INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction Is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information C o m p a n y 3 0 0 North Z e e b R o a d . Ann Arbor, Ml 4 8 1 0 6 - 1 3 4 6 US A 313/761-4700 800 /5 2 1 -0 6 0 0 O rder N u m b e r 9 1 2 9 4 3 7 T he glacial geom orphology o f th e P ort H uron C om plex in northw estern southern M ichigan Blewett, William Llewellyn, Ph.D. Michigan State University, 1991 UMI 300 N. Zeeb Rd. Ann Arbor, MI 48106 THE GLACI AL G E O M O R P H O L O G Y OF THE PORT H U R O N C O MP LE X IN N O R T H W E S T E R N S O U T H E R N MIC HI GA N By W i l l i a m L l e w e l l y n Blewett A DISSERTATION S u b m i t t e d to M i c h i g a n State U n i v e r s i t y in parti al f ul f il lm ent of the re qu ire men ts for the d e g r e e of D O C T O R OF P H I L O S O P H Y Department of G e o g r a p h y 1990 A B S T R A CT THE G LA CI A L G E O M O R P H O L O G Y OF THE PORT H U R O N C O M P L E X IN N O R T H W E S T E R N S O UT HE RN M I CH IG AN By W i l l i a m L l e w e l l y n Blewett This study investigates the morphologic, s e d i m e n t o l o g i c , and ch ro n o l o g i c T a y l o r ’s (1915) Kalkaska, and Inner and O u t e r Port H ur on M o r a i n e s Antrim, Counties. l a n d f o r m units are 1) the O u t e r Port H u r o n Complex, Port H u r o n C o m p l e x the Post in ea s t e r n C h a r l e v o i x and w e s t e r n Otse go Four p r i n c i p a l include aspect s of L ev er et t and (incl ud in g Inner Port H u r o n re co g n i z e d 2) the the M a n c e l o n a Plain), zone, and 4) Inner 3) flu te d u p l a n d s and throu gh valleys. Surficial sediments of the Inner and O u t e r Port H u r o n C o m pl ex es are alm os t e x c l u s i v e l y and gravel, and 2) is almost w ho l l y Post 1) g l ac io f l u v i a l glaciolacustrine r es tr i c t e d to the Inner Port H u r o n zone. The sand silt and clay. fluted u p l a n d s Inner and O u t e r Till and the features each co nt a i n an u p p e r m o s t we dge of sand and gr a v e l up to 80 m thick, d e p o s i t e d on a m o d e r a t e inclined to the northwest. contac t and p r o g l a c i a l relief till surface Cresta l areas ex hi bi t s t r a t i f i e d drift and ice- surf ic ia l bo ul de rs as so c i a t e d w i t h d e p o s i t i o n along m a r g i n a l l y stagnant ice. Thus, textured glacial pro xi ma l till" sediments are not as map pe d by others "coarse (Fa r r a n d and Bell, 1982), especially but, of r e l a t e d to the m a i n surface of the Mancelona Plain poorly (Elmi ra surface) sor te d pr ox ima l lo n g i t ud in a l bars to distal, show a t r a n s i t i o n Paleocurrent indicators fine textured, well-sorted sandy bedforms. show that m e l t w a t e r flowed p e r p e n d i c u l a r l y away from the 90 d egr ee s to the right from de po si ts d o m i n a t e d by br a i d e d str eam d e p o s i t s d i s p l a y i n g turned facies i m p or tan t heads of outwash. Sedi men ts coarse, instead are pro xim al to streams first ice m a r g i n and then flow pa ra lle l to the s a n d u r ’s axis. The M a n c e l o n a P l a i n and Post Port Hu ro n zone c o nt ai n 10 and 16 sep ara te Collectively, qu a s i - st ab l e these o u t w a s h surfaces, su rfaces ice-marginal ou t w a s h deposition, p er io ds of rapid rec or d long c o n d it io ns pu nc tu a t e d intervals favoring of thick by brief tr an si ti on al i n ci s i o n due to L an d f o r m and s e d i m e n t respectively. ice-m arg ina l relationships retreat. show that this retreat was c h a r a c t e r i z e d by an ice ma rg i n that pivot ed cl o ck wi se The to the n o r t h w e s t dur in g final d eg la ci at io n. Inner and O u t e r Port H u r o n Co mp le xe s both d is p l a y a d i s t i n c t Lo c at io ns of the s al ie nt and re entrant pattern. fo rm e r are c l o s e l y relat ed to the ma g n i t ud e of lower areas on the d e e p l y bu ri e d b e d r o c k surface. Both c o m p l e x e s pro f i le s in cr o s s- se c ti on , conta ct slopes 1) d i s p l a y al luvial 2) exhib it pr o m i ne nt t r e n d i n g tens of kil om et er s and 3) have h u m m o c k y pr ox i m a l fan-like ice- in some areas, regions d i s p l a y i n g hanging valleys, pe rc h e d fans, and d i s i n t e g r a t i o n ridges. C om b i n e d wi t h s e d i m e n t a r y evidence, as s e m b l a g e s indicate that su cc e s si ve m a r g i n a l l y these l a n d f o r m the t e rr ai n formed along st ag na nt glacial te rm in ii by at least nine m o r p h o s e q u e n c e s defin ed (Koteff and Pessl, 1981 ) . Finally, with w o o d and ot her organ ic ma te ria l a s s o ci at ed la cus tr ine silts lo cat ed 50 m below the M a n c e l o n a Pl ain yi eld an age es ti m a t e Elsewhere, pr ov i d e s carbonaceous material a m i n i m u m date of Port H u r o n Complexes, determinations that the be t w e e n agre es of >41,000 y r s . B.P. and, from l ac us tr in e deposits 12,960 + 350 yrs. Inner an d O u t e r Port H u r o n Co m p l e x e s 14,000 yrs. B.P. s t r o n g l y w i t h age e s t i m a t e s the Port H u r o n M o r a i n e a l . , 1957; Calkin, in Ohio 1970), 1915), m i n i m u m date and 3), formed 1) for c o r r e l a t i v e s of and O n ta ri o (B a r e n d s e n et 2) helps ve r i f y c o r r e l a t i o n of for the (Leverett and first time, for the Port H u r o n Comp le xe s s o u t h e r n Michigan. indicates This e s t i ma te the Port H u r o n C o m p l e x w i t h i n M i c h i g a n Taylor, for the c o m b i n e d with age from the Lake B o r d e r Moraine, 13,000 and B.P. pr o v i d e s a in n o r t h w e s t e r n for G r e t c h e n and for ray fam il y v ACKNOWLEDGMENTS I w i s h to s i n c e r e l y t h a n k my c o m m i t t e e m e m b e r s Dr. Harman, Dr. patience, the and Dr. J. W i n k l e r and c o n s t r u c t i v e study. insights, pe rs o n a l wer e Schaetzl, guidance, throughout helpful R. Dr. access David c o p y of M e l h o r n ’s di ss er tat ion , Dr. D. laboratory space White, all and a of whi ch M o k m a and the of C r o p and Soil S c i e n c e s 0. criticism Lusch also p r o v i d e d Department Dr. for their to ae r ia l ph ot ogr aph s, g r e a t l y appre ci at ed . J. g e n e r o u s l y pr o v i d e d and acc es s to the x - r a y d i f f r a c t o m e t e r . A n d e r sl an d , Dr. G. M a s e , Dr. B. Pigozzi, and Mat t J o h n s t o n e p r o v i d e d t e c h n i c a l T h a n k s also to Mike Blum, who p r o v i d e d Ellen assistance. the link with the U n i v e r s i t y of Texas at A u s t i n ’s r a d i o c a r b o n l aboratory, spent a c ra sh co ur s e J. sever al da y s in the in b e d f o r m l i t h o f a c i e s field, id en ti fic ati on; K nox of the U n i v e r s i t y of Wi sconsin, in sights and e n c o u r a g e m e n t ; Il li n o i s U n i v e r s i t y and g e n e r o u s for m or al insights; Dr. c o n s t r u c t i v e critcism; d is cus sio ns; support, for his field disc uss ion , b e d r o c k maps; of the Au Sable Gr ah a m e Madiso n, Institute L a r s o n for his Bill Mo na gha n, Cal for int er es t for e a r l y W a r r e n S t u d l e y of the Soil C o n s e r v a t i o n vi Dr. R i c h a r d R i e c k of W e s t e r n s h a r i n g of u n p u b l i s h e d Dewit t and T a r a D e V r i e s their Dr. an d pr o v i d e d and Servic e for the a r c h e o l o g y p h y s i c i s t Ad a m B u r n e t t com pl aining; trip; for l i st en ing Ma rk Kumler, Ch ar li e Ra de r field trip; for steali ng my field notebooks; field of fi c e (Rattlesnake Death) them. and the for p r o v i d i n g the Lake The his staff of the D N R ’s Cabin for use during field seasons. wi th ou t and for not indebted to D e n n y Vitton, p r e d e c e s s o r Don Hennig, 1989 en couragement, and in the meantime. I am e s p e c i a l l y Kalkaska to my con stant for the B o a r d m a n R iv er canoe G r e t c h e n Kuhn for support, d i v o rc in g me f ru st ra te d the Skegemog 1988 and study w ou ld have been The D N R ’s Ge ol og ic al impossible Sur ve y Di v i s i o n also pr o v i d e d copies of w a t e r and p e t r o l e u m well logs free of charge. Finally, thanks to the n o r t h e r n M i c h i g a n wh o friendly, freely g r a n t e d access to their p r o p e r t y and sh o w e d genui ne special note are Mr. W e s t p h a l ; and Mr. K i t c h e n Farms, Gravel, interest Sha ro n Crego, in the study. Mr. Cash Polls of Elmira; Alba; and Mr. ge ne r o u s peo pl e of and Mr. Ro y Wilk es and Mrs. Of Carl Mr. Bob K i tc he n of R i c h a r d K le rr of C and K of Wil ke s Excavating, both Mancelona. Mos t of all H a r o l d Winters, at all I am d e ep ly for his guidance, stages of the study. advisor, ind ebted to my advisor, patience, As a teacher, and role model he is wi th ou t peer. vii and Dr. interest researcher, T AB LE O F C O N T E N T S Page CHAPTER 1 I N T R O D U C T IO N 1 Background Pr o b l e m stat em en t B a c k g r o u n d and me t h o d s D e f in i t i o n s and co nc e p t s T e c hn i q u e s Study area Li te rat ur e revi ew R ev i e w of san dar Justification CH A P T E R 1 4 5 5 9 11 14 20 21 2 P A L E O Z O IC B ED R O C K AND Q U A T E R N A R Y SE D I M E N TS A S S O C I A T E D WITH THE INNER AND O U T ER PORT H U R O N CO MPLEXES: R E V I E W A N D NEW FI ND I N G S Bedrock geology B e d r o c k surfa ce Bedrock topography Bedrock valleys R e l a t i o n s h ip of the b e d r o c k surfa ce to t o p o g r a p h y R e l a t i o n s h i p b e t w e e n t h r o u g h v a l l e y s and b e d r o c k va lle ys C o nc lu si on s Sedim ent s a s s o c i a t e d w i t h the Inner and O u t e r Port H u r o n Co m p l e xe s Drift th ic kne ss Re l a t i o n of drift, b e d r o c k form, and m o d e r n to p og r ap hy S ub su rf ace s t r a t i g r a p h y Sub su r f a ce s ed im ent s a s s o c i a t e d wi t h the Inner Port H u r o n C o m p l e x Sub su rfa ce sedi men ts a s s o c i a t e d wi t h the Ou te r Port H u r o n C o m p l e x Rugg Pond site Surf ici al se di me nt s Surficial se di men ts of the Inner Port H u r o n Co mpl ex C o m p a r i s o n of sed ime nt c h a r a c t e r i s t i c s among gravel pits vi i i 24 24 26 26 28 29 34 34 36 36 37 40 41 46 47 50 51 53 S t o ne p i l e s Bedfo rms Paleocurrents Paleodischarge Till a s s o c i a t e d wi t h the Inner Port H u r o n C o m pl ex Se diments a s s o c i a t e d w i t h the Post Inner Port H u r o n zone Sur ficial se d i m e n ts a s s o c i a t e d wit h the O u t e r Port H ur on C o m p l e x Evi dence for facies chang es in the O u t e r Port Huron Complex Boulder d i s t r i b u t i o n Soils Textu re and li th ol og ic co mp ar i s o n of tills from the study a r e a Su mm ar y 61 61 73 73 79 79 84 86 86 88 90 95 CHAPTER 3 L A N DF OR MS A S S O C I A T E D W ITH THE INNER A N D O U T E R PORT H U R O N C O M P L E X E S 97 Bedrock/landform relationships 97 La n d f o rm s a s s o c i a t e d w i t h the Inner Port H u ro n Co m pl e x 99 Pr oximal tracts 100 Fluvial and g l a c i o f l u v i a l su rfaces of the Mancelona Plain 103 C r o f t o n surfa ce 105 Surface 1 105 Elm ir a surfa ce 108 Te rr ac es 3-8 112 Ho f f m a n Lake Chann el 113 La n d f o r m s of the Post Inner Port H u ro n zone 114 Surfac e A 118 Surfac es B, C, and D 118 Surfac es of the C e d a r - G r e e n river v a ll ey 118 Surfac es of the J o r d a n R i v e r - W a r n e r Cr ee k v a l l e y 119 Landf or ms a s s o c i a t e d w i t h the O u t e r Port H u r o n Complex 120 N o r t h e rn pr ox im a l regio ns 121 Fleming D i s i n t e g r a t i o n Ri d g e s 121 Lake 27 D i s i n t e g r a t i o n Rid ge s 121 El m i r a S o u th A p r o n 122 Abandoned Farm Hummocks 122 A l b a S a li en t 122 A l b a South A p r o n 124 Mancelona Reentrant 124 N o r t h e rn di st a l tracts 126 Mul t ip l e m ar g i n s of the s o u t h e r n Outer Port H u r o n C o mp lex 127 Con cl us io n s 129 ix CH A P T E R 4 PR OP O S ED D E G L A C I A T I O N AND L A N D F O R M D E V E L O P M E N T IN THE STUDY AREA Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 Region al c o r r e l a t i o n Correlation within Michigan Age d e t e r m i n a t i o n s for the Port Hu ro n C o m p l e x northern Michigan C o n c l u s i o ns CH A P T E R 133 135 139 142 148 150 152 153 155 in 156 160 5 CO N C L U S I O N S AND I M P L I C A T IO NS S e d i m e n t o l o g i c findin gs M o r p h o l o g ic fin dings C h r o n o l o g ic findings S u g g e sti on s for furth er r e s e a r ch 162 162 164 168 169 APPENDIX A FIELD AN D L A B O R A T O R Y T E C H N I Q U E S Field t e c h n i q u e s Gravpl pits and ot he r e x p o s u r e s S u r fi ci al se di m en t study Laboratory techniques Sand and gra ve l Till 172 172 172 173 174 174 175 AP P E N D I X B CLAY M I N E R A L O G Y 176 LIST OF R E F E R E N C E S 181 x LIST OF TA B LE S Ti tl e Table 1 2 L i t h o f a c i e s and s e d i m e n t a r y s t r u c t u r e s of fl u v ia l d e p o s i t s (from Miall, 1978). 64 Bedform lithofacies the E l m i r a surface. 67 3 Paleodischarge 4 Soils 5 Co l o r and tills. 6 7 Page of gravel pits on estimates. 78 of the s t u d y area. 89 clay m i n e r a l o g y of p r i n c i p a l 91 C h a r a c t e r i s t i c s of pr ox im al s u b d i v i s i o n s of the O u t e r Port H u r o n Complex. 125 C h a r a c t e r i s t i c s of mu l t i p l e m a r g i n a l positions. 130 xi ice- LIST OF FI GUR ES Figur e 1 2 3 4 5 6 7 8 9 10 11 Page T i tl e The Port H u r o n M o r a i n e in sou th er n M i c h i g a n (after L e v e r e t t and Taylor, 1915 ) . 2 L a n d f o r m s and s e d i m e n t s a s s o c i a t e d w i t h a st ag n a nt ice m a r g i n (from B l e w e t t , 1984 ) . 7 M a j o r l a n d f o r m g r o u p s as mapped by M a r t i n (1955). 12 Major landform groups this study. 13 re co g n i z e d in B e d r o c k ge ol o g y (from Milstein, 1987), s ho wi n g the r e l a t i o n s h i p with the I nne r a n d O u t e r Port H u r o n Complexes. 25 B e d r o c k t o p o g r a p h y ( © 1981, 1985, R. L. R i ec k; used w i t h pe rm ission). 27 P r o f i l e A-A, ’ s h o w n on Figure 5, sh o w i n g the r e l a t i o n s h i p of the b e d r o c k s u r f a c e to topography. 30 P r o f i l e B - B , ’ s h o w n on Figure 5, sh o w i n g the r e l a t i o n s h i p of the be d r o ck su rf a c e to top ogr aph y. 32 P r o p o s e d ge nes is of c oi nc id en t v a l l e y s (from Ble wett, 1984). 35 D ri ft t h i c k n e s s in the Port H u r o n Compl ex es . 38 Inner an d O u t e r T h i c k n e s s of the u p p e r m o s t gr a v e l unit. sand and 12 Altitude clay surface. 13 R e l a t i o n b e t w e e n m o d e r n t o p o g r a p h y and the u n d e r l y i n g c l a y surface. Profile l o c a t i o n shown in Fi g ur e 5. 44 Rugg P o n d S t ra ti gra phy . 49 14 of the u n d e r l y i n g xii 42 43 15 M a p of the s u r f i c i a l se d i m e n t s of the Inner and O u t e r Po r t H u r o n C om ple xe s, n o r t h w e s t e r n s o u t h e r n Michigan. (in 16 O v e r a l l d i s t r i b u t i o n of co a r s e an d sediments. 17 18 19 20 21 22 23 24 25 fine 52 Ro un d n e s s , flatness, and s p h e r i c i t y of c o a r s e c l a s t s fr o m gr a ve l pits on the E l m i r a surface. 54 M e a n B - a x i s d i a m e t e r of coarse cl as t s fr om g ra v e l pits on the El mi r a surface. 55 M e a n s p h e r i c i t y of coa rs e cla st s fro m g r a v e l pits on the E l m i r a surface. 57 B - a x i s v a r i a n c e of coa rs e cla st s from g ra v e l pits on the E l m i r a surface. 58 D i s t r i b u t i o n of "ve ry angular" c o ar se c l a s t s fro m gra ve l pits on the E l m i r a surface. 59 D i s t r i b u t i o n of c o a r s e and fine s e d i m e n t s from grav el pits on the E l m i r a surface. 60 M e a n B - ax is d i a m e t e r of the E l m i r a surface. stone p i l e s on 62 Bedform lithofacies associated with the E l m i r a o u t w a s h surface. 65 S e d i m e n t s at the C and K gravel (proximal), Mancelo na. 68 pit S a n d y b e d f o r m s at the Lower W i l k e s g r a v e l p i t (medial), Mancelona. 69 L i t h o f a c i e s Sh at the D NR sand pit (distal), Kalkaska. 71 28 P a l e o c u r r e n t s on the E l m i r a surface. 74 29 S t r a t i g r a p h y at the A n t r i m C o u n t y Ro a d C o m m i s s i o n gra ve l pit. 81 26 27 30 Soil te x t u r e s of p r i n c i p a l the s t u d y area. tills in 92 o 31 F r e q u e n c y d i a g r a m of 7/10 A rati os for t i l l s in the st ud y area. xiii 94 32 33 34 Lan df or ms of the I nn er and O ut er Port H u r o n Complexes. (in pocket R e l a t i o n s h i p among salients, reentrants, t h ro ug h valleys, re si du al terraces, and b e d r o c k valleys. Pr i n c i p al Plain. sur faces 98 of the M a n c e l o n a 104 35 Pr of i l e s 36 V i e w s o u t h e a s t w a r d acro ss the E l m i r a Pl ai n near Alba; the pr oximal slope of the O u t e r Port H u r o n Co mpl ex is in the distance. 110 View from the D e a d m a n ’s Hill ov e r l o o k of the u n d e r f it Jor da n River w i t h large paleomeanders. 116 P r i n c i p a l g l a c i o f l u v i a l / f l u v i a l surfaces of the C e d a r - G r e e n and J o r d a n - W a r n e r valleys. 117 V i e w of pr ox i m a l h u m m o c k y to po g r a p h y at the A b a n d o n e d F a r m site in the O ut er Port H u r o n Complex. 123 P ro f i l e across Complex. 128 37 38 39 40 41 42 of s e l e ct ed sandar. 109 the O u t e r Port H u r o n Mod el s of d e p o s i t i o n Plain. for the M a n c e l o n a 134 Phase 1. F o r m a t i o n of the O u t e r Port H u r o n Complex. 136 43 F o r m a t i o n of the C r o f t c n surface, 140 44 Phase 2. Formation of Surfac e 1. 141 45 Phase 3. Formation of Surfac e 2. 143 46 F o r m a t i o n of su rf a c e s 47 Phase 4. 48 F o r m a t i o n of the J o r d a n - W a r n e r and C e d a r - G r e e n river systems. Formation xiv 3 and 4. of surfa ce 145 A. 147 149 49 50 R e a d v a n c e after f o r m a t i o n of the Post Inner Port H ur on zone. 151 X-ray diffractograms. 178 xv C h ap t e r 1 I N TR OD UC TI ON B a ck gr ou nd The Port H u r o n M o r a i n i c most c on sp i c u o u s Michigan C o m p l e x marks one of the t o p o g r a p h i c co m p l ex es (Le ve r e t t and Taylor, 1915, in sou the rn p. 293) and is i n t e r p re t e d as the o ute r limit of a s i g n i f ic an t readvance Eschman, Taylor c. 13,000 1974; (1897, mo ra in e was yrs. B.P. Fullerton , p. 41-43) (Hough, 1980). in s o u t h e a s t e r n Michigan, L ev er et t and T a y l or e xt en de d no rt h and w e s t w a r d near ly (1915) and, 306) broad, relatively in g re at er detail 550 km. (Fig. by Mappi ng 1). Lev erett in the n o r t h w e s t e r n part of the (L everett and Taylor, and re co gn i z e d an the at the same time, was ba sed p r i m a r i l y on m o r p h o l o g y So u t h e r n P e n i n s u l a Fa r r a nd and First r e c o g n i z e d by subsequently described d e s c r i b e d the mo ra in e 1958; glacial 1915; inner and o u t e r ridge p. 302- se pa ra te d b flat o u tw a s h su rf a c es he n a me d the M a n c e l o n a Plain. A l t h o u g h p u b l i s h e d mo r e than 70 years ago, L ev er et t Martin, and T a yl or 1955; basic sour ce maps by (mapping later sli gh tl y m o d i f i e d by and F a r r a n d and Bell, for d e l i n e a t i n g glacia l 1982) rem ai n the features Michigan. T h e i r use of the term "moraine" describing the Port H u r o n feature in when follows a c c e p t e d views 2 * Huron v " Moraine Figure 1. T he Port Huron Moraine in southern Michigan (after Leverett and Taylor, 1915). of the time, which placed im po rt an ce of an ac ti v e m o d e r n landscape. ideas, great em ph as is on the ice m a r g i n in pr o d u c i n g the M a r t i n ’s 1955 map pe r pe tu at ed these as has F a r r a n d and B e l l ’s more recent m a p p i n g (1982). Certainly, Le ve r e t t and Tay lo r knew that glacial s ta gn at io n o c c ur re d w i t h i n these morainic from newly av a i l a bl e large scale tracts. topogra ph ic qu ad ran gle s along with de ta i le d field mapping, however, st a g n a t i o n was m u c h more w i d e s p r e a d during d e g l a c i a t i o n than p r e v i o u s l y recognized. w a t e r and p e t r o l e u m well p o s i t i v e r e la t io ns h ip s topography, Wi n t e r s log da t a (1979) indicate that final In addition, indicate strong among drift thickness, and m o d e r n terra in documented Data bedrock in some areas. Ri ec k and simila r rel at io ns hi ps s o u t h e a s t e r n M i c h i g a n but no such study has in focused on the no rt hw e s t er n pa r t of the So u t h e r n Peninsula. Thus, bo t h data and i n c r e a s e d u n d e r s t a n d i n g p r o v i d e a basis and j u s t i f i c at i o n for r e e v a l u a t i n g the Port H u r o n C o m p l e x in n o r t h w e s t - s o u t h e r n Michigan. In addition, the M a n c e l o n a P l a i n has long be e n r e c o g n i z e d as an e s p e c i a l l y impor tan t el eme nt in the int er pr e t a t i o n of the c o m p l i c a t e d pa t t e r n of mo ra i n ic remnan ts in this pa r t of the state F a rr an d and Eschman, has been limited. 1974), (Melhorn, 1954; but ana lysis of the feature T o p o g r a p h i c maps and aerial p h o t o g r a p h s c l e a r l y show that the M a n c e l o n a P l a i n a s s e m b l a g e of sever al to the glacial margin, is an o u t w a s h te rr a c e s tr en din g pa ra lle l yet the relati ve age, 4 si g n i fi ca nc e, th es e co mpo s i ti on , fe at u r e s an d Cobb, and g e o g r a p h i c d i s t r i b u t i o n of r e m a i n unknown. 1982) in di c a t e similar outwash surfaces f l o w e d bo t h p a r a l l e l the M a n c e l o n a and aer ia l p h o t o g r a p h s also previously undocumented, to the terminus, feature. but no and suc h study T o p o g r a p h i c maps sh o w that numerous, outwash su rfaces e xi st p r o x i m a l Inner Port H u r o n Complex. Problem This of (Fraser that m e l t w a t e r a s s o c i a t e d with p e r p e n d i c u l a r to the gl aci al has a d d r e s s e d S t ud i e s e l s e w h e r e research concerns l a n df or ms and st at em en t the nat ur e and s i g n i f i c a n c e s e d i m e n t s w i t h i n Le ve r e t t an d T a y l o r ’s In ne r and O u t e r Po r t H u r o n Mo ra ine s, M a n c e l o n a Plain, in n o r t h w e s t e r n inclu din g the s o u t h e r n Mi c h i g a n . The m a j o r q u e s t i o n s a d d r e s s e d are: 1. Wh a t e v i d e n c e ex i s t s for the p r e s e n c e of icec o n t a c t and p r o g l a c i a l s t r a t i f i e d sand and gravel, flow and a b l a t i o n t i l l : and o t h e r s e di me nt i n d i c a t i v e of s t a g n at io n ? 2. To wh a t ex te n t does p r e s e n t t o p o g r a p h y d i s p l a y m o r p h o l o g y ty pi c a l of s t a g n a n t ice f or mat io n? 3. Wha t e v i d e n c e e x i s t s for the p r e s e n c e of o u t w a s h s u r f a c e s w i t h i n the M a n c e l o n a Plain? several 4. Wha t e v i d e n c e e x i s t s for d r a i n a g e b o t h p a r a l l e l and p e r p e n d i c u l a r to the ice m a r g i n on the M a n c e l o n a Plain? 5. W h a t e v i d e n c e e x i s t s for the p r e s e n c e of o u t w a s h su rf ac e s p r o x i m a l to the In ne r Port Hu ro n C o m p l e x ? 6. To w h a t e x t e n t modern topography? does th e b e d r o c k s u rfa ce influence 7. Wh a t e v id e nc e exists in di ca ti ng that this po rti on of the Port H u r o n C om p l e x for me d c. 13,000 yrs. B.P, as su gg est ed in the li te ra tu re (Fullerton, 1980)? In ad d i t i o n to e v a l u a t i n g has two a d d i t i o n a l 1. An these objectives questions, the study of developing: i m pr ov ed p h y s i o g r a p h y for the st ud y area. 2. An i n t e r p r e t a t i o n of de gl aciation, lan dfo rm and sed ime nt relationships. b a s e d on B a c k g r o u n d and metho ds D e f in it io ns and con ce pt s - E a r l y workers, p re va il in g vie ws of the time, relief to po g r a p h i c as "moraines." trends Flint f o l l o wi ng the ma p pe d many of the high- in n o r t h w e s t - s o u t h e r n Mi c h i g a n (1971, p. 199) de f i n e d a m o r a i n e as "an a c c u m u l a t i o n of drift d e p o s i t e d ch ief ly by dir ec t glacial action, and po ss e s s i n g form ind ep en de nt that mo r a i n e s initial c o n s t r u c t i o n a l of the floor be n e a t h it." are formed by act iv e ice, This implies and c o m p o s e d p r i m a r i l y of till. In contrast, Kot ef f and Pessl term " m o rp ho se qu en ce " (1981, and d e f i n e d p. 5) c o i n e d the it as "a c o n t i n u u m of la ndforms co m p o s e d of m e l t w a t e r deposits, from more c o l l ap se d f or ms .. .t o p r o g r e s s i v e l y less c o l l a p s e d forms downstream. drift It c a n. .. be v i e w e d as a body of laid down, layer up o n layer, beyond the m a rg in of a glacier, by m e l t w a t e r at and whi le d e p o s i t i o n was c o n t r o l l e d by a spe cif ic bas el ev el ." concept, w h i c h has p r o v e d use fu l mar gin al p o s i t i o n s wh e r e (Koteff, 1974), st ra ti fe d The m o r p h o s e q u e n c e in d e t e r m i n i n g ice st ag na t i o n was p r e d o m i n a n t is a p p l i c a b l e in the study area. Koteff 6 (1974, p. 121), w h o uses the t e r m " m or ph ol og ic in this early work, pr ov ide s six cri te ri a sequence" for d e s i g n a t i o n of m o r p h o s e q u e n c e s : 1. M o r p h o s e q u e n c e s p r e d o m i n a n t l y consis t of me lt wat er de po s i t s in c l u d i n g sand, gravel, silt, and clay. Till is us u a l l y absent e x c e p t where it a pp ea rs as flow till. 2. M o r p h o s e q u e n c e s ge n e r a l l y show a t r a n s i t i o n from more co l l a p s ed to less co l l a p s e d forms downstream. 3. M o r p h o s e q u e n c e s are c o n t r o l l e d by a sp ecific base level, us u a l l y i d e n t i f i a b l e in the field. 4. L a n df or ms m a k i n g up a single m o r p h o s e q u e n c e are co ns i d e re d to hav e formed at a p p r o x i m a t e l y the same time. 5. S e d im en ts s h o w a t r a n s i t i o n from co a r s e to texture d o w n s t r e a m from the head of outwash. fine 6. M o r p h o s e q u e n c e s can be d i s t i n g u i s h e d us ing profiles dr awn p e r p e n d i c u l a r to the head of outwash, and, where more than one m o r p h o s e q u e n c e is present, ex pr e s s a s h i ng le -l ik e m o r p h o lo g y . The g en es is of m o r p h o s e q u e n c e s la ndforms has b e e n d e s c r i b e d Koteff and Pessl, 1981) model of glac iat ion . zone at the glacier. planes develop, s up erg lac ial depe ndi ng using the sedim ent s in the st a g n a n t zone forming on the p r o g l a c i a l environment. two change fine distally, de po si te d near the to these features ice margin. shear to a (Fig. 2). se di me nt s ou tw a s h apr on s or deltas a ss oc ia te d w i t h th es e from c o a r s e retreat ice i m m e d i a t e l y up- w as t i n g tr a n s po rt ice margin, 1974; stagnation-zone be tw ee n the two zones, s u p p l y i n g basal location (Koteff, This model assum es a th in stagnant j un ct ur e Me lt wa te r and ma s s bey on d the in det ai l ice m a r g i n w i t h act iv e At the and t h e i r a s s o c i a t e d exhibit S e d i me nt s a facies with b o u l d e r s FLOWTILL ACTIVE ZONE EROSIONAL SUPEP.GLACIAL STRE AM SHEAR PLANES BASAL SEDIMENTS ARE TRANSPORTED TO SUPEP.GLACIAL POSITIONS FLOWTILL MASS ^ ‘ O U TW ASH. , FAN '---- STAGNANT ZONE * h a n g in g valley APRON BOULDERS FLOWTILL H EA D O P OUTWASH DE POSITIONAL FAN SUPERGLACIAL STREAM B U RIED ICE ICE-CONTACT SLOPE g y / (UPTOSOm) SEDIME NTS) SEOIMENTS) V.E. b 300x r-'L I C O ILA PS EO O U TW A SH R EM N A N T O r FO R M E R SURFACE Figure 2. Landforms and sedim ents associated with a stagnant ice margin (from Blewett, 1984). 