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ABSTRACT

NOVEL LEARNING ALGORITHMS FOR MINING GEOSPATIAL DATA

By

Shuai Yuan

Geospatial data have a wide range of applicability in many disciplines, including environmen-

tal science, urban planning, healthcare, and public administration. The proliferation of such

data in recent years have presented opportunities to develop novel data mining algorithms for

modeling and extracting useful patterns from the data. However, there are many practical

issues remain that must be addressed before the algorithms can be successfully applied to

real-world problems. First, the algorithms must be able to incorporate spatial relationships

and other domain constraints defined by the problem. Second, the algorithms must be able

to handle missing values, which are common in many geospatial data sets. In particular,

the models constructed by the algorithms may need to be extrapolated to locations with

no observation data. Another challenge is to adequately capture the nonlinear relationship

between the predictor and response variables of the geospatial data. Accurate modeling of

such relationship is not only a challenge, it is also computationally expensive. Finally, the

variables may interact at different spatial scales, making it necessary to develop models that

can handle multi-scale relationships present in the geospatial data.

This thesis presents the novel algorithms I have developed to overcome the practical

challenges of applying data mining to geospatial datasets. Specifically, the algorithms will be

applied to both supervised and unsupervised learning problems such as cluster analysis and

spatial prediction. While the algorithms are mostly evaluated on datasets from the ecology

domain, they are generally applicable to other geospatial datasets with similar characteristics.

First, a spatially constrained spectral clustering algorithm is developed for geospatial

data. The algorithm provides a flexible way to incorporate spatial constraints into the

spectral clustering formulation in order to create regions that are spatially contiguous and



homogeneous. It can also be extended to a hierarchical clustering setting, enabling the cre-

ation of fine-scale regions that are nested wholly within broader-scale regions. Experimental

results suggest that the nested regions created using the proposed approach are more bal-

anced in terms of their sizes compared to the regions found using traditional hierarchical

clustering methods.

Second, a supervised hash-based feature learning algorithm is proposed for modeling

nonlinear relationships in incomplete geospatial data. The proposed algorithm can simulta-

neously infer missing values while learning a small set of discriminative, nonlinear features

of the geospatial data. The efficacy of the algorithm is demonstrated using synthetic and

real-world datasets. Empirical results show that the algorithm is more effective than the

standard approach of imputing the missing values before applying nonlinear feature learning

in more than 75% of the datasets evaluated in the study.

Third, a multi-task learning framework is developed for modeling multiple response vari-

ables in geospatial data. Instead of training the local models independently for each re-

sponse variable at each location, the framework simultaneously fits the local models for all

response variables by optimizing a joint objective function with trace-norm regularization.

The framework also leverages the spatial autocorrelation between locations as well as the

inherent correlation between response variables to improve prediction accuracy.

Finally, a multi-level, multi-task learning framework is proposed to effectively train pre-

dictive models from nested geospatial data containing predictor variables measured at mul-

tiple spatial scales. The framework enables distinct models to be developed for each coarse-

scale region using both its fine-level and coarse-level features. It also allows information to be

shared among the models through a common set of latent features. Empirical results show

that such information sharing helps to create more robust models especially for regions with

limited or no training data. Another advantage of using the multi-level, multi-task learning

framework is that it can automatically identify potential cross-scale interactions between the

regional and local variables.
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CHAPTER 1

INTRODUCTION

For the past decade, due to advances in remote sensing, GPS technology and the prolifera-

tion of web-based geographical data sharing services, more and more geospatial data have

become available. Geospatial data can be defined as data with geographical information,

such as latitude, longitude, address, and zip code [117]. Traditional geospatial data include

maps of cities, lakes, and watersheds. Modern geospatial data are more ubiquitous and het-

erogeneous. Examples include photos captured by smartphones with their location service

enabled, tweets posted by users tagged with their address information, and the real-time

latitude and longitude information recorded by ride-sharing apps.

Geospatial data contains valuable information that can be used for various applications,

such as environmental science, healthcare, urban planning, and business management. For

example, real time traffic data can be used to predict traffic congestion, historical crimi-

nal data can be used to predict the locations of future crime events, and satellite images

of an area can be used to monitor land cover changes. Because of their wide range ap-

plicability, this has led to the growing amount of interest in developing data mining and

machine learning techniques to analyze the geospatial data [113, 25, 50, 47, 82, 45, 103].

Such techniques including regression, classification and clustering. Regression analysis is the

process for estimating the statistical relationship among variables, specifically how a change

in a continuous-valued dependent variable is associated with a change in the independent

variables. For example Bertazzon et al. [11] applied a land-use regression (LUR) model to

estimate the risks for air pollution. Classification techniques can be used to assign each spa-

tial object to its predefined category [112]. For example, Thil and Wheeler [113] applied a

decision tree classifier to predict shopping destination of participants living in a metropolitan

area while in [25], Cleve et al. employed a combination of fuzzy and nearest neighbor classi-

fication technique to recognize objects in satellite imagery. Clustering is another widely used
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data mining technique for analyzing geospatial data. The goal of clustering is to partition the

spatial objects into groups in such a way that objects belonging to the same group are more

similar (i.e., “closer") to each other compared to those belonging to other groups. Clustering

techniques have been applied to various geospatial datasets for region delineation [50, 47] as

well as to detect threats to the forest ecosystem from insects, diseases, and other agents [82].

Other techniques such as association rule mining are also applicable to the geospatial data.

For example, Han et al. [45] applied association rule mining to discover spatial relationships

between large towns and nearby lakes or highways.

1.1 Challenges and Motivation

While the large amount of geospatial data and their wide range of applicability have led

to the development of numerous data mining algorithms, there are many practical issues

remain that need to be addressed. First, the algorithms must be able to take into account

spatial autocorrelation and other spatial constraints defined by the domain. For example,

it is known that nearby geospatial objects tend to be more similar to each other compare

to objects located far away from each other. This suggests that spatial autocorrelation

must be incorporated when analyzing geospatial data in order to produce more realistic

and useful results. For example, in cluster analysis for region delineation, spatial contiguity

of the regions is a desirable criterion as the contiguous area of land is useful for research,

policy, and management purposes [67]. However, many traditional clustering methods are

not designed to produce spatially contiguous clusters. For example, Figure 1.1 shows the

result of applying k-means clustering to lake ecology data, where each region (cluster) is

represented with a different color on the map. Although some regions appear to be spatially

contiguous, many of them are geographically disconnected. Alternative clustering algorithms

are therefore needed that can effectively incorporate spatial autocorrelation for applications

that require spatially contiguous regions.

Second, the algorithm should be able to handle missing values, which are commonly
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Figure 1.1: K-means clustering applied on geospatial features.

found in many real-world geospatial datasets. For example, real-time data from GPS devices

have been increasingly used to monitor the physical activities of human subjects. However,

the signal lapses that are inherent in GPS often lead to incomplete traces for applying

more advanced analytical techniques [79]. Another example where missing values are often

present is in lake ecology data (see the LAGOS-NE database to be described in Section 1.2).

Measurements of lake water quality variables would be missing if they were not sampled at a

given lake on a particular day. Although there are several standard techniques for handling

missing values, they are mostly applied during the preprocessing step. For example, a simple

strategy is to employ the complete case approach, where all incomplete data points will be

discarded. This strategy is not effective if there are very few data points without missing

values. Another common strategy is to impute the missing value with the average value of

the corresponding attribute. However, this strategy will fail when the data are skewed or

not centered at the mean value. More importantly, since these strategies are implemented as

a data cleaning step, they are oblivious to the needs and characteristics of subsequent data

mining algorithms to be applied to the preprocessed data.

The third challenge is to accurately capture the nonlinear relationship between the

geospatial predictors and response variables. Previous studies have showed that many
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geospatial relationships are nonlinear [86]. For example, Shaker and McCauley et al. [77]

showed the relationship between nutrients and chlorophyll among lakes follow a sigmoidal

function. Ehlinger [102] showed that the relationship between aquatic ecological conditions

and landscape features in Southern Wisconsin is nonlinear. However, modeling this nonlinear

relationship is not only difficult, it is also computationally expensive.

Finally, the geospatial variables may exist at multiple spatial scales and variables from

different scales may interact with each other. For instance, previous work in lake ecology

found evidence of cross-scale interactions between geospatial driver variables quantified at

local and regional spatial scales for predicting lake nutrients [110]. Designing algorithms that

can handle multi-scale relationships in geospatial data sets is another challenge that must

be addressed in order to construct more robust predictive models.

In this thesis, I present four novel learning algorithms for mining geospatial data. The

algorithms were applied mostly to the ecology domain. This domain is chosen as the testbed

for my research as it has many applications, such as regionalization and spatial prediction,

that may benefit from the deployment of the algorithms developed in this study. As proof of

concept, the proposed algorithms will be applied to a newly integrated lakes ecology database

named LAGOS-NE (LAke multi-scaled GeOSpatial and temporal database) [109]. LAGOS-

NE consists of lake ecology data gathered from multiple sources, covering a wide range of

spatial scales. Although the proposed algorithms are mostly evaluated on LAGOS-NE, they

are generally applicable to other geospatial datasets with similar characteristics.

1.2 Lake Ecology Database

LAGOS-NE is a multi-scaled geospatial temporal database integrated from disparate

data sources. The database covers a study region spanning across 17 states in the Up-

per Midwestern and Northeastern part of the United States, as shown in Figure 1.2. The

database is divided into two modules, one containing measurements of lake water quality

such as total phosphorus, total nitrogen and water clarity while the other include climate,
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landscape, and other characteristics of the lakes (including lake location, lake area, and

freshwater connectivity).

Figure 1.2: The study region of LAGOS-NE database. The blue dots represent lakes with
area that are greater than 4 ha. The study region covers 17 states in the Northeastern and
upper Midwest parts of the US.

LAGOS-NE is chosen for this study due to several reasons. First, it is a rich geospatial

dataset, containing variables measured at different spatial scales. Both the volume and va-

riety of the data are large, making it a challenging dataset for applying conventional data

mining algorithms. The variables in the database also exhibit many of the properties de-

scribed in Section 1.1, including spatial autocorrelation, missing values, nonlinearity, etc.,

thus providing opportunities for developing novel data mining algorithms. Finally, even

though the database was created by integrating data from multiple sources, rigorous quality

assurance/quality control (QAQC) procedures have been performed to produce a standard-

ized database with consistent format and convention [109].

1.3 Thesis Contributions

This section summarizes the technical contributions of this thesis in addressing the chal-

lenges of applying data mining to geospatial datasets. The proposed data mining algorithms
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will be applied to various unsupervised and supervised learning problems such as cluster

analysis and regression. The specific contributions of this thesis are as follows:

• A spatially constrained spectral clustering algorithm is developed for the region delin-

eation problem. Spectral clustering is a clustering algorithm that partitions a collection

of data objects into smaller groups by performing eigen-decomposition of their feature

similarity matrix. For geospatial data, the approach can be used to split the geo-

graphical landscape units into smaller regions or zones. However, similar to k-means,

existing spectral clustering formulation is not designed to produce regions that are

spatially contiguous. The proposed algorithm introduces a flexible way to incorporate

spatial relationships into the spectral clustering formulation. The resulting regions

created by the proposed algorithm were found to be spatially contiguous and rela-

tively more homogeneous compared to existing constrained clustering methods. The

formulation can be further extended to create regions that are nested wholly within

broader-scale regions.

• A supervised hash-based feature learning algorithm is proposed for modeling non-linear

relationships in incomplete geospatial data. The proposed algorithm simultaneously

infers the missing feature values and learns a set of nonlinear hash-based features from

the incomplete data. The learned hash-based features have the following properties:

(i) complete (i.e., have no missing values), (ii) lower dimensionality than the original

data, (iii) incorporates supervised information to learn the features, (iv) enables a

linear model to be trained to capture nonlinear relationship between the predictor and

response variables.

• A multi-task learning framework is proposed for the joint modeling of geospatial data

with multiple response variables. Instead of training the local model for each response

variable at each location independently, the framework simultaneously fits the local

models for every response variable at all locations by optimizing a joint objective func-
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tion with trace-norm regularization. The proposed framework enhances the prediction

performance of the local models by incorporating spatial autocorrelation between the

different locations as well as correlations between response variables into its unified

formulation.

• A multi-level multi-task learning framework is developed for spatial prediction from

nested geospatial data. The framework trains an independent model for each region

using both its fine-level and coarse-level features. It also allows information to be

shared among the various models through their common set of latent vectors. In

addition, the framework can automatically identify potential cross-scale interactions

between fine-level and coarse-level variables of the geospatial data.

1.4 Roadmap

The remainder of the thesis is organized as follows: Chapter 2 presents a literature review

on existing techniques related to this research. Chapter 3 describes the proposed spatially

constrained spectral clustering approach for region delineation. Chapter 4 introduces the

hash-based feature learning algorithm for incomplete geospatial data. Chapter 5 presents a

multi-task learning approach for modeling geospatial data with multiple response variables.

Chapter 6 discusses the proposed multi-level multi-task learning approach for handling nested

geospatial data. Finally Chapter 7 concludes the work.

The findings from three of the chapters in the thesis have been accepted for publication

at various data mining conferences. Chapter 3 is based on the materials taken from Shuai et

al. [146], which was accepted for oral presentation at the 2015 IEEE International Conference

Data Science and Advanced Analytics Special Session on Environmental and Geo-spatial

Data Analytics. Chapter 4 is taken from a conference paper presented at the 2017 SIAM

International Conference on Data Mining [145]. Chapter 6 is adopted from a manuscript

that was recently accepted for the 2017 IEEE International Conference on Data Mining.

7



CHAPTER 2

LITERATURE REVIEW

This chapter presents an overview of previous work related to this study. Section 2.1 intro-

duces the general problem of mining geospatial data. Section 2.2 provides an overview of

feature learning and hash-based methods. Section 2.3 presents the previous work on han-

dling incomplete data. Section 2.4 presents the existing work on multi-task learning while

Section 2.5 describes the previous work on constrained spectral clustering.

2.1 Mining Geospatial data

Geospatial data are abound, collected from various sources including field sampling,

satellite imagery, GPS and geotagging services. This type of data has unique properties that

distinguish it from others. First, it is geo-referenced, i.e., containing location information

such as latitude, longitude, height/elevation, address, or zip code. Second, in addition to their

location information, the geospatial data often contain non-spatial features characterizing

properties associated with the locations. These non-spatial features typically exhibit some

spatial patterns, which leads to the spatial autocorrelation associated with the geospatial

data. Third, the geospatial data may contain variables defined at multiple spatial scales.

These variables may interact at different characteristic spatial scales to produce the non-

linear relationships observed in the data [110]. Due to these unique characteristics, special

consideration and techniques are needed for mining geospatial data.

Classification is a data mining technique that seeks to categorize data objects into their

corresponding class labels [112]. For geospatial data, the classification technique must con-

sider not only the relationship between the predictor and response variables, but also their

spatial dependencies as previous studies have shown that the classification performance can

be improved by incorporating such dependencies into the models [46, 100, 40, 81]. There are

many applications where classification can be applied to the geospatial data. For example,
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Thil and Wheeler [113] used a top-down spatial decision tree that based on information gain

to predict travel destination choices. Cleve et al. [25] used classification algorithm to recog-

nize land-use and land-cover categories from the 3-band aerial imagery. Hollister et al. [49]

applied random forests to the land use, land cover and lake morphometry data, to predict

the lake trophic state in order to monitor the ecosystem condition.

Clustering is another popular data mining technique for geospatial data. For example,

it can be applied to create ecological regions of the landscape based on land cover and land

use features. Early works such as Openshaw [89] proposed a two-step approach, in which

a conventional clustering method was applied followed by a cluster refinement step to sep-

arate clusters that were not geographically connected. Host et al. [50] performed hierarchi-

cal k-means clustering on monthly temperature and precipitation data across northwestern

Wisconsin to identify clusters(regions) with similar seasonal climatic patterns. Hargrove et

al. [47] applied k-means clustering on elevation, climatic, and edaphic factors to generate

regions. Besides regionalization, clustering techniques can also be used for threat identi-

fication. For example, Mills et al. [82] applied k-means clustering to satellite images and

analyzed the transition distance between cluster assignment between any two years in order

to identify threats to the forest ecosystem.

2.2 Feature Learning

Feature learning [10] is the task of extracting an alternative feature representation of a

given data set. Feature learning methods can help improve the performance of predictive

models in many ways, such as reducing the dimensionality of large-scale data to improve

its training efficiency and removing noise, redundant, or irrelevant features that are present

in the data. Classical methods such as principal component analysis [90] were developed

to create features that preserve variability in the original data. These methods are mostly

unsupervised, and thus, provide no guarantee about the usefulness of their extracted features

for predictive modeling tasks. More recently, methods such as stacked autoencoders [14, 147]
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and deep learning [61, 149] have been proposed to create hierarchical features from the

data. Although such methods have been successfully applied to applications such as image

classification [61], they are expensive to train and require considerable human efforts to

design the right architecture for a given prediction problem.

Hashing is another feature learning technique that has attracted considerable attention

in recent years. The goal of hash-based feature learning is to transform the data into easily

computable features that preserve the underlying properties of the data. For example, the

Min-hash method [15] was designed to create features that preserve the Jaccard similarity

between instances. Random hyperplane based hashing were introduced in [20] to preserve

cosine similarity. These features can help improve the efficiency of processing similarity

search queries in large data sets. Hash-based methods have also been developed for other

similarity measures [131, 85]. In general a hash function is defined as y = h(x), where y is

called the hash code or signature and h(·) is the hash function.

Wang et al. [126] divided hashing methods into two categories: one that does not explore

the data distribution while the other that learns the hash function based on the distribution

of the data. The former category includes locality sensitive hashing (LSH), which is a family

of hashing techniques that map instances with similar features into the same hash code with

higher probability [52]. LSH can be viewed as a probabilistic similarity-preserving dimension

reduction method. Many variants of LSH have been designed to provide an unbiased set of

features that preserve certain distance metrics [15, 20, 131, 85]. This includes the Min-

hash [15] and random hyperplane [20] methods described in the previous paragraph.

Unlike the data independent hashing methods described in previous paragraph, the sec-

ond category encompasses techniques that learn hash functions from a given input dataset.

There are three elements that must be considered in this learning to hash scheme [126]:

distance metric, hash function and optimization criterion. For example, Weiss et al. [131]

proposed an algorithm known as spectral hashing to learn a binary code representation

of data such that the Hamming distance between data instances in terms of their hash
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code correlates with the similarities of their features. The hash function used is given by

h(x) = sgn(sin(π2 + γwTx)). Let yi ∈ RK be the hash code of length K for the ith data in-

stance and Y = [y1, ...,yn]. The spectral hashing algorithm is designed to solve the following

optimization problem:

min
Y

Trace (Y(D−W)YT )

s.t. Y1 = 0, YYT = I, yim ∈ {−1, 1}

where W is a similarity matrix with W(i, j) = exp(− ‖ xi − xj ‖2 /ε2) and D is a diagonal

matrix, where the diagonal elements are the corresponding row sum of W.

Kulis and Darrell [62] proposed an optimization scheme that minimizes the difference

between the Euclidean distance in the original feature space and the Hamming distance in

the hash code feature space. Specifically, for a given input data set X = [x1,x2, ...,xn], the

objective function of their optimization is given as follows:

min
w

∑
(i,j)∈N

[dM (xi,xj)− dR(xi,xj)]
2

where dM (xi,xj) = 1
2 ‖ xi − xj ‖2, dR(xi,xj) = 1

K

∑K
k=1(hk(xi) − hk(xj))

2 and hp(x) =

sgn(
∑
q Wpqκ(xpq, x)). In this formulation, K is the number of hash functions, κ(xi, xj) the

kernel function over the data and W is the weight matrix to be learnt.

2.3 Incomplete Geospatial Data

Missing value is a common problem encountered when dealing with real world datasets.

A missing value means there is no data value stored for a given feature. There are different

types of missing values—missing completely at random (MCAR), missing at random (MAR),

and missing not at random (MNAM) [70]. Some of the popular techniques for dealing with

missing values include: (1) using only the complete cases by discarding instances with missing

values; (2) imputing the missing values within each feature by their respective average feature

values. In addition, model-based approaches have been developed as well, such as those based
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on maximum likelihood, Bayesian, and multiple imputation methods [69]. However, most

of these techniques are parametric methods, which assume that the data follow standard

probability distributions such as Gaussian.

More recently, matrix completion has emerged as an increasingly popular technique for

handling missing values in an input data matrix. Matrix completion employs an optimization

scheme for completing a partially observed matrix under the assumption that the original

matrix has a low rank. Specifically, the matrix completion approach can be cast into the

following constraint rank minimization problem:

min rank(X)

s.t. Xij = Mij , (i, j) ∈ Ω

(2.1)

where M is the data matrix we wish to recover and X is a low rank approximation of the

matrix M . Ω is the set of indices for the non-missing elements of M . Candès and Recht [18]

proved that most low rank matrices can be effectively recovered when the number of observed

entries m satisfies the following inequality:

m > Cn1.2rlog(n),

where n is the dimension of an n× n matrix M , r is the desired rank of the matrix X and

C is a positive constant. Since solving the rank minimization problem is computationally

NP-hard, an alternative way is to approximate the rank with the nuclear norm and solve the

convex relaxation problem shown in Equation (2.2) using semidefinite programming.

min ‖ X ‖∗

s.t. Xij = Mij , (i, j) ∈ Ω

(2.2)

Cai et al.[17] proposed a singular value thresholding (SVT) algorithm for solving the opti-

mization problem shown in Equation (2.3) by reformulating the objective function as follows:

min τ ‖ X ‖∗ +
1

2
‖ X ‖2F

s.t. Xij = Mij , (i, j) ∈ Ω

(2.3)
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They showed that the solution of the constrained nuclear norm minimization problem in

Equation (2.3) converges to the solution of Equation (2.2) when τ approaches infinity.

A faster algorithm based on accelerated proximal gradient method have been proposed

to solve least square minimization problems with nuclear norm regularization [115, 56]. For

matrix completion, instead of adding the equality constraint Xij = Mij as in Equations

(2.2) and (2.3), a least square loss term can be added to the objective function. The matrix

completion formulation can be cast into the following objective function:

min
X

1

2
‖ A(X)− b ‖22 +µ ‖ X ‖∗ (2.4)

where A : Rm×n → Rp is a linear map that extracts the non-missing entries of its input

matrix and µ is a predefined parameter.

2.4 Multi-task Learning

Multi-task learning (MTL) is a machine learning approach for solving multiple related

prediction problems at the same time by capturing their shared information [19]. The ratio-

nale for using MTL is that by incorporating the relationship between different tasks, one can

improve the learning ability. For the past decades, MTL has been successfully used in many

learning schemes including regression[137, 151], clustering [32] and classification[142, 140].

MTL can be applied to a wide range of applications, such as disease progression prediction

[151], Web image and video search [129], as well as web page categorization [22].

The simplest way to integrate different kinds of task relationship is by introducing a

regularization term into the learning formulation. Since the assumption of how the tasks

are related are different for different applications, this has led to the design of different

regularization terms. For example, one simple assumption is that the task parameters are

close to each other. This simple intuitive assumption leads to the regularization term based

on the mean value of all the task parameters [33]. Another common assumption is that the

model parameters shared a low-rank representation. Since the rank of the model parameter

matrix is hard to optimize, it can be approximated by using the trace norm regularization
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instead of minimizing the matrix rank directly. For example, Chen et al. [23] proposed a

robust MTL algorithm that can learn multiple tasks simultaneously while identifying the

irrelevant tasks. Argyriou et al. [2] generalized the single task L1 norm and proposed a

method to learn the sparse representation shared across different models. Kumar et al.[63]

assumed that each model is a linear combination of a finite set of base models.

