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ABSTRACT

HIGH DIMENSIONAL COMPUTATIONAL MODELS FOR BIOMEDICAL IMAGING
DATA ANALYSIS

By

Liangliang Zhang

The importance of big data does not revolve around how much data you have, but what

you do with it. You can take data from any source and analyze it to find answers that enable

1) cost reductions, 2) time reductions, 3) new product development and optimized offerings,

and 4) smart decision making. My thesis is mainly focused on high-dimensional image data

analysis and computations. The image data I worked on are CT images of abdominal aortic

aneurysm (AAA) and brain images of Alzheimer’s Disease. I developed Bayesian calibration

method for the former and Supervised learning with Markov Chain for the latter.

Bayesian calibration has a long history within computer modeling in general. Bayesian

calibration is an iterative process of updating uncertainty distributions on the calibration

parameters in a way that is consistent with the observed data. Because of the advances in

complex mathematical models and fast computer codes, Bayesian calibration of computer

experiments are popular in the scientific research nowadays. As we know, compared to a

computer model, a complex system in real life is expensive both in time and money to

observe. Therefore, computer models can be a stand-alone tool or combined with (typically

smaller) data from physical experiments or field observations. And Bayesian calibration is

powerful in integrating all sources of uncertainties into the model definition and calibration

procedure.

For the AAA data, first I modeled only one patient (patient-specific prediction discussed

in Chapter 2), and then built an advanced model which can incorporate all patients (multi-



patients prediction in Chapter 3). In the process, semi-parametric functional data analysis,

covariance modeling and Bayesian methods was highly practiced and used. The contributions

are as follows. First, we formulate the Bayesian calibration of our AAA G&R computation

model taking into account model inadequacy, prior distributions of model parameters, mea-

surement errors, and most importantly, longitudinal CT scan images. Next, we demonstrate

how to achieve the proposed aims by solving the formulated Bayesian calibration problem

using a simulation study and real data analysis. In particular, we compare and discuss

the performance and computation time under different sampling cases for the computation

model output data and (synthesized) patient data, both of which are synthesized by the

G&R computation. We apply our Bayesian calibration to the real CT data and validate our

prediction, showing the usefulness of our approach to the computational science and medical

communities in aiding decision making.

For the Alzheimer’s Disease data, the causes are currently being researched massively,

but no definitive answers exist as yet. Genetic predisposition, abnormal protein deposits

in the brain and environmental factors are suspected to play a role in the development of

the disease. In Chapter 4, my main goal is to model the progression of Alzheimer’s Disease

by applying multi-state Markov model, and to investigate the significance of known risk

factors like Age, ApoE4 and some brain structural volumetric variables getting from MRI

like hippocampus, and at the same time, to predict the transitions between different clinical

diagnosis states based transition rates and transition probabilities. We found that the model

with age is not significant (p-value is 0.1733) according to the likelihood ratio test, while

ApoE4 is a significant risk factor in our Markov model. Predictions based on transition rates

and transition intensities were made and validated with the accuracy as high as 0.7849.
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Chapter 1

Introduction

In this thesis, the image data I worked on are CT images of abdominal aortic aneurysm

(AAA) and brain images of Alzheimer’s Disease. I developed Bayesian calibration method for

the former and Supervised learning with Markov Chain for the latter. Chapter 1 reviews the

background, research questions and development of Bayesian calibration method. Chapter 2

introduces patient-specific prediction for single subject data by using Bayesian calibration.

Chapter 3 introduces patient-specific prediction for multiple subjects data by using Bayesian

calibration. Chapter 4 introduces analysis on conversion of Alzheimers Disease using a multi-

state Markov model. Chapter 5 introduces Conclusions, Discussion, and Suggestions for

Future Research

1.1 Computer model

Complex models (also called computer models) are used to resemble real-world systems and

are thus used in many different fields, such as clinical sciences, Physics, engineering and

climate change. A computer model is defined by a set of equations and is implemented as

computer codes. People typically use the model to predict how the real world system may

behave in the future. Running a computer model at a number of different input values is

known as computer experiment. Under different backgrounds the output could be either a

scalar or a vector; however, we will just consider the case with univariate output here. The

1



computer models are deterministic, for each time they are run with the same inputs they

will produce the same output. [99]

The inputs usually are used to describe some properties of the real system which need to

observed. Thus the true values of these inputs may be unknown. Although when the values

of the inputs can be obtained, it is likely that some form of measurement error will have

occurred. Therefore, the uncertainty in the inputs needs to be quantified as it will relate

to how uncertain we are that the computer model output matches reality. In other words,

uncertainty analysis is aiming at quantifying the uncertainty in model outputs caused by

uncertainty in inputs. Besides, another source of uncertainty is in the model itself. Even

when the true values of the inputs are known, running the model at these points will not

produce an output which matches exactly the observation of the real-world system.

Complex models are computationally expensive and take a long time to run. Because

a simulation of a real-world system can require the high number of dimensions. Sensitivity

analysis is defined as the process of evaluating how the output of a model is modified by

changes in the inputs. Performing analyses such as sensitivity and uncertainty analysis

can require many runs of the computer model and this quickly becomes impractical with a

computationally expensive model.

1.2 Gaussian Process Emulation

In statistics, Gaussian process emulator is one name for a general type of statistical model

that has been used in contexts where the problem is to make maximum use of the outputs of

a complex (often non-random) computer model. The main element of the Gaussian process

emulator is that it models the outputs as a Gaussian process on a space that is defined by

2



the computer model inputs.

The analysis of computer models and Gaussian process emulator has been studied for

about 20 years. Sacks et al. (1989) [89] describe a technique for approximating an unknown

deterministic computer experiment by modeling the output as a realization of a stochastic

process. A Bayesian method of predicting a computer model at untested inputs is given in

Currin et al. (1991) [22]. O’Hagan (2006) [77] gives an introduction to Gaussian process

emulation as well as details of Bayesian methods for various analyses.

1.3 Design of Computer Experiments

In order to obtain the training data, we need to select the design. The choice of design points

is named as the design of the experiment. Without intensively increasing the computational

time, we aim to gain more information from the training data, so that the emulator can

approximate better the computer model. Various criteria are defined under different designs.

For example, under a maximum design, points are selected such that the maximum distance

between any two design points in minimized.

McKay et al. (1979) [69] compare three methods for choosing designs for Monte Carlo

studies–simple random sampling, stratified sampling and Latin hypercube sampling. A Latin

hypercube sample ensures that the points are spread evenly over the range of each input

dimension. The three methods are assessed by comparing estimators of the mean, variance

and distribution function of the output. They conclude that Latin hypercube sampling is

preferred. Besides, Santner et al. (2003) [91] comment on the widespread use of this method

for generating designs in other kinds of computer experiment.
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1.4 Bayesian Statistics

Bayesian statistics began with a posthumous publication in 1763 by Thomas Bayes, [5] a

non-conformist minister from Tunbridge Wells. [51] His work was formalised as Bayes’s the-

orem, which is a simple and uncontroversial result in probability theory. Bayesian statistics

is a system for describing epistemological uncertainty using the mathematical language of

probability. [98]The methods can be outlined as formal combinations through the use of

Bayes’s theorem of: 1. a prior distribution about the value of a quantity of interest based

on evidence not derived from the study, with 2. a summary of the information (likelihood)

concerning the same quantity available from the data collected in the study, to yield 3. an

updated or posterior distribution of the quantity of interest. These methods address the

question of how new information should update what we currently believe. They extend

naturally into making predictions, synthesizing information from different sources, and de-

signing studies. Nevertheless, Bayesian methods are a controversial topic. Because they may

involve the explicit use of subjective judgment in a rigorous scientific exercise.

Compared with traditional methods, a Bayesian perspective leads to more flexible and

ethical methods of analyzing clinical trials and observational studies, [56] and to more elegant

ways of handling multiple substudies, for instance when simultaneously estimating the effects

of a treatment on many subgroups [10]. A Bayesian approach enables one to provide suitable

conclusions for making decisions for specific patients, for planning research, or for public

policy [65].
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1.5 Calibration

For a conventional calibration, an expert modeler repeatedly adjusts calibration parameters

to minimize the difference between observed data and model outputs (Reddy et al., 2007) [82].

One main drawback of this process is that it demands intensive manual labor and inherently

introduces modeler biases into the calibrated model. To improve, optimization schemes

have been employed to automate calibration (New and Chandler, 2013 [74]; Raftery et al.,

2011 [81]). These schemes determine the combination of model parameters by minimizing

the error between data and model outputs.

Therefore, the solution of the calibration problem can be understood as identifying the

global optimum of the objective function within the feasible domain of the calibration pa-

rameters. When both the objective function and the feasible domain are convex or they can

be restated as convex, it is very stable for the mathematical algorithm to find the single opti-

mum. For problems that are not convex or cannot be recast as convex, exact solutions often

become computationally expensive, and only approximate solutions may be practical [9].

For more details, please refer to [25].

In most cases, calibration is the same as statistical estimation [46], [27]. Both processes

are aiming at finding input values that lead to the best possible model fit. For example, if

the objective function of the calibration is a likelihood function, calibration is equivalent to

maximum likelihood estimation.

1.6 Bayesian calibration

Many methods of automated calibration have been developed which reduce costs, time and

biases. Among them, Bayesian methods differ significantly from the others in that inputs are
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assumed to be uncertain and the main goal is not to match the prediction to the measured

data as closely as possible, but to reduce the uncertainty in the inputs in a manner consistent

with the measured data. When the sample size of measured data are limited and the model

inputs have high sensitivity and high uncertainty, Bayesian methods are particular useful to

achieve calibration. For more details, please refer to Muehleisen and Bergerson 2016 [73].

Bayesian calibration is an advanced method of calibration and thus is fundamentally

different than conventional calibration methods. Bayesian calibration has a long history

within computer modeling in general ( [30]; [80]; [58]). Bayesian calibration is an automated

process of updating uncertainty distributions on the calibration parameters in a way that is

consistent with the observed data. Unlike the conventional calibration that minimizes the

difference between observed data and model outputs, Bayesian calibration determines the

most likely uncertainties for input parameters that yield an output uncertainty in which the

observed data is most likely. Bayesian calibration is an application of Bayes Theorem, which

combines prior information with future information contained in the likelihood of observed

outputs from the model ( [6]). As commented by Kennedy and O’Hagan (2001) [58], none

of the existing methods of calibration recognize fully, all sources of uncertainty.

As similar as a regular Bayesian problem, the general process of Bayesian calibration is

1) define PDFs (probability density functions) for uncertain model parameters, 2) collect

simulations and observations of the real system for known input parameter values, and 3)

calibrate (assumed) prior parameters based on the observed data by iteratively using Bayes

Theorem until iterations converge to an acceptable level. Establishing prior PDFs for input

parameters generally requires both expert opinion solicitation and literature review. For

example, a uniform distribution may be assumed, when only a range of appropriate values can

be determined for a parameter(Riddle and Muehleisen, 2014 [85]). A triangular distribution
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may be used, when both a range of values and a most likely value can be determined.

1.7 Advantages and disadvantages

As Bayesian calibration integrates uncertainty to the model definition and calibration proce-

dure, one of the primary advantages is that a modeler can quantify a confidence level in the

calibrated model. Another advantage is that a probabilistic risk analysis can be performed

and competing retrofits can be ranked according to a desired risk level, based on mean values,

variances, etc. Finally, Bayesian calibration reduces the tendency to overfit the model to the

observed data. Overfitting is a problem in regression analysis, multi-objective optimization,

and machine learning when the fitting/optimization routine fits the model to the noise in

measured data (Dietterich, 1995 [29]). Unlike the conventional calibration that minimizes

the difference between observed data and model outputs, Bayesian calibration is trying to

maximize the likelihood that the model output is statistically consistent with the measured

data. This consistency naturally takes into account the uncertainty in the measured data

(Heckerman, 1998 [48]).

There is one common disadvantages of all calibration methods, both conventional and

Bayesian. It is typically very challenging, time consuming and expensive to collect observed

data from the real system. Another disadvantage of Bayesian calibration requires a signif-

icant number of iterations to converge to the most likely PDFs, especially when the prior

probability density functions are poorly chosen. Finnally, because of the high computa-

tional demand, in order to reduce run time, Bayesian calibration often requires a pre-step

of parameter screening and selection to obtain the most significant parameters to use in the

calibration process in large models [73].

7



Chapter 2

Patient-Specific Prediction from

Single-subject Data

2.1 Introduction

(a) (b)

Figure 2.1. (a) The location of an abdominal aortic aneurysm colored as redis indicated
by an arrow, while green region on the left indicates the inferior vena vein and (b) four
longitudinal AAA CT images 1, 2, 3, and 4 which are screened at consecutive 4 times.
Regarding the technique to align the CT scan images, please refer to Kwon et al. [61].

An abdominal aortic aneurysm (AAA) is an enlarged localized volume in the lower part
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of the aorta, which supplies blood to a large part of the body (see Fig. 2.1). Enlargement of

the aorta by more than 50% of its normal diameter is defined as an aortic aneurysm. The

vast majority (over 90%) of aortic aneurysms occur in the abdominal region, specifically

the infrarenal aorta [79] [114]. In general, an aorta with a diameter larger than 3 cm is

considered an aneurysm.

A ruptured aneurysm can cause life threatening internal bleeding. If ruptured, patient

mortality rates are greater than 80% [59, 60]. Depending on the size and rate of growth,

treatment of an AAA may vary from watchful waiting to emergency surgery. Once an

AAA is found, doctors will closely monitor it so that surgery can be planned if it becomes

necessary. Since elective repair of AAAs can result in peri-operative deaths (4-8%) [63],

performing unnecessary surgeries increases patient risk. A thorough understanding of the

expansion and rupture of AAAs is thus needed in order to minimize patient risk.

While significant advances have been made in the management of AAA patients [13],

this disease still carries a high mortality rate. During the last decade, bio-chemo-mechanical

studies have been integrating computation modeling with increased understanding of the

expansion and weakening of aneurysms. Recently, this computational platform, called a

growth and remodeling (G&R) model, has been developed and incorporated with patient-

specific anatomical information, which aids in treatment planning on a per-patient ba-

sis [2, 36, 108, 117]. Zeinali-Davarani et al. [117] developed the G&R model to take into

account both elastic degeneration and stress-mediated collagen turnover during AAA de-

velopment using finite element analysis (FEA). By the way there are still other models of

AAAs without G&R have been shown to be potentially useful to aid in patient-specific treat-

ment planning [31,68]. A coupled simulation of G&R with hemodynamics was conducted for

studying its effects on AAA expansion [95]. Geometric, kinetic and material parameters have

9



been identified for individual patients using inverse optimization techniques for modeling the

growth of AAAs. Furthermore, it has been shown that the same material parameters for

AAA expansion can help to predict intrasac-pressure dependent vascular adaptation after

endovascular repair [62].

Translating recent computational advances into a predictive tool for individualized clin-

ical treatment, however, requires a major paradigm shift due to the incompleteness of the

model, limited information, and uncertainty associated with clinical measurements with re-

gard to each individual patient. Most importantly, the associated uncertainty in the predic-

tion propagated from various sources needs to be correctly quantified. For example, the G&R

model’s internal parameters need to be carefully adjusted according to patient-specific data,

e.g., longitudinal computed tomography (CT) images, in order to make better prediction

and so be useful for clinical decisions.

The aims of this paper are to develop a framework that 1) first calibrates the physical

AAA G&R model using patient-specific longitudinal CT scan images, 2) predicts the expan-

sion of an AAA in future time, and 3) analyzes the associated uncertainty in the prediction.

To achieve our aims, we perform Bayesian calibration of our computational AAA G&R

model [58]. In particular, Bayesian calibration will be used to incorporate the computational

G&R model, patient-specific data (e.g., CT scan images), and various uncertainties as well

as to compute the uncertainty level of the prediction on the AAA expansion.

As computational science advances, there is a growing interest in applying Bayesian

calibration developed from the statistical community to engineering applications (see more

details in [49, 50, 58, 77, 112] and references therein). To the best of our knowledge, we are

the first to apply the Bayesian calibration method to the AAA G&R computation model.

The successful outcomes of our aims will make the G&R computation model viable to aid
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clinicians in decision making. Hawkins-Daarud A. et al. [47] used a Bayesian framework to

address questions on validation, model selection, and uncertainty quantification for tumor

growth. Biehler J. et al. [7] presents an uncertainty quantification framework based on multi-

fidelity sampling and Bayesian formulations and analyzes the impact of the uncertainty in the

input parameter on mechanical quantities typically related to abdominal aortic aneurysm

rupture potential. Zhao X. and Pelegri A. [119] used a Bayesian approach to estimate a

reasonable quantification of the probability distributions of soft tissue mechanical properties

in the presence of measurement noise and model parameter uncertainty. While Hawkins-

Daarud A. et al. [47] considered a set of discrete model candidates to select and validate

a model, we consider a statistical model for the true physical process by introducing two

Gaussian random fields for the G&R computation model and the inadequacy of the model.

We adopt a Bayesian calibration technique proposed in [58] to calibrate parameters in the

G&R computation model and predict the AAA expansion. The proposed statistical model

and Bayesian calibration can take different sources of uncertainty; therefore, it is well suited

to achieve our aims in predicting the AAA expansion process as well as in computing the

propagated uncertainty given the patient-specific data.

The contributions of our paper are as follows. First, we formulate the Bayesian calibration

of our AAA G&R computation model taking into account model inadequacy, prior distri-

butions of model parameters (Seyedsalehi S and Zhang L, et al. [94]), measurement errors,

and most importantly, patient-specific longitudinal CT scan images. Next, we demonstrate

how to achieve the proposed aims by solving the formulated Bayesian calibration problem

using a simulation study and real data analysis. In particular, we compare and discuss

the performance and computation time under different sampling cases for the computation

model output data and (synthesized) patient data, both of which are synthesized by the
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G&R computation. We apply our Bayesian calibration to the real patient-specific CT data

and validate our prediction, showing the usefulness of our approach to the computational

science and medical communities in aiding decision making.

The organization of the paper is as follows. Section 2.2 introduces the AAA G&R model,

the quantity of interest in making prediction, and the full statistical model with hyperpa-

rameters for Bayesian calibration. In Section 2.3, we discuss assumptions for priors and then

provide the posterior and predictive distributions under the Bayesian framework. Section 2.4

describes the design of the simulation study with synthetic observation data and a case study

with real patient data. In Section 2.5, we present the results of the Bayesian calibration for

both simulation and real data cases. Finally, we provide some discussions and concluding

remarks in Section 2.6.

2.2 Models

Bayesian Calibration

Computer Model

CT Images

Predictive 

Distribution

<-",-&%-&9"*(

2.3$*%

Prior of Parameters

Statistical Models

Prediction and 

Credible Band

Posterior of 

Parameters

Figure 2.2. The flow-chart of Bayesian calibration.

Bayesian calibration can be defined as a Bayesian approach to calibrate investigated

parameters in a theoretical model for a real complex system (here stands for the G&R com-

puter model for AAA) that enables the incorporation of uncertainty regarding parameters,
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real observations and possible simulations from the theoretical model. Fig. 2.2 shows the

general framework of Bayesian calibration, which also structured all the contents needed to

be discussed in the paper. The left two rectangles and one on the top list the inputs we

should prepare for a Bayesian calibration, while the right three rectangles list the outputs

we can get from a Bayesian calibration. The rectangle with double edges in the middle de-

picts that Bayesian calibration is actually a specially designed complex system capsulating

a bunch of statistical models. As you can see, Bayesian calibration is including a bunch

of models and integrating different sources of data together to generate products, such as

calibrated parameters (posterior distribution), prediction (predictive distribution) and sta-

tistical inference (credible bands). In this section, we introduce the data and all the basic

models needed in our Bayesian calibration (basically things in left two rectangles and the

rectangle with double edges in the middle). The following parts in this section are orga-

nized as follows. 2.2.1 introduces a computational model of AAA growth. 2.2.2 introduces

how the real data from CT images are prepared for Bayesian calibration. 2.2.3 introduces

a calibration model to combine the computational model with real data. 2.2.4 introduces

statistical specifications for implementing Bayesian calibration.

2.2.1 AAA G&R computation model

The Bayesian calibration framework includes a computational G&R model of AAA as a data

input, where the detailed computational G&R model was described in Zeinali-Davarani et

al. [117]. Briefly, the computational G&R model has three parts: constitutive relations of

intrinsic material behavior, a stress-mediated production function, and a damage function.

