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ABSTRACT 

FLEXIBLE HIERARCHICAL BAYESIAN MODELING EXTENSIONS TO IMPROVE 

WHOLE GENOME PREDICTION AND GENOME WIDE ASSOCIATION ANALYSES 

By 

Chunyu Chen 

  Whole genome prediction (WGP) has been widely implemented in animal and plant 

breeding for genomic selection of economically important traits, having already accelerated 

genetic progress for economically important traits in some species especially dairy cattle.  

Genome wide association (GWA) analysis is used for screening genomic regions that may 

include important candidate genes segregating for the trait of interest and is being increasingly 

integrated with WGP analysis.  Both WGP and GWA typically represent m≫n problems as 

defined by a large number of single nucleotide polymorphism (SNP) markers (m) and comparably 

much smaller number of individuals (n).  Two broad types of parametric models are typically 

considered for these analyses: traditional best linear unbiased prediction approaches based on 

SNP marker effects being normally distributed and Bayesian WGP models that allow more 

flexible specifications for SNP marker effects based on either heavy-tailed or variable selection 

specifications.   Bayesian WGP models can achieve higher prediction accuracies than traditional 

approaches in many applications if properly tuned; however, their implementation can be 

computationally challenging. My dissertation was aimed to address some of these emerging 

issues in Bayesian WGP models as well as providing software tools for real data applications. 

In Chapter 2, I developed an expectation maximization (EM) algorithm as a fast alternative to 

traditional Markov Chain Monte Carlo (MCMC) for Bayesian WGP models. I proposed EM 

implementations for two models, heavy-tailed BayesA and stochastic search and variable 

selection (SSVS) adapting the EM algorithm for maximum a posterior (MAP) inference of SNP 



 

 

 

effects and adapting REML like strategies to estimate key hyperparameters. Using a 

comprehensive simulation study and real data analysis, I found that these empirical Bayes 

approaches can be quite sensitive to starting values for SNP effects.  However, using a 

deterministic annealing variant of EM, I obtained hyperparameter estimates and prediction 

accuracies comparable to their MCMC counterparts.  In Chapter 3, I further assessed the 

possibility using two Bayesian WGP models BayesA and SSVS for GWA studies. I also 

included a popular GWA analysis (EMMAX) based on the utilization of the linear mixed model. 

In addition to basing inferences on traditional single SNP tests and fixed genomic window tests, I 

assessed the merit of tests involving adaptively determined windows based on clustering genome 

into blocks based on linkage disequilibrium. I found that SSVS and BayesA under MCMC and 

adaptive window tests led to best receiver operating curve (ROC) properties. In Chapter 4, I 

extended SSVS to single step SSVS to incorporate phenotypes of non-genotyped individuals and 

compared its performance with corresponding models ignoring these genotypes for both WGP 

and GWA. I found single step SSVS to be a promising for WGP and GWA, particularly for 

genetic architectures characterized by a few genes with large effects. In Chapter 5, I combined 

much of the developments in Chapter 2 to Chapter 4 and beyond in a unified framework as an 

open source R package BATools to implement several different Bayesian models for WGP and 

GWA. 
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Chapter1 Introduction 

Whole genome prediction (WGP) using dense single nucleotide polymorphism (SNP) marker 

panels has been increasingly implemented in animal and plant breeding for genetic improvement 

of economically important traits. Currently, SNP marker panels with ~50,000 SNP markers are 

widely used for most livestock species, and high-density panels with ~770,000 SNP markers are 

also available (Meuwissen et al. 2016). In the 1000 bull genome project 

(http://www.1000bullgenomes.com/), 28.3 million variants have been obtained on 238 cattle 

using whole-genome sequence technology (Daetwyler et al. 2014) with the most recent updated 

number of sequenced cattle now at 1147 (http://www.canadacow.ca/). Therefore, WGP is a “big 

data” research and application area characterized albeit by a relatively small number of 

observations (n) compared to the number of predictors or SNP markers (m).  

The seminal idea of using WGP for genomic selection (GS) of livestock was developed 16 

years ago by Meuwissen et al. (2001) who exposited the use of best linear unbiased prediction 

(BLUP) and various Bayesian extensions to include information on SNP marker panels, even 

before such panels were developed for livestock!  Genetic gain using genomic selection has 

doubled in dairy cattle traits compared to the period before the adoption of SNP marker 

information for genetic evaluations in 2009 (García-Ruiz et al. 2016) such that genomic selection 

is now considered to be a mature technology (Misztal 2016b).  Nevertheless, improved 

methodologies and software tools for WGP still require further development. 

 Two broad categories of models for WGP are genomic BLUP (GBLUP) models and 

Bayesian models (Meuwissen et al. 2001; de Los Campos et al. 2013; Gianola 2013), both 

considered to be critical components of hierarchical linear or multilevel modeling. While 

GBLUP or Bayesian ridge regression (BRR) (Hoerl and Kennard 1970) is equivalent to 

http://www.canadacow.ca/
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specifying a Gaussian prior on the SNP marker effects, other Bayesian models are often 

specified with more flexible priors on the SNP marker effect to provide differential shrinkage 

effects that may be appropriate for various types of genetic architecture; i.e., whether or not a 

trait is characterized by few (oligogenic) or many (polygenic) loci.  These priors include heavy-

tailed specifications such as a scaled Student-t (Meuwissen et al., 2001), variable selection 

specifications such as SSVS or stochastic search and variable selection (George and McCulloch 

1993) or hybrids thereof such as a mixture of point mass at zero and scaled-t (BayesB) as 

originally proposed by Meuwissen et al. (2001).  With greater flexibility in priors, hierarchical 

Bayesian models have been shown to provide higher WGP prediction accuracies than 

GBLUP/BRR  in many applications (de Los Campos et al. 2013).  

Unfortunately, implementation of hierarchical Bayesian models with flexible priors typically 

requires intensive computing demands as the posterior inference is typically based on simulation-

based Markov chain Monte Carlo (MCMC) techniques.  Conversely, GBLUP is relatively fast, 

particularly with small n (i.e. n x n matrices are easily inverted) in part because of a recent 

equivalent model realization that parameterizes genetic effects in terms of additive genetic 

effects rather than SNP marker effects (Stranden and Garrick 2009). Over the past few years, to 

reduce the computing time, several Expectation–Maximization (EM) algorithms have been 

developed to partly address computational limitations in hierarchical Bayesian models with flexible 

priors (Meuwissen et al. 2009; Shepherd et al. 2010; Karkkainen and Sillanpaa 2012; Sun et al. 

2012). These EM implementations sometimes achieve comparable or slightly lower WGP accuracies 

to their MCMC counterparts.  Typically, the hyperparameters in these EM algorithms are often 

arbitrarily specified (Karkkainen and Sillanpaa 2012; Sun et al. 2012) or sometimes determined by 

heritability-based rules (de Los Campos et al. 2013) that have been shown to be suboptimal 

compared to formally allowing for their uncertainty (Lehermeier et al. 2013; Yang et al. 2015b). 
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Furthermore, there does not seem to be an appreciation of the potential influence of starting 

values for the SNP marker effects in those EM based approaches with most implementations 

choosing zero as starting values. Hence, hyperparameter tuning/estimation and starting values for 

EM approaches require further investigation as to their effect on these analytical approximations. 

Genome-wide association (GWA) analysis is also another important tool to help pinpoint the 

regions contain causal variants or quantitative trait loci (QTL) for complex traits. With the 

availability of high density SNP marker panels, the very first GWA result was reported in 2005 

(Klein et al. 2005) followed by the first large scale GWA study by Wellcome Trust Case Control 

Consortium (2007). The early days of GWA studies were based on serial simple linear regression 

models on SNP markers, one at a time, without accounting for population structure and 

relatedness.  Ignoring these features has been demonstrated to result in spurious GWA inferences 

(Martin and Eskin 2016). To account for population structure, linear mixed model (LMM) 

specifying all other marker effects as random except for the one of inferential interest as fixed 

have been proposed (Kang et al. 2008).  Since then various computationally efficient 

enhancements to this LMM approach have been developed  (Kang et al. 2010; Lippert et al. 

2011; Zhou and Stephens 2012; Gualdron Duarte et al. 2014).  The variance components of these 

LMM are typically estimated using restricted maximum likelihood (REML).  

Hierarchical Bayesian models in WGP fit all SNP markers as random effects simultaneously 

(Meuwissen et al. 2001) and automatically accounts for the population structure just as LMM 

with random effects.  However, random effects estimation using Gaussian prior specifications 

(equivalent to GBLUP/BRR) tends to overly shrink all marker effects to zero, particularly for 

higher marker densities (Hayes 2013) and has been deemed to be too conservative for GWA 

(Gualdron Duarte et al. 2014). Therefore, priors with less shrinkage to larger marker effects, 
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such as BayesA and SSVS, should be considered for such applications as they tend to provide far 

less shrinkage to larger marker effects than a Gaussian in WGP applications. GWA studies rely 

on SNPs to be correlated or in linkage disequilibrium (LD) with QTLs.  In fact, many SNPs are 

likely to be in LD with a single QTL (Goddard et al. 2016), and single marker tests suffer from 

multicollinearity problems or low statistical power or both (Fernando et al. 2017). For this 

reason, GWA studies based on joint tests on all marker within a genomic window/region should 

be considered. Currently, however, window lengths tend to be arbitrarily specified (Schmid and 

Yang 2008; Moser et al. 2015), and in livestock species and crops, LD may extend for a long 

distance (Goddard et al. 2016). Hence, those window selection procedures may separate SNP 

markers that should conceptually be grouped in the same window because of high LD between 

them. Therefore, additional efforts are required to partition SNPs into windows with less 

arbitrary boundaries.   

In large GS programs for animal and plant breeding, an increasingly important problem is that 

many if not most individuals to be genetically evaluated do not have genotype information. 

Traditionally, genomic evaluation uses deregressed breeding values from pedigree based BLUP 

to remove the contribution of relatives that are not related to the study; and then fit WGP models 

for genotyped animals in a ‘two-step’ model (VanRaden 2008; Hayes et al. 2009). A single-step 

GBLUP (ssGBLUP) approach that combines phenotypes on genotyped and non-genotyped 

animals with pedigree information in one regression model (Aguilar et al. 2010) has become 

popular for many livestock GS programs (Legarra et al. 2014). Because of extra phenotypic 

information that ssGBLUP has combined, many studies have found this procedure to have higher 

prediction accuracy than Bayesian models without such information (Lourenco et al. 2013; 

Legarra et al. 2014; Vallejo et al. 2016). The ssGBLUP models have also been implemented for 
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GWA. However, these GWA assessments were not based on formal measures of statistical 

significance (Wang et al. 2012; Zhang et al. 2016); therefore, such measures, e.g. P-value, needs 

to be developed. Recently, Fernando et al. (2014) proposed a framework to implement the 

single-step approach in hierarchical Bayesian models that combine information on both 

genotyped and non-genotyped individuals. Although studies have shown such models have 

higher WGP accuracies than ssGBLUP in beef cattle for traits controlled by large SNP marker 

effects (Lee et al. 2017), the GWA performance of Bayesian models that combine non-

genotyped animals have not been comprehensively evaluated, as well as WGP accuracies in 

other species.      

Currently, several open source software packages are available for WGP or GWA or both, 

and most of them are designed for specific models (Endelman 2011; Zhou and Stephens 2012). 

The popular BGLR R package (Perez and de los Campos 2014) includes a collection of models 

designed for WGP, but it does not focus on GWA features nor does it yet support Bayesian 

approaches that incorporate information on non-genotyped animals. It is crucial to have an open 

source R package to include both LMM and Bayesian models for both WGP and GWA that 

performs window based GWA and combines genotype, phenotype and pedigree information of 

both genotype and non-genotyped individuals. 

With this in mind, there are four overall objectives in this dissertation to improve the 

computational efficiency and accuracy in both WGP and GWA. The first objective is to help 

improve the computational efficiency for Bayesian WGP models using EM algorithm and assess 

their ability to estimate hyperparameters and the influence of starting values on WGP accuracies 

(Chapter 2).  The second objective is to develop a window based approach for traditional LMM 

and two Bayesian models: BayesA and SSVS; to examine the potential benefits of using 
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Bayesian models relative to classical LMM for GWA under a wide range of simulated 

architectures; to assess whether the choice of different fixed genomic window sizes versus 

window sizes inferred based on LD clustering, could impact GWA performance and to evaluate 

the relative merit of EM approaches to MCMC approaches for BayesA and SSVS (Chapter 3). 

The third objective is to extend hierarchical Bayesian model and traditional LMM to incorporate 

information on non-genotyped animals for both single SNP and window based GWA to provide 

formal statistical significance assessment and to compare these approaches for both WGP and 

GWA (Chapter 4). A capstone objective is to provide all the models/algorithm in previous 

Chapters as an efficient and accessible R package (Chapter 5). Finally, I summarize all the 

findings throughout the dissertation as well as provide ideas for future research (Chapter 6).  
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Chapter2 An Integrated Approach to Empirical Bayesian Whole Genome Prediction 

Modeling 

2.1 Abstract 

Computational efficiency is an increasing concern for whole genome prediction (WGP) based 

on denser genetic marker panels such that algorithms other than Markov Chain Monte Carlo 

(MCMC) warrant greater consideration, particularly for hierarchical models that flexibly confer 

either heavy-tailed (e.g., BayesA) or stochastic search and variable selection (SSVS) instead of 

Gaussian specifications on marker effect distributions.  The expectation maximization (EM) 

algorithm is one attractive alternative; however, recently proposed hierarchical model 

implementations of EM have not addressed formal estimation of underlying hyperparameters 

even though their specifications are known to impact WGP accuracy. Furthermore, EM can be 

sensitive to starting values.  I develop and explore the properties of an empirical Bayes strategy 

by conditioning EM implementations of BayesA or SSVS WGP models on marginal modal 

estimation of variance components and other key hyperparameters.  These empirical Bayes 

implementations are compared against their MCMC counterparts for estimation of 

hyperparameters and WGP accuracy, both within the context of a simulation study and 

application to a loblolly pine dataset.  In all cases, starting values were deemed to be important 

for EM-based estimates. Starting values based on MCMC posterior means were preferable 

whereas those based on setting all marker effects equal to zero generally led to inferior 

performance.  Nevertheless, a recently proposed regularization procedure was useful in 

alleviating the impact of starting values in the EM implementation of the SSVS model, as was 

modifying the expectation step in the BayesA model to be based on relative variances rather than 

on relative precisions. 
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2.2 Introduction 

Recent developments in genotyping technology have made dense single nucleotide 

polymorphism (SNP) genotype marker panels available for many livestock species.  Typically, 

some of these SNP chips have up to hundreds of thousands or more markers.  As these numbers 

continue to increase with emerging sequencing technologies (Daetwyler et al. 2014), it is 

important to develop statistically and computationally efficient methods that best use these 

genotypes to predict genomic estimated breeding values (GEBV) on economically important 

traits in whole genome prediction (WGP) models.  These models are based on the premise that 

for a sufficient number of SNPs, at least some of them should be in close linkage disequilibrium 

(LD) with quantitative trait loci (QTL) for economically important traits (Meuwissen et al. 

2001).  

WGP typically represents a m≫n problem, whereby the number (m) of markers used for 

prediction is much larger than the number (n) of animals having phenotypes. Two broad 

parametric categories for WGP models are genomic or ridge regression best linear unbiased 

prediction (RRBLUP) and various hierarchical model extensions of RRBLUP, often satirically 

referred to as “Bayesian alphabet” models (Gianola 2013).  RRBLUP is based on classical linear 

mixed model analyses whereby a common variance component is specified for each random 

SNP effect. Variance components can be readily estimated using Restricted Maximum 

Likelihood (REML) followed by BLUP of SNP effects conditional on these REML estimates.  

This two-stage approach has been characterized as empirical Bayes (EB) (Casella 1985) and so I 

might refer to corresponding genomic predictions as empirical RRBLUP (e-RRBLUP) . On the 

other hand, fully Bayesian inference in hierarchical WGP models is typically conducted using 

Markov chain Monte Carlo (MCMC) techniques.   In a seminal paper, Meuwissen et al. (2001) 
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proposed BayesA which hierarchically extends RRBLUP by specifying every SNP effect as 

scaled Student t distributed. Since then, other hierarchical variations on heavy-tailed or variable 

selection specifications on the SNP effects have been proposed.  Such extensions often lead to 

higher WGP accuracies compared to RRBLUP analyses, particularly when n is large relative to 

the number of QTL and n/m is not too small (Wimmer et al. 2013).  

MCMC analyses are computationally expensive, especially for WGP models with large m.  

Expectation–Maximization (EM) algorithms have been developed to partly address 

computational limitations in hierarchical Bayes WGP (e.g.,  Meuwissen et al. 2009; Hayashi and 

Iwata 2010; Shepherd et al. 2010; Sun et al. 2012). These EM implementations have often been 

shown to lead to WGP accuracies comparable to their MCMC based counterparts but at a 

fraction of the computational cost.    

A typically neglected issue in hierarchical WGP modeling is proper tuning/inference of 

hyperparameters as subsequent estimates on SNP effects have been observed to be sensitive to 

such specifications (Gianola et al. 2009).   These hyperparameters are often arbitrarily specified 

or sometimes based on heritability-based rules (de Los Campos et al. 2013) that have been 

shown to be suboptimal (Lehermeier et al. 2013). Although formal Bayesian inference on 

hyperparameters using MCMC is possible (Yi and Xu 2008; de Los Campos et al. 2013; Yang et 

al. 2015b), there has been far less discussion on how to estimate hyperparameters in conjunction 

with EM-based implementations of hierarchical WGP models; in fact, it has been deemed to be 

nearly impossible (Karkkainen and Sillanpaa 2012).  Furthermore, it has been implied that 

starting values are not important in these implementations with zero being a particularly popular 

starting value choice for SNP effects (e.g., Meuwissen et al. 2009; Shepherd et al. 2010; 

Karkkainen and Sillanpaa 2012).   However, Gianola (2013) has warned that joint posterior 
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modal estimates may iteratively get trapped at local modes such that the specification of different 

starting values for SNP effects, never mind hyperparameter specifications, could have different 

implications for WGP accuracy.  To partially address that concern in a variable selection model 

known as stochastic search and variable selection (SSVS) first introduced by George and 

McCulloch (1993), I investigate strategies proposed by Rockova and George (2014) to alleviate 

the influence of starting values for determining high posterior probability modes in an EM-based 

implementation of SSVS.  

Our objectives were then to demonstrate an empirical Bayes (EB) strategy to estimate key 

hyperparameters as well as to investigate the effects of different starting values on SNP effect 

estimates and genomic merit in two widely used hierarchical WGP models, BayesA and SSVS.   

In Section 2, I outline this EB strategy for both BayesA and SSVS and describe a simulation 

study used to assess the effect of starting values on accuracy of genomic merit prediction for 

both models, using MCMC as a positive control method.  I also demonstrate application of these 

same procedures to a loblolly pine dataset (Resende et al. 2012) illustrating the use of the 

regularization procedures proposed by Rockova and George (2014) for SSVS.  Results are 

described in Section 3 with a concluding discussion provided in Section 4. 

2.3 Materials and methods 

2.3.1 The first stage linear WGP model 

The first stage of a WGP linear mixed model is typically specified as follows: 

 ' ' , 1,2,...,i i i iy e i n   x β z g +     [2.1] 

where iy  denotes the phenotype on individual i connected to fixed effects β  via a known 

incidence row vector i

'x and connected to SNP effects 1{ }m

j jg g  via known genotypes 
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 '

1 2 3i i i i imz z z z z  on m SNP markers.  Furthermore, I specify  2~ 0,
iid

i ee N  .  Now 

although the SNP covariates are typically provided with values of 
*

ijz = 0, 1, or 2 (i.e., number of 

copies of a reference allele at each SNP), they are often recoded in a number of different ways 

using, for example, just centering, i.e., 
* ˆ2ij ij jz z p   or centering and scaling, i.e., 

 

* ˆ2

ˆ ˆ2 1

ij j

ij

j j

z p
z

p p





 (de Los Campos et al. 2013), where 

*

1

1
ˆ

2

n

j ij

i

p z
n 

   denotes the estimated 

frequency of the reference allele for SNP j=1,2,…,m.  Recoding genotypes in this manner has 

been demonstrated to improve algorithmic stability (Stranden and Christensen 2011).  

2.3.2 BayesA EM 

 In BayesA, the following hierarchical priors are typically specified: 

  2~ 0,j g jg N      [2.2] 

having density  2|j g jp g    and 

 
2~ ( , )j g g   

   [2.3] 

having density  |j gp     and used to denote a scaled inverted chi-square distribution with 

degrees of freedom and scale parameters both being  0g g   such that j =1 then defines a 

typical value falling between the prior mean ; 2
2

g

g

g






 
   

  and prior mode 
2

g

g





 
   

.  This 

parameterization slightly differs from, but is marginally equivalent to, that provided in the 

seminal paper by Meuwissen et al. (2001) who directly specify prior distributions on 
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2 2~
jg g j   . That is, marginally,  2 2 2 2| , ~ 0, ( , ) (0, )

g

j

j g g g j g g j gg N d t


          , i.e. a 

scaled Student t distribution with degrees of freedom g and scale parameter 
2

g . 

Given these specifications, the joint posterior density for BayesA can be derived as follows: 

 

             

2 2

2 2 2 2

1 1

, , , , , |

, , | ,

e g g

n m

i e j g j j g g e g

i j

p

p y p g p p p p p

  

       
 

  
   
  
 

β g τ y

|β g, | β
 [2.4] 

where  
1

n

i i
y


y and  

1

m

j j



τ .  Also Equation [2.4] is based on the product of arbitrarily 

and independently specified priors        2 2, , , andg e gp p p p  β    on β ,
2

g , 
2

e , and g , 

respectively. I will assume   1p β  in this paper as  p β is typically diffuse, although 

extensions to more informative specifications should be obvious. 

The EM algorithm is based on computing the expectation of a log likelihood and/or a log joint 

posterior density with respect to augmented variables (E-step) followed by maximization of this 

expectation with respect to the remaining unknown parameters (M-step).  Let’s momentarily 

assume that each of      2 2, , andg e gp p p     are point masses on known values for 
2

g ,
2

e , 

and g , respectively, such that Equation [2.4] can be re-expressed as  2 2, , | , ,e g gp   β g τ ,y  to 

reflect this conditioning.  Taking its logarithm, the corresponding “augmented” conditional log 

density (LA) for , g and the augmented variables τ , recognizing that  log constantp β , is as 

follows: 

 

  

      

2 2

2 2

1 1

log , , | , , ,

log | , , log | , log | constant.

A e g g

n m

i e j g j j g

i j

L p

p y p g p

  

    
 



    

β g τ y

β g
 [2.5] 
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Following Sun et al. (2012), the E-step for τ  involves evaluating the expectation of Equation 

[2.5] with respect to  τ .  Taking terms in Equation [2.5] that only involve τ , by drawing on the 

corresponding components that derive from the logarithms of Equations [2.2] and [2.3], require 

evaluations of  
|.

1
E

j
j

 

 
  
 

  and   
|.

logE
j

j


 .  Here | .j  denotes the expectation is conditional on 

all other terms and y, i.e., 

     

  

2

|.
1

2

2 |. |. |.
1

log | , log |

1 1 1
1 log constant .

2 2 2

E

E E E

j

j j j

m

j g j j g

j

m
j g g

j

j g j j

p g p

g



  

   

 


  





 
 

 

     
                   





 [2.6]

Now, as previously provided by Sun et al. (2012) , 

 
1

2
|.

2

11
ˆ

ˆ
E

j
j

g

jj

g

g

g











 
 

 
  

   [2.7] 

where ˆ
jg is jg evaluated at the M-step (see later) whereas 

   
2

2|.
log

ˆ 1
log 0.5

2
E

j

j g

j g

g

g




 




    
           

 [2.8] 

where  .  denotes the digamma function, i.e.,  
 x

x dx
x


 


 for   .  being the gamma 

function.  Note that evaluating Equation [2.8] is only required if estimation of g is desired. 

Subsequently, the joint posterior modes, β̂  and ĝ , respectively of β  and g are evaluated in 

the maximization or M-step. This involves solving Henderson’s mixed model equations (Sun et 

al. 2012), i.e., 
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 2
1 '

2

ˆ

ˆ ˆe

g






 
    
    

      
 



' '

'

' '

X X X Z
X yβ

Z X Z Z + D Z yg
   [2.9]

 

where  1 2 'nX x x x  ,   1 2 'nZ z z z  and   11ˆ ˆ
j

diag 
 D . 

Upon convergence of the E-steps and M-steps, one attains the joint posterior mode of  and g 

conditional on 
2

g ,
2

e , and g  . 

As a deviation from this particular EM implementation, Karkkainen and Sillanpaa (2012) 

proposed that the E-step in a BayesA model be based on evaluating    2

2 2

|.|.
E E

j
jg j

g g j
    or, 

equivalently, of  

2

2

*

|.

ˆ

ˆ
1

E
j

j

g

g

j j

g

g






 




 


 (i.e. relative variances) instead of 
|.

1
E

j j
 

 
 
 
 

 (i.e., relative 

precisions) as in Equation [2.7] even though the latter is implicitly required in a formal E-step for 

the EM algorithm as per Equation [2.6].  Note that ˆ
j  and 

*ˆ
j  are subtly different, having the 

same numerators but different denominators.  Typically, expectations of augmented variables in 

EM implementations are taken with respect to their functional forms in augmented log 

likelihoods or log joint posterior densities (i.e., using ˆ
j ) whereas Karkkainen and Sillanpaa 

(2012) substitute *ˆ
j  for ˆ

j  for the E-step in D of Equation [2.9].   This warranted further 

investigation on our part. 

2.3.3 SSVS EM 

I adapt the developments in the previous section by modifying the prior on j  to facilitate 

variable selection using the SSVS specification first introduced by George and McCulloch 

(1993) and recently revisited by Rockova and George (2014)  i.e.  
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  2

2
1

~ 0,
j g

j g jg N
c

 
 

 
 

 
 

   [2.10] 

with density  2 ,j g jp g  |  and whereby c >> 1 such that Equation [9a] represents a mixture 

distribution on a “slab” component for effectively non-zero jg ,characterized by variance
2

g , and 

a “spike” component with variance 

2

g

c


, the latter thereby absorbing negligible or near-zero jg .  

Furthermore, 

  ~ ; 0,1j jBernoulli       [2.11] 

is the Bernoulli distribution with density  |jp   .  The joint posterior density for SSVS can 

then be written as follows: 

 

             

2 2

2 2 2 2

1 1

, , , , , |

, , | .

e g

n m

i e j g j j g e

i j

p

p y p g p p p p p

  

       
 

  
   
  
 

β g τ y

|β g, | β
 [2.12] 

Note that the components  2

1

,
n

i e

i

p y 


 |β g, ,  p β ,  2

gp  , and  2

ep   are defined similarly 

as before with BayesA except with  2 ,j g jp g  | and  |jp    defined as in Equations [2.10] and 

[2.11], respectively, and  p  , as the prior for  , substituted for  gp  .  Let’s momentarily 

assume that the key hyperparameters 
2

g ,
2

e , and   are specified to be known, similar to what I 

did earlier with BayesA.  Then again, with   1p β , Equation [2.12] can be further condensed to 

reflect this conditioning: 

        2 2 2 2

1 1

, , ,| , , , , , |
n m

e g i e j g j j

i j

p p y p g p       
 

 β g τ y |β g, |  [2.13] 
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Taking its logarithm, I denote the corresponding log augmented SSVS joint posterior density 

as LS used for inferring  and g with the augmented variables again being τ , i.e.,

  

      

2 2

2 2

1 1

log , , | , , ,

log | ,g, log | , log |

S e g

n m

i e j g j j

i j

L p

p y p g p

  

    
 



   

β g τ y

β
  [2.14] 

Taking only terms that involve τ  in Equation [2.14], based on the components contributed by 

Equations [2.10] and [2.11], the E-step requires an evaluation of   
|.

E
j

j


 ,  i.e., 

    

 
       

       

2

|.
1

2

|. |. |.
1

2

2 2

|. |. |.
1

log | , log |

1
log 1 log 1 constant

2 1

1
1 log

2

E

E E E

E E E

j

j j j

j j j

m

j g j j

j

m
j

j j

j j

g j

m

g j j j j

j

p g p

g

c

g c



  

  

   

   


 

    









 
 

 

  
  
  

        
   

     
   

  
       

  





    
|.

1 log 1 constant .E
j

j


  
   

 

[2.15] 

as also provided by Rockova and George (2014).  They further demonstrate that  

 
 

   

2

ˆ**

2|.
2

ˆ ˆ

0,
ˆ .

0, 0, 1

E j

j

j j

g g

j j

g

g g g
c



  
 


    

 
 

   
 

 [2.16] 

Here,  2,x    denotes, for example, the ordinate of a Gaussian pdf with mean  and 

variance 2 evaluated at x, noting that ˆ
jg in Equation [2.16] denotes the M-step estimate of gj for 

the current iterate. The M-step for providing the joint posterior mode of  and g is based on the 

use of the same set of mixed model equations provided in Equation [2.9], except that 

  1 ** **ˆ ˆ ˆ1j jdiag c    D . 
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For all data analyses in this paper, our default value for c was 1000. 

2.3.4 Hyperparameter estimation 

2.3.4.1 Variance component estimation 

The EM strategy for inferring upon  and g as outlined for BayesA and SSVS above is 

computationally similar to classical mixed model inference, holding constant hyperparameters 

such as variance components.  In fact, BayesA defaults to RRBLUP of g as g   whereas 

SSVS defaults to RRBLUP of g with 1  or c = 1, noting that genomic predictions or GBLUP 

of individual genetic merit, u = Zg, is simply Z(RRBLUP(g)).  It should be quickly noted that 

the term GBLUP is typically reserved for the equivalent mixed effects model whereby one 

directly solves for u rather than for g in order to facilitate computational tractability since 

generally n << m  (Stranden and Garrick 2009); nevertheless, I take the liberty of referring to 

GBLUP(u) as being a linear function of RRBLUP(g). 

I represent the vector of hyperparameters as  2 2, ,e g g  θ  for BayesA and  2 2, ,e g  θ

for SSVS.  I partition  into the variance components  2 2,e g σ  and remaining 

hyperparameters as σθ  such that, for example, g σθ  in BayesA whereas   σθ  in 

SSVS.  Prior to the advent of MCMC, a convincing justification for EB in quantitative genetics 

was provided by Gianola et al. (1986) who recommended conditioning RRBLUP of g on REML 

estimates of  recognizing that REML( is equivalent to maximizing the marginal density of 

 |p σ y  based on a flat prior for , i.e.,   1p σ  (Harville 1974).  The resulting e-GBLUP 

estimates (i.e., Z(e-RRBLUP(g)) conditional on REML()) are typically not practically different 
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from posterior means on Zg allowing for uncertainty on σ , provided that  |p σ y  is reasonably 

symmetric. 

Now prior uncertainty on the augmented variables τ for both BayesA and SSVS is driven 

entirely by σθ  given that its prior distribution is written simply as  |p στ θ , i.e.,  
1

|
m

j g

j

p  




for BayesA and  
1

|
m

j

j

p  


  for SSVS.  In the previous section, I maximized  , | ,p β g θ y with 

respect to  and g by first evaluating   
|.

log , | ,E
j

p


β g,τ θ y in an E-step followed by maximizing 

this subsequent expectation with respect to  and g in a M-step for both of these models.  With  

unknown, I start with:  

       , , | , , | , ,p p p σ σβ g,τ σ θ y β g,τ σ θ y σ  [2.17] 

where      2 2

e gp p p σ  such that the marginal posterior density of augmented variables 

and variance components can be expressed as: 

      , | , , | , ,p p p d d   σ σ

β g

τ σ θ y β g,τ σ θ y σ g β  [2.18] 

A “REML-like” strategy for inferring  in BayesA or SSVS within an EM framework would 

then be to respectively evaluate the conditional expectation of LA (Equation [2.5]) or LS 

(Equation [2.14]) with respect to τ as noted earlier, use its antilog to substitute for 

 , | , ,p σβ g,τ σ θ y  in Equation [2.18] and maximize the resulting expression with respect 

toin order to evaluate the joint posterior mode of  | ,p σσ θ y .    
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Recall again that with   1p σ  and the special conditions g   for BayesA and 1  or c 

= 1 for SSVS, this strategy defaults to classical REML.  The classical log REML function 

(Searle et al. 1992) can be written as follows: 

   1| 0.5log 0.5log 0.5 'l    σ y V X'V X y Py  [2.19] 

with 
2 2' g e  V ZDZ I  and   1111   VX'XVX'XVVP . In typical classical REML 

specifications involving uncorrelated random effects, D = I.  I modify this expression for our 

BayesA and SSVS adaptations accordingly as: 

 
    

   1

, | , log , | ,

constant 0.5log 0.5log 0.5 ' + log | + log .

l p

p p

 







   

σ σ

σ

σ τ θ y σ τ θ y

V X'V X y Py τ θ σ
 [2.20] 

Recall for either hierarchical model, D is a function of τ  for which conditional expectations 

are used to derive   11ˆ ˆ
j

diag 
 D  in BayesA or   1 ** **ˆ ˆ ˆ1j jdiag c    D  in SSVS as 

noted earlier.  Evaluating Equation [2.20] at 1ˆ 
D constitutes the only E-step for either model 

whereas the M-step is based on maximizing this resulting expression with respect to . I denote 

the corresponding estimates as marginal modal a posteriori (MMAP) estimates in order to 

distinguish them from classical REML estimates. 

 Average Information REML (AIREML) is a particularly attractive hybrid Fisher’s scoring/ 

Newton Raphson algorithm used to obtain REML estimates under classical Gaussian 

specifications for g based on the log likelihood of Equation [2.19] (Gilmour et al. 1995; Johnson 

and Thompson 1995).   I adapt this algorithm for our proposed MMAP approach in Equation 

[2.20] by simply replacing τ  by τ̂  from a previous E-step followed by maximizing Equation 

[2.20] with respect to  in a M-step evaluated at τ̂ .   To account for prior information in 



 

20 

 

 log p σ , I augment the AIREML first and second derivatives as provided by Johnson and 

Thompson (1995) with  log p



σ

σ
 and  

2

log
'

p


 
σ

σ σ
, respectively. For all subsequent 

analyses in this paper, I use the non-informative prior for components of σ  as advocated by 

Gelman (2006), i.e.,    
1

2 2 2
e ep  



  and    
1

2 2 2
g gp  



 . 

2.3.4.2 Estimation of remaining hyperparameters 

Suppose that one wishes to estimate σθ  (i.e., g  in BayesA or   in SSVS) as well so that a 

prior  p σθ  is specified.  Then Equation [2.20] could be further extended to additionally infer 

σθ  using the following expression:

       1, , | 0.5log 0.5log 0.5 ' + log | log log .l p p p

       σ σ σσ τ θ y V X'V X y Py τ θ σ θ  

    [2.21]  

Note that the “separability” (Rockova and George 2014) of Equation [2.21] into contributions 

involving σ   versus σθ , i.e.,  , , |,
'
l 






 
σ

σ

σ τ θ y 0
σ θ

, allows independent M-steps for each 

of these two components of .  In fact, I suggest a hybrid algorithmic strategy whereby 

AIREML-based optimization is used for estimating σ  whereas only first derivative information 

is used for maximizing  |p θ y  with respect to σθ .  That is, I propose maximizing Equation 

[2.21] with respect to σθ  by simply setting     log | logp p d  







σ σ σ

σ

τ θ θ θ
θ

 , evaluated 

at the E-step, equal to 0.  For all subsequent analyses in this paper, I considered 
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 
 

2

1

1
g

g

p 





 and  p  to be a Beta(1,10) density, similar to what I’ve advocated in 

previous work (Yang and Tempelman 2012; Yang et al. 2015b). 