8 The area al on g the ice m a r g i n serves as the head of o u t w a s h for the apron. U p o n ablation, ang le of repose f o rm in g Erosional occurs, va lle ys an ice -c on ta ct and a l l u v i a l depositional slope. fans are along the h e a d of o u t w a s h as sup erg la ci al m e l t w a t e r and se d i m e n t s are s l u i c e d zone to the (which later b e c o m e h a ng in g v a l l e y s at the hea d of outwash) form ed c ol la ps e onto the a p r o n form w he re masses In addition, (Fig. of c re v as se so that eventually As the and re lat ed the active s t ag na nt (major delimiting zone mi g r a t e s la nd fo rm s i c e- co nt ac t f o rm er features ice b o u n d a r y a series of st ag na t i o n w i t h the heads of o u t w a s h trends) fil li ng s zone. re t r e a t s due to thinning, r eg io na l Kettles st ag na nt ice are b u r i e d by outwash. form in the sta gn an t accor din gly , 2). from the still rema in slopes with stands of the ice margin. B a s e d on e x t e n s i v e Alaska, studi es Gu s t a v s o n and B o o t h r o y d a l t e r n a t i v e model meltwater "fountai ns" marking Th e y q u e s t i o n the of Koteff and Pessl c o m p e l l i n g evi de nc e s hea r plane s can s up e r g l a c i a l pr es en t an in w h i c h the d o w n s t r e a m ends of and e n g l a c i a l are p r o p o s e d as the p r i n c i p a l dep osi tio n. (1987) of m o r p h o s e q u e n c e genes is sediment-laden subglacial model of the M a l a s p i n a Glacier, sou rc e m e l t w a t e r streams of gl a c i o f l u v i a l stagnation-zone in par t be cau se from the l i t e r a t u r e 1) retrea t there to su gg e s t s u p p l y large v o l u m e s of se d i m e n t locations, and 2) the vo lu me s of is no that to s u p e r g l ac i al d r i f t p r e s e n t on mos t i n s u f f i c i e nt to a c c o u n t for the gla cie rs is as so c i a t e d t h i c k ou tw as h d e p o s i t s obse rv ed . D e s pi t e u n c e r t a i n t i e s as to the g en es is m o r p h o s e q u e n c e s , the for a n a l y z i n g w i t h the c on ce pt p r o v i d e s a basis t e r r a i n and s e d i m e n t s associated In ne r an d O u t e r Port H u r o n Complexes. su pp o r t in g its a p p l i c a t i o n the ch ap te rs Techniques to inte rpr et in this study is p r o v i d e d s tu dy uses characteristics of the r e g i o n to de scribe m o r p h o s t r a t i g r a p h y , rock st ra t i g r a p h y, by W i l l m a n and R O C K S T R A T I G R A P H Y - Willman, Swann, "r o c k - s t r a t i g r a p h i c significant lithology classification lithologic units have b e e n states ch ang es is the in the rock see W i l l m a n and Frye, f o rm al ly identified p r es en ts detailed lithologic and I l l i n o i s 1970), in Mi c h i ga n. investigating for the P l e i s t o c e n e Indiana, example, a means of for A l t h o u g h rock st ra ti g r a p h i c formally defined su c h as Ohio, 5) ... The that m a y be us e d to e s t a b l i s h a f r a m e w o r k stratigraphic description." ot her p. u n i t s are d e f i n e d and o b j e c t i v e of r o c k - s t r a t i g r a p h i c r e c o g n i t i o n of and Frye (1970). and Frye (1958, r e c o g n i z e d on the basis of o b s e r v a b l e se qu enc e in the m o r p h o l o g i c and time s t r a t i g r a p h y as d e f i n e d state that Ev id en ce follow. - Th i s sedimentologic and of none h a v e The pr es e n t d a t a on gl aci al present in (for been st udy deposits t o p o g r a p h y and as a as 10 foundation for fut ur e rock-stratigraphic are p r o v i d e d textural units. but pr op o s e s Methods in the a p p e n d i c e s . terms th e i r g e ne ri c research, su c h as sense, "sand," of sed ime nt Un l es s Where specific Wentworth classification us e d instead of co n f u s i o n as to the te rms are i n t e n d e d the The t e r m is i d e n t i f i ed p r i m a r i l y un i t from the Frye as (1970, from c o n t i g u o u s units; surface its ex te n t . " the ext en t This s t u d y and form it scale) lithologically in n o r t h w e s t e r n c o n s t i t u t e d an (1981) ice m a r g i n a l s o u t h e r n Michigan. (1:24,000 c l a s s i f i c a t i o n. an a l y z e d e t a i l s and im portant part of this i n c l u d e d c o n s t r u c t i o n of to po g r a p h i c t r a c i n g of contours, time and T a y l o r ’s Port H u r o n Detailed topographic map analysis 1: 25,000 43) r e s e a r c h uses m o r p h o l o g i c of nine p r i n c i p a l positions within Leverett Mo r a i n i c C o m p l e x p. it m a y or ma y not t r a n s g r e s s c r i t e r i a as d e s c r i b e d by K o t e f f and Pessl to define and p r e l i m i n a r y profiles, landform A e r i a l p h o t o g r a p h y was also u s e d to of the lo ca ti ng expos ur es . is "a body of ro c k that it m a y or m a y not be d i s t i n c t i v e throughout "till" i n t e r p r e t a t i o n of these deposits. a morphostratigraphic displays; in in order to a v o i d an y M O R P H O S T R A T I G R A P H Y - W i l l m a n and de fi n e are us e d of A g r i c u l t u r e is employed. "d i a m i c t on " etc. in a c c o r d a n c e w i t h the W e n t w o r t h c l a s s i f i c a t i o n or U.S Dept, ter mi nology. ana ly si s o t h e r w i s e noted, "gravel," r a t h e r th a n no formal landscape and as an aid in F i e l d o b s e r v a t i o n s were ma d e from 11 p as sa b le roads and on foot. m a p p a b le units, d e f i n ab le All were used in d e li n e a t i n g w h i c h are d e f i n e d as la ndforms w i t h a set of g e o m o r p h i c cha rac ter ist ic s. TIME S T R A T I G R A P H Y - A t i m e - s t r a t i g r a p h i c unit is define d as a " s u b d i v i s i o n of rocks c o n s i d e r e d solely as a record of a sp ecific 657). interval of time" (A.C.S.N. Code, R a d i o c a r b o n dates are u s e d e x te n s i v e l y establishing t i m e - s t r a t i g r a p h i c units of the Pl ei stocene, and this on organic ma te r i a l from s e p a r a t e 1961; p. in for the latest part r e s e a r c h pr esents two dates lo cations w i t h i n the Inner and O u t e r Port H u r o n Complexes. S t u d y area The study ar e a Charlevoix, km.2 in cludes p a r t s and O t s e g o Co unties, of Kalkaska, and c o n t a i n s about As ma pp e d by L e v e r e t t an d T a y l o r and O u t e r Port H u r o n fe at ur es south we st in p a r a l l e l Antrim, (1915), the 1,900 Inner tr en d g e n e r a l l y no rt h e a s t - f a s h i o n acr os s the region, se p a r a t e d by the Maxiceloxia P l a i n R e i n t e r p r e t a t i o n of these (Fig. fe at ur es 3). requires a m o d i f i c a t i o n of L e v e r e t t and T a y l o r ’s m a j o r l a n d f o r m groupings. Four p r i n c i p a l are r e c o g n i z e d p h y s i o g r a p h i c units in the p r e s e n t (Fig. study: 1. Inner Port H u r o n C o m p l e x M a n c e l o n a Plain) 2. Post 3. O u t e r Port H u r o n C o m p l e x 4. Flu te d U pl an ds (including Inner Po r t H u r o n zone and T h r o u g h Va lle ys the 4) 12 R 4W MORAINES OUTWASH AND GLACIAL CHANNELS i'V ' 1 LAKE BEDS, SAND T 32 N R 5W T 31 N GROUND MORAINES » *- R 6W T 30 N R 7W T 29 N RiW T 28 N T 27 N 10 km 10 T 26 N A rea sh o w n above T 25 N ► k i J Figure 3. Major landform groups a s m apped by Martin (1955). ml 13 INNER PORT HURON COMPLEX I w R 4W '« > PO ST INNER PORT HURON ZONE 4J T 32 N FLUTED UPLANDS AND THROUGH VALLEYS R 5W T 31 N \ittw'* ’•ro>;ns OUTER PORT HURON COMPLEX R 6W i,,v*V*T T 30 N SftsW&iiSBflr R 7W T 29 N R 8W 5®$3&s m m T 28 N ICE-MARGINAL POSITIONS sag s® T 27 N 10 mm m & m m 10 Km mi 1 , |Pvi T 26 N A re a sh o w n above s ' T 25 N X ' Figure 4. Major landform groups recognized in this study 14 In the c h a p t e r s to follow, these regions are d i s c u s e e d in the o rd er gi ven above. The is d i s c u s s e d first be c a u s e it this The c l o s e l y a s s o c i a t e d Post Port H u r o n study. is p r e s e n t e d next, Complex. D et ai ls Fl ut e d u p l a n d s discussed Inner Port H u r o n C o mp le x is of c en tra l im po rt an ce to zone fol lo we d by the O u t e r Port H u ro n of each are p r o v i d e d in C h a p t e r and a s s o c i a t e d t h ro u g h v a l l e y s separately because 3. are not they are a n c i l l a r y to the study. Literature Taylor continuous (1897) mapped feature, (1899, for the first the Port H u r o n C o m p l e x as a paralleling Port H u r o n to the Au Taylor review Plate the Lake H u r o n coast Sable River. II) In a la ter work, correlated time w i t h m o r a i n e s from the Port H u r o n Mo rai ne in n o r t h w e s t e r n sou th er n Michigan. Ba sed on these and ot he r (idlo) m a p p e d the m o r a i n e n o r t h e r n par t t ra c e d the of the feature studies, Leverett in a br oa d arc a c r o s s Southern Peninsula to Muskegon, moraines in e a s t e r n W is con si n. younger, p ro xi m al morainic and T a y l o r (Fig. and c o r r e l a t e d the 1). They it wi th A c l o s e l y ass oc iat ed, system, the M a n is te e, was ju dg ed c o r r e l a t i v e w i t h l a n d f o r m s c o m p o s e d of red till n o r t h e a s t e r n Wiscons in. Le v e r e t t and T a y l o r b e l i e v e d that the Po rt H u r o n Complex marked a readvance in ter pre tat ion , which of the is still ice. ac ce p t e d but This (Harrow and in 15 Calkin, lake, 1985), p o s t u l a t e d that Lake Arkona, a lo w - a l t i t u d e o c c u p i e d the glaci al s o u t h e r n sec ti on s of the Lake H u r o n b a s i n p r i o r to f o r m a t i o n of the Port H u r o n Moraine. Advance of Port H u r o n the w a te r s of Lake A r k o n a and al t i t u d e lake, t r u n c a t i o n of Lake A r k o n a b e a c h w i t h the Port Huron p o s t u l a t e d that documented fe at u r e s by the mo rai ne s o u t h e r n Mi chigan, the p a r a l l e l in time d e s c r i p t i o n s of nature (1915, p. 303). Compared featu re short. formations Port H u r o n M o r a i n e of the I nn er and to elsewhere L e v e r e t t ’s n a r r a t i v e is q u i t e m a p of su r f i c i a l Le ve ret t i n d i c a t e d a ra th e r close the Port H u r o n however, of the m or a i n e (1905) feature. O u t e r Port H u r o n M o r a i n e s Michigan, Taylor higher Lake W h i t t l e s e y was p e n e c o n t e m p o r a n e o u s In n o r t h w e s t e r n relationship into the b a s i n pon de d formed a new, Lake Wh it t l e s e y . and show ed that ice on thi s in sectio n L e v e r e t t also p u b l i s h e d a in 1924 that i n c l u d e d the (though it was e s s e n t i a l l y u n c h a n g e d from pr ev i o u s maps), the s u r fi ci al g e o l o g y of A n t r i m and C h a r l e v o i x Cou nt ie s (1925a, studied glacial southern Michigan 1953; (Bergquist, noted well indurated, the p r e s e n c e some places. deposits 1938, B e r g q u i s t and Zinn, b e l i e v e d that Port H u r o n till jointed, short r e po rt s on 1925b). Bergquist 1952, and c o m p l e t e d two in n o r t h w e s t e r n 1940, 1944a, 1945, 1944b), 1946, and c o v e r e d an older, hi g h l y c h o c o l a t e - c o l o r e d clay. of red till atop Port H u r o n He also till in 16 Subsequent fo l l o w s buried Two georaorphic s t u d y in n o r t h e r n M i c h i g a n i n t e r p r e t a t i o n s b a s e d on W i s c o n s i n ’s Two Creeks forest Creeks (Chamberlin, site co n s i s t s upward into lacustrine g r ad e s into l a c u s t r i n e a s s o c i a t e d wi t h this 1906; Thwaites, of a r e d - g r a y till sand an d clay, sand. the forest and Farrand, 1963). w i t h Va ld e r s till, Valders Quarry 11,850 recognized site G l e n w o o d and C a l u m e t be ac he s shorelin es. there east-west at is just n o r t h of n o t e d the t e r m i n a t i o n of by a moraine. relationships till ab ove a r e a d v a n c e w as proposed. of this till He c o r r e l a t e d in is a s i m i l a r t e r m i n a t i o n of rais ed a p p a r e n t p o s i t i o n of Va l d e r s terminus (Broeker 39 km southwest. L e v e r e t t ’s M a n i s t e e M o r a i n e B a s e d on these at Two Creeks, B.P. till was c o r r e l a t e d in W i s c o n s i n (1918) where is by ice w h i c h as the u p p e r m o s t 1943), the are a wh er e A l d e n M ic h ig an, forest ± 100 yrs. This o v e r l y i n g (Thwaites, this mo ra i n e w i t h in turn sand and o v e r l a i n by a red cl a y till c. The Two C r ee ks The gr a d i n g which, Th e b u r i e d i n t e r p r e t e d as h a v i n g been d e p o s i t e d overrode 1943). advance, named and the the b u r i e d The the Valders, line c o n n e c t i n g M a n i s t e e forest so u t h w a r d lies on an and Two Creeks, Wisconsin. In Michigan, found, yet no b u ri ed in m a n y p l a c e s forest of c o m p a r a b l e red till ove rl ie s a b r o w n till, s i m i l a r to the s t r a t i g r a p h y at the Two Cre ek s Based on this evi dence, pl us age was site. the t e r m i n a t i o n of raised 17 shore lin es by the M a n i s t e e Moraine, red till was c o r r e l a t e d w i t h Creeks. the V a ld er s till at Two It was on this basis that the V a l d e r s was rec og n iz ed (informally) in M i c h i g a n In r e c o n n a i s s a n c e m a p p i n g shore, n o r t h e r n M i c h i g a n ’s Brets Muskegon, (1951) (Bretz, 1951). along the Lake M i c h i g a n tra ce d red till and e xt en d ed the V a l d e r s He p o st ul a te d that Va ld e r s rea dvance s o ut hw ard to limit to this point. ice ov errode Port H u r o n advance and p l a s t e r e d mo ra in es red till of the on top of these ea rl ie r deposits. M el ho r n (1954) m a p p e d the extent of Va l d e r s nor t h e r n M i c h i g a n on the a s s u m p t i o n that hue that would d i s t i n g u i s h However, (Farrand, 1976). diminished that Port H u r o n it had a reddi sh in importance till m a y also be red Like Bretz b e f o r e him, that red till of the V a l d e r s H u r o n till. in it from brown Port H u r o n till. this wo rk has since wi t h the r e c o g n i t i o n drift M e l h o r n be li e v e d read va nc e o v e r l a i d Port He p o s t u l a t e d that V a ld er s o b s t r u c t e d by the high bl uf f s of the ice was Port Hu r o n C o mp le x and that a thin layer of red till was d e p o s i t e d atop Port H u r o n sediments, Me l h o r n did tills especially indeed d i s c o v e r (Port H u r o n drift) was unable to d e m o n s t r a t e in areas of lower elevation. red tills ov e r l y i n g b ro wn in n o r t h e a s t e r n Michigan, similar associations but he in the presen t study area. Melhorn, Huron in d e s cr i b i n g features, places, indi ca te s are co mp os ed the that Inner and O u t e r Port the ridges, of s t r a t i f i e d drift, at least incl ud in g in ice- 18 co nta ct deposits. level l a c us t ri ne outer feature. He also r ep or ts the p r e s e n c e sedim en ts along proxim al A ye a r l at er M a r t i n ’s (1955) L e v e r e t t ’s e a r l i e r map, cartographic source sections of the surficial of the S o u t h e r n P e n i n su la was published. of high- g e ol o g y map A re vi s i on of it se r ve d as the basic for n e a r l y 30 years. M a r t i n also p u b l i s h e d a short p op u l a r g e o l o g y of Grand Tr av er se County (Martin, By Huron 1960, 1957). r ad io c a r b o n dat in g re ad va n ce (Suess, B a r e n d s e n et a l ., 1957; on these dates, 1954; had c o n fi rm ed Flint and Rubin, Hough, 1958) the Port 1955; in Ontario. Based H o u g h as s i g n e d an age of 13,000 yrs. B.P. to the Port H u r o n event. R e s e a r c h since 1960 has and s i g n i f i c a n c e of Valde rs ol der d e p o s i t s f o c u s e d p r i m a r i l y on the age till and its r e l a t i o n to in n o r t h e r n M i c h i g a n and Wisconsin. Interpretations are c o m p l i c a t e d and still unresolved. Ma jo r p r o p o s a l s and c o m p l i c a t i n g factors are re vi ew ed below: 1. A b ur i e d br y o p h yt e bed nea r Ch e b o y g a n a p pa re nt ly ma rk s an ic e-f ree interval 13,000 - 12,500 yrs. B.P., befor e the Port H u r o n r e a d v a n c e (Cary-Port H u r o n interstade, Fa r r a n d et a l ., 1969). A single red till above this de p o si t ind ic ate s that the ice front did not r e tr ea t a p p r e c i a b l y du r in g the Two Cree ks interstade (Farrand et a l ., 1969). F u l l e r t o n (1980) que st ion s this i n t e r p r e t a t i o n and c o r r e l a t e s the bry op hy te bed w i t h the Two Cre ek s bu r ie d forest. 2. A c c o r d i n g to E v en so n and M i c k e l s o n (1974), the type V a l d e r s till (Thwaites, 1943) at V a lde rs Q u a r r y c o r r e l a t e s w i t h the till beneath, rather than above, the Two C r e e k s forest. If true, Valders till is not 19 V a ld er a n in age. E v e n s o n e t . a l . (1976) p r o p o s e the name "G rea tla kea n" as a r e p la ce me nt for the advan ce burying the Two C r e e k s forest. 3. Based on a n a l y s i s of s h o r e l i n e s and glacial deposits, E v e n s o n (1973) q u e s t i o n e d B r e t z ’s notio n of a V a l d e r s re a d v a n c e as far south as Muskegon. He ma i n t a i ns that s h o re li ne r e la ti on sh ip s and co rr e l at io n s d e s c r i b e d by Le ve re tt and T a y l o r and by Ald en are e s s e n t i a l l y accurate. If true, this limits the V a l d e r s / G r e a t l a k e a n a d v a n c e to the ar e a n o r t h of the M a n i s t e e - T w o C r e e k s line. 4. Both Port H u r o n and G r e a t l a k e a n tills in n o r t h w e s t e r n M i c h i g a n are red in color and show similar clay m i n e r o l o g y (Farrand, 1976; Monaghan, 1988); the red till b o u n d a r y ma p p e d by M e l h o r n (1954) is pro bab ly incorrect. 5. Li ne b e c k et. a l . (1974) co r r e l a t e the I nn er and Ou te r Port H u r o n M o r a i n e s w i t h W i s c o n s i n ’s Sh o r e w o o d and Ma n i t o w o c tills, respectively. In M i c h i g a n Ta 3rlor (1979, 1981) r e la te s O r c h a r d Lake till to the Port Huron read va nc e and Filer till to the Grea tl ak ea n. These studies are an attem pt to e s t a b l i s h rockst ra ti gr ap hi c c r i t e r i a for Inner and O u t e r Port 'Huron deposits. Burgis (1977) p r o p o s e d the term M i c h i g a n ’s e q u i v a l e n t Many la ndforms features, events and she are p o s s i b l e Inner and Ou te r Port H u r o n study area as they rel at e de po s i t s (1982) to p u b l i s h e d a map of the of the S o u t h e r n Peninsula. and O ut er Port H u r o n C o m p l e x e s mor aines of c o a r s e - t e x t u r e d nea r l y stadial. in n o r t h e a s t e r n s o u t h e r n Michigan. Farrand an d Bell surficial for includes a short d i s c u s s i o n of cutwach in the p r e s e n t dra in ag e to the V a l d e r s / G r e a t l a k e a n s t u d i e d by Bu rg i s co rr e l a t i v e s w i t h the "Onaw ay advanc e" identical Winters, to M a r t i n Rieck, ch a r a c t e r i s t i c s are ma pp e d as till," The Inner "end and b o u n d a r i e s are (1955). and Ka p p (1986) described of m i d - W i s c o n s i n a n organ ic d e p o s i t s rec o rd e d fr om we lls drilled in the M a n c e l o n a P la in (details of s t r a t i g r a p h y are d i s c u s s e d They state (p. 296) that in C h a p t e r "the O u t e r Port H u r o n Morain e co ns is ts m a i n l y of se d i m e n t s associated with a o u t w a s h ’ ..." Likewise, note Inner and O u t e r Port H u r o n that the A n d e r s o n and R i e c k co m p o s e d of g l a c i o f l u v i a l mor ai ne s composed sediments st udi es th ere as to the c h a r a c t e r in the st ud y area. c o r r e l a t i o n . age, re l a t i o n s h i p s p r i m a r i l y of g l a c i o f l u v i a l to as a " s a n d u r . " varies, of the word, Sand ar have sandar" end the c o m p o s i t i o n , This degrees, sediments, it ca n be ref erred term has been d i v i d e d (Krigstrom, associated with denotes into 1962). n or ma ll y has been c a l l e d long been used T h o u g h sp el l i n g of "sandar" precise the M a n c e l o n a P l a i n consist s is g e n e r a l l y used as the wh il e qu es tionable. that e s t a b l i s h e s Icelandic depo sit ion . in n o r t h w e s t e r n relat ion shi ps. certain landforms "sandur" are of the Port H u r o n Compl exe s to va ry i n g stratigraphic glaciofluvial fe at u r e s and are not of the Port H u r o n C o m p l e x san da r - Be ca u s e to d e s c r i b e brief ly s i g n i f i c a n c e , and d e t a i l e d No d e t a i l e d wo r k has be e n done R ev i e w of (1987) is c o n s i d e r a b l e S i m p l y stated, s ou t h er n M i c h i g a n are l an d f or m and ’head of of till. Fr om all these c o n f us io n 2). the term singular the p l u r a l " v al le y sandar" In N o r t h A m e r i c a "v al le y train" while form form. and the the "plain former latter 21 has be e n r e f er re d to as "o u t w a s h apron" or "o ut w a sh p l a i n . ’’ Major research presently and experiencing include w or ks (1969), on sa n d u r p r o c e s s e s Rust Gustavson (1974), Church 1983), Rust have (1978) is n o t e w o r t h y due types) (1978). to associations (Miall, 1985), interpreting glaciofluvial in cl u d e s inese g i a c i u l u g x c a l sand ar Donjek, Platte environmental r e m a i n us ef u l environments. in The s t u d y by cov erage and m o r p ho lo gy . s t ud ie s in areas are use fu l of P l e i s t o c e n e s o u t h e r n Michigan. the p r o c e s s - o r i e n t e d studies to the 1978, been s u p e r s e d e d by such as n o r t h w e s t e r n parallel (1977, a d e t a i l e d and e x h a u s t i v e of b o t h sa n d a r p r o c e s s e s interpreting and of c h a r a c t e r i s t i c specif ic have th e y 1979), M i a l l ’s 1983 work (Scott, for d e l i n e a t i n g later w o r k (1972) by M ia ll (1979). ideas and Rust (1974, (1975) few, Sedimentological its d e v e l o p m e n t T h o u g h these Williams Bl uc k been d e s c r i b e d settings. Church (1972), and B l u c k sediment/structure and Slims (1963), B o o t h r o y d and A s h l e y B o o t h r o y d and N u m m e d a l characteristics g l a c i a t i o n are c o m p a r a t i v e l y by F a h n e s t o c k (1972), in areas involve for glaciation Ho wever, sa nd a r few of formed ice m a r g i n s u c h as the M a n c e l o n a Plain. Justification Interpretations of the m o r p h o l o g y and g e n e s i s of the Port H u r o n C o m p l e x are b as ed p r i m a r i l y on the d a t e d wo r k of M e l h o r n (1954) and L e v e r e t t and T a y l o r (1915). 22 F a r r a n d and B e l l ’s (1982) as rece nt ma ppi ng of the feature "end morain e of c o a r s e - t e x t u r e d till" pa t t e r n s ne ar l y identical to M a r t i n uses areal (1955; in turn based on Lev erett and Taylor). Recent field w o r k and n e w l y avai la bl e t o p og ra ph ic maps indicate co m p l i c a t e d a s s e m b l a g e m a r g i n a l l y stagnant, g lac io flu vi al co m p o n en t Indeed, c o n ta i n ice and that by far the most of the present gravel pits important topography. in the most p r o x im al sections (mapped as m o r a i n e by Lev ere tt and st ra ti f i e d of 8 met er s or more, di s p l a y the typic al formed along rat he r than active, in d e v e l o p m e n t of the inner ridge the area is co mp o s ed of a of la n d f o r m s d e p o s i t i o n was several Taylor) that large-scale while sand and gravels to a depth to p o g r a p h i c map co ntours bowed p a t t e r n a s so ci a t e d wi t h outwash aprons. R.J. Price (1973, p. 19) has stated: T he re is no excuse for those a ut hor s who insist on ca l l i n g a ridge or a series of m o u n d s of well sorted s t r a t i f i e d sand an d gravel a moraine, when there is a b u n d a n t e v i d en ce that m e l t w a t e r rather than ice is p r i m a r i l y r e s p o n s i b l e for its deposition. T h o u g h Price wa s m a i n l y c o n c e r n e d w i t h terminology, his w o r d s em p h a s i z e the need u n d e r s t a n d i n g of l a n d f o r m ge n e s i s using "end mo ra in e" g l a c i o fl uv ia l to d e s c r i b e sediments. for a tho rough and the da n g e r s of features c o m p o s e d of Abundant that the Port H u r o n Mo ra i n e s in ap p r o p r i a t e ev id enc e in dicates are not w h o l l y the product 23 of act iv e ice d e p o s i t i o n and are not c o m p o s e d l a r g e l y of till as the te r m "moraine" implies. bas ed on more m o d e r n co nc e p t s Additional study, of glacial g e o m o r p h o l o g y is needed. A lo ng w i t h inv es t i g a t e s l a n d f o rm genes is and mapping, this study the d e g l a c i a t i o n hi st o r y of n o r t h w e s t e r n s o u t h e r n Michigan. F a rr an d and Es c h m an (1974, p. 46) state: ...the key to u n r a v e l l i n g the t an gl ed mess of mo ra ini c remnants in this area, and w o r k i n g out the d e t a i l s of the series of ice-fro nt al p o s i t i o n s du r i n g r e t r e a t from the O u t e r Port Huron, is found in the series of well d e v e l o p e d o u t w a s h surfaces that repr es en t the v a ri ou s m e l t w a t e r d r a i n a g e w a y s , ea c h of w hi ch is g r a d e d from a mo r a i n e u l t i m a t e l y to a p r o g l a c i a l lake stage in one of the b o r d e r i n g lake basins, to the west or east. A careful m a p p i n g of these d r a i n a g e w a y s u si ng ge om or p h o l o g y, lithology, and stratigraphy, will, we believe, e v e n t u a l l y give us the ice frontal sequence. At the ve r y least, this study pr ov i d e s a so li d f o un da t i o n for f o l lo w- up w o r k on m o r a i n e s an d o u t w a s h su r f a c e s the n o r t h w e s t e r n part of the S o u t h e r n Pe ninsula. important, it reveals, mo rp ho lo gi c, for the first time, u n d e r s t a n d i n g of g l ac ia l and p o s t - g l a c i a l part of Michigan. More detailed s t r a t i g r a p h i c , and ch r o n o l o g i c w i t h i n the Port H u r o n C o m p l e x and pr ov i d e s in relationships an im pr ov ed events in this Ch a p t e r 2 PA L E O Z O I C B E D R O C K AN D Q U A T E R N A R Y SE D I M E N T S A S S O C I A T E D WITH T HE IN NER AN D O U T E R PORT HU RO N COMPLEXES: REVI EW AND NEW FINDINGS B E D R O C K GE OL OG Y Paleozoic (1936), Lan de s and Ehlers Milstein (Fig. s ed i m e n t a r y rocks, (1987), 5). (1945), d e s c r i b e d by M a r t i n Fi sc he r un d e r l y th ic k drift S u bc ro pp in g (1969), in the and study area li t h o l o g y co ns i s ts p r i m a r i l y of the t r a n s i t o r y E l l s w o r t h and A n t r i m f or ma ti on s of the D e v o n i a n an d M i s s i s s i p p i a n pe rio ds and the M i s s i s s i p p i a n C o l d w a t e r and Ma rs h al l dips formations. R e g i o n a l l y ea c h unit s o u t h e a s t w a r d tow ar d the c e nt er of the M i c h i g a n st ru ct u r a l basin; structure, The E l l s w o r t h a n d Traverse group may vary locally. An't.-rim fo rm at io ns ov er li e the (Devonian) s t r a t i g r a p h i c position, however, and ac t u a l l y o c c u p y the their d i f f e r e n c e s be ing p ro d u c t of a facies change. same the E l l s w o r t h Shale exis ts n o r t h w e s t e r n s o ut he rn M i c h i g a n and is a soft, in semi­ in du ra te d gr ee n shale wi t h bands of ca lc a r e o u s material. The t h i n - b e d d e d and fissile A n t r i m Shale is lo c a t ed n o r t h e a s t e r n so u t h e r n M i c h i g a n and con si st s brown, in of cinna mon - d a r k g r a y - b l a c k shale wi th no du le s of li me sto ne and pyrite. El l s w o r t h Sh ale crops 24 out at se ve ra l places 25 Antrim Shale CHARLEVOIXCO. .ANTRIMCO. * 1 Sunbury Sandstone C M U M • mmmmm m M M : OTSEGO CO. • M M • B' KALKASKACO. J CRAWFORD CO. Coldwater! Shale Marshall Sandstone Figure 5. Bedrock g eo lo g y (from Milstein, 1987), show ing the relationship with the Inner and Outer Port Huron C om plexes. 26 in w e s t e r n A n t r i m a n d s o u t h e r n C h a r l e v o i x counties; type s ec t i o n is in the E l l s w o r t h Quarry. The o v e r l y i n g C o l d w a t e r S h a l e and M a r s h a l l are not e x p o s e d wells, light in the s t u d y area. Coldwater scattered S ha le Where is v a r i a b l e s a n d y lenses. gray to w h i t e (Melhorn, its Marshall Sandstone r e a c h e d by in col or and c o nt ai ns Sa nd st on e c o n s i s t s of sa n d s t o n e w i t h shale p a r t i n g s 1954 ) . Al tog et her , these rocks h e l p def in e b o u n d a r y of Q u a t e r n a r y d e p o s i t s Characteristics the l o we r in the stu dy area. of the b e d r o c k s u rf ac e and its r e l a t i o n to t o p o g r a p h y are d i s c u s s e d below. BEDROCK SURFACE Re c e n t l y c o m p i l e d but u n p u b l i s h e d maps of b e d r o c k t o p o g r a p h y for Antrim, C o u n t i e s were use in this Ch ar lev oix , Otsego, g e n e r o u s l y p r o v i d e d by Dr. study R i e c k for 1:63,360 scale; B a s e d on an e x a m i n a t i o n of t h o u s a n d s of well logs, th es e map s bedrock i n f o r m a t i o n now av ailable, for r e g i o n a l i z i n g R.L. (Rieck,. v a r i o u s dates; 50 foot co nto urs ). and K a l k a s k a f u r n i s h the most d e t a i l e d its surface. d a t a are p r e s e n t e d in feet and p r o v i d e a basis In the d i s c u s s i o n s in o rd er be low to m a t c h F i g u r e 6. Bedrock topography The u n d ul at in g, b e d r o c k s ur f a c e f o l l ow in g high relief (Fig. (500-800 6) ca n be d i vi de d four sections: by i n t e r c o n n e c t e d v a l l e y s ft, 15 0 - 2 4 5 m) into the 1) e l l i p t i c a l u p l a n d s in e a s t - c e n t r a l separated Charlevoix 27 RBW R 7W R 6W R 5W R4W T 33 N H. Charievoix County O tsego County Antrim County T 32 N T 31 N CHARLEVOIX VALLEY T 30 N + contours shown In last 500--- 1 450 black areas delimit princpal bedrock valleys VALLEY «o T 29 N 550 Antnm County » * « • • M* • ee T 28 N Kalkaska County T 27 N d a r r ’a g h VALLEY BSn T 28 N )\ KALKASKA VALLEY T 25 N Figure 6. Bedrock topography (© 1 9 8 1 , 1985, R.L. Rieck; used with perm ission). 28 County, reg i o n 2) a relatively high altitude in e x t r e m e lowlands east p l a t e a u - l i k e tract, ab ou t punctuated li n e a r v a l l e y s ft, 305 m) s o u t h e a s t e r n C h a r l e v o i x County, east-west trending altitude, (1000 of A l b a and, 6 5 0-7 00 ft 4) a (200-215 m) by northwest-southeast 3) in trending in K a l k a s k a County. Bedrock valleys Four notable Kalkaska, b e d r o c k va ll ey s, Darragh, Alba, buried beneath drift and C h a r l e v o i x valleys, in the s t u d y area. is o r i e n t e d n o r t h w e s t - s o u t h e a s t principally 345 ft exceed in T. (105 m) 600 Valley, ft 27 N., which R. an d 7 W. below adjacent (180 m) i n f o r m a l l y n a m e d the T h a l w e g d e p t h av er age s b e d r o c k u p l a n d s but may t o w a r d the no rthwest. is r e l a t i v e l y shallow, averages The Al b a V a l l e y 30 N , , R. (45 m) (40 m) straddles 5 W. deep. an d T. R. 7 W. east-west and oriented the A n t r i m - Q t s e g o C o u n t y line 30 N . , R. 4W. and is a b o u t in T. 150 ft Charlevoix Valley trends northwest- s o u t h e a s t a c r o s s T. the in depth. Darragh tren ds e a s t - w e s t 27 N., ft Kalkaska Valley is l o c a t e d a l o n g the n o r t h e r n b o u n d a r y of T. 130 lie 32 N., R. 5 W. a n d is a s s o c i a t e d w i t h i n t e r c o n n e c t e d v a l l e y s a n d e l l i p t i c a l u p l a n d s al r e a d y described. R i e c k and W i n t e r s (1979) bedrock lowlands elsewhere preglacial valleys s t r e a m va lleys. in the p r e s e n t attributed buried line ar in M i c h i g a n to m o d i f i e d P a t t e r n and f o r m of b e d r o c k s t u d y s u gg e s t a s i m i l a r genesis. 29 Regional, p r e g l a c i a l dr ai n a g e p a t t e r n s here ha v e be de te r m i n e d due points, yet to to 1) the u n e v e n d i s t r i b u t i o n of data 2) p a u c i t y of tr i b u t a r y va ll ey s that mi gh t indicate flow direction, and 3) the u n k n o w n a m o u n t glacial m o d i f i c a t i o n that has occurred. Reconstructions of pr eg l a c i a l d r a i n a g e el s e w h e r e by other w o r k e r s and Eschman, 1971) syst em in what p o s t u l a t e a m a j o r no rth fl ow in g to the n o r t h w e s t Evi d e nc e s u p p o r t i n g be d r o c k v al le y s Antrim, river in the s tu dy area. this c o n c l u s i o n that b e c o m e s direction. (Dorr is now the Lake M i c h i g a n b a s i n that favore d d ra i n a g e surface of includes a bedrock lower tow ar d the northwest, that tend to d e e p e n Thus, 1) in the and 2) same p r e gl ac ia l st re am s in w e s t e r n Kalkaska, and C h a r l e v o i x Co un t i es most likely f l ow ed toward the northwest. R E L A T I O N S H I P OF TEE B E D R O C K SU RFA CE TO T O P O G R A P H Y N o r t h of Mancelona, the b e d r o c k su r f ac e Con spicuous, lowlands, su r f i c i a l but di s p l a y s hi g he r rel ie f northwest-southeast c a ll ed t o p o g r a p h y mi mi c s ori en te d "th ro ug h val ley s" (Fig. flat-bottomed in this study, al ig ned w i t h s i m i l a r l y o r i e n t e d b e d r o c k va lleys. addition, Co m p l e x 7). are In the n o r t h e r n m o s t tr a ct s of the In ne r Port H ur on (named the "apex" co in ci de w i t h the h ig he st study ar e a (T. 32 N., Mancelona, however, in this di sse rta tio n; k n ow n b e d r o c k a l t i t u d e R. 4 W.; l o c al iz ed b ed ro ck and s u r fi ci al Fig. Fig. 6). in the S o u t h of relationships between t o po g r a p h y are we a k or non- 4) A A' 1400 . ELEVATION I N FEET 1300 * F Iu t 1000 - JF. f *5 i ‘^VV, BOO fig v . £*'•t‘ dfiift Ip fll . 700' BEDROCK 600. WNW 0 ESE 6 mi 10 mi Figure 7. Profile A-A,' show n on Figure 5, show ing the "relationship of the bedrock surface to topography. 31 existent (Fig. 8). K a l k a s k a Valley, the b e d r o c k su rf a c e map, so c o n s p i c u o u s on is c o m p l e t e l y m a s k e d at the surface. Melhorn (1954, p. 29) states that: in it ia l v a r i a t i o n s in (har dn ess a n d li tho log y) p r o b a b l y p r o d u c e d a p r e g l a c i a l t o p o g r a p h y in w h i c h a n o r t h w a r d - f a c i n g c u e s t a had b e e n d e v e l o p e d on the M a r s h a l l Sa nds ton e. This c u e s t a faced a l o w l a n d belt to the n o r t h d e v e l o p e d on so f t e r Antrim, E l l s w o r t h and C o l d w a t e r S h a l e s ... G l a c i a l e r o s i o n and d e p o s i t i o n m o d i f i e d (the bed rock) p a t t e r n but did not c o m p l e t e l y ob sc u r e it, so th at the old t o p o g r a p h i c r e l a t i o n s h i p s are still e v i d e n c e d in l e s s e r d e g r e e on the p r e s e n t surface. For example, the Po r t H u r o n m o r a i n e t h r o u g h o u t the r e g i o n c l o s e l y follow s the a p p r o x i m a t e p o s i t i o n of the s ca rp fr o n t i n g the old M a r s h a l l cuesta. T h o u g h re as ona bl e, this interpretation is not s u b s t a n t i a t e d by b e d r o c k s u rf ac e data. altitudes Marshall fr o m T. 26 N . , R. Formation In the a d j o i n i n g 6 W., (Milstein, township u n d e r l a i n b y the 1987), (T. Uppermost bedrock average 27 N . , R. 230 meters. 