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ABSTRACT

PHYSICS-BASED CRYSTAL PLASTICITY MODELING OF SINGLE CRYSTAL NIOBIUM

By

Tias Maiti

Crystal plasticity models based on thermally activated dislocation kinetics has been successful

in predicting the deformation behavior of crystalline materials, particularly in face-centered cubic

(fcc) metals. In body-centered cubic (bcc) metals success has been limited owing to ill-defined slip

planes. The flow stress of a bcc metal is strongly dependent on temperature and orientation due

to the non-planar splitting of a/2⟨111⟩ screw dislocations. As a consequence of this, bcc metals

show two unique deformation characteristics: (a) thermally-activated glide of screw dislocations -

the motion of screw components with their non-planar core structure at the atomistic level occurs

even at low stress through the nucleation (assisted by thermal activation) and lateral propagation

of dislocation kink pairs; (b) break-down of the Schmid Law, where dislocation slip is driven only

by the resolved shear stress.

Since the split dislocation core has to constrict for a kink pair formation (and propagation),

the non-planarity of bcc screw dislocation cores entails an influence of (shear) stress components

acting on planes other than the primary glide plane on their mobility. Another consequence of the

asymmetric core splitting on the glide plane is a direction-sensitive slip resistance, which is termed

twinning/atwinning sense of shear and should be taken into account when developing constitutive

models.

Modeling thermally-activated flow including the above-mentioned non-Schmid effects in bcc

metals has been the subject of much work, starting in the 1980s and gaining increased interest in

recent times. The majority of these works focus on single crystal deformation of commonly used



metals such as Iron (Fe), Molybdenum (Mo), and Tungsten (W), while very few published studies

address deformation behavior in Niobium (Nb). Most of the work on Nb revolves around fitting

parameters of phenomenological descriptions, which do not capture adequately the macroscopic

multi-stage hardening behavior and evolution of crystallographic texture from a physical point of

view. Therefore, we aim to develop a physics-based crystal plasticity model that can capture these

effects as a function of grain orientations, microstructure parameters, and temperature.

To achieve this goal, first, a new dilatational constitutive model is developed for simulating the

deformation of non-linear geometries (foams or geometries with free surfaces) using the spectral

method. The model has been used to mimic the void-growth behavior of a biaxially loaded plate

with a circular inclusion. The results show that the proposed formulation provides a much better

description of void-like behavior compared to the pure elastic behavior of voids. Using the de-

veloped dilatational framework, periodic boundary conditions arising from the spectral solver has

been relaxed to study the tensile deformation behavior of dogbone-shaped Nb single crystals.

Second, a dislocation density-based constitutive model with storage and recovery laws derived

from Discrete Dislocation Dynamics (DDD) is implemented to model multi-stage strain hardening.

The influence of pre-deformed dislocation content, dislocation interaction strengths and mean free

path on stage II hardening is then simulated and compared with in-situ tensile experiments.
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CHAPTER 1

INTRODUCTION AND RESEARCH BACKGROUND

Advancements in particle physics rely heavily on advances in particle accelerators. Originally,

particle accelerators were developed to do fundamental research in sub-atomic particle physics:

the study of the elemental forces and building blocks of matter. Today, many diverse real life

applications make use of particle accelerators, such as in life sciences, chemistry, medical diagnosis

and treatment, material characterization, and luggage interrogation for homeland security defense

applications. A few of the ongoing projects based on particle accelerator technology involves

x-ray laser oscillators, continuous wave (CW) and pulsed free electron lasers, energy recovery

linac (ERL) based light sources, electrons and ions colliders, nuclear waste transmutation, and

accelerator driven systems (ADS) for medical isotope production. Researchers are working on

developing a new type of nuclear reactors based on particle accelerators, which could solve the

nuclear waste disposal problem.

Many parameters influence the performance of the accelerator, and the physics they make ac-

cessible. A critical parameter among them is the energy of the particle beams. Particle beams of

higher energy allow for finer measurement of the fundamental properties of the particles consti-

tuting them. The technology for accelerating particles also depends on the type of particle being

accelerated. Heavy particle (proton) accelerators are mostly circular machines, with their techno-

logical challenges lying in the area of high field magnet development. The Tevatron, at Fermilab,

and the Large Hadron Collider (LHC) at Conseil Européen pour la Recherche Nucléaire (CERN)

are examples of these type of machines. Electron-positron colliders have been almost exclusively

circular machines up to the present. The synchrotron radiation which results from accelerating
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charged particles in a circle makes circular machines impractical for further increase in energy.

For this reason, the next generation of electron-positron colliders will have to be linear. A linear

collider with the center of mass energy in the 1 TeV range would be a machine complementary to

the previously mentioned LHC. Several proposals have been put forward for the construction of

such a device, [24, 25] one of which would be a Super conducting Radio Frequency (SRF) based

machine. These SRF based machines are composed of smaller units stacked in series known as

SRF cavities or cells.

1.1 Superconducting Radio Frequency Cavity

An SRF cavity is a device in which particles are accelerated by a resonating radio wave. In

most electron-positron colliders, cavities are microwave resonators of "toroidal" shape connected

by tubes, to allow particles to accelerate through them. Fig. 1.1 shows a schematic of a typical

cylindrically symmetric cavity for lowest RF frequency mode (TM 010). The electrical and mag-

netic fields lines are depicted by arrows and crosses respectively. The electric field is parallel to

the beam axis and decays to zero radially upon approaching the cavity walls. Boundary conditions

demand that the electric field is normal to the surface of the cavity cell with the peak being located

near the iris or the region where the cavity is attached to the connecting tubes. The magnetic field

runs in the azimuthal direction, with the highest magnetic field located near the equator of the

cavity and diminishing towards the cavity axis.

As the particle beam traverses through the cavity, it experiences an acceleration along the axis

of the cavity due to the electric field. Since the RF fields alternate in time, the particle beam

must be in the proper phase with the fields so that the force is accelerating in nature rather than

decelerating. As the particles take a finite time to travel through the cavity, the accelerating field is
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Figure 1.1: A typical accelerating cavity geometry, showing particle beam and fundamental fields
of the RF cavity.

considered as the time average of the electric field along the particle path.

Surface currents in mega Ampere (MA) range are required to flow through the metal walls

of the cavity structure to achieve the desired accelerating field of 1 ·106 Vm−1. Such huge sur-

face currents produce an enormous amount of heat in a normally conducting metal such as copper,

which is costly to cool. Also, the cavity structure near the particle beam has disruptive effects on it,

limiting its density and thereby restricting the accelerator’s use for modern day applications. These

detrimental effects can be overcomed by the use of superconducting cavities. When cooled below

a critical temperature Tc, many materials lose all of its Direct Current (DC) electrical resistance.

These materials are known as superconductors. Below Tc, the electrons of a conducting material

gain a small net attraction through their interaction with the surrounding lattice. As a result, the

electrons form "Cooper pairs" which move through the lattice without any resistance. The supe-

riority of superconducting cavities over those made of normal-conducting metal is in its ability to

store a large amount of energy with much lower dissipation.
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To determine which materials are suitable for producing high-performing SRF cavities, one

should look for certain properties. One of them being the Quality factor Q0 measuring the perfor-

mance of a SRF cavity. The Quality factor is given as,

Q0 =
G
Rs

(1.1)

where G is a parameter, which depends on the cavity geometry and Rs is the average surface

resistance of the inner cavity walls (function of the accelerating gradient, Eacc). In order to reach

the theoretical limit of current and future accelerators, increasing the quality factor and accelerating

gradient is one of the main topics of research on SRF cavities. For a large Eacc, a large superheating

field Bsh is desirable, as it is the relevant critical field for RF applications. In SRF cavities, the

objective is to exclude flux, not to pin it inside the superconductor. Pinned normal conducting

vortex cores dissipate energy strongly in RF fields.

It is energetically favorable for the vortices to be inside the superconductor above the first crit-

ical field B1
c, and only an energy barrier prevents the flux penetration above this field. For an ideal

surface, the barrier disappears at Bsh, making it the ultimate limit for SRF applications. Surface

defects of size on the order of the coherence length ξ (spatial amplitude of the superconducting

wave function) can reduce the barrier to vortex penetration. Thus, the fields close to Bsh cannot

be realized without vortex entry. Therefore it is important to have a large enough ξ so that the

performance is not affected by the presence of small defects even on a well-prepared surface, such

as grain boundaries. How large of ξ is large enough, is still an open question.

1.2 Material for SRF cavity application

For an optimum cavity operation, the building material must possess the following attributes:
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• Easy to fabricate in a way that it conforms to a complex geometry.

• High thermal conductivity or be able to be deposited on a substrate with high thermal con-

ductivity to evade thermal breakdown

• Minimal surface defects to prevent field emissions.

• Less prone to surface contamination upon cleaning.

Table 1.1: Superconducting properties of some promising materials for SRF applications.

Material λ (0) ξ (0) Bsh Tc ρn
[nm] [nm] [mT] [K] [µΩcm]

Nb3Sn[26] 111 4.2 410 18 8
MgB2[27, 28] 185 4.9 210 40 0.1
NbN[29] 375 2.9 160 16 144
Nb[30] 50 22 210 9.2 2

The superconducting properties of four promising SRF cavity materials are listed in Table 1.1.

Nb3Sn is a material with an enormous potential for SRF applications. It has a large Tc ∼18 K

(twice that of niobium). However, Nb3Sn is brittle and has low thermal conductivity, which limits

it to be used in a film form. Therefore it faces challenges associated with thin films in SRF Cavity

applications. MgB2 is another alternative that was discovered recently. It has a Tc of approximately

40 K, but it is not as well developed as Nb3Sn. The challenges here lies in obtaining a minimal

oxygen background in the coating chamber to fabricate MgB2, as magnesium is highly reactive

with it. The δ phase of NbN also has the potential to be a SRF material, with a high Tc of 15–

17 K. NbN has a very complex phase diagram, which makes it very challenging to achieve the

superconducting delta phase during fabrication. Some success has been achieved with sputtering,
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but with heat treatment in a nitrogen atmosphere, no reliable procedure has been developed that

could be applied to cavities.

Niobium is currently the material of choice for superconducting cavities. It has been an essen-

tial transition metal because of its uses in the manufacturing of stainless steels and superalloys for

aerospace applications [31]. The primary reason for the choice of niobium as an SRF material is

due to its highest critical transition temperature (Tc = 9.2 K) of all pure metals, and it is relatively

easy to fabricate. Also, it is readily available and has a high thermal conductivity. None of the

materials mentioned earlier can match niobium in terms of its ease of use and performance with

increasing RF fields. For a typical cavity made of Nb, the resonating frequencies fall in range

0.5–2.0 GHz operating at a temperature of ∼ 2.0 K. The quality factor for such a cavity is about

1010–1011 range [32].

1.3 Challenges associated with using Nb as material for SRF application

High purity Niobium ingots are produced using high-vacuum multiple electron beam melting

process which results in a large-grain structure in the center and smaller columnar grains at the

periphery of the 20–30 cm diameter ingots. Sheets and tubes are produced by rolling and forging

these ingots, resulting in a polycrystalline microstructure. However, homogenizing this microstruc-

ture is difficult, since each of the few large and differently oriented grains responds in a strongly

anisotropic way to the deformation process, which causes variability in the crystallographic texture

of different batches of rolled niobium sheets [33]. Other problems associated with polycrystalline

Nb include magnetic flux pinning and phonon scattering near grain boundaries. To mitigate these

problems cavities can be made from wire cut slices of large-grain Nb ingots containing a handful

of single crystals.
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Figure 1.2: Mechanical fabrication path of an SRF cavity.

Figure 1.3: Surface defects in a well prepared SRF cavity cell.

A typical work-flow of an SRF cavity fabrication process is shown in Fig. 1.2[34, 35]. The

inherent deformation anisotropy of the individual grains leads to variability in the forming process

(see Fig. 1.3[34, 36, 37]). Deformation paths involving surface working, such as spinning, intro-

duce gradients of deformation from the surface inward, with a higher density of defects near the

surface. These defects act as hot-spots for electric field emission and subsequent thermal break-

down [38, 39]. Thus, to gain precise control of the forming process, it is essential to understand
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the mesoscopic deformation behavior in terms of stresses necessary to activate dislocation slip on

various slip systems, and the resulting work hardening behavior from the interaction of disloca-

tions in them. Identification of these criteria are important for predicting how crystal orientations

and flow behavior will evolve in more complex forming operations.

1.4 Objective

The primary objective of this thesis is to develop a finite strain crystal plasticity model at meso-

scopic scale for predictions of strain hardening and lattice reorientation in pure Niobium over a

broad range crystal orientations. To achieve this goal, the boundary value problem associated with

mechanical testing of materials is solved computationally. A new dilatational constitutive model

is introduced into the finite strain framework (described in Chapter 3) for simulating deformation

of non-compact geometries using a FOURIER-based spectral method. The developed constitu-

tive model is then used to mimic free-surface boundary conditions within a periodic hexahedral

cell, thus providing a way to test constitutive models for single crystal on a standard dogbone

shaped geometry. In Chapter 4, a physics based crystal plasticity model is combined with internal

state evolution laws consistent with Discrete Dislocation Dynamics (DDD). Parameters critical for

simulating multi-stage strain hardening are identified and discussed. Finally, in chapter 5, the de-

veloped finite strain framework combined with a DDD informed physics-based model makes it is

possible to successfully predict multistage hardening and crystal rotation with respect to the tensile

axis as a function of crystal orientation at finite strain levels.
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CHAPTER 2

PLASTIC DEFORMATION IN BODY CENTERED CUBIC METALS

Deformation by slip in crystalline materials occurs by movement of dislocations in certain crys-

tallographic planes along certain crystallographic directions. Generally, these are crystallographic

planes lattice planes with high planar density. For example, in Face Centered Cubic (FCC) crystals,

dislocations move on {111} slip planes and along ⟨110⟩ slip directions. These high density planes

together with a tightly packed direction constitute a slip system. When shear stresses in a particular

slip system exceed a threshold stress, a dislocation starts moving on those systems. This threshold

stress, in general, is constant for a particular slip system and is independent of the direction of slip

[40]. Deformation takes place on those systems which offer the least resistance to the dislocation

motion, which is observed macroscopically by the formation of slip traces (slip step) on a polished

surface after deformation. In other words, the slip system that has the maximum resolved shear

stress will be favorable for slip. This orientation dependence of resolved shear stress is known as

the Schmid law [40] and have been extensively verified for {111}⟨110⟩ systems in FCC and basal

slip systems {0001}⟨1120⟩ in Hexagonally Packed (HP) metals.

Niobium exists in the Body Centered Cubic (BCC) crystal structure from T = 0K to its melting

point. Therefore, to predict the deformation behavior of pure Niobium, it is important to have

a detailed knowledge of the crystal structure of the material. The first part of this chapter will

therefore concentrate on describing the deformation behavior BCC metals in general. Then, in the

second part, the characteristics of dislocation microstructure in a BCC lattice will be detailed.
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Figure 2.1: Potential slip systems in BCC lattice

2.1 Slip systems in BCC crystals

The question of slip systems in BCC metals has long been the subject of research since earlier

times. The direction of slip is always observed to be the ⟨111⟩ direction [41] of the BCC structure,

but no conclusive evidence of the slip plane has been reported. There are, however, three major

points of view in the literature concerning slip planes. Early studies of iron single crystals first

suggested that slip occurs on {110}, {112} as well as {123} planes, which are in the zone of

the slip direction ⟨111⟩ [42, 43, 44, 45]. Other authors then reported that the slip did not occur

on planes of low indices, but took place on planes close to the Maximum Resolved Shear Stress

Plane (MRSSP) [46]. This theory is often referred to as non-crystallographic glide. These two

ideas of slip in iron are mainly based on the observation of visible slip traces. But as shown in

Fig. 2.1 (right), the projections of the different planes available for slip along the slip direction are

quite close. The planes closest to the families {112}, and {123} are separated only by 10◦. It is

therefore clear that the proximity and the multiplicity of the available slip planes make the inter-

pretations of the slip traces rather delicate. Also, they are often very winding and branched. This

observation has consequently given rise to a third proposition according to which the macroscopic
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slip traces, which at first sight coincide with a plane {123} [47], are in fact composed of short slip

traces on planes of the family {110} [48, 49, 50, 4].