Since many geospatial datasets involve predictions at multiple locations, they can be

naturally cast into a multi-task learning framework. For example, Xu et al. [138] presented a

multi-task learning formulation for predicting monthly precipitation at 37 weather stations

in Canada based on geospatial data. Xu et al. [139] proposed a weighted incremental multi-

task learning algorithm that simultaneously identifies the latent factors through supervised

tensor decomposition and learns spatial temporal models. Zhou et al. [151] proposed a MTL

learning framework for predicting the disease progression. The proposed framework consider

prediction at each time stamp as a task and task relatedness is captured by a temporal

group lasso regularizer. Zhao et al. [148] builded predictive models for spatio-temporal event

forecasting. The proposed MTLmodel improved the predicting performance by utilizing both

static features and dynamic features generated from a multi-task feature learning framework,

and using the shared information between different locations.

2.5 Constrained Spectral Clustering

Constrained clustering is a semi-supervised learning algorithm that utilizes side informa-

tion from the domain to improve clustering performance. Based on the domain knowledge,

experts can explicitly specify which pair of data instances must be in the same cluster (i.e.,

Must-link(ML) constraints) and which pair of instances must not be in the same cluster (i,e,

Cannot-link(CL) constraints). For example, a constrained K-means clustering approach was

developed in [125]. Shi et al. [105] proposed a constrained co-clustering algorithm that takes

into account of both feature similarity and the ML and CL constraints. De Bie et al. [12]

proposed a method that constrains the eigenspace for which the cluster membership vector
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is projected. Coleman et al. [26] extended the approach in [12] to handle the situation in

which some of constraints are potentially inconsistent with each other.

In this thesis, we focus on constrained spectral clustering. Spectral clustering [104, 75] is a

well-known clustering method that uses the eigenvector spectrum of a feature similarity ma-

trix to find the underlying clusters of a given data set. Advantages of using spectral clustering

include its flexibility in terms of incorporating diverse types of similarity functions, superi-

ority of its clustering solution compared to the traditional k-means algorithm [84], and its

well-established theoretical properties (including the consistency [120] and convergence [121]

guarantees of the algorithm). There are two popular ways to incorporate constraints into the

spectral clustering framework. The first category encompasses methods that directly alter

the graph Laplacian matrix. For example, Kamvar et al. [57] employed a Gaussian kernel

as their similarity matrix and considered a binary constraint matrix where ML constraints

are assigned as 1 and CL constraints are designated as 0. Kawale and Boley [13] proposed

adding an `1-regularizer that penalizes constraint violations to the graph cut objective func-

tion. However, the proposed method was designed for constrained spectral clustering with

only 2 clusters.Another way to alter the matrix is by performing a weighted sum between the

feature similarity matrix and the adjacency matrix of the constraint graph. The modified

graph Laplacian is given by a convex combination of the original graph Laplacian and the

Laplacian induced by the constraint matrix. The second category of approaches for incorpo-

rating domain constraints is by restricting the feasible solution set of the spectral clustering

algorithm. For example, Wang and Davidson [128] proposed an algorithm that optimizes

the objective function of spectral clustering while adding a constraint that the ML and CL

must be satisfied more than a predefined threshold.
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CHAPTER 3

SPATIALLY CONSTRAINED SPECTRAL CLUSTERING FOR
REGIONALIZATION

3.1 Introduction

A regionalization framework delineates the geographical landscape into spatially contigu-

ous, homogeneous units known as regions or zones. Regionalizations are important because

they provide the spatial framework used in many disciplines, including landscape ecology,

environmental science, and economics, as well as for applications such as public policy and

natural resources management [24, 73, 39, 76]. For example, the hierarchical system of hy-

drologic units described in [101] provides a standardized regionalization framework that has

been widely used in water resource and land use studies [31]. Abell et al. [1] have also

developed a global biogeographic regionalization framework that serves as a useful tool for

studying biodiversity in freshwater systems and for conservation planning efforts.

McMahon et al. [78] divide existing multivariate regionalization methods into two cate-

gories, qualitative and quantitative. For qualitative methods, regions with similar landscape

characteristics are delineated by experts from multiple maps of different geographic features

using manual visual interpretation [4, 88]. For quantitative methods, clustering approaches

such as k-means and hierarchical clustering [50, 47, 55] are used to partition the geograph-

ical area into smaller regions. Although quantitative clustering approaches provide a more

systematic and reproducible way to identify regions compared to qualitative approaches, one

potential limitation of existing clustering methods is that the regions created may not be

spatially contiguous. Region contiguity is a desirable criterion for many applications that

treat regions as individual entities for purposes including research, policy, and management

(e.g., site-specific management in precision agriculture [67]). Therefore, alternative methods

are needed that can effectively cluster similar areas based on multiple mapped variables, but
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have the added constraint of being spatially contiguous.

In the preliminary version of this work [146], we presented a spatially constrained spec-

tral clustering framework that uses a truncated exponential kernel [58] to produce spatially

contiguous and homogeneous regions [57, 13, 105, 128]. In this chapter, we extend the

formulation to create hierarchical regions, where fine-scaled regions can be nested within

broad-scale regions. Creating such nested regions is extremely useful for many applications

because hierarchical structure is often held up as a fundamental feature of both the natural

world and complex systems (as reviewed in [135]). In fact, the world?s biomes and ecological

regions have often been delineated in a nested hierarchical structure [5, 1]. Constrained

versions of hierarchical clustering techniques [83] such as single-link [66], complete-link [95],

UPGMA [60, 98], and Ward’s method [53, 134] have often been used to create such nested

regions. However, as will be shown in this study, the regions generated by such methods

tend to be highly imbalanced in terms of their sizes, and thus, are not as suitable for many

applications, including resource planning and management.

We use a recursive bisection approach to extend our formulation in [146] to hierarchical

clustering. Our top-down approach for creating nested regions is different from the bottom-

up approach commonly used by existing methods [53, 95, 60, 98, 134]. Using three criteria

for region evaluation—landscape homogeneity, region contiguity, and region size—our exper-

imental results suggest that the proposed framework outperforms three other constrained hi-

erarchical clustering methods in 2 out of the 3 criteria. For example, it consistently produces

regions that are more homogeneous and balanced in region size compared to the spatially

constrained complete-link [95] and UPGMA [60, 98] algorithms. Our proposed algorithm

also outperforms the constrained version of Ward’s method [134] in terms of producing re-

gions that are spatially contiguous and approximately uniform in size. Finally, although the

spatially constrained single link method [66] is also capable of producing regions that are

homogeneous and contiguous, it tends to create one or two very large regions that cover the

majority of the landscape area. An ad-hoc parameter for maximum region size is needed by
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the spatially constrained single link method to prevent the formation of such large regions

[96]. Tuning this parameter is cumbersome as it must be done at every level of the hierarchy

since the maximum region size depends on the number of regions. Our proposed hierarchi-

cal method does not have such a problem because its objective function, which is based on

the normalized cut criterion [104] used in spectral clustering, is inherently biased towards

producing more uniformly-sized clusters.

The remainder of this chapter is organized as follows. Section 3.2 reviews previous work

on the development of regionalization frameworks, constrained clustering, and hierarchical

clustering methods. Section 3.3 formalizes the region delineation problem and presents an

overview of spectral clustering. Section 3.4 describes the different ways in which spatial

constraints can be incorporated into the spectral clustering framework. It also presents the

partitional and hierarchical implementations of our proposed spatially constrained spectral

clustering framework. Section 3.5 describes the application of spatially constrained spec-

tral clustering algorithms to the region delineation problem. Section 3.6 concludes with a

summary of the results of this study.

3.2 Related Work

Region delineation has traditionally been studied as a spatial clustering [44] problem.

Duque et al. [31] classified the existing data-driven approaches into two categories. The first

category does not require explicit representation and incorporation of spatial constraints into

the clustering procedure. Instead, the constraints are satisfied by post-processing the clus-

ters or optimizing other related criteria. For example, Openshaw [89] applied a conventional

clustering method followed by a cluster refinement step to split clusters that contained ge-

ographically disconnected patches. The second category of methods explicitly incorporates

spatial constraints into the clustering algorithm [31]. Examples of such methods include

adapted hierarchical clustering, exact optimization methods, and graph theory based meth-

ods. This second category also encompasses the constrained clustering methods [3, 125, 29]
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developed in the fields of data mining and machine learning.

Constrained clustering [7, 125] is a semi-supervised learning approach that uses the do-

main information provided by users to improve clustering results. The domain information is

typically provided as must-link (ML) and cannot-link (CL) constraints to be satisfied by the

clustering solution. ML constraints restrict the pairs of data points that must be assigned to

the same cluster, whereas CL constraints specify the pairs of points that must be assigned to

different clusters. For example, Kamvar et al. [57] uses the ML and CL constraints to define

the affinity matrix of the data. Shi et al. [105] proposed a constrained co-clustering method

that considers both the similarity of features as well as the ML and CL constraints. All of

these methods were designed to manipulate the graph Laplacian matrix using the domain

constraints available. There has also been growing interest in developing constrained-based

approaches for spectral clustering [57, 13, 105, 128, 28]. For example, De Bie et al. [12]

developed an approach that restricts the eigenspace for which the cluster membership vector

is projected. Wang and Davison [128] proposed a constrained spectral clustering method

that considers real-valued constraints and imposed a threshold on the minimum amount

of constraints that must be satisfied by the feasible solution. However, none of these con-

strained spectral clustering methods were designed for the region delineation problem. The

framework presented in our previous work [146] employs a Hadamard product to combine

the feature similarity matrix with spatial contiguity constraints, which is similar to the ap-

proach used in Craddock et al. [28] for generating an ROI atlas of the human brain using

fMRI data. However, unlike the approach used in [28], we consider a truncated exponen-

tial kernel to relax the spatial neighborhood constraints and perform extensive experiments

comparing the framework to various constrained spectral clustering algorithms.

Current constrained spectral clustering algorithms have also focused primarily on parti-

tional clustering. They require the number of clusters to be specified a priori. In contrast,

hierarchical methods generate a nested set of clustering for every possible number of clusters.

The hierarchy of clusters, also known as a dendrogram, can be created either in a top-down
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(i.e., divisive hierarchical clustering) or bottom-up (i.e., agglomerative hierarchical cluster-

ing) fashion [112, 55, 54]. Some of the widely used agglomerative hierarchical clustering

algorithms include single link [53], complete link [95], group average (UPGMA) [60, 98],

and Ward’s method [55, 134] whereas examples of divisive hierarchical clustering algorithms

include minimum spanning tree [42] and bisecting k-means [99]. Current approaches for

creating nested regions are mostly based on different variations of agglomerative hierarchical

clustering. Each of these variations has its own strengths and limitations [83]. For example,

the single-link method can identify irregular shaped clusters but is highly sensitive to noise

[112]. In contrast, the Ward’s method can minimize the cluster variance but is susceptible

to the inversion problem [83]. Unfortunately, many of these agglomerative methods can

produce highly imbalanced sizes of regions, which is not desirable for many applications [6].

3.3 Preliminaries

This section formalizes region delineation as a constrained clustering problem and presents

a brief overview of spectral clustering and its constrained-based methods.

3.3.1 Region Delineation as Constrained Clustering Problem

Consider a data set D = {(xi, si)}Ni=1, where xi ∈ Rd is a d-dimensional vector of landscape

features associated with the geo-referenced spatial unit si ∈ R2. Let R = {1, 2, · · · , k}

denote the set of region identifiers, where k is the number of regions, and C = {(si, sj ,Cij)}

denote the set of spatial constraints. For region delineation, we consider only ML constraints

and represent them using a constraint matrix C defined as follows:

Cij =


1 if si and sj are spatially adjacent,

0 otherwise.
(3.1)

The goal of region delineation is to learn a partition function V that maps each spatial unit si

to its corresponding region identifier ri ∈ R in such a way that (1) maximizes the similarity
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between the spatial units in each region and (2) minimizes the constraint violations in the

set C.

3.3.2 Spectral Clustering

Spectral clustering is a class of partitional clustering algorithms that relies on the eigen-

decomposition of an input affinity (similarity) matrix S to determine the underlying clusters

of the data set. Let {x1,x2, · · · ,xN} be a set of points to be clustered. To apply spectral

clustering, we first compute an affinity matrix S between every pair of data points. The

affinity matrix is used to construct an undirected weighted graph G = (V,E), where V is the

set of vertices (one for each data point) and E is the set of edges between pairs of vertices.

The weight of each edge is given by the affinity between the corresponding pair of data

points. The Laplacian matrix of the graph is defined as L = D− S, where D is a diagonal

matrix whose diagonal elements correspond to Dii =
∑
j Sij . The goal of spectral clustering

is to create a set of partitions on the graph G in such a way that minimizes the graph cut

while maintaining a balanced size of the cluster partitions [75].

The spectral clustering solution can be found by solving the following optimization prob-

lem [75]:

arg min
r
rTLr s.t. rTDr =

∑
i

Dii, 1
TDr = 0 (3.2)

where 1 and 0 are vectors whose elements are all 1s and 0s, respectively. The solution for r

is obtained by solving the following generalized eigenvalue problem: Lr = λDr. To obtain k

clusters, we first extract the top k generalized eigenvectors and apply a standard clustering

algorithm such as k-means to the data matrix generated from the eigenvectors.

3.3.3 Constrained Spectral Clustering

Current methods for incorporating constraints into spectral clustering algorithms can be

divided into two categories. The first category encompasses methods that directly alter the
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graph Laplacian matrix, e.g., by applying a weighted sum between the feature similarity

matrix S and the constraint matrix C given in Equation (3.1):

Weighted sum: Stotal(δ) = (1− δ)S + δC, (3.3)

δ ∈ [0, 1] is a parameter that controls the trade-off between maximizing cluster homogeneity

and preserving the constraints of the data. When δ approaches zero, the clustering solution

is more biased towards maximizing the feature similarity whereas when δ approaches one, it

is more biased towards preserving the constraints.

Let D and D(c) be the diagonal matrices constructed from the feature similarity matrix

(S) and constraint matrix (C) in the following way:

Dii =
∑
j

Sij , D
(c)
ii =

∑
j

Cij .

Using Equation (3.3), it can be shown that the modified graph Laplacian is given by a convex

combination of the graph Laplacian for the feature similarity matrix and the graph Laplacian

for the constraint matrix, i.e.,

Ltotal = Dtotal − Stotal

= (1− δ)(D− S) + δ(Dc −C) (3.4)

The weighted sum approach described above is a special case of the spectral constraint

modeling (SCM) algorithm proposed by Shi et al. [105]. The altered graph Laplacian can be

substituted into Equation (3.2), which in turn, allows us to apply existing spectral clustering

algorithm to identify the regions.

SCM: arg min
r∈RN

rTLtotalr (3.5)

s.t. rTDtotalr =
∑
i

Dtotal
ii , 1TDtotalr = 0.

The second category of approaches for incorporating domain constraints is to alter the

feasible solution set of the spectral clustering algorithm. For example, Wang and Davidson
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[128] proposed the CSP algorithm, which optimizes the following objective function.

CSP: arg min
r∈RN

rT L̄r (3.6)

s.t. rT C̄r ≥ α, rT r = vol(G), r 6= D1/21,

where L̄ = D−1/2LD−1/2 and C̄ = D
−1/2
c CD

−1/2
c are the normalized graph Laplacian

and normalized constraint matrix, respectively. The threshold α gives a lower bound on

the amount of constraints in C that must be satisfied by the clustering solution. Instead

of setting the parameter for α, Wang and Davison [128] requires users to specify a related

parameter β, which was shown to be a lower bound for α.

3.4 Spatially Constrained Spectral Clustering

In this section, we describe the various ways to represent spatial contiguity constraints

and to incorporate them into the spectral clustering framework.

3.4.1 Kernel Representation of Spatial Contiguity Constraints

For constrained spectral clustering, we can define a corresponding constraint graph GC =

(V,EC), where V is the set of data points and EC is the set of edges whose weights are

defined as follows:

Eij =


1, (vi, vj) is a ML edge;

−1, (vi, vj) is a CL edge;

0, otherwise.

(3.7)

For region delineation, the vertices of the constraint graph correspond to the set of

spatial units to be clustered, while the ML edges correspond to pairs of spatial units that are

adjacent to each other. It is also possible to define a CL edge between every pair of spatial

units that are either located too far away from each other or are obstructed by certain

barriers (e.g., large bodies of water) that make them unreasonable for assignment to the

same region. However, since the number of CL edges tends to grow almost quadratically
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with increasing number of points, this severely affects the runtime of spectral clustering

algorithm. Furthermore, the ML edges are often sufficient to provide guidance on how to

form spatially contiguous regions. For these reasons, we consider constraint graphs that have

ML edges only in this chapter. Let C denote the adjacency matrix representation of the

edge set EC .

A constrained spectral clustering algorithm is designed to produce solutions that are

consistent with the constraints imposed by GC . Unfortunately, for region delineation, it

may not be sufficient to use the adjacency information between neighboring spatial units to

control the trade-off between spatial contiguity and landscape homogeneity of the regions.

To improve its flexibility, we introduce a spatially constrained kernel matrix, Sc. The simplest

form of the kernel would be a linear kernel, which is defined as follows:

Linear Kernel: Slinear
c = C (3.8)

More generally, we can define an exponential kernel [58] on the adjacency matrix C as follows.

Exponential Kernel: S
exp
c = eC = I+ C +

1

2!
C2 +

1

3!
C3 + · · · =

∞∑
k=0

Ck

k!
(3.9)

where I is the identity matrix. Since we consider only ML constraints, the k-th power of

the adjacency matrix C represents the number of ML paths of length k that exist between

every pair of vertices. An ML path between vertices (vi, vj) refers to a sequence of ML edges

e1, e2, · · · , em such that the initial vertex of e1 is vi and the terminal vertex of em is vj . It

can be shown that S
exp
c is a symmetric, positive semi-definite matrix, and thus, is a valid

kernel [58]. Furthermore, as the diameter of the constraint graph is finite, we also consider

a truncated version of the exponential kernel:

Truncated Exponential : Strunc
c (δ) ≡

δ∑
k=0

Ck

k!
(3.10)

where the parameter δ controls the ML neighborhood size of a vertex. The ML neighborhood

specifies the set of vertices that should be in the same region as the vertex under consid-

eration. As an example, consider the graph shown in Figure 3.1. When δ = 1, the ML
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Figure 3.1: An illustration of spatial contiguity constraint.

neighborhood for vertex A corresponds to its immediate neighbors, B, C, D and E. When

δ = 2, the ML neighborhood of vertex A is expanded to include vertices that are located

within a path of length 2 or less from A, i.e., B, C, D, E, F, G, H and I. When δ = 3, the ML

neighborhood for vertex A includes all of the vertices in the graph. Note that each term in

the summation given in Equation (3.9) is normalized by the path length; therefore, a vertex

that is located further away from a given vertex has less influence as compared to a nearer

vertex.

Finally, the truncated exponential kernel matrix can be binarized so that it can be inter-

preted as an adjacency matrix for an expanded constraint graph, whose ML neighborhood

size is given by the parameter δ.

Binarized Truncated Exponential Kernel : Sbin
c (δ) ≡ I

[ δ∑
k=0

Ck > 0

]
(3.11)

where I[·] is an indicator function whose value is equal to 1 if its argument is true and 0

otherwise. Both the truncated and binarized truncated exponential kernels allow us to vary

the degree to which the original constraint graph should be satisfied. As δ increases, the

constraint satisfaction becomes more relaxed. Ultimately, when δ is greater than or equal to

the diameter of the graph, Sbin
c reduces to a matrix of all 1s, which is equivalent to ignoring

the spatial contiguity constraints.
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3.4.2 Hadamard Product Graph Laplacian

We now describe our approach for incorporating the spatially constrained kernel matrix Sc

into the spectral clustering formulation. Instead of using the weighted sum approach given

in Equation (3.3), we consider a Hadamard product approach to combine Sc with the feature

similarity matrix S:

Hadamard Product: Stotal(δ) = S ◦ Sc(δ), (3.12)

where Sc(δ) corresponds to either the truncated exponential kernel (Equation (3.10)) or the

binarized truncated exponential kernel (Equation (3.11)).

There are several advantages to using a Hadamard product approach to combine the

matrices. First, unlike the weighted sum approach, it discourages spatial units that are

located far away from each other from being assigned to the same cluster even though their

feature similarity is high. Second, it produces a sparser kernel matrix, which is advantageous

for large-scale graph analysis. Finally, it gives more flexibility to the users to specify the

level of constraints that must be preserved by tuning the parameter δ, which controls the

ML neighborhood size of the constraint graph.

Let Dtotal
ii =

∑
j [S◦S(c)(δ)]ij be elements of a diagonal matrix computed from Stotal. The

Hadamard product graph Laplacian is given by Ltotal = Dtotal − S ◦ Sc(δ). The modified

graph Laplacian can be substituted into Equation (3.2) and solved using the generalized

eigenvalue approach to identify the regions.

3.4.3 Partitional Spatially-Constrained Spectral Clustering Algorithm

Algorithm 1 presents a high-level overview of our partitional clustering approach. First, a

feature similarity matrix is created by applying the Gaussian radial basis function kernel,

k(xi,xj) = exp(−
||xi−xj ||2

2σ2
) to the feature set of the spatial units. The spatially constrained

kernel matrix Sc is then computed from the constraint matrix C, where Cij = 1 if (si, sj) is

a ML edge and 0 otherwise. Note that if the truncated exponential kernel is used to represent
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Algorithm 1 Partitional Spatially-Constrained Spectral Clustering.
Input:
D = {(x1, s1), (x2, s2), ..., (xN , sN )}
C ∈ RN×N : spatial constraint matrix.
k: number of clusters.
δ: neighborhood size.
Output:
R = {R1, R2, ..., Rk} (set of regions).

1. Create similarity matrix S from {x1,x2, · · · ,xN}.
2. Compute the spatially constrained kernel matrix, Sc(δ).
3. Compute the combined kernel Stotal based on S and Sc.
4. Compute Dtotal and Ltotal.
5. Solve the generalized eigenvalue problem Ltotalr = λDtotalr. Create matrix
Xr = [r1r2 · · · rk] from the top-k eigenvectors.
6. R ← k-means(Xr,k)

the spatially constrained kernel matrix, we termed the approach as a spatially-constrained

spectral clustering (SSC) algorithm. However, if the binarized truncated exponential kernel is

used, the approach is known as a binarized spatially-constrained spectral clustering (BSSC).

Once the combined graph Laplacian, Ltotal is found, we extracted the first k eigenvectors

as the low rank approximation of the combined kernel matrices. We then applied k-means

clustering to partition the data into its respective regions. Note that the partitional clus-

tering framework shown in Algorithm 1 is also applicable to the SCM and CSP algorithms,

by setting their corresponding graph Laplacian, Ltotal and diagonal matrix, Dtotal. The

computational complexity of the spatially constrained spectral clustering is equivalent to

the standard spectral clustering algorithm, which is O(N3).

3.4.4 Hierarchical Spatially-Constrained Spectral Clustering Algorithm

The formulation described in the previous section can be extended to hierarchical clustering

by using a recursive bisection approach. Specifically, the algorithm will iteratively identify

the least homogeneous region to be split into two smaller subregions until every subregion

contains only a single spatial unit.
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Algorithm 2 Hierarchical Spatially-Constrained Spectral Clustering (HSSC).
Input:
D = {(x1, s1), (x2, s2), ..., (xN , sN )}
C ∈ RN×N : spatial constraint matrix.
δ: neighborhood size.
Output:
R = {R1, R2, ..., Rk} (set of regions).

1. Create similarity matrix S from {x1,x2, · · · ,xN}.
2. Compute the spatially constrained kernel matrix, Sc(δ).
3. Compute the combined kernel Stotal based on S and Sc.
4. Compute Dtotal and Ltotal.
5. Initialize R1 as the cluster containing all N spatial units.
6. for k = 2 to N do
6a. C∗ = choose(Rk−1)
6b. Rk ← Rk−1 − C∗
6c. (C1, C2) ← SSC(DC∗ , 2)
6d. Rk ← Rk−1 ∪ {C1, C2).

