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ABSTRACT 

DEEP SEQUENCING DRIVEN PROTEIN ENGINEERING: NEW METHODS AND 
APPLICATIONS IN STUDYING THE CONSTRAINTS OF FUNCTIONAL ENZYME 

EVOLUTION 

By 

Emily Elizabeth Wrenbeck 

Chemical engineers have long sought enzymes as alternatives to traditional chemocatalytic 

routes as they are highly selective and have evolved to function under mild conditions 

(physiological temperature, neutral pH, and atmospheric pressure). Enzymes, the workhorses of 

biological chemistry, represent a vast catalogue of chemical transformations. This feature lends 

their use in a variety of industrial applications including food processing, biofuels, engineered 

biosynthetic pathways, and as biocatalysts for preparing specialty chemicals (e.g. pharmaceutical 

building blocks). The totality of an enzymatic bioprocess is a function of its catalytic efficiency 

(specificity and turnover), product profile (i.e. regio- and enantio-selectivity), and thermodynamic 

and kinetic stability. For native enzymes, these parameters are seldom optimal. Importantly, they 

can be modified using protein engineering techniques, which generally involves introducing 

mutation(s) to a protein sequence and screening for beneficial effects. However, robust enzyme 

engineering and design based on first principles is extremely challenging, as mutations that 

improve one parameter often yield undesired tradeoffs with one or more other parameters.  

In this thesis, deep mutational scanning - the testing of all possible single-amino acid 

substitutions of a protein sequence using high-throughput screens/selections and DNA counting 

via deep sequencing - was used to address two fundamental constraints on functional enzyme 

evolution. First, how do enzymes encode substrate specificity? To address this question, deep 

mutational scanning of an amidase on multiple substrates was performed using growth-based 

selections. Comparison of the resulting datasets revealed that mutations benefiting function on a 



	
  

	
  

given substrate were globally distributed in both protein sequence and structure. Additionally, our 

massive datasets permitted the most rigorous testing to date of theoretical models of adaptive 

molecular evolution. These results have implications for both design of biocatalysts and in 

understanding how natural enzymes function and evolve. 

Another fundamental constraint of enzyme engineering is that mutations improving 

stability (folding probability) of an enzyme are often inactivating for catalytic function, and vice 

versa. Towards overcoming this activity-stability constraint, I sought to improve the heterologous 

expression and maintain the catalytic function of a Type III polyketide synthase from Atropa 

belladonna. This was accomplished using deep mutational scanning and high-throughput GFP-

fusion stability screening, followed by novel filtering methods to only accept beneficial mutations 

with high probability for maintaining function.  

Lastly, deep mutational scanning relies on the construction of user-defined DNA libraries, 

however current available techniques are limited by accessibility or poor coverage. To address 

these limitations, I will present the development of Nicking Mutagenesis, a new method for the 

construction of comprehensive single-site saturation mutagenesis libraries that requires only 

double-stranded plasmid DNA as input substrate. This method has been validated on several gene 

targets and plasmids and is currently being used in academic, government, and industry 

laboratories worldwide. 
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Introduction to deep sequencing driven protein engineering 

Portions of this chapter were adapted with permission from “Deep sequencing methods for protein 

engineering and design” in Current Opinion in Structural Biology 45 (2017) 36-44 by Emily E. 

Wrenbeck, Matthew S. Faber, and Timothy A. Whitehead. 
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ABSTRACT 

The advent of next-generation sequencing (NGS) has revolutionized protein science, and 

the development of complementary methods enabling NGS-driven protein engineering have 

followed. In general, these experiments address the functional consequences of thousands of 

protein variants in a massively parallel manner using genotype-phenotype linked high-throughput 

functional screens followed by DNA counting via deep sequencing. We highlight the use of 

information rich datasets to engineer protein molecular recognition. Examples include the creation 

of multiple dual-affinity Fabs targeting structurally dissimilar epitopes and engineering of a broad 

germline-targeted anti-HIV-1 immunogen. Additionally, we highlight the generation of enzyme 

fitness landscapes for conducting fundamental studies of protein behavior and evolution. We 

conclude with discussion of technological advances.  
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INTRODUCTION 

Researchers have been engineering proteins for almost 4 decades. Early endeavors 

involved generation of a handful of point mutations followed by low-throughput assays for 

function; the ‘search space’ a protein scientist could feasibly explore was miniscule.  

As demonstrated by the seminal works of Fowler et al.1 and Hietpas et al.2, the advent of 

next-generation sequencing (NGS) has presented protein engineers with the ability to 

economically observe entire populations of molecules before, during, and after a high-throughput 

screen or selection for function (HTS) (Figure 1.1). A typical NGS run provides sufficient 

sequencing data to permit the study of millions of protein variants. Thus, when coupled to HTS, 

NGS significantly expands the accessible mutational search space. In this way, a researcher can 

test all possible point mutations or combinations of mutations, for example, and remove the duty 

of having to design small focused libraries that may miss unpredictable beneficial mutations. As a 

testimonial to the accessibility of these methodologies, experiments can be performed in a 

beginning graduate-level course3.  

The intent of this review is to highlight examples where deep sequencing has been applied 

in different areas of protein engineering and design. As such, we will not provide a comprehensive 

review of directed evolution or of deep mutational scanning (excellent reviews can be found 

here4,5). We will discuss the use of NGS for engineering protein molecular recognition, membrane 

proteins, and enzymes, highlight recent technological advances, and offer a perspective on the 

shape of the field over the next several years. 
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Figure 1.1: Overview of the steps involved in deep mutational scanning. A library of protein 
variants is generated. Often this is a comprehensive single-site saturation mutagenesis library. The 
library is subjected to a high-throughput selection or screen for function. Examples of commonly 
used selections and screens include survival or competitive growth-based selections, protein 
binding screens like phage or yeast surface display, and fluorescence reporter-based screens. 
Variants are quantified in the pre- and post-selection populations with counting via deep 
sequencing. These pre- and post-selection counts are transformed to a normalized functional score 
and are used to generate fitness landscapes of the target protein.  
 

ENGINEERING PROTEIN MOLECULAR RECOGNITION  

Dozens of studies over the past five years have used deep sequencing to identify and 

engineer protein-ligand interactions. Rapid adoption of deep sequencing by this field is a direct 

result of mature display-based technologies that can be used to screen very large initial libraries. 

For example, in the study of protein-protein binding interactions a library of protein variants can 



 

 5 

be displayed on the surface of yeast using yeast surface display (Figure 1.1). Using a fluorescently 

conjugated protein binding partner FACS can be used (a thorough review can be found here 6).  

 

Deep sequencing for screening protein binder libraries  

NGS is now frequently used in the evaluation of synthetic or natural libraries to identify 

antigen-specific binders. Advances in pairing VH and VL sequences from individual B cells7 allows 

one to identify antigen-specific antibodies directly from sequencing, including panels of antibodies 

targeting Ebola virus8 and ricin9. Methodological details and limitations associated with 

identification of rare clones and evaluation of library diversity are presented in a recent review10. 

As an emerging area, engineers now use NGS to refine protein binder libraries11,12. In a 

notable advance, Woldring et al. screened a hydrophilic fibronectin domain library to bind various 

protein targets12. The researchers exploited the site-specific amino acid preferences from an initial 

library to develop a more focused second library depleted in mutations at the periphery of the 

binder paratope. Compared to other libraries, this library design afforded far superior performance 

in isolation of high affinity, stable binders.  

 

Paratope optimization for affinity and specificity 

NGS can be used to rapidly improve the affinity and specificity of the binding paratope 

(Figure 1.2)13,14. A crucial advantage enabled by NGS is the ability to discriminate very small 

beneficial changes in binding - on the order of 0.1 kcal/mol or about a 20% improvement in 

dissociation constant. These small-scale beneficial mutations can be additive, allowing one to 

“leapfrog” over potential affinity maturation bottlenecks by combining mutations.  
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Figure 1.2: Engineering of affinity and specificity in protein-ligand interactions using deep 
mutational scanning. A.) Consider a protein binder that recognizes two separate targets A and B. 
Deep mutational scanning is performed against each target in parallel. Site-specific preferences 
for the protein against each target are visualized by a heatmap. Mutations can be combined to 
impart binders with greater affinity to both targets (top panel, red box) or restrict specificity to a 
single target (bottom panel, blue box). In practice, mutations at multiple positions are combined to 
make a focused library that is subsequently screened. B.) The structural basis for specificity- and 
affinity- altering mutations identified by deep mutational scanning using a dual action Fab (green 
cartoon) to Ang2 (purple surface) and VEGF (orange surface) as an example15. Heavy Chain (HC) 
L93K can increase affinity to both targets presumably by increasing electrostatic complementarity. 
Here Ang2 and VEGF are colored by electrostatic surface potential and HC-L93 (green) and HC-
K93 (pink) are shown as sticks. By contrast, HC F98I is strongly depleted for in the VEGF binding 
population most likely because of steric clashes. Structures were created using PyMol from the 
PDB IDs 4ZFG, 4ZFF.  
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Whitehead et al. provide the first example of paratope engineering for affinity and 

specificity using deep sequencing16. The researchers screened a comprehensive single-site 

saturation mutagenesis library of two de novo designed Influenza Hemagglutinin (HA) binders 

against H1 and H5 HA subtypes. Engineering specificity was demonstrated by comparing site-

specific preferences for H1 to the H5 subtype. A single point mutation was identified that gave 

over a 30-fold specificity switch from the parental designed protein. For affinity maturation, site-

specific preferences were encoded into a second library and sorted to improve affinity against both 

subtypes by approximately 25-fold. The affinity of one designed HA binder, HB36.6, was further 

improved against seven diverse HA subtypes. HB36.6 showed prophylactic and therapeutic 

efficacy against lethal challenge of pandemic Influenza in a BALB/c mouse model17.  

Deep mutational scanning approaches have been extended to affinity mature 

antibodies18,19. In an impressive demonstration, Genentech scientists engineered a dual action Fab 

for high affinity for two unrelated proteins simultaneously15. The group used phage display to 

profile a single and triple site saturation mutagenesis library of a Fab with low nanomolar binding 

to Ang2 and VEGF. NGS revealed significant site-specific amino acid preferences for each of the 

two binding paratopes. The researchers combined mutations shown to improve affinity on at least 

one target and not negatively impact binding on the other target, thus engineering five different 

sub-nanomolar dual-affinity Fabs.   

The apotheosis of deep mutational scanning to identify high affinity binders with defined 

specificity comes from Jardine et al.20, who engineered an HIV immunogen that can be recognized 

by B cell precursors to broadly neutralizing anti-HIV antibodies. Starting with a designed outer 

domain of the gp120 protein from HIV, they screened a 58-residue site saturation mutagenesis 

library against 18 germline-reverted and 11 VRC01-class broadly neutralizing antibodies. 
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Information obtained from the scan was used to encode a second library that was screened against 

the same antibody panel. One variant showed dramatically improved binding to all antibodies in 

the panel and could bind naïve B cells in full human repertoires.  

Binding surface optimization is not limited to protein-protein binders, provided that there 

is a suitable HTS. Tinberg et al. used yeast display coupled to NGS to affinity mature a 

computationally designed anti-steroid binder21. Raman and colleagues used an in vivo fluorescent 

reporter coupled to FACS (Figure 1.1) to engineer the E. coli allosteric transcription factor LacI 

to recognize four different non-metabolizable inducers, including sucralose22.  

 

Epitope mapping 

An important consideration for the antibody engineer is the identification of the binding 

epitope. Three recent publications used yeast surface display, site-saturation mutagenesis, FACS, 

and deep sequencing to identify conformational epitopes for diverse antigenic targets on the order 

of weeks23–25. Doolan and Colby determined epitope regions on prions recognized by 

conformational-specific antibodies23. Van Blarcom et al. performed epitope mapping for a panel 

of antibodies against the alpha toxin from methicillin-resistant Staphylococcus aureus24. Kowalsky 

et al. automated and improved the speed of epitope identification for three different antigens25.  

 

MEMBRANE PROTEIN ENGINEERING 

Plückthun and colleagues screened a near-comprehensive single point mutant library of G 

protein-coupled receptor (GPCR) rat neurotensin receptor 1 for enhanced heterologous expression, 

a proxy for protein stability. The library was expressed in the periplasm of E. coli and sorted by 

FACS using a fluorescently conjugated agonist as a probe26. NGS was used to quantify variants in 
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the input library and the enriched FACS selected libraries, and hits identified in the initial library 

were combined, resulting in variants that express at up to 50-fold higher levels in E. coli compared 

with the wild-type GPCR. Each stability-enhancing mutation contributed a small amount of the 

overall stability to the protein27. Notably, the structure of an engineered GPCR was solved28, 

suggesting a general directed evolution strategy of stabilizing membrane proteins for X-ray 

crystallography structure determination. In a separate effort, Fleishman and colleagues used deep 

mutational scanning to unravel the energetics associated with membrane protein insertion and 

homodimerization revealing insights that may facilitate membrane protein design29.   

 

ENZYME ENGINEERING  

In contrast to protein-ligand interactions, the complex and diverse nature of enzyme 

function has made it challenging to develop robust, sensitive, and generalizable functional screens. 

As such, far fewer examples of deep sequencing-assisted enzyme engineering exist in the literature 

(Table 1.1).  

 

High-throughput screening and selection for enzyme function 

  The primary strategy for functional selection of enzymes is to tether enzymatic function to 

the growth and/or survival (fitness) of a host organism. One type of competitive growth selection 

is to provide a substrate that the enzyme must catabolize as the sole source of an essential element 

for growth (carbon, nitrogen) (Figure 1.1). Thus, variants enabling higher flux through and 

enzyme permit faster growth rates and become enriched in the population. Klesmith et al. 

performed deep mutational scanning of levoglucosan kinase, where levoglucosan was fed as the 

carbon source30. Similarly, Wrenbeck et al. performed deep mutational scanning on amiE, an 
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aliphatic amidase from Pseudomonas aeruginosa, by feeding amides as the nitrogen source31. 

Antibiotic resistance genes also provide straightforward targets for competitive growth selections. 

Indeed, these represent 4/9 published enzyme scans (Table 1.1)32–34. In summary, high-throughput 

screens or selections that are generalizable are desired, yet the incredible diversity of enzyme 

function makes their development a critical challenge for the field.  

 
Table 1.1: NGS-assisted studies of large enzyme libraries. 
 

Gene Application Selection 
employed Reference 

TEM-1 
β-lactamase β-lactam antibiotic resistance Growth 

competition Deng et al.32 

TEM-1 
β-lactamase β-lactam antibiotic resistance Growth 

competition 
Firnberg et 

al.33 
TEM-1 

β-lactamase β-lactam antibiotic resistance Growth 
competition Stiffler et al.34 

APH(3')II 
kinase 

aminoglycoside antibiotic 
resistance 

Growth 
competition 

Melnikov et 
al.35 

Homing 
endonucleases Genome engineering Survival  Thyme et al.36 

Levoglucosan 
kinase Biomass conversion Metabolic 

growth 
Klesmith et 

al.30 
amiE  

aliphatic 
amidase 

Multiple industrial Metabolic 
growth 

Wrenbeck et 
al.31 

Bgl3 
β-glucosidase Biomass conversion Micro-fluidic Romero et al.37 

Ube4b E3 
ubiquitin ligase E3 ubiquitin ligase Phage display Starita et al.38 

 

From fitness landscapes to enzyme engineering 

Deep mutational scanning experiments afford a richness of knowledge of ‘hits’. However, 

efficiently utilizing ambiguous ‘fitness values’ to inform enzyme design is still a significant 
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challenge. To avert this challenge, van der Meer et al. performed over 4000 assays to generate 

‘mutability landscapes’ of a tautomerase enzyme for its expression, Michael-type activities on 

multiple substrates, and characterization of its enantioselectivity, and used this information to 

design a novel enantioselective Michaelase39.  

How does one intelligently combine hits to achieve a given design goal? One approach is 

to biophysically characterize beneficial mutations. For example, Klesmith et al. performed deep 

mutational scanning of levoglucosan kinase to identify mutations that improved fitness through 

improved flux of levoglucosan conversion. They characterized a set of beneficial mutations for 

activity and thermodynamic stability and used this information to generate designs, one of which 

had greater than 24-fold improvement in activity and 7°C increase in apparent melting 

temperature30. An alternative approach is to generate multiple fitness landscapes under different 

conditions (concentration and identity of substrate, temperature, etc.) and use differential analysis 

to generate designs. To that end Melnikov et al. performed deep mutational scanning of APH(3’)II, 

an enzyme responsible for aminoglycoside antibiotic resistance, with several antibiotics at 

different concentrations and generated designs with orthogonal activities35.  

Datasets from deep mutational scanning can be used to probe the fundamental nature of 

enzyme behavior and can be used to ask questions related to evolutionary trajectories, rigorously 

testing theories gleaned from over two decades of directed evolution experiments. Steinberg and 

Ostermeier analyzed fitness effects for TEM-15 β-lactamase under varying environmental 

conditions and found that negative selections were able to bridge access to the highest fitness 

peaks40. Wrenbeck et al. performed deep mutational scanning of an aliphatic amidase on three 

substrates and found that specificity-determining mutations were distributed throughout the 

protein sequence and structure rather than located near the active site31. 



 

 12 

METHODOLOGICAL ADVANCES AND CURRENT LIMITATIONS 

Mutagenic library preparation 

Consider a protein of a typical length of 300 residues. A library comprising every possible 

single or double point mutation would contain 6x103 or 3.6x107 sequences, respectively. Similarly, 

a library with simultaneous saturation mutagenesis at four defined positions contains 1.6x105 

sequences. For a typical experimental workflow there are 106-107 quality-filtered DNA reads, and 

accurate estimation of variant frequencies occurs above a statistical background of ~100 sequence 

reads per variant41,42. Dividing the number of sequences from a NGS run by the minimum number 

needed to estimate frequencies we arrive at an effective maximum population size of 104-105 per 

experiment. Thus, even NGS permits only small dances around the local protein sequence-fitness 

space.  

Purchasing thousands to millions of synthetically generated DNA sequences is still not an 

economically viable option for the average academic lab. Furthermore, established facile protocols 

for random mutagenesis like error-prone PCR43 or chemical synthesis by doping1 provide access 

only to a minority of possible codon substitutions, and there is often a large variance in the number 

of mutations introduced. Thus, robust methods for constructing large, user-defined DNA libraries 

are needed.  

Generation of libraries with mutations at 1-4 defined positions have been demonstrated 

using homologous recombination and cassette mutagenesis. For applications such as lead 

candidate maturation the generation of comprehensive single-site saturation mutagenesis (CSM) 

libraries is desired. A CSM library contains all possible single amino acid substitutions at every 

position in the primary sequence. One could generate such libraries by performing separate 

saturation mutagenesis reactions for each position using QuikChange or similar methods. 
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However, there are now three methods that can generate CSM libraries for gene-length targets 

with a single reaction: PALS44, PFunkel45, and Nicking Mutagenesis46. In PFunkel mutagenesis, 

single mutants are generated by thermocycling mutagenic oligos with template DNA at a low 

primer:template ratio in a single test-tube. While PFunkel has been demonstrated on multiple 

systems with excellent performance30,33,42 the method requires a bacteriophage preparation of a 

Uracil-containing ssDNA template, which can be laborious. To overcome this, Wrenbeck et al. 

developed a similar method, Nicking Mutagenesis, which uses plasmid dsDNA as the reaction 

template46. 

 

DNA read length restrictions 

One major limitation of NGS is the inherent short read length (75 to 300 nucleotides for 

Illumina sequencing platform) (Figure 1.3a). As such, a mutation located outside of the read 

window would be invisible. Longer read lengths are possible using PacBio and Oxford Nanopore 

instruments but at the cost of reduced throughput and accuracy, respectively. Because of these 

limitations, many groups perform deep mutational scanning on small genes or on subsets of genes 

(tiling) (Figure 1.3b)25,27,30,34,42,47.  

An emerging strategy is to perform a selection on a full-length gene but ‘link’ or phase 

haplotypes from one portion of the gene to the remainder (Figure 1.3c)44,48–54. For example, 

Sarkisyan et al. introduced a random 20-nucleotide barcode at the C-terminal end of a library of 

green fluorescent protein variants whilst performing error-prone PCR54. Genotypes were barcode 

linked by sequencing both the N- and C- termini, with the N-terminus brought into proximity of 

the barcode with successive digestion and ligation reactions.  
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Figure 1.3: Strategies to overcome read length limitations of NGS. A.) Mutations falling 
outside of a length ’readable’ by current sequencing technologies would be invisible. B.) In a gene 
tiling approach, mutational libraries are prepared such that mutations are restricted to a stretch of 
DNA readable by NGS platforms. Parallel screens or selections for function are performed. C.) 
Molecular barcoding of library members provides a means to overcome NGS sequencing read 
length restrictions. Randomized DNA barcodes are assigned to library member (1). Variants and 
their corresponding barcodes are linked and cataloged (haplotyped) (2). After functional selection 
(3), variants in the pre- and post-selection populations are counted by sequencing barcodes (4).  
 

Sequencing analysis 

A crucial step in any NGS-utilizing experiment is to extract useful phenotypic data - 

binding, kinetics, thermodynamic stability, host organismal fitness, etc. - from raw sequencing 

reads. Many groups report site-specific preferences as an enrichment ratio. To that end, Fowler et 

al. developed Enrich, a python-based software that transforms raw sequencing counts from pre- 
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and post-selection populations into per-allele enrichment ratios55. Similarly, Bloom developed a 

software that calculates enrichments using a likelihood-based treatment of mutation counts instead 

of simple ratios56. Woldring et al. developed ScaffoldSeq, a Python-based software for the analysis 

of partially diverse protein sequences for single site and pairwise amino acid frequencies across 

the population57. 

Normalization of these enrichment ratios to an unambiguous fitness metric like binding or 

catalytic efficiency is perhaps the least standardized portion of the deep mutational scanning 

pipeline and there is a need for a community-wide consensus on how to normalize. Kowalsky et 

al. describe a mathematical framework for normalizing enrichment ratios of variants assayed in 

deep mutational scanning experiments for FACS and growth-based selections42. Similar 

approaches are used for plate-based selections33. Finally, Abriata et al. developed a webserver, 

PsychoProt, for the analysis of functional data from saturation mutational libraries and protein 

sequence alignments for biophysical constraints using structural information58. 

 

CONCLUSION 

NGS has been a transformative technology for many fields in the biological sciences, with 

protein science and engineering being no exception. Generation and analysis of fitness landscapes 

can inform on mechanisms of natural evolution and fundamentals of enzyme behavior. Notable 

advances in our ability to engineer affinity and specificity in protein-ligand interactions has been 

enabled by NGS, while enzyme engineering has lagged behind largely because of the lack of 

generalized HTS strategies. For this same reason, the application of NGS to membrane protein 

engineering has even further lagged behind. The utility of NGS enabled enzyme and membrane 

protein engineering awaits screening technology breakthroughs. Accurate and facile sequencing 
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of non-contiguous mutations (haplotyping), either through the use of barcoding or the advent of 

longer-read technologies, will improve and expand the utility of NGS protein engineering.  
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CHAPTER TWO 

 

 

 

 

 

 

 

 

Nicking Mutagenesis: a plasmid-based, one-pot saturation mutagenesis 

method 

This chapter is adapted with permission from “Plasmid-based one-pot saturation mutagenesis” in 

Nature Methods 13:11 (2016) 928-930 by Emily E. Wrenbeck, Justin R. Klesmith, James A. 