To describe material behavior, we assume that the aorta is comprised of three stress-bearing

constituents, viz. elastin, collagen fiber families, and vasoactive smooth muscle cells. Each
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constituent, in addition to its contribution to the construction and strength of the artery’s

wall, has its own individual properties, where the population-based material parameter dis-

tributions of abdominal aortas was given by Seyedsalehi et al. [94]. Also, the stress-mediated

production functions connect the stress-state of the artery to changes of the mass rates with

a stress-mediated feedback approach. Moreover, in the G&R model, the AAA is initialized

by imposing damage function to the elastin of normal aorta. The initialization can be jus-

tified by the previous study [87], which shows that one of the main features of AAA is that

elastin is decreased and the study [55, 115] that elaborate that the degradation of elastin

can directly form patient-specific shapes of aneurysms. However, the other factors, such as

alteration of intrinsic material parameters [83], disturbed collagen production [23, 24] and

hemodynamics [3], are taken as the minor reason of initialization of AAA, and be considered

as statistical error later.

In this paper, we aim to calibrate the computational model with the expansion rate

and evolution of aneurysm shapes along the longitudinal scan images. Our focus of interest,

called quantity of interest (QoI) (described in section 2.2 for the Bayesian calibration), is used

to calibrate the aneurysm growth with medical data. However, those parameters related to

intrinsic material function and stress-mediated production function cannot directly be used to

form the patient-specific geometry, but have a strong relation with patient’s health, age and

other patient behavior, while with respect to [115], the degradation of elastin play a leading

role in forming a patient-specific geometry, which is to say different patient-specific geometry

can be achieved given different damage parameters in G&R simulation. Consequently, we

prescribe the mean values of the material parameters [94] and stress-mediated parameters

[116] and calibrate the damage parameters statistically with the evolution of AAA geometry.

Also, in the statistical calibration model introduced later, random variations of prescribed
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parameters will be treated as errors.

In our model, damage function works on elastin and vasoactive smooth muscle, therein

elastin plays an important role in the mechanical behavior of aorta. Elastin contributes

resilience and elasticity to the aortic tissue; but when the person’s age is advanced, elastin

cannot be replaced. For an AAA, the localized dilation of the aorta is initiated by the

degradation of the elastin. This degradation (or damage) will reduce the amount of elastin,

leading to the weakening of the wall. The damage will result in the increase of the diameter

and wall stress of the aneurysm. The increase of the stress in constituents results in an

increase in the accumulation of collagen and smooth muscles as a way to compensate for the

elastin’s loss and decrease stress in the wall. All the relations and details of the model have

been previously reported by Zeinali-Davarani et al. [116] and Kwon et al. [62].

Although the AAA’s shape has a wide variability and its expansion associates with the

complexity of the G&R process, in the current study, we decided to use the 2D axisymmetric

G&R model and first study the effectiveness of the Bayesian calibration. As discussed, the

elastin damage in the aortic wall initiates the growth of the aneurysm. Here we define the

initial elastin’s damage function as

d(s) = θ1 exp

(
−
[
|s− α1|α2

2 θ2
2

])
(2.1)

where s is the coordinate defined on the centerline. g(s) = 1− d(s) is the ratio of remaining

elastin to the initial amount at s.

The damage functions in (2.1) contains two parameters of interest {θ1, θ2} to be calibrated

from the real data and two other quantities {α1, α2} that can be easily identified via CT

images without Bayesian calibration. They have their own specific effects on the shape of
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the damage function and thus on the stress-stretch and geometrical state of the AAA at a

given time. In particular, θ1 is a scaling factor with θ1 ∈ [0, 1). An increase in θ1 toward 1

will increase the degradation of elastin and thus increase the dilatation of the artery. θ1 = 0

means no degradation; hence, the artery will retain its initial state. α1 corresponds to the

location on the centerline at which the maximum damage occurs. α1 and α2 control the

areal distribution of damage on the sides of the peak location.

Note that α1 and α2 are relatively easy to be estimated from the CT images compared

to θ1 and θ2. In particular, the maximum diameter occurs at or very close to the location

of the maximum damage; hence, we estimated α1 by finding the location of the maximum

diameter using the CT images. α2 is chosen by minimizing the error between the model

simulation and CT images. Thus, we fix α1 and α2 with appropriate values obtained from

CT images directly a-priori and focus on calibration of θ1 and θ2 in a Bayesian way.

To see our simulation results in a symmetrical and straightforward configuration, we

have chosen α1 = 7.5 (i.e., averaged value) and α2 = 2 (i.e., the most simple shape). On the

other hand, we used α1 = 12.1 and α2 = 5, which are estimated directly from the patient

CT images for real data analysis in Section 2.5.2. Additionally, the choice of α2 = 2 for

the simulation study covers the other end of the possible values as compared to the real

observation case with α2 = 5.

2.2.2 Quantity of interest (QoI) for AAA G&R

The quantity of interest (QoI) of AAA G&R is what we want to predict in AAA growth

in future time. The selection of the QoI will let us subsequently determine the statistical

models and investigate the associated uncertainties. In our study, we select the radius of

the inscribed sphere with respect to a centerline as a QoI, where a centerline is computed

16



by inscribed spheres in the AAA 3D images [40]. Figs. 2.3a and 2.3b show inscribed spheres

and the resulting centerline, respectively, for a given 3D point cloud sampled from CT scan

image data from a patient. This QoI selection is consistent with medical practice in which

the diameter of the AAA is used as an important decision variable [59, 60].

To have a brief idea of the relationship among G&R model, 2D axisymmetric and QoI,

we plot a diagram showing how the 3D images are transformed into 2D data and how the

computer model simulates it. When we look at Fig. 2.4, there are two lines of processes.

First, I will describe how the data is transformed, as shown in Fig. 2.4a,Fig. 2.4b and

Fig. 2.4c. Fig. 2.4a shows the same process of transforming 3D images into 2D data as

Fig. 2.3. Thereafter, taking the length of the centerline as the coordinate, we obtain the

radius of the inscribed sphere r versus the height coordinate of the centerline s in Fig. 2.4b,

whose details are explained in [40]. Then we truncate the curve in Fig. 2.4b, and get the

QoI in Fig. 2.4c. In short, the 3D images are transformed into 2D data and then cut off into

QoI. Second, I will describe how G&R model works to simulate the QoI. Fig. 2.4d shows the

computational model of healthy aorta, then the healthy aorta evolutes into AAA following

mechanisms introduced by computational G&R model, which is actually a 2D axisymetric

geometric shape (Fig. 2.4e). Then we obtain the radius versus the height coordinate of the

centerline in Fig. 2.4f which can be called as simulation. And finally, Fig. 2.4g shows the

simulation result by minimizing the difference between the QoI and simulation.

Fig. 2.5 shows the real data needed in the Bayesian calibration procedure, which is the

QoI’s from scan images of patient K taken at 4 time points. To get each curve, we can

repeat the same process from (a) to (c) in Fig. 2.4 on each scan image. Bayesian calibration

combines the QoI’s and the simulation data to calibrate the selected parameters in the

computer model. And the radius in the figure are actually the target quantities we want
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to predict finally. Therefore, we are saying that we would like to make prediction of the

QoI with associated uncertainty in future times. In this paper we consider the following

questions. Can we predict the radius vs. height profiles for CT scan images 3 and 4 in future

time given CT scan images 1 and 2 in Fig. 2.5? What is the uncertainty associated with

such prediction? We answer these questions by applying the proposed Bayesian calibration

method. The answers to the questions for this particular patient-specific data set shown in

Fig. 2.5 are given in Section 2.5.2 as a real data study case.

(a) (b)

Figure 2.3. 3D point clouds sampled from a CT scan image. (a) An inscribed sphere with
point clouds from the CT scan images and (b) a centerline computed from point clouds.
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Figure 2.4. The diagram of data preparation.

2.2.3 Calibration model

Let ζ(x) be the QoI of the true AAA G&R process, the input variable of which is denoted

by x and defined as x = [t s], where t is the time and s is the height on the centerline as

illustrated in Fig. 2.3b. Suppose that we have n observations from CT scan images of a given

patient, then ”image n” is the ”n-th” image of one patient. To model possible observation

error, e.g., resolution and segmentation errors in CT scan images, we consider the noisy

observations as follows.

zi = ζ(xi) + εi, ∀i ∈ {1, · · · , n}, (2.2)

where the difference (or error) between the observation and the true process is denoted by

εi. We further assume that each εi is independently distributed as N (0, λ), which represents

a normal (Gaussian) random variable with mean 0 and variance λ.
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Figure 2.5. Radius vs height coordinate on the centerline measured from CT scans of a
patient over the surveillant time. The lines from bottom to top represent images 1, 2, 3,
and 4, respectively.

We denote the QoI of the G&R computation model output at x as r(x,θ), where θ

is called a set of calibration parameters, or calibration inputs. In the G&R computation

model for the AAA expansion, damage parameters serve as calibration parameters that are

patient specific for the AAA growth, i.e., the calibration parameters are θ = [θ1 θ2] defined

in Section 2.2.1.

Given the available QoI of the G&R computation model, we model the true process as

ζ(xi) = r(xi,θ) + δ(xi), (2.3)
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where δ(·) is a model inadequacy function, i.e., model error, which is independent of the

computation outputs. It is natural to assume the true AAA expansion process ζ(x) cannot

be fully described by the computation model, therefore we introduce δ(x) to represent the

discrepancy in (2.3).

By combining (2.2) and (2.3), we have

zi = r(xi,θ) + δ(xi) + εi, (2.4)

which gives a calibration model that relates G&R computation outputs with the true process

and the observations. The Bayesian calibration method [58] we adopt in this paper introduces

Gaussian process priors for the computational model and the model error in order to calibrate

θ and predict the QoI. Fig. 2.2 shows the flow-chart for Bayesian calibration. The statistical

models in Fig. 2.2 build on two Gaussian process priors for the G&R computation model

and model error, which will be discussed in the next section.

2.2.4 Statistical models

Let GP(m(·),k(·, ·)) be the Gaussian process with the mean functionm(·) and the covariance

function k(·, ·). GP is flexible and popularly used as a prior model for functions [110, 111].

We introduce the following Gaussian processes as prior beliefs for the G&R computation

model and the model error:

r(x,θ) ∼ GP(m1(x,θ),k1(x,θ;x′,θ′)),

δ(x) ∼ GP(m2(x),k2(x,x′)).
(2.5)

To specify Gaussian process priors in (2.5) further, we introduce mean and covariance
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structures for both processes.

For a mean structure, one can consider a linear combination of basis functions to ap-

proximate the general mean structure. The linear function is always the first thing to do,

although it is not perfect, since the results of linear function will give us insights for other

nonlinear study. Let h(x,θ) be a vector of basis functions and β be a vector of correspond-

ing coefficients then we can represent m(x,θ) = h(x,θ)βT , where (·)T is the transpose of a

matrix or a vector. Since we need two mean functions, m1(x,θ) and m2(x), we introduce

two sets of h and β such that m1(x,θ) = h1(x,θ)βT1 and m2(x) = h2(x)βT2 .

In this paper, we consider the following linear mean structures for computational effi-

ciency:

m1(x,θ) = h1(x,θ)βT1 = β10 + β11t+ β12θ1 + β13θ2, (2.6)

where h1(x,θ) = [1 t θ1 θ2] and β1 = [β10 β11 β12 β13], and

m2(x) = h2(x)βT2 = β21t+ β22s, (2.7)

where h2(x) = [t s] and β2 = [β21 β22]. These mean structures imply that the mean function

of the G&R computation model is linear in time t and calibration parameters, {θ1, θ2}. The

mean function of the model error is linear in time t and location s. β = [β1 β2] are

hyperparameters for the mean functions in a Bayesian context.

For a covariance structure, we use the following exponential functions as follows.

k1(x,θ;x′,θ′) = σ2
1 exp{−(x− x′)Ωx(x− x′)T } exp{−(θ − θ′)Ωθ(θ − θ′)T },

k2(x,x′) = σ2
2 exp{−(x− x′)Ω?

x(x− x′)T },
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where Ωx, Ωθ, Ω?
x are diagonal matrices such that

Ωx =

 ωx1 0

0 ωx2

 ,Ωθ =

 ωθ1 0

0 ωθ2

 ,Ω?
x =

 ω?x1 0

0 ω?x2



so that the hyperparameters for the covariance functions are σ2
1, σ2

2 and wxj , wθj , w
?
xj ’s.

Note that the resulting covariance functions are not isotropic since they allow different scaling

for each coordinate. Additionally, they can be regarded as separable covariance functions

since the dependence due to one coordinate is independent of the dependence due to another

coordinate. One can consider a more generalized covariance structure at the cost of higher

computational complexity.

For the parameters controlling the covariances, we introduce ψ = [ψ1 ψ2], with

ψ1 = [ωx1 ωx2 ωθ1 ωθ2 σ
2
1],

ψ2 = [ω?x1 ω
?
x2 σ

2
2].

(2.8)

ψ1 is the set of hyperparameters related to the G&R computation model. ψ2 is the set of

hyperparameters related to model error. For the remainder of the paper, the AAA G&R

computation model is referred to as the computation model for notational simplicity.

2.3 Bayesian analysis for calibration

Bayesian calibration considers computation model outputs as the data in addition to the

observations and combines these two to calibrate θ under the Bayesian framework. Cali-

bration helps improve the prediction of the QoI compared to the prediction using only the

computation model outputs or using only observations. The diagram of the Bayesian cali-
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bration process Fig. 2.6 gives us an overview of the whole process of Bayesian analysis which

combines the information of priors, computer model, statistical model and observations to

calibrate the parameter θ to make predictions. The top right part shows that computer

model data covers the whole time range of real observations and predictions. And the com-

puter model data helps to estimate the covariance hyperparamter ψ1, which is defined as

State 1. The left middle part shows the real observations helps to estimate the covariance

hyperparameter ψ2, which is defined as Stage 2. The right bottom part shows the calibration

and prediction which is called Stage 3. As we can see calibration parameters only exist in

computer models, and we use real observations to calibrate the parameters in the computer

model so that the prediction can be improved.

2.3.1 Likelihood of computer model

We need computation model outputs generated at various sets of θ and x as the data for

calibration. To avoid confusion, we use θ∗ = [θ∗1 θ
∗
2] and x∗ instead of θ and x, respectively,

when they were used to generate computation model outputs. For example, at (x∗,θ∗),

we obtain one computation model output r(x∗,θ∗). Computation model outputs which

correspond to a set of various (x∗,θ∗) will be used in Bayesian calibration as a part of the

data set. We call θ∗ calibration inputs and x∗ variable inputs.

To illustrate the Bayesian calibration method [58, 77], we introduce necessary nota-

tions. Regarding the computation model outputs, let N be the total number of pairs

of variable inputs and calibration inputs. Then, for the ith set of inputs, (x∗i ,θ
∗
i ), we

let yi be the corresponding computation model output, that is, yi = r(x∗i ,θ
∗
i ). We fur-

ther define y = [y1 · · · yN ]T ∈ RN×1 as the computation model output vector and

Xc = [(x∗1,θ
∗
1)T , · · · , (x∗N ,θ∗N )T ]T ∈ RN×4 as the input matrix that corresponds to y.
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Figure 2.6. Diagram of the Bayesian calibration process.

Then, the assumption of the Gaussian process prior on the computation model gives

y ∼ N (H1(Xc)β
T
1 ,V1(Xc)),

whereH1(Xc) = [h1(x∗1,θ
∗
1)T , · · · ,h1(x∗N ,θ

∗
N )T ]T and the (i, j) entry of V1(Xc) is k1((x∗i ,θ

∗
i ), (x∗j ,θ

∗
j )).

2.3.2 Likelihood of real observations

Let n be the number of observations and z = [z1 · · · zn]T ∈ Rn×1 be the set of observations

corresponding to the variable input matrix Xo = [xT1 , · · · ,xTn ]T ∈ Rn×2. Note that Xo is not

25



necessarily the same as the set of variable inputs for the computation model outputs. In gen-

eral, the number of observations is smaller than that of the computation model outputs since

we can control the amount of the computation model outputs. To calibrate θ from the obser-

vations, we augment variable inputs Xo with θ such that Xo(θ) = [(x1,θ)T , · · · , (xn,θ)T ]T .

Then, from the calibration model, we have

z ∼ N (H1(Xo(θ))βT1 +H2(Xo)β
T
2 , λIn + V1(Xo(θ)) + V2(Xo)),

where

H1(Xo(θ)) = [h1(x1,θ)T , · · · ,h1(xn,θ)T ]T

and

H2(Xo) = [h2(x1)T , · · · ,h2(xn)T ]T .

V1(Xo(θ)) is defined in a similar way to define V1(Xc). The (i, j) entry of V2(Xo) is

k2(xi,xj).

2.3.3 Joint likelihood

We then combine the computation model outputs and observations, d = [yT zT ]T ∈

R(N+n)×1, which we call a data vector.

d =

 y

z

 ∼ N (md(θ),Vd(θ)), (2.9)

where

md(θ) := E(d|θ,β,ψ) = H(θ)βT ,
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with

H(θ) =

 H1(Xc) 0

H1(Xo(θ)) H2(Xo)

 ,

and

Vd(θ) := var(d|θ,β,ψ) =

 V1(Xc) C1(Xc, Xo(θ))T

C1(Xc, Xo(θ)) λIn + V1(Xo(θ)) + V2(Xo)

 ,

where In is the n×n identity matrix and C1(Xc, Xo(θ)) is a cross-covariance matrix whose

(i, j) entry is k1((x∗i ,θ
∗
i ), (xj ,θj)). We note that md(θ) and Vd(θ) also depend on β and

ψ. We drop them to reduce notational complexity.

Remark 2.3.1 Recall that the calibration model assumes the true process as the sum of

the computation model process and the model error process by assuming they are Gaussian

processes as shown in (2.4) and (2.5). If we have observations of the true process only,

we cannot identify these two Gaussian processes. However, the Bayesian calibration method

makes use of both computation model outputs and observations as data. Computation model

outputs contribute to the first Gaussian process only while observations contributes to both

Gaussian processes as well as observation errors. Since the computation model outputs and

observations contribute to two Gaussian processes differently, there is no identifiability issue.

2.3.4 Calibration

To estimate (θ,β,ψ) under the Bayesian framework, we consider the following prior distri-

butions and assumptions.

A.1 β1 in (3.3) and β2 in (3.4) have non-informative priors, i.e., p(β1,β2) ∝ 1 .

A.2 θ is independent of the other parameters.
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A.3 θ follows a normal distribution.

A.4 ψ1 and ψ2 in (2.8) follow lognormal distributions.

A.5 log(λ) has a non-informative prior, i.e., p(log(λ)) ∝ 1.

Remark 2.3.2 Note that based on A.1 and A.2, we can get the joint prior distribution in

the following form p(θ,β,ψ) ∝ p(θ)p(ψ). For A.3, we use the sample mean and variance

of the calibration parameter inputs that were used to generate computation model outputs as

mean and variance for normal prior density. A.4 guarantees that ψ1 and ψ2 in (2.8) are

positive values in the calculation since they are all hyperparameters in covariance functions.

Together with the prior specification given above, we have the following full joint posterior

distribution of (θ,β,ψ) given d:

p(θ,β,ψ | d) ∝ p(θ)p(ψ)f(d;md(θ),Vd(θ))

∝ p(θ)p(ψ)|Vd(θ)|−
1
2 × exp

[
− 1

2
{(d−md(θ))TVd(θ)−1(d−md(θ))}

]
,

(2.10)

where f(d;m, V ) is the multivariate Gaussian density function with mean m and variance

V . Note that the posterior distribution of (θ,β,ψ) given d is proper even if we assume

non-informative priors for β.

To calibrate (estimate) θ from the posterior distribution of θ | d, we need to integrate

out β and ψ. As shown explicitly in (2.9), md(θ) depends on β, while Vd(θ) depends on

ψ. Clearly, md(θ) is a linear function of β, so we can find

β | θ,ψ,d ∼ N (β̂(θ),W (θ)), (2.11)
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where

β̂(θ) = W (θ)H(θ)TVd(θ)−1d,

W (θ) = (H(θ)TVd(θ)−1H(θ))−1.