The pseudocode of the proposed algorithm is shown in Algorithm 2. First, the feature

similarity matrix S is computed using the Gaussian RBF kernel function. Next, the spatial

constraint matrix Sc(δ) is created using Equation 3.11. The algorithm will then compute the

combined kernel Stotal and its corresponding graph Laplacian matrix Ltotal, similar to the

approach described in Section 3.3.3. The algorithm initially assigns all the data points to a

single cluster. It then recursively partitions the data until k clusters are obtained, as shown

in lines 6a-6d in Algorithm 2. Let Rk−1 be the set of clusters found after k − 1 iterations.

On line 6a, the algorithm chooses the cluster Ck ∈ Rk−1 with the worst sum of square within

errors (SSW) to be split into two smaller clusters, C1 and C2 (line 6c). One advantage of

using our top-down recursive partitioning approach is that neither the feature similarity nor

the spatial constraint matrix have to be updated at each iteration unlike the bottom-up

hierarchical clustering, which requires us to re-compute the modified feature similarity and

constraint matrices each time a pair of clusters is merged.
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3.5 Application to Region Delineation

To evaluate the effectiveness of constrained spectral clustering for region delineation, we

conducted a case study on a large-scale terrestrial ecology data set. The results of the case

study are presented in this section.

3.5.1 Data set

The constrained spectral clustering methods were assessed using geospatial data from the

LAGOS-NEGEO [109] database. The database contains landscape characterization features

measured at multiple spatial scales with a spatial extent that covers a land area spanning

17 U.S. states. The land area was divided into smaller hydrologic units (HUs), identified

by their 12-Digit Hydrologic Unit Code [101]. Our goal was to develop a regionalization

system for the landscape by aggregating the 20,257 HUs into coarser regions. We selected 28

terrestrial landscape variables and performed experiments on three study areas—Michigan,

Iowa, and Minnesota. When the values for a landscape variable was always zero, we removed

that variable before applying the clustering methods. The number of HUs to be clustered

in each study region, as well as number of landscape variables for each, are summarized in

Table 4.2.

Table 3.1: Summary statistics of the data set.

Study Area # HUs # landscape # PCA Diameter of
variables components constraint graph

Michigan 1,796 17 10 41
Iowa 1,605 19 12 43

Minnesota 2,306 19 11 57

The data set was further preprocessed before applying the constrained clustering algo-

rithms. First, each variable was standardized to have a mean value of zero and variance

of one. Since some of the landscape variables were highly correlated, we applied principal

component analysis to reduce the number of features, keeping only the principal components
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that collectively explained at least 85% of the total variance. The principal component scores

were then used to calculate a feature similarity matrix for all pairs of HUs in each study area.

The ML edges for the constraint graph were determined based on whether the polygons for

two HUs were adjacent to each other.

3.5.2 Baseline Methods

For partitional-based constrained clustering, we compared our algorithms, SSC and BSSC,

against three competing baseline methods. The first baseline, called SCM [105], uses a

weighted sum approach (Equation (3.3)) to combine the feature similarity matrix S with

the adjacency matrix C of the constraint graph. The algorithm has a parameter δ ∈ [0, 1]

that controls whether the clustering should favor homogeneity or spatial contiguity of the

regions. When δ approaches 0, the algorithm is biased towards maximizing the similarity of

features in the regions whereas when δ approaches 1, it is biased towards producing more

contiguous regions.

The second baseline method, called CSP [128], uses the spatial constraints to restrict

the feasible set of the clustering solution (Equation (3.6)). As noted in Section 3.3.3, the

algorithm has a parameter β that gives a lower bound on the proportion of constraints that

must be satisfied by the clustering solution. Furthermore, β < λmaxvol(G) to ensure the

existence of a feasible solution [128]. Instead of using β, we define an equivalent tuning

parameter δ = β/[λmaxvol(G)] so that its upper bound, which is equal to 1, is consistent

with the upper bound for other algorithms evaluated in this study.

The third baseline is a spatially constrained clustering method proposed recently in the

ecology literature by Miele et al. [80]. It uses a stochastic model to represent nodes and

links in a spatial ecological network. The cluster membership of each node is assumed to

follow a multinomial distribution. Spatial constraints are introduced as a regularization

penalty in the maximum likelihood estimation of the model parameters. The algorithm is

implemented as part of the Geoclust R package. We denote the model-based method as MB
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in the remainder of this chapter.

For hierarchical clustering, we compare our proposed HSSC algorithm against the space-

constrained clustering method described in [66]. The method is similar to traditional agglom-

erative hierarchical clustering, except it applies a Hadamard product between the feature

similarity matrix S with the spatial constraint matrix Sc to generate a combined similarity

matrix Stotal. This is identical to the approach used in HSSC. The agglomerative clustering

algorithm initially assigns each spatial unit to be in its own cluster (region). It then merges

the two clusters with the highest similarity value in Stotal. Both the feature similarity ma-

trix S and the spatial constraint matrix Sc are then updated accordingly. The update for

S depends on how the similarity between two clusters is computed. Among the popular

approaches that have been used to update S include single link [106], complete link [111],

group average (UPGMA) [108], and the Ward’s method [130]. The adjacency matrix C is

updated based on whether there is a path from any point in one cluster to any point in the

other cluster and the constrained similarity matrix Sc is updated based on Equation 3.10

with a predefined δ.

We implemented SCM, SSC, BSSC, HSSC and the spatially constrained agglomerative

hierarchical clustering (single link, complete link, UPGMA, Ward’s method) in Matlab. For

CSP and MB, we downloaded their software from the links provided by the authors1.

3.5.3 Evaluation Metrics

We evaluated the performance of the algorithms based on three criteria: homogeneity, spatial

contiguity, and region size. To determine whether the regions were ecologically homogeneous,

we computed their within-cluster sum-of-square error (SSW) [112]:

SSW =
k∑
i=1

∑
x∈Ci

dist(µi, x)2 (3.13)

1CSP was obtained from https://github.com/gnaixgnaw/CSP whereas MB was down-
loaded from http://lbbe.univ-lyon1.fr/Download-5012.html?lang=fr.
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where µi is the centroid of the cluster Ci. The lower SSW is, the more homogeneous are the

spatial units within the regions.

The second criteria assesses the spatial contiguity of the resulting regions. We consider

two metrics for this evaluation. The first metric computes the percentage of ML constraints

preserved within the regions:

PctML =
# ML edges within discovered regions

Total # of ML edges
(3.14)

The second metric corresponds to a relative contiguity metric proposed in the ecology liter-

ature by Wu and Murray [136]. The metric takes into consideration both the within patch

contiguity (φ) and between patch contiguity (ν):

c =
φ+ ν

Ω
(3.15)

where

φ =
k∑
i=1

(
Ni(Ni − 1)

2
), (3.16)

ν =
1

2

k∑
i=1

k∑
j=1,j 6=i

(
NiNj

l
γ
ij

)

Ω =
(
∑k
i=1Ni)(

∑k
i=1Ni − 1)

2

In the preceding formula, k is the number of regions and Ni is the number of spatial units

assigned to the i-th region. lij denote the minimum spanning tree path length between

regions i and j while γ is a distance decay parameter. Since the metric is normalized by the

total number of possible edges in a complete graph (Ω), it ranges between 0 and 1.

Although spatial contiguity is a desirable criterion, it may lead to highly imbalanced

regions [83]. For example, an algorithm that creates one very large region along with many

smaller but contiguous regions will likely have a high contiguity value. Previous studies [30, 6]

have shown the importance of maintaining a more balanced cluster sizes to ensure good

clustering performance. Thus, given a set of k clusters with their corresponding cluster
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sizes, n1, n2, ..., nk, we define a metric, Cbalance, based on the normalized geometric mean

of the cluster sizes:

Cbalance =
k

N

[
n1 × n2 × ...× nk

]1
k
, (3.17)

where N is the total number of data points and k is the number of clusters. The metric

ranges from 0 to 1 and the larger the value, the more balanced are the cluster sizes.

3.5.4 Results and Discussion

This section presents the results of applying various clustering algorithms to the terrestrial

ecology data.

3.5.4.1 Tradeoff between Homogeneity and Spatial Contiguity

We first analyze the trade-off between landscape homogeneity and spatial contiguity of the re-

gions by comparing the results for four partitional constrained spectral clustering algorithms:

SCM, CSP, SSC, and BSSC. The number of clusters was set to 10. As each algorithm has a

parameter δ that determines whether the clustering should be more biased towards increas-

ing the within-cluster similarity or preserving the ML constraints, we varied the parameter

and assessed their performance using the metrics described in Section 3.5.3. The δ param-

eter for SSC and BSSC has been re-scaled to a range between 0 and 1 by dividing the ML

neighborhood size with the diameter of the constraint graph.

The results are shown in Figure 3.2. Observe that the contiguity score (c and PctML)

for SCM increases rapidly as δ becomes closer to 1. This is because increasing δ would bias

the algorithms towards preserving the spatial constraints. A similar increasing trend was

also observed for CSP, especially in Iowa and Michigan, though the increase is not as sharp

as SCM. In contrast, the contiguity scores would decrease for BSSC as δ increases because

it creates more new ML edges involving spatial units that are not adjacent to each other.

For SSC, the contiguity scores do not appear to change by much as δ increases. This is
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Figure 3.2: Comparison between various constrained spectral clustering algorithms in terms
of their landscape homogeneity (SSW) and spatial contiguity (PctML and c). The horizontal
axis in the plots corresponds to the parameter value δ.
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because the weight 1/k! associated with each path of length k decreases rapidly to zero as

k increases. As a consequence, the ML neighborhood size for SSC grows until it reaches a

maximum size by which increasing δ will not significantly alter the constraint graph. Thus,

SSC is less sensitive to parameter tuning compared to BSSC. Figure 3.2 also shows there is

generally an increasing trend in SSW for SCM and CSP as δ increases. For SSC, the SSW

values do not appear to change significantly with increasing δ whereas for BSSC, the SSW

curve decreases monotonically as the neighborhood size increases.

The results of this study showed that the trade-off between landscape homogeneity and

spatial contiguity varies among the constrained spectral clustering algorithms. For CSP and

SSC, the parameters provided by the algorithms do not allow us to achieve the full range

of SSW and contiguity scores. Although these algorithms can produce regions with high

contiguity scores, their SSW values were also very high. In contrast, with careful parameter

tuning, SCM and BSSC can produce regions with significantly lower SSW compared to CSP

and SSC. Observe that the slopes of the curves are steeper near δ = 1 for SCM, which

suggests that decreasing δ below 1 would lead to a dramatic reduction in the contiguity

score and SSW of the regions. This makes it harder for SCM to produce regions that are

both spatially contiguous and homogeneous. In contrast, the curves for the contiguity scores

of BSSC are flatter near δ = 0. This enables the BSSC algorithm to produce regions with

homogeneous landscape features yet are still spatially contiguous.

3.5.4.2 Performance Comparison for Partitional based Constrained Clustering

In this experiment, we set the number of clusters to 10 and selected the δ parameter that

gives the highest contiguity score for each constrained spectral clustering method. If there

are more than one parameter values that achieve the highest contiguity score, we chose the

one with lowest SSW. For MB, since the Geoclust R package did not support parameter

tuning by users, we applied the algorithm using its default setting.

Table 3.2 summarizes the results of our analysis. SCM, SSC, and BSSC can be tuned to
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Table 3.2: Performance comparison among various partitional spatially-constrained cluster-
ing algorithms with the number of clusters set to 10.

States Method PctML c SSW Cbalance
IA SCM 93.26% 1.00 15104 0.95

CSP 87.37% 0.91 13628 0.19
MB 89.95% 0.69 18997 0.34
SSC 92.83% 1.00 13993 0.95
BSSC 92.40% 1.00 14001 0.94

MI SCM 96.08% 1.00 18200 0.85
CSP 87.81% 0.92 18307 0.44
MB 88.76% 0.65 16091 0.91
SSC 95.69% 1.00 17534 0.92
BSSC 94.92% 1.00 17485 0.93

MN SCM 94.78% 1.00 20506 0.91
CSP 86.62% 0.96 23755 0.69
MB 88.96% 0.64 20400 0.67
SSC 94.57% 1.00 19998 0.93
BSSC 94.12% 1.00 19594 0.91

produce regions that are fully contiguous (c = 1). The SSW for BSSC and SSC are consis-

tently better than SCM. These results clearly showed the advantage of using a Hadamard

product approach instead of a weighted sum approach to integrate spatial constraints into

the feature similarity matrix. The limitation of using a weighted sum approach can be

explained as follows. Since the highest contiguity score is achieved by setting δ = 1, the

clustering solution of SCM is equivalent to applying spectral clustering on the constraint

graph only, without considering the feature similarity. If we reduce the parameter value to,

say δ = 0.95, its contiguity score decreases sharply (see Figure 3.2) while its SSW value is

still worse than BSSC. The weighted sum approach has poor SSW because it significantly

alters the feature similarity matrix.

To illustrate the limitation of using the weighted sum approach, consider the toy example

shown in Figure 3.3. Assume there are 4 data points: A, B, C and D, that need to be

clustered. A sample of their pairwise similarity values is shown in Table 3.3.

Although the A-B pair has a significantly lower similarity value than C-D, the weighted

sum approach inflates the similarity significantly (assuming δ = 0.95) which makes it overall

36



Figure 3.3: A toy example illustrating the advantage of using Hadamard product for com-
bining constraints with feature similarity. Each labeled node is a data point, with a solid line
representing a must-link constraint between two points and a dashed line representing the
absence of such constraint. The weight of each edge denotes the feature similarity between
two data points.

Table 3.3: A toy example illustrating the advantage of using Hadamard product for combin-
ing constraints.

Pairs Feature ML Weighted Hadamard
Similarity Constraint Sum Product

A-B 0.1 1 0.955 0.1
B-C 0.5 0 0.025 0
C-D 0.8 1 0.990 0.8

similarity to be comparable to C-D. In contrast, the Hadamard product approach simply

zeros out the similarity of pairs that do not have ML edges, and thus, will not artificially

inflate the similarities of pairs with ML edges.

Furthermore, since the feature similarity is computed using Gaussian radial basis function

(see Section 3.4.3), the resulting matrix S for the weighted sum approach is still dense after

incorporating the spatial constraints. Unless δ = 1, the weighted sum approach will not

prevent spatial units that are located far from each other from being placed into the same

region. For example, consider the regions found by the weighted sum approach for Iowa, as

shown in Figure 3.4. Although the regions appear to be spatially contiguous, they are not

compact and have varying sizes. In fact, most of the spatial units were assigned to the same

region when δ = 0.95. Even at the lower δ threshold, its SSW (14805) is still the worse than

the SSW for our framework and CSP.
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IA

Figure 3.4: Regions for Iowa created by the SCM algorithm using the weighted sum approach
(with δ = 0.95).

The contiguity scores for MB are worse than other constrained clustering methods. Nev-

ertheless, it preserves at least 88% of the ML edges within the regions. Except for Michigan,

its SSW values are also worse than other methods. In contrast, CSP has the lowest con-

tiguity score among all the constrained spectral clustering methods. Except for Iowa, its

SSW values are also among the worst. The limitation of CSP [128] is a consequence of the

parameter used to control its spatial contiguity. As shown in Equation (3.6), the level of

spatial constraints satisfied by the clustering solution depends on the parameter α. However,

instead of directly tuning α, the authors suggested to vary another parameter, β, which was

shown to be an upper bound of α. The results of our case study showed that increasing the

value of β does not necessarily imply an increase in α. To illustrate this point, we randomly

generated a constraint graph that has nine vertices with a randomly generated feature sim-

ilarity matrix. Assuming the number of clusters is equal to 2, we ran the CSP algorithm

with different parameter settings and plotted their values of α and β in Figure 3.6. Although

this figure shows that the value of β (blue diamond) is a lower bound of α (red circle), the

bound is so loose that it can not guarantee that increasing β will increase α. In fact, the

figure on the right shows that α is not a monotonically increasing function of β. This is why

controlling its parameter value will not always guarantee that the regions will be contiguous

even when δ = 1 (unlike SCM and the Hadamard product approaches).

In terms of the Cbalance measure, our results suggest that SCM, SSC, and BSSC achieve
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(a) SCM (b) CSP (c) MB

(d) SSC (e) BSSC

Figure 3.5: Regions created by the SCM, CSP, MB, SSC and BSSC algorithms for the state
of Michigan.

the highest cluster balance for all three states. This can be verified by examining the regions

generated by all the competing algorithms for the the state of Michigan, as shown in Figure

3.52 As can be seen from the figure, the regions produced by SCM, SSC, and BSSC are

more compact and uniform in size compared to CSP and MB. However, the SSW for SCM is

worse than the SSW for our proposed SSC and BSSC algorithms. This is not surprising as

SCM cannot produce contiguous clusters unless δ is very close to 1. If δ is lowered slightly

to 0.95, the regions changed significantly, as shown in Figure 3.4. By setting δ close to

1, SCM will focus only on preserving the spatial constraints, and thus, has worse cluster

homogeneity compared to our algorithms. Thus, our results clearly show the benefits of

applying BSSC to develop homogeneous and spatially contiguous regions compared to other

baseline algorithms. These results hold true even when the number of regions is varied. A

comparison of the results for different number of clusters can be found in our earlier work

[146].

2The corresponding maps of regions for other states can be found in [146].
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Figure 3.6: The relationship between α and β parameter values for the CSP algorithm when
applied to a synthetic graph data.

3.5.4.3 Performance Comparison for Hierarchical-based Constrained Clustering

In this section, we compared our proposed HSSC algorithm against the spatially-constrained

agglomerative clustering methods for constructing nested regions. Note that all of the al-

gorithms apply a Hadamard product to combine the constrained matrix Sc (for a given δ)

with the feature similarity matrix S to generate the combined matrix Stotal before applying

hierarchical clustering. For the spatially-constrained agglomerative hierarchical clustering

methods, the regions are iteratively merged starting from the initial Stotal.

For a fair comparison, we set δ = 1 for all the methods. The results for k = 10 are

summarized in Table 3.4. In terms of region contiguity, observe that all the methods can

achieve c = 1. However, the spatially constrained complete link and UPGMA algorithms

produce the highest PctML values while the Ward’s method produces the lowest value.

The PctML for our proposed HSSC algorithm is still relatively high and comparable to

its non-hierarchical counterparts, SSC and BSSC (see Table 3.2). Despite their high spatial

contiguity, both the spatially-constrained complete link and UPGMAmethods have the worst

SSW compared to other methods. Worst still, their Cbalance values are close to 0, suggesting

that the sizes of their regions are highly imbalanced. This can be seen from the maps shown
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Table 3.4: Performance comparison among various hierarchical spatially-constrained clus-
tering algorithms with δ = 1 and the number of clusters set to 10.

States Method PctML c SSW Cbalance
IA HSSC 92.53 % 1 15080 0.92

Single link 96.02 % 1 14191 0.04
Complete link 98.75 % 1 18309 0.02
UPGMA 98.45 % 1 18227 0.02
Ward’s 84.96 % 1 9281 0.48

MI HSSC 95.41 % 1 17420 0.86
Single link 95.31 % 1 16575 0.08
Complete link 98.72 % 1 20083 0.03
UPGMA 98.33 % 1 19441 0.04
Ward’s 86.28 % 1 14047 0.79

MN HSSC 95.02 % 1 20075 0.82
Single link 90.70 % 1 19660 0.20
Complete link 99.17 % 1 33431 0.01
UPGMA 98.81 % 1 28681 0.02
Ward’s 87.69 % 1 14183 0.63

in Figure 3.7, where there is a large region covering the majority of the landscape in each

state. In contrast, our HSSC algorithm has the highest Cbalance, consistently producing

regions that are compact and approximately similar in sizes.

The spatially-constrained single link method has comparable PctML but slightly lower

SSW compared to HSSC. It also suffers from the same imbalance region problem as the

complete link and UPGMA methods. Meanwhile, the spatially-constrained Ward’s method

achieves the lowest SSW among all the competing methods, which is not surprising since the

algorithm is designed to minimize the SSW in each iteration of the algorithm. However, this

comes at the expense of its poor PctML values, which is the worst among all the competing

methods. In addition, the Ward’s method is known to suffer from the cluster inversion

problem [83], in which its objective function is not monotonically non-decreasing as the

number of clusters increases. In short, our HSSC algorithm outperforms the complete link,

UPGMA, and Ward’s methods in 2 of the 3 evaluation criteria. Its PctML and SSW is also

quite similar to single link, which suffers from the region imbalanced problem.

Figures 3.8a and 3.8b show a comparison between the regions produced by BSSC, HSSC,
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HSSC Single link Complete link UPGMA Ward's

(a) Regions in IA developed by 5 hierarchical algorithm with 10 clusters.

HSSC Single link Complete link UPGMA Ward's

(b) Regions in MI developed by 5 hierarchical algorithm with 10 clusters.

HSSC Single link Complete link UPGMA Ward's

(c) Regions in MN developed by 5 hierarchical algorithm with 10 clusters.

Figure 3.7: Regions developed by 5 hierarchical spatially constrained clustering algorithm
for 3 study regions.

and the Ward’s method for the state of Michigan as we vary the number of regions from 4 to

10. We show the value of the unnormalized δ along with four metrics—c, PctML, SSW, and

Cbalance—at the top of each diagram. Recall that the normalized δ is the ratio between

the original δ given in Equation (3.7) and the diameter of the spatial constraint graph. As

we increase δ from 1/41 to 4/41, the Ward’s method no longer produces regions that are

contiguous unlike the BSSC and HSSC methods. The Cbalance for Ward’s method is also

worse than our algorithms except when the number of clusters is small. The results for BSSC

is quite comparable to HSSC, since both of them are based on the same spatially constrained
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K = 4 K = 6 K = 8 K = 10

(a) Results for δ = 1/41

BSSC

HSSC

Ward’s

K = 4 K = 6 K = 8 K = 10

(b) Results for δ = 4/41

Figure 3.8: Comparison between BSSC, HSSC and Ward’s method for number of clusterK =
4, 6, 8, 10. The five metrics evaluated are listed on top of each figure, namely: unnormalized
delta, contiguity metric c, PctML preserved, SSW and cluster balance. Results for δ = 1/41
are shown in (a) and results of the unnormalized δ = 4/41 are shown in (b).
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spectral clustering framework. The Cbalance and SSW for HSSC are slightly better than

BSSC but its PctML is slightly worse. While this may seem counter-intuitive since BSSC

directly optimizes the objective function for spatially-constrained spectral clustering whereas

HSSC uses a greedy recursive bisection strategy, it is worth noting that the objective function

does not depend solely on the feature similarities within the regions. Instead, it takes into

account the spatial constraint matrix C as well. In fact, if we compare the values of the

objective functions for BSSC and HSSC at k = 10 for the state of Michigan, BSSC has a

noticeably lower value (13458.13) compared to HSSC (14284.21).

Finally, we also compare the stability of the regions as we increase ML neighborhood

size (δ). For this experiment, we show the results for the state of Michigan (in which the

diameter of the constraint graph is 41) and varies the normalized δ from 1/41 to 4/41. We

use the adjusted rand index [94] to compare the similarity between two clustering results.

A high adjusted rand index would suggest that the regions found are stable, i.e., do not

vary significantly with different values of δ. Table 3.5 shows the mean adjusted rand index

(averaged over the number of clusters, which varies from 1 to 10) for HSSC, BSSC, and

Ward’s method. The results suggest that the proposed BSSC and HSSC methods are less

sensitive to the change in δ compared to the Ward’s method, which is another advantage of

using our frameworks.

BSSC HSSC Ward’s
Mean Adjusted Rand Index 0.92 0.86 0.66

Table 3.5: Stability of the regions generated by different hierarchical clustering methods for
the state of Michigan. The mean Adjusted Rand Index is computed for each method by
comparing the similarity between the regions found with δ = 1/41 to the regions found with
δ = 4/41.

