
STUDYING THE EFFECTS OF SAMPLING ON THE EFFICIENCY
AND ACCURACY OF K-MER INDEXES

By

Meznah Almutairy

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science - Doctor of Philosophy

2017

ABSTRACT

STUDYING THE EFFECTS OF SAMPLING ON THE EFFICIENCY AND
ACCURACY OF K-MER INDEXES

By

Meznah Almutairy

Searching for local alignments is a critical step in many bioinformatics applications and

pipelines. This search process is often sped up by finding shared exact matches of a min-

imum length. Depending on the application, the shared exact matches are extended to

maximal exact matches, and these are often extended further to local alignments by allow-

ing mismatches and/or gaps. In this dissertation, we focus on searching for all maximal

exact matches (MEMs) and all highly similar local alignments (HSLAs) between a query

sequence and a database of sequences. We focus on finding MEMs and HSLAs over nu-

cleotide sequences.

One of the most common ways to search for all MEMs and HSLAs is to use a k-mer

index such as BLAST. A major problem with k-mer indexes is the space required to store

the lists of all occurrences of all k-mers in the database. One method for reducing the space

needed, and also query time, is sampling where only some k-mer occurrences are stored.

We classify sampling strategies used to create k-mer indexes in two ways: how they

choose k-mers and how many k-mers they choose. The k-mers can be chosen in two ways:

fixed sampling and minimizer sampling. A sampling method might select enough k-mers

such that the k-mer index reaches full accuracy. We refer to this sampling as hard sampling.

Alternatively, a sampling method might select fewer k-mers to reduce the index size even

further but the index does not guarantee full accuracy. We refer to this sampling as soft

sampling. In the current literature, no systematic study has been done to compare the

different sampling methods and their relative benefits/weakness.

It is well known that fixed sampling will produce a smaller index, typically by roughly a

factor of two, whereas it is generally assumed that minimizer sampling will produce faster

query times since query k-mers can also be sampled. However, no direct comparison of

fixed and minimizer sampling has been performed to verify these assumptions. Also, most

previous work uses hard sampling, in which all similar sequences are guaranteed to be found.

In contrast, we study soft sampling, which further reduces the k-mer index at a cost of

decreasing query accuracy.

We systematically compare fixed and minimizer sampling to find all MEMs between

large genomes such as the human genome and the mouse genome. We also study soft

sampling to find all HSLAs using the NCBI BLAST tool with the human genome and

human ESTs. We use BLAST, since it is the most widely used tool to search for HSLAs.

We compared the sampling methods with respect to index size, query time, and query

accuracy.

We reach the following conclusions. First, using larger k-mers reduces query time for both

fixed sampling and minimizer sampling at a cost of requiring more space. If we use the same

k-mer size for both methods, fixed sampling requires typically half as much space whereas

minimizer sampling processes queries slightly faster. If we are allowed to use any k-mer size

for each method, then we can choose a k-mer size such that fixed sampling both uses less

space and processes queries faster than minimizer sampling. When identifying HSLAs, we

find that soft sampling significantly reduces both index size and query time with relatively

small losses in query accuracy. The results demonstrate that soft sampling is a simple but

effective strategy for performing efficient searches for HSLAs. We also provide a new model

for sampling with BLAST that predicts empirical retention rates with reasonable accuracy.

To my parents, my husband, and my children.

iv

ACKNOWLEDGMENTS

It is my earnest desire to express my gratitude and appreciation for my dissertation adviser

Dr. Eric Torng who has provided constant guidance and encouragement throughout my

graduate studies. His guidance was essential to the completion of this dissertation and has

taught me innumerable lessons and insights on the academic research.

I would like to acknowledge my dissertation committee members Dr. Yanni Sun, Dr.

Kevin Liu, and Dr. Jason Gallant for their expertise and suggestions that have significantly

improved this dissertation. Also, I would like to acknowledge the support of the Michigan

State University High Performance Computing Center and the Institute for Cyber Enabled

Research.

I am truly grateful to my parents Rasheed and Haya for their everlasting love and prayers.

I wish to give my heartfelt thanks to my husband, Nasser, who always believed in me. Lastly,

I am deeply thankful to my children Joud, Jenna, and Ayah for bringing smiles to my heart

and joys to my spirit.

v

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . x

Chapter 1 Introduction . 1
1.1 Sequence similarity search . 1
1.2 Maximal exact matches and highly similar local alignments 2
1.3 Overview of searching methods . 2

1.3.1 Sequence alignments types . 2
1.3.2 Online searching methods . 4
1.3.3 Offline searching methods . 5

1.3.3.1 Defining k-mer indexes . 6
1.4 Overview of k-mer sampling strategies . 7

1.4.1 Fixed vs. minimizer sampling . 8
1.4.2 Hard fixed vs. soft fixed sampling . 9

1.5 Research questions and major results . 9

Chapter 2 Related work . 13
2.1 Fixed sampling versus minimizer sampling 14
2.2 Hard fixed versus soft fixed sampling . 18
2.3 Soft fixed sampling in EST mapping . 19

Chapter 3 Fixed versus minimizer sampling 21
3.1 The MEM enumeration problem . 22
3.2 Using k-mer indexes to find MEMs . 24
3.3 Fixed sampling versus minimizer sampling 26

3.3.1 Sampling methods . 30
3.3.2 Indexing and querying . 33
3.3.3 Experimental setting and evaluation metics 35

3.3.3.1 Database and query sets . 35
3.3.3.2 Index parameters and metrics 37
3.3.3.3 Querying parameters and metrics 37
3.3.3.4 System specification/configuration 38

3.4 Results and discussion . 38
3.4.1 Index size and index construction time 38
3.4.2 Query time . 41

3.4.2.1 The theoretical vs. empirical query time expectation 44
3.4.3 Space and speed . 46

vi

Chapter 4 Soft fixed sampling . 50
4.1 Highly similar local alignments (HSLA) . 51
4.2 Using NCBI BLAST k-mer indexes to finding HSLAs 53
4.3 Hard versus soft Sampling . 55
4.4 Retention rates and false positives . 56
4.5 Using NCBI BLAST k-mer indexes in EST mapping 57
4.6 Materials and method . 58

4.6.1 Experimental settings . 58
4.6.2 Analytical modeling . 65

4.7 Results and discussion . 69
4.7.1 Index size . 69
4.7.2 Retention rate of HSLAs . 70
4.7.3 Possible improvements for the BLAST model 74
4.7.4 Query time . 77
4.7.5 Mapping results . 79

Chapter 5 Conclusions and future work . 82

BIBLIOGRAPHY . 84

vii

LIST OF TABLES

Table 3.1: Possible minimizer sampling versions based on the optimization
techniques. 31

Table 3.2: datasets used for testing. 36

Table 3.3: The number of MEMs for each query set and the human genome
for both choices of L given our pre-processing into sequences of
length 1000. 36

Table 3.4: Query times (in hours) for all sampling methods and all choices
of k when L = 50. 42

Table 3.5: Query times (in hours) or all sampling methods and all choices
of k when L = 100. 43

Table 3.6: The number of shared k-mer occurrences (in billions) for all sam-
pling methods and all choices of k when L = 50. 45

Table 3.7: The number of shared k-mer occurrences (in billions) for all sam-
pling methods and all choices of k when L = 100. 46

Table 3.8: The mean and standard deviation of the length of a k-mer’s list
of occurrences using the human genome for all sampling methods
and all choices of k when L = 50. 47

Table 3.9: The mean and standard deviation of the length of a k-mer’s list
of occurrences using the human genome for all sampling methods
and all choices of k when L = 100. 47

Table 4.1: Human genome volume characteristics. 59

Table 4.2: A summary of the parameters used in our experiments for (1)
finding HSLAs and (2) EST mappings. For HSLA, we consider
all four choices of l. For EST, we only consider the first three
choices of l. 60

Table 4.3: The probability that the number of mismatches exceeds (1 − t)l
for various choices of l and t. 77

viii

Table 4.4: The retention rate (RRmap) and query time reduction (QTR)
results for all 1000 queries when l = 50 and w0 = 5, where 879
were mappable queries. 79

Table 4.5: The retention rate (RRmap)and query time reduction (QTR) re-
sults for all 1000 queries when l = 100 and w0 = 14, where 794
were mappable queries. 80

Table 4.6: The retention rate (RRmap)and query time reduction (QTR) re-
sults for all 1000 queries when l = 200 and and w0 = 17, where
528 were mappable queries. 80

ix

LIST OF FIGURES

Figure 3.1: The dictionary sizes, lists sizes, and construction times for k-mer
indexes built using fixed sampling (fix) and minimizer sampling
minrand,one, minrand,many, and minlex,one. For parts (a), (b), and (c),
we use L = 50. For parts (d), (e), and (f), we use L = 100. For all graphs,
12 ≤ k ≤ 32. 39

Figure 3.2: Comparing the space and speed of fixed sampling (fix), mini-
mizer sampling minrand,one, minrand,many, and minlex,one. We use
L = 50 for the three upper figures and L = 100 for the three lower figures.
The values for minlex,one when k = 12 are very large and removed from
figure below. 48

Figure 4.1: Example database sequence s and query sequence q and two local
alignments A1 and A2. The symbol (|) identifies two mapped identical
positions and (∗) is an inserted gap position in one of the two sequences. 51

Figure 4.2: Illustration of EST mapping process. The HSLAs (A,A∗), (B,B∗),
(C,C∗), and (D,D∗) are used to report the final mapping. 58

Figure 4.3: The sampled index SI(w) size (percentage) as a function of sam-
pling step size w of SI(w) versus sampled index SI(w0). The
k′-mer indexes are built with k′ = 12 and w ≥ w0 where w0 = l − k + 1. 70

Figure 4.4: The actual HSLA retention rate RR(w,w0), the actual short HSLA
retention rate RRshort(w,w0), and the expected short HSLA re-
tention rate using both Kent’s model E[RRK(w,w0)] and BLAST
model E[RRB(w,w0)] for (a) l = 50, w0 = 5, (b) l = 100, w0 = 14,
(c) l = 200, w0 = 17, and (d) l = 400, w0 = 30. For other parameters
values see Table 4.2. 71

Figure 4.5: Distribution of predicted and empirical MAX-MEM lengths in
HSLAs. The predicted MAX-MEM lengths are computed from a Monte
Carlo simulation. (a) l = 50, t = 96%, (b) l = 100, t = 97%, (c) l = 200,
t = 97%, and (d) l = 400, t = 97%. 76

Figure 4.6: The average median query time reduction (QTR) percentages
and the actual false positive reduction (FPR) percentages as a
function of sampling step w. (a) l = 50, w0 = 5, (b) l = 100, w0 = 14,
(c) l = 200, w0 = 17, and (d) l = 400, w0 = 30. For other parameters
values see Table 4.2. 78

x

Chapter 1

Introduction

1.1 Sequence similarity search

With each passing year, advances in sequencing technologies, such as ROCHE/454, Illu-

mina/Solexa, and Pacific Biosciences (PacBio), are producing DNA sequences both faster

and cheaper. Right now, the average number of sequences generated from one sequencing

run is on the order of hundreds of millions to billions.

While this explosive growth in DNA datasets yields exciting new possibilities for biol-

ogists, the vast size of the datasets also presents significant challenges for many compute-

intensive biology applications. These applications include homogenous search [69, 6, 104, 56],

detection of single nucleotide polymorphisms (SNP) [34, 78, 65], mapping cDNA sequences

against the corresponding genome [36, 66, 99]. sequence assembly [82, 70, 71], sequence

clustering [25, 28, 46], and sequence classification [98, 7, 23]. A core operation in all these

applications is to search the dataset for sequences that are similar to a given query sequence.

The similarity between a dataset sequence and a query sequence may be defined at the se-

quence to sequence, sub-sequence to sequence, or sub-sequence to sub-sequence level. These

similarity search levels are also known as searching for global alignments, semi-global align-

ments, and local alignments, respectively. In this dissertation, we focus on applications that

rely on finding sub-sequence to sub-sequence similarity levels such as homogenous search,

1

sequence mapping, and SNP detections.

1.2 Maximal exact matches and highly similar local

alignments

Searching for local alignments is a critical step in many bioinformatics applications and

pipelines. This search process is often sped up by finding shared exact matches of a minimum

length. The value of minimum length is usually set to ensure all the desired similar sequences

are recognized. Depending on the application, the shared exact matches are extended to

maximal exact matches [91, 38], and these are often extended further to local alignments

by allowing mismatches and/or gaps [92, 56, 75, 36].

In this dissertation, we focus on searching for all maximal exact matches (MEMs) and

all highly similar local alignments (HSLAs) between a query sequence and a database of

sequences. We focus on finding MEMs and HSLAs over nucleotide sequences where nu-

cleotides are represented by A, C, G, and T . The MEMs and HSLAs are commonly used

in applications that compare sequences within the same species or closely related species.

1.3 Overview of searching methods

1.3.1 Sequence alignments types

In bioinformatics, a sequence alignment is a procedure of arranging nucleotide or protein

sequences to determine regions of similarity. These alignments are usually used to find func-

tional, structural, or evolutionary relationships between the sequences. Sequence alignments

2

are also used for non-biological sequences, such as computing the similarity level between

strings in a natural language, text mining, and financial data.

Sequence alignments can be classified into global and local alignments. Global alignments

try to align every residue in every sequence. The Needleman-Wunsch algorithm [64] is a tradi-

tional global alignment method that is based on dynamic programming. On the other hand,

local alignments try to find regions of similarity between sequences. The Smith-Waterman

algorithm [84] is a traditional local alignment method that is also based on dynamic pro-

gramming. Semi-global alignments [14, 53] are hybrid methods that try to align one sequence

entirely within the other sequence. These are especially useful when one sequence is short,

and the other is very long. Many of semi-global alignment algorithms are extended from

global alignment algorithms such as the modified Needleman-Wunsch algorithm [53]. In

these methods, gaps at the beginning and/or end of an alignment (also known as starting or

trailing spacing) are ignored.

Sequence alignments can also be classified into pairwise sequence alignment and multiple

sequence alignment. In pairwise sequence alignment, we align two sequences. Some standard

pairwise sequence alignment methods are the Needleman-Wunsch algorithm [53], the Smith-

Waterman algorithm [84], FASTA [69], BLAST and its improved versions [6, 104, 57, 17].

The pairwise sequence alignments are usually computed using a 2-dimensional matrix. Mul-

tiple sequence alignment methods align more than two sequences at a time. A common way

to perform multiple sequence alignments is to generalize pairwise sequence alignment meth-

ods. One way to generalize pairwise sequence alignment methods is to use an n-dimensional

matrix instead of a 2-dimensional matrix to align n sequences instead of 2 sequences. This

technique is computationally expensive but is guaranteed to find a global optimum solution

and is only used when for small n. A more practical solution for large n is to use heuristics

3

such as progressive alignments as in ClustalW [88] MUSCLE [24] MAFFT [35]. Progressive

alignment methods use a guide tree to reduce the multiple sequence alignments problem into

a series of 2-dimensional pairwise sequence alignment problems.

Another way to align sequences is to do structural alignments such as DALI [32], SSAP [87],

and Combinatorial Extension methods [81]. Structural alignments are commonly used for

protein sequences and sometimes RNA sequences. They align sequences using information

about the secondary and tertiary structure. These methods typically find local alignments

and can be applied to two or more sequences.

1.3.2 Online searching methods

Searches can be online or offline. We first describe the online searching methods. The on-

line methods produce the best alignments but are slow use dynamic programming. The

Needleman-Wunsch algorithm [53] and Smith-Waterman algorithm [84] are based on dy-

namic programming and find global and local alignments, respectively.

Faster heuristic methods are often used as dynamic programming requires quadratic time

complexity. One heuristic, known as seed-end-extend, first finds seeds, word-to-word matches

of a given length, and then tries to extend these seeds into local alignments. FASTA[50, 69]

was one of the earliest seed-and-extend searching tools. Today, the dominant method for

sequence comparison is the Basic Local Alignment Search Tool, or BLAST [5]. Given a

query, BLAST performs a linear scan over the sequence database searching for a set of

seeds/words shared with some substrings of the query. It then extends them in both direc-

tions until the accumulated similarity score begins to decrease. Finally, BLAST reports these

matching regions with high statistical significance. Further improvements of BLAST include

MegaBLAST [104], MPBLAST [40], and miBLAST [39]. MegaBLAST is a greedy algorithm

4

that can efficiently align sequences that are highly similar. MPBLAST and miBLAST are

different versions of BLAST used for parallel queries.

The running time of all online search methods is proportional to the size of the dataset,

which is increasingly prohibitive. Therefore, much work has been done to develop searching

methods that rely on dataset pre-processing to create a search index. These search methods

are known as offline search methods.

1.3.3 Offline searching methods

In offline search, we first preprocess a dataset by building a persistent data structure, called

an index, to support fast search. This data structure is often designed to store the occurrences

of patterns in the dataset to support fast search later on. The patterns might be strings or

substrings of fixed or variable lengths. Most previous works fall into one of two categories:

suffix-array methods and seed-and-extend heuristic methods.

The suffix-array methods convert the dataset into a suffix-array data structure, which

simulates a suffix-tree of the dataset. In the case of DNA datasets, edges of this suffix-tree

are labeled with one of the four nucleotides. To form a unique suffix of the dataset, the

algorithms traverse the tree from the root to a leaf while concatenating all the nucleotides

on the edges along the path. Every leaf node stores all matching locations of this unique

suffix in the dataset. Searching for a query read is performed by traversing through the

dataset suffix-tree from the root to a leaf node following the query sequence. If there exists

a path from the root to a leaf such that the corresponding suffix of the path matches the

query read, then all the locations stored in the leaf node are returned as matching locations.

Suffix arrays simulate the suffix-tree traversal process with a much smaller memory footprint

by using the Ferragina- Manzini index [27] and the Burrows-Wheeler Transform [16]. There

5

are two significant problems with the suffix array approach: it does not manage mismatches

efficiently, and it uses lots of memory, even with these space saving optimizations.

The offline seed-and-extend method, similar to the online seed-and-extend method, is

developed based on the observation that for a correct matching, a query sequence and a

database sequence must share some small regions of exact matches or seeds. By identifying

the seeds of a query, the search methods limit the search range from the whole dataset to

only the neighborhood of each seed. In offline search, seeds are found by preprocessing the

dataset and storing the locations of their occurrences in a separate data structure called an

index. During the search process, a seed-and-extend method first identifies the seeds in a

query. Then the search method tries to extend the matches at each of the seed locations using

dynamic programming. SSAHA [66] and BLAT [36] are early examples of indexed seed-and-

extend search methods. In both methods, hash tables are used to save seeds extracted from

a database. In 2008, Morgulis et al. [56] allow creating and passing an index to MegaBLAST

to perform indexed search. Instead of hash tables, the index used by Morgulis et al. is an

array of all possible seeds associated with the lists of occurrences of each seed.

1.3.3.1 Defining k-mer indexes

Searching with k-mer indexes is one of the earliest and major types of indexed seed-and-

extend search methods. In this search method, the seeds are substring of length exactly k

which is known as k-mers. A k-mer index consists of two major parts: the k-mer dictionary

and the inverted lists. The k-mer dictionary is composed of all/some possible k-mers that

can be extracted from the dataset sequences. Each k-mer in the k-mer dictionary has an

inverted list which is the list of all/some if its occurrences in the dataset.