Thus, we can integrate out β in (2.10) and get

p(θ,ψ | d) ∝ p(θ)p(ψ)|Vd(θ)|−
1
2 |W (θ)|

1
2

× exp

[
− 1

2
{(d−H(θ)β̂(θ))TVd(θ)−1(d−H(θ)β̂(θ))}

]
.

(2.12)

While β is integrated out easily, ψ is not. Numerical integration can be considered but

may not give an accurate result since it is the multi-dimensional integration. Thus, we use

the conditional posterior distribution of θ given d and a plausible estimate of ψ plugged

in, which is proposed by Kennedy and O’Hagan (2001) [58]. The plausible estimate of ψ is

obtained in a two-step approach. First, we estimate ψ1 by maximizing p(ψ1|y) (Stage 1).

Then, we estimate ψ2 by maximizing p(ψ2|d,ψ1) after plugging in the estimated ψ1 (Stage

2). This process is shown in Fig. 2.7. In this study, numerical maximization is used with

500 iterations for Stage 1 and 100 iterations for Stage 2.

p(θ|λ,ψ,d)p(θ|λ,ψ,d)p(θ, λ,ψ|d)p(θ, λ,ψ|d) ψ̂̂ψ

Estimate λ and ψ2 by
maximizing p(λ,ψ2|d,ψ1)
Estimate λ and ψ2 by
maximizing p(λ,ψ2|d,ψ1)

Estimate ψ1 by
maximizing p(ψ1|y)
Estimate ψ1 by
maximizing p(ψ1|y)

Stage1 Stage2

Figure 2.7. Two stages to estimate ψ.

Having estimated ψ and plugging it into the distribution of θ | d,ψ, we obtain the
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posterior distribution of the calibration parameter θ to be

p(θ | ψ̂,d) ∝ p(θ)|Vd(θ)|−
1
2 |W (θ)|

1
2

× exp

[
− 1

2
{(d−H(θ)β̂(θ))TVd(θ)−1(d−H(θ)β̂(θ))}

] (2.13)

and use (2.13) to calibrate and make an inference of θ.

2.3.5 Prediction

We introduce another set of variable inputs Xp = [xTn+1, · · · ,xTn+m]T ∈ Rm×2 to be used for

prediction. The corresponding prediction of the QoI at given variable inputs Xp is denoted

as P = [P1 · · · Pm]T ∈ Rm×1. For quality of the prediction, we can consider variable inputs

in Xc that cover Xp.

Under the Bayesian framework, a prediction can be made using the predictive distribu-

tion of the (unobserved) true process ζ(x) given full data d. More specifically, we consider

the predictive distribution of ζ(x) given d and ψ̂ since we fix ψ using the estimate ψ̂ in

our approach. We first analytically obtain the distribution of ζ(x) | θ,ψ,d,β, which is

conditionally normal since ζ(x) and d are normally distributed. Using the laws of total ex-

pectation and total variance to integrate out β, we obtain the distribution of ζ(·) conditional

on θ and ψ̂, which is also normal. Therefore, its mean function is given by

E(ζ(x)|θ, ψ̂,d) = h(x,θ)T β̂(θ) + v(x,θ)TVd(θ)−1(d−H(θ)β̂(θ)), (2.14)

where

h(x,θ) =

 h1(x,θ)

h2(x)

 ,
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and

v(x,θ) =

 V1((x,θ), Xo)

V1{(x,θ), Xo(θ)}+ V2(x, Xo)

 .

Additionally, its covariance function is given by

cov(ζ(x), ζ(x′) | θ, ψ̂,d) = k1((x,θ), (x′,θ)) + k2(x,x′)

− v(x,θ)TVd(θ)−1v(x′,θ) + (h(x,θ)

−H(θ)TVd(θ)−1v(x,θ))TW (θ)(h(x′,θ)

−H(θ)TVd(θ)−1v(x′,θ)).

(2.15)

We then can obtain the predictive distribution of ζ(x) given d and ψ̂ by integrating θ

out from the distribution of ζ(x) | θ, ψ̂,d with respect to the posterior distribution of θ

given in (2.13). From (2.14) and (2.15), we obtain the predictive expectation and variance

of ζ(·) evaluated at inputs Xp as follows:

E[ζ(Xp) | ψ̂,d] = Eθ{E[ζ(Xp) | θ, ψ̂,d]}, (2.16)

and

var[ζ(Xp) | ψ̂,d] = Eθ{var[ζ(Xp) | θ, ψ̂,d]}+ varθ{E[ζ(Xp) | θ, ψ̂,d]}, (2.17)

where ζ(Xp) = [ζ(xn+1) · · · ζ(xn+m)]T .

Based on the posterior density (2.13) of the calibration parameter θ, we can draw a bunch

of Markov Chain Monte Carlo (MCMC) samples for θ and thus predictive expectation and
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variance (2.16) and (2.17) can be approximated as follows.. First, we draw M samples

{θ(1), · · · ,θ(M)} from (2.13) using the Metropolis-Hastings algorithm [15] and plug these

samples into (2.14) and (2.15). Next, we get the predictions P , which are the MCMC

estimates of (2.16) written as

P := Ê[ζ(Xp) | ψ̂,d] =
1

M

M∑
i=1

E[ζ(Xp) | θ(i), ψ̂,d]. (2.18)

Similarly, the outermost expectation and variance on the right hand side of (2.17) are esti-

mated by their corresponding sample mean and sample variance with respect to θ. Then,

we obtain the predictive variances Vp as

Vp := v̂ar[ζ(Xp) | ψ̂,d] = Êθ{var[ζ(Xp) | θ, ψ̂,d]}+ v̂arθ{E[ζ(Xp) | θ, ψ̂,d]}, (2.19)

where

Êθ{var[ζ(Xp) | θ, ψ̂,d]} =
1

M

M∑
i=1

var[ζ(Xp) | θ(i), ψ̂,d],

v̂arθ{E[ζ(Xp) | θ, ψ̂,d]} =
1

M − 1

M∑
i=1

{E[ζ(Xp) | θ(i), ψ̂,d]− Ê[ζ(Xp) | ψ̂,d]}2.

We will construct the 95% credible intervals based on these predictions P and their predictive

variances Vp.

2.4 Data Description

We consider two cases of data sets. In the first case, we use the G&R computation model of

the AAA expansion to generate synthetic observations in addition to producing computation
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model outputs. This is the simulated observation case that validates our approach since we

know the realized true process along with the parameters that generate it for comparison.

In the second case, we use real data, i.e., observations from a patient’s CT scan images. The

G&R computation model is used only to obtain computation model outputs in this real-world

clinical application. When implementing Bayesian analysis, we standardize all the inputs x,

θ and outputs y, z to stabilize computation. In particular, we use the notation θ = [θ1 θ2]

to denote the standardized ones while we use θorg = [θ
org
1 θ

org
2 ] to denote original values for

the rest of the paper.

2.4.1 Simulated Observation Cases

For the simulated observation case, we generate r(x,θ) from the G&R computation model.

To validate our approach, we realize and set patient specific values on the calibration param-

eters (say θ0) for the synthesized true process so that we evaluate the estimated calibration

parameters. Recall that for the damage function, we need to set θ1, θ2, α1, and α2 to

produce the G&R computation model outputs. For the simulated observation case, we set

θ
org
1 = 0.65, θ

org
2 = 6, α1 = 7.5 and α2 = 2. Thus, the calibration input is θ

org
0 = [0.65 6]

for the true process. For the variable inputs x = [t s], we consider 8 equally spaced s from 0

to 15 cm and a time step of 5 days, which are fixed throughout the study. The time duration

is 7 years, but several different choices of sampling times are considered. Note that when

we implement Bayesian calibration, the values of the QoI (the radius with respect to the

centerline) are standardized as well so that its mean is 0 and its variance is 1.

Once we obtain a realization of r(x,θ0), we add model and observation errors to get the

final observations. The model error, δ(x), is realized from the model assumption (2.5) with

β2 = [0.001 0.001], ω21 = 1, ω22 = 1, and σ2
2 ∈ {0.005, 0.001}. Then the standard deviation
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of model error δ(x) on each height at each time is about {0.071, 0.032}. The observation

error ε is generated from N (0, λ) with λ = 0.001, i.e., ε ∼ N (0, 0.0322). The standard

deviation of standardized computation outputs r is 1. To generate simulated observations,

we add a model error process of 7.1% or 3.2% (with respect to r) and an observation error

process of 3.2%. We chose these values for the model and observation errors in order to

produce a data set that best illustrates the effects of different noise levels and sampling

schemes.

We also need computation model outputs at various combinations of variable inputs and

calibration inputs. For calibration inputs, we consider θorg = [θ
org
1 θ

org
2 ] ∈ {0.5, 0.65, 0.8}×

{2, 6, 10} so that there are total 9 combinations of θ1 and θ2. For variable inputs, s will be

considered at 8 equally spaced values from 0 to 15 cm. For time t, we consider three different

scenarios to see the effects of different time resolutions. With two choices of σ2
2, there are

a total of 6 different scenarios. Table 2.1 gives the label of each scenario. Further details

of each scenario are given in Table 2.2. With three cases of sampling time grids and the

two levels of σ2
2, we want to investigate the behavior of interaction between the computation

model and Bayesian calibration. In Case 1, computation model inputs have a sparse time

grid while those in Case 3 have a denser one. In Case 2, the computation model inputs do

not cover the full time range we want to predict while those in Case 1 and Case 3 do.

We note that variable inputs and calibration inputs for the proposed Bayesian calibration

are standardized in the actual implementation so that we can assume the realized calibration

inputs are centered at zero. Then, we use 0.3 as prior means of θ1 and θ2 (away from the

zero) to investigate the robustness of prior distributions. In addition, we consider 0.1 for

prior variances of θ1 and θ2. The same setting for the prior of θ1 and θ2 is used later in the

real observation case. Note that the normal prior can be used for θ1 that is constrained to
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the interval [0, 1]. As θ1 was standardized (mean is 0, standard deviation is 1), the range of

θ1 becomes [−1.3, 1.3] based on the parameter values we use. We set the prior of mean at 0.3,

and the variance of prior at 0.1 (standard deviation is 0.32). According to the empirical rule,

99.7% of the samples from the prior will lie in the interval [−0.66, 1.26] which contains in the

interval [−1.3, 1.3]. The sensitivity of prior choice on the posterior estimates of θ1 and θ2 is

investigated and presented in Supplemental Fig. A.3 (in Supplementary Section Appendix

2), where we can see that the posterior distributions are robust against the subjective choice

of prior distributions.

Table 2.1. Differences in Xc and σ2
2 for simulation cases

sampling time in Xc σ2
2 = 0.005 σ2

2 = 0.001

every 2 years Case 1a Case 1b
every 1.5 years Case 2a Case 2b/2c
every 1 year Case 3a Case 3b

2.4.2 Real Observation Case

For the real observation case, we consider 4 longitudinal CT scan images of a patient as shown

in Fig. 2.1. This particular patient’s CT scan examination spans a period of 3 years. For each

image, we measured the corresponding radius (QoI) at each height on the centerline as illus-

trated in Fig. 2.5 using the maximally-inscribed sphere method developed in [40]. From the

preliminary study of the damage shape with respect to the CT scan images, we selected α1

and α2 such that α1 = 12.6 and α2 = 5 for (2.1) a-priori. In addition, we selected the reason-

able range of the calibration parameter θ a-priori to produce comparable computation model

outputs for the particular observations (Fig. 2.5). More specifically, as prior information to

determine the range of the calibration parameter θorg, we fit the diameter of the computation

model outputs to the diameter calculated from CT scan images using fminsearch in MAT-
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LAB (Mathwork, Natick, USA) and found the optimum value to be [θ
org
1 θ

org
2 ] = [0.2 0.9].

From this information, we consider θorg = [θ
org
1 θ

org
2 ] ∈ {0.05, 0.2, 0.35} × {0.7, 0.90, 0.99}.

For these 9 combinations of θorg, we run the G&R model to produce the computation model

outputs. More details for this real observation case are given in Table 2.2.

Table 2.2. Case details
Case 1a Case 1b Case 2a Case 2b/2c Case 3a Case 3b Real Data

Xc times [0 2 4 6] [0 1.5 3 4.5 6] [0 1 2 3 4 5 6 7] [1 2 3 4]
Xc dimension 288× 4 360× 4 576× 4 288× 4
Xo times [0 0.5 1 1.5 2 2.5 3] [0 0.5 1 1.5 2 2.5 3 3.5 4] [1 2]
Xo dimension 56× 2 72× 2 16× 2
Xp times [3.5 4 4.5 5 5.5 6] [4.5 5 5.5 6 6.5 7] [3 4]
Xp dimension 48× 2 48× 2 16× 2
y dimension 288× 1 360× 1 576× 1 288× 1
z dimension 56× 1 72× 1 16× 1
σ2
2 0.005 0.001 0.005 0.001 0.005 0.001 0.01
δ % of r 7.2% 3.2% 7.2% 3.2% 7.2% 3.2% 10%

2.5 Results

In this section, we present results of the Bayesian calibration method on simulated observa-

tions and real observations as described in Section 2.4. For detailed implementation steps,

readers are referred to Section Appendix 1 in the supplementary document.

For simulated observations, we show three plots, prediction results with true processes

(Fig. 2.8), 95% credible bands with true processes (Fig. 2.9) and relative errors for

prediction (Fig. A.1). Relative errors R = [R1 · · ·Rm]T over the height of the AAA are

calculated as

Ri =
| Pi − Ti |

Ti
, ∀i ∈ {1, · · · ,m}, (2.20)

where T = [T1 · · ·Tm]T is the realized true process for the simulated observation case that

is described in Section 2.4.1.

For the real observations, the prediction and credible band graphs are given together in
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Fig. 2.11. Since only observations are available for this case, relative errors for prediction

are calculated by replacing {Ti} in (2.20) with the observations (i.e., noisy true values) as

shown in Fig. A.2b.

2.5.1 Results from Simulated Observation Cases

From Figs. 2.8, 2.9, and A.1 of the simulation study, we observe the following findings.

Prediction quality improves when more computation model outputs are used for calibration.

When we consider different sampling time resolutions, prediction quality monotonically im-

proves from Case 1 (coarse resolution) to Case 3 (fine resolution). Smaller model errors

(Cases 1b, 2b, and 3b) provide better prediction results. Compared to Cases 1a, 2a, and

3a (left column of each plot), prediction quality from Cases 1b, 2b, and 3b (right column of

each plot) is better. As one can expect, prediction quality decreases at the year for which

the computation model outputs or observations are not available for calibration. For ex-

ample, at years 4.5, 5, and 5.5, the errors between the true processes and predictions are

more pronounced in Case 1a since both computation model outputs and observations are

not available at those years. In particular, predictions at years 6.5 and 7 for Case 2 are the

worst in terms of relative errors. Such results are reflected in wide credible bands as well. A

possible reason is that calibration for Case 2 did not have information at years 6.5 or later

to predict at years 6.5 and 7. Recall that computation model outputs are up to year 6 and

observations are up to year 4. On the other hand, calibration for Case 1 has computation

model outputs at year 6 to predict at years 4.5, 5 and 5.5. This result suggests that we can

use computation model outputs at future times during calibration for better prediction. In

this regard, results from Case 3 are better than Cases 1 and 2. However, more computation

model outputs in the calibration process implies higher computational burden as shown in
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Figure 2.8. Predictions of the true processes. T [t] denotes the true values at year t, while
P [t] denotes the predictions at year t. The solid line denotes the true values, while the
dashed line denotes the predictions.

Table 2.4.

From the Bayesian calibration, we have posterior samples of calibration parameters as
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(a) Case 1a (b) Case 1b

(c) Case 2a (d) Case 2b

(e) Case 3a (f) Case 3b

Figure 2.9. 3D 95% credible band of predictions. The blue stars denote the true values
lying inside the credible band. The red marks denote the true values lying outside the
credible band.

well as hyperparameters. For the simulated observation case, true values of parameters

(values that were used to generated the data) are known so that we can compare the per-
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formance of Bayesian calibration for various simulation scenarios. The calibrated estimates

of standardized θ1 and θ2 for each case are provided in Table 2.3. Posterior densities of

standardized θ1 and θ2 are shown in Supplementary Fig. A.3. The prior distributions and

estimates of hyperparameters are shown in Supplementary Tables A.1–A.8.

Comparing the posteriors of θ1 and θ2 in all cases, we clearly notice that the posteriors

of Case 3 have the sharpest peaks around the true values, which can be utilized as point

estimators. As shown in Table 2.3, the posterior estimates of θ1 and θ2 in Case 3b are the

closest to their true values 0 and 0 among all cases. This also illustrates that more infor-

mation from computation model outputs can give more accurate estimates of the calibrated

parameters. Consequently, better estimation of calibrated parameters is likely to give us

better quality of predictions.
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(a) Predictions of the true processes. T [t]
denotes the true values at year t, while P [t]
denotes the predictions at year t. The solid line
denotes the true values, while the dashed line
denotes the predictions.

(b) 3D 95% credible band of predictions. The
blue stars denote the true values lying inside
the credible band. The red marks denote the
true values lying outside the credible band.

Figure 2.10. Predictions and credible bands for Case 2c.
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2.5.1.1 Robustness of prior selection

To investigate the impact of different priors on Bayesian calibration, we compare the results

of Case 2b and Case 2c, where Case 2c is the same as Case 2b except the prior variances of

calibration parameters are 10 times larger.

The posteriors of θ1 and θ2 for Case 2c (Fig. A.4a, in the supplementary document) cover

the prior mean values 0 and 0, but they have larger posterior variances than those from Case

2b due to the larger prior variances. We see that the predictions (Figs. 2.8d and 2.10a) and

the 95% credible bands (Figs. 2.9d and 2.10b) are similar even though their prior variances

are quite different. This can be seen also in relative errors (Figs. A.1d and A.2a). This

implies that our Bayesian calibration method is robust to such changes in priors. Therefore,

we may use a diffuse prior that can cover all the possible values of parameters θ by learning

the statistical information from the background and the computation model. One can choose

the priors for the real observation case in a similar way.

2.5.1.2 Computation time

In this study, computation model outputs for calibration were generated separately. Calibra-

tion and prediction were implemented using the computational model outputs together with

observations. Our method requires computation model outputs for each set of calibration

parameters. Thus, we provide computation time to generate computation model outputs per

each set of calibration parameters. The time to generate computation outputs by solving

the G&R computation model is 10 minutes for one combination of parameters (θ1 and θ2),

producing outputs in 8 grid points of heights (total height is 15 cm) and every 5 days out of

total 2750 days. The G&R computation has been coded and implemented using MATLAB

R2012a on an Intel Core i7 3770 3.4 GHz Processor with 12 GB of RAM.

41



If we generate a large number of computation model outputs for densely sampled calibra-

tion parameter values, the accuracy of calibration and prediction will improve at the expense

of the computational cost. Note that this computation is naturally parallel since we run the

computation model on a given parameter vector, the procedure of which is repeated to cover

a defined range of parameter combinations. As the computation model becomes increasingly

complicated, this time will also increase. The total computation will still remain parallel.

In Table 2.4, we show the computation time for Bayesian calibration and prediction. Case

1, Case 2, and Case 3 took around 6.5, 12, and 30 hours, respectively. As expected, Case

3 takes the longest time yielding the best prediction results. To provide more insight, we

divide the total computational time into two parts in Table 2.4: one spent in optimization to

find ψ1 and ψ2, the other one spent in calculation of estimation, prediction, and uncertainty

via sampling. As can be seen in Table 2.4, the latter part takes more time due to the

sequential computation of Bayesian analysis steps. All computations for Bayesian analysis

were implemented on a twelve-core CPU 2.90GHz running Windows Server 2008 using R

software (R version 3.1.1 Copyright (C) 2014 The R Foundation for Statistical Computing).

We used the package “calibrator” [45] in R with appropriate modifications in order to adopt

our application and also to reduce computation time significantly (e.g., 100 times faster).

The results from Cases 1-3 illustrate that if affordable, the best results are achieved when

Xc has a dense time grid covering the whole targeted prediction range of interest.