6 W.) altitudes on the C o l d w a t e r S h a l e a v e r a g e 195 m and th er e g r a d a t i o n of b e d r o c k a l t i t u d e s a c r o s s the l i t h o l o g i c b o u nd ar y, r a t h e r t h a n a d i s t i n c t es ca rpment. a p p a r e n t a b s e n c e of a M a r s h a l l not e a s i l y ex pl a i n e d , but c u e s t a in the indicates is a This region is factors o t h e r th a n local c o n f i g u r a t i o n of the b e d r o c k s u r f a c e m a y be responsible for p o s i t i o n i n g of the P o r t H u r o n Complex. In addition, M e l h o r n ’s q u o t e i mp lie s Po r t H u r o n fe a t u r e c l o s e l y p a r a l l e l s subcropping (1936), litho lo gi es . that the the p a t t e r n of M a r t i n ’s m a p of b e d r o c k g e o l o g y w h i c h M e l h o r n cited, shows the n o r t h e r n b o u n d a r y B B' Outer Port DRIFT >£: Kalkaska Valley BEDROCK Figure 8. Profile B-B,' show n on Figure 5, show ing the relationship of the bedrock surface to topography. Huron Complex 33 of the M a r s h a l l formation trending southwest-northeast a c r o s s K a l k a s k a a n d O t s e g o C o u nt ie s, the t r e n d of the O u t e r Port H u r o n feature. geologic map (Milstein, in fo rmation, shows a m u c h d i f f e r e n t east-west 1987), s o m e w h at p a r a l l e l i n g T he latest b a s e d on more d e t a i l e d boundary, oriented t h r o u g h K a l k a s k a an d C r a w f o r d Coun ti es ; s o u t h w e s t e r n K a l k a s k a C o u n t y do es the O u t e r Port H u r o n position. only in the trend c o i n c i d e wi t h Certainly, the Port H ur on C o m p l e x b r o a d l y p a r a l l e l s the t r e n d of the M i c h i g a n s t r u c t u r a l basin, two Port H u r o n margins extend across Col dw at er , Th is in det ai l the three l i t h o l o g i c u n i t s E l l s w o r t h / A n t r i m fo r m a t i o n s ; s u gg es ts positioning a lo ne b ut that b e d r o c k i n f l u e n c e s are var ia bl e, can no t acount and that (Marshall, Mils te in, 1987). on t o p o g r a p h i c subcropping li t h o l o g y for the l o c a t i o n of the P o r t H u r o n Complex. In short, the ap p a r e n t a b s e n c e of the M a r s h a l l c u es t a and p o o r r e l a t i o n s h i p b e t w e e n b e d r o c k and s u r f i c i a l topography we r e not i n di ca te that significant the O u t e r Po r t H u r o n factors bedrock characteristics in c o n t r o l l i n g p l a c e m e n t trend in the s o u t h r e g i o n a l b e d r o c k c on t r o l C h a p t e r 3). local of the N o r t h of Mancelona, topography exerted a significant la ndscape, as (arguments for f e atu re are p r e s e n t e d however, in bedrock in f lu en ce on th e m o de rn i n d i c a t e d by c o i n c i d e n c e of b o t h surfaces, and c o r r e s p o n d e n c e of hi g h b e d r o c k w i t h the I n n e r Port H u r o n apex. exhibit Thus, of the Port H u r o n C o m p l e x e s 34 strong c o n t r a s t i n g relationships between bedrock t o p o g r a p h y and m o d e r n t e r r a i n pa rts in n o r t h e r n v e r s u s so u t h e r n of the st ud y area. RELATIONSHIP BETWEEN THROUGH VALLEYS AND BEDROCK VALLEYS Bedrock valleys a p p a r e n t l y have of m o d e r n t h r o u g h valleys, dr if t thickness exceeds even in areas w h e r e 100 meters. landscapes which reflect details Pleistocene paleo-surface by R i e c k and W i n t e r s relationships process valleys of an older, creates "palimpsest" They attribute the a b l a t i o n of (Fig. 9). su c h ice in p r e ­ a l o w l a n d o v e r l y i n g the old b e d r o c k result s t a c k e d one on top of the other, the t r e n d of the o r i g i n a l valley. also e x p l a i n c o i n c i d e n t v a l l e y s If so, the p r e s e n c e in g l a c i a t e d in a ser ie s of each reflecting Suc h a p r o c e s s may in t h i c k d r i f t of p a l i m p s e s t in C h a r l e v o i x and A n t r i m C o u n t i e s e x p a n d s of this c o n c e p t the E v e n t u a l l y this R e p e a t e d g l a c i a t i o n s may s tu dy area. buried in s o u t h e a s t e r n M i c h i g a n to first stream valleys channel. average Modern glaciated have b e e n c a l l e d (1979). a c c u m u l a t i o n and l a t e r ex i s t i n g influenced placement in the topography the a p p l i c a t i o n regions. CONCLUSIONS T r e n d of the (Fig. Inner and O u t e r Port H u r o n C o m p l e x e s 5) a p p e a r s to be u n r e l a t e d to s u b c r o p p i n g lithology, as m a p p e d by M i l s t e i n (1987). b e d r o c k t o p o g r a p h y p r o b a b l y do e s c o nt ro l bedrock Ho wever, the l o c a t i o n of 35 BEFORE GLACIATION: STREAM VALLEY CUT INTO DRIFT AND/OR BEDROCK a ADVANCING ICE FLOWS INTO AREA. FILLING VALLEY \ / / AS GLACIER MELTS. ICE LINGERS IN MORE PROTECTED VALLEYS AND IS COVERED BY OUTWASH SEDIMENTS WHEN ICE FINALLY MELTS, A SERIES OF DEPRESSIONS IS LEFT. DELIMITING THE FORMER VALLEY COURSE D R IF T Figure 9. Proposed gen esis of coincident valleys(from Blewett, 1984). 36 the Inner Po rt H u r on apex, in e a s t e rn Charlev oix , A n t r i m Co unties. and w e s t e r n Otsego, In addition, Ch a p t e r 3 d o c u m e n t s a strong low lands a n d re gio na l Ou ter Po r t H u r o n influences the t o p o g r a p h y and n o r t h e r n eviden ce p r e s e n t e d in r e l a t i o n s h i p b e t w e e n be dro ck la n d f o r m pa tterns of the Inner and features. S E D I M E NT S A S S O C I A T E D WITH THE I N N E R AND O U T E R PORT H U RO N CO M PL EX ES A p p l i c a t i o n of the m o r p h o s e q u e n c e req uires 1 ) i d e n t i f i c a t i o n of co nc ep t here facies ch a n g e s for the Inner Port H u r o n and O u t e r Port H u r o n features, ev idence that sediments, dep os it s ic e-c ontact and pr og la ci al r a t h e r than till, surf ic ia l in areas p r e v i o u s l y map pe d as m o r a i n e and Taylor, 1915; ma p p i n g and se dim en t a n a l y s is were n e c e s s a r y part of the investigation. Aspects of P l e i s t o c e n e th i ck ne ss w e r e 1982). (Leverett B o t h de tailed for this s t r a t i g r a p h y and drift a n a l y z e d from w a t e r and p e t r o l e u m well logs on file at the G e o l o g i c a l Survey D i v i s i o n of the M i c h i g a n D e p a r t m e n t of Na t u r al Resources. sediment d a t a we r e d er i v e d stone piles, 2) glaciofluvial are the m a j o r F ar ra nd and Bell, plus roadcuts, Surficial from gravel pits, soil maps, and other exposures. D rift th ickness A drift th i c kn es s map a p p r o x i m a t e l y 400 well for the area, b a s e d on log d a t a points and s u p p l e m e n t e d 37 wi t h data from R.L. permission), R ie ck is s h o w n (1981, in Fig ur e 1985; 10. us ed wi t h C o n t o u rs are drawn in feet to m a t c h the well log d a t a and the v a l u e s p r o v id ed by R.L. (170 m), Rieck. and the m a x i m u m Average (953 ft, th ickness 290 m) d e ep es t v a l l e y on the b e d r o c k surface. is 550 feet is ov e r the Thickness contours tr en d p e r p e n d i c u l a r to the Inner and O u te r Port H u r o n margins, and v a l u e s te n d to reaching a m a x i m u m of 843 at the increase n o r th ea st wa rd , ft (257 m) Inner Po r t H u r o n apex. misleading, however, thi ck ne ss v a l u e s valu es become in T. T he se trends b e ca us e a l t h o u g h g r e a t e r tow ar d the is ob sc u r e d n u m b e r of d a t a p o i n t s R. 4 W. somewhat in dividual south (Figs. in Figure average 7 and 8). 10 b e c a u s e the is i n s u f f i c i e n t to show g r ea t e r drift th i c k n e s s v a r i a b i l i t y in no r t h e r n areas. As re ve a l e d by a c o m p a r i s o n of Figures in g l a c i a l depos it w i t h l o c at io ns of p r o m i n e n t 3 and 10, th i c k n e s s do not c o r r e s p o n d to p o g r a p h i c suggests that d r i f t t h i ck ne ss alone e x p l a i n tre nd s of m a j o r t o p o g r a p h i c area, are are h i gh es t t o w a r d the north, This r e l a t i o n s h i p va ri a t i o n s 32 N., features. is i n a d e q u a t e elemen ts This to in the study with the p o s s i b l e e x c e p t i o n of the Inner Port Hur on apex. bedrock R e l a t i o n of d r i f t . f o r m . and m o d e r n t o p o g r a p h y The s t u d y ar e a c an be s u b d i v i d e d into n o r t h e r n and sou th er n s e c t i o n s b a s e d on d r i f t / b e d r o c k relationships. IN N E R h I) 500 450 (/ [no c -Jl U r o \\ ^ V- A I N ^ ^ANC E^-° J%\-°P£ 8a CONTOUR INTERVAL:50FEET Figure 10. Drift th ick n ess in the Inner and Outer Port Huron C om plexes 39 S o u t h of M a n c e l o n a gl aci al sediments ob sc ur e su r f a c e c h a r a c t e r i s t i c s and r e l a t e d v a l l e y s i d e n t i f i e d o n l y as li ne a r a re as map. In cont ra st , show st ro ng sediments bedrock in the of th ic k d e p o s i t s on the b e d r o c k t o p o g r a p h y and d r i f t s u b su rf ac e Th ic k (Fig. 7); th in d e p o s i t s high cover b e d r o c k valleys. b e t w e e n n o r t h e r n and is d e e p l y buried, in the form of kett le chains R eg i o n a l to ma r k a t r a n s i t i o n s ou th er n sections. valley A l t h o u g h this it is e x p r e s s e d at the differences de po si ts , in d r i f t / b e d r o c k irregularities which, once exceeded, in b e d r o c k top og rap hy. topographic in the relationships t h r e s h o l d of works Meek to ma s k (1984) e x p r e s s i o n of the b e d r o c k s u r f a c e f u n c t i o n of b e d r o c k relief and d r if t expressed surface and dry channels. m a y be r e l a t e d to a p a r t i c u l a r t h i c k n e s s that th i c k n e s s at the Inner Port H u r o n ape x mi mic The A l b a b e d r o c k va l le y a p p e a r s gl aci al are c o r r e s p o n d e n c e n o r t h of Ma nce lon a. gl ac ia l adjacent bedrock thickness found is a as form: + 10 meters w h e r e T = a v e r a g e dr if t bedrock relief in meters. of the eq ua ti on , l i k e l y will be r e f l e c t e d Data t h i c kn es s in me te r s When T exceeds and R b = m a x i m u m the right th en the form of the u n d e r l y i n g be masked. If T is less, bedrock side surface form will in p r e s e n t to po graphy. fr o m the s tud y are a substantiate a p p l i c a t i o n of 40 these fi nd i n g s in part: N o r t h of M a n c e l o n a T = 6 4 m R b = 1 8 3 m 64 < The 101.5 m form of the b e d r o c k s u r f a c e wi l l be ev i d e n t in the topography. South of M a n c e l o n a T = 156 m Rb = 131.1 156 m >75.6 m m The form of the b e d r o c k s u rf a c e will be m a s k e d at the surface. Though th es e e q u a t i o n s w e r e areas w i t h t h i n n e r dr if t re a s o n a b l e accounting developed for b e d r o c k / d r i f t Subsurface relationships feature. logs p r o v i d e li mi te d i n t e r p r e t a t i o n s of s u b s u r f a c e Inner and O u t e r Po r t H u r o n Co mp l e x e s . Rugg Pond a stratigraphy W a t e r and p e t r o l e u m we l l for some of t he se lo c a l i z e d (15-35 m ) , th e y do p r e s e n t ob s e r v e d on the I n n e r Port H u r o n along the d e e p l y for the b as es stratigraphy for in the A few o u tc ro ps incised Rapid River provide verification interpretations, and an e x p o s u r e reveals a Pleistocene paleosurface near recognized on the ba si s of g l a c i a l l y b u r i e d w o o d and o t h e r o r ga ni c matter that has b e e n (U C dated. All are d i s c u s s e d below. 41 S UB SU R F A C E SE DIMENTS A S S O C I A T E D WI TH THE INNER PORT H U R O N C O M P L E X F ig ur es about 11 and 200 well up p e r m o s t logs, 12, wh ic h are based on data show, respect ive ly, sand and gravel deposits, underlying (45 m) in pro ximal Inner Port H u r o n crest) distally 170 ft and v a r i a t i o n s 270 ft regions is from (areas cl o s e s t from the crest). in the A v er ag e sand and gravel unit to less th a n 40 ft (areas farthest va l u e s exce ed and the t h i ck ne ss of clay surface wi th i n the study area. t h i c k ne ss of the u pp erm ost 150 ft from to the (10 m) Maximum (80 m) at the Inner Port H u r o n apex (50 m) n o r thw est of Mancelona. The K a l k a s k a and D a r r a g h b e d r o c k valleys also d i s p l a y thick sediments. surface, A small, ch ap te r high-altitude terrace 3) has thicke r de p o s i t s (Camp Te n along its n o r t h w e s t margin. Vol u m e of the uppe rm ost sand un i t in the s tu dy area is a p p r o x i m a t e l y 6 km3 based on the e x p r e s s i o n V = l / 2 (l * w * h ), wh er e V=volume, w = w i d t h of the sandur. l = l e n g t h of the s a n d u r , arid h = t h i c k n e s s of d e p o s i t s at the Inner Port H u r o n crest. Fig ur e and shows 13 uses co mb in ed d a t a is inclined no rth westward. discussed 11 and 12, that u p p e r sand and g r a v e l s were d e p o s i t e d upon clay w i t h a surfa ce of m o d e r a t e that from Figur es re li e f (165 ft, I m p l i c a ti on s 50 m) of this are in C h a p t e r 4. C ol le cti ve ly, four lines of ev i d e n c e u n d e r l y i n g cl a y is till: s u gge st that the 100 150 20C> 250 150 1 150 100 s— 100 100' 100 100 50~vX MANCELONA | ou PLAIN ioo -^— ioo— 100 CONTOUR INTERVAL:60FEET Figure 11. T h ick n ess of the upperm ost sa n d and gravel unit. f I 1050J _ s >— 1100 w ^ncelona L 2 CONTOUR INTERVAL:50FEET Figure 12. Altitude of the underlying clay surface. NW SE ELEVATION I N FEET OUTER PORT HURON COMPLEX 1200-- INNER PORT HURON COMPLEX CLAYSURFACE 0 1 mi 2 rri 3mi 4 rri Figure 13. Relation b etw een m odern topography and the underlying clay surface. Profile location show n in Figure 5. 45 1) b r o w n till R iv er V a l l e y is e x p o s e d along the wes t (SE1/4, SW1/4, T. 28 N., side R. of the Rapid 7 W. ) at an e l e v a t i o n of a p p r o x i m a t e l y 282 ra, well w i t h i n th e of a l t i t u d e s m; F i g . 1 2). 2) sa mpl es rev ea l for the highes t fr o m two that till 3) lineated 4) Fig. 12) and m a y r e p r e s e n t pr es en t pre-existing (Fig. 12). Th is cla ys are ice-marginal of till upon a surface. lacustrine. lacustrine deposits such e x t e n s i v e p r o b a b l y for me d in an ic e - f r e e env iro nm en t, are u s u a l l y flat, if or r a t h e r th a n s u b g l a c i a l l y . of l a c u s t r i n e dep osi ts any v a l l e y e x i s t i n g on this cut b y su bs eq ue nt a ft er d r a i n i n g is r e q u i r e d First, b e c a u s e u n a l t e r e d s u rf ac es m e l t i n g of in the is a c c o m m o d a t e d A mor e c o m p l i c a t e d mode of d e p o s i t i o n mu st be a) b u ri ed on the cl a y surface c o r r e s p o n d w i t h axes si mp l y b y u n i f o r m d e p o s i t i o n of basal Second, (based on in n o r t h w e s t e r n A n t r i m County. major bedrock valleys these in the clay su r f a c e s ap pe a r to be of s t r e a m l i n e d l a n df or ms la n d s c a p e valleys mo s t r ep or te d et a l ., 1986). underlying c o n t o u r pa tt ern s; modern to th ose in a n o r t h w e s t - s o u t h e a s t d i r e c t i o n equivalents - 290 gas we ll s on the M a n c e l o n a P l a i n co mp a r a b l e (Wi nters In places, (275 is b e n e a t h the u p p e r m o s t san d and gravel unit at a l t i t u d e s st udy area cl a y s u rfa ce h e r e range of the lake, ice b l o c k s b u ri ed su rfa ce s t re am e r o s i o n d u r i n g or b) or f o r m s u b a e r i a l l y by in p r e - e x i s t i n g l o w l a n ds 46 prior to lake formation. Once formed, t he n be b u r i e d by sand and gravel. mod el v a l l e y must T h o u g h possible, seems o v e r l y c o m p l i c a t e d c o m p a r e d d e p o s i t i o n of this this to simp le till. S U B S U R F A C E S E D I M E N T S A S S O C I A T E D W I T H THE O U T E R PORT H U R O N C O M P L E X Subsurface clay deposits O u t e r Port H u r o n Complex, making in the O u t e r Port H u r o n ap e x significant underlying clays relatively s e d i me nt s discussed that these An exposure su p p o r t s S o u t h of the apex, complicated. proximal Elmira, w el ls la ye rs Only 4 W . ) is any identified. Here, b e n e a t h the c re st of the (4-7 m) and 2) Their cl os e s t a g n a t i o n t o p o g r a p h y and s t r a t i f i e d su gg e s t below, 31 N . , R. and are abs en t di stally. shallow depth a b l a t i o n till. in the a n a l y s i s diffic ul t. clay p a t t e r n feature association with c la ys may be flow or of till at F l e m i n g ’s farm, this i n te rp ret ati on. d i s t r i b u t i o n s are e v e n more Logs r a r e l y r e c o r d cla y b e n e a t h the t r a c t s of the O u t e r Port H u r o n C o m p l e x east of where some w e l l s east of A l b a do, are 93 m deep. however, s e p a r a t e d by sand a n d/ o r has also b e e n the O u t e r l o gg ed at d e p t h s Port H u r o n p a t t e r n here the (T. are c o n c e n t r a t e d at d e p t h O u t e r Port H u r o n 1) are h i g h l y v a r i a b l e fe atu re may be r e la t e d ice m a r g i n in this are a Mos t logs report n u m e r o u s sand and gravel. from clay Clay of 50-60 m in re gio ns south of A l b a airport. of The to s u c c e s s i v e p o s i t i o n s of (Lakes of the N o r t h margin; 47 Ch. 3). East of M a n c e l o n a the surfa ce v a r i e s from 15-70 m in depth, wi t h a mode of a p p r o x i m a t e l y 35-40 m.South of C r a w f o r d Lake clays are w i d e s p r e a d the and te nd to be less deep ly in su bs u r f a c e buried. Co m b i n e d w i t h alti tu de s of the m o de r n surface, e l e v a t i o n s of the sub cr op pi ng cl a y surfac e d e fi ne thi ck ne ss of the up pe rmo st sand and gravel c o m p r i s i n g the O u t e r Port H u r o n Complex. cl ay d i s t r i b u t i o n s but, in general, d ep osi t w ed ge thi cke st here makes unit V a r i a b i l i t y of i n t e r p r e t a t i o n difficult, this high er unit in pro ximal the forms a w e d g e - s h a p e d regions. Farther sou th this is less well defined. RUGG POND SITE G l a c i a l l y b u r i e d organic d e p o s i t s above the base of the bluff Po nd D am (SE1/4, NW1/4, 5 m i m m e d i at el y n o r t h of Rugg NE1/4, n o r t h e r n K a l k a s k a County. are e x p o s e d sec. 31, T.28N., F l a t t e n e d wo o d R.7W.) fragments and ot her c a r b o n a c e o u s m a t er ia ls are w i t h i n a silt lying be tw e e n two The wood yi e l d e d a br ow n tills ,4C date of (10 YR Y/2, Fig. >41,000 y r s . B.P. i4). in (Beta - 29495 ); p r e l i m i n a r y a n a l y s i s of a r e lat ed p o l l e n a s s e m b l a g e (Marlette, u n p u b l i s h e d material, 1989) ac c u m u l a t i o n u n d e r n o r t h e r n boreal conditions. Layers 45 de gr ee s tow ard edge, in di c at i ng co ntai ni ng indicates or s u b a r ct ic c a r b o n a c e o u s m a t e r i a l dip the north at the e x p o s u r e ’s n o r t h e r n that the d e po si ts have b e e n deformed. The s t r a t i g r a p h y a s s o c i a t e d w i t h the Rugg Po n d site is shown in Figure 14. cons is t s of l a c us t ri ne are 1) thin, deposits, Ne ar l y two thirds fine sand and silt. Till lenses 2) u s u a l l y se p a r a t e d by sand and silt and 3) c o n f i n e d to the lower p a r t s of the exposure. Till 1 lies highest in the c o l u m n and a s s o c i a t e d w i t h the or ganic material. above of the outcr op the o r g a n i c - b e a r i n g silts, Till and till is not 2 is di re c t ly 3 lies underneath. A l t h o u g h s t r a t ig ra p h ic da ta are the small size of the outcrop, till li mit ed b e c a u s e of 2 m a y m a r k a pr e-Late Wisconsinan ice ad van ce becau se than 41, 00 0 years old as so c i a t e d w i t h "cold" Age and d e p o s i t i o n a l color and t e xt ur a l it buries w o o d gr eat er h i s t o r y of tills si m il ari tie s to till) finding ice m a r g i n a l d e p o s i t s ( + 100 m) et a l . (1986). apparently consisting (as oppos ed a for thick in the area as r e p o r t e d by Figure 14 shows that on l y about is till, of l ac us tr in e w i t h the rest silt and o t h e r ice deposits. C o m p a r i s o n w i t h n e a r b y or ga ni cs deposits d e m o n s t r a te in a g r e e m e n t w i t h d e t a i l e d s t r a t i g r a p h y 25% of the s t r a t i g r a p h i c c o l u m n ma rg i n a l In in this part of the Inner Port H u r o n Complex, sec ti on s of drift Wi n t e r s 3 and 2 same deposi t. this o ut c r o p and r e la te d se d i m e n t s the g r e a t a b u n d a n ce of 3 are unkno wn be tw ee n tills suggest that th ey may be part of the addition, 1 and pollen. are r e p o r t e d of K a l k a s k a -- Y o u n g e r o r g a n i c from four c l o s e l y s p a c e d w e l l s west (Winters et a l ., 1986), at a l t i t u d e s 75 m 49 A B 8.5 m » 4 »4 *« w* * 4 *^ 4 ►« A- GLACIOFLUVIAL (?) SAND AND GRAVEL, UNDIFFERENTIATED; NON-CALCAREOUS B- ALTERNATING LAYERS OF LACUSTRINE SILT AND CLAY; CALCAREOUS C- LACUSTRINE FINE SAND AND SILT WITH CLAY LENSES; LOOSE, POWDERY, SLIGHTLY TO NON-CALCAREOUS D- DENSE LACUSTRINE SILT WITH OCCASSIONAL CLAY STRINGERS; CALCAREOUS E- TILL #1. BROWN GRADING TO GRAY; CALCAREOUS F- GLACIOFLUVIAL (?) SAND, UNDIFFERENTIATED; NON-CALCAREOUS G- TILL #2. BROWN, CALCAREOUS H- LACUSTRINE SILT CONTAINING ORGANIC MATERIAL; CALCAREOUS I- TILL #3. BROWN, CALCAREOUS, WITH SAND INCLUSIONS J - GLACIOFLUVIAL (?) SAND, UNDIFFERENTIATED, WITH TILL INCLUSIONS; CALCAREOUS G H | J SLUMP TILL 2 SLUMP WOOD > 41,000 yrs 'J. VLL3 SLUMP Figure 1 4 . Rugg Pond Stratigraphy. 50 lo w e r th an the Rugg Pond site. botanical data in di c a t e that a bo ut was ice-free, and later a c l o s e d b o r e a l organic R a d i o c a r b o n d a t e s and p o o r l y drained, and s u p p o r t e d forest. h o r i z o n is at or near or g a n i c its o r i g i n a l significantly, in situ at or hi gh e r at Thus, at 35,0 00 these two another. the same yrs. B.P. altitudes Curiou sl y, is fu rt he r e v id en ce t o p o g r a p h y her e 75 m. then This of bu r i e d yrs. old are site had to be as high l o c a t i o n s are w i t h i n Th is alti tu de , at least if o rg an ic s >4 1 , 0 0 0 255 m, first an open if not t r a n s p o r t e d record approximate paleosurfaces. found deposits, the area If the Ru g g Po n d M i d d l e W i s c o n s i n a n p a l e o r e l i e f was is so b ec au s e 35,000 B.P. is not palimpsest, modern 10 m a l t i t u d e surfaces of one that pr es e n t and that La t e W i s c o n s i n a n g l a c i a t i o n has bo th t r a n s f o r m e d the t o p o g r a p h y and s u b d u e d the relief. S u r fi ci al Surficial sediment in the predominantly glaciofluvial almost wholly s t u d y ar e a is sand a nd gravel; till is r e s t r i c t e d to f l u t e d u p l a n d s a n d the Post I n n e r Port H u r o n common s e d i m en ts in a r e a s zone (Fig. 15). immediately up-ice O u t e r Port H u r o n fe at ur es and proximal outwash facies. Details Lacustrine deposits from the are I nn er and in a s s o c i a t i o n w i t h of each are d e s c r i b e d below. Sedimentological i n v e s t i g a t i o n of nine g r a v e l pits on 51 the M a n c e l o n a P l a i n ’s most e x t e n s i v e surface; study. Ch. 3) taken v e r t i c a l l y at ea c h pi t and into c o a r s e fractions. (>8 Li tho lo g y, mm) fragments. calculated phi mm) a n d fine r o un dn ess va lu e s we r e d e t e r m i n e d ( >8 (Elmira c o n s t i t u t e d a m a j o r p o r t i o n of this S am p l e s w e r e separated surface (< 8 mm) and p r i n c i p a l for 75 r a n d o m l y axes s e l e c t e d coa rs e Sp he ri c i t y and fla tn es s wer e fr om axis data; in te rva ls of one unit. fine f r a ct io ns w e r e s i e v e d at B e d f o r m l i tho fa cie s, p a l e o d i s c h a r g e s , and paleocurrent directions als o were determined. Discarded sto ne s are pi le d al ong ro ads lo c a l i z e d facies w e r e re co ver ed du ri n g north of Alba. a x e s wer e d e t e r m i n e d s a m p l e d sto ne s wer e m a p p e d boulders cm) (Fig. i 1 m. facies ch an g e s successive Lithology, of five such roundness, for 50 r a n d o m l y - from each pile. Pl ac es w h e r e d i a m e t e r >50 area. harvesting Some a s p e c t s i n t e r p r e te d by sam pl in g stone pil es w i t h i n a 15 mi. and p r i nc ip al pot at o th re e or more exist within 15), s u r f ic ia l ( b- 100 - 150 m of one a n o t h e r as were l o c a ti on s T h e s e data we re use fu l in surfi cia l boulders sediments, of sin gl e in 1) recognizing and 2) determining ice m a r g i n a l positions. S U R F I C I A L SE DI ME NT S O F THE I N N E R PORT H U R O N C O M P L E X The o v e r a l l se di me nt su rfa ce sizes sta ti st ic al d i s t r i b u t i o n of fro m nine grav el pits is s h o w n in Fig 16. on the Finer t e xt ur es Elmira co ns i s t 52 -11 -10 -9 -8 -7 -6 -5 -4 -3 -3 -2 -1 0 1 2 3 4 SIZE (phi m easure) Figure 16. Overall distribution of c o a rse and fine sed im ents. 53 p r e d o m i n a n t l y of m e d i u m and coarse d i a m e t e r of the co ar s e sands. M e a n b-axis fraction is 2.8 cm, with a v a r i a n c e and s t a n d a r d d e v i a t i o n of 3.8 and 1.9 cm, res pectively. K u r t o si s r e l a t i v e l y high (13.2; for the overa ll in the population. positively indica ti ng clasts in pr oxi ma l locations. clasts in the o ve ra ll p o p u l a t i o n are sedimentary, Roundness, Fig ur e 17. wh er e a s flatness, G re a t e r flatness the shape sorted m i d - s a n d u r The d i s t r i b u t i o n skewed, non-carbonate is the p r e s e n c e of a few large and L i t h o l o g i c a l l v , coa rs e 60% carbonate, and s p h e r i c i t y are and s ph eri ci ty are terms Most large cla st s sh ow n in abrasion, that des cr ib e in this ro und ed to su b- r o u n d e d and r e l a t i v e l y compact, sand ur c h a r a c t e r i s t i c s re po rte d e l s e w h e r e C o m p a r i s o n of sed im en t c h ar ac t e r i s t i c s Me a n b- ax i s va l u e s are gr ea tes t pits (Crego and C - K pits; most dist al variance site (DNR pit; Fig. 18) study are typical (Church, 1972). among gra ve l pits in pr ox i m al gravel and sm al le st at the 18). of Analysis of (A N O V A ) in dicates that c o l l e c t i v e l y the nine distributions confidence are s t a t i s t i c a l l y d i f f e r e n t levels. the most pr ox i m a l it was Fig. 25% 15% crystalline. ro undness re fl ect s more of a rock. is hi g h l y l e p t o k u r t i c ), p r o b a b l y due to an ab u n d a n c e of e s pe c i a l l y well samples population Because at 99% the Cr eg o and D N R sites ma r k and distal gravel pits, respectively, r e a s o n e d that their sedime nt d i s t r i b u t i o n s not be the same. should The t-test was then a p p l i e d and the two 54 ROUNDNESS VA AN SA SR RN WR .2 H FLATNESS A 0 2 A .6 .8 H i .6 .8 1.0 .4 - J- .1 SPHERICITY - 0 i I .2 r .4 1.0 Figure 17. R oundness, flatness, and sphericity of coarse clasts from gravel pits on the Elmira surface. 55 4.1 CREGO 3.8 ELMIRA 3.0 2.9 ASPHALT ALBA 2.5 NEW WILKES LOWER WILKES UPPER WILKES 2.4 2.3 DNR 1.9 Figure 18. Mean B-axis diam eter of c o arse clasts from gravel pits on the Elmira surface. 56 sites wer e fo und to be s t a t i s t i c a l l y di f f e r e n t at 99% c o n f i d e n c e values. Sphericity (Fig. n a r r o w clasts) Visu al ly , distal to one portions can range B- ax i s a,b, (long, a n d c axes). a p p e a r to be a s s o c i a t e d wi t h the of the sandur, that d i f f e r e n c e s statistically from ne a r ze r o (clasts w i t h equal higher values in d i c a t e s and, 19) but an al y s i s of va ri a n c e in v a r i a b i l i t y are no t signi fi ca nt . variance in theory, (Fig. 20) populations measures near e x p e c t e d to y i e l d h i g h e r va lu e s s o r t e d co n d i t i on s. This the relative sorting ice m a r g i n w o u l d be representing poorly is s u b s t a n t i a t e d by d a t a from the E l m i r a surface. Theoretically, di stally, due grav el recorded across the "very a n g u l a r" (Fig. 21). rounded to g r e a t e r a b r a s i o n from l o ng er No d i s c e r n i b l e v i s u a l as s h o u l d be c o m e more Thus, difference sandur, in gravel transport. r o u n d n e s s was e x c e p t that rocks c l a s s i f i e d w e r e r e s t r i c t e d to 4 p r o x i m a l pits e xc e p t deposited at the g l a c i a l margi n, s a n d u r have u n d e r g o n e for a small p e r c e n t a g e n e a r l y all large cl as t s c o n s i d e r a b l e abrasion, on the a l t h o u g h the a mo u n t d i r e c t l y r e l a t e d to t r a n s p o r t on the E l m i r a sandur al one cann ot be d et er mi ne d. Characteristics F ig u r e 22. coarse/medium proximal of finer Proximal s h o w n in gravel pi t s c o n t a i n a h i g h e r sand ratio and d i s t a l se di me nt s are tha n dis ta l pits. Selected d i s t r i b u t i o n s are s t a t i s t i c a l l y 57 0.737, 0.710 0.730 0.732 0.720 0.744 0.746 Figure 19. M ean sphericity of co a rse cla sts from gravel pits on the Elmira surface. r 58 ^ 3.9 8.2 2.1 2.7 0.9 1.2 0.6 Figure 20. B-axis variance of c o arse clasts from gravel pits on the Elmira surface. 59 2.8 1.2 2.6 1.1 Figure 21. Distribution of "very angular" c o arse clasts from gravel pits on th e Elmira surface. i 60 CREGO SIZE(phimeasure) ELMIRA ASPHALT ALBA □ SIZE(phimeasurje) \ SIZE(phimeasure) SIZE(phimeasure) WILKES SIZE(phimeasure) SIZE(phimeasure) UPPER WILKES SIZE(phimeasure) / LOWER WILKES SIZE(phimeasure) SIZE(phimeasure) Figure 22. Distribution of coarse and fine sed im en ts from gravel pits on the Elmira surface. 61 different Wallis at 99% c o n f i d e n c e values, analysis In short, c o ar se and of variance. on the basis of gra ve l pit data, fine fractions exhibit significant variation higher variability angular, and both a statistically in facies. Proximal locations in te xtu re and c o n t a i n larger, less co m p a ct better sorted b a se d on the Kruskal- rocks, whereas and c o n t a i n smaller, di st a l rounder, show more sites are m o r e compa ct sediments. Stonepiles — cobble-sized localized Alba. stonepiles c l a s t s were fa c i e s c h an ge s containing pebble s a mp l e d in o r d e r to (Fig. located only 23). locations. for m o r e c o m p a c t cl as t s this p a t t e r n is not findings support distally fining to be n o r t h of fi n i n g A n g u l a r and s u b a n g u l a r in p r o x i m a l and inv es ti ga te on the E l m i r a s u r f a c e A s t a t i s t i c a l l y s i g n i f i c a n t di st a l identified exists Five c l as ts are A weak tendency found d i s ta ll y, s t a t i s t i c a l l y si gn ifi can t. gra ve l pit d a t a and s u gge st fac ie s ch an g e ex i st s is but These that a on the E l m i r a surface. Bedforms — B e d f o r m a n a l y s i s was u s e d fac i e s c h a n g e s in g l a c i o f l u v i a l has be e n d e s c r i b e d consists of in detail i d e n t i f ic at io n, for v e r i f y i n g material. (Miall, 1978; de scr ipt ion , i n t e r p r e t a t i o n of suites of d i a g n o s t i c (Miall, 1978). Principal u ni ts The te ch niq ue 1983) and and l i t h o f a c i e s units recognized in this study 62 9.8 12.3 8.6 A rea of san d u r show n aq 6.8 Figure 23. Mean B-axis diameter (cm) of stone piles on the Elmira surface. 63 are shown in T a b l e Miall (1983) 1. presented three outwash r e p r e s e n t i n g prox im al , as sem bla ges . Though architectural element model medial, analysis mod els simple ex p o s u r e s in this to use, for co mp ari son , and 3) th an a r c h i t e c t u r a l pr in ci pa l m o d e l s (Miall, 2) models lithofacies s u p e r s e d e d by a new m e t h o d a p p r o a c h was u t i l i z e d is r e l a t i v e l y and dis ta l fac ie s 1985), call ed the stu dy b e c a u s e facies it 1) provides well-established r e q u ir es element less extensive analysis. The include: 1) Sco tt type - P r o x i m a l m u l t i s t o r e y gravel u n i t s of l o n g i t u d i n a l bars. l i t h o f a c i e s d o m i n a t e d by d e p o s i t e d by a g g r a d a t i o n 2) D o n j e k type - Me d ia l li th o f a c i e s c o n t a i n i n g bo th bar gr av el s and sands and p e b b l y sands; so m e t i m e s s t ro ng ly cyclic. 