Finding maximal exact matches MEMs and highly similar local alignments HSLAs is

6

often sped up using k-mer indexes. Similar to any seed-and-extend offline method, a k-mer

index supports quickly finding shared k-mers. That is, when a query sequence is given, we

extract k-mers from the query, check if that k-mer appears in the dictionary, and find the

corresponding shared k-mers by using the stored list of occurrences. We typically extend

these shared k-mers in two stages. In the first stage, we try to extend every shared k-mer into

an exact matche of a given minimum length. If the first stage is successful, we then further

extend the match into an MEM . In the context of searching for HSLAs, every MEM is

extended even further by allowing mismatches and/or gaps. We describe this search process

more precisely in chapter 3 and chapter 4.

In this dissertation, we only focus on indexed seed-and-extend searching methods that

are used to find MEMs and HSLAs. More precisely, we focus only on k-mer index search

methods where seeds are k-mers.

1.4 Overview of k-mer sampling strategies

One of the biggest problems with using k-mer indexes is that the size of the index is sig-

nificantly larger than the underlying database/ datasets. As biological databases/datasets

rapidly increase in size, the size of the resulting k-mer indexes increases which makes using a

k-mer index infeasible for many applications. Furthermore, query time increases rapidly as

the database’s size and/or the number of queries increases. To ensure k-mer indexes remain

viable, we must mitigate k-mer index size and query time.

One of the most effective and widely used ways of mitigating k-mer index size and query

time is to perform sampling, in which we omit some k-mer occurrences from the index. We

classify sampling strategies in two ways: how they choose k-mers and how many k-mers they

7

choose.

1.4.1 Fixed vs. minimizer sampling

There are two major ways to choose k-mers: fixed sampling and minimizer sampling. In

fixed sampling, for a given sampling step w ≥ 1, we choose the k-mers that occur at every

wth position [56, 66, 36]; this is the sampling option supported by Indexed BLAST. When

a query sequence is given, all the k-mers from the query are used during the search process.

On the other hand, in minimizer sampling, we choose a “minimum” k-mer within a given

window [75, 76, 101, 18, 59, 43]. More specifically, for a window of w adjacent k-mers, the

k-mer that is alphabetically minimum is selected. The next window then starts one position

to right from the previous window. When a query sequence is given, we also sample the

k-mers from query sequence in the same fashion. Thus, only the sampled k-mers from the

query are used during the search process.

It has widely been assumed that fixed sampling produces smaller indexes and has less

index construction times than minimizer sampling, but that minimizer sampling leads to

faster query processing than fixed sampling. For example, Roberts et al. [75] highlight the

importance of sampling k-mers at query time during the search procedure saying that “the

procedure would still be more efficient if we could compare only a fraction of the k-mers

in T to the database” where T is their notation for a set of query strings. However, these

beliefs have never been empirically verified. In fact, few studies have empirically tested either

method on its own [75, 56]. In chapter 3, we fill this gap by systematically evaluating and

comparing fixed sampling and minimizer sampling to assess how these methods perform with

respect to index construction time, index size, and query processing time. Specifically, we

compare and contrast the construction time, index size, and query processing time required

8

to find all MEMs using both fixed and minimizer sampling.

1.4.2 Hard fixed vs. soft fixed sampling

In fixed sampling, for a given sampling step w ≥ 1, a k-mer that occurs at every wth position

is saved. We distinguish between two types of fixed sampling: hard sampling [56, 66] and

soft sampling [36]. In hard sampling, we choose w small enough such that we are guaranteed

to find all desired HSLAs. On the other hand, in soft sampling, we consider large w values,

and thus we risk missing some HSLAs.

In chapter 4, we study how best to sample a k-mer index to manage index size, query time,

and accuracy where accuracy refers to finding all desired HSLAs. We evaluate a broad range

of sampling rates w that includes existing choices and new sampling choices. In particular,

we study soft sampling, or sampling especially sparsely to reduce further index size and

query time at the risk of missing some HSLAs. We show that using soft sampling, which

has largely been ignored in previous studies, significantly reduces index size and computation

times with very little loss in accuracy.

1.5 Research questions and major results

We study the problem of trying to find the best sampling strategy to create simultaneously

efficient and accurate k-mer indexes in the context of finding MEMs and HSLAs using

DNA datasets. In particular, we want to answer two main questions. The first question

is to compare the effectiveness of the two major sampling strategies, fixed sampling and

minimizer sampling. The second question is to study the effectiveness of soft or sparse fixed

sampling. To address these two major questions, we systematically investigate the effect of

9

sampling on k-mer indexes.

Most biological applications use one of two major types of sampling: fixed sampling and

minimizer sampling. It is well known that fixed sampling will produce a smaller index, typ-

ically by roughly a factor of two, whereas it is generally assumed that minimizer sampling

will produce faster query times since query k-mers can also be sampled. However, no direct

comparison of fixed and minimizer sampling has been performed. In chapter 3, we systemat-

ically compare fixed and minimizer sampling with respect to index size and query processing

time. We use the resulting k-mer indexes for fixed sampling and minimizer sampling to find

all MEMs.

In chapter 4, we study the effects of fixed soft sampling with NCBI indexed BLAST

when searching for HSLAs. Our work is unique in that there is little prior work that has

considered soft sampling, and the little work that has considered it has not systematically

studied how sampling parameter w affects accuracy. We specifically study the effect of w on

the size, accuracy, and query time of the k-mer index. We also extend previous analytical

models to work with a wider range of w and k values. Then, we compare our empirical

results with predictions from both the original and the extended analytical models.

To assess the effectiveness of soft sampling in a real biological application, we use soft

sampling k-mer index in mapping human ESTs on the human genome. We focus on k-mer-

based mappers [30, 3, 77, 2, 33, 96] that are typically fully sensitive mappers that “can detect

sequences missed by other tools” [31] but may be relatively slow. We study whether soft

sampling k-mer indexes might increase the speed of these mappers with relatively little loss in

sensitivity. These methods work in two stages. First, they find the set of all HSLAs between

an EST and a genome. Then they map the EST to the genome by selecting and linking

these HSLAs. The mappers usually differ in how to modify, evaluate, and use the resulting

10

HSLAs to assess the final mapping process. In chapter 4, we assess precisely whether the

correct mapping is retained when we use soft-sampled k-mer indexes to complete the first

stage of finding HSLAs. We only simulate the mapping process because we want our results

to be general and independent from the details of the final mapping process of a mapper.

We summarize our major contributions.

1. We systematically compare fixed sampling with minimizer sampling using real biologi-

cal datasets to assess how well they find all MEMs with respect to index construction

time, index size, and query processing time. Our results show the surprising result

that fixed sampling typically answers queries at least as fast as minimizer sampling

and often is faster when both methods use the same space regardless of k.

2. We evaluate the impact of the k value on the effectiveness of fixed and minimizer

sampling methods to find all MEMs. Previous studies usually focus on only one value

of k. We show that the value of k has a significant impact on a sampling method’s

index size and query processing time. When the value of k decrease, fewer number of

k-mer occurrences are saved resulting in smaller indexes. However, when the value of k

increases, the index processes queries much faster. On average, the reduction in query

times for all query sets when k = 32 compared to k = 12 is 37 and 136 times faster for

fixed sampling and minimizer sampling respectively.

3. We systematically assess how well BLAST can find HSLAs when using soft sampling

when working with the human genome as our database. In particular, we study how

accurate BLAST is in retaining all HSLAs. We show that BLAST’s accuracy is

high, even for large choices of w. Furthermore, the false positive rate, in the form

of shared MEMs that do not extend into HSLA, is significantly reduced, leading

11

to a corresponding significant reduction in query time. This demonstrates that soft

sampling is a simple but effective method to increase index efficiency with surprisingly

little loss of accuracy.

4. We design a new analytical model that we call the BLAST model by extending previ-

ously developed analytical models to work with our choices of k and w. We compare

the theoretical predictions from our new BLAST model and old models with our em-

pirical results. We show that the new BLAST model is reasonably accurate whereas

other analytical models are not accurate in our context.

5. Finally, we study the effects of using soft sampling for the problem of mapping human

ESTs against the human genome. We conservatively simulate the process because

either existing mapping tools do not support soft sampling or do not allow us to

replace the first phase of finding HSLAs. We show that we are able to map more than

98% of the query ESTs perfectly while reducing index size by 3-5 times and query time

by 23.3% when compared to hard sampling.

12

Chapter 2

Related work

Over the last decade, there has been a dramatic increase in the use of k-mer indexes in

biological applications and pipelines to accelerate the search for maximal exact matches

(MEMs) and/or highly similar local alignments (HSLAs). Since k-mer indexes require a

lot of memory, sampling has been widely used to reduce the index size. We classify sampling

strategies used to create k-mer indexes in two ways: how they choose k-mers and how many

k-mers they choose. The k-mers can be sampled in two ways: fixed sampling and minimizer

sampling. The number of sampled k-mers depends on the size of a sampling parameter w. If

w is relatively small, and thus enough k-mers are sampled, then the k-mer index reaches full

accuracy, and we refer to this sampling as hard sampling. If w is large, then fewer k-mers

are sampled, then the index does not guarantee full accuracy, and we refer to this sampling

as soft sampling. In the current literature, no systematic study has been done to compare

the different sampling methods and their relative benefits/weakness.

In this dissertation, we study the problem of trying to find the best sampling strategy to

create simultaneously efficient and accurate k-mer indexes. We study k-mer indexes in the

context of finding all MEMs and all HSLAs between a query sequence and a database of

sequences, which are our two primary motivating applications.

13

2.1 Fixed sampling versus minimizer sampling

Two sampling methods are commonly used to build k-mer indexes: fixed sampling and

minimizer sampling. No previous work has carefully compared these two sampling methods

and their relative benefits/weakness.

Both Roberts et al. [75] and Morgulis et al. [56] use sampling to reduce the size of k-mer

indexes with application to find HSLAs. In 2004, Roberts et al. were the first to propose

minimizer sampling to reduce the size of a k-mer index (in particular the k-mer lists) to find

HSLAs. Assuming the data is random, Roberts et al. computed the expected theoretical

reduction in k-mer lists size to be 2/(w + 1) compared to saving complete lists. In 2008,

Morgulis et al. proposed indexed mega-BLAST to accelerate searching for HSLAs. Morgulis

et al. used fixed sampling to build k-mer indexes and reported the reduction in list size to be

1/w, compared to saving all complete lists. Morgulis et al. did not conduct any comparisons

between fixed and minimizer sampling.

Finding MEMs is the first step in finding local alignments. In seed-and-extend searching

methods, shared seeds, which are exact matches, are extended to MEMs, and then to local

alignments. In comparative genomics studies, MEMs define anchor points for comparing

different genomes, In a recent paper, MEMs are also used to map long NGS reads against

a genome [92]. Although suffix trees have been the traditional data structure of choice when

searching for MEMs [41, 1, 37, 91], Khiste and Ilie recently showed that k-mer indexes

outperform suffix trees when searching for MEMs in large genomes when the MEM size

is relatively large [38]. Specifically, Khiste and Ilie use fixed sampling to build a memory-

efficient k-mer index to search for MEMs. Although minimizer sampling has been actively

used as an alternative way to reduce k-mer index size in other studies and allows for sampling

14

k-mers from a query sequence, Khiste and Ilie do not compare fixed sampling to minimizer

sampling.

Roberts et al. [75] defined low complexity regions as one possible complication for min-

imizer sampling. Roberts et al. write “If a string contains many consecutive zeros (or As

in the case of genomic data), then several consecutive k-mers may be minimizers. While

this is not a major problem, it counteracts our goal of sampling a fraction of the k-mers.”

The low complexity regions, as defined by Roberts et al., is one simple type of repeats. In

general, repeats, or repeated sequences, are short substrings that occur multiple times in a

genome. To handle the low complexity regions, Roberts et al. write “In general, we want to

devise our ordering to increase the chance of rare k-mers being minimizers.” They propose

strategies to try to accomplish this task. However, it is unclear how effective these schemes

are for dealing with repeats. In particular, it is not clear if the proposed schemes work for

all types or repeats, all numbers of repeats, and all possible choices of k.

Schleimer et al. [80] independently introduced minimizer sampling calling it winnowing

sampling. While winnowing is identical to minimizer, winnowing has been studied and used

for for different problems and domains than minimizer. Minimizer sampling has been used

to sample k-mers, called minimizers, to solve the problem of searching for local alignments

using biological datasets while winnowing method has been used to solve the problem of k-

mer counting and ranking using text documents datasets for document plagiarism detection.

A key difference between how minimizer and winnowing sampling is that minimizer sampling

requires saving sampled k-mer positions while winnowing method has not. This is different

areas because in MEM and HSLA search problems the positions define anchor points to

compare sequences whereas in k-mer counting and ranking problems only the number of

occurrences is used to estimate the similarity between two documents. Similar to Roberts

15

et al., Schleimer et al. observed that in low complexity regions (or low-entropy strings in

text mining literature), a k-mer might occur more than once and all of its occurrences are

sampled. Schleimer et al. suggested a simple fix to this problem by not sampling duplicate

k-mers in both the indexing and the querying phase and call this version robust winnowing. If

it is desired to find positional information, in robust winnowing, we should inspect all the w

adjacent k-mers to find the correct matching positions. In the context of k-mer counting and

plagiarism detection, Schleimer et al. did not explore more winnowing and robust winnowing

methods. Also, Schleimer et al. did not compare the performance of winnowing and robust

winnowing.

The k-mer sampling method has been used in sequence assembly. Ye et al. [101] proposed

using sampled k-mers, instead of all k-mers, to reduce the memory requirements for De Bruijn

graph (DBG) based assemblers. Ye et al. used fixed sampling to sample k-mers; the penalty

is that links or edges between k-mers are longer and slightly more complex. Ye et al. report

that fixed sampling with step w reduces their dictionary by roughly 1/w compared to tools

that use a full list of k-mers [102, 83, 45]. Ye et al. note the existence of minimizer sampling

and express interest in comparing minimizer sampling to fixed sampling in future work but

did not compare the two in their work. In genome assembly, we only use the dictionary

(the list of k-mers); we do not use the lists of k-mer occurrences. In other applications,

where we use the lists of k-mer occurrences, the size of these lists is the dominant factor

in index size. Therefore it is important to understand how fixed and minimizer sampling

affect both the number of k-mers and the number of k-mer occurrences. Li et al. [48] and

Movahedi et al. [59] both proposed disk-based DBG assemblers to avoid loading the whole

graph into RAM. They load small segments of the graph incrementally and complete the

assembly in this fashion. Since completing the assembly requires identifying adjacent exact

16

matches, both papers use minimizer sampling as a hashing mechanism, to find adjacent exact

matches and group them into the same segment. We do not focus on these applications for

two reasons. First, our goal is to focus on applications that use k-mer indexes in RAM,

which means that index size is critical. Second, minimizer sampling, in the above context,

is used as a hashing function to minimize disk I/O operations rather than reducing the list

of k-mers.

The k-mer sampling method has been used to solve other problems in bioinformatics. In

the k-mer counting problem, the task is to build a histogram of occurrences of every k-mer

in a given dataset where k is relatively large (k > 20), and it is infeasible to list all k-mers in

RAM. Similar to disk-based DBG assemblers, minimizer sampling is used to select m-mers

(m < k) from every k-mer. These m-mers are later used to reduce disk I/O operations in

disk-based counting k-mers tools such as MSPKmerCounter [47] and KMC2 [21]. Again,

this problem is significantly different than our motivating problems which are searching for

MEMs and HSLAs. In the MEM and HSLA search problems, the location of sampled

k-mers is important.

In metagenomic sequence classification, Kraken program [98] uses the idea of minimizer to

accelerate the classification process in large data sets. Kraken starts with creating a database

that contains entries of a L-mer and the lowest common ancestor LCA of all organisms whose

genomes contain that L-mer. When a query sequence is given, Kraken searches the database

for each L-mer in a sequence, and then using the resulting set of LCA taxa to determine an

appropriate label for the sequence. To finding all L-mers effectively, Kraken builds a k-mer

index, (k < L) where each k-mer is associated with all L-mers containing this k-mer as a its

minimizer. Since a simple lexicographical ordering of k-mers can be biased to sample more

minimizers over low-complexity regains, Kraken uses the exclusive-or (XOR) operation to

17

scrambles the standard ordering of each k-mer’s before comparing the k-mers to each other

using lexicographical ordering.

2.2 Hard fixed versus soft fixed sampling

To find HSLAs, we use a sampled k-mer index with sampling step w ≥ 1. We focus on

HSLAs that have at least one MEM with a minimum of length L. In chapter 4, we discuss

in detail how to compute the right value of L to find all desired HSLAs.

Most previous studies of sampled k-mer indexes have focused on hard fixed sampling (or

hard sampling for short) with limited study of soft fixed sampling (or soft sampling for short)

and thus have not studied the effect of choosing a large sampling step w on index accuracy,

query time, or false positive rate. For example, Morgulis et al. [56] built Indexed BLAST,

which uses w = L− k + 1 and supports k values up to 15. Ning et al. [66] built the index in

SSAHA with k = 1/2(L + 1) and w = k. Morgulis et al. and Ning et al. use hard sampling

to find the desired HSLAs. In both cases, the value of w is small enough such that for each

MEM of length L, there is a sampled k-mer and thus we can find all MEMs and thus all

HSLAs.

Kent [36] has performed the main previous study of soft sampling. Kent developed

an analytical model for estimating the likelihood of retaining matches and creating false

positives for a variety of indexed search strategies. These include searching with one k-mer,

two nearby small k-mers, and one large k-mer with one allowed error. In all cases, he built

a soft sampled k-mer index where w = k. Kent computed the best choice of k such that the

expected accuracy to find all HSLAs was above a given threshold and the number of shared

k-mers that did not lead to HSLAs were as small as possible.

18

Kent’s work differs from ours in several key ways. First, we consider only k = 12 so

that we can use BLAST to perform our searches, whereas Kent considered multiple k values.

Second, we consider a wide range of w values, whereas Kent only considered w = k. Thus,

Kent’s work does not allow a true study of the effect of w on index performance since, in

his work, k is always changing in addition to w.dataset We extend Kent’s analytical model

to work with our choices of k < L and w and we call this new model the BLAST model.

We compare our empirical accuracy with the predicted accuracies of both Kent’s original

model and our BLAST model. Our results show that our BLAST model is reasonably

accurate in predictingHSLA retention rate. On the other hand, Kent’s model significantly

underestimates HSLA retention rate in our experiments with the human genome. This is

expected since Kent’s model is not designed to handle the case when k < L.

2.3 Soft fixed sampling in EST mapping

We apply soft fixed sampling to the problem of EST mapping on a genome, which builds

upon finding HSLAs. Mapping ESTs on a genome is a fundamental procedure in genome

research. These mappings are used to discover the intron-exon structure of genes, SNPs, and

cDNA insertions and deletions, to name just a few applications. Many different mapping

tools are available, each with their own advantages [31]. We focus on k-mer–based mappers

such as mrFAST/mrsFAST [30, 3], SHRiMP [77], Hobbes [2], drFAST [33], and RazerS [96].

