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ABSTRACT 

ECONOMIC GAIN-AWARE ROUTING PROTOCOLS FOR DEVICE-TO-DEVICE 
CONTENT DISSEMINATION 

By 

Faezeh Hajiaghajani Memar 

The objective of this dissertation is to investigate Device-to-Device content dissemination 

protocols for maximizing the economic gain of dissemination for given combinations of 

commercial and network parameters.  We pose this as a gain-aware multicast Delay Tolerant 

Network (DTN) routing problem in a Social Wireless Network (SWN) setting. Commercial 

parameters in this framework include the revenue out of selling a product, discount, rebate, content 

expiry time, and a content-specific redemption function. These parameters are inputs provided by 

a content generator. Network parameters are decided based on a Social Wireless Network’s 

characteristics such as consumers’ interest profiles and their social bindings summarized in their 

mobility profiles. We explore two solution approaches. First, we investigate stochastic design 

methods for gain-aware DTN protocol design including prediction-based dissemination 

mechanisms. We develop a predictive gain utility which is used for deciding relative importance 

of an immediate peer in comparison with potential future peers. We propose two versions of the 

utility; the first one, Predictive Gain Utility Routing-Individual (PGUR-I) uses node-specific 

information, and the second one, Predictive Gain Utility Routing-Aggregated (PGUR-A) 

implements a more scalable version by probabilistically aggregating node interaction information 

across consumers with similar consumption interests. In the second approach, we explore learning 

mechanisms including evolutionary learning and reinforcement learning for synthetizing 

communication protocols. We explore evolutionary learning, specifically, evolving state machines 

for protocol synthesis. A specific network protocol is coded as a genotype and its resulting state 



 

machine behavior manifests in the form of the corresponding phenotype, leading to specific 

performance. Using the developed framework, we explore the evolutionary design of Medium 

Access Control (MAC) protocols including ALOHA, S-ALOHA and Carrier Sensing Multiple 

Access (CSMA). Finally, we leverage Reinforcement Learning (RL), which enables nodes to 

gather local information and make efficient routing decisions in runtime.  
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1 Introduction 

1.1 Social Wireless Networks 

Similarity breeds connection [1]. This principle (i.e., homophily) structures social ties of every 

type, including friendship, collegiality, co-membership, and other types of relationships. Such 

pairwise similarities are the building blocks of the concept of Social Wireless Networks (SWNs). 

SWNs are formed by ad hoc wireless links among data-enabled wireless devices when people 

carrying such devices regularly gather in certain places. SWNs are classified under Delay Tolerant 

Networks (DTNs) in the sense that they lack continuous network connectivity. According to the 

homophily principle, human mobility is partially shaped by their social relationships [2]. 

Reciprocally, it is shown [3] that the similarity between movement trajectories of two persons can 

be a strong indication of their tie in a physical social network. This binding between social 

interactions and mobility similarities is reflected in SWNs. Examples include the SWN formed by 

students in an academic department within a university campus. In a smaller scale, students 

residing in a specific department and having a common interest in a specific type of food, form an 

SWN. Other SWN examples include networks formed in work places, malls, airports, train stations 

and other public places. 

Interaction patterns in an SWN can be indexed with social metrics such as pairwise contact 

duration, pairwise contact frequency, betweenness centrality [4], and degree centrality [4]. These 

metrics summarize the mobility profile of a person in relation to other entities in the network. This 

additional information layer about mobility and social interactions of nodes in a network leads to 

the emergence of a new field of Socially Aware Networking (SAN) [5]. By exploiting social 

properties of nodes, the abstraction of SAN can be used for better networking support to innovative 
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applications and services, such as Device-to-Device content dissemination in Social Wireless 

Networks.  

1.2 Device-to-Device (D2D) Content Dissemination in SWN 

Due to human mobility and the lack of complete coverage by WiFi access points, an SWN 

can be susceptible to intermittent disconnections to the Internet. This can result in partitions of 

devices that can communicate with each other using ad hoc routing protocols, but do not have 

Internet connectivity. This lack of connectivity may affect server-based content dissemination 

inside an SWN. Intermittent Internet connectivity is one of the factors which necessitates device-

to-device content dissemination approaches in such SWNs. Device-to-Device (D2D) content 

dissemination can be implemented through any of most recent technologies including Bluetooth, 

Bluetooth Low Energy (BLE), Bluetooth Service Discovery Protocol. 

While there are many applications of multicast D2D dissemination in healthcare [6], 

emergency handling [7], and vehicular networks [8], in this dissertation we specifically focus on 

a commercial content dissemination application. It is about delivering commercial content such as 

coupons to a target population of customers. Consider an example scenario in which an ethnic 

restaurant in a mall sends out an electronic coupon (through Bluetooth) to the mobile device of a 

customer who is known to be interested in that ethnic food. The customer, who happens to be a 

University student, forwards the coupon to other students in her social DTN communities in the 

University campus via mobile-to-mobile links. It is desired that the coupon gets disseminated to 

students who are most likely to redeem them so that the resulting commercial gain from the 

dissemination is maximized. 

 Even in the presence of Internet connectivity, device-to-device content dissemination can be 

of interest for the following reasons:  
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1)  Scalability and privacy: reliance on a-priori knowledge about specific destination node 

identifiers is not feasible in practical coupon dissemination applications in which the coupons need 

to be delivered to nodes based on their dynamic interest levels and redemption chances instead of 

their static identities. Therefore, in a server-based approach, a server needs to keep track of every 

node’s interest level toward every product/subject. This, not only exposes users’ preferences to an 

external server, but also imposes a heavy control load on the server. In a D2D approach, however, 

nodes share their preferences (interest profile) only with certain peers upon an interaction, and not 

with a centralized server, thus, partially protecting privacy and obtaining scalability.  

2) Targeted dissemination: D2D dissemination can promote coupon distribution within the 

geographical proximity of the coupon generator. Consider the earlier mentioned example scenario 

in which an ethnic restaurant in a mall sends out a coupon to the mobile device of a customer who 

is known to be interested in that ethnic food. The customer, who happens to be a student in a 

University in proximity of the mall, forwards the coupon to other students in her social 

communities in the University campus via mobile-to-mobile links. Since the coupon holder’s peers 

are in the same general geographical area, they can similarly access the restaurant (coupon 

generator). That is, the D2D dissemination takes care of delivering to users which are in spatial 

proximity of the mall, and thus, may be more likely to redeem coupons. Also, this dissemination 

happens without any exposure of nodes’ geographical locations to a centralized content server.  

There are a few other common characteristics that the coupon holder may share with her/his 

student peers, other than the characteristic of commuting in each others’ proximity. For example, 

most of such peer are likely to belong to the same social and financial class. As a result, it is also 

more likely that the coupon holders’ peers share similar interest levels. In a centralized approach, 
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the server can not easily identify such detailed preferences for large consumer population, thus 

leading to scalability concerns.  

3) Viral marketing: D2D content dissemination implements viral marketing by leveraging 

inter-personal interaction information to direct the coupons to most fit consumers. Viral marketing 

is essentially a consumer-to-consumer process and can not be implemented in a centralized 

manner. It leverages the power of individuals to influence peers through various online means 

including social networks, emails, instant messaging, and online chat. Electronic viral marketing 

facilitates asynchronous round-the-clock connectivity with customers, and also considerably 

expands the scope and scale of influence compared to face-to-face contacts [9]. Depending on an 

application’s requirements regarding privacy preservation, a coupon forwarder may or may not 

expose his/her identity. In either case, D2D dissemination is still more effective [10] than server-

based advertising methods because 1) people trust their acquaintances more than ads coming from 

a coupon provider, and 2) a user receives targeted coupons based on his/her interests which are 

most probably similar to his/her acquaintances’ interests [1] and choices.  

The main design goal for a D2D commercial content dissemination algorithm is about 

maximizing a predefined commercial gain for a Content Provider (CP).   In other words, a carrier 

of content/coupon identifies most fit individual Content Consumers (CCs), based on its pattern of 

social interaction (e.g., contact duration, centrality, etc.) with target consumers. In the following 

section, the requirements and design challenges of D2D commercial content dissemination 

approaches are discussed in detail.  

1.3 Problem Statement  

In traditional server-based approaches [11], coupons are sent to consumers directly by Content 

Providers (CPs). The economic value of a disseminated coupon is determined based on statistically 
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estimated redemption rates and the known costs of coupon generation and distribution. The overall 

goal is to maximize the content provider’s commercial gain, which is defined as the generated 

revenue out of potential redemptions minus all involved costs of preparation and distribution.  

   In D2D distribution, the primary cost comes from incentivizing mobile nodes for taking 

part in D2D dissemination process. D2D coupon forwarding costs bandwidth, storage, CPU and, 

more importantly, battery power which can deter people from taking part in dissemination. Thus, 

the objective here is to develop coupon dissemination mechanisms that can maximize a coupon’s 

economic gain in the presence of costs/rebates for D2D forwarding incentives. This can be posed 

as a Delay Tolerant Network (DTN) multicast routing problem. Most DTN multicast routing 

approaches in literature attempt to individually optimize performance indices such as message 

delay, forwarding cost, and storage. None define composite cost factors by combining multiple 

such indices into a single gain index. Due to the lack of gain-awareness, these protocols cannot 

control the economic gain of dissemination, as defined in this context.  

1.3.1 Consumption Interest and Coupon Redemption 

Consumer Interest: Consumers’ interest level towards an item (e.g., product, brand, etc) 

changes across time and across individuals. Such interest level is mostly dynamic. For example, a 

consumer may develop interest for a brand after multiple satisfactory purchases from that brand. 

In another example, a consumer may lose his/her interest in a product after reading negative 

reviews from other purchasers who used the product (word-of-mouth effect [12]). Modeling and 

embedding such interest level into the D2D dissemination is necessary in order to have an elaborate 

system model. Interest level for a consumer can be set through many possible means including: 1) 

an explicit input by the consumer herself, 2) computed based on the number of purchases made 
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for a product through the consumer’s mobile application, or 3) locally extracted from the metadata 

collected from searching and browsing activities on the consumer’s device. 

Redemption Probability: Redemption probability for a consumer for a coupon, represents 

her/his likelihood of redeeming a coupon within a defined coupon expiry time. The determination 

of redemption probabilities can be helpful when planning and monitoring coupon campaigns. 

Redemption probabilities for a specific type of coupon (i.e., the corresponding product or service) 

are usually predicted based on past redemption data and actual data from an ongoing coupon 

campaign [13]. 

Modeling redemption probabilities in a D2D dissemination framework is another step toward 

simulating a real coupon campaign. For that, a redemption function can be presented which maps 

a user’s interest level for a specific coupon to a redemption probability.  

While interest level is a characteristic of a consumer, redemption probability is a function that 

depends on how consumers react to a coupon based on their interests in the product or service that 

the coupon represents. If a coupon is originally designed with the goal of motivating high-

interest/loyal consumers, then the redemption function is likely to map higher redemption 

probabilities to consumers with higher interest levels. This can be modeled as an exponential 

redemption function with a maximum redemption probability (e.g., the shown in Figure 1-1). 

Interest level in Figure 1-1 is shown as 𝜌? and redemption probability is indicated with 𝑃@ 𝜌? , 

which is a function of the interest level. 
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Figure 1-1: Example redemption functions 

Another example, a Gaussian redemption function with 𝜇 = 0.75 is shown in Figure 1-1. This 

function corresponds to a coupon campaign designed to motivate customers with medium interest 

level. Such model can be justified based on findings [14] which imply that coupon delivery to 

highly loyal (interested) customers may kill customer loyalty. That is because sending coupons to 

customers who already buy specific products (possibly at regular price) communicates that the 

product they are buying has a lower value than what they pay normally.  In that case, the sentiment 

of exclusivity and lowering the bridge are lost, because they are already customers [14]. Thus, 

light to moderately loyal customers, as opposed to most loyal ones with higher interest levels, may 

maintain higher redemption rates. 

To mention another example, customers based on the stage of their buying cycles can be 

categorized in different classes, namely, active, at risk, and lost [15]. These customers’ interest 

levels fall into different ranges of high, moderate, and low. The definitions and boundaries of such 

ranges of interest levels can be maintained by the CP’s server. From a marketing point of view, 

each class of customers need to be treated with different strategies, thus different coupon campaign 

models are designed. For example, a win-back coupon [15] is designed to target at risk customers, 

who maintain moderate interest levels rather than being highly or marginally interested. 
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The interest level for a coupon type for a user is reflected in his/her interest profile. 

Redemption probability is then determined based on the interest level and specific coupon type. 

The combination of the mobility (Section 1.1) and interest profiles of users in an SWN, when 

shared within peers, provides information based on which D2D coupon dissemination protocols 

can be designed. This information is not made accessible to a server (in a server-based 

dissemination approach) due to privacy concerns explained in the next section. 

1.3.2 Consumer Privacy  

From a privacy standpoint, both interest (Section 1.3.1) and mobility (Section 1.1) profiles of 

a consumer are preferred to be stored locally within the mobile device, and should not be exposed 

to a remote server. Under this privacy model, consumer devices are allowed to share their interest 

profiles with other devices selectively upon meeting, but are not allowed to share with a centralized 

entity. The latter provides partial user privacy. Towards the end of this dissertation document (in 

Chapter 9), we propose a dissemination mechanism which does not require nodes to store peer 

specific interest and mobility profile on their devices. This information is still shared upon pairwise 

meetings for a one-time use for required state variable computations on peer’s device, however, 

this information is deleted afterwards and is not stored on peer’s device. This is the highest level 

of privacy considered across methods proposed throughout this dissertation.   

1.3.3 Role of a Content Server 

While the dissemination process can be done in a fully Device-to-Device manner in order to 

preserve consumers’ privacy (Section 1.3.2), a centralized server may be present with the 

following roles: 1) consumer authentication, 2) maximum dissemination enforcement, and 3) other 

long term control and management tasks. This is of course feasible if user devices can reach the 
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server through vertical links (i.e., 3G/4G) for such control and management operations. Note that 

even when a vertical link to a server is available, D2D dissemination is desirable for the reasons 

outlined in Section 1.2. 

For horizontal (i.e., Device-to-Device) links between devices, different communication 

technologies such as Bluetooth, WiFi-direct, and Bluetooth SDP can be adapted.  

1.3.4 Incentive Mechanisms 

As mentioned earlier, D2D coupon forwarding costs bandwidth, storage, CPU and, more 

importantly, battery power which can deter people from taking part in dissemination. Incentive 

mechanisms are needed to encourage users to participate in sharing resources. Here, few basic 

incentive mechanisms are discussed: 

1) Uniform dispensing [16]: Considering a total reward of 𝑅E, every node in the forwarding 

chain (with size l) receives  equal amount of reward  𝑅E/𝑙. Forwarding chain refers to the 

intermediate nodes who participate in forwarding a copy of a content from a source to a destination. 

This approach leads to an undesirable situation in which users may refuse to forward a coupon 

further in order to keep the length of the forwarding chain smaller, thus, maximize their own 

reward.  

2) Fixed and equal dispensing [16] :in this method, every node on the forwarding chain 

receives a similar amount of reward irrespective of the chain’s length. 

3) Geometric dispensing: intuitively, users’ contribution along a forwarding chain is uneven. 

Geometric dispensing is based on the assumption that the closer a user is to the initial coupon 

holder in the chain, the greater her contribution is. With Geometric dispensing, the reward 

distribution is a geometric series with a constant ratio p. Uniform dispensing is a special case of 

geometric dispensing, when p=1. Also, p=0 results in a single-level dispensing mechanism in 
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which the initial coupon holder receives reward for every forwarding, but the rest of the nodes in 

the chain do not receive any reward if they forward further. Few other incentive mechanisms that 

are proposed in literature, which will be discussed in the next chapter (Related Work).  

Along with every incentive mechanism, security concerns need to be addressed. One of the 

possible threats is when a node either from inside or outside of a forwarding chain hacks into the 

incentive mechanism and manipulates the rewards for itself and other nodes to collect higher 

reward. To avoid such issues, different encryption methods are applied [16, 17]. Furthermore, an 

incentive mechanism may require the trajectory of a coupon to be stored and exposed to the coupon 

provider for redeeming rewards eventually. That itself discloses users’ social interactions and 

trajectories as it shows the social interactions which took place in the process of delivering a 

coupon to one or multiple receivers.  

1.4 Current Solutions for DTN Routing 

The problem of D2D coupon dissemination in SWNs can be posed as a multicast Delay 

Tolerant Routing problem. There exists a rich body of literature on both Unicast and Multicast 

DTN routing solutions. Among these methods, only those which use a specific type of multicast, 

namely, dissemination, are fit for targeted coupon distribution problem in this dissertation. 

Dissemination, does not rely on a-priori knowledge about specific destination node identifiers, 

which is not always available in practical coupon dissemination applications in which the coupons 

are delivered to nodes based on their dynamic interest levels and redemption chances instead of 

static identities. 

Under the broad class of D2D dissemination algorithms, there are examples which apply 

social-aware dissemination [18], embed incentive mechanisms in their proposed framework (e.g., 

[19]), and/or rely on utility functions [20] designed towards performance indices such as delay and 
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forwarding cost. Social-aware dissemination approaches leverage the information regarding 

existing social ties among users in an SWN to identify and disseminate a content to receivers 

interested in the content. Incentive-based methods are suited for D2D dissemination framework in 

terms of providing incentive methods to encourage nodes’ participation in dissemination process. 

Utility-aware approaches apply a defined utility as the routing criterion. This is similar to the 

general approach in our research here where we use a defined routing utility in order to maximize 

the eventual economic gain.  

However, most existing multicast approaches are not applicable to marketing applications, 

since they do not: 1) explicitly define and employ a composite economic gain for the content 

generator, and 2) incorporate a model considering interest profile of nodes toward a 

content/product. The approaches in this dissertation attempt to address both the problems. 

1.5 Dissertation Objectives 

The objective is to design a D2D dissemination algorithm which for a given combination of 

commercial and network parameters, maximizes the total economic gain within the lowest possible 

dissemination delay. Commercial parameters include the revenue out of selling a product, discount 

cost, rebate cost, number of available coupons, coupon expiry time, and a redemption function. 

These parameters are inputs provided by a coupon generator. Network parameters are given based 

on the SWN’s characteristics such as consumers’ interest profiles and their social bindings 

demonstrated in their mobility profiles. This work formulates the gain of dissemination in 

perspective of a commercial coupon generator and proposes few Unicast and Multicast gain-aware 

routing algorithms which maximize a defined economic gain.  

We explore two solution approaches. First, we use traditional protocol design methods for 

gain-aware DTN protocol design. In the second approach, we explore learning mechanisms for 
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communication protocol design with a focus on routing layer protocol design, specifically, gain-

aware DTN protocols for coupon dissemination.  

1.6 Scope of Dissertation  

Chapter 2 is a survey of Unicast and Multicast DTN routing strategies. We explain why such 

approaches are not practical in target marketing applications. Furthermore, we highlight the 

differences and advantages of our proposed gain-aware dissemination framework compared to 

most recent routing schemes in the literature. 

In Chapter 3, we propose a Gain-aware Unicast Dissemination Protocol (GDP) which routes 

a content to a receiver with the goal of maximizing the defined economic gain for the content 

provider. Here, gain of dissemination is defined as a combination of a time-based value function 

and cost of delivery. 

In Chapter 4, we formulate the gain in a more practical elaborate manner. We define the value 

of a coupon delivery as a function of redemption probability of the coupon receiver, rather than 

time of the delivery. Then, we define gain as a combination of the defined value and cost of 

dissemination. We then propose an Economy Driven Content Dissemination (EDCD) routing 

protocol that controls D2D content dissemination with an end goal of maximizing the defined 

economic gain for a coupon-generator.  

In chapter 5, using the same gain formulation as in chapter 4, we introduce a Predictive Gain 

Utility Routing framework consisting of two routing protocols. Using gain prediction, this 

framework provides more structured and scalable routing approaches compared to EDCD (chapter 

4).  
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In chapter 6 and chapter 7, we present the proposed framework of evolutionary-based learning 

for protocol synthesis using probabilistic evolving state machines. We apply this framework to 

MAC layer protocols.  

In chapter 8 and chapter 9, we propose  reinforcement  learning, specifically Q-learning based 

gain-aware dissemination mechanisms for D2D coupon dissemination. The proposed online 

learning framework is expected to be robust in diverse and dynamic mobility environments.  

In chapter 10, we present the summary and future work with a discussion on how the presented 

mechanisms in this dissertation may open new directions in the area of commercial content 

dissemination in SWNs. Figure 1-2 demonstrates a pictorial representation of the presented work.  

  

Figure 1-2: Scope of the dissertation 
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2 Related Work 

This section reviews existing DTN routing protocols that use social interactions information 

for route computation in Social Wireless Networks. Several Unicast and Multicast approaches are 

first reviewed. Then, few approaches which are specifically fit for Device-to-Device (D2D) 

coupon dissemination applications are presented. These approaches embed concepts such as 

consumer interest, redemption probability, and forwarding incentive mechanisms. Finally, a class 

of existing work which use learning based techniques (evolutionary and reinforcement-based) to 

develop network routing protocols are reviewed.  

2.1 Unicast 

Unicast social-aware routing approaches are more extensively investigated in the literature 

compared to Multicast approaches. Few Unicast mechanisms can be extended to multicast by 

running the unicast logic for multiple destinations simultaneously. Those are referred to as unicast-

based multicast routing  [21].  

2.1.1 Community-based Routing 

Community-based routing algorithms rely on extracting information regarding nodes’ 

affiliation to communities. These methods can be classified [22] into two categories, namely, self-

reported, and detected. Self-reported social bindings are not always practical, or even accurate due 

to the dynamic nature of users’ interests and affiliation. In detected routing, social ties are inferred 

runtime based on nodes’ interaction statistics. Many of them attempt to extract community 

structures prior to routing.  LABEL [23] uses nodes’ pairwise inter-contact time values to detect 

co-memberships to a community. Then, each node is labeled with its affiliation to a community. 
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A packet is forwarded to a destination directly or it is forwarded to a node which has a label similar 

to the destination’s label.  

Bubblerap [24] detects inter-node social relationship such as existing community structures 

or level of centrality of each node. Node centrality is a measurement of a node’s topological 

importance, which is used to identify the key nodes that can bridge between different network 

segments and partitions [25]. Following a hierarchical pattern, a message is first forwarded toward 

the community in which the destination resides, and consequently, using intra-community 

interactions it is delivered to the destination. 

[26] proposes a friendship based routing in which each node forms a temporal friendship 

community. Friendship with a peer is estimated based on the frequency, longevity, and regularity 

of pairwise meetings. [26] demonstrates that the delivery decisions based on such communities 

can improve both delivery ratio and delivery cost. Diverse Routing (DR) [27] is a tunable protocol 

designed to cope with nodes deviating from their habitual activities. Habitual activities, reflected 

in community movement, helps in reducing average communication delay and improves routing 

efficiency. When nodes deviate from their habitual activities, affecting the routing performance, 

DR ensures that at least one of the deviant nodes can receive a copy of the packet. This is done by 

DR’s runtime way of social clustering and scattering copies of the packet into these clusters. DR 

supports Multicast as well as Unicast.  

All mentioned community-based routing methods rely on the homophily [1] principle which 

implies that nodes with similar interests, belonging to the same community, have higher chances 

of meeting each other. Therefore, the main effort in this class of methods is to detect communities 

and route the packet to the destination through nodes which belong to the same community as that 
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of the destination. Dynamic topology of SWNs and frequent changes in nodes’ affiliation may 

affect the performance of community detection and the subsequent routing process.  

2.1.2 Community-independent Routing 

Community-independent routing approaches build routing algorithms based on utilities 

without relying on information about nodes’ affiliation to any communities. In social-aware 

routing mechanisms, utility is computed based on nodes’ inter-personal relationships. Content 

carriers with higher utility are more fit to perform the content dissemination task.  

SimBetTS [28], for example, defines utility as a weighted combination of three social utilities 

including similarity, betweenness and tie-strength. Two nodes’ similarity level is a function of the 

number of common peers they are expected to meet in future. Betweenness for a node is calculated 

based on the number of nodes in the network that are indirectly connected through that node. Tie-

strength between two nodes is calculated based on their meeting frequency, closeness, and 

freshness of meetings.  

  PROPHET family of protocols [29], use history of inter-node encounters and transitivity for 

computing a delivery predictability metric based on which the forwarding decisions are made.  

Delivery predictability of a node captures the frequency with which the node meets the destination 

directly or transitively through other nodes. When a node carrying a content meets another node, 

the content is forwarded to the latter only if it has higher delivery predictability (to the destination) 

compared to the node that is currently holding the content. PROPHET implicitly attempts to 

balance between delay and forward-count in a best-effort manner. However, according to [30], 

protocols such as PROPHET often face a fundamental challenge in choosing the right time scale 

for delivery predictability estimation which is consistent with the underlying mobility. This causes 

certain performance loss. Authors in [30] derive mechanisms to dynamically determine the time 
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scale of PROPHET’s delivery predictability based on mobility, and show that when such time 

scale matches with mobility, the routing performance indeed improves.   

MaxProp [31] uses prioritized packet transmissions and packet drops (when buffers are low 

on storage) based on information collected via system-wide acknowledgements about path failure 

likelihood and hop-lists, which show previous intermediate recipients. Fresh packets, which are 

packets with hop count less than a threshold value, are given transmission priority. Extra copies of 

delivered packets are removed from involved nodes’ buffers as an acknowledgment is broadcast 

in the network. 

Both MaxProp and PROPHET use human mobility patterns to predict the best forwarders for 

accomplishing a higher delivery ratio and lower forwarding cost. 

Encounter Based Routing (EBR) [32] aims to maximize delivery ratio while minimizing the 

number of replicas and delivery delay. The basic idea is that nodes that frequently meet other nodes 

are better carriers than those who infrequently meet other nodes. Each node maintains an 

Encounter Value (EV) which represents the node’s past rate of encounters with other nodes. EV is 

formulated as an exponentially moving weighted average. When two nodes meet, the number of 

replicas of the content that are exchanged is proportional to the Evs of the nodes. The authors in 

[32] show that this mechanism amounts to a quota-based system in which the total number of 

copies of a content does not depend on the number of network nodes; instead it depends on a preset 

quota. It also shows that the encounter based forwarding implicitly minimizes both delivery delay 

and number of content forwards, while the protocol’s performance is subject to change based on 

the initial number of copies of a message.  

The protocol Selectively Making pRogress Towards delivery (SMART) [33] defines 

companions of the destination, which are nodes that frequently meet the destination. In the spray 



 18 

phase of SMART, a node forwards the packet only to the companions of destination. In its second 

phase, companions of destination forward the node to other companions until the packet is 

delivered to the destination.  SMART exploits nodes’ interaction information when forwarding 

messages. Thus it does not assume a node knows other nodes’ mobility patterns. The protocol 

attempts to minimize both delay and forwarding cost by forwarding packets to companions of the 

destination. None of the protocols, EBR and SMART employ any explicit mechanism for gain 

maximization as this thesis sets out to accomplish.                    

Another category of routing protocols assume presence of regularity in human mobility. For 

example, Nazir et al., [34] assumes that people follow similar mobility patterns daily (i.e., Monday 

to Friday). It is designed specifically to reduce end-to-end delay and increase delivery performance 

for time-critical applications.  

Community-independent methods are light-weight to implement compared to community-

based methods since they do not require a community detection scheme to run in parallel to the 

routing framework. However, a warmup period is required for the nodes to build their mobility 

profiles including the information regarding their social ties.  

2.2   Multicast 

There is less coverage on social-aware multicast DTN routing in the literature [22]. In [21], 

relay selection for multicast is formulated as a unified knapsack problem by extracting node 

centrality and community features, based on which it builds a social weight metric. Each node 

maintains a path to each multicast destination with the maximum social weight. This approach 

reduces the number of used relays, thus addresses the forwarding cost issue. 

Ning and et. al.  [35] propose an incentive based forwarding scheme which rewards the last 

hop relay node. Every node computes its Effective Interest Contact Probability (ECIP) for each 
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data category, which represents the probability that this node contacted a node interested in the 

corresponding data category either directly or indirectly. When two nodes meet, they exchange 

data messages based on computed ECIPs such that they maximize their own expected credit. This 

approach is restricted in the sense that a node without any messages is unable to receive any data 

item from other nodes it encountered, unless the data item is of its interest. 

The publish/subscribe Multi-Receiver Incentive Based Dissemination (MuRIS) [36] develops 

a hop-count based multicast utility to achieve minimum-hop multicast dissemination. During the 

warmup period or after each idle period, a publisher broadcasts probe messages labeled as a 

particular data category that this publisher will publish. Every subscriber, upon receiving this probe 

message, sends a receipt message containing the path information carried by the corresponding 

probe message to all relay nodes on the recorded path.  

Many existing multicast schemes (e.g., MuRIS [36]) face scalability issues as packets need to 

contain the address of every node on the path from a publisher to a subscriber.  

A category of flooding-based methods are designed based on Epidemic routing [37]. One such 

example, [38], analytically determines how a service provider can allocate its bandwidth optimally 

to make the content at users as “fresh” as possible. It defines an optimization problem around a 

global fairness objective (namely, maximizing the aggregate utility over all users) and solves it 

applying a gradient descent. [38] also specifies a condition under which the system is highly 

scalable.  

   Other than the scalability issue mentioned for Multicast approaches, most Unicast and 

Multicast approaches are not fit to coupon dissemination applications because they: a) lack the 

abstraction of economic gain for content generator; b) they do not incorporate a model of interest 

profile, and c) they rely on a-priori knowledge about specific destination node identifiers. The 



 20 

latter is not feasible in practical coupon dissemination applications in which the coupons are 

delivered to nodes based on their dynamic interest levels and redemption chances instead of the 

static identities. 

In the following section, we introduce existing frameworks which are more fit to coupon 

dissemination applications in the sense that they focus on embedding consumers’ interest profile 

and incentive mechanisms as parts of their system model and solution framework.  

2.3 Interest-aware and Incentive-based Mechanisms 

For a content dissemination method to be applicable for commercial applications, consumers’ 

interest profiles (e.g., interest type, interest level) should be incorporated into the content 

dissemination framework. In other words, nodes are identified with interest types/levels. Also, an 

effective incentive mechanism should compel nodes to contribute to message forwarding in such 

a way that the overall cost (e.g., delay, number of hops) is minimized. 

Interest-Based (IB) routing [39] uses an m-dimensional interest profile. Similarities between 

interests are measured using the cosine similarity metric. Forwarding is done to the relay nodes, 

which have similar interest profile(s) to that of the destination. Here, a destination must be known 

a-priori. 

In the social-aware interest-cast mechanism SCORP [20], nodes are assigned binary interest 

levels (i.e., 0 or 1) toward different items. A utility of social weight is used for capturing a node’s 

contact durations with the nodes interested in a type of content. Nodes with higher social weight 

are considered better forwarders. SCORP improves delivery rate and delivery cost. The binary 

interest level used in SCORP’s model does not match practical business models with non-binary 

consumer’s interests for a coupon type.  
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𝑃H-coupon [17] proposes a probabilistic coupon dissemination method focusing on 

promptness and privacy. Users are not identified with interest profiles. Thus, this approach does 

not attempt to route a coupon to destination(s) with specific interest. Instead, it assumes all users 

are potentially interested in owning a coupon. A coupon receiver becomes an owner of the coupon 

based on a defined probability. Each intermediate node on the forwarding chain receives some 

portion of the total associated reward (designated by the coupon generator) based on its rank in the 

forwarding chain. 𝑃H-coupon uses Bluetooth Service Discovery Protocol (SDP) toolkit for Unicast 

coupon exchange which does not require  pairing, thus, provides prompt coupon exchange.  

MobiCent [40] is an incentive compatible scheme proposed for replication based DTN routing 

protocols. It works on top of existing routing protocols to ensure that selfish actions do not result 

in larger rewards. Using Multiplicative Decreasing Award (MDR), MobiCent provides an 

incentive compatible payment mechanism to cater to clients that want to minimize either payment 

or data delivery delay. The protocol is also capable of identifying and reacting to DTN related 

attacks such as edge insertion attack and edge hiding attack. MobiCent treats the routing protocol 

as a black-box and is independent of the specific algorithm used. Authors choose Epidemic [37] 

as the underlying routing algorithm to evaluate MobiCent’s performance. MobiCent requires a 

trusted third party to verify and manage payment transactions. Another method RELICS (in-

network ReaLization of Incentives to Combat Selfishness) [41] introduces in-network-realization 

of incentives, in which it does not pay nodes virtually, but rewards them in a physically realizable 

way. RELICS assigns a rank to each node based on node’s reciprocity of service. That is, a node 

obtains a higher rank if it forwards messages originated from others more frequently. Message 

forwarding is then prioritized based on the message generator’s rank. RELICS, not a routing 
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protocol itself, can be mounted on top of any routing protocol to facilitate energy- and incentive-

aware message forwarding.  

