s s io n c o e f f i c i e n t s o f v a r i a b l e s and th e PC' s a r e used in presented t h e PCA i s T able 2 .8 v alue of data litte r placed a ll are set, and lay er) shows w ith 13% o f c o efficien ts p o sitiv e to ta l placed th o se equal to sig n ifican t in an a b s o l u t e at p o sitiv e em phasized m a ste r h ig h e st a l p h a = 0 .05 P. The size in all the to are 0 .0 8 5 , tren d . so S ites r a n g e fro m t h o s e w i t h low a m o u n ts h igh a m o u n ts. th e The and and p la c e d The B horizon some on a PC, d ata but h o rizo n groupings of and accounting se t. sin g le h o rizo n s, larg e fo u rth n u trien t rath er, all or B PC neg ativ e PC p l a c e d n eg ativ e for None o f Oe A and The t h i r d v ariab les v ariab les, th e second v a r i a b i l i t y , em p h asized v ariab les. A horizon flo o r co efficien ts from 0 .0 3 3 re la tiv e the v a r i a b i l i t y , on forest in co efficien ts w ith n e g a tiv e c o e f f i c i e n t s . co efficien ts across th e co effic ien ts on C h o r i z o n on (undecomposed and a w ith 23% o f v a ria b ility larg e n u trien ts th an or range only o n ly co efficien ts c o efficien ts th e to n u trien ts contained C o rrelatio n s w ith (Mg) PC a x i s an a d d i t i o n a l horizon m atrix 2 .8 . e m p h a s i z e d Oi n u trien ts, com ponent n u trien ts co rrelatio n in T able statistic a lly on Oi m agn esiu m n u trien ts w ith and th e four T h e f i r s t PC s u m m a r i z e d 45% o f t h e v a r i a b i l i t y a rra y e d along t h i s of g reater p o s i t i v e , and v a lu e s th is 2 .7 , p resen ted w hich a r e 0.404 fo r n=24. th e in T able first 7% o f th e PC' s group of seq u en tially n u trien ts in the 52 T able 2 .7 . C o r r e l a t i o n s betw een l a b o r a t o r y d e te r m in e d s o i l v a r i a b l e s and th e f i r s t fo u r p r i n c i p a l co m p o n en ts, w ith r a n k s o f t h e e i g h t h i g h e s t c o r r e l a t i o n s f o r e a c h PC . D ata a r e summed b y h o r i z o n g r o u p s . V ariab le E igenvalue Percent OITKN OITKP OIMG OICA OIK OETKN OETKP OEMG OECA OEK ATKN AMG ACA AK BTKP BMG BCA BK CTKN CTKP CMG CCA CK PC l ( R a n k ) PC 2 ( R a n k ) PC 3 ( R a n k ) PC 4 ( R a n k ) 10.40 45.2 5.23 22.7 3.00 13.0 1.65 7 .2 0.1960 -0.0555 -0.0312 -0 .3 0 0 3 0.0068 0 .7880(1) 0 .6974(4) 0.4306 0.2708 0.7160(3) -0 .7 4 3 5 (2 ) -0 .4 4 5 9 -0 .6 6 1 7 (6 ) -0 .4 0 5 1 -0 .5 1 2 4 (7 ) -0 .4 3 4 4 -0 .6 9 4 8 (5 ) -0 .4 3 1 4 0.4879(8) 0.4157 0.3359 0.1818 0.4 3 4 7 0 .3129 0.2136 0.1036 0.3078 0.0332 0 .4 1 8 4 (7 ) 0 .4 5 6 2 (6 ) 0.2938 0 .4592(5) 0.3329 0.1500 0.1245 0.2697 0.2296 0.0463 -0.34 18 -0 .1 1 9 1 -0 .3 0 4 8 -0 .4 0 3 7 (8 ) -0 .5 2 9 6 (4 ) -0 .6 4 4 5 (1 ) -0 .6 2 3 9 (2 ) -0 .5 6 2 6 (3 ) 0.0697 0 .0461 -0.2 8 3 2 (8 ) 0.1021 -0.0 9 0 7 0 .1181 0.2098 0.0414 0.0459 0.1574 -0 .2 1 1 4 -0 .4597(2) -0 .3 0 0 8 (7 ) -0.4 1 9 4 (4 ) 0.6406(1) 0 .3104(6) 0.347 9(5) 0.4399(3) -0.2 6 5 0 -0.1 5 9 5 -0 .0 7 0 4 -0.0 9 0 8 0.0650 0 .8 2 3 4 (4 ) 0 .84 8 3 (2 ) 0.88 1 5 (1 ) 0 .81 1 8 (5 ) 0 .82 7 5 (3 ) 0.3382 0.4435 0 .80 3 7 (6 ) 0 .70 8 2 (8 ) 0.4893 0.4980 0.6909 0.5721 0.5908 0.5491 0 .7234(7) 0.5256 0.6862 0.6743 0.6882 0.6375 0.6512 0.6735 T a b le 2 .6 . S im p l e l i n e a r c o r r e l a t i o n s am ong v a r i a b l e s u s e d OITKN 1 .0 0 0 0 .8 3 5 0 .7 8 1 0 .7 8 7 0 .7 5 4 0 .5 0 4 0 .5 8 1 0 .7 9 1 0 .7 8 2 OITKP 0 .8 3 5 1 .0 0 0 0 .8 0 9 0 .7 3 8 0 .9 0 2 0 .2 7 5 0 .3 9 6 0 .6 5 2 0 .5 6 0 01 MG 0 .7 8 1 0 .8 0 9 1 .0 0 0 0 .7 6 8 0 .8 4 9 0 .2 3 6 0 .2 9 5 0 .6 8 6 0 .6 7 0 0 .3 3 1 0 .5 4 8 OICA 0 .7 8 7 0 .7 3 8 0 .7 6 8 1 .0 0 0 0 .6 0 1 0 .1 1 5 0 .2 5 7 0 .6 2 9 Q .7 4 1 0 .2 2 4 0 .6 6 8 OIK 0 .7 5 4 0 .9 0 2 0 .6 4 9 0 .6 0 1 1 .0 0 0 0 .2 5 0 0 .3 2 4 0 .5 4 8 0 .4 5 7 0 .4 0 1 0 .3 5 1 OETKN 0 .5 0 4 0 .2 7 5 0 .2 3 6 0 . 1 15 0 .2 5 0 1 .0 0 0 0 .9 7 6 0 .7 5 4 0 .6 1 0 0 .9 4 6 OETKP 0 .5 8 1 0 .3 9 6 0 .2 9 5 0 .2 5 7 0 .3 2 4 0 .9 7 6 1 .0 0 0 0 .8 1 3 0 .6 8 5 OEMG 0 .7 9 1 0 .6 5 2 0 .6 8 6 0 .6 2 9 0 .5 4 8 0 .7 5 4 0 .8 1 3 1 .0 0 0 OECA 0 .7 B 2 0 .5 6 0 0 .6 7 0 0 .7 4 1 0 .4 5 7 0 .6 1 0 0 .6 8 5 OEK 0 .5 6 0 0 .4 2 3 0 .3 3 1 0 .2 2 4 0 .4 0 1 0 .9 4 6 0 .9 6 9 ATKN 0 .2 5 0 0 .3 5 1 0 .5 4 8 0 .6 6 8 0 .3 5 1 - 0 .3 3 6 AMG 0 .4 3 6 0 .5 9 7 0 .6 8 2 0 .6 2 4 0 .5 5 4 - 0 .0 6 3 ACA 0 .3 6 5 0 .4 9 3 Q .6Q 5 0 .7 5 9 0 .3 9 5 AK 0 .3 4 3 0 .6 0 8 0 .5 7 9 0 .4 6 3 0 .5 9 7 BCA 0 .3 4 3 0 .4 4 0 0 .3 5 6 0 .2 3 3 0 .3 7 4 0 .5 2 1 0 .6 0 8 0 .5 7 7 0 .5 7 5 0 .3 4 2 0 .5 7 2 0 .3 6 4 0 .3 1 1 0 .4 5 7 0 .6 2 1 0 .5 6 6 0 .6 3 2 0 .5 9 4 0 .2 8 6 0 .2 8 5 0 .2 6 6 0 .5 4 5 0 .5 2 4 0 .5 1 6 - 0 .1 5 1 -0 .3 1 9 - 0 .1 6 6 0 .4 1 4 0 .0 2 0 -0 .0 2 2 -0 .1 8 5 -0 .0 2 4 0 .2 5 1 0 .3 1 9 0 .1 5 1 0 .2 6 3 0 .2 8 6 0 .1 9 0 0 .1 8 3 0 .1 1 6 - 0 .0 0 3 0 .0 3 9 - 0 .1 0 3 0 .0 1 3 0 .4 7 2 0 .3 9 5 0 .3 0 0 0 .2 8 3 0 .4 8 7 0 .4 9 5 0 .5 5 9 0 .7 6 8 0 .5 0 6 - 0 .0 0 1 - 0 .0 0 8 - 0 .0 3 5 0 .1 7 5 -0 .0 8 2 0 .8 9 3 0 .3 1 0 0 .5 6 3 0 .5 4 6 0 .4 3 1 0 .2 9 9 0 .2 9 4 0 .2 2 3 C .3 7 0 0 . 163 0 .7 3 8 0 .4 6 4 0 .5 0 1 0 .6 6 7 0 .4 3 9 0 .0 4 2 0 .0 4 8 0 .0 0 4 0 .1 5 6 -0 .0 7 6 0 .5 6 0 0 .2 5 0 0 .4 3 8 0 .3 8 5 0 .4 2 3 0 .3 5 1 0 .5 9 7 0 .4 9 3 0 .6 8 2 0 .6 0 5 0 .5 7 9 0 .3 4 2 0 .4 7 8 0 .6 2 4 0 .7 5 9 0 .4 8 3 0 .6 8 9 0 .5 5 3 0 .5 5 4 0 .3 9 5 0 .5 9 7 0 .4 2 5 0 .5 5 9 - 0 .3 3 6 -0 .0 6 3 -0 .2 5 4 -0 .0 0 5 - 0 .1 4 5 0 .9 6 9 - 0 .2 5 0 0 .0 1 9 - 0 .1 3 8 0 .0 7 4 0 .8 7 8 0 .8 0 6 0 .1 4 6 0 .4 0 4 0 .2 7 6 0 .3 3 6 0 .8 7 8 1 .0 0 0 0 .6 3 3 0 .2 7 9 0 .3 3 9 0 .4 0 4 0 .8 0 6 0 .6 3 3 1 .0 0 0 - 0 .2 5 5 0 .0 5 1 - 0 .1 4 1 - 0 .2 5 0 0 . 146 0 .2 7 9 - 0 .2 5 5 1 .0 0 0 0 .7 8 1 0 .9 0 8 0 .6 4 4 0 .0 1 9 0 .4 0 4 0 .3 3 9 0 .0 5 1 0 .7 8 1 1 .0 0 0 0 .8 7 4 - 0 .2 5 4 - 0 .1 3 6 0 .2 7 6 0 .4 0 4 -0 .1 4 1 0 .9 0 8 0 .8 7 4 1 .0 0 0 - 0 .0 0 5 0 .0 7 4 0 .3 3 6 0 .2 6 3 0 .1 1 6 0 .6 4 4 0 .8 9 3 OEK BTKP 0 .4 4 0 0 .5 7 7 0 .3 4 2 0 .6 8 9 0 .4 2 5 - 0 .1 4 5 0 .0 2 0 0 .2 5 1 0 .2 8 6 -0 .0 0 3 0 .4 9 5 0 .3 1 0 BMG 0 .3 5 6 0 .5 7 5 0 .4 7 8 0 .5 5 3 0 .5 5 9 - 0 .1 5 1 -0 .0 2 2 0 .3 1 9 0 . 190 0 .0 3 9 0 .5 5 9 0 .5 6 3 BCA 0 .2 3 3 0 .3 4 2 0 .3 1 1 0 .6 3 2 0 .2 6 6 - 0 .3 1 9 -0 .1 6 5 0 .1 5 1 0 . 183 - 0 .1 8 3 0 .7 6 8 0 .5 4 6 BK 0 .3 7 4 0 .5 7 2 0 .4 5 7 0 .5 9 4 0 .5 4 5 - 0 .1 6 6 -0 .0 2 4 0 .2 8 5 0 .2 3 1 0 .0 1 3 0 .5 0 6 0 .4 3 1 CTKN 0 .5 2 1 0 .3 B 4 0 .6 2 1 0 .2 8 6 0 .5 2 4 0 .4 1 4 0 .3 8 6 0 .6 4 2 0 .4 5 9 0 .4 7 2 - 0 .0 0 1 0 .2 9 9 CTKP 0 .5 0 2 0 .4 0 7 0 .5 6 6 0 .2 8 5 0 .5 1 6 0 .3 0 9 0 .3 0 9 0 .5 6 8 0 .4 0 2 0 .3 9 5 - 0 .0 0 8 0 .2 9 4 CMG 0 .4 1 5 0 .4 0 7 0 .5 1 6 0 .2 5 4 0 .5 1 0 0 . 174 0 .1 8 7 0 .4 6 6 0 .2 5 7 0 .3 0 0 - 0 .0 3 5 0 .2 2 3 CCA 0 .3 0 9 0 .3 0 5 0 .4 7 1 0 .2 7 6 0 .4 1 6 0 . 130 0 .1 5 3 0 .4 5 2 0 .2 6 4 0 .2 8 3 0 .1 7 5 0 .3 7 0 CK 0 .4 4 7 0 .4 4 9 0 .5 1 7 0 .2 3 5 0 .5 6 1 0 .3 4 3 0 .3 6 9 0 .5 5 0 0 .3 1 8 0 .4 8 7 - 0 .0 8 2 0 . 183 ACA AK BK la y e rs . BMG AMG OEMG In c lu d in g o r g a n ic BTKP ATKN OETKN OECA l a b o r a t o r y d e t e r m i n e d v a r i a b l e s sum m ed b y h o r i z o n s . OITKP OIK OETKP com ponent a n a l y s i s o f OITKN OIMG OICA In p r i n c i p a l CTKN CTKP CMG CCA 0 .5 0 2 0 .4 1 5 0 .3 0 9 0 .4 4 7 0 .4 0 7 0 .4 0 7 0 .3 0 5 0 .4 4 9 0 .5 1 6 0 .4 7 1 0 .5 1 7 0 .2 5 4 0 .2 7 6 0 .2 3 5 0 .5 1 0 0 .4 1 6 0 .5 6 1 0 .3 0 9 0 .1 7 4 0 . 130 0 .3 4 3 0 .3 8 6 0 .3 0 9 0 .1 8 7 0 .1 5 3 0 .3 6 9 0 .2 8 5 0 .6 4 2 0 .5 8 8 0 .4 6 6 0 .4 5 2 0 .5 5 0 0 .2 3 1 0 .4 5 9 0 .4 0 2 0 .2 5 7 0 .2 6 4 0 .3 1 8 CK 0 .7 3 8 1 .0 0 0 0 .2 6 3 0 .5 0 5 0 .4 0 8 0 .4 0 2 0 .1 7 7 0 .1 4 0 0 .0 8 8 0 .2 1 3 0 .0 6 6 0 .4 6 4 0 .2 6 3 1 .0 0 0 0 .7 8 8 0 .8 3 4 0 .8 5 1 - 0 .0 7 1 0 .0 4 1 0 .1 0 1 0 .1 6 2 0 .1 6 6 0 .5 0 8 0 .5 0 1 0 .5 0 5 0 .7 8 6 1 .0 0 0 0 .8 4 7 0 .9 5 9 0 .3 1 9 0 .4 3 5 0 .4 8 7 0 .5 8 5 0 .6 6 7 0 .4 0 8 0 .8 3 4 0 .8 4 7 1 .0 0 0 0 .8 3 1 - 0 .0 0 4 0 .0 9 8 0 . 134 0 .3 3 3 0 .1 3 7 0 .4 3 9 0 .4 0 2 0 .8 5 1 0 .9 5 9 0 .8 3 1 1 .0 0 0 0 .2 6 5 0 .3 7 2 0 .4 5 6 0 .4 8 3 0 .4 6 8 0 .6 4 6 0 .0 4 2 0 . 177 - 0 .0 7 1 0 .3 1 9 - 0 .0 0 4 0 .2 6 5 1 .0 0 0 0 .9 5 7 0 .8 6 3 0 .7 7 5 0 .0 4 8 0 .1 4 0 0 .0 4 1 0 .4 3 5 0 .0 9 8 0 .3 7 2 0 .9 5 7 1 .0 0 0 0 .9 3 2 0 .8 5 6 0 .9 0 9 0 .0 0 4 0 .0 8 8 0 . 101 0 .4 8 7 0 .1 3 4 0 .4 5 6 0 .8 6 3 0 .9 3 2 1 .0 0 0 0 .8 5 3 0 .9 2 0 0 .1 5 6 0 .2 1 3 0 .1 6 2 0 .5 8 5 0 .3 3 3 0 .4 8 3 0 .7 7 5 0 .8 5 6 0 .8 5 3 1 .0 0 0 0 .8 8 0 -0 .0 7 6 0 .0 6 6 0 .1 6 6 0 .5 0 8 0 .1 3 7 0 .4 6 6 0 .8 4 6 0 .9 0 9 0 .9 2 0 0 .8 8 0 1 .0 0 0 V-n U> 54 order Oi, Oe, C, and AB. A p lo t is of s ite p resented and L, in F igure are lo cated rep resen ts 68% o f lo catio n of in d icates th e in of sim ilar T ill T heir B ruce t i l l each T, p lo t, d ata end 2 H, w hich se t. o v erall The of PC 1 lev el in clu sio n s o th er of th an are are th e l o c a t i o n w ith r e s p e c t t o t h e P C 's lev els Some o f to those of t i l l d a tin g from not c lean ly sites are th ese sites d isp ersio n along PC 2 . Por t n u trien t i n Oe n u t r i e n t s F igure lev els the o v erall, B ruce and P ort Hu r o n from e a c h o t h e r by t h e the o r ig in the P o rt o f PC 1 , P o r t Huron t i l l e n d o f PC 1 , Port Huron and e x h i b i t sites w ith sites and w ide co n tain more v a r i a t i o n th a n t h e P o r t Bruce s i t e s . 2.5 d i s p l a y s s i t e PC 3 o f n u trien t G enerally speaking, nearer Thus, have th an so ils. sep arated lo cated o f Oe n u t r i e n t s t h e n e g a t i v e e x t r e m e o f PC 2 . sum m arizes th is th e low est l o c a t e d more t o w a r d t h e p o s i t i v e g reater in ice-rafted to o r d i n a t i o n a lo n g PC' s 1 and 2. and in th e h ig h er sites. so ils d ep o sitio n are are 1 and t h a t they c o n ta in in te rm e d ia te l e v e l s of n u t r i e n t s groups more t o P C 's th e m ost n e g a tiv e outw ash w ith o v e r a l l , and s l i g h t l y lev els at to form ed in o u tw ash , each o th e r re la tio n outw ash sand s i t e s . o th er S ites contained formed in d isp ersed in d icates relatio n v ariab ility site s they in a n d a n i n t e r m e d i a t e l e v e l o f Oe n u t r i e n t s . S o ils m ore 2 .4 . very near th e se th at n u trien ts, o rd in atio n s la b o ra to ry 13% o f the d ata lo c a tio n s w ith respect sum m ed by h o r i z o n s . v ariab ility of the data set, t o PC 1 PC and 3 is 55 F igure 2 .4 . L o c a t i o n o f s i t e s w i t h r e s p e c t t o PC 1 a n d PC 2 o f l a b o r a t o r y d e t e r m i n e d s o i l v a r i a b l e s summed by h o r i z o n and a v e r a g e d w i t h i n a s i t e . PC 2 (23%) 3 2 N □ X Outwash sand + Outwash/inclusion Port Bruce till □ Port Huron till A Lacustrine v+ Q+M- C / vifrx ^ _ H +R Tx X j_ 0 - -j D* 1' I k/ E> +° | c? A %G -2 -3 - □ i 3 - 2 - 1 0 S I l 1 2 PC 1 (45%) ... —L... ... ... 3 4 57 F igure 2 .5 . L o c a t i o n o f s i t e s w i t h r e s p e c t t o PC 1 a n d PC 3 o f l a b o r a t o r y d e t e r m i n e d s o i l v a r i a b l e s summed by h o r i z o n and a v e r a g e d w i t h i n a s i t e . PC 3 (13%) 3 2 CA on x Outwash sand + Outw ash/inciusions % Port Bruce till D Port Huron till A Lacustrine a; d d ^ -p w * E V-£ x ^ G HX 0 T XL X _ -j M-4'■+K 'D ND R+ Q + □s ^ -2 . . .i -3 - 3 - .. J . 2 - 1 0 I I I 1 2 3 PC 1 (45%) 4 59 p rim a rily a s s o c ia te d w ith ch aracteristics As i n o f P C 's th e previous site s are fig u re c lo se ly grouped S ites form ed i n outw ash w ith PC 3 , and th e in d icatin g d ifferen ces The two t i l l PC 2 , w ith n u trien t g reater site th e site s are are to b o th the low er along sep arated , of site s tills b y PC 3 t h a n B and d iffers, 0. due c alcu lated n u trien t by C h o rizo n larg ely t h i c k n e s s o f B h o r i z o n s on P o r t B ru ce s i t e s , co n seq u en tly sand axes. d isp ersed w id ely g r o u p s a r e more s e p a r a t e d of C ho rizo n . th e outw ash respect in clu sio n s the in n u tr ie n t co n ten t of th e C h o riz o n . ex cep tio n s co ntent 1 and 2, w ith tw o l a c u s t r i n e of co n ten t to the and th e of th e C horizon. PCA o f l a b o r a t o r y d a t a summed b y h o r i z o n s a n d i n c l u d i n g forest flo o r n u trien t lay ers co n ten t, n u trie n ts. p articu lar S ites The and to sep arated formed outw ash P ort in Hu r o n sep arated , S ites and but four rath er along sand P ort o v erall 1, B ruce trend t i l l is 2, the forest so il and 3, w ith w ere evident for w ith n u trien ts. clo sest s ite s in flo o r environm ents form ed in o utw ash sand w ith i c e - r a f t e d p l a c e d betw een th e o u tw ash and t i l l tren d id e n tifie d d ep o sitio n al ex h ib itin g an o v e r a l l w ere in d iv id u al PC a x e s size em phasized PC' s than d ifferen t g en erally an esp ecially firs t horizons belonging d isp lay ed w ere sites g ro upings. not th e w ell groups. i n c l u s i o n s w ere site s. PCA o f m i n e r a l s o i l l a b o r a t o r y d a t a summed b y h o r i z o n s T h e PCA p e r f o r m e d on l a b o r a t o r y data in clu d in g org an ic 60 h o r i z o n s was s t r o n g l y th ese la y ers. o n ly d ata h o rizo n used. A PCA o f d eriv ed perform ed. A ll in and th e the from the PCA. four PC' s m atrix to for larg est 48% o f an ab so lu te in and co efficien ts of the v ariab ility . acid of placed on reaso n ab le hydrogen sandy of w ould to be n u trien ts. P in the so lu tio n lev els the region fa ils th o se in fe rtile cm w e r e the v ariab les 2 .9 , in w ere and T ab le are th e 2 .1 0 . than sig n ific an t at are so ils. v ariab ility , w hich first ( H) accounted for w ith c o n ce n tra tio n s. in so ils low both n e g a t iv e n u trien ts th a t w ith the PC c o n t a i n e d io n so il received the w ith am ounts PC, high of o th er The h i g h n e g a t i v e c o e f f i c i e n t p l a c e d C horizon to PC, co n clu d e is also calcareo u s, in terp retab le. so th at a e x t r a c t much P f r o m t h e m , of B ray' s e x tra c ta b le to ta l also a n aly sis of c o e ffic ie n ts , is so ils was 150 n u trien ts The and on B r a y ' s using w h i c h are g r e a t e r 0.404 first co unterbalances d e sira b le ex tractab le th is appears B horizon n e g a t i ve lev els of T ab le 2.10 A cid ity a cid ity of H e r e , w i t h O i a n d Oe l a y e r s e l i m i n a t e d co efficien ts pos i t i ve in PCA value A and to ta l for appear th e an aly sis, the it an aly ses co efficien ts in Table a l p h a = 0 .05 f o r n= 24. the co n ten t am ong s i t e s a d ep th a v ailab le R egression C o rre la tio n s presen ted from so il A, Br and C above firs t equal n u trien t relatio n sh ip s m in eral 21 v a r i a b l e s c o rre la tio n or by t h e L a b o r a t o r y - d e t e r m i n e d v a r i a b l e s summed b y m a s t e r groups used in flu en ced P are present Th e s e c o n d em phasizes PC, B ray' s and w e ak h igher in C h o riz o n s accounting C horizon T ill for n u trien ts of 22% w ith 61 T ab le 2 .9 . C o r r e l a t i o n s betw een l a b o r a t o r y d eterm in ed m in e ra l s o i l v a r ia b le s and th e f i r s t fo u r p r i n c i p a l com ponents, w ith ran k s o f th e e ig h t h ig h e s t c o r r e l a t i o n s f o r e a c h PC. D a t a a r e summed b y h o r i z o n g r o u p s . V ariable E igenvalue Percent ATKN ATKP AMG ACA AK ABRAYP AHBUF BTKN BTKP BMG BCA BK BBRAYP BHBUF CTKN CTKP CMG CCA CK CBRAYP CHBUF PC l ' R a n k ) PC 2 ( R a n k ) PC 3 ( R a n k ) PC 4 ( R a n k ) 10.13 48.2 4.69 22.3 2.39 11.4 0.93 4 .4 0.8176(8) 0.7196 0.7615 0.8120 0.6197 0.4925 -0 .8 9 0 9 (2 ) 0.8 9 4 4 (1 ) 0.7543 0.8705(5) 0.8 7 0 6 (4 ) 0 .8399(7) 0.0925 -0.6 4 6 1 0.3017 0.3740 0.3814 0.5029 0.3553 -0 .8 8 0 2 (3 ) -0 .8 5 7 7 (6 ) -0 .3 8 6 3 (8 ) -0.4 5 02 (7 ) -0 .0 3 6 4 -0.35 47 -0.1117 -0 .5 1 6 8 (6 ) 0.0763 -0 .1 2 1 8 -0.2002 0.1932 -0 .2 1 1 8 0.1441 -0 .1 8 3 1 0.0 4 9 7 0 .8 6 8 9 (4 ) 0.8 9 5 3 (2 ) 0.8 7 8 9 (3 ) 0.7 6 8 4 (5 ) 0 .8965(1) 0.0597 0.0386 -0 .3 1 6 6 (8 ) -0.0419 -0 .5 0 2 1 (3 ) -0 .4 0 8 4 (6 ) -0 .4 1 7 2 (5 ) -0 .3 2 2 2 (7 ) -0 .0 8 9 0 0.2734 0.5984(2) 0.2875 0.2348 0 .4 3 1 3 (4 ) 0.8300(1) 0.2253 -0 .2 2 6 9 -0 .1 2 5 2 -0 .0 0 5 7 -0 .0 9 3 6 0.1151 -0 .0 3 6 0 0.0130 -0 .0 4 6 9 -0.2 9 76 7 (4) 0.3675(2) 0.0660 0 .6 2 6 4 (1 ) -0 .3 313(3 ) -0 .0 1 7 4 -0 .0 7 4 5 0.0452 0 .1543(7) -0 .0 6 9 7 0.0954 0 .2476(5) 0.1878(6) -0.0 0 6 4 -0 .0 6 2 0 -0.1 0 3 5 -0 .1 0 2 7 -0 .0 2 1 5 0 .135 4(8) 0 .1182 T a b le 2 .1 0 . S ln p le l i n e a r c o r r e l a t i o n s am ong v a r i a b l e s u s e d ATKN ATKP AMG ACA AK ABRAYP In p r in c i p a l AHBUF BTKN com p o n en t a n a l y s i s o f BTKP BMG BCA l a b o r a t o r y d e t e r m i n e d m i n e r a l s o i l v a r i a b l e s sum m ed b y h o r i z o n s . BK BBRAYP BFBUF CTKN CTKP CMG CCA CK CBRAYP CHBUF ATKN 1 .0 0 0 0 .8 3 6 0 .7 8 1 0 .9 0 8 0 .6 4 4 0 .7 0 0 -0 .6 8 2 0 .6 8 5 0 .4 9 5 0 .5 5 9 0 .7 6 8 0 .5 0 6 - 0 .1 4 8 - 0 .5 4 0 - 0 .0 0 1 - 0 .0 0 8 -0 .0 3 5 0 .1 7 5 - 0 .0 8 2 -0 .7 0 9 -0 .7 1 2 ATKP 0 .B 3 6 1 .0 0 0 0 .4 9 2 0 .7 1 2 0 .3 4 3 0 .6 4 3 -0 .5 7 2 0 .6 7 3 0 .5 9 2 0 .5 4 0 0 .8 2 5 0 .5 1 9 -0 .0 0 6 - 0 .4 6 4 - 0 .1 6 7 - 0 .1 1 4 - 0 .0 7 8 0 .0 9 6 - 0 .1 4 7 -0 .6 2 5 - 0 .5 8 0 AMG 0 .7 0 1 0 .4 9 2 1 .0 0 0 0 .0 7 4 0 .8 9 3 0 .4 0 6 - 0 .6 2 0 0 .5 2 1 0 .3 1 0 0 .5 6 3 0 .5 4 6 0 .4 3 1 - 0 .2 4 5 -0 .5 3 7 0 .2 9 9 0 .2 9 4 0 .2 2 3 0 .3 7 0 0 .1 8 3 -0 .5 9 2 -0 .6 2 3 ACA 0 .9 0 6 0 .7 1 2 0 .8 7 4 1 .0 0 0 0 .7 3 8 0 .7 2 2 - 0 .7 2 6 0 .6 6 8 0 .4 6 4 0 .5 0 1 0 .6 6 7 0 .4 3 9 -0 .1 5 1 - 0 .6 1 6 0 .0 4 2 0 .0 4 8 0 .0 0 4 0 .1 5 6 - 0 .0 7 6 - 0 .7 0 7 -0 .7 1 1 AK 0 .6 4 4 0 .3 4 3 0 .8 9 3 0 .7 3 B 1 .0 0 0 0 .3 4 2 - 0 .5 1 9 0 .3 8 6 0 .2 6 3 0 .5 0 5 0 .4 0 8 0 .4 0 2 -0 .0 9 5 - 0 .3 9 4 0 . 177 0 . 140 0 .0 8 8 0 .2 1 3 0 .0 6 6 - 0 .4 5 8 - 0 .4 3 9 ABRAVP 0 .7 0 0 0 .6 4 3 0 .4 0 6 0 .7 2 2 0 .3 4 2 1 .0 0 0 -0 .4 1 3 0 .4 0 0 0 .2 9 2 0 .1 0 2 0 .4 2 7 0 .2 0 2 - 0 .0 8 6 - 0 .4 8 1 - 0 .1 9 9 -0 .2 0 3 - 0 .1 9 0 - 0 .0 8 7 -0 .2 6 0 - 0 .4 5 4 - 0 .4 0 6 - 0 .6 8 2 -0 .5 7 2 -0 .6 2 0 - 0 .7 2 6 -0 .5 1 9 - 0 .4 1 3 1 .0 0 0 -0 .8 5 7 -0 .7 2 2 -0 .7 1 7 -0 .7 1 5 - 0 .7 4 0 -0 .2 0 2 0 .6 8 5 0 .6 7 3 0 .5 2 1 0 .6 6 8 0 .3 8 6 0 .4 0 0 -0 .8 5 7 1 .0 0 0 0 .8 6 8 0 .8 1 0 0 .8 5 9 0 .8 2 5 0 .2 5 5 8TKP 0 .4 9 5 0 .5 9 2 0 .3 1 0 0 .4 6 4 0 .2 6 3 0 .2 9 2 -0 .7 2 2 0 .8 6 8 1 .0 0 0 0 .7 8 8 0 .8 3 4 0 .8 5 1 BMG 0 .5 5 9 0 .5 4 0 0 .5 6 3 0 .5 0 1 0 .5 0 5 0 .1 8 2 - 0 .7 1 7 0 .8 1 0 0 .7 0 8 1 .0 0 0 0 .8 4 7 0 .9 5 9 BCA 0 .7 6 8 0 .8 2 5 0 .5 4 6 0 .6 6 7 0 .4 0 8 0 .4 2 7 - 0 .7 1 5 0 .6 5 9 0 .8 3 4 0 .0 4 7 1 .0 0 0 0 .8 3 1 0 .1 9 4 - 0 .4 1 0 - 0 .3 9 4 AH8UP BTKN BK 0 .6 3 6 - 0 .2 1 2 -0 .2 6 9 - 0 .2 7 0 - 0 .2 9 7 -0 .2 3 0 0 .8 3 8 0 .8 4 4 - 0 .4 8 3 0 .1 3 1 0 .1 9 1 0 .2 1 0 0 .3 2 0 0 .2 3 0 - 0 .8 2 9 -0 .7 9 4 0 .6 4 0 - 0 .3 9 1 - 0 .0 7 1 0 .0 4 1 0 .1 0 1 0 .1 6 2 0 .1 6 6 - 0 .6 5 5 - 0 .6 1 5 0 .2 2 8 - 0 .4 1 1 0 .3 1 9 0 .4 3 5 0 .4 8 7 0 .5 6 5 0 .5 0 8 - 0 .6 9 0 - 0 .6 3 8 - 0 .0 0 4 0 .0 9 8 0 .1 3 4 0 .3 3 3 0 .1 3 7 - 0 .7 6 1 - 0 .6 7 6 0 .5 0 6 0 .5 1 9 0 .4 3 1 0 .4 3 9 0 .4 0 2 0 .2 0 2 - 0 .7 4 8 0 .8 2 5 0 .8 5 1 0 .9 5 9 0 .0 3 1 1 .0 0 0 0 .3 7 6 BBRAYP - 0 .1 4 0 - 0 .0 0 6 -0 .2 4 5 - 0 .1 5 1 -0 .0 9 5 - 0 .0 8 6 - 0 .2 0 2 0 .2 5 5 0 .6 4 0 0 .2 2 8 0 .1 9 4 0 .3 7 6 1 .0 0 0 BHBUF - 0 .5 4 0 -0 .4 6 4 -0 .5 3 7 - 0 .6 1 6 -0 .3 9 4 -0 .4 0 1 0 .6 3 6 -0 .4 0 3 - 0 .3 9 1 - 0 .4 1 1 - 0 .4 1 0 - 0 .3 9 4 0 .0 1 6 CTKN - 0 .0 0 1 - 0 .1 6 7 0 .2 9 9 0 .0 4 2 0 . 177 - 9 .1 9 9 - 0 .2 1 2 0 .1 3 1 - 0 .0 7 1 0 .3 1 9 - 0 .0 0 4 0 .2 6 5 - 0 .2 6 6 0 .2 6 5 0 .3 7 2 0 .4 5 6 0 .4 8 3 0 .4 6 8 - 0 .6 9 0 - 0 .6 3 3 0 .0 1 6 - 0 . 2 6 6 1 .0 0 0 - 0 . 2 0 0 - 0 .2 0 4 - 0 .1 3 1 - 0 .2 4 5 - 0 .0 1 0 - 0 .0 8 8 - 0 .0 8 4 - 0 .3 0 5 - 0 .2 4 1 - 0 .2 0 2 -0 .1 4 8 0 .5 3 7 0 .5 8 1 - 0 .2 0 8 1 .0 0 0 0 .9 5 7 0 .8 6 3 0 .7 7 5 0 .8 4 6 - 0 .1 8 7 - 0 .2 3 4 CTKP - 0 .0 0 8 - 0 .1 1 4 0 .2 9 4 0 .0 4 6 0 . 140 - 0 .2 0 3 - 0 .2 6 9 0 .1 9 1 0 .0 4 1 0 .4 3 5 0 .0 9 8 0 .3 7 2 - 0 .2 0 4 - 0 .3 0 5 0 .9 5 7 1 .0 0 0 0 .9 3 2 0 .8 5 6 0 .9 0 9 - 0 .2 5 2 - 0 .2 7 6 CMG - 0 .0 3 5 - 0 .0 7 8 0 .2 2 3 0 .0 0 4 0 .0 8 8 - 0 .1 9 0 - 0 .2 7 0 0 .2 1 0 0 .1 0 1 0 .4 8 7 0 .1 3 4 0 .4 5 6 - 0 .1 3 1 - 0 .2 4 1 0 .8 6 3 0 .9 3 2 1 .0 0 0 0 .8 5 3 0 .9 2 0 -0 .2 0 3 - 0 .2 9 0 CCA 0 .1 7 5 0 .0 9 6 0 .3 7 0 0 . 156 0 .2 1 3 - 0 .0 8 7 -0 .2 9 7 0 .3 2 0 0 .1 6 2 0 .5 0 5 0 .3 3 3 0 .4 8 3 - 0 .2 4 5 - 0 .2 0 2 0 .7 7 5 0 .8 5 6 0 .8 5 3 1 .0 0 0 0 .8 8 0 - 0 .4 2 0 - 0 .3 8 8 - 0 .0 8 2 - 0 .1 4 7 0 .1 8 3 - 0 .0 7 6 0 .0 6 6 - 0 .2 6 0 - 0 .2 3 0 0 .2 3 0 0 .1 6 6 0 .5 0 8 0 .1 3 7 0 .4 6 8 - 0 .0 1 0 - 0 .1 4 8 0 .8 4 6 0 .9 0 9 0 .9 2 0 0 .8 8 0 1 .0 0 0 -0 .2 6 0 - 0 .2 5 9 CK CBRAYP - 0 .7 0 9 - 0 .6 2 5 - 0 .5 9 2 - 0 .7 0 7 -0 .4 5 8 -0 .4 5 4 0 .0 3 8 - 0 .8 2 9 - 0 .6 5 5 - 0 .6 9 0 - 0 .7 6 1 - 0 .6 9 0 - 0 .0 8 8 0 .5 3 7 - 0 .1 8 7 - 0 .2 5 2 -0 .2 8 3 - 0 .4 2 0 - 0 .2 6 0 1 .0 0 0 0 .8 5 2 CHBUF - 0 .7 1 2 - 0 .5 8 0 -0 .6 2 3 - 0 .7 1 1 -0 .4 3 9 - 0 .4 0 6 0 .8 4 4 - 0 .7 9 4 - 0 .6 1 5 -0 .6 3 8 - 0 .6 7 6 - 0 .6 3 3 - 0 .0 8 4 0 .5 8 1 - 0 .2 3 4 - 0 .2 7 6 -0 .2 9 0 -0 .3 8 8 - 0 .2 5 9 0 .8 5 2 1 .0 0 0 63 p o sitiv e c o effic ien ts, and B h o rizo n v a ria b ility , and p l a c e s n e g a ti v e c o e f f i c i e n t s n u trien ts. places high The th ird p o sitiv e PC, w ith on A 11% o f co efficien ts th e on B h o r i z o n n u t r i e n t s , and n e g a t i v e c o e f f i c i e n t s on A h o r i z o n v a r i a b l e s . The fo u rth h o riz o n PC d o e s not w e ig h tin g s, var ia b ility in th e determ in ed m in eral ex h ib it and m ean in g fu l acco u n ts d ata so il a set. d ata for The ag ain p a tte rn o n ly PCA o f 4% o f id e n tifie d im p o rtan t th a n in d iv id u a l n u t r i e n t s , and th at c o n t a i n more o v e r a l l A h o rizo n s. resu ltin g This F igure 1 and PC related 2 of to so il so t h a t th e r e la b o rato ry -d eterm in ed from a b e tte r in d istin ctly v ariab ility v a ria b ility is a range in PCA of d ata 2 .4 , sep aratio n outw ash w ith m in eral sites w hich are in clu d ed b u t PCA o f m i n e r a l of th e ice-rafted site groups. in clu sio n s second t i l l , w ith also PC s e p a r a t e s th e ex cep tio n in c lu s io n s group, Port B ruce till o f P o rt B ruce from site g r o u p e d t o g e t h e r w i t h P o r t Huron s i t e s PCA o f s o i l s data to in clu d in g organic horizons B, in to o rg an ic so il data S ites are grouped th an in th e p re v io u s a n a l y s i s . th e outw ash w ith i c e - r a f t e d so il sim ilar m ore S ites a r r a y e d a l o n g PC 1 t o r a n g e f r o m o u t w a s h s a n d s o i l s , The than to te x tu re s . h o r i z o n s , shown i n F i g u r e form ed due L o c a tio n s and g ro u p in g s o f d eriv ed p ro v id ed lik ely showed 2 .6 shows t h e l o c a t i o n s o f s i t e s w i t h r e s p e c t t o v ariab les. th o se is from g l a c i a l a c t i v i t y , n u tr ie n t values PC resu lt th e la b o ra to ry - h o riz o n groups r a th e r B and C h o riz o n s of are through till so ils. P ort H uron w hich the (F ig u re was p rev io u s 2 .5 ). 64 Figure 2 .6 . L o c a t i o n o f s i t e s w i t h r e s p e c t t o PC 1 a n d PC 2 o f la b o r a to r y d eterm ined m in e ra l s o i l v a r ia b le s summed b y h o r i z o n a n d a v e r a g e d w i t h i n a s i t e . PC 2 (22%) 3 N□ U * 2 B * 0+ Outwash sand 1 R+ V W;H+X HX^L Outwash/inclusion Port Bruce till 0 Port Huron till Lacustrine J □ D 1 M+ S C, P+" ‘ E - -j K 0 n Q c D * * *A -2 ....... -3 - ^ 3 - 2 I... , - 1 0 1 1 1.. - 1 2 3 PC 1 (48%) - 4 66 F igu re 2.7 d isp lay s site a x es 1 and 3 o f m in e ra l s o i l 11.4% o f th e v ariab les h orizon receiv in g v ariab les sand s i t e s are v aria b ility H, L , not arrayed g ro u p in g s by in receiv in g d ata respect clo sely w ith B h o rizo n and c o efficien ts. PC 3 i n a m a n n e r sites agrees S ites A Outw ash but o th er w hich en v iro n m en t. PC PC 3 i n c l u d e s set, grouped, in clu sio n s, to co effic ien ts, negative d ep o sitio n al outw ash w ith i c e - r a f t e d th e p o sitiv e and T a r e w ith lab o rato ry d ata. h ig h alo n g lo catio n s w ith form ed lacu strin e m aterial, in and t i l l s , a r e n o t s e p a r a t e d a l o n g PC 3 . PCA o f m in eral o rd in atio n d a ta sim ilar w h ich c o rre la tio n sep arate also to of site w as lab o rato ry th a t in c lu d e d PCA's Spearm an' s so il o rg a n ic on r= 0 .817, express site in d icate g reater of rank h o rizo n n u trien ts. source of th e first The 1964). sp o d ic in may b e tw o a lp h a= 0 .0 5 , and co rrelatio n It was sim ilar in fo rm atio n o b ta in e d from r s = 0 .810, of the two in m in eral th e so il so il-site stu d ies h o rizo n s m ost lay ers (S o il Survey S t a f f 1975). in so il im p o rtan t for th ese im portance o f B (C oile as d efin ed regarding m in era l a ls o co rresp o n d s w ith th e p r i n c i p l e and a r g i l l i c of The c o r r e l a t i o n s The B h o r i z o n was v ariab ility classic sim p le th e s i t e s , w hich c o r r e s p o n d s w i th t h e r e c o g n i z e d h orizons site lab o ra to ry axes at a th a t although o rg an ic h o rizo n n u tr i e n ts v ariab ility , re la tio n sh ip s h o riz o n s. sig n ifican t s i g n i f i c a n t a t a lp h a = 0 .05. o rd in atio n s produced p r o d u c e d b y PCA o f scores co efficien t d ata 1952, R alston of d iag n o stic S o il Taxonomy 67 F igure 2 .7 . L o c a t i o n o f s i t e s w i t h r e s p e c t t o PC 1 a n d PC 3 o f la b o r a to r y determ ined m in e ra l s o i l v a r ia b le s summed b y h o r i z o n a n d a v e r a g e d w i t h i n a s i t e . * □ © PC 3 (11%) c £ B X Outwash sand 4 Outwash/inclusion - Port Bruce till □ Port Huron till A Lacustrine x+ + V tl X 0 v | M J0 -h £ O' 00 TX* + Q AU w+ SD -1 Z 4c K* - O P+ -2 i 1 -3 -3 -2 “1 0 1 PC 1 (48%) ! i _i-------------- 69 PCA of mineral soil laboratory data summed by depths S tu d ies so il data used d ep th rep o rted in w hich w ere determ ine sum s. the have summed b y h o r i z o n s , PCA w a s w hether literatu re they here w hile ap p lied produced more sum s, and to som etim es to o th ers d ep th have sums in terp retab le P C A 's o f h o r i z o n site o r d in a tio n s corresp o n d ed w ith th o se o f h o riz o n sum s. v ariab les data 2 .1 1 and th e f i r s t summed b y d e p t h s 7 0 - 1 5 0 cm. for p resen ts th e than T able PCA. or for n atu ral d ep th of 0-10 to a n in s um s w e r e at the in clu d ed cm, 2.12 value a l p h a = 0 .05 in to the w hich of for th e cm, m atrix are and used g reater n=24„ The 10-30 are D epths roughly study a re a . th e of 0 . 404 correspond A h o rizo n s, PCA lab o rato ry 30-70 c o rrelatio n T able in tended h o riz o n developm ent n o rm ally c o effic ien ts 10-30 a b so lu te sig n ifican t th e cm, 2.12 p r e s e n t s equal w hether f o u r PC' s o f m in e r a l s o i l C o rrelatio n s sta tistic a lly used reg ressio n to resu lts th an T ab le d eterm in e used w ith 0-10 cm cm d e p t h co rresponded a p p ro x im ately w ith upper B h o riz o n developm ent, th e 3 0 - 7 0 cm d e p t h t o o k i n m o s t l o w e r B h o r i z o n d e v e l o p m e n t , and th e 150 cm d e p t h 70-150 n u trien t cm d e p t h sum w as content of u su ally also the in clu d ed in cluded so il to p ro file C h o rizo n s. represent to the A 0- the depth to ta l u su ally d e s c r i b e d by t r a d i t i o n a l s u r v e y m e t h o d s . The f i r s t 73% o f PC o f d a t a s u m m a r i z e d by d e p t h s a c c o u n t e d f o r v ariab ility co efficien ts on t h e in the d ata set, 0 - 1 5 0 cm s u m s . and A ll placed the the h ig h est co efficien ts in 70 T ab le 2 .1 1 . C o r r e l a t i o n s betw een l a b o r a t o r y d e te r m in e d m in e ra l s o i l v a r i a b l e s and the f i r s t fo u r p r i n c i p a l com ponents, w ith ranks o f th e e i g h t h i g h e s t c o r r e l a t i o n s f o r e a c h PC. D a t a a r e summed b y t h e d e p t h s 0 - 1 0 cm, 1 0 - 3 0 cm, 3 0 - 7 0 cm, a n d 7 0 - 1 5 0 cm. V ariab le E igenvalue Percent TKN10 TKN70 TKN150 TKP30 TKP70 TKP150 CA10 CA70 CA150 MG10 MG30 MG150 K10 K70 K150 TKNSUM TKPSUM CASUM MGSUM KSUM PC l ( R a n k ) PC 2 ( R a n k ) PC 3 ( R a n k ) PC 4 ( R a n k ) 14.55 72.7 2.04 10.2 1.29 6.5 0.9 0 4.5 0 .6006(2) 0.1378 -0 .0 6 8 2 0.1802 -0.07 35 -0 .2 0 2 5 0.6984(1) 0.0495 -0 .3 2 5 8 (6 ) 0.5239(3) 0.0108 -0.3 8 1 6 (5 ) 0 .4 768(4) -0.1 5 8 4 -0.3 5 7 0 (7 ) 0.2084 -0.0695 -0 .1 5 9 0 -0 .2 5 3 0 (8 ) -0 .2 1 8 5 -0 .0 3 0 3 -0.0608 -0.2 1 0 7 (6 ) 0 .8 1 6 9 (1 ) 0.4620(2) -0 .0 1 0 8 -0 .0 3 8 6 -0 .2 4 0 7 (4 ) -0 .2 1 4 4 (5 ) -0 .20 6 8 (7 ) -0 .1702 -0 .0 4 0 9 0.0594 0.0098 0.1379 -0 .0 9 4 3 0 .3121(3) -0.1 8 70 (8 ) -0 .0 8 0 7 0.1189 0 .4050(2) -0 .0 4 6 8 0.0883 0.0744 -0 .0 4 9 2 0.1104 0.1772 -0.0 0 53 0 .2814(4) -0 .2181(7) -0 .3 0 6 0 (3 ) -0 .0 6 4 6 -0 .4 7 3 5 (1 ) -0 .2572(5) 0.1193 0.1784 0.0948 0 .2380(6) -0 .1905(8) -0 .1 0 2 3 0.6511 0.92 6 8 (6 ) 0.9139 0.5103 0.8463 0 .9441(1) 0.6597 0.9090 0.8411 0.7624 0.8887 0.8943 0.6810 0 .9167(7) 0.8893 0 .9337(5) 0.93 4 2 (4 ) 0 .9113(8) 0 .9360(3) 0.93 6 5 (2 ) T a b le 2 .1 2 . S im p l e l i n e a r c o r r e l a t i o n s am ong v a r i a b l e s u s e d in p r i n c i p a l com ponent a n a l y s i s o f TKNIO TKN70 TKN150 TKP30 TKP7Q TKP150 CAIO CA70 CA150 I4G10 TKN10 1 .0 0 0 0 .6 6 4 0 .5 7 5 0 .4 3 9 0 .4 5 9 0 .5 1 0 0 .9 0 3 0 .6 3 9 0 .4 5 7 TKN70 0 .6 6 4 1 .0 0 0 0 .8 8 0 0 .4 2 1 0 .7 8 7 0 .8 3 2 0 .6 9 5 0 .8 5 2 0 .6 8 7 la b o r a t o r y d e te r m in e d m in e r a l K10 K70 MG30 MG150 0 .7 0 8 0 .4 4 6 0 .3 3 4 0 .5 3 8 0 .4 3 8 0 .7 5 9 0 .8 6 9 0 .7 8 6 0 .6 7 0 0 .8 3 7 s o il v a r i a b l e s sun ro e d b y d e p t h s . TKNSUM TKPSUM 0 .4 1 6 0 .8 1 5 0 .5 8 1 0 .5 9 4 0.4Q Q 0 .4 6 3 0 .7 4 3 0 .9 3 6 0 .8 2 9 0 .7 7 8 0 .8 3 7 0 .8 1 6 0 .8 2 3 K 150 CASUM MGSUM KSUM TKN150 0 .5 7 5 0 .8 8 0 1 .0 0 0 0 .2 8 4 0 .6 6 1 0 .9 3 3 0 .5 5 9 0 .7 9 8 0 .8 2 0 0 .6 9 5 0 .8 3 0 0 .8 4 0 0 .5 2 7 0 .7 9 9 0 .8 2 7 0 .9 2 6 0 .8 1 9 0 .8 5 3 0 .8 5 6 TKP30 0 .4 3 9 0 .4 2 1 0 .2 8 4 1 .0 0 0 0 .7 6 9 0 .4 4 5 0 .4 3 7 0 .2 8 9 0 .2 3 6 0 .3 1 0 0 .3 1 7 0 .3 5 0 0 .4 4 6 0 .4 2 5 0 .5 0 3 0 .4 4 5 0 .7 2 1 0 .3 1 4 0 .3 5 0 0 .5 1 4 TKP70 0 .4 5 9 0 .7 8 7 0 .6 6 1 0 .7 6 9 1 .0 0 0 0 .7 9 4 0 .4 9 7 0 .6 7 4 0 .6 2 3 0 .5 1 1 0 .6 9 9 0 .7 7 4 0 .5 6 9 0 .7 9 4 0 .8 1 2 0 .7 1 3 0 .9 3 9 0 .6 8 7 0 .7 7 7 0 .8 4 3 TKPI5D 0 .5 1 0 0 .8 3 2 0 .9 3 3 0 .4 4 5 0 .7 9 4 1 .0 0 0 0 .5 0 8 0 .8 0 5 0 .8 8 3 0 .6 1 8 0 .8 3 1 0 .9 1 0 0 .4 8 6 0 .8 3 7 0 .9 2 7 0 .8 6 6 0 .9 2 7 0 .9 0 1 0 .9 0 2 0 .6 9 7 CAIO 0 .9 0 3 0 .6 9 5 0 .5 5 9 0 .4 3 7 0 .4 9 7 0 .5 0 8 1 .0 0 0 0 .6 4 3 0 .3 8 8 0 .8 4 6 0 .5 5 5 0 .3 3 4 0 .6 7 5 0 .4 4 6 0 .3 4 6 0 .7 7 3 0 .5 7 8 0 .5 4 4 0 .4 1 5 0 .4 3 1 CA70 0 .6 3 9 0 .8 5 2 0 .7 9 8 0 .2 8 9 0 .6 7 4 0 .8 0 5 0 .6 4 3 1 .0 0 0 0 .8 2 4 0 .7 4 4 0 .8 4 5 0 .7 9 0 0 .6 3 1 0 .8 5 5 0 .7 3 8 0 .8 4 7 0 .7 5 4 0 .9 0 6 0 .8 6 1 0 .8 1 6 CA150 0 .4 5 7 0 .6 8 7 0 .B 2 0 0 .2 3 6 0 .6 2 3 0 .8 8 3 0 .3 8 8 0 .8 2 4 1 .0 0 0 0 .4 7 6 0 .6 8 8 0 .8 5 8 0 .3 1 3 0 .7 2 8 0 .8 6 8 0 .7 5 3 0 .7 6 4 0 .9 7 7 0 .8 3 0 0 .7 9 9 MG10 0 .7 0 8 0 .7 5 9 0 .6 9 5 0 .3 1 0 0 .5 1 1 0 .6 1 8 0 .8 4 6 0 .7 4 4 0 .4 7 6 1 .0 0 0 0 .7 8 1 0 .5 1 8 0 .6 7 3 0 .6 4 0 0 .4 6 1 0 .7 8 1 0 .5 9 4 0 .6 0 4 0 .6 3 4 0 .5 8 3 MG30 0 .4 4 6 0 .8 6 9 0 .8 3 0 0 .3 1 7 0 .6 9 9 0 .6 3 1 0 .5 5 5 0 .8 4 5 0 .6 8 8 0 .7 8 1 1 .0 0 0 0 .6 1 8 0 .6 8 8 0 .8 8 1 0 .6 8 0 0 .8 0 2 0 .7 5 9 0 .7 5 6 0 .8 9 2 0 .7 9 5 MG150 0 .3 3 4 0 .7 8 6 0 .8 4 0 0 .3 5 0 0 .7 7 4 0 .9 1 0 0 .3 3 4 0 .7 9 0 0 .8 5 8 0 .5 1 8 0 .8 1 8 1 .0 0 0 0 .4 3 3 0 .8 9 3 0 .9 2 1 0 .7 3 9 0 .8 3 3 0 .8 5 2 0 .9 6 4 0 .9 0 6 0 .5 3 8 0 .6 7 0 0 .5 2 7 0 .4 4 6 0 .5 6 9 0 .4 8 6 0 .6 7 5 0 .6 3 1 0 .3 1 3 0 .8 7 3 0 .6 8 8 0 .4 3 3 1 .0 0 0 0 .6 5 1 0 .4 1 8 0 .6 3 3 0 .5 7 6 0 .4 5 8 0 .6 0 3 0 .6 2 2 K70 0 .4 3 8 0 .8 3 7 0 .7 9 8 0 .4 2 5 0 .7 9 4 0 .8 3 7 0 .4 4 6 0 .8 5 5 0 .7 2 8 0 .6 4 0 0 .8 8 1 0 .8 9 3 0 .6 5 1 1 .0 0 0 0 .8 3 8 0 .7 7 8 0 .8 3 2 0 .7 9 4 0 .9 5 4 0 .9 4 6 K 150 0 .4 1 6 0 .7 4 3 0 .8 2 7 0 .5 0 3 0 .6 1 2 0 .9 2 7 0 .3 4 6 0 .7 3 8 0 .6 6 8 0 .4 6 1 0 .6 8 0 0 .9 2 1 0 .4 1 8 0 .8 3 8 1 .0 0 0 0 .7 6 1 0 .9 0 3 0 .8 6 4 0 .8 8 8 0 .9 4 0 0 .7 3 9 0 .6 3 3 0 .7 7 8 0 .7 6 1 1 .0 0 0 0 .8 4 8 0 .8 4 5 0 .7 9 1 0 .8 0 4 0 .8 3 3 0 .5 7 6 0 .8 3 2 0 .9 0 3 0 .8 4 8 1 .0 0 0 0 .8 2 3 0 .8 4 4 0 .9 1 2 K10 TKNSUM 0 .8 1 5 0 .9 3 6 0 .9 2 6 0 .4 4 5 0 .7 1 3 0 .8 6 6 0 .7 7 3 0 .8 4 7 0 .7 5 3 0 .7 8 1 0 .8 0 2 TKPSUM 0 .5 8 1 0 .8 2 9 0 .8 1 9 0 .7 2 1 0 .9 3 9 0 .9 2 7 0 .5 7 8 0 .7 5 4 0 .7 6 4 0 .5 9 4 0 .7 5 9 CASUM 0 .5 9 4 0 .7 7 8 0 .8 5 3 0 .3 1 4 0 .6 8 7 0 .9 0 1 0 .5 4 4 0 .9 0 6 0 .9 7 7 0 .6 0 4 0 .7 5 6 0 .8 5 2 0 .4 5 6 0 .7 9 4 0 .8 6 4 0 .8 4 5 0 .8 2 3 1 .0 0 0 0 .8 6 5 0 .8 4 9 MGSUM 0 .4 0 0 0 .8 3 7 0 .8 5 6 0 .3 5 0 0 .7 7 7 0 .9 0 2 0 .4 1 5 0 .8 6 1 0 .8 3 0 0 .6 3 4 0 .8 9 2 0 .9 6 4 0 .6 0 3 0 .9 5 4 0 .8 8 8 0 .7 9 1 0 .8 4 4 0 .8 6 5 1 .0 0 0 0 .9 5 2 KSUM 0 .4 6 3 0 .8 1 6 0 .8 2 3 0 .5 1 4 0 .8 4 3 0 .8 9 7 0 .4 3 1 0 .8 1 6 0 .7 9 9 0 .5 8 3 0 .7 9 5 0 .9 0 6 0 .6 2 2 0 .9 4 8 0 .9 4 0 0 .8 0 4 0 .9 1 2 0 .6 4 9 0 .9 5 2 1 .0 0 0 72 t h i s a n a l y s i s were p o s i t i v e , in values of reflected an according to proportion f i r s t the of PC coefficients, overall a size me a n variability in interpretation several depths, d a ta . The though PCA, the of only have s u ms of an locations data size summed b y d e p t h s is the only displays major relative the first content. PC Sites inclusions an 4% o f expressed are respect appears dispersed in in Figure levels closely indicating formed PC 1 a n d interpretation nutrient are to outwash over grouped their with range sites are the Bruce are placed in further nearer at overall sand a wide of a mon g sites. D ifferences the interp retatio n . the v a r i a b i l i t y not P at in ad d itio n al indicating are m ajor 0-10 axis, Huron s i t e s the emphasized center of the f i r s t Port by s e t. nutrients with left rafted large data variation obvious soil Outwash s a n d s i t e s nutrient only from t h i s 6% o f only study s i t e s . of th e variability, w ith not site plot end The expressed PC sites PC e m p h a s i z e d Ca a n d e s p e c i a l l y PC, depth th is ordinated set is range less than h o riz o n sums. laboratory Even data siz e the contained does the A plot of but fo u r th variability the that content. w hich can be o b t a i n e d The t h i r d G enerally, and nutrient th a t T h e s e c o n d PC, w i t h 10% o f variability, indicating influence weighted in d ic a te d cm d e p t h s . a n d t h e r e wa s n o t a l a r g e origin, in PC2 2.8. this the the low icethe of such w hile Port t o t h e r i g h t ; h o w e v e r , g r o u p members closely nutrient together content by between th is the o rd in atio n . tills may b e 73 Figure 2.8. L o c a t i o n o f s i t e s w i t h r e s p e c t t o PC 1 a n d PC 2 o f l a b o r a t o r y d e t e r m i n e d s o i l v a r i a b l e s summed b y d e p t h s 0 - 1 0 cm, 1 0 - 3 0 cm, 3 0 - 7 0 cm, 7 0 - 1 5 0 cm, and 0 - 1 5 0 cm, a n d a v e r a g e d w i t h i n a s i t e . PC 2 (10%) O □ X Outwash sand 4 Outwash/inclu8ions - 4c Port Bruce till □ Port Huron till A Lacustrine -2 -3 -3 2 1 0 1 PC 1 (73%) 2 75 related Port t o t h e g r e a t e r o v e r a l l volume o f c o a r s e Bruce tills, since corrected for th is plot accounts set, emphasizing L, and T a re coarse nutrient fragment for the volume. only 0-10 content calculations The 10% o f v a r i a t i o n Outwash grouped, but other a r r a y e d i n a m e a n i n g f u l manner w i t h r e s p e c t A plot F igure in were axis in the sand of data sites sites are H, not t o PC 2 . o f P C ' s 1 a n d 3 o f d e p t h summed d a t a a p p e a r s 2.9. variability The in third the Ca c o n t e n t of along axis, this second cm d e p t h . again clo sely fragments data the PC s u m m a r i z e d s e t , a n d wa s soils. Mo s t with only three a n d l o w Ca c o n t e n t about associated sites were sites separated out a t only of 7% o f with closely P and grouped relatively the p o s itiv e in high end o f P the axis. D epth sums meaningful s i t e depth sums content of ordinations expressed which sums did not produce than horizon sums. size were trend in more T h e 0 - 1 5 0 cm overall nutrient m ore summaries effective in nutrient in PCA. grouping of sim ila r d e p o sitio n al environment. Scores of were a data overwhelmed o t h e r G e n e ra lly , horizon sites so ils compared using scores simple the to 24 s i t e s site linear scores i n PCA's o f f r o m PCA o f correlations. The f r o m d e p t h summed d a t a a n d s c o r e s horizon sums including horizon o rganic ( s i g n i f i c a n t a t a l p h a = 0 .05 f o r n = 2 4 ). depth summed d a t a summed d a t a correlation in lay ers the first was A sim ilar between PC o f r =0 . 892 correlation 76 Figure 2.9. L o c a t i o n o f s i t e s w i t h r e s p e c t t o PC 1 a n d PC 3 o f l a b o r a t o r y d e t e r m i n e d s o i l v a r i a b l e s summed b y d e p t h s 0 - 1 0 cm, 1 0 - 3 0 cm, 3 0 - 7 0 cm, 7 0 - 1 5 0 cm, and 0 - 1 5 0 cm, a n d a v e r a g e d w i t h i n a s i t e . PC 2 (7%) 3 i>° I 2 1□ G Outwash sand + Outwash/inclu8ions % Port Bruce till □ Port Huron till A Lacustrine 1 K .+ ° +< X ........."7 * 0 W Q A ^ p-f + M _ -j J □ * F * B □0 AU S □ N □ -2 ........ . i -3 - 3 - 2 - .1 .. .... 1 0 ........i ... 1 PC 1 (73%) J. 2 .. i. 3 4 78 was p r o d u c e d f r o m PC s c o r e s summed m i n e r a l r= 0 . 913, soil also of sites on t h e first site ranks ranks at wa s correlations the first m ineral indicate PC a x i s of sig n ifican tly all ordinations horizons or by d e p t h s , by data that site scores three sets of may b e for derived was r s =0 . 909 , betw een data at and site depth alpha= 0.05. with respect data sim ilar from of including laboratory that with or w ithout S p e a rm a n 's horizon significant so was The c o r r e l a t i o n laboratory d ifferen t, dimensional PCA's. horizon calculated The c o r r e l a t i o n also of correlation also summed soil rg=0.924, This was s u mme d depth axis a lp h a = 0 .05. these a lp h a = 0 .05. The not at data w ith PCA o f data axes of first data. correlation PCA o f lay ers in summed rank in significant laboratory sig n ifican t coefficient organic on t h e data inclusion to are f ir s t- summed b y of organic layers. PCA of field data Field d a t a were a n a ly z e d morphological sites. variables The a n a l y s i s comparison to to best also depositional identify expressed examined which o f variability ordinations environment the of ma ny a mon g sites designations, and in to o r d i n a t i o n s d e r i v e d from l a b o r a t o r y d a t a . R eg ressio n c o e f f i c i e n t s of v a r i a b l e s and th e f i r s t PC' s appear m atrix used in Table 2.13, and i n t h e PCA a p p e a r s in T a b le 2.14 which a r e g r e a t e r the associated in Table 2.14. four correlation C orrelations than or equal to an a b s o l u t e 79 Table 2.13. C o r r e l a t i o n s between f i e l d observed v a r i a b l e s and th e f i r s t fo u r p r i n c i p a l com ponents, w ith ran k s o f th e e i g h t h i g h e s t c o r r e l a t i o n s f o r e a c h PC. V ariable Eigenvalue Percent ATHICK ETHICK BTHICK BSTHICK CTHICK MOTTDEP DRCLASS ACLAY BSAND CSI LT SAND30 SLT150 SGT150 SAND450 HEAVC DEPSL DEPSCL BIC DEPTEX TEXS ACSFR BCSFR CCSFR PC l ( R a n k ) PC2(Rank) PC 3 ( R a n k ) PC 4 ( R a n k ) 11.07 48.1 3.78 16.4 2.03 8.8 1.57 6.9 -0.2226 -0.0309 -0.6647 0.7222 0.6924 0.6525 -0.6788 -0.7539 0.8704(4) -0.6580 0.8058(7) 0.7977(8) 0.6614 0.6615 -0.8696(5) 0.9444(1) 0.9237(3) -0.9396(2) 0.8592(6) 0.6339 -0.4381 0.0505 -0.2267 0.2996 -0.6830(3) 0.4501 -0.0015 -0.4757(8) 0.1925 0.1171 0.3435 0.0443 -0.3368 0.0307 0.1819 0.5363(6) 0.5380(5) -0.1406 -0.0747 -0.0997 0.0722 -0.0305 0.5050(7) 0.6637(4) 0.7131(2) 0.8096(1) 0.0376 0.0583 0.4786(2) 0.2666 -0.4393(5) -0.5396(1) 0.4036(6) -0.2162 0.1573 0.2437 -0.0049 0.3354 0.2350 0.3505(8) 0.0734 -0.0575 -0.0260 0.1565 0.1306 0.4414(4) -0.2552 -0.4527(3) -0.3698(7) 0.1337 0.3581(5) 0.1010 0.4540(1) -0.1424 -0.2131 -0.2245 -0.2481 0.4187(2) -0.2557 0.3941(3) 0.2648(8) -0.2512 -0.2208 0.3602(4) -0.1935 -0.0943 0.0896 -0.3048(7) -0.1562 0.0421 0.3455(6) 0.1838 T a ble 2.14. S i ngle linear c o r r e l a t i o n s a m o n g v a r i a b l e s u s e d BTHICK BSTHICK 1n principal CTHICK MOTTDEP DRCLASS ATHICK ETHICK ATHICK 1 .0 0 0 - 0 .0 7 4 0 . 176 - 0 .3 1 4 -0 .3 0 7 - 0 .0 6 1 0 .0 9 4 ETHICK -0 .0 7 4 1 .0 0 0 -0 .2 4 7 0 .1 0 1 0 .2 3 8 -0 .2 2 8 - 0 .1 0 3 c o m p onent a n a l y s i s of f i e l d data. BSAND CSILT SAND30 SAND150 SGTISO SAND4S0 HEAVC DEPSL 0 .0 9 3 - 0 .0 9 0 0 .2 7 0 - 0 .0 6 0 0 .0 4 1 - 0 .0 3 7 - 0 .1 1 3 0 .2 3 2 - 0 .2 9 7 0 .0 5 9 0 .0 4 3 -0 .0 3 2 - 0 .0 8 2 - 0 .3 1 9 - 0 .3 2 1 0 .2 4 3 ACLAY OEPSCL BIC DEPBAND - 0 .2 3 4 -0 .2 3 0 0 .2 1 3 - 0 .1 4 9 0 .1 2 6 0 .4 4 7 0 .0 9 0 0 .3 0 2 - 0 .0 4 0 0 .0 4 6 0 .1 0 4 - 0 .1 1 2 -0 .3 6 7 - 0 .3 6 8 - 0 .3 9 1 -0 .4 0 2 BANDS ACSFR BCSFR CCSFR 0 . 176 - 0 .2 4 7 1 .0 0 0 -0 .2 3 6 -0 .9 7 4 -0 .6 2 5 0 .6 2 3 0 .6 2 3 - 0 .4 3 8 0 .3 3 6 - 0 .4 8 6 - 0 .2 9 0 -0 .1 6 3 - 0 .0 7 2 0 .5 2 6 - 0 .7 0 0 -0 .6 3 8 0 .7 3 0 - 0 .5 0 4 - 0 .0 6 6 0 .4 4 9 0 .1 1 3 0 .3 3 5 BSTHICK -0 .3 1 4 0 . 101 = 0 .2 3 6 1 .0 0 0 0 .2 7 8 0 .1 6 4 - 0 .4 9 4 - 0 .5 8 2 0 .8 3 0 - 0 .6 2 4 0 .7 4 7 0 .7 1 0 0 .3 9 6 0 .4 5 9 - 0 .4 8 5 0 .6 1 3 0 .6 3 4 - 0 .6 1 6 0 .5 6 4 0 .4 2 0 - 0 .3 1 2 0 .0 6 6 -0 .2 2 8 CTh ICK - 0 .3 0 7 0 .2 3 8 - 0 .9 7 4 0 .2 7 8 1 .0 0 0 0 .6 0 9 - 0 .6 0 7 - 0 .6 2 5 0 .4 5 0 - 0 .3 9 2 0 .4 7 4 0 .2 8 2 0 .1 9 7 0 .1 0 3 - 0 .5 6 8 0 .7 2 4 0 .6 6 6 - 0 .7 6 2 0 .5 3 1 0 .0 7 9 - 0 .5 1 5 - 0 .1 3 6 -0 .4 0 7 MOTTDEP - 0 .0 6 1 - 0 .2 2 8 - 0 .6 2 5 0 .1 6 4 0 .6 0 9 1 .0 0 0 - 0 .6 0 1 - 0 .3 2 6 0 .4 2 5 - 0 .4 9 7 0 .4 9 0 0 .3 7 4 0 .4 4 7 0 .4 1 7 - 0 .6 6 7 0 .6 5 2 0 .6 0 1 - 0 .6 1 8 0 .5 2 1 0 .3 4 0 - 0 .0 3 1 0 .2 6 5 0 .1 8 8 0 09 4 - 0 .1 0 3 0 .6 2 3 -0 .4 9 4 -0 .6 0 7 - 0 .6 0 1 1 .0 0 0 0 .4 4 4 - 0 .6 0 7 0 .5 5 4 - 0 .5 9 4 -0 .4 3 6 - 0 .2 3 1 - 0 .1 9 9 0 .5 0 3 - 0 .5 9 6 - 0 .5 9 3 0 .6 7 6 - 0 .5 1 9 - 0 .2 0 4 0 .2 5 3 - 0 .1 0 0 0 .0 8 8 ACLAV 0 .0 9 3 - 0 .2 9 7 0 .6 2 3 -0 .5 8 2 -0 .6 2 5 - 0 .3 2 6 0 .4 4 4 1 .0 0 0 -0 .7 8 7 0 .3 1 4 - 0 .6 9 1 -0 .7 4 9 - 0 .3 5 2 - 0 .3 5 2 0 .4 2 1 -0 .6 5 3 - 0 .6 4 6 0 .6 7 0 - 0 .5 3 3 - 0 .4 1 0 0 .6 2 6 0 .2 2 6 0 .4 2 6 BSAND - 0 .0 9 0 0 .0 5 9 -0 .4 3 8 0 .6 3 0 0 .4 5 0 0 .4 2 5 -0 .6 0 7 - 0 .7 8 7 1 .0 0 0 -0 .5 9 2 0 .9 0 9 0 .8 7 4 0 .4 9 2 0 .5 3 9 - 0 .6 0 0 0 .7 2 9 0 .7 5 5 - 0 .7 5 9 0 .6 4 8 0 .5 9 4 - 0 .3 8 1 0 .1 5 3 - 0 .1 4 2 BTHICK non a r,s CSILT SAND30 0 .2 7 0 0 .0 4 3 0 .3 3 6 - 0 .6 2 4 -0 .3 9 2 - 0 .4 9 7 0 .5 5 4 0 .3 1 4 - 0 .5 9 2 1 .0 0 0 - 0 .5 4 4 - 0 .4 3 3 - 0 .6 5 1 - 0 .5 7 2 0 .5 4 4 - 0 .5 2 5 - 0 .5 1 1 0 .5 9 0 - 0 .3 9 5 -0 .3 9 9 0 .0 1 9 -0 .4 8 5 - 0 .1 9 7 - 0 .0 6 0 - 0 .0 3 2 -0 .4 8 6 0 .7 4 7 0 .4 7 4 0 .4 9 0 - 0 .5 9 4 - 0 .6 9 1 0 .9 0 9 - 0 .5 4 4 1 .0 0 0 0 .7 3 6 0 .3 7 4 0 .4 2 0 - 0 .5 7 8 0 .6 6 6 0 .6 7 5 - 0 .7 3 7 0 .5 9 5 0 .4 4 7 - 0 .2 3 9 0 .1 5 0 - 0 .1 3 5 SLT150 0 .0 4 1 - 0 .0 8 2 -0 .2 9 0 0 .7 1 0 0 .2 8 2 0 .3 7 4 - 0 .4 3 6 - 0 .7 4 9 0 .8 7 4 - 0 .4 3 3 0 .7 3 6 1 .0 0 0 0 .5 7 8 0 .6 4 1 - 0 .5 9 5 0 .6 6 3 0 .7 3 9 - 0 .6 4 2 0 .6 3 9 0 .7 1 3 - 0 .3 3 4 0 .1 0 4 - 0 .0 3 5 SGT150 -0 .0 3 7 - 0 .3 1 9 -0 .1 6 3 0 .3 9 6 0 . 197 0 .4 4 7 - 0 .2 3 1 - 0 .3 5 2 0 .4 9 2 -0 .6 5 1 0 .3 7 4 0 .5 7 8 1 .0 0 0 0 .9 5 7 - 0 .6 7 4 0 .5 7 8 0 .5 1 4 - 0 .5 3 7 0 .5 8 4 0 .8 6 6 - 0 .0 0 5 0 .2 1 4 0 .1 3 8 SAND450 - 0 .1 1 3 - 0 .3 2 1 -0 .0 7 2 0 .4 5 9 0 .1 0 3 0 .4 1 7 - 0 .1 9 9 - 0 .3 5 2 0 .5 3 9 -0 .5 7 2 0 .4 2 0 0 .6 4 1 0 .9 5 7 1 .0 0 0 - 0 .6 6 9 0 .5 8 6 0 .5 2 1 - 0 .4 9 7 0 .6 1 2 0 .8 9 8 - 0 .0 3 3 0 .1 7 8 0 .1 1 8 HEAVC 0 .2 3 2 0 .2 4 3 0 .5 2 6 -0 .4 8 5 -0 .5 6 8 - 0 .6 6 7 0 .5 0 3 0 .4 2 1 - 0 .6 0 0 0 .5 4 4 - 0 .5 7 8 -0 .5 9 5 -0 .6 7 4 -0 .6 6 9 1 .0 0 0 - 0 .9 0 9 - 0 .9 0 6 0 .8 7 7 -0 .8 8 7 - 0 .5 0 2 0 .2 5 7 - 0 .0 8 4 0 .1 4 2 OEPSL - 0 .2 3 4 - 0 .0 4 0 -0 .7 0 0 0 .6 1 3 0 .7 2 4 0 .6 5 2 - 0 .5 9 6 - 0 .6 5 3 0 .7 2 9 -0 .5 2 5 0 .6 8 6 0 .6 6 3 0 .5 7 8 0 .5 8 6 - 0 .9 0 9 1 .0 0 0 0 .9 2 3 - 0 .9 4 6 0 .8 9 3 0 .5 5 0 -0 .4 1 9 - 0 .0 3 0 - 0 .2 8 4 OEPSCL - 0 .2 3 0 0 .0 4 6 -0 .6 3 6 0 .6 3 4 0 .6 6 6 0 .6 0 1 - 0 .5 9 3 - 0 .6 4 6 0 .7 5 5 - 0 .5 1 1 0 .6 7 5 0 .7 3 9 0 .5 1 4 0 .5 2 1 - 0 .9 0 6 0 .9 2 3 1 .0 0 0 - 0 .8 8 7 0 .8 7 5 0 .4 8 9 - 0 .4 S 2 - 0 .0 0 2 - 0 .2 7 9 0 .2 1 3 0 . 104 0 .7 3 0 - 0 .6 1 6 -0 .7 6 2 - 0 .6 1 0 0 .6 7 6 0 .6 7 0 - 0 .7 5 9 0 .5 9 0 - 0 .7 3 7 -0 .6 4 2 -0 .5 3 7 -0 .4 9 7 0 .8 7 7 - 0 .9 4 6 - 0 .8 B 7 1 .0 0 0 -0 .8 4 4 - 0 .4 7 6 0 .4 2 6 - 0 .0 6 8 0 .2 4 4 - 0 .1 4 9 -0 .1 1 2 -0 .5 0 4 0 .5 6 4 0 .5 3 1 0 .5 2 1 - 0 .5 1 9 - 0 .5 3 3 0 .6 4 6 -0 .3 9 5 0 .5 9 5 0 .6 3 9 0 .5 8 4 0 .6 1 2 - 0 .8 8 7 0 .8 9 3 0 .8 7 5 - 0 .8 4 4 1 .0 0 0 0 .5 7 5 - 0 .3 8 0 -0 .1 8 5 - 0 .3 0 6 TEXS 0 . 126 -0 .3 6 7 -0 .0 6 6 0 .4 2 0 0 .0 7 9 0 .3 4 0 -0 .2 0 4 - 0 .4 1 0 0 .5 9 4 -0 .3 9 9 0 .4 4 7 0 .7 1 3 0 .8 6 6 0 .8 9 8 - 0 .5 8 2 0 .5 5 0 0 .4 8 9 - 0 .4 7 6 0 .5 7 5 1 .0 0 0 - 0 .0 9 8 0 .1 4 1 0 .0 6 9 ACSFR 0 .4 4 7 - 0 .3 6 8 0 .4 4 9 -0 .3 1 2 -0 .5 1 5 - 0 .0 3 1 0 .2 5 3 0 .6 2 6 - 0 .3 8 1 0 .0 1 9 - 0 .2 3 9 - 0 .3 3 4 - 0 .0 0 5 -0 .0 3 3 0 .2 5 7 - 0 .4 1 9 - 0 .4 5 2 0 .4 2 6 - 0 .3 8 0 -0 .0 9 8 1 .0 0 0 0 .4 5 7 0 .6 5 1 0 .1 5 0 0 .1 0 4 0 .2 1 4 0 .1 7 8 - 0 .0 8 4 - 0 .0 3 0 - 0 .0 0 2 - 0 .0 6 8 - 0 .1 8 5 0 .1 4 1 0 .4 5 7 1 .0 0 0 0 .8 2 0 - 0 .1 3 5 -0 .0 3 5 0 .1 3 8 0 .1 1 8 0 .1 4 2 -0 .2 8 4 - 0 .2 7 9 0 .2 4 4 - 0 .3 0 6 0 .0 6 9 0 .6 5 1 0 .8 2 0 1 .0 0 0 B IC DEPTEX BCSFR 0 .0 9 0 - 0 .3 9 1 0 . 