Stapleton, Adebola Adeniran, Keith EJ Tyo, and Timothy A. Whitehead. 
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ABSTRACT 

Deep mutational scanning is a foundational tool for addressing the functional consequences 

of large numbers of mutants, yet a more efficient and accessible method for construction of user-

defined mutagenesis libraries is needed. Here we present Nicking Mutagenesis, a robust single-

day, single-pot saturation mutagenesis method that is performed on routinely prepped plasmid 

dsDNA. The method can be used to produce comprehensive, single-, or multi-site saturation 

mutagenesis libraries. 
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INTRODUCTION 

Mutational studies have been used for over six decades to probe protein sequence-function 

relationships. Deep mutational scanning has emerged as a method to assess the effect of thousands 

of mutations on function using massively parallel functional screens and DNA counting via deep 

sequencing1. Information rich sequence-function maps obtained from such methods allow a 

researcher to address a variety of aims, including the generation of biomolecular fitness 

landscapes2–6, therapeutic protein optimization7, and high-resolution conformational epitope 

mapping8. Although other technical challenges have been resolved9,10, a robust and accessible 

method for the construction of high quality, user-defined mutational libraries is lacking. 

Random mutagenesis methods such as error-prone PCR suffer from limited codon 

sampling and imprecise control over the number of mutations introduced11. Of the published 

comprehensive saturation mutagenesis methods2,4,11–14, PFunkel12 offers the best combination of 

library coverage, mutational efficiency, control over number of mutations introduced, and 

scalability (Table A 2.1). In particular, PFunkel can be used to prepare libraries covering all 

possible single point mutations, with most members of the library having exactly one mutation. 

However, PFunkel is limited by the required preparation of a uracil-containing ssDNA template 

by phage infection. dU-ssDNA yields are highly variable and the preparation adds at least two 

days to the mutagenesis procedure. By analogy to site-directed mutagenesis, PCR-based methods 

like QuikChange have mostly supplanted the highly efficient Kunkel mutagenesis that also 

requires dU-ssDNA15. 
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RESULTS 

Here we present Nicking Mutagenesis, a method that does not rely on dU-ssDNA (Figure 

2.1). Nicking mutagenesis is flexible, as any plasmid dsDNA can be used provided that it contains 

a single 7-bp BbvCI restriction site. The key mechanism in nicking mutagenesis is the successive 

creation and degradation of a wild-type ssDNA template. This is accomplished via a pair of nicking 

endonucleases (Nt.BbvCI and Nb.BbvCI)16,17 that recognize the same site but nick one strand or 

the other, followed by exonuclease digestion. First, ssDNA template is created from dsDNA 

plasmid via a strand-specific nick introduced by Nt.BbvCI followed by selective digestion of the 

nicked strand with Exonuclease III (step 1; Figure 2.1). Mutant strands are then synthesized by 

thermal cycling template DNA with mutagenic oligos at a low primer-to-template ratio to promote 

annealing of effectively one primer to each template12 (step 2). The highly processive and high 

fidelity Phusion Polymerase extends the primer around the circular template. Taq DNA Ligase 

closes the new strand to form a dsDNA plasmid with a mismatch at the mutational site. The 

heteroduplex DNA is then column purified to avoid buffer incompatibility issues and prevent 

potential competition between Phusion and Exonuclease III. 

To resolve the heteroduplex, the opposite strand nicking endonuclease, Nb.BbvCI, creates 

a nick in the template strand, which is subsequently degraded by Exonuclease III (step 3). A 

secondary primer is then added and synthesis of the complementary mutant strand follows as above 

(step 4). To reduce wild-type background, the final reaction is treated with DpnI to digest 

methylated and hemi-methylated parental DNA. The complete protocol can be performed in a 

single day with minimal hands-on time (Table A 2.2).  

We first optimized nicking mutagenesis using a green/white fluorescent screen based on 

reversion of a non-fluorescent green fluorescent protein (GFP) mutant (Note A 2.1,  



 

 27 

 

Figure 2.1: Comprehensive single-site Nicking Mutagenesis. Plasmid dsDNA containing a 7-
bp BbvCI recognition site is nicked by Nt.BbvCI. Exonuclease III degrades the nicked strand to 
generate an ssDNA template (step 1). Mutagenic oligos are then added at a 1:20 ratio with 
template, Phusion Polymerase synthesizes mutant strands, and Taq DNA Ligase seals nicks (step 
2). The reaction is column purified, and then the wild-type template strand is nicked by Nb.BbvCI 
and digested by Exonuclease III digestion (step 3). A second primer is added and the 
complementary mutant strand is synthesized to yield mutagenized dsDNA (step 4). 
 
 
Figure A 2.1, and Table A 2.3). Next, we used nicking mutagenesis to prepare comprehensive 

single-site saturation mutagenesis libraries for two different 71 codon stretches of an aliphatic 

amidase encoded by the gene amiE from Pseudomonas aeruginosa (reaction 1 and 2 correspond 

to residues 100-170 and 171-241, respectively)18. A mixture of 71 degenerate NNN oligo sets, 

each with three consecutive randomized bases (NNN) corresponding to one of the 71 codons, was 

used at a 1:20 primer:template ratio. We deep sequenced the resulting libraries to an average depth 

of coverage of 2,200 reads per variant and processed the data using Enrich19. We observed 100% 

of possible single non-synonymous (NS) mutants (2840 total) and 100% of all possible 

programmed codon mutations (8946 total) with at least 10 reads (library coverage statistics are 

shown in Table 2.1). 64.4% and 63.5% of library members had exactly one  
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Table 2.1: Nicking mutagenesis library coverage statistics. 

  Theoretical 
amiE  

reaction 1  
amiE 

reaction 2 bla   

Sequencing reads post quality filter19 
(fold coverage)   

4273346 
(941x) 

5378051 
(1184x) 

414417 
(74x) 

Number of transformants   1.3x107 1.4x107 1.5x105 
Number of mutated codons   71 71 88 
Total plasmid length (nucleotides)   4,612 4,612 6,907 
Percent of reads with:         

No nonsynonymous mutations 1.6 27.2 26.3 30.1 
One nonsynonmymous mutation 98.4 64.4 63.5 59.9 

Multiple nonsynonymous mutations 0 8.4 10.2 9.7 
Frameshift mutation 0 0.05 0.05 0.34 

Percent of mutant codons with:         
1-bp substitution 14.3 32.2 31.4 25.4 
2-bp substitution 42.9 32.8 31.5 41.7 
3-bp substitution 42.9 35.0 37.1 33.0 

Percent of possible codon 
substitutions observed         

1-bp substitution   100.0 100.0 99.7 
2-bp substitution   100.0 100.0 83.5 
3-bp substitution   100.0 100.0 77.8 
All substitutions    100.0 100.0 83.4 

Coverage of possible single amino 
acid substitutions with ≥5 reads    100.0 100.0 91.5 
Coverage of possible programmed 
mutant codons with ≥5 reads    100.0 100.0 75.4 

 

NS mutation for amiE reaction 1 and 2, respectively. The incidence of non-programmed indel 

mutations was 0.05% for both reactions 1 and 2. The frequency of individual mutations in each 

library followed a log-normal distribution, which is consistent with libraries prepared by PFunkel 

mutagenesis6,9 (Figure A 2.2). In deep mutational scanning experiments, the initial library is 

typically sequenced at approximately 200-fold depth of coverage of the expected diversity. 
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Normalizing the above sequencing results to a 200-fold depth of coverage reveal that 93.2% and 

97.8% of possible NS mutations would be represented above the typical threshold of 10 sequencing 

reads for amiE reaction 1 and 2, respectively (Figure A 2.3a). This compares favorably with 

PFunkel mutagenesis (91.7% using the same threshold), although we note that the library 

distributions between the two methods are essentially identical (Figure A 2.3b). We next assessed 

the libraries for off-target mutations by shotgun sequencing the input plasmid, pEDA3_amiE (no 

intended mutations), and library dsDNA from amiE reactions 1 and 2 and found the corresponding 

mutant tiles had significantly higher percent mutant allele rates (p-value < 2.2x10-16 for both 

reaction 1 and 2, Figure A 2.4).  

To demonstrate performance on larger plasmids, we used nicking mutagenesis to prepare 

a comprehensive single-site saturation mutagenesis library for an 88-codon stretch of the gene bla 

encoding E. coli TEM-1 !-lactamase from a 6.9 kb plasmid and sequenced to 74-fold coverage of 

codon space. We observed nearly identical library composition with 91.5% coverage of possible 

amino acid substitutions (Table 2.1), which is consistent with expected coverage at this depth of 

sequencing (Figure A 2.5). Of note, we observed an order of magnitude fewer transformants when 

preparing this library compared to amiE, consistent with larger plasmids having lower 

transformation efficiency. One potential strategy to improve transformation efficiency is to use 

ultra-competent cells. Alternatively, the library can be constructed on a smaller plasmid and then 

transferred to a desired plasmid via subcloning. 

To further expand the utility of nicking mutagenesis, we developed a single- and multi-site 

protocol (Figure A 2.6). The protocol was modified by adding primer at a 5:1 molar ratio to 

template and altering the thermal cycling steps for mutant strand synthesis. We tested the method 

by performing three single- and one triple-mutation nicking mutagenesis reaction on bla (plasmid 
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pSALECT-wtTEM1/csTEM1). Sanger sequencing of two clones from each of the three single-site 

reactions revealed that 5/6 clones contained a single mutation. For the multi-site reaction, 5 out of 

10 sequenced clones contained the desired three programmed mutations.  

Robust and effective molecular biology methods are characterized by the ease of their 

adoption by laboratories outside of where they were developed. To evaluate the accessibility of 

the method, the Tyo lab (Northwestern University) tested the method by performing single-site 

nicking mutagenesis on the pEDA5_GFPmut3_Y66H plasmid with the restore-to-function oligo 

GFP_H66Y. The resulting mutational efficiency, calculated by counting fluorescent (mutant) and 

non-fluorescent (wild-type) colonies, was 86.8 ± 6.1% (n=3 independent experiments).  

 

DISCUSSION 

We have demonstrated a single-pot single-day method for the preparation of 

comprehensive single- and multi-site saturation mutagenesis libraries from plasmid dsDNA 

(method cost detailed in Table A 2.4). The utility of nicking mutagenesis is not limited to 

saturation mutagenesis. Codon substitutions are user defined, making it possible to restrict 

diversity to specific residues such as hydrophobic or charged substitutions. An inherent limitation 

is that if multiple BbvCI nicking sites on a plasmid exist they must be in the same orientation. In 

the human genome, BbvCI has a mean distance between sites of 2058 base pairs, thus a 

considerable fraction of human genes will have nicking sites. Solutions include either cloning the 

gene of interest into a plasmid with a compatible nicking site orientation or using custom gene 

synthesis to remove extra BbvCI sites. 

To validate the performance of nicking mutagenesis we used “testers” from an external 

lab; we propose using such testers to enhance reproducibility and accessibility of new molecular 
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biology methods. To aid in method adoption, the GFP plasmid used for green/white screening 

(pEDA5_GFPmut3_Y66H) has been deposited to the AddGene repository (www.addgene.org, 

plasmid #80085) as a tool for practicing and troubleshooting the method.  

 

MATERIALS AND METHODS 

Reagents 

All chemicals were purchased from Sigma-Aldrich unless otherwise noted. All enzymes 

were purchased from New England Biolabs. All mutagenic oligos were designed using the 

QuikChange Primer Design Program (Agilent, Santa Clara, CA). Mutagenic oligos and sequencing 

primers were ordered from Integrated DNA Technologies (Coralville, IA).  

 

Plasmid construction 

All primer sequences used in this work are listed in Table A 2.3. Plasmid 

pEDA5_GFPmut3_Y66H was prepared by modification of pJK_proB_GFPmut3 as described in 

Bienick et al.18 by a single Kunkel15 reaction with two mutagenic primers: one encoding a BbvCI 

site (primer pED_BbvCI) and the second to introduce a Tyr66His point mutation (primer 

GFP_Y66H). pEDA3_amiE was constructed by altering pJK_proK17_amiE as described in 

Bienick et al.18 with a single Kunkel15 reaction with two primers: one encoding a BbvCI site 

(pED_BbvCI) and the second encoding a mutated ribosome binding sequence (pED_kRBS3). 

pEDA5_GFPmut3_Y66H has been deposited in the AddGene repository (www.addgene.org, 

plasmid #80085).  

Plasmid pSALECT-wtTEM1/csTEM1 was created as follows. Overhang PCR was used to 

add in an XhoI and BbvCI site after the existing NdeI site and before the original stop codon of 
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plasmid pSALECT-EcoBam (Plasmid #59705, acquired from AddGene). A Δ2-23 truncation of 

wild-type TEM-1 was cloned in-frame between the NdeI and XhoI sites. A codon swapped Δ2-23 

truncation of wild-type TEM-1 with a C-terminal His6x tag and double stop codon was ordered as 

a gBlock (IDT) and was cloned in-frame between the XhoI and BbvCI site. This second TEM-1 is 

a C-terminal fusion to the wild-type TEM-1. 

Plasmid pETconNK-TEM1(S70A,D179G) was created as follows. Gibson assembly was 

used to remove the ampicillin gene from pETcon(-) (Addgene plasmid #41522) and insert a 

kanamycin gene with a 3’ BbvCI site on the coding strand. A Δ2-23 truncation of TEM-1 with 

point mutations S70A and D179G was cloned in-frame between the NdeI and XhoI sites.  

 

Comprehensive nicking mutagenesis optimization 

The final optimized comprehensive nicking mutagenesis protocol is supplied in 

Supplementary Protocol 1 and on the Protocols Exchange (DOI 10.1038/protex.2016.061). 1X 

CutSmart Buffer (NEB) was used as an enzyme diluent when necessary. Two reactions were set 

up as follows: 0.76 pmol pEDA5_GFPmut3_Y66H was incubated with 10 U each of Nt.BbvCI 

and Exonuclease III in 1X CutSmart Buffer (20 µL final volume) for 60 minutes at 37°C followed 

by 80°C for 20 minutes (heat kill). 40 U of DpnI was added and the reaction was incubated at 37°C 

for 60 minutes followed by 80°C for 20 minutes (heat kill). One reaction was then column purified 

by Zymo Clean & Concentrator (5:1 v/v ratio of binding buffer to sample), eluted in 6 µL 

Nuclease-Free H2O (NFH2O, Integrated DNA Technologies), transformed into XL1-Blue 

electrocompetent cells, and dilution plated. The following was added to the second reaction: 200 

U of Taq DNA Ligase, 2 U Phusion High-Fidelity DNA Polymerase, 20 µL 5X Phusion HF Buffer, 

20 µL 50 mM DTT, 1 µL 50 mM NAD+, 2 µL 10 mM dNTPs, 29 µL NFH2O (final reaction volume 
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of 100µL). The tube was placed into a preheated (98°C) thermal cycler set with the following 

program: 98°C for 2 minutes, 15 cycles of 98°C for 30 seconds (denature), 55°C for 45 seconds 

(anneal oligos), 72°C for 7 minutes (extension), followed by a final incubation at 45°C for 20 

minutes to complete ligation. The reaction was column purified, transformed, and dilution plated 

as described above. 

The optimization experiment including addition of Exonuclease I was performed as 

described below with the following modifications. A single mutagenic primer, His66Tyr (restores 

wild-type chromophore sequence), was used at a 1:20 primer:template ratio. The reaction was 

column purified and transformed into XL1 Blue electrocompetent cells as above. Green 

fluorescent (mutated) and white (parental) colonies were counted to calculate transformational and 

mutational efficiencies.  

 

Comprehensive nicking mutagenesis of amiE and bla  

Three separate reactions targeting residues 100-170 and 171-241 of amiE and 201-289 of 

TEM-1 were performed. Mutagenic oligos programming degenerate codons (NNN) for each 

reaction were mixed in equimolar amounts to a final concentration of 10 µM. 20 µL of each primer 

mix was added to a phosphorylation reaction containing 2.4 µL of T4 Polynucleotide Kinase 

Buffer, 1 µL 10 mM ATP, 10 U T4 Polynucleotide Kinase, and incubated for 1 hour at 37°C. 

Secondary primer pED_2ND was phosphorylated in a reaction containing 18 µL NFH2O, 2 µL T4 

Polynucleotide Kinase Buffer, 7 µL 100 µM secondary primer, 1 µL 10 mM ATP, and 10 U T4 

Polynucleotide Kinase. The reaction was incubated for 1 hour at 37°C. Phosphorylated NNN and 

secondary primers were diluted 1:1000 and 1:20 in NFH2O, respectively. 
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ssDNA template was prepared in a reaction containing 0.76 pmol plasmid dsDNA, 2 µL 

NEB CutSmart Buffer, 10 U Nt.BbvCI, 10 U Exonuclease III, 20 U Exonuclease I, and NFH2O to 

20 µL final reaction volume in a PCR tube.  The following thermal cycle program was used: 37°C 

for 60 minutes, 80°C for 20 minutes (heat kill), hold at 4-10°C. Next, for mutant strand synthesis 

the following was added to each PCR tube on ice: 20 µL 5X Phusion HF Buffer, 20 µL 50 mM 

DTT, 1 µL 50 mM NAD+, 2 µL 10 mM dNTPs, 4.3 µL 1:1000 diluted phosphorylated NNN 

mutagenic oligos, and 26.7 µL NFH2O (final reaction volume of 100µL). The tube contents were 

mixed, spun down, and placed on ice. 200 U of Taq DNA Ligase and 2 U Phusion High-Fidelity 

DNA Polymerase were added to each reaction, mixed, spun down, and placed into a preheated 

(98°C) thermal cycler set with the following program: 98°C for 2 minutes, 15 cycles of 98°C for 

30 seconds (denature), 55°C for 45 seconds (anneal oligos), 72°C for 7 minutes (extension), 

followed by a final incubation at 45°C for 20 minutes to complete ligation. Additional 4.3 µL of 

oligos were added at the beginning of cycles 6 and 11. Each reaction was then column purified 

using a Zymo Clean & Concentrator kit (5:1 DNA Binding Buffer to sample). Each reaction was 

eluted in 15 µL NFH2O, and 14 µL was transferred to a fresh PCR tube. 

Next, for the template degradation reaction the following was added to each tube: 2 µL 

10X NEB CutSmart Buffer, 1 U Nb.BbvCI, 2 U Exonuclease III, and 20 U Exonuclease I (20µL 

final volume). The following thermocycler program was used: 37°C for 60 minutes, 80°C for 20 

minutes (heat kill), hold at 4-10°C. To synthesize the second (complementary) mutant strand, the 

following was added to each reaction: 20 µL 5X Phusion HF Buffer, 20 µL 50 mM DTT, 1 µL 50 

mM NAD+, 2 µL 10 mM dNTPs, 3.3 µL 1:20 diluted phosphorylated secondary primer (0.38 

pmol), and 27.7 µL NFH2O (final reaction volume of 100 µL). The tube contents were mixed, spun 

down, and placed on ice. 200 U of Taq DNA Ligase and 2 U Phusion High-Fidelity DNA 
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Polymerase were added to each reaction, mixed, spun down, and placed into a preheated (98°C) 

thermal cycler set with the following program: 98°C for 30 seconds, 55°C for 45 seconds, 72°C 

for 10 minutes (can be extended for longer constructs), and 45°C for 20 minutes.  

To degrade methylated and hemi-methylated wild-type DNA, 40 U of DpnI was added to 

each reaction and incubated at 37°C for 1 hour. The final reaction was column purified using the 

Zymo Clean & Concentrator-5 kit as described above but eluted in 6 µL NFH2O. The entire 6 µL 

was transformed into 40 µL of XL1-Blue electroporation competent cells (Agilent) and plated on 

Corning square bioassay dishes (Sigma-Aldrich, 245mm x 245mm x 25mm). The following day, 

colonies were scraped with 15 mL of TB, vortexed, and 1 mL was removed and mini-prepped 

using a Qiagen Mini-prep Kit.  

 

Single and multi-site nicking mutagenesis 

Mutagenic primers were phosphorylated separately following the protocol described above 

for the secondary primer, then diluted 1:20 with NFH2O. For multi-site nicking mutagenesis, 2 µL 

of each primer was mixed in a single tube and diluted to a final volume of 40 µL. ssDNA template 

preparation was performed as described above. For mutant strand synthesis, oligos were annealed 

in the absence of polymerase as suggested by Firnberg et al.11. 3.3 µL of 1:20 phosphorylated 

oligos (single or mixed), 10 µL 5X Phusion HF Buffer, and 16.7 µL NFH2O were added to the 

appropriate tube. Oligos were annealed with the following thermocycler program: 98°C for 2 

minutes, decrease to 55°C over 15 minutes, 55°C for 5 minutes, and hold at 55°C. While the 

reactions were held on the block, the following was added to each tube from a master mix: 20 µL 

5X Phusion HF Buffer, 20 µL 50 mM DTT, 1 µL 50 mM NAD+, 2 µL 10 mM dNTPs, and 11 µL 

NFH2O (final reaction volume of 100µL). The tube contents were mixed by pipetting, then 200 U 
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of Taq DNA Ligase and 2 U Phusion High-Fidelity DNA Polymerase were added to each reaction, 

mixed, spun down, and returned to the thermocycler for the following program: 72°C for 10 

minutes, 45°C for 20 minutes. The remainder of the protocol proceeded as described in the 

comprehensive protocol.  

 

DNA deep sequencing and analysis 

Plasmids obtained after transformation of the reaction mix and miniprep were used for deep 

sequencing analysis of library coverage. Samples were prepared for deep sequencing as described 

in Kowalsky et al.9 following Method B. Sequences of PCR primers are listed in Table A 2.3. 

Samples for shotgun sequencing were prepared at the Michigan State University sequencing core 

(approximate median insert size of 360bp). amiE libraries were sequenced on an Illumina MiSeq 

with 250bp PE reads at the University of Illinois Chicago sequencing core. All other samples were 

sequenced on an Illumina MiSeq with 300bp PE reads at Michigan State University. Read statistics 

are given in Table 2.1. Raw FASTQ files were analyzed with Enrich software19 with modifications 

as described in Kowalsky et al.9. Analysis of libraries for frameshift and off-target mutations was 

done using the Burrows Wheeler Aligner20 followed by processing with SAMtools21. Library 

statistics (Table 2.1) and read coverage plots (Figure A 2.2 and A 2.5a) were obtained using 

custom scripts freely available at Github (user JKlesmith). Sequencing data has been deposited to 

the NCBI Sequence Read Archive (accession numbers SRR4105481-SRR4105486). 