Upon convergence, marginal modal estimates of σ  and/or σθ  could be “plugged in” to 

provide EB estimates of  and g for BayesA as in Section 2.2 or for SSVS as in Section 2.3.  I 

refer to these estimates as e-BayesA and e-SSVS respectively.   

2.4 Data 

2.4.1 Simulation Study 

In order to address the feasibility of our proposed EB approaches defined by MMAP 

estimates of hyperparameters and subsequent EM-based estimates of SNP effects under BayesA 

and SSVS models, I developed a simulation study to compare those estimates to MCMC based 

posterior means as the gold standard.  I simulated 20 replicated datasets using the R (R Core 

Team 2017) package hypred (Technow 2013). The simulated genome was composed of 5 

chromosomes, each of length 1 Morgan and consisting of 10,000 equally spaced loci. Individuals 

were randomly mated to generate 400 animals within each of 2000 consecutive generations. The 

mutation rate was specified to be 2.5×10-5 per locus per generation. After Generation 2000, 

random matings were used to expand the population size to 2000 individuals in each of 

Generations 2001 and 2002.  In Generation 2001, I deleted SNP genotypes with a minor allele 

frequency (MAF) less than 0.05 and deleted randomly one of any two adjacent SNP loci in 

complete LD with each other.  I randomly chose 5000 of the remaining SNP to be our markers 

(i.e. Z) from which I further randomly selected nqtl = 30 to be quantitative trait loci (QTL). I 

simulated allelic substitution effects, gqtl, for these QTL from a reflected gamma distribution with 

shape parameter 0.4 and scale parameter 1.66 (Hayes and Goddard 2001; Meuwissen et al. 
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2001); the corresponding genotypes Zqtl for these animals were considered to be the a nqtl column 

subset of the SNP genotype matrix Z such that the cumulative genetic merit or true breeding 

values ( TRUEu ) was Zqtlgqtl. Phenotypes for animals in Generation 2001 and 2002 were generated 

based on a heritability of 0.5, i.e., such that 
2

e  = 
2

u  = var( TRUEu ). Average pairwise LD among 

the 5000 SNP markers across all 20 replicates averaged 0.34. 

In order to assess the effect of different marker densities on prediction accuracy, I selected 

every single, 2nd, 4th and 8th SNP markers resulting in 4 different marker densities, i.e., m= 5000, 

2500, 1250, and 625 SNP markers across the 20 replicates.  

2.4.2 Loblolly Pine Data 

Resende et al. (2012) provided a data set involving 4854 SNP genotypes on 926 loblolly pine 

individuals.  Upon excluding SNP with MAF<0.05 and those showing departure from Hardy 

Weinberg equilibrium (P<10
-4

), 2684 SNPs remained. I further standardized elements of Z using 

* ˆ ˆ ˆ( 2 ) 2 (1 )ij j j jz p p p   as described previously.  Although original phenotypes were not 

publicly available, Resende et al. (2012) provided deregressed EBV (DEBV) for 17 traits; 

DEBV are often used as proxies for phenotypes when raw data are not readily available. 

Deregression refers to the process by which the effect of unequal shrinkage on individual EBV 

based on a pedigreed analysis (i.e., without using genotypic information) is reversed to remove 

heterogeneity of variation due to unequal information in order to recreate “phenotypes” (see 

Garrick et al. 2009).  I selected one disease resistance trait, absence or presence of rust, 

previously estimated to have a heritability of 0.21. After discarding data on individuals missing 

DEBV, 807 individuals remained. 

To compare our proposed hierarchical EB estimation strategy with MCMC and with 

RRBLUP, I randomly split the data into 10 portions with each portion serving once as a test 
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dataset (81 individuals/dataset) and the remaining 9 portions serving as the training dataset (726 

individuals/dataset) in a 10-fold cross-validation study. 

2.5 Data Analysis 

All parameters excluding g  in the BayesA model were estimated using MCMC based on 

100,000 cycles of burn-in followed by an additional 100,000 cycles, saving every 10th sample for 

a total of 10,000 saved MCMC cycles. For our proposed EB strategy, MMAP estimation of  in 

RRBLUP, BayesA, and SSVS was based on a convergence criterion of

( ) ( 1) ( ) ( 1)
4

( ) ( )

ˆ ˆ ˆ ˆ[ ] [ ]
10

ˆ ˆ[ ] [ ]

k k k k

k k

 
 


'

'

θ θ θ θ

θ θ
; after AIREML convergence of variance components, convergence 

on EM-based solutions to g were based on the same criteria. Because of the difficulties and slow 

convergence that I encountered in estimating g  based on our proposed MMAP strategy, g  was 

held constant to 5 for the BayesA model using both MMAP and MCMC.  In our simulation 

study, the correlation between GEBV and TRUEu  in Generation 2002 was defined as the accuracy 

of (genomic) prediction whereby GEBV =Z ĝ   for ĝ  being the posterior mean of g using 

MCMC or ĝ  being EB estimates based on BayesA and SSVS and generated from analysis of 

Generation 2001 data.  The RRBLUP model was also considered.  Similarly, for the loblolly pine 

data analysis, I defined the accuracy of (cross-validation) prediction as the correlation between 

the test data DEBV and its predictions based on estimates derived from the training data. 

 Accuracies of prediction for both analyses of the simulated and the loblolly pine data were 

based on comparing the effects of three different sets of starting values of g in our EB methods: 

Set 1) e-RRBLUP of g conditional on REML(, Set 2) MCMC posterior means of all 

parameters based on same model as the corresponding EB approach and Set 3) g = 0 and MCMC 

posterior means for all other parameters based on same model as the corresponding EB 
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approach. To help derive properly scaled starting values (  
2

0g
 ) based on REML estimates 

(  
2ˆ
g REML

 ) of 
2

g  for Set 1, I used 
   

2 2

0

2
ˆg

g g REML

g


 




  for MMAP under e-BayesA and 

 

 
2

2

0

ˆ

ˆ

g REML

g





  for MMAP under e-SSVS with ̂  being the posterior mean of   from the 

corresponding MCMC analyses.  For e-BayesA, I additionally considered investigating the effect 

of basing the E-step on relative precisions (P), i.e., using ˆ
j , as per Equation [2.7] or on relative 

variances (V), i.e., using 
*ˆ
j ,  as advocated by Karkkainen and Sillanpaa (2012) for each of the 

three sets of starting values described above.  So, for example, Set 2(P) refers to using MCMC 

posterior means as starting values with the E-step based on ˆ
j  whereas Set 2(V) refers to using 

MCMC posterior means as starting values with the E-step based on 
*ˆ
j  for e-BayesA.  Since 

hyperparameters like  or   are not truly well defined in simulation studies that attempt to 

mimic the LD between markers characteristic of real data (Yang et al. 2015b), our assessment of 

the relative performance of the different starting value/E-step strategies were based on their 

agreement with the corresponding MCMC posterior means given that MCMC inferences do not 

require asymptotic assumptions.  A more ideal assessment might be based on cross-validation 

prediction accuracy, but I deemed that to be prohibitively expensive for a replicated simulation 

study. 

2.6 Expectation maximization variable selection (EMVS) 

By nature of the SSVS prior, estimates of SNP effects based on a SSVS model will be 

multimodal, such that EM estimates of g may precariously converge to local maxima. This was 

recognized by Rockova and George (2014) who recommended two strategies in tandem to 

2

g
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alleviate this problem: 1) a regularization procedure that they label as Expectation Maximization 

Variable Selection (EMVS) and 2) a deterministic annealing variant of EM (DAEM). EMVS 

involves gradually changing the values of c from relatively high values (highly peaked spikes on 

0 for near-null elements of g) to relatively low values while executing EM.  Rockova and George 

(2014) demonstrated that starting SSVS with a highly peaked spike (high c) and gradually 

increasing the variance of the spike (i.e., decreasing c) helps absorb negligible estimates of g in 

their examples.   For the SSVS model characterized in Equation [9a], Rockova and George 

(2014) actually specified 
2

g  as known, whereas I adaptively estimate it with our proposed 

MMAP approach as indicated earlier.  Although Rockova and George (2014) provided no 

specific guidelines on how to choose the decreasing gradient set of values of c, I arbitrarily chose 

decreasing values of c within the set  100000,60000,10000,5000,2000,1000cS  , ending with 

1000 based on a trial and error assessment on the lowest value of c that maximized cross-

validation accuracy on the loblolly pine dataset.  Note that e-SSVS estimates of θ , β , and g 

based on one value of c are used as the starting values for e-SSVS estimation of θ , β , and g for 

the next value of c in cS .  

On the other hand, DAEM involves modifying the E-step in Equation [2.16] as follows: 
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 [2.22] 

Here 1/t (0 < t < 1) corresponds to a temperature specification on the degree of separation 

between multiple modes of the estimates; note that Equation [2.22] defaults to [2.16] when t = 1. 

Rockova and George (2014), following developments provided by Ueda and Nakano (1998), 

claimed that gradually increasing temperature settings starting at 1/t = 0 increase the chances of 

finding the true global maximum. Note that at 1/t=0, the corresponding estimates from this 
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procedure are effectively equivalent to e-RRBLUP(g) and REML() (i.e. starting values defined 

in Set 2).  Hence, at least as it pertains to g, using 1/t=0 then corresponds to a situation whereby 

any local modes in its joint posterior density are completely smoothed away.   As 1/t gradually 

decreases, multiple modes begin to appear.  Hence the influence of starting values is weakened by 

keeping 1/t high during the early stages and gradually decreasing it to 1/t = 1 which directly 

corresponds to the joint posterior density of interest.  

 I jointly adapted EMVS and DAEM together, labeled as DAEMVS by Rockova and 

George (2014), by conducting our e-SSVS strategy over decreasing values of c in cS  within each 

of the decreasing temperature values (i.e. increasing t) in  0,0.25,0.5,0.75,1tS   on each of the 

10 loblolly pine training datasets. Within each subsequent specification of t in tS  I also conducted 

our e-SSVS strategy over increasing spike variance (i.e. decreasing c) in the set cS  such that e-

SSVS estimates from each pair of t and c values cycling within t served as the starting values for 

the next pair of values of t and c.  

 

2.7 Results 

2.7.1 Simulation Study 

Average MMAP estimates, based on the three different sets of starting values and the two 

different E-step strategies (relative precisions ˆ
j  vs. relative variances 

*ˆ
j  )  as well as average 

MCMC estimates of  across the 20 replicates under the BayesA model are provided in Table 

2.1. 
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Table 2.1 Average MCMC and MMAP estimates of hyperparameters as a function of marker 

density, starting values and expectation-step (E-step) strategies under a BayesA model. 

 

1MCMC: average posterior means, Other columns pertain to MMAP estimates based on relative 

precisions versus relative variances E-steps and three different sets of starting values: 2Set 1) e-

BLUP (g) and REML(),3Set 2) MCMC (g and , 4Set 3) g = 0 and MCMC (  

By basing the E-step on relative precisions (    
1

1ˆ Ej j 


 ) , the three different sets of 

starting values lead to virtually identical estimates of   at m = 625, 1250 and 2500 although the 

corresponding estimates of 
2

g  in all three cases were consistently higher compared to MCMC 

estimates such that the opposite was observed for 
2

e .  However, at m = 5000, there was 

considerable disagreement between the three sets.  When the E-step was based on relative 

variances (  *ˆ Ej j  ), MMAP led to average estimates that were much closer to average 

MCMC estimates for all specifications of m and starting value sets.   The correlation between all 

5 sets of estimates in Table 2.1 exceeded 0.995 for m = 625, 1250, and 2500, whereas these 

correlations dropped to 0.95-0.99 at m = 5000 with E-step based on relative precisions (results 

not reported).  A closer look at the behavior of the three different sets of starting values and/or 

two different E-step strategies versus the corresponding MCMC posterior means for m = 5000 is 

Average hyperparameter estimates across 20 simulated replicates 

Variance 

Component 

Marker  

Density 

E-step based on relative precisions(P) E-step based on relative variances (V) 

MCMC1 Set 12 Set 23 Set 34 Set 12 Set 23 Set 34 

2

g
 

625 2.26E-3 3.77E-3 3.77E-3 3.77E-3 2.22E-3 2.22E-3 2.22E-3 

1250 1.43E-3 2.55E-3 2.55E-3 2.55E-3 1.50E-3 1.50E-3 1.50E-3 

2500 6.98E-4 1.34E-3 1.32E-3 1.32E-3 7.75E-4 7.65E-4 7.68E-4 

5000 3.03E-4 6.35E-4 3.62E-4 6.84E-4 3.38E-4 3.29E-4 3.50E-4 

2

e  

625 2.68 2.62 2.63 2.63 2.61 2.61 2.61 

1250 2.30 2.23 2.23 2.23 2.21 2.21 2.21 

2500 2.05 2.00 2.00 2.00 1.98 1.98 1.98 

5000 1.89 1.88 1.98 1.84 1.89 1.88 1.88 
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provided in Figure 2.1. It appears that starting with MCMC-based estimates (Set 2) for MMAP 

estimation generally led to closer agreement than the other two sets between MMAP estimates 

with the corresponding MCMC posterior means on 
2

g  when the E-step was based on relative 

precisions.  However, when the E-step was based on relative variances, the correspondence 

between MMAP and MCMC estimates were very close for all three sets of starting values.   

Figure 2.1 MMAP versus MCMC estimates of 2
g  in simulation study (20 replicated datasets 

each with 5,000 markers) under BayesA model with MMAP estimates based on different starting 

values for g and   Set 1) rrBLUP (g) and REML(), Set 2) MCMC (g and ), or Set 3) g = 0 

and MCMC (, Top panel of plots (P) pertain to use of E-step based on relative precisions 

whereas bottom panel of plots (V) pertain to use of E-step based on relative variances.  

Reference line of slope 1 and intercept 0 superimposed. 

For the SSVS model, average MMAP estimates, based on the different starting values as well 

as average MCMC estimates of  2 2, ,e g  θ  across the 20 replicates are provided in Table 2.2.   
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Table 2.2 Average MCMC and MMAP estimates of hyperparameters as a function of marker 

density and starting values under a SSVS model. 

  Averages hyperparameter estimates across 20 simulated replicates 

Hyper- 

Parameter 

Marker 

Density 

MCMC1 Set 12 Set 23 Set 34 

2

g  
625 1.04  0.67 1.08  3.76 

1250 0.70  0.68 0.71 2.68 

2500 0.32 0.47 0.34 1.59 

5000 0.20 0.48 0.21 0.96 

2

e 
625 2.74 2.56 2.57 2.70 

1250 2.39  2.11 2.24 2.34 

2500 2.16  2.03 2.08 2.11 

5000 1.96  2.04 1.94 1.96 

  625 0.10  0.26 0.11 1.07E-3 

 1250 0.05  0.16 0.05 4.57E-4 

 2500 2.35E-2 0.04 1.85E-2 1.65E-4 

 5000 5.74E-3  1.18E-3 3.91E-3 3.10E-5 

1MCMC: average posterior means, other columns pertain to MMAP inference based on different 

sets of starting value sets or E-step strategies 2Set 1) e-BLUP (g) and REML (), 3Set 2) MCMC 

(g and , and 4Set 3) g = 0 and MCMC (. 

It seemed intuitively apparent that the best MMAP performance (i.e., highest correlation with 

MCMC estimates) was observed when starting values for  were based on MCMC estimates (Set 

2); in fact, the correlation between Set 2 and MCMC estimates of 
2

g exceeded 0.99 for all 

marker densities.   On the other hand, the worst performance involved the Set 3 starting values 

(i.e. g = 0) where the corresponding correlation never exceeded 0.72 and was sometimes less 

than 0, although it did increase with marker density.  A closer assessment of the relative 

agreement between MCMC estimates with MMAP estimates of 
2

g   and  based on the three 

different sets of starting values and m = 5,000 markers is provided in Figure 2.2.  MMAP 

estimates of 
2

g  starting from MCMC estimates (Set 2) most closely aligned with MCMC 
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estimates of posterior means of 
2

g .  Likewise MMAP estimates of   starting at Set 2 agreed 

best with the corresponding MCMC estimates although MMAP estimates were typically slightly 

lower.  However, MMAP estimates of 
2

g   based on the other starting value sets (Sets 1 and 3) 

appeared to be badly biased upwards relative to the MCMC estimates. To seemingly compensate 

for that bias, estimates of   were badly biased downwards such that with Set 3) starting at g = 0, 

estimates of   rarely deviated from 0. 

 

Figure 2.2 MMAP versus MCMC posterior means of 
2

g  (top row) and of  (bottom row) in 

simulation study (20 replicated datasets each with 5,000 markers) under SSVS model with 

MMAP estimates based on different starting values for g and  Set 1) rrBLUP (g) and 
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REML(), Set 2) MCMC (g and ), and Set 3) g = 0 and MCMC( . Reference line of slope 1 

and intercept 0 superimposed. 

I compared GEBV in Generation 2002 based on estimates of g derived from the analysis of 

data on Generation 2001 using e-GBLUP, MCMC, and the various sets of starting values and/or 

E-step strategies as it pertains to our EB versions of e-BayesA and e-SSVS in Figure 2.3.  

 

Figure 2.3 Mean accuracies of breeding value prediction for EB inference as a function of 

different marker densities (625, 1250, 2500, or 5000 markers) for BayesA (Panel A) and SSVS 

(Panel B) in simulation study (20 replicated datasets).  e-GBLUP based on REML(, is same 

for both Panels A) and B) whereas MCMC refers to using fully Bayesian inference under 

MCMC for the corresponding model.  Other lines pertain to EB inference based on different sets 

of starting value sets or E-step strategies Set 1) e-rrBLUP (g) and REML (), Set 2) MCMC (g 

and , Set 3) g = 0 and MCMC ( with letter suffixes indicating whether the corresponding E-

step was based on relative precisions (P) or relative variances (V). Letter codes used to separate 

estimates (P<0.05) having different accuracies based on the 5,000 marker analyses 

e-GBLUP was always inferior to all other strategies with the gap in average accuracy 

generally increasing with increasing marker density.  As further anticipated from our previous 

comparisons of MMAP estimates of 
2

g  in Table 1 and Figure 2.2, BayesA MCMC posterior 
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means or e-BayesA estimates of GEBV based on starting values derived from these same 

MCMC estimates (Set 2) were generally superior to e-BayesA estimates based on other starting 

values (Sets 1 and 3) when the E-step was based on relative precisions (Figure 2.3A).  However, 

no significant differences in accuracies were apparent between MCMC and e-BayesA estimates 

based on any of the three different sets of starting values when the E-step was based on relative 

variances.   For SSVS (Figure 2.3B), MCMC posterior means and e-SSVS based on Set 2) 

starting values led to GEBV that were more accurate than GEBV starting at e-RRBLUP (Set 1) 

that were, in turn, more accurate than those starting with g = 0 (Set 3).  

2.7.2 Application to Loblolly Pine Data 

The average cross-validation accuracies for the different models, sets of starting values, and 

E-step strategies (e-BayesA) over the 10 different replicates for the loblolly pine data analysis is 

summarized in Figure 2.4; additionally, results based on the DAEMVS strategies for e-SSVS are 

also provided.  As consistent with BayesA in the simulation study, MCMC posterior means or e-

BayesA estimates starting at MCMC estimates (Set 2) were generally superior to e-BayesA 

estimates based on either Set 1 or Set 3 when the E-step was based on relative precisions and to 

e-GBLUP.  Similar conclusions could be drawn when the E-step was based on relative variances 

although there was significant improvement in the e-BayesA accuracies based on Set 1 or 3 

starting values.   For SSVS, MCMC dominated e-SSVS based on starting value Set 2 although 

Set 2 in turn outperformed Sets 1 and 3 or e-GBLUP as well.  
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Figure 2.4 Average cross-validation accuracies for analysis of loblolly pine data based on 

empirical Bayes (EB) inference under BayesA (left cluster) or SSVS (right cluster) models.   e-

GBLUP, based on REML(, is same for both clusters whereas MCMC refers to using fully 

Bayesian inference for the corresponding model. Other bars pertain to EB inference based on 

different sets of starting value sets or E-step strategies:  Set 1) e-rrBLUP (g) and REML (), Set 

2) MCMC (g and , or Set 3) g = 0 and MCMC with letter suffixes indicating whether the 

corresponding E-step was based on relative precisions (P) or relative variances (V).  Letter codes 

used to separate estimates (P<0.05) having different cross-validation prediction accuracies 

within each cluster. 

For SSVS, I also evaluated whether DAEMVS could mitigate the impact of starting values for 

e-SSVS. Figure 2.5 provides a regularization plot (Rockova and George 2014) for one randomly 

chosen training dataset.   In this plot, elements of  are plotted as a function of pairs of ĝ
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sequentially chosen values of c in St within t in Sc. Recall that at t = 0,  are e-RRBLUP of g for 

 

Figure 2.5 DAEMVS regularization plot for e-SSVS analysis of one training dataset analysis 

based on loblolly pine data. The x-axes pertain to precision on spike component variance (c at 

bottom) and inverse temperatures (t at top) whereas the y-axis denote SNP effect estimates ĝ . 

all values of c with Figure 2.5 indicating very little spread in elements of  at t = 0.  Beyond t = 

0.75, it appeared that DAEM (i.e. impact of t) had little influence on spread of elements in  

whereas EMVS (i.e. impact of c) was far more influential.  I did not consider values lower than c 

= 1000 since I noted that they compromised cross validation prediction accuracies (results not 

reported).  Referring back to Figure 2.4, I determined that the DAEMVS based e-SSVS estimates 

of GEBV had a predictive accuracy comparable to MCMC estimates with greater (P<0.05) 

predictive accuracy than e-SSVS based on all other starting value sets.  

2.8 Discussion 

I have demonstrated that it is possible to develop computationally efficient empirical Bayes 

approaches to hierarchical Bayesian WGP models that additionally allow one to infer key 

ĝ

ĝ

ĝ
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hyperparameters, whether those WGP are based on heavy-tailed (BayesA) or variable selection 

(SSVS) specifications on marker effects g.  Our approach is based on a marginal modal inference 

procedure for estimating hyperparameters that closely emulates REML.   Nevertheless, I have 

also demonstrated that the reliability of this EB strategy can critically depend on starting values. 

Starting at MCMC posterior means generally lead to accuracies in EB estimates that closely 

mirrored MCMC posterior means whereas a currently popular strategy based on starting all SNP 

effects at 0 appeared to be badly suboptimal.    

At any rate, there appeared to be some promising possibilities for partially mitigating the 

effects of starting values.  Our simulation study demonstrated no evidence of a difference 

between the various sets of starting values when the E-step was based on relative variances, as 

advocated by Karkkainen and Sillanpaa (2012) instead of relative precisions for e-BayesA 

implementations.  However, the E-step based on relative variances was not quite as effective at 

mitigating the effects of starting values in our application to the loblolly pine data although it did 

improve cross-validation prediction accuracy relative to the conventional E-step for starting 

value sets not starting at MCMC posterior means for all parameters. I have no theoretical 

conjecture for the difference in performance between the two different E-step strategies.  The 

relative variance strategy was based on a generalized EM (GEM) framework in which 

Karkkainen and Sillanpaa (2012) proposed that one merely iteratively computes conditional 

means (E-steps) or modes (M-steps) to substitute for random draws from the corresponding full 

conditional densities using MCMC.  However, their GEM strategy does not suggest what full 

conditional parameterizations (e.g. relative variances versus relative precisions) that one should 

work with whereas EM is typically involves basing the E-step on the functional forms of the 

corresponding augmented variables in the joint posterior density.   For e-SSVS, starting values 
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based on MCMC posterior means were also important for maximizing accuracy of converged 

GEBV; however, the application of the DAEMVS approach appeared to be rather effective for 

minimizing the influence of starting values in the loblolly pine data application such that it was 

even superior to e-SSVS starting at MCMC posterior means.   

At any rate, it is reasonable to conclude from our results that implementations of e-BayesA or 

e-SSVS can lead to more accurate GEBV than the more common e-GBLUP strategy, mirroring 

what has been often concluded based on fully Bayesian (i.e. MCMC) implementations (Hayes et 

al. 2009; de Los Campos et al. 2013).   Given that MCMC estimates lead to better starting values 

than, say, g = 0, a practical recommendation might be that all initial analyses be first based on 

MCMC followed by computationally efficient regular EB updates at periodic intervals for WGP 

programs involving regular updates of phenotypes and genotypes (Wiggans et al. 2011).  

However, even this strategy warrants more rigorous study since it has been demonstrated that the 

relative importance of certain genomic regions contributing to GEBV in chickens may change 

over several generations (Fragomeni et al. 2014), likely because of the gradual breakdown of LD 

between SNP markers and QTL.  

As indicated previously, there has not been much work addressing inferences on 

hyperparameters in EM-based implementations of the Bayesian alphabet models.  The strategy 

proposed by Karkkainen and Sillanpaa (2012) was based on maximizing the joint posterior 

density of all parameters, including hyperparameters; however, their success in estimating these 

hyperparameters was limited, particularly for the BayesA model.  It has been demonstrated 

previously that maximizing the joint posterior density of all parameters in a linear mixed model 

can be wrought with difficulties whereby “severe dependencies” can exist between the 

components of g and of θ  that hamper efficient estimation of θ (Harville 1977).  Conversely 
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marginal posterior estimates (i.e. MMAP) of θ  followed by joint posterior modal inference of g 

(and β ) conditional on MMAP( θ ) is typical of a more stable EB-based approach to inference 

with hierarchical models, similar to using REML followed by BLUP (Robinson 1991). Other 

researchers have taken yet a completely different approach by treating elements of θ  as if they 

were augmented variables whose uncertainty is accounted for by integrating them out of the joint 

posterior density whereas SNP-specific variances (i.e., τ ) are considered as parameters to be 

estimated (Xu 2007; Cai et al. 2011; Huang et al. 2015).  Given that each element of τ  defines 

the relative variance of a single element of g, I are not sure that this is particularly advisable; 

nevertheless, more rigorous comparisons of their approach with our proposed strategy may be 

warranted. 

I have also alleged, as others previously have (Karkkainen and Sillanpaa 2012; Sun et al. 

2012), that computing time is substantially less for EM versus MCMC based implementations of 

BayesA; similar arguments naturally hold for SSVS.  If hyperparameters ( θ ) are not to be 

estimated, this should be rather intuitive since EM is based on updating the full conditional 

means of β , g, and τ whereas MCMC is based on drawing random samples from their 

corresponding full conditional Gaussian densities that require, in addition to specifications of 

these same conditional means, the specification of conditional variances followed by draws from 

a random Gaussian generator.  Hence the computing time per MCMC cycle should be slightly 

greater per cycle than per EM iterate if θ  is not considered; furthermore, the number of EM 

iterates to reach convergence to a joint posterior mode for β  and g is presumably less than the 

number of cycles to facilitate sufficiently reliable MCMC inference. This should be especially 

true of analyses updates based on the regular collection of more phenotypes and genotypes since 

EM would be programmed to start at the solutions from the most previous update.   Even so, the 
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MCMC versus EM computing comparison is further complicated by the need to estimate θ , and 

the dimensionality of g amongst other things.  We’ve advocated the use of a MMAP technique 

for θ  that closely emulates REML, advocating the use of the AIREML algorithm.  To mitigate 

the dimensionality of g in determining some of the intermediate calculations in AIREML, most 

notably the inverse of the coefficient matrix in Equation [2.9], it is possible to reparameterize the 

model in terms of the breeding values u=Zg, to mirror current GBLUP implementations 

(Stranden and Garrick 2009). 

At any rate, our results imply that researchers thinking about using current EM-based 

implementations of Bayesian alphabet models should be cognizant of the potential effect of 

starting values and potential remedies, as convergence problems will only intensify with 

increasing marker densities. 
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Chapter3 Genome Wide Association Analyses Based on Broadly Different Specifications 

for Prior Distributions, Genomic Windows, and Estimation Methods 

3.1 Abstract 

A currently popular strategy (EMMAX) for genome wide association (GWA) analysis infers 

association for the specific marker of interest by treating its effect as fixed while treating all 

other marker effects as classical Gaussian random effects.  It may be more statistically coherent 

to specify all markers as sharing the same prior distribution, whether that distribution is 

Gaussian, heavy-tailed (BayesA), or has variable selection specifications based on a mixture of, 

say, two Gaussian distributions (SSVS).   Furthermore, all such GWA inference should be 

formally based on posterior probabilities or test statistics as I present here, rather than merely 

being based on point estimates.   I compared these three broad categories of priors within a 

simulation study to investigate the effects of different degrees of skewness for quantitative trait 

loci (QTL) effects and numbers of QTL using 43,266 SNP marker genotypes from 922 Duroc-

Pietrain F2 cross pigs.  Genomic regions were based either on single SNP associations, on non-

overlapping windows of various fixed sizes (0.5 to 3 Mb) or on adaptively determined windows 

that cluster the genome into blocks based on linkage disequilibrium (LD).  I found that SSVS 

and BayesA lead to the best receiver operating curve properties in almost all cases.  I also 

evaluated approximate marginal a posteriori (MAP) approaches to BayesA and SSVS as 

potential computationally feasible alternatives; however, MAP inferences were not promising, 

particularly due to their sensitivity to starting values.  I determined that it is advantageous to use 

variable selection specifications based on adaptively constructed genomic window lengths for 

GWA studies. 
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3.2 Introduction 

Recent developments in genotyping technology have made single nucleotide polymorphism 

(SNP) genotype marker panels, based on thousands, and now millions, of markers, available for 

many livestock species (Wiggans et al. 2013; Kemper et al. 2015).  Genome wide association 

(GWA) analyses have been increasingly used to help pinpoint regions containing potential 

causal variants or quantitative trait loci (QTL) for economically important phenotypes based on 

fitting SNP markers as covariates.  An increasingly popular inferential approach for GWA is 

based on fitting phenotypes as a joint linear function of all markers using mixed-model 

procedures such as those invoked in the popular EMMAX procedure (Kang et al. 2010) and 

other similar procedures (Lippert et al. 2011; Zhou and Stephens 2012). Jointly accounting for 

all SNP effects when inferring upon a specific SNP marker of interest generally improves 

precision and power while also accounting for potential population structure (Kang et al. 2008). 

 Now GWA inferences in EMMAX and related procedures are based on treating the effect of 

the SNP marker of interest as fixed with all other marker effects as normally distributed random 

effects, noting that this process is repeated in turn for every single marker.  These “fixed effects” 

hypothesis tests are based on generalized least squares (GLS) inference, with P-values being 

subsequently adjusted for the total number of markers or tests.  Goddard et al. (2016) have 

recently pointed out the paradox with treating markers as fixed for inference but then otherwise 

as random to account for population structure for inference on association with other markers.  

Random effects modeling with all SNP effects treated as random, including the one of inferential 

interest, is synonymous with shrinkage based inference.  Shrinkage or posterior inference has 

been demonstrated to facilitate reliable inference without any formal requirements for multiple 

comparison adjustments (Stephens and Balding 2009; Gelman et al. 2012).  However, with SNP 
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markers treated as identically and independently distributed variables from a Gaussian 

distribution, the resulting shrinkage from random effects modeling can be too “hard”, 

particularly with greater marker densities (Hayes 2013).  Subsequently, this random effects test 

has been deemed to be far too conservative in various applications, as further demonstrated by 

Gualdron Duarte et al. (2014). 

Prior specifications that are sparser than Gaussian may be more important for GWA since 

they more likely better characterize the true genetic architecture of most traits relative to 

Gaussian priors (de Los Campos et al. 2013). Sparser specifications have already been 

popularized in whole genome prediction (WGP), such as the Student t distribution used in 

BayesA (Meuwissen et al. 2001)  and stochastic search and variable selection or SSVS (George 

and McCulloch 1993; Verbyla et al. 2009).  Both specifications generally lead to far less 

shrinkage of large effects yet greater shrinkage of small effects compared to a Gaussian prior.  In 

particular, the use of variable selection procedures facilitate the determination of posterior 

probabilities of association (PPA), whose control may be far more effective in maximizing both 

sensitivity and specificity of GWA (Fernando et al. 2017) compared to frequentist based 

inferences which require adjustments for multiple testing such as with EMMAX.  Another 

common inferential strategy in GWA is to simply report the percent of variance explained by a 

marker or marker region (Fan et al. 2011; Tizioto et al. 2015; Wolc et al. 2016). However, point 

estimates of marker effects or percentage of variation explained, by themselves, do not provide 

formal evidence of association. 

Most sparse prior WGP models have been implemented using Markov chain Monte Carlo 

(MCMC), which can be computationally expensive. Approximate analytical approaches based 

on the expectation–maximization (EM) algorithm to provide approximate maximum a posteriori 
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(MAP) estimates of SNP effects have been developed to address computational limitations in 

these sparse prior WGP models (Meuwissen et al. 2009; Hayashi and Iwata 2010; Sun et al. 

2012; Chen and Tempelman 2015). Strategies for estimating/tuning hyperparameters for MAP 

inference have been proposed, including those proposed by Karkkainen and Sillanpaa (2012), 

Knürr et al. (2013) and Chen and Tempelman (2015), the latter adapting the average information 

restricted maximum likelihood (AIREML) algorithm for estimating hyperparameters in BayesA 

and SSVS specifications. These MAP implementations should also be assessed for their efficacy 

in GWA studies.  

A pragmatic first objective in GWA is to pinpoint narrow genomic regions containing QTL 

rather than to specifically identify the QTL themselves, even though the latter is the ultimate 

goal.  That is, a large number of SNP markers in a region surrounding a typically untyped QTL 

might be in high linkage disequilibrium (LD) with the QTL and with each other, thereby 

thwarting precise inference on the causal QTL.  Different GWA methods may differ in the 

number of SNP markers inferred to have an association within a genomic region with, for 

example, EMMAX tending to draw associations with more SNP markers in LD with a QTL 

compared to use of SSVS (Guan and Stephens 2011; Goddard et al. 2016). 

Increasingly, more GWA studies are based on inferences involving joint tests on all of the 

SNP markers within a narrow genomic region, recognizing that single SNP marker associations 

may be fraught by low statistical power or problems with multicollinearity or both(Fernando et 

al. 2017). Some GWA studies have been based on using several arbitrary window sizes based on 

either non-overlapping (Wolc et al. 2012; Moser et al. 2015; Wolc et al. 2016) or sliding 

windows (Schmid and Yang 2008).  Because of the arbitrariness of fixed window sizes, whether 

defined by number of SNP markers or by physical length in base pairs, it is possible to split a 
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large LD block into 2 or more separate windows, thereby making such a division seemingly 

suboptimal for GWA.  Substantially different window lengths have been used in different 

studies.  For example, a 5 SNP window was used for GWA based on 51,385 SNP markers in 

pigs (Fan et al. 2011), whereas a 250 kilo base (Kb) window was used for 287,854 SNPs from 

the Welcome Trust Case Control Consortium (WTCCC) human data (Wellcome Trust Case 

Control Consortium 2007; Moser et al. 2015), and a 1 mega base (Mb) window was used for a 

24,425 SNP marker panel in chickens (Wolc et al. 2012).  Dehman et al. (2015) recently 

proposed an approach to adaptively cluster windows of SNP markers of varying sizes based on 

LD relationships.  That is, they performed spatially constrained hierarchical clustering of SNPs 

by minimizing a distance measure derived from Ward’s criterion based on LD r2 between SNP 

markers.  They surmised that this procedure would estimate a suitable specification of genomic 

windows within each chromosome using a modified version of the gap statistic. This method has 

been implemented in the R package BALD (Dehman and Neuvial 2015). 