1 13 0 .0 6 6 -0 .1 3 6 0 .2 6 5 - 0 .1 0 0 0 .2 2 6 0 .1 5 3 -0 .4 8 5 CCSFR 0 .3 0 2 - 0 .4 8 2 0 .3 3 5 - 0 .2 2 8 -0 .4 0 7 0 .1 8 8 0 .0 8 8 0 426 - 0 .1 4 2 -0 .1 9 7 81 value of 0.404 fo r n=24. in the depths statistically significant T h e f i r s t PC a c c o u n t e d f o r data set, and and textures observation layers are emphasized of in the f i r s t were nearer the fragment co n tent soil pedon, surface and coefficients the textures score of an textural were loam ier. 16% o f t h e v a r i a b i l i t y , were and t h e thickness negative c o e f f ic ie n ts . The described PC b e c a m e m o r e n e g a t i v e a s of horizons while which layers. I n t h e s e c o n d PC, w h i c h a c c o u n t s f o r the highest p o sitiv e alpha=0.05 48% o f t h e v a r i a b i l i t y variables loamy s o i l at placed on t h e average of the texture E horizon S o ils with high sco res coarse of the received in th e second PC w e r e t h o s e w i t h l o a m i e r t e x t u r e s , t h i n n e r E h o r i z o n s , a n d many coarse variation, fragm ents. emphasized drainage thicknesses, and variability, highlighted s ome t e x t u r a l the f i r s t the The fourth variables field layers, d ata. the end o f the rafted inclusions sites and which w ith 9% of upper characteristics high horizon 7% o f described received the the and a l s o coefficients in PC. 2 of textural PC, which PC, features B horizon F i g u r e 2 . 1 0 shows s i t e and third are Because outwash a x i s , w hile are located at separates tills on c o a r s e fragment E horizon thickness. lo c atio n s with resp ect sand sites firs t sites formed located the the near in the opposi te Site B is located center, The at one w ith ice- and till second PC based predom inantly texture, located PC e m p h a s i z e s outw ash end. of d iff e r e n t deposition, c o n te n t, average are t o PC' s 1 and a s s o c i a t e d on P o r t Bruce till 82 Figure 2.10. L o c a t i o n o f s i t e s w i t h r e s p e c t t o PC 1 a n d PC 2 of fie ld observed s o il v a ria b le s averaged w ithin a s ite . PC 2 (16%) 3 -------- 2 Outwash sand D * E* 1 Out wash/inclusions Port Bruce till I 0 on X B* -1 4. m+ n d L H* T V u K-E □ S C Port Huron till Lacustrine F*a J W Q, + P R+ -2 _ ... -3 - 3 1 - 2 - 1 . - .1 0 1 PC 1 (48%) . 1. 1 2 3 4 84 but in this plot Lacustrine s ite s appears grouped w ith Port Huron sites. C and U were n o t p l a c e d t o g e t h e r a lo n g P C 's 1 and 2. A plot of fie ld of site locations data appears features, no relationship with even Site to outwash to PC's 1 and 3 PC 3 s u m m a r i z e d a b o u t in the data s e t , p rim a rily emphasizing thickness fragment c o n te n t. respect in Figure 2.11. 9% o f t h e v a r i a b i l i t y drainage with of the B horizon, lo c atio n s with depositional sand sites respect environment appearing and coarse t o PC 3 s h o w designations, more d i s p e r s e d than in previous p l o t s . On t h e order data. first as first that which axes of a lp h a= 0 .05. field including all data was PCA's were organic for horizon on t h e be for with the same first field sim ilar laboratory on the compare the sig nifican t first data a scores to axis site at scores summed l a b o r a t o r y r = - 0 .839; Spearm an' s the correlation summed b y h o r i z o n s PCA o f depth coef f ic ie n t com parisons were summed of rank likew ise The c o r r e l a t i o n b e t w e e n r a n k s o f axis summed l a b o r a t o r y was r s = - 0 .8 0 4 ; wa s laboratory s i g n i f i c a n t a t a lp h a = 0 .05. of used to between correlation r =-0 . 922 . t h e 24 s i t e s were in of a mong s i t e found layers soil and th e co rrelatio n s PCA's d a t a a n d PCA o f h o r i z o n w i t h PCA o f m i n e r a l r = - 0 .919, from correlations separate and were a r r a n g e d obtained The c o r r e l a t i o n f r o m PCA o f wa s wa s Simple l i n e a r o rd in atio n s, data PC a x i s , s i t e s o f PCA o f data data field including d a t a a n d PCA organic layers compared w ith m in e ra l soil 85 Figure 2.11. L o c a t i o n o f s i t e s w i t h r e s p e c t t o PC 1 a n d PC 3 of fie ld observed s o il v a ria b le s averaged w ithin a s ite . PC 3 (9%) C A F X Outwash sand + Outwash/inclusions ■ K SD * J TH _p r~ Port Bruce till A B Lacustrine “7 T Q O 4 * -1 -i- - 4- Efc Port Huron till L X.T + M □ H X 4- N □ 4 4Ua A A 4: -2 -3 -3 -2 -1 0 1 PC 1 (48%) - w 87 laboratory data correlation of wa s of a l l correlation field r s = -0 .953. axis the data Thus, with the was depth to and summed l a b o r a t o r y gradients t h e PCA's a p p e a r r s = -0 .905, expressed by the data the first coincide. PCA of combined field and laboratory data summed by horizons and depths P r i n c i p a l component a n a l y s e s were a p p l i e d t o a combined data set containing laboratory data the data selected summed b y h o r i z o n summed b y d e p t h s . most important previously. from this soil combination separate This locations data sets, of used from field g r o u p s , and PCA wa s variables PCA w a s a l s o whether s i t e variables laboratory performed from the to produce data, to data identify sets a plot derived different data sets, to corresponded with those derived and w ith depositional used determ ine from environm ent designations. V ariables received field the data, and t h i r d of used six in th is highest PCA w e r e coefficients those in the and th e t h r e e h i g h e s t c o e f f i c i e n t s PC's. laboratory A dditionally, data were the used, five and 0-150 the w hich first had PC o f in the second cm d e p t h variables s u ms w hich received the th ree h ig h est c o e f fic ie n ts in each of the f i r s t two horizons, both PC' s of laboratory data summed by with and w ith o u t o rg a n ic l a y e r s . Table variables 2.15 w ith presents the first regression four PC' s of coefficients the data set of the which 88 Table 2.15. C o rre la tio n s of la b o ra to ry determ ined s o i l v a r i a b l e s summed b y h o r i z o n s a n d b y d e p t h s , a n d f i e l d o b serv ed v a r ia b l e s , w ith the f i r s t fo u r p r i n c ip a l com ponents. Ranks of th e e i g h t h i g h e s t c o r r e l a t i o n s f o r e a c h PC a r e s h o w n . V ariable Eigenvalue Percent ETHICK BTHICK MOTTDEP BSAND HEAVC DEPSL DEPSCL BIC DEPTEX TEXS BCSFR CCSPR TKNSUM TKPSUM CASUM MGSUM KSUM OITKP OIMG OIK OETKN OEK ATKN PC l ( R a n k ) PC 2 ( R a n k ) PC 3 ( R a n k ) PC 4 ( R a n k ) 12.03 52.3 3.49 15.2 2.01 8.8 1.32 5.8 0.1220 0.6097 -0.6499 -0.8819(6) 0.8789(8) -0.9254(3) -0.8972(4) 0.9467(1) -0.8261 -0.6241 -0.1776 0.1434 0.9343(2) 0.8883(5) 0.8446 0.8471 0.8798(7) 0.7317 0.7795 0.7285 0.0890 0.2719 0.6075 0.7067(4) -0.4530(7) -0.0423 0.0219 0.0058 0.2047 0.1992 -0.1239 0.1255 -0.3607(8) -0.6459(5) -0.7173(2) -0.0953 -0.0275 -0.1085 0.1564 0.0858 0.2240 0.2021 0.3402 0.7610(1) 0.7166(3) -0.5035(6) 0.1449 0.0074 0.2536 0.1387 0.1747 -0.1083 -0.1075 0.1160 -0.2968(8) -0.0776 0.6052(1) 0.5982(2) -0.0280 -0.2376 -0.3479(6) -0.3626(5) -0.3414(7) 0.2091 0.2742 0.1430 0.4744(4) 0.4812(3) 0.0453 -0.2793(7) -0.2392(8) 0.5220(1) -0.2320 -0.2925(5) 0.2052 0.1836 -0.0803 0.2858(6) 0.1555 -0.0836 0.2186 0.0907 0.1360 -0.0350 0.1505 0.0990 0.4591 0.3072(4) 0.3763(2) -0.0895(3) -0.0514 0.11720 89 combined m atrix field used and in laboratory variables. t h e PCA a p p e a r s in Table i n T a b le 2.16 which a r e g r e a t e r value for of 0.404 n=24. are The variability of in clu d in g banding accumulation, N, P, and near K in a B. accounted s e t , em phasized high a l p h a = 0 .05 52% o f textural to a cm d e p t h also the layers, te x tu ra l t h e m o s t loamy l a y e r . 0-150 and score 15% o f of a high overall in this PC. Sums o f received the The t h i r d variability, high represented 6% o f the the nutrient layers content second PC, thickness of for 0-150 9% o f gave w ith an nutrient the E and variability, cm d e p t h . v ariab ility , on a c o m b i n a t i o n o f textured e m p h a s i z e d Oe n u t r i e n t s , PC, w h ich a c c o u n t e d s u ms o f loamy The frag m e nt c o n t e n t , and h o r i z o n coefficients at for depth The p r e s e n c e emphasized n u t r i e n t PC which of C orrelations so t h a t th e t e x t u r a l g r a d i e n t c o in c id e d w ith a surface additional coarse the 2.16. significant in te n s ity , gradient. the sites data and t e x t u r e coefficients, nutrient the PC, correlation than or e q u al to an a b s o l u t e statistically first The and The fourth placed high and m o rp h o lo g ic a l variables. A plot of s i t e locations of the combination of f i e l d in Figure based on nutrient le ft, 2.12. Site arrangement to loamy content, so that formed in respect to PC 1 a n d PC 2 and l a b o r a t o r y d a t a depths soils with along tex tu ral outwash outwash l o c a t e d n e ar t h e c e n t e r , and t i l l are loamy presented first layers sands w ith the is axis and wa s overall grouped at the inclusions are s o ils appear a t the right. T a b le 2 .1 6 . S im p l e ETHICK l i n e a r c o r r e l a t i o n s am ong v a r i a b l e s u s e d i n p r i n c i p a l BTHICK UOTTDEP BSAND HEAVC DEPSL DEPSCL com ponent a n a l y s i s o f BIC DEPTEX TEXS l a b o r a t o r y d e t e r m i n e d v a r i a b l e s sum m ed b y h o r i z o n s a n d b y d e p t h s , a n d f i e l d BCSFR CCSFR TKNSUM TKPSUM CASUM MGSUM KSUM o it k p OIMG OIK o b serv ed v a r ia b le s . OETKN OEK ATKN -0 .0 6 4 ETHICK 1 .0 0 0 - 0 .2 4 7 - 0 .2 2 8 0 .0 5 9 0 .2 4 3 - 0 .0 4 0 0 .0 4 6 0 .1 0 4 -0 .1 1 2 - 0 .3 6 7 - 0 .3 9 1 - 0 .4 B 2 0 .0 8 6 - 0 .0 8 5 -0 .0 1 8 0 .0 6 5 - 0 .0 0 8 0 .1 2 7 0 .3 4 5 0 .3 3 9 0 .4 0 0 0 .4 3 7 BTHICK - 0 .2 4 7 1 .0 0 0 -0 .6 2 5 -0 .4 3 8 0 .5 2 6 -0 .7 0 0 -0 .6 3 0 0 .7 3 0 -0 .5 0 4 - 0 .0 6 6 0 .1 1 3 0 .3 3 5 0 .5 6 9 0 .6 3 9 0 .4 5 6 0 .2 7 4 0 .4 8 0 0 .3 8 5 0 .2 7 5 0 .2 3 5 -0 .1 5 1 - 0 .0 7 2 0 .5 4 9 MOTTOEP -0 .2 2 8 - 0 .6 2 5 1 .0 0 0 0 .4 2 5 -0 .6 6 7 0 .6 5 2 0 .6 0 1 -0 .6 1 8 0 .5 2 1 0 .3 4 0 0 .2 6 5 0 .1 8 8 - 0 .5 2 5 - 0 .5 9 5 -0 .5 4 9 - 0 .5 0 3 - 0 .6 1 6 -0 .3 0 5 -0 .3 2 4 - 0 .3 7 8 - 0 .0 1 2 - 0 .0 9 7 - 0 .2 9 5 -0 .5 0 7 BSAND 0 .0 5 9 - 0 .4 3 8 0 .4 2 5 1 .0 0 0 - 0 .6 0 0 0 .7 2 9 0 .7 5 5 - 0 .7 5 9 0 .6 4 8 0 .5 9 4 0 .1 5 3 -0 .1 4 2 -0 .9 1 7 - 0 .8 8 7 -0 .8 3 3 - 0 .8 9 6 -0 .8 8 9 - 0 .6 3 3 - 0 .6 2 6 -0 .5 0 4 - 0 .0 5 0 -0 .2 2 0 HEAVC 0 .2 4 3 0 .5 2 6 -0 .6 6 7 - 0 .6 0 0 1 .0 0 0 -0 .9 0 9 -0 .9 0 6 0 .8 7 7 -0 .8 8 7 - 0 .5 8 2 - 0 .0 8 4 0 . 142 0 .7 4 0 0 .6 3 1 0 .6 8 9 0 .6 3 2 0 .6 4 7 0 .5 6 0 0 .7 1 4 0 .6 2 8 0 . 117 0 .2 6 8 0 .5 2 9 DEPSL - 0 .0 4 0 - 0 .7 0 0 0 .6 5 2 0 .7 2 9 -0 .9 0 9 1 .0 0 0 0 .9 2 3 - 0 .9 4 6 0 .8 9 3 0 .5 5 0 -0 .0 3 0 -0 .2 8 4 -0 .0 3 7 - 0 .7 4 5 - 0 .7 5 6 - 0 .6 8 9 -0 .7 2 8 - 0 .5 8 1 - 0 .6 6 2 -0 .5 5 9 0 .0 3 5 - 0 .1 4 3 - 0 .6 3 1 DEPSCL 0 .0 4 6 - 0 .6 3 8 0 .6 0 1 0 .7 5 5 -0 .9 0 6 0 .9 2 3 1 .0 0 0 - 0 .8 8 7 0 .8 7 5 0 .4 8 9 - 0 .0 0 2 - 0 .2 7 9 - 0 .6 2 3 -0 .7 1 5 - 0 .7 4 3 - 0 .6 7 4 - 0 .7 1 0 - 0 .5 3 8 - 0 .6 3 5 -0 .5 0 6 - 0 .0 1 8 - 0 .1 7 7 - 0 .6 0 2 BIC 0 . 104 0 .7 3 0 -0 .6 1 8 - 0 .7 5 9 0 .0 7 7 - 0 .9 4 6 -0 .0 0 7 1 .0 0 0 -0 .0 4 4 - 0 .4 7 6 -0 -0 6 8 0 .2 4 4 0 .0 8 0 0 .6 0 5 0 .7 4 5 0 .6 8 7 0 .7 5 0 0 .6 9 4 0 .7 2 7 0 .6 6 1 0 .0 5 0 0 .2 1 4 0 .6 6 2 DEPTEX - 0 .1 1 2 - 0 .5 0 4 0 .5 2 1 -0 .8 8 7 0 .8 9 3 0 .8 7 5 - 0 .8 4 4 1 .0 0 0 0 .5 7 5 - 0 .1 0 5 -0 .3 0 6 - 0 .7 0 5 - 0 .5 9 5 - 0 .6 4 6 - 0 .5 9 9 - 0 .6 1 6 -0 .4 9 3 -0 .5 5 2 - 0 .4 9 7 - 0 .0 9 1 - 0 .2 9 6 - 0 .4 9 3 - 0 .0 5 8 TEXS - 0 .3 6 7 - 0 .0 6 6 0 .3 4 0 0 .6 4 8 0 .5 9 4 -0 .5 8 2 0 .5 5 0 0 .4 6 9 - 0 .4 7 6 0 .5 7 5 1 .0 0 0 0 .1 4 1 0 .0 6 9 - 0 .5 9 0 - 0 .5 3 6 - 0 .5 2 1 - 0 .6 5 3 - 0 .5 6 3 -0 .3 3 8 - 0 .5 3 2 - 0 .3 9 8 - 0 .3 2 3 - 0 .4 2 8 BCSFR - 0 .3 9 1 0 . 113 0 .2 6 5 0 . 153 -0 .0 8 4 -0 .0 0 2 0 . 141 1 .0 0 0 0 .8 2 0 - 0 .1 1 9 - 0 .2 5 6 - 0 .2 5 3 - 0 .3 0 1 - 0 .3 3 8 - 0 .2 5 1 - 0 .1 9 3 - 0 .3 3 1 - 0 .2 1 9 -0 .1 8 5 0 .1 2 1 - 0 .4 8 2 0 .3 3 5 0 .1 8 8 - 0 .1 4 2 0 . 142 -0 .2 7 9 - 0 .0 6 8 0 .2 4 4 - 0 .1 8 5 CCSFR -0 .0 3 0 - 0 .2 0 4 - 0 .3 0 6 0 .0 6 9 0 .8 2 0 1 .0 0 0 0 .2 2 3 0 .0 6 9 0 .0 0 8 - 0 .1 4 9 - 0 .1 0 3 0 .1 3 9 0 .1 7 6 0 .0 0 1 -0 .2 6 4 -0 .1 7 9 TKNSUM 0 .0 8 6 0 .5 6 9 -0 .5 2 5 0 .7 4 0 -0 ,8 3 7 -0 .7 0 5 0 .7 9 1 0 .0 0 4 0 .6 1 4 0 .7 5 9 0 .5 9 7 0 .0 2 2 0 . 167 0 .6 3 1 -0 ,7 4 5 0 .8 0 5 -0 .5 9 5 0 .0 6 9 1 .0 0 0 0 .6 4 0 0 .8 4 5 -0 .5 9 5 - 0 .1 1 9 - 0 .2 5 6 0 .8 4 8 0 .6 3 9 - 0 .5 9 8 - 0 .5 3 6 0 .2 2 3 - 0 .0 8 5 -0 .8 2 3 -0 .7 1 5 o .e e o TKPSUM - 0 .9 1 7 - 0 .6 8 7 0 .4 5 1 0 .7 0 4 1 .0 0 0 0 .8 2 3 0 .8 4 4 0 .9 1 2 0 .6 8 5 0 .5 7 5 0 .6 1 0 0 .0 1 7 0 .1 7 9 0 .4 5 0 CA5UM - 0 .0 1 7 0 .4 5 6 -0 .5 4 9 -0 .8 3 3 0 .6 0 9 -0 .7 5 6 -0 .7 4 3 0 .7 4 5 - 0 .6 4 6 -0 .5 2 1 - 0 .2 5 3 0 .8 4 9 0 .4 0 9 0 .4 9 3 0 .4 2 4 - 0 .1 2 9 0 .0 4 9 0 .6 1 1 0 .2 7 5 -0 .5 0 3 - 0 .6 9 6 0 .6 3 2 - 0 .6 8 9 -0 .6 7 4 0 .6 8 7 - 0 .5 9 9 - 0 .6 5 3 - 0 .3 8 1 0 .8 2 3 0 .8 4 4 0 .8 6 5 0 .0 6 5 0 .8 4 5 0 .7 9 1 1 .0 0 0 MGSUM 0 .0 0 8 - 0 .1 4 9 0 .6 6 5 1 .0 0 0 0 .9 5 2 0 .5 8 4 0 .5 B 4 0 .6 2 8 - 0 .0 0 2 0 .1 8 5 0 .3 4 4 - 0 .0 0 8 0 .4 8 0 -0 .6 1 6 -0 .8 8 9 0 .6 4 7 -0 .7 2 8 -0 .7 1 0 -0 .1 0 3 0 .8 0 4 0 .9 1 2 0 .8 4 9 0 .9 5 2 1 .0 0 0 0 .6 2 5 0 .5 6 4 0 .6 4 7 0 .0 0 8 0 .2 0 1 0 .3 7 3 -0 .3 0 5 -0 .6 3 3 0 .5 6 0 - 0 .5 8 1 - 0 .5 3 8 - 0 .4 9 3 -0 .5 6 3 -0 .3 3 8 - 0 .3 3 8 0 .3 8 5 0 .7 5 0 0 .6 9 4 - 0 .6 1 6 0 . 127 - 0 .2 5 1 0 .1 3 9 0 .6 1 4 0 .6 8 5 0 .4 0 9 0 .5 8 4 0 .6 2 5 1 .0 0 0 0 .8 0 9 0 .9 0 2 0 .2 7 5 0 .4 2 3 0 .3 5 1 OIMG 0 .3 4 5 0 .2 7 5 -0 .3 2 4 - 0 .6 2 6 0 .7 1 4 -0 .6 6 2 -0 .6 3 5 0 .7 2 7 - 0 .5 5 2 - 0 .5 3 2 - 0 .1 8 3 0 .1 7 6 0 .7 5 9 0 .5 7 5 0 .4 9 3 0 .5 8 4 0 .5 6 4 0 .8 0 9 1 .0 0 0 0 .0 4 9 0 .2 3 6 0 .3 3 1 0 .5 4 8 OIK 0 .3 3 9 0 .2 3 5 -0 .3 7 8 -0 .5 0 4 0 .6 2 8 - 0 .5 5 9 -0 .5 0 6 0 .6 6 1 -0 .4 9 7 - 0 .3 9 8 - 0 .3 3 1 0 .0 0 1 0 .5 9 7 0 .6 1 0 0 .4 2 4 0 .6 2 8 0 .6 4 7 0 .9 0 2 0 .8 4 9 1 .0 0 0 0 .2 5 0 0 .4 0 1 0 .3 5 1 of 0 .4 8 0 - 0 .1 5 1 - 0 .0 1 2 -0 .0 5 0 0 . 117 0 .0 3 5 - 0 .0 1 8 0 .0 5 0 - 0 .0 9 1 - 0 .3 2 3 - 0 .2 1 9 - 0 .2 6 4 0 .0 2 2 0 .0 1 7 -0 .0 0 2 0 .0 0 8 0 .2 7 5 0 .2 3 6 0 .2 5 0 1 .0 0 0 0 .9 4 6 - 0 .3 3 6 0 .4 3 7 - 0 .0 7 2 - 0 .0 9 7 -0 .2 2 8 0 .2 6 8 - 0 .1 4 3 - 0 .1 7 7 0 .2 1 4 -0 .2 9 6 - 0 .4 2 9 - 0 .1 8 5 - Q . 179 0 .1 6 7 0 .1 7 9 -0 .1 2 9 0 .0 4 9 0 . IBS 0 .2 0 1 0 .4 2 3 0 .3 3 1 0 .4 0 1 0 .9 4 6 1 .0 0 0 - 0 .2 5 5 -0 .0 6 4 0 .5 4 9 - 0 .2 9 5 -0 .5 0 7 0 .5 2 9 - 0 .6 3 1 - 0 .6 0 2 0 .6 6 2 - 0 .4 9 3 - 0 .0 5 8 0 . 121 0 .4 5 1 0 .7 0 4 0 .4 5 0 0 .6 1 1 0 .3 4 4 0 .3 7 3 0 .3 5 1 0 .5 4 6 0 .3 5 1 - 0 .3 3 6 - 0 .2 5 5 1 .0 0 0 KSUM OITKP Ut v AT KN 91 Figure 2.12. L o c a t i o n o f s i t e s w i t h r e s p e c t t o PC 1 a n d PC 2 o f l a b o r a t o r y d e t e r m i n e d s o i l v a r i a b l e s summed by h o r i z o n a n d by d e p t h s , a n d f i e l d d e t e r m i n e d v a ria b le s , averaged w ithin a s i t e . PC 2 (15%) 3 N □ 2 X Outwash sand + Oufwash/inclu8ion8 ^ Port Bruce till □ Port Huron till A Lacustrine p_ wv ^ lHx 0 V . C H +-J- R Q + x# 1 k Hq °^ b F* T xA GW _^ J □ E s *■ D- -2 A .........._J__ ... -3 - 3 - 2 - ¥: ..... i 1 0 .1 1 PC 1 (52% ) 1 ....... 1. - . . 2 3 4 93 T h e r e was o v e r l a p sites, right among t h e Port b u t P o r t Huron s i t e s along occur red the first nearer and were g e n e r a l l y axis, the Bruce indicating surface. Port displaced that The Huron to textural second till layers axis, w hich e m p h a s i z e d c o a r s e f r a g m e n t s a n d Oe n u t r i e n t s , indicated Port fragm ents, lower Bruce sites levels generally have more o f Oe n u t r i e n t s . coarse The two l a c u s t r i n e the that and sites are c l o s e l y grouped in t h i s p l o t . A plot of site p resen ted in Figure fragm ent contains outlier content locations 2.13. along PC a x e s 1 and 3 is T h i s PC i s a s s o c i a t e d w i t h c o a r s e a n d Oe n u t r i e n t s , s o that l a r g e amounts o f c o a r s e f r a g m e n t s , site is A, w hich t r e a t e d a s an and s e r v e s t o compress t h e o r d i n a t i o n o f o t h e r sites along the a x i s . Textural nutrient variables sums in the PCA o f although the g rad ien ts combined variability coefficients variables, than the n u tr i e n t that i n my sums. on t h e f i r s t PC a x i s w e r e c o m p a r e d sim ilar ordinations from p r e v i o u s first and axis c o rre la tio n of scores laboratory data with scores from laboratory data with laboratory data layers wa s r= 0 .920; excluding organic layers the correlation s u mme d d a t a data significant was at the correlation r =- 0 . 9 7 1 . a l p h a = 0 .05 for PCA' s . f r o m PCA o f c o m b i n e d organic field so the te x tu r a l d ata including depth than O rdinations of s i t e s The s i m p l e l i n e a r field larger corresponded, study expressed g re a ter w ith received A ll n=24. was the was r= 0 .908; r =0 . 938, and cor re la tio n s Spearman' s with w ith w ere coefficient 94 Figure 2.13. L o c a t i o n o f s i t e s w i t h r e s p e c t t o PC 1 a n d PC 3 o f l a b o r a t o r y d e t e r m i n e d s o i l v a r i a b l e s summed by h o r i z o n an d by d e p t h s , a n d f i e l d d e t e r m i n e d v a ria b le s , averaged w ithin a s i t e . PC 3 (9%) 3 A 2 3E 0 m □ K+ p1 + c V X Outwash sand + Outwash/inclusions % Port Bruce till □ Port Huron till A Lacustrine ^ w-b+ Q+ 0 _ -j R + — n □ * Au □ u - tK F H L X V J■v/NX □ J b * s -2 - 3 . „. ......J .... 3 - □ I 2 .......... I - 1 0 PC 1 (52%) ....... J ....... I 1 2 3 4 96 of rank the correlation first ranks PCA o f i n PCA o f r s =0.917; combined r s =0.991, laboratory used. because sites in site data, the all first PC a x i s field data, or tex tu ral the the correlation correlation were field strong m aterial was studies data rely would be thesedata on fie ld data data; for sufficient for gradient nutrient w hether of laboratory environmental and show t h a t sim ilar a combination of o b ta in in g area a data w ith l a y e r s was s i g n i f i c a n t a t alpha=0.05, expense on t h e c o r r e l a t i o n wa s r s = - 0 . 9 4 2 . classification along ranks lab o rato ry data s u mme d d a t a the my s t u d y ordinating loam y along Most of and laboratory and w ith f i e l d d a ta scores for The c o r r e l a t i o n b e t w e e n s i t e field soil w ith depth These c o r r e l a t i o n s , was calculated laboratory data including organic with m ineral w a s r s = 0 . 92 0 ; site also a x e s o f t h e s e PCA's. in those was supply in which increase coincidentally. P lo ts of s i t e PCA's i n d i c a t e on lo c a tio n s along the that depositional first axis of a l l the t h e r e a r e d i f f e r e n c e s among g r o u p s b a s e d environm ent. Assumptions of m ultivariate n o r m a l i t y a r e n o t met by t h i s d a t a s e t ; t h e r e f o r e , it is feasib le to place to develop observations D ifferences accurately in applicability data se t. m athem atical variances of w ithin among discrim inant site group groups analysis H o w e v e r , PCA d o e s n o t b a s e d on d e p o s i t i o n a l environment deposit, with particularly one functions respect even disagree as to or would with w ith reflected first the and other. lim it a not the larger groupings by s u r f i c i a l second a x is 97 ordinations. D i f f e r e n c e s a mon g g r o u p s b a s e d o n d e p o s i t i o n a l e n v i r o n m e n t PCA did not depositional made so, to environment, determine which groups. contradict if site so individual differences variables differed A K ruskal-W allis groupings were wa s distributions. with freedom w ith degrees of sig n ificantly significant, used th e groups had d i f f e r e n t reduced comparisons significantly test for d ifferen t to are presented w hich too for is variables groups, for had determ ine that formed outwash consists sites V ariable these in outwash sand; sand of includes s ite s to in with sites form ed in w ere in loamy lacu strin e descriptions and u n i t s tex t. Group to Bruce to test 1 refers sites ti l l ; to formed Group 3 Group 4 and Group 5 r e f e r s m aterial appear Many betw een inclusions; fo rm ed i n P o r t Huron t i l l , form ed used freedom were u sed Port groups The t - t e s t s , the Group 2 i n c l u d e s in of variances cases. ice-rafted t-tests in Appendix T a b le A . 1, different and so reduced d e g r e e s o f if what comparisons inclu sio n significantly mean d i f f e r e n c e s sites in lengthy were betw een d e t e r m i n e which g roups and v a r i a b l e s d i f f e r e d . of variances, on and Individual variances and t e s t s based (T able in T ables 2 .4 ). 2.2 and 2.3. Group 1, differs significantly from o t h e r g ro u ps in c o n t e n t o f most n u t r i e n t s investigated, and w ith formed regard to in outwash sand, most tex tu ral v ariab les. Fewer 98 significant differences were found t h a n betw een Group 1 and o t h e r occur o ften between groups; enough t o p ro v id e Groups however, justification 1 and 2 differences for keeping the groups s e p a ra te . Group 2, rafted from formed in outwash sand w ith i n c l u s i o n s of m aterial other content, often and flow groups horizon in till, most differed significantly com parisons. thickness, significantly also and different Soil textural ice- nutrient variables between Group were 2 and Groups 3, 4 , a n d 5. D ifferences tills, soils of Port between Bruce and and l a c u s t r i n e Compa r i s o n s of only with MGSUM, OI K, OITKP, respect BTHICK, justification solely soil and the 3 and a n d CCLAY. often the the for classification system tw o Soils, t i l l s , CTHICK, in fo u n d on t h e s e ultim ately provide based Chapter till tills not 3, groups, der ived the are CMG, ASILT, two t i l l s discussed however, w ere BTKN, may n o t the till significant. BTTHICK, keeping different between variables separating As two and These d i f f e r e n c e s between s i t e s on v e g e t a t i o n . the age, 4, to e c o s y s t e m c o m p o n e n t s may r e q u i r e based in less BSTHICK, properties. vegetation d iffe rs Huron s o i l s , were sufficient on formed Port G roups significant ACLAY, C S I L T , soils from separate dram atically different. L acustrine sites, and soils should be in Group 5 are investigated found more only closely on two before 99 conclusions are sim ilarities to made other regarding groups. their differences S ignificant or differences o c c u r r e d w i t h m o s t c o m p a r i s o n s o f G r o u p 5 t o G r o u p s 1 a n d 2; sig n ifican t differences were comparisons t o Groups 3 and 4. d ifferen t from t i l l variables; nutrient different, but there so ils variables is not found less These s o i l s w ith are clear t h e g r o u p s s e p a r a t e b a s e d on s o i l s often are respect more often to greatly tex tu ral significantly justification data. not w ith for keeping 100 CONCLUSIONS P rincipal obtained from expressed the lower no field most Michigan. summed by Generally, data variability of nutrient various the the PC's often P C 's sums, data northeastern revealed a greater had than a other that amount the nutrient horizon by the sum s. the t h e Oi had the C above were wa s e m p h a s i z e d greatest or in When O l a y e r s the B horizon the Oe, wh e n groups content of of higher variability t h e A and B l a y e r s . expressing slightly nu trien t particular followed e x c lu d e d from t h e a n a l y s i s , PC a s in which T otal phosphorous c o n te n t, variability, 150 cm, a n d f i n a l l y firs t sites displayed identified For h o r i z o n greatest the among r a n g e s which c o n t a i n e d most o f set. variables investigations laboratory depths, w ith identified laboratory th a n any o t h e r . co rrelatio n depth and analyses Analysis in d ividual variability the component in v a ria b ility , f o l l o w e d b y t h e C a b o v e 150 cm, a n d t h e n t h e A h o r i z o n . D e p th sums o f horizon sums for soil nutrients expressing were not v a ria b ility preferable among to site s. N u t r i e n t s u ms o f t h e e n t i r e u p p e r 1 50 cm s o i l d e p t h r e c e i v e d the highest we i g h t i n g s represented a sites obscured which H orizon size feature all sums g a v e b e t t e r producing plots in which in the overall other PC, nutrient interpretations results had firs t i n PCA t h a n interpretable w here they content of the of PCA. depth sums, variation along several axes. F ield determ ined variables which expressed the most 101 variability to between s i t e s texture, till soil in the f i r s t particularly layers, and depths the to texture PC w e r e t h o s e r e l a t e d accumulations of s e c o n d PC, c o a r s e f r a g m e n t c o n t e n t , those of layers. loamy In the E horizon th ick n ess, and o v e r a l l a v erag e t e x t u r e s were i m p o r t a n t . These v a r i a b l e s t h e s e c o n d PC d i s t i n g u i s h e d b e t w e e n s i t e s l o c a t e d on t h e two different in the tills older moraine is identified Port formed, thinner E horizons, formed in Port differences Bruce t i l l , had greater be a and s l i g h t l y Huron may by B u rg is t i l l . of which coarse lighter The attributable (1981). to a tim e of w e a th e rin g , w ith p ro c e sse s frost heaving, on the We s t h o r i z o n s may b e r e l a t e d species less dominate acidic sites litte r to on of Branch these West Branch the textures as The longer and thinner moraine, less content erosion northern Branch is than s o ils year including species content, fragm ent moraine. We s t formed 500-1000 vegetation, the Soils fragment coarse in E hardwood and the conducive to eluviation. There is lo c a tio n s with data sets. and t i l l site s form ed generally till sites, good respect The sites inclusions a in were to first sites agreem ent the at opposite placed Port w ith near Bruce plots t wo P C ' s o f PC g e n e r a l l y outw ash separated first among placed ends of the center. till sites the sandy the ice-rafted of various outwash a x i s , w hile or The from site flow t i l l second Port PC Huron a l t h o u g h t h e s e p a r a t i o n was n o t a l w a y s d i s t i n c t . 102 L acu strin e s ite s w ere seldom p l a c e d n e a r e a c h o t h e r by p l o t s o f PC a x e s . There along th e were first d ata s e ts , so il n u trien ts from a n a l y s i s th is expressed to area by s i t e th e d iv e r s ity loam y m a t e r i a l of sandier provides o rd in atio n s scores d ifferen t of g la c ia l h igher g rad ien ts T his th e is d ep o sits d eposits may G rad ien ts along sets. m aterial, a d ata. correspond w ith and com bined d a t a prog ressiv ely site the n u tr ie n t s t a t u s o f a s i t e w h ic h r a n g e from loamy t i l l through The in of sep arate a ttrib u ta b le area, th at among from more e a s i l y o b t a i n e d f i e l d tex tu re PC a x i s co rrelatio n s PC a x i s o b t a i n e d in d icatin g be in f e r r e d of so il sig n ifican t of first lik e ly in th e near the s u rfa c e , to so il outw ash sands. n u trien t statu s related to g r e a t e r exchange c a p a c i t y and w e a th e r a b le m in e r a l supply, c reatin g a strong be d i s c e r n e d from e i t h e r regions, and environm ental g rad ien t f ie ld or la b o ra to ry d a ta . w h e r e s i t e s may h a v e l e s s d i v e r s i t y topography, w hich PCA o r d i n a t i o n s of in s o i l fie ld d ata can In o th e r tex tu re may not c o rresp o n d w ith t h a t of la b o r a to r y d a ta . Com par is o n s among groups based on lo c a liz e d d e p o s it io n a l env iro n m en ts, w ith r e l a t i v e l y uniform s u r f i c i a l d e p o sits, many dem onstrated d i f f e r e n c e s betw een s o i l s in loamy form ed in those to till in loamy t i l l formed m ost or in th ere w ere sig n ific a n t form ed i n o u tw ash and t h o s e form ed outw ash w ith w ere a l s o outw ash v ariab les th at w ith loamy in clu sio n s. sig n ifican tly loamy in v e stig a te d . d ifferen t in clu sio n s Fewer S ites w ith from respect sig n ific a n t 103 so il d ifferen ces dep o sitio n s, th a t th ere groups. w ere d atin g found b etw een from P o r t B ruce was n o t a s g r e a t L acustrine s i te s did not d if f e r tills and P o r t a b asis for from t i l l d iffe re n t H uron a g e , sep aratin g req u ire fu rth e r sig n ifican tly of th ese in v estig atio n , so ils w ith so but regard to most v a r i a b l e s s tu d ie d . For p u rp o ses o f d e v elo p in g an e c o lo g ic a l c l a s s i f i c a t i o n system , for th e an aly sis id e n tify in g sig n ific a n tly o u tw ash at in sands of d ata le ast many on so ils provided th re e groups re sp ec ts. h illy The lo calized a sound w h ich th ree flow on m o r a i n e s , and loamy t i l l 3), d ep o sitio n s sep aratin g as p a rt them . d eterm ined lev el, to be land an aly zed g la c ia l found for as enough an in com prise y e t These (C hapter to of two w arrant (H ost 1988). et a l. d iv isio n f i n e r , m icroscale part la n d fo rm s in low er po rtio n ap p ro p riate u n its . A lthough of another no rth w estern a sig n ifican t biom ass alth o u g h eco lo g ical and l i k e l y landform s o v ersto ry great or A ls o , outw ash p l a i n s w ere n o t i n v e s t i g a t e d landform acco u n ted not on m o r a i n e s . b a s e d on v e g e t a t i o n w h i c h may b e o f my s t u d y , On g l a c i a l in till a n d t h e r e a r e som e s o i l d i f f e r e n c e s b e t w e e n t i l l s d ifferen t are: ic e -d isin te g ra tio n outw ash sand w ith i n c l u s i o n s o f i c e - r a f t e d t h r e e g r o u p s may b e s u b d i v i d e d d iffe r groups featu res, till b asis at biom ass n o rth e a ste rn it M ichigan, v a ria b ility Landform d iv isio n s my s t u d y , of group. the m esoscale w ere n eed ed d ifferen ces w ould lo w er was for were appear th a t M ich ig an are 104 in te rn a lly those in h etero g en eo u s no rth w estern ju stific a tio n for to an low er g reater M ichigan. con sid erin g a n d m apped by B u r g i s even My s t u d y g lacial showed no id en tified of s i m i l a r s u r f i c i a l d e p o s i t w hich c o u ld d e l i n e a t e d i v i s i o n s at sp a tia l L o calized sca le re q u ire d dep o sitio n was e v i d e n t w i t h i n 1981) landform s th an areas th e (1977, degree of th ese for as hom ogenous e co lo g ica l w idely d i f f e r i n g landform map su rfic ia l b oundaries, so form ed in outw ash sand c o u ld n o t be d i s t i n g u i s h e d till sites b a s e d on t h e mapped l a n d f o r m s . mapped must useful for be regarded lan d as to p o g rap h ic c lassific atio n at th e The surface d e p o sits. m aterial th at sites fro m loam y landform s m asses; as categ o ries eco sy stem re q u ire s u b d iv isio n of th e se to p o g ra p h ic m asses to lo calized u n its. lev el recognize 105 LITERATURE CITED A l b e r t , D . A . , S .R . D e n to n , a n d B.V. B a r n e s . la n d sc a p e e co sy stem s of M ich ig an . R e s o u rc e s , U niv. o f M ich ig an . 32 p p . 1986. School R egional of N at. A le x a n d e r , E .B . 1980. Bulk d e n s i t i e s o f C a l i f o r n i a s o i l s in r e la tio n to o th e r s o il p r o p e r t i e s . S o il S c i . Soc. Am. J . 4 4 : 6 8 9 - 6 9 2 . B a i l e y , R.G. 1984. I n t e g r a t i n g ecosystem com ponents. p. 181-18 8. In J . G . Bock he im , e d . F o r e s t Land C lassificatio n : E xperiences, P roblem s, P ersp ectiv es. P r o c e e d i n g s o f t h e sym posium . M adison, W is c o n s in , March 1 8 - 2 0 , 1 9 8 4 . 276 p p . B a i l e y , R .G . 1987. S u g g ested h ie ra r c h y of c r i t e r i a fo r m u l t i - s c a l e ecosystem m apping. L an d scap e Urban P la n n . 14: 313-319. B a r n e s , B . V . , K .S . P r e g i t z e r , T .A . S p i e s , a n d V.H. S p o o n e r . 1982. E co lo g ical fo r e s t s i t e c l a s s i f i c a t i o n . J . F o r e s t r y 80: 493-498. B ray, R .H ., and L .T . K u r t z . o r g a n ic , and a v a i l a b l e S o i l S c i . 59: 3 9 -4 5 . 1945. form s D eterm ination of t o t a l , of phosphorus in s o i l s . B u r g i s , W. A . 1977 . L a te -W isc o n sin an h is to r y of n o r t h e a s t e r n low er M ic h ig a n . P h .D . d i s s e r t a t i o n . U n iv e rs ity of M ich ig an . U n iv e rsi ty M ic ro film s I n t e r n a t i o n a l , Ann A r b o r , M i c h i g a n . M i c r o f i l m N o. 7 8 4659. B u r g i s , W. A . 1981. L a te -W isc o n sin an h is to r y of n o r t h e a s t e r n lo w er M ic h ig a n . p 1-104. In B u rg is , W .A ., and D .F. Eschman, e d s . M idw est F r i e n d s o f t h e P l e i s t o c e n e 3 0 t h A n n u a l F i e l d C o n f e r e n c e , May 2 9 - 3 1 , 1981. U n i v . o f M i c h i g a n , Ann A r b o r . 110 p p . C h a t f i e l d , C. , and A .J . C o l l i n s . 1980 . In tro d u c tio n to m u l t i v a r i a t e a n a l y s i s . Chapman a n d H a l l , L t d . , L o n d o n . 246 p p . C o ile , T .S . A gron. Crum , 1952. S o il 4: 3 2 9 -3 9 8 . and the grow th of fo rests. Adv. J . R . , an d R .H . R u s t . 1986. C h a r a c te r iz a t io n and stra tig ra p h y of s o il parent m a terials of w e st-c e n tra l M innesota. S o i l S c i . S o c . Am. J . 5 0 : 1 5 0 9 - 1 5 1 5 . 106 C u a n a lo de la C ., H .E ., an d R. W e b s te r . 1970. A co m p arativ e stu d y o f n u m erical c l a s s i f i c a t i o n and o rd in a tio n o f s o i l p r o f i l e s in a l o c a l i t y near O xford. P art I. A n a l y s i s o f 85 s i t e s . J . S o i l S c i . 21: 340352. C u r t i s , R . O . , a n d B.W. P o s t . 1964. E s tim a tin g bulk d e n s it y f r o m o r g a n i c - m a t t e r c o n t e n t i n some V e r m o n t f o r e s t so ils. S o i l S c i . S o c . Am. J . 2 8 : 2 8 5 - 2 8 6 . D a l s g a a r d , K . , E. B a a s t r u p , a n d B .T . B u n t i n g . 1981. The i n f l u e n c e o f to p o g ra p h y on t h e d e v e lo p m e n t o f A l f i s o l s on c a l c a r e o u s c l a y e y t i l l i n D enm ark. C atena 8: 111136. Dawud, A . Y . , a n d F . G r a y . 1979. E s ta b lis h m e n t o f t h e low er b o u n d a ry o f th e s o l a o f w eakly d e v e lo p e d s o i l s t h a t o c c u r in O klahom a. S o i l S c i . S o c . Am. J . 4 3 : 1 2 0 1 1207. D e n t o n , S . R . , an d B .V . B a r n e s . 1988. c l i m a t i c c l a s s i f i c a t i o n o f M ichigan: approach. F o r e s t S c i . 34: 1 1 9 -138. An e c o l o g i c a l a q u an titativ e E d m o n d s , W. J . , J . B . C a m p b e l l , a n d M. L e n t n e r . 19 8 5 . Taxonom ic v a r i a t i o n w i t h i n t h r e e s o i l m apping u n i t s i n V irg in ia. S o i l S c i . S o c . Am. J . 4 9 : 3 9 4 - 4 0 1 . E d m o n d s , W. J . , a n d M. L e n t n e r . 19 8 7 . S o il s e r ie s d i f f e r e n t i a e s e l e c t e d by d i s c r i m i n a n t a n a l y s i s b a s e d on ranks. S o i l S c i . S o c . Am. J . 5 1 : 7 1 6 - 7 2 1 . G r i g a l , D .F. 1984. Shortcom ings o f s o i l su rv e y s f o r f o r e s t m anagem ent. p 1 4 8 -166. Ira J . G . B o c k h e i m , e d . Forest Land C la ss ific a tio n : Exper ie n c e s , P ro b lem s, P ersp ectiv es. P r o c e e d in g s o f t h e sym posium . M adison, W i s c o n s i n , March 1 8 - 2 0 , 1 9 8 4 . 2 76 p p . Gr i g a l , D . F . , a n d H .F . Ar n e m a n . 19 6 9 . c l a s s i f i c a t i o n o f some f o r e s t e d M i n n e s o t a S c i . S o c . Am. P r o c . 3 3 : 4 3 3 - 4 3 8 . Nume r i c a 1 so ils. S o il H e n d erso n , R . , and J.M . R agg. 1980. A r e a p p r a i s a l o f s o i l m apping in an a r e a o f s o u t h e r n S c o t l a n d . P art I I . The u s e f u l n e s s o f som e m o r p h o l o g i c a l p r o p e r t i e s a n d o f a d is c r im in a n t a n a l y s i s in d i s t i n g u i s h i n g betw een th e d o m in a n t t a x a o f f o u r m apping u n i t s . J . S o il S c i. 31: 573-580. H o s t , G . E . , K . S . P r e g i t z e r , C.W. Ramm, J . B . H a r t , a n d D . T . C lelan d . 1987. L andform -m ediated d i f f e r e n c e s in s u c c e s s i o n a l p a t h w a y s among u p l a n d f o r e s t e c o s y s t e m s i n n o r th w e s te r n low er M ich ig an . F o r e s t S c i . 33: 445-457. 107 H ost, G . E . , K . S . P r e g i t z e r , C.W. Ramm, C.W. L u s c h , a n d D . T . C leland. 1988. V a r i a t i o n i n o v e r s t o r y b i o m a s s am ong g l a c i a l lan d fo rm s and e c o lo g ic a l lan d u n its in n o r t h w e s t e r n Lower M ic h ig a n . Can. J . F o r . R e s. 18: 659-668. I s a a c , R .A ., and J .D . K e rb e r. 1971. A tom ic A b s o r p t i o n and Flam e P h o to m e tr y : T e ch n iq u es and Uses in S o i l , P l a n t , and W ater A n a l y s i s . p 17-37. I n L.M . W a l s h , e d . I n s t r u m e n t a l M ethods f o r A n a l y s i s o f S o i l s and P l a n t T issu e. S o il S c ie n ce S o c ie ty of A m erica, M ad iso n , W isconsin. 222 p p . J e n n y , H. 1941. F a c to rs of s o il form ation. New Y o r k , New Y o r k Lea, Me G r a w - H i l l , R . , W .C. T i e r s o n , D .H . B i c k e l h a u p t , a n d A . L . L e a f . 19 8 0 . D iffe re n tia l f o lia r responses of n o rth e rn hardw oods to f e r t i l i z a t i o n . P l a n t & S o i l 54: 4 1 9 -4 3 9 . L e M a s t e r s , G . S . , E .A . P a d le y and C .C . T r e t t i n . 1984. C h a r a c t e r i z a t i o n D ata f o r S e l e c t e d S o i l s o f D ic k in so n C ounty, M ic h ig a n . R e s e a r c h N ote 3 9 , F o rd F o r e s t r y C e n t e r , M i c h i g a n T e c h n o l o g i c a l U n i v e r s i t y , L ’A n s e , M I. 29 p p . L i k e n s , G . E . , an d F .H . Bormann. 1970. C hem ical a n a l y s i s o f p l a n t t i s s u e s f r o m t h e H u b b a r d B r o o k e c o s y s t e m i n New H am pshire. Y ale U n i v e r s i t y S chool o f F o r e s t r y B u l l e t i n No. 7 9 . M e li1l o , J .M ., J.D . A b e r, and J .F . M u ra to re . N itr o g e n and l i g n i n c o n t r o l o f hardw ood l e a f decom position dynam ics. E cology 63: 6 2 1 -6 2 6 . 1982 . litte r M ichigan D epartm ent of A g r ic u ltu r e . M ich ig an W eather S erv ice. 1974. C l i m a t e o f M ic h ig a n by s t a t i o n s . Second R ev ised E d i t i o n . M o r r i s o n , D .F . 1976. M u l t i v a r i a t e s t a t i s t i c a l m ethods . Second E d i t i o n . M c G r a w - H i l l , New Y o r k . 415 p p . Nor r i s , J.M . 19 7 1 . The a p p l i c a t i o n o f m u l t i v a r i a t e a n a ly s is to s o il s tu d ie s . I . G rouping o f s o i l s u s in g d ifferen t p ro p erties. J o u r . o f S o i l S c i . 22: 6 9 -8 0 . N o r t c l i f f , S. 1978. S o il v a r i a b i l i t y and r e c o n n a is s a n c e s o i l m apping: a s t a t i s t i c a l study in N o rfo lk . J . S o il S c i . 29: 403-418. N o r to n , L .D ., and G .F . H a l l . 1985. D iffe re n tia tio n of lith o lo g ic a lly sim ilar s o il parent m a te ria ls . S o il S c i . S o c . Am. J . 4 9 : 4 0 9 - 4 1 4 . 108 O v a l l e s , P . A . , a n d M .E. C o l l i n s . 1986. S o il-lan d scap e r e la tio n s h ip s and s o il v a r i a b i l i t y in n o rth c e n tr a l F lo rid a. S o i l S c i . S o c . Am. J . 5 0 : 4 0 1 - 4 0 8 . O v a l l e s , F . A . , a n d M .E. C o l l i n s . 1988. V a ria b ility of n o rth w e st F lo r id a s o ils by p r i n c i p a l c o m p o n e n t an aly sis. S o i l S c i . S o c . Am. J . 5 2 : 1 4 3 0 - 1 4 3 5 . Pa d 1 e y , E . A . and C.C. T r e t t i n , e d s. 1 9 8 3a. C h a r a c t e r i z a t i o n D ata f o r S e l e c t e d S o i l s o f I s a b e l l a C o u n ty , M ich ig an . R e s e a rc h N ote 34, F o rd F o r e s t r y C e n t e r , M ichigan T e c h n o lo g ic a l U n i v e r s i t y , L 'A n se , M I. 19 p p . Pa d 1 e y , E . A . and C.C. T r e t t i n , e d s. C h a r a c t e r i z a t i o n D ata f o r S e l e c t e d S o i l s o f W exford C o u n t i e s , M ic h ig a n . R e s e a rc h N ote F o r e s t r y C e n t e r , M ichigan T e c h n o lo g ic a l U n L ' A n s e , M I. 21 p p . 1 9 8 3b. Lake and 35, Ford iv e rsity , P a d l e y , E . A . , C .F . S c h w e n n e r, and C .C . T r e t t i n . 1984 . C h a r a c t e r i z a t i o n D a ta f o r S e l e c t e d S o i l s o f M enominee C o u n ty , M ich ig an . R esearch N ote 36, Ford F o r e s tr y C e n t e r , M ich ig an T e c h n o lo g ic a l U n i v e r s i t y , L 'A n s e , M I. 37 p p . P a d l e y , E . A . , C .C . T r e t t i n and G. S . L e M a s te rs . 1984 . C h a r a c t e r i z a t i o n D ata f o r S e l e c t e d S o i l s o f T u s c o la C o u n ty , M ich ig an . R esearch N ote 33, Ford F o r e s tr y C e n t e r , M ichigan T e c h n o lo g ic a l U n i v e r s i t y , L ' A nse, M I. 17 p p . P a d l e y , E .A ., C .C . T r e t t i n and G. S . L e M a ste rs. 1984. C h a r a c t e r i z a t i o n D ata f o r S e l e c t e d S o i l s o f B a ra g a C o u n ty , M ich ig an . R esearch N ote 37, Ford F o r e s tr y C e n t e r , M ichigan T e c h n o lo g ic a l U n i v e r s i t y , L 'A n s e , M I. 79 p p . P a v l i k , H . F . , and F.D . H o le . 1977. Soilscape a n a ly s is of s l i g h t l y c o n t r a s t in g t e r r a i n s in s o u t h e a s t e r n W isconsin. S o i l S c i . S o c . Am. J . 4 1 : 4 0 7 - 4 1 3 . P e n n o c k , D . J . , and W .J. V r e e k e n . 1986 . S o il-g eo m o rp h ic e v o lu tio n of a B o ro ll caten a in southw estern A lb e r ta . S o i l S c i . S o c . Am. J . 5 0 : 1 5 2 0 - 1 5 2 6 . P i t t y , A. U.K. 1984. 64 p p . G eom orphology. B asil B lackw ell, O xford, P r e g i t z e r , K . S . , B . V . B a r n e s , a n d G .D . Lem m e. 1983 . R e la tio n s h ip o f topography to s o i l s and v e g e t a t i o n in an Upper M ich ig an e c o s y s te m . S o i l S c i . S o c . Am. J . 4 7 : 117-123. 109 P r e g i t z e r , K . S . , a n d C.W. Ramm. 1984. C la ssific a tio n of f o r e s t e co sy stem s in M ichigan. p . 114-131. In J.G . Bockheim , e d . F o r e s t Land C l a s s i f i c a t i o n : E x p e r i e n c e s , Problem s, P e r s p e c t i v e s . P r o c e e d in g s o f t h e sym posium . M a d is o n , W i s c o n s i n , March 1 8 - 2 0 , 1 9 8 4 . 27 6 p p . R a l s t o n , C.W. p ro d u ctiv ity . 196 4 . E v a lu a tio n of f o r e s t I n t . Rev. F o r e s t . R e s . 1: 1 7 1 -2 0 1 . R a w l s , W. J . 1983 . E stim atin g p a r t i c l e s iz e a n a ly s is and S o i l S c i . 135: 12 3 -1 2 5 . s i t e s o i l b u l k d e n s i t y f rom o rg an ic m atter c o n te n t. R e i g n e r , I . C . , and J . J . P h i l l i p s . 1964. V a r ia tio n s in bulk d e n s i t y a n d m o i s t u r e c o n t e n t w i t h i n t w o New J e r s e y c o a s t a l p l a i n s o i l s , L ak elan d and L a k e h u rst s a n d s . S o i l S c i . S o c . Am. P r o c . 28: 2 8 7 -289. Row e, J.S . 1984. F orestland c la s s if ic a tio n : lim itatio n s o f th e use of v e g e t a t i o n , p 132-147. In J .G . B ockheim , ed. F o r e s t Land C l a s s i f i c a t i o n : E x p e r i e n c e s , P r o b l e m s , P ersp ectiv es. P r o c e e d i n g s o f t h e symposium . M adison, W i s c o n s i n , March 1 8 - 2 0 , 1 9 8 4 . 276 p p . SAS I n s t i t u t e I n c . 1985. S tatistical P e rs o n a l C om puters. C a r y , NC. A nalysis System for S m i t h , F . W . , B.G. E l l i s , a n d J . G r a v a . 1957. Use o f a c i d f lu o r id e s o lu tio n s fo r th e e x tr a c tio n of a v a ila b le p h o s p h o ru s in c a l c a r e o u s s o i l s and i n s o i l s t o w hich rock p h o sp h a te has been a d d e d . S o i l S c i . S o c . Am. P r o c . 21: 4 0 0 -4 0 4 . S o il S c ie n c e S o c ie ty o f A m erica. 1987. G lossary of S o il S cien ce Term s. S o i l S c i . S o c . Am., M a d is o n , W i s c o n s i n . 44 p p . S o il Survey L a b o r a to r y . 1982. C h a r a c t e r i z a t i o n D ata for S e l e c t e d S o i l s o f M ecosta C ounty, M ich ig an . R esearch Note 31, Ford F o r e s t r y C e n t e r , M ichigan T e c h n o l o g i c a l U n i v e r s i t y , L 'A n s e , MI. 23 p p . S o il Survey L a b o ra to ry . 1983. C h a r a c t e r i z a t i o n D ata for S e l e c t e d S o i l s o f Kent C ounty, M ic h ig a n . R e s e a r c h N ote 32 , F o r d F o r e s t r y C e n t e r , M i c h i g a n T e c h n o l o g i c a l U n i v e r s i t y , L ' A n s e , MI. 29 p p . S o il Survey S t a f f . 1975. S o i l Taxonomy. AH-436. S o i l C o n s e r v a t i o n S e r v i c e , W a s h i n g t o n , D .C . S t e e l , R .G .D ., and procedures of Second E d i t i o n . U .S.D .A . J . H. T o r r i e . 1980. P r i n c i p l e s and statistic s: a b io m etr i c a l a p p ro a c h . M c G r a w - H i l l , New Y o r k . 633 p p . 110 T echnicon. 1977. In d iv id u al/S im u lta n e o u s D eterm ination of N i t r o g e n a n d / o r P h o s p h o r u s i n BD A c i d D i g e s t s . T e c h n ic o n I n d u s t r i a l M ethod 344-74W /B . T ech n ico n I n d u s t r i a l S y s t e m s , T a r r y t o w n , New Y o r k . T r e t t i n , C . C . , E . A . P a d l e y , a n d W .E. F r e d e r i c k . 1984. C h a r a c t e r i z a t i o n D ata f o r S e l e c t e d S o i l s o f M issa u k ee C ounty, M ich ig an . R e s e a r c h N ote 3 8 , F o rd F o r e s t r y C e n t e r , M ich ig an T e c h n o lo g ic a l U n i v e r s i t y , L 'A n s e , M I. 19 p p . U .S.D .A . 1972. P r o c e d u r e s f o r C o l l e c t i n g S o i l Sam ples and M ethods o f A n a l y s i s f o r S o i l S u rv e y . S o il Survey In v e stig a tio n s R e p o r t No. 1 (rev ise d ), S o il C o n s e r v a t i o n S e r v i c e , U .S. D e p artm en t o f A g r i c u l t u r e , W a s h i n g t o n , D.C. W a l k e r , P . H . , G .F . H a l l , a n d R. P r o t z . betw een lan d fo rm p a ra m e te rs and s o i l S c i . S o c . Am. P r o c . 3 2 : 1 0 1 - 1 0 4 . W e b s t e r , R . , and P.A . B u rro u g h . m a p p i n g o f s m a 11 a r e a s M u ltiv ariate c la s s ific a tio n S c i . 23: 2 1 0 -2 2 1 . 1968. R elatio n p ro p erties. S o il 1972. C om puter-based from sam p1e d a t a . and o r d i n a t i o n . J. so il I . S o il Z a k , D .R ., K .S. P r e g i t z e r , and G .E. H o s t . 