 

Statistics 

For analysis of the shotgun sequencing data, the mean of the background subtracted per-position 

percent mutant allele values for amiE reactions 1 and 2 at positions inside and outside the targeted 
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region for mutagenesis were computed. Welch two sample t-tests were performed using the R 

statistical software22 to calculate significance between averages from the inside regions and the 

outside regions for reaction 1 (p-value < 2.2*10-16, t = -14.846, df = 697.06) and reaction 2 (p-

value < 2.2*10-16, t = -19.259, df = 214).   
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APPENDIX 

 

 

 
 
Figure A 2.1: Gel snapshots along the optimized nicking mutagenesis method. Plasmid 
dsDNA and ssDNA (prepared from bacteriophage) of pEDA5_GFPmut3 are included for size 
reference. NR = nicking reaction; 2 µg of pEDA5_GFPmut3_Y66H was placed in a 20 µL reaction 
with 10 U Nt.BbvCI in 1X CutSmart buffer. TP = template preparation; a reaction was ceased after 
the template preparation phase. MS = mutant strand; a reaction was ceased after the synthesis of 
the mutant strands, where regeneration of relaxed dsDNA can be seen. 1 kb Plus Ladder (Thermo 
Fischer Scientific, lane 1) included for size reference. Gel image has been cropped to size. 
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Figure A 2.2: Probability distribution of mutation counts in amiE comprehensive nicking 
mutagenesis libraries. Dashed vertical lines represent median (red) and mean (blue) library 
member read coverage. Panel a shows distribution for reaction 1 and panel b shows the distribution 
for reaction 2. 
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Figure A 2.3: Comparison of the probability distributions of site-saturation mutagenesis 
libraries resulting from nicking mutagenesis or PFunkel mutagenesis. Because the depth of 
sequencing coverage varied between the three methods, all samples were normalized to a 200-fold 
depth of coverage of possible single non-synonymous mutations. The expected library diversity is 
820 for Kowalsky et al.1,2 and 1420 for amiE reaction 1 & reaction 2 (this work). a. Cumulative 
distribution function for the three libraries as a function of normalized sequencing counts. 91.7%, 
93.2%, and 97.8% of the library is represented above a threshold of 10 sequencing counts for 
PFunkel library, amiE reaction 1, and the amiE reaction 2 libraries, respectively. b. Frequency is 
plotted as a function of sequencing counts for the same three libraries. The experimental data are 
plotted as symbols, with lines representing a best fit of the data using a log-normal distribution 
(PFunkel: µ=2, "=0.49, amiE reaction 1: µ=2, "=0.50. amiE reaction 2: µ=2, "=0.44). 
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Figure A 2.4: Off-target mutational analysis of amiE input plasmid and mutational libraries 
by shotgun sequencing. a-c. Percent mutant allele at each position in the plasmid sequence for 
the input plasmid (a) amiE reaction 1 library (b) and amiE reaction 2 library (c). Shotgun 
sequencing reads were aligned to the pEDA3_amiE plasmid using BWA aligner3,4 and the 
frequency of each base at each position was counted using bam-readcount (www.github.com). 
Percent mutant allele was calculated for each position by summing all non-wildtype allele counts 
and diving by total reads at that position. Overlain red curves indicate depth of sequencing 
coverage at each position. d-e. Background subtracted percent mutant allele for each position in 
plasmid sequence of amiE reaction 1 library (d) and amiE reaction 2 library (e). 
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Figure A 2.5: bla library coverage distributions. Probability distribution of mutation counts in 
bla comprehensive nicking mutagenesis libraries. Dashed vertical lines represent median (red) and 
mean (blue) library member read coverage. b. Cumulative distribution function for the three 
libraries as a function of normalized sequencing counts. 
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Figure A 2.6: Schematic overview of single- or multi-site nicking mutagenesis. After the 
preparation of an ssDNA template, an annealing reaction is set up with a single or mixed set of 
mutagenic oligos at a 5:1 primer:template ratio (for each oligo). Next, reagents and enzymes 
necessary to synthesize the mutant strands are added. The remainder of the protocol is identical to 
comprehensive nicking mutagenesis. 
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Table A 2.1: Performance metrics of published comprehensive mutagenesis methods2,11,12,14,23. Bolded text indicates metrics  
that are comparatively inefficient to nicking mutagenesis and PFunkel mutagenesis. NS = nonsynonymous. 
 

Mutagenesis method 
Publication data gathered from 

Gene (# codons mutated) Library 
type 

Library 
coverage 

Percent of mutants  
with NS mutations Scalability 

mutatable 
codons/ 
reaction Single Zero Multiple 

Cassette Mutagenesis 
Hietpas et al.2 

Hsp90 (9) 

user-
defined 100% nd nd nd 20 

Error-Prone PCR 
Doolan et al.23 

mouse PrP (211) 
random nd 28.2% 60.6% 11.08% all 

Chemical Synthesis 
Fowler et al.14 

hYAP65 WW domain (25) 
random 83.2% nd 20* nd 30 

PALS Mutagenesis 
Kitzman et al.11 

Gal4 DBD and p53 (457 total) 

user-
defined 94.3% 35% 29.2% 33% all 

PFunkel Mutagenesis 
Kowalsky et al.24 
Ct Cohesin (162) 

user-
defined 97.1% 73.6% 20.5% 5.9% all 

Nicking Mutagenesis 
This work 
amiE (142) 

user-
defined 100.0% 64% 26.8% 9.3% all 

*estimated from Supplementary Figure 3 of original publication 
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Table A 2.2: Estimated time required for comprehensive library construction using nicking 
mutagenesis.  

Step  
number   

Hands-on time 
(min) 

On-thermal cycler 
time (min) 

1a* Phosphorylate oligos 30 60* 

1b* 
ssDNA template strand  
preparation 

5 80* 

2a 
Comprehensive codon  
mutagenesis strand 1 

10 146 

2b Column purification I 5   
3 Degrade template strand 5 80 

4a 
Synthesize complimentary 
mutagenic strand 

10 32 

4b DpnI DNA cleanup 2 60 
4c Column purification II 5   

  Subtotal (hr): 1.2 6.6 
  Total (hr): 7.8   

*steps can be performed simultaneously  
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Table A 2.3: Primer sequences. 

Plasmid construction primers 

pED_BbvCI gcggccccacgggtcctcagcgcgcatgat 

pED_kRBS3 gacgagctaatatcgccatgtctcatatgtataaaaacttcttaaagttaaacaaaattatttctagaaagttaaa 

GFP_Y66H gcaaagcattgaacaccatgaccgaaagtagtgacaagt 

  
Green/white screening mutagenic oligos 
GFP_H66Y gcaaagcattgaacaccataaccgaaagtagtgacaagt 

GFP_H66Y_RC acttgtcactactttcggttatggtgttcaatgctttgc 

  
Green/white screening secondary primer 
pED_2ND ggtgattcattctgctaa 

  
amiE and TEM-1 secondary primers 
pED_2ND (amiE) ggtgattcattctgctaa 

pSALECT/pETconNK_2ND 
(TEM-1)  ggtttcccgactggaaag 

  
Gene amplification: inner primers 
amiE_NMT1_FWD gttcagagttctacagtccgacgatcgcaaatgtttggggtgtg 

amiE_T2_FWD gttcagagttctacagtccgacgatcctgcgatgacggtaat 

amiE_T1_REV ccttggcacccgagaattccactctccaaatttccggata 

amiE_NMT2_REV ccttggcacccgagaattccattcgccgcattcacccagagt 

TEM1_T3_FWD gttcagagttctacagtccgacgatcattaactggcgaactacttact 

pETconNK_REV  ccttggcacccgagaattccaaagcttttgttcggatc 

blue = Illumina sequencing primer; black = gene overlap 
  

Gene amplification: outer primers 
Illumina_FWD aatgatacggcgaccaccgagatctacacgttcagagttctacagtccga 

RPI30 caagcagaagacggcatacgagatCCGGTGgtgactggagttccttggcacccgagaattcca 

RPI31 caagcagaagacggcatacgagatATCGTGgtgactggagttccttggcacccgagaattcca 

RPI21 caagcagaagacggcatacgagatCGAAACgtgactggagttccttggcacccgagaattcca 

red = Illumina adapter sequence; BOLD = barcode; blue = Illumina sequencing primer 
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Table A 2.4: Cost analysis of nicking mutagenesis compared with PFunkel12. Library 
preparation cost was calculated by totaling cost of enzymes (price information gathered from New 
England Biolabs) and reagents (price information gathered from Sigma-Aldrich, Qiagen, and 
Zymo Research) on a per reaction basis. Price of chemically synthesized degenerate NNN oligos 
based on IDT pricing for a 40bp primer6 at the 500 pmole scale: $0.10/base*40bp = $4/codon. 
Prices obtained February 2016.  

 

  PFunkel 
Nicking 

Mutagenesis 
Library preparation cost 
per reaction $53 $55 
NNN oligo cost per codon 
(source) 

$4 
(IDT) 

$4 
(IDT) 

Total cost 
per 100 scanned codons $453 $455 
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Note A 2.1: Optimization of nicking mutagenesis using green/white screening 

A previously constructed GFPmut3 expression plasmid18 was modified by incorporating a 

BbvCI site and by changing the amino acid sequence of the GFPmut3 chromophore, Gly65-Tyr66-

Gly67, to Gly65-His66-Gly67, resulting in a non-fluorescent protein. We performed nicking 

mutagenesis on this construct (pEDA5_GFPmut3_Y66H) with a restore-to-function mutagenic 

oligo (primer GFP_H66Y, see Supplementary Table 3 for sequences). Figure A 2.1 shows gel 

snapshots at different stages along the optimized process. 

Initial experiments with the full nicking mutagenesis protocol showed a mutational 

efficiency of 23% with 3x105 transformants. To determine the sources of high wild-type 

background, we performed a series of control experiments containing no mutagenic primer. Thus, 

any resulting transformants could be unambiguously attributed to wild-type. The number of 

background transformants was 103 after the template preparation step and incubation with DpnI, 

but increased to 106 if the reaction was allowed to proceed through the thermal cycling steps. We 

hypothesized that short stretches of incompletely degraded DNA were priming and regenerating 

wild-type constructs. To remedy this, Exonuclease I, which specifically degrades ssDNA, was 

added to both the template preparation and degradation reactions. The addition of Exonuclease I 

improved mutational efficiency to 56% with >5x105 transformants. Incubation of the final reaction 

mixture with DpnI to remove methylated and hemi-methylated wild-type DNA increased the 

mutational efficiency to 68% with >3x105 transformants. 

In oligonucleotide-programmed mutagenesis, mutagenic oligos are designed to be 

complementary to the wild-type template sequence on either side of the programmed mutation 

such that they can anneal to the template. For Kunkel mutagenesis15, the ssDNA template strand 
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is made by replication and packaging within a phage host. The directionality of the ssDNA 

template strand (sense or anti-sense) is dependent upon the directionality of the F1-origin of 

replication. If the F1-origin is such that the template strand made is sense, then mutagenic oligos 

are designed anti-sense.  

For nicking mutagenesis, the directionality of the template strand is dependent upon the 

orientation of the BbvCI site. The set of enzymes, Nt.BbvCI (Nick-top BbvCI) and Nb.BbvCI 

(Nick-bottom BbvCI) will create nicks on the strands containing their respective recognition 

sequence. If the Nt.BbvCI nicking enzyme is used for template preparation and its recognition 

sequence is encoded on the anti-sense strand, the ssDNA template formed will be sense. Thus, 

mutagenic oligos should be designed anti-sense. The opposite is true if Nb.BbvCI was used to 

create the template strand.  

To confirm that the order of nicking enzymes could be switched, we performed nicking 

mutagenesis using green/white screening in two reactions: one with Nt.BbvCI then Nb.BbvCI 

using the GFP_H66Y mutagenic primer (priming one strand), and the second using Nb.BbvCI first 

with the GFP_H66Y_RC primer (priming the opposite strand at the same location as GFP_H66Y). 

We observed mutational efficiencies of 46% and 44% with >8x104 and >9x104 total transformants, 

respectively, confirming that the order of nicking enzymes can be switched. 

Another consideration is that a target gene of interest may contain a BbvCI nicking site. In 

such a case, confirm that the orientation of the BbvCI nicking site is the same on the gene as on 

the backbone.  
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CHAPTER THREE 

 

 

 

 

 

 

 

 

Exploring the sequence-determinants to specificity of an enzyme using deep 

mutational scanning 

This chapter is adapted with permission from “Single-mutation fitness landscapes for an enzyme 

on multiple substrates reveal specificity is globally encoded” in Nature Communications 8 (2017) 

15695 by Emily E. Wrenbeck, Laura R. Azouz, and Timothy A. Whitehead. 
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ABSTRACT 

Our lack of total understanding of the intricacies of how enzymes behave has constrained 

our ability to robustly engineer substrate specificity. Furthermore, the mechanisms of natural 

evolution leading to improved or novel substrate specificities are not wholly defined. Here we 

generate near-comprehensive single-mutation fitness landscapes comprising >96.3% of all 

possible single nonsynonymous mutations for hydrolysis activity of an amidase expressed in E. 

coli with three different substrates. For all three selections, we find that the distribution of 

beneficial mutations can be described as exponential, supporting a current hypothesis for adaptive 

molecular evolution. Beneficial mutations in one selection have essentially no correlation with 

fitness for other selections and are dispersed throughout the protein sequence and structure. Our 

results further demonstrate the dependence of local fitness landscapes on substrate identity and 

provide an example of globally distributed sequence-specificity determinants for an enzyme. 
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INTRODUCTION 

Understanding the sequence determinants to substrate specificity for enzymes is a 

significant challenge in protein science that impacts fields as diverse as evolutionary biology and 

biocatalysis1,2. The dynamic relationship between protein structure and function makes it difficult 

to predict perturbations to the primary sequence that will improve or alter activity for a given 

substrate2. More fundamental concerns relate the nature of protein fitness landscapes to a 

biophysical basis underlying molecular evolution and adaptation3,4. What is the distribution of 

fitness effects (DFE) for mutations, and do they correspond with existing theory of adaptation5–7? 

Are the DFE of mutations correlated between substrates8? Are specificity-modulating mutations 

correlated to bulk properties of enzymes (e.g. distance to active site)? 

Over the past 20 years directed evolution experiments have provided a number of insights 

to the above questions9–11. For engineering enzyme specificity, it has been shown that a rational 

mutagenesis approach – primarily focused on residues lining a substrate binding pocket - provides 

greater payoffs than random mutagenesis (i.e. error-prone PCR)1,12,13. However, it is no secret that 

distant (>10 Å) mutations can have significant effects on catalytic function13–20. For example, in a 

classic paper Oue et al. evolved the specificity of an aspartate aminotransferase to valine and found 

only one mutation in direct contact with the substrate out of seventeen accumulated in the final 

construct20. However, the spatial distribution of specificity-modulating substitutions is still 

unclear, as typical experiments assay the effects of less than 100 mutations. Large scale mutational 

studies, such as deep mutational scanning to generate local fitness landscapes21,22, provide a more 

comprehensive purview and can potentially be used to resolve the above open questions23. 

From the protein engineer’s perspective, the ability to predict fitness effects would greatly 

improve the discovery rate of beneficial mutations. In recent years, theoretical work on adaptive 
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molecular evolution has experienced a revolution with the availability of new experimental tools. 

Recognizing the rare nature of beneficial mutations, Gillespie24 borrowed extreme value theory 

mathematics to predict that the distribution of fitness effects (DFE) for beneficial mutations, drawn 

from the extreme tail of DFEs, would be of the Gumbel or ‘typical’ type (exponential, gamma, 

Weibull, etc.). Orr later proposed that beneficial mutations from a high fitness parent should be 

roughly exponentially distributed6. While generally providing support for these theories, 

discerning the parameterization of a mathematical model from experimental data has yielded 

mixed conclusions as summarized by Orr25.  

To explore the question of how enzymes encode specificity and scrutinize adaptive 

molecular evolution theory, we evaluate the sequence determinants to substrate specificity for an 

enzyme by generating comprehensive single-mutation fitness landscapes – the effects of all 

possible single point mutations - on multiple substrates. As a model system we use the aliphatic 

amide hydrolase encoded by amiE from Pseudomonas aeruginosa26 because the structure is 

solved27, amidases are an industrially-relevant class of enzymes28,29, and amiE has activity against 

multiple substrates. In particular, amiE maintains comparatively higher activity on acetamide and 

propionamide compared with the bulkier isobutyramide. Thus, our experimental system allows 

comparison of adaptation between similar and structurally dissimilar substrates.  
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RESULTS 

Local Fitness Landscapes of amiE on Multiple Substrates 

We first developed growth selections for three short-chain aliphatic amides: acetamide 

(ACT), propionamide (PR), and isobutyramide (IB) (Figure 3.1), such that only E. coli cells 

harboring a functional amiE gene product can grow when an amide is provided as the sole nitrogen 

source in selective minimal growth media30,31. Following passive diffusion into cells, amiE 

catalyzes hydrolysis of the amide to its corresponding carboxylic acid, liberating ammonium (a 

bioavailable nitrogen source). To allow variants supporting higher ammonium flux to become 

enriched in the population relative to wild-type, we tuned amiE expression levels by screening  

Figure 3.1: Experimental overview. Growth selections for acetamide (ACT), propionamide 
(PR), and isobutyramide (IB) were established. Amides passively diffuse into host cells harboring 
amiE variants that produce ammonia necessary for cell growth. Comprehensive site-saturation 
mutagenesis libraries of amiE were made and selected in media containing an amide as the sole 
nitrogen source. The pre- and post-selection populations from each selection were deep sequenced 
and each variant was assigned a fitness metric (!) value.  
 

synthetic, insulated constitutive promoters32,33 such that the specific growth rate in selection media 

relative to that in defined minimal media (µS,wt/µM9,wt) is 0.4-0.634. Promoter proK14 with the high 

translational efficiency RBS from gene 10 of T7 bacteriophage (t7RBS) had a suitable µS,wt/µM9,wt 

at 0.54 ± 0.11 for IB selection media (plasmid pEDA6_amiE, Figure 3.2 and Table B 3.1). 

However, the weakest promoter of the set, proK17, had a µS,wt/µM9,wt of 0.92 ± 0.05 for ACT.  
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Figure 3.2: Establishing growth-based selection conditions. amiE expression was tuned using 
promoter and RBS engineering. µS,wt/µM9.wt is the ratio of growth rate of wild-type amiE harboring 
cells in selection media (µS,wt) to M9 minimal media (µM9,wt). Error bars represent 1 s.d. of n = 4, 
12, 10, and 12 independent measurements. Inset represents the final promoter/RBS combination 
used for each selection.  
 

 To further decrease protein expression, plasmids containing an altered RBS were tested. 

One construct containing promoter proK17 and a knockdown RBS 3 (kRBS3) sequence had a 

µS,wt/µM9,wt of 0.56 ± 0.06 for ACT and 0.37 ± 0.08 for PR (plasmid pEDA2_amiE, Figure 3.2 and 

Table B 3.1).  

A significant concern with this growth selection is the potential for cells containing a non-

functional enzyme variant to propagate in a population by acquiring ammonium that has leaked 

into the extracellular medium. We assessed the risk of such ‘cheating’ by competing wild-type 

amiE on the ampicillin-resistant expression construct described above (pEDA2_amiE) against a 

catalytic knockout, amiE_C166S, with kanamycin-resistance on an otherwise identical expression 

construct (pEDK2_amiE_C166S), in acetamide selection medium containing no antibiotics. E. 

coli cells harboring either pEDA2_amiE or pEDK2_amiE_C166S were mixed in equal proportion 
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and competed for 4.12 and 4.17 generations for replicates 1 and 2, respectively. Cells from the 

pre- and post-selection populations were dilution plated on ampicillin and kanamycin containing 

plates, and the resulting colonies counted to calculate the frequency of each member in the pre- 

and post-selection populations. Using the fitness equations laid out in Kowalsky et al.34, the 

average fitness metric for the C166S mutant was -2.40 ± 0.9 (n = 2), close to the fitness metric 

expected if no cheating occurred (-2.46). Thus, we conclude that non-functional variants minimally 

propagate under the conditions of the selection.  

Next, we used PFunkel mutagenesis35 to construct comprehensive single-site saturation 

mutagenesis amiE libraries and transformed them into E. coli MG1655 rph+. We carried out growth 

selections for each of the three substrates for approximately 8 generations, starting with an initial 

population size of >6x106 cells. Deep sequencing of the pre- and post-selection populations was 

used to determine a relative fitness metric (!i) for each amiE variant i, defined as34: 

 !" = log' (),+
(),,-

..................................................................(1) 

The pre-selection populations were comprised of >51.8% single nonsynonymous 

mutations and represented >96.3% of the 6820 possible single nonsynonymous mutations for all 

libraries (Table B 3.2, Figure B 3.1). Given that the read counts per variant in the pre-selection 

population were log-normally distributed (Figure B 3.1) and underrepresented variants could 

show biased fitness metrics, we calculated Pearson’s product moment correlation coefficients for 

pre-selection read counts and fitness and found them to be to 0.047, 0.033, and -0.064 for the ACT, 

PR and IB selections, respectively (Figure B 3.2). This confirmed that resulting fitness metrics 

were not biased by a wide distribution of pre-selection read counts. Furthermore, we determined a 

lower bound fitness metric for each selection that can be discriminated based on depth of 

sequencing coverage, such that while below this value fitness effects can be described 
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categorically as ‘deleterious’, the quantitative effect cannot be reliably predicted. The lower 

bounds were found to be -1.3, -0.8, and -0.6 for the ACT, PR, and IB selections, respectively. Heat 

map representations of the local fitness landscapes for each selection can be found in Figures B 

3.3-3.5.  

We tested the validity of using deep sequencing to reconstruct fitness in multiple ways. 

First, we performed replicate growth selections using the same pre-selection library. The resulting 

two post-selection libraries were prepared for sequencing in parallel attaching unique Illumina 

barcodes to each, and normalized fitness metrics were calculated for each replicate. To assess 

whether the selection results were reproducible we calculated the Pearson product moment 

correlation coefficients of fitness metrics between replicates and found them to be 0.661, 0.842, 

and 0.889 for the ACT, PR, and IB selections, respectively (P < 2.2 x10-308, n = 6627, 6630, and 

6569). When we excluded variants with fitness metrics below the lower bounds the correlation 

coefficients improved to 0.932, 0.949, and 0.943 for the ACT, PR, and IB selections, respectively 

(P < 2.2 x10-308, n = 3834, 2954, 4977, Figure 3.3a and Figure B 3.6).  

 

Figure 3.3: Validation of deep sequencing results. A.) Fitness metrics from replicate growth 
selections in the propionamide selection (n = 2954). Red lines indicate two standard deviations 
from theoretical error estimation34. The reported p-value for the Pearson’s product moment 
correlation coefficient was calculated using a two-tailed t-test. B.) Comparison of relative growth 
rates calculated from the selection experiments (grey bars) and isogenic growth rate assays 
(colored bars). Error bars represent 1 s.d. of at least four independent measurements.  
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Second, we compared relative isogenic growth rates (µS,i/µS,wt) to deep sequencing-

calculated growth rates for a set of mutations (Figure 3.3b, Table B 3.3). Deep-sequencing 

derived fitness corresponded to increased growth rates for 16/17 beneficial mutations, near wild-

type growth rates for 2/2 neutral mutations, and no growth for 1/1 deleterious mutation tested. To 

confirm that improved growth rates were a result of increased flux through amiE, we performed 

lysate activity assays for a subset of these variants and found that all samples save one improved 

flux relative to wild-type (Table B 3.3).  