These mappers are typically fully sensitive mappers that “can detect reads missed by other

tools” [31] but may be relatively slow. In all these mappers, only hard sampling is used when

building a k-mer index. We study whether soft sampling k-mer indexes might increase the

speed of these mappers with relatively little loss in sensitivity when working with the human

19

genome as our database. Specifically, we assess whether the correct mapping is retained

when we use soft-sampled k-mer indexes to complete the first stage of finding HSLAs. We

measure the effect of sampling on both the index size and the query time. We only simulate

the mapping process because we want our results to be general and independent from the

details of the final mapping process of a mapper.

Finally, Xin et al. [100] proposed two general techniques to accelerate k-mer based map-

pers. The first technique is to use the set of adjacent k-mers as supporting evidence for the

existence of a true match. The second is to use shared infrequent k-mers to select the best

mapping location. Similar to other studies, they only used w = k while evaluating these

techniques. In contrast, we test a broader range of w values and demonstrate that using

a larger w greatly reduces query time and index size while suffering only a small loss of

sensitivity.

20

Chapter 3

Fixed versus minimizer sampling

Searching for similar sequences is a critical step in many bioinformatics applications and

pipelines, including identifying homologues, sequence classifications, sequence mapping, and

sequence assembly. This search process is often sped up by finding shared exact matches

(EM) of a minimum length L. The value of L is usually set to ensure all the desired similar

sequences are recognized. Depending on the application, the shared EMs can be extended

to longer EMs [98]. In some applications, the EMs are extended to maximal exact matches

(MEMs) [91, 38], and MEMs are often extended further to local alignments by allowing

mismatches and/or gaps [92, 56, 75, 36].

Finding EMs, MEMs, and local alignments is often sped up using k-mer indexes (k <

L). One of the biggest problems with using k-mer indexes is that the size of the index is

significantly larger than the underlying database/ datasets. One of the most effective and

widely used ways of mitigating k-mer index size and query time is to perform sampling, in

which we omit some k-mer occurrences from the index. A sampling strategy can be classified

based on how it chooses k-mers. There are two major ways to choose k-mers: fixed sampling

and minimizer sampling.

It has widely been assumed that fixed sampling produces smaller indexes and has smaller

index construction times than minimizer sampling but that minimizer sampling leads to

faster query processing than fixed sampling. However, these beliefs have never been empiri-

21

cally verified. In fact, few studies have empirically tested either method on its own [75, 56].

In this chapter, we fill this gap by systematically evaluating and comparing fixed sampling

and minimizer sampling to assess how these methods perform with respect to index con-

struction time, index size, and query processing time. Specifically, we compare and contrast

the construction time, index size, and query processing time required to find all MEMs using

both fixed and minimizer sampling.

We start by formalizing the problem of finding MEMs between two sequences. Then,

we illustrate how k-mer indexes are used to find MEMs. Next, we formally describe the

two k-mers sampling methods: fixed sampling and minimize sampling. We highlight the

key similarities and differences between these two sampling methods. Finally, we set the

comparison framework and conclude with the comparison results.

3.1 The MEM enumeration problem

Let Σ be a finite ordered alphabet. We focus on the alphabet for nucleotide databases

Σ = {A,C,G, T}. Let s be a string over Σ of length |s|. We use s[i] to denote the character

at position i in s, for 0 ≤ i < |s|. We use s[0] to denote the first character in string s. We use

the ordered pair s(i, j) to denote the substring in s starting with the character at position

i and ending with the character at position j for 0 ≤ i < j < |s|. We note that substring

s(i, j) is also denoted as s[i..j] in some papers, but we only use s(i, j) in this chapter.

Definition 1 Exact Match (EM) For any two strings s1 and s2, a pair of substrings

(s1(i1, j1), s2(i2, j2)) is an exact match if and only if s1(i1, j1) = s2(i2, j2). Also, a substring

ω is an exact match if there is an exact match pair (s1(i1, j1), s2(i2, j2)) such that ω =

22

s1(i1, j1). The length of an exact match is j1 − i1 + 1.

Definition 2 Maximal Exact Match (MEM) An exact match (s1(i1, j1), s2(i2, j2)) is

called maximal if s1[i1 − 1] 6= s2[i2 − 1] and s1[j1 + 1] 6= s2[j2 + 1]. Also, a substring ω is a

maximal exact match if there is a maximal exact match pair (s1(i1, j1), s2(i2, j2)) such that

ω = s1(i1, j1).

We now formalize the problem of finding MEMs between two datasets.

Definition 3 MEM Enumeration Problem Given two datasets of sequences D1 and

D2 and an integer L, the MEM enumeration problem is to find the set of all MEMs of

length at least L between all sequences in D1 and all sequences in D2. We denote this set as

MEM(D1, D2, L). We use MEM(L) if D1and D2 are clear from the context.

We illustrate many of these and later definitions using the following example where

D1 = {s1} and D2 = {s2} and s1 and s2 are as follows:

s1 = GTAC T AGG CTA CTA GGGG with length |s1| = 18

s2 = GTAC A AGG CTA CTA CTA TTTT with length |s2| = 21

The two string s1 and s2 have two MEMs of length at least 6: AGGCTACTA =

(s1(5, 13), s2(5, 13)) with length 9 and CTACTA = (s1(8, 13), s2(11, 16)) with length 6.

Thus, MEM({s1}, {s2}, 6) = {(s1(5, 13), s2(5, 13)), (s1(8, 13), s2(11, 16))} whereas

MEM({s1}, {s2}, 8) = {(s1(5, 13), s2(5, 13))}.

In this study, we focus on finding MEMs of a minimum length L between a query

sequence and a database of sequences because it is a critical step in searching for local

alignments with tools such as NCBI BLAST.

23

3.2 Using k-mer indexes to find MEMs

Finding MEMs with a minimum length L is often sped up using a k-mer index, k ≤ L, at

the cost of additional space. A k-mer index supports quickly finding EMs of length k which

are also known as shared k-mers. We typically extend these shared k-mers in two stages.

In the first stage, we try to extend every shared k-mer into an EM of length L ≥ k. If the

first stage is successful, we then further extend the match into an MEM . In the context of

searching for local alignments, every MEM is extended even further by allowing mismatches

and/or gaps.

It is possible to skip the first extension step and build an L-mer index to find all shared

L-mers. However, due to technical limitations and the huge memory requirements necessary

for building an L-mer index for L > 32, it is common to build the index using k ≤ 32 < L

[38, 98, 56, 75].

We typically work with a k-mer index as follows. We save the list of k-mers present in

the database and we refer to this list as dictionary. For each saved k-mer, we save some of its

occurrences into a list. When given a query sequence, we extract k-mers from the query, see

if that k-mer appears in the dictionary, and find the corresponding shared k-mers by using

the stored list of occurrences.

We describe this search process more precisely as follows.

Definition 4 (k-mer and k-mer occurrence) Consider any length k substring s(j−k+

1, j) of string s where k− 1 ≤ j ≤ s− 1. We call that substring a k-mer and more concisely

represent this k-mer occurrence using the ordered pair (s, j).

Definition 5 (Shared k-mers and shared k-mer occurrences) Consider any two strings

s1 and s2 that have an exact match (s1(i1, j1), s2(i2, j2)) of length k. We call the common

24

substring s1(i1, j1) (equivalently s2(i2, jw)) a shared k-mer and more concisely represent the

corresponding shared k-mer occurrence using the quadruple (s1, j1, s2, j2).

Any string s of length |s| contains exactly |s| − k + 1 k-mer occurrences. Using our

previous example with k = 3, s1 and s2 have 16 and 19 3-mer occurrences, respectively.

Furthermore, s1 and s2 have exactly seven shared 3-mers: ACT , AGG, CTA, GCT , GGC,

GTA, and TAC. These shared 3-mers result in 24 different shared 3-mer occurrences as

follows. GCT , GGC, and GTA appear exactly once in s1 and s2, and thus each of them

has exactly one shared 3-mer occurrence: (s1, 9, s2, 9), (s1, 8, s2, 8), and (s1, 2, s2, 2). The

3-mer AGG occurs 2 times in s1 and 1 time in s2, and thus AGG is part of two different

shared 3-mer occurrences: (s1, 5, s2, 7) and (s1, 15, s2, 7). Since shared 3-mer ACT occurs 2

times in both s1 and in s2, the shared 3-mer ACT is part of 2 × 2 different shared 3-mer

occurrences: (s1, 4, s2, 12), (s1, 4, s2, 15), (s1, 12, s2, 12), and (s1, 12, s2, 15). Similarly, TAC

occurs 2 times in s1 and 3 times in s2, so shared 3-mer TAC is part of 3× 2 different shared

3-mer occurrences: (s1, 3, s2, 3), (s1, 3, s2, 11), (s1, 3, s2, 14), (s1, 11, s2, 3), (s1, 11, s2, 11),

and (s1, 11, s2, 14). Finally, CTA occurs 3 times in s1 and 3 times in s2, leading to 3 × 3

different shared 3-mer occurrences: (s1, 5, s2, 10), (s1, 5, s2, 13), (s1, 5, s2, 16), (s1, 10, s2, 10),

(s1, 10, s2, 13), (s1, 10, s2, 16), (s1, 13, s2, 10), (s1, 13, s2, 13), and (s1, 13, s2, 16).

Since k ≤ L, it is possible that a shared k-mer occurrence is not part of an MEM of

length at least L; we call such a shared k-mer occurrence a false positive. In general, de-

creasing the value of k increases the chance that a shared k-mer occurrence is a false positive.

Using the above 24 shared 3-mers occurrences and assuming L = 6, the MEM =

25

AGGCTACTA can be found by extending any of the following seven 3-mer occurrences:

(s1, 7, s2, 7), (s1, 8, s2, 8), (s1, 9, s2, 9), (s1, 10, s2, 10), (s1, 11, s2, 11), (s1, 12, s2, 12), or

(s1, 13, s2, 13). Similarly the MEM = CTACTA can be found by extending any of the fol-

lowing four 3-mer occurrences: (s1, 10, s2, 13), (s1, 11, s2, 14), (s1, 12, s2, 15), or (s1, 13, s2, 16).

The remaining twelve shared 3-mer occurrences are false positives. If L = 8, then the seven

shared 3-mer occurrences that can be extended to AGGCTACTA are not false positives.

The remaining sixteen shared 3-mer occurrences are false positives.

Every EM of length L has L− k + 1 shared k-mer occurrences. Finding and extending

one of these shared k-mer occurrences is sufficient for finding that EM . Therefore, when

building k-mer indexes, we can store a sampled subset of k-mer occurrences in the index

and still find every possible MEM of length at least L. With sampling, we not only reduce

the index’s memory requirements, we also reduce query time by not discovering the same

MEM multiple times. Sampling, therefore, is a very effective method for improving a k-mer

index’s efficiency (reducing construction time, space, and query time).

3.3 Fixed sampling versus minimizer sampling

In bioinformatics, two sampling methods are commonly used to build k-mer indexes: fixed

sampling [38, 56] and minimizer sampling [75, 98]. To ensure that a k-mer index achieves

100% sensitivity which means that it finds all shared MEMs of length at least L, both

methods ensure that within every MEM of length at least L, at least one k-mer occurrence

is saved to the index. We now define both sampling methods comparing and contrasting

their relative strengths and weaknesses.

26

Fixed sampling is simple greedy sampling strategy that minimizes the number of k-mer

occurrences stored in the index. The goal is to ensure we choose one complete k-mer from

every possible substring of length L from each database sequence s. For example, we must

choose one k-mer from s(0, L − 1) to store in the index; we greedily choose the k-mer that

ends at s[L− 1] since it not only covers this substring but also the next L− k− 1 substrings

up to but not including s(L− k + 1, 2L− k). To cover that substring s(L− k + 1, 2L− k),

we again greedily choose the k-mer that ends at s[2L − k] since it again covers the next

L− k − 1 substrings. In general, the jth k-mer occurrence that we sample ends at position

L− 1 + (j − 1)w where w = L− k + 1. We typically refer to w = L− k + 1 as our sampling

step or sampling window for fixed sampling. During the query phase, we extract every k-

mer from the query sequence q to search for shared k-mer occurrences. Since every k-mer is

extracted from q, if s and q have an MEM of length at least L, then some shared k-mer from

that MEM will be in the k-mer index and the MEM can be recovered. Fixed sampling

has several advantages. First, it is very fast to construct the index. Second, it stores the

minimum possible number of k-mer occurrences in the index to guarantee 100% sensitivity

and thus minimizes index size. The disadvantage is that all k-mers from the query sequence

need to be processed which may slow query time.

Minimizer sampling uses a more sophisticated sampling strategy that allows sampling

of both the database sequence s and the query sequence q. We must again choose one k-

mer from s(0, L − 1) to store in the index. This time, we choose to store the minimum

k-mer from s(0, L − 1) in our index where we order substrings in some canonical order.

For simplicity, one can use the alphabetical order where A < C < T < G which implies

AAA < AGA < AGG < TAA. To improve performance and increase the probability that

rare k-mers become minimizers, different orderings are often used. For example, Roberts et

27

al. proposed using C < A < T < G in odd numbered bases and the reverse ordering in even-

numbered bases [75]. Alternatively, Wood et al. [98] suggest using the exclusive-or (XOR)

operation to scramble the standard ordering of each k-mer before comparing the k-mers

to each other using lexicographical ordering. Once an ordering is established, we process

each length L substring of s (equivalently each window of w = L − k + 1 k-mers) in turn

storing the minimum k-mer occurrence in the index. The first view focusing on substrings

of length L seems more intuitive; the second view focusing on windows of w k-mers is useful

when predicting the expected size reduction from using minimizer sampling. We note a few

things. First, there may be multiple occurrences of a minimum k-mer within a length L

substring; in this case for the original minimizer algorithm but not the one we focus on in

this chapter, each occurrence is stored in the index. Second, minimizer sampling is likely to

store more occurrences than fixed sampling as it does not maximize the distance between

k-mer occurrences stored in the index. Third, the time to construct the index is greater as

more substrings need to be considered. The advantage that minimizer has comes at query

time. Rather than choosing all k-mers from query q, it does the same sampling. That is,

we consider every substring of length L and choose only the minimum k-mers from within

each length L substring to consider for extension. Since both the query and each database

string extract the minimum k-mer(s) from every substring of length L, if there is an EM

of length L, the same minimum k-mer will be extracted and then extended into the EM

and then MEM . In summary, minimizer sampling requires more time to construct its index

and builds a larger index than fixed sampling, but it processes fewer k-mers from the query

sequence and thus may have faster query processing times.

We illustrate the two algorithms using our previous example where we use k = 3 and

L = 8 so w = L− k + 1 = 6, and we use D1 = {s1} as our database and D2 = {s2} as our

28

query dataset. The goal is to return MEM({s1}, {s2}, 8). With fixed sampling, we store

the 3-mer AGG with its occurrence (s1, 7) and the 3-mer CTA and its occurrence (s1, 13)

in the 3-mer index.

All 19 3-mers from s2 are extracted with both AGG and CTA being shared 3-mers.

Since CTA occurs three times in s2, we consider four shared 3-mer occurrences for exten-

sion: (s1, 7, s2, 7), (s1, 13, s2, 10), (s1, 13, s2, 13), (s1, 13, s2, 16). The first and third can be

extended to the same MEM of length 9 whereas the other two cannot be extended to a

length 8 MEM and thus are false positives.

With minimizer sampling, we store three 3-mer occurrences to the index, two with ACT

and one with AGG: (s1, 4), (s1, 7), and (s1, 12). Minimizer sampling is also applied to the

query s2 and three 3-mer occurrences are chosen to test for extension, two with ACT and

one with AAG: (s2, 7), (s2, 12), and (s2, 15). The only shared 3-mer is ACT , and since ACT

appears twice in both sequences, we consider four shared 3-mer occurrences for extension:

(s1, 4, s2, 12), (s1, 4, s2, 15), (s1, 12, s2, 12), and (s1, 12, s2, 15). Only (s1, 12, s2, 12) can be

extended to an MEM of length at least 8; the other three shared k-mer occurrences are

false positives.

Schleimer et al. [80] independently introduced minimizer sampling as winnowing sam-

pling. While winnowing is identical to minimizer, winnowing has been studied and used

for different problems and domains than minimizer. As in [75], Schleimer observed that in

low complexity regions, a k-mer might occur more than once and all of its occurrences are

sampled. Schleimer et al. suggested a simple fix to this problem which they called robust

winnowing where they do not sample duplicate k-mers. The idea is that for each window,

we select the minimizer. If there is more than one occurrence of the minimizer, we select

the same occurrences as the previous window. If not, we select the rightmost minimizer

29

occurrence. This results in a possible loss of the correct minimizer occurrence match. They

suggested looking at all w adjacent minimizers to find the correct match.

As we described, there are two possible optimizations that can be used to improve the

performance of minimizer sampling. The first one is to avoid using lexicographical ordering.

The second one is not to sample duplicate minimizers. In this chapter, we study the effects of

each optimization individually and combined. To avoid lexicographical ordering, we use the

randomization method suggested by Wood [98]. To prevent sampling duplicate minimizers,

we use the robust winnowing method proposed by Schleimer [80], but only apply robust

winnowing to the index, not to the query sequences. We sample all minimizers from a query

sequence window. In this scenario, the correct minimizer occurrence matches are guaranteed

to be found. We finally apply both methods together to test the effectiveness of using both

optimizations simultaneously.

We represent nucleotides using two bits and store k-mers for k ≤ 32 in a 64-bit block.

All indexes are saved as hash tables where a key is a k-mer and its value is a pointer to that

k-mer’s list of occurrences. We store each k-mer’s list of occurrences in a set data structure;

each occurrence is an ordered pair of 64-bit positive integers (s, j) where s is a sequence ID

and j is the ending position of this k-mer occurrence in s.

3.3.1 Sampling methods

We compare fixed sampling and minimizer sampling. Minimizer sampling can be improved

using two different optimizations: randomized ordering and duplicate minimizer removal.

We list all possible combinations of our two optimizations for minimizer sampling in the

following table.

Using both optimizations will result in the most effective minimizer method minrand,one.

30

Table 3.1: Possible minimizer sampling versions based on the optimization tech-
niques.

Duplicate handling \Ordering schema Lexicographical Randomized
Sample all duplicate minimizers minlex,many minrand,many
Remove duplicate minimizers minlex,one minrand,one

Thus, we compare minrand,one with fixed sampling (fix) to test the effectiveness of the

two major sampling methods. We compare minlex,one with min minrand,one to determine

how much effect the randomization optimization has, and we compare minrand,many with

min minrand,one to determine how effective duplicate removal is. We will not consider

minlex,many in any comparison since it is the worst version of minimizer and known to

be inefficient. Next, we formally describe each sampling method. Note that we choose

parameters that ensure we achieve 100% sensitivity which means we will find all MEMs.

In fixed sampling (fix), as we described earlier, we build the k-mer index for a database

of sequences by sampling from every database sequence s the k-mer occurrences ending at

positions L− 1 + (j − 1)w where w = L− k + 1 and 0 ≤ j ≤ b(|s| − L + 1)/wc. We refer to

w = L−k+1 as our sampling step. During the query phase, we extract all k-mer occurrences

from each query sequence q and consider them for extension. Since every k-mer is extracted

from q, if a database sequence s and q have an MEM of length at least L, then some shared

k-mer from that MEM will be in the k-mer index and the MEM can be recovered.