1986. Landscape v a r i a t i o n in n itr o g e n m i n e r a l i z a t i o n and n i t r i f i c a t i o n . Can. J . F o r. R es. 16: 1258-1263. CHAPTER III ASSOCIATIONS OF S I T E PROPERTIES WITH AN ORDINATION OF GROUND FLORA SPECIES FOR UPLAND FORESTS OF NORTHEASTERN LOWER MICHIGAN INTRODUCTION V eg etatio n environm ent, and so ils 1956, has been described in teg ratin g w ithin as a phytom eter the e f f e c ts of c lim a te , d iscrete lo calities P f i s t e r a n d Arno 1 9 8 0 ) . of the topography, (C ajander 1926, Rowe Landform and s o i l a r e s a i d to q u a n t i f y most o f th e en v iro n m en t w ith in a m a c r o c li m a ti c a r e a (G rigal 1984), v eg etatio n , w h ich i s more e a s i l y p red ictab le rela tio n sh ip s (B arnes et system s rely sp ecies. b u t m a p p i n g may b e f a c i l i t a t e d al 1982, on Rowe veg etativ e observed w ith (K otar and 1984). Many in d icato r Coffman eco lo g ical c lassificatio n s w ith ecosystem oth er use com ponents than land use so il p h y sio g rap h y H a b ita t type c l a s s i f i c a t i o n e x clu siv ely by t h e and and of has so ils c lassific atio n species or groups of system s use v e g e ta tio n 1984), w hile veg etatio n (B arnes m u ltifacto r in 1984, or com bination Jones 1984, Moon 1 9 8 4 , Rowe 1 9 8 4 ) . V egetation th e data co n stru ctio n is sum m arized of sy n th esis and in terp reted t a b l e s , a n d by o n e through or m ore n u m e ric a l a n a ly s e s o f th e c o rre sp o n d e n c e betw een s p e c i e s and site s. S i t e s a r e g ro u p e d t o g e t h e r b a s e d on t h e i r as determ ined system s use by t h e the veg etativ e p attern ed o rd in atio n . occurrence 111 of sim ilarity C lassificatio n v eg etatio n w ith in 112 site and groups to p red ict responses of V eg etatio n effectiv e stated w ith in eco sy stem s as "th e sim ila r several an G rig al from rep o rts and v e g e ta tio n , co rre la tio n . v eg etativ e in d icato r v eg etatio n s stu d ies p attern s, along the T here long and Arnem an its v alu e as an is some w ith used exam ines lan d scap e in d icato r th at th at relatio n sh ip sh ifts in the to is more (1984) ( 1970), g eo g rap h ic has areas th e sam e rep o rtin g th ere w ere betw een so il a very clo se sp e c ific ity to d istrib u tio n of ( P r e g i t z e r a n d Ramm 1 9 8 4 ) . and its classific atio n , relatio n sh ip reg io n ally . a sso c iatio n s fea tu re s Barnes noted extensively i n e c o s y s te m com ponents v a r i e s stu d y con d itio n s n ecessarily lite ra tu re , the g ra d ie n ts. reco g n ized not sp e c ie s w ith in a statew id e area is site fro m no c o r r e l a t i o n in d icato rs, V eg etatio n lan d scap e are regarding ranging of c h aracteristics, than o th e r s . G erm ans h a v e ty p e". co n flictin g in fer som e l o c a t i o n s th at eco sy stem or of on a s t u d y T his in o th er p o rtio n v e g eta tio n , site to and of s o il, n o rth e a ste rn my and lo w er M ichigan. Relationships of vegetation to other ecosystem components V e g e ta tio n and s o i l S tu d ies th ere are in vario u s asso ciatio n s a n d A rnem an ( 197 0) was c l o s e l y of the w orld betw een v e g e t a t i o n rep o rted d eveloped in M innesota, sp ecies, p arts th a t have and shown so il. a c lassific atio n th at G rig al sy stem b a s e d on f r e q u e n c y o f v a s c u l a r p l a n t related to oth er classificatio n s based 113 on so il, on e n v i r o n m e n t a l n u trien ts, redw ood reg io n m o istu re, related a n d on C alifo rn ia , tem p eratu re, W est corresponded G erm any, w ith lan d fo rm s, so il cap acity C olum bia, bedrock, to humus ty p e, w ith v eg eta tio n color of the n i t rogen p re c ise ly stud y (N), and d efin ed than s t r a t a in B ritish and B r a d f ie ld elev atio n , S tu d ies carbon conducted (B arnes 19 8 4 ) . to dense and In d rain ag e, covaried o rg an ic in clu d ed carbon, w ere sig n ifican t so il fire and to depth, A nother co rrelatio n s the seed lin g and wind d i s t u r b a n c e , nitro g en develop co n cen tratio n s forest (Gagnon was a s s o c i a t e d w hile site m ore v eg etativ e a n d som e e n v i r o n m e n t a l v a r i a b l e s and and A d d itio n a lly , by lay er to B ritish a ll c a p a c i ty w hich groups a cid ity , slope p ro p e rtie s The s a p l i n g also re la ted till, 19 8 4 ) . found of w ere sp ecies w hich w ere B horizon, C olum bia was a s s o c i a t e d w i t h w ith c o astal (W aring an d M ajo r 1 9 6 4 ) . d ep th , stra ta and g ra d ie n ts n u trien ts flo ra (M oon th e c a t io n -ex ch an g e 1986). slo p e, In te x tu re , so il m o istu re, b a s e d on s o i l p r o p e r t i e s a l o n e . a mong f o r e s t s t r a t a layer so il depth c lasses la b o rato ry -d eterm in ed classes and p ro p erties in clu d in g h eat, m easured ground m o istu re -h o ld in g depth of v eg etatio n . to a g ra d ie n t of v e g eta tio n In lo cal o v ersto ry of lig h t, grad ien ts and in layer the the w ith herb so il. c lassificatio n in O n ta rio found t h a t s o i l s d a ta c o r r e c t l y p r e d i c t e d v e g e t a t i o n ty p e for th ick n ess d ep th to 7 0% o f th e p lo ts u sin g subsurface o f humus l a y e r s , m o i s t u r e c arb o n ates, and ro o tin g te x tu re , regim e and d r a i n a g e , zone th ick n ess (Jones 114 1984). McCune a n d am ong forest n o te d th a t lay ers p red ictab le v alu es th ree in in (1981) a sm all "cover from en v iro n m en tal in of m ost an o th er W isconsin found and S tearn s Tree so il. C o m position asso ciated d en sity w ith of th e woody on ro u g h ly th e increased in creasin g F, w etlan d com position of each th e so il p ro p erties co m p o sitio n ax is expressed m e d iu m sand coverage In the of a the was lay er th e was so il, asso ciated R ec re a tio n groups in clu d in g n itro g en fin e A rea B arnes and tra c t, w ere (P reg itzer ax is in a lso and the w ith th e in 1985). of and also second in c re asin g to ta l asso ciated m o istu re silt C aulophyllum in w ith so il w ith 02, or can o n ical sand and pH , and species M ichigan, 1982, species the co n ten t, upper reg im e, and B arnes of The decreasing upper co n co m itan tly sand and th i c k n e s s g rad ien t te x tu re , m in eralizatio n canonical O sm orhiza M cC orm ic k species a and co n ten t, was a n d Mg c o n c e n t r a t i o n s a n d Mg i n S y lv an ia along (S pies of on a f l o o d p l a i n v e r s u s a b a s i n . am ounts o f h orizon cover of M ichigan d e m o n stra te d t h a t c o v erag e o f th e C l i n t o n i a group but A stu d y sp ecies u n d ersto ry o ccu rren ce o f the s i t e and herbaceous organic m atter th e A stu d y of M ontana, was to d if f e r e n t a s s o c i a t e d w i t h p H, o r g a n i c m a t t e r th e sp ec ie s the c o rre la tio n s in p aram eters th at 1987). poor area la y e r ". f o r e s t l a y e r s was r e l a t e d ( Dunn found study th e of sp ecies fo rests A ntos groups. eco lo g ical ch aracteristics a cid ity , 1984). and to ta l P o ten tial N i n n o r t h w e s t e r n lo w e r M ic h ig a n was a s s o c i a t e d 115 w ith u p lan d forest eco sy stem o v e r s t o r y and ground f l o r a of mor sp rin g ephem erals in versus surface m ull so il so il n o rth e a ste rn ( Zak e t a l . the c h arac te riz ed 1986). same r e g i o n ty p es, a cid ity groups and W isco n sin , The a b u n d a n c e was a s s o c i a t e d asso ciated (O v erlease d ev elo p m en t a c c u m u l a t i o n s i n s p o d i c h o r i z o n s w as r e l a t e d of hem lock sites in o v ersto ry {H o l e in 1976). of In o rg a n ic to the p resence 1975). O rd in atio n of i n New Y o r k u s i n g c o r r e s p o n d e n c e a n a l y s i s o f o v e r s t o r y and ground to th e w ith d ifferen ces and O v e rle a s e th e by flo ra m o istu re, in d icated and th e th at th e second a x is first to ax is was related of hem lock abundance (Gauch a n d S to n e 1 9 7 9 ). V e g e ta tio n and landform B ailey of (1984, in te re st co n tro lled re g io n a l in 1987) lan d has d escrib ed th ree c la ssific a tio n . The p rim arily sc a le by of clim ate and can 1:3,000,000. sp atial m acro scale be The scales m apped is at m e so sc ale a is c h a r a c t e r i z e d by l a n d f o r m c o n t r o l o f c l i m a t e due t o g e o l o g i c su b strate, at map scales m icro scale asp ect, surface s h a p e , and r e l i e f , betw een 1 :2 5 0 ,0 0 0 and can and be d e l i n e a t e d 1 :1 ,0 0 0 ,0 0 0 . i s a s s o c ia te d w ith lo c a l d if f e r e n c e s The in s lo p e and a n d map s c a l e s may b e b e t w e e n 1 : 1 0 , 0 0 0 a n d 1 : 8 0 , 0 0 0 . L andform s, m esoscale a r e a l here ex ten t, slo p e, asp ect, lo cal m o d ificatio n C o m position of d efin ed are These re g io n a l v eg etativ e to p o g rap h ic ch aracterized and e l e v a t i o n . of as m asses by d i f f e r e n c e s d ifferen ces clim a tic com m unities of in resu lt a in in c o n d itio n s. many areas is 116 s t r o n g l y a s s o c i a t e d w ith landform f e a t u r e s . has shown related th at to e n tire p attern s tim e fu rth er forest of sin ce shown are g lacial till g la ciatio n . th at c o m p o sitio n co m p o sitio n th ese th e of (1975) in M ich ig an has and outw ash during the (1986, 1987) has W hitney p attern s re su lt B rubaker of presettlem en t lan d fo rm been forest m ed iated fire frequency. O verstory v eg etatio n has been a s s o c i a t e d w ith sp ecific la n d fo rm s i n n o r t h w e s t e r n low er M ich ig an , w ith b l a c k and p i n oaks dom inating fin er outw ash sand t e x t u r e s , to p o g rap h y , and p lain s, sugar m aple a n d Ramm 1 9 8 4 ) . area be related m icro clim atic ab ility g lacial till W isconsin p lain s, C offm an tra c t in S uccession landform s, w hich 1984). affect has 1983). The s o i l s , w h ile also in related sp ecies north -facin g C o ry d alis th e w ith m o rain es they th e in th is co n tro l co m p etitiv e upper M ichigan o v ersto ry and ty p es to w i t h s u g a r m aple and hem lock o c c u r r i n g on C ertain a on sp ecies as groups u p p e r M ich ig an w ere a s s o c i a t e d along o n ly of and p i n e a n d oak on o u tw a sh p o sitio n co llu v ial o ccu rrin g classificatio n landform s, in creasin g (H ost e t a l . 1987). H ab itat-ty p e n o rth ern to c o n d itio n s of sp ec ie s oak r e d oak o c c u r r i n g on i c e - d i s i n t e g r a t i o n (P reg itzer may w hite V io la group group h illslo p e occurred in d ic a ted s lo p e p o s i t i o n s , and th e p lain s (K otar on M cC orm ick th e w ith to p o g rap h ic (P reg itzer on and rocky, fe rtile et a l. sh allo w site s A th y r iu m g r o u p was in found 117 in m oist a re a s . Characteristics of the forest floor and annual litterfall The forest flo o r not been e x te n s iv e ly R egion. The ecosystem s, cy clin g since co m p artm en t due to site . its reg ard in g most of the fo r e s t component esp ecially is an in the im p o rtan t decom position it. also It The f o r e s t f l o o r and lay er sp atial lo catio n of its low er b o u n d a ry . of forest flo o r m aterial w orking forest (F), a n d humu s zones was 4 6 ,8 0 0 lay ers, kg August sam p lin g , of study stu d ies ( Gosz layer et ha- 1 . th e C o vington same (1981), general area and found H ubbard litte r averaged h a -1 th e L th e over a l. (L), three 1976). w e i g h e d 4 , 3 0 0 kg F l a y e r w e i g h e d 1 9 , 3 0 0 kg h a - 1 , a n d t h e in a am biguity Most on (H) kg to on i n New H a m p s h i r e . ferm en tatio n 2 7 ,5 0 0 tim e and of sto rag e is d iffic u lt l o s s on i g n i t i o n ha- 1 , the Lakes n u trien t a over Broqk F o r e s t , d e t e r m i n e d a s an has f l o o r have been conducted in th e e a s t e r n U . S . , The w e ig h t D uring as v a riab ility , on o r n e a r t h e H ubbard Brook F o r e s t elev a tio n G reat and serves accu m u lated w hich com ponent o rganic nutrients tem poral the ecosystem flo o r w ith in for an stu d ied , forest occurs fo rested is H w eighed F ederer th a t (1984), th e m ature f l o o r w e i g h e d a b o u t 80 Mg h a ” 1 , b u t d i d n o t b r e a k fig u re down i n t o com ponent (1984) noted another forest flo o r th at to w eigh lay ers study in L, am ounts o f and H. New H a m p s h i r e 6 3 Mg h a ” 1 , a n d s o u th and w est had l e s s e r F, th at forest areas flo o r th e F ederer found th e fu rth er m aterial. 118 F orest flo o r w e i g h t was t h o u g h t t o v a r y w i d e l y geography, d ra in a g e , Annual V itousek tro p ica l fo rests, p ro d u ctio n was has (1982) been m easured sum m arized finding betw een N o rth ern deciduous th a t 5 ,5 1 0 fo rests and 3 ,419 th re e kg h a - 1 elev a tio n w orking to be in in kg w ere 197 2 ) . found evergreen of litte r (L ) th e re lay er New B r u n s w i c k . 9 ,5 1 0 co m p o sitio n . was a d ecreasin g w eight w ith age Th e o l d e s t s i t e tren d for an av erag e produced B oerner A ugust s a m p lin g s . th a t annual site was leaf 2,413 p ro d u ctio n and c u r r e n t kg h a ” 1 , was 2 ,7 7 3 p ro d u ctio n produced on th e (1978) in W ein of (1977) forest flo o r forest 37 y e a r s , in had flo o r W isco nsin found on an aspen on an a s p e n - m a p l e - b i r c h A nother stu d y amount basswood fo rests sites forest tw ig p r o d u c t i o n e co sy stem s. le a st and aged in W isconsin dem onstrated d iff e r e n c e s among th e m aple d om in ated also w hile in (1984) site kg h a ” 1 , a n d o n a m a p l e - b i r c h - a s p e n w a s 3 , 7 2 6 kg h a ” 1 . a l . 1984) Crow and over p ro d u ctio n hardw ood stu d ied , kg h a ” 1 o f u n d e co m p o se d l i t t e r du rin g a yr”1 . A one-year litte r M acLean litte r h a-1 showed t h a t a l. O hio, in litte r. tissu e (G osz e t fo rests sp ecies th at sugar of number 3 , 8 5 8 kg h a ” 1 a v e r a g e d o v e r 2 y e a r s a n d f o u r found et a range 1 5,3 0 0 produce l e s s d ecid u o u s zones m ature d ifferen t site of in stu d ies th e s a m p l i n g on t h e H ubbard Brook F o r e s t of on and s p e c ie s c o m p o sitio n . litte rfa ll stu d ies. depending of had produced C o n ifer litte r, the an in annual dom inated w h ile hig h est litte r fo rests fo rests am ount, in term ed iate (P a sto r w ith and oak- le v e l. In 119 n o rthw estern low er d ifferen ces in com position. h a -1 of M ichigan, litte r basswood like site o ak-w hite d u rin g m a p le - r e d oak s i t e an al. w ith oak autum n (1986) also d ifferen t site o v ersto ry produced sam p lin g , found 1,749 w h ile a kg sugar p r o d u c e d 3 , 1 7 9 kg h a ” 1 a n d a s u g a r m a p l e - produced fo rest et p roduction A black litte r Zak 2,624 floor kg ha” 1 . L itter accumulat io n , p ro d u ctio n , appear s to vary g e o g r a p h ic a lly and w ith s p e c ie s c o m p o sitio n . N u trien t year a l. were m easured (1972). tissu e 0.958% , Brook som e P - Mg - sp ecies. 0.169% , N and autumn and K - N and 0 .1 8 % P. oak on d ifferen ces 0.14% low er site, a c o n cen tratio n s and bassw ood M ichigan on w ere: a m aple-bassw ood litte r seemed q u ality un related autumn site, to et Mg found 0.083% , al. Ca (1984) litterfall oak co n tain ed by co ntained 1.60% a oak black site , in d icatin g a l. N and litte rfa ll on m aple-red ( Zak O h io et w hite 0. 7 4 9 % sugar deciduous 0. 96 % N a n d 0 . 1 1 % P , P, in et sam pled d u rin g P - annual co ntained concen tratio n s 0 .9 59 % sugar in P, in one Gosz 0.787% , P astor in 0. 8 7 % N a n d 0.1 1% N itrogen northw estern 0.815% , by in - (1984) 0.479% . Sugar m aple l i t t e r 0.89% Ca litte rfa ll P co n cen tratio n s oak c o n ta i n e d n u trien ts B oerner in sam pled o v er Forest 0.079%, C on cen tratio ns w ere: N - an aly zed 1.239% of 0.456%. lev els litte rfa ll Hubbard 1.196% , K - n u trien t O ctober. the in C oncentrations and sim ilar w hite at w ere: N - 0.129%, red con cen tratio n s 1986). geographic in oakand sp ecies N u trien t d ifferen ces 120 and a l s o litte r to vary g r e a tly d ep en d in g on w h e th er was s a m p le d on a n a n n u a l b a s i s o r o n l y d u r i n g a u tu m n ; rath er, th e seem ed n o t species m ajor com position v ariab le of re la ted the to o v ersto ry seemed d ifferen c es in to be n u trien t co n cen tratio n of l i t t e r . Nitrogen mineralization in forested ecosystems The r a t e to ta l a t w hich N i s aboveground M assach u setts, m in eralizatio n forest al. stand 1984). net W isco n sin , rate Powers amount of D ouglas N (Aber and so be th e best M ellilo found t h a t index, to site s in for Alaska, to that 1984, th e of P asto r et rates and f o l i a r S im ilarly , released fir. 1984, grow th N m in eralizatio n Zak e t a l . Keeney N in (1980) m in eralizatio n (1986) P asto r et dom inated in one rates d em o n strated a l. in c u b atio n s in crease rates th e have in was N fe rtiliz e d been in l i t t e r f a l l co rrelated (P asto r et 1986). r a t e was t w i c e a s g r e a t H ow ever, an aero b ic p r o d u c tio n and N r e t u r n a l. ecosystem s d u rin g N m easure N m in eralizatio n y ield p o te n tia l, (P inus p o n d e ro sa ) . N itrogen and and th o ught w ith d iam eter w ith l i t t e r Zak e t p ro d u ctio n related review o f N m in e r a liz a ti o n s t u d i e s , r e p o r te d t h a t co rrelated al. is (1980) c o r r e la te d w ith s i t e in h is prim ary pro d u ctio n ponderosa p in e m in e ra liz ed has been stu d y th at am ong ecosystem s. th e N m in e ra liz a tio n in s u g a r m aple e c o s y s te m s a s (1984) by vary also co n ifers, in th e found oaks, w estern in o a k , d ifferen ces and U.S., sugar among m ap les. w ith in site 121 v a r i a b i l i t y w as g r e a t e n o u g h s o t h a t h a b i t a t s i t e s b e d i s t i n g u i s h e d by N m i n e r a l i z a t i o n N itro g en m in e ra liz a tio n rates ra te s (K eeney 1 9 8 0 ) . have been found u n r e l a t e d t o s o i l N a n d pH ( A b e r a n d M e l l i l o 1984, a l. not 1984), ad eq u ately C:P i n alth o u g h so il q u an tified litte r in th ese were fo u n d t o m in eralizatio n on p ro p erties site s s u p p l y may l i m i t t h e r a t e stu d ies. (P astor e t a l . { 1 9 8 5 ) , w o r k in g on t h e same s i t e s did not d i d , so th at lim itin g N m in eralizatio n acid ity ra te s, 1984). ad d itio n rates In s i t u tim e consum ing and l a b o r th at th e on fie ld as in th e in ten siv e in cubation site s f o r m esic zone s i t e s in la b o ra to ry index o f a ctu al in cu b atio n s, relativ e v alu e av ailab le for in c u b atio n of both rates w hich was P of lim e to be vary, and in cu b atio n s r a t e s , but w estern com pared ( Keeney in be 1980) . lab o rato ry aero b ic so ils tra n slated has For in to been shown in x eric in c u b atio n s. and a n a e r o b ic , exam ined to showing U.S., rath er give an than an am ounts f o r e s t g r o w th on a n a n n u a l b a s i s . forest th a t (P a s to r e t a l . 1984). m ethod the among s i t e s can N t w i c e a s muc h N w a s m i n e r a l i z e d s i t e s , m ore N was m i n e r a l i z e d L aboratory w ith rates. are incubations C:N a n d was b e l i e v e d t h o u g h t t o be t h e b e s t f o r d e t e r m i n i n g a c t u a l situ of been Sahraw at e t are in et in d ic a tin g but th e b e n e f i t s of each have been d e b a te d . lab o rato ry P astor co rrelated M ethods o f d e t e r m i n i n g N m i n e r a l i z a t i o n The a n a e r o b i c be found t h a t P a d d i t i o n s and not P su p p ly to N m in e ra liz a tio n to have R atio s W isco n sin , al. a lte r may be n e g a t i v e l y in could not to of N An a e r o b i c m in eralize 122 h ig h e r le v e l s o f N than th e a n a e ro b ic in c u b a tio n , to the relativ ely in forest authors so ils do not decid u o u s, related state la b o ra to ry is lik ely m ethods the was a f f e c t e d sto rag e have a l s o d u rin g an aero b ic th at values h ab itat ammonium-N after . a or irreg u larly and and aerobic (1980) incubation com pared at tem p eratu re. w ith 30°C was although the lev els M c N a bb e t so th a t betw een w ith a n a e ro b ic la b o r a to r y in cu b atio n , in c u b atio n . d rying th e con ifero u s co rrelatio n Pow ers 2-week by s o i l in O regon, w as a n aero b ic b e e n shown t o a f f e c t varied types The th e r = 0 .93 th at present U n fo rtu n ately , forest in the f i e l d found b acteria t h a t t h e r e w ould be a d i f f e r e n c e c o m p arab le t o a 6-m onth f i e l d in c u b atio n 1981). from was in cu b atio n s and anaerobic com position. 13 r e l e a s e d in cu b atio n s of w hether ov ersto ry of anaerobic lev els ( S m ith e t a l . and i t to am o u n ts low l i k e l y due D ry in g and of N released a l. sam ples field (1986) from s i x found forest som e s a m p l e s p r o d u c e d m o r e sto rag e w hile o th ers produced less. M y ro ld (1987) has shown th at betw een th e am ount of in cu b atio n and m icrobial c o rre la tio n anaerobic chloroform fumigat io n . M y ro ld m in e ra liz e d d u ring the decom posers a c ti n g on d e a d c e l l s Thus , the anaerobic p o p u latio n s of in cubation a strong N m in e ra liz ed d u rin g biom ass of microbes is as suggests may r e s u l t i ncuba t ion aerobic there aero b ic m easured that by the N from a n a e r o b i c m icroo rg anism s. procedure responsible m ea s u r e s for the 123 d eco m p o sitio n indicative of of m ost an o rg an ic overall m atter site on a potential site , for and is organic d e co m p o sitio n and r e l e a s e o f a s u i t e o f n u t r i e n t s . A lthough th ere is still co n sid erab le m ethods f o r m e asu rin g N m i n e r a l i z a t i o n , im portant site tech n iq u e ecosystem s. for p ro d u ctiv ity m easures identifying and its makes d ebate reg ard in g a s s o c ia ti o n w ith it an im p o rtan t distinguishing among 124 O B J E C T I W S MID HYPOTHESES The objective relatio n sh ip s com ponents. of this chapter among v e g e t a t i v e and o n how v e g e t a t i o n com ponents w ill help e c o s y s tern u n i t s . relatio n sh ip s for w ill are site eq u iv alen t on s o i l in classificatio n is be asso ciated id e n tific a tio n Inform at ion v ita l for w hich a r e o rd in atio n s to system s, w ith o th er and m apping regarding developing o rd in atio n s asso ciated n u trien t of e c o s y s t em in terp retatio n s on 2) are and th e structure and function d escrib in g eco sy stem s), th is ground forest n u trien ts 3) are flo o r (and and in or abundance or o v ersto ry tex tu res, or c h arac te ristic s of im p o rtan t are are: com position therefore 4) ch ap ter flora d ifferen c es so il ra te s, litterfall in b a s e d on o v e r s t o r y w ith tu rn o v er addressed based c h arac te ristic s, com position to ecosystem t h e map u n i t s w h i c h w i l l b e d e v e l o p e d . The q u e s t i o n s 1) investigate O r d i n a t i o n s b a s e d on v e g e t a t i o n a r e n e c e s s a r i l y in fo rm atio n site to non -v eg etativ e a p a rt of eco lo g ical or m u lti-fa c to r and is some to eco sy stem important site for p ro p erties a s s o c i a t e d w ith amount and n u t r i e n t q u a l i t y o f l i t t e r f a l l ? The a s s o c i a t e d hy p o th eses ra th e r dim ension s i t e abundance, of th an n u ll again in d iv id u al as are: altern ativ e 1) o r d i n a t i o n s o b t a i n e d from ground f l o r a 2) site s stated h y p o th eses, oversto ry b asal area, eq u iv alen t, betw een hy potheses, th e re w ith so il are and s o i l p r o p e r t i e s d ifferen ces d ifferen t p h y sical v eg etatio n , and in 3) chem ical so il firstcoverare not nutrients varying lev els fe atu re s are 125 asso ciated w ith v eg etativ e sp ecies rates are first-d im en sio n al co m position, asso ciated w ith o rd in atio n s 4) n itrogen low -level from v e g e t a t i v e s p e c i e s c o m p o s itio n , is n o t e q u a l on a l l forest flo o r n u trien t sites, m aterial retu rn in is of s ite s flo ra w ith and th e o rd in atio n s litte rfall equal is hypotheses ob tain ed on a ll site s, asso ciated w ill decomposed w ith and 7) sp ecies produced. en tail: 1) o rd in atio n a l o n g an e n v i r o n m e n t a l g r a d i e n t e x p r e s s e d by g r o u n d sp ecies g eo lo g ic the m in eralizatio n 6) a m o u n t o f p a r t i a l l y not from 5) a m o u n t o f l i t t e r f a l l c o m p o s i t i o n and amount o f l i t t e r f a l l A ddressing obtain ed abundance, featu res, o rd in atio n litte rfa ll 2) com paring g r a d i e n t s litte rfa ll, of ground c h aracteristics and flo ra, among o v ersto ry and 3) groups d i f f e r e n t o v e rs to ry s p e c ie s com position. of so il and com position com paring so il of w ith sites 126 METHODS AMD MATERIALS M ethods u s e d field sam pling flo o r sam ples a r e sam pling for and lab o rato ry describ ed v eg etatio n , m in eralizatio n selectio n and rates, sam ple analyses of C hapter 2. in in of th e site s, so ils and M ethods d eterm in atio n are d escrib ed and in t h i s for forest used of in n itro g en sectio n . Field sampling for vegetation and nitrogen mineralization O v e rs to ry m easurem ents used v a r i a b l e - r a d i u s ta lly tre e s p rism at id en tified each su b p lo ts su b p lo t. included the o v e rs to ry . basal each along was p r e s e n t classes V alues w ere Frequency p lacin g so u th except area by sp ecies d escrib ed w here th e basal w ere and a strong was each over based the four 1 m^ f r a m e s and the species by abundance c la s s e s at n o tin g fram es. w ere 24, placed and to ta l 5 by were c o n v e r te d of of g rad ien t to th e cover-abundance o b serv atio n . at each each site -le v el site . su b p lo t along by d i v i d i n g to cen ter p a ra llel su b p lo ts of age 30 m p l o t the on v i s u a l number four the s i t e . p resen ce/ab sen ce Average th e p h y siographic 5 m in terv als determ ined th e a of w ith factor average through id e n tifie d , to averaged w ith in occurrences area each within tran sect tran sect assigned tra n sec t, each 10 o f o c c u r r e n c e was m e a s u r e d a t six sp ecies w ere S p ecies were a M easurem ents a t n o rth -so u th and g ra d ie n t. for a su b p lo t, of M easurem ents w ere a v e ra g e d f o r G round f l o r a lo cated by u s e p lo ts the of by n o rth v ario u s frequencies the fram es. ranked v a lu e s number of (^over­ according 127 to a m odified 3 .1 ). A scale a n aly sis sp ecies B raun-B lanquet such as because cover in it th is cover-abundance is allo w s the field in terv als. A lso, le ss eco lo g ical sig n ifican ce scale co m m o n ly u s e d easier than a abundant v isu al scale v eg etatio n e stim atio n com prised sp ecies th an in may h a v e sp ecies (T able of of equal a g reater la rg e r cover. S c a les used in v e g e ta tio n a n a ly s is a re designed so th a t abundant sp ecies the g reater r e c e iv e a h ig h e r w eight number of categ o ries among in th e of an aly sis low er less due to coverages ( M u e l l e r - D o m b o i s a n d E l l e n b e r g 1974). T able 3 .1 . C over-abundance c la s s e s used in v e g e ta tio n a n a ly s is . and c o rre s p o n d in g Coverage c l a s s m id p o in t % Rank 1 2 3 4 5 6 7 0.05 0.5 2 10 25 50 80 C ore sam ples o f were o b t a i n e d th e fo r a study These sam ples flo o r sam p les. w ere surface of co lle cte d A co m p o site 0-10 n itro g en at to each f o r e s t th e sam ple o f f l o o r sam ple cm o f m in eral m in eralizatio n o b ta in e d a t each su b p lo t w ith in a s i t e , ad jacen t ranks so il rates. same tim e as six so il cores w i t h tw o c o r e s (F igure 2 . 2 ) . forest was taken 128 Laboratory procedure for determination of nitrogen mineralization rates The c o m p o s i t e s o i l bags in sid e in d iv id u al refrig erated m oist s o i l ro o ts; at fine ro o ts sam p les were p la c e d waxed 4°C f o r was s i e v e d in cu b atio n core cardboard 10 w e e k s to w ere in clu d ed and a n a ly s is an aly zed . fragm ents w ith th e (1987), was u s e d . except th at a T echnicon and F ield a n d medium sam ple. m ethod was a m o d i f i c a t i o n a n a e r o b i c t e c h n i q u e o f Keeney and Brem ner M yrold p lastic co n tain ers, until remove c o a r s e in (1966) The of th e rep o rted au to an aly zer M i n e r a l i z a b l e N was c a l c u l a t e d a s t h e in system in crease aramoniura-N c o n c e n t r a t i o n d u r i n g a 7 d a y i n c u b a t i o n a t in 40°C. Numerical analyses S i t e s w e re o r d i n a t e d by r e c i p r o c a l a v e r a g i n g ranked ground m o d ified having have cover-abundance B rau n -B lan q u et zero one s i t e , flo ra frequency, v alues cover-abundance and also species deriv ed been determined sca le . to be of on value u sin g an o p tio n only sp ecies in av ailab le DECORANA p r o g r a m o f t h e C o r n e l l E c o l o g y P a c k a g e RA a n d c o r r e s p o n d e n c e a n a l y s i s calcu latin g O thers S p ecies occu rrin g l i t t l e a s ite (Gauch 1 9 8 2 ) . RA w a s p e r f o r m e d used from w ere n o t u sed in th e a n a l y s i s b e c a u s e r a r e o rd in atio n are (RA) u s i n g th e s am e site in terch an g eab ly (G reenacre 1984) feel (H ill th e 1979). (CA) a r e d i f f e r e n t m e t h o d s o f ord in atio n by in some th at scores, au th o rs th e names and the (P ie lo u should names 1984). be kept 129 sep arate, m atrix s o t h a t CA w o u l d o n l y b e u s e d so lu tio n A greem ent o f v erified w hich RA o n l y to CA w i t h RA u s i n g th e th e th e been d ata perform ed m atrix was o p tio n u sin g axes. those as determ ined (1984) procedure. RA i n except th at by RA i n th at on DECORANA, DECORANA h a d the o rd er o f DECORANA w e r e the site s and id en tical to i n P i e l o u ' s CA r e s u l t . Site groups com pared Chapter u sin g 2 for in d iv id u al based th e same te sts of to among ev alu ate o rd in atio n s f r o m PCA o f ( SAS) lin ear ( SAS m ethods w hich w ere groups based on group m eans test with were em ployed in depositional was followed reduced were s i g n i f i c a n t l y c o rrelatio n s co rre la tio n asso ciatio n s used co m p o sitio n degrees d ifferen t by of (S teel 1980). Sim ple rank overstory A Kruskal-Wallis freed o m w here v a r i a n c e s and T o r r ie on comparing environments. of DECORANA w a s matrix with the t h e o b s e r v a t i o n s c o r e s by a c o n s t a n t t o s c a l e The c o m p a r i s o n c o n f i r m e d sam ples in to so lu tio n . from P i e l o u th e an aly zed o u tp u t ag reed w ith P i e l o u ' s r e s u l t m u ltip lied reference ite ra tiv e u s in g an exam ple d a t a m a tr ix CA h a d When and in w ere site and used to v ariab les. a sso c iatio n s Spearm an*s test th e These betw een d a ta . Institute The S t a t i s t i c a l Inc. 1985) was stre n g th tests first f r o m RA o f o v e r s t o r y a n d g r o u n d so ils c o efficien t flo ra w ere for c o r r e l a t i o n s and f o r com paring o v e r s t o r y g r o u p s . also d im en sio n d ata, A n aly sis used of and System o b tain in g 130 RESULTS AND DISCUSSION In sp ecies th is ch ap ter, ranked di scussed relativ e and site reference O verstory to o rd in atio n cover-abundance with environm ents. a ground litte rfa ll v alu es to ground d ep o sitio n al flo ra d escrib ed , and depos i t ional com position ch aracteristics. ra te s are presented, is g la c ia l sp ecies flo ra, using is discussed environm ents, N itrogen so il, m in eralizatio n and t h e i r a s s o c ia ti o n s w ith v e g e ta tio n , s o i l and d e p o s i t i o n a l en v iro n m en ts a r e d i s c u s s e d . S ite o rd in atio n Ranked RA o f the by ground flora a b u n d a n c e cover-abundance 24 s i t e s and ground flo ra 81 s p e c i e s . data were used RA w a s p e r f o r m e d in using a n o p t i o n i n t h e DECORANA p r o g r a m ; o n l y f o u r e i g e n v a l u e s a n d the a s s o c ia te d sam ple and s p e c i e s a r e g i v e n by t h e p r o g r a m . v e c to r s w ere, Of the vecto rs th e second fo r 11.8% . S ince t o t a l v a r i a b i l i t y n o t known. much more arrangem ent It The so il the v a ria b ility of sp ecies and three RA the eig en v ecto r first first four 0 .1 6 4 , and 0 .14 6 . accounted for 53.1% , f o r 13 .2 % a n d t h e fo u rth for is n o t g i v e n by t h e p r o g r a m , to ta l sum m arized by any v e c t o r than sites any w ith of v ecto r c o n tain s the respect o th e r s . to th e The first in te r p r e te d as being a s s o c ia te d w ith tex tu re-n u trien t other 0 .2 7 1 , is ap parent th a t the f i r s t v e c t o r w as s u b j e c t i v e l y th e the the th ird th e a c tu a l p ercentage of is 0.6 5 8 , given, 21.9% , in Th e e i g e n v a l u e s o f t h e resp ectiv ely , four scores g rad ien t axes did describ ed not have in an C hapter 2. apparent 131 in terp reta tio n , Some o f and were n o t u sed in t h i s d i s c u s s i o n . th e o rd in a tio n of o rd in a tio n ax is v alu es also of im p o rtan t site s in th ese b y RA a r e F ig u re in T ab le abundances of Vac c in iu m are the o rd in a tio n 3.2. present ax is. on s i t e s can ad en sis, and a g reater th e on s i t e s but abundance does its Because of its the le ft sp ecies in n o rth eastern n orthw estern p a rt of c ertain sim ila r occurs eco sy stem tren d at cen ter of of the is sim ilar low er state. groups apparent the le ft rig h t of of the O sm orhiza c h ilen sis V iburnum V io la N through 0 in acerifo liu m of the is o rd in atio n , at the across cen ter. most of the not as u s e f u l an in d ic a to r M ichigan There, it as is it is an (H ost e t a l . 1987, for abundances the o rd in a tio n . is Pteridium of abundance g r a d i e n t , Viburnum a c e r i f o l i u m high of and c e n t e r in are presence n o t i n c r e a s e on s i t e s sim ilarity first that and th a n i s p r e s e n t on s i t e s present in th e abundance o rd in a tio n . at show s T through M a t by th e sp ec ie s, D t h r o u g h F on t h e ch aracterized of o th er 3.1 used cover-abundance angu s t i f o lium are cen ter Ranked Figure S ites and G alium t r i f l o r u m sp ecies diagram m ed a l o n g 3 .1 . o rd in atio n th e flora s p e c i e s , and s e le c te d show n aqu ilin iu m ground S m ilacin a through in d ic a to r 1988). racem osa, at the th e A w hich le ft and a l b a , w hich in creases i n a b u n d a n c e o n s i t e s M t h r o u g h 0 , may b e a u s e f u l in d icato r sp ecies fo r th ese s i t e s . P renanthes site s in 132 F igu re 3 .1 . C o ver-abundance of s e le c te d ground f l o r a s p e c i e s f o r s i t e s o r d i n a t e d by r e c i p r o c a l a v e ra g in g o f ranked ground f l o r a s p e c ie s c o v e r abundance v a lu e s . Cover-abundance 12 9 6 133 3 0 T H L Q V W X R y ^ S K P J I 0 D U S C A 6 B E F RA ordered sites Vaccinium mil P ren an th es P teridiu m Sm ilacina Viburnum O sm orh iza Galium Viola can. Table 3.2. S ite Ranked covei— abundance values of selected ground flora species. V accin iu m a n g u stlfo l1 u m P te rld lu m S m ila c in a a a u l 1 1n1um racem osa P re n a n th e s O sm orhlza G a 11um a lb a c h ile n sls t r 1 f loru m ------------- 0 .5 0 0 .7 5 0 .2 5 ------------- H 2 .7 5 4 .0 0 ----------------- ------------- 0 .2 5 0 .5 0 2 .2 5 1.75 1.50 0 .5 0 0 .5 0 2 .7 5 2 .2 5 1.25 K ------------- 1.75 2 .2 5 1.25 L 4 .2 5 5 .0 0 1 .00 1 .0 0 ----- 0 .2 5 M 2.0 0 2.7 5 2 .0 0 1.75 2 .2 5 ------------- N 0 .2 5 1 .7 5 0.5 0 1 .5 0 2.0 0 2 .7 5 0 --------- 1.00 ----- 1.50 0.2 5 P --------- 1 .2 5 0 .5 0 1 .00 0.2 5 Q 3.0 0 3 .5 0 1.00 0 .5 0 0.2 5 0 .2 5 R 2 .2 5 2 .2 5 2 .0 0 0 .5 0 ----- S ----- ----- 0.7 5 T 3 .2 5 3 .2 5 1 .5 0 U ----- ----- ----- ------------- V 2.0 0 4 .0 0 0 .5 0 0 .2 5 w 2 .2 5 4 .5 0 0.7 5 X 2.0 0 3 .2 5 1.00 C D E F I J ----- V io la canadense O ry zo p sls M la nthe m u m a sp e rlfo l1 a canadense ----- 3 .0 0 0 .5 0 1 .2 5 2 .2 5 ----- 2 .7 5 --------- ----- 0.7 5 2 .5 0 3.0 0 1.00 1 .7 5 0.7 5 1 .7 5 2 .7 5 1.50 0.7 5 1 .00 1.50 3 .0 0 4 .2 5 1.0 0 1 .0 0 0 .5 0 3.0 0 2 .2 5 3 .2 5 2.5 0 2 .0 0 ----- ----- 1.75 2 .0 0 2 .5 0 0 .2 5 0 .5 0 0 .5 0 2 .7 5 2 .2 5 2 .7 5 --------- 1 .7 5 ----- ----- ----- 1 .0 0 ----- ----- ----------------- --------------------------------------------- 0 .7 5 2 .0 0 2 .2 5 0 .2 5 ----- ----- 0.7 5 ----1.75 1.50 2 .2 5 1.25 ------------- --------- 0.2 5 0 .5 0 0.2 5 ------------- 0.7 5 2 .0 0 2 .0 0 3.0 0 3 .2 5 1.0 0 2 .5 0 0 .7 5 1 .5 0 2 .5 0 0 .2 5 2 .7 5 1 .5 0 0 .5 0 1.50 0 .2 5 1 .0 0 1.5 0 1.25 2 .0 0 2.0 0 2.0 0 0 .5 0 1 .5 0 --------------------- 1 .0 0 0 .7 5 0.5 0 0 .5 0 1 .7 5 1.25 2.7 5 0 .5 0 3.2 5 1.25 134 ------------- G ----------------------------- A B ----- V iburnum a c e rlfo M u m 135 Site ordination by ground flora ranked cover-abundance in relation to depositional environment S ites T, B, a n d L a r e and g ra v e l s t r a t i f i c a t i o n produced first th ese outw ash sand w ith in the su b stratu m . f r o m RA o f g r o u n d v alu es p laces the form ed i n th ree flo ra site s dim ension a x i s , sp ecies to g eth er w ith sand The o r d i n a t i o n cover-abundance at the a herbaceous far lay er le ft of dom inated by V accin iu m and P t e r i d i u m . S ites V, Q, d im en sio n W, X, and R a p p e a r o rd in a tio n a x i s , w ith next alo n g a herbaceous th e first lay er s till d o m in a te d by V a c c in iu m and P t e r i d i u m , b u t o f l e s s e r than R th at w ere form ed m aterial in fou n d on s i t e s in d ep o sitio n al co n tain in g ice-ra fted loam y M, K, and in c lu sio n s in P w ere th e v e g e t a t i o n w hich d i f f e r s S ite S m ilacina M has than en v iro n m en ts of loamy m a t e r i a l A lso , p laced site w ith or and sandy c la y w h ile so il R have site s of sites a la rg er M, and sites form ed has loam y d escrip tio n s accu m u latio n s loam o r K, heav ier and in from t h a t ou tw ash flow till o u tw ash w ith P, till near le ss th e com ponent and w ith th at th ic k e r 60 the and of loam y V accin iu m . surface, o rd in atio n in have Q, V, W, X, th e th an so il site s outw ash revealed tex tu red have in th ese P terid iu m M, K, a n d P a l o n g sites of form ed but K and P lack N, w hich E xam ination X, S ites also su b stratu m , Prenanth e s , th e o th e r in c lu sio n s. W, S i t e s Q, V, W, X, a n d th e substratum . S ites R. T , H, a n d L . coverage site s is a x is. Q, V, cm t h i c k of su b stratu m , acc u m u la tio n s. 136 A lth o u g h th e appears th ick number th at th e of site s in th is v eg etal o rd in a tio n group is sm all, sep arated so ils it w ith s u b s tr a tu m t e x t u r a l a c c u m u la tio n s from t h o s e w ith t h i n accu m u latio n s. Port B ruce till P o r t H uron s i t e s ax is, sites alo n g th e d ep o sit. featu re o ccu rrin g ou tw ash , 2 .3 ) to surface, even the fab ric of The som e o t h e r it Port on a is th e of is till m aterial, U, w ere p l a c e d o rd in atio n . For w h ich S w ould purposes w ere among t h e These s i t e s (F ig u re in of w ith th e lo w er ero sio n al w hich D etailed site C reek site an aly sis be of required o f P o r t B ruce o r P o r t H uron a g e , d e p o sit. C and m o rain al Loud a n d may b e a n i t . of yet lo cated but of o rd in a tio n of th is stu d y , was t r e a t e d a s a n o u t l i e r a n d d r o p p e d fro m f u r t h e r S ites rig h t rem nant of site B ruce p laces is flo ra d e p o sits, and m in e ra lo g y to d e te rm in e w hether the S , w h i c h may b e t i l l th e G len n ie m oraine, p o ssib ly to th e G le n n ie m o rain e H uron o r d i n a t i o n by g r o u n d f l o r a till ground boundary of 1981) . P ort placed located th e n o rth east of than S is w ith in 1977 , area elev atio n S ite th e (B u rg is general or first w ith th e e x ce p tio n of s i t e a nother the w ere a l l have a form ed in till site s high coverage it an aly ses. la c u strin e by g r o u n d of flo ra O sm orhiza and G alium . The f i r s t RA o f ranked reaso n ab ly dim ension o f ground w ell w ith flo ra th e site ord in atio n cover-abundance d ep o sitio n al environm ent o b tain ed by corresponded categ o ries, 137 except th at lacu strin e sites w ere n o t outw ash s i t e s w ere p l a c e d a t t h e f a r S ites in form ed m aterial, the w ith outw ash less substratum , w ith than w ere S ites w hich tex tu ra l accum ulations Sandy l e f t of the f i r s t ax is. in clu sio n s of ice-ra fte d 60 cm o f a c c u m u l a t e d placed s ite s. d istin g u ish ed . to the h ad m ore in rig h t th an of till loamy s o i l sandy 6 0 cm o f outw ash loam y th e s u b s tr a tu m were p l a c e d so il to r i g h t o f t h o s e sites w i t h t h i n n e r a c c u m u l a t i o n s . T ill w ere a x is, p laced sep arated w ith th e according th e to sites d ep o sitio n al of th e o rd in a tio n th e site s and P o r t B ruce o r P o r t Huron d e p o s i t i o n , of C and D iv id in g so th a t rig h t exception L acu strin e s ite s . at in site U were th e se environm ent the a s s o c ia tio n s may S which placed s ite s w ith in to produced Port here w ith eroded. B ruce groups groups id e n tifie d be based few should till on m em bers, be v e r i f i e d w ith a la r g e r d a ta s e t . Site ordination by ground flora ranked cover-abundance in relation to soil properties S ite scores in th e first o rd in atio n ground f l o r a ranked cover-ab u n d an ce in PC o f the first C hapter 2, are betw een ground scores, for the data sep arate sh ow n i n flo ra first so il lab th e d ata w hich i n c lu d e d so il T able axes valu es, analyses 3 .3 . o rd in atio n Th e scores only, ax is w as of RA o f and s i t e scores as discussed sim ple and co rrelatio n so il r = 0 .832; co rrelatio n w as r = - 0 .890, organic lay ers th e in field w ith and data m ineral w ith so il co rrelatio n w as T ab le 3 .3 . S i t e r a n k s a n d s c o r e s f r o m f 1 r s t - d 1 m e n s 1 o n RA o r d i n a t i o n s o f g r o u n d f l o r a r a n k e d c o v e r - a b u n d a n c e v a l u e s a n d o v e r s t o r y BA by s p e c i e s , a n d f r o m PCA o f s o i l s d a t a . SUe O v ersto ry G r o u n d f 1o r a S o lls - f le ld d a ta S o 1 ls-la b o ra to ry d a ta (m in e ral RA r a n k RA s c o r e RA r a n k RA s c o r e PCA r a n k PCA s c o r e PCA r a n k so il) PCA s c o r e S o 1 ls -la b o ra to ry d a ta (o r g a n ic and m in e ral PCA r a n k so il) PCA s c o r e 20 -129 24 -175 14 -0 .3 9 7 0.91 13 0.0 2 B 22 -1 5 2 21 -155 24 -1 .3 0 6 0 .9 3 4 0 .8 9 C 19 -127 IB -142 10 -0 .2 4 13 -0 .0 8 6 0.6 7 D 16 -100 19 -146 16 -0 .5 5 10 0 .4 8 17 -0 .4 8 E 23 -154 17 -141 15 -0 .4 6 12 0.31 15 -0 .0 8 F 24 -170 23 -163 20 -0 .8 0 2 1 .2 3 7 0 .5 9 G 21 -1 5 1 20 -154 IB -0 .6 3 8 0 .7 9 12 0 .1 3 -1 .3 6 H 2 194 4 202 3 1 .66 24 -1 .6 1 22 I 14 -72 11 -14 21 -1 .0 9 5 1 .01 2 1 .4 4 J 13 -68 13 -55 17 -0 .6 2 9 0 .6 3 8 0 .3 5 K 11 -20 10 49 11 -0 .3 1 11 0 .4 3 11 0.1 6 L 3 193 2 448 2 1 .7 9 20 -1 .1 9 23 -1 .3 3 M 9 109 6 166 12 -0 .3 1 16 -0 .3 5 14 -0 .0 5 N 10 0 14 -97 23 -1 .2 3 3 1.10 1 2 .5 0 0 15 -73 16 -138 13 -0 .3 8 4 1.03 3 1.25 P 12 -5B 12 -23 7 0 .5 8 14 -0 .2 2 9 0 .2 8 Q 4 192 3 217 8 0 .5 6 17 -0 .9 6 16 -0 .3 8 R e 155 7 135 6 0 .9 4 19 -1 .1 6 20 -1 .0 1 S IB -114 22 -159 22 -1 .1 6 1 1 .46 10 0 .2 7 T 1 206 1 49B 1 1 .8 8 23 -1 . 3 4 24 -1 .6 9 U 17 -113 15 -137 19 -0 .7 2 15 0 .2 5 5 0 .7 4 V 5 1B7 9 12B 5 1.1 6 21 - 1 .2 4 21 -1 . 0 3 w 6 ISO B 129 4 1.38 22 -1 .3 3 19 -0 .9 5 X 7 174 5 175 9 0 .2 3 18 -1 .1 1 18 -0 .9 2 138 A 139 r= -0 .6 8 5 . C o rre la tio n s sig n ific a n t at in flu en ced among a l p h a = 0 .05 for th ese n=24. are a ll C o rre la tio n s are by sam p le size so r v a l u e s may r e s u l t from random c o r r e l a t i o n s in flu en ce of n ecessarily appear to a v a ria b le th at scores not be m e a n in g fu l. in d ic a te th a t statistically stu d ie d , H ow ever, th ere is and th ese an sig n ifican t or from th e so may not c o rre la tio n s asso ciatio n betw een g r a d i e n t s o f s o i l p r o p e r t i e s and o f h e rb a ce o u s v e g e t a t i o n . D if f e r e n t s o i l p r o p e r tie s a re a s s o c ia te d w ith th e axes of th e lab o rato ry sep a ra te d ata c o rre la tio n dim ension; w eights so il scores w ith in ground PC A ' s . th e flo ra The a s s o c i a t i o n catio n s betw een and th e m in e ra l PC h a d first t h e PC o f m i n e r a l s o i l B horizon The first RA s c o r e s th e in s o il h ig h est th e fir s t lab o rato ry d ata p o s itiv e ly n eg ativ ely w eights tw o g r a d i e n t s acid ity . in d ic a te s th a t flo ra on s i t e s w i t h l o w s c o r e s o n t h e f i r s t RA a x i s o c c u r areas o f h ig h B n u trien t h ig h RA s c o r e s co rre la tio n of occur in firs t dim en s io n d i m e n s i o n PCA s c o r e s o f org an ic those lay ers w hich and th o s e s i t e s areas so il in d icates have s t a t u s , and f l o r a organic that are th o se w ith site s lay ers of w ith a cid ity . RA s c o r e s lab o rato ry L ikew ise, d i m e n s i o n RA s c o r e s w i t h f i r s t in d icates h ig h site s data w ith w hich The fir s t inclu d ed w ith l o w RA s c o r e s high n u trien t are co n ten t, w i t h h i g h RA s c o r e s h a v e o r g a n i c l a y e r s w i t h low l e v e l s o f n u t r i e n t s . data of on in th at sites g reater w ith the c o r r e la tio n of f i r s t d i m e n s i o n PCA s c o r e s o f f i e l d low s c o r e s am ounts of loam y in b oth analyses tex tu red s o il. 140 Thus, in a general herbaceous sp e c ie s S p e a rm a n 's calcu lated in the co rrelatio n ground lay ers site of of are s ig n if ic a n t rank the the co rrelatio n in first the d ifferen t so il of d ata A ll th ese fo r the same a s for c o r r e l a t i o n s among s i t e scores. tho se w ith ranks data was o rg an ic PCA o f field co rrelatio n s n = 24 , the The RA o f in clu d in g and w ith r s = 0.770. RA a n d of lab o rato ry w as r s = - 0 . 