L

Y

Z

L'

X

P

P'

Figure 2.2: Areas of activation of the 110 and 112 planes in the standard triangle [4]

Franciosi [4], Duesbery and Foxall [10] defined the activation zones for slip families {110} and

{112} in the standard triangle (see Fig. 2.2). For this purpose, they have compared the Schmid

factors of the two families of planes, assuming that the critical constraints on each of them are

equivalent. These authors thus show the existence of three activation domains: the Y domain,

which is the most extensive, corresponds to the activation of a {110} plane system, and the X

and Z domains coinciding with the zones of activation of a {112} system. The particular loading

directions which lie on the boundary between two different activation domains is equivalent to the

simultaneous activation of two systems, as was already the case with a single family of sliding

planes. For example, loading on LP leads to the activation of two systems of the family of planes

{110}, loading along the boundaries LL’ or PP’ induces the activation of two systems of different

natures {110} and {112}. The same authors also carried out tensile tests to verify the position

of these three domains and the mixed boundaries separating them (LL’ and PP’). Franciosi [4]
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states that he confirmed the existence of some of these boundaries through the observation of slip

traces. The only exception was for a loading close to the PP’ border. The double mixed slip on the

expected {110} and {112} systems has not been observed in favor of a simple slip on a {110}

system.

2.2 Orientation dependent strain hardening in BCC single crystals
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Figure 2.3: Shear stress – shear strain curves as a function of orientation in α −Fe (top) and Nb
(bottom), according to [5, 6].

In BCC single crystals two different types of deformation behavior are reported at strain-rate
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independent temperatures. Fig. 2.3 shows several uniaxial tension deformation curves obtained in

pure Iron and Niobium at ambient temperature by Spitzig and Keh, and Keh and Nakada [5, 6, 10].

Most of the tensile axis within the standard stereographic triangle show well-known three-stage

stress-strain behavior (curves A, B, C, 10, and 3 in Fig. 2.3). Loading directions close to the high

symmetry orientations, such as [001], [111] and [011], show pseudo-parabolic behavior (curves D,

E, F, and 1 of Fig. 2.3). In these orientations, slip operates on several systems from the beginning

of the plastic deformation, which is responsible for a very high rate of hardening. The comparison

of the three curves D, E and F (top row Fig. 2.3) leads to a prioritization of the hardening between

the orientations of high symmetry. Thus the hardening is decreasing for the loadings in the order

{001}, {011}, and {111}. This hierarchy has also been observed by other authors [9, 8] and

depends on the number of systems involved.
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[0 1 0][0 1 0]
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[1 0 0]

[0 1 1][0 1 1]

[1 0 1]

[1 0 1]
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Figure 2.4: Schematic illustration of Taylors angles χ and φ . The loading direction is marked in
the standard triangle by the angles χ and φ [7]

.

In addition to the type and number of slip systems, the loading direction also affects the shape

13



of the three-stage curves as shown by a number of studies on this subject. This is a substantial

effect, as the degree of hardening and the length of the stages are modified. There are few studies

in which systematic identification of the direction of loading in the standard triangle by two angles

χ and φ (see Fig. 2.4) are defined [49, 5, 7]. χ is the angle between the MRSSP and the plane

(101), while φ is the angle between the load direction and the boundary [001] - [011]. Most of

these works were done in materials with dominant {110} slip behavior. The effect of angle χ has

been somewhat discussed [49, 5, 7] in comparison with the angle φ [6, 7]. The results obtained by

Kumagai et al. [7] are given in Fig. 2.5. The length of stage I increases with the angle φ , while

the degree of hardening of stage II decreases. The rate of work-hardening is lowered from µ/600

(curve A) to µ/1000 (curve C). The results obtained by [6] are similar. The elongation of stage I

with φ is often explained by the rotation of the loading direction with the plastic deformation.

Jaoul and Gonzalez [8], Keh [9], Duesbery and Foxall [10] identified the initial and final ori-

entations of the loading direction during their tensile tests. A synthesis of their results is proposed

in the standard triangle in Fig. 2.6. Under simple slip conditions on a plane {110}, the loading

direction turns in the slip direction, which is [111] in the example figure. Upon reaching the [001]

- [011] boundary, the activation of a second system should, in theory, turn the loading towards

the [011] axis. However, this is not always the case, since the direction of loading exceeds the

boundary (or overshoot) by sometimes 6◦ to 10◦ [8, 9, 7, 10]. The reason for these overruns is not

well understood yet. A loading along the [111] - [011] boundary, is directed towards the [011]

direction while loading on the [001] - [011] boundary, move towards the [011] axis. [8] showed

that a load near [001] would correspond to a simple slip along a plane {112}.

Kumagai et al. [7] also reported that with increase in the angle χ , the length of Stage I decreases

along with increased hardening in Stage II (see right column of Fig. 2.5 ). The strain hardening
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Figure 2.5: Influence of the orientation of the load on the shear stress-strain curves with slip only
in {110} system. (Left) effect of angle φ , (Right) effect of angle χ [7].

rate increases from µ/800 for orientation A to µ/400 in curve E. Unfortunately, these results

can not be compared with any other study, because the majority of existing works vary χ and φ

simultaneously, preventing any conclusion on the role of each alone.

2.3 Non-Schmid effects

BCC metals are known for their direction dependent slip i.e. tension-compression asymmetry.

The underlying cause of this behavior can be traced back to the core configuration of screw dislo-

cations in BCC lattice. Due to the polarization of screw dislocation core (see Fig. 2.7), BCC metals
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Figure 2.6: Evolution of lattice reorientation with plastic deformation depending on the initial
orientation [8, 9, 10].

show a glide direction sensitive slip behavior. It means the slip resistance in one direction is not

the same in the opposite direction. This direction sensitive slip behavior is called twinning/anti-

twinning asymmetry in BCC metals and arises due to lattice symmetry based reasons. Neuman’s

principle [51] states that physical properties of the material have a similar kind of symmetry owned

by the crystal structure itself. There is no symmetry based reason to believe that positive and neg-

ative shear in the {111} slip direction to be equivalent to each other (except on {110} planes for

which the {110} dyad axis imposes this symmetry). Observations suggest that for most orienta-

tions where the MRSS is {211}, the CRSS for the slip in twinning direction is lower than that

of atwinning direction [52, 53, 54]. Hence, it is very likely for the BCC materials to show this

anisotropy irrespective of its electronic structure, type of bonding and in the absence of stress. In

practical terms, this twinning / anti-twining effect is observable for pure shear stresses in the di-

rection of the burgers vector. Direct measurement of this phenomenon is difficult, as much larger
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Figure 2.7: Illustration showing core configuration of screw dislocations in a BCC lattice

non-glide stresses often masks it.

Moreover, due to a small fraction of edge components in the partials forming screw the dis-

location core, the non-glide components of the applied stress affect the movement of dislocations

through the lattice. For these reasons, the Schmid Law breaks down in BCC metals. Macroscopi-

cally the violation of Schmid Law is observed in tension-compression asymmetry and movement

of screw dislocations even at low stresses. Qin and Bassani [55] suggested non-Schmid effects,

to capture the anomalies resulting from the core of screw dislocations. The influence of CRSS by

the components of applied stress other than that causing force on displacement was first observed

by Escaig [56, 57] while studying cross-slip of partials in FCC materials. The 1/6⟨211⟩ partials
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dissociated from screw dislocations have edge components. Thus shear stresses in the direction

perpendicular to the total Burgers vector widens or narrows the splitting. This is known as Escaig

Effect in cross-slip and is not only important in FCC [58] but also in L12 intermetallic structures.

The edge components of Shockley partials of a/2⟨110⟩ dislocations in FCC are fixed, but in the

case of fractional dislocations forming the core of a/2⟨111⟩ screw dislocation in BCC, the edge

components change with applied stress. As long the vector sum of the edge components in the

polarized screw dislocation core is zero, it is possible for the core to have some edge character.

Edge components of fractional dislocations are small in the unstressed state. However, non-glide

components may induce edge components significantly which change the symmetry and width

of the dislocation core. Atomistic investigation suggests that components of applied stress act-

ing to the burgers vector normal to the screw dislocation line heavily influence the width of the

dislocation core. The calculated value of Peierls stress decreases by a factor of four [53] if these

non-screw components are suppressed and thereby prevent relaxation of the screw dislocation core

along directions perpendicular to the dislocation line. The effect of non-glide components of the

applied stress is prominent in VIB metals (Cr, Mo, W) while in VB metals (V, Nb, Ta) it is weak

or absent. It is to note that most of these atomistic calculations were done on rigid dislocations at

zero temperature. At finite temperature, dislocations move by the nucleation and propagation of

double kinks, which is discussed in next section.

2.4 Kink-pair assisted dislocation motion

The flow stress of pure BCC metals strongly depends on temperature and strain-rate. In-situ

electron microscopy observation of dislocations in BCC metals suggests that edge dislocations

have high mobility compared to screws [59, 60, 61]. High mobility of edge dislocations enables
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them to exit out of the crystal forming slip steps and leaving screw dislocations behind, which

in turn control the strain rate [62, 63]. The low mobility of screws explains the rapid increase

of flow stress with decreasing temperature or increasing strain rate [64, 62]. The difference in

mobility arises from the fact that for a dislocation to be mobile, it has to overcome the intrinsic

periodic lattice resistance (Peierls potential, Fig. 2.8), which is different for different dislocation

types [62, 65]. Edge dislocations have a low Peierls energy barrier compared to screws, and thus

have higher mobility [64, 62]. At temperatures higher than a critical one (knee temperature Tk), slip

occurs at stresses lower than that required for overcoming the Peierls barrier [66]. Above Tk, Screw

dislocation of sufficient length can change plane on the simple condition that the effective stress in

the deflection plane is greater than that in the primary slip plane. Given the high multiplicity of the

possible plane for the deviation, such behavior is quite probable.

Dislocation line

Peierls Barrier

Kink pair

Figure 2.8: Intrinsic lattice resistance (Peierls-Nabarro Barrier) to slip in BCC materials.

Above the knee temperature, screw dislocations lying on low index crystallographic planes can

overcome their Peierls barrier [67] by lifting a short segment of the dislocation over the barrier

from time to time and letting the segments connecting the two adjacent valleys migrate along the

Peierls hills [68]. Shockley gave the name ’kinks’ to these segments of dislocations crossing the

Peierls barrier. The kinks experience periodic potential energy variation by its position z along

the hills. This position dependent potentials energy is referred to as the Peierls potential of the
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second kind or kink potential. Whether the kink potential is of the same value or smaller than that

required for kink formation is determined by the bonding in crystals [62]. For the first case, the

kinks are confined to a separation of two neighboring atoms. Such confinement of kinks requires

directionality in bonding. In metals due to non-directional bonding, the kink potential is lower

than that required for kink formation. As a consequence of this, the kink width is larger compared

to interatomic distance. The activation volume of kink migrations is in the order of magnitude of

only b3 [68]. As a result, thermal activation is highly probable. Additionally, the applied resolved

shear stress can lower the barrier height, thereby assisting the generation of kink pairs even at

low applied stress and on slip systems with a low Schmid factor. Such anomaly of slip behavior

as a function of temperature was explained by Seeger and Wasserbach [11] in terms of kink-pair

configurations.

2.5 Temperature dependence of flow stress

Seeger and Wasserbach [11] showed that the flow stress dependence of temperature in BCC

metals could be classified into three temperature regimes and two stress regimes, based on the

active mechanism of slip at that particular stress and temperature (Fig. 2.9). The numerical values

in Fig. 2.9 correspond to the experiments performed by Hollang et al. [69] on ultra-pure Mo crystal.

As mentioned earlier, below the knee temperature TK the flow stress of BCC materials is controlled

by the mobility of a0/2[111] screw dislocations given that most of the non-screw components have

been removed by pre-deformation. Experiments performed by Hollang et al. [69] on ultra pure Mo

demonstrated that the flow stress of BCC single crystals could be given as

σ = σM +σ∗ (2.1)
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Figure 2.9: Temperature dependence of flow stress, slip mechanisms (schematics) in pure BCC
metals (Mo) [11].

where σM is the strain-rate-independent flow stress and σ∗ is the effective stress required for

movement of a0/2[111] screw dislocations. Above the knee temperature TK, the mobilities of

the screw and non-screw components are quite comparable, which is why the flow stress reduces

to a strain-rate-independent value σM. Below the knee temperature, screw dislocations have low

mobility due to a large Peierls barrier compared to the non-screw components. As mentioned
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before, this barrier can be overcomed by thermally activated, and stress assisted formation of kink

pairs. At temperatures T (Ť < T < Tk) and effective stress σ∗ is less than a critical value σ̂∗, the

flow stress is determined by the interaction of the pair of kinks of opposite sign and is known as

elastic-interaction regime. The formation enthalpy of kink pairs in this regime is given as

Hkp (σ∗) = 2Hk (σ∗)−2ασ∗1/2 (2.2)

where α2 = a3bγ0/2. 2Hk denotes the formation energy of the two widely separated kinks

of opposite sign, a the kink height and γ0 the pre-factor proportional to the square of dislocation

strength. α can be determined experimentally, and from that, the kink height a can be deduced.

Seeger and Wasserbach [11] reported that for kink height a =
√

2a0, which corresponds to the dis-

tance between Peierls valleys in {112} planes, the experimental data matches the above equation

supporting that at higher temperatures {112} slip is favored.

At effective stresses higher than a critical value (σ∗ > σ̂∗), the kink - pair formation enthalpy

is determined by line tension of dislocations and is known as line tension regime. Ackermann et al.

[70] showed that approaching the critical effective stress σ̂∗ from both top and bottom, using line

tension model and elastic interaction model respectively, results in a different activation volume.

Hence, the mechanism of kink pair formation changes. This has been verified experimentally by

Hollang et al. [69] in ultra pure Mo single crystals. At lower temperatures T < Ť , extrapolation

of the above-described line tension model predicts a lower flow stress compared to what has been

observed in experiments. Seeger and Wasserbach [11] hypothesized that at T < Ť the core of

the screw dislocations assume ground state configuration i.e. the configuration with lowest line

energy. The screw dislocations in this configuration exhibit threefold symmetry of the ⟨111⟩
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crystallographic direction and can glide on any one of the three {110} planes of that zone. On

application of finite shear stress, the symmetry of the dislocation core is broken in such a way that

the slip plane with highest Schmid factor is chosen as the slip plane for dislocation motion. This

phenomenon explains the high flow stress of BCC metals at low temperatures and observance of

{110} slip lines for orientations in the middle of standard stereographic triangle.

2.6 Overview of deformation in Nb single crystals

Some of the earlier work on the plasticity of pure Niobium (Nb) was carried out by Mitchell

et al. [71], Votava [72], Taylor and Christian [73] in the 1960s. They reported that under suitable

conditions of purity, orientation, temperature and strain rate, the stress-strain curves in shear show

a 3-stage hardening behavior similar to that observed in FCC metals and alloys. Multi-stage hard-

ening in Nb single crystals grown by electron beam zone melting technique were also reported by

Duesbery et al. [74]. Mitchell et al. [71] reported that, the work hardening rate in stage II was equal

to about µ/600 for a strain rate of 4.4×10−5 s−1. This value was later modified by Duesbery et al.

[74] to about µ/500 for the standard conditions used in their work. Annealing of these samples

caused the work hardening rate in stage II to increase from µ/700 to µ/400 (closer to that of FCC

metals µ/300) for an annealing time of more than 12 h. For an orientation lying in the center of the

standard stereographic triangle, slip on {110} planes were observed. Straight slip lines were seen

on the side faces while those on the top face were shorter and wavy. During the transition from

stage I to stage II and stage III, extremely coarse ’hills’ and ’valleys’ were formed on the top face

(See Fig. 2.10). Correlation of these ’hills’ with side faces indicated that the ’hills’ were formed in

the region of unrestricted primary slip and the ’valleys’ correspond to conjugate slip activity.

In a following article by the same group, a detailed study was done on the tensile axis reorien-
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Figure 2.10: Surface topography of deformed single crystal Nb [12]
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Figure 2.11: In situ uniaxial tensile test results reported by Baars [12]. Left : Inverse pole figure
showing rotation of tensile axis as a function of orientation for as-cast samples. Center: axial
stress–strain curves for the as-cast samples with same orientations in the left inverse pole figure
map. Right : axial stress–strain curves for the annealed samples with the same orientations.

tation in pure Nb single crystals grown by zone melting. The extent and rate of re-orientation were

studied as a function of orientation. Most the specimens having orientations in the center right part

of the standard stereographic triangle showed trajectories that overshoot the [001]–[101] bound-

ary. This behavior suggested that most of the orientations started with a single slip system until

the tensile axis had moved a small distance beyond the [001]–[101] boundary when conjugate slip

occurs. The maximum distance after crossing the boundary at which conjugate slip takes place

was about 6◦ for orientations in the central upper regions of the triangle. This angular distance was

less for the initial orientations belonging to lower right part of the standard stereographic triangle.