I had three primary objectives in this study.  One was to examine the potential benefits of 

using sparser priors (i.e., BayesA and SSVS) relative to classical (i.e., based on normality) 

random effects specifications and strategies for GWA under a wide range of simulated 

architectures.  A second objective was to assess whether the choice of different fixed genomic 

window sizes (specifically 0.5, 1, 2, and 3 Mb), versus adaptively inferred window sizes based 

on LD clustering, could impact GWA performance.   A final objective was to assess the relative 

merit of approximate MAP approaches to theoretically exact yet computationally intensive 

MCMC approaches based on sparse prior specifications.  Our assessments are based upon SNP 

marker genotypes and actual and simulated phenotypes on F2 pigs deriving from a Duroc-

Pietrain cross.  
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3.3 Methods and materials 

3.3.1 The hierarchical linear model 

All analyses in this paper are based on a hierarchical linear model which be characterized by 

the classical mixed model specification: 

   y Xβ Zg e     [3.1] 

Here y  is a n x 1 vector of phenotypes, X is a known n x p incidence matrix connecting y to 

the p x 1 vector of unknown fixed effects β , Z is a known n x m matrix of genotypes connecting 

y to the m x 1 vector of unknown random SNP marker effects g, and e is the random error vector.  

I also assume throughout that 
2~ (0, )eN e I  whereas 

2 2| , ~ (0, )g gN g D D  for D being a 

diagonal matrix of augmented data or variables (Chen and Tempelman 2015; Tempelman 2015).  

The prior specification on these diagonal elements is used to distinguish each of the competing 

models as described later.  

For pedagogical reasons, I assume one record per individual although extensions to repeated 

records per individual are possible.  An equivalent genomic animal (i.e., subject) effects model 

(VanRaden 2008) to Equation [3.1] can then be written as: 

   y Xβ a e    [3.2] 

with a Zg  and all other terms defined previously as in [3.1] such that, conditionally on D,  

 
' ' 2var( ) var( ) var( ) g  a Zg Z g Z ZDZ  [3.3] 

If 𝑚 ≫ 𝑛, it is generally computationally more tractable to work with the linear mixed model 

in Equation [3.2], along with the random effects specification in Equation [3.3], then back solve 

for the estimate of g that would be identical to those using a linear mixed model directly based 

on Equation [3.1] (Stranden and Garrick 2009).  



 

45 

 

3.3.2 Models 

In the simplest model, which I denote as ridge regression (RR), there is no such data 

augmentation (i.e. D = I), such that the elements of g are marginally distributed as independent 

normal (de Los Campos et al. 2013).  Sparser distributional specifications on g can be 

constructed as mixtures of normal densities (Andrews and Mallows 1974) by simply specifying 

prior distributions on functions of the diagonal elements of D .   Suppose that  
1

m

j j
diag 


D  

with 
2~ ( , )j     

; then it can be demonstrated that, marginally, elements of g are identically 

and independently distributed as a scaled Student t with scale parameter 2

g  and degrees of 

freedom    (Chen and Tempelman 2015).  This model is typically referred to as BayesA 

(Meuwissen et al. 2001). Alternatively, if   
1

1 /
m

j j
j

diag c 


  D   where 

 ~ ; 0,1j jBernoulli     and c>>1, then the resulting model is Bayes SSVS in the spirit of 

George and McCulloch (1993).  As a side-note, I use c = 1000 for all SSVS analyses in this 

paper. 

As a final stage in each of the competing hierarchical models (RR, BayesA, and SSVS), I 

specify convenient conjugate priors wherever possible.  For example, scaled inverted chi-square 

priors for variance components; i.e.  

    
2

21
22 2 2 2| ,

e e
e

e

s

e e e ep v s e


 

    
      [3.4] 

and  

    

2

21 22 2 2 2| ,

g g
g

g

s

g g g gp v s e





 

  
   
      [3.5] 

whereas I specify a Beta prior on  in SSVS; i.e.,  

     00

0 0| , 1p


        .   [3.6] 

As I explain later, I arbitrarily specify  as known (  =2.5), although conceptually it could 

also be estimated (Yang et al. 2015b).  I assume throughout that   1p β  as  p β is typically 
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diffuse, although extensions to more informative specifications should be obvious.  Furthermore, 

for all analyses in this paper, I specify Gelman’s non-informative prior (Gelman 2006) for 
2

e  in 

Equation [3.4] based on 1ev    and 
2 0es   and for 

2

g  in Equation [3.5] based on 1gv    and 

2 0gs  .  Furthermore, as per Yang and Tempelman (2012), I specify 0 1   and 0 9  . 

3.3.3 Joint posterior density 

Given the specifications above, the joint posterior density can be written as: 

 

             

2 2

2 2 2 2 2 2

1 1

, , , , , |

, , | | , | ,

e g

n m

i e j g j j g g g e e e

i j

p

p y p g p p p v s p v s p



 

  

       
 

  
   
  
 

β g τ y

|β g, | β
 [3.7] 

Note that  |jp    specifies the 
2 ( , )   

 density under BayesA (i.e.,    ) whereas 

 specifies the  Bernoulli   density under SSVS (i.e.,    ).  Furthermore, 

 2 ,j g jp g  |  is Gaussian with null means under all three competing models but with variance  

2

g j    under BayesA and variance   2 1 /g j j c     under SSVS.  For RR, 1j j    such 

that  2 , 1j g jp g   |  is Gaussian with common variance 
2

g j  .  

3.3.4 Algorithms 

3.3.4.1 Markov Chain Monte Carlo 

The MCMC sampling strategies that I use here for BayesA are similar to those provided in 

Yang and Tempelman (2012) and Yang et al. (2015b).  However, since our parameterization is 

slightly different, I present the full conditional densities of interest for implementing BayesA in 

Appendix A.  For similar reasons, I also provide the full conditional densities for SSVS in 

Appendix A as even our model differs from the model also labeled as SSVS in the genomic 

 |jp  
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prediction work of Verbyla et al. (2009) whereas it is virtually identical to the model presented 

in seminal SSVS paper by George and McCulloch (1993). 

3.3.4.2 Maximum a posterior estimation  

Complete details on our MAP procedure for both BayesA and SSVS are found in Chen and 

Tempelman (2015).  Given that our application involved m >> n, I conducted MAP based 

inference on an equivalent subject-centric model using Equation [3.2] rather than based on a 

SNP effects model as in Equation [3.1].  Details on backsolving from a subject-centric model to 

provide estimates of SNP effects are provided in Appendix A.  For pedagogical reasons, 

however, I work directly from the SNP-effect Model [3.1] in our subsequent developments.  

Conditional on D, the posterior variance-covariance matrix of g, or equivalently its prediction 

error variance-covariance (PEV) matrix from a frequentist viewpoint, can be written as: 

 2 2 |var | , , , , gg

g e     D
g y D C  .  This expression can be derived from the inverse of the mixed 

model coefficient matrix as:  

 

1
2 2| |

2 2 1 2| |

' '

' '

e e

e e g

 

  


 

   

  
   

    

ββ D βg D

gβ D gg D

X X X ZC C

Z X Z Z DC C
 [3.8] 

That is, |gg DC  is the random by random portion of the inverse coefficient matrix in 

Henderson’s mixed model equations, conditional on D, 
2

e , 
2

g  and   (     for BayesA or 

    for SSVS).  As noted earlier, values for hyperparameters such as ,  and   

required for Equation [3.8] can be determined using the REML or marginal maximum likelihood 

(MML) estimation strategies as described by Chen and Tempelman (2015) noting that I choose 

to fix   in BayesA as indicated earlier.  

2

e
2

g
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It can be readily demonstrated (Sorensen and Gianola 2002), that asymptotically 

   MAP E |g g y  whereby MAP(g) can be iteratively determined using EM based on Newton-

Raphson for maximization (M-) steps interwoven with expectation  (E-) steps on elements of D 

(Chen and Tempelman, 2015).  Under RR, D = I such that  | var |gg gg DC C g y  represents the 

posterior variance-covariance matrix of g conditional on 
2

e , 
2

g  and  .  In fact, MAP(g) is 

synonymous with BLUP(g) under RR.  Furthermore, ggC   is synonymous with the g-component 

of the observed information matrix of the joint conditional posterior density of and g.   This 

posterior density is formally defined in Equation [3.9]. 

          2 2 2 2

1 1

, ,| , , | , , |

j

n m

e g i e j g j j j

i j R

p p y p g p d



         
 

 
    

  
 

  β g y |β g, |   [3.9] 

With D = I, there is no uncertainty on j  such the integration in Equation [3.9] is not 

necessary with ggC  being directly obtainable for RR using Equation [3.8].  However, for BayesA 

and SSVS, uncertainty in D needs to be integrated out as per Equation [3.9].  An indirect strategy 

for asymptotically providing ggC for BayesA and  SSVS is based on the strategy proposed by 

Louis (1982) with details provided in Appendix A.  I subsequently use elements of ggC to 

asymptotically determine key components of  var |g y for both single SNP and window based 

GWA testing using MAP under all three models, noting again that MAP and BLUP are 

synonymous under RR. 

3.3.5 Conducting Genome Wide Association Analyses 

3.3.5.1 Single SNP marker associations 

I subsequently describe how I conducted GWA inference for single SNP associations based 

on the algorithms (MCMC vs. MAP) and models (RR, BayesA, and SSVS).  With respect to 
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inference on association on SNP j, EMMAX is conceptually based on subsetting out Equation 

[3.1] as follows: 

 j j j jg     y Xβ z Z g e
     [3.10] 

That is, Z is partitioned into column j, zj, being the genotypes for SNP j and all other 

remaining columns in Z-j.   In EMMAX, gj is actually treated as fixed whereas g-j is treated as 

classically random; i.e., characterized by a Gaussian prior distribution. Writing j j
   W X z   

and 
' 2 2

j j j g e    V Z Z I , the generalized least squares (GLS) estimator ˆ
jg of jg , using all 

other markers to account for population structure, is the last element of the product 

 
1

1 1' 'j j j j j


 

 W V W W V y .  Furthermore, the corresponding standard error  ˆ
jse g  is 

determined by the square root of the last diagonal element of  
1

1'j j j




W V W .   The test-statistic 

or “fixed effects” z-score for the EMMAX test can then be simply written as: 

  
 
ˆ

ˆ

j

f

j

g
z

se g
    [3.11] 

which is assumed to be N(0,1) under Ho: 0jg  .  The “expedited” approach (Kang et al. 

2010) in EMMAX, that I consider in this paper, is based on approximating jV  with 

2 2' g e  V ZZ I  for inference of association on all SNP j= 1,2,…,m; furthermore, 
2

g  and 
2

e  

estimated only once using REML in an initial analysis that treats all SNP marker effects as 

random.  A GWA test for a particular SNP marker j using EMMAX then essentially involves 

treating its effect jointly as both fixed and random by replacing j j Z g  with Zg  on the right 

side of Equation [3.10], implying that this double counting of jg as both fixed and random 

should be trivial with large m. 

A classical shrinkage or random effects test for Ho: 0jg   is based on treating all SNP 

effects, including a marker j of particular interest, as having a Gaussian prior such that the point 
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estimate of the SNP substitution effect is based on fitting Equation [3.1] or, equivalently, 

backsolving from fitting Equation [3.3] as demonstrated by Stranden and Garrick (2009) and also 

in Appendix A.  A corresponding test statistic ( rz ) can be based on dividing jg , the BLUP of gj, 

by the square root of its prediction error variance (PEV) where    var
j j j

PEV g g g   from a 

frequentist perspective.  From a Bayesian perspective, the corresponding test statistic can be 

interpreted as a posterior z-score (Gelman et al. 2012) since jg  is analogous to a posterior mean 

(i.e.,    2 2ˆ ˆE | , , E |j j e g jg g g  y y ) whereas the PEV is analogous to a posterior variance 

with      2 2ˆ ˆvar | , , var |j j e g jPEV g g g  y y .  I refer to this inference strategy as RR-

BLUP.  It is important to indicate, nevertheless, that these RR-BLUP inferences are empirical 

Bayesian (Robinson 1991) since these posterior means and variances are typically conditioned 

upon REML estimates of 
2

e  and 
2

u  .  The posterior z-score (Gelman et al. 2012) can then 

equivalently derived from both frequentist and Bayesian perspectives as indicated in Equation 

[3.12]. 

 
 

 

 

E |

var |j

jj

r

j
PEV g

gg
z

g
 

y

y
   [3.12] 

Now Gualdron Duarte et al. (2014), with a proof provided later by Bernal Rubio et al. (2016), 

determined that the “fixed effects” or EMMAX z-score, fz  in Equation [3.11], could be 

equivalently derived by treating all markers as classically random, but by dividing the 

corresponding BLUP jg  for marker j by the square root of its frequentist definition of variance 

 var jg  as characterized by classical mixed model theory (Searle et al. 1992) in Equation 

[3.13]. 
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        2var varj j j g jg g PEV g PEV g     [3.13] 

  In other words, one can rewrite the fixed effects test provided in both its frequentist 

(numerator = jg ) and Bayesian (numerator =  E |jg y  ) representations as in Equation [3.14]. 

 

 

 

 2 2

E |

var |

jj

f

g j g j

gg
z

PEV g g 
 

 

y

y
. [3.14] 

Note that the computation using Equation [3.14] is far more tractable than that implied with 

Equation [3.11].  That is, Equation [3.14] only requires computing BLUP of g and its 

corresponding  

PEV in one single step determination for all m tests whereas Equation [3.11] imply m 

different mixed model analyses, each one in turn explicitly treating a different SNP marker effect 

as fixed. 

I perceive no computationally tractable “fixed effects” test analogous to EMMAX that I could 

adapt for MAP based on sparser priors (e.g., BayesA and SSVS). For BayesA, for example, this 

would entail treating the marker of interest j as fixed with all other markers treated as scaled 

Student t- distributed.  However, a posterior or random effects z-score test can be constructed 

using the MAP estimate of gj as the numerator and its asymptotic posterior standard error as the 

denominator, noting that MAP and the posterior mean of g should approach each other 

asymptotically.  Details on deriving those asymptotic standard errors (i.e., based on deriving Cgg) 

for use in Equation [3.11] for these sparse prior specifications are provided in Appendix A such 

that I refer to these two corresponding GWA inference strategies as MAP-BayesA and MAP-

SSVS.  

For SSVS based single SNP inferences using MCMC, I based inferences on the PPA for SNP 

marker j (i.e. PPAj) as in Equation [3.15]. 
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 

1

N

j l
l

jPPA
N





    [3.15] 

Here N denotes the number of MCMC cycles saved for posterior inference and  j l
  is a 

binary draw from the full conditional distribution of j at MCMC cycle l.  I denote this GWA 

method as MCMC-SSVS.  

Since there is no variable selection inherent with BayesA under MCMC, I based single SNP 

inferences on a Bayesian analog to a P-value using 

 
     

1 1

0 0

ˆ 2min ,1

N N

j l j l
l l

j

I g I g

p
N N

 

 
  

  
 
 
 

 
 [3.16] 

 (Bello et al. 2010) where the indicator variable  .I  = 1 if the condition within the argument 

is true and 0 otherwise.  I denote this particular GWA method as MCMC-BayesA, 

 

3.3.5.2 Windows based associations 

Window-based extensions to all of the above tests were also developed, some based on work 

previously presented above. Suppose that window k, k = 1,2, 3, … , K contains nk markers such 

that Z can be partitioned accordingly into  1 2 KZ Z Z Z  with Zk having nk columns, 

implying then that window k contains nk SNP markers.  Similarly, the vector g is partitioned 

accordingly; i.e.  
' ' '

1 2 'K
   g g g g  such that gk is of dimension nk x 1.  Recall that I 

denoted  gg PEVC g  .  For our proposed windows-based test, the key components of 
ggC  can 

be partitioned into K different blocks along the block diagonal; i.e., 1

ggC , 2

ggC , …,
gg

KC  where 
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gg

kC  is of dimension nk x nk . The extension to a joint “fixed effects” or EMMAX like test on nk 

markers in window k involves the following extension of Equation [3.14]. 

 
2 2 1( )

k

gg

f k n g k k   g Ι C g    [3.17] 

That is, it can be readily demonstrated, extending results from Bernal Rubio et al. (2016), that 

2

f is chi-square distributed with nk degrees of freedom under Ho: gk = 0.  The corresponding 

extension to a joint classical “random effects” or RRBLUP test on window k is provided in 

Equation [3.18] 

 
2 1( )gg

r k k k  g C g    [3.18] 

which would also be considered to be chi-square distributed with nk degrees of freedom under 

Ho: gk = 0.  Similarly, one could use Equation [3.18] to construct the same tests for MAP-

BayesA and MAP-SSVS but basing the Cgg on the corresponding asymptotic posterior variance-

covariance matrices as derived in Appendix A.  

For windows based inference using MCMC-SSVS, I simply compute the PPA for window k 

(i.e. PPAk)  in Equation [3.19], following that presented in Fernando et al. (2017). 

 

 
1 1

( ) 0
knN

kj l
l j

k

I

PPA
N


 

 
 

 

 
   [3.19] 

Here,  kj l
 defines a binary draw from the full conditional distribution of j for SNP marker j 

located within window k drawn during MCMC cycle l. Note then that   
1

( ) 0
kn

kj l
j

I 


 is equal to 

1 when any of the draws of  kj l
  within window k are equal to 1. 

For windows based GWA inference under MCMC-BayesA, I propose inferring upon the 

posterior probability of the proportion ( wq ) of the genetic variance explained by the markers in a 
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genomic window relative to the total genetic variance as proposed by Fernando and Garrick 

(2013) and determined in the following manner.  First note that the genotypic value that is 

attributed to a genomic window k is defined as in Equation [2.20]. 

 k k ka Z g    [3.20] 

Then the variance explained by the window is defined as 

 

''
2 2( )k

k

n kk k
a

k kn n
  

1 aa a
   [3.21] 

Similarly, the total genetic variance is computed as  

 

''
2 2( )m
a

m m
  

1 aa a
   [3.22] 

Hence, the proportion of genetic variance that is explained by marker in window k is defined 

as  

 

2

2

ka

k

a

q



    [3.23] 

 Suppose that I deem genomic windows that explain more than 1% of the total genetic 

variance as being of potential interest.  Hence, a variable selection modification of MCMC-

BayesA can be simply be based on the proportion of MCMC samples for which the genetic 

variance ( kq ) for window k exceeds 0.01 (Fernando and Garrick 2013). One advantage of this 

approach is that it can be applied to any MCMC analyses based on a model where variable 

selection is not explicitly specified.  



 

55 

 

3.4 Data  

3.4.1 Simulation Study  

In order to compare the various models (RR, BayesA, and SSVS) and algorithms (MAP vs. 

MCMC), I simulated data based on the Michigan State University Pig Resource Population 

(MSUPRP) raised at the Michigan State University Swine Teaching and Research Farm, East 

Lansing, MI (Edwards et al. 2008) . I specifically started with the SNP markers chosen for 

analysis by  Gualdron Duarte et al. (2014) which included 928 Duroc-Pietrain F2 crosses. 

Roughly 1/3 of these pigs were directly genotyped using the Illumina Porcine SNP60 beadchip 

(60K) whereas the remaining F2 animals with genotyped using a lower density 9K set but whose 

genotypes were subsequently imputed to the 60K set (Gualdron Duarte et al. 2013). Edits 

excluded animals with more than 10% of their SNP markers missing, excluding SNP markers 

with more than 10% of animals missing genotypes for those markers, and excluding SNPs with 

minor allele frequency (MAF) below 0.01 (Gualdron Duarte et al. 2014).   Some adjacent 

markers were in complete LD with each other. To circumvent multicollinearity issues, 

particularly its role in generating multimodality in the MCMC generated posterior densities for 

some SNP markers (Calus et al. 2015), I randomly deleted one SNP within an adjacent pair in 

complete LD with each other before further analyses. After invoking this edit, 43,266 SNPs 

remained.  The original data source can be downloaded from 

https://msu.edu/~steibelj/JP_files/GBLUP.html. 

To simulate different but representative genetic architectures, I generated QTL effects from 

three different Gamma densities with demonstrably different values of shape () ranging from an 

effectively oligogenic density ( = 0.18) which effectively specifies relatively much fewer QTL 

with large effects to an effectively polygenic Gaussian density ( = 3.00) where most QTL have 

https://msu.edu/~steibelj/JP_files/GBLUP.html
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intermediate effects with symmetrically small and large effects on either side.  A third 

intermediate value ( = 1.48) was also chosen.  A good illustration of the gamma density of QTL 

effects based on these three different specifications for  is provided in Figure 3.1.  Note that this 

range in  values for QTL effects has been reported for various traits in livestock based on 

previous empirical work (Hayes and Goddard 2001).  

 

Figure 3.1 Distribution of quantitative trait loci effects under a Gamma distribution for 

different specifications of shape (magenta curve  = 0.18, blue curve  = 1.48 and red curve  = 

3.00) 

In addition to the distribution of QTL effects, I conjectured that the number of QTLs (nqtl) 

may also influence GWA performance such that I considered nqtl = 30, 90, or 300.  Hence, I 
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simulated 10 replicated populations under each of the 3 x 3 = 9 different scenarios pertaining to 

the 3 different values for each of  and of nqtl.  Each of the 90 simulated datasets were based on 

utilization of the 43,266 SNP marker genotypes on the n = 922 MSUPRP F2 pigs as previously 

described.  Within each dataset, allelic substitution effects, gqtl, were simulated for each of the 

nqtl randomly chosen SNP markers from the corresponding gamma distribution having shape , 

with a randomly chosen half of those effects multiplied by -1 as per Meuwissen et al. (2001). 

The corresponding genotypes Zqtl for QTL on these animals were then a n x nqtl  subset of the 

SNP genotype matrix Z such that the cumulative genetic merit or true breeding values was 

determined as TRUEu =Zqtlgqtl. Phenotypes for animals were generated based on a heritability of 

0.45 as estimated for 13th-week tenth rib backfat from this same dataset. Only the remaining (i.e., 

non-QTL) marker genotypes Z-qtl were used for all simulation study analyses. 

In the simulation study, all parameters excluding v  in BayesA were estimated using both 

MCMC and MAP. For MCMC, I ran 200,000 iterations, discarding the first 100,000 iterations as 

burn-in and basing inference on saving every 10 of the remaining 100,000 cycles for a total of 

10,000 samples from the posterior density.  Using MAP, estimation of variance components ( 

for BayesA and SSVS was based on a convergence criterion of  
( ) ( 1) ' ( ) ( 1)
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Based on our previous experience (Chen and Tempelman, 2015), I recognized that the 

specification of starting values in MAP-SSVS and MAP-BayesA was important for genomic 

prediction accuracy and, hence, likely important for GWA inferences as well.  Strategies for 

specifying starting values for 
2

g , 
2

e , g and  may pragmatically involve using REML and 

RRBLUP inferences as in Chen and Tempelman (2015)  since RRBLUP is not computationally 

intensive.   For MAP-BayesA, starting values were based on REML estimates  
2ˆ
g REML

 and 
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 for j , j = 1, 2, …, m, based on the posterior expectation derived from its full 

conditional density.   For MAP-SSVS, the corresponding starting values were  

 
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g REML
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



  

for 
2

g with the starting value  0
 for   based, in turn, on starting values for j (i.e., SNP-

specific PPA) which were determined in the following manner.  First of all,  EMMAX-based P-

values for each SNP were converted to local false discovery rate (lFDR) estimates using the R 

package ashr (Stephens 2017).  It has been demonstrated that these lFDR estimates, in turn, 

can be used to approximate PPA using PPA ≈ 1- lFDR (Stephens 2017). These approximate PPA 

values were then chosen as the starting values for j in MAP-SSVS.  In turn, these starting values 

for j were used to derive the starting value for 0  in MAP-SSVS using the posterior expectation 

from its full conditional density, i.e., 

0
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0 0
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 


.  Upon convergence of variance 

components using the AIREML procedure outlined in Chen and Tempelman (2015), 

convergence of MAP-based solutions to g were based on the same criteria.  

Single SNP marker inferences were based on the procedures outlined previously; i.e. for MAP 

by comparing zr in Equation [3.12] for the random effect tests for RRBLUP, MAP-BayesA, and 

MAP-SSVS and zf  for the EMMAX test in Equation [3.11] to a standard normal distribution. 

Furthermore, the estimates of PPA and Bayesian P-values provided in Equations [3.15] and 

[3.16] were respectively used for GWA under MCMC-SSVS and MCMC-BayesA. Since the 
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remaining genotypes Z-qtl  did not include the simulated QTL, a SNP marker was declared a true 

positive if a QTL was located between that marker and its closest SNP neighbor on either side.  

Window based inference was based on the procedures outlined previously; i.e. for MAP by 

computing 
2

r in Equation [18] for the random effect tests using RRBLUP, MAP-BayesA, and 

MAP-SSVS and 
2

f  for fixed effects test in Equation [3.17] under EMMAX.  These test 

statistics were compared to a chi-square distribution with degrees of freedom nk.  Furthermore, 

GWA was based on the PPA that 0.01kq   as provided in Equation [3.23] for MCMC-BayesA 

and on the PPA for MCMC-SSVS as provided in Equation [3.19]. 

For windows-based inference, four alternative fixed window sizes were chosen: 0.5, 1, 2, or 3 

Mb.  The genome map used was the Sus Scrofa build 10.2 

(http://www.ensembl.org/Sus_scrofa/Info/Index). Also, as per Moser et al. (2015), two different 

within-chromosome starting positions (starting at location 0 or 0.25 Mb for window size 0.5; 

starting at 0 or 0.5 Mb location for window sizes 1 Mb; starting at 0 or 1 Mb location for window 

sizes 2Mb; and starting at 0 or 1.5 Mb location for window sizes 3Mb) for each chromosome 

were chosen to partly counteract the chance effect of different LD patterns being associated with 

non-overlapping windows. Finally, adaptive window sizes based on clustering SNP by LD r2 

were also determined using the BALD R package  (Dehman and Neuvial 2015)  using the 

procedure described by Dehman et al. (2015).    

The relative performance of all methods and models were based on receiver operating 

characteristic (ROC) curves.  In a ROC curve, the true positive rate (TPR) is plotted against the 

false positive rate (FPR) for each competing method (Metz 1978).  I were more specifically 

interested in the partial area under the curve up until a FPR= of 5% (pAUC05) so as to not 

include somewhat irrelevant ROC regions with low levels of specificity (Ma et al. 2013).  A 

http://www.ensembl.org/Sus_scrofa/Info/Index
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perfect classifier would have a pAUC05 of 0.05×1 = 0.05 whereas a random classifier would 

have a pAUC05 of 0.052/2= 0.00125. I subsequently rescaled all pAUC05 measures by 0.00125-1 

such that a random classifier is rescaled to a relative pAUC05 = 1.   I used the R package ROCR 

(Sing et al. 2005) to obtain replicate-specific ROC curves and pAUC05 for each of the 10 

replicated datasets for each method and window specification within each nqtl  and    

combination. For each window specification, specific comparisons between methods were based 

on using the logarithm of pAUC05 as the response variable in a mixed model ANOVA with 

methods, nqtl and  and all of their interactions included as fixed effects and population replicate 

(nested within nqtl and ) as a random effect blocking factor.  For windows-based inferences 

based on fixed window sizes, replicate-specific pAUC05 values were averaged over the two 

different starting positions as previously noted.    Mean log(pAUC05) estimates were 

backtranformed (i.e. anti-logged) to the original scale for reporting.  Overall marginal means 

were separated using Tukey’s test whereas comparisons between methods were sliced out using 

ANOVA t-tests for each value of nqtl or  if the corresponding interaction between these factors 

with methods were significant (P<0.05). I are also conjecture that window size might actually 

influence of the power of detecting QTL using the same method; therefore, I conducted separate 

tests comparing pAUC05 for each of the different window sizes, including adaptively chosen 

windows based on BALD, separately within each method. 

3.4.2 MSUPRP data 

I also compared all models and algorithms on 13-week tenth rib backfat (mm) within the 

MSUPRP data as per Gualdron Duarte et al. (2014).  Sex, contemporary group, and age of 

slaughter were treated as fixed effects (i.e., ).  I compared each of the six competing methods, 

computing either PPA or P-values in the same manner as in the simulation study. For MCMC-
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BayesA and MCMC-SSVS, I ran a total of 1 million MCMC iterations based on 500,000 burn in 

iterations and 500,000 iterations post burn-in saving every 10 iterations such that posterior 

inference was based on 50,000 random draws from the posterior distribution.   Since I did not 

know the true positions of the causal QTL for this trait, GWA inferences were compared 

between the various methods, based on PPA for MCMC-BayesA and MCMC-SSVS, P-values 

for RRBLUP, MAP-BayesA, and MAP-SSVS, and Bonferroni adjusted P-values for EMMAX.  

Note that no adjustment for multiple testing were invoked for P-values determined using the 

shrinkage based procedures (RRBLUP, MAP-BayesA, and MAP-SSVS) as per Gelman et al. 

(2012) whereas a Bonferroni adjustment based on the number of markers, or number of genomic 

windows for windows-based analyses, was invoked for EMMAX.   

3.5 Results 

3.5.1 Simulation Study 

Overall mean comparisons between methods for pAUC05 based on single SNP inferences are 

provided in Table 3.1, noting that two-way interactions were not detected (P > 0.05) between 

methods with or with nqtl.  There was no evidence of a sizeable difference between any of the 

methods given that pAUC05 ranged from 2.52 to 2.77 times that for a random classifier, 

although MCMC-BayesA did rank lowest. 

Table 3.1 Overall mean relative (random classifier = 1) partial areas under a receiving 

operating characteristic curve up until a false positive rate of 5% (pAUC05) for different 

methods on single SNP associations 

Methods 

 MCMC-

SSVS 

MCMC-

BayesA 

EMMAX MAP-

SSVS 

MAP-

BayesA 

RRBLUP 

Mean pAUC05 2.61a, b 2.52b 2.77a 2.69a, b 2.76a 2.73a 
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Values not sharing the same letter have different (P <0.05) relative pAUC05. Mean estimates 

based on 10 replicates per each of 9 populations of 3 x 3 factorial on number (30, 100, or 300) of 

quantitative trait loci (QTL), and shape parameter (0.18,1.48, or 3.00) for Gamma distribution of 

QTL effects. 

For fixed 1Mb window sizes (Table 3.2), the two-way interactions between method and and 

between method and nqtl were both significant (P < 0.0001). Therefore, methods were compared 

separately for each different value of and of nqtl.   Nevertheless, MCMC-SSVS and MCMC-

BayesA had the largest pAUC05 (P < 0.05) for each different value of and of nqtl as well as 

overall.  EMMAX generally followed MCMC-SSVS and MCMC-BayesA with MAP-SSVS, 

MAP-BayesA and RRBLUP being the worst performing methods.  Most notably, these latter 

three methods generally did worse than a random classifier (i.e. pAUC05 < 1) except for MAP-

SSVS at nqtl = 30. 

Table 3.2 Least squares mean relative (random classifier = 1) partial areas under a receiving 

operating characteristic curve up until a false positive rate of 5% (pAUC05) for different 

methods for associations based on genomic windows of length 1Mb.  Comparisons are made 

within different specifications of shape parameter () for Gamma distribution of quantitative trait 

loci (QTL) and number of QTL (nqtl) 

Methods 

Factors MCMC-

SSVS 

MCMC-

BayesA 

EMMAX MAP-

SSVS 

MAP-

BayesA 

RRBLUP 

Shape        

 2.82a 2.75a 1.78b 0.74c, * 0.63c, * 0.48d, * 

 4.22a 4.16a 2.54b 0.69c, * 0.38d, * 0.28e, * 

 4.63a 5.01a 2.47b 0.67c, * 0.40d, * 0.24e, * 

nqtl       

30 6.81a 7.28a 3.63b 1.69c 0.67d, * 0.31e, * 

90 3.89a 3.78a 2.14b 0.61c, * 0.47c, d, 

* 

0.37d, * 

300 2.08a 2.08a 1.42b 0.33c, * 0.31c, * 0.29c, * 
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Overall 3.81a 3.86a 2.23b 0.70c, * 0.46d, * 0.32e, * 

Values not sharing the same letter within a row have different (P <0.05) relative pAUC05 within 

the row. * indicates the corresponding method is not better than a random classifier. Mean 

estimates based on 10 replicates per each of 9 populations of 3 x 3 factorial on number (30, 100, 

or 300) of quantitative trait loci (QTL), and shape parameter (0.18,1.48, or 3.00) for Gamma 

distribution of QTL effects. 

Table 3.3 highlights the comparisons between the various methods using the adaptive window 

sizes inferred by BALD.  Here, the two-way interaction between method and nqtl was important (P 

< 0.05) whereas the two-way interaction between method and was not; hence, I just compared 

different methods within each different value of nqtl .  As with the 1Mb window inferences, 

MCMC-SSVS and MCMC-BayesA had the highest pAUC05, followed by EMMAX within each 

different value of nqtl such that these same rankings were found overall as well.  Again, I found 

that MAP-SSVS, MAP-BayesA, and RRBLUP had lower pAUC05 compared to a random 

classifier except for MAP-SSVS when nqtl = 30. 

Table 3.3 Least squares mean relative (random classifier = 1) partial areas under a receiving 

operating characteristic curve up until a false positive rate of 5% (pAUC05) for different 

methods for associations based on genomic windows adaptively chosen by the BALD software 

package.  Comparisons are made within different specifications of number of quantitative trait 

loci (nqtl) 

Values not sharing the same letter within a row have different (P <0.05) relative pAUC05 within 

the row. * indicates the corresponding method is not better than a random classifier. Mean 

estimates based on 10 replicates per each of 9 populations of 3 x 3 factorial on number (30, 100, 

Methods 

nqtl MCMC-

SSVS 

MCMC-

BayesA 

EMMAX MAP-

SSVS 

MAP-BayesA RRBLUP 

30 8.83a 9.03a 3.57b 1.76c 0.87d, * 0.29e, * 

90 5.34a 4.98a 2.13b 0.8c, * 0.50d, * 0.38d, * 

300 3.89a 3.17a 1.30b 0.66c, * 0.62c, * 0.58c, * 

Overall 5.68a 5.22a 2.15b 0.97c, * 0.65d, * 0.40e, * 
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or 300) of quantitative trait loci (QTL), and shape parameter (0.18,1.48, or 3.00) for Gamma 

distribution of QTL effects. 

I was also interested in pAUC05 comparisons between different window length 

specifications.  Recognizing that the interaction between method and window length was 

important in our joint analysis involving all simulated datasets, I choose to focus on window 

length comparisons separately within each of MCMC-SSVS, MCMC-BayesA, and EMMAX 

(Table 3.4), given that all other methods performed worse than random classifier with windows 

based inference.  For EMMAX, single SNP inferences has significantly larger pAUC05  

Table 3.4 Least squares mean relative (random classifier = 1) partial areas under a receiving 

operating characteristic curve up until a false positive rate of 5% (pAUC05) between different 

window sizes within each of EMMAX, MCMC-BayesA, and MCMC-SSVS. 