6 4 3 , of also PCA' s . v alu es a l p h a = 0 .0 5 are were dim ension a t in terp retatio n s abundance dim ension first lab o rato ry was and co rrelatio n s several m ineral co rrelatio n the of cover-abundance PCA o f d ata occurrence to s o il p ro p e rtie s . in ranks sp ecies w ith th e ranks site b y PCA r s = -0 .77 0; related dim ension o f flo ra produced is the co efficien t for first sense, and sim ple th e lin ear Site ordination by ground flora abundance in relation to overstory species composition and basal area A chart basal area outw ash ax is and S ites form ed in 1 S cien tific 3 .2 ). oak in the com position (m^ h a - 1 ) i s dom inated and p in sp ecies produced (F igure b lack cm t h i c k ov ersto ry by s p e c i e s o rd in atio n abundance of by S ites by in w ith substratum , names o f t r e e RA o f T, th e loamy along ground H, a n d L , V accinium sp ecies outw ash arrayed and form ed P terid iu m , (T ab le in clu sio n s sites sp ecies appear the flo ra o v ersto ry in cluding expressed less as first sp ecies in sandy co n tain 3 .4 )1 . than Q through in T able 3 .5 . 60 M on 141 Figure 3 .2 . O verstory basal area of se le c te d sp ecies for s i t e s o r d i n a t e d by r e c i p r o c a l a v e r a g i n g o f ran k ed ground f l o r a s p e c ie s c o v e r-a b u n d a n c e v alu es. T H L R. maple liiillil Basswood R M M K P J 1 O D U S C A G B E F RA ordered sites B/P oaks W. oak R. oak S. maple W. ash Other j Table 3.4. Mean basal area of overstory species. S ite B l a c k , P in W h ite Red Red B a ssw o o d S u g a r W h i t e B e e c h P a p e r Q u a k i n g B l g t o o t h B l a c k m aple oaks oak oak m aple a s h < --------------------------------------------------------------------------------m2 .h -a 1 b irch aspen aspen Ironw ood W h ite cherry T o ta l p in e > BA A - - - - 3 .4 2 3 .6 - - - - - - 27.1 - - - - 6 .9 17.2 4 .6 0 .7 - - - B 3 .0 - - - 32.1 C - - - - 1 8 .4 9 .2 1.1 0 .7 - - 5 .3 - 0 .7 - 35.1 0 - - - - 10.3 14.5 - - - - 4. 1 - - - 2 8 .7 E - - - - 6 .9 11.5 1.1 4 .6 - - 3 .4 0 .7 - - 2 9 .4 - - - - 4.1 3 .0 - - 1 .1 - - - 27.1 - - - 6 .4 17.2 18.4 1 .8 - - - - - 3 .0 - - - 2 8 .2 H 6 .9 3 .0 - 12.2 - - - - - - 0 .7 - - - 2 2 .5 I - - - 14.9 4 .6 5 .7 - - 4 .6 1.1 1.1 - - 1.1 3 3 .3 J - - - 11.5 4 .6 6 .9 2 .3 3 .4 - - - 1.1 1.1 - 3 1 .0 K 5 .7 - - 2 5 .3 1.1 4 .6 1.1 3 .4 2 .3 - - - - - 4 3 .6 2 7 .6 L 1.8 19.1 1.8 3 .4 - - - - - - - 5 .7 12.6 - - - - - 1 .8 5 .7 - - M - 1.1 - - 2 5 .3 N - - - 8 .0 16 .1 6 .9 2 .3 2 .3 1 .1 - - - 2 .3 3 .4 4 2 .5 0 - - - 2 .3 18.4 3 .4 10.3 1. 1 - - 2 .3 - 3 9 .0 - - - 18.4 4 .6 5 .7 5 .7 1.1 - - - - 1.1 - - P - 3 5 .6 Q 4 .6 - 23 .0 - - - - - - - 5 .7 - - - 3 3 .3 R 6 .9 - 1 .1 2 3 .0 - - - - - - 1.1 - - - 32.1 S - - - - 6 .9 5 .7 1 6.1 9 .2 1. 1 - - - - - 3 9 .0 T - 1 2 .6 - 0 .7 - - - - - - 1.1 - - 0 .7 14.9 U - - - 3 .4 11.5 18.4 - - 3 .4 - - - - - 36 .7 3 4 .4 ' V 8 .0 - - 24. 1 - - - - - - 2 .3 - - - w 2 .3 - 3 .4 2 1 .8 - - - - - - 2 .3 - - - 2 9 .8 X 4 .6 - 8 .0 14.5 - - - - - - - - - - 27.1 1A3 F G 144 Table 3.5. Common and scientific names of tree species. Common name S c i e n t i f i c name R ed m a p l e Sugar m aple N o r t h e r n r e d oak P in oak B lack oak W h ite oak Beech W hite a sh Basswood B lack c h e r r y Ironwood Paper b irc h Q uaking a sp e n B ig to o th aspen E a s te rn w hite p in e Red p i n e Jack p ine Acer rubrum Acer saccharum Q uercus ru b ra Q uercus p a l u s t r i s Q uercus v e l u t i n a Q uercus a lb a Faqus g r a n d i f o l i a F rax in u s am ericana T i l i a am ericana Prunus se ro tin a O strya v irq in ia n a B etula p a p y rife ra P opulus tr e m u lo id e s Populus q r a n d i d e n t a t a P inus s tro b u s P inus re s in o s a Pinus b an k sian a th e f i r s t RA o r d i n a t i o n a x i s , b u t do c o n ta i n a h ig h b a s a l of th ese site s selectiv e also e lim in a te d and/or S ites I , a w h ite species fo r reduced i t s to ta l th e ground basal oak or pin oaks. red o a k . Most com p o n en t, but railro ad tie s flo ra area (BA) in clu d in g s i t e s o rd in a tio n , of th e by s u g a r m aple and bassw ood s p e c i e s . site s large component o f have a sm aller till lack e n tire ly oak com ponent. a n o rth ern of th e n orthern m ore S ites red oak, S ites w hile form ed dom inated I and J sites in n o rth ern th e stu d ie d . support N and Port red oak com ponent and a r e ty p ic a l N, J , support S p e c ie s i n c l u d e th e n o r t h e r n hardwoods c o v e r t y p e , a may h a v e p r e s e n c e o n som e s i t e s . l o c a t e d on P o r t Huron t i l l , and 0 alo n g g re a test no b l a c k area of n o rth ern support logging of t h i s co n tain hardw ood 0 Bruce co m p rised sp ec ie s. 145 RA o f o v e r s t o r y th e same m an n er b a s a l a r e a by s p e c i e s as th e RA o f ground abundance v a lu e s . E ig en v alu es of w ere, 0.7 5 3 , resp ectiv ely , 0.6 2 9 , flo ra th e first 0 .3 9 9 , four v ecto rs and 0 .2 5 5 . acco u n ted for 37.0% , th e second for 19.6% , and th e fo u rth for 12.5% . S cores and ran k s o f in first com pare th e first derived are o b tain ed f r o m RA o f ground Thus, d isc u sse d , o rd in atio n asso c iate d w ith cover-abundance. for site s th e in th e using th e even flo ra sp ecies second th o u g h and th e in the at first oversto ry of o v ersto ry o rd in atio n fir s t of alpha axes of were th e second of th at d ata w ith cover- dim ensions d im en s io n as the f i r s t . sp ecies co m p o sitio n ground d im en s io n of RA u s i n g of 0.05 ground flo ra is sp ecies RA o b t a i n e d (T able 3 .3 ). t h e RA o r d i n a t i o n s co rrelated by sim ple overstory w ith ground f l o r a basal area s p e c ie s abundance. ranks flo ra at from from th e r g= 0 .9 3 4 , Scores of sites by g r o u n d f l o r a lin ear r= 0 .9 0 5 , a l s o s i g n i f i c a n t a t a lp h a = 0 .0 5 . in d ic a te sites Spearm an' s c o e f f i c i e n t o f rank c o r r e l a t i o n d im en sio n sig n ifican t for o v ersto ry ranked higher o v e r s t o r y b a s a l a r e a was c o r r e l a t e d w i t h s i t e first first th ird from o v e r s t o r y a c c o u n t e d f o r n e a r l y a s much v a r i a b i l i t y The th e the T h i s RA o r d i n a t i o n w a s p e r f o r m e d t o ax is valu es. not 30.9% , d i m e n s i o n o f t h e RA o r d i n a t i o n shown i n T a b l e 3 . 3 . abundance axes, Of by th at four in cover- expressed are first ranked v a ria tio n the th e was p e r f o r m e d c o rrelatio n and at These c o r r e l a t i o n s by s p e c i e s is asso ciated 146 Differences in overstory composition between tills of different depositions T here are several p r e s e n c e o f oak on t i l l absence on re la te s till to w hich both a f t e r due (L orim er th e in gap 1983). area of su fficien t Port forest age. and d istu rb an ce Huron favors One m eth o d s sites; th e on th e th eir ex p lan atio n of was g e n e r a l l y management 1987), form ation B ecause for for site g reater th is d ifferen t e stab lish m en t through of H urcii or w ith in th e Ranger of oak t i l l , sam pling. Thus, or m o rtality distu rb an ce many site s sam ple or an e s ta b lis h e d w indthrow high in d ifferen ce c a ta s tr o p h ic d is tu rb a n c e such as f i r e P ort age B ruce h isto ry (W hitney 1986, to ex p lan atio n s o f P o r t Huron d e p o s i t i o n Port D istu rb an ce clearcu ttin g canopy of in clu d es p o licies D istric ts. sp ecies, sites H arvesting area reflects sites d istu rb a n c e selectio n . the p o ssib le w ere size is lev el in not of lim ited a n d may b e b i a s e d . A verage a g e s o f dom inant t r e e Port H uron (T able 3 .6 ). (H ost e t o ld er that of till site s Oak is a l . 1987 ) , w ere thought and it t h a n many o f t h e s i t e s stands on t h e estab lish m en t, recent selectiv e not Port to is sig n ific a n tly be a present B ruce sites as on lacked th ere d ifferen t su ccessio n al w hich la c k o a k . p articu larly logging. s p e c i e s on P o r t B ru c e and was site s sp ecies w hich are T his in d ic a te s oak a t the tim e no e v i d e n c e of T ab le 3 .6 . s p e c i e s on d ep o sitio n . C om parison t i l l s ite s A verage age P o r t Huron S ite N J I 0 means O rd in atio n s in terp reted as G round f l o r a sp ec ie s b eliev ed m ore tim e com position in d icate asso ciated is w ere to not 57 53 72 60 65 72 61.4 7.4 sig n ific a n tly b a s e d on v e g e t a t i o n to w ith to and d istu rb an ce, ages sp ecies are co m p o sitio n follow ing Average age D A G B E F Mean S.D . 75.5 15.6 V a ria n c e s and a lp h a = G .05 • site P o r t Bruce S ite 97 75 70 60 Mean S.D . req u ire o f a v e ra g e age o f d o m inant t r e e o f P o r t B ru ce and P o r t H uron to sta b iliz e , to abundance the a tta in the (Gauch stab le re la tiv e ly d ifferen ces tree for in a ttrib u ta b le o v ersto ry to d ifferen ces d istu rb a n ce at are som e of sp ecies B ecause ground ground c o m p o s itio n betw een P o r t B ruce and P o r t th at 1982). q u ic k ly co m p o sitio n . su fficien t at been p a tte rn s lo n g er-liv ed stab le be so m etim es d isturbance retu rn w hile b elieved have d ifferen t flo ra flo ra Huron s i t e s less lik ely tim e a fte r to be stan d estab lish m en t. Because d i f f e r e n c e s w ith the boundaries of in Port o v ersto ry Huron and com position Port B ruce co incided tills, a 148 so il d ifferen c e ex am in ed by was su sp ected . g ro u p in g s ite s c o m p o s itio n and com paring T h is acco rd in g th eir so il v a r i a b l e s w hich w ere m ost e f f e c t i v e and P ort fie ld H uron d ata tills w ere in t h i c k n e s s , and o v e r a l l p ro p erties to G roups fo llo w s: by d eterm in e based G roup o v ersto ries sites com ponent on (C hapter w h eth er overstory 1 co n sisted co n tain in g black and p in n o rth ern red oak, w ith relativ ely th e n o r t h e r n hardw oods N, K, P, r e d oak and n o r t h e r n h ardw oods, A, B, C , D, E , g laciatio n th ese F, w ith p resen ts a n d U, o v ersto ries sta tistic a l groups. 2 .2 G, and S te e l and T o r rie S ilt are I , and 0, and Group 4 , 2 .3 . lo cated of lo cated in 2 included dom inated and no of sites Port hardw oods. among so il are sig n ific a n t and g ro u p m eans a r e of in a re a s of in clu d ed areas north ern for as w ith o v e rsto rie s names a n d u n i t s T ests L, BA, to ta l w ith w hich com parisons V ariable b etw een g ro u p v a r ia n c e s d ep th and up ty p e p r e s e n t ; G roup n o rth ern P o r t H uron g l a c i a t i o n ; J , cover w ere T ab les set Group low 3 site s of H, oak; e x isted . were T, so il on o v e r s t o r y d ifferen ces site s of h o rizo n These Q, V, W, X, R , a n d M, w h i c h w e r e t h o s e s i t e s sp ecies of 3 .7 E 2). com position of S o il an aly sis c o n ten t, w e r e c o m p a r e d among g r o u p s b a s e d co m p o sitio n o v e rsto ry in s e p a r a t i n g P o r t B ruce fragm ent tex tu re to was ch aracteristics. p rin c ip a l coarse p o ssib ility D, B ruce T able p ro p erties explained in d ifferen ces a cco rd in g to (1980). and c la y c o n te n t s averaged over show n 3 .3 . in F ig u re the A verage upper s ilt and 15 0 cm c lay Soil variable comparisons f o r site groups based on overstory composition. Table 3.7. V ariab le G roups 1st 2nd Mean S.D . <-------1 s t g r o u p — n —> Mean S .D . <-------2nd g r o u p — n —> F (c a lc u la te d ) d f(n) df(d) df < - f o r F -> t P ooled s A pprox. df fo r t t (c alcu la te d ) TKNSUM 4 3 8 0 5 3.64 1943.54 32 7 9 1 5 .4 9 2 01 2 .4 6 24 1.072 23 31 54 5 35.53 4 8 .7 0.258 TKNSUM 4 2 8053.64 1943.54 32 3910.69 1644.15 24 1.397 31 23 54 4 8 0 .2 9 5 3 .2 8 .626* TKNSUM 4 1 8 0 5 3.64 1943.54 32 2962.74 57 9 .3 6 12 11.253® 31 11 42 3 82.12 4 1 .0 13.322* TKNSUM 3 2 7 9 1 5 .4 9 2012.46 24 3910.69 1644.15 24 1.498 23 23 46 530.46 4 4 .2 7.549* TKNSUM 3 1 7 9 1 5 .4 9 2012.46 24 2962.74 5 7 9 .3 6 12 12.066* 23 11 34 4 4 3 .5 3 2 9 .6 1 1.166* 2 1 3 9 1 0 .6 9 1644.15 24 2963.74 5 7 9 .3 6 12 8 .0 5 3 ® 23 11 34 3 74.98 3 1 .7 2.525* TKPSUM 4 3 4820.19 1622.26 32 4 7 6 9.59 2 25 7 .7 4 24 1.937® 23 31 54 5 42.80 3 9 .8 0 .0 9 3 TKPSUM 4 2 4 8 2 0 .1 9 1622.26 32 2 1 4 4 .2 9 1067.67 24 2.3 0 9 * 31 23 54 3 6 0 .1 9 5 3 .2 7 .429* TKPSUM 4 1 4820.19 1622.26 32 1 5 7 9 .3 1 355.75 12 2 0.794* 31 11 42 304.61 3 7 .7 1 0 .639* TKPSUM 3 2 4 7 6 9 .5 9 2257.74 24 2 1 4 4 .2 9 1 0 6 7.67 24 4 .4 7 2 ® 23 23 46 5 0 9 .7 9 3 2 .8 5 .149* TKPSUM 3 1 4 76 9 .5 9 2 257.74 24 1 5 7 9 .3 1 3 55.75 12 4 0 .2 7 7 * 23 11 34 47 2 .1 6 2 5 .2 6 .756* TKPSUM 2 1 2144.29 1067.67 24 1 5 7 9 .3 1 355.75 12 9 .007* 23 11 34 240.92 31. 1 2.345* CASUM 4 3 33520.31 21702.95 32 32263.91 222 3 3 .1 5 24 1.049 23 31 54 5942.70 4 9 .0 0.211 CASUM 4 2 33520.31 21702.95 32 14902.02 1 8 6 35.60 24 1.3 5 6 31 23 54 5 4 0 2 .7 4 5 2 .9 3.446* CASUM 4 1 33520.31 21702.95 32 6 1 4 2.29 8 706.91 12 6 .2 1 3 * 31 11 42 4 5 8 6.59 4 1 .7 5.969* CASUM 3 2 32263.91 22233.15 24 14902.02 1 8 6 35.60 24 1.423 23 23 46 5921.71 4 4 .6 2.931* CASUM 3 1 3 2263.91 22233.15 24 6 1 4 2.29 8 7 0 6.91 12 6 .5 2 0 ® 23 11 34 5 1 8 7.86 3 2 .8 5 .0 3 5 * CASUM 2 1 1 4902.02 18635.60 24 6 1 4 2.29 8706.91 12 4.5 8 1 ® 23 11 34 4 5 5 9.36 3 3 .9 1 .9 2 1 KSUM 4 3 1117.93 632.51 32 1491.80 94 3 .6 2 24 2.226® 23 31 54 222.72 3 7 .9 1.678 KSUM 4 2 1117.93 632.51 32 5 7 0 .8 2 44 4 .6 0 24 2.0 24® 31 23 54 1 4 4 .0 1 5 3 .8 3.799* KSUM 4 1 11 17.93 632.51 32 196.23 3 9 .9 9 12 2 5 0 .172* 31 11 42 1 1 2 .4 1 31 . 7 8.199* KSUM 3 2 14 91.80 943.62 24 570.82 444.60 24 4 .5 0 5 ® 23 23 46 2 1 2.92 3 2 .7 4 .325* KSUM 3 1 1491.80 943.62 24 196.23 3 9 .9 9 12 55 6 .7 8 7 * 23 11 34 192.96 2 3 .2 5.714* KSUM 2 1 57 0.82 4 4 4 .6 0 24 196.23 3 9 .9 9 12 1 23.603® 23 11 34 91 .4 8 2 3 .7 4.094* •Significant difference between groups at a 1pha=0.05. 149 TKNSUM Table 3.7. (continued). V a riab le MGSUM MGSUM G roups Mean S .D . n Mean S.D . n 1st 2nd <-------1 s t group — — > <-------2nd group — — > 4 3 3 3 73.02 2 4 4 7 .9 9 5078.32 3 2 6 1 .2 8 4 2 3 3 73.02 24 4 7 .9 9 32 32 1717.53 2308.93 24 24 F d f(n ) (c alcu la te d ) 1.775 1.124 d f(d) df < - f o r F -> t Pooled s Approx. df fo r t t (c alcu la te 23 31 54 7 9 4 .0 0 41.1 31 23 54 6 3 9 .8 5 5 1 .2 2 .1 4 7 * 2 .5 8 7 * 42 6.849* MGSUM 4 1 3 3 73.02 24 4 7 .9 9 32 349.78 30 0 .9 6 12 6 6.1 62® 31 11 441.38 33 .4 MGSUM 3 2 5078.32 3 2 6 1 .2 8 24 1717.53 2308.93 24 1.995 23 23 46 81 5 .6 6 41 . 4 4 .1 2 0 * MGSUM 3 1 5 0 7 8 .3 2 3 2 6 1 .2 8 24 349.78 30 0 .9 6 12 117.426® 23 11 34 6 7 1 .3 5 2 3 .8 7.043* MGSUM 2 1 1717.53 2 3 0 8 .9 3 24 349.78 300.96 12 58 .85 9® 23 11 34 479.25 2 4 .5 2 .8 5 3 * CSFRSUM 4 3 6 .4 7 8 .9 1 32 2 .17 2 .6 0 24 11.763® 31 23 54 1.66 3 7 .8 2 .5 8 6 * CSFRSUM 4 2 6 .4 7 8 .9 1 32 3 .2 9 2 .11 24 17.879® 31 23 54 1.63 3 5 .5 1.947 CSFRSUM 4 1 6.4 7 8 .9 1 32 0 .7 5 0.6 4 12 190.917® 31 11 42 1.59 3 1 .9 3.607* CSFRSUM 3 2 2 . 17 2 .6 0 24 3.2 9 2.11 24 1.520 23 23 46 0 .6 8 44.1 1.638 CSFRSUM 3 1 2 .1 7 2 .6 0 24 0 .7 5 0 .6 4 12 16.230® 23 11 34 0 .5 6 2B.1 2.530 ® CSFRSUM 2 1 3 .2 9 2.11 24 0 .7 5 0.6 4 12 10.679® 23 11 34 0 .4 7 3 0 .2 5 .4 2 2 * SILT 150 4 3 18 .91 8.21 32 20.75 11.37 24 1.918® 23 31 54 2 .7 4 40 .0 0 .6 7 2 SIL T 150 4 2 18 .91 8.21 32 7 .9 2 7 .6 3 24 1.158 31 23 54 2.1285 5 1 .5 5 .161* S I L T 150 4 1 18 .91 8.21 32 5 .2 0 0.4 0 12 4 2 2 .7 9 4 ® 31 11 42 1.4557 31 .4 9 .416* S I L T 150 3 2 2 0 .7 5 11.37 24 7 .9 2 7 .6 3 24 2.221® 23 23 46 2 .7 9 4 5 4 0 .2 4 .589* S I L T 150 3 1 2 0 .7 5 11.37 24 5 .2 0 0.4 0 12 8 1 0 .7 7 9 ® 23 11 34 2 .3233 23.1 6.691* S I L T 150 2 1 7 .9 2 7 .6 3 24 5.2 0 0.4 0 12 3 6 5 .0 6 7 ® 23 11 34 1.5613 2 3 .3 1 .743 CLT150 4 3 16.08 9 .2 8 32 20 .3 7 12.58 24 1.8 3 7 23 31 54 3 .0464 4 0 .6 1.409 CLT150 4 2 16 .0 8 9 .2 8 32 9.91 9.0 5 24 1 .051 CLT150 4 1 16 .0 8 9 .2 8 32 5 .0 0 0 .0 12 CLT150 3 2 2 0 .3 7 12.58 24 9.91 9 .0 5 24 CLT150 3 1 2 0 .3 7 12.58 24 5 .0 0 0 CLT150 2 1 9.91 9 .0 5 24 5 .0 0 0 •Significant difference between groups at a1pha=0.05. 31 23 54 2.4710 50 .3 2.496* * 31 11 42 1 .6 4 0 4 3 1 .0 6.753* 23 23 46 3 .1 6 3 0 4 1 .8 3 .307* 12 0 23 11 34 2 .5670 2 3 .0 5 .9 8 B * 12 0 23 11 34 1 .8 4 8 0 23 .0 2 .6 5 8 * 1 .9 3 0 Table 3.7. (continued). V ariab le Mean Groups S.D . n Mean g r o u p — —> <------- 2nd S .D . F n g r o u p — —> d f (n) P ooled d f (d) df < - f o r F -> t s A pprox. df fo r t t (c a lc u la te ! 2nd <-------1 s t NMIN 4 3 113.38 41 . 2 4 32 7 6 .9 4 4 0 .9 1 24 1.0 1 6 31 23 54 11.0850 49 .9 3 .2 8 8 * NMIN 4 2 113.38 4 1 .2 4 32 39.41 14.15 24 8.490* 31 23 54 7 .8 4 1 9 4 0 .2 9 .4 3 2 * NMIN 4 1 113.38 4 1 .2 4 32 2 7 .8 4 3 .5 9 12 131.838* 31 11 42 7 .3637 3 2 .2 11.616* NMIN 3 2 76 .9 4 40.91 24 39.41 14.15 24 8.354* 23 23 46 8.8360 2 8 .4 4.247* NMIN 3 1 7 6 .9 4 40.91 24 2 7 .8 4 3 .5 9 12 129.724* 23 11 34 8.4145 23 .7 5 .834* NMIN ETHICK 2 4 1 3 39 .4 1 3 .5 6 14 .1 5 1 .9 3 24 8 2 7 .8 4 5 .0 3 3 .5 9 3 .5 3 12 6 15.528* 3 .3 3 2 23 5 11 7 34 12 3 .0 6 9 5 1.5957 2 8 .3 7 .2 3.770* 0 .9 2 2 ETHICK 4 2 3 .5 6 1.93 8 4 .8 2 0 .9 8 6 3 .9 2 5 7 5 12 0 .7917 10.8 1 .5 8 4 ETHICK 4 1 3 .5 6 1.93 8 2.5 0 2 .6 0 3 1 .804 2 7 9 1.6 4 8 6 2 .9 0 .6 4 5 ETHICK 3 2 5 .0 3 3 .5 3 6 4 .8 2 0 .9 8 6 13.077* 5 5 10 1.4958 5 .8 0 .1 4 5 ETHICK 3 1 5 .0 3 3 .5 3 6 2 .5 0 2 .6 0 3 1 .848 5 2 7 2.0805 5 .5 1.218 ETHICK 2 1 4 .8 2 0.9 8 6 2.5 0 2 .6 0 3 7 .0 7 8 * 2 5 7 1.5521 2 .3 BTHICK 4 3 104.22 34 .9 7 32 7 9 .5 0 41 . 4 3 24 23 31 54 10.4760 4 4 .7 BTHICK 4 2 104.22 34 .9 7 32 5 2 .9 6 2 2 .8 7 24 2.340 ® 31 23 54 7.7466 53. 1 6 .617* BTHICK 4 1 104.22 3 4 .9 7 32 4 5 .7 5 6 .5 8 12 28.253* 31 11 42 6 .4679 3 6 .2 9.040* BTHICK 3 2 7 9 .5 0 41 . 4 3 24 5 2 .9 6 2 2 .8 7 24 3.283* 23 23 46 9 .6 5 9 5 3 5 .8 2 .7 4 8 * BTHICK 3 1 7 9 .5 0 41 .4 3 24 4 5 .7 5 6 .5 8 12 39.647* 23 11 34 8 .6677 25 .2 3.894* BTHICK 2 1 52 .9 6 22.87 24 45 .7 5 6 .5 8 12 12.076* 23 11 34 5.0391 29 .6 1.431* •Significant difference between groups at a1pha=0.05. (c a lc u la te d ) 1 .403 1.493 2.360* 151 1st 152 F igure 3 .3 . Mean s i l t a n d c l a y p e r c e n t o f t h e u p p e r 15 0 cm o f s o i l f o r s i t e s g r o u p e d by o v e r s t o r y com position. % 153 1 2 3 Overstory groups i l l Silt rrsrT T T T T i iiiiiiiii Clay B a r s w ith c o m m o n le tt e r s a re not s ig n if ic a n t ly d iffe r e n t (T able 3.7 ) a, b, and c c o m p a r e m ean c l a y p e r c e n t d and e com pare m ean silt p ercen t 4 154 co n ten ts sites not w ere slig h tly g reater t h a n on n o r t h e r n sig n ifican t. p red om inantly te x tu ra l on o a k - n o r th e r n hardwood s i t e s , B lack n o rthern and p in re d oak d ifferen ces oak but d ifferen ces sites, and o v ersto ries, from th e o th er hardw ood w ere sites w ith had s i g n i f i c a n t tw o o v e r s t o r y groups (T able 3 . 7 ) . C oarse p resen ted fragment in F ig u re contents 3.4, site s had a s i g n i f i c a n t l y than the oak-northern M in eralo g ical from c o a rse w ere not co n ten t an aly zed impor tan ce in o b serv atio n s n ote nearly a l l difference the th is presence of th e co n ten t (Table supply stu d y , of 3.7). n u trien ts H uron but between of hardw ood site s tills may be them. w eathering of Field lim esto n es in in the of above site s th e had site s for shown th ic k e r in th e groups F ig u re E h o rizo n s, have argillic was s i g n i f i c a n t form ed oak-northern 3.5. and in t i l l , hardw ood (T ab le in clu d in g and northern are gen erally a r g i l l i c , w ith c la y ev ident w ithin Som e are th ic k n e ss hardw ood o v e r s t o r y g r o u p s , tran slo catio n B h o rizo n s had t h i c k e r B h o r i z o n s , b u t o n ly th e in B h o rizo n sites E and co m p o sitio n The B h o r i z o n s lay ers of hardw ood fragm ent group w eathering part n o r t h e r n hardw ood s i t e s lay ers. coarse hardwood n o rth ern are la y e r s o f high c o a rse fragm ent c o n t e n t . O ak -n o rth ern m ost h ig h er groups o f P o r t B ruce and P o r t as on o v e r s t o r y 3.7). site th at d istin g u ish in g T hicknesses based the show ing and frag m en ts of the upper p o rtio n o f dense t i l l m inor sp o d ic horizon. dev elo p m en t in B The d e v e lo p m e n t of B 155 F ig u re 3.4. Mean co arse fragm ent c o n te n t as a volum e p e r c e n t a g e o f t h e u p p e r 1 5 0 cm o f s o i l f o r s i t e s g r o u p e d by o v e r s t o r y c o m p o s i t i o n . % 6 4 2 0 1 2 3 Overstory groups Bars w ith com m on le tter s are n ot s ig n if ic a n t ly d iffer en t (T able 3 .7 ) 4 157 F igure 3 .5 . Mean t h i c k n e s s o f t h e E a n d B s o i l h o r i z o n s f o r s i t e s grouped by o v e r s t o r y c o m p o s itio n . B horizon, cm E horizon, cm 120 2 3 Overstory groups B horizon E horizon Bars w ith com m on le tter s are not s ig n ific a n tly d ifferen t a, b, c , a n d d c o m p a r e B h o r i z o n m e a n t h i c k n e s s e c o m p a r e s E horizon m ean t h i c k n e s s (T able 3 .7 ) 159 horizons may be related to d e g l a c i a t i o n o f P o r t B ruce t i l l hardw oods h o rizo n s cover is type lik e ly is oak till co n trib u tin g sites A verage upper litte r so il 1 5 0 cm a r e so ils, w hich v eg etatio n , is present P, d isp lay ed in F ig u re in of o v ersto ry g r o u p s 1 and 3 , id en tical l e v e l s o f H, P , a n d C a . th e se The c o n t e n t o f s o i l shown i n F i g u r e lev els of D ifferences in are and minor sig n ifican tly and most th e E m ore Port Ca c o n t e n t s 3.6. n u trien ts but groups Huron is 3.7. K conten t ev id en t th ere f r om G roup in the is t h e u p p e r 150 1 th ro u g h but in G roup groups Mg oak-n o rth ern nearly an in c r e a s e ov ersto ry n o n -sig n ifica n t, th e betw een 3 and 4 c o n ta in A gain, betw een of An i n c r e a s i n g n u t r i e n t s Mg a n d K i n n u trien ts g reater on with of to e lu v ia tio n . N, cm a r e since The d e v e lo p m e n t K jeld ah l lev els time on w hich t h e n o r t h e r n to g rad ien t th ese longer d o m in an t. re la ted a cid ify in g the 3. 3 and lev els 4 were hardw ood s i t e s of G roup 3 (T a b le 3 . 7 ) . S o il p ro p e rtie s d eriv ed re su lt tills from of in th e parent clim ate th is coarse p o ssib ly an d /o r stu d y u n derstory sp ecies; p ro p erties m aterial into and v eg etatio n . su p p o rted w ith content Mg c o n t e n t . investigation, be d i v i d e d th o se th o se The different w hich w hich tw o and are o v ersto ry m aterial were and horizon thickness, A lthough sampling m ineralogy intensity and lim ited req u ires may a in s o il parent B are different how ever, s i g n i f i c a n t d i f f e r e n c e s asso ciated f ragment can to and fu rth er have been 160 Figure 3 .6 . Mean K jeldahl n itr o g e n and p h o s p h o ro u s, and e x t r a c t a b l e c a l c i u m c o n t e n t o f t h e u p p e r 1 5 0 cm o f s o i l f o r s i t e s g r o u p e d by o v e r s t o r y co m position. Mg/ha 1 2 3 Overstory groups TKN B ars w ith com m on le tter s a, b, an d c c o m p a r e m e a n d, e , a n d f c o m p a r e m e a n g and h com pare m ean Ca TKP are not sig n ific a n tly TKN c o n te n t TKP c o n t e n t content 4 Ca d iffe r e n t (Table 3 .7 ) 162 F ig u re 3 .7 . M ean e x t r a c t a b l e m a g n e s iu m a n d p o t a s s i u m c o n t e n t o f t h e u p p e r 15 0 cm o f s o i l f o r s i t e s g ro u p e d by o v e r s t o r y c o m p o s i tio n . Mg/ha b liiiiifi i; isliilji i: liiiilyliil! illlllilllllf 1 2 3 Overstory groups Bars w ith c o m m o n l e t t e r s are n ot s i g n i f i c a n t l y a , b, c , a n d d c o m p a r e m e a n M g c o n t e n t e , f, a n d g c o m p a r e m e a n K c o n t e n t d iff e r e n t (Table 3.7) 4 164 in s u ffic ie n t or b iased , d eriv ed from parent d ifferen ces in ex p lan atio n s for in clu d e it m a te ria l sp ecies clim atic appears th a t s o il th e are resp o n sib le co m p o sitio n . presence effects, not of oak ch aracteristics O th er on P ort and d i s t u r b a n c e for p o ssib le H uron d ifferen ces till p rio r to stand e sta b lish m e n t. C lim atic oversto ry p art, d ifferen ces groups. nearer le ss S ites Lake H uron, extreme, d u ra tio n . and ex ist co n tain in g w here snow pack These betw een facto r is acq u isitio n it is of known known t h a t eco sy stem s first are, for the most is t h i n n e r are and w hich warmer of and sh o rte r in c re ase o f oak r e l a t i v e th e to th at s o t h a t c l i m a t e may h a v e b e e n a g reater sp ec ific by t h e U . S . F . S . presettlem en t the state was 1975) . about fires e sta b lish e d F ire on f i r e - p r o n e th at h isto ry in te n sity ecosystem s, fire 50 y e a r s o u tw ash and h isto rically trav eled F ireth e g laciatio n tended (W hitney 1986, ago, sin ce frequency fire to raged 1987). fo llo w in g and p rio r p erio d ically (Whitney 1 9 8 6 , along th e se a re a s as a c o rrid o r p o ssib le site have o ccu p ied g l a c i a l v e g etatio n (B rubaker of th e a re a unchecked th ro u g h o u t prone two in d e term in in g s p e c ie s com position d i f f e r e n c e s . L ittle but the tem peratures r e g e n e r a tiv e and c o m p e titiv e a b i l i t y o f s u g a r m aple and bassw ood, of oak condi t io n s are sites was to 1987). through th e much trav el It is jack p i n e and m ixed p i n e e c o s y s te m s o f t h e g l a c i a l A u S ab le v a l l e y (F igure 2 .3 ), trav eled up a n d d r i v e n by p r e v a i l i n g onto the G lennie m oraine w inds near from the the w est, p o in t where 165 th e v alley (1986, curves 1987) from east-w est has proposed w ere e s t a b l i s h e d as a th at resu lt to the of n o rth -so u th . oak fo rests catastro p h ic of N o rth ern hardw ood s i t e s , The p r e s e n c e lay er oak are P o r t B ruce s i t e s . the sap lin g of red its presence in in th e the little but its herbaceous R ed and n o t recru itm en t of oak, and has been (H ost component o f et 1987). north ern (L orim er of a l. 1983). n o rth eastern related on in to should be expected g r o w t h may h a v e b e e n to n atu ral H owever, Gaps a r e p r e s e n t low er M ich ig an , to m ature restricted oak hardwood o v e r s t o r i e s t h e m o r t a l i t y o f a s p e n d a t i n g from c l e a r c u t t i n g Oak th e T h i s p h e n o m e n o n may b e d u e t o t h e p o o r e r hardw ood f o r e s t s cen tu ry . in o v ersto ry . there is as a gap phase s p e c ie s the seed lin g s However, su ccessio n may b e a n a t u r a l oak on P o r t H uron s i t e s lay er. of may b e a n riv er c o rrid o r, present com petitive a b i l i t y processes the im p a c te d by f i r e . co rresp o n d s w ith seed lin g s and lo c a te d m o stly M a l t b y Kames w h i c h a r e m o r e d i s t a n t f r o m t h e may h a v e b e e n l e s s M ichigan fire, Huron N a t i o n a l F o r e s t o a k - n o r t h e r n hardwood s i t e s exam ple. W hitney early in during due in to in the th ese gaps, recent years by r e p e a t e d h eavy d e e r b ro w s in g . Nitrogen mineralization and its association with other ecosystem components A m ounts of ammonium-N produced i n c u b a t i o n a r e shown i n T a b l e 3 . 8 . is thought d u rin g an an aero b ic The a n a e r o b i c i n c u b a t i o n to p ro v id e an index o f m ic ro b ia l biom ass lev els, 166 T able 3 .8 . Ammonium n i t r o g e n m i n e r a l i z e d f r o m t h e cm o f s o i l d u r i n g a o n e we ek a n a e r o b i c i n c u b a t i o n . S ite A B C D E F G H I J K L M N 0 P Q R S T U V W X < ------- NH^- - N , g kg ^ o v e n d r y s o i l Mean S.D . 83.36 132.03 105.37 93.50 102.70 1 26.64 113.41 28.97 110.65 49.12 43.17 26.54 50.49 87.07 112.88 58.72 37.73 37.65 63.58 28.02 150.05 35.12 37.48 38.02 29.70 60.08 14.79 7.58 33.28 10.40 41.08 1.02 42.57 26.12 8.66 3.05 32.99 32.03 45.21 28.69 7.8 4 5.14 11.56 5.74 73.80 3.95 4.41 10.99 upper ------- > 10 167 and hence o f o rg a n ic d ecom position a site rate (M yrold 1 9 8 7 ) . of d eco m p o sitio n , relativ e The am ounts d ata from n o rth e a ste rn m in eralized for RA o r d i n a t i o n of M ich ig an . each s i t e by an asso c iatio n o rd in atio n scores p o ten tial of a s ite . eco sy stem p ro d u ctiv ity , P asto r (Keeney et p re d ic ted Such an d esc rip tio n m in eralizatio n fo liag e The c o r r e l a t i o n ground p o te n tia l net p rim ary 1980, al. 1984). for site s v alu es, been 1980, my and stu d y to 3 .9 ). is N n o n -lin ear th ere is to for sin ce o v ersto ry and N co n ten t and M ellilo p o te n tia l area is An im p o rtan t related Aber in m in e ra liz atio n based from g ro u n d f l o r a used th ere m an ag em en t, M in eralizatio n in by a N the betw een (F igure and p ro d u ctio n , Powers dim ension o r d in a tio n s c o r e s abundance flo ra of in crease suggests th a t forest has d isp la y s r = 0 .845 asso ciatio n and in dim ension may b e d e s c r i b e d betw een eco sy stem s e v id e n t, and of a sso ciatio n p re d ic tio n eq uation. is site s. of A la rg e co rrelatio n m i n e r a l i z e d a n d RA s i t e even b e t te r flo ra . of range 3 .8 first on actu al am ong w ide among the th e o rd in a tio n lin e a r a F ig u re along ground th a t an co m p ariso n s m in eralizatio n e x ist tu rn o v er p ro v id e allo w in d ic a te p o te n tia ls lo w er do n o t rath er p o ten tial m in e ra liz e d N along sig n ifica n t but my s t u d y m in e ra liz atio n a The d a t a and n u t r i e n t in d ic a te of 1984, may on be firs t sp ecies coverre la tiv e site p o te n tia l. M ineralization eco sy stem s p o ten tial (P asto r et has a l. been 1984, shown Zak to et vary a l. am ong 1986). 168 F igure 3 .8 . Mean a n a e r o b i c ammonium n i t r o g e n m i n e r a l i z e d d u r i n g a o n e w e e k i n c u b a t i o n o f 1 0 cm s o i l c o r e s , f o r s i t e s o r d i n a t e d by r e c i p r o c a l a v e ra g in g o f ranked ground f l o r a s p e c ie s c o v e r abundance v a lu e s . g NH4-N/kg 160 i----------------- 120 80 Ji 40 rrsTTV nifou miiiniiiiinir iiliii HUH A II :::::: HHiHH i!i!! iUHHH lilllllilfl :::x! lilllllll iliiiiiliil fill! Ilfli :::::: iiiilllfiil filli :::::: IIIIHIII liiiiiiii iiiiiiiiil! lilllllll llllllilfll iliii mil : t£i: !!!!! fill! iiliii iililliii M lilliillL 0 T H L Q V W X R i l l !II N K P J I O D U S C A G B E F RA ordered sites 170 F igu re 3 .9 . C o rrelatio n of s i t e s c o r e s f r o m RA o f g r o u n d f l o r a ran k ed c o v e r-a b u n d a n c e d a t a w ith am ounts o f ammonium n i t r o g e n m i n e r a l i z e d d u r i n g a o n e week i n c u b a t i o n o f 10 cm s o i l c o r e s . g NH4-N/kg 160 120 r-0.845 80 40 -150 -100 -50 50 RA site scores 0 100 150 200 172 C om parisons among groups in d ic a ted th at stu d y a re a (F igure 3 .1 0 ). oak site s, hardw ood eco sy stem site s all an a v e ra g e of four (Table m in eralizatio n n orthern tim es as the in in much N a s n o rth ern in d ifferen ces stan d in g hardwoods stab le This lo w er et a l.'s and g reater on id en tical th e n o rth ern oak-northern s lo w e r, av erag in g hardwood sites oak in (T able stu d ies N 3.8), (Powers sy stem and 5.22 of n itro g en resu lt agrees where oak ( Zak e t there group than w ith N ecosystem a l. were 1986) . notable and o v e r s t o r y b a s a l a r e a and w hich c o n t a i n e d oak. may h a v e b e e n a s s o c i a t e d w ith I n my s t u d y , betw een th e hardw ood hardwood 3.73 o v ersto ry m aple-red study, environm ental f a c t o r s . site s was Zak in m in e ra liz a tio n n early m in eralizin g M ichigan, volum e w e re lo w e r on s i t e s w ere red d ifferen t b lack -p in oth er my n o rth ern var i a b i 1i ty am ounts group. in s o il p ro p e rtie s , D ifferen ces th e hardw oods g reater northw estern in and t h e m e an i n c r e a s e d a su g a r m aple-bassw ood However, site s, in n o rthern hardwood s i t e s m i n e r a l i z a t i o n w as l o w e r i n a s u g a r than occurred sig n ific a n tly reported sig n ifican tly o ak-northern findings co m p o sitio n 1986). from th e m in eralized also W ith in -site increased as Zak e t a l . Sam ples hardw ood m in eralized 3.7). o v ersto ry B la c k - p in oak s i t e s , which a g r e e s w ith r e s u l t s 1980, on d ifferen ces o a k -n o rth e rn a m o u n t s o f N, w i t h t h e s ite s based p ro p erties o ak -n o rth ern sites. sites, m^ h a - 1 m^ h a - 1 so il y r -1 y r -1 in B asal but in hardw ood area volum e was grow th o ak -n o rth ern n o rthern hardw ood 173 F i g u r e 3 . 1 0 . Mean a n a e r o b i c ammonium n i t r o g e n d u r i n g a o n e week i n c u b a t i o n o f cotes, for s ite s grouped by com position. m in eralized 1 0 cm s o i l overstory 120 g/kg Hi::::::!:: iiiilsllli 80 siiiliits! ::::::: llllllllll iiiiiiil llfill! Hllll iiilsl uliV it: mm 40 lililiiill Hi::::::! iiiiilliiiiiiiilili siiiiiiiizi ||||s|s|s|| lim lm ilm i IHIifli : : : ........... ||||||]| H=im iiiiiiil. iilllliM Hi!! m m -m :::: !!i!!l!!!!!!!!!!!il|||||| Hii liliL 1 nun ifiiiiiiil mu ::::: 2 3 Overstory groups B ars w ith c o m m o n le tt e r s are not s ig n if ic a n t ly d iffe r e n t (Table 3 .7 ) Hill 175 sites (T able 3.3). sig n ifica n t at These d if f e r e n c e s in a lp h a = 0 .Q 5 a s d e t e r m i n e d by a p r o d u c t i v i t y was l e s s on the w hich a g r e e s w ith o t h e r it to d e te rm in e w hether d ifficu lt com position a re a r e s u l t of, t-test. s i t e s m in eralizatio n , is volum e g ro w th w ere of low er stu d ies. N H ow ever, d ifferen ces or a cause o f, Thus, in the sp ecies d ifferen ces in p o te n tia l m in e ra liz a tio n . If th e d ifferen c e in o v ersto ry co m p o sitio n betw een t h e n o r t h e r n hardwoods and th e o a k - n o r t h e r n hardw oods g ro u p s is indeed related if N m in e ra liz atio n p o ten tial m ore as th an low er noted 75 y e a r s site lo sse s to is in in d ic a tiv e Forest site sh o rt-term as of lite ra tu re , a g o may h a v e long-term no d istu rb an ce the p ro d u ctiv ity . of p re sen tly past m anagers distu rb an ce lo ss of co u ld in a c a u s e -e ffe e t site potential p ro d u ctiv ity in are productivity, for be be at p resen t-d ay sen sitiv e but there to is e sta b lish in g th a t If a d ifferen ce in N di re c tly re latio n sh ip , could and d istu rb an ce resu lted tech n iq u e p o te n tia l site th en lo s s e s have o ccu rred o r a re o c c u rrin g . m in e ra liz atio n h y p othesized, re la ted to a m easure o f th e derived. This is an i m p o r t a n t p o s s i b i l i t y w hich s h o u ld be i n v e s t i g a t e d . Site ordination by ground flora cover-abundance in relation to properties of the forest floor Forest litte rfa ll (i.e., floor layer s were s e p a r a t e d undecomposed l i t t e r sam pled in to lay ers im m ediately d esignated and p a r t i a l l y a fte r Oi a n d Oe, decomposed l i t t e r ) . 176 Oven d r y w e i g h t s o f first ax is ranked of th ese th e was not a r r a y e d by s i t e RA o r d i n a t i o n cover-abundance Oa l a y e r lay ers, v alues, present of appear on m ost w eig h t of sites are th e in in early an A ugust to th e W eight of 2,867 amount of a n d my s i t e s when kg F lay er betw een in are M ichigan th e 2.5). it and the kg and values H ubbard Brook ha”1, the more The 24 stu d y These F layer by s a m p l i n g Oe m a t e r i a l 3 .11 . p resen t, the 4,300 on sp ecies kg h a " 1 , r e p o r t e d on t h e 19,300 not vary s i g n i f i c a n t l y w here 11,747 (T able O i ) w eighed the F ig u re kg h a ” 1 f o r November th o se flora th e (A ppendix T a b le B . 1 ) . averaged sam pling, O e) w eighed 1976). in Oe l a y e r somewhat lo w e r t h a n (com parable d id the t h e Oi a v e r a g e d sam pled Forest to of in sites; was s a m p le d a n d a n a l y z e d w i t h s o i l s W eight ground along (com parable the L layer ha”1 (Gosz et H ubbard Brook Forest d ate, so d if f e r e n c e s Hubbard lik e ly a l. due Brook to forest elev atio n and g e o g ra p h ic a l s e t t i n g . U nexpectedly, among different t h e r e w as no a p p a r e n t t r e n d ecosystem s in my s t u d y . i n Oe w e i g h t s S ites o v e r s t o r y o f n o r t h e r n hardw oods had an a v e r a g e 1 1 6 7 8 kg h a ” 1 , o a k - n o r t h e r n h a r d w o o d s i t e s ha” 1 , no rth ern re d oak s i t e s oak-black oak d ifferen ces were by t - t e s t s forest flo o r averaged not sig n ifican tly litte r is w eight varied known t o b e l e s s an Oe w e i g h t of a v e r a g e d 1 1 7 1 1 kg a v e r a g e d 12176 kg h a ” 1 , a n d p i n sites a t alp h a= 0 .05. with 11004 Federer w ith kg d ifferen t (1984) sp ecies has ha”1 . as These determ ined rep o rted th at co m position. r e a d i l y decomposed th a n l i t t e r Oak of 177 F igure 3 .1 1 . Dry w eights of autum n l i t t e r f a l l (O i) and p a r t i a l l y decom posed f o r e s t flo o r la y ers (Oe) f o r s i t e s o r d i n a t e d by r e c i p r o c a l a v e ra g in g o f ranked ground f l o r a s p e c ie s c o v e r abundance v a lu e s . 4000 Oi, kg/ha Oe, Mg/ha 20 3000 2000 178 1000 T H L V W X R M N K P J I O D U S RA ordered sites s - Oe Oi 179 n o r t h e r n hardw ood s p e c i e s , sites w ould h av e study has also sig n ifican tly and n itro g en the rate so accu m u lated show n g reater that th e g re a ter n o rthern m in eralizatio n is of difference hardw oods a r e hardw oods t-tests, be an d etectin g is oaks, of A low er resu lt in a Reasons for under oak and calcu lated to fin d s i g n i f i c a n t w eight w ere b e l i e v e d to as determ ined by be s u f f i c i e n t for u n e q u a l a c c u m u l a t i o n s o f Oe m a t e r i a l . Age o f t h e o v e r s t o r y was n o t b e l i e v e d accum ulations of f o r e s t flo o r m a te r ia l . results My index (M yrold 1 9 8 7 ) . in d iv id u al s ite s so sam ple s i z e s be. than S am ple s i z e s t o sam p lin g were s u f f i c i e n t reported in creasin g tren d by in Covington forest flo o r maturity. C o rrelatio n s significant for my of of 24 s i t e s , influenced C o rrelatio n s Oe the r = - 0 .43 of for w hite association co rrelatio n s may C o rrelatio n s of be c o rre la tio n (T able are obtained Oe w e i g h t w ith with to the u n til age were but basal an up one (Figure site 3.12) . areas of w ith r = - 0 .46 f o r b e e c h , 3.9). C o rrelatio n s lim ited, from found age and r =0 .44, with related who w eight with be T his d is a g r e e s w ith w eight Oe w eight ash to (1981), i n d i v i d u a l s p e c i e s w ere s i g n i f i c a n t , measure to Oe w e i g h t s unclear. th ese m ineralization w ould be e x p e c t e d t o betw een d i f f e r e n c e s b e t w e e n som e and of a c c u m u l a t i o n o f Oe u n d e r o a k c a n o p i e s . northern g re a tly th at am ounts b elieved o f m ic ro b ia l decom position lack p rio r was a n t i c i p a t e d nitrogen under le v e l of m icro b ial a c t i v i t y g reater it sets th e of basal as as a significant random areas num bers. of other 180 F ig u re 3 .1 2 . C o rrelatio n of p artially decomposed f o r e s t f l o o r l a y e r (O e ) w e i g h t w i t h a v e r a g e a g e o f t h e ov ersto ry . 20 Oe, Mg/ha r-0.439 40 60 80 100 Average overstory age, years 120 Table 3.9. Simple correlations among some forest floor variables and overstory basal area of selected species. T o ta l BA 01 w t . Oe w t . 01 TKN 01 TKP 01 Mg 01 Ca 01 K Oe TKN Oe TKP Oe Mg Oe Ca Oe K 0 .3 8 7 1 .0 0 0 0 .3 9 6 0.067 0 .4 6 5 * 0 .6 0 8 ® 0 .5 4 1 ® 0 .3 5 9 0 .6 7 1 ® 0 .2 0 6 0 .2 9 2 0 .4 6 8 ® 0 .3 6 5 01 w t . 0 .3 9 6 1.000 0 .2 9 3 0.660* 0 .6 6 7 ® 0 .7 0 2 * 0 .4 5 1 ® 0 .8 0 8 ® 0 .3 7 1 0.3 8 4 0 .4 3 5 ® 0 .416* 0.446* Oe w t . 0 .0 6 7 0.2 9 3 1.000 0.329* 0.061 0 .0 8 5 0 .0 1 2 0 .0 6 9 0 .9 4 2 ® 0.903* 0 .6 1 3 ® 0 .5 4 9 ® 0 .869* 0 .560* T o ta l BA 01 TKN 0.465* 0.660* 0.329 1 .000 0 .8 3 5 ® 0.781* 0 .7 8 7 ® 0 .754* 0 .5 04® 0.581 ® 0 .7 9 1 ® 0.782* 01 TKP 0 .608* 0 .6 6 7 * 0.061 0 .0 3 5 ® 1.000 0.8 09® 0 .7 3 8 ® 0 .9 0 2 ® 0.275 0.3 9 6 0.652* 0 .5 6 0 ® 0 .423* 01 Mg 0.541* 0 .7 0 2 * 0.0 8 5 0 .7 8 1 * 0 .8 0 9 ® 1.0 0 0 0 .7 6 8 ® 0 .8 4 9 ® 0 .2 3 6 0 .2 9 5 0 .6 8 6 ® 0.670* 0.331 01 Ca 0 .3 5 9 0 .4 5 1 * 0 .0 1 2 0 .7 8 7 * 0 .7 3 8 ® 0 .7 6 8 ® 1 .000 0.601* 0 .1 1 5 0 .2 5 7 0 .6 2 9 ® 0 .7 4 1 ® 0 .2 2 4 01 K 0.671* 0 .8 0 8 * 0 .0 6 9 0.754* 0 .9 02® 0.8 49® 0 .6 0 1 ® 1.000 0 .2 5 0 0 .3 2 4 0 .548* 0 .457* 0.401 Oe TKN 0 .2 0 6 0 .3 7 1 0 .9 4 2 * 0 .5 0 4 ® 0 .2 7 5 0.2 3 6 0 .1 1 5 0 .2 5 0 1.000 0.9 76® 0 .754* 0 .610* 0 .946* Oe TKP 0.2 9 2 0.3 8 4 0 .9 0 3 * 0 .5 8 1 ® 0 .3 9 6 0 .2 9 5 0 .2 5 7 0 .3 2 4 0 .9 7 6 ® 1.000 0 .813* 0.685* 0 .969* Oe Mg 0 .4 6 8 * 0 .4 3 5 * 0.613* 0 .7 9 1 ® 0 .6 5 2 ® 0.686* 0 .6 2 9 ® 0 .5 4 8 * 0 .7 54® 0 .8 1 3 ® 1.000 0 .878* 0.806* Oe Ca 0.3 6 5 0 .4 1 6 * 0 .5 4 9 * 0.782* 0.5 60® 0 .670* 0 .7 4 1 ® 0.4 57® 0.610 ® 0 .6 8 5 ® 0.878* 1.000 0 .633* Oe K 0.387 0.446* 0 .8 6 9 * 0 .5 6 0 ® 0.423 ® 0.331 0.2 2 4 0.401 0 .9 4 6 ® 0 .9 6 9 ® 0.806* 0.633* 1 .0 0 0 0.1 2 6 0 .0 4 6 -0 .4 3 2 * 0.1 0 1 R m aple -0 .0 4 9 -0 .0 9 6 0.231 B .P o a k s - 0 .4 4 4 * - 0 .3 3 5 - 0 .5 2 6 * -0 .4 5 1® -0 .4 9 3 ® -0.6 94 ® - 0 . 3 1 7 -0 .0 8 9 -0 .3 3 7 -0 .3 8 9 -0.4 2 5 ® -0.483® - 0 .4 2 7 * W oak -0 .0 5 7 0.1 4 4 0 . 191 -0 .1 5 9 -0 .2 2 9 -0 .2 2 4 -0 .2 6 3 R oak 0 .2 2 6 0 .2 0 8 0.2 1 6 -0 .2 1 6 -0 .0 4 6 -0 .1 3 6 -0.495® B a ssw o od 0.502* S m aple 0 .0 5 4 W ash 0 .451* Beech 0 .3 8 4 P b irch -0 .1 6 6 -0 .2 7 2 -0 .3 6 5 -0 .3 5 7 -0 .1 5 9 0 .1 2 6 0 .0 9 2 -0 .1 0 7 -0 .1 0 5 0.1 7 4 0 .1 6 5 0 .2 0 8 0 .1 4 7 -0 .1 3 3 -0 .2 9 0 0.2 3 1 0 . 185 0 .1 1 8 0.740* 0 .6 8 5 ® 0 .6 4 2 ® 0 .7 5 3 * 0 .4 6 2 ® -0 .0 3 5 -0 .1 6 6 0 .3 7 2 0.2 1 6 0 .3 6 9 0 .7 5 5 ® 0 .1 3 3 -0 .1 9 3 -0 .0 8 2 0 .0 4 5 -0 .4 3 1 * -0 .0 1 3 0 .2 9 8 0 .4 0 7 ® -0 .3 0 4 0 .7 1 4 ® 0.698* 0 .2 7 8 0 .534* -0 .1 2 6 0.3 2 7 0 .0 8 8 0 .2 8 8 0 .3 2 3 0 .2 2 5 0 .2 8 5 -0 .2 9 3 -0 .2 4 7 0 .0 0 4 -0 .1 1 3 -0 .1 9 0 -0 .4 6 3 * - 0 .0 3 5 0 .1 6 2 0 .2 5 4 0.1 6 4 0 .2 3 9 -0 .3 8 0 -0 .3 2 7 - 0 . 1 14 -0 .1 5 5 -0 .3 1 4 -0 .0 0 9 0 .3 8 6 0 .4 4 1 ® 0 .2 7 7 0 . 160 0.540* 0 .1 1 2 0 . 157 0 .2 5 9 0 .2 0 6 0 .2 2 8 0 . 124 0 .0 3 9 -0 .0 0 3 -0 .1 4 8 0 .1 2 8 0 .4 7 0 ® 0 .4 7 0 ® 0 .2 3 3 0 .1 2 0 0 .515* 0 .3 5 7 0.480* -0 .0 4 2 0 .6 1 8 ® 0.644* 0.4 2 0 * 0 . 107 0.237 0 .1 4 9 RA s c o r e 0 .2 3 6 0 .0 7 2 -0 .2 0 7 0.476* 0.4 33® 0 .498* 0.8 31® 0 .3 1 2 -0 .1 4 9 -0 .0 1 0 N m1n 0 .2 6 2 0 .0 8 7 0.0 3 1 0 .682* 0 .53 2® 0 .5 1 9 ® 0 .8 3 2 ® 0.371 0 .1 4 7 0 .2 6 6 -Age -0 .3 1 0 0.439* •Correlations greater than or equal to an absolute value-of 0.404 are significant at alpha=0.05 for n=24. 0 .2 4 2 Table 3.9. (continued). R m aple 6 ,P oaks W oak R o a k B a ssw ood S m a p l e 0.0 5 4 W ash B eech Age RA s c o r e Nmln 0.420* 0.2 3 7 0 .2 3 6 0.2 6 2 0 .1 8 7 0.1 4 9 0 .0 7 2 0.0 8 7 0.439* - 0 .2 0 7 0.031 -0 .0 4 9 -0 .4 4 4 * -0 .0 5 7 0 .2 2 6 0 .5 0 2 ® 01 w t . -0 .0 9 6 -0 .3 3 4 0 .1 4 4 0 .2 0 8 0 .1 8 5 -0 .0 3 5 Oe w t . 0.2 3 1 -0 .0 8 9 0.191 0 .2 1 6 0 .1 1 8 -0 .1 6 6 01 TKN -0 .5 2 6 * -0 .3 3 7 -0 .1 5 9 - p . 21 6 0 .7 4 0 ® 0.3 7 2 0 .0 8 8 -0 .0 3 5 0 .3 8 6 0.1 2 4 0 .476* 0.681* 01 TKP -0 .4 5 1® - 0 .3 8 9 -0 .2 2 9 -0 .0 4 6 0.6 85® 0.2 1 6 0 .2 8 8 0 .1 6 2 0.441* 0.0 3 9 0 .433* 0.532* T o ta l BA 0 .451* 0 .0 4 5 0 .3 8 4 P b irch -0 .0 1 3 -0.4 3 1 ® - 0 .4 6 3 * - 0 . 0 0 9 01 Mg -0 .4 9 3 * -0 .4 2 5 * - 0 .2 2 4 -0 .1 3 6 0 .6 4 2 ® 0.3 6 9 0 .3 2 3 0 .2 5 4 0.277 -0 .0 0 3 0 .498* 0 .519* 01 Ca - 0 .6 9 4 * -0 .4 8 3 * - 0 .2 6 3 -0 .4 9 5 * 0.753* 0.755* 0 .2 2 5 0 .1 6 4 0 .1 6 0 -0 .1 4 8 0 .8 3 1 * 0.832* 01 K -0 .3 1 7 Oe TKN 0.1 3 3 0 .2 8 5 0 .2 3 9 0.540* 0 .1 2 8 0 .3 1 2 0 .3 7 2 -0 .1 9 3 -0 .2 9 3 -0 .3 8 0 0 .1 1 2 0 .4 6 9 ® - 0 . 1 4 9 0 .1 4 7 0 .40 7® - 0 . 0 8 2 -0 .2 4 7 -0 .3 2 7 0 .1 5 7 0 .4 7 0 ® - 0 . 0 1 0 0 .0 0 4 -0 .1 1 4 0 .2 5 9 0 .2 3 3 0 .3 5 7 0 .534* - 0 .1 1 3 0 .4 8 0 * -0 .4 2 7 * -0 .1 5 9 0 . 165 0.462* 0 .1 2 6 -0 .1 6 6 0 .2 0 8 0 .2 9 8 0 . 126 0.0 4 6 -0 .2 7 2 0.0 9 2 0 .1 4 7 Oe Mg -0 .3 1 0 -0 .3 6 5 -0 .1 0 7 -0 .1 3 3 Oe Ca -0 .4 3 2 * -0 .3 5 7 -0 .1 0 5 -0 .2 9 0 0.698* 0 .1 7 4 0.231 0 .3 2 7 Oe TKP Oe K 0 .1 0 1 -0 .3 0 4 0 .7 1 4 ® 0.2 7 8 -0 .1 5 5 0 .2 0 6 0.1 2 0 -0 .1 9 0 -0 .3 1 4 0 .2 2 8 0 .515* -0 .0 4 2 0 .6 6 1 ® - 0 . 6 0 7 ® - 0 . 6 1 7 ® - 0 . 3 3 1 -0 .1 2 6 0 .2 6 6 0 .6 1 8 * 0 .644* 0 .2 4 2 1.000 -0 .0 3 9 0 .3 4 2 -0 .2 6 4 -0 .1 4 2 0.2 1 9 -0 .0 3 9 1.000 -0 .0 5 3 -0 .1 7 9 -0 .2 8 B -0 .3 1 0 -0 .1 6 5 -0 .1 8 6 -0 .1 4 2 -0 .1 9 9 W oak 0 .3 4 2 -0 .0 5 3 1 .0 0 0 -0 .0 5 4 -0 .3 3 1 -0 .3 5 7 -0 .1 9 0 -0 .2 1 4 -0 .1 6 4 0 .3 2 6 -0 .3 7 8 R oak 0.661* -0 .1 7 9 -0 .0 5 4 1.000 - 0 .4 5 7 * -0.551® - 0 . 2 1 0 -0 .1 5 9 0 .1 7 3 0 .3 0 6 -0 .4 9 5 * -0 .5 2 6 * R m aple B ,P o a k s -0 .6 2 5 * -0 .6 5 0 * -0 .4 8 1 * -0 .3 9 0 -0 .3 3 4 Bassw ood -0 .6 0 7 * -0 .2 8 8 -0 .3 3 1 -0.457® 1.000 0 .4 1 8 ® 0 .3 8 3 0 .1 8 2 0 .1 4 6 -0 .0 6 7 0 .5 4 2 ® 0 .6 9 8 * S m aple -0 .6 1 7 * - 0 .3 1 0 -0 .3 5 7 -0.551® 0 .4 1 8 ® 1.000 0.0 0 6 0 .0 8 6 0 .1 2 3 -0 .2 7 8 0 .849* 0 .7 9 4 * W ash -0 .3 3 1 -0 .1 6 5 -0 .1 9 0 -0 .2 1 8 0 .3 8 3 0 .0 0 6 1 .0 0 0 0.718* -0 .0 0 7 -0 .1 1 2 0.3 0 0 0 .1 6 3 B eech -0 .2 6 4 -0 .1 8 6 -0 .2 1 4 -0 .1 5 9 0 .1 8 2 0 .0 8 6 0 .7 1 0 ® 1 .0 0 0 0 .0 9 0 0.0 4 9 0 .3 8 5 0 .0 7 7 P b irch -0 .1 4 2 -0 .1 4 2 -0 .1 6 4 0 .1 7 3 0.1 4 6 0 . 123 -0 .0 0 7 0 .0 9 0 1 .0 0 0 0 .1 2 5 0 . 113 0 .3 4 6 0 .2 1 9 -0 .1 9 9 0 .3 2 6 0 .3 0 6 -0 .0 6 7 -0 .2 7 8 -0 .1 1 2 0 .0 4 9 0.125 1 .0 0 0 -0 .2 3 2 -0 .1 7 0 Age RA s c o r e -0 .6 2 5 * -0 .4 8 1 * - 0 .3 7 8 -0 .4 9 5 * 0 .5 4 2 ® 0 .8 4 9 ® 0.3 0 0 0 .3 8 5 0 .1 1 3 -0 .2 3 2 1.0 0 0 0.845* N m1n -0 .6 5 0 * -0 .3 9 0 -0 .5 2 6 * 0.698* 0 .7 9 4 ® 0 .1 6 2 0 .0 7 7 0 .3 4 6 -0 .1 7 0 0 .8 4 5 * 1 .0 0 0 -0 .3 3 4 • C o r r e l a t i o n s g r e a t e r th an o r equal to an a b s o l u t e v a lu e of 0 .4 0 4 a r e s i g n i f i c a n t a t a ! p h a = 0 .05 f o r n=24. 184 sp ecies w ere asso ciatio n s not significant. among v a r i a b l e s , rank c o r r e l a t i o n , A n o n -p aram etric th e S p e a rm a n 's in to the m ineral distu rb an ce was p articu larly deer general so il ap p aren tly and w ild at due increased co efficien t of occurred sam pling the tu rk ey , in te n sity th e site s. actio n of a n d may h a v e along evenly resu lts. t h e Oe l a y e r w a s t h i n many o f to t r e n d o f Oe a c c u m u l a t i o n D isturbances of w as a l s o p e r f o r m e d w i t h s i m i l a r At th e tim e o f sam ple c o l l e c t i o n , and m ixed te st th e site throughout w ould lik ely an im als, obscured a o rd in atio n . site s, not The so an have a f f e c te d t h e outcom e. W eights of F ig ure 3 .11 . new litte rfall (O i) are T h i s l a y e r was u n d i s t u r b e d a t were c o l l e c t e d from t h e so r e c e n tly . T h e w e i g h t o f new l i t t e r was 2,887 kg h a ” 1 . 