3) P l a t t e type - Di s ta l l i t h o f a c i e s c h a r a c t e r i z e d by l ow re li e f bars and cha nnels. M a i n sed iment types are massive, l a m i n a t e d and r i pp le c r o s s ­ l a m i n a t e d sandy silts. A n a l t er na te (Miall, sands) f la s h d i st al 1981) facies type n a m e d " B ij ou Cree k" is d o m i n a t e d by 1 ith of ac ie s Sh and r e p r e s e n t s b r ai d e d (planar s t r e a m s c h a r a c t e r i z e d by floods. S e d im en ts fr om ea c h grave l pit on the E l m i r a surface we re c a r e f u l l y d o c u m e n t e d in the field and pho to gr ap he d. Representative vertical profiles (Fig. constructed for ea c h site as a m e a n s pre se nt at io n. Size of ou t c r o p s A l b a grav el p it was Once identified, not for g r a p h i c v a r i e d widely, i n c l u d e d due li th o f a c i e s 24) we r e an d the to p o o r exposure. a s s e m b l a g e s we r e 64 Ta bl e Fncloc C ode 1. L i t h o f a c i e s and s e d i m e n t a r y s t r u c t u r e s f lu vi a l d e p o s i t s (from Miall, 1978). U th o fa c io s S cdlm onlnry s tru c tu re s Interpretation Gms m a ssiv e , m atrix su p p o rte d gravel none debris flow d ep o sits Gm m a ssiv e or crudely b e d d e d gravel horizontal bedding, imbrication longitudinal b ars, lag d eposits, siev e deposits • gravel, stratified trough cro ssb e d s m inor channel fills Gp gravel, stratified plan ar cro ssb e d s linguoid b ars or d el­ taic grow ths from older b ar rem n an ts St sa n d , m edium to v. c o a rse , m ay b e pebbly solitary (thcta) or grouped (pi) trough c ro ssb e d s d u n e s (lov/cr flow regim e) Sp sa n d , m edium to v. c o a rse , m ay be pebbly solitary (alpha) or grouped (omikron) plan ar cro ssb e d s linguoid, tran sv e rse b ars, sa n d w av es (low er flow regim e) Sr sa n d , very tine to c o a rs e sa n d , very fine to very co a rse , m ay be peubly sa n d , fine ripple m arks of all types horizontal lamination, parting or stream ing lineation low angle (<10°) cro ssb e d s ripplos (lower flow regim e) p lan ar b ed flow (I. and u. flow regim e) sc o u r fills, c re v a s s e sp lay s, an tid u n cs • Se erosional sc o u rs with in traclasts cru d e cro ssb ed d in g sc o u r fills Fcf m ud m assiv e, with fresh w ater m olluscs b ack sw am p pond d ep o sits Fm m ud, silt m assiv e, desiccation crack s • overbank or d ra p e deposits Gt Sh SI of 65 CREGO r z l Gm C It K ELMIRA LOWER WILKES ASPHALT NEW Gp WILKES UPPER WILKES 5 Sh Se Sh -1 < tW ~~ a k Sp Sh CD to Sp Sh Sp Figure 24. Bedform lithofacies a sso cia ted with the Elmira outwash surface 4 ml Sh U DNR Ss 5 km N 66 c l a s s i f i e d as proximal, types (Fig. Donjek, 24, Table Platte, recognized PROXIMAL: medial, 2) distal, and c o m p a r e d wi t h the Scott, and Bi jo u Cr eek models. in the p re s e n t study are (Crego and C - K gravel textured, poorly boulders. A flow till mass the C - K pit, s ug ge s ti ng depositional facies. (Fig. both gra vel sorted, 25) Th e Crego sand. and include site (Fig. This 26), site and a g g r a di ng sandy b e d f o r m s and b r o a d S e d i m en ts are co nt a i n s 1) There finer grained, is finer grained. TRANSITI ONA L: are i d en ti fi ed in in cl u d e s cy cl i c a l scour fills. 2) b e t t e r sorted, and 3) than proximal characteristic Co bb le s are rare. Asphalt, Up pe r Wilkes, Fac ie s at these pits of b o t h medial and p r o x i m a l They and New are sites. are sm a l l e r and so mewhat b e t t e r s o rt ed in p r o x i m a l pits. No silt identified. (Elmira, gravel pits) of p l a n a r lacust ri ne is a h i g h e r p r o p o r t i o n of sand to gravel and or cl ay dra pes Gravel s large is d o m i n a t e d by Gp c r o s s - s t r a t i f i e d to a mu c h great er deg re e Wilk es Grave ls from an ice -c on ta ct and clay drapes are (Lower Wil ke s pit) the la tt e r but pits. and St l i t h o f a c i e s pits. is is w i t h i n the G m facies at tra ns it io n silt up to 33 cm thick, facies This a s se mb l a g e m od er a te a mo u n t s of i n t e r l a y e r e d are c oa r s e MEDIAL: Principal i d e n t i f i e d below: pits) d o m i n a t e d by G m and Gp li t ho fa ci es con tai ns or tr an si t i o n a l than those also ex hib it a g r e a t e r abundance (G p ) and tr ou gh -c ro ss beddin g (G t ), rath er than 67 TABLE 2. Bedform lithofacies of gravel pits on the Elmira surfaceDesignation Comments Site Facies identified Crego Gm, Gp, Gt, Sh, Sp, Fsc Proximal Elmira Gm, Gp, St Transitional Gm and Gp predominate; no silt Asphalt G m , G t , Gp,. St, Sh, Sp Transitional Gm, G t , St predominate; no silt; more sand than Crego, Elmira C and K G m , G p , Gt, Sh, St, Fm, Fsc, Gms Proximal Gm predomin­ ates; silt, clay drapes; small flow .till inclus­ ion in Gm Lower 'Wilkes Gp, St, Spr, Sh Medial Gp, St predominate; no silt Upper Wilkes Gt, St, Gp, Sp, Sh Transitional Gp predomin­ ates ; no silt New Wilkes r* _ r* a. ,_ U t , tap, o p, o w Transitional No silt DNR Sh, Sp, St, Distal Gm and Gp predominate; thick, lacustrine sandy silt Thick, fining up­ ward Sh 68 Figure 25. Sedim ents at the C and K gravel pit (proximal), Mancelona. 69 Figure 26. Sandy bedforms at the Lower Wilkes gravel pit (medial), Mancelona. 70 massive gra ve l sh ee t s DISTAL: (D N R g r a v el (Gm). pit) Sediments here are c o m p o s e d al m o s t e x c l u s i v e l y of sand and granules. do m i n a t e s the pit (Fig. silt or clay layers, 27). Large c o n t a i n more sandy bedforms facies model but o t h e r w i s e bo u l d e r s facies, facies. (G p ) lenses, In general, sheets (Miall, lens es in di c at e of silt 1972; c r o s s - b e d d e d gravel deep water lenses a n d clay r e p r e s e n t s d e p o s i t i o n of 1981). that rapid from t r a n s p o r t during w a n i n g C l a y d r a p e s and sand and flood silt flow c o n d i t i o n s were h i g h l y of p r o x i m a l outwash environments F r a s e r and Cobb, 1982). b e d f o r m fac ie s at the Lower W i l k e s silt at the L o w e r W i l k e s except gr av e l pit. for th e These a v a r i e t y of bars and be df o r ms shallow, of Gm f lo od stages. is si m i l a r to the D o n j e k model, wide, 2) d o m i n a n c e (38 cm), the Gm facies t yp i c a l The m e d i a l rep re se nt 1) the p r e s e n c e of and l o n g i t u d i n a l bars during sta ge s (Church, include representing overbank sediments d e p o s i t i o n of b e d l o a d variable, g r a v e l pits ex h i b i t many c h a r a c t e r i s t i c s of t h i c k 4) p r e s e n c e possibly but no th a n p r e d i c t e d by the Scott coa rs e texture, deposited during waning gr av e l -- Pr ox im al i n d i c a t i v e of h i g h energy, d e p o s i t i o n and, drapes, Th es e and o v e r a l l 3) p r e s e n c e scour fills, are recognized. INTERPRETATION AND COMPARISON of pr o x i m a l L i t h o f a c i e s Sh braided stream site a b sen ce sediments typical (Fraser and Cobb, for a 1982). of 71 Figure 27. Lithofacies Sh at the DNR sand pit (distal), Kalkaska. 72 The di st a l D N R gra ve l pit has c h a r a c t e r i s t i c s both the P l at t e s eq uen ces and Bi jo u Cr ee k models. of p l a n a r sands c r o s s - b e d d e d laye rs (Sp). by p e b b l e s bases, (Sh) In places, are thick are cap pe d by th in pla na r A fining u p w a r d is indic ate d at the b o t t o m of some Sh units. the de p o s i t s of On these i n t er pr et ed as a b r a i d e d stream syst em e x h i b i t i n g m a r k e d l y var ia bl e d i s c h a r g e wi t h p er i o di c f l oo di ng exposure, typical areas (Bijou C re ek model). of b ro ad of the Pl a t te scour fills are facies model. Elsewhere in the identified, more Areas of the pit where ke y r e l a t i o n s h i p s might be e s t a b l i s h e d are not exposed. A parsimonious a dist al further facies, ana ly si s p ro xi ma l These interpretations awaiting facies range in E l m i r a o u t w a s h from coarse, p o o r l y sorted, m e l t w a t e r d ep o s i t s d o m i n a t e d by l o n g i t u d i n a l bars to dis ta l fine stream d e p o s i t s textured, wel l-s or te d, mapp ed as the braided d o m i n a t e d by sandy bedforms. in b e d f o r m facies co m pl em en ts and s u p p o r t s the This tex tu ra l ana ly si s i n t e r p r e t a t i o n that what was p r e v i o u s l y Inner Port H u ro n Mo r a i n e c r es t marks an e s p e c i a l l y actually im portant head of outwash, grad ed to the e x t e n s i v e Plain. this site as indicates that a de f i n i t e in b e d f o r m facies exists deposits. change wi t h de tai ls of i d e n ti fi es study. In summary, change ap p r o a c h which is E l m i r a surfa ce of the M a n c e l o n a 73 Paleocurrents -- P a l e o c u r r e n t d i r e c t i o n s were r e c o r d e d at eight gra ve l pi t s and c o n s i s t e d of 1) m e a s u r e m e n t i m b r i c a t e d gr av e l fabrics (Rust, 1975), of and 2) d e t e r m i n a t i o n of d i p d i r e c t i o n w i t h i n p l a n a r c r o s s - b e d d e d sands, b a s e d on s t e r e o g r a p h i c p lo ts strike. Paleocurrent directions ice m a r g i n in p r o x i m a l of a p p a r e n t are p e r p e n d i c u l a r r e g i o n s and pa ra l l el sandur data first ten de d to that m e l t w a t e r perpendicularly away degrees from the tracts. s i m i l a r c ur r e n t p a t t e r n s We st C h i c a g o M o r a i n e Paleodischarge calculated 28). ice margin, right to ru n p a r a l l e l s a n d u r ’s d i st a l (Fig. to Th es e flow in the (1982) found in v a l l e y trains p a r a l l e l i n g the in Illinois. -- P a l e o d i s c h a r g e es t im at es we re to d e t e r m i n e w h e t h e r or not c a t a s t r o p h i c d r a i n a g e occ ur re d. A s s u m p t i o n s and d i f f i c u l t i e s paleodischarge a n a l y s i s have b e e n r e v i e w e d (Briggs, Mai zels, 1983; 1983a; All m e t h o d s d e p e n d o n d i r e c t for use ice to t h e n tu r n 90 the m a rg i n F r a s e r and Cobb to the to the m a r g i n along the axis of the in di ca te dip and of in de ta i l Lord and Kehew, 1988). or su r r o g a t e m e a s u r e m e n t s in the e q u a t i o n Q = w * d * v, w h e r e Q = discharge, w = c h a n n e l width, v = m e a n c ha n n e l determined ve locity. difficulty depth, and P a l e o d i s c h a r g e s we r e for the E l m i r a s u rfa ce o v era ll representative proximal v a lu e s most d = m e a n ch a n n e l an d m e di a l and for gra ve l pits. Th es e l i k e l y ar e g r e a t l y u n d e r e s t i m a t e d due in d e t e r m i n i n g a c c u r a t e c h a n n e l widths. to the Where / ' A DIP DIRECTION OF 1 # IMBRICATED GRAVEL S CURRENT DIRECTION SHOWN rn BY CROSS-BEDDING Figure 28. Paleocurrents on th e Elmira surface. 75 applicable, sl op e s w e r e a d j u s t e d approximately 20% a n d b r a i d e d streams. for isost ati c r e b o u n d of for an a s s u m e d s i n u o s i t y of Methods used 1.1 for in this s t u d y are d i s c u s s e d b r i e f l y below. Slope - discharge L e o p o l d and W o l m a n con s t a n t di sch ar g e, than those (1957) braided that meand er, two was a p p r o x i m a t e d method s demonstrated st re am s have s t e e p e r S = tangential some * Q o.MH slope. braided p r e d i c t e d range, slopes by the equation: - Although at a and that the b o u n d a r y b e t w e e n the S = 0.06 wh er e that, strea ms exist outsi de the e q u a t i o n p r o v i d e s determining minimum bankfull of this a method discharges for of b r a i d e d sy st em s on a g i v e n slope. Cheetham equation (1976, 1978) c a l c u l a t e d the r e g r e s s i o n for L e o p o l d and W o l m a n * s d e r i v e d the b r a i d e d s t r e a m s and f o l l o w i n g r el at io ns hi p: Qbf = 0. 00 0 5 8 5 w he re Qbf = b a n k f u l l minimum estimates discharge. Both equations o n l y and a s s u m e no o v e r b a n k Brig gs m e t h o d Briggs (1983) presents determining paleodischarge. o n l y ch a n n e l e s t i m a t es * S~2,01 slope, of p e r c e n t flow. #2 s e ver al me tho ds His for sec on d m e t h o d particle diameter silt and clay are (Dg^), re q u i r e s and in the c h a n n e l 76 perimeter. diagram. Velocity D ept h is d e t e r m i n e d from S u n d b o r g ’s is c a l c u l a t e d u s i n g the M a nn i n g D = ( V * n equation: ) 1,67 \T T wh ere n = M an ni ng Ma nn i ng r ou ghn es s roughness, V = velocity, and D = depth. is d e t e r m i n e d using S t r i c k l e r ’s formula: 0 .1 7 n = 0.0132 Ch an ne l w id th is c a l cu l a t e d u s in g D 94 S c h u m m ’s expression: - I.OQ W = (255 wh er e W = wi dt h and M perimeter. Estimates the n c o m bi n ed ca l c u l a te = % silt * M ) D and clay in the channel of depth, velocity, and w i d t h are in the e x p r e s s i o n Q = W * V * D t o discharge. • M a iz el s m e t h o d s Ma i ze ls (1983a) paleodischarge pr es ent s techniques, #1 and #2 a t h o r o u gh rev ie w of i n c l u d i n g a n u m b e r of si mp l i f i e d e q u a t i o n s r e q ui ri ng di a m e t e r and slope. U n f o r t u n a t e l y these eq u a t i o n s es ti ma te s must for cr iti cal be m u l t i p l i e d sp ec if ic di sc ha rg e by chann el cri ti ca l d i s c h a r g e (Qc). pit, w her e a c o n s e r v a t i v e possible, inputs of on l y p ar ti cl e are d i s c u s s e d Ex c e p t for the L ow er Wilk es es ti m a te D e r i v a t i o n of the in M ai ze ls (q c ), wh ic h w i d t h to p r o v i d e total widt hs were de r i v e d usi ng d e s c r i b e d above. give (1983a): of ch ann el w i d t h was S c h u m m ’s e x p r e s s io n foll ow ing equa ti ons 77 Ma i z e l s m e t h o d #1 -- S.S2 (C h e z y equation! Di/2, S1/3 M ai ze l s m e t h o d #2 (Manning - S t r ic kl er equation) a/ C. 0.2.1.0 (3 or more m b- boulders > m of one an ot he r) are 87 c o n c e n t r a t e d a l o n g n a r r o w zones at the crest of co n t a c t slo pe s m a r k i n g distributions superglacial d u ri ng heads of o u t w a s h are b e l i e v e d to resu lt boulders id en t i f i e d (Blewett and Rieck, 1987) changes, ice m a r g i n a l ch an ge s positions, and 2) 3) positions, in this b a s e d on t e x t u r a l and stone piles, in e s t a b l i s h i n g In a si mi l a r distribution data presented faci es ice m a r g i n in n o r t h e r n M i c h i g a n and u s e d stag nat io n. These S i m i l a r bo uld er c o n c e n t r a t i o n s we r e ice ma r g i n a l 15). from d e p o s i t i o n of by mass w a s t i n g at the final de g l a c i a t i o n . delimiting (Fig. ice- facies and v e r i f y i n g fashion, bo ul de r study 1) v e r i f y analysis of gra ve l help to i d e n t i f y pits ice ma r g i n a l su ppo rt the s t a g n a t i o n - z o n e h y p o t h e s i s for final d e gl a ci at i on . An anomalous boulder concentration the base of the A l b a East t e r r a c e the O u t e r Por t H u r o n observed NE1/4, ic e- c o n t a c t (Ch. slope. is l o c a t e d along 3), proximal It is best i m m e d i a t e l y south of the A l b a A i r p o r t sec. 31, T. 30 N . , R. c r y s t a l l i n e b o u ld er s, c on s t ru ct ion , 5 W.), to (SW1/4, wh er e mo r e t h a n 50 a p p a r e n t l y e n c o u n t e r e d d u ri ng are p i l e d a lo ng A r t h u r Lane. road M a n y other bo u l d e r s are n e a r l y bu r ie d by s u r r o u n d i n g g l a c i o f l u v i a l sand and gravel, Significance w i t h o n l y the u p p e r of this site is d i s c u s s e d S i m i l a r c o n c e n t r a t i o n s are located sec. and NE T. 3, T. 30 N., 31 N . , R. 4 W. R. 5 W., 10-20 cm exposed. in C h a p t e r 4. in the NW 1/4, 1/4, NW 1/4, NE sec. 1/4, 19, 88 SOILS Soils are a u s e f u l me an s for d e t e r m i n i n g p a t t e r n of s u r f i c i a l p a r e n t ma t e r ia l. ar e a are p r e d o m i n a n t l y sand, san d in te xt ur e c l a y loams are or l a c u s t r i n e (Table 4). rare Soils san dy loam, Loams, te x t u re and in the and l oa my cl a y loams, but ma y be us ef u l study an d silty in di ca t o r s of till d e p o s i t s as d e m o n s t r a t e d below: a. N e s t e r sil ty clay loam: ma y d e l i n e a t e M e l h o r n ’s V a l d e r s till n o r t h of the Inner Port H u r o n apex. b. B e r g l a n d loam; Be r g l a n d cl a y loam: m a y de l i m i t l a c u s t r i n e c l a y in the O u t e r Port H u r o n feature. c. Ba rk e r uplands. loam: in te r p r e t e d d. C h e s t o n i a si lt y clay l a c u s t r i n e (?) dep o si ts Soils along to be as bro wn till loam: i n t e r p r e t e d as in A n t r i m County. the crest of ice m a rg in al finer t e x t u r e d than do mo re dist al d i s t r i b u t i o n p r o b a b l y ref lec ts silt and cl a y in fluted positions soils. an a b u n d a n c e in t he se p r o x i m a l deposits, tend This of ov e r b a n k as we ll as fine s e di me nt d e p o s i t i o n w i t h i n an o p e n gravel m a t r i x during waning flood c o nd it io ns . lacustrine ot her silt and clay, fine-textured proximal re gi o n s sta gna ti on, i n t e r pr et in g flows, ic e- c o n t a c t flow and a b l a t i o n tills, and se di me nt s are also c o n c e n t r a t e d m a r k i n g h ea ds c h a r a c t e r i s t i c s are marginal D e br is typical of outwash. these of areas e x p e r i e n c i n g and p r o v i d e soil p a t t e r n s All a use fu l basis in the study area. in ice for 89 TABLE 4. SOILS OF THE STUDY AREA. County Charlevoix X w a T o u ►7 Principal Soil Complexes or Associations Principal Soil Series Surface Soil Texture KalkaskaLeelanau Kalkaska Leelanau sand loamy sand LeclanauEmmet Leelanau Emmet loamy sand sandy loam MancelonaEast Lake Mancelona East Lake loamy sand gravelly loamy sand Alpena-KivaEast Lake Alpena Kiva East Lake gravelly sandy loam to gravelly sand o cc D X H O Antrim (proximal) KalkaskaMontcalm Kalkaska Montcalm sand loamy sand n£ to 2 2 Antrim (distal) KalkaskaEast Lake Kalkaska East Lake Rubicon sand gravelly sand sand Kalkaska (proximal) (old survey) Kalkaska loamy sand Kalkaska (distal) (old survey) Rubicon Grayling sand sand Antrim (proximal) KalkaskaMontcalm Kalkaska Montcalm sand loamy sand Antrim (distal) KalkaskaEast LakeKarliu Kalkaska East Lake sand gravelly loamy Karlin Rubicon loamy fine sand sand OC POST INNER PORT HURON ZONE, OUTER PORT HURON COMPLEX CU cnnH Kalkaska (proximal) (old survey) Emmet sandy loam Kalkaska (distal) (old survey) Kalkaska Emmet sandy loam sand Antrim/ Charlevoix KalkaskaMontcalm Kalkaska Montcalm sand loamy sand Kalkaska (old survey) Kalkaska Emmet loamy sand sandy loam Sources: Veatch et al. and Buchanan (1978) . (1927); Alfred and Hyde (1970); and Larson 90 T E X T U R E AN D L I T H O L O G I C C O M P A R I S O N OF TIL LS FROM THE STUDY A R E A The v a r i a b l e d i s t r i b u t i o n and rel at iv e p a u c i t y of till out cr op s does not p r o v i d e an ade qu at e basis det ai le d till analysis. Texture, m i n e r a l o g y are, however, pur po ses 5). (Table s ig n i fi ca nt di am i c to ns li th ol og i c al of 1) color re present of large clas ts differences Tills were (pink vs. brown) the u p p e r m o s t and clay p r e s e n t e d for d e s c r i p t i v e An a l y s i s sampled. color, for till show ed no among the sub di vi de d few on the basis and 2) w h e t h e r they in the area (high or low p r o b a b i l i t y ). Texture and c o r r e l a t i o n of tills - T e x t u r e was plotte d on a t e r n a r y d i a g r a m to i n v e s ti ga te po ss i b le sample g r o u p i n g s c o n c e n t r at ed (Fig. in the in part to the c on ta in in g Re d till s a mp le s are lo we r- m id dl e part of the diagram, restricted geographic samples were taken, B ro wn sampl es 30). and are se pa ra te area from w h i c h the likely from the into two di st i n c t same deposit. grou ps 1) the C r e i g h t o n R d . , B a r k e r Creek, Va l l e y tills, a n d 2) the Zimmerman, Fleming deposits. T o r c h Lake, The Z i m m e r m a n and T o r c h Lake and Plum and samples were ta ke n less th a n 1 km apart at s i m i l a r a l t i t u d e s and 210 m, deposit. re sp ec ti ve ly ) and are p r o b a b l y This c o n c l u s i o n mineralogy data Cr ee k samples (Table 5). due (198 from the same is s u p p o rt ed by co lo r and clay The Pl u m V a l l e y and Ba r k e r also d i s p l a y s im il ar texture, but the TABLE’5. COLOR AND CLAY MINERALOGY OF PRINCIPAL TILLS. o Sample name Barker Creek Woodland Munsell dry color dry 1 10YR 6/3 pale brown 10YR 7/3 very pale brown 61 102 .598 B 2 3 4 1-0YR 6/3 10YR 6/3 5YR 5/3 10YR 7/3 10YR 7/3 reddish 5YR 6/3 brown 53 31 23 03 83 20 .630 .373 1.150 B B R 26 44 20 41 10 2.600 25 1.760 25 • .800 30 1.367 R R R R 45 21 24 .7.78 1.667 1.875 R R R 19 27 36 41 22 27 22 42 1.211 .556 .583 .659 1.000 .852 1.227 .762 R R R R R R R B 64 .641 B 25 104 .680 .538 B B 37 66 30 77 121 56 .480 .545 .536 B B B 28 64 .438 B 30 50 .600 B 45 55 .810 B 45 53 30 79 62 64 .570 .855 .469 B B B 46 30 85 56 .541 .536 B ill Woodland 02 5YR 5YR 5YR 5YR Woodland 03 9 10 11 5YR 5/3 5YR 5/3 5YR 5/3 brown 20 10YR 5/3 1 21 10YR 5/3 22 10YR 4/3 brown/ dark brown V. 23 10YR 4/3 24 10YR 4/3 Creighton 25 10YR 5/3 Torch Lake Plum Valley 6/3 6/3 7/3 6/3 5YR 7/3 5YR 7/3 5YR 6/3 5/3 5/3 5/3 5/3 5/3 5/3 5/3 5/3 12 5YR 13 5YR 14 5YR 15 5YR 16 5 YR Crego 17 5YR 10 5YR Zimmerman 19 10YR Fleming 5YR 5YR 5YR 5YR 5/3 5/3 5/3 5/3 5 6 7 8 Thumb Lake Brown/ Red color moist 7A* 10A* 7/10A 0 Munsell moist brown SYR 5YR 5YR SYR 5YR 5YR 5YR 10YR 7/3 7/3 7/3 7/3 7/3 7/3 7/3 7/2 10YR 7/3 10YR 7/3 10YR 6/3 10YR 6/3 10YR 6/3 10YR 7/2 26 10YR 5/3 10YR 6/3 27 10YR 5/3 10YR 7/3 20 10YR 5/3 10YR 6/3 29 10YR 5/3 30 10YR 5/3 31 10YR 6/4 10YR 6/3 10YR 6/3 yellow­ 10YR 7/3 ish brown 32 10YR 6/4 33 10YR 6/4 10YR 7/3 10YR 7/3 light reddish brown pink light reddish brown 35 pink 35 45 light reddish brown 23 pink 15 21 27 22 23 27 32 light gray 41 very pale brown 17 56 pale brown light gray pale brown very pale brown pale brown very pale brown ♦Peak counts minus background as determined by computer. B 92 100 % CLAY C re ig h to n R d. T h u m b L ak e B a rk e r Cr. W o o d lan d #1 W o o d lan d # 2 Z im m e rm a n F lem ing 100% SAND T orch W o o d lan d # 3 A BROWN TILL ■ RED TILL Figure 30. Soil textures of principal tills in the study area. 100% SILT 93 e x p o s ur es a lt it ud e Ta bl e are fa rth er (273 m vs. 5 sugges t components 207 m, (10 km) that these and F l e m in g 24 km from ot her s am pl es such a d i s t a n c e and d i f f e r respectively). in Data from samples may represent of the same deposit, C r e i g h t o n Rd. a c ro ss apart however. F a r m tills The re m a i n i n g are b o t h mo r e than in t h e i r group. Correlation is sp ec ul a t i v e . Clay mineralogy - Thirty-three till sampl es from 11 sites were a n a l y z e d to d e t e r m i n e c o m p o s i t i o n of cl a y minerals. Preparation (no date; fo l l o w e d Glass resul ts were (Rieck, i n t e r p r e t e d us in g 1976; One goal mi ne ra l T ab le r es e a r c h e r s 7/10 A n g s t r o m ratios 5). of the a na ly si s was differences (Bretz, see A p p e n d i x B) and to investigate clay b e t w e e n red and br ow n tills. 1951; Me lhorn, Be rquist, 1953; Past 1954) i n t e r p r e t e d b r o w n and red ti ll s as Port H u r o n and V a ld er s (G r e a t l a k e a n ) deposits, r e sp ec ti ve ly . B u rg is (1977) r e c o g n i z e d b r o w n Port Bruce t i ll s and G r e a t l a k e a n tills. noted a higher co nt e n t Taylor in Port H u r o n Greatlakean (Filer) (1981) (O rchard Beach) till. Monaghan red Port H u r o n and illite till t h a n (1988) compared G r e a t l a k e a n and Po r t H u r o n till a l o n g Lake M i c h i g a n and r e p o r t e d no d i f f e r e n c e s in c l a y m i n e r a l co mp os it io n. o Most ratios > red till 1.00, ch l o r i t e c o n t e n t <1.00 from the s t u d y a r e a e x h i b i t s 7/10 A i n d i c a t in g hi g h k a o l i n i t e and (Fig. 31). suggesting higher B r o w n till ill it e amounts, ratios are always but m o d e r a t e 1.0 FREQUENCY 10 5 | R E D TILL- low probability of b e in g t h e u p p e rm o s t d e p o s it H R E D TILL- h ig h probability of b e in g th e u p p e rm o s t d e p o s it [3 B R O W N TILL- low p ro b ab ility of b e in g th e u p p e rm o s t d e p o s it []] B R O W N TILL- h ig h p robability of b e in g th e u p p e rm o s t d e p o s it 1 — i— .5 1.0 1.5 2.0 — I— 2.5 7/10 Angstrom d a y ratio Figure 3 1 . Frequency diagram of 7 /1 0 Angstrom ratios for tills in th e study area. 95 ov e r l a p (.5 to 1.0) p r e cl ud es c le ar d i f f e r e n t i a t i o n be t w e e n the two tills. To c o m p l i c a t e matters, tills come from w i d e l y sc a t t e r e d altitudes, and m a y be of d i f f e r e n t may be true for red tills. in d i ca ti ons that lo cations at v a ry i n g Thus, ages; the lat te r also d e sp it e p r e l i m i n a r y red and brown de po s i t s ma y be based on 7/10 A n g s t r o m ratios, till b r ow n sepa ra ted acc ur at e u n d e r s t a n d i n g of s t r a t i g r a p h y and m i n e r a l o g y awaits more de fi ni t i v e study. S um mar y The Inner and O u t e r Port H u r o n C o m p l e x e s are c om po se d of t h i c k dr if t o v e r l yi ng a mod er at e northwest-southeast t o p o g r a p h y mi m i c s relief, li neated b e d r o c k surface. Prese nt b e d r o c k form n o r t h of Mancelona, p o s s i b l y due to h i g h e r b e d r o c k r e l i e f and t h i n n e r drift here than in a re as farth er south. Indivi du al va l u e s are hi gh es t to w ar d the north; bec om e g re at e r t o w a r d the south. gravel units along the exposed, th i c k ne ss avera ge va l ue s Up p e r m o s t fo r m w e d g e - s h a p e d dep os it s sand and ne ar l y 85 m thick Inner and O u te r Port H u r o n crests. Where these u n i t s are u n q u e s t i o n a b l y g l a c i o f l u v i a l or i g i n and are not W i s c o n s i n a n till Su r f i c i a l sandy till. One po ss i b l e p r e - L a t e is id en t i f i e d at Rugg Pond. se d i me n t s w i t h i n a re as m a p p e d as morai ne (Leverett and Taylor, c o ns is t of in ic e - c on ta c t sand and gravel; till 1915; F a rr an d and Bell, 1982) st ra t i f i e d drift and pr og la c i a l is very l i mi te d in ext en t and is us ua l l y in the fo r m of flow till. are resting on a m o de ra te towards the northwest, ch an ge app ar en t ki lo me te r wide Huron 12,960 and 2) zone pro xi ma l to the e x hib it a d i s t i n c t and b e d f o r m analysis. to the Inner and Out er Port Inner Port H u r o n All feature are da te d at of these d a t a the Inner and O u t e r Port H u r o n but facies slopes d u r i n g d e g l a c i a t i o n ; those + 350 y r s . B.P. end mor ain es 1) clays were d e p o s i t e d w i t h i n a one ic e- con tac t pro xim al sedim ent s rel ie f clay su rfa ce that slopes fr om both t e x t u r e T h i c k l ac us tri ne Su r f i ci al features indicate that are not classic instead are c o m p l i c a t e d as se m b l a g e s la ndforms that e v o l v e d in a s s o c i a t i o n w i t h ab undant me lt wa te r and s t ag na nt ice d u r i n g final deglaciation. of Ch a p t er 3 L AN D FO RM S A S S O C I A T E D WI TH THE INNER AND O U T E R PORT H U R O N CO MP LE XE S Pr in cip al the 1) l a n d f o r m units r e c o gn iz ed Inner Port H u r o n Complex, Plain, 2) Post Complex, valley s (Figs. 3) O u t e r Port Huron fluted uplands and a s s o c i a t e d th r o u g h 4, th ro ug h va ll ey s study are inclu din g the Ma n c e l o n a Inner Port H u r o n zone, and 4) in this 32). Fluted uplands and a s s o c i a t e d are not d i s c u s s e d they are a n c i l l a r y to the study, field wor k was ca rr ie d out in detail b ec au se 1) and 2) lit tl e de ta i l e d in these areas. B e d r o c k / l a n d f o r m r e la ti on sh ip s As d e s c r i b e d relief the undulating, (150 - 245 m) b e d r o c k surface sub cr o pp in g Alba, in C h a p t e r 2, li ne a r lowlands, ex hi bit s high four n am ed the Kalkaska, Darragh, and C h a r l e v o i x v a ll ey s that trend e i t h e r east -w es t or n o r t h w e s t - s o u t h e a s t (Fig. 6). We s t of the st ud y area are broad b e d r o c k lo wl an ds a s s o c i a t e d w i t h G r a n d Traverse Ba y and T or ch and Elk lakes. Figu re 33 shows that both the Inner and O u t e r Port Huron Complexes pattern. d i s p l a y a di stinct As d e f i n e d here, p r o j e c t i o n s of the indentations. salients salie nt de l i m i t and re entrant former ice marg in and r e e n t r a n t s ma r k These features are n a m e d aid discussion. 97 i n f o r m a l l y to 98 Camp 10 surface Charlevoix bedrock' " ■3" valley T hrough valleys — mv v yji.-y.;;: Surface A G rand T raverse Bay lowland APEX ELMIRA SALIENT ABANDONED FARM REENTRANT Alba bedrock valley Alba surface ALBA SALIENT MANCELONA REENTRANT Torch Lake lowland '.I V.4 Crofton surface " Z KALKASKA SAUENT Figure 33. Relationship am ong salients, reentrants, through valleys, residual terraces, and bedrock valleys. 