EMMAX  MCMC-BayesA  MCMC-SSVS 

Window pAUC05  Window pAUC05  Window pAUC05 

Single 

SNP 

2.76a  Single 

SNP 

2.52c  Single 

SNP 

2.61c 

0.5Mb 2.43a, b  0.5Mb 3.77b  0.5Mb 3.65b 

1Mb 2.23b, c  1Mb 3.86b  1Mb 3.81b 

2Mb 1.95c  2Mb 3.93b  2Mb 3.94b 

3Mb 1.85c  3Mb 3.93b  3Mb 4.04b 

Adaptive 2.15b, c  Adaptive 5.22a  Adaptive 5.67a 

 

Values not sharing the same letter within a column have different (P <0.05) relative pAUC05 

within the column. Mean estimates based on 10 replicates per each of 9 populations of 3 x 3 x 5 

factorials on number (30, 100, or 300) of quantitative trait loci (QTL), shape parameter 

(0.18,1.48, or 3.00) for Gamma distribution of QTL effects, and genomic region size (single 

SNP, 0.5Mb, 1Mb, 2Mb, 3Mb or adaptively determined) for genome wide association. 

compared to inferences based on the longer genomic windows (2 and 3 Mb) with inference based 

on adaptively determined windows using BALD and shorter genomic windows (0.5Mb and 1Mb) 

being intermediate in their performance.  Conversely, for both MCMC-BayesA and MCMC-

SSVS, single SNP inference had the lowest pAUC05 whereas adaptively determined window 

selection based on BALD yielded the highest pAUC05 with fixed window inferences being 
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intermediate in their performance.  In fact, the best overall performance was based on using the 

two MCMC based methods with adaptively determined windows with a pAUC05 being over 5 

times greater than that of a random classifier. 

3.5.2 MSUPRP Data 

Manhattan plots based on single SNP associations for 13-week tenth rib backfat (mm) in 

MSUPRP are provided in Figure 3.2. The statistically most significant marker identified by 

EMMAX was SNP label ALGA0104402 (P = 2.36e-10) at location 136.0844Mb in 

Chromosome 6, marking the same location identified as being most significantly associated with 

this trait by Gualdron Duarte et al. (2014).  Another 11 nearby statistically significant markers 

ranged in location from 132.60Mb to 138.24Mb with 1 marker (SNP label MARC0035827) at 

122.36Mb on Chromosome 6 being also statistically significant using EMMAX.  For MCMC-

SSVS, the marker (SNP label ALGA0122657) located at 136.0786Mb on Chromosome 6 had the 

highest PPA of 0.487 and was adjacent to the most significant marker ALGA0104402 as 

identified by EMMAX.  MCMC-SSVS also inferred its second largest PPA=0.227 with SNP 

marker ALGA0104402.   Hence, the top 2 SNP markers identified by MCMC-SSVS and 

EMMAX were the same, albeit their order of importance was reversed. Although the most 

significant single SNP associations were also determined within this same region for each of the 

four other methods, their levels of significance were clearly not important except perhaps for 

MAP-SSVS which started to approach statistical significance with SNP label MARC0035827 

(P=0.08).  
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Figure 3.2 Manhattan plots for single SNP analysis on 13th week 10th rib backfat in Duroc 

Pietrain F2 cross (n = 922 pigs) based on different methods (Panel A: EMMAX, Panel B: 

MCMC-SSVS, Panel C: MCMC-BayesA, Panel D: RRBLUP, Panel E: MAP-BayesA and Panel 

F: MAP-SSVS) 
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For windows-based inference, I focused on the adaptively chosen window strategy based on 

LD using BALD (Figure 3.3).  For EMMAX, the most significant window (P = 9.36e-08) ranged 

from 134.17Mb to 134.75Mb on Chromosome 6. Although this region did not contain any 

markers that were statistically significant based on single SNP based inferences, it was very 

close to a marker (SNP label ASGA0029653) at 134.14Mb that was deemed to be statistically 

significant in Figure 3.2. Four other windows on Chromosome 6 were also significant, covering 

regions 129.70-131.35Mb, 132.87-134.14Mb, 135.19-136.84Mb and 136.97-137.32Mb.  These 

windows included some statistically significant or nearly significant markers based on single 

SNP inferences in Figure 3.2.  Using MCMC-SSVS, the most significant window (Window 909)  

covered 135.19-136.84Mb with a PPA = 0.722; this window also contained the most 

significant markers based on single SNP inferences using EMMAX and MCMC-SSVS in Figure 

3.2. Window 905 had the second highest PPA = 0.477 and ranged in location from 132.87-

134.14Mb with all other windows having smaller PPA (< 0.2).  A LD heatmap of the genomic 

region containing both windows are provided in Figure 3.4, indicating that some SNP markers in 

Window 905 are in relatively high LD with markers in Window 909.  These two windows also 

had the highest PPA under MCMC-BayesA being 0.459 and 0.553 respectively.  For RRBLUP, 

MAP-BayesA and MAP-SSVS, no window was deemed to be statistically significant (P>0.05).  
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Figure 3.3 Manhattan plots for genomic window based associations on 13th week 10th rib 

backfat in Duroc Pietrain F2 cross (n = 922 pigs) based on different methods (Panel A: 

EMMAX, Panel B: MCMC-SSVS, Panel C: MCMC-BayesA, Panel D: RRBLUP, Panel E: 

MAP-BayesA and Panel F: MAP-SSVS) under adaptive window inference. 
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Figure 3.4 Linkage disequilibrium (r2 metric) heatmap for genomic region containing 

Windows 905 - 909 on Chromosome 6 as adaptively determined by BALD software. Blue dots 

are starting and ending points for window 905 whereas purple dots are starting and ending points 

for window 909. Black dots are the 3 markers at 133.9292Mb, 136.0786Mb and 136.0844Mb 

that are top 3 SNPs by MCMC-SSVS. The blue oval is used to highlight a pocket of higher r2 

measures SNP markers in window 905 and 909. 

3.6 Discussion 

The objectives of our study were multifaceted in that I wished to very broadly address the 

impact of a) prior specifications on marker effects, b) single marker associations versus 

associations based on different specifications for genomic windows and c) of computationally 

tractable but analytical approximations for GWA inference based on sparse priors.  Although our 

simulation study was based on genotypes derived from a specific population (MSUPRP), a wide 
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variety of potential genetic architectures were constructed on top of that framework based on 

different degrees of skewness of a Gamma distribution via alternative specifications of the shape 

parameter () for QTL effects as well as different numbers (nqtl) of QTL.   

Most GWA studies have been conducted using single SNP inferences (Goddard and Hayes 

2009; Visscher et al. 2012; Goddard et al. 2016).  In this specific context, I determined that the 

difference in pAUC05 between all methods were relatively small and unimportant even though 

MCMC-BayesA had significantly lower pAUC05 and hence worse GWA performance.  

However, for all windows based analyses, MCMC-BayesA and MCMC-SSVS had significantly 

greater pAUC05 than all other methods across all combinations of  and nqtl, regardless of 

window size and whether these window sizes were fixed or adaptively inferred based on LD 

using the BALD software package.  Conceptually, MCMC-BayesA might have even 

outperformed MCMC-SSVS for windows-based GWA as our comparisons may have been 

influenced by the arbitrariness of using 1% as a threshold for percentage of total genetic variance 

explained by a window when determining the PPA under MCMC-BayesA.  That is, proper 

specification of such a threshold is likely to be density dependent.  Admittedly, a BayesB like 

implementation (Meuwissen et al. 2001) could have captured the best features (i.e. variable 

selection and heavy-tailed priors) of both BayesA and SSVS.  EMMAX typically ranked third 

whereas MAP implementations of BayesA and SSVS as well as RRBLUP did much more poorly 

for windows based association.  The latter was not too surprising since previously Gualdron 

Duarte et al. (2014) also determined that RRBLUP was extremely conservative for GWA in this 

same dataset.  Furthermore, this liability of RRBLUP has been noted by others including Hayes 

(2013).  I noted that the median and mean lengths for windows adaptively chosen by BALD 

software were 0.59Mb and 0.91Mb (Panel A in Figure A1 in Appendix A), respectively, such 
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that it was reasonable to expect adaptively chosen windows to lead to an GWA performance 

closest to inferences based on either based on the 0.5Mb or 1Mb fixed window sizes as I did 

observe for the two MCMC based procedures. 

What was initially surprising to us was that the pAUC05 for the analytical “shrinkage”-based 

procedures, namely RRBLUP, MAP-SSVS and MAP-BayesA, under windows based inference 

was often worse than that of a random classifier (i.e. pAUC05<1).  This, at first, seemed 

counterintuitive to us.  Hence, I briefly investigated a scenario where the number of SNP 

markers per window was fixed to be 10 rather than basing window sizes on a fixed physical 

distance. Basing genomic windows on a fixed number of SNPs has been a strategy also 

considered elsewhere (Zhang et al. 2016).  In our particular case, the average length of a 10 SNP 

window was 0.51 Mb such that one might anticipate that inference based on 10 SNP marker 

windows might be comparable to using inference based on fixed 0.5 Mb length windows.  

Nevertheless, I determined that 10 SNP windows based inference lead to a ROC performance 

that was at least as good as a random classifier for each of RRBLUP, MAP-SSVS and MAP-

BayesA (Figure A2 in Appendix A), conversely to what I observed previously to windows based 

on any fixed physical distance.  This contrast in pAUC05 performance between fixed physical 

distance and fixed number of markers could be explained as follows.  For the vast majority of 

windows based on either scenario (fixed number of markers or fixed physical distance), the P-

values for the chi-square tests of these shrinkage based procedures were very large (i.e., P > 

0.85).  With inference based on a fixed number of SNP markers per window and random 

assignment of QTL to these markers, it was reasonable to expect that the pAUC05 of any of 

these procedures should be at least as large as a random classifier.  However, with inference 

based on fixed physical distance in Mb or even adaptively determined based on LD relationships, 
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the number of SNP markers and hence the degrees of freedom for each window-specific chi-

square test was highly variable, ranging from 1 to 35 with 0.5Mb windows, for example.  Hence 

regions with few markers are more likely to have smaller P-values than regions with many 

markers by nature of a greater penalty incurred with a larger degrees of freedom chi-square test 

statistic.  Furthermore, lower P-value regions with fewer markers are also less likely to contain a 

QTL because of random assignment of QTL to markers throughout the genome such that regions 

with the smallest P-values would more likely include a greater than expected number of false 

positive results relative to a random classifier.     

One possible strategy to mitigate this problem is through use of a likelihood ratio test for the 

variance component characterizing the variance attributable to markers within a window can be 

considered for EMMAX or the MAP based approaches as then the degrees of freedom for that 

test does not depend on the number of markers in that window (Wu et al. 2010; Wang et al. 

2013). Gualdron Duarte et al. (2014) present details for such a likelihood ratio test; nevertheless, 

this approach requires one to refit the entire model each time that a particular window is being 

tested and hence can be computationally challenging. 

I specifically determined that adaptive window specifications based on BALD worked best for 

both MCMC-BayesA and MCMC-SSVS with significantly higher mean pAUC05 than 

inferences based on fixed window lengths or single SNP markers. In fact, there was no evidence 

of differences in pAUC05 between GWA associations based on windows of constant sizes 

ranging from 0.5 to 3Mb when using either MCMC-BayesA or MCMC-SSVS.  Hence adaptive 

window clustering based on LD measures seems to be an important factor to consider when 

partitioning genomic windows, at least for Bayesian sparse prior specifications.  
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I have previously established that starting values are important for MAP-SSVS and MAP-

BayesA (Chen and Tempelman 2015); in fact, I then demonstrated that starting marker effects at 

null values was very suboptimal, even though that is a common strategy for genomic prediction 

methods based on the use of the EM algorithm (Meuwissen et al. 2009; Karkkainen and 

Sillanpaa 2012).  As I adapted in this study, a practical strategy is to base starting values on 

RRBLUP and genomic REML as I conducted in this study although I worried as to how 

suboptimal that might be, recognizing MAP estimates are asymptotic i.e.,     MAP E |g g y  

only as n   and such that n >> m.  To further assess whether starting values based on 

RRBLUP and genomic REML estimates might lead to suboptimal GWA inferences, I also based 

starting values for MAP-SSVS and MAP-BayesA on posterior mean estimates derived from their 

MCMC counterparts, focusing only, however, on single SNP and adaptive window inference.  I 

recognize that this would not be a practical MAP strategy as once MCMC based inferences are 

obtained, then asymptotic MAP based inferences would not have any extra value.  As anticipated 

from our previous genomic prediction work (Chen and Tempelman 2015), using MCMC based 

starting values for MAP-SSVS lead to a larger pAUC05 compared to the use of RRBLUP or 

genomic REML starting values except for no evidence of a difference at nqtl = 300 (Table A5 in 

Appendix A).  However, for adaptively determined windows, even MAP-SSVS inferences based 

on MCMC based starting values were no better than a random classifier except for when nqtl =30.   

Similar results for comparing different sets of starting values (MCMC-BayesA vs BLUP) for 

MAP-BayesA are provided in Table A6 in Appendix A.  These supplementary results further 

illustrate how precarious is the use of MAP based procedures for Bayesian regression GWA 

analyses; again, I would believe the sensitivity of MAP to starting values would only be greater 

with the use of high density marker panels. 
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As our GWA inference for MCMC-SSVS was based on PPA (i.e. Prob( j  = 1|y)), it might 

seem reasonable to specify GWA inference for MAP-SSVS in a similar manner; i.e,, using the E-

step values of j at convergence as estimates of PPA.  However, I noted that these E-step values 

uniformly drifted either towards 0 or 1 such that there were never any intermediate estimates of 

PPA.  A comparison of PPA based on  j  for Prob( j  =1|y) for MCMC-SSVS versus the E-step 

values of  j  at convergence on the MSUPRP data is provided is given in Panel A of Figure A3 

in Appendix A.  Also, recall that the MAP-procedure is sensitive to starting values and that 

starting values for MAP-SSVS were based on RRBLUP as this might be a pragmatic and 

reasonable strategy in most cases.  If I had based starting values on, say, their MCMC-SSVS 

posterior means, one would notice a different assortment of converged E-step values of  j  

compared to what I observed with RRBLUP starting values as I demonstrate with the MSUPRP 

data in Panel B of Figure A3 (Appendix A).   

Recall that for MAP-SSVS, I based starting values for the SNP specific PPA on estimated 

local false discovery rates (lFDR) using the R package ashr since there is presumably a close 

relationship between them; i.e., PPA ≈ 1- lFDR (Stephens 2017).  This procedure converts P-

values to lFDR such that I based lFDR determinations from the P-values computed under 

EMMAX.  This begged the question as to whether PPA could be simply based on lFDR 

processing of EMMAX P-values.  However, upon comparing 1-lFDR estimated from the 

EMMAX P-values to PPA estimated using MCMC-SSVS of the MSUPRP data, it appeared that 

there was not generally very good agreement between the two sets of PPA estimates except for 

the some near-zero PPA and the largest PPA estimated using both procedures (Figure A4 in 

Appendix A).   
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I also wondered if the strategy for computing window-based PPA could be simplified further 

from that presented in Fernando et al. (2017) and used in this paper (i.e., Equation [3.19]) to that 

suggested by Moser et al. (2015) who simply summed SNP specific PPA (i.e., based on Equation 

[3.15]) within a window to determine the window-based PPA.  One should anticipate that the 

approach of Moser et al. (2015) should lead to higher estimated PPA.  I compared the two PPA 

determination approaches for pAUC05 in the simulation study and noted that there was 

significant interaction between PPA determination approach with  and nqtl but no significant 

interaction involving window size; hence I compared the two strategies within each value of  

and nqtl averaged across window length (Table A7 in Appendix A).  The only significant 

difference in pAUC05 occurred with and nqtl =300 for which the approach of Fernando et al. 

(2017) led to a higher pAUC05.  Nevertheless, since point estimates of pAUC05 were always 

larger using the approach from Fernando et al. (2017) I would recommend their approach from 

Equation [3.19] for the determination of windows based PPA. Excellent analytical discussion on 

control of false positives in GWA using PPA is further provided in Fernando et al. (2017).  

I did not estimate v  using either the procedures outlined in Yang et al. (2015b) for MCMC-

BayesA or provided in Chen and Tempelman (2015) for MAP-BayesA primarly because of the 

extremely poor MCMC mixing for sampling this hyperparameter and its poor convergence in 

MAP-BayesA.  A typical specification for v  in BayesA is 4 or 5 (Colombani et al. 2013; Perez 

and de los Campos 2014). The specification of 2.5v   that I chose for this paper was based in 

part on results from Yang et al. (2015b) and Nadaf et al. (2012) who determined that lower 

specifications of  gv  (i.e., heavier tails) could lead to higher genomic prediction accuracies when 

using Bayes A.  To assess this further, I compared MCMC-BayesA using 2.5v   versus 5v   
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for pAUC05 based on the BALD derived adaptive window inference. In general, the use of 

2.5v   yielded a higher mean pAUC05 than 5v   except for a non-significant difference at  

nqtl=300 (Table A4).   For large scale empirical analyses whereby hyperparameter inference 

seems daunting, researchers should consider conducting analyses based on a finite number of 

hyperparameter specifications, choosing those specifications that lead to the best cross-validation 

prediction accuracy.  Similar arguments could be made for choosing the key hyperparameters in 

other Bayesian regression models.  It is worth noting that even I ran our MCMC algorithm for 1 

million iterations, the mixing of the MCMC chain was still rather poor as it pertained to 

inference on other hyperparameters. For example, for MCMC-BayesA, the effective sample size 

(ESS) for 
2

g   was estimated to be 66.33 whereas for SSVS, the ESS was 61.03 for 
2

g  and 

53.48 for  .  

It should be apparent that given that MCMC-SSVS is a natural variable selection model, it 

might be favored over MCMC-BayesA which is not a natural variable selection model.  Our 

strategy for computing the proportion of genetic variance explained by each window and 

determining the posterior probability that that percentage exceeds an arbitrary threshold (1% in 

our analyses) is based on the strategy presented by Fernando and Garrick (2013).   The flexibility 

of MCMC modeling allows posterior probabilities (i.e., PPA) of this nature to be computed.  

However, one should be wary of the impact of the threshold since it obviously should depend 

upon marker density.  That is, if the threshold is set too high, then sensitivity is lost.  Based on 

the results from both simulation study and real data analysis, I demonstrated that random effects 

modeling can also be powerful tool for GWA as long as the suitable priors, i.e., in our case 

sparser priors, are used. Other variable selection implementations popularized in WGP including 
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BayesB (Meuwissen et al. 2001) or BayesR (Erbe et al. 2012; Moser et al. 2015) could be 

considered as well.  

Our MSUPRP application was interesting in that I discovered that SNP markers in two 

different blocks can be in high LD even when they’re not adjacent to each other. However, I 

would quickly note that these strange LD patterns may be due to genome assembly errors in the 

pig genome (Groenen 2016) with particular issues having been identified in the Chromosome 6 

region  (Warr et al. 2015) which contained the strongest associations in our study.  This may 

somewhat complicate strategies for single SNP specific or even window-based inference. I also 

recognize that there is a movement towards the use of multi-SNP haplotype modeling which may 

improve GWA performance (Cuyabano et al. 2014).  Our adaptive window based strategy seems 

to improve the performance of GWA relative to single SNP or fixed window length inference 

although, conceivably, there may be other better ways to group SNPs. With marker densities 

well beyond 50K, the adaptive window strategy might not be viable since it requires the 

computation and storage of matrix of LD r2 values between every SNP marker within a 

chromosome before clustering analyses can be used to partition the genome into windows.  

Fernando et al. (2017) also suggested that PPA based on Bayesian GWA analyses similar to our 

MCMC-SSVS be based on whether non-zero associations were found not only in that marker’s 

resident window but also in either of the two flanking windows.  Their strategy was based on 

fixed window sizes such that it may be worthwhile to consider their flanking strategy in the 

context of adaptively chosen window sizes.  I conjecture that if LD structure is appropriately 

used to partition the genome, the use of such flanking windows might not be necessary; however, 

this should be a topic for future research.  It is also important to note that the comparisons in this 

paper are context specific in terms of the genomic LD relationships germane to a F2 cross in 
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pigs.  This cross naturally leads to a higher pairwise LD between adjacent SNP markers than 

what might be found in outbreeding populations, and most notably humans.   Different LD 

patterns would naturally change the relative comparisons between single SNP versus windows 

based inferences as well as the relative number and sizes of adaptively chosen windows based on 

LD relationships.  Hence future investigation of our approaches in other populations is strongly 

warranted. 

In summary, I found Bayesian variable selection to be a promising strategy for GWA when 

combined with window based inference.  Nevertheless, it seems prudent that window selection 

be carefully chosen using rules based on LD information rather than predetermined constant 

physical window lengths (in Mb) for genomic regions.  Also, recently proposed analytical 

approaches for Bayesian regression models should be discouraged for GWA studies.  
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Chapter4  Hierarchical Whole-Genome Prediction and Genome-Wide Association 

Modeling When Some Genotypes Are Missing 

4.1 Abstract 

Single step Genomic Best Linear Unbiased Prediction (ssGBLUP) has become increasingly 

popular for whole genome prediction (WGP) modeling as it utilizes any available pedigree and 

phenotypes on both genotyped and non-genotyped individuals.  The WGP accuracy of ssGBLUP 

has been previously demonstrated to be higher than or equivalent to conventional Bayesian 

regression models.  However, most of these assessments have typically not included phenotypes 

on non-genotyped individuals in Bayesian regression analyses, making the interpretation of these 

comparisons difficult.  Recently, ssGBLUP has been increasingly used for genome-wide 

association (GWA) studies although there has been no clear guidance on how to determine 

formal statistical evidence of association in these analyses. I address this problem as well as 

propose a GWA based on a single step adaptation of Bayesian stochastic search and variable 

selection (ssSSVS) model that also incorporates phenotypes on non-genotyped animals.   Our 

study was based on a dataset including 3186 Holstein cows from 6 US research stations using the 

USDA-ARS Bovine 60671 SNP marker panel as genotypes.  In a simulation study based on the 

use of these same genotypes, a different number of causal variants (nc = 30, 300, or 3000) were 

randomly assigned to the markers, masking 50% of cows as non-genotyped, for a trait having a 

heritability of 0.25.  I determined that ssSSVS had a greater (P<0.05) WGP accuracy than 

ssGBLUP with simpler genetic architectures (nc = 30 or nc = 300). Moreover, ssSSVS always 

had better (P<0.05) GWA performance than ssGBLUP as based on the partial area under a 

receiver operating characteristic curve up until a false positive rate of 5%.  In a 25-fold within 

station cross-validation study using phenotypes from the dairy consortium, I determined that 
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ssSSVS had, albeit slightly, greater (P<0.05) WGP accuracies in milkfat compared to ssGBLUP 

for genotyped individuals, whereas no such differences were detected for body weight.  I also 

found no significant differences between ssSSVS and ssGBLUP for WGP accuracies for non-

genotyped individuals for both traits. Overall, I find ssSSVS to be a promising method for both 

WGP and GWA, particularly for genetic architectures characterized by a few genes with large 

effects. 

4.2 Introduction 

Whole genome prediction (WGP) or genomic selection using dense marker panels has been 

increasingly implemented in animal and plant breeding and in human genetics studies. Two 

broad categories of models have been particularly popular for WGP analyses, namely Genomic 

Best Linear Unbiased Prediction (GBLUP) analysis and Bayesian regression or “Bayesian 

alphabet” (Gianola 2013) analysis.  GBLUP is based on traditional linear mixed model inference 

whereby a genomic relationship matrix based on single nucleotide marker (SNP) marker 

genotypes is used to specify the correlation between random animal effects (VanRaden 2008).  

On the other hand, Bayesian regression models are typically more flexible with distributional 

specifications for SNP effects based on heavy tailed prior distributions like a scaled Student t 

(i.e., BayesA) (Meuwissen et al. 2001)  or variable selection specifications such as stochastic 

search and variable selection (SSVS) (George and McCulloch 1993; Chen and Tempelman 

2015).  These Bayesian regression approaches been demonstrated to achieve higher WGP 

accuracies in many different applications (de Los Campos et al. 2013).  

A single-step GBLUP (ssGBLUP) approach has been used to describe a procedure that 

combines phenotypes on genotyped animals and on non-genotyped animals with pedigree 

information (Aguilar et al. 2010) has been successfully applied to several livestock species 
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(Chen et al. 2011b; Gray et al. 2012; Lourenco et al. 2015). Because of the additional utilization 

of the phenotypic and pedigree information on non-genotyped individuals, ssGBLUP has been 

found to have higher WGP accuracies than one popular Bayesian alphabet model, BayesC 

(Lourenco et al. 2013; Legarra et al. 2014; Vallejo et al. 2016).  However, this comparison might 

be unfair as most of these Bayesian analyses have not been extended to use phenotypes on non-

genotyped individuals; furthermore, these comparisons may be sensitive to arbitrary 

specifications of some key hyperparameters, most notably the proportion of SNP effects deemed 

to be non-zero.   Recently, Fernando et al. (2014) proposed a single-step approach for Bayesian 

alphabet models that combine information on both genotyped and non-genotyped individuals, 

later following up on that work with computational strategies for implementation with large 

livestock datasets (Fernando et al. 2016).   

Genome-wide association (GWA) analysis is a useful tool to identify genomic regions 

containing putative causal variants or quantitative trait loci (QTL). Currently, popular tools such 

as EMMAX simultaneously fit all markers using the linear mixed model to account for 

population structure (Kang, 2010). Although EMMAX and somewhat related analyses have been 

demonstrated to increase the power of QTL detection compared to single-marker based 

regression (Kang et al. 2008), these analyses have not typically utilized phenotypic information 

on non-genotyped individuals.  Wang et al. (2012) and Zhang et al. (2016) have demonstrated 

how to adapt ssGBLUP for GWA; however, their GWA assessments were not based on formal 

measures of statistical significance but merely point estimates of SNP estimates or percentage of 

genetic variance explained by sliding windows of SNP markers.  This latter development is 

particularly important if one is interested in a fair assessment of whether flexible Bayesian 
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specifications might have merit over ssGBLUP for both WGP and GWA applications when 

some phenotyped animals are not genotyped.  

GWA studies are increasingly based on joint tests on SNP markers within pre-defined 

genomic windows rather than just tests on single SNP marker as single SNP marker tests may 

have low statistical power or be adversely affected by multicollinearity or both (Chen et al. 2017; 

Fernando et al. 2017). Most studies have based their window using arbitrarily selected window 

sizes or number of markers (Wolc et al. 2012; Moser et al. 2015) whereas Dehman et al. (2015) 

proposed to adaptively cluster SNP markers into windows of varying size based on LD structure. 

Chen et al. (2017) demonstrated that GWA inferences based on an adaptive window approach 

enhance the GWA performance of Bayesian models, such as SSVS and BayesA compared to 

GWA associations derived from window sizes of arbitrary length or single SNP inferences.  

I had several objectives in this study.  The first objective was to present a single-step SSVS 

(ssSSVS) Bayesian strategy for WGP in conjunction with GWA.  A second objective was to 

demonstrate formal P-value inference for a single-step extension of EMMAX or GBLUP 

(ssGBLUP) that allows use of phenotypes on non-genotyped individuals for GWA based single 

SNP based test as well as adaptive window approach. The last objective was to compare the 

performance of ssSSVS and ssGBLUP for WGP and GWA in both simulation study and real 

data analysis. 

4.3 Methods and materials 

4.3.1 The hierarchical linear model 

Following Fernando et al. (2014) the linear model including genotyped and non-genotyped 

individual can be presented as in Equation [4.1]: 

n n n n

g g g g

       
         

       

y X Z 0 u
β e

y X 0 Z u
   [4.1] 
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Here ny  and 
gy  are nn x 1 and ng x 1 vectors of phenotypes of non-genotyped and genotyped 

individuals, respectively. Also β is a vector of fixed environmental effects, with nX  and 
gX being 

the corresponding incidence matrices on the non-genotyped and genotyped individuals, 

respectively.  Furthermore, nu  and 
gu are, respectively, qn x 1 and qg x 1 vectors of breeding values 

of non-genotyped and genotyped individuals, with nZ and 
gZ  being the corresponding respective 

incidence matrices.     

Now, breeding values can, in turn, be written as linear functions of SNP effects per Fernando 

et al. (2014) in Equation [4.2]. 

ˆ
n n

g g

   
   
    

u T α ε

u T α
   [4.2] 

Hereα is a m x 1 vector of random SNP marker effects that  2~ ,N α 0 D  with D  being a 

weighting matrix as described later.  Furthermore,
gT  is a standardized genotype matrix for 

genotyped individuals such that 
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j j
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




M 1k
T    [4.3] 

where 
gM  is the original ng x m genotype matrix with elements coded as “0, 1, 2” or the number 

of copies of the reference allele of the SNP marker within the corresponding column of Mg.  

Furthermore, element j of the m x 1 vector  k is the mean value ( 2 jp ) for the corresponding column 

of 
gM , such that 

jp  is the allele frequency of the reference allele of SNP marker j =1,2,…,m  

(VanRaden 2008).  Conversely, ˆ
nT  in Equation [4.2] is an “imputed” genotype matrix for the non-

genotyped individuals. As demonstrated by Fernando et al., (2014), ˆ
nT  can be obtained by solving
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ˆnn ng

n g A Τ A Τ , where Ann and Ang are the partitions of A-1 corresponding to non-genotyped by 

non-genotyped and non-genotyped by genotyped animals, respectively.  Finally, the imputation 

residuals  1 2~ ,( )nn

uN 
ε 0 A  in Equation [4.2] are the contributions of pedigree information to 

breeding values for non-genotyped animals as demonstrated by Fernando et al. (2014).  

Combining Equations [4.1] and [4.2], a SNP effects model can be written as  

eUεWαXβy      [4.4] 

where  
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0
. Then the corresponding 

mixed model equations used to compute the BLUE, β̂ , of , BLUP α̂  of  and BLUP ε̂  of , as 

also illustrated by Fernando et al. (2014), is given in Equation [4.5] 
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 [4.5] 

4.3.2 The ssGBLUP model 

When D=I, then the elements of  are normally, identically and independently distributed, 

such that the corresponding analysis is single-step (ss) adaptation of GBLUP which I denote as 

ss-GBLUP.  When the total number of animals q = qn + qg is considerably smaller than the total 

number of SNP markers m, I believe it is convenient to re-parameterize Equation [4.4] further to 

Equation [4.6]. 

 
   y Xβ Zu Uε e    [4.6] 
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where  
n
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T u
 is the contribution of genotypes to 

breeding values whether based on actual genotypes (Tg) for breeding values on genotyped animals 

or based on imputed genotypes ( ˆ
nT ) for non-genotyped animals.  With 

 
u Tα , then 

  'var( )


u TTα  such that the corresponding mixed model equations can be written as follows to 

solve for the BLUE of  and the BLUP of 
 

u and ε  in Equation [4.7] 
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 [4.7] 

Note that 2

 , 2

u , and 2

e  can be readily estimated using REML; in fact, I adopt the average 

information restricted maximum likelihood (AIREML) algorithm (Gilmour et al. 1995; Johnson 

and Thompson 1995) to estimate the variance components 2

 , 2

u  and 2

e . Subsequently,  

( )ˆ ˆ ˆ, ,and β u ε  can be obtained by solving MME in Equation [4.7] conditional on these REML 

estimates. I label this strategy that separately estimates a common marker variance component 

2

  from the polygenic variance component 2

u  as the heterogeneous variance (HETVAR) 

approach, recognizing that these two variance components could be different from each other in 

real data applications if the markers do not capture all of the genetic variability or highly selected 

animals or animals from certain herds or stations are preferentially genotyped such that 2

  ≠ 2

u .   

Furthermore, estimating the two variance components separately might be a better solution if the 

pedigree based relationship matrix and scaled genomic relationship matrix are not completely 

compatible with each other (Chen et al. 2011a).    
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The HETVAR approach differs from the more traditional ssGBLUP approach described in 

Aguilar et al. (2010) where it is implicitly assumed that 2 2

u    This specification, which I 

label as HOMVAR, simplifies the MME in Equation [4.7] to that in Equation [4.8] 

 
 

2
1

2

2

2

ˆ

ˆ

ˆ

e

u

nn e

u













 
                         
 

' ' '

'

' ' ' '

'

'

' ' '

X X X Z X U

β X y
X Z Z Z TT Z U

u Z y

ε U y
X U U Z U U A

 [4.8] 

Similarly,  2

u  and 2

e  can be estimated using REML.  Essentially, the MME in Equation 

[4.8] is equivalent to the following MME based on 1H (Aguilar et al. 2010): 
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where  
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 into components due to non-genotyped (n) and 

genotyped (g) animals, then the MME in Equation [4.9] can be further rewritten as 
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 [4.10] 

Equations [4.8], [4.9] and [4.10] are based on equivalent linear models (Henderson 1975) and 

hence lead to identical estimated breeding values ˆ
gu for the genotyped individuals whereas 

REML estimates for 2

u  and 2

e  are also identical. For non-genotyped individuals, the mixed 
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model equations (MME) in Equation [4.9] estimate the breeding values using imputed genotypes  

 ˆ
n


u  and pedigree information in ε̂  separately, i.e.  

 ˆ ˆ ˆ
n n


 u u ε . 

To test 2 2

0 : uH   ,  one can conduct a likelihood ratio test with 0l  being the maximized 

restricted log likelihood under the reduced HOMVAR model and  1l  being the maximized 

restricted log likelihood under the full HETVAR model.  Then under 2 2

0 : uH   , 0 12( )l l 

follows a 50:50 mixture of 2

1  and 2

0 (Stram and Lee 1994). 

4.3.3 The ssSSVS model 

I consider a variable selection specification by writing 
 1

{ }; 1,2,.....,
j

jdiag j m
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



  D , 
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

    .  The corresponding model is SSVS with 

further details provided by Chen et al. (2017).  Note that  is the probability that marker has a 

large variance, and subsequently large effect, with respect to the trait. This specification for D is 

equivalent to assigning the following mixture prior for the SNP marker effects: 
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 [4.11] 

Additionally, the prior for  is Beta distributed, i.e.,  

    0
0

0 0| , 1p


           [4.12] 

For the variance components, I specify scaled inverse chi-square distribution priors; i.e., 
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and 
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For all analyses in this paper, I use non-informative priors where the degree of freedom 

1e uv v v      and scale 2 2 2 0e us s s    (Gelman 2006).   

Given the prior specification above, the joint posterior density is given as follows: 
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    [4.16] 

Then unknown parameters for ssSSVS can be sampled from their joint posterior density using 

Markov Chain Monte Carlo (MCMC). Details on the MCMC sampling scheme for ssSSVS is 

provided in the Supplementary File S1 and for SSVS in Chen et al. (2017). 