Recently, uniaxial in-situ tensile tests performed by Baars [12] on single crystal Nb showed
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multi-stage hardening in macroscopic stress-strain curves and texture evolution similar to Dues-

bery and Foxall [10]. They also observed the formation of ’hills’ and ’valleys’ on the surface of

the sample along with bowed slip lines. The stress-strain behavior of eight single crystals in the as-

cast (left) conditions are shown in Fig. 2.11 [12], with the crystal orientation of the tensile axis is

indicated by letters in the standard stereographic triangle. The stress-strain curves suggest that dif-

ferent orientations deform very differently, but the trend is that orientations near the ⟨111⟩ corner

require the most stress, while those in the center of the triangle require the least stress. This general

trend persists despite an initial annealing treatment that reduced the dislocation content resulting

in 20 % lower flow stresses. The tensile axis re-orientation relative to the crystal frame suggested

that slip occurred predominantly on {112} planes for the as-cast condition, but this changed to slip

occurring mostly on {110} planes in the pre-annealed samples [75]. The strain hardening rates

increased as the tensile orientations move closer to the boundaries of the stereographic triangle,

consistent with the activation of slip on additional planes with the same ⟨111⟩ directions.
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CHAPTER 3

MODELING NON-COMPACT GEOMETRIES USING SPECTRAL METHOD

A framework for simulating the deformation behavior of materials involves two important aspects,

thermodynamics and kinematics of the deformation process. The former describes why the defor-

mation takes place, while the latter deals with the mechanism by which the material is deformed. In

this chapter, an emphasis is given to the kinetic aspect of deformation. As deformation comprises

of rotation and distortion, it is necessary to define two separate configurations i.e. an undeformed

configuration B0 and a deformed configuration B. Mechanical fields such deformation and stress

can be represented in either configuration. For a material that has been deformed to a finite ex-

tent, the deformation is defined by an operation, involving linear mapping of the materials points

in the undeformed configuration to the deformed one [76]. This linear mapping is known as the

deformation gradient, F. The boundary value problem solver (FEM or spectral solver using a fast

Fourier transform) determines the boundary condition in the form of an average deformation gradi-

ent F and the material point model provides the corresponding average first Piola-Kirchhoff stress

P. For a finite strain elasto-plastic deformation, the total deformation gradient F is decomposed

multiplicatively into two parts, the elastic deformation gradient Fe and the plastic deformation gra-

dient Fp [77]. A schematic illustration of the multiplicatively decomposed deformation process is

provided in Fig. 3.1. The multiplicative decomposition introduces an intermediate configuration

so that the deformation process occurs in two steps. First, the material deformed plastically to a

stress-free state. After that, an elastic deformation is imposed to account for the final shape change

as observed in the deformed configuration.

Following this finite strain framework, Roters et al. [78] developed a material point model
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Figure 3.1: Multiplicative decomposition of deformation gradient [13]

DAMASK [79], to capture the mechanical response of a material as a function of its microstructure.

In this material point model the elastic deformation gradient Fe is related to the second PIOLA–

KIRCHHOFF stress tensor (acting on intermediate configuration) S = C :
(
FeTFe − I

)
/2, where C

is the elastic stiffness tensor. The second PIOLA–KIRCHHOFF stress S = f
(
F, Ḟ,η

)
acts indirectly

as the driving force for the plastic velocity gradient Lp which is a function of microstructural

parameters η in the constitutive model. Depending on the type of material and computation cost

involved, a constitutive model can then be formulated as a function of η and S to calculate Lp.

Once Lp is calculated the plastic deformation gradient can be estimated as Fp = Lp−1Ḟp, which

is then used to calculate Fe. The interdependence of Lp and S is solved using self-consistency

(see Fig. 3.2) at each discretized point within a material static equilibrium is attained. Using the

formalism mentioned above, the partial differential equations describing the mechanical loading of

a material can be solved for static equilibrium with a boundary value solver such as Finite Element

Method (FEM). This has led to the development of a separate area of research in computational

mechanics known as Crystal Plasticity Finite Element Method (CPFEM).
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Ḟp = Lp Fp

S

Fe

Fp Lp

Figure 3.2: Schematic diagram showing calculation of S as a function of F.

CPFEM has been the vehicle of choice to simulate and understand the mechanical behavior

of engineering components with structural dimensions approaching the grain size of the intrinsic

microstructure. Examples of such oligocrystalline mechanics can be found in the fields of lead-

free solder joints, thin wires, cardiovascular stents, and mesostructured materials such as foams or

photonic crystals. The spatial resolutions achievable by CPFEM within reasonable computation

times are limited by the substantial numerical effort inherent in the FEM strategy to solve the

underlying partial differential equation system.

Spectral methods have emerged as an efficient [80, 81, 82] substitute for CPFEM [83, 84, 85,

86], but only recently were improved sufficiently to overcome their unfavorable convergence when

large gradients in mechanical properties are present [87, 88]. This enhanced capability allows the

mechanics of porous structures to be solved using spectral methods by replacing the open space (or

voids) with soft material [89] in the simulated periodic domain. Examples of such simulations have
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been demonstrated in recent works [90, 91, 92, 19]. The methodology used in these works tightly

links the behavior of the spectral solution algorithm to the specifics of the constitutive behavior

of each material point, i.e., making a binary distinction between how to address void and filled

points. Furthermore, any nucleation of additional voids not yet present in the initial geometry

will require to propagate the information about such a change in local constitutive behavior to

the spectral solution algorithm. Such a rigid approach is akin to element elimination in FEM

simulations of crack propagation, where a particular constitutive response, i.e. loss of stiffness, is

treated through ad hoc modification of the geometry instead of properly at the constitutive level, as

achieved by, for instance, cohesive zone elements. Following this spirit of keeping any boundary

value problem solver as general as possible, i.e., independent of the constitutive material behavior

that is simulated, voids should only distinguish themselves through their constitutive model, which,

classically, has been vanishingly small elastic stiffness. Here, to describe void regions, a plastically

dilatational material is proposed that enables simulations of non-compact geometries such as open

or closed-cell foams, or other geometries with free surfaces, by means of established spectral

methods without any particular adaptations.

A plastic plate with a circular inclusion under biaxial extension and a dogbone-shaped tensile

sample of oligocrystalline aluminum serve to compare this dilatational material model to a low-

stiffness isotropically elastic model of all void regions.

3.1 Constitutive model for void like regions

A finite strain framework incorporating two intermediate configurations is adopted, similar

to the work of Tjahjanto et al. [93] and following Shanthraj et al. [94]. The total deformation

gradient F = FeFiFp at each material point is multiplicatively decomposed into isochoric, and
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lattice preserving, plastic deformation Fp, non-isochoric, but stress-free, dilatation Fi, and elastic

deformation Fe, consecutively mapping the reference configuration into the “lattice” configuration

(Fp), then into the “intermediate” configuration (Fi), and finally into the deformed one (Fe). Only

the elastic lattice distortion gives rise to stress, which takes the form Sp =C : 1
2Fi

T (FeTFe − I
)

Fi

in the lattice configuration and Si = FiSpFi
T/detFi in the intermediate one. The stress Si drives

the dilatational velocity gradient Li(Si,ηηη) = Ḟi Fi
−1, while Sp drives the plastic velocity gradient

Lp(Sp,ηηη) = Ḟp Fp−1 and the evolution η̇ηη of internal state variables. The total velocity gradient

follows as L = Le +FeLiFe−1 +FeFiLpFi
−1Fe−1.

To capture the mechanical response of a void, an isotropic plasticity model that combines an

isochoric response due to the deviatoric stress with a dilatational response due to the hydrostatic

pressure (mean stress) is formulated. The kinetics and internal state parameterization of the model

are inspired by the phenomenological crystal plasticity model introduced by Peirce et al. [95] that

postulates a power-law relation and an internal deformation resistance, termed τ0.

Thus, in an isotropic setting, the strain rate ε̇p connected to isochoric deformation is given as

ε̇p = ε̇0

(√
3J2

Mτ0

)n
= ε̇0

(√
3
2
∥Sp′∥
Mτ0

)n

, (3.1)

with J2 as the second invariant of Sp′ (deviatoric second PIOLA–KIRCHHOFF stress), stress expo-

nent n, Taylor factor M, and ∥·∥ the FROBENIUS norm. The associated plastic velocity gradient

Lp, acting in the lattice configuration, is then formulated as

Lp = ε̇p
Sp′

∥Sp′∥
= ε̇0

(√
3
2

1
Mτ0

)n

Sp′∥Sp
′∥n−1. (3.2)

To mimic the dilatational response of a void region, a similar constitutive law but for the dilata-

tional expansion rate ε̇i and the dilatational velocity gradient Li is formulated in the intermediate
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configuration

ε̇i = ε̇0

(
p

Mτ0

)n
(3.3)

Li = ε̇i
I

∥I∥ = ε̇0

(
p

Mτ0

)n
I (3.4)

where p is the hydrostatic pressure calculated from Si, and I is the 2nd order identity tensor. The

evolution of deformation resistance follows

ġ = Mε̇p h0

∣∣∣∣1−
τ0
g∞

∣∣∣∣
a

sign
(

1−
τ0
g∞

)
(3.5)

where a, ε̇0, and h0 are adjustable parameters.

The above formulated dilatational plasticity model is closely connected to the VON MISES yield

surface shown in Fig. 3.3 in principal stress space. Each point on this cylindrical surface repre-

sents a state of stress at which the material deforms plastically. Any position vector s(σ1,σ2,σ3)

to a point on the yield surface can be represented as a sum of a pressure vector and a devia-

toric stress vector, i.e. a component p
(
σ1 = σ2 = σ3 = σsph

)
along the diagonal and a component

s′
(
σ1 −σsph, σ2 −σsph, σ3 −σsph

)
that is perpendicular to the pressure vector. The isochoric de-

formation rate Lp depends, usually, only on the deviatoric stress vector, while the non-isochoric

contribution Li is sensitive to (and follows) the pressure vector, i.e., there is a flow stress “cap”

that moves along the pressure axis with dilatation.

3.1.1 Solution to mechanical boundary value problem

To solve the mechanical boundary value problem of static equilibrium, the finite strain spectral

method outlined in [82, 88] and implemented as part of the Düsseldorf Advanced Material Simula-

tion Kit (DAMASK) is used. The constitutive law described above was integrated into the flexible
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Figure 3.3: Schematics of VON MISES plasticity model in principle stress space. The state of stress
at a material point is represented by the vector s (black), which can be additively decomposed into
the pressure vector p (red) and the deviatoric stress vector s′ (green). The light green surface
represents the yield surface of the material point.

material point model offered by DAMASK. Since the solution fields resulting from the spectral

method are a superposition of a homogeneous and a fluctuating part, where the mean value of the

latter vanishes over the domain, any boundary conditions can only prescribe the average (homoge-

neous) fields.

3.2 Comparison between a dilatational and soft elastic void

Using a plastically isotropic plate with a circular void at its center as an exemplary case, the re-

sponse of the dilatational material model outlined above is contrasted to an alternative description

of the void as a (relatively) soft and purely elastic inclusion. Table 7.1 lists the material parameters

used to model the plastic plate as well as the elastic and the dilatational version of the void. The

largest elastic stiffness constant C11 of the dilatational and elastic version of the void is scaled

down, respectively, one and three orders of magnitude relative to the plate surrounding it, with C12

and C44 calculated such that elastic isotropy and vanishing Poisson ratio for the void is ensured

in both versions. The flow stress of the dilatational version of the void is set to be two orders of
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Table 3.1: Material parameters; elastic constants Ci j, reference strainrate ε̇0, stress exponent n,
initial and saturation flowstress τ0 and g∞, hardening parameters h0 and a, and Taylor factor M = 3.

plate void
elastic dilatational

C11 100 0.1 10 GPa
C12 60 0 0 GPa
C44 30 0.05 5 GPa
2C44

C11 −C12
1.5 1 1

ε̇0 10−3 10−3 s−1

n 20 20
τ0 30 0.3 MPa
g∞ 60 0.6 MPa
a 2 2
h0 80 1 MPa

magnitude lower than that of the plate material. The chosen values reflect a compromise between

vanishing stress in void regions and the associated computational cost, as detailed in the supple-

mentary material. A 512× 512× 1 regular grid is used to discretize the fully periodic geometry,

resulting in about 2100 grid points within the void taking up an area fraction of 0.8 %. The plate is

subjected to biaxial tensile elongation along the x and y direction (see top row of Fig. 3.4), which is

enforced by fixing eight of the components of the average deformation gradient rate and requiring

the remaining complementary first PIOLA–KIRCHHOFF stress component Pzz to vanish, i.e.

˙⟨F⟩
10−3 s−1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 ∗

⎤

⎥⎥⎥⎥⎥⎥⎦
and

⟨P⟩
Pa

=

⎡

⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ 0

⎤

⎥⎥⎥⎥⎥⎥⎦
, (3.6)

where ‘*’ indicates that stress (or deformation) needs to be iteratively adjusted since deformation

(or stress) is prescribed. In the simulations, the conditions of Eq. (3.6) are maintained for 400

increments of 1 s each (such that the final ⟨F⟩xx = ⟨F⟩yy = 1.4).
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Figure 3.4: Comparison of mechanical field maps of a (fully periodic) two-dimensional plastic plate
containing a circular inclusion of area fraction 0.8 % and loaded biaxially to an average deformation of
⟨Fxx⟩ = ⟨Fyy⟩ = 1.4. Void volume is described by an isotropic elastic material model (left, “elastic”) or
by an isotropic phenomenological plasticity model with dilatational capabilities (right, “dilatational”). The
stiffness of the inclusion in the elastic case is set to be 1000× softer than the plate.

The elastic and dilatational version of the void are contrasted in the first and second row of

Fig. 3.4, showing the simulation results at the final simulation step in terms of deformed geometry,
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determinant of deformation gradients (i.e. relative change in volume), hydrostatic stress, and VON

MISES stress. The two cases reveal markedly different results. For the same final planar geometry

(second column), the dilatational void expands to about six times its original diameter, while the

purely elastically modeled void only about doubles its diameter. As the volume of the plastic plate

is preserved, its final thickness is about 10 % smaller when containing the elastically modeled void.

The volumetric expansion of the void is fully carried by det(Fe) for the elastic version, whereas the

values of det(Fe) are minute compared to det(Fi) in the dilatational void version (third and fourth

column). Since only the hydrostatic elastic strain connected to det(Fe), but not det(Fi), is giving

rise to a hydrostatic stress σhyd = K εhyd, with K = 0.43GPa, the σhyd inside the elastic void is

much larger than inside the dilatational void and even exceeds the hydrostatic stress experienced by

the surrounding plastic plate (column five). To the contrary, the dilatational void does not exhibit

any appreciable hydrostatic stress as well as deviatoric stress (column six) since it is plastically

growing in volume at a flowstress much lower than the flowstress of the plastic plate.