99 The e x t e n s i v e Kalkaska c o n c a v e to the n o r t h w e s t of the sa l i e n t exhibits that p a r a l l e l s a broad arc, the e a s t e r n b e d r o c k l o w l a n d o c c u p i e d by G ra nd Tr a v e r s e El k and T o r c h Lakes (Fig. 33). F a r t h e r north, sm al le r E l m i r a and A l b a s a l i e n ts align, and A l b a Bedrock elsewhere (1978), K o t e f f and Pessl to t h i c k e r (1982). Coincidence Kote ff be tw ee n in the st ud y are a pro ba bl y ice ov e r v a l l e y s dur in g advance, in h i g h e r v e l o c i t y an d g r ea te r outflow. bases, some m a j o r l a n d f o r m tre nd s interpreted bedrock Cadwell and b e d r o c k v a lle ys resulting positions (1976), and M u l h o l l a n d are ice m a r g i n a l (1960), (1981), these on by Kaye Rieck is due tre nding been d o c u m e n t e d (1974), sa li en ts the much b e d r o c k valleys. i n f l u e n ce has Bay and respectively, w i t h the c o m p a r a b l y sized n o r t h w e s t - s o u t h e a s t Charlevoix flank to be influence. b e d r o c k lowlands, in large part For example, On in the st ud y area the res ul t salients of strong a l ig n with r e e n t r a n t s w i t h b e d r o c k highs. L a n d f o r m s a s s o c i a t e d w i t h the I nne r Port H u r o n C o m p l e x To Complex f a c i l i t a t e di sc ussion, is d i v i d e d into 2) distal 1982). i n t e r p r e t e d below. and Taylor, zone, and (Ma nc el on a Plain). th ese h u m m o c k y p r o x i m a l (L ev ere tt and Bell, Inner Port H u r o n 1) a p r o x i m a l h u m m o c k y t e r r a c e d o u t w a s h p l ai ns Prev iou sly , mo ra i n e the 1915; zones we re Martin, map pe d as 1955; Bot h areas are d e s c r i b e d and Farrand 100 PRO X IM AL TRA CT S The crest of the Inner Port H u r o n C o m p l e x tren ds northeast-southwest for about from 315 m in the so ut hwe st int er lo ba t e d is t in c t tract. In c r o s s - s e c t i o n the range feature has a w i t h a steep no rt h w e s t - slope and a gen tl e dis ta l d e c l i v i t y 13). R e l i e f on the Hill, w he re the Jor da n River slope, Altitudes to 450 m at the apex of the a s y m m e t r i c al profile, facing p r o x im a l Numerous 60 km. former e x ce ed s (Fig. 130 m at D e a d m a n ’s is at the base of the bluff. ice b l o c k de p r e s s i o n s are a s s o c i a t e d w i t h the and at m a n y loca ti on s b o u l d e r s are c o n c e n t r a t e d al on g the crest. In many places, the gentle di st a l h u m m o c k y t o p o g r a p h y nearest i n t e rl ob at e ap e x this zone the crest. slope di sp l a y s At the is 4 km wide and co nt ai ns numerous clo se d d e p r e s s i o n s and p e r f o r a t i o n Pro f i l e s show that the highe st features. su rf a c e s m a r k the remnants of an o u t w a s h p l a i n that c o r r e l a t e s w i t h the E l m i r a Plain. Southward, the h u m m o c k y zone na r r o w s to a w i d t h of one k i l o m e t e r near the O t s e g o - C h a r l e v o i x C o u n t y line. N o r t h w e s t of Mancelona, it w i d e n s a g a i n and co nt a i n s b lo ck d e p r e s s i o n s up to 20-30 m deep. corresponds thus, w h e r e the p l a i n 32) W i d t h of this area to the full b r e a d t h of the M a n c e l o n a Plain -is wide, A l t e r n a t i n g areas of co ll ap se (Fig. ice- are so is the h u m m o c k y zone. and n o n - c o l l a p s e found farther south. H i g h rel ie f topography (38-44 m), 101 u n c o n t o l l e d d i s i n t e g r a t i o n fe at u r es are e s p e c i a l l y well d e v e l o p e d n e a r M a y v i l l e Lake T. 29 N . , R. (SW1/4, SW1/4, sec 26, 7 W . ). Dry h an gi ng v a l l e y s and 1 km long, (Fig. 2), are c o n c e n t r a t e d some n e a r l y 15 m deep in three areas: 1) at the Inner Port H u r o n apex, 2) b e t w e e n Al b a and Elmira, no r t h w e s t of M a n c e l o n a (Fig. south of M an ce lo na . of the declivity, 32). None are identi fi ed Some hang n e a r l y 75 m above the base ma n y of the ch an n e l s c o n t a i n kettles, and all exte nd p e r p e n d i c u l a r to the trend of the co nt ac t modern slope. Their stream, i mp re ss iv e size, ice- lack of a and ab s e n c e of a h e a d w a t e r area indicate fo r ma ti on by m e l t w a t e r streams margin. and 3) Furth er mo re , d e v e l o p e d at the flowing off the ice they are d e ep es t and best steep pr ox i m a l slope, i nd ica ti ng that the u p s t r e a m p o r t i o n of the v a l l e y must have been su p e r g l a c i a l or englacial. fi llings or o t h e r e v i d e n c e associated with No feeding e s k e r s , cre vasse for su bg l a c i a l the pr oximal dra in ag e are slope where the hangi ng va l l e y s are found. In places, small al luvial fans, co ve r i n g about a q u a r t e r sur ve y section, e x t e n d s o u th ea st Inner Port H u r o n crest, add in g relief to the These feature. from the an a d d i t i o n a l 10-15 m la n d f o r m s have asymme tr ic fan-like p r o f i l e s and are best d i s p l a y e d at D e a d m a n ’s Hill 28, (SW1/4, sec. ju nc t i o n of M-32 N., R. 5 W . ) and T. 31 N., an d US-131 R. (SE1/4, in the SE1/4, 5 W.), near the NE1/4, SW1/4, sec. sec. 15, 5, T. T. 31 28 N., 102 R. 7 W. (Fig. 32). in M ic hi g an are large Si mil ar l a n d f o r m s i n t e r p r e t ed as sup erg la ci al above the general (Rieck, 1976; N u me ro us sites where es pe c i a l l y stream s d e p o s i t e d sand and gravel san du r level du ri n g Bl ewe tt and Rieck, is ap pr opr iat e from ot her studies for small linear 1987). al l u v i a l ridges are final de g l a c i a t i o n fans This e x p l a n a t i o n in the stu dy area. i d ent if ied pr ox i m al to the steep Inner Port H u r o n slope n o r t h and west of Mancelona. They are .5-1 km in length, the Inner Port Hu ro n bluff, stra tif ed drift. o r i e n t e d p e r p e n d i c u l a r to and com po se d The ir mo rp ho log y, of ice -contact composition, and close a s s o c i a t i o n wi t h the Inner Port H u r o n pro xim al slope indicate stagnant ice. among others, fo rm at io n as d i s i n t e g r a t i o n ridges Si mi la r Flint la nd fo rm s (1928), in have bee n de s c r i b e d by, Pr ice (1973), and R ie ck (1976). CONCLUSIONS On the basis of profiles, i) a s y m m e t r i c 2) bou ld er s along 3 ) evi de nc e for ice -co nta ct the perched s t r a t i f e d drift fans, contact including dry the steep pr o x i m a l Inner Port H u r o n C o m p l e x slope. la nd fo rm s from Chapte r ice block dep ressions, feeding d i s i n t e g r a t i o n ridges, of the fan-like Inner Port H u r o n crest, 2, and 4) pre se nc e of s t a g n a t i o n hangin g valleys, all uv ia l and slope is i n te rp re te d as an ice- A s s o c i a t e d h u m m o c k y t o p o g r a p h y eve nt ua ll y formed along the crest of the Inner Port H u r o n Comple x from me lti ng of ice blocks c o v e r e d by dr ift duri ng 103 de gl aciation. This are not mo ra i n i c Taylor, 1915; indicates that pr oximal as mapped by oth er s Martin, 1955; Riec k (Le ve r e tt and F a rra nd and Bell, inste ad ma r k t e r r a i n formed along de s c r i b e d by Ko t e f f regions here and Pessl 1982), but a head of o ut wa sh as (1981), and Blewe tt and (1987). F LU VIA L AND G L A C I O F L U V I A L SU RFACES OF THE MA N C E L O N A PLAIN Le ve r et t and Taylor Plain" (1915) appli ed to the v a l l e y train se pa r a t i n g their Port H u r o n moraines. Becau se not one, 10 dis ti nc t but at least "Ma nc el on a Plain" wh ol e the term the presen t "Mancelona Inner and Outer study recognizes surfaces here, the term is used only w h e n refe rr ing to the of this area. Since these d o c u m e n t e d previously, surfaces have not been they are de s c r i b e d in detail below. Th ree extensive, hig he r surfaces, and seven smaller, lower terraces are rec og ni ze d bas ed on detaile d an aly sis of 7 1 / 2 ’ top ogr aph ic maps contours), field observation, dr aw n at right 34). and to p o g r a p h i c pr of i l es angles to as su me d The ma i n surface, (3 and 5 m co ve rin g flow di r e c t i o n (Fig. 75% of the M a n ce lo na Plain, is inf or ma ll y named the Elmi ra Pl ai n Excep t for the Cr of to n terrace and H o f f m a n Lake Channels, w h i c h are tr ea t e d separately, Elm ir a Plain) to lowest all surfaces are numbere d se q u e n t i a l l y (#8). (Fig. 32). (including the from highes t (#1) CROFTON SURFACE CAMP TEN SURFACE (1) ALBA SURFACE — 400m— 612 SURFACE ELMIRA SURFACE (2) 612 345 >330 — ** 7 ** ■300 7 ».270 RAPID RIVER RUGG POND miles Figure 3 4 . Principal su rfa ces of the M ancelona Plain NE 104 CLOSE-UP SHOWING SURFACES 3-8 SW 105 Crofton surfa ce -- The C r o f t o n o u t w a s h surface, immediately proximal K a l k a s k a County, to the O u t e r Port H u r o n C o m p l e x is the u p p e r m o s t t e r r a c e the M a n c e l o n a Plain. m / k m and e x h i b i t s scarp c o n t a i n s depre ss io ns , meltwater feature that erosion. Altitude to surface this a r e a was to be d e g l a c i a t e d the (Camp Ten, c o r r e l a t e d on Overall approximately 1 (see next Alba, and 612 for 20% isos ta ti c (L everett and Taylor, 1.5 m/km, and the alignment is l o c a t e d here large s a l i e n t s da t a a s s o c i a t e d w i t h instea d of in C h a p t e r 2. (Fig. 34). since is (Fig. w i t h the 34). Each i m m e d i a t e l y pr o x i m a l hol d e x t e n s i v e ones h a r b o r sm al le r s u r f a c e s To and surface m e r g e s r e m n a nt s b r i e f l y below. implies separate rebound 1915), of the sed ime nt section), surfaces), 2) ne a r K a l k a s k a described the C r of to n 4). (surface small ice b lo ck 1 is r e p r e s e n t e d by three adjusted a m a j o r salient; or pa r t of the M a n c e l o n a Plain E l m i r a Pl ai n three st eep pr ox i m al be e n t r i m m e d by s u b s e q u e n t the basis of p r o f i l e slope, deglaciation Its and p o s i t i o n of first (see Ch. 1. -- Su rf ac e te rr a c e s it has 1.2 b r o k e n by o c c a s s i o n al low sand dunes. suggesting in r e c o g n i z e d on s o u t h w e s t w a r d at no b o u l d e r c o n c e n t r a t i o n s re la t i ve Su r f a c e It sl o p e s flat t o p o gr ap hy, sh a l l o w k e t t l e s and locat ed (Fig. 33). to terraces, All are s i m p l i f y di sc us sio n, each te r r a ce are pr o v i d e d 106 CAMP TEN SURFACE: (Fig. 33), this Locate d proxima l ge nt l y rolli ng the E l m i r a Plain, tract incr ea se d relief. indica ti ve of b r ai d e d me l t w at er g l a c i o f l uv ia l Faint streams, and v e r i f y a o r i g i n for the deposits. Like the E l m i r a Plain, some cla st s e x c e e d i n g the edge of p o t a t o 14 cm fields. numerous stone piles, in b-diameter, are A v e r a g e b-d ia me te r from four sampled piles was 7.8 cm. scarp ice blocks and are i d e n t i f ie d on aerial p h o t o g r a p h s stones 25 - 30 m above or boulder Melti ng of buried po st g l a c i a l d i s s e c t i o n have scroll marks, lies and di sp l a y s a steep pr ox ima l devo id of ice bl ock de p re ss io ns co nce ntr ati on s. to the E l m i r a salient (50 stones No s i g n if ic an t p a t t e r n with locat ed at of 200 from each pile) in average b- diameter is o b s e r v a b l e among stone piles ac ro s s surface, but s e d im en ts overall the are mu c h co ar se r than Alba and 612 deposits. AL B A SURFACE: The A l b a terra ce is more d i s s e c t e d than the Camp Ten s u rf ac e and li e s 12 - 15 m above the E l mi ra Plain. Its st ee p pr oximal concentrations or s ca rp lacks b o ul de r ice b lo ck depressions. pit at the base of the pr ox im al sec. 29, clay, T. 30 N., but surf ic ia l fine gravel, R. slope A small gravel (NE 1/4, NE 1/4, 5 W . ) co nt a i n s brown la cu st ri ne terrace de po s i t s consi st of sand and w i t h a few clasts ap p ro ac hi ng 5 cm in b- diameter. A second, Elm i r a Plain, h i g h e r surface, lying 18-21 m above the b ar e l y cov er s a q u a r t e r survey section, and 107 is locate d on the n o r t h we st fl ank of the ma i n Alba surface of its small (Fig. 32). Be ca us e u n c e r t a i n significance, of surface 1 that 612 SURFACE: exhibit s This extensive, a straight pro xi m a l 33). this (surface d i s s e c t i o n by h ea dw at er s the relief. amounts of Se di men ts 2, m o d e r a t e l y kettle d plain, scarp w h i c h is align ed with te rra ce Fig. g r a d u a l l y merges with 34). Ho lo c e n e of the Rap id Ri ver has are p r i m a r i l y increased sand w i t h limit ed fine gravel. M o r p h o l o g y and s ed im en ts te rra ces in dis cus sio ns s lope of the M a n c e l o n a reentrant Southward, the E l mi ra Plain inc lud ed follow. the n o r t h w e s t - f a c i n g (Fig. it is not size and in di cat e that these three are rem nan ts of a single ou tw a s h surface that was once more extensive. E v i d e n ce includes: 1. Te rr ac e el ev a t i o n s bec om e p r o g r e s s i v e l y lower s o u th wa rd (Fig. 34), p r o d u c i n g a smoo th con caveu p w a r d profil e t yp ic al of o u t w a s h surfaces. 2. Ter ra ce s lack ice b l o c k d e p r e s s i o n s along proximal scarps, su gge sti ng that these slopes are erosional, rat he r than ic e- co nta ct slopes. 3. Te rra ce scarps are a l i g n e d w i t h t r u n c a t e d ree nt ra nt s of the O u t e r Port H u r o n C o m p l e x (Fig. 33), in dic ati ng that scarps form ed by m e l t w a t e r trimming, rat he r than ice -c on ta ct deposition. 4. T e rr ac es lack p r o x i m a l b o u l d e r concentrat ion s, in dicating that pro xi ma l areas may not represent ice m a rg in al positions. 5. Some terrace scarps ex hi bi t a bo ul d e r lag proximal to the base of the slop es (Fig. 15), po s s i b l y in dic ati ve of m e l t w a t e r tri mm in g (see Ch. 4). 6. S ed ime nt s bec om e p r o g r e s s i v e l y finer southward, b a s e d on vi s u a l reconnaissance, s ug ge st in g that these sur f a ce s ma y m a r k re mn ant s of an i n teg ra ted g l a c i o f l u v i a l system. 7. P os i t i o n i n g of terraces w i t h i n p r o t e c t e d salients s u g g e s t s that these su rf ac es we r e once more extensive. Ev e n a slight e x p a n s i o n of these surfaces t o w a r d the n o r t h w e s t wo ul d u n i t e the re mn a n t s in a single surface. O n all these bases, terraces surface the Ca m p Ten, are i n t e r p r e t e d as r e m n a n t s Alba, of a single o u twa sh that was once more e x t e n s i v e (surface s u p e r f i c i a l l y r e s e m b l i n g kame terraces, su rf a c e s exhib it m o r p h o l o g y typic al and p r o b a b l y re p r e s e n t ve st i g e s gl a c i o f l u v i a l 1). Tho ug h the three of o u t w a s h surfaces, of an in te g r a t e d s y s t e m that d r a i n e d s o u t h w e s t w a r d . E l m i r a surface — widens and 612 The E l m i r a s u r f a c e from 2 to 11 s o u t h w e s t w a r d at is 75 km long, km toward the south, 1.2 m/km. This slope and slopes is a d j u s t e d for iso st at ic rebou nd of a p p r o x i m a t e l y estimates of isos ta ti c r e bo un d fr o m L e v e r e t t and Tayl or (1915), 20% b as ed on 1 ) and 2) an an al ys is of d i f f e r e n t i a l u p l i f t of ab a n d o n e d shorelines study area) across (located i m m e d i a t l e y we s t of the lat it ud es c o r r e s p o n d i n g to n o r t h e r n and s o u t h e r n b o u n d a r i e s of the s t u d y area. s o u t h e r n segments exhib it a d j u s t e d and 1.0 m/km, respectively subtle c o n c a v e - u p w a r d sand ar (Fig. (Fig. 36) 35; (Fig. Church, 1972). slopes of 1.5 m / k m 34), longitudinal producing the p r o f i l e t y p i c a l of This low r e l i e f pl ai n is p u n c u t u a t e d by s c a t t e r e d depressions N o r t h e r n and (with co nc en t r a t i o ns ), ice b l o c k e r o si on al d r y channels LEWIS SANDUR (CHURCH, 1972) Length: 1 km TINGIN SANDUR Length: 5 km V.E.: 20 WHITE RIVER SANDUR (FAHNESTOCK, 1953) Length: 2 km V.E.: 2 HOFFELLSSANDUR SUNDBORG, 1954) Length: 15 km V.E.: 20 SLIMS RIVER (RUST. 1978) Length: 26 km V.E.:21 ELMIRA SANDUR (THIS STUDY) Length: 75 km V.E.: 20 Figure 35. Profiles of s e le c te d sandar. 110 Figure 36. View southeastward across the Elmira Plain near Alba; the proximal slope of the Outer Port Huron Complex is in the distance. Ill in pr ox i m a l areas nor th of Mancelona, and, southward, scatt er ed d u n e s . P R I N C I P A L L A N D F O R MS OF THE E L M I R A SURFACE: Kettle chains - Th re e kettle chains trend no rt hw e s t - southeast ac r o s s the E l m i r a surfa ce n o r t h w e s t of Elmira (Fig. 32). These chains are more than 3 km long, some d e p r e s s i o n s ex c e e d i n g de cr e a s i n g 30 m in depth, with and d i s p l a y kettle bo t t o m a l t i t u d e s no rt hwe st wa rd . The eas t e r n m o s t c ha in aligns w i t h the trend of the th r o u g h yalley containing Near Wetzel, the Boyne R i v e r ’s South Branch. a northwest-southeast chain c o n t a i n i n g S a t t e r l y Lake R. 6 W . ; Fig. Likewise, 32), (SW1/4, to valle ys (Fig. 1979; 30 N., B le we tt and Rieck, surfa ce 1987). duri ng d e g l a c i a t i o n Lake 32). in M i c h i g a n are in the p r e - l a s t ad v a n c e interpretation, re lat ed (Rieck and In this sta gna nt ice lingers in v a l l e y s and ma y be c o v e r e d by o u t w a s h sediments. G r a d u a l m e lti ng linear k e tt le s lowland. T. a n e a r b y kettle ch ai n c o n t a i n i n g W e t z e l Si mi la r fe atures e l s e w h e r e longest sec 26, kettle is a l i g n e d w i t h C a s c a d e C r e e k Gorge. aligns w i t h the G r e e n R iv er V a l l e y Winters, or i e n t e d of this that mark the course Alignment of ke t t l e cha in s ice forms a series of of the p r e - e x i s t i n g on the E l m i r a surface wi t h th r o u g h v a l l e y axes to the n o r t h w e s t strong e v i d e n c e for c o in c i d e n c e of b e d r o c k lows kettle chains. O n these bases, sections of the E l m i r a P l a i n are ket tl e ch ai n s is and in no rt her n i n te rpr ete d as features 112 likely marking the co u r s e of p r e - e x i s t i n g In ci s e d va l l ey s - Numerous small lowlands. in ci se d v a l l e y s are i d e n t i f i e d on the E l m i r a P l a i n n o r t h of Mancelona. b e g i n at the I nne r Port H u r o n i c e - c o n t a c t hanging valleys perpendicular Plain (Fig. a n d t re nd s o u t h e a s t w a r d to the 34). former l i k e l y are g r a d e d to t e r r a c e s su rf a ce (3-8). fe at u r es Maizels acro ss 5 m deep, (1983b) i nt er pr et s i n te r p r e t e d s i mi la r surfaces. in c i s e d va ll ey s E l m i r a P l a i n as su r f a c e s m a r k i n g abandonment and l ow er th an the E l m i r a the t r a n s i t i o n to low er e q u i l i b r i u m st ud y the Elm ir a 1 km long, as n o n - e q u i l i b r i u m m e l t w a t e r ch an n e l s the pr es e n t as (i.e. ice margi n) T h e y av era ge slope Most ma r k i n g Likewise, on the the t r a n s i t i o n from of the E l m i r a P l a i n to e s t a b l i s h m e n t of lower o u t w a s h terraces. Terraces 3-8 -- B a s e d on t o p o g r a p h i c terraces l ow er t h a n the E l m i r a within a narrow Rapid River zone (Fig. ice. 34). The s u r f a c e are six identified c e n t e r e d on the h e a d w a t e r s Surfaces k e t t l e s and l i k e l y for me d stagnating data, 3, 4, 5, and 8 c o n t a i n in a s s o c i a t i o n w i t h first t h r e e s u rf ac es c o m p r i s e a s t e p p e d seri es of p r o g r e s s i v e l y l o w e r terraces, curvilinear sca rp s c o n c a v e to the n o r t h w e s t D o w n s t r e a m e x t e n s i o n s of t e r r a c e s by s t a g n a t i o n t o p o g r a p h y we s t burial in cludes relatively of the 3, 4, e a c h with (Fig. 32). and 5 are bu ri e d of Kalkaska. Evidence for 1) an a b r u p t d o w n s t r e a m t e r m i n a t i o n of smooth outwash surfaces by u n c o n t r o l l e d 113 d i s i n t e g r a t i o n topography, and 2) a l t it ud es w i t h i n these d i s i n t e g r a t i o n tracts that are m u c h too high to corr el ate w i t h su rfaces Burgis 3, 4, (1977) and 5. i n t e r p r e t ed n e a r l y a s s o c i a t e d wi t h the Au Sable R i v e r M i c h i g a n as features m a r k i n g include from wide, to single chann el streams c o n t r o l l e d by p r e c i p i t a t i o n and groundwater. 3-8 la ndforms in n o r t h e a s t e r n the t r a n s i t i o n m u l t i p l e - c h a n n e l m e l t w a t e r s t re am s po s t - g l a c i a l id entical Ev id e nc e for s i m i l a r ge nes is of ter rac es 1) n ar ro win g and s u c c e s s i v e l y lower surfaces, in c r e a s e d s i n u o s i t y of an d 2) m o r p h o l o g i c si m il ar i t ie s be tw ee n low al t i t u d e te rraces and 8) and the m o d e r n R ap id R i v e r Valley. (surfaces 7 Significance « of these la ndforms is d i s c u s s e d H o f f m a n Lake C h an ne l — Eight h a n g i n g v a l l e y s a l o n g the Inner Port Hu ro n apex co nv e r g e H o f f m a n Lake Chann el km wide, 8 km long, con t a i ns nu mer ou s (Fig. slopes shallow, southeastward 32), of H ear t Lake, This chann el 2) .5- 1.2 and lakes. h i g h e r than the m a i n i d e n t i f i e d at 365-370 m south indica ti ng large size, Lake. su rfa ce c o nt ai ns drainage southward. 1) pr es e n c e of dry h a n g i n g va lle ys at depressions is d r y k e tt le s and k e t t l e in the h i g h e s t im br i c a te d gravels u p s t r e a m end, form the and at 360-365 m n o r t h of H o f f m a n small gravel pit The are to so ut h and eastward, Two p o o r l y d e v e l o p e d terraces, H o f f m a n Lake Channel, in Ch ap t e r 4. its 3) p r e s e n c e of ice b lo ck in the channel bottom, and 4) e v i d e n c e for A 114 drainage feature s o u t h and east, in dicates that the H o f f m a n Lake is a former m e l t w a t e r channel, w h i c h d r a i n e d an ice m a r g i n s i t u a te d along the n o r t h w e s t flank of the Inn er Port H u r o n apex. S u m m a r y -- The e x t en si ve nat ur e of sur fac es ind icates that they are e q u i l i b r i u m surfaces, r e l a t e d to q u a s i - s t a b l e 1978; Maizel, s ur fac e 1983b). ice m a r g i n a l p o s it io ns Ket tl e rep res ent the t r a n s i t i o n to lower terraces. Ter ra ces (Ritter, chai ns a s s o c i a t e d with and their distal e x te n s i o n s incise d valleys) 2 possibly 2 like ly mark the tr end of p r e - e x i s t i n g H a n g i n g va l l e y s cha n g e 1 and 3-8 most lowlands. (small from surface 2 li ke l y re c or d the from m e l t w a t e r - d o m i n a t e d p r o g l a c i a l braided streams to p r e c i p i t a t i o n / g r o u n d w a t e r c o n t r o l l e d n o n ­ glacial stream s c h a r a c t e r i z e d by a single channel. H o f f m a n Lake c h an ne l The r e pre se nts ea s t w a r d d r a i n a g e in it ia te d som et im e a ft er a b a n d o n m e n t of the E l m i r a surface. I n t e r p r e t a t i o n and s i g n i f i ca nc e su rf ac es duri ng final d e g l a c i a t i o n of these is d i s c u s s e d in C h a p t e r 4. Post Land for ms of the Inner Port H u r o n zone A l t h o u g h this tract does not ex h i b i t ide nti fi ab le ice mar gi na l ha ng in g valleys, the heads of outwash, and pro ximal for the p e r c h e d fans, b o ul d e r c o n c e n t r a t i o n s Inner and Ou te r Port H u r o n Complexes, position easily ice m a rg i n can be like an a p p r o x im at e inf erred on the basis 115 of o u t w a s h te rr a c e s i nc ise d ic e- c o n t a c t The a r e a ’s n o r t h w e s t e r n b o u n d a r y is marked slope. into the Inner Port H u r o n in most p l a c e s by a s h a r p m o r p h o l o g i c c o n t r a s t between glaciofluvial terraces Inner Port H u r o n Most o u t w a s h the Jordan, separate flut ed uplands. s u r f a c e s are a s s o c i a t e d w i t h v a l l e y s of Green, All un derfit, ancient zone and the b e l o n g i n g to the Post these and C e d a r strea ms i ng ro wn m e a n d e r s riv er s and W a r n e r Creek. o c c u p y the b o t t o m s up to of large, 1.6 km in a m p l i t u d e 37). P a l e o d i s c h a r g e s b a s e d on m e a n d e r w a v e l e n g t h 1965) in the J o r d a n V a l l e y are 33,600 ft3 sec', c o m p a r a b l e at Sidney, to the m o d e r n Y e l l o w s t o n e to v a l l e y trend, c o m p l i c a t e d a r r a y of small, 38). a lt it ud e transitional twe lv e t e r r ac e s terraces, associated with Y, Z, E, re sp ec ti vel y. ice m a r g i n a l to the s i g n i f i c a n c e te rr ac es River of pr of i l e s su rf ace s into three types: terrace, C e d a r - G r e e n river valleys: verifiable to and fo r m a i s o l a t e d re si d u a l T h e y c a n be d i v i d e d high-altitude and W, X, 17,800 here are c o r r e l a t e d on the basis d r a w n at right a n g l e s e x t e n si ve (Dury, Montana. Terraces (Fig. approximately (Fig. A; B, 1) an 2) three m e d i u m C, and D; a n d 3) the J o r d a n - W a r n e r and El, F, FG, G, G H 1 , G H 2 , H, W i t h the g e n e r a l lack of p o s i t i o n s here and u n c e r t a i n t y as of G r e a t l a k e a n / V a l d e r a n events, are d e s c r i b e d o n l y briefly. these 116 Figure 37. View from the Deadm an’s Hill overlook of the underfit Jordan River with large paleom eanders. NE SW CEDAR-GREEN VALLEY 400 JORDAN-WARNER VALLEY Z COMPLEX \v 300 W arner CreekJo rd an River G reen, C edar River River GH2 200 Orri 10ml 20mi F g u re 3 8 . Principal glaciofluvial/fluvial su r fa c e s of th e C edar-G reen and Jordan-W arner v alleys. 30 mi METERS D? S urfaces associated with the Lake of th e W oods Plain 118 SURFACE A This flat, s o u t hw es t a d j u s t e d slope) c o n t a i ns d e p r e s s i o n s or c r e s t a l and is best o b s e r v e d US-131, Road, and 2) At the w i t h the A l b a and shows sloping su rf ac e no p r o x i m a l boulders ice blo ck like the E l m i r a 1) on h i g h w a y M-32, la tt e r location, s al ien t of the the s u rfa ce ou t w a sh su r f a c e s the base of the S u r f a c e B is transition (A and B) B, in the ce n t e r of i d e n t i f i e d along ice-contact C, incised 20-25 Inner S o u t h w e s t w a r d , scattered Inner Port H u r o n SUR F A C E S exist in bo t h the t e r r a c e s c o r r e l a t i v e w i t h S u r f a c e A are 32). is a ss oc ia te d I n n e r Port H u r o n Complex, and O u t e r Port H u r o n C om pl ex es . (Fig. km west of s im i l a r l a n d f o r m r e l a t i o n s h i p s b e t w e e n s a l i e n t s and W. 0.5 Plain, i m m e d i a t e l y n o r t h of A l b a on J o r d a n River that best o b s e r v e d (1.2 m / k m slope. and D m b e l o w surfa ce A, and is sec. R. 10, T. 31 N., 5 S u r f a c e s C a n d D a p p a r e n t l y m a r k the from higher, to lower, mo r e s m al le r extensive outwash fluvial C e d a r and J o r d a n R i v e r v a l l e y s terrac es (Fig. surfaces in the 38). S U R F A C E S O F THE C E D A R - G R E E N R I V E R V A L L E Y Here, t e r r a c e s W, w i t h a lower t e r r a c e relationships co n t a c t X, (Fig. assemblage are unclear. All 38) 240-2 50 m, with the o t h e r a b o u t may correlate (Z complex), are but gr a d e d to an ice- l a c u s t r i n e p l a i n or kame d e l t a Lake of the W o o d s Plain), at and Y (i n f o r m a l l y named two d i s t i n c t 2 5 0-2 55 m surfaces, (Figs. 32, one 38). 119 The Lake of the Woo ds pr o g l a c i a l featu re p r o b a b l y Fig. 32). is n o w o c c u p i e d by Lake Associated ice -c on ta ct characteristics include w e s t e r n margin, and 2) p r e s e n c e proximal su gg e s t i n g mass wa st i n g scarp, m a r g i n a l l y st agnant sho re l in es v a ll e y in a lake at the s o u t he rn end of a th ro ug h vall ey (the lowest part of w h i c h Bellaire; formed 1) n u m e r o u s ice. lake was c o n f i ne d of a rim along In addition, or l acu str in e farther north, kettl es along remnan ts are i nd ica ti ng the of sedim ent s from no c o rr es p o n d i n g id en ti fi ed in the that the p r og la c i a l to the s o u t he rn that tne re m a in de r c o n t a i n e d its part of the v a l l e y and ice. SU RF A CE S OF THE JO R DA N R I V E R - W A R N E R C R E E K V A L L E Y Eight surfaces are r e co g n i z e d w i t h i n the Jor da n River V a l l e y and are d e s i g n a t e d E, and H (Fig. 38). Su rf ace s E, to a l a c u s t ri ne plain, Plain, G. s u rf ac e G oc cu p i e s th r o u g h valley, ev id e n c e of in w h i c h El, but El, Like F, the a p p a r e n t l y was c o n f i n e d formation to the be ca us e sho re l i n es nor l acu str in e the v a l l e y farth er north. G-Hl, G-H2, and G m a y be graded Lake of the Woods the s o u t h e r n end of a m a j o r s e d ime nt s a c c u m u l a t e d to and oth er are absent. The lake form surface G s o u t h e r n m o s t p o r t i o n of ne it he r c o r r e s p o n d i n g te rr ac es Su rf a c e s along w i t h the m o d e r n J o r d a n River, surface G. F G , G, ic e- bl oc k d e p r e s s i o n s ic e-c ont ac t the th r o u g h valley, F, can be i d e n ti fi ed in G - H l , G - H 2 , and H, are incised into 120 S I G N I F I C A N C E O F POST IN NE R PO R T H U R O N T E R R A C E S The c o m p l i c a t e d terrace a s s e m b l a g e s w i t h i n the Post- Inner Port H u r o n zone are d i f f i c u l t l an df or m re l a t i o n s h i p s not po s s i b l e until alone. there to in te rpr et based on A com pl et e e x p l a n a t i o n is is a full and a c c u r a t e u n d e r s t a n d i n g of G r e a t l a k e a n / V a l d e r a n even ts In general, however, from a single, (surface A) these t e r r a c e s record the m e l t w a t e r d o m i n a t e d br a i d e d to twin, non-glacial in the area. transi tio n sy st e m single c h an ne l streams of the C e d a r - G r e e n and J o r d a n - W a r n e r valleys. Alt oge the r, these surfaces Ho l o c e n e transition at least in part, 1) r e c o r d the P l e i s t o c e n e - in the s t u d y area, and 2) document, final Port H u r o n deglaci ati on. L an dfo rm s a s s o c i a t e d wi t h the O ut er Port H u r o n Co m p l e x In cross section, the O u t e r Port H u r o n C o m p l e x has an a s y m m et ri ca l to po g r a p h i c p r o f i l e pi'ox.ijua± scarp and gen tl y 13), Mos t p r ox im al hu m m o c k y zone, da ta inc li ne d dist al (Chapter 2) ice m a r g i n a l so ut he rn r e gio ns d i s p l a y l a n d f o r m s a s s o c i a t e d w i t h a series of s u c c e s s i v e into se di men tar y indicate that n o r t h e r n ar ea s are whereas On these bases, (Fig. into o u t w a s h plain. mo rp h o l o g i c p r o f i l e s and c h a r a c t e r i z e d by a single p r o m i n e n t position, slope te rr ai n e x h i b i t s a 1-2 km wi d e w h i c h grades d i s t a l l y As de sc ri be d below, e x h i b i t i n g a steep g l ac ia l the Out er Port H u r o n C o m p l e x 1) a n o r t h e r n pro xim al region, terminii. is divided 2) a n o r t h e r n distal 121 region, and 3) s o u t h e r n tracts c o m p o s e d of n u m e r o u s i s ol at ed h ea ds of outwash. Ea c h is d e s c r i b e d and i n t e r p r e t e d below. N O R T H E R N P R O X I M A L REGIONS To f a c i l i t a t e are d i v i d e d into Fig. and associations D i s i n t e g r a t i o n Ridges 32) - Th ese 10 m high, ridges, are c o n f i n e d Port H u r o n apex. so u t h ea st and north -so ut h, "Y" Se d i m e n t s gr av el pit; ice-contact Ch. 2), and b e t w e e n ridges. attributed fe at ur es southward in map view (Fig. Gr a v e n o r an d Kups ch n e a r l y 6 km^ >0.5 m are on to d e p o s i t i o n of in s t a g n a n t T. ice. 31 N . , R. fe a t u r e s intervening (Fig. Farm (1959) features (Sec 27, 32). (Fleming bo ul der s ri dg e p a t t e r n c o n t a i n i n g 32). 4 W.) form a ic e-block Rid ge s are o r i e n t e d n o r t h w e s t - s o u t h e a s t and east-west. rid ge s altitudes both n o r t h w e s t - co alesce and n u m e r o u s 150 m wide, a r e a s of controlled disintegration depressions covering Sin g l e 1 km long, sediment within crevasses - T h e s e large, T . 31 N . , R . 4 V . ; s t r a t i f i e d drift Lake 27 D i s i n t e g r a t i o n Ridg es generally 10, Oriented f o r m a t i o n of s i m i l a r superglacial polygonal (Sec 32). to pr ox ima l s h ap ed la n d f or ms are (Fig. some areas based on t o p o g r a p h y and a v e r a gi ng the O u t e r fo rm in g pr ox ima l se ve n s u b r e g i o n s salient/reentrant F le mi ng discussion, ca n be of 425 fo ll o w e d 3 km or more, ra, and d i s p l a y (1960). reach relief up to 42 m. p r o b a b l y reco rd c r e v a s s e p a t t e r n s ice as d e s c r i b e d by K aye m ay Such in st agnant 122 E l m i r a South A p r o n Here, (SW1/4, the t o p o g r a p h y c o n s i s t s v a l l e y s and a s t e e p exhibiting evidence c r e s t a l boulders. for an ice-contact few k e t t l e s assemblage with are along a s t a g n a n t T. 31 N. , R. of p e r c h e d Al l Abandoned Farm Hummocks Thus, this of outwash, ice, are absent landform unassociated which 10, T. 30 N., (1960, 372) p. differential of A l b a attributed (Figs. genesis of fro m an ice ma s s of u n e v e n t hi ck ne ss . A l b a S a li en t 28, T. 30 N . , R. is c h a r a c t e r i z e d by a c o m p l e x of features. chains, Numerous Kaye la nd fo rm s to and s u b t l e boulders for a form er Scattered exposures but large d i s i n t e g r a t i o n are c o n c e n t r a t e d ne a r the 15 a n d 22, ice m a r g i n a l show s t r a t i f e d On th es e bases, - This area in ci se d dry channels, combined with morphology, gravel. 39). 5 W.) (Fig. evidence near an S c a t t e r e d out crops sections and, - sand and gravel road s e p a r a t i n g 15), 5 W.) such deposits. (Secs 27, s h a l l o w ke tt l e 32, simila r d e p o s i t i o n of s u p e r g l a c i a l ne a r here reveal formed R. U n c o n t r o l l e d d i s i n t e g r a t i o n t o p o g r a p h y exi st s farm n o r t h e a s t ice was margin. (Sec. abandoned bluff Little buried am o u n t s of b u r i e d g la ci al - h a ng in g proximal h u m m o c k y zones identified. a head fans, 5 W.) are u n m i s t a k e a b l e slope. proximal represents significant 36, (70 - 80 m relief) p r e s e n t here b e c a u s e and sec T. 30 N . , R. 5 W. provide strong p o s i t i o n here. sand and co a r s e landform genesis is in t e r p r e te d to be s i mi la r to the A b a n d o n e d F a r m H u m mo ck s, exc ep t that 123 Figure 39. View of proximal hummocky topography at the Abandoned Farm site in the Outer Port Huron Complex. 124 the A l b a s al i e n t experienced dissection possibly upon deglaciation A l b a So uth A o r o n R. 5 W.) i n it ia te d by a falling w a t e r table (de scri bed (Secs. - Southw ard , 4, so ut he as t NW1/4, here in C h a p t e r 4). 