4.3.4 Conducting Genome-Wide Association Analyses 

4.3.4.1 Single SNP marker associations 

An efficient strategy for providing formal GWA inference under EMMAX is provided by  

Gualdron Duarte et al. (2014) and further described in Chen et al. (2017) with a formal proof 

provided in  Bernal Rubio et al. (2016). This approach is equivalent to treating the SNP marker 

effect of interest as fixed while treating all other SNP effects as random in a generalized least 

squares (GLS) approach.   The same strategy can be used to derive formal GWA under a single-

step modification of EMMAX which I denote as ssEMMAX, the test statistic for the ssEMMAX 

test on SNP marker j can then be simply written as  
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Note that SNP effect estimates  
1

ˆ ˆ
m

j j



α  can simply be backsolved from the solutions to 

Equation [4.8] using 
1 ( )ˆ ˆ

g g g

α T G u  where 
'

g g gG T T (Stranden and Garrick 2009).  ˆ
jse   is 

the square root of diagonal of  ˆvar g , where    ' 1 2 2 1ˆvar uu

g g g gg e g g   g T G G C G T . Here uu

ggC is 

essentially the block diagonal of the inverse of the coefficient matrix in Equations [4.7] or [4.8] 

corresponding to 
( )

g

u .  That is, one can obtain uu

ggC by inverting the coefficient matrix in 

Equation [4.7] for HETVAR and Equation [4.8] for HOMVAR.  In other words, 
2uu

gg eC  is the 

prediction error covariance matrix of 
( )ˆ
g

u . 

For MCMC-based single SNP inferences, I based inferences on the posterior probability of 

association (PPA) for SNP marker j (i.e. PPAj):  

 
1

N

j l
l

jPPA
N





   [4.18] 

For SSVS, N denotes the number of MCMC cycles saved for posterior inference and  j l
  is a 

binary draw from the full conditional distribution of j at MCMC cycle l. 

4.3.4.2 Windows based associations 

The window based approach follows what has been developed in Chen et al. (2017). Suppose 

that window k = 1,2, 3, …, K contains nk markers such that Tg can be partitioned accordingly 

into
1 2g g g gK

   T T T T  with Tgk having nk columns, containing the submatrix 

representing the nk SNP markers for window k.  Therefore, the submatrix of  ˆvar α for window 
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k is    ' 1 2 2 1ˆvar uu

k gk g g gg e g gk   α T G G C G T . Similarly, the vector α  is partitioned accordingly; 

i.e.  
' ' '

1 2 'K
   α α α α  such that kα  is of dimension nk x 1. The extension to a joint 

EMMAX-like test on nk markers in window k involves the following determination: 

  2 1ˆ ˆ ˆ(var )k k k k  α α α     [4.19] 

where 2

k  is chi-square distributed with nk degrees of freedom under Ho: 0k α . 

For windows based inference using SSVS under MCMC, I just compute the PPA for each 

window k (i.e. PPAk) in Equation [4.20] as also presented in Chen et al. (2017) and similar to 

Fernando et al. (2017)  
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 
   [4.20] 

Here,  kj l
 defines a binary draw from the full conditional distribution of j for SNP marker j 

located within window k drawn during MCMC cycle l. Note then that   
1

( ) 0
kn

kj l
j

I 


 is equal to 

1 when any of the draws of  kj l
  within window k are equal to 1. This simply entails determining 

whether any of the SNP markers within region k have an association.  

4.4 Data and Applications Strategies  

4.4.1  Genotypes 

The SNP marker genotypes of 3186 Holstein cows were provided from 6 US research stations 

including Iowa State University (ISU), Michigan State University (MSU), the University of 

Florida (UF), the University of Wisconsin-Madison (UW), the USDA Dairy Forage Research 

Center (USDFRC) in Madison, Wisconsin, and the USDA Animal Genomics and Improvement 

Laboratory (AGIL) in Beltsville, MD. Genotypes were obtained using Illumina® BovineSNP50 
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Genotyping BeadChip and then imputed and edited as in Lu (2016), which excluded SNPs with 

minor allele frequency (MAF) less than 0.05 and SNP markers in complete LD with each other, 

leaving 57,347 SNP markers for analysis. 

4.4.2  Simulation study 

To compare the two broad categories of models of interest, I conducted a simulation study 

based on the actual genotypes of 3186 Holstein cows was collected from 6 research stations as 

described above.  I generated QTL effects 
qtlα from a Gamma distribution with shape parameter 

equal to 0.42  based on average estimates reported by Hayes and Goddard (2001). I conjectured 

that the number of QTLs might also influence WGP and GWA performance such that I 

considered nqtl = 30, 300, or 3000.  Here, I simulated 10 replicates for each specification of nqtl, 

resulting in 30 different simulated datasets in total. For each dataset, QTL effects, 
qtlα , were 

randomly assigned to nqtl SNP markers across the genome with a random half of the effects 

multiplied by -1 as per Meuwissen et al. (2001). The corresponding genotypes Mqtl for QTL on 

these cows were then a n x nqtl subset of the SNP genotype matrix M such that the true breeding 

values TRUE qtl qtlu M α . Phenotypes for animals were generated based on a heritability of 0.25 as 

estimated for milk fat from this same dataset. Only the remaining marker genotypes M-qtl were 

used for the analyses; i.e., QTL genotypes were always masked.  

For analysis, 50% of cows were masked as non-genotyped such that their SNP marker 

genotypes were treated as missing. Analyses were conducted using GBLUP, SSVS, ssGBLUP, 

and ssSSVS, where GBLUP and SSVS, as previously noted, do not include any phenotypes on 

non-genotyped animals.  For GBLUP and ssGBLUP, I also use AIREML to estimate the 

variance components using both HETVAR and HOMVAR specifications with fixed and random 

effect estimates obtained by solving the MME provided in Equations [4.7] and [4.8].  For SSVS 
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and ssSSVS, I ran MCMC for 200,000 iterations in total, discarding the first 100,000 iterations 

as burn-in and basing inference on saving every 10 of the remaining 100,000 cycles for a total of 

10,000 samples from the posterior density. It is known that estimating  can be challenging 

when nqtl is large (van den Berg et al. 2013), i.e., nqtl =3000 in our case.  Therefore, for nqtl 

=3000, I considered 3 different specifications for  : 1) estimating  , 2) setting 0.01  , and 

setting 0.001  .  

I defined the prediction accuracy of breeding values for WGP as the correlation between the 

estimated breeding values ( û ) and the true breeding values ( TRUEu ) in our simulation study. For 

all individuals, I compared the WGP accuracies of breeding values using GBLUP, SSVS, 

ssGBLUP and ssSSVS for each specification of nqtl.  

As for GWA, single SNP marker inferences were implemented as described in the Methods 

and Materials.  P-values for EMMAX and ssEMMAX were based on the z test in Equation 

[4.17] whereas SSVS and ssSSVS provided posterior probabilities (i.e., PPA) based on the 

MCMC samples in Equation [4.18]. Since the remaining genotypes Mg,-qtl did not include the 

simulated QTL, SNP markers were treated as true positives if the QTL were located between 

themselves and an adjacent SNP marker. 

I also conducted windows based inference based on the EMMAX and ssEMMAX procedures 

using P-values based on the chi-square test in Equation [4.19] whereas PPA within a window 

using SSVS and ssSSVS were based on randomly drawn MCMC samples as in Equation [4.20]. 

The length of each window was determined by the BALD R package  (Dehman and Neuvial 

2015), which adaptively determines window sizes based on LD using the procedure described by 

Dehman et al. (2015).  
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The performance of all methods and models were compared using the receiver operating 

characteristic (ROC) curves which plots the true positive rate (TPR) against the false positive 

rate (FPR) for each method (Metz 1978). I specifically chose to compare the performance of 

different methods using a partial area under the curve up until an FPR= of 5% (pAUC05) as also 

per Chen et al. (2017).  Given that a random classifier has a pAUC05 of 0.052/2= 0.00125, I 

further rescaled all pAUC05 by a factor of 0.00125-1 such the relative pAUC05 for a random 

classifier is 1.  An ANOVA blocking on simulated data replicate was used to compare the 

different methods (GBLUP, SSVS, ssGBLUP, and ssSSVS) for pAUC05 for each specification 

of nqtl.. 

4.4.3  Dairy consortium data 

The phenotypes that I choose for demonstration are the corresponding milk fat yields and body 

weights for the 3186 genotyped Holstein cows described earlier.  The data was edited and 

described in Tempelman et al. (2015) and Lu et al. (2015). The complete breakdown of the number 

of genotyped and phenotyped cows for each station is provided in Table 4.1.  Four generation 

pedigrees on all cows were provided by the USDA-AGIL. 

Table 4.1 Number of cows by research station in dairy consortium study 

Station1 Number of 

cows 

ISU 930 

 UW 780 

AGIL 488 

UF 377 

USDFRC  347 

MSU 264 

Total 3186 
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1ISU = Iowa State University; USDFRC = USDA Dairy Forages Research Center; AGIL = 

USDA Animal Genomics Improvement Laboratory; UF = University of Florida; UW= 

University of Wisconsin- Madison; MSU = Michigan State University. 

Since our goal was to evaluate the performance of single step models for WGP and GWA, I 

randomly masked the genotypes (i.e., as non-genotyped) on a proportion of the cows.  

Specifically, cows were randomly partitioned into five equally sized subsamples stratified by 

station.  Of the 5 subsamples within each station, the genotypes on one single subsample were 

masked as non-genotyped whereas the genotypes on the remaining 4 subsamples were kept.  

This masking arrangement was repeated for 5 times such that each of the 5 subsamples within a 

station had masked genotypes for one of the partitions that I label as P1-P5.  An illustration of 

the partition for one station is given in Figure 4.1.  Since P1-P5 were stratified by stations, these 

partitions were within-station partitions such that within station GWA assessments of the various 

methods were based on P1-P5. 

 

The prediction accuracy of WGP was evaluated using 5-fold cross-validation (CV) for each 

single partition of P1-P5 across herds; i.e., a total of 25 folds.  That is, each of the P1- P5 

partitions within each station was further subpartitioned into 5 orthogonal subsets such that for 

each partition P1-P5, a 5-fold cross-validation of 4 training orthogonal subsets and 1 validation 

orthogonal subset included both genotyped and non-genotyped animals.  An illustration for one 

Figure 4.1 Illustration of within station partitions P1-P5 for one particular station. 20% 

of the cows are marked as non-genotyped with the remaining 80% cows treated as 

genotyped in each partition 

Non-genotyped Genotyped 

P1 P2 P3 P4 P5 
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such partition, say P1, is provided in Figure 4.2.

 

4.4.4 Benchmarking analysis for dairy consortium data 

To provide benchmark gold standards for all assessments involving animals with missing 

genotypes, I conducted baseline WGP and GWA analyses using genotypes and phenotypes on all 

animals.  For WGP, our benchmark assessments were based on conventional GBLUP and SSVS 

analyses using the complete data, i.e. using genotypes on all 3186 cows.  Then the same total 25 

sub partitions described above were used to assess CV prediction accuracy against this ideal 

situation. For GWA, our benchmark analyses were based on EMMAX and SSVS using the entire 

dataset and all the cows are treated as genotyped. GWA with non-genotyped cows in the cross-

validation stud described below were then compared against the benchmark for locations having 

strong measures of association (i.e., low P-values or high PPA). 

4.4.5 Cross-validation study for dairy data 

I specified parity class as fixed effects, a fourth-order polynomial regression on days in milk 

(DIM), and the random effects of rations, test dates, and genetics (i.e. 
 

u and ε ) in the WGP 

model.  To save computing time and to stabilize REML convergence of variance components, 

variance components for ration effects and test date effects were estimated just once from the 

entire dataset using genotype information on all cows.  The values for these variance components 

Validation 

Validation 

Validation 

Validation 

Validation 

Non-genotyped 
Training 

Genotyped 

Validation 
Non-genotyped 

Validation 
Genotyped 

Training 

Figure 4.2 Example of training vs. validation partition for P1 (from Figure 4.1) 
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were then fixed to those estimates for all subsequent cross-validation comparisons. I separately 

compared the WGP CV accuracies of GBLUP, SSVS, ssGBLUP and ssSSVS for genotyped 

cows, and the WGP CV accuracies of ssGBLUP and ssSSVS for non-genotyped cows.  

For GWA, I examined the performance of different models both within and across station 

cross validation studies.  I also fitted parity class, ration and test date as fixed effects, and up to a 

fourth-order polynomial on DIM as covariates in both situations. I based our 5-fold within 

station cross-validation study on partitions P1-P5 as described previously. For the across station 

study, I constructed a 6-fold cross-validation study by masking the genotypes from all cows 

within one station with genotype information available on cows from all other stations, one 

station at a time for a total of 6 folds.  I compared the location of peaks (i.e. strongest GWA 

associations) of EMMAX, ssEMMAX, SSVS and ssSSVS with corresponding benchmarking 

results from EMMAX and SSVS which treated all genotypes as known. In addition, I also 

compared the peak strength of association in ssEMMAX versus EMMAX based on -log10(P-

value), and ssSSVS versus SSVS based on PPA for the most significant single SNP or adaptive 

window based associations.  EMMAX and ssEMMAX were implemented in the same manner as 

the simulation study. SSVS and ssSSVS were also implemented like in the simulation study 

except that I fixed 0.0001   for milkfat and 0.02   for body weight in all analyses 

because of poor mixing when estimating   using the benchmark data. These values for   

were chosen from the set of [0.0001, 0.001, 0.005, 0.01, 0.02, 0.05, 0.1] having the highest 

average prediction accuracy from 5-fold cross-validation on the benchmark data in a manner 

similar to Lee et al. (2017).  All reported WGP and GWA inferences were based on the 

HOMVAR specification for variance component for ssGBLUP and ssEMMAX, i.e. 2 2

u  , due 

to computational expedience and fast and stable convergence.  
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Additional standalone studies were conducted to assess whether the HOMVAR specification 

was a better fit than the HETVAR specification. I adopted the likelihood ratio tests using GWA 

partitions for milkfat. The analyses were conducted among 5 within station partitions (P1-P5) 

and among 6 across station splits of genotyped and non-genotyped animals.  I reassessed GWA 

under HETVAR when 2 2

0 : uH    was rejected.  In addition, for 6 across station splits, I also 

tested the hypothesis on the 6 “flipped” partitions, in which only 1 station was treated as 

genotyped while other 5 stations were treated as non-genotyped.  

4.4.6 Software  

In addition to BALD and ROCR, I have developed a tool to implement ssSSVS and ssEMMAX 

for both WGP and GWA (single SNP and window based) which is included in BATools R 

package (https://github.com/chenchunyu88/BATools).  

4.5 Results 

4.5.1 Simulation Study 

Method specific boxplots of WGP accuracies of EBV across the 10 replicated data sets for 

each nqtl are provided in Figure 4.3. The single-step approaches (both ssGBLUP and ssSSVS) 

had higher WGP accuracies than their conventional counterparts (GBLUP and SSVS) that 

ignored phenotypes on non-genotyped animals.  In turn, ssSSVS had higher WGP accuracies 

than ssGBLUP except when nqtl =3000, noting that the advantage for ssSSVS was largest for 

simpler genetic architectures; i.e., nqtl = 30.   For non-genotyped cows, ssSSVS led to a higher 

WGP accuracy compared to ssGBLUP when nqtl = 30 and 300 with no evidence of a difference 

when nqtl = 3000. 

https://github.com/chenchunyu88/BATools
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Figure 4.3 Boxplots of prediction accuracies of breeding values of genotyped and non-

genotyped cows based on the simulation study of different nqtl of 30, 300 and 3000. Panel A) 

nqtl=30 for genotyped cows; Panel B) nqtl=300 for genotyped cows; Panel C) nqtl=3000 for 

genotyped cows; Panel D) nqtl=30 for non-genotyped cows; Panel E) nqtl=300 for non-genotyped 

cows; Panel F) nqtl=3000 for non-genotyped cows; Methods not sharing the same letter code 

within each panel have different mean prediction accuracies (P<0.05). 

Comparisons of relative pAUC05 on GWA performance between the various methods are 

provided in Figure 4.4. Using the adaptive window approach, SSVS and ssSSVS outperformed 

EMMAX and ssEMMAX. Furthermore, the single-step procedures did not typically lead to a 

higher pAUC05 relative to their conventional counterparts.  When nqtl=30, there was no evidence 

of an advantage for using a single-step approach whereas for nqtl=300 and 3000; only ssEMMAX 

had a higher pAUC05 than EMMAX although these differences were very small.  Using single 

SNP association testing, differences were only detected when nqtl=30, where both EMMAX and 

ssEMMAX had higher pAUC05 than SSVS. As for the value for  , I found that sampling   

or fixing 0.01   lead to equivalent pAUC05 for ssSSVS and SSVS; but fixing 0.001   led 

to ssSSVS having lower pAUC05 than SSVS (P<0.05) as shown in Figure 4.5.  
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Figure 4.4 Boxplot of relative pAUC05 for each method on the simulation study of different 

nqtl of 30, 300 and 3000. The first row is the relative pAUC05 using single SNP approach and the 

second row is the relative pAUC05 using adaptive window approach. Panel A) nqtl=30 for single 

SNP; Panel B) nqtl=300 for single SNP; Panel C) nqtl=3000 for single SNP; Panel D) nqtl=30 for 

adaptive window; Panel E) nqtl=300 for adaptive window; Panel F) nqtl=3000 for adaptive 

window. Methods not sharing the same letter code are significantly different from each other 

within each plot (P<0.05) 
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Figure 4.5 Boxplot of relative pAUC05 for SSVS and ssSSVS on the simulation study with 

nqtl=3000 for adaptive window approach based on different specifications for  : Panel A) 

0.001  , Panel B) 0.01   and Panel C) joint MCMC sampling of  . Methods not sharing 

the same letter code are significantly different from each other within each plot (P<0.05). 

4.5.2 Dairy Data 

The mean cross-validation WGP accuracies based on treating all cows as genotyped is 

provided in Table 4.2 for benchmarking purposes.  Here, SSVS outperformed GBLUP for milk 

fat whereas no difference in WGP accuracy between GBLUP and SSVS was determined for 

body weight.  At any rate, differences were very small in either case (i.e. less than 2 percentage 

points).  

Table 4.2 Cross-validation (25-fold) prediction accuracies for comparing GBLUP and SSVS 

(all animals genotyped) in benchmark analysis  

Trait GBLUP SSVS 

Milk fat 0.7126a 0.7156b 

Body weight 0.7645a 0.7643a 
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Values not sharing the same letter within a row have different (P <0.05) prediction accuracy. 

With genotypes on 20% of the cows being masked, SSVS demonstrated higher (P<0.05) 

WGP accuracies compared to GBLUP on genotyped cows for milkfat; similarly, ssSSVS 

outperformed ssGBLUP for milkfat (Table 4.3). However, for body weight, no difference in 

WGP accuracies were detected between ssSSVS and ssGBLUP whereas SSVS had higher WGP 

accuracy than GBLUP (P<0.05). At any rate, single step approaches outperformed their 

conventional counterparts for both traits within either model (GBLUP/SSVS) although, 

admittedly, differences were small.  Nevertheless, no difference in GEBV accuracies were found 

between ssSSVS and ssGBLUP for either trait on non-genotyped cows (Table 4.4). 

Table 4.3 Cross-validation (25-fold) prediction accuracies for GBLUP and SSVS and their 

respective single step extensions (ssGBLUP and ssSSVS) on genotyped cows  

Trait GBLUP ssGBLUP SSVS ssSSVS 

Milk fat 0.7037a 0.7102b 0.7081b 0.7123c 

Body weight 0.7461a 0.7601c 0.7564b 0.7597c 

Values not sharing the same letter within a row have different (P <0.05) prediction accuracies 

Table 4.4 Cross-validation (25-fold) prediction accuracies for GBLUP and SSVS and their 

respective single step extensions (ssGBLUP and ssSSVS) on non-genotyped cows 

Trait ssGBLUP ssSSVS 

Milk fat 0.7101a 0.7085a 

Body weight 0.7556a 0.7547a 

Values not sharing the same letter within a row have different (P <0.05) prediction accuracies. 

When genotypes on all cows were used for benchmarking GWA analyses on milkfat, the 

highest peak determined by EMMAX (Figure 4.6A) based on single SNP associations were 

located at 1801.116kb (SNP ARS-BFGL-NGS-4939) on chromosome 14 within the same region 
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as the DGAT1 gene located between 1795.425kb and 1804.838kb and known to be a major gene 

influencing milk fat yield (Grisart et al. 2002).  The peak window identified by EMMAX using 

the adaptive window approach ranged from 1189.341kb to 1801.116kb on chromosome 14 

whereas 5 other neighboring windows on chromosome 14 (1868.636kb to 2084.067kb; 

2217.163kb - 2239.085kb, 2276.443-2674.264kb, 2790.501kb-2909.929kb, and 3029.996kb-

3059.698kb) were also deemed to have significant associations with milk fat.  For both sets of 

GWA cross-validation studies (i.e., within station and across station splits) using EMMAX or 

ssEMMAX, the single SNP associations based on all training data had the same peak as the 

benchmark analysis.  Similarly, for the adaptive window associations, peaks shifted between the 

4 windows listed above with the exception of two training datasets: partition P5 in the within 

station study where region 45150.817kb-46093.561kb on chromosome 16 had the strongest 

association; and the subset excluding UF data in the across station cross-validation study for 

which another region 44931.986kb-45039.750kb on chromosome 8 had the strongest association 

(Figures B5 and B10 in Appendix B).   



 

103 

 

 

Figure 4.6 Manhattan plot for milkfat treating all cows as genotyped in benchmarking study. 

Panel A: single SNP inferences for EMMAX; Panel B: adaptive window inferences for 

EMMAX; Panel C: single SNP inferences for SSVS; Panel D: adaptive window inferences for 

SSVS. 
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Figure 4.7 Manhattan plot for body weight treating all cows as genotyped in benchmarking 

study. Panel A: single SNP inferences for EMMAX; Panel B: adaptive window inferences 

approach for EMMAX; Panel C: single SNP inferences for SSVS; Panel D: adaptive window 

inferences for SSVS. 

To further assess the benefit of adapting single-step extensions of GWA, I compared the 

measured strengths of association (i.e., -log10(P-value) or PPA) for the peak SNP or window for 

ssEMMAX or ssSSVS versus their conventional counterparts.  For milk fat, SNP ARS-BFGL-

NGS-4939 was the overwhelmingly most significant association in the benchmark analysis using 
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all available genotypes using both EMMAX or SSVS; hence our attention was focused on ARS-

BFGL-NGS-4939 for milk fat.  For body weight, I focused on SNP marker ARS-BFGL-NGS-

109285 located at 57589.121kb on chromosome 18 since its inferred strength of associations 

dominated all other markers.  I particularly focused our attention on the gains in -log10(P-value) 

or PPA, respectively, using their single step extensions on five separate analyses where the 

genotypes on partitions P1-P5 were masked for a within station assessment as well as on the six 

separate analyses where the genotypes on each station are masked in turn for the across herd 

analysis.  For single SNP inferences, I noticed that the mean –log10(P-values) on ARS-BFGL-

NGS-4939 were not different for the within station and across station analyses on milk fat when 

ssEMMAX was used instead of EMMAX (Table 4.5), similarly, there was no evidence of such a 

difference in mean –log10(P-values) for body weight (Table 4.6).  The mean PPA for ARS-

BFGL-NGS-4939 increased from 0.84 for SSVS to 0.91 to ssSSVS for within station analyses 

and from 0.69 to 0.88 for across station analyses, but the differences were not deemed significant 

(P>0.05); furthermore, the corresponding differences for body weight were rather trivial.   

Table 4.5 Average ((n=5 fold for within herds and n=6 fold for across herds) measures of 

strength of association (-log10P-value using GBLUP or posterior probability using SSVS) for 

most significant SNP/genomic region using single-step compared to conventional specifications 

on milk fat 

 -log10P-value  Posterior Probability 

 Single SNP Adaptive window  Single SNP Adaptive window 

Methods Within Across Within Across Methods Within Across Within Across 

EMMAX 8.73a 9.20a 5.67a 5.88a SSVS 0.84a 0.69a 0.98a 0.75a 

ssEMMAX 9.23a 8.94a 6.16a 5.61a ssSSVS 0.91a 0.88a 0.91a 0.92a 

Values not sharing the same letter within a column have different (P <0.05) height for peaks in 

the Manhattan plot. For single SNP approach, the reference SNP ARS-BFGL-NGS-4939 is 

located at 1801.116kb in chromosome 14 for both ssEMMAX and ssSSVS. For adaptive window 

approach, the reference window for ssEMMAX ranges from 1868.636kb to 2084.067kb (3868th 
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window) in chromosome 14 and the reference window for ssSSVS ranges from 1189.341kb to 

1801.116kb (3867th window) in chromosome 14. 

Table 4.6 Average (n=5 fold for within herds and n=6 fold for across herds) measures of 

strength of association (-log10P-value using GBLUP or posterior probability using SSVS) for 

most significant SNP/genomic region using single-step compared to conventional specifications 

on body weight 

 -log10P-value  Posterior Probability 

 Single SNP Adaptive window  Single SNP Adaptive window 

Methods Within Across Within Across Methods Within Across Within Across 

EMMAX 4.70 a 4.79a 9.37a 9.93a SSVS 0.32a 0.34a 0.64a,1 0.67a,2 

ssEMMAX 4.88 a 4.82a 9.70a 10.04a ssSSVS 0.32a 0.37a 0.68a,1 0.70a,2 

Values not sharing the same letter within a column have different (P <0.05) height for peaks in 

the Manhattan plot.). The 1P=0.08 and 2P=0.06 comparing the difference between ssSSVS and 

SSVS. The adaptive window for ssEMMAX/EMMAX ranges from 8551.460kb to 8560.116kb 

in chromosome 14; and the adaptive window for ssSSVS/SSVS ranges from 88350.890kb to 

88668.261kb in chromosome 6. 

I conducted the same comparison based on adaptive window inferences. Based on the 

benchmark analyses, different but neighboring peak windows (1189.341kb to 1801.116kb) on 

chromosome 14 were determined by EMMAX and SSVS, respectively, as being most significant 

for milk fat.  Using these as the respective reference regions for the assessment of single step 

extensions of these two models, it was again determined that ssEMMAX and EMMAX were not 

significantly different from each other whereas large albeit non-significant improvements in 

mean PPA were observed for single step extensions of SSVS from 0.75 to 0.92 based on across 

herd partition (Table 4.5).  Similarly, for body weight, the windows were different between the 

two benchmark analyses for body weight being Window 3894 (ranging from 8551.460 to 

8560.116 kb on chromosome 14) for EMMAX and Window 3886 (ranging from 7104.148-

7342.696kb on chromosome 14) for SSVS.  I noticed for single step extensions of SSVS for 

genomic window associations had slightly higher (but not statistically significant) PPA than 
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regular SSVS on body weight for both within and across station analysis with P=0.08 and P=0.06 

(Table 4.6).   However, for EMMAX, as with single SNP inferences, single step extensions had 

little merit for within and across herd splits of genotyped and non-genotyped animals. 

I also explored the HETVAR ( 2 2

u  ) versus HOMVAR ( 2 2

u  ) specifications for the 

ssGBLUP/ssEMMAX model for both within and across station splits of genotyped and non-

genotyped animals, focusing only on milk fat.  As anticipated, with random within station splits 

of genotyped and non-genotyped animals, there was no statistical evidence to refute the HOMVAR 

specification.   Now the HETVAR specification may converge very slowly (i.e., may not converge 

after 50 iterations) as it did so for Partition P2 in Table 4.7, even after using the HOMVAR 

estimates as joint starting values for 2

u  and 2

  . Nevertheless, most partitions did converge 

within 10 iterations under the HETVAR analysis.  

Table 4.7 Likelihood ratio test on 2 2

0 : uH    for within station study in milk fat 

Partition 2

  
2

u  p-value 

P1 0.0174 0.0139 0.35 

P2   Did not converge 

P3 0.0173 0.0096 0.20 

P4 0.0172 0.0167 0.45 

P5 0.0171 0.0251 0.20 

 

I conducted the across station comparison of HOMVAR versus HETVAR specifications in 

two different ways.  Firstly, the genotypes of each station were masked, one station at a time for 

6 different analyses with likelihood ratio tests provided in Table 4.8.  Most analyses either did 

not converge or led to analyses that failed to reject Ho: 
2 2

u  .  However, it was rather curious 

that the analyses based on masking the genotypes from ISU station indicated that its pedigee-
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based assessment of polygenic variance 2

u  exceeded the genomic variance 2

  for the other 

stations.  When masking was “flipped”, (i.e. all ISU genotypes were available with all other 

genoytpes masked), then 2

   >  2

u  (Table 4.9) confirming that the difference in genetic 

variability between ISU with the other stations was not only simply due to a difference in scaling 

between genomic and pedigree-based relationship matrices, but rather because of the 

heterogeneity of genetic variances across stations. In fact, when the HETVAR specification was 

used with the ISU genotypes being masked, stronger measures of association for the top SNP and 

genomic windows were determined using single step extensions of EMMAX and SSVS relative 

to using the same extensions under the HOMVAR specification (Figure 4.8). 

Table 4.8 Likelihood ratio test on 2 2

0 : uH    for milk fat across station splits where 

respective analysis masked genotypes for research station as indicated below  

Station with masked genotypes 

(# of cows per station) 

2

  
2

u  p-value 

ISU (930) 0.014 0.050 2.29e-08 

MSU (264)   Did not converge 

USDFRC (347) 0.016 0.027 0.13 

UW (780)   Did not converge 

FL (377) 0.017 0.006 0.06 

AGIL (488) 0.016 0.018 0.40 
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Table 4.9 Likelihood ratio test on 2 2

0 : uH    for milk fat across station splits where 

respective analysis masked genotypes on all other research stations except for research station as 

indicated below 

Genotype included 

station 

(# of cows per station) 

2

  
2

u  p-value 

ISU (930) 0.039 0.012 3.81e-06 

MSU (264) 0.010 0.027 0.02 

USDFRC (347) 0.023 0.022 0.48 

UW (780) 0.008 0.032 4.25e-06 

FL (377) 0.010 0.026 0.01 

AGIL (488) 0.019 0.024 0.20 
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Figure 4.8 Manhattan plot for milkfat masking genotypes ISU cows using ssEMMAX. Panel 

A: single SNP inferences for HETVAR variance; Panel B: adaptive window inferences for 

HETVAR variance; Panel C: single SNP inferences for HOMVAR variance; Panel D: adaptive 

window inferences for HOMVAR variance. 

4.6 Discussion 

The goal of this study is to evaluate the potential merit of single step extensions for GBLUP 

and SSVS for WGP and GWA.   Based on simulation, the prediction accuracies from using 

single-step procedures were generally greater within either class of model, i.e., 
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ssGBLUP>GBLUP and ssSSVS>SSVS.  For traits controlled by a relatively small number of 

QTL (nqtl = 30 and 300), SSVS always had higher WGP accuracy than GBLUP and, 

correspondingly, ssSSVS always has higher WGP accuracy than ssGBLUP for genotyped 

animals as demonstrated by simulation. For more complex traits (nqtl = 3000), there was no 

evidence that SSVS had a WGP accuracy different from GBLUP, nor ssSSVS from ssGBLUP.  

For non-genotyped cows, the usage of ssSSVS versus ssGBLUP appeared to be less important 

with perhaps a small advantage for ssSSVS under simpler genetic architectures (nqtl = 30 and 

300) based on the simulation study.  

This WGP advantage for single step extensions was also demonstrated by a cross-validation 

application to milk fat and body weight data from a dairy cattle consortium, albeit the differences 

there were very small.    It might not be too surprising that SSVS also outperformed GBLUP for 

milkfat which is known to be dominated by DGAT1 on Chromosome 14 (Grisart et al. 2002) 

with similar advantages of Bayesian methods having been found for milk fat in previous studies 

(Hayes et al. 2010). Body weight may be more complex (i.e., effectively more polygenic) than 

milk fat (Pryce et al. 2012) such that there may be less of a distinction between the two models.  

Nevertheless, SSVS appeared to have a higher cross validation WGP accuracy than GBLUP 

whereas there was no such evidence of a difference between ssSSVS and ssGBLUP for body 

weight.  There appeared to be no such distinction in cross validation prediction accuracies for 

non-genotyped cows based on the analysis of either milk fat or body weight in the dairy 

consortium study; however, ssSSVS had higher prediction accuracy for the non-genotyped cows 

in our simulation study with nqtl = 30 and 300. The difference between simulation study and real 

dairy data analysis can be explained by the difference in simulated genetic architecture and QTL 

distribution in the real dataset. Additionally, in the simulation, I masked 50% of the cows as non-
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genotyped, however, in the real dairy dataset, about 20% cow were treated as non-genotyped; it 

is also reasonable to expect single-step having more advantage with higher non-

genotyped/genotyped ratio because more information from phenotypes are incorporated 

compared to regular approach. Higher difference using single-step Bayesian approach could be 

observed in other datasets or applications, e.g., Lee et al. (2017). Finally, confirming results 

already previously summarized by Legarra et al. (2014), our results suggest that ssGBLUP can 

lead to higher WGP accuracies than conventional implementations of methods using only 

genotyped individuals, particularly for more complex traits.  For example, ssGBLUP had a 

higher WGP accuracy than SSVS (using phenotypes on genotyped animals only) for body 

weight. 

I also evaluated the merit of single step extensions for GWA.  I determined that ssSSVS had 

higher pAUC05 than ssEMMAX based on an adaptive window approach to GWA pAUC05 for 

each different specification of nqtl; however, I detected no such differences for single SNP 

associations.  Thus, I recommend using ssSSVS for GWA based on adaptively selected 

windows. In fact, the use of genomic window associations lead to pAUC05 values that were 

often multiples of pAUC05 values derived from single SNP associations, thereby suggesting a 

proportionately greater number of more true positives using genomic window based associations 

up until a FPR = 0.05. Strangely enough, ssEMMAX had significantly better pAUC05 

performance than EMMAX for more polygenic cases (nqtl = 300 and 3000) using the adaptive 

window approach but again the differences were very small. For single SNP associations, 

ssEMMAX was not significantly different from EMMAX whereas ssSSVS was also not 

significantly different from SSVS for pAUC05. Our simulation suggested there may be little 
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advantage of using the single-step approach for GWA for single marker associations, at least for 

Bayesian methods. 

Note that pAUC05 determinations are based on the rankings of the -log10(P-values) or PPA 

and not on any thresholds for declaring significance.  I suspected that the single-step approach 

could lead to stronger measures of association than their conventional counterparts.  Thus, I 

compared -log10(P-values) or PPA values between EMMAX and SSVS and their single step 

extensions for milkfat and body weight.  For milkfat in a within station split cross-validation 

study, the peak SNP of ssSSVS was the same as the peak SNP for SSVS for 2 out of 5 partitions, 

in which SSVS and ssSSVS tied at PPA of 1.00 (Table 4.10). In partition P3 and P4 (Figure B3 

and B4 in the Appendix B), ssSSVS had a lower peak for SNP ARS-BFGL-NGS-4939 and 

Window 3867 (1189.341kb to 1801.116kb on chromosome 14) than SSVS.  This may be 

because some of the PPA were distributed to nearby SNP/region in high LD with ARS-BFGL-

NGS-4939. For example, in partition P3, SNP ARS-BFGL-NGS-107379 had a PPA= 0.181 

being just in the next Window 3868 for ssSSVS (conventional SSVS had PPA of 0).  The LD 

heatmap in Figure 4.9 showed this SNP was in high LD with the most significant SNP ARS-

BFGL-NGS-4939. A similar situation occurred for conventional SSVS in P5, where the PPA 

was distributed to another SNP ARS-BFGL-NGS-57820 with PPA of 0.708 (ssSSVS had PPA 

of 0 for this SNP) in the same window that was almost in very high LD with the originally most 

significant marker SNP ARS-BFGL-NGS-4939. This indicates window based approach can 

somewhat mitigate the multicollinearity issue well for SNPs in high LD within the same 

window, but for long range LD, the window based approach might still be affected by this 

problem. Therefore, the ‘flanking’ window approach (Fernando et al. 2017) can be applied for 

these type of issues. 
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Table 4.10 Full results of within station analyses for PPA in SSVS for most significant 

SNP/genomic region using single-step compared to conventional specifications on milkfat and 

body weight  

 Milk fat  Body weight 

 Single SNP Adaptive window  Single SNP Adaptive window 

Partition SSVS ssSSVS SSVS ssSSVS Partition SSVS ssSSVS SSVS ssSSVS 

P1 1 1 1 1 P1 0.485 0.424 0.773 0.812 

P2 1 1 1 1 P2 0.269 0.314 0.590 0.668 

P3 1 0.820 1 0.820 P3 0.244 0.231 0.555 0.673 

P4 1 0.753 1 0.753 P4 0.287 0.269 0.634 0.631 

P5 0.213 1 0.921 1 P5 0.315 0.342 0.656 0.607 

The single SNP for milkfat and body weight are ARS-BFGL-NGS-4939 and BTB-01412391 

correspondingly. The adaptive window for milk fat ranges from 1189.341kb to 1801.116kb in 

chromosome 14; and the adaptive window for body weight ranges from 7104.14888350.890-

7342.69688668.261kb in chromosome 14. 
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Figure 4.9 LD (r2 metric) heatmap for chromosome 14 from 1189.341kb to 3059.698kb that 

contains all the SNP and windows selected by EMMAX based on the benchmark. Purple star 

mean are all the SNPs that deem to be significant by EMMAX; blue circle is the starting and 

ending SNPs for the windows deem to be significant by EMMAX; green circle is the starting and 

ending SNPs for other windows in the map.   