2.5.2 Results from Real Observation Case

In this section, we discuss the calibration results from real observations using CT images 1-4

as shown in Fig. 2.5, i.e., (CT images taken at 0, 1.2, 2.3, and 3.2 years, respectively). To

generate computation model outputs to be used for calibration, we consider the inputs Xc
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Table 2.3. Posterior estimates of θ1 and θ2

Case θ
org
1 (mean, std1) θ

org
2 (mean, std) θ1(mean, std) θ2(mean, std)

1a (0.678, 0.035) (6.05, 0.105) (0.225, 0.288) (0.015, 0.032)
1b (0.668, 0.023) (5.912, 0.147) (0.149, 0.281) (−0.027, 0.045)
2a (0.681, 0.035) (6.072, 0.105) (0.249, 0.079) (0.022, 0.032)
2b (0.672, 0.024) (6.013, 0.080) (0.177, 0.195) (0.004, 0.025)
3a (0.669, 0.016) (5.997, 0.056) (0.155, 0.127) (−0.001, 0.017)
3b (0.660, 0.010) (6.003, 0.040) (0.083, 0.084) (0.001, 0.012)
2c (0.665, 0.032) (5.992, 0.115) (0.122, 0.264) (−0.003, 0.035)

Real (0.250, 0.096) (0.858, 0.062) (0.406, 0.784) (−0.041, 0.515)
1 std denotes the standard deviation.

Table 2.4. Computation times for Bayesian calibration and prediction. Estimation (time)
describes the time spent in maximizing to estimate ψ1 and ψ2, while sampling (time)
describes the time spent in calculating predictions and credible intervals via sampling from
posteriors.

Case Estimation Sampling Case Estimation Sampling
1a 1.177 hours 5.305 hours 1b 1.195 hours 5.160 hours
2a 2.828 hours 8.785 hours 2b 2.796 hours 8.941 hours
3a 7.314 hours 24.377 hours 3b 7.221 hours 24.240 hours
2c 2.875 hours 9.044 hours Real 8.237 mins 2.998 hours

for a computation model as follows. Eight heights uniformly ranging from 9.3 to 17.5 are

chosen. For calibration inputs, θ
org
1 is chosen from {0.05, 0.2, 0.35} and θ

org
2 is chosen from

{0.7, 0.90, 0.99}. 500 iterations are used for Stage 1 and 100 iterations are used for Stage 2.

The computation time is 30 minutes as shown in Table 2.4.

Table 2.3 shows the estimates of all calibration parameters. The prior means of θ
org
1 and

θ
org
2 are 0.2 and 0.863, and their prior standard deviations are 0.150 and 0.148, respectively.

The resulting posterior means of θ
org
1 and θ

org
2 from Bayesian analysis are 0.250, and 0.858,

and their standard deviations are 0.096 and 0.062, respectively.

We withhold observations for the last two years during the calibration procedure in order

to validate our approach by comparing predictions on the last two years (CT images 3 and

4, taken at 2.3 and 3.3 years, respectively). In contrast to the simulation study, we compare

the results with observations (noisy true values) since the true process is not available in
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the real observations. The difference between the true process and the observation (the

measurement error) is estimated to be N (0, 0.01) from the real observation data used for

Bayesian calibration as shown in Table 2.2. There are some larger discrepancies in the lower

part of predictions at 3.2 years, which can be shown by the corresponding larger relative

errors in Fig. A.2b. Most of the relative errors are less than 5%. Besides, Figure 2.11a shows

how close the Bayesian calibration model predicts the observation (i.e., noisy true) values.

From Fig. 2.11b, we also find that only one observation value lies outside of the credible

bands. These results support that our approach has a capability to predict AAA expansion

using real data.
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(a) Predictions of the observation processes.
O[t] denotes the observation values at year t,
while P [t] denotes the predictions at year t.
The solid line denotes the observations, while
the dashed line denotes the predictions.

(b) 3D 95% credible band of predictions. The
blue stars denote the observations lying inside
the credible band. The red marks denote an
observation value lying outside the credible
band.

Figure 2.11. Predictions and credible bands for Real observation.

2.6 Discussion and Conclusion

From prediction graphs in Figs. 2.8e and 2.8f of Case 3 (simulation study), we notice that the

diameters of proximal and distal ends of the true line at year 7 tend to be smaller than the
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previous ones. When the AAA is gradually expanding, the end of both regions can be axially

compressed, which means the radii of the two ends are often contracted. The computation

model successfully captures this phenomenon. Currently we are studying longitudinal images

of abdominal aortic aneurysms, registered with the vertebral column. We speculate that the

renal vein and artery, superior mesenteric artery, and iliac bifurcation can serve as an anchor

(both longitudinal and circumferential directions at the superior and inferior boundaries) to

the infrarenal AAA during expansion. Hence, it may be possible that the physical constraints

of the tethering of those vessels provide a strong confinement, or an anchor at the region

of the aorta. During the AAA expansion, the volume of the AAA’s sac will gradually

increase while stretching mostly in the circumferential direction and slightly in the axial

direction simultaneously. Hence, because of the AAA expansion and the confinement in

axial direction, the neck and distal part of aorta (from renal branches to the AAA’s sac)

will be compressed in the axial direction. Using the 3D growth and remodeling simulation,

Zeinali et al. (2012) [115] show the local change in the stress distribution, in which the stress

of the sac is increased but the neck’s stress is decreased.

Recall that we estimated α1 and α2 a-priori before Bayesian calibration since we assume

that the peak location of the future AAA and its overall geometry do not change significantly

from the previous scans. As illustrated in the real observation case, the AAA peak location

and the aneurysm shape did not significantly change during the follow-up images, which

support our approach.

At present, implementing a full Bayesian analysis especially in a large data case is not

practical since Stage 2 (the process of estimating ψ2) in Fig. 2.7 is time consuming even for

one iteration. If we adopt a full Bayesian method, e.g., Gibbs sampling, we need to update

ψ2 in every iteration. In this case, the computational time will quickly accumulate to a
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non-feasible numerical solution. This is the main reason to use point estimators ψ1 and ψ2

instead of using a full Bayesian method. The case studies presented in the paper using our

approach with point estimators show this method’s feasibility and good performance.

The estimates of hyperparameters in all cases are shown in Supplementary Tables A.1–

A.8. Estimates of β11 (the coefficient for time t) are always positive, which means the radii

of AAAs increase in time due to AAA expansion. Estimates of β12 (the coefficient for θ1)

are also positive in all cases, which means the QoI, i.e., the radii of AAA increases as θ1

increases. This can be explained by the damage function (2.1). The QoI increases while

the elastin contents decreases as the amplitude of the damage function (e.g., θ1) increases.

Estimates of β13 (the coefficient for θ2) are negative in the real observation case while all

β13’s are positive in the simulation cases. This could be due to the fact that θ2 values are

largely different between real and simulation observations. In particular, θ2 samples values

from {0.7, 0.9, 0.99} in the real observation case while θ2 samples values from {2, 6, 10} in the

simulation cases (with 6 being the true value). The largely different parameters values could

give different local sensitivities of the QoI with respect to parameters when the influence of

the parameters is rather complex. On the other hand, the estimates of β21, β22 and σ2
2 in all

cases are small. This implies that the computation model could explain most of the linear

and covariance structures of the true process.

The results from the simulation case study suggest that Bayesian calibration may be used

to combine the computation model, prior and uncertainty models, and real observations to

predict the QoI at future times or at unobserved locations. Computation model output data

provide a deterministic trend of the expansion process, which is modeled by a Gaussian

process. Additionally, computation model discrepancies obtained from real observations are

modeled by another Gaussian process. When we have more information from the computa-
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tion model (in the form of finer grids for inputs Xc), we achieve lower prediction errors, and

the posteriors of parameters θ1 and θ2 are more likely to concentrate on their true values

as illustrated in our simulation results. We also find that posteriors and predictions from

our approach are robust to the selection of priors for θ1 and θ2. In the real observation

case of one patient, the results of Bayesian calibration indicated that the predictions are

reasonably good when compared with the unused last two observations. Most of the unused

observations match reasonably well with predictions and lie inside the 95% credible bands.

The model and the observation errors collectively capture the structure of the true process

in a consistent manner from a Bayesian perspective.

Considering these results, we conclude that the Bayesian calibration process is capable of

predicting complex G&R AAA processes. We also provide evidence that this holds true for a

set of real longitudinal observations, where Bayesian calibration produces good predictions.

However, there is a need for validating our approach with a large number of real observation

cases to evaluate its performance and efficacy in a clinical sense. We believe that for given

past CT images of a patient, Bayesian calibration can help to guide the scheduling of future

CT scans according to predictions with the credible bands.

We also used the 2D axisymmetric G&R model ignoring the time evolution of the cen-

terline in order to simplify the formulation of the Bayesian calibration process and use only

two parameters to study the effectiveness of Bayesian calibration. As future work, we plan

to consider complicated damage functional shapes with more parameters as well as asym-

metric AAA expansion in a 3D space. Additionally, the linearity assumption on the mean

functions for Gaussian processes in (2.5) will be relaxed to be more flexible for better predic-

tion performance. We also plan to investigate how to deal with high-dimensional calibration

parameters when flexible and complex functions are used for damage and the rate of mass
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production. Finally, we will investigate how to incorporate other available patient-specific

data for Bayesian calibration of a particular patient case.

2.7 Data Accessibility

More information about the results is summarized in the supplementary document in the

forms of tables and figures. The real observation data set used for the real observation

case in this paper (Fig. 2.5) is available in the websites of the corresponding authors (http:

//www.egr.msu.edu/∼jchoi/files/papers/index.html and http://www.egr.msu.edu/∼sbaek/

Publications.html).
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Appendix 1 Programming steps for simulated obser-

vations

Figure 2.6 shows us the whole process of Bayesian analysis which combines the information

of priors, computer model, statistical model and observations to calibrate the parameter θ

to make predictions. To be more specific, the programming steps for the simulation study

are given as follows. The sections, tables, equations referred here are from the main paper.

Step 0: Specify the statistical models for m1(x,θ) and m2(x) (See Sections 2.(d)).

Step 1: Set the initials including true values of ψ2 and β2, normal priors of θ, log-normal

priors of ψ1 and ψ2. See prior assumptions in Section 3.

Step 2: Determine inputs Xc, Xo and Xp as described in Table 2.

Step 3: Simulate the full data d = [yT zT ]T by using Xc, Xo and true values of ψ2 and

β2 as described in Section 4.

Step 4: Run Stage 1 with 500 iterations to obtain the estimate ψ̂1. See Section 3.

Step 5: Run Stage 2 with 100 iterations to obtain the estimate ψ̂2. See Section 3.

Step 6: Draw samples of θ from the posterior distribution p(θ | ψ̂,d) with estimated ψ̂ =

[ψ̂T1 , ψ̂
T
2 ]T plugged in. See Section 3.

Step 7: Plug samples of θ, estimated ψ, full data d and Xp into (3.10) and (3.11) to get

predictions and their corresponding variances. See Section 3.
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Appendix 2 Other Results

Table A.1. Priors and Estimates of Hyperparameters for Case 1a

ψ1 ωx1 ωx2 ωθ1 ωθ2 σ2
1

Lognormal Prior
mean 1 1 1 1 1

variance 1.1 1.1 1.1 1.3 1.2
Estimates from Stage1 0.641 6.552 0.044 0.725 0.355

ψ2 λ ω?x1 ω?x2 σ2
2

True values 0.001 1 1 0.005

Lognormal Prior
mean 0.01 1 1 0.005

variance 0.1 1.1 1.1 0.2
Estimates from Stage2 0.0007 0.270 0.185 0.022

β β10 β11 β12 β13 β21 β22

Estimates 0.008 0.626 0.096 0.290 0.016 -0.048

Table A.2. Priors and Estimates of Hyperparameters for Case 1b

ψ1 ωx1 ωx2 ωθ1 ωθ2 σ2
1

Lognormal Prior
mean 1 1 1 1 1

variance 1.1 1.1 1.1 1.3 1.2
Estimates from Stage1 0.703 6.406 0.046 0.702 0.290

ψ2 λ ω?x1 ω?x2 σ2
2

True values 0.001 1 1 0.001

Lognormal Prior
mean 0.01 1 1 0.001

variance 0.1 1.1 1.1 0.2
Estimates from Stage2 0.002 0.442 0.791 0.0007

β β10 β11 β12 β13 β21 β22

Estimates 0.0008 0.628 0.096 0.291 0.024 0.017
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Table A.3. Priors and Estimates of Hyperparameters for Case 2a

ψ1 ωx1 ωx2 ωθ1 ωθ2 σ2
1

Lognormal Prior
mean 1 1 1 1 1

variance 1.1 1.1 1.1 1.3 1.2
Estimates from Stage1 0.803 6.815 0.059 0.675 0.261

ψ2 λ ω?x1 ω?x2 σ2
2

True values 0.001 1 1 0.005

Lognormal Prior
mean 0.01 1 1 0.005

variance 0.1 1.1 1.1 0.2
Estimates from Stage2 0.001 0.384 0.272 0.122

β β10 β11 β12 β13 β21 β22

Estimates 0.009 0.637 0.101 0.315 -0.086 -0.016

Table A.4. Priors and Estimates of Hyperparameters for Case 2b

ψ1 ωx1 ωx2 ωθ1 ωθ2 σ2
1

Lognormal Prior
mean 1 1 1 1 1

variance 1.1 1.1 1.1 1.3 1.2
Estimates from Stage1 0.700 6.836 0.054 0.990 0.304

ψ2 λ ω?x1 ω?x2 σ2
2

True values 0.001 1 1 0.001

Lognormal Prior
mean 0.01 1 1 0.001

variance 0.1 1.1 1.1 0.2
Estimates from Stage2 0.004 0.331 1.103 0.003

β β10 β11 β12 β13 β21 β22

Estimates 0.030 0.638 0.102 0.313 -0.014 -0.009

Table A.5. Priors and Estimates of Hyperparameters for Case 2c

ψ1 ωx1 ωx2 ωθ1 ωθ2 σ2
1

Lognormal Prior
mean 1 1 1 1 1

variance 1.1 1.1 1.1 1.3 1.2
Estimates from Stage1 0.794 6.467 0.054 0.818 0.283

ψ2 λ ω?x1 ω?x2 σ2
2

True values 0.001 1 1 0.001

Lognormal Prior
mean 0.01 1 1 0.001

variance 0.1 1.1 1.1 0.2
Estimates from Stage2 0.001 0.353 2.925 0.008

β β10 β11 β12 β13 β21 β22

Estimates 0.009 0.641 0.101 0.312 0.006 -0.003
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Table A.6. Priors and Estimates of Hyperparameters for Case 3a

ψ1 ωx1 ωx2 ωθ2 ωθ2 σ2
1

Lognormal Prior
mean 1 1 1 1 1

variance 1.1 1.1 1.1 1.3 1.2
Estimates from Stage1 0.898 15.920 0.250 1.640 0.533

ψ2 λ ω?x1 ω?x2 σ2
2

True values 0.001 1 1 0.005

Lognormal Prior
mean 0.01 1 1 0.005

variance 0.1 1.1 1.1 0.2
Estimates from Stage2 0.003 0.210 0.054 0.032

β β10 β11 β12 β13 β21 β22

Estimates 0.070 0.621 0.094 0.341 -0.030 0.004

Table A.7. Priors and Estimates of Hyperparameters for Case 3b

ψ1 ωx1 ωθ1 ωθ1 ωθ2 σ2
1

Lognormal Prior
mean 1 1 1 1 1

variance 1.1 1.1 1.1 1.3 1.2
Estimates from Stage1 0.951 15.786 0.217 1.971 0.526

ψ2 λ ω?x1 ω?x2 σ2
2

True values 0.001 1 1 0.001

Lognormal Prior
mean 0.01 1 1 0.001

variance 0.1 1.1 1.1 0.2
Estimates from Stage2 0.001 0.637 1.705 0.0006

β β10 β11 β12 β13 β21 β22

Estimates 0.066 0.616 0.094 0.345 -0.020 0.015

Table A.8. Priors and Estimates of Hyperparameters for real observations

ψ1 ωx2 ωx2 ωθ1 ωθ2 σ2
1

Lognormal Prior
mean 1 1 1 1 1

variance 1.1 1.1 1.1 1.3 1.2
Estimates from Stage1 0.242 1.702 0.082 0.008 0.729

ψ2 λ ω?x1 ω?x2 σ2
2

Lognormal Prior
mean 0.01 1 1 0.1

variance 0.1 1.1 1.1 0.2
Estimates from Stage2 0.01 1 1 0.001

β β10 β11 β12 β13 β21 β22

Estimates 0.182 0.537 0.163 -0.189 0.021 -0.058
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Figure A.1. Relative errors between predictions and tmrue values.
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Figure A.2. Relative errors for Case 2c (a) and for real observation case (b).
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Figure A.3. Prior and posterior densities of θ1 and θ2
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Figure A.4. Prior and posterior densities of θ1 and θ2.
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Chapter 3

Patient-Specific Prediction from

Multi-subject Data

3.1 Introduction

The computer model is built based on all the 26 subjects which determine the biomedical

system of AAA enlargement. Therefore, the resembling mechanism of computer model con-

siders both the within-subject and between-subject effects. But the Patient-specific Bayesian

calibration calibrates the unobserved parameters in the computer model by consider real ob-

servations from only one subject, which might actually cause the calibration results to distort

itself more on the mechanism determined by the specific patient. Therefore, it has practical

meaning to build the Bayesian calibration model for multi-subject data so that the calibrated

parameter could consider uncertainties from real observations across all the subjects.

Bayesian calibration analysis of longitudinal imaging data it self is very challenging and

interesting. On the one hand, the dimension of imaging data for a single patient at only

one time point is very high, not to say multi-subject data collected at multiple time points.

Thus, whatever models built for the data requires a heavy computational burden. On the

other hand, variability of real observations happens both within-subject and between-subject

across time. And as we know, calibration parameters are unknown inputs in the computer
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model proposed by the biomedical engineers. Thus, how uncertainties in real observations

across all the subjects affect uncertainties of calibration parameters is an important problem

in Bayesian analysis, since no others have done it yet. But in Bayesian analysis, mixing

and separating so many uncertainties with different properties is quite a challenging and

worthwhile work to do.

Given the above reasons, we model the Bayesian calibration for multi-subject data as

follows. Mostly, we keep the same notation and symbols as Single-subject modeling case in

Chapter 2.

3.2 Calibration model

Suppose the total number of subjects is I, then for the i-th subject, the real observation zij

can be modeled as

zij = r(xij ,θi) + δ(xij) + εij , ∀i ∈ {1, · · · , I}, (3.1)

where j = 1, · · · , ni, which means we have ni observations from CT scan images of a given

subject i. r(·, ·) is the computer model. δ(·) is the model error. εij is the observation

error. We assume that each εij is independently distributed as N (0, λ), which represents a

normal (Gaussian) random variable with mean 0 and variance λ. We further assume that

observational errors are independent among and within subjects.
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3.3 Statistical models

Let GP(m(·),k(·, ·)) be the Gaussian process with the mean function m(·) and the covariance

function k(·, ·). We introduce the following Gaussian processes as prior beliefs for the G&R

computation model and the model error:

r(xi,θi) ∼ GP(m1(xi,θi),k1(xi,x
′
i)),

δ(xi) ∼ GP(m2(xi),k2(xi,x
′
i)).

(3.2)

To specify Gaussian process priors in (3.2) further, we introduce mean and covariance struc-

tures for both processes.

For a mean structure, one can consider a linear combination of basis functions to approx-

imate the general mean structure.

m1(xi,θi) = h1(xi,θi)
Tβ1

= β10 + β11ti + β12θi1 + β13θi2,

(3.3)

where h1(xi,θi) = [1 ti θi1 θi2]T and β1 = [β10 β11 β12 β13]T .

m2(xi) = h2(xi)
Tβ2 = β21ti + β22si, (3.4)

where h2(xi) = [ti si]
T and β2 = [β21 β22]T .

These mean structures imply that the mean function of the G&R computation model

is linear in time ti and calibration parameters, {θi1, θi2}. The mean function of the model

error is linear in time ti and location si. β = [βT1 βT2 ]T are hyperparameters for the mean

functions in Bayesian context.

For a covariance structure, we use the following exponential functions as follows.
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k1(xi,x
′
i) = σ2

1 exp{−(xi − x′i)Ωx(xi − x′i)T } exp{−(θi − θ′i)Ωθ(θi − θ′i)T },

k2(xi,x
′
i) = σ2

2 exp{−(xi − x′i)Ω?
x(xi − x′i)T },

where Ωx, Ω?
x are diagonal matrices such that

Ωx =

 ωx1 0

0 ωx2

 ,Ωθ =

 ωθ1 0

0 ωθ2

 ,Ω?
x =

 ω?x1 0

0 ω?x2



so that the hyperparameters for the covariance functions are σ2
1, σ2

2 and wxj , wθj , w
?
xj ’s.