COUPONS [19] introduces a multilevel incentive mechanism for coupon dissemination in 

mobile networks. The incentive mechanism rewards intermediate nodes in a forwarding chain 

equally or based on a geometric series (See Section 1.3.4). The applied dissemination mechanism 

is not social-aware. However, based on feedbacks from the network, including acknowledgements 

and node density, COUPONS controls the rate of coupon duplication and forwarding. COUPONS 

improves delivery ratio similar to 𝑃H-coupon. These methods are fit to coupon dissemination 

applications in the sense that they address privacy issues regarding D2D dissemination, as well as 

encouraging nodes’ cooperation (with embedded incentive mechanisms). But they do not 

formulate nodes’ interest levels and redemption probability.  

SocialCast [42] defines a system model embedding nodes’ interest profiles. It then defines a 

combined node utility based on 1) a node’s colocation with another node sharing the same interest 

type, and 2) change of degree for a node. SocialCast uses Kalman Filter [42] to predict nodes’ 

utility. The higher a node’s utility is, a better content carrier it is. SocialCast is shown to improve 

delivery ratio and latency compared to a non-prediction based method.  

The system model introduced in [16] is closer to coupon dissemination business models as it 

considers consumers’ redemption probabilities. Its forwarding logic assumes that each node knows 

its neighbors’ redemption probabilities and topological degrees. It defines a social-aware incentive 

mechanism such that a node’s gain (acquired incentive) is a function of the redemption probability 

of the nodes to which it forwards the coupon. Therefore, users implicitly maximize advertisers’ 

interest by maximizing their own interest. This method is tested on a synthesized contact network 
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with a known redemption probability distribution, rather than a wireless social network with node 

mobility. 

Social-Aware Networking (SANE) [43] explicitly considers user interest information. It uses 

an interest profile, and similarities between interests are measured using the cosine similarity 

metric. Forwarding is done to the relay nodes, which cosine similarity of their interest profile(s) to 

that of the destination’s is larger than a relevance threshold. The parameter relevance threshold 

needs to be adjusted experimentally. SANE attempts to take efficient forwarding decisions using 

utility prediction. However, it does not use a  structured learning framework to perform this task. 

Next section addresses the application of learning in protocol evolution on different network 

layers.  

2.4 Communication Protocol Evolution 

Communication network protocols are designed based primarily on heuristics and past 

experience of the designer. While this works well for simple networks with homogeneous and 

prior known operating conditions, often this approach does not scale well for heterogeneous and 

dynamically changing networks. This motivates a field of network protocol design using 

evolutionary mechanisms that can adapt with heterogeneity and changing operating conditions, 

thus avoiding redesigns with changing conditions. 

Communication protocol evolution is a tool that can be used by a collection of network entities 

to synthesize a set of rules as protocol components for a given network and loading conditions. 

Parameter evolution, as a rudimentary form of protocol evolution, allows the evolution of one or 

multiple parameters of an already-designed protocol logic. 

An example of parameter evolution can be found in [3] where Epidemic Routing [3] is used 

as the target protocol for which forwarding probability is selected as the evolvable parameter. The 
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authors use Genetic Algorithms (GA) to evolve the parameter forwarding probability for 

maximizing fitness. While being useful for logic optimization, parameter evolution itself does not 

serve the purpose of logic/protocol synthesis. 

The anycast evolutionary-based routing proposed in [44] defines a chromosome as a set of 

randomly selected possible paths. Using Genetic Algorithms (GA), it evolves more fit set of routes 

(e.g., with lower delivery delay). Simulation results show that the proposed GA-based method can 

reduce the average delay compared to the shortest path algorithm. This approach however, faces 

challenges when used in highly dynamic networks (such as SWNs) where paths between sources 

and destination(s) change frequently. 

[45] finds a routing solution for flying Unmanned Aerial Vehicles (UAVs) with mutual sense 

and communication capability. The proposed fuzzy-based ant colony routing strategy computes 

local heuristic information based on crowd density of peers around a source node and relative 

velocity between a source and its peers. Combining the locally acquired information and ant 

pheromone, a routing strategy is exploited which improves delivery probability and average 

latency compared to few existing methods, including Epidemic [37] and Direct Delivery [46].  

Genetic Programming (GP) is widely applied for program evolution [4]. GP contributes to the 

evolution of a set of instructions (i.e., implementing algorithms) as genes, rather than a set of 

parameters as done in [3]. [6] is an example of using GP for protocol evolution in which the 

evolution of IEEE802.11 contention window behavior is explored. It was reported that the types 

of evolved MAC contention window behaviors are less complex than the well-known exponential 

back-off. The methodology [6] does not apply to the whole MAC functionality. Instead, it aims to 

optimize MAC protocol performance through evolving the contention window behavior. 
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 Very few studies investigate use of evolutionary techniques in developing routing protocols 

for DTNs and specifically for SWNs. One reason may be that SWNs usually involve extreme 

dynamic human mobility patterns, while evolutionary methods generally require a convergence 

period to adapt to environment changes. Feasibility of evolving content dissemination protocols in 

SWNs in an online manner can be considered as an open issue. 

2.5 Reinforcement Learning based Approaches 

Reinforcement learning (RL) has been shown to address routing challenges caused by 

dynamicity of wireless networks [47]. Using RL, nodes attempt to learn about a defined quality 

metric (e.g., buffer occupancy, distance to destination, etc.) using information they collect locally 

from their encounters. The goal is to maximize a reward which is associated with the defined 

quality metric. 

   A Q-learning based routing, namely, Q-routing, was first introduced in [48]. Simple 

experiments on a 36-nodes network irregularly connected, proved Q-routing to be superior 

compared to a non-adaptive shortest path based routing algorithm in terms of adaptation and 

maintaining efficient routing in presence of network dynamicity, such as varying network load.  

   Delay Tolerant Reinforcement-Based (DTRB) [49] is a flooding-based routing solution for 

802.11 wireless networks. It utilizes Multi-Agent Reinforcement Learning techniques to learn 

about routes in the network and forward/replicate messages that produce the best reward. Reward, 

in DTRB’s framework is associated with nodes’ distance to destination(s). It is shown that DTRB 

improves delivery ratio especially in dense population areas.  

   Adaptive Reinforcement-Based Routing (ARBR) for DTNs [50] uses a Collaborative 

Reinforcement Learning (CRL) technique for enabling a group of nodes to make cooperative 

forwarding decisions that can increase the delivery ratio and reduce the number of transmissions 



 26 

and message delivery time. The quality metric in this learning framework is associated with nodes 

mobility statistics, congestion, and buffer occupancy.  

Both DTRB and ARBR [15] are not interest-aware protocols and their quality metrics are 

different than the defined gain used in the proposed approaches in this dissertation. 

2.6 Summary 

Most DTN Multicast and Unicast routing approaches in literature attempt to optimize 

individual performance indices such as message delay [37], forwarding cost, and storage. None 

define composite cost factors by combining multiple such indices into a single gain index. None 

of the existing methods are applicable to commercial dissemination applications, since they do not 

formulate the notion of economic gain of dissemination for a coupon provider. Throughout this 

proposal, we introduce a Gain Utility to control D2D coupon dissemination with an end goal of 

maximizing the economic gain for a coupon generator.  

Few existing approaches are not applicable to marketing purposes since they do not model 

consumers’ interest and redemption chance for specific types of content. Among those which 

define consumers’ interest (e.g., SCORP [20]), binary consumer interest levels (i.e., 0 or 1) are 

defined. According to existing business models [11], consumers’ interest level toward an item is 

neither binary, nor static.  

Most routing protocols rely on a-priori knowledge about specific destination node identifiers 

(e.g., [39]). This is not feasible in practical coupon dissemination applications in which the 

coupons are delivered to nodes based on their dynamic interest levels and redemption chances 

instead of the static identities.  

Methods which require packets to record the whole forwarding chain between a source and a 

destination (e.g., [17]) are less scalable. Furthermore, from a privacy preservation point of view, 
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storing the forwarding chain in a coupon exposes information about consumers’ social interactions 

to a centralized server. To preserve consumer’s privacy, a consumer’s interest profile is preferred 

to be stored locally within his/her mobile device. In the proposed model, a consumer device is 

allowed to share consumer’s interest profile with other devices selectively upon meeting, but is 

not allowed to share such information with a centralized entity.    

Among learning based approaches, D2D content dissemination protocol design using 

evolutionary frameworks is considered as an open issue. Communication protocol design using 

evolutionary mechanisms provides adaptability with heterogeneity and changing operating 

conditions. Throughout this work, we present first steps toward evolving network communication 

protocols (e.g., for Medium Access Control layer).  

     Another group of learning based approaches, namely, reinforcement learning based ones, are 

not applicable to marketing applications, since they do not: 1) explicitly define and employ a 

composite economic gain for the content generator, or/and 2) incorporate a model considering 

interest profile of nodes toward a content/product. Part of this dissertation attempts to address both 

the limitations by embedding a learning mechanism with the goal of maximizing the defined 

economic gain.   
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3 Gain-aware Unicast Dissemination Protocol (GDP) 

3.1 Introduction 

Routing in Delay Tolerant Networks [51] addresses the technical issues in delivering single 

or multiple content in heterogeneous networks that may lack continuous network connectivity. 

When no end-to-end path is present, intermediate nodes take custody of the data being transferred 

whenever opportunity arises. To choose the most appropriate content forwarders, majority of 

routing protocols attempt to explicitly minimize one of the DTN routing indices such as message 

delay [37], forwarding cost [46], or storage [31]. Those protocols attempt to explicitly minimize 

any one of the above three indices at a time.  

   From an operational standpoint, it is often necessary to strike a balance between multiple of 

those indices instead of targeting the best performance for a single index while neglecting the 

others. For instance, a routing protocol that offers excellent delay performance may require an 

unacceptably large number of forwarding (e.g. flooding), thus causing impractical amount of 

energy burden on the intermediate forwarding nodes. Similar practical problems also exist for the 

protocols that attempt to minimize forwarding-count or storage without considering the primary 

application requirement, namely, delay. Therefore, a desired DTN routing protocol should be able 

to strike an operational balance between the different objectives.  

   As a first step towards this goal, we develop a composite delay-forwarding cost index, and 

design a DTN routing protocol around that index. Many practical mobile applications would 

benefit from DTN routing based on such a composite cost index that combines the effects of delay, 

forwarding cost, and sometimes storage.  

   There are many applications of DTNs ranging across education, healthcare, government, 

interplanetary networks [52, 53], vehicular networks [54] and marketing services [19]. As a 
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marketing strategy, consider a coupon distributing application which distributes time-constrained 

coupons through the wireless network using users’ mobile devices.  Let the value of a coupon be 

the amount of discount its recipient gets when she or he redeems the coupon at the store. And the 

economic gain of the store from disseminating the coupon is defined as the generated value upon 

delivery minus the forwarding costs. Therefore, for a value function that linearly decreases with 

time, it is desirable to deliver the coupon as early as possible with the minimum possible 

forwarding cost, i.e., through the fewest number of intermediate hops. In other words, the goal 

would be to find the right combination of delivery delay and number of forwards so that the 

economic gain of dissemination is maximized.    

   In self-organizing unmanaged networks nodes cannot be expected to forward messages 

without considering their own energy-cost of forwarding. This may require the content distributor 

to pay a rebate (i.e., contributing to the forwarding cost) to each user whenever he/she forwards 

the content. The concept of rebate is particularly important in self-organizing social settings in 

which there is no central authority that can enforce nodes to store and forward content without 

incentives. In addition to the coupon example above, the concepts of value, rebate, and economic 

gain apply to a number of other contents such as advertisements, event notifications, etc. 

   In this chapter, we propose an economic gain-aware DTN routing protocol that 

automatically adapts itself to different combinations of value functions and forwarding costs 

without requiring any explicit parameter tuning. Specific contributions are as follows. First, we 

design and parameterize a composite gain function that combines the effects of delay (via value) 

and forwarding-cost (via rebate) during unicast DTN routing.  Second, we develop a unicast 

routing mechanism that yields the best possible gain for a given network and mobility pattern. 

Third, we develop a unicast DTN routing protocol Gain-aware Dissemination Protocol (GDP) 
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that utilizes the time-dependent gain function as a forwarding decision metric in both direct and 

transitive manners, to route content from a mobile source to a mobile destination. Finally, using 

DTN simulator ONE [55] , the proposed protocol is extensively characterized along with few other 

existing unicast DTN routing protocols. 

The proposed mechanism assumes full node cooperation. In other words, it does not address 

issues raised in the presence of non-cooperative and colluding selfish nodes, and attacks such as 

Sybil [56] and whitewashing attacks [57]. 

3.2 Network Model 

DTN Networks can be formed in public places such as in a University where students carrying 

mobile devices can form an ad-hoc system. Due to periodic schedules of classes, lunch hours, and 

other social events, students in a University often form communities which are groups of students 

with similar mobility patterns. Students taking same set of courses or students belonging to same 

dormitory are examples of community formation. 

   Consider a student X whose mobile device is in possession of an electronic coupon from a 

fast food restaurant in the campus. The coupon was delivered to the device when student X visited 

the restaurant. Student X can now distribute the coupon (single hop or multi-hop) to students of 

dormitory Dy through X’s classmates who reside in dormitory Dy. In this section, we design a 

unicast DTN routing protocol GDP which can maximize the gain of the coupon delivery from 

source student X to a pre-determined destination student Y.  

 Consider the DTN in Figure 3-1, in which the vertices represent mobile nodes, the edges 

represent the occurrence of contacts between node-pairs, and the weights on the edges indicate the 

average inter-contact time between the nodes.  There are three unicast paths from source S to 

destination D, namely S-M-N-O-P-D, S-A-B-D and S-X-D.  The delivery latencies from S to D 
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across these paths follow the pattern:   S-M-N-O-P-D << S-A-B-D << S-X-D. This is because the 

nodes in the path S-M-N-O-P-D meet each other frequently, whereas the nodes in the path S-X-D 

meet each other very infrequently. When the value obtained by delivering the content to D does 

not depend on the delivery time and the forwarding cost (i.e., the rebate given to the forwarding 

nodes) is high, it is preferable for S to hold on to the content and deliver it to D along the path S-

X-D so that the number of forwards is minimized. On the other hand, if the value of the content 

falls rapidly with time and the forwarding cost is low, it is preferable for S to forward along the 

path S-M-N-O-P-D so that the delivery delay is minimized. 

 

Figure 3-1: Example user interaction and DTN routing scenario 

3.3 Problem Formulation 

Value: The value of content is a monotonically non-increasing function of time. For example, 

the value of an electronic discount coupon delivered over a phone-to-phone DTN network is 

expected to be the maximum in the beginning, and zero after its expiry time, which is termed as 

the value duration. The shape of the function (e.g., liner, exponential, step etc.) is set by the content 

originator.  Value can be abstracted for other time-critical electronic content including short-cycle 

advertisements, warning/alert messages, and peer-to-peer auction services. Very similar value 

abstraction can be applied to a short-cycle advertisement being distributed by a merchant such as 

a department store. The objective is to deliver an advertisement to a group of interested destinations 

such as students in a campus. A price-aware algorithm should ideally manage delivering the 
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content to an interested person within the defined expiration period. Earlier delivery induces a 

higher value. The value function in this example would be a step function with an initial amplitude 

that becomes zero at the time of expiry. Another embodiment of value would be to distribute time-

bound content within a peer-to-peer social network. Consider an example in which a person twits 

a content which should be peer-to-peer distributed among a group of interested receivers within a 

certain period of time that is determined by the lifetime of the content (e.g., the lifetime of a photo 

in Snapchat; http://www.snapchat.com/). The value function of such a content in this application 

is determined by the lifetime of the content set by its originator.     

A simple linearly declining value function can be written as: 

                           𝑉 𝑡 = 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑,											𝑡	 < 𝑡R	               (3-1) 

                																															= VR − α t − tR ,						𝑡R	 ≤ t	 

where 𝑡R is the time of content injection, 𝑉R is the initial value, α is the value gradient, and 

𝑉 t ≥ 0 for all t.  

 
 Cost:  Forwarding cost at time t can be expressed as: 

																																																											𝐶Z	 𝑡 = 𝐶[	. 𝑁Z	 t 																																																 (3-2)                                    

where 𝑁Z	(t) is the number of forwarding till time t, and 𝐶[	is a fixed cost of each forwarding, 

which is the rebate or reward given to the forwarding users. Practical formulation of 𝐶[	will depend 

on specific target application. For a coupon application, 𝐶[	can represent a credit, possibly a 

fraction of the coupon value [19], which is given to each forwarding node as an incentive for 

energy-expensive content forwarding. Other formulations of 𝐶[	are possible for specific 

applications.  

 
Gain:  Combining value and cost, the gain can be written as: 
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																																																														𝐺 𝑡 = 𝑉 𝑡 − 𝐶Z	 t 																																							 (3-3)	

Gain can be negative. Meaning the overall benefit of a content delivery can be negative when an 

expired content is delivered or when the overall forwarding cost is higher than the obtained value 

upon delivery. Protocols which are unaware of the notion of gain are in danger of delivering the 

packet with a negative gain, i.e., a worthless delivery. 

Routing Problem:  For given value function with specified 𝑉R and	α, cost factor	𝐶[	, and 

network mobility, the objective is to design a unicast DTN routing algorithm that maximizes the 

gain 𝐺 𝑡  at content delivery.  

3.4 Gain Upperbound 

To investigate the gain performance of the experimented DTN routing protocols (including 

that of GDP), it is essential to know the gain upper-bound with given network mobility and content 

value profiles. To this end, we developed a strategy to find the gain upper bound for when all 

system parameters including node mobility is known a prioi. In other words, we attempt to find 

the maximum gain a packet can achieve in a certain scenario, so that we can compare the achieved 

upper-bound with the gain that other protocols, including GDP, can obtain. A full flooding 

approach can be used for: a) finding all possible routes, b) computing the gain via such routes, and 

c) choosing the one with maximum gain. This cannot be implemented (even in simulation) because 

of non-polynomial complexity of storage of content that are stamped with all possible routes 

during flooding. A scalable Routing with Gain Aware Pruning (RGAP) for finding the performance 

upper bound is devised as follows. Note that the role of RGAP is much like the Oracle based DTN 

routing protocols [46] that are able to provide the best-performing forwarding when the node 

mobility is known a priori.     

   In RGAP, An intermediate node ‘i’ maintains a variable 𝑙?	which represents the Minimum 
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Loop-free Forwarding Count (LFC) among the paths taken by all copies of the content received 

by node ‘i’. The concept is illustrated in Figure 3-2. In the left, since there is no forwarding loop, 

𝑙?	 in this case is 3. In the middle, the number of forwarding is larger than the loop-free forwarding 

count – which is 2. The right one shows that additional looping does not change	𝑙?	. Up to a given 

time, if node I received three copies via those forwarding scenarios, then 𝑛?	at that time will be 2, 

which is the minimum of the three.   

   Before receiving the first copy, 𝑙?	 is set to a large value at each node i. Each copy maintains 

a field 𝑛]Z^	,	representing the LFC encountered by that copy so far. Before forwarding its copy, 

node I updates the 𝑛]Z^	field as	𝑛]Z^	 = 𝑙?	 + 1. When a node j receives a copy, if for that copy 

𝑛]Z^	 < 𝑙 	, then 𝑙 	is set to 𝑛]Z^	, and the copy is subsequently flooded. If 𝑛]Z^	 ≥ 𝑙`	,	then the 

received copy is discarded. The destination maintains a variable 𝐺abc	which at a given time 

represents the maximum of the gains obtained from the individual received copies so far. Upon 

receiving a copy, the destination computes (using 𝑉 𝑡  and 𝐶[	) a temporary gain 𝐺@c	. If 

𝐺@c	 > 	𝐺abc	, then 𝐺abc	is replaced by	𝐺@c	. 

Proof of Gain Bound: The objective of RGAP is to prune out routes (from all possible end-to-

end routes as a result of flooding) which are guaranteed to not yield higher gain than the current 

maximum gain at the destination. The pruned routes are the ones that have both higher delay and 

number of forwards than the route corresponding to the current maximum gain at the destination. 

When an intermediate node j receives a copy with 𝑛]Z^	 ≥ 𝑙`	, the path followed by that copy can 

be pruned because it results in both higher delay and forwarding counts, and hence, lower potential 

gain at the destination. This ensures that for given mobility and value/cost profiles, within the time 

till value becomes zero (i.e., value duration), 𝐺abc	of RGAP monotonically reaches the maximum 

possible gain at destination.      
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Figure 3-2: RGAP for finding performance upper bound 

3.5 Gain-aware Dissemination Protocol 

Gain-aware Dissemination Protocol (GDP) is a heuristic based approach and driven by the 

key idea of forwarding content through a path with low inter-node contact intervals, so that the 

expected gain at the destination is maximized. GDP is a history based protocol that observes 

locality in node interaction patterns and develops utilities based on that for gain-aware forwarding. 

3.5.1 State Variables 

Each node I maintains two variables: 1) 𝑛?	: the expected number of hops to destination on 

an estimated route which yields the maximum gain, and 2) 𝛷?: the expected delivery 

latency for the same route. Nodes interchange 𝑛?	 and 𝛷?	via periodic Hello messages. 

When the node I meets a destination node j, it initializes 𝛷? to be 	𝛥?,` which indicates the 

mean inter-contact time between nodes I and j. It also initializes the quantity 𝑛?	 to 1. When 

node I meets any node j (i.e., node j is a destination or non-destination), both nodes update 

the quantities 𝑡?,`	and	𝛥?,`, which are the meeting time and the mean inter-contact time 

between nodes I and j respectively.  
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Fig. 5: RGAP for unicast benchmark
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Notation Definition 
𝑛?	 Expected number of hops to destination on an 

estimated route which yields the maximum 
gain 

𝛷? Expected delivery latency for a route to 
destination on an estimated route which yields 
the maximum gain  

𝑡?,`	 Meeting time of nodes I and j 
	𝛥?,` Mean inter-contact time between nodes I and j 
𝑈? Expected gain by delivering a content 

generated by node i 
𝑉 𝛷?  Generated value after a delivery latency 𝛷? 
𝑐[	 Compensation given for each forwarding along 

the route to destination 
𝑡i	 Time of content generation and injection in the 

network  
𝑔` Expected gain by forwarding the content to  

node j, when node I meets an intermediate node 
j at time 𝑡E	(𝑡i < 𝑡E) 

Table 3-1: Notations and corresponding definitions used in GDP 

The latter adaptively captures any locality in inter-contact pattern. Table 3-1 shows the 

notations used in this section and their corresponding definitions. 

3.5.2 Updating State Variables 

The expected gain by delivering a content generated by node I can be written as 

																																															𝑈? = 𝑉 𝛷? − 𝑛?	 ∗ 𝑐[																																																					(3 − 4) 

where 𝑉 𝛷?  is the generated value after a delivery latency 𝛷?, and 𝑐[	is the compensation 

given for each forwarding along the route to destination. Let us now consider a node I that 

possesses a content and it meets node j. If the latter is the destination, then 𝑛?	and 𝛷? must be 

updated only if 𝑈? < 𝑉 𝛥?,` − 𝑐[	. If that is true, then node I updates 𝑛?	as 1 and 𝛷?	as 𝛥?,`. If node 

j is not the destination, node I checks to see if it is profitable to use node j as an intermediate carrier 

to the destination. If yes, then 𝑛?	 is updated such that it considers the one additional intermediate 
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hop between node I and destination through node j. Also, 𝛷?	is updated to take into account both 

the average inter-contact time between nodes I and j, and the expected delivery latency from node 

j to the destination. Thus, if 𝑈? < 𝑉 𝛥?,` + 𝛷` − (1 + 𝑛`	) ∗ 𝑐[	, update 𝑛?	 as 1 + 𝑛 	 and  𝛷?	as 

(𝛥?,` + 𝛷`). 

3.5.3 Forwarding Logic  

When a node in possession of content meets the destination, it makes a delivery only if the 

remaining value for the content is larger than the forwarding compensation CR. Using the 

constructs of 𝑛?	and 𝛷?, a node chooses the best forwarding entity from its social peers who may 

or may not currently be in direct contact. Consider node I which is in possession of a content that 

was generated and injected in the network at time 𝑡i	. When node I meets an intermediate node j 

at time 𝑡E	(𝑡i < 𝑡E), the expected gain by forwarding the content to  node j can be written as: 

                                        	𝑔` = 𝑉((𝑡E + 𝛷 ) − 𝑡i) − 𝑛 	 ∗ 𝑐[		                                        (3-5) 

 

   The expected gain by holding on to the content by node I is 𝑔?. Every time node I meets an 

intermediate node j, in addition to computing 𝑔? and 𝑔`, it also computes the expected gain by 

forwarding the content through nodes that it met in recent past, but not currently (at time 𝑡E) in 

direct contact. For such a node k which was last met by node I at time 𝑡?,m	, if 𝑡?,m	 + 	𝛥?,m	 > 	 𝑡E	 , 

meaning  it is not yet time for the next expected meeting, the expected gain by forwarding the 

content to node k can be written as: 

                                           𝑔m = 𝑉(𝑡?,m	 + 	𝛥?,m	 + 𝛷m − 𝑡i) − 𝑛m	 ∗ 𝑐[		                           (3-6) 

   However, if the time for the next meeting has passed, that is if 𝑡?,m	 + 	𝛥?,m	 < 	 𝑡E	 , the 

expected gain can be computed as 

                                                 	𝑔m = 𝑉(𝑡E	 + 𝛷m − 𝑡i) − 𝑛m	 ∗ 𝑐[																										             (3-7) 
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   After computing 𝑔?, 𝑔` (j ϵ all direct neighbors), and 𝑔m (k ϵ all recent past neighbors), node 

I first chooses the node with the highest 𝑔 value for all j and k. If the node with that highest 𝑔 (i.e. 

𝑔abc) corresponds to a past neighbor, then no forwarding is done. If it is a current neighbor, then 

a forwarding to the corresponding neighbor is performed only if 𝑔abc > 𝑔? + 𝐶[. All the key 

concepts of GDP protocol are summarized in Algorithm 3-1.  

 

Note that a flooding/spray based version of GDP was not considered for the following reason. 

The basic premise of GDP is to be able to design a utility based forwarding in which the utility is 

explicitly designed based on the core objective of gain maximization. All the system parameters 

and their algebraic handling in Section 3.5 are based on this premise. Introducing spraying, which 

is a form of naïve flooding, goes against this core effort towards gain-awareness and introduces a 

sense of blindness in the forwarding effort. GDP is intended to avoid this by making the protocol 

as utility driven as possible.  
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3.6 Performance Characterization 

Using the ONE [55] simulator, we compare GDP with Direct Delivery [46], PROPHET with 

estimation [30], Epidemic [37], Spray and Wait [58], and the RGAP (i.e., the performance upper 

bound) routing approaches. Protocol performance was evaluated using a community based 

synthetic mobility model and a trace based model [59] in which mobility traces were collected for 

participants in the conference INFOCOM ’06.   

 

Figure 3-3: Experimental network topology with six social cliques 

3.6.1 Experiments with Clique-forming Synthetic Mobility  

A 101-node network, was structured in five 20-node and one 1-node social cliques or 

communities. The cliques are formed due to node mobility around six pre-positioned Point of 

Interests or POIs. Movement of each node is stochastically programmed by an inter-waypoint 

probability transition matrix. As shown in Figure 3-3, the cliques C1, C2, and C3, with 20 nodes 

each, are designed to be isolated in that the members of an isolated clique interact among each 

other, but do not move out to meet nodes from other cliques. The members of the other two 20-

node cliques C4 and C5 are migratory between C1-C2 and C2-C3 respectively. Finally, the single 

node in C6 migrates between cliques C1 and C3. An example realization of this model would be 
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the student interactions in a campus where the POIs represent class rooms, food court, athletic 

centers, etc., and the cliques represent students from specific academic units, dormitories, etc. 

   All results presented for this model corresponds to content generated at a node in C1 and is 

destined to a node in C3. With the above clique configuration, content needs be routed either 

through a path through migratory cliques C4 and C5, or through a path through the only node in 

the migratory clique C6.  

   We used a constant forwarding cost (i.e. 𝐶[) and a linearly decreasing value function with 

the initial value set to 1. The maximum possible value of 𝐶[ is also set to 1. Main experimental 

variables are 𝐶[ and Value Duration (VD), which is the time for the value function to reach zero. 

The chosen range for 𝐶[ and VD are 0.02 through 0.18, and 1000sec through 20000sec 

respectively. Low VDs indicate faster reduction of content’s value with time. The reported gain is 

averaged over ten different source-destination pairs with the source in clique C1 and destination 

in clique C3.   

3.6.1.1 Protocol State Warm up  

   Before content is injected in the network the simulation is run for a warm up period during 

which the protocol state variables, as introduced in Section 3.5.1, are allowed to stabilize. 

Figure 3-4 shows the evolution of protocol state variable Δi,j  (i.e., the expected inter-contact time) 

for a number of arbitrarily chosen node pairs in  a representative simulation run.  
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Figure 3-4: Warm up time based on inter-contact time evolution 

   In this particular case, the warm up period is chosen to be 15,000s by which time the state 

variable Δi,j  for all node-pairs were observed to have stabilized. Content injection and routing 

operation was initiated at this point. The warm up period of 15,000s was experimentally justified 

after observing the stabilization of Δi,j  for a large number of node pairs (i.e., in this case 11). In 

our experiments, the inter-contact time was found to be in the range of 1s to 7000s, representing 

the most and least frequently interacting node pairs respectively.    
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Figure 3-5: Example contact statistics of a C4 node 
3.6.1.2 Steady State Contact Statistics 

   Figure 3-5 depicts example node interaction statistics as CDFs of inter-contact time (ICT) 

between a node from the migratory clique C4 and all other network nodes in Figure 3-5. In 

Figure 3-5:a, the clusters of CDF lines indicate formation of ICT localities due to interaction 

affinities that GDP can leverage for gain-maximizing dissemination. Figure 3-5:b and Figure 3-5:c 

show the PDF of ICTs between a node in C4 and nodes in C1 and C6 respectively. Results in 

Figure 3-5 clearly indicate that the C4 node’s social interactions with nodes from C1 and C2 are 

stronger than with those from C5 and C6. This implies that to route content to a node in social 

clique C4, nodes from C1 and C2 would serve as better next hops compared to those from C5 and 

C6. 
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3.6.1.3 Protocol Self-tunability 

  Results in this subsection aim to establish the ability of the proposed GDP in achieving gain 

closer to the RGAP upper bound (see Section 3.4) compared to PROPHET. It also establishes that 

unlike PROPHET, GDP can self-tune its operation with varying value and cost parameters.  

Figure 3-6:a shows the gain upper-bound computed using RGAP algorithm. The theoretical 

gain upper-bound is 1-𝐶[, which happens when content is directly delivered immediately upon 

generation. Higher gains are achievable for lower 𝐶[ and for higher VD. Figure 3-6:b reports the 

performance of PROPHET when its parameters (i.e., initialization, transitivity, and aging 

constants) are tuned for each {𝐶[,VD} combination to ensure the best achievable gain. It performs 

well only for low 𝐶[ and high VD since for high 𝐶[ and low VD, often the content remains 

undelivered, indicated by zero gain.    

   Figure 3-6:c shows how PROPHET performs when it is tuned for a specific scenario 

(i.e.,	𝐶[ = 0.04, VD = 4000 sec). While performing well in the vicinity of the tuned-for {𝐶[,VD} 

combination, it shows poor gain, often negative, at other regions of the {𝐶[,VD} space. 

Figure 3-6:b,c indicate the need for parameter 43enability depending on mobility, value, and cost 

profiles. Since mobility information is not always known a priori, parameter tuning may not be 

feasible for PROPHET and other parameter-configurable DTN protocols. Note that while 

observing gain across different protocols, more emphasis should be given on relative gains as 

opposed to on the absolute gains. 
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Figure 3-6:Gain comparison between GDP, PROPHET, and RGAP 

The absolute gains depend directly on the ratio of the initial content value 𝑉 0  to the 

forwarding cost	𝐶[. That ratio also determines the amount of negative gains. 
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3.6.1.4 Evolution of Gain and Latency 

   Figure 3-7:a,b show comparative gain and latency for the proposed GDP and scenario-tuned 

{𝐶[ = 0.04, 𝑉𝐷 = 4,000 sec} PROPHET for a representative run. As shown in Figure 3-7:b, since 

the route taken by gain-agnostic PROPHET remains unchanged, its delivery delay remains 

constant for all 𝐶[. GDP, on the other hand, changes route based on the forwarding cost. Initially 

for low 𝐶[, it forwards content through a low-delay (and high forward-count) path, but as 

𝐶[	increases, the route is shifted towards a higher delay (and low forward-count) path. Figure 3-7:a 

shows that irrespective of the path shifting, GDP always maintains high gain, which is what it is 

designed for. Figure 3-7:a also shows the corresponding performance of RGAP, which is very 

close to GDP.   