 

The Distribution of Fitness Effects (DFE) of amiE 

The DFE, both at the organismal and protein level, demarcates evolution5,7,36. Specifically, the 

DFE for a protein is related to its evolvability: the number and type of available beneficial 

mutations for a new function compared with effects on existing functions is illustrative of how 

natural proteins evolve. While theoretical and experimental work has advanced our understanding 

of the available pathways for adaptive molecular evolution4,6,37–44, the exact form of the 

distribution, which determines these pathways, is still a subject of debate. Figure 3.4a shows the 

DFE for the three selections. For each, nonsense mutations had a median fitness metric below the 

detection limit of the deep sequencing method. Nonsense mutations with increased fitness metrics 

(!>0.15) cluster in the last 19 residues of the C-terminus, a relatively unstructured region likely to 

have no influence on catalytic activity, suggesting that translation of these residues plus the C-

terminal His6-tag used for purification is deleterious to fitness. Missense mutations were on 

average deleterious for the ACT and PR selections, with 75.8 and 74.2% of variants yielding at 

least 20% reduction in growth rate relative to wild-type, respectively. By contrast, only 45.4% fell 

below this threshold for the IB selection. 
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Figure 3.4: Distribution of fitness effects (DFE) are exponentially distributed for beneficial 
mutations. A.) The DFE of missense and nonsense mutations for ACT (cranberry), PR (orange), 
and IB (cyan) growth selections. The dashed vertical line demarcates the wild-type fitness metric 
(!=0.0). B.) DFE for beneficial mutations identified in the ACT, PR, and IB selections, 
respectively. Overlain curves are best-fit exponential distributions estimated from the data.  
 

Remarkably, 21.5% (n = 1394) of missense mutations had above wild-type fitness metrics 

for the IB selection, with 483 (7.5%) variants having at least 10% increased growth rate (!>0.15). 

There were appreciably less enhanced variants found in the ACT and PR selections, with 4.7 and 

5.1% (n = 306 and 328) having fitness metrics above wild-type, respectively.  

Modern theories of adaptive molecular evolution predict the DFE for beneficial mutations 

is scale-free and exponentially distributed6,24. However, the available experimental data is 
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conflicted25, and most studies have low statistical power due to the rare nature of beneficial 

mutations. While synthetically constructed, our competitive growth selection results yield fitness 

metrics for a large effective population size, and the hundreds of beneficial mutations observed 

provides high statistical power for model fitting. Predictions of beneficial DFE are derived from 

extreme value theory that describes many distributions falling under the umbrella of the 

generalized Pareto distribution (GPD)24. GPD includes three domains of attraction defined by their 

shape parameter ("): Gumbel ("=0), Fréchet (">0), and Weibull ("<0). We first performed 

bootstrap goodness of fit tests to a GPD and concluded a failure to reject the null hypothesis that 

the datasets belonged to a GPD (P < 0.066) and estimated " to be -0.292, -0.309, and -0.195 for 

the ACT, PR, and IB datasets, respectively. This finding indicates that the tail behavior for the 

observed beneficial DFE for amiE is slightly truncated, yet our results are consistent with the 

predictions of Orr that if departures from the Gumbel domain are observed they will be minimal 

(-1/2<"<1/2)6.   

We next conducted log-likelihood ratio tests for fitted exponential distributions (null 

hypothesis) against fitted gamma and Weibull distributions (alternative hypotheses) for the DFE 

of beneficial mutations (Figure 3.4b). These alternative models were chosen as previous empirical 

studies have observed tail behavior indicative of these such distributions40,45,46. We concluded a 

failure to reject the null hypothesis for the IB dataset, yet found that the ACT dataset best fit a 

Weibull distribution (P = 0.05) and that gamma and Weibull were both better fits for the PR dataset 

(P = 0.023 and 0.039, respectively, Table 3.1). Interestingly, one-sample Anderson-Darling tests 

for goodness-of-fit to each distribution indicated a failure to reject the null hypothesis that the data 

fit any of the distributions (Table 3.1). To assess the null hypothesis that the three data sets came 

from a single, statistically indistinguishable distribution, we performed a k-sample Anderson-
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Darling test and concluded they were not from a single distribution (P = 0.0124). Thus, all datasets 

can be described as exponentially distributed, though the ACT and PR datasets best fit the higher 

parameter models.   

Table 3.1: Model fitting results for distribution of beneficial mutations  
 

    ACT PR IB 

Exponential 
 
 

rate 8.72 6.67 7.26 
A-D test P-value 0.527 0.338 0.635 
LL 365.9 303.2 1382.6 

       

Gamma 

 

shape 1.14 1.17 1.03 
rate 9.90 7.81 7.46 
A-D test P-value 0.834 0.459 0.723 
LL 367.4 305.8 1382.9 

       

Weibull 

 

shape 1.094 1.094 1.012 
scale 0.119 0.155 0.138 
A-D test P-value 0.851 0.451 0.712 
LL 367.8 305.3 1382.8 

       
Log-likelihood ratio tests 

H0 HA     
Exponential Gamma 3.11 5.14 0.62 

  P-value 0.078 0.023 0.43 
Exponential Weibull 3.8 4.3 0.31 

  P-value 0.050 0.039 0.58 
 

Beneficial Mutations result from Protein, not mRNA, effects  

We addressed whether effects at the mRNA level could explain beneficial mutations, as 

variants can achieve higher fitness by increasing total active amiE concentration through 

improvements to the rate of transcription, the degradation rate of mRNA, and the efficiency of 

translation. The fitness metrics of synonymous codons for beneficial mutations (!>0.15) showed 
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low variance in most cases except near the N-terminus (Figure B 3.7). A recent mRNA model47 

could explain up to 5% of the variance in the first 15 residues but only 0.2% of the variance over 

the entire sequence length (Table B 3.4). We conclude that the observed fitness effects are the 

result of changes at the protein level, not at the mRNA level.  

 

Comparison of DFE Between Selections 

Promiscuous activity of enzymes is believed to be the driving force of evolution towards 

new activities3. Our fitness maps allow us to address the question of how mutations impact fitness 

in multiple substrate backgrounds. At the outset of this work, we anticipated that the majority of 

‘hits’ or beneficial mutations would be shared across selections. This null hypothesis is grounded 

in the biophysical argument that most beneficial mutations would improve protein expression, not 

activity, and these would be beneficial regardless of the substrate selected on. Additionally, we 

anticipated that the pool of mutations available for improving activity for a single substrate would 

predominately localize to the vicinity of the active site, thus rendering few specificity-altering 

mutations. Consequences of this prediction are that there should be significant correlation of 

fitness between amides, with specificity-determining mutations localized near the active site.  

We first assessed whether there was a significant correlation of fitness between different 

amides (Figure 3.5a). Correlation for the ACT and PR selections (r = 0.827, P < 2.2x10-308) was 

notably higher than that for the IB and ACT (r = 0.317, P = 8.6 x 10-85) or IB and PR selections (r 

= 0.367, P = 6.7 x 10-95). PCA revealed that a single principal component could explain 96.8% and 

87.8% of the variance of the ACT and PR datasets, respectively, while two principal components 

are sufficient to explain over 99% of the variance for the IB dataset (Figure 3.5b, Figure B 3.8). 

These results are inconsistent with our null hypothesis, pointing towards global alterations in the 
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protein structure to adapt to different substrates. Of note, the fitness data is non-normal and could 

be analyzed with other multivariate statistical analysis methods.  

 

 

Figure 3.5: Correlative analysis of fitness effects.  A.) Correlation of variant fitness metrics 
between selections. Variants with fitness metrics above the lower bounds are compared between 
each selection. Plots represents n = 3054, 3600, and 2959 points for panels ACT vs PR, ACT vs. 
IB, and PR vs. IB, respectively. The reported p-value for the Pearson’s product moment correlation 
coefficient was calculated using a two-tailed t-test.  B.) Principal component analysis of substrate-
specific fitness effects. Black dots show common neutral and deleterious mutations, while 
substrate-specific beneficial mutations (!>0.15) are colored according to 7 bins. C.) 3-way Venn 
diagram representing 7 specificity bins.  
 

Restricting our correlative analysis to only beneficial mutations (!>0.15) revealed that 

fitness-enhancing mutations for ACT were, on average, likely to be beneficial for PR (mean ! = 

0.236). By contrast, beneficial mutations for IB were likely to be deleterious in both the ACT and 
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PR selections (mean ! = -0.480 and -0.319). This result is consistent with the findings of Stiffler 

et al. that beneficial mutations for a new or less evolved function are likely to be deleterious for 

existing functions when the selections pressures are high. Furthermore, IB-beneficial variants 

showed essentially no correlation for fitness in the ACT and PR selections (r = 0.0617 and 0.164, 

respectively). This finding indicates that, at least for amiE, predicting hits based on known fitness 

effects for a given substrate cannot be accomplished through correlative analysis.  

We next analyzed the relationship between beneficial (!>0.15) and specificity-determining 

(!>0.15 for one amide and !<0 for the other two substrates) mutations and their distance to the 

catalytic active site. Distance was measured by the minimum distance from the alpha-carbon of 

positions with beneficial mutations to any active site atom (six identical active sites in the 

functional homohexamer). The mutations were placed in 3 Å bins that were normalized to total 

available mutations in each distance shell. For beneficial mutations, we found that most were >15 

Å from the active site for the ACT and PR variants, while the IB variants were mostly 9-21 Å 

away (Figure 3.6a). Strikingly, we found very few specificity-determining mutations for the ACT 

and PR selections (n = 6 and 14, respectively), with variants distanced by 6-15 Å for ACT and >14 

Å for PR (Figure 3.6b). By contrast, we found 395 specificity-determining mutations for IB, 

which were distributed similarly to the set of all IB-beneficial mutations. Thus, beneficial and 

specificity-determinant positions are globally dispersed throughout the primary sequence and 

structure of amiE. 

 

Biophysical Characterization of Beneficial Mutations 

To understand the biophysical basis underlying beneficial mutations, we expressed, purified, and 

characterized a set of 11 variants chosen in part on their ability to predict larger sets of beneficial 
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variants (Table 3.2, Supplementary Fig. 9). For example, globally beneficial mutation S9A was 

chosen because it could potentially explain other N-terminal beneficial mutations. For all variants 

save one (see Methods), apparent melting temperatures (Tm,app) were within 7°C of the wild-type 

Tm,app of 67.7 ± 0.1°C, indicating that differences in thermal stability are unlikely to explain in vivo 

beneficial fitness effects.  

 

Figure 3.6: Substrate specificity is globally encoded. A-B.) Frequency of beneficial (A) and 
specificity-determining (B) mutations as a function of distance to active site. C.) Beneficial 
mutations for all selections and specificity-determinant mutations for ACT and PR selections 
mapped onto the structure of amiE. The inset illustrates the catalytic active site. D.) Specificity-
determinant mutations for IB selection colored by number found at given position. 
 

To evaluate commonalities between beneficial mutations, we sorted variants into seven 

possible bins for beneficial fitness metrics (!>0.15 for given selection(s) and !<0.15 in other 
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selection(s), Figure 3.5c). 21 of 26 beneficial mutations common to all three selections were found 

at extreme N- or C-terminal residues. Of the remaining five, we characterized R89E, a surface 

mutation located over 20 Å away from the active site that yielded an increase in relative kcat/Km 

of 1.96 ± 0.59 and 1.42 ± 0.42 for PR and IB substrates, respectively (Figure 3.6c). Alternatively, 

shared N-terminal mutation S9A had slightly reduced relative kcat/Km. Thus, even for a highly 

stable protein like amiE, we found few mutations like R89E that can generally increase kcat or KM 

and increase fitness.  

Beneficial mutations shared in two of the three selections were scarce. 18/29 mutations 

shared between ACT and PR cluster at the extreme N- or C- termini. The 17 PR+IB specific 

mutations cluster at Q273, a 2nd shell residue that buttresses W138 at the active site, and at M202 

located 14 Å to the active site. Variant M202H showed over 2.5-fold increase in relative kcat/Km 

for IB and PR, but Q273A did not show increased catalytic efficiency in vitro. We speculate the 

conditions required by the enzyme assay for sensitive ammonia detection prohibited the 

recapitulation of in vivo kinetics.   

Four ACT-specific mutations encoded smaller substitutions (A/C/S/V) at position L119, a 

residue that supplies hydrophobic packing behind the catalytic nucleophile C166 10 Å from the 

active site (Figure 3.6c). L119A showed a 2.2 ±�0.1–fold increase in kcat relative to wild-type with 

a compensatory increase in KM. 

In stark contrast to ACT, there were 435 IB-specific and 395 specificity-determining 

mutations for IB distributed throughout the protein structure (Figure 3.6d). Substitution W138A/G 

decreases van der Waals area in the vicinity of the amide transition state, allowing accommodation 

of the bulky isobutyrl group. However, most specificity-altering mutations were located far from 

the active site. Hot spots of positions where 5 or more specificity-determining mutations confer  



 71 

Table 3.2: Wild-type and variant amiE biophysical data. 
 

Variant 
ACT 

 ζ  
PR 
 ζ  

IB 
 ζ  

Km (mM) / 
Km,wt (mM) 

kcat (s-1) / 
kcat,wt (s-1) 

kcat/Km 
(M-1 s-1) / 

kcat,wt/Km,wt 
(M-1 s-1) Tm,app

 (°C) 

Wildtype 0.00 0.00 0.00 4.7 ± 0.5�
52.7 ± 8.3�
297.2 ± 54.8 

59.0 ± 2.0�
144.7 ± 9.9�
13.3 ± 1.1   

67.7 ± 0.1 

S9A 0.33 0.41 0.36 
2.3 ± 0.6�
4.4 ± 1.1�
0.5 ± 0.1 

0.6 ± 0.1�
1.6 ± 0.2�
0.4 ± 0.0 

0.28 ± 0.1�
0.36 ± 0.13�
0.76 ± 0.27 

63.1 ± 0.1 

A28R 0.27 0.10 0.11 nd nd nd 67.7 ± 0.1 

R89E 0.30 0.34 0.15 
nd 

0.7 ± 0.1�
0.8 ± 0.2 

nd 
1.4 ± 0.1�
1.1 ± 0.1 

nd 
1.96 ± 0.59�
1.42 ± 0.42 

66.7 ± 0.1 

L119A 0.30 -0.80 -0.60 
2.8 ± 0.4�
not active�
2.5 ± 0.6 

2.2 ± 0.1�
not active�
1.3 ± 0.2 

0.8 ± 0.16�
not active�

0.52 ± 0.18 
67.4 ± 0.2 

I165C 0.25 -0.27 -0.32 
2.6 ± 0.4�
0.7 ± 0.2�
0.7 ± 0.2 

1.7 ± 0.1�
0.6 ± 0.1�
0.8 ± 0.1 

0.66 ± 0.14�
0.79 ± 0.24�
1.22 ± 0.65 

65.7 ± 0.1 

V201M 0.37 0.12 0.22 
10.2 ± 2.0�
0.8 ± 0.4�
4.6 ±1.3 

1.1 ± 0.1�
0.1 ± 0.0�
0.8 ± 0.1 

0.11 ± 0.03�
0.13 ± 0.10�
0.18 ± 0.08 

61.2 ± 0.1 

V201T 0.20 0.34 0.25 
1.6 ± 0.3�

nd�
3.8 ± 0.8 

1.0 ± 0.1�
nd�

1.4 ± 0.1 

0.65 ± 0.16�
nd�

0.37 ± 0.11 
64.9 ± 0.2 

M202H -0.08 0.16 0.43 
0.9 ± 0.1�
0.7 ± 0.1�
0.4 ± 0.1 

1.3 ± 0.0�
1.8 ± 0.1�
1.4 ± 0.1 

1.4 ± 0.23�
2.55 ± 0.72�
3.08 ± 1.05 

63.0 ± 0.1 

M203W -1.30 -0.80 0.43 nd nd nd nd 

A234M 0.33 0.15 0.21 
2.8 ± 0.4�
0.5 ± 0.2�
3.6 ± 0.9 

1.0 ± 0.0�
0.3 ± 0.0�
0.8 ± 0.1 

0.35 ± 0.07�
0.58 ± 0.32�
0.23 ± 0.08 

64.4 ± 0.1 

Q273A -0.71 0.31 0.23 
4.9 ± 2.0�
2.3 ± 0.6�
0.6 ± 0.2 

0.2 ± 0.0�
0.5 ± 0.1�
0.4 ± 0.0 

0.05 ± 0.03�
0.20 ± 0.08�
0.71 ± 0.28 

69.7 ± 1.1 
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increased fitness occur at the N- and C-terminus (residues H3, S7, T323, R324, T327, V329, and 

C332-V334), as well as P50, C139, I174, A196, K197, V201, M202, W209, N212, F223, S228, 

G247-E249, G252, Q271, Q273-H275, and Y284. Interestingly, hot spot positions 197 through 

212 are located on an alpha helix located at least 12 Å from the active site that contacts the dimeric 

interface. As these mutations do not benefit all substrates, we hypothesize that mutations at these 

positions cause rigid body motion of the helix to yield subtle geometric rearrangement, if not large-

scale disruption, of the active site that favors IB catalysis. We tested V201M/T for activity on IB 

and, contrary to expectations, found a decrease in relative kcat/Km. We speculate that the mismatch 

between expected and measured catalytic efficiency results from hexamer dissociation caused by 

the low enzyme concentration required by the activity assay, as the lysate assays showed an 

increase in velocity for the V201T mutant.  

 

DISCUSSION 

In this contribution, we generated single-mutation protein fitness landscapes for an amidase 

on three different substrates. In contrast to studying protein-protein interactions, the application of 

deep mutational scanning to enzymes has been limited by the difficulty in developing generalizable 

high-throughput functional assays, as the nature of enzyme function is highly diverse. Regardless, 

exhaustive mutational studies permit a glimpse into how natural enzymes evolve for new 

functions. Our results show that, at least for amiE, mutations which are beneficial for only one 

substrate are 1.) not confined to vicinity of the active site and 2.) cannot be predicted based on 

known fitness for another substrate.  

In terms of predicting fitness, we conclude that single-mutation fitness landscapes are 

highly substrate dependent, which is consistent with previous works8,38,48,49. However, this work 
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provides a unique perspective of comparing two structurally similar substrates, ACT and PR, to 

the dissimilar IB substrate. Not surprisingly, we found the IB single-mutation fitness landscapes 

to be the most divergent, signaling that at the biophysical level the requirement to accommodate 

the larger IB substrate significantly alters the mutational landscape. The percentage of beneficial 

mutations observed is consistent with previous deep mutational scanning experiments on 

enzymes8,37,38,50. These rates are significantly larger than that predicted for the natural adaptation 

of organisms51 because in deep mutational scanning experiments a strong selection is imposed 

upon a gene that is, by experimental design, intended to influence only a single phenotypic trait4. 

This intention to mitigate pleiotropy is especially true with bulk growth competition experiments, 

and it should be noted that randomly drifting populations contain genes that do not ascribe to such 

constraints.   

Our results strengthen the theoretical case that fitness for beneficial mutations is 

approximately exponentially distributed even though the percentage of beneficial mutations differs 

substantially between substrates. We note that this exponential distribution holds even for the IB 

selection which presumably causes large-scale rearrangements of the active site to allow better 

access to the branched chain IB. Other studies have explored the mechanics of multiple steps and 

epistasis39,42,43,52,53. In this work, we considered only single steps in the local fitness landscape. 

Thus, the generality of our observations for multiple steps remain to be seen.  

For the design and engineering of substrate promiscuous or specific biocatalysts, 

knowledge of the sequence and spatial distribution of ‘hits’ is imperative. Our findings indicate 

that, at least for amiE, most substrate-determining mutations for new functions, in this case IB, 

localize approximately 9-24 Å from the active site. Together, these results have strong implications 

for design and engineering of substrate promiscuous biocatalysts because it suggests current 
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strategies of iterative site saturation mutagenesis near the active site are sub-optimal1. 

Additionally, computational design algorithms focused solely on the modifying 1st and 2nd shell 

mutations around the active site need to be revisited. 

 

MATERIALS AND METHODS 

Reagents 

All chemicals were purchased from Sigma-Aldrich unless specified otherwise. All primers 

and mutagenic oligonucleotides were designed using the Agilent QuikChange Primer Design 

Program (www.agilent.com) and were ordered from Integrated DNA Technologies. Propionamide 

and isobutyramide solids were recrystallized from ethyl acetate and water, respectively.  

 

Plasmid construction 

pEDA6_amiE was renamed from pJK_proK14_amiE as described in Bienick et al.33. 

pEDA2_amiE was constructed by Kunkel mutagenesis54 of pJK_proK17_amiE from Bienick et 

al.33 to introduce a knockdown ribosome binding sequence (primer kRBS3). Protein expression 

constructs were made by subcloning the amiE gene from pEDA2_amiE into the pET-29b(+) 

(Novagen) backbone at the NdeI and XhoI restriction sites following standard protocols. amiE 

point mutants were created using Kunkel mutagenesis54. Primer sequences used in this work are 

listed in Table B 3.5.   

 

Construction of mutagenesis libraries 

Eight comprehensive single-site saturation mutagenesis libraries of amiE were constructed 

(residues 1-85, 86-170, 171-255, and 256-341 on plasmids pEDA2_amiE and pEDA6_amiE) 
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using PFunkel mutagenesis35 with modifications as noted34. Library cell stocks of the selection 

strain, E. coli MG1655 rph+ [F- #-] (Coli Genetic Stock Center, #7925), were made essentially as 

described in Klesmith et al.50. 

 

Growth selections 

Starter cultures for growth selection were prepared as in Klesmith et al.50, except 1X M9 

minimal media lacking ammonium chloride (M9 N-) was used to wash cell pellets prior to 

inoculation of selection media. 3 mL of selection media (M9 N- + 10 mM acetamide, M9 N- + 15 

mM propionamide, and M9 N- + 10 mM isobutyramide for ACT, PR, and IB selections, 

respectively) was inoculated to an initial OD600 of 0.02 at a volume of 3 mL (>6x106 cells). To 

ensure exponential growth during the entire selection experiment, after approximately four 

generations the cells were harvested, washed with M9 N-, and a fresh 3 mL culture with selection 

media was inoculated to the same initial OD600 of 0.02 (to maintain the same initial population 

size). Growth selections were carried out and samples preserved for sequencing as described in 

Klesmith et al.50. Replicates were performed using the same pre-selection population. Based on 

the high correlation between replicates and the fact that a major source of error in deep sequencing 

measurements are counting errors (Poisson noise)34, the fitness metrics used in subsequent analysis 

were computed by combining reads from the two replicates and repeating the analysis. 

 

Sequencing 

Libraries were amplified, barcoded, cleaned, and quantified following Method B as described 

in Kowalsky et al.34. Gene amplification primers are listed in Table B 3.5. Pre- and post-selection 

samples were pooled and sequenced with 300bp PE reads on an Illumina MiSeq available at the 
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Michigan State University sequencing core. Deep sequencing data was analyzed using Enrich 

software55 with modifications as noted in Kowalsky et al.34 and scripts freely available at Github 

(https://github.com/JKlesmith/Deep_Sequencing_Analysis).  

Normalized fitness metrics for each variant, !i, were determined according to the 

‘Normalization for Growth Rate Selections’ section as outlined in Kowalsky et al.34. Briefly, deep 

sequencing was used to count each library member in the pre- and post-selection populations. For 

each single nonsynonymous mutation and wild-type an enrichment ratio was calculated by: 

 2" = log'
34+
35+

....................................................................................(2) 

Where ffi and foi represent the frequency of member i in the final (post-selection) and initial 

(pre-selection) populations. Normalized fitness metrics were calculated using the following 

equation: 

!" = log'
6+
789:
6;<
78 9:        (3) 

Where $i is enrichment ratio for variant i, gp is the number of population doublings, and $WT 

is the enrichment ratio for wild-type. 

 

Beneficial mutations and lower bounds for fitness metrics 

A beneficial mutation was defined as having at least 10% increase in growth rate (!>0.15) 

relative to wild-type. Weighted means for synonymous codon fitness metrics, where the weights 

were read counts (depth of coverage) for each mutation, were calculated to be 0.03 ± 0.09, -0.02 

± 0.11, and -0.01 ± 0.07 for the ACT, PR, and IB datasets, respectively. A fitness metric of 0.15 

was found to be in >90% percentile for all three datasets.  