In standard minimizer sampling without any optimization (minlex,many), for every sub-

string of length L in a database sequence s, we store the minimum k-mer occurrence in

our index; if there is more than one minimum k-mer within any length L substring, all

minimum k-mer occurrences are stored. We use the normal lexicographical ordering where

A < C < T < G to define minimum k-mers in our work. Unlike fixed sampling, during the

31

query phase, we use the same sampling for a query sequence q. That is, we consider only the

minimum k-mers from each substring of length L in q for extension. Since both the query

and each database string extract the minimum k-mer(s) from every substring of length L, if

there is an EM of length L, the same minimum k-mer will be extracted and then extended

into the EM and then MEM .

We find minimum k-mers from s and q using a sliding window approach where we use the

minimum k-mer from the previous window to speed up the search for the minimum k-mer(s)

from the new window. For the first substring s(0, L− 1) or q(0, L− 1), we must examine all

L− k + 1 k-mers and choose the minimum one(s). We store the rightmost minimum k-mer

and its position as our current minimum k-mer. If the current minimum k-mer belongs

to the next window, then we can find the minimum k-mer for the next window by simply

comparing the new k-mer in that window with the current minimum k-mer. If the new

k-mer is no larger than the current minimum k-mer, we update the current minimum k-mer

to be the new k-mer. Otherwise, the new current minimum k-mer is the same as the old

minimum k-mer. If the current minimum k-mer is not part of the next window, then we

must again examine all L− k + 1 k-mers and choose the minimum one(s).

Now, we describe how to apply optimizations to reduce the number of k-mers sampled

from the database which leads to a significant speedup of query time. The first optimization

is to use randomized ordering instead of lexicographical ordering. To do this, we first create

a random k-mer mask by uniformly selecting k letters from A, C, G, or T in each positions.

We then view a k-mer as a 2k bit string. For any k-mer or equivalently 2k bit string, we

create a new scrambled 2k bit string by doing an exclusive-or (XOR) operation between

every bit of the 2k bit string and the 2k bit mask. We then sort all the scrambled 2k bit

strings to identify a minimizer. For example, the bit string for the 4-mer AACC is 00000101

32

using lexicographical ordering, where A = 00, C = 01, G = 10, and T = 11. Let the random

4-mer mask be CGAT which is equivalent to the 8-bit string 01100011. After applying the

XOR operation between AACC (00000101) and CGAT (01100011), the resulting scrambled

new bit string for AACC is 01100110. We refer to minimizer sampling that uses randomized

ordering as minrand.

The second optimization prevents sampling duplicate minimizers in the indexing phase.

There are two occasions where standard minimizer stores duplicate minimizers in the index.

The first occurs when we the current minimizer is not part of the next window and we

must examine all w = L − k + 1 k-mers in that window. If we find multiple minimizers,

all are stored in the index using the standard minimizer sampling strategy. To apply the

duplicate removal optimization, we store only the rightmost minimizer in the index. The

second possibility for storing duplicate minimizers occurs when the current minimizer for

the previous window still lies within the next window and is identical to the one new k-mer

for that window. In this scenario, to remove duplicates, we do not store this duplicate copy

at this time in the index. However, we do track its position so that if no new minimizer

is found before the current minimizer moves out of the current window, we can use this

k-mer to replace the current minimizer at that time and still do only one comparison for

that window. At that time, we would have to store this minimizer in the index if it is the

minimizer of that window. We refer to minimizer sampling that uses duplicate removal as

minone.

3.3.2 Indexing and querying

In the indexing phase, we create a k-mer index for a given database and sampling method as

follows. We sample k-mers and their occurrences from each sequence based on the selected

33

sampling method (fix, minrand,one, minrand,many, and minlex,one). We save the sampled

k-mers into the index dictionary, and for each k-mer occurrence, we update the corresponding

list of k-mer occurrences.

We then proceed to the query phase where we sequentially process each query sequence.

If we use fixed sampling (fix), we extract all k-mer occurrences from query sequence q. For

all minimizer methods minrand,one, minrand,many, and minlex,one, we extract the minimum

k-mer occurrences including duplicates from each window in q.

Once we extract the k-mer occurrences from q, we use the index to find shared k-mer

occurrences and then MEMs as follows. For every k-mer occurrence in q, we check if the

k-mer is in the index dictionary. If the k-mer is found, then we use the k-mer’s associated list

of occurrences to find all shared k-mer occurrences between q and the database of sequences.

We perform this search in a manner similar to NCBI BLAST with the goal of minimizing

the number of database read operations. Specifically, we group the shared k-mer occurrences

between q and DB by database sequence ID s. For the list of k-mer occurrences shared

between q and s, we sort them in alphabetical order and then positional order. We store

this information in a hash table with key s where the hash table entries are pointers to the

sorted lists of shared k-mer occurrences. We then read in each relevant database sequence s

exactly once and process all the corresponding shared k-mers in alphabetical order of k-mer.

For every query sequence q and a database sequence s, we report any shared k-mer

occurrence that can be extended to length at least L as an MEM . Our extension method

is similar to that of Khiste and Ilie [38]. Before we try to extend a shared k-mer occurrence,

we first check if it is contained within our list of discovered MEMs which is, of course,

initially empty. If so, we skip this shared k-mer occurrence and move on to the next one. If

not, then we try to extend the k-mer in both directions to see if it is part of an MEM with

34

length at least L. If the extension succeeds, we add the new MEM to our list of discovered

MEMs. If the extension fails, we report this shared k-mer occurrence as a false positive.

This ensures we only extend one shared k-mer occurrence within any MEM .

We check if a shared k-mer occurrence is part of a discovered MEM using the following

properties. A shared k-mer occurrence (q, j′q, s, j
′
s) is part of a shared MEM MEM =

(q(iq, jq), s(is, js)) if the following conditions hold: (1) iq ≤ j′q − k + 1 < j′q ≤ jq, (2),

is ≤ j′s − k + 1 < j′s ≤ js, and (3) (j′q − k + 1) − iq = (j′s − k + 1) − is. Checking these

conditions can be done in constant time per discovered MEM , and typically the number of

discovered MEMs per pair of sequences q and S is small, so this verification step typically

takes constant time.

3.3.3 Experimental setting and evaluation metics

3.3.3.1 Database and query sets

We consider only nucleotide datasets. Our database is the human genome. We use three

query sets: the mouse genome, the chimp genome and an NGS dataset. All the datasets are

publicly available. The genome datasets can be downloaded from UCSC

(http://hgdownload.cse.ucsc.edu). The NGS dataset can be downloaded from Sequence

Read Archive (SRA) on the NCBI website (https://www.ncbi.nlm.nih.gov/sra) Table 4.1

describes each dataset used. According to Koning et al. [20], two third of the human genome

consists of repetitive sequences. It is also known that the mouse genome contains many

repeats too. [56, 58]. It is unclear if this is the case for the chimp and NGS datasets.

Performing the queries using each query set directly would require large amounts of

computing power, memory and time. To support parallelization of queries on MSU’s High

35

Performance Computing Cluster, we pre-process all the datasets as follows. We first divide

every sequence into non-overlapping sequences of length 1000. The number of resulting

sequences is show in Table 4.1. This allows us to run our experiments in parallel and to

ensure that the set of shared k-mers and MEMs can be saved in RAM. We also only save

letters in {A,C,G, T}; that is, ambiguous characters are removed. For each pre-processed

query set, we partition the set into 1000 query sets of equal size (except the last set my be

slightly smaller). We recognize that we may not be able to find MEMs that extend across

the pre-processed sequences, but this should not significantly change our results.

Table 3.2: datasets used for testing.

Datasets Size (Mbp) #Seq. Type # Processed Seq.
Homo sapiens (Human) 3137 93 Database 2,897,341
Mus musculus (Mouse) 2731 66 Query set 5,306
Pan troglodytes (Chimp) 3218 24,132 Query set 5,818
SRA:SRR003161 (NGS) 788.5 1,376,701 Query set 2,792

The database set is only one large set. The query sets are partitioned into 1000 small query
sets where each small set has the indicated number of processed sequences (except the last
set may have fewer sequences). The processed sequences are of length 1000 (except the last
processed sequence for every sequence may be shorter).

For each of our pre-processed query sets, we compute the actual number of MEMs between

that query set and the pre-processed human genome for both choices of L. These results are

shown in Table 3.3.

Table 3.3: The number of MEMs for each query set and the human genome for
both choices of L given our pre-processing into sequences of length 1000.

L Mouse Chimp NGS
50 838,857,328 2,077,183,744 940,731
100 428,609 101,868,611 457,512

36

3.3.3.2 Index parameters and metrics

We study the impact of the sampling methods on the k-mer index creation phase. We

consider the following sampling methods fix, minrand,one, minlex,one, and minrand,many.

We use the index to find all MEMs of length at least L where L ∈ {50, 100}. For each

sampling method, we create set of indexes for k ∈ [12, 32]. We consider L = 50 and L = 100,

because it frequently used in biological applications that compare mouse and chimp against

human genome [91, 38] or map the NGS dataset against human genome [92, 36].

For each index, we report the dictionary size, lists size and the total index size which

is the sum of dictionary and lists sizes. The dictionary size is measured by counting the

number of k-mers. The lists size is measured by counting the number of k-mers occurrences

in all lists. We also report the index construction time.

3.3.3.3 Querying parameters and metrics

The index is used to find all MEMs of length at least L where L ∈ {50, 100}. For L and for

each sampling method, we used set of k-mer indexes where k ∈ {12, 16, 20, 24, 28, 32}. The

total number of indexes considered is 2× 3× 6 = 48 indexes. All the indexes give the same

final results, namely all MEMs of length at least L.

For each query phase, we report the time and the number of “false positives”. The

number of false positives for a query set is the number of shared k-mer occurrences that

failed to be extended to a MEM of length at least L. Recall that we partition each query

set into 1000 query set partitions. The reported time is the sum of times that an index needs

to answer all queries in all query set partitions. Likewise, the number of false positives for a

query set is the sum of the number false positives for all queries in all query set partitions..

37

3.3.3.4 System specification/configuration

We run the experiments on a cluster that runs the Community Enterprise Operating System

(CentOS) 6.6. The cluster has 24 nodes where each node has two 2.5Ghz 10-core Intel Xeon

E5-2670v2 processors, 256 GB RAM, and 500 GB local disk.

3.4 Results and discussion

3.4.1 Index size and index construction time

Fixed sampling (fix) produces indexes that are less than half the size of those produced by

all minimizer sampling methods (minrand,one, minrand,many, and minlex,one) for almost all

choices of k. Likewise, we can construct fixed sampling’s index roughly 3 to 4 times as fast

as we can construct minimizer’s index. We provide full index size and construction time

results in Figure 4.2.

We now explore why fixed sampling produces indexes that are roughly half the size

of indexes produced by minimizer sampling minrand,one. We start with the size of the

occurrence lists. For a fixed value of k, we can accurately predict the size of fixed sampling’s

k-mer occurrence lists because 1/w of the total number of k-mer occurrences will be sampled.

For minimizer, Roberts et al. showed that for random sequences, the number of minimizers

would be roughly 2/(w + 1) of the total number of k-mer occurrences [75]. Basically, each

minimizer would cover roughly half a window of length w rather than a full window of

length w as we get from fixed sampling. Thus, we would expect fixed sampling to produce

occurrence lists that are roughly (w + 1)/2w the size of the occurrence lists produced by

minimizer sampling; that is, the occurrence lists should be just more than half the size.

38

Figure 3.1: The dictionary sizes, lists sizes, and construction times for k-mer
indexes built using fixed sampling (fix) and minimizer sampling minrand,one,
minrand,many, and minlex,one. For parts (a), (b), and (c), we use L = 50. For parts (d),
(e), and (f), we use L = 100. For all graphs, 12 ≤ k ≤ 32.

Note, Roberts et al. observed that the actual proportion of minimizers in practice can be a

few percent above 2/(w+ 1) for several reasons. In our experiments, we see that the number

of sampled occurrences for fixed sampling divided by the number of sampled occurrences for

minimizer sampling actually ranges from 48% to 55% for both L = 50 and L = 100. This

is consistent with the observation of Roberts et al. that the actual proportion of minimizers

can be a few percent above 2/(w + 1).

39

Minimizer sampling minrand,many has essentially identical results to minimizer sampling

minrand,one with respect to the size of occurrence lists; the optimization to remove duplicate

minimizers from a window does not have much effect on the total number of sampled oc-

currences. Minimizer sampling minlex,one produced indexes that are larger than minimizer

sampling minrand,one with respect to the size of occurrence lists; the optimization to use

randomized ordering, instead of lexicographical ordering, effectively reduces over sampling

the same k-mer in regions with many repeats resulting in 15% to 20% reduction for L = 50

and L = 100, respectively.

We now consider the dictionary size. For the smallest values of k that we consider,

mainly 12-15, minimizer typically has much smaller dictionaries than fixed sampling. For

k = 12 and L = 100, minimizer’s dictionary is almost 6 times smaller than fixed sampling’s

dictionary. For these small values of k, many of the sampled k-mers are chosen many times,

and this is especially true for minimizer which leads to its smaller dictionary. However, for

these k values, because many of the sampled k-mers are chosen many times, the dictionaries

are much smaller than the occurrence lists, so fixed sampling still has a total index size that

is roughly half that of minimizer. For example, for k = 12 and L = 50, for fixed sampling,

each k-mer in the dictionary appears roughly 6.5 times in the occurrence lists whereas for

minimizer sampling minrand,one, each k-mer in the dictionary appears roughly 52 times in

the occurrence lists.

Once we consider k ≥ 16, for fixed sampling, each dictionary consists of mostly unique

k-mers. For example, for k = 16 and L = 50, each k-mer in fixed sampling’s dictionary

appears roughly 1.23 times in the occurrence lists. For minimizer sampling minrand,one,

this starts to happen around k = 21. For example for k = 21 and L = 50, each k-mer in

minimizer sampling’s dictionary appears roughly 1.24 times in the occurrence lists. By the

40

time k = 32, each dictionary k-mer appears less than 1.13 times in the occurrence lists for

both fixed sampling and minimizer sampling. This implies that for large k, the dictionary

size is comparable to the occurrence lists size. Specifically, we see that fixed sampling’s

dictionaries are roughly half the size of minimizer sampling’s dictionaries for k ≥ 21 for

both L = 50 and L = 100. Finally, we note that the dictionary size for minimizer sam-

pling minrand,many is identical to that of minimizer sampling minrand,one as minrand,many

only omits some repeated occurrences for the same k-mer. Minimizer sampling minlex,one

produced dictionaries that are larger than minimizer sampling minrand,one, again because

we reduce oversampling the same k-mer in regions with many repeats. For example, when

k > 16 the reduction ranges from 12% to 23% for L = 50 and L = 100, respectively.

We note that for all sampling methods, increasing the value of k increases the size of the

index. This is expected, since the sampling step w = L− k + 1 decreases as k increases.

Finally, fixed sampling’s faster construction time is easily explained. First, the number of

sampled occurrences is less than half as many as minimizer sampling. Second, no comparisons

are needed; fixed sampling simply grabs every wth k-mer whereas minimizer sampling needs

to consider every k-mer and do comparisons to determine if new k-mers are minimizers.

However, as we show in later, the reduction has significant impact on reducing query time.

3.4.2 Query time

We first start with our query time results. Our full query time results for each of our three

sampling methods for L = 50 and L = 100 are shown in Tables 3.4 and 3.5.

Our key query time result is that for the same k values and query data with many repeats,

such as in the mouse genome, minrand,one processes queries significantly faster than fixed

sampling, especially for commonly used small k values like 12 and 16 [56, 30, 3, 77, 2, 33,

41

Table 3.4: Query times (in hours) for all sampling methods and all choices of k
when L = 50.

Query set k fix minrand,one minrand,many minlex,one
Mouse 12 447.00 284.50 437.16 1008.30

16 106.49 36.08 142.22 204.39
20 52.91 26.96 107.46 86.13
24 33.31 17.36 58.38 48.54
28 20.84 15.48 48.77 28.87
32 13.75 12.43 32.79 18.58

Chimp 12 1493.09 1294.66 1407.43 2340.63
16 661.67 510.99 641.86 932.27
20 340.00 471.84 859.09 455.38
24 180.67 184.19 221.33 205.94
28 98.20 116.06 146.56 116.46
32 55.25 71.34 79.92 56.58

NGS 12 237.04 197.73 205.70 486.43
16 88.02 79.71 72.66 134.30
20 41.75 49.40 47.99 59.96
24 21.33 22.72 22.21 26.69
28 11.83 14.98 15.73 14.38
32 6.77 10.68 9.80 7.36

96, 98]. For example, when k = 12 and k = 16, minrand,one answer the queries 126.14% and

369.14%, on average, faster than fixed sampling for L = 50 and L = 100, respectively. For

large k, k > 16, minrand,one processes the queries 58.36% and 271.64%, on average, faster

than fixed sampling for L = 50 and L = 100, respectively. When there are only a few repeats

in the query data, such as in the chimp genome and NGS datasets, and for small k values,

minrand,one is 15.15% to 37.65% faster than fixed sampling, on average. On the other hand,

when the value of k > 16, minrand,one is slower than fixed by 7.73% to 19.82%.

While we observe that minimizer sampling process queries faster than fixed sampling for

the same choice of k, we also observe that minimizer sampling uses more space than fixed

sampling for the same choice of k. We will later compare minimizer sampling with fixed

sampling when they are restricted to indexes of the same size to determine which is indeed

42

Table 3.5: Query times (in hours) or all sampling methods and all choices of k
when L = 100.

Query set k fix minrand,one minrand,many minlex,one
Mouse 12 198.46 101.05 102.06 692.17

16 41.74 5.63 7.25 142.50
20 21.31 3.59 4.52 40.38
24 12.37 3.76 4.29 15.60
28 7.28 2.17 2.48 7.49
32 4.92 2.16 2.35 4.89

Chimp 12 732.51 524.91 505.38 1744.26
16 276.38 203.60 203.90 560.79
20 131.61 160.61 254.88 242.23
24 61.68 50.29 50.03 98.51
28 33.20 41.01 40.88 53.60
32 17.78 30.91 31.53 21.94

NGS 12 111.03 79.95 82.78 364.51
16 33.33 27.39 28.17 83.38
20 15.58 13.93 14.47 27.85
24 7.27 5.91 5.85 10.90
28 4.12 5.01 5.34 6.08
32 2.32 4.47 4.43 2.52

faster. When exploring this tradeoff, we find that fixed sampling is faster than minimizer

sampling when both methods have equal sized indexes.

Our next query time result is that increasing k significantly decreases the query processing

time of all methods. For all query sets, increasing k from 12 to 16 reduces the query time of

fixed sampling and minrand,one by roughly 3-5 times; the one exception is minrand,one with

the mouse genome query set for L = 50 and L = 100 where the reduction is only 7.89% and

17.96% times, respectively. For all query sets and all methods, increasing k by an additive

factor of 4 above 16 roughly halves the method’s query processing time with a couple of

outliers in both directions.