3.6 Conclusions

This chapter investigated the feasibility of applying constrained spectral clustering to

the regionalization task. We compared several constrained spectral clustering methods and

44



showed the trade-off between landscape homogeneity and spatial contiguity of their result-

ing regions. We presented two algorithms, SSC and BSSC, that uses a Hadamard product

approach to combine the similarity matrix of landscape features with spatial contiguity con-

straints. The results of our case study showed that the proposed BSSC algorithm is most

effective in terms of producing spatially contiguous regions that are homogeneous. The ex-

tension of this algorithm to a hierarchical clustering setting also shows its advantages in

producing regions that are more balanced in size compared to other hierarchical spatially-

constrained algorithms. It also achieves high spatial contiguity and moderate SSW, compa-

rable to the results of its non-hierarchical counterpart (BSSC).
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CHAPTER 4

LEARNING HASH-BASED FEATURES FOR INCOMPLETE
CONTINUOUS VALUED DATA

4.1 Introduction

Real world data sets are often noisy, making it difficult to develop accurate prediction

models from the data. The data are often high-dimensional and may contain redundant

or correlated features, as well as missing values, which makes it crucial to derive a good

set of features to represent the data. This has led to considerable interest in developing

feature learning methods to overcome the limitations of using the original features of the

data. Numerous methods are available, from classical methods such as principal component

analysis [90] to more recent ones such as hash-based feature learning [64].

Hashing is a popular feature learning technique for transforming high dimensional data

into an alternative representation that preserves the similarities between instances in the

original data [126]. There are two main advantages of using hashing for feature learning.

First, it provides an effective dimensionality reduction technique, especially for applications

such as large-scale image and multimedia retrieval problems [59]. Second, the similarity

preserving property of the hash functions enables the hash-based features to be used as an

approximation to the features defined in the Reproducing Kernel Hilbert Space (RKHS). This

allows us to construct linear models on the hash-based features with comparable accuracy as

their nonlinear counterpart, but with substantial improvement in computational complexity.

Hash-based feature learning methods can be generally classified into two categories, de-

pending on how the features are created [126]. The first category corresponds to data-

independent methods, which create the features by applying randomly generated hash func-

tions to the data. This includes the min-hash [15], random hyperplane-based hashing [20],

and shift-invariant kernel hashing [92] methods. One potential limitation of using data-
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independent methods is that the number of hash-based features needed to provide a good

representation of the data can be very large since the hash functions are generated randomly.

Thus, data-driven methods have been developed as an alternative to such methods as they

can fit the salient properties of the data using a small set of hash functions. Methods that

belong to this second category include spectral hashing [131], semi-supervised hashing [127],

and minimal loss hashing [85].

Existing hash-based feature learning methods assume that the input data are complete.

Any missing values present in the data must be imputed before the hash functions can be

derived. Because the imputation is typically performed during preprocessing, the hash-based

features created after the preprocessing may not be optimal for the subsequent modeling

task. As an illustration, consider the example shown in Figure 4.1. Suppose P denotes a

data point that has a missing value for its predictor variable (the x-axis), but the value of

its response variable (the y-axis) is known. After applying mean imputation, the data point

P is shifted to its estimated point P’, which is much larger than its true value. This process

introduces a bias into the data set, resulting in a new regression model (represented by a

solid line in the diagram) that deviates from its true model (represented by a dashed line).

At first glance, the bias may seem quite small. However, it may become an issue with more

missing values in the data. If P is imputed in a way that takes into account the effect of the

imputation on the response variable, the regression model would be less affected by biases due

to the imputation. To overcome this challenge, we present a novel framework called H-FLIP

that combines missing value imputation with hash-based feature learning. Specifically, the

missing values are imputed in a way that preserves the relationship between the predictor

and response variables of the data.

Many existing hash-based feature learning methods are designed for discrete-valued data,

such as those encountered in image classification problems [59]. In this chapter, we investigate

the application of hash-based feature learning for regression problems. Specifically, the hash-

based features created with our approach are continuous rather than binary. In addition,
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Figure 4.1: Effect of mean value imputation on regression.

many existing methods create their hash-based features using a linear combination of the

original features. Since the relationship between the response and predictor variables is

often non-linear, these methods make the hash-based features ineffective for more complex

prediction tasks. Previous studies have shown that the inner product of random Fourier

features provides a good approximation to the shift-invariant kernels that are often used for

building nonlinear models [93]. However, since the Fourier features are generated randomly,

a relatively large number of such features is needed to provide a succinct representation of

the data. We address this problem by training a set of hash functions to fit the response

variable using random Fourier features. This enables our framework to model nonlinear

relationships in the data using a small set of hash functions. Our framework can thus be

regarded as a hybrid method that embeds a data-independent approach, i.e., random Fourier

features, into a supervised learning setting.

In summary, the main contributions of this chapter are:

• We developed a supervised feature learning framework for regression problems using

nonlinear, random Fourier features as its basis functions.

• We extended this framework to handle incomplete data by enabling the missing value
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imputation and hash-based feature learning to be performed jointly.

• We demonstrated the efficacy of our approach through extensive experiments using

both synthetic and real-world data sets. Our empirical results showed that the frame-

work is more effective than the standard approach of imputing the missing values before

applying feature learning in 7 out of 9 real-world data sets evaluated in this study.

The remainder of this chapter is organized as follows. Section 4.2 reviews the previous

works related to this research while Section 4.3 presents the preliminary background of

this work. The proposed framework along with its optimization algorithm are described in

Section 4.4. Experimental results validating the effectiveness of the framework is presented

in Section 4.5. Finally, we present the conclusions of this study in Section 4.6.

4.2 Related Work

High dimensionality is one of the characteristics of real world datasets. To avoid the

curse of dimensionality we need a powerful set of features in low dimensional space. Feature

learning [10] is the task of learning an better feature representation of a given data set.There

are different types of models for feature learning, such as probabilistic models [97, 87],

auto-encoders [14, 147], manifold learning [143], and deep networks [61, 149]. Hashing is

another feature learning technique that has been well studied. The goal of hash-based feature

learning is to transform the data into easily computable features that preserve the underlying

properties of the data, such as Min-hash and random hyperplane mapping. However, they

were mostly designed to represent complete data with binary hash codes unlike the framework

proposed in this chapter.

Missing values can be generally classified into three categories—missing completely at

random (MCAR), missing at random (MAR), or missing not at random (MNAR) [70]. A

common strategy to deal with missing values is to impute them with the mean or median

value of their respective features. Model-based approaches based on maximum likelihood

and Bayesian estimation methods have also been developed [69]. These methods assume
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that the data follow a certain probability distribution and the missing values are imputed in

a way that preserve properties of the distribution. More recently, matrix completion [18] has

emerged as a popular method for dealing with missing values. The method assumes that the

partially observed data matrix has a low rank, and thus, can be effectively recovered using

only a small number of observations. Candès and Recht [18] formulated matrix completion

as a trace-norm minimization problem and solved a convex relaxation of the problem using

semi-definite programming. The approach was extended by Cai et al. [17] who proposed a

singular value thresholding (SVT) algorithm for solving the optimization problem. In this

chapter, we integrate the matrix completion formulation into our framework to deal with

incomplete data.

4.3 Preliminaries

This section reviews some of the fundamental concepts underlying the framework pro-

posed in this chapter.

4.3.1 Support Vector Regression (SVR)

Support vector regression is a widely-used method to solve large scale prediction problems.

The method is grounded in statistical learning theory, based on the structural risk minimiza-

tion (SRM) principle [118]. The goal of SVR is to learn a linear function f that fits each

instance in the training set D = {xi, yi}Ni=1 with an absolute error bounded by ε. Formally,

this can be expressed by the following constrained optimization problem:

min
w,b

1

2
‖ w ‖2 +C

∑
i

(ξi + ξ∗i )

s.t. −ε− ξ∗i ≤ yi −wTxi − b ≤ ε+ ξi,

where ξi and ξ∗i are the slack variables that can be used to relax the error bounds on the

training instances and C controls the trade-off between minimizing the training error and

the magnitude of w.
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Table 4.1: Comparison among the various regression methods for modeling lake water quality
in terms of their mean square prediction error (MSE).

Method\Response variable TP TN Chla Secchi
Multiple linear regression 1.39 2.39 1.31 0.85
Ridge regression 0.78 0.72 0.71 0.59
Lasso regression 0.79 0.74 0.72 0.58
Linear SVR 0.78 0.71 0.71 0.58
Nonlinear SVR (RBF) 0.76 0.69 0.71 0.56

The linear SVR formulation can be extended to a nonlinear setting by projecting the

original features x to a higher dimensional feature space, Φ(x), such that the inner product

between instances in the new, projected space is equivalent to computing their similarity

in the original space using a nonlinear kernel function. For example, the Gaussian radial

basis function (RBF), k(xi,xj) = exp[−
‖xi−xj‖2

2σ2
] is a popular choice for nonlinear SVR.

The implicit mapping to a high-dimensional feature space facilitated by the kernel function

enables SVR to capture non-linear dependencies in the data.

To illustrate the advantages of using SVR, we have compared its performance to other re-

gression methods on four lake water quality data sets obtained from the LAGOS-NE database

[109]. Details about the data sets can be found in Section 4.5. Table 4.1 shows the mean

square error (MSE) obtained using 10-fold cross validation. Due to the noise present in the

data, methods such as multiple linear regression may overfit the training data resulting in

its high error rate. The performance of linear SVR is either comparable to or better than

the results obtained using lasso and ridge regression. However, the best results are obtained

using nonlinear SVR with Gaussian RBF kernel.

4.3.2 Random Fourier Features (RFF)

Despite its superior performance in terms of modeling complex relationships in data, the

nonlinear SVRmethod scales poorly with increasing data set size. This is because the method

requires considerable computational resources to compute and store the kernel matrices. To

overcome this limitation, Rahimi and Recht [93] proposed a mapping function known as
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(a) Accuracy (b) Run time

Figure 4.2: Average runtime and accuracy comparison for linear SVR with raw features,
nonlinear SVR with raw features, and linear SVR with RFF.

random Fourier feature:

φ(x) =
√

2/p cos(Rx + t) (4.1)

where R ∈ <p×d is a random matrix drawn from a standard normal distribution while

t ∈ <p is a random vector drawn from a uniform distribution between [0, 2π]. Previous

research has shown that the RFF provides an unbiased estimate of the RBF kernel in the

original feature space [93]. Thus, instead of applying nonlinear SVR with an RBF kernel,

comparable performance can be achieved by training a linear SVR on the RFF.

To illustrate this, Figure 4.2 compares the average runtime and accuracy for the following

three approaches: (i) linear SVR trained on the original features, (ii) nonlinear SVR trained

on the original features, and (iii) linear SVR trained on the random Fourier features. The

experiment was performed on the lake water quality data set with total phosphorous (TP)

as the response variable. For linear SVR with RFF, we vary the number of random Fourier

features from 1 to 5000, each repeated 10 times. The average 10-fold MSE and average

runtime for the different methods are shown in Figure 4.2. The results suggest that the
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MSE of SVR decreases with increasing number of RFF, approaching the results of nonlinear

SVR. Although its runtime increases with larger number of features, it is still significantly

lower than the runtime for nonlinear SVR. This result shows the advantage of using RFF as

hash-based features for training a linear SVR with comparable accuracy as nonlinear SVR.

Nevertheless, the number of hash-based features needed is still large (in the order of several

thousands) to produce an error rate that is comparable to nonlinear SVR.

4.3.3 Matrix Completion

Matrix completion is an approach for recovering missing values by assuming that the original

data is a low rank matrix. Let A ∈ <N×d be the original data matrix with incomplete entries

and P : RN×d → Rp be a linear map that identifies indexes of the non-missing entries in

the matrix. The matrix completion approach is often cast into the following optimization

problem [115, 56]:

min
X

1

2
‖ P(X)− P(A) ‖22 +µ ‖ X ‖∗ (4.2)

where ‖ · ‖∗ denote the trace-norm of a matrix, which is the sum of its singular values.

Intuitively, the preceding objective function seeks to learn a “complete” matrix X of minimal

rank that is consistent with the non-missing entries of the original data A. The regularization

parameter µ controls the trade-off between maintaining the consistency of the non-missing

entries and minimizing the rank of the recovered matrix.

To demonstrate the effectiveness of this method, we performed an experiment on the lake

water quality data set using total chlorophyll-a (chla) as the response variable. We introduced

missing values randomly into the data set, varying the percentage of missing values from 20%

to 80%. We then applied both mean imputation and matrix completion to the altered data

followed by linear and nonlinear SVR. The results shown in Figure 4.3 suggested that matrix

completion enabled the missing values to be recovered at a higher precision compared to the
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Figure 4.3: Comparing the MSE for linear and nonlinear SVR with mean imputation and
matrix completion.

mean imputation method. These results hold true for all percentages of missing values

introduced and for both linear and nonlinear SVR.

4.4 Proposed Framework

This section describes the detailed formulation of our proposed hash-based feature learn-

ing framework. The unique characteristics of our framework are as follows:

1. It uses a set of sparse random Fourier features as its basis function for creating the hash-

based features. The RFF enables the framework to capture nonlinear relationships in the

data.

2. It applies supervised learning to identify the best combination of RFF that fits the re-

sponse variable. Our framework is thus a hybrid method that combines data-independent

with data-driven methods.

3. It uses trace-norm regularization to deal with missing values present in the data. Our

framework would simultaneously estimate the missing values while learning the hash-

based features.
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The resulting framework is called H-FLIP, which stands for Hash-based Feature Learning

for IncomPlete data. Although RFF has been used to approximate shift-invariant kernels

[93], it has not been used for supervised feature learning. Thus, we first present our super-

vised hash-based feature learning framework in Section 4.4.1. The framework is extended to

incomplete data in Section 4.4.2.

4.4.1 Supervised hash-based feature learning using RFF

Consider a data set D = {xi, yi}Ni=1, where each xi ∈ <d denote a set of values for the

predictor variables, yi is the corresponding value for the response variable, and N is the

number of observations. Our goal is to learn a set of hash functions H = {hk}Kk=1 where

each function hk : <d → < transforms the original data in d-dimensional feature space to a

1-dimensional feature space. Instead of using conventional linear hash functions, we employ

RFF as our basis function in order to capture nonlinear relationships in the data. Formally,

the kth hash function is defined as

hk(xi) = wT
k φk(xi), (4.3)

where each basis function φk(·) : <d → <p corresponds to a p-dimensional RFF defined in

Equation (4.1). The parameters of the hash functions are trained to fit the training data D

using a supervised learning algorithm.

Transforming the original data D to K RFF requires O(NKdp) operations, which is

expensive when the number of features in the original (d) and projected (p) feature space

are large. To reduce the computations, instead of using all d features, each hash function

φk is generated by randomly selecting a subset of the d features and applying the nonlinear

transformation given in Equation (4.1) to the selected features. The creation of sparse RFF

is illustrated by the following example.

Example 1 Let {x1, x2, x3, x4} be the set of predictor variables associated with the data
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instance x. Consider the following RFF, φ(x) = cos(Rx + t), where

R =


0.3 −0.5 0 0

−0.1 0.7 0 0

0.2 0.6 0 0

 , t =


1.2

2.8

0.66

 .
This is a sparse RFF as it depends on x1 and x2 only.

The sparse RFF forms the basis function of our supervised hash-based features defined in

Equation (4.3). The weights of the hash functions are estimated by optimizing the following

objective function:

J(W) =
1

2

K∑
k=1

N∑
i=1

(hk(xi)− yi)2 + λ
K∑
k=1

‖ wk ‖22

=
1

2

K∑
k=1

∥∥∥∥Φk(X)wk − y

∥∥∥∥2
2

+ λ ‖W ‖2F , (4.4)

where W ∈ <p×K = [w1 w2 · · ·wK ] denote the weight matrix associated with the supervised

hash functions and Φk(X) ∈ <N×p is the RFF representation of the input data matrix. As

theK hash functions can be decoupled from one another in the formulation given in Equation

(4.4), the parameter vector wk of each hash function can be solved independently as follows.

wk = arg min
v

1

2
‖ Φk(X)v − y ‖22 +λ ‖ v ‖22 (4.5)

The closed form solution for wk is given by:

wk =

[
Φk(X)TΦk(X) + λI

]−1
Φk(X)Ty

where I denotes the identity matrix.

4.4.2 Hash-based feature learning for incomplete data (H-FLIP)

We now extend the previous formulation to data with missing values. Let A be the incom-

plete data matrix and X be the imputed data matrix. Furthermore, let X = [Xl; Xu], where
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Xl is the set of training instances whose response variable values are known and Xu is the

set of test instances whose response variable values are unknown.

H-FLIP is designed to simultaneously learn the imputed matrix X and the weight matrix

W of the sparse RFF by minimizing the following objective function:

min
W,X

F (X,W) = F1(X) + αF2(Xl,W) (4.6)

where

F1(X) =
1

2
‖ P(X)− P(A) ‖2F +µ ‖ X ‖∗

F2(X,W) =
1

2

K∑
k=1

‖ Φk(Xl)wk − y) ‖22 +λ ‖W ‖2F ,

F1 measures the error in missing value imputation while F2 measures the prediction error of

using the hash function to fit the response variable y. The regularization parameter α controls

the trade-off between minimizing both factors. A trace-norm regularization is applied to

ensure that the recovered matrix X has a low rank. As the missing value imputation must

be performed on the entire data set, F1 involves instances from both the training and test

sets while F2 involves only instances from the training set.

An alternating minimization scheme is employed to solve the objective function given

in Equation (4.6). A pseudocode of the H-FLIP framework is shown in Algorithm 3. The

framework alternates between optimizing for X and W, until the stopping criteria is satisfied.

The optimization steps are outlined below.

4.4.2.1 Updating X

When W is fixed, the objective function can be simplified as follows:

F (X) =
1

2
‖ P(X)− P(A) ‖2F +

α

2

K∑
k=1

‖ Φk(Xl)wk − y ‖22 +µ ‖ X ‖∗ (4.7)
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Algorithm 3 H-FLIP Framework.
Input: A,y,
Output:X,W
Initialize X(0) by solving Equation (4.2).
Generate random matrices {Rk} and T.
Create RFF: Φk(Xl) =

√
2/p cos(XlR

T
k + T)

Update W using Equation (4.11).
while stopping condition is not met do

Initialize γ(1) = γ(0) = 1 and X(1) = X(0).
for k = 1 to maxIter do

Y(k) ← X(k) + γ(k−1)−1
γ(k)

[
X(k) −X(k−1)

]
Z(k) ← Y(k) − 1

τ(k)
∇f(Y(k))

[U,Σ,VT ]← SVD (Z(k)))

X(k+1) ← UD
µ/τ(k)

(Σ)VT

Compute τk using line search.

γ(k+1) ← 1+

√
1+4(γ(k))2

2
end for
X(0) ← X(k+1).
Update W using Equation (4.11)

end while
return X,W

Since the trace-norm regularization is a non-smooth function, we separate the objective

function into a sum of two functions, F (X) = f(X) + g(X), where

f(X) =
1

2
‖ P(X)− P(A) ‖2F +

α

2

K∑
k=1

‖ Φkwk − y ‖22

g(X) = µ ‖ X ‖∗

An accelerated proximal gradient descent approach [115] can be used to solve for X

by replacing the smooth part of the objective function with its quadratic approximation,

evaluated at some intermediate point Y, i.e.,

Q(X,Y)

= f(Y)+ < X−Y,∇f(Y) > +
τ

2
‖ X−Y ‖2F +g(X)

=
τ

2
‖ X−

(
Y − 1

τ
∇f(Y)

)
‖2F +g(X) +K(Y)
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where K(Y) = f(Y)− 1
2τ ‖ ∇f(Y) ‖2F and

∇f(Y) = P(Y)− P(A)

+ α
K∑
k=1

{[√
2

p
cos(YRT

k + T)wk − y

]
1Td

�
[
−
√

2

p
sin(YRT

k + T)diag(wk)R

]}
(4.8)

We use � in Equation (4.8) to denote the Hadamard product between two matrices and 1d

to denote a d-dimensional vector of all ones. Let diag(wk) be a p×p diagonal matrix, whose

k-th diagonal element corresponds to wk. In addition, T = 1N tTk is an N × p matrix, whose

rows correspond to the vector tT defined in Equation (4.1). Since the last term K(Y) does

not depend on X, Q(X,Y) can be minimized by solving:

min
X

τ

2
‖ X−

(
Y − 1

τ
∇f(Y)

)
‖2F +µ ‖ X ‖∗ (4.9)

Let X(k) denote the most recent estimate after k iterations. The following two steps are

performed to update the estimate.

1. Apply accelerated gradient descent method to the smooth part of the objective function.

Y(k) = X(k) +
γ(k−1) − 1

γ(k)

[
X(k) −X(k−1)

]
Z(k) = Y(k) − 1

τ (k)
∇f(Y(k))

The above equation reduces to the update formula for standard gradient descent when

∀k : γk = 1.

2. Apply singular value shrinkage operator to Z(k). Let Z(k) = UΣVT , where Σ = diag(σi)

is a diagonal matrix containing the singular values of Z(k) while U and V are matrices

containing its left and right singular vectors. We update X as follows:

X(k+1) = UD
µ/τ(k)

(Σ)VT (4.10)

where Dν(Σ) is a diagonal matrix whose i-th element is max(0, σi−ν). This is equivalent

to applying a threshold µ/τ (k) to each singular value of Z(k).
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Table 4.2: Summary of the data sets.

Response variable TP TN Chla Secchi
# instances (lakes) 3694 1961 4834 4684
# features 356 356 356 356
Mean 37.5 821.2 20.9 2.6
Std deviation 68.2 729.6 36.9 1.86

(a) Lake water quality data

Data Housing Wine Parkinson News Concrete
# instances 506 4898 5875 5000 1030
# features 14 12 26 61 9

(b) UCI machine learning data

The step size of the gradient descent is determined dynamically using a line search al-

gorithm [115]. The matrix X is updated until one of the following stopping conditions is

satisfied:

(1) the maximum number of iterations is reached,

(2) ‖X(k) −X(k−1)‖F /‖X(k)‖ < ε,

(3) the objective function given in Equation (4.7) no longer decreases significantly.

4.4.2.2 Updating W

When X is fixed, we update W by minimizing the following objective function:

min
W

1

2

K∑
k=1

‖ Φk(Xl)wk − y) ‖22 +λ ‖W ‖F

This is equivalent to solving the objective function for supervised hash-based feature learning

as presented in Section 4.4.1. W can be updated using only instances that belong to the

training set in the following way:

wk = (Φk(Xl)
TΦk(Xl) + λI)−1Φk(Xl)

Ty (4.11)

60



4.5 Experimental Evaluation

This section describes the experiments conducted to evaluate the performance of our

proposed framework.

4.5.1 Data Sets

We have performed experiments using both synthetic and real-world data sets.

4.5.1.1 Synthetic data

We created a rank-20 data matrix X containing 5000 instances (rows) and 100 predictor

variables (columns) in the following way:

X = PQ + 0.1E,

where P ∈ <5000×20, Q ∈ <20×100, and E ∈ <5000×100. The entries of the matrices P, Q

and E are generated randomly from a standard normal distribution. Let xi denote the i-th

predictor variable. The value of the response variable y is computed as follows:

y = x1x2 + x10x11 + x12 +N (0, 0.1).

All the columns in X and the vector y are standardized to have zero mean and unit variance.

4.5.1.2 Lake water quality data

We used several lake water quality data sets from LAGOS-NE [109], which is a geo-spatial

database that contains landscape characterization features and lake water quality data mea-

sured at multiple scales covering 17 states in the United States. We used four lake water

quality variables—total phosphorus (TP), total nitrogen (TN), total chlorophyll-a (chla)

and Secchi depth (Secchi)—as response variables, creating 4 distinct data sets for our ex-

periments. Our goal was to predict the response variables for each lake based on a set of
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predictor variables (features) that included land cover, land use, and climate variables. Since

there are multiple lake water quality measurements taken at different times for each lake,

we computed a single value for each lake by taking the mean of all measurements during the

summer months after 2010. The statistics for each data set are shown in Table 4.2.