   Figure 3-7:c shows gain evolution for PROPHET and GDP with time. Generally, gain 

reduces by 𝐶[ upon each forward, and finally rises upon delivery. PROPHET in this case delivered 

earlier than GDP, but due to more aggressive forwarding, its eventual gain is smaller. 

   To summarize, the results in the above two subsections indicate GDP’s self-tuning ability 

to perform gain-aware forwarding and to obtain gain values that are close to the practical upper-

bound observed from the RGAP mechanism. 

3.6.1.5 Delay, Forwarding Cost, and Gain 

   Having observed the overall gain trend of GDP in the previous two subsections, in this and 

a few following subsections we characterize the protocol in further details. In addition to 

PROPHET and RGAP, we analyze Epidemic Routing [37] and Spray and  Wait (SNW) [58] in 

this characterization phase. For each routing protocol under consideration, we ran 100 
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experimental scenarios, each with a different seed for enabling different mobility and node 

interaction scenarios.  

 

Figure 3-7: Comparative delivery delays and gain evolution 

Figure 3-8 shows a scatter-plot for delay versus forwarding count for different protocols when 

the forwarding cost is set to 0.01 and the value duration (VD) is set to 20,000s. Each point in the 

graph for a given protocol corresponds to a simulation run with a specific seed (i.e., mobility/node 

interaction scenario). The numbers in parentheses indicate average Delay (D), Number of forwards 

(F) and Gain (G) across all 100 scenarios. 
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The protocol PROPHET [30] has a similar spread in delay, but its forwarding cost is lower than 

SNW, mainly due to its usage of an adaptive utility of delivery predictability. The cluster for GDP 

also shows a large delay spread, but its forwarding cost is strictly bounded mainly because GDP 

delivers a packet only if the combination of delay and forwarding cost generates a positive gain. 

Thus, even when the delay is large, content is delivered only if the forwarding cost is limited 

enough to maintain a positive gain. In this manner, GDP is able to maintain a forwarding cost 

bound (i.e., 4) which is similar to that of RGAP. The intersection of GDP and RGAP clusters 

indicates how GDP can achieve the same performance as that of RGAP’s in a number of node 

interaction scenarios. Note that the delay-forwarding behavior of the protocols presented in 

Figure 3-8 were observed to be valid for a wider range of cost and value durations (e.g., cost: 0.02, 

0.1, etc., and VD: 5K, 40K, etc.). 

 

Figure 3-8: Delay vs. Forward count with cost: 0.01 and VD: 20K 
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(refer to Figure 3-3) are bridges which receive packet from the source in community C1 and then 

relay it to any of the nodes in community C2. We observed that in such scenarios, it is essential 

for the bridge nodes to maintain enough copies of packets, so that they can relay the packet to the 

next bridge node after sharing the packet with their own neighbors in a binary spraying manner. 

Note that, a binary version of Spray and Wait is used with the community based model.      

   Let us now analyze an example which happens in our community based scenario. The static 

source in community C1 starts forwarding with community 723 copies and shares its copies with 

other 19 members of community C1 using a binary Spray [58]. Afterwards, most community C1 

nodes already hold less than 90 copies of the packet. A member of community C4 visits a node in 

community C1 (with 90 copies) and takes half of its copies, which is 45. This node reaches the 

wait phase after forwarding the packet to 6 of community C4 members. Note that a node in its wait 

phase switched to a direct delivery behavior. Thus, it can be seen how quickly a bridge node from 

community C4 enters the wait phase and loses its ability to relay the packet to community C2 

which contains the bridge nodes that connect community C2 to community C5. Considering that 

very few contacts take place between nodes of community C1 and C4 members in the mentioned 

scenario, community C4 nodes have a small chance of holding enough number of copies to share 

with community C2 members. Note that community C2 members should share their copies with 

community C5 members later, since community C5 members are the only ones (except the single 

node in community C6) which meet destination directly and can deliver the packet.      

   The higher forwarding cost of SNW comparing to PROPHET in Figure 3-8 is explained by 

the large number of forwards that the spraying phase in SNW incurs due to the large required 

number of initial copies (i.e. 723).  
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Figure 3-9 shows delivery delay vs. gain when the forwarding cost and value durations are set 

to 0.01 and 20,000s respectively. Observe how Epidemic Routing produces a point cluster with 

very low delay but sometimes with negative gain. This is because Epidemic delivers content as 

early as possible in a forwarding cost-insensitive manner, thus, maintaining a bound on the delay 

– but often with very low gain due to high forwarding cost. For all other protocols, the gain 

generally decreases with increase in delay, thus reducing the value of content at delivery time. The 

clusters of PROPHET and SNW are more spread out compared to GDP and RGAP. That is because 

GDP bounds the number of forwards (Figure 3-8) while attempting to reach the maximum gain.  

   Figure 3-10 shows the general trend of decreasing gain with increasing forwarding costs. It 

depicts high forwarding costs for both SNW and Epidemic even when their gains are low. 

PROPHET, with its delivery predictability abstraction, provides slightly better gain, even though 

its forwarding cost is quite significant. GDP, however, with its gain-aware utility formulation is 

able to provide a much better gain cluster with extremely low forwarding cost. Observe the 

proximity and overlapping of the GDP cluster with that of RGAP which provides the gain upper-

bound. From the results in this subsection it is apparent that GDP is able to provide the best gain 

performance when compared to the other protocols, except the upper-bound provided by RGAP.  
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Figure 3-9: Delay vs. Gain with cost: 0.01 and VD: 20K 

 

Figure 3-10: Forward count vs. Gain: cost 0.01 and VD 20K 
3.6.1.6 Impacts of Forwarding Cost  

   Figure 3-11 reports the (delay, forwards) scatterplots for GDP with two different forwarding 

costs 0.01 and 0.02, when the value duration is set to 20,000s. A notable observation in Figure 3-11 

is that the point clusters for the two cost scenarios overlap significantly, thus pointing to the fact 

that the protocol is able to adjust its routing behavior in order to maintain an optimal number of 

gain-maximizing forwards based on the underlying forwarding expenditures. The non-overlapping 

points in the figure belong to different routes taken toward the destination.  
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Figure 3-11: Delay vs. number of forwards for GDP 

   Figure 3-12 and Figure 3-13 corroborate the above observation via the finding that different 
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for content with short-lasting value, quick deliveries are essential in order to preserve the potential 

gain. 

 

Figure 3-12: Delay vs. gain for GDP   

 

Figure 3-13: Number of forwards vs. gain for GDP 
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protocol, nodes would hold and carry the content for direct delivery. Therefore, higher value 

duration justifies a lower forwarding cost. 

 

Figure 3-14: Delay vs. number of forwards with 

 forwarding cost: 0.01 

 

Figure 3-15: Delay vs. gain with forwarding 
cost: 0.01 

 

Figure 3-16: Number of forwards vs. gain with forwarding cost: 0.01  
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achieved by GDP and PROPHET. The reason is that a more disciplined decision should be taken 

while forwarding when the cost of forwarding is higher. In other words, it is more reasonable to 

restrict liberal forwarding (as done in Epidemic) when the cost is higher. GDP, on the other hand, 

chooses a more conservative forwarding approach in such situation, which leads to a higher gain. 

We have also simulated a Direct Delivery [46] approach which was not able to deliver content due 

to very low probability of direct contact between the source and destination in this and many other 

practical mobility scenarios. Both Epidemic and Direct Delivery are naïve in that they are value 

un-aware and do not consider any routing utilities. They are used only for the purpose of 

illustrating the typical patterns in the gain dynamics. Overall, Figure 3-17 confirms that GDP is 

able to provide better economic gain compared to all other simulated protocols in the presence of 

this model based mobility scenarios. 

3.6.1.9 Effects of Varying Content Generation Time 

   For all the presented results so far, the content was generated at a specific time 15000s, 

which is after the network warm up period. In order to validate the performance consistency over 

different generation times, which can potentially change content trajectory, results are presented 

for a different content generation time in this section. 

Figure 3-18 and Figure 3-19 depict value duration vs. gain when content is generated at 

16000s and 17000s respectively with the clique-forming synthetic mobility. Similar to all previous 

results, in both scenarios, the same increasing trend of gain for increasing value duration cann be 

observed. As depicted, for low VDs GDP choses no content delivery over a delivery with negative 

gain. But for higher VDs, GDP’s gain is closest to that of RGAP compared to the other protocols.  
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Figure 3-17: Number of forwards vs. gain with forwarding cost: 0.01 

 

Figure 3-18: Performance for content generation at 16000s 
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Figure 3-19: Performance for content generation at 17000s 
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Figure 3-20: Warm up time for the INFOCOM ’06 mobility trace 
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durations (e.g., cost: 0.05 and VD: 1000 in Figure 3-21:a) GDP can be outperformed by the less 

conservative protocols such as Epidemic and PROPHET. 

  

 

Figure 3-21: VD vs. Gain for INFOCOM ’06 trace; Source node N5;(a): Cost 0.05, (b): Cost 
0.1 and  (c): Cost 0.14   
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There are no reported results for the protocol spray and wait (SNW) either. This is because 

there were not enough contacts for a successful delivery during both the spray and wait phases. 

These results, along with similar experiments we ran for a broader range of costs (e.g., 0.3, 0.4) 

demonstrate the consistent performance advantage of GDP (i.e., close to the RGAP performance) 

with higher value durations for arbitrary content generators. 

3.6.2.2 Effects of Varying Content Generation Time 

   To evaluate the effects of varying content generation time on GDP performance, we 

generated the packet at a later point than 75000s. Figure 3-23 depicts value duration vs. gain when 

content is generated at 82000s with INFOCOM ’06 mobility. Even with change of content 

trajectory, GDP still holds the maximum gain. Similar to all previous results, increasing trend of 

gain is visible due to longer value durations.  

Overall, from all experimental results (i.e., with different mobility models, forwarding costs, 

value durations, source nodes, and generation times) it was found that approximately for 87.1% of 

the experiments, GDP achieved a gain that is closest to the upper bound found by the RGAP 

protocol. Direct Delivery and PROPHET win in 10% and 2.5% of the experiments respectively. 

These happen mainly when both the value duration and the forwarding costs are extremely low. 

These clearly show the dominance of GDP from the standpoint of gain as formulated in this work. 
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Figure 3-22: VD vs. Gain for INFOCOM ’06; Source node N1; (a): Cost 0.05, (b): Cost 0.1 and (c): Cost 
0.14   

3.6.3 Gain-positive Delivery Ratio 

In the present context of gain, successful deliveries are defined as those only with positive gains. 

The index Gain-Positive Delivery Ratio (GPDR) is defined as the fraction of all content that are 

delivered with positive gains. Note that a protocol may have high delivery ratio in the conventional 

sense, but it may suffer from poor GPDR if its routing strategies are not gain-aware. Epidemic and 

Direct Delivery, for example, can maintain a 100% delivery ratio if the notion of gain is not 

involved. Yet, both of them can perform poorly from a GPDR standpoint. Epidemic in one extreme 

may use frequent number of forwards, until the forwarding cost exceeds its value. Direct Delivery 

in the other extreme, may postpone content delivery until its value reaches zero.   
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Figure 3-23: Performance for content generation at 82000s; Infocom ’06 traces; Source node N5; 
Cost 0.05 

 Figure 3-24 shows the GPDR computed over 100 experiments with clique-forming synthetic 

mobility for the protocols GDP, Epidemic, SNW, and PROPHET. Combinations of three CR 

(forwarding cost) values: 0.01, 0.02 and 0.1, and three value durations: 5,000, 20,000 and 40,000 

are used. 

Figure 3-24 clearly shows the dominance of GDP in achieving the highest gain-positive 

delivery ratio, especially when the forwarding cost is high. The other three protocols maintain a 

lower than GDP, but reasonable gain-positive delivery ratio when the cost is 0.01. However, their 

GPDR degrade when forwarding becomes more expensive. These results justify GDP’s 

forwarding logic from the delivery ratio perspective. 
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Figure 3-24: Gain-positive Delivery Ratio (GPDR) for a) GDP, b) Epidemic, c) SNW, and d) 
PROPHET 

3.7 Summary and Conclusion 

Design details and performance of a new economic gain based DTN routing protocol was 

presented in this chapter. Economic gain from disseminating content is defined as the generated 

value upon delivery minus the forwarding costs. It was shown that by adaptively balancing 

between content dissemination latency and number of forwarding, the proposed protocol GDP is 

able to achieve higher gain compared to a number of existing DTN protocols with partially similar 

objectives. Using Experimental results from the simulator ONE [55], it was shown that for certain 

community based mobility scenarios, GDP can provide near-benchmark gain (i.e., close to the gain 

upper-bound achieved by RGAP) while protocols such as PROPHET suffer from negative gains 

when their protocol parameters are not explicitly tuned for target mobility scenarios. It was also 

shown that in certain scenarios GDP can suffer from worse delay or forwarding cost, but manages 
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to maintain better gain which is a composite index obtained via combing the former two. As shown 

in Section 3.6.1 for the community based model, in all the performance measures including delay-

vs-forward-count, delay-vs-gain, and forward-count-vs-gain, GDP performs closest to the 

benchmark RGAP compared to all other experimented protocols. Similar trends were also 

observed for the trace based mobility model obtained from INFOCOM ’06 traces [59]. It is 

noteworthy that such performance advantages of GDP were maintained with varying forwarding 

cost and value dynamics over time.  

One future work direction on this topic can be securing GDP against non-cooperative users, 

and under various threats such as Sybil [56] and whitewashing attacks [57]. 

In the following chapter, we extend the concept of gain-aware forwarding with multi-cast 

dissemination. 
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4  Economy Driven Multicast Content Dissemination  

4.1 Introduction  

In this chapter, we present a DTN multicast based content dissemination framework with 

economic underpinnings. Commercial gain from disseminating a content is defined as the 

generated revenue upon delivery minus the forwarding costs incurred for stimulating cooperation 

among the forwarding nodes by compensating for their resource/energy usage. We introduce a 

novel concept of Economy Driven Content Dissemination (EDCD) using which a Content 

Generator (CG) is able to maximize its economic gain by disseminating content among interested 

Content Consumers (CCs), and that is after compensating the Content Forwarders (CFs). The 

general approach in the existing DTN protocols [18, 21] is to use routing utilities that minimize 

latency, forwarding-count, storage, and in some instances – combinations of the three. Due to the 

lack of gain-awareness, these protocols cannot control the economic gain of dissemination.  

   EDCD, on the other hand, controls content dissemination based on a composite index, 

termed as economic gain, which combines revenue from delivery and forwarding cost from 

disseminating commercial content such as coupons. Specific contributions of this chapter are as 

follows. First, we define a consumer interest based dissemination gain abstraction within a 

practical commercial setting. Second, we propose a new gain-aware multicast Device-to-Device 

dissemination protocol (i.e., EDCD) and its usage within the developed network and commercial 

model. Finally we evaluate EDCD and few other competing protocols using simulation to evaluate 

their relative dissemination performance. 
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4.2 Economic Gain of Dissemination 

As mentioned in Section 1.11.2, interaction patterns in an SWN can be indexed with social 

metrics such as contact duration and contact frequency. This information about the underlying 

social interactions can be leveraged to deliver content such as a coupon. The objective is to deliver 

coupons through multicast D2D routes so that the economic gain of dissemination is maximized. 

Note that, the terms content and coupon are used interchangeably throughout this dissertation. 

4.2.1 Cost, Revenue, and Gain  

 

Cost: The cost to a coupon-distributing merchant includes: 1) the product discount cost 𝑐o, 

which is the discount given to a customer upon redeeming a coupon, and 2) the rebate 𝑐p, which 

should be given to nodes which relay one or multiple coupon(s). This can also be perceived as the 

cost of forwarding. 
 

Revenue: For a coupon-distributing merchant, this quantity represents the net revenue from 

redeeming copies of a coupon by one or multiple recipients. Net revenue is computed as the earned 

revenue 𝑐q	minus the discount 𝑐o. The net revenue of a coupon redemption by consumer-I is then 

defined as: 

        																																																		𝑉? = 	𝑃@(𝜌?)(𝑐q − 𝑐o)															                           (4-1) 

𝑃@ 𝜌? 	represents the probability of redeeming a coupon by consumer-i. This quantity depends 

on the consumer’s interest level 𝜌?	(on a coupon), and is elaborated in the next subsection. 
 

Gain: Combining revenue and cost, the expected gain achieved through a coupon redemption 

by consumer-I can be written as:  

                                                    𝐺? = 	𝑉? −	𝑐p                                        (4-2)    

The total network wide gain 𝐺r can be expressed as:   
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                                                            𝐺r = 	 𝑉?
st
?uv − 𝑛×𝑐p                                         (4-3) 

where coupons are delivered to  𝑛o consumers through 𝑛 forwards. The maximum number of 

delivery of a coupon is generally restricted by its generator. That is, 𝑛o 	≤ 	𝑇, where 𝑇 is that 

distribution upper bound set by the coupon generator. 

4.2.2 Consumer Interest and Coupon Redemption 

Each consumer-I maintains an interest level 𝜌? (0 ≤ 𝜌? ≤ 1) towards a specific content type. 

Such interest level for a consumer, can be set through many possible means as described in 

Section 1.3.1. To preserve privacy, in this model, consumer devices are allowed to share their 

interest profiles with other devices upon meeting.  
 

Coupon Redemption:  Redemption probability for a consumer, represents his/her likelihood 

of redeeming a coupon within a defined coupon expiry time (See Section 1.3.1). One such example 

with a maximum redemption probability of 0.5 is shown in Figure 4-1. The figure shows 

redemption probability graph that decreases exponentially with increase in interest level. A 

corresponding Gain function is also shown in the figure. As can be seen in the figure, for a given 

redemption function, earned revenue 𝑐q,	and discount 𝑐o, the gain 𝐺? can be positive only for a 

specific range of interest level. 

A desirable target consumer is defined as a consumer with high enough redemption 

probability such that the induced net revenue from a coupon-redeemed purchase is higher than the 

forwarding cost (rebate) for the coupon. Such a delivery induces a positive economic gain 𝐺?. 

Figure 4-1 shows the range of interest levels for an example definition of desirable target 

consumers. 
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Figure 4-1: Example redemption function 

  

   The presented redemption model is general in that it can accommodate other redemption 

functions including the ones in which the redemption probability increases with higher interest 

level. It can also accommodate functions in which the redemption probability maximizes for 

interest levels that are not too low or not too high. As shown in [14], coupon delivery to highly 

loyal (interested) customers may kill customer loyalty. Thus, light to moderately loyal customers, 

as opposed to most loyal ones with higher interest levels, may maintain higher redemption rates. 

Another example of appropriate target population is the new customers with smaller interest levels. 

Reports show that new customers spend 67% less with repeat purchases compared to loyal (highly 

interested) customers [60]. In both examples, the objective is to deliver coupons to the target user 

class with such optimal interest levels so that the cumulative network wide redemption rate can be 

maximized. The abstraction used for representing redemption probability𝑃@ 𝜌?  can be used for 

capturing both the scenarios outlined above. 

4.2.3 Consumer Privacy and the Role of Centralized Server 

Even though the dissemination process presented in this chapter is fully Device-to-Device, we 

assume the presence of a centralized server with primary roles as explained in Section 1.3.3.  

-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
1.4

-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0 0.2 0.4 0.6 0.8 1

)

Desirable Target 
Consumers

)



 68 

Privacy preservation: In the presented model it is ensured that the data related to consumer 

interests and consumer-to-consumer interaction is always stored at the consumers’ devices. Such 

privacy-sensitive data is never exported to the centralized server. This opens up the possibility of 

economic gain-aware coupon dissemination without a centralized server having to know about 

consumer mobility and their interests in different content types. This is an attractive aspect of the 

architecture.  
 

Dissemination Termination: It is possible for the server to take an active role in terminating 

dissemination in order to control the network-wide economic gain. As shown in Section 4.7, the 

network wide economic gain generated by coupon dissemination can start declining after it reaches 

a maximum value. In such situations, the server can terminate dissemination at an appropriate time 

to ensure near-maximum network-wide gain. Before every coupon delivery, the delivering node 

checks with the server about the current network wide cumulative gain. When the server observes 

a declining trend, it puts a stop on the dissemination of that specific coupon. This can result in 

near-maximum final gain from a dissemination process.  

   Note that such server-assisted termination does not violate the privacy feature as outlined 

above. Meaning, the centralized termination can be performed without the server having any 

access to the consumer interest and interaction/mobility data. 

4.3 Problem Definition 

For given earned revenue 𝑐q, discount 𝑐o, rebate 𝑐p, distribution upper bound 𝑇, redemption 

function 𝑃@(𝜌?), and a social wireless network of consumers with interest profiles 𝜌?, the objective 

is to design a multicast coupon dissemination mechanism that maximizes the total gain 𝐺r	within 

the lowest possible dissemination delay.   
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   Consider the example delay tolerant network in Figure 4-2. Each consumer is represented 

as N-I	(𝑃@(𝜌?)), where I is the node-ID and 𝑃@(𝜌?) indicates its redemption probability computed 

based on a pre-assigned redemption function applied to its interest level 𝜌?. For example, the 

consumer N-0 (0.8) represents node-0, which is likely to redeem a coupon (of the type in question) 

with a probability of 80%.  

 

Figure 4-2: Example user interaction and routing 

   Consider a scenario in which N-0 (0.8) possesses at least five copies of a coupon that needs 

to be disseminated such that the overall gain from its dissemination is maximized. There are two 

possible paths: though N-1 (0.1) and N-2 (0.8). Given the social interaction pattern it is obvious 

that dissemination through N-1 (0.1) can provide more revenue even though N-1 itself does not 

contribute too much to the gain because of its relatively low redemption probability. Node N-2 

(0.8), on the other hand, while being able to contribute to the revenue significantly, does have 

relatively worse dissemination potential compared to N-1 (0.1). The gain performance also 

depends on the forwarding cost 𝑐p. The objective of the protocol is to be able to choose the right 

forwarding path so that the overall gain is maximized. 
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4.4 Economy Driven Content Dissemination 

Economy Driven Content Dissemination (EDCD) relies on the knowledge of: 1) nodes’ 

interest profiles (i.e., 𝜌?), and 2) their underlying social interaction patterns. They key idea is that 

a node-I, carrying T copies of a content, first evaluates any of its peer j’s quality as a consumer 

and second, as a potential forwarder. Based on that evaluation it may transfer: 1) a copy of the 

coupon for j’s consumption, and 2) certain number of copies to j for further forwarding.  
 

State Variables: Any node-I maintains the following variables:  

𝒇𝒊,𝒋:	i’s frequency of meeting node-j over a pre-defined time window of 𝜏 (e.g., a week) 

𝜹𝒊:	expected cumulative gain for node-I for delivering the content to its one-hop neighbors 

encountered during time window 𝜏 . It can be expressed as:  
 

                                 𝛿? = ( [(𝑐q- 𝑐o)𝑃@(𝜌m) 𝑓?,m − 𝑐p×1]
��
muv )                                   (4-4) 

 

where 𝑁? is the set of nodes interacted by node-I during the time window 𝜏. This includes only 

the interacted nodes that have not already received the content in question. A larger 𝛿? implies that 

the nodes that I directly interacts with have higher redemption probability, thus yielding higher 

expected gain.  

When I meets j, it updates 𝑓?,` and 𝛿 . It also receives j’s expected gain of delivery to all its 

non-I one-hop peers in the time window 𝜏, which j computes based on Equation 4-4.  

Forwarding Logic: When a node-I with T copies of a coupon meets node-j, it first evaluates 

the possibility of j being a potential consumer of the coupon based on its redemption probability. 

Meaning, based on the delivery probability 𝑃@(𝜌`	)/	𝑃@abc, I forwards a consumption-copy to j and 

sets 𝑇?,`E = 1. With probability 1 − 𝑃@(𝜌`)/𝑃@abc, 𝑇?,`E  is set to zero and no consumption-copy is 

forwarded to j. Normalization by 𝑃@abc is done for linearly mapping the delivery probability 
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𝑃@(𝜌`)/𝑃@abc	within the range [0,1]. The redemption probability varies within the range [0,	𝑃@abc]. 

Table 4-1 summarizes all the state variables used in this section. 

Notation Definition 
𝑓?,` Frequency of meetings between nodes I and j in a 

preset time window 𝜏 
𝛿? Expected cumulative gain from all i’s one-hop 

delivery in time 𝜏  
𝑐q Net price of the product (earned revenue)  
𝑐o Product discount cost 
𝑐p Rebate given to nodes which relay the coupon 

(forwarding cost) 
𝑇?,`E  Number of copies (out of T copies) forwarded for 

j’s consumption from I to j (𝑇?,`E 	 ∈ [0,1]) 
𝑇?,`
p  Number of copies (out of [T-	

𝑇?,`E ] copies) forwarded for dissemination through 
j from I to j 

𝑃@(𝜌?) Redemption probability of node I with interest 
level 𝜌? 

𝑉? Net revenue of a coupon redemption by consumer-
I  

𝐺? Merchant’s expected gain through a coupon 
redemption by node i 

𝐺r Network-wide total expected gain 𝐺r  
Table 4-1: Notations and corresponding definitions in EDCD 

After the decision about delivering a consumption-copy to node-j is made, if additional copies 

are left, I evaluates j’s suitability as a forwarder. This forwarding evaluation is done based on 𝛿 . 

First, node-I computes the quantity 𝛿si@a = 𝛿`/𝛿?
b��, where	𝛿?

b�� is the average of all 𝛿m (𝑘	 ∈

𝑁?, the set of all nodes that I directly interacted with during the predefined time window 𝜏). A 

larger 𝛿si@a shows that j is a better forwarder compared to the other nodes encountered by node-

i. Therefore, a larger percentage of the remaining [𝑇 −	𝑇?,`E ] copies of the coupon should be 

forwarded to node-j for dissemination. A positive 𝛿si@a is then mapped to an integer 𝑇?,`
p , which 

indicates the number of copies to be forwarded by I to j for dissemination. The value of 𝛿si@a 
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belongs to the range ��
���

��
��� ,

��
���

��
��� , where 𝛿?a?s and 𝛿?abc are the minimum and maximum of 𝛿m 

respectively	(𝑘	 ∈ 𝑁?). To map 𝛿si@a to 𝑇?,`
p , which is an integer in the range [0,	𝑇 −	𝑇?,`E ], the 

min-max normalization from [61] is applied. Such linear transformation preserves the relationship 

between data values from the old range (i.e., ��
���

��
��� 	 ,

��
���

��
��� ) to the new range [0,	𝑇 −	𝑇?,`E ].  

      If 𝛿si@a ≤ 0 or if node-j already possesses copies of the coupon, then node-I does not 

need to transfer any copies to node-j for forwarding purposes. Meaning the quantity 𝑇?,`
p  is set to 

zero. The key components of the described EDCD algorithm are summarized in Algorithm 4-1.   
    

   In the above logic it is assumed that a node-j always reports correct values of 𝑃@(𝜌`) and 

𝛿 	to its peers. This may not be true when consumers act selfishly. Such selfishness is considered 

outside the scope of this research. 

4.5 Compared Protocols 

4.5.1 Interest-Aware Dissemination (IAD) 

This is a degenerate version of EDCD in which no node-interaction information is used. 

Content such as coupon is delivered based only on the redemption probability. Similar to EDCD, 

when a node-I carrying T copies of a coupon meets node-j, 𝑇?,`E  is set to 1 with probability 

𝑃@(𝜌`))/	𝑃@abc. However, the number of forwarding copies transferred from node-I to node-j is 

determined randomly without using the interaction information	𝑓?,`, as utilized in the social-aware 

EDCD. The number of forwarding copies 𝑇?,`
p  is chosen randomly from a range of [0,	𝑇 −	𝑇?,`E ]. 

To summarize, IAD is expected to show the dissemination performance of when nodes do not 
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register any social interaction information, but are ready to share their own interest level with 

interacted nodes. 

1: When node-I meets node-j: 
2:          I updates 𝑓?,` and 𝛿  for node-j in its records; 
     Forwarding Logic: 
3: For node-I carrying T copies of a coupon; 
4:         𝑇?,`

p = 0; 
5:         𝑇?,`E = 0; 
6: //set number of copies for j’s consumption 
7: 𝑇?,`E = 1 with probability 𝑃@ 𝜌` ; 
8: if (𝑇 − 𝑇?,`E > 0) then 
9:     if (j has no copies for dissemination) then 
10:         //set number of copies to forward to j for  
                dissemination          

11:          𝑇?,`
p = 	

(
��

��
����

��
���

��
���)×(r�r�,�

� )

��
���

��
��� �

��
���

��
���

	;	 

12:    end if 
13: end if 
14: Forward 𝑇?,`E  and 𝑇?,`

p  number of copies to j, for  
        consumption and dissemination respectively; 

Algorithm 4-1: The key components of the EDCD algorithm 

4.5.2 Social-aware Opportunistic Routing Protocol (SCORP) 

This interest aware protocol [20] works with binary interest levels (i.e., 0 or 1). It uses a social 

weight, computed using a node’s interest profile and social interaction patterns. Node-a computes 

the quantity	𝑇𝐶𝑇𝐼(𝑎, 𝑥)?, which is its Total Connected Time to Interest (TCTI) with nodes with 

interest-x using a daily sample-i. The average 𝐴𝑇𝐶𝑇𝐼(𝑎, 𝑥)`,? is computed for day-j as: 

  

                                          𝐴𝑇𝐶𝑇𝐼(𝑎, 𝑥)`,? =
r^r�(b,c)�,��(`�v)�r^r�(b,c) ��� ,�

`
                          (4-5) 

    Content is transferred from node-I to node-j, when node-j has consumption interest, or, its 

social weight (computed based on its ATCTI) is higher than that of i. We have incorporated the 

following changes in order to adapt the baseline SCORP [20] with binary interests to the present 

framework of multi-level interests. The key idea is to let the node interest level 𝜌?	vary in the range 
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0 to 1, but to restrict the redemption probability 𝑃@(𝜌`) to binary values of either 0 or 1. 𝑃@(𝜌`) is 

set to 1 for 𝜌v < 𝜌` < 𝜌�, and zero for other values. The thresholds 𝜌v and 𝜌� are chosen such that 

the resulting gain from a single delivery is positive, that is, it can offset the forwarding cost 𝑐p. We 

use a Gaussian redemption function, and a threshold pair (𝜌v = 0.63, 𝜌� = 0.88) chosen based on 

the above strategy.  

4.5.3   Random Forwarding 

This resembles Epidemic [37] DTN routing which is oblivious to both interest and interaction 

profiles. When a node-I with T copies of a coupon meets node-j, it forwards 𝑇?,`
p  copies to node-j 

with a predefined forwarding probability 𝑝p. The number of forwarded copies 𝑇?,`
p  is chosen 

randomly between 1 and T. The forwarding probability affects dissemination gain dynamics in 

terms of the maximum gain and the time to reach that maximum value. The scenario with 𝑝p = 1 

represents Epidemic DTN forwarding. In following set of results we show results for the 𝑝p = 0.5 

scenario. 

4.6 Experimental Details 

4.6.1 Interest and Redemption Function 

We use the DTN simulator ONE [55] for evaluating EDCD and other protocols with two 

community based mobility models. The models differ in terms of: 1) number of nodes, 2) 

community structure, and 3) interest level distribution. For all the experiments we use a redemption 

function in which the redemption probability maximizes for interest levels that are not too low or 

not too high. This is motivated by the observation [14] that while improving purchase probability 
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for moderately loyal (interested) customers, coupon delivery may often kill product loyalty for 

highly loyal customers. 

   To capture this effect, a Gaussian model for the redemption function is used. Figure 4-3 

shows the applied Gaussian redemption function with mean 𝜇 = 0.75 and maximum redemption 

probability	𝑃@abc = 0.5. The corresponding gain curve in Figure 4-3 is when the forwarding cost 

𝑐p, earned revenue 𝑐q,	and discount 𝑐o are set to 0.2, 5 and 2 respectively. These values are also 

used for all subsequent experiments. 