5, 7, 8, ice-contact 17, T. 18, T. 29 N., slope w i t h crestal 29 N., R. A northwest- is locat ed 5 W. in the Landform assemblages are si mi l a r to the E l m i r a S o u t h A p r o n and are interpreted in the same manner. Mancelona Reentrant W . ) - Here, (Secs the p r ox im al 14, 15, slope and 22, because it has 29 N., ice m a rg in al been t r u n c a t e d by m e l t w a t e r M a n c e l o n a Plain. zone ex hib it T. R. 6 of the O u te r Po rt Hu ro n C o m p l e x only a p p r o x i m a t e s a f o r m e r and and sloping d i s t a l plains. o r i e n t e d h a ng in g v a l l e y sec. 17, the O u t e r Port H u r o n C o m p l e x e x h i b i t s a s t e ep p r o x i m a l b o u l d e r s and g e n t l y fu rt h e r a l t e r a t i o n by stre am Disintegration ridges position st re am s on the in the pro xim al a weakly developed north-south orientation rel ie f a p p r o a c h e s 15 m. L a n d f o r m g e nes is is si mil ar to the A b a n d o n e d F a r m Hummocks. Summary — Alt og et he r, these s e v e n regions d i s t i n g u i s h e d on the basis of the 1) natu re associated proximal slope i nf lue nce ice on to po gra phy , of b u r i e d c o n t r o l l e d vs. ( i c e - co nt ac t vs. u n c o n t r o l l e d to po gra phy , post-glacial di ss ec tio n, reentrants. Characteristics Ta bl e 6. and 5) are of the eroded), 2) 3) p r e s e n c e of 4) a m o u n t of r e la ti on to sa l i e n t s and of ea c h are p r e s e n t e d in 125 TABLE 6. CHARACTERISTICS OF PROXIMAL SUBDIVISIONS OF THE OUTER PORT HURON COMPLEX. Area Type of proximal slope Influence of buried ice Type of disinte­ gration Fleming Disint. Ridges icecontact significant controlled not significant reentrant Lake 27 Disint:. Ridges erosional significant controlled not significant salient Elmira South Apron icecontact not significant (not present) not significant southeast side of salient Abandon erosional Farm Hummocks significant weakly controlled to uncon­ trolled not signif icant reentrant Alba Salient mostl7 erosional significant weakly controlled to uncon­ trolled significant salient Alba South Apron icecontact not Significant (not present) not significant southeast side of salient. significant uncontrol­ led to weakly controlled significant along margin reentrant Mance­ erosional lona Reentrant Amount of post glacial dissection Salient or reentrant location 126 W i t h m i n o r exceptions, A l b a So ut h apro ns Elsewhere the ex hib it o n l y the El m i r a So ut h and a true i c e- con tac t slope. along the O u t e r Port H u r o n pr ox i m a l 1) a l i g n m e n t of terrac e scar ps w i t h the O ut er Port H u r o n bluff, on the M a n c e l o n a Plain 2) pr es e n c e of a boulder lag just west of the O u t e r Port H u r o n slope, curvilinear acclivity, form (concave to the west) and 4) H u r o n crest, all lack of b o u l d e r s indic ate ac c l i v i t y 3) smooth, to parts of this along the O ut er Port that the slope has been altered by sub se qu en t m e l t w a t e r erosion. Int erestingly, the simila r E l m i r a So uth and Al ba S o u t h la n d f o r m a ss e m b l a g e s are l o c a t i o n rel ative lo c a t ed to their r e s p e c t i v e for this are unclear. Re e n t r a n t in the same salients; reasons regions d i s p l a y strongly l i n e a t e d c o n t r o l l e d d i s i n t e g r a t i o n t o p o g r a p h y east of E l m i r a and muc h we ak e r a l i gn me nt southward. The A l b a and E l m i r a salient s g e n e r a l l y c o n t a i n large r d i s i n t e g r a t i o n ridge s and gr ea t e r p o s t - g l a c i a l reentrants. r u gg ed Th es e region s also t o p o g r a p h y b e cau se w h i c h we re pr e f e r r e d areas s t r e a m d i s s e c t i o n than tend to have the most they o v e r l i e b e dr o c k valleys, for b u r i a l of ice. NO R T H E R N D I ST AL REGION S In distal has regions, the O u t e r Port H u r o n o u t w a s h plain flat to g e nt ly rolling t o p o g r a p h y p u n c t u a t e d by n um e r o u s deep kettles, valleys. a few k e t t l e U n a d j u s t e d g r ad ie nts o u t w a s h surface chains, and m a n y dry for the s o ut he ast are a p p r o x i m a t e l y 3.1 m/km. sloping The Manistee 127 River the is at the distal edge of the p l a i n and marks so ut hw e s t w a r d route of former m e l t w a t e r drainage. Is ola te d small hills in the area are i n t er pr et ed to be p a r t i a l l y b u r i e d ou tl ie rs of the o ld er G r a y l i n g u pl and s centered farthe r east (Fig. 32). Lakes of the N o r t h margin A series of small, s c a tt er ed al luvial (Fig. (Secs 9, 10, T. 29 N . ,R. 5 W.) fans of o u t w a s h 32) wit h p r o x i m a l l y feeding d i s i n t e g r a t i o n ridges att a i n a l t it ud es Resort, about of 420 m near Lakes of the N or th 3 km distal c o nt ac t slope. to the O u t e r Port H u r o n Sedi me nt s are coarse textured, ice- with bo ul d e r s c o n c e n t r a t e d on d i s i n t e g r a t i o n r i d g e s and along ic e - c o n t a c t slopes. A ltogether, int er pr et ed as an ice marginal these l a n d f o r m s te rminus are fo r me d p r i o r to the main O u t er Port H ur o n position. M U L T I P L E MARGI NS OF THE S O U TH ER N O U T E R PORT H U R O N C O M P L E X From M a n i s t e e Lake southward, the O u t e r Port H u r o n Co m p l e x co ns i s t s of an as se mb la ge of m o s t l y small, isolated heads of ou tw as h that c o l l e c t i v e l y m a r k five ice ma rgi na l p o s i t i o n s angles to ov era ll di ag no st ic (Fig. 32). la nd f o rm trend (Fig. 40) sh o w the im br ic at e- 1 ik e m o r p h o l o g y typic al morphosequences (Koteff and Pessl, po ssi bl e e x c e p t i o n of p o s i t i o n er osi on by sub se qu e nt me l tw at er obs er v e d Pr of il es d r a w n at right 1981). 1, all of W i t h the show s i g n i f i c a n t streams. in the n o r t h e r n half of se ct i o n s Th i s is best 35 and 36, T. - POSITION 4 NW 375 m SE POSITION 3 128 POSITION 1 POSITION 2 345 m 315 m 0 5 Figure 40. Profile across the Outer Port Huron Complex. 10 ml. 129 26 N., cut R. 8 W . , where into the base a southwest-trending dry channel of p o s i t i o n five m a r g i n s are s h o w n positions s er i es are 3. in Ta bl e C h a r a c t e r i s t i c s of all 7. Toge th er, i n t e r p r e t e d as t e r r a i n of s uc ce s s i v e marginally is these five formed a lo ng a st a g n a n t gl a c i al terminii. SUMMARY The O u t e r Port H u r o n crest m a rk s an e s p e c i a l l y i m p o r t a n t he a d of o u t w a s h that is g r a d e d to the O u t e r Port H u r o n o u t w a s h p l a i n 32). moraine fl a n k e d by di s t a l (L e v e r e t t and Taylor, Bell, 1982). ice-contact erosion, ar e a s (Fig. The slope, Martin, proximal 1955; F a r r a n d and u n m o d i f i e d by s u b s e q u e n t meltwater however. Many proximal fo rm e d by d i f f e r e n t i a l d e p o s i t i o n of s u p e r g l a c i a l sand and gra ve l ma s s Ov erall, of u n e v e n thickness. alo ng in di ca te that f r o m an ice m o r p h o l o g y and ice m a r g i n a l the south, a series of five glacial by othe rs is a true display hummocky topography transitory toward is not a acclivity in o n l y a few places, sediments it o u t w a s h as m a pp ed 1915; steep, Thus, p o s i t i o n s wer e w i t h t e r r a i n here successive marginally more formin g stagnant positions. Conclusions R e g i o na ll y, are d i r e c t l y Lar ge s a l ie n t and r e e n t r a n t r e l a t e d to s u b s u r f a c e landform patterns b e d r o c k t o p o gr ap hy . s a l i e n t s are a s s o c i a t e d w i t h e x t e n s i v e b e d r o c k TABLE 7. CHARACTERISTICS OF MULTIPLE ICE-MARQIHAL P0SITI0N6. -Position 1 Morphology Loaatlon S o u th ern e x t e nsion of m a i n O u t e r Port Huron position 42-48 m relief, closed depressions, disintegration ridges, perforation features, h a ngin g valleys, kettles S e d i me nts gla aio f l u v i a l sand and g r a v e l , glaciolaoustrine silt and clay, ra n d o m b o u l d e r distributions 2 Seo. 10, T. R . .7 W. 26 N. , 390 m in altitude, landforms same as position 1 gl a a i o f l u v i a l sand a nd gravel, orestal b o u lde rs 3 Seo. 36, R. 6 W. 28 N . , 30 m relief, 364 m in altitude, landforms same as p osition 1 gl a c i o f l u v i a l sand and gravel, glaoiolacustrine s l l t a n d clay, orestal b o u l d e r s T. 4 S e o e . 6 and 6, T. 26 H. , R. 7 W. 69 m relief, 417 m in altitude, h ighly disseoted, landforms same as position i same as 3 b u t no orestal bo ulders observed 6 SE 1/4, T. 26 36 m relief, 361 m in altitude, landforms same as position 1 sam e as 4 pea. , R. 33, 7 H. 131 lowlands, valleys. small er sa lients w i t h less ex te nsi ve These, of te r r a c e in turn, re mn a nt s be dr oc k are d i r e c t l y r e la te d to the size (Camp Ten, Alba, and 612 surfaces) a s s o c i a t e d w i t h ea c h salient. The p r e s e n c e slopes, of 1) steep, 2) h a n g i n g valleys, imbricate, asymmetrical proximal 3) p e rc he d 4) and 5) indicate that Inner and O u t e r Port H u r o n Co m p l ex es formed along m a r g i n a l l y st agnant ice c h a r a c t e r i z e d by ab un da n t m e l t w a t e r and s u p e r g l a c i a l de gl aciation, fans, t o p o g r a p h i c profiles, w i d e s p r e a d d i s i n t e g r a t i o n l a nd fo rms t o p o g r a p h y of the ic e- contact drift d u r i n g in a f a shi on d e s c r i b e d by Pri ce and B le we tt and R ie ck (1973), (1987). Cr e s t s of bo t h the Inner and O u t e r Port H u r o n t ren d more than final 50 km and m a r k features im portant h ea ds of o u twa sh grad ed to the E l m i r a P l a i n and O u t e r Port H u r o n o u tw as h plain, respect ive ly . The no ti o n that ea c h feature mo ra in e wi th d i s t a l l y flanki ng o u tw as h D es p i t e such similarities, b e t w e e n the two H u r o n pr ox i m a l slope, features. acclivity is a is unsup por ted . m a j o r d i f f e r e n c e s exist In most places, the Inner Port is in t e r p r e te d as an ice -contact w h e r e a s the O u t e r Port H u r o n bluff has been modified s i g n i f i c a n t l y by s u b s e q u e n t m e l t w a t e r erosion. Pr ox i m a l zones in the O u t e r Port H u r o n and more v a r i a bl e than c o r r e s p o n d i n g Inner Port H u r o n margin, and on l y the c o n t r o l l e d d i s i n t eg ra tio n. feature are w id er tracts along the form er e x h i b i t s In addition, the br oa d o u t w a s h pla in s of the O u t e r Port H u r o n C o m p l e x co ntrast 132 sh a r p l y w i t h the n a r r o w va l l e y t r a i n a s s o c i a t e d w i t h the Inner Port H u r o n position. L e v er e tt and T a y l o r ’s M a n c e l o n a Pl ai n con ta in s principal wi t h e q u i l i b r i u m ou t w a s h su rf a c es 8 r ec og ni z ed a n c i l l a r y terraces. are extensive, hundreds Su rf a c e s T h e i r great of as so c i a t e d de po s i t s formed over a r el at i v e l y long a n c i l l a r y te rraces c ov er li mit ed areas and, reg io na l la n d f o r m patterns, conditions, In contrast, based on from glaci al c h a r a c t e r i z e d by rapid falli ng w a t er tables. they most p r o b a b l y mark a r e l a t i v e l y brief t r a n s i t i o n p e r i o d gl aci al covering size and the indica te that time period. along 1 and 2 r eg io n a l l y s i g n i f i c a n t la n d f o r m s of square kilometers. thickness (1 and 2), two to n o n ­ in ci si on and Ch ap te r 4 P R O P O S E D D E G L A C I A T I O N AND L A N D F O R M D E V E L O P M E N T IN THE STUDY AR E A Final d e g l a c i a t i o n events are di v i d e d into six s ucc ess ive phases: 1. F o r m a t i o n of the Out er Port H u r o n Complex; 2. F o r m a t i o n of s urface 3. F o r m a t i o n of the Inner Port H ur on Complex; 4. F o r m a t i o n of the Post 5. 1; Inner Port H u r o n zone; F o r m a t i o n of d i s i n t e g r a t i o n t o p o g r a p h y west Kalkaska; of 6. P o s t g l a c i a l m o d i f i c a t i o n of the landscape. As d i s c u s s e d in Ch ap ter 2, final d e g l a c i a t i o n was c h a r a c t e r i z e d m a i n l y by thick g l a c i o fl uv ia l u p o n an u n e v e n cla y (Fig. 13). The surface sub cr op pi ng in cl in ed tow ar d the northwest sed iment that was d e p o s i t e d either du ri n g an d/ or retreat, glaciation deposition is p r o b a b l y till 1) Port H u r o n advan ce or 2) an e a rl i e r Late W i s c o n s i n a n (Port Bruce?). Two mo des of d e p o s i t i o n most lik el y ac co u n t p a t t e r n of o v e r l y i n g g l a c i o f l u v ia l sediments: 1) In fi lli ng a lo ng a quasi-stable, glacial p o s i t i o n (Fig. 41a), or marginally 2) D e p o s i t i o n along a s t e a d i l y r et rea ti ng (Fig. 41b). Evi den ce p r e s e n t e d be low mod els ma y ac co un t indicates for d e g l a c i a t i o n 133 for the stagnant ice mar gi n that as p e c t s of both in the s t u d y area. 134 Time 1 Time 3 ICE Figure 41A Tim* 1 Tim* 1 ICE ICE Figure 41B Figure 41. M odels of deposition for the M ancelona Plain 135 The p r e c i s e m a x i m u m p o s i t i o n of Port H u r o n c a nn ot ice be d e t e r m i n e d on the b a s i s of m o r p h o l o g y and the li m i t e d sedimentological reason, i n t e r p r e t a t i o n s of d e g l a c i a t i o n b e g i n w i t h f o r m a t i o n of the ol de s t d a t a av ailable. recognized in the O u t e r Port H u r o n Complex. however, have similarities Complexes advanced in re gional and and T a y l o r east, tr en d s and Bell (1982). (1915), Events e v i de nc e successive 5 -1, presented (1955), 42, i n d i c a t i v e of su bgl ac i a l these la n d f o r m s so ur c e s by s u p e r g l a c i a l se ct i o n s meltwater from of c u t w a s h . m a n y or i e n t e d also form ed w i t h i n w h i c h u s u a l l y are drainage, Th e i r a b s e n c e m a y be e x p l a i n e d ma r k a se ri e s of in s o u t h e r n Here, ice terminus, Eskers, di sc us se d 1. C o n t r o l l e d d i s i n t e g r a t i o n ridges, ice. an d F a rr an d in p r e c e e d i n g chapters. y o u n g e r m a r g i n s has e r od e d o l d e r h e a d s of s t ag na nt by s t r a t i g r a p h i c , and shown in Fig. the O u t e r Po rt H u r o n Complex. areas s u p p o r t e d by of final d e g l a c ia ti on , ice m a r g i n a l p o s i t i o n s p e r p e n d i c u l a r to the ice may, u p la nd s as m a p p e d Martin Ph ase Positions a vi e w landforms of the Port H u r o n are b a s e d on mor pho lo gi c, chronologic ice ma r g i n a l Port H u r o n the o l d e r G r a y l i n g Le v e r e t t below, f ar th er For this are not identified. e i t h e r by 1) bur ia l drift, of or 2) m e l t w a t e r that were p r i m a r i l y s u p e r gl ac ial . In contrast, margin remained to the n o r t h the p o s i t i o n of the r e l a t i v e l y stable. That is, after ice of 136 DIRECTION AND RELATIVE AMOUNT OF ICE-MARGINAL RETREAT DIRECTION OF MELTWATER DISCHARGE Lakes of the North margin Figure 42. P h ase 1. Formation of the Outer Port Huron Com plex 137 forming the Lakes of the N or th o u t w a s h aprons, glacial ma rg in re tr ea t e d to the m a i n Ou ter Port H u r o n p o s i t i o n early of in phase ice-m ar gi na l As a result pro mi ne nt 1, and did not p r o d u c e land fo rm s s i mil ar to those the t o p o g r a p h y here and may have features, n o rt he rn areas e xh ibi t r e l a t iv e ly sou t h er n region, smaller, ma r k i n g This rotat ed cloc kwi se 42). centuries. of the N o r t h a c c l i v i t y formed alo ng sta gna nt co nt ain s ice margin. of of o u t w a s h st ag nan t glaci al that the to the no r t h we st a The an a s s e m b l a g e less pr o m i n e n t h ea ds indicates and an ex te ns iv e o u t w a s h five s uc ce ssi ve m a r g i n a l l y positions. (Fig. stable, however, separate, f a rt he r south. formed w i t h i n several p la in w i t h a steep pr ox im al a series is both d i s t i n c t W i t h the e x c e p t i o n of the Lakes single, the ice m a rg in p r o b a b l y duri ng deglaciation T e rr ac e pa tt e r ns on the M a n c e l o n a P l a i n indicate that this style of ma r g i n a l retrea t was c o n f i n e d to the O u t e r Port H u r o n Complex, characterized deglaclation throughout not but southern r e gi on s of the study area. H u m m o c k y pr ox i m a l tracts in the O u t e r Port H u r o n Co mp l e x d i s p l a y c o n t r o l l e d and u n c o n t r o l l e d d i s i n t e g r a t i o n t o p o g ra p h y c o m p o s ed s tr a t i f i e d drift. at tr i b u t e d Ch ur c h (1972) fo rm at i on of si mil ar g l ac io fl uv ia l i c e- co nt ac t and Price lan df or ms ou tw as h plains or ig i n a t i n g on the dis ta nc e up-ice of to ice s u rfa ce a short from the glacial margin. sediments (1973) Likewise, of the O u t e r Port H u r o n ou twa sh 133 pl ai n were p r o b a b l y depo si te d ov e r a r e l a t i v e l y thin layer of stagna nt ice, which, up o n melting, pr o d u c e d the p r o x i m a l h u m m o c k y t op og ra ph y o b s e r v e d today. The 1) al i g nm e nt M a n c e l o n a Pl ai n with of er o de d terrace tr uncated pr ox im al Port H u r o n r een tr ant s c re st al (Figs. bo ul d e r s along H u r o n Complex, 32, 33), 2) absen ce true ice-con ta ct p o s i t i o n of the modified of of a bo ul de r lag along the base of the O u t e r Port Huron p r o x i m al in most p l a c e s slopes of Outer large se gm e n t s of the O u t e r Port and 3) pr esence that scarps on the slope indicate the Ou te r Port H u r o n bluff slope. Although ice margin, this is not a it marks the general a c c l i v i t y has been s i g n i f i c a n t l y by m e l t w a t e r erosion. N u m er o us h an gin g valleys are also a s s o c i a t e d with the crest of the O u t e r Port H u r o n m e l t w a t e r er o s i o n feature, increased just p ri or to a b a n d o n m e n t of the Ou te r Port H u r o n Complex. a s s o c i a t e d with stagn at in g v i g o r o us over time, d ec re a s i n g im plying that se diment v e r y last m e l t w a t e r this B e ca us e m e l t w a t e r ice u s u a l l y beco me streams less i n c i s i on likely re fl ect s a supply. Th es e v a lle ys must ma r k the streams, otherwise they w o u l d have be en al ter ed by later events. M e l t wa te r d iv e r t e d (Fig 42), M a ni st ee from the Outer Port H u r o n C o m p l e x was so ut hwe st by the o l d e r Lake Border M or ai ne fo llowing River. a course Burgis s i mil ar (1977) to the m o d e r n c or re la te s the a ss oc ia te d o u t w a s h surfaces w i t h the G l e n w o o d II Stage of Lake 139 Chicago in the Lake M i c h i g a n basin. A c o m p l e x p r o g r e s s i o n of pr og l a c i a l b e t w e e n the ice and the O u t e r Port H u r o n s ou th as the g la ci al t hei r size, lakes ter minus was formed slope in the rotating northwestward, de pth and al titude being co nt ro ll ed by p o s i t i o n i n g of the re tr ea t op en ed ice margin. lower outlets, Furth er ic e- ma r g i n a l d r a i n e d the lakes, and ini ti at ed m e l t w a t e r dr ai na ge on the C r of t o n o u t w a s h s ur fac e (Fig. 43). Phase Eve ntu al d e g l a c i a t i o n of the m a i n p o s i t i o n farthe r no rt h initi ate d Huron slope, terraces, 2 fosse dr ainage proxim al forming Fig. 44). surface to the O u t e r Port 1 (Camp Ten, Alba, and 612 The c o r r e s p o n d i n g p o s i t i o n of the ice m a r g i n a s s o c i a t e d wi t h this surface (Fig. 44) is i n t e r p r e t e d on the basis of the fo llowing evidence: 1) becaus e the three te rr ace s are re mnants of surfac e 1, the latter must, have been more extensive. Such di me ns i o n s require a prominent, r e g i o n a l l y si g n i fi ca n t h e a d of o u t w a s h some wh ere p r o x i m a l to the O u t e r Port H u r o n Complex. 2) It is u n l i k e l y that this ice ma r g i n was locate d at the Inner Po rt H u r o n p o s i t i o n becaus e su rfa ce 1 w o u l d have had to cover the entire M a n c e l o n a Plain. S u b se q ue nt f o r m a t i o n of the lower El m i r a s u rf ac e w o u l d r e qu ire the e r os io n of a sediment vo lu m e a v e r a g i n g 15 m thick, 75 km long and 6 k m wide, an amou nt that seems ex ce ss iv e giv en es ti ma te s of p a l e o d i s c h a r g e (this study) and age c o n s t r a i n t s for Port H u r o n e v e n t s from o th er studies elsewhere. 3) a bo uld er lag on the Elm ir a surface, just p ro x i m a l to the Al b a and Camp T e n scarps, p r o b a b l y ma rks the for mer ice ma rg i n a l position. Th i s e x p l a n a t i o n a s s u m e s that E l m i r a m e l t w a t e r streams have eroded the ice -marginal p o rt io ns of the two 140 DIRECTION AND RELATIVE AMOUNT OF ICE-MARGINAL RETREAT DIRECTION OF MELTWATER DISCHARGE Lakes of the North margin Crofton surface Figure 43. Formation of th e Crofton surface 141 DIRECTION OF MELTWATER DISCHARGE Lakes of the North margin Crofton surface Figure 44. P h a s e 2. Form ation of Surface 1. 142 terraces. B o u l d e r s c o n c e n t r a t e d at the g l ac ia l m a r g i n we r e too large for s t r e a m tr a n s po rt and r e m a i n e d as r e s i d u a l s that d e li m i t the f o r m e r ice position. Th is ev i d e n c e w i t h Phase suggests that the 2 be p l a c e d somewhere I nne r Port H u r o n posit i ons . her e s up po rt s the If correct, terminus Pha se resulted in 1) su rf a c e 1, scarps, and 3) 45). 2) re tre at the thickness, d e p o s i t i o n on of e r o s i o n on the valleys, Co mp le x possibly lasting su gg es t se ver al and erosion, 6) fans, evidence i nd ic at e 1) that 5) F a r r a n d and E s c h m a n Manis tee , in Fig ur e ice-contact for m i n i m a l fo l l o w e d 41a. The stratified 3) d r y ha ngi ng subsequent meltwater the Inn er Por t H u r o n p r o x i m a l (1974) ice-contact tr ace (1977) slope. the E l m i r a surfac e the M a n c e l o n a Plain) and B u rg is centuries. fe ed in g d i s i n t e g r a t i o n d e c l i v i t y is in mos t p l ac es an (which they call sho wn boulder concentrations, 4) p e r c h e d (Fig. an d v o lu me of s e d i m e n t s in f i l l i n g m od el 2) cr es t a l terrace an e q u i l i b r i u m p e r i o d of l o c a t i o n and d i s t r i b u t i o n of ridges In ne r Port H u r o n po s i t i o n d e p o s i t i o n of E l m i r a s e d i m e n t s m ay have successive drift, 3_ Inn er Port H u r o n s i g n i f i c a n t durat ion , the m a rg in 41b). f o r m a t i o n of the E l m i r a P l a i n it form ed d u ri ng If so, to the an u n k n o w n amo un t The extent, a glacial (Fig. the end of g l a c i o f l u v i a l a s s o c i a t e d w i t h the th at b e t w e e n the O u t e r and idea that d e p o s i t i o n oc c u r r e d a l on g a s t e a d i l y r e t r e a t i n g gl ac ia l Ice ma r g i n a l ice m a r g i n a s s o c i a t e d correlates southwest to it w i t h the 143 DIRECTION OF MELTWATER DISCHARGE C am p Ten surface Alba surface ' Lakes of the' the North margin 612 surface v Crofton surface Figure 45. P h a se 3. Formation of Surface 2. 144 Glenwood II stage of Lake Chicago. the Inner Port H u r o n Complex, we r e opened, 46). W i t h d e g l a c i a t i o n of lower m e l t w a t e r outle ts and the Elm ir a Pla in was a b a n d o n e d Su rf a c e s 3, 4, and 5 m a r k the tr an s i t i o n (Fig. to these lower outlets. The 2) 1) p a t t e r n of su rfaces 3, 4 and 5 (Fig. 32) r e l a t i o n s h i p of these su rfaces w i t h the small valle ys described marginal re tr ea t progressed in C h a p t e r 4 indicate that and incised ice- from the Inner Port H u r o n C o m p l e x from south to north, thus c on ti nu in g the p r e v i o u s l y e s t a b l i s h e d n o r t h w e s t w a r d pi vo t i n g m o t i o n (Fig. 46). Ne a r M a n c e l o n a (secs. W . ), h e a d w a r d p o r t i o n s of some 5 and 6, T. 29 N., R. 6 incised dry ch an n e l s car ve d by s u p e r g l a c i a l m e l t w a t e r are nearl y 70 m above the base of the ice-con ta ct s o u t h e a s t w a r d onto its surface. slope. These c h a n ne ls extend the E l m i r a P la in and are into T h e i r d o w n s t r e a m ends e v e n t u a l l y m e r g e with the c o m p l i c a t e d terrace a s s e m b l a g e m a r k i n g and 5. i n ci se d If th es e latter su rf ac es are su rf a c e s 3, 4, followed s o u t h w e s t w a r d , t he ir d o w n s t r e a m po rt i o n s lie p r o x i m a l the Inner Po r t H u r o n ic e - c o n t ac t slope. Thus, streams d r a i n i n g position west farther south. la ndforms the m e l tw at er ice m a r g i n at the Inner Port Huron of M a n c e l o n a lie pr ox im al to this ma rg i n In c o m b i n a t i o n the a r ra n g e m e n t of suggests Hu r o n p o s i t i o n we s t to that these ice r e ma in ed at the In ner Port of Mancelona, wh il e a si mil ar p o s i t i o n a l r e a d y had been a b a n d o n e d farther so uth (Fig. 145 DIRECTION AND RELATIVE AMOUNT OF ICE-MARGINAL RETREAT DIRECTION OF MELTWATER DISCHARGE C am p Ten surface Alba surface Lakes of the, North margin SURFACE 4 612 surface SURFACE 3 SURFACE 2 Crofton surface Figure 46. Formation of su rfaces 3 a n d 4. 146 46). Such a p a t t e r n is c o n s i s t e n t w i t h fro m the O u t e r Port H u r o n feature, terminii Burgis where likewise pivoted northwestward. (1977) northeastern north i n te r p r e t a t i o n s southern Int er es ti ng ly , found that Port H u r o n d e g l a c i a t i o n southern Michigan progressed in a s i m i l a r fashion, except in from s o u t h to there the ice m a r g i n l o ca t e d at the In ne r Port r o t a t e d n o r t h e a s tw a rd . The H o f f m a n Lak'- Channel, H u r o n apex, this is cut d e e p l y lat te r s u r f a ce is not into the E l m i r a Plain, incised i m m e d i a t e l y to the south. If an ice m a r g i n was p o s i t i o n e d along the contact slope at t h e s e two l o c a t i o n s Th i s r e m a i n e d at the a p e x a ft er a re as already deglaciated (Fig. H o f f m a n Lake C h a n n e l east, must have b e e n Channel retreat ice f a rt he r so ut h we r e Because meltwater ice free. Thus, in the the a r e a to the the H o f f m a n Lake fo r m a t i o n of the E l m i r a s u rf a c e and a p e x ’s e a s t e r n side, from the w e s t e r n edge O n these bases, in ci se d the su gg e s t s that dr a i n e d east wa rd, for me d a f t e r d e g l a c i a t i o n of the 47). ice- contemporaneously, t h e n the a s s o c i a t e d m e l t w a t e r w o u l d have E l m i r a s u rf ac e at b o t h places. yet (Fig. the H o f f m a n Lake i n t e r p r e t e d as h a v i n g Burgis be fo r e 47). f ea tu re formed v e r y late H u r o n d e g l a c i a t i o n sequence. but in the (1977), is I n n e r Port studying Po r t H u r o n M o r a i n e in n o r t h e a s t e r n Michigan, c o n c l u d e d that the Inner Port H u r o n apex wa s the r e g i o n to be d e g l a c i a t e d d u r i n g also last Port H u r o n retreat. the 147 Hoffman Lake Channel DIRECTION AND RELATIVE AMOUNT OF ICE-MARGINAL RETREAT DIRECTION OF MELTWATER DISCHARGE Cam p Ten surface (1) Alba surface (1) Lakes of the, North margin SURFACE 4 SURFACE 3 612 surface SURFACE 2 •Crofton suriace Figure 47. Formation of surface A. 148 There Channel is the p o s s i b i l i t y that the H o f f m a n Lake for med from d r a i na ge of G r e a t l a k e a n / V a l d e r a n ice that had r e a d v a n c e d to p o s i t i o n s m a r k e d by the apex. M el hor n (1954) and Burgis (1977), however, both map the G r e a t l a k e a n / V a l d e r a n b ou nd ar y no rth of the apex, su gge st ing that this advan ce did not reach the proximal border of the Inner Port H u r o n C o mp le x here. Phase As the m a r g i n w i t h d r e w position, Port H u r o n s ed iments proglacial lakes i c e - co nt act from the formed pr ox ima l slope. of 12,960 the ice m a r g i n wa s p r o x im al ou t w a s h s u r fa ce s C, (Fig. and D. retreat, (A-H, 47) Pit), from lakes y i e l d e d a (TX-6151; IV C Ant ri m and i n d ic at es that to the Inner Port H u r o n W - Z ) wer e formed, b e g i n n i n g with surfaces T o g e t h e r w i t h te rr ac es E-H2 and W-Z, b ra ide d c ha nn e l from a single, J o r d a n - W a r n e r valleys; m e l t w a t e r d o m in at ed systems Fig. (C ed ar - Gr ee n and 48). is c l o s e l y r e l a t e d to surfaces (Elmira Plain). they to two sep ara te p r e c i p i t a t i o n / g r o u n d w a t e r single channe l S ur fac e A a s u c c e s s i o n of lo we r and fo ll ow ed by inc isi on of record the t r a n s i t i o n co nt r o l l e d B.P. Inner this time. Wi th c o n t i n u e d B, to the Or gan ic m at er ia l ± 350 yrs. Cou n t y Road C o m m i s s i o n Gravel surface A Inner Port Hu ro n a s s o c i a t e d wi t h one of these age es ti ma te Compl ex at 4. All are extensive, s ig ni fic ant d e p o s i t i o n a l features 1 and 2 re gi on a l l y c o n t ai ni ng thick 149 Hoffman Lake channel Jordan/Warner riversystem Cam p Ten surface (1) Cedar/Green riversystem valleys X! Lakes of the North margin 612 surface Crofton surface Figure 48. Formation of the Jordan-Warner and Cedar-Green river system s. 150 ou tw a s h d e p o s i t s margin. formed along a r e l a t i v e l y stable In s t ri ki n g contrast, s m al le r features. deglaciation l o w e r terraces ar e much T h e y re p r e s e n t a c o m p a r a t i v e l y brief interval c h a r a c t e r i z e d by falling levels cau sed by openin g of lo we r outlets, co n c o m i t an t dr op in w at er tables. v e r y c o m p l i c a t e d b e ca us e of the remnants, 2) p o o r c h r o n o l o g i c g l a c i o f l u vi al lake levels role ice surfaces, base wi t h a R e la ti ons hip s here are 1) pa u c i t y of t e rr ac e c o n t r o l on fluvial and 3) li mi t e d knowledge of related in the Lake M i c h i g a n bas in and 4) u n c e r t a i n (if any) of G r e a t l a k e a n / V a l d e r a n ice in st re a m history. Phase _5 Sometime a ft er Huron position form at ion of the Post (perhaps during G r e a t l a k e a n / V a l d e r a n advance) readva nc ed to the C h a p t e r 4, d o w n s t r e a m po rt i o n s along wi th pa rts o v e r r i d d e n by in secs. T. 27 N., includes the subsequent th e ice ma rg i n in pl ac e s Inner Port H u r o n crest. of surfaces As n o t e d 3, 4, in and 5, of the Post I nn er Port H ur on zone, were ice and then b u r i e d by sta gn at io n deposit s 35 and R. Inner Port 36, 8 W. T. (Fig. 28 N . , R. 49). 