4.5.1.3 Benchmark data from UCI Machine Learning Repository

We also conducted our experiment on five benchmark data from UCI machine learning

repository [68], including housing [51], wine [27], Parkinson [116], online news [36], and

concrete strength [141] (see Table 4.2).

4.5.2 Experimental Setup

We performed our experiments on a Dell PowerEdge R620 server with 2.7GHz Dual In-

tel Xeon processor. The proposed framework and other baseline methods were written in

Matlab.

4.5.2.1 Baseline Methods

First, we compare our proposed supervised hash-based feature learning method for complete

data against the following three baseline algorithms: (1) linear SVR trained on the raw

features, (2) nonlinear SVR trained on the raw features, (3) linear SVR trained on the

random Fourier features.

Second, we compare H-FLIP, which is an extension of our supervised hash-based frame-

work to deal with incomplete data, against the following three methods:

• MC+Raw : Missing values are imputed during preprocessing using matrix completion. A

linear SVR is then trained on the imputed data.

• MC+PCA: Missing values are imputed during preprocessing using matrix completion. We

then apply principal component analysis (PCA) to extract features from the imputed data.
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A linear SVR is then trained to fit the PCA-reduced data.

• MC+RFF This is similar to the previous two approaches except we use random Fourier

features as feature learning on the imputed data. A linear SVR is then trained on the

unsupervised RFF.

For a fair comparison, we extract an equal number of features for all the methods, unless

specified otherwise. For example, the number of PCA components, unsupervised RFF, and

supervised hash-based features are set to 50. For H-FLIP, we first project the data to 200

sparse RFF basis functions before reducing it to the 50-dimensional hash-based features using

our supervised learning framework. The regularization parameter λ in H-FLIP is determined

using cross validation, while the parameter α in Equation (4.6) is set to 0.01. We apply

SVR to the features generated by the baseline and proposed methods. As noted in Section

4.3.1, there are two hyper-parameters, ε and C, that must be determined when applying

SVR. These hyper-parameters are chosen using nested cross validation [119], in which an

inner 3-fold cross validation is performed for hyper-parameter tuning and an outer 5-fold

cross validation is performed for model assessment.

4.5.2.2 Evaluation Metrics

We consider both the imputation error as well as the prediction accuracy of the induced

SVR models. To assess the error in missing value imputation, let Ac be the true complete

data matrix and X be the estimated (imputed) matrix. The imputation error is computed

as follows:

Imputation error = ‖P(X)− P(Ac)‖22/‖P(Ac)‖22.

We also evaluate the performance of the SVR models in terms of their mean square prediction

error,

MSE = 1
N

∑N
i=1(ŷi − yi)

2,

where ŷi is the predicted response value for the i-th data instance and yi is its true value.
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Figure 4.4: Average MSE for linear SVR with raw features, nonlinear SVR with raw features,
linear SVR with RFF features, and linear SVR with supervised hash-based features on
complete synthetic data.

4.5.3 Experimental Results

This section presents the results of our experiments on both the synthetic and real-world

data.

4.5.3.1 Results for Synthetic Data

We begin with the results of our experiments for the complete synthetic data. The proposed

framework is compared against linear SVR on raw features, nonlinear SVR (with RBF kernel)

on raw features, and linear SVR on unsupervised RFF features. As expected, Figure 4.4

shows that linear SVR on the raw features is worse than other methods as it fails to capture

the nonlinear relationships in the data. In addition, the accuracy of linear SVR on both RFF

and our supervised hash-based features improves as the number of features increases. More

importantly, they are comparable to the accuracy of nonlinear SVR with raw features. This

supports the rationale for using RFF to capture nonlinear dependencies in the data. Finally,

comparing RFF against the proposed supervised hash-based features, we observe that the

supervised approach does not require as many features to achieve high accuracy compared

to unsupervised RFF. This justifies the case for using supervised hash-based feature learning
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Table 4.3: Imputation error for synthetic data.

Percent of missing value 10% 20% 30%
Mean imputation (MI) 1.0002 1.0002 1.0003
Matrix completion (MC) 0.0271 0.0276 0.0280
H-FLIP 0.0273 0.0280 0.0290

Table 4.4: MSE of linear SVR on synthetic data.

% missing 10% 20% 30% #features
MC+Raw 0.9680 0.9683 0.9679 100
MC+PCA 0.9681 0.9683 0.9683 50
MC+RFF 0.8960 0.8887 0.8997 50
H-FLIP 0.4596 0.4610 0.4626 50

for nonlinear regression problems.

Next, we add missing values randomly into the synthetic data and compare the imputa-

tion error of H-FLIP against methods that apply mean imputation and matrix completion

during preprocessing. The results in Table 4.3 suggest that mean imputation has the highest

imputation error while matrix completion has the lowest error. The imputation error of

H-FLIP is very close to the imputation error for matrix completion, which is not surprising

as H-FLIP is designed not only to recover the incomplete data, but also to fit the response

variable as accurately as possible. The imputation errors of both matrix completion and

H-FLIP also do not change significantly as we vary the percent of missing values from 10%

to 30%, which shows the robustness of our proposed framework.

In addition to their imputation errors, we also compare the MSE values of their regression

models. The results in Table 4.4 show that the raw features and PCA-induced features are

worse than unsupervised RFF. H-FLIP outperforms all the baseline methods because it learns

the appropriate nonlinear features and imputes the missing values without adding significant

bias that could degrade the performance of the regression model.
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Figure 4.5: Comparing average MSE of linear SVR on the complete Secchi data.

Table 4.5: MSE of linear SVR for lake water quality data.

TP TN Chla Secchi #features
MC+Raw 0.78 0.73 0.72 0.60 356
MC+PCA 0.81 0.75 0.74 0.63 50
MC+RFF 0.84 0.82 0.81 0.70 50
MC+RFF 0.79 0.74 0.72 0.60 300
H-FLIP 0.79 0.70 0.71 0.58 50

4.5.3.2 Results for Lake Water Quality Data

First, we report the results of applying the various methods to the complete, lake water

quality data with no missing values using Secchi as response variable. Figure 4.5 shows that

the MSE for linear SVR on the supervised hash-based features is slightly better than linear

SVR on the raw features. More importantly, the supervised hash-based features can achieve

a low MSE with fewer number of features compared to unsupervised RFF.

We repeat the experiments by adding 20% missing values to the predictor variables and

compare the MSE for H-FLIP against the baseline methods. The results shown in Table 4.5

suggest that MC+RFF with only 50 features performs the worst, which is consistent with

our previous observation that a large number of RFF is needed to effectively represent the

data. As we increase the number of RFF from 50 to 300, the MSE improves significantly,
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Table 4.6: MSE of linear SVR for UCI data with 20% missing values.

Method Housing Wine Parkinson News Concrete
MC+Raw 0.35 0.76 0.80 0.92 0.50
MC+PCA 0.36 0.83 0.97 0.94 0.67
MC+RFF 0.38 0.76 0.85 0.94 0.42
H-FLIP 0.32 0.69 0.74 0.92 0.36

comparable to the results for MC+Raw. Nevertheless, H-FLIP with 50 hash-based features

outperforms all other methods in 3 of the 4 data sets. In fact, the MSE of linear SVR

with H-FLIP on the incomplete data is comparable to the results for nonlinear SVR on the

complete data (see Table 4.1).

4.5.3.3 Results for UCI Benchmark Data

The results in Table 4.6 show that H-FLIP outperforms the baseline methods in 4 of the 5

data sets. The improvement in H-FLIP is more significant here compared to the lake data as

there are more nonlinear relationships in these data sets. Nonlinear SVR has a lower MSE

than linear SVR by more than 0.10 in 3 of the 5 UCI benchmark data but none in the lake

data (see Table 4.1).

4.5.4 Sensitivity Analysis

We perform experiments using total nitrogen (TN) as the response variable to evaluate how

sensitive the H-FLIP results are when varying the number of hash functions (K) and the

length of each sparse RFF (p). We first vary the number of hash functions from 5 to 300

while fixing the length of each sparse RFF to be 200. The results shown in Figure 4.6a

suggest that the rate of change in the test MSE is quite slow when increasing the number of

hash functions compared to the training MSE.

Next, we vary the length of the sparse RFF from 10 to 300 while fixing the number of

hash functions to be 50. The results given in Figure 4.6b suggest that the test error of
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(a) RFF basis functions (b) Hash-based features

Figure 4.6: MSE of H-FLIP when varying the number of basis functions and supervised
hash-based features.

H-FLIP is not that sensitive to the increasing length of the RFF compared to its training

error.

4.6 Conclusion

This chapter presents H-FLIP, a hash-based feature learning framework for incomplete

data. Our experimental results show that the framework is particularly effective for data

sets that have nonlinear relationships between their predictor and response variables. For

future work, we plan to extend the framework to support other hash functions beyond RFF

such as spectral hashing [131].
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CHAPTER 5

MULTI-TASK LEARNING FOR MULTIPLE RESPONSES AT DIFFERENT
LOCATIONS

5.1 Introduction

Predictive modeling of geospatial data has attracted considerable interest due to its wide

range of applicability. For example, Brown et al. [16] employed a fusion of two spatial choice

models based on logistic regression to predict criminal behaviors. Wimberly et al. [133] used

enhanced spatial models to infer the geographical distributions of two tick-borne pathogens.

Felicisimo [34] used multiple logistic regression models for the purpose of forested area ter-

ritorial planning.

One of the challenges in geospatial predictive modeling is dealing with the inherent spatial

relationships of the data. Most data mining algorithms implicitly assume that the under-

lying data are independent and identically distributed. Such an assumption violates the

first law of geography [114], which states that: everything is related to everything else but

nearby things are more related than distant things. Thus, it would be useful to construct

predictive modeling techniques that can explicitly incorporate the spatial relationships of

the data as previous studies have suggested that spatial analysis would perform poorly if

such relationships are ignored [21].

Another challenge in predictive modeling of geospatial data is that it does not only

require performing inference at multiple spatial locations simultaneously, it may also involve

predicting multiple, possibly related, response variables. For example, climate scientists are

interested in predicting the minimum and maximum temperature as well as precipitation at

various locations. These response variables are often correlated with each other. In the field

of limnology, researchers are interested in modeling lake nutrients such as total phosphorous

and nitrogen in order to monitor the quality of water in freshwater lakes. Since the nutrient
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variables are often correlated with one another, the challenge is to build models for the

response variables taking into account their joint dependencies.

Figure 5.1: Conceptual figure of data with multiple response variable at different locations.

One way to predict the multiple response variables at different locations is to fit a local

model for each response variable at each location independently. While this strategy is easy

to implement, it has several limitations:

• Some response variables are not always available at certain locations. This makes it

difficult to train an accurate local model when there is insufficient training data for a

response variable at a given location.

• Such a strategy fails to account for spatial relationships of the data.

• Such a strategy fails to take advantage of the correlation between different response

variables.

To overcome these limitations, a multi-task learning framework is proposed for modeling

multiple response variables at different locations. As reviewed in Chapter 2.4, multi-task

learning (MTL) learns multiple related tasks at the same time so as to improve the model

performance. Rather than training the local models independently for each response variable

at each location, the proposed formulation simultaneously learns the local models for all

response variables by optimizing a joint objective function with trace-norm regularization.

The proposed framework also incorporates the spatial relationships between locations as well

as the inherent correlation between response variables to improve the model performance.
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The main contributions of this chapter are summarized as follows:

• We developed a novel multi-task learning framework for joint prediction of geospatial

data that contains multiple response variables at different locations. The proposed

framework incorporates spatial autocorrelation among different locations by adding a

constraint into the formulation. The proposed framework also takes into account of

the inherent correlation between response variables

• With the additional knowledge of the spatial autocorrelation and the correlation among

response variables, the proposed framework can be extrapolated to locations with no

available training data.

• We demonstrated the effectiveness of the proposed framework on predicting lake water

quality data. Our experimental results showed that the proposed framework outper-

formed other baseline algorithms.

The reminder of the chapter is organized as follows.Section 5.2 defines the multi-response,

multi-location prediction problem and Section 5.3 introduces the proposed multi-task learn-

ing framework for multiple response variables at different locations for geospatial data. Ex-

perimental results are presented in Section 5.4. Finally, Section 5.5 summarizes the findings

of this study.

5.2 Multi-Response, Multi-Location Prediction

Consider a geospatial data set D = {Xi,Yi}Ni=1, where each Xi ∈ <ni×d denote the

set of predictors and Yi ∈ <ni×M denote the corresponding set of response variables for

location i. Note that ni is the number of data instances for location i and d is the number

of features. In addition, let M be the number of response variables and N be the number of

locations. Our goal is to build a set of models to predict the values of the response variables

at each location simultaneously.
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Figure 5.2 shows an example application of the multi-response, multi-location prediction

problem in the context of ecology data, where the objective is to predict the amount of

nutrients in lakes. In this problem, the prediction for each response variable in each lake

is considered a separate learning task. The predictor variables correspond to climate in-

formation such as monthly temperature and precipitation whereas the response variables

include measurements of lake nutrients such as total phosphorous (TP), total nitrogen (TN)

and chlorophyll (Chl). Since there are significant spatial autocorrelation in the data and

the response variables themselves are highly correlated with each other, this presents an

opportunity to develop a multi-task learning framework that can incorporate both types of

relationships into the geospatial prediction models.

Figure 5.2: An example of predicting lake nutrient data based from climate indexes.

5.3 Proposed Framework

In this section we present the proposed geospatial multi-task learning framework to ad-

dress the multi-response, multi-location prediction problem.

5.3.1 Objective Function

The objective function for the proposed framework is as follows:

F (W) = min
W

M∑
j=1

N∑
i=1

‖ XijW·ij − yij ‖2F +Ω(W) (5.1)
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where

Ω(W ) = λ1

M∑
j=1

tr(W··j(D−A1)WT
··j) + λ2

N∑
i=1

tr(W·i·(D−A2)WT
·i·) + λ3 ‖W ‖∗

In the above formulation, Xij ∈ <
nij×d denote the data matrix of predictor variables for

ith lake and jth response variable. Similarly, yij ∈ <
nij×1 denote the vector of values for the

jth response variable associated with the ith lake. Let W be a tensor, whose element Wkij

is the model parameter associated with the kth feature, ith lake, and jth response variable.

The matrix A1 ∈ <N×N captures the spatial relationship between locations whereas A2 ∈

<M×M captures the correlation between response variables.

In this formulation, the prediction for each response variable at each location is a separate

learning task. The first term in Equation (5.1) represents the total residual error of the

models over all M response variables and N locations. The regularization term, Ω(W ),

consists of 3 parts. The first part incorporates the spatial relationship into the model.

Specifically, if two locations have a strong, positive spatial relationship, then their model

parameters should also be quite similar. The second part of regularization term takes into

account the correlation between response variables. If there is a strong, positive correlation

between a pair of response variables, then the model parameters associated with the response

variables should be highly similar to each other. The last regularization term is used to

control the model complexity. The hyperparameters λ1, λ2, and λ3 are used to balance the

tradeoff between each regularization term and the rest of the terms in the objective function.

5.3.2 Parameter Estimation

The proposed objective function is convex, and thus, has a global minimum. It can be solved

by using the accelerated proximal gradient descent method [56].

Since the nuclear norm regularization is a non-smooth function, we separate the objective

73



function in Equation (5.1) into a sum of two functions: F (W) = f(W) + g(W), where

f(W) = f1(W) + f2(W) + f3(W) (5.2)

g(W) = µ ‖W ‖∗

The smooth function f(W) in Equation (5.3) is given by:

f1(W) =
M∑
j=1

N∑
i=1

‖ XijW·ij − yij ‖2F

f2(W) = λ1

M∑
j=1

tr(W··j(D−A1)WT
··j)

f3(W) = λ2

N∑
i=1

tr(W·i·(D−A2)WT
·i·)

Using the proximal gradient decent algorithm, W is iteratively updated by solving the

following problem:

W(k) = proxtk(W(k−1) − tk∇f(W(k−1))), (5.3)

where f(W) is the smooth part of the objective function given in Equation (5.3). Here,

proxt(X) is a soft thresholding function on X defined as follows:

proxt(X) = UΣtV
T , (5.4)

where X = UΣVT is a singular value decomposition, and (Σt)ii = max(Σii − t, 0) The

gradient for f(W) is given by the following three expressions:

∂f1
∂W·ij

= 2XT
ij(XijW·ij − yij)

∂f2
∂W··j

= 2λ1W··j(D−A1)

∂f3
∂W·i·

= 2λ2W·i·(D−A2)

which can be plugged into Equation (5.3) to compute the new W(k). The pseudocode of the

algorithm is shown in Algorithm 4.
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Algorithm 4 Multi-Response Multi-Task learning (MRMT) framework.
Input: X,Y,A1,A2, λ1, λ2, λ3
Output: W
Initialization: k = 0, W(0)

repeat
k = k + 1
Update W(k) = proxtk(W(k−1) − tk∇f(W(k−1))).

until convergence
return W

5.4 Experimental Evaluation

This section presents the experiments performed to evaluate the performance of the

proposed multi-task learning framework for predicting multiple response variables at different

locations.

5.4.1 Datasets

We use a lake water quality dataset extracted from LAGOS-NE, which is the geospatial

database described in Section 1.2. Similar as in the previous chapter, we select four lake

water quality features as our response variables, i.e., TP, TN, Chla and Secchi. We use

a comprehensive set of climate variables as our predictors, including temperature and pre-

cipitation as well as ENSO and NAO climate indices. There are about 12,000 lakes in the

dataset. However, each lake contains different number of measurements for each of the four

response variables. As a result, the number of data instances may vary for different response

variables in the same lake as well as in different lakes. A summary statistics of the dataset is

shown in Table 5.1. Furthermore, since Secchi depth was found to be negatively correlated

to other response variables, we use the negative value of Secchi depth in our analysis.

5.4.2 Experimental Setup

In this section, we describe the experimental design as well as the baseline methods and

evaluation metrics used to compare the performance of the different methods. We first
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Table 5.1: Statistics of lake water quality data.

TP Chla TN Secchi
# instance 33713 35820 70218 8828
# lakes 8245 7393 10247 2398

# features 48 48 48 48
Mean 33.15 17.18 3.06 18.83
Max 1122.50 696.00 18.40 19691.00
Min 0.00 0.00 0.00 0.00

Median 15.50 5.60 2.74 541.00
Avg years per lake 4 5 7 4

# lakes with at least 2 years 4424 5383 7065 1315
# lakes with at least 4 years 2568 2978 4897 687

randomly partition the dataset into 2/3 for training and 1/3 for testing. The training set

is then randomly split into two halves, using one half for training and the other half as

validation set for tuning the hyperparameters λ1, λ2, and λ3 of our model. We select the

hyperparameters that achieve the lowest mean RMSE on the validation set. We then repeat

the experiment 10 times and report the results based on the average performance over the

10 repeated trials.

The proposed multi-task, multi-response learning method requires additional side infor-

mation in the form of the spatial relationship between locations and correlation between the

response variables. For the lake water quality dataset, we estimate the spatial relationship

matrix A1 by applying the RBF kernel function on the latitude and longitude of the lakes

and the similarity matrix A2 by computing the correlation between the response variables

in the training set.

5.4.2.1 Baseline Methods

To demonstrate its effectiveness, we compare the performance of the proposed multi-task

multi-response learning algorithm (denoted as MTMR) against the following methods:

• Global : For each response variable, a global model is constructed by combining the data

from all the lakes. The global model is then applied to all the lakes to predict their
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corresponding value of the response variable.

• MTL-Lasso: Unlike the previous global model, this method trains a local model at each

location for each response variable. The objective function is as follows:

min
W

t∑
i=1

‖ WT
i Xi − Yi ‖

2
F +ρ ‖ W ‖1

where i is the location index and Wi, Xi, Yi are the corresponding model weights, predic-

tors and response variables. In this formulation, instead of training the local models inde-

pendently, the task relationship is achieved by enforcing the same regularization penalty

on sparsity of the model. The method is based on an implementation provided by the

MALSAR [150] package.

• MTL-L21 : Similar to the previous method, a local model is trained at each location for

each response variable. The difference is in terms of how the task relatedness is defined.

The objective function is shown below [2]:

min
W

t∑
i=1

‖ WT
i Xi − Yi ‖

2
F +ρ ‖ W ‖2,1

In this learning scheme, the model for different tasks are forced to select the same set of

features.

5.4.2.2 Evaluation Metric

We used two metrics to evaluate the performance of the different methods. The first metric

is root mean square error (RMSE), which measures the deviation between the observed and

predicted values of the response variable. The metric is defined as:

RMSE =

√∑N

i=1
(yi − ŷi)2/N (5.5)

The second metric is the coefficient of determination, R2, which measures the amount of

variations in the response variable explained by the model. The metric is defined as follows:

R2 = 1−
∑
i(yi − ŷi)2∑
i(yi − ȳ)2

(5.6)
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Table 5.2: RMSE on lake water quality data.

TP Chla TN Secchi
Global 0.928 ± 0.019 0.951 ± 0.016 0.894 ± 0.025 0.841 ± 0.003

MTL-Lasso 0.805 ± 0.022 0.867 ± 0.015 0.609 ± 0.036 0.620 ± 0.003
MTL-L21 0.805 ± 0.022 0.867 ± 0.015 0.572 ± 0.047 0.569 ± 0.002
MTMR 0.757 ± 0.022 0.811 ± 0.016 0.557 ± 0.032 0.548 ± 0.002

Table 5.3: Predictive R2 on lake water quality data.

TP Chla TN Secchi
Global 0.126 ± 0.004 0.122 ± 0.005 0.155 ± 0.006 0.281 ± 0.002

MTL-Lasso 0.341 ± 0.020 0.270 ± 0.015 0.607 ± 0.041 0.609 ± 0.003
MTL-L21 0.342 ± 0.020 0.270 ± 0.015 0.652 ± 0.051 0.670 ± 0.002
MTMR 0.417 ± 0.017 0.362 ± 0.014 0.671 ± 0.031 0.695 ± 0.002

where ȳ is the mean of the observed values for the response variable. Unlike RMSE, which

goes from 0 to∞, the R2 value ranges between 0 to 1. For comparison, we report the average

RMSE and predictive R2 value for the test sets used in our experiments.

5.4.3 Experimental Results

In this section, we report the experimental results obtained for MTMR as well as other

baseline methods.

5.4.3.1 Performance Comparison

As mentioned earlier, we repeated our experiment 10 times with different training and test

set partitions and report the mean and standard deviation values of RMSE and R2. The

results are shown in Tables 5.2 and 5.3, respectively.

The results suggest that a single, global model for all the lakes performs worst compared

to other methods for all four response variables. This is because such a model does not suf-

ficiently capture the lake variations as well as spatial relationships among lakes. MTL-Lasso

is better than global model because in this formulation, instead of building one global model,

it builds a local model for each lake and uses the lasso regularization constraint to ensure the
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models share the same sparsity. In addition, MTL-L21 performs slightly better than MTL-

lasso in two of the four response variables. As MTL-L21 used L2,1 norm regularization,

which assumes that all the tasks share the same set of discriminative features. Compared to

Lasso regularization, MTL-L21 results in grouped sparsity. Our proposed MTMR algorithm

performs the best for all four responses. This is because it employs a regularization term

consisting of three different parts, as shown in Equation (5.1). The first part incorporates

spatial relationships into the formulation, the second part takes advantage of the correlation

between response variables while the last part controls the model complexity. All three work

together in tandem to achieve better predictive performance. The results for R2 given in

Table 5.3 are consistent with the RMSE results, which shows the superiority of our methods

compared to other baseline methods.