 



 77 

To determine lower-bound fitness metrics for each selection, we first determined the half-

median of read counts of the pre-selection library for each selection (63, 49, and 31 for the ACT, 

PR, and IB selections, respectively). This number was normalized by the ratio of post- to pre-

selection read counts (2.97, 1.86, and 2.04 for ACT, PR, and IB selections, respectively). Next, a 

lower-bound enrichment ratio ($LB) based on 10 read counts in the post-selection population was 

calculated:  

2=> = log' :?
3@A

      (3) 

Where fLB represents the normalized half-median pre-selection reads. The lower-bound 

fitness metrics, !LB, was then calculated using 8 population doublings (gp) and the wild-type 

enrichment ratio ($WT): 

!=> = log'
6@A
78 9:
6;<
78 9:        (4) 

 

Distribution fitting of beneficial DFE 

Distribution fitting analysis was conducted using R statistical software56. Bootstrap goodness 

of fit and parameter estimation for the generalized Pareto distribution were done using the package 

gPdtest57. Model parameters were approximated and log likelihood values were determined using 

maximum likelihood estimation with package fitdistrplus58. Anderson-Darling tests were 

performed using the package kSamples59. Log-likelihood (LL) ratios were calculated as 2*[(LL 

HA) – (LL H0)], where H0 = null hypothesis and HA = alternative hypothesis. P-values were 

computed from a chi-squared distribution with one degree of freedom. 
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Protein characterization 

Wild-type and variant amiE protein was expressed using Studier auto-induction60 and purified 

according to Klesmith et al.50. The eluate was buffer exchanged into PBS buffer, pH 7.5 using GE 

disposable PD-10 desalting columns (GE Healthcare). Purified protein was stored in PBS at 4°C. 

Wild-type and variant amiE melting temperatures were measured using a SYPRO Orange thermal-

shift assay61,62 as described in Klesmith et al.50, but in PBS buffer, pH 7.5. Catalytic parameters 

(Km and kcat) were assayed at 37°C in PBS buffer, pH 7.5 using a phenol and hypochlorite ammonia 

detection assay63. PCR plates containing 100 µL of 7 different concentrations of amide (highest 

concentrations were 40, 150, and 800 mM for ACT, PR, and IB activity assays, respectively, with 

1:2 serial dilutions for remaining substrate concentrations) in PBS were incubated on a thermocyler 

block (Eppendorf) with the lid open at 37°C for 5 minutes. To begin the assay, 20 µL of 0.02 µM 

(ACT and PR assays) or 0.2 µM (IB assays) enzyme was added. At discrete time points, 100 µL 

of the reaction was removed and quenched by depositing into a clear 96-well plate containing 50 

µL phenol nitroprusside solution held on ice. At the end of the last time point, 50 µL alkaline 

hypochlorite solution was added to all wells and the plate was covered and incubated in a metal 

bead heat bath for 10 minutes at 35°C. The plate was then transferred to a Synergy H1 

spectrophotometer (BioTek) held at 35°C and A625 was measured every minute for 15 minutes. 

Non-linear regression was performed using GraphPad Prism version 6 for Mac OS X, GraphPad 

Software, La Jolla California USA, www.graphpad.com. All measurements were performed at 

least in duplicate. The IB specific variant M203W shows increased fitness in the deep sequencing 

selection but decreased lysate activity compared with wild type. M203W immediately precipitated 

out when we tried to purify this enzyme. Thus, for this case, lysate activity would not be 

representative of in vivo conditions. For PR variants the coefficient of variation for wild-type was 
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prohibitively high to calculate statistically significant ratios; note the variance of the other wild-

types measurements.   

 

Isogenic growth and lysate flux assays 

Starter cultures were prepared by inoculating 2 mL of M9 minimal media + carbenicillin 

(50 µg/mL) with scrapings of MG1655 rph+ cell stocks harboring pEDA2_amiE or pEDA6_amiE 

variant plasmids and grown overnight at 37°C with 250 rpm shaking. In the morning, cells were 

pelleted, washed twice with M9 N-, and resuspended in 1 mL M9 N-. 3 mL of selection media + 

carbenicillin (50 µg/mL) in Hungate tubes was inoculated to a final OD600 of 0.02. Cultures were 

grown at 37°C with shaking at 250 rpm. For growth assays, OD600 was measured every 30-45 

minutes until a final OD600 of approximately 0.5 was reached. All growth rate measurements 

represent at least 4 biological replicates collected on at least 2 separate dates. Lysate flux assays 

were adapted from Bienick et al.33. 2 mL of exponential phase culture (OD600 of approximately 

0.15-0.3) was spun down at 15,000xg for 5 minutes. Cell pellets were washed twice and 

resuspended with 1 mL PBS, pH 7.5. Cells were lysed as described in Bienick et al.33. 0.5-0.9 mL 

of lysate was used in a 1 mL total volume assay containing 10 mM, 15 mM, or 10 mM acetamide, 

propionamide, or isobutyramide, respectively. The assay was conducted at 37°C. Every 5 minutes, 

100 µL of the assay volume was removed and added to a 96-well plate containing 50 µL pre-

chilled phenol nitroprusside. At the end of the last time point, 50 µL of alkaline hypochlorite was 

added to all wells. Absorbance at 625 nm was measured as in Bienick et al.33.  
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Data Availability 

Full datasets including normalized fitness metrics, pre- and post-selection read counts, and 

raw log base two enrichment scores for each variant can be obtained from Figshare 

(https://dx.doi.org/10.6084/m9.figshare.3505901.v2). Raw sequencing reads for this work have 

been deposited in the SRA (SAMN06237792-SAMN06237827). 
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APPENDIX
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APPENDIX 

 
Figure B 3.1: Frequency distribution of library member counts. Panels are for reads in the pre-
selection libraries for A.) acetamide B.) propionamide and C.) isobutyramide. Vertical lines 
indicate median (red) and mean (blue) read coverage.           
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Figure B 3.2: Fitness versus pre-selection read counts. Panels are for each variant in the A.) 
acetamide B.) propionamide and C.) isobutyramide libraries. Variants with insignificant read 
counts (n ≤ 5) and fitness metrics below the lower bounds were excluded from the analysis. Plots 
represent n = 4037, 3135, and 4969 variants. P-values for Pearson’s product moment correlation 
coefficients were calculated using a two-tailed t-test. 
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Figure B 3.3: Fitness landscape for acetamide selection. 
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Figure B 3.3 (cont’d) 
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Figure B 3.3 (cont’d) 
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Figure B 3.4: Fitness landscape for propionamide selection. 
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Figure B 3.4 (cont’d) 
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Figure B 3.4 (cont’d) 
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Figure B 3.5: Fitness landscape for isobutyramide selection. 
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Figure B 3.5 (cont’d) 
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Figure B 3.5 (cont’d) 
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Figure B 3.6: Fitness metrics from biological replicate growth selection experiments. Panels 
represent replicates in A.) acetamide and B.) isobutyramide media. Plots represent n = 3834 and 
4977 variants for panels A and B, respectively. Red lines indicate two standard deviations from 
theoretical error estimation34. P-values for Pearson’s product moment correlation coefficients were 
calculated using a two-tailed t-test. 
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Figure B 3.7: Variance of fitness metrics for synonymous codons of beneficial mutations 
(!>0.15). Panel represent fitness metrics for the A.) acetamide B.) propionamide and C.) 
isobutyramide selections as a function of position in the primary sequence. 
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Figure B 3.8: Principle component analysis of renormalized fitness values. Panels are for A.) 
acetamide B.) propionamide and C.) isobutyramide selections. Fitness values were renormalized 
by subtracting the mean fitness (mean = -0.824, -0.575, -0.255 for acetamide, propionamide, and 
isobutyramide, respectively) from each variant. P-values for Pearson’s product moment correlation 
coefficients were calculated using a two-tailed t-test. 
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Figure B 3.9: amiE activity assay. A.) amiE activities were measured using a colorimetric 
Berthelot reaction33,63 for ammonia detection with phenol nitroprusside and alkaline hypochlorite. 
B.) Representative data for the amiE activity assay. Absorbance at 625 nm was measured at 
discrete time intervals for reactions containing one of seven concentrations of acetamide (ACT) 
and purified wild-type amiE. Reaction velocities were calculated by obtaining the slopes of each 
line. C.)   Michaelis-Menten plot of wild-type amiE activity on acetamide substrate.   Plot 
represents four independent measurements. Non-linear regression was performed using GraphPad 
Prism version 6 for Mac OS X, GraphPad Software, La Jolla California USA, www.graphpad.com.
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Table B 3.1: Constructs used in growth selections. ACT, PR, and IB = acetamide, propionamide, and isobutyramide selection 
media (see Methods). Promoters obtained from Bienick et al.33. 

plasmid selection 
media promoter -35 

hexamer 
-10 

hexamer 
RBS  
name 

RBS  
sequence 

µS,wt (hr-1) 
µM9,wt (hr-1) 
µS,wt/µM9,wt 

pJK_proK17_amiE ACT proK17 TTCCCG TAATAT t7RBS AGGAGA 

0.60 ± 0.02 

0.65 ± 0.03 

0.92 ± 0.05 

pEDA2_amiE ACT proK17 TTCCCG TAATAT kRBS3 AGTTTT 

0.44 ± 0.04 

0.78 ± 0.03 

0.56 ± 0.06 

pEDA2_amiE PR proK17 TTCCCG TAATAT kRBS3 AGTTTT 

0.29 ± 0.06 

0.78 ± 0.03 

0.37 ± 0.08 

pEDA6_amiE IB proK14 TGTACG TAATAT t7RBS AGGAGA 

0.36 ± 0.07 

0.66 ± 0.04 

0.54 ± 0.11 
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Table B 3.2: Library coverage statistics for combined amiE libraries (replicate 1 and 2) 
used in the acetamide, propionamide, and isobutyramide selections. Raw sequencing reads 
were quality filtered using Enrich55.  
 

  
Acetamide  
selection 

Propionamide  
selection 

Isobutyramide 
selection 

Pre-selection population DNA 
reads post quality filter 1,935,216 1,735,919 1,390,991 
Post-selection population DNA 
reads post quality filter 7,738,122 3,236,744 2,831,599 

        
Percent of possible codon 
substitutions observed:       

1-base substitution 100.0 100.0 100.0 
2-base substitution 97.6 97.6 98.5 
3-base substitution 95.7 95.6 97.2 

All substitutions 97.1 97.1 98.1 
Percent of reads in pre-selection 
library with:       

No nonsynonymous mutations 40.0 39.6 38.3 
One nonsynonymous mutation 52.0 51.8 52.6 

Multiple nonsynonymous 
mutations 8.0 8.7 9.1 

Coverage of possible single  
nonsynonymous mutations: 97.2 97.2 96.3 

!
!
!
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Table B 3.3: Isogenic growth and lysate flux data. Confidence intervals in error are given as 1 
s.d. of at least 3 independent measurements.  
 
  

variant 

fitness 
metric  

(selection) µi (hr-1) µi/µWT 
theoretical 

µi/µWT 

lysate flux 
Ji/JWT (mmol NH3 

gDCW-1 hr-1) 
wildtype 0.00 (ACT) 0.44 ± 0.04 1.00 1.00 0.15 ± 0.02 
wildtype 0.00 (PR) 0.29 ± 0.06 1.00 1.00 * 
wildtype 0.00 (IB) 0.36 ± 0.07 1.00 1.00 0.11 ± 0.01 

S9A 0.33 (ACT) 0.68 ± 0.04 1.40 ± 0.08 1.26 nd 
A28R 0.27 (ACT) 0.59 ± 0.03 1.44 ± 0.07 1.21 nd 
L119A 0.30 (ACT) 0.66 ± 0.01 1.35 ± 0.03 1.23 1.98 ± 0.66 
I136A -0.07 (PR) 0.26 ± 0.00 0.78 ± 0.01 0.95 nd 
I136A 0.52 (IB) 0.58 ± 0.00 1.31 ± 0.01 1.43 nd 
I136H -0.10 (PR) 0.33 ± 0.01 0.96 ± 0.02 0.94 nd 
Q149A 0.19 (PR) 0.25 ± 0.00 0.88 ± 0.01 1.14 nd 
I165C 0.25 (ACT) 0.62 ± 0.03 1.51 ± 0.08 1.19 nd 
Y192V -1.3 (ACT) ng nd   nd 
V201M 0.12 (PR) 0.37 ± 0.01 1.09 ± 0.03 1.09 nd 
V201M 0.22 (IB) 0.50 ± 0.00 1.29 ± 0.07 1.17 nd 
V201T 0.20 (ACT) 0.52 ± 0.01 1.07 ± 0.02 1.15 2.08 ± 0.66 
V201T 0.34 (PR) 0.39 ± 0.00 1.17 ± 0.01 1.27 nd 
V201T 0.25 (IB) 0.56 ± 0.01 1.25 ± 0.02 1.19 1.9 ± 0.23 
M203W 0.43 (IB) 0.61 ± 0.01 1.86 ± 0.07 1.34 0.69 ± 0.07 
A234M 0.33 (ACT) 0.63 ± 0.01 1.29 ± 0.03 1.25 nd 
A234M 0.15 (PR) 0.42 ± 0.01 1.25 ± 0.02 1.11 nd 
A234M 0.21 (IB) 0.50 ± 0.01 1.14 ± 0.02 1.15 nd 
I236Y 0.26 (ACT) 0.60 ± 0.00 1.22 ± 0.02 1.20 nd 
Q273A 0.23 (IB) 0.59 ± 0.01 1.55 ± 0.09 1.17 nd 

*error in measurements was prohibitively high for calculating ratios 
nd = not determined         
ng = no growth         
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Table B 3.4: mRNA effects on fitness. Pearson correlation analysis of mRNA model 
parameters calculated as in47 with codon fitness metrics obtained in this work. Analysis was 
restricted to variants with ≥50 pre-selection read counts.  
  

      All codons Codons 2-16 
    Term r p-value r p-value 

A
C

T
 

  # of variants 6760 196 

m
R

N
A

 
fo

ld
in

g 
pa

ra
m

et
er

s ΔGUH -0.022 0.073 -0.111 0.122 
aH 0.008 0.492 0.069 0.338 
gH -0.003 0.814 -0.003 0.966 
u3H 0.012 0.325 0.163 0.022 

  π(θwt) -0.022 0.069 0.219 0.002 

C
od

on
 

in
flu

en
ce

 
pa

ra
m

et
er

s Σβcfc -0.033 0.007 0.301 0.000 
s7-16 0.031 0.010 0.247 0.000 
s17-32 -0.020 0.092 - - 
r 0.023 0.061 0.084 0.240 

PR
 

  # of variants 6193 161 

m
R

N
A

 
fo

ld
in

g 
pa

ra
m

et
er

s ΔGUH -0.0293 0.021 -0.1421 0.071 
aH 0.0036 0.777 0.0625 0.429 
gH -0.0131 0.303 -0.0641 0.418 
u3H -0.0061 0.630 0.1002 0.205 

  π(θwt) -0.0131 0.303 0.2256 0.004 

C
od

on
 

in
flu

en
ce

 
pa

ra
m

et
er

s Σβcfc -0.0087 0.496 0.2795 0.000 
s7-16 0.0245 0.054 0.3097 0.000 
s17-32 -0.0147 0.248 - - 
r 0.0131 0.304 0.1038 0.189 

IB
 

  # of variants 2975 43 

m
R

N
A

 
fo

ld
in

g 
pa

ra
m

et
er

s ΔGUH 0.015 0.407 -0.025 0.874 
aH 0.097 0.000 0.275 0.071 
gH -0.066 0.000 -0.161 0.297 
u3H 0.088 0.000 0.162 0.295 

  π(θwt) 0.044 0.017 0.064 0.678 

C
od

on
 

in
flu

en
ce

 
pa

ra
m

et
er

s Σβcfc -0.048 0.008 -0.224 0.143 
s7-16 0.028 0.125 -0.303 0.045 
s17-32 -0.016 0.392 - - 
r -0.015 0.402 -0.012 0.936 
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Table B 3.5: Gene amplification primers for preparing samples for deep sequencing.  

Gene amplification: inner primers 
Fwd_Tile1_amiE gttcagagttctacagtccgacgatcttaactttaagaagtttttatacat 
Fwd_Tile1_amiE-2 gttcagagttctacagtccgacgatcttaactttaagaaggagatatacat 
Fwd_Tile2_amiE gttcagagttctacagtccgacgatcggcgaagaaacggaa 
Fwd_Tile3_amiE gttcagagttctacagtccgacgatcctgcgatgacggtaat 
Fwd_Tile4_amiE gttcagagttctacagtccgacgatcaagaaatgggcattcaatac 
Rev_Tile1_amiE ccttggcacccgagaattccaaagcacggctaaagat 
Rev_Tile2_amiE ccttggcacccgagaattccactctccaaatttccggata 
Rev_Tile3_amiE ccttggcacccgagaattccacagagacaactgcgc 
Rev_Tile4_amiE ccttggcacccgagaattccatggtggtgctcgag 
blue = Illumina sequencing primer; black = gene overlap 

  
Gene amplification: outer primers 
Illumina_FWD aatgatacggcgaccaccgagatctacacgttcagagttctacagtccga 
Primer (selection, sample) 
RPI41 (ACT, T1-1) caagcagaagacggcatacgagatGTCGTCgtgactggagttccttggcacccgagaattcca 
RPI38 (ACT, T1-2) caagcagaagacggcatacgagatAGCTAGgtgactggagttccttggcacccgagaattcca 
RPI33 (ACT, T2-1) caagcagaagacggcatacgagatCGCCTGgtgactggagttccttggcacccgagaattcca 
RPI34 (ACT, T2-2) caagcagaagacggcatacgagatGCCATGgtgactggagttccttggcacccgagaattcca 
RPI43 (ACT, T3-1) caagcagaagacggcatacgagatGCTGTAgtgactggagttccttggcacccgagaattcca 
RPI40 (ACT, T3-2) caagcagaagacggcatacgagatTCTGAGgtgactggagttccttggcacccgagaattcca 
RPI44 (ACT, T4-1) caagcagaagacggcatacgagatATTATAgtgactggagttccttggcacccgagaattcca 
RPI41 (ACT, T4-2) caagcagaagacggcatacgagatGTCGTCgtgactggagttccttggcacccgagaattcca 
RPI37 (ACT, T1U) caagcagaagacggcatacgagatATTCCGgtgactggagttccttggcacccgagaattcca 
RPI22 (ACT, T2U) caagcagaagacggcatacgagatCGTACGgtgactggagttccttggcacccgagaattcca 
RPI39 (ACT, T3U) caagcagaagacggcatacgagatGTATAGgtgactggagttccttggcacccgagaattcca 
RPI40 (ACT, T4U) caagcagaagacggcatacgagatTCTGAGgtgactggagttccttggcacccgagaattcca 
RPI25 (PR, T1-1) caagcagaagacggcatacgagatATCAGTgtgactggagttccttggcacccgagaattcca 
RPI26 (PR, T1-2) caagcagaagacggcatacgagatGCTCATgtgactggagttccttggcacccgagaattcca 
RPI27 (PR, T2-1) caagcagaagacggcatacgagatAGGAATgtgactggagttccttggcacccgagaattcca 
RPI28 (PR, T2-2) caagcagaagacggcatacgagatCTTTTGgtgactggagttccttggcacccgagaattcca 
RPI29 (PR, T3-1) caagcagaagacggcatacgagatTAGTTGgtgactggagttccttggcacccgagaattcca 
RPI30 (PR, T3-2) caagcagaagacggcatacgagatCCGGTGgtgactggagttccttggcacccgagaattcca 
RPI31 (PR, T4-1) caagcagaagacggcatacgagatATCGTGgtgactggagttccttggcacccgagaattcca 
RPI32 (PR, T4-2) caagcagaagacggcatacgagatTGAGTGgtgactggagttccttggcacccgagaattcca 
RPI21 (PR, T1U) caagcagaagacggcatacgagatCGAAACgtgactggagttccttggcacccgagaattcca 
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Table B 3.5 (cont’d) 
 
RPI22 (PR, T2U) caagcagaagacggcatacgagatCGTACGgtgactggagttccttggcacccgagaattcca 
RPI23 (PR, T3U) caagcagaagacggcatacgagatCCACTCgtgactggagttccttggcacccgagaattcca 
RPI24 (PR, T4U) caagcagaagacggcatacgagatGCTACCgtgactggagttccttggcacccgagaattcca 
RPI13 (IB, T1-1) caagcagaagacggcatacgagatTTGACTgtgactggagttccttggcacccgagaattcca 
RPI14 (IB, T1-2) caagcagaagacggcatacgagatGGAACTgtgactggagttccttggcacccgagaattcca 
RPI15 (IB, T2-1) caagcagaagacggcatacgagatTGACATgtgactggagttccttggcacccgagaattcca 
RPI16 (IB, T2-2) caagcagaagacggcatacgagatGGACGGgtgactggagttccttggcacccgagaattcca 
RPI17 (IB, T3-1) caagcagaagacggcatacgagatCTCTACgtgactggagttccttggcacccgagaattcca 
RPI18 (IB, T3-2) caagcagaagacggcatacgagatGCGGACgtgactggagttccttggcacccgagaattcca 
RPI19 (IB, T4-1) caagcagaagacggcatacgagatTTTCACgtgactggagttccttggcacccgagaattcca 
RPI20 (IB, T4-2) caagcagaagacggcatacgagatGGCCACgtgactggagttccttggcacccgagaattcca 
RPI9 (IB, T1U) caagcagaagacggcatacgagatCTGATCgtgactggagttccttggcacccgagaattcca 
RPI10 (IB, T2U) caagcagaagacggcatacgagatAAGCTAgtgactggagttccttggcacccgagaattcca 
RPI11 (IB, T3U) caagcagaagacggcatacgagatGTAGCCgtgactggagttccttggcacccgagaattcca 
RPI12 (IB, T4U) caagcagaagacggcatacgagatTACAAGgtgactggagttccttggcacccgagaattcca 
red = Illumina adapter sequence; BOLD = barcode; blue = Illumina sequencing primer 
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ABSTRACT 

Understanding and predicting the mechanisms of adaptive evolution is a key challenge for 

theoretical and experimental biologists. Of interest to protein engineers is knowledge of how 

beneficial mutations arise in a population. More specifically, how many beneficial mutations are 

available given a starting amino acid sequence, and what is the nature of their distribution of fitness 

effects (DFE)? Among other biophysical properties, does the stability of a given protein 

(thermodynamic, colloidal, etc.) have an impact on this distribution? While theoretical frameworks 

have been developed, generating empirical data to rigorously test these theories has been a 

challenge. Deep sequencing mutational studies provide data on thousands of mutations in a single 

experiment and have proven useful in testing adaptive molecular evolution theories. In this chapter, 

a computational methodology was developed and applied to design functional yet destabilized 

proteins for use in future work to test hypotheses on the DFE for beneficial mutations.  
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INTRODUCTION 

Understanding the mechanisms of molecular evolution is important to a broad range of 

scientists including molecular biologists, virologists, evolutionary biologists, and protein 

engineers. Researchers interested in evolving natural proteins or designing proteins de novo must 

wrestle with the implicit evolutionary limitations set forth by nature. The challenge, then, is to first 

define these mechanisms. Of interest to most protein engineers are beneficial mutations or ‘hits’ – 

variants that achieve some engineering goal. Given the amino acid sequence of an enzyme, how 

many ‘hits’ are available? What are the mechanisms and constraints that govern the evolvability 

of a protein for new functions and, more importantly, can we leverage knowledge of these 

mechanisms to improve the design process?  