 

Figure  4-3: Example Gaussian redemption function 

4.6.2 Target Exposure Index (TEI) 

TEI indicates how the desirable target consumers, as defined in Section 4.2.2, are visible 

to the rest of the nodes in a network. TEI is computed as the expected maximum number 

of contacts with target consumers and is expressed as a per node metric.  It is a network 

property in terms of the mobility and social interaction patterns. Higher TEI is expected to 

yield better gain of dissemination. It should be noted that TEI is computed only to 

characterize the mobility model dynamics and its impacts on dissemination performance 

for different protocols. There are no protocol syntaxes that rely on this parameter. More 

about TEI computation is presented in the performance section. 
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4.6.3 Degree of Penetration (DoP) 

This is a protocol parameter, which is defined as the maximum depth of a multicast 

dissemination tree. The root of the tree is the node, which initially receives all T copies of 

a content from its generator such as a coupon merchant. When the 𝐷𝑜𝑃	is set to one, the 

source is not allowed to forward any forwarding copies to any of its directly interacted 

peers. It is allowed to distribute only consumption copies to T-1 peers. In other words, 

those peers cannot forward the copies, thus maintaining the depth of the tree to be 1. When 

the 𝐷𝑜𝑃	is set to 2, only one level of re-forwarding is allowed. Larger 𝐷𝑜𝑃𝑠	allow deeper 

trees to form, thus, more thorough search can take place in order to find nodes with high 

redemption probabilities.  
 

4.7 Dissemination Performance 

4.7.1 Social Wireless Network with Clique Formation 

As shown in Figure 4-4, a 100-node network is structured in three clique-based communities 

C1, C2 and C3.  

 

Fig.  4-4 Network with three social cliques (𝑇𝐸𝐼: 21.5) 
The numbers in parentheses show the population of each community. The inter-clique arrows 

indicate the flow of inter-community mobility. For example, 10 members of C2 migrate between 

C2 and C1, and another 10 members of C2 migrate between C2 and C3.  Nodes inside each 

community meet more frequently than nodes from different communities. Based on the strategy 

described in Section 4.2.2, desirable target consumers are designated as those with interest levels 

C1
(10)

C2
(50)

C3
(40)
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in an approximate range of 0.63 to 0.88 (see Figure 4-3). While such desirable target consumers 

are deployed within the communities C1 and C3, nodes with lower interest levels (i.e., < 0.6) are 

inserted in the community C2.  

An example real-world representation of this model would be the daily student interactions in 

a University campus. Students who are more interested in a specific product interact more often 

compared to those who do not share similar interests. For example, a community of desirable 

target consumers as shown in Figure 4-4, can consist of students who share a common interest in 

a type of food. 

  

Fig.  4-5: Multicast dissemination with different Depth of Penetration (DoP) 

Figure 4-5 shows evolution of the average cumulative gain from dissemination for all four 

evaluated protocols under different 𝐷𝑜𝑃 scenarios. For all cases, the mobility shown in Figure 4-

4 is used which results in a Target Exposure Index (TEI) of approximately 21.5.  
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TEI indicates how visible the desirable target consumers are to all other consumers in the 

network. The cumulative gains for all the protocols in Figure 4-5 under all DoP scenarios have a 

generally increasing trend before they start falling after reaching a maximum. In line with the 

method outlined in Section 4.2.3, dissemination is terminated when the moving average (i.e., 

computed over a half a day window) of the cumulative gain falls by at least 𝑥/𝑡  % of the attained 

maximum. The quantity 𝑡  is the elapsed time since the coupon generation, and	𝑥 is an empirically 

chosen parameter that controls termination.   For all presented results, the value of 𝑥 is chosen to 

be 0.24, which provided consistent performance across all the evaluated protocols.    

The results show that among all the evaluated protocols, the proposed EDCD offers the largest 

maximum gain across all the 𝐷𝑜𝑃 scenarios. Also, the maximum attainable gain for EDCD first 

increases with increasing DoPs (i.e., from 1 to 3), but then it falls for larger DoPs (i.e., larger than 

3). With 𝐷𝑜𝑃 < 3, the depth of the multicast dissemination tree is not sufficient to reach many 

desirable target consumers residing in C1 and C3. This explains the need for a sufficiently large 

DoP setting for maximizing the gain. Too large 𝐷𝑜𝑃s, on the other hand, incur the cost of many 

unnecessary forwards, which bring the gain down. This is evident from the graphs in Figure 4-5.  

   The gain of the protocol IAD is worse than that of EDCD because its forwarding component 

is not social interaction-aware. Also, IAD’s performance does not change much with larger 

penetration levels. The reason is that IAD forwards one consumption-copy along with random 

number of forwarding-copies to nodes based on their interest level and the resulting redemption 

probability. For any preset DoP level, IAD does not allow the non-consumer nodes (i.e., the 

migrating nodes between C1 and C2 in this case), to receive any copies for 

consumption/forwarding. This restricts its ability to attain high economic gain. 
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The protocol SCORP, however, achieves a higher gain as 𝐷𝑜𝑃	increases. This is because it 

leverages more intermediate nodes to relay the content to farther destinations. For smaller 𝐷𝑜𝑃s, 

the extra cost of forwarding is a hindrance to the growth of network-wide gain. Although for 

large	𝐷𝑜𝑃𝑠, the large cumulative revenue achieved across a deeper multicast tree offsets the 

forwarding cost. Observe that EDCD takes longer than all other protocols to reach its maximum 

gain because all other protocols rely on some form of randomization for the forwarding decisions. 

EDCD, on the other hand, relies on a specific criterion, which often cause longer forwarding 

delays, but results in better quality forwards.  

Note in Figure 4-5, that the random dissemination reaches its maximum gain earlier than other 

protocols because of its  random forwarding criterion in choosing coupon consumers, which are 

also the forwarders. Random choices are inherently faster than using a criterion, as done by the 

other protocols. This fast dissemination, however, comes at a steep price of lower maximum gain 

compared to the non-random protocols. 
 

Increased Exposure to the Desirable Consumers: In this scenario we increase the network wide 

visibility of the nodes with higher redemption rates. This is done by imposing more frequent 

contacts between the members of community C2 and the target consumers of community C3.  

 

Figure 4-6: Mobility for higher target consumer exposure (𝑇𝐸𝐼: 37.5) 
As shown in Figure 4-6, in addition to C2’s migrating nodes to C3 and C1, now the members 

of C3 also occasionally migrate to community C2. These modifications caused an increase in TEI 

to a value of approximately 37.5.   

C1
(10)

C2
(50)

C3
(40)



 80 

Figure 4-7 shows the evolution of gain for different approaches with 𝐷𝑜𝑃 = 2 and 𝐷𝑜𝑃 = 5. 

Observe that EDCD achieves the highest gain compared to the other approaches for both the 𝐷𝑜𝑃𝑠. 

The maximum gain, however, is achieved at a lower 𝐷𝑜𝑃	(i.e., 2), compared to the cases in the 

low-TEI scenario (𝐷𝑜𝑃: 3) in Figure 4-5:b. The reason is that more exposure of target consumers 

in this high-TEI case allows the nodes with high coupon redemption probability to be reached 

through a shallower multicast tree. 

 

Fig.  4-7: Gain in scenarios of high TEI 

  Also, with this higher target consumer exposure, generally it takes shorter to reach the maximum 

gain. For example, it takes around 11.6 days for EDCD to reach its maximum gain (i.e., 33.7) 

across both the DoPs (i.e., Figure 4-7:a), while, it takes around 16.6 days to reach its maximum 

gain of 9.63 when there is less exposure to target consumers (Figure 4-5:b). Higher exposure to 

target consumers also implies that there are more relay nodes between content carrier(s) in C1 and 

the part of target consumer population, which reside in C3. According to the low-TEI scenario in 

Figure 4-4, the 10 migrating nodes moving between C2 and C3 are mainly responsible for relaying 

the content to C3. In the high-TEI topology in Figure 4-6, however, all low-interest members in 

C2 can act as relay nodes in addition to those 10 migrating nodes. The maximum attainable gain 

of the social interaction unaware protocol IAD does not significantly depend on the target 
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consumer exposure level. This is because IAD does not forward coupons to non-consumer nodes 

ignoring any effects of enhanced target consumer exposure in high-TEI scenarios. With large DoPs 

(i.e., 5), the Random dissemination achieves a higher gain (i.e., 6.4) in the current high-TEI 

scenario when compared to its maximum gain of around 2.6 in the low-TEI scenario as shown in 

Figure 4-5:c. This is because more nodes with high redemption probability are in reach of the 

carrier nodes in the high-TEI scenario.  

SCORP’s gain increases with an increase in 𝐷𝑜𝑃	as well, because the increase of reachability 

to the desired targets provided by a large 𝐷𝑜𝑃	(i.e., 5) compensates for the additional rebate cost 

incurred by random deliveries. Figure 4-8 shows the forwarding costs in terms of the average 

cumulative rebate given to intermediate nodes as forwarding incentive. IAD and the Random 

dissemination incur very similar rebate/forwarding costs in both the TEI scenarios. The reason is 

that the Random method blindly forwards a random number of copies irrespective of the quality 

of the receivers and level of exposure to target consumers. 

 

Figure 4-8: Total rebate (forwarding cost) per destination 
For IAD, even with increased contact frequencies between the members of C2 and C3, content 

cannot be effectively relayed further to where C2 and C3 meet. This limitation stems from IAD’s 

inability to use the social interaction information for forwarding decisions. 
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  The protocol SCORP incurs slightly higher rebate cost in the high-TEI scenario especially 

for the larger 𝐷𝑜𝑃 (i.e., 5). This is mainly due to more exposure of target consumers to potential 

relay nodes from community C2.   

The maximum amount of rebate-increase with higher TEI happens for the protocol EDCD. It 

almost doubled across the shown scenarios. The reason is very similar to that for SCORP. 

Meaning, more members from community C2 maintain high 𝛿? (𝑖	 ∈ 𝐶2) values (refer to Table 4-

1) due to their higher exposure to the members of C3 in the high-TEI scenario.  

To obtain further insight, we plot the value of the expected gain 𝛿? in Figure 4-9. It is plotted 

with time for the average values computed from: 1) nodes in communities C1, C2, and C3 (i.e., 

denoted as 𝛿m, 𝑘 = 1,2,3), 2) the migrating nodes between C1 and C2 (𝛿^v:^�	), and 3) the 

migrating nodes between C2 and C3 (𝛿^�:^H	). 

 Figure 4-9:a shows various 𝛿m values for the lower TEI scenario. Note that 𝛿mcan be negative 

when the expected generated revenue is smaller than the cost of forwarding. Observe that the  

 

Figure 4-9: Expected gain from one-hop deliveries 

quantity 𝛿^v:^� initially rises due to the meetings between the migrating nodes and the members 

of C1 with high redemption probabilities. As soon as the majority of the desirable target consumers 

in C1 receive the coupon, 𝛿^v:^� falls and reaches negative values. The more frequently a node 

meets peers with high redemption probabilities, a higher 𝛿m is expected. Observe that 𝛿^H is the 
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largest among all 𝛿m due to more frequent intra-community contacts in C3 among the nodes 

holding high redemption probabilities. 

    Figure 4-9:b (the high-TEI scenario) shows that 𝛿^�	 maintains the largest 𝛿m values since 

the members of C2 frequently meet nodes with high redemption from communities C1 and C3. A 

similar declining trend is visible for all 𝛿m. This is due to the decrease in number of potential 

coupon receivers as the dissemination progresses. In other words, as the number of potential 

coupon redeemers goes down, 𝛿  reduces. The reason that 𝛿^H	 and 𝛿^�:^H	 do not fall in the low-

TEI scenario in Figure 4-9:a is that a portion of the population in C3 with high redemption 

probability do not receive the coupon within the shown time duration. The fall for 𝛿^H		and 𝛿^�:^H	 

happens much earlier in the high-TEI scenario in Figure 4-9:b. This is due to faster dissemination 

in the presence of greater exposure to nodes with higher redemption chances. 

 Different 𝛿m dynamics shown in Figure 4-9 across the two TEI scenarios explain the 

performance gap discussed for the two scenarios in Section 4.7.1. The main reason for higher gain 

achievement in the high-TEI scenario is the relatively higher 𝛿^�	, which implies that the densely 

populated community C2 provides high-quality relay nodes, even though the nodes in C2 

themselves have low redemption probability. Higher 𝛿^v:^�	 values also show that more coupons 

can be relayed from C1 to C2 through these intermediate nodes.  

To summarize, the presented results demonstrate how EDCD outperforms other evaluated 

approaches across most of the depth of penetration (DoP) scenarios. To verify the generality of 

this claim, the protocols are evaluated for another mobility scenario as presented in the following 

subsection 4.7.2. 

4.7.2 Second Mobility Model 

In this model 150 nodes are deployed across five clusters.  
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Figure 4-10: Five clique network: (a): TEI:27.8, (b) TEI:32.1 
Figure 4-10:a and Figure 4-10:b show the network topologies with target exposure indices 

(TEIs) of 27.8 and 32.1 respectively. 

The numbers in parentheses show the community population and the arrows show the flow of 

migrating nodes between communities. Higher cross-community migrations in Figure 4-10:b 

result in higher TEI compared to the scenario in Figure 4-10:a. Before looking into the overall 

dissemination performance, in Figure 4-11 we plot the average	𝛿 	for nodes from each community 

for the low-TEI scenario. 

 

Figure 4-11: Expected gain distribution from one-hop deliveries 
 

 Observe how the 𝛿 	values for nodes from the same community form distinct clusters, 

indicating the similarities in their exposure to desirable target consumers. The 𝛿 	values also show 
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wide variations across different communities.  For example, community C2 has the smallest 𝛿  

since its nodes are generally isolated with less contact with target consumers. The situation is 

similar for the nodes in C1. The communities C3, C4, and C5 show higher 𝛿  because either their 

nodes themselves are highly populated with nodes of with high redemption rates, or there are 

enough nodes that migrate across communities containing desirable target consumers.  

Figure 4-12 shows the dissemination performance for both TEI scenarios for all the evaluated 

protocols, namely, EDCD, SCORP, IAD, and Random Dissemination with forwarding probability 

(𝑝p) of 0.5. In Figure 4-11:a and Figure 4-11:b, for each protocol there are multiple points, each 

corresponding to a specific Depth of Penetration (DoP). 

Observe that for most DoPs in Figure 4-12:a, EDCD generally achieves the maximum gain 

across all the 𝐷𝑜𝑃s. The protocol SCORP achieves the second-highest gain across DoPs in the 

low-TEI scenario. Both these protocols rely on some form of social weight based utility for 

dissemination, which explains their performance advantages compared to IAD and Random 

dissemination. Protocols that rely on some form of randomness in choosing a relay or number of 

copies to relay (e.g., Random, SCORP, and IAD) generally reach their maximum gain sooner 

compared to EDCD. Since IAD only allows forwards to nodes with high-redemption probability, 

it can take longer to meet such nodes, especially with low exposure to desirable target consumers. 

That is why in few scenarios IAD takes longer than other protocols to reach its maximum gain. 

Carriers hold on to the coupons until consumers are met, and in this case only consumers from 

C1 and C4 are accessible. In the high-TEI scenario (Figure 4-12:b), EDCD maintains its general 

performance advantage over the other protocols. IAD here does better than SCORP and EDCD in 

few DoP scenarios. 
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Figure 4-12: Maximum gain and the time to reach maximum 
This is because the high exposure of target consumers compensates for IAD’s limitation of 

not having a social-aware forwarding policy. Better exposure to the desirable nodes also explains 

IAD’s performance improvement compared to the low-TEI scenarios. More specifically, the 

coupon carriers in C1 in this case meet consumers in C5 directly or through other members of C5 

with high 𝛿  (𝑗	 ∈ 𝐶5) values. This enables IAD to perform good quality forwarding without 

having to use a social interaction-aware utility. Like in the low-TEI case, the random method in 

high-TEI case also reaches its maximum gain in short time duration due to the ready access to 

higher exposure target consumers.    

Generally speaking, all the protocols attain their maximum gain sooner when the TEI is high 

(i.e., in Figure 4-12:b) due to better exposure to the desirable target consumers. 

 The results demonstrate that the Economy Driven Content Dissemination protocol (EDCD) 

is able to achieve higher economic gain compared to few other competing protocols under different 

mobility and DoP scenarios. Note that the presented version of EDCD does not self-select the 

optimal DoP for maximizing gain. The value of DoP needs to be a priori dimensioned through 

simulation for given network parameters. Designing self-adjusting DoP within EDCD is currently 

being investigated.  
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4.8 Summary and Conclusion 

An economy-driven framework for D2D content dissemination was proposed and evaluated 

in this chapter. The primary new concept is an economic gain of dissemination, which is defined 

as a composite routing metric. It is constructed by combining the revenue from delivering a coupon 

and the forwarding cost of dissemination. Using experimental results from the simulator ONE 

[55], it was shown that the proposed EDCD can achieve better economic gain compared to a 

number of competing DTN routing protocols under different mobility scenarios and Depths of 

Penetration (DoP). Experiments also demonstrate that the maximum achievable gain is generally 

higher in scenarios in which nodes with high redemption rates have higher network wide exposure. 

Future work on this topic can be: a) methods for self-adjusting DoPs, b) learning based framework 

that can auto-learn mobility patterns of the desirable target consumers for high-gain dissemination, 

and c) mechanisms for handling consumer selfishness.  

EDCD suffers from certain amount of performance loss due to the fact that the disseminating 

node does not use prediction about the consumption interests of its potential future contacts. In the 

next chapter, we address that limitation by the way of developing a predictive gain utility which is 

used for deciding relative importance of an immediate peer in comparison with potential future 

peers. 
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5 Multicast Routing using Predictive Gain Utility 

5.1 Introduction 

In previous chapter, we developed the notion of rebate and economic gain of dissemination. 

The proposed multicast dissemination protocol EDCD (Chapter 4) relies on the consumption 

interests of nodes that a disseminating node is in direct contact with.  While it was shown to 

perform better than I protocols such as Direct Delivery and Epidemic [37], it suffers from certain 

amount of performance loss due to the fact that the disseminating node does not use prediction 

about the consumption interests of its potential future contacts.  

   The presented work in this chapter addresses that limitation by the way of developing a 

predictive gain utility which is used for deciding relative importance of an immediate peer in 

comparison with potential future peers. We propose two versions of the utility; the first one, 

Predictive Gain Utility Routing Individual (PGUR-I) uses node-specific information, and the 

second one, Predictive Gain Utility Routing Aggregated (PGUR-A) implements a more scalable 

version by aggregating node interaction information across consumers with similar consumption 

interests.  

   The specific contributions in this chapter are as follows. First, we introduce the gain-aware 

DTN multicast routing utility (similar to Chapter 4) that is designed around the notion of 

consumption interest and coupon redemption probability. We propose two versions of a utility 

based protocol; the first one uses node-specific information, and the second one implements a more 

scalable version by aggregating node interaction information across consumers with similar 

consumption interests. Simulation experiments for functional validation and performance 

evaluation with respect to a benchmark and a comparative protocol are then performed. Finally, 

sensitivity of the proposed protocol is evaluated for a number of social and commercially 
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meaningful parameters namely, network mobility, consumption interest patterns, a coupon’s 

expiry time, and the number of distributed copies. 

5.2 System Model  

Using the same cost and revenue (Section 4.2.1) formulation as defined in Chapter 4, we 

compute the expected gain achieved through a coupon redemption by consumer-I as:   

                         𝐺? = 	𝑉? −	𝑐p                                                    (5-1)    

The total network wide gain 𝐺r can be expressed as:   

                         𝐺r = 	 𝑉?
st
?uv − 𝑛×𝑐p                                          (5-2) 

where coupons are delivered to 𝑛o consumers through 𝑛 forwards within a pre-specified 

coupon expiry time (𝜏). The maximum number of deliveries of a coupon and the coupon expiry 

time are generally restricted by its generator. Also, 𝑛o 	≤ 	𝑇, where 𝑇 is that distribution upper 

bound of a coupon, which is set by the coupon’s generator. In the proposed methods in this chapter, 

only one-hop deliveries are allowed, thus n always equals to 𝑛o.  

Similar to the proposed consumers’ interest and redemption probability model in 

Section 4.2.2, each consumer-I maintains an interest level 𝜌? (0 ≤ 𝜌? ≤ 1) towards a specific 

coupon type. Redemption function 𝑃@ 𝜌? ,	represents the probability of redeeming a coupon by 

consumer-i.   Note again that in the presented model, to preserve consumers’ privacy, it is assumed 

that the data related to consumer interests and consumer-to-consumer interaction is always stored 

at the consumers’ devices. It is never exported to a centralized server. 

5.3 Problem Formulation 

For a given combination of earned revenue 𝑐q, discount 𝑐o, rebate 𝑐p, distribution upper bound 

𝑇, expiry time 𝜏, redemption function 𝑃@(𝜌?), and a social wireless network of consumers with 



 90 

interest profiles 𝜌?, the objective is to design a multicast coupon dissemination mechanism that 

maximizes the total gain 𝐺r	within the lowest possible dissemination delay.   

5.4 Proposed Protocols  

The proposed Predictive Gain Utility Routing (PGUR) accomplishes the above objective by 

adjusting its delivery strategy based on 1) the available number of copies of a coupon with the 

coupon carrier, and 2) the time till the coupon’s expiry. The concept is explained using the 

following example of a four-node network shown in Figure 5-1.  

 

Figure 5-1: Example user interaction and routing 

   Each consumer in the figure is represented as 𝑁?	(𝑃@(𝜌?)), where I is the node-ID and 𝑃@(𝜌?) 

indicates its redemption probability computed based on a pre-assigned redemption function 

applied to its interest level 𝜌?. For example, the consumer 𝑁R	(0.8) represents node-0, which is 

likely to redeem a coupon (of the type in question) with a probability of 80%. The time by an arrow 

indicates the time of contact between two nodes. For example, the quantity 𝑡v corresponds to 𝑁R	’s 

contact time with 𝑁v	. Across the scenarios, source node 𝑁R with two copies of the coupon (i.e., 

𝑇 = 2) meets the other three nodes such that 𝑡v < 𝑡� 		< 	 𝑡H		, 𝑡  	< 	 𝑡¡ 	< 	𝜏, where 𝜏 is the expiry 

time of the coupon in question.  

   In scenario-a, since both 𝑁� and 𝑁H	have higher redemption probabilities than 𝑁v, it makes 

more sense for 𝑁R	to wait and deliver the two copies of the coupon to those two later nodes. In 
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scenario-b, based on the redemption probabilities, 𝑁R	should give one copy to 𝑁v and the other 

copy to 𝑁�. This strategy, however, can be implemented when the entire interaction dynamics is 

known a priori, as in oracle-based routings. 

   In the absence of the knowledge about future interactions, upon meeting 𝑁v, 𝑁R	can compute 

the probability of meeting nodes with higher redemption probabilities before the coupon’s expiry 

time. A delivery decision to 𝑁v can be made based on such expected overall gain. More 

specifically, if 𝑁R	is expected to meet K number of nodes with redemption probabilities higher 

than that of 𝑁v′𝑠, and if K is larger than the current number of copies T, then no delivery to 𝑁v	is 

made. Otherwise, one out of T copies is given to 𝑁v. The proposed Predictive Gain Utility Routing 

(PGUR) accomplishes such logic by computing expected gains based on past interaction locality 

information. It does so in the presence of the constraints on number of available coupon copies 

and the remaining time to coupon expiry.  

5.4.1 Predictive Gain Utility Routing –Individual (PGUR-I) 

Predictive Gain Utility Routing –Individual (PGUR-I) relies on the knowledge of: 1) 

nodes’ interest profiles (i.e., 𝜌?), and 2) their underlying social interaction patterns. A 

coupon-carrying node uses this information to evaluate how a delivery to a peer contributes 

to the overall gain in the coupon’s expiry time.  

State Variables: Any node-I maintains the following variables with respect to another node-j.  

𝜆?,`: i’s rate of meeting node-j over a pre-defined time window (e.g., a week). This parameter is 

updated every time the two nodes meet. 

𝜌`: node-j’s interest level toward the merchandize corresponding to the coupon. Node-I computes 

node-j’s redemption probability 𝑃@(𝜌`) based on the known redemption function corresponding to 

the coupon. 
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Forwarding Logic: Consider a situation in which a node-I, carrying T copies of a coupon, meets 

another node-j that does not already have a copy of the coupon. Node-I first uses Eqn. 2 to compute 

the gain 𝐺 ,	which node-j can achieve through redeeming the coupon.  

   It also computes the expected gain of delivery to nodes it may visit during the remaining 

time (𝜏 − 𝑡E) to coupon expiry, where 𝑡E denotes the current time. Using the recorded frequency 

of meeting with each node k that I met so far, I computes the probability of meeting k at least once, 

during 𝜏 − 𝑡E as:   

																													𝑝m? (𝜏 − 𝑡E) = 1 − 𝑒�𝝀𝒊,𝒌(ª�«�)                                  (5-3)      

   This assumes that the inter-contact duration between node pairs follow exponential 

distribution. The closer the above probability gets to the coupon expiry time, the lower is the 

chance of meeting node k. The higher the contact frequency is between node-I and node-k, the 

more probable it is for I to meet k  during 𝜏 − 𝑡E. The expected gain from a possible delivery from 

node-I to node-k can be computed by node-I as:   

																				𝐸m? (𝜏 − 𝑡E) = 𝑝m? (𝜏 − 𝑡E)×𝐺m                                     (5-4) 

𝐺m is the expected gain achieved by a coupon redemption by consumer-k as defined in Eqn. 

5-1. It is computed based on 𝜌m and the corresponding redemption probability 𝑃@ 𝜌m .   

   After node-I computes 𝐸m? (𝜏 − 𝑡E) for each node-k from its past interaction list, it identifies 

the number of such nodes for which the expected gain of delivery is larger than the gain 𝐺 ,	which 

can be achieved by delivering a copy of the coupon to an immediate contact j. Those nodes form 

a set 𝑆 = 	 	⋃𝑘	 	∀𝑘:	𝐸m? 𝜏 − 𝑡E > 𝐺 }, which is the set of target receivers (formed from the past 

interaction list), whose members individually maintains a higher expected gain compared to the 

gain generated by delivering to the immediate contact j. 
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   If 𝑆 ≥ 𝑇, it means that node-I is expected to meet more nodes (than it has coupon copies) 

with expected gain higher than that of the immediate contact node-j. In this situation, node-I holds 

onto all its copies and does not make any delivery to node-j. If 𝑆 < 𝑇, a copy of the coupon is 

delivered to the immediate contact node-j, since the expected number of future contacts with higher 

gain in this case is less than the available number of copies T. Until T becomes zero, this process 

is repeated every time node-I meets another node, which does not already have a copy of the 

coupon. The key components of the described PGUR-I algorithm are summarized in Algorithm 5-

1.  

   This protocol is termed as PGUR-I (or Individual) since a node-I is required to maintain the 

state variables about other nodes on a per-node or individual basis. This may give rise to scalability 

problems, which are addressed in PGUR-A (or Aggregated) as presented next. 

5.4.2 Predictive Gain Utility Routing –Aggregated (PGUR-A) 

Information aggregation in PGUR-A is done by maintaining state variables for node groups 

in specific gain quanta as opposed to for individual nodes. 

Gain Quantum: The entire gain range is divided in L equal gain quanta. Gain of delivery, as 

defined in Eqn. 5-2, varies in the range of [𝐺a?s, 𝐺abc],	where 𝐺a?s = 𝑉a?s −	𝑐p and 𝐺abc =

𝑉abc −	𝑐p. 
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1: When node-I meets node-j: 
2:          I updates 𝝀𝒊,𝒋  and 𝜌` for node-j in its  
             records;        
     Forwarding Logic: 
3: 𝑆 = ∅; //Set of nodes k with expected gain  
    larger than 𝐺  
4: For node-I carrying T copies of a coupon: 
5:          For every node-k met by I before:    
6:                 //compute the expected meeting  
                      probability 
7:             					𝑝m? (𝜏 − 𝑡E) = 1 − 𝑒�𝝀𝒊,𝒌(ª�«�)                            
8:                 //compute the expected gain 
9:               		𝐸m? (𝜏 − 𝑡E) = 𝑝m? (𝜏 − 𝑡E)×𝐺m  
10:                 if (𝐸m? (𝜏 − 𝑡E) > 𝐺 ) then 
11:                     add the node-k to the set S; 
12:        if ( 𝑆 < 𝑇) then                    
13:               Deliver one copy of the coupon to  
                    node-j; 

Algorithm 5-1: The key components of the PGUR-I algorithm 

𝑉a?s and 𝑉abc are the minimum and maximum possible net revenues for a delivery. Minimum 

and maximum achievable revenues can be computed using Eqn. 4-1, as follows: 

    𝑉a?s = 𝑃@a?s(𝑐q − 𝑐o)		                             (5-5) 

   𝑉abc = 𝑃@abc(𝑐q − 𝑐o)		                                (5-6) 

where, 𝑃@a?s and 𝑃@abcare the minimum and maximum possible redemption rates for a coupon. 

   Each gain quantum l corresponds to gain values in the range of  [ 𝐺a?s +	
±����±���

]
×

𝑙 − 1 , 𝐺a?s +	
±����±���

]
× 𝑙 ]. The quantum l is represented by the gain ceiling in that 

quantum (𝐺²), which is 𝐺a?s +	
±����±���

]
× 𝑙 . For example, if gain varies in range [0,1] and 

𝐿 = 10, 𝐺² = 0.5 corresponds to a set of nodes with gain range [0.4,0.5].  

   Depending on its interest level in a coupon category and the corresponding redemption 

probability, each node belongs to a specific gain quantum. Nodes are logically grouped based on 
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the quantum they belong to. The number of quanta (L) should be large enough to provide sufficient 

granularity, so that	𝐺² is a fair estimation of individual gains for members in a quantum.  

State Variables: Each node-I maintains the following variables:  

𝑛²:	No. of nodes in gain quantum l that are met by node-I so far.  

𝜆²?: i’s rate of meeting with nodes in the gain quantum l over a pre-defined time window (e.g., a 

week).  

Forwarding Logic: when node-I, carrying T copies of a coupon, meets node-j, which does not 

possess a copy, the former computes 𝐺  based on Eqn. 5-1 and the interest value shared by node-

j. Based on j’s gain quantum, I also updates the quantities 𝜆²? 	and	𝑛²	at this stage.  

   For each gain quantum l with 𝐺² ≥ 𝐺 , node-I computes the following probability of meeting 

at least one node in quantum l during the remaining time to expiry for the coupon in interest. 

                   		𝑝²?(𝜏 − 𝑡E) =1-𝑒�³´
�(ª�«�)				                                        (5-7) 

Node-I then computes the aggregated expected gain of delivery to nodes in gain quantum l, 

where 𝐺² ≥ 𝐺 :  

        							𝐸²?(𝜏 − 𝑡E) = 		𝑝²?(𝜏 − 𝑡E)×𝐺²                                      (5-8) 

A cumulative prospective recipient count	𝑘?(𝜏 − 𝑡E) is then computed by adding the quantum 

member count 𝑛² over all the quanta for which the quantity 𝐸²?(𝜏 − 𝑡E) is larger than 𝐺 . 

                            𝑘?(𝜏 − 𝑡E) = 𝑛²
²µ
²u²�                                          (5-9) 

The quantities 𝑙v and 𝑙� correspond to the smallest and largest gain quantum which have 

higher aggregated expected gain compared to 𝐺 . The quantity	𝑘?(𝜏 − 𝑡E) corresponds to the 

number of nodes (that node-I is expected to meet during the remaining time to expiry) that can 
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individually produce larger expected gain compared to 𝐺 . Delivery to this set of nodes is therefore 

supposed to lead to a higher overall gain. 
 

1: When node-I meets node-j: 
2:          I updates 𝜆²?   and 𝑛² for node-j in its records; 
     Forwarding Logic: 
3: For node-I carrying T copies of a coupon; 
4:         For each gain quantum 𝑙	with 𝐺² ≥ 𝐺 : 
5:               //compute the expected meeting  
                    probability 
6:             		𝑝²?(𝜏 − 𝑡E) =1-𝑒�³´

�(ª�«�);  
7:               //compute the aggregated expected gain 
8:               𝐸²? 𝜏 − 𝑡E = 		𝑝²? 𝜏 − 𝑡E ×𝐺² 
9:               if (𝐸²? 𝜏 − 𝑡E > 𝐺 ) then 
10:                   //add the number of nodes in gain  
                          quantum l 
11:                     𝑘? 𝜏 − 𝑡E += 𝑛²; 
12:       if (𝑘? 𝜏 − 𝑡E < 𝑇) then               
13:          Deliver one copy of the coupon to node-j; 

Algorithm 5-2: The key components of the PGUR-A algorithm 

If 𝑘²? 𝜏 − 𝑡E ≥ 𝑇, it means that node-I is expected to meet more nodes (than it has coupon 

copies) with expected gain higher than that of the immediate contact node-j. In this situation, node-

I holds on to all its copies and does not make any delivery to node-j. Otherwise, a copy of the 

coupon is delivered to the immediate contact node-j, since the expected number of future contacts 

with higher gain in this case is less than the available number of copies T. Until T becomes zero, 

this process is repeated every time node-I meets another node, which does not already have a copy 

of the coupon. The key components of the described PGUR-I algorithm are summarized in 

Algorithm 5-2. 