1972), flo o r, reported 3,419 O ther s t u d i e s 1,749 it had som e o t h e r kg h a ” 1 a t sites stu d ies H ubbard Brook i n New B r u n s w i c k (Gosz (M a c L e a n a n d W ei n 1 9 7 7 ) . i n t h e G r e a t L akes R eg io n r e p o r t e d v a l u e s more 2,413 kg h a ” 1 f o r an aspen o v ersto ry kg ha” 1 for a black and 3,726 in W isconsin (C ro w oak-w hite oak o v ersto ry , 3 , 1 7 9 kg h a ” 1 f o r a s u g a r m a p l e - r e d o a k o v e r s t o r y , kg h a ” 1 f o r a s u g a r m a p l e - b a s s w o o d o v e r s t o r y low er M ichigan related fallen averaged over for in th e tim e sam ples because kg h a ” 1 f o r a m a p l e - b i r c h - a s p e n o v e r s t o r y 1978), d isp lay ed 3 , 8 5 8 kg h a ” 1 i n O h i o , a n d 9 , 5 1 0 kg h a ” 1 f o r a younger o v e rs to ry com parable: forest V alues were h i g h e r , a v e r a g in g et al. also ( Zak e t reg io n a l tren d a l. 1986). in l i t t e r in n o rth w estern T h e r e may b e prod u ctio n . and 2,624 a clim ate- 185 I n my s t u d y , litte r m ixed o a k - n o r t h e r n ha”1 . The o v ersto ry hardwood o v e r s t o r i e s , amount significantly w e ig h ts w ere g r e a t e s t on s i t e s of o ak -n o rth ern g reater group as th an ev alu ated L itter w eight site s, 2 , 8 2 6 kg h a ” 1 o n s i t e s and 2,547 th a t averaged 2,773 kg h a " 1 on p i n t-te sts ha”1 p in oak-black d ifferen t. r = 0 .40 (T able 3.9). a lp h a= 0 .05, variables but examined, with a sso ciatio n co m p o sitio n . sites litter were b lack may w eights a t h a n was b a s a l n o n -sig n ifican t cor re la te d co rrelatio n with o th er correlation. at sig n ifican t at found sp ecies was a l s o sp ecies, a with w ith w eig h ts having non- The b a s a l a r e a co rre la ted Oi for meaningful th an w eig h t. h ig h ly site s, area only co m p o sitio n area of oth er Oe w e i g h t s , basal correlation p ro d u ctio n was m ore oak sig n ifican tly not the L itter Oi r = - 0 .33, are p o o rly non-significant of r= 0.29. N utrient concentrations com pared to deciduous fo rests (T able oak red to ta l is be H ow ever, s p e c i e s and p in a lp h a= 0 .05. site s. not w ith s i g n i f i c a n t l y c o r r e la te d w ith l i t t e r of oak n o rthern highest and other red o a k , co rrelated the was d o m in a te d by n o r t h e r n T his c o r r e l a t i o n is any kg hardwood oak-black oak W eights a r e on litte r by at 3,276 n o rth ern w e i g h t s on n o r t h e r n hardw ood s i t e s , and hardw ood produced by kg averaging w ith 3.10). th at rep o rted by G o s z A nalysis et in of o th er a l. m ethods autumn stu d ies (1972) w ere litte r f a ll and of northern Boerner com parable are (1984) am on g th e 186 stu d ie s, follow ing c o n cen tratio n s sites in l i t t e r a r e much g r e a t e r F o rest, or in n o rth eastern are Likens likely low er Ca i n so ils reflects th at The with som e c a s e s . g lacial w h i c h w a s m ov e d t o Bormann flo o r may b e Ca, of of from th e lim ited of d o lo m itic n o rth . of lim esto n e and forest O hio study (B o e rn e r 1984) N; Oi Oe 0.92 1.48 1.196 1.86 0.815 ----— P: Oi Oe 0.107 0.108 0.079 0.116 0.083 ——— C a : Oi Oe 2.05 1.93 0.790 0.634 0 .958 ——“ Mg: Oi Oe 0.173 0.530 0.129 0.060 0.169 ——— K: 0.239 0.139 0.456 0.077 0.479 - n- S _ _ ppm by M ichigan < ---------- — Oi Oe in C o n cen tratio n s litte r H ubbard Brook study (Gosz et a l. 1972) so ils ecosystem s be T h e Ca c o n c e n t r a t i o n the are a M ichigan study H ubbard Brook n atu re a n d may e v e n d ep o sitio n Ca l a y e r s o n my s t u d y resp o n sib le; T able 3 .1 0 . N u trien t co n cen tratio n s f lo o r la y e rs a t th re e stud y s i t e s . N u trien t, lay er (1970). fo u n d on t h e calcareo u s M ichigan satu rate d excess and f o r e s t than O hio. and - Zn: Oi Oe 46.8 77.2 137.5 151.6 __— Mn: O i Oe 1829 254 9 2456 1630 —_ — ------ —— 187 o f N, P , K, Mg, a n d Mn i n l i t t e r comparable among co n cen tratio n s study; are the ax is o f ground f l o r a 3.14). ( Mg) th is at of autum n d isso lu tio n of a re as. Zn H ubbard Brook than my litte rfa ll are of s ite s ( K) dry ashed P otassium c o n te n t content sam ples determ ined are shown in from acid F igure 2 .13. i s d r a m a t i c a l l y g r e a t e r on P o r t H uron t i l l tren d is evident, These h ig h lev els am ounts litte r but of less of n u trien t produced, m ag n itu d e, return w ith a are A sim ilar for Mg a n d asso ciated sig n ifican t b irch , sig n ific a n tly w ith r= 0 .54. asso ciated re su lts w ith with P o tassiu m c o rre la te d w ith b a sa l a re a of paper S pecies n u trien t rep o rted P. c o rrelatio n r = 0 .81 b e tw e e n Oi w e ig h t and Oi K c o n t e n t . co n ten t is 3 .1 3 , ( P ) c o n t e n t , and m agnesium w hich s u p p o r t oak and n o r t h e r n h a rd w o o d s. of d isp lay ed (F igures site s, of in w h i c h u s e d RA ranked co v er-ab u n d an ce v a lu e s potassium lay ers are different from o r d i n a t i o n K je ld a h l phosphorous and the flo o r d ifferen ce are u n c le a r, co n ten ts first in muc h h i g h e r reasons fo r N u trien t along studies and f o r e s t com position co n ten t by P a s t o r et of a l. on th ese litter, (1984) sites agreein g and is w ith Zak et a l . Ca c o n t e n t of the (1986). F igure litte rfa ll 3.14 sam ples. from tre n d s relativ ely w ith the C alcium disp lay s K jeld ah l N and Trends along th e s i t e o f P , Mg, a n d K c o n t e n t . co n stan t, basal retu rn area is although i t of basswood, g reater on is o rd in atio n d iff e r Nitrogen sig n ifican tly w ith sites r=0.74 w hich return is asso ciated (T able support 3.9). n o rth ern 188 F ig u re 3 .1 3. P h o s p h o ro u s , m agnesium , and p o ta s s iu m c o n t e n t o f autum n l i t t e r f a l l for s ite s o rd in ated by r e c ip r o c a l a v e ra g in g o f ranked ground f l o r a s p e c ie s cover-abundance v a lu e s . I Kg/ha 20 189 6 T H L V W X RA ordered sites TKP IH Mg K 190 F ig u re 3.14. N itro g en and calcium c o n t e n t o f autum n l i t t e r f a l l for s i t e s o r d i n a t e d by r e c ip r o c a l a v e ra g in g of ranked ground f l o r a s p e c ie s cover-abundance v a lu e s . Kg/ha 120 M i l I :::: ....U s!!!:!!: I jllfiiii! | iiiiiiiiii IIliiillil 191 U s : i f : i ji iiiiiliii uiuuiu 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 RA ordered sites 111 TKN SHU Ca I 192 hardwood o r mixed n o r t h e r n to oak s i t e s . significantly RA, w ith of sugar C alcium correlated r = 0 .83 significant areas of r = - 0 .49, m aple and site 3 .9 ). w ith correlations respectively of oaks, and of from w ere also and b a s a l r =0.76 and negative litte r nutrient produced, w hile the overstory. r =0 .7 5 , correlations (r=-0.69). Ca c o n t e n t re d o a k , were sites content by g r o u n d in autumn flora a n d Mg wa s a s s o c i a t e d m o s t c l o s e l y w i t h a s s o c ia te d with area Poorer, with basal r = - 0 .48 and (Table 3 .9 ) . the o rd in a tio n of P, is scores return litterfall species c o v e r -a b u n d a n c e v a r i e d d e pending on t h e n u t r i e n t . K, opposed l i t t e r f a l l litterfall re d maple b a s a l a r e a and p i n as C orrelations bassw ood, significant black of ordination There were s i g n i f i c a n t A ssociations w ith with (T able o f Ca c o n t e n t w i t h still c o n te n t b e t w e e n Ca c o n t e n t o f respectively. but hardwood o v e r s t o r i e s , ranked Return of t h e amount of N and e s p e c i a l l y of Ca w a s t h e p r e s e n c e o f s u g a r maple and basswood in 193 CONCLUSIONS The o r d i n a t i o n o f u p l a n d f o r e s t e d s i t e s l o w e r M i c h i g a n b y RA o f values was ground asso ciated en v iro n m en ts, w ith flora w ith in n o rth e a ste rn ranked cover-abundance g la c ia l some s p e c i f i c depos i t io n a 1 f e a t u r e s , and a l s o w ith o v e rs to ry sp ecies composition. S ites ordination w ithin at one occurred m orainal of extreme on sands areas. in the f ir s t localized These s i t e s axis of outwash the features had low o v e r a l l soil n u t r i e n t c o n t e n t , high abundances of Vaccinium a n g u s ti f o liu m and Pteridium supported aquilinium black and pin p r o d u c t i o n wa s l o w e s t f o r Sites till which inclusions, soil the oaks in herbaceous the on outwash on t h e f i r s t These s i t e s had overstory. sand on i c e - d i s i n t e g r a t i o n nutrients, layer, and L itter these s i t e s . occurred to outwash sand s i t e s ground f l o r a . in with ice-rafted topography, were n ext axis of the o rd in a tio n of contained interm ediate le v e ls lower abundances of V accinium of and P t e r i d i u m , a n d w e r e d o m i n a t e d by r e d oak i n t h e o v e r s t o r y . Sites l o c a t e d on two d i f f e r e n t P o r t Huron d e p o s i t i o n , of ground flo ra. northern hardw ood abundances of Port sites. Bruce northern chilensis, o f P o r t Bruce and were d i f f e r e n t i a t e d by t h e o r d i n a t i o n Port also Huron sites o v ersto ries, Prenanthes hardwoods, and tills, Sites alba and on P o r t supported and contained Smilacina Bruce mixed till contained high had V io la canadensis higher racemosa than supported only abundances in oak- of the Osmorhiza herbaceous 194 layer. to D ifferences be due to in overstory differing composition conditions at the were believed tim e of stand establishm ent. S oil phys ic a l overstory types, hardwoods, were were and oak-northern compared associated w ith estab lish m en t. The differences fragment Mg the may till, have species and been only some soil with nutrients. intensity and differences The ground t i l l soil of the B horizon, increased rates of It the sites and textures, or not with ma y have of and in coarse possibly the solum M ineralogy fragments w ere not presence others the been species were the on them supply is of of not major particularly fire responsible for in species establishm ent. first flora dim ensional was also ordination significantly RA o r d i n a t i o n species, a n d t o PCA o r d i n a t i o n s o f s o i l These association any coarse that C lim a te and s i t e h i s t o r y , frequency, northern proper tie s appears two sig n ifican t vegetation be the overstory to sim ilar d a ta . whether in fa c to r ? th ese red associated and composition d i f f e r e n c e s . i n my s t u d y . on of s ta tis tic a lly Mg ma y investigated oak hardw oods differences weathering a proper tie s determine thickness although to to attributable content, due in p a r t of not content, chem ical sites ground in dicate flora, by correlated which used o v e r s t o r y correlations among of field that overstory basal RA w ith area of a by and l a b o r a t o r y there is com position, an and 195 soil properties. The o r d i n a t i o n cover-abundance during im portant studies 1980, sites values anaerobic correlated of wa s with m in eralized because Powers 1980, of present incubation, and the has m ineralized from This been RA w e r e finding found in 1984, greatly require (Keeny Pastor rate et from a l. field- sim plify field is other productivity M ellilo procedures species its sam pling, and l a b o r a t o r y a n a l y s i s . significantly lower hardwood o v e r s t o r i e s the r= 0 .845. w ould N scores m ineralization data N m ineralized during though N at flora with with o v ersto ry Aber vegetation estim ation; S ite N m ineralization Prediction observed be associated incubation. t o be a s s o c i a t e d 1984). by r a n k e d g r o u n d soils or in available If overstory had anaerobic on than sites on w ith levels, com position then so may Add i t i o n a 1 s t u d y of fire needed; if mixed northern no s i g n i f i c a n t nutrient d isturbance, incubation differences with the sites, in are d i s tu rb a n c e is a cause-effeet estab lish ed , N m ineralization rates to even texture exception of Mg. related to N m ineralization m ineralization found oak-northern hardwood differences be wa s le v e ls. e ffe c ts on relationship could be used forest floor N is to ev alu ate long-term e f f e c t s of d istu rb an ce. Weight ( Oe ) sampled somewhat of the partially in late October lower than the Hubbard Brook F o r e s t decomposed wa s 19 , 3 0 0 11,747 kg kg ha- 1 , ha**'5' r e p o r t e d (Gosz e t a l . 1 9 7 6 ) . layer a figure on Other f o r e s t the floor 196 weights reported Oi, a n d Oa l a y e r s Oe, litte rfa ll than in are also were to here. not are not sampled be low er in perhaps in forest the G reat forest D ifferences associated w ith floor in floor litte r the lack of d ifferen c e are u n c le a r. at higher noted elevations, (Gosz e t a l . 1 9 7 6 ) . a ecosystems compos i t i o n , expectation not that Reasons litte r and N forest for the Other s t u d i e s of th e f o r e s t greater where was production, f l o o r d o n o t make c o m p a r i s o n s a mong e c o s y s t e m s ; Hubbard Brook s t u d y region accum ulations a mong w e i g h t s w o u l d vary among e c o s y s t e m s . as Since Lakes there weights species raised levels comparable, separately. Mor e u n e x p e c t e d l y , trend m ineralization floor literature northeast, le ss. discernible quality the appears the studied in however, the accum ulations clim ate slowed of m aterial decompos i t io n A dditional study of the f o r e s t floor is needed. W eight o f autumn l i t t e r f a l l my s t u d y northeast Ohio a l. acting on mixed northern al. lower 1972, than com parable ( Cr ow 1 9 7 8 ) and northwestern litter may b e production. oak-northern hardwood sites a L itter site s, lo w e s t on b la c k o a k - p i n oak s i t e s . red in the in reported in Michigan ( Zak influence were greatest interm ediate oak for and clim atic weights northern 1977) that lower regional hardwood and to kg h a - 1 reported Ma c L e a n a n d We i n but There 2,887 those 1984), 1986). on figure (Gosz e t (Boerner Wisconsin et sites, a averaged site s, on and 197 R eturn of significantly the n u trie n ts correlated nutrients P, Mg, with and particularly Ca wa s h i g h l y sugar m aple and agrees with other litter quality Zak e t a l . basswood studies and s p e c ie s 1986). in autum n amount o f especially correlated in the which l i t t e r f a l l litter K. with overstory. found composition produced Return the of This et for N and presence associations (Pastor was of result between al. 1984, 198 LITERATURE CITED A b e r, J . D . , and J.M . M e l i l l o . 1984. N utrient cycling models and l a n d c l a s s i f i c a t i o n . p. 205-217. In J . G . Bockheim, ed. F o r e s t Land C l a s s i f i c a t i o n : E x p e r i e n c e s , Problems, P e rs p e c tiv e s . P r o c e e d in g s o f t h e symposium. M a d i s o n , W i s c o n s i n , March 1 8 - 2 0 , 1 9 8 4 . 276 p p . B a i l e y , R.G. 1984. I n t e g r a t i n g ecosystem components. p. 181-18 8. I n J . G . Bock he im , e d . F o r e s t Land C lassification: Experiences, Problems, Perspectives. P r o c e e d in g s o f t h e symposium. M adison, W is c o n s in , March 1 8 - 2 0 , 19 8 4 . 276 p p . B a i l e y , R.G. 1987. Suggested h ie ra rc h y of c r i t e r i a fo r m u l t i - s c a l e ecosystem m apping. L andscape and Urban P l a n n i n g 14: 3 1 3 -3 1 9 . B a r n e s , B.V. 1984. F o r e s t ecosystem c l a s s i f i c a t i o n and m a p p i n g i n B a d e n - W u r 1 1 e m b e r g , We s t G e r m a n y . p 49-65. In J . G . B o c k h e i m , e d . F o r e s t Land C l a s s i f i c a t i o n : E xperiences, Problems, P e r s p e c t i v e s . Proceedings of t h e symposium. M a d is o n , W i s c o n s i n , March 1 8 - 2 0 , 19 8 4 . 276 p p . B a r n e s , B . V . , K .S . P r e g i t z e r , T.A. S p i e s , a n d V.H. S p o o n e r . 1982. Ecological fo re st s ite c l a s s i f i c a t i o n . J . F o r e s t r y 80: 4 9 3 -4 9 8 . B oerner, R .E.J. 1984. N u t r i e n t f l u x e s in l i t t e r f a l l and decom position in four f o r e s t s along a g r a d ie n t of s o i l f e r t i l i t y in s o u t h e r n Ohio. Can. J . F o r . R e s . 14: 7 9 4 802. B r u b a k e r , L .B . 197 5. P ostglacial fo rest p attern s a s s o c i a t e d w ith t i l l and outwash i n n o r t h c e n t r a l up p er Michigan. Q u a t e r n a r y R e s . 5: 4 9 9 -5 2 7 . B u r g i s , W .A. 19 7 7 . L ate-W isconsinan h is to r y of n o r t h e a s t e r n lower M ich ig an . Ph.D. d i s s e r t a t i o n . U n iv e rsity of M ichigan. U n i v e r s i t y Mi c r o f i 1 m s I n t e r n a t i o n a l , Ann A r b o r , M i c h i g a n . M i c r o f i l m No. 7 8 4659. B u r g i s , W.A. 1981. L ate-W isconsinan h is to ry of n o r t h e a s t e r n lower M ich ig an . p 1-104. In B u r g i s , W.A ., and D.F. Eschman, e d s . Midwest F r i e n d s o f t h e P l e i s t o c e n e 3 0 t h A n n u a l F i e l d C o n f e r e n c e , May 2 9 - 3 1 , 1981. U n i v . o f M i c h i g a n , Ann A r b o r . 110 p p . C a j a n d e r , A.K. 1926. F o r e s t . F en n . 29: The t h e o r y 1-108. of fo re s t types . A cta 199 C o v i n g t o n , W.W. 1981. m a t t e r and n u t r i e n t n o r th e r n hardwoods. Changes in f o r e s t f l o o r o r g a n ic content following c le a r c u ttin g in E c o lo g y 62: 4 1 - 4 8 . Crow , T .R . 1978. B iom ass and p r o d u c tio n in t h r e e contiguous f o r e s t s in n o rth ern Wisconsin. E c o l o g y 59: 265-273. D unn, C . P ., and F. S t e a r n s . 1987. R elatio n sh ip of vegetation la y e r s to s o i l s in S o u th e a stern W isconsin forested w etlands. Ame r . M i d l a n d N a t u r a l i s t 1 1 8 : 3 6 6 374. F e d e r e r , C.A. 1984. O rg a n ic m a t t e r and n i t r o g e n c o n t e n t o f th e f o r e s t f l o o r in even-aged n o rth e rn hardwoods. Can. J . F o r . R e s . 14: 7 6 3 -7 6 7 . Gagnon, D . , and G.E. B r a d f i e l d . 1986. R e l a t i o n s h i p s among f o r e s t s t r a t a and environm ent in s o u th e rn c o a s t a l B r i t i s h Columbia. Can. J . F o r . R e s . 16: 1 2 6 4 - 1 2 7 1 . Gauch, H .G ., J r . 1982. M ultivariate Ecology. Cambridge Univ. P r e s s . PP- A n a l y s i s i n Community New Y o r k , N. Y. 298 G auch, H .G ., and E.L. S to n e . 1979. V e g e ta tio n and s o i l p a t t e r n i n a m e s o p h y t i c f o r e s t a t I t h a c a , New Y o r k . Am. M i d l a n d N a t u r a l i s t 1 0 2 : 3 3 2 - 3 4 5 . G o s z , J . R . , G.E. L i k e n s , an d F. H . Bormann. 1972. N utrient c o n te n t of l i t t e r f a l l on t h e H u b b a rd B ro o k E x p e r i m e n t a l F o r e s t , New H a m p s h i r e . E c o lo g y 53: 7 6 9 784. Gosz, J . R . , G.E. L i k e n s , an d F .H . Bormann. 1976. Organic m a t t e r and n u t r i e n t dynamics of t h e f o r e s t and f o r e s t f l o o r i n t h e Hubbard Brook F o r e s t . O e c o lo g ia 22: 305320. G r e e n a c r e , M. J . 19 8 4 . Theory and A p p lic a t io n s of C orrespondence A n a ly s is . A cadem ic P r e s s , I n c . , H arco u rt Brace Jovanovich, I n c . , Orlando, F l o r i d a . 364 pp. G r i g a l , D.F. 1984. Shortcomings of s o i l surveys fo r f o r e s t management. p 148-166. In J .G . Bockheim, e d . Forest Land C la ss ific a tio n : E xperiences, P roblem s, Perspectives. P r o c e e d i n g s o f t h e symposium. Madison, W i s c o n s i n , March 1 8 - 2 0 , 19 84 . 276 p p . 200 G r i g a l , D .F ., and H .F . Arneman. 1970. Q u an titativ e r e l a t i o n s h i p s a mong v e g e t a t i o n a n d s o i l c l a s s i f i c a t i o n s from n o r t h e a s t e r n M in n eso ta . Can. J . B o t . 48: 5 5 5 - 5 6 6 . H ill, M.O. 1979. DECORANA — A FORTRAN P r o g r a m f o r D etrended Correspondence A nalysis and R eciprocal A veraging. C ornell U n iv e rsity . I t h a c a , New Y o r k . 52 p p . H o l e , F.D . 1975 . Some r e l a t i o n s h i p s b e t w e e n f o r e s t v e g e t a t i o n and p o d z o l B h o r i z o n s i n s o i l s o f Menominee t r i b a l l a n d s , W isc o n sin , U.S.A. S o v i e t S o i l S c i . 7: 714-723. H ost, G . E . , K . S . P r e g i t z e r , C.W. Ramm, J . B . H a r t , a n d D . T . C leland. 1987 . Landform -m ediated d i f f e r e n c e s in s u c c e s s i o n a l p a t h w a y s among u p l a n d f o r e s t e c o s y s t e m s i n n o rth w e s te r n lower M ichigan. F o r e s t S c i . 33: 4 4 5 -45 7 . Host, G . E . , K . S . P r e g i t z e r , C.W. Ramm, C.W. L u s c h , a n d D . T . Cleland. 1988. V a r i a t i o n i n o v e r s t o r y b i o m a s s a mo n g g l a c i a l la n d fo rm s and eco lo g i c a l la n d u n i t s in n o r t h w e s t e r n Lower M i c h i g a n . C a n . J . F o r . R e s . 18 : 659-668. J o n e s , R.K. 1984. S ite c l a s s i f i c a t i o n in O ntario. p 8299. I n J . G . Bockheim, ed. F o r e s t Land C l a s s i f i c a t i o n : E xperiences, Problems, P e r s p e c t i v e s . Proceedings of t h e symposium. M a d i s o n , W i s c o n s i n , March 1 8 - 2 0 , 1 9 8 4 . 276 p p . K e e n e y , D .R . 19 8 0 . P re d ic tio n of s o il n itro g e n a v a i l a b i l i t y in f o r e s t ecosystem s: a l i t e r a t u r e review. F o r e s t S c i . 26: 1 5 9 - 1 7 1 . K eeney, D .R ., and J.M . B rem ner. 1966. Comparison and e v a l u a t i o n of l a b o r a t o r y methods of o b t a i n i n g an in dex of s o il nitrogen a v a ila b ility . Agron. J . 58: 4 9 8 -5 0 3 . Ko t a r , J . a n d M. C o f f m a n . 19 8 4 . H a b ita t-ty p e c l a s s i f i c a t i o n system in M ichigan and W is c o n s in . p 10 0 - 1 1 3 . In J .G . B ockheim , e d . F o r e s t Land C lassification: Experiences, Problems, Perspectives. P r o c e e d i n g s of th e symposium. M adison, W is c o n s in , March 1 8 - 2 0 , 1984. 276 p p . L i k e n s , G . E . , a n d F.H . Bormann. 1970. Chemical a n a l y s i s of p l a n t t i s s u e s f r o m t h e H u b b a r d B r o o k e c o s y s t e m i n New Hampshire. Yale U n i v e r s i t y School of F o r e s t r y B u l l e t i n No. 7 9 . 201 L o r i m e r , C.G. 1983. E ig h ty -y e ar development o f n o rth e rn re d oak a f t e r p a r t i a l c u t t i n g in a m i x e d - s p e c i e s W isconsin f o r e s t . F o r e s t S c i . 29: 37 1 -3 8 3 . M c C u n e , B, a n d J . A . A n t o s . 1981. C o r r e la tio n s betw een f o r e s t l a y e r s i n t h e Swan V a l l e y , M o n t a n a . E c o lo g y 62: 1196-1204. M a c L e a n , D . A . , a n d R. W. W e i n . 1977. N utrient accum ulation f o r p o s t f i r e ja c k p i n e and hardwood s u c c e s s i o n p a t t e r n s i n New B r u n s w i c k . Can. J . F o r . R e s . 7: 5 6 2 - 5 7 8 . McNa bb, O . H . , K. C r o m a c k , J r . , a n d R . L . F r e d r i k s e n . 1 9 8 6 . V a r i a b i l i t y o f n i t r o g e n and c arb o n i n s u r f a c e s o i l s o f s i x f o r e s t ty p e s in th e Oregon C a s c a d e s . Soil S c i. S o c . Am. J . 5 0 : 1 0 3 7 - 1 0 4 1 . M e l i 1 l o , J .M ., J . D. A b e r , and J . F . M u r a t o r e . N itro g e n and l i g n i n c o n t r o l of hardwood l e a f decom position dynamics. E c o l o g y 63? 6 2 1 - 6 2 6 . Moon, D.E. 1984. F o re st land B r i t i s h C olum bia. p 66-81. F o r e s t Land C l a s s i f i c a t i o n : Perspectives. Proceedings of W i s c o n s i n , March 1 8 - 2 0 , 19 84 . 19 8 2 . litte r resources in v entory in In J .G . Bockheim, e d . E xperiences, Problem s, t h e symposium. Madison, 276 p p . M u e lle r-D o m b o is, D ., and H. E l l e n b e r g . 1974. Methods o f V e g e t a t i o n Ecology. John Wiley New Y o r k , N. Y. 547 p p . Aims a n d and S o n s. M y r o l d , D . D. 1987. R e l a tio n s h ip between m ic r o b ia l biomass n i t r o g e n and a n i t r o g e n a v a i l a b i l i t y in d e x . Soil S c i. S o c . Am. J . 5 1 : 1 0 4 7 - 1 0 4 9 . O v e r l e a s e , W .R., and E.D. O v e r l e a s e . 1976 . A study of s p r i n g h erb aceo u s ground cover as an i n d i c a t o r o f s i t e c o n d itio n s in mesic m orthern hardwoods, Benzie County, n o rth w estern Michigan. P r o c . P e n n . Ac a d e my S c i . 5 0 : 173-178. P a s t o r , J . , J . D . A b e r , C.A. M c C l a u g h e r t y , a n d J . M . M e l i l l o . 1984. Aboveground p r o d u c t i o n and N and P c y c l i n g a lo n g a n i t r o g e n m i n e r a l i z a t i o n g r a d i e n t on Blackhawk I s l a n d , W isconsin. E c o lo g y 65: 256-268. P f i s t e r , R .D ., and S .F . A rn o . 1980. h a b i t a t t y p e s b a s e d on p o t e n t i a l F o r e s t S c i . 26: 5 2 -7 0 . C lassifying fo rest clim ax v e g e t a t i o n . P i e l o u , E.C. 1984. The i n t e r p r e t a t i o n o f e c o l o g i c a l d a t a : a p r i m e r on c l a s s i f i c a t i o n and o r d i n a t i o n . John Wiley & S o n s , New Y o r k . 263 p p . 202 Powers, R.F. 1980. M in e r a li z a b le s o i l n i t r o g e n as an index of nitrogen a v a il a b ili ty to fo re s t tr e e s . Soil Sci. S o c . Am. J . 4 4 : 1 3 1 4 - 1 3 2 0 . P r e g i t z e r , K . S . , a n d B.V. B a r n e s . 1982. The u s e o f g r o u n d f lo r a to in d ic a te edaphic fa c to r s in upland ecosystems o f t h e Mc Co r mi c k E x p e r i m e n t a l F o r e s t , U p p e r M i c h i g a n . Can. J . F o r . R e s . 12: 6 6 1 -6 7 2 . P r e g i t z e r , K . S . , an d B.V. B a r n e s . 1984. C l a s s i f i c a t i o n and c o m p a r iso n o f u p l a n d hardwood and c o n i f e r e c o s y s t e m s o f t h e C y r u s H. M c C o r m i c k E x p e r i m e n t a l F o r e s t , u p p e r Michigan. Can. J . F o r . R e s . 14: 3 6 2 - 3 7 5 . P r e g i t z e r , K. S . , B.V. B a r n e s , an d G.D. Lemme. 1983 . R e l a t i o n s h i p of topography to s o i l s and v e g e t a t i o n in an Upper M ic h i g a n e c o s y s t e m . S o i l S c i . S o c . Am. J . 4 7 : 117-123. P r e g i t z e r , K . S . a n d C. W. Ramm. 1984. C la s s ific a tio n of f o r e s t ecosystem s in M ichigan. p 114-131. In J.G . Bockheim, ed. F o r e s t Land C l a s s i f i c a t i o n : E x p e r i e n c e s , Problems, P e r s p e c t i v e s . P r o c e e d in g s o f t h e symposium. M a d i s o n , W i s c o n s i n , March 1 8 - 2 0 , 1 9 8 4 . 276 p p . Rowe, J . S . 1956 . Uses o f u n d e rg ro w th forestry. Ec o lo g y 37: 4 6 1 -4 7 3 . Rowe, plant species in J.S. 1984. Forestland c la s s if ic a tio n : lim itations of the use of v e g e ta tio n , p 132-147. I n J . G . Bockheim, ed. F o r e s t Land C l a s s i f i c a t i o n : E x p e r i e n c e s , P r o b l e m s , Perspectives. P r o c e e d in g s o f t h e symposium. Madison, W i s c o n s i n , Ma r c h 1 8 - 2 0 , 1 9 8 4 . 276 p p . S a h r a w a t , K . L . , D.R. K e e n e y , a n d S . S . Adams. 1985. Rate of a e ro b ic n itro g en tra n sfo rm a tio n s in s ix a cid clim ax f o r e s t s o i l s a n d t h e e f f e c t o f p h o s p h o r o u s a n d C aC O ^ • F o r e s t S c i . 31: 6 8 0 - 6 8 4 . SAS I n s t i t u t e I n c . 1985. Statistical P e r s o n a l C o m p u t e r s . C a r y , NC. Analysis System for S m i t h , J . L . , B .L . McNeal, E . J . Owens, an d G.O. K l o c k . 1981. Comparison o f n i t r o g e n m i n e r a l i z e d un d er a n a e r o b i c and a e r o b i c c o n d i t i o n s f o r some a g r i c u l t u r a l a n d f o r e s t s o i l s of Washington. Commun. i n S o i l S c i . P l a n t A n a l . 12: 9 9 7 - 1 0 0 9 . S p i e s , T . A . , and B.V. B a r n e s . 1985 . A m ultifactor e c o l o g i c a l c l a s s i f i c a t i o n o f t h e n o r t h e r n hardwood and c o n i f e r eco sy stem s o f S y lv a n ia R e c r e a t i o n A re a, Upper P e n in s u la , Michigan. Can. J . F o r . R e s . 15: 9 4 9 - 9 6 0 . 203 S t e e l , R .G .D ., and J .H . T o r r ie . 1980. P r i n c i p l e s and procedures of s t a t i s t i c s : a b io m etrical approach. M c G r a w - H i l l , New Y o r k . 6 33 p p . U r b a n , D . L . , R .V . O ' N e i l l , and H.H. S h u g a r t , Landscape ecology. B i o S c i . 37: 1 1 9 -1 2 7 . Jr. 1987. V i t o u s e k , P. 1982. N u tr ie n t c y c lin g and n u t r i e n t efficiency. American N a t u r a l i s t 119: 553-572. use Waring, R .H ., and J . Major. 1964. Some v e g e t a t i o n o f t h e C a l i f o r n i a c o a s t a l redwood r e g io n in r e l a t i o n to g ra d ie n ts of m o istu re, n u trie n ts , lig h t, and tem perature. E c o l . Monographs 34: 1 6 7 -2 1 5 . W h i t n e y , G.G. 1986. R elatio n of M ichigan's p re s e ttle m e n t p in e f o r e s t s to s u b s t r a t e and d i s t u r b a n c e h i s t o r y . Ecology 67: 1548-1559. W h i t n e y , G.G. 1987. An e c o l o g i c a l h i s t o r y Lakes f o r e s t o f M ichigan. J . E cology 75: Zak, of the G reat 667-684. D . R . , K.S. P r e g i t z e r , and G.E. H o st. 1986. Landscape v a r i a t i o n in n i t r o g e n m i n e r a l i z a t i o n and n i t r i f i c a t i o n . Can. J . F o r . R es. 16: 1258-1263. CHAPTER IV CONCLUSIONS Previous sites along chapters a gradient com ponents, and of summar i z e s s o ils . by A lso, w ithin important conclusions on part of d i s c u s s e s ways i n w h ic h t h e s e number o f soil variables investigations. Field im portant in related texture, soil to in previous results te x tu re of these la y e r s . t h i c k n e s s , and o v e r a l l in distinguishing depositions. variables others. which In from f i e l d la y e rs with in creased s i l t displayed Rather, summarized PC A 's of depths most to the the large laboratory which were most sites to and were those accum ulations of a n d /o r c la y c o n t e n t , and th e Coarse fragment c o n t e n t , E h o riz o n t e x t u r a l a v e r a g e s were a l s o tills of im portant two d i f f e r e n t n u t r i e n t among l a b o r a t o r y d e t e r m i n e d a greater there and variables between g l a c i a l No s i n g l e chapter system. obtained particularly This summarize betw een the ecosystem may b e a p p l i e d 2 to d ifferentiating of ch ap ters, C hapter determined o v ersto ry a n d among t h e my w o r k . of ecosystem flo ra , d evelopm ent o f an e c o l o g i c a l c l a s s i f i c a t i o n PCA's w e r e u s e d ordination exam ination of the the separate herbaceous variables c o m p o n e n t s wa s a n focused expressed inclu d in g compos i t i o n , associations have were of laboratory amount of horizon the 204 groups variability data v ariability w hich or in depth the included than ranges data set. organic 205 h orizons, n utrient em phasized over layers content that were excluded of the of nutrient less from t h e variation s u ms o f n utrient sums overall so il D e p t h s ums o f described upper such a n u trien t contents respect wa s to glacial agreement the lab o rato ry first depositional nutrients except for those 150 cm s o i l depth. large component size of These of interpretations H o r i z o n summed d a t a p r o v i d e d formed ice-rafted among data ordinations with different soil several groupings environments were not loamy till of site Site based on contradicted by formed i n l o c a l i z e d outw ash on i c e - topography in most sets. Sand s i t e s disintegration were till. distinctly Sites inclusions separated formed were p la c e d in was u s u a l l y till effective sites separation was correlations laboratory of from P o r t not site Huron alw ays among data a in d is p la y in g sets, resu lts it is 1Names a r e a c c o r d i n g t o B u r g i s till possible from obtained 1981). of although Because to from with two Th e s e c o n d PC sites1, obtained (1977, these a separation d is tin c t. from more e a s i l y outwash betw een extremes along the prim ary a x is of the p l o t s . status content soil t h a t no o t h e r two P C s and f i e l d th e s e PCA's. Bruce was When o r g a n i c nutrient th a n h o r i z o n sums, the e n tir e layers interpretations. There sites soil. analysis, c o u l d b e d e r i v e d f r o m t h e PCA. better organic m ineral t h e B h o r i z o n wa s e m p h a s i z e d . exhibited the infer field of field Port the the and nutrient data. It 206 is also soil evident there are t e x t u r e and s o i l n u t r i e n t Soil to that variables test for Comparisons were g ro u p s were s i g n i f i c a n t variables sites compared outwash individually sig n ifican t sand sites for nearly a l l exam ined. among g r o u p s d ifferen ces. and all other com parisons formed in sandy outwash w ith t i l l betw een Sites formed in t i l l fr o m P o r t B ru c e an d P o r t Huron g l a c i a l d e p o s i t i o n s , respect tills to a few different variables. into d ifferen t from each o t h e r Thus, depositional environment ranked species of sites cover-abundance composition, b y RA o f values of the first ordination axis soil nutrient angustifolium layer, and and c o n t e n t , high black with pin not species overstory S i t e s a t one extrem e in localized These s i t e s abundances aquilinium and is two depositional o c c u r r e d on s a n d s Pteridium supported flora way w i t h outwash f e a tu r e s w ith in m orainal a r e a s . overall groups ground e n v iro n m e n ts and s o i l c h a r a c t e r i s t i c s . these data. wa s a s s o c i a t e d and i n a g e n e r a l however, except with separating c o m p l e t e l y s u p p o r t e d by a n a l y s i s o f s o i l s The o r d i n a t i o n site i n c l u s i o n s and s i t e s were s i g n i f i c a n t . were n ot s i g n i f i c a n t l y of n u t r i e n t and t e x t u r a l L ik e w is e , most f o r m e d i n loamy t i l l gradients s t a t u s on t h e s t u d y s i t e s . s ta tis tic a lly between corresponding in oaks in of h ad low Vaccinium the herbaceous the overstory. with ice-rafted L i t t e r p r o d u c t i o n was l o w e s t o n t h e s e s i t e s . Sites till along which inclusions the first occurred on were located axis of the outwash next to sand outw ash ordination of sand ground sites flo ra. 207 These s i t e s had lower contained interm ediate le v els of s o il abundances of Vaccinium and nutrients, Pteridium , and were d o m i n a t e d by r e d oak i n t h e o v e r s t o r y . S ites located on tills of Port Bruce and Port d e p o s i t i o n w e re w e l l d i f f e r e n t i a t e d on t h e f i r s t ordination of ground flora. Port m ixed oak-northern hardwood higher abundances of Prenanthes than only Port Bruce sites. northern Osmorhiza chilensis, herbaceous l a y e r . believed to be and to supported and contained and S m i la c in a on P o r t contained also had D ifferences due alba axis of the sites overstories, Sites hardwoods, Huron Huron racemosa Bruce till high abundances Viola supported canadensis in of the in o v e r s t o r y co m p o sitio n were differing conditions at the time of stand establishm ent. S oil physical overstory types, hardw oods, were asso ciated and oak-northern compared w ith estab lish m en t. The among were fragment and p o s s i b l y Mg, only variables hardw oods determ ine in not of and if of till sites and w ith soil tex tu res, not C lim ate on The p r e s e n c e others or and w ith site is of apparently the supply history, were species sig n if icant attributable thickness two northern they to the a l t h o u g h Mg c o n t e n t may b e d u e differences. the oversto ry s ta tistic a lly content, vegetation nutrients. to proper t ies d iffe r ences differences coarse chem ical vegetation B horizon, in re d oak not of part on to some associated m ajor so il p articularly fire 208 intensity and differences The frequency, ma y have been responsible for in species establishm ent. firs t dim ension site scores and ranks o r d i n a t i o n by g r o u n d f l o r a wa s a l s o s i g n i f i c a n t l y from correlated w i t h a s i m i l a r RA o r d i n a t i o n w h i c h u s e d o v e r s t o r y b a s a l a r e a by sp ecies, and to laboratory data. an PCA o r d i n a t i o n s These c o r r e l a t i o n s association among ground of so il indicate flora, field that overstory and there is com position, and s o i l p r o p e r t i e s . The o r d i n a t i o n cover-abundance anaerobic linear cor re la tio n to be is by r a n k e d g r o u n d wa s associated incubation. w ith Site 1984, Prediction of w ith Pastor the et overstory a l . 1984, significantly lower hardwood o v e r s t o r i e s though the s o i l s disturbance as be on than sites on RA h a d r =0 .8 4 5 . a This as used to to evaluate Powers and 1980). field-observed incubation w ith identical inherent from (Aber these s i t e s . northern N m ineralization well rate anaerobic had n e a r l y levels. p o ssib ly N at species m ineralized from Keeny 1 9 8 0 , m ineralization N m ineralized during nutrient N productivity v e g e t a t i o n d a t a may b e p o s s i b l e f o r be with scores m ineralized flora i m p o r t a n t b e c a u s e N m i n e r a l i z a t i o n h a s b e e n shown associated M ellilo sites values during finding of mixed was found to oak-northern hardwood sites, even t e x t u r e s and a v a i l a b l e l e v e l s may b e site related quality, long-term and to could e ffe c ts of disturbance. Weight of the partially decomposed forest floor layer 209 was 11,747 reported kg in litte rfa ll ha- 1 , the a figure northeast appears to somewhat (Gosz be low er et in lower al. 1976). the G reat t h a n i n t h e n o r t h e a s t , and p e r h a p s f o r e s t w eights ecosystem s litter production, com position, result and litter here. quality i n v a r i a t i o n among f o r e s t forest floor D ifferences associated N m ineralization region flo o r accumulations T h e r e wa s n o t r e n d i n d i f f e r i n g studied that Autumn Lakes are also less. among than levels with were in species expected flo or w eights. to Reasons fo r the lack of d iffe re n c e are u n c le a r. Weight figure of lower autumn than litterfall those averaged reported in the 2,887 kg h a ” 1 , northeast (Gosz a et a l . 1 9 7 2 , Ma c Le a n and We i n 1 9 7 7 ) a n d i n O h i o (Boerner 1984), but comparable to th a t ( Cr ow 1 9 7 8 ) re p o rte d in Wisconsin n o r th w e s te r n lower Michigan a regional L itter clim atic influence w e ig h ts were g r e a t e s t s i t e s , interm ediate re d oak s i t e s , R eturn nutr ie n ts noted in litter hardwood s i t e s P , Mg, Ca wa s litte r and other studies a u t umn especially highly quality in w i t h amount o f su g a r m aple and basswood betw een on production. on mixed o a k - n o r t h e r n on n o r t h e r n correlated nutrients particularly acting T h e r e may b e hardwood and n o rth e rn an d l o w e s t on b l a c k o a k - p i n oa k s i t e s . of significantly the ( Za k e t a l . 1 9 8 6 ) . and correlated in the et litter K. with al. the of for N and presence of A ssociations com position 1986, was produced Return overstory. and s p e c i e s (Zak l i t t e r f a l l have been Pastor et al. 210 1984). An e c o l o g i c a l could be classification developed descriptions, com ponents distinct. using to based the sites size adequately describe a l l s o me s t e p s on s ite com binations identify Although system of these sites o rd in a tio n s different w hich of for are my s a m p l e and ecosystem ecologically is too t h e g ro u p s which e x i s t small in the to area, t o w a r d d e v e l o p i n g a n e c o s y s t e m c l a s s i f i c a t i o n may be d e s c r i b e d . My s t u d y has demonstrated c o r r e l a t i o n s among f i r s t ground basal flora area there is cover-abundance and p ro p erties. the there dimension s i t e by s p e c i e s , determ ined sim plifies ranked that on values, soil field Such d e c i s i o n s are inherent in on and among procedure; not a g re e m e n t, an a r b i t r a r y in b a s e d on overstory laboratory ordinations instances decision most significant ordinations A greem ent classification are must where be m ade. classification systems { Wi c k w a r e a n d C o w e l l 1 9 8 5 ) . Analysis good basis of for environm ents, m ater i a l from appear nutrient has Huron have from to content, of glacial kinds betw een be s i m i l a r to although sample a few them. till of separating only size is is in too a surf ic ia l S oil data Port Bruce variables A lso, sites there depositional a c tiv ity . justify as that different different t i l l , different indicated sites not e n tir e ly Port significantly sites which does data separating resulting analysis till soils are lacustrine texture small and w ithin 211 this group However, to be soil analysis depositional area: certain that it does dem onstrate environm ent groups a re site s form ed in outw ash d e p o s i t i o n on i c e - d i s i n t e g r a t i o n outwash sand, flow t i l l should containing i n loamy t e x t u r e d t i l l that at of separated. least three the study in from topography, localized sites formed in ice-rafted topography, on m o r a i n e s . be present sand inclusions on i c e - d i s i n t e g r a t i o n not till and s i t e s or formed S i t e s on o u t w a s h p l a i n s and i n l a r g e g l a c i a l d r a i n a g e s were n o t i n v e s t i g a t e d a s p a r t of my study, and w ill likely com prise another group of ecosystem s. These depositional groupings glacial the do not landforms scale of distinguish correspond as mapping different surficial physical and w ith identified localized ecosystem environm ent/surficial used in deposits chem ical by B u r g i s her deposits of is surficial have a l a r g e and boundaries (1977, study properties fu n c tio n , mapped as sm all to m aterial. influence be of 1981), too believed m ust deposit The on s o i l im portant re c o g n ize d in in classification. F loristic groups w hich environm ents exhibited c o m p o s i t i o n ma y b e u s e d to subdivide w ere on depos i t io n al and developed soil based properties. a close association between herbaceous flora and o v e r s t o r y flora correlation of site scores in RA; The 24 the as study sites com position evidenced however, site divisions by of the based 212 on f l o r a should use herbaceous species because of the plants relatively rather rapid than overstory stabilization of p l a n t communities fo llo w in g d is tu r b a n c e . S oil data an aly sis separation of these groups site ground Port flora differed m in e ra liz a tio n . m icrobial soils m icrobial causal Because very activity factor substantially le v e ls with are com pletely com position, decomposition which not of in and the may much may b e be a sso c ia tio n a These result of in t h e y may o r may n o t flo ris tic area should different separate a classification sites formed the the effect of compensating deposi tio n a l outwash w ith environm ent loamy t i l l and a in which fourth O rdination in of in a related system must in d icate an are s y s t e m i n my s t u d y loamy till but having sandy in ecosystem c l a s s i f i c a t i o n factors. group inclusions. which i s e x tr e m e l y s an d y , another be be composition. Another problem to c o n sid e r is can or in land p o t e n t i a l even though s o i l s reason, floristic N differences recognize For t h i s of on In any e v e n t , a c l a s s i f i c a t i o n alike. N different to disturbance. im portant d ifferen c e of (Myrold 1 9 8 7 ), succession, com m unities and lev els substantially alike. However, overstory in m ic ro b ia l biomass in succession; that ju s tify B ruce and P o r t Huron s i t e s . species m ineralization did Site of K belongs sites Th e s i t e formed has to in one pedon one which h a s sandy loam t e x t u r e s , clay loam t i l l which till is soils places located this is near deep site in in a the surface, the profile. borderline 213 location firm ly w ith till together overall with nutrient and cycling the inherently sites; of till in study the the t i l l or on sites places respond through root to it the absorption litterfall, sites f 1 ow t i l l areal so that the classification to may quantify sites to system, In have be placed would cam psites, my ice- to be v ariab ility . not than p ro d u c tio n , and and outwash w ith up d e p e n d i n g on t h e other tra ils in layers. extent The a l t e r n a t i v e , w h ic h the of soil formed scale s ite . management o b j e c t i v e s and the m ic ro site in clu sio ns s h o u l d be s e t in outside litter interm ediate developm ent site flora may overstory these in Flora captured surface an m aterial require in group of Separate groups till a of l e s s p r o d u c t i v e m i c r o s i t e s w i t h i n a n a r e a may accumulated subdivided of nutrients by n u t r i e n t s ra fte d sites. capital be e n r i c h e d area, ordination or of would w ith till accommodate such as more the exotic o p e ra tio n s such as w etlands a m e lio ra tio n . Another site classification P , w hich substratum above apparently with th e formed in sandy origin of the from t h o s e a water w ater D epositionally, establish. question the clay table ta b le site outwash under formed in a clay present are till to above site loamy t i l l , deep in the group is to the Textures e n t i r e l y table is respect i t . inclusions, the w ater the with layer alm os t belongs with F loristically, sites has arises of sand. sites although the difficult to not distinguishable but it would likely 214 respond very differently to certain There a r e examples of s i m i l a r s i t e s and f a i l e d surface to regenerate were too harsh Cleland, personal problem s and o th e r classified communication). the d e p o sitio n al such as these, conditions seedling the sandy establishm ent (D.T. Because at of regeneration management c o n c e r n s , s i t e together with t i l l soils. environm ent although P cannot be Another s u b d iv is i o n of group their techniques. which have been c l e a r c u t because for management is areal required extent is for sites likely to be sm all• I n summary, there at le a s t my s a m p l e , a n d a t groups not large sampled sandy because sites are glacial undisturbed w ill plains, least likely six groups i d e n t i f i e d w ith in one more o u t s i d e restricted drainages; examples be could divided and ones which o c cu r to outw ash these were not into on my s a m p l e . be ones sloping plains not which and sam pled located. areas The These occur leading on into drainage v a lle y s . Group 1, within the (1977, 1981). outwash as the on as identified boundaries hilly m elting It of moraines consists terrain glacier among of my as sites resulting rem ained study a occurs identified by formed localized from in sites, in Burgis ice-disintegration stagnant p o sition. O v e r s t o r i e s a r e com prised m ain ly o f b la c k and p i n o a k s , a component of northern red oak. The herbaceous with layer c o n s i s t s o f h ig h abundances o f Vaccinium and P t e r i d i u m , w i t h o n l y low r e p r e s e n t a t i o n o f o t h e r species. S i t e s T , H, a n d L 215 comprise t h i s group. Group 2 c o n s i s t s o f s i t e s pockets of inclusions loamy till or flow as formed i n o u tw a sh , which were till. transported These sites as have red o ak , w ith component. have a component o f w h ite would likely logging dim inished contains less be p r e s e n t in abundant. Group 3 is depositional abundance. 