For cross-validation assessments based on across station splits of the data, the assessment of 

single step extensions for both models appeared to be substantially more complicated.  For two 

out of the 6 partitions, where the genotypes of stations ISU and USDFRC were each masked in 

turn, weaker measures of association using ssEMMAX for both top SNP with -log10(P-values) of 
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8.34 and 8.63 and top window with -log10(P-values) of 5.36 and 4.77 inferences were found 

compared to EMMAX with -log10(P-values) of 9.68 and 9.58 for top SNP, and -log10(P-values) 

of 6.99 and 5.58 for top window,  which simply ignored the phenotypes on those respectively 

masked genotyped cows (Figure B6 and Figure B8). The reason might be the HOMVAR 

specification did not model the variance components correctly.  For the top SNP (Table 4.11), 

ssSSVS was observed to have lower PPA of top SNP than SSVS for 1 out of 6 partitions (Figure 

B9), but this might have been caused by PPA being distributed between SNP ARS-BFGL-NGS-

57820 with PPA of 0.207 and SNP ARS-BFGL-NGS-4939 with PPA of 0.290 in high LD in the 

same window.  For the top window, ssSSVS always had a PPA higher than or equal to SSVS (3 

out of 6 partitions tied).  In the across station study, SSVS was more likely re-distribute PPA to 

other SNPs/regions because the estimated/observed r2 of the genotyped cows in the cross-

validation study might be different  from benchmark population, whereas ssSSVS might have 

been more stable because it uses pedigree information to ‘imputed’ genotypes for non-genotyped 

cows.  GWA inferences using ssSSVS may highly depend upon the kinship relationship between 

genotyped and non-genotyped cows. 

For body weight, I noticed a slightly higher PPA for ssSSVS by just comparing the top 

window in the benchmark compared to SSVS for both within and across station analyses (Table 

4.6). Furthermore, in Table 4.11, ssSSVS had a higher PPA than SSVS in 5 out 6 across station 

partitions, meaning that ssSSVS tends to do a better job in preserving the PPA of the top window 

from the benchmark.  However, more reranking of top SNP markers or genomic windows occur 

for single SNP associations using ssEMMAX, and for both single SNP and window based 

associations using ssSSVS, relative to the benchmark analyses.  The measures of strength of 
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association were often no different in EMMAX and ssEMMAX for both within and across 

station splits of genotyped and non-genotyped animals.  

Table 4.11 Full results of across station analyses for PPA in SSVS for most significant 

SNP/genomic region using single-step compared to conventional specifications on milkfat and 

body weight  

 Milk fat  Body weight 

 Single SNP Adaptive window  Single SNP Adaptive window 

Excluded 

herd 

SSVS ssSSVS SSVS ssSSVS Excluded 

herd 

SSVS ssSSVS SSVS ssSSVS 

ISU 0.426 1 0.442 1 ISU 0.275 0.372 0.641 0.672 

MSU 0.335 1 0.633 1 MSU 0.631 0.648 0.698 0.753 

USDFRC 1 1 1 1 USDFRC 0.209 0.184 0.702 0.683 

UW 0.401 0.290 0.404 0.505 UW 0.128 0.149 0.372 0.397 

FL 1 1 1 1 FL 0.465 0.533 0.762 0.816 

AGIL 1 1 1 1 AGIL 0.312 0.361 0.869 0.884 

The single SNP for milkfat and body weight are ARS-BFGL-NGS-4939 and BTB-01412391 

correspondingly. The adaptive window for milk fat ranges from 1189.341kb to 1801.116kb in 

chromosome 14; and the adaptive window for body weight ranges from 7104.14888350.890-

7342.69688668.261kb in chromosome 14. 

The HOMVAR assumption, which considers marker based genomic variance and pedigree 

based genetic variance to be the same, is widely used in almost all current ssGBLUP 

applications, whether for genetic evaluations (Legarra et al. 2014) or for GWA (Wang et al. 

2012; Zhang et al. 2016).  Our analysis, particularly based on across station splits for cross-

validation, suggests I should use this assumption carefully as the two variance components, 2

  

and 2

u , can be quite different (Table 4.8). In addition to excluding one station at a time, I also 

conducted likelihood ratio tests for the reverse situations, including one station at a time (or 

excluding 5 stations at a time), with some of the tests again suggesting that 2

  can be different 

from 2

u (Table 4.9), with the reversal in magnitude suggesting that the issue pertains to true 
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heterogeneity of genetic variances across herds rather than differences in scaling between 

pedigree versus genomic based relationship matrices.   For example, for ISU, the test of treating 

it as non-genotyped or treating it as the only genotyped station both suggest that the genetic 

variation of ISU is different from other 5 stations.  It then seems reasonable to estimate 2

  and 

2

u  separately in some cases, particularly when some herds contributing data are exclusively 

genotyped or non-genotyped animals. It seems reasonable and necessary to consider modeling 

herd-specific heterogeneity in both 2

  and 2

u  jointly with herd-specific heterogeneity in 2

e  as 

recently explored by Ou et al. (2016) as WGP and GWA inferences could be quite sensitive to 

those specifications.  

Currently the single-step Bayesian model are based on computing the ‘imputed’ genotypes for 

non-genotyped animal based on ˆnn ng

n g A Τ A Τ . This procedure can be both memory and CPU 

demanding when number of non-genotyped animal is large because ˆ
nΤ is not sparse. Fernando et 

al. (2016) provided an algorithm that avoids storage and multiplication of ˆ
nΤ such that the 

number of non-genotyped animal is less of concern. Another important advantage of Bayesian 

single-step approach is the flexibility to use any prior to accommodate different genetic 

architectures and extension to all existing ‘Bayesian Alphabet’. Recently, Lee et al. (2017) 

applied two single-step Bayesian regression (SSBR) models to Hanwoo beef cattle, in which 

they found SSBR lead to higher WGP accuracy than ssGBLUP for trait associated with small 

number of QTLs with large effect (similar to our milkfat trait with DGAT1 and nqtl=30 or 300 in 

the simulation study) and no disadvantages of SSBR were found for all other traits (similar to our 

body weight trait and nqtl=3000 in the simulation study). Therefore, based on this study and our 
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results, single-step Bayesian models are promising for WGP analysis with different types of 

traits.     

Another important factor to consider in ssSSVS and SSVS is the specification of the 

hyperparameter  . It is well known that hyperparameter specifications can significantly influence 

WGP accuracies (Lehermeier et al. 2013; Yang et al. 2015b). However, such hyperparameters can 

be difficult to estimate with large number of SNP marker using MCMC. Lee et al. (2017) 

demonstrated that specifications for hyperparameters like  can be effectively determined using 

cross-validation, recognizing that poorly estimated or miss-specified   may lead to inferior WGP 

than ssGBLUP for some traits. The previous study comparing ssGBLUP and Bayesian model in 

WGP, such as in Lourenco et al. (2013), might be somewhat flawed as the proportion of non-zero 

effect (similar to our  ) in the Bayesian was arbitrarily set to 0.04 without any prior assessment 

due to cross-validation or estimation. In the simulation study, the average estimated  is 0.051 

(with bad mixing) and it is observed that fixed  of 0.01 resulted in higher pAUC05 for both 

SSVS and ssSSVS compared to fixed  of 0.001. Moreover, fixed  of 0.001 led to non-intuitive 

results where ssSSVS had lower pAUC05 than SSVS. Overall, miss specification of  might lead 

to inferior GWA results (Figure 4.5). Furthermore, I noticed   might be also an important factor 

in GWA because the smaller   is, the fewer SNPs/regions will be selected and such that lower 

   is more likely to force few loci to stand out. Whether or not WGP cross-validation based 

determinations for   for GWA is optimal and how to effectively specify such hyperparameter 

for GWA for Bayesian variable selection models require further study.    
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Weighted ssGBLUP (WssGBLUP) has been proposed by Wang et al. (2012) and Zhang et al. 

(2016), using proportion of variance explained as indicator for GWA.  I did not consider this 

approach for two reasons: 1) it does not facilitate a method for assessment for statistical 

significance; 2) the methods suffer from convergence difficulties such that WssGBLUP is 

typically stopped after a fixed number of iterations.; however, choosing the number of such 

iterations is quite arbitrary.  

4.7 Summary and Conclusions 

In conclusion, I determine that ssSSVS has higher WGP prediction accuracy than 

ssGBLUP for simpler genetic architectures, i.e., traits controlled by few major genes. The use of 

phenotypes on non-genotyped animals is important regardless of model (SSVS or GBLUP) or 

genetic architecture (simple or complex).  The choice of model seems to be more important than 

use of phenotypes on non-genotyped animals for GWA based on results from our simulation study. 

Based on applications to data from a dairy consortium, single-step extensions for milk fat were 

deemed to be more useful than for body weight for WGP. Single-step extensions for SSVS for 

genomic windows adaptively determined using LD seem to be particularly useful for GWA. 
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Chapter5 BATools: A Hierarchical Modeling R Package for Genome Prediction and 

Genome-wide Association Analysis  

5.1 Abstract 

Whole genome prediction (WGP) and genome-wide association (GWA) analyses are being 

extensively used in animal breeding and other quantitative genetic applications.  Both types of 

analyses are typically characterized by high dimensional inference based on thousands of SNP 

markers.  Bayesian regression methods have been developed to address such problems by 

providing shrinkage based inference and variable selection. The BATools R-package 

(https://github.com/chenchunyu88/BATools) implements a collection of such Bayesian 

regression tools as well as genomic best linear unbiased prediction (GBLUP) for both WGP and 

GWA. Features of BATools include the incorporation of phenotypes of non-genotyped 

individuals using pedigree information, performing windows based GWA, and modeling 

correlation between adjacent SNP using a first order antedependence correlation assumption. 

Algorithm choices range between the use of Monte Carlo Markov Chain samplers or analytical 

approximations based on the use of the EM algorithm along with restricted maximum likelihood 

(REML) like estimators of variance components. The software is efficiently implemented 

utilizing C/C++ code for the most time-consuming computations. The focus of this article is to 

discuss the models in BATools and their usage in real-data analysis.      

5.2 Introduction 

Whole genome prediction (WGP) utilizing dense single nucleotide polymorphism (SNP) 

marker information has been increasingly adopted in animal and plant breeding as an important 

tool for genomic selection on economically important traits (de Los Campos et al. 2013). WGP 

has transformed traditional best linear unbiased prediction (BLUP) estimates of breeding values 

https://github.com/chenchunyu88/BATools
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(EBV) based on individual records and pedigree relationship into genomic EBV (GEBV) using 

the SNP marker panels (Meuwissen et al. 2016).  Two broad categories of hierarchical linear 

parametric models are available for WGP.  One is genomic BLUP (GBLUP) based on linear 

mixed model with a genomic relationship matrix created from SNP markers to specify the 

correlation between random individual effects with  restricted maximum likelihood (REML) 

being used to estimate the underlying variance components (VanRaden 2008).  The other is 

hierarchical Bayesian models which uses more flexible prior specifications on SNP marker 

effects, e.g. a scaled Student t (BayesA) (Meuwissen et al. 2001), mixture of scaled t and point 

mass at zero (BayesB) (Meuwissen et al. 2001) or stochastic search variable selection (SSVS) 

(George and McCulloch 1993; Chen and Tempelman 2015) amongst several others. The major 

algorithm used for inference in these Bayesian models is Markov Chain Monte Carlo (MCMC) 

based almost entirely on the use of the Gibbs sampler (Casella and George 1992). 

Genome-wide association (GWA) analysis, on the other hand, is a useful tool to identify SNP 

markers or genomic regions that are associated with causal variants or quantitative trait loci 

(QTL). In a simple way, GWA is testing the null hypothesis that a marker or region has no effect 

with respect to a trait with tests running across all SNP markers/genomic regions.  Similar to 

WGP, GWA has been based on the same two broad categories of models. A popular strategy, 

EMMAX, treats the SNP marker of interest as fixed with all other marker effect as random effects to 

account for population structure through traditional GBLUP-like or mixed effects models (Kang et 

al. 2010).  Additional modifications and computational enhancements have been described elsewhere 

(Lippert et al. 2011; Zhou and Stephens 2012; Gualdron Duarte et al. 2014). But more recently, 

hierarchical Bayesian models have also been implemented for GWA based posterior probability of 

associations (PPA) (Moser et al. 2015; Fernando et al. 2017).  Chen et al. (2017) extended both 

types of models for genomic region based GWA.  
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With more individuals genotyped over the last decade, yet with many if not most individuals 

not yet genotyped for various reasons, there has an increasing interest to combine the phenotypic 

information from both genotyped and non-genotyped individuals to improve accuracy of GEBV 

and GWA.  The single step approach is one such model that utilizes genotype, phenotype, and 

pedigree information of both genotype and non-genotyped individuals in one single model; a 

previous strategy based on blending pedigree based EBV with GEBV in a “two-step” model 

(VanRaden 2008).  The original single step WGP analyses was based on the GBLUP 

assumptions and hence known as ssGBLUP (Aguilar et al. 2010).   Recently, Fernando et al. 

(2014) extended single step approach to allow for more flexible  hierarchical Bayesian modeling 

assumptions. A recent study by Lee et al. (2017) and the work in Chapter 4 indicated that single 

step Bayesian models inherit the same favorable properties of regular Bayesian WGP models and 

even increased WGP accuracies for trait controlled by fewer number of QTLs.  Chapter 4 also 

demonstrated that single step Bayesian models had better GWA performance than single step 

EMMAX extension for window based, as opposed to single SNP, inferences. 

With either category (BLUP or Bayesian) of model, the marker effects are typically specified 

to be independently distributed.  Gianola et al. (2003) conjectured that some of SNP marker 

effects might be spatially correlated within chromosomes. The Bayesian antedependence models 

proposed by Yang and Tempelman (2012) that extended BayesA and BayesB and modeled 

nonstationary spatial correlations between adjacent SNP markers, known respectively as 

anteBayesA and anteBayesB, leading to higher WGP accuracies with higher LD (r2>0.24) 

marker panels.  These results have been further corroborated by others in a multiple trait 

modeling context (Jiang et al. 2015).  Yang and Tempelman (2012) and Tempelman (2015) also 

suggested potential benefit for sharper GWA signals using such models. 
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In summary, both WGP and GWA analyses are typically characterized by much larger m 

(number of SNP markers) relative to n (number of individual).  This issue has been addressed 

with hierarchical linear models based on either traditional mixed model or Bayesian approaches. 

It seems important to develop a software package that provides a user-friendly interface for a 

variety of different models with full support for both WGP and GWA.   

Currently, there are many different software packages for WGP or GWA or both, but most of 

them have a specific focus. BLUPF90 (Misztal et al. 2002) is a collection of software programs 

written in FORTRAN for GBLUP models including popular single-step GBLUP (ssGBLUP) 

that combines phenotypes on genotyped animals and on non-genotyped animals with pedigree 

information (Aguilar et al. 2010).  Although BLUPF90 is efficient and suitable for analysis on 

large dataset (i.e. genomic evaluation with more than 1 million records), it does not allow for 

Bayesian analyses, and its weighted single-step approach suffers from convergence issues, 

leading thereby to heuristic solutions (Zhang et al. 2016). Furthermore, the GWA inferences in 

BLUPF90 programs do not provide formal measures of statistical significance (e.g. P-value) 

(Wang et al. 2012; Zhang et al. 2016). Gensel (Fernando and Garrick 2009) is a web-based 

analysis of genomic data platform that features a large selection of different Bayesian models for 

both WGP and GWA, but it is not available for public distribution.  BLR (Perez et al. 2010) and 

BGLR (Perez and de los Campos 2014) are sister R-packages that implements various Bayesian 

and nonparametric models concentrated on WGP. While BGLR provides large selection of 

models and support different type of traits (continuous or categorical), they do not provide 

enough support for GWA. rrBLUP (Endelman 2011) is also an R-package that implements the 

GBLUP model for both WGP and GWA with a user-friendly interface compared to BLUPF90, 

but it does not support Bayesian analyses. synbreed (Wimmer et al. 2012) is a nice R-package 
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that provides rich data management and cleaning tools for WGP and GWA for animal and plant 

breeding, however, their model fitting is done through other software packages such as BGLR. 

GEMMA (Zhou and Stephens 2012) is a group of efficient tools written in C++ focus on GWA, 

although it support Bayesian WGP, the model is based on one particular prior for marker effects 

such that the option for the users is really limited for WGP. JWAS (Cheng et al. 2016) is an open-

source software tool written in Julia (Bezanson et al. 2012) for Bayesian models applied to WGP 

and GWA. JWAS provides models such as BayesB and BayesC (Habier et al. 2011) as well as 

their single step extensions and it is the currently the only single step Bayesian software 

implementation publicly available. However, Julia is a new programming language and does not 

have the large user community. The package is also not fully documented and does not provide 

enough support for GWA in the documentation.    

Although these software packages implement a few different types of hierarchical linear 

models, there is currently no known WGP/GWA open source R (R Core Team 2017) packages 

for single step approach that utilize genotype, phenotype and pedigree information of both 

genotype and non-genotyped individuals.  I have developed R-package BATools to implement 

such an approach. Along with single-step, BATools also implement some other Bayesian model 

extensions/improvement that are not currently public available, including Bayesian 

antedependence models for spatial correlations between adjacent SNP markers (Yang and 

Tempelman 2012), a computationally tractable empirical Bayes approach for BayesA/SSVS 

based on Expectation–Maximization (EM) algorithm, and a window/region based approach for 

joint testing of SNP marker effects in GWA using a fast version of EMMAX (Gualdron Duarte 

et al. 2014; Bernal Rubio et al. 2016; Chen et al. 2017) and Bayesian extensions for GWA. The 

package includes a collection of models in a unified framework for genomic data analysis is 
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available on Github (https://github.com/chenchunyu88/BATools) and will shortly be available on 

CRAN. The objective of this paper is to demonstrate the models, algorithms and data 

implemented in the package, to present some example analyses demonstrating some key 

specifications and to provide a benchmark of computing time for the package.  

5.3 Statistical Models and Algorithms 

The BATools package currently supports the analysis of continuous traits. For both WGP and 

GWA, the base model can be presented as: 

   y Xβ Tα e    [5.1] 

with 

 

 
1

'

2 1
m

j j

j

p p







M 1k
T    [5.2] 

Here y  is a n x 1 vector of phenotypes, X is a known n x p incidence matrix connecting y to 

the p x 1 vector of unknown fixed effects or/and covariates β , T is a known n x m standardized 

matrix of genotypes connecting y to the m x 1 vector of unknown random SNP marker effects 

α  , and e is the random error vector. M is the original n x m genotype matrix with elements 

coded as “0, 1, 2”.  Furthermore, element j of the m x 1 vector  k is the mean value ( 2 jp ) for the 

corresponding column of M , such that 
jp  is the allele frequency of the reference allele of SNP 

marker j =1,2,…,m  (VanRaden 2008). Recoding genotypes in this manner has been 

demonstrated to improve algorithmic stability (Stranden and Christensen 2011).  This model can 

be also written as a subject-centric model (Henderson 1985): 

  y Xβ u e    [5.3] 

https://github.com/chenchunyu88/BATools
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Here u Tα is the additive genetic effect of each subject. I also assume throughout that 

2~ (0, )eN e I . If I assume 2~ (0, )N α I , then  2~ (0, )N u G with 'G TT . Then the mixed 

model equation (MME) corresponding to the linear models in [5.1] and [5.3] are Equations [5.4] 

and [5.5] respectively. 

' ' '

' ' 2 2 '

ˆ

ˆe   

    
    

     

X X X T X yβ

T X T T I T yα
   [5.4] 

and 

' ' '

' ' 1 2 2 '

ˆ

ˆe   

    
    

     

X X X I X yβ

I X I I G I yu
   [5.5] 

The variance components (
2

 and 
2

e ) in MME [5.4] and [5.5] can be estimated using 

Average Information REML (AIREML) (Gilmour et al. 1995; Johnson and Thompson 1995) 

with solutions for [5.4] and [5.5] often referred to as GBLUP (VanRaden 2008). In fact, model 

[5.1] and [5.3] are equivalent (
' 1ˆ ˆα TG u ) with equation [5.3] being preferred for computing 

efficiency when m n (Stranden and Garrick 2009).  

 In a Baysian context, I use priors instead and the residual variance has a scale-inverse 2  

prior, i.e.,  2 2 2| ,e e e ev v s   with degrees of freedom 1ev    and scale 2 0es   as default by 

BATools and can be changed by user. The fixed effects β  are assigned with flat priors.   

5.3.1 Priors for marker effects  

All hierarchical linear models are based directly on equation [5.1] by assigning structural 

priors on SNP marker effects.  Different types of Bayesian models differ from each other in the 

prior distributions for SNP marker effects α ; therefore, different prior selections may influence 

WGP accuracy and GWA performance since they provide different shrinkage properties for 
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marker effects .  Figure 5.1 provides a visualization of four types of base priors were 

implemented for the SNP marker effects in BATools: using the Gaussion prior often referred as 

Bayesian ridge regression (BRR) (Hoerl and Kennard 1970); a scaled-t distribution prior known 

as BayesA, which can be written as normal mixture of scaled inverse 2  or Gamma (Meuwissen 

et al. 2001); a mixture of point mass at zero and scaled-t prior known as BayesB (Meuwissen et 

al. 2001); and a mixture of two Gaussion densities known as SSVS (George and McCulloch 

1993; Chen et al. 2017). In addition to those prior specifications, I also implemented the 

antedependence models, i.e. anteBayesA and anteBayesB, to model the spatially-induced 

correlations between adjacent SNP marker within the same chromosome (Yang and Tempelman 

2012).  Full details of the statistical expressions about these prior distributions are provided in 

Table 5.1. 

 

Figure 5.1 Visualization of prior distributions for SNP marker effects in BATools. 
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Table 5.1 List of models in BATools and their priors and hyperparameters 

Model Marker effect Priors Hyperparameters 

treatment 

BRR  2~ (0, )j N     2 2~ ( 1,0)     

BayesA1 

anteBayesA2  

ssBayesA3  

2~ (0, )
jj N    

2 2 2~ ( , )
j

v v s        

2(1 )v v 

   

2 ~ ( , )s ss Gamma    

BayesB1  

anteBayesB2 

ssBayesB3 

2~ (0, )
jj N  

2

2 2

0 1

~ ( , )j v v s





   




 

  



 

2(1 )v v 

   

2 ~ ( , )s ss Gamma    

~ ( , )Beta      

SSVS4  

ssSSVS5  

mapSSVS6  

2(1 ) / ) )j j jN c         

~ ( ); 1j Bernoulli c     

2 2~ ( 1,0)     

~ ( , )Beta      

mapBayesA6  

2~ (0, )j jN     

2~ ( , )j v v   
 

2 2~ ( 1,0)     

v Fixed 

Antedependence2 2

, 1 ~ ( , )j j t tt N    

2

0 0~ ( , )t t tN     

2 2 2~ ( , )t t t tv v s     

1Meuwissen et al. (2001); 2Yang and Tempelman (2012); 3Fernando et al. (2014) and Chapter 3; 
4George and McCulloch (1993); 5Chapter 3; 6Chen and Tempelman (2015) and Chen et al. 

(2017). 

5.3.2 Single-step for BayesA/B and SSVS 

A ssGBLUP approach was originally developed to combine phenotypes on genotyped and 

non-genotyped animals with pedigree information (Aguilar et al. 2010) and has been applied to 

many livestock species (Legarra et al. 2014). The single-step approach for Bayesian WGP was 

first proposed by Fernando et al. (2014) to include genotyped and non-genotyped individuals: 
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ˆ
n n n

g g g

     
      
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y X T α ε
β e

y X T α
   [5.6] 

Here the linear equation [5.3] partition the non-genotyped and genotyped individuals using 

subscripts n and g. Other terms stay the same as with equation [5.1] except that ˆ
nT  in Equation 

[5.6] is an “imputed” genotype matrix for the non-genotyped individuals that can be obtained by 

solving ˆnn ng

n g A Τ A Τ , where Ann and Ang are the partitions of A-1 (inverse of the additive 

relationship matrix based on pedigree) corresponding to non-genotyped by non-genotyped and 

non-genotyped by genotyped animals, respectively (Fernando et al. 2014). The imputation 

residuals  1 2~ ,( )nn

uN 
ε 0 A  accounts for contributions of pedigree information to breeding 

values for non-genotyped animals (Fernando et al. 2014). In Chapter 4, I also demonstrated how 

to apply single-step SSVS (ssSSVS) to a simulated dataset and a USDA dairy consortium dataset. 

A similar implementation for updating ε was used for single-step BayesA/B (ssBayesA/B) while 

the rest parameters were updated the same with conventional BayesA/B.  Lee et al. (2017) and my 

work in Chapter 4 recently determined that single step Bayesian models led to better WGP 

performance than ssGBLUP for trait controlled by few QTLs with large effects with no evidence 

of a disadvantage for other types of genetic architectures.    

5.3.3 Antedependence implementation   

The antedependence models use a vector of association variables to model serially correlated 

SNP markers in a nonstationary manner (Yang and Tempelman 2012). The model extends 

equation [5.1] such that 

1

, 1 1

if 1

f 2j

j j j j

j

t i j m




  

 
 

   
    [5.7] 
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Here 2~ (0, ), 1,
jj N j m     and 

2

, 1 ~ ( , )j j t tt N    is the marker interval-specific 

antedependence parameter (Zimmerman and Nunez-Anton 2010) of 
j  on 

1j 
. Note that  

, 1j jt 
 

is set to zero at the end of each chromosome. Yang and Tempelman (2012) determined that 

anteBayesA and anteBayesB improved WGP accuracy compared to BayesA and BayesB for 

population with high LD levels (r2 >0. 24) and would lead to even greater accuracies with higher 

density SNP marker panels. Antedependence models could also have potential benefits in GWA. 

5.3.4 Algorithms 

The majority of the models were implemented using MCMC via Gibbs sampler (Casella and 

George 1992) for updating marker effects.  In the meantime, the hyperparameters such as v and 

2s  should be updated in each MCMC iteration to maximize accuracy of WGP (Yang et al. 

2015b; Zhu et al. 2016). However, even if it is possible to estimate these hyperparameters using 

MCMC, the poor mixing for of hyperparameters may require a long MCMC chain for 

convergence to the joint posterior density in equilibrium with subsequently slow mixing for high 

density marker panels, making its implementation less practical for real data analysis. Therefore, 

BATools adopts a univariate Metropolis-Hastings (UNIMH) algorithm, which substantially 

improved mixing of MCMC chain, instead of Gibbs sampler for v and 2s  to help mixing when 

both need to be updated in (ante)BayesA/B (Yang et al. 2015b).  Nevertheless, with large 

number of SNP markers, even these improvements may still require a significant amount of 

computing time.  A maximum a posterior (MAP) approach that analytical estimates the marker 

effects and hyperparameters was also implemented for BayesA and SSVS, known as MAP-

BayesA and MAP-SSVS for WGP (Chen and Tempelman 2015). Both MAP-BayesA and MAP-

SSVS require computing time comparable to GBLUP, however, they may lead to slightly lower 
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WGP accuracy than MCMC counterparts because of the possibility of converging to local 

maximum.  

5.3.5 GWA implementation   

Traditionally, GWA has been based on using single SNP tests. GWA studies are increasingly 

based on joint tests on SNP markers within pre-defined genomic windows rather than just tests 

on single SNP marker as single SNP marker tests may have low statistical power or adversely 

affected by multicollinearity or both (Chen et al. 2017; Fernando et al. 2017). A recent study by 

Chen et al. (2017) illustrated that adaptive window based on LD (Dehman et al. 2015) could 

have better GWA performance than using fixed window length or single SNP approach for 

Bayesian analyses.  BATools provides window based GWA using Bayesian posterior probability 

or chi-square tests for ‘Bayesian Alphabet’ or MAP based approaches correspondingly (Chen et 

al. 2017; Fernando et al. 2017).  Previously, ssGBLUP did not provide formal statistical 

evidence of association in GWA analyses, but merely point estimates of SNP estimates or 

percentage of genetic variance explained by sliding windows of SNP markers (Wang et al. 2012; 

Zhang et al. 2016). Formal tests were provided in Chapter 4 for both single-SNP and window 

based approaches to GWA inference. A summary for all models providing GWA are listed in 

Table 5.2. 

Table 5.2 GWA output for different models for single SNP and window based approaches 

Model Single SNP Window 

BRR Bayesian p-value1 Posterior probability2 

BayesA, anteBayesA, ssBayesA Bayesian p-value1 Posterior probability2 

BayesB, anteBayesB, ssBayesB Posterior probability3 Posterior probability2 

SSVS, ssSSVS Posterior probability3 Posterior probability2 

GBLUP, ssGBLUP (EMMAX) p-value4,5 p-value3,5 

mapBayesA, mapSSVS p-value3 p-value3 
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1Bello et al. (2010); 2Fernando et al. (2017); 3Chen et al. (2017); 4Gualdron Duarte et al. (2014); 
5Chapter 4. 

5.4 Data 

The BATools package comes with a subset of MSUPRP data used in gwaR package 

(https://github.com/steibelj/gwaR) to demonstrate GWA using fast version of EMMAX in 

Gualdron Duarte et al. (2014), where they provided a strategy that fit Equation [5.3] once and 

derived equivalent tests to EMMAX (Bernal Rubio et al. 2016). I choose this dataset because it’s 

in relatively small enough to allow a quick demonstration and contains all the phenotype, 

pedigree, genomic map and genotype information that is required for all the models included in 

BATools. The original dataset was described in (Gualdron Duarte et al. 2014). The subset of data 

contains 176 Duroc-Pietrain F2 crosses that are both phenotyped and genotyped with 20597 SNP 

markers. The subset of data come as synbreed data object, I pre-processed the data to create 

genomic window based on LD using BALD R package (Dehman and Neuvial 2015) and details of 

constructing such window is provided in Figure C.1 in Appendix C. The Pig data contains 

objects in Figure 5.2. PigPheno is a data.frame of  phenotypes and its first column is trait 

driploss used for domenstration; PigM is marker genotypes coded as ‘0, 1, 2’; PigMap is the 

genomic map for each SNP with column chr (chromosome number), pos (position in Mb), and 

idw (window id based on BALD or user can create fixed size windows using set.win 

function); PigAlleleFreq is the allele frequency of genotype coded as ‘1’ from F0 population; 

and PigPed is a data.frame of pedigree with the first column to be individual ID, second column 

to be sire ID and third column to be dam ID (unknown sire and dam must be NA). 

https://github.com/steibelj/gwaR
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rm(list=ls()) 
library(BATools) 
data(Pig) 
ls() 
## [1] "PigAlleleFreq" "PigM"          "PigMap"        "PigPed"        
## [5] "PigPheno"   

Figure 5.2 Loading Pig data included in BATools 

5.5 Interface and application examples 

BATools is designed to fit the WGP prediction model provided in Equation [5.1] that 

includes fixed effects, random genetic effects, and residual effects. Before using BATools, data 

files such as genotype, phenotype and pedigree need to be prepared by the user. For animal and 

plant breeding, synbreed (Wimmer et al. 2012) can be used for recoding genotypes, imputation 

and etc.; plink (Purcell et al. 2007) can be also used for similar tasks; BATools leaves choices of 

the data cleaning and management tools to the user as long as the dataset follows the similar 

pattern as described in the ‘Data’ section.  Using BATools often consists of three parts: l) 

loading data and setting up the genotype matrix; 2) setting up initial values for variance 

components/hyperparameters and options for running the model; 3) model fitting and 

comparisons. With data loaded as illustrated in Figure 5.2, extra steps for fitting the model are 

shown in Figure 5.3. To set up the genotype matrix, I can use either centered or standardized 

genotype matrix for the analysis to help improve algorithmic stability (Stranden and Christensen 

2011).  
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#Standardize genotype matrix with method="s"  
#for standardization using equation [2]  
geno=std_geno(PigM,method="s",freq=PigAlleleFreq) 
#Setup initial values for variance component/hyperparameters  
#using heritability based rules with h2=0.5  
init=set.init(~driploss,data=PigPheno,geno=geno,~id) 
#set options   
op=set.options(init=init) 
#Fitting model 
gblup<-baFit(driploss~sex+car_wt,data=PigPheno,geno=geno , 
             genoid = ~id,randomFormula = ~age_slg,options = op)  

Figure 5.3 Basic model setting and fitting for a GBLUP model 

To do that, a built-in function called std_geno is provided by BATools and it takes three 

arguments: geno for the original genotype matrix; method for standardize as equation [5.2] 

(method=’s’) or center (method=’c’, i.e. ' T M 1k ) the genotype matrix with default 

to standardize; and the freq for the user supplied reference allele frequency, by default, if freq 

is not provided, BATools will compute freq based on geno. The next step is to set up the initial 

values for variance components/hyperparameters and options such as the number of 

total/maximum iterations, burn-in, screen printout messages and whether certain 

hyperparameters are to be estimated, etc. Figure 5.3 demonstrates how to fit a GBLUP model 

using the basic default settings, and Figure 5.4 show the full verbose code equivalent to Figure 

5.3. 
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#Setup initial values for variance component/hyperparameters  
#using heritability based rules for GBLUP using heritability (h2) of 0.5 
init=set.init(~driploss,data=PigPheno,geno=geno,~id,h2=0.5,model="GBLUP") 
#Default prior for GBLUP is χ-2(-1,0) for residual and marker variance 
priors<-list(nu_e=-1,tau2_e=0,nu_s=-1,tau2_s=0) 
#Whether to update variance components 
update_para=list(vare=TRUE,scale=TRUE) 
#Max iteration for running AIREML is set to 50 by default  
run_para=list(maxiter=50) 
#set options with model (GBLUP), method (REML), Priors, initial values,update scheme, 
#maximum number of iterations, file saving location, and convergence criteria 
op<-set.options(model="GBLUP",method="REML",priors=priors,init=init, 
                              update_para=update_para,run_para=run_para,save.at="GBLUP",convcrit=1E-4)  
#Fitting model with fixed effect sex, covariates car_wt (carcass weight) 
#and non-genetic random effect age_slg (age of slaughter) 
gblup<-baFit(driploss~sex+car_wt,data=PigPheno,geno=geno ,genoid = ~id, 
             randomFormula = ~age_slg,options = op)   

Figure 5.4 Full model setting and fitting for GBLUP.  Verbose counterpart to Figure 5.3 

The set.init function to heritability based rules provided in de Los Campos et al. (2013) 

with a default heritability (h2) of 0.5 with a full documentation of the rules found in Appendix 

C.  The set.options function is used to set up all the options including priors, procedural  

specifications (number of iterations, burn-in and skip or maximum iteration for REML/MAP), 

printout options, etc. In the Box 2 and Box 3 example, the priors are default 2 ( 1,0)   priors 

for both residual and marker variance; update_para indicates whether the user wants the 

variance components to be estimated/updated; run_para for GBLUP only have maxiter to 

indicate the maximum number of iterations for the AIREML algorithm. Full documentation can 

be found using help(set.options) and default values for each method is documented in the 

Appendix C.  