Since Ronald Fisher’s seminal work in the 1930’s in developing a ‘geometric’ evolutionary 

model1,2, several theoretical developments have followed that attempt to mathematically describe 

the adaptive behavior of stochastic mutations. One phenomena noted early on was that beneficial 

mutations are rare; deleterious and neutral mutations are far more probable than ones providing a 

selective advantage. Understanding the rare nature of beneficial mutations, Gillespie reasoned that 

extreme value theorem mathematics could be utilized to model the extreme tails of these 

distributions3. Orr later matured these theories and predicted that the DFE for beneficial mutations 

should be approximately exponentially distributed4,5. Several experimental works have attempted 

to test these theories, yet the results have been conflicting5. A significant challenge is identifying 

enough beneficial mutations for a given protein so that rigorous distribution model fitting can be 

carried out.  

 Deep mutational scanning experiments provide a wealth of mutational data that can be used 

address questions in molecular evolution6. In Chapter 3, deep mutational scanning was used to 
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study how an enzyme encodes substrate specificity by generating comprehensive single-mutation 

fitness landscapes on multiple substrates7. Using the set of beneficial mutations - variants with 

functional scores above wild-type – we were able to address the shape of the DFE for beneficial 

mutations with high statistical power. As was predicted by Orr, all three datasets could essentially 

be described as exponential. As these results are contingent upon a laboratory experiment and not 

‘true’ adaptive evolution, one has to consider the details of the selection. Importantly, the thermal 

stability of the enzyme under study was favorable to the selection conditions; the melting 

temperature of wild-type amiE is >65°C and the selections were performed at 37°C. Since proteins 

are generally only marginally stable in their native environments, an interesting question one could 

ask is, then, how does the shape of the DFE for beneficial mutations behave when the protein under 

study is not stable in the selection conditions?  

 In growth selections, fitness of an enzyme is determined by its catalytic activity and the 

amount of folded, functional protein. The probability that a protein will fold to a native ‘lowest 

energy’ functional confirmation is a complex computation governed by both the thermodynamic 

and kinetic stability constraints in the present environment8,9. However, in the context of a growth 

selection, this can be simplified and modeled as a two-state system: folded (functional) and 

unfolded (inactive). What is the relationship between folding probability and fitness outcomes? 

Previous works have aimed to address this question10–13. In a classic paper, Bloom et al. showed 

that a stabilized cytochrome P450 had a greater probability of accepting mutations conferring new 

functions than the wild-type enzyme14. The fitness effect of a mutation then, is a function of the 

protein’s mutational ‘robustness’ – random mutations to a less stable protein are more likely to be 

deleterious. Counterintuitive to this finding and a point of frustration for protein engineers, is that 

stabilizing mutations often come with trade-off to activity15–19.  
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The design of experiment for this project is simple: compare DFE of a destabilized protein 

against the known DFE of the stable wild-type protein. Using the experiment framework 

developed previously for the amiE enzyme as described in Chapter 37, the experimental objectives 

of this project are to 1.) design and generate destabilized variants of amiE while maintaining wild-

type catalytic function, 2.) establish and perform growth selections on the acetamide substrate, and 

3.) compare the beneficial DFE of the destabilized protein to the wild-type. The null hypothesis is 

that the shape of the DFE is independent of thermodynamic stability. In the following chapter I 

will describe a computational approach to address objective 1 using the Rosetta Design Software. 

We were able to identify several variants of amiE that impacted the relative purification yield (a 

proxy for enzyme stability). In the Discussion and Outlook section I will discuss the implications 

for use of computational design in altering protein stability and outline future work necessary to 

accomplish the remaining objectives of this project.  
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RESULTS 

We first sought to generate destabilized variants of amiE using computational methods. 

The objective was to identify mutations that would decrease the stability of the protein while 

maintaining wild-type catalytic function. In effort to computationally identify destabilizing 

mutations, we modified the Rosetta protocols used in the PROSS pipeline developed by 

Goldenzweig et al.20. Briefly, the objective of PROSS is to suggest designs given an input protein 

sequence and structure that will have improved stability and heterologous expression yields from 

bacterial hosts such as E coli. As our experimental objective is essentially the inverse problem, we 

modified the protocols used in PROSS and then selected mutations with worse energy scores 

relative to wild-type. The computational pipeline that was used is outlined in Figure 4.1. The input 

structure for amiE (PDB code 2UXY)21 was first refined by iterative rounds of sidechain and 

backbone repacking to obtain the lowest energy structure. Next, we reduced the number of 

positions to test by removing any position that was 1.) within 8 Å of the active site or 2.) on the 

surface of the protein. The former is to reduce the likelihood of choosing a mutation that impacts 

catalytic function, as proximity to active site correlates with activity15,17,22. The removal of 

positions on the surface of the protein from our search space was to avoid any potential effects to 

protein oligomerization (amiE is a homohexamer). The FilterScan protocol23 was then run on the 

remaining positions to test and score all possible single amino acid substitutions.  

 

Figure 4.1: Process flow for computational design of destabilized proteins.  
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Using the output scores from the FilterScan module along with the point-mutant fitness 

metric data previously generated7, six destabilized amiE designs harboring 1-3 mutations each 

were expressed and purified from E coli BL21* along with wild-type amiE (Table C 4.1). For 4/6 

designs we observed essentially no protein yield from our purification, and the remaining two 

designs (ED2 and LA3) had a significant reduction in the amount of protein yielded relative to 

wild-type (Figure 4.2a and Table C 4.1). 

 

Figure 4.2: Destabilized amiE variants. a.) Wild-type and variant amiE proteins were expressed, 
purified, and quantified using the A280 method and the yield of each variant protein relative to 
wild-type was computed. b.) The ‘large-to-small’ mutations introduce voids into the core of the 
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(Figure 4.2 cont’d) protein (F100A and I235A) while other hydrophobic to hydrophobic 
mutations alter the local packing.  

 

To obtain an unambiguous view of the contributions of each mutation, we made and 

purified some of the point-mutations contained within the six designs and found that all had 

decreased expression yields relative to wild-type (Figure 4.2a and Table C 4.1). The majority of 

mutations introduce a void into the core of the structure. For example, F100A and I235A are both 

‘large-to-small’ mutations, with the former also eliminating a stabilizing pi-pi stacking interaction 

with F87 (Figure 4.2b). Other mutations such as I122L are less aggressive in terms of void 

introduction, yet change the local packing dynamics in the vicinity of the mutation (Figure 4.2b). 

Interestingly, when we measured the apparent melting temperatures of the point-mutants we found 

that most were close to the wild-type Tm of 67.7 ± 0.1ºC (wild-type Tm previously reported in 

Wrenbeck et al.7). However, this could be explained by the fact that the homohexameric biological 

assembly of amiE complicates measuring the true melting temperature of the monomer with the 

irreversible thermal shift assay used. Following dissociation of the homohexameric complex and 

further (likely immediate) unfolding of each monomer unit, one cannot reverse the process to 

refold the monomers and thus obtain the true Tm of monomeric amiE. 

 

DISCUSSION AND OUTLOOK 

 Altering the stability of a protein while maintaining functionality is a significant challenge 

in protein science. Generally, the objective is to improve stability: thermodynamic, colloidal, 

solvent tolerance, etc. Important examples include efforts to stabilize enzymes in biocatalytic or 

in vivo process15,22,24–27 and improved shelf-life and/or heat-tolerance of protein therapeutics28. 

Computational methods, though imperfect, are becoming increasingly better at predicting the 
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thermodynamic effect (∆∆G) that a mutation will have on the folding stability of a protein. 

However, it has long been understood that there is an inherent tradeoff between stability and 

activity, especially with enzymes15,17,24. These effects will be discussed at length in Chapter 5, 

but in the context of this project the objective was to utilize computational predictions of free 

energy change upon mutation to select less stable structures. 

 The next objective of this project is to identify which of the destabilized variants maintain 

catalytic activity. A fellow graduate student in the Whitehead lab, Matthew Faber, has expressed, 

purified, and performed activity assays as described in Wrenbeck et al.7 on the variants described 

in this chapter (unpublished data). Two point-mutants, I38V and I122L, retained near wild-type 

activity. Future work involves establishing growth selection for one or both of these variants, 

performing a growth selection on a comprehensive single-mutational library using the variant as 

the parental enzyme, deep sequencing the pre- and post-selection populations, and then analyzing 

the data as in the previous study to observe the shape of the DFE for beneficial mutations.  
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MATERIALS AND METHODS 

Reagents 

 All chemicals were purchased from Sigma-Aldrich unless otherwise noted. Mutagenic 

oligonucleotides were ordered from Integrated DNA Technologies and are listed in Table C 4.2.  

 

Plasmid construction 

pET29b_amiE was constructed as previously described7. Briefly, the amiE coding 

sequence was subcloned into the pET-29b(+) backbone (Novagen). All variants were generated 

using Kunkel mutagenesis29. Mutagenic primers are listed in Table C 4.2.  

 

Protein purification and characterization 

 amiE proteins were expressed and purified following the exact protocols in Wrenbeck et 

al.7. Briefly, proteins were expressed using the auto-induction method30 and purified on Ni-NTA 

column according to Klesmith et al.25. Purified protein solutions were quantified by measuring 

absorbance at 280 nm on a BioTek Synergy H1 plate reader in 96-well UV-transparent plates using 

an extinction coefficient of 5.883x10-2 uM-1cm-1 for amiE. Apparent melting temperatures were 

measured using a SYPRO Orange thermal-shift assay31 as detailed in Klesmith et al.25 and 

Wrenbeck et al.7.  

 

Computational point-mutant scan 

 Rosetta scripts and command lines used in this work are listed in Notes C 4.1 and 4.2. The 

crystal structure for amiE was obtained from the Protein Data Bank (PDB code 2UXY)21 and 

cleaned for use in Rosetta with the ‘clean_pdb_keep_ligand.py’ script as part of the Rosetta 3 
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release. The structure was refined using the refine.xml script (without alteration) included in Data 

S1 from Goldenzweig et al.20. Residues within 8 Å of the C3Y ligand (substrate transition state 

analogue crystalized with amiE structure) and those comprising the C-terminus were fixed during 

refinement. A list of fixed residues is included in Note C 4.1. 

 Distance to the catalytic active site was calculated by finding the minimum distance of a 

position’s alpha carbon to any active site atom (six identical active sites in the homohexamer 

amiE). Residues with 8 Å or less distance to the active site were excluded from the FilterScan. 

Surface residues were identified with the Python script findSurfaceResidues.py 

(https://pymolwiki.org/index.php/FindSurfaceResidues) and were also excluded from the 

FilterScan. The filterscan.xml script from Goldenzweig et al.20 was modified to exclude PSSM 

input. The modified script can be found in Note C 4.2.  
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APPENDIX 

 

Table C 4.1: Characterization of destabilized amiE variants.  

Design Mutation(s) 
FilterScan 

score Tmapp (°C) 

Relative 
purification 

yield 
ED2 F87Y, I235L 4.927 68.6 ± 1.05 0.24 

ED4 
V17T, I38V, 

I122L, L258A  8.130 nd 0.00 

ED5 
V56I, F100H, 

L258A 9.449 nd 0.01 
LA2 I235A 5.801 nd 0.01 
LA3 F100L, C178L 8.777 60.28 ±  0.10 0.09 
LA5 F100A, S162V 11.188 nd 0.01 

  V17T 2.354 65.8 ± 0.20 0.64 
  I38V 2.023 67.3 ± 0.24 0.72 
  F87Y 1.645 73.1 ± 4.33 0.31 
  F100A 7.469 67.4 ± 0.31 0.10 
  F100L 4.583 79.8 ± 4.30 0.37 
  I122L 0.395 nd 0.11 
  S162V 3.719 nd 0.07 
  C178L 4.195 64.4 ± 0.15 0.40 
  I235L 3.281 79.2 ± 2.30 0.43 
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Table C 4.2: Primers for generating destabilized amiE variants. 
 

Primer Sequence 
AmiE_C178L gcacccttcatggctaaatctctccaaatttccggataattac 
AmiE_F100A gttcgccggtcagggaggccacaccccaaacatttg 
AmiE_F100H gttcgccggtcagggagtgcacaccccaaacatttg 
AmiE_F100L cgccggtcagggataacacaccccaaacatt 
AmiE_F87Y tacaagcacggctatagatttccgtttcttcgcctg 
AmiE_I122L gatttcaccgttgttatcgagcaagaccagagtgttgtatg 
AmiE_I235A cggccgtcaaaaccgatagcggcactatgaccgaagta 
AmiE_I235L gccgtcaaaaccgataagggcactatgaccgaagt 
AmiE_I38V atcatttccgcaactttgcgggcattatccaggac 
AmiE_L258A cggatttgtgacagagacgcctgcgcgtattgaatgcc 
AmiE_S162V ccgtcatcgcagataattaatacgatcttcatgcctttcggacc 
AmiE_V17T ggcatcttgtaattcaccgtggctacgcctacggtatc 
AmiE_V56I ctgtaaagaatattcaggaaatataaccagatccatgcccggca 
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Note C 4.1: Command lines and supporting files for Rosetta computational design 

Prepare coordinate constraints file for amiE 
 
make_csts.sh infile.pdb > outfile.cst 
 
 
Flags file used in refinement 
 
-ex1 
-ex2 
-use_input_sc 
-extrachi_cutoff 5 
-ignore_unrecognized_res 
-use_occurrence_data 
#-corrections::correct 
#-corrections::score:no_his_his_pairE 
-chemical:exclude_patches LowerDNA  UpperDNA Cterm_amidation SpecialRotamer VirtualBB 
ShoveBB VirtualDNAPhosphate VirtualNTerm CTermConnect sc_orbitals 
pro_hydroxylated_case1 pro_hydroxylated_case2 ser_phosphorylated thr_phosphorylated  
tyr_phosphorylated tyr_sulfated lys_dimethylated lys_monomethylated  lys_trimethylated 
lys_acetylated glu_carboxylated cys_acetylated tyr_diiodinated N_acetylated C_methylamidated 
MethylatedProteinCterm 
#-output_virtual 
-linmem_ig 10 
-ignore_zero_occupancy false 
 
#-out:path:pdb pdbs/ 
#-out:path:score scores/ 
 
 
Refinement command line 
 
./path/to/rosetta/scripts -database ./path/to/rosetta/database/ -in:file:s infile.pdb -parser:protocol 
refine.xml -parser:script_vars  res_to_fix= 
22A,59A,60A,65A,103A,117A,119A,132A,134A,136A,137A,138A,139A,142A,144A,163A,16
4A,165A,166A,167A,168A,169A,170A,171A,174A,175A,187A,188A,189A,190A,191A,192A,
193A,200A,203A,217A,218A,219A,227A,229A,230A,260A,261A,262A,263A,264A,265A,266
A,267A,268A,269A,270A,271A,272A,273A,274A,275A,276A,277A,278A,279A,280A,281A,2
82A,283A,284A,285A,286A,287A,288A,289A,290A,291A,292A,293A,294A,295A,296A,297A
,298A,299A,300A,301A,302A,303A,304A,305A,306A,307A,308A,309A,310A,311A,312A,313
A,314A,315A,316A,317A,318A,319A,320A,321A,322A,323A,324A,325A,326A,327A,328A,3
29A,330A,331A,332A,333A,334A,335A,336A,337A,338A,339A,340A,341A -
parser:script_vars pdb_reference=infile.pdb -parser:script_vars cst_full_path=infile.cst -
parser:script_vars cst_value=0.4 @flags -overwrite 
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Command line for FilterScan 
 
for i in {245..341}; do ./path/to/rosetta/scripts -database ./path/to/rosetta/database/ -in:file:s 
refinedinfile.pdb -parser:protocol filterscan.xml -parser:script_vars 
res_to_fix=22A,59A,60A,65A,103A,117A,119A,132A,134A,136A,137A,138A,139A,142A,144
A,163A,164A,165A,166A,167A,168A,169A,170A,171A,174A,175A,187A,188A,189A,190A,1
91A,192A,193A,200A,203A,217A,218A,219A,227A,229A,230A,260A,261A,262A,263A,264A
,265A,266A,267A,268A,269A,270A,271A,272A,273A,274A,275A,276A,277A,278A,279A,280
A,281A,282A,283A,284A,285A,286A,287A,288A,289A,290A,291A,292A,293A,294A,295A,2
96A,297A,298A,299A,300A,301A,302A,303A,304A,305A,306A,307A,308A,309A,310A,311A
,312A,313A,314A,315A,316A,317A,318A,319A,320A,321A,322A,323A,324A,325A,326A,327
A,328A,329A,330A,331A,332A,333A,334A,335A,336A,337A,338A,339A,340A,341A -
parser:script_vars pdb_reference=refinedinfile.pdb -parser:script_vars 
res_to_restrict=22A,59A,60A,65A,103A,117A,119A,132A,134A,136A,137A,138A,139A,142A,
144A,163A,164A,165A,166A,167A,168A,169A,170A,171A,174A,175A,187A,188A,189A,190
A,191A,192A,193A,200A,203A,217A,218A,219A,227A,229A,230A,260A,261A,262A,263A,2
64A,265A,266A,267A,268A,269A,270A,271A,272A,273A,274A,275A,276A,277A,278A,279A
,280A,281A,282A,283A,284A,285A,286A,287A,288A,289A,290A,291A,292A,293A,294A,295
A,296A,297A,298A,299A,300A,301A,302A,303A,304A,305A,306A,307A,308A,309A,310A,3
11A,312A,313A,314A,315A,316A,317A,318A,319A,320A,321A,322A,323A,324A,325A,326A
,327A,328A,329A,330A,331A,332A,333A,334A,335A,336A,337A,338A,339A,340A,341A -
parser:script_vars cst_full_path=infile.cst -parser:script_vars cst_value=0.4 -parser:script_vars 
scores_path=scores/ -parser:script_vars resfiles_path=resfiles/ @flags_delay -parser:script_vars 
current_res=${i} -overwrite; done 
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Note C 4.2: Rosetta scripts used in this work 

Modified FilterScan script excluding PSSM input 

<ROSETTASCRIPTS> 
 
<SCOREFXNS> 
<talaris_full weights=talaris2014> 
<Reweight scoretype="coordinate_constraint" weight=%%cst_value%%/> 
<Reweight scoretype="res_type_constraint" weight=0.4/> 
</talaris_full> 
</SCOREFXNS> 
 
 <TASKOPERATIONS> 
<InitializeFromCommandline name=init/> 
<DesignAround name=des_around design_shell=0.1 resnums="%%current_res%%" 
repack_shell=8.0/> 
<RestrictResiduesToRepacking name=restrict_res residues="%%res_to_restrict%%"/> 
<PreventResiduesFromRepacking name=fix_res reference_pdb_id="%%pdb_reference%%" 
residues="%%res_to_fix%%"/> 
 </TASKOPERATIONS> 
 
<MOVERS> 
<ConstraintSetMover name=add_CA_cst cst_file="%%cst_full_path%%"/> 
<MinMover name=min_all scorefxn=talaris_full chi=1 bb=1 jump=0/> 
</MOVERS> 
 
<FILTERS> 
<ScoreType name=stability_score_full scorefxn=talaris_full score_type=total_score 
threshold=0.0/> 
<Delta name=delta_score_full filter=stability_score_full upper=1 lower=0 range=0.5/> 
#upper and lower are booleans. Delta filters out all the mutations that are worse or better by less 
than -0.5R.E.U 
<Time name=timer/> 
<FilterScan name=filter_scan scorefxn=talaris_full relax_mover=min_all keep_native=1 
task_operations=init,des_around,fix_res,restrict_res delta_filters=delta_score_full delta=true 
resfile_name="%%resfiles_path%%designable_aa_resfile" report_all=1 
delta_filter_thresholds=0.45,0.75,1.0,1.25,1.5,1.8,2.0 
score_log_file="%%scores_path%%res%%current_res%%_score_full.log" dump_pdb=0/> 
 </FILTERS> 
 
<PROTOCOLS> 
<Add filter=timer/> 
<Add mover_name=add_CA_cst/> 
<Add filter=filter_scan/> 
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<Add filter=timer/> 
</PROTOCOLS> 
 
</ROSETTASCRIPTS> 
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Improving the expression of a polyketide synthase in a biosynthetic pathway 

using deep mutational scanning and GFP-fusion screening  
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ABSTRACT 

 Engineering organisms for the production of various chemicals, therapeutics, and fuels is 

a promising and sustainable alternative to other sources. To this end, enzymes, the entities 

responsible for in vivo conversion of feedstocks into desired products, are heterologously 

expressed in chassis organisms such yeast or bacteria. However, poor expression of heterologous 

proteins can create bottlenecks in pathways. These efforts are complicated by the low probability 

of proteins to fold and function in non-native environments, often at concentrations far past their 

solubility limit. Further, mutations that improve the stability and solubility of a protein often 

come with a tradeoff for activity. In this work, we sought to improve the stability and solubility 

of a Type III polyketide synthase (PKS) using GFP-fusion high-throughput screening coupled to 

deep mutational scanning. This PKS comes from the tropane alkaloids biosynthetic pathway 

from Atropa belladonna, of which we aim to reconstruct a portion of the pathway, including the 

PKS, in Saccharomyces cerevisiae. Hits from the screen were filtered for their probability to be 

catalytically neutral, and combinatorial libraries were prepared and screened for improved 

expression. Stabilized variants containing ≥12 total mutations were identified, with the best 

variant providing a 6.2-fold improvement in expression in E. coli. However, all initial designs 

had negligible activity. Analysis of individual PKS point mutants revealed that at least two of the 

included mutations significantly reduce activity. Future work includes generating backcrosses of 

these inactivating mutations on the stabilized designs and engineering the tropane alkaloids 

pathway in yeast.  
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INTRODUCTION 

Biomanufacturing – the production of molecules by engineered microorganisms – is a 

viable and sustainable alternative to traditional chemical synthetic routes1. Key factors 

influencing the rapid advancement of this field include the dramatic increase of available gene 

coding sequences, improved accuracy and reduced cost of synthetic DNA synthesis and 

assembly2, and improved tools for engineering biology3–7. However, the economization of 

biomanufacturing processes to compete with alternative sources (i.e. fluctuating crude oil prices) 

remains a grand challenge. For example, reported titers from the production of plant secondary 

metabolites in microbes are generally miniscule (microgram per liter quantities), necessitating 

significant optimization efforts to compete with plant-derived or traditional chemical synthetic 

routes.   

At the heart of these processes are the enzymes responsible for chemical transformation; 

a typical engineered organism will express at least five heterologous proteins. While other 

factors are certainly important (toxicity, metabolic flux balancing, localization, etc.), the 

efficiency of each enzyme step is a fundamental determinant for specific productivity and 

production titer. Flux through an enzyme, JE, can be modeled as a function of total active 

enzyme, [E]t, its catalytic efficiency (KM and kcat), and the thermodynamic reversibility of a 

reaction8: 
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where ∆Grxn = -RTK’
eq + RTln(p/s), with p = concentration of product and s = concentration of 

substrate. At equilibrium, ∆Grxn will go to zero and thus thermodynamic reversibility term will 
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become zero. Provided that an enzyme is not limited by catalytic efficiency, poor functional 

expression can significantly hinder productivity and efficiency. Indeed, a review of current 

literature reveals that several recently engineered pathways are limited by poor expression of at 

least one enzyme (Table D 5.1)9–20. Native proteins are marginally stable, and their native 

expression levels are often at their solubility limit. A common strategy to overcome a bottleneck 

enzyme is to overexpress the protein. However, overexpression of heterologous genes can lead to 

poor solubility and aggregation. 