1, and table of other subdivision present northern beech. S m ilacina, a environment hardwood s p e c i e s and sites had The red maple oak, not which selective herbaceous species are layer slightly S i t e s Q, V, W, X, R, a n d M a r e among t h i s Group consists a sizable hig h abundances of V accinium and P t e r i d i u m , b u t than a w ater its on more ice-rafted overstories d o m in a te d by n o r t h e r n Some s i t e s containing and s o i l in red the present. areal and and a flora w ith of The m ixture include group. the same but with overstory of basswood, M i a n t h emum; Site P is extent 2, characteristics, in c lu d in g sugar maple, V i b u r n um, d a t a , and th e Group substratum . oak, R epresentative Pteridium are of more northern white ash, Prenan the s , no V a c c i n ium or t h e o n l y e x a m p l e a mo n g my this group is lik ely to be sm all. Group 4 i s same d e p o s i t i o n a l till subdivision environment, m aterial present as group. the another but with inclusions B ased on a s m a l l s a m p l e , areal extent of till of it Group a greater than is be w ith the amount average is d iffic u lt which s h o u ld 2, for of the to estim ate required for this 216 classification, over half sim ilar of to present. but soil that it is borings The h e r b a c e o u s Group 5 s i t e s most have a t h i n deposition, or flora during surface layer common northern N, a n d 0 a r e to to location northern sugar is wind hardwood m aple. Osmorhiza i s Prenanthes, may b e Group in t h i s group is till areas 3, K. on m o r a i n e s ; sandy of loam. Port Huron and occur f r o m t h e g l a c i a l A u S a b le V a l l e y of w ill like have to be im plem enting O verstories consists that the consist hardwoods of on m o r a i n e s . Bruce d e p o s i t i o n , prevailing to is of of in addressed ecological a m ixture varying Group 4. of amounts, Sites I , J, r e p r e s e n ta tiv e of t h i s group. subjected th eir phase flora near the su rfa ce , not m aple sim ilar loamy a ll question system. Group 6 a l s o Port red in overstory o f loamy s a n d o r r e d oak and n o r t h e r n and th e ground of this mapping classification that also in The t h e y may b e d i s t u r b a n c e - r e l a t e d system ; the is formed must be p r e s e n t a site. except only w ithin a fix ed d is ta n c e drainage it Th e o n l y s i t e are may b e site s that within o f G roup 3, b u t may i n c l u d e G a l i u m . These likely or frequent w ith may o c c u r the to The and ground pyric and most sites flora, Smilacina o n l y a t v e r y low a b u n d a n c e s . in loamy sites as a to till which were result contains of and only are dominated by high abundance of abundant are a till ecosystem s overstory p r e s e n t , and Galium i s Viburnum, on disturbance respect species, formed I t may b e r e s t r i c t e d fire p atterns. Among sites on m os t often Viola canadensis sites. present, is but restricted 217 to sites due to in of t h i s group. the lateness identifying represent of this this S p r in g e p h e m e ra ls were n o t o b s e r v e d sampling, group. but Sites may a l s o A, B, D, be im portant E, P, and G group. L a c u s t r i n e s i t e s C a n d U, l o c a t e d w i t h i n t h e b o u n d a r i e s of Port Bruce till, are likely A nalysis of s o ils and f l o r a any im portant differences management p r a c t i c e s silt content in s i t e s of soils depositional O ther both o b jectiv es. ecosystem additional mapping, in Group an 6. t h e r e were them , but The high considered. operability in soil which a problem s u b d iv is ion are statistically properties. Subdivisions to succession in an ticip atio n silvicultural groups but w ill w ill be of have d i f f e r e n c e s which a r e for The be that separate represent groups im portant subdivisions practices, result id en tified differences factors to to of origin. b a s e d on f l o r i s t i c due to enough have environment significant become p a r t did not in d ic a te may of lacu strin e The g ro u p s are w ill to and provide refined s u b d i v i s i o n a s more s i t e s are believed to be and p r o d u c t i v i t y . for a and of management m ultiple-use fram ew ork likely for undergo investigated. 218 LITERATURE CITED Aber, J . D . , and J.M . M e l i l l o . 1984. N utrient cycling models and land c l a s s i f i c a t i o n . p. 205-217. In J.G. Bockheim, ed . F o r e s t Land C l a s s i f i c a t i o n : E x p e r i e n c e s , Problems, P e rs p e c tiv e s . P r o c e e d in g s o f t h e symposium. M a d i s o n , W i s c o n s i n , March 1 8 - 2 0 , 1 9 8 4 . 2 76 p p . Boerner, R .E.J. 1984. N u t r i e n t f l u x e s i n l i t t e r f a l l and decomposition in four f o r e s ts along a g ra d ie n t of s o i l f e r t i l i t y in s o u th e rn Ohio. Can. J . F o r . R e s . 14: 7 9 4 802. B u r g i s , W. A . 19 7 7 . Late-W isconsinan h i s t o r y of n o r t h e a s t e r n lower M ic h ig a n . Ph.D. d i s s e r t a t i o n . U n i v e r s i t y of M ichigan. University Microfilms I n t e r n a t i o n a l , Ann A r b o r , M i c h i g a n . M i c r o f i l m No. 7 8 4659. B u r g i s , W. A. 1981. L a te -W isc o n s in a n h i s t o r y of n o r t h e a s t e r n low er M ich ig an . p 1-104. In B u r g i s , W.A., and D.F. Eschman, e d s . Midwest F r i e n d s o f t h e P l e i s t o c e n e 3 0 t h A n n u a l F i e l d C o n f e r e n c e , May 2 9 - 3 1 , 1981. U n i v . o f M i c h i g a n , Ann A r b o r . 110 p . Crow, T.R. 1978. Biomass and p r o d u c tio n in t h r e e contiguous f o r e s t s in n o rth ern Wisconsin. E c o lo g y 59: 265-273. G o s z , J . R . , G.E. L i k e n s , and F.H. Bormann. 1972. N utrient c o n te n t of l i t t e r f a l l on t h e H u b b a r d B r o o k E x p e r i m e n t a l F o r e s t , New H a m p s h i r e . E c o lo g y 53: 7 6 9 784. G o s z , J . R . , G.E. L i k e n s , and F.H . Bormann. 1976. Organic m a t t e r and n u t r i e n t dynamics of th e f o r e s t and f o r e s t f l o o r i n t h e Hubbard Brook F o r e s t . O e c o l o g i a 22: 3 0 5320. K e e n e y , D.R. 19 8 0 . P r e d i c t i o n of s o i l nitrogen a v a i l a b i l i t y in f o r e s t ecosystem s: a l i t e r a t u r e review. F o r e s t S c i . 26: 1 5 9 - 1 7 1 . M a c L e a n , D . A . , a n d R.W. W e i n . 1977. N u trien t accum ulation f o r p o s t f i r e ja c k p i n e and hardwood s u c c e s s i o n p a t t e r n s i n New B r u n s w i c k . Can. J . F o r . R e s . 7: 5 6 2 - 5 7 8 . M e li1 l o , J . M . , J . D. A b e r , and J . F . M u r a t o r e . N itro g e n and l i g n i n c o n t r o l of hardwood l e a f decom position dynamics. E c o log y 63: 6 2 1 -6 2 6 . 19 8 2 . litter 219 M y r o l d , D. D. 1987. R e l a t i o n s h i p between m i c r o b i a l biomass n i t r o g e n and a n itr o g e n a v a i l a b i l i t y index. Soil Sci. S o c . Am. J . 5 1 : 1 0 4 7 - 1 0 4 9 . P a s t o r , J . , J . D . A b e r , C.A. M c C l a u g h e r t y , a n d J .M . M e l i l l o . 1984. Aboveground p r o d u c t i o n and N and P c y c l i n g a lo n g a n i t r o g e n m i n e r a l i z a t i o n g r a d i e n t on Blackhawk I s l a n d , W isconsin. E cology 65: 256-268. & S o n s , New Y o r k . 263 p p . Powers, R.F. 1980. M in e r a li z a b le s o i l n i t r o g e n as an index of nitrogen a v a il a b ili ty to fo re s t tr e e s . Soil Sci. S o c . Am. J . 4 4 : 1 3 1 4 - 1 3 2 0 . W i c k w a r e , G. M. a n d D. W. C o w e l l . 1985. F o re s t Ecosystem C l a s s i f i c a t i o n of th e Turkey Lakes W atershed, O n t a r i o . E c o l o g i c a l L a n d C l a s s i f i c a t i o n S e r i e s No. 1 8 . Lands D irectorate, Environm ental C onservation Service, E n v i r o n m e n t C a n a d a . 33 p p . Zak, D . R . , K.S. P r e g i t z e r , and G.E. H o s t . 1986. Landscape v a r i a t i o n in n i t r o g e n m i n e r a l i z a t i o n and n i t r i f i c a t i o n . Can. J . F o r . Res. 16: 1 2 5 8 - 1 2 6 3 . APPENDIX Table A.I. V ariab le Soil variable comparisons for site groups based on depositional environment and surficial deposit. G roups 1st 2n d Mean S.D . Mean n <-------1 s t g r o u p --------- > S .D . n <-------2nd g r o u p --------- > F df(n ) d f(d ) df (c a lc .) <- f o r F -> t Pooled s A pprox. df fo r t t (c alc.) ABRAYP 1 2 4.6 8 1 .4 0 3 7 .5 8 3.6 7 8 7 2 9 1 .5 3 8 .8 -1 .8 9 7 ABRAYP 1 3 4 .6 8 1 .4 0 3 22.74 22.25 6 252.583* 5 2 7 9.1 2 5. 1 -1 .9 8 0 6 .8 7 2 ABRAYP 1 4 4.6B 1 .4 0 3 14.77 4 .0 4 5 8 .3 2 7 4 2 6 1 .9 8 5 .3 -5 .0 9 8 * ABRAYP 1 5 4 .6 8 1.40 3 5 .4 7 0 .8 2 2 2.915 2 1 3 0 .9 9 3 .0 -0 .7 9 4 ABRAYP 2 3 7.5 8 3 .6 7 8 22.74 2 2 .2 5 6 36.756* 5 7 12 9 .1 8 5 .2 -1 .6 5 2 ABRAYP 2 4 7 .5 8 3.6 7 8 14.77 4 .0 4 5 1 .212 4 7 11 2 .2 2 8 .0 -3 .2 3 2 * ABRAYP 2 5 7.5 8 3 .6 7 8 5.4 7 0 .8 2 2 20.031 7 1 8 1.42 7 .9 1.4 8 5 ABRAYP 3 4 22.74 22.25 6 14.77 4.0 4 5 30.332* 5 4 9 9.2 6 5 .4 0.861 ABRAYP 3 5 2 2 .7 4 22 .2 5 6 5 .4 7 0 .8 2 2 7 3 6 .262* 5 1 6 9 . 10 5 .0 1.897 ABRAYP ACA 4 5 14.77 4 .0 4 5 5.4 7 0 .8 2 2 24.2 7 4 4 1 5 1.90 4 .7 4.901* 1 2 90.51 52 .7 2 3 376.26 459.16 8 75.854* 7 2 9 165.17 7 .5 -1 .7 3 0 ACA 1 3 90.51 52.72 3 1551.37 5 74.09 6 118.579* 5 2 7 236.34 5 .2 -6 .1 8 1 * ACA 1 4 90.51 5 2 .7 2 3 1 5 48.26 765.91 5 2 1 1 .059* 4 2 6 3 4 3 .8 8 4.1 -4 .2 3 9 * ACA 1 5 90.51 5 2 .7 2 3 741.72 229 .9 0 2 19.016* 1 2 3 165.39 1.1 -3 .9 3 7 ACA 2 3 376.26 459.16 8 1551.37 574.09 6 1 .5 6 3 5 7 12 2 8 5.10 9 .4 -4 .1 2 2 * ACA 2 4 376.26 459.16 8 1548.26 765.91 5 2.782 4 7 11 379.05 5 .8 -3 .0 9 2 * ACA 2 5 3 7 6 .2 6 459.16 8 7 41.72 2 2 9.90 2 3.9 8 9 7 1 8 2 2 9.74 3 .5 -1 .5 9 1 ACA 3 4 1551.37 5 74.09 6 1548.26 765.91 5 1.780 4 5 9 415.03 7 .3 0.0 0 7 ACA 3 5 15 51.37 574.09 6 741.72 229 .9 0 2 6 .2 3 6 5 1 6 2 8 5.23 5.1 2 .8 3 9 * ACA 4 5 1548.26 765.91 5 7 4 1 .7 2 2 29.90 2 11.099 4 1 5 379.14 5 .0 2.1 2 7 AHBUF 1 2 1 .7 0 E -4 4.37E -5 3 1 . 17E -4 7 . 14E -5 8 2.670 7 2 9 0 .0 0 6 .2 1.485 AHBUF 1 3 1 . 70E -4 4.3 7 E -5 3 1 . 29E -6 7.4 9 E -7 6 3 4 0 4.08* 2 5 7 0 .0 0 2 .0 6.686* AHBUF 1 4 1 .7 0 E -4 4.3 7 E -5 3 7 .99E -6 6 .56E -6 5 44.377* 2 4 6 0 .0 0 2.1 6 .3 7 8 * AHBUF 1 5 1.7 0 E -4 4.3 7 E -5 3 4 .8 6 E -6 6 .63E -6 2 4 3 .4 4 5 2 1 3 0 .0 0 2. 1 6.435* AHBUF 2 3 1 . 17E -4 7 . 14E-5 8 1 . 29E-6 7.4 9 E -7 6 9087.26* 7 5 12 0 .0 0 7 .0 4.583* ♦Significant difference between groups at alpha=0.05. Table A.i. V ariab le (continued). Groups 1st 2nd Mean <------- 1 s t S.D . n Mean g r o u p — —> <-------2n d n S.D . g r o u p — —> F df (n) d f (d) df (c a lc .) < - f o r F -> t Pooled s A pprox. df fo r t t (c a lc .) AHBUF 2 4 1 . 17E -4 7 . 14E -5 6 7 .9 9 E -6 6 .5 6 E -6 5 118.465* 7 4 11 0.0 0 7 .2 AHBUF 2 5 1.1 7 E -4 7 . 14E -5 8 4 .8 6 E -6 6 .6 3 E -6 2 1 1 5 .976 7 1 8 0 .0 0 7 .4 AHBUF 3 4 1-29E -6 7 .49E -7 6 7 .99E -6 6 .5 6 E -6 5 7 6 .7 0 9 * 4 5 9 0 .0 0 4.1 -2 .2 7 1 -0 .7 6 0 4.209* 4.368* AHBUF 3 5 1 . 2 9 E -6 7 . 49E-7 6 4.8 6 E -6 6 .63E -6 2 7 8.354* 1 5 6 0 .0 0 1 .0 AHBUF 4 S 7 .99E -6 6 .5 6 E -6 5 4.8 6 E -6 6.63E -6 2 .1.0 21 1 4 5 0 .0 0 1 .9 0 .5 6 6 AK 1 2 2B .34 4 .6 0 3 4 2 .0 2 27 .8 1 8 3 6.550* 7 2 9 10.18 7 .9 -1 .3 4 3 AK 1 3 2 0 .3 4 4 .6 0 3 4 8 .7 8 8.7 2 6 3 .5 9 3 5 2 7 4 .4 4 6 .8 -4 .6 0 2 * AK 1 4 2 0 .3 4 4.6 0 3 7 7 .9 3 3 5 .7 6 5 60.4 3 4 * 4 2 6 1 6 .2 1 4 .2 -3 .0 5 9 * AK 1 5 2 0 .3 4 4 .6 0 3 35 .8 4 5 .6 3 2 1.498 1 2 3 4.7 9 1 .9 -1 .5 6 7 2 3 4 2 .0 2 27.81 8 48.78 8 .7 2 6 10.171* 7 5 12 10 .4 6 8 .7 -0 .6 4 6 AK 2 . 4 4 2 .0 2 27 .8 1 8 7 7 .9 3 3 5 .7 6 5 1.6 5 3 4 7 11 18.77 7 .0 -1 .9 1 3 AK 2 5 4 2 .0 2 27.81 8 35 .8 4 5 .6 3 2 2 4.400 7 1 8 1 0 .6 1 8 .0 0 .5 8 3 AK 3 4 4 0 .7 0 8 .7 2 6 77.93 35 .7 6 5 16.818* 4 5 9 16.38 4 .4 -1 .7 7 9 AK 3 5 4 8 .7 0 8 .7 2 6 35 .8 4 5.6 3 2 2 .3 9 9 5 1 6 5 .3 4 2 .9 2 .4 2 3 AK 4 5 77.93 35 .7 6 5 35 .8 4 5 .6 3 2 40 .3 4 4 4 1 5 16.48 4 .4 2.554 AMG 1 2 16 .9 8 4.3 6 3 4 5 .8 3 3 9 .4 4 8 81.8 2 8 * 7 2 9 14.17 7 .4 -2 .0 3 6 AMG 1 3 16 .9 0 4 .3 6 3 89 .3 3 17 .3 6 15.854 5 2 7 7 .5 2 6 .1 -9 .6 2 0 * AMG 1 4 16 .9 8 4.3 6 3 1 5 0 .5 1 7 2 .5 4 6 £ 276.8 1 0 * 4 2 6 32 .5 4 4 .0 -4 .1 0 4 * AMG 1 5 16.98 4.3 6 3 5 2 .6 5 25.28 2 3 3.619 2 3 18.05 1 .0 AMG 2 3 4 5 .8 3 39 .4 4 8 89 .3 3 17.36 6 5.1 6 1 1 7 5 12 15 .6 4 10 .1 -2 .7 8 1 * -1 .9 7 6 AMG 2 4 45 .8 3 39 .4 4 8 1 5 0 .5 1 7 2 .5 4 5 3.3 8 3 4 7 11 35 .3 1 5 .5 -2 .9 6 5 * AMG 2 5 4 5 .8 3 3 9 .4 4 8 5 2 .6 5 25.28 2 2 .4 3 4 7 1 8 2 2 .6 7 2 .5 -0 .3 0 1 -1 .8 4 2 AMG 3 4 8 9 .3 3 1 7 .3 6 6 150.51 72 .5 4 5 17 .460* 4 5 9 33.21 4 .4 AMG 3 5 8 9 .3 3 17.36 6 5 2 .6 5 25.28 2 2.121 1 5 6 19.23 1.3 1.908 AMG 4 5 1 5 0 .5 1 72 .5 4 5 5 2 .6 5 25 .2 8 2 8.2 3 4 4 1 5 3 7 .0 4 5 .0 2.642* •Significant difference between groups at a1pha=0.05. 222 AK Table A.i. V a riab le (continued). Groups 1st 2nd Mean S.D . Mean n <-------1 s t g r o u p --------- > S .D . n <-------2 n d g r o u p --------- > F df(n) df(d) of (c a lc .) < - f o r F -> t P ooled s A pprox. df fo r t t (c a lc .) 2 9 20 2.79 8 .3 -0 .6 8 3 15.638 5 2 7 192.39 6.1 -5 .9 7 3 * 19.400 4 2 6 230.33 4 .6 -4 .1 5 8 * 220.887 2 1 3 6 5 .0 0 2 .0 -1 .1 5 7 1.5 0 0 7 5 12 2 6 4.09 11.9 -3 .8 2 6 * 1 .2 0 9 7 4 11 2 9 2.88 9 .3 -2 .7 9 7 * 7 1 8 192.23 7 .0 0 .3 2 9 4 5 9 2 8 5.78 8 .2 0 .6 7 0 3 4 5 4 .3 3 ® 5 1 6 181.23 5 .0 5.925* 4 2 8 5 .1 3 ° 4 1 5 2 21.09 4 .0 3.991* 2 7 9 20 .3 8 3 .2 0.5 7 9 1 2 83 4 .2 4 1 1 2 .2 1 3 9 7 2 .7 8 543.51 8 1 3 834.24 1 1 2 .2 1 3 1983.30 443.74 6 ATKN 1 4 8 34.24 1 1 2 .2 1 3 1791.89 4 9 4 .2 3 5 ATKN 1 5 834.24 1 1 2 .2 1 3 90 9 .4 7 7 .5 5 2 ATKN 2 3 972.78 543.51 8 1983.30 4 4 3 .7 4 6 ATKN 2 4 9 7 2 .7 8 543.51 8 1791.89 4 9 4 .2 3 5 ATKN 2 5 9 72.78 543.51 8 909.47 7 .5 5 2 ATKN 3 4 1983.30 443.74 6 1 7 91.89 4 9 4 .2 3 5 ATKN 3 5 1983.30 443.74 6 909.47 7 .5 5 2 ATKN 4 5 1791.89 4 9 4 .2 3 5 909.47 7 .5 5 2 ATKP 1 2 8 1 .4 0 31.28 3 6 9 .5 9 2 6 .7 2 8 1.370 23.461 5182.28* 1 .2 4 1 ATKP 1 3 81 .4 0 31 .2 8 3 2 7 4.27 131.95 6 17.794 5 2 7 56 .8 2 6 .0 -3 .3 9 5 * ATKP 1 4 8 1 .4 0 31 .2 8 3 191.84 4 3 .5 0 5 1.934 4 2 6 26.54 5 .6 -4 .1 6 1 * ATKP 1 5 81 .4 0 31 .2 8 3 76 .7 9 3 .1 4 2 99.237 2 1 3 18 .2 0 2.1 0.2 5 3 ATKP 2 3 6 9 .5 9 26 .7 2 8 2 74.27 131.95 6 2 4.386 ® 5 7 12 54 .6 9 5 .3 -3 .7 4 3 * ATKP 2 4 6 9 .5 9 26.72 8 191.84 4 3 .5 0 5 2 .6 5 0 4 7 11 2 1 ,6 3 5 .9 -5 .6 5 3 * ATKP 2 5 6 9 .5 9 26 .7 2 8 76 .7 9 3 . 14 2 7 2.413 7 1 8 9 .7 0 7 .6 -0 .7 4 2 ATKP 3 4 2 74.27 131.95 6 191.84 4 3 .5 0 5 9.201 5 4 9 5 7 .2 7 6 .3 1.4 3 9 ATKP 3 5 2 7 4.27 131.95 6 76 .7 9 3 .1 4 2 1765.87® 5 1 6 53.91 5 .0 3 .663* ATKP 4 5 191.84 4 3 .5 0 5 7 6 .7 9 3 . 14 2 191.920 4 1 5 19.58 4. 1 5.876* BBRAYP 1 2 215.85 53.31 3 211.56 113.22 8 4.511 7 2 9 50 .4 9 8 .0 0.0 8 5 BBRAYP 1 3 2 15.85 53.31 3 242.85 2 47.17 6 2 1.497 5 2 7 105.50 5 .8 -0 .2 5 6 BBRAYP 1 4 215.85 53.31 3 245.57 2 71.11 5 25.863 4 2 6 125.09 4 .5 -0 .2 3 8 BBRAYP 1 5 2 15.85 53.31 3 3 3 5 .6 9 431.55 2 65 .5 3 1 ® 1 2 3 3 0 6 .7 0 1 .0 -0 .3 9 1 BBRAYP 2 3 2 11.56 113.22 8 2 42.85 2 47.17 6 4 .7 6 6 5 7 12 108 .5 6 6 .6 -0 .2 8 8 •Significant difference between groups at a1pha=0.05. i 223 7 ATKN ATKN Table A.i. a rla b le (continued). G roups Mean S.D . n Mean S .D . n F d f ( n ) d f (d) df (c a lc .) < - f o r ' F -> t Approx. P ooled df fo r t t (c a lc .) 1st 2n d BBRAVP 2 4 2 11.56 113.22 8 245.57 271.11 5 5.7 3 4 ® 4 7 11 127.68 4 .9 -0 .2 6 6 BBRAYP 2 5 2 11.56 113.22 8 3 3 5 .6 9 431.55 2 14.528® 1 7 8 3 0 7.77 1.0 -0 .4 0 3 BBRAYP 3 4 2 42.85 2 47.17 6 245.57 271.11 5 1.203 4 5 9 157.74 8 .3 -0 .0 1 7 BBRAYP 3 5 2 4 2.65 2 4 7.17 6 3 3 5 .6 9 431.55 2 3 .0 4 8 1 5 6 3 21.40 1 .2 -0 .2 8 9 <-------1 s t g r o u p -------> <-------2nd g r o u p -------> s 4 5 3 2 8 .3 6 1.3 -0 .2 7 4 7 2 9 1604.63 7 .1 -1 .7 9 0 6 1282 .4 3 * 5 2 7 3 4 23.55 5 .0 -6 .2 9 8 * 5 1392.11* 4 2 6 3 9 0 6 .6 9 4 .0 - 4 .5 4 7 ® 4 5 2 4 5.57 271.11 5 3 3 5 .6 9 431.55 2 1 2 2 02.40 2 33.99 3 3 0 7 5 .3 0 4 5 2 2 .4 7 8 BCA 1 3 2 02.40 233 .9 9 3 217 6 3 .6 9 8 3 7 9.42 BCA 1 4 2 02.40 2 33.99 3 17966.94 8730.39 2.534 BCA 1 5 202.40 2 3 3 .9 9 3 6 8 7 3 .6 7 165.55 2 1.998 2 1 3 178 .7 6 2 .9 -3 7 .3 2 0 * BCA 2 3 3075.30 4522.47 8 217 6 3 .6 9 8379.42 6 3 .4 3 3 5 7 12 3776.11 7 .2 -4 .9 4 9 * BCA 2 4 3 0 7 5 .3 0 4522.47 8 17966.94 8 7 3 0.39 5 3 .7 2 7 4 7 11 4219.07 5 .4 -3 .5 3 0 * BCA 2 5 3 0 7 5 .3 0 4 5 2 2 .4 7 8 6873.67 165.55 2 7 4 6 .2 6 5 7 1 8 1 6 0 3 .2 1 7 .1 -2 .3 6 9 * 1.086 BCA 3 4 21763.69 8379.42 6 17966.94 8 7 3 0.39 5 4 5 9 519 0 .9 9 8 .5 , 0.7 3 1 BCA 3 5 2176 3 .6 9 8 3 7 9 .4 2 6 6 8 7 3.67 165.55 2 2561 .9 4 * 5 1 6 3 4 2 2 .8 9 5 .0 4.350* BCA 4 5 17966.94 8730.39 5 6873.67 165.55 2 2781 .0 5 * 4 1 5 390 6 .1 0 4 .0 2.8 4 0 * BHBUF 1 2 3 .09E -4 9 . 18E -5 3 2.9 2 E -4 1.0 4 E -4 8 1.283 7 2 9 0 .0 0 4. 1 0.2 6 4 BHBUF 1 3 3 .09E -4 9 . 18E-5 3 1 .5 1 E -4 1 .2 3 E -4 6 1.795 5 2 7 0 .0 0 5 .4 2 .1 6 4 BHBUF 1 4 3 .09E -4 9.1B E -5 3 7 .9 4 E -5 3 .6 3 E -5 5 6 .3 9 5 2 4 6 0 .0 0 2 .4 4.142* BHBUF 1 5 3 .0 9 E -4 9 .1 8 E -5 3 9 .7 6 E -5 3 .85E -5 2 5 .6 8 5 2 1 3 0 .0 0 2 .8 3 .548* BHBUF 2 3 2.9 2 E -4 1 . 04E -4 8 1 .51E -4 1 . 23E-4 6 1.399 5 7 12 0 .0 0 9 .8 2.266* BHBUF 2 4 2.9 2 E -4 1.0 4 E -4 8 7 .94E -5 3 .6 3 E -5 5 8 .2 0 8 7 4 11 0 .0 0 9 .4 5.289* BHBUF 2 5 2.92E -4 1.0 4 E -4 8 9 .7 6 E -5 3 .85E -5 2 7.2 9 7 7 1 8 0 .0 0 5 .4 4.249* BHBUF 3 4 1.5 IE-4 1 . 23E -4 6 7 .9 4 E -5 3 .63E -5 5 11.481® 5 4 9 0 .0 0 6 .0 1 .3 5 7 BHBUF 3 5 1.51E -4 1.2 3 E -4 6 9.7 6 E -5 3 .85E -5 2 10.207 5 1 6 0 .0 0 5 .8 0 .9 3 5 BHBUF 4 5 7 .94E -5 3.6 3 E -5 5 9.7 6 E -5 3 .85E -5 2 1.1 2 5 1 4 5 0 .0 0 1.8 -0 .5 7 4 ♦Significant difference between groups at a1pha=0.05. 224 1 37 3 .557* BBRAVP BCA Table A.I. V ariab le (continued). Groups 1st 2nd Mean S.D . Mean n <-------1 s t g r o u p ----------> S.D . n <-------2nd g r o u p --------- > F d f(n ) d f(d) df (c a lc .) < - f o r F -> t P ooled s A pprox. df fo r t t (c a lc .) BK 1 2 62.77 11.59 3 281.79 396.82 8 1172.25* 7 2 9 140 .4 6 7 .0 -1 .5 5 9 BK 1 3 6 2 .7 7 11.59 3 827.89 3 99.85 6 119 0.2 2® 5 2 7 163 .3 8 5 .0 -4 .6 8 3 * BK 1 4 6 2 .7 7 11.59 3 1037.60 2 76.10 5 5 6 7 .5 0 0 ® 4 2 6 123.66 4 .0 - 7 .8 8 3 ® 5 62.77 11.59 3 5 98.97 1 .4 1 2 67 .5 6 6 2 1 3 6 .7 7 2. 1 -7 9 .2 5 7 * BK 1 BK 2 3 2 81.79 3 9 6 .8 2 B 827.89 3 9 9 .8 5 6 1.0 1 5 5 7 12 2 1 5 .2 4 10.9 -2 .5 3 7 * BK 2 4 281 .7 9 3 9 6 .8 2 8 1037.60 276.10 5 2 .0 6 6 7 4 11 186.89 10.8 -4 .0 4 4 * 2 5 2 8 1.79 396.82 8 5 98.97 1.41 2 3 4 8 27.89 399.85 6 1037.60 2 76.10 5 7 1 8 140.30 7 .0 -2 .2 6 1 5 4 9 204.68 8 .8 -1 .0 2 5 BK 3 5 827.89 399.85 6 5 98.97 1.41 2 BK 4 5 1037.60 2 7 6 . 10 5 5 98.97 1 .41 2 8 0 4 1 8 .5 ® 5 1 6 163 .2 4 5 .0 1.402 3 8 3 4 3 .8 ® 4 1 5 123.48 4 .0 3 .5 5 2 * BUG 1 2 45.12 47 .8 3 3 6 43.25 1 1 4 1 .0 1 8 5 6 9 .0 8 6 ® BMG 1 3 4 5 . 12 47 .8 3 3 2 207.65 1265.69 6 7 0 0 .2 5 1 ® 7 2 9 4 0 4 .3 5 7 .1 -1 .4 7 9 5 2 7 5 1 7 .4 5 5 .0 -4 .1 7 9 * 7 9 2 0 4 .3 ® 2.097 BMG 1 4 4 5 . 12 47 .8 3 3 3 291.20 798.29 5 2 7 8 .5 6 1 ® 4 2 6 3 5 8 .0 7 4 .0 -9 .0 6 5 * BMG 1 5 45 .1 2 47 .8 3 3 1 3 4 0 .6 1 513.90 2 115.440* 1 2 3 3 6 4 .4 3 1 .0 -3 .5 5 5 BMG 2 3 643 .2 5 1 1 4 1 .0 1 8 2 2 0 7.65 1265.69 6 1.230 5 7 12 65 5 .5 4 10.2 BMG 2 4 643.25 1 1 4 1 .0 1 8 3 2 9 1 .2 0 7 98.29 5 2 .0 4 3 7 4 11 538.69 10.7 -4 .9 1 5 * BMG 2 5 643.25 1 1 4 1 .0 1 8 1 3 4 0 .6 1 513.90 2 4.9 3 0 7 1 8 542.94 4 .1 -1 .2 8 4 BMG 3 4 2207.65 1265.69 6 3 2 9 1 .2 0 7 9 8 .2 9 5 2 .5 1 4 5 4 9 628.05 8 .5 -1 .7 2 5 BMG 3 5 2 207.65 1265.69 6 1 3 4 0 .6 1 513.90 2 6.0 6 6 5 1 6 631.70 5 .0 1.373 BMG 4 5 3 291.20 7 98.29 5 1 3 4 0 .6 1 5 13.90 2 2 .4 1 3 4 1 5 509.41 3.1 3.829* BTKN 1 2 1380.56 2 23.86 3 2079.58 1006.35 8 20.209 7 2 9 378.55 8 .5 -1 .8 4 7 BTKN 1 3 1380.56 223.86 3 5 2 8 5 .1 6 657.39 6 8 .6 2 4 5 2 7 297.88 6 .7 -1 3 .1 0 8 * -9 .2 9 0 * -2 .3 8 6 * BTKN 1 4 1380.56 223.86 3 4360.15 656.37 5 8 .5 9 7 4 2 6 320.73 5 .3 BTKN 1 5 1380.56 223.86 3 3 5 9 1 .3 9 560.06 2 6 .2 5 9 1 2 3 416.58 1.2 -5 .3 0 7 * BTKN 2 3 2079.58 1006.35 8 5 2 8 5.16 6 57.39 6 2.3 4 3 7 5 12 445.67 11.9 -7 .1 9 3 * ♦Significant difference between groups at a1pha=0.05. 225 BK BK Table A.I. i/a rlab le (continued). Groups Mean <-------1 s t S.D . n Mean g r o u p ----- - > S .D . n g r o u p ----- - > F d f(n ) df(d) df (c a lc .) < - f o r F -> t Pooled A pp ro x df fo r t t (c a lc .) 1st 2nd BTKN 2 4 2 079.58 1006.35 8 4 3 6 0 .1 5 6 5 6 .3 7 5 2.351 7 4 11 46 1 .2 6 10.9 -4 .9 4 4 * BTKN 2 5 2 0 7 9.50 1006.35 8 3 5 9 1 .3 9 560.06 2 3.2 2 9 7 1 8 5 32.38 3 .0 -2 .8 4 0 * BTKN 3 4 5 2 8 5 .1 6 657.39 6 43 6 0 .1 5 656.37 5 1.0 0 3 5 4 9 3 9 7 .7 3 8 .6 2 .3 2 6 * BTKN 3 5 5 2 8 5 .1 6 6 57.39 6 3 5 9 1 .3 9 5 60.06 2 1.378 5. 1 6 47 8 .3 9 2 .0 3 .5 4 1 * BTKN 4 5 4360.15 656.37 5 35 9 1 .3 9 560.06 2 1 .3 7 3 4 1 5 4 9 2 .9 5 2 .2 1.560 BTKP 1 2 7 9 5.78 167.90 3 1 0 76.57 7 96.22 8 2 2.489 7 2 9 297.73 8 .3 -0 .9 4 3 -5 .6 1 6 * <-------2nd s BTKP 1 3 7 9 5.78 167.90 3 3502.52 1156.37 6 4 7 .4 3 4 * 5 2 7 481.94 5 .4 BTKP 1 4 795.78 167.90 3 3128.50 1477.15 5 77.4 0 1 * 4 2 6 667.68 4 .2 -3 .4 9 4 * BTKP 1 5 795.78 167.90 3 2464.24 1898.03 2 127.792* 1 2 3 1 3 4 5 .6 1 1.0 -1 .2 4 0 2 3 10 76.57 7 9 6.22 8 3502.52 1156.37 6 2.1 0 9 5 7 12 549.65 8 .4 -4 .4 1 4 * 2 4 1076.57 796.22 8 3 1 2 8 .5 0 1477.15 5 3 .4 4 2 4 7 11 718.08 5 .5 -2 .B 5 8 * BTKP 2 7 9 6.22 8 2 4 6 4 .2 4 1898.03 2 5 .6 8 3 1 7 8 1 3 7 1 .3 1 1.1 -1 .0 1 2 3 5 4 1076.57 BTKP 35 0 2 .5 2 11 56.37 6 3128.50 1477.15 5 1.632 4 5 9 8 1 1 .9 5 7 .6 0.461 BTKP 3 5 3 5 0 2 .5 2 1 1 56.37 6 2 4 6 4 .2 4 1898.03 2 2.6 9 4 1 5 6 14 22.72 1.3 0 .7 3 0 BTKP 4 5 3 1 2 8 .5 0 14 77.15 5 2 464.24 1898.03 2 1 .6 5 1 1 4 5 1495.88 1.5 0.4 4 4 CASUM 1 2 61 4 2 .2 9 44 6 7 .9 5 3 16206.79 10661.37 8 5 .6 9 4 7 2 9 4567.53 8 .5 -2 .2 0 3 * CASUM 1 3 6142.29 4467.95 3 36664.01 14961.42 6 11.213 5 2 7 6630.35 6 .4 -4 .6 0 3 * CASUM 1 4 6142.29 44 6 7 .9 5 3 4 3 4 9 2 .6 4 14240.23 5 10.158 4 2 6 6871.03 5. 1 -5 .4 3 6 * CASUM 1 5 6142.29 44 6 7 .9 5 3 240 8 9 .2 2 13905.86 2 9 .6 8 7 1 2 3 10165.66 1. 1 -1 .7 6 5 CASUM 2 3 16206.79 10661.37 8 36664.01 14961.42 6 1 .9 6 9 5 7 12 7177.43 8 .6 -2 .8 5 0 * -3 .6 8 7 * CASUM 2 4 16206.79 10661.37 8 4 3 492.64 14240.23 5 1 .7 8 4 4 7 11 74 0 0 .3 3 6 .8 CASUM 2 5 16206.79 10661.37 8 240 8 9 .2 2 13905.86 2 1 .7 0 1 1 7 8 10530.65 1.3 -0 .7 4 9 CASUM 3 4 36664.01 14961.42 6 43492.64 14240.23 5 1.104 5 4 9 8824.07 8 .8 -0 .7 7 4 CASUM 3 5 36664.01 14961.42 6 240 8 9 .2 2 1 3 9 05.86 2 1 .1 5 8 5 1 6 11575.57 1.9 1.086 CASUM 4 5 4 3 492.64 14240.23 5 24089.22 13905.86 2 1.0 4 9 4 1 5 11715.09 1.9 1 .6 5 6 •Significant difference between groups at a 1pha=0.05. 226 BTKP BTKP Table A.i. V a riab le CBRAYP (continued). Groups 1st 2nd 1 2 Mean S.D . Mean n <-------1 s t g r o u p --------- > 181.92 3 7 .4 6 S.D . n <-------2 n d g r o u p --------- > 3 104.13 53 .1 1 8 F d f(n) d f(d ) df P ooled (c a lc .) < - f o r F -> t s 2 .0 1 0 7 A pprox. df for t t (c a lc .) 2 9 2 8 .6 4 5 .3 2 .7 1 6 * 22.11 2 .2 7.540* CBRAYP 1 3 181.92 3 7 .4 6 3 15.18 11 . 3 0 6 10.990* 2 5 7 CBRAYP 1 4 181.92 3 7 .4 6 3 3 3 .7 4 21.88 5 2.9 3 1 2 4 6 2 3 .7 4 2 .8 6 .242* CBRAYP 1 5 181.92 37 .4 6 3 45 .0 8 26 .7 3 2 1.9 6 4 2 1 3 28.72 2 .9 4.764* 2 3 104.13 53.11 8 15 .1 8 11.30 6 22.0 9 0 * 7 5 12 7 .8 4.600* CBRAYP 2 4 1 04.13 53.11 8 3 3 .7 4 21.88 5 ' 5 .8 9 2 7 4 11 21 . 17 10.0 3.324* CBRAYP 2 5 104.13 5 3 . 11 8 4 5 .0 8 2 6 .7 3 2 3.9 4 8 7 1 8 26.64 3 .5 2 .2 1 6 CBRAYP 4 15. 18 11.30 6 33 .7 4 2 1 .8 8 5 3.7 4 9 4 5 9 10.82 5 .7 -1 .7 1 6 CBRAYP 3 3 5 15. 18 11 . 3 0 6 4 5 .0 8 2 6 .7 3 2 5.5 9 6 1 5 6 19.46 1. 1 -1 .5 3 7 CBRAYP 4 • 5 3 3 .7 4 21 .8 8 5 4 5 .0 8 2 6 .7 3 2 1 .4 9 2 1 4 5 21 .2 8 1.6 -0 .5 3 3 CCA 1 2 5 710.76 4 3 8 1 .7 3 3 12522.89 8 9 2 3.80 8 4 . 148 7 2 9 4044.02 7 .7 -1 .6 8 4 CCA 1 3 5 7 1 0.76 4381.73 3 13006.72 10966.67 6 6.2 6 4 5 2 7 5142.42 6 .9 -1 .4 1 9 5 .9 -3 .6 4 9 * CCA 1 4 5 7 1 0.76 4381.73 3 2366 3 .7 8 9 4 3 4 .9 3 5 4 .6 3 6 4 2 6 4919.70 CCA 1 5 571 0 .7 6 4 3 8 1 .7 3 3 15996.15 13926.60 2 10.102 1 2 3 10167.35 1.1 -1 .0 1 2 CCA 2 3 12522.89 8 9 2 3 .8 0 8 13006.72 10966.67 6 1.510 5 7 12 547 7 .1 3 9 .5 -0 .0 8 8 CCA 2 4 12522.89 8 9 2 3.80 8 236 6 3 .7 8 9 4 3 4 .9 3 5 1.118 4 7 11 5268.57 8 .2 -2 .1 1 5 CCA 2 5 12522.89 8923.80 8 15996.15 13926.60 2 2.4 3 6 1 7 8 10340.67 1 .2 -0 .3 3 6 CCA 3 4 13006.72 10966.67 6 23663.78 9434.93 5 1 .3 5 1 5 4 9 6152.09 9 .0 -1 .7 3 2 CCA 3 5 13006.72 10966.67 6 1599 6 .1 5 13926.60 2 1 .6 1 3 1 5 6 10817.57 1 .4 -0 .2 7 6 CCA 4 5 236 6 3 .7 8 9 4 3 4 .9 3 5 15996.15 13926.60 2 2.179 1 4 5 1071 3 .4 8 1 .4 0.7 1 6 CHBUF 1 2 1 . 08E -4 5.1 9 E -5 3 6.9 8 E -5 4 .5 7 E -5 8 1 .2 9 0 2 7 9 0 .0 0 3 .3 1.1 2 2 CHBUF 1 3 1.0 8 E -4 5 . 19E-5 3 5.2 6 E -6 6.6 9 E -6 6 6 0 .1 6 4 ® 2 5 7 0 .0 0 2 .0 3.4 1 5 CHBUF 1 4 1.0 8 E -4 5.1 9 E -5 3 7 .8 6 E -6 B .07E -6 5 4 1 .3 6 1 * 2 4 6 0 .0 0 2.1 3.3 1 8 CHBUF 1 5 1 .08E -4 5.1 9 E -5 3 1 . 50E -5 1 .4 2 E -6 2 1335 .8 5 * 2 1 3 0 .0 0 2 .0 3.1 0 2 CHBUF 2 3 6 .9 8 E -5 4.5 7 E -5 8 5.2 6 E -6 6.6 9 E -6 6 4 6 .6 6 4 * 7 5 12 0 .0 0 7 .4 3.939* •Significant difference between groups at alpha=0.05. 227 CBRAYP 19.34 Table A.I. /arlab le (continued). Groups Mean <-------1 s t S.D . Mean n g r o u p ---- —> <------- 2nd S.D . n g r o u p -----—> F d f(n ) d f(d) df (c a lc .) < - f o r F -> t P ooled s A pprox. df fo r t t (c a lc .) 1st 2nd CHBUF 2 4 6.9B E -5 4 .57E -5 8 7 .8 6 E -6 8.0 7 E -6 5 3 2 .0 6 9 ® 7 4 11 0 .0 0 7 .7 CHBUF 2 5 6.9B E -5 4 .57E -5 8 1 . 50E-5 1 .4 2 E -6 2 1035.75® 7 1 8 0 .0 0 7 .1 CHBUF 3 4 5 .2 6 E -6 6.S 9E -6 6 7 .8 6 E -6 8.0 7 E -6 5 1.455 4 5 9 0 .0 0 7 .8 -0 .5 7 4 CHBUF 3 5 5 .2 6 E -6 6 .69E -6 6 1 .5 0 E -5 1 .4 2 E -6 2 2 2.196 5 1 6 0 .0 0 5 .9 -3 .3 4 7 * CHBUF 4 5 7 .8 6 E -6 B .07E -6 5 1 . 50E -5 1 .42E-6 2 32.298 4 1 5 0 .0 0 4 .5 -1 .9 0 6 CK 1 2 88.91 2 8 .9 6 3 3 4 0 .2 4 138 .6 6 6 2 2.925 7 2 9 51 .8 0 8 .3 -4 .8 5 2 * 3 .7 4 1 ® 3.385* 1 3 88.91 28 .9 6 3 2 22.36 2 68.45 6 85 .9 2 7 ® 5 2 7 110.86 5 .2 -1 .2 0 4 1 4 88.91 28.96 3 570.38 267.97 5 8 5 .6 2 0 ® 4 2 6 121 .0 0 4 .2 -3 .9 7 9 * -3 .5 1 8 * CK 1 5 8B.91 2 8 .9 6 3 450.19 143.29 2 24.481 1 2 3 102.69 1.1 CK 2 3 3 40.24 138 .6 6 8 222.36 2 6 8 .4 5 6 3.7 4 8 5 7 12 120.06 7 .0 0 .9 8 2 CK 2 4 3 40.24 138.66 8 570.38 267.97 5 3 .7 3 5 4 7 11 129.48 5 .4 -1 .7 7 7 CK 2 5 340.24 138.66 8 45 0 .1 9 143.29 2 1.068 1 7 8 112.56 1.5 -0 .9 7 7 CK 3 4 22 2.36 2 68.45 6 570.38 267.97 5 1 .004 5 4 9 162.40 8 .6 -2 .1 4 3 -1 .5 2 6 CK 3 5 2 2 2.36 2 68.45 6 450.19 143.29 2 3.5 1 0 5 1 6 149.25 3 .7 CK 4 5 570 .3 8 2 6 7.97 5 4 5 0 .1 9 143.29 2 3 .4 9 7 4 1 5 156.93 3 .9 0 .7 6 6 CMG 1 2 2 7 5.85 156.86 3 1286.62 8 26.33 8 27.751 7 2 9 3 0 5 .8 7 8. 1 -3 .3 0 5 * CMG 1 3 275.85 156.86 3 9 3 3 .4 4 1235.97 6 62 .0 8 6 ® 5 2 7 5 1 2 .6 5 5 .3 -1 .2 8 3 CMG 1 4 2 7 5.85 156.86 3 2742.50 1158.58 5 54 .5 5 4 ® 4 2 6 525.99 4 .2 -4 .6 9 0 * CMG 1 5 2 75.85 1 5 6.86 3 2 3 1 6 .3 7 2109.96 2 180.936® 1 2 3 1 4 9 4 .7 1 1.0 -1 .3 6 5 CMG 2 3 1286.62 8 2 6 .3 3 8 9 3 3 .4 4 1235.97 6 2.237 5 7 12 5 8 3 .0 6 8 .3 0 .6 0 6 CMG 2 4 1286.62 826.33 8 2742.50 1158.58 5 1.9 6 6 4 7 11 594.82 6 .6 -2 .4 4 8 * CMG 2 5 1286.62 8 2 6 .3 3 8 2316.37 2 1 0 9 .9 6 2 6 .5 2 0 1 7 8 1520.30 1.1 -0 .6 7 7 CMG 3 4 9 3 3 .4 4 1235.97 6 2742.50 1158.58 5 1.138 5 4 9 723.23 8 .8 -2 .5 0 1 * CMG 3 5 9 3 3 .4 4 1235.97 6 231 6 .3 7 2109.96 2 2 .9 1 4 1 5 6 1574.98 1.2 -0 .8 7 8 CMG 4 5 2 742.50 1158.58 5 2316.37 2109.96 2 3 .3 1 7 1 4 5 1579.38 1.3 0 .2 7 0 •Significant difference between groups at a1pha=0.05. 228 CK CK Table A.I. V ariab le (continued). Groups 1st 2nd Mean <-------1 s t n S .D . g r o u p — -> Mean <-------2nd S.D . n g r o u p ----- - > F d f(n ) d f(d) df (c a lc .) < - f o r F -> t P ooled s A pprox df f o r t t (c a lc .) CTKN 1 2 5 81.97 9 8 .2 8 3 1277.38 5 53.73 8 3 1 .7 4 4 7 2 9 2 0 3.83 8 .0 -3 .4 1 2 * CTKN 1 3 5 81.97 9 8 .2 8 3 94 4 .8 4 1021.90 6 108.115® 2 7 4 21.03 5 .2 -0 .8 6 2 CTKN 1 4 5 81.97 9 8 .2 8 3 2 18 1 .6 6 1618.97 5 271.361* 5 4 2 6 7 2 6 .2 5 4 .0 -2 .2 0 3 CTKN 1 5 5 8 1 .9 7 9 8 .2 8 3 2283.36 1965.52 2 3 9 9 .9 6 7 ® 1 2 3 1390.99 1 .0 -1 .2 2 3 CTKN 2 3 1277.38 5 53.73 8 94 4 .8 4 1021.90 6 3 .4 0 6 5 7 12 4 6 0 .8 4 7 .2 0.7 2 2 CTKN 2 4 1277.38 553.73 8 2181.66 1618.97 5 8 .5 4 8 ® 4 7 11 7 5 0 .0 3 4 .6 -1 .2 0 6 -0 .7 1 7 CTKN 2 5 1277.38 553.73 8 2283.36 1965.52 2 12.600® 1 7 8 1403.55 1.0 CTKN 3 4 9 4 4 .8 4 1021.90 6 2181.66 1618.97 5 2.5 1 0 4 5 9 635.62 6 .5 -1 .4 8 0 CTKN 3 5 9 4 4 .8 4 1021.90 6 228 3 .3 6 1965.52 2 3.6 9 9 1 5 6 1451.10 1 .2 -0 .9 2 2 4 5 2 1 8 1 .6 6 16 18.97 5 2283.36 1965.52 2 1 4 5 1 5 6 7 .1 1 1 .6 -0 .0 6 5 1 2 6 9 0 .6 7 11.20 3 1 2 0 7.94 446.87 8 1591.94® 7 2 9 158 .1 2 7 .0 -3 .2 7 1 ® CTKP 1 3 690.67 11.20 3 1015.08 783.83 6 4 8 9 7 .8 8 ® 5 2 7 3 2 0 .0 6 5 .0 -1 .0 1 4 CTKP 1 4 690.67 11.20 3 2246.86 1091.06 5 9 4 8 9 .8 9 ® 4 2 6 48 7 .9 8 4 .0 -3 .1 8 9 ® CTKP 1 5 690 .6 7 11 . 2 0 3 2300.10 1618.63 2 2 0 8 8 6 .2 ® 1 2 3 1144.56 1 .0 -1 .4 0 6 CTKP 2 3 1207.94 4 46.87 8 1015.08 7 83.83 6 3.0 7 7 5 7 12 356.88 7 .4 ■ CTKP 2 4 1207.94 446.87 8 224 6 .8 6 1091.06 5 .9 6 1 ® 4 7 11 5 1 2 .8 8 4 .9 -2 .0 2 6 1.474 0.5 4 0 CTKP 2 5 1207.94 446.87 8 230 0 .1 0 1618.63 5 2 13.120® 1 7 8 11 5 5.40 1 .0 -0 .9 4 5 CTKP 3 4 1015.08 7 83.83 6 2 2 4 6.86 1091.06 5 1.938 4 5 9 583 .5 1 7.1 -2 .1 1 1 CTKP 3 5 1015.08 783.83 6 2 3 0 0 .1 0 1618.63 2 4 .2 6 4 1 5 6 1 1 8 8.44 1.2 -1 .0 8 1 CTKP 4 5 2 2 4 6 .8 6 1091.06 5 2300.10 1618.63 2 2 .2 0 1 1 4 5 1 2 4 4 .2 1 1 .4 -0 .0 4 3 KSUM 1 2 196.23 40 .1 2 3 688.74 452.32 8 127.107® 7 2 9 161.59 7 .3 -3 .0 4 8 ® KSUM 1 3 196.23 4 0 .1 2 3 1119.70 6 05.25 6 2 2 7 .5 8 7 ® 5 2 7 248.18 5. 1 -3 .7 2 1 * KSUM 1 4 196.23 4 0 .1 2 3 1712.58 413 .4 1 5 106.179® 4 2 6 186.33 4. 1 -8.1 3 8 ® KSUM 1 5 196.23 4 0 .1 2 3 1 1 1 2 .6 1 143 .9 5 2 12.874 1 2 3 104.39 1. 1 -8 .7 7 8 KSUM 2 3 6 88.74 4 5 2 .3 2 8 1119.70 605.25 6 1 .7 9 1 5 7 12 294 .3 3 8 .9 -1 .4 6 4 *S1gn1fleant difference between groups at alpha=0.05. 229 CTKN CTKP Table A.I. V ariab le (continued). Groups Mean <-------1 s t Mean n S.D . g r o u p — —> <------- 2 n d S.D . n g r o u p — —> F d f(n ) d f(d) df (c a lc .) < - f o r F -> t s 4 11 2 44.45 9 .3 1 8 189.57 6 .4 -2 .2 3 6 5 4 9 3 08.60 8 .7 -1 .9 2 1 5 1 6 2 6 7.24 6 .0 0 .0 2 7 5 2 1 1.05 5 .0 2 .8 4 3 * 9 511.54 7 .6 -3 .2 1 4 * 1st 2n d KSUM 2 4 680.74 4 5 2 .3 2 8 1712.58 413.41 5 1.197 7 KSUM 2 5 6 8 8 .7 4 4 5 2 .3 2 8 1 1 1 2 .6 1 143.95 2 9 .8 7 3 7 KSUM 3 4 1119.70 6 05.25 6 1712.58 413.41 5 2 .1 4 3 143.95 2 17.679 Poo 1e d A pprox. df fo r t t (c a lc .) -4 .1 8 8 * KSUM 3 5 1119.70 6 0 5 .2 5 6 1 1 1 2 .6 1 KSUM 4 5 1712.58 413.41 5 1 1 1 2 .6 1 143 .9 5 2 8 .2 4 8 4 1 MGSUM 1 2 349.78 1 9 2 .9 1 3 1993.97 1412.15 8 53 .5 8 6 ® 7 2 MGSUM 1 3 3 49.78 1 9 2 .9 1 3 3 2 5 1.19 2 3 50.27 6 148.431® 5 2 7 965.94 5. 1 MGSUM 1 4 349.78 1 9 2 .9 1 3 6209.01 1162.89 5 3 6.339 4 2 6 5 3 1 .8 5 4 .4 MGSUM 1 5 3 49.78 19 2 .9 1 3 3738.51 26 4 5 .5 2 2 188.067 1 2 3 1873.98 1 .0 -1 .8 0 8 MGSUM 2 3 19 93.97 1412.15 8 3251.19 2 3 5 0 .2 7 6 2 .7 7 0 5 7 12 1081.62 7 .7 -1 .1 6 2 MGSUM 2 4 1993.97 1412.15 8 6209.01 1162.89 5 1.475 7 4 11 720.93 9 .9 -5 .8 4 7 * MGSUM 2 5 1993.97 14 12.15 8 3738.51 2 6 4 5 .5 2 2 3.5 1 0 1 7 8 1936.15 1 .1 -0 .9 0 1 -3 .0 0 4 * -1 1 .0 1 7 * 3 4 32 5 1 .1 9 2 3 5 0.27 6 6209.01 1162.89 5 4 .0 8 5 5 4 9 1091.37 7 .6 -2 .7 1 0 * 3 5 3 2 5 1 . 19 2 350.27 6 3738.51 2 6 4 5 .5 2 2 1 .267 1 5 6 2 102.38 1.6 -0 .2 3 2 MGSUM 4 5 6209.01 1162.89 5 3738.51 2 6 45.52 2 5 . 175 1 4 5 1 9 4 1 .6 1 1.2 1.272 OECA 1 2 110.55 11 .7 3 3 188.97 37 .7 6 8 10.363 7 2 9 14.97 9 .0 -5 .2 3 9 * OECA 1 3 110.55 11.73 3 2 63.86 6 3 .2 4 6 29.066 5 2 7 2 6 .6 9 5 .6 -5 .7 4 4 * OECA 1 4 110.55 11.73 3 2 40.89 149.77 5 163.025* 4 2 6 6 7 .3 2 4 .1 -1 .9 3 6 OECA 1 5 110.55 11.73 3 4 01.18 70 .9 2 2 3 6.555 1 2 3 5 0 .6 0 1 .0 -5 .7 4 3 * -2 .5 7 7 * OECA 2 3 188.97 37 .7 6 8 2 6 3 .8 6 63 .2 4 6 2.805 5 7 12 29.07 7 .6 OECA 2 4 188.97 3 7 .7 6 8 2 40.89 149.77 5 15.732* 4 7 11 68 .3 0 4 .3 -0 .7 6 0 OECA 2 5 188.97 3 7 .7 6 8 4 0 1 .1 8 7 0 .9 2 2 3 .5 2 8 1 7 8 5 1 .8 9 1. 1 -4 .0 8 9 * OECA 3 4 2 63.86 6 3 .2 4 6 240.89 149.77 5 5 .6 0 9 4 5 9 71 .7 8 5 .2 0 .3 2 0 OECA 3 5 2 63.86 6 3 .2 4 6 4 01.18 7 0 .9 2 2 1.258 1 5 6 5 6 .4 0 1.6 -2 .4 3 5 OECA 4 5 2 40.89 149.77 5 4 0 1 . IB 7 0 .9 2 2 4.4 6 0 4 1 5 83 .6 7 4 .3 -1 .9 1 6 'Significant difference between groups at a1pha=0.05. 230 MGSUM MGSUM Table A.I. V ariab le (continued). Groups 1st 2nd Mean <-------1 s t S.D . n Mean g r o u p ---- —> <-------2nd n S.D . g r o u p -----—> F d f (n) d f (d) df (c a lc .) < - f o r F -> t P ooled s A p p ro x . df fo r t t (c a lc .) OEK 1 2 12.00 1.03 3 17.99 3 .0 1 8 8 .5 4 0 7 2 9 1.22 9 .0 -4 .9 1 4 * OEK 1 3 12.00 1.03 3 14.44 3 .0 5 6 8 .7 6 8 5 2 7 1.38 6 .7 -1 .7 6 8 OEK 1 4 12.00 1.03 3 17.08 7 .6 5 5 5 5 .1 6 3 * 4 2 6 3 .4 7 4 .2 -1 .4 6 3 OEK 1 5 12.00 1.03 3 2 0 .1 6 2 .9 5 2 8 .2 0 3 1 2 3 2 . 17 1 .2 -3 .7 6 2 * OEK 2 3 17.99 3.01 8 14.44 3 .0 5 6 1.027 5 7 12 1.64 10.8 2.1 6 7 OEK 2 4 17.99 3.01 8 17.08 7 .6 5 5 6.459* 4 7 11 3.5 8 4 .8 0 .2 5 4 OEK 2 5 17.99 3.01 8 20 .1 6 2 .9 5 2 1 .0 4 1 7 1 8 2.3 4 1.6 -0 .9 2 7 OEK 3 4 14.44 3 .0 5 6 17.08 7 .6 5 5 6.291 4 5 9 3 .6 4 5.1 -0 .7 2 5 OEK 3 5 14.44 3 .0 5 6 2 0 .1 6 2 .9 5 2 1.069 5 1 6 2.4 3 1.8 -2 .3 5 5 OEK 4 5 17 .0 8 7 .6 5 5 2 0 .1 6 2 .9 5 2 6 .7 2 5 4 1 5 4.01 4 .8 -0 .7 6 9 OEMS 1 2 8 .2 3 0 .8 3 3 13.65 1.87 8 5 .0 7 6 7 2 9 0 .8 2 8 .3 -6 .6 3 8 * OEMS 1 ' 3 8 .2 3 0 .8 3 3 15.64 4 .0 2 6 23.458 5 2 7 1 .7 1 5 .8 -4 .3 3 4 * OEMS 1 4 8 .2 3 0.8 3 3 18.59 10.76 5 168.062* 4 2 6 4 .8 4 4. 1 -2 .1 4 2 OEMS 1 5 8 .2 3 0 .8 3 3 2 3 .2 7 3 .2 6 2 15.427 1 2 3 2.3 5 1. 1 -6 .3 8 8 * OEMG 2 3 13 .6 5 1 .8 7 8 15.64 4 .0 2 6 4.621 5 7 12 1.77 6 .6 -1 .1 2 5 OEMS 2 4 13.65 1 .8 7 8 18.59 10.76 5 3 3.109* 4 7 11 4 .8 6 4 .2 -1 .0 1 7 OEMG 2 5 13.65 1 .8 7 8 2 3 .2 7 3.2 6 2 3 .0 3 9 1 7 8 2 .4 0 1.2 -4 .0 1 1 * OEMG 3 4 15 .6 4 4.0 2 6 18.59 10.76 5 7.1 6 4 4 5 9 5 .0 8 4 .9 -0 .5 8 0 OEMG 3 5 15.64 4.0 2 5 23.27 3 .2 6 2 1.5 2 1 5 1 6 2 .8 3 2 .2 -2 .6 9 6 * OEMG 4 5 18.59 10.76 5 2 3 .2 7 3 .2 6 2 10.894 4 1 5 5 .3 4 5 .0 -0 .8 7 7 OETKN 1 2 145.82 4.9 2 3 195.43 4 5 .0 6 8 83.8 7 9 * 7 2 9 16. IB 7 .4 -3 .0 6 6 * OETKN 1 3 145.82 4 .9 2 3 143.82 3 8 .7 2 6 6 1.936* 5 2 7 16.06 5 .3 0 . 125 OETKN 1 4 145.82 4 .9 2 3 169 .4 0 102.88 5 437 .2 5 2 * 4 2 6 4 6 .1 0 4 .0 -0 .5 1 2 116.307* -2 .6 2 6 OETKN 1 5 145.82 4.9 2 3 244.64 53 .0 6 2 OETKN 2 3 195.43 4 5 .0 6 8 143.82 38 .7 2 6 ♦Significant difference between groups at alpha=0.05. 1 .3 5 4 1 2 3 37 .6 3 1 .0 7 5 12 2 2 .4 4 1 1.7 2.300* Table A.I. i/arlab le (continued). Groups Mean S.D . n Mean g r o u p — —> S.D . n F d f (n) d f (d) df (c a lc .) < - f o r ■ F -> t P ooled A pprox. df fo r t t 2nd OETKN 2 4 195.43 4 5 .0 6 8 169 .4 0 102.88 5 5 .2 1 3 4 7 11 48 .6 9 5 .0 0 .5 3 5 OETKN 2 5 195.43 45 .0 6 8 244.64 53 .0 6 2 1.387 1 7 8 4 0 .7 6 1.4 -1 .2 0 7 OETKN 3 4 1 4 3 . B2 3 8 .7 2 6 169 .4 0 102.88 5 7 .0 6 0 4 5 9 4 8 .6 5 4 .9 -0 .5 2 6 OETKN 3 5 143.62 3 8 .7 2 6 244.64 5 3 .0 6 2 1.878 1 5 6 40.71 1.4 -2 .4 7 6 * OETKN 4 5 169 .4 0 102.88 5 244.64 5 3 .0 6 2 3.7 5 9 4 1 5 59.37 4 .0 -1 .2 6 7 OETKP 1 2 9.4 7 0 .6 0 3 13.60 3.01 8 2 5 .167 7 2 9 1 .1 2 8 .2 -3 .6 9 0 * OETKP 1 3 9 .4 7 0 .6 0 3 11.29 2.4 3 6 16.403 5 2 7 1.05 6.1 -1 .7 3 2 OETKP 1 4 9.4 7 0 .6 0 3 12.93 6 .8 4 5 129.960® 4 2 6 3 .0 8 4. 1 -1 .1 2 4 OETKP 1 5 9 .4 7 0 .6 0 3 17.57 4.6 9 2 61 .1 0 0 ® 1 2 3 3 .3 3 1 .0 -2 .4 2 9 OETKP 2 3 13.60 3.01 8 11.29 2 .4 3 6 1 .534 7 5 12 1 .4 5 1 1 .9 1 .588 OETKP 2 4 13.60 3 .01 8 12.93 6.8 4 5 5 .1 6 4 4 7 11 3 .2 4 5 .0 0 .2 0 7 <------- 1 s t <------- 2n d g r o u p — —> 1st s (c a lc .) 2 5 13.60 3 .01 8 17.57 4.6 9 2 2.428 1 7 8 3 .4 8 1 .2 -1 .1 4 0 OETKP 3 4 11.29 2 .43 6 12.93 6.8 4 5 7 .9 2 3 * 4 5 9 3.2 2 4 .8 -0 .5 1 0 OETKP 3 5 11.29 2 .4 3 6 17.57 4.6 9 2 3.7 2 5 1 5 6 3 .4 6 1 .2 -1 .8 1 4 OETKP 4 5 12.93 6 .8 4 5 17.57 4.6 9 2 2 . 127 4 1 5 4.51 2 .9 -1 .0 2 8 0 1 CA 1 2 28.07 4 .3 0 3 43 .3 8 11 .8 7 8 7.6 2 0 7 2 9 4 .8 8 8 .9 -3 .1 4 0 * 0 1 CA 1 28 .0 7 4 .3 0 3 78 .3 6 7 .0 8 6 2.711 5 2 7 3.81 6 .4 -1 3 .1 9 9 * -6 .9 4 6 * OICA 1 3 4 28 .0 7 4 .3 0 3 7 2 .7 8 13.28 5 9.5 3 8 4 2 6 6 .4 4 5 .2 01 CA 1 5 26.07 4 .3 0 3 76 .4 9 14.17 2 10.859 1 2 3 10.32 1.1 -4 .6 9 1 * OICA 2 3 4 3 .3 8 11.87 8 78 .3 6 7 .0 8 6 2 .8 1 1 7 5 12 5 . 10 1 1 .6 -6 .8 6 5 * OICA 2 4 4 3 .3 8 11 .8 7 8 7 2 .7 8 13.28 5 1 .252 4 7 11 7.2 7 7 .9 -4 .0 4 3 * OICA 2 5 4 3 .3 8 11.87 8 7 6 .4 9 14.17 2 1.425 1 7 8 10.86 1.4 -3 .0 4 8 * OICA 3 4 7 8 .3 6 7 . OB 6 7 2 .7 8 13.28 .5 3 .5 1 8 4 5 9 6.61 5 .9 0 .8 4 5 OICA 3 5 7 8 .3 6 7.0 8 6 7 6 .4 9 14.17 2 4.0 0 6 1 5 6 10.43 1.2 0 .1 7 9 OICA 4 5 7 2 .7 8 13.28 5 76 .4 9 14.17 2 1.139 1 4 5 11.65 1.8 -0 .3 1 9 •Significant difference between groups at alpha=0.05. 232 OETKP Table A.i. V ariab le (continued). S.D . Mean n d f (n) d f (d) A pprox. Pooled t s 7 2 9 0.9 6 7 .9 -2 .5 8 7 * 1.284 2 5 7 0 .6 9 3 .6 -2 .9 1 0 * 5 4 .0 0 0 4 2 6 1.09 6 .0 -4 .9 5 5 * 0 .6 0 2 2.890 2 1 3 0 .7 3 3 .0 -4 .4 7 8 * 6 .2 3 0 .9 0 6 5 .6 5 4 7 5 12 0.8 4 9 .9 0.5 4 7 9.5 9 2 .0 4 5 1.100 7 4 11 1.19 9 .0 -2 .4 4 7 * 8 7 .4 6 0 .6 0 2 12.721 7 1 8 0 .8 7 7 .1 -0 .8 8 8 6 9 .5 9 2 .0 4 5 5 .1 3 8 4 5 9 0 .9 8 5 .3 -3 .4 1 6 * 0 .9 0 6 7 .4 6 0 .6 0 2 2 .2 5 0 5 1 6 0.5 6 2 .8 -2 .1 9 2 9 .5 9 2 .0 4 5 7 .4 6 0 .6 0 2 11.5 6 0 4 1 5 1.01 5 .0 2.1 1 7 3 .6 0 0.31 3 4 .6 1 1.17 8 1 4 .245 7 2 9 0 .4 5 8 .8 -2 .2 4 1 3 .6 0 0.31 3 5 .1 3 0 .7 0 6 5.0 9 9 5 2 7 0 .3 4 7 .0 -4 .5 3 7 * 3 .6 0 0.31 3 6 .2 0 1.04 5 11.2 5 5 4 2 6 0 .5 0 5.1 -5 .2 1 7 * 5 3 .6 0 0.31 3 5 .6 2 0.3 6 2 1 .3 4 9 1 2 3 0.31 2 .0 2 3 4.61 1.17 8 5 .1 3 0 .7 0 6 2 .7 9 4 7 5 12 0 .5 0 1 1 .6 -1 .0 3 4 -2 .5 5 4 * g r o u p — —> 1 2 4.21 1.02 3 6 .6 9 2 . 14 8 4.4 0 2 OIK 1 3 4.21 1.02 3 6 .2 3 0 .9 0 6 OIK 1 4 4.21 1.02 3 9.5 9 2 .0 4 OIK 1 5 4.21 1.02 3 7 .4 6 OIK 2 3 6 .6 9 2.1 4 6 OIK 2 4 6 .6 9 2 .1 4 8 OIK 2 5 6 .6 9 2 . 14 OIK 3 4 6 .2 3 0.9 0 OIK 3 5 6 .2 3 OIK 4 5 01 MG 1 2 OIMG 1 ' 3 OIMG 1 4 OIMG 1 OIMG (c a lc .) <- for df fo r t t (c a lc .) -6 .4 9 1 * OIMG 2 4 4.61 1. 17 8 6 .2 0 1 .0 4 5 1.2 6 6 7 4 11 0 .6 2 9 .5 OIMG 2 5 4.61 1.17 8 5 .6 2 0 .3 6 2 10.562 7 1 8 0 .4 9 6 .6 -2 .0 7 9 OIMG 3 4 5 .1 3 0 .7 0 6 6 .2 0 1.04 5 2 .2 0 7 4 5 9 0 .5 5 6 .8 -1 .9 6 0 OIMG 3 5 5 .1 3 0 .7 0 6 5 .6 2 0.3 6 2 3.781 5 1 6 0 .3 8 3 .9 -1 .2 8 0 OIMG 4 5 6 .2 0 1 .0 4 5 5 .6 2 0.3 6 2 8 .3 4 6 4 1 5 0 .5 3 5 .0 1.0 9 4 OITKN 1 2 21 .1 5 2.81 3 2 4 .2 5 3 .4 9 8 1.543 7 2 9 2.0 4 4 .5 -1 .5 2 1 OITKN 1 3 21.15 2.81 3 26.75 2 .0 0 6 1.974 2 5 7 1 .82 3.1 -3 .0 8 3 * OITKN 1 4 21.15 2.81 3 30 .1 9 5 .8 8 5 4 .3 7 9 4 2 6 3 .0 9 5 .9 -2 .9 2 6 * OITKN 1 5 21.15 2.81 3 3 4 .1 4 2 .4 9 2 1.2 7 4 2 1 3 2.3 9 2 .5 OITKN 2 3 2 4 .2 5 3 .4 9 8 2 6 .7 5 2 .0 0 6 3.0 4 5 7 5 12 1 .4 8 11.4 -5 .4 2 6 * -1 .6 9 0 233 OIK <-------1 s t <-------2nd g r o u p ---- —> 2nd • S i g n i f i c a n t d i f f e r e n c e b e tw ee n g r o u p s a t a l p h a = 0 . 0 5 . 1 F df Mean S.D . n F -> Groups 1st Table A.I. V ariab le (continued). Groups 1st 2nd Mean S .O . n Mean S .D . n <-------2nd g r o u p --------- > <-------1 s t g r o u p --------- > F d f(n ) df(d) df (c a lc .) < - f o r F -> t P ooled s A pprox. df fo r t t (c a lc .) OITKN 2 4 24.25 3.4 9 8 3 0 .1 9 5 .8 8 5 2 .8 3 9 4 7 11 2.9 0 5 .8 OITKN 2 5 24.25 3 .4 9 8 34 .1 4 2.4 9 2 1.9 6 5 7 1 8 2 .1 5 2.1 -4 .6 0 0 * OITKN 3 4 26 .7 5 2 .0 0 6 3 0 .1 9 5 .8 8 5 8 .644* 4 5 9 2 .7 5 4 .8 -1 .2 4 9 OITKN 3 5 26.75 2 .0 0 6 34 .1 4 2 .4 9 2 1.550 1 5 6 1 .9 4 1.5 -3 .8 0 8 * OITKN 4 5 30 .1 9 5 .8 8 5 3 4 . 14 2 .4 9 2 5 .5 7 6 4 1 5 3.1 6 4 .7 -1 .2 4 8 OITKP 1 2 2.0 0 0.4 4 3 2 .6 8 0 .5 2 8 1.3 9 7 7 2 9 0.31 4 .3 -2 .1 6 8 -2 .0 4 5 1 3 2.0 0 0 .4 4 3 2 .0 9 0.2 8 6 2 .4 6 9 2 5 7 0 .2 8 2 .8 -3 .5 5 4 * OITKP 1 4 2.0 0 0 .4 4 3 4 .2 6 1.00 5 5 .1 6 5 4 2 6 0.51 5 .8 -4 .3 9 4 * OITKP 1 5 2 .0 0 0 .4 4 3 3 .5 8 0 .9 9 2 5 .0 6 2 1 2 3 0 .7 4 1.3 -2 .1 2 2 OITKP 2 2.68 0 .5 2 8 2 .9 9 0 .2 8 6 3 .4 4 9 7 5 12 0 .2 2 1 1 .1 -1 .4 3 2 OITKP 2 3 4 2 .6 8 0 .5 2 8 4 .2 6 1 .00 5 3.698 4 7 11 0 .4 8 5 .4 OITKP 2 5 2.68 0 .5 2 a 3 .5 8 0 .9 9 2 3 .6 2 5 1 7 8 0 .7 2 1.1 -1 .2 4 3 OITKP 3 4 2 .99 0 .2 8 6 4 .2 6 1 .00 5 12.755* 4 5 9 0 .4 6 4 .5 -2 .7 5 1 * -0 .8 3 2 -3 .2 6 8 * OITKP 3 5 2 .9 9 0 .2 8 6 3 .5 8 0.9 9 2 12.501® 1 5 6 0.71 1. 1 OITKP 4 5 4 .2 6 1.00 5 3 .5 8 0 .9 9 2 1.020 4 1 5 0 .8 3 1 .9 - TKNSUM 1 2 2 9 6 3 .7 4 3 2 8 .8 6 3 4 5 49.42 1638.90 8 24.836 7 2 9 6 0 9 .7 5 TKNSUM 1 3 2 9 6 3 .7 4 3 2 8 .8 6 3 8 3 83.86 1412.19 6 18.440 5 2 7 6 06.98 6 .0 -8 .9 3 0 * TKNSUM 1 4 2 9 63.74 3 2 8 .8 6 3 8533.30 1436.40 5 19.078 4 2 6 6 69.85 4 .7 -8 .3 1 5 * TKNSUM 1 5 2 9 6 3 .7 4 328.86 3 7062.99 1342.35 2 1 6 .6 6 1 1 2 3 967.99 1. 1 -4 .2 3 5 * TKNSUM 2 3 454 9 .4 2 1638.90 8 8 3 8 3 .8 6 1412.19 6 1.347 7 5 12 8 17.39 11.7 -4 .6 9 1 * TKNSUM 2 4 4 5 4 9.42 1638.90 8 8 5 3 3 .3 0 1436.40 5 1.302 7 4 11 8 6 5 .1 0 9 .5 -4 .6 0 5 * TKNSUM 2 5 4 5 4 9 .4 2 1638.90 8 7062.99 1342.35 2 1 .4 9 1 7 1 8 1112.07 1.8 -2 .2 6 0 TKNSUM 3 4 8 3 8 3 .8 6 1412.19 6 8 5 3 3 .3 0 1436.40 5 1 .035 4 5 9 863.15 8 .6 -0 .1 7 3 TKNSUM 3 5 8 3 8 3.86 1412.19 6 7 0 6 2 .9 9 1342.35 2 1.107 5 1 6 1110.55 1 .8 1 .1 8 9 TKNSUM 4 5 8 5 3 3.30 1436.40 5 7 0 6 2 .9 9 1342.35 2 1.145 4 1 5 1146.12 2 .0 1.283 •Significant difference between groups at a 1pha=0.05. 8 .3 0 .8 1 9 -2 .6 0 1 * 234 OITKP Table A.I. V ariab le (continued). Groups 1st 2nd Mean <-------1 s t n S.O . g r o u p ---- -> Mean <-------2nd S.D . n g r o u p — —> F d f(n ) d f(d) df (c a lc .) < - f o r F -> t s P ooled A pp rox df fo r t t (c a lc .) TKPSUM 1 2 1 5 7 9 .3 1 181.29 3 2 370.37 880 .1 1 8 23.5 6 8 7 2 9 3 2 8 .3 0 8 .3 -2 .4 1 0 * TKPSUM 1 3 1 5 7 9 .3 1 181.29 3 4 8 0 6.16 1 4 5 7 .1 1 6 6 4 .6 0 1 ® 5 2 7 6 0 4 .0 0 5 .3 -5 .3 4 2 * TKPSUM 1 4 1 5 7 9 .3 1 181.29 3 5584.38 1542.83 5 72 .4 2 5 ® 4 2 6 697 .8 7 4 .2 -5 .7 3 9 * TKPSUM 1 5 1 5 7 9 .3 1 181.29 3 4862.28 281.94 2 2.419 1 2 3 225.17 1 .o -1 4 .5 8 0 * -3 .6 2 8 * TKPSUM 2 3 2 370.37 880.11 8 480 6 .1 6 1 4 5 7 .1 1 6 2 .7 4 1 5 7 12 6 7 1 .3 3 7 .7 TKPSUM 2 4 2370.37 880.11 8 5584.38 1542.83 5 3.0 7 3 4 7 11 756.89 5 .7 -4 .2 4 6 * TKPSUM 2 5 2370.37 880.11 8 4862.28 281.94 2 9.7 4 5 7 1 8 3 69.55 6 .4 -6 .7 4 3 * 3 4 4 8 0 6.16 1 4 5 7 .1 1 6 55 8 4 .3 8 1542.83 5 1 .1 2 1 4 5 9 911.00 8 .4 -0 .8 5 4 3 5 4 8 0 6 .1 6 1 4 5 7 .1 1 6 4 8 6 2.28 2 81.94 2 26.710 5 1 6 6 27.38 5 .8 -0 .0 8 9 TKPSUM 4 5 5584.38 1542.83 5 486 2 .2 8 281.94 2 29.945 4 1 5 718.20 4 .6 1.0 0 5 ATHICK 1 2 4.5 0 0 .8 7 3 3.91 1 .4 5 8 2.808 7 2 9 0 .7 2 6 .4 0 .8 2 9 ATHICK 1 3 4 .5 0 0 .8 7 3 5 .7 9 2 .1 6 6 6 .2 4 7 5 2 7 1.02 6 .9 -1 .2 7 2 5 .0 -0 .6 9 4 ATHICK 1 4 4 .5 0 0 .8 7 3 5 .5 0 3 .0 2 5 12.167 4 2 6 1 .4 4 ATHICK 1 5 4 .5 0 0.8 7 3 2.8 7 0 .8 8 2 1 .0 4 2 1 2 3 0 .8 0 2 .2 2.030 ATHICK 2 3 3.91 1 .4 5 8 5 .7 9 2 .1 6 6 2.2 2 5 5 7 12 1.02 8 .3 -1 .8 4 5 ATHICK 2 4 3.91 1 .4 5 8 5 .5 0 3 .0 2 5 4 .3 3 3 4 7 11 1 .4 5 5 .2 -1 .1 0 3 ATHICK 2 5 3.91 1 .45 8 2.8 7 0 .8 8 2 2.6 9 6 7 1 8 0.81 2 .6 1.275 ATHICK 3 4 5 .7 9 2 .1 6 6 5.5 0 3 .0 2 5 1 .948 4 5 9 1 .6 1 7.1 0 .1 8 1 ATHICK 3 5 5 .7 9 2.1 6 6 2.8 7 0 .8 8 2 5 .9 9 7 5 1 6 1.08 5 .0 2.6 9 5 * ATHICK 4 5 5 .5 0 3.0 2 5 2 .8 7 0 .8 8 2 11.680 4 1 5 1 .4 9 5 .0 1.764 ETHICK 1 2 2.5 0 2.6 0 3 5.5 3 1.93 8 1.8 1 3 2 7 9 1 .6 5 2 .9 -1 .8 3 6 ETHICK 1 3 2 .5 0 2.6 0 3 2 .9 5 1.72 6 2 .2 8 4 2 5 7 1.66 2 .9 -0 .2 7 2 ETHICK 1 4 2 .5 0 2 .6 0 3 3 .6 4 2 .8 6 5 1 .2 1 2 4 2 6 1.97 4 .7 -0 .5 7 8 ETHICK 1 5 2 .5 0 2 .6 0 3 5 .4 0 1 .5 6 2 2 .7 8 9 2 1 3 1 .86 3 .0 -1 .5 5 9 ETHICK 2 3 5 .5 3 1.93 8 2 .9 5 1.72 6 1 .2 6 0 7 5 12 0 .9 8 11.5 •Significant difference between groups at a1pha=0.05. 2.6 3 1 * 235 TKPSUM TKPSUM Table A.I. V ariab le (continued). Groups Mean <-------1 s t S.D . n Mean g r o u p — —> <-------2n d S .D . n g r o u p — —> F d f(n ) df(d ) df (c a lc .) < - f o r F -> t P ooled s A pprox. df fo r t t (c a lc .) 1st 2nd ETHICK 2 4 5 .5 3 1.93 8 3 .6 4 2 .8 6 5 2.1 9 7 4 7 11 1.45 6 .3 1 .301 ETHICK 2 5 5 .5 3 1.93 8 1.56 2 1.538 7 1 8 1.29 1.9 0 .0 9 7 ETHICK 3 4 2 .9 5 1.72 6 5 .4 0 3 .6 4 2 .8 6 5 2.7 6 8 4 5 9 1.46 6 .3 -0 .4 7 3 ETHICK 3 5 2 .9 5 1.72 6 5 .4 0 1 .56 2 1 .2 2 1 1 6 1.30 1.9 -1 .8 7 8 ETHICK 4 5 3 .6 4 2 .8 6 5 5 .4 0 1 .56 2 3 .3 7 9 5 4 1 5 1.69 3 .8 -1 .0 4 3 BTHICK 1 2 4 5 .7 5 3 .0 3 3 6 0 .8 4 2 6 .3 7 8 7 5.703 ® 7 2 9 9 .4 9 7 .5 -1 .5 9 1 BTHICK 1 3 45 .7 5 3 .0 3 3 1 0 9 .7 1 18.53 6 3 7.362 5 2 7 7 .7 6 5 .5 -8 .2 3 8 * BTHICK 1 4 4 5 .7 5 3 .0 3 3 80 .4 0 1 3 .8 1 5 20.764 4 2 6 6 .4 2 4 .6 -5 .3 9 7 * BTHICK 1 5 4 5 .7 5 3 .0 3 3 87 .7 5 5 0 .5 6 2 2 7 8.218 ® 1 2 3 3 5 .7 9 1 .0 -1 .1 7 3 BTHICK 2 3 6 0 .8 4 26 .3 7 8 1 0 9 .7 1 18.53 6 2 .0 2 6 7 5 12 1 2 .0 1 12.0 BTHICK 2 4 6 0 .8 4 26 .3 7 8 80 .4 0 1 3 .8 1 5 3.6 4 6 7 '4 11 11 .1 8 10.8 -1 .7 4 9 BTHICK 2 5 6 0 .8 4 26 .3 7 8 87 .7 5 5 0 .5 6 2 3.6 7 5 1 7 8 3 6 .9 5 1.1 -0 .7 2 8 BTHICK 3 4 1 0 9 .7 1 18.53 6 80 .4 0 1 3 .8 1 5 1.799 5 4 9 9 .7 7 8 .9 BTHICK 3 5 1 0 9 .7 1 18.53 6 8 7 .7 5 5 0 .5 6 2 7.447 1 5 6 3 6 .5 4 1.1 0.601 BTHICK 4 5 80 .4 0 13 .81 5 8 7 .7 5 5 0 .5 6 2 13.399® 1 4 5 36.28 1.1 -0 .2 0 3 BSTHICK 1 2 41 . 9 7 6.6 6 3 3 7 .9 8 6 .6 8 8 1.007 7 2 9 4.51 3 .6 0.8 8 5 BSTHICK 1 3 41 .9 7 6.6 6 3 2 4 .0 7 12.30 6 3 .4 1 2 5 2 7 6 .3 2 6 .8 2 .8 3 1 * BSTHICK 1 4 41 .9 7 6.6 6 3 4 .8 0 6.6 6 5 1.000 2 4 6 4 .8 6 4 .3 7 .6 4 4 * BSTHICK 1 5 41 .9 7 6.6 6 3 2 8 .8 0 16.97 2 6 .4 9 6 1 2 3 12.60 1.2 1.045 BSTHICK 2 3 37 .9 8 6 .6 8 8 2 4 .0 7 12.30 6 3 .3 8 9 5 7 12 5 .5 5 7 .2 2 .5 0 6 * 8.729* -4 .0 7 0 * BSTHICK 2 4 37.98 6 .6 8 8 4 .8 0 6 .6 6 5 1.007 7 4 11 3.8 0 8 .7 BSTHICK 2 5 3 7 .9 8 6 .6 8 8 2 8 .8 0 16.97 2 6 .4 5 3 1 7 8 12.23 1. 