5.5 Compared Algorithms 

Benchmark: This approach is used for finding the gain upper bound when all system 

parameters including node mobility/interactions are known a-priori. The first-time interactions 
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between a coupon carrier I and every node-j that it meets till the coupon’s expiry time are tracked. 

The top T interactions in terms of gain from the entire interaction set are chosen for coupon 

dissemination from node-I to each such node-j. The cumulative gain (𝐺 ) is then computed by 

adding up the individual gains obtained across all T dissemination. This cumulative value does 

indicate the upper bound of achievable gain for the given mobility/interaction and interest profiles. 

Social-aware Opportunistic Routing Protocol (SCORP): In order to make SCORP fit the 

existing framework, we modify this protocol slightly different compared to the modified version 

used in previous chapter. The interest aware protocol, SCORP [20], works with binary interest 

levels (i.e., 0 or 1). It uses a social weight, computed using a node’s interest profile and social 

interaction patterns. Node-a computes the quantity	TCTI(a, x)¹, which is its Total Connected Time 

to Interest (TCTI) with nodes with interest-x using a daily sample-i. The average ATCTI(a, x)»,¹ is 

computed for day-j as: 
  

        𝐴𝑇𝐶𝑇𝐼(𝑎, 𝑥)`,? =
r^r�(b,c)�,��(`�v)�r^r�(b,c) ��� ,�

`
                                       (5-10) 

   Content is transferred from node-I to node-j, when node-j has consumption interest, or, its 

social weight (computed based on its ATCTI) is higher than that of i. We have incorporated the 

following changes in order to adapt the baseline SCORP with binary interests to the present 

framework of multi-level interests. The idea is to let the node interest level 𝜌?	vary in the range 0 

to 1, but to restrict the redemption probability 𝑃@(𝜌`) to binary values of 0 or 1. In that case, 𝑃@(𝜌`) 

is set to 1 for all nodes, which induce a positive gain, and it is set to zero otherwise.  

   This approach does not differentiate between interest levels, which are associated with 

higher redemption probabilities, and those, which are associated with, lower redemption 

probabilities. Therefore, it underestimates the achievable gain. To prevent that, we modify 
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SCORP’s logic such that the delivery to an interested node-j takes place based on peer’s 

redemption probability normalized between 0 and 1. 

5.6 Dissemination Performance 

We use the DTN simulator ONE  [55] for evaluating PGUR-A, PGUR-I and other target 

protocols under three different community based synthetic mobility models and one real mobility 

trace (i.e., from INFOCOM ’06 [59]). The main differences across the models are in their 

community structure and interest level distributions. For all the experiments we use the Gaussian 

redemption function as explained in Section 4.6.1. Figure 5-2 shows the applied function with 

mean 𝜇 = 0.75 and maximum redemption probability	𝑃@abc = 0.5. The corresponding gain curve 

in Figure 5-2 is when the forwarding cost 𝑐p, earned revenue 𝑐q,	and discount 𝑐o are set to 0.2, 5 

and 2 respectively. These values are also used for all subsequent experiments. 

 

Figure 5-2: Example Gaussian redemption function 

5.6.1 Synthetic Mobility  

Synthetic mobility follows map-based movements in a network of 10 waypoints. Nodes 

move between waypoints with assigned transition probabilities. For all experiments, 

-0.2
0
0.2
0.4
0.6
0.8
1
1.2
1.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

)

)



 99 

network size is set to 100 nodes. Each experiment is repeated for around 32 source nodes 

with highest redemption probability.  

5.6.1.1 Monolithic Mobility  

   Each of the 100 nodes travels from any waypoint to any randomly chosen waypoint with 

equal probability. Interest levels for nodes are randomly assigned within the range 𝜌? 	 ∈ [0.62,0.89] 

following a uniform distribution.  

 

 

 Figure 5-3 shows evolution of the network-wide cumulative gain over time, beginning from 

the content generation time on day 16, which is when the network simulation warms up in terms 
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of stabilizing the interaction profile. Experiments with ten initial coupon copies (i.e., 𝑇 = 10) were 

carried out for expiry time 𝜏 ranging from 12 hours all the way up to 10 days.  

   The benchmark mechanism (i.e., BM), as explained in Section 5.5, shows the maximum 

achievable gain for all scenarios in Figure 5-3. All the protocols, including benchmark, show an 

increasing trend for gain over time, as more coupons are delivered.  

Figure 5-3 shows that even though the proposed PGUR protocols have different time-

dynamics, in most scenarios they deliver near-BM final cumulative gain performance. PGUR-A 

achieves a higher gain compared to PGUR-I in all cases except for the very short expiry time.  The 

reason is as following.     

   Imagine a node-I carrying a copy of a coupon meets node-j. In case of an immediate 

delivery, the induced gain is 𝐺 . The protocol PGUR-A first computes the expected gain of delivery 

to nodes belonging to gain quantum (see Eqn. 5-8) higher than 𝐺 . This expected gain is a function 

of the probability of meeting any of the qualified nodes in the mentioned quantum. PGUR-I, on 

the other  hand, computes the expected gain of delivery to future contacts based on the probability 

of meeting each individual node with gain larger than 𝐺  (see Eqn. 5-4). Since, the probability of 

meeting any node belonging to a gain quantum is greater than the probability of meeting each 

specific node in that quantum, the expected gain of delivery to future contacts is usually higher for 

PGUR-A compared to that for PGUR-I. Therefore, PGUR-A is more conservative regarding 

immediate deliveries. This allows PGUR-A to achieve a higher gain by waiting for more qualified 

consumers with higher gain and not dispensing resources (i.e., coupon copies) rapidly. That is why 

PGUR-A achieves a higher gain when the expiry time is longer than half-a-day. For short expiry 

times (12 hours), however, PGUR-I achieves a higher gain, since generous dissemination to 

immediate contacts is more efficient under tight time constraints.  
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Figure 5-3 shows that the other evaluated protocol SCORP performs worse than both PGUR-

A and PGUR-I in all the experimented scenarios. The main reason for such performance deficiency 

is that while dispensing coupons, SCORP does not predict the chances of meeting nodes with 

higher gain before the coupon expiry time. In contrast, with both PGUR-I and PGUR-A, a carrier 

often avoids immediate delivery according to the prediction it does about possibility of meeting 

more qualified receiver nodes. This lack of visibility particularly affects SCORP’s gain when the 

expiry time is long (e.g., 5 or 10 days). It is also the reason why SCORP finishes dissemination in 

a shorter time compared to PGUR in all scenarios. 

   Generally, SCORP achieves a higher gain with increase in expiry time initially, because in 

longer time duration, a larger fraction of the sample space is explored and nodes with higher 

expected gain are found. Though, for 𝜏 = 10	days, a slight decrease in gain is observed. That is 

because with SCORP a coupon carrier may deliver one or multiple copies to another node, which 

already has the content. Such deliveries do not generate revenue since no consumptions happen. 

Those deliveries, however, incur the forwarding cost in the form of rebates. With longer expiry 

time, more of such deliveries happen, thus resulting in loss of cumulative gain	𝐺𝑇. 

   Figure 5-4 depicts the behavior of PGUR protocols in terms of how they perform immediate 

deliveries and how they hold on to coupon copies with the anticipation of meeting good 

prospective recipients. These results correspond to the dissemination pattern for one of the coupon 

carriers shown in Figure 5-3:d, where T=10 copies and 𝜏 = 10 days. The red lines show the change 

in available number of copies at the coupon carrier over time. T starts at 10 and it reaches 0 showing 

that all copies are disseminated eventually. Upon interacting with node-j, node-I computes the 

number of nodes (with individual gains higher than 𝐺 ) that node-I is expected to meet before the 
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coupon’s expiry  time. This quantity, which corresponds to the size of set S in PGUR-I and refers 

to the value 𝑘? 𝜏 − 𝑡E  in PGUR-A’s logic, is shown as the blue circles in Figure 5-4.  

 

 

Figure 5-4: Dissemination behavior of  PGUR protocols 
The points above the red line show the instances of meetings for which the number of better 

future consumers (compared to j) exceeds the number of available copies. Therefore, no delivery 

to j happens. All 10 points below the red line correspond to instances, where, the number of 

available copies are more than the number of nodes with potentially higher gain compared to 𝐺 . 

That is when a delivery takes place. After the last delivery, the number of copies reaches 0.  

   With a fixed expiry time in both cases, PGUR-A finishes disseminating all copies on day 25 

(Figure 5-4:b), while for PGUR-I dissemination is done by day 19 (Figure 5-4:a). This indicates 

that PGUR-A is less likely to deliver to immediate contacts. It rather holds on to the content for a 

longer duration. This phenomenon, usually leads to a higher eventual gain.  

5.6.1.2 Community-based Mobility 

   We experimented with a Community-based Mobility with Community-based Interest 

(CMCI) model. Nodes are divided into 4 communities, each with 25 nodes. Members within a 

community are made to follow the same stochastic mobility by enforcing the same inter-waypoint 
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transition probabilities as discussed in Section 5.6.1. This ensures higher intra-community meeting 

frequency compared to inter-community on a node-pair basis. Consumption interest is assigned as 

follows. The entire redemption probability spectrum is divided into 4 equal segments, each specific 

to a community. Then the interest levels for nodes in a community are uniformly randomly 

assigned such that the corresponding redemption probabilities fall into the community-specific 

segment. This way, the members of one community are similarly interested in receiving coupons 

for a product.  

 

Figure 5-5: Final gain for all combinations of T and 𝜏 for CMCI mobility scenario 

   Experiments with CMCI are performed for a large combination of T and	𝜏. The observed 

trends of gain evolution over time for all experimented protocols are very similar to those in the 
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Figure 5-5. Each point corresponds to the final gain achieved by a protocol for a combination of 

initial number of coupon copies T, and an expiry time 𝜏.    

Observe that under CMCI, the final gain provided by the benchmark (BM) protocol slightly 

increases compared to that under the monolithic model, as reported in Figure 5-3. 

This is because a coupon carrier’s most frequently contacted peers are nodes from the same 

community with similarly high interest levels and the resulting redemption probabilities. The same 

observation and explanation also apply to all non-BM protocols.  

   For all protocols, the final gain increases with higher number of coupon copies. Also, as the 

expiry time extends, the protocols are able to achieve larger gains, since the chances of meeting 

nodes with higher redemption probabilities grow. Generally, with longer expiry time, the 

performance gap between SCORP and the PGUR protocols increases for all T’s. The reason is that 

in a shorter expiry time it is more urgent to deliver coupons to immediate contacts rather than 

holding on to the coupon to meet better consumers in future. Hence, SCORP’s rapid delivery logic 

is closer to the Benchmark’s strategy. For longer contact duration, such strategy hurts SCORP’s 

performance compared to those of benchmark and the other protocols that waits for perspective 

better receivers.  

5.6.2 Trace-based Mobility 

All the dissemination protocols were also tested for a human interaction trace collected 

[59] from INFOCOM ’06 conference.  The trace contains data from 97 devices including 

few static ones and those, which were carried around by a group of users for all four 

conference days. All experiments in this section are run for at least 15 source nodes. 

Figure 5-6 shows the maximum achievable gain (Figure 5-6:a) and the time to reach that 

(Figure 5-6:b) as a function of the coupon expiry time. Observe that the overall comparative 
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performance across the protocols, as observed for the two previous synthetic mobility scenarios, 

also applies for this trace based case. As before, the performance of the proposed PGUR protocols 

lay in between those for benchmark and the SCORP mechanism.  

 

Figure 5-6: Gain dynamics for different expiry time; T=15 
Overall, results from synthetic mobility and the trace-based mobility verify the usefulness of 

PGUR-A in achieving near-benchmark gain various combinations of number of coupon copies 

and their expiry times. Only for short expiry time, PGUR-A’s performance is slightly worse than 

PGUR-I’s. However, considering the scalability advantages of PGUR-A, this small gain 

compromise can be acceptable. The larger the expiry time is and the more the number of initially 

available coupon copies, the higher economic gain is provided by the PGUR protocols. 

5.7 Summary and Conclusion 

We developed two economic gain-aware DTN multicast routing protocols that maximize the 

economic gain of disseminating coupons. Economic gain was defined as a composite index, which 

combines revenue from delivery and forwarding cost from dissemination. Using experimental 

results from the simulator ONE [55], it was shown that the proposed protocols achieve near-

Benchmark economic gain, which is better compared to a competing DTN routing protocol. 
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Sensitivity of the protocols was evaluated for different network mobility, consumption interest 

patterns, a coupon’s expiry time, and the number of distributed copies.  

Future work includes developing: a) learning-based framework for high-gain dissemination, 

b) a routing framework which uses information regarding nodes’ transitive interactions, and c) 

mechanisms for handling consumer selfishness.  
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6 MAC Protocol Design Using Evolvable State Machines 

6.1 Introduction 

Communication protocols can be modeled [62] as collaborative state machines that interact 

through inter-node message passing. Designing a protocol requires constructing an optimized state 

machine that usually maintains a balance between multiple performance indices such as 

communication delay and throughput. Protocol design is considered to be an optimization problem 

for which rarely there is a closed form solution. Currently, designing network protocols are mostly 

based on heuristics, which relies on past experience of the designer in known network conditions. 

While heuristics can work for relatively static networks, a protocol’s performance can and do 

degrade when the network conditions change over time. To cope with such changes, network 

designers often need to redesign protocols periodically with changing network conditions.  

 One alternative approach is to leverage learning mechanisms which allow network protocols 

adapt to the dynamicity of the environment with minimum intervention from the designer. This 

section explores evolutionary learning, specifically, evolving state machines for protocol 

synthesis. A specific network protocol is coded as a genotype and its resulting state machine 

behavior manifests in the form of the corresponding phenotype, leading to specific performance. 

The genotype or state machine is allowed to evolve under the pressure of desired performance 

fitness. In this chapter, we explore the evolutionary design of ALOHA [63], a simple yet widely 

used family of MAC protocols for which the theoretical upperbounds are well known.  

 Figure 6-1 shows a two-state machine for the Pure-ALOHA logic along with the protocol’s 

attainable throughput for different network-wide load G (Figure 6-1:b). The state machine shows 

when a node has a packet to send, it simply sends the packet, and subsequently gets back to the 

wait-for-packet state. Part of the investigation in this chapter will be to explore when the basic 
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building blocks for the ALOHA state machine are provided to an evolutionary substrate, if and 

how the desired state machine emerges as a result of an evolution process. 

 

Figure 6-1: (a) Two-state machine for Pure-ALOHA MAC; (b) Network-wide load G vs. 
Throughput S (in Erlang) for pure-ALOHA phenotype 

 

In the next chapter, it will be also explored if progressively more complex protocols such as 

slotted-ALOHA and Carrier Sense Multiple Access (CSMA) can emerge out of an evolution 

process when time slotting and channel sensing capabilities are added.   Specific contributions of 

the chapter are as follows. First, a probabilistic state transition model is developed for genotype 

coding of protocol state machines. Second, a genotype to behavioral phenotype modeling 

mechanism is developed for evaluating the fitness of a protocol genotype for a given network and 

traffic load. Third, a Java based evolution substrate is developed in which state machines can 

evolve with user-specified evolution operators such as mutation. Finally, results are presented in 

the form of evolution and performance trajectories in the presence of varying network and traffic 

conditions.  

6.2 Protocol State Machine 

We define a generalized state machine (see Figure 6-2), which is modeled after a typical learning 
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a) identifying appropriate time slots to start talking in a competitive environment with multiple 

speakers, b) ending a sentence in a graceful manner rather than interrupting herself or getting 

distracted in the middle of a sentence, and c) waiting or distracting herself for subconsciously 

adjusting the speaking rate in order to minimize interruptions to others. The state machine in 

Figure 6-2 provides a general framework that embeds those learning components and more. The 

machine is intentionally kept general with high degrees of behavioral freedom. The hope is that in 

the presence of such behavioral freedom, unpredictable speaking protocols will emerge under right 

environmental conditions. In general, speaking a sentence is mapped as sending a fixed size packet. 

Three states, namely, Wait (W), Transmit (T) and Loitering (L) are defined. Wait is a state in which 

a node remains silent while waiting to receive the next packet to be transmitted from the upper 

network layer. 

 

Figure 6-2: An evolvable generalized FSM with embedded pure-ALOHA logic 
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though it ensures additional behavioral freedom. Lingering in any of the states T or L can delay 

possible new transmissions. The labels on the arrows in Figure 6-2 indicate the transition 

probabilities, and the text within the circle by a transition describes the actions associated with it. 

Additionally, the machine uses two flags P (Packet flag) and T (Transmission flag). When set, they 

indicate generation of a packet and an ongoing transmission respectively. It should be noted that 

while a specific set of transition probabilities in this machine implements the known pure ALOHA 

protocol, it is general in that it contains many possible execution sequences implementing other 

working and non-working protocols.  

There are six independent transition probabilities as follows. The probability 1 − 𝑃ÀÀ	
ÁuR→Áuv 

refers to the probability of a transition from W to T when a packet is generated. In pure-ALOHA, 

This probability equals to 1, representing a node greedily attempting to access the channel as soon 

as a packet is generated. 𝑃À] is the probability of moving to the Loitering state, while 𝑃]À models 

the return path from L to W. Arbitrary movements between the states W and L based on the 

probabilities 𝑃À] and 𝑃]À control random loitering that will prove to be useful for self-adjusting 

the effective load from a node. In pure-ALOHA logic, a node returns to state W as soon as a 

previous transmission is over.  

However, in the generalized model, a node can decide between returning to state W with 

probability 𝑃rÀruv→ruR and moving to state L instead, with a probability 1-𝑃r]ruv→ruR. Note that a 

redundant transition to the state L delays possible packet transmissions. Furthermore, a node is 

allowed to abandon its transmission and move to state W or state L with probabilities 𝑃rÀruv→ruv 

and 𝑃r]ruv→ruv respectively. Table 6-1 summarizes the independent transition probabilities and 

values which would reduce the state machine to that of pure-ALOHA logic in  Figure 6-1:a. 
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𝑷𝑾𝑾	
𝑷u𝟎→𝑷u𝟏:     W to W, when packet is generated, 0 

𝑷𝑾𝑳:               W to L without any external event, 0 

𝑷𝑳𝑾:               L to W without any external event, 0 

𝑷𝑻𝑾𝑻u𝟏→𝑻u𝟎:     T to W when an ongoing transmission is over, 1 

𝑷𝑻𝑾𝑻u𝟏→𝑻u𝟏:     T to W while a packet transmission is in    
                       progress,0 
𝑷𝑻𝑳𝑻u𝟏→𝑻u𝟏:     T to L while a packet transmission is in  
                       progress, 0 

Table 6-1: Independent transition probabilities 

6.3 Evolution Platform 

The evolution platform (see Figure 6-3) consists of two main components, namely, a Java based 

evolution fabric and a C based protocol evaluation module. A gene embodies the collection of all 

the independent transition probabilities. The evolution fabric is responsible for the evolutionary 

tasks including generation of the initial gene population, sorting fitness values, a tournament 

selection, mutation, and reproduction [64]. A mapping function is used for mapping each gene to 

a protocol behavior phenotype code, which is evaluated within the C based evaluation module. 

The protocol embedded in network nodes runs and induces a network-wide fitness reward. The 

protocol performance is then fed back into the evolution fabric in the form of gene-fitness. 

 

Figure 6-3: System structure for the proposed evolutionary framework 
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Fitness: Network-wide throughput is used as the fitness indicator. The hypothesis here is that 

by the way of effective genotype evolution of the state machine in Figure 6-2, nodes will be able 

to adjust to the optimum loading conditions in order to achieve the best possible throughput (i.e., 

of ALOHA) as shown in Figure 6-1:b. 
 

Evolution: Evolution starts with an initial population (with size p) that includes genes 

consisting of independent transition probabilities from Table 6-1 with randomly assigned values. 

Note that the extreme probability values (i.e., 0 and 1) can lead to state pruning and inclusion, 

which can induce drastic changes in node behavior. For example, a gene which has both 

probabilities 𝑃À] and 𝑃r]ruv→ruv set to zero, prunes the loitering state L from the corresponding 

phenotype protocol.  

Reproduction is implemented using tournament selection [64], which is used in Genetic 

Algorithm for providing selection pressure (i.e., network throughput) by holding a tournament 

among a set of selected members, which is 2m% of p in this case. After the tournament selection, 

m% of p members are selected. Subsequently, the selected m% of the p genes goes through a 

mutation process to produce a new generation. It was observed that by choosing m around 20%, 

sufficient genetic diversity can be maintained across generations. The mutation operator of the 

Breeder Genetic Algorithm proposed in [65] is used. A quantity Valuei is mutated as: 

                			𝑉𝑎𝑙𝑢𝑒?aÈ«b«Éo = 	𝑉𝑎𝑙𝑢𝑒?	 + 	𝑠?. 𝑟?. 𝑎?			, 𝑖 ∈ {1,2, . . , 𝑛}	                        (6-1) 

where 𝑠? is a random variable ∈ {−1,1}, and 𝑟? is defined as r× 𝑑𝑜𝑚𝑎𝑖𝑛?. The quantity r is 

the mutation range with typical values within [0.1,10�Í] and 𝑑𝑜𝑚𝑎𝑖𝑛? is the domain of the 

variables. The quality 𝑎?	is defined as 2�È.m where u	∈ [0,1] and k is the mutation precision with 

typical values in range {4,5, . . ,20}. Parameter k is associated with the mutation step-size, which is 

the proximity of a mutated value to its parent individual. Mutation steps are limited to the range 
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[r,𝑟. 2�m]. Modifying parameters in Eqn. (6-1) provides different search strategies with different 

step-sizes. Mutating top (most-fit) members of a population is supposed to maintain diversity 

among members of the new generation and avoid settling in local optimums. 

Each member of the new generation models a specific protocol behavior, which gets evaluated 

within the C based evaluation module in Figure 6-3. The evolution process including sorting fitness 

values, tournament selection, mutation based reproduction, and population replacement are then 

performed on members of the new generation which consists of m% of p number of children and 

the p – m% of p members from the previous generation. 

6.4 Results 

We define an Evolutionary Degree of Behavioral Freedom (EDBF) as the number of transition 

probabilities (in Figure 6-2) that are allowed to evolve in an experiment. In scenarios with smaller 

EDBFs, fewer evolvable probabilities limit the phenotype search space. The gene structure 

consists of six independent probabilities mentioned in Section 6.2. The population size in each 

generation is set to 100 in all experiments. Evolution is run for 300 generations with m (see 

Section 0) set to 20%.  

6.4.1 Partial EDBF (EDBF: 1, 2, 3) 

6.4.1.1 Evolvable Probability: 𝑷𝑾𝑾	
𝑷u𝟎→𝑷u𝟏 (EDBF: 1) 

   𝑃ÀÀ	
ÁuR→Áuv , the probability of remaining in state W when a new packet is generated, is the 

only evolvable probability in these experiments. Figure 6-4:a shows the evolution of average 

𝑃ÀÀ	
ÁuR→Áuv over 100 members of each generation for scenarios with different network-wide applied 

load (G). Only 50 generations out of 300 are shown since probabilities stabilize by that point.   
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Figure 6-4: (a) Evolution of 𝑃ÀÀ	
ÁuR→Áuv and (b) the corresponding  throughput 

   For a given node-specific load g (i.e., G/N), any non-zero 𝑃ÀÀ	
ÁuR→Áuv reduces the nodes’ 

effective individual load 𝑔 following the expression 𝑔=𝑔(1 − 𝑃ÀÀ	
ÁuR→Áuv) . In general, 𝑃ÀÀ	

ÁuR→Áuv 

reduces a node’s transmission persistence. The network-wide effective load can be expressed as 

𝐺	 = 𝐺 1 − 𝑃ÀÀ	
ÁuR→Áuv . For any applied load G, by the way of evolving the probability 

𝑃ÀÀ	
ÁuR→Áuv, the nodes are able to adjust the network-wide effective load 𝐺 to its optimal value 0.5 

at which the network-wide throughput is maximized to pure-ALOHA’s throughput of 18.4%. This 

load-reduction effect can be evidenced in the evolution trajectories of 𝑃ÀÀ	
ÁuR→Áuvand throughput 

(when G=0.8 and G=1) in Figure 6-4:a and Figure 6-4:b. The expected steady state value of 

𝑃ÀÀ	
ÁuR→Áuv is: 

         		𝑃ÀÀ
ÁuR→Áuv = 1- 𝐺 𝐺                            (6-2) 

   For example, when G is 0.8, 𝑃ÀÀ	
ÁuR→Áuv is expected to evolve to 0.37 (i.e., 1- 0.5 𝐺), which 

is evidenced in Figure 6-4:a. When G is set to less than the optimal value 0.5, since no reduction 

in load is needed,  𝑃ÀÀ	
ÁuR→Áuv evolves to a near-zero value. This helps maintaining the effective 
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load 𝐺 at the same level of the applied load G. Figure 6-4:b shows that throughput trajectory with 

evolving 𝑃ÀÀ	
ÁuR→Áuv for the 𝐺 = 0.3 case settles at the theoretical throughout of 0.16 (𝑆�]ÎÏ� =

𝐺𝑒��±). When the applied load G is equal or higher than the optimal value 0.5, the throughput is 

able to reach the theoretical maximum of 18.4%. 

   Figure 6-5 depicts the trajectory of the effective load 𝐺 averaged over each generation. For 

all 𝐺 ≥ 0.5	scenarios, 𝐺	is adjusted to 0.5 by the way of evolving the transition probability 

𝑃ÀÀ	
ÁuR→Áuv. However, 𝐺 does not need to be adjusted when the applied load G is less than the 

optimal value 0.5. In such cases (e.g.,	𝐺 = 0.3), 𝑃ÀÀ	
ÁuR→Áuvevolves to near-zero values such that 

𝐺	converges to G.  

  To summarize, the above results indicate that the generalized state machine in Figure 6-2 

can evolve towards the ALOHA state machine in Figure 6-1:a, when genes containing 𝑃ÀÀ	
ÁuR→Áuv 

are allowed to evolve under network-wide throughput as the fitness pressure. 

 

Figure 6-5: Trajectory of effective load 𝐺 for different applied load G 

6.4.1.2 Evolvable Probabilities: 𝑷𝑻𝑾𝑻=𝟏→𝑻=𝟎 and 𝑷𝑳𝑾 (EDBF: 2) 

   Following a packet transmission, a node returns to state W or L with probabilities 𝑃rÀruv→ruR 
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experiments, we allow both these probabilities to evolve.  Figure 6-6:a through Figure 6-6:d depict 

the joint evolution trajectory of the pair 𝑃rÀruv→ruR and 𝑃]À for applied loads G = 0.3, 0.5, 0.8 and 

1.0. Each point in these graphs represents the pair {𝑃rÀruv→ruR, 𝑃]À} and the corresponding 

throughput. In the beginning, the probabilities change at a fast rate, causing the inter-generation 

probabilities to be well separated. With advancing generations, the probabilities reach near-

convergence values, forming distinct clusters. For all 𝐺	 ≥ 0.5, such clusters are formed around 

the throughput 0.18, indicating evolved ALOHA behavior. For the scenarios with applied load 

𝐺	 ≤ 	0.5, 𝑃rÀruv→ruRevolves towards 1, which is the corresponding transition probability for pure-

ALOHA. This can be observed in Figure 6-6:a and Figure 6-6:b. Any non-unity 𝑃rÀruv→ruR causes 

the effective load 𝐺 to be smaller than load G. For G <= 0.5, since such load reduction can drag 

down the throughput, the nodes evolve the 𝑃rÀruv→ruR part of their genes towards 1 in order to 

maintain the throughput at its maximum possible values. 𝑃]À increases initially slightly to allow 

the needed exits from state   L. It then evolves to values between 0.6 and 0.8, which can maintain 

the maximum possible throughput. Figure 6-6:c and Figure 6-6:d depict scenarios with G > 0.5. 

The initial fall in 𝑃rÀruv→ruR helps reducing 𝐺 towards the optimal value 0.5. The fall for the 𝐺	 =

1.0 case in Figure 6-6:d is sharper than that for  𝐺	 = 	0.8	in Figure 6-6:c. This is because with 

higher load, a larger reduction is needed and a smaller 𝑃rÀruv→ruR provides that reduction.  
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Figure 6-6: Evolution of pair  𝑃rÀruv→ruR and 𝑃À],	and the corresponding throughput 

   After the initial fall, 𝑃rÀruv→ruR increases and stabilizes at values in the range between 0.7 

and 0.8 which, along with the corresponding	𝑃]À values, maximizes the throughput around 18%. 

The effective load 𝐺 in this EDBF= 2 scenario follows a pattern that is very similar to what is 

shown in Figure 6-5. 

Overall, these results indicate that even when the gene structure constitutes two probabilities 

𝑃rÀruv→ruR and 𝑃]À (i.e., EDBF = 2), the generalized state machine in Figure 6-2 can evolve 

towards the pure-ALOHA behavior as depicted in Figure 6-1:a. 
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6.4.1.3 Evolvable Probabilities: 𝑷𝑾𝑳 and 𝑷𝑳𝑾 (EDBF: 2)  

Figure 6-7:a through Figure 6-7:d demonstrate the trajectory of the	probabilities	𝑃À] and 𝑃]À 

over 300 generations. For small G values 0.3 and 0.5, 𝑃À] approaches zero, indicating that the 

nodes rarely digress from the desirable packet transmission flow. 

  

 
 

Figure 6-7: Evolution of pair PÕÖand PÖÕ for different network-wide loads 

In other words, due to almost zero entries into the L state, the system becomes insensitive to the 

probability	𝑃]À. To maintain a balanced effective load	𝐺, 𝑃]À slightly increases (Figure 6-7:b) as 

a response to a slight decrease in 𝑃À]. Due to traffic overload (i.e., higher G), 𝑃À] increases in 

Figure 6-7:c as well as in Figure 6-7:d. Higher probability of entering to state L imposes longer 

intervals between packet transmissions; thus a decrease in 𝐺. 
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6.4.1.4 Evolvable Probabilities: 𝑷𝑻𝑳𝑻u𝟏→𝑻u𝟏, 𝑷𝑻𝑾𝑻u𝟏→𝑻u𝟏, and 𝑷𝑳𝑾	(EDBF: 3)  

   Figure 6-8:a through Figure 6-8:d show the trajectory of  the triple 𝑃r]ruv→ruv, 𝑃rÀruv→ruv and 

𝑃]À for 300 generations. The sparse points show the start of the evolution. As probabilities evolve 

and converge to optimum values, dense clusters form.  

  

  

Figure 6-8: Evolution of 𝑃r]ruv→ruv, 𝑃rÀruv→ruv and 𝑃]À for different load conditions 

The transmission abandoning probabilities (i.e., 𝑃r]ruv→ruv	and 𝑃rÀruv→ruv) approach zero 

when G is small, i.e., 0.3, 0.5. In fact, smaller abandoning probabilities enforce full use of sending 

potential, which is required for small G values. However, for larger G, 0.8 in Figure 6-8:c and 1.0 

in Figure 6-8:d, the system learns to leverage larger  𝑃r]ruv→ruv and 𝑃rÀruv→ruv to abandon 

redundant transmissions to adjust the effective load 𝐺	to 0.5. 𝑃]À, however, declines for larger Gs. 
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The reason is that 𝑃]À facilitates returns from L to W and aids subsequent packet transmissions. 

Thus, lower values of 𝑃]À, acting as a 𝐺-reducer, emerge as network traffic increases. 

6.4.2 Full EDBF (EDBF: 6) 

Full EDBF is accomplished by letting all six transition probabilities to evolve.  Figure 6-9 

depicts the evolution of all six probabilities for loads G set to 0.3, 0.5, 0.8 and 1.0.  Observe 

that 𝑃À]  increases for larger G (i.e., 0.8 and 1.0). The reason is that lager 𝑃À] values cause 

more frequent loitering (L), which delays packet transmissions, thus causing reduction in 

effective load	𝐺. Large 𝑃ÀÀ	
ÁuR→Áuv	can also be seen in large G scenarios.  

For all the full-EDBF scenarios a network is able to adjust its effective load 	𝐺 to 0.5, leading 

to the target network throughput of 0.18. These full-EDBF results demonstrate that the generalized 

state machine in Figure 6-2 is evolvable towards pure-ALOHA even when all its independent 

transition probabilities are allowed to evolve. 