Our final query time result is that the optimization using randomized ordering is signif-

icantly more effective than the optimization that removes duplicate minimizers; especially

43

for large L and small k values. For the mouse genome and for k = 12 and k = 16, the

randomized ordering is, on average, 360.46% to 1508.86% faster than lexicographical order-

ing. For the chimp and NGS datasets and k = 12 and k = 16, the randomized ordering

is, on average, 81.62% to 280.17% faster. On the other hand, duplicate minimizer removal

improves minimizer sampling using the mouse genome by 14.94% to 173.93%, on average,

for k = 12 and k = 16. For the chimp and NGS datasets, duplicate minimizer removal does

not improve minimizer sampling; the one exception is chimp data when L = 100, it gives

17.16% faster query processing for k = 12 and k = 16.

3.4.2.1 The theoretical vs. empirical query time expectation

Because minimizer sampling only tests some k-mers extracted from the query sequence to see

if they are shared k-mers, one might expect that minimizer sampling would process queries

as much as w times faster than fixed sampling. However, the query time results show this

is not the case; the speedup is typically much less than w and often less than twice as fast.

This is explained by counting the total number of shared k-mer occurrences found by both

fixed and minrand,one. These counts are shown in Tables 3.6 and 3.7.

Recall fixed sampling will test all q − k + 1 k-mers from a query sequence q. On the

other hand, the expected number of query k-mers that minimizer sampling will test is 2(q−

k + 1)/(w + 1) or roughly 2/(w + 1) times smaller if the sequences are generated uniformly

at random [75]. Each tested k-mer will generate x shared k-mer occurrences where x is

the length of that k-mer’s occurrence list in the index. Theoretically, if x = c for fixed

sampling, then we expect that x = 2c for minimizer sampling. Then fixed sampling will test

c(q−k+1) k-mers occurrences and minimizer sampling will test 2c(q−k+1)/(w+1) of k-mers

occurrences; since minimizer sampling produce lists large by a factor of two. However, this

44

Table 3.6: The number of shared k-mer occurrences (in billions) for all sampling
methods and all choices of k when L = 50.

Query set k fix minrand,one minrand,many minlex,one
Mouse 12 281.90 100.58 348.92 870.72

16 103.19 25.02 202.80 242.16
20 55.96 20.84 161.16 101.93
24 33.28 11.33 83.47 52.93
28 19.55 11.68 73.18 29.27
32 11.74 9.36 47.14 16.98

Chimp 12 714.46 445.52 515.02 1699.86
16 310.33 176.65 223.43 601.94
20 155.08 255.68 520.61 221.16
24 75.52 62.58 85.37 87.17
28 37.92 46.97 109.50 45.74
32 22.12 27.64 45.33 23.79

NGS 12 101.81 64.62 71.33 390.05
16 30.29 24.05 26.56 86.30
20 12.95 17.20 20.26 28.24
24 6.41 7.24 8.24 11.00
28 3.44 5.11 5.95 5.86
32 2.09 3.42 3.91 3.06

is not always the case. For example, for q = 1000 and L = 100, then we expect minimizer

sampling to be 95% faster than fixed sampling when 20 ≤ k ≤ 32. For chimp and NGS

datasets, the empirical results show that minimizer sampling is 7.73% to 14.24% slower than

fixed sampling.

To understand the query time, we need to compute the average size of x for k-mers that

are in the index dictionary. We show this in Tables 3.8 and 3.9 for each sampling method;

specifically, these tables show the mean and the standard deviation of occurrence list lengths

in each index. For L = 100 and k = 12, the mean length of a minimizer sampling occurrence

list is just over 13 times larger than the mean length of a fixed sampling occurrence list.

For k = 16, this falls to roughly 1.55 times larger, and for larger k, this falls to just a bit

larger. Even more dramatic, the standard deviation for minimizer’s occurrence list lengths

45

Table 3.7: The number of shared k-mer occurrences (in billions) for all sampling
methods and all choices of k when L = 100.

Query set k fix minrand,one minrand,many minlex,one
Mouse 12 124.51 25.91 35.00 663.35

16 40.72 1.49 4.24 156.26
20 20.98 0.69 2.33 44.94
24 10.94 0.57 1.27 13.70
28 6.04 0.10 0.36 5.09
32 3.25 0.10 0.50 2.82

Chimp 12 355.18 157.24 160.65 1499.97
16 129.05 61.04 61.30 418.83
20 58.20 87.84 174.00 125.58
24 24.31 13.01 13.05 37.12
28 11.72 10.77 11.62 15.88
32 6.08 8.09 8.10 6.35

NGS 12 44.95 22.98 23.41 318.71
16 11.89 7.81 7.86 59.64
20 4.86 4.67 4.71 14.79
24 2.08 1.54 1.55 4.17
28 1.06 1.36 1.37 1.82
32 0.58 1.09 1.10 0.73

ranges from 6.58 times up to 21.5 times larger than the standard deviation of fixed samplings

occurrence list lengths.

What this shows is that some k-mers in minimizer sampling have very large occurrence

lists. Furthermore, the k-mers that have large occurrence lists are exactly the k-mers that

are most likely to be extracted from a query sequence since the sampling method is biased

to choose them. This explains why, despite testing relatively few query k-mers, minimizer

sampling have much larger query times than expected theoretically.

3.4.3 Space and speed

We summarize our comparison of the the sampling methods by plotting the space and speed

of the resulting index for each query set and both choices of L in Figure 4.3.

46

Table 3.8: The mean and standard deviation of the length of a k-mer’s list of
occurrences using the human genome for all sampling methods and all choices
of k when L = 50.

k fix minrand,one minrand,many minlex,one
Mean 12 6.50 51.72 53.20 58.70

16 1.23 2.01 2.05 2.26
20 1.13 1.26 1.27 1.26
24 1.10 1.19 1.19 1.19
28 1.08 1.16 1.16 1.15
32 1.07 1.13 1.13 1.12

Std. Dev. 12 37.61 419.57 483.85 616.48
16 10.17 67.30 66.02 69.38
20 6.65 32.14 36.96 32.79
24 4.66 20.06 22.73 19.98
28 3.41 17.56 16.91 13.74
32 2.65 10.61 11.84 9.09

Table 3.9: The mean and standard deviation of the length of a k-mer’s list of
occurrences using the human genome for all sampling methods and all choices
of k when L = 100.

k fix minrand,one minrand,many minlex,one
Mean 12 3.63 45.20 44.70 53.02

16 1.17 1.81 1.95 2.34
20 1.11 1.24 1.25 1.28
24 1.08 1.19 1.19 1.19
28 1.06 1.16 1.15 1.15
32 1.05 1.13 1.13 1.12

Std. Dev. 12 18.68 401.81 402.42 712.16
16 6.21 67.08 61.54 80.71
20 4.02 25.38 30.99 36.05
24 2.62 17.51 19.63 20.47
28 1.87 16.71 14.84 13.85
32 1.37 9.02 10.11 8.61

If we ask both methods to use the same space regardless of k, we find that fixed sampling

typically answers queries at least as fast as minrand,one and often is faster. For example, the

index created using fixed sampling with k = 16 has roughly the same size as the index created

47

Figure 3.2: Comparing the space and speed of fixed sampling (fix), minimizer
sampling minrand,one, minrand,many, and minlex,one. We use L = 50 for the three upper
figures and L = 100 for the three lower figures. The values for minlex,one when k = 12 are
very large and removed from figure below.

using minimizer sampling with k = 12. However, fixed sampling is 37.43%, 51.11%, and

44.52% faster than minimizer sampling for the mouse, chimp, and NGS datasets, respectively.

Combined with the fact that fixed sampling is much simpler than minimizer sampling, it

is clear that fixed sampling is always the best choice if we optimize both time and space

regardless of k.

Finally, we conclude by observing the randomized ordering optimization is more effective

48

than the duplicate removal optimization. We can see that for all k values we consider,

the effectiveness of minrand,many and minrand,one are very similar. On the other hand,

minlex,one is significantly worst than both minrand,one and minrand,many.

49

Chapter 4

Soft fixed sampling

Finding highly similar local alignments (HSLAs) is an important step in bioinformatics

and computational biology. Finding HSLAs is often sped up using k-mer indexes. NCBI

BLAST, and in particular indexed MegaBLAST [56], is the classic and the most widely used

program to find HSLAs using k-mers. Since the size of k-mer indexes is large, sampling k-

mer occurrences has been used as an effective way to reduce index size and query time. Based

on the results of the last chapter, and also because BLAST only supports fixed sampling,

we focus on fixed sampling. We distinguish between two types of fixed sampling: hard

sampling [56, 66] and soft sampling [36]. In hard sampling, we choose w small enough such

that we are guaranteed to find all desired HSLAs. On the other hand, in soft sampling, we

consider large w values, and thus we risk missing some HSLAs.

In this chapter, we study how best to sample a k-mer index to manage index size, query

time, and accuracy where accuracy refers to finding all desired HSLAs. We show that using

soft sampling, which has largely been ignored in previous studies, significantly reduces index

size and computation times with very little loss in accuracy. We study soft sampled k-mer

indexes in the context of finding HLSAs between a query sequence q and a database of

sequences DB. We also study that soft sampling can be effectively used in mapping ESTs

to a genome for mapping tools that first find HSLAs.

We start by formalizing the problem of finding HSLAs. Then we illustrate how to

50

use NCBI BLAST k-mer indexes to find HSLAs. Next, we formally define hard and soft

sampling. We then describe how to use soft sampling to improve EST mapping. Next, we

illustrate the experimental settings and analytical modeling. We conclude with results that

demonstrate that soft sampling is a simple but effective strategy for performing efficient

searches for HSLAs.

4.1 Highly similar local alignments (HSLA)

We now formally define the first application, finding HSLAs. We start by defining a local

alignment A(s, q) between two sequences s and q. For simplicity, we denote A(s, q) as just

A.

Definition 6 (Local alignment) A local alignment A(s, q) between any two sequences s

and q is a triple (x, y,m) where x is a contiguous subsequence of s, y is a contiguous subse-

quence of q, and m is an injective and monotonically increasing mapping from positions in

x to positions in y.

Figure 4.1: Example database sequence s and query sequence q and two local
alignments A1 and A2. The symbol (|) identifies two mapped identical positions and (∗)
is an inserted gap position in one of the two sequences.

s : CCAACGATACCCCCCTTTTTCTGCGTCC ∗ ∗
| | | | | | | | | | | | | | | |

q : ∗ ∗ AACGA ∗ AGGGGGGTTTTTGTGCGTGGGG︸ ︷︷ ︸
A1

︸ ︷︷ ︸
A2

Within an alignment A = (x, y,m), some positions in x may map to no positions in y

and vice versa. Let map(A) denote the number of positions in x that map to positions in

51

y, and let match(A) denote the number of mapped positions that are identical. We then

define the length of A to be |A| = |x| + |y| −map(A), and we define the match percentage

to be mp(A) = match(A)/|A|. Finally, we define E(A) = |A| −match(A) to be the number

of errors in alignment A.

To illustrate these definitions, consider the example in Fig 4.1 with two local alignments

A1 and A2. We have map(A1) = 6, match(A1) = 6, |A1| = 7, mp(A1) = 85.7%, and

E(A) = 1 whereas map(A2) = 11, match(A2) = 10, |A2| = 11, mp(A2) = 91%, and

E(A) = 1.

When searching for local alignments, our goal is to find all HSLAs that have a minimum

length and match percentage. We formally define our targeted HSLAs, which we also refer

to as true matches, as follows:

Definition 7 (True match or HSLA) For a database of sequences DB, a query sequence

q, an alignment length threshold l, and a match threshold t, we define HSLA(DB, q, l, t) =

{A(s, q) | s ∈ DB, |A(s, q)| ≥ l and mp(A(s, q)) ≥ t}.

We use HSLA(q, t) when DB and l are clear from context. We also define short HSLAs to

represent HSLAs that are barely in HSLA(DB, q, l, t) and which are the hardest to find.

Definition 8 (Short HSLA) For a database of sequences DB, a query sequence q, an

alignment length threshold l, and a match threshold t, we define HSLAshort(DB, q, l, t) =

{A(s, q) | s ∈ DB, l ≤ |A(s, q)| ≤ (2− t)l and mp(A(s, q)) ≥ t}.

For example, HSLA({s}, q, 6, 85%) = {A1, A2} whereas HSLA({s}, q, 11, 85%) = {A2}; A1

is omitted because it does not meet the length threshold of 11. Likewise, HSLA({s}, q, 6, 90%) =

{A2}; A1 is dropped because it does not meet the match percentage threshold. Focusing on

short HSLAs, HSLAshort({s}, q, 6, 85%) = {A1}. A2 is dropped because it is too long. Note

52

that HSLA({s}, q, 6, 90%) actually includes several alignments that overlap significantly with

A1; we follow standard practice and only include the longest alignment with highest match

percentage from any group of highly overlapping alignments in HSLA(s, q, l, t).

4.2 Using NCBI BLAST k-mer indexes to finding HSLAs

We now describe how indexed BLAST [56] is typically used to find HSLAs in HSLA(DB, q, l, t).

Specifically, indexed BLAST uses a seed-and-extend search process where we have one seed

phase and two extension phases. In the seed phase, for a given k value k′, indexed BLAST

uses a k′-mer index to find shared k′-mers, where a shared k′-mer is a substring formed by

k′ consecutive letters that appear in both a database sequence s ∈ DB and in the query

q. More specifically, indexed BLAST identifies the locations or occurrences of these shared

k′-mers. Once shared k′-mer occurrences are found, BLAST performs the first extension

phase. In this phase, each occurrence is extended in both directions to find a maximal exact

match (MEM), which is an exact match that cannot be extended in either direction without

introducing mismatches. If a found MEM has length at least some threshold k∗ (defined

below), BLAST performs the second extension phase where it tries to extend the MEM into

an HSLA. BLAST’s extension process in this second phase is slightly more complex than

the process from its first phase since BLAST must allow some mismatches and gaps in this

second phase.

To illustrate this process, consider our example from Fig 4.1 and suppose we use BLAST

to search for HSLA({s}, q, 11, 90%) with k′ = 4 and k∗ = 5. Suppose the seed phase returns

the shared 4-mers AACG, TTTT, and TGCG. When BLAST performs the first extension

phase, it would find the MEMs AACGA, TTTTT, and TGCGT. Since k∗ = 5, BLAST

53

would then try to extend the three MEMs to HSLAs. The latter two would extend to A2

whereas the MEM AACGA cannot be extended into an HSLA.

We now describe BLAST’s first two phases in more detail starting with the seed phase.

BLAST constructs a k′-mer index as follows. The k′-mer index saves a list of database k′-

mers in a lookup table of all possible k′-mers, which is 4k
′

entries. We refer to this lookup

table as a dictionary. For each k′-mer in the dictionary, BLAST saves some of its occurrences

in an inverted list (also known as an offset list). A k′-mer occurrence is an ordered pair (s, i)

where s is the string containing this occurrence and i is the position of the last character in

this occurrence.

BLAST then finds shared k′-mers as follows. BLAST extracts all k′-mers from query

sequence q. BLAST then searches for each extracted k′-mer in the dictionary. If the extracted

k′-mer is in the dictionary, it represents a shared k′-mer for q and some s ∈ DB. BLAST

uses that k′-mer’s inverted list to find occurrences of that k′-mer in DB.

A key choice is what value of k′ should be used. Typically, k′ is chosen to be at most 16

so that the list of all possible k′-mers (which has 4k
′

entries) can be stored as an array in

RAM. Since we use BLAST to perform our experiments, we use BLAST’s default value of

k′ = 12.

We next describe the first extension phase where BLAST searches for MEM
k*

s which are

MEMs of length at least k∗. The extension itself is straightforward since mismatches and

gaps are not allowed. The key issue for this phase is what k∗ should be. We want k∗ to be as

large as possible to reduce the number of false positives, which are MEM
k*

s that cannot be

extended into HSLAs. It is well known how to compute k∗ given a target alignment length

L and a maximum number of errors E [94, 95, 19]. Specifically, k∗ = bL/(1 + E)c. The

basic idea is that the worst case is when the errors are evenly spaced. The question then is

54

what value of L and E should be used. The hardest HSLAs to find are the short HSLAs

defined in Definition 8; basically those of length exactly l and match percentage t. Thus, we

use L = l and E = b(1− t)lc, which leads to k∗ = bl/(1 + b(1− t)lc)c.

4.3 Hard versus soft Sampling

The fundamental issue with using k′-mer indexes to search for HSLAs is that the k′-mer

index can be very large. Most systems including BLAST control dictionary size by limiting

k′ to a small value such as 12. With this choice of k′, the problem is that there are too many

k′-mer occurrences because the total number of k′-mer occurrences is roughly the total length

of all the sequences in the database DB. The human genome is roughly 3 billion base pairs,

so this would mean roughly 3 billion k′-mer occurrences.

For this reason, k′-mer indexes are typically sampled where we only save some k′-mer

occurrences rather than all of them. We focus on fixed sampling where for a given sampling

step w ≥ 1, a k-mer that occurs at every wth position is saved. We distinguish between two

types of fixed sampling: hard sampling [56, 66] and soft sampling [36].

In hard sampling, we choose w ≤ k∗−k′+1 so that we are guaranteed to find a k′-mer

within every MEM
k*

. Thus, when we apply the first extension step, we will find the resulting

MEM
k*

. Since we find all MEM
k*

s after the first extension step, we are guaranteed to find

all HSLAs after the second extension step. Without loss of generality, for hard sampling,

we assume w = k∗ − k′ + 1 since this maximizes the space savings with no loss in accuracy.

We refer to this w value as w0 (w0 = k∗ − k′ + 1).

In soft sampling, we consider w > w0. Because we no longer are guaranteed to choose

a k′-mer from every MEM
k*

, when we apply the first extension phase, we may miss some

55

MEM
k*

s which may lead to missing some HSLAs in the next extension phase. Thus, if we

use soft sampling, we risk missing some HSLAs.

4.4 Retention rates and false positives

Recall our goal is to find HSLA(DB, q, l, t). We denote the HSLAs and short HSLAs found

by using indexed BLAST with parameter values k′ and w to be HSLA(DB, q, l, t, k′, w)

and HSLAshort(DB, q, l, t, k′, w), respectively. With hard sampling (w = w0), we know

HSLA(DB, q, l, t, k′, w0) = HSLA(DB, q, l, t). With soft sampling (w > w0),

HSLA(DB, q, l, t)− HSLA(DB, q, l, t, k′, w) 6= ∅ is possible. We define the retention rate of

HSLAs as a function of w as follows.

Definition 9 (Retention Rate) For a k′-mer index with a sampling step w (SI(w)), the

retention rate for HSLA (RR(w,w0)) and the retention rate for HSLAshort RRshort(w,w0)

are:

RR(w,w0) = |HSLA(DB, q, l, t, k′, w)|/|HSLA(DB, q, l, t)|,

RRshort(w,w0) = |HSLAshort(DB, q, l, t, k′, w)|/|HSLAshort(DB, q, l, t)|.

We typically express these ratios as percentages. We will study how RR(w) and RRshort(w)

change as a function of w. Because short HSLAs are the hardest true matches to find, we

expect RR(w) > RRshort(w) in most cases.