3.3 Uniaxial tension of dogbone-shaped sample of oligocrystalline aluminum

To demonstrate the usefulness of the proposed framework for non-linear geometries, the study

performed by Zhao et al. [14] that compares measured to simulated local deformation behavior

of a thin oligocrystalline Al dogbone tension sample is reevaluated. In that investigation, the

grain structure on the sample front and back face were established through electron backscatter

diffraction (EBSD) before and after straining to about 0.1. The local in-plane deformation field

was acquired using digital image correlation (DIC) at strain increments of 5 ·10−4. Since most

of the about 20 grains in the thin gage section are almost columnar, the modeled geometry was

based on a through-thickness extrusion of the grain structure on the front face. Contrary to Zhao
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et al. [14], three different boundary conditions are considered in the present study, namely “fully

periodic” (periodic copies of hexahedral dogbone gauge section), “quasi-periodic” (periodic along

thickness direction, i.e. infinite thickness), and “free surface” conditions. The geometries are

discretized by a regular grid of 273×112 points and either 10 (fully periodic and quasi-periodic)

or 20 points (free surface) across the thickness. A buffer layer of either the dilatational material

described above or an isotropic soft-elastic material (see Table 7.1) encases the dogbone geometry

for the quasi-periodic and free surface boundary conditions to arrive at a periodic hexahedral cell

required by the spectral solver (see left column in Fig. 3.5). The constitutive model used to describe

the behavior of the crystalline material is the same as used by Zhao et al. [14]. Uniaxial tension up

to a strain of 0.1 along the y direction, discretized into 1000 equal time increments, is enforced by

setting the average deformation gradient rate and complementary first PIOLA–KIRCHHOFF stress

to

˙⟨F⟩
10−3 s−1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

∗ 0 0

0 1 0

0 0 ∗

⎤

⎥⎥⎥⎥⎥⎥⎦
and

⟨P⟩
Pa

=

⎡

⎢⎢⎢⎢⎢⎢⎣

0 ∗ ∗

∗ ∗ ∗

∗ ∗ 0

⎤

⎥⎥⎥⎥⎥⎥⎦
. (3.7)

Figure 3.5 maps the in-plane VON MISES strain and lattice orientation (as inverse pole figure)

of the three simulated boundary conditions with dilatational voids, the experiment, and the free

surface boundary condition using soft-elastic voids (top to bottom). In the boundary condition se-

quence using dilatational voids (first to third row), the VON MISES strain is most homogeneous for

the fully periodic case, which differs significantly from the measured VON MISES strain. For the

quasi-periodic and free surface boundary conditions, the VON MISES strain localizes in grains with

softer crystallographic orientations (i.e. higher Schmid factor) enabled by the non-compactness of

the simulated geometry. The locations, i.e. the (groups of) grains that deform most, are completely
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different between the quasi-periodic and free surface case. When compared to the DIC measured

VON MISES strain, only the free surface boundary condition with either the dilatational or soft-

elastic voids captures the most relevant strain localization features (third and last row). Despite

this agreement, only with dilatational voids does the simulation properly capture the experimen-

tally observed crystal lattice reorientations (last column). The extent and location of strain hetero-

geneity is not only influenced by microtexture as reported, for instance, by Raabe et al. [96]), but

it appears also essential to reflect the correct boundary conditions in a simulation when attempting

one-to-one correlations of experimental and simulated data.

In the present study, volumetric dilatation capability is added to an existing isotropic material

model to capture the behavior of void-like regions in FOURIER-based spectral solvers. The abil-

ity to mimic empty space is essential to address non-compact geometries within the periodicity

constraints imposed by such solvers. The model has been applied to simulate the plastic growth

of a circular void in a plate under biaxial tension and the known grain-scale deformation behav-

ior of a tensile sample containing a limited number of grains. Both cases show that the proposed

formulation provides a more accurate description of void-like behavior compared to assuming a

soft-elastic behavior for void volumes.

3.4 Selection of parameters for void material description and its associated
sensitivity on the simulation results

To study the influence of material parameter values of the elastic and the dilatational material

model for voids, a systematic series of biaxial hole expansion simulations up to ⟨Fxx⟩= ⟨Fyy⟩= 1.2

was performed. Elastic stiffness ratios between void material and plate spanned the range 1 to

10−3; strength ratios between the dilatational (void) material and the plate ranged from 1 to 10−2.
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The computational cost was quantified by the total number of iterations required to arrive at the

solution (on a grid of 128×128×1). The median value of normal tractions across the plate–void

interface collected from all voxels in the immediate neighborhood of that interface (colored ring

in Fig. 3.6 top left) serves as quality measure of how well the chosen material description reflects

a void.

Figure 3.6 (bottom left) compares the evolution of void quality with biaxial extension among

both material descriptions for the two lowest stiffnesses, i.e., ratios of 10−2 and 10−3. With

increasing hole expansion, the interface traction for the elastic material description asymptotically

reaches values slightly in excess of the flow stress of the surrounding plate (estimated by M g), i.e.,

the void turns from a relatively soft to an effectively hard inclusion. The level of strain at which this

transition occurs increases with reduced elastic stiffness of the void material. In contrast, interface

tractions of voids described by the dilatational material model are not (except at a plastic strength

ratio of 100) increasing up to the plate flow stress, but are limited by their intrinsic flow stress

value (as given by the respective plastic strength ratio). Therefore, variations in the elastic stiffness

have virtually no influence on the response of voids described by the dilatational material—except

for the numerical difficulty to integrate the solution with strain increments that exceed the elasto-

plastic transition strain (ratio of dilatational flow stress to stiffness) of the dilatational material (see

Fig. 3.6 bottom right). A comparison of the cost to solve the biaxial expansion using either of the

two tested void descriptions (Fig. 3.6 top right) shows that there is a marginal penalty (about a

factor of two) associated with using the dilatational material model. Nevertheless, this increased

effort is generally outweighed by the better quality, unless the void material undergoes only a small

amount of strain.
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Figure 3.5: Influence of external boundary conditions on in-plane VON MISES strain fields and lattice re-
orientation. Simulated geometries with fully periodic gauge section of dogbone (first row), quasi-periodic,
i.e. periodic along the thickness direction (second row), and free surfaces normal to x and z (third and last
row) compared to experimental results measured by DIC and EBSD (fourth row, from [14]). Gray (green)
semi-transparent volume in the simulated domain column uses the proposed dilatational (isotropically elas-
tic) material model; regions of constant color reflect individual grains. Inverse pole figure (IPF, last column)
coloring of lab direction z is mapped on the undeformed configuration, except for the measured result (fourth
row).
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Figure 3.6: Computational cost (top right) and void representation quality (bottom) of the elastic
and the dilatational material model for the case of biaxial expansion of a hole in a plastic plate (top
left) up to ⟨Fxx⟩= ⟨Fyy⟩= 1.2. Strain evolution of median interface traction (lower left, collected
from voxels immediately inside and outside of interface, i.e. blue and red ring at top left) indicates
the void is reaching the flow stress level (≈ M g) of the surrounding plate in case of the elastic and
strongest dilatational material (plastic strength ratio of 100); softer dilatational cases (darker red)
saturate much earlier at flow stress levels far below the plate flow stress (plastic strength ratio of
10−1 and 10−2). Median interface tractions collected at ⟨Fxx⟩= ⟨Fyy⟩= 1.2 (bottom right) confirm
marginal influence of elastic stiffness on void representation quality for the dilatational material.
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CHAPTER 4

CONSTITUTIVE MODELS

A constitutive model relates the response of the material to an external load i.e. it relates a stress

(see stress measures [97]) to strain (see strain measures [97]). This relation is necessary to com-

plement the static mechanical equilibrium and the strain compatibility condition. In comparison to

general constitutive models, crystal plasticity models take into account the anisotropic stress-strain

relation of the crystalline materials. The regular arrangement of atoms in crystalline materials at

solid state leads to anisotropic behavior. When stress applied to a crystalline material, the stress

is resolved on some particular slip systems ξ i.e. along a specific crystallographic direction (slip

direction) on some particular crystallographic planes (slip plane). The resolved component of the

applied stress is known as the Resolved Shear Stress (RSS) τξ is expressed as

τξ = S : mξ
0 ⊗nξ

0 (4.1)

where mξ and nξ are the unit vectors of the slip directions and slip plane normal in the current

configuration, and mξ
0 and nξ

0 are the slip direction and slip plane normal vector in reference

configuration. Plastic deformation is then described by taking into account the total sum of shear

of all slip systems. By determining the shear rate γ̇ξ (function of τξ ) with respect to the slip

system mξ
0 ⊗nξ

0 , the plastic velocity gradient Lp as well evolution of plastic deformation can be

formulated.

Lp = ḞpFp
−1 = ∑

ξ
γ̇ξ mξ

0 ⊗nξ
0 (4.2)

In the next few sections of this chapter, two most commonly used ideologies to formulate shear-rate

γ̇ on these slip systems ξ are discussed.
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4.1 Phenomenological Model

The phenomenological model is based on the assumption that when the resolved shear stress

τ exceeds a critical value τ0 (Critical Resolved Shear Stress - CRSS), plastic deformation takes

place. The resolved shear stress depends on the amount of the applied stress, the angle between

the loading direction and the plane normal, and the angle between the loading direction and the

slip direction Eq. (4.1). The exact relation is known as Schmid law [40]. In the present study,

the constitutive model used, is similar to the phenomenological description of Peirce et al. [1] for

cubic lattice symmetry. The internal state is captured through slip resistances τξ
0 per slip system ξ ,

which evolves with shear γ according to a relationship initially proposed by Hutchinson [98] and

later improved by Kalidindi et al. [99]

ġξ = qξ β h0

∣∣∣∣∣∣
1−

τβ
0

gβ
∞

∣∣∣∣∣∣

a

sign

⎛

⎝1−
τβ

0

gβ
∞

⎞

⎠
∣∣∣γ̇β
∣∣∣ . (4.3)

The slip system interactions are controlled by the hardening matrix qξ β . The shear rate on each

system is given by

γ̇ξ = γ̇0

∣∣∣∣∣∣
τξ

τξ
0

∣∣∣∣∣∣

n

signτξ (4.4)

where γ̇0 is a reference shear rate, n the stress exponent, and τξ = S :
(

mξ ⊗nξ
)

the resolved shear

stress. Table 7.1 summarizes the list of variables used in the model, with adjustable parameters h0,

a, τξ
0 , gξ

∞, and qξ β .

4.2 Dislocation density based model

Phenomenological models have been successful in predicting deformation behavior of poly-

crystalline materials [100, 99, 101, 102]. However, as shown in an earlier section, the phenomeno-

logical models fails to capture the intrinsic anisotropic deformation of BCC materials at the single
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Table 4.1: Material variables for Peirce et al. [1] model; elastic constants Ci j, reference shear

rate γ̇0, stress exponent n, initial and saturation slip resistance τξ
0 and gξ

∞, hardening parameters
h0,qξ β , and a.

Elastic Plastic Strain hardening

C11 C12 C44 γ̇0 n τξ
0 gξ

∞ a h0 qξ ξ qξ β

GPa GPa GPa s−1 MPa MPa MPa

crystal level. Therefore, to better understand deformation in complex slip conditions, a crystal

plasticity model considering statistical properties of an ensemble of dislocations and their mutual

interactions is needed. These models are based on the idea that, for a dislocation to move it has to

overcome the energy barriers. As discussed earlier, there are two kinds of barrier: a short range one

which can be overcomed by thermal activation such as Peierls potentials, solid solution impurity

atoms, and long-range barriers like forest dislocations, grain boundaries and internal stresses of the

athermal type. The total resistance to slip is then defined as the sum of thermal (sξ
t ) and athermal

resistance (sξ
a ) to dislocation motion.

sξ = sξ
t + sξ

a (4.5)

The average velocity of dislocations is given by an Arhenius type relationship,

vξ
avg = vξ

0 exp
{
−∆G
kBT

}
(4.6)

Where ∆G is the activation energy, v0 the reference velocity, kB the Boltzman constant and T the

temperature. This temperature dependence of the average velocity of dislocation can be substituted

back into Orowan equation (γ̇ξ = ρξ bvξ
avg) to have a shear rate that is dependent on temperature

and applied stress.

γ̇ξ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if τξ
eff ≤ 0

γ̇ξ
0 exp

{
−∆G
kBT

}
if τξ

eff > 0

(4.7)
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where γ̇ξ
0 = ρξ bvξ

0 is the reference strain rate and τξ
eff =

∣∣∣τξ
∣∣∣− sξ

a the effective resolved shear

stress acting on slip system ξ . The activation energy barrier can be calculated using an approach

suggested by Kocks [103].

∆G = ∆G0

⎧
⎨

⎩1−

⎛

⎝τξ
eff

sξ
t

⎞

⎠
p⎫⎬

⎭

q

(4.8)

Where ∆G0 is the activation energy for obstacle free dislocation motion. The parameters p and q

can be fitted to get an accurate description of the activation profile. Combining these ideas one can

arrive at an expression of shear rate that is temperature dependent.

γ̇ξ = ρξ bvξ
0 exp

⎡

⎣−∆G0
kBT

⎧
⎨

⎩1−

⎛

⎝τξ
eff

sξ
t

⎞

⎠
p⎫⎬

⎭

q⎤

⎦ (4.9)

The primary state variables characterizing the microstructural state are the dislocation densities

ρξ on each slip system. Plastic flow at lower length scales, occurs as a succession of dislocation

avalanches with each avalanche triggered by the dislocation interactions [16]. When two disloca-

tion segments moving in non-coplanar slip planes intersect each other, a junction is formed, if the

Frank criterion is satisfied. The two segments are then zipped together to form a sessile segment.

These sessile segments are destroyed when the work done by the local resolved stress τ on one

arm of the parent dislocations, of length lu, is sufficient to unzip the junction. The amount of work

done in formation of the junction per unit length is Wj = τblu, where b is the Burgers vectors of the

parent dislocations of length lu. The change in elastic energy due to the newly formed dislocation

segment can also be written as ∆E = αµb2, where α describes the strength of the junction formed.

Comparing work done with the change in elastic energy, α can be expressed as,

α =
τ lu
µb

(4.10)
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Taylor [104] first proposed a relation between athermal resistance to deformation sa and the total

dislocation density ρ utilizing the dislocation interaction α .

sa = µbα√ρ (4.11)

where µ is the isotropic shear modulus and b is the Burgers vector. This expression Eq. (4.11) was

latter vectorized by Franciosi et al. [105].

sξ
a = µb

√
∑
β

Aξ β ρβ (4.12)

where the interaction coefficients Aξ β are dimensionless components of the so-called interaction

matrix (Table 4.2). They measure the strength of the interaction between the primary slip system

ξ and other slip systems β . The strengthening coefficients αξ β =
√

Aξ β are often used to make

comparisons between experiment and theoretical estimates [106]. These interactions coefficient

are calculated using DDD simulations. Queyreau et al. [2] reported the interaction coefficients for

BCC α-Fe, and since then it has been used by several authors to model dislocation behavior in

other BCC materials [107, 108]. There are 6 distinct kinds of interaction possible for dislocations

in BCC lattice as shown with their corresponding values for α-Fe in Table 4.3. The values reported

in Table 4.3 were calculated at a reference dislocation forest density (ρ re f ) of 2×1013 m−2. The

nature of these dislocation interactions are inherently elastic, as it removes a significant amount

of line energy from the crystal. This behavior has been well documented in experimental works

of Basinski and Basinski [109] in FCC metals. Basinski and Basinski [109] also showed that the

unzipping action of a junction is influenced by line tension and curvature of the dislocation line,

which in turn depends on the forest density. Hence, a logarithmic factor Eq. (4.13) needs to be
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Table 4.2: Dislocation interaction matrix in BCC lattice.

{110} {112}
{1

10
}

1 2 6 6 5 4 4 3 4 3 5 4 6 6 4 3 3 4 6 6 4 3 6 6
2 1 6 6 4 3 5 4 5 4 4 3 6 6 3 4 4 3 6 6 3 4 6 6
6 6 1 2 4 5 3 4 4 5 3 4 4 3 6 6 6 6 3 4 6 6 4 3
6 6 2 1 3 4 4 5 3 4 4 5 3 4 6 6 6 6 4 3 6 6 3 4
5 4 4 3 1 2 6 6 3 4 5 4 3 6 4 6 6 4 6 3 4 6 3 6
4 3 5 4 2 1 6 6 4 5 4 3 4 6 3 6 6 3 6 4 3 6 4 6
4 5 3 4 6 6 1 2 5 4 3 4 6 3 6 4 4 6 3 6 6 4 6 3
3 4 4 5 6 6 2 1 4 3 4 5 6 4 6 3 3 6 4 6 6 3 6 4
4 5 4 3 3 4 5 4 1 2 6 6 3 6 6 4 4 6 6 3 6 4 3 6
3 4 5 4 4 5 4 3 2 1 6 6 4 6 6 3 3 6 6 4 6 3 4 6
5 4 3 4 5 4 3 4 6 6 1 2 6 3 4 6 6 4 3 6 4 6 6 3
4 3 4 5 4 3 4 5 6 6 2 1 6 4 3 6 6 3 4 6 3 6 6 4

{1
12

}

6 6 4 3 3 4 6 6 3 4 6 6 1 5 6 6 5 6 6 3 5 6 3 6
6 6 3 4 6 6 3 4 6 6 3 4 5 1 6 6 6 5 3 6 6 5 6 3
4 3 6 6 4 3 6 6 6 6 4 3 6 6 1 5 6 3 5 6 3 6 5 6
3 4 6 6 6 6 4 3 4 3 6 6 6 6 5 1 3 6 6 5 6 3 6 5
3 4 6 6 6 6 4 3 4 3 6 6 5 6 6 3 1 6 5 6 5 3 6 6
4 3 6 6 4 3 6 6 6 6 4 3 6 5 3 6 6 1 6 5 3 5 6 6
6 6 3 4 6 6 3 4 6 6 3 4 6 3 5 6 5 6 1 6 6 6 5 3
6 6 4 3 3 4 6 6 3 4 6 6 3 6 6 5 6 5 6 1 6 6 3 5
4 3 6 6 4 3 6 6 6 6 4 3 5 6 3 6 5 3 6 6 1 6 6 5
3 4 6 6 6 6 4 3 4 3 6 6 6 5 6 3 3 5 6 6 6 1 5 6
6 6 4 3 3 4 6 6 3 4 6 6 3 6 5 6 6 6 5 3 6 5 1 6
6 6 3 4 6 6 3 4 6 6 3 4 6 3 6 5 6 6 3 5 5 6 6 1

Table 4.3: Types of possible interaction in BCC lattice [2]

ID Interaction Type Interaction Coefficient

1 self 0.0068 ± 0.001
2 coplanar 0.0068 ± 0.001
3 collinear 0.5300 ± 0.040
4 mixed asymmetric 0.0390 ± 0.005
5 mixed symmetric 0.0630 ± 0.006
6 edge junction 0.0360 ± 0.006

considered for these effects.