1 0 .7 5 0 BSTHICK 3 4 24.07 12.30 6 4 .8 0 6.6 6 5 3 .4 1 3 5 4 9 5 .8 4 7 .9 3.300* BSTHICK 3 5 24.07 12.30 6 2 8 .8 0 16.97 2 1.904 1 5 6 1 3 .0 1 1.4 -0 .3 6 4 BSTHICK 4 5 4 .8 0 6 .6 6 5 2 8 .8 0 16.97 2 6 .4 9 7 1 4 5 12.36 1 .1 -1 .9 4 1 •Significant difference between groups at a1pha=0.05. 236 3.001* Table A.I. V a riab le (continued). Groups Mean S.O . n Mean <-------1 s t g r o u p ----------> S.D . n <-------2 n d g r o u p --------- > F d f(n ) d f(d) df (c a lc .) < - f o r F -> t 1st 2nd BTTHICK 1 2 0 .0 0 0 .0 0 3 1.79 5 .0 6 8 BTTHICK 1 3 0 .0 0 0 .0 0 3 0.0 0 0 .0 0 6 BTTHICK 1 4 0 .0 0 0.0 0 3 3 7 .9 8 12.97 5 . BTTHICK 1 5 0 .0 0 0 .0 0 3 15.50 2 1 .9 2 2 . 1 BTTHICK 2 3 1 .7 9 5 .0 6 8 0 .0 0 0 .0 0 6 . 7 BTTHICK 2 4 1.79 5 .0 6 8 3 7 .9 8 12.97 5 6 .5 7 9 ® 4 7 18.798® 2 5 1.79 5.0 6 a 15.50 2 1 .9 2 2 3 4 0 .0 0 0 .0 0 6 3 7 .9 8 12.97 5 BTTHICK 3 5 0 .0 0 0.0 0 6 15.50 2 1 .9 2 2 BTTHICK 4 5 3 7 .9 8 12.97 5 15.50 2 1 .9 2 2 CTHICK 1 2 99 .7 5 3 .8 5 3 8 7 .5 0 19.30 8 CTHICK 1 3 99 .7 5 3 .8 5 3 3 6 .7 9 14.32 6 CTHICK 1 4 9 9 .7 5 3 .8 5 3 6 4 .1 5 15.29 CTHICK 1 5 9 9 .7 5 3 .8 5 3 5 9 .5 0 CTHICK 2 3 8 7 .5 0 19.30 6 3 6 .7 9 CTHICK 2 4 8 7 .5 0 19.30 8 CTHICK 2 5 8 7 .5 0 19.30 8 CTHICK 3 4 3 6 .7 9 14.32 6 CTHICK 3 5 3 6 .7 9 14.32 6 s 7 2 9 1 .7 9 2 5 7 0 .0 0 4 2 6 5 .8 0 2 3 5 12 A pprox. df fo r t t (c a lc .) 7 .0 -1 .000 4 .0 - 6 .5 4 9 ® 15.50 1.0 -1 .0 0 0 1.79 7 .0 1 .000 11 6 .0 7 4 .8 - 5 .9 6 4 ® -0 .8 7 9 . 1 7 8 15.60 1.0 4 5 9 5.8 0 4 .0 -6 .5 4 9 * 1 5 6 15.50 1.0 -1 .0 0 0 2.857 1 4 5 16.55 1.3 1 .3 5 8 2 5.160 7 2 9 7.1 8 8 .2 1.707 13.8 4 9 5 2 7 6.2 6 6 .2 10.065® 5 15.7 9 0 4 2 6 7 .1 9 4 .8 4.9 5 0 * 4 9 .8 5 2 167.772® 14 .3 2 6 6 4 . 15 15.29 5 9 .5 0 4 9 .8 5 6 4 . 15 15.29 59 .5 0 4 9 .8 5 . 1 2 3 35.32 1 .0 1.817 7 5 12 8 .9 9 12.0 5 1.5 9 3 7 4 11 9.6 6 10.2 2 6 .6 6 8 1 7 8 3 5 .9 0 1.1 5 1. 140 4 5 9 9 .0 0 8 .4 -3 .0 4 0 * 2 12.115® 1 5 6 35.73 1.1 -0 .6 3 6 10.625 1 4 5 35.91 1.1 0 .1 2 9 7 2 9 0 .6 2 7 .0 0 .2 0 2 1. 140 5.642* 2.417® 0 .7 8 0 CTHICK 4 5 6 4 .1 5 15.29 5 5 9 .5 0 4 9 .8 5 2 ACLAV 1 2 5 .0 0 0 .0 0 3 4.8 7 1.75 8 ACLAY 1 3 5 .0 0 0 .0 0 3 11.67 1 .46 6 5 2 7 0 .6 0 5 .0 -1 1 .1 5 9 * ACLAY 1 4 5 .0 0 0 .0 0 3 8.9 5 1.14 5 . 4 2 6 0.51 4 .0 -7 .7 6 S * ACLAY 1 5 5 .0 0 0 .0 0 3 9.7 5 2 .1 2 2 . 1 2 3 1.50 1.0 -3 .1 6 7 ACLAY 2 3 4.8 7 1.75 8 11.67 1.46 6 7 5 12 0 .8 6 11.8 •Significant difference between groups at a1pha=0.05. 1.434 -7 .8 9 0 * 237 BTTHICK BTTHICK . P ooled Table A.I. V a riab le (continued). Groups Mean S .D . n Mean S .D . n F d f(n) d f(d ) df (c a lc .) < - f o r F -> t P ooled A pprox. t 1st 2nd ACLAV 2 4 4 .8 7 1 .7 5 8 8 .9 5 1.14 5 2.3 7 4 7 4 11 0 .8 0 10.9 -5 .0 8 3 * ACLAV 2 5 4 .8 7 1.75 8 9 .7 5 2 .1 2 2 1.465 1 7 8 1.62 1.4 -3 .0 0 4 * 3 .4 6 2 * <-------1 s t g r o u p ----------> <-------2 n d g r o u p --------- > s df fo r t (c a lc .) ACLAY 3 4 11.67 1.46 6 8 .9 5 1.14 5 1.655 5 4 9 0 .7 8 9 .0 ACLAV 3 5 11.67 1.46 6 9 .7 5 2 .1 2 2 2.101 1 5 6 1 .61 1 .3 1.187 ACLAY 4 5 6 .9 5 1. 14 5 9 .7 5 2 .1 2 2 3 .4 7 8 1 4 5 1.58 1.2 -0 .5 0 5 ACSFR 1 2 0 .1 7 0 .1 9 3 0 .2 5 0.21 8 1.240 7 2 9 0 .1 3 4 .0 -0 .5 4 5 ACSFR 1 3 0 . 17 0 .1 9 3 2 .2 4 1.27 6 4 5 .3 9 5 ® 5 2 7 0 .5 3 5 .4 -3 .8 8 8 * ACSFR 1 4 0 . 17 0 .1 9 3 0 .8 4 0.6 0 5 10.154 4 2 6 0 .2 9 5 .1 -2 .2 9 1 ACSFR 1 5 0 .1 7 0 .1 9 3 0 .8 2 0 .5 3 2 7 .8 9 5 1 2 3 0 .3 9 1 .2 -1 .6 6 4 2 3 0 .2 5 0.21 8 2 .2 4 1.27 6 36 .6 0 0 ® 5 7 12 0 .5 2 5 .2 -3 .7 9 6 * ACSFR 2 4 0 .2 5 0.21 8 0 .8 4 0.6 0 5 B. 187® 4 7 11 0 .2 8 4 .6 -2 .1 2 5 ACSFR 2 5 0 .2 5 0.21 8 0 .8 2 0 .5 3 2 6 .3 6 5 1 7 8 0.3 8 1 .1 -1 .5 1 2 ACSFR 3 4 2 .2 4 1.27 6 0 .8 4 0 .6 0 5 4 .4 7 0 5 4 9 0.5 8 7 .4 ACSFR 3 5 2.2 4 1 .2 7 6 0 .8 2 0 .5 3 2 5 .7 5 0 5 1 6 0 .6 4 4 .9 2 .2 0 6 ACSFR 4 5 0.8 4 0 .6 0 5 0 .8 2 0 .5 3 2 1 .2 8 6 4 1 5 0 .4 6 2 .2 0.0 3 3 ASAND 1 2 8 7 .6 7 4 .0 4 3 7 5 .6 9 2 6 .4 9 8 4 2 .9 6 3 ® 7 2 9 9 .6 5 7 .8 1 .2 4 1 ASAND 1 3 8 7 .6 7 4 .0 4 3 60 .5 0 4 .3 2 6 1.145 5 2 7 2.9 3 4 .4 9 .285* ASAND 1 4 87 .6 7 4.0 4 3 60 .3 5 14 .4 8 5 12.845 4 2 6 6 .8 9 4 .9 3.968* ASAND 1 5 8 7 .6 7 4.0 4 3 6 4 .3 7 11.84 2 8.5 8 9 1 2 3 8 .6 9 1.2 2.6 7 9 ASAND 2 3 75.69 26 .4 9 8 6 0 .5 0 4 .3 2 6 3 7 .5 2 6 ® 7 5 12 9 .5 3 7 .5 1.594 ASAND 2 4 75.69 2 6 .4 9 8 6 0 .3 5 14.48 5 3 .3 4 5 7 4 11 11.39 1 0 .9 1.347 2.3 9 0 * ASAND 2 5 75 .6 9 2 6 .4 9 8 6 4 .3 7 11.84 2 5 .0 0 2 7 1 8 12.56 4.1 0 .9 0 0 ASAND 3 4 6 0 .5 0 4 .3 2 6 60 .3 5 14.48 5 11 .219® 4 5 9 6.71 4 .6 0 .0 2 2 ASAND 3 5 6 0 .5 0 4.3 2 6 6 4 .3 7 11.84 2 7 .5 0 2 1 5 6 8.5 6 1.1 -0 .4 5 3 ASAND 4 5 6 0 .3 5 14.48 5 6 4 .3 7 11.84 2 1.4 9 6 4 1 5 10.59 2 .3 -0 .3 8 0 •Significant difference between groups at a 1pha=0.05. 238 ACSFR Table A.I. V ariab le (continued). Groups Mean S .D . n Mean S .D . <------- 2 n d g r o u p — — > n <-------1 s t g r o u p --------- > P ooled A pprox. t F d f(n) d f(d ) df (c a lc .) <- f o r F -> t s 2 9 2 .9 5 4 .6 0 .1 3 4 5 7 2 .6 1 3 .1 -7 .8 5 1 * 4 6 2 .6 0 3 .0 -5 .1 3 4 * 2 3 7 .2 6 1 .2 -2 .5 5 4 7 5 12 2 . 15 11.3 -9 .7 1 4 * 3 .9 0 3 7 4 11 2 . 14 10.8 -6 .4 2 5 * 2 3 .6 3 1 1 7 8 7.11 1.1 -2 .6 6 4 * 2.5 8 5 1.236 5 4 9 1.65 8 .9 4.335* 9 .7 2 2 11.470® 1 5 6 6 .9 7 1.1 0.281 14.175® -0 .7 4 2 1s t 2nd ASILT 1 2 7 .3 3 4 .0 4 3 6 .9 4 5 .1 0 8 1.5 9 4 7 ASILT 1 3 7 .3 3 4 .0 4 3 2 7 .8 3 2 .8 7 6 1 .9 8 2 2 ASILT 1 4 7 .3 3 4 .0 4 3 2 0 .7 0 2 .5 8 5 2.4 4 9 2 ASILT 1 5 7 .3 3 4 .0 4 3 25 .8 7 9 .7 2 2 5 .7 8 8 1 ASILT 2 3 6 .9 4 5 .1 0 8 27.83 2 .8 7 6 3 .1 5 8 ASILT 2 4 6 .9 4 5 .1 0 8 2 0 .7 0 2.5 8 5 ASILT 2 5 6 .9 4 5 .1 0 8 25 .8 7 9.7 2 ASILT ASILT 3 4 2 7 .8 3 2 .8 7 6 2 0 .7 0 3 5 2 7 .8 3 2 .8 7 6 25 .8 7 df fo r t (c a lc .) 4 5 20.70 2.5 8 5 25.87 9 .7 2 2 1 4 5 6 .9 7 1.1 1 2 5 .0 0 0 .0 0 3 6.7 5 3 .0 2 8 7 2 9 1.07 7 .0 -1 .6 3 8 BCLAY 1 3 5 .0 0 0 .0 0 3 15.92 5 .9 8 6 5 2 7 2 .4 4 5 .0 -4 .4 6 9 * -2 4 .9 3 8 * BCLAY 1 4 5.0 0 0 .0 0 3 2 0 .6 2 1.40 5 4 2 6 0 .6 3 4 .0 BCLAY 1 5 5.0 0 0 .0 0 3 12.43 5 .9 8 2 1 2 3 4 .2 2 1 .0 ' BCLAY 2 3 6.7 5 3 .0 2 8 15.92 5 .9 8 6 3 .9 3 8 5 7 12 2 .6 7 6 .9 -3 .4 4 0 * BCLAY 2 4 6 .7 5 3 .0 2 8 20.62 1.40 5 4.6 3 3 7 4 11 1 .2 4 10.5 -1 1 .2 2 2 * -1 .7 5 7 BCLAY 2 5 6 .7 5 3.0 2 8 12.43 5 .9 8 2 3.9 2 6 1 7 8 4 .3 6 1.1 -1 .3 0 3 BCLAY 3 4 15.92 5 .9 8 6 2 0 .6 2 1 .4 0 5 18.243* 5 4 9 2 .5 2 5 .6 -1 .8 6 7 BCLAY 3 5 15.92 5 .9 8 6 12.43 5 .9 8 2 1.003 5 1 6 4.8 8 1.7 0 .7 1 5 BCLAY 4 5 2 0 .6 2 1.40 5 12.43 5 .9 8 2 18.189® 1 4 5 4.2 7 1 .0 1.920 BCSFR 1 2 2 . 17 0 .6 6 3 5 .4 2 3 .5 7 8 2 9.377 ® 7 2 9 1.32 8 .1 -2 .4 6 7 * BCSFR 1 3 2 . 17 0 .6 6 3 8 .7 9 8.51 6 167.003* 5 2 7 3.5 0 5.1 -1 .8 9 5 BCSFR 1 4 2.1 7 0 .6 6 3 2 .7 0 2 .1 2 5 10.404 4 2 6 1.02 5 .1 -0 .5 2 1 BCSFR 1 5 2 . 17 0 .6 6 3 1.95 0.4 2 2 2.4 1 1 2 1 3 0 .4 8 3 .0 0.4 4 7 BCSFR 2 3 5.4 2 3 .5 7 8 8 .7 9 8.51 6 5.685* 5 7 12 3.7 0 6 .3 -0 .9 1 2 •Significant difference between groups at alpha=0.05. 239 ASILT BCLAY Table A.I. V ariab le (continued). Groups Mean <------- 1 s t S.D . n Mean g r o u p ---- ■-> <-------2 n d S .D . n g r o u p ---- —> F d f (n) d f (d) df (c a tc .) < - f o r F -> t P ooled s A pprox. df fo r t t (c a lc .) 1s t 2nd BCSFR 2 4 5 .4 2 3 .5 7 8 2 .7 0 2 .1 2 5 2.8 2 4 7 4 11 1.58 11.0 BCSFR 2 5 5 .4 2 3 .5 7 8 1.95 0 .4 2 2 70.825 7 1 8 1.30 7 .6 2.673® 1 .6 9 1 1 .7 2 1 BCSFR 3 4 8.7 9 8.51 6 2 .7 0 2.1 2 5 5 4 9 3 .6 0 5 .7 BCSFR 3 5 8.7 9 8.51 6 1.95 0 .4 2 2 402.624 5 1 6 3 .4 9 5. 1 1 .961 BCSFR 4 5 2 .7 0 2.1 2 5 1 .95 0 .4 2 2 25.083 4 1 5 1.00 4 .7 0.7 5 3 16.051® BSAND 1 2 8 9 .6 7 0 .5 6 3 83 .4 6 7 .3 8 8 171.723® 7 2 9 2 .6 3 7 .2 2 .365® BSAND 1 3 8 9 .6 7 0 .5 6 3 6 1 .3 2 12.53 6 49 5 .7 5 7 ® 5 2 7 5 .1 3 5 .0 5.5 31® 8.875* 1 4 8 9 .6 7 0 .5 6 3 5 1 .7 2 9 .5 3 5 28 6 .9 1 4 ® 4 2 6 4 .2 8 4 .0 1 5 8 9 .6 7 0 .5 6 3 6 7 .2 9 18.30 2 1056.43® 1 2 3 12.94 1 .0 1.730 BSAND 2 3 8 3 .4 6 7 .3 8 8 61 .3 2 12.53 6 2.8 8 7 5 7 12 5 .7 4 7 .6 3 .8 5 5 * 6.350* BSAND 2 4 83 .4 6 7 .3 8 8 51 . 7 2 9 .5 3 5 1 .6 7 1 4 7 11 5.0 0 7 .0 BSAND 2 5 8 3 .4 6 7.3 8 8 6 7 .2 9 18.30 2 6 .1 5 2 1 7 8 13.20 1. 1 1.225 BSAND 3 4 61 .3 2 12.53 6 51 .7 2 9 .5 3 5 1.728 5 4 9 6.6 6 9 .0 1 .441 BSAND 3 5 6 1 .3 2 12 .5 3 6 6 7 .2 9 18.30 2 2.131 1 5 6 1 3 .9 1 1.3 -0 .4 2 9 BSAND 4 5 5 1 .7 2 9 .5 3 5 6 7 .2 9 18.30 2 3 .6 8 2 1 4 5 13.62 1.2 -1 .1 4 3 BSILT 1 2 5 .3 3 0 .5 6 3 9.8 0 4.51 e 64 .0 9 2 ® 7 2 9 1.63 7 .5 - 2 ,7 5 2 ® BSILT 1 3 5 .3 3 0 .5 6 3 2 2 .7 8 7 .4 9 6 3 .0 8 5. 1 -5 .6 7 7 * BSILT 1 4 5 .3 3 0 .5 6 3 2 7 .6 6 9 .3 5 BSILT 1 5 5 .3 3 0.5 6 3 20 .2 9 12.32 BSILT 2 3 9 .8 0 4.51 8 2 2 .7 8 7 .4 9 6 BSILT 2 4 9 .8 0 4.51 8 27 .6 6 9 .3 5 BSILT 2 5 9 .8 0 4.51 8 20 .2 9 BSILT 3 4 22.78 7.4 9 6 2 7 .6 6 BSILT 3 5 2 2 .7 8 7 .4 9 6 BSILT 4 5 2 7 .6 6 9 .3 5 5 177.100® 5 2 7 5 2 7 6 .1 1 6 ® 4 2 6 4 .2 0 4 .0 -5 .3 2 3 * 2 47 9 .1 0 2 ® 1 2 3 8 .7 2 1 .0 -1 .7 1 6 2 .7 6 3 5 7 12 3 .4 5 7 .7 -3 .7 6 5 ® 5 4 .3 0 8 4 7 11 4 .4 8 5 .2 -3 .9 9 0 * 12.32 2 7 .4 7 5 1 7 8 8 .8 6 1. 1 -1 .1 8 4 9.3 5 5 1.5 5 9 4 5 9 5.1 8 7 .7 -0 .9 4 1 2 0 .2 9 12.32 2 2 .7 0 5 1 5 6 9.2 3 1 .3 0.2 7 0 20 .2 9 12.32 2 1.735 1 4 5 9 .6 6 1 .5 0 .7 6 3 •Significant difference between groups at alpha=0.05. 240 BSAND BSAND Table A.I. /arlab le CCLAV (continued). G roups 1st 2nd 1 2 Mean <-------1 s t 5.0 0 S .D . Mean n g r o u p ---- —> 0 .0 0 <-------2nd 3 11.47 S.D . n g r o u p — —> 8.2 8 F d f (n) d f (d) df (c a lc .) < - f o r ■ F -> t 8 P ooled s A pprox. df fo r t t (c a lc .) 7 2 9 2.9 3 7 .0 7 4 .9 9 5 .0 -1 .9 7 3 6 6.21 4 .0 -4 .9 0 8 * -2 .4 1 0 CCLAV 1 3 5 .0 0 0.0 0 3 14.85 12.23 6 . 5 2 CCLAV 1 4 5 .0 0 0 .0 0 3 3 5 .4 9 13.89 5 . 4 2 -2 .2 1 0 CCLAV 1 5 5 .0 0 0 .0 0 3 27 .1 4 12.99 2 1 2 3 9 .1 9 1 .0 CCLAV 2 3 11.47 8 .2 8 8 14.85 12.23 6 2.181 5 7 12 5 .7 9 8 .3 -0 .5 8 4 CCLAV 2 4 11.47 8 .2 8 8 35 .4 9 13.89 5 2 .8 1 2 4 7 11 6 .8 7 5 .8 -3 .4 9 7 * CCLAV 2 5 11.47 8 .2 8 8 2 7 . 14 12.99 2 2.461 1 7 8 9 .6 4 1 .2 -1 .6 2 5 CCLAY 3 4 14 .0 5 12.23 6 3 5 .4 9 13.89 5 1.2 8 9 4 5 9 7.9 7 8. 1 -2 .5 8 9 * CCLAV 3 5 14.85 12.23 6 27 .1 4 12.99 2 1.1 2 8 1 5 6 10.46 1.6 -1 .1 7 5 CCLAV 4 5 3 5 .4 9 13 .8 9 5 2 7 . 14 12.99 2 1.143 4 1 5 11.09 2 .0 0 .7 5 2 CSAND 1 2 9 0 .0 0 3 78.08 13 .8 9 8 . 7 2 9 4.91 7 .0 2.4 2 6 * CSAND 1 3 9 0 .0 0 3 5 8 .3 4 20 .5 8 6 . 5 2 7 8 .4 0 5 .0 3.7 6 8 * CSAND 1 4 90 .0 0 0. 00 0. 00 0. 00 3 42 .6 4 21.67 5 4 2 6 9 .6 9 4 .0 4 .888* CSAND 1 5 9 0 .0 0 0 .0 0 3 5 6 .5 8 2 3 .4 5 2 1 2 3 16 .5 8 1.0 2.015 CSAND 2 3 7 0 .0 8 13.89 8 58 .3 4 20 .5 8 6 2.1 9 4 5 7 12 9 .7 3 8 .3 2 .0 2 9 CSAND 2 4 78.08 13.89 8 42 .6 4 21 .6 7 5 2.432 4 7 11 10.86 6. 1 3.263* . . CSAND 2 5 78 .0 8 13.89 8 5 6 .5 8 2 3 .4 5 2 2.8 5 0 1 7 a 17.30 1.2 1.243 CSAND 3 4 5 8 .3 4 2 0 .5 8 6 4 2 .6 4 21.67 5 1 .1 0 8 4 5 9 12.82 8 .5 1 .2 2 4 CSAND 3 5 58 .3 4 2 0 .5 8 6 56.58 2 3 .4 5 2 1.299 1 5 6 18.59 1.6 0 .0 9 4 CSAND 4 5 4 2 .6 4 2 1 .6 7 5 5 6 .5 8 2 3 .4 5 2 1.172 1 4 5 1 9 .2 1 1 .7 -0 .7 2 6 CSILT 1 2 5 .0 0 0 .0 0 3 7 .3 2 3 .9 3 a CSILT 1 3 5 .0 0 0 .0 0 3 10.14 6 .3 2 6 CSILT 1 4 5 .0 0 0 .0 0 3 21.87 8.1 0 5 CSILT 1 5 5.0 0 0 .0 0 3 16.27 10.46 2 CSILT 2 3 7.3 2 3 .9 3 8 10.14 6 .3 2 6 •Significant difference between groups at a1pha=0.05. . . . 2.591 7 2 9 1 .3 9 7 .0 -1 .6 7 0 5 2 7 2.5 8 5 .0 -1 .9 9 2 4 2 6 3 .6 2 4 .0 -4 .6 5 9 * 1 2 3 7.4 0 1 .0 -1 .5 2 4 5 7 12 2.9 3 7 .8 -0 .9 6 3 Table A.I. V ariab le (continued). Groups 1st 2nd Mean <------- 1 s t S .D . n Mean g r o u p ---- —> <-------2nd S.D . n g r o u p ----- - > F d f(n ) d f(d) df (c a lc .) < - f o r F -> t P ooled s A pprox. df fo r t t (c alc.) 2 4 7 .3 2 3 .9 3 8 21 .8 7 8.1 0 *5 4.2 4 9 4 7 11 3 .8 8 5 .2 CSILT 2 5 7 .3 2 3 .9 3 8 16.27 10.46 2 7.088 1 7 8 7 .5 2 1. 1 -1 .1 9 0 CSILT 3 4 10.14 6 .3 2 6 21.87 8.1 0 5 1 .639 4 5 9 4 .4 5 7 .5 -2 .6 3 7 * CSILT 3 5 10.14 6.3 2 6 16.27 10.46 2 2.735 1 5 6 7 .8 3 1 .3 -0 .7 8 3 CSILT 4 5 21.87 8 .1 0 5 16.27 10.46 2 1.668 1 4 5 8 .2 3 1 .5 0.6 8 0 OEWT 1 2 1100 3 .5 6 764.57 3 1290 2 .9 2 2249.91 8 8 .6 6 9 7 2 9 9 0 9 .7 4 9 .0 -2 .0 8 8 OEWT 1 3 11003.56 76 4.57 3 11002.00 1485.69 6 3.7 7 6 5 2 7 750.16 6 .9 0 .0 0 2 OEWT 1 4 11003.56 764.57 3 10455.27 4131.21 5 29.1 9 5 4 2 6 1899.54 4 .4 0 .2 8 9 OEWT 1 5 11003.56 76 4.57 3 13705.83 1718.98 2 5.0 5 5 1 2 3 1293.18 1.3 -2 .0 9 0 OEWT 2 3 12902.92 2249.91 8 11002.00 1485.69 6 2.293 7 5 12 1000.32 11.9 1.9 0 0 2 4 12902.92 2249.91 8 10455.27 4131.21 5 3 .3 7 2 4 7 11 2 0 1 1 .5 0 5 .5 1.217 -0 .5 5 3 OEWT -3 .7 5 2 * OEWT 2 5 12902.92 2249.91 8 13705.83 1718.98 2 1.7 1 3 7 1 8 1452.66 2 .0 OEWT 3 4 11002.00 1485.69 6 10455.27 4131.21 5 7 .7 3 2 * 4 5 9 1944.55 4 .9 0 .2 8 1 OEWT 3 5 1100 2 .0 0 1485.69 6 13705.83 1718.98 2 1 .3 3 9 1 5 6 1358.43 1 .5 -1 .9 9 0 OEWT 4 5 10455.27 41 31.21 5 13705.83 1718.98 2 5 .7 7 6 4 1 5 2 211.52 4 .7 -1 .4 7 0 OIWT 1 2 2 5 4 7.89 3 2 7.35 3 2969.54 3 9 7 .8 0 8 1.477 7 2 9 2 35.58 4 .4 -1 .7 9 0 OIWT 1 3 2 547.89 3 2 7.35 3 2766.22 2 5 2 .9 9 6 1 .6 7 4 2 5 7 2 1 5.38 3 .3 -1 .0 1 4 OIWT 1 4 25 4 7 .8 9 3 2 7.35 3 3137.87 3 9 7 .1 8 5 1.4 7 2 4 2 6 2 59.37 5.1 -2 .2 7 5 OIWT 1 5 2 5 4 7 .8 9 3 27.35 3 2 7 9 4 .1 7 3 5 9 .4 5 2 1.2 0 6 1 2 3 3 16.73 2. 1 -0 .7 7 8 OIWT 2 3 2969.54 39 7.80 a 27 6 6 .2 2 2 52.99 6 2.472 7 5 12 174.49 11.8 1 .1 6 5 OIWT 2 4 2 9 6 9 .5 4 3 97.80 8 313 7 .8 7 3 9 7 .1 8 5 1.0 0 3 7 4 11 226.56 8 .6 -0 .7 4 3 OIWT 2 5 29 6 9 .5 4 39 7.80 8 2 7 9 4 .1 7 3 5 9 .4 5 2 1.2 2 5 7 1 8 2 9 0.48 1 .7 0.6 0 4 OIWT 3 4 27 6 6 .2 2 252.99 6 3137.87 3 9 7 .1 8 5 2.465 4 5 9 2 0 5.47 6 .6 -1 .8 0 9 OIWT 3 5 2 7 6 6 .2 2 252 .9 9 6 27 9 4 .1 7 359.45 2 2 .0 1 9 1 5 6 274.35 1 .4 -0 .1 0 2 OIWT 4 5 3137.87 3 9 7.18 5 2794.17 3 59.45 2 1 .2 2 1 4 1 5 3 1 0 .0 8 2.1 1 .1 0 8 •Significant difference between groups at alpha=0.05. 242 CSILT Table A.i. V a riab le (continued). Groups 1st 2nd Mean S.D . Mean n <-------1 s t g r o u p ----------> S .D . n <-------2 n d g r o u p --------- > F d f(n ) d f(d ) df (c a lc .) <- f o r F -> t P ooled s A pprox. df fo r t t (c a lc .) DEPLS 1 2 406.67 161.66 3 140.37 155 .1 7 8 1.085 2 7 9 108.26 3 .5 2 .4 6 0 DEPLS 1 3 406.67 161.66 3 338.33 250.45 6 2 .4 0 0 5 2 7 138.44 6.1 0.4 9 4 DEPLS 1 4 406.67 161.66 3 191.20 2 31.04 5 2.043 4 2 6 139.24 5 .7 1.547 DEPLS 1 5 406.67 161.66 3 6 0 .5 0 64 .3 5 2 6 .3 1 2 2 1 3 103.83 2 .8 3 .3 3 4 * DEPLS 2 3 140.37 155.17 8 3 38.33 2 5 0 .4 5 6 2.6 0 5 5 7 12 116.03 7 .8 -1 .7 0 6 DEPLS 2 4 140.37 155.17 8 1 9 1.20 2 31.04 5 2.217 4 7 11 116 .9 8 6 .3 -0 .4 3 4 7 1 .2 7 4 .6 1 .121 2 5 140.37 155.17 8 60 .5 0 6 4 .3 5 2 5 .8 1 5 7 1 8 DEPLS 3 4 3 38.33 250 .4 5 6 191 .2 0 2 31.04 5 1.175 5 4 9 145 .3 6 8 .9 1 .0 1 2 DEPLS 3 5 3 38.33 250 .4 5 6 60 .5 0 6 4 .3 5 2 15.150 5 1 6 1 1 1 .9 1 6 .0 2 .4 8 3 * DEPLS 4 5 191.20 231.04 5 60 .5 0 64 .3 5 2 12.892 4 1 5 112 .9 0 5 .0 1.1 5 8 DEPSCL 1 2 500.00 0 .0 0 3 286.12 186.12 8 7 2 9 65 .8 0 7 .0 3 .2 5 0 * DEPSCL 1 3 5 00.00 0 .0 0 3 80 .6 7 35.01 6 . 5 2 7 14.29 5 .0 29.337* DEPSCL 1 4 500.00 0 .0 0 3 5 6 .8 0 8 .0 4 5 . 4 2 6 3 .6 0 4 .0 123.206* DEPSCL 1 5 5 0 0 .0 0 0 .0 0 3 112.50 102 .5 3 2 . 1 2 3 7 2 .5 0 1.0 5 .3 4 5 DEPSCL 2 3 286.12 186.12 8 80 .6 7 35.01 6 2 8.257* 7 5 12 67 .3 4 7 .7 3.051* DEPSCL 2 4 2 86.12 186.12 8 5 6 .8 0 8 .0 4 5 535 .3 9 2 * 7 4 11 65 .9 0 7 .0 3.480* DEPSCL 2 5 286.12 186.12 8 112 .5 0 102.53 2 3 .2 9 5 7 1 8 97.91 3 .0 1.7 7 3 DEPSCL 3 4 8 0 .6 7 35.01 6 5 6 .8 0 8 .0 4 5 18.947* 5 4 9 1 4 .7 4 5 .6 1.619 . DEPSCL 3 5 8 0 .6 7 35.01 6 112.50 102.53 2 8 .5 7 6 1 5 6 7 3 .9 0 1.1 -0 .4 3 1 DEPSCL 4 5 5 6 .8 0 8 .0 4 5 112 .5 0 102.53 2 162.481* 1 4 5 7 2 .5 9 1 .0 -0 .7 6 7 DEPSL 1 2 5 00.00 0.0 0 3 218.25 150.42 8 . 7 2 9 5 3 .1 8 7 .0 5.298* DEPSL 1 3 5 00.00 0 .0 0 3 29.17 2 0 .7 8 6 . 5 2 7 8 .4 8 5 .0 5 5 .503* DEPSL 1 4 500.00 0 .0 0 3 2 2 .2 0 6 .2 6 5 . 4 2 6 2 .8 0 4 .0 170.643* DEPSL 1 5 500.00 0.0 0 3 126.00 22.63 2 . 1 2 3 16.00 1.0 23.375* DEPSL 2 3 2 18.25 150.42 8 29 .1 7 2 0 .7 8 6 7 5 12 5 3 .8 5 7 .4 3.5 1 1 * •Significant difference between groups at a1pha=0.05. 5 2 .4 0 6 * 243 DEPLS /e n a b le (continued). Groups Mean <-------1 s t Mean n S .D . g r o u p ---- - > <-------2nd S.D . n g r o u p ----- - > F d f(n ) df(d) df P ooled (c a lc .) < - f o r F -> t s A pp ro x df fo r t t (c a lc .) 1st 2nd DEPSL 2 4 216.25 150.42 8 22 .2 0 6 .2 6 5 577 .2 2 1 * 7 4 11 5 3 .2 6 7 .0 DEPSL 2 5 218 .2 5 150.42 8 126 .0 0 22.63 2 44.193 7 1 8 5 5 .5 4 7 .9 1 .6 6 1 DEPSL 3 4 2 9 .1 7 2 0 .7 8 6 2 2 .2 0 6 .2 6 5 11.014® 5 4 9 8 .9 3 6 .1 0 .7 8 0 3 .6 8 1 ® DEPSL 3 5 2 9 . 17 20 .7 8 6 126.00 2 2 .6 3 2 1.1 8 6 1 5 6 1 8 .1 1 1 .6 -5 .3 4 7 * DEPSL 4 5 22.20 6 .2 6 5 126 .0 0 2 2 .6 3 2 13.061® 1 4 5 16.24 1 .1 -6 .3 9 0 DEPTEX 1 2 5 0 0 .0 0 0 .0 0 3 146.25 7 7 .2 6 8 7 2 9 27 .3 1 7 .0 12.951® DEPTEX 1 3 5 0 0 .0 0 0 .0 0 3 5 8 .0 0 3 2 .8 3 6 5 2 7 13 .4 0 5 .0 3 2 .9 8 1 * DEPTEX 1 4 500.00 0 .0 0 3 4 3 .8 0 4 .5 5 5 4 2 6 2 .0 3 4 .0 2 24.2 1 0 * DEPTEX 1 5 5 00.00 0 .0 0 3 1 0 0.00 111.72 2 1 2 3 79 .0 0 1 .0 5 .0 6 3 DEPTEX 2 3 146.25 7 7 .2 6 8 5 8 .0 0 3 2 .8 3 6 7 5 12 3 0 .4 3 1 0.0 2.9 0 1 * DEPTEX 2 4 146.25 77 .2 6 8 4 3 .8 0 4 .5 5 5 7 4 11 27.39 7 .1 3.740 ® 0 .5 5 3 5 .5 3 9 2 8 8 .3 4 7 ® DEPTEX 2 5 146.25 77 .2 6 8 100.00 111.72 2 2.091 1 7 8 8 3 .5 9 1.3 DEPTEX 3 4 5 8 .0 0 32 .8 3 6 4 3 .8 0 4 .5 5 5 5 2 .0 5 8 ® 5 4 9 13.56 5 .2 DEPTEX 3 5 5 8 .0 0 3 2 .8 3 6 100 .0 0 111.72 2 11.583* 1 5 6 8 0 .1 3 1 .1 ' -0 .5 2 4 DEPTEX 4 5 4 3 .8 0 4 .5 5 5 100.00 111.72 2 6 0 2 .9 9 5 ® 1 4 5 7 9 .0 3 1 .0 -0 .7 1 1 TEXC 1 2 5 .0 0 0 .0 0 3 16.25 9.7 5 8 7 2 9 3 .4 5 7 .0 - 3 .2 6 3 ® TEXC 1 3 5 .0 0 0 .0 0 3 26.17 8.4 0 6 5 2 7 3 .4 3 5 .0 -6 .1 7 2 * TEXC 1 4 5.0 0 0 .0 0 3 3 0 .2 0 3 .1 9 5 4 2 6 1.43 4 .0 -1 7 .6 4 4 * -7 .5 7 1 * 1.048 TEXC 1 5 5 .0 0 0 .0 0 3 3 1 .5 0 4 .9 5 2 1 2 3 3 .5 0 1 .0 TEXC 2 3 16.25 9 .7 5 8 26.17 8 .4 0 6 1.347 7 5 12 4 .8 6 11.7 TEXC 2 4 16.25 9.7 5 8 3 0 .2 0 3 .1 9 5 9 .3 2 1 ® 7 4 11 3 .7 3 9. 1 -3 .7 3 8 * -3 .1 0 4 * -2 .0 3 9 TEXC 2 5 16.25 9 .7 5 8 3 1 .5 0 4 .9 5 2 3 .8 8 0 7 1 8 4 .9 1 3 .4 TEXC 3 4 26.17 8.4 0 6 3 0 .2 0 3 .1 9 5 6 .9 1 8 5 4 9 3.71 6 .6 -1 .0 8 6 TEXC 3 5 26 .1 7 8.4 0 6 3 1 .5 0 4 .9 5 2 2.8 8 0 5 1 6 4 .9 0 3 .2 -1 .0 8 8 TEXC 4 5 3 0 .2 0 3 .1 9 5 3 1 .3 0 4 .9 5 2 2.4 0 2 1 4 5 3 .7 8 1.4 -0 .3 4 4 •Significant difference between groups at alpha=0.05. m Table A.1. Table A.I. /arlab l e (continued). Groups 1st 2nd Mean <-------1 s t S.D . Mean n g r o u p -----—> <-------2nd S.D . n g r o u p ---- —> TEXS 1 2 9 0 .0 0 0 .0 0 3 5 0 .8 8 2 2 .5 0 8 TEXS 1 3 9 0 .0 0 0 .0 0 3 5 0 .5 0 2 0 .1 0 6 TEXS 1 4 9 0 .0 0 0 .0 0 3 4 2 .8 0 2 1 .0 8 5 TEXS 1 5 9 0 .0 0 0 .0 0 3 3 3 .5 0 33 .2 3 2 TEXS 2 3 5 0 .8 8 2 2 .5 0 8 50 .5 0 2 0 .1 0 6 F d f(n ) df(d ) df (c a lc .) < - f o r F -> t P ooled s A pprox. df f o r t t (c a lc .) 7 2 9 7 .9 5 7 .0 4 .9 1 9 * 5 2 7 8 .2 0 5 .0 4 .8 1 4 * 4 2 6 9 .4 3 4 .0 5.008* 1 2 3 23.50 1.0 2.404 1.253 7 5 12 11.43 11.5 0 .0 3 3 . . . 2 4 5 0 .8 8 2 2 .5 0 8 42 .8 0 21.08 5 1.139 7 4 11 12.33 9.1 0 .6 5 5 2 5 5 0 .8 8 22.50 8 3 3 .5 0 3 3 .2 3 2 2.1 8 2 1 7 8 24 .8 1 1.2 0 .7 0 0 TEXS 3 4 5 0 .5 0 2 0 .1 0 6 42 .8 0 2 1 .0 8 5 1.100 4 5 9 12.50 8 .5 0 .6 1 6 TEXS 3 5 5 0 .5 0 20.10 6 33 .5 0 3 3 .2 3 2 2.7 3 5 1 5 6 2 4 .8 9 1.3 0 .6 8 3 TEXS 4 5 4 2 .8 0 2 1 .0 8 5 33 .5 0 3 3 .2 3 2 2 .4 8 6 1 4 5 2 5 .3 2 1 .3 0 .3 6 7 TEXSI 1 2 5 .0 0 0 .0 0 3 32.88 17.37 8 7 2 9 6.1 4 7 .0 -4 .5 3 8 * TEXSI 1 3 5 .0 0 0 .0 0 3 2 3 .3 3 16.02 6 5 2 7 6.5 4 5 .0 -2 .8 0 3 * TEXSI 1 4 5 .0 0 0 .0 0 3 2 7 .0 0 17.89 5 4 2 6 8.0 0 4 .0 -2 .7 5 0 TEXSI 1 5 5 .0 0 0 .0 0 3 3 5 .0 0 28.28 2 1 2 3 2 0 .0 0 1 .0 -1 .5 0 0 TEXSI 2 3 3 2 .8 8 17.37 8 2 3 .3 3 16.02 6 1.176 7 5 12 8 .9 7 11.4 1.063 TEXSI 2 4 3 2 .8 8 17.37 8 27.00 17.89 5 1 .060 4 7 11 10.09 8 .4 0 .5 8 2 TEXSI 2 5 32 .8 8 17.37 8 35 .0 0 28 .2 8 2 2.6 5 0 1 7 8 20.92 1.2 -0 .1 0 2 TEXSI 3 4 2 3 .3 3 16.02 6 2 7 .0 0 17.89 5 1 .247 4 5 9 10.33 8 .2 -0 .3 5 5 TEXSI 3 5 23.33 16.02 6 3 5 .0 0 28.28 2 3.117 1 5 6 2 1 .0 4 1.2 -0 .5 5 4 . TEXSI 4 5 27 .0 0 17.89 5 35 .0 0 28.28 2 2 .5 0 0 1 4 5 2 1 .5 4 1 .3 -0 .3 7 1 BIC 1 2 0 .6 7 0 .3 8 3 2.91 1.24 6 10.523 7 2 9 0 .4 9 9 .0 -4 .5 6 7 * BIC 1 3 0 .6 7 0.3 8 3 4 .7 9 0.3 3 6 1 .3 2 1 2 5 7 0.2 6 3 .6 -1 5 .9 3 5 * BIC 1 4 0 .6 7 0 .3 8 3 4 .9 0 0 .2 2 5 2.917 2 4 6 0 .2 4 2 .8 -1 7 .4 8 6 * BIC 1 5 0 .6 7 0.3 8 3 4 .7 5 0 .3 5 2 1.167 2 1 3 0 .3 3 2 .4 -1 2 .2 5 0 * BIC 2 3 2 .91 1.24 8 4 .7 9 0 .3 3 6 13.898* 7 5 12 0.4 6 8 .3 -4 .1 1 2 * •Significant difference between groups at alpha=0.05. 245 TEXS TEXS Table A.I. i/a riab le (continued). Groups 1st 2nd Mean <-------1 s t n S .D . g r o u p — —> Mean <-------2nd S.D . n g r o u p ---- —> F d f (n) d f (d) df (c a lc .) < - f o r • F -> t A pprox. P ooled s df fo r t t (c a lc .) BIC 2 4 2 .9 1 1.24 8 4 .9 0 0 .2 2 5 3 0.692* 7 4 11 0 .4 5 7 .7 -4 .4 3 8 * BIC 2 5 2.91 1.24 8 4 .7 5 0 .3 5 2 12.277* 7 1 8 0 .5 0 7. 1 -3 .6 5 6 * BIC 3 4 4 .7 9 0 .3 3 6 4 .9 0 0 .2 2 5 2 .2 0 8 5 4 9 0 .1 7 8 .7 -0 .6 4 3 BIC 3 5 4.7 9 0 .3 3 6 4 .7 5 0 .3 5 2 1.132 1 5 6 0.2B 1 .6 0 .1 4 6 BIC 4 5 4 .9 0 0 .2 2 5 4 .7 5 0 .3 5 2 2 .5 0 0 1 4 5 0 .2 7 1.3 0 .5 5 7 CLT150 1 2 5 .0 0 0 .0 0 3 11.38 1 0 .4 1 8 7 2 9 3 .6 8 7 .0 -1 .7 3 3 1 3 5 .0 0 0 .0 0 3 2 6 .1 7 8 .4 0 6 . 5 2 7 3 .4 3 5 .0 -6 .1 7 2 * 1 4 5 .0 0 0 .0 0 3 2 7 .4 0 6 .0 7 5 . 4 2 6 2.71 4 .0 -8 .2 5 7 * CLT150 1 5 5 .0 0 0 .0 0 3 2 0 .0 0 21 .21 CLT150 2 3 11.38 1 0 .4 1 8 2 6 . 17 8 .4 0 6 CLT150 2 4 11.38 1 0 .4 1 8 2 7 .4 0 6 .0 7 CLT150 2 5 11.38 1 0 .4 1 8 2 0 .0 0 21.21 1 2 3 15.00 1 .0 -1 .0 0 0 1.534 7 5 12 5.0 3 11 . 9 -2 .9 4 1 5 2 .9 4 2 7 4 11 4 .5 7 11 . 0 -3 .5 0 6 2 4 .1 5 6 1 7 8 15.44 1 .1 -0 .5 5 8 -0 .2 8 2 2 . 4 2 6 . 17 8 .4 0 6 2 7 .4 0 6.0 7 5 1.918 5 4 9 4 .3 7 8 .9 5 26 .1 7 8.4 0 6 2 0 .0 0 21 .21 2 6.3 7 7 1 5 6 15.39 1.1 0.401 CLT150 4 5 2 7 .4 0 6 .0 7 5 2 0 .0 0 21 .21 2 1 2.228* 1 4 5 15.24 1. 1 0 .4 8 5 SLT150 1 2 9 0 .0 0 0.0 0 3 77 .7 5 15.36 8 7 2 9 5 .4 3 7 .0 2.256 SLT150 1 3 90 .0 0 0 .0 0 3 50 .5 0 20.10 6 5 2 7 8 .2 0 5 .0 4.814* SLT150 1 4 90 .0 0 0 .0 0 3 44 .6 0 20 .4 0 5 4 2 6 9 . 12 4 .0 4.976* SLT150 1 5 90 .0 0 0 .0 0 3 46 .5 0 5 1 .6 2 2 1 2 3 3 6 .5 0 1 .0 1. 192 SLT150 2 3 77 .7 5 15.36 8 5 0 .5 0 CM 6 1.712 5 7 12 9 .8 4 9.1 2.7 7 0 * SLT150 2 4 7 7 .7 5 15.36 8 44 .6 0 2 0 .4 0 5 1.765 4 7 11 10.62 6 .8 3.122* SLT150 2 5 77 .7 5 15.36 8 46 .5 0 5 1 .6 2 2 11.294* 1 7 8 36 .9 0 1 .0 0 .8 4 7 SLT150 3 4 5 0 .5 0 2 0 .1 0 6 44 .6 0 2 0 .4 0 5 1 .0 3 1 4 5 9 12.27 8 .6 0.4 8 1 o 3 3 o CLT150 CLT150 . SLT150 3 5 5 0 .5 0 20 .1 0 6 4 6 .5 0 5 1 .6 2 2 6 .5 9 7 1 5 6 37.41 1.1 0 .1 0 7 SLT150 4 5 4 4 .6 0 2 0 .4 0 5 4 6 .5 0 5 1 .6 2 2 6 .4 0 0 1 4 5 3 7 .6 2 1 .1 -0 .0 5 1 •Significant difference between groups at alpha=0.05. 246 CLT150 CLT150 Table A.1. V ariab le (continued). Groups Mean S.D . n g r o u p — —> Mean <------- 2n d S.D . n g r o u p — —> F d f (n) d f (d) df (c a lc .) < - f o r F -> t P ooled A pprox, df fo r t t 1st 2nd S I L T 150 1 2 5 .0 0 0 .0 0 3 10.88 7 .3 0 8 7 2 9 2 .5 8 7 .0 S I L T 150 1 3 5 .0 0 0 .0 0 3 23.33 16.02 6 . 5 2 7 6 .5 4 5 .0 -2 .8 0 3 * S I L T 150 1 4 5 .0 0 0 .0 0 3 2 8 .0 0 18.57 5 . 4 2 6 8.31 4 .0 -2 .7 6 9 <-------1 s t S I L T 150 1 5 5 .0 0 0 .0 0 3 3 3 .5 0 30.41 2 S I L T 150 2 3 10 .8 8 7 .3 0 8 2 3 .3 3 16.02 6 S I L T 150 2 4 10.88 7 .3 0 8 2 8 .0 0 18.57 S I L T 150 2 5 10.88 7 .3 0 8 3 3 .5 0 30.41 s (c a lc .) -2 .2 7 7 1 2 3 21 .5 0 1.0 -1 .3 2 6 4 .8 1 8 5 7 12 7 .0 3 6 .6 -1 .7 7 2 5 6 .4 7 7 ® 4 7 11 8 .7 0 4 .8 -1 .9 6 9 2 17.356* 1 7 8 2 1 .6 5 1.0 -1 .0 4 5 3 4 2 3 .3 3 16.02 6 2 8 .0 0 18.57 5 1.3 4 4 4 5 9 10.57 8 .0 -0 .4 4 1 3 5 2 3 .3 3 16 .0 2 6 33 .5 0 30.41 2 3 .6 0 2 1 5 6 22 .4 7 1 .2 -0 .4 5 2 S I L T 150 4 5 2 8 .0 0 18.57 5 3 3 .5 0 30.41 2 2 .6 8 0 CGT150 1 2 5 .0 0 0 .0 0 3 21 .0 0 10.78 8 . 1 4 5 23.05 1 .3 -0 .2 3 9 7 2 9 3.81 7 .0 -4 .1 9 7 * CGT150 1 3 5 .0 0 0 .0 0 3 29.17 2.8 6 6 . 5 2 7 1.17 5 .0 -2 0 .7 1 4 * CGT150 1 4 5 .0 0 0 .0 0 3 31 .6 0 3.51 5 . 4 2 6 1 .57 4 .0 -1 6 .9 6 0 * CGT150 1 5 5 .0 0 0 .0 0 3 2 5 .0 0 14. 14 2 1 2 3 10.00 1 .0 -2 .0 0 0 CGT150 2 3 2 1 .0 0 10.78 8 29 .1 7 2 .8 6 6 14.239* 7 5 12 3 .9 9 8 .3 -2 .0 4 8 CGT150 2 4 21.00 10.78 8 31 .6 0 3.51 5 9.454* 7 4 11 4 .1 2 9 .1 -2 .5 7 1 * CGT150 2 5 2 1 .0 0 10.78 8 2 5 .0 0 14 . 14 2 1 .7 2 0 1 7 8 10.70 1.3 -0 .3 7 4 CGT150 3 4 2 9 . 17 2 .8 6 6 3 1 .6 0 3.51 5 1.5 0 6 4 5 9 1.95 7 .8 -1 .2 4 5 CGT150 3 5 2 9 . 17 2.8 6 6 2 5 .0 0 14. 14 2 24.490* 1 5 6 10 .0 7 1.0 0 .4 1 4 CGT150 4 5 3 1 .6 0 3.51 5 25 .0 0 14 .1 4 2 16.260® 1 4 5 10.12 1 .0 0.6 5 2 SGT150 1 2 8 7 .6 7 4 .0 4 3 46 .5 0 22 .2 5 .8 3 0.297 7 2 9 8 .2 0 8 .1 5.018* SGT150 1 3 87 .6 7 4 .0 4 3 49 .1 7 19.19 6 22.541 5 2 7 8 .1 7 5 .8 4.710* . SGT150 1 4 8 7 .6 7 4 .0 4 3 3 3 .4 0 2 3 .5 0 5 3 3.814 4 2 6 10.77 4 .4 5.041* SGT150 1 5 8 7 .6 7 4 .0 4 3 15 .0 0 7 .0 7 2 3.061 1 2 3 5 .5 2 1 .4 13.170* SGT150 2 3 46 .5 0 2 2 .2 5 8 49 .1 7 19.19 6 1.344 7 5 12 11.10 1 1.7 •Significant difference between groups at alpha=0.05. -0 .2 4 0 247 S I L T 150 S I L T 150 Table A.1. /arleb le (continued). Groups Mean <------- i s t S.D . Mean n g r o u p -----—> <-------2nd S.D . n g r o u p -----—> F df(n ) d f(d ) df (c a lc .) <- f o r F -> t P ooled s A pprox. df fo r t t (c a lc .) 1st 2nd SGT150 2 4 4 6 .5 0 22.25 8 3 3 .4 0 2 3 .5 0 5 1.1 1 6 4 7 11 13.13 8 .3 0 .9 9 8 SGT150 2 5 4 6 .5 0 2 2 .2 5 8 15.00 7 .0 7 2 9 .8 9 7 7 1 8 9 .3 2 6 .4 3.380* SGT1S0 3 4 4 9 .1 7 19.19 6 3 3 .4 0 2 3 .5 0 5 1.5 0 0 4 5 9 13. 11 7 .8 1 .2 0 3 SGT150 3 5 4 9 .1 7 19.19 6 1 5 .0 0 7 .0 7 2 7 .3 6 3 5 1 6 9 .2 9 5 .4 3.677* SGT150 4 5 3 3 .4 0 23.50 5 15.00 7 .0 7 2 11.046 4 1 5 11.64 5 .0 1 .5 8 1 SIGT150 1 2 7 .3 3 4 .0 4 3 32 .5 0 18.32 8 2 0 .5 5 4 7 2 9 6 .8 9 8 .4 -3 .6 5 5 * 1 3 7 .3 3 4 .0 4 3 21 .6 7 16.33 6 16.327 5 2 7 7 .0 6 6.1 -2 .0 2 9 SIGT150 1 4 7 .3 3 4 .0 4 3 3 5 .0 0 2 0 .0 0 5 2 4.490 4 2 6 9 .2 4 4 .5 -2 .9 9 3 * SIGT150 1 5 7 .3 3 4 .0 4 3 6 0 .0 0 7 .0 7 2 3.061 1 2 3 5 .5 2 ! .4 -9 .5 4 5 * SIGT150 2 3 3 2 .5 0 18 .3 2 8 21 .6 7 16.33 6 1.2 5 9 7 5 12 9.3 0 11.5 1. 165 SIGT150 2 4 32 .5 0 18.32 8 3 5 .0 0 2 0 .0 0 5 1 .1 9 1 4 7 11 11 . 0 4 8 .0 -0 .2 2 6 SIGT150 2 5 3 2 .5 0 18.32 8 60 .0 0 7 .0 7 2 6 .7 1 4 7 1 8 8 .1 8 5. 1 -3 .3 6 1 * SIGT150 3 4 21 .6 7 16.33 6 3 5 .0 0 2 0 .0 0 5 1.5 0 0 4 5 9 11.16 7 .8 -1 .1 9 5 SIGT150 3 5 21 .6 7 16.33 6 6 0 .0 0 7 .0 7 2 5 .3 3 3 5 1 6 8 .3 3 4 .7 -4 .6 0 0 * SIGT150 4 5 3 5 .0 0 20.00 5 6 0 .0 0 7 .0 7 2 8 .0 0 0 4 1 5 10.25 5 .0 -2 .4 4 0 CLAV450 1 2 5 .0 0 0 .0 0 3 2 1 .0 0 10.78 8 7 2 9 3.81 7 .0 -4 .1 9 7 * CLAV450 1 3 5.0 0 0 .0 0 3 2 9 .1 7 2.8 6 6 . 5 2 7 1.17 5 .0 -2 0 .7 1 4 * CLAV450 1 4 5 .0 0 0 .0 0 3 3 1 .6 0 3.51 5 . . 4 2 6 1.57 4 .0 -1 6 .9 6 0 * -7 .5 7 1 CLAY450 1 5 5 .0 0 0 .0 0 3 3 1 .5 0 4.9 5 2 1 2 3 3.5 0 1 .0 CLAY450 2 3 2 1 .0 0 10.78 8 29.17 2 .8 6 6 1 4 .2 3 9 ” 7 5 12 3.9 9 8 .3 -2 .0 4 8 CLAY450 2 4 2 1 .0 0 10.78 8 3 1 .6 0 3.51 5 9 .454* 7 4 11 4.1 2 9 .1 -2 .5 7 1 * CLAV450 2 5 2 1 .0 0 10.78 8 3 1 .5 0 4.9 5 2 4.7 4 6 7 1 8 5.1 8 4 .0 -2 .0 2 9 CLAY450 3 4 2 9 .1 7 2 .8 6 6 3 1 .6 0 3.51 5 1.5 0 6 4 5 9 1.95 7 .8 -1 .2 4 5 CLAY450 3 5 29.17 2 .8 6 6 3 1 .5 0 4 .9 5 2 3.0 0 0 1 5 6 3 .6 9 1 .2 -0 .6 3 2 CLAV450 4 5 3 1 .6 0 3.51 5 3 1 .5 0 4 .9 5 2 1.992 1 4 5 3.8 4 1 .4 0.0 2 6 •Significant difference between groups at alpha=0.05. 248 SIGT150 I I I Table A.I. V a riab le (continued). G roups 1st 2nd Mean Mean S.D . n <-------1s t g r o u p --------- > S .D . n <------- 2 n d g r o u p --------- > F d f(n ) d f(d ) df (c a lc .) < - f o r F -> t P ooled s A pprox. df fo r t t (c a lc .) SAND450 1 2 87 .6 7 4 .0 4 3 4 6 .5 0 22.25 8 30.297 7 2 9 8.2 0 8.1 5.018* SAND450 1 3 8 7 .6 7 4.0 4 3 4 9 .1 7 19.19 6 22.541 5 2 7 8 .1 7 5 .8 4.710* 1 4 87 .6 7 4 .0 4 3 3 3 .4 0 2 3 .5 0 5 33.814 4 2 6 10.77 4 .4 5.041* 1 5 87 .6 7 4 .0 4 3 33 .5 0 3 3 .2 3 2 67.622* 1 2 3 23 .6 2 2 .2 9 4 SAND450 2 3 4 6 .5 0 22.25 8 49 .1 7 19.19 6 1.3 4 4 7 5 12 11. 10 1 -C 11.7 -0 .2 4 0 SAND450 2 4 4 6 .5 0 2 2 .2 5 8 3 3 .4 0 2 3 .5 0 5 1.116 4 7 11 13.13 8 .3 0 .9 9 8 SAND4S0 2 5 4 6 .5 0 22.25 8 3 3 .5 0 33 .2 3 2 2 .2 3 2 1 7 8 24 .7 8 1 .2 0.5 2 5 SAND450 3 4 4 9 .1 7 19.19 6 3 3 .4 0 23 .5 0 5 1.5 0 0 4 5 9 13 . 11 7 .8 1.203 SAND450 3 S 4 9 . 17 19. 19 6 3 3 .5 0 3 3 .2 3 2 3 .0 0 0 1 5 6 2 4 .7 7 1.2 0 .6 3 2 SAND450 4 .5 3 3 .4 0 2 3 .5 0 5 3 3 .5 0 33 .2 3 2 2 .0 0 0 1 4 5 2 5 .7 4 1 .4 -0 .0 0 4 SIL T 450 1 2 7 .3 3 4.0 4 3 3 2 .5 0 18.32 8 20.554 7 2 9 6 .8 9 8 .4 -3 .6 5 5 * SIL T 450 1 3 7 .3 3 4.0 4 3 21 . 6 7 16.33 6 16.327 5 2 7 7 .0 6 6 .1 -2 .0 2 9 SIL T 4 50 1 4 7 .3 3 4 .0 4 3 3 5 .0 0 2 0 .0 0 5 24.490 4 2 6 9 .2 4 4 .5 -2 .9 9 3 * SIL T 4 50 1 5 7 .3 3 4.0 4 3 3 5 .0 0 28.28 2 48.9 8 0 * 1 2 3 2 0 .1 4 1 .0 ' -1 .3 7 4 SIL T 4 50 2 3 3 2 .5 0 18.32 8 21 .6 7 16.33 6 1.2 5 9 7 5 12 9 .3 0 11 . 5 1.165 SIL T 450 2 4 3 2 .5 0 18.32 8 3 5 .0 0 2 0 .0 0 5 1 .1 9 1 4 7 11 11.04 8 .0 -0 .2 2 6 SIL T 450 2 5 32.50 18.32 8 35 .0 0 28.28 2 2 .3 8 3 1 7 8 2 1 .0 2 1.2 -0 .1 1 9 SIL T 450 3 4 2 1 .6 7 16 .3 3 6 3 5 .0 0 2 0 .0 0 5 1.5 0 0 4 5 9 11.16 7 .8 -1 .1 9 5 S IL T 450 3 5 21.67 16.33 6 35 .0 0 2 8 .2 8 2 3 .0 0 0 1 5 6 21.08 1 .2 -0 .6 3 2 0 .0 0 0 SIL T 450 4 5 35 .0 0 20 .0 0 5 35 .0 0 28.28 2 2 .0 0 0 1 4 5 21.91 1.4 PF 1 2 5 .3 3 2 .31 3 4.7 5 1.49 8 2 .4 0 9 2 7 9 1.43 2 .7 0 .4 0 7 PF 1 3 5 .3 3 2.31 3 4.6 7 1 .2 1 6 3 .6 3 6 2 5 7 1.42 2 .6 0 .4 6 9 PF 1 4 5 .3 3 2.31 3 4.8 0 2 .4 9 5 1.1 6 2 4 2 6 1 .74 4 .6 0 .3 0 7 PF 1 5 5 .3 3 2 .31 3 7.0 0 0 .0 0 2 2 1 3 1.33 2 .0 -1 .2 5 0 PF 2 3 4 .7 5 1.49 8 4 .6 7 1 .21 6 7 5 12 0 .7 2 11.9 0 .1 1 5 •Significant difference between groups at a1pha=0.05. . 1.5 1 0 249 SAND450 SAND450 Table A.I. V ariab le (continued). Groups Mean <-------1 s t n S.D . g r o u p — —> Mean <-------2nd F S.D . n g r o u p — —> 1st 2nd PF 2 4 4 .7 5 1.49 8 4 .8 0 2 .4 9 5 PF 2 5 4 .7 5 1 .4 9 8 7 .0 0 0.0 0 2 PF 3 4 4 .6 7 1.21 6 4 .8 0 2 .4 9 5 PF 3 5 4 .6 7 1 .21 6 7 .0 0 0.0 0 2 PF 4 5 4 .8 0 2.4 9 5 7 .0 0 0 .0 0 2 d f (n) d f (d) df P ooled A pprox. t 4 7 11 1.23 5 .8 7 1 8 0 .5 3 7 .0 -4 .2 7 7 * 4 5 9 1.22 5 .6 -0 .1 0 9 . 5 1 6 0 .4 9 5 .0 - 4 .7 1 9 ® . 4 1 5 1 .11 4 .0 -1 .9 7 6 2 .8 0 0 . 4 .2 2 7 <- f o r s df f o r t t F -> (c a lc .) (c a lc .) -0 .0 4 1 1 2 430.00 121.24 3 2 2 3.37 187.78 8 2 .3 9 9 7 2 9 9 6 .4 8 5 .9 2 .1 4 2 MOTTDEP 1 3 430.00 121.24 3 132.67 188.17 6 2 .4 0 9 5 2 7 103.93 6 .2 2 .8 6 1 * MOTTDEP 1 4 430.00 121.24 3 159.80 195.59 5 2 .6 0 2 4 2 6 112.03 5 .9 2 .4 1 2 MOTTDEP 1 5 4 3 0 .0 0 121.24 3 234.00 197.99 2 2 .6 6 7 1 2 3 156.52 1 .5 1 .252 MOTTDEP 2 . 3 2 23.37 187.78 8 132.67 188.17 6 1 .004 5 7 12 101.53 10.9 0 .8 9 3 MOTTDEP 2 4 2 2 3.37 187.78 8 159.80 195.59 5 1.085 4 7 11 1 0 9 .8 1 8 .4 0 .5 7 9 MOTTDEP 2 5 2 2 3.37 187.78 8 234.00 197.99 2 1.1 1 2 1 7 8 154 .9 4 1.5 -0 .0 6 9 MOTTDEP 3 4 132.67 188.17 6 159.80 195.59 5 1.080 4 5 9 116.42 8 .5 -0 .2 3 3 MOTTDEP 3 5 132.67 1 88 . 17 6 2 34.00 197.99 2 1.107 1 5 6 159.69 1.7 -0 .6 3 5 MOTTDEP 4 5 159.80 195.59 5 2 3 4.00 197.99 2 i.0 2 5 1 4 5 165.08 1 .9 -0 .4 4 9 DRCLASS 1 2 2.0 0 1 .0 0 3 2.8 7 1 .3 6 8 1.8 3 9 7 2 9 0 .7 5 5 .0 -1 .1 6 6 DRCLASS 1 3 2.0 0 1.0 0 3 3.6 7 0 .5 2 6 3.7 5 0 2 5 7 0.61 2 .6 -2.712® DRCLASS 1 4 2.0 0 1.00 3 4 .2 0 1.10 5 1 .2 0 0 4 2 6 0 .7 6 4 .7 -2 .9 0 5 * DRCLASS 1 5 2.0 0 1.00 3 3 .5 0 0.71 2 2 .0 0 0 2 1 3 0 .7 6 2 .9 -1 .9 6 4 DRCLASS 2 3 2.8 7 1.36 8 3.6 7 0.5 2 6 6 .8 9 7 ® 7 5 12 0 .5 2 9 .5 -1 .5 1 1 DRCLASS 2 4 2 .8 7 1.36 8 4 .2 0 1.10 5 1.533 7 4 11 0 .6 9 1 0 .1 -1 .9 3 3 DRCLASS 2 5 2 .8 7 1.36 8 3 .5 0 0.71 2 3 .6 7 9 7 1 8 0 .6 9 3 .3 -0 .9 0 2 DRCLASS 3 4 3 .6 7 0 .5 2 6 4.2 0 1.10 5 4.5 0 0 4 5 9 0 .5 3 5 .5 -1 .0 0 0 DRCLASS 3 5 3 .6 7 0 .5 2 6 3 .5 0 0.71 2 1.8 7 5 1 5 6 0 .5 4 1.4 0.3 0 7 DRCLASS 4 5 4 .2 0 1.10 5 3.5 0 0.71 2 2 .4 0 0 4 1 5 0.7 0 3.1 1.000 •Significant difference between groups at aipha=0.05. 250 MOTTDEP i V ariab le (co n tin u ed ). Groups Mean 251 T able A .I . S.D . n Mean <-------1 s t g r o u p --------- > S.D . n <-------2 n d g r o u p --------- > F d f(n ) d f(d ) df (c a lc .) < - f o r F -> t P ooled s A pprox. df fo r t t 1st 2nd (c a lc .) ROOTDEP 1 2 154.33 29 .1 4 3 137.32 42 .1 3 8 2 .0 9 0 7 2 9 22.47 5 .4 0.7 5 7 ROOTDEP 1 3 154.33 2 9 . 14 3 118.33 1 7 .6 1 6 2 .7 3 7 2 5 7 18.30 2 .8 1.967 ROOTDEP 1 4 154.33 2 9 .1 4 3 132.90 15.90 5 3 .3 6 0 2 4 6 18.27 2 .7 1.173 ROOTDEP 1 5 154.33 2 9 .1 4 3 8 8 .0 0 7 .0 7 2 16.9 8 7 2 1 3 17.55 2 .3 3.779* ROOTDEP 2 3 137.32 4 2 .1 3 8 118.33 1 7 .6 1 6 5 .7 2 0 7 5 12 16.54 9 .9 1. 148 ROOTDEP 2 4 137.32 4 2 .1 3 8 132.90 15.90 5 7.021 7 4 11 16.50 9 .7 0.2 6 8 ROOTDEP 2 5 137.32 4 2 .1 3 8 8 8 .0 0 7 .0 7 2 3 5 .4 9 6 7 1 8 1 5 .7 1 8 .0 ROOTDEP 3 4 118.33 1 7 .6 1 6 132.90 15.90 5 1 .2 2 7 5 4 9 1 0 .1 1 8 .9 ROOTDEP 3 5 118.33 1 7 .6 1 6 8 8 .0 0 7 .0 7 2 6 .2 0 5 5 1 6 8.7 6 5 .1 3.463* ROOTDEP 4 5 132.90 15.90 5 8 8 .0 0 7 .0 7 2 5 .0 5 6 4 1 5 8.6 9 4 .5 5 .165* •Significant difference between groups at alpha=0.05. 3.139* -1 .4 4 0 252 T able B .l . S o i l s d a t a , s i t e l o c a t i o n s , and d e s c r i p t i o n s s i t e p h y siography. D ata a r e o r d e r e d by s i t e . of 253 S it e A. EES No. 87. Burgis landform: Maltfcy Kames. L ocaticn: T. 24 N ., R. 3 E ., Sec. 17, SE o f SE. General Descrip tion ; South-facing 20% slo p s a t edge o f moraine, lik e ly eroded. A t i l l layer o f varied thickness i s present, u sually beginning a t a depth o f about 65 cm and continuing for about 40 a n ., with lim estones. Surface s o i l i s losny sand, substratuns contain layers o f a l l textu res. S o il fa n ily c la s s ific a tio n : Typic Fragiboralfs, coarse-lceroy, mixed. D epositicnal aw ircm en t/fcareit n a teria l: Port Brute t e a l t i l l . S o il Baden Data: Horizon D^jth an Subplot 1 A 0 -8 B 8 -2 0 Ex 2 0 -6 8 BEx 68-108 a 108-150 C2 150-183 Subplot A B Ex BEx C 2 0 - 10 10“ 28 28- 35 35- 73 73-210 Subplot 3 0- 9 A B 9 - 32 Ex 32- 50 EBx 50- 64 BEx 64-106 106-125 Cl C2 125-133 133-150 C3 C4 150-160 160-213 C5,6 C7 213-229 229-244 C8 244-396 C9 0 .0 ,1 1 396-457 Texture Cs fr E5t pH fH v o l % g/oc H20 CaOL2 TKN TKP <—;— Ca Mg — ng/kg K Bray's I g r sl s Is 3.4 13.2 4.6 31.7 1.0 11.9 0.772 1.408 1.800 1.800 1.595 1.747 5.32 5.67 6.24 6.96 7.44 7.14 6.19 5.64 5.34 6.96 6.85 7.% 5000.2 462.2 160.0 372.2 147.4 308.0 636.2 252.2 113.1 185.0 84.7 170.0 31(H) 760 433 1565 320 1710 178 107.4 28 19.3 15 14.3 142 52.9 27 12.0 90 37.1 28.64 14.54 2.21 3.94 5.26 4.03 si lfs Is v s ts c l vgrs 8.7 4 .0 6.2 49.2 49.8 1.008 1.458 1.800 1.800 1.536 7.24 6.52 6.98 7.06 8.01 7.15 6.42 6.71 7.27 7.66 2726.2 319.0 152.6 874.2 51.0 546.1 171.4 108.6 459.7 149.6 4360 490 400 3880 1810 136 25 13 197 38 51.6 17.8 16.0 83.1 7.9 70.35 23.74 10.11 0.61 0.78 Is Is Is g r ls vgrsl s Is grs si s Is s s lfs 2.4 4.5 5.2 28.7 43.2 12.4 1.2 32.4 6.9 0.1 7.5 0.2 5.0 0.2 1.145 1.499 1.800 1.800 1.800 1.638 1.580 1.557 1.740 1.757 1.770 1.775 1.792 1.805 5.64 5.22 5.88 5.82 5.77 7.73 8.10 7.95 8.38 7.02 8.47 7.16 8.02 7.79 5.60 5.55 6.20 6.29 5.77 7.50 7.57 7.40 7.69 7.38 7.75 7.52 7.57 7.47 1733.6 229.4 190.8 141.4 389.4 27.8 83.6 169.8 53.0 4.2 15.4 10.8 4.4 21.8 378.6 90.6 78.5 72.5 208.6 55.8 112.4 152.1 74.7 31.6 57.9 31.6 59.1 44.4 1574 110 247 20 300 27 380 34 2080 120 1700 38 2970 67 3480 65 2840 61 1590 26 3420 94 1530 32 1830 39 1880 34 61.2 11.5 14.2 13.9 27.2 6.2 11.1 11.5 10.8 2.9 10.6 3.9 3.6 4.2 33.76 4.92 2.55 0.84 0.11 0.09 0.84 0.00 0.23 0.00 2.65 0.00 0.16 0.00 2.9 2.4 3.2 6.1 25.4 0.919 1.425 1.800 1.800 1.800 7.26 7.35 6.96 6.26 7.52 7.18 6.95 7.03 6.69 7.43 3494.6 409.6 263.8 326.4 427.4 37.5 254.7 139.2 242.6 320.1 3050 63 1210 21 813 15 1530 42 2300 165 44.7 40.0 22.7 57.9 78.5 177.07 96.33 10.42 7.90 3.87 1 Is Is Sukplot 4 A 0- 9 f s l B 9 - 28 l f s Ex 28- 64 l f s BExl 64-106 1 BEx2 106-150 g r l 254 S ite B ECS No. 88. Burgis landform: Maltby Kanes, lo c a tio n ; T. 24 N ., R. 3 E ., Sec. 17, I® o f SE. General Description; Nbrth-facing 16% slope above water-holding k e tt le featu re. A thick t i l l layer i s p resort, usually beginning a t a d^ath o f about 30 cm and axrtiruing p a st a depth o f 150 cm., containing limestones and s i l t y layers. Surface s o i l i s loamy sand or sandy loam. Substratum were not saipled. S o il fam ily c la s s ific a tio n : Typic Fragiboralfs, fin e loany, mixed. Depositional am rcraerrt/tarait material; Port Bruce basal t i l l . S o il Bedcn Data: pH Horizcai Depth ■texture Cs f r Efet BD pH TKN v clL % on g /oc H20 caci.2 <----- aihplot 1 A,E Bs EBx 3/Ek Bt Bd BC2 BC3 0- 4 f s l 4- 26 l f s 26- 42 l f s Bray's P ---------- > 1.4 2.7 1 si si cl cl s il 0.9 1.2 2.1 0.7 1.3 0.7 0.420 5.66 1.385 5.47 1.800 5.92 1.800 5.32 1.800 5.37 1.488 7.51 6.14 10562.4 5.89 873.8 6.04 272.8 4.74 510.8 5.72 375.6 7.39 393.4 930.6 353.0 97.9 184.2 175.6 327.6 9280 958 537 1630 1130 4180 656 80 57 233 238 370 76.6 79.0 53.34 9.63 1.47 3.19 3.48 2.60 0- 2 2 - 11 11- 31 31- 55 55- 91 91-160 fsl fsl 1 1 s ic l scl 0.5 1.6 0.4 1.2 1.4 2.4 0 1 1 1 1 1 603 332 800 800 618 674 5.57 5.29 4.37 6.35 7.55 7.67 6.29 4.93 4.05 6.81 7.46 7.38 7215.4 740.4 314.8 405.0 335.2 335.2 995.7 289.4 104.1 289.0 382.7 352.5 4950 529 690 1570 3980 7800 342 193.0 52 41.4 149 78.1 236 103.0 408 94.3 576 136.2 34.68 14.34 2.29 5.38 2.50 2.59 Subplot 4 A 0- 4 B 4 - 15 E/Bx 15- 27 EyEx 27- 60 Bt 60- 98 BC 98-123 CL 123-140 C2 140-175 si fsl 1 1 s id si s scl 3.4 2.2 1.1 1.0 1.7 0.6 0.6 0.6 0.706 1.324 1.800 1.800 1.618 1.705 1.574 1.742 4.60 4.74 4.75 5.18 7.49 7.56 5.92 7.20 4.98 4.57 4.17 4.27 7.19 7.11 5.84 7.33 5797.2 771.0 364.6 405.6 475.6 335.6 100.0 357.8 586.5 434.6 217.9 249.9 391.6 246.3 124.2 281.0 2530 479 433 990 3340 1160 223 2140 236 108.0 63 44.0 78 56.2 265 102.5 560 121.7 253 48.9 53 17.1 393 79.6 31.32 63.18 13.75 13.09 2.12 4.76 9.87 3.53 42- 59 59- 94 94-105 105-145 145-160 Sjfcplot A BS EBx Q/Ekl B/EXL BC 2 0- 3 3 - 14 14- 26 26- 51 51- 86 86-155 Subplot A BE F/Bx. B/Ex Bt BC 3 fsl s ic scl s il scl 0.2 2.0 4.81 4.18 4.55 4.27 5.13 6.11 5.07 5.82 Ca Mg K — mg/kg 0.570 1.340 1.800 1.800 1.618 1.678 1.501 1.739 1.5 2.6 4.0 3.7 5.45 4.26 4.86 4.92 5.38 6.53 5.24 5.92 TKP 7735.4 775.4 261.6 361.4 415.6 246.0 306.4 246.2 654.7 385.1 168.0 185.3 307.8 167.8 236.7 173.0 2970 390 254 835 1797 859 1280 933 282 158.0 48 44.7 39 23.2 192 87.7 490 123.6 206 45.3 336 68.5 217 50.2 13.35 2.19 2.54 2.49 361.6 55.5 29.3 111.0 43.41 37.77 4.99 2.22 255 S ite C ECS 1*>. 90. B urgis landform: Maltby Karnes. Location: T. 24 N., R. 4 E ., Sec. 6 , N4 o f NE. General Description: Nearly le v e l surface topography. S ite i s located on a plateau, cn a h illto p . S ilt y layers are present below 150 an depths. Surface s o i l i s loany sand. S o il fam ily c la s s ific a tio n : A lfic Ifeplorthotfe, sandy, mixed, fr ig id . D epositicnal envircnnent/parent n a ter ia l: Laojsstrine s i l t s . S o il Pedcn Data: Horiaon Depth an Subplot 1 A 0- 3 E 3- 7 BS 7 - 43 Ex 43- 58 E/Bn 58- 96 BC 96-135 135-229 a C2 229-305 Itexture Cs f r Etet H) pH pH vol % g /o c HZ) C ad2 TKN TKP Ca Mg K Bray's P <-------------------- m g/kg---------------------- > Is Is si Is scl s ic l si si 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.423 1.602 1.605 1.800 1.700 1.585 1.755 1.782 5.42 5.96 7.05 6.26 6.54 5.79 6.04 7.21 6.00 10483.8 5.84 84.6 7.15 359.2 6.29 473.0 6.13 168.0 5.07 345.6 5.95 268.8 6.92 222.6 727 94 347 133 206 391 460 492 Subplot 2 A 0- 2 AE 2- 6 6 - 25 B sl Bs2 25- 43 B 43- 95 E/Bn 95-142 142-152 BC 152-305 C Is Is Is Is s s s ic l si 0.0 0.4 0.8 1.4 2.0 3.5 0.7 0.1 0 1 1 1 1 1 1 1 802 243 429 507 539 700 582 772 5.91 6.09 5.30 5.67 5.78 5.75 5.37 5.74 5 5 4 4 5 5 5 4 384.5 223.2 332.4 287.6 119.2 129.2 228.5 344.9 Subplot 3 A 0 -2 AE 2- 7 B sl 7 - 25 Bs2 25- 46 E/Bn 46- 83 B/E 83-125 BC 125-168 a 168-198 C2 198-274 C3 274-335 C4 335-351 C5 351-381 Is Is Is Is s Is Is s Is s il scl Is 1.8 1.7 1.8 2.8 3.6 3.9 3.5 7.0 2.4 0.3 0.0 6.0 0.744 1.265 1.403 1.511 1.700 1.629 1.512 1.755 1.775 1.790 1.796 1.799 5.66 5.15 4.78 5.20 5.85 7.11 7.63 7.60 8.35 7.49 7.51 7.80 6.05 4.60 4.94 4.84 5.89 6.57 7.36 7.60 7.67 7.44 7.53 7.20 581.7 265.8 286.0 153.0 88.8 120.6 108.4 97.3 101.8 141.3 290.9 61.9 52 4663.8 90 1162.0 99 404.0 96 283.0 42 73.2 27 75.8 14 240.0 19 250.2 5324.2 1048.4 490.4 282.2 98.6 93.4 65.0 41.6 32.2 50.6 103.8 17.6 7 8040 8 330 5 460 4 479 7 1010 6 1530 0 1950 1 2270 372.4 38.8 48.8 22.6 90.6 122.0 125.5 140.8 38.96 13.13 56.17 13.43 22.70 24.45 12.56 14.79 3560 780 296 151 117 140 1460 1770 240 238.0 64 37.2 25 25.9 15 19.4 19 19.7 21.4 20 171 109.0 229 138.0 22.58 13.11 71.32 92.43 18.27 37.76 20.98 21.68 1750 680 259 120 160 506 1860 2110 2725 2830 2830 2270 106 42 29 8 18 113 85 63 77 97 187 53 44.44 18.86 31.43 29.48 3.46 0.38 0.97 1.81 2.36 3.86 6.48 0.98 532 38 35 37 197 267 324 868 89.8 27.6 21.7 13.8 13.6 17.9 14.2 9.9 16.6 26.5 59.5 9.8 256 S ite C, cent. Sutplot 4 Qa 0 -2 AE 2- 6 B sl 6 - 37 Bb2 37- 57 Bn 57- 98 iVBn 98-140 a 140-183 C2 183-274 a 274-381 rr^ib 320-323 C4 381-411 an Is s s s si scl si si cemented si 0.0 0.4 1.2 1.9 1.6 0.3 0.0 0.0 0.2 0.0 3.5 0.182 1.217 1.456 1.538 1.700 1.700 1.744 1.772 1.794 1.793 1.802 5.70 5.44 6.17 6.83 6.24 6.22 6.76 4.80 7.45 6.49 7.65 6.83 18489.3 1337.4 5.78 1301.6 312.8 5.77 272.0 508.6 6.80 186.8 213.1 5.81 127.8 132.8 5.84 75.6 140.9 6.34 96.4 159.3 4.59 200.2 344.4 7.40 167.2 400.4 6.78 252.4 909.2 7.56 62.0 158.8 10640 829 409 230 150 538 700 1410 3920 2272 2840 347 670.0 66 52.0 23 35.0 10 22.2 7 12.0 92 46.0 142 64.8 283 117.5 574 91.6 792 65.4 193 34.7 104.79 18.54 80.95 69.34 42.52 10.56 23.04 31.71 21.42 29.60 3.91 257 S ite D ECS l b . 91. ftirg is landform: Maltby Karnes. L ocaticn: T. 24 N ., R. 4 E ., Sec. 8, ce n te r o f N h a lf . General Description: Nearly le v e l surface topography. S ite i s located cn a plateau on a ridgetcp. A t i l l layer about 50 an thick i s present, beginning a t variab le depths between 40 and 90 an, containing lirrestcnes. Surface s o i l i s sandy loan. Substratuns are sand with gravel s tr a tific a tio n . S o il fam ily c la s s ific a tio n : A lfic H=pLorthods, aoarse-losty, moral, fr ig id . Dqpositicnal envirarment/parent m aterial: Port Bruoe basal t i l l . S o il Fedcn Data: Horizon Dqgth an Subplot 1 A 0 -4 Bs 4 -3 2 Eta 32- 42 Bt 42- 91 a 91-130 C2 130-183 C3 183-442 Texture Cs fr Est S ) pH TKN pH H20 CaC12 < ~ — vol % g /c c TKP Ca Mg K ngAg Bray's ---------- 5 si si Is vgrsl s s s 0.0 1.6 1.9 37.8 0.1 14.6 3.1 0.842 1.477 1.700 1.618 1.654 1.741 1.791 5.91 5.72 7.21 7.76 7.07 7.80 7.77 6.12 5.61 6.54 7.43 7.19 7.52 7.45 4246.6 425.4 106.4 219.8 24.4 33.2 15.6 541.5 139.1 63.3 111.4 51.4 437.6 33.9 3640 506 360 1530 748 1740 1635 Subplot 2 A 0- 3 AE 3 - 10 B sl 10- 26 Bb 2 26— 44 E/Bn 44- 60 B/E 60- 97 Bt 97-130 C 130-381 1 1 si si Is s g rscl s 0.2 1.7 1.0 0.5 1.6 0.8 20.6 5.1 0 1 1 1 1 1 1 1 815 166 475 503 700 601 618 780 7.11 4.96 6.95 6.91 6.78 6.72 7.35 8.08 6.75 5.42 7.07 6.77 6.84 6.92 6.85 7.58 4527.2 1601.4 723.4 529.6 135.8 35.4 222.0 15.4 580.6 345.5 299.2 220.8 80.9 43.7 126.7 125.8 3940 334 1128 92 3140 96 1090 28 470 12 259 10 1650 120 2010 39 146.2 30.2 33.7 22.7 19.7 9 .8 50.7 4.4 62.43 6.14 17.31 23.00 4.24 3.19 0.00 0.00 Subplot 3 A 0- 4 E 4- 6 4 - 28 Bs Ex 28- 59 E/Efti 59- 74 E/B 74- 91 Bt 91-155 C 155-259 Gsuh 205-210 Si fsl fsl fsl Is s vgrsl s si 1.2 0.9 1.3 0.8 8.8 0.4 36.3 7.7 3.3 0.757 1.308 1.350 1.800 1.700 1.608 1.618 1.765 1.765 5.75 5.42 5.27 5.40 7.04 6.24 7.36 7.75 7.80 6.53 5.41 5.22 5.15 6.81 5.75 7.14 7.40 7.32 5177.8 841.4 742.0 120.6 146.6 43.4 304.2 11.2 165.2 732.0 259.2 606.8 78.9 95.3 45.4 224.4 28.2 150.0 4160 1130 838 630 670 170 2240 1340 3135 172 34 22 49 98 10 186 25 193 104.7 22.2 24.4 37.3 24.0 9.7 51.4 3.0 17.6 79.27 39.89 109.32 5.87 3.45 2.30 0.36 0.31 1.42 S ± p lo t 4 A 0- 8 Bsl 8 - 30 Bs2 30- 41 Ex 41- 54 EyBn 54- 68 Bt 68-130 C 130-168 si si si si Is vcbsl grs 0.5 4.3 3.1 7.8 3.8 42.3 22.8 0.729 1.393 1.427 1.800 1.700 1.618 1.505 5.74 5.21 5.25 5.68 5.26 6.99 7.58 5.38 5.69 5.02 5.03 5.31 7.16 7.54 5511.6 731.4 459.4 149.8 72.0 222.0 47.4 694.8 342.0 195.8 86.3 57.9 150.6 94.2 4120 565 420 522 486 1370 2540 312 51 27 33 31 170 52 151.6 26.3 23.6 25.8 20.9 32.1 6.1 38.33 18.90 8.57 3.12 1.84 0.21 0.00 256 137.0 17.2 32 18.4 9 108 27.5 36 5.0 39 8 .9 33 4.3 36.94 3.89 0.38 2.84 1.25 1.33 0.00 258 S it e E EES No. 94. Burgis larrifonn: Maltby Kanes. Location: T. 24 N ., R. 3 E ., Sec. 9, LW c£ SW. G eneral D e sc r ip tio n : G en erally w e st-fa c in g s i t e , average s lo p e o f 11%, lo c a te d on imdulating topography in a saddle betweai two ridges. A t i l l layer o f about 30 to 40 an th ick i s present, beginning a t a depth o f about 90 cm, containing lim estones. Surface s o i l i s sandy loan. Substratum are gravelly sandy loan. S o il family c la s s ific a tio n : A lfic Haplorthotfe, a ic s e - lo s n y , mixed, fr ig id . D epositianal en vircn reit/p areit n aterial: Port Bruce basal t i l l . S o il Psdcn Data: Horizon Depth an SbbpLot 1 A 0 -4 AE 4 -1 1 Bs 11- 39 Bn 39- 58 E^Bn 58- 88 Bt 88-124 C 124-274 Uexture Cs f r B3t H) m v a l % g /c c H20 re 1KN <----- TKP Ga m ■— mg/kg K Bray's P — -------> si si si Is Is scl si 1.9 2.6 5.9 5.6 12.5 7.2 13.0 0.626 6.35 6.47 1.246 4.32 4.35 1.599 5.04 4.70 1.700 5.10 4.50 1.700 5.64 5.45 1.618 6.48 6.56 1.762 7.81 7.52 6873.6 1146.8 232.4 373.4 112.2 317.2 98.4 503.2 229.9 101.6 146.2 60.3 201.4 149.4 5440 830 175 279 275 1285 2950 450 72 19 31 28 209 103 151.4 26.9 21.0 23.5 20.4 69.2 33.5 26.15 11.27 3.47 4.29 0.65 3.64 0.00 si si si Is v stsd s Is 1.5 1.6 0.9 6.1 43.7 7.3 4.8 0.744 1.163 1.437 1.700 1.618 1.510 1.762 5.99 5.31 5.83 6.10 6.67 7.46 6.86 6.48 6.10 5.31 5.66 7.42 7.32 7.27 5327.8 1621.9 475.2 78.4 326.0 37.2 58.4 569.6 322.7 228.6 57.9 199.5 88.0 110.3 3700 1080 529 427 2200 1950 2960 246 92 45 41 254 48 84 160.0 44.3 19.2 17.6 56.0 8.9 19.4 27.49 7.94 15.55 1.78 2.74 1.57 1.21 Subplot 3 A 0 - 5 si AB 5 -1 5 s i Bw 1 5 -4 0 Is Bd 4 0 -9 6 Is BC2 96-140 Is d 140-183 s i C2 183-229 s i 2.3 1.2 1.3 7.5 9.2 1.5 13.6 0.751 6.14 1.192 5.15 1.447 5.58 1.560 5.80 1.645 7.65 1.744 6.83 1.765 7.83 6.30 6.03 6.08 5.80 7.27 6.93 7.31 5242.2 1448.8 349.2 181.0 209.8 134.8 78.8 677.9 440.0 182.9 124.0 218.1 178.2 142.2 4680 659 503 460 950 785 2970 260 60 26 17 119 110 94 169.4 40.2 22.2 18.4 41.5 33.4 48.4 35.06 7.69 8.46 6.83 5.37 6.76 0.00 Subplot 4 A 0 -7 AE 7 - 16 Bhs 1 6 -2 3 Bs 16- 42 Bn 4 2 -8 1 E/B 81-106 Bt 106-132 CL 132-183 C2 183-307 4.3 4.2 5.1 4.8 6.7 10.0 4.2 14.1 2.9 0.847 1.395 1.418 1.439 1.700 1.653 1.618 1.742 1.777 5.91 5.91 5.53 5.74 4.85 5.14 6.65 7.46 7.77 4188.0 503.0 571.6 543.6 123.2 185.2 233.2 99.2 57.0 392.2 3920 820 717 876 124 480 1330 3700 4000 174 30 32 29 10 66 211 116 106 76.0 0.0 21.0 23.8 12.4 38.8 53.9 35.2 25.5 22.10 8.76 50.14 35.31 2.78 0.51 2.22 0.00 0.00 Subplot 2 A1 0 -2 A2 2 -1 4 BS 14- 50 Bn 5 0 -7 6 Bt 76-134 a 134-165 C2 165-231 1 Is si si s Is scl si si 5.95 5.61 6.07 5.84 5.11 6.20 6.94 7.51 8.24 no.2 391.6 372.3 61.3 77.4 170.0 154.6 111.3 259 S ite F ECS N3. 