6.4.3 Protocol Adaptation  

6.4.3.1 Adaptation with Changing Traffic Load 

In a 100-node network, load G is runtime altered in four instances. Starting at  0.3, G is 

changed every 50 generations to values 0.8, 1.0, 0.5 and 0.8. Each stage is run for 50 generations. 

The results in Figure 6-10 correspond to an EDBF-2 case in which the independent probabilities 

𝑃rÀruv→ruR and 𝑃]À are set to evolve.  

When 𝐺	 = 	0.3, both probabilities converge to large values (i.e., 0.8 through 1) in order to 

use the full transmission capacity via expedited packet transmissions. As a result, after 

approximately 13 generations, the throughput reaches the maximum value for pure-ALOHA, 

which is 0.16 (i.e., for 𝐺	 = 	0.3). As G is changed from 0.3 to 0.8 after 50 generations, 𝑃rÀruv→ruR 
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drops in order to decrease the effective load 𝐺 (i.e., towards 0.5) by the way of limiting the number 

of transitions to state W following a transmission. 𝑃]À reduces as well to enforce the same effect. 

Observe how by adapting those probabilities, the system is able to reach back to the pure-ALOHA 

throughput after it had dropped immediately due to the load transition from 0.3 to 0.8.  

  

  

Figure 6-9: Evolution of all six independent transition probabilities for full EDBF 

The throughout stabilizes back to the desired value roughly after 20 generations since the load 

transition.  When G changes from 0.8 to 1.0,  a similar drop in probabilities can be observed. When 

G reduces to 0.5 from 1.0, the probabilities increase again to facilitate more packet transmissions 

and finally, a fall is observed as load increases in the final transition from 0.5 to 0.8. 
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As marked in the figure, the throughput changes and settles near the pure-ALOHA throughput 

of 0.18 after each of the transitions. Overall, along all the load change points, the system is able to 

adapt transition probabilities in order to reach and maintain the desired pure-ALOHA throughput.  

 

Figure 6-10: Adaptation of probabilities with runtime changes of network load 

6.4.3.2 Adaptation with Changing Network Size  

   The probability 𝑃]À (in Figure 6-11) evolves commensurately to adapt the state machine 

towards the maximum throughput of 18%. As N transitions to 200, the overall load is increased.  

As an attempt to bring 𝐺 down, 𝑃À] and 𝑃]À	further evolve for maintaining the maximum 

throughput. When N reduces to 100, there is a need for increasing 𝑃]À. It is needed to achieve a 

higher packet transmission rate which the less-crowded network can accommodate while 

maintaining the effective load 𝐺	at 0.5. Maximum 𝑃]À and minimum 𝑃À] values are observed 

after the next network size transitions to 25. Finally, when the number of nodes is increased back 

to 200, the probabilities evolve and converge to similar values as in the second stage in order to 

reduce the effective load to the optimal level. To summarize, like in the variable loading case, the 

system is able to adapt transition probabilities in order to reach the desired ALOHA throughput.  
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These adaptation runs were carried out for all combinations of partial EDBF (Section 6.4.1) as 

well as full EDBF (Section 6.4.2) scenarios, in which similar adaptabilities were observed.  

 
Figure 6-11: Adaptation of probabilities with runtime changes of network size 

6.5 Summary and Conclusion 

An evolutionary based learning framework was proposed in this chapter for MAC layer 

protocol synthesis. A generalized probabilistic state machine, a subset of which can mimic the 

behavior of pure-ALOHA MAC, was defined. Through simulations it was verified that a desired 

state machine with near-benchmark (pure-ALOHA) performance can evolve from that generalized 

state machine. This was investigated with static and adaptive implementations when both limited 

and full behavioral freedom were granted.  

In the next chapter, we add sensory capabilities such as time slotting and carrier sensing, and 

investigate if more complex protocols such as slotted-ALOHA and Carrier Sense Multiple Access 

(CSMA) can be evolved progressively using the same framework. We then propose a different 

learning approach, namely, reinforcement based learning to the problem of communication 

protocol design, specifically, the multicast content dissemination in Social Wireless Networks.  
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7 MAC Protocol Evolution with Time Sensing and Channel Sensing Modalities  

7.1 Introduction 

Building on the research in previous chapter on ALOHA protocol evolution, we extend the 

core concepts for the next natural steps towards Slotted ALOHA and CSMA logic.  Pure-ALOHA 

logic can be formulated with a two-state machine including a wait-for-packet and a transmit state. 

If global time sensing ability with fixed packet sized slot granularity is added to Pure-ALOHA’s 

logic, the behavior of Slotted-ALOHA (i.e., S-ALOHA) emerges which doubles the protocol’s 

attainable throughput (i.e., from 0.18 to 0.36). To model S-ALOHA’s behavior, ALOHA’s state 

machine can be equipped with an extra state indicating a node buffering a packet until the 

beginning of the next designated slot. Adding the channel sensing modality to ALOHA’s state 

machine results in a three-state CSMA machine in which a node keeps listening to the channel in 

“wait for free medium” state, and transmits the packet as soon as it finds the channel to be idle. 

Increasing throughput under various loading conditions demonstrates how adding different node 

capabilities can transform the Pure-ALOHA logic to more efficient and complex protocols such 

as S-ALOHA or CSMA. In previous chapter (Chapter 6), it was verified that protocol with near-

benchmark pure-ALOHA performance can emerge from that generalized state machine as a result 

of the evolution process. In this chapter, we explore if and how more complex protocols such as 

S-ALOHA and CSMA can emerge when time slotting and channel sensing capabilities are added 

to the network nodes.  

The contributions of this chapter are as follows. First, building on the preliminary concepts 

developed in previous chapter, the proposed evolutionary protocol synthesis concepts are applied 

for networks of nodes with global time or carrier sensing capabilities. Second, the mechanism’s 

feasibility is evaluated with varying degrees of evolutionary behavioral freedom. Finally, protocol 
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adaptations are experimented with when node capabilities, network size, and loading conditions 

are changed runtime, leading to dynamic protocol synthesis.  The objective of this specific chapter 

is to study the feasibility of Genetic Algorithm (GA) based design approach for simple protocols 

with known performance bounds.  

7.2 Evolving Protocol State Machines 

Two state machines, one with global time access (i.e., slotting) and the other with carrier sensing 

modality are defined.   

 

Figure 7-1: An evolvable generalized FSM with time sensing capability 
  

7.2.1 Machine with Time Sensing Modality 

A generalized state machine that can produce arbitrary protocol behavior is shown in Figure 7-1. 

The machine is modeled after a possible process that a baby goes through to learn to talk at 

designated intervals rather than talking in between intervals: a) identifying designated intervals 

and talking in the beginning of such intervals in a competitive environment with multiple speakers, 
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b) ending a sentence in a graceful manner rather than interrupting herself or getting distracted, and 

c) intentionally waiting or unintentionally distracting herself for adjusting the talking rate in order 

to minimize interruptions to others.  

The state machine in Figure 7-1 is intentionally kept general with high degrees of behavioral 

freedom. The hypothesis here is that when the state machine is evolved under the right fitness 

pressure (e.g., network throughput), optimal communication protocols will emerge for given 

network and loading conditions. Since the nodes are allowed to sense global timing (i.e., time 

slotting) and the S-ALOHA logic is a subset of this machine, the evolved solutions are expected 

to have performance close to S-ALOHA. The state machine consists of four states, namely, Wait 

(W), Wait-With-Packet (WWP), Transmit (T), and Loitering (L). In Wait, a node silently waits to 

receive the next packet to be transmitted. A transmission takes place in the state Transmit. A node 

can initiate a packet transmission by transitioning from W to T, or by going through W-WWP-T 

which models deferring transmission to the beginning of the coming slot. In the latter, the node 

transitions to the WWP state while buffering the packet and waiting for the appropriate time slot 

for transmission. Loitering models the distraction phase as outlined in the baby’s learning scenario. 

This state is different from intentional Wait in that transition from any other state to Loitering is 

arbitrary and without any explicit strategy. As a result, it does not induce any explicit fitness 

reward. Lingering in any of the states T or L can delay possible new transmissions. The labels on 

the arrows indicate the transition probabilities. The notation PXY  indicates the transition probability 

from State-X to State-Y.  

The machine uses two flags P (Packet flag) and T (Transmission flag).  When set, they indicate 

generation of a packet and an ongoing transmission respectively. Texts within rectangles describe 

the action(s) associated with each state transition. While a specific set of transition probabilities in 
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this machine implements the known S-ALOHA protocol, it is general in that it contains many 

possible execution sequences implementing other working and non-working access protocols. The 

state machine in Figure 7-1 contains 8 independent transition probabilities listed in Table 7-1 (i.e., 

parts a and b). 𝑃À] is the probability of moving from W to L; 𝑃]À models the probability of the 

return transition. Transitioning between the states W and L based on those two probabilities control 

random loitering which proved to be useful towards self-adjusting traffic load for network-wide 

throughput maximization. According to the state machine, after a transmission is over, a node can 

decide between returning to state W with probability 𝑃rÀruv→ruR or moving to state L with 

probability 1-𝑃r]ruv→ruR. Note that a redundant transition to the state L delays possible future 

packet transmissions. Furthermore, a node is allowed to abandon its transmission and move to state 

W or state L with probabilities 𝑃rÀruv→ruv and 𝑃r]ruv→ruv respectively.  

To accommodate global time sensing, 3 additional probabilities are included as follows.	𝑃×�, 

namely, the probability of agreeing with slot status, refers to probability of deferring a packet 

transmission to the beginning of the next slot. Note that, even after a deferral, packet transmission 

is not guaranteed. It depends on the probability 1 − 𝑃ÀÀ	,which refers to the probability of a 

transition to state T when a packet is available. This transition takes place either through W, or 

through WWP depending on the 𝑃×� value. When 𝑃×� = 0, the state machine becomes insensitive 

to global time sensing (i.e., time slotting). In that case, the best evolvable solutions for the 

generalized state machine is expected to be the pure-ALOHA behavior [63]. 𝑃ÀÀÁ] is the 

probability of arbitrary transitions from WWP to L during which the node loses the chance to 

transmit the packet on the scheduled time slot and drops the packet as entering the L state. Note 

that at the end of each row in Table 7-1, the probability value for which the state machine reduces 

to that of the most likely solution S-ALOHA is mentioned.  
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7.2.2 Machine with Channel Sensing Modality 

The next functional augmentation is to develop a state machine that incorporates channel sensing 

abilities. When mapped to the model for a baby’s learning process to talk (Section 7.2.1), this 

machine enables the additional option for not starting to speak when someone else is speaking. 

The new hypothesis here is that when such a state machine (i.e., in Figure 7-2) is allowed to evolve 

under the right fitness pressure, the evolved solutions are expected to have performance close to 

that of CSMA. Two new transition probabilities, namely, 𝑃 ×	and 𝑃�^×, are added. While 𝑃 ×	 refers 

to the probability of channel sensing, 𝑃�^× indicates the probability of a node respecting the status 

of the channel when it is actually sensed. In other words, CSMA logic can be produced when both 

𝑃 ×	 and 𝑃�^× are set to 1  in a reduced state machine mimicking CSMA logic. 

(a) Common transition probabilities: 
𝑷𝑾𝑳:  From W to L without any external event, 0 
𝑷𝑳𝑾:  From L to W without any external event, 0 
𝑷𝑻𝑾𝑻u𝟏→𝑻u𝟎:  From T to W after a transmission is over, 1 
𝑷𝑻𝑾𝑻u𝟏→𝑻u𝟏:   From T to W during a transmission, 0 
𝑷𝑻𝑳𝑻u𝟏→𝑻u𝟏:   From T to L during a transmission, 0 
(b) Probabilities to accommodate global time sensing 
𝑷𝑾𝑾	: From W to W/WWP, when packet is available, 0          
𝑷𝑺𝑨:   Agreement with slot status, postponing packet transmission  
           procedure to the beginning of next slot, 1 
𝑷𝑾𝑾𝑷𝑳: From WWP to L, without any external event, 0 
I Probabilities to accommodate channel sensing  
𝑷𝑾𝑾	
𝑷u𝟎→𝑷u𝟏:   From W to W, when packet is generated, 0            

𝑷𝑪𝑺	:  Sensing the channel before deciding on transmission, 1   
𝑷𝑨𝑪𝑺: Agreement with channel status; postpone transmission when channel 
          is occupied,  1   

Table 7-1: Independent transition probabilities for both state machines 

If such CSMA logic is to emerge through evolution, it is expected that a node would first learn 

to sense the channel by the way of evolving 𝑃 ×	, and then would learn to respect the channel status 

by evolving 𝑃�^×. The quantity 1 − 𝑃ÀÀ	
ÁuR→Áuv refers to the probability of a transition from W to T 
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when a packet is generated. The rest of the transition probabilities have similar function as 

described in the generalized state machine in Figure 7-2 for evolving S-ALOHA. These three 

probabilities are added in Table 7-1. 

 

Figure 7-2: An evolvable generalized FSM with channel sensing capability 
All eight independent probabilities for the state machine in Figure 7-2 are included in parts a 

and c of Table 7-1.  At the end of each row, the probability value for which the state machine 

reduces to that of the most likely solution CSMA is mentioned. Table 7-2 describes how each 

transition from W to T can possibly happen in the state machine shown in Figure 7-2.  
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𝟏 − 𝑷𝑾𝑾	
𝑷u𝟎→𝑷u𝟏 (𝑷𝑪𝑺)	(𝑷𝑪𝑭)(𝑷𝑨𝑪𝑺):  W to T, packet is to be transmitted while channel is sensed  

                                                           as free 
 𝟏 − 𝑷𝑾𝑾	

𝑷u𝟎→𝑷u𝟏(𝑷𝑪𝑺) 𝟏 − 𝑷𝑪𝑭 𝟏 − 𝑷𝑨𝑪𝑺 :  W to T, packet is to be transmitted although        
                                                                          channel  is sensed as occupied 
𝟏 − 𝑷𝑾𝑾	

𝑷u𝟎→𝑷u𝟏(1-𝑷𝑪𝑺):  W to T, packet is to be transmitted without checking channel status 

Table 7-2: Possible transitions from W to T in the machine in  Figure 7-2 

7.3 Evolution Architecture 

7.3.1 Gene Architecture   

 As shown in Figure 7-3, the system consists of a Java based evolution fabric and a C based 

protocol evaluation module. A gene embodies the collection of all the independent transition 

probabilities described in Table 7-1. The upper part of the gene contains the common probabilities 

from Table 7-1: part a, and the lower part contains either the probabilities for incorporating global 

time sensing (from Table 7-1: part b) or carrier sensing (from Table 7-1:part c). Note that a gene 

under this formulation is used for protocol state machine evolution either with time sensing or with 

carrier sensing, but not both of them together. The evolution fabric is responsible for the 

evolutionary tasks. A mapping function is used for mapping each gene to a protocol behavior 

phenotype code, which is evaluated within the C based evaluation module for given target 

networks. The protocol performance (i.e., throughput) is then fed back into the evolution fabric in 

the form of gene-fitness values. 

7.3.2 Fitness Formulation 

Network throughput is chosen as the fitness indicator for the evolution experiments since the 

evolved solution for the state machines in Figure 7-1 and Figure 7-2 are expected to be close to S-

ALOHA and CSMA, and the maximum possible throughput for these protocols are well-known. 
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Figure 7-3: Genotype formation and the system components 

7.3.3 Reproduction and Evolution 

The reproduction and evolution processes follow the ones explained in Section 0. 

Evolution starts with an initial population (with size p) with randomly assigned probability values 

to the gene structure shown in Figure 7-3. First, the tournament selection process is applied on 

2m% of the most-fit individuals within a generation. Through experiments and our prior 

experience (Chapter 6), it was observed that by choosing m around 20% sufficient genetic diversity 

can be maintained across generations. The mutation operator of the Breeder Genetic Algorithm 

proposed in [65] is used. Finally, m% of the least-fit members of the population is replaced. Thus, 

children (i.e., mutated members in the last step), substitute the m% least-fit members. Each of the 

new members model a specific protocol behavior, which gets evaluated within the C based 

evaluation module in Figure 7-3. The evolution process including sorting fitness values, 

tournament selection, mutation based reproduction, and population replacement are then 

performed on members of the new generation which consists of m% of p number of children and 

the p – m% of p members from the previous generation. 
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7.4 Results 

Similar to Section 6.4, Evolutionary Degree of Behavioral Freedom (EDBF) is defined as the 

number of transition probabilities that are allowed to evolve in a given experiment. In scenarios 

with smaller EDBFs, fewer evolvable probabilities limit the phenotype search space. The 

population size and network size are both set to 100 unless stated otherwise.  

7.4.1 Evolution with Global Time Sensing Enabled 

7.4.1.1 Limited Evolutionary Degree of Behavioral Freedom (i.e.,:1,2) 

Evolution of the state machine from Figure 7-1 in these experiments starts with 𝑃ÀÀ	as the only 

evolvable probability (i.e.,  EDBF is set to 1). After 50 generations, the value of EDBF is bumped 

up to 2 by including 𝑃×� (i.e., enabling slotted time sensing) in the evolvable set.  Figure 7-4 shows 

the throughput evolution for different network wide loading conditions. For the first 50 generations 

when time slot sensing is not enabled, the converged throughput indicates that the generalized state 

machine from Figure 7-1 evolves to yield the same throughput of pure-ALOHA protocol. Pure 

ALOHA’s throughput is expressed as 𝑆�]ÎÏ� = 𝐺	𝑒��±,	which is maximized to 0.18 when  𝐺 =

0.5. As can be seen in Figure 7-4, for 𝐺 = 0.5, the fitness stabilizes at around 0.18 while for 𝐺 =

0.1, it stabilizes at 0.08 which is correct for pure-ALOHA. An interesting observation is that for 

𝐺 > 0.5 cases, the throughput is still maintained at the maximum value of 0.18. 

It turns out that the system evolves to adjust the 𝑃ÀÀ	value such that the nodes drop packets, 

and the resulting effective network wide load is adjusted down to 0.5 for maintaining the maximum 

throughput. 
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Figure 7-4: Fitness dynamics before and after time sensing is added 
 

After 50 generations, when time slotting is enabled (i.e., by making the probability 𝑃×� 

evolvable), the fitness of the system stabilizes at larger values for all G values. As expected, the 

fitness in this case indicates the emergence of S-ALOHA, with  throughput  𝑆×��]ÎÏ� = 𝐺	𝑒�± . It 

has the maximum value of 0.36 for 𝐺 = 1. The graph in Figure 7-4 shows how S-ALOHA 

performance is maintained for all  𝐺 < 1, and it is maintained around the maximum value of 0.36, 

for  𝐺 ≥ 1 by the way of adjusting the effective load. It is observed that for all 𝐺 ≥ 0.5, the 

effective load 𝐺 converges at 0.5 before time sensing is enabled after 50 generations. This is 

because the state machine evolves to Pure-ALOHA for which the fitness/throughput is maximized 

when the applied load is 0.5. However, for 𝐺 < 0.5, 𝐺 maintains the same value as G. After time 

sensing is enabled, the state machine evolves to S-ALOHA for which the maximum fitness 

happens at the effective load of 1. This explains as to why for all 𝐺 ≥ 1, the effective load 𝐺 

converges around 1. For 𝐺 < 1, 𝐺 remains same as G. Figure 7-5  reports the genotype dynamics 

in terms of the evolvable probabilities 𝑃ÀÀ	and 𝑃×�. The evolved state machine in Figure 7-1 
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indicates how any non-zero 𝑃ÀÀ	causes packet drops and resulting load reduction. For 𝐺 = 0.1 

and 𝐺 = 0.5 cases, before time sensing is enabled (i.e., 𝑃×� is made evolvable), 𝑃ÀÀ	evolves to 0.  

 
 

  

Figure 7-5: Genotype dynamics  before and after time sensing is added  

This is because the load is already less than or equal to the optimal load 0.5, thus no load reduction 

by packet drop is needed. After time sensing is added, 𝑃×� evolves to 1, which represents 

transmission compliance with time-slotting at the emergence of the S-ALOHA logic. The value of 

𝑃ÀÀ	 remains zero since load values of 0.1 and 0.5  are still less than the optimal load 1 for S-

ALOHA. For 𝐺 = 1, however, 𝑃ÀÀ	initially evolves towards 0.5 which reduces the effective load 

𝐺	towards the optimal pure-ALOHA load 0.5. After time slotting is enabled, much like the 

previous two loading scenarios,	𝑃×� evolves to 1 for ensuring full transmission compliance with 

time slotting. After time sensing is enabled, 𝑃ÀÀ	evolves towards zero since the load 𝐺 = 1 now 

becomes equal to the S-ALOHA optimal load 1, thus eliminating the need for any load reduction 
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through packet drops.  The dynamics is different for higher loads when 𝐺 = 2. In this case 

𝑃ÀÀ	first evolves to a larger value of 0.75 due to the need for a greater load reduction. After time 

sensing is enabled, the need for load reduction reduces due to the higher optimal G of S-ALOHA. 

As a result, 𝑃ÀÀ	reduces and finally converges towards a value of around 0.27. The 𝑃×� dynamics 

remain similar to the lower loading scenarios.    

7.4.1.2 Full Evolutionary Degree of Behavioral Freedom (EDBF: 8) 

Results in this Section correspond to the evolution of the state machine with enabled time 

sensing (i.e., in Figure 7-1) when all its eight independent probabilities are allowed to evolve.  

  

Figure 7-6: Evolution of all probabilities in different loading conditions 

Experiments show that even when the evolution is completely unguided, meaning with the 

maximum degree of freedom, the system is still able to evolve towards the emergence of slotted 

ALOHA logic with its maximum throughput of around 36%. This further validates the ability of 

this framework to synthesize optimal MAC protocols when time sensing is enabled.  

Figure 7-6 shows the evolution of all eight probabilities for 𝐺 = 1.0 (Figure 7-6:a) and 𝐺 =

3.0 (Figure 7-6:b).  Observe that under the higher load of 3.0, the probabilities are set to regulate 

the effective load toward the optimal load 1.0. E.g., 𝑃rÀruv→ruR and  𝑃ÀÀÁ] decrease to interrupt 
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the packet transmission process by not returning to W state immediately following a successful 

transmission in first case, and discarding the packet before the scheduled time slot for transmission 

is reached in the second case. 𝑃ÀÕ	
ÁuR→Áuv and  𝑃À] grow larger when 𝐺 = 3.0 to maintain the same 

effect, that is to regulate the effective load 𝐺.  

7.4.1.3 Protocol Adaptation  

One of the primary motivations for evolution based protocol synthesis is to incorporate the 

ability for self-adaptation when node capabilities and network environment are changed. After 

establishing the baseline abilities to synthesize protocols using evolution, we investigate their 

adaptability in this section. Adaptation is investigated with: a) varying traffic load, b) turning 

global time sensing on and off, and c) various degrees of guidance in terms of EDBF.  Figure 7-7 

depicts adapted throughput values for a 100-node network for which the MAC protocol is evolved 

for 300 generations. Global time sensing is enabled only for the second half of the experiment for 

150 generations. Six distinct phases, each for 50 generations, are executed. Parameters that 

change across consecutive phases are underlined in the figure. The corresponding genotype 

dynamics in terms of up to three independently evolving probabilities (i.e., EDBF = 3) is shown 

in Figure 7-8. Starting with EDBF-1 in first 50 generations, 𝑃ÀÀ	evolves to around 0.75 to adjust 

the load 𝐺 = 2.0 down to the optimal load 0.5, resulting a near-ALOHA throughput of 0.18. 

During generations 50-100, EDBF changes to 3 as two additional probabilities (i.e., 𝑃À]	 and 

𝑃]À	) are allowed to evolve. In addition to that, G is reduced to 0.5. Since there is no need for 

further reducing the effective load, 𝑃ÀÀ	converges to near-zero values. The three evolving 

parameters maintain a balance such that the maximum throughput of 0.18 is achieved in this 
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second phase. In the third phase, as G increases to 1.0, 𝑃À]	increases to help reducing the effective 

load. 
 

 

Figure 7-7: Throughput with runtime parameter changes 

 

Figure 7-8: Adaptation of probabilities with runtime parameter changes 

Starting from generation 150, global time sensing is enabled and EDBF=1 , thus allowing 𝑃ÀÀ	 

to regulate the effective load by converging to values around 0.27. The corresponding throughput 

in Figure 7-7 converges to 0.36 which proves that evolved solutions mimic the S-ALOHA 

benchmark’s behavior. For the next 50 generations, G is reduced to 0.5 and  EDBF=3. 
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Probabilities evolve such that the effective load is maintained near 0.5, at which the state machine 

induces a throughput of around 0.30, which is in agreement with the S-ALOHA throughput at 

that load. In the final 50 generations, with change of G to 1.0, 𝑃]À	 further increases to assist the 

network in expediting packet transmissions. The resulting throughput is near 36% which is in line 

with the known maximum throughput for a random access protocol with time sensing enabled 

(i.e., S-ALOHA). Overall, these adaptation experiments indicate the system’s ability to adjust 

genetic material (i.e., probabilities) such that evolved near-benchmark solutions are maintained 

under varying loading, time sensing, and behavioral degrees of freedom. The above results 

demonstrate the feasibility of evolution based approach for designing time-slotted MAC layer 

protocols under varying network and traffic conditions. 

7.4.2 Evolution with Channel Sensing Enabled 

Evolution of the state machine from Figure 7-2 is presented in this section. Note that time 

sensing is disabled for these experiments. 

7.4.2.1 Limited Evolutionary Degree of Behavioral Freedom (i.e., 1,2) 

In the following set of experiments, we observe evolution of throughput as well as genotype 

dynamics in the absence and presence of carrier sensing. Using the general state machine in 

Figure 7-2, we first allow 𝑃ÀÀ	
ÁuR→Áuv as the only probability to evolve (i.e., EDB=1) in the initial 

50 generations; afterwards, 𝑃 ×	is also allowed to evolve, thus enabling carrier sensing. 

Propagation delay (normalized by packet duration) a is set to 0.1. In the first 50 generations, 

throughput evolves to around 0.18 for 𝐺 ≥ 0.5, the generalized machine reduces to that of pure-

ALOHA when channel sensing is disabled. For 𝐺 = 0.1, theoretical ALOHA benchmark 

throughput is around 0.08 which is the throughput of the evolved solutions. After generation 50, it 
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is observed that solutions with higher throughput are evolved as the nodes take advantage of the 

auxiliary modality of carrier sensing. It can be shown that throughput evolves to a near-CSMA (1-

persistent) throughput which follows 	𝑆^×Ü�	 =
±	É��Ý

± v��b �	É��Ý
 [66]. Figure 7-9 reports the 

corresponding evolutionary trends of 𝑃ÀÀ	
ÁuR→Áuv and	𝑃 ×	during 100 generations when 𝐺 = 	0.5 

and 𝐺 = 3.0.   

 
 

 Figure 7-9: Genotype dynamics  before/after channel sensing is added 

 In first 50 generations, 𝑃ÀÀ	
ÁuR→Áuv converges to near-zero values for 𝐺 = 0.5	as load is not 

greater than the optimal load 0.5 for pure-ALOHA. In case of an over-optimal load (𝐺 = 3.0),  

𝑃ÀÀ	
ÁuR→Áuv	converges to around 0.83 to decrease the effective load by the way of blocking a fraction 

of possible transmissions. After 50 generations, when channel sensing is enabled, 𝑃 ×	evolves to 1 

for both the loading scenarios, indicating that nodes learn to sense the channel when making 

transmission decisions. Upon emergence of CSMA behavior in the second half of the experiment, 

𝑃ÀÀ	
ÁuR→Áuv acts in order to boost transmissions when load is less than the optimal CSMA load 2.6 

( Figure 7-9:a). For 𝐺 = 3.0,  𝑃ÀÀ	
ÁuR→Áuv acts in opposite direction to lessen the excessive input 
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load. Similar experiments performed for varying a and N demonstrated emergence of 1-CSMA 

throughput solutions as the system learns to use channel sensing. 

7.4.2.2 Protocol Adaptation with Maximum EBDF (i.e., 8) 

A thorough test of adaptability was performed by changing all system parameters including 

a) normalized propagation delay a, b) network size N, c) network load G, and d) availability of 

channel sensing. All eight transition probabilities in Table 7-1 (i.e., parts (a) and (c)) were allowed 

to evolve during these experiments. Figure 7-10 depicts adapted throughput values in eight distinct 

phases, each of which was run for 50 generations. Channel sensing is enabled only for the second 

half of the experiment after 200 generations. Parameters that change across consecutive phases are 

underlined in the figure. Figure 7-11 shows the corresponding genotype dynamics. Observe in 

Figure 7-10, when there is no channel sensing, the throughput converges near the ALOHA 

benchmark of 0.18. In Figure 7-11, the parameter 𝑃À]	 increases due to the excessive input load 

compared to the optimal load of 0.5 for pure-ALOHA. With change of a to 0.1 in phase 2, 

throughput is kept at 0.18 and probabilities follow a similar trajectory as in phase 1. That is because 

pure-ALOHA performance is insensitive to propagation delay (𝑆�]ÎÏ� = 𝐺	𝑒��±). In first 2 

phases, both 𝑃À]	and 𝑃rÀ	
ruv→ruR increase such that the effective load is adjusted to 0.5. Next, 

network size increases to 200, while the individual node load (g) remains at 0.02 (similar to node 

load in second phase). Such increase in network size results in a network wide load of 4.0 which 

enforces probabilities responsible for abandoning the transmission (𝑃rÀ	
ruv→ruv and 𝑃r]	

ruv→ruv) 

slightly increase. 𝑃ÀÀ	
ÁuR→Áuv also sharply increases to impose less frequent packet transmissions. 

Final phase of experiments with no channel sensing is performed by fixing N and a, and reducing 

the network load to 1.4. Diverging in opposite directions, lower 𝑃ÀÀ	
ÁuR→Áuv and higher 𝑃]À	  
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Figure 7-10: Throughput with runtime parameter changes 

 

Figure 7-11: Adaptation of probabilities with runtime changes 
 

facilitate more packet transmissions. Despite the initial decrease of throughput in third and fourth 

phases, system adapts to the new environment such that the throughput climbs to 0.18 again in 
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evolution in the first four phases move toward 1 in the fifth phase. They remain at near-1 values 

indicating that nodes learn to apply the channel sensing modality and comply with channel status 

when sending packets. In this manner, a more complex protocol, i.e., CSMA emerges. This is 

proven in Figure 7-10 where near-benchmark CSMA throughput of 0.23 is achieved in the fifth 

phase. With changing a to 0.1 in the sixth phase, 𝑃À]	 decreases sharply. The reason is that, under 

corresponding network parameters, CSMA attains the maximum throughput of 0.51 at 𝐺 = 2.6. 

That is why the system attempts to adjust probabilities such that the effective load equals the input 

load 2.0. Observe how throughput bumps up to around 0.51 in the sixth phase of Figure 7-10. With 

changing network size to 200 in next phase, the network wide load approaches 4.0, which is larger 

than the optimal load 2.6.  𝑃À]	 increases while	𝑃rÀ	
ruv→ruR decreases, both aiming at reducing the 

effective load. As observed in Figure 7-10, then throughput falls initially, though it is restored to 

around maximum achievable throughput (0.51) by adjusting the appropriate probabilities. In the 

last phase, when network-wide load is reduced to 1.4, the system attempts to adjust the effective 

load to input load G again. Increase of 𝑃rÀ	
ruv→ruR enforces legitimate returns to state W following 

successful transmissions. Besides, reduction in 𝑃À]	and the transmission abandoning probabilities 

help a) reducing the effective load 𝐺, and b) maintaining throughput around the maximum value 

of 0.47. Overall, these set of adaptability experiments show: 1) how a more complex protocol 

(CSMA) can emerge when the system is equipped with channel sensing, and 2) how the 

evolutionary fabric is able to adapt to optimal solutions under dynamic network conditions. To 

summarize, the results in this section demonstrate the feasibility of using an evolution based 

approach for designing carrier-sensing MAC protocols.  
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7.5 Summary and Conclusion 

Building on preliminary concepts developed in previous chapter (Chapter 6), in this chapter we 

explored the feasibility of evolving multi-access MAC protocols in presence of global time and 

channel sensing capabilities. Starting from a generalized state machine, it was shown that under 

appropriate genotype definition and fitness pressure it is indeed feasible to evolve ALOHA, Slotted 

ALOHA and CSMA protocols under a wide variety of network and loading conditions. 

 Future work on this topic includes evolving protocol state machines with: 1) both carrier and 

time sensing simultaneously enabled, 2) replacing full network connectivity by arbitrary mesh 

connections, and 3) heterogeneous loading conditions in different parts of a network. Designs with 

delay and other non-throughput fitness factors can also be explored.  

The ultimate goal of this research is to build on the presented feasibility study, and enable 

evolutionary protocol synthesis for more complex network protocols and traffic conditions 

including variable size packets. 