For the parameters controlling the covariances, we introduce ψ = [ψ1 ψ2], with

ψ1 = [ωx1 ωx2 ωθ1 ωθ2 σ
2
1],

ψ2 = [ω?x1 ω
?
x2 σ

2
2].

(3.5)

ψ1 is the set of hyperparameters related to the G&R computation model. ψ2 is the set of

hyperparameters related to model error.

3.4 Computer outputs

Let Ni be the number of computer outputs for each subject i and yi = [yi1 · · · ziNi ]
T ∈

RNi×1. Then given the Ni-th inputs for subject i, (x∗iNi ,aiNi), we have the corresponding

computer output yiNi = r(x∗iNi ,aiNi). The corresponding variable input matrix is Xi,c =

[(x∗i1)T , · · · , (x∗iNi)
T ]T ∈ RNi×2. We further define y = [yT1 · · · yTI ]T ∈ RN×1 as the com-

puter model output vector. The final variable input matrix isXc = [(X1,c)
T , · · · , (XI,c)T ]T ∈
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RN×2. We augment variable inputs Xc with parameter inputs ai such that Xi,c(ai) =

[(x∗i1,ai)
T , · · · , (x∗iNi ,ai)

T ]T ∈ RNi×2. The final input matrix for computer outputs is

Xc(a) = [X1,c(a1)T , · · · , XI,c(aI)T ]T ∈ RN×4.

Then, the GP assumption for the computer model gives

yi ∼ N (H1(Xi,c(ai))β1,V1(Xi,c)),

where H1(Xi,c(ai)) denotes the matrix with rows h1(x∗i1,ai)
T , · · · ,h1(x∗iNi ,ai)

T and the

(j, k) entry of V1(Xi,c) for the i-th subject is k1(x∗ij ,x
∗
ik), for j, k ∈ {1, 2, · · · , Ni}. We

denote the mean and covariance as µyi = H1(Xi,c(ai))β1 and Vyi = V1(Xi,c) respectively.

Finally, the computer output is y = [yT1 · · · yTI ]T ∈ RN×1. The distribution of y is

y ∼ N (µy,Vy),

where

µy =



µy1

µy2

...

µyI


,

and

Vy =



Vy1 0 · · · 0

0 Vy2 · · · 0

...
...

. . .
...

0 0 · · · VyI


.
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3.5 Observations

Let ni be the number of observations for each subject i. Let zi = [zi1 · · · zini ]
T ∈ Rni×1 be

the set of observations corresponding to the variable input matrix Xi,o = [xTi1, · · · ,xTini ]
T ∈

Rni×2. Note that Xo = [XT
1,o, · · · , XT

I,o]
T ∈ Rn×2 is not necessarily the same as the set of

variable inputs for the computer model outputs. In general, the number of observations is

smaller than that of the computer model outputs since we can control the amount of the

computer model outputs. To calibrate θ = [θ1, · · · ,θI ] from the observations, we augment

variable inputs Xo with θi such that Xi,o(θi) = [(xi1,θi)
T , · · · , (xini ,θi)

T ]T .

Then, from the calibration model, we have

zi ∼ N (H1(Xi,o(θi))β1 +H2(Xi,o)β2, λiIni + V1(Xi,o) + V2(Xi,o)),

where H1(Xi,o(θi)) denotes the matrix with rows h1(xi1,θi)
T , · · · ,h1(xini ,θi)

T , H2(Xi,o)

denotes the matrix with rows h2(xi1)T , · · · ,h2(xini)
T . V1(Xi,o) is defined in a similar way

to define V1(Xi,c). The (j, k) entry of V2(Xi,o) is k2(xij ,xik), for j, k ∈ {1, 2, · · · , ni}.

Denote µzi = H1(Xi,o(θi))β1 +H2(Xi,o)β2 and Vzi = λiIni + V1(Xi,o) + V2(Xi,o))

Then the observation is z = [zT1 · · · zTI ]T ∈ Rn×1. The distribution of z is

z ∼ N (µz,Vz),
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where

µz =



µz1

µz2

...

µzI


,

and

Vz =



Vz1 0 · · · 0

0 Vz2 · · · 0

...
...

. . .
...

0 0 · · · VzI


.

3.6 Full data

We then combine the computer model outputs and observations, d = [dT1 · · ·dTI ]T ∈

R(N+n)×1 which we call a data vector.

di =

 yi

zi

 ∼ N (mdi
(θi),Vdi), (3.6)

where

mdi
(θi) := E(di|θi,β,ψ) = H(θi)β,

with

H(θi) =

 H1(Xi,c(ai)) 0

H1(Xi,o(θi)) H2(Xi,o)

 ,

and

β = (βT1 ,β
T
2 )T .
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The full mean is

md(θ) = [md1
(θ1)T , · · · ,mdI

(θI)
T ]T .

Denote H(θ) = [H(θ1)T , · · · ,H(θI)
T ]T .

We assume different subjects are independent, then the full covariance is

Vd(ψ) =



Vd1
(ψ) 0 · · · 0

0 Vd2
(ψ) · · · 0

...
...

. . .
...

0 0 · · · VdI
(ψ)


,

where

Vdi(ψ) := var(di|ψ) =

 Vyi CT
yizi

Cyizi Vzi

 ,

where Cyizi ∈ Rni×Ni is a cross covariance matrix whose (j, k) entry is k1(x∗ij ,xik), for

j ∈ {1, 2, · · · , Ni} and k ∈ {1, 2, · · · , ni}. Note that Cyizi is not necessary to be a square

matrix, since usually Ni 6= ni.
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3.7 Bayesian analysis

3.7.1 Joint posterior distribution

We note that md(θ) also depend on β. We drop it to reduce notational complexity. We

have the following full joint posterior distribution of (θ,β,ψ) given d,

p(θ,β,ψ | d) ∝p(θ)p(ψ)f(d;md(θ),Vd(ψ))

∝
I∏
i=1

p(θi)p(ψ)|Vd(ψ)|−
1
2

× exp

[
−1

2
{(d−md(θ))TVd(ψ)−1(d−md(θ))}

]
,

(3.7)

where f(d;m,V ) is the multivariate Gaussian density function with mean m and variance

V .

Clearly, md(θ) is a linear function of β, so we can find

β | θ,ψ,d ∼ N (β̂(θ,ψ),W (θ,ψ)), (3.8)

where

β̂(θ,ψ) = W (θ)H(θ)TVd(ψ)−1d,

W (θ,ψ) = (H(θ)TVd(ψ)−1H(θ))−1,

We can then integrate out β in (3.7) and get

p(θ,ψ | d) ∝ p(ψ)|W (θ,ψ)|
1
2

I∏
i=1

p(θi)|Vdi(ψ)|−
1
2

× exp

[
−1

2
{(di −H(θi)β̂(θ,ψ))TVdi(ψ)−1(di −H(θi)β̂(θ,ψ))}

] (3.9)
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Because of independence, β̂ and W in (3.9) can be simplified as

W (θ,ψ) =

 I∑
i=1

H(θi)
TVdi(ψ)−1H(θi)

−1

β̂(θ,ψ) = W (θ,ψ)

 I∑
i=1

H(θi)
TVdi(ψ)−1di


3.7.2 Full conditional of ψ1

We can estimate ψ1 by maximizing

p(ψ1|y) ∝ |V1(Xc)|−1/2p(ψ1)|W1(Xc(a))|1/2

× exp

{
−1

2
(y −H1(Xc(a))β̂1)TV1(Xc)

−1(y −H1(Xc(a))β̂1)

}
,

(3.10)

where

β̂1 = W1(Xc(a))H1(Xc(a))TV1(Xc)y,

W1(Xc(a)) = (H1(Xc(a))TV1(Xc)
−1H1(Xc(a)))−1.

3.7.3 Full conditional of ψ2

We can estimate ψ2 by maximizing p(ψ2|d,ψ1).To obtain this density, we can first write

p(β2,ψ2|d,ψ1) ∝ p(β2,ψ2)p(z|y,β2,ψ),

since y is independent of the second stage hyper-parameters.

We can’t obtain the distribution of [z|y,β2,ψ] analytically, but starting with [z|y,β2,ψ,θ],

which is normally distributed.

zij | β1,β2,ψ,θi ∼ N (h1(xij ,θi)
Tβ1 + h2(xij)

Tβ2, λ+ V1(xij) + V2(xij))
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E(zij |yi,β2,ψ,θi,β1) = h2(xij)
Tβ2 + h1(xij ,θi)

Tβ1

+t(xij)
TV1(Xi,c)

−1(yi −H1(Xi,c(a))β1),

where the k-th element of t(xij) is k1(xij ,x
∗
ik), for k = 1, . . . , Ni.

We can obtain expressions for its mean vector.

E(zij |yi,β2,ψ)

=
∫
E(zij |yi,β2,ψ,θi)p(θi)dθi

= h2(xij)
Tβ2 +

∫
h1(xij ,θi)

T p(θi)dθiβ̂1

+t(xij)
TV1(Xi,c)

−1(yi −H1(Xi,c(ai))β̂1)

,

where the k-th element of t(xij ,θi) is k1(xij ,x
∗
ik), for k = 1, . . . , Ni.

We can obtain expressions for its variance matrix. The covariance matrix is Vi,ψ2
=

λIi + V2(Xi,o) +Ci, where the (j, k) element of Ci is

∫
cov(r(xij ,θi), r(xik,θi)|yi,ψ1)p(θi)dθi

= k1(xij ,xik)

−tr{V1(Xi,c)
−1t(xij)t(xik)T }

+tr{W1(Xi,c(ai))
∫
h1(xij ,θi)h1(xik,θi)

T p(θi)dθi}

−tr{W1(Xi,c(ai))H1(Xi,c(ai))
TV1(Xi,c)

−1t(xij)
∫
h1(xik,θi)

T p(θi)dθi}

−tr{V1(Xi,c)
−1H1(Xi,c(ai))W1(Xi,c(ai))

∫
h1(xij ,θi)p(θi)dθit(xik)T }

+tr{V1(Xi,c)
−1H1(Xi,c(ai))W1(Xi,c(ai))H1(Xi,c(ai))

TV1(Xi,c)
−1

×t(xij)t(xik)T }
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var
(
r(xij ,θi), r(xik,θi),yi|ψ1,θi

)

=


var(r(xij ,θi)) cov

(
r(xij ,θi), r(xik,θi)

)
t(xij)

T

cov
(
r(xij ,θi), r(xik,θi)

)
var(r(xik,θi)) t(xik)T

t(xij) t(xik) V1(Xi,c)



=


k1(xij ,xij) k1(xij ,xik) t(xij)

T

k1(xij ,xik) k1(xik,xik) t(xik)T

t(xij) t(xik) V1(Xi,c)


Mean

E
(
r(xij ,θi)|yi,ψ1,θi

)
=h1(xij , θi)

Tβ1 + t(xij)
TV1(Xi,c)

−1(yi −H1(Xi,c(ai)β1)

Covariance

cov
(
r(xij ,θi), r(xik,θi)|yi,ψ1,θi

)
=k1(xij ,xik)− t(xij)TV (Xi,c)

−1t(xik)

=k1(xij ,xik)− tr
{
V (Xi,c)

−1t(xij)t(xik)T
}

Plug the above two equations into the law of total covariance, we can get Ci.

We then approximate [zi|yi,β2,ψ] by a normal distribution with the above moments for

the purpose of estimating ψ2. To simplify the notation we write the mean vector as µi,ψ2
=

H2(Xi,o)β2 + η̂(Xi,o) , where η̂(Xi,o) is the vector with elements E(r(xij ,θi)|yi), i =

1, . . . , n. we can now integrate out β2 to obtain the approximation.

p(ψ2|di,ψ1) ∝ p(ψ2)|Vi,ψ2
|1/2|Wi,2|1/2

× exp
{
− 1

2(zi −H2(Xi,o)β̂i,2 − η̂(Xi,o))
TV −1

i,ψ2

(zi −H2(Xi,o)β̂i,2 − η̂(Xi,o))
}
,

(3.11)
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where

β̂i,2 = Wi,2H2(Xi,o)V
−1
i,ψ2

(zi − η̂(Xi,o))

Wi,2 = (H2(Xi,o)
TV −1

i,ψ2
H2(Xi,o))

−1.

Full mean

µψ2
= H2(Xo)β2 + η̂(Xo)

where η̂(Xo) = [η̂(X1,o)
T , · · · , η̂(XI,o)]

Full covariance

Vψ2
=



V1,ψ2
0 · · · 0

0 V2,ψ2
· · · 0

...
...

. . .
...

0 0 · · · VI,ψ2


,

p(ψ2|d,ψ1) ∝ p(ψ2)|Vψ2
|1/2|W2|1/2

× exp
{
−1

2(z −H2(Xo)β̂2 − η̂(Xo))
TV −1

ψ2
(z −H2(Xo)β̂2 − η̂(Xo))

}
,

(3.12)

where

β̂2 = W2H2(Xo)
TV −1

ψ2
(z − η̂(Xo))

W2 = (H2(Xo)
TV −1

ψ2
H2(Xo))

−1.

Notice the following expression

(z −H2(Xo)β̂2 − η̂(Xo))
TV −1

ψ2
(z −H2(Xo)β̂2 − η̂(Xo)) (3.13)

Denote u = z − η̂(Xo).
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Then expression 3.13 can be simplified as

[(I −H2(HT
2 V
−1H2)−1HT

2 V
−1)u]TV −1[(I −H2(HT

2 V
−1H2)−1HT

2 V
−1)u]

=uT [(I − V −1H2(H2V
−1H2)−1HT

2 )V −1(I −H2(HT
2 V
−1H2)−1HT

2 V
−1)]u

=uT [V −1 − V −1H2(HT
2 V
−1H2)−1HT

2 V
−1]u

=uTRu

where R = [V −1 − V −1H2(HT
2 V
−1H2)−1HT

2 V
−1]

Since Vψ2
, W2 and R are symmetric, therefore we can decompose equation 3.12 into the

products of patient-wise likelihoods.

3.7.4 Posterior distribution of calibration parameter θ

p(θ | ψ,d) ∝
I∏
i=1

p(θi)|W (θ,ψ)|
1
2

× exp

[
− 1

2
{(d−H(θ)β̂(θ,ψ))TVd(ψ)−1(d−H(θ)β̂(θ,ψ))}

] (3.14)

3.7.5 Predictive distribution of true process ζ(·)

Its mean function is given by

E(ζ(x)|θ,ψ,d) =h(x,θ)T β̂(θ,ψ)

+ t(x,θ)TVd(ψ)−1(d−H(θ)β̂(θ,ψ)),

(3.15)

where

h(x,θ) =

 h1(x,θ)

h2(x)

 ,
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and

t(x) =

 V1(x,Xc)

V1{x, Xo}+ V2(x, Xo)

 .

Additionally, its covariance function is given by

cov(ζ(xi), ζ(x′i) | θi,ψ,di) = k1(xi,x
′
i) + k2(x,x′)

− t(x)TVdi(ψ)−1t(x′,θ) + (h(x,θ)

−H(θ)TVd(ψ)−1t(x,θ))TW (θ)(h(x′,θ)

−H(θ)TVd(ψ)−1t(x′,θ)).

(3.16)

3.8 Data Analysis

As people are quite familiar with the classical method regression, people are tending to

compare statistical methods with regression. In terms of modeling, calibration is a re-

verse process to regression, where instead of a future dependent variable being predicted

from known explanatory variables, a known observation of the dependent variables is used

to predict a corresponding explanatory variable. In our application problem, the observa-

tion of dependent variables is the Bio-geometrical shape of AAA enlargement, while the

corresponding explanatory variables the calibration parameters. In terms of applications,

Bayesian calibration is actually resembling the mechanisms of a physical system (here is a

biomedical system) by calibrating the internal parameters (unobserved) in a way that the

model outputs can enhance the similarity of the model outputs and real observations. But

obviously, for example, in medical science, a regression model is sometimes used to identify

the significant covariate or treatments. Bayesian calibration integrates the computer model
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as an independent source of useful information and expertise besides the real observations,

while a regular regression usually just has one data source which is just real observations.

Bayesian calibration combines two sources of data–Computer data and real observations.

The latter is usually more expensive to collect than the former one, as a result, computer data

has much higher dimension than the real observations. Thus, the patient specific prediction

modeling is usually more computationally intensive than the regular regression using one

sources of data. And we can imagine, the computation of Bayesian calibration model for

multi-subject data can be much more demanding. Therefore, we make two parts of the data

analysis. One part is the analysis result for small sample (only two patients). Another part

is the analysis result for big sample (which includes 6 patient.)

3.8.1 Small sample

First, I run data analysis on the real observations from two subjects. For each subject, the

computer data covers the time span of real data and future inputs. We use the real data

to calibrate the model at one time point, while we use future inputs to make predictions

at a second time point. Besides, we choose equally spaced 8 points along the center line to

describe the AAA shape. The prediction results are shown as follows.

Priors and estimates of hyperparameters are shown in Table 3.1. As we can see, the

estimates of ψ2 are close to the prior means which are actually equal to true values. As

shown in Fig. 3.1, all the real observations are captured by the credible intervals and the

maximum relative error is 2.5%. The results shown in Fig. 3.2 is not as good as the results

in Fig. 3.1. But it is expected as discussed before, there is an acceleration property of AAA

expansion which sometimes can not be completely captured by the computer model. As the

values of calibration parameters from the two subjects are close, we use the same prior for
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both subject 1 and subject 2 (Figures 3.1d and 3.2d).
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Figure 3.1. Prediction results for subject 1.

3.8.2 Big sample

The design of Bayesian calibration is given as follows. For each subject, the computer data

covers the time span of real data and future inputs. The real data are used to calibrate

the model at the first two time points, while future inputs are used to make predictions at
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Figure 3.2. Prediction results for subject 2.

last two time points. Therefore, the computer data totally have 4 time points. Besides, we

choose equally spaced 8 points along the center line to describe the AAA shape. The results

are shown as follows.

When we have 6 patients, there are totally 12 calibration parameters to be inferred by

Bayesian analysis since each patient has two calibration parameters. And we can imag-

ing, drawing samples from an unknown density with 12 parameters is not an easy task to
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Table 3.1. Priors and Estimates of Hyperparameters

ψ1 ωx2 ωx2 ωθ1 ωθ2 σ2
1

Lognormal Prior
mean 1 1 1 1 1

variance 1.1 1.1 1.1 1.3 1.2
Estimates from Stage1 0.186 1.738 0.0832 0.007 0.640

ψ2 λ ω?x1 ω?x2 σ2
2

Lognormal Prior
mean 0.01 1 1 0.1

variance 0.1 1.1 1.1 0.2
Estimates from Stage2 0.01 1 1 0.001

β β10 β11 β12 β13 β21 β22

Estimates 0.006 0.418 0.146 -0.176 0.053 -0.016

accomplish.

As discussed above, Bayesian calibration is an iterative process of updating uncertainty

distributions on the calibration parameters in a way that is consistent with the observed

data. Therefore, it is more important for the model to update uncertainty distributions on

the calibration parameters by considering all the parameter information of all the subjects.

Therefore, we assume all the subjects have the same calibration parameter values with the

same distributions. From the computer simulations, we chose values of θ1 ranging from 0.5

to 0.8 and values of θ2 ranging from 1 to 9 as the calibration inputs. Then I used normal

priors which can cover the range of calibration parameters (See Figure 3.3). Finally the

posterior will determine a smaller range of values as the update of the values obtained from

computer simulations.

3.9 Conclusion

Based on the results, we can see individualized version of Bayesian calibration is powerful

in integrating individual information (uncertainty) of calibration parameters to update the

range of them. So these new ranges and distributions of calibration parameters will improve
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Figure 3.3. Prior and posterior results for the data consisting of 6 patients.

in some way the consistency between estimated and observed, whenever researchers are

generating simulations from computer code or making predictions of future observations.

Computational difficulties mainly come from drawing samples of calibration parameters

from posteriors by using Metropolis Hasting algorithms. As we can see from equation 3.14,

posterior density is not tractable of calibration parameters analytically. Therefore, once we

incorporate large number of subjects into the model which means the number of calibration

parameters is high, then the computation of high dimensional Metropolis Hasting Algorithms

is very hard to converge and control. Therefore, we have to think of better ways to tackle

this problems.