8 W. , and secs. E v id en ce 1 and 2, for burial 1) an abrupt d o w n s t r e a m t e r m i n a t i o n of wide, g e nt ly sloping, low relief o u t w a s h surfaces by un c o n t r o l l e d d i s i n t e g r a t i o n topography, w i t h i n these d i s i n t e g r a t i o n tracts to c orr ela te w i t h su rfaces 3, 4, and 2) al titudes that are mu c h too high or 5. Burial must post- 151 Hoffman Lake channel LIMIT OF POST INNER PORTHURON ZONE a Cam p Ten surface (1) J Alba su rfa c e (l) Through valleys v Lakes of the North margin 612 surface Crofton surface Figure 49. R eadvance after formation of the P ost Inner Port Huron zo n e. 152 date Phase 3 and 4 and r e f l e c ts f l u c u at io n s d u r i n g (Fig. Phase T o p o g r a p h y in the alteration, int eg r at ed d r a i n ag e due westward ru no f f networks. e vi de nc e l i ke ly water wi t h n u m e r o u s fa vo rin g the An important f o r m at io n of exception tributary valleys 15 m trends to the The o r i e n t a t i o n of the l o wl an d a n d lack of a superglacial for spring formed its u p s t r e a m end meltwater sappin g source. is observed. i m m e d i a t e l y fo l l o w i n g tables were m u c h higher, e ff lu en t to the h i g h l y p e r m e a b l e w h e r e a flat bottomed, an a s s o c i a t e d ha n g i n g v a l l e y at pr e c l u d e s 49). from the O u t e r Port H u r o n C o mp l e x d o w n E l m i r a Plain. or 2) 6. in pa r t exi st s at the A l b a salient, dry channel i c e - m ar gi na l s t u d y a r e a has e x p e r i e n c e d little sa nd y drift w h i c h limits deep, 1) final Port H u r o n de gl ac iat ion , G r e a t l a k e a n / V a l d e r a n a d van ce Ho l o c e n e eit he r to this tables dropped, No Thi s v a l l e y deg la ci at io n, p r o v i d i n g lar ge s t r e a m system. As whe n am oun ts ice w i th dr ew, p e r h a p s pr ec ip i t o u s l y , brief per io d of in c i s i o n by th ese spring or wa te r a c c o m p a n i e d by a streams. Elsewhere, this pr oce ss p r o d u c e d onl y li m i t e d d i s s e c t i o n al ong O u t e r Port H u r o n m a r g i n and su rf ac e West of Alba, in la cu st ri ne overlook. (?) Here, the west and more a spectacular cla y 1 te rr ac e example of the scarps. of s p r i n g - s a p p i n g is o b s e r v e d at the L a n d s l i d e Creek an a m p i t h e a t e r - l i k e tha n 50 m deep, hollow, concave forms the h e a d w a t e r to 153 r e g i on of L a n d s l i d e Creek. conspicuous of the w i d e s p r e a d H o l o c e n e example sapping occurring This throughout feature is the most tr ac t s pro xi ma l spring- to the Inner Port H u r o n Complex. S t r e a m piracy, a u g m e n t e d by sprin g- sap pi ng, is an im po rta nt p r o c e s s in the C e d a r - G r e e n and J o r d a n - W a r n e r Creek st re ams systems, where In ner Port H u r o n seq u e n ce in secs. headward portions to hea dw ar d into the s lo pe have p r o d u c e d a c o m p l i c a t e d of H o l o c e n e displayed cu t t i ng drainage 27 and 28, diversions. This T. 6 W . , where 30 N . , R. of the C e d a r R i ve r the Inner Port H u r o n bluff) have is best (oriented p ar al le l been c a p t u r e d by G r e e n River and C a s c a d e C r e e k (ori en te d p e r p e n d i c u l a r to the These Inner Port H u r o n slope). gr a d i e n t stream networks Inner Port H u r o n streams ice-contact Regional the o ut er l i m i t s in areas p r o x i m a l slope. that the Port H u r o n Mo r a i n e of a s i g n i f i c a n t gl aci al his e vi d e n c e b a s e d p r i m a r i l y on the mo r a i n e to b e a c h e s W hi t tl ese y. This a l t i t u d e gl aci al to correlation In 1905 T a y l o r p r o p o s e d marks hi gh e r m a y be e x p e c t e d to e x p a n d at the e x p e n s e of lower g r a d i e n t the latter, of g l a c i a l advance, r e l a t i o n s h i p of the lakes A r k o n a and i n t e r p r e t a t i o n p o s t u l a t e d that a lowlake, Lake Arkona, o c c u p i e d the so ut h e r n pa r t of the Lake H u r o n b a s i n p r i o r to fo rm at io n of the Port H u r o n Moraine. Advance southeastern Michigan ponded of Port H u r o n the wa te r s ice into of Lake A r k o n a 154 and formed a new, Tay l or be ac h (1905) higher altitude lake, Lake Whittlesey. d o c u m e n t e d t r u n c a t i o n of Lake A r k o n a features by the mo r a i ne and showed that Lake W h i t t l e s e y was p e n e c o n t e m p o r a n e o u s with the Port H ur on fe a t u r e . M od e r n (Fullerton, studies c o n f i r m T a y l o r ’s in ter pre tat ion s 1980). Age d e t e r m i n a t i o n s a s s o c i a t e d with the rise and s t a b i l i z a t i o n of Lake W h i t t l e s e y Ontario and Ohio yield G o l d t h w a i t , 1958), and 12,800 + 250 (1957). 12,900 (Y-240; + 200 12,920 + 400 (1-3175; Barendsen, 13,000 y r s . B.P. in the G re at Ta y l or (1913) Lakes (W-430; Calkin, Deevey, Based on some of these dates, a s s i g n e d an age of advan ce ages of in 1970), and Gralenski Hough (1958) to the Port H u r o n region. c o r r e l a t e d the Port H u r o n M o rai ne in s o u t h e a s t e r n M i c h i g a n wi t h the W yo mi ng M o r a i n e s o u t h w e s t e r n Ontario. W o o d a s s o c i a t e d wi t h St. in Jo s ep h IU till of from the W y o m i n g Mo r a i n e y i e l d e d a 13,000 + 100 yrs. B.P. Stupavsky, 1976; co r r e l a t e s this till w i t h (GSC-2213; L o w d o n and Blake, "Jeddo C age es timate Gr av e n or and 1976). till" Eschman from the Port H u r o n Moraine: It seems c e r t a i n that the J ed do till is the M i c h i g a n e qu iv al en t of the St. J o s e p h till of On t a r i o -- each is the surfa ce till in the t e r m i n a l m o r a in ic syst em of Port H u r o n age, an d that s y s t e m has only a r e l a t i v e l y narrow gap in it in the Port H u r o n - Sa rn i a re g i o n (Eschman, 1978, p. 37). Thus, the age of the Port H u r o n M o r a i n e M i c h i g a n is b a s e d on |U C dates in s o u t h e a s t e r n a s s o c i a t e d wi t h 155 morphologic and s t r a t i g r a p h i c un it s from o u t s i d e of the state that a p p a r e n t l y co r r e l a t e w i t h the f e a t u r e ’s type area. C o r r e l a t i o n w i t h i n M i c h i g a n -- T a y l o r p r e se nt ed the pl at e II) first map l i nki ng the Port H u r o n Mo ra i n e to t op og rap hic fea tu re s Peninsula. L e v e r e t t ’s 1911 formations (1899, shows in the n o r t h e r n part of the Sou th er n map of the surfi cia l the Port H u r o n Morain e tre nd in g from its type area near Port Hu ron n o r t h w e s t w a r d to Muskegon. Description, cor relatio n, and i n te rp r e t a t i o n of the feature w i th in M i c h i g a n was p u b l i s h e d by Le v e r e t t Tay lo r and in 1915. Blewett ( 1989 ) rev ie we d c o r r e l a t i o n and i de nt i f i e d the basis for this four prin ci pa l criteria used by Leveret t and Taylor: 1. PATTER N -- the mo ra i n e (as map pe d by Lev erett) nearl y c o n t i n u o u s across the state. 2. FORM — the mo rai ne is a con sp ic uo us feature, hig h and rugged in some areas, subdued in ot he r s 3. A S S O C I A T I O N is topographic low and -- a. the m o r a i n e lies " i n s i d e ” of the o l d e r West B ra nc h-L ake B o r d e r Complex; b. the m o r a i n e is d i s c o r d a n t wi t h the W e s t B r a n c h Lake Bord er Complex; c. the m o r a i n e burie s so ut he as te rn Michigan; d. the m o r a i n e Whittlesey; Lake Ark on a be ac h e s in is coeval w i t h beache s of Lake e. near Lake M i c h i g a n the morain e is re l a t e d to lakes dee me d c o r r e l a t i v e wi t h Port H u r o n even ts in the H u r o n - E r i e basins. 156 4. L I T H O L O G Y -- the m o ra in e is d e l i n e a t e d us in g t e x t ur ed s e d i m e n ts in the S a g i n a w lowland. B ase d on n ew ly a v a il ab le top og ra ph ic quadrangles, soil maps, and ae ri a l phot og rap hs, r ec og ni z ed five sub uni ts w i t h i n the morain e sh ar pl y in m o r p h o l o g i c cha ra ct eri st ics , corr elations, qu es ti o n e d topography Blewe tt (1989) that differed and se di me n t o l o g i c and ob se r v ed that Le verett and T a y l o r ’s t h o u g h g e n e r a l l y accurate, in some places. These areas n o r t h e a s t e r n s o u t h e r n Michigan, continuous, fine can be inclu de w h e r e the and 2) the Sa g i n a w lowland, is p o o r l y developed. 1) featu re is not w h e r e mo rainic B l e w e t t ’s ana ly si s c o n cl ud ed that age es ti ma te s and c o r r e l a t i o n of sediments and te rr a i n in n o r t h w e s t e r n s ou th er n Mi c h i g a n w o u l d likely be e s t a b l i s h e d on the ba sis dating. Until the presen t study, however, for Late W i s c o n s i n a n or gan ic d e p o s i t s part of the S o u t h e r n P e n i n s u l a we re a l . (1969; see next Age d e t e r m i n a t i o n s Michigan — l acu str ine in the no r t h e r n limite d to Farran d et section). Inner Port Hu ro n Complex, i m m e d i a t e l y pro xi ma l about 6 W.). 12,960 site; NW 1/4, This m at er ia l + 350 yrs. B.P. to the 50 ra be low the crest (Antrim Co un t y Roa d C o m m i s s i o n gravel pit, R. in northern mat er ia l was re co ve re d from a silt d e p o s i t e d "Antri m County" age estim ate s for the Port H u r o n Co mp l e x Organic /V C of a p p r o p r i a t e NW1/4, sec. he r e a f t e r 33, T. 30 N., y i e l d e d a ,,fC age es t i m a t e of (TX-6151). Becaus e the lake 157 a s s o c i a t e d w i t h these d e p o s i t s b e t w e e n the Inner Po r t H u r o n f o rm ed in a n a r r o w zone ice-contact slope and an ice m a r g i n l oc a t e d less t h a n a k i l o m e t e r to the northwest, the silts must p o s t d a t e the In ne r Po rt H u r o n Complex. The age and l o c a t i o n of t h e s e s e d i m e n t s mean In ner Port H u r o n C o m p l e x w i t h i n the fo rm ed p ri or to 12,960 ± 350 yrs. for the in ter pr et at i on , these d e p o s i t s that study ar e a B.P. m i n i m u m age e s t i m a t e data rath er (E lmi ra than clay, The o l d e r Lake An a l t e r n a t i v e con tin ue the b e n e a t h the feature, surface) at c o m p a r a b l e Border Moraine of the Port H u r o n C o m p l e x altitudes. is lo cat ed sou theast in n o r t h w e s t e r n s o u t h e r n and can be tra ce d southward Illinois. Fullerton (1980) a s s i g n e d an age of yrs. B.P. to the complex, an into n o r t h e r n ( 13,870 640 yrs. ISGS-1570; c it ed ISG S- 15 49 in H a n s e l Glenwood and Mic ke ls on , 1987) I stage of Lake Chicago, ice m a r g i n a l Il li no is and re tr e a t (Fullerton, 1980). 14,000 yrs. B.P. Lin, + 1987; soon after Border Moraine in estimates, a m a x i m u m age of for the Port H u r o n Comple x and, A n t r i m C o un ty date, the A 14,100 a s s o c i a t e d wi th the in n o r t h w e s t e r n s o u t h e r n Mic higan, i n d i ca te s C.L. Ba sed on these the Lake B o r d e r M o r a i n e p r o v i d e s approximately + 170 and w h i c h forme d from the Lake 14,200 - interpretation s u p p o r t e d by r e ce nt ,4C d a t e s B.P.; the show sand and Michigan, 14,300 is not from n u m e r o u s w el ls d r i l l e d along Inner Port H u r o n cr es t gravel, likely and e s t a b l i s h e s a feature. Inner Port H u r o n C o m p l e x and p r e d a t e likely because that the that c o m b i n e d wi th the Inner a nd Outer 158 Po rt H u r o n C o m p l e x e s and 14,000 yrs. formed b e t w e e n a p p r o x i m a t e l y 13,000 B.P. Farran d et a l . (1969) b u r i e d by a sin gl e 12,570 ± 500, o t h e r ages are 9,960 10,700 + 400 W - 1 8 8 9 ; and + 350 + 350 a short (13,300 from the a buri ed red till n e a r Ch eboygan, th a t a p p a r e n t l y m a r k s b y three d a t e s describe same Michigan, interval d e fi ne d and 12,800 ± 400, 12,500 + 500, W- 1847). bed (M-1753-1), (M-1753-3). ic e- f r e e b r y o p h y t e bed (Crane 10,700 The L-1064; Three and Griffen, ± 350 1968) (M1753-2), first date was and r e j e c t e d by F a r r a n d et a l . as being too young; the o t h e r two were not mentio ne d. set of a s s u m p t i o n s B a s e d on a c o m p l i c a t e d p r e d i c a t e d by a c c e p t a n c e bryophyte int erval th a t of the o l d e r dates, the bed was a s s u m e d to r e p r e s e n t an ic e- f r e e l a st in g from about 13,000 to 12,500 yrs. i m m e d i a t e l y p r e - d a t e d the Port H u r o n advance; b e e n n am ed the C a r y - P o r t H u r o n The it has till overlying the r e p re se nt u n i n t e r r u p t e d d e p o s i t i o n of till d u r i n g both Di’y o p n y L e be u was interstade. B.P., i n t e r p r e t e d to the Port H u r o n an d G r e a t l a k e a n / V a l d e r a n substages. ot h e r words, a c c o r d i n g to F a r r a n d In et a l . 1) the b r y o p h y t e s we r e b u r i e d by red till d u r i n g Po r t H u r o n a d v a n c e to the m a x i m u m Port H u r o n position, margin subsequently not 2) r e t r e a t e d d u r i n g Two C r e e k s far e n o u g h n o r t h to u n c o v e r the b r y o p h y t e 3) G r e a t l a k e a n ice th e n readvanced, d e g l a c i a t i o n of the the time, but region, and followed by S o u t h e r n Peninsula. ice final 159 F a r r a n d ’s b r y o p h y t e approximately site are too y o u n g and b e l i e v e s Creeks 13,000 of 12,500 Fu l l e r t o n 14,000 yrs. yrs. B.P. B.P., from the C h e b o y g a n to be e a s i l y accomodated. reevaluated the d e p o s i t forest a v e r a g i n g about of the An tr i m C o u n t y site. and - 13,000 (1980) bur ie d is lo c a t e d and O u t e r Port H u r o n C o m p l e x e s must form ed b e t w e e n estimates (now covered) 75 km n o r t h e a s t B e c a u s e the Inner ha v e bed F a r r a n d ’s i n t e r p r e t a t i o n m a y c o r r e l a t e wi t h the Two in W i s c o n s i n 11,850 yrs. B.P.; (numerous d at es B l a c k and Rubin, 1967- 1968): In view of (1) the u n c e r t a i n r e l i a b i l i t y of c o r r e l a t i o n by means of p o l l e n spectra, (2) the 3,700ye a r range of m e a s u r e d ag e s of the C h e b o y g a n bed, (3) the age d i s c r e p e n c i e s in d a t i n g the C a s t a l i a bry op hytes, and (4) the p o s s i b i l i t y of isoto pe f r a c t i o n a t i o n in some s p e c i e s of bryophytes, the age and c o r r e l a t i o n of the C h e b o y g a n bed are c o n s i d e r e d unproved. R e s o l u t i o n of the age of the bed is e x t r e m e l y i m p o r t a n t b e c a u s e the d e g l a c i a t i o n hi s t o r y ^ in the Lake M i c h i g a n and La ke H u r o n basi ns is de p e n d e n t u p o n a s s i g n m e n t of a co rre ct age to the b r y o p h y t e b e d ...(F u l l e r t o n , 1980, p. 20). -r- XXI ^ llg U L U1 r» UilCiDC ‘ ^ 4 , L i 1 tlL > ldiU O ) J « m a x i m u m age of the Port H u r o n a d v a n c e on the basis of F a r r a n d ’s b r y o p h y t e v , _ J M 4 u cb ciiu x ax iip , l L. . unw in C h e b o y g a n Co un t y site is question abl e, e s p e c i a l l y g iv en the ov e r l a p b e t w e e n the A n t r i m C o u n t y and C h e b o y g a n age d et er m i n a t i o n s . C o u n t y e st im at e H u r o n Complex, correct) may (Fullerton, ic e- f r e e B e ca us e the A n t r i m record s d e g l a c i a t i o n of the F a r r a n d ’s b r y o p h y t e da te s in st ea d 1980), interval. reco rd the In ner Port (if t h e y are be g i n n i n g of a Two Cre ek s r a t h e r t h a n a Ca r y - P o r t Huron, If so, the till o v e rl yi ng the 160 bed is G r e a t l a k e a n / V a l d e r a n continuous deposit spanning Greatlakean/Valderan ag r e e m e n t time. in age b o t h Port H u r o n and Indeed, among A n t r i m C o u n t y ( Gravenor and St upavsky, a l . 1957) morphologic plus the 1) st ro n g (this study), 1976), r a d i o c a r b o n dates and Lake W hi tt le sey , ra t h e r than a and Ohio On ta r i o (B ar en ds en et for the Port H u r o n M o r a i n e 2) the o v er al l a c c u r a c y of c o r r e l a t i o n b e t w e e n the A n t r i m C o u n t y site and the type Port H u r o n ar e a (Blewett, 1989), in dicates that the A n t r i m C o u n t y age e s t i m a t e may be a mo r e re li a b l e b as is for d e t e r m i n i n g northern Michigan than provides, first time, for the the Port H u r o n a d v a n c e Conclusions — Prior Port H u r o n c h r o n o l o g i e s the b r y o p h y t e site. a m i n i m u m age in It also estimate for in this pa r t of the state. to this study, c o r r e l a t i o n of the Inner and O u t e r Port H u r o n C o m p l e x e s wit h the type Port Huron Moraine in s o u t h e a s t e r n M i c h i g a n was b a s e d pi-imai ily on m o r p h o l o g y . was c o r r e l a t e d w i t h Ontario, Si m ii ar il y, the la tt e r the W y o m i n g M o r a i n e featur e in s o u t h w e s t e r n and b o t h w e r e d e e m e d coev al wi th Lake W h i t t l e s e y l a n df or m s and sediments throughout Be ca u s e age d e t e r m i n a t i o n s w e r e the Erie basin. not a v a i l a b l e for the Port H u r o n C o m p l e x w i t h i n M i c h i g a n b e f o r e the r e p o r t by F a r r a n d et a l . (1969), O n t a r i o an d O h i o w e r e r a d i o c a r b o n age e s t i m a t e s a s s i g n e d to the Port H u r o n type a r e a ba sed on these m o r p h o l o g i c same time, from co rr ela ti on s, and, at the a p p l i e d to the Po r t H u r o n C o m p l e x t h r o u g h o u t 161 Michigan. Thus, following Port Hu ro n Co m p l e x not verified) This 12,960 study p r e s e n t s B.P. 13,000 estimates, a mi ni mu m age for the Inner Port H u r o n Co mp le x given the the C h e b o y g a n br yo ph yt e a rel ia bl e basis 14 C da te s age for e s t a b l i s h i n g for the Port H u r o n C o m p l e x part of the S o u th er n Pe ninsula. 1) agrees wit h (but a m i n i m u m r a d i o c a r b o n age of s u r r o u n di n g pr o v i d e s the r a d i o c a r b o n years old. in no rt hw es te rn s o u t h e r n M i c h i g a n and, co nt r o v e r s y route, in n o r t h e r n M i c h i g a n was a s s u m e d to be about + 350 yrs. a rat he r c i r c u i t ou s in the nor th er n This age d e t e r m i n a t i o n • fro m the W y om i n g M o r a i n e • in Ontari o and with d ate s a s s o c i a t e d wi th Lake W h i t t l e s e y Ohio, 2) helps v e r i f y L e v e r e t t of the Port H ur on C o m p l e x and 3) for the first time, in and T a y l o r ’s c o r r e l a t i o n acr os s the So ut h e r n Peninsula, establishes the Port H u r o n C o m p l e x w i t h i n Michigan. a m i n i m u m age for Chapter 5 C O N C L U S I O N S AND I M PL IC AT IO NS This c h a p t e r s u m m a r i z e s the sedime nto log ic, morphologic, they relate and c h r o n o l o g i c to the fi ndings of this Inner and O u t e r Port H u r o n complexes in n o r t h w e s t e r n s o u t h e r n Michigan. discussed based on their ve rt ica l Landf or ms are p r e s e n t e d C o m pl ex es se d i m e n ts and and h o ri z o n t a l of the Inner and O u t e r is almost w h o l l y r e s t r i c t e d to the contact size. Port Huron 1) g l a c i o f l u v i a l 2) g l a c i o l a c u s t r i n e Post Inner Port H u r o n zone. aspects. findings are a l m o s t e x c l u s i v e l y and gravel, S e d im en ts are in order of d e c r e a s i n g Sedimentologic S u r fi ci al st udy as sand silt and clay. fluted u p l a n d s C r es ta l Till and the areas e x h i b i t ice- s t r a t i f i e d drift and sur fi ci al b o u l d e r s a s s o c i a t e d w i t h d e p o s i t i o n along m a r g i n a l l y st ag n a n t This evidence, topography, al on g with indi ca te s deposition began the presen ce of h u m m o c k y that in ma n y areas o u t w a s h in the st ag na nt zone up -i c e marg in and e x t e n d e d ice. s o u t h e a s t w a r d beyo nd the fr o m the ice terminus. Me l t w a t e r d e p o s i t i o n and e r o s i o n were the do mi na nt g e om or ph ic p r o c e s s e s o p e r a t i n g deglaciation. in the study a r e a during V a r i a b l e a s pe ct s of g l a c i o f l u v i a l de p o s i t i o n are c l e a r l y re ve a l e d at nine grav el pits located on the E l m i r a Plain. 162 C o m p a r i s o n s of se diment 163 te x t u r e and d i a g n o s t i c transition bedform lithofacies fro m coarse, poorly d o m i n a t e d by l o n g i t u d i n a l well-sorted braided bedforms. st re am s bars, in di ca to rs 90 d e g r e e s parallel axis. to the s a n d u r 7 are ot h e r s a n d u r On all the 4 1 5- 91 5 show that me l t w a t e r to the right interpreted t e x t u r e d g la ci al especially ice to flow Conservative paleodischarge mf m sec, these bases, 1982), sandy comparable to those from studies. s t r a t i f i e d drift. Bell, fine textured, displaying p r o x im al su rf ici al Inner and O u t e r Po r t H u r o n C o m p l e x e s a r e a are de po si ts flowed p e r p e n d i c u l a r l y away from the m a r g i n and t h e n t u r n e d estimates proximal to dist al stream deposits Paleocurrent first sorted, show a to be p r o g l a c i a l These till" but, se di me nt s as m a p p e d in the and of study ic e- c o n t a c t are not by oth er s in s t e a d are p r o x i m a l im po rt a nt se d i m e n t s "coarse(F arrand and facies of he ad s of o u t w a s h g r a d e d to the E l m i r a and O u t e r P o r t H u r o n o u t w a s h plains. Data that the from w a t e r and p e t r o l e u m well Inn er and O u t e r Port H u r o n an u p p e r m o s t w e d g e of likely for me d by i n f i l l i n g in ot h e r s margin. relief The u p p e r m o s t marginally stagnant fe at u r e s in di ca te each contain sand and gra ve l up to 80 m thick, d e p o s i t e d on a m o d e r a t e the n or th we st . logs till s u rfa ce i n c l i n e d to sand and grav el un it s were along a qu as i- st ab le , glacial position in some areas, and by d e p o s i t i o n a lo ng a s t e a d i l y r e t r e a t i n g ice 164 Morphologic Overall, the t e r r a i n of b o t h the Huron Complexes a re as Inner and O u t e r Port d i s p l a y a d i s t i n c t p a t t e r n of sa li ent s a n d reentrants. salients fin din gs Th e is c l o s e l y l o c a t i o n a n d size of the v a r i o u s r e lat ed to the m a g n i t u d e of lower on the d e e p l y b u r i e d b e d r o c k surface. like t he ir a s s o c i a t e d larger southward, A l b a fea tur es outside b e g i n n i n g w i t h the in the north, K a l k a s k a sa lie nt culminating b e dr oc k lowlands, small E l m i r a and Grand Traverse 150 k m - w i d e of the s t u d y area) are p r o g r e s s i v e l y f o l l o w e d by the l a rg er paralleling in a b r o a d Salients, s a lie nt paralleling Gr an d T r a v e r s e C o u n t y s o u t h w e s t w a r d Bay, and (l oc a t ed Lake M i c h i g a n from to Wh ite hal l. N o r t h e r n and s o u t h e r n s e c t i o n s of the st udy are a show st r o n g c o n t r a s t i n g d ri ft the thickness, relationships a n d the m o d e r n topography appears su rf ac e landscape. form, In the north, i n f l u e n c e d by hi g h b e d r o c k rel ie f c o m b i n e d wi t h r e l a t i v e l y th i n drift. Southward, lower, to be among b e d r o c k where drift this is t h i c k e r and b e d r o c k re l ie f relationship is absent. In te res ti ng ly , the lat te r a r e a c o i n c i d e s w i t h the b r o a d K a l k a s k a sa l i e n t and its a s s o c i a t e d e x t e n s i v e b e d r o c k low. that gl aci al fl ow in g dynamics This r e lat ed to thicker, from the G r a n d T r a v e r s e suggests faster ice Ba y l o wl an d m a y help e x p l a i n the r e l a t i o n s h i p s observed. Twenty-six separate s u r f a c e s are the M a n c e l o n a P l a i n and Post can be gr ou pe d into r e c o g n i z e d wi th i n Inner Port H u r o n four categori es: zone; these 165 1. E x t e n s i v e s u r f a c e s r e p r e s e n t i n g thi ck o u t w a s h de p o s i t s that f o r m e d along q u a s i - s t a b l e ice ma rg i n al p o s i t i o n s of r e l a t i v e l y long d u r a t i o n (surfaces A, 1, and 2, pl us the C r o f t o n terrace). 2. Less e x t e n s i v e su rf ac es 3-8, r e c o r di ng a br ief int erval of fa lli ng base le ve l s cau se d by o p e n i n g of lower ou tl e t s and c o n c o m i t a n t drops in the w a t e r table dur in g deg la ci at io n. 3. Su r f a c e s B-Z, m a r k i n g the P l e i s t o c e n e - H o l o c e n e t r a n s i t i o n in the C e d a r - G r e e n and J o r d a n - W a r n e r river systems. 4. The H o f f m a n Lake Channel, re co rd in g i n ci si on of the E l m i r a surface, and d e g l a c i a t i o n of the e a s t e r n side of the Inner Por t H u r o n apex. C h a r a c t e r and d i s t r i b u t i o n of some of these is re la te d to the reg ion al sa li e n t d i s c u s s e d earlier. Te r r a c e s in sa lie nt wi t h l a r g e r regions, l a rg er te rra ce r e co rd long conditions remnants. i n t e rv al s fav or in g are and r e e n t r a n t pa t t e r n preferentially preserved sa li ent s A l to ge th er , of q u a s i - s t a b l e containing these sur fac es ic e - m a r g i n a l t h i c k o u t w a s h deposition, by brief t r a n s i t i o n a l pe r i o d s surfaces of ra pid punctuated i n ci si on as the ice m a r g i n retreated. In a d d i t i o n to the numerous sm a l l e r proximal tra ct s Complex es. l a n d f or ms of the Th es e are a s s o c i a t e d w i t h hu m m o c k y Inner and O u t e r Port H u r o n and and that d e g l a c i a t i o n se ri es of s u c c e s s i v e of sta gn an t sedimentologic in the perched ice b l o c k dep res si on s. for the pr e s e n c e Morphologic fea tur es d e s c r i b e d above, includ e h a n g i n g valleys, d i s i n t e g r a t i o n ridges, are e v id en ce larg er fans, All ice. e v id en ce in di cat es so ut h was c h a r a c t e r i z e d by a ice m a r g i n a l positio ns, y o u n g e r to 166 the northwest, areas by 1) f o l l o we d by re a d v a n c e and burial flu cu at io n s of the gl aci al Port H ur on retreat, The terminus dur in g or 2) G r e a t l a k e a n / V a l d e r a n advance. 1) pre se nc e of m ul t i p l e ice ma r g i n s in so ut he rn sections of the O u t e r Port H u r o n Complex, the C ro ft o n surface of some rel ati ve app ar en t g r a d a t i o n of small 2) l o c a t i o n of to these latter in c i s e d valle ys features, formed at the Inner Port H u r o n p o s i t i o n to lower surfaces found pro xi ma l and 4) to this same m a r g i n farth er south, inc ision of the H o f f m a n Lake C h an ne l in the apex region, wi t h an absence of simil ar d o wn c u t t i n g southward, all suppor t 3) imm ed ia te ly the i n t e r p r e t a t i o n that the ter minus p iv ot ed c l o c k w i s e to the n o r th we st during ice deglaciation. A l t h o u g h d e g l a c i a t i o n was uniform, six lines of e v i d e n c e c o m p l e x and far from in dicate that p r o gr es si ve s t a g n a t i o n formed at least 9 morphosequences 5, su r f a c e the Lakes of the North, and Post land fo rm s are all Second, ice-contact evidence because spatial a r r a n g e m e n t First, the slopes and ice-con ta ct for the pr es e n ce of sta gnant su rf a c e s south ea st or southwest, 1- Inner Port Huron, Inner Port H u r o n po si tio ns ). ex i s t e n c e of n u m e r o u s ice. 1, (Margins c o n s i s t e n t l y slope the mo rp ho lo gy , of o u t w a s h features orientation, and indicate f o r ma ti on in a s s o c i a t i o n w i t h a st agnant glacial m a r g i n rather than is ol a t e d bl oc k s of dead surficial sedi me nt s of the ou t w a s h sand and gravel ice. Third, st ud y ar e a are p r i m a r i l y that ex h i b it a facies chang e 167 w h i c h fines distal to the he ad of outwash. p r o f i l e s c o n s t r u c t e d acro ss characteristic distally the ar e a show the imbricate-like pattern delineating morphosequences. transition Fourth, Fifth, t o p o g r a p h i c maps in di ca te from more c o l l a p s e d to less co l l a p s e d from heads of outwash. Finally, are c o n t r o l l e d by a sp ec if ic base level. su rfaces of the Outwash Inner and O u t e r Port H ur on Co mp le xe s (Burgis, 1977); terraces in the Po s t H u r o n zone may be gr a d e d to l ow er base the above c h a r a c t e r i s t i c s 121) terrain morphosequences a p p a r e n t l y are gr a d e d to the G l e n w o o d II stage C h ic ag o a are of Lake Inner Port levels. All of li s t e d by Ko t e f f (1974, p. as c r i t e r i a for i d e n t i f i c a t i o n of morphose que nce s. The 1 ) o v e r w h el m in g i mp or ta nc e d e p o s i t i o n and sediments, of till, profiles, and 3) p re se nc e ic e- c on ta c t 2) of gl a c i o f l u v i a l l a c k of s i g n i f i c a n t of n u m e r o u s slopes, all uv ia l ind icate and O u t e r Port H u r o n C o m p l e x e s are not c la ss ic moraines, but fan-like h a n g i n g valleys, fans and d i s i n t e g r a t i o n rid ge s instea d m a r k t e r r a i n w i t h ab un da nt m e l t w a t e r and s t a g n a n t p e rc he d that the formed amounts Inner end in as s oc ia ti on ice d u r i n g final de glaciation. A r e a s m a p p e d as end m o r a i n e by others (Martin, F a r r a nd and Bell, 1955; hu m m o c k y pr ox im al 1982) are ac t u a l l y t o p o g r a p h y a s s o c i a t e d w i t h two e s p e c i a l l y p r o m i n e n t and im p o r t a n t heads of o u t w a s h gr ad e d to their re sp ec t i v e o u t w a s h plains. 168 C hr on o l o g i c Or ga ni c mat eri al pr oxi mal findings from l a c u s t r i n e deposi ts to the Inner Port H u r o n slope (Antrim Cou nt y site) yield a IHC age d e t e r m i n a t i o n of 12,960 B.P., and pr ovi de a m i n i m u m date Port H ur on c om ple xe s in the located ± 350 yrs. for the Inner and Outer s tu dy area. The ne ar b y Lake Bor d e r C om p l e x wi t h an age of a p p r o x i m a t e l y 14,000 yrs. B.P., co m b i n e d w i t h the A n t r i m C o u n t y date, that the Port Hu ro n co mp le xe s p r o b a b l y about 13,000 and 14,000 yrs. B.P. formed be twe en C o n t r o v e r s i al a ss o c i a t e d with the C h e b o y g a n b r y o p h y t e bed 13,000 yrs. B.P.) are too young indicates dates (12,500 - to mark an ice-free interval p ri or to the Port H u r o n advance, the be gi nn in g of the Two Cr e e k s but m a y mark interstade. The Antrim Cou nt y age d e t e r m i n a t i o n 1) agr ee s with es ti ma te s c o r r e la ti v es of the Port H u r o n Mo rai ne O nt ari o 1976), (Barend sen et a l ., 1957; for in Ohio and G r a v e n o r and Stupavsky, 2) helps v e r i f y c o r r e l a t i o n of the Port H u ro n Comple x w i t h i n M i c h i g a n Blewett, 1989), and (Leverett and Taylor, 3) for the first time, m i n i m u m age on the Port H u r o n ad va n c e part of the So u t h e r n Peninsula. 1915; provides a in the no rt hw e st er n 169 Suggestions Dur in g the c o ur se c le a r that for f u r t h e r re se a r ch of this investigation four to pi cs w a r r a n t (1) T r a c i n g the E l m i r a P l a i n ad di ti on al it became considera tio n. s o u t h w e s t w a r d to the G l e n w o o d s h o r e l i n e m a y e s t a b l i s h preci se r e l a t i o n s h i p s b e t w e e n the Inn er Port H u r o n C o m p l e x and Lake Chicago, and also hel p of glacia l in i n t e r p r e t i n g l a n d fo rm s in G r a n d Traverse, and M a n i s t e e Count ies . ar ea is complex, in vestigation. am ong fluvial gradients, valuable and the c o m p l i c a t e d as se m b l a g e (2) Drainage poorly understood, terraces, Holocene stream patterns remain s tu dy im p o r ta nt two feature s exist) to a ny such study. and and (4) C o m p l e x bo th to the east d e p o s i t i o n along the there sou the rn is a full and sur fa ce s stratigraphic research. 3, s o ut h will 4, and ma y re l a t i o n s h i p s Distinguishing In ne r Port H u ro n C o m p l e x e s to the is p o o r l y u nd er st ood ; development. fr om a m i n o r re advance, in this b e t w e e n the M a n i s t e e mi gh t pr ovi de in n o r t h w e s t e r n in the a r e a wh ere key m o r p h o l o g i c w h i c h are and pi ra c i es river of G r e a t l a k e a n / V a l d e r a n events. 5 are bur ie d by d e p o s i t s rev ea l lake levels, i n c o m p l e t e u nt il accurate understanding field in the and w a r r a n t s into Q u a t e r n a r y land sc ap e (3) The d e g l a c i a t i o n c h r o n o l o g y Detailed evolution Benzie, A d e t a i l e d a n a l y s i s of re la ti o n s h i p s in si gh ts M i c h i g a n will Wexford, (if l i k e l y be central The c h a r a c t e r of the Po rt Hu ro n and so u t h we st investigating fe at ur e mig ht of the st udy area the c h a n g i n g modes of provid e a better 170 understanding of gl a c i a l landforras in this par t of Michigan. Finally, Rieck (1976), demonstrate published and o t h e r Burg is recent (1977), the u s e f u l n e s s geomorphology landscape. this studies an d B l e w e t t and R i e c k of r e s e a r c h on reg io na l since L e v e r e t t very few reports of glaci al g ive n rece nt have been and T a y l o r ’s 1915 m o n o g r a p h and lit tl e d e t a i l e d m a p p i n g has b e e n done. imp or tan t sediments concerns An a c c u r a t e is e s p e c i a l l y regarding groundwater c o n t a m i n a t i o n and h a z a r d o u s w a s t e disposal. far behi nd a d j o i n i n g and i n t e r p r e t in g states and O n t a r i o addressing these S u r v e y D i v i s i o n or the S u r v e y w o u l d be a m a j o r .inadequacies. is and landforms. f u n d e d b y the D e p a r t m e n t Na t u r a l R e s o u r c e s ’ G e o l o g i c a l Geological Michigan in d o c u m e n t i n g its Q u a t e r n a r y se di me nt s A reg ional m a p p i n g program, U.S. (1987) in u n d e r s t a n d i n g M i c h i g a n ’s g l a c i a l U nf or t u n a t e l y , understanding incl ud in g first step in of APPENDICES APPENDIX A F IEL D AND L A B O R A T O R Y T EC HN IQ UE S F IE LD TE CH NI Q U E S G R A V E L PITS AND O T H E R EXPO SU RE S Nine gravel pits c o n t a i n i n g least 3 m high and 3 m wide were te ch ni qu es fresh ve rt ic al sampled using faces at the d e s c r i b e d below: Sand and gravel 1. Four l o c at io n s w i t h i n each pit were ch o s e n at rand om u sin g a b o a r d game spinner. 