We present a new analytical model to compute the expected retention rate of HSLAs

in HSLAshort(DB, q, l, t). The new model is an extension to Kent’s analytical model [36]

where he essentially assumed w = k′ = k∗ in his model. On the other hand, we propose a

new model where we assume k′ < k∗ and w ≥ 1. We refer to the new model as the BLAST

model since it accounts for typical parameters used in BLAST searches.

56

Searching with sampled k′-mer index produces two intermediate results: shared k′-mers

and MEM
k*

s. The second extension process, extending MEM
k*

s into HSLAs, is more

complex and costly than the first extension process since we are allowing some mismatches

and gaps. We thus define MEM
k*

s that do not extend into HSLAs to be false positives.

We will also study how the number of false positives changes as a function of w.

4.5 Using NCBI BLAST k-mer indexes in EST map-

ping

Our second motivating application, which builds upon the first, is mapping ESTs on a

genome, a fundamental procedure in genome research. Many different mapping tools are

available, each with their own advantages [31]. We focus on hash table–based, seed-and-

extend mappers such as mrFAST/mrsFAST [30, 3], SHRiMP [77], Hobbes [2], drFAST [33],

and RazerS [96]. These mappers are typically fully sensitive mappers that “can detect reads

missed by other tools” [31] but may be relatively slow.

We study whether soft sampling k-mer indexes might increase the speed of these mappers

with relatively little loss in sensitivity when working with the human genome as our database.

These methods work in two stages. First, they find the set of all HSLAs between an EST and

a genome. Then they map the EST to the genome by selecting and linking these HSLAs.

The mappers usually differ in how to modify, evaluate, and use the resulting HSLAs to

assess the final mapping process. Fig 4.2 illustrates the mapping procedure.

In this chapter, we assess the effectiveness of soft sampling in mapping human ESTs on

a human genome. Specifically, we assess whether the correct mapping is retained when we

use soft-sampled k′-mer indexes to complete the first stage of finding HSLAs. We measure

57

the effect of sampling on both the index size and the query time. We only simulate the

mapping process because we want our results to be general and independent from the details

of the final mapping process of a mapper. We hope our findings encourage more developers

to allow the use of a wider range of k′ and w values in their mappers.

Figure 4.2: Illustration of EST mapping process. The HSLAs (A,A∗), (B,B∗), (C,C∗),
and (D,D∗) are used to report the final mapping.

4.6 Materials and method

We evaluate the effect of soft sampling on using BLAST to (i) find HSLAs and (ii) map

ESTs to the human genome. For both applications, we describe our database and how we

create sampled indexes. We then describe our query sets and how we perform queries. We

next describe our evaluation metrics. Finally, we describe how we extend Kent’s analytical

model to work with our choices of k′ = 12 and w.

4.6.1 Experimental settings

Database: For both applications of finding HSLAs and EST mapping, we use the hu-

man genome database provided by Morgulis et al. from their MegaBLAST paper [56] as

58

our database. Morgulis et al. note that the human genome database was the most fre-

quently searched database in NCBI in 2007 with 10,000 submitted queries per weekday.

They partitioned the human genome database into volumes, each of which is roughly 1 GB in

size and available at (ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/indexed_megablast/

fasta/human). We summarize key characteristics of each volume in Table 4.1. We did exper-

iments with both masked and unmasked data but report results only for the unmasked data

since the results were similar. As in [56], we treat each volume as a separate database. That

is, we create an index for each volume separately and search each volume’s index separately.

To obtain results for the human database, we then simply union the results found for each

volume.

Table 4.1: Human genome volume characteristics.

Name Size(Mbytes) Size(bp)
Chr. 1-5, unmasked 1039.86 1,025,201,451
Chr. 6-13, unmasked 1093.27 1,077,856,590
Chr. 14-Y, unmasked 778.75 767,769,314
Chr. 1-8, masked 1517.93 1,493,033,824
Chr. 9-Y, masked 1400.78 1,377,793,531

Sampled index construction: For finding HSLAs, we use four different minimum align-

ment lengths l: 50, 100, 200, and 400 and a match threshold t = 96% or t = 97%. For each

of our four choices of l, we use k∗ = l/(1 + b(1− t)lc). For mapping ESTs, similar to Kent’s

design of BLAT [36], we use the same choices except we omit l = 400. Specifically, Kent

used l = 100; we also include l = 50 and l = 200 to study EST mapping under a wider set

of possible choices. We use a geometric progression with base
√

2 to choose w values for

soft sampling indexes. Specifically, we consider w =
√

2
i
. For each l, we ignore w less than

w0 = k∗ − k′ + 1 since w0 is the largest hard sampling value. Likewise, we ignore w ≥ l as

59

these can completely skip over a potential alignment of length l. This results in a total of

eleven choices ranging from w = 8 to w = 256. Combined with four choices of w0 for hard

sampling and three volumes, we create a total of 15×3 = 45 sampled indexes. We use SI(w)

to denote a sampled index created with sampling parameter w; note SI(w0) denotes a hard

sampling index. These choices are summarized in Table 4.2. Note some sampled indexes are

used with multiple l values. For example, the sampled indexes SI(22) and SI(32) are used

for each choice of l.

Table 4.2: A summary of the parameters used in our experiments for (1) finding
HSLAs and (2) EST mappings. For HSLA, we consider all four choices of l. For
EST, we only consider the first three choices of l.

Sampling parameters
l t k∗ k′ w0 w > w0

50 96% 16 12 5 8, 11, 16, 22, 32
100 97% 25 12 14 16, 22, 32, 45, 64
200 97% 28 12 17 22, 32, 45, 64, 90, 128
400 97% 30 12 19 22, 32, 45, 64, 90, 128, 181, 256

The k′-mer indexes are built using BLAST with sampling steps w0 and w. True matches
HSLAs are of length ≥ l and a match percentage ≥ t. Only HSLAs that have shared
k∗-mers are reported by BLAST.

We build our sampled indexes using the BLAST program makembindex for the three

volumes of the unmasked human genome database using BLAST’s default value of k′ = 12.

Query Sets and Mappable Queries: For HSLA, we use the same query sets that Morgulis

et al. used to evaluate Indexed BLAST [56]. Morgulis et al. organized the queries into three

sets based on the average query length: qsmall (average length 500), qmedium (average

length 10,000), and qlarge (average length 100,000). Each set has 100 queries for 300 total

queries. We group all the queries into a single set of 300 queries and report all results using

60

this single query set. The query sets are available at the following url: ftp://ftp.ncbi.

nlm.nih.gov/pub/agarwala/indexed_megablast/queries/human. For EST mapping, we

form our query set Q by randomly selecting 1000 human ESTs (average length 490) from Ex-

pressed Sequence Tags database from NCBI https://www.ncbi.nlm.nih.gov/dbEST. For

each length l, we define Q(l) to be the subset of Q that has a non-empty HSLA(DB, q, l, t)

and refer to these as the mappable queries for length l.

Query Processing: For every query q in the query set, we run BLAST using the blastn

program with the -task megablast option using its default settings except we select MEM
k*

value using -word-size k∗, we use multiple values of w, and we set the matching threshold,

also known as identity percentage, using -perc-identity 96% for l = 50 and -perc-identity

97% for all other l. This will return HSLA(DB, q, k∗, t, k′, w) where every alignment

must have an MEM
k*

. That is, the match percentage t will be satisfied, but the lengths are

only guaranteed to be at least k∗, not l. We filter out any HSLAs that are too short to

produce HSLA(DB, q, l, t, k′, w).

False Positives: For any query q and any w, we report the number of false positives

FP (q, w) as the number of alignments in HSLA(DB, q, k∗, t, k′, w) − HSLA(DB, q, l, t).

This should be very close to the number of MEM
k*

s that do not extend to alignments in

HSLA(DB, q, l, t); the two numbers might differ if multiple MEM
k*

s are part of the same

alignment in HSLA(DB, q, k∗, t)−HSLA(DB, q, l, t).

Experimental System: We run the experiments on a cluster that runs the Community

Enterprise Operating System (CentOS) 6.6. The cluster has 24 nodes where each node has

61

two 2.5Ghz 10-core Intel Xeon E5-2670v2 processors, 20 cores, and 500 GB.

The HSLA Evaluation Metrics: We evaluate the effectiveness of a given k′-mer in-

dex SI(w) as a function of w and w0 using three metrics: (1) index size reduction, (2)

retention rate of HSLAs, and (3) query time reduction. For retention rate, we consider

retention of all HSLAs as denoted by HSLA(DB, q, l, t) and short HSLAs as denoted by

HSLAshort(DB, q, l, t). To help explain query time reduction, we also measure false positive

reduction. We describe each metric in more detail.

For each SI(w) and each choice of w > w0, we define the sampled index size reduction

as

SIR(w,w0) =
|SI(w)|
|SI(w0)|

(4.1)

where |I| is the size of index I. Index size is the sum of dictionary size, measured by counting

the number of k′-mers, and inverted lists’ size, measured by counting the number of k′-mer

occurrences in all the inverted lists. Since the human genome is split into three volumes and

we create a sampled index for each volume, we compute the total index size for all indexes

over all volumes. For the total dictionary size, we take the union of all three dictionaries, and

then we measure the total dictionary size by counting the number of k′-mers in the union

set. For the total inverted lists’ size, we take the sum over all three inverted lists’ sizes.

For each SI(w) and each choice of w > w0, we report the full retention rate RR(w,w0)

and the short retention rate RRshort(w,w0) which we define as follows. For w, w0 and q,

we define

RR(q, w, w0) =
|HSLA(DB, q, l, t, k′, w)|
|HSLA(DB, q, l, t, k′, w0)|

(4.2)

62

and

RRshort(q, w, w0) =
|HSLAshort(DB, q, l, t, k′, w)|
|HSLAshort(DB, q, l, t, k′, w0)|

(4.3)

We say that RR(q, w, w0) or RRshort(q, w, w0) is undefined if the denominator is 0. We

typically report both ratios as percentages. We use all three volumes to get these percent-

ages. We then set RR(w,w0) and RRshort(w,w0) to be the average of RR(q, w, w0) and

RRshort(q, w, w0), respectively, where we only include query q in the average if RR(q, w, w0)

or RRshort(q, w, w0), respectively, is defined. We report RR(w,w0) since this is a typical

user query. We specifically define RRshort(w,w0) to fairly compare empirical retention rate

with expected retention rate. Intuitively, RRshort(w,w0) focuses on the hardest to retain

HSLAs.

For each SI(w) and each choice of w > w0, we report the average query time reduction

percentage QTR(w,w0) which we define as follows. We start by defining the query time

QT (q, w) for a given query q and sampled index SI(w) (including SI(w0)) as follows. We

process each query q on SI(w) five times using BLAST and we set QT (q, w) to be the

median of the five values. Since SI(w) is partitioned into three volumes, the query time for

a given q is the sum of the query times over the three volumes. The query time reduction

QTR(q, w, w0) is then

QTR(q, w, w0) =
QT (q, w)

QT (q, w0)
. (4.4)

Finally, the average query time reduction QTR(w,w0) is the average of QTR(q, w, w0) over

all q.

Finally, to help explain the query time reduction results, for each SI(w) and each choice

of w > w0, we report the average false positive reduction rate FPR(w,w0) which we define

as follows. For a given query q and sampled index SI(w) (including SI(w0)), we define

63

FP (q, w) to be the number of false positive; that is, HSLAs that do not lead to elements of

HSLA(DB, q, l, t) when we apply the second, more expensive, extension phase. We believe

that FP (q, w) decreases as w increases, and this may help explain any reduction in query

time. To test this, we define the false positive reduction rate FPR(q, w, w0) to be

FPR(q, w, w0) =
FP (q, w)

FP (q, w0)
(4.5)

Finally, the average false positive reduction rate FPR(w,w0) is the average of FPR(q, w)

over all q.

EST Mapping Evaluation Metrics: For each soft sampled index SI(w) and a given

length l, we report its retention rate, RRmap(w, l), as the percentage of Q(l) such that all of

HSLA(DB, q, l, t) is found using SI(w). We use this requirement because this implies that

the mapping result for SI(w) for the given query q will be identical to the mapping result

for SI(w0) and q regardless of the mapping procedure used. Otherwise, at least one highly

similar local alignment is lost and we pessimistically assume that the mapping result would

be lost as well.

More formally, for a given mappable queries set Q(l) and k′-mer index SI(w), we define

the set Q′(l) ⊂ Q(l) as follows

Q′(l) = {∀q ∈ Q(l) | HSLA(DB, q, l, t, k′, w) = HSLA(DB, q, l, t, k′, w0)} (4.6)

64

Then, we define the index retention rate RRmap as follows:

RRmap(w,w0) =
|Q′(l)|
|Q(l)|

(4.7)

We also report the effect of w on query time using the same process as with HSLA,

namely, running each query five times, taking the median time, and then reporting the

average reduction in query time over all 1000 queries. Note that we use all queries rather

than just the mappable queries when reporting query time.

4.6.2 Analytical modeling

We now describe how we analytically model two of the evaluation metrics, index size reduc-

tion and retention rate.

Predicting Index Size: We first show how we compute the expected size of a sampled

index SI(w). For the dictionary, we assume the k′-mer dictionary is full and thus the size of

a k′-mer dictionary is 4k
′

entries which, in our case, is 412. This may not be accurate, but

since the dictionary size is typically much smaller than the inverted lists size given k′ = 12,

this is accurate enough. The number of k′-mer occurrences stored in the inverted lists is

simply (D − S(k′ + 1))/w where D = |DB|, the number of positions in DB, and S is the

number of distinct sequences in DB. Thus, the predicted size of SI(w) is simply

size(SI(w)) = 4k
′
+

D − S(k′ + 1)

w
(4.8)

Predicting Retention Rate: We present a new analytical model to compute the ex-

pected retention rate of HSLAs in HSLAshort(DB, q, l, t). We start by presenting Kent’s

65

analytical model [36] where he essentially assumed w = k′ = k∗ in his model. We then

propose a new model that we refer to as the BLAST model to account for typical param-

eters used in BLAST searches. We refer to the expected retention rates as E[RRK] and

E[RRB]. For both retention rates, we make a few simplifying assumptions and refer to the

two models generically as E[RR] when describing these common assumptions. First, we

restrict our attention to HSLAs that have length exactly l. Second, we assume each HSLA

in HSLAshort(DB, q, l, t, k′, w) is retained with the same probability, and this probability is

independent of other HSLAs. This implies

E[RR] = E[
|HSLAshort(DB, q, l, t, k′, w)|
|HSLAshort(DB, q, l, t)|

] (4.9)

simplifies to just p(A)

E[RR] = p(A) (4.10)

which represents the probability that a short HSLA A is retained. This allows us to focus

on a single short HSLA A in the rest of this analysis. Finally, we assume each position in

A is independent of other positions and the probability that any position in A is a match is

exactly t.

Kent’s original retention rate model (E[RRK]): We start with Kent’s original model [36].

where he assumes w = k∗ = k′. The number of k∗-mers that are guaranteed to be chosen

from x within A is

T = b(|x| − k∗ + 1)/wc (4.11)

Furthermore, these k∗-mers will be adjacent to each other with no gaps. For A to be retained,

66

at least one of these chosen k∗-mers from x must exactly match the corresponding k∗-mer

in y from q. The probability of such an exact match assuming each position is independent

and that the overall match percentage within A is t is then

p = tk
∗

(4.12)

Since the sampled k∗-mers do not overlap, the probability that all fail to match is then

(1− p)T . Thus, the probability that at least one will match and alignment A will be found

is p(A) = 1− (1− p)T . Since E[RRK] = p(A), we have

E[RRK] = 1− (1− p)T (4.13)

BLAST retention rate model (E[RRB]): To extend this analysis to the typical BLAST

setting with distinct w, k∗ and k′, we must modify the formula in two ways. The first key

issue is that we sample k′-mers but then extend them to search for k∗-mers. The sampled

k′-mer must be an exact match, which again happens with probability p = tk
′

The key issue

after this is whether this can be extended to an MEM
k*

. Suppose this can extend exactly

0 ≤ l ≤ k∗ − k′ − 1 characters to the left before we get a mismatch. We then need it to

extend at least k∗ − l − k′ characters to the right. The probability we can extend exactly

l characters to the left is tl(1 − t). The probability we can extend at least k∗ − l − k′

characters to the right is tk
∗−k′−l. Thus, the probability that we have a k′-mer, it extends

exactly 0 ≤ l ≤ k∗−k′−1 characters to the left, and it extends at least k∗− l−k′ characters

67

to the right is then tk
′
tl(1− t)tk

∗−k′−l = tk
∗
(1− t) There are k∗−k′−1 choices for l leading

to a final probability of (k∗−k′+1)tk
∗
(1−t). The other possibility is that it extends at least

k∗ − k′ characters to the left which occurs with probability tk
∗

giving us a total probability

of

p′ = (k∗ − k′ − 1)tk
∗
(1− t) + tk

∗
(4.14)

The second key issue is that in Equation 4.11, we used the floor function as this is the

number of k∗-mers from x within A that are guaranteed to be chosen. Using the floor

function ignores the possibility that we may have an additional k∗-mer chosen from x. That

is, the number of k∗-mers from k that will be sampled might be either

Tf = b(|x| − k∗ + 1)/wc (4.15)

Tc = d(|x| − k∗ + 1)/we (4.16)

where Tf = T from Equation 4.11. If we assume that each possible window for w is equally

likely, then

p(Tf) =
w × Tc − (|x| − k∗ + 1)

w
(4.17)

p(Tc) = 1− p(Tf) (4.18)

For the case where b(|x| − k∗ + 1)/wc = (|x| − k∗ + 1)/w, p(Tf) = 0 which means p(Tc) = 1

so the result is still correct.

In our new BLAST model, we update Equation 4.13 replacing p with p′ and replacing T

with Tc and Tf as follows.

68

E[RRB] = 1− p(Tf)(1− p′)Tf − p(Tc)(1− p′)Tc (4.19)

We will compare both Kent’s model and our new BLAST model in our results.

4.7 Results and discussion

We report the impact of sampling on the efficiency of a k′-mer index on the index size and

query performance. We report both the expected and the actual impact of sampling.

4.7.1 Index size

As expected, the index size is inversely proportional to the sampling step w. This means that

soft sampling does lead to a significant reduction in space when compared to hard sampling.

For example, when w/w0 is roughly 1.7 and 4.4, the index size reduces by 38% and 74%

for all values of l we considered. The percentage of reduction increases as l increases. For

example when l = 400 and w/w0 is almost 10, the index size reduces by 90%.

With hard sampling w0 = k∗ − k′ + 1, the space reduction is limited by k∗. With soft

sampling w > k∗−k′+ 1, w is limited primarily by l, where typically l� k∗ (see Table 4.2).

We plot results for the percentage reduction in index size in Fig 4.3. Since the expected

index size (see Eq 4.8) and the actual index size are almost identical, the expected size is

omitted.

Sampling reduces index size because it reduces the number of sampled k′-mers leading to

a factor of w reduction in inverted lists size, the dominant component of index size. On the

other hand, although sampling does reduce dictionary size, the reduction is relatively small

and does not greatly affect the final index size. For example when w/w0 is roughly 1.7 and

69

Figure 4.3: The sampled index SI(w) size (percentage) as a function of sampling
step size w of SI(w) versus sampled index SI(w0). The k′-mer indexes are built
with k′ = 12 and w ≥ w0 where w0 = l − k + 1.