To fit the model, I can call the baFit function with:  

• formula to specify the response trait to the left of the tilde “~” and corresponding fixed 

effects. In Box 3 for example, driploss is the response and sex is the fixed effects as a 

factor and car_wt (carcass weight) is a numeric as covariates.  
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• data is a data.frame containing all the phenotypes, data should contain at least two 

columns: trait to be analyzed and a column that contains individual ID corresponds to the 

rownames of the genotype matrix geno. 

• geno is a genotype matrix with rownames of individual ID.   

• genoid is a formula to specify the column of data contains individual ID using “~” and 

corresponding column name. Therefore, the genotype and the data records do not have to be 

the same order and BATools will match the IDs. In the event that the ID in this column is not 

available in the genotype matrix, the IDs will be ignored in the analysis.  However, if single-

step approach is used, the IDs will be matched with the individual ID column in the required 

pedigree file  

• randomFormula is a formula to specify the column of data to be treated as a random 

effects factor using “~” and corresponding column name. The random effects factor for this 

example is age_slg (age of slaughter).  

• options is an object of options created by set.options function 

The return of the baFit function is class of object ba, which is basically a list containing 

important variables including estimates of fixed effects and covariates (bhat) as in Equation 

[5.1], estimate of random SNP marker effects (ahat), estimate of random non-genetic effects 

(rhat) and the predicted value of the phenotypes (yhat) as well as other variables such as 

hyperparameters/variance component estimates. When the GWA option is enabled with 

GWA= ”SNP” or “Win”, it also returns the p-value or posterior probability for single SNP, or 

each window if specified using idw in the map.  This window specification can be created by 

user using BALD or using the set.win function that creates fixed size windows based on either 

number of SNP markers per window or window size in MB (see Box S1). To quickly evaluate 

the result summary of the estimates, a S3 print function is implemented as in Figure 5.5. I 



 

138 

 

noticed that, the random age_slg really had a small variance compared to SNP marker 

variance, so I did not include it in the extra examples. 

#Print out basic results 
gblup 
## Result of BATools:  
##  
## estimated fixed effects: 
##  (Intercept)         sexM       car_wt  
##  0.853443770 -0.158191267  0.005642562  
##  
## SD 
## (Intercept)        sexM      car_wt  
##   1.0811347   0.1785045   0.0133068  
##  
## estimated hyperparameters: 
##        vare   varMarker var_age_slg  
## 0.377903527 0.218162021 0.001028349  

Figure 5.5 Summary of BATools results 

Several examples and use cases also are provided for fitting models for cross-validation 

(Example 1), GWA using the faster version of EMMAX (Gualdron Duarte et al. 2014) and 

Bayesian variable selection (Example 2), fitting antedependence model for GWA (Example 3), 

fitting single step model for cross-validation (Example 4). The code for model fitting is provided 

with the text for GWA and WGP with complete cross-validation analysis.  Because I carefully 

chose the example dataset, each example in the text was executed on a MacBook Pro (Retina, 

Mid 2012) with 2.3 GHz Intel Core i7 and 8GB of memory within 2-4 minutes depends on 

models (e.g. antedependence model will take about 4 minutes). Additional examples for each 

model/method can be also found at the demo folder of the BATools package or type in 

help(baFit)in R. 

5.5.1 Example 1: Cross-validation using BRR, BayesA and SSVS  

This example shows fitting a WGP model for cross-validation using three different methods. 

For demonstration purposes, I only run 5,000 MCMC iterations after 5,000 burn-in samples, 
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saving every 10th sample to compute the posterior means with niter=10000, burnIn=5000 and 

skip=10. Figure 5.7, shows the code for each of the three methods. For cross-validation, 

BATools provides createCV to automatically generate random k-fold cross-validation. Then I 

set up the initial values for all the three models using the heritability based rules described in the 

Appendix C.  Running each model is similar to Figure 5.4 except some additional settings for 

initial values, updating parameter, running parameter and print out options. In baFit function, a 

contrast factor train was used to indicate column names for cross-validation. baplot can be 

used to create plot to visualize the results in Figure 5.6.  

 

Figure 5.6 Visualization of cross-validation results for BRR, BayesA and SSVS via built-in 

BATool function baplot. Black dots are from training and red dots are from validation set. 

I also completed a quick 5-fold cross-validation shown the code in Figure 5.7 with the cross-

validation prediction accuracies shown in Table 5.3. In the small example, I didn’t find any 

evidence that the three models differed from each other in cross-validation prediction. In real 

data applications, it is strongly advised to do more than 5-fold cross-validation (e.g. set k=100 in 

createCV function for 100-fold cross-validation) to improve power. 



 

140 

 

rm(list=ls());library(BATools);data("Pig") 
geno=std_geno(PigM,method="s",freq=PigAlleleFreq) 
#create cv-folds using createCV function 
set.seed(1234) 
PigPheno=createCV(~driploss,data = PigPheno,k=5) 
# Set up parameters and run cv for Bayesian Ridge regression 
init=set.init(~driploss,data=PigPheno,geno=geno,~id,h2=0.5,model="rrBLUP") 
run_para=list(niter=10000,burnIn=5000,skip=10) 
print_mcmc=list(piter=500) # Print status to screen every 500 iteration 
update_para=list(scale=TRUE) 
ListcvRR<-list() 
for(i in 1:5){ 
  op<-set.options(model="rrBLUP",method="MCMC",init=init, 
            update_para=update_para,run_para=run_para,print_mcmc=print_mcmc,seed=i) 
  ListcvRR[[i]]<-baFit(driploss~sex,data=PigPheno,geno=geno ,genoid = ~id,options = 
op, train=as.formula(paste0("~cv",i))) 
} 
# Set up parameters and run cv for BayesA 
init=set.init(~driploss,data=PigPheno,geno=geno,~id,h2=0.5,model="BayesA") 
update_para=list(df=TRUE,scale=TRUE) 
ListcvBA<-list() 
for(i in 1:5){ 
  op<-set.options(model="BayesA",method="MCMC",init=init, 
              update_para=update_para,run_para=run_para,print_mcmc=print_mcmc,seed=i) 
  ListcvBA[[i]]<-baFit(driploss~sex,data=PigPheno,geno=geno ,genoid = ~id,options = 
op, train=as.formula(paste0("~cv",i))) 
} 
# Set up parameters and run cv for SSVS 
init=set.init(~driploss,data=PigPheno,geno=geno,~id,pi_snp=0.001,h2=0.5,c=1000,model=
"SSVS") 
update_para=list(df=FALSE,scale=TRUE,pi=TRUE) 
ListcvSSVS<-list() 
for(i in 1:5){ 
  op<-set.options(model="SSVS",method="MCMC",init=init, 
            update_para=update_para,run_para=run_para,print_mcmc=print_mcmc,seed=i) 
  ListcvSSVS[[i]]<-baFit(driploss~sex,data=PigPheno,geno=geno ,genoid = ~id,options = 
op, train=as.formula(paste0("~cv",i))) 
} 
save(ListcvRR,ListcvBA,ListcvSSVS,file="ex1_5cv.RData") 
# Plot the result for estimating ‘driploss’ 
par(mfrow=c(1,3)) 
baplot(ListcvRR[[1]],main="Bayesian Ridge Regression") 
baplot(ListcvBA[[1]],main="BayesA") 
baplot(ListcvSSVS[[1]],main="SSVS") 
# Compute cv accuracies  
calc.acc<-function(x) cor(x$y[!x$train],x$yhat[!x$train]) 
acc<-cbind(sapply(ListcvRR,calc.acc), 

sapply(ListcvBA,calc.acc),sapply(ListcvSSVS,calc.acc)) 
colnames(acc)=c("BRR","BA","SSVS") 
apply(acc,2,mean)  

Figure 5.7 5-fold Cross-validation using BRR, BayesA and SSVS 
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Table 5.3 Cross-validation prediction accuracy for BRR, BayesA and SSVS 

Model Average cross-validation accuracy 

BRR 0.415a 

BayesA 0.415a 

SSVS 0.408a 

Values not sharing the same letter within a row have different (P <0.05) prediction accuracy 

5.5.2 Example 2:  GWA using EMMAX and SSVS 

A computationally efficient algorithm for EMMAX has been recently proposed (Gualdron 

Duarte et al. 2014; Bernal Rubio et al. 2016; Chen et al. 2017) for GWA. I adapt this strategy as 

does the software gwaR (https://github.com/steibelj/gwaR) with map supplied and the type of 

GWA as either SNP (single SNP) or Win (window based);  Note the window idw (a numeric 

indicate the window of each SNP) must be provided for the window based approach (Chen et al., 

2017); I use adaptive window for the example dataset as determined by the R package BALD 

(Dehman and Neuvial 2015) with code in Figure C.1. Figure 5.8 shows the code used for GWA 

and created Manhattan plot in Figure 5.9. I found none of the SNPs/windows were statistically 

significant in the example dataset using a P-value threshold of 0.05 divided by the number of 

SNPs/windows to account for multiple comparison for EMMAX and a PPA of 0.9 for SSVS. 

This usually indicates that driploss is a more polygenic trait and explains the similar 

performance between BRR, BayesA and SSVS in WGP in Table 5.3. 

https://github.com/steibelj/gwaR
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rm(list=ls());library(BATools);data(Pig) 
geno=std_geno(PigM,method="s",freq=PigAlleleFreq) 
init=set.init(driploss~1,data=PigPheno,geno=geno,~id) 
op=set.options(init=init) 
 
#Fitting model with GBLUP using default values 
#GWA enabled by supplying map and type of GWA 
gblup<-baFit(driploss~sex,data=PigPheno,geno=geno , 

       genoid = ~id,options = op,map=PigMap,GWA="Win") 
 
#Fitting model with SSVS 
init=set.init(~driploss,data=PigPheno,geno=geno,~id,pi_snp=0.001,h2=0.5,c=1000,model=
"SSVS") 
run_para=list(niter=10000,burnIn=5000,skip=10);print_mcmc=list(piter=500) 
update_para=list(df=FALSE,scale=TRUE,pi=F) 
op<-set.options(model="SSVS",method="MCMC",init=init, 
                update_para=update_para,run_para=run_para,print_mcmc=print_mcmc) 
SSVS<-baFit(driploss~sex,data=PigPheno,geno=geno , 
            genoid = ~id,options = op, map=PigMap,GWA="Win") 
 
#Create Manhattan plot 
par(mfrow=c(2,2)) 
man_plot_pvalue(gblup,ylim=c(0,6)) 
man_plot_pvalue(gblup,type="Win",ylim = c(0,6)) 
man_plot_prob(SSVS,ylim=c(0,1)) 
man_plot_prob(SSVS,type="Win",ylim=c(0,1))  

Figure 5.8 GWA using EMMAX and SSVS 
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Figure 5.9 Manhattan plot from GWA using the example MSUPRP dataset. Panel A) 

EMMAX single SNP approach; Panel B) EMMAX adaptive window approach; Panel C) SSVS 

single SNP approach; Panel D) SSVS adaptive window approach. 

5.5.3 Example 3: Fitting antedependence model for GWA 

In this example, I illustrate fitting the antedependence models anteBayesA and anteBayesB 

using our package. As a matter of fact, the procedures are no different from fitting BayesA or 

BayesB model except that map must be provided as in Figure 5.10. Here I demonstrate using 
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anteBayesA and anteBayesB for GWA. The default initial value for association parameter t  is 0 

with 0t   and 2 0.5t   can be specified in set.init function and will be set to default if 

these values are NULL. The default prior of ~ (0,0.01)t N  and 2 2~ ( 1,0)t     are suggested by 

Yang and Tempelman (2012) and can be specified using the prior parameter in set.options 

function.  For a Bayesian model that does not explicitly involve variable selection, such as BRR, 

BayesA and anteBayesA, BATools calculates the Bayesian p-value for single SNP approach and 

posterior probability of the window explained more than 1% of the total genetic variance. Figure 

5.11 provides Manhattan plots for these two models based on executing the code in Figure 5.10. 

While I found anteBayesB has the peak in the same location as SSVS in Figure 5.9 for both 

single SNP and adaptive window based approach, anteBayesA did not have visible peaks. Yang 

and Tempelman (2012) suggested that the association parameter in the antedependence model 

might be used for GWA purposes (Panel E and Panel F in Figure 5.11), I found that for 

anteBayesB, the peak in association parameter corresponded to the peak using posterior 

probability for single SNP, while for anteBayesA, the t-distributed prior still provided too much 

shrinkage for relatively large marker effect compared to anteBayesB, such that the association 

parameter did provide any signal.  
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rm(list=ls());library(BATools);data(Pig) 
geno=std_geno(PigM,method="s",freq=PigAlleleFreq) 
 
#Set parameters for anteBayesA and fit the model 
init=set.init(~driploss,data=PigPheno,geno=geno,~id,df=2.5, 
               h2=0.5,mut=0,vart=0.5,model="anteBayesA") 
run_para=list(niter=10000,burnIn=5000,skip=10);print_mcmc=list(piter=500) 
update_para=list(df=F,scale=TRUE,mut=F) 
priors=list(mu_m_t=0,sigma2_m_t=0.01,df_var_t=-1,scale_var_t=0) 
op<-set.options(model="anteBayesA",method="MCMC",init=init,update_para=update_para, 
          priors=priors,run_para=run_para,save.at="anteBayesA",print_mcmc=print_mcmc) 
 
anteBA<-baFit(driploss~sex,data=PigPheno,geno=geno, 
              genoid = ~id,options = op,map=PigMap,GWA="Win") 

 
#Set parameters for anteBayesB and fit the model 
init=set.init(~driploss,data=PigPheno,geno=geno,~id, 
              df=2.5,pi_snp=0.001,h2=0.5,model="anteBayesB") 
update_para=list(df=F,scale=TRUE,pi=F,mut=F) 
op<-set.options(model="anteBayesB",method="MCMC",init=init,update_para=update_para, 
                run_para=run_para,save.at="anteBayesB",print_mcmc=print_mcmc) 
anteBB<-baFit(driploss~sex,data=PigPheno,geno=geno , 
              genoid = ~id,options = op,map=PigMap,GWA="Win") 

 
#Create Manhattan plot 
par(mfrow=c(3,2)) 
man_plot_prob(anteBA,ylim=c(0,6)) 
man_plot_prob(anteBA,type="Win",ylim = c(0,1)) 
man_plot_prob(anteBB,ylim=c(0,1)) 
man_plot_prob(anteBB,type="Win",ylim=c(0,1)) 
man_plot_assoc(anteBA,ylim=c(0,1)) 
man_plot_assoc(anteBB,ylim=c(0,1))  

Figure 5.10 GWA using anteBayesA and anteBayesB 



 

146 

 

 

Figure 5.11 Manhattan plot from GWA using the example MSUPRP dataset. Panel A) 

anteBayesA single SNP approach; Panel B) anteBayesA adaptive window approach; Panel C) 

anteBayesB single SNP approach; Panel D) anteBayesB adaptive window approach; Panel E) 

absolute value of association parameter for anteBayesA; Panel F) absolute value of association 

parameter for anteBayesA. 
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5.5.4 Example 4: Fitting single-step model using ssGBLUP, ssBayesA, ssBayesB and 

ssSSVS 

In single-step approach, only additional pedigree information (in a form of data.frame with 

three columns including individual ID, sire ID and dam ID) is required and the example dataset 

provided is PigPed.  To demonstrate an example single-step extension, I artificially mask 

genotypes of some individuals as missing as genoNew (Figure 5.12). Then I fit the model with 

ssGBLUP, ssBayesA, ssBayesB and ssSSVS. The code for Table 5.4 after running 5-fold cross-

validation is provided in Figure 5.12.  Although ssBayesA, ssBayesB and ssSSVS has slightly 

higher cross-validation prediction accuracies than ssGBLUP, the difference was not significant. 

Since the examples are just an illustration on how to use the code on a relatively small sample 

size, Chapter 4 should be referred for the complete simulation study and real data analysis for 

different type of traits. For ssGBLUP, default will use homogenous genetic variance 

(ssGBLUPvar = "homVAR") and to set it to heterogeneous genetic variance in Chapter 4, use 

the set.options function with ssGBLUPvar= "hetVAR" while be aware that hetVAR may 

not converge. 

Table 5.4 Cross-validation prediction accuracy for ssGBLUP, ssBayesA, ssBayesB and 

ssSSVS 

Model Average cross-validation accuracy 

ssGBLUP 0.406a 

ssBayesA 0.420a 

ssBayesB 0.421a 

ssSSVS 0.430a 

Values not sharing the same letter within a row have different (P <0.05) prediction accuracy 
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rm(list=ls());library(BATools);data("Pig") 
geno=std_geno(PigM,method="s",freq=PigAlleleFreq) 
#Mask some genotype as missing to test single-step approach 
set.seed(1001);n=dim(geno)[1];indexng<-sort(sample(1:n,n%/%5)) 
genoNew=geno[-indexng,] 
#create cv-folds using createCV function 
set.seed(1234) 
PigPheno=createCV(~driploss,data = PigPheno,k=5) 
# Set up parameters and run cv ssGBLUP 
init=set.init(~driploss,data=PigPheno,geno=genoNew,~id,h2=0.5,model="ssGBLUP") 
ListcvGBLUP<-list() 
for(i in 1:5){ 
  op<-set.options(model="ssGBLUP",method="REML",init=init,seed=i) 
  ListcvGBLUP[[i]]<-baFit(driploss~sex,data=PigPheno,geno=genoNew ,genoid = ~id, 
                   ped= PigPed,options = op, train=as.formula(paste0("~cv",i))) 
} 
# Set up parameters and run cv for ssBayesA 
init=set.init(~driploss,data=PigPheno,geno=genoNew,~id,h2=0.5,model="ssBayesA") 
run_para=list(niter=10000,burnIn=5000,skip=10);print_mcmc=list(piter=500) 
update_para=list(df=TRUE,scale=TRUE);ListcvBA<-list() 
for(i in 1:5){ 
  op<-set.options(model="ssBayesA",method="MCMC",init=init, 
              update_para=update_para,run_para=run_para,print_mcmc=print_mcmc,seed=i) 
  ListcvBA[[i]]<-baFit(driploss~sex,data=PigPheno,geno=genoNew ,genoid = ~id, 
                ped= PigPed,options = op, train=as.formula(paste0("~cv",i))) 
} 
# Set up parameters and run cv for ssBayesB 
init=set.init(~driploss,data=PigPheno,geno=genoNew,~id,pi_snp=0.001,model="ssBayesB") 
update_para=list(df=TRUE,scale=TRUE,pi=TRUE);ListcvBB<-list() 
for(i in 1:5){ 
  op<-set.options(model="ssBayesB",method="MCMC",init=init, 
               update_para=update_para,run_para=run_para,print_mcmc=print_mcmc,seed=
i) 
  ListcvBB[[i]]<-baFit(driploss~sex,data=PigPheno,geno=genoNew ,genoid = ~id, 
                ped= PigPed,options = op, train=as.formula(paste0("~cv",i))) 
} 
# Set up parameters and run cv for ssSSVS 
init=set.init(~driploss,data=PigPheno,geno=genoNew,~id,pi_snp=0.001, 
              h2=0.5,c=1000,model="ssSSVS") 
update_para=list(df=FALSE,scale=TRUE,pi=T); ListcvSSVS<-list() 
for(i in 1:5){ 
  op<-set.options(model="ssSSVS",method="MCMC",init=init, 
              update_para=update_para,run_para=run_para,print_mcmc=print_mcmc,seed=i) 
  ListcvSSVS[[i]]<-baFit(driploss~sex,data=PigPheno,geno=genoNew ,genoid = ~id, 
                 ped= PigPed,options = op, train=as.formula(paste0("~cv",i))) 
} 
# Compute cv accuracies  
calc.acc<-function(x){ 
  cor(x$y[!x$train],x$yhat[!x$train]) 
} 
acc<-cbind(sapply(ListcvGBLUP,calc.acc),sapply(ListcvBA,calc.acc),sapply(ListcvBB,cal
c.acc),sapply(ListcvSSVS,calc.acc)) 
colnames(acc)=c("ssGBLUP","ssBA","ssBB","ssSSVS") 
apply(acc,2,mean)  

Figure 5.12 5-fold Cross-validation using ssGBLUP, ssBayesA, ssBayesB and ssSSVS 
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5.6 Performance and computing time 

BATools uses C/C++ and FORTRAN subroutines to make sure it has the optimal 

performance on a single core. The most computing demanding portion of the code is sampling 

SNP marker effects using Gibbs sampler. I carried out the benchmark with five different sample 

sizes (n= 1k, 2k, 3k, 4k and 5k) and five different marker densities (m=1k, 5k, 20k, 60k and 100k) 

by fitting BayesB (Figure 5.13).  

 

Figure 5.13 Computing time in seconds per 1000 iterations for BayesB for sampling all the 

marker effects by sample size and the number of marker. The benchmark was performed on a 

2.4Ghz Intel Xeon E5-2680v4 CPU using a single core 

The benchmark was computed on Michigan State University High Performance Computing 

Center (HPCC) on a single core of 2.4Ghz Intel Xeon E5-2680v4 CPU. The computing time was 
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both affected by the sample size and marker density and had almost linear relationship with both 

when the other variable was fixed. The most demanding scenario (n=5k and m=100k) took about 

14 minutes to run 1000 iterations. I also found that either antedependence specification roughly 

doubled the computing time because of extra step to sample the association parameters with 

roughly similar length of SNP marker effects. In a typical analysis running 200k iterations at 

n=5k and m=60k, analysis can be completed within a day on a single core.  

5.7 Concluding remarks and future developments 

BATools provides a common user interface for a suite of popular Bayesian models for WGP 

and GWA that allow for differences in shrinkage or variable selection options, models the 

association between adjacent SNP markers and combines phenotype of non-genotyped individual 

via pedigree information.  BATools also provide easy tools for cross-validation and to visualize 

the results for WGP and GWA. Further extensions such as extending the antedependence models 

for the single-step approach, GxE using Bayesian models (Yang et al. 2015a) and modeling 

repeated records will be available through updates. 

 The most computationally intensive part of BATools consists of using the Gibbs sampler for 

SNP marker effects. Our approach is to use C/C++ and FORTRAN subroutines to reduce the 

computing time. Still, the computing time per thousand iterations will linearly increase with 

increasing marker density or sample size. The user should be aware of the fact the increasing 

marker density might lead to poor mixing in MCMC, therefore, extra iterations might be required 

to reach convergence. The Gibbs sampler particular for WGP does not appear to be parallelizable 

because sampling each marker effect depends on the current value of all other marker effects, 

whereas calculating the right-hand-side (rhs) of mixed model equation is parallelizable 

(Fernando et al. 2016). This can be achieved using shared memory multiprocessing via OpenMP 
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or GPU computing to accommodate increasing number of MCMC samples. Since R does not 

have good support of GPU computing and excessive environment setups are required for 

compiling the code, I decided not to have this feature in BATools R package. As for OpenMP, 

proper setups are required for executing the code in true parallel, therefore, a OpenMP version of 

BATools will only be available on Github (https://github.com/chenchunyu88/batools) after it is 

fully tested to allow experienced users to take advantage of parallelization.  

With the increasing availability of the sequencing data, computing efficiency for WGP and 

GWA using Bayesian model will be a major challenge. In the 1000 bull genomes project, 28.3 

million variants of 238 cattle were identified (Daetwyler et al. 2014). With this dataset, BATools 

will take ~4 hours per 1000 iterations, which is not very efficient. The much bigger problem is 

that it is not efficient to load the data into R because it will take ~160 GB of memory. To handle 

this type of dataset, a modification of BATools needs to be implemented: 1) use bigmemory 

(Kane et al. 2013) R package to load the data into R; 2) use RcppEigen (Bates and Eddelbuettel 

2013) R package to pre-construct the additive genomic relationship matrix G ;  3) modify 

BATools to handle kinship matrix G instead of taking genotype matrix directly and output the u 

in equation [5.3]; 4) write another function to obtain P-value for single SNP using RcppEigen 

based on (Chen et al. 2017). These modifications are equivalent to use BATools for GWA using 

fast EMMAX. Then one might use only say 5% variants with smallest P-value for a WGP and 

the computing time per 1000 iteration will be just under ~20 minutes with 1.4 million variants. 

Even with this approach, Bayesian models might still need large number of iterations to 

converge for 1.4 million variants. Hybrid approaches using EM algorithm to set up starting 

values for MCMC could effectively skip burn-in and reduce the total computing time than the 

original MCMC approach (Wang et al. 2016). Overall, WGP and GWA with sequencing data is 

https://github.com/chenchunyu88/batools
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challenging, but with further improvement, BATools can efficiently handle high density 

sequencing data.    
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Chapter6 Conclusions, Discussions and Future Work 

 This dissertation focused on extending existing statistical models and developing software 

tools for whole genome prediction (WGP) and genome wide association (GWA) analysis in 

animal and plant breeding.  These tools have been used, respectively, to accelerate selection for 

economically important traits and identify important genomic regions based on high density SNP 

marker genotypes. The primary goal of this work was to make hierarchical modeling and 

software tools for WGP and GWA more accessible for academic research and industry 

applications.  This included exploring computationally feasible, albeit approximate, alternative 

algorithms (Chapter 2), developing more powerful and more formal GWA strategies for 

hierarchical linear models (Chapter 3), extending flexible Bayesian models to allow for 

phenotypes on non-genotyped animals in GWA analyses (Chapter 4) and providing the 

associated software tools for these and other recent hierarchical linear model developments for 

GWA and WGP (Chapter 5). 

During the time of preparing this dissertation, I designed the algorithms and methodologies 

based on the assumption that the WGP or GWA inferences were usually m n  problems (m 

being the number of markers or covariates and n being the number of observations or animals).  

With the use of the EM algorithm in Chapters 2 and 3, I believed that I provided a 

computationally tractable alternative to MCMC for more flexible priors (n<=5,000, m>50,000); 

however, that assumption may not be true for some current or future applications.  As a matter of 

fact, some genomic evaluation programs now have more individuals (> 1 million) than the 

number of SNP markers (~50,000) (Fernando et al. 2014; Masuda et al. 2016). In such cases, the 

EM based approaches in Chapter 2 can still work efficiently with SNP marker effect models. 

However, in many other applications, especially in plant breeding programs, m n  might still 
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be true for some time yet since, based on my personal experience, some companies may have 

only a few thousand inbred lines (genetically similar individuals that are bred with each other for 

uniformity) in their breeding program and selection is more based on these lines rather than the 

hybrids (progeny of two inbred lines). In the applications for m n , two major approaches can 

be considered.  Firstly, Bayesian models deserve greater consideration as they do not require the 

large matrix inversion like REML but rather uses accelerated  MCMC sampling via high 

performance parallel or GPU computing (Fernando et al. 2016).  Secondly  a modified GBLUP 

based algorithm for proven and young (APY) has been developed (Misztal 2016a), based on 

specifying the breeding values (BVs) of noncore animals to be an approximate function of only 

the BVs of core animals.  This results in a computing cost for the inverse of genomic relationship 

matrix to be only cubic to the number of core animals which is significant since the computing 

time is only relevant to the number of these selected animals. One interesting development in the 

ssGBLUP approaches that incorporate information on non-genotyped animals is that researchers 

have attempted to differentially weight marker effects when building the genomic relationship 

matrix to improve prediction accuracies analogous to our EM based approaches (Zhang et al. 

2016).Currently, such models also suffer from some of the same convergence issues as with  

EM, i.e., accuracies are higher in first few iterations than in later iterations when the algorithm is 

close to convergence (Zhang et al. 2016). Comparison in WGP accuracies between EM-based 

approaches and weighted ssGBLUP approaches deserve further investigation. To deal with the 

m n  problem, I can use the SNP marker effects model directly. Although deterministic 

annealing for MAP-SSVS is a useful tool to help with convergence and avoid local maxima, it is 

computationally expensive, therefore, not suitable for large data applications.  
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In our GWA research in both Chapter 3 and Chapter 4, I found that Bayesian variable 

selection model is particularly effective when associations are based on genomic windows 

adaptively based on LD structure. I do realize a universally good performance may not be 

guaranteed in populations given that the LD structure can be different across different studies. 

Therefore, further studies are necessary. I also noticed WGP and GWA involve different goals 

even though they are increasingly based on the same/similar models. EM based approaches 

should be discouraged for GWA unless that the sensitivity to starting values and various 

convergence issues can be fully resolved.   I demonstrated that the use of the Expectation 

Maximization variable selection (EMVS) strategy of Rockova and George (2014) can alleviate 

the starting value issue in Chapter 2, but it may be computationally intractable for large scale 

applications.   

In Chapter 4, I found that ssSSVS which incorporates information on non-genotyped animals 

can lead to higher estimated posterior probability on peak associations compared to SSVS, 

particularly for a trait, milk fat, which is known to be heavily controlled by a major gene, 

DGAT1. In Chapter 3 I determined the highest single SNP and window posterior probably of 

association (PPA) of 0.478 and 0.772 correspondingly with 922 samples for backfat in swine 

whereas in Chapter 4, the highest single SNP and window PPA, they are both 100% with milkfat 

samples on 3186 dairy cows. I know that different species and different traits are not remotely 

comparable, but I think it’s important to look into the sample size requirements and guidance for 

hierarchical model GWA. 

Another important topic that I cannot avoid discussing is hyperparameter specification. Even 

though estimating hyperparameters via MCMC sampling have been highly recommended in 

previous WGP research (Yang et al. 2015b) and I did find hyperparameter specification is 
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important for GWA inferences in Chapter 3 and Chapter 4, estimating them with MCMC may 

not be always viable or take far too long to generate reliable inferences considering the poor 

mixing of some hyperparameters, especially for more polygenic traits.  Conceivably, some 

hyperparameter specifications such as the degree of freedom v  for t-distribution or the 

probability of association,  , in variable selection methods could be determined by cross-

validation as long as other hyperparameters can be well estimated using MCMC when v  or   is 

fixed.  Lee et al. (2017) recently determined hyperparameter values based on such specifications 

that lead to the highest cross-validation WGP accuracies and hence might be a better solution 

when hyperparameters cannot be well estimated through MCMC. Knürr et al. (2013) also 

proposed to use many different values of hyperparameters and finally averaged the prediction 

results to obtain more robust inference. Hyperparameter specification is admittedly complicated, 

but WGP accuracies are undoubtedly dependent upon their proper specification (Wimmer et al. 

2013). Therefore, comprehensive guidelines for hyperparameter tuning is worth further study for 

GWA and WGP.   

The ssGBLUP approaches that incorporate information on non-genotyped animals have 

become mainstream for genomic prediction problems (Misztal 2016b). Recent work by Lee et al. 

(2017) and my Chapter 4 suggested Bayesian approaches that also incorporate such information, 

i.e. ssSSVS, led to higher accuracies than ssGBLUP where the traits are controlled by major 

genes; even for polygenic traits, ssSSVS had equivalent prediction accuracies with ssGBLUP 

because in extreme polygenic cases, ssSSVS with 1  is equivalent to ssGBLUP. However, 

these examples were the only two real data applications using Bayesian sparse priors and focused 

on a relatively small dataset (n<4000).  Further research in large populations or national genomic 

evaluations seems necessary.  In ssSSVS, it’s natural to sample the variance component through 
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heterogeneous variance specification (i.e. estimate genetic variation due to marker effects and 

not accounted for by markers separately) without extra computational cost if it is clear that the 

genetic variability could be conceivably different between genotyped and non-genotyped 

animals.  For ssGBLUP, however, most applications are based on a homogeneous genetic 

variance specification (Legarra et al. 2014). In Chapter 4, I found that heterogeneous genetic 

variance specifications could be particularly important.  However, since a heterogeneous genetic 

variance specification seems to periodically suffer from convergence issues using AIREML, a 

single-step Bayesian approach with a Gaussian prior using MCMC might be a solution. Again, 

further research on this topic also needed.  It is also conceivable that different herds have not 

only heterogeneous genetic variation but also heterogeneous residual variation so that WGP and 

GWA extensions that have already considered heterogeneous residual variance modeling (Ou et 

al. 2016) for different herds should be combined with the developments that I have provided in 

this thesis.  

In Chapter 5, I demonstrated an R package BATools for implementing the models discussed 

in this dissertation. I extensively tested the package, including using it for Chapter 2-4 and cross-

referenced with other software packages, in the meantime, I will continue to test it in more data 

sets through our research and industry applications. I also realize there is always room for 

improving the computational efficiency. Finally, I designed BATools package to be extendable, 

and many other models on our list, such as ss-anteBayesA/B, GxE extension on the Bayesian 

model and handling multiple record data, will be added to the package.  

At the time this research was proposed, whole-genome sequence (WGS) data for livestock 

was not widely available, even today, it is still only available for few researchers. Brøndum et al. 

(2015) reported small (2-5%) increase in GEBV prediction reliability. Bayesian models are 
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expected to improve the WGP accuracies using WGS data compared to GBLUP because the 

genomic relationship in GBLUP can be well estimated using high density SNP data (777k) while 

Bayesian models model the marker effects directly may get additional benefit from higher 

density in WGS (Meuwissen et al. 2016). Since long-range LD may be extensive in some 

populations for WGS data, a window based inferences might be still more appropriate than 

single SNP inferences in GWA. However, the adaptive window approach used in Chapter 3 and 

4 becomes increasingly inefficient since it requires computation of the LD matrix for the entire 

chromosome, hence, more efficient method for clustering variants into windows may need to be 

developed.  I believe that Bayesian WGP is still valid for WGS data. Since BATools includes 

both GWA and WGP, I can slightly modify BATools to handle large WGS data set without the 

excessive usage of memory through dimension reduction: select top variants from WGS using 

LMM based GWA tools; then use top variants for our WGP models. Or I can reduce the number 

of random draws from posterior distribution by developing efficient variable selection methods 

that stop sampling some zero effects in the MCMC chain (Moser et al. 2015). Furthermore, 

parallelizable versions of Bayesian WGP and GWA based on orthogonal data augmentation 

should also be explored to deal with WGS data (Cheng et al. 2017).  
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Appendix A: Chapter 3 

Implementation Details on Maximum A Posteriori and Monte Carlo Markov Chain 

Inferences in BayesA and SSVS models 

Expectation (E-) steps and Maximization (M-) steps 

Following Chen and Tempelman (2015), the E-step or the expectation of the portion of the log 

joint posterior density that is a function of j is given for MAP-BayesA in Equation [A1]: 
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and for MAP-SSVS in Equation [A2] 
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for MAP-SSVS where  2,x    denotes the 

ordinate of a Gaussian probability density function with mean   and variance 2  evaluated at x.  