2. An e x c a v a t i o n a p p r o x i m a t e l y one m e t e r long by two me t e rs h i g h was made 1.5 m below the top of the face at each of the four sites. A b se nc e or pre se nc e of be ddi ng was recorded, as were details of sediment type and s t ra ti gr ap hi c association. 3. A two m e t e r v e r t i c a l sample (Krumbein and Pettijohn, 1938) was t a k e n and dumped at a p r e d e t e r m i n e d c o l l e c t i n g area. 4. S ubs am ple s from all four areas we r e m i x e d t oget her at the c o l l e c t i o n site and to gether formed the m a i n sam pl e for that site. 5. Fine t e x t u r e d s e d i m e n t s ( < 8 mm) were c o l l e c t e d by ten ra nd om hand grabs and label ed for later sieving in the laboratory. 6. S e v e n t y - f i v e c o a r s e ( > 8 mm) fragments were sampled u sin g a w i r e grid p l a c e d atop the c oll e c ti ng pile. 7. Princ ipa l axis lengt hs (in cm) were m e a s u r e d and recorded for lat er te xt ur e ana lys is and sp he ri ci ty study. R o u n d n e s s was d e t e r m i n e d v i s u a l l y usi ng a s tan da rd set of g r a i n images (Leeder, 1982). 8. Clasts we r e th e n c l a s s i f i e d based on lithology. Those rocks of u n k n o w n o r i g i n were c o l l e c t e d for lab or a to ry study. 172 173 In addition, measured o r i e n t a t i o n of im bri cat ed stones was in order to d e t e r m i n e p a l e o c u r r e n t s . These m e a s u r e m e n t s were t ak en w h e r e o r i e n t a t i o n was best d e v e l o p e d or w he re the accessible. face of the exp osu re was most O r i e n t a t i o n and dip of 50 e l o n g a t e d clasts (3:1 a-b ratio, m i n i m u m a-axis l e n g t h 1 cm) were recorded. Till -least I de nt if i a bl e tills were s a mpl ed from at three pla ces w i t h i n the till mass and m i x e d to g e t h e r to form a sample. Two such samples were co l l e c t e d and tag ge d for later a n a l y s i s in the laboratory. S U R F I C I A L S E D I M E N T STUDY S ur fic ia l se diment s tu dy c o n s i s t e d of 1) bo ul de r mapping, and 2) B o ul d e rs -- Ba sed on road r e con na iss an ce, three sa mpl in g or more bo u l d e r s 100-150 met ers Ornamental o ri g i n we r e not Field the shape recorded, (angular, ex is t wit hi n as were su b- angular, bo ul d e r s or t h o s e of q u e s t i o n a b l e included. stone pi les determined p l a c e s where >50 cm in b - d i a m e t e r of one an ot he r we r e l i t h o l o g y and o v er all round). of field stone piles. -- All r e c o g n i z a b l e stone p i l e s from road r e c o n n a i s s a n c e ) following met hodolo gy: (as were s a m p l e d using 174 1. Two se parate poi nt s w i t h i n a stone pile were cho sen at ra nd o m using a spinner. 2. A rec ta ng ul ar grid was c e n t e r e d ov e r each point and 25 stones collected, 3. Stones from the two sites were then m ix ed to get he r to form a samp le of 50 stones. 4. Princ ipa l axes, roundness, and l i t h o l o g y of individual stones we r e d e t e r m i n e d in the field. Stones of un k n o w n l i t h o l o g y were br ou gh t to the lab for further analysis. L AB OR A T O R Y TE CH NI Q U E S SAND AND G R A V E L Fine tex tur ed mat er ia l (<8 mm) -- Sieving follows the sta nda rd m e t h o d o l o g y d e s c r i b e d by K r u m b e i n and Pett ij oh n (1938) and by Folk fragm ent s ( >8 mm) (1974) but d i f f e r s were m e a s u r e d in the the m e t h o d o l o g y a l re ad y di scussed. the large sample sizes o t h e r wi se in that coarse st field based on This m e th od avoids r e qu ir ed due to the c oa rs en es s of the material. Fine tex tu re d two subsaraples, samples ( <8 mm) were d i vi d e d one serving as backup. into 70 grams of the m a i n sample were w e i g h e d and s e p a r a t e d using nes te d sieves fol low ing st and ar d p r oc ed ure s. then w e i g h e d and a re lative p e r c e n t a g e Each separat e was for each category calculated. Sp h e r i c i t y -- S p h e r i c it y me a s u r e s re lative c o mp a c t n e s s of a rock and of me ch a n i c a l is an indirect m e a s u r e a rock fragment. uses This study fo ll ow s Ch ur c h fo llowing measure: I_____ S =.bc/a1 ( K r u m b e i n ’s in t e r c e p t wear upon (1972) the sphericity) and 175 whe re a, Valu es b, an d c are p r i n c i p a l axes and S = sphericity. from ea c h l o c a t i o n we re m a p p e d to d e t e r m i n e spatia l v a r i a b i l i t y a c ro ss the sandur. TILL Texture -- Till wa s fr a ct io ns us ing separated a 2 m m sieve. into coar se and Fine tex tu re d ma t e r i a l was then a n a l y z e d by h y d r o m e t e r b a s e d on the (Indorante, et a l ., fine following method 1990): 1. A 50 g r a m s a m p l e was p l a c e d in a fleaker, dried, d e s s i c a t e d , c o o l e d and reweighed. oven 2. Te n ml of 5% s o d i u m h e x a m e t a p h o s p h a t e was added to the fleaker. The f l e a k e r was then fi l le d to 1/3 to 1/2 full. 3. 12 The f l e a k e r was c a p p e d and put h ou rs at low to m e d i u m speed. in a shaker for 4. The s o i l / l i q u i d m i x t u r e in the fleake r was w a s h e d into a n d t h r o u g h a 53 u m sieve into a 1000 ml s e t t l i n g cy linder. 5. Sand in the 53 u m sieve was wa s h e d into a b e a k e r and o v e n dried. Th i s sample wa s cooled, de ss icated, a n d weighed. 6. The s e t t l i n g c y l i n d e r was filled w i t h d i s t i l l e d w a t e r to the 1000 ml m a r k and pl a c e d in a t e m p e r a t u r e c o n t r o l l e d r o o m overnight. 7. The m i x t u r e in the c y l i n d e r was then a g i t a t e d for 30 seconds. 8. The m a t e r i a l in s u s p e n s i o n was then m e a s u r e d us in g a h y d r o m e t e r . T i m e s for h y d r o m e t e r re adings we r e d e t e r m i n e d b as ed on temperature. Rea di ng s we r e t a k e n for ea c h sample as well as for a blank. 9. P e r c e n t a g e s of sand, silt and clay w e r e d e t e r m i n e d for e a c h sample. Col or -- C o l o r of m o i s t each sample u s i n g and d r y sampl es were Munsell c o l o r charts. then recorded for APPENDIX B CLAY MINEROLOGY M i n e r o l o g y of t il ls was e x a m i n e d using X - r a y d i f f r a c t i o n of o r i e n t e d cl a y (no date). milliamps Samples were between fo l l o wi ng Glass 30 KV and 15 2 t he ta at a sc a n rate of Peak and b a c k g r o u n d c o u n t s c a l c u l a t e d by computer. in triplicate. 50), s c a n n e d at 5-14 d e g r e e s 1 de gr e e per minute. run (Fig. E a c h of the 11 rill Preparation procedures were sa mpl es were are d e s c r i b e d below: 1. T w e n t y - f i v e grams of sa m pl e were a d d e d to a 300 ml fleake r and top pe d out w i t h a p p r o x i m a t e l y 150 ml of d i s t i l l e d water. 2. The f l e a k e r (with cap on) by hand for 1 minute. was sha ke n v i g o r o u s l y 3. In one q u i c k m o t i o n a p p r o x i m a t e l y 100 ml of the mi x t u r e was p o u r e d into a 100 ml b e a k e r and the r e m a i n d e r of the s o i l / w a t e r s u s p e n s i o n was discarded. ,4. The b ea k e r was c o v e r e d and allow ed •overnight to a l l o w floccu la ti on . to sit 5. If the c l e a r s u p e r n a t a n t w as d i s t i n g u i s h a b l e the next day, it w a s s i p h o n e d off and the b e a k e r was r e f i l l ed w i t h d i s t i l l e d water, v i g o r o u s l y stirre d for one m i n u t e w i t h a c l e a n glass rod, a nd al lo we d to sit o v e r n i g h t again. This was r e p e a t e d until the s u p e r n a t a n t r e m a i n e d so me w h a t c l o u d y a f t e r 24 hours. One t hi rd of the so l u t i o n was t h e n si ph on ed off and the b e a k e r t o p p e d off wi t h d i s t i l l e d water. 6. Two dr ops the beaker. of a 10% C a l g o n 176 s o lu ti on w e r e added to 177 7. The s o l u t i o n was hand m i xe d for 1 m i n u t e w i t h a s t i r r i n g rod and then a l l o w e d to stand for 15 minutes. 8. An e y e - d r o p p e r full of s o l u t i o n was d r a w n off (as m u c h as p o s s i b l e in one motion) from the top of the s o l u t i o n and a p p l i e d to glass p e t r o g r a p h i c slides. The w h o l e slide was c o v e r e d by s p r e ad in g out the liquid with the top of the d r o p p e r and the slide was kept level t h r o u g h o u t the process. 9. The slide was a l l o w e d for one day. 177 to d r y at r o o m t e m p e r a t u r e 6.0 8.0 ‘ 10.0 12.0 d e g re e s 2 theta Figure 50. X-ray diffractograms. 1.4.0 vo.® 8.® degi®oS oia it'd-V Figure50- ^con 180 SAM PLE # i 6.0 i i 1 8.0 i 10.0 dogroes 2 Uioia Figure 50. (cont'd.). 12.0 14.0 LIST OF R E FE RE NC ES LI S T OF R E F E R E N C E S Alden, W., 1918, The Q u a t e r n a r y g e o l o g y of s o u t h e a s t e r n Wis co n s i n : U.S. Geol. S u r v . Prof. P a p e r 106, 356 p. Alfred, S., and Hyde, A., 1974, Soil survey of C h a r l e v o i x County, Michigan: U S D A Soil C o n s e r v a t i o n Service, 122 p. Ande rs on , E., and Rieck, R . , 1987, Se le c t ed fluvial and g l a c i o f l u v i a l l a n d f o r m s of the B o a r d m a n Ri ver basin, ne a r T r a v e r s e City, Mi c h i ga n: P a pe r p r e s e n t e d at the Mich. Acad. Sci., Arts, a n d Letters, A n n Arbor. A m e r i c a n C o m m i s s i o n on S t r a t i g r a p h i c No men cla tur e, 1961, Code of s tr a t i g r a p h i c no m e n c l a t u r e : Am. Assoc. Pet. Geol. Bull., v. 45, no. 5, p. 645-665. Barendsen, G., Deevey, E., Jr., a n d Gralenski, 1957, Yale n at ura l r a d i o c a r b o n m e a s u r e m e n t s III: Science, v. 126, p. 908-919. Bergquist, S., 1938, G ui de bo ok , excursi on , Mich. Geol. S o c . L., 8 t h annual ________________ , 1940, S u r f ac e g e o l o g y Co., Mich: Mich. Acad. Sci. P a p e r s 453-463. of M o n t m o r e n c y (1939), v. 25, p. ________________ , 1945, G u i d e b o o k to the study of P l e i s t o c e n e fe at u re s r e la t e d to the a c t i v i t i e s of the M i c h i g a n lobe and s u b s i d i a r y ice tongues, n o r t h w e s t s e c t i o n of the S o u t h e r n P e n i n s u l a of Michigan: Mich. Sta te Univ. Dept, of Geol., 33 p. ________________ , 1946, H i g h lev el c l a y s in the Po rt H ur on m o r a i n i c s y s t e m in Mi chigan: Geol. Soc. Am. Bull, (abst.), v. 63, p. 1263. ________________ , 1952, P l e i s t o c e n e c o m p l e x in the n o r t h e r n rim of the S o u t h e r n P e n i n s u l a of Michigan: Geol. Soc. Am. Bull, (abst.), v. 63, p. 1234-1235. ________________ , 1953, in Mi c h i g a n: Geol. p. 1394-1395. Red d r i f t of the M a n i s t e e M o ra in e Soc. of Am. Bull, (abst.), v. 64, 183 Bergquist, S., and Zinn, A n t r i m Co: Mich. Geol. J., 1944a, Glacial map of Surv., u n p u b l i s h e d map. ________________, 1944b, Glaci al m a p of C h a r l e v o i x Co: Mich. Geol. Surv., u n p u b l i s h e d map. Black, R., and Rubin, M., 1967-1968, R a d i o c a r b o n dates of Wisconsin: Wise. Acad. Sci., Arts, and Letters, Trans., v. 56, p. 99-115. Blewett, W . , 1984, Ice s t a g n a t i o n landforms in e a s t e r n upper Michigan: A r e i n t e r p r e t a t i o n of the Mu n i s i n g M o ra in e ( M a s t e r ’s thesis): Macomb, Illinois, W e s t e r n Illinois University, 74 p. ________________, 1989, A review of M i c h i g a n ’s Port H u r o n Moraine: ch ara cte ri st ic s, co rr elations, and refinements: P ro gr a m ab s t ra ct s of the joint meeti ng of the East Lakes and Sout hea st d i v i s i o ns of the Assoc. Am. Geog., Charleston, We s t Virginia. Blewett, W . , and Rieck, R., 1987, po rt ion of the M u n i s i ng M o r a i n e Geol. Soc. Am. Bull., v. 98, p. R e i n t e r p r e t a t i o n of a in no r t h e r n Michigan: 169-175. Bluck, B., 1974, St r u c tu re and dir ec ti on al p r o p e r t i e s of some v a l l e y sand de po si ts in so ut he rn Iceland: S e d i m e n t o l o g y , v. 21, p. 533-554. ________________, 1979, St r u c t u re of coarse g r ai ne d braided s tr e a m alluvium: Trans. Royal Soc. Edinburgh, v. 70, p. 181-221. Boothroyd, J . , and Ashley, G., 1975, Pr oce ss bar m o r p h o l o g y and s e d i m e n t a r y s t r u c t u r e s on b r a i d e d outwas h fans, n o r t h e a s t e r n G u l f of Alaska, in Jopling, A., and McDonald, B., e d s ., G l a c i o f l u v i a l and gl a c i o l a c u s t r i n e sediment at io n: Soc. Econ. Paleo. and Miner. Spec. Pub. 23, p. 193-222. Boothroyd, J., and N u m m e d a l , D., 1978, P r o g l a c i a l br aid ed outwash: a model for h um id a l l u v i a l - f a n deposits, in Miall, A., ed., Fluvial sedim ent olo gy: Can. Soc. Pet. Geol. Mem., v. 5, p. 641-668. Boulton, G., 1968, Fl ow tills and relate d d e p o s i t s on some V e s t s p i t s b e r g e n glaciers: Jour, of Gl ac io lo gy , v. 7, p . 391-412. ________________, 1971, Till ge n e s is and fabric in Svalbard, Spits ber gen , in Goldthwait, R . , ed., Till: A symposium: Columbus, Ohio State U n i v e r s i t y Press, p. 41-72. 184 _______________ , 1972 , M o d e r n Ar c t i c glaciers as d epo si t i o na l m o de l s for form er ice sheets: Jour. Geol. Soc. of London, v. 128, p. 361-393. Bretz, J., 1951, The stages of Lake Chicago: their causes and co rrelati ons: Am. Jour. Sci., v. 249, p. 401-429. Briggs, D . , 1983, P a l a e o h y d r o l o g i c a l analysis of br aid ed river terrace deposits, in Briggs, D., and Waters, R., eds., Studies in Q u a t e r n a r y geomorphology, P r o c . Vlth B r i t i s h - P o l i s h sem: Norwich, England, Geo Books. Broeker, W., and Farrand, W., 1963, Ra di o c a r b o n age of the Two Creeks forest bed, Wisconsin: Geol. Soc. Am. Bull., v. 74, p. 795-802. Burgis, W . , 1977, Late W i s c o n s i n a n hi s t o ry of n o r t h ea st er n lower M i c h i g a n (Ph.D. diss.): A nn Arbor, Univ. of Mich. Cadwell, D., 1978, B e d r o c k contro l of ic e- mar gin al p o s it io ns in central New York: Geology, v. 6, p. 280. 278- Calkin, P., 1970, Stra nd lines and ch ro n o l o g y of the glacial Great Lakes in n o r t h w e s t e r n New York: Ohio Jour. Sci., v. 70, p. 78-96. Chamberlin, T., 1906, G e o l o g y of ea s t e r n Wisconsin, G eo l o g y of W i s c o n s i n (1977), v. 2, p 199-246. in Cheetham, G., 1976, P a l a e o h y d r o l o g i c a l inv est ig at io ns of river terrace gravels, in Davidson, D . , and S h a c k ! c y , M ., c d c ., G e o m o r p h o l o g y ; Earth Scienc e and the past: Boulder, W e s t v i e w Pre ss Inc., p. 335-344. _______________ , 1978, Late Q u a t e r n a r y p a l a e o h y d r o l o g y : the Kennet Va l l e y case-study, in Jones, D., ed., The shaping of sou th er n England: A c a d e m i c Press, p. 203223 . Church, M . , 1972, B a ff in Island sandurs: A study of Arct ic fluvial processes: Geol. Surv. of Can. Bull. 216, 208 p. Clague, J., 1975, S e d i m e n t a r y and p a l e o h y d r o l o g y of Late W i s c o n s i n a n outwash, R oc ky M t . Trench, so ut he as te rn Br it i s h Columbia, in Jopling, A., and McDonald, B., eds., G l a c i o f l u v i a l and gl ac io la c u s t r i n e sedimentation: Soc. Econ. Paleon. and Miner. Spec. Pub., no. 23, p. 223-237. 185 Crane, H., and Griffin, J., 1968, U n i v e r s i t y of M i c h i g a n r a d i o c a r b o n da te s XII: R a di oc ar bo n, v. 10, no. 1, p. 61114. ’ Dorr, J., Jr., and Eschman, D., 1971, Michigan: A n n Arbor, Univ. of Mich. Dury, G. , 1965, streams: U.S. Theoretical Geol. Surv. G e o l o g y of Press, 476 p. i m p l i c a t i o n s of u n d e rf it Prof. P ap er 452 C. Eschman, D., 1978, Pl e is to ce ne of Michigan: Geol. Soc. Am., Arbor, guidebook, p. 35-62. g e o l o g y of the T h u m b area n o r t h centra l section, Ann Even son, E., 1973, Late P l e i s t o c e n e sh ore lin es and str at ig ra ph i c re la ti on s in the Lake M i c h i g a n Basin: Soc. Am. Bull., v. 84, p. 2281-2297. Geol. Evenson, E., Farrand, W., Eschman, D., Mi ckelson, D., and Maher, L., 1976, G r e a t l a k e a n substage: A rep la ce me nt for V a l d e r a n su bst age in the Lake M i c h i g a n basin: Q u a t e r n a r y Research, v. 6, p. 411-424. Evenson, E., and Mickelson, D., 1974. A r e - e v a l u a t i o n of the lob at io n and red till s t r a t i g r a p h y and nom enc la tu re in part of e a s t e r n Wisconsin, in Knox, J., and Mickelson, D., eds., Late Q u a t e r n a r y e n v i r o n m e n t s of Wisconsin: Wise. Geol. and Nat. Hist. Surv., p. 102-117. Fahnestock, R . , 1963, M o r p h o l o g y and h y d r o l o g y of a b r a i d e d stream: U.S. Geol. Surv. Prof. P ap er 422 A. Farrand, W., 1976, A c a d ., v o l . 8. Was there r e a l l y a V a l d e r s ? : Mich. Farrand, W . , and Bell, D , 1982 ; Q u a t e r n a r v s p o 1n sv of s o u t h e r n M i c h i g a n (map): Ann Arbor, Univ. of Mich., 1: 500,000 scale. Farrand, W., and Eschman, D . , 1974, G l a c i a t i o n of the S o u t h e r n P e n i n s u l a - - A review: Mich. Acad., v. 7, p. 3156. Farr and, W . , Zahner, R . , and B e nn in gh of f, W., 1969, CaryPort H u r o n i n t e r s t a d e - - e v i d e n c e from a b u r i e d bryo ph yte bed, C h e b o y g a n County, Michigan: Geol. Soc. Am. Spec. P a p e r 123, p. 249-262. Fisher, J., 1969, The d i s t r i b u t i o n and c h a r a c t e r i s t i c s of th e "T raverse Forma ti on " of M i c h i g a n ( M a s t e r ’s thesis): E. Lansing, Mich. State Univ., 72 p. Flint, R . , 1928, Esk er s and c r e v a s s e Sci., ser. 5, v. 15, p. 410-416. fillings: Amer. Jour. 186 _______________ , 1971, G l aci al and Q u a t e r n a r y geology: York, John W i l e y and Sons, Inc., 892 p. New Flint, R . , and Rubin, M., 1955, R a d i o c a r b o n da tes of preM an ka to events in e a s t e r n and centr al N o r t h America: Science, v. 121, p. 649-658. Folk, R . , 1974, P e t r o l o g y of s e d i m e n t a r y Hemphill, 182 p. rocks: Austin, Fraser, G., and Cobb, J., 1982, Late W i s c o n s i n a n proglac ial s e d i m e n t a t i o n along the West Ch ic ag o Mo rai ne in n o r t h e a s t e r n Illinois: Jour. Sed. Pet., v. 52, no. 2, p. 473-491. Fullerton, D., 1980, P r e l i m i n a r y c o r r e l a t i o n of p o s t - E r i e interstadial event s (1 6, 00 0- 10 ,0 00 ra di o c a r b o n years before present), centra l and ea s t e r n Great Lakes region, and Hudson, Champlain, and St. Lawrence lowlands, United States and Canada: U.S. Geol. Surv. Prof. P ap er 1089, 52 p. Glass, H., no date, Ra pid m e t h o d of slide p r e p a r a t i o n for x -r ay d i f f r a c t i o n analysis, u n p u b l i s h e d manuscript, 111. State Geol. Surv., 615 E. Pe ab od y Dr., Champaign, Illinois. Goldthwait, R. , 1958, W i s c o n s i n - a g e forests in w e s t e r n Ohio, part 1--Age and glaci al events: Ohio Jour. Sci., 58, p. 209-219. Gravenor, C., and Kupsch, W . , 1959, features in W e s t e r n Canada: Jour. 64. v. Ice d i s i n t e g r a t i o n Geol., v. 67, p. 48- Gravenor, C., and Stupavsky, M., 1976, Magnetic, p n y s i c a i , diiu xii.iiuj.ugxc p r o p e r t i e s of till e x p o s e d along the east coast of Lake Huron, Ontario: Can. Jour. Sci., v. 13, p. 1655-1666. Gustavson, T., 1974, S e d i m e n t a t i o n on gravel o u t w a s h fans, M a l s p i n a Glacier, Alaska: Jour. Sed. Pet., v. 374-389. 44, Gustavson, T., and Boothroyd, J., 1987, A d e p o s i t i o n a l model for outwash, se di me nt sources, and h y d r o l o g i c charact er ist ic s, M a l a s p i n a Glacier, Alaska: A m o d e r n ana lo g of the s o u t h e a s t e r n m a r g i n of the L a u r e n t i d e ice sheet: Geol. Soc. Am. Bull., v. 99, p. 187-200. Hansel, A., and Mickelson, D . , 1987, A r e e v a l u a t i o n of the timing and causes of hi gh lake pha se s in the Lake M i c h i g a n basin: Q u a t e r n a r y Research, v. 29, p. 113-128. p. 187 H a r t s h o rn , J., 1958, Fl o w t i l l in s o u t h e a s t e r n M a s s a c h u s et ts : Geol. Soc. Am. Bull., v. 69, p. 482. Hough, J., 1958, G e o l o g y of the G r ea t Lakes: Univ. of 111. Press, 313 p. 477- Urbana, Indorante, S., Follmer, L., Hamme r, R . , and Koenig, P., 1990, Pa r t i c l e size a n a l y s is by a m o d i f i e d pi pet te pr oce dur e: Soil Sci. Soc. Am. Jour., v. 54, p. 560-563. Harrow, P., the G re at and Calkin, P., 1985, Q u a t e r n a r y ev o l u t i o n of Lakes, Geol. Assoc, of Can. P ap er 30. Kaye, C., 1960, S u r f i c i a l g e o l o g y of the K i n g s t o n qua dra ngl e, Rhode Island: U.S. Geol. Surv. Bull. 1071 I. Keeble, A., 1970, The mode of o r i g i n and d e p o s i t i o n a l h i s t o r y of kames, s o u t hw es t of Edmonton: A l b e r t a n Ge og ra ph er , no. 6, p. 33-44. Koteff, C., 1974, The m o r p h o s e q u e n c e c on ce pt and d e g l a c i a t i o n of s o u t h e r n N ew England, in Coates, G la c i a l Ge om or ph ol og y: Bi ng ha mp to n, N.Y., State U n i v e r s i t y of N e w York, p. 121-144. Koteff, C., and Pessl, in N ew England: U.S. D., e d ., F., 1981, Sys te ma ti c ice retreat Geol. Surv. Prof. P a p e r 1179, 20 p. K rig str om, A., 1962, G e o m o r p h o l o g i c a l studie s of sandur p l a i n s and th ei r b r a i d e d r i v e r s in Iceland: Geog. Ann., v. 44, p. 328-346. Kr umbein, W., and Pettijohn, F., 1938, Ma nu a l of s e d i m e n t a r y pe tr og ra ph y; N ew York, A p p l e t o n - C e n t u r y Croi'ts. Landes, K . , and Ehlers, S tr ait s region: Mich. 37. G., 1945, G e o l o g y of the Mac kinac Geol. Surv., pub. 44, Geol. Ser. Larson, R . , and Buchanan, D., 1978, Soil s u r v e y of A n t r i m County, Michigan: U S D A Soil C o n s e r v a t i o n Service, 92 p. Leeder, M., 1982, S e d i m e n t o l o g y : pr oce ss a nd product: London, A l l e n and Unwin. Leopold, L., and Wolman, M., 1957, R iv er c h a n n e l patterns: braided, me a nd er in g, and straight: U.S. Surv. Prof. P a p e r 282 B. Geol. Leverett, F., 1911, Map of the su rfa ce f o r m a t i o n s of the S o u t h e r n P e n i n s u l a of Mic hi ga n, 1:1 ,0 00 ,0 00 scale. 188 ________________, 1924, Map of the surface f o r m a t i o n s of the S o u t h e r n P e n i n s u l a of M i c hi ga n: Geol. Surv. D i v . , Mich. Dept, of C o n s v , , 1 : 5 00 ,0 00 scale. ________________, 1925a, S u rf ac e g e o l o g y of A n t r i m Co., Michigan, Mich. Land Econ. Surv., (mimeo.), 20 p. _______________ , 1925b, S u r f a c e g e o l o g y of C h a r l e v i o x Co., Michi gan : Mich. Land Econ. Surv., (mimeo.), 17 p. Leverett, F . , and Taylor, F . , 1915, The P l e i s t o c e n e of I n d i a n a and M i c h i g a n and the h i s t o r y of the G r e a t Lakes: U.S. Geol. Surv. Mon. 53, 529 p. Linebeck, J., Gross, D., and Meyer, R . , 1974, t il ls u n d e r Lake Michigan: 111. State Geol. Note 69, 48 p. Glacial Surv. Env. Lord, M . , and K e h e w , A., 1988, S e d i m e n t o l o g y and p a l e o h y d r o l o g y of g l a c i a l - l a k e o u t b u r s t d e p o s i t s s o u t h e a s t e r n S a s k a t c h e w a n and n o r t h w e s t e r n N o r t h Dakota: Geol. Soc. Am. Bull., v. 99, p. 663-673. in Lowdon, J., and Blake, W., Jr., 1976, Geol. Surv. Can. r a d i o c a r b o n dates XVI: Geol. Surv. Can. Paper, v. 76, n o . 7, 21 p . Maizels, J., 1982, C h a n n e l changes, p a l a e o h y d r o l o g y and d e g l a c i a t i o n , e v i d e n c e for some late g l a c i a l sandur d e p o s i t s of n o r t h east Scotland: Q u a t e r n a r y S t ud ie s Poland, no. 4. _______________ , 1983a, P a l a e o v e l o c i t y and p a l a e o d i s c h a r g e d e t e r m i n a t i o n for c o a r s e g r a v e l deposits, in Gregory, K . , e d . , B a c k g r o u n d to P a l a e o h y d r o l o g y : Joh n W i l e y and Sons Ltd., p. 101-139. _______________ , 1983b, P r o g l a c i a l a g g r a d a t i o n and changes in b r a i d e d c h an ne l p a t t e r n s d u r i n g a p e r i o d of gl aci er advance: an al pi n e example: G e o g . Ann., v. 61, p. 87101. Martin, H., 1936, The c e n t e n n i a l geo lo gi c m ap of the S o u t h e r n P e n i n s u l a of Mich ig an : Geol. Surv. Div., Mich. Dept, of Consv., pub. 39, Geol. ser. 33, 1: 5 0 0 , 0 0 0 scale. _______________ , 1955, M a p of the surfa ce f o r m a t i o n s of the S o u t h e r n P e n i n s u l a of Mich ig an : Geol. Surv. Div., Mich. Dept, of Consv., pub. 49, 1 : 5 0 0 , 0 0 0 scale. _______________ , 1957, O u t l i n e of the geo log ic h i s t o r y of the G r a nd T r a v e r s e Region: Geol. Surv. Div., Mich. Dept, of C o n s v ., 9 p . 189 Meek, N., 1984, The effect of dr if t th i c k n e s s on the t o p o g r a p h i c e x p r e s s i o n of b e d r o c k sur fac es in the so u t h e r n G r e a t La ke s r e g i o n ( M a s t e r ’s thesis): E. Lansing, Mich. Sta te Univ. Melhorn, W . , 1954, V a l d e r s g l a c i a t i o n of the S o u t h e r n P e n i n s u l a of M i c h i g a n (Ph.D. diss.): An n Arbor, Univ. M i c h . , 177 p. of ________________ , 1956, Va ld er s d rf it in the S o u t h e r n P e n i n s u l a of Mich ig an : M i d w e s t friends of the P l ei st oc en e field e x c u r s i o n (mimeo.). Miall, A., 1977, A r e v i e w of the b r a i d e d river d e p o s i t i o n a l e n v ir on me nt: E a r t h - S c i e n c e Review, p . 1-62. v. 13, ________________ , 1978, L i t h o f a c i e s types and v e r t i c a l pr o f il e m o d e l s in b r ai d e d r i v e r deposits: a summary, in Miall, A., ed., Fl uvi al S e d i m e n t o l o g y : Can. Soc. Pet. Geol. Mem., v. 5, p. 597-604. systems: S e r .,20, , 1981, A n a l y s i s of fluvial d e p o s i t i o n a l Am. Assoc. Pet. Geol. E d u c a t i o n C o u r s e Note 75 p. ________________ , 1983, G l a c i o f l u v i a l tr a n s p o r t and deposition, in Eyles, N., ed., Gl a c i a l Geology: An i n t r o d u c t i o n for e n g i n e e r s and E a r t h S c ie nti sts : Oxford, P e r m a g o n Press. ________________ , 1985, A r c h i t e c t u r a l e l eme nt a n al ys is: new m e t h o d for facies a n a l y s i s a p pl i e d to fluvia l deposits: E a r t h - S c i e n c e Review, v. 22, p. 261-308. A Mil stein, R . , 1987, B e d r o c k g e o l o g y of s o u t h e r n M i c h i g a n (map), Geol. Surv. Div., Mich. Dept. Nat. Res., 1: 500,000 scale. Monaghan, G . , 1988, C l a y - m i n e r a l c o m p o s i t i o n of tills the Lake M i c h i g a n basin: M i d w e s t friends of the P l e i s t o c e n e field c o n f e r e n c e guide, p. 25-34. in Mul ho ll an d, J., 1982, G l a c i a l s t a g n a t i o n - z o n e re tr ea t in New England: b e d r o c k control: Geology, v. 10, p. 567-571. Price, R . , 1973, G la ci al and fl uv io g l a c i a l York, H a f n e r P u b l is hi ng , 242 p. la ndf orm s: New Rieck, R . , 1976, The g la ci al g e o m o r p h o l o g y of an i n t e r l o b a t e a r e a in s o u t h e a s t Michigan: R e l a t i o n s h i p s b e t w e e n landf or ms , sediments, and b e d r o c k (Ph.D. diss.): E. Lansing, Mich. State Univ., 216 p. 190 _______________ , 1981, C h a r l e v o i x C o u n t y be dr oc k topography, u n p u b l i s h e d map, 1:63,3 60 scale. _______________ , 1985a, G r a n d T r a v e r s e C o u n t y b e d r o c k topography, u n p u b l i s h e d map, 1:6 3,3 60 scale. _______________ , 1985b, K a l k a s k a C o u n t y b e d r o c k topography, u n p u b l i s h e d map, 1: 63 ,3 60 scale. _________, 1985c, O t s e g o C o u n t y b e d r o c k to po graphy, u n p u b l i s h e d map, 1: 63 , 3 60 scale. Rieck, R., and Wi nt er s, H., 1979, Lake, stream, and b e d r o c k in s o u t h - c e n t r a l Mich ig an: An na l s Assoc. Am. Geog., v. 69, p. 2 76-288. Ritter, D., 1978, Pr o c e s s g e o m o r p h o l o g y : Dubuque, W i l l i a m C. Brown, 603 p. Rust, B., 1972, S t r u c t u r e and p r o c e s s Se di me nt o lo gy , v. 18, p. 221-246. Iowa, in a b r a i d e d river: ________________ , 1975, Fab ri c and st r u c tu re in g l a c i o f l u v i a l gravel s, in Jopling, A., and McDonald, B., eds., G l a c i o f l u v i a l and g l a c i o l a c u s t r i n e sed im ent at ion : Soc. of Econ. Paleon . Miner. Spec. Pub., no. 23, p. 223237. ________________ , 1978, D e p o s i t i o n a l mo de l s for b r a i d e d alluvium, in Miall, A., e d ., F l u v i a l se di me n t o l o g y : Soc. Pet. Geol. Mem. 5, p. 605-625. Can. Shaw, J., 1972, S e d i m e n t a t i o n in the i c e - c o n t a c t e n vi ro nm en t, w i t h e x a m p l e s fro m S h r o p s h i r e (England): Se d i m e n t o l o g y , v. 18, p. 23-62. Suess, H., Science, 1954, U.S. v. 120, p. Geol. Surv. 467-473. r a d i o c a r b o n da tes Sundborg, A., 1954, M a p of the H o f f e l l s s a n d u r : Geog. v. 36, p. 162-1 68 a n d f o ld ou t map, 1:15,000 scale. I: Ann., Taylor, F., 1897, C o r r e l a t i o n of E r i e - H u r o n b e a c h e s w i t h o u t l e t s and m o r a i n e s in s o u t h e a s t e r n Michigan: Geol. Soc. Am. Bull., v. 8, p. 31-58. _______________ , 1899, The great ice dams of Lakes W h i t t l e s e y and Warre n: Am. Geol., v. 24, p. 6-38. _______________ , 1905, R e l a t i o n of Lake W h i t t l e s e y to the A r k o n a beaches: 7th annu al repo rt of the Mich. Acad. S c i ., p . 29-36. _______________ , 1913, The m o r a i n e syste ms of s o u t h w e s t e r n Ontario: Roy. Can. Inst. Trans., v. 10, p t . 1, p. 57-79. 191 Taylor, L., 1979, P r e l i m i n a r y ana ly si s of glacial s tr a t i g r a p h y in the v i c i n i t y of Port H u r o n and Two Rivers till sheets, Manistee, Mich: Geol. Soc. Am. Abst. with P r o g ., v. 9, p. 658. ________________ , 1981, Road log foll ow ing stop #4, Bass Lake, in Evenson, E., and Taylor, F . , the "Valders" problem: Dept, of Geology, G r a n d V a l l e y State, p. 44-57. Thwaites, F., 1943, P l e i s t o c e n e of part of no r t h w e s t e r n Wisconsin: Geol. Soc. Am. Bull., v. 54, p. 87-144. Veatch, J., Schoenmann, L., Foster, Z., and Lesh, F., 1927, Soil sur ve y of K a lk a s ka County, Michigan: USDA Bur ea u of C h e m i s t r y and Soils, ser. 1927, no. 28, 44p. Williams, P., and Rust, B., b r ai de d river: Jour. Sed. 1969, The s e d i m e n t o l o g y of a Pet., v. 39, p. 649-679. Willman, H., and Frye, J., 1970, P l e i s t o c e n e s t ra ti gr ap hy of Illinois: 111. State Geol. Surv. Bull. 94, 204 p. Willman, H., Swann, D., and Frye, J., 1958, S tr ati gr ap hic p o l i c y of the Illinois S ta te G e o l o g i c a l Survey: 111. State Geol. Surv. Circ. 249, 14 p. Winters, H., Rieck, R . , and K a p p , R . , 1986, Sign if ic an ce and ages of M i d - W i s c o n s i n a n or g a n i c d e p o s i ts in sou thern Michigan: P hy s i c a l Geography, v. 7, p. 292-305. ICE-CONTACT AND PROGLACIAL STRATIFIED DRIFT ASSOCIATED WITH ICE-MARGINAL POSITIONS AND PROXIMAL AREAS OF OUTWASH PLAINS. USUALLY CONTAIN DEFORMED GLACIOFLUVIAL SAND AND GRAVEL, GLACIOLACUSTRINE SILT AND CLAY, LIMITED AMOUNTS O F FLOW TILL, AND BOULDERS NEAR ICE MARGINAL POSITIONS. ELSEWHERE, EXHIBIT COARSE, GRAVEL-DOMINATED BEDFORMS OF PROXIMAL MELTWATER STREAMS PLUS SILT AND CLAY DRAPES. R8W TRANSITIONAL, MEDIAL AND DISTAL PROGLACIAL SAND AND GRAVEL BEDFORMS ASSOCIATED WITH OUTWASH PLAINS. ALSO CONTAIN SCATTERED ICECONTACT SEDIMENTS RELATED TO ICE BLOCK DEPRESSIONS, AND EOLIAN DEPOSITS ASSOCIATED WITH DUNES. RUGG POND -»■ GLACIOLACUSTRINE SAND, SILT, AND CLAY. R 7 W Qt TILL, UNDIFFEREN­ TIATED KALKASKA R 6 W T 2S'i T 26 N Figure 15. Map of the surficial sedim ents of the Inner and Outer Port Huron Complexes, northwestern southern Michigan. -------------------------- 7— Qpg RUGG POND SITE ANT RO/ GR/ Q ic Qpg' N Q ic ^----------------------------------- /^ ^ Alba South Apron Alba Salient I— ORT ” **-T- HURON T 27 N LAKES O F THE C O M P L E* T 28 N T 29 N noh^ T H R O U G H A N D V A L L E Y S disintegration ridges S U R FA C E A A J o rd a n A* / )b. Deadman's Hill ELMIRA Hoffman Lake Channel kettle chains 8 A PV> CAMP !A S U R F A * ^ A bandoned Farm Hummocks Elmira South Apron ten S U R F ^ ' ^ l / ^ ' ^ D isin teg ratio n R i d g e s \ W^ourep Alba Salient Lake 27 Disintegration R idges :S O F TH E N O R ^ ^ OUT X T 30 N T 31 N