5.4.3.2 Model Coefficients

We further examine the coefficients of our proposed MTMR model for each response variable

in Figure 5.3. The horizontal axis corresponds to each of the lakes we have in the data set

while the vertical axis corresponds to the list of predictor variables. Notice that, although we

may not have data for certain response variables, we still have a model coefficient associated

with the location. A red cell indicates that the model coefficient is highly positive whereas

a blue cell indicates the coefficient is highly negative. The cell is almost white in color if

the model coefficient is close to zero, meaning the corresponding feature is not important for

inferring the value of the response variable at the given location.

Another interesting observation is that there is a consistent pattern when examining all

four plots shown in Figure 5.3 even though the proposed framework does not impose an L21

regularization. In other words, the set of features with relatively highest positive or negative

weights are quite similar for most of the lakes and response variables.
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(a) TP (b) Chla

(c) TN (d) Secchi

Figure 5.3: Model weights visualization.

5.5 Conclusion

In this chapter, we proposed a multi-task learning framework for predicting geospatial

data with multiple response variables at different locations. The proposed framework in-

corporates spatial relationship between the locations and takes into account the correlation

between different response variables. The framework also allows predictions to be made for

locations with no observed data. We demonstrated the effectiveness of our proposed frame-

work on four lake water quality data sets. The results suggest that our proposed framework

performs better than other baseline algorithms in all four data sets evaluated in this study.
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CHAPTER 6

MULTI-LEVEL MULTI-TASK LEARNING FOR NESTED GEOSPATIAL
DATA

6.1 Introduction

The geospatial data available in many applications often contain variables defined at

multiple spatial scales. These variables from different scales can interact with each other, a

phenomenon also known as cross-scale interactions in the literature. For example, previous

studies in lake ecology found strong evidence for cross-scale interactions between geospatial

driver variables quantified at local and regional spatial scales for predicting lake nutrients

[110]. More formally, cross-scale interactions (CSIs) [91] refer to the coupling between the

local and regional variables and their joint effect on the focal response variable. For exam-

ple, interactions between local wetland cover around a lake and regional agricultural land use

have been shown to affect the performance of models predicting lake water total phospho-

Regional Driver

Local Driver

Lake Nutrient 

Regional Driver

Local Driver

Region 1 Region 2

Cross-Scale 
Interactions

Region Relatedness

Figure 6.1: Example of nested lake ecology data with cross-scale interactions between the
local and regional predictor variables.
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rus concentrations [35]. Another example is the cross-scale interaction between broad-scale

hurricane-induced disturbance and fine-scale historical land use, which influences the biodi-

versity of land snails [132]. Nested geospatial data, containing variables measured at multiple

spatial scales, are needed to detect such patterns. For example, in the modeling of lake nu-

trients, the predictor variables may include local drivers such as lake depth, lake type, and

amount of wetland areas surrounding the lake as well as regional drivers such as climate and

land use/cover (see Fig. 6.1). In this example, the values of the local predictor variables

would vary from one lake to another but the values of the regional predictor variables are the

same for all lakes within the same region. The nature of such nested data makes it challeng-

ing to effectively incorporate both local and regional variables into the model formulation.

On one hand, the local and regional variables can be concatenated to form a multi-scale

feature vector from which a global regression model can be fitted against the data for all

regions. Unfortunately, such a strategy may not be effective since the relationship between

the predictor and response variables may vary across regions, making it difficult to construct

an accurate, one-size-fits-all model for all the regions. On the other hand, a local regression

model can be trained to fit the data in each region separately. However, such a model would

ignore the regional variables altogether as their values would be identical for all lakes in the

same region. In addition, the model may not be able to capture the cross-scale interactions

present in the data.

Another challenge in the predictive modeling of nested geospatial data is the unbalanced

sample sizes across different regions. If the underlying relationships in the geospatial domain

are complex, the predictive models developed for data-poor regions are likely to be inferior

compared to those developed for data-rich regions. Thus, a key research question is how

to effectively leverage data from other regions to improve the prediction models for the

data-poor regions.

Finally, the original set of regions from which the nested data were obtained may not be

ideal for predictive modeling as they were often defined for other purposes (e.g., based on
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political boundaries, management policies, etc.). Indeed, it is possible that the lakes from

the same region may not share the same relationship between their predictor and response

variables. It would be useful to develop a modeling framework that can infer a set of regions

that better capture the relationship between the predictor and response variables of the data.

To address the above challenges, this chapter presents a novel multi-level multi-task learn-

ing framework for the predictive modeling of nested geospatial data from the ecology domain.

The framework enables a distinct prediction model to be trained for each region using both

its local and regional predictor variables. The framework assumes that the nested geospatial

data are characterized by a set of low-rank latent factors, which relates the dependencies

between the local and regional predictor variables to the response variable. Instead of build-

ing the models for each region independently, the models are jointly trained by inferring

their local and regional latent factors. The shared latent factors provide several advantages

for our framework. First, they enable the data-poor regions to leverage information from

other regions in order to construct more robust models. Second, the latent factors can be

used to identify cross-scale interactions in each region. Finally, they provide a new feature

representation for each lake, which allows us to cluster the lakes into a new set of regions

based on the similarity of their local latent factors. Empirical results using four lake water

quality datasets from the LAGOS-NENE database [109] showed significant performance im-

provement in the local prediction models when trained on the new set of regions instead of

the original, pre-defined regions of the data.

In summary, the main contributions of this chapter are as follows:

1. We introduced a multi-level multi-task learning framework for nested geospatial data. The

framework can incorporate both the local and regional predictor variables into a unified

formulation

2. We showed that the framework can be used to identify cross-scale interactions among the

local and regional predictor variables. The framework also allows more robust models to
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be constructed especially for regions with limited or no training data.

3. We derived a new set of regions from the latent factors and showed that they are more

aligned with the response variables of interest compared to the original regions of the lake

ecology data.

4. We demonstrated the effectiveness of the proposed framework on four lake water quality

datasets. Our experimental results showed that the proposed framework outperformed

four other baseline methods in more than 64% of the regions in 3 out of 4 lake water

quality datasets evaluated in this study.

The reminder of the chapter is organized as follows: Section 6.2 reviews previous work on

multi-level modeling and multi-task learning. Section 6.3 formulates the nested geospatial

predictive modeling problem while Section 6.4 introduces the proposed multi-level multi-

task learning framework. Experimental results are presented in Section 6.5. Section 6.6

summarizes the findings of this study.

6.2 Related Work

Geospatial data of many types, including ecological, climatalogical, epidemiological, and

social data [123, 65] are inherently nested, containing grouped variables defined at multi-

ple, hierarchically-ordered spatial scales. For predictive modeling applications, the response

(target) variable of interest is usually defined at the finest spatial scale, while the predictor

variables are available at both finer and coarser scales. The complexity introduced by the

nested geospatial data has led to growing interests in applying multi-level modeling tech-

niques [107, 35, 124, 110] that can capture the influence of the fine-level and coarse-level

predictors on the response variable along with their cross-scale interactions. Multi-level

statistical models have been proposed as a powerful analytical approach that accounts for

dependencies among observations within grouping levels [38], and thus, can help accommo-

date the assumption of independence that, if violated, can reduce the effective sample size

84



and lead to exclusion of relevant predictors in the model. In addition, this modeling ap-

proach can address contradictory relationships, where relationships in one area may differ

in magnitude or direction from relationships in another area [35]. Such variation in slope

estimates often emerge as a result of spatial heterogeneity in drivers of ecological response

variables [43]. Multi-level models are well-suited to macroscale studies where it is expected

that both fine- and broad-scale variables influence system structures and functions[9] and

cross-scale interactions may be present but are challenging to quantify[122]. For example,

Filstrup et al. [37] used a 4-parameter multi-level logistic model to describe regional rela-

tionships between lake nutrients and algal productivity and found that regional land use and

land cover mediated the nutrient-productivity relationships across space.

Multi-task learning (MTL) [19] provides an alternative approach that can be used to

model nested geospatial data by considering the prediction problem for each region as a

separate learning task. Instead of training the model for each task (region) independently,

MTL learns the models for all tasks (regions) simultaneously, taking into account the tasks’

relationships. Over the past two decades, numerous MTL algorithms have been proposed

in the literature. These algorithms vary in terms of how the task relatedness are defined

and incorporated into the learning formulation. For example, a standard assumption is

that the model parameters for closely related tasks are similar to each other, which led

to the development of the mean regularized MTL approach by Evgeniou and Pontil [33].

Another common assumption is that the model parameters for different tasks share a low-

rank representation. MTL algorithms that employ such a strategy include the works in

[23, 2, 63].

More recently, there has been considerable interest in applying MTL to spatial, temporal,

and spatio-temporal prediction problems as many of these problems can be naturally cast

into a multi-task learning formulation [41, 72, 137, 138, 139]. For example, Xu et al. [137]

presented an MTL framework for ensemble time series forecasting problems. The application

of the MTL framework to spatio-temporal data has also been studied in [138, 139, 72] for var-
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ious applications including climate modeling and urban water quality prediction. However,

none of these approaches consider the nested structure of the data, and thus, are unable to

handle cross-scale interactions present in the data. Another related work is the multi-level

lasso approach proposed by Lozano et al.[74]. However, the approach is not designed for

geospatial data. It also assumes that the second-level variables are unobserved, unlike the

formulation presented in our study, which assumes that the coarser-level (regional) variables

are observed. Despite the difference, we use a variant of this multi-level lasso formulation, as-

suming the second-level variables are observed, as one of the baseline methods for comparing

our proposed framework.

6.3 Preliminaries

We begin by considering a two-level nested geospatial data, D = {Xi,yi, zi}ri=1, where r

is the number of regions. Let Xi ∈ Rni×d be the design matrix containing the local predictor

variables for all the geospatial objects in region i, yi ∈ Rni be their corresponding values

of response variables, and zi ∈ Rk be their corresponding values of the regional predictor

variables. Here, d is the number of local predictors, k is the number of regional predictors,

and ni is the number of geospatial objects (e.g., lakes) in region i. Note that our proposed

framework can be extended to more than 2 levels (see Section 6.4.5).

The goal of geospatial predictive modeling is to learn a target function f(x, z) that maps

the local and regional predictor variables of a geospatial object (x ∈ Rd, z ∈ Rk) to its

response value, y, with minimal prediction error. In this chapter, we consider only linear

models, though the approach can be extended to nonlinear models using the well-known

kernel trick [118] or random Fourier features [93] approaches. We assume that the local and

regional variables are augmented with dummy variables, whose values are set to 1. This

allows us to simplify the notation for a linear model of the form f(x) =
∑d−1
j=1 wjxj +w0 to

f(x) = wTx, where w ∈ Rd.

A trivial way to model nested geospatial data is by fitting a single, global model fglobal
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to the entire data set D. Unfortunately, the global model may not provide a good fit to the

data especially if the relationship between the predictor and response variables may vary

by region. Alternatively, one could train an independent, local model flocal for each region,

but this approach is also not as effective especially for regions that have very few training

examples available. Furthermore, the local models will not be able to utilize the regional

variables since their values are the same for all the training examples in the same region.

Alternative techniques are therefore needed for modeling nested geospatial data.

Multi-level modeling [107] is a widely-used statistical technique for assessing the influence

of multi-scale variables on the response variable of interest. For a two-level model, the

relationship between the response and predictor variables for a geospatial object (xi, zi) in

region i is given as follows:

yi = wT
i xi + ε1, ε1 ∼ N(0, σ21)

wi = GT zi + ε2, ε2 ∼ N(0,Σ2), (6.1)

where G ∈ Rk×d is a matrix that captures the cross-scale interactions between the local

and regional predictors. Specifically, the (i, j)-th element of G corresponds to the cross-scale

interaction term between the i-th regional predictor and the j-th local predictor. It can be

shown that the maximum likelihood estimation (MLE) of G can be found by minimizing the

following loss function: L(G) =
∑r
i=1 ‖ yi−XiG

T zi ‖22. Several variants of the formulation

have also been proposed in the literature. For example, Zhao et al. [149] presented a multi-

level modeling approach for hierarchical multi-source event forecasting. Lozano et al. [74]

presented the following multi-level lasso formulation for multi-task regression:

min
G

1

2

∑r

i=1
‖ yi −XiG

T zi ‖22 +ρ1 ‖ G ‖1 (6.2)

Since the {zi} is given, the optimization problem can be solved by using the proximal gradient

descent method. During the prediction step, a test instance (x∗, z∗) can be predicted as

follows:

ŷ = z∗TGx∗ = G11 +
∑d

p=2
G1px

∗
p +

∑k

q=2
Gq1z

∗
q +

∑
p,q>1

z∗qGqpx
∗
p (6.3)
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In the preceding equation, x∗1 = z∗1 = 1 and G11 is the intercept term of the model. The

second term measures the effect of the local predictors on the response variable whereas

the third term measures the effect of the regional predictors. The last term of the equation

quantifies the influence due to joint coupling of the local and regional predictors on the

response variable y. A non-zero value in Gqp, where p > 1 and q > 1, can thus be regarded

as evidence for cross-scale interaction between the p-th local and q-th regional predictors.

6.4 Multi-Level Multi-Task Learning (MLMT) Framework

This section presents our proposed multi-level multi-task learning framework for modeling

cross-scale interactions in nested geospatial data. We first present the objective function of

our framework in Section 6.4.1. Section 6.4.2 describes the optimization algorithm used to

estimate the model parameters while Section 6.4.3 provides a proof of convergence of the

algorithm. The description on how to identify cross-scale interactions from the proposed

framework is given in Section 6.4.4. Finally, Section 6.4.5 generalizes the framework to an

N-level setting, where N > 2.

6.4.1 Objective Function

The traditional multi-level model formulation shown in Equation (6.1) restricts the regression

coefficients for all the regions to lie in the column space of GT , i.e., each wi is a linear

combination of the column vectors in GT with the weights of the linear combination given by

the regional variables zi’s. In contrast, our proposed formulation assumes that the regression

coefficients for all the regions share a common set of latent factors. Specifically, each wi is

decomposed into a product of two terms: a latent factor matrix U ∈ Rd×m that is shared

by all the regions and a vector vi ∈ Rm that is shared by all the geospatial objects in region

i, where d is the number of local predictors and m is the number of latent factors. Instead

of regressing wi directly against the regional variables zi, we regress the latent factor vi
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against zi, which leads to the following optimization problem:

min
U,V,R

1

2

r∑
i=1

‖ yi −XiUvi ‖22 +
ρ1
2

r∑
i=1

‖ zi −Rvi ‖22

+ ρ2 ‖ U ‖1 +ρ3 ‖ V ‖1 +ρ4 ‖ R ‖1, (6.4)

where V = [v1v2 · · ·vr] and r is the number of regions. The first term in Equation (6.4) cor-

responds to the squared loss prediction error of the model while the second term corresponds

to the error in fitting the regional predictors Z to V. The last 3 terms of the objective func-

tion controls the sparsity of the model by enforcing L1-regularization to the latent factors U,

V, and R. Finally, ρ1, ρ2, ρ3, and ρ4 are the user-specified parameters. In this formulation,

U represents the latent factors for the local predictors while R represents the latent factors

for the regional predictors. Furthermore, the feature representation for each region i in the

m-dimensional latent space is given by vi whereas the feature representation for each lake x

in the latent space is given by UTx.

6.4.2 Parameter Estimation

We employ the block coordinate descent approach to minimize the objective function given

in Equation (6.4). Since there are three latent factors (U, V, and R) to be estimated, the

algorithm iteratively estimates one of the three latent factors while keeping the other two

latent factors fixed. The update formula for each latent factor is given below.

Update formula for V Assuming U and R are given, the optimization for V is obtained

by minimizing the following objective function:

L(V) = 1
2

∑r

i=1
‖ yi −XiUVi ‖22 +

ρ1
2 ‖ ZT −RV ‖2F + ρ3 ‖ V ‖1 (6.5)

Since L(V) is not a smooth function, we solve the optimization problem using the proximal

gradient descent algorithm. Specifically, V is iteratively updated by solving the following

problem:

V(s) = proxλ(V(s−1) − λ∇g(V(s−1))), (6.6)
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where g(V) is the smooth part of the objective function given in Equation (6.5) and proxλ(x)

is a soft thresholding function on x defined as follows:

proxλ(x) = sign(x) max(x− λ, 0) (6.7)

The gradient for g(V) is given by:

∇g(vi) = −(XiU)T (yi −XiUvi)− ρ1RT (zi −Rvi)

which can be plugged into Equation (6.6) to obtain the new V(k).

Update formula for U Assuming V and R are given, the latent factors U are estimated

by minimizing the following objective function:

L(U) =
1

2

∑r

i=1
‖ yi −XiUvi ‖22 +ρ2 ‖ U ‖1 (6.8)

Once again, since L(U) is not a smooth function, we apply proximal gradient descent to

update U as follows:

U(s) = proxλ(U(s−1) − λ∇g(U(s−1))) (6.9)

where the proximal mapping is the same as the soft thresholding function given in Equation

(6.7). The gradient of the smooth part of the objective function given in Equation (6.8) is

∇g(U) =
∑r

i=1
1m×1(yi −XiUvi)

T )Xi � vi11×d

Update formula for R Finally, assuming U and V are fixed, the latent factor R is

updated by minimizing the following terms in the objective function that depend on R:

L(R) =
ρ1
2
‖ ZT −RV ‖2F +ρ4 ‖ R ‖1 (6.10)

The update formula for R is derived using the proximal gradient descent approach as follows:

R(s) = proxλ(R(s−1) − λ5 g(R(s−1))) (6.11)
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Algorithm 5 Multi-Level Multi-Task learning (MLMT) framework.
Input: X,Y,Z,m, ρ1, ρ2, ρ3, ρ4
Output: U,V,R
Initialization: k = 0, U(0), V(0), and R(0)

repeat
k = k + 1
Update V(k) by solving Equation (6.6)
Update U(k) by solving Equation (6.9)
Update R(k) by solving Equation (6.11)

until convergence
return U,V,R

where the gradient of the smooth function ∇g(R) is given by:

∇g(R) = −ρ1(ZT −RV)VT

The pseudocode of the proposed framework called MLMT is summarized in Algorithm

5. The latent factors are initialized as follows. We first compute an initial model W(0) by

applying existing methods such as lasso regression or multi-task learning [71] on the local

predictors only. We then factorize W(0) into a product of U(0) and V(0). The initial value

for R(0) is then obtained by solving Equation (6.10). After the initialization, the latent

factors are iteratively updated using the formula given in Equations (6.6), (6.9), and (6.11)

until one of the the following two stopping conditions are met: (1) if the maximum number of

iterations is reached, or (2) the value of the objective function does not change significantly.

6.4.3 Proof of Convergence

The following proposition can be used to prove the convergence of our block coordinate

descent algorithm.

Proposition 1 Let L(U,V,R) be the objective function given in Equation (6.4). The se-

quence L(U(k),V(k),R(k)) computed by the MLMT framework is non-increasing for k =

1, 2, · · · .
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Proof 1 It is easy to see that

L(U,V,R) = f(U,V) + g(R,V)

. The latent factors are iteratively updated using the block coordinate descent approach.

First, the latent factor V is updated by using the proximal gradient descent algorithm to

solve Equation (6.5). The following inequality holds for V(k) after applying proximal gradient

descent:

L(V(k))− L(V∗(k)) ≤
‖ V(k−1) −V∗(k) ‖22

2tnk
,

where nk is number of interations in proximal gradient descent, t is the step size, and V∗(k)

is the optimal solution for Equation (6.6). The inequality states that the proximal gradient

descent solution converges at the rate of O( 1
nk

). The proof for this inequality is given in [8].

Similar inequalities also hold when applying proximal gradient descent to update U and R.

Since V is updated by minimizing the terms in the objective function that depend on

V, we have: L(U(k−1),V(k),R(k−1)) ≤ L(U(k−1),V(k−1),R(k−1)) Similarly, the objective

function after updating U is:

L(U(k),V(k),R(k−1))

= f(U(k),V(k)) + g(R(k−1),V(k))

≤ f(U(k−1),V(k)) + g(R(k−1),V(k))

= L(U(k−1),V(k),R(k−1))

Finally, upon updating R, we have:

L(U(k),V(k),R(k)) ≤ L(U(k),V(k),R(k−1)),

which completes the proof.

Since the objective function is bounded from below by 0, the convergence of the algorithm

is guaranteed by the monotonicity theorem.
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6.4.4 Cross-scale Interactions (CSIs)

This section presents an approach for deriving the cross-scale interactions of the proposed

MLMT framework. Specifically, the cross-scale interactions can be inferred by examining

the regression coefficient that relates the local and regional predictors of the data, analogous

to Equation (6.3). To illustrate this, we consider a variation of the traditional multi-level

modeling method given in Equation (6.1) by casting its formulation into the following opti-

mization problem:

min
G,W

1

2

∑R

i=1
‖ yi −Xiwi ‖22 +

ρ1
2

∑R

i=1
‖ wi −GT zi ‖22 (6.12)

In this relaxed multi-level modeling approach, the first term of the objective function penal-

izes the regression error for each region while the second term fits the regression coefficient to

the regional predictors. Taking the partial derivative of the objective function with respect

to W and setting it to zero yields the following solution:

wi = (XT
i Xi + ρ1I)−1XT

i yi + ρ1(XT
i Xi + ρ1I)−1GT zi (6.13)

Observe that the first term of the regression coefficient is equivalent to the solution for ridge

regression using only the local predictor variables. The second term, on the other hand, is a

correction factor due to the regional variables. Given a test example (x∗, zi) from region i,

we can predict its response value as follows:

ŷ = x∗wi = x∗(XT
i Xi + ρ1I)−1XT

i yi + x∗ĜT
i zi

where Ĝi = ρ1G(XT
i Xi + ρ1I)−1. In other words, the predicted value can be decomposed

into two parts: a local prediction term and a cross-scale interactions term involving both x∗

and zi. Therefore, Ĝi is a modified cross-scale interactions term for the relaxed version of

the multi-level modeling formulation given in Equation (6.12). It is also worth noting that

Ĝi is no longer a constant. Instead, it may vary from one region to another, depending on

the covariance matrix of its local predictors, XT
i Xi.
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Using the same strategy, the cross-scale interactions term for our proposed formulation

is given by the following theorem.

Theorem 1 Let U be the latent factors associated with the local predictors and R be the

latent factors associated with the regional predictors for the multi-level multi-task learning

framework given in Equation (6.4). The cross-scale interactions term for the formulation is

Ḡi = ρ1R(UTXT
i XiU + ρ1R

TR)−1UT . (6.14)

Proof 2 Ignoring the L1-regularization terms, the objective function can be re-written as

follows:
1

2

∑r

i=1
‖ yi −XiUvi ‖22 +

ρ1
2
‖ ZT −RV ‖2F (6.15)

Taking the partial derivative of the objective function with respect to V and setting it to zero

yields the following:

∂L

∂vi
= −(XiU)T (yi −XiUvi)− ρ1RT (zi −Rvi) = 0

⇒ vi =

[
(XiU)T (XiU) + ρ1R

TR

]−1[
UTXT

i yi + ρ1R
T zi

]
Thus, the predicted value for a test example (x∗, zi) can be computed as follows:

ŷ = x∗Uvi (6.16)

= x∗U
[
UTXT

i XiU + ρ1R
TR

]−1
UTXT

i yi + x∗ḠT
i zi

where Ḡi = ρ1R(UTXT
i XiU + ρ1R

TR)−1UT . The first term corresponds to the value

predicted using the local predictors only whereas the second term x∗ḠT
i zi involves the local

and regional variables. Thus, ḠT
i corresponds to the cross-scale interactions term between

the two variables for our proposed framework.

The original multi-level modeling formulation imposes a strict constraint where the ex-

pected value E[wi] = GT zi. Thus, its cross-scale interactions (G) is identical for all the

regions. In the relaxed version of the multi-level modeling formulation given in Equation

94



(6.12), wi is a combination of the regression coefficient for the local predictors as well as a

term proportional to ĜT
i zi. Thus, its cross-scale interactions term Ĝi may vary from one

region to another, based on the covariance matrix XT
i Xi of its local predictors. For our pro-

posed framework, the regression coefficient wi also comprises of two terms, one depending

on the local predictors while the other is proportional to ḠT
i zi, where Ḡi depends on the

covariance matrix of the local predictors as well as the local and regional latent factors, i.e.,

U and R.