95. Burgis landfom : Maltby Kanes, lo c a tio n : T. 24 N ., R. 3 E ., Sec. 15, JW o f NE. General D escrip tion Sicpes average 8% cn s n a il undulating ridges cn a gen erally le v e l marainal area. A t i l l layer 60 on or mere in thicknsss i s present, beginning a t depths o f about 40 on, containing lim estones. Surface s o i l i s sandy loan. Substratura are sand, loany sand, or sandy loan, with gravel str a tific a tio n . S o il fa n ily c la s sific a tio n : A lfic Hsplorthods, fin a -lca ry , miued, fr ig id . D epositicnal envircmant/pjarent material: Fort Brace basal t i l l . S o il Fedm Data: Horizon D^pfch on Subplot 1 Qa 0- 3 A 3 - 20 AE 20- 28 Eln 28- 47 B/E 47- 72 72-145 Bt C 145-183 on si si Is scl scl scl 1.4 2.6 4.8 2.1 2.4 2.7 3.1 0.498 1.052 1.308 1.700 1.448 1.618 1.746 7.25 6.18 6.46 6.28 5.68 7.83 7.84 7.48 6.11 6.23 6.58 5.25 7.43 7.45 8978.2 2387.8 840.8 147.6 346.8 305.0 219.8 770.4 798,2 393.1 130.3 237.3 307.5 228.7 7440 2000 1010 448 1480 3820 3980 436 121 68 28 174 244 201 275.4 63.0 34.8 23.5 97.8 73.2 63.3 79.82 26.48 20.34 25.85 17.21 2.71 0.00 Subplot 2 A 0 -4 Bb 4 -2 0 Eln 2 0 -3 1 B/E 31- 50 Bt 50-103 a 103-140 C2 140-198 si si is scl d s Is 2.0 2.2 4.1 3.7 1.6 2.3 3.2 0.908 1.343 1.700 1.432 1.618 1.602 1.748 4.90 4.81 5.17 5.21 7.62 7.66 7.75 5.71 4.78 5.03 5.06 7.51 7.38 7.53 3600.4 715.8 159.2 388.6 351.8 92.4 81.9 510.1 348.0 81.0 208.6 337.8 104.8 80.3 1518 360 350 1265 4480 2870 2880 138 113.4 40 38.5 59 24.8 85.2 245 352 81.6 118 17.9 92 U .8 28.34 61.74 2.04 2.22 0.65 0.00 2.52 SUbplot A Bs Eln EyHn Bt C fsl fsl fsl fsc l d fsd 4.0 1.7 1.6 0.8 2.4 1.7 0.780 1.640 1.700 1.700 1.618 1.595 5.24 4.92 5.12 5.52 6.61 7.98 5.75 4.82 4.64 4.56 6.63 7.63 4909.0 206.8 277.0 326.4 362.8 172.0 529.4 102.0 117.4 131.2 270.9 235.2 1300 288 945 919 1660 4260 93 39 212 208 384 234 40.6 20.4 64.8 63.6 88.8 61.5 22.00 1.83 4.30 5.15 7.68 0.00 si Is si Is sd s Is si si s 0.4 0.6 0.7 0.7 1.4 0.7 3.5 6.0 0.3 1.5 0.785 6.51 6.30 1.302 4.27 3.67 1.391 5.09 4.72 1.700 5.71 5.60 1.618 7.19 6.81 1.592 7.61 7.22 1.751 8.06 7.74 1.777 7.30 7.27 1.790 7.38 7.37 1.795 7.89 7.53 4850.6 870.2 507.0 139.2 266.4 36.8 43.8 164.6 103.4 20.4 454.1 188.9 306.5 106.5 232.3 57.1 65.8 160.5 92.8 54.6 4320 234 320 266 2010 707 1745 1250 918 1980 300 22 27 15 206 73 116 162 154 73 136.6 32.4 28.0 18.5 53.9 12.9 25.8 36.1 37.6 11.5 26.34 23.55 45.84 18.05 3.01 2.71 3.91 2.14 1.80 1.44 3 0 -5 5 -1 3 1 3 -3 6 36— 65 65- 95 95-168 Subplot 4 A 0 -2 AE 2 - 12 12- 32 & Bn 32- 53 Bt 53-105 105-152 a C2 152-198 C3 198-290 C4 290-320 C5 320-351 TKN Ttexture Cs fr Est ED tH pa UCP Ca Kg vol % g /c c H20 fXTI2 <■—— —- mg/kg K Bray's 260 S i t s G ECS Nb. 96. Burgis landform: Maltby Kanes. Location: T. 24 N ., R. 3 E ., Sec. 9, Sri o f EE. G eneral D e sc rip tio n : Slcfpes average 7% on a bench on a n o r th e a s t-fa c in g m orainal h ills ic fe . A t i l l layer o f varying thickness i s present, u sually about 40 an thick and beginning a t depths o f about 70 an, containing lim estones. Surface s o i l i s sandy loam. SubstratuTB are sard, Icany sard, sandy loan, sandy cla y loan, or s i l t y cla y loam, with sane gravel s tr a tific a tio n . S o il fa n ily c la s sific a tio n : A lfic Haplorthocis, coarse-loany, ntbsd, fr ig id . D epositicnal envircm m t/parent material: Port Brace basal t i l l . S o il Baden Data; Horizon Dmfch an Subplot 1 0- 4 A m 4 - 10 B sl 10- 38 Bs2 38- 58 E/Bn 58-114 Bt 114-168 168-2U BC C 213-231 pa 'torture Qs f r E st ro pa val % q/toc H20 r a n ? TKN <— OKP Ga Mg - — mg/kg K Bray's si si Is Is Is sol si 1 2.4 0.8 1.1 6.3 0.2 1.6 1.8 2.3 0.799 1.260 1.501 1.559 1.700 1.618 1.759 1.770 6.28 6.01 5.03 4.42 5.90 6.30 7.18 7.46 4697.2 1074.8 235.4 216.6 77.4 145.2 165.2 156.8 565.2 417.5 208.4 221.3 67.8 145.0 49.5 188.5 3500 1050 287 189 360 1130 1100 3520 150 122.2 58 33.7 21 22.0 13 21.2 25 26.0 101 62.4 38.2 171 185 48.4 19.02 32.11 40.62 55.00 2.99 9.62 4.06 1.42 Subplot 2 A 0 -6 m 6 - 16 Bw 16- 34 E^Bnl 34- 48 E/Bn2 48- 70 B tl 70- 98 Bt2 98-130 BC 130-155 C 155-168 si si si Is Is scl cl s ic l si 2.6 1.2 2.5 2.5 4.2 1.4 0.3 0.3 4.9 0.956 5.89 5.58 1.348 5.83 5.05 1.490 5.58 5.47 1.700 5.94 5.33 1.700 5.54 5.13 1.618 5.98 5.45 1.618 7.78 7.53 1.583 7.47 7.50 1.744 7.63 7.55 3160.4 674.0 247.8 142.8 125.4 260.2 329.8 251.4 130.4 561.2 321.2 216.2 260.7 219.0 312.6 419.4 401.2 181.5 2200 667 341 320 575 1540 4780 4760 2300 114 100.2 32 21.2 28 24.2 27 45.0 57.4 65 322 98.6 476 113.4 332 84.7 203 40.6 31.34 46.75 48.44 59.30 22.00 9.93 2.80 0.00 15.37 Subplot 3 A 0 -7 AB 7 - 13 Bs 13- 52 E/Bx 52- 76 B/E 76-102 BC 102-145 a 145-183 C2 183-214 si si fsl si scl Is scl s ic l 1.5 1.2 3.6 0.8 1.6 1.7 3.1 0.9 0.890 5.31 5.01 1.227 4.86 4.62 1.393 5.48 4.89 1.800 5.23 4.63 1.649 5.04 4.51 1.617 5.57 5.13 1.746 7.67 7.27 1.762 7.44 7.27 3766.0 1246.6 489.8 168.8 194.4 164.8 319.4 156.8 424.1 288.4 635.5 198.8 179.0 130.3 254.9 150.2 2640 814 355 330 770 490 4280 1465 152 45 46 57 110 80 436 243 94.6 26.3 31.6 42.9 58.5 27.5 85.2 44.3 22.55 15.25 224.05 69.30 12.27 7.83 3.94 3.69 Subplot A Bs E/Bm Bt BC fsl fsl 1 cl si 2.8 2.6 0.1 0.1 1.4 0.978 1.358 1.700 1.618 1.571 2973.0 528.8 300.8 349.4 107.8 387.3 527.2 249.6 325.4 164.5 2360 296 660 1040 3410 156 85.2 28 35.1 218 130.0 350 169.0 140 44.6 25.81 70.00 27.17 26.62 0.40 4 0 -5 5 - 35 35- 62 62- 83 83-183 6.32 6.08 5.40 4.67 6.45 6.89 7.03 7.21 5.90 4.83 4.44 5.20 7.91 5.95 4.51 4.23 4.54 7.65 261 S ite H EES No. 98. Burgis landform: Maltby Karnes. Location: T. 24 N. , R. 3 E ., Sec. 5, ce n te r o f N h a l f o f NE. General Description: Slopes average 13% cn a south-facing h ills id e in a r o llin g area o f io e-d isin tegraticn topography. S o ils are sandy to a depth o f 450 cm. S o il fam ily c la s sific a tio n : Ehtic H^iLorthcds, sandy, mixed, fr ig id . D epcsiticnal erRrircnrent/fcareit material: Outwash sand. S o il Pedcn Data: Horizon Depth Texture Cs fr t e t ED on vol % q/ac TOM TOP Ca Mg K fh H20 Ca£L2; <-----, — mg/kg - eh Subplot 1 A 0 - 7 Is EB 7 -1 5 s Bs 1 5 -4 8 s BC 4 8 -8 9 s Q 89-244 s C2 244-450 s 0.5 2.8 6.6 0.9 0.4 0.1 1.182 4.13 4.01 1.482 3.84 3.86 1.498 4.51 4.32 1.540 4.84 4.25 1.747 5.42 5.64 1.796 7.68 7.46 Subplot 2 AE 0- 6 Bsl 6 - 22 Bs2 22- 54 54- 85 BC a 85-120 C2 120-320 C3 320-335 C4 335-366 366-442 Cj 06 442-457 Is s s s s s fs cs s s 0.9 0.5 0.9 0.2 0.3 0.1 0.2 1.0 0.2 2.1 1.292 1.440 1.530 1.543 1.643 1.770 1.794 1.797 1.803 1.807 4.02 4.63 4.75 5.55 6.35 5.54 5.63 7.99 6.40 7.68 Is s s s s s fs s cs cs s 0.0 0.1 0.8 0.8 0.1 0.1 0.0 0.1 0.7 6.2 0.7 1.204 1.478 1.455 1.548 1.513 1.644 1.777 1.790 1.797 1.800 1.804 3.98 3.91 4.43 4.23 4.44 6.89 4.60 7.20 7.38 8.04 7.62 Is s s s s fs s 0.1 0.1 0.6 0.6 0.2 0.0 0.4 Subplot A E Bsl Bs2 BC cl C2 C3 C4 C5 06 3 0- 4 4- 7 7 - 36 36- 53 53- 77 77-213 213-274 274-335 335-366 366-381 381-457 Bray's --------- 3 1503.2 263.6 209.0 104.4 28.6 16.6 127.5 45.3 136.0 34.9 48.5 30.6 460 48 13 5 13 3 9 1 70 12 1630 24 65.8 8 .4 3.4 3.3 3.5 3.8 8.34 2.69 35.98 7.95 2.73 0.00 3.65 4.05 4.63 5.09 5.20 5.32 6.18 7.40 7.27 7.01 914.6 273.6 151.8 82.2 33.2 27.8 51.8 15.2 15.4 21.0 110.6 181.2 121.5 77.7 31.0 26.6 60.2 40.8 33.8 58.2 36 14 2 15 2 9 4 16 26 8 70 7 189 22 1690 39 312 29 1740 38 25.4 9 .7 7.7 3 .7 4 .2 4.7 9.6 8 .6 7 .8 6.7 5.80 33.47 40.76 33.23 16.89 4.04 2.92 3.16 4.21 3.22 3.40 3.37 4.21 4.50 7.41 7.42 5.01 7.49 7.22 7.60 7.23 1373.8 273.0 275.4 138.0 51.0 11.0 117.2 13.8 19.8 24.0 12.4 128.0 42.5 54.5 120.1 56.2 24.3 28.9 21.5 36.9 76.6 44.5 162 16 8 9 10 11 15 400 384 2190 1740 40 7 3 2 1 3 5 30 27 46 33 49.6 8 .1 7 .6 4.2 4 .3 5.1 5.5 5.5 4.0 5.4 2.9 13.37 2.91 19.87 28.46 25.91 12.08 8.72 4.68 3.16 0.56 0.83 1.246 3.73 3.35 1.410 4.15 4.26 1.534 4.54 4.42 1.593 4.96 4.42 1.771 7.10 6.96 1.798 6.81 6.50 1.804 7.67 7.41 1143.4 378.6 182.4 106.6 22.6 41.8 17.4 122.6 166.3 182.2 95.5 31.4 89.6 41.5 122 9 7 7 103 185 1430 24 3 2 1 15 19 27 51.0 13.0 8.1 3.9 6.4 6.6 3.0 10.18 34.91 61.31 38.94 7.13 5.79 0.03 Subplot 4 AE tel Bs2 BC a a C3 0- 5 5 - 26 26- 63 63- 94 94-351 351-366 366-457 262 S ite I . ECS fto. 106. Burgis landfiorm: Glennie moraine. L ocation: T. 27 N ., R. 5 E ., Sec. 34, NE o f SW. General Descripticn: Nearly le v e l area a t tap o f morainal h i l l . A t i l l layer o f varied thickness i s present, beginning a t depths between 14 and 115 cm and cm tinu ing for about 50 a n ., with lim estones. Surface s o i l i s lcany sand or sandy lean; substratuns are mostly loamy. S o il fa n ily c la ss ific a tio n : Typic Elitroboralfs, fine-lcem y, mixed. D epositicnal em rcm isnt/parent material: Port Horen basal, t i l l . S o il Pedcn Data: Horizon Depth on Subplot 1 A 0 -2 Eln 2“ 14 B/E 1 4 -5 4 Bt 54-137 BC 137-168 C 168-213 Texture CS fr ESt BD FH EH vol % g/ac H20 C3C12 TKN <----- TXP CS Mg — mg/kg K Bray's P ----------- > Is 1 cl cl Is s 0.0 1.5 0.3 2.2 1.1 0.3 0.552 1.700 1.635 1.618 1.739 1.759 6.17 5.24 5.01 7.16 6.82 6.33 8024.4 940.4 312.8 230.8 209.8 26.6 988.0 443.1 274.4 290.2 268.6 83.8 8840 1090 1232 2180 888 150 560 444 0 108 80 8 212 142 0 94 8 530 241 45 5 31 8 9 62.72 62.20 30.01 14.30 16.93 7.65 1 1 si cl s ic 2.3 0.5 0.8 0.1 0.5 1.044 5.32 4.55 1.394 5.72 4.72 1.700 5.40 5.12 1.618 7.00 6.89 1.653 8.07 7.31 2448.2 507.6 105.4 305.6 205.0 642.6 504.4 159.9 329.3 345.0 1848 440 240 2359 4310 190 105.6 46 73.9 32 32.1 776 139.6 292 102.0 49.82 104.20 36.46 12.61 1.58 Subplot 3 A 0- 2 Eln 2 - 18 B/Eftl 18- 57 BC 57- 74 a 74-110 C2 110-152 si 1 s ic l scl s ic l g r sl 0.5 0.8 3.7 3.6 6.1 19.3 0.637 1.700 1.700 1.550 1.604 1.574 4.84 5.71 5.07 5.47 6.95 7.51 6714.2 317.0 856.2 203.6 329.0 92.0 683.8 317.4 861.9 233.6 316.9 211.5 4260 560 1250 1030 1892 2630 432 86 223 257 586 272 368.0 65.4 171.0 100.1 126.2 45.7 54.71 65.28 34.47 10.51 6.70 1.53 SUbplot 4 A 0- 3 E 3 - 10 B sl 10- 31 Bs2 31- 64 Etn 64-115 a 115-198 C2 198-244 Is Is si si Is si si 0.0 2.5 2.2 2.3 11.5 12.3 12.0 0.550 5.94 6.00 1.444 6.33 5.70 1.466 6.45 5.63 1.529 6.33 5.51 1.700 6.37 5.47 1.741 7.10 6.72 1.770 8.02 7.43 8053.2 357.2 451.8 333.6 159.2 230.8 89.6 697.8 147.3 573.1 451.5 161.1 187.8 166.8 3070 570 990 521 460 1685 3560 225 52 87 47 75 390 120 118.0 17.3 34.5 23.1 27.4 63.0 26.9 55.68 15.86 131.30 164.96 26.21 3.62 0.00 Subplot A Bw E/Bm Bt C 2 0- 6 6 - 26 26- 49 49- 86 86-168 6.19 5.80 5.76 7.51 7.48 7.27 5.51 5.79 5.65 5.86 7.00 8.01 263 S ite J . EES No. 108. Burgis landform: Glennie moraine. Location: T. 27 N ., R. 5 E ., Sec. 28, ce n te r o f N h a lf o f SE. General Descripticn: East-facing 5% slope cn morainal h ills id e . A t i l l layer o f varied th ic k n e s s i s p rese n t a t th re e o f th e four s u b p lo ts , b egin n in g a t about 30 cm where present. The t i l l layer cen tim es in to the substrata® in two o f the su bp lots, and i s about 30 cm thick a t the other. Hie t i l l Gcntains lim estones. Surface s o i l i s loamy sand or sandy loan. Subatratuis where saipled are lo a iy sand and sand, w ith g ra v elly s tr a ta . S o il fa n ily c la s sific a tio n : Typic EUtroboralfs, fine-loamy, mixed. D epositicnal enviroment/parent n a teria l: Port Boren basal t i l l . S o il Pedcn Data: Horizon Depth an Subplot 1 0- 7 A 7 - 26 B sl Bs2 26- 49 BC 49- 91 91-183 a C2 183-274 C3 274-320 Texture Cs f r Ebt ED pH pH vol % g /cc H2Q G3CL2 Is Is Is Is s Is Is 6.9 14.0 9.8 2.3 1.8 8.8 0.7 TON <_— . TOP Ca m mg/kg K Bray's ] 0.744 6.55 5.98 1.426 6.19 5.36 1.491 5.93 5.14 1.570 5.88 4.95 1.552 7.59 7.10 1.772 8.10 7.29 1.788 8.27 7.68 5324.4 423.2 359.8 173.4 58.4 45.4 13.8 719.0 381.7 146.1 81.6 60.0 79.8 47.0 2720 468 283 170 525 2270 2410 214 52 32 23 118 74 63 69.0 34.2 18.1 13.2 11.9 11.1 6.7 34.76 145.73 9.38 7.69 1.98 0.70 0.00 Subplot 2 0- 2 s i A 2 - 14 s i AB E/Bn 14- 27 s i B /E hi 27- 77 c l 77-152 s c l C 0.0 1.1 0.9 0.2 2.5 0.874 1.322 1.700 1.700 1.659 5.71 5.27 5.78 5.44 7.61 5.76 4.76 5.09 4.85 7.28 3918.2 782.2 289.0 296.0 229.0 544.8 257.4 141.3 225.9 262.4 2160 474 552 1357 1634 290 276.0 78 65.2 100 69.6 401 180.0 634 54.1 47.28 11.69 7.85 16.47 6.18 subplot 3 A 0- 3 E 3 - 8 Is Bw 8 - 22 s i E/Ehi 22- 43 s i Bt 43- 95 s i c l cl 95-135 s i l C2 135-155 s c l 0.3 6.0 5.6 0.3 0.0 0.2 13.7 1.782 1.451 1.402 1.700 1.618 1.530 1.519 5.70 5.58 5.76 5.63 6.57 7.92 7.75 4.85 4.71 5.26 5.05 6.30 7.31 7.26 0.0 337.2 479.8 176.4 376.0 186.8 69.4 211.6 71.3 402.4 115.3 316.2 327.0 66.4 1706 340 568 697 2270 4140 2880 180 92.6 53 22.7 65 49.7 171 83.4 344 159.0 366 74.8 279 71.8 20.79 9.10 79.68 6.41 8.52 0.69 17.40 Subplot 4 A 0- 4 4 - 21 Bw B tl 21- 30 EJ/Bn 30- 46 Bt2 46- 76 76-110 BC a 110-168 C2 168-183 0.0 21.8 21.4 2.8 7.5 10.4 2.0 6.7 0.978 5.33 4.72 1.436 5.16 4.40 1.618 5.97 5.39 1.700 5.95 5.37 1.618 7.46 7.13 1.641 7.86 7.06 1.564 7.60 7.20 1.752 7.71 7.49 2972.0 377.6 428.4 245.4 386.4 152.2 161.0 69.2 305.9 180.9 158.9 92.1 311.0 126.7 142.4 84.2 2220 200 960 492 2300 660 1210 2090 166 32 225 131 650 233 362 144 33.12 23.78 9.02 1.71 2.18 0.00 0.00 1.68 1 cbl grscl si scl Is si s 143.0 44.8 103.5 41.3 193.0 61.6 61.6 19.6 264 S i t s K. EES No. 109. Burgis landform: Glennie moraine. Location: T. 26 N ., R. 6 E ., Sec. 14, SE o f M¥. General Description: Dissected topography featuring ro llin g ridges; slo p es average 8%. S o ils are e x tr e ie ly variab le. One subplot has a t i l l layer rear the surface; another has a t i l l layer between dqpths o f 137 and 187 on. Hie o tte r subplots have th in layers o f lo a iy m aterial in the substratum. Surface s o i l i s loamy sand or sandy loan; substratuns are s tr a tifie d sands. S o il fam ily c la s s ific a tio n : Typic EUtroboralfs, fin e-lo a ry , mixed. D epcsiticral em ircm ste/p aren t m aterial: reworked by flu v ia l action . Oufcwash sand with ice-ra fted t i l l in clu sio n s, S o il Redcn Data: Texture Cs f r Ebt HD pH pa val % g/o s H20 CaCL2 Horiaon Depth an Subplot 1 A 0- 2 E 2- 8 Bsl 8 - 25 Bs2 25- 40 E/Bn 40- 82 a 82-122 C2 122-183 a 183-229 C4 229-290 C5 290-335 06 335-366 fsl lfs si si si Is fs s il s s il s 0.0 0.6 3.5 4.2 2.2 0.7 0.0 . 0.0 1.3 0.0 0.1 0.709 1.455 1.426 1.602 1.700 1.630 1.739 1.765 1.781 1.791 1.797 4.50 4.54 5.42 5.47 6.52 6.88 7.46 8.22 8.21 8.47 8.42 Subplot 2 A 0- 2 E 2- 8 Bs 8 - 40 Eln 40-137 B/E 137-183 Bt 183-244 si Is si si scl scl 0.0 0.2 0.9 0.6 0.4 0.4 0.644 1.407 1.461 1.700 1.743 1.768 Subplot 3 A 0- 4 Bw 4 - 18 Bn 18- 28 E/Bn 28- 38 Bt 38- 68 BC 68-125 C 125-307 si si si scl scl scl s 0.0 2.9 0.5 1.3 1.2 0.4 0.1 0 1 1 1 1 1 1 482 492 700 700 618 683 768 Cs Mg — mg/kg TON <— TOP 4.24 3.64 4.86 4.99 5.57 5.05 6.40 7.48 7.12 7.44 7.56 5758.2 327.0 440.4 241.6 134.2 98.6 24.6 90.6 3.0 112.6 31.6 523.7 67.8 371.3 184.9 50.5 69.4 53.9 223.0 30.4 248.6 57.3 2020 68 338 180 292 423 127 3390 2050 3700 2280 380 23 66 27 62 92 33 149 50 192 63 4.36 4.46 5.01 6.07 6.82 6.24 4.17 3.78 4.60 5.40 6.88 5.79 6615.4 463.2 353.8 100.8 208.2 192.6 591.0 87.2 242.1 100.2 222.4 166.8 5.90 5.48 6.34 5.02 7.66 8.02 8.57 5.37 4.73 5.25 4.71 7.17 7.49 7.27 9276.0 243.6 179.2 266.6 400.2 262.4 28.2 625.6 127.4 123.6 115.2 260.2 257.1 74.8 K Bray's 1 532.0 20.7 46.3 49.3 24.9 27.7 8.2 22.3 5.6 26.5 6.1 67.89 7.53 88.39 60.92 3.55 2.70 0.70 0.68 0.00 0.00 0.00 1696 113 220 350 1607 1120 260 386.0 31 40.1 38 48.8 74 45.5 478 133.0 318 109.5 60.00 9.47 62.63 9.05 2.31 7.77 5444 320 366 800 2780 4160 3392 523 615.0 40 19.6 59 29.7 151 74.5 708 175.0 337 106.0 89 9.1 104.48 42.01 17.82 6.67 2.97 0.00 1.38 265 Site K, cent. Sutplot 4 Oa E BS Bn a C2 a C4 0- 5 5 - 13 13- 52 52- 76 76-135 135-160 160-307 307-450 an s Is Is s v fsl s s 0.0 0.8 8.5 0.2 0.2 0.0 0.4 0.5 0.384 1.494 1.516 1.700 1.626 1.546 1.774 1.800 4.97 5.14 5.18 5.54 6.17 6.11 7.62 8.00 4.60 11394.2 4.49 238.8 4.90 245.8 5.03 114.4 5.04 61.0 5.24 210.4 7.14 47.4 6.91 24.0 624.6 42.5 195.5 109.8 65.5 221.6 43.3 36.4 5288 167 300 200 108 560 1530 1679 486 568.0 24 11.0 21.3 29 20 14.9 13 8.3 74 35.8 95 12.7 41 7 .1 71.60 6.10 68.90 56.79 15.63 9.04 2.46 0.65 266 S ite L. ECS No. 110. Burgis landform: Glennie moraine. Location; T. 26 N ., R. 6 E ., Sec. 28, ce n te r o f E h a lf . General Descripticn: Sloping area along sid e o f h i l l a t s n a il head o f outvesh topographic featu re. S o ils are sandy throughout the ssipLed depth o f 450 cm. S o il fam ily c la s s ific a tio n : Efrtic Haplorttods, sandy, mixed, fr ig id . Depos iticm a l a m r o ir sn t/fea ra it m aterial: Outwash sand. S o il Fedon Data: Horizcn Depth on Sutplot 1 A 0 -4 B sl 4 -2 3 Bs2 23- 38 BC 3 8 -5 1 a 51-259 C2 259-450 C2-s 320-335 s s s s s s s 0.0 4.4 4.5 5.7 0.0 0.2 9.3 1.170 1.492 1.485 1.628 1.740 1.797 1.794 4.19 5.21 4.84 5.24 7.13 8.14 8.12 3.38 4.52 4.19 4.53 6.90 6.96 7.53 1576.2 105.4 243.0 62.8 29.0 40.6 97.2 194.4 135.2 158.8 49.7 42.9 50.8 84.3 108 5 11 9 331 2070 2640 34 1 3 1 41 53 66 79.0 6 .1 17.9 6.3 6 .8 7.7 12.9 15.87 61.31 52.03 23.62 4.36 0.80 2.02 Subplot A Bs Bt BC C s s Is s s 0.6 1.3 1.8 0.0 0.2 1.162 1.453 1.618 1.609 1.782 4.66 5.07 6.11 7.08 8.08 3.76 4.15 5.16 6.08 7.59 1630.2 246.4 132.0 17.8 20.2 190.3 93.6 86.3 47.5 34.3 200 36 34 7 333 71 141 37 2210 43 41.8 9 .9 15.4 7 .5 5.3 0.00 5.82 7.43 13.98 0.00 s s s s s s 0.0 0.0 0.5 0.1 0.1 0.0 1.252 1.391 1.486 1.651 1.756 1.800 4.40 4.08 4.90 5.52 6.68 5.83 3.38 3.33 4.48 5.03 5.11 4.81 1112.8 517.4 203.0 47.0 24.0 28.2 127.9 70.5 174.1 60.2 35.4 48.6 260 40 52 12 5 1 0 0 30 6 77 15 45.6 19.5 8.9 4.9 6.9 8.8 12.18 5.99 54.86 32.11 6.09 3.24 0.0 0.1 0.1 0.1 8.0 0.1 0.1 4.0 0.885 1.509 1.505 1.619 1.752 1.777 1.798 1.805 4.34 5.16 5.64 6.63 8.33 7.66 8.13 8.13 3.59 4.51 4.89 5.86 7.55 7.06 7.40 7.26 3810.6 145.4 89.8 28.8 76.2 33.8 14.4 100.6 452.4 134.0 57.5 27.3 75.9 45.9 35.9 59.3 207 27 11 2 7 1 51 17 1920 63 490 39 1870 43 2010 54 67.1 12.0 6.6 9.7 9.7 7.1 5.7 9.6 9.76 40.74 23.79 6.82 0.00 2.19 0.00 0.00 2 0- 4 4 - 28 28- 58 58- 83 83-450 S ± p lo t 3 A 0- 3 AB 3- 8 Bs 8 - 42 BC 42- 63 C 63-307 C 307-450 Texture Cs fr E3st ED E« v a l % g/oc H20 G3CL2 SUtplot 4 AE 0 -5 s BS 5 -5 0 s BC 5 0 -7 8 s a 78-168 s C2 168-183 CDS C3 183-307 s C4 307-411 s C5 411-450 cos TON TOP <-— - Ca Mg mg/kg - K Bray's I 267 S ite M. ECS ft). 113.. Burgis landfoon: Glennie moraine. Location: T. 26 N ., R. 5 E ., Sec. 8 , DW o f JW. General Description: Nearly le v e l area cn tench feature a t the south sid e o f morainal h i l l . A water ta b le i s p r e se n t a t a depth o f about 145 cm. S u rface s o i l i s sand; substratuns are s tr a tifie d sands, s i l t s , and cla y s. A cla y layer in the substratun r e su lts in perched water. S o il fa n ily c la ss ific a tio n : Typic Haplorttods, sandy, mixed, fr ig id . D epositions! en viroiien t/p areit n a teria l: Outwash sand over lacu strin e s i l t and cla y . S o il Pedcn Data: Horizon Depth cm Subplot 1 A 0- 2 EB 2- 7 7 - 33 BS Ek 33- 52 B/Ex 52- 86 86-152 C TOP Ga Mg — mg/kg 0.3 1.2 3.5 7.8 0.2 0 .0 1.014 4.12 1.434 4.31 1.459 5.61 1.800 5.95 1.800 6.66 1.615 7.95 3.52 3.75 4.66 5.39 6.00 7.49 2684.0 383.6 253.6 189.4 374.4 443.6 196.7 108.9 120.2 71.4 129.1 334.1 546 38 129 473 2010 5580 2 0- 6 6 - 11 11- 43 43- 58 58-137 s s s s s 0.0 0.2 2.9 2.9 1.4 1.152 1.456 1.383 1.541 1.626 4.31 4.46 6.04 5.95 6.91 3.42 3.62 5.11 5.69 6.25 1688.4 324.0 542.0 201.2 68.8 123.1 42.1 112.8 81.8 43.4 768 107 322 304 206 3 0- 4 4 - 12 12- 41 41- 54 54- 68 68-137 137-213 s s s s s s 0.6 1.5 4.2 1.5 2.6 5.5 4.3 0.901 1.322 1.476 1.552 1.477 1.627 1.751 4.97 4.20 5.79 6.25 6.03 6.51 7.55 3.81 3.60 5.72 5.11 5.22 5.27 6.96 3664.0 781.2 243.4 145.6 71.2 59.2 95.2 331.7 82.8 167.2 129.1 98.6 54.3 77.1 182 41 75 40 42 56 380 0.0 0.3 0.1 0.3 20.1 0.0 0.0 0.0 0.868 1.455 1.455 1.700 1.627 1.469 1.742 1.755 4.14 4.34 4.86 6.95 6.70 7.79 7.75 8.10 3.68 3.50 4.54 6.05 5.91 7.54 7.33 7.31 3978.4 327.2 308.2 92.6 117.0 251.6 419.8 256.4 216.7 55.0 53.1 53.9 108.4 267.7 379.3 268.7 640 58 108 134 260 3610 4440 3560 Subplot A AB B sl Bs2 BC C2 TON <----- s s s il s ic l s ic Subplot A EB B sl Bs2 BC a "texture Cs fr EJst ED pH pB uol % g /oc H20 r u n ? Subplot 4 A 0- 5 EB 5- 9 Bs 9 - 43 Ehi 43- 68 BC 68-112 a 112-140 C2 140-175 C3 175-190 s s s s g r ls si cl si K 110 81.2 16 12.0 30 20.3 74 19.0 389 84.7 622 134.1 136 20 44 43 38 B ray's P 15.44 5.48 24.18 0.25 1.90 0.00 49.4 9.3 13.8 11.8 8 .7 6.82 1.58 4.15 2.39 0.84 46.8 15.2 15.2 10.6 6.9 6.0 12.5 11.29 11.05 115.00 66.75 62.94 9.07 1.68 84 72.4 17 10.7 22 15.7 26 8.8 43 11.3 198 41.2 464 156.0 170 39.1 41.64 3.68 5.68 0.49 0.12 0.00 0.00 0.00 58 9 18 10 6 10 83 268 S i t s N. ECS No. 114. Burgis landfbrm: Glennie m oraine. Location: T. 26 N ., R. 5 E .r Sec. 10, ce n te r o f SW q u a rte r. General Description: Slopes average 9% along sid e s o f a small east-w est trending drainage v a lle y among undulating h i l l s . A t i l l layer with hic^i s i l t ocn tait i s present a t a depth o f about 30 cm. Surface s o i l s a r e loamy san d, sandy loam, s i l t loam , o r loam. SubstratuiB contain varied textures. S o il fam ily c la s s ific a tio n : Typic Fragiboralfs, fin e-loan y, mixed. D epositicnal a m r a ment/parent m aterial: Port Horen basal t i l l . S o il Bedcn Data: TKN <----- TKP 6953.2 517.0 284.6 306.8 401.0 380.2 315.6 153.4 992.5 123.0 77.2 168.3 304.8 350.3 316.8 200.5 1446 780 935 1215 1250 980 1102 489 99.6 54.2 81.5 85.3 72.0 43.0 52.9 24.0 11.15 2.28 0.66 0.00 2.39 0.00 0.00 2.75 3.87 5.49 5.48 6.89 7.52 3891.2 379.4 148.2 403.4 339.6 308.0 135.8 60.9 268.9 324.1 1866 268 151.6 530 68 20.1 540 117 35.0 2010 616 100.3 4220 371 69.8 19.27 9.90 0.97 1.28 0.00 5.15 4.95 6.23 6.97 7.57 7952.6 351.8 468.6 537.8 290.6 528.9 244.3 193.6 321.7 340.4 5240 524 288.0 34.4 358 76 1700 326 156.5 2440 606 206.0 4660 349 95.1 33.72 42.33 17.40 10.53 0.00 0.702 6.22 5.93 1.525 5.95 5.19 1.8C3 6.39 5.28 1.618 5.76 5.12 1.487 5.79 5.22 1.739 5.94 6.02 5847.6 599.8 277.8 248.0 495.0 524.8 335.6 195.0 88.5 132.5 272.0 210.6 9480 1188 748 148 700 182 931 275 1468 428 526 72 58.56 17.28 1.48 4.83 4.16 37.13 Horizon Depth cm Subplot 1 A 0- 4 Bn 4— 20 E/Bx 20- 43 Bt 43- 70 BC 70-125 Q 125-198 a 198-259 C2 259-366 1 1 si s il s ic l s il si lfs 0.0 0.0 0.1 0.5 0.0 0.0 0.0 0.0 0.621 6.28 5.98 1.700 6.41 5.81 1.800 6.17 5.89 1.618 7.21 6.75 1.587 7.25 6.65 1.744 7.41 6.82 1.772 7.21 6.73 1.791 7.37 6.53 subplot A Bw Ey'BX Bt BC Is Is si s ic l s 0.2 4.0 0.8 0.0 0.1 0.877 1.435 1.800 1.618 1.702 4.61 6.14 6.22 7.13 8.10 1 grl s id d s id 2.0 19.0 0.2 0.0 0.1 0.557 1.446 1.800 1.618 1.600 5.46 5.71 6.34 7.23 8.12 an s il 1 sd s il s id 0.0 0.3 0.3 0.3 0.0 1.0 2 0- 5 5 - 28 23- 50 50- 75 75-152 •nsKture Cs fr B st ED E« pH val % q /c c H20 CaQ2 Ca Mg — mg/kg 266 120 178 252 226 168 202 86 K Bray's I Sutplot 3 A Bw B/Ex Bt BC 03223863- 3 22 38 63 152 SUbplot 4 Qa 0- 5 E 5 - 21 E/Bx 21- 49 Bt 49- 69 BC 69-122 C 122-183 524.0 49.9 75.4 69.1 71.3 38.3 269 S ite O. EES No. 116. a i r g i s lanrifnrm; West Branch moraine. Location: T. 25 N ., R. 4 E ., Sec. 1, SW o f SW. General Description: Slopes average 7% with a mostly SB aspect in an area o f ro llin g rid g es. Surfaces may be eroded. A t i l l layer o f variable thickness i s present a t depths o f about 30 on, ocntaining lim estones. Surface textures are sandy loan; substratuns where sanpLed are s tr a tifie d sands and loany sands. S o il fam ily c la s s ific a tio n : Typic Fragiboralfs, fine-loamy, mixed. D epositicnal envircrsnerit/fearent iraterial: Fort Hircn basal t i l l . S o il Fecbn Data: Horizon Depth on Subplot 1 Qa,A 0- 7 E 7 - 10 Bw 10- 20 Ek 20- 32 lyEst 32- 64 Bt 64-110 C 110-152 Subplot A Bw Ek Eytm Bt BC C 2 0- 2 2- 9 9 - 18 18- 39 39- 68 68- 97 97-152 Subplot ca A Bw Ek BC 3 Texture Cs fr Ebt ED EH EH vol % g /oc H20 CaQ2 am fsl fsl fsl scl scl s ic l 0.1 0.7 0.3 0.4 0 .2 0.6 0.8 si si si scl d scl grcns 0.0 1.1 1.1 0.0 1.0 2.4 25.0 TON <----- TOP Ca Mg — mg/kg - K Bray's 1 0.792 1.381 1.394 1.800 1.800 1.618 1.606 5.96 6.55 5.22 5.25 5.37 6.91 8.33 5.64 5.64 4.37 4.39 4.72 6.08 7.67 4777.0 389.6 4540 500 549.4 117.9 746 97 506.4 482.7 434 62 310.0 153.4 305 61 269.4 111.2 1075 281 96.6 198.0 468 56 169.8 240.7 3740 273 174.0 24.2 35.9 28.5 82.5 10.1 43.9 43.52 10.10 99.13 13.35 4.33 21.53 0.00 0 1 1 1 1 1 1 830 362 800 700 618 649 609 5.94 6.00 7.48 5.48 8.06 7.85 7.91 5.68 5.36 6.92 4.94 7.64 7.38 7.58 4364.8 618.6 39.2 447.4 364.8 236.2 32.4 384.4 5000 424 494 76 308.9 56.0 250 58 213.0 1410 311 285.3 3340 403 147.2 1145 300 53.0 1840 48 232.0 44.4 8 .5 78.0 64.3 40.0 6.2 46.14 37.24 3.20 15.78 1.36 1.75 0.94 3- 7 7 - 26 26- 47 47- 78 78-137 137-396 351-366 am si si si si si s si 0.0 1.2 4.3 4.4 3.6 3.0 2.2 2.3 0.555 1.199 1.447 1.800 1.543 1.625 1.782 1.798 6.20 5.92 5.97 4.04 6.40 8.11 8.42 7.72 6.32 5.43 4.98 5.33 5.64 7.58 7.63 6.96 7984.8 1402.4 347.6 185.0 249.6 87.8 17.2 80.6 483.1 10560 899 223.5 2700 252 212.9 501 43 96.6 451 37 143.7 442 35 82.5 823 134 59.1 1686 56 58.4 1065 92 711.0 101.8 24.6 19.5 15.1 18.9 6.3 23.9 58.25 40.74 17.99 2.68 9.03 6.27 0.00 0.00 Subplot 4 Qa 0 -5 AE 5 - 15 Bw 15- 31 Eytm 31- 61 Bt 61-105 c 105-183 am si si scl scl Is 0.0 0.9 0.3 0.4 1.4 1.1 0.595 1.361 1.433 1.700 1.618 1.526 6.39 5.96 5.79 5.33 6.87 7.40 6.13 5.29 4.93 4.68 6.35 6.46 7342.2 625.0 386.0 281.2 560.4 94.4 599.3 12560 1044 735.2 186.7 601 101 26.5 265.5 568 85 31.8 147.1 1065 235 72.1 373.2 1500 413 83.9 82.3 373 81 18.1 53.28 21.76 38.71 5.51 5.39 0.00 a C2 C2-s 0 - 3 270 S ite P . ECS No. 118. Burgis lardform : Nest Brandi moraine, lo c a tio n : T. 25 N ., R. 5 E ., Sec. 7, EM o f NE. General D escriptiai: Slopes average 15% in a lower slope p o sitio n around th e U-shaped end o f a snail v a lley f i l l e d with oitwssh sard. Aspect i s mostly south, but the v a lle y i s narrow and shaded. A water tab le i s present a t about 194 on, ap pareitly due t o perching above a d a y layer. Surface s o i l s are sandy, with wall-developed loany sard spodic B horizons. SubstratniB above the water tab le are sandy. S o il fam ily c la s sific a tio n : Typic Haplorthods, sandy, mixed, fr ig id . Depositicnal envirasnait/fcarent n aterial: till. Outoash sa id over lacu strin e d a y or clayey S o il Bedon Data: K Bray's P TKP Ca 3813.2 117.8 363.8 342.4 149.8 209.6 34.2 150.0 4.6 191.4 81.6 51.3 124.4 104.4 1332 22 202 132 87 608 246 148 197.2 6 6.3 25 16.0 11.4 16 8 .2 7 25.9 100 8 .6 45 28.92 0.03 38.73 10.34 11.55 3.75 3.95 5.07 3.91 4.32 4.45 6.20 6.44 4581.2 236.6 421.6 391.6 207.2 125.0 281.0 34.3 67.4 69.9 88.6 58.7 3600 89 350 139 341 250 384 151.0 6 .0 18 49 16.0 16 12.9 32 10.0 21 7 .8 28.89 0.87 3.08 2.74 13.79 7.10 5.24 5.46 5.95 6.59 8.23 4.97 4.35 5.07 6.30 7.78 5613.8 193.4 260.4 92.0 100.0 407.7 18.9 131.0 80.1 159.8 6320 630 231 22 327 25 332 63 2490 147 5.60 6.39 6.89 6.77 7.17 6.82 7.81 8.20 5.00 5.64 6.93 5.82 6.35 6.06 7.14 7.62 2784.8 198.4 340.6 186.0 183.0 81.8 78.4 144.6 133.2 36.7 99.6 94.5 68.5 37.9 87.2 281.6 1814 370 867 468 329 192 361 3500 Horizon Depth on Subplot 1 Qa 0 -4 E 4 - 20 His 2 0 -2 5 EB 2 5 -5 2 BC 52- 82 Cl 82-183 C2 183-244 Ttexfcure Cs fr Est H) pH EH va l % g /c c H2Q rtef'19 an s Is s s lfs s 0.0 0.3 0.6 0.7 1.7 0.0 0.0 0.885 3.92 1.571 4.55 1.457 5.14 1.471 5.82 1.543 5.90 1.605 6.17 1.768 7.68 3.43 3.70 4.22 4.82 4.97 6.11 7.04 Sutplot A E B sl Bs2 BC C 0 -5 5 -1 5 1 5 -2 7 27- 63 6 3 -8 3 83-105 an s Is s s s 0.6 0.9 1.0 0.7 0.3 0.2 0.810 5.63 1.495 5.08 1.436 5.30 1.469 5.51 1.599 6.49 1.634 7.29 Subplot 3 A 0 -3 E 3 -5 Bs 3 - 69 BC 69-125 C 125-229 an s Is s fs 0.0 0.1 0.1 0.0 0.0 0.720 1.518 1.519 1.628 1.752 Subplot 4 A 0 -1 2 E 1 2 -2 3 B sl 23- 33 Bs2 33- 57 BC 5 7 -7 7 Cl 77-152 C2 152-198 C3 198-244 Is s Is Is s s Is lfs 0.4 0.2 0.4 0.2 0.2 0.6 0.0 0.0 1.001 1.516 1.476 1.562 1.554 1.615 1.751 1.770 Mg 2 140 30 51 19 10 7 57 173 564.0 5.6 9 .6 18.4 21.4 62.65 1.32 20.35 5.12 0.09 42.8 4.6 9.1 7.1 7.0 6.5 14.3 32.7 12.12 1.05 9.98 29.98 14.46 10.08 0.47 0.00 271 S ite Q. ECS No. 122. Burgis landform: West Branch moraine. Location: T. 26 N ., R. 3 E ., Sec. 22, IE o f IE . General Description: Slopes average 15% along a SE facing bench cn a h il l s i d e formed o f outwash sand overlying flow t i l l or ice-rafted t i l l in clu sion s. Surface s o i l s are sandy. Textural layers o f lo a n / sand, sandy loan, s i l t y lean, and cla y loan are found a t various depths in th e su b soil and substratum. S o il fam ily c la s s ific a tio n : A lfic Kaplorthods, coarse-loamy, mixed, fr ig id . Depositicnal envircraent/fcarent rraterial: Outwash sand with ice-ra fted in clu sio n s. S o il Bedcn Data: Horizon Depth cm Sutplot 1 A 0 -5 E 5- U Bs 1 1 -5 4 BC 54- 71 CL,C2 71-168 C3 168-198 C4 198-229 Tbxture 03 f r Est 33 pH vo l % g /o c H2Q EH TKN TKP Ca. Mg K Bray's P irg /K C | s s s s si s cl 0.0 0.3 5.8 5.0 0.0 0.0 0.0 1.303 1.548 1.513 1.491 1.622 1.755 1.768 4.21 4.30 5.44 6.01 7.01 7.18 6.90 3.37 3.50 4.43 4.74 6.47 6.39 6.49 863.2 146.8 167.4 80.4 149.8 38.2 322.4 77.1 23.9 49.9 31.9 118.2 37.4 316.2 317 22 19 25 1293 155 3035 38 34.7 6 10.4 6 13.6 4 10.9 65.4 227 34 8 .8 656 218.0 4.85 1.83 7.22 10.94 0.32 0.00 6.74 Subplot VE B sl BB2 C 2 0 -1 0 10- 25 25- 64 64-213 s s s s il 0.1 0.7 5.5 0.0 1.490 1.469 1.563 1.506 4.98 5.63 5.83 8.15 4.00 4.67 4.93 7.57 247.0 204.2 90.2 228.0 31.1 49.2 58.9 311.2 116 18 89 13 49 8 5000 459 14.9 18.3 21.0 74.2 1.61 7.12 7.77 0.00 Subplot A B sl Bs2 BC C 3 0- 3 3 - 28 28- 54 54- 87 87-411 s s s s Is 0.0 7.4 7.9 3.5 0.6 1.003 1.464 1.550 1.548 1.778 3.94 4.85 5.26 5.20 7.67 3.29 4.27 4.47 4.47 7.27 2769.4 208.2 108.0 70.8 23.8 185.1 70.2 85.9 53.3 45.3 302 84 8 4 17 6 39 19 1263 40 143.6 13.5 14.4 19.3 9.0 30.80 9.75 36.03 22.20 1.13 Subplot A E B sl Bs2 BC C 4 0- 2 2- 5 5 - 16 16- 48 48- 75 75^-450 s s s s s s 0.0 0.2 0.3 3.4 8.6 0.8 0.867 1.454 1.453 1.510 1.482 1.781 4.01 4.21 4.65 5.16 5.59 7.92 3.27 3.45 4.01 4.50 4.50 7.45 3988.0 330.4 207.2 174.4 62.8 13.0 248.4 63.4 131.9 189.3 101.3 20.1 722 146 35 12 10 3 4 17 14 6 1600 37 216.0 16.1 13.5 16.9 14.7 8.5 23.57 5.58 58.25 76.07 49.56 2.41 272 S ite R. ECS tto. 124. Burgis landform: Glennie moraine. Location: T. 27 N .f R. 5 E ., Sec. 31, c a r te r o f W h a lf o f IE . General Description: Slopes average 16% along a N-facing slop e in a d erriritic network o f ro llin g ridges. S o ils are sandy throughout the solun, containing gravel and cobbles. Substratuis are s tr a tifie d sands with some loany textu ral la y ers. S o il fa n ily c la s sific a tio n : Qrtic Hsplorthcds, sandy, mixed, fr ig id . D epositicnal envircm ent/parsrt material: Outwash sand. Soil Bedcn Data: Horiacn Depth on Subplot 1 AE 0- 6 EB 6 - 19 Bs 19- 43 BC 43- 72 a 72-244 C2 244-307 0.0 0.3 5.4 0.1 0.0 0.0 1.314 1.500 1.507 1.593 1.742 1.784 4.26 4.97 5.67 5.33 6.35 8.55 3.54 4.26 4.68 4.81 5.30 6.83 818.2 226.8 176.6 93.2 14.2 138.8 92.2 108.1 97.1 67.2 68.1 240.2 2 0 -5 5 - 23 23- 54 54- 72 72-450 s s s s s 0.0 0.1 5.4 0.0 0.0 1.233 1.463 1.508 1.497 1.731 4.22 5.06 5.08 5.23 7.27 3.51 4.30 4.41 4.77 7.38 1213.8 199.6 223.8 50.6 14.4 126.7 102.2 214.5 111.8 29.6 3 0 -4 4 - 43 43- 75 75-157 157-450 s s s s s 0.1 3.4 5.9 4.4 0.0 1.371 1.479 1.601 1.673 1.790 4.24 5.31 5.35 7.06 8.43 3.87 4.55 4.59 6.75 7.40 587.0 212.4 85.2 274.0 26.4 0.3 0.9 17.9 0.9 1.247 1.549 1.530 1.775 5.17 5.13 5.85 6.17 4.25 6.07 4.71 5.45 1141.2 145.6 150.8 46.6 Subplot AE ES BC C2 TOP TON Ca Mg <-----— mg/kg - s s s fs fs s il Subplot A ESI Bs2 BC C a Itexture Cs fr Efet ED pH PH v d % g /cc H20 CaQ2 Subplot A E B3 C 4 0- 5 5 - 15 15- 6 i 61-411 s s dbs s 125 20 25 4 63 8 29 5 53 12 3335 232 K Bray's ] 12.8 8.8 9 .2 8 .0 7 .5 18.3 5.79 27.30 24.13 27.51 14.65 0.97 36 3 2 1 25 28.0 7 .0 3.9 2.5 4.9 13.86 30.01 56.55 68.01 6.21 102.9 110.2 69.5 265.9 44.5 58 20 37 13 5 17 1756 530 856 36 31.1 12.7 7 .4 85.7 5.0 12.28 35.30 25.97 0.52 0.98 121.7 74.6 83.3 40.7 746 64 176 22 77 12 529 49 26.0 18.9 9.7 7.2 8.38 19.19 22.32 3.40 238 10 6 4 720 273 S ite S. ECS No. 126. Burgis landform: F le tc h e r Bond channelled uplands. Location: T. 26 N ., R. 7 E ., Sec. 15, SW o f NE. General Descripticn: Nearly le v e l area cn top o f morairal h i l l . A thick t i l l layer i s present a t a depth o f about 35 cm and continues through the s d u n , containing lim estones. Surface s o i l s are loany sand and sandy loan. aibstratm B were not satpLed. S o il fam ily c la s sific a tio n : Tto pedons, Typic EUtrdooralfs, fin e-loan y, mixed; two pedons, Typic E tagiboralfs, fin e-loan y, mixed. Depositicnal envircment/fcarent n a ter ia l: Port Bircn basal t i l l , p ossib ly eroded. S o il Bedon Data: Horizon Depth on Subplot 1 A 0- 9 HP! 9 - 15 Ex 15- 24 EyTk 24- 50 Bt 50-107 C 107-152 Shiplot A Bw E' Bt C A E Bw Ek E/Ex Bt C Subplot A Bw E Bt C Texture Cs fr Efefc 93 pH pH vo l % q /cc H20 c a m TKN <— — TKP Ca Mg —- mg/kg K Bray's I si si fsl scl scl s id 0.4 0.5 0.4 0.2 0.6 0.3 1.055 1.382 1.800 1.800 1.618 1.606 4.84 5.26 5.88 5.67 7.92 8.06 4.36 4.25 4.77 4.66 7.73 7.40 2365.6 546.6 176.4 253.4 282.2 180.2 187.1 161.1 81.9 90.8 300.1 258.1 1354 423 252 867 3420 4040 120 59.1 48 40.7 46 66.9 218 114.5 490 97.2 301 64.2 2 O- 10 10- 35 35- 63 63- 91 91-152 lfs lfs lfs sd s id 1.1 1.1 0.4 0.5 1.6 1.036 1.362 1.493 1.618 1.618 6.04 6.12 7.34 8.00 8.37 5.34 5.43 6.46 7.61 7.63 2505.8 618.4 240.8 268.6 142.4 156.3 153.4 133.6 288.4 228.4 2100 652 547 2370 3820 198 84 71 367 205 67.2 18.1 15.3 85.3 59.1 7.45 2.94 8.07 1.55 0.00 3 0 - 10 10- 17 17- 44 44- 58 58- 80 80-122 122-152 s Is si fsl sd sd s id 0.9 1.6 2.6 0.9 0.9 0.8 1.5 1.176 1.484 1.453 1.800 1.800 1.618 1.601 6.05 5.75 5.55 6.52 6.43 7.93 8.42 5.24 4.91 4.59 5.23 5.95 7.45 7.78 1542.4 260.6 331.6 84.0 213.0 249.2 177.4 127.0 50.3 131.5 62.4 135.9 294.0 279.2 1366 280 362 286 1183 3900 3840 102 31 48 51 271 375 255 33.0 12.5 30.3 20.6 78.0 87.8 72.8 10.75 6.15 3.64 0.88 1.07 0.00 0.00 4 0 -1 4 14- 21 21- 26 26- 98 98-152 si is si sd s id 1.4 2.0 0.6 0.3 0.6 1.100 1.460 1.495 1.618 1.621 6.12 6.84 4.96 7.81 8.24 5.91 5.80 4.32 7.35 7.40 2038.6 314.2 236.6 345.6 115.2 352.4 119.4 95.0 326.8 256.7 1804 390 480 3840 4180 86.4 178 52 32.2 86 29.8 414 111.0 242 65.4 23.05 5.51 1.90 0.04 0.00 13.83 33.80 10.10 1.41 4.75 0.00 274 S ite T. EES No. 127. Burgis landform: West Branch m oraine. L ocation: T. 26 N ., R. 4 E ., Sec. 28, IE o f EOT. General Description: Slcpffl average 10% on a ridgetcp with mostly S a sp ect. S it e adjoins the AuSable River Valley; sand textures nay be a re su lt o f flu v ia l a c t iv it y from g la c ia l drainage through the v a lle y . S o ils are sandy throughout the sanpled depth o f 450 cm. SUbstratuiB contain gravel str a ta . S o il family c la s s ific a tio n : Typic Udipsaments, mixed, fr ig id . D epositicnal sw iroriim t/parant n a teria l: Qutrash sand. S o il Bedon Data: Horizon Depth cm Subplot 1 A 0- 4 4 - 11 B sl Bs2 11- 48 48- 0) BC 80-450 C pH Texture Cs fr Efet BD pH vol % q/bc H20 r a n ? TKP im <------ s s s s s 0.0 0.0 0.3 0.2 0.2 1.243 1.388 1.505 1.505 1.782 4.22 4.83 4.80 4.83 7.72 3.46 4.21 4.53 4.71 7.41 1160.8 393.8 174.0 52.6 16.8 114.4 69.5 81.2 32.5 42.6 Ca Mg — ng/kg • K 92 34 16 7 7 2 5 1 532 18 50.0 11.0 8 .5 5 .3 3 .8 7.93 4.60 19.58 20.14 15.27 29 5 3 2 0 39 50.9 12.2 6 .9 5 .8 3 .5 5 .1 7.00 7.91 17.33 34.94 25.01 4.03 Bray's P ------------ 5 Subplot A B sl Bs2 Bs3 BC C 2 0 -5 5 - 17 17- 31 31- 55 55- 79 79-450 s s s s s s 0.0 2.3 2.7 2.7 0.2 0.9 1.053 1.394 1.481 1.545 1.538 1.782 4.19 5.02 5.25 5.26 5.24 8.29 3.54 4.25 4.41 4.64 4.80 7.55 2380.4 397.4 210.2 138.4 36.0 27.4 118.7 102.2 90.3 97.6 55.7 57.2 Subplot A B sl Bs2 BC C 3 0 -4 4 - 12 12- 46 46- 60 60-450 s s s s s 0.0 5.0 5.8 0.5 0.5 1.214 1.411 1.498 1.599 1.780 5.11 4.80 5.12 5.73 7.74 3.42 4.12 4.58 4.85 7.49 1316.8 324.8 191.2 87.0 16.8 89.2 69.0 141.0 99.8 25.3 52 32 16 5 14 2 1 11 573 25 65.2 14.7 8 .4 4 .5 3.6 10.35 24.47 50.52 44.62 3.48 0.0 3.1 3.0 1.7 0.1 11.0 3.1 1.345 1.459 1.530 1.517 1.753 1.791 1.802 4.53 5.22 5.35 5.23 6.07 8.50 8.75 3.83 4.45 4.67 4.78 5.25 7.20 7.57 684.2 218.6 147.2 38.0 34.6 65.6 18.8 60.3 59.5 87.8 37.1 30.6 62.7 37.9 59 12 2 7 1 7 1 1 20 6 1254 72 1660 46 30.3 11.0 7 .9 4.5 4 .2 5.2 5.3 2.78 5.21 18.72 10.55 9.38 0.00 0.65 Subplot 4 A 0 -3 B sl 3 -2 7 Bs2 27- 48 BC 4 8 -8 1 a 81-274 C2 274-351 C3 351-442 s s s s s s COS 114 19 9 5 0 1252 275 S ite U. ECS Ha. 134. B urgis landform: West Brandi moraine, lo c a tio n : T. 26 N ., R. 2 E ., Sec. 22, NE o f Ntf. General Description: Slopes average 5% cn a planar area sloping gen tly to the north rear the edge o f the moraine a t i t s border with the AuSabl e river v a lle y . S o ils have loam, s i l t loam, and loany f i r e sand tortures in t i e sdian. Sufastratxsns are fin e sard and loany fin e sa id . S o il fam ily c la s s ific a tio n : Two padcns, Typic Fragiboralfs, f i r e - s i l t y , mixed; two pedcns, Typic HapLorthcds, sandy, mixed, fr ig id . Depositicnal sawirGrsnsnfc/parait n a teria l: laorstrin a fin e sards and s i l t s . S o il Bedcn Data: Horizon Depth Texture CS fr E&t ED pH pe val % g /o c m o CaCU cm Sabplot 1 AE a- 8 E 8 - 16 B sl 16- 25 Bs2 25- 66 a 66-198 C2 198-450 Sutplot A Bw B/Ex Bt BC a. C2 Sutplot A E Bs BC a C2 TKN <— H C P Ca 4.44 1075.6 110.6 K Bray's I 38.4 9.6 16.8 23.4 65.1 8.0 9.18 7.06 3.50 1.97 0.94 0.00 817 105 246 446 642 183 67 330.8 54.6 140.0 137.4 82.6 22.8 7 .9 35.44 11.05 1.62 6.89 6.62 0.00 0.00 381.1 28.6 189.2 123.9 109.8 92.5 4720 274 414 26 360 48 91 8 526 165 2380 57 206.0 16.0 29.9 13.8 16.6 6.7 31.34 0.78 2.72 16.06 0.68 0.00 459.9 167.8 92.8 176.3 276.1 231.2 88.3 7720 694 905 1610 1230 4000 2490 335.6 50.6 75.5 113.6 50.2 48.5 6.8 39.03 0.80 0.00 6.31 0.21 0.00 0.23 fs lfs fs fs lfs 0.0 0.2 0.6 0.0 0.0 0.0 1.259 1.511 1.484 1.543 1.690 1.793 5.59 6.15 5.88 5.94 6.40 8.45 4.97 5.00 4.85 6.39 7.68 2 0- 2 2 - 12 12- 31 31- 60 60- 88 88-168 168-450 1 1 si s ic l s il v fs fs 4.2 13.9 10.0 0.0 10.0 0.3 0.0 0.489 1.330 1.800 1.618 1.526 1.618 1.791 6.73 5.42 5.14 5.08 6.80 8.73 8.61 6.42 4.83 4.48 4.55 6.23 7.67 7.47 9143.6 747.6 366.2 360.6 365.2 204.8 23.0 691.5 311.3 121.5 211.5 293.1 341.7 88.5 8520 60S 1003 1317 1610 3060 2550 3 0- 2 2 - 20 20- 37 37- 59 59-168 168-290 lfs fs lfs fs fs lfs 0.0 0.0 0.4 0.3 0.0 0.0 0.687 1.453 1.401 1.486 1.623 1.773 6.78 6.95 5.49 5.91 7.61 8.37 6.21 6.14 4.58 4.78 7.47 7.70 6036.0 332.6 673.8 256.8 113.6 35.8 0 1 1 1 1 6.64 5.70 7.39 5.36 7.16 8.54 9.05 6.05 4.89 7.15 5.06 6.83 7.92 7.77 4330.0 608.2 391.4 409.0 381.4 183.6 24.8 lfs M g -— mg/kg - 756 66 207.4 43.1 236 25 355.2 101.1 424 40 250.6 84.6 200 26 429.4 313.9 1494 380 71.4 2360 45 9.6 a ip lo t 4 A Ex Btx BC a C2 0- 2 2 - 10 10- 27 27- 59 59- 90 90-107 107-450 s il c h s il s il s id s il s id fs 0.6 21.2 0.2 0.0 0.0 0.5 0.0 834 800 800 800 522 1 626 1 785 551 110 221 446 360 299 52 276 S ite V. ECS tto. 136. Rirgig landform: Eldorado Kanic Ridges, lo ca tion : T. 25 N ., R. I N . , Sec. 1, NWo f SE. General Descripticn: Slopes average 7% along a Mi-facing h il l s i d e . S o ils are sand with loamy car g ravelly or ocbhly str a ta cxxurring throughout the saip led depth. S o il fam ily c la s s ific a tio n : E htic a id A lfic l^plorthocb, sandy, mixed, fr ig id . D epositicnal swirorsnent/parent material: in clu sio n s. Outwash sand with ic e -r a fte d or flow t i l l S o il Bedcn Data: Horizon Dqoth on Sutplot 1 A 0 -1 E 1 -5 ESI 5 -2 2 Bs2 22- 37 BC 3 7 -5 4 a 54-122 C2 122-290 C3 230-381 Subplot 2 A 0- 2 E 2 - 11 Bs 11- 30 BC 30- 49 a 49-183 C2 183-320 C3 320-351 C4 351-450 TEN <----- TKP 1874.8 547.4 372.8 157.4 64.4 23.4 60.4 20.4 134.9 94.4 164.5 184.0 76.8 54.8 56.4 62.5 948 98 142.4 105 24 33.5 23 7 14.8 17 3 12.0 18 6 9 .5 33 15 7 .9 304 60 9 .5 3060 69 13.5 11 5530.4 76 306.6 46 330.6 87 96.0 45 48.0 56 43.6 62 84.8 95 14.8 347.9 77.0 327.6 125.2 33.0 68.8 118.5 78.2 502 24 23 61 182 300 953 2965 140 9 5 15 45 84 257 90 302.0 15.2 15.6 17.2 19.6 30.4 58.1 16.8 81.66 3.74 120.71 33.79 3.90 6.33 6.65 2.48 154.2 55.1 119.1 54.3 37.9 128.7 143.6 36.6 146.7 35.3 226 23 25 97 89 2340 3240 1493 662 1429 92 8 7 25 17 152 102 36 115 42 125.3 11.1 20.2 16.1 10.9 33.8 19.9 5 .3 29.0 5 .5 17.93 2.60 12.92 14.41 1.79 2.81 0.00 0.00 5.29 0.00 pH Texture Cs fr Efet ED pH vol % g /o s m o GjCL2 (±3 grs s s s 0.3 2.3 18.5 19.0 17.3 0.2 0.7 3.2 1.124 5.73 5.08 1.382 4.64 3.86 1.407 5.00 4.35 1.510 5.18 4.45 1.626 5.69 4.66 1.652 5.91 4.61 1.765 7.12 6.96 1.795 8.55 7.68 s s Is dbs s Is si & 0 .0 1 .1 4.0 23.6 5.8 0.3 0.2 0.2 0.727 3.85 1.464 4.53 1.463 5.31 1.590 5.94 1.615 6.40 1.779 6.19 1.795 6.20 1.803 9.20 3 3 4 4 5 5 5 7 2.2 1.0 16.9 11.2 0.7 0.8 0.7 0.0 0.0 0 .6 1.116 1.477 1.471 1.595 1.631 1.578 1.748 1.765 1.781 1.799 3.19 3.36 4.37 5.00 5.80 7.67 7.75 7.38 6.93 7.65 s s dbs Sutplot 3 A 0- 3 s E 3- 6 s Bs 6 - 26 cfals BC 26- 64 I s a 64-107 s C2 107-152 I s C3 152-183 s C4 183-229 s C5 229-290 I s 06 290-450 s 3.81 3.82 5.05 5.87 7.33 8.53 8.50 8.85 7.38 8.09 1927.2 275.0 289.0 91.2 29.8 80.6 65.8 14.4 101.4 11.2 Ga Mg — n g/kg K Bray's P ------------ 5 22.64 8.08 23.71 61.90 29.46 6.41 0.79 0.77 277 S ite V, a n t . Subplot 4 A 0- 1 E 1- 2 B sl 2- 6 052 e - 66 66-11.4 BC a 114-259 C2 259-290 C3 290-411 C4 411-450 s s s s s s Is s s 0.0 1.4 1.8 9.8 7.0 5.1 2.3 0.0 2.1 1.126 1.490 1.389 1.498 1.623 1.757 1.784 1.797 1.805 3.87 4.09 4.68 5.88 5.86 6.04 7.91 7.74 8.09 3.23 3.46 3.92 4.88 4.80 5.04 7.57 7.17 7.67 1862.8 246.6 365.2 237.8 48.6 32.8 16.8 9 .4 26.4 197.9 50.3 144.0 180.7 52.1 18.6 55.9 34.0 57.2 160 90 14 8 16 8 67 19 61 17 96 23 560 100 380 37 1530 33 242.0 14.7 16.8 21.7 17.9 14.1 17.2 9 .5 5.3 23.16 6.19 18.53 43.11 12.17 2.75 2.71 2.38 0.00 278 S ite W. EES No. 137. Rnrgis landform: Eldorado Kamic Ridges. Location: T. 26 N ., R. 1W „ Sec. 25, NE o f SW. General Descripticn: Nearly le v e l area within a p itte d outwash feature; slicfrit w estfacing slo p e, s o i l s are sand or lo a iy sand, with gravelly str a ta occurrin g throughout th e sanpled depth. S o il fam ily c la s s ific a tio n : Ehtic Haplorthods, sandy, mixed, fr ig id . nppTaifjor^i awircsnBitv^arent material: in clu sio n s. Outwa^i sand with ic e -r a fte d or flow t i l l S o il Pedon Data: Horizon Depth cm Subplot 1 A 02 EB 2- 11 11- 29 B sl 032 29- 56 56-137 a C2 137-450 •texture Cs fr ESt ED E« v a i % g /c c H2 0 s s Is Is s s 0 .0 1 .6 1 1 .6 10.9 5.5 1 .0 EH 0302 TKN <----- 0.976 1.428 1.459 1.561 1.633 1.788 3.92 4.10 4.78 5.49 5.65 8.28 3.23 3.57 4.31 4.52 4.93 7.61 2996.0 400.0 341.0 172.8 43.0 1.261 1.432 1.531 1.475 1.654 1.759 1.796 3.86 5.25 5.81 6.23 6.24 6.30 TKP Ca Mg mg/kg 1 2 .0 186.7 41.9 107.6 44.4 37.7 30.0 371 18 23 49 103 897 3.15 4.45 5.07 5.15 5.10 5.86 7.54 1069.0 290.2 172.4 93.6 26.0 33.8 2.4 6 6 .0 108.5 99.4 60.9 21.3 42.0 39.6 106 19 97 65 32 169 1173 1.193 4.21 3.44 1.457 5.19 4.34 1.532 6.04 5.14 1.624 5.94 4.96 1.608 7.94 7.12 1.794 8.50 7.20 1441.8 308.6 170.8 0.985 1.461 1.510 1.604 1.743 1.793 K Bray's P ------------ 5 77 182.2 8 18.7 7 18.1 15 15.7 26 1 0 .6 47 6 .2 17.03 4.45 13.43 7.16 4.76 1.69 32 5 24 25 28.6 10.7 16.7 12.5 5.2 9 .6 5.0 8.32 18.25 37.86 16.73 8.25 3.22 54.2 15.9 12.7 14.2 1 0 .8 15.71 8.91 26.89 5.44 4.64 5.9 0 .0 0 180.0 19.8 23 13.8 26 13.5 5.9 33 39 8 .8 20.58 10.75 9.35 6.79 Sutplot 2 A,EB BS BC O C2 C3 C4 0- 5 5 - 21 21- 46 46- 75 75-137 137-244 244-450 0.5 6.9 6.3 5.1 S s Is Is s s s Subplot 3 A,E 4 Is 04 - 25 Is B3 BC 25- 41 Is 41- 6 8 I s a C2 68-213 Is 213-450 s C3 Subplot 4 A,E 0 - 4 Is Bs 4 - 28 I s BC 28- 43 s 43-122 s a C2 122-198 s C3 198-450 s 0 .2 2.5 0 .8 0.9 10.5 1 1 .0 - 4.4 9.8 0.3 0 .0 9.4 9.5 10.4 1 1 .2 0 .6 8 .1 1 4.11 3.39 4.68 4.42 6 . 2 0 5.24 6.41 5.38 8.32 7.30 7.30 7.07 33 36 6 .8 101.5 70.1 37.6 47.2 440 76 68 13 143 31 220 45 367 58 1040 34 2920.0 307.6 207.6 92.2 15.0 22.4 204.2 109.3 98.0 65.5 31.1 40.7 552 41 124 127 1406 254 6 6 .0 16.2 111.7 10 1 0 1 .8 122 10 0 .0 0 0 .0 0 2 .2 2 279 S ite X. ECS Ms. 138. Burg is landform: Eldorado Kamic Ridges, lo ca tio n : T. 26 N ., R. 1 W., Sec. 21, o f EW. General Description: Slopes average 5% cn the tqp and s i t e o f a morainal h i l l w ith a n o stly south asp ect. O s pedon has a 30 an thick t i l l layer; other pedons are sand or loamy sand, with gravelly strata occurring thrcu^csit th e saip l ed depth. S o il fa n ily c la s s ific a tio n : pedcn, A lfic Fragiorthcsds, sandy, mixed, fr ig id . T*> pedcns, Entic HapLorthods,sandy, mixed, fr ig id ; one coarse-lcany, mixed, fr ig id ; are p e t e , Typic Fragiorthod, D epositicnal envircrment/fearent m aterial: Outwash sand with ice-ra fted in clu sio n s. S o il Bedcn Data: Horizon Dgfth an Subplot 1 A 0- 2 2- 4 E 4 - 14 B sl Bs2 14- 51 Bn 51- 64 Ek 64- 87 a 87-366 C2 366-427 Texture Cs f r EJst BD pH pH vo l % q/bc H20 OCH2 TKN TK P <_— Ga Mg —-- mg/kg - K Bray's P s s Is s s s Is s 0.7 2.3 7 .5 7 .6 2.4 9.7 0.9 1.9 1.071 1.449 1.479 1.482 1.700 1.800 1.772 1.802 4.26 4.25 4.72 5.26 6.14 6.40 7.89 8.80 3.36 3.40 4.12 4.39 5.08 5.32 7.71 7.69 2245.8 343.6 202.8 267.2 111.4 155.8 32.2 8.6 202.6 57.0 98.2 141.9 60.8 124.1 52.8 33.2 572 85 21 58 96 130 725 2690 74 15 4 15 24 25 50 74 52.4 14.1 10.9 26.1 28.3 57.8 25.1 13.0 11.48 12.03 20.15 45.44 12.40 12.28 7.63 2.79 Subplot 2 A 0- 3 s E 3- 6 s 6 - 20 I s ESI Bs2 20- 48 s a 48-307 s C2 307-450 I s 0.9 0.9 6.7 10.1 1.3 1.5 1.111 1.466 1.438 1.507 1.753 1.800 3.92 4.13 4.54 5.03 6.05 8.18 3.21 3.48 3.97 4.39 5.38 7.55 1964.0 300.4 358.6 197.6 18.6 18.2 153.8 38.9 121.3 90.8 42.0 54.4 178 48 19 7 14 6 4 13 187 43 3510 102 86.8 21.4 20.6 10.5 30.4 23.9 7.99 1.50 19.50 15.81 9.09 1.32 s s s Is s s Is Is Is 0.0 2.6 6.3 5.5 3.0 0.6 6.9 0.9 0.8 1.185 1.456 1.436 1.482 1.580 1.572 1.604 1.770 1.799 4.80 4.90 5.30 5.48 5.33 5.82 6.71 6.53 8.51 4.05 4.37 4.34 4.72 4.69 4.91 5.95 5.75 7.65 1485.2 325.6 347.0 288.6 107.0 53.0 53.2 23.0 25.0 179.6 90.0 205.6 163.5 82.1 51.1 37.5 34.6 65.3 685 187 57 105 47 39 173 219 1510 71.4 14.3 14.7 19.7 13.2 9.4 21.7 22.5 21.7 11.76 7.49 56.22 35.77 28.17 19.38 5.03 5.23 2.51 s s Is Is scl si Is is 0.0 4.2 8.2 7.4 10.4 9.3 1.1 1.3 0.967 1.461 1.449 1.700 1.800 1.618 1.775 1.803 3.56 4.18 4.38 6.51 5.26 7.23 8.36 8.17 3.08 4.01 3.80 6.06 4.16 7.38 7.62 7.59 3067.8 312.6 345.4 208.8 193.8 66.0 13.6 29.2 179.4 37.4 152.5 89.1 64.1 60.7 36.5 52.6 456 35 32 29 363 1085 3020 2560 78 107.0 10 16.6 8 17.7 8 11.7 111 54.5 38.8 125 86 20.9 94 25.5 21.03 9.06 45.32 17.40 2.54 3.48 1.56 5.65 Subplot 3 A 0- 2 E 2- 6 B sl 6- 9 BB2 6 - 40 BC 40- 60 CL 60- 89 C2 89-152 C3 152-290 C4 290-450 Subplot A E Bs Etn B/Ex Bt a C2 4 0- 2 2- 7 7 - 25 25- 37 37- 65 65-122 122-351 351-450 88 19 10 13 7 5 34 45 58