 Recently, Klesmith et al. demonstrated that by improving the apparent melting 

temperature of a Lipomyces starkeyi levoglucosan kinase by 5.1°C while maintaining near wild-

type activity, growth rates of levoglucosan kinase expressing E. coli fed levoglucosan as a sole 

carbon source were improved by 15-fold from the wild-type enzyme21. Similarly, Xie et al. 

engineered improved solubility of Simvastatin synthase in E. coli and achieved approximately 

50% increase in whole cell activity and solubility22. While these examples are demonstrative, 

this strategy has not been widely adopted amongst pathway engineers. Stability and solubility 

engineering of enzymes is complicated by the need to maintain functional enzymatic activity, 

and mutations with stabilizing effects often come with a tradeoff for protein function.  

To address this challenge, we recently published on identifying stabilizing ‘hits’ using 

high-throughput screens for stability and solubility in deep mutational scanning experiments23. 

Existing comprehensive single-mutation functional datasets for two enzymes were compared 

against datasets generated with the stability screens. In short, we found a 90% probability of 

choosing a catalytically neutral mutation by filtering out mutations that were near the active site, 

not evolutionarily conserved, or buried in the protein core.  
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As a rigorous test and application of this method, in this work we sought to improve the 

expression of an enzyme without an existing functional dataset or crystal structure. As a model 

system, we performed a GFP-fusion stability scan on a Type III polyketide synthase (PKS) from 

Atropa belladonna (Ab) that expresses very poorly in both bacterial and yeast systems. This 

enzyme is part of the Tropane Alkaloids (TA) pathway from Ab that was recently elucidated by 

the Barry Lab at Michigan State University (Figure 5.1, unpublished data).  
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RESULTS 

 As a model system to test our hypothesis that improving protein expression boosts the 

productivity of engineered metabolic pathways, we sought to reconstruct a portion of the TA 

pathway in Saccharomyces cerevisiae. The engineered pathway begins with the pathway 

precursor putrescine followed by chemical transformations to the TA pharmacore tropine. This 

transformation is catalyzed by five enzymes: putrescine methyltransferase (PMT), methyl-

putrescine amine oxidase (MPO), a Type III polyketide synthase (PKS), tropinone synthase (TS), 

and tropinone reductase (TRI) (Figure 5.1a). We first evaluated the localization and expression 

of native Ab genes in yeast by generating EGFP-tagged fusions of each gene under the control of 

a galactose inducible promoter. Fluorescence microscopy of S. cerevisiae strain BY471024 

expressing EGFP-fusions revealed that all genes except for MPO were expressed in the cytosol 

(Figure 5.1b). The native MPO contains a canonical Ala-Lys-Leu C-terminal peroxisomal 

targeting sequence (PTS). Co-expression of an RFP-tagged peroxisomal protein25 and EGFP-

MPO confirmed that the MPO localizes to the yeast peroxisome (Figure 5.1b).  

 

Figure 5.1: Overview of the Tropane Alkaloids (TA) pathway enzymes. a.) The pathway 
precursor, putrescine, will be fed in the growth medium of yeast cells expressing five enzymes: 
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Figure 5.1 (cont’d) PMT, MPO, TRI, TS, and PKS. The final products, tropinone and tropine 
will be detected from the cultures using LC/MS methods developed by the Barry Lab. b.) 
Fluorescence microscopy images of EGFP-tagged Ab genes. PMT, PKS, and TRI indicate 
cytosolic expression, whereas MPO localizes to the yeast peroxisome as confirmed by co-
localization with Pex11-mKate2 fusion protein.  
 

 We quantified the mean fluorescence of the EGFP-tagged Ab gene products by flow 

cytometry and found that the PKS expressing cells were significantly less fluorescent compared 

to the other genes, indicating poor expression (Figure 5.2). Attempts by the Barry Lab to express 

and purify PKS for characterization yielded extremely low levels of active protein (~5 mg/L 

yield from auto-induction cultures, unpublished data). They found that essentially all of the 

protein was insoluble and that activity sharply declines at temperatures in excess of 25°C. 

Together, these data indicate that the PKS expresses poorly in both bacterial and yeast hosts and 

support engineering the enzyme to find variants with improved stability and solubility.  

 

Figure 5.2: Relative fluorescence of EGFP-tagged Ab genes in yeast. Fluorescence of S. 
cerevisiae strain BY471024 cells expressing EGFP-tagged Ab genes under galactose induction 
was quantified using flow cytometry. Error bars represent the standard deviation of at least two 
independent measurements. TRII is a homolog of TRI that produces pseudo-tropine.  
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 In effort to improve the expression of the PKS, we sought to use deep mutational 

scanning coupled to a high-throughput screen for stability and solubility. Due to its experimental 

ease, we first explored the use of yeast surface display coupled to FACS26. The PKS coding 

sequence was cloned into the pETConNK backbone23,27 and expressed with galactose induction 

at 22°C in EBY100 cells. Initial tests for display proved futile (Figure D 5.1). We then tested 

several alternate induction temperatures (18-30°C) as well as mutating a potential glycosylation 

site at Asn339. We hypothesized that glycosylation of this asparagine could disrupt folding and 

thus ability to display, so we made and tested PKS_N339A using nicking mutagenesis27. 

However, despite these troubleshooting efforts, we were unable to successfully display the PKS 

on the yeast surface.  

We next attempted use of a GFP-fusion stability screen. The concept of GFP-fusion is to 

genetically encode a gene of interest linked to GFP generating a fusion protein (Figure D 5.2a), 

such that the folding probability of GFP is tied to the folding probability of the gene of interest. 

Expression of a protein library can then be screened by fluorescence intensity using FACS 

(Figure D 5.2b). Recently, the use of a GFP-fusion stability screen28 in deep mutational 

scanning experiments was validated in our lab using a levoglucosan kinase (LGK) from 

Lipomyces starkeyi as a model system (unpublished data). The screen was able to correctly 

identify 9/12 known stabilizing LGK mutations (P-value < 0.0001, Fisher’s exact test). Thus, 

GFP-fusion has been validated in a deep mutational scanning pipeline.  

The objective of this project was to perform a GFP-fusion deep mutational scan on PKS, 

filter the resulting hits for probability of maintaining catalytic activity using recently published 

classification methods23, and then generate a combinatorial library to identify active variants 

with improved expression (Figure 5.3a). We generated a comprehensive single-site saturation 
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mutagenesis library of PKS using nicking mutagenesis27. Plasmid DNA libraries were 

transformed into BL21*(DE3) and protein expression was induced with IPTG (see 

MATERIALS AND METHODS). Individual cells were sorted using FACS and two 

populations were collected: a reference population and the top 8-10% of cells based on GFP 

fluorescence intensity. The resulting samples were deep sequenced and the population counts 

and enrichment ratios of wild-type and each variant were calculated using Enrich29 (see Table D 

5.2 for library statistics). A normalized stability metric, z, for each variant was calculated as 

outlined in Kowalsky et al.30, where a stability metric of zero corresponds to wild-type, above 

zero are beneficial mutations (more stable), and below zero are deleterious.  Unfortunately, the 

reference population for the gene tile covering residues 157-234 did not grow after FACS, thus 

we chose to omit these positions from further analysis. 

 Deep sequencing of the reference populations revealed 84.3% coverage of single 

nonsynonymous (NS) mutations (5107/6060). Nonsense mutations had a mean stability metric of 

-0.653 ± 0.48 (1 s.d.), which was significantly lower than the mean of -0.0561 ± 0.54 for 

missense mutations (P-value < 0.0001, two-tailed unpaired Student’s T-test). To evaluate the 

reproducibility of the method, we performed replicate sorting, deep sequencing, and analysis for 

one gene tile. The Pearson’s correlation coefficient between replicates was found to be 0.72, 

which is low compared to previous deep mutational scanning experiments (coefficients of 0.8523 

and 0.9331 have been previously reported from our lab). As reproducibility generally improves 

with increasing depth of sequencing coverage, we calculated Pearson’s correlation coefficients 

for mutations with at least 100 read counts in the reference population and found the coefficient 

improves to 0.83. Thus, the relatively low depth of coverage in this experiment partially but not 

completely explains the relatively high variance between replicates. 
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Since we are interested in ‘improved’ variants, we next asked how correlation scales with 

coverage for variants with at least 20% improvement in stability metric (z>0.15). We found that 

variants with ≥50 average selected read counts had a Pearson’s of 0.84, which we deemed a 

reasonable threshold for reliability of the deep sequencing experiment to yield predictive results 

on a mutation’s stability effect (Table 5.1).  

 
Table 5.1: Correlation of stability metrics for beneficial mutations from replicate GFP-
fusion experiments based on depth of sequencing coverage. Average selected read counts 
between replicates were calculated and Pearson’s product moment correlation coefficients were 
determined above the indicated read count thresholds. N indicates the number of mutations at 
each threshold. 
 

Average selected read count threshold N Pearson's 
≥10 298 0.70 
≥30 280 0.71 
≥50 247 0.84 
≥100 193 0.90 

 

 The GFP-fusion experiment identified an astounding 1,115 beneficial missense mutations 

(z>0.15) with ≥50 selected read counts (19.4% of total tested). As the objective was to generate a 

stabilized PKS variant with wild-type catalytic activity, hits were filtered using a multiple filter 

approach as validated in Klesmith et al.23 for their probability to be catalytically neutral23. In 

brief, hits at positions within 15 Å of the active site or with a PSSM score <3 were removed. 

Mutations with PSSM scores ≥3 represent mutations that have been evolutionarily conserved, 

and thus are less likely to impact catalytic function (see MATERIALS AND METHODS for 

details of PSSM generation). Proximity to the active site was calculated using a homology 

structure for PKS generated with I-TASSER with default options32. The resulting set of hits post-

filter was comprised of 38 mutations at 35 unique positions (Table D 5.3).  
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 Using the homology structure, we selected 23 mutations to include in a combinatorial 

library27. Included in this set were 5 mutations that did not pass the stringent filtering criteria, but 

were included due to having either relatively high stability metric scores and/or PSSM scores of 

≥0 (Table D 5.4). Initially, BL21*(DE3) cells expressing the combinatorial library were 

cultured, induced with IPTG, plated and grown at 30°C, and visually screened for fluorescence 

intensity. 20 variants were picked and their fluorescence was quantified using flow cytometry 

(Figure D 5.3). The best variants from this initial screening effort only provided approximately 

3-fold improvement over wild-type. Because the number of library members one can reasonably 

screen on plates is low (~102), we performed a FACS sort to enrich the library for the top 3% of 

cells based on GFP fluorescence intensity. Sorted cells were plated and visually screened as 

before, and 10 additional variants were picked for isogenic characterization. The best variant, 

PKS.21, provided a 6.2 ± 0.01-fold improvement in fluorescence over wild-type.  

 Next, we selected the top four variants (PKS.4, PKS.20, PKS.21, PKS.23), sequenced 

and cloned them into a GST-tagged expression vector, and characterized them for relative 

catalytic activity. Each design had ≥12 mutations, with 8 mutations shared amongst all designs 

(V12I, S37A, P106A, M115R, A121G, A143V, T245A, and S284K, Figure 5.3a). Based on the 

homology structure, these mutations generally appear to alter surface charge characteristics, core 

packing, loop flexibility, or dimeric interface contacts (Figure. 5.3b). For example, N64E/D 

introduce a negative charge to a patch on the surface that is otherwise positive. V282I is a 

hydrophobic-hydrophobic mutation in the core of the protein that presumably improves 

hydrophobic packing. Lastly, A121G likely improves loop flexibility.  

Interestingly, when we screened these hits for activity with a lysate assay we found that 

all had no detectable activity except for PKS.20, which had approximately 0.1% of the activity  
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Figure 5.3: Combinatorial PKS hits. a.) Sequencing of the top four combinatorial hits revealed 
several shared mutations. Grey shading indicates the mutation is present. b.) Structural analysis 
of beneficial mutations indicates that many improve surface charge characteristics, hydrophobic 
core packing, and secondary structure like loops. The grey surface representation is the dimer 
subunit. C167 is the putative catalytic nucleophile. c.) Point-mutant analysis of the 8 shared 
mutations. Lysates of GFP-fused PKS mutants were tested for their activity and fluorescence 
intensity (expression yield). Error bars represent 1 s.d. of technical replicates. Axis are both 
logarithmic scale (base 10).  
 

compared with wild-type (data not shown). We hypothesized that one or more of the 8 shared 

mutations were responsible for destroying enzyme activity. To test this hypothesis, we generated 

the 8 point-mutations in the GFP-fusion background using nicking mutagenesis27 and performed 

lysate activity assays. We found two mutations, P106A and A143V, that reduced activity to 

0.93% and 0.02% of wild-type activity (Figure 5.3c). Not surprisingly, these two mutations were 
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ones that did not pass the filtering criteria because they had low PSSM scores of -2 (P106A) and 

0 (A143V), however were included in the library as they had stability scores of 0.641 and 0.257, 

respectively. This result underlines the importance of the filtering criteria: mutations that 

improve stability but are not evolutionarily conserved are significantly more probable of being 

deleterious for catalytic function.  

 

DISCUSSION AND FUTURE WORK 

 In this work, we performed a high-throughput screen for stability and solubility to test 

thousands of mutations on a protein sequence. Deep sequencing driven protein science enables 

the generation of previously unthinkable amounts of mutational data33. Applications stretch as 

far as studying enzyme function21,34–38,31,39,40, probing mechanics of evolution31,41,42, and 

antibody engineering43,44.The ability of deep mutational scanning – counting DNA sequences 

from unselected and selected populations – to recapitulate various biological, chemical, and 

physical phenomena is wholly dependent on the quality of the screen or selection method used. 

Replication of experiment is an important metric for all methods, and the correlations observed 

in this work indicate that GFP-fusion, at least for PKS, is not as sensitive as other high-

throughput screening technologies. Nevertheless, computational methods for filtering hits can aid 

in generating stabilized protein designs. However, if given the option a more robust stability 

screen such as yeast surface display23,26 is more desirable.  

There are two important takeaways from this project. First, this work clearly validates the 

filtering method previously developed by Klesmith et al.23. Results from the point-mutation 

analysis indicate that although certain mutations provide stabilizing effects, if they were not 

conserved in nature they are likely to be deleterious for function. Indeed, proline 106 is a 



 

 144 

canonical example of this stability/function trade-off. P106 lies in the middle of a helix, where 

prolines are generally disfavored, and the solubility screen indicates that several other residues at 

this position improve overall stability of the protein. However, the PSSM indicates that proline is 

highly conserved and thus important to catalytic function. The P106A variant increased the 

solubility of the PKS-EGFP fusion but almost completely ablated activity. Since all 

characterized PKS hits (PKS.4, PKS.20, PKS.21, and PKS.23) contained P106A and A143V that 

did not pass the filter, immediate next steps include backcrossing these mutations and testing the 

resulting enzyme variants for activity. 

The second important takeaway is now that the filtering method has been validated on 3 

different enzymes, library size from the outset can be significantly decreased; any mutation that 

does not pass the filtering criteria need not be included in the library. In the absence of stability 

metric data, for the PKS removing mutations with PSSM scores <3 reduces the library size from 

7,448 (392 positions with 19 amino acid substitutions) down to 154, and removing positions 

within 15 Å of the active site reduces the library size down to 123. Testing approximately one 

hundred mutations versus thousands (comprehensive scan of a gene) is certainly more practical 

and economical. Notably, nicking mutagenesis developed in Chapter 2 enables such efficient 

library generation.  

A remaining objective for this project is to reconstruct the TA pathway in yeast. This will 

be accomplished using the hierarchal MoClo cloning strategy and a kit of characterized parts for 

yeast45 developed by John Dueber and company at University of California, Berkeley. Multi-

gene cassettes will be integrated into the chromosome of yeast strain BY474224, as there are 

several available options for auxotrophic selection. Initial designs will feature genes placed 

under the control of medium strength constitutive promoters with the objective of detecting 
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tropinone and/or tropine in 72hr cultures. Once confirmed that this is the minimum set of genes 

to produce tropane alkaloids in yeast, optimization of expression elements (promoters, copy 

number, integration location, etc.) will be carried out using a modular approach. In brief, 

optimization of the PMT+MPO, then PMT+MPO+PKS, and lastly PMT+MPO+PKS+TS+TRI 

will be done. Additionally, three putative cytochrome P450 reductases (CPR) for TS will be 

screened for activity and their expression level will be optimized with respect to TS. Ultimately, 

the objective is to test stabilized active PKS designs versus the wild-type in the context of the 

engineered pathway to see the effects on pathway productivity. 

 

MATERIALS AND METHODS 

Reagents 

Chemicals were sourced from Sigma-Aldrich unless otherwise noted. Mutagenic oligos 

were designed using the QuikChange Primer Design Program (Agilent, Santa Clara, CA). All 

oligonucleotides were ordered from Integrated DNA Technologies (Coralville, IA). All 

minipreps were done using the Monarch Plasmid Miniprep Kit (New England Biolabs).  

 

Plasmid construction 

Yeast gateway expression constructs used for fluorescence microscopy were made using 

plasmids from the Yeast Gateway Kit from the Lindquist Lab (available from 

www.addgene.com). PMT, PKS, TRI, and TRII Atropa belladonna gene sequences were cloned 

from pENTR/D-TOPO entry vectors into the pAG424GAL_EGFP_ccdB plasmid using LR 

cloning kit (Thermo Fisher Scientific). MPO was cloned as above but into a gateway plasmid 

modified to harbor an RFP peroxisomal marker. The Pex11-mKate2 transcriptional unit from 
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pWCD2520 (gifted from the Dueber Lab) was PCR amplified attaching BsmBI sites on either 

side. The resulting amplicon was subcloned into the pAG424GAL-EGFP-ccdB plasmid between 

the two BsmBI sites, generating construct pAG424GAL-EGFP-MPO_Pex11/mKate2.  

The pET29NK_<gene_of_interest>/mGFPmut3 vector was constructed by Justin 

Klesmith as follows. Overhang PCR was used attaching a 5’ XhoI site and a 3’ His6x, stop 

codon, BbvCI site to mGFPmut3 from a plasmid based from pJK_proB_GFP (45). Similarly, 

overhang PCR was used to add a BbvCI site to pET29b just after the stop codon in the plasmid. 

The mGFPmut3 construct was cloned between the XhoI and BbvCI sites using standard 

techniques to make the fusion construct <gene_of_interest>-Leu-Glu-mGFPmut3-His6x. 

pET29NK-PKS-RD/mGFPmut3 was constructed by overhang PCR of the PKS coding sequence 

attaching NdeI and XhoI sites for ligation into the pET29NK-GOI/mGFPmut3 construct.  

pGEX expression vectors were made by subcloning PKS genes between the BamHI and 

SmaI sites of the pGEX-4T1 backbone. Wild-type and variant PKS sequences were amplified by 

overhang PCR attaching 5’ BamHI and 3’ SmaI restriction sites and then cloned into the pGEX 

backbone following standard restriction digest and ligation protocols.  

 

PKS comprehensive point-mutant library construction 

Nicking mutagenesis was used to generate a comprehensive single-site mutagenesis 

library on the pET29NK_PKS-RD/mGFPmut3 plasmid27. Degenerate NNK primers covering 

residues Lys8 to Arg388 were used in 5 separate mutagenesis reactions to generate 5 gene tiles: 

T1 (K8-E78), T2 (I79-S156), T3 (V157-G234), T4 (L235-I312), T5 (V313-R388) (see Table D 

5.2). Mutagenesis reaction products were transformed into XL1-Blue Electrocompetent Cells 
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(Agilent) and plated on 245mm x 245 mm Large Bioassay Dishes (Sigma). The following day, 

cells were scraped and plasmids harvested with a miniprep.   

30 ng of library plasmid DNA was transformed into electrocompetent E. coli 

BL21*(DE3) cells and plated as above. The following day, cells were scraped and used to 

inoculate a 100 mL LB culture at an initial OD600 of 0.05 and grown at 30°C, 250 rpm. Once the 

cultures reached an OD600=0.4-0.6, DMSO was added (7% v/v) and 1 mL aliquots were flash 

frozen in liquid nitrogen.  

  

FACS screening of GFP-fusion libraries 

Kanamycin was used at a final concentration of 50 µg/mL in all cultures. Library cell 

stocks were thawed on ice for 30-45 minutes and washed twice in TB media. For each library, 3 

mL TB cultures were inoculated to an initial OD600=0.05 in Hungate tubes and grown at 30°C 

with 250 rpm shaking. Once the cultures reached an OD600=0.8-1.6, cultures were diluted into a 

fresh 3 mL TB culture in Hungate tubes to an initial OD600=0.0025. After approximately 4-5 

generations (OD600=0.05-0.08) IPTG was added to a final concentration of 250 µM. Once the 

cultures reached an OD600=0.25-0.3, 1 mL was pelleted and washed with cold sterile PBS twice.  

Cells were sorted on a BD Influx cell sorter. 700,000 cells each from two populations 

were collected for each sample: a reference population (FSC vs. SSC gate), and a selected 

population (intersection of FSC vs. SSC gate and top 8-10% based on GFP fluorescence intensity 

with a 530/40 nm filter [488 nm]). The collected cells were added to 10 mL TB media and grown 

at 25°C with 250 rpm shaking until they reached an OD600=0.3-0.6. Cells were pelleted and 

stored at -20°C until the DNA was extracted with a miniprep.   
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DNA deep sequencing and analysis 

 Library DNA was prepared for deep sequencing using Method B PCR amplification as 

described in Kowalsky et al.30 (PCR primers listed in Table D 5.5). Amplicons were cleaned 

using Agencourt AMPure XP Beads (Beckman Coulter) and quantified using Quant-iT 

PicoGreen reagent (Life Technologies). Deep sequencing was performed on an Illumina MiSeq 

with 250 bp paired-end reads. The resulting data was processed using Enrich29 and custom 

scripts freely available from GitHub (user JKlesmith). Stability scores for each mutant were 

calculated exactly as described in Klesmith et al.23.  

 

PKS PSSM generation 

A PSSM for the Ab PKS gene was generating following similar methodologies outlined 

in Goldenzweig et al.46 and Klesmith et al.23. A BLASTp search47 of the nonredundant protein 

database was done for the PKS sequence with an e-value cutoff of 10-4, excluding synthetic and 

engineered items from the search. The top 20,000 results were saved and sequences with less 

than 30% sequence identity and/or 60% coverage of the query sequence were removed. Hits 

were clustered using Cd-hit48 with a 98% threshold and the top 500 clusters were aligned using 

MUSCLE49. The alignment was split into 20 amino acid sections (to reduce gap penalty) and 

then PSI-BLAST50 was used to generate a PSSM.  

 

Combinatorial library generation and screening methods 

 The single and multi-site nicking mutagenesis protocol27 was used to generate 

combinatorial PKS libraries. Two separate reactions were performed at a primer:template molar 

ratio of 3:1 and 10:1 in effort to obtain mutants with a range in number of total mutations. The 
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two reactions were transformed into XL1-Blue Electrocompetent Cells (Agilent) and plated on 

245 mm x 245 mm Large Bioassay Dishes (Sigma). Cells were scraped and plasmids were 

harvested with a miniprep. 10 ng of library DNA was transformed into electrocompetent 

BL21*(DE3) and plated as above. The following day, cell stocks were prepared from cell 

scrapings following the same methods used for the comprehensive single-mutation PKS libraries.  