6.4.5 Generalization to N-level Modeling

For N-level modeling where N > 2, let X(1) be the design matrix for the local predictors and

{X(2),X(3), · · · ,X(N)} be the set of matrices corresponding to coarser-level predictors from

level 2 to N . Similar to the 2-level model, the response variable can be factorized into a set

of latent factors (U) associated with the local predictors as well as the feature representation

V(1) of coarser “regions" defined at level 2:

min
U,V(1)

∑
i

‖ yi −X
(1)
i Uv

(1)
i ‖

2
2 .

Let X
(l)
i ∈ Rr

(l)
i ×dl denote the matrix of “regional" predictors associated with the ith

region in level l, where dl is the number of regional predictors and r
(l)
i is the number of

finer subregions at level l− 1 contained within the ith region at level l. Figure 6.2 shows an

example of a multi-level nested data, where each geographical object corresponds to a city.

In this example, X
(1)
1 corresponds to the matrix of local predictors for all cities located in

county1, X
(2)
1 corresponds to the matrix of county-level predictors for all counties located in

state1, and X
(3)
1 corresponds to the matrix of state-level predictors for all the states located

in the given country.

Assume the regional predictors at level l are factorized into ml latent factors. Fur-

thermore, let X
(l−1)
(i,j)

∈ R
r
(l−1)
(i,j)

×dl−1 be the sub-matrix of regional predictors for the jth
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Figure 6.2: Example of a multi-level nested data. The finest level represents the cities. Each
city belongs to a county, which in turn, is located within a state in a given country.

sub-region of the i-th region at level l. The second subscript j is introduced to allow the re-

gion at a given level to be related to its subregion at a lower level. For example, in Figure 6.2,

X
(2−1)
(2,1)

refers to the first subregion of the second region of level 2, i.e., the matrix X(1)
4 . Note

that X
(l)
i and X

(l−1)
(i,j)

can be jointly factorized as minR,P,V ‖ (X
(l)
i )T −R(l)P

(l)
i V

(l)
i ‖

2
2 and

minR,P,V ‖ (X
(l−1)
(i,j)

)T − R(l−1)P(l−1)
(i,j)

V
(l−1)
(i,j)

‖22, respectively, where R(l) ∈ Rdl×ml is the

latent factor shared by all the regions at level l. The matrix P
(l)
i ∈ Rml×ml+1 captures the

relationship between the latent factors at different levels. Furthermore, V
(l)
i ∈ Rml+1×r

(l)
i

and V
(l−1)
(i,j)

∈ Rml×r
(l−1)
i . Each column of V

(l−1)
(i,j)

is defined as the jth column of P
(l)
i V

(l)
i .

Putting them together, the objective function for our N -level multi-task learning frame-

work can be expressed as follows:

L(U,V,P,R) =
∑r1

i=1
‖ yi −X

(1)
i Uv

(1)
i ‖

2
2 (6.17)

+
∑N

l=2

rl∑
i=1

‖ (X
(l)
i )T −R(l)P

(l)
i V

(l)
i ‖

2
F + Ω(U,V,P,R)

where v
(1)
i is a column in V

(1)
i . The first term in (6.17) corresponds to the prediction error

at level 1 while the second term learns the latent factors V of the nested data. Ω(V,P,R)

denote the regularization term on the parameters. The objective function can be solved

using a block coordinate descent approach, similar to the algorithm used for our previous

2-level data.
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6.5 Experimental Evaluation

We have performed extensive experiments to evaluate the performance of the proposed

multi-level multi-task learning (MLMT) framework using nested datasets from the lake ecol-

ogy domain.

6.5.1 Datasets

The lake water quality datasets were obtained from LAGOS-NE [109], which is a geospatial

database containing land cover/use features and lake chemistry data measured at multiple

scales covering the Northeastern part of the United States. We selected four water quality

metrics as response variables, including two lake nutrient variables (total phosphorus [TP]

and total nitrogen [TN] concentrations), a measure of algal biomass (chlorophyll-a [chla]),

and Secchi depth (Secchi), a measure of water clarity. The sampling years for the response

variables span from 2000 to 2013. For each lake, we extracted the sample data from the

summer months of June, July, and August, and took their average values over all the sampling

years to represent the ground truth value for each response variable. We also selected 13

variables, including lake hydrogeomorphic variables and land cover/use data from 2001, as

the local predictors. Ecological Drainage Units (EDUs) [48] were used to define the spatial

regions of the study. The regionalization scheme has been used in a previous study on multi-

scale modeling of lake water quality [124]. We extracted 8 regional predictors, including the

hydrogeomorphic and land cover/use variables measured at the coarser EDU-level. All the

local and regional predictors are standardized to have zero mean and unit standard deviation

while the response variables are log-transformed similar to the approach used in [124]. As

shown in Table 6.1, the number of instances (lakes) in each region (EDU) with ground truth

data available varies from one response variable to another.
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Table 6.1: Summary statistics for 4 lake water quality data.

Response variable TP TN Chla Secchi
# regions (EDUs) 86 83 87 88
# instances (lakes) 4352 1946 5592 5796
#instances/region 1 - 369 1 - 236 1 - 575 1 - 583
mean value 37.58 739.25 17.19 2.78
standard deviation 66.75 1015.99 29.56 1.87

6.5.2 Experimental Setup

The proposed multi-level multi-task (MLMT) learning framework along with the baseline

algorithms were implemented in Matlab. Our source code for the proposed framework and

other baselines are available at [144]

6.5.2.1 Baseline Methods

We compared the performance of our framework against the following four baseline methods:

• Global-L: This method makes the following two assumptions: (1) the relationship between

the predictor and response variables are the same across all the regions and (2) the regional

predictors do not influence the response variable. With these assumptions, a single, lasso

regression model is trained to fit the local predictors of the training data from all regions.

• Global-LR: This method is similar to the previous baseline except it assumes that the

regional predictors also influence the response variable. A single, lasso regression model is

trained to fit both the local and regional predictors of the training data from all regions.

• STL: This method applies lasso regression independently to each region using only the

local predictors of the regions. Regional predictors are not used since their values are

identical for all the training instances in the same region.

• MLM : This method applies L1-regularization to the multi-level modeling formulation

(see Equation (6.1)) to build a separate model for each region [74]. This multi-level lasso
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method assumes that the regression coefficients for each region are directly tied to the

regional variables via their shared cross-scale interactions term, G.

6.5.2.2 Evaluation Metric

We employed two metrics to evaluate the performance of the different methods. The first

metric is root mean square error (RMSE), which measures the deviation between the observed

and predicted values of the response variable. The metric can be calculated as follows:

RMSE =

√∑N

i=1
(yi − ŷi)2/N (6.18)

where ŷi is the predicted value and N is the number of predicted instances.

The second metric is the coefficient of determination, R2, which measures the variance

in the response variable explained by the model. The metric is calculated as follows:

R2 = 1−
∑
i(yi − ŷi)

2∑
i(yi − ȳ)2

(6.19)

where ȳ is the mean of the observed values for the response variable.

6.5.3 Experimental Results

6.5.3.1 Performance Comparison for All Regions

For evaluation purposes, we partitioned each dataset into separate training and test sets,

using 2/3 of the data for training and the remaining 1/3 for testing. We further divide the

training set into two halves, one for training and the other for validation (hyperparameter

tuning). We repeated this 10 times with different training and test partitions and reported

the average and standard deviation of RMSE and R2 values in Table 6.2. The results in this

table suggest that single task learning (STL) performs the worst among all five competing

methods on 3 of the 4 datasets, which is not surprising for several reasons. First, the sample

sizes are highly imbalanced among the regions. In fact, for all the response variables, more

than 20% of the EDUs (regions) have 10 or less lakes with observation data available. The
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Table 6.2: Results for 4 lake water quality data.

Response TP TN Chla Secchi
Global-L 0.330±0.003 0.231±0.007 0.426±0.013 0.274±0.019
Global-LR 0.310±0.004 0.214±0.006 0.413±0.018 0.258±0.022
STL 0.564±0.475 0.546±0.033 0.529±0.195 0.260±0.015
MLM 0.302±0.005 0.210±0.006 0.423±0.044 0.242±0.011
MLMT 0.286±0.004 0.203±0.006 0.381±0.014 0.231±0.010

(a) RMSE results
Response TP TN Chla Secchi
Global-L 0.414±0.009 0.515±0.018 0.359±0.031 0.351±0.093
Global-LR 0.485±0.014 0.584±0.023 0.399±0.044 0.421±0.101
STL 0.095±0.075 0.011±0.035 0.056±0.033 0.275±0.021
MLM 0.511±0.016 0.599±0.020 0.364±0.140 0.494±0.046
MLMT 0.560±0.010 0.624±0.024 0.489±0.030 0.540±0.044

(b) R2 results

models for many of these data-poor regions are likely to be inferior. Second, the independent

models were not able to fully utilize the regional predictors as their values are identical for

all the lakes in the same region. Third, the existing regions (EDUs) for which the lasso

models were trained may not be ideal for the predictive modeling task. This last point will

be further illustrated in Section 6.5.3.4. For Secchi, STL performs relatively better than

the global models because there are more instances available in each region to construct an

effective model.

Figure 6.3: Percentage of regions in which MLMT performs better than baseline methods.

We also observe that global-L is worse than global-LR, which suggests the value of in-

corporating regional predictors into the predictive modeling framework. Nevertheless, the
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performances of the global models are inferior compared to the multi-level modeling (MLM)

approach since they both apply the same model to all the regions. Finally, the proposed

MLMT framework consistently outperforms all the baseline methods on all four datasets.

In addition to comparing the magnitude of their RMSE and R2 values, we also compare

the number of regions in which MLMT outperforms the baseline methods. Specifically, for

each dataset, we calculate the percentage of regions in which our method outperforms each

baseline and take the average percentages over the 10 training and test set partitions. As can

be seen from the results shown in Figure 6.3, MLMT outperforms all the baseline methods

in more than 64% of the regions in 3 of the 4 datasets. The percentage increases to over 70%

of the regions when compared against STL. For the TN dataset, which has fewer instances

available, MLMT still performs better than MLM in more than 55% of the regions.

6.5.3.2 Performance Comparison for Data-Poor Regions

In this experiment, we evaluate the performance of all the methods for regions with small

training set sizes. To identify such regions, we define a maximum sample size threshold τ

and calculate the RMSE values for the test examples located in regions that have less than τ

training examples. We vary τ from 10 to 150 and plot the results in Figure 6.4. The results in

this figure suggest that the RMSE value of MLMT for the data-poor regions is consistently

lower than all the baseline methods. This validates our assertion that the shared latent

factors enable the data-poor regions to leverage information from other regions in order to

construct more effective models.

6.5.3.3 Cross-scale Interactions

In this section, we first examine the cross-scale interactions (CSIs) found by MLMT that

contribute to the prediction of total phosphorous (TP). As mentioned in Section 6.4.1, our

framework allows the CSIs to vary by region. The CSIs can be visualized by plotting the

Ḡi’s given in Equation (6.14). For TP, we found all the 86 regions follow a similar CSI

101



(a) TP (b) TN

(c) Chla (d) Secchi

Figure 6.4: Performance comparison for regions with limited number of training data.

pattern, as evidenced by the high average correlation (0.991) between the Ḡ matrices of all

the regions. The median pattern, computed from the median value of Ĝ, is shown in Figure

6.5(a). We also show the regions whose CSI patterns are most and least correlated with the

median pattern in Figures 6.5(b) and (c), respectively. These figures suggest there is very

little difference between the CSI patterns of TP for all the regions.

To validate the CSI patterns found by MLMT, we examine its median CSI pattern (see

Figure 6.5(a)) and compare it against previous results reported in the literature. For example,

our analysis showed that the coefficient in Ḡ for regional agriculture and local wetland

(wooded) is negative (−0.005). This coefficient denotes the relationship between regional

agriculture and the slope of the wetland-TP relationship. The CSI term suggests that when

the proportion of agricultural land use in a region is low, the wetland-TP relationship is
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positive. In contrast, when the proportion of agricultural land use in a region is high,

the wetland-TP relationship is negative. This result matches the previous finding given

in [35, 110]. An explanation to this is that in regions with little agriculture, wetlands may

be the source of phosphorus to lakes (positive slope), but when agriculture increases, wetland

effects on lake phosphorus becomes negative since the wetlands may be retaining phosphorus

from getting into lakes.

Among the CSIs identified by the median pattern include regional wetland and local pas-

ture(0.009), regional forest and local deciduous(-0.009), regional base flow and local pasture

(0.008) and regional wetland and max depth (-0.006). These CSIs represent the complex in-

teractions that exist between local lake properties and the broader regional context in which

a lake is located. For example, the negative CSI between the proportion of regional wetland

cover and max depth suggests that the lake morphological controls on TP, as a result of

increasing lake depth, are stronger when a lake is embedded in a landscape with abundant

wetlands. This may be due to the additional reduction of TP entering a lake due to retention

of nutrients within wetland complexes [35].

Although the CSI patterns for total phosphorous are very similar for all the regions, the

patterns do vary by region for Secchi depth. The median CSI pattern for Secchi depth is

shown in Figure 6.5(d). Many regions have CSI patterns that are very similar to the median

pattern. This includes the CSI pattern for region #54, which is shown in Figure 6.5(e).

However, there are several regions whose CSI patterns are considerably different than the

median pattern. For example, Figure 6.5(f) shows the CSI pattern for region #88. For this

region, some relationships such as those between regional base flow and local max depth and

between regional wetland and local max depth have completely opposite sign compared to

the relationships shown by the median CSI pattern.
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(a) Median pattern for TP (b) CSIs for Region #82 (c) CSIs for Region #11

(d) Median pattern for Secchi (e) CSIs for Region #54 (f) CSIs for Region #88

Figure 6.5: Cross-scale interactions between local and regional predictors for the prediction
of total phosphorous (a)-(c) and Secchi depth (d)-(f). For each plot, the horizontal axis
denotes the local predictors while the vertical axis denotes the regional predictors.

6.5.3.4 Comparison Between the New and Original Regions

Since the original regions (EDUs) are created for other purposes, we hypothesized that a

better set of regions can be derived for predictive modeling using the latent factors associated

with the lakes. To do this, we first compute the latent feature representation of each lake,

which is given by XU. We then apply k-means clustering to generate the new set of regions.

For a fair comparison, we set the number of clusters to be the same as the number of regions

(EDUs) in the original data. A lasso regression model is independently trained for each new

region using only their local predictor variables. Similarly, we also train lasso regression

models for each of the original regions. We then compare the performances of the models

for the new regions against those for the original regions. Table 6.3 summarizes their RMSE

values. The results in this table suggest that the local models trained on the new regions

have a lower RMSE compared to the local models trained on the original (EDU) regions in 3
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Table 6.3: RMSE comparison for original and new regions.

Response variable TP TN Chla Secchi
Original regions (EDUs) 0.564 0.546 0.529 0.260
New regions 0.403 0.519 0.487 0.267

out of the 4 datasets. This supports our hypothesis that the new regions created by MLMT

can be used to build more accurate local prediction models compared to the original regions.

6.5.3.5 Sensitivity Analysis

The proposed framework requires tuning the following 4 hyper-parameters: ρ1, ρ2, ρ3 and ρ4.

For the experiments described in the previous subsections, the hyper-parameters are tuned

using the validation set. This section examines the sensitivity of MLMT to changes in the

hyper-parameter values. To do this, we vary the value of each hyper-parameter from 0.001 to

100 and plot the changes in their RMSE values in Figure 6.6. Note that the hyper-parameter

values shown on the horizontal axis are plotted on the log scale. The results suggest that the

RMSE values are quite stable for a relatively wide range of hyper-parameter values. In fact,

the RMSE values do not change significantly when varying ρ4. To achieve a low RMSE, ρ1

prefers smaller values while both ρ2 and ρ3 appear to favor larger values between 1 to 10.

6.6 Conclusions

This chapter presents a novel framework called MLMT for modeling nested geospatial

data. The framework jointly trains a set of models that can incorporate both the local and

regional predictors into a unified formulation. We also show how cross-scale interactions can

be derived for each region using the proposed framework. Experimental results suggest that

MLMT outperforms four other baseline methods on the lake water quality datasets evaluated

in this study. Finally, we show that MLMT can be used to derive new regions for building

more accurate local prediction models compared to using the original regions of the data.
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Figure 6.6: Sensitivity analysis for ρ1, ρ2, ρ3 and ρ4.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

This thesis presents novel learning algorithms to address the practical challenges of mining

geospatial data. Specifically, the contributions of the thesis are summarized below.

• I proposed a framework for spatially constrained spectral clustering with application to

regionalization. The framework introduces a way to represent the adjacent information

into a graph and incorporate the relationship between spatial units as a constraint

to ensure the spatial contiguity. The proposed framework can balance the trade off

between spatial contiguity and landscape homogeneity. This framework is further

extended to a hierarchical setting, thus enabling each cluster to be nested wholly

within coarser level clusters.

• I developed a supervised hash-based feature learning approach for incomplete geospa-

tial data with application to predict lake nutrients. The proposed algorithm simultane-

ously infers the missing feature values while constructing a set of nonlinear hash-based

features from the incomplete data. The new feature representation has the following

properties: (i) complete without missing values, (ii) reduce the dimensionality, (iii)

derived via a supervised learning strategy, (iv) can be subsequently trained to cap-

ture the nonlinear relationship between predictor and response variables using efficient

linear models.

• I proposed a multi-task learning framework for jointly modeling geospatial data with

multiple response variables at different locations. Instead of learning many indepen-

dent local models for each response variable, this method enhances prediction ability
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by incorporating spatial autocorrelation between different locations and correlations

among multiple response variables.

• I proposed a novel multi-level multi-task learning framework for nested geospatial data

that can be applied to regions that have no training data. The proposed framework

can effectively incorporate both the local and regional predictor variables into its for-

mulation. In addition, it can automatically identify potential cross-scale interactions

among variables.

7.2 Future Work

In Chapter 3 we proposed a spatially constrained spectral clustering framework. The

framework based on two different kernel representation of the geographical graph. In the

future, we can try different variation of the representation and compare with the existing

representation. In this work, we applied our framework to form regionalization system.

However, the application of this framework can go beyond region delineation. We can apply

our framework to any dataset that contains both profile of the nodes and adjacent information

of the nodes. For example, it can be used in social network data for community detection.

The features will be profiles of the user, the data extracted from a user’s text posting, etc.

The spatial constraint can be the friend status of two users – whether they are linked or not.

The task is to cluster users into groups with similar interest.

In Chapter 4 we presented the supervised hash-based feature learning for data contains

missing values. This algorithm learn features and impute missing values simultaneously.

However, it is a batch learning algorithms and one of the limitation is that when a new

incomplete test data comes in, we need to re-train the model based on all the available data.

The framework can be extended to incremental learning or online learning fashion, in a way

to deal with new unseen data without re-train the whole model. In addition, we apply the

Random Fourier feature(RFF) to capture the non-linear relationship between predictors and

response variables. It will be interesting to try other non-linear mapping as well.
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In Chapter 5 we presented a multi-task learning framework for data with multiple re-

sponse variables at multiple locations. In this current model, we use latitude and longitude

as the constraint information of relationship between different locations. We can try other

spatial autocorrelation metrics in the future. In chapter 5 we applied our framework in lake

water quality database. We can also apply the algorithm on lots of other data sets as well.

For example the framework can be used to predict school’s test scores where each school is

a different task and there’s relationship between different schools. The response variables is

different course scores and scores for different courses are not independent from each other.

109



BIBLIOGRAPHY

110



BIBLIOGRAPHY

[1] Robin Abell, Michele L. Thieme, Carmen Revenga, Mark Bryer, Maurice Kottelat,
Nina Bogutskaya, Brian Coad, Nick Mandrak, Salvador Contreras Balderas, William
Bussing, Melanie L. J. Stiassny, Paul Skelton, Gerald R. Allen, Peter Unmack, Alexan-
der Naseka, Rebecca Ng, Nikolai Sindorf, James Robertson, Eric Armijo, Jonathan V.
Higgins, Thomas J. Heibel, Eric Wikramanayake, David Olson, Hugo L. López,
Roberto E. Reis, John G. Lundberg, Mark H. Sabaj Pérez, and Paulo Petry. Freshwater
ecoregions of the world: A new map of biogeographic units for freshwater biodiversity
conservation. BioScience, 58, 2008.

[2] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task
feature learning. Mach. Learn., 73(3):243–272, 2008.

[3] Fernando Bação, Victor Lobo, and Marco Painho. Geo-self-organizing map (geo-som)
for building and exploring homogeneous regions. Geographic Information Science,
pages 22–37, 2004.

[4] Robert G. Bailey. Ecoregions map of north america: Explanatory note. U.S. Dept. of
Agriculture, Forest Service, 1998.

[5] Robert G. Bailey. Ecosystem Geography: From Ecoregions to Sites. Springer-Verlag,
2009.

[6] Arindam Banerjee and Joydeep Ghosh. Scalable clustering algorithms with balancing
constraints. Data Mining and Knowledge Discovovery, 13(3):365–395, 2006.

[7] Sugato Basu, Ian Davidson, and Kiri Wagstaff. Constrained Clustering: Advances in
Algorithms, Theory, and Applications. Taylor and Francis, 2008.

[8] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. Imaging sciences, 2(1):183–202, 2009.

[9] Justin M Becknell, Ankur R Desai, Michael C Dietze, Courtney A Schultz, Gregory
Starr, Paul A Duffy, Jerry F Franklin, Afshin Pourmokhtarian, Jaclyn Hall, Paul C
Stoy, et al. Assessing interactions among changing climate, management, and distur-
bance in forests: a macrosystems approach. BioScience, 65(3):263–274, 2015.

[10] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A
review and new perspectives. TPAMI, 35:1798–1828, 2013.

[11] Stefania Bertazzon, Markey Johnson, Kristin Eccles, and Gilaad G Kaplan. Accounting
for spatial effects in land use regression for urban air pollution modeling. Spatial and
spatio-temporal epidemiology, 14:9–21, 2015.

[12] Tijl De Bie, Johan A. K. Suykens, and Bart De Moor. Learning from general label
constraints. In SSPR/SPR, volume 3138, pages 671–679. Springer, 2004.

111



[13] Daniel Boley and Jaya Kawale. Constrained spectral clustering using l1 regularization.
In SIAM Int’l Conference on Data Mining, pages 103–111. SIAM, 2013.

[14] Hervé Bourlard and Yves Kamp. Auto-association by multilayer perceptrons and sin-
gular value decomposition. Biological cybernetics, 59(4):291–294, 1988.

[15] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher. Min-
wise independent permutations. J. of Comp. Sys. Sci., 60:327–336, 1998.

[16] Donald Brown, Jason Dalton, and Heidi Hoyle. Spatial forecast methods for terrorist
events in urban environments. In International Conference on Intelligence and Security
Informatics, pages 426–435. Springer, 2004.

[17] Jian-Feng Cai, Emmanuel J. Candès, and Zuowei Shen. A singular value thresholding
algorithm for matrix completion. SIAM Journal on Optimization, 20:1956–1982, 2010.

[18] Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex opti-
mization. Found. Comput. Math., 9:717–772, 2009.

[19] Rich Caruana. Multitask learning. In Machine Learning, pages 41–75, 1997.

[20] Moses Charikar. Similarity estimation techniques from rounding algorithms. In STOC,
pages 380–388, 2002.

[21] Sanjay Chawla, Shashi Shekhar, Weili Wu, and Uygar Ozesmi. Modeling spatial de-
pendencies for mining geospatial data. In Proceedings of the 2001 SIAM International
Conference on Data Mining, pages 1–17. SIAM, 2001.