In the next chapter, we present a different form of learning based protocol design approach, 

namely, reinforcement learning to tackle the problem of communication protocol design. 

Reinforcement learning is concerned with decision makings with the goal of maximizing some 

notion of cumulative reward. In that sense, reinforcement based learning can closely be fit the 

problem of commercial content dissemination in SWNs.  
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8 Q-learning based Gain-aware Routing 

8.1 Introduction 

This chapter explores a reinforcement learning approach for synthetizing routing protocols in 

DTNs.  As mentioned in Section 1.1,  SWNs, as special type of Delay Tolerant Networks (DTNs), 

often reflect inter-personal social ties, interactions, and similarities in content and commodity 

consumption patterns. We leverage this information for D2D commercial content (e.g., coupon) 

dissemination with the goal of maximizing a predefined commercial gain for a Content Provider 

(CP).  

The presented history-based multicast dissemination [67] in Chapter 4 suffered from certain 

amount of performance loss due to the fact that the disseminating node does not use prediction 

about the consumption interests of its potential future contacts. Predictive Gain Utility Routing 

Individual (PGUR-I) [68] introduced in Chapter 5 addressed that limitation by the way of 

developing a predictive gain utility, however, this method does not leverage transitive deliveries, 

which as opposed to direct delivery, refer to multi-hop content delivery. Such a delivery is done 

through intermediate (transitive) node encounters. PGUR-I is not scalable to mobility scenarios in 

which content can only be delivered to target destinations through transitive interactions. To 

address such routing challenges caused by high dynamicity of SWNs, in this chapter, we leverage 

the concept of Reinforcement Learning (RL) [47], which enables nodes to gather local information 

and make online efficient routing decisions. We design a Q-learning [47] based Gain-aware 

Routing (QGR) protocol, which aims at maximizing the economic gain for a content provider.  

   To address the stochastic nature of the presented routing problem, including nodes’ 

stochastic meeting patterns, we apply the standard Q-learning framework [47] in an stochastic 

version. In this framework, nodes learn the estimated gain associated with each probabilistic 
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forwarding action and select the actions, which lead to higher expected reward or economic gain 

of dissemination. This online learning component in QGR is expected to be robust in diverse and 

dynamic mobility environments. 

   The specific contributions of this chapter are as follows. First, we briefly review the gain 

utility [68] that is designed around the notion of consumption interest and coupon redemption 

probability (Section 4.2.1). Then, we map this DTN routing utility as a stochastic value function 

within the Q-learning framework for developing a Q-learning based Gain-aware Routing (QGR) 

protocol, which attempts to maximize a defined expected economic gain of dissemination. Finally, 

we perform extensive simulation based experiments for functional validation and performance 

evaluation of the presented QGR protocol in comparison to two existing protocols. The developed 

protocol is evaluated for a number of social and commercially meaningful parameters, namely, 

network mobility, consumption interest patterns, content expiry time, forwarding (rebate) cost and 

the number of content copies. 

8.2 System Model  

Using the same cost and revenue (Section 4.2.1) formulation as defined in Chapter 4, we 

compute the expected gain achieved through a coupon redemption by consumer-I as:   

                         𝐺? = 	𝑉? −	𝑐p                                                    (8-1)    

The total network wide gain 𝐺r can be expressed as:   

                         𝐺r = 	 𝑉?
st
?uv − 𝑛×𝑐p                                          (8-2) 

where coupons are delivered to 𝑛o consumers through 𝑛 forwards within a pre-specified 

coupon expiry time (𝜏). The maximum number of deliveries of a coupon and the coupon expiry 

time are generally restricted by its generator. Also, 𝑛o 	≤ 	𝑇, where 𝑇 is that distribution upper 
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bound of a coupon, which is set by the coupon’s generator. In the presented methods in this chapter, 

only one-hop deliveries are allowed, thus n always equals to 𝑛o.  

Similar to the presented consumers’ interest and redemption probability model in 

Section 4.2.2, each consumer-I maintains an interest level 𝜌? (0 ≤ 𝜌? ≤ 1) towards a specific 

coupon type. Redemption function 𝑃@ 𝜌? ,	represents the probability of redeeming a coupon by 

consumer-i.   Note again that in the presented model, to partially preserve consumers’ privacy, it 

is assumed that the data related to consumer interests and consumer-to-consumer interaction is 

always stored at the consumers’ devices. It is never exported to a centralized server. 

8.3 Problem Formulation 

For a given combination of earned revenue 𝑐q, discount 𝑐o, rebate 𝑐p, distribution upper bound 

𝑇, expiry time 𝜏, redemption function 𝑃@(𝜌?), and a social wireless network of consumers with 

interest profiles 𝜌?, the objective is to design a learning based multicast coupon dissemination 

mechanism that maximizes the total gain 𝐺r	within the lowest possible dissemination delay. 

8.4 Q-learning Model 

Reinforcement Learning (RL) has been shown to address the routing challenges caused by 

dynamicity of wireless networks [47]. Q-learning [47], is a popular RL approach in which an agent 

(i.e., a node) is modeled as a three-tuple entity consisting of {States (S), Actions (A), Reward I} 

[47]. To address the stochastic nature of the routing, we propose a stochastic Q-learning based 

routing framework in which the set of states and actions (i.e., state transitions) are represented in 

the form of a probabilistic state machine. This state machine is formed when an agent meets a peer 

node at any time instant t.  
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a) State, Action and Reward  
States (S): An agent observes decision making factors in the local environment in the form of 

states [47]. An agent observes a state 𝑠«? ∈ 𝑆 at a time instant t. Here, the state space S consists of 

the set of all nodes in the network.  

 

Figure 8-1: Abstraction of states and actions in the Q-learning based routing 

Figure 8-1 shows an example of the abstraction of the mapped probabilistic state machine 

including the states observed by each agent I and j at time t. The figure shows an interaction 

between a content source node-I, and a node-j at t. This interaction is shown with a solid arrow 

line from node-I to node-j. The agent node-I is in a state of meeting node-j. Such state is 

deterministic in the sense that the interaction actually happens at time t. If node-j’s interest level 

(𝜌`)	indicates that it is a target consumer, then the external state (j) observed by node-I is “a target 

consumer”. We model a set of probabilistic states observed by an agent which refer to node’s 

prospective interactions in future.  

   In Figure 8-1, a number of probabilistic states observed by node-I are shown as nodes 𝑀?, 

𝑖 ∈ [1, 𝑙]. Similarly, the probabilistic states observed by node-j are shown as j’s prospective future 

encounters with nodes 𝑁?, 𝑖 ∈ [1, 𝑘]. These probabilistic interactions (transitions) are shown with 

dotted lines. Note that, node-I indirectly observes states 𝑁?, 𝑖 ∈ [1, 𝑘] through node-j. In other 

words, node-j’s encounters are observed by node-I through transitivity. Deterministic and 

probabilistic transitions in perspective of node-I are stated on the right side of the figure. In 

i j
!"

#$
$→!"

#$
$→!&

#'
'→("

#'
'→()

!&

("

()

i     j: 
deterministic transition
j					+,. . +.,i 		0,..01 :	
probabilistic transitions



 148 

following sections, we explain how the probability associated with each probabilistic transition is 

computed. Node-I, maintains the local information about its own observed states. To take an 

efficient routing action, node-I also collects (from node-j) the information regarding the 

probabilistic states, which it can reach via a two-hop transitivity through node-j. 

Actions (A): An agent chooses an action 𝑎«?  (at time t) among its available set of actions (A). 

For agent node-I carrying T number of copies in Figure 8-1, an example action can be the 

transmission of a copy to a node 𝑁v through node-j. Another possible action for node-I is to 

transmit a copy for node- j’s consumption. Or, node-I can decide to keep a copy to deliver to a 

prospective peer 𝑀v.   

Reward I: Each action 𝑎«?  is associated with a reward 𝑟«�v? . The reward can represent any 

performance metric. To design a gain-aware routing framework, we define the reward associated 

with an action of forwarding a copy to a peer node-j as the expected gain out of that delivery (𝐺 ). 

Reward may refer to an immediate reward such as the gain yielded after delivering a consumption 

copy to an immediate contact node-j (at time t+1). It can also refer to the discounted reward [47] 

which is the expected accumulated reward to be received at time 𝑡 > 𝑡. Here, an example of such 

discounted reward is the expected gain obtained through the transitive deliveries that happen 

through node-j in future. The goal of an agent is to maximize its total reward, which is the gain 

through an immediate delivery and the gain obtained through transitive deliveries.  

   Assuming that all nodes contribute to such goal in an unselfish manner, maximizing the 

individual gain results in maximizing the total (network-wide) gain.    

b) State-Action Functions (Q-values) 
   An state-action function, 𝑄«?(𝑠«?, 𝑎«? ) estimates the long term reward that can be obtained by 

agent node-I if it performs an action 𝑎«? ∈ 𝐴, while in state 𝑠«? ∈ 𝑆.  An agent maintains a table 
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containing Q-values for all possible state-action pair. The size of the table depends on the number 

of probabilistic states a node observes. That is the number of unique peers the node met so far, 

thus have future possibility to meet again.  

   From this point onwards, we express the iterative updates of the Q-values without explicitly 

indicating the iteration time steps ‘t’. This notation has already been used in Figure 8-1. For 

example, 𝑄??→Üv refers to the Q-value for the possible action of transmitting a copy to the 

prospective encounter 𝑀v by i. Every time two nodes (𝑀v and i) meet, they update their Q-values.  

8.5 Q-learning based Gain-aware Routing (QGR) 

Q-learning based Gain-aware Routing (QGR) protocol relies on the knowledge of: 1) nodes’ 

interest profiles (i.e., 𝜌?), and 2) their underlying social interaction patterns. A coupon-

carrying node uses this information to compute and evaluate Q-values which reflect how a 

delivery to a peer contributes to the overall gain in the coupon’s expiry time. 
 

State Variables: Any node-I maintains the following variables with respect to another node-j.  

𝜆?,`: i’s rate of meeting node-j over a pre-defined time window (e.g., a week). This parameter 

is updated every time the two nodes meet. 

𝜌`: node-j’s interest level toward the merchandize corresponding to the coupon. Node-I 

computes node-j’s redemption probability 𝑃@(𝜌`) based on the known redemption function 

corresponding to the coupon. 

Q-values: Q-values are initialized at 0. When a node-I meets a node-j, the Q-value for the 

possible action of transmitting a copy to j is computed using the following equation. This value is 

updated even if node-I does not possess any copies of the coupon at the time of the interaction.   

                                        𝑄?
?→` = (1 − 𝛼)𝑄?

?→`+𝛼		max	{𝐺 , 𝛾𝑄ãabc}                               (8-3) 
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𝛼 (0 ≤ 𝛼 ≤ 1) is the learning rate. A very high 𝛼 value may cause random fluctuations in Q-

values. With 𝛼 close to 0, learning may not happen and the agent only relies on its old Q-value.  

   The right side of the equation calculates the maximum of the two parameters 𝐺  and 𝛾𝑄ãabc. 

𝐺  is the immediate reward corresponding to the action of forwarding a consumption copy to node-

j. 𝐺  equals the gain of delivery to node-j and is computed based on Eqn. 8-2. Note that, 𝐺  is an 

indication of how good a consumer node-j is.  

 𝑄ãabc is the discounted (i.e., non-immediate) reward and refers to the maximum attainable 

expected reward from delivery through node-j. This quantity reflects how suitable node-j is as a 

forwarder. In other words, it estimates the expected gain out of a transitive delivery through node-

j. 𝑄ãabc is computed based on the following equation: 

                   														𝑄ãabc = max
b²²	m∈ä

{𝑝m
`(𝜏 − 𝑡E) ×𝑄`

`→m}                                    (8-4) 

  ,where, K is the set of nodes that node-j has seen so far and has the possibility to meet again. 

𝑝m
`(𝜏 − 𝑡E) is defined as that probability of j meeting k at least once, during the remaining time to 

coupon expiry (𝜏 − 𝑡E). 𝑡E denotes the current time. Assuming that the inter-contact duration 

between node pairs follows exponential distribution, 𝑝m
`(𝜏 − 𝑡E) is computed as follows:  

                       																										𝑝m
`(𝜏 − 𝑡E) = 1 − 𝑒�𝝀𝒋,𝒌(ª�«�)                                    (8-5) 

   The closer it gets to the coupon expiry time 𝜏, the lower is the chance of meeting node k. 

The higher the contact frequency, 𝜆 ,m, is between node-j and node-k, the more probable it is for j 

to meet k during 𝜏 − 𝑡E. The quantity 𝑝m
`(𝜏 − 𝑡E)  indicates the probability of obtaining reward 

𝑄`
`→m, which is the expected reward associated with the action of content delivery from node-j to 

its prospective future peer node-k. Computing the maximum reward over the rewards expected 

from transitive deliveries to all nodes k	∈ 𝐾, reflects the highest achievable expected gain out of a 

transitive delivery through node-j. Finally, the parameter 𝛾 (0 ≤ 𝛾 ≤ 1) in Eqn. 8-3 is the discount 
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factor which determines agent node-i’s level of preference for relying on the long-term expected 

reward 	𝑄ãabc. If 𝛾 = 0, the immediate reward, which is the gain out of delivery to node-j, is the 

only factor affecting 𝑄?
?→`.  In that case, the expected gain out of transitive deliveries through node-

j is ignored.  

   Using the expression	max	{𝐺 , 𝛾𝑄ãabc} in Eqn. 8-3, node-I evaluates the quality of node-j 

as a consumer, or as a prospective forwarder. Then, 𝑄?
?→`, the total expected reward out of content 

delivery to node-j, is updated. 

   Note that a proof of convergence for the Q-values is not provided in this paper, and it 

remains as a major future work. According to [69], for a stochastic framework such as the 

presented one, the learning algorithm was shown to converge under certain conditions on the 

learning rate.  

Forwarding Logic: When a node-I carrying T number of copies meets node-j, if node-j has not 

consumed a copy of the content yet, I computes the gain 𝐺 ,	which node-j can achieve through 

redeeming the coupon (Eqn. 8-2). If node-j has already consumed a copy, then	𝐺 = 0, since j is 

not a potential consumer anymore. 

  Node-I, then receives the product 𝑝m
`(𝜏 − 𝑡E)𝑄`

`→m, 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑘 ∈ 𝐾 stored at node-j. K is the 

set of peers that j has seen so far, thus, may encounter again in future. The Q-value 𝑄`
`→m indicates 

the reward (i.e., gain) from a transitive delivery to node-k via node-j. Multiplying the probability 

of pairwise meeting 𝑝m
`(𝜏 − 𝑡E) by the Q-value yields the expected reward (i.e., gain) of a delivery 

through j. Node-I also maintains 𝑄??→²values, where 𝑙 ∈ 𝐿, and L is the set of peers that node-I has 

encountered so far. At this point, Node-I sorts the following values in a descending order in a list 

of expected Q-values, namely, SQ: 1)	𝐺 , 2) 	𝑝²?(𝜏 − 𝑡E)𝑄??→² − 𝑐p	, ∀𝑙 ∈ 𝐿 , and 3) 𝑝m
`(𝜏 −
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𝑡E)𝑄`
`→m − 2×𝑐p	,(∀𝑘 ∈ 𝐾). The quantity 𝑝²? 𝜏 − 𝑡E ,	the probability of meeting between node-I 

and its peer node-l, when multiplied by 𝑄²?→²,	indicates the expected reward for a delivery to node-

l by i. Such delivery may be a direct delivery of a copy to node-l for its consumption, or it may be 

a copy for a transitive delivery through node-l. That depends on which of the two elements out of 

𝐺²	and	𝛾𝑄²abc were superior when 𝑄??→² has been computed using Eqn. 8-3. 

In the sorted set SQ, one unit of forwarding cost 𝑐p	is subtracted from each 𝑄??→² value to 

consider the rebate given to node-I upon a delivery to node-l. Two units of forwarding cost are 

subtracted from 𝑄`
`→m values to compensate for the cost of delivery from node-I to node-j and from 

node-j to node-k. If there is a common peer that node-j and node-I both may encounter, that is, if 

for an entry 𝑄`
`→m, there exists a  𝑄??→² (in SQ)  such that 𝑙 = 𝑘, then node-I evaluates the expected 

reward for each action, If delivery through node-j results in a higher expected reward compared to 

a delivery to node-k by I itself, then the entry corresponding to 𝑄??→² is replaced with 

𝑝m
`(𝜏 − 𝑡E)𝑄??→m − 2×𝑐p. Finally, node-I assigns copies to node-j based on the top T entries of the 

sorted expected Q-values list. If, 𝐺  is among the top T entries, a copy is transmitted to j for 

consumption. For each Q-value entry that belongs to a potential transitive delivery to a node-k via 

node-j (𝑄`
`→m), a copy out of T copies is assigned to node-j. For each Q-value entry associated with 

node-i’s encounters (𝑄²?→²), a copy remains with node-i. Algorithm 8-1 depicts the key components 

of the QGR algorithm. 
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8.6 Compared Protocols 

Social-Aware Networking (SANE): SANE [43] is designed based on the observation that 

individuals with similar interests tend to meet more often. This characteristic is preserved in the 

example SWNs (mobility scenarios) used for evaluation in this chapter. SANE models each 
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individual’s interest profile as an m-dimensional interest vector. We implement the interest-cast 

SANE-SW (Spray and Wait), in which a content carrier I forwards half of its T copies to a peer j 

if the cosine similarity metric [43] between the relevance of the message M, denoted as R(M), and 

the interest profile of j (𝜌`) is higher than a given relaying threshold  𝜌. Cosine similarity between 

m-dimensional vectors A and B is defined as 𝜃 𝐴, 𝐵 = 𝐴. 𝐵/ 𝐴 | 𝐵 |. We have incorporated the 

following changes in order to adapt the baseline SANE-SW with m-dimensional  (m>1) interest 

profiles to the present framework in which nodes can have a one-dimensional interest profile 

(m=1). 

We change our one-dimensional interest profile 𝜌? for each node-I to a two-dimensional 

interest profile vector of <𝜌?, 𝑧> in which z is assumed to be a fixed interest level to another type 

of content. This enables SANE to work under the experiment settings of this paper. It also does 

not affect the performance of any of the protocols. This way, the cosine similarity between two 

interest profiles reflects the similarity interest level (𝜌?), because the second element z is the same 

for all profiles. 

   The relevance of the message R(M) is in the same form as nodes’ m-dimensional interest 

profiles and is set to (𝜌?abc, 𝑧). 𝜌?abc is the interest level with the highest redemption probability 

(𝑃@ 𝜌? ) according to the redemption function. R(M) explains the target’s desirable set of interest 

levels.   

   To set the relaying threshold  𝜌, the possible range of cosine similarities for different pair 

of nodes with various interest levels are first computed using z= 0.5. 𝜌	should be a value inside the 

range of possible cosine similarities. We test different 𝜌 values and choose the one which yields 

the best results (highest gain) for SANE under the tested mobility scenarios. 
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PGUR-I: Predictive Gain Utility Routing Individual (PGUR-I) [68] as described in Chapter 5 

uses node-specific interest and interaction information to evaluate how a delivery to a peer 

contributes to the overall gain in the coupon’s expiry duration. This protocol does not consider 

transitive delivery through multi-hops. However, using gain prediction, it provides a strategy to 

choose a forwarding strategy with the goal of maximizing the defined gain.  When a content carrier 

node-I meets a node-j, it computes the expected gain of delivery (Eqn. 8-2) to nodes it may visit 

during the remaining time to coupon expiry (𝜏 − 𝑡E). If node-I is expected to meet more number 

of nodes (than it has coupon copies) with expected gain higher than that of the immediate contact 

node-j, it holds onto all its copies. Otherwise, a copy of the coupon is delivered to the immediate 

contact node-j. 

8.7 Results 

8.7.1 Experimental Details 

We use the DTN simulator ONE [55] for evaluating QGR, SANE  and PGUR-I under a 

community based synthetic mobility model and a real mobility trace (i.e., from INFOCOM ’06). 

The models are different in their community structure and interest level distributions. For all the 

experiments we use a redemption function in which the redemption probability maximizes for 

interest levels that are not too low or not too high. This is motivated by the observation [14] that 

while improving purchase probability for moderately loyal (interested) customers, coupon delivery 

may often kill product loyalty for highly loyal customers (Section 1.3.1). To capture this effect, a 

Gaussian model for the redemption function (Fig. 4-3) is used with mean 𝜇 = 0.75 and	𝑃@abc =

0.5. The relevance of the message R(M) for SANE is set to <0.75,z=0.5>, because 0.75 is the 

interest level of the target consumer with maximum redemption probability. The Q-learning 
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parameters learning rate (𝛼)	and discount factor (𝛾) are set at 0.5 and 0.9 respectively. After 

experimenting with a range of values, these values were found to be able to provide fast learning 

convergence. 

8.7.2 Community-based Synthetic Mobility 

Synthetic mobility follows map-based movements in a network of 10 waypoints [55]. Nodes 

move between waypoints with assigned transition probabilities. 90 nodes are divided into three 

communities as shown in Figure8-2. Numbers in parentheses show community’s population. 

Arrows show the flow of migrant nodes between communities. Members within a community hold 

higher intra-community meeting frequency compared to inter-community meeting frequencies. 

 

Figure 8-2: Community-based synthetic mobility 

Members of each community also tend to have more similarity in interest levels toward a 

specific content compared to the similarity of interest level between members of two different 

communities. We assign random interest levels to members of each community such that 

𝑃@ 𝜌? , 𝑖 ∈ 𝐶v < 	𝑃@ 𝜌? , (𝑖 ∈ 𝐶�) < 𝑃@ 𝜌? , (𝑖 ∈ 𝐶H). Each experiment is repeated for around 30 

source nodes and the average performance is reported. 

8.7.2.1 Impact of Rebate Cost (𝒄𝒇)  

Figure 8-3 shows the evolution of gain over time for different forwarding cost (rebate) 𝑐p. In 

all experiments, content is generated on day 27, which is long after when the network simulation 

warms up in terms of stabilizing the node-interaction profiles. Experiments with 15 initial coupon 

copies (i.e., 𝑇 = 15) were carried out for expiry time 𝜏	= 8 days.  

(30) (30) (30)
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   All the protocols show an increasing trend for gain over time, as more coupons are delivered. 

QGR shows the maximum achievable gain for all the scenarios in Figure 8-3. SANE has the second 

best gain mostly because it leverages multi-hop transitive deliveries despite PGUR-I, which only 

performs direct delivery. PGUR-I has the lowest performance since the source nodes, especially 

those located in community 𝐶v, can not directly reach target nodes with maximum redemption 

probabilities in community 𝐶H. QGR achieves the maximum gain since it manages to distribute 

copies among nodes according to their consumption and forwarding capabilities. SANE attempts 

to achieve a similar goal by finding consumers which are most similar to the target consumer (i.e., 

node with the highest redemption probability). However, SANE uses a binary distribution of 

copies which involves certain amount of randomness that causes the gain to suffer.  As the rebate 

cost increases from 0.002 (Figure 8-3:a) to 0.2 (Figure 8-3:d), gain for all protocols decreases. The 

performance gap between SANE and QGR reduces as the cost increases. 

   The reason is that QGR’s more node-specific strategy of content dissemination results in 

distribution of the copies in breadth rather than forwarding bundles of copies to nodes in a binary 

spray and wait [43] manner. With cost increase, QGR’s more spread distribution of copies results 

in a larger rebate cost and therefore, a lower gain. QGR also starts and finishes content delivery 

with some delay compared to SANE and PGUR-I.  

That is because the protocol predicts meetings with nodes with a higher redemption probability. 

Source nodes reserve copies for such high-gain yielding deliveries, deferring dissemination.  To 

better understand the working dynamics of the QGR protocol, the evolution of Q-values 𝑄?
?→` for 

𝜏 =8 days (Figure 8-3:d) is shown in Figure 8-4. Two pair of nodes are randomly chosen from 

each community (see Figure8-2). For each node-j, the moving average over each 50 samples of 

𝑄?
?→`’s seen by any arbitrary node-I, is measured. The average Q-values are shown from day 2, 
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after an initial warm-up period. Initially, the only non-zero element in Eqn. 8-3 is 𝐺 . Thus, Q-

values reflect 𝛼𝐺 . As Q-values build up, they show the quality of node-j as a consumer and as a 

forwarder, depending on the result of  max	{𝐺 , 𝛾𝑄ãabc}  in Eqn. 8-3. The highest Q-values belong 

to nodes from community	𝐶H, because the nodes in 𝐶H maintain the highest redemption 

probabilities. These nodes can also be high-quality forwarders due to their  intra-community 

encounters with similarly interested peers.    

 

Figure 8-3: Evolution of gain for forwarding cost cì:	(a) 0.002, (b) 0.02, (c) 0.1 and (d) 0.2 

While nodes from community 𝐶� hold medium redemption probabilities, those from 𝐶v 

maintain the lowest redemption probabilities (and gain), hence, have the lowest Q-values. 

   The monotonically increasing Q-values for each node-j from community 𝐶H stabilize around 

𝐺 . This shows that these nodes are high-quality consumers and 𝐺  is so large that the result of 

max	{𝐺 , 𝛾𝑄ãabc} in Eqn. 8-3 is mostly 𝐺 . 
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Q-values for nodes j from 𝐶v and 𝐶� initially increase to values larger than their own gain  𝐺 . 

This shows that these nodes can reach peers which are better consumers than themselves. Since 

nodes from 𝐶� visit target consumers of 𝐶H with high redemption probabilities, their maximum Q-

values are higher than those for nodes from 𝐶v. A fall in 𝑄?
?→`	(𝑖. 𝑒., 𝑗 ∈ 𝐶�	𝑎𝑛𝑑	𝐶v) is observed 

for the following reason. Closer to the content expiry time, the probability of meeting any node-k 

by a node-j, (𝑝m
`(𝜏 − 𝑡E))	becomes very small. Thus, 𝑄ãabc (i.e., in Eqn. 8-4), which reflects the 

capability of j for transitive delivery to the target consumers reduces. That leads to the domination 

of 𝐺  over 𝛾𝑄ãabc in the Q-value computation formula in Eqn. 8-3. 

 

Figure 8-4:Evolution of Q-values 

The Q-values converge to 𝐺  eventually. The rising and falling trend of the Q-values for the 

members of 𝐶v and 𝐶� show that these nodes are more qualified forwarders than consumers. 

8.7.2.2 Impacts of Content Expiry Duration (𝝉) and the Number of Content Copies (T) 

 Figure 8-5 shows the impacts of content expiry duration (τ) and the number of copies (T) on 

gain when 𝑐p=0.02. Total gain of delivery for all protocols increases as more number of content 

copies are available. Stretching τ duration has similar effect. 
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      For fewer number of copies (e.g.,	𝑇 = 5) and for short expiry duration (e.g.,	𝜏 = 0.5	𝑑𝑎𝑦), the 

difference of gain between the protocols is relatively small. That’s because the protocols have less 

number of choices to make and less chance to use their prediction/learning ability to make efficient 

routing decisions. For example, for a small number of copies (T), allowing fewer intermediate 

forwarding and eliminating the rebate cost is a more economical solution to maintain a higher gain. 

This is basically how the non-transitive protocol PGUR-I works. The closer performance of QGR 

to PGUR-I for limited T and 𝜏 indicates QGR’s ability to adjust its forwarding strategy to such 

application level parameters.  

 

Figure 8-5: Impacts of content expiry duration (τ) and number of copies (T) on gain 
Note that an extra analysis on the metric “number of forwards” involved in a content delivery 

is not performed because the composite metric “gain” already contains this cost in the form of 

rebate cost. This is the main cost since the other cost which is due to transferring pairwise interest 

and interaction profiles (upon nodes’ meetings) is similarly imposed in all protocols. 

8.7.3 Trace-based Mobility  

The dissemination protocols were also tested for a human interaction trace collected [59] from 

INFOCOM ’06 conference.  The trace contains data from devices which were carried around by 
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users for all four conference days. All experiments in this section are run for 30 random source 

nodes out the 97 nodes. 

 Figure 8-6:a and  Figure 8-6:b show the dynamics of gain and time to reach the maximum 

gain respectively. Forwarding (rebate) cost 𝑐p  is fixed at 0.002. Each cluster in the figures 

corresponds to a scenario with a specific number of content copies T. Each of the 12 points in each 

cluster corresponds to a combination of protocol and expiry duration: 0.5, 1, 1.5 and 2.5 days.  

Figure 8-6:a shows that QGR achieves the maximum gain compared to other protocols for most 

combinations of T and 𝜏. As expected, larger T results in higher gain. Also, in each cluster in  

Figure 8-6, the points toward the right side generally have higher gain as they correspond to larger 

𝜏. Similar to the synthetic mobility results (in Figure 8-3), the gain difference between the 

protocols is smaller under smaller number of copies such as T=5. The protocol SANE has the 

second highest gain in most cases. This is because it utilizes transitive deliveries, using which it is 

possible to better explore the environment in comparison to PGUR-I which is direct delivery based. 

As shown in  Figure 8-6:b, the observed higher gain for QGR comes at the price of longer 

time to reach the maximum gain. In most cases, PGUR-I reaches its maximum gain at a later point 

of time compared to SANE. The reason lies in PGUR-I’s direct delivery nature in which the source 

node holds on to copies to deliver to the best consumers using predictions. SANE, on the other 

hand, reaches target consumers in a shorter time delay, leveraging its transitive deliveries. As 

shown in all the clusters in  Figure 8-6, it naturally takes longer for all protocols to deliver all 

copies when the number of copies is larger.  Experiments with other combinations of T, 𝜏 and 

rebate cost (𝑐p) for this trace-based mobility have shown similar gain dynamics as what is seen for 

the synthetic mobility. 
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 Figure 8-6: Dynamics of a) gain and b) time to reach maximum gain 

Overall, results from both synthetic and trace-based mobility verify that the designed QGR 

protocol is able to achieve higher gain by striking a better balance between the forwarding cost 

and revenue for most combinations of commercial and network parameters. 

8.8 Summary and Conclusion 

In this chapter, we developed a Q-learning based Gain-aware DTN multicast Routing (QGR) 

protocol which is specifically designed for commercial content types such as coupons. In 

comparison with the history-based and prediction-based dissemination methods in Chapters 4 and 

5, the online learning component in QGR is expected to be robust in diverse and dynamic mobility 

environments. The protocol’s objective is to maximize the economic gain of dissemination which 
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is defined as a composite index that combines revenue from delivery and forwarding cost from 

dissemination.  In this framework, a node learns the suitability of its encountered peers both as 

consumers as well as intermediate forwarders by estimating Q-learning’s state-action functions. 

Experimental results from the simulator ONE [55] showed that the presented protocol achieves 

higher economic gain compared to two existing dissemination methods in most combinations of 

network (mobility) and commercial/environment parameters.  

Future work on this topic can include: a) studying the effects of learning framework 

parameters (e.g., learning rate (𝛼)), b) providing a proof of convergence for action-state functions 

and c) developing mechanisms for handling consumer selfishness. 

In next chapter, we extend this protocol to a Scalable Q-learning based Gain-aware Routing 

protocol (SQGR) which provides higher scalability and maintains better user privacy. 
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9 Scalable Q-learning based Gain-aware Routing 

9.1 Introduction 

In previous chapter [70], we showed that Q-learning is able to address the dynamicity and 

stochasticity associated with routing in SWNs. This chapter presents a Scalable Q-learning based 

Gain-aware Routing (SQGR) which extends QGR (Chapter 8) [70] focusing on system scalability 

and privacy preservation. Using an Scalable Q-learning model, unlike QGR [70], we avoid storing 

consumer specific interaction and interest profiles on devices, thus, providing better privacy.  

In this chapter, we formulate the gain of dissemination as a long-term reward in a Q-learning 

based Gain-aware routing approach. The goal is to take a series of forwarding actions which result 

in delivery to the highest gain-yielding target customers. 

The specific contributions of this chapter are as follows. We first introduce a definition of the 

economic gain of dissemination as used in our prior work (Chapter 4). That is a function of 

forwarding cost (rebate) and revenue. We then present the Scalable Q-learning based Gain-aware 

Routing (SQGR) algorithm. Finally, we present simulation results, which verify SQGR’s 

functionality and performance in comparison to few existing protocols. 

The system model including the gain formulation used in this chapter follows the same model 

presented in Chapter 8. We also tackle the same problem of  maximizing total economic gain 𝐺r 

for the content generator, except that we focus on embedding an additional level of scalability and 

privacy.  
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9.2 Scalable Q-learning based Routing (SQGR) 

9.2.1 Gain Quanta 

Scalability and Privacy: We divide the possible gain range [𝐺a?s, 𝐺abc] to b number of gain 

quanta. Maximum and minimum possible gain can be computed by Eqn. 8-2. Width of each 

quantum, 𝑠ï is (𝐺abc − 𝐺a?s)/𝑏.   We refer to each gain quantum with its lower bound. 𝑛ñ  is the 

number of nodes falling into each gain quantum q.  