4.4, the dictionary is about 9% and 17% of the the index size and the average reduction in

the dictionary size is 9% and 27% respectively.

4.7.2 Retention rate of HSLAs

We first examine RR(w,w0) to study how the overall HSLA retention rate changes as a

function of w, w0, and l. We first observe that RR(w,w0) improves as l increases. In

particular, as can be seen from our RR(w,w0) results from Figure 4.4, if we look at choices

for w and w0 that have a similar ratio w/w0, the RR(w,w0) retention result is higher for

larger l. In particular, whereas RR(32, 5) for l = 50 falls below 80%, RR(w,w0) ≥ 96.6%

for l ≥ 100 for all tested values of w, and RR(256, 30) = 97.5% for l = 400. Thus, for

70

large values of l, we can use soft sampling where w/w0 approaches even 10 and still achieve

retention rates of close to 100%.

Figure 4.4: The actual HSLA retention rate RR(w,w0), the actual short HSLA
retention rate RRshort(w,w0), and the expected short HSLA retention rate using
both Kent’s model E[RRK(w,w0)] and BLAST model E[RRB(w,w0)] for (a) l = 50,
w0 = 5, (b) l = 100, w0 = 14, (c) l = 200, w0 = 17, and (d) l = 400, w0 = 30. For other
parameters values see Table 4.2.

71

We now focus on the retention rate of short HSLAs. First we compare RR(w,w0) with

RRshort(w,w0) as a function of w, w0, and l. Figure 4.4 also contains our RRshort(w,w0) re-

sults. We observe that if w/w0 < 4, then the difference between RR(w,w0) and RRshort(w,w0)

is small (less than 4%) for almost all choices of l; the one outlier is l = 100 where we see a

difference of 11% for w/w0 = 45/14 ≈ 3.2. For example, for all values of l except 100, the

difference between RR(w,w0) and RRshort(w,w0) is at most 1.8%. We do see a significant

difference between RR(w,w0) and RRshort(w,w0) for our largest choices of w which means

that RRshort(w,w0) does fall off by w/w0 = 10 or so. Thus, in contrast to RR(w,w0), there

is an upper limit to how much we can soft sample before RRshort(w,w0) suffers.

Next we examine how RRshort(w,w0) changes as a function of w, w0, and l. Similar to

RR(w,w0), we observe RRshort(w,w0) generally improves as l increases given roughly the

same ratio of w/w0. For example, when w/w0 is roughly 6, RRshort(w,w0) is 65%, and

85%, and 95% for l equal to 50, 200, and 400, respectively. In general, we can retain 90%

more short HSLAs for either small w/w0 ratios (less than 2 or 3) or large l values (200 or

400).

We now want to compare empirical retention rate with predicted retention rate as a

function of w, w0 and l. Comparing RR(w,w0) to E[RRB(w,w0)] is not fair as RR(w,w0)

includes many alignments significantly longer than l whereas E[RRB(w,w0)] focuses only

on alignments with length exactly l. To more fairly compare empirical retention rate to

expected retention rate, we compare RRshort(w,w0), where the length of the alignment is in

the range [l, (2− t)l], with E[RRB(w,w0)], where an alignment is assumed to have a length

l. We consider HSLAs with length up to (2 − t)l to ensure there are a reasonable number

of HSLAs. We also note that if we assume that the (1− t)l errors were all insertions rather

than substitutions, this would increase the length of the HSLA to (2− t)l. Figure 4.4 also

72

contains our E[RRB(w,w0)] results.

We observe that the BLAST model predicts actual retention rate of short HSLAs with

reasonable accuracy, particularly for small w/w0 and for larger l. For example, the typical

difference between RRshort(w,w0) and E[RRB(w,w0)] when w/w0 ≤ 2 is less than 5% for

all choices of l and is less than 1% for large l = 200 and l = 400. The typical difference

stays below 10% for almost all choices of w/w0 and l with only a few exceptions. The

difference between RRshort(w,w0) and E[RRB(w,w0)] does grow as w/w0 increases, but at

a relatively slow rate, typically maximized at the largest choice of w/w0, though this does

not hold for l = 400. We do note that we have relatively few empirical HSLAs for the large

w values for l = 400, so perhaps with more samples, the difference between RRshort(w,w0)

and E[RRB(w,w0)] might increase for these l and w choices.

Finally, we compare the predictions from Kent’s model E[RRK(w,w0)] and our new

BLAST model E[RRB(w,w0)]. Our new BLAST model is significantly more accurate than

Kent’s model, especially as w/w0 increases. For example, for w/w0 equal to 1.7, 3.4 and 4.7,

E[RRK] is on average less than E[RRB] by 5%, 18%, and 23%, respectively, for all l values

we consider. Kent’s model has several issues. First, because of the floor function used in

Eq. 4.11, it underestimates the number of sampled k∗-mers from a given HSLA resulting

in common retention rate predictions for multiple values of w. For example when l = 100,

E[RRK] = 46.70% for both w = 45 and w = 64. The second flaw is that Kent’s model was

not designed to handle different values for k′, k∗, and w which is what is typically used in

BLAST. Because our BLAST model is designed to overcome both issues, it achieves better

results, particularly for larger w/w0 and for larger l.

73

4.7.3 Possible improvements for the BLAST model

While our new BLAST model is much more accurate than Kent’s original model, it still

underestimates actual retention rates for large w/w0. We now explore possible explanations

for this underestimate. We believe the fundamental problem with our new BLAST model

(as well as Kent’s model) is that for any HSLAshort(DB, q, l, t), it only assumes that each

position is a match with probability t.

We demonstrate the shortcomings of this assumption in two different ways. We first

show that using this assumption, we greatly underestimate the length of the maximum MEM

within any HSLA; we refer to this maximum MEM length as MAX-MEM. Long MEMs are

relevant because long MEMs significantly increase the likelihood of recovering an HSLA.

For example, if an HSLA includes an MEM of length w + k − 1, then it is guaranteed the

HSLA will be found since one k-mer is guaranteed to be chosen from within the MEM.

We perform this comparison as follows. We first obtain an empirical distribution of

MAX-MEM by recording the length of the longest MEM in every HSLA in RRshort(w,w0).

We then use the BLAST model’s fundamental assumption that each position in an HSLA is

identical with probability t to create a corresponding predicted distribution of MAX-MEM.

For this predicted distribution of MAX-MEM, we assume that the length of the HSLA is

l, the number of mismatches is exactly (1 − t)l, and each position is equally likely to be a

mismatch. All told, there are l choose (1−t)l different combinations of errors that are equally

likely. We can then compute the predicted distribution by enumerating all possibilities for

l = 50 and l = 100.

For l > 100, it takes too much time to enumerate all possibilities. Thus, we use Monte

Carlo simulation to compute a second predicted distribution for MAX-MEM. We create short

74

HSLAs as follows. We start with an alignment of length l, a set S of mismatch positions

which is initialized to empty, and a count C of the number of mismatch positions which is

initially 0. Then, we repeatedly choose a position in the range [0, L−1] uniformly at random.

If the position is not in S, we add the position to S and increment C by one. Otherwise, we

do nothing with the chosen position and choose another one. When C reaches (1 − t)l, we

stop with a complete HSLA. We then record its longest MEM. We do this until we have

recorded one million such longest MEMs.

For l = 50 and l = 100, Monte Carlo simulation and complete enumeration produce

essentially identical distributions for MAX-MEM. Thus, we only show results from our Monte

Carlo simulations since these cover all choices of l. We show the results for our experimental

and Monte Carlo distribution of MAX-MEM for all four choices of l in Figure 4.5. We

observe that the empirical MAX-MEM distribution is weighted more heavily towards longer

MEMs than the predicted distribution. This demonstrates that the assumptions used in the

BLAST model do not correctly predict the distribution for MAX-MEM length; in general,

they underestimate the probability for finding longer MEMs. While the distribution of

MAX-MEM is not identical to retention rate of HSLAs, this finding provides evidence that

we need stronger assumptions to better predict retention rate of HSLAs.

We now show another fundamental flaw with the base assumption of the BLAST model.

Consider an HSLA of length l, and suppose we assume that each query position is inde-

pendent and matches its corresponding database position with probability t (similar to the

BLAST model’s assumptions). Then, there is a (1 − t) probability that each position does

not match. In this scenario, the total number of mismatches has the binomial distribution

Bin(l, (1−t)) which has an expected number of mismatches of exactly (1−t)l. If the number

of mismatches exceeds this expected value, we would no longer have an HSLA, but this is

75

Figure 4.5: Distribution of predicted and empirical MAX-MEM lengths in HSLAs.
The predicted MAX-MEM lengths are computed from a Monte Carlo simulation. (a) l = 50,
t = 96%, (b) l = 100, t = 97%, (c) l = 200, t = 97%, and (d) l = 400, t = 97%.

clearly contradicts with the first assumption that we start with an HSLA. The probability

that the number of mismatches exceeds (1 − t)l is given in Table 4.3. Given this weak as-

76

sumption, the BLAST model essentially starts with a probability ranging from 32% to 43%

that the given HSLA is not an HSLA.

Table 4.3: The probability that the number of mismatches exceeds (1 − t)l for
various choices of l and t.

l t Probablity mismatches exceeds (1− t)l
50 0.96 32.3%
100 0.97 35.3%
200 0.97 39.4%
400 0.97 42.4%

Under the assumption that the number of mismatches in a HSLA follow Bin(l, (1− t)),
Kents’s model underestimates the the existence of the HSLA by 30% - 40%.

We have shown that the weak assumption used in the BLAST model (1)underestimates

the probability of longer MAX-MEMs and (2) gives a significant probability for HSLAs

to not be HSLAs. Taken together, we believe a new model with stronger assumptions is

needed to produce more accurate predictions about retention rate of short HSLAs.

4.7.4 Query time

We now examine how soft sampling affects query time. The query time is approximately

inversely proportional to the sampling step w for all l values without significantly reducing

retention rate RR(w,w0). For example, for l = 200, the median query time for hard sam-

pling is 26 hours. When w/w0 is 3.8 and 5.3, the median query time reduction percentages

are 64.51% (median query time 10 hours) and 73.38% (median query time 7.4 hours), respec-

tively, while maintaining RR > 99%. Similarly, for l = 400, the median query time for hard

sampling is 18.6 hours. When w/w0 is 6.7 and 9.3, the query time reduction percentages are

78.36% (median query time 4.3 hours) and 83.99% (median query time 3.3 hours), respec-

tively, while maintaining RR > 99%. Fig 4.6 shows our full query time results represented

77

as query time reduction (QTR) percentages.

Figure 4.6: The average median query time reduction (QTR) percentages and the
actual false positive reduction (FPR) percentages as a function of sampling step
w. (a) l = 50, w0 = 5, (b) l = 100, w0 = 14, (c) l = 200, w0 = 17, and (d) l = 400, w0 = 30.
For other parameters values see Table 4.2.

The reduction in false positive rate mostly explains the reduction in query time. Re-

78

call that false positives are alignments in HSLA(DB, q, k∗, t)−HSLA(DB, q, l, t), which is

roughly the number of MEM
k*

s that do not extend into alignments in HSLA(DB, q, l, t).

This implies much of the query time is spent ruling out false positives and that using soft

sampling not only has little affect on retention rate but also significantly reduces false pos-

itives. Our full false positive reduction rate results are shown in Fig 4.6. As can be seen

from this figure, the plots for false positive reduction rate (FPR) and query time reduction

(QTR) percentage are very similar.

4.7.5 Mapping results

We report our retention rate and query time results for EST mapping in Tables 4.4, 4.5,

and 4.6. Our results show that the number of mappable queries that retain all HSLAs is

very high even when we use soft sampling. Furthermore, we achieve significant reductions

in query processing time. Recall that a query q is mappable is there is at least one HSLA

between q and the reference (the human genome in our case). When an index SI(w) is used

where w > w0, a query is lost if even a single HSLA is not found by SI(w).

Table 4.4: The retention rate (RRmap) and query time reduction (QTR) results
for all 1000 queries when l = 50 and w0 = 5, where 879 were mappable queries.

w # retained queries RRmap QTR
5 879 100.00% 100.00%
8 876 99.66% 100.00%
11 864 98.29% 89.72%
16 849 96.59% 75.67%
22 811 92.26% 64.19%
32 677 77.02% 51.40%

Using soft sampling, we are able to greatly reduce the index size, significantly reduce

query time, and correctly map more than 95% of the mappable queries for l ≥ 100. In fact,

79

Table 4.5: The retention rate (RRmap)and query time reduction (QTR) results
for all 1000 queries when l = 100 and w0 = 14, where 794 were mappable queries.

w # retained queries RRmap QTR
14 794 100.00% 100.00%
16 794 100.00% 95.60%
22 794 100.00% 85.67%
32 793 99.87% 83.07%
45 789 99.37% 80.26%
64 784 98.74% 76.68%

Table 4.6: The retention rate (RRmap)and query time reduction (QTR) results
for all 1000 queries when l = 200 and and w0 = 17, where 528 were mappable
queries.

w # retained queries RRmap QTR
17 528 100.00% 100.00%
22 528 100.00% 93.76%
32 528 100.00% 91.91%
45 525 99.43% 87.07%
64 528 100.00% 84.08%
90 523 99.05% 80.36%
128 506 95.83% 78.76%

for l ≥ 100, we correctly map almost 99% of the mappable queries for w/w0 approaching 5.

For l = 200, we correctly map at least 95% of the mappable queries for w/w0 = 7.5. For

l = 50, we still see good retention rates but the drop off is a bit faster. Specifically, for l = 50,

for w/w0 approaching 3, we correctly map 96% of the mappable queries. For w/w0 between

4 and 5, we correctly map 92% of the mappable queries, and for w/w0 between 6 and 7, we

correctly map 77% of the mappable queries. Finally, the actual retention rates may be even

better than the ones reported as we required that all HSLAs be retained whereas mapping

may proceed properly even if some HSLAs are lost.

In human EST mapping, it is common to use HSLAs of length l = 100 to search for

80

the best mapping [36, 66, 99]. To study a broader range of possibilities, we also consider

l = 50 (more HSLAs and thus more mappable queries) and l = 200 (fewer HSLAs and thus

fewer mappable queries). Our results imply that soft sampling can be used with relatively

small loss in sensitivity for the commonly used case of l = 100. Given that the index sizes

are significantly reduced and query times are also reduced, soft sampling may allow for EST

mapping using k-mer based methods for larger genomes with only a small loss in sensitivity.

81

Chapter 5

Conclusions and future work

In many biological applications, k-mer indexes are widely used to find similar sequences. A

major problem with using k-merdataset indexes is that the index size is significantly larger

than the underlying datasets. To ensure k-mer indexes are feasible, k-mer index size and

query time must be mitigated. One of the most effective approaches to mitigate k-mer index

size and query time is to use sampling. In this dissertation, I systematically study the effect

of sampling on k-mer indexes. Specifically, I study how key parameters such as sampling

strategy, sampling step size, and k-mer size affect index size, query time, and query accuracy.

The results show that the choice of the right sampling method is not trivial, and in fact has

a great impact on both the index size and query time.

We now summarize our main conclusions. When comparing fixed and minimizer sam-

pling, our results show that fixed sampling typically answers queries at least as fast as

minimizer sampling and often is faster when both methods to use the same space. In par-

ticularly for small k values, such as k ≤ 16, fixed sampling is 37.43% to 51.11 % faster. As

is common in many applications, there is a space versus speed tradeoff. Using a larger k

requires more space but results in smaller query times. The key benefit of increasing k is

that there are many fewer false positives which leads to much faster query processing.

Based on our experiments with the human genome and NCBI BLAST, fixed soft sam-

pling achieves significant space and time savings while also retaining highly similar local

82

alignments (HSLAs) with much higher probabilities than predicted by analytical modeling.

Even better, when applied to EST mapping, fixed soft sampling achieves significant space

and time savings while retaining 98% of all mapping results when the length of HSLAs is

at least 100 characters, and the retention results may be even better as we pessimistically

assume that losing even a single highly similar local alignment will lead to an incorrect map-

ping result. Further, because we performed all of our local alignments using BLAST, these

results can be easily tested and adopted by other researchers.

We can extend this work in many directions. We would like to test the effectiveness

of fixed soft sampling using other real biological datasets and in other applications such as

clustering or SNP detection. Recently, a complementary approach of space-efficient referen-

tially compressed search indexes has been proposed to support similarity searches on genome

datasets [94, 95]. In this method, genomes are compressed against some reference genome(s).

Given a query, the index then searches two parts: the reference and all genome-specific indi-

vidual differences. Both parts are saved in compressed suffix trees. Danek et al. [19] extend

reference-based compression with the use of a k-mer index. We think employing the comple-

mentary approach of reference compression in unison with fixed soft sampled k-mer indexes

may be fruitful.

83

BIBLIOGRAPHY

84

BIBLIOGRAPHY

[1] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suffix
trees with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–86, 2004.

[2] Athena Ahmadi, Alexander Behm, Nagesh Honnalli, Chen Li, Lingjie Weng, and Xiao-
hui Xie. Hobbes: Optimized gram-based methods for efficient read alignment. Nucleic
Acids Research, 40(6):e41–e41, 2012.

[3] Can Alkan, Jeffrey M Kidd, Tomas Marques-Bonet, Gozde Aksay, Francesca An-
tonacci, Fereydoun Hormozdiari, Jacob O Kitzman, Carl Baker, Maika Malig, Onur
Mutlu, et al. Personalized copy number and segmental duplication maps using next-
generation sequencing. Nature Genetics, 41(10):1061–1067, 2009.

[4] Meznah Almutairy and Eric Torng. The effects of sampling on the efficiency and
accuracy of k- mer indexes: Theoretical and empirical comparisons using the human
genome. PLOS ONE, 12(7):e0179046, 2017.

[5] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman.
Basic local alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.

[6] Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui Zhang, Zheng
Zhang, Webb Miller, and David J Lipman. Gapped BLAST and PSI-BLAST: A new
generation of protein database search programs. Nucleic Acids Research, 25(17):3389–
3402, 1997.

[7] Sasha K Ames, David A Hysom, Shea N Gardner, G Scott Lloyd, Maya B Gokhale,
and Jonathan E Allen. Scalable metagenomic taxonomy classification using a reference
genome database. Bioinformatics, 29(18):2253–2260, 2013.

[8] Richard Arratia, Louis Gordon, and Michael Waterman. An extreme value theory for
sequence matching. The annals of statistics, pages 971–993, 1986.

[9] Ergude Bao, Tao Jiang, Isgouhi Kaloshian, and Thomas Girke. SEED: Efficient clus-
tering of next-generation sequences. Bioinformatics, 27(18):2502–2509, 2011.

[10] Alexander Behm, Shengyue Ji, Chen Li, and Jiaheng Lu. Space-constrained gram-
based indexing for efficient approximate string search. In Data Engineering, 2009.
ICDE’09. IEEE 25th International Conference on, pages 604–615. IEEE, 2009.

85

[11] Medha Bhagwat, Lynn Young, and Rex R Robison. Using BLAT to find sequence
similarity in closely related genomes. Current Protocols in Bioinformatics, pages 10–8,
2012.