[22] Jianhui Chen, Lei Tang, Jun Liu, and Jieping Ye. A convex formulation for learning
shared structures from multiple tasks. In Proceedings of the 26th Annual International
Conference on Machine Learning, pages 137–144, 2009.

[23] Jianhui Chen, Jiayu Zhou, and Jieping Ye. Integrating low-rank and group-sparse
structures for robust multi-task learning. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 42–50, 2011.

[24] Kendra S. Cheruvelil, Patricia A. Soranno, Katherine E. Webster, and M.T. The multi-
scaled drivers of ecosystem state: Quantifying the Ecological Applications, 23:1603–
1618, 2013.

[25] Casey Cleve, Maggi Kelly, Faith R. Kearns, and Max Moritz. Classification of the
wildland- urban interface: A comparison of pixel- and object-based classifications using
high-resolution aerial photography. Transportation Research Record, 32(4):317–326,
2008.

[26] Tom Coleman, James Saunderson, and Anthony Wirth. Spectral clustering with in-
consistent advice. In ICML, pages 152–159, 2008.

112



[27] Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis.
Modeling wine preferences by data mining from physicochemical properties. Decis.
Support Syst., 47:547–553, 2009.

[28] R Cameron Craddock, G Andrew James, Paul E Holtzheimer, Xiaoping P Hu, and
Helen S Mayberg. A whole brain fMRI atlas generated via spatially constrained spectral
clustering. Human brain mapping, 33:1914–1928, 2012.

[29] Ian Davidson and S. S. Ravi. Agglomerative hierarchical clustering with constraints:
Theoretical and empirical results. In Lecture notes in computer science, pages 59–70.
Springer, 2005.

[30] Chris Ding and Xiaofeng He. Cluster merging and splitting in hierarchical clustering
algorithms. In Proc. IEEE Int’l Conf. Data Mining, pages 139–146, 2002.

[31] Juan Carlos Duque, Raúl Ramos, and Jordi Suriñach. Supervised regionalization meth-
ods: A survey. International Regional Science Review, 30:195–220, 2007.

[32] Theodoros Evgeniou, Charles A. Micchelli, and Massimiliano Pontil. Learning multiple
tasks with kernel methods. J. Mach. Learn. Res., 6:615–637, 2005.

[33] Theodoros Evgeniou and Massimiliano Pontil. Regularized multi–task learning. In
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 109–117. ACM, 2004.

[34] Angel M. Felicísimo. Uses of spatial predictive models in forested areas territorial
planning. In CIOT-IV international conference on spatial planning, pages 2–4, 2003.

[35] Emi Fergus, Patricia A. Soranno, Kendra S. Cheruvelil, and Mary T Bremigan.
Multiscale landscape and wetland drivers of lake total phosphorus and water color.
Limnology and Oceanography, 56(6):2127–2146, 2011.

[36] Kelwin Fernandes, Pedro Vinagre, and Paulo Cortez. A proactive intelligent decision
support system for predicting the popularity of online news. In EPIA, pages 535–546,
2015.

[37] Christopher T Filstrup, Tyler Wagner, Patricia A Soranno, Emily H Stanley, Craig A
Stow, Katherine E Webster, and John A Downing. Regional variability among non-
linear chlorophyll—phosphorus relationships in lakes. Limnology and Oceanography,
59(5):1691–1703, 2014.

[38] Andrew Gelman and Jennifer Hill. Data analysis using regression and multilevel
hierarchical models, volume 1. Cambridge University Press New York, 2007.

[39] John A George, Bruce W Lamar, and Chris A Wallace. Political district determination
using large-scale network optimization. Socio-Economic Planning Sciences, 31(1):11–
28, 1997.

113



[40] Bardan Ghimire, John Rogan, and Jennifer Miller. Contextual land-cover classifica-
tion: incorporating spatial dependence in land-cover classification models using random
forests and the getis statistic. Remote Sensing Letters, 1(1):45–54, 2010.

[41] André Ricardo Gonçalves, Fernando J. Von Zuben, and Arindam Banerjee. A multi-
task learning view on the earth system model ensemble. Computing in Science and
Engineering, 17(6):35–42, 2015.

[42] Oleksandr Grygorash, Yan Zhou, and Zach Jorgensen. Minimum spanning tree based
clustering algorithms. In 18th IEEE International Conference on Tools with Artificial
Intelligence, pages 73–81, Arlington, VA, 2006.

[43] Kelly-Ann Dixon Hamil, Basil V Iannone III, Whitney K Huang, Songlin Fei, and
Hao Zhang. Cross-scale contradictions in ecological relationships. Landscape ecology,
31(1):7–18, 2016.

[44] Jiawei Han, M. Kamber, and A.K.H. Tung. Spatial clustering methods in data mining:
A survey. In H.J. Miller and J. Han, editors, Geographic data mining and knowledge
discovery, pages 188–217. Taylor and Francis, 2001.

[45] Jiawei Han and Krzysztof Koperski. Discovery of spatial association rules in geographic
information databases. In 4th Int’l Symp. on Large Spatial Databases, 1995.

[46] Fatma Haouas, Zouhour Ben Dhiaf, and Basel Solaiman. Fusion of spatial auto-
correlation and spectral data for remote sensing image classification. In Advanced
Technologies for Signal and Image Processing (ATSIP), pages 537–542. IEEE, 2016.

[47] William Hargrove and Forrest Hoffman. Potential of multivariate quantitative methods
for delineation and visualization of ecoregions. Environmental Management, 34:S39–
S60, 2004.

[48] Jonathan V Higgins, Mark T Bryer, Mary L Khoury, and Thomas W Fitzhugh. A
freshwater classification approach for biodiversity conservation planning. Conservation
Biology, 19(2):432–445, 2005.

[49] Jeffrey W Hollister, W Bryan Milstead, and Betty J Kreakie. Modeling lake trophic
state: a random forest approach. Ecosphere, 7(3), 2016.

[50] George E. Host, Philip L. Polzer, David J. Mladenoff, Mark A. White, and Thomas R.
Crow. A quantitative approach to developing regional ecosystem classifications.
Ecological Applications, 6:608–618, 1996.

[51] Housing Data Set. http://archive.ics.uci.edu/ml/datasets/Housing, 1993.

[52] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing
the curse of dimensionality. In Proc of the Annual ACM Symposium on Theory of
Computing, pages 604–613, 1998.

114



[53] Cem Iyigun, Murat Türkeş, İnci Batmaz, Ceylan Yozgatligil, Vilda Purutçuoğlu,
Elçin Kartal Koç, and Muhammed Z Öztürk. Clustering current climate regions of
turkey by using a multivariate statistical method. Theoretical and applied climatology,
114(1-2):95–106, 2013.

[54] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-Hall,
Inc., 1988.

[55] Anil K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM
Computing Surveys, 31(3):264–323, 1999.

[56] Shuiwang Ji and Jieping Ye. An accelerated gradient method for trace norm minimiza-
tion. In ICML, pages 457–464, 2009.

[57] Sepandar D. Kamvar, Dan Klein, and Christopher D. Manning. Spectral learning. In
In IJCAI, pages 561–566, 2003.

[58] Risi Imre Kondor and John D. Lafferty. Diffusion kernels on graphs and other discrete
input spaces. In 19th Int’l Conference on Machine Learning, pages 315–322. Morgan
Kaufmann Publishers Inc., 2002.

[59] Weihao Kong, Wu-Jun Li, and Minyi Guo. Manhattan hashing for large-scale image
retrieval. In Proc of SIGIR, pages 45–54, 2012.

[60] Holger Kreft and Walter Jetz. A framework for delineating biogeographical regions
based on species distributions. Journal of Biogeography, 37:2029—-2053, 2010.

[61] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. In Proc of NIPS, 2012.

[62] Brian Kulis and Trevor Darrell. Learning to hash with binary reconstructive embed-
dings. In NIPS, pages 1042–1050, 2009.

[63] Abhishek Kumar and Hal Daume III. Learning task grouping and overlap in multi-task
learning. In ICML. Omnipress, 2012.

[64] Hanjiang Lai, Yan Pan, Ye Liu, and Shuicheng Yan. Simultaneous feature learning
and hash coding with deep neural networks. In CVPR, 2015.

[65] Andrew B Lawson. Hierarchical modeling in spatial epidemiology. Wiley
Interdisciplinary Reviews: Computational Statistics, 6(6):405–417, 2014.

[66] Pierre Legendre and Louis Legendre. Numerical ecology. Amsterdam, 2012.

[67] Yan Li, Zhou Shi, Feng Li, and Hong-Yi Li. Delineation of site-specific management
zones using fuzzy clustering analysis in a coastal saline land. Computers and Electronics
in Agriculture, 56:174–186, 2007.

[68] Moshe Lichman. UCI machine learning repository. http://archive.ics.uci.edu/ml,
2013.

115



[69] Roderick J A Little. Regression with missing x’s: A review. Journal of the American
Statistical Association, 87:1227–1237, 1992.

[70] Roderick J A Little and Donald B Rubin. Statistical Analysis with Missing Data. John
Wiley & Sons, Inc., 1986.

[71] Jun Liu, Shuiwang Ji, and Jieping Ye. Multi-task feature learning via efficient l2,
1-norm minimization. In Proc of Conf. on Uncertainty in Artificial Intelligence, pages
339–348, 2009.

[72] Ye Liu, Yu Zheng, Yuxuan Liang, Shuming Liu, and David S. Rosenblum. Urban water
quality prediction based on multi-task multi-view learning. In Proc. of the 25th Int’l
Joint Conference on Artificial Intelligence, pages 2576–2582, 2016.

[73] Jed A. Long, Trisalyn A. Nelson, and Michael A. Wulder. Regionalization of land-
scape pattern indices using multivariate cluster analysis. Journal of Environmental
Management, pages 134–142, 2010.

[74] Aurelie C. Lozano and Grzegorz Swirszcz. Multi-level lasso for sparse multi-task re-
gression. In Proc of Int’l Conf on Machine Learning, 2012.

[75] Ulrike Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–
416, 2007.

[76] Christopher R. Margules, Daniel P. Faith, and Lee Belbin. An adjacency constraint
in agglomerative hierarchical classifications of geographic data. Environment and
Planning A, 17(3):397–412, 1985.

[77] Edward McCauley and Susan Downing, John A.and Watson. Sigmoid relationships
between nutrients and chlorophyll among lakes. Can J Fish Aquat Sci, 46:1171–1175,
1989.

[78] Gerard McMahon, S.M. Gregonis, S.W. Waltman, J.M. Omernik, T.D. Thorson, J.A.
Freeouf, A.H. Rorick, and J.E. Keys. Developing a spatial framework of common
ecological regions for the conterminous united states. Environmental Management,
28(3):293–316, 2001.

[79] Kristin Meseck and et.al. Is missing geographic positioning system data in accelerom-
etry studies a problem, and is imputation the solution? Geospatial Health, 11(034),
2016.

[80] Vincent Miele, Franck Picard, and Staphane Dray. Spatially constrained clustering on
ecological networks. Methods in Ecology Evolution, 5(8):771–779, 2014.

[81] Jennifer Miller and Janet Franklin. Modeling the distribution of four vegetation al-
liances using generalized linear models and classification trees with spatial dependence.
Ecological Modelling, 157(2):227–247, 2002.

116



[82] Richard Tran Mills, Forrest M. Hoffman, Jitendra Kumar, and William W. Hargrove.
Cluster analysis-based approaches for geospatiotemporal data mining of massive data
sets for identification of forest threats. In Proceedings of the International Conference
on Computational Science, pages 1612–1621, 2011.

[83] Fionn Murtagh. A survey of algorithms for contiguity-constrained clustering and re-
lated problems. The computer journal, 28(1):82–88, 1985.

[84] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and
an algorithm. In Advances in Neural Information Processing Systems, pages 849–856,
2001.

[85] Mohammad Norouzi and David J. Fleet. Minimal loss hashing for compact binary
codes. In ICML, pages 353–360, 2011.

[86] Vladimir Novotny, Alena Bartosova, and Nealand Ehlinger Timothy O’Reilly. Unlock-
ing the relationship of biotic integrity of impaired waters to anthropogenic stresses.
Water Research, 39:184–198, 2005.

[87] Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field prop-
erties by learning a sparse code for natural images. Nature, 381(6583):607, 1996.

[88] James M Omernik. Ecoregions: A spatial framework for environmental management.
In W. S. Davis and T. P. Simon, editors, Biological assessment and criteria: tools for
water resource planning and decision making, pages 49–62. Lewis Publishers, Boca
Raton, Florida, 1995.

[89] Stan Openshaw. A regionalisation program for large data sets. Computer Applications,
136:47, 1973.

[90] Karl Pearson. On lines and planes of closest fit to systems of points in space. Phil.
Mag., 6:559–572, 1901.

[91] Debra P. C. Peters, Roger A. Pielke Sr., Brandon T. Bestelmeyer, Craig D. Allen,
Stuart Munson-McGee, and Kris M. Havstad. Cross-scale interactions, nonlinearities,
and forecasting catastrophic events. Proc National Academy of Science, 101(42):15130–
–15135, 2004.

[92] Maxim Raginsky and Svetlana Lazebnik. Locality-sensitive binary codes from shift-
invariant kernels. In NIPS, pages 1509–1517, 2009.

[93] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In
NIPS, pages 1177–1184, 2008.

[94] William M Rand. Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical association, 66(336):846–850, 1971.

[95] A. Ramachandra Rao and V.V. Srivnivas. Some problems in regionalization of water-
sheds. Water Resources Systems -Water Availability and Global Change, 280:301–308,
2003.

117



[96] Anthony Recchia et al. Contiguity-constrained hierarchical agglomerative clustering
using sas. J. Stat. Softw, 33, 2010.

[97] Sam Roweis. Em algorithms for pca and spca. In NIPS, pages 626–632, 1998.

[98] Leonard Sandin and Richard K. Johnson. Ecoregions and benthic macroinvertebrate
assemblages of swedish streams. Journal of the North American Benthological Society,
19:462–474, 2000.

[99] Sergio M. Savaresi and Daniel L. Boley. A comparative analysis on the bisecting k-
means and the PDDP clustering algorithms. Intelligent Data Analysis, 8(4):345–362,
2004.

[100] William Robson Schwartz and Hélio Pedrini. Texture classification based on spatial
dependence features using co-occurrence matrices and markov random fields. In 2004
International Conference on Image Processing, volume 1, pages 239–242. IEEE, 2004.

[101] Paul R. Seaber, F.Paul Kapinos, and George L. Knapp. Hydrologic unit maps. U.S.
Geological survey water-supply papers, 1987.

[102] Richard R. Shaker and Timothy J. Ehlinger. Exploring non-linear relationships be-
tween landscape and aquatic ecological condition in southern wisconsin: A GWR and
ANN approach. International Journal of Applied Geospatial Research, 5(4):1–20, 2014.

[103] Shashi Shekhar, Pusheng Zhang, and Yan Huang. Spatial Data Mining, pages 833–851.
Springer US, 2005.

[104] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 1997.

[105] Xiaoxiao Shi, Wei Fan, and Philip S. Yu. Efficient semi-supervised spectral co-
clustering with constraints. In Proc of IEEE Int’l Conf on Data Mining, pages 1043–
1048. IEEE Computer Society, 2010.

[106] PHA Sneath and RR Sokal. Numerical taxonomy: the principles and practice of
numerical classification, 1973.

[107] Tom A.B. Snijders and Roel J. Bosker. Multilevel Analysis: An Introduction to Basic
and Advanced Multilevel Modeling. SAGE Publications Ltd, 2012.

[108] Robert R Sokal. A statistical method for evaluating systematic relationships. Univ
Kans Sci Bull, 38:1409–1438, 1958.

[109] Patricia A Soranno, Edward G Bissell, Kendra S Cheruvelil, Samuel T Christel,
Sarah M Collins, C Emi Fergus, Christopher T Filstrup, Jean-Francois Lapierre,
Noah R Lottig, Samantha K Oliver, et al. Building a multi-scaled geospatial tem-
poral ecology database from disparate data sources: fostering open science and data
reuse. GigaScience, 4(1):28, 2015.

118



[110] Patricia A Soranno et al. Cross-scale interactions: quantifying multi-scaled cause–effect
relationships in macrosystems. Frontiers in Ecology and the Environment, 12(1):65–73,
2014.

[111] Thorvald Sørensen. A method of establishing groups of equal amplitude in plant
sociology based on similarity of species and its application to analyses of the vegetation
on danish commons. Biol. Skr., 5:1–34, 1948.

[112] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to data mining,
First Edition. Addison-Wesley Longman Publishing Co., Inc., 2005.

[113] Jean-Claude Thil and Aaron Wheeler. Tree induction of spatial choice behavior.
Transportation Research Record, 1719:250–258, 2000.

[114] Waldo R Tobler. Cellular geography. In Philosophy in geography, pages 379–386.
Springer, 1979.

[115] Kim-Chuan Toh and Sangwoon Yun. An accelerated proximal gradient algorithm for
nuclear norm regularized least squares problems. Pacific J. of Optimization, 2009.

[116] Athanasios Tsanas, Max A. Little, Patrick E. McSharry, and Lorraine O. Ramig. Ac-
curate telemonitoring of Parkinson’s disease progression by noninvasive speech tests.
IEEE Trans. Biomed. Engr., 57:884–893, 2010.

[117] U.S. EPA’s National Geospatial Data Policy. http://www.epa.gov/geospatial, 2005.

[118] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag New
York, Inc., 1995.

[119] Sudhir Varma and Richard Simon. Bias in error estimation when using cross-validation
for model selection. BMC Bioinformatics, 7:91, 2006.

[120] Ulrike Von Luxburg, Mikhail Belkin, and Olivier Bousquet. Consistency of spectral
clustering. Annals of Statistics, 36(2):555–586, 2008.

[121] Ulrike Von Luxburg, Olivier Bousquet, and Mikhail Belkin. Limits of spectral cluster-
ing. In Advances in Neural Information Processing Systems, pages 857–864, 2004.

[122] Tyler Wagner, C Emi Fergus, Craig A Stow, Kendra S Cheruvelil, and Patricia A
Soranno. The statistical power to detect cross-scale interactions at macroscales.
Ecosphere, 7(7), 2016.

[123] Tyler Wagner, Daniel B Hayes, and Mary T Bremigan. Accounting for multilevel data
structures in fisheries data using mixed models. Fisheries, 31(4):180–187, 2006.

[124] Tyler Wagner, Patricia A Soranno, Katherine E Webster, and Kendra Spence Cheru-
velil. Landscape drivers of regional variation in the relationship between total phos-
phorus and chlorophyll in lakes. Freshwater Biology, 56(9):1811–1824, 2011.

119



[125] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schroedl. Constrained k-
means clustering with background knowledge. In Proc of IEEE Int’l Conf on Machine
Learning, pages 577–584. Morgan Kaufmann, 2001.

[126] Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. Hashing for similarity
search: A survey. CoRR, abs/1408.2927, 2014.

[127] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Semi-supervised hashing for large scale
search. TPAMI, 34:2393–2406, 2012.

[128] Xiang Wang and Ian Davidson. Flexible constrained spectral clustering. In 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
563–572. ACM, 2010.

[129] Xiaogang Wang, Cha Zhang, and Zhengyou Zhang. Boosted multi-task learning for
face verification with applications to web image and video search. In CVPR, pages
142–149, 2009.

[130] Joe H Ward Jr. Hierarchical grouping to optimize an objective function. Journal of
the American statistical association, 58:236–244, 1963.

[131] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. In Advances in
neural information processing systems, pages 1753–1760, 2009.

[132] Michael R. Willig, Christopher P. Bloch, Nicholas Brokaw, Christopher Higgins, Jill
Thompson, and Craig R. Zimmermann. Cross-scale responses of biodiversity to hur-
ricane and anthropogenic disturbance in a tropical forest. Ecosystems, 10:824–838,
2007.

[133] Michael C Wimberly, Adam D Baer, and Michael J Yabsley. Enhanced spatial mod-
els for predicting the geographic distributions of tick-borne pathogens. International
Journal of Health Geographics, 7(1):15, 2008.

[134] David M. Wolock, Thomas C. Winter, and Gerard McMahon. Delineation and eval-
uation of hydrologic-landscape regions in the united states using geographic informa-
tion system tools and multivariate statistical analyses. Environmental Management,
34:S71–S88, 2004.

[135] Jinguo Wu. Hierarchy theory: An overview. Linking Ecology and Ethics for a Changing
World, 1:281–301, 2013.

[136] Xiaolan Wu and Alan T Murray. A new approach to quantifying spatial contiguity
using graph theory and spatial interaction. International Journal of Geographical
Information Science, 22(4):387–407, 2008.

[137] Jianpeng Xu, Pang-Ning Tan, and Lifeng Luo. ORION: online regularized multi-task
regression and its application to ensemble forecasting. In 2014 IEEE International
Conference on Data Mining, ICDM 2014, Shenzhen, China, December 14-17, 2014,
pages 1061–1066, 2014.

120



[138] Jianpeng Xu, Pang-Ning Tan, Lifeng Luo, and Jiayu Zhou. Gspartan: a geospatio-
temporal multi-task learning framework for multi-location prediction. In Proceedings
of the 2016 SIAM International Conference on Data Mining, Miami, Florida, USA,
May 5-7, 2016, pages 657–665, 2016.

[139] Jianpeng Xu, Jiayu Zhou, Pang-Ning Tan, Xi Liu, and Lifeng Luo. WISDOM: weighted
incremental spatio-temporal multi-task learning via tensor decomposition. In Proc of
the IEEE International Conference on Big Data, 2016.

[140] Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji Krishnapuram. Multi-task learning
for classification with dirichlet process priors. J. Mach. Learn. Res., 8:35–63, 2007.

[141] I-Cheng Yeh. Modeling of strength of high performance concrete using artificial neural
networks. Cement and Concrete Research, 28:1797–1808, 1998.

[142] Kai Yu, Volker Tresp, and Anton Schwaighofer. Learning gaussian processes from mul-
tiple tasks. In Proceedings of the 22Nd International Conference on Machine Learning,
pages 1012–1019, 2005.

[143] Kai Yu and Tong Zhang. Improved local coordinate coding using local tangents. In
ICML, pages 1215–1222, 2010.

[144] Shuai Yuan. Code available at. https://github.com/shuaiyuan-msu/csi-mlmt,
2017.

[145] Shuai Yuan, Pang-Ning Tan, Kendra S Cheruvelil, C Emi Fergus, Nicholas K Skaff,
and Patricia A Soranno. Hash-based feature learning for incomplete continuous-valued
data. In Proceedings of the 2017 SIAM International Conference on Data Mining, pages
678–686. SIAM, 2017.

[146] Shuai Yuan, Pang Ning Tan, Kendra Spence Cheruvelil, Sarah M. Collins, and Patricia
A. Soranno. Constrained spectral clustering for regionalization: Exploring the trade-
off between spatial contiguity and landscape homogeneity. In Proceedings of the IEEE
International Conference on Data Science and Advanced Analytics, 12 2015.

[147] Matthew D. Zeiler, Dilip Krishnan, Graham W. Taylor, and Rob Fergus. Deconvolu-
tional networks. In CVPR, 2010.

[148] Liang Zhao, Qian Sun, Jieping Ye, Feng Chen, Chang-Tien Lu, and Naren Ramakr-
ishnan. Multi-task learning for spatio-temporal event forecasting. In Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1503–1512, 2015.

[149] Liang Zhao, Jieping Ye, Feng Chen, Chang-Tien Lu, and Naren Ramakrishnan. Hierar-
chical incomplete multi-source feature learning for spatiotemporal event forecasting. In
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 2085–2094, 2016.

121



[150] J. Zhou, J. Chen, and J. Ye. MALSAR: Multi-tAsk Learning via StructurAl
Regularization. Arizona State University, 2011.

[151] Jiayu Zhou, Lei Yuan, Jun Liu, and Jieping Ye. A multi-task learning formulation for
predicting disease progression. In Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 814–822, 2011.

122