9.2.2 Q-learning Model 

Following the Q-learning [47] model, each agent (i.e., a node) is modeled as a three-tuple 

entity consisting of {States (S), Actions (A), Reward I} [47]. A probabilistic state machine, as 

shown in Figure 9-1, formulates states along with stochastic transitions (i.e., actions) when two 

nodes (𝑁?	𝑎𝑛𝑑	𝑁 )	meet at time t.  

States (S): At each point of time t, an agent may observe a set of deterministic and probabilistic 

states. The state space S consists of a set containing all nodes in the network. In Figure 9-1, agent 

𝑁? observes the deterministic state 𝑁 , as long as the connection between the two nodes is held. 
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Agent 𝑁? observes a set of probabilistic states shown with dashed circles. Each circle consists of a 

group of nodes whose gain falls in a specific gain quantum. Probabilistic states may or may not be 

observed in future 𝑡 > 𝑡. The agent 𝑁? observes 𝑁 ’s prospective states transitively (e.g., nodes 

𝑅v. . 𝑅sòóôõ  with gains in [𝑞, 𝑞 + 𝑠ï)). 

Actions (A): At each point of time t, an agent chooses an action among the set of actions (A). 

Considering the stochastic nature of the routing problem, A consists of both deterministic and 

probabilistic actions shown as the transitions among states in Figure 9-1. For example, agent 𝑁?, 

assuming that it holds T copies of content, can choose the action of forwarding a copy to node 𝑁 . 

This is a deterministic action. Agent 𝑁? can choose to hold certain number of copies to transmit to 

a node belonging to the group of nodes with gain in quantum 𝑞 or to transmit (through transitivity) 

to a prospective peer of node 𝑁   (e.g., 𝑅�). The latter actions are probabilistic and are shown as 

probabilistic transitions. Each such transition is associated with a transition probability. For 

example, the transition probability to the state of node 𝑁? meeting any node from quantum q 

through node  𝑁 	is a function of 𝜆 ,ñ, the meeting frequency between 𝑁  and members of quantum 

q.  

Reward I: When two nodes meet, an action 𝑎	 ∈ 𝐴 is associated with a reward r ∈ 𝑅. Set of 

rewards R consists of immediate and discounted rewards [47]. In the presented model, reward 

associated with each action is defined as the resulting expected economic gain of delivery in 

perspective of the content provider. Deterministic actions, such as a delivery from node 𝑁? to 𝑁  

(Figure 9-1), are  associated with immediate reward, which is 𝐺 . Transitive deliveries which take 

place at  𝑡 > 𝑡, are associated with discounted rewards.  

Q-values: At each point of time t, a state-action function, namely, a Q-value,	estimates the 

immediate/discounted reward associated with an action 𝑎	 ∈ 𝐴 considering a current state 𝑠	 ∈ 𝑆. 



 167 

For example, the Q-value 𝑄?
?→ñindicates the action of forwarding one or multiple copies of a 

coupon to any node-o with gain within the gain quantum 𝑞 (i.e., 𝐺i  ∈ [𝑞, 𝑞+𝑠ï)).  The subscript 

of the term shows the owner of the Q-value, while the superscript indicates the action which is 

associated with this Q-value. For an immediate contact such as node 𝑁 , in Figure 9-1, 𝐺 	denotes 

the value associated with a direct delivery to node-j. All Q-values are stored at each node’s Q-table 

(Figure 9-1).  

9.3 Scalable Q-learning based Gain-aware Routing  

The proposed SQGR protocol relies on the knowledge of: 1) nodes’ interest profiles (i.e., 𝜌?), 

and 2) their underlying social interaction patterns. Unlike in Q-learning based Gain-aware Routing 

(QGR) [70], these state variables are not stored per-node. They are instead aggregated over a gain 

quantum. A coupon-carrying node uses this information to compute and evaluate Q-values which 

reflect how a delivery to a peer with a certain interest level, contributes to the overall gain in the 

coupon’s expiry time. 

State Variables: Any node-I maintains and updates the following variables everytime it meets 

a node-j.  

𝜆?,ñ: i’s rate of meeting with any node j in the gain quantum q where 𝐺 ∈ [q,q+𝑠ï] over a pre-

defined time window (e.g., a week).  

𝑛ñ: the number of nodes in gain quantum q which are visited by node-I so far. This is increased 

by one at every instance of meeting between node-I and a node with gain in quantum q. 

Q-values: Q-values are initialized at 0. When a node-I meets a node-j, the Q-value for the 

possible action of transmitting a copy to a node belonging to the gain quantum q (𝐺 ∈ [q,q+𝑠ï]] 

is computed using the following equation.  
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            𝑄?
?→ñ = (1 − 𝛼)𝑄?

?→ñ+𝛼		max	{𝐺 , 𝛾𝑄ãabc}                                (9-1) 
𝛼 (0 ≤ 𝛼 ≤ 1) is a standard Q-learning parameter, namely, the learning rate. A very high 𝛼 

value may cause random fluctuations in Q-values. Very small 𝛼 values indicate more reliance on 

old Q-values. 

  A higher 𝐺  indicates a higher redemption probability for node-j, thus shows the quality of 

node-j as a consumer. Node-j can also be a forwarder. Such quality of j is reflected in 𝑄ãabc, the 

discounted (i.e., non-immediate) reward. 𝑄`abc is the maximum attainable expected reward from 

delivery through node-j:  

          		𝑄ãabc = max
b²²	ñ∈÷

{𝑝ñ
`(𝜏 − 𝑡E) ×𝑄`

`→ñ}                                 (9-2) 

  ,where, Q is the set of gain quanta that node-j’s previously visited peers belonged to. 

𝑝ñ
`(𝜏 − 𝑡E) is defined as the probability of j meeting any node with gain within the gain quantum 

q at least once, during the remaining time to coupon expiry (𝜏 − 𝑡E). 𝑡E denotes the current time. 

Assuming that the inter-contact duration between node pairs follows exponential distribution, 

𝑝ñ
`(𝜏 − 𝑡E) is computed as follows:  

     													𝑝ñ
`(𝜏 − 𝑡E) = 1 − 𝑒�𝝀𝒋,𝒒(ª�«�)                         (9-3) 

 The quantity 𝑝ñ
`(𝜏 − 𝑡E)  indicates the probability of obtaining reward 𝑄`

`→ñ associated with 

a coupon delivery from node-j to a prospective future peer with gain within quantum q.  

  The Q-learning parameter 𝛾 (0 ≤ 𝛾 ≤ 1) in Eqn. 9-1 is the discount factor which determines 

agent node-i’s level of preference for relying on the long-term expected reward 	𝑄ãabc compared 

to immediate reward 𝐺 . For a 𝛾 = 1, immediate delivery is discouraged.  
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   Using the expression	max	{𝐺 , 𝛾𝑄ãabc} in Eqn. 9-1, node-I evaluates the quality of node-j 

as a consumer, or as a prospective forwarder in a group of nodes which gain fall into  the same 

gain quantum.  

    Note that, for SQGR, the maximum size of a Q-table on a consumer’s device reduces to 

𝑏,		the total number of gain quanta, which is smaller in comparison with N-1 (network size), the 

maximum size of Q-table in QGR [70]. Lower Q-table size translates to less usage of storage on 

mobile devices. 

Forwarding Logic: When a node-I carrying T number of copies meets node-j, if node-j has not 

consumed a copy of the content yet, I computes the gain 𝐺 ,	which node-j can achieve through 

redeeming the coupon (Eqn. 8-1).  

  Node-j, then shares the product 𝑝ñ
`(𝜏 − 𝑡E)𝑄`

`→ñ, for	all	gain	quanta	𝑞 ∈ 𝑄 with  node-i. Q 

is the set of gain quanta which node-j’s previous encountered peers belonged to. J may encounter 

one of these nodes at least  once in time remaining to coupon expiry with the probability 

𝑝ñ
`(𝜏 − 𝑡E). The Q-value 𝑄`

`→ñ indicates the reward (i.e., gain) from a transitive delivery to any 

node with gain in range [q,q+𝑠𝑏] via node-j. Therefore, 𝑝ñ
`(𝜏 − 𝑡E)𝑄`

`→ñ indicates the expected 

reward (i.e., gain) of a delivery through j. Node-I also maintains 𝑄?
?→ñvalues in its Q-table, where 

𝑞 ∈ 𝑄. Here, 𝑄 is the set of gain quanta that node-I’s previously encountered peers belong to. 

Node-I then sorts the following values in a descending order in a list of expected Q-values, namely, 

𝑄ü: 1]	𝐺 , 2] 	𝑝ñ? (𝜏 − 𝑡E)𝑄?
?→ñ − 𝑐p	, ∀𝑞 ∈ 𝑄 , and 3] 𝑝ñ

`(𝜏 − 𝑡E)𝑄`
`→ñ − 2×𝑐p	,(∀𝑞 ∈ 𝑄).  
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The one unit of forwarding cost 𝑐p	is subtracted from each 𝑄?
?→ñ value is to consider the rebate 

given to node-I as it cooperates in a transitive delivery. Two units of forwarding cost are subtracted 

from 𝑄`
`→ñ values to compensate for the cost of delivery from node-I to node-j and from node-j to 

another node with gain belonging to quantum q. For common gain quanta that node-j and node-I 

both hold in their Q-tables, the highest expected Q-value is stored.     

          If  𝐺 	is the highest value in the sorted list, a copy is forwarded to node-j. Otherwise, for each 

expected Q-value 𝑄?
?→ñ or 𝑄`

`→ñ	 higher than 𝐺 , 𝑛ñ or 𝑛ñ	copies (out of T available copies at node-

i) are held at I for transitive deliveries. This means that there are transitive deliveries which result 

in a higher expected gain compared to a delivery to the immediate contact node-j. Note that 𝑛ñ 
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and 𝑛ñ	are the number of 𝑁? and 𝑁ý𝑠 encountered peers which belong to the gain quanta  𝑞  and  q 

respectively. Eventually, if any copies are left with I, it is forwarded to node-j for consumption. 

This forwarding algorithm is depicted in Algorithm 9-1. 

9.4 Results 

We have compared the designed SQGR algorithm with Social-Aware Networking (SANE) 

[7] and Direct Delivery (DD) mechanisms. In SANE, a content carrier I forwards half of its T 

copies to a peer j if the cosine similarity metric between the relevance of the message M, denoted 

as R(M), and the interest profile of j (𝜌`) is higher than a given relaying threshold  𝜌. In DD, a 

node forwards a copy of a coupon to a peer that does not possess the coupon at their meeting time. 

9.4.1 Experimental Details 

We use the DTN simulator ONE [55] to evaluate performance of SQGR, SANE, DD and QGR 

[70]. We run experiments for three mobility scenarios. We use a Gaussian redemption function 

(Figure 5-2) with 𝜇 = 0.75		and maximum redemption probability 𝜌@abc = 0.5. The relevance of 

the message for SANE is set such that it targets consumers who have the closest similarity of 

interest to the maximum target interest level, 0.75. Learning rate (𝛼) and discount factor (𝛾) are 

set to 0.5 and 0.2 respectively. These values are set experimentally after proving to provide fast 

learning coverage. The impact of different learning parameters remains for the future work. Earned 

revenue 𝑐q and discount cost  𝑐o are set to 5 and 2 respectively.  

9.4.2 Community-based Synthetic Mobility 

The synthetic mobility consists of 90 nodes forming 3 distinct communities (Figure 9-2). The 

arrows show the flow of nodes migrating between communities and the numbers inside each 
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community shows the size of the community. Intra-community interest levels are more similar 

compared to those across communities. Also, 𝐺? 𝑖 ∈ 𝐶v < 𝐺? 𝑖 ∈ 𝐶� < 𝐺? 𝑖 ∈ 𝐶H .  

 

Figure 9-2: Community-based mobility 

Evolution of Gain: Figure 9-3 shows the evolution of gain over time during the lifetime of a 

coupon. The coupon is generated after a warmup period, when Q-values are settled network-wide. 

The gain is computed as the average over 30 experiments, each using a random source node. 

Forwarding cost is set as 0.002.  

   Observe that the gain has an increasing trend for all protocols as more number of coupons are 

distributed over time. SQGR achieves a higher gain compared to other protocols for all expiry 

durations. With an increase in expiry duration from half a day (Figure 9-3:a) to 5.5 days 

(Figure 9-3:d), gain for all protocols except for DD, increases due to more exploration duration. 

For DD, the source and the receivers of the coupon deliver all T=15 coupons to the first 15 nodes 

which they encounter. A longer expiry duration for the DD case does not necessarily change the 

set of encountered nodes, thus, the gain does not increase. SQGR performs better than QGR in this 

case because SQGR takes the forwarding decisions based on comparison of the immediate gain of 

delivery 𝐺  with expected Q-values of transitive deliveries to any node from a gain quantum higher 

than the  quantum 𝐺  belongs to. The probability of meeting such node is relatively higher than 

meeting any one specific node with gain higher than 𝐺 . The latter is the forwarding criteria used 

in QGR. For this reason, SQGR finds immediate delivery less urgent and instead waits to meet 

better consumers in future.  
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Figure 9-3: Evolution of gain over time for expiry duration 𝜏: (a) half a day, (b) 1.5, (c) 3 and (d) 

5.5. days 

The final gain values when forwarding cost is set higher at   𝑐p = 0.2 are shown in Figure 9-4. 

Figure 9-4:a and Figure 9-4:b show gain results for number of coupons T =15 and T=25 

respectively. Similar to the observation in Figure 9-3, all protocols have an increasing trend in gain 

with longer coupon expiry duration. 

For T=15 (Figure 9-4:a), final gain values for all protocols are lower compared to the equivalent 

scenarios with the smaller forwarding cost of 0.002 in  Figure 9-3:a to  Figure 9-3:d. Higher gain 

values in general is observed when T=25.  SQGR mostly achieves a higher gain compared to QGR 

for the reasons mentioned earlier, that is, maintaining copies for longer duration and eventually 

delivering to better consumers.  
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Figure 9-4: Final gain values for (a) T=15 and (b) T=25 

To gain more insight into SQGR’s performance, we show Figure9-5. Figure9-5 shows Q-values 

𝑄??→R (Fig 9-5:a) and 𝑄??→v.� (Fig 9-5:b) at every update for every node in the network. Fig 9-4:a 

shows the quality of nodes for delivering to any consumer whose gain belongs to the gain quantum 

0. This corresponds to the smallest possible gain values in the current experiment. The high 

concentration of points in cluster of Q-values observed by members of 𝐶v in  Fig 9-5:a indicates 

that these nodes meet a higher population of nodes with gain within quantum 0. 

 This is due to the high contact frequencies of the members of this community with one another. 

The higher Q-values shown in this cluster indicate that nodes with IDs in range [0,29] are good 

candidates for delivering coupons to nodes maintaining gain within quantum 0. The lower values 

of  𝑄??→R recorded for nodes belonging to 𝐶H shows that these nodes are less capable of delivering 

copies to nodes maintaining small gain values. This is because members of 𝐶H only encounter 

nodes with relatively small gain values when they migrate to 𝐶�.  

Absence of Q-values 𝑄??→v.� for members of 𝐶v	in Fig 9-5:b shows that these nodes do not directly 

encounter nodes which hold gain in range [1.2, 1.3], that is, nodes belonging to 𝐶H. Note that, this 

is the highest possible gain range for nodes under the tested mobility scenario. Unlike members of  
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𝐶v,	nodes in 𝐶� migrate to community 𝐶H and update Q-values 𝑄??→v.� whenever they visit any peer 

residing in 𝐶H. That’s the reason why relatively high 𝑄??→v.� can be seen for nodes with IDs in range 

0-29.. Similar trend of Q-values is observed for the members of 𝐶H due to the frequent intra-

community encounters.     

In summary, Figure9-5 shows how nodes differ in quality of delivery (direct or transitive) to 

low (Figure9-5:a) and high quality (Figure9-5:b) consumers. SQGR dissemination mechanism 

works based on identifying such qualities and choosing the most suitable nodes for delivering 

content to high quality consumers. 

 

Figure 9-5: Q-tables’ content at each node for (a) Q¹¹→R and (b)	Q¹¹→v.� 

9.4.3 Trace-based Mobility 

The dissemination protocols were tested on INFOCOM mobility trace [59], which consists of 

human social interaction data for 97 devices, during 4 days of the INFOCOM ’06 conference. Each 

node is assigned a random interest level. 

Gain Vs. Time to reach maximum gain: Figure 9-6 shows the maximum gain and the time 

to reach the maximum gain for all protocols for short expiry duration of half a day (Figure 9-6:a) 

and longer expiry duration of 2.5 days (Figure 9-6:b). The forwarding cost is fixed at 0.2. Similar 
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to the results for the community based mobility (Section 9.4.2), SQGR mostly provides a higher 

gain value in both expiry duration scenarios. This is because, SQGR relies on the probability of 

meeting any higher quality consumer in future. This results in a longer time for SQGR to reach its 

maximum gain. DD has the fastest delivery at the cost of lower gain. SANE and QGR almost do 

similarly in terms of gain and time to reach that. As expected, the total gain of delivery and time 

to reach that increases for all protocols, if longer expiry duration is allowed (Figure 9-6:b).  

Scalability: One of the primary value propositions of SQGR, in comparison with QGR, is higher 

scalability and better privacy preservation by not storing consumer specific personal interaction 

and interest profile on peers’ devices. As mentioned in Section 9.2, the higher scalability of SQGR 

is a result of smaller Q-tables stored at consumers’ mobile devices. To demonstrate this, we furnish 

Figure9-7, which shows the average Q-table size for 10 randomly chosen nodes recorded at the 

time of the coupon expiry. The figure shows that QGR requires nodes to store more number of Q-

values, for all expiry durations between half a day and 2.5 days. For QGR, the maximum number 

of Q-values stored in a node’s Q-table is N-1, where N is the network size. That is equal to the 

maximum number of peers a node may visit before a coupon expires. In this case, N= 97. For 

SQGR, the maximum number of Q-values equals the number of gain quanta (b), since Q-values 

are computed and stored per gain quantum. Here, the gain varies in [0,1.3], which results in 13 

gain quanta, each of size 0.1. 
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Figure 9-6: Maximum gain and time to reach that for expiry duration: (a) half a day and (b) 2.5 
days 

9.4.4 Working Day Mobility   

Here, we combine the community-based movement with reasonable human daily routines [55]. 90 

nodes are divided in three communities residing in their home areas in 3 distinct areas on the map 

of the city of Helsinki [55]. 

 

Figure 9-7: Q-table size per node 
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Members of each community are similarly interested in a coupon content. Nodes wake up in 

the morning, go to work, go shopping or do similar activities in the evening and eventually return 

home and sleep. Experiments were run for two forwarding cost values of 0.002 and 0.2 and 𝜏 

between half a day and 4 days. Similar results to what was observed for the community based and 

trace based mobility scenarios were seen. Those will not be shown here to avoid redundancy. One 

interesting example of gain evolution for a 𝜏 = 4 days is depicted in Figure9-8. The dashed lines 

show the start of a new working day. It can be seen that for all protocols, gain starts to increase in 

initial hours of a working day. That is when nodes start visiting each other. Gain stabilizes as soon 

as nodes go back to their homes and sleep.  

 
Figure 9-8: Gain evolution for working day mobility with 𝜏 = 4 days 

Overall, results from the three tested mobility scenarios demonstrate that SQGR is mostly able 

to achieve the highest gain among other protocols under various combinations of forwarding cost 

𝑐p, number of coupons T, and expiry duration 𝜏. We observed that SQGR does not obtain a 

noticeably higher gain compared to QGR and SANE for some combinations of forwarding cost 𝑐p 

and very short expiry duration. However, due to its higher scalability and providing a better 
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consumer privacy, SQGR appears to be more suited to the task content dissemination with the goal 

of maximizing gain among other tested protocols. 

9.5 Summary and Conclusion 

We presented a Scalable Q-learning based Gain-aware Routing (SQGR) protocol for 

disseminating commercial content in Social Wireless Networks. We defined an economic gain, 

which is a composite metric that combines the revenue from delivering and the costs associated 

with that delivery for a vendor. Content forwarding and the associated gain are then mapped to the 

state-action and reward for the Q-Learning framework. The key benefit of SQGR is that it does 

not store any per-node consumption interest or interaction information across nodes, thus 

providing both scalability and privacy. The analysis and performance evaluation performed using 

the ONE simulator demonstrates the superiority of SQGR in terms of gain performance and 

scalability in comparison to three existing protocols. The future work on this topic includes: 1) 

studying the effects of consumer (node) selfishness, and 2) automatically fine-tuning the Q-

learning parameters (e.g., discount factor and learning rate). 
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10  Future Work 

10.1 Introduction 

There are many applications of multicast Device-to-Device (D2D) content dissemination in 

healthcare [6], emergency handling [7], and vehicular networks [8]. In this dissertation we 

specifically focused on a commercial content dissemination application which is about delivering 

commercial content such as coupons to a target population of customers. The main design goal for 

a D2D commercial content dissemination algorithm is about maximizing a predefined commercial 

gain for a Content Provider (CP). In other words, a carrier of content/coupon identifies most fit 

individual Content Consumers (CCs) based on its pattern of social interaction (e.g., contact 

duration, centrality, etc.) with target consumers. 

The objective of this dissertation has been to develop coupon dissemination mechanisms that 

can maximize a coupon’s economic gain in the presence of costs/rebates for D2D forwarding 

incentives. This can be posed as a Delay Tolerant Network (DTN) multicast routing problem. 

In chapter 3, we developed a Unicast Gain-aware Dissemination Protocol (GDP) with the goal 

of maximizing the defined economic gain for the content provider. Gain of dissemination was 

defined as a combination of a time-based value function and cost of delivery. In chapter 4, we 

extended this work to multicast content dissemination introducing an Economy Driven Content 

Dissemination (EDCD) protocol. We applied a more elaborate gain formulation which is a 

combination of a redemption probability based value function and cost of delivery. In chapter 5, 

using the same gain formulation, we presented a Predictive Gain Utility based Routing framework 

consisting of two routing protocols. With gain prediction, this framework provides multicast gain-

aware routing in more structured and scalable routing approaches compared to EDCD. 
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So far, the designed routing mechanisms were designed primarily based on past experience of 

the designer with no embedded learning mechanism. This approach may not scale well for 

heterogeneous and dynamically changing networks and with newly emerged gain formulation. 

This motivates the field of network protocol design using learning mechanisms that can adapt with 

heterogeneity and changing operating conditions, thus avoiding redesigns with changing 

conditions. 

In this direction, we presented a first step toward evolving network communication protocols, 

specifically for Medium Access Control layer protocols (Chapter 6 and Chapter 7). A generalized 

probabilistic state machine was defined initially. It was shown that under appropriate genotype 

definition and fitness pressure, it is indeed feasible to evolve ALOHA, Slotted ALOHA and CSMA 

protocols under a wide variety of network and loading conditions. 

In Chapter 8, we leveraged reinforcement learning to tackle the problem of communication 

protocol design. Reinforcement based learning can closely fit the problem of commercial content 

dissemination in SWNs as it is concerned with decision makings with the goal of maximizing some 

notion of cumulative reward. We developed Q-learning based Gain-aware DTN multicast Routing 

(QGR) protocol which is specifically designed for commercial content types such as coupons. In 

comparison with the history-based and prediction-based dissemination methods in Chapters 4 and 

5, the online learning component in QGR is expected to be robust in diverse and dynamic mobility 

environments. 

In Chapter 9, extending QGR, we developed Scalable Q-learning based Gain-aware Routing 

(SQGR) protocol. The key benefit of SQGR in comparison to QGR is that it does not store any 

per-node consumption interest or interaction information across nodes, thus providing both 

scalability and privacy.   
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Building on the developed research in this dissertation, in this chapter, we outline different 

directions of future work and the involved challenges.   

10.2 Evolution of DTN Routing Protocols 

10.2.1 Parameter Evolution   

1) Evolving Depth of Penetration (DoP): It was shown in Chapter 4 that the presented EDCD 

can achieve better economic gain compared to a number of competing DTN routing protocols 

under different mobility scenarios and Depths of Penetrations (DoPs). The balance between the 

obtained value and cost usually leads to gain maximization at one specific optimal DoP for any 

given mobility scenario. A possible future work direction on this topic is to use Genetic Algorithms 

(GA) for self-adjusting the DoP parameter such that the optimal value of DoP can be set online. 

Optimal DoP may change according to the mobility scenario, nodes’ interest profiles and type of 

the coupon (with different expiry time). An evolutionary approach may manage to adjust the DoP 

value runtime according to such changes.  

2) Delivery pattern: A new direction could be that without sharing any interest level among 

consumers, a device learns about the average interest level of peers in its surrounding and adjusts 

its delivery rates accordingly. Let us assume that the probability of sending a coupon for 

consumption (𝑝üpE) exponentially increases as time remaining to coupon expiry decreases. For 

example, 𝑝üpE =
v

É�(þ�ÿ�)
, where 𝜏 − 𝑡E indicates the time remaining to coupon expiry. The slope of 

the curve, x, if smaller, causes more number of deliveries in the early stages after coupon 

generation. Larger 𝑥 values impose more number of deliveries around the expiry time. A possible 

future work in this direction could be using GA to evolve this parameter in order to fine tune the 

pattern of delivery according to network conditions.  
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The fitness function in both examples of parameter evolution can be the “effective” gain out 

of deliveries that a node does. Challenges which need to be addressed here include: notifying a 

node regarding its fitness which is its contribution to the total gain without a server’s involvement.  

10.2.2 Protocol Evolution 

Based on the evolutionary framework presented in Chapter 6 and Chapter 7, it can be proposed 

to design and evolve probabilistic state machines which implement D2D content dissemination 

protocols. One such example is shown in Figure10-1. States of the machine include: 1) Wait (W): 

which shows the state in which a node holds at least one copy of a coupon and is waiting to meet 

a peer, 2) Send (S): represents sending one copy of a coupon to a peer for consumption and 3) 

Terminate (T): represents termination of the content transmission procedure between two nodes. 

The quantity 𝑝m is a binary input parameter. If 𝑝m = 1, it indicates that the coupon carrier has more 

than enough number of copies to deliver to prospective nodes with expected gain larger than an 

immediate contact’s gain (before the coupon expiry time). 𝑝m	𝑝À× represents a valid transmission, 

while (1 − 𝑝m)	𝑝À× indicates that a copy is delivered to an immediate neighbor when there are not 

enough number of copies to be delivered to more qualified contacts in future. 𝑝×À = 1 indicates a 

rogue behavior which allows a source node to return to the Wait state and attempt to send more 

number of consumption copies for the same peer, instead of terminating the transmission process. 

This state machines is general in that it contains both valid and rogue scenarios for disseminating 

a content. The objective is to investigate if and how the transition probabilities evolve towards 

generating different forwarding protocols.  
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Figure 10-1: Example general state machine consisting of a content dissemination protocol 

The fitness criterion in this case would be the induced gain by disseminating coupons using a 

routing protocol that each set of transition probabilities (state machine) represent. It is challenging 

to design a more general state machine by granting higher degree of behavioral freedom to it. 

Consider when inputs to the state machine are 1) expected gain induced by an immediate contact, 

and 2) the expected gain of delivery through prospective contacts. In that case, the state machine 

should manage to evolve the right set of calculations and comparisons on the inputs in order to use 

them in making a valid delivery decision. With more complexity, this approach searches through 

a wider sample space. That may lead to finding better solutions compared to when the state 

machine has less degree of behavioral freedom as shown in Figure10-1. Thus, one future work on 

this topic includes investigating the feasibility of evolving D2D content dissemination protocols 

using evolving probabilistic state machines with different evolutionary degrees of behavioral 

freedom.   

10.3 Neural Network Driven Q-learning 

Neural Networks (NNs) can be used for approximating Q-functions, which are Q-values [48, 

71] in a learning formulation. A possible future work direction on the designed reinforcement 

W S

T
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learning based methods, QGR (Chapter 8) and SQGR (Chapter 9) is to estimate the Q-values 

(Section 8.1.2) using a Neural Network instead of using the state-action functions. Using this 

approach, the input of the NN would be states and actions. The output is the estimated Q-value for 

the corresponding state-action pair. In this process, the need for a Q-table look up is eliminated. 

Based on the specific Q-learning formulation presented in this dissertation and the analysis 

presented in Section 9.4, for QGR, the maximum number of Q-values stored in a node’s Q-table 

is N-1, where N is the network size. That is equal to the maximum number of peers a node may 

visit before a coupon expires. For SQGR, this number reduces to the number of pre-defined gain 

quanta. Training an NN for estimating Q-values instead of looking up the Q-tables is faster and 

more scalable especially for large Q-tables.   

Using NNs may result in a more generalized state-action function estimator. In the alternative 

approach, every time a state-action is observed, the corresponding Q-value is computed as a 

function of the previous Q-value based on a pre-defined state-action function.  

10.4 Gain Estimation using Time Series Prediction 

In the prediction based method presented in Chapter 5, we assumed that the inter-contact 

durations between node pairs follow exponential distribution. Based on this assumption, we 

developed two Predictive Gain Utility Routing (PGUR) methods in which forwarding logic is built 

upon predicting expected gains that are based on nodes’ past interaction locality information.  

A future work direction on this topic is to relax the assumption that nodes’ inter-contact 

durations follow a specific distribution. Instead, use prediction tools such as Recurrent Neural 

Networks, specifically Long Short Term Memory (LSTM), to predict [72] the gain values observed 

by each node. Based on such predicted values, a node can leverage a wider perspective in order to 

decide whether it needs to hold on to a content copy or forward it when a peer is met.    
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Note that, the gain values observed by a node is a time series. Thus, the problem can be posed 

as time series prediction. To accomplish this, nodes interactions should inhibit some sort of 

temporal locality, which is the case in SWNs.  

One example of such gain time series can be seen in Figure10-2. The synthetic series shows 

the gain values corresponding to the peers met by an arbitrary node-I over 10 days. This 

corresponds to a simulation done with 100 nodes following a Working Day Movement (WDM) 

mobility model [55].    

 

Figure 10-2: Time series of gain observed by a node-i 

Consider a benchmark method in which an oracle is aware of the future gain observations by 

every node in the network. In that case, the problem is defined as if the oracle can take the best 

forwarding decision for each node such that the overall gain is maximized.   

10.5 Redemption Functions 

The redemption function framework introduced in 1.3.1 is generalized enough to capture 

varying  interest level to redemption probability mapping. A coupon generator can manually 

design such a mapping as a redemption function. The goal of a D2D dissemination protocol is to 

maximize the economic gain for a given redemption function. A future work direction on this topic 

includes performing experiments with a wide range of sample redemption functions to 
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accommodate for different marketing strategies and analyzing the impacts of varying marketing 

psychology on the economic gain performance.  

10.6 Handling Selfishness 

A selfish user is one who deviates from the dictated content dissemination strategy with the 

goal of earning more rebate. Such deviation results in forwarding decisions which result in a lower 

network-wide gain for the content provider. This happens if a node arbitrarily forwards content as 

an intermediate node and is rewarded with rebates, while increasing the cost of forwarding for the 

content provider. The other way a node can deviate from the designed dissemination strategy is to 

avoid performing some forwarding decisions selected by the embedded dissemination algorithm. 

In that case, it stops itself and the peers which were supposed to receive the content copy, from 

contributing to the gain maximization process.  

A future direction on this work is to analyze the impacts of selfishness on gain performance. 

To accomplish that, parameters such as number of selfish nodes, degree of node selfishness can be 

defined. One possible way to define node selfishness is to have a selfish node do x number of 

arbitrary forwards. A full degree of node selfishness under such definition is to make a selfish node 

forward a single copy to every peer it meets. Such forwarding, without considering a peer’s 

potentials as a 1) consumer and 2) a forwarder, increases the forwarding cost and may result in a 

negative gain.     

The next step would be providing solutions including 1) detecting selfish nodes and 2) 

combating selfishness through embedding appropriate strategies in the dissemination protocol. 

One approach to infer selfishness for the dissemination algorithm on a node’s application is to 

detect a decreasing trend of individual gain as a warning and either report this to the content 

provider or run an embedded strategy to combat the node’s selfish behavior. One simple approach 
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to combat node’s selfishness is to de-authorize the node’s mobile device for participating in the 

dissemination process. Combatting selfishness in incentive-based content dissemination in SWNs 

and DTNs is extensively discussed in the literature [5, 73]. Similar methods can be adapted to the 

commercial content dissemination framework presented in this dissertation.  
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