Additionally, as introduced at the beginning of this dissertation, we should think of

using Latin hypercube sampling to improve the design of Computer Experiments, especially

in the Bayesian calibration model for multiple subjects. Because the computational time is

increasing significantly when we include more subjects into the model and make predicitons.
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Chapter 4

Alzheimer’s Disease Progression

Analysis Using Multi-state Markov

Model

4.1 Introduction

With the rapid aging of the world population, approximately 10 million people worldwide are

affected by Alzheimer’s Disease. It is a leading cause of death behind cardiovascular disease

and cancer. Nearly 10% of people 65 years of age and older are affected by Alzheimer’s

Disease. While the disease is most common in the elderly, it has been diagnosed in patients

in their 40s and 50s.

Alzheimer’s Disease (AD) is a progressive, irreversible, degenerative brain disorder, caus-

ing impaired memory, thinking and behavior [76]. These impairments are related to the

death of brain cells and the breakdown of the connections between them. From the onset of

the symptoms, the disease usually progresses over a period of eight years. But the disease

can last for up to 20 years. Three stages are defined in the advance of AD, from early

signs, mild cognitive impairment to severe dementia. Generally speaking, the early signs of

AD appear after the age of 60, which often include loss of recent memory, faulty judgment,
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and changes in personality. Individuals in the mild stage may even forget how to do simple

routine tasks such as dressing or bathing. In the final stages of the disease patients are

bedridden and frequently develop coexisting illnesses. Most commonly, individuals with AD

die from pneumonia. Although the risk of developing AD increases with age, AD is quite

different from the normal aging process, because AD is a disease, while the normal aging

process is not. Without this disease, the human brain often can operate to the age of 100

and beyond.

The research of Alzheimer’s Disease has been divided into three broad categories: causes

and risk factors, diagnosis, and treatment. Although researchers cannot provide definitive

answers to the causes of Alzheimer’s Disease until now, they’ve made progress to approach

the truth in many ways. For example, genetic predisposition, abnormal protein deposits in

the brain and environmental factors are suspected to play a role in the development of the

disease. In order to understand the pathology of the AD brain, scientists need to understand

the structure and function of the aging nervous system. Particularly to find the causes and

risk factors in AD, they should understand the loss of communication between neurons and

the death of neurons in the AD brain. The research on diagnosis research is focused on

finding ways to identify markers (indicators) of dementias, develop and improve ways to test

patients, determine causes and assess risk factors, and improve methods for finding cases and

sampling populations. When it comes to treatment, researchers are working to slow AD’s

progression, delay its onset, or eventually, prevent it altogether. They are also developing

ways to improve a patient’s ability to function, and to support caregivers of people with AD.

For full descriptions, please refer to the Laboratory of Neuro Imaging website [76].

The data we are using in this paper to understand the structure of the brain system

is magnetic resonance imaging (MRI). MRI is currently the imaging modality of choice
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for assessing neurologic disorders, because of the exclusive capacity of providing excellent

anatomical detail in a safe setting. MRI is an imaging technique based on the principles

of nuclear magnetic resonance that detects proton signals from water molecules and that

allows us to produce high quality images of the internal structure of the living brain. To

distinguish between gray matter, white matter, and cerebrospinal fluid (CSF), certain pro-

tocols are designed to create anatomical images of the brain. As a result, MRI is able to

differentiate between tissue types. By providing the contrast needed to distinguish these,

MRI allows researchers to measure the sizes as well as various other properties of different

parts of the brain [71]. Among all the measurement, quantitative assessment of brain vol-

umes, obtained through volumetric MRI, has been increasingly applied in recent years to

a wide range of neurologic conditions due to advances in computational technology. Typ-

ical current anatomical images of the brain captured by MRI have a spatial resolution of

approximately 1 cubic millimeter (mm3). The volume of an adult human brain is, on av-

erage, between 1,131,0001,273,000 mm3 , with substantial variation between individuals [1].

Although the spatial resolution of modern MRI protocols is very high, 1mm3 of cortical

gray matter can contain between 10,000 and 60,000 neurons, up to four times as many glial

cells per neuron [84], as well as neuronal processes, blood vessels, intracortical myelin and

dendritic spines. Measures of brain volumes have been shown to be valid biomarkers of the

clinical state and progression by offering high reliability and robust inferences on the under-

lying disease-related mechanisms [42]. In general, atrophy rates in different brain structures

of AD patients are related to deterioration of cognitive performance [34].

During all these years the clinical progression of AD has been studied for subjects in

different stages. Subjects with the traditional amnestic MCI (mild cognitive impairment)

have higher annual rate of conversion to AD than NC (normal controls) [78]. In particular,
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MCI subjects with abnormalities in both CSF and medial temporal lobe has a very high risk

of progression to AD [8], where the hippocampal atrophy rate is in the order of 3.5% per

year compared to about 1% per year of MCI subjects not converting to AD [28]. However,

in addition to structures of the medial temporal lobe, volumes of cortical regions in parietal

and lateral temporal lobes are also used to predict the likelihood of progression to AD in

MCI subjects [64]. Moreover, an MRI score reflecting the degree of AD-like brain atrophy

features showed slightly higher predictive value for future cognitive impairment than CSF

measures [105].

In longitudinal medical studies, patients are observed over time and covariate information

is collected at several occasions. The analysis in such studies where individuals may experi-

ence several events is often performed using multi-state models. A multi-state model (MSM)

is a model for a continuous time stochastic process allowing individuals to move among a

finite number of states [70]. For example, the survival analysis is actually a two-state model,

while the continuous time Markov model is one special kind of multi-state model. Partic-

ularly, in our study, each subject is scanned at each visit and thus MRI data are collected

longitudinally. The changing volumes in each brain region plotted by these MRI scans can

be considered as covariate information to predict how AD individuals progress from early

signs, mild cognitive impairment to severe dementia. Commenges, D. [17, 18] have given

reviews on the analysis of interval-censored observations from multi-state models. Sukkar,

Rafid, et al. [100] used Hidden Markov Model (HMM) to help improve the assessment of

Alzheimer’s Disease progression, while Wang Ying, et al [107] proposed a spatio-temporal

methodology based on Hidden Markov Models (HMM), and apply it on four-dimensional

structural brain magnetic resonance imaging series of older individuals. Yu, Hong-mei, et

al. [113] applied Multi-state Markov model to explore known risk factors’ effects on each of
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the possible transitions in the progression of Alzheimer’s Disease. Besides, a bunch of other

references [14, 35, 43, 93, 101, 118] focus on various research interests by using different pre-

diction techniques. Nevertheless, before doing any modeling of AD progression, two things

should be emphasized and understood carefully: measurement of progression and limitations

of prediction. Gelb, Douglas J. [37], from a clinician’s perspective, reviewed questions that

can be answered by the natural course of AD, and specifically, information regarding mea-

sures of functional impairment and how they change over time, whereas Barnes, Deborah

E. [4] pointed out the limitations of most AD risk prediction strategies and suggested that

future techniques should simultaneously model the risk of mortality as well as the risk of AD

over the full preclinical spectrum and to consider the potential harm as well as the benefit

of identifying and treating high-risk older patients.

In this paper, we applied the multi-state Markov model to resemble the progression of

Alzheimer’s Disease. We treated the clinical diagnosis as the response variable (state space),

which consists of 3 levels (states)– NC (Normal control), MCI (Mild cognitive impairment)

and AD (Alzheimer’s Disease). Meanwhile, we treated the screening time (the time when

MRI scans are collected)) as the timeline along which the Markov chain undergoes transitions

from one state to another. Besides, we assumed that transition rates are assumed to be

independent of time (i.e., Markov model is homogeneous), but they depend on patient related

variables, such as MRI regional volumetric information, cognitive assessment information and

demographical information. More specifically, we incorporate them into the Markov model by

considering the logarithm of an transition intensity as a linear function of relevant predictors.

Then we performed likelihood ratio tests (LRT) to compare which model fits the data better.

Finally, we made predictions based on transition rates and transition probabilities by using

a supervised learning method. And leave-one-out cross validation results are provided. As
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a whole, our contributions are listed as follows. First, for this data set, age is recognized

as not a statistically significant risk factor in our Markov model. Second, different sources

of information are integrated together to describe the overall trend of the progression of

Alzheimer’s Disease. Third, transition rates and transition probabilities from the Markov

model provide us a potential direction for predicting the course of Alzheimer’s Disease.

The remainder of this paper is structured as follows: Section 4.2 introduces how we got

and processed the data. Section 4.3 explains in details the multi-state Markov model used

for prediction, the Likelihood ratio test (LRT) for comparison and the survival analysis for

interpretation. Section 2.5 presents with 4 models, the model without any covariates, the

model with a single covariate Age, the model with a single covariate ApoE4 and the model

for predictions with all the known risk factors in the data. Section 2.6 summarizes the

implications of our findings and provide future perspectives.

4.2 Data

ADNI is an ongoing, longitudinal, multi-center study designed to develop clinical, imaging,

genetic, and biochemical biomarkers for the early detection and tracking of Alzheimer’s

Disease (AD). The ADNI study began in 2004 and included 400 subjects diagnosed with mild

cognitive impairment (MCI), 200 subjects with early AD and 200 elderly control subjects.

This initial phase of the study is known as ADNI1. In 2009, ADNI1 was extended with

ADNI GO which assessed the existing ADNI1 cohort and added 200 participants identified

as having early mild cognitive impairment (EMCI). The objective of this phase was to

examine biomarkers in an earlier stage of disease. In 2011, as ADNI GO was ending, ADNI2

began. ADNI2 assesses participants from the ADNI1/ADNI GO cohort in addition to the
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following new participants–150 elderly controls, 100 EMCI participants, 150 LMCI (late

”mild cognitive impairment”) participants and 150 mild AD patients.

We downloaded the ”adnimerge” data from ADNI in 12/8/2014. The ”adnimerge” data

merges together several of the key variables from various case report forms and biomarker lab

summaries across the ADNI protocols (ADNI1 , ADNIGO, and ADNI2). It is updated daily

directly from the Alzheimer’s Disease Cooperative Study (ADCS; http://adcs.org/) data

system and posted to LONI. We separate out all the 570 subjects in ADNI1 as our target data

set. To reduce the impact of unbalanced longitudinal design and characterize the way the

response changes in time, we only keep the 456 subjects who have more than 4 observations

and remove all the others. Among them, 139 subjects, 105 subjects and 66 subjects stay in

NC (Normal control), MCI (Mild cognitive impairment) and AD (Alzheimer’s Disease) all

the time respectively, while 24 subjects, 8 subjects, 105 subjects and 2 subjects convert from

NC to MCI, from MCI to NC, from MCI to AD and from AD to MCI respectively. Besides,

3 subjects convert from NC to MCI to AD. 2 subjects oscillate between NC and MCI, while

another 2 subjects oscillate between MCI and AD.

This cleaned dataset has 272 male subjects and 184 female subjects. Each observation on

every subject is comprised of 3 sources of information – longitudinal MRI regional volumet-

ric information about each subject including ”Ventricles”, ”Hippocampus”, ”WholeBrain”,

”Entorhinal”, ”Fusiform”, ”MidTemp”, ”ICV” (intracranial volume), cognitive assessment

information like ”MMSE” (Mini Mental State Exam [21]) and ”CDR-SB” (Clinical Demen-

tia Rating-Sum of Boxes [12]), demographical information like ”Age”, ”Gender”, ”Race”,

”Education”, ”Marital Status” and one pivotal genetic characteristic ”ApoE4”. Up to 9

structural MRI scans are available for each subject. The average MRI data collecting time

among all the 456 subjects throughout the ADNI1 study is about 3.5 years, while the min-
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Table 4.1. Distribution of age in each diagnosis group

Diagnosis
Age MMSE

mean median sd min max mean median sd min max
NC 75 75 5.09 60 90 29 29 1.15 22 30

NC-MCI 76 76 4.58 63 85 29 29 1.26 24 30
MCI-NC 71 74 7.16 62 80 29 29 1.33 24 30

MCI 75 75 7.18 58 87 28 28 2.14 18 30
MCI-AD 73 73 7.09 55 88 24 25 4.09 0 30
AD-MCI 83 83 0.11 83 83 26 26 2.10 22 29

AD 74 74 7.18 56 88 22 23 4.42 5 30

imum is about 1.5 years and maximum is about 8 years. For patients who are diagnosed

as NC or MCI at baseline (first scan), MRI scans are collected every half year within the

beginning 2 years and every year after 2 years. For the patients who are diagnosed as AD at

baseline, MRI scans are collected every half year within the first year and once at the second

year, therefore we get 4 time points for subjects staying in AD all the time.

Based on the age of each patient at baseline, the 456 subjects can be divided into 4 age

groups – 13 subjects in 50-60, 74 subjects in 60-70, 275 subjects in 70-80 and 94 in 80-90.

In other words, almost 60.31% of the subjects are between 70 and 80. This percentage is

consistent with the natural history timeline that most Alzheimer’s Disease patients were

diagnosed between the ages of 70 and 79 [54]. Additionally, distributions of age in each

diagnosis group are given in Table 4.1. But we haven’t observed any significant differences

of age distribution between different diagnosis groups. As a matter of fact, the relationship

between brain aging and Alzheimer’s Disease (AD) is contentious. One view holds AD results

when brain aging surpasses a threshold. The other view postulates AD is not a consequence

of brain aging. For more details, please refer to Swerdlow, H [102].

To describe and visualize the all the 456 subjects, I made the longitudinal trace plot

(Figure 4.1) and longitudinal interaction plot (Figure 4.2). As shown in Figure 4.1, the

percentage of hippocampus volume to ICV is decreasing with age which is known to all.
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Figure 4.1. Individual plot of percentage of hippocampus volume to ICV vs. age. In each
graph, each black line segement with solid points in it denotes how the hippocampus of
each patient changes with age. The solid point denotes the age when the patient takes
screening. The x-axis is the real age of patients. The y-axis is the percentage of
hippocampus volume to ICV (intracranial volume).

Besides, the slope of the average decreasing trend of AD subjects is higher than those of

NC subjects and MCI subjects. As shown by Figure 4.2a and Figure 4.2b, the paths of

Hippocampus and MMSE aggregated by age at baseline in different diagnosis groups can
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not be clearly separated, while the paths aggregated by screening time (months) can be

separated very well in Figure 4.2c and Figure 4.2d. It implies that natural aging process

interact with the progression process of Alzheimer’s Disease and thus it is better to position

the observations on the time axis with screening time since we aim to detect how Alzheimer’s

Disease affect the transition between different states of severity.

4.3 Methods

A multi-state Markov model is used to model the progression of diseases (see, e.g. Jackson

et al., 2003 [53]) which can provide information of disease progression by transition proba-

bilities between different states and mean sojourn time at one state. Specifically, we used

a homogeneous model by assuming a transition rate (also called transition intensity), the

rate of a transition probability, is independent of time. In other words, this model allows

a transition probability that changes over time but the rate remains constant. Generally

speaking, the transition rate here can be interpreted as the overall changing speed (or risk)

of the progression of Alzheimer’s Disease. Commenges, Daniel, et al. [19] proved that for

large sample size, the incidence (the number of new cases) in time period ∆t approximately

equals to the transition rates times ∆t. If ∆t is the time unit, for instance one year, then

they are the same. Therefore, the transition rate is not just a concept in the statistical

model, but it does have a direct interpretation in clinical science.

Although transition rates are assumed to be independent of time, actually as we know,

changing speed or risk should depend on patient related variables, such as MRI regional

volumetric information, cognitive assessment information and demographical information.

So we incorporate them into the model by considering the logarithm of an transition intensity
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Figure 4.2. Longitudinal plots of fraction of hippocampus volume to ICV and MMSE in 4
different diagnosis groups. ’D11’ denotes the group of patients who stay within NC all the
time. ’D22’ denotes the group of patients who stay within MCI all the time. ’D23’ denotes
the group of patients who ever transit from MCI to AD. ’D33’ denotes the group of
patients who stay within AD all the time.

as a linear function of relevant predictors (known as Cox proportional hazard model [67]).

For detailed explanation of a multi-state Markov model, please see Appendices Appendix 1
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and Appendix 2.

When comparing the longitudinal observations from different clinical groups, at different

aging stages, it is crucial to correctly position the observations on the time axis. This is

not straightforward since the disease appears at different ages and chronologically older

brains may have greater structural integrity than younger ones affected by the pathology

( [66]). And obviously, in our longitudinal study, there are two timelines: screening time and

age. Therefore, the way of accommodating the two timelines into our Markov model should

be clearly described. Actually, we treat the screening time as the timeline along which the

Markov chain undergoes transitions from one state to another, as observations in the original

data are aligned by screening time. Meanwhile, we are thinking about including age as a

covariate into the Markov model so that the continuous effect of age on the progression of

Alzheimer’s Disease will be fully identified.

To investigate which model fits the data better, we perform likelihood ratio tests (LRT).

It helps to determine whether known risk factors increased the risk of progression from one

state to another. The LRT is a statistical hypothesis test in which test statistics is the ratio

of two likelihoods (or -2 log likelihood ratio), where the likelihood in the numerator is from

the null model and the likelihood in the denominator is from the alternative model. The

larger value of the likelihood ratio (or smaller value of -2 log likelihood ratio) indicates the

data support the null model.

We can also describe results with a survival probability curve. Survival probability in the

multi-state Markov model implies the chance that a patient is not entering the final state

(i.e. survived when the final state is ‘death’). Note that the final state in this study is not

’death’ but instead the clinical diagnosis ”Alzheimer’s Disease”. Compared with Kaplan-

Meier (KM) curve [44] which generally models a process with two states and one possible
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transition from an alive state to a dead state, a fitted non-AD probability curve from the

Markov model is more powerful and flexible in modeling longitudinal data with multiple

states and any possible transitions among them.

4.4 Results

In this section, we explore several homogeneous continuous-time Markov models to fit the

growth curve of the severity of Dementia (clinical diagnosis) by including different sets of

covariates into transition rates . We first consider the model without any covariates, then

the model with relevant covariates in it. In particular, we incorporate the real age, ApoE4,

MMSE, CDR-SB, and some regional volumetric variables, such as ”Ventricles”, ”Hippocam-

pus”, ”WholeBrain”, ”Entorhinal”, ”Fusiform”, ”MidTemp”, ”ICV”. The data we used here

includes all the subjects whose diagnosis is NC or MCI at baseline, and then become MCI or

AD in the end. And we treat AD state as the absorbing state, which means once a subject

enters AD state, s/he will never transit to other states.

4.4.1 Model without covariates

A homogeneous Markov model assumes that transition rate from state r to state r′, qrr′ , is

independent of time (Appendix Appendix 1). The model without any covariates serves as

a baseline model which barely describes how the growth curve of the transition probability

changes from previous state to the next state between two screening times. In other words,

the transition rates (changing speed of the severity progression) do not depend on the other

conditions but remain constant within each pair of transitions across time of observation.

The estimate of the baseline intensity (q0,rr′) and its 95% confidence interval (CI) are given
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in Table 4.1.

Transition rate is the changing speed of transition probabilities with respect to time

(equation (A.2) in Appendix Appendix 1). From the Table 4.1, transition from ‘NC’ to

‘MCI’ is about 2% (0.0441-0.0269) higher in rate compared to transition from ‘MCI’ to

‘NC’. Moving from ‘MCI’ state to ‘AD’ state (0.1968) is about 15% higher in rate compared

to moving from ‘NC’ state to ‘MCI’ state (0.0441). More clearly, fitted survival probability

plots in Figure 4.1 shows that subjects in state NC has the higher fitted survival probabilities

(red solid line) than empirical survival probabilities (blue dashed line) while subjects in state

MCI has the lower survival probabilities. The empirical survival curve describes the mean

trend of Alzheimer’s Disease deterioration along with time. In fact, more than half of the

subjects never have a chance to convert into MCI or AD, so the lowest value that empirical

survival probability curve can reach is around 0.6 rather than 0 in common sense. Note

that an empirical survival probability curve is calculated directly from the data without

assuming any model, while the homogeneous continuous-time Markov model gives a smooth

fitted survival probability curve which is different for the patient in different state as shown

in Figure 4.1.