[12] Jacek Blazewicz, Wojciech Frohmberg, Michal Kierzynka, Erwin Pesch, and Pawel
Wojciechowski. Protein alignment algorithms with an efficient backtracking routine
on multiple gpus. BMC bioinformatics, 12(1):181, 2011.

[13] Leonid Boytsov. Indexing methods for approximate dictionary searching: Comparative
analysis. Journal of Experimental Algorithmics (JEA), 16:1–1, 2011.

[14] Michael Brudno, Sanket Malde, Alexander Poliakov, Chuong B Do, Olivier Couronne,
Inna Dubchak, and Serafim Batzoglou. Glocal alignment: Finding rearrangements
during alignment. Bioinformatics, 19(suppl 1):i54–i62, 2003.

[15] Jeremy Buhler, Uri Keich, and Yanni Sun. Designing seeds for similarity search in
genomic DNA. In Proceedings of the Seventh Annual International Conference on
Research in Computational Molecular Biology, pages 67–75. ACM, 2003.

[16] Michael Burrows and David J Wheeler. A block-sorting lossless data compression
algorithm. Digital Equipment Corporation, 1994.

[17] Christiam Camacho, George Coulouris, Vahram Avagyan, Ning Ma, Jason Papadopou-
los, Kevin Bealer, and Thomas L Madden. BLAST+: Architecture and applications.
BMC Bioinformatics, 10(1):421, 2009.

[18] Rayan Chikhi, Antoine Limasset, Shaun Jackman, Jared T Simpson, and Paul
Medvedev. On the representation of de Bruijn graphs. In Research in Computational
Molecular Biology, pages 35–55. Springer, 2014.

[19] Agnieszka Danek, Sebastian Deorowicz, and Szymon Grabowski. Indexes of large
genome collections on a PC. PLOS ONE, 9(10):e109384, 2014.

[20] AP Jason de Koning, Wanjun Gu, Todd A Castoe, Mark A Batzer, and David D
Pollock. Repetitive elements may comprise over two-thirds of the human genome.
PLOS Genetic, 7(12):e1002384, 2011.

[21] Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, and Agnieszka Debudaj-
Grabysz. KMC 2: Fast and resource-frugal k-mer counting. Bioinformatics,
31(10):1569–1576, 2015.

[22] Todd Z DeSantis, Keith Keller, Ulas Karaoz, Alexander V Alekseyenko, Navjeet NS
Singh, Eoin L Brodie, Zhiheng Pei, Gary L Andersen, and Niels Larsen. Simrank:
Rapid and sensitive general-purpose k-mer search tool. BMC ecology, 11(1):11, 2011.

86

[23] Naryttza N Diaz, Lutz Krause, Alexander Goesmann, Karsten Niehaus, and Tim W
Nattkemper. TACOA–taxonomic classification of environmental genomic fragments
using a kernelized nearest neighbor approach. BMC Bioinformatics, 10(1):56, 2009.

[24] Robert C Edgar. MUSCLE: Multiple sequence alignment with high accuracy and high
throughput. Nucleic acids research, 32(5):1792–1797, 2004.

[25] Robert C Edgar. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics, 26(19):2460–2461, 2010.

[26] Peter Elias. Universal codeword sets and representations of the integers. Information
Theory, IEEE Transactions on, 21(2):194–203, 1975.

[27] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applica-
tions. In Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium
on, pages 390–398. IEEE, 2000.

[28] Mohammadreza Ghodsi, Bo Liu, and Mihai Pop. DNACLUST: Accurate and efficient
clustering of phylogenetic marker genes. BMC bioinformatics, 12(1):271, 2011.

[29] Louis Gordon, Mark F Schilling, and Michael S Waterman. An extreme value theory
for long head runs. Probability Theory and Related Fields, 72(2):279–287, 1986.

[30] Faraz Hach, Fereydoun Hormozdiari, Can Alkan, Farhad Hormozdiari, Inanc Birol,
Evan E Eichler, and S Cenk Sahinalp. mrsFAST: A cache-oblivious algorithm for
short-read mapping. Nature Methods, 7(8):576–577, 2010.

[31] Ayat Hatem, Doruk Bozdağ, Amanda E Toland, and Ümit V Çatalyürek. Benchmark-
ing short sequence mapping tools. BMC Bioinformatics, 14(1):1, 2013.

[32] Liisa Holm, Chris Sander, et al. Mapping the protein universe. Science-New York
Then Washington, pages 595–602, 1996.

[33] Farhad Hormozdiari, Faraz Hach, S Cenk Sahinalp, Evan E Eichler, and Can Alkan.
Sensitive and fast mapping of di-base encoded reads. Bioinformatics, 27(14):1915–
1921, 2011.

[34] Kris Irizarry, Vlad Kustanovich, Cheng Li, Nik Brown, Stanley Nelson, Wing Wong,
and Christopher J Lee. Genome-wide analysis of single-nucleotide polymorphisms in
human expressed sequences. Nature Genetics, 26(2):233–236, 2000.

[35] Kazutaka Katoh, Kazuharu Misawa, Kei-ichi Kuma, and Takashi Miyata. MAFFT: A
novel method for rapid multiple sequence alignment based on fast fourier transform.
Nucleic acids research, 30(14):3059–3066, 2002.

87

[36] W James Kent. BLAT-the BLAST-like alignment tool. Genome Research, 12(4):656–
664, 2002.

[37] Zia Khan, Joshua S Bloom, Leonid Kruglyak, and Mona Singh. A practical algorithm
for finding maximal exact matches in large sequence datasets using sparse suffix arrays.
Bioinformatics, 25(13):1609–1616, 2009.

[38] Nilesh Khiste and Lucian Ilie. E-MEM: Efficient computation of maximal exact
matches for very large genomes. Bioinformatics, 31(4):509–514, 2015.

[39] You Jung Kim, Andrew Boyd, Brian D Athey, and Jignesh M Patel. miBLAST:
Scalable evaluation of a batch of nucleotide sequence queries with blast. Nucleic Acids
Research, 33(13):4335–4344, 2005.

[40] Ian Korf and Warren Gish. MPBLAST: Improved blast performance with multiplexed
queries. Bioinformatics, 16(11):1052–1053, 2000.

[41] Stefan Kurtz, Adam Phillippy, Arthur L Delcher, Michael Smoot, Martin Shumway,
Corina Antonescu, and Steven L Salzberg. Versatile and open software for comparing
large genomes. Genome Biology, 5(2):R12, 2004.

[42] Chen Li, Bin Wang, and Xiaochun Yang. VGRAM: Improving performance of ap-
proximate queries on string collections using variable-length grams. In Proceedings
of the 33rd international conference on Very large data bases, pages 303–314. VLDB
Endowment, 2007.

[43] Heng Li. Minimap and miniasm: Fast mapping and de novo assembly for noisy long
sequences. Bioinformatics, page btw152, 2016.

[44] Heng Li and Richard Durbin. Fast and accurate short read alignment with burrows–
wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[45] Ruiqiang Li, Hongmei Zhu, Jue Ruan, Wubin Qian, Xiaodong Fang, Zhongbin Shi,
Yingrui Li, Shengting Li, Gao Shan, Karsten Kristiansen, et al. De novo assembly
of human genomes with massively parallel short read sequencing. Genome Research,
20(2):265–272, 2010.

[46] Weizhong Li and Adam Godzik. Cd-hit: A fast program for clustering and comparing
large sets of protein or nucleotide sequences. Bioinformatics, 22(13):1658–1659, 2006.

[47] Yang Li et al. MSPKmerCounter: A fast and memory efficient approach for k-mer
counting. arXiv preprint arXiv:1505.06550, 2015.

88

[48] Yang Li, Pegah Kamousi, Fangqiu Han, Shengqi Yang, Xifeng Yan, and Subhash
Suri. Memory efficient minimum substring partitioning. In Proceedings of the VLDB
Endowment, volume 6(3), pages 169–180. VLDB Endowment, 2013.

[49] Hao Lin, Zefeng Zhang, Michael Q Zhang, Bin Ma, and Ming Li. ZOOM! zillions of
oligos mapped. Bioinformatics, 24(21):2431–2437, 2008.

[50] David J Lipman and William R Pearson. Rapid and sensitive protein similarity
searches. Science, 227(4693):1435–1441, 1985.

[51] Bin Ma, John Tromp, and Ming Li. PatternHunter: Faster and more sensitive homol-
ogy search. Bioinformatics, 18(3):440–445, 2002.

[52] M McIlroy. Development of a spelling list. Communications, IEEE Transactions on,
30(1):91–99, 1982.

[53] Hamish McWilliam, Weizhong Li, Mahmut Uludag, Silvano Squizzato, Young Mi Park,
Nicola Buso, Andrew Peter Cowley, and Rodrigo Lopez. Analysis tool web services
from the embl-ebi. Nucleic acids research, 41(W1):W597–W600, 2013.

[54] Giles Miclotte, Mahdi Heydari, Piet Demeester, Pieter Audenaert, and Jan Fostier.
Jabba: Hybrid error correction for long sequencing reads using maximal exact matches.
In International Workshop on Algorithms in Bioinformatics, pages 175–188. Springer,
2015.

[55] Luciano Milanesi and Igor B Rogozin. ESTMAP: A system for expressed sequence tags
mapping on genomic sequences. NanoBioscience, IEEE Transactions on, 2(2):75–78,
2003.

[56] Aleksandr Morgulis, George Coulouris, Yan Raytselis, Thomas L Madden, Richa Agar-
wala, and Alejandro A Schäffer. Database indexing for production MegaBLAST
searches. Bioinformatics, 24(16):1757–1764, 2008.

[57] Aleksandr Morgulis, E Michael Gertz, Alejandro A Schäffer, and Richa Agarwala. A
fast and symmetric DUST implementation to mask low-complexity DNA sequences.
Journal of Computational Biology, 13(5):1028–1040, 2006.

[58] Aleksandr Morgulis, E Michael Gertz, Alejandro A Schäffer, and Richa Agarwala. Win-
dowMasker: Window-based masker for sequenced genomes. Bioinformatics, 22(2):134–
141, 2006.

[59] Narjes S Movahedi, Elmirasadat Forouzmand, and Hamidreza Chitsaz. De novo
co-assembly of bacterial genomes from multiple single cells. In Bioinformatics and
Biomedicine (BIBM), 2012 IEEE International Conference on, pages 1–5. IEEE, 2012.

89

[60] Gonzalo Navarro. A guided tour to approximate string matching. ACM computing
surveys (CSUR), 33(1):31–88, 2001.

[61] Gonzalo Navarro, Ricardo A. Baeza-Yates, Erkki Sutinen, and Jorma Tarhio. Indexing
methods for approximate string matching. IEEE Data Engineering Bulletin, 24(4):19–
27, 2001.

[62] Gonzalo Navarro, Erkki Sutinen, Jani Tanninen, and Jorma Tarhio. Indexing text with
approximate q-grams. In Combinatorial Pattern Matching, pages 350–363. Springer,
2000.

[63] Gonzalo Navarro, Erkki Sutinen, and Jorma Tarhio. Indexing text with approximate
q-grams. Journal of Discrete Algorithms, 3(2):157–175, 2005.

[64] Saul B Needleman and Christian D Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal of molecular
biology, 48(3):443–453, 1970.

[65] Pauline C Ng and Steven Henikoff. Predicting deleterious amino acid substitutions.
Genome Research, 11(5):863–874, 2001.

[66] Zemin Ning, Anthony J Cox, and James C Mullikin. SSAHA: A fast search method
for large DNA databases. Genome Research, 11(10):1725–1729, 2001.

[67] Panagiotis Papapetrou. Embedding-based subsequence matching in large sequence
databases. PhD thesis, Citeseer, 2010.

[68] Panagiotis Papapetrou, Vassilis Athitsos, George Kollios, and Dimitrios Gunopulos.
Reference-based alignment in large sequence databases. Proceedings of the VLDB
Endowment, 2(1):205–216, 2009.

[69] William R Pearson and David J Lipman. Improved tools for biological sequence com-
parison. Proceedings of the National Academy of Sciences, 85(8):2444–2448, 1988.

[70] Jason Pell, Arend Hintze, Rosangela Canino-Koning, Adina Howe, James M Tiedje,
and C Titus Brown. Scaling metagenome sequence assembly with probabilistic de
Bruijn graphs. Proceedings of the National Academy of Sciences, 109(33):13272–13277,
2012.

[71] Pierre Peterlongo and Rayan Chikhi. Mapsembler, targeted and micro assembly of
large NGS datasets on a desktop computer. BMC Bioinformatics, 13(1):48, 2012.

[72] Nicolas Philippe, Mikael Salson, Thierry Lecroq, Martine Leonard, Therese Commes,
and Eric Rivals. Querying large read collections in main memory: A versatile data
structure. BMC bioinformatics, 12(1):242, 2011.

90

[73] Peter Rice, Ian Longden, Alan Bleasby, et al. EMBOSS: The european molecular
biology open software suite. Trends in genetics, 16(6):276–277, 2000.

[74] Todd Richmond. Gene recognition via spliced alignment. Genome Biology, 1(1):re-
ports233, 2000.

[75] Michael Roberts, Wayne Hayes, Brian R Hunt, Stephen M Mount, and James A Yorke.
Reducing storage requirements for biological sequence comparison. Bioinformatics,
20(18):3363–3369, 2004.

[76] Michael Roberts, Brian R Hunt, James A Yorke, Randall A Bolanos, and Arthur L
Delcher. A preprocessor for shotgun assembly of large genomes. Journal of Computa-
tional Biology, 11(4):734–752, 2004.

[77] Stephen M Rumble, Phil Lacroute, Adrian V Dalca, Marc Fiume, Arend Sidow, and
Michael Brudno. Shrimp: Accurate mapping of short color-space reads. PLOS ONE
Computational Biology, 5(5):e1000386, 2009.

[78] Ravi Sachidanandam, David Weissman, Steven C Schmidt, Jerzy M Kakol, Lincoln D
Stein, Gabor Marth, Steve Sherry, James C Mullikin, Beverley J Mortimore, David L
Willey, et al. A map of human genome sequence variation containing 1.42 million single
nucleotide polymorphisms. Nature, 409(6822):928–933, 2001.

[79] Mark F Schilling. The surprising predictability of long runs. Mathematics Magazine,
85(2):141–149, 2012.

[80] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local algorithms
for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 76–85. ACM, 2003.

[81] Ilya N Shindyalov and Philip E Bourne. Protein structure alignment by incremental
combinatorial extension (ce) of the optimal path. Protein engineering, 11(9):739–747,
1998.

[82] Jared T Simpson and Richard Durbin. Efficient construction of an assembly string
graph using the FM-index. Bioinformatics, 26(12):i367–i373, 2010.

[83] Jared T Simpson, Kim Wong, Shaun D Jackman, Jacqueline E Schein, Steven JM
Jones, and Inanç Birol. ABySS: A parallel assembler for short read sequence data.
Genome Research, 19(6):1117–1123, 2009.

[84] Temple F Smith and Michael S Waterman. Identification of common molecular sub-
sequences. Journal of Molecular Biology, 147(1):195–197, 1981.

91

[85] Yanni Sun and Jeremy Buhler. Designing multiple simultaneous seeds for DNA simi-
larity search. Journal of Computational Biology, 12(6):847–861, 2005.

[86] Erkki Sutinen and Jorma Tarhio. On using q-gram locations in approximate string
matching. Algorithms – ESA’95, pages 327–340, 1995.

[87] William R Taylor, Tomas P Flores, and Christine A Orengo. Multiple protein structure
alignment. Protein Science, 3(10):1858–1870, 1994.

[88] Julie D Thompson, Desmond G Higgins, and Toby J Gibson. CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment through sequence weight-
ing, position-specific gap penalties and weight matrix choice. Nucleic acids research,
22(22):4673–4680, 1994.

[89] Niko Välimäki and Eric Rivals. Scalable and versatile k-mer indexing for high-
throughput sequencing data. In Bioinformatics Research and Applications, pages 237–
248. Springer, 2013.

[90] Jayendra Venkateswaran, Deepak Lachwani, Tamer Kahveci, and Christopher Jer-
maine. Reference-based indexing of sequence databases. In Proceedings of the 32nd
international conference on Very large data bases, pages 906–917. VLDB Endowment,
2006.

[91] Michaël Vyverman, Bernard De Baets, Veerle Fack, and Peter Dawyndt. essaMEM:
Finding maximal exact matches using enhanced sparse suffix arrays. Bioinformatics,
29(6):802–804, 2013.

[92] Michaël Vyverman, Bernard De Baets, Veerle Fack, and Peter Dawyndt. A long
fragment aligner called ALFALFA. BMC Bioinformatics, 16(1):159, 2015.

[93] Sebastian Wandelt and Ulf Leser. QGramProjector: Q-gram projection for indexing
highly-similar strings. In Advances in Databases and Information Systems, pages 260–
273. Springer, 2013.

[94] Sebastian Wandelt and Ulf Leser. MRCSI: Compressing and searching string collections
with multiple references. Proceedings of the VLDB Endowment, 8(5):461–472, 2015.

[95] Sebastian Wandelt, Johannes Starlinger, Marc Bux, and Ulf Leser. RCSI: Scalable
similarity search in thousand(s) of genomes. Proceedings of the VLDB Endowment,
6(13):1534–1545, August 2013.

[96] David Weese, Anne-Katrin Emde, Tobias Rausch, Andreas Döring, and Knut Reinert.
RazerS: Fast read mapping with sensitivity control. Genome Research, 19(9):1646–
1654, 2009.

92

[97] Thomas Wiehe, Steffi Gebauer-Jung, Thomas Mitchell-Olds, and Roderic Guigo. SGP-
1: Prediction and validation of homologous genes based on sequence alignments.
Genome Research, 11(9):1574–1583, 2001.

[98] Derrick E Wood and Steven L Salzberg. Kraken: Ultrafast metagenomic sequence
classification using exact alignments. Genome Biology, 15(3):R46, 2014.

[99] Thomas D Wu and Colin K Watanabe. GMAP: A genomic mapping and alignment
program for mRNA and EST sequences. Bioinformatics, 21(9):1859–1875, 2005.

[100] Hongyi Xin, Donghyuk Lee, Farhad Hormozdiari, Samihan Yedkar, Onur Mutlu, and
Can Alkan. Accelerating read mapping with fasthash. BMC Genomics, 14(Suppl
1):S13, 2013.

[101] Chengxi Ye, Zhanshan Sam Ma, Charles H Cannon, Mihai Pop, and W Yu Douglas.
Exploiting sparseness in de novo genome assembly. BMC Bioinformatics, 13(6):1, 2012.

[102] Daniel R Zerbino and Ewan Birney. Velvet: Algorithms for de novo short read assembly
using de bruijn graphs. Genome Research, 18(5):821–829, 2008.

[103] Hongyu Zhang. Alignment of BLAST high-scoring segment pairs based on the longest
increasing subsequence algorithm. Bioinformatics, 19(11):1391–1396, 2003.

[104] Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb Miller. A greedy algorithm
for aligning DNA sequences. Journal of Computational Biology, 7(1-2):203–214, 2000.

[105] Justin Zobel and Alistair Moffat. Inverted files for text search engines. ACM computing
surveys (CSUR), 38(2):6, 2006.

93