 For the first round of plate screening, library cell stocks were thawed on ice for 30-45 

minutes and then washed twice in TB. An overnight TB cultures was started at an initial 

OD600=0.05. In the morning, a fresh 3 mL TB culture was inoculated to an OD600=0.02 in 

Hungate tubes. Once the cultures reached an OD600=0.2-0.3, IPTG was added to a final 

concentration of 250 µM. Cells were grown for 2.5 hours and then plated on plain LB-Agar 

plates and grown at 30°C overnight. Individual colonies were visually screened for fluorescence 

intensity and ‘winners’ were picked to be grown in isogenic 2 mL TB cultures overnight. PKS.1-

PKS.10 and PKS.11-PKS.20 originated from the 3:1 and 10:1 primer:template ratio libraries, 

respectively. The next day, glycerol stocks were made of each variant for downstream 

characterization.  

 In effort to enrich for the best variants, a second round of plate screening was performed 

following an initial FACS sort. Cell stocks were thawed and cultured and induced as above, and 

then washed twice in cold filtered PBS. Libraries were sorted on a BD Influx sorter and 20,000 

cells from the intersection of the FSC vs. SSC gate and the top 3% based on GFP fluorescence 

intensity (530/40 nm filter [488 nm]) were collected. 2 mL of TB media was added to the 

collected cells and plated on 245 mm x 245 mm Large Bioassay Dishes (Sigma) with LB-Agar 

and Kanamycin at a final concentration of 50 µg/mL. Plates were visually screened as before, 

and ‘winner’ colonies picked for growth in isogenic cultures.  
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Characterization of combinatorial hits and point-mutations 

 Quantification of the mean fluorescence intensity of GFP-fused PKS hits was performed 

as follows. Overnight cultures of wild-type and variant PKS were started from isogenic glycerol 

stocks in 2 mL TB. In the morning, 3 mL TB cultures were prepared from overnight cultures at 

an initial OD600=0.02 in Hungate tubes. Cells were grown until the OD600 reached 0.2-0.3 and 

then IPTG was added at a final concentration of 250 µM. After 2.5 hours, 1 mL of culture was 

removed and washed twice in filtered PBS. Cells were diluted with PBS to an OD600=0.1 and 

fluorescence intensity was measured on a BD Acuri C6 Flow Cytometer. The sort was run for 

50,000 events in a polygon gate drawn on the FSC vs. SSC plot. Mean fluorescence was 

obtained on the plot of the intersection of the FSC vs. SSC and an FL1 vs. Count plot, where FL1 

represents fluorescence intensity using a 510/15 nm filter.  

Auto-induction cultures of wild-type and variant PKS proteins for initial activity assays 

were prepared as follows. Isogenic overnight cultures in 2 mL TB were started from glycerol 

stocks of BL21*(DE3) cells harboring the pGEX-PKS plasmids. In the morning, 1 mL of 

overnight culture was removed, spun down at 8,000xg for 3 minutes, and resuspended in 1 mL of 

standard auto-induction media37. The OD600 was measured and 1 mL solutions of cells at an 

OD600=0.5 in auto-induction media were prepared. 500 µL of these solutions were added to 25 

mL pre-warmed auto-induction media in 250 mL Erlenmeyer flasks and were grown at 30°C 

with 250 rpm shaking for 6 hours. Cultures were then switched to grow at 18°C with 250 rpm 

shaking for 20 hours. Cultures were spin down at 8000xg for 20 minutes at 4°C and the wet cell 

weight recorded. Cell pellets were washed once and then resuspended in PBS to a final volume 

of 10 mL at an OD600=10. Samples were pelleted and stored at -80°C for future analysis. To 

prepare lysates, cell pellets were thawed and resuspended to an OD=2.5 in resuspension buffer 
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(10% glycerol, 147mM NaCl, 4.5 KCl, 100 mM HEPES pH 8.0, 1x Sigma Protease Inhibitor 

Cocktail, 5 mM DTT, 1 mg/mL lysozyme). 1 mL of resuspension was lysed in a 1.5 mL 

microfuge tube on ice using a sonicator fitted with a 1/8” horn with the following settings: 3 sec 

on, 10 sec off, 60 sec total on time, 37% amplitude.   

Lysate activity assays were performed by Matt Bedewitz in the Barry Lab at Michigan 

State University. Standard activity assays for AbPKS were performed using 25 mM potassium 

phosphate buffer pH 8.0, 50 µM N-methyl-Δ1-pyrrolinium hydrochloride, and 100 µM malonyl-

coenzyme A lithium salt (Santa Cruz Biotechnology Cat. No. sc-215286) in 50 µL, using 5 µL of 

crude lysate. Reactions were stopped using 100 µL 2% formic acid, 200 mM ammonium 

formate, 5% methanol, and 2 µM Telmisartan as an internal standard. Reaction products were 

analyzed using a Waters Acquity TQ-D Mass Spectrometer coupled to a Waters Acquity UPLC 

system. Parameters for electrospray ionization in positive-ion mode were as follows: 2.99 kV 

capillary voltage, source temperature of 130°C, desolvation temperature of 350°C, and 

desolvation gas flow of 700 L/h, with MS/MS transitions as provided in Table D 5.6, using the 

gradient described in Table D 5.7 with a flow rate of 0.3 mL/min. Chromatography was 

performed using an Ascentis Express PFPP column (2.1 × 100 mm with 2.7-µm particle size) 

with an oven temperature of 50°C and an injection volume of 10 µL. 

Where reaction products were quantified, 4-(2-N-methylpyrrolidine)-3-oxobutanoic acid 

was quantified using a standard generated the same day via alkaline hydrolysis of 4-(2-N-

methylpyrrolidine)-3-oxobutanoic acid methyl ester. This hydrolysis was performed as follows:  

12 µL 25 mM 4-(2-N-methylpyrrolidine)-3-oxobutanoic acid methyl ester in THF was added to 

138 µL of THF in a glass vial. The hydrolysis was begun by addition of 150 µL of 0.335 M 

ammonium hydroxide. Hydrolyses were performed for 4 h at 37° C and quenched by addition of 
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300 µL 0.26 M ammonium formate and 1% formic acid. A standard curve of 4-(2-N-

methylpyrrolidine)-3-oxobutanoic acid was determined from this solution by subtraction of 

unreacted 4-(2-N-methylpyrrolidine)-3-oxobutanoic acid methyl ester and spontaneous 

decarboxylation product hygrine from the calculated concentration of standard. Cuscohygrine in 

reactions was quantified using a cuscohygroline standard. All other compounds were quantified 

using authentic standards. N-methyl-Δ1-pyrrolinium hydrochloride, 4-(2-N-methylpyrrolidine)-3-

oxobutanoic acid methyl ester, and cuscohygroline were kindly provided by John d’Auria, Texas 

Tech. 

 Lysates for PKS point-mutant activity assays were prepared as follows. 3 mL TB cultures 

were inoculated to an initial OD600=0.05 and grown until OD600=0.15. IPTG was added to a final 

concentration of 250 µM, and cells were grown for 3 hours. Cultures were transferred to ice, 

spun down at 8,000xg for 5 minutes, washed twice in cold filtered PBS, and resuspended in 1 

mL resuspension buffer. Cells were lysed by sonication as above. GFP fluorescence was 

quantified on a BioTek Hybrid plate reader in 96-well black round-bottom plates. 200 µL lysate 

was quantified with the following parameters: excitation=485 nm, emission=507 nm, gain=50, 

height=0.7. Lysate activity assays were performed as described above.  
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APPENDIX 

 

 

 

Figure D 5.1: Display of PKS on the surface of yeast proves unsuccessful. a.) A positive 
control for display yields two distinct populations: a non-displaying (leftmost) and a displaying 
(rightmost). B.) Initial attempts to display the PKS at 22°C with galactose induction were 
unsuccessful. Several induction conditions were tested, including temperatures ranging from 
18°C (c) up to 30°C (d). We also mutated a potential glycosylation site, Asn339, to alanine, 
however this also was unsuccessful (e).  
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Figure D 5.2: Overview of GFP-fusion deep mutational scanning experiment. a.) A protein 
of interest is genetically encoded as a fusion to GFP. Upon expression, folded proteins will 
permit the folding and subsequent chromophore formation of GFP, while unfolded proteins will 
be non-fluorescent. b.) In the GFP-fusion deep mutational scanning experiment, a comprehensive 
site-saturation library of PKS was generated using nicking mutagenesis27, expressed in 
BL21*(DE3) with IPTG induction, and sorted using FACS. The resulting libraries were then 
deep sequenced.  
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Figure D 5.3: Relative fluorescence intensity of combinatorial PKS hits. Mean fluorescence 
intensity of E. coli expressing GFP-fusions of the above hits obtained from plate screens was 
quantified using flow cytometry and normalized to the fluorescence of wild-type PKS expressing 
cells.  
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Table D 5.1: Literature examples of engineered biosynthetic pathways in microbes with 
limiting enzymes.  
 

Product Limiting Enzyme(s) Publication(s) 

Reticuline norcoclaurine synthase, 
tyrosine hydroxylase DeLoache et al. 20159 

Thebaine salutaridine synthase Galanie et al. 201510 
Synthetic 
Biodiesel wax-ester synthase Steen et al. 201011 

Glucaric Acid myo-inositol oxygenase Shiue and Prather 201412 

Ethyl Ester alcohol-O-
acetyltransferase Zhu et al. 201513 

n-butanol, 1-
butanol 

butyryl-CoA 
dehydrogenase from 
Streptomyces collinus 

Steen et al. 200814, Atsumi et al. 200815 

MEP (DXP) 
pathway Several Zhou et al. 201216 

Isobutanol alcohol dehydrogenase Atsumi et al. 201017 
Etoposide Several Lau and Sattely 201518 
Serotonin monooxidase Ehrenworth et al. 201519 

Flavonoids cytochrome P450 
reductase Kim et al. 200920 
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Table D 5.2: Library statistics for PKS comprehensive single-mutation libraries. NS = 
nonsynonymous.  
 

  
Residues 8-

78 
Residues 79-

156 
Residues 
235-312 

Residues 
313-388 

Number of initial library 
transformants 7E+04 9E+04 8E+04 1.8E+05 
Reference population DNA 
reads post quality filter 391,403 144,646 814,066 1,605,888 

Post-selection population 
DNA reads post quality filter 230,172 932,646 

323,027 
(rep1) 

711,320 
(rep2) 486,129 

Percent of reads in reference 
population with:         

No NS mutations 46.4 49.2 39.4 45.4 
One NS mutation 49.6 47.0 57.5 49.4 

Multiple NS mutations 4.0 3.8 3.2 5.2 
Coverage of possible single  
NS mutations: 80.4 71.9 91.5 93.2 
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Table D 5.3: Filtered beneficial mutations from the GFP-fusion experiment. 
 

Wild-
type 

residue Position Mutation 
Stability 
Metric 

Reference 
read 

counts 

Selected 
read 

counts 
Enrichment 

ratio 

CA 
distance 

to 
active 

site (Å) 
PSSM 
score 

V 12 I 0.206 54 59 0.89 39.1 3 
F 31 P 1.254 12 50 2.82 22.8 5 
W 33 C 0.532 28 52 1.66 21.0 8 
S 37 A 0.967 25 80 2.44 23.5 3 
N 48 K 0.461 70 117 1.51 27.2 3 
D 50 E 0.589 64 129 1.78 28.4 6 
D 54 E 0.164 80 81 0.78 27.7 4 
N 64 D 0.297 64 82 1.12 20.6 5 
N 64 E 0.320 217 289 1.18 20.6 3 
K 82 E 0.240 29 326 0.80 28.0 6 
H 89 Y 0.157 8 77 0.58 20.1 8 
N 90 M 0.323 21 274 1.02 20.5 7 
F 94 L 0.220 46 498 0.75 19.4 5 
V 96 A 0.246 51 580 0.82 22.3 4 
I 100 M 0.169 18 177 0.61 20.3 5 
V 113 A 0.497 346 6028 1.43 21.9 5 
M 115 K 1.603 10 555 3.11 25.0 5 
M 115 R 0.871 104 3034 2.18 25.0 3 
D 118 K 0.390 51 746 1.18 29.1 5 
A 121 G 0.756 49 1238 1.97 32.1 6 
I 127 V 0.228 26 286 0.77 28.3 3 
L 235 I 0.504 37 126 1.42 35.9 3 
L 235 V 1.043 115 791 2.44 35.9 4 
F 240 Y 0.216 82 170 0.71 24.0 3 
T 244 S 0.666 549 2380 1.77 21.9 4 
T 245 A 0.529 261 925 1.48 18.5 3 
V 250 L 0.268 413 942 0.844 15.0 3 
V 250 I 0.240 77 167 0.771 15.0 3 
N 252 D 0.649 61 258 1.73 18.1 6 
N 281 H 0.771 12 60 1.98 17.3 3 
V 282 I 0.430 40 121 1.25 16.7 7 
S 284 K 0.681 28 124 1.80 20.9 6 
I 287 V 0.510 48 165 1.44 23.8 3 
I 304 V 0.289 544 1290 0.90 15.5 3 
Q 328 K 0.321 143 81 0.90 20.5 3 
K 355 R 0.221 185 87 0.64 26.0 3 
G 357 A 0.744 68 75 1.87 29.8 3 
S 364 T 0.251 490 244 0.72 26.5 5 
D 366 E 0.387 1099 699 1.07 26.4 5 
V 372 C 0.660 305 299 1.70 18.6 4 
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Table D 5.4: Mutations included in the combinatorial PKS library. Highlighted mutations 
are ones that did not pass the filtering criteria.  
 

Wild-
type 

residue Position Mutation 
Stability 
Metric 

Reference 
read 

counts 

Selected 
read 

counts 
Enrichment 

ratio 

CA 
distance 

to 
active 

site (Å) 
PSSM 
score 

V 12 I 0.206 54 59 0.894 39.1 3 
S 37 A 0.967 25 80 2.444 23.5 3 
D 50 E 0.589 64 129 1.777 28.4 6 
N 64 E 0.320 217 289 1.179 20.6 3 
N 64 D 0.297 64 82 1.123 20.6 5 
N 90 M 0.323 21 274 1.017 20.5 7 
P 106 A 0.641 66 1425 1.744 19.4 -2 
M 115 R 0.871 104 3034 2.178 25.0 3 
D 118 K 0.390 51 746 1.182 29.1 5 
A 121 G 0.756 49 1238 1.970 32.1 6 
R 135 S 0.530 40 733 1.507 8.4 1 
A 143 V 0.257 97 1125 0.847 19.0 0 
L 235 V 1.043 115 791 2.437 35.9 4 
T 244 S 0.666 549 2380 1.771 21.9 4 
T 245 A 0.529 261 925 1.480 18.5 3 
V 250 L 0.268 413 942 0.844 15.0 3 
V 250 I 0.240 77 167 0.771 15.0 3 
V 282 I 0.430 40 121 1.251 16.7 7 
S 284 K 0.681 28 124 1.801 20.9 6 
I 301 V 0.565 154 576 1.558 24.4 2 
S 318 E 0.358 86 52 0.998 22.0 2 
G 357 A 0.744 68 75 1.865 29.8 3 
D 366 E 0.387 1099 699 1.071 26.4 5 
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Table D 5.5: Primer sequences used in this work. 
 

Deep sequencing inner primers 
PKS_T1R8_FWD gttcagagttctacagtccgacgatcgttggaaaatggtcaa 
PKS_T2_FWD gttcagagttctacagtccgacgatctgtttttgacagaggaa 
PKS_T3_FWD gttcagagttctacagtccgacgatcgcctaagcccatca 
PKS_T4_FWD gttcagagttctacagtccgacgatcgaccctaagatgggc 
PKS_T5_FWD gttcagagttctacagtccgacgatccaggaggtaatgcaatt 
PKS_T1_REV ccttggcacccgagaattccagggatttttctgtaatat 
PKS_T2_REV ccttggcacccgagaattccacatcattacacgttgaac 
PKS_T3_REV ccttggcacccgagaattccagatgggcctctctag 
PKS_T4_REV ccttggcacccgagaattccactcgacttggtccac 
PKS_T5R388_REV ccttggcacccgagaattccagagaatgggcacact 
blue = Illumina sequencing primer; black = gene overlap 

  
Combinatorial library mutant primers 
PKS_V12I ggtcaaaaatttgggaggattcatgagagagctgaag 
PKS_S37A caacacctttccattgggttgatcaagcctcctatcctgatt 
PKS_D50E cagggttacaaatagtgagcatttggtggacctcaa 
PKS_N64E ggacctcaaagaaaaatttagacgtatctgtgagagaacaatgattagcaa 
PKS_N64D gacctcaaagaaaaatttagacgtatctgtgacagaacaatgattag 
PKS_N90M cccaatttgtgctctcacatggagccatcctttgatgtca 
PKS_P106A tcaggcaggacattttagtttcagaaatagccaaac 
PKS_M115R ttggaaaagaggctgtccttagggccattgatgaatg 
PKS_D118K ctgtccttatggccattaaggaatgggcccagcccaa 
PKS_A121G gccattgatgaatggggccagcccaaatccaaa 
PKS_M115R+A121G ggctgtccttagggccattgatgaatggggccagcccaaatcca 
PKS_D118K+A121G gaggctgtccttatggccattaaggaatggggccagcccaaat 
PKS_R135S tttagtcttttgcacaagcagtggtgttgacatgccc 
PKS_A143V ggtgttgacatgcccggtgtagattaccaattaattaagc 
PKS_L235V accctaagatgggcgtagagaggccc 
PKS_T244S atctttgagatagtctcaacggcccaaacattt 
PKS_T245A ggcccatctttgagatagtcacagcggcccaaacat 
PKS_V250L cacaacggcccaaacatttctccctaacgggg 
PKS_V250I cacaacggcccaaacatttatccctaacgggg 
PKS_V282I ggatgtaccaccaactattgcgaaaaatattgagagttgcttaa 
PKS_S284K tgtaccaccaactattgcgaaaaatgttgagaagtgcttaataaaggcttt 
PKS_V282I+S284K ccaaggatgtaccaccaactattgcgaaaaatattgagaagtgcttaataaaggcttttgaac 
PKS_I301V ggaatatcagattggaactcggtcttttggattcttcatccag 
PKS_S318E caattgtggaccaagtcgaggagacattgggcctagagcccaa 
PKS_G357A gagattagaaagaaatctgctagagaagggctgaagact 
PKS_D366E ggctgaagacttcaggagaggggctggact 
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Table D 5.6: Multiple reaction monitoring parameters utilized for LC-MS/MS analyses of 
AbPKS products.  
 

Compound Precursor ion > 
product ion (m/z) 

Cone 
voltage (V) 

Collision 
voltage (V) 

Retention 
time (min) 

N-methyl-Δ1-pyrrolinium 84 > 42 34 16 1.28 
Tropinone 140.1 > 98 40 22 1.44 
Hygrine 142.1 > 84 28 16 1.78 

4-(2-N-methylpyrrolidine)-3-
oxobutanoic acid 186.1 > 84 28 16 1.42 

4-(2-N-methylpyrrolidine)-3-
oxobutanoic acid methyl ester 200.1 > 84 28 16 1.96 

Cuscohygrine 225.2 > 84 28 16 1.50 
Cuscohygroline 227.2 > 84 28 16 1.62 

Telmisartana 515.2 > 276.1 42 52 5.07 
Data was analyzed in positive ion mode using a Waters Acquity TQ-D mass spectrometer. 
a1 µM Telmisartan is included as an internal standard. 
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Table D 5.7: UPLC Mobile Phase Gradients Utilized for LC-MS/MS analyses of PKS 
products using a Waters Acquity TQ-D mass spectrometer.  
 
 

Time 
(min) 

Mobile 
phase A (%) 

Mobile 
phase B (%) 

0.00 99 1 
0.50 62.5 37.5 
2.00 50 50 
4.00 0 100 
5.00 0 100 
5.01 99 1 
6.00 99 1 

Mobile phase A = 100 mM ammonium formate + 1% formic acid in water. Mobile phase B = 
100 mM ammonium formate + 1% formic acid in 80% methanol. 
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SUMMARY AND OUTLOOK 

In this thesis, deep sequencing technology was utilized in a standardized research pipeline 

developed by the Whitehead lab to study and engineer enzymes1. Deep mutational scanning, the 

testing of all possible single amino acid substitutions on the function of a protein, provides 

information rich datasets that address a variety of aims relevant to numerous fields2. The novelty 

of this dissertation is the application of this style of protein science to probe fundamental questions 

relating to the intricacies of enzyme function.  

In Chapter 2, a novel comprehensive saturation mutagenesis method, Nicking 

Mutagenesis, was developed3. Analogous to popular commercial kits available for site-directed 

mutagenesis (Agilent’s QuikChange or New England Biolabs Q5 Site-Directed Mutagenesis Kit), 

nicking mutagenesis conveniently requires routinely prepped dsDNA as input substrate. This 

solves the accessibility challenge presented with its best competing method, PFunkel, that requires 

a dU-ssDNA template that must be prepared from phage4,5. Until there is a significant decrease in 

the cost of DNA synthesis, methods such as nicking mutagenesis will be imperative for labs 

desiring to analyze comprehensive point-mutant libraries.  

In Chapter 3, the deep sequencing technology pipeline was applied to address the question 

of how enzymes encode specificity through their primary sequence of amino acids6. Using growth-

based selections that I developed, I was able to assess the effect of >6,000 single-amino acid 

substitutions on the function of a protein with three different substrates. Comparison of datasets 

between selections of multiple substrates provided an unprecedented look at the differential effects 

of mutations between substrates. Mutations benefiting only one substrate were spread throughout 

the protein sequence and structure, and did not correlate with the other selections.  
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The datasets obtained from deep mutational scanning of amiE provided a fortuitous 

opportunity to test theories on adaptive molecular evolution. Specifically, distribution model 

fitting of the DFE for beneficial mutations could be performed with high statistical power, as 

hundreds of beneficial mutations were identified. The DFE for beneficial mutations was found to 

be approximately exponentially distributed as predicted, however the relationship between protein 

biophysics – namely stability – and beneficial DFE has yet to be explored. To address this, in 

Chapter 4 destabilized variants of wild-type amiE were designed using the Rosetta Design 

Software. I was able to successfully identify several variants that had decreased expression yields 

(a measure of stability) that have been shown to maintain wild-type catalytic function. Future work 

includes developing and performing growth-based selections and analyzing the resulting DFE in 

comparison to the existing datasets for wild-type amiE.  

Natural product synthesis in workhorse organisms such as bacteria or yeast is an attractive 

technology, however plug-and-play of non-native enzymes as part of designed biosynthetic 

pathways often leads to poor protein expression. In Chapter 5, the deep sequencing pipeline was 

applied to test a generalizable method for improving protein expression while maintaining catalytic 

activity7. As a model system, a poorly expressing Type III PKS from Atropa belladonna was 

scanned using a high-throughput GFP-fusion folding reporter assay and resulting hits were 

combined to generate stabilized variants. However, two included mutations caused inactivation. 

Future work includes generating backcrosses of these two mutations and testing for activity. 

Additional future work includes reconstitution of a portion of the Tropane Alkaloids pathway from 

Atropa belladonna (from which the PKS originates) in Saccharomyces cerevisiae, and testing the 

effect stabilized PKS variants have on pathway productivity.  
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