An estimated transition probability describes a chance of a subject moving from one state

to another state for the duration of given time. We provide estimated transition probabilities

for 2 years and 4 years as shown in Tables 4.1. Overall speaking, compared to year 2, the

subjects in year 4 tend to have higher transition probabilities from NC to MCI, from NC

to AD, from MCI to AD. In other words, with the time being, naturally there will be more

and more subjects converting into MCI and AD. Specially, we will observe more and more

complete progression traces that convert from NC to MCI then to AD, although there are

only 3 of them right now. More precisely, the result indicates that a chance of staying in
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Table 4.1. Table of transition rates and probabilities for the model without covariates.

Transition Rates(95% Confidence Intervals)
Probabilities(95% Confidence Intervals)

Year 2 Year 4
NC-NC - 0.9176 (0.8836,0.9417) 0.8447 (0.7794,0.8908)

NC-MCI 0.0441 ( 0.0306, 0.0635) 0.0679 (0.0478,0.0970) 0.1058 (0.0739,0.1477)
NC-AD 0 0.0146 (0.0100,0.0221) 0.0495 (0.0337,0.0719)

MCI-NC 0.0269 ( 0.0159, 0.0454) 0.0414 (0.0250,0.0716) 0.0645 (0.0383,0.1071)
MCI-MCI - 0.6410 (0.5858,0.6886) 0.4136 (0.3494,0.4745)
MCI-AD 0.1968 ( 0.1629, 0.2379) 0.3176 (0.2720,0.3670) 0.5218 (0.4546,0.5856)

the same state is higher than moving to a following progression state within 2 years when

a patient is in either ‘NC’ or ‘MCI’ (higher remaining in the same state values 0.9176 and

0.6410 than the other values). Once the subject is in MCI’ state, there is a 32% chance

that s/he will move to the ‘AD’ state within 2 years. However, chance of moving from MCI

to AD (52%) is getting higher than staying in the same state MCI within 4 years, which is

reasonable to expect.

The estimated mean sojourn time in Table 4.5 shows that a subject stays in ‘NC’ state

about 23 years while a subject stays in ‘MCI’ state for about 4.5 years. This implies the

progression of Alzheimer’s Disease is a slowly changing process especially for the subjects in

NC. This is also confirmed by the estimated transition rates in Table 4.1, where transition

rates at early states are just less than 5%. But once a subject becomes MCI, the converting

speed to AD is much faster (0.2611) and the mean sojourn time staying within MCI is much

shorter (4.5 years).

4.4.2 Model with a single covariate

In this section, we will investigate the effects of two main risk factors: age and apolipoprotein

E e4 (simplified as ApoE4) by building each of them as a single covariate into two separate

models. Details are introduced as follows.
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Figure 4.1. Plot of survival curves (not entering to the final state AD). The dashed blue
line denotes fitted survival curve from NC to AD. The solid red line denotes fitted survival
curve from MCI to AD. The dotted lines denote the 95% confidence band of corresponding
fitted survival curve.

4.4.2.1 Age

The major risk factor for Alzheimer’s Disease (AD) is age, with a sharp increase in incidence

after 60 years (Kawas et al., 2000 [57]). Thus, the inherent link between aging and AD
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should be understood thoroughly and clearly. Just as we know, the morphology observed

in the brains of patients affected by Alzheimer’s Disease (AD) is a combination of different

biological processes, such as normal aging and the pathological matter loss specific to AD

(Lorenzi, Marco, et al. [66]). Therefore, aging might be a contributing effect that accelerate

the progression of Alzheimer’s Disease as well as the transitions from mild status (MCI) to

severe status (AD). All these considerations motivate us to include age (real age when MRI

scans are collected) as a continuous covariate into our Markov model.

To have a brief view of the contributing effect of age, we plot changing curves of fitted

transition rates by age for 3 different transition groups. As shown in Figure 4.2, in the average

sense, transition rates from NC to MCI are increasing with age which is consistent with the

common sense that Brain function deteriorates more likely for older people. But meanwhile,

transition rates from MCI to AD are decreasing with age, which actually contradict with the

fact. The reason might be due to limitations of cross-sectional and longitudinal study designs

[32]. Cross-sectional studies may suffer from cohort effects, and, potentially more seriously,

different recruitment bias across age-groups, while for longitudinal data the selective attrition

and test-retest effects that may be larger than the change across time points (Salthouse,

2012 [90]). And thus it is not surprising to find that compared to model without any

covariates, the model with age is not significant (p-value is 0.1733) according to the likelihood

ratio test Table 4.6.

4.4.2.2 ApoE4

The apolipoprotein E (APOE) e4 allele is the most prevalent genetic risk factor for Alzheimer’s

Disease (AD) (Corder et al., 1993 [20]; Saunders et al., 1993 [92]) and is present in roughly

2025% of North Americans and Europeans (Gerdes et al., 1992 [39]). The presence of an
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Figure 4.2. Fitted transition rates changing with age in different groups. The red solid
line with circle marks denotes the transition rates from NC state to MCI state. The blue
dashed line with triangular marks denotes the transition rates from MCI state to NC state.
The purple dotted line with plus marks denotes the transition rates from MCI state to AD
state. x-axis denotes the age, while y-axis denotes the transition rates.
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e4 allele confers a significantly higher likelihood of developing AD [86]. Shi, Jie, et al. [96]

found significant hippocampal morphological deformation in APOE e4 carriers relative to

non-carriers in the entire cohort as well as in the non-demented (pooled MCI and control)

subjects. Spampinato, Maria Vittoria, et al. [97] found that, in a longitudinal magnetic res-

onance imaging (MRI) study using voxel-based morphometry (VBM), carriers of the APOE

e4 allele with MCI developed atrophy in hippocampus, insula, temporal, and parietal cortex

before converting to AD, while structural changes underlying the conversion to dementia in

non-carriers did not become apparent.

In our study, ApoE4 is a categorical variable, taking values at 0, 1, 2. We group the

ApoE4 into two levels – ApoE4 negative (ApoE4 taking value at 0) and ApoE4 positive

(ApoE4 taking value at 1 or 2). Because there are only 7.51% out of all the subjects

whose ApoE4 takes value at 2 and we won’t get any powerful conclusions if we compare

it with other levels (APoE 4 is 0 or 1). Then we include ApoE4 as a two level categorical

covariate into our Markov model. As expected from the model fitting, carriers of the ApoE4

(ApoE4 is positive) are more likely to transit from NC to MCI and from MCI to AD.

Evidences are shown in Table 4.2, Table 4.3, Table 4.4 and Figure 4.3. In the transition

rates table (Table 4.2), ApoE4 carriers (0.0906) have 3 times higher transition rates from

NC to MCI than ApoE4 non-carriers (0.0299), while ApoE4 carriers (0.2611) have 2 times

higher transition rates from MCI to AD than ApoE4 non-carriers (0.1338). In the table

of transition probabilities at year 2 (Table 4.3), ApoE4 carriers (0.1247) have more than

2 times higher transition probabilities from NC to MCI than ApoE4 non-carriers (0.0495),

while ApoE4 carriers (0.3973) have almost 2 times higher transition rates from MCI to

AD than ApoE4 non-carriers (0.2291). When comparing transition probabilities tables at

different years Table 4.4 (year 4) and Table 4.3 (year 2), the same pattern maintains between
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Table 4.2. Table of transition rates (95% confidence intervals) for the model with
covariate ApoE4.

Transition ApoE4 is positive ApoE4 is negative
NC-MCI 0.0906 (0.0535, 0.1527) 0.0299 ( 0.0180, 0.0495)
NC-AD 0 0

MCI-NC 0.0277 ( 0.0132, 0.0582) 0.0265 ( 0.0126, 0.0556)
MCI-AD 0.2611 ( 0.2067, 0.3297) 0.1338 ( 0.0969, 0.1848)

Table 4.3. Table of transition probabilities (95% confidence intervals) at year 2 for the
model with covariate ApoE4.

Transition ApoE4 is positive ApoE4 is negative
NC-NC 0.8383 (0.7422,0.9016) 0.9434 (0.9070,0.9653)

NC-MCI 0.1247 (0.0760,0.1993) 0.0495 (0.0307,0.0825)
NC-AD 0.0369 (0.0220,0.0615) 0.0071 (0.0039,0.0125)

MCI-NC 0.0382 (0.0182,0.0747) 0.0439 (0.0214,0.0900)
MCI-MCI 0.5645 (0.4920,0.6264) 0.7270 (0.6445,0.7889)
MCI-AD 0.3973 (0.3297,0.4699) 0.2291 (0.1684,0.3022)

ApoE4 carriers and non-carriers. And in both tables, transition probabilities from MCI to

AD are higher than those from NC to MCI. In mean sojourn time table (Table 4.5), ApoE4

carriers have much shorter mean sojourn time than ApoE4 non-carriers which means that

ApoE4 has the effect of accelerating the progression of Alzheimer’s Disease. Compared

to model without any covariates, the model with APOE4 is significant (p-value is 0.0002)

according to the likelihood ratio test Table4.6.

4.4.3 Model with multiple covariates

In this section, we made predictions of possible transitions based on transition probabili-

ties and transition rates by including known risk factors as covariates into the model. The

covariates we incorporate into the model are the real age, ApoE4, MMSE, CDR-SB, and

some regional volumetric variables, such as ”Ventricles”, ”Hippocampus”, ”WholeBrain”,

”Entorhinal”, ”Fusiform”, ”MidTemp”, ”ICV”. Note that we believe that the real age con-

tributes in prediction and thus should be included in the model, although it is not recognized
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Table 4.4. Table of transition probabilities (95% confidence intervals) at year 4 for the
model with covariate ApoE4.

Transition ApoE is positive ApoE is negative
NC-NC 0.7076 (0.5558,0.8161) 0.8922 (0.8312,0.9331)

NC-MCI 0.1750 (0.1101,0.2610) 0.0827 (0.0505,0.1278)
NC-AD 0.1175 (0.0732,0.1885) 0.0251 (0.0143,0.0423)

MCI-NC 0.0536 (0.0240,0.1111) 0.0734 (0.0366,0.1495)
MCI-MCI 0.3235 (0.2411,0.3969) 0.5307 (0.4331,0.6196)
MCI-AD 0.6229 (0.5423,0.7087) 0.3959 (0.3069,0.4989)

Table 4.5. Table of mean sojourn time (95% confidence intervals) for the model with
covariate ApoE4.

Transition Model without covariates
Model with covariate ApoE4

ApoE is positive ApoE is negative
NC 22.6864 (15.7601, 32.6567) 11.0653 (6.5486,18.6972) 33.5035 (20.1918,55.5913)

MCI 4.4695 (3.7402, 5.3411) 3.4632 (0.3939, 2.7712) 6.2389 (4.6385, 8.3914)
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Figure 4.3. Transition probabilities changing with time for the model with covariate
ApoE4. The red solid line with circle marks describes transition probabilities from NC
state to MCI state. The blue dashed line with triangle marks describes transition
probabilities from MCI state to NC state. The purple dotted line with plus marks
describes transition probabilities from MCI state to AD state. x-axis denotes the scanning
time, while y-axis denotes the transition probabilities. The left panel describes the ApoE4
carriers (positive), while the right panel describes the ApoE4 non-carriers (negative).

as a significant risk factor in the previous section (p-value is 0.1733 in the Likelihood Ratio

Test).
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Table 4.6. Likelihood ratio test between different models.

Models Age ApoE4 Volumes Scores Full

without covariates
-2 log LR 4.9796 19.7598 69.10305 129.8185 166.6650
df 3 3 18 6 30
p-value 0.1733 0.0002 0 0 0

Volumes
-2 log LR -64.1235 -49.3432 - 60.7155 97.5619
df 15 15 - 12 12
p-value 1 1 - 0 0

4.4.3.1 Prediction and validation

As described in the previous sections, MCI subjects have much higher risk of developing into

AD. Therefore, we are more interested in making predictions of transitions from MCI to AD

(only two- state model). The data we used here includes only the subjects whose diagnosis is

MCI at baseline, and then become AD in the end, which means we are not going to predict

the transition from NC to MCI. And we still treat AD state as the absorbing state.

Cross validation is performed by processing the testing set with the trained Markov

model. More specifically, a general two-step training and testing procedure is described as

follows. All the transition rates and probabilities here stand for the transition from MCI to

AD, and the logistic regression is just used as a tool for discriminating observations with

lower or higher transition rates and transition probabilities into MCI state or AD state.

First, our Markov model is trained by using the training set. Then we collect the outputs

including the estimated transition rates and transition probabilities. Afterwards, a logistic

regression model of diagnosis states (MCI or AD) was trained on the estimated transition

rates and transition probabilities. Second, by plugging the testing set into the trained Markov

model, we get the new estimated transition rates and transition probabilities. Then, we plug

them into the trained logistic regression model, and get the predicted diagnosis state. Note

that predictions are performed within each subjects, and it is one time step prediction, in
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other words, each subject’s information in the previous scanning time is used to predict the

diagnosis state in the next scanning time.

As known to all, correct registration and alignment of subjects on the timeline is crucial

to longitudinal medical studies. Therefore, to investigate how registration and alignment

will affect prediction of Alzheimer’s Disease progression, we prepared two data sets for cross

validation, Data1 and Data2. Data1 keeps all the observations before AD state for each

subject so that all the subjects are aligned to the baseline of scanning time and the numbers

of replications (observations) of different subjects are unbalanced. Data2 only keeps two

observations before AD state for each subject so that all the subjects are aligned to the last

scanning time point (AD state) and the numbers of replications (observations) of different

subjects are balanced (totally 3 observations). And we believe that, in Data2, subjects are

sharing more similarities in structural volumetric changing patterns during the two time

points before becoming AD state. But things are usually not as perfect as expected, because

the two time points before AD state can not be fully aligned for all the subjects. The reason is

that, as prespecified by ADNI, for subjects who are diagnosed as NC or MCI at baseline (first

scan), MRI scans are collected every half year within the beginning 2 years and every year

after 2 years. Thus it is highly likely that, within two years before AD, one subject is observed

every half year while the other is observed every year. Furthermore, based on the analysis

from previous section, we know that subjects with higher transition rates and transition

probabilities tend to develop higher risk of accelerating the deterioration of the Alzheimer’s

Disease. This phenomenon motivates us to divide the subjects in each data sets (Data1 and

Data2) into groups according to the scale of transition rates and transition probabilities.

And Group1 (Table 4.7) stands for the higher risk group, while Group2 (Table 4.7) stands

for the lower risk group. The performance of prediction between the two groups should be
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different, just as they should be treated in different ways in clinical treatment.

Table 4.7 presents us with all the leave-one-out cross validation results for different groups

in different data sets. Note that the true positives here stand for the true AD is predicted as

AD, while the true negatives here stand for the true MCI is predicted as MCI. Comparing

the Overall model based on Data1 with the Overall model based on Data2, the latter has a

bigger sensitivity (0.5158 vs 0.4000), a smaller specificity (0.6947 vs 0.8930) and a smaller

accuracy (0.6053 vs 0.7313). It implies that there are more cases that true MCI or AD

are predicted as AD (for Data2, both true positives and false positives are increasing). In

other words, the trained model based on Data2 is more likely to transit to AD than trained

model on Data1. We consider two reasons. One reason is quite clear. On average, there are

more MCI state observations in Data1 than in Data2, thus the observations of transitions

from MCI to AD is relatively diluted in Data1. Hence, it turns out that the trained Markov

model based on Data1 reduces the rates and probability of transitions. Another reason is

that, for Data2, there are only 3 observations for each subject and also observations for MCI

state are not perfectly aligned on the timeline as explained in the last paragraph. These in

some sense will amplify the effect of disalignment on increasing the number of false positives

and false negatives. When comparing Group1 with Group2 in either data set, Group1 has

much higher sensitivity, specificity, precision and accuracy. It implies that transition rates

and transition probability not only provides us integrated information to do prediction, but

also provides a possible way to cluster individuals into different groups sharing similarities

in progression of brain functional impairment.

101



Table 4.7. Prediction of two data sets with different alignments in time. Data1 includes
all the observations before AD for each subject, while Data 2 includes only 2 observations
before Ad for each subject. Data1 is divided into Group1 and Group2. Group1 in Data1
includes all the patients whose transition probability is ever more than 0.45 or whose
transition rate is more than 1.2. Also, Data2 is divided into Group1 and Group2. Group1
in Data2 include all the patients whose transition probability is ever more than 0.6 or
whose transition rate is more than 1.2.

Data1 Subjects Sensitivity Specificity Precision Accuracy AUC
Group1 51 0.5098 0.9008 0.6842 0.7849 0.8583
Group2 54 0.4074 0.8404 0.5946 0.6824 0.6843
Overall 105 0.4000 0.8930 0.6461 0.7313 0.7404
Data2 Subjects Sensitivity Specificity Precision Accuracy AUC

Group1 59 0.7119 0.6610 0.6774 0.6864 0.7672
Group2 36 0.5556 0.6389 0.6061 0.5972 0.5829
Overall 95 0.5158 0.6947 0.6282 0.6053 0.6504

4.4.3.2 Impact of transition rates and transition probabilities

To have a clearer picture of how both transition rates and transition probabilities work as

integrated predictors helping with predictions in progression of Alzheimer’s Disease, we are

trying to make prediction on the original data set. The training set we used here includes

all the subjects whose diagnosis is NC or MCI at baseline, and then become MCI or AD in

the end. And we treat AD state as the absorbing state. The prediction set we used here is

the most original one which allows transitions from AD to AD. After training our Markov

model by using the training set, we can get one time step predictions of transition rates

and transition probabilities (from NC to MCI and from MCI to AD) based on the testing

set.Then we aggregate them by screening time (months) and real diagnosis state and get

the longitudinal plots of predicted transition rates and probabilities in different diagnosis

groups (Figure 4.4). Note that we took logarithm of transition rates, since they are in a

wide range. When comparing plots of predicted transition probabilities from NC to MCI

(Figure 4.4b) with plots of predicted transition probabilities from MCI to AD (Figure 4.4d),

we observe that neither the diagnosis group ’D23’ nor ’D33’ separated very well from all the
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other diagnosis groups in Figure 4.4b, which tells us that when doing prediction of transition

from MCI to AD, we’d better use the information of transition intensities from MCI to

AD instead of from NC to MCI. The reason of the difference is obvious that transition

probabilities from NC to MCI mostly reflects the overall risk in the progression of disease

severity from NC state to MCI state. In the diagnosis group ’D23’ and ’D33’, with the time

being, the transition probabilities from NC to MCI will be decreasing finally since most of

subjects in ’D23’ and ’D33’ have been getting involved in converting from MCI or AD to

AD state instead of converting from NC to MCI. To the opposite, transition probabilities

within four groups in Figure 4.4d have a continuously increasing trend, since all the diagnosis

states will convert to AD state (with the order from NC to MCI to AD) in the end. When

comparing plots of Predicted transition rates from MCI to AD (Figure 4.4c) with plots of

predicted transition probabilities from MCI to AD (Figure 4.4d), we find that in both cases

’D23’ and ’D33’ are not separated very well with each other, which is consistent with the fact

that the boundary in the assessment of diagnosis between transition from MCI to AD and

always staying in AD are not very clear. However, all the other diagnosis group ’NC’, ’MCI’,

’AD’ are separated very well, which indicates that transition rates and transition probabilities

could help to discriminate transition states and thus predict progression of brain functional

impairment. To put it differently, our Markov model is capable of integrating different sources

of information into two simple indices to resemble and predict the mechanism of progression

of Alzheimer’s Disease. One index is the transition rate, which reflects the overall speed of

progression. Another is the transition probability, which tells us the possibility of a certain

transition at a given time.
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Figure 4.4. Longitudinal plots of predicted transition rates and probabilities in different
diagnosis groups. ’D11’ denotes the group of patients who stay within NC all the time.
’D22’ denotes the group of patients who stay within MCI all the time. ’D23’ denotes the
group of patients who ever transit from MCI to AD. ’D33’ denotes the group of patients
who stay within AD all the time.
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4.5 Conclusion and discussion

When positioning the observations on the time axis, we found that aligning the observations

by screening time instead of age provides us more distinct pathways to differentiate the

transition pattern between different transition groups (diagnosis). Technically, we treated

the screening time as the timeline along which the Markov chain undergoes transitions from

one state to another. Meanwhile, we included age as a covariate into the Markov model

to make prediction so that the continuous effect of age on the progression of Alzheimer’s

Disease will be fully identified.