Aξ β = Aref
ξ β

ln
(

1
b

√
Aξ β ρβ

f

)

ln
(

1
b

√
Aξ β ρβ

ref

) (4.13)
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ρξ
f is the existing dislocation density and ρξ

ref is the reference dislocation density at which the

interaction coefficients are calculated by DDD.

4.2.1 Influence of elastic anisotropy on dislocation interaction strengths

In pure BCC single crystals above the knee temperature, Tk ı.e athermal regime, the reactions be-

tween dislocation segments offers to most of the resistance to dislocation motion. Therefore, the

interaction coefficients defining the junctions strengths are critical in reproducing the macroscopic

deformation behavior. Initially these interaction coefficients were considered to be dependent only

on the crystal structure, until recently it was shown by Madec and Kubin [3] that this is not nec-

essarily true. Two effects namely, “Poisson ratio” and “asymmetric junction configurations” in-

fluence the strength of interactions between dislocation segments. These two effects are more

prominent in BCC metals than in FCC metals. In their study, strengths of dislocation interaction

among ⟨111⟩{110} and ⟨111⟩{112} slip systems were determined using dislocation dynamics

simulations at high homologous temperatures for five BCC transition metals. They predicted that

the use of accurate material-dependent coefficients would notably improve the predictive ability of

current models for strain hardening.

Madec and Kubin [3] made use of Scattergood and Bacon’s shear moduli and Poisson’s ratios

[110] to approximate the behavior of curved dislocations in an anisotropic medium. The results

concluded that in a BCC metal (compared to FCC), the strength of junctions is mainly governed

by the orientation dependence (angle between the interacting slip planes) of the line energies. This

angle affects the magnitude of short-range interactions between dislocation segments influencing

the limit between attraction and repulsion for non-coplanar dislocation reactions. The value of

the Poisson ratio affects all the strengthening coefficients to various extents ranging from small
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Table 4.4: Modified dislocation interaction matrix in BCC lattice taking into account asymmetric
junction configurations [3].

{110} {112}

{1
10

}

1 2 2 3 5 5 6 4 7 6 7 4 8 9 9 11 13 13 14 17 18 17 14 18
2 1 2 4 6 7 5 3 5 7 6 4 9 9 8 17 14 18 13 11 13 17 18 14
2 2 1 4 7 6 7 4 6 5 5 3 9 8 9 17 18 14 18 17 14 11 13 13
3 5 5 1 2 2 6 7 4 6 4 7 11 13 13 8 9 9 17 14 18 14 17 18
4 6 7 2 1 2 7 6 4 5 3 5 17 14 18 9 9 8 17 18 14 13 11 13
4 7 6 2 2 1 5 5 3 7 4 6 17 18 14 9 8 9 11 13 13 18 17 14
6 4 7 6 7 4 1 2 2 3 5 5 18 14 17 18 17 14 9 9 8 13 13 11
5 3 5 7 6 4 2 1 2 4 6 7 13 13 11 14 17 18 9 8 9 14 18 17
7 4 6 5 5 3 2 2 1 4 7 6 14 18 17 13 11 13 8 9 9 18 14 17
6 7 4 6 4 7 3 5 5 1 2 2 18 17 14 18 14 17 13 13 11 9 9 8
7 6 4 5 3 5 4 6 7 2 1 2 14 17 18 13 13 11 14 18 17 9 8 9
5 5 3 7 4 6 4 7 6 2 2 1 13 11 13 14 18 17 18 14 17 8 9 9

{1
12

}

8 9 9 10 16 16 19 12 15 19 15 12 1 2 2 20 21 21 23 22 24 22 23 24
9 9 8 12 15 19 15 12 19 16 16 10 2 1 2 22 24 23 24 22 23 20 21 21
9 8 9 12 19 15 16 10 16 15 19 12 2 2 1 22 23 24 21 20 21 22 24 23

10 16 16 8 9 9 19 15 12 19 12 15 20 21 21 1 2 2 22 23 24 23 22 24
12 15 19 9 9 8 16 16 10 15 12 19 22 24 23 2 1 2 20 21 21 24 22 23
12 19 15 9 8 9 15 19 12 16 10 16 22 23 24 2 2 1 22 24 23 21 20 21
15 12 19 16 16 10 9 9 8 12 15 19 23 24 22 21 20 21 1 2 2 24 23 22
16 10 16 15 19 12 9 8 9 12 19 15 21 21 20 23 22 24 2 1 2 23 24 22
19 12 15 19 15 12 8 9 9 10 16 16 24 23 22 24 22 23 2 2 1 21 21 20
16 16 10 15 12 19 12 15 19 9 9 8 21 20 21 23 24 22 24 23 22 1 2 2
15 19 12 16 10 16 12 19 15 9 8 9 23 22 24 21 21 20 23 24 22 2 1 2
19 15 12 19 12 15 10 16 16 8 9 9 24 22 23 24 23 22 21 21 20 2 2 1

to substantial. Increasing Poisson’s ratio strengthens the collinear interactions, while decreasing

it, leads to less stable junctions due to higher line energies. Taking into consideration of all these

influences, [3] has proposed a modified interaction matrix (see Table 4.4). The corresponding

values of interaction strengths for Nb calculated by them with Scattergood and Bacon’s anisotropic

approximation are presented in Table 4.5.
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Table 4.5: Types of possible interaction in BCC lattice with asymmetric junction configurations
[3].

ID Interaction Type Interaction Coefficient
(G - glissile junctions)

1 self 0.20
2 collinear 60◦ 0.82

{1
10

}-
{1

10
}

in
te

ra
ct

io
ns 3 coplanar 0.20

4 J1 0◦ (G) 0.24
5 J1 70.53◦ (G) 0.20
6 J2 0.31
7 J3 0.28

{1
10

}-
{1

12
}

or
{1

12
}-
{1

10
}

in
te

ra
ct

io
ns

8 Collinear 90◦ 0.90
9 Collinear 30◦ 0.64
10 J4 0◦ (G) 0.25
11 J4 70.53◦ (G) 0.20
12 J5 0◦ (G) 0.20
13 J5 70.53◦ (G) 0.17
14 J6 29.50◦ 0.20
15 J6 58.52◦ 0.20
16 J7 58.52◦ 0.27
17 J7 79.98◦ 0.25
18 J8 35.26◦ 0.26
19 J8 90◦ 0.27

{1
12

}-
{1

12
}

in
te

ra
ct

io
ns 20 J9 0.28

21 J10 28.56◦ 0.23
22 J10 72.98◦ 0.23
23 J11 0.26
24 J12 0.19

4.2.2 Dislocation storage and recovery framework

The dislocation storagerecovery framework is a rather simple concept which defines the evolution

of the total dislocation density in a uniform microstructure with time or strain, under the influ-

ence of mechanisms such as dislocation strengthening, storage, and dynamic recovery. Such a

formulation is particularly suitable for multiscale modeling because of its kinematic character and

its potential to reproduce stressstrain curves with all deformation stages in a continuous fashion.
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Teodosiu et al. [111], Kocks and Mecking [112] proposed a generalized version of storage and

recovery framework that treats uniform dislocation densities on each slip system. This framework

assumes that the local microstructure mostly consists of dislocations immobilized (stored) by in-

teraction with other dislocations. For each slip system ξ , the stored density ρ is much larger than

the instantaneous mobile density and is therefore assimilated to the total density. It is also assumed

that there are always enough mobile dislocations to sustain the imposed strain rate and compensate

for the losses by storage and annihilation. Thus, the continuous storage of mobile dislocations is

accounted for, and the mobile density does not explicitly appear in the model. The most important

part of the framework is defining the Mean Free Path (MFP) of dislocations. A segment of average

length l, moving by an incremental step δ l, in a volume V produces a shear strain δγ = blδ l
V . If it

is immobilized, the stored density is increased by δρ = l
V . The mean free path Λ is the average

length traveled by mobile dislocation segments during a strain increment. The storage probability

is then defined as δ l/Λ and the storage rate is δ l/Λ
δρ/δγ = b

Λ . As the length of the dislocation seg-

ment changes when it moves, the mean free path is a virtual quantity that has to be defined for each

strain increments. Thus the net storage rate for a slip system ξ during a strain increment can be

expressed in terms of the shear strain rate γ̇ξ by equation,

dρα

dt
=

1
b

(
sα
a

µbKhkl
− yhklρα

)∣∣∣∣
dγα

dt

∣∣∣∣

ρ̇ξ =
1
b

(
sξ
a

µbKhkl
− yhklρξ

)∣∣∣γ̇ξ
∣∣∣ (4.14)

where Khkl is a mean free path coefficient and yhkl an orientation-dependent factor responsible for

dynamic recovery. The first term on the right-hand side of Eq. (4.14) is the dislocation multipli-

cation or storage rate. The second term accounts annihilation of screw dislocations by thermally

activated cross-slip and its subsequent rearrangements. When dynamic recovery is not active i.e.,
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in stage II, the model yields a constant strain-hardening rate θII/µ = α2/2KΛ. Introducing dy-

namic recovery yields the strain hardening rate in stage III.

The above dislocation recovery and storage framework requires parameters, which depends

on evolution of dislocation substructure with strain. For an accurate description of a dislocation

multiplication and annihilation rates, these parameters are calculated using DDD. The following

sections briefly discusses the DDD works of Madec and Kubin [113] for calculation of dislocation

mean free path. In their DDD framework, the dislocation densities stored for each slip system

were considered as the only state variable. They hypothesized that since both parent segments and

junction lines have similar interactions with incoming mobile segments, it is convenient to lump

junction densities into the densities stored in the active slip systems. Another advantage of this

convention is that, it indirectly considers higher order reactions or multi-junctions between dislo-

cation lines [114, 113], which frequently forms from an interaction production of two dislocation

lines reacting with a third dislocation segment. This convention is applied in the following ways :

• mobile dislocations of system ξ may react with the stored forest density on system β or vice

versa (see Fig. 4.1).

• junction formation for both cases can be denoted as ξ → β or β → ξ , where the first identifier

indicates the active or gliding system.

• junction segments of type ξ → β or β → ξ are then assimilated into stored densities in slip

systems ξ or β respectively.

This convention also restricts stored densities of weakly active slip systems to a small number.

Once a junction line of type ξ → β is formed and lumped into slip system ξ , it cannot constitute a
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forest obstacle for further incoming segments in system β , but it can react with all other forest slip

systems of ξ . Using this convection the rate of multiplication of dislocations in a slip system can

be defined.

nξ
nβ

β

ξ

Figure 4.1: A schematic figure showing dislocation reaction between segments on active slip-
system ξ (blue) and a forest system β (red).

4.2.3 Dislocation multiplication

Consider a scenario in which the dislocation lines in slip system ξ interacts with an inactive forest

dislocations ρβ of average length l̄β on slip system β . Then as per the convention defined earlier,

all the junctions formed during the glide of dislocations ξ are assigned to slip system ξ . Thus the

total amount of dislocation segments in ξ would contain two parent segments and one junction

segment (Fig. 4.1). During a shear increment dγξ , the area swept by the dislocation is dAξ =
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dγξV/b. Let dNξ→β to be the number of interactions occurring in this swept area dAξ and ϕ

be the geometrical factor signifying the projected length of forest dislocations along the directions

perpendicular to the active slip plane. Then the total length of the dislocation line stored in the

volume dAξ ϕ l̄β after reaction with forrest density ρβ = dNξ→β/ϕdAξ is dNξ→β l̄β . Therefore,

the number of interactions is given as,

dNξ→β = ϕρβ dAξ =
ϕρβ dγξV

b
(4.15)

All interactions cannot form stable junctions under stress. Out of the total number of interactions,

only a fraction f of them actually, forms stable junctions. The fraction f of stable junctions

depends on the interactions strength
√

Aξ β between slip system ξ and β . Thus, the number of

stable junctions is then given as,

dNξ→β
jct =

ϕ
√

Aξ β ρβ dγξV

b

dNξ→β
jct = ϕ f

V
b

(√
Aξ β ρβ

)
dγξ (4.16)

For each stable junction of length l̄ξ , the dislocations stored in the system is incremented by l̄ξ/V .

So for dNξ→β
jct interaction events, the total increase in dislocation density dρξ is given as,

dρξ =
l̄ξ dNξ→β

jct
V

(4.17)

Combining Eq. (4.17) with Eq. (4.16) for all slip systems, one can arrive at an expression for

dislocation multiplication rate as follows.

dρξ

dγξ =
p0 l̄ξ

b

⎛

⎝
Nslip

∑
β=1,β ̸=ξ

√
Aξ β ρβ

⎞

⎠ (4.18)

where Nslip is the total number of slip systems and p0 = ϕ f . l̄ξ is the average stored disloca-

tion length which can be approximated as l̄ξ = k0/
√

∑β Aξ β ρβ with k0 being a dimensionless
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constant. Since the average length of stored dislocation segments is directly proportional to the

dislocation density, therefore the ratio should be constant [16].

ρξ
jct

ρξ =
l̄ξ
jct

l̄ξ = κ0 (4.19)

This ratio is important as it will be used later to simplify the dislocation multiplication rate.

So far it was assumed that the forest dislocations segments were inactive. Relaxing this condi-

tions results in a modification to the junction densities and the average length of stored dislocation

content. A dislocation segment moving on a forest system β interacts with active slip system ξ

and can form junctions on slip system β . Thus a fraction of stored dislocation content on ξ is

transferred to system β i.e.

ρξ = ρξ
0 −ρβ→ξ

jct (4.20)

where ρξ
0 is the dislocation density on the active slip system ξ for non-active forest. Similarly, the

average dislocation segment length can be modified as

l̄ξ =
k0√

∑
Nslip
β=1 Aξ β

(
ρβ +ρξ→β

jct

)

⎛

⎝ ρξ

ρξ +ρβ→ξ
jct

⎞

⎠ (4.21)

Substituting Eq. (4.21) in Eq. (4.18), the dislocations multiplication rate in the case of active forest

systems can be derived.

dρξ

dγξ =
1
b

p0k0√
∑

Nslip
β=1 Aξ β

(
ρβ +ρξ→β

jct

)

⎛

⎝ ρξ

ρξ +ρβ→ξ
jct

⎞

⎠

⎛

⎝ ∑
β=1

√
Aξ β ρβ

⎞

⎠

⎛

⎝1−
ρβ→ξ

jct

ρξ

⎞

⎠

(4.22)

Devincre et al. [16] proposed a simplified version of Eq. (4.22) using the parameters described

earlier.

dρ
dγ =

1
bΛ

=
p0k0

b
ρforest

√ρtotal(1+κ)3/2

(
1− κ

n−1

)
(4.23)
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where n is the number of slip systems, κ = κ0/(1−κ0) i.e. the fraction of junction density to the

fraction of non-junction density and Λ is the dislocation mean free path. Lumping all constant

coefficients into a dimensionless and orientation-dependent coefficient Khkl, the mean path Λ can

eventually be set in the simple form.

Λ =
Khkl√
āρtotal

(4.24)

The coefficient Khkl depends on the average interaction strength and on the set of constants p0, k0

and κ0 (or κ).