A conditional maximization or M-step for  and g can be determined by solving the following 

MME using a SNP-centric model in Equation [A3] 
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or an animal-centric model in Equation [A4] 
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with 
'G ZDZ   (Sun et al. 2012) with   11 ˆ

j
diag 

 D  in BayesA  or 

  1 ˆ ˆ1j jdiag c    D  in SSVS. 

Hyperparameter estimation under MAP 

Solutions based on the mixed model equations [A3] and [A4] are conditioned on the variance 

components and/or hyperparameters being known. In the classical mixed model literature, those 

variance components can be estimated using REML.  The vector of hyperparameters are 

 2 2, ,e g   θ  for BayesA, and  2 2, ,e g   θ for SSVS.  I partition θ  into the variance 

components  2 2,e g σ  and remaining hyperparameters as σθ  such that, for example, 

 σθ  in BayesA whereas   σθ  in SSVS.   

The classical log REML function (Searle et al. 1992) can be written as follows: 

   1| 0.5log 0.5log 0.5 'l    σ y V X'V X y Py    [A5] 

with 
2 2' g e  V ZDZ I  and   1111   VX'XVX'XVVP . In typical classical REML 

specifications involving uncorrelated random effects, D = I.  I modify this expression for our 

BayesA and SSVS adaptations accordingly as: 
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Recall for either hierarchical model, D is a function of τ  for which conditional expectations 

are used to derive   11 ˆ
j

diag 
 D  in BayesA or    1 ˆ ˆ1j jdiag c    D  in SSVS as 

noted earlier.   Upon evaluating Equation [A6] at 1D , this expression is maximized with respect 

to σ . I again denote the corresponding estimates as marginal maximum likelihood (MML) 
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estimates in order to distinguish them from classical REML estimates (Chen and Tempelman 

2015). 

Average Information REML (AIREML) is a particularly attractive hybrid Fisher’s 

scoring/Newton Raphson algorithm used to obtain REML estimates under classical Gaussian 

specifications for g based on the log likelihood of Equation [A5] (Gilmour et al. 1995; Johnson 

and Thompson 1995).   I adapt this algorithm for our proposed MML approach in Equation [A6] 

by simply replacing τ  by τ̂  from a previous E-step followed by maximizing Equation [A6] 

with respect to σ  in a M-step evaluated at τ̂ .To account for prior information in  log p σ , I 

augment the AIREML first and second derivatives as provided by Johnson and Thompson 

(1995) with  log p



σ

σ
 and  

2

log
'

p


 
σ

σ σ
, respectively.  

MML algorithm for variance component estimation 

Recall that the classical log REML function (Searle et al. 1992) can be written as follows: 

   1| 0.5log 0.5log 0.5 'l    σ y V X'V X y Py   [A7] 

with 
2 2' g e  V ZDZ I

 
and  

-1
-1 -1 -1 -1P = V - V X X'V X X'V  .  

The Fisher scoring algorithm for iterate [k] in AIREML for MAP-BayesA and MAP-SSVS 

can be specified as follows: 
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where the vector of first derivatives could be determined using Johnson and Thompson (1995) 

as: 



 

163 

 

 
 

 

 

   

 

2 2

1 | 2'

2 22 2 2 22 2

log , | , log1 1
'

2 2

2ˆ ˆ1 ( ) 1

2 22

e e

gg

ee e

e e g ee e

p p
tr

trace sn rank
m

 



    





 
  

 

             
     

σ

D

σ τ θ y σ
P y Py+

D CX e e
     [A9] 

and 
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with |gg DC  defined by Equation [A11]: 
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and ˆˆ ˆe=y-Xβ-Zg . 

The second derivative can be also obtained as described in Johnson and Thompson (1995).  

Inverting the coefficient matrix as in Equation [A11] is required to obtain ggC , however, this 

computation is nearly impossible with greater than tens of thousands of markers.   

A reasonable strategy to use if m >> n is the animal effects model [A4], then back solve for 

SNP effect estimates using 
1ˆ ˆg DZ'G a . When I adopt the animal effects model, the 

corresponding first derivatives are given by: 
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and  
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with |aa DC defined as in Equation [A14] 
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Review of steps for MAP using animal-centric effects model and backtransforming to SNP-

effects  

I thereby highlight our MAP inference strategy as follows. 

1. Set initial values for (0)ĝ , 
2 2

(0) (0) (0)e g   and 1t   . 

2. Compute ( ) ( )t t '
G ZD Z    [A15] 

where  
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 for MAP-BayesA and  

   ( ) ( ) ( )
ˆ ˆ1t j t j tdiag c   D     [A17] 

 for MAP-SSVS with  
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3. Obtain 
|aa DC  using 
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    [A19] 

4. Compute ' 1

( 1) ( ) ( )
ˆ ˆ

t t t t



g D ZG a     [A20] 

5. Estimate variance components 2

( )e t and 
2

( )g t from animal effects model using AIREML. 

2 2

( ) ( ) ( )t e t g t   . Increment iterate number t  to 1t  .   

6. Repeat Steps 2-5 until convergence.  

Asymptotic standard errors of prediction under MAP  

Asymptotic standard errors of prediction can be based on the observed information matrix for 

MAP-BayesA and MAP-SSVS: 
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   [A21] 

where   2 2log | ,g ep  η , y   denotes the log posterior density of 
 

  
 

β
η

g
  conditional on the 

variance components but with the uncertainty on D integrated out.  Using Louis (1982), I can 

derive Expression [A21] for MAP-BayesA in Equation [A22]. 
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where  
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2
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g

g 



 








 and 

 

2
1

2 2

21
1

1
i i

i

g g

g
diag

  


  
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    

Δ . 

Then I can obtain the asymptotic prediction error (co)variance (PEV) matrix (Cgg) of the SNP 

effect estimates from the random by random portion of the inverse of Equation [A22].  For 

MAP-SSVS, the observed information matrix can be similarly obtained from Equation [A22] 

except that: 
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Δ  [A23] 

As inverting Expression [A22] is difficult for large m, I base inference on an animal effects 

model using 
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   [A24] 

where 
* 1 ' 1( ) G ZΔZ  and 2 2

e g   .   Note that the prediction error (co)variance matrix 

ˆ( )gg PEVC g  for the SNP effects can be derived from the prediction error (co)variance matrix 

ˆ( )gg PEVC g  for the animal effects.   By definition, 

ˆ ˆ ˆ( ) var( ) var( ) var( )gg PEV   C g g - g g g    [A25] 

and  

ˆ ˆ ˆ( ) var( ) var( ) var( )aa PEV   C a a - a a a   [A26] 

Noting that 
' * 1ˆ ˆg DZ G a  , I then have  

' * 1 ' * 1 * 1ˆ ˆ ˆvar( ) var( ) var( )   g DZ G a DZ G a G Z  [A27] 

where 

* 2ˆvar( ) var( ) aa aa

g   a a C G C    [A28] 
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Using [A26], [A27] and [A28] in [A25], Cgg can be derived from Caa. 

2 ' * 1 * 1

2 ' * 1 * 2 * 1

ˆ ˆvar( ) var( ) var( )

( )

gg

g

aa

g g



 

 

 

   

  

C g g D DZ G a G ZD

D DZ G G C G ZD
 [A29] 

An important feature of Equation [A29] is that just diagonals of Cgg (for single SNP 

associations) or block diagonals of Cgg (for windows based inference) can be readily computed 

without computing all of [A29].  For example, suppose I write ' * 1M DZ G .  Hence for  '

jm  

being row j of M, the corresponding jth diagonal element, 
,

gg

j jc ,  of Cgg, used to derive either a 

EMMAX, RRBLUP, MAP-BayesA or MAP-SSVS test for SNP j, can be determined as a 

function of a simple quadratic form; i.e. 

2 ' * 2

, , ( )gg aa

j j j j g j g jc d    m G C m    [A30] 

Similarly, if one conducts windows based inference where '

kM  denotes the subset of rows of 

M pertaining to the nk SNP markers in window k, then the corresponding block diagonal gg

kC  of 

Cgg for window k can be written simply: 

2 ' * 2( )gg aa

k k g k g k   C D M G C M    [A31] 

Here kD is the diagonal sub-block of Dpertaining to the nk SNPs in window k. 
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Full Conditional Densities (FCD) for Markov Chain Monte Carlo Inference (MCMC) in 

BayesA and SSVS models 

Recall the joint posterior density from Equation [3.7] as also provided again below 
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For the fixed effects, suppose the design matrix is n×p, write: 

'
11 12 13 1 1

'
21 22 23 2 2

'
31 32 33 3 .1 .2 .3 .3

'
1 2 3

p

p

pnxp p

n n n np n

x x x x

x x x x

x x x x

x x x x

x

x

X x x x xx

x

  
  
  
          
  
  

   

 [A32] 

Here 
. jx  is the vector of covariates or dummy variables for element j of the fixed effects. 

For the marker effect, suppose design matrix is n×m, write 

'
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'
21 22 23 2 2

'
31 32 33 3 .1 .2 .3 .3

'
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 [A33] 

where 
. jz  is the vector of genotype values for SNP marker j  

Then the fully conditional distribution of any unknown parameters are outlined below, first 

for MCMC-BayesA and then for MCMC-SSVS. 

Full conditional densities (FCD) under MCMC-BayesA 

FCD for Fixed Effects  

 ( | ) ~ ,j j jp ELSE N v     [A34] 

with
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FCD for Marker effects 
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FCD for Marker-Specific Augmented Variables. 
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i.e., a scaled inverted chi-square density with degrees of freedom 1  and scale parameter 

2
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FCD for Genetic Variance Component  
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i.e., a scaled inverted chi-square density with degrees of freedom 
g m  and scale parameter 
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g
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I adopt the Metropolis-Hastings sampling strategy provided by Yang et al. (2015b) to sample 

2

g  with uncertainty on the j’s integrated out. 
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Full Conditional Densities for MCMC-SSVS 

FCD for Fixed effects:  same as that for MCMC-BayesA  
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FCD for Marker-Specific Augmented (i.e. Indicator) variables 
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Such that it can be readily determined that: 
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i.e., a scaled inverted chi-square density with degrees of freedom 
g m  and scale parameter 
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FCD for Residual variance: same as that for MCMC-BayesA. 
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Supplementary Tables and Figures 

Table A.1 Least squares mean relative (random classifier = 1) partial areas under a receiving 

operating characteristic curve up until a false positive rate of 5% (pAUC05) for different 

methods for inferring associations based on non-overlapping genomic windows of length 0.5Mb.  

Comparisons are made within different specifications of shape parameter () for Gamma 

distribution of quantitative trait loci (QTL) and number of QTL (nqtl) 

Methods 

Factors SSVS BayesA EMMAX MAP-

SSVS 

MAP-

BayesA 

RRBLUP 

Shape 

 

      

 2.71a 2.63a 1.80b 0.79c, 

* 

0.56d, 

* 

0.54d, * 

 4.15a 4.19a 2.73b 0.82c, 

* 

0.54d, 

* 

0.38e, * 

 4.31a 4.90a 2.92b 0.68c, 

* 

0.42d, 

* 

0.27e, * 

nqtl       

30 6.54a 6.96a 3.94b 1.52c 0.59d, 

* 

0.34e, * 

90 3.75a 3.73a 2.42b 0.67c, 

* 

0.52c, 

d, * 

0.41d, * 

300 1.98a 2.08a 1.50b 0.43c, 

* 

0.41c, 

* 

0.40c, * 

Overall 3.65a 3.78a 2.43b 0.76c, 

* 

0.50d, 

* 

0.38e, * 

Values not sharing the same letter within a row have different (P <0.05) relative pAUC05 within 

the row. * indicates the corresponding method is worse than a random classifier (pAUC05 = 1).  

Mean estimates based on 10 replicates per each of 9 populations of 3 x 3 factorial on number 

(30, 100, or 300) of markers chosen to be quantitative trait loci (QTL) from the MSUPRP 

genotypes, and shape parameter (0.18,1.48, or 3.00) for Gamma distribution of QTL effects  
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Table A.2 Least squares mean relative (random classifier = 1) partial areas under a receiving 

operating characteristic curve up until a false positive rate of 5% (pAUC05)  for different 

methods for inferring associations based on non-overlapping genomic windows of length 2Mb.  

Comparisons are made within different specifications of shape parameter () for Gamma 

distribution of quantitative trait loci (QTL) and number of QTL (nqtl) 

Methods 

Factors SSVS BayesA EMMAX MAP-

SSVS 

MAP-

BayesA 

RRBLUP 

Shape        

 2.87a 2.83a 1.67b 0.62c, * 0.65c, * 0.43d, * 

 4.33a 4.23a 2.15b 0.49c, * 0.31d, * 0.24e, * 

 4.91a 5.06a 2.07b 0.49c, * 0.33d, * 0.21e, * 

nqtl       

30 7.15a 7.17a 3.12b 1.14c 0.67d, * 0.33e, * 

90 3.72a 3.76a 1.76b 0.44c, * 0.37c, d, 

* 

0.29d, * 

300 2.30a 2.24a 1.36b 0.30c, * 0.27c, * 0.22c, * 

Overall 3.94a 3.92a 1.95b 0.53c, * 0.41c, * 0.28d, * 

Values not sharing the same letter within a row have different (P <0.05) relative pAUC05 within 

the row. *indicates the corresponding method is worse than a random classifier (pAUC05 = 1). 

Mean estimates based on 10 replicates per each of 9 populations of 3 x 3 factorial on number (nqtl 

= 30, 100, or 300) of quantitative trait loci (QTL), and shape parameter (0.18, 1.48, or 3.00) 

for Gamma distribution of QTL effects. 

 

 

  



 

176 

 

Table A.3 Least squares mean relative (random classifier = 1) partial areas under a receiving 

operating characteristic curve up until a false positive rate of 5% (pAUC05) for different 

methods for inferring associations based on non-overlapping genomic windows of length 3Mb.  

Comparisons are made within different specifications of shape parameter () for Gamma 

distribution of quantitative trait loci (QTL) and number of QTL (nqtl) 

Methods 

Factors SSVS BayesA EMMAX MAP-

SSVS 

MAP-

BayesA 

RRBLUP 

Shape 

 

      

 2.91a 2.77a 1.64b 0.73c, * 0.66c, * 0.37d, * 

 4.43a 4.30a 1.98b 0.55c, * 0.49c, * 0.24d, * 

 5.10a 5.10a 1.95b 0.50c, * 0.43d, * 0.17e, * 

nqtl       

30 7.52a 7.17a 2.93b 1.16c 0.96c, * 0.34d, * 

90 3.64a 3.72a 1.71b 0.61c, * 0.48c, * 0.24d, * 

300 2.41a 2.28a 1.26b 0.34c, * 0.30c, * 0.16d, * 

Overall 4.044a 3.93a 1.85b 0.62c, * 0.52c, * 0.23d, * 

Values not sharing the same letter within a row have different (P <0.05) relative pAUC05 within 

the row. *indicates the corresponding method is worse than a random classifier (pAUC05 = 1). 

Mean estimates based on 10 replicates per each of 9 populations of 3 x 3 factorial on number (nqtl 

= 30, 100, or 300) of quantitative trait loci (QTL), and shape parameter (0.18, 1.48, or 3.00) 

for Gamma distribution of QTL effects. 
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Table A.4 Least squares mean relative (random classifier = 1) partial areas under a receiving 

operating characteristic curve up until a false positive rate of 5% (pAUC05) for different 

specifications of degrees of freedom hyperparameter (
gv = 2.5 versus 

gv  = 5.0) using MCMC-

BayesA.  Comparisons are made within different specifications of shape parameter () for 

Gamma distribution of quantitative trait loci (QTL) and number of QTL (nqtl) 

Factors 
gv = 

gv = 

Shape    

0.18 3.60a 2.38b 

1.48 5.87a 4.87b 

3 6.74a 4.88b 

nqtl   

30 9.03a 4.79b 

90 4.98a 3.77b 

300 3.17a 3.14a 

Overall 5.22a 3.84b 

Values not sharing the same letter within a row have different (P <0.05) relative pAUC05 within 

the row.  Mean estimates based on 10 replicates per each of 9 populations of 3 x 3 factorial on 

number (nqtl = 30, 100, or 300) of quantitative trait loci (QTL), and shape parameter (0.18, 

1.48, or 3.00) for Gamma distribution of QTL effects. 
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Table A.5 Least squares mean relative (random classifier = 1) partial areas under a receiving 

operating characteristic curve up until a false positive rate of 5% (pAUC05) for different sets of 

starting values for SNP effects (MCMC-SSVS vs RRBLUP) for MAP-SSVS.  Comparisons are 

made within different specifications of number of quantitative trait loci (nqtl) 

 

Values not sharing the same letter within a row have different (P <0.05) relative pAUC05 within 

the row. *indicates the corresponding method is not better than a random classifier (pAUC05=1). 

Mean estimates based on 10 replicates per each of 9 populations of 3 x 3 factorial on number (nqtl 

= 30, 100, or 300) of quantitative trait loci (QTL), and shape parameter (0.18, 1.48, or 3.00) 

for Gamma distribution of QTL effects. 

 

 

  

Window 

specification 

Factor Starting values for 

MAP-SSVS 

  MCMC RRBLUP 

 nqtl   

 30 4.47a 3.79b 

Single SNP 90 2.65a 2.49b 

 300 1.72a 1.64a 

 Overall 2.73a 2.49b 

    

1Mb window Overall 0.94a, * 0.70b, * 

 nqtl   

 30 2.36a 1.76b 

Adaptive 

window 

90 0.98a, * 0.80b, * 

 300 0.68a, * 0.66a, * 

 Overall 1.16a 0.97b, * 
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Table A.6 Least squares mean relative (random classifier = 1) partial areas under a receiving 

operating characteristic curve up until a false positive rate of 5% (pAUC05) for different sets of 

starting values for SNP effects (MCMC-BayesA vs RRBLUP) for MAP-BayesA.  Comparisons 

are made within different specifications of number of quantitative trait loci (nqtl) 

 Starting values for SNP 

effects  MCMC-

BayesA 

sA 

RRBLUP 

    

Single SNP Overall 2.68a 2.76a 

    

1Mb window Overall 0.75a, * 0.46b, * 

 nqtl   

 30 2.33a 0.87b, * 

Adaptive 

window 

90 1.14a 0.50b, * 

 300 0.73a, * 0.62a, * 

 Overall 1.25a 0.65b, * 

 Values not sharing the same letter within a row have different (P <0.05) relative pAUC05 within 

the row. * indicates the corresponding method is not better than a random classifier 

(pAUC05=1). Mean estimates based on 10 replicates per each of 9 populations of 3 x 3 factorial 

on number (nqtl = 30, 100, or 300) of quantitative trait loci (QTL), and shape parameter (0.18, 

1.48, or 3.00) for Gamma distribution of QTL effects. 

.  
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Table A.7 Least squares mean relative (random classifier = 1) partial areas under a receiving 

operating characteristic curve up until a false positive rate of 5% (pAUC05) for different 

methods for inferring associations averaging across all window size determinations (single SNP, 

0.5 Mb, 1.0Mb, 2.0Mb, 3.0Mb and adaptive windows) based on two different methods for 

inferring posterior probabilities of association: 1) That proposed by Fernando et al., 2014 and 2) 

that proposed by Moser et al., 2015.  Comparisons are made within different specifications of 

shape parameter () for Gamma distribution of quantitative trait loci (QTL) and number of QTL 

(nqtl) 

Factor PPA determination strategy 

 Fernando et 

al., (2014) 

Moser et al., 

(2015) 

Shape    

 3.03a 3.03a 

 4.60a 4.43a 

 5.08a 4.56b 

nqtl   

30 7.24a 7.23a 

90 4.04a 3.99a 

300 2.42a 2.11b 

Overall 4.14a 3.94b 

 Values not sharing the same letter within a row have different (P <0.05) relative pAUC05 within 

the row.  Mean estimates based on 10 replicates per each of 9 populations of 3 x 3 factorial on 

number (nqtl = 30, 100, or 300) of quantitative trait loci (QTL), and shape parameter (0.18, 

1.48, or 3.00) for Gamma distribution of QTL effects. 
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Figure A.1 Boxplot of window lengths for windows adaptively chosen based on the BALD 

software in terms of mega bases (Panel A) and number of SNP markers (Panel B) 
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Figure A.2 Average ROC curve (10 replicates) for 1Mb versus 10 SNP windows using 

EMMAX (Panel A), MAP-SSVS (Panel B), MAP-BayesA (Panel C) and RRBLUP (Panel D) for 

30 quantitative trait loci generated from a Gamma distribution with shape parameter 1.48 
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Figure A.3 Scatterplots of posterior probabilities of association (PPA) for MCMC-SSVS (x-

axis) versus MAP-SSVS (y-axis) for analysis on 13th rib backfat on 922 pigs from the MSUPRP 

population based on with different starting values for MAP-SSVS: A) RRBLUP and B) MCMC-

SSVS. 

 

Figure A.4 Scatterplot of posterior probabilities of association (PPA) based on local false 

discovery rates (lFDR) conversions of p-values from EMMAX procedure (y-axis: PPA=1-lFDR) 

and MCMC-SSVS (x-axis) on 13th rib backfat on 922 pigs from the MSUPRP population. 
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Appendix B: Chapter 4 

Implementation Details for Monte Carlo Markov Chain (MCMC) inferences in ssSSVS  

 
Recall the joint posterior density from Equation [13] as also provided again below
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for the MME for equation [4.6].  

For the fixed effects β, suppose the design matrix is n×p, write 

'
11 12 13 1 1

'
21 22 23 2 2

'
31 32 33 3 .1 .2 .3 .3

'
1 2 3
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Here 
. jx  is the covariate/dummy variable values for variable j of the fixed effects. 

Similarly, for the marker effects α, the design matrix is n×m, write  
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where 
. jw  is the covariate/dummy variable values for SNP genotype j of the random marker 

effects.
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Finally, for the imputation residual ε, the design matrix is nn×qn, write 
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where  1 . j
z  is the covariate/dummy variable values for ungenotyped animal j of the 

imputation residuals. 

 

Full conditional densities (FCD) under MCMC-ssSSVS 

FCD for Fixed Effects 
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FCD for Marker-Specific Augmented (i.e. Indicator) variables 
j  

The the full conditional density is given by  
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Such that it can be readily determined that: 
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  .In fact, I can use 

the dnorm function in R to compute h0 and h1 directly. Then 
j can be drawn from a Bernoulli 

distribution. 
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FCD for Marker Effects  

Then the posterior distribution for marker effects are given as 
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FCD for Imputation Residuals: 𝜺 

Note that the  terms only cross-reference to the non-genotyped animals.  That’s because 

n n   
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Hence, the vector of residuals could be broken down into two components: 
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Also, let’s write the rows of Ann as follows: 
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Note that nn

kka  is element k,k of Ann. 

 

FCD for Residual Variance 2
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where  
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FCD for marker variance  
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FCD for Polygenic Variance 2
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FCD for    

The posterior of  is given by,
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Figures 

 

Figures B1-B5: Supplementary Manhattan plot figures for within-station splits genotyped and masked genotyped animals for 

within-station partitions P1 (Figure B1), P2 (Figure B2), P3 (Figure B3), P4 (Figure B4), and P5 (Figure B5) for milk fat.  

Panel A: Plot of –log10(P-value) versus genomic region for single SNP associations using EMMAX without using phenotypes 

on non-genotyped animals; Panel B: Plot of –log10(P-value) versus genomic region for genomic window associations using 

EMMAX without using phenotypes on non-genotyped animals; Panel C: Plot of posterior probabilities versus genomic region 

for genomic window associations using SSVS without using phenotypes on non-genotyped animals; Panel D: Plot of posterior 

probabilities versus genomic region for genomic window associations using SSVS without using phenotypes on non-genotyped 

animals; Panel E: Plot of –log10(P-value) versus genomic region for single SNP associations using ssEMMAX using 

phenotypes on non-genotyped animals; Panel F: Plot of –log10(P-value) versus genomic region for genomic window 

associations using ssEMMAX using phenotypes on non-genotyped animals; Panel G: Plot of posterior probabilities versus 

genomic region for genomic window associations using ssSSVS using phenotypes on non-genotyped animals; Panel H: Plot of 

posterior probabilities versus genomic region for genomic window associations using ssSSVS using phenotypes on non-

genotyped animals. 
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Figure B.1 Partition P1: Manhattan plot for milkfat in within station splits of genotyped and non-genotyped animals. 
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Figure B.2 Partition P2: Manhattan plot for milkfat in within station splits of genotyped and non-genotyped animals. 
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Figure B.3 Partition P3: Manhattan plot for milkfat in within station splits of genotyped and non-genotyped animals. 



 

195 

 

 

Figure B.4 Partition P4: Manhattan plot for milkfat in within station splits of genotyped and non-genotyped animals. 



 

196 

 

 

Figure B.5 Partition P5: Manhattan plot for milkfat in within station splits of genotyped and non-genotyped animals. 
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Figures B6-B11: Supplementary Manhattan plot figures for acroos-station splits for genotyped and masked genotyped animals 

with genotype masking on cows from ISU (Figure B6), MSU (Figure B7), USDFRC (Figure B8), UW (Figure B9), and FL 

(Figure B10) and AGIL (Figure B11) for milk fat.  Panel A: Plot of –log10(P-value) versus genomic region for single SNP 

associations using EMMAX without using phenotypes on non-genotyped animals; Panel B: Plot of –log10(P-value) versus 

genomic region for genomic window associations using EMMAX without using phenotypes on non-genotyped animals; Panel 

C: Plot of posterior probabilities versus genomic region for genomic window associations using SSVS without using 

phenotypes on non-genotyped animals; Panel D: Plot of posterior probabilities versus genomic region for genomic window 

associations using SSVS without using phenotypes on non-genotyped animals; Panel E: Plot of –log10(P-value) versus genomic 

region for single SNP associations using ssEMMAX using phenotypes on non-genotyped animals; Panel F: Plot of –log10(P-

value) versus genomic region for genomic window associations using ssEMMAX using phenotypes on non-genotyped animals; 

Panel G: Plot of posterior probabilities versus genomic region for genomic window associations using ssSSVS using 

phenotypes on non-genotyped animals; Panel H: Plot of posterior probabilities versus genomic region for genomic window 

associations using ssSSVS using phenotypes on non-genotyped animals. 
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Figure B.6 Without the genotype of ISU: Manhattan plot for milkfat in across station study. 
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Figure B.7 Without the genotype of MSU: Manhattan plot for milkfat in across station study. 
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Figure B.8 Without the genotype of USDFRC: Manhattan plot for milkfat in across station study. 
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Figure B.9 Without the genotype of UW: Manhattan plot for milkfat in across station study. 
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Figure B.10 Without the genotype of FL: Manhattan plot for milkfat in across station study. 
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Figure B.11 Without the genotype of AGIL: Manhattan plot for milkfat in across station study. 
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Figures B12-B16: Supplementary Manhattan plot figures for within-station splits genotyped and masked genotyped 

animals for within-station partitions P1 (Figure B12), P2 (Figure B13), P3 (Figure B14), P4 (Figure B15), and P5 (Figure B16) 

for body weight.  Panel A: Plot of –log10(P-value) versus genomic region for single SNP associations using EMMAX without 

using phenotypes on non-genotyped animals; Panel B: Plot of –log10(P-value) versus genomic region for genomic window 

associations using EMMAX without using phenotypes on non-genotyped animals; Panel C: Plot of posterior probabilities 

versus genomic region for genomic window associations using SSVS without using phenotypes on non-genotyped animals; 

Panel D: Plot of posterior probabilities versus genomic region for genomic window associations using SSVS without using 

phenotypes on non-genotyped animals; Panel E: Plot of –log10(P-value) versus genomic region for single SNP associations 

using ssEMMAX using phenotypes on non-genotyped animals; Panel F: Plot of –log10(P-value) versus genomic region for 

genomic window associations using ssEMMAX using phenotypes on non-genotyped animals; Panel G: Plot of posterior 

probabilities versus genomic region for genomic window associations using ssSSVS using phenotypes on non-genotyped 

animals; Panel H: Plot of posterior probabilities versus genomic region for genomic window associations using ssSSVS using 

phenotypes on non-genotyped animals. 
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Figure B.12 Partition 1: Manhattan plot for body weight in within station study. 
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Figure B.13 Partition 2: Manhattan plot for body weight in within station study. 
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Figure B.14 Partition 3: Manhattan plot for body weight in within station study. 
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Figure B.15 Partition 4: Manhattan plot for body weight in within station study. 
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Figure B.16 Partition 5: Manhattan plot for body weight in within station study. 
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Figures B17-B22: Supplementary Manhattan plot figures for acroos-station splits for genotyped and masked genotyped 

animals with genotype masking on cows from ISU (Figure B17), MSU (Figure B18), USDFRC (Figure B19), UW (Figure B20), 

and FL (Figure B21) and AGIL (Figure B22) for milk fat.  Panel A: Plot of –log10(P-value) versus genomic region for single 

SNP associations using EMMAX without using phenotypes on non-genotyped animals; Panel B: Plot of –log10(P-value) versus 

genomic region for genomic window associations using EMMAX without using phenotypes on non-genotyped animals; Panel 

C: Plot of posterior probabilities versus genomic region for genomic window associations using SSVS without using 

phenotypes on non-genotyped animals; Panel D: Plot of posterior probabilities versus genomic region for genomic window 

associations using SSVS without using phenotypes on non-genotyped animals; Panel E: Plot of –log10(P-value) versus genomic 

region for single SNP associations using ssEMMAX using phenotypes on non-genotyped animals; Panel F: Plot of –log10(P-

value) versus genomic region for genomic window associations using ssEMMAX using phenotypes on non-genotyped animals; 

Panel G: Plot of posterior probabilities versus genomic region for genomic window associations using ssSSVS using 

phenotypes on non-genotyped animals; Panel H: Plot of posterior probabilities versus genomic region for genomic window 

associations using ssSSVS using phenotypes on non-genotyped animals. 
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Figure B.17 Without the genotype of ISU: Manhattan plot for body weight in across station study. 
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Figure B.18.  Without the genotype of MSU: Manhattan plot for body weight in across station study. 
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Figure B.19 Without the genotype of USDFRC: Manhattan plot for body weight in across station study. 
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Figure B.20.  Without the genotype of UW: Manhattan plot for body weight in across station study. 
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Figure B.21 Without the genotype of FL: Manhattan plot for body weight in across station study. 



 

216 

 

 

Figure B.22 Without the genotype of AGIL: Manhattan plot for body weight in across station study. 
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Appendix C: Chapter 5 

Initial value for hyperparameters 

In this section, I discuss the initial values for priors based on rules provided by de Los 

Campos et al. (2013). To start with, the default heritability h2 is 0.5 and can be changed in 

set.init function.  The initial starting value for residual variance 2

e  is 

var( ) (1 2) ( 2)ey h v     var( ) (1 2)y h   as ev =-1 by default. This setting is true for all 

models. For all antedependence models, the default initial starting values for 0t   and 

2 0.5t   with prior ~ (0,0.01)t N  and 2 2~ ( 1,0)t     as suggested by Yang and Tempelman 

(2012). Note all the initial values can be set manually if prior knowledge about the data is 

available, see help(set.options) for details.  

 

BRR/GBLUP/ssGBLUP 

The marker variance is initially set to be 2 var( ) 2 / My Sh M   as 1v    for BRR/GBLUP 

where 1 2

1 1

n m

M ij

i j

MS n M

 

   is sum of the sample variance of the column of the marker genotype 

type matrix. For ssGBLUP if it’s hetVAR the initial value for the genetic variance not accounted 

by marker genotype 2

u  is set to var( ) 2 / My h MS as well and this is also the same with all 

ssBayesA, ssBayesB and ssSSVS. For ssGBLUP with homVAR, 

2 2 var( ) 2 /u My h MS    .  

 

BayesA/ssBayesA/anteBayesA/e-BayesA 
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The starting degrees of freedom parameter v  is set to 5 by default and the scale parameter 

then is set to 2 var( ) 2 ( 2) / /s y h v v MSm      and the same value is used for 2

  in 

mapBayesA. The shape parameter 0.5sa   and rate parameter 0s   of Gamma corresponds to 

2 2~ ( 1,0)     suggested by Gelman (2006). For the UNIMH sample of both v  and 2s , the 

tuning procedure is the same as suggested by Yang et al. (2015b).  

 

BayesB/ssBayesB/anteBayesB 

The degree of freedom v  is set to 5 by default and the scale parameter then is set to 

2 var( ) 2 ( 2) / / /Ms y h v MSv       where  is set to 0.05 initially by default with a prior 

of ~ (1,9)Beta that has prior mean of 0.1. The shape parameter 0.1sa   and rate parameter 

0.1s   as in Yang and Tempelman (2012). 

 

SSVS/ssSSVS/e-SSVS 

The initial variance component is 2 var( ) 2 / / ( +(1- ) (1- ))M c cMSy h c       where   

initialized as 0.05 like BayesB with prior of ~ (1,9)Beta and c=1000 by default. 
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# `BALD` package is available at http://www.math-evry.cnrs.fr/logiciels/bald.  
#Linux or Mac are recommended since `BALD` is not available at CRAN.  
#On windows,`RTools` needs to be pre-installed from https://cran.r-project.org/bin/wi
ndows/Rtools/ before installing BALD.  
#Installing pre-required R packages for BALD 
source("https://bioconductor.org/biocLite.R") 
biocLite("chopsticks") 
biocLite("snpStats") 
biocLite("ROC") 
install.packages(c("LDheatmap","quadrupen", "ROC", "grplasso","snpStats")) 
# Download and install BALD using the following commands 
system("wget http://www.math-evry.cnrs.fr/_media/logiciels/bald_0.2.1.tar.gz") 
system("R CMD INSTALL bald_0.2.1.tar.gz") 
# Then we load BALD package and load the Pig data 
library(BALD) 
library(BATools) 
data(Pig) 
map=PigMap 
 
# Spilt the map for each chromosome because adaptive window is computed by chromosome 
chrs=list() 
for(i in 1:max(map$chr)){ 
  ii=which(map$chr==i) 
  chrs[[i]]=geno[,ii] 
} 
 
#Then we can create adaptive window for each chromosome  
#This will take 6-7 hours to run in serial  
#It is suggested to run it in parallel for each chromosome in a computing cluster 
adaptiveWindows=list() 
for(i in 1:length(chrs)){ 
  Z=chr[[i]]+1 
  p=dim(Z)[2] 
  gapS <- gapStatistic(Z, min.nc=2, max.nc=p-1, B=50) 
  gapS$best.k 
  adaptiveWindows[[i]] <- cutree(gapS$tree, gapS$best.k) 
} 

 
#Finally, we compute the window id for each SNP and add it to the map 
idw<-adaptiveWindows[[1]] 
for(i in 2:length(adaptiveWindows)){ 
  tmp<-max(idw) 
  idw<-c(idw,adaptiveWindows[[i]]+tmp) 
} 
map$idw=idw 
 
#For fixed size window, use set.win function in BATools 
#For example, to create 1Mb window, simply run 
map<-set.win(map = map,len=1,unit = "Mb") 
#To create 5-SNP window, simply run 
map<-set.win(map = map,len = 5,unit="count")   

Figure C.1 Example on creating adaptive window using BALD and fix size window for the 

Pig data 
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