Results from model without covariates imply the progression of Alzheimer’s Disease is a

slowly changing process especially for the subjects in NC. The transition speed from MCI

to AD is much faster than the transition speed from NC to MCI or from NC to AD, which

means MCI subjects take higher risk to develop into Alzheimer’s Disease. Actually, the

average sojourn time staying MCI is 4.47 year. In other words, after 4.47 years on average,

MCI subjects will transit to other states, most likely to AD. Compared with Kaplan-Meier

(KM) curve which generally models a process with two states and one possible transition

from an alive state to a dead state, a fitted non-AD probability curve from the Markov

model is more powerful and flexible in modeling longitudinal data with multiple states and

any possible transitions among them.

Compared to model without any covariates, the model with age is not significant (p-

value is 0.1733), while the model with ApoE4 (p-value is 0.0002), the model with Volumes

(p-value is 0), the model with scores (p-value is 0) and the full model (p-value is 0) are all

significant. Compared to model with volumes, the model with age (p-value is 1) and the

model with ApoE4 (p-value is 1) are not significant, while the model with cognitive testing
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scores (p-value is 0) and the full model (p-value is 0) are significant.

Besides survival probability and mean sojourn time, Markov Chain model gives us two

main products can be used to do predictions: transition rates and transition probabilities.

First, we fitted the Markov model and got the corresponding transition rates and transition

probabilities and then use some machine learning methods to built the connection between

the two main products and the transition states. From the leave-one-out cross validation

results, the highest AUC (area under curve) we can get is 0.8583.

The key property of a continuous-time Markov chain model is that the state of the next

step only depends on the state information on the previous step. Because of this property,

Markov chain is more powerful in making one step prediction instead of multiple steps

prediction. What is more, the longitudinal data we used here is obviously interval censored.

We didn’t design specially a scheme to model the interval censoring problem in this paper.

There are some other limitations. On the one hand, the results and findings are based only

on this particular data set. On the other hand, this is the largest available longitudinal study

on ADNI1, but we didn’t consider the data from ADNIGo or ADNI2.
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Appendix 1 Multi-state Markov model

Let {S(t), t ≥ 0} be a multi-state Markov process with n different states. Let S be the set

of states. For simplicity, assume that S = {1, · · · , n}. The process is Markovian if for all

t, t′ > 0 and r, r′ ∈ S,

P (S(t+ t′) = r′ |S(t) = r,Fu, u < t) = P (S(t+ t′) = r′ |S(t) = r), (A.1)

where Fu is the observation history of the Markov process up to time u. That is, the state of

the process at a future time t+ t′ given the previous history of the process up to the present

time t depends only through the state of the present time t. Given the initial distribution

of the process at time 0, a multi-state Markov process can be characterized by the matrix of

transition probabilities, P (t, t+ t′) = ((prr′(t, t+ t′))), where prr′(t, t+ t′) = P (S(t+ t′) =

r′ |S(t) = r). Note that the sum of each row of P (t, t + t′) is always 1. Alternatively, we

can introduce the matrix of transition intensities, Q(t) = ((qrr′(t))),

qrr′(t) = lim
t′→0

[P (S(t+ t′) = r′ | S(t) = r)/t′]. (A.2)

qrr′ can be interpreted as the instantaneous hazard of progressio n to stage r′ from stage r

(see, e.g. Jackson et al., 2003 [53]). If the process S(t) is assumed to be homogeneous in

time, qrr′(t) is independent of t.

Equation (A.2) implies that the intensity matrix Q behaves like the derivatives of transi-

tion probability matrix P . Thus, the sum of each row ofQ is 0 so that qrr(t) = −∑r′ 6=r qrr′(t)

for each r ∈ S. From the Chapman-Kolmogorov equations, we can show that P (t) = exp(tQ)

for a homogeneous continuous-time Markov process (see, e.g. Whitt, 2012, [109]).
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It is of interest to incorporate additional information of each subject in the model for

AAA progression. This can be done by introducing a regression component into the intensity

matrix Q. Let X(t) be the set of explanatory variables available at time t. Then, we model

the intensity matrix Q by

qrr′(t,X(t)) = q0,rr′ exp
(
βT
rr′X(t)

)
, (A.3)

where βrr′ is the set of regression parameters corresponding to the explanatory variable X(t)

for r 6= r′. Note that we consider positive qrr′ for r 6= r′ while X(t) may be not. Thus,

an exponential function is natural to link these two quantities. qrr will be specified using

qrr(t) = −∑r′ 6=r qrr′(t). q0,rr′ can be interpreted as a baseline intensity when X(t) does

not affect the process. Note that the term of ‘homogeneous’ in the homogeneous Markov

chains describes that the transition intensities qrs are independent of time t. Also in the

homogeneous Markov model, the sojourn time in each state r is exponentially distributed

with mean −1/qrr and the probability that an individual in state r moves to state s is

−qrs/qrr. For more details, please refer to [75].
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Appendix 2 Specification for AAA progression

For AAA stages, we consider the following intensity matrix,

Q =



−q12 q12 0 0

0 −q23 q23 0

0 q32 −(q32 + q34) q34

0 0 0 0


. (A.4)

The structure in (A.4) represents a multi-state model. Also, the model assumes that the last

stage is an absorbing stage, i.e. one can not go back to the other stage once it enters that

absorbing stage. Note that once an AAA has been treated with a surgery or been ruptured,

state 4 (fatal) can not go back to the previous state. Thus, the absorbing stage assumption

is reasonable for AAA data.

We estimate q12, q23, q32 and q34 using the maximum likelihood method via EM algorithm

(Jackson et al., 2003 [53]). For the EM algorithm, we need to set the initial values. Mean

sojourn time, −1/qrr, can be approximated by

total years spent in state r

total transitions from state r
,

so that we can obtain initial values for qrr′ from qrr = −∑r′ 6=r qrr′ . For AAA data, the

mean period in state 1 before moving to state 2 is about 2 year. Thus, we approximate

q11 = −2 and q12 = 0.5 for their initial values.

Jackson (2011) [16] developed the R package, msm (available at www.r-project.org)

for a multi-state hidden Markov model. We use this package for out analysis.
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Chapter 5

Conclusions, Discussion, and

Directions for Future Research

5.1 Conclusions and discussion

Data analytics is playing a more and more crucial role in this information explosion era. Tons

of thousands of events, situations, systems and phenomenon are waiting for statisticians to

explore. All kinds of efforts and intelligence have been put into exploring the intractable

sources of uncertainties, the complex structures hidden behind observations, the unknown

interactions and dependencies across space and time, the ultra-sparse signals immersed in

noises, the evolutionary path of a high dimensional network and so much other information.

In this dissertation, Bayesian calibration is used to explore the intractable sources of

uncertainties and the complex structures hidden in the system of AAA enlargement. Markov

model is used to explore the unknown interactions and dependencies across space and time in

the Brain images of patients having Alzheimer’s Disease. But still many research questions

and aspects need to be taken care of in the future. Although Bayesian calibration has been

widely applied in analyzing big and complex data from Engineering, clinical sciences, climate

change and Physics, etc., theoretical results of convergence and consistency has not been fully

developed yet. For Brain imaging analysis, although we used Markov chain to analyze the
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regional volumes getting from MRI of patients having Alzheimer’s Disease, further effort

should be dedicated to other types of data such as genetic data, PET scan, DTI, fMRI, etc.

and related research questions.

Another important concept that has not been discussed is dimension reduction. To tackle

the high dimensionality, variability and complexity of big data, I mainly seek two directions

of statistical research to approach innovative theories and methodologies that imply huge

impacts in data science–hierarchical modeling and dimension reduction (penalization).

Therefore, the future research is mainly focused on three aspects: consistency theory of

Bayesian calibration, Bayesian variable selection, dynamic network and sparsity regulation.

5.2 Directions for future research

5.2.1 Bayesian consistency

In most cases, the true value of the calibration parameters cannot be measured or observed

physically. Therefore, it is necessary to define the true parameter value and then provide a

theoretical study showing that the estimate of the calibration parameter converges to the

true value in probability. Rui Tuo and C. F. Jeff Wu 2016 [103] has provided a theoretical

framework for calibration in computer models by considering simplifications like dropping

the prior. So first I would like to introduce Rui Tuo and C. F. Jeff Wu’s work as follows,

and then propose the future directions of research.

Real observation and computer model are related through

zp(x) = rs(x, θ0) + δ(x) + e, (5.1)

112



where θ0 is the true value of the calibration parameter and δ(·) is an unknown discrep-

ancy function. Suppose the physical system is deterministic, then the observational error is

neglected and we get

zp(x) = rs(x, θ0) + δ(x), (5.2)

where θ0 is the true value of the calibration parameter and δ is the discrepancy between zp

and rs(·, θ0). Usually δ is a nonzero function because the computer code is built based on

certain assumptions or simplifications which do not match the reality exactly. Define

ε(x, θ) := zp(x)− rs(x, θ), (5.3)

The discrepancy function δ is a realization of a Gaussian process with mean 0 and the

covariance function σ2Φ, where σ2 is an unknown parameter and the function Φ is known.

We adopt the L2 norm in defining the distance.The L2 distance projection of θ is given

by

θ? = argminθ∈Θ‖ε(·, θ)‖L2(Ω), (5.4)

The L2 norm comes from the common use of the quadratic loss criterion. The expected

quadratic loss between the prediction and the computer model given θ is

∫
Ω

(zp(x)− rs(x, θ0))2dx = ‖ε(·, θ)‖L2(Ω)

Because we don’t know the true value of θ, the authors define the true calibration pa-

rameter as the value θ? minimizes the average predictive error ??.

Maximum likelihood estimation (MLE) is used to estimate (θ, σ2) instead of Bayesian
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analysis. Under these assumptions, the functions ε(xi, ·) is known for i = 1, . . . , n. Then it

can be shown that the log-likelihood function for (θ, σ2) is given by

l(θ, σ2;Y ) = −n
2

log σ2 − 1

2
log |Φ| − 1

σ2
ε(x, θ)TΦ−1ε(x, θ), (5.5)

where ε(x, θ) = (ε(x1, θ), . . . , ε(xn, θ))
T and Φ = (Φ(xi, xj))ij . And the authors discuss the

consistency of the maximum likelihood estimate to the defined true parameter.

I would like to generalize the above theory from the frequency setup into Bayesian setup.

Following the same logic, first I need to define what is the true value. Define true process as

ζ(·) = rs(·, θ) + δ(x),

The conditional posterior predictive density of true process is f(ζ(x)|θ, ψ̂, d), while the pos-

terior distribution of parameter θ is f(θ|ψ̂, d). I would like to show that when f(ζ(x)|θ, ψ̂, d)

is consistent to f(ζ(x)|θ0, ψ̂, d), then f(θ|ψ̂, d) is consistent to f(θ0|ψ̂, d).

Two popular methods to prove Bayesian consistency are Kullback-Leibler divergence

and Hellinger consistency. Stephen Walker, 2004 [106] derives sufficient conditions for both

Hellinger and Kullback-Leibler consistency and proves equivalence between them.

Hellinger distance is defined as

dH(f, f0) =

{∫
(
√
f)−

√
f0

}1/2

=

{
2(1−

∫
(
√
ff0))

}1/2

For Hellinger consistency, the required result we are aiming for is

Πn({f : dH(f, f0) > ε})→ 0 a.s. [F∞0 ]
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Kullback-Leibler divergence between f and f0 is dK(f, f0) =
∫
f0 log(f0/f). The Kullback-

Leibler property is given by Π({f : dK(f, f0) < ε}) > 0.

For more details about the consistency and convergence of posterior distribution, please

refer to Subhashis Ghosal, 1997 [41].

5.2.2 Variable selection in Bayesian statistics

Penalization methods in high dimensional problems, being the flavor of the last decade, have

enjoyed much attention resulting in a rich theoretical literature establishing their optimality

properties. There are also fast algorithms and compelling applied results underlining the

success story of these methods. In the regression setup, it is common to view the negative

log prior density as a penalty function. As a result, a Gaussian prior is equivalent to a L2

penalty regularization, while a Laplacian prior is equivalent to a L1 penalty regularization.

Besides, the idea of a weighted mixture prior is similar to that of an elastic net regularization.

Every time, model improvement happens when prior put more probability around zero, and

heavier tails of the non-zero regions. Because variable selection techniques always aim to

balance the efficiency of penalizing true zero coefficients to be exact zero and pulling true

nonzero coefficients away from zero. In terms of these consideration, a horseshoe prior

(Carvalho, 2010 [11]) comes to the scene, since it has infinite mass at zero and Cauchy-like

tails.

Although exact zeros can be achieved in spike and slab (George,and McCulloch, 1997 [38]),

the computational burden is high since sampling from the posterior of binary variables is

not an easy task especially in the high dimension case. There are several optimality results

available for the horseshoe and horseshoe+ priors (Carvalho et al., 2010 [11]); (Datta et al.,

2013 [26]), (van der Pas et al., 2014 [104])). However, to the best of my knowledge, all of
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these results are concerned with the estimation of the multivariate normal mean. A satisfac-

tory theory for uncertainty quantification for penalized estimators is not yet in place. I hope

to be able to choose a default shrinkage prior that leads to similar optimality properties to

those shown for L1 penalization and other approaches, but with the added advantage of the

entire posterior distribution concentrating at the optimal rate, instead of just focusing on

the point estimate.

In the following, I am going to introduce the Bayesian variable selection using Inverted

Beta distribution (Special case is Horse shoe prior). For the regression situation involving

the observation of a dependent variable Y and a set of potential predictors X1, . . . , Xp, we

consider the canonical regression setup

Y |X,β, σ2 ∼ Nn(Xβ, σ2I), (5.6)

where Y is n× 1, X = [X1, . . . , Xp] is n× p, β = (β1, . . . , βp)
′, and σ2 is a scalar. Both β

and σ2 are considered unknown.

We describe the prior of β as a multivariate normal

π(β|σ2, λ) = Np(0,Υ(σ,λ)). (5.7)

The residual variance σ2 is conveniently modeled as a realization from an inverse gamma

prior.

π(σ2) = IG(ν/2, νω/2), (5.8)

which is equivalent to νω/σ2 ∼ χ2
ν . It might be desirable to have ω decrease with p.
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We consider the special case of Υ(σ,λ) in (5.7) is of the form

π(β|σ, λ) = Np(0, σ2D(λ)RD(λ)), (5.9)

where D(λ) is diagonal and R is a correlation matrix. We denote the i-th diagonal element

of D2(λ) by

(D2(λ))ii = λ2.

Each component of β is modeled as a normal distribution

π(βi|σ2, λ2) = N (0, λ2σ2). (5.10)

The scale parameter λ2 follows an inverted-beta distribution :

p(λ2|a, b) =
(λ2)b−1(1 + λ2)−(a+b)

Beta(a, b)
, (5.11)

where Beta(a, b) denotes the beta function, and where a and b are positive reals.

The Inverted Beta distribution is plotted when parameters a and b take different (Fig-

ure 5.1). When b ≤ 1, the density is infinite around origin. When b > 1, the density is 0 at

origin. As you might notice, the behaviors (convergence rates) at the tail and around origin

are different with the change of parameters a and b. It gives us ideas that Inverted Beta

distribution can serve as a flexible and versatile prior in Bayesian variable selection and it

suffices to model different level sparsity if parameters a and b are carefully chosen. As we

know, the horseshoe prior is just a special case when a = 0.5 and b = 0.5.
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Figure 5.1. Inverted Beta distribution when parameters a and b take different values.

The generalized beta prime distribution has the probability density function as

f(x;α, β, p, q) =
p(xq )αp−1(1 + (xq )p)−(α+β)

qBeta(α, β)
,

where p > 0 controls the shape and q > 0 controls the scale.

Shown below are the two modeling options I am aiming to do, if we would like to use

the global-local prior. The first one is putting the global parameter τ as an upper hierarchy

of the local parameter λi. Each regression coefficient βi is controlled by local parameter λi,
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while each λi is dominated by the global parameter τ .

Y |β, σ2 ∼ Nn(Xβ, σ2I),

β|σ2, λi ∼ Np(0, σ2D(λi)RD(λi)),

βi|σ2, λ2
i ∼ N (0, λ2

i σ
2),

π(λi|τ, a1, b1) =
(
λi
τ )a1−1(1 + (

λi
τ ))−(a1+b1)

τBeta(a1, b1)
,

π(τ |a0, b0) =
(τ)a0−1(1 + τ)−(a0+b0)

Beta(a0, b0)
.

(5.12)

The second one is putting the global parameter τ and the local parameter λi at the same

hierachy. But we use the product of them to control the magnitude each regression coefficient

βi.

Y |β, σ2 ∼ Nn(Xβ, σ2I),

β|σ2, λi, τ ∼ Np(0, σ2D(λi, τ)RD(λi, τ)),

βi|σ2, λ2
i , τ

2 ∼ N (0, λ2
i τ

2σ2),

π(λi|a1, b1) =
(λi)

a1−1(1 + λi)
−(a1+b1)

Beta(a1, b1)
,

π(τ |a0, b0) =
(τ)a0−1(1 + τ)−(a0+b0)

Beta(a0, b0)
.

(5.13)

5.2.3 Bayesian Dynamic network

When applied to the brain, the term connectivity refers to several different and interrelated

aspects of brain organization (Horwitz, 2003 [52]). A fundamental distinction is that be-

tween structural connectivity, functional connectivity and effective connectivity. Functional

connectivity is the connectivity between brain regions that share functional properties. More

specifically, it can be defined as the temporal correlation between spatially remote neuro-

physiological events, expressed as deviation from statistical independence across these events
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in distributed neuronal groups and areas. This applies to both resting state and task-state

studies.

LetG = (V,E) be a graph with the vertex (node) set V , and the edge set E. A node u ∈ V

represents an entity (intensity of a voxel) and an edge (u, v) ∈ E represents a connectivity.

The precision matrix (inverse covariance matrix) is a popular measure used to describe an

undirected graph, since the zero entry is used to model the conditional independence between

the corresponding two nodes. Friedman, 2008 [33] developed a simple algorithm to solve the

estimation of sparse undirected graphical models through the use of L1 (lasso) regularization.

For each patient, the data Y = (yt,v) is a matrix, with each row t (t ∈ {1, . . . , T})

denotes the time, and each column v (v ∈ {1, . . . , V }) denotes a voxel. And the values

of each entry yt,v denotes the intensity. Each column is time-ordered. Then the precision

matrix estimated from data Y must be a function of time as the data is spatial and temporal.

From the perspective of application, we actually get a time varying undirected graph which

is called dynamic network. As shown in Figure [?], the network topology at time t − 1 is

different from that at time t. The topology includes several aspects–organization of voxels

and nodes, number of nodes, connectivities between nodes. When considering the changes

of network between two time points, we might consider changes in the intensity of nodes,

changes in the number of nodes and changes between network connectivities. We call them

all together as topology transitions. For more details, please refer to Zhou, et al. 2010 [120]

and Monti, et al. 2014 [72].

Because the precision matrix is positive definite, modeling and penalizing the time-

varying precision matrix directly is difficult. We have to decompose the precision matrix

into parts that do not have positive definite requirements. Suppose each precision matrix
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Figure 5.2. Group 1, Group 2 and Group 3 (big circles) denote the nodes of the brain
network. The thick solid line denotes the connectivity between nodes. As we can see the
connectivity changes with time. Voxels (small circles) denote the real observations.

Ωt has a ”LDL” type of matrix decomposition

Ωt = LDtL′,

where Dt is a diagonal matrix and L is a upper triangular matrix, which is an unique form

given by Cholesky Decomposition.

And we assume that the diagonal matrixDt evolutes with time. We model the sparsity of

the dynamic network by penalizing the Cholesky factor. But the sparse Cholesky factor does

not guarantee to construct a sparse symmetric positive-definite matrix. Rothman, 2010 [88]

discovered a subtle relationship between the sparsity of Cholesky factor and the sparsity

of the covariance matrix. When connectivity representative L changes with time, then it

is more likely that every Ωt can be decomposed exactly into LtDtDtLt.Then the graphical
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model likelihood with penalty and other hierarchies becomes

Q(L,D, β, σ)

=
T∑
t=1

(
tr(StLtDtDt(Lt)′)− log detLtDtDt(Lt)′ − λ1‖Lt‖1

)

+
T∑
t=2

(
1

2(σt)2

p∑
i=1

(
log(dti)− βti log(dt−1

i )
)2

+ p log(σt)

)
,

where dti is the i− th diagonal entry of Dt.
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