4.2.4 Dislocation annihilation

Critical annihilation distance: Two screw dislocations of opposite sign gliding in parallel slip

planes separated by a distance smaller than a critical distance ys can mutually annihilate by cross-

slip. Although this quantity is widely used in many models, there is presently no accurate the-

oretical prediction for it, as it derives from a thermally activated core mechanism. Furthermore,

the density of screw dislocations is a small, but as yet unknown, fraction f of the total dislocation

density because screw dipoles annihilate more easily than edge dipoles. As the present model is

written in terms of total densities, Eq. (4.14) actually includes a length yhkl = f ys . The value of

yhkl is adjusted to yield the experimentally observed critical stress for the onset of the dynamic

recovery stage. An example is shown in [16] for copper at room temperature where, y{123} =

0.5 nm. From the classical work of [115] one has ys ≈ 50 nm in persistent slip bands of copper

crystals cycled at 300 K. In that case, the ratio of screw to edge or total densities is about 1/100

and the value determined for y looks reasonable.

The critical annihilation distance is also orientation-dependent, which entails an orientation

dependence of the onset of stage III in the stress-strain curves. It was shown by Kubin et al. [116]
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that this effect is of geometrical origin and arises from the respective orientation dependencies of

the Schmid factors in the slip and cross-slip planes. The results obtained in Kubin et al. [116] are

expanded to yield a value of the quantity yhkl for any orientation [h,k, l] of the loading axis.

Table 4.6 summarizes the list of variables used in the model, with adjustable parameters Khkl ,

yhkl , ρ{110}
0 , ρ{112}

0 , and sξ
t .

Table 4.6: Material variables for dislocation density based model

Elastic Plastic Strain hardening

C11 C12 C44 ρξ
0 sξ

t v0 b ∆G0 T p q Aξ β Khkl yhkl

GPa GPa GPa m−2 MPa msec−1 Å J K nm
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CHAPTER 5

RESULTS AND DISCUSSION

The outcome of the simulated deformation behavior using the constitutive framework discussed

in Chapters 3 and 4 is presented in this chapter. This chapter discusses details about the crystal

plasticity constitutive model calibration, sensitivity of the primary model parameters (ρξ ,Aξ β )

and identification of relevant state parameter evolution that is crucial to capturing the physics of

the deformation process.

5.1 Calibration of Crystal Plasticity constitutive model

The mechanical response of a single crystal undergoing uniaxial tension (using “standard” dog-

bone samples) exhibits marked spatial gradients between the central and peripheral gauge sections.

Capturing the fidelity through full-field simulations requires a well suited constitutive description

with proper combinations of primary state variables (input parameters). These input parameters

are obtained by optimizing the simulated output with respect to a handful of experimental data.

In the present study, the crystal plasticity model is calibrated by optimizing the simulated uniax-

ial stress-strain curves with respect to experimental data collected by [12, 75]. The optimization

process used in this study has been discussed in elaborate details in Chakraborty and Eisenlohr

[15].

One of the problems faced during inverse optimization of constitutive models is the computa-

tional cost involved. The simulated stress-strain response is frequently calculated based on various

combinations of input parameters within a solution space until the desired accuracy is achieved.

The error in each minimization is calculated using an objective function. In this particular case, an
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Figure 5.1: Left : Optimization function minimizing the area between two curves. The gray line represents
the standard curve, which the dashed black line represents the trial curve. Right : Flow diagram of the
optimization process used by Chakraborty and Eisenlohr [15].

objective function was designed to minimize the error in the area under the two stress-strain curves

(see Fig. 5.1 left). The computationally expensive step in this optimization process is the CPFFT

calculation step. Therefore it is essential to identify the boundary conditions which are most im-

portant to mimic the behavior of single crystal samples with a much smaller geometry (low mesh

resolution).

The second column of Table 5.1 shows the geometries used to simulate the deformation be-

havior. To reduce the CPFFT computation cost, a rectangular block of gauge section with reduced

mesh resolution is subjected to the same boundary conditions as the dogbone sample itself. A

buffer layer of soft, dilatational and low stiffness material (see Chapter 3) is added surrounding the

dogbone and the cube geometry to mimic free surface boundary conditions in the spectral solver.

The resolution of the reduced geometry is varied from 4×4×4 to 12×12×12 for different ori-

entations. The corresponding average computation time for these geometries is reported in the last

column. The resulting stress (strain) response of each of these simplified reduced geometries is

then compared to the stress (strain) response of the gauge section of the dogbone geometry us-
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Table 5.1: Comparison of CPFFT computation time between simplified reduced geometry of gauge
section and a proper dogbone shaped geometry. Material described by crystal plasticity law is
shown in blue and the dilatational buffer layer is shown in light gray.

Geometry Resolution Computation
time [min]

reduced

4×4×4 1.617
6×6×6 4.883
8×8×8 10.270

10×10×10 23.130
12×12×12 38.100

dogbone 35×160×26 2263.300

ing Kernel Density Estimation (KDE) plots. The KDE plots of all the components of the stress

(strain) behavior for both reduced and gauge section of dogbone geometry is shown in Fig. 5.2.

The top row shows the correlation of the normal stress components and the bottom row shows the

correlation of shear stress components. It is noted that the normal stress (strain) response of these

reduced geometries along the loading direction (top row middle column Fig. 5.2) is remarkably

similar (Pearson correlation r = 0.97) to that of the gauge section of dogbone geometry. However,

the other transverse normal components and the shear components vary from weak correlation

(Pearson correlation r = 0.5) to no-correlation (Pearson correlation r = 0.0053). Given that, the ab-

solute magnitudes of the transverse and shear stress components are way below the flow stress of

the material, deviations in these components have small effects on the resultant slip behavior and

therefore can be ignored. Thus the reduced geometry can be used to approximate the deformation

of the gauge section of dogbone sample for faster optimization of input parameters.
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Figure 5.2: Comparison of stress components of simplified reduced geometry and gauge length
section of dogbone geometry in terms of kernel density estimation maps. The top row shows the
correlation of the normal stress components and the bottom row shows the correlation of shear
stress components.

5.2 Phenomenological constitutive model results

Phenomenological models have been long used in crystal plasticity modeling to predict defor-

mation response of materials, particularly FCC metals. As discussed in the earlier chapter, the

essence of a phenomenological model relies on the CRSS for a particular slip-system. Although

much work on single crystal plasticity of BCC metals has been devoted to α-Fe, Mo, W and Ta,

very little work has been done on Nb. Mapar et al. [117] used a rate-independent model with

exponential and dynamic hardening rules to predict strain hardening in Nb. As a first attempt, a

rate-dependent phenomenological crystal plasticity model (see Chapter 4) is used to predict the

strain hardening. The important model parameters τ0,τsat and h0 are optimized using the frame-
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work discussed in earlier section.
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Figure 5.3: Comparison of experimentally observed axial stress-curves with the ones predicted
using phenomenological crystal plasticity model as function of orientation. Solid lines indicate the
measured stress-strain curves while the predicted ones are shown in dashed lines.

Figure 5.3 shows the resulting stress-strain curves predicted by the phenomenological model

along with their experimentally measured ones. The model seems to work only for the orientations

which do not show marked changes in the hardening rates in between stage I and stage II. However,

for most of the orientations, the model fails to capture the change in hardening behavior over the

strain range. In almost all cases the rate of hardening predicted by the model matches closely

with the stage II hardening rate, but no sign of stage I deformation is observed in the predicted

behavior. The initial CRSS τ0 , saturation CRSS g∞ (for two slip families {110} and {112}) and

the hardening slope h0 obtained from the best-fitted simulations for each of these orientations are

shown in Fig. 5.4. A relatively small variation in hardening slope h0 and τ0 is observed along with

a wide variation in g∞ over the range of crystal orientation.

These observations suggests that for predicting a variable hardening rate with consistent CRSS
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Figure 5.4: Adjustable phenomenological model parameters (initial CRSS τ0 saturation CRSS
g∞ and hardening slope h0) for pure Niobium obtained from stress-strain curve optimization of
8 single crystal orientations. The crosses represent a parameter for a particular orientation. The
mean of the parameters for all orientations is represented by a solid dot.

over the orientation space one needs to treat the hardening behavior in different stages separately.

Such models with multiple-hardening laws for various stages has been investigated in the works of

[118, 119].

5.3 Dislocation density based crystal plasticity model results

The dislocation density based crystal plasticity model described in section 4.2 is used to pre-

dict deformation behavior of the dogbone geometries for the orientations reported by Baars [12].

Table 5.3 presents the underlying values of the model parameters with adjustable variables.
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Table 5.2: Constitutive material parameters of pure Nb used for the crystal plasticity simulations
of uniaxial tension. The asterisk (*) indicates fitting parameters.

Parameter Value

C11 246.5 GPa
C12 134.5 GPa
C44 28.73 GPa
µ 39.6 GPa

ρ{110}
0 *

ρ{112}
0 *

b 3.3 Å
v0 10−4 ms−1

∆G0 2.72 ·10−19 J
T 300 K
sξ
t 8.5 MPa
p 0.85
q 1.27

Khkl *
yhkl *
Aξ β Table 4.5

5.3.1 Slip activity maps as a function of orientation

To determine the slip-activity as a function of orientation, the implemented dislocation density

based crystal plasticity model is used assuming ⟨111⟩{110} and ⟨111⟩{112} as possible slip-

systems populated with equal amounts of dislocations. Based on the net accumulated shear Γacc

at the onset of slip (ε ∼ 0.002), active slip family is mapped as a function of orientation. Fig. 5.5

shows the dominant slip-family determined a function of orientation. Similar slip behavior in

BCC metals was also reported in the works of Calnan and Clews [120]. However, it is observed

that with continued plastic deformation the active slip family changes drastically and is mostly of

⟨111⟩{112} type for majority of the orientations in the standard stereographic triangle except near

the orientations with very high Schmid factor on ⟨111⟩{110}.

63



h001i h011i

h111i

h112i

h001i h011i

h111i

h112i

Figure 5.5: Active slip family based on net accumulated shear Γacc as a function of orientation.
The contribution of a slip family for each of the orientations is represented by a color varying from
blue for pure {112} to red for pure {110} slip. Left: active slip family maps at ε ∼ 0.002. Right:
active slip family maps at ε ∼ 0.050.

5.3.2 Influence of slip family on spatially resolved deformation behavior

The reduced geometry described earlier is computationally efficient and robust for model calibra-

tion, however, it cannot reproduce spatially varying heterogeneous deformation of the dogbone

shaped sample under tension. For this purpose, CPFFT simulations were done on a dogbone

geometry for all the eight orientations with the optimized dislocation density model’s optimized

parameter set. Three different slip conditions were considered in which the deformation on the slip

systems was restricted to (a) only {110} slip planes, (b) {110}, {112} slip planes and (c) only

{112} slip planes.

The local inverse pole figure, von Mises strain and von Mises stress field maps are shown in

Figs. 5.6 to 5.8 respectively for all the three slip conditions mentioned above. Some interesting

observations were made. In a few of the orientations (P,T ), the active slip family determined

the amount of necking in the latter stages of deformation. Moreover, marked differences were

observed in the final orientation of the necked region. The same behavior has also been detected in

the local von Mises stress fields. In the case of the other orientations the stress localization patterns
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Figure 5.6: Local ⟨010⟩ lattice reorientations maps of the deformed dogbone samples. Rows in
descending order represent the simulation results obtained assuming {110}, {110}-{112} and
{112} slip family respectively.

(alternating regions of high and low stress) seems to be dependent the active slip family. For some

of the orientations, stress localization is only observed only when slip is restricted to single slip

family. Overall, the final shape of the deformed geometry was found to be similar across all three

cases for most of the orientations.

65



slip
family

orientations
P Q R S T V W X

{1
10

}
{1

10
}

-
{1

12
}

{1
12

}

0 0.5

Figure 5.7: Local von Mises strain εvM maps of the deformed dogbone samples. Rows in descend-
ing order represent the simulation results obtained assuming {110}, {110}-{112} and {112}
slip family respectively.

5.3.3 Model sensitivity to initial dislocation density

The primary state variable for the dislocation density based model is the dislocation density content

on individual slip-systems. Given that it is impractical to measure dislocation content on individual

slip-systems experimentally, it becomes essential to know the bounds of the CPFFT simulations

up to which the predicted deformation response can be captured with reasonable accuracy.
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Figure 5.8: Local von Mises stress σvM maps of the deformed dogbone samples. Rows in descend-
ing order represent the simulation results obtained assuming {110}, {110}-{112} and {112} slip
family respectively.

The influence of initial conditions on deformation response was tested by distributing dislo-

cation content inhomogeneously among individual slip-systems. The distribution of dislocation

densities followed a log-normal distribution with a mean dislocation density, ρmean and variance

σρ . The range of the distribution was varied by changing the variance. Three variations were tested

i.e σρ = 0.5,1.0 and 2.0 around a mean dislocation density of ρmean = 2×1013. For each distribu-
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Figure 5.9: Influence of pre-deformed dislocation content on stress-strain response (lower left)
simulated by dislocation density based model. The top row shows several instances of inhomo-
geneous distribution of dislocation content on individual slip systems for a chosen log-normal
dislocation statistics. Each slip system is denoted by a color key given in the lower right legend.

tion characteristic (ρ mean,σρ ), several random instances of the distributions were generated. The

resulting effect on stress-strain response and lattice-reorientation is reported.

Fig. 5.9 shows the influence of inhomogeneous dislocation content on the stress-strain re-

sponse. It was observed that the flow stress of the material is sensitive to the initial dislocation

content. Fig. 5.10 shows the influence of σρ on the tensile axis re-orientation for three different

orientations. For each orientation and distribution characteristics, 10 different instances were sim-

ulated. It was observed that for a smaller inhomogeneity, the lattice re-orientation trajectories were

limited to only a few possible directions in orientations space for each of the tested orientations.
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However, with the increase in the variance of the distribution, the tensile axis re-orientation became

more chaotic and unpredictable.

The above behavior is expected since the mobile dislocation content controls the deformation

process. For a given loading conditions, if the slip system with highest RSS is low on mobile

dislocation content, then the flow-stress has to increase to activate new sources for deformation

to continue. Due to this reason, the initial flow stress observed in Fig. 5.9 increased for certain

distribution instances where the slip system with highest Schmid factor has low mobile dislocation

content. Secondly, the distribution of initial dislocation content on non-active systems influences

the forest hardening. Thus, depending on the amount of particular forest dislocation content present

during flow, the tensile axis orientation can change due to different easy paths offered during

deformation. Hence, the less inhomogeneous a material is, the fewer number of paths available for

the lattice to reorient during deformation.
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Figure 5.10: Influence of pre-deformed dislocation content on lattice reorientation for three different orientations simulated by dis-
location density based model. The left column shows the probability distribution of pre-deformed dislocation content with ρm =
1×1013 m−2 and different variances. The corresponding lattice reorientation trajectories for three orientations are shown in the right
three columns.
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5.3.4 Influence of dislocation interaction coefficients on strain hardening

Fig. 5.11 shows the tensile axis re-orientation and axial stress-strain response of the best-fitted

simulation results for the eight orientations simulated with isotropic Fe interaction coefficients

[2]. The tensile axis re-orientation predicted by the model is similar to that observed by Baars

[12], Jaoul and Gonzalez [8], Keh [9], Duesbery et al. [74]. The tensile axis for most of the

orientations lying in the center of standard stereographic triangle changes trajectory after crossing

the [001]–[101] line. The maximum amount of angular distance traversed by the stress-axis in the

adjacent standard triangle is determined by how close the initial orientation is to the {001}–{101}

boundary.
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Figure 5.11: Results predicted by the dislocation density based model with isotropic α −Fe inter-
action coefficients. Left: ⟨010⟩ inverse pole figure for the 8 orientations showing the tensile axis
re-orientation as a function of strain (εmax = 0.30. The initial tensile axis orientation is denoted
by the blue dot. The final orientation after 30 % strain is indicated by the red dot. The black dots
in-between represents the trajectory of reorientation. Right: Corresponding axial stress-strain (σ -
ε) predicted by the crystal plasticity model.
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The rate of hardening observed in stage II deformation of the simulated single crystal uniaxial

tension differs significantly from the experimental behavior. A negligible rate of hardening in

stage II is observed in axial stress-strain behavior for most of the orientations. The reason for

such low hardening is due to the fact that the used interaction coefficients were calculated for α-

Fe (BCC) assuming an isotropic elasticity. Until recently, it was believed that these interaction

coefficients are directionally symmetric and depend only on the lattice structure. However, Madec

and Kubin [3] predicted that the anisotropic elasticity has an effect on the dislocation interaction

coefficients and is, therefore, material dependent. Moreover, it was also demonstrated that some

of the dislocation junction reactions are asymmetric in nature.
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Figure 5.12: Influence of elastic anisotropy on strain hardening behavior for a particular orienta-
tion. The interaction coefficients for Fe assuming isotropic elasticity was calculated by Queyreau
et al. [2]. The dislocation interaction coefficients assuming anisotropic elastic for Nb was taken
from the works of Madec and Kubin [3].

Fig. 5.12 shows the influence of dislocation interaction coefficients (calculated under different
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assumptions) on the rate of hardening in single crystal Nb. The black curve represents the ex-

perimentally observed stress-strain behavior. The red curve represents the stress-strain behavior

simulated assuming isotropically elastic α-Fe interaction coefficients, while the green curve repre-

sents the stress-strain behavior simulated using anisotropically elastic Nb interaction coefficients.

It was observed that for α-Fe interaction coefficients the rate of hardening is negligible, while for

the Nb interaction coefficients the rate of hardening increased rapidly at onset of stage II.

5.3.5 Inverse optimization of dislocation mean free path coefficient

The dislocation multiplication term in the storage and recovery framework is inversely proportional

to the MFP coefficient, which is orientation dependent. The MFP coefficient takes into account the

probability of forming stable junctions and the number of active slip systems for the given lattice

orientation. Devincre et al. [16] calculated the MFP coefficients in Al (FCC) for several symmetric

orientations. In their work, it was shown that for orientations with more active slip systems the

average MFP is shorter, while for low symmetry orientations (single glide case) the MFP is larger,

which explains a long easy glide stage in stress-strain response.

So far these coefficients have not been reported for any BCC material in literature. Hence, in

this work, the MFP coefficient is estimated using parameter optimization. It is to be noted that

the optimized set of MFP coefficients are in no way absolute values for the given material or its

orientations, but a result of parameter fitting with the primary objective being their qualitative trend

over orientation space.

Fig. 5.13 shows the uniaxial stress–strain response for eight single crystal orientations after

optimization of Khkl , yhkl , and the initial dislocation content ρ{110}
0 and ρ{112}

0 . The average

relative error in the difference between measured and simulated stress-strain curves for eight ori-
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Figure 5.13: Comparison of experimentally observed (solid) and predicted (dashed) uniaxial
stress–strain response for different orientations. The coefficients for mean free path Khkl and dy-
namic recovery yhkl in the model by Devincre et al. [16] were estimated using inverse optimization
of the measured stress–strain curves.

entations is less than 6 %. The experimentally observed variability associated with the different

crystallographic tension directions is reproduced. Except for a few orientations, the stage II hard-

ening, which starts to become apparent at strain levels of around 0.2, is generally well captured. It

is observed that as the orientation moves from single glide conditions towards multiglide condition,

the coefficient decreases indicating shorter average MFP i.e. higher rate of dislocation reaction and

strain hardening.

Table 5.3 presents the underlying values of the adjustable parameters for all eight orientations.

The annihilation distance yhkl , which is governing the dynamic dislocation recovery, is not strongly

dependent on the specific orientation, but assumes values of around 5 nm each. This invariance is

understandable as the dislocation density accumulated during the straining is still noticeably below

that density for which Eq. (4.14) would reach a dynamic equilibrium, hence, would show a strong

influence of the dynamic recovery aspect.
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Table 5.3: Variability in constitutive parameter values resulting from minimizing the deviation in
single crystal stress–strain response for eight distinct tensile directions.

Orientation Khkl
yhkl
(nm)

ρ{110}
0

(1012 m−2)
ρ{112}

0
(1012 m−2)

P 20.00 4.29 0.62 0.12
Q 7.25 7.25 0.12 0.05
R 12.18 7.76 0.33 0.11
S 17.45 8.34 0.09 0.02
T 15.52 5.52 0.83 0.15
V 5.56 7.16 0.08 0.07
W 7.16 4.56 0.12 0.07
X 9.58 8.58 0.04 0.11

The dislocation storage parameter Khkl exhibits a notably stronger dependence on the crystal-

lographic tensile direction. As such, the simplified storage and recovery model employed here is

of limited use for general application in which complex (i.e. not only unidirectional) loadings can

occur. Therefore, as a future step, the modeling of dislocation storage needs to take into account

the instantaneous dislocation densities to more directly capture the kinematics and dynamics of

dislocation junction formation as was already indicated by Madec and Kubin [113].

The values of initial1 dislocation density (ρ{110}
0 and ρ{112}

0 ) that are necessary to match the

yield stress level in each of the four single crystal experiments also exhibit an appreciable vari-

ability. Since it is difficult to accurately determine the true dislocation content in the material, a

numerical study was performed to gauge the influence of this uncertainty on the predicted single

crystal stress–strain response in unidirectional tension. Figure 5.14 presents for the exemplary ori-

entation ‘V’ that even for a known (fixed) total initial dislocation content, if distributed unevenly

across the individual slip systems, the resulting strain hardening can markedly differ. In the case

shown, three of the realizations did not even exhibit the experimentally observed two-stage hard-

1homogeneously distributed across each of the twelve slip systems per slip family
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Figure 5.14: Variability in predicted single–crystal response under unidirectional tension due to
different distributions among the slip systems for fixed total initial dislocation content.

ening, indicating that the precise matching of single crystal deformation is probably elusive even

with rather elaborate constitutive models.
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CHAPTER 6

CONCLUSION

In the present study, volumetric dilatation capability is added to an existing isotropic material

model to capture the behavior of void-like regions in FOURIER-based spectral solvers. The abil-

ity to mimic empty space is essential to address non-compact geometries within the periodicity

constraints imposed by such solvers. The model has been applied to simulate the plastic growth

of a circular void in a plate under biaxial tension and the known grain-scale deformation behav-

ior of a tensile sample containing a limited number of grains. Both cases show that the proposed

formulation provides a more accurate description of void-like behavior compared to assuming a

soft-elastic behavior for void volumes.

The finite strain dilatational framework is then used for crystal plasticity simulations of dog-

bone shaped Niobium single crystals under tensile loading with an emphasis on multi-stage hard-

ening, orientation dependence, and non-Schmid behavior. A constitutive model with dislocation

storage and recovery rates based on Discrete Dislocation Dynamics is used to model strain harden-

ing in stage II. Adjustable parameters in this model are identified based on an inverse strategy that

uses a Nelder–Mead simplex approach to minimize the deviation between measured and simulated

uniaxial single crystal tension experiments. The influence of dislocation interaction parameters and

the variability on stage II hardening associated with the initial dislocation content is numerically

studied and compared with tensile experiments.

The experimentally observed variability associated with the different crystallographic tension

directions is reproduced effectively. Except for few a orientations, the stage II hardening, which

starts to become apparent at strain levels of around 0.2, is generally well captured. The transition
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from stage I to stage II is abrupt and non-smooth. This might be due to an absence of cross-slip in

the constitutive description.

The annihilation distance yhkl , which is governing the dynamic dislocation recovery, is not

strongly dependent on the specific orientation, but assumes values of around 5 nm. The disloca-

tion storage parameter Khkl exhibits a notably stronger dependence on the crystallographic tensile

direction.

The values of initial dislocation density (ρ{110} and ρ{112}) that are necessary to match the

yield stress level in the eight single crystal experiments also exhibits an appreciable variability.

Since it is difficult to accurately determine the true dislocation content in the material, a numerical

study was performed to gauge the influence of this uncertainty on the predicted single crystal

stress–strain response in unidirectional tension. In the case shown, some of the realizations did not

even exhibit the experimentally observed two-stage hardening, indicating that the precise matching

of single crystal deformation is likely elusive even with rather elaborate constitutive models.

6.1 Recommendations for future work

• The transition from stage I to stage II is abrupt for the simulated stress-strain behavior. For

a smooth transition in-between hardening stages, cross-slipping should be incorporated in

the crystal plasticity constitutive law. Cross-slipping has been reported by several authors

[121, 41, 122] to be a prominent phenomenon in BCC materials at higher temperatures.

For a dislocation to cross-slip in FCC materials, the Shockley partials have to combine to

form complete dislocation before gliding on a cross-slip plane, which is why cross-slip is

less probable in the materials with low Stacking Fault Energy (SFE). Following the same

ideology cross-slip in BCC materials should be easy since most of the BCC materials do
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not form stable SF’s at room temperature and above. Moreover, the availability of a vast

number of possible slip planes with common ⟨111⟩ directions makes cross-slip very likely

all throughout deformation process.

• The current dislocation storage and recovery framework used to simulate the strain hard-

ening is a simplified model and is of limited use for general application in which complex

(i.e. not only unidirectional) loadings can occur. Moreover, the orientation dependence of the

mean free path parameters necessitates calibration of individual orientations. Therefore, as a

future step, the modeling of dislocation storage needs to take into account the instantaneous

dislocation densities to more directly capture the kinematics and dynamics of dislocation

junction formation as already indicated by Madec and Kubin [113].

• To correct the relative deviation in the simulated stage II hardening observed for orienta-

tions having equal probability of activating ⟨111⟩{110} and ⟨111⟩{112} slip systems,

non-Schmid corrections suggested by Dezerald et al. [123] needs to implemented.
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CHAPTER 7

ADDITIONAL PROJECTS

7.1 Influence of geometric reconstruction accuracy on grain-averaged ag-
gregate mechanics

7.1.1 Introduction

The elastic and, in particular, plastic mechanical behavior of single crystals is generally anisotropic.

Therefore, the macroscopic mechanical response of polycrystalline materials depends primarily

on the crystallite orientation distribution (“texture”). When considering their microscopic behav-

ior at the scale of individual grains, the distributions of size and shape of constituent grains be-

come equally important since the inherent anisotropy of single crystal deformation coupled with

inter-granular interactions results in strong heterogeneity of local deformation even under uniform

macroscopic loading (see, for instance, [14, 124]). Since many critical engineering aspects are

governed not by average but by extreme behavior, for instance void/crack formation due to strain

concentration, knowledge about and predictability of deformation at sub-granular scales is needed.

Deformation models that explicitly account for crystal plasticity have matured during the last

decades and became generally quite successful in predicting macroscopic responses, i.e., at the

scale of typical engineering components [76]. Application of such computational models to pre-

dict grain-scale micromechanics, however, currently results in overall agreement but notable devi-

ations in detail compared to measurements [92]. The verification of constitutive crystal plasticity

models requires experimental characterization of the initial and final material state, which primar-

ily includes crystal orientation, plastic strain, lattice strain (stress), and defect structure. For the
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simulation of grain-scale mechanics, the most critical information among these is the initial grain

structure. This structure needs to be characterized non-destructively and in three dimensions, since

the (easily observable) response on the surface depends notably on the actual subsurface grain

structure [125, 126, 127]. Therefore, experimental techniques capable of measuring the three-

dimensional arrangement of grains are essential.

With the development of third-generation synchrotron facilities such as the Advanced Pho-

ton Source (APS) at Argonne National Laboratory, X-rays of high energy (50 keV to 100 keV)

and sub-micron sized beams can be generated, which have penetration depths ranging from a

few millimeters to centimeters and are capable of determining properties in three dimensions, re-

solved at the intragranular scale. Over the years, the use of monochromatic high-energy X-rays

combined with rotation of the investigated samples has lead to the development of various bulk

characterization techniques generally known as Three-Dimensional X-ray Diffraction (3DXRD)

[128, 129, 130] or High Energy X-ray Diffraction Microscopy (HEDM) [131]. HEDM is a non-

destructive way of characterizing microstructure in three dimensions [132, 133]. HEDM can be

utilized with near-field and/or far-field detector positions or a combination of both. In the near-

field configuration, high spatial resolution is achieved at the expense of angular resolution, by

employing a small sample-to-detector distance on the order of the diffracting volume (about 1 mm

to 10 mm). Orientation maps with high spatial resolution that reveal the grain morphology can

be determined by post processing of the data using computationally intensive algorithms [17]. In

the far-field configuration, the sample-to-detector distance is large (about 1 m) compared to the

diffracting volume defined by the beam dimension. Thus, the locations of diffracted intensity on

the detector are governed by (i) the incident beam energy and (ii) the lattice orientation and lattice

distortion of diffracting grains. Average values of crystal orientation, lattice strain, volume and
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position (centroid) can be conveniently extracted for each identified grain from the acquired se-

quence of detector images. Given the large effort and data intensity to measure spatially resolved

grain maps using near-field HEDM compared to centroid locations using far-field HEDM, it needs

to be clarified (i) how accurately a spatial tessellation based on the latter information can approx-

imate the true grain structure that the former more directly represents, and (ii) how sensitive the

grain-averaged mechanical behavior is to the geometric uncertainties around grain perimeters that

result from shape reconstruction based on limited information.

The present paper first compares the geometric reconstruction accuracy when using weighted

(Laguerre) Voronoi tessellation based only on grain centroids information to that resulting from

combining centroids and grain volume information. Next, the plastic response of reference grain

aggregates is simulated based on phenomenological crystal plasticity and compared to that of the

two reconstruction alternatives to elucidate the sensitivity of grain-averaged lattice strains on the

accuracy of grain morphology reconstruction.

7.1.2 Spatial reconstruction method

Standard Voronoi as well as weighted (a.k.a. Laguerre) Voronoi tessellation generates volume-

filling cells based on a population of ‘seed’ points. The volume enclosed by the cell of site si =

(pi,wi) , i = 1, . . . ,Ngrains, is

Ci =
{

x ∈ R3 | d2 (x,pi)−wi ≤ d2 (x,p j
)
−w j, j ̸= i

}
, (7.1)

with d (x,pi) being the distance between position x and the (closest1) seed position pi. In case

of standard Voronoi tessellation, all weights wi = const = 0, while for Laguerre tessellation the

1potentially considering spatially periodic repetitions of all seed points
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Figure 7.1: Polycrystalline aggregates (a) measured by various 3D techniques [17, 18, 19, 20] and
associated grain statistics (blue curves in (b) and (c)). Sequence of four gray curves represents log-
normal grain volume distributions of different variance (Eq. (7.9)); the black curve corresponds to
closest fit at variance σdistr = 1.2. Dotted line represents average grain volume.

individual weights are variable. To use Laguerre tessellation as a tool to reconstruct an aggre-

gate of grains based on limited (spatially-averaged) data, a connection between such data and the

tessellation sites (position and weight) needs to be established, as later outlined in Section 7.1.4.

7.1.3 Volume statistics of real and artificial grain structures

To compare the quality of grain structure reconstruction in presence/absence of grain volume in-

formation (to inform the Laguerre weights), synthetic grain structures that are statistically similar

to real ones are used.
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Figure 7.2: Synthetic polycrystals (a) generated by DREAM.3D [21, 22] using cube octahedra
(top row) or super ellipsoids (bottom row) as grain shapes. Orange and brown curves in (b) and (c)
show the associated grain statistics for both selections of grain shapes. Black line (optimal fit to
experimental data) is same as in Fig. 7.1.

Four exemplary lattice orientation datasets, which were measured by various 3D techniques

[17, 18, 19, 20], are shown in Fig. 7.1a and form the statistical basis of the present investigation.

Grain size populations were derived from each dataset by counting the number of voxels assigned

to each grain.2 Figure 7.1(b) presents the relation (blue curves) between cumulative number frac-

tion and cumulative volume fraction for each grain size population. Represented in this normalized

2Volumes of surface grains resulted from combining every member in the lower half with a
random one from the upper half of their volume-sorted population.
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way, all four grain populations are remarkably similar and can be approximated by a log-normal

distribution of grain volume (black fit line, see Section 7.2 for details). The same datasets and log-

normal grain volume distributions are presented in Fig. 7.1(c) as a volume-weighted distribution

of relative grain volume (defined in 7.3), demonstrating again the close approximation of all data

by a log-normal distribution with variance σdistr = 1.2.3 Assuming that this particular distribu-

tion shape faithfully represents polycrystalline aggregates, it can serve as a reference for synthetic

datasets to identify systematic deviations relative to it.

Synthetic grain structures were generated by a series of filters using DREAM.3D [134] (see

7.4 for list of filters and [21, 22] for details of the generation process). A log-normal distribution

of grain sizes with mean µsize = 1.0 and variance σsize = 0.4 was created in the filter ‘StatsGener-

ator’ and matched well with experimentally observed grain size distributions (Fig. 7.1(b) and (c)).

Next, based on the above grain size distribution, two versions of four polycrystals (Fig. 7.2(a))

having grain shapes of either cube octahedra or super ellipsoids were generated with the filter ‘Es-

tablish Shape Types’ to investigate the potential influence of shape anisotropy. Invoking the same

statistical representation as in Fig. 7.1 demonstrates the close similarity of synthetic and measured

structures in terms of their grain volumes (see Fig. 7.2(b) and (c)). In terms of grain shapes, the

cube octahedral grain structures are close to equiaxed while the super ellipsoidal ones are generally

more elongated as can be inferred from the ratios of maximum to minimum principal moments of

inertia, i.e. the “eccentricity,” that are shown cumulatively in Fig. 7.3 (solid lines) from all synthetic

grains.

3Translations between the frames (b) and (c) in Figs. 7.1 and 7.2 make use of the fact that the
relative grain volume in (b) is simply given by the slope dFV/dFN since the average grain volume
in that frame is ⟨V ⟩=Vtotal/Ngrains = 1/1 = 1, falling along the dotted line in (b).
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The volume Vref and centroid4 of every constituting grain (Ngrains ≈ 500) was extracted from

each of the eight synthetic polycrystals to serve as a basis for comparing the reconstruction method

variations that are presented next.
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Figure 7.3: Ratio of largest to smallest principal moment of inertia (‘shape factor’) for all cube
octahedral (orange) and super ellipsoidal (brown) grains. Solid lines correspond to synthetic (ref-
erence) structures shown in Fig. 7.2(a). The fainter curves result after reconstructing the reference
structures using either grain volumes (dashed) or centroid distances (dotted) as a basis for Laguerre
tessellation weigths. In general, cube octahedral grain structures are closer to being equiaxed than
those based on super ellipsoids.

7.1.4 Comparison of 3D reconstruction of grain aggregates in presence/absence of grain
volume information

Given that the identification of grain centroids is typically more common than determination of the

associated grain volumes in far-field HEDM, we investigate how accurately the known (synthetic)

polycrystals described in Section 7.1.3 can be reconstructed based solely on centroid information

compared to having additional explicit knowledge of grain volumes. For both cases, termed ‘ab-

sent’ and ‘present’, the centroids are a natural choice as seed points in a Laguerre tessellation.

4spatial average of the positions of all voxels that comprise a grain
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The ‘present’ case has already been studied by Lyckegaard et al. [23] with the result that a fairly

accurate reconstruction can be achieved when the Laguerre weights are chosen as w = (requiv)
2 =

(3Vref/4π)2/3, i.e. as the squared equivalent sphere radius of grain volume Vref. Furthermore,

they observed a slight improvement in accuracy when correcting each seed position by the offset

between the initial seed position of each grain and the centroid resulting after a first tessellation.

In the ‘absent’ case, i.e. without explicit knowledge of the correct grain volumes, selection of

Laguerre weights is not straightforward. One possible choice, which is used in the present study, is

w = (dnn)2 with dnn being the distance between a grain centroid and its nearest neighboring one.

The reconstruction accuracy resulting from both above conditions, i.e. with and without ex-

plicit knowledge of the grain volume, is presented in Fig. 7.4 as joint probability density of correct

grain volume Vref and relative deviation Vtess/Vref (outer rows) or κtess/κref (inner rows) between

tessellated and correct volume or shape factor, respectively. In case of Laguerre weights being

derived from known grain volume information (‘present’, upper half in Fig. 7.4), most of the re-

constructed grains are within about 20 % of the correct volume and show a systematic decrease of

reconstruction accuracy with decreasing grain size. The slight reduction in grain volume recon-

struction accuracy between more equiaxed (cube octahedral) and less equiaxed (super ellipsoidal)

grain shape that is observed in the upper row of Fig. 7.4 is expected since the Laguerre tessella-

tion is isotropic by design, hence, will become increasingly inaccurate with increasing structural

anisotropy. Similarly, the reconstruction accuracy in terms of grain shape factor (second row in

Fig. 7.4) is higher for the synthetic structures utilizing the more equiaxed cube octahedral grains

than for the super ellipsoidal grain shapes. The two-pass correction of seed points suggested by

Lyckegaard et al. [23] removes the systematic overprediction of tessellated volumes for the largest

grains (compare red to green probability maps). In case of Laguerre weights being derived from
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Figure 7.4: Joint probability of correct grain volume (normalized by average grain size) and relative
deviation in the reconstructed grain volume Vtess/Vref or grain shape factor κtess/κref. Grain reconstruction
uses Laguerre tessellation with grain centroids as seed positions. Seed point weights are derived from known
grain volumes (upper half) or estimated from the distance to the nearest grain centroid (lower half). Left
and right panels correspond to cube hexahedral and super ellipsoidal grain shapes, respectively, that were
used in generating the underlying synthetic data sets (Fig. 7.2(a)). Red maps correspond to direct use of
grain centroids as seed positions, while green maps illustrate changes due to a seed position adjustment [23]
that considers the new centroid location of each resulting tessellated grain. The comparisons of shape factor
deviations (yellow maps) utilized only those latter reconstructed structures.
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nearest neighbor distances of centroids (‘absent’, lower half in Fig. 7.4), the overall agreement

between correct and tessellated volume is substantially weaker—as will be discussed in connec-

tion with Fig. 7.6. Furthermore, the systematic deterioration of accuracy in grain volume as well

as grain shape reconstruction with decreasing grain size is much more pronounced in the ‘absent’

case compared to the ‘present’ case.

Given the above established uncertainties of grain volumes reconstructed by Laguerre tessel-

lation with and without knowledge of correct grain volumes, it is informative to determine the

associated uncertainty of the grain-averaged lattice strains as margin of error when comparing

measurements to simulations. To answer this question, Crystal Plasticity Fast Fourier Transform

(CPFFT) simulations were performed, the results of which are reported in next section.

7.1.5 Grain averaged lattice strains of reconstructed structures

A finite strain framework is adopted in which the deformation gradient F = FeFp at each ma-

terial point is multiplicatively decomposed into elastic Fe and plastic Fp components, thus in-

troducing an intermediate (or ‘lattice’) configuration. The second PIOLA–KIRCHHOFF stress

S = C :
(
FeTFe

)
/2 = f

(
Ḟ,ηηη

)
reflects the elastic lattice distortion (C being the fourth-order elas-

tic stiffness tensor) and drives the plastic velocity gradient Lp(S,ηηη) = Ḟp Fp−1 as well as the

evolution of internal state variables ηηη (see [76] for details).

The constitutive model used in the present study is similar to the phenomenological description

of Peirce et al. [1] for cubic lattice symmetry. The internal state is captured through slip resistances

τ0 per slip system ξ , which evolve with shear γ according to a relationship initially proposed by
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Figure 7.5: Deviations of normal, shear, and deviatoric normal components of grain-averaged
Cauchy stress σtess in reconstructed grain structures relative to corresponding stress components
σref resulting in the (cube octahedron) reference grain structures. Tessellations in upper panel
employ known grain volume information (requiv) for Laguerre weights, while in lower panel the
nearest centroid distances (dnn) are used instead. The seed positions were adjusted [23] in both
tessellation alternatives.

Hutchinson [98] and later improved by Kalidindi et al. [99]

˙̇gξ = qξ β h0

⎛

⎝1−
τβ

0

gβ
∞

⎞

⎠
a ∣∣∣γ̇β

∣∣∣ . (7.2)

The slip system interactions are controlled by the hardening matrix qξ β . The shear rate on each
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Table 7.1: Material parameters; elastic constants Cab, reference shear rate γ̇0, stress exponent n,
initial and saturation slip resistance τ0 and g∞, hardening parameters h0,qξ β , and a.

Parameter Value Unit

C11 106.75 GPa
C12 60.41 GPa
C44 28.34 GPa
γ̇0 10−3 s−1

n 20
τ0 31 MPa
g∞ 63 MPa
a 2.25
h0 75 MPa
Coplanar qξ β 1
Non-coplanar qξ β 1.4

system is given by

γ̇ξ = γ̇0

∣∣∣∣∣
τξ

gξ
∞

∣∣∣∣∣

n

signτξ , (7.3)

where γ̇0 is a reference shear rate, n the stress exponent, and τξ = S :
(

mξ ⊗nξ
)

the resolved

shear stress. The plastic velocity gradient

Lp = γ̇ξ mξ ⊗nξ (7.4)

is additively composed from all shear rates, where mξ and nξ are unit vectors along the slip

direction and slip plane normal, respectively. Table 7.1 summarizes the adjustable parameters used

to mimic a material similar to aluminum.

For the periodic structures investigated in this study, spectral methods are an efficient alterna-

tive to the finite element method (FEM) for solving the mechanical boundary value problem of

static equilibrium [135, 136, 137, 80, 82]. Here, we employ a finite strain spectral solver devel-

oped by Eisenlohr et al. [82] and Shanthraj et al. [88] that includes a flexible material point model
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(DAMASK) to incorporate the constitutive law described above. All (periodic) grain aggregates

are discretized on a regular 100×100×100 grid.

Due to the periodic nature of the geometry, boundary conditions for simulating the chosen

reference case of uniaxial tension along the y-direction have to be specified as volume-averaged

deformation gradient rate and complementary (first PIOLA–KIRCHHOFF) stress

˙⟨F⟩
10−3 s−1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

∗ 0 0

0 1 0

0 0 ∗

⎤

⎥⎥⎥⎥⎥⎥⎦
and

⟨P⟩
Pa

=

⎡

⎢⎢⎢⎢⎢⎢⎣

0 ∗ ∗

∗ ∗ ∗

∗ ∗ 0

⎤

⎥⎥⎥⎥⎥⎥⎦
, (7.5)

with ‘*’ indicating mixed boundary conditions, where either stress (or deformation) is prescribed

so that deformation (or stress) needs to be iteratively adjusted. In the simulations, above conditions

are maintained during 100 increments of 1 s each (such that the final ⟨F⟩yy = 1.1).

To elucidate the influence of reconstruction quality on the average lattice strain predicted from

crystal plasticity simulations of grain aggregates, the four synthetic grain aggregate geometries

that are based on cube octahedral grain shapes were selected as reference. The above specified

deformation was simulated for those references as well as for the associated two (seed corrected)

reconstruction alternatives, where one tessellation utilizes grain volume information, the other

estimating it from nearest centroid distances (termed ‘present’ and ‘absent’ case).

Figure 7.5 compares for both tessellation cases (upper and lower panel) the relative deviation of

average Cauchy stress in each reconstructed grain from its reference result. The relative deviations

observed for the same stress component are very similar for both cases. For both reconstructed

structures, the (green) normal stress component along the loading direction agrees very closely

to that found in the respective reference structure. The magnitude of the other two normal stress

components as well as of the three shear stress components is in general substantially lower than
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Figure 7.6: Joint probability of volume Vref of synthetic grains and the distance dnn from each grain
centroid to the nearest neighboring one. Quantities are normalized by the average grain volume
⟨Vref⟩ and its equivalent radius requiv = (3⟨Vref⟩/4π)1/3, respectively. Cumulative probability is
scaled to unity within each (vertical) bin of normalized grain volume. Centroid distance progres-
sively deviates from expected relation (dashed line) with decreasing volume of grain, resulting in
a weak correlation between the distance to the nearest grain centroid and the volume of a grain.

the normal stress observed along the loading direction. The deviations of these five components

progressively increase with decreasing (reference) stress magnitudes, i.e., they fan out toward the

left, occasionally even resulting in a reversal of sign (illustrated by open diamonds in Fig. 7.5).

The rightmost column in Fig. 7.5 shows the relative deviation of deviatoric normal components,

i.e., excluding the mean stress σsph = (σ11 +σ22 +σ33)/3. In contrast to the normal stress com-

ponents shown in the leftmost column, the relative deviation of the deviatoric normal components

is markedly reduced and essentially independent of the magnitude of reference deviatoric stress.
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7.1.6 Discussion

As shown in Fig. 7.4, the uncertainty in the volume of a reconstructed grain is much larger when

the tessellation is estimating the Laguerre weights from nearest centroid distances compared to

when directly using the known reference volumes. This increased uncertainty can be connected to

the weak correlation found between the volume of a grain and its distance dnn to the nearest neigh-

boring grain centroid, which is illustrated in Fig. 7.6. For a given dnn, the potential grain volume

associated with that distance falls into a range of about a factor of three for the relatively large

grains (right end of Fig. 7.6), while for the relatively small grains (left end) this range increases to

about an order of magnitude. This increasing uncertainty is caused by the progressive deviation

with decreasing grain size of the most likely nearest neighbor distances toward values above the

natural correlation Vref
1/3 ∝ dnn (dashed line in Fig. 7.6). Since small grains are likely to be sit-

uated in a neighborhood of larger grains, the distance to the centroid of their nearest neighboring

grain is frequently unrelated to and far larger than its own equivalent radius. Such a disconnect is

less probable for a relatively large grain since, for many conceivable neighborhoods, the closest

centroid distance is primarily determined by the size of the large grain itself.

Although a sizable difference emerged in the quality of reconstruction between grain structures

tessellated with the Laguerre weights either derived from grain volumes or estimated from nearest

centroid distances (see Fig. 7.4), under the uniaxial loading applied in the present study, both tessel-

lated grain structures show very similar deviations from the reference structure in terms of observed

lattice strains (i.e. stress). Figure 7.7 collects deviations across all six Cauchy stress components

from both tessellations in a joint probability plot. The observed increase in relative deviations (un-

certainty) with decreasing (reference) stress magnitude is compatible with an absolute uncertainty
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Figure 7.7: Joint probability of stress magnitudes σref in reference structure and relative deviations
σtess/σref combined from both tessellated structures. Cumulative probability is scaled to unity
within each bin of stress magnitudes. Solid lines exemplify relative deviations in stress due to
absolute differences of 5 MPa and 10 MPa. With increase in magnitude of stress, the relative
deviations in stress due to difference in grain morphologies diminishes.

in the range of 5 MPa to 10 MPa as illustrated by the solid lines in Fig. 7.7. The apparently much

closer agreement between deviatoric normal stress components (Fig. 7.5 right) compared to the

normal stress components containing hydrostatic stress (Fig. 7.5 left) can be rationalized with a

similar argument. The deviatoric stress projection results in an overall shift to absolutely larger

values for the two transverse stress components (xx and zz, red and blue in Fig. 7.5). Therefore,

the large relative deviations observed at small stress magnitudes tend to shrink when considered at

larger stress magnitudes.
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7.2 Cumulative volume fraction of log-normal grain size distributions

Assuming individual grain volumes in a polycrystal to follow a log-normal distribution, their

cumulative number fraction FN as function of grain volume Vgrain is given by

FN =
1
2

(
1+ erf

[ lnVgrain/µ
√

2σ

])
(7.6)

and the average grain volume is

⟨V ⟩= µ exp

(
σ2

2

)
. (7.7)

Therefore, the relative grain volume corresponding to a particular cumulative number fraction

follows as

Vgrain
⟨V ⟩ = exp

(
√

2σ erf−1 [2FN −1]− σ2

2

)
. (7.8)

The relation between cumulative volume fraction FV and cumulative number fraction is established

by integration of Eq. (7.8), yielding

FV =
1
2

erfc
[

σ√
2
− erf−1 [2FN −1]

]
. (7.9)

Conveniently, Eq. (7.9) does not depend on the actual grain volume magnitudes but only on the

shape of their distribution, which is governed by the variance σdistr as illustrated by the sequence

of gray curves in Fig. 7.1.

7.3 Grain size normalization

The ‘relative grain volume’ of each grain in a population of Ngrains occupying an overall volume

Vtotal (typically counted in voxels) is defined as the grain volume, Vgrain, normalized by the average

grain volume:

Vrel =
Vgrain
⟨V ⟩ =

Vgrain
Vtotal

Ngrains . (7.10)
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The cumulative volume fraction as a function of relative grain volume can then be used to compare

different grain populations on the same scale.

7.4 Generation of synthetic grain structures

The pipeline listed in 7.2 is used to generate the synthetic structures shown in Fig. 7.2(a).

A log-normal grain size distribution with mean µsize = 1.0 and variance σsize = 0.4 created by

‘StatsGenerator’ was packed into the synthetic volume using grain shape types of either ‘cube

octahedron’ or ‘super ellipsoid’.

Table 7.2: DREAM.3D pipeline for generating synthetic grain structures.

Filter order Filter name

1 StatsGenerator
2 Initialize Synthetic Volume
3 Establish Shape Types
4 